X-RAY STRUCTURAL STUDIES OF SOME GROUP VIII COMPOUNDS WITH CATALYTIC IMPLICATIONS

By

DOUGLAS ALLEN SULLIVAN

A DISSERTATION PRESENIED TO THE GRADUATE COUNCIL OE THE UNIVERSITV OF ELORIDA
IN PARTIAL FULEILIMENT OE THE REQUIREFENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

To Jeanie

ACKNOWLEDGEMENTS

I sincerely thank Dr. Gus J. Palenik for his enthusiastic guidance throughout this work. I am deeply appreciative of the advice and instruction conccrning crystallographic techniques given by Dr. M. Nathew and of the diligent synthetic work of Ruth C. Palenik. I wish to thank Dr. Marvin Rausch for providing excellent samples of metallocycle compounds. I am indebted to the chemistry faculties of Marshall University and the University of Florida for their apt instruction. I would like to especially thank the other members of the Center for Molecular Structure for their thoughtful suggestions and discussions. The typing expertise of Ann Kennedy is evident in this, perhaps her last, crystallographic dissertation. Lyle plymale and Don Herbert are acknowledged for their inspirational teaching during my formative years. I would like to express my appreciation to my parents, Mr. and Mrs. I. O. Sullivan, for their support and encouragement throughout my formal education. Finally, I thank my wife, Jeanie, and my son, David, for their love and devoted uncierstanding.

Table of Contents

ACKNOWLEDGEMENTS iii
LIST OF TABLES vi
LIST OF FIGURES ix
KEY TO ABBREVIATIONS x
ABSTRACT xi
CHAPTER I: INTRODUCTION 1
CHAPTER 2: SYNTHESES AND CHARACTERIZATION 4
CHAPTER 3: X-RAY DIFFRACTION EXPERIMENTAL 17
CHAPTER 4: AN INVESTIGATION OF LIGAND-INDUCED 30PROTON SHIFT: THE CRYSTAL ANDMOLECULAR STRUCTURES OF TRANS-CHLORO (DIMETHYLGLYOXIMATO) (DIMETHYL-GLYOXIME) (4-CHLOROANILINE) COBALT (III)DIHYDRATE, TRANS-CHLOROBIS (DIPHENYL-GLYOXIMATO) (4-CHLOROANILINE) COBALT (III)ETHANOLATE, AND TRANS-BIS (DIMETHYL-GLYOXIMATO) BIS (4-CHIOROANILINE) COBALT(III) CHLORIDE
CHAPTER 5: A NOVEL BINUCLEATING LIGAND: THE 83 CRYSTAL AND MOLECULAR STRUCTURES OF 1,4-DIHYDRAZINOPHTHALAZINEBIS (2-PYRI- DINIUMCARBOXALDIMINE) NITRATE DIHYDRATE AND $\mu-C H L O R O T E T R A A Q U A[1,4-D I H Y D R A Z I N O-$ PHTHALAZINEBIS (2-PYRIDINECARBOXALDIMINE)] DINICKEL(II) CHIORIDE DIHYDRATE
CHAPTER 6: MODELS OF PROPOSED INTERMEDIATES FOR 114 THE CATALYZED CYCLIZATION OF ACETYLENES: THE CRYSTAL AND MOLECULAR STRUCTURES OF l-($\pi-C Y C L O P E N T A D I E N Y L)-1-T R I P H E N Y L P H O S-$ PHINE-2,3,4,5-TETRAKIS (PENTAFLUOROPHENYL) COBALTOLE AND 1-(T-CYCLOPENTADIENYL)-l- TRIPHENYLPHOSPHINE-2,3,4,5-TETPAKIS (PENTAFLUOROPHENYL) PHOLOIE
CHAPTER 7: CONCLUDING REMAPKS 141
APPENDIX A: BOOTHITI 144
APPENDIX B: OBSERVED AID CALCULATED STRUCTURE FACTORS 154
REFERENCES 230
BIOGRAPHICAL SKETCH 237

LISJ OF TABLES

Table 1. Elemental Analysis 8
Table 2. Infrazcd Spectra 10
Table 3. Ultraviolct Spectra 15
Table 4. Crystállograpioic Data 18
Table 5. Schemes of Refinement 28
Table 6. Final Atomic Parameters of 33 Nonhydrogen Atoms for $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dng}\right)$ (dmg) (clan)
Table 7. Final Parameters for the 35 Hydrogen Atoms for $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{clan})$
Table 8. Final Atomic Parameters for 37 the Nonhydrogen Atoms of $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan})$
Table 9. Final Parameters for 41
Hydrogen Atoms for
$\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{dpG}_{2}\right)(\mathrm{clan})$
Table 10. Final Atomic Parameters for 43
Nonhydrogen Atoms of $\mathrm{CO}_{\mathrm{Comg}}^{2}\left(\mathrm{Homg} \mathrm{Clan}_{2}\right] \mathrm{Cl}$
Table ll. Final Parancters for 45Hydrogon Atoms for
$\left[\mathrm{CO}(\mathrm{Homg})_{2}(\mathrm{clan})_{2}\right] \mathrm{Cl}$
Table 12. Selected Interatomic Distances 52
in Some Cobaloxime Complexes
Table 13. Selected Interatomic Angles 54 in Some Cobaloxime Complexes
Table 14. Deviations and Equations of 59
Selected Locast-Squares Planes in $C i C o\left(H_{2} d m g\right)(a m g)$ (clan)
Table 15. Deviations and Equations of 61 Selected Least-Squares Planes in $\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{Cpg}_{2}\right)(\mathrm{clan})$
Table 16. Deviations and Equations of 63 Selected Least-Squares Planes in $\left[\mathrm{CO}(\mathrm{Hamcj})_{2}(\mathrm{clan})_{2}\right] \mathrm{Cl}$

Table 17. Hydrogen Bonds in Cobaloximes

Table 18. Dihedral Angles Formed by
Selected Planes in Some Cobaloxime Complexes

Table 19. A Summary of the Average Bond
Distances in XYCO $\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)$
Complexes
Table 20. Bond Distances and Bond Angles
of Coordinated 4-Chloroaniline Molecules

Table 21. Bond Distances, Bond Angles, and
Least-Squares Planes of Phenyl
Rings in $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan})$
Table 22. Final Atomic Parameters of Nonhydrogen Atoms for
H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Table 23. Final Parameters for the
Hydrogen Atoms in
H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Table 24. Final Atomic Parameters of

$$
88
$$

Nonhydrogen Atoms for
$\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{dhphpy})\right] \mathrm{C} \ell_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Table 25. Final Parameters for the
Hydrogen Atoms in
$\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ dhphpy $\left.)\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Table 26. Selected Interatomic Distances
for H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and
$\left[\mathrm{Ni}_{2} \mathrm{C} \ell\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{4}(\mathrm{dhphpy})\right] \mathrm{C} \ell_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Table 27. Selected Angles in
H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Table 28. Selected Angles in
$\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ dhphpy $\left.)\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Table 29. Hydrogen Bonds in
H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and

$$
\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{ahphpy})\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}
$$

Table 30. Deviations and Equations of
Selected Least-Squares Planes in H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and
$\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{ahphpy})\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Table 3l. Final Atomic Parameters for the
Nonhydrogen Atoms in
$\mathrm{C}_{4}(\mathrm{fph}) 4 \mathrm{Co}(\mathrm{cp})(\mathrm{tpp})$ and
$\mathrm{C}_{4}(\mathrm{fph}){ }_{4} \mathrm{Rh}(\mathrm{cp})(\mathrm{tpp})$
Table 32. Selected Bond Distances of
$C_{4}(f p h){ }_{4} M(c p)(t p p)$
Table 33. Selected Bond Angles of $\mathrm{C}_{4}(\mathrm{fph}){ }_{4}^{\mathrm{M}(\mathrm{cp})(\mathrm{tpp})}$

Table 34. Deviation from and Equations
of Some Least-Squares Planes of $\mathrm{C}_{4}(\mathrm{fph})_{4} \mathrm{Co}(\mathrm{cp})(\mathrm{tpp})$ and $c_{4}(\mathrm{fph}){ }_{4} \mathrm{Ph}(\mathrm{cp})(\mathrm{tpp})$

Table 35. Average $C-F$ and $C-C$ Distances
for the Pentafluorophenyl
Groups in $C_{4}(f p h)_{4}(c p)(t p p)$
Table 36. Bond Distances and Bond Angles
of Pontafluorophenyl Groups in $C_{4}(f p h)_{4} C o(c p)(t p p)$

Table 37. Bond Distances and Bond Angles
of Pentafluoroplenyl Groups in $\mathrm{C}_{4}(\mathrm{fph}){ }_{4}^{\mathrm{Rh}(\mathrm{cp})(\mathrm{tpp})}$

Table 38. Bond Distmees and Bond Angles of Triphenylphosphine in $C_{4}($ fph $){ }_{4} \mathrm{M}(\mathrm{cp})(\mathrm{tpp})$

Table B-1. Observed and Calculated Structure Factors for $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)$ (clan)

Table B-2. Observed and Calculated Structure 173 Factors for $\left[\mathrm{Co}(\mathrm{Hdmg})_{2}(\mathrm{clan})_{2}\right] \mathrm{Cl}$

Table B-3. Observed and Calculated Structure Factors for H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Table B-4. Observed and Calculated Structure
Factors for $\left.\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right)_{4}(\mathrm{dhphpy})\right]-$ $\mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Table B-5. Obscrved and Calculated Structure 205 Factors for $\mathrm{C}_{4}(\mathrm{fph}){ }_{4} \mathrm{Rh}(\mathrm{cp})$ (tpp)

LIST OF FTGURES

$\begin{array}{lll}\text { Figure 1. An ORTEy drawing of } \\ \mathrm{CiCO}\left(\mathrm{H}_{2} \text { dmg }\right)(\text { ding })(\mathrm{clan}) \cdot 2 \mathrm{H}_{2} \mathrm{O} & 47\end{array}$
Figure 2. An ORTEP drawing of 49 $\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{OBI}_{2}\right)(\mathrm{clan}) \cdot \mathrm{C}_{2}{ }_{5} \mathrm{OH}$
$\begin{aligned} \text { Figure 3. } & \begin{array}{l}\text { An ORTEP drawing of } \\ {\left[\mathrm{CO}(\mathrm{Hamg})_{2}(\mathrm{clan})_{2}\right] C l}\end{array} \quad 51\end{aligned}$
Figure 4. A projected vich along $\operatorname{Co-N(1)}$ 70 for $\operatorname{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{clan})$
Figure 5. A projectod view along Co-N(1) 72
for (a) $\left[\mathrm{CO}(\mathrm{Ilang})_{2}(\mathrm{clan})_{2}\right] \mathrm{Ce}$
and (b) CeCo($\left.\mathrm{H}_{2} \mathrm{DPG}_{2}\right)(\mathrm{clan})$
Figure 6. An ortep drawing of 95 H_{2} dinphey ($\left.\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
Figure 7. An ORTEP drawing of $\quad\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ (diphpy $\left.)\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Figure 8. A packing diagram of 106 H_{2} ahphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Figure 9. A packing diagram of
$\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}_{4}(\mathrm{dhphpr})\right] \mathrm{Cl}{ }_{3} \cdot 2 \mathrm{HI}_{2} \mathrm{O}\right.$
Figure 10. An ORTEF drawing of

KEY TO ABBREVIATIONS

IIPS ligand-induced proton shift
H_{2} dmg dimethylglyoxime
dmg dimethylglyoxime dianion
Hdmg - dimethylglyoxime monoanion

$\mathrm{H}_{2} \mathrm{dmg}_{2} \quad$| bis(dimethylglyoximate) with |
| :---: |
| relative proton positions |
| unspecified |

sulfa sulfanilamide
dhph 1,4-dihydrazinophthalazine
dhphpy 1,4-dihydrazinophthalazinebis(2pyridinecarboxaldimine)
pyca 2-pyridinecarboxaldehyde
clan 4-chloroaniline
$\mathrm{H}_{2} \mathrm{dph}$ diphenylglyoxime
$\mathrm{H}_{2} \mathrm{mpg}$ methylphenylglyoxime
fph pentafluorophenyl
cp cyclopentadienyl anion
tpp triphenylphosphine
an aniline
4-FPYTSC 4-formylpyriainethiosemicarbazone

Abstract of Dissertation Presented to the Graduate Council of the University of Florida in Partial fulfillment of the Requirements for the Degree of Doctor of Philosophy

X-RAY STRUCTURAL STUDIES OF SOAE GROUP VIII
 COMPOUNDS WITH CATALYTIC IMPI.ICATIONS

By

Douglas Allen Sullivan
December, 1975
Chairman: Gus J. Palenik
Major Department: Chemistry
X-ray structural investigations of compounds containing Group VIII metal atoms are presented. The compounds studied illustrate interatomic interactions which may be of importance in catalytic processes. The structures of metal-containing compounds were solved by locating the heavy atoms in Patterson functions and locating the remaining atoms in Fourier syntheses. The direct method of symbolic adidion was used in the one, ali licht-atom case presented. Tri?l structures were refined by the method of least-squares.

The crystal structure of tinns-chloro(dimethylglyoximato) (dimethylylyoxine) (4-chioncaniline) cobalt(III) illustrates an unusual ligand-induced proton shift. Both neutral and dianionic dimethylglyoxime groups are found in the complex and the 4-chloroaniline ligand is criented over the dianionic dimethylglyoxime. The siucture of trans-bis(dimetiny-
glyoximato) bis(4-chloroaniline)cobalt(III) chloride shows that complex to contain two monoatomic dimethylglyoxime ligands and the 4 -chloroaniline ligands to be skewed relative to the diglyoxime ligands. The crystal structure of trans-chlorobis(diphenylglyoximato) (4-chloroaniline)cobalt(III) is described. Trends in the structures of these compounds and in the previously reported structures of simjilar compounds are discussed. Ultraviolet and infrared spectra of these compounds are given.

The synthesis of a novel chelating ligand capable of binding two metal ions is described. The characterizations, including crystal structures, of its protonated form, 1،4-dihydrazinophthalazinebis(2-pyridiniumcarboxaldimine) nitrate dihydrate, and of a nickel complex, μ-chlorotctraaqua[].4-dihydrazinophthalazinebis(2-pyridinecarboxaldimine)]dinickel(II) chloride dihydrate, are presented. The planar ligand is shown to bind two nickel ions with a semaration of 3.603 (1) A. A chloride ion occupies a bridging site in the plane of the nickel atons and the ligana. The magnetic moment per nickel atom of the chloride bridged complex was detcrmined to be $2.74 \mathrm{~B} . \mathrm{M}$. at $40^{\circ} \mathrm{C}$. The plausibility of structurally similar complexes mimicking the nitrogen-fixing enzyme nitrogenase is also discussed.

The X-ray crystal structures of $1-(\pi-c y c l o p e n t a d i e n y l)-$ l-triphenylphosphine-2,3,4,5-tetrakis(pentafluorophenyi)cobaltole and l-(T-cyclopentadienyl)-l-triphenylphosinine-2,3,4,5-tetrakis (pentafluorophenyl)rhodole are reported.

These compounds are viewed as stabilized intermediates in the catalyzed cyclization of acetylenes. In each case the metal atom forms a metallocycle by o-bonding to the terminal carbons of a butadiene-lite fragment. The π-bonding in the metallocycle appears to be deloralized.

CHAPTER 1
 INTRODUCTION

Western civilization has demonstrated the efficiencyoriented phenomenon of expending large amounts of energy to find ways of requiring less human energy. This is evident in the evolution from animal trails to freeways and from muscle to sophisticated, high-energy machinery. On the molecular scale the more efficient path is provided by catalysts. As alchemists searched for the "philosopher's stone" many chemists have been seeking catalysts. The application of catalysis is now advancing through the development of an understanding of the mechanisms of catalytic processes.

Life processes are dependent upon chemical reactions controlled by enzymes. "It is not generally appreciated how little is understood about the mechanisms by which enzymes bring about their extraordinary and specific rate acceleration." Investigation of enzymes should not only be fundamental in the understanding and maintenance of life processes but also should contribute to developing more efficient industrial processes.

Much of the investigation of enzymes has concerned the use of model compounds. "Model building and the application of material analogues are becoming increasingly important for the elucidation of fundamental problems of biochemical
structure and reactivity." ${ }^{2}$-ray structural studire of enzyme models are important for the exploration of structureactivity relationships. Solid state studies of enzyn modal. compounds are of particular relevance: vause of the high degree of order the macromolecular enzymes themsolven possoss. While electrostatic and hydrogen-bonding furces are usually considered the major binding forces in enzrm-substrate interactions, the strong charge-solvating and hyaro-gen-bonding ability of water tends to reduce the possibility of obtaining large binding energies from these forccs. To explain the large binding energies found, "hydrophokic forces" are presumed to exiss in these intermolccular interaoions in aqueous solution. ${ }^{3}$ tree enthalpies of mixing of aromatic liquids with aliphatic licquids indicate that aromatic nolecules prefer an aromatic enviromment. 4,5 "Stacking interactions" invoiving the π-systems of aromatic groups within the enzyme's protein stracture may account for part of the "hyarophobic forces" and contribute to the orientation ofitie enzymosubstrate interaction. ${ }^{3}$ The ligand-induced proton shift (LTHS)
 is given on page $x l$ is an indication of the importance of this π-type interaction. A further examination of lips : as undertaken and is presented in this work.

The design of enzyme models is often bascd on sparse structural information about the prosthetic group of the enzyme. Efforts to miric the nitrocen-fixing enzome nitrogenase
have been concerned with the metal to nitrogen bond. The probable binuclear nature of the enzyme's active site ${ }^{6,7}$ has largely been ignored. The structures of a novel binucleating ligand and its nickel(II) complex are presented here as a first step in the construction of a new generation of models for nitrogenase.

When the mechanism of a chemical process is believed to be understood, stable compounds similar to the intermediates of the reaction may be prepared and examined to support the proposed mechanism. One proposed mechanism for the catalyzed cyclization of acetylenes would have a fivemembered ring containing a metal atom and a cyclobutadiene fragment as one of the intermediates. ${ }^{8-13}$ The first structure of such a stabili:ed internediate containing a cobalt atom and the structure of the rhodium analog are presented in this study.

CHAPTER 2
 SYNTIIESIS AND CHAPACIERIZATION

Synthesis
Crystals of all cobaloxime compounds were generously provided by R. C. Palenik* and were used without recrystallization.
M. D. Rausch and R. H. Gastinger synthesized the metallocycles containging cobalt ${ }^{14}$ and rhodium. 15 They supplied well-formed crystals of those metallocycles for X-ray structural studies.

Unless otherwise indicated all solvents were reagent grade and were used withcut further purification. All preparations were carried out in air. All melting points were taken on a Mel-tenp annaratus in open capillaries and are uncorrected.

The published method ${ }^{16}$ was used to prepare dhpn for succeeding experimerts. Io 6.40g (19.0 moles) 1,2-dicyanobenzene (98\%; Aldrich Chemical Company, Milwaukee, fisc.) in 12.5 ml 1.4 -dioxane vas added a mixture of 15.0 ml (ca. 250 moles) hydrazine bydiate (95\%; Fisher Scientific Company, Fair Lawn, N. Y.) and 4.0 ml glacial acetic acid (reagent; Baker and Adamson, Morristown, N. J.). After being heated

[^0]for three hours the mixture was cooled and the red product was collected (yield, ca. 40\%). The decomposition temperature of $193^{\circ} \mathrm{C}$ was in agreement with the reported value. A solution of $0.0955 \mathrm{~g}(0.50 \mathrm{mmoles})$ of the previously prepared dhph in 40 ml absolute ethanol was added to a solution of 0.237 g (1.0 mmoles) $\mathrm{NiCl}_{2} \cdot 6112 \mathrm{O}$ (reagent; Matheson, Coleman and Bell, Norwood, Ohio) and 0.095 ml (0.99 mmoles) pyca (99\%; Fldrich) in 40 ml absolute ethanol. Upon slow, almost complete, evaporation in air of that solution olive green crystals of $\left[\mathrm{Ni}_{2} \mathrm{C} \mathrm{\ell}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ dhphpy $\left.)\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ formed.

Analogous procedures were carried out replacing NiCl_{2}. $\mathrm{H}_{2} \mathrm{O}$ with $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (reagent; Fisher), ZnCl_{2} (reagent; Mallinckrodt Chemical Works, St. Louis, Mo.) and $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (reagent; Matheson, Coleman and Bell) without success in cbtaining a crystalline product. Similar procedures were followed with the addition of ca. 0.2 ml of 12 M hydrockjoric acid (reagent, 38%; Baker and Adamson) to solutions of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Again, no suitable products were formed. Attempts to separate and recrystallize reaction products from water, water-ethanol, methanol and pyridine failea to give a crystalline product. When CuCl_{2} was present, gas evolved from the reaction mixture.

Additional attempts wore made to isolate complexes similar to $\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{dhphpy})\right] \mathrm{Cl}_{3}$ using dhph obtained by recrystallization Erom hot water of $\mathrm{H}_{2} \mathrm{dhphSO}_{4}$ (ICN•K and K Laboratories, Inc., Elajnview, M. .) to which an equivalent
amount of KOH (certified A.C.S.; Fisher) had been added. Those attempts were unsuccessful.

The red-orange plates of H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ used in crystallographic studies had been recrystallized from water. The crude product formed upon cooling a solution made by adding 0.190 g (1.0 mole) dhph in 20 ml warm water to a solution containing 0.583 g (2.0 mmoles) $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}, \mathrm{O}$ (reagent; Mallinckrodt) and 0.89 ml (9.4 moles) pyca in 10 ml warm water followed by drop-wise addition of nitric acid (reagent, 7l\%; Baker and Adamson) to a pll less than 1.

Also, H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2}$ was prepared by first adiding 1.90 ml (20.0 mnoles) pyca to a suspension of 2.878 g (10.0 moles) H_{2} dhphSO $_{4}$ in 100 ml water. A brick-red solid formed upon addition of l.llg (ca. 17 moles) KOH. After washing with water and drying in air, the brick-red solid was suspended in 100 ml of 95% ethanol and 1.30 ml (21 monoles) of nitric acid were added. Small red-orange needles of H_{2} dhphpy ($\left.\mathrm{NO}_{3}\right)_{2}$ which decompose at $126^{\circ} \mathrm{C}$ were filtered, washed with ethanol, and then ether and air dried (yield $4.0 \mathrm{~g}, 75 \%$).

Freshly prepared hydrated metal hydroxides were reacted with H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2}$ in nethanol. Each of the metal hydrouides was filtered after adding 1 M KOH to aqueous solutions of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (reagent; J. T. Baker Chemical Company, Phillipsburg, N. J.), Fe($\left.\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (reagent; G. Frederick Smith Chemical Company, Columbus, Chio) and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (reagent; Matheson, Coleman and Bell). After
the reaction mixtures were stirred until there was no further change in color, they were filtered and the filtrates were allowed to evaporate. Only the reaction with nickel(II) hydroxide produced a crystalline product. Attempts to recrystallize that maroon product from methanol, ethanol, ethanol-water, and 2-propanol did not yield crystals suitable for crystallographic studies.

Discussion of Characterization

The microananlyses recorded in Table 1 were performed by Galbraith Laboratories, Inc., Knoxville, Tennessee, for the dhphpy compounds and by Atlantic Microlab, Inc., Atlanta, Georgia, for the cobaloxime complexes. The calculated percentages of carbon, hydrogen, and nitrogen for the dhphoy compounds correlate well with the measured percentage. Two water molecules per molecule of dhphpy in each are indicated by the elemental analysis. This is confirmed in the structural determination. Similarly, the elemental analysis of $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)(4$-nitroaniline) is in agreenent with the expected formula with two water molecules present. Based on the measured density and crystallographic dara the molecular weight of $\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(4\right.$-methylaniline) $] \mathrm{Cl}$ should be 596 . This is greater than its formula weight of 538.9 and the presence of molecules of solvation is expected. Three water molecules or one molecule of the ethanol solvent per formula could account for the difference. Neither of these possi-
Elemental Analyses of Selected Compounds
$\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(4-\mathrm{nitroaniline}) \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(4 \text {-methylaniline })_{2}\right] \mathrm{Cl}$

H_{2} Chphpy $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ dhphpy $\left.)\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
bilities is confirmed by the CHN analysis (see Table 1).
IR spectra of samples as mineral oil mulls between polished plates of fused sodium chloride were recorded on a Beckman Model IRl0 grating spectrophotometer from 4000 to $500 \mathrm{~cm}^{-1}$. The spectra were calibrated using the $1601.0 \mathrm{~cm}^{-1}$ absorption of a polystyrene film. IR spectra of selected compounds are reported in Table 2 . The IR spectra of the bis(diglyoxime) cobalt(III) complexes with aniline derivatives exhibit many features of similar cobalt complexes with nitriles and isonitriles described by Batyr et al. ${ }^{18}$ The spectra of the cobaloximes show the absorption assigned ${ }^{18}$ to the $C=N$ stretch between $1550 \mathrm{~cm}^{-1}$ and $1580 \mathrm{~cm}^{-1}$. The absorptions associated ${ }^{18}$ with the $\mathrm{N}-\mathrm{O}$ band at ca. $1245 \mathrm{~cm}^{-1}$ and ca. $1095 \mathrm{~cm}^{-1}$ are present also. A weak absorption in the 1700-1800 cm^{-1} range appears in some of the spectra but with low resolution. Peaks in this region have been assigned 19 to the $0 \cdot \cdots H-0$ bridge between the dioximate ligands. The presence of a symmetrical bridge has been suggested ${ }^{20}$ to rationalize this low frequency. Absorption spectra in the ultraviolet region were re.corded on a Cary Model 15 spectrophotometer. Spectra of solutions were measured from $26.7 \mathrm{kK}(375 \mathrm{mu})$ to 47.6 kK (21.0 mu) using the double beam method with the pure solvent as the reference. Solutions of the cobaloxime complexes in methanol (spectroquality; Matheson, Coleman and Bell) and solutions of the atphey compounds in 0.1 II hydrochloric
Table 2
Infrared Spectra of Selected Compounds
$\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{mpg}_{2}\right)-$
(clan)
$3480(\mathrm{~m}, \mathrm{~b})$
3360 (m) 3165 (m)
(u) $\mathrm{C} 90 \varepsilon$
1897(w)
1595 (m)
1543 (s)
0
0
0
\vdots
-

n
0
0

$\begin{array}{lll}C l C o\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)- & \mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)- & \mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg} 2\right)- \\ (\mathrm{dmg})(\mathrm{clan}) & (\mathrm{dmg})(\mathrm{sulfa}) & (4-\mathrm{nitroanili}\end{array}$
$\mathrm{C} \ell \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)-$
(clan)
$3400(m, b)$
$1580(\mathrm{w})$
$1530(\mathrm{~m})$
$1490(\mathrm{~s})$
$1445(\mathrm{~s})$
$1292(\mathrm{~m})$
3535 (s)
(s) 0Tも
2405 (w, b)
1598(s)
2563(s)
1530(s)
1343 (s) 1244(s)

E	$\widehat{3}$
0	∞
8	0
	-1
-1	-1

Table 2 - continued

$\begin{aligned} & \mathrm{clCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)- \\ & (\mathrm{dmg})(\mathrm{clan}) \end{aligned}$	$\begin{aligned} & \mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)- \\ & (\mathrm{dmg})(\text { sulfa }) \end{aligned}$	$\begin{aligned} & \mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)- \\ & (4-\mathrm{nitroan} \text { iline }) \end{aligned}$	$\underset{(\mathrm{clan})}{\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)-}$	$\underset{(\mathrm{clan})}{\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{mpg}_{2}\right)-}$
	1152 (s)		.	
1085 (s)	1084(s)	1088 (s)	1130 (s)	1138 (m)
				1085(w)
			1013(m)	1007 (s)
273 (b)	972 (n)	971(m)		958 (m)
	$222(\mathrm{ma}$		920 (w)	
	837 (m)	853 (s)	885 (s)	
825 (m)	824 (12)	818 (w)	323 (w)	825 (m)
		798 (w)		
			757 (w)	780 (m)
742 (m)		743 (m)	730(s)	733 (s)
705 (m)		585 (m)	585 (s)	685 (s)
$545(w)$	670 (m)			

Table 2 - extended
$3280(\mathrm{~s}, \mathrm{~b})$
328015
$\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{-}\right.$ (dhphpy) Cl_{3}
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)-\right.$
$\left.(4 \text {-methylaniline })_{2}\right] \mathrm{Cl}$
H_{2} dhphpy$\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}$
$3460(s, b)$ ($\mathrm{a}^{\prime} \mathrm{M}$) 0502 1750 (w, b) 1609 (s) 1552(s) 1290 (s) 1163(w) 1141 (m) 1115(s) $1057(m)$ $\begin{array}{ll}3 & 3 \\ 0 & 3 \\ \text { on } & 0\end{array}$ B
-
-1

Table 2 - extended - continued
H_{2} dhohpy-
$\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
870 (w)
$775(\mathrm{~m})$
758 (s)
acid were uscd. The UV spectra are xeported in Table 3 .
The UV spectra of all these compounds are dominated by intense charge transfer bands. Yamano et al. ${ }^{21}$ roport threde bands in this region for compounds of the formula $1 \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)$ A_{2}] where A is an aniline derivative. These three bands are present in $\left.\left[\mathrm{CO}(\mathrm{Hamg})_{2}(\mathrm{c}] \mathrm{an}\right)_{2}\right] \mathrm{Cl}$ and $\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{Cmg}_{2}\right)(4\right.$-methyl aniline) ${ }_{2} \mathrm{fCl}$. The band betweon 25.0 and 27.5 kK (400 to 360 $\mathrm{m} \mathrm{\mu}$) was assigned ${ }^{21}$ to the charge transfer from the aniline ligand to the cobalt ion. In agreoment with this assignment the band for: the complex of the more basic 4-methylanjline at 27.6 kK is lower in frequency than that for the analogous complex of clan at 28.9 kK . The band near 33.0 kK ($300 \mathrm{~m} \mathrm{\mu}$) was assigned ${ }^{2 l}$ to the charge transfor from the cobalt ion to the dioximate ligand. The band near $40.0 \mathrm{~A}: \mathrm{K}$ (250 mu) was assigned ${ }^{21}$ to the intra-Hdrig $\pi^{+} \pi^{*}$ transition.

The UV spectra of cobaloxime complexers with a chloricio ligand trans to a substituted aniline show thre bands, also. One band is between 27.0 and 33.0 kg (370 to 300 mu). The other bands lie near 39.0 kK (255 mm) and 43.0 kk (230 mu). No assignments have been made for these three bands.

The charge transfer spectrum of a solution of $\left[\mathrm{Nj} \mathrm{I}_{2} \mathrm{Cl}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{dhphpy})\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in 0.1 HHCl exhibits the same absorptions as that of a solution of H_{2} dhphpy $\left(\mathrm{NO}_{3}\right)_{2}$ in 0.1 M HCl. The intenso bands at 25.4, 32.7, and 37.3 kK (395, 305, and 268 mH) are presumably due to the aromatic system of the ligand.
Ultraviolet Spectra ${ }^{a, b}$ of Selected Compounds
Table 3

（000TZ）L•6を

（0009T）L• $\sigma \varepsilon$
（000もて）8・カち $44.8(24000)$
$[44.1]$
$42.4(42000)$
$42.9(33000)$
$37.3(4600)$
$37.3(20000)$
$32.7(20000) \quad 37.3(20000)$$32.8(7400)$
（00072）s． 6ε
（000LZ） $8^{\circ} 6 \varepsilon$
（000عb）9．LE
［39．6］
$32.5(4600)$
（0000Z）と・てを（0005こ）ち・こて
$27.2(20000)$
（0095）5．〔

$$
28.9(16000)
$$

（000TT） $9^{\circ} \mathrm{LZ}$
（0026）L・てを
$31.1(7300)$
29．7（12000）
$25 \cdot 4(25000)$

$\begin{array}{r}0 \\ \stackrel{y}{4} \\ \hline\end{array}$

-3
0

Orequencies Iisted in square brackets are for poorly resolved peaks．

The magnetic moment per nickel atom of $\begin{cases} \\ C i & \left(H_{2} O\right)- \\ \hline\end{cases}$ (dhphpy)]C. l_{3} was determined to be 2.74 BM . at $40^{\circ} \mathrm{C}$. Data for this calculation 22,23 were obtaince using a Varian $A-60 \mathrm{~A}$ Analytical NMR Spectrometer and aqueous solutions containines 2\% by volume t-butanol as the indicator. This magnctic moment is in agreement with those of hinuclear complexes of nickel reported by Ball and Blake. ${ }^{24}$ Their compleases of the general formula $[\mathrm{Ni}(\mathrm{ahpl})]_{2} \mathrm{X}_{4} \cdot \mathrm{nH} \mathrm{H}_{2} \mathrm{O}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$ had room temperature effective magnet.ic moments ranging from 2.79 to 2.89 iB.N. As in the case CF [Ni (dhph)] $2_{4} \mathrm{X}_{4} \cdot \mathrm{nH}_{2} \mathrm{O}$, where two Ni^{2+} ions are bridged by a conjugated system, spin-spin interaction is indicatro in $\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ anphry $\left.)\right]-$ $\mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

> CHAPTER 3
> X-RAY DIFFRACTION EXPERIMENTAL

Except where noted in the text, the experimental methods described in this section were used in preliminary crystallographic examination, collection and processing of data, and refinement of trial structures.

Data obtained using precession and Weissenberg x-ray photographic techniques ${ }^{25-27}$ were used in determining the preliminary space groups and cell constants. After centering fifteen intense reflections on, a computer-controlled Syntex m diffractometer and selecting an indering consistent with preliminary photographe, accurato call constants with estimated standard deviations bere obtained from least-squares fittings of $26, \Omega, x$, and ficr those reflections. In each case the orientabion matrix for data collection and the unit cell volume with its standard deviation were derived from these data. The calculated density was in agreement with the deneity neasured by the flotation method ${ }^{28}$ except in the cascr of the motal-containing heterocycles. The specific gravity of the flotation liquid was measured to ± 0.01 with a precision hyerometer. Relevant crystallograpnic data for each of the compounds studied are given in Table 4.

The suitability of a crystal for data collection was detemined by its mysinal shoe ard size, the ease vith

$$
\begin{aligned}
& \text { Crystallographic Data for } \\
& \text { C, [Co(Hdmg) } 2 \text { (clan) } 2 \text {]Cl; }
\end{aligned}
$$

$$
\text { Crystallographic Data for } A, C l C o\left(\mathrm{H}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{clan}) \cdot 2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{B}, \mathrm{CRCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan}) \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \text {; }
$$J, Formula nitroaniline) $2 \mathrm{H}_{2} \mathrm{O}$;

Sygtematic
Absences
hol: $l=2 n+1$
$\dot{3}$
0
0
0
0
0
0
0
0
0

$$
\text { Table } 4
$$

Crystal
Group

triclinic	none	P $\overline{1}$
monoclinic	$h \circ \mathrm{l}: \mathrm{h}+\mathrm{l}=2 \mathrm{n}+1$	$\mathrm{P}_{2} / \mathrm{n}$
triclinic	none	PI
monoclinic	$\begin{aligned} & h k l: h+k=2 n+1 \\ & \text { hol: } \ell=2 n+1 \end{aligned}$	C2/c
monoclinic	$\begin{aligned} & \text { hkl: } h+k=2 n+1 \\ & \text { ho }: \ell=2 n+1 \end{aligned}$	C2/c
triclinic	none	PI
triclinic	none	D
triclinic	none	Pl or PI
orthor'mmbic	$h k 0: h+l=2 n+1$	$\begin{aligned} & \text { Pmmn or } \\ & 2.22_{1} n(2 m n 22) \end{aligned}$

рәриатха - จ aโqе山

compound	$\begin{gathered} \mathrm{a} \\ \mathrm{o} \\ (\mathrm{~A}) \end{gathered}$	$\begin{gathered} b \\ 0 \\ (\mathrm{~A}) \end{gathered}$	$\begin{gathered} c \\ \circ \\ (\stackrel{\circ}{A}) \end{gathered}$	α (${ }^{\circ}$)	$\begin{gathered} \beta \\ \left(^{\circ}\right) \end{gathered}$	$\begin{gathered} \gamma \\ \left({ }^{\circ}\right) \end{gathered}$	Volume $\left(\AA^{3}\right)$
A	7.404(3)	$11.838(4)$	$13.758(6)$	106.31(3)	91.25(3)	112.79(3)	1068.3(7)
B	15.303(13)	12.385(3)	$18.535(13)$	90	96.55(7)	90	3503 (4)
\bigcirc	6.396 (4)	$2.710(5)$	$12.719(5)$	90.55(4)	105.16(4)	98.83(4)	$673.9(6)$
D	20.480(3)	11.166(2)	10.704 (2)	90	102.99(2)	90	2385.0(8)
E	15.916(6)	$15.527(7)$	$28.704(17)$	90	115.78 (3)	90	6027 (5)
F	11.580(3)	14.008(4)	20.455 (9)	114.08(3)	107.41(3)	106.72(2)	2572.9(1.7)
G	11.7:5(4)	14.015 (6)	20.420(6)	114.07(3)	106.97(3)	107.28(3)	2574.3(1.5)
H*	7.95	13.26	13.75	98.1	102.7	105.9	1330
I*	21.66	13.68	14.97	90	90	90	4436
J*	13.2	11.2	19.9	90	110.6	90	2750

Compound	Nolecular Feigint	2	$\begin{aligned} & \text { wable } \\ & 0 \text { calc. } \\ & \left(\mathrm{s} / \mathrm{cm}^{3}\right) \end{aligned}$	$\begin{aligned} & \text { extende } \\ & \text { meas. } \\ & \left(\mathrm{s} / \mathrm{cm}^{3}\right) \end{aligned}$	$\begin{aligned} & \text { Crystal } \\ & \text { Dimensions } \\ & (\mathrm{mm}) \end{aligned}$	Padiation Used	$\left(\mathrm{cm}^{-1}\right)$
A	489.22	2	1.518	I. 52	$0.24 \times 0.1880 .07$	NOK2	11.2
\because	746.54	4	1.415	1.43	$0.18: 80.20 \times 0.05$	NORC	7.1
C	578.75	1	1. 126	1.44	$0.19 \times 0.31 \times 0.35$	MOK 2	10.0
D	530.46	4	1.477	1.47	$0.34 \times 0.31 \times 0.18$	MOK ${ }^{\text {a }}$	1.3
E:	735.73	8	1.622	1.63	$0.29 \times 0.30 \times 0.14$	MoKa	18.1
F	1102.79	2	2.423	1.59	$0.27 \times 0.31 \times 0.50$	MoK α	4.9
C	1146.57	2	1.479	1. 60	$0.14 \times 0.24 \times 0.43$	MoK α	4.6
[${ }^{*}$	576.3	2	1.439	1.47			
I*	498.8	8	1.494	1.50			
J*	538.9	4	1.300	1.44			

Compound	$\mu \mathrm{L}$	20 Range	K	$\begin{aligned} & \text { No. of } \\ & \text { Unique } \\ & \text { Reflections } \end{aligned}$	No. of Observed Reflections
A	~ 0.2	$0-\leq 5$	2.0	2807	2000
E	~ 0.1	0-45	1.5	4364	2017
2	~ 0.2	0-45	2.0	1771	1662
D	~ 0.04	0-45	2.0	1573	1093
E	~ 0.5	$0-25$	2.0	3981	2959
F	~ 0.1	0-45	2.0	6772	5479
G	~ 0.1	0-45	2.0	6766	5235

which the reflections were centered on the diefractometer, and the values of the refined cell constants with their estimated standard deviations comarired to the cell constants obtained hy photographic methars. Nill intensity measurements were made wilh a syutev pl diffraflometer at ambient temperature. All unique rofelctions up to a limiting 20 value were mearured using a viriakir spod $0-20$ scan tochnique. The scan rate was detromin d from a fast threesecond counting scan of the reflostion peak and varied linearly from $1^{\circ} / \mathrm{minute}$ for counting raters of $150.0 \mathrm{c} / \mathrm{sec}$. or less to $24^{\circ} /$ mimute for $1500.0 \mathrm{c} / \mathrm{sce}$. or more. The intensity, I, was defined:
 Peaks were scanned from 1° beJow Ka_{1} to 1° above Ko_{2}. Measurements of the background count wrere macie al the limits of each scan. The estimated stanciard deviation, o(I), of each reflection was taken to be:
$\sigma(I)=\left[(\text { total } \operatorname{scan} \operatorname{counts})+\frac{(\text { hachsand counts })}{(\text { backecnato scanratio })^{2}}\right]^{1 / 2}$.

For molybdenum radiatic: the incident beam was monochromatized by a low order reflection of gramite. Any changes in the system were detecobl wy neasuring four standard reflections after cach 96 intensity measurements.

A standardized data set was chtained by scaljing the data to the initial valuc of the sum of the measured intensities of the standari refluctjons. mhe scaled in-
tensities of duplicate or equivalent reflections were averaged. Reflections with an intensity greater than $K \sigma(I)$, where K is given in Table 4, were considered reliable. The unreliable reflections with $I<K \sigma(I)$ were identifjed by a minus sign and not included in further steps of the structure solution. Corrections for Lorentz-polarization were of the form:

$$
\frac{1}{L p}=\frac{\sin 2 \theta}{\left(1+\cos ^{2} 2 \theta\right)}
$$

To obtain a set of observed siructure factors, Fobs 's, the monochromator was also assumed to be 50% perfect crystal and 50% mosaic crystal.

Scattering factors ware obtajifed from Harison, Feman, Lea, and Stillman; ${ }^{29}$ Stewart, Davidson, and Simpson; ${ }^{30}$ Doyle and Turner; 31 and are uncorrected for anomalous dispersion. The natural log of the scale factor and the overall temperature factor were initially estimated from a wilson pilot. ${ }^{32}$ The initial choice of a centric or acentric space group was made on the basis of calculated intensity statistics. ${ }^{33}$

In the case where molecules contained at least one heavy atom (Atomic Number $Z=6$) the approximate fositional coordinates were deterrined using a ratterson function ${ }^{34}$ of the form:
$P(U V W)=\frac{2}{V} \sum_{k=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \sum_{I=-\infty}^{\infty}|F(h k l)|^{2} \cos 2 \pi(h U+k V+1 W)$.
Using the Iocation of the neavy atom(s) in a structure
factor calculation allowed a sufficient number of reflection phases, $a(h k l)$'s, to be assigned. The magnitude of the structure factor, $\left|F_{h k j}\right|$, and the phase may be defined by the following equations: ${ }^{27}$

$$
\begin{aligned}
& A_{h k l}=\sum_{j} f_{j} \cos 2 \pi\left(h x_{j}+h y_{j}+l z_{j}\right) \\
& B_{h k l}=\sum_{j} f_{j} \sin 2 \pi\left(h x_{j}+h y_{j}+l z_{j}\right) \\
& \left|F_{h k l}\right|=\left(A_{h k l}^{2}+B_{h k l}^{2}\right) 1 / 2 \\
& a_{h k l}=\tan ^{-1}\left(B_{h k l} / A_{h k l}\right)
\end{aligned}
$$

where f_{j} is the scattering factor for atom j.
Adaitional atonic positions could then be determined through the use of fourier syntheses ${ }^{34}$ of the form:

$$
(X Y Z)=\frac{2}{V} \sum_{h=0}^{\infty} \sum_{k=-\infty}^{\infty} \sum_{1=-\infty}^{\infty}\left|F_{h k I}\right| \cos 2 \pi\left[(h X+k Y+l Z)-a_{h k I}\right] .
$$

The positional coordinates or atons in the trial structure were estimated from the Eourier generated elcctron density map using a FORTRAN computer progran, BOOTHITl, written in the coursc of this work. A description and listing of BOOIMII is contained in Appendix A. Alternate structure factor calculations and Fourier syntheses were repeated until all nonhydrogen acoms were located.

In the case of a compound not containing a heavy aton but having a centrosymmetric space group, the direct method of symbolic addition was used. The FORTRAN computer programs, FAME-iMGIC-I,INK-SMPI, Geveloped by E. B. Fleis:her, R. B.
K. Dewar, and A.I. Stone 35,36 were used to generate possible solutions to the phase problem. The programs first converted $\left|F_{\text {obs }}\right|$'s to normalized structure factors, E's, through the definitions:

$$
\left(F_{\text {absolute }}\right)^{2}=\left(\frac{1}{\mathrm{~K}^{2}}\right)\left|F_{\text {obs }}\right|^{2} e^{(T \sin \theta) / \lambda}
$$

and

$$
E^{2}=\left(F_{\text {absolute }}\right)^{2} / E \sum f_{i}^{N}
$$

where the scale factor, K, and the overall temperature factor, T, were generated by a Wilson plot; where ε was a symnetry factor applied to reflections in special zones; and where f_{i} 's were the scattering factors for N atoms. The programs then assigned symbols representing the phases to six of the largest E^{\prime} s having the greatest number of interactions, i.e., for E_{h} and $E_{T h}$ there exists E_{h-m}. For such reflections the probability, p, thitt the piase of E_{h} is the same as N $\sum\left(E_{m} E_{h-m}\right)$ is given by: $m=0$

$$
p=0.5+0.5 \tanh \left(\left.\frac{\sigma_{3}}{\sigma_{2} 1.5}\right|_{\mathrm{h}}\left|\sum_{m=0}^{N} E_{m} E_{h-m}\right|\right)
$$

where

$$
\sigma_{n}=\sum_{j=1}^{N} z_{j}^{n}
$$

with N being the number of atoms in the unit cell and z_{j} being the atomic number of the $j^{\text {th }}$ atom. The prograns, when given minimum acceptable probability criteria, iteratively assigned relative signs to the phase symbols. Combinations of these
signed phase symbols 'vere finally used in conjunction with their structure factors to generate E-maps. The positional coordinates of most nonhydrogen atoms were determined from one of these E-maps. Structure factor calculations and Fourier syntheses were used to refine the atomic positions and, as in the heavy atom case, to locate any previousiy unfound nonhydrogen atoms of the trial structure.

The trial structure was refined by least-sçuares minimization ${ }^{34}$ of the function:

$$
\text { Residua }=E w\left(\left\|F_{\text {obs }}|-| F_{\text {calc }}\right\|\right)^{2}
$$

where

$$
\begin{array}{ll}
\sqrt{w}=\left|F_{\text {obs }}\right| /\left|F_{1 c i}\right| & \text { for }\left|F_{\text {obs }}\right|<\left|F_{\text {low }}\right| \\
\sqrt{w}=1.0 & \text { for }\left|F_{\text {low }}\right| \leq\left|F_{\text {obs }}\right| \leq\left|F_{\text {high }}\right|
\end{array}
$$

and

$$
\sqrt{W}=\left|E_{\text {high }}\right| /\left|F_{\text {obs }}\right| \text { for }\left|F_{\text {obs }}\right|>\left|F_{\text {high }}\right|
$$

$F_{\text {low }}$ and $F_{\text {high }}$ are consimints given in Table 4 . Prior to refinement, an overali scale factor was chosen such that tho sum of $F_{\text {obs }}$ equaled tio sum of $F_{\text {calc. Isotropic temperature }}$ factors were used in the first three cycles of refinoment and then anisetropia temperatum iactors of the form:

$$
\exp \left[-\left(B_{11} h^{2}+E_{22} x^{2}+B_{33} l^{2}+\beta_{12} h k+E_{13} h l+E_{23} h l\right)\right]
$$

were used. The reliability index. R, was defined by:

$$
R=\frac{\sum| | F_{\text {obs }}\left|-\left|F_{\text {calc }}\right|\right|}{\sum\left|F_{\text {obs }}\right|}
$$

Calculations were performed on an IBM $370 / 165$ computer with programs written or modified by Dr. Gus J. Palenik, except where previously noted. The refinement of each structure is outlined in Table 5.
Schemes of Refinement
Compound
Table 5

Compound	R-index with all nonnydrogen atoms from Pourier synthesis	```Refinement with isotropic thermal parameters```		```Refinementa with anisotropic thermal parameters```	
		No. of cycles	R-index	No. of cycles	R-index
CもCo($\left.\mathrm{H}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{clan}) \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.27	3	0.095	3	0.066
$C \cdot C o\left(\mathrm{H}_{2} \mathrm{CPg}_{2}\right)(\mathrm{Clan}) \cdot \mathrm{C}_{2}{H_{5}} \mathrm{OH}$	0.229	3	0.132	3	0.093
$\mathrm{rrO}_{(\mathrm{Ldmg})_{2}(\mathrm{clan})_{2}}$? Cl	0.255	3	0.141	6	0.056
${ }^{\prime}{ }_{2}$ dhuhpy ($\left.\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.32	3	0.134	3*	0.076
$\left.\left[\mathrm{H}_{2} \mathrm{C} \mathrm{\ell(H}_{2} \mathrm{O}\right)_{4}(\mathrm{dhphpy})\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	0.21	3	0.090	3	0.052
$C_{i}(f p h){ }_{4} \mathrm{Co}(\mathrm{cp})(\mathrm{tpp})$	0.26	3	0.137	9	0.077
$C_{4}(\mathrm{fph}){ }_{4} \mathrm{Rh}(\mathrm{cp})(\mathrm{tpp})$	0.168	3	0.105	9	0.065

Table 5 - extended

Compound	Refinement ${ }^{\text {a }}$ with hydrogen atoms included isotropically but not refined		Refinement ${ }^{\text {a }}$ with hydrogen atoms rcfined isotropically		$F_{\text {low }}$	$F_{\text {high }}$
	No. of cycles	R -index	No. of cycles	R -index		
$\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{clan}) \cdot 2 \mathrm{H}_{2} \mathrm{O}$	3	0.052	6	0.047	18.0	49.0
$\mathrm{CRCO}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan}) \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	3	0.087	9	0.075	55.0	145.0
$\left[\mathrm{Co}(\mathrm{Hdmg})_{2}(\mathrm{clan})_{2}\right] \mathrm{Cl}$	3	0.038	9	0.033	4.5	12.0
$\square_{2} \mathrm{dhphpy}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	-	-	6	0.050	8.0	22.0
$\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ dhphpy $\left.)\right] \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	6	0.048	-	-	32.0	86.0
$\mathrm{C}_{4}(\mathrm{Eph}){ }_{4} \mathrm{Co}(\mathrm{cp})(\mathrm{tpp})$	-	-	-	-	17.5	35.0
$\mathrm{C}_{4}(\mathrm{fph}){ }_{4} \mathrm{Rh}(\mathrm{cp})(\mathrm{tpp})$	-	-	-	-	17.5	35.0

CHAPTER 1

 IINE) COBALT (III) CHIORIDE.

The stability of bis(cimethylglyo:ime)meta? croplc゙:
has long been known and their impurtance in hoib gysitative and guantjtative analysis has been wiclely rocognized. 37,38 Wetal complexes of Homg hrec been ined to stimy the trangeffect ${ }^{39}$ and the trans-influnnce 40,41 of various lionands in octahedral complexes. Since the struciural dutermination of the B_{12} coenzyme the trans-bis (dimothylalyosimu)cololit compleres have become of considexable interest. $42 \cdots A_{1}$ schr.nurur 42 las stated that to be capable of mimiching R J. 2 a complox is required only to have a cobaltion in tin prewrnce of a strongbinding planar ligand. mesause Co(figamg2) complexus succoss. fully mimic the reactions of a cobalt ion in the corrin ring and because they are synthetically expedient, complexes of $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)$ have been investigated extonsively in solution as models for B_{12}. 45

Until very recently there have becn fow sutulitural ciatra on $\operatorname{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right.$) complexes. $40,41,46-52$ Excent for the work of Palenik et al. 46 no structural investigation las lecn made of the interaction between the axial ligand and the exfatorial
 sequence.

Although sulfonamides are potent inhibitors of carbonic anhydrase they do not form strong coordination bonds with transition metal ions. Therefore, an interaction of the aromatic ring of the sulfonamide with the carbonic anhydrasc protein has been proposea ${ }^{53}$ to make a large contribution to the observed stability of the carbonic anhydrase-sulfonamide complex. Since a cobalt atom can replace the zinc atom in carbonic anhyarase with only a 50% decrease in actjvity, compleres of $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmq}_{2}\right)$ may prove to be useful models for investigating the interartion of sulfonamides with carbonic anhydrase.

An apparert ligand-inducce preton shift (IIPS) was observed ${ }^{46}$ in $C \ell C o\left(\mathrm{E}_{2} \mathrm{dmg}_{2}\right)$ (sulfa) which should be formulated $c^{\ell} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}\right)(\mathrm{dmg})\left(\mathrm{sulfa}^{\mathrm{m}}\right)$. To investigate further the LIPS phenomena aid to enamine interligand interactions within this type of complex the determination of the structures of ceco$\left(\mathrm{H}_{2} \mathrm{dng}\right)(\mathrm{dmg})(\mathrm{Clan}),\left[\mathrm{CO}(\mathrm{Hdmg})_{2}(\mathrm{clan})_{2}\right] \mathrm{Cl}$, and $\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{amg}_{2}\right) \cdots$ (clan) was madertaken.

$$
\begin{aligned}
& \text { Structure solution and Resinement } \\
& \text { for ClCo(H2dmg)(dmg) (cian) } 2 \mathrm{H}_{2} 0
\end{aligned}
$$

The heavy atom method was used with the positions of the cobalt atom and of the ionic chloride ligand estimated from a sharpened Patterson function. The magnitude of the patterson function for the co to Cl vectors was of the same order as that for the co to $C o$ vector. The positions of the heavy atoms, therefore, appeared ambiguous and several combinations wert used in Eoumer sumthoses to determine their actual io-
cations. Successive Fourjer syntheses then revealed the locations of all nonhydrogen atoms in the compounc. Threc cycles of full-matrix least-squares refinement with individual isotropic thermal parameters and then three cycles of leastsquares refinement using the block approximation with indivicual anisotropic thermal parameters reduced R to 0.066 . A difference Fourier synthesis then indicated the absence of adaitional nonhydrogen atoms and revealed the positions of all hydrogen atoms. An outline of the refinement is given in Table 5. The refinement was terminated after the parameter shifts for the nonhydrogen atoms were less than one-tenth of their corresponding estimated standard deviations.

The scattering Eactors for cobalt, chlorine, oxygen, nitrogen, and carbon were from Hanson ct al. ${ }^{29}$ wile those for hydrogen were irom siewari ei al. 20 A list of the observed and calculated str"み=ture fartors has been published and is available. ${ }^{46}$ The final positionai and thermal parameters are given in Tables 6 and 7.

$$
\frac{\text { Structure Solution and Refinement }}{\text { for } \mathrm{ClCo}\left(\mathrm{H}_{2} d \mathrm{Pg}_{2}\right)(\mathrm{clan}) \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{OH}}
$$

The nonstandard space groun $P 21$ n was chosen since the standard $\mathrm{P} 2_{1} / \mathrm{C}$ space group would require a very large value for B. The position of the cobalt atom was estimated from a sharpened patterson function. The location of atoms and the refinement proceeded as in the case of $\mathrm{ClCo}\left(\mathrm{HI}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(c 1 a n)$. $2 H_{2} O$. Two atoms, $O(S 1)$ and $C\left(S_{i}\right)$, of an aparent solvart mole-

Table 6
Final Atomic Parameters of Nonhydrogen Atoms for $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)$ (dmg) (clan) ${ }^{\text {a }}$

Atom	x	y	2	β_{11}	B_{22}
Co	19148(12)	36142 (8)	21611 (6)	1237 (16)	$454(7)$
C $\ell(1)$	-1353(2)	2445 (1)	1882 (1)	148(3)	$65(2)$
C $\ell(2)$	8142 (4)	10300(2)	3785 (2)	512 (9)	67 (2)
O(11)	1633 (7)	4573 (4)	534 (3)	305 (13)	95 (5)
O(12)	1742 (6)	4621 (4)	4260 (3)	304 (13)	89 (5)
O(21)	2285 (7)	2611(4)	3796 (3)	314 (13)	104 (5)
O(22)	1944 (7)	2468 (4)	17 (3)	298 (13)	114 (6)
N(1)	4821 (7)	4589 (5)	2375(3)	1.57(12)	$93(6)$
N(11)	1600 (7)	4753 (5)	1536(3)	179(12)	75 (6)
N(12)	1693 (7)	4792 (4)	3347 (3)	156(12)	53 (5)
N(21)	2289 (7)	2459(5)	2788(3)	191(13)	72 (5)
N (22)	2144 (7)	2398 (5)	980:3)	168(12)	$74(5)$
C(11)	1403(8)	5758 (6)	2145 (5)	170 (15)	$67(7)$
C(12)	1443 (8)	5772 (6)	$3208(5)$	168(15)	59 (6)
C(13)	1247(10)	$6794(6)$	1785 (5)	268 (19)	85 (8)
C(14)	1310 (10)	6815 (7)	4067 (5)	281 (20)	$100(8)$
C (21)	2584 (9)	1516 (6)	2201(17)	214 (17)	66 (7)
C (22.)	2509 (9)	1475 (6)	13.24(5)	154(15)	$65(7)$
C (23)	3010(14)	584(8)	2593 (7)	530(32)	112(10)
C (24)	2779(12)	465 (7)	277 (6)	410 (27)	121 (10)
C(1)	5676 (7)	5999 (5)	2722 (4)	96(13)	70 (6)
C (2)	6105 (9)	6655 (6)	3753 (5)	198(16)	71 (7)
C (3)	6866 (9)	7971 (6)	4082 (5)	221 (17)	91 (8)
C (4)	7201 (10)	5629(6)	3382 (6)	195(17)	73 (7)
C (5)	$6809(10)$	7972 (7)	2340 (5)	237 (19)	$99(8)$
C (6)	6047 (9)	6644(6)	2005 (5)	191 (16)	$82(7)$
O(w1)	$6532(7)$	3785 (5)	6:6 (4)	264(13)	148 (7)
O(w2)	$6302(7)$	3830 (5)	3690 (3)	276 (13)	166:7)

All values are $\mathrm{x} 10^{4}$ excent for co which are $\times 10^{5}$. The estimatoz standard deviations are given in parentheses. The tomerature factors are of the form: $\exp \left[-1,1 n^{2}+3 n 2^{2}+\right.$ $\left.A_{33} \ell^{2}+R_{12} h 2+f_{13} h ?+e_{23} k l\right) j$.

Table 6 - extended

${ }_{3} 33$	${ }^{1} 12$	β_{13}	β_{23}
276(4)	822 (1.7)	219 (13)	157(9)
$53(1)$	$78(4)$	25 (3)	14(2)
138(2)	65 (7)	46 (7)	46 (4)
$36(3)$	168 (14)	7 (9)	$44(6)$
$32(3)$	167 (13)	70(9)	$33(6)$
41 (3)	199(14)	$74(10)$	70 (6)
$30(3)$	199(14)	31 (9)	25 (6)
37 (3)	123(14)	29 (10)	50(7)
35 (3)	108(14)	$24(10)$	25 (7)
35 (3)	71 (13)	$30(9)$	19(6)
41 (3)	123 (14)	41 (10)	$39(7)$
35 (3)	99(13)	$21(10)$	$12(7)$
53 (4)	$101(17)$	25 (13)	41(9)
51 (4)	73 (16)	30 (13)	14(8)
76 (5)	190(21)	-5 (16)	55 (10)
$62(5)$	214(22)	50(16)	-6(10)
56(4)	134(18)	47 (14)	44(9)
$60(5)$	110(17)	$52(13)$	24(9)
$102(7)$	347 (31)	148(24)	106(14)
73 (6)	301 (28)	87 (20)	11(12)
44(4)	72 (15)	23 (11)	44 (8)
47 (4)	89 (17)	4 (13)	28 (9)
$42(4)$	95 (19)	$4(14)$	8(9)
$82(6)$	61 (18)	23 (16)	$39(10)$
$59(5)$	$99(20)$	$83(16)$	95 (11)
$52(4)$	104(18)	$56(13)$	$52(9)$
$80(4)$	241(16)	102(11)	100(8)
$53(3)$	295(16)	20(10)	22 (7)

Table 7
Final Parameters for the Hydrogen Atoms for CeCo(H2ding)(dmg) (clan) ${ }^{\text {a }}$

Atom [Bonded to]	Distance	x	Y	z	B
$\mathrm{H}(\mathrm{Bl})[\mathrm{O}(22)]$	1.16(8)	153(10)	335 (7)	17 (5)	6.3 (1.8)
$\mathrm{H}(\mathrm{B} 2)[\mathrm{O}(21)]$	1.13 (8)	J.84(10)	345 (7)	$402(5)$	$6.7(1.8)$
H(2) [C(2)]	0.89 (5)	591 (7)	621 (5)	420(4)	$2.0(1.1)$
$\mathrm{H}(3)[\mathrm{C}(3)]$	$0.99(7)$	726(10)	858(7)	478 (5)	$6.7(1.9)$
$\mathrm{H}(5)[\mathrm{C}(5)]$	0.90 (7)	709 (10)	838(7)	187 (5)	$5.8(1.7)$
H(6) [C(6)]	$1.01(5)$	568 (7)	609 (5)	127 (4)	2.0 (1.1)
$\mathrm{H}(7)[\mathrm{N}(1)]$	$1.03(7)$	522 (10)	434(6)	$166(5)$	6.1 (1.7)
$\mathrm{H}(8)[\mathrm{N}(1)]$	$0.83(6)$	518(9)	428 (6)	278 (5)	$4.5(1.5)$
$\mathrm{H}(11)[\mathrm{C}(13)]$	0.96 (8)	243 (11)	753 (7)	$212(6)$	$8.2(2.1)$
$H(12)[C(13)]$	$0.79(9)$	37 (11)	692 (7)	$203(6)$	$3.5(2.2)$
$\mathrm{H}(13)[\mathrm{C}(13)]$	1.00 (1)	102(10)	663 (7)	103(5)	$7.1(1.9)$
$\mathrm{H}(14)[\mathrm{C}(14)]$	$1.02(7)$	$46(9)$	$639(6)$	453(5)	$5.8(1.7)$
H (15) [C(14)]	$0.78(7)$	62 (9)	708 (6)	388(5)	$4.9(1.5)$
H(16) [C(1.4)]	0.87 (8)	228(11)	734 (8)	456 (6)	8.6(2.2)
H(21) [C(23)]	$0.86(10)$	414(12)	59(8)	248(6)	$9.6(2.4)$
$\mathrm{H}(22)[\mathrm{C}(23)]$	0.92 (9)	239 (12)	$-21(8)$	$211(6)$	$9.3(2.4)$
$\mathrm{H}(23)[\mathrm{C}(23)]$	0.97 (9)	266 (12)	52.(8)	$326(7)$	$9.8(2.5)$
$\mathrm{H}(24)[\mathrm{C}(24)]$	1.03 (9)	242(12)	$44(8)$	-46(\%)	$9.4(2.4)$
$\mathrm{H}(25)[\mathrm{C}(24)]$	$0.84(10)$	396 (12)	58(8)	$29(6)$	$9.1(2.3)$
$\mathrm{H}(26)[\mathrm{C}(24)]$	$1.00(7)$	210 (1.0)	-38(7)	$40(5)$	$5.9(1.7)$
$\mathrm{H}(\mathrm{wl})[\mathrm{O}(\mathrm{wl})]$	0.70 (8)	659 (11)	$319(7)$	69 (6)	$7.2(2.0)$
$\mathrm{H}\left(\mathrm{wl} \mathrm{l}^{\prime}\right)[\mathrm{O}(\mathrm{wl})]$	$0.80(13)$	771 (16)	$438(11)$	72 (9)	15.2(3.7)
$\mathrm{H}(\mathrm{w} 2)[\mathrm{O}(\mathrm{w} 2)]$	$0.79(7)$	736 (10)	420 (7)	425(5)	$6.6(1.8)$
$\mathrm{H}\left(\mathrm{w} 2^{\prime}\right)$ [O(w2)]	$0.71(7)$	747 (1.0)	371 (6)	337 (5)	$6.0(1.8)$

$a_{\text {The hydrogen }}$ atom is given followed by the aton to wich it is bonded in brackets, the corresponding bond distance (in \AA), the positional parameters with estimated standard deviations ($x 10^{+3}$), and the isotropic themal parameter (in \AA^{2}).
cule wern locaten bufow rufinoment. The scheme of the refinement is ontincd in Tone !.

Althowh the confrund was crystallized from ethanol, differunce Fourier symtheserf ai various staces of refinement failod to indicon tho position of an additional atom in the solvent moleculo. Bennuse a large region of relative high electron domsily cxiaing wras $C(r l)$ could be indicative of an atom wjer high di :osder and because ethanol was the solvent, a moicculc of ethanol was assumed to be present for the purposes of determining the formaia, molecular weight, and density.

The cobelt, chlorino, oxygen, nitrogen, and carbon
 for hyarogen from stewart et al. ${ }^{30}$ Table B-1 is a list of observed año calculated structure factois for $\mathrm{CRCo}\left(\mathrm{H}_{2} \mathrm{dpg}\right)^{2}$ (clan). The Einal paificnal and thermal paramoters are shown in Tablos 8 and 9.

With one molecule per unit cell in the centric PI space group the cobalt aton and the chloride anion reme required to lie on ceatoxs of summitry. The sharpened Patterson function was in as,emerv with the chloride ion at 0% when the cobalt atom is paced at OnO. The remaining atoms were located in a sjmilar manmer as in $\mathrm{CiCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)$ (dmg) (clan). An outline of thatefinewn is oiven in Taile 5 .

Table 8
The Final Atomic parameters for the Nonhydrogen Atoms of clco $\left(\mathrm{H}_{2} \mathrm{dpg}\right)_{2}(\mathrm{clan})^{\mathrm{a}}$

Atom	x	Y	2	β_{11}	β_{22}
Co	3339 (1)	3017 (2)	2961(1)	33 (1)	58 (1)
Cl(1)	$3101(2)$	4797 (3)	3049 (2)	45 (2)	68 (3)
C $\ell(2)$	6313(4)	60 (5)	1153 (3)	96(4)	151(6)
O(11)	3953(5)	3496 (7)	1583 (4)	47(5)	82 (9)
O(12)	4349 (5)	2916 (10)	4348 (4)	41 (5)	210(13)
O(21)	2763 (6)	2628(8)	4340(4)	54(5)	130 (11)
O(22)	2334 (5)	3078(8)	1587(4)	$42(5)$	102(9)
$\mathrm{N}(1)$	3495(6)	1451 (9)	2903(6)	29(6)	97(12)
N(11)	4172 (6)	3351 (7)	2306(4)	$41(6)$	41 (8)
N(12)	4368 (7)	3168 (9)	3660 (5)	56 (7)	78 (11)
N(21)	2534 (7)	2738 (9)	3635 (5)	50 (6)	85(11)
N(22)	2312.6)	2882 (9)	2294(4)	$39(6)$	62 (9)
C(ll)	4970 (8)	3533 (1.0)	2591 (6)	24 (7)	88(14)
C(12)	5080 (8)	3361 (11)	3373 (6)	44.8)	101(15)
C (13)	5698 (8)	391.5 (12)	2191 (6)	$38(8)$	70(12)
C(14)	5956 (9)	3431 (11)	3862 (7)	42 (8)	$82(14)$
C(23)	1706 (8)	$2557(10)$	3364 (6)	46 (8)	58 (12)
C (22)	1575 (7)	2672 (10)	2562 (5)	$28(6)$	66 (12)
C (23)	1055 (8)	2220 (10)	3832 (6)	54 (8)	50 (12)
C (24)	709 (8)	2583 (10)	2146(6)	52 (8)	46 (12)
C(1)	4167 (8)	1048(11)	$2436(6)$	54 (9)	46 (11)
C(2)	5012 (9)	858 (11)	2798 (7)	65 (10)	65 (14)
C (3)	5687 (9)	544 (11)	2387 (8)	53 (9)	62 (13)
C (4)	5487 (9)	448 (11)	1654 (8)	$69(10)$	53 (13)
C (5)	4661 (10)	592 (13)	1341 (7)	74 (10)	123(18)
C (6)	3990 (8)	883(11)	1733 (7)	45 (8)	67 (13)
C (1A)	5975 (8)	3387 (11)	1614 (7)	$35(8)$	92(15)
C (2A)	6642 (9)	3760 (13)	1251 (7)	$54(9)$	$111(15)$
$\mathrm{C}\left(3 F_{1}\right)$	7077 (8)	4683 (12)	1485 (7)	36 (8)	97 (15)
C (4A)	6831 (9)	5248 (13)	2052(8)	$46(9)$	108(15)
C(5A)	61.57:9)	4877 (12)	2413 (7)	69 (10)	93 (13)

Table 8 - extended

B_{33}	β_{12}	${ }^{8} 13$	B_{23}
$19(0)$	-7(3)	2 (1)	-4(2)
$40(1)$	8(5)	11(3)	-13(4)
$100(3)$	71 (9)	$96(5)$	$-15(7)$
2] (3)	12(11)	6 (6)	26 (8)
16(3)	$-17(16)$	$-8(6)$	$7(13)$
$20(3)$	-35(13)	3(6)	8(9)
21 (3)	-18(13)	- 4 (5)	$12(10)$
$34(4)$	-9 (13)	$7(8)$	-15(12)
13 (3)	23 (11)	$-6(6)$	14(8)
26 (4)	7 (15)	-1(8)	7 (12)
$20(3)$	-15(14)	$6(7)$	-21.11)
16(3)	-12(14)	13 (5)	6 (11)
23 (4)	$5(16)$	16 (9)	28.(13)
18(4)	-5 (18)	7 (9)	0 (13)
23 (1)	$20(17)$	20(9)	23 (14)
$28(5)$	-11(17)	-.8(10)	5 (13)
23 (4)	4 (15)	$12(9)$	-2(12)
15(4)	24(15)	-4(8)	7 (11)
17 (4)	-43(17)	$3(3)$	-9(12)
28 (5)	26 (16)	-3 (10)	30(12)
$30(5)$	-5 (18)	$-28(10)$	20 (14)
$36(6)$	-17(19)	-7(11)	15 (15)
$45(6)$	45(13)	4(12)	2 (15)
$46(6)$	$58(19)$	$40(22)$	20(15)
$37(6)$	19(23)	44 (12)	70(17)
33 (5)	-69(1.7)	$9(10)$	-29(14)
$39(5)$	5 (17)	$31(10)$	$4(15)$
29 (5)	10(21)	$22(12)$	2 (16)
45 (6)	-12(19)	9 (11)	46 (16)
43 (6)	-28(27)	$30(1$.	13 (こへ)
32(5)	7 (2)	11 (11)	$2(17)$

Table 8 - continued

Atom	X	Y	2	${ }^{11}$	β_{22}
$C(1 B)$	6675 (9)	2815(14)	3687 (7)	61 (9)	113(16)
C (2B)	7444 (9)	2801(13)	4142 (7)	$59(9)$	89 (15)
C (3B)	7498(9)	3363 (15)	4781 (7)	56 (10)	189 (23)
C (4B)	6828(9)	4051 (16)	4937 (7)	$59(10)$	207 (22)
C (5B)	6047 (10)	4094(14)	4476 (7)	73 (11)	148(19)
C (1C)	664 (9)	1226(12)	$3750(7)$	66 (10)	73 (1.4)
C (2C)	20(9)	872(12)	4199 (7)	66 (10)	96(16)
C (3C)	-21.2(9)	1576(14)	4700 (8)	32 (8)	183(23)
C (4C)	184 (9)	2563(12)	4813 (7)	61 (10)	112 (17)
C (5C)	826(8)	2872 (11)	4368 (6)	60 (8)	41 (11)
C(ID)	593 (9)	2121(12)	1437 (6)	54 (8)	83 (14)
C (2D)	-224(9)	1992(14)	1046 (7)	56 (9)	116 (16)
C(3D)	-951(9)	2410(12)	1345 (7)	50(9)	105 (17)
C(4D)	-888(8)	2847(12)	2044 (7)	42 (8)	77 (14)
C(5D)	-69(8)	2975(12)	2447 (6)	30 (7)	63 (12)
O(Sl)	1418 (9)	4904(10)	944(5)	190(13)	136(13)
C(SI)	1450(26)	4854(22)	182(12)	512 (49)	196(30)

a All values are $\mathrm{x} 10^{4}$. The estimated standard deviations are given in parentheses. The temperature factors are of the form: $\exp \left[-\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} \ell^{2}+\beta_{12} h k+\beta_{13} h \ell+\right.$ $\left.\left.e_{23} k l\right)\right]$.

Table 8 - continued -- extended

β_{33}	β_{12}	β_{13}	β_{23}
$39(6)$	$-11(22)$	$-24(11)$	$13(18)$
$39(5)$	$-24(21)$	$-4(11)$	$24(17)$
$32(5)$	$-59(24)$	$13(11)$	$-5(18)$
$18(5)$	$-47(26)$	$0(10)$	$-39(19)$
$28(5)$	$-90(25)$	$7(11)$	$0(18)$
$28(5)$	$-27(19)$	$-3(11)$	$-20(15)$
$28(5)$	$-24(21)$	$7(11)$	$13(16)$
$44(6)$	$-21(21)$	$-26(11)$	$-5(19)$
$26(5)$	$16(19)$	$26(10)$	$-10(14)$
$28(4)$	$-31(19)$	$-7(9)$	$8(14)$
$28(5)$	$-4(20)$	$7(10)$	$-16(16)$
$34(5)$	$13(23)$	$-34(10)$	$-39(19)$
$42(6)$	$11(19)$	$-31(11)$	$50(16)$
$51(6)$	$-13(20)$	$-8(11)$	$6(18)$
$40(5)$	$-30(18)$	$17(9)$	$7(16)$
$39(5)$	$67(23)$	$45(12)$	$-23(14)$
$59(11)$	$224(71)$	$194(38)$	$45(34)$

Final Parameters for Hydrogen Atoms for $\operatorname{C\ell Co}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan})^{\text {a }}$
Atom

[Bonded	Distance	x	Y	2	B
H(Bl)		303 (9)	344 (12)	153(8)	11.6.6.1)
H (B2)		352 (7)	277(9)	$439(5)$	$4.3(2.7)$
$\mathrm{H}(2)[\mathrm{C}(2)]$	$0.84(10)$	514 (7)	87 (9)	325 (5)	$4.3(2.8)$
$\mathrm{H}(3)[\mathrm{C}(3)]$	$0.95(14)$	627 (9)	47(12)	$260(7)$	$9.8(4.5)$
$\mathrm{H}(5)[\mathrm{C}(5)]$	0.80 (10)	445 (6)	54 (8)	93(5)	4.1(2.8)
$\mathrm{H}(6)[\mathrm{C}(6)]$	$1.00(10)$	$336(7)$	84 (9)	152(5)	$4.7(3.0)$
$\mathrm{H}(7)[\mathrm{N}(1)]$	0.93 (11)	305 (7)	107(10)	264 (6)	5.9 (3.3)
$\mathrm{H}(8)$ [$\mathrm{N}(1)]$	$1.02(15)$	382 (9)	103 (13)	$332(8)$	11.7(4.6)
$\mathrm{H}(1 \mathrm{~A})[\mathrm{C}(1 \mathrm{~A})]$	$1.05(12)$	558 (7)	278 (1.0)	135 (6)	$6.0(3.2)$
$\mathrm{H}(2 \mathrm{~A})[\mathrm{C}(2 \mathrm{~A})]$	$0.94(10)$	680 (6)	329 (8)	$89(5)$	$4.0(2.7)$
$H(3 A)[C(3 A)]$	$1.18(15)$	759 (9)	514 (13)	117 (7)	10.5(4.8)
$H(4 A)[C(4 A)]$	$1.12(12)$	711 (7)	604 (10)	227 (6)	$5.7(3.3)$
$H(5 A)[C(5 A)]$	0.86 (9)	601 (6)	525(8)	227 (5)	2.4(2.4)
$H(1 B)[C(1 B)]$	1.07 (9)	654 (6)	236(8)	320 (5)	$3.0(2.6)$
$H(2 B)[C(2 B)]$	1.12 (19)	796 (11)	224 (16)	398 (9)	14.6(6.6)
$H(3 B)[C(3 B)]$	$0.68(13)$	792 (9)	351 (11)	487 (7)	9.1 (4.4)
$H(4 B)[C(4 B)]$	0.74 (10)	690 (7)	403 (2)	533 (6)	$5.3(3.0)$
$H(5 B)[C(5 B)]$	$0.55\left(14_{5}\right)$	586 (9)	406 (12)	471 (7)	12.2(4.6)
$\mathrm{H}(1 \mathrm{C})[\mathrm{C}(1 \mathrm{C})]$	0.81 (13)	76 (8)	69 (10)	$352(7)$	8.3(4.1)
$\mathrm{H}(2 \mathrm{C})[\mathrm{C}(2 \mathrm{C})]$	1.04 (19)	$3(12)$	7 (15)	403 (9)	15.8(6.3)
$H(3 C)[C(3 C)]$	0.96 (12)	-63(8)	140 (10)	504 (7)	$8.2(4.0)$
$\mathrm{H}(4 \mathrm{C})[\mathrm{C}(4 \mathrm{C})]$	0.92 (12)	$4(8)$	$305(10)$	515 (6)	$6.0(3.0)$
$\mathrm{H}(5 \mathrm{C})[\mathrm{C}(5 \mathrm{C})]$	1.00 (8)	$106(5)$	362 (6)	447(4)	$0.5(1.9)$
H(1D) [C(lD)]	$1.05(9)$	116 (6)	175(7)	128(5)	$3.0(2.4)$
$\mathrm{H}(2 \mathrm{D})[\mathrm{C}(2 \mathrm{D})]$	1.10 (9)	-41(6)	160 (8)	$52(5)$	$2.8(2.6)$
H(3D) [C (3D)]	0.97 (14)	-145(9)	219(12)	201(7)	10.1(4.4)
H(4D) [C(4D) $]$	$1.04(10)$	-136(5)	343 (8)	212 (5)	3.8 (2.7)
$\mathrm{H}(5 \mathrm{D})[\mathrm{C}(5 \mathrm{D})]$	0.70 (8)	25(5)	316 (7)	221(4)	1.5(2.0)

${ }^{a}$ The hydrogen atom is given followo by the aton to which it is bonded in brackets, the corresponding bond distance (A), the positional parametars with estimated standard deviations $\left(x 10^{+3}\right)$, and the isotropia thermal parometors (in2).

The scattering factors for cobalt, oxygen, nitrogen, and carbon were from ilanson et al. ' 29 those for hydrogen were from stewart et al., ${ }^{30}$ and those for chlorine were from Doyle and Turner. ${ }^{31}$ The observed and calculated structure factors are given in Table $B-2$. Lists of final posjtional and thermal parameters may be found in Tables 10 and 11.

Results and Discussion

The atomic numbering and thermal ellipsoids of $\mathrm{ClCo-}$ $\left(\mathrm{H}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{clan}), \mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan})$, and $\left[\mathrm{Co}(\mathrm{Hdmg})_{2}(\mathrm{clan})_{2}\right]-$ $C \ell$ are shown in ORTEP ${ }^{54}$ drawings in Figures 1,2 , and 3 , respectively. The individual bond distances for these three compounds together: with those of two related compouncs, ceco$\left(\mathrm{II}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{sulfa})^{46}$ and $\left[\mathrm{Co}(11 \mathrm{dmg})_{2}(\mathrm{an})_{2}\right] \mathrm{Cl}, 52$ are tabulated in Table 12. The corresponding bond angles are given in Table 13.

In each case the two dmci or dpg groups are approximately planar as demonstrated by the deviations from least-equates planes in Tables 14-16. The ding groups of each complex are linked by two intramolccular hydrogen bonds (see Table 17).
 gen bridges between the dmg groues in $C i C o\left(H_{2} d m g\right)(d m g)(c l a n)$ wore found to be asymmetrical with beth hydrogen atoms bonded to the same dmy ligand. The O(21)-H(B2) and O(22)-il(BI) distances of $1.13(8)$ and $1.16(8) \mathrm{A}$, rospectively, compared to the $O(12) \cdots H(B 2)$ and $O(11) \cdots H(B 1)$ distances of $1.36(8)$ and 1.37(8) A indicate the formulation H_{2} diac; and dmg for the two

Table 10
The Final Atomic Parameters for Nonhydrogen Atoms of [Co(Hdmg) 2 (clan) $2 \mathrm{cl} .{ }^{\text {a }}$

Atom	x	Y	z	β_{11}	β_{22}
Co	O(0)	0 (0)	$0(0)$	817 (11)	628 (5)
$C \ell(1)$	0 (0)	50000 (0)	$0(0)$	2653(30)	664 (12)
C 12)	32052(23)	26440(24)	55881(8)	5254(48)	6743 (52)
O(11)	4450 (2)	$1508(2)$	573 (1)	97 (4)	J.26(3)
O(12)	-3514 (3)	531 (2)	-1814(1)	125(5)	144(3)
N(1)	-846 (3)	1678 (2)	816(2)	116 (5)	77 (3)
N(11)	2490(3)	1399 (2)	-160(2)	105 (5)	83 (3)
N(12)	-1339(3)	923 (2)	-1288(1)	$118(5)$	91(3)
C (1)	97 (4)	1928(3)	1978(2)	148 (7)	90(3)
C (2)	2160(4)	2812 (3)	2368 (2)	195 (8)	136 (4)
C (3)	3103 (5)	3034 (4)	3474 (3)	224(9)	231(6)
C (4)	1982(6)	2386(5)	4181 (3)	317 (11)	311 (8)
C (5)	-77(6)	1504 (5)	3818 (3)	320 (11)	300 (8)
C (6)	-1012(4)	1232(4)	2704(2)	193(8)	185 (5)
C(1].)	2176 (4)	22.74 (3)	-990(2)	159(7)	76 (3)
C(12)	-124(4)	1982 (3)	-1665 (2)	185 (7)	87 (3)
C (13)	3887 (4)	3459 (3)	-1239(2)	216 (8)	116 (4)
$\mathrm{C}(14)$	-937(5)	2830 (4)	-2658(3)	289(10)	169(5)

${ }^{a}$ All values are $\times 10^{4}$ except those for $C O, C \ell(1)$ and $C \ell(2)$ which are $\mathrm{x} 10^{5}$. The estimated standerd deviations are gi.ven in parentheses. The temperature factors are of the form: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} k^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$.

```
Table 10 - cxtended
```

β_{33}	β_{12}	β_{13}	β_{23}
$332(3)$	$226(12)$	$169(9)$	$-43(6)$
$873(8)$	$451(29)$	$1194(26)$	$131(15)$
$482(7)$	$-1987(79)$	$-431(28)$	$-982(29)$
$57(1)$	$9(5)$	$11(4)$	$-12(3)$
$57(1)$	$40(6)$	$-20(4)$	$15(3)$
$45(1)$	$28(6)$	$30(4)$	$-9(3)$
$47(1)$	$26(6)$	$30(4)$	$-21(3)$
$41(1)$	$53(6)$	$7(4)$	$-7(3)$
$47(2)$	$47(8)$	$27(5)$	$-24(4)$
$63(2)$	$-25(9)$	$59(6)$	$-42(5)$
$72(2)$	$-85(12)$	$-3(8)$	$-93(6)$
$49(2)$	$2(15)$	$-11(3)$	$-59(7)$
$51(2)$	$-22(15)$	$64(8)$	$1(7)$
$52(2)$	$-11(10)$	$36(6)$	$-12(5)$
$52(2)$	$42(7)$	$73(6)$	$-4(4)$
$46(2)$	$68(8)$	$50(6)$	$6(4)$
$77(2)$	$12(9)$	$109(7)$	$16(5)$
$68(2)$	$68(11)$	$47(3)$	$75(6)$

Table lj
Final Parameters for Hydrogen Atoms for $\left[0(10 \mathrm{mg})_{2}(\mathrm{clan})_{2}\right] \mathrm{ce}^{a}$

Atom [Bonded to]	Distance	x	Y	2	B
$\mathrm{H}(\mathrm{BI})[\mathrm{O}(12)]$	1.07 (3)	-408(8)	-35(4)	-133(3)	$5.5(0.8)$
$\mathrm{H}(2)[\mathrm{C}(2)]$	$0.85(3)$	280 (4)	321(3)	100(2)	$3.5(0.6)$
$\mathrm{H}(3)[\mathrm{C}(3)]$	0.91 (4)	447 (6)	$361(4)$	366 (3)	$6.0(0.8)$
$H(5)[C(5)]$	$0.98(4)$	-92(6)	$105(4)$	431 (3)	$6.6(0.9)$
$\mathrm{H}(6)[\mathrm{C}(6)]$	0.96 (3)	-248(5)	73 (3)	241 (2)	$3.9(0.6)$
$\mathrm{H}(7)[\mathrm{N}(1)]$	$0.88(2)$	-299(4)	146 (3)	$64(2)$	2.1(0.5)
$\mathrm{H}(8)[\mathrm{N}(1)]$	$0.94(2)$	-52(4)	$262(3)$	49 (2)	$2.7(0.5)$
H(11) [C(13)]	0.90 (4)	349 (6)	440 (4)	$-131(3)$	$5.7(0.8)$
H(12) [C(13)]	$0.89(4)$	417 (7)	315 (5)	$-1.85(1)$	9.0(1.2)
$\mathrm{H}(13)[\mathrm{C}(13)]$	0.91 (4)	513 (6)	353(5)	-57(3)	$7.3(1.0)$
H(14) [C(14)]	0.86 (4)	-181(7)	217 (5)	-314(3)	$9.0(1.2)$
$\mathrm{H}(15)[\mathrm{C}(1.4)]$	$0.80(5)$	-14(8)	$300(6)$	$-270(4)$	1.0.0(1.3)
$\mathrm{H}(16)[\mathrm{C}(14)]$	1.01(5)	-213 (8)	337 (6)	-202(4)	11.0(1.4)

$a_{\text {rphe hydrogen }}$ atom is given followd by the akom to which it is bonded in brackets, the correspondiny bort distance (A), the positional parameters with estimatod standard deviations ($x 10^{+3}$), and the isotropic themal paramotexs (oz ${ }^{2}$).

$3 n c$
$\because 6$
\therefore
$\begin{array}{ll}1-r \\ i & -r\end{array}$
$\begin{array}{ll}1 \\ C 1 & 0\end{array}$
fi B
F：
the atcmitc

$\because 0$
12
$\%$
（0） 54
N
glare
1
i
（
（
1
$1 \% 10$ $\stackrel{1}{\square 1}$

A．
An Oin！：D
土へに2

3 igure
2]CR snowinc
De日n onittc
$\stackrel{-1}{4}$
N
0
0
0
0
0
0
0
0
0
0
0
0
4
An ODTEP Arawing
ellipsoids.

Table 12
Selceted Interatomic Distances ((\mathbb{A}) in Sone Cobalnoime Complexes with Their Estimated Stam\}ard Devjations. ${ }^{\text {a }}$
$\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{ding}\right)(\mathrm{clan}) \quad \mathrm{CeCO}\left(\mathrm{H}_{2} \mathrm{dpg}\right)_{2}(\mathrm{Clan})$

$\mathrm{Co}-\mathrm{N}(1)$	1.999 (6)	1.946(11)
$\operatorname{Co-N}(1.1)$	1. 872 (5)]. 908 (9)
$\operatorname{Co-N}(12)$	1.884(5)	1.935(11)
$N(11)-O(11)$	1.337 (6)]. 356 (11)
$\mathrm{N}(12)-\mathrm{O}(\mathrm{J} 2)$	1.329 (6)	1.316 (12)
$N(11)-C(11)$	1.311 (8)]. 208 (15)
$N(12)-C(12)$	$1.308(8)$	1.292(16)
$C(11)-C(12)$	1.457 (9)]. $455(16)$
C (11)-C(13)	1.488(10)	1.487(17)
c(12)-C(14)	$1.487(10)$	1.536(18)
O(11) ... O (22)	$2.497(7)$	2.540(11)
O(11)-11(B)	$1.37(8)$	1.41(].1)
$\mathrm{O}(12)-\mathrm{H}(\mathrm{R})$	$1.36(8)$	$1.30(10)$
Co-cl (1)	$2.257(2)$	2.244(4)
$\mathrm{CO}-\mathrm{N}(21)$	$1.908(5)$	$1.887(10)$
$\operatorname{CO}-\mathrm{N}(22)$	$1.906(5)$	1.897 (9)
$\mathrm{N}(21)-\mathrm{O}(21)$	$1.348(6)$	1.321 (12)
$\mathrm{N}(22)-\mathrm{O}(22)$	$1.359(6)$	1.337(11)
$N(21)-C(21)$	$1.280(8)$	$1.331(16)$
$N(22)-C(22)$	$1.288(8)$	$1.31 .3(14)$
$C(21)-C(22)$	$1.468(9)$	1.483 (1.5)
$C(21)-C(23)$	1.486(11)	1.457 (17)
C (22)-C(24)	1.498(11)	1.464 (17)
O(12) \cdots O(21)	$2.479(7)$	2.460(12)
$0(21)-11(8)$	1.13 (8)	1. 16 (10)
$\mathrm{O}(22)-\mathrm{H}(\mathrm{B})$	1.16 (8)	1.17 (15)

*Distance given is for $0(11.) \cdots O\left(12^{\prime}\right) \equiv 0(12) \cdots O\left(11^{\prime}\right)$
avalues for $[C o(H, a m g$,) (anb] ce are listad with atomic numbroing corresponding to the conpounde or this work.

Table 12 - extended

$\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{amg}_{2}\right)(\operatorname{sulfa})^{46}$	$\left[\mathrm{CO}\left(\mathrm{H} \mathrm{Clmg}_{2}\right.\right.$	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(\mathrm{an})_{2}\right] \mathrm{Cl}^{52}$
2.023 (8)	$2.003(2)$	2.001 (5)
1.870 (8)	1.906 (2)	$1.885(6)$
$1.884(8)$	$1.889(2)$	$1.889(5)$
1.323 (11)	1.340 (3)	$1.353(6)$
$1.344(11)$	$1.362(3)$	$1.333(6)$
$1.289(14)$	1.299 (3)	$1.286(10)$
1.293(13)	1.290 (3)	$1.303(10)$
$1.494(16)$	$1.477(4)$	1.463 (7)
$1.532(17)$	$1.483(4)$	1.482(12)
1.488(16)	$1.485(4)$	1.476 (11)
$2.507(11)$	$2.495(3) *$	$2.491(8) *$
1.50	1.44 (3)	1.29
1.60	1.07 (3)	1.21
$2.235(3)$		
1.905 (8)		
$1.896(8)$		
1.326(10)		
]. 338 (11)		
$1.292(12)$		
1.290(14)		
1.447 (17)		
$1.494(17)$		
$1.488(16)$		
$2.479(11)$		
0.90		
1.04		

Table 13
Snl :ted Intramolecular Angles (${ }^{\circ}$) in Some Cobsloxithe Comple:es witir Thoir listimated Standard Deriations. ${ }^{\text {a }}$
$\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{Cimg}_{2}\right)(\mathrm{clan}) \quad \operatorname{ClCo}\left(\mathrm{h}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan})$

$\mathrm{N}(1) \cdots \mathrm{Co-1} \mathrm{\%}(1.1$.	$90.5(2)$	94.8(4)
$N(1)-C 0-N(12)$	91.5(2)	92.1(4)
$\mathrm{N}(1) \cdots \mathrm{Co}-\mathrm{N}(21)$	88.4(2)	87.1(4)
$n(1)-\operatorname{Co-N}(22)$	88.6 (2)	88.6 (4)
N(1])-COM (12)	$82.6(2)$	$81.3(4)$
$1 \because(11) \cdots \operatorname{Co-N}(22)$	$98.8(2)$	100.0(4)
$\mathrm{N}(11)-\operatorname{Co-N(21)}$	178.8(2)	$177.5(4)$
$\mathrm{N}(12)-\cos -\mathrm{N}(21)$	$98.1(2)$	97.0(4)
W (12)-Co-N(22)	178.6(2)	$178.5(4)$
$N(21)-\mathrm{CO}-\mathrm{N}(22)$	$80.6(2)$	$81.7(4)$
$\mathrm{C}(1)-\mathrm{Co-iv}(11)$	$90.6(2)$	$87.7(3)$
$\mathrm{Cl}(1) \mathrm{-CO}-\mathrm{N}(12)$	$90.6(2)$	89.1 (3)
$C f(1)-C 0-1 .(2.1)$	$90.5(2)$	$90.4(3)$
c $\mathrm{C}(1)$ - $\mathrm{Cc}-\mathrm{Hv}(22)$	89.4(2)	90.2(3)
$C l(1)-C 0-11(1)$	$177.8(2)$	177.4(3)
$\operatorname{co-N}(1)-\mathrm{C}(1)$	$119.7(4)$	118.5(8)
$\operatorname{cotiv}(11)-0(11)$	121.9(4)	123.3(7)
$\operatorname{rom}(12)-0(12)$	1.22.2(4)	121.2(8)
Co-21 21$)-0(21$.	123.2(4)	123.5 (8)
$\operatorname{corrin}(22) \cdots \mathrm{O}(22)$	123.3 (4)	$120.7(7)$
C0-N(11)-C(11)	$116.0(4)$	11.6.7(8)
Co-1v(12)-C(12)	115.6 (4)	114.1 (9)
Co-iv (21)-C(21)	1.16.6(4)	$116.8(8)$
$\operatorname{Co}-\mathrm{N}(23)-\mathrm{C}(22)$	$11.7 .0(4)$	$117.4(8)$
O(11) - $1(11)-C(11)$	122.1(5)	119.7 (9)
$0(1.2)-12(1.2)-\mathrm{C}(12)$	122.3(5)	123.8(11)
$\mathrm{O}(21)-\mathrm{N}(21)-\mathrm{C}(21)$	$1.20 .3(5)$	$119.4(10)$
$0(22)-$ - $(22)-C(22)$	$119.8(5)$	121.7(10)
$\cdots(11) \cdots 0(11) \cdots O(22)$	$99.7(3)$	95.9(6)
is (12)-0(12) \cdots O(21)	99.7 (3)	$99.2(7)$
N(21)-O(21) \cdots O(12)	96.9(3)	$98.2(7)$
$\therefore(22)-C(22) \cdots 0(11)$	$26.0(3)$	100.1.(5)

```
Table 13 - extended
```

$\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{amg}_{2}\right)(\operatorname{sulfa})^{46}$	$\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(\mathrm{clan})_{2}\right] \mathrm{Cl}$	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(\mathrm{an})_{2}\right] \mathrm{Cl} l^{52}$
90.5(3)	89.8(1)	91.5(4)
91.7(3)	93.2(1)	93.0 (5)
89.3(3)		
87.8 (3)		
82.0 (4)	$80.8(1)$	$80.8(3)$
98.7(1)		
179.3(4)		
98.7(3)		
179.2(4)		
80.6 (3)		
89.6 (3)		
88.5 (3)		
90.5(3)		
91.9(3)		
179.7(2)		
119.1 (6)	$119.7(1)$	$119.5(7)$
123.0 (6)	121.3(3)	121.4(6)
122.6 (6)	122.7(1)	122.9 (7)
12]. 6 (6)		
123.6 (6)		
116.4(7)	116.9(2)	116.8(9)
117.4 (7)	$117.7(2)$	117.8 (9)
116.3 (7)		
116.8 (7)		
120.5(9)	1.2]. 8 (2)	121.8(12)
$12.0 .0(8)$	119.6 (2)	$119.2(10)$
122.2(8)		
120.1(9)		
98.3 (6)		
97.8 (6)		
99.2 (5)		
96.8(6)		

Table 13 - continued - extended

$\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(\text { sulfa })^{46}$	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(\mathrm{clan})_{2}\right] \mathrm{Cl}$	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(\mathrm{an})_{2}\right] \mathrm{C} \varepsilon^{52}$
113.3(9)	112.2(2)	112.4(10)
125.0(10)	125.0(2)	124.6(16)
110.7(9)	112.5(2)	112.2(9)
124.0(10)	124.1(2)	125.0(16)
113.1(9)		
120.7(10)		
113.1 (9)		
122.9(10)		
121.7(10)	122.9(2)	123.0(12)
125.3(10)	123.4(2)	122.9(13)
126.1(10)		
123.6(1.0)		

ligands. This is in contrast to, wulis moported for various $\left.\operatorname{Co}\left(\mathrm{HI}_{2} \mathrm{dmg}_{2}\right) \operatorname{comp}\right] \operatorname{sxcs} 40,47,48,50,4$ as will as for $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{dmy}_{2}\right)$.
 the hydrogen bridges were armamon to beguidistant from the two oxygen atoms on the lijgmise te monoprotonated. The assumption of a symetrical mrion may form in part been based
 where the wesis band due th an 0.3 ilanion neat $1725 \mathrm{~cm}^{-3}$ was assumed to indicate a my sont and bymnetcical o. In on bridge. 19, 20 McFadaon and Momatist yeportod the structure of $\mathrm{Co}\left(\mathrm{H}_{2}\right.$ dmg $\left._{2}\right)\left(\mathrm{CH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ in wijo ' whblinging hyaragen atoms if ordered are required arysiallagraplajanlly to he on one amg ligand. No commen: was marice charontar bhe briaging hyarogen atoms.

 (14) $\stackrel{\circ}{A}$, the eyperimental uncoritisty is too large to show that result to be significant.

The hydrogen brjciges in $\left[\right.$ Co(mang) $\left.{ }_{2}(\mathrm{clan})_{2}\right] C l$ are not symmetrical and each dug in singly puntomatod. The C(12)-H(BI)

(3) Á . The gross struclure is wey sibitar to that ur $\left[\mathrm{CO}(\mathrm{HCOHg})_{2}(\mathrm{ain})_{2}\right) \mathrm{Cl}$.

Bowman et al. ${ }^{55}$ suggestod the :--0 distance to be a sensitive indicator of the position of tho bridging herroger.

Table 14
Deviations and Equations of Selected Least-Squares planes in $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{mg}\right)(\mathrm{dmg})(\mathrm{clan}) \mathrm{a}$
(a) Deviations ($\stackrel{\circ}{A} \times 10^{+3}$)

	Plane 1	Plane 2	Plane 3	Plane 4
Co	5	-1796	0 *	72
O(11)	25		-2574	209
O(12)	-23		2533	80
N(11)	-2\%		-1260	175
N(12.)	2\%		121.8	140
C (11.)	4*		-775	251
C(12)	-4*		682	220
C(13)	73		-1633	413
C(14)	41		1498	330
O(21)	34		2602	-22
O (22)	-79		- 2548	-55
N(21.)	48		1269	1 *
N(22)	7		-1197	-1*
C (2l)	113		795	-2 *
C(22)	94		-673	2*
C (23)	2.30		1664	24
C (24)	143		-1482	-17
N(1)	2004	-41	0 *	
C(1)	2752	-12*	$0 *$	
C(2)	3092	5*	1197	
C (3)	3767	5*	1204	
C (4)	4105	-9*	18	
C (5)	3790	3*	-1193	
$C(6)$	3112	8*	-1204	
cl(2)	4946	-28	5	
Cl(1)	-. 22252		-29	

(b) Coefficients of the Plane Equation 53 $A x+B y+C z=D$

Plane	A	B	C	D
1	0.8529	0.4975	0.1583	1.6954

Table 14-continacd

| Plane | A | B | C | D |
| :--- | :--- | ---: | :--- | :--- | :--- |
| 2 | 0.9995 | 0.0282 | 0.0142 | 1.6347 |
| 3 | 0.0208 | -0.3098 | 0.9506 | 1.7640 |
| 4 | 0.8174 | 0.5536 | 0.1594 | 1.8309 |

athe deviations of atorns used to dofine the plane ane marked with an astorisk.

Table 15
Deviations and Equations of Seloct.d Least-Squares planes in $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{cIan})^{\text {a }}$
(a) Devietions ($\mathrm{A} \times \mathrm{X} 0^{+3}$)

	Plame 1	Plons 2	Plane 3	Planc 4
Co	19	-1032	0*	29
O(11)	-56		$\underline{1} 350$	-101
O(12)	122		-2807	192
$N(11)$	17\%		160	2
N(12)	-18%		-1881	24
C(11)	-30\%		-945	-30
C (1.2)	30\%		-2118	62
C(13)	-179		-1048	-195
C. (14)	94		-3571	149
O(21)	-5			60
O(22)	-37			-87
N(21)	-43			-8%
N(22)	28			8*
C(21)	-9			13*
c (22)	-1			-13*
$C(23)$	93			133
$C(24)$	-53			-89
N(1)	1958		0%	
$C(1)$	2755	$\cdots 16 \%$	0 *	
C(2)	3165	$A *$	-1171	
C(3)	3843	16*	-1184	
C(4)	4069	-20%	10	
$C(5)$	3720	5\%	11.66	
$C(6)$	3076	$34 *$	1205	
Cl(2)	4901	-1	$\cdots 10$	
C2(1)	-2223		24	
$\mathrm{C}(1 \mathrm{~N})$	678			
$\mathrm{C}(2 \mathrm{~A})$	510			
$\mathrm{C}(3 \mathrm{~A})$	-529			
$\mathrm{C}(4 \lambda)$	-1.117			
C (3N)	-1255			

Table 15 - cominned

	Plane 1	Plane 2	P]and 3	गlatas
$C(1 B)$	1094			
$C(213)$	1237			
$C(3 B)$	427			
$C(4 B)$	-641			
$C(5 B)$	-821			
$C(1 C)$				1932
$C(2 C)$				j380
$C(3 C)$				$3 \cdot 1$
$C(4 C)$				-73i4
$C(5 C)$				- 827
C (1D)				571
$C(2 D)$				554
C (3D)				-230
$C(4 D)$				-876
C (50)				-2.8

(b) Coefficients of the flane fountion 58 $A \times+B Y+C \because=D$

Plane	A	B	C	n
1	0.1954	-0.9752	-0.1036	3. 5976
2	$\cdots 0.2301$	-0.9634	0.1374	1.9569
3	$0.57: 4$	0.0297	0.8181	-\%.1571
4	0.1976	-0.9769	-0.0813	3.2302

${ }^{\text {a }}$ The deviations of atcms used to dofine the mane are marked with an asterisk.

Table 16
Deviations and Equations
of Sclecura Loast Squares Planes in $\left.\mathrm{KO}(\text { Hdmg })_{2}(\mathrm{clan})_{2}\right) \mathrm{Cl} \mathrm{C}^{2}$
(a) Deviations ($\AA: 10^{+3}$)

	Plane 1	plane 2	Plane 3
Co	10	-1772.	0*
O(11)	36		2519
O(12)	14		-5.33
N(11)	0 :		1902
N(12)	0*		428
C(11)	1*		2567
C(12)	-1*		1677
C(13)	26		4046
C(14)	11		2173
$N(1)$	2009	-28	0 *
C(1)	2799	-2 \%	0 *
C(2)	3030	2*	1.194
$C(3)$	3758	-1*	1208
C(4)	4257	0*	37
$C(5)$	4048	0 \%	-1168
C(6)	3312	1*	- 1174
C $2(2)$	5159	-33	33

(b) Coefficionts of the Man Houation 59

Plane	A	B	C	D
1	-0.4938	0.6723	0.5515	-0.0101
2	-0.5672	0.8236	0.0095	1.7716
3	0.7336	0.6606	-0.1594	0.0000

"The deviations of atons usol to dofine the plone are marked with an asterisk.
Hydrogen Bonds with Estimated Standard Deviations Given in Parentheses.
Distances (A)

Bond	Position of		Distances (\hat{A})		Angles (${ }^{\circ}$)
$D-1 . . . A^{a}$	A	3-1		D \cdots A	D-H1.. A
$\operatorname{Crco}\left(\mathrm{H}_{2} \mathrm{dmg}_{2}\right)(\mathrm{clan})$					
$O(21)-11(B 2) \cdots O(12)$	x, y, z	1.13(3)	$1.36(8)$	2.479 (7)	156(7)
O(22)-11(B1) \cdots O(11)	x, y, z	-. 15 (8)	1.37 (8)	$2.497(7)$	151 (6)
吅(1)-H(7) ... O(w])	x, y, z	1.03 (7)	$1.92(7)$	$2.900(7)$	157 (6)
$\cdots(1)-11(8) \cdots O(w 2)$	x, y, z	$0.33(5)$	2.04 (7)	$2.849(7)$	164 (6)
O(m1) - H (wl) ...Ce(1)	$1+\mathrm{x}, \mathrm{y}, \mathrm{z}$	0.70 (8)	2.76 (8)	$3.284(6)$	134 (3)
O (w?) - It (011) $\cdots \mathrm{O}(11)$	1-x, $1-y,-z$	$0.80(13)$	$2.34(12)$	$2.823(7)$	l20(11)
$0(02)-11(m 2) \cdots O(12)$	$1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$	$0.79(7)$	2.05 (7)	$2.813(6)$	154(8)
$\mathrm{O}(\mathrm{m} 2)-\mathrm{H}(\mathrm{m} 2 \mathrm{l}) \cdots \mathrm{Cl}(1)$	$1+x, y, z$	0.7178	$2.56(7)$	3.226 (5)	157 (7)
$\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{Img}_{2}\right)(\mathrm{Clan} 2] \mathrm{Cl}\right.$					
$0(12)-11(B 1) \cdots O(11)$	$-\mathrm{x},-\mathrm{y},-\mathrm{z}$	$1.07(3)$	1.44(3)	$2.435(3)$	170(3)
$N(1)-117) \cdots 0(11)$	$-1+x, y, z$	$0.33(2)$	2.07 (3)	2.918(3)	263 (2)
$\therefore(1)-H(8) \cdots C l(1)$	x, y, z	$0.94(2)$	2.17(2)	2.200!2)	158 (2)
$\mathrm{Cicos}\left(\mathrm{H}_{2} \log _{2}\right)(c \operatorname{lan})$					
O(21)-11(B1) $\cdots \mathrm{O}(12)$	x, y, z	1.15(10)	$1.30(20)$	2.460(12)	172(10)
O(22)-11(32) \cdots O(11)	x, y, z	1.17 (15)	1.41 (14)	2.580(21)	159(13)
O(S1) O(22)	x, y, z			$2.852(15)$	

[^1]Dissimilar $\mathrm{N}-\mathrm{O}$ bond lengths should indicate the hydrogen is not symmetrically located and is closer to the dmg with the longer bond. This holds true in $\mathrm{C} \ell \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{clan})$ where the N-O distances appear to be different. The $N(21)-O(21)$ and $N(22)-0(22)$ distances of $1.348(6)$ and $1.359(6) \dot{A}$ in the diprotonated dmg are longer than the $N(12)-0(12)$ and $N(11)-$ $0(1.1)$ distances of $1.329(6)$ and $1.337(6) \AA$ in the dianionic ding. Usjng the significance test described by Cruickshank and Robertson ${ }^{60}$ the $\mathbb{N}(21)-0(21)$ distance is possibly longer than the $N(12)-O(12)$ with a t_{o} value of 2.24 and the $N(22)-$ $O(22)$ bond is significantly longer than the $N(11)-O(11)$ bond with a t_{o} value of 2.59. Also, in $\left[\mathrm{Co}(\mathrm{Hdmg})_{2}(\mathrm{clan})_{2}\right] \mathrm{Cl}$ the $N(12)-O(\mathrm{I} 2)$ bond of $1.362(3) \stackrel{\circ}{\mathrm{F}}$ is significantly longer than the iv(1.1)-O(11) bond of $1.340(3) \stackrel{\circ}{\AA}$, where the briaging hydrogen atom is bonded to O(92). Neither the No distances nor the bridging $0-\mathrm{H}$ distances in $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan})$ are signi-ficantiy different. In $\left[C O(H d m g)_{2}(a n)_{2}\right] C l$ where the hyirogen atoms are not significantiy ramoved from a symmetrical position, the $N(1.2)-0(12)$ distance is shorter than that of \mathbb{N} (1.J.)$O(11)$. The difference in these two bond lengths of $1.333(6)$ and $1.353(6) \AA$ is of possible significance $\left(t_{o}=2.36\right)$. The sensitivity of the $17-0$ bond as an indicator of the bridge position $j s$ questionable. The $N-O$ bonds are not significantIy different. in $\mathrm{ClCO}\left(\mathrm{H}_{2}\right.$ dagg) (ding) (sulfa) when both brjdging hydrogen atoms are shifted to one ding. In the closely relatod dimethyl (3, 3'-trinethylenedinituilo)bism(butan-2oneoximeto) cobalu(III) complex the two No distances are canal
evon though an asymaterc hydrogen bridge is clearly indicated by the difference Fouricr syntheses. 61 Although a difieronce in the $N-O$ bond lengths as a function of protonation is reasonable, thore are very few structures so precisely determined that ihis comparison can be made. Hence, no genoral conclusjon may be macie. However, when a signjficant difinemue in the $N-O$ distances has been found and the bridging hyarogen atom has been precisely located, the hyarogon atom is associatod with the longer N - O bond.
mother point in support of the formulation $C l C o\left(\mathrm{E}_{2}\right.$ cing $)$ (drig) (clan) is the difference in the co-i bond lengths. The co-id distances on the H_{2} ding side are $1.908(5)$ and $1.906(5)$ A compernd to distances of $1.872(5)$ and $1.884(5)$ is on the duct side. The differcnces in the Co-iv bond longths are significant and the shorter distances involve the dianionia owoup. Whir hojos true in tho other cases where the prescnoe of woth $\mathrm{H}_{2} \mathrm{Cmg}$ and ang ligands has bcen indicated. In CiCo(H2dmé) (dmg)(sulfa) ${ }^{46}$ and $\mathrm{in} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{Clng}_{2}\right)\left(\mathrm{CH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)^{51}$ tine distancos From the cobalt atom to the dianionic ligand are shorter than the distances to the neutral H_{2} dmy ligand. This is not the case in $C R C o\left(H_{2} \mathrm{dpg}_{2}\right)(c l a n)$ where the distances from the cobalt atom to what would be the dpg dianionic ligand, 1.955(11) ad 1.908 (9) \AA, appear to be longe: than the corresponding distaraces to the H_{2} dipg ligara, $1.887(10)$ and $1.897(9)$ A. These differonces togethor with the apparent positions of the bridging hydro(jen atons (wide supra) in C Ceo ($\mathrm{H}_{2} \mathrm{ipg} \mathrm{g}_{2}$) (clan) are of questionable significance.

For the monomegative ligands in $\left[\right.$ Co(Hang) (clan $\left._{2}\right]$ C? the Coris distances are signjeficantly different. However, $N(12)$ which is honded to the protonated oxygen atom is closer to the cobalt atom than is 1 (11) with distances of $1.889(2)$ and 1.906 (2) \AA, respactirely. The same relationship holds in Fe(Hdmg) ${ }_{2}$ (imiranole) $2^{5} 5$ the only other $M(H A B G){ }_{2}$ complex whose $X-r a y$ structur mocisely places one bridgjng hydrogen on each dmeg and riows a significant difforence in the metal to nitrogen distance.

In uassmmetrical hydrogen-honaing system involvirg two similar atoms may be fluxional. ${ }^{62}$ In such a system two equilibriun positior, i.e. potential wells, exist for the hydrogen aton. bow of hbur postitions may be considered as haviny the hyduces atom covalenely bonded to one atom and hydroyen bonded io the other for the system to be truly fluxional the encrey burjer breween the two positions mast be themmaly aco-semb]. Irpording on the rolative depths of the potendiai wolr, therus barriez betwo them, and the thermal energy of the systen the position of the hyarogen atom as indiCated by x-ray diffraction experiments would vary. Because of the diffuce appearance of the bridging hydrogen atoms of the $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{an}_{2}\right)$ complones in difference Fourier syntheses, a fluxio.. nal systom tith two potential nells of unaqual derth seems rearomaby. Fine relavive populations of the two positions will donond somowhe un the depths of the potential wells. The ex. porinortajly delcrmined porition (or positions) of the hydro-

potential wells approach equivalence and as the encrg: barrio s between them becomes smaller the position of the hydrojen atrat will become experimentally more uncertain. A fluzional sys. tom could, in part, account for the difficulty in peecisol\%
 The orientation of the 4 -chlovonilino ligand in the compreses of this study is quite intriguing. A projerica vico: down the Co-N(I) bond fur CeCo(II dmg) (ding) (clan) is shome in Figure 4. A similar view for $\left[\mathrm{Co}(\mathrm{H} \pi \mathrm{mg})_{2}(\mathrm{clan})_{2}\right] \mathrm{Cl}$ is given in Figure $5(a)$ and one for $C l C o\left(H_{2} \mathrm{dpg}_{2}\right)(\mathrm{clam})$ is given in figure
 the aromatic ring of the aniline is orientod over the dianio.. nic dmg ligand. The oriontation angle, i.e. the dihedren angle between the planes having co-v(I) jn conmon sith one containing $C(1)$ and the other containing the bisector of the angle $N(11)-\left(0-N(12)\right.$, for $C f C o\left(H_{2} \operatorname{Rog}\right)(d \mathrm{mg})(\mathrm{alan})$ is 0.00 ami Ior ClCo (Ef amg) (omg) (sulEa) is 1.8^{c} as given jn Table ? 3 . In $\left[C o(H d n g)_{2}(\operatorname{cilan})_{2}\right] C l$ and in $\left[C o(H a n g)_{2}(a n)_{2}\right] C i$ the bon:cne rings are skewed relative to the equatorial ligands with orientation angles of 53.9° and 58.3°, respectively. It seems significant that in the former pair of $C o\left(H_{2} d m g\right)$ (dimg) type complexes the rings aljgn while in the latter wair of Cuding) 2 type complase the rings are skowed. Although tir ban zenc ring of the aniline is tipped from being paralle? Lo U: amy plame by ca. 30° as in other similar comple:nes (sec makie 18) the alignment and the distances betweon the tivo planes in CeCo (Hzang) (amg) (clar) suegest a r-type interaction. . .
A projected view along co-N(1) son ElCo(the amg) (amg) (clan).

projected
view along

$$
\operatorname{Co-N(1)}=\mathrm{I}
$$

$$
\left.\begin{array}{l}
\text { Figure } 5 \\
\text { (a) }[C 0(\text { ang }) \\
2
\end{array}(c l a n)_{2}\right] C l \text { and (b) ClCo }\left(\mathrm{H}_{2} \mathrm{dog}_{2}\right)(c l a n) .
$$

$<$

Tihedral Angles Pormed by Selected planesabin in some
Ginedral Angles Formed by Selected planesa in Some Cobaloxime Complexes Inkorsecting
0lanes planes
$i-2$
$3-3$
$3-4$
$2-3$
$2-4$
-24
$?-5$
aplanes

Angles (0)

Thtorsecting
Planes
distances from the dmg plane to $C(1), C(2)$, and $C(6)$ given in Table 14 are substantially less then the $3.40 \AA$ interplanax distance in graphite. 63 A protor transfer occurring from one Hdmg ligand to the other would increase the electron density within the $\pi-$ aystem of the forned dianion. An interactinn by wich the iilled π orbitals of the dmg overlay with the enipty π^{*} orbitals of the amiiine would enhance the basicity of the anjline ligand. The complex formed wovid be stronger than might be expected based on the k_{b} value alone. Fins same argument applies to $C l C o\left(H_{2}\right.$ dmg! (drag) (sulfa) ${ }^{46}$ which was the first exampor ligand-induced proton shift in a molecular complow. While the posjticns of the bridgjng protons
 defined, the briage in ceco($\mathrm{H}_{2} \mathrm{arg}_{2}$) (clan) is ill defjerd and the ofjentation angle of 36.7° is an intemmedate value (see Peble ? (8). The O..O distances in this complex shor: rore variation than those in other related complexes as shom in Table 12. The $0.08 \AA$ difieronce in the 0.0 distances js the same as for the corresronding $n \cdot \cdots$.in distances. The $N(12) \cdots$ $N(21)$ separation is $2.836(15) \stackrel{\circ}{\AA}$ and the $N(11) \cdots N(22)$ distance is $2.914(13) \AA$. Concurring with these observed distencos, the $\because(12)-C 0-N(21)$ angle $0: 27.0(4)^{\circ}$ is more acute than the N(1])-Co-i:(22) angie of 100.0(4) ${ }^{\circ}$. None of the other conpounds comaned stows any significant differences in the correspor 3 ing ciistances and angles between the diglyoxime lisands.

A comparison of mean bonding distances for each of the reported Co($\mathrm{H}_{2} \mathrm{img}_{2}$) complexes may be made from Table 19. There appears to be little variation in the average co-in distances or in the average dimensions within the equatoriat dimethylglyoxine ligams as a function of the axial ligand.

Those comple:es having chloride as an axin'. ligant show a definite variation with the nature of the trans ligand. The Jomest co-cl distance is fomd where tpp is tho trans ligarn. This is not surprising since phosphines are knom to have a very large trans-influonce ${ }^{64}$ but the smalj influcnoo the tpe ligand ezerts on the trans-chlorine atom comparca to that of an ammenia ligand is unexpected. ${ }^{40}$ There is no significant. differcnce in the Cown(1) distance involvjng a clan ligard whether it is trans to a chlorine atom or trans to anther clan ligand. nne trans-influence amoaxs to occur in co(H2 CHO_{2}) complexes but rot to a large extent.
 Y is a Jigani with an $\sin ^{3}$ nitrogen, increase in the fol? owina order of $Y: N_{1}$ < an 2 cian 人 sulfa (see Table 19). This scrics can be rationalized in terms of the relative k_{b} 's for sulfa $\left(2.3 \times 10^{-12}\right), 65$ clan $\left(9.6 \times 10^{-11}\right), 66$ aniline (4.0 x 10^{-10}), 66 ard ammonis. (1.3 $\times 10^{-5}$). 67 Brückner and Randeccio 40 diduot coneiner the \because_{b} 's of the different nitrocen donms in their argument of the trend in trans-influcncing ligands, X, upon the co-iv bons. The same co-i distances ivere used for wh 3 and amiline compleres in their argument for basing the

 C-CH3 is $C-C_{6}^{H}$.

[^2]Mたら1の 1？－ertenaed

X	Y	$\mathrm{C}-\mathrm{N}$	$C-C$	$\mathrm{C}-\mathrm{CH}_{3}$	O．．． 0	Refercnce
Q1an	CR	1．297（P）	$1.163(9)$	I． 290 （11）	$2.480(7)$	－
clan	Clan	1．295（3）	1．477（4）	7． 43.4 （	2．495（3）	－
＊－，n	\widehat{C}	1．309（土6）	7．459（－6）	I．$\therefore 86(\pm 7)$	$2.500(12)$	－
Susea	$C E$	1．29］（ 4 ）	$1.471 .17)$	$2.493(17)$	$2.493(11)$	46
$\because 173$	$C \ell$	1．232（4）	1．483：6）	1．50（2）	$2.486(7)$	60
trp	$C E$	1．300（1A）	1．485（15）	1．501（8）	2.50 （1）	$\therefore 0$
$\left[!+!_{3}\right.$	$C E$					49
はい	312	1．2？ 26	1． 463 （7）	1．479（12）	2.61 （8）	52
$C!!3$	120	I．302：5）	1．453（7）	I．494 7 ）	2．425（4）	51
$c-0 y$	$\left.P(\underline{-3})^{4}\right)_{3}$	J．285（7）	$\underline{1} 463(3)$	I．499：3）	$2.474(2)$	48
$\mathrm{CH}_{2} \mathrm{COOCH}_{3}$	DY	1．28	1．4 0	－． 50	2.50	$\therefore 7$
ハワ＇	DY	1．30（2）	1.03 （2）		2.50 （11）	50

ligand as are presented here.
In comparing $\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan})$ with $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dmg}\right)$ (ding)
(clan) the distances from the cobalt atom to the equatorial nitrogens in the H_{2} apg complex are longer and the distances to the axial ligands are shortor in the same complex. Because the phenyl substituents are inductively moxe electron withdrawing than methyl groups, Hupg should be a woker Lewis base than Hamg. The equatorjal distances to the Hapg should, therefore, be longer. From an electronic standpojnt the cobalt ion in the Hdpg complex would be more posjtively charged and a better Lewis acid toward the axial ligands than in the Hdmg complex. From a steric point of view the asial ligands are ifforded a wider path of approach and will, theneforo, be closer to the central cobalt ion when the equatorial ligands are farther: away.

The benzone rings in the clan ligancis of cico (If ding ${ }^{\text {a }}$). (clan), $\mathrm{ClCO}\left(\mathrm{H}_{2} \mathrm{dag}_{2}\right)(\mathrm{Clan})$, and $\left[\mathrm{Co}(\mathrm{Hamg})_{2}(\mathrm{clan})_{2}\right] \mathrm{Cl}$ are plan nar (see Tables 14-16) having average $C-C$ valucs of $1.376(3)$, 1.380(1.0), and $1.378(3) \mathrm{A}$, respectively, with individual values reported in Table 20. The phenyl rings of the Hdpg Iigands of $\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)(\mathrm{clan})$ are also planar with pertinent values and equations of least-squares planes giver in Tahle 21.

$$
\text { Tho crystais of ceco }\left(\mathrm{H}_{2} \text { ang }\right)(\text { dmg })(\mathrm{clan}) \text { are held togenter }
$$ by six hydrogen bonds where there are eight hydrogen atoms capable of hydrogen bonding. Relevant hyarogen-bonding data are presented in Tabln 17. Although the O-H...O briciges be-

3ond Anglos of Conainn.このd

a.9]es (0)
$119.4(5)$
$=22.0(12)$
$120.7(19)$
$122 . \div(13)$
$\geq=7.9(23)$
$220.8(-4)$
$122.3(14)$
$119.4(12)$ $117 \cdot 2!2)$

$$
\begin{aligned}
& 110.4(2) \\
& 121.3(2) \\
& 120.2(3) \\
& 119.5(3) \\
& 121.8(4) \\
& 118.4(3) \\
& 120.7(3) \\
& 119.4(3) \\
& 118.8(3)
\end{aligned}
$$

Table 21
Bond Distances, Bond Angles, and Least-Squares Planes of the Phenyl Rings in $\mathrm{CeCo}\left(\mathrm{H}_{2} \mathrm{dpg} 2\right)$ (clan) with Their Estimated Standard Deviations.

(b) Angles (${ }^{\circ}$)
$C(n-2)-C(n)-C(12) \quad 123.9(11) 119.3(12) 120.9(11) 121.7(11)$
$C(n-2)-C(n)-C(5 \ell) \quad 119.9(11) \quad 120.9(12) 121.2(11) 120.6(11)$
$C(n)-C(1 \ell)-C(2 \ell) \quad 122.8(13) 120.6(13) 122.3(12) 122.6(12)$
$C(1 \ell)-C(2 \ell)-C(3 \ell) \quad 119.5(13) 119.3(14) 117.0(13) 1.17 .7(13)$
$C(2 \ell) \cdots C(3 R)-C(4 \ell) \quad 120.5(13) 121.0(14) 122.2(14) 122.5(13)$
$C(3 \Omega)-C(4 Q)-C(5 i) \quad 120.0(1.4) 120.4(14) 113.7(13) 120.2(13)$
$C(4 \ell) \cdot C(5 \ell)-C(n) \quad .21 .0(13)$?18. $2(14) 121.7(12) 119.0(12)$
$C(5 l)-C(n)-C(18) \quad 116.2(12) 119.8(13) 117.9(12) 117.7(21)$
 Rings

$C(n)$	2	41	-3	3
$C(1 \ell)$	-7	-14	8	-12
$C(2 \ell)$	10	-31	15	24
$C(3 \ell)$	-10	48	-29	-28
$C(4 \ell)$	5	-20	3	20
$C(5 \ell)$	-2	-24	19	-7
$C(n-2)$	-3	172	-16	20

(d) Conficients of the pianc Equatjon $E X+X X+R Z=S$

Phenyl A
Phenyl B
Phenyl C
Pheny] L

P	Q	R	S
-0.5815	0.5296	-0.6176	4.7459

$\begin{array}{llll}-0.4144 & -0.7511 & 0.4990 & 3.1793\end{array}$
$\begin{array}{llll}-0.6482 & 0.3950 & -0.6509 & 4.0341\end{array}$
$-0.1532-0.8986 \quad 0.4988 \quad 2.36 \%$
distances are longes: than might be oxpertid. The tiro hyerogen atoms on $N(1)$ of the clan ligand both hydrogen bond lo different water molecules. The hydrogen atoms of one water molecule, o(w2), form reasonahly strong bydrogen bonde to o(12) and $C \ell(l)$. Ahe hydrogen atoms on $O(n l)$, however, have only short contacts with angles indicating only weak hycirogun bondr. Whi]e $\left[\mathrm{CO}(\mathrm{Hamg})_{2}(\mathrm{clan})_{2}\right] C l$ ancl $\left.\mathrm{ClCo}\left(\mathrm{H}_{2} \mathrm{OPO}\right)_{2}\right)(\mathrm{clar})$ both exhibit the hydrosen bonctins betreen the equatorial jigradi, CeCo(H2 Hg_{2}) (clan) has ro intormolecular hydrocgen bonds. wille the hydrogen atom on the solvent molecule was not located, a mydrogen bond may exist betweon O(S1) and O(22). Bach mole-
 drogen boncs. Rach clan molecule shows a harmogen hombe from $N(1)$ to the $O(11)$ of another molecule. the ather hajrogen on each $N\left(\begin{array}{l}\text { (}) ~ i s ~ h y d r o j e n ~ b o n d e d ~ t o ~ t h e ~ i o n i o ~ c h l o r i a n . ~ i n a g o m a ~\end{array}\right.$
 ted in lable 17.

All intermoleanhin distrnces less then 3.6 A were anculated anc carefully cxamincd. No umsually shont intermolecular distances were Eound.

Iigand-induced proton shifts may be of biological significance. Since poion transfors in liring systems are rela. tively common, the study prezuntel here provicies an imong. tant examination of oriantation effects and onmanced stabilities which may be achieved by a small shift of one proton.

CHAPTER 5

A NOVEL BINUCLEATING LJGAND: THE CRYSTAL AND MOLECUIAR STRUCTURES OF $.1,4$-DIHYDRAZINODHTHALAZINEBIS (2-pYRIDINIURCCARBOKALDIMLNE) NITRATE DIHYDRATE AND H-CHLOROTETRARDUA[1,4-DIHYDRA-
 CHIORJDE DIHYDRATE

Binuclear compleses of chelating ligands have been of interest recently for their potential activation of other jogands at an accessible bridging site $68-73$ and for their magnetic properties. $24,74-80$ the structure of $\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ dhph py) JCl_{3} shows the planar chelating ligand, dhphpy, to be capable of binding two metal atoms rimaltancously. In that complewabridejug sito hetween the nickel ions ta ocoupiod by a chlorine ion. Therefore, at least one bridgirg jigand in adaition to dmunpr may be accommatated by M_{2} dhphry comploxeo. Whije the stmay of magretic interactions vetmen metal ions through bridgjng atoms in such systems is convenicnt and theoreticaliy significant, the catalytic possibilities of this typo system are exceptional. The nitrogen-fixing enzyme nitro. genase has been considered to contain a polynuclear active site. ${ }^{6,7}$

Although the mochanism of the reduction of N_{2} to Nill, by nitrogenase is not uncerstoch N_{2} is believed to be coorainated to the metal ions of the enzyme. 67,81,82 Nitrogenase has been shom to reduce a wide variety of small moleoules which contain a tionle bon? 'The distamoe betreen tho retal
ions should be of importance in the autivation or : wace po ? cules. In the complexes of Robson and coworkers 68-7 7 and of Okawa et al. 83 the metal-metal djstance is cossumtinliy controllded by a single bridging phenozide ion. Homaver, if darmay complexes the motal ion scparalich is tiand ot a g shtur dis-
 gor moleculon winch aie reduced in the toresono of m: mo
 for incorporation iss hsidging moluculos oryosjue the w it bricige of dhmoy. The symtheses and y-ray strubluato of H_{2} dhphey $\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Ni}_{2} \mathrm{Ce}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{dmphpl})\right] \mathrm{Cl} 3_{3} \cdot 2 \mathrm{I}_{2} \mathrm{O}$ were uncembtion to examine tho mature or the accorsindo bow ofow situe in comulexes of this type ligumd.
 the signs of tuo hundred large L's werc assigron. fin fourteen monhydrogon atoms of the ligama within the aspmotric unit were located in an f--map computed from the sig ad li values. Two Pourier syntheses bere used to validate tho selected model, locaie the remajning romivacogen atoms, and rou Iine the atmaic paranowors. The rofinement j soutinan in Table 5. The observed and caiculnded structurn factors are given in Table B-3. The final positional and thermal parameters are presented in Tables 22 and 23.

Atom	x	Y	Z	811	F22	β_{33}	B_{12}	${ }^{1} 13$	β_{23}
C(1)	378 (2)	3536 (3)	1603(3)	21 (2)	$80(4)$	76 (4)	$0(3)$	6 (3)	$-6(6)$
$\because(2)$	131 (2)	$2379(3)$	$2019(3)$	21 (1)	71 (3)	$83(4)$	$-1(3)$	$5(3)$	$3(6)$
(3)	$354(2)$	2293 (3)	1534 (3)	33 (1)	$74(4)$	$130(4)$	3(3)	$36(4)$	$-14(7)$
$C(A)$	172(2)	240(3)	2015 ($\%$	30(2)	73 (4)	$140(5)$	$-2(4)$	43 (4)	$-13(7)$
C(10)	$1382(2)$	4771 (3)	$-289(3)$	24(i)	$97(4)$	$36(4)$	-1 (3)	27 (3)	$-11(6)$
C(11)	$1579(2)$	5947 (3)	-658(3)	20(1)	S6(4)	$3 i(4)$	-7(3)	9(3)	$0(6)$
$\because(12)$	1963 (2)	$6072(4)$	$-1566(8)$	$2(1)$	113 (1)	103 (4)	-8(4)	$35(4)$	$2(7)$
$r(13)$	2116 (2)	7214(4)	$-1912(4)$	$30(1)$	142.5)	119 (5)	-13 (4)	$43(4)$	36 (3)
(2.4)	1833 (2)	$8189(4)$	-1367(4)	$30(1)$	115:5)	$143(5)$	-15 (4)	$31(4)$	44 (8)
C(15)	1521. 2)	80:3(3)	-457(4)	$29(1)$	$90(4)$	140(5)	-9(4)	23 (4)	$8(3)$
计 (j)	$200(2)$	$4569(2)$	2054(2)	2;(1)	$77(3)$	$89(3)$	$4(3)$	$25(2)$	-7 (5)
U(2)	78311)	3597(2)	75313	$30(1)$	77 (3)	$99(3)$	-9 (3)	36:3)	-6 (5)
차(3)	972(1)	$9712(2)$	$448(2)$	$25(1)$	$73(3)$	$95(3)$	-4 (3)	$25(3)$	1 (5)
$\therefore 110)$	1363:1)	$6978(3)$	$-123(3)$	$27(1)$	$81(\therefore)$	111 (3)	-5 (3)	23 (3)	7 (5)
$\therefore(20)$	1623:2)	$1.394(3)$	-731(4)	$53(2)$	93 (i)	223 (6)	$33(4)$	148 (5)	$9(7)$ $50(6)$
$\bigcirc(1)$	$565(2)$	$6955(3)$	1629(3)	$53(1)$	$113(3)$	162 (4)	$14(3)$	62(3)	-50(6)
$0(20)$	1843 (2)	$1108(4)$	$-1701(5)$	11 $2(2)$	159 (5)	445 (3)	15(5)	355 (8)	$-29(10)$
(1)(21)	$1086(2)$	1953 (3)	-974(3)	58(1)	123 (3)	151(4)	34(3)	$76(4)$	$-26(6)$ $109(11)$
9(:22)	1861 (2)	$1062(4)$	290(4)	$89(2)$	25.17	285 (7)	227(6)	56 (6)	109 (11)
$\therefore \mathrm{A} \subseteq 1$ tompe	lues ¿" ture fa	$\begin{aligned} & \therefore 10^{4} \\ & \text { ors ar } \end{aligned}$	The es of the	$\begin{aligned} & \text { ated } \\ & \text { n: ex } \end{aligned}$	h^{2}	$\begin{aligned} & \text { ation } \\ & 22^{k^{2}} \end{aligned}$	$2 \text { civ }$	$\because p c_{i}$	heses. $r e+\beta$

23
Table

The position of Ni(l) was determined from a sharpened three-dimensional Patterson furnction. The positions of the remaining atoms were determined in a manner analogous to that used with $\operatorname{ClCO}\left(\mathrm{F}_{2} \mathrm{dmg}\right)(\mathrm{dmg})(\mathrm{cIan})$. After the hydrogen atoms were located they were included in further refinement with each having an isotropic therral paxameter ona unithigher than the iofined isotropic value for the atom to which tine hydrogen atom was bonded. A summary of the refinenent is given in Table 5. The scattering factors for the monivarogen atoms were from Hanson et al. ${ }^{29}$ and the hydrogen scattering factore from sterart et al. ${ }^{30}$ Lists of observed as calculated structure factozs ace given in rabie B-4. The Final positional and themel parameters are listod in fables 24 and 25.

$$
\text { Results and } D \text { isoussion }
$$

The atomic rumbering and thermal ellivsoids of thanphor. $\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are shown in Figure 6 and those of $\left[\mathrm{Ni}_{2} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}_{4}\right.\right.$ (ahphpy)]C\& ${ }_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are shown in Pigure 7. Selected interatomic distances of both compounds are listed in Taile 26 and corresponding angles tre giver in Tables 27 and 28 . Both conpounds crystallize with the caticnjc compleses, theiz antons. and water nolecules linhed in a three-bimensional hydrogorbonded network. The postulated hydrogon bonds in the structures are 2isted in abole 29. Liagnas ilvactrating the acor
'lable 24
The Final Atonic Parameters of the Nomberonen htoms for $\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ (imphey $\left.)\right] \mathrm{C} \ell_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Atom	x	Y	2	${ }^{6} 13$
Ni (1)	$1181.7(7)$	$27289(5)$	9891 (3)	4 $4: 5$
$\mathrm{Ni}(2)$	$31346(6)$	-4660 (5)	33854 (3)	407 (5)
Cl(l)	1046 (1)	315 (1)	650 (1)	$63(1)$
C $\ell(2)$	1196 (2)	4767 (1)	2315 (1)	$8: 6$ (2)
cl(3)	1297 (2)	-1548(1)	3350 (1)	69 (1)
CR(4)	$1288(2)$	3725 (2)	$4540(1)$	90(2)
O(1)	-362 (4)	1864(3)	$639(2)$	$55(3)$
O(2)	2743:4)	1634 (3)	3329 (2)	$55(3)$
(1) 31	-423(3)	-532(3)	1026 (2)	$48(3)$
O(1)	2664 (3)	-435(4)	$1708(2)$	48(3)
$0(5)$	1626 (4)	-520(4)	-194(2)	$5.4(3)$
O(6)	$3.072(4)$	50.17 (5)	$3678(2)$	$74(4)$
N(1)	1178(4)	1408(3)	$1690(2)$	50 (\%)
N(2)	$1153(4)$	$576(3)$	1834(2)	40 (4)
N(3)	$1265(4)$	$2554(3)$	1.801. 21	$74(5)$
N(4)	$1.258\left(c_{2}\right)$	2873 (3)	3.324(2)	53(4)
N(5)	1143 (1)	-169(3)	$2395(2)$	$55(4)$
N(6)	1165 (4)	$-1.007(3)$	$2025(2)$	$45(4)$
W(10)	$1234(4)$	2554(1)	$433(2)$	54 (4)
$N(20)$	1163 (4)	-377E(4)	$122.7(2)$	$55(4)$
C(1)	1233 (5)	2052 (4)	$1992(3)$	42.4)
C (2)	1251(5)	1919 (4)	2495(3)	$36(4)$
C (3)	12.80 (5)	$25: 4$ (5)	2826 (3)	$50(5)$
C (.1)	1300 (5)	$2: 10(5)$	3302 (3)	56 (5)
C (5)	1.288(5)	$1559(5)$	$3450(3)$	51.5)
$C(6)$	1260 (5)	$857(4)$	$3336(2)$	47 (5)
C (\%)	1236 (4)	1057 (4)	2649 (2)	$29(4)$
$\mathrm{C}(8)$	$1182(4)$	394(4)	$2238(2)$	$29(4)$
$\mathrm{C}(1.0)$	$1281(6)$	3550 (4)	1076 (3)	$71(6)$
C(3.1)	129]. 5)	3337 (5)	578'3)	52(5)

Table 24- oxtended

${ }^{3} 22$	β_{33}	β_{12}	B_{13}	823
273 (4)	$106(1)$	-66(8)	224 (5)	14(4)
244 (3)	$92(1)$	$2(8)$	18.4(1)	13(4)
31 (1)	$10(0)$	-10(2)	26 (1)	-2(1)
$35(1)$.	$14(0)$	$8(2)$	18 (1)	0 (1)
$50(1)$	17(0)	46 (2)	$39(1)$	17 (1)
$72(1)$	25 (1)	-53(3)	26 (2)	$-1(1)$
$42(3)$	21. (1)	$3(5)$	26 (3)	$6(3)$
$40(2)$	21 (1)	-6(5)	$29(3)$	$2(3)$
$58(3)$	18(1)	$-5(5)$	$23(3)$	22 (3)
$69(3)$	12(1)	17 (5)	14(3)	-2(3)
62.3)	17 (1)]. (5)	$26(3)$	-3(3)
111 (5)	$18(1)$	1 (7)	$35(4)$	-6(4)
23 (2)	11. (1.)	$-2(5)$	25 (3)	$\cdots 1(2)$
2.4 (2)	11 (1)	-1(5)	$25(3)$	1 (2)
26 (2)	15 (1)	$-14(6)$	$38(4)$	$-3(3)$
$31(3)$	14(1)	-12(5)	$29(3)$	3 (3)
$25(2)$	$9(1)$	$1(5)$	13(3)	3. (2)
2.6 (?)	11 (1)	\cdots - 1 (5)	$21(3)$	3 (2)
$41(3)$	$1 \therefore(1)$	$5(5)$	$33(3)$	$10(3)$
$32(3)$	13 (1)	13 (5)	26 (3)	$0(3)$
24 (3)	14(1)	--9(6)	26(4)	$0(3)$
30 (3)	13 (1)	$-11(6)$	14(4)	-6(3)
$37\left(c_{i}\right)$	14(1)	-12(7)	27 (4)	$-10(3)$
$44(4)$	14 (1)	-8(7)	$26(4)$	$-17(4)$
$55(4)$	12(1.)	$-17(7)$	$23(4)$	$-11(4)$
$40(6)$	$9(1$.	- $2(6)$	18(4)] (3)
$32(3)$	10(1)	- -8 (6)	15 (4)	-3(3)
$28(3)$	12 (1)	-5 (6)	$20(3)$	-2(3)
30 (3)	$20(2)$	$-7(7)$	41 (5)	7 (4)
36(3)	17 (1)	-3(7)	2.9 (4)	$7(\%)$

Table 24 .- continucd

Atom	x	y	z	811
$C(12)$	$1343(6)$	$4055(5)$	$270(3)$	$83(7)$
$C(13)$	$1353(7)$	$3839(6)$	$-202(3)$	$86(7)$
$C(14)$	$1308(6)$	$2992(6)$	$-348(3)$	$73(6)$
$C(25)$	$1251(6)$	$2361(5)$	$-17(3)$	$59(6)$
$C(20)$	$1143(5)$	$-1829(4)$	$2053(3)$	$54(5)$
$C(21)$	$1147(5)$	$-2.273(4)$	$160:(3)$	$48(5)$
$C(22)$	$1149(6)$	$-3175(5)$	$1577(3)$	$64(6)$
$C(23)$	$1165(6)$	$-3554(5)$	$1149(3)$	$77(6)$
$C(24)$	$1204(6)$	$-3048(5)$	$758(3)$	$76(6)$
$C(25)$	$1195(5)$	$-2157(5)$	$812(3)$	$55(5)$

anl values are $: 10^{4}$ except for those of Ni(1) and iti (2) : ich axe \because 105. The escimated standard deviations ite G: Ym in parembhoses. The temporature faclous aro of tho forn: ern $\left[-\left(\beta_{11} h^{2}+\beta_{22^{2}}+\beta_{33} ?^{2}+b_{12} h k+g_{13} 12+\beta_{23} k\right) j\right.$

	Table $24-$ extended	- continued	β_{23}	
B_{22}	β_{33}	B_{12}	β_{13}	$19(4)$
$49(4)$	$20(2)$	$-19(9)$	$36(6)$	$21(5)$
$68(5)$	$17(2)$	$-27(10)$	$34(6)$	$15(5)$
$68(5)$	$20(2)$	$7(9)$	$47(6)$	$5(4)$
$60(5)$	$14(1)$	$-6(8)$	$27(5)$	$6(3)$
$29(3)$	$14(1)$	$0(6)$	$29(4)$	$5(3)$
$31(3)$	$14(1)$	$10(6)$	$25(4)$	$3(4)$
$32(3)$	$21(2)$	$6(7)$	$31(5)$	$-6(4)$
$39(4)$	$21(2)$	$15(8)$	$33(5)$	$-13(4)$
$43(4)$	$19(2)$	$3(8)$	$24(5)$	$-6(4)$

$$
N
$$

Distance

1	\cdots	r-i	(1)	3	(.)	C	$\because{ }^{*}$	6)	1	(r)	?	1	6 '	$!$	($\cdot 3$	63		16
0	01	\bigcirc	6.	r	(1)	1	-	\therefore	.	\because	\therefore,	(-)	- -	-	\cdots	6	E'	- 5
m	8 m	n	67	17	(i)	r_{1}	17	-	\because	C	c	51	,	S:	: \because	\dagger	$* 1$	+1
5	r-1	-1	r-1	rq	r-1	-1	$\cdots:$	r 1	r-1	, 1		1 -1.	$F!$		r 1	I	1	-)

-1	I	0	()	0	N	10	$1 \cap$	C	-	\cdots	$6:$	-	62	i	C-1	N	(1)
c)	C	0	0	C)	0	6	-1	$r 1$	0	(C)	5	($)$	C	\cdots	r-1	-1	C.
-	-	-	-	-	-	-	-	-	-	-	,	-	-	-	-	1	*
0	0	-1	-1	0	\cdots	$r-1$	-1	-1	H	, -1	\ldots	-1	-1	r-1	$r-1$	$r 1$	0

$\therefore \therefore \therefore[C(2)]$

$$
2 \pm 9 \times 1.3
$$

$$
\text { rabie } 25
$$

x

$$
2.1, D^{2}
$$

ran? $25-$ continued

thermai
な
た
た
0
0
$\begin{array}{ll}5 & 0 \\ 0-1 & 0\end{array}$
2．

$\begin{array}{r}0 \\ -1 \\ 3 \\ 0 \\ 0 \\ -1 \\ 0 \\ 5 \\ \hline-\end{array}$

3

0
tea
？ novi．］• （chno
LNi2CR（V2O：
drocien $a t o m s$
Of
c
An orTEp draning
eluipsoids．mis

$$
(\tau \tau) D-(02) 0
$$

$$
\text { 仿 }(1)-N(4)
$$

$$
\because: 1:-: \because(10)
$$

$$
: \quad i 1)-c o(1)
$$

$$
\begin{aligned}
& 11-C(1) \\
& \because \because \because)-0(I)
\end{aligned}
$$

 icn
 $2 H 2$
(a) Dj

$$
2.07 \div\{
$$

$$
\therefore: 1 ;-n(z)
$$

$$
\because(I)-C(I)
$$

$$
c(1)-c(2)
$$

$$
c(2)-c(7)
$$

$$
C(4)-C(5)
$$

$$
C(1)-N(3)
$$

$$
N!3!-N(4)
$$

$$
\because: \therefore)-2(10)
$$

$$
\begin{aligned}
& \text { mphoylice } \\
& 2.363(7)
\end{aligned}
$$

$$
\begin{aligned}
& -.363(7) \\
& \therefore .302(2)
\end{aligned}
$$

$$
1.447(10)
$$

$$
2.383(10)
$$

$$
1.414(3)
$$

$$
1.390(11)
$$

$$
1.370(0)
$$

$$
1.356(3)
$$

Enis:

$$
\begin{aligned}
& 2.062151 \\
& 2001=1
\end{aligned}
$$

$$
\therefore .001(5)
$$

$$
\therefore \text { ano ir: }
$$

$$
2.3 \cdots i 2)
$$

$$
2.200<6
$$

$$
\begin{aligned}
& 1.313(8) \\
& 1.439(9) \\
& 1.407(9) \\
& 1.369(20)
\end{aligned}
$$

$$
1.332(8)
$$

$$
2.364(7)
$$

$$
1.279(8)
$$

$$
\begin{gathered}
\underset{O}{o} \\
\cdots \\
\sim \\
\sim \\
\sim \\
\sim
\end{gathered}
$$

$$
\begin{aligned}
& \text { I } \\
& \text { I } \\
& \text { in } \\
& \text { r } \\
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \hat{m} \\
& \vdots \\
& i \\
& \underset{i}{i} \\
& i
\end{aligned}
$$

$$
\begin{aligned}
& ⿱ 䒑 ⿰ ⺝ 刂 \\
& \vdots \\
& 1 \\
& \vdots \\
& \hdashline
\end{aligned}
$$

(T)N-(T):
（己） $0-$（T）İ
$1.402(10)$
$1.370(12)$
$1.392(12)$
$1.393(11)$
$1.349(10)$
$1.339(9)$
Nえ (2) •••Ni (2! 3.503 (1)
$C(21)-C(22)$
$C(22)-C(23)$
$C(23)-C(24)$
$C(24)-C(25)$
$C(25)-N(20)$
$N(20)-C(21)$

$11_{2} C-(120)$	
$C(11)-C(12)$	$1.338(11)$
$C(12)-C(13)$	$1.400(13)$
$C(13)-C(14)$	$1.373(13)$
$C(14)-C(15)$	$1.392(12)$
$C(15)-N(20)$	$2.339(10)$
$N(10)-C(11)$	$1.351(9)$

deriations
Atoms

$$
A n g 1 e s \quad \therefore \quad i
$$

$$
\text { madie } 27
$$

mad? 2.7
phoy $\left(\mathrm{NO}_{2}\right)_{2} \cdot 2_{2} n^{2}$
$\operatorname{Angles}(0)$

A^{2} OmS	Angles ($)$	Atoms	Ancies (\%)
$\because(1)-C(1)-N(\%)$	117.9(3)	$C(1)-C(2)-C(3)$	123.1 (3)
$N(1)-C(1)-C(2)$	121.9(3)	$\left.C^{\prime \prime 2}\right)-C(2)-C(3)$	$119.7(3)$
$C(7)-C(2)-C\left(2^{\prime}\right)$	$117.2(3)$	$C(I)-N(I)-N\left(i{ }^{\prime}\right)$	$120.6(3)$
$C \therefore 2 ;-C(3)-C(1)$	113.4(3)	$C: 2)-C(1)-\therefore(2)$	120. (3)
$C!\therefore:-C: \therefore)-C(1)$	120.6 (A)	$N(2)-N(3)-C(10)$	127.2(3)
$C(1)-N(2)-N(3)$	115.9 (3)	$C: 10)-C(11)-N(10)$	$\therefore 28.5(3)$
$\because(2)-C(20)-C(1])$	118.4(3)	$C(11)-C(12)-C(13)$	$710.0(4)$
$(1)-\infty(11)-C(12)$	121.2(3)	$(173)-C(14)-C(15)$	$123.1(4)$
$C(7)-C(13)-C(2 A)$	$119.5(\%)$	$C(14)-C(15)-N(\pm 0)$	127.5 (4)
$C(20)-2(10)-C(11)$	$120.6(3)$	$1(10)-C(11)-C(12)$	$1.20 .3(3)$
iv (1) . - O (1) . . (1)	103.36	$0(29)-1(20)-9(21)$	113.1 (\%)
$\therefore(-)-0(21) \cdot \cdots(2)$	123.0(3)	$0(20)-N(2 C)-O(22)$	2ハ3.2(5)
$0: \because 1)-i v(20)-0(22)$	$117.5(\therefore)$		

$11.5(\because 1$

Fable 28
Selected Angles in $\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right) 6(\mathrm{dmphpy})\right\} \mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{\mathrm{a}}$

Atom	Angle	Atom	Ingle
N(1)-Ni(1)-CR(1)	98.0(2)	W(2)-Ni(2)-CR(1)	97.8(2)
$N(1)-N i(1)-N(4)$	$76.8(2)$		$76.5(2)$
$\mathrm{N}(\mathrm{J})-\mathrm{Ni}(1)-N(10)$	155.7(2)	$N(2)-N i(2)-N(20)$	154.8(2)
$N(1)-N i(1)-0(1)$	91.1(2)	N (2)-Nj $(2)-0(2)$	93.1(2)
$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{O}(2)$	90.3(2)	W (2) - ETj (2)-0(d)	$89.5(2)$
W(a) - Wi (1)--Cl(1)	174.6(2)		374.1 (2)
N(4)-Ni(1)-N(20)	$78.9(2)$	ivi6)-18(2)-2. 20)	$78.2(2)$
	$87.8(2)$		$90.4(2)$
L (4)-xi (1)-0(2)	91.1(2)	N(6)-23(2)-0(4)	92.2(2)
N(10)-Ni (1)-Cl(1)	106.3(2)	N(20)-ris (2) - Cl (1)	1.07.5(2)
$N(10)-$-Ni (1)-O(1)	$88.5(2)$	$\mathrm{N}(20) \cdots \mathrm{Ni}(2) \cdots 0(2)$	88.3(2)
N (10) -- Wi (1)-0 (2)	89.6(2)	N (20)-13j (2)-066)	89.8(2)
O(1) - הi (1) -cl(1)	90.9(2)	$0(3) \cdots \sin (2) \cdot(1)$	02.2(2)
O(1)-Ni (1)-o(2)	178.0(2)	$0(3)-12(2) \cdots 6$	177.2(2)
O(2)-Ni(1)-Cl(1)	$90.3(2)$	$O(4) \cdots-i(0) \cdots C(?)$	$90.5(2)$
$N(10) \cdots C(11) \cdots C(12)$	122.2(7)	W (20)-C(21)-6(22)	121.6(\%)
$C(11)-C(12)-C(13)$	$117.8(2)$	C(2) - - (22) - (23)	116.7(7)
$C(12)-C(13)-C(14)$	120.319)	$c(22)-C(23) \cdots(24)$	120.2:8)
$c(1.3)-C(14)-C(15)$	113.4(8)	$c(23)-c(26) \cdots(25)$	12\%.7(0)
$C(14)-C(15)-$ - ${ }^{\text {c }}$ (10)	122.3 (\%)	$C(24)-C(25)-2300)$	222.6(7)
$C(15)-$ W $(10)-C(11)$	119.1 (7)	$C(20)-N(20)-C(2 I)$	13.8.8(6)
N(1.0)-C(11)-C(10)	$116.2(7)$	N(20)-C(21) - C(:0)	$116.7(6)$
$C(12)-C(11)-C(10)$	121.6(7)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	121.4(7)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(4)$	$114.7(7)$	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{N}(6)$	$123.8(6)$
$C(10)-N(4)-5(3)$	125.9(6)	$C(20)-N(6)-N(5)$	123.4(5)
$N(: 3)-N(3)-C(1)$	125.8(6)	Q(6) N(5) - こ(6)	113.8(5)
$N(1)-C(1) \cdots(3)$	315.7(8)	$N(2)-C(8)-$ - $\mathrm{S}^{(5)}$	126.3(6)
$C(2)-C(1)-N(3)$	$122.7(6)$	$C(7)-C(8)-: 15(5)$	$121.8(6)$
$N(1)-C(1)-C(2)$	$121.6(6)$	$N(2)-C(8)-C(7)$	121.8(6)
$C(1)-N(1)-N(2)$	$121.8(6)$	c (8) - -	$120.8(5)$
$C(1)-C(2)-C(i)$	116.8(6)	$C(2)-C(1)-C(8)$	13.7.C(6)

Atom	Angle	Atom	Angle
$C(1)-C(2)-C(3)$	$123.5(6)$	$C(6)-C(7)-C(8)$	123.5(6)
$C(2)-C(3)-C(4)$	119.7 (7)	$C(5)-C(6)-C(7)$	$119.4(6)$
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(5)$	120.1(7)	$C(4)-C(5)-C(6)$	221.6(\%)
$\mathrm{Nj}(1)-\mathrm{N}(1)-\mathrm{N}(2)$	3.22.4(4)	N(2)-N(2) - N(1)	123.3(4)
Ni (1)-N(1)-C(1)	315.8(5)	12 2) $\mathrm{N}(2)-\mathrm{C}(2)$	125.9(4)
Ni(1)-2(4) - 2 (3)	1]5.9(4)		1]7.3(4)
	$118.2(5)$	$\therefore \mathrm{B}(2)-N(5)-\mathrm{C}(20)$	170.1. $\%$)
Ni(J) - N(10)-C(1I)	$111.9(5)$	Ni (2)-1! (20)-C (2i)	112.1 (5)
$\mathrm{Ni}(1)-\mathrm{N}(10)-\mathrm{C}(15)$	128.9(5)	Wi (2) -i (20)-C(25)	129.1(5)
$\mathrm{Ni}(1)-\mathrm{CR}(1)-\mathrm{Ni}(2)$	98.4 (1.)		

$a_{\text {mhe }}$ estimated standara deviations are given in parmonesoco

$$
\text { mate } 29
$$

$D-1{ }^{\text {a }}$ - ${ }^{\text {a }}$	Position of	Distances ($\mathrm{A}_{\text {) }}{ }^{\text {b }}$		
		D-H	İ $\cdot \cdots$	

$0.95(4)$
$1.25(6)$
$0.78(5)$
$0.85(5)$ $0.0(1)$
$1.85(4)$
$1.57(6)$
$2.12(5)$
$1.98(4)$
2.26
2.24
1.75
2.24
2.20
2.36
2.16
2.41
2.25
2.09
ing and lydrogen bonding in ing ahom (inn $)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and in
 and 9 .

The most noticeah? edifference in the structures of the
 twofola rotation a:kjs while the nickel comnlex doce njt. In both cases the ligond is aprowimaluly aromat (se fobje 30).

 planc of the figand (Plane 3) and both hydrazone portions are pivotod genemally about an $\operatorname{Ni}(3) \cdots N(5)$ axis with both C(lf) and $C(24)$ "above" the plane. However, in the protorated 3j.. gand one hymrazone is pimotor "anmaze" and the othon "down ward" as mequised by the twofold axis. Fiso, the thetarond "amas" in the manel complem are onam toward caon oetur compased to the writon etod form as indicatal by the inan anglua Within the "arms." BII of the pywidine ximge are rotaion about the $C(n 0)-C(n l)$ bong walative to the fhthat aine wame With tha pgridine nitrogen aroms tipmed towara the cuondi. ated specics. In $\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{dmph} p \mathrm{y})\right] \mathrm{C}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ the pridine containing $:(10)$ is rotated to a much greatar extent than that contaniny $N(20)$. This is shomm by than doviations Fom
 compared to the deviations of $N(20)$ and $C(22), 0.148$ and $0.161 \AA$. The rings of the phthalazine frugment in each cofrpound aupear twistuc relation to each other but by less than? ${ }^{\circ}$.

．-1 $O(5)$ is at $x, y, z: O\left(6^{\prime}\right)$ is 2 0 C．is $3=$
O2．
0 N
guxe
y；and
broken
，
皆 S^{r-1}
 w－ir己⿱艹之号 N N
 $+$ $\begin{array}{rr}41 \\ 0 & 0 \\ 0\end{array}$ i
 He
Ho
0
学に
 $\Omega_{1}+0$ \therefore H

madるこ 30
Jecst-ccuares pranes in radhpnoy (NO2) $2 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ Huations - $\%$
-
$\because_{2} \mathrm{C}$
lane 3 Plane 4

Plane	A	B	C	D
	0.651 .8	-0.0239	0.7578	1.4455
2	0.7072	-0.0175	0.7061	2.3715
$\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}_{4}(\right.$ (nphpy $)!\mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$				
3	0.899 I	-0.0123	0.4374	1.6470
:	0.9121	-0.0276	0.4091	1.4216

A The entries marked with an asterisk were used to define the plane.

111

All bonding distances involving nonhydrogen atows are normal. The $\mathrm{N}-\mathrm{N}$ distances in both compounds range from $1.363(7)$ to $1.374(4) \AA$ and are comparable to the $N-N$ distance in 4-FPYISC of $1.365(3) \stackrel{\circ}{A}{ }^{84}$ Since this distance in both the phthalazine and hydxazone groups is sionificantily shorter then the accepted $N-N$ sirgle bond distance, $\quad .444$ \AA A, 85 and since the ligond is planar, a dielocaljzed system is presumed to exist. In agrement mith this amsumpion bhe $C(n 0) \cdots$ distances are longex than the pre $C \cdots n$ double bond distance and are all cquivalont to the related C-N dishance in 4-FPYTSC, $1.275(3) \AA$. 84 All other distances within the ligand are not significantly different from those in [Nj (n(12) $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}{ }^{86}$
 Whthin the range of roported bonging distances of nishol(TT) with arometic nitrogen atoms (2.00 to 2.11? A). ©7

Ine modaging chlor'de is not symmetricolly locateu ber Lweer the tino nickel atoms with Ni.eCl diternces of 2.3\%4(2) and ?.387(2) A. The apparance of this bridge is remariably similar to that in di- $\mu-\mathrm{chloro-sym}$-trans-dichlorobis-(2,9-. (imethyl-1,10-phenanthroline)dinickel (II) 2 chloroform 88 Whene the Mi-C distances are $2.378(3)$ and $2.394(3)$ i. N1so, the Ni...Ni distance, $3.602(2) \hat{A}$, and Ni-CO-Ni angie, $98.0(1)^{\circ}$, in that compound are equivalent to the $3.603(1) \AA$ separation

 bridges are mothalain nitronen atorns. The sepatation bertween the wiow cions in inn dhanar oonplow, homover, is

 tion of tho bricumb itra.

 $2.0 \% 016) 102.377(6) \%$

 Although the locations wresurted for the hydrogen atoms are the most reasomajo intwimation of the difference men in

 $N(10)$ positions. Hisorucr may cxist with alternate forms ha-

uni-molecular system for the incorporation of a small molecule at a bridging position. Dinjtrogen has been reported as a bridging ligand conneeting two metal complexcs in the μ-dinitrogem-bist [1, 2-bis(dimethylphospmino)ethane]hydrido-[n-(1,3,5utrixethylbencene) $\}$ molybrenum cation ard stmilaz compounds. 89 No comples has been reported which conld retain its structural integrity aftes tho removal of absidging aimitrogen. time structures presented here suggest complextis of ligands similar io diphpy may have such a capncity.

CHAJ jなR G

 A reantion mochanism involving a motal lo-cyolopentrainnta internediate has been suggesteder-3 for the trimerizaition of tro molnculce of acetylene with ono of olafjn in the buc-

 et ai 9i-96 an the 上ag's of chamical rractions assigncu a netalloowcilic sumuctue to a phosmhinc-containiny cobaju complex isolated from the reaction of djupenylacetylene with $\operatorname{Co}(\mathrm{Cy})\left(\mathrm{th}_{\mathrm{L}}\right)_{\mathrm{y}}$? and isanropylmagnesium buomide. Thay also ishlutert the säne prohnot aron tir reaction of evocs.
 of the structure cI a conaltacycle forncu by the reaction of
 ycuorted. 57

Rousch and Gastinger ${ }^{1.5}$ premasod $C_{4}\left(1 \mathrm{~m}_{3}\right)_{4}$ Co(cp) (tpp) by the reaction of bis(pentafluoroplonyl) accetylene with π-cyclopentadienylcarbonyltriphenylphr phincoobalt. The analogous rhodium compound was prepared by the seackion of the corresponding rhodium compound. Is

Encopt for one prelinimary agoot wo structural data have been avaldule for cobaltacyolornindieno motallocralea. mbxerore, the x-ray diefradion shuctural aralysis of $C_{4}(\text { fph })_{4} C O(c p)(t p p)$ was undertahen. Mie corresprabing rhodacycle was studied for comparison with inis cobaltaoyche and rejated compounds.

Whe heavy atom motion was rood in wheh the positions of the cobalt and phosphomen atons rear oftime wh from a
 these atoms mas used to arimath the positions of eighteor adaitimal atoms. Sucessive Fowien symbeses revenled the
 ence Fourier synthesis at that point revealed a zegion be-

 Itic positions wore asinated brione stattirg refincaun, $r=$ 0.27. Three cycles of least-squares refinement with individual jeotropic thern parnmeterg roducan n to 0.14. A differ-

tron density in the sarme location as, verere.
Becatise of the discrepancy of the colculated density (1.423 $\mathrm{g} / \mathrm{cm}^{3}$) from the marsured density ($1.59 \mathrm{~g} / \mathrm{cm}^{3}$), solvant molccales wese presumed to be in the erystal. The deep rad crystals of the conionnd :ucte grown from sheluy ris which jo a suturatud hyorocarion frartion boiling betreen res and $98^{\circ} \mathrm{C}$ and consisting main? of n-heptane, Coliz. IE iwo solvoni

 marima vere ohserved in the difference Fourics symberis within the region of high clectron density. Tho distances letween there points and then amyler made hy lined oumening thom ciod

 suggesided the presunce of an ill-definca solvoni molezulc. Althourgh the distsibntion of the peaks, winch wexo not orell
 the disptances and augles within the group showed than ind wo reasonably approximitc a hydrccarbon chain.
six peaks were selactod which closely retaincd thoir positions in the Einal Fonger sumenton bizoce rost

which seemed the most reasonable in approsimately a hudrocarbon chain. These locations were used isotropically as carbon atoms together with the seventy-three refined positions from the thind full-matrix least-squares cycle used anisotropicalIy in a structure factor calculation and in three cycles of block approximation Zcast-squares refinemant. AJthough almost all the moorly matched rembetions $\left(\left|F_{o b s}-\mathrm{F}_{\mathrm{caj}}\right|>20\right) \mathrm{im}-$ proved, a Pourjer synthesis rovedued peans at positions shifhed to a less raasonahle dintribution from the linear hyduoCsybon approximation vacd. The rufinement was terminatcd at tins point. An outline of the refinement is presented in Tatio S.

Scettering factors for cobret, phosphcma, finozino,
 whoner amd conourated structure forloms is arailable. ?

Wine method of j somprohous replacement was need for the
 constants of $C_{L}(f g h)_{4} C O(C p)(t p p)$ and $C_{4}(f g h)_{4} R h(c p)(t p p)$ as
 that ore posecnt. int positirnah parameious from the siaind cycle of full-matrix least--suuares refjnement for tie monhydrogen atoms in the isomorphous compounci C_{4} (fph) ${ }_{4} C o(c p)$ (top) were usec in a structref factor caloulqtion and a aifferme:
 structure factor calculation resultadin an R of 0.17 arat tho
difforence Fourior synthesis revended no mijor structural difterences in the two compounds. The sume positional parameters ware usca in an isotropic loast-squares refinement of the $C_{4}(\text { rph })^{\text {jin }}(\mathrm{CD})($ tpp $)$ data. A summing of further refinmment is given in table 5 .

A difforence row-idu synthesjs after mefinoment sugeret-

 is significantly loss than the densjty of $1.60 \mathrm{G} / \mathrm{m}^{3}$ untained fom flotalion moasurements of the yellow orystajs. If two molecules of n-hentane amo assunch within the unit celd the celcunated density would be $1.60 \mathrm{~g} / \mathrm{cm}^{3}$.

An attennt tu fit a linear motecuide wo bers in ín
 notrumerice.

 Table 3-5.

The final positional and theract ratametors for who

 thermal ellipsoids of the cobaltacycle are shown in figure 10. The atomic momhring of the rhociacycie is amalogoms. Solocted

 Final Atomic parameters
n！（cp）（top）with qatimate x

$$
y
$$

Y

Atom	X	Y	z	β_{11}	322	β_{33}	${ }^{3} 12$	NI 3	B_{23}
C＇	$482(2)$	9953（1）	$2130(1)$	65 \｛？	$6.6(1)$	24.01	$55(2)$	$32(1)$	45 （1）
P1	45.27	$\therefore 927$（1）	$2125(0)$	$92(1)$	$53: 11$	$25(0)$	24	29 （1）	$4 \hat{4}$（1）
Cil	1469（8）	$4004(8)$	2095（5）	$78120)$	71 （8）	27 （3）	70 （15）	$32(10)$	52 （9）
	1546 （9）	$4003(8)$	$2101(5)$	$26(11)$	$71(8)$	$25(3)$	77 （16）	36 （10；	$49(9)$
C（3）	2439：3）	$=318(8)$	$2903(5)$	$80(10)$	こ¢（8）	26（3）	$95(16)$	$51(12)$	53 （9）
	253i（c）	$4307(8)$	1902（3）	$8 \%(10)$	61 （8）	$26(3)$	6？（25）	41 （10）	43 （9）
C：$!$	$2743(?)$	$5355(7)$	$300(5)$	7．．（9）	75 （3）	27 （3）	84（15）	$48(10)$	51 （9）
	2825%	$5370(8)$	$1572(5)$	$70: 5)$	$69(8)$	$26(3)$	65 （15）	34 （9）	48 （9）
$C(*)$	$1955(8)$	$5081(7)$	20015	$78(10)$	$59(8)$	$23(3)$	52（15）	25 （9）	51 （9）
	2015 （3）	$5354(8)$	$2003\{5\}$	$7:(9)$	$75(8)$	25 （3）	57 （15）	27 （9）	56 （9）
$C(2)$	1050 （？）	280？（8）	$2093!5!$	$8 \therefore(2)$	$\because 2: 9$	$38(4)$	$8 \%: 15)$	$60(11)$	63 （10）
	1093（0）	2577 （8）	2002．5）	30（11）	73 （0）	$37(4)$	Sこ（16）	$52(12)$	63 （10）
$C(12)$	1267 （9）	$2877(8)$	2792．（6）	80\％2：	70：	$32!$ ）	75 （16）	$45(1.1)$	67 （10）
	1293（10）	$2636: 9)$	$2753(6)$	$0 \leq(11)$	$30(20)$	$4 \%(4)$	$84.17)$	$55(12)$	$8.3(11)$
（13）	850（10）	1290（9）	$2770(5)$	125（26）	126：工ワ）	51：5）	I3（21）	$80(19)$	117 （13）
	$902(? 8)$	1000：20）	$2750(7)$	I2，吅安	112（27）	56 （5）	325（21）	80 （16）	117 （18）
$C(1, A)$	26313.3	754 （9）	$20.3(7)$	$269(16)$	8－20）	63：5）	1：5（22）	117（17）	107 （14）
	$27317 \cdots$	7こ5（10）	$2027(8)$	人 \square^{-}；	$23(51)$	73：7）	135（？？）	122：3	1？ 3 （25）
$C(15)$	19．912）	$726(9)$	123316）	IT（5）	$80(10)$	$47(3)$	135（20）	9．（14）	60 （11）
	$35(12)$	725 （9）	I32，サ！		$\because \because 9$	$5-(5)$	＂3（ ${ }^{\text {a }}$	a2（15）	$55(3)$
$\because \because)$	$445(20)$	$\because \because 0(8)$	1275：9	$\cdots 3(1)$	80， 9	13（4）	$170(18)$	$87(13)$	$73(11)$
	$433121)$	$\therefore 777(9)$	1253（ ）	（？2：3）	22：	4（5）	209（19）	$34(13)$	75 （11）

continued

Aton	X	\because	z	iI	$\hat{2}_{22}$	33	${ }^{3} 12$	3_{13}	B_{23}
$\pi(22)$	$1875(6)$	$3865(5)$	$3516(3)$	$\therefore 18(8)$	$97(5)$	$34!2)$	$31(11)$	5317	67 （6）
	$1952(6)$	$3050(5)$	3520 （3）	$153(5)$	$98(5)$	$38(2)$	95（11）	$5 \div(7)$	$72(6)$
$V^{\prime}(13)$	$1133(7)$	$1855(6)$	$3 \therefore 74(4)$	$215(10)$	147（7）	$6 \leq(3)$	26介（14）	$123(20)$	157（9）
	$1163(8)$	$3809(7)$	$\cdots \cdots, 6(A)$	$2] 0!11$ ；	$150(5)$	$63(4)$	152（15）	IOL（IO）	$169(10)$
$\Gamma(1.4)$	$-138(3)$	$-275(6)$	$2022(5)$	$272(12)$	1．33（7）	$20(4)$	$132(15)$	$178(13)$	$145(2)$
	-143 （9）	$-2.33(6)$	1990 （5）	263（13）	$100(7)$	101（5）	$162(15)$	$153(14)$	149（10）
I（ 5 ！	$-612(7)$	$-301(5)$	$622(A)$	$239(10)$	$72(6)$	$65(3)$	$112(1.3)$	$132(10)$	$62(7)$
	$-610(j)$	$-305(6)$	$602(5)$	$2 \times 3(22)$	$72(6)$	$70(i)$	26（24）	$133112)$	$52(8)$
$E(15)$	$198(5)$	171．9（5）	$67:(3)$	$18.2(8)$	37 （5）	$37(2)$	$106(1])$	28（8）	$54(6)$
	13317	$7725(5)$	667 （－1）	$188(0)$	$36(5)$	$39(3)$	y 4 （12）	$73(8)$	$50(6)$
$C(21)$	3171 （2）	3601 （8）	$1669(5)$	$206(11)$	$71(8)$	$33(4)$	$87(15)$	$56(11)$	$58(10)$
	3231 （9）	$3533(8)$	1667 （5）	$37(10)$	$74!5!$	$35(4)$	$85(16)$	$51(11)$	$58(10)$
C（22）	$4034(10)$	$345.3(9)$	2197（6）	？23：13）	95（i0）	$42(4)$	$135(29)$	5，5（13）	$67(11)$
	$4056(10)$	36.35 （9）	$2192(6)$	128（12）	c6（10）	$41(5)$	$12.31 \pm 9)$	$60(13)$	$62(11)$
$C(23)$	$4718(22)$	$2839(11)$	$1987(7)$	165（15）	$140(13)$	$59(6)$	$100(25)$	$75(16)$	$103(25)$
	$4706(11)$	$2768(11)$	$19.55(8)$	$123: 361$	$126(12)$	$63(5)$	$157(22)$	67125 ）	90（15）
$C(24)$	$4545112)$	$2345(11)$	22．1（8）	75 i j6）	$126(i 3)$	－9（7）	$198125!$	$120(13)$	29（15）
	$4517(12)$	$2256(11)$	$1270!3)$	上 7^{\prime} ，－5	フ 2 （2）	$55(5)$	$1 ? 3\left(\begin{array}{l}\text { a }\end{array}\right)$	ここ（ i ）	$77(15)$
C（23）	$3632(11)$	$? \therefore 50(9)$	647 66）	コこ？（5ら！	S？（iJ）	$\because 6(5)$	コ．23：2？）	$107(15)$	53：12）
	$3684(i 2)$	$24.2(10)$	$635: 7)$	$256\binom{5}{\square}$	$c_{i} 1 .(i)$	$\therefore 5(5)$	10912 I	$100(15)$	$50(12)$
C？\％	$3021)(\therefore r)$	$203-(3)$	\＆ 5 （6）		Q A－－	$\therefore 2: \therefore$	$\because 021 \because$	F－3， 3	－9，－－
	3043 （20）	$3052(9)$	876（6）	－10（11）	$83 \cdots$	2 $亠 1 \therefore 1$	ra（17）	r_{1} ：12！	$55(17)$
い＇．＇，	$435: 1$	2923 （5）	$23: \cdots!$	$\cdots 50$,	$14 \% \%$	$\therefore 7: 3)$	$2260 \% \%$	$75(3)$	ICO！
	$4283!7$	$3 \% 12(5)$	$2.953!4)$	İO！	147：7）	$\therefore 610$	$26 ; i c 1$	$\therefore 8(3)$	$101(3)$
\therefore ？ 2	5532131	$2081(3)$	$25017(5)$	$237: 97$	$295110)$	$37(\therefore)$	$3 * 5(20)$		－52（12）
	$5525!0)$	$2536(8)$	$2: 73(5)$	225（22）	$\therefore 25(19)$	$80(4)$	$237(25)$	3 ¢（12）	i $\because \therefore(22)$

\sim			\sim
$N \sim$	-	-	- 0
-1 -1	$0 \cdot 0$	\bigcirc	0 OH
\cdots	-	\cdots	\cdots
ジo	10	H10	6 +
$m N$	06	\cdots	ט)
$\xrightarrow{-1}$			

$96(13)$
 $92(13)$
$87(13)$
$72(11)$
$63(11)$ $107(7)$
$104(7)$ 20
-4
0
0
6
11 $206(12)$
$203(13)$

$$
\text { Tabie } 31 \text { - continued }
$$

Atom	X	Y	7	$B_{1} 1$	B_{22}	$B_{3} 3$	12	S_{13}	B23
$\leqslant(52)$	$-1486(0)$	$3709(9)$	$7765(5)$	$6 i=\{10\}$	$312(11)$	$50(5)$	$26(18)$	25 （12）	$90(13)$
	$-1672(10)$	$35: 5(11)$	1750 （7）	$56(11)$	$125(13)$	$56(6)$	6 （29）	26（13）	$103(14)$
$C(53)$	$-1196(10)$	$3326(9)$	$1316(6)$	$0 ?(12)$	$84110)$	$3 ¢(4)$	$6 \pm(28)$	10 （12）	41 （1工）
	$-1403(10)$	$3298(10)$	$1083(7)$	$77(17)$	50：10）	48 （5）	23 （43）	2（12）	54（12）
$C(54)$	－929（9）	$4295(8)$	911 （5）	$23(\geq ?)$	$39(9)$	2？（4）	$87(57)$	21 （11）	$40(10)$
	$-1161(10)$	$4034(10)$	347 （6）	Sj．(21)	108（1〕）	$30(4)$	$73(48)$	10（11）	41 （11）
$C(5)$	$-1115(0)$	$5732(9)$	1．26（6）	77 （21）	$111(10)$	$35(4)$	$80(18)$	19（11）	73 （11）
	-1339 （0）	$4070(10)$	$1355(6)$	71 （10）	$104(11)$	41 （4）	$62(17)$	16（11）	$69(12)$
E	1381 （2）	$6255(2)$	$3462(1)$	72 （3）	71 （2）	$26(1)$	$61(4)$	$39(3)$	$52(2)$
	$1433(2)$	$6208(2)$	3493 （1）	71 （3）	$72(2)$	26 （1）	$62(4)$	$38(3)$	$53(2)$
$C(00)$	174（1）	$5972(8)$	$3855(5)$	$77(10)$	$97(10)$	3014	$67(16)$	$44(10)$	$61(10)$
	$188(9)$	$5030(9)$	$3369(6)$	82（10）	$108(10)$	$30(4)$	$75117)$	$52(11)$	71 （11）
（ 101$)$	－3（3） 20 ）	$4575(10)$	$3605(6)$		IL（ $1 \pm i)$	こう（5）	$55: 203$		－ 0 （13）
	$-282(11)$	$4399(10)$	$3522(7)$	126（14）	$123(12)$	$50(5)$	99（22）	$88(14)$	$111(14)$
C（62）	$-1268(12)$	$4595(11)$	$0068(3)$	143（1．5）	158（15）	$66(6)$	$103(25)$	$119(17)$	140（17）
	$-1248(73)$	$4597(12)$	\％ $262(0)$	162（37）	$146: 15)$	$67(7)$	124（26）	124（18）	130（17）
$C(63)$	$-1740(12)$	$5396(12)$	$4382(8)$	$260(17)$	160（15）	$65(6)$	126（26）	$234113)$	$121(27)$
	$-1735(14)$	$5371(14)$	± 357（2）	$159(18)$	$171(17)$	$74(7)$	$132(29)$	$136(20)$	$137(19)$
$C: 54)$	$-1260(14)$	$6475(12)$	$4438(8)$	$206(20)$	$158(16)$	$20(8)$	182（30）	$202(22)$	129（19）
	-1243 （15）	$6: \therefore 6(14)$	$\therefore 401(10)$	$133(20)$	184：18）	91 （9）	$213(33)$	$196(23)$	$156(22)$
$C: 65)$	$-281(1.1)$	$6770(10)$	$4175(7)$	$156(15)$	$130(j 2)$	$59: 6)$	161 （23）	$140(15)$	$105(14)$
	$-311(12)$	$6748(11)$	$4152(7)$	$\geq 3(25)$	$137(13)$	$60(0)$	$\underline{4} 7(24)$	］28（15）	$93(15)$
$C(70)$	$293 \div$（9）	$64.3(8)$	$4204(5)$	$93(11)$	$67(3)$	$30(4)$	$53(16)$	$30(11)$	$53(10)$
	2353 （9）	$6.34(8)$	$4230(5)$	73 （10）	$\because(2)$	$29(4)$	$60(15)$	$26(10)$	53 （9）
（171）	3110 （10）	$6 \% 34(9)$	$4984(6)$	130（73）	$96(10)$	$3314)$	$76(19)$	$47(12)$	$72(11)$
	3141 （11）	$6760(1.0)$	5001 （6）	171． 1.1	1．28：Ј．）	$35(4)$	$70(20)$	$36(12)$	$81(12)$

in rables 32 and 33. Least-squares planes and deviations are given in Table 34.

The molecules are metallocycles with the metal atom also bonded to the cyclopentadienyl ring and to the triphenylphosphine ligand. The $C(1)$ to $C(4)$ fxagment in both compounds is planar with the largest deviation from the best plane bojng $0.015 \hat{A}$ in the cobalt compound and $0.017 \AA$ in the rhodium compound. Tre metal atoms, homever, are significantiy displaced from the plane in the disection of the op ring by -0.203 and -0.239 A. This perperdjoular aisplacement is simjlas to that found in other similar metallocycles. 98

The metallocycles may be considered as a dolocalized diche with the motal atom oukonced to the two carbun atoms of the ring, $C(1)$ and $C(i)$. The come bond distances, 1.995 (11) and $1.993(11) \stackrel{C}{A}$, and the Rhoc bond distances, $2.060(12)$ and $2.0<7(1!)$ f, axe similam to varions valuos givon he Chumehill. 99 values of $1.979(1)$ A 48 and $1.990(5)$ isl have rore recentay been reported for ConC bonds in cowalowine complesos. Kague 100,101 has reported structures of similar thodacyles in which the Rh-C distances are $2.000(11), 1.964$ (11), $2.047(15)$, and $1.998(16) \stackrel{\circ}{A}$. Also, Cotton and Soman 102 report a sinfesbena covalert radius of 3.29 A for $\operatorname{An}(I T I)$. When this taile is added to hal: the 2.085 A suggested lenyth for a singie-hond betricen sp carbon atoms ${ }^{1.03}$ the phoc distance is predicted to be $2.13 \AA$. The observed Ri-C distances where rhodiun hen a formal oxiriation number of ti are shortei

Tatole 32
 with Their Estimated Standard Deviations in parentheses.

$$
M=C O
$$

Rh

$\mathrm{M}-\mathrm{C}(1)$	1.995 (11)	$2.060(12)$
$M-C(1)$	1. 993 (11)	2.067 (11)
$\mathrm{M}-\mathrm{p}$	2.234(3)	$2.293(2)$
$M-C(51)$	2.157 (12)	2.286 (13)
$\mathrm{N}-\mathrm{C}(52)$	2.121(1.3)	$2.261(14)$
$14-\mathrm{C}(53)$	$2.119(11)$	$2.250(13)$
11-C(54)	$2.104(9)$	2.238(10)
$\therefore-C(55)$	$2.133(12)$	2.268(12)
$C(1)-C(2)$	1.326(15)	$1.343(16)$
$C(2)-C(3)$	$1.467(16)$	1.457(16)
$C(3)-C(4)$	$1.335(15)$	1.354(15)
$C(1)-C(11)$	$1.487(16)$	1.498(17)
$C(2)-C(21)$	$1.523(16)$	1.497(16)
$C(3)-C(31)$	1.481 (15)	1.478(16)
$\mathrm{C}(4)-\mathrm{C}(11$.	1.493 (3.6)	1.492 (17)
$\mathrm{P}-\mathrm{C}(60)$	$1.848(11)$	$1.858(12)$
$\mathrm{p}-\mathrm{C}(70)$	1.843 (11)	$1.821(10)$
$\mathrm{P}-\mathrm{C}(80)$	$1.834(12)$	1.820 (13)
$C(51)-C(52)$	$1.463(20)$	$1.429(22)$
$C(52)-C(53)$	$1.400(15)$	1.420(17)
$C(53)-C(54)$	1.426(1.8)	1.424(20)
$C(54)-C(55)$	$1.433(16)$	$1.422(17)$
$C(55)-C(51)$	$1.457(17)$]. 431 (18)

Table 33
Selccted Bond Angles (${ }^{\circ}$) of C_{4} (fph) $4:(c p)$ (tpp) with Their Estimated Standard Deviations Given in Parentheses. (\quad in $=0, \mathrm{RO}$)

$$
\mathrm{M}=\mathrm{Co} \quad \mathrm{Rh}
$$

$\mathrm{M}-\mathrm{C}(1)-\mathrm{C}(2)$	112.1(8)	115.5(8)
$C(1)-C(2)-C(3)$	116.8 (9)	114.9(9)
$C(2)-C(3)-C(4)$	115.8(9)	$115.5(9)$
$\mathrm{N}-\mathrm{C}(4)-\mathrm{C}(3)$	113.1(7)	11.4.8(8)
$C(1)-\therefore-C(4)$	82.4 (4)	$78.3(4)$
$\mathrm{p}-\mathrm{H}-\mathrm{C}(\mathrm{J})$	103.0(3)	101.6(3)
$\mathrm{P}-\mathrm{M}-\mathrm{C}(4)$	$95.2(3)$	93.3 (3)
$C(11)-C(1)-M$	$127.0(7)$	123.3(8)
$C(11)-C(1)-C(2)$	119.6(9)	119.4(10)
$c(21)-C(2)-C(1)$	123.9(9)	124.1(10)
$C(21)-C(2)-C(3)$	119.2(9)	$120.9(9)$
$C(31)-C(3)-C(2)$	119.7(9)	$119.7(9)$
$C(31)-C(3)-C(4)$	125.5 (9)	124.9(10)
$C(41)-C(4)-C(3)$	119.8 (9)	120.3 (9)
$\mathrm{C}(41)-\mathrm{C}(4)-\mathrm{M}$	$127.0(7)$	124.9(7)
$C(51)-C(52)-C(53)$	108.1 111$)$	108.3(12)
$C(52)-C(53)-C(54)$	109.8(10)	108.8(11)
$C(53)-C(54)-C(55)$	107.7(10)	$106.9(11)$
$C(54)-C(55)-C(51)$	108.0(10)	109.3(11)
$C(55)-C(51)-C(52)$	106.3(10)	106.8(11)

Table 3A
Devintions from and Equations of Some lurase-scuares planes of

(a) Deviations ($\dot{A}_{1} \times 10^{+3}$),

Atoin	Planc 1	Plane 2	Plane	Plane 4
CO	-203		1741	
12:		-239		1908
$C(2)$	8*	9*		
$C(2)$	-15%	-1.7*		
$C(3)$] *	17*		
$C(i) j$	- 8 *	$-9 *$		
C(5)	-931	-1053	$-7 *$	2*
C(5\%)	-12.11	-1307	15*	6*
$C(53)$	-2043	-2168	-16*	-12 *
C (54)	-2265	-2437	〕1.*	$13 *$
C(55)	-1508	-1774	$-2 *$	-9^{*}
F	1884	1922	$30 \% 5$	3242

(b) Cocfficionts of the flane $59 \mathrm{~A}+\mathrm{BY}+\mathrm{C} \%=\mathrm{D}$

| Flane | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.2201 | 0.0627 | 0.9735 | 3.2807 |
| 2 | 0.2193 | 0.0672 | 0.9733 | 3.3160 |
| 3 | 0.7356 | 0.1345 | 0.6639 | -0.8420 |
| 4 | 0.7474 | 0.1591 | 0.6450 | -1.0481 |

"the ontrjes markod with an asterisk wore unod to dofine the flame.
ence could be indicative of multiple Donding between the terminal carbon atoms of the diene and the metal atom. The $\mathrm{C}-\mathrm{C}$ distances in the metallocycle rings fall into two groups. The $C(1)-C(2)$ and $C(3)-C(4)$ distances are equal within experimental error to the accepted value of $1.337(6) \stackrel{\circ}{A}$ for a simple C-C double bond. 104 The $C(2)-C(3)$ aistancess are indicatjve of a C.C single bond between two doubic bonds. 104 The observations of Mague 100,101 on two rhooacycles suggested a dountebond system simjlay to those in $C_{4}(f p h){ }_{4} C O(C p)(t p p)$ and C_{4} $\left(f p_{1}\right)_{4} \operatorname{Rn}(c p)(t p p)$.

The cp rings in the compounds are planor with the maximum deviatjons from the least-squares planes or - 0.016 and - 0.012 $\%$ The distances from the op ring atoms to the metal atom show that the metal atom is siightiy displaced from the center of the cp ring. The range of the co-c(op ring) distances is from 2.104(9) to 2.157(12) A with a mean oE 2.127 (9) $\underset{A}{A}$. These values aie similar to those in other co-cen complexes. 105,105

In both the cobalt and rnodium compounds the longest metal-c(cp ring) distance involves $C(51)$, the carbon aton nearest the phosphine ligand. The mean Ri-C(or ring) disiance is $2.280(13)$ i. This value is equivalent to the mean distanc. of $2.2 .16(9) \AA$ in $R\left(\mathrm{C}_{2} \mathrm{E}_{5}\right)$ (cp)I (co $)^{107}$ and falls within the 2.19 to 2.26 A range reported for correspondirg mean valuss for other cp-rhodium complexes. 108

The $C \cdot C$ bond distances within the op rings rand Erom 2. $100(16)$ to $1.463(20)$ it with a mean of $1.436(11)$ in in the
cobali compound and a range from 1.420(17) to $1.431(18)$ \& with a mean of $3.425 \AA$ in the rhodium compound. Thesic $C-C$ distances are comparable to those found in other ep complexes. $105,106,109$ whe ep rings are tipped relative to the C(1) to C(1) planes by 35.3° and 36.6°.

The Co-p distance of $2.234(3)$ is sinilar te the co-p djetance ju fivo-coordinate complowes of cobalt where the range is reportedro to be from 2.192(6) to 2.27(1) Â. Also,
 and $\mathrm{CO}(\mathrm{CO})_{2}(\mathrm{nO})\left(\mathrm{tpp}_{\mathrm{i}}\right)$ the Co-p distunces are 2.236 and 2.229 ©lll in the former and $2.224(3)$ and $2.230(3) \AA^{112}$ in the latter. The Rum Uistance of $2.293(\Omega)$ is is sjmilar to those in phosphine complexes of rhodium(I). 113 The wotal to prosphine distamee in metal-onime complores ha:e been found to be somewhat longer. 40,97 the co-p distance in cobaionjuc comelrace
 distance in Fincl(Hawgi 2 (tpo) was reported to be 2. $327(1)$ O. 102 Sincs the dietances in owime combleves in buin cotaly and rhodima are equivainm, the phoshorus aton may be in the position of closest approacin to the motal atom as limited by the stario arnstlaints of the osimo ligandis.

The distances in the ryh rings fave been summirized in ruble 3 . Whe inaiviauni values for the distancos and ansies in the iph rings on the moiallocycles and the phenrl rings of the phosphirees are given in rabless 36-3?. The ainensions are not unusual and axe in agroctent with engecoer voluss.
Table 35

Table 36
Bond Distances and Bont Angles of Fentafluorohenyl Groups in $C_{4}(f p h)_{4} \operatorname{Rh}(c \rho)(t p p)$.
(a) Distances (\AA)

	1	2	3	4
$\mathrm{Cn} 1-\mathrm{Cn} 2$	$1.384(15)$	1.342(16)	1.392(15)	$1.385(15)$
$\mathrm{Cn2}-\mathrm{Cn} 3$	1.364(20)	$1.400(20)$	$1.374(20)$	1.351(20)
$\operatorname{cn} 3-\operatorname{Cn} 4$	1.375(18)	$1.358(18)$	1.357 (19)	1.389 (18)
Cnt-Cn5	2.367(19)]. 365 (20)	$1.368(18)$	$1.355(19)$
Cn5--Cn6	$1.372(20)$	1.373 (19)	1.367 (18)	1.362(19)
CnG-Cnl	1.393(15)	1.389(14)	$1.389(16)$	$1.385(14)$
$\mathrm{Cn} 2-\mathrm{Fr} 2$	1.347 (12)	1.354(12)	1.35.1(13)	1.344(12)
$\mathrm{Cn} 3-\mathrm{Fn} 3$	1.339(15)	1.341(18)	1.349 (15)	1.348(16)
$\mathrm{Cn} 1-\mathrm{Pn} 4$	$1.338(18)$	$1.337(1.9)$	$1.335(18)$	$1.340(18)$
Cn5-Fn5	1.343(15)	1.358(14)	$1.338(15)$	$1.357(14)$
Cn6-pnc	1.331(13)	$1.343(14)$	1.351(13)	$1.342(13)$

(b) Angles $\left({ }^{\circ}\right)$

$\operatorname{Cn} 1-\operatorname{Cn} 2-\operatorname{Cn} 3123.1(11)$	$122.1(12)$	$123.7(11)$	$122.9(11)$
$\operatorname{Cn} 2-\operatorname{Cn} 3-\operatorname{Cn} 4119.6(13)$	$119.3(13)$	$113.8(13)$	$120.2(13)$
$\operatorname{Cn} 3-\operatorname{Cn} 1-\operatorname{Cn} 5119.6(13)$	$119.3(14)$	$120.8(13)$	$117.9(13)$
$\operatorname{Cn} 4-\operatorname{Cn} 5-\operatorname{Cn} 5119.8(13)$	$120.6(13)$	$119.0(12)$	$121.4(13)$
$\operatorname{Cn} 5-\operatorname{Cn} 6-\operatorname{Cn} 1122.6(12)$	$121.1(11)$	$123.6(11)$	$122.0(11)$
$\operatorname{Cn} 6-\operatorname{Cn} 1-\operatorname{Cn} 2115.3(11)$	$117.3(11)$	$114.1(10)$	$115.4(10)$
$C n-\operatorname{Cn} 1-\operatorname{Cn} 2124.2(10)$	$123.9(10)$	$123.1(10)$	$124.1(10)$
$C n-\operatorname{Cn} 1-\operatorname{Cn} 6120.5(10)$	$118.8(10)$	$122.5(10)$	$120.5(10)$

En2-Cn2-Cn1 $120.2(10)$	$121.3(11)$	$118.2(10)$	$119.4(10)$
Fn2-Cn2-Cn3 $116.7(11)$	$116.4(11)$	$118.0(11)$	$117.7(11)$
Fn3-Cn3-Cn2 $120.9(12)$	$120.7(13)$	$120.3(12)$	$120.8(12)$
Fn3-Cn3-Cn. $119.5(12)$	$120.0(13)$	$120.9(12)$	$119.0(12)$
En4-Cn4-Cn3 $120.7(13)$	$121.3(14)$	$119.9(13)$	$119.9(12)$
Fn4-Cn4-Cn5 110.7(13)	$119.4(13)$	$119.3(13)$	$122.1(13)$
Fn5-Cn5-Cn•: $120.9(13)$	$120.1(13)$	$119.6(12)$	$118.8(13)$

Table 36 - continued

$\mathrm{n}=1$	2	3	4	
Fn $6-\operatorname{Cn} 6-\operatorname{Cn} 5$	$115.7(10)$	$118.3(11)$	$117.6(10)$	$117.2(9)$
Fn6-Cn6-Cn1	$120.4(10)$	$118.8(10)$	$118.5(10)$	$119.7(9)$

Table 37
Bond Dishances and Bond angles of pentafluoroheryl Groups in $C_{4}\left(\text { fph }^{\prime}\right)_{4} \mathrm{Co}(\mathrm{cr})(\mathrm{tpp})$.
(a) Distances $(\hat{\lambda})$

	1	2	3	4
$\mathrm{Cnl-Cn} 2$	1.387 (14)	$1.372(16)$	$1.394\left(34_{4}\right)$	$1.403(15)$
$\operatorname{Cn} 2-\operatorname{Cn} 3$	1.388(39)	$1.368(20)$].398(19)	1.358(19)
Cn3-Cn4	$1.387(17)$	$1.374(18)$	$1.370(18)$	1.3:8(16)
$\operatorname{Cn} 4-\mathrm{Cn} 5$	$1.382(1.7)$].374(20)	$1.372(18)$	$1.370(17)$
Cns-Cnós	1.382(18)	1.363 (19)	1.362 (18)	1.384 (7\%)
$\mathrm{Cn}(1-\mathrm{Cn})$	1.385 (14)	1.389 (14)	$1.408(15)$	$1.367(18)$
Cn2-En2	1.322(11)	1.34](12)	1.339(13)	1. $358(11)$
Cn3-En3	1.350(3.4)	1.338.(17)	$1.339(16)$	$1.338(14)$
Cn4-Fint	1.360(17)	1.339 (1.9)	$3.334(17)$	$1.335(16)$
$\operatorname{Cn} 5-\operatorname{Pn} 5$	$1.336(13)$	1.354(13)	$1.330(14)$	$1.361(13)$
Cn6-Fnó	1.341(12)	$1.355(13)$	$1.356(12)$	1.343(12)

(b) Angles $\left({ }^{\circ}\right)$

Cni-Cn2-Cn3	122.4(11)	122.9(12)	123.4(11)	122.6(10)
$\mathrm{Cn} 2-\mathrm{Cn} 3-\mathrm{Cn} 4$	119.7(12)	119.2(13)	118.9(12)	$120.5(12)$
Cn3--CO4-Co5	$119.6(12)$	120.1(14)	120.2(13)	118.7 (12)
Cn- --Cn5-Cn6	118.7(12)	119.0(12)	119.8(12)	120.4(11)
Cn5-Cn6-CnI	123.9(11)	3.22.9(11)	123.8(11)	$123.0(10)$
Cn6-Cnl-Cn2.	115.6(10)	116.0(10)	$113.9(10)$	1].4.5(10)
$\mathrm{Cn}-\mathrm{Cuj}-\mathrm{Cn} 2$	123.3(10)	123.8(10)	122.9(9)	124.2(9)
$\mathrm{Cn}-\mathrm{Cn} 1-\mathrm{Cn} 6$	121.0(10)	120.2(1.0)	123.0(9)	121.3(9)
$\mathrm{Fn} 2-\mathrm{Cn} 2-\mathrm{Cnl}$	1.21.4(10)	120.5(10)	119.1(10)	119.8 (5)
$\mathrm{Fn} 2-\mathrm{Cn} 2-\mathrm{Cn} 3$	116.2(10)	$116.5(11$.	$117.5(10)$	$127.7(10)$
Fn3-Cn3-Cr3	120.8(11)	122.0(13)	119.9(11)	129.1(11)
Fn3-Cn3-Cn4	119.9(11)	$118.8(13)$	121.2(12)	120.5 (11)
Fn4-Cn4-Cn3	120.0(12)	$121.2(13)$	118.9(12)	120.1(11)
	120.4(12)	113.7(13)	120.9(12)	121.2(11)
$\operatorname{Fn} 5-\operatorname{Cn} 5-\operatorname{Cn} 4$	$119.7(11)$	120.5(12)	119.9(12)	119.8:11)
$\mathrm{Fn} 5-\mathrm{Cn} 5-\mathrm{Cn} 6$	127.0́(11)	120.5(12)	120.3(11)	113.019

Table 37 - continued

| $\mathrm{n}=1$ | 2 | 3 | 4 |
| :---: | :--- | :--- | :--- | :--- |
| Fn5-Cn5-Cn6 119.4(12) | $119.3(12)$ | $121.4(12)$ | $119.8(11)$ |
| Fn $6-\operatorname{Cn} 6-\operatorname{Cn} 5117.7(11)$ | $119.0(11)$ | $117.6(11)$ | $117.9(10)$ |
| Fn $6-\operatorname{Cn} 6-\operatorname{Cn} 1119.7(11)$ | $119.9(10)$ | $118.9(10)$ | $120.1(10)$ |

Table 33

$\therefore=$	$n=5$		7		8	
	Co	Rh	Co	N	Co	Rh
$\mathrm{P}-\mathrm{C}(\mathrm{n} 0)$	2.343(11)	$1.853(12)$	1.843(12)	1.821(10).	1.334(12)	$1.320(13)$
$c(n 0)-C(n l)$	1.419(19)	$1.400(22)$	1.411 (14)	1. 387 (16)	1.616(15)	I. 395 (16)
$C(n 2)-C(n 2)$	1. 514 (20)	1.382(22)	$1.394(17)$	1.399(19)	$1.413(19)$	1.413(20)
$c(n 2)-C(n 3)$	1.397(22)	1.373(2)	$1.386(19)$	$1.347(21)$	1.425 (1.7)	1.613 (19)
$C(n 3)-C(n 4)$	1.394(25)	1.396(30)	$1.300(17)$	1.405 (18)	1.422(12)	1.406(21)
$C(n 4)-C(n 5)$	1. 423 (23)	1.367 (25)	$1.375(15)$	2.103(18)	1.391(19)	2.380(21)
$c\left(n^{5}\right)-C(n 0)$	1.307(18)	$1.377120)$	1.334 (16)	1.368(16)	1.4.3 129	1.404(15)
(b) Angles (0)						
$\mathrm{P}-\mathrm{C}(\mathrm{n} 0)-\mathrm{C}(\mathrm{nl})$	117.7 (8)	117.4(9)	120.3(8)	121.4(9)	118.3(8)	118.5(9)
$p-C(n 0)-C(n 5)$	122.2(9)	$122.2(10)$	113.6 (S)	$129.5(8)$	$121.8(8)$	122.3(9)
$C(n 0)-C(n 1)-C(n 2)$	139.7(12)	120.2(-3)	119.9(11)	120.3(12)	119.5(11)	121.0(11)
$C(n)-C(n 2)-C(r 3)$	120.0(13)	112.7(25)	$119.0(12)$	120.3(14)	120.7(i2)	113.5(12)
$C(n 2)-C(n 3)-C(n 4)$	120.2(24)	110.2(15)	120.8(13)	$120.8(14)$	115.7(12)	$118.2(13)$
$C(n 3)-C(n 4)-C(n 5)$	120.2(14)	121.8(17)	120.8(12)	112.2(.3)	120.8 (12)	$122.0(13)$
$c(n 4)-C(n 5)-C(120)$	$119.8(13)$	120.8(14)	129.2(12)	123.3(12)	$120.3(11)$	120.1 (12)
((1,5)-C(n0)-C(n2)	120.0(11)	120.:(22)	120.1 (20)	119.1(11)	$119.9(10)$	119.1(12)

Table 38 - continued

$M=C O$	R'
102.7(5)	103.5(5)
100.9(5)	201.8(5)
1.03 .0 (5)	103.3(5)

$C(50)-n-C(70)$
$C(60)-P-C(80)$
$C(70)-P-C(80)$

The fluorinated metallocycies resist thermal decomposition better than the hydrocarbon analogs. 14.15 Enhanced thermal stabilitjes have been observol in other highly fluorinated metaljocycles relative to their hydrocarbon analogs. 114 Jn the componds of this study the trimhenylhowhine ligand and the four foh rings provide an effective shicli for the two double bonts in the metallocycles. Although the fluorine atoms of the fuh rings and the whenil rizus of the thp wore omitted from figure 10, the storically hindered mature of the metallocycle may easily be seen. The lack of a converiout Hath for an attacring acetylenc together with the enhanced thermar shability of the fluorinated derivatives may have allowed the jsolation oi those intermodiate metal. iowader. Motallouycles of cobalt and rhodiun of the type presented are acasomable intermodiatos in the catalyzed oljçomerization of acobylense.

CHAPSER 7

CONCLUDING REMEPKS
The structure of $\mathrm{ClCO}\left(\mathrm{H}_{2}\right.$ ding) (ding) (clan) shows the same LIPS phenomenon as $C \ell C O\left(\mathrm{H}_{2}\right.$ drag) (dmg) (sulfa). 46 These two compounds cxhibit the unusual featare of containing both neutral and dianionic dimethylglyosime groups. Also, the orientation of the bonzene ring of the sulfa and cian group in the respective compounds is over the dianionic dmg. The various distances and the relative orientation of the axial ligand in both compounds suggest a r--tyoe interaction. LIPS suppocts the contention that "hydrophobic forces" are imporiant in onzymic mocesses, ${ }^{3}$ The bis(aiglyorimato)covalu(III) complexes of aniline derivatives have here boen shown to be uscful models for tho examination of this troe interaction. An eatension of x-ray structural determinations to similar compounds with other aniline derivatives and with other diglyoximes is suggested. Lom-temperture X-ray studies could effect bettor resolution of the inter-ang bridge structure and the N-O distances.

An investigation of the fluorescence spectra of these compounds could reveal additional information concerning the interaction between the cquatorial and axial ligands. The fluorescence of 5-aimothylaminonabhthaiene-i-sulionamide wis observar to be onhanced while the fluoneszence of carintio
anhydrase was diminished when a $1: 1$ complex of the two was formed. ${ }^{51}$ Although the major contribution to this observation is believed to be the jonization of the sulfonamide, at portion of the change is attributed to a mydropinobic interaction. 5l, 115 The fluorescence spectra of cobaloxime complexes with aniline derivatives should belp reveal the nature of the interligand interaction ass a function of the orientrtion angle.

The novel ligand dhphpy has been demonstrated as a hinuclealing ligand. The bridging site accupied by a chlorine atom in $\left[\mathrm{Ni}_{2} \mathrm{CR}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ Chphey $\left.)\right] \mathrm{Cl}_{3}$ clearly is accessiblo ancl of convenient dimensions to accomnolate a molecule such as dinitrogen. Eurther: development of this system as a possible model for nirrogenase sheuld include use of molybdenm salts and work with the exclusion of onyyen. Synthesis of similar Jiganis with saturated "sicie arms" is also suggestad.
 coniain a butadiene Exaghent with each end bown to a metal atom. Whe metal to carbon Donds are shorter than expeeted for the singlo-bondod cistance. The metallocyoles are, thorefore, kelieved to cortain a delocalized robonding sustern. While metallocycies shouid be highly suscoptible to numeophilic attack and therman deamposition the tor compouns studied hore are very stable. The ennancenert of theximl stábility by the fluorinated substituents may be at last nartinlly responsible. Nso, the Eranonco of the four En inn
along with the tpp and $c p$ ligands provices a shicld from attack for the metallocycle.

The understanding of catalytic processes should improve the efficiency of our existence. Hopefully, enzymic processes occurring in nature can be duplicated in the laboratory by suitable models. These model onzyme systems may then be applied to cure the diseased and feed the hungry.

$$
\begin{gathered}
\text { Apprenter A } \\
\text { BoOTHTT1 }
\end{gathered}
$$

A listing of the fORTRA' language confutar program BOOTHITl follows. This program was designod to interpolate atomic positional parameters by Booth's method ${ }^{116}$ from the values of a Fourier synthesis calculation. Fhe Fourier symthesjs program written by Dr. Gus J. Palcnik was nodified to store the calculated values on a magnetic disk. Sfter supplyjng Boornlyl with input data of the approximate posidion of each atom, the stored values are retrieved. Whe progrom estimates the position of maximum electron density for econ atom from these Fourier synthesis values. The positional parameters may be translated to equivalent positios:s and may be passed to a bond distance and angle Erogran. Tho resulung fractional coordinates are punchod into In: cards in the foxmat required for their input into the Fourier synthesis and least-squares refinement programs.

$$
\text { - } 1-\text { ix } 3+1
$$

$$
\text { NTML AKI MMY =5 } 1
$$

LoIC VA!us stul

$$
1
$$

UN：T 1 TRAV：LATILPS． LLSSTH．AN NV．

$$
2
$$

$1!=\cdot!$
$\vdots \quad: ~$

$$
\because 1 \text { (Tliidj it A TlM= }
$$

r insi Tiuiv (xilu Nu.
AN: LFT FLLLCV.

[^3]

MVir＝MvTT
iŕ（bivTr ero．elif
リU こりつ ふitvi

IV！
CM！$=$ MVI：$-N T$
$=!!V T I$

CALL i－c：i．e

clertion

$\begin{array}{ll}0 & \vdots \\ 0\end{array}$
$\begin{array}{ll}\ddot{y} & 0 \\ -1 & 0 \\ -1\end{array}$
$Y(1)=f(1, \therefore) / N V(2)$
211)
wfilte (On. 375)
$\stackrel{-}{-}$

$N=1$ Ans: (0.:5O(1))
ICI $=1$
If (NHE
If (NREO $(1)) \leq 450: 300.550$
$(1)=1614(\times(1) x P 1 N(1, N)+P T W(10, N))+N T R X(1)$
$Y(1)=1(1)(Y(1) \& H I M(5, N)+P T W(11, N))+N T R Y(I)$
 Gu 14 on sS4 CUNIIAUH
$X(I)=X(I)+N T H X(I)$
$540161=-1$
5 ± 0 LUN 1 INUR
$Y(1)=Y(I)+N T: Y(1)$
$C(1)=Z(I)+N T H Z(I)$
CuNT LMUE
WR1TE (OW, 351)

 11: (Almpasel 1 -O) GU ruso
REWINL OA

morlilo(ol, zef)
ありら Cuiv1 linul

136
150
100
180
！V（NAI：
（m：（is．ar，）
Curition

$n \cdot r$
－0
I $\operatorname{s}(\mathrm{NA} 1 \mathrm{~S})=$ ？
！L（iva！
：－1NATB．：$=$

190

 CUAS心しい。
18
131
35C TMAXT = TLMT

APPENDIX B

OBSERVED AND CALCULATED STRUCTURE EACTOAS

Table $\mathrm{B}-1$
Observed and Calculated Structure Factors for $\mathrm{CRCO}\left(\mathrm{H}_{2} \mathrm{dpg}_{2}\right)$ (clan) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

L	10	FC	L	50	－$\quad=\mathrm{C}$	L	F	FC	L	FO		FC
-1	585	－E63	－7	358	－ 330	-10	-12	－3t	－7	309		-4.14
			6	-112	－-72	－S	-115	－14\％	c	$+1 \% 2$		-100
$11=$	1．	$r=2$	－5	3 3	－ 57	－8	4 C	－403	－5	722		78.0
			－ 4	750	－ 703	－ 7	-114	¢0	－4	515		510
0	-101	-17	－3	476	50%	－E	1334	1315	－3	2 ± 1		－2：0
1	1107	$10 / 7$	－2．	$31{ }^{\circ}$	－？どっ	－ 5	123	-54	－2	El，		－835
2	－107	－46	-1	2＜63	3－6119	－	－21	－ども゙ど	-1	514		－570
3	1200	1105				－3	くこく	－412				
4	415	404	$r_{i}=$	1.	$K=4$	－2	E63	-594	$t:=$	1.	$x=$	8
\leqslant	430	4.55				－1	1052	1035				
C	-110	10	0	981	-1005				C	$-1<6$		0
7	$-11:$	123	1	－11：	－ 100	$11=$		$K=t$	1	\cdots		61
1	45.	－6．74	$?$	E44	220				2	－ 12 为		3 E
9	-113	15	3	501	－4 40	0	1459	1455	3	$-1<0$		57
10	-115	46	4	-112	51	1	178	－4	4	-132		0
11	－118	78	5	200	-153	2	$=01$	-521	5	－1ジ		-130
12	-123	7	6	499	－490	3	-117	$1 \pm C$	\dot{c}	$-1=0$		－ 54
13	485	－457	7	50.4	－571	4	-121	－¢3	7	$\cdots 1$－		－30
14	－1．35	－－6	\＆	≤ 41	ここ！	5	$-1: 1$	-5	3	-142		（1）
15	-1.37	－112	9	c23	215	c	≤ 14	501	9	－1．6．6		－210
10	-134	12	10	－： 2.3	－ 112	7	こくて	－276	10	－i i^{2}		109
17	-134	75	$1:$	-120	－154	8	¢ 20	－6．10	11	－51		235
16	-1.35	3	12	2.56	－105	s	こ	ごる	1.	2.41		154
19	-16.7	\pm	13	195	171	10	$4 \geq$ ¢	422	$1=$	－13		－ 11
-15	24．6．	$-\mathrm{cic}$	14	－130	－71	11	22	－CC	14	-140		－118
-18	-139	－120	15	-139	147	12	251	-259	15	$-1: 6$		12
-17	215	140	16	-134	－113	15	－130	43	$-1 c$	$2<1$		24
-16	－136	－235	17	310	－265	14	$-1=$	4 と	－15	－144		-147
-15	$4 \therefore 1$	－ 4,0 \％	13	23：3	374	15	-10°	-81	－14	-141		$-1: 1$
-14	－132	？ $0^{\text {ck }}$	-19	－ 140	15	16	-163	204	-13	270		207
-13	491	40.0	-18	－－30	－－84	17	-145	3	-12	$-1 \geq 2$		17
$-1 \overline{1}$	$\therefore 6$	－\％5	-17	－1．34	4 －44	-17	$-1<3$	-42	-11	－1589		－1：，7
－11	51%	S： 3	-16	－1－゙う	；154	－16	-142	-7.3	-10	$-1: 5$		－し
-10	-114		-15	-135	2） $1 \div 1$	-15	-15	1 ¢	－S	－192		－3
-9	≤ 40	－E \％	-14	500	－50？	－14	三－	E4 7	－	-1.15		－6く
－ 8	6.2 .7	－5，\％ 4	-13	－1 44	－94	－：3	＜¢	－239	－ 7	-137		－00
－ 7	374	308	-12	－134	＋ 199	－12	411	－こ． 4	－6	219		217
－C	-109	－ 6 F	-11	213	3154	-11	三8	40	－ 5	-131		97
－5	$\because 04$	G心	-10	$\pm+0$	415	-10	¢ ${ }^{\text {P2 }}$	273	－4	210		－205
－4	－114	－5	－？	3.3	$3-224$	－9	cos	－こくさ	－	？ 59		320
－	2190	2650	－3	－1：	$3-11 y$	－と	$-1=5$	－40	－	－1		7 －
\％	166	－ 1 ¢ C	－7	22i	140	－ 7	18.	cs？	－1	306		-440
－1	2635	$-24_{4} \mathrm{C}$	－0́	2．	， 270	－	ョと	-10				
			－5	E： 0	014	－	－1：	14	$H=$	1，	：$=$	5
$11=$	1.	$k=3$	－4	$55_{5} 5$	$1-534$	－-	$\zeta ¢ ¢$	$1 \subset 20$				
			－3	30	－-370	－	， 5 S	－-10	0	－132		-111
0	2341	－2コマ5	－2	22	2 こ2	－	$1 \equiv 15$	$-1-14$	1	－134		$2 ?$
1	$105 \mathrm{C}$	1630	-1	：21	1551	-1	277	20？	2	-154		－41
2	－110	－－－¢							3	－13		4 is
3	$8 C$	－-73	$H=$	1.	$x=5$	$\mathrm{H}=$		$\boldsymbol{r}=7$	4	$-1 t^{1}$		1\％
4	1758	171%							5	-145		－－152
5	-112	－1．	0	57	－534	c	＜¢	こ92	c	-145		－215
6	22%	－－¢ ¢	1	212	$2-190$	1	\pm	Eヒ2	7	-146		109
7	－111	－：3	2	60t	－\＆eu	2	－11：	－1こ0	e	－1－3．2		－59
8	734	－7\％	3	－812	－－33	3	－1	－ここを	5	207		$-1=0$
5	707	70	$\stackrel{4}{4}$	－ 0^{3}	672	4	21	ことす	10	200		174
10	-117	7%	5	-124	，12\％	5	$: 8$	こここ	11	-146		－22：
11	－123	$3-76$	5	5×3	－-305	\dot{C}	\leq	ここ0	：2	$-1<3$		－10c
12	－ 136	2 $2=$	7	ミ・1	3 3～1	7	$\because 0$.	－Er	1.3	c30		301
13	－1 34	ごこ？	ε	22e	2 El	8	-135	47	14	－142		5
14	3：9	－$\because 5 r$ \％	9	－	1－E®0	＇，	$-2 \overline{1}$	－ $1 C^{?}$	-14	－1－2		15
$1:$	？ 28	－ 20	10	I＇1	11 13	10	2	－	－1：	-137		－
10	C． 19	$\because 03$	11	-236	＜$<$	12	－ 18	－42	-18	$\therefore 67$		-250
17	-1.35	－	12	323	$3-3 i$	12	Es	3 ぐも	－11	－ 4		201
18	197	－－¢	13	－± 3	；－	$1=$	$\equiv 1$	－－Ce	－10	-140		45
15	$-1 \div 1$	－18	： 6	－cs	－ 5 とう	11	ご，	－－icl	－ 5	305		$-2 \leq 7$
－19	-1.5	－-12	15	－28	\％－1ごつ	15	2	－シ	－${ }^{2}$	-1%		－ 11
-18	ここと	4	16	二は	－37．	16	≥ 1	101	－7	－ 270		343
-17	－130	1 S	1%	ぐこ	17：	－ 17	ć	－cio	c	こと		33 ${ }^{\text {e }}$
－18	$-1: 6$	－15	13	－－	370	－10	－149	－1：9	－5	-107		$-1: 0$
-15		－	－18	3：3	－－こちo	-12	-14.	21.3	－ 4	3.4		－33．
－14	264	ごう	-17	－： 3	$3-0$	－！	－1	－	－3	$-1=0$		－103
－13	-130	－1＂	－1\％，	，\because	$\cdots 442$	-13	－13	1－110	－$\overline{1}$	－1		55
-12	142		$-1 \therefore$	－：	：112	-1.	2？	2： 3	－1	155		$=84$
-11	-117		$-\therefore$	\therefore	－5．2．5	－1i	$-1=$	と ${ }^{\text {a }}$				
-10	-116	－－	-13	－1－	E．？	$-: 0$	$\therefore C$	－ 0.1 ，	H－	1.		1.7
－． 9	ごリ0	－－ 7	-13	－122	－－ 2	－9	$-1 \sim$	ह：				
－9	$-11<$	＜－1－5	－i：	$-2-2$	2．$-\ldots$	-8	＜． 3	239	0	251		1：2＂

1	$F 0$	$F C$	L	$F 0$	FC	1	FC	FC	L	FO	$F C$
	-130	－185	13	246	179	11	$-1: 0$	51	－1E	－146	82
18	－130	－127	14	2ヒ1	-300	12	－	-2 ± 0	-14	－13y	2
－19	－140	95	15	－136	-105	12	373	370	－13	－13\％	101
－1b	242	－21\％	10	-145	der	14	$\because 74$	310	12	230	102
-17	225	－273	17	－14\％	$1 \% 2$	$1 \leq$	-144	－171	11	－141	－18
-10	-136	160	18	－143	－ 10.5	10 -17	－1：3	180 -129	－＇	－125	110
-15	421	420 -2.6	－19	-14.3 270	244	－17	－14	367	－6	－140	207
-14 -13	302 -124	$-2: 18$ -1.7	-18 -17	270 -130	24 -25	-10 -15	－1玉7	49	－ 7	－1－2	-110
－12	－120	－4， 4	－16	421	－406	-14	378	-311	－ 6	-130	－22
－11	402	－409	－15	-135	-30	$-1=$	-1.8	15	－5	$-1=0$	2．ち
-10	-114	49	－14	2お垉	207	－12	<71	214		200	－5\％1
－9	516	$57 ?$	－13	－130	96	-11	$-13 c$	－196	2	4	－-480
－8	5 ± 4	－5？ 5	-12	220	24	－10	－	158	－2	－ 42%	-490 6.4
－7	172	$-1 \leq 6$	-11	－125	－	－9	-126	－ 7	－1	－129	6.6
c	653	$\leqslant 47$	－10	－1：1	－121	－8	526	－5c0			
－ 5	202	－220	－9	－119	－ $2: 4$	－7	≤ 18	523	$r=$	3． $\mathrm{ri}=$	9
-4	－112	－18	－8	548	608	－	$-1<6$	－AC7		-137	－79
－3	210	－161	－7	245	231	－5	$4{ }^{4} 7$	－4C7	0	-137	
－2	$0 \leq 4$	C10	－6	$\angle 43$	233	－4	¢7	－¢E2	1	228	102
－1	309	－コ30	－5	232	－ico	－3	316	514	2	－141	131
			－4	－110	－36	－2	E93	520	\cdots	-139	2
$H=$	3.1	$x=3$	－3	579	603	－1	－114	44	4	－13	－36
			－2	73 E	－778				5	\％	
0	-115	－9	1	85es	－2．50	$11=$	こ．	$k=7$	6	240	
1	331	－ 81				c	¢ コ	626	C	28.1	213
2	1140	1102	$\mathrm{H}=$	3.1	$k=5$	c	$4 \in 6$	－ 150	6	232	-157
$\frac{3}{4}$	298	－231				2	¢EE	－	10	－14\％	－c7
4	485	－．444	0	507	－574	$\stackrel{1}{2}$	2 \％\％	472	11	－145	67
\leq	428	428	1	219	4 47	$\overline{4}$	－ 4 ¢ 3	472 -11	$1 \frac{1}{4}$	－1：17	273
6	-112	55	2	940	Sc 7	4	－123	－11	12	117 -151	－70
7	102	72	3	－113	－47	5	－126	－36	13 -14	-151	-4
8	217	244	4	710	－713	6	-130	29	－14	$\cdots 2$	247
¢	-117	－29	5	－113	－152	7	1 ¢ $\frac{1}{5}$	-162	－12	－ 11.0	－4 ${ }^{1}$
10	328	260	6	230	－277	8	-135	－53	－12	－140	
11	257	250	7	$13!$	－154	\mathcal{G}	－141	32	－11	－140	－co
12	335	－ 509	8	3366	－ 348	16.	2C3	156	－10	-141	3
12	221	－22．2	9	$1{ }^{1} 7$	¢26	11	≥ 42	－ 235		$-1 \sim 1$	133
18	－138	153	10	340	－379	12	363	－318	－	－144	－
15	－137	193	11	－134	34	$1 ミ$	－143	154	－7	-142	101
16	-132	154	12	630	63	14	－140	155	－	2 c 3	158
17	－： 35	-83	13	－1．37	64	15	－143	-10	－5	－139	－170
18	－143	－76	14	218	－210	16	－144	－2		254	－245
-19	－140	89	15	－140	－214	－16	-143	－33	－ 3	255	329
-18	－138	13	16	－137	$7-57$	－19	－13\％	－ 5	－2	－1．3	4
-17	－135	－80	17	-140	－－	－10	－126	34	－1	2 2	－300
－16	－135	-153	-18	273	347	－12	$-1 こ ゙$	－ 57			
－15	－133	－57	－17	204	420	－12	≥ 43	－－C4	$h=$	1．k	10
－14	－132	59	－16	-130	－40	-11	518	24			
－13	316	374	－15	2．3	$3-240$	－10	314	247	0	266	-172
－12	330	－ごリ	－14	－130	－162	－ 3	$5 ¢ 1$	－55	1	－147	－10
－11	496	－ECS	-13	$-1 \div 0$	181	－ 2	－134	103	2	－147	0
－10	C3c	645	-12	－135	5162	－7	-133	110	3	－14\％	41
－9	35	こと 7	-11	-132	$2-27$	－ 0	274	-143	4	-147	－29
－8	－112	-34	-10	0.3	－-627	－5	－126	とC	ᄃ	115	-26
－7	－109	－78	－9	－115	； 39	－4	\％94	こニC	6	－143	10
－6	510	－555	－8	$90 \cdot 5$	5 ¢54	－3	448	－ 470	7	220	25
－5	－110	－103	-7	－113		－	C46	－－ 72	3	-1.27	－136
－4	275	－270	－6	200	053	－1	554	4540	9	-144	－4e
－3	－ 557	5C6	－ 5	－115	$5 \quad-7$				10	－145	35
－2	411	－ 30	4	358	$8-330$	$\mathrm{H}=$	こ．	$k=e$	11	－152	50
－	1845	\％－¢ ¢ 1	－3	－115	3191				－12	$-1 \frac{1}{5}-2$	52 97
			－2	1008	1015	0	330	412	－13	－1．2	87
$\mathrm{F}=$	3.	$x=4$	－1	243	$3-25 B$	1	104	－介し	-12	－1：4	244
						é	$-1 \geq 4$	$4{ }^{4}$	－11	－： 1	－1\％0
0	c 199	－－－ 05	$H=$	3.	$k=i$	3	-133	$3-17 c$	－10	$-1 \% 0$	－79
1	1549	－33：				4	－ 67	$7-131$	－	－184	－37
	2－109	－2．3	0	-118	3.96	\leq	－ 247	$72 C H$	－	27ゼ	－159
	$3-112$	$2-7$	1	30：	$\therefore \quad 260$		$-1 \div$	8104	－ 7	－ 14 ？	204
	4501	$1-\approx 10$	2	511	$1-58$		－1．40	C－1／\％	－0	-1410	64 -379
	5325	－-560	3	208	8204	c	－145	5 － 2	－	357	－379
	6359	¢ 389	9	65	9 çl		－142	$=65$	－	$-1 \leq 1$	－E
	7－117	7 85	5	088	$8-094$	10	－192	$2-79$	－	349	300
	－20	$3-100$	6	44？	$7-\boldsymbol{T}$	$1!$	-1 －	7 －	－2	－	327 -134
	524.	－ 316	7	372	2 ごiタ	$1:$	こく	¢－－		-145	－134
10	c 205	$5 \quad r .3$	8	4：3	3 － 1	$1 \equiv$	－14	$1-13$			
1	1288	¢－23！		－ 290	0 －ibd	14	－18．	： 18			
1	$2-137$	7140	10	-13	$3-106$	15	くコゝ	－5i			

1.	L	1 C	1.	$f 0$	$1 \cdot \mathrm{C}$	1.	$f \mathrm{C}$		16	L	$r u$	1 C
＇：	5．is	－： 71	－8	－1 jk	-174	－11	－14？		109	$\cdots 1:$	-138	$1 \cdot 2$
10	$\because 10$	－1．1	－ 7	－1．t．	1，3， 3	－ 1	$-1:-$		－＊＂	-11	－1＂：	1．1
11	．$*$	：14	-6.	$\therefore \therefore 1$	473	－2	-114		$-1 \cdot 0$	-10	－15：	－． 109
$1:$	： $6 \cdot 1$	$1{ }^{10}$	－－，	－ט心	－－U5	－5	$3+2$		－ck	$-r^{\prime}$	－1．$\%$	，${ }^{\text {c }}$
1.1	－：\because	101	－\because	Arec	$\cdots \square$	．．	-141		\therefore－	－ 2	211	1．1
16	－： 1.1	－． 1.1	\because	$? 10$	？ 5	\because	－${ }^{1}$		c． 3	－ 8	46，	－．14s
-16.	－11	－\％r	－	－7：	$\because 0: 1$	－	$-1 \therefore 1$		（3）	－ 0	－1： 6	1．6
－ 1.	－ג ごく。	－ 6.6	－1	301	\cdots－ 2 ¢	－1	$\because \because$		－－ 00	－ 6	－1： 1	1 （1）
$-1 \therefore$	\therefore ，	$\therefore 1.1$								－	$\therefore 51$	－0．11
－ 1.1	$\because 1$.	－\％	$11=$	9．1－	7	$11=$	S．	r．$=$	10	－3	801	$\because 1$
－：	－13：	－：＇								－ 2	0.16	709
－ 11	$\therefore: 1$	－ 13	0	423	308	0	－1AC		11	－1	ジッ	-31%
－ 16	－ 1 － 1	． 11	1	4：00	-1.20	1	$-1: 1$		－4 4			
－	－1．3	$?$	2	3．＇3	$-\geq 21$	$=$	$\underline{\leq} \leq$		－ 4	$1 \cdot$	10．1：	2
－ 2	j ese，	？${ }^{1}$	3	2 Cl	SOr	． 1	C＂${ }^{\prime}$		ごす			
$\cdots ;$	－1．${ }^{\prime}$	1．．	\therefore	－1．0	U：	1	-161		-21	0	4%	513
－ 6	$4 i$ ，	－A \％r	6	$2 \div 1$	－2 12	4	－14\％		-10.	－	$-1: 1$	＂
－！	－ 1.8	＇＇，	6	－1な 1	101	c	$-1: 6$		－ 2	3	$4 \cdot 3$	－4， 19
－	：	2.3	7	－1．3c	$\cdots 1<1$	－ 0	-147		F：c	3	－1－1	11．＇
$\cdots ?$	$20:$	$7!$	B	$-1 \therefore 2$	－$\%$	-8	-163		1 1－6．	4	150	181
	－ 1 二？	18	9	çil	\％$\because 8$	－	-142		－7e．	5	－ 0	- Fes
1	－120゙1	－ 20 \％	10	-1	$\begin{array}{r} 115 \\ -135 \end{array}$	－ 4	$\begin{aligned} & -1<2 \\ & -10 \\ & \hline \end{aligned}$		$\begin{array}{r} -14 \% \\ ? \end{array}$	6	$\begin{aligned} & -187 \\ & -120 \end{aligned}$	
$1:=$	9．$k=$	5	-14	24^{\prime}	$\therefore 0$	－－	$2 \leq 8$		18.4	¢	$-1=1$	－－－
			－：3	－14\％	-	－	－110		-16	5	－1玉d	100
0	：14 87	－－\％\％	－13	－14＂	－120	-1	2： 1		-1.7	10	－ 13.	53
，	1	－ 50	－11	－14．3	亏 \hat{c}					11	$-1 こ ゙$	-1.0
？	6，8．1	$\because 6$	-10	$-13:$	－5	$11=$	9.	$1:=$	11	10	≥ 10	$\cdots i$
3	$-1 \therefore 1$	$17 i$	－9）	－1 10	－40					1.3	273	234
\because	-130	$\cdots: 3$	－ 3	－13：3	-10.4	0	ご仿		-236	1%	$\cdots 14$	$\therefore 1$
6	－1．38	123	－$\%$	－137	$\therefore 8$	1	こ40			-10	$-1 \because$	$1 / 6$
C	－ $1 \therefore 6$	－－ 0	－ 6	－1．14	121	$\ddot{\square}$	こど号		くこ1	-15	－1－\％	－102
7	$\cdots 120$	1%	－\％	－1 $\because 1$	-145	－4	－1： 7		20	-14	-132	と． 3
1	－ 140	－-13 ，	－6．	302	$3=6$	\cdots	-1.46		-76	－13	－ 130	C1
\therefore	－81	－ 160	$-\because$	$\cdots 1 \therefore$	－141	－	－147		$\therefore c$	－12	－：5＂	35
1%	21.1	$\cdots 205$	－？	483	－4i4	-1	2 ¢		$\therefore \leq 0$	－11	－1 20	$? 00$
11	－i80	$\leqslant 0$	－1	211	$2=0$					-10	30.1	3）
1.	21：3	30				$n \therefore$	10.		0	－9	： 71	－1010
1	－1\％ 3	－： 0 ？	$1-=$	9．r．$=$	k					－3	4.	$\cdots{ }^{-5}$
－ 1 is	－18：	－3r				0	－1：		1： 1	－ 1	$\therefore 0:$	18，
－1：	－：${ }^{2}$	-81	0	290	－ 232	2	$-1-6$		160	－6	－1	$\because \because$
－1\％	－137	－130	，	－143	10.	4	$\because 24$		-328	－ 5	－1：7	－＊：
－！：	－1．7：	175	$?$	－1：3	176	e	472		－s．	－4	-1.1	19e
-13	－ $1: 1$	$1 \leqslant 7$	3	－14．．	$-1: 5$	5	？ 6		－$\therefore 3$	－－		－01
－11	-135	-4.1	4	239	－200	10	－130		－1．0	－	$\therefore 7 \rightarrow$	-21%
－11	－13 3	-10	\％	－1．30	sj	12	三er 6		41 ：	－！	E1d	－22．
－－	－1－51，	$\therefore 8$	U	－135	73	1\％．	1．8．0		－4：3			
\cdots	20	$\because 87$	7	-1.0	-100	-16	349		－-8	$1=$	：0．n	3
－－7	－19：	116	¢	-141	-1.0	－1．	－121		1 Co			
－ 6	－1．30	-11	${ }^{\prime}$	-14%	04	－12	-136		130	，	-120	1.7
－	－1．19	-176	10	$-1<1$	－2	-10	$\therefore 12$		－1 と	I	246	－210
－8	$1>5$	－69	$-1:$	$-1 \% 3$	-14	－	21，		¢ こ	\checkmark	$2 \div-$	$1: 3$
－ 3	$\therefore 16$	± 18	－11	-150	-83	－c．	≤ 00		－617	？	$-1 \therefore 0$	－：．${ }^{\text {a }}$
	$-1: \%$	－10：	－10	20゙	-123	－4	c． 78		C01	4	－180	33
－ 1	－ 130	78	-5	-1.31	104		170		－¢3．	$\mathfrak{6}$	-1.4	E：${ }^{\text {a }}$
11．	1．$K=$	－	－8	－101	－1i2	H	10.		1	4	210 37	－
			－6	-140	－ 20.5		，			，	212	-178
$(1$	-121	－：in	－	$-14{ }^{\prime}$	．2．14	C	15今		－－	5	－1	1：${ }^{\text {1 }}$
1	－：$\because \%$		－ 8_{0}	-141	$-1 y 0$		C： 1		$1: 3$	10	$\therefore \square^{4}$	$\therefore 71$
\therefore	－\％	$\cdots{ }^{-9} 1$	－ 3	－－it	-131	¢	$\therefore 20$		$1: 2$	11	$-1 \therefore 2$	－1：
\therefore	＂i゙．	1：${ }^{1}$	－？	903	$\therefore \therefore 0$	\therefore	1＜		－：\because	1%	-120	$-1 y=$
4	－1－9	180	－1	\％ 08	\cdots	\％	－1．			12	$-1-1$	51
5	－：$: 1$	－e， 8				\subseteq	－1．		1ここ	－1e	－ 1.3	－1：
c	$\cdots{ }_{6}{ }_{6}$	－－\％	y $=$	＇7． $\mathbf{x}^{\text {a }}=$	9	（	＜－		-2.	－1	＜30	？ 0
7	-1.1	1／21				7	－1－		73	－1\％	¢ ${ }^{\text {a }}$	-10
＊	？： 3	\cdots－	0	$25:$	$-21,1$	9	－32		${ }^{\text {J }}$ ．\cdot	－12	$\because 1$	$\cdots 3$
4	－：3＂3	10.1	1	360	352	5	－1．2i		－i ${ }^{\prime}$	-1.	$\therefore-6$	－： 14
$1($	－16．1	－．$\because \%$	？	－1＊	\therefore	10	cy＇，		－． 7 ：	－11	$\therefore 1$	？
11	－14．	17\％	3	－1．0	$-1-3$	11	$-1.3=$		1 com	－10	－1：1	： 50
13	－14．1	－7\％	？	－13\％	14	12	＜11		100	－$>$	－1：	－1\％i
－1：－	－：48	－ 6.0	5	－14\％		1%	－1A：		－1：	－ 0		？${ }^{\text {at }}$
-1.1	呺1	-21	is	－： 23	2.3	1.4	－14．		－4．	－	－1－3	－1：
-13	－1 ${ }^{\text {？}}$	$\because:$	7	－1．0．	2	－1i	－14：		1：	－c	-12	－
$-1:$	－1．1．	1：	81	－14，	－『 ${ }^{\text {c }}$	－1c	c！		$\therefore:$	－	$\cdots{ }^{2}$	at 6
－11	－：33	，	－11	-1463	－ 2.3	－：	－12．			－	$\therefore 3$	\therefore ！
-10	－1．0	e 3	－10	-141	－$\because, 0$	－1．	－17e		-1.7	－？	－1：${ }^{\text {a }}$	i
－	－136	-172	－9	－162	$1 \cdot 2$	$-1=$	－1－1		－こり	\cdots	365	$\cdots-20$

1.	10	FC	1	1u	FC	1	10		IC	1.	f		C
－13	204	-105	C	3：0	－24．8	e	$\because 90$		$\because 4$.	－2	-134		1 $\because 8$
-10	－1：31	－ 86	7	2．＇	$\because 7$	7	-1.3		－6\％	－1	－1－8		－ 18
－11	－1．1．7	1．2	8	－14＊	11．：	c	18 is		10				
－10	$3 \cdot 7$	ごい	\％	\％as	-1101	4	-143		14.5	$1 \cdot=$	12，	．$=$	4
－9	-131	－11	－ 12	$-1: 3$	18	10	-137		－36				
－ 8	33：	-273	-11	－1．6	-25	11	-141		－ 34	0	－130		－－ 0
－ 7	－115	（16）	-10	－12 1	23	－：${ }^{\text {d }}$	－1．91）		0%	，	41.0		－－5？${ }^{\text {a }}$
－U	－1．3．	－17	－ 11	－1．40	2：	－1\％	-14.1		C	－	$-1 \div$		$1:$
－ 6	1：3	175	－\＆	－ 131	－130	-13	－1．1．		$\because 2$	3	-15		87
－ 1	-1.3	50	－ 7	-137	－6． 8	－1：	－13		－．\cdot	4	－1－4		21＂
3	－is 8	－15\％	－	\therefore 做	883	-11	$-1-2$		tu	\checkmark	－1．1		－0
：	3e 3	-354	-5	-137		-10	$-1=2$		-111	c	－1－		$-{ }^{-5}$
－1	-136	-193	－1	$\therefore 0$	－1ras	－9	$\because L$		－2i3	，	－1：		－3i
			-3	－130	－3	－8	－-0		41	ε	－ 20		－\because
$1:=$	11，K＝	！	－？	$\begin{aligned} & -140 \\ & -1430 \end{aligned}$	$\begin{array}{r} 23 \\ -203 \end{array}$	－－	$-1: 2$ -150		！	5	－12：		1．12
0	$9 \% 1$	$\pm 7 \%$				－	$\ldots 140$		175	－ 16	－！		17
1	－130	－ 110	$1^{-1}=$	11．1．$=$	3	4	$\because 41$		20 is	-13	20\％		－ce，
？	－130	$-1: 6$				2	-1 こ¢		-131	-1%	－1．34		$\because 0$
3	ces	－ 550	0	$\therefore 30$	210	－2	（ $2:$		－ 4.5	－11	－1．34		100
4	－1．39	-105	1	-141	－1： 11	－1	$-1 \equiv 1$		5	-10	$-1-1$		－180
6	－1．8e	$i: 7$	$?$	-14.	－1： 5					－5	－1 10		－1ソ吴
${ }^{1}$	$-1 \sim 6$	1617	3	－1\％	2\％	$H_{i}=$	こ。	$r=$	？	－ 8 ！	20：		\bigcirc
7	-132	と．ε	${ }^{1}$	－10：	113					-7	－1		47
ε	－1．50	－124	5	－1＜．	－30	0	835		－832	－G	311		$: 80$
9	$-1 \therefore \%$	-5.3	\cdots	-149	$1: 0$	1	-134		¢ ${ }^{\circ}$	－5	－： 29		：$\%$
10	－14	15%	7	-143	－59	\％	$-1=2$		40	－4	－14．0		－2\％
11	$\therefore 76$	： C 7	-10	-143	¢：	3	-134		-173	－ 3	40 O		－－，y
-14	234	170	－－9	2：0	-1.0	4	－1\％		105	－2	－－1．${ }^{\text {a }}$		－41
$-1=$	-183	－5	-5	-146	$\cdots 124$	\pm	-1 ± 1		34	-1	$7 \cdot 4$		（1） 0
－12	\therefore－	－2：3	-7	26.	184	\mathcal{C}	151		－153				
－11	－137	-137	－0	-138	－35	7	-150		－44	$1=$	12．	$15=$	5
$\cdots 10$	-134	150	－¢	-130	－64	צ	－1 ¢		167				
－8	-137	112	－4	-143	9	9	－134		0	0	224		111
－ 2	-140	0.1	－ 3	$-1: 0$	－75	10	-145		－1ce	：	－1－1		$?{ }^{2}$
$\cdots 7$	-130	-10	$\cdots 2$	-141	－2．0	11	270		＜C8	2	－1．17		－$: 0$
－${ }^{\circ}$	-1.3	56	－1	-140	1＊5	－15	－ 142		-3.1	3	-135		－6．）
－5	－1 3 ？	-5				-14	-142		－14．4	4	-1.1		－ 4
	－ 13	1：5	$1:$	11．$k=$	4	-12	$-1-3$		4	2	－1． 18		1／10
－j	-137	-3				－1\％	－1		$1: 0$	co	－14．		－－！${ }^{\text {a }}$
－2	¢se	－beic	0	-145	-164	－1：	－1： 4		－ 0	7	2\％3		－－8．8
－1	431	426	1	-140	－	－1c	$-1=3$		－¢．${ }^{\text {c }}$	8	$-1=1$		＜， 6
			$?$	－14c	1：3	－	-153		11	9	$-1 \leq 5$		11.2
$1=$	11．$K=$	0	3	-140	-48	－ 5	-134		－Ci	-13	－ 14.8		1 1
			4	－1 10	-2.1	－7	-12		－：	－jo	－11，		2
	51.9	－6？ 5	－ 7	－14y	－1：	－	-124		153	－11	－ 1.70		－
1	202	249	－6	$-1 \div 0$	－\％	－－5	-120		？	－10	2c．		1－8
2	30.7	254	－5	24c	2 O	－	2：		-187	-5	-1.70		－1
3	-135	－Ec	－ 0	$-1<1$	－13	－	-134		4	－ 8	Pig		－5，
4	．114	－330	－3	21．4	－！，！	－	－Cと		k11	－ 7	－1．1．		－： 2.0
\pm	－1．10	5	－2	-143	－29	-1	≤ 57		$-\Sigma \pm 1$	－6	－－1：		1．A
6	-138	$1: 6$	-1	-144	$1 \geqslant 0$					－	－12		为
7	225	－ 96				$\mathrm{H}=$	1．．	$k=$	3	－ 4	－13		-10
8	-160	-53	$\mathrm{N}=$	12．n＝	0					－3	$2 i 1$		－．33
5	-1×3	－ 515				0	-135		124	－	$\pm 6 \cdot$		$\cdots \cdots 1$
10	－143		0	94\％	syl	1	－12		－1\％5	-1	3：		
－1．1	-168	-103	2	－13．3	－130	2	-141		－74				
-12	-10	C	4	－1303	13	3	$-1=6$		-32	n：	12.		6
－11	－133	-3	6	$8 \therefore 0$	-216	4	-135		5%				
－10	－i30	-5	－	$-1 \% 1$	3	$\stackrel{\text { c }}{ }$	-1.7		－101	0	－：30		-73
－ 5	－130	d0	： 0	－14．3	： 86	c	-123		－41	1	24．0		＝ 7
－8	－13	36	1：	$2 \cdot \pm 4$	－2こ？	7	15？		is	c	-12		－1．
-7	$\cdots 135$	-67	－： 2	－1．1．	4	を	－13，		－6．	9	208		－：＇＝
－ 0	21：	－1－：	－：${ }^{2}$	1りま	121	8	－135		－ 3	4	－1．2も		1． 1
－5	－1．1	－21	－： 3	－1号	－1	10	-135		10	5	-1.1		20
－4	-130	175	－ $8:$	-125	－：50	11	-146		－1120	c	\therefore－		－：
－ 3	-10 －	-108	－\％	－1．31	：	－1．8	－14．4		－：1＇，	7	－14i		110
-2	320	＜$\because 1$	$\cdots{ }_{6}$	3：30	209\％	$-1 \pm$	こr：		173	c	－110：		－ 0
－1	-137	-23	－8	11： 2	1 Cos	－！	$-1-2$		－	-1%	-14.3		-1 －
$1=$	11．$n=$	7	F＝	12，$\times=$		－1：	－1－2		－ 2	-11	－1		－61
						－5	－$\quad \therefore \mathrm{Cc}$		－$\quad 7$	－18	－1 cil did		C－C．${ }^{1}$
0	2．：3	2＇tis	0	－1．10	$10 \cdot 4$	－3	－124，		－1：3	$-e$	$\because C$ co		－． 3
1	-137	17	1	－1．31	－．？	－ 1	こ：7		± 1	－－	－1 \because		
$?$	－30	-360	？	－： 31	$\because \%$	－ 0	－13．		17%	－u	－18：		20：
3	-1.39	$\stackrel{ }{ }$	3	8．${ }^{1}$	2いて	－ 5	-130		－ 07	－：	－1 -1		－！ 20
	-137	1\％		－133	－： 01		$\therefore=0$				$-1 \div$		
	-140	－ 10.4	5	－1－90	112	－3	4.1			－ 5	－1－8		$\because 3$

1.	FC		1 C	1.	$F \mathrm{C}$	FC	1.	$1 \cdot \mathrm{C}$		$f \cdot$	L	FO）		1 C
－2	102		73	$\mathrm{H}=$	13．k＝	0	5	－13n		－177	2	-135		-11
－1	304		-203				\bigcirc	－153		－16	3	－1：0		-20 124
					-136	－06	7	259		252	4	－155		124
$\mathrm{H}=$	12．	$k=$	7	3	202	98	d	-138		-51	5	230		－13
				5	-136	161	5	とこコ		-150	6	-141		－206
0	193		128	7	207	－190	10	－113		位	7	$-1+1$		-77
1	200		-106	9	212	100	－12	-138		110	と	－1：\％		10
2	-143		127	-13	－180	32	-12	-103		－1：0	9	-143		66
2	205		135	-11	－130	331	－11	148		－100	－1？	$\cdots 145$		100
4	-142		－67	－ 3	－134	-100	-10	－133		127	－：1	－ 140		44 -43
5	-163		-48	－7	-134	0	－ 5	－ 1 三：		55	-10	-140		－－： 5
6	－ 14 く		141	－5	$-13: 3$	30	-8	$-1 こ 6$		－150	－9	2．04		204
7	－14《		－10	-1	Ud3	－ 074	-7	-134		55	－-7	－130		70
-10	-1.14		7	－1	$+30$	442	－c	－ 1		－ 35	－ 7	－154		－20
－9	-1 \＆ 7		-1 ¢				\cdots	± 90		－コ7C	－6	$-1 \div 3$		15%
-8	-140		17	$1=$	13．$k=$	1	－4	二 3		143	－5	-140		－？¢ \％
－$\%$	209		270				z	ECE		EE¢	－4	500		－404
－c	-140		-100	0	-132	－13？	－2	§44		－280	－3	230		106
－5	-1 is 3		－1：05	1	-133	117	－1	－ 138		-173	－2	4 CO		423
－4	-139		14.4	$?$	-130	65					-1	260		15
\％	201		164	3	285	－2044	$1:=$	$1 \pm$ ，		3				
2	－134		-102	4	－135	19					$1 \cdot=$	13.		5
－1	-137		-72	5	293	254	0	202 -12		－223				
				6	-138	$-1: 9$	1	－133		-117	0	－135		-57 -143
$\mathrm{H}=$	12.	$k=$	8	7	-135	-128	2	-137		150	1	-134		-143
				8	209	111	$\bar{\square}$	-136		29	c	－13		6 4
0	258		-195	9	-138	24	4	く 5		-245	3	－1		： 5.3
1	2：12		-125	10	－140	－37	5	－134		－74	4	240		ced
2	-147		63	－14	$-1+6$	-3.3	C	213		246	5	－138		－ 0
3	－141		28	-13	-139	5	7	-140		-100	c	250		
4	-144		-42	-12	-139	106	8	－141		cs	7	－143		111
5	$-1 \leqslant 0$		171	-11	－136	-195	9	－14．4		64	8	257		99
－8	2．${ }^{\text {¢ }}$		14.3	－10	－13	-16	$-1 \approx$	-132		-33	-11	-14.2		－12
－7	-18%		－．．10－1	－9	266	290	-18	$-1=9$		123	－10	-141		149
-2	-143		20	－8	$-1=0$	－ 8	-11	－141		109	－9	-140		C．
－5	－140		144	－7	-130	－110	-10	－153		－137	－	-143		－2e：
－4	－144		-194	－5	－132	－2	－			-205	－8	-142		10 293
－3	176		$-10 ?$	－5	271	169	－	－135		－10	－ 0	318 -14		293
－2	-1.8		195	－ 4	218	-310	－ 7	-120		152	－5	－134		121
－1	25.		1 kS	－3	258	－ 257	e	＜ 40		－274	－4	241		－\％${ }^{1}$
				－2	220	270	－5	410		-417	－3	-138		－ 007
$H=$	12.	$k=$	9	－1	277	-126	－4	$\begin{array}{r} -135 \\ \subseteq 47 \end{array}$		509	－2	$\begin{array}{r} -175 \\ 315 \end{array}$		$\begin{aligned} & 140 \\ & 288 \end{aligned}$
0	$-15!$		55	$1 \cdot=$	13，$k=$	2	－2	-143		273				
1	－145		－74				－1	$- \pm 30$		-252	$1=$	13.		ε
－ 4	-1 ± 1		－ 96	0	210	78								
－	-16		-96	1	226	-193	$\mathrm{H}=$	1ミ，	$k=$	－ 4	-10	$-14 \dot{r}^{3}$		13
－2	－150		？ 8	$?$	－13！	－64					－9	-141		-123
－1	－1 -0		81	3	－130	29	0	2！0		－2ab	$-\varepsilon$	-143		35

Table B-2
onsorved and Calculated Struchure Factors for [Co(Hamg) 2^{-1} $\left.(\mathrm{c}] a \mathrm{n})_{2}\right] \mathrm{Cl}$

L	FO	FC．	L	FO	$1: C$	1	FO	FC	L	FO		FC
			0	155	-143	$\leftrightarrow=$	0．$k=$	0	6	15		-6
$\mathrm{H}=$	O．$k=$	0	1	134	－1：30				7	238		230
			2	40	35	0	26.2	203	0	241		254
1	765	730	3	95	－\％¢	1	31！	≥ 75	5	14		$8 \cdot 2$
$?$	409	420	4	2．8	30	2	299	05	10	2¢\％		\％ 3 \％
3	137	121	5	118	-113	3	817	2．8	11	1%		1.31
4	206	17%	\bigcirc	205	270	4	195	197	12	189		$15 y$
5	43%	＜ 35	7	140	137	5	128	131	－13	122		126
6	48	35	8	135	131	4	172	172	-12	42		41
\％	357	34.	9	15.4	1ど号	7	4.3	48	-11	147		15
ε	75	73	10	00	6． 1	8	70	74	-10	135		19.8
9	229	219	11	95	95	9	685	63	－9	111		110
10	55	${ }_{5}{ }^{5}$	12	-12	-10	-10	131	130	－8	3E5		367
11	230	220	-10	（i）	－ 69	－9	42	91	－7	231		23.3
12	10.3	108	-1	-12	-15	－8	101	99	－6	414		$38^{3} 4$
13	43	3.79	-10	42	-4.4	-7	75	70	-5	24		25
			－0	1：35	133	－ 0	： 40	181	－ 4	311		360
$H=$	c．$r=$	，	－ 5	117	1：7	－ 5	200	20.	-3	30		－2．1
			．． 7	116	11.3	-4	17 c	178	－2	43		¢
0	651	C．38	－6i	15	23	－3	？ 28	228	-1	05.3		627
1	426	400	－5	23%	233	-2	150	128				
2	345	309	－4	173	16.3	－1	185	139	$11=$	1.	$k=$	1
3	177	16%	-3	41	29							
4	235	－ 217	-2	304	-293	$11=$	O．$k=$	7	0	23.8		-220
5	172	161	－1	236	－225				1	96		94
6	315	-270				0	76	78	2	315		-301
7	<2.6	$19:$	$\mathrm{H}=$	O．K	$k=$	1	27	28	3	110		-115
8	$\begin{aligned} & 101 \\ & 6, C \end{aligned}$	$1{ }_{5}^{1}$					59	58	4	343		330
9			0	211	153	3	124	12.3	5	72		－5！
10	290	103	1	1.1	$1 \geq 1$	4	97	100	6	233		217
11		83	$?$	333	3 332	5	54	48	7	34		12
1 ？	178	177	3	2：5	234	6	-11	\bigcirc	8	23%		2811
13	21	$\begin{aligned} & 1 \\ & 4 \end{aligned} 7$	4	202	201	7	12	37	5	－11		11
-13	53		5	32：	3 3 －	8	110	112	10	127		127
-12	46	-48	8	132	111	－ 5	-12	2	11	11		3\％
-11	101	103	7	20 수	159	－3	-11	10	12	-12		－4
－ 10		$\begin{array}{r} 15 \\ -6 \% \end{array}$	8	6.8	－ 07	－7	-11	－2	-13	$-1 ?$		13
－9	$\begin{array}{r} -14 \\ -67 \end{array}$		9	138	130	－6	-11	－7	-12	1.0		60
－8	$\begin{array}{r} 67 \\ -12 \end{array}$	－ξ	10	60	58	－5	C9	68	－11	100		95
－7	$\begin{array}{r} -12 \\ 31 \end{array}$	1	11	13%	137	－ 4	－14	211	-10	144		140
-6	55.5	519	-12	104	107	-3	2.42	2×7	－9	173		-173
-5	231	216	-11	104	105	-2	126	12%	－8	iもb		$17 ?$
-4	$\begin{aligned} & 365 \\ & 103 \end{aligned}$	337	$-: \underline{0}$	146	－ 147	-1	C1	c． 4	－7	55		53
-3		-103	－9	224	230				－5	8 E		63
$\begin{aligned} & -2 \\ & -1 \end{aligned}$	$\begin{array}{r} 103 \\ 04 \end{array}$	-73431	－8	75	－ 73	$11=$	O．$k=$	8	－ 5	104300		－164-370
	443		－ 7	194	140				－4	396		
			－6	160	155	0	104	111	－ 3	235		292
Hニ	0．$k=$	2	－5	210	－ 214	1	07	56	-2	176		-174
			－	203	3285	2	93	99	－1	420		c．21
0	475	-471	－3	31	30	3	111	112				
1	394	367	－2	21	19	4	103	100	$h=$	1.		2
2	254204	－79	－1	112	-102	ε	54	57				
3		198				6	so	90	0	413		394
4	$\begin{aligned} & 140 \\ & 40 \end{aligned}$	$13^{2} 1$	$\mathrm{H}=$	0 ，	$k=5$	-7	\＆3	83	1	59		53
5		－36				-6	E 1	52	2	411		$3 \rightarrow 2$
6	$\begin{array}{r} 40 \\ 48.7 \end{array}$	\therefore a	0	－10	\bigcirc	－5	79	78	3	$\varepsilon 1$		と5
7	48.7 269	－56	1	271	26,6	-4	151	194	4	284		2！
8	$3: 0$	303	2	193	3150	－3	280	＜8？	5	37		36
9	$\begin{aligned} & 115 \\ & 2< \\ & 2 \end{aligned}$		3	Es	94	$\rightarrow 2$	$2 ; 3$	270	4	$24:$		275
10		$\begin{aligned} & 1.4 \\ & 29 \end{aligned}$	4	56	3 54	－1	142	193	$?$	154		1203
12	$\begin{aligned} & 74 \\ & 61 \end{aligned}$	78	5	138	140				8	213		2ご
12		8：7	6	93	3 yl	$1=$	c．$k=$	4	${ }^{8}$	322		323
-12	$\begin{aligned} & 41 \\ & 34 \end{aligned}$	38	7	21	20				10	81		79
-12	3.4 52	47	n	54	3－61	0	-11	5	11	70		72
－11	36	38	c_{i}	51	－-2	1	－11	17	12	7		－ 73
-10	102	103	10	28	－	2	25	30	-12	7		74
－9	-14	21	-11	92	2 O4	-3	24	24	－12	12.5		131
－5		241	-10	195	5150	－2	45	45	-11	110		113
－7	6.7	73	－9	90	） 93	－1	20	29	-10	20		-27
－6	4．80	472	－ 3	16	－－9				-5	145		？ 41
－5	587	512	－7	20	－ic	$M=$	1．$k=$	0	－9	1 E		130
－4	476	$4=9$	－ 6	61	1 1，0				－7	20.0		2600
－3	450	$4 \leq 0$	-5	00	53	0	2，08	676	－6	119		$1 \% 3$
－2	2こ5	2：9	－	34	－30	1		22.	-5	14		100
－1	673	C6， 3	-3	73	$3-72$	2	93	40	－4	44		-37
			－2	38	42	3	c 71	cs 1	-3	300		83．
$H=$	0，K＝	$=3$	-1	25	－－1\％	4	337	33^{4}	－2	300		P）
						\leq	520	491	－1	36		$\therefore 3.3$

L	FO	FC	L	FO	$F C$	L	F0	FC	1.	FO	F．C
－4	A． 31	29\％	-11	17%	178	-11	-11	2	-5	6.2	60
－3	1：3．5	1 cct	-10	－1：	H	-10	co	61	－4	137	132
－2	1301	129	－9	42	41	－9	170	173	－3	209	2.15
－－1	189	167	－8	$4 \cdot 8$	$-4,2$	-8	34：	5\％	－ 2	$1 \sim$	143
			－7	57	102	－7	364	349	－1	（1） 3	83
$\mathrm{H}=$	1，$=$	-1	－6	87	-85	-6	2．c3	200			
			－5	24	－16	－5	24．6	＜91	$\mathrm{H}=$	2．$r=$	-9
0	87 \％	$85 ?$	－4	50	5 ？	－2．	179	180			
1	0,7	-00	－3	305	394	-3	＜ 10	2.24	0	$2 i$	16
2	$1 ? 0$	110	－？	90	29	-2	80	87	1	－： 1	4
3	112	112	－1	9.9	-82^{4}	－1	171	175	2	（1）	－26
4	85	－．71							－3	33	31
5	400	389	$1 \mathrm{H}=$	2． $\mathrm{r}=$	2	$r i=$	2．$k=$	5	－2	38	35
6	19	23							－1	17	16
7	130	135	0	© $)^{1}$	445	0	35	35			
8	-10	20	1	172	181	1	6.4	62	$\mathrm{H}=$	2．$r=$	－8
9	225	222	2	232	275	$?$	95	102			
10	46	45	3	244	238	3	112	108	0	79	Q1
11	105	$10 \cdot 6$	4	107	-100	4	149	150	1	79	153
12.	87	92	5	1：7	153	5	212	210	2	96	100
-13	43	40	6	180	-17 ？	6	$1 \leq 0$	15，0	3	114	1：3
－12	18	－6	7	271	28.6	7	43	38	4	101	193
－11	62	61	9	$1 仑 7$	189	\％	73	65	5	115	113
-10	15	20	9	16%	159	－： 1	23	23	6	130	$13 ?$
-5	359	350	10	¢0	85	－： 0	-11	6	－7	102	105
－ 8	130	170	-13	95	103	－9	27	32	－6	120	1－0
－7	316	302	-12	70	2．？	$-¢$	32	29	-5	ct？	83
－6	E\％	－98	－11	103	107	－7	117	121	－4	69	72
－-6	45	－33	-10	77	¢0	－i	104	102	－3	65	¢35
－4	47	－5？	－9	ごす。	255	-5	63	0.5	－2	－	$10 ?$
－－3	18	3	－8	141	147	－ 6	40	to	－1	100	103
-2	7.34	CES	－7	$18:$	178	－ 3	-10	$-\epsilon$			
－1	106	－：77	－6	$\begin{array}{r} 170 \\ 88 \end{array}$	$\begin{array}{r} 162 \\ 95 \end{array}$	$\begin{aligned} & -2 \\ & -1 \end{aligned}$	$\begin{aligned} & 34 \\ & 79 \end{aligned}$	$\begin{aligned} & -22 \\ & -80 \end{aligned}$	$H=$	2．$\div=$	－7
$1:=$	2．ri＝	C	-4	679	670				0	37	35
			－3	531	Sta	$M=$	こ．$k=$	6	1	46	51
0	254	232	－2	072	6.6				2	57	62
1	$4{ }^{3} 5$	く67	－1	319	301	0	164	159	3	79	－ 6
2	301	28＇				1	176	178	4	51	52
3	196	184	$1=$	2．$k=$	3	2	177	182	5	20	26
4	42.3	413				3	195	203	ϵ	32	32
5	119	120	0	105	-106	$\stackrel{*}{*}$	1.7	$14 i$	7	44	45
6	438	$4: 0$	1	72	7 ？	5	160	107	－9	20	28
7	93	97	2	102	130	to	49	0.7	－	$\therefore 7$	45
8	121	121	3	150	152	i	65	89	－7	61	cis
9	108	-120	7	43	－3？	-10	113	110	-6	－1：	－5
10	-12	－c	5	120	－1：3	－9	53	95	－5	10	-20
11	85	$5 ?$	6	32	36	－8 8	44	4.7	－4	-11	-15
-13	48	4ε	7	221	2：7	－？	04	64	－3	23	－25
-12	79	84	8	185	163	－5	59	59	-2	-11	-1
－11	119	177	9	47	47	－ 5	55	94	－1	19	7
-10	329	ご8	10	いいで	150	－4	43	40			
－9	35	133	$-1 ?$	-18	\bigcirc	－3	35	28	$r=$	2．$k=$	－6
$-\varepsilon$	193	195	$-1!$	47	－49	－2	179	159			
－7	1 \％	－${ }^{\text {－}}$	-10	8？	78	-1	161	152	0	40%	415
－6	22	13	－9	192	197				1	316	313
－5	272	2：	－ K	304	318	$14=$	2．15＝	7	2	165	162
－4	－94	-25	-7	1 CO	109				3	129	122
－3	308	350	－c	≤ 0	64	0	38	34	4	152	155
－2	06	$5{ }^{5} 3$	－5	4.3	65	1	5%	C3	5	150	153
－ 1	534	≤ 24	$-i$	203	$? 01$	2	1：6	$11 \sim$	6	73	7：
			-3	$1 \because 5$	102	3	124	129	δ	$4 \cdot 3$	42
$1+=$	こ． 0	1	－ 2	$? 09$	76s	4	$38:$	35	d	－11	7
			－1	335	374	：	57	－54	9	22	25
0	678	c－3				－	－11	2．	-10	52	95
1	18%	176	$M=$	2．$k=$	4	-7	-11	－6	-7	103	100
？	201	174				－C	－11	－ 4	-8	1：3	157
3	179	-150	$?$	42	97	－ 5	-11	－－	－ 7	157	：05
4	24	-18	1	205	250	－-	55	－50	－0	－ 8 S	＜0
5	101	－988	$?$	30.3	300	-3	21	15	－5	：17	1：3
6	$? ?$	－21	3	231	231	－2	co	20	－4	100	$r \cdot 7$
7	B2	8.3	4	2 2． 3	$2: 2$	－ 1	43	45	-3	117	115
8	48	48	5	40	$4 ?$				-2	$1 \% 0$	10
5	78	！？	6	340	332	$H=$	2．$k=$	8	－1	170	175
10	11%	-117	7	104	169						
11	50	56	8	1%	140	0	74	76	$r=$	2．ド＝	－5
-13	-12	－？	7	10%	173	1	75	8%			
-12	$\triangle 0$	43	-12	6．\％	62	2	109	109	0	36.4	370

L	FO	rc	L．	FO	FC	1.	10	F－C	L.	FO	FC
2	110	113	4	218	220	4	211	2.15	7	$4{ }_{4}$	47
3	37	88	5	$1{ }^{\circ} \mathrm{C}$	120	6	EJ	US	-12	56	Sil
4	1.6	42	6	178	162	6	230	2.49	-11	－ 52	95
-6	67	91	7	176	17%	7	180	－103	-10	とiz	78
－5	9.3	98	0	121	120	ε	6%	－03	－9	？も	35
－ 1	1.54	13 3	9	170	1） 3	9	-11	－85	－8	E3	01
－3	171	157	-12	15	15 ¢	10	23	25	-7	10%	172
－2	215	$\because 8$	-11	173	1 を6）	-13	29	40	－6	120	1\％3
－1	118	117	－i0	L． 1	53	－ 12	-12	15	－5	134	$1: 3$
			－9	勺7	£． 7	-11	$4 ?$	－48	－4	C3	60
$H_{1}=$	3．$R=$	-7	－8	$4 \cdot 7$	39	$\cdots 10$	169	161	－3	36\％	378
			－7	125	12%	\cdots	-11	2	－2	？ 27	2：1
0	35	3？	－6	！Б2	148	-2	cos	t， 5	－1	COE	204
1	27	28	-5	157	15i，	－7	$10 c^{\circ}$	102			
2	3.3	37	－ 4	03	EO	－t	1605	185	$1:=$	A．$K=$	3
3	46	45	－3	109	105	-5	－ 76	305			
4	-11	1	－2	343	336	-4	112	－114	0	-10	－6
5	－11	3	-1	383	353	－3	150	1 ごっ	1	10%	－100
0	20	27				－8	168	105	2	27	－20
－0	1 1）	$1<6$	$\mathrm{H}=$	3．$K=$	-3	－1	150	123	3	17	-14
-7	115	125							4	25	10
－6	17	14	0	197	202	$11=$	\＆．$K=$	0	5	91	90
－5	$-1 i$	－ 0	1	47	9 9				6	-12	1.4
－4	A1	40	2	142？	145	0	219	212	-11	32	32
－3	125	128	3	2.03	25.4	1	231	$? 34$	-10	36	-41
－2	132	135	4	23	29	2	200	200	-9	33	30
-1	24	こ2	5	\％5	21	3	402	35 シ	－3	19	-9
			6	20	-38	4	205	205	－－7	39	37
$\mathrm{H}=$	3．$k=$	-5	7	62	62	5	411	425	－6	-11	24
			8	62	62	0	124	120	－5	65	－52
0	283	28：3	3	130	143	7	69	60	－4	153	100
1	189	135	10	124	113	6 -8	107	108	－3	228	231
2	144	175	-12	103	（3）	$-1:$	150	$1 \leqslant 3$	－2	212	214
3	173	171	-11	c6	49	-11	1 EO	176	－1	61	61
4	159	106	-10	15.3	－124	-10	133	14.4			
5	156	157	-9	＂3	i 4	－9	165	159	$\cdots=$	＊．	4
6	70	63	－3	18	-15	－ 8	122	125			
7	90	81 ？	－7	-10	19	-7	110	105	0	122	123
-10	97	106	－6	32	-24	-6	247	233	1	40	\％ 8
－－	107	1×9	－5	71	-72	-5	1：3	141	2	109	－115
-8	300	± 04	－	188	114	－4	2：？	262	3	17	13
-7	E， 77	3812	－ 3	32	-23	-3	159	1501	4	63	33
－6	216	217	$\cdots 2$	125	132	－2	320	こ1\％	5	1：3	1！7
－5	136	139	－1	103	102	－1	2 O is	199	-10	\bigcirc	E5
－4	133	128							－9	137	139
－3	185	$12 t$	$1 \cdot=$	3．$n=$	-2	$11=$	4．$k=$	1	－8	177	18
－2	62	5？							-7	147	$1: 6$
－1	105	161	0	30	39 209	0	181	176	－6	102	96
			1	200	2.02	1	183	185	－5	102	96
$H=$	3．$Y=$	-5	2	152	142	2	142	$1<4$	－4	2：33	2＜
			3	29\％	307	3	－20	23：	-3	55	$8 \cdot$
0	96	98	4	280	273	4	264	2 C 5	－2	150	1 E＇t
1	74	75	5	150	201	5	100	100	－1	250	254
2	86	88	6	55	44	6	－11	5			
3	104	104	7	30	-2.3	7	-11	0	$H=$	4． $\mathrm{r}=$	5
4	217	2．0	¢	8%	76	0	1：0	11%			
5	130	131	9	62	63	－：？	03	08	0	85	89
6	． 60	58	17	120	$1: 2$	－11	79	74	1	－1：	17
7	53	50	-17	11%	117	-10	120	130	－	57	－02
8	84	ย1	$-1:$	$\because 3$	58	－y	-11	3	3	22	19
－11	64	t． 5	$-1 i$	31	-23	-8	90	90	4	$6 \cdot 2$	6！
-10	68	6.7	-10	ば）	81	－ 3	-10	4	－9	47	45
－2	－11	10	-9	A	44	-6	-10	-2	－ 3	¢． 7	85 3
－ 8	77	73	－ 8	143	1二尤	－u	－ 10	4	-7	109	113
-7	131	127	-7	$: 30$	131	－4	70	－－7	－9	91	， 215
－6	130	10	－ 6	212	$22 i$	-3	91	54	－5	110	115
-5	104	196	-5	242	243	-2	101	$16:$	－4	-11	-18
－4	－： 0	－ 0	$-{ }_{-i}$	362	30：4	－1	312	31：	－3	74	－8． 1
－3	32	－92	－． 3	270	26.3				－2	－11	－7
－2	42	$\cdots 6$	－2	210	218	$\because=$	4． $\mathrm{n}=$	2	$\cdots 1$	84	85
－1	175	171	－1	290	27：						
						0	105	201		4．$K=$	6
$H=$	3．$k=$	-4	$h=$	3．$k=$	-1	1	137	135			
						2	2.51	29．3	0	189	106
0	200	256	0	192	-185	3	165	14.7	1	111	106
1	214\％	－10	1	47	－3．3	4	293	ごす	2	140	143
2	264	271	$?$	67	－50	5	－： 1	10	-7	14.7	： 9
3	253	250	3	123	-118	6	47	40	-1	$1: 5$	177

1.	10	$1{ }^{\circ} \mathrm{C}$	1	FO	FC	L	HO		$F C$	L	10	$F C$
－－	127	133	5	－11	-14	－8	92		91	－7	－11	－fs
－8	－1．	15	6	－11	3	－7	181		1 14	－ 6	48	－5 13
－． 1	S1	4%	7	$8{ }^{2}$	0 U	－6	153		190	－5	100	-93
－2	\＆6，	84	-11	11\％	119	－ 5	106		163	－4	133	120
-1	110	111	-10	37	39	－4	10.7		102	－ 3	131	1.34
			－9	101	101	－3	121		11%	－2	せS	124
1に	s．$t=$	-4	－ 18.	47	78	－2	105		142	－1	34	35
			－7	189	127	－1	180		-169			
0	$8 ?$	10	－6，	149	14 is					$H=$	5．$r_{0}=$	4
1	121	121	－	¢U	71	$11=$	ᄃ．	$K=$	0			
－	4%	71	－ 2	149	149					0	125	132
－	114	$1: i$	－． 3	180	120	0	174		173	1	120	119
－3	175	1%	－？	171	170	1	く2コ		227	2	94	25
－2	178	18%	－1	109	181	2	178		184	-8	103	11.1
－1	80	88				3	23		と\％	-7	02	10
			$r=$	\＆$r_{0}=$	－3	4	98		93	－6	34	24
$11=$	A．P．：	-7				5	94		102	－5	123	1204
			0	70	－65	0	125		120	－8	152	1074
0	49	89	1	17	12	-11	-12		14	－3	105	10^{3}
1	どぐ	$8 \cdot 9$	$?$	12.2	123	-10	140		147	－2	16.5	101
$?$	112	111	3	117	1？：	－9	111		116	－1	103	164
3	co	76	n	－11	-20	－8			104			
．	6	53	5	$1 \leq 1$	-160	－7	119		124	110	5．$k=$	5
-7	59	66	6	6． 0^{\prime}	－76	-6	200		191			
－0	30	3	7	43	53	－5	319		321	－ 0	23	30
－ 5	$4 \hat{i}$	$1 . \mathrm{C}$	8	49	100	－4	123		120	－ 6	54	50
－4	5\％	61	-12	85	87	－3	2． 7		E7	－4	61	0 ？
-3	76	77	-11	20	－25	－2	95		92	－3	89	85
－2	26	20	-10	17	13	-1	18.3		184	-2	95	90
－1	-11	-3	－9	09	6					－1	107	105
			－ 3	125	12%	$H=$	5.		1			
$\mathrm{H}=$	4． $\mathrm{r}=$	-6	－7	57	59					$14=$	5．$k=$	-7
			－6	-11	5	0	22		11			
0	157	15%	－5	101	102	1	－．11		－3	0	$2 \cdot$	-20
1	$1 \% 0$	171	－ 0	230	224.	2	180		185	1	20	－
2	15%	159	－3	100	10：	3	$\varepsilon 1$		79	－5	ど2	43
3	15.3	159	－－ 2	20	－23	4	90		94	－ 4	cir	92
$<$	200	18.3	－1	7 7	71	5	－！：		－8	－3	$1{ }^{\circ} \mathrm{F}$	15
5	173	185				-11	3%		46	－2	89	90
t	12，${ }^{10}$	15%	$11=$	4．$k=$	－2	-10	5		54	-1	44	42
-9	153	109				－9	32		34			
－ 8	125	185	0	78	-71	－8	57		27	$\mathrm{H}=$	5．$k=$	－6
－7	101	108	1	49	53	－7	59		00			
－6	104	105	2	20.3	202	－0	$1 こ 3$		135	0	111	112
－S	144	14%	3	172	174	－5	＜21		215	1	33	33
－4	171	16.9	\％	210	208	－4	29		－17	2	25	-20
－3	14%	10す	5	36	－40	－3	29		23	3	－12	15
－2	88	87	6	124	127	－2	73		－08	－7	93	92
－1	155	150	7	144	16.2	-1	100		-100	－6	115	117
			8	135	142					－ 5	115	115
$H=$	4．$\because=$	-5	$-1 ?$	84	43	$H=$			2	－4	91	1.0
			-11	－11	11					－3	107	100
	185	150	-10	1＊1	140	0	-11		2	－2	180	$: \geq 1$
1	163	165	－ 0	179	1 त	1	co		62	－1	147	150
2	5%	59	-8	235	2 Ca	2	151		154			
3	-11	4	－7	2i2	207	3	12：		123	H＝	5．$k=$	-5
4	35	3：	－6	143	170	4	72		77			
5	43	44	－5	335	325	5	i3i		128	0	130	1.30
6	c－e	64	－4	282	$\because 10$	-10	1：0		117	1	70	07
7	33	88	－3	332	3ご。	－9	117		110	2	49	-40
－10	40	43	－2	1.39	190	－	70		72	3	45	－46
－9	－1\％	6	－1	49	93	－7	40		82	4	23	1%
－8	－11	－4				-6	113		117	-3	$5:$	53
－7	20	18	$r=$	4．$r=$	－1	－5	25		22	-8	S＂	07
－ 0	20	21				-4	202		211	－7	107	120
－5	20	-23	0	73	－0．5	－3	245		247	－6	100	106
－4	21	－19	1	23	22	－2	107		106	－5	-11	－1c
-3	45	4.3	2	$\square 5$	103	－1	51		-47	－4	43	－ 20
－2	47	87	3	1 d3	172					-3	45	－4．8
－1	110	113	4	59	110	$H=$	5.		3	－2	33	-33
			5	176	170					－1	41	34
$H=$	4． $\mathrm{K}=$	－4	6	140	14%	0	31		－35			
			7	43	6.1	1	110		111	$1=$	S．$R=$	－4
0	207	268	8	37	42	2	26		20			
1	871	27 ¢	$-1 ?$	40	45	3	51		45	0	210	214
2	227	234	－11	4.7	52	4	36		30	1	1し）	1103
3	1.3%	127	-10	21	19	－5	S 3		54	2	12	$1 \because 0$
4	85	-40	－9	： 1	125	-8	＊ 4		61	3	$\leqslant 7$	c2

1	$F 0$	F．	1	FU	$F C$	1	［1］	F	1.	10	FC
A	115	112	－5	21 ¢	$2 \because 1$	－7	？ 3	？	$\cdots 1$	010	：13
5	119	12\％	－ 4	30%	308	－6	18 ¢	13	1	210	．1．
-10	107	1 c	－ 3	22．3	225	\cdots	80	（i）	1－3	（），1：＝	$\cdots 3$
－9	18%	138	－－	218	214	-4	17	，		（1）	－
－ 8	127	125	－1	165	165	－\because	23	－27	0	$\therefore 0$	13
-7	： 0.3	164				-2	． 11	0	，	67	6 c．
-4	14\％	149	$H=$	5．$\because=$	－1	-1	ご	3.	$:$	7	78
-5	93	37							3	\％	\％
－1	60	－	0	120	132	11：	C． $\mathrm{K}=$	$\ddot{3}$	－！	$3 ⿻$	2：8
-3	36	± 1	1	215	$\because 13$				-8	S．2	4 ？
-2	29	7%	2	7.3	71	0	18	1：7	\cdots	$\%$	$\because 1$
-1	172	16.9	3	$7 ら$	77	2	21%	219	－－	どら	41
			4	21	-30	－－7	\＆	i＇	－． 5	40	A． 1
H＝	S． $1 .=$	-3	5	140	125	-6	$1=0$	11.	－ 1	\＆？	03
			6	10%	102	－－	72	$7:$	$\cdots 3$	） 210	130
0	141	13 Cl	-11	-12	5	－4	140	145	－2	j70	1／6
1	136	138	-10	20	17	－	129	1 ${ }^{\circ}$	－1	1 \％$\%$	14%
2	1539	160	－9	2	25	－2	104	10.0			
3	6	E）	－6	－11	15	-1	14.8	1：\because	$1=$	6． $5=$	-2
4	71	72	－7	21	18					－K－	－2
5	89	－31	-6	51	¢	1：－	6：$K=$	3	0	326	130
c	©：	83	－5	124	15				1	93	¢
-11	85	0%	－ 4	25？	ごく	－	8 \％	25	\cdots	31	2 c
-10	79	75	－3	13.7	140	\cdots	100	105	3	78	－
－9	83	Ft，	$-?$	12%	127	-3	10	$1 \because 7$	$-\dot{0}$	96	97
－8	65	E\％	－1	3%	85	-2	94	cj	\cdots	15	135
－7	¢0	61							－？	116	\％ 2
－6	30	23	1%	6．$k=$	0	1：＝	c．e ra	\cdots	\cdots	\％．1	62
－5	$1: 0$	110							－ 3	$4{ }^{\circ}$	55
-4	48	45	0	111	116	0	58	100	\cdots	20.	20.3
-3	16	33	1	35 105	36	$-\mathrm{c}$	4．	4 C	－ 3	： 25	184
-3	43	30	2	105	105	-5	－－11	ε	－	－	197
－1	$1 \leq 5$	157	3	95	9．	－4	\％	20	$-i$	201	
			－9	68	\therefore	-3	\bigcirc	5			
$t:=$	S，$k=$	－2	-8	80	！？	\cdots	$\pm \%$	$5:$	1 H	c． $8=$	-1
			－7	15：	147	－1	56	5%			
0 1	$2 \therefore 6$ $\therefore 20$	228	－ 8	$\underline{2}$	262				0	24	92
1	$=70$ $\therefore 20$	265	\cdots	$23:$	2，	ri＝	c． $1:=$	$\cdots 4$	1	二	－is
2	2 20 20	83.3	－4	33	-33				$\underline{3}$	38	－32
3	202	197	－3	52	－5 5	0	185；	19a：	3	17	－is
4	60 54	6it	－2	20	10	1	12	13	－ 3	0	61
6	54 1.0	150	-1	44	43	$?$	1： 5	11！	－	115	113
－11	$1 \begin{aligned} & 19 \\ & \% 1\end{aligned}$	1%	$\mathrm{H}=$	G．$k=$	1	－8	$1: 0$	120	\cdots	111	124
-10	-12	25				－6	1 1－0	1： $1 \cdot 7$	－	20	17
－ 5	58	98	0	40	37	－5	10.1	102	－	-11	-11
－8	111	$11 ?$	1	29	30	－ 8	cs	7%	－ 3	45	－49
-7	134	1.34	2	85	$5 \cdot$	－	233	134	－2	13	2
－6	$1 ¢ 7$	16.0	-3	－11	－9	-2	182	125	－	15	2

Table B-3
Observed and Calculated Structure Factors for H_{2} dhrhry ($\left.\mathrm{HO}_{3}\right)_{2}$ $2 \mathrm{H}_{2} \mathrm{O}$

1	FO	$F C$	1.	FO	$F C$	L	$F 0$	FC	L	FO	FC
			5	37	39				9	－3．1	-17
$H=$	－8．$k=$	2	6	-18	－5	$11=$	17．K＝	3	10	－22	19
			7	73	-80						
1	173	17%	8	－20	－ 4	0	-21	15	$r=$	－9．$k=$	3
2	313	－31：3	9	－21	$2:$	1	-21	－10			
3	141	138	10	－ 21	1	2	－21	3	1	43	3.3
4	1.31	-108				3	40	-43	2	77	-76
5	77	－77	$\cdots \cdots$	5．$k=$	3	4	$-2:$	-18	3	62	-68
6	© ${ }^{\circ}$	67							4	$13 t$	131
7	117	-122	0	107	$-10 ?$	$H=$	19． $6=$	3	5	－18	－1
8	103	－105	1	120	131				6	86	$9{ }^{5}$
9	－21	－5	$?$	25	25	0	－2？	－9	7	141	$1<4$
10	-21	-21	3	327	320	1	37	41	ε	98	101
11	38	40	4	135	145	2	≤ 3	$-1: 4$	9	－21	ε
			5	122	114				10	30	29
$1=$	$-6, k=$	2	6	47	40	$H=$	－21．$K=$	3			
			7	－20	14				$H=$	－7．$K=$	3
1	21.3	237	8	31	-30	J	E3	－51			
2	408	－ 304	5	-21	6	2	E 7	－59	1	235	236
3	Stiol	－ 342	10	35	25	3	－2	28	2	175	180
4	207	－2c\％				¢	－22	1	3	41	－47
5	27	36	$1:=$	7．$k=$	3				4	-16	1
6	90	90				$H=$	－15．\quad K＝	3	5	94	96
7	111	114	6	2.79	-275				6	10.3	10.5
ε	c？	－59	1	88	-93		35	-25	7	284	91
5	102	－98	$?$	51	－56	2	81	－76	6	2.21	225
10	c．	68	3	246	$2 \div 5$	3	$\bigcirc 6$	－62	9	77	7%
11	40	－4？	4	97	92	4	－22	है	10	－21	9
			5	－13	－1	5	－ご	－J 4	11	－22	3
$11=$	－4，$k=$	2	6	－19	5	6		61			
			7	－20	－2	7	-23	-16	$r=$	－5：$i=$	3
1	710	－709	8	－20	-10						
2	229	－222	9	－21	27	$1=$	－17．$k=$	3	1	133	12.7
3	467	－4，44							2	－15	－2？
4	122	127	$\therefore=$	9．$K=$	3	1	42	41	3	22.0	－？ 22
－	163	-166				2	－21	29	4	153	－1E6
6	-17	－9	C	117	-122	3	－9	64	5	$7<$	-0.1
7	120	$1 \varepsilon 7$	1	55	57	4	74	75	6	52	－87
8	－${ }^{1} 0$	2	2	-17	26	5	32	-38	7	50	－is
9	100	97	3	39	35	6	30	40	8	－20	5
10	55	95	4	-18	11	7	-22	-17	9	125	-121
11	-22	2	5	74	－7．3	ε	-2.3	21	$: 0$	35	-6.6
			t	57	－01				11	－22	18
$H^{1}=$	－2，$K=$	2	7	51	－5．2	$\mathrm{H}=$	$-15, k=$	3			
			8	45	－4i				$r=$	－3．$k=$	3
	216	209				－ 1		58			
$?$	78	65	$r:=$	11．$k=$	3	2	－20	－7	1	07	-84
3	935	－87				3	43	50	2	5 ± 7	559
4	370	37 C	0	193	-199	4	121	125	3	64	93
5	$2 \sim 1$	230	1	28	$2 i$	5	36	39	4	157	-153
6	35	36	2	10.3	48	6	－	－3	5	130	135
7	－18	-10	3	59	－ 5.7	7	-22	－10	c	59	－06
8	6.5	-68	4	3.7	37	8	38	－41	7	－19	-20
9	-21	8	5	107	-114	9	02	0.7	$\stackrel{\square}{8}$	＋6\％	-52
10	54	$5 ?$	0	－20	15				9	81	－78
11	46	47	7	－2．1	-3	$H=$	$-13, k=$	3	10	119	－：：0
			8	－22	－2				11	54	－+8
$H=$	1．$K=$	3				，	40	41			
			r＝	1こ．$k=$	3	2	-18	10	$\mathrm{H}=$	$-1, K=$	3
0	150	－13．4				3	－19	9			
1	774	－775	c	76	75	4	$E 2$	-50	1	110	$\therefore 3$
2	540	－$-\therefore 1$	1		83	5	57	－5 7	2	167	18.6
3	20：4	-278	2	43	41	0	110	-114	3	111	－：13
4	130	－1．3i	3	－ 20	－ど	7	－ 21	－	4	± 8	72
5	140	-1.36	4	-21	－14	8	64	－64	E	242	235
6	108	137	5	33	－27	5	－32	25	6	－ 0	05
7	-16	－20	6	－21	1	10	-22	－1	7	2 s	－9
8	-14	7	7	－22	20				E	$4 ?$	－3：
9	-20	1				$11=$	$-11, k=$	3	9	－21	3
16	-20	7	$1:=$	15．r$=$	3				10	－21	－
						1	31	-24	11	61	$5 \cdot$
$H=$	3．$k=$	3	0	114	113	2	11？－	－111			
			1	－20	7	3	Eu	－63	$1=$	0．$k=$	4
0	0.78	C75	$?$	7 is	7%	4	-18	1			
1	465	－ $27 \times$	3	－こ！	23	¢	Es	-90	0	34．4	-3.21
2	100	$-1+\cdots$	4	5r，	-53	6	$233-$	－＜ 37	1	277	－\％
3	112	11%	5	-28	19	7	53	-43	2	2：3	－こ： 1
4	133	－123	6	-2.1	-14	8	$\triangle 0$	-32	3	7	－82

1. 1! 16 $11=\quad \therefore .1=11$

$$
\begin{array}{rrr}
0 & -21 & -37 \\
1 & -1 & \cdots 3 \\
i & -01 & -13 \\
-1 & -10 & -33
\end{array}
$$

$$
11 \quad 7 \cdot 1:=11
$$

$$
\begin{array}{ccc}
1 & 71 & -78 \\
1 & \vdots 4 & 40
\end{array}
$$

$$
\begin{aligned}
& 1 \quad 1 \cdot 0 \quad 10 \\
& 4 \quad 4750 \\
& 1:-1 . K=11 \\
& \begin{array}{rrr}
1 & -20 & 2 \\
2 & -21 & 17 \\
3 & -21 & 11 \\
4 & 61 & 54
\end{array} \\
& r=0 . k=12 \\
& 0 \quad 107 \quad-10: 1
\end{aligned}
$$

Table B-4
Observed and Calculated Structure Factors for $\left[\mathrm{Ni}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{-}\right.$ (ahphoy) $\mathrm{Cl}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

L	FU	10	1.	F． 0 ＋C	1.	10	FC	L	$F 0$	$F C$
$11=$	0．$k=$	$=0$	11 $=$	ט． $\mathrm{r}=0$	－18	A1 ？	－91）	－2．3	194	－712
					－2	60%	632	-27	－93	－100
			0	$1103-1171$				－ 8 \％	208	－ $6: 5$
？	53	－ 3000	2	3015 ca．1	：$:=$	12.	$x=0$	－25	： 11	$2: 3$
4	1936	－ 6010	P．	り11 ソ゚こ，				-24	－13	－1＇13
0	¢， 0.3	¢ い	e	$38.3-3011$	0	1071	－1／20	$-2 ;$	$\therefore 10$	S $1 ; 2$
8	1.45	－－2＇，${ }^{\text {a }}$	\＆ 3	yes－160a	2	$4 \cdot 14$	－ 90.0	－ 2.	3 Cos	315.6
10	65	－20） 6	10	311 J．3？	，	4．27	¢ 34	－	－ 0	－ 0.1
12	114	－383	1.	－79 e	6	－6i	1：$:$ ？	－20	201	－37：
1.	－－24	10：	10	4．7－ 43.4	3	-8	－ij	-19	A\＆？	－3゙っ2
10	1.10	－18．1	1 C		－：3	$\leqslant 1$	－6 4，	－18	－	－
10	1保；	113	13	$13!3$	－cis	$\because 1$	802	-17	－Jis	-8.20
30		ぐも1	20	$-8.4-105$	－ 2	192	18.7	－13	－＋ 0	416
82	177	1820	－30	90\％－580	－${ }^{-1}$	1？	$-1<0$	－1 ${ }^{1}$	－ 3	－ 2
24	1：5	－142	－$\because \cdot 3$	$\because 20$ जuf	$-\therefore 0$	36	－icy	-14	－リ ${ }^{\text {c }}$	－80
86	700	-0.91	－20	147750	-13	1＂\％	－18？	－13	¢	せりく
			-24	34\％－ 3.3 .3	－：${ }^{\text {a }}$	318	3！，	-12	－ノ	1 ！
$p \mathrm{~F}=$	2．	$\cdots=0$	－22	$705-709$	-11	24．9	りや゙	－11	$4{ }^{1}+$	－E． 2
			－20	16315	-16	$10:$	-180	-10	190	－－＇1 1
0	463	373	－10	200315	-10	－73	30	－9	3.47	－． 7
2	28.30	－2831－4	-10	1－65－4：1	－3	－14	¢！	－ 3	$\therefore 4{ }^{4}$	51
4	137345	－1＜4	－14	¿ப7 1ソ7	－6	-30	-1.	－ 7	$? 21$	－\square^{\prime}
6		－303	－－1！	167119	－4	374	362	－6	78	－700
8	$16,0,3$	16，82	-10	147 － 17	－2	1073	31111	－ 5	1418	1＇0．er
10	124	-119	－d	12：3 16：3					C	－（1，¢0）
1 ？	115	$\begin{gathered} 107 \\ 6.89 \end{gathered}$	－c	シ13 ysu	$r=$	1%	$K=0$	3	313	¢－6．4
14	（125）		－4	$010 \quad 761$					［	723
10	くりく。	-547	－2	2400－2503	0	580	－-50	－1	$1 \leq 4$	51
13	255	2．5！			2	433	3436			
80	34，8	36.2	$H=$	3，$K=0$	－24	－ 813	$3-13$	$11:$	3.	$k=1$
20 亿	3420	－364			－22	340	－-325			
24	413	-402	0	$375 i 4100$	-20	－131	6＂	0	7ちく	－ 639
86	$\because 11$	いぶ	2	411 － 121	-13	234	277	1	34	3： 7
$\cdots 3$	$5: 9$	－5041	$\stackrel{\square}{\square}$	$229-1.20$	-1%	3010	；－3－3	2	－70	－1：6
－：6	4.45	－4：y	0	くら\％こ78	－1\％	171	－107	3	35！	－ 313
－84	260	181	3	$-80 \quad-33$	－1．	-31	－111	4	350	－40．8
$-: 2$	4.10		10	$-81-163$	-10	1．17	$7- \pm c^{3} \square$	5	55゙	549
$-\dot{0}$	111	－ivy	12	－ycr－1－5	－	1－1	1 135	0	－07	13
－18	20.9	－ 374	1%	－79－	－6	318	397	7	－ 67	-43
-10	860	83－6．0	10	$-21-11$	－4	$3 / 1$	－ 300	8	472	－7：3
-12	与られ	－65	-30	\＆ 12470	－2	374	：-11	－	4.47	－ 01
． 12	28：3	－52？	－28	S－1 Enc				10	－60	－${ }^{2}$
-10	＜73	－3，	－ 20	$3+1-3 \pm 2$	$H=$	10.	$x=0$	11	500	－－510
－8	25i3	－ $20!6$	－21	-7818				12	－69	\therefore ？
－6	18.3	$\begin{array}{r} -1030 \\ -300 \end{array}$	－22	$-i 83-24$	-16	32	$2-311$	13	Gis 1	cre
－4	3293		－20	-17 －13	-14	20	－207	14	：＇s	23 c
－2	3.158	3505	-13	$1351 \therefore 8$	-12	148	$\therefore \quad 202$	15	301	ご心
			－－10	4065－440	-10	－54	45	10	475	－473
$1=$	4．$K=0$		-18	315－270				17	$3: 30$	－33？
	，		$-1 ?$	120 ， 10	$1:=$	1.	$N^{\prime}=$	$1{ }^{1}$	－3！	¢，
0	$7329-8.96$		－10	$217-202$				19	420	－ 405
2	242	$\begin{array}{r} -8: 06 \\ -\therefore \cdot 1 \end{array}$	－-8	158100	0	19	－2033	20	411 -9,	301
4	1140	119.	6	－is 40	，	1505	－1＋1？	81	-93	－ 1
0	30，	－¢ त त	－4		2.	135	－－1 1 3	C？	4 ± 0	－9．30
8	3：1	－3．3es	－2	$10 \times 3-1000$	3	617	1700	$\because 3$	$2 i$	243
10	96	$1: 0$			4	176	7－1103	24	－－${ }^{\text {d }}$	4%
12	4.85	$\begin{array}{r} 433 \\ -\ddot{2}>7 \end{array}$	H－		5	712	$2-730$	－${ }^{3}$	－ 10.1	－131
14	130				0	377	7 323	－23	－1 100	－ $5 \cdot 3$
16	－：0	3：	0	0550 060	7	3.513	$3-273$	$-\therefore 7$	404	$\therefore 1$
18	－－ 3	21	2	ソ4．－－i0り	S	1.17	$7-1 \% 2$	$\therefore 20$	13	$-1: 1$
20	271	$-\overrightarrow{9}+$	\checkmark	428 －i3s	5	172		$-\therefore 5$	$\because 20$	＋${ }^{\text {\％}}$
22	195	－： 23	C	－ 50 －	10	¢！	$\because-2 \rightarrow 1$	－2．	55	57
-30	A Sa^{\prime}	－534	3	りハリ）ひご	11	320	$)-$－ 3	-3	± 0	－4， 3
－23	－300	－\because ，	10	\therefore－－－がう	12	$113:$	）169．．	－ 2^{2}	316	$\because \quad \because$
－2i）	59	$3!3$	12	1．0－1030	13	-70	0 ）	-21	$\therefore \therefore$	$3-\therefore 8$
-20	$<1 \%$	200	－ 30	－－－Jue	14	43	3 4，	－－10	0%	－${ }^{-1}$
-22	210	$-\therefore 17$	－23	$\therefore 0-2 \leq 3$	15	73	3 7－1	-19	－ 7	－ 1
-20	4.7	-417	－2\％	らう！－－－，	15	－78	$\therefore \quad 1 \div 5$	－13	¢，	$5 i 3$
-18	10	1 e．e	-2.	113 1．${ }^{1}$	17	3：1	） 333	-17	33.	$3:$
－19	6：$\%$	$0: 7$	－c	しゃ3 07，	13	$3 \cdot 5$	$3-300$	－10	3.6	$3 \cdots$
-1.	130	12：	-20	$1-1-1.31$	13	$-3 \mathrm{c}$	－-51	－13	1是3：	； 3^{3}
-12	3：？	280	－：${ }^{-1}$	$u \therefore 2-0!y$	20	$\triangle-1$	1 505	－1．	C＇：	$3-811$
-10	$6{ }^{\text {60，}}$	$9: 2$	－110	10100	$\therefore:$	$\therefore 1$	1 －$-2 j$	－13	1.	-103
－ 13	6：y	cobes	-1.8	3．3 3＋4	22	－3．	$?-47$	-12	$11 / 1$	－1：${ }^{1}$
－6		－1：1	-12	－32 37	2.3	$33:$	？-356	－11	177	$3-178$
－4	427	$1-10$	-10	319.525	27	080	$0-1250$	－10	T？	3012
－2	15.4	$1: 13$	－3	$576-3: \%$	C＂	－リ：	$1 \quad 13$	－9	－6	$\bullet 3$
				519 －－	［1）	－ 12	$\therefore \quad-23$	j	14	$3-1$.

L	10	FC	L．	FO	FC	1.	$F \cap$	re	L	10	FC
10	－36\％	－339	－ 24	$\therefore 21$	$5: 0$				－－ 20	11%	－1 in
11	750	－71，0	-35	141	－19．3	$11=$	e．$k=$	$?$	－19	4.79	－4e3
17	10 we	$10 \% 3$	-28	-7%	－ $3:$				－18	－／is	14
1.3	－ 81	－cis	－ 21	＜is	－$\therefore 103$	0	317	-342	-17	い岁	－5：3
14	32.0	401	$-\therefore 0$	18．7．		1	111	250	－110	4 30	＇6
1：	1101	110%	－19	－7：	－ 11	\therefore	314	－ 4 ？	－19	8 \％ 0	f＂。
11	410	－483	-113	1102	1103	5	$\cdots 46$	2%	－13，	$4{ }^{1} 80$	50，
17	1：6	－： 23	-17	\＆	－ 118	4	$1{ }^{1}$	11，	-13	90．：	9 3
13	21.3	$\cdots 10$	－112	$4: 3$	－－4 $/ 7$	3	14.1	-18.0	-12	$10{ }^{1}$	－1024
1 c	74	－\％50	－1\％	＇？	$\therefore x^{2} 4$	0	113	116	－11	＂${ }^{1}$	11.3
20	－ 8.4	－$\because 1$	-14	$16 \ldots$	－1（1．）	1	260	＜？2	－10	1：1	－135
21	－ 110	－ 263	－13	1 析	－10．	H	150	11.3	－ 9	174	－1403
$\because 2$	173	123	$-1 ;$	7.86	7.1	＇	$? 20$	2%	－ 18	2 Si	2！
23	－\％1	－31	-11	317	－219	10	11,1	－1\％	6	113	$\cdots 1$ ib
$\because 4$	130	$-1: 4$	-19	C1\％	41）	11	170	$1 \because=$	－C	$\therefore 06$	c1：
25	－－－	3：	－9	といく	7：，	12	8.97	－4＂＇，	－ 5	＂：0	2.7
－ 20	－ 213	－37	－ 3	$\therefore 4.3$	－？t3	1.6	$46 \cdot 3$	－ 87	－4	4 23	－is 2
－ 8	1＇， 3	-14%	－ 8	$\therefore 80$	40	$1<$	$2: 3$	2．）3	3	－74	I
-27	－\％is	32	-6	どいい	0．3	15	－$\because 4$	－45	－	－ 76	－1：1
－ 0^{6}	30.5	－3． 31	－ 5	－09	－ 3.	10	335	14．1	-1	－78	－ 94
－2：	－ 1.7	－3	－4	418	-301%	18	170	－7\％			
－ 2	－ Cl_{1}	$2 \therefore$	－3	-80	－とi，	-20	127	-180	$H=$	12.	2
-3	－－2， 2	－14\％	-2	371	30，	－29	103	－103			
-2.	－31	-54	－1	-69	-10%	－2．3	333	3：\％	0	ris 1	237
-21	－ह\％：	31				-2.8	－79	－50	1	－31	－ใ．1）
-30	-115	¢00	$\mathrm{H}=$	6.	$x=2$	－c＇c	-7.3	180	2	－ 3 c	U＇
-19	717	-718				-25	472	－ 27	3	140	$-1-2$
－13	－3？	143	0	342	$-5{ }^{-3} 1$	－24	316	－4．10	4	－32	23
-17	419	\cdots－rsis	1	$3 \leq 2$	355	-23	127	$9 \cdot 9$	$\stackrel{\rightharpoonup}{4}$	$15 \pm$	174
－10	C， 5.5	C．e．0	2.	430	245	－i2	-79	－6t	i	1 シ1	－71
-15	11 ves	118.4	3	31\％	$3<0$	-21	-73	，	7	－ 2.5	－ 31
-14	－1．1）	－1：0	4	4 ソ5，	－4．82	－20	21	-2.3	习	1 lid	－183
－13	-72	111	5	sero	$-3<2$	-19	－75	－1	－28	${ }^{1} 48$	－280
$-1=$	2018	－ 1 ， 1×6	\bigcirc	$\therefore 23$	そこり	－10	73.3	－ 732	-28	－ 21	0
－11	1 ce．$\%$	$-17: 1$	7	4.01	－4．3：1	-17	－ 73	－2．7	－ 26	？ 3	70
-10	$4 C 5$	3：3）	9	357	$34 y$	-10	－71	70	－-5	$3 i 5$	351
－ 8	¢． 21	3.2	3	$5)$ i	－50！	－15	：$\because 6$	－343	－ 24	330	319
－ 5	7%	T）	10	$\because \square 1$	－${ }^{3}$	－i +	1 －－ 3	＊心；	－$\because 3$	1.	
-7	1059	115%	11	5！	$40<$	－13	$1 こ ゙ さ 3$	$1 〕$ ¢	－7．	－72，	
－0	754，	$70: 1$	12	48.1	－400	-12	is	-223	－21	－M0	－
－5	1507	1321	13	121	005	－11	（i） 31	0.01	-20	－＜1	4
-4	1.370	－1．38	14	$2 ; 3$	－¢ 31	-10	成事	$-3+3$	-13	－ 21	4
－3	1 － 0	，	IS	573	$-5: 2$	－ 9	331	－c： 5.3	-13	00	001
－2	35%	-380	1%	-32	－ 3	－	132	140	-17	－${ }^{3}$	a
－1	15：	-211	17	－とO	17	－7	11 its	-1103	－10	115	i
			18	$1 \cdot 3$	92	0	146	105	-10	$\therefore \geq 5$	217
$13=$	4.	$=2$	19	2：， 5	3.0	，－5	121	18.	－14	$\because 20$	－315
1			20	127	101	－ 4	128	157	-13	$3 \cdot 30$	-310
0	S3f	534	-30	904	－40e	－3	437	436	-12	－31	－ 2
1	52\％	-5.47	－2	－ $2=1$	70	－2	572	－24．	－11	23	－ 2314
2	21.0	29\％	－20	－30	12	－1	121	130	-10	18	115
3	123	-103	-28	－ 58.	-32				\％	21.	27
4	9.01	－9130	-26	$4<0$	433	$H=$	10，	2	\％	－80	－87
5	fisk	414	－25	－ 31	13				7	46	406
6	240	－2．8，	－24	－sio	－30	0	343	317	－5	－ 40	0，
7	（ッ゙！	-2.73	－2．	$-7:$	74		1 ues	－1发	-5	-30	45
ε	45.5	－－－ 4	－ 22	131	57	2	－7	$-2 e^{2}$	－4	$1 \cdot$	－1－3
9	9.33	－6．05	－id	-73	-70	3	$\therefore 3$,	-243	－3，	171	－140
10	c） 30	04：	－ 20	－15	－111	4	213	-12	－ 2	37	－118
11	11.3	－107	－1，	0,0	0.35	5	-7.	i4	－1	－	－1．
$1 ?$	1020	107：	－ 18	1¢	－1＊＊	4	110	-120			
11	1：10	11398	－17	U3 3	いご	7	1.5	178	$4=$	14.	
14	Bren	－ 6 －${ }^{\text {c }} 7$	－10	$t+0$	－7－1／	8	1－17	－1』1			
15	－ $1: 0$	100	-13	uds	－いい＇s	9	2－1）	2！	$?$	$\therefore 14$	－ 2.5
10	－63）	－ 4.0	-14	$\therefore 61$	－－い	10	4 4．${ }^{\text {a }}$	-501	，	！	c／s
17	10.3	$\cdots 20$	-13	$-\because 0$		$1:$	－4，	-305	－$\because 2$	－	cis
18	334	－27	-12	1039	，vטT	16	150	17\％	－ 5	－	C） 5
15	－81	$\therefore 2$	$-1!$	93.	－びきい	13	1 ${ }^{1}$ ，${ }^{\text {a }}$	-13	$-2 \therefore$	－ 3	\％
20	104	152	-10	11：	，ぶ心	-3.9	332	2.1	－23	－ 7	，
？ 1	1．87	10.1	－3	31.	，－3 1	-2.7	：：	－11．3	－22	\cdots	-102
$2:$	－2！	－100	－	－0	$1-\because 3$	－2	$13:$	$1 ? 0$	－ 21	$1<$	-10.
23	c 31	？ 17	-7	341	－ $3<1$	-27	－20	71	－20	－	103
－30	－ 3 c	4.1	－ 0	42.	2－44	－＜t	\therefore［2］	－340	－1．1	－ 3	103
-29	－ 67	1.0	-5	700	$3-750$	－ 25	－ 78	-1.	－13	－2	2＋
－： 6	543	－314	－ 8	115	； 1103	－\because	-7.1	-3.7	-17	25	$\therefore+5$
－27	－！？	y0	－3	187	$7-130$	-2.3	－ 09	－42	-16	do	－ 1
-8	－84	32	－2	$\therefore 20$		-2.2	－い）	－3	－：	\therefore	$1-\therefore 1$
－20	465	いい	－1	37	7 Ste？	-21	135	102	－14	～！	－

L	FO	FC	1	FO	16	L	$F 0$	FC	L	FO	FC
-24	－79	-8	－：	－ 0°	31	－12	1301	-136.7	8	501	41.1
－3 3	－ 8.0	133	－	144	132	-11	－10	－． 31	＂	412	－63：1
－9：	2．j					－10	14%	－130	10	1 1 ¢	2せ
－： 21	700	7×1	$11=$	0．$k=$	$=4$	－）	1076	10.1	11	1＂匕	－1，1
－20	$1{ }^{1} 3$	－80				－3	934	1033	12	418	－． 17
-19	－ 61.	-100	0	3 SO	210	－ 7	1003	1034	13	－ 20	－1 017
-18	100？	100%	，	1．1．4	1380	，	1111	1073	14	1 い゙，	－1： 1
-17	？0．	－1\％\％	？	510	－ 30	－5	$2{ }^{3}$	-210	15	－80	－3
－100	111	$1 \leq 0$	3	103%	931	－4	410	-370	16	－ 51	3
－15	（1）	301	\cdots	く1\％	3．3．	－3	1．11．1	$-123 ?$	11	140	S． 1
-14	1：1	$-1.1 .3$	\because	597	－531	－？	33.2	005	1 s	－3．3	\therefore
-13	$\square^{2} e^{2}$	－．36	P	－37	－2\％	－1	7.30	30，	$1{ }^{1}$	－ 30	7
-12	350	－35\％	7	1431	-1413				20	－ 15	－${ }^{\prime \prime}$
－11	$4 \% 5$	-849	9	－0．3	－24	$11=$	4.	$K=\quad 9$	－ 30	14%	－1 110
－ 10	－－78	90	9	400	430				－29	51 d	－ 110
－9	－78	yo	10	$1: 3$	-120	c	こ30	－170	－	－36	－\％
－8	515	502	11	315	$\checkmark 2$	1	－11	－ $31 \cdot$	－： 7	$2) 3$	
-7	29.3	26.	1%	c．c	$-\mathrm{Q} 2:$	\therefore	－：	433	－ 21	－？${ }^{\text {d }}$	＊
-6	-75	-30	1：1	－ijer	10	3	1：0	－ 13.2	－ 25	$0 \div 1$	¢，${ }_{6}$
－5	140	－150	1%	10.3	$10 y 8$	4	$\because 16$	－2！	－24	－	$12!$
－ 0	190	$-17 \therefore$	15	－ 20	434	5	17%	101	－ 3	1 ビっ	105
－ 3	126	－111	16	34.3	304	？	170	－1＂3	－ 6	－ 30	43
－2	－231	-113	17	243	－－ロッ	7	1310	133\％	－ 21	0.10	$-8: 7$
－ 1	216	203	13	151	－：07	$\stackrel{4}{4}$	150	-140	－ 0^{3}	？ 07	1：5
			19	1000	－100，	2	<10	-200	-13	9\％	－ $3: 1$
$1 に$	13，k＝	3	20	200	－20）	10	$\therefore c^{\prime \prime}$	2043	－18	－ 75	－7\％
	1301		21	14.3	1×0	11	51！	－51．	-17		511
0	181	183	$2 ?$	－81	$11<$	12	$4: 2$	447	－10	く0゙4	－140
	198	-160	2.3	207	203	13	-73	？ 3	－18．	50.3	51
2	－8i3	-73	24	－65	44	14	033	-331	-12	217	－＜1：
3	187	-172	くら	100	$<0 \therefore$	15	451	－＋－ 3	-13	－0 7	-42
4	152	$-1 \leq 3$	20	－90	－145	16	312	-325	－1！	\＄4．3	¢51
5	150	163	27	411	－403	17	-8^{2}	-23	$-1!$	－ub	70
-26	357	－ 35.3				18	16	153	－： 0	4 尤	44.
－2．5	－35	－3	$\mathrm{H}=$	$2 . K$	$=4$	19	710	705	－4	こ13	－ 0
-2.4	230	2．13				20	$10 \cdot$ ？	133	－6	30%	－j！
-21	147	214	0	2303	324	21	－8．2	2！	－． 7	$4{ }^{4}$	－ 0.01
-22	－ 82	－100	：	\cdots	7 いご	\therefore	： 10	－－	－ 2	3： 2	－－－！
－21	2 c	-213	$?$	503	－cir．	－29	－94	100	－5	－ 10	－11
－20	176	153	3	474	-703	－233	こひ3	－-377	4	－55	2.4
－19	2170	－20．4	9	116	－こ！	-27	403	－467	－3	124%	1 ciol
－1＊	14.3	110	5	4.14	420	－こ0	－－$¢$	43	－${ }^{2}$	519	－ 2.1
－17	－830	42	6	1033	－10：30	-23	-7.	122	－1	007	－－ 0
-10	$2: 0$	－223	7	423	4，11	－24	-3.3	－73			
-15	－230	－60	3	532	－ 300	-23	522	，5：3	$H=$		$\leqslant=8$
-18	47 y	－4．84	9	315	coiz	－22	cく2	－220			
-13	－－8；0	－63	12	124	－1．2	－2：	3403	403	9	－72	－
-12	114	118	11	210	$\therefore 10$	-80	331	3：0	1	270	$\therefore 1$
－11	202	185	12	c．7	25．3	-10	1518	－1400	2	104	－ 154
-10	9：${ }^{3}$	t．6）	13	230	230	-13	5－2＇	511	3	570	50.2
－9	307	301	$1+$	238	くこって	-17	$\therefore 0$	$3-4+5$	－	$\therefore 21$	¢ ${ }^{3}$ ？
－8	173	-173	13	<57	－ci 5	-16	$3 \cdots 6$	，-303	3	157	13！
－7	－81	－7	13	－3：	－：3	－15	70.3	\bigcirc－ 0^{3}	3	－831）	121
－6	133	－130	17	713	－7！3	-14	1312	$\therefore-131.3$	7	4,3	－：29
－5	203	-230	13	－35	－13：	-13	-0.7	190	3	－ 81	¢
－4	134	162	： 9	－80	-19	-12	2.87	7 203	3	－81	21
－3	－ 31	71	20	－${ }^{5} 4$	$y 0$	-11	$\therefore 7 \%$	－ 333	10	-74	－11
－2	－81	03	21	5，4	$\therefore 50$	－10	1：1．	－1：0	11	$\because 35$	$\begin{aligned} 3 & <0 \\ \cdots & 0\end{aligned}$
－1	111	11%	22	－97	5	－9	（2）！？	3 360	： 2	307	－21；
			23	21.3	100	－8	$\therefore 81$	1－2ir	13	－ 11	10
$\mathrm{H}=$	15． $\mathrm{K}=$	3	24	－0\％	－7	－ 7	$8: 4{ }^{\text {c }}$	－-310	$1 \hat{1}$	$3 \cdot 3$	3！
			25	د0：	－204	0	＊${ }^{\text {c }}$	－ 370	15	$\therefore 30$	¢こ\％
-21	－177	－3830	－$\because ⿰ ⿺ 乚 一 匕$	－ 35	42	－	－1 $10 \cdot 9$	）－ 15	10	$\therefore 11$	$18 \therefore$
-20	-831	113	－27	2：3	－－－5	－	CO	；－103	－－${ }^{\text {d }}$	$1 \therefore 0$	$-1-0$
-19	－Sier	-42	－\because	－34		－3	450	－$-4,33$	－23	300	$3{ }^{\prime \prime}$
-13	E5\％	－43．3	－	338	－300	-2	300	－37？	－27	≤ 0.	$4{ }^{4}$
-18	151	127	$-2 \cdot 1$	-10	-70	－1	1.0	－－33	-20	－79	：：
-16	－80	$-1 \leqslant 1$	-3.3	-77	－ 9				－23	－ 77	1 1
-15	1203	－190	－ $2-1$	-13	－． 3	$H=$	$0 \cdot$	$x=4$	-21	124	$13 j$
-14	－80	0.9	－21	405	$\because 62$				-83	321	－$\because \therefore \%$
-13	－：3．3	9	-20	－ 1	-133	0	$\bigcirc 32$	$2-420$	－ 3	201	101
$-1: 3$	≤ 2	322	－19	$\therefore 0$	$\therefore 0$	1	$\therefore \mathrm{ac}$	；－ 1413	－ci	$\cdots 28$	－1，3i
-11	$\therefore 10$	$2 \pm$	－18	-47	14	2	400	0403	－20	230	－$\because=1$
-10	－シs	－00	－1\％	34\％	－204，	3	7.	7ご	－19	7	
－9	－2．3	9	－10	1.7	$\therefore \therefore 2$	4	－el	3 －5is	-1.1	$4{ }^{4}$	－－\％
－3	457	-4.45	-15	517	－－3．	5	720	， 723	－17	41.	－こち
－7	26.1	－203	-19	-38	23	\％	56	$\therefore 543$	－19	－ 0	
－6	－ou	14	-13	20%	230	7	130	0 －： 70	－15	402	-633

L	FO	$F C$	L	FU	$1 \quad F C$	L	$F \mathrm{O}$	$F C$	L	F		FC
－14	961	943	-19	550	－-53	-25	372	－301	－2	251		－218
－15	2.03	－103	－19	307	7 300	－24	204	－207	－1	502		-475
－12	－ 70	99	－17	350	－353	-23	457	-437				
-11	274	－270	-10	－ 3	$\therefore \quad 1.3$	-2.	-82	110	$1 \mathrm{i}=$	3 ，	$\cdots=$	5
-10	251	－23．）	－15	170	6 194	-2.1	10.	159				
－9	716	－709	－1．	$4: 0$	－430	－20	－30	47	0	480		－470
－8	131	122	－13	－ 31	102	－19	621	615	1	702		－670
－7	Sio	502	-1.2	$1<0$	－ 70	－18	$1 c^{2} 6$	172	2	371		－ 374
－6	-6.9	6	－11	－60	117	-17	215	$-1=5$	3	305		－3こう
-5	65.2	655	-10	－31	-14	－10	－73	－73	4	61		う54
－ 4	－59	13	－9	290	－221	－15	522	－515	5	10.32		$10+0$
－3	－6．9	－52	－8	14.3	$3-18$	－14	107	－51	5	へ 20		233
－2	374	-380	－ 7	－6i	-53	-13	23\％	282	7	356		301
－1	548	－574	－5	－82	－ 02	-12	51%	526	8	411		－411
			－5	131	-102	-11	423	425	9	770		－7：5
$\mathrm{H}=$	10.	$k=4$	－4	－ 8	－－i3	－10	24：4	225	10	－70		－ 34
			－3	－81	0	－9	49.1	－4 \％	11	こらご		-275
0	309	305	－2	164	104	-8	355	－427	12	137		－140
1	375	380	-1	413	410	-7	2513	1452	13	305		－254
2	160	－161				－6	1324	$-127+$	14	3.34		319
3	274	-279	－1 $=$	14.	$\therefore=4$	－ 5	－67	－25	15	－ 31		75
4	－81	51				－4	228	178	10	－79		20
5	365	-303	0	104	-199	－3	2335	－22．32	17	－32		48
6	164	-165	－24	－37	111	－2	1535	1459	13	－83		－34
7	－78	－66	-23	271	285	－1	574	501	19	454		C 36
6	221	-219	－22	－30	3 3＋				20	$24 i 3$		－ $2-2$
9	416	420	－21	100	－103	$H=$	3.	$<=5$	21	－d5		20
10	274	－279	－20	213	213				－29	275		－24？
11	159	130	－！ 3	452	-448	0	76	-37	－ 28	131		47
12	198	215	－18	－83	30	1	185	130	－27	－32		-15
－29	352	344	-17	－82．	55	2	830	－873	$-\geq 0$	277		271
－ 8	179	118	-16	－83	－ 13	3	1003	－11：3	－25	531		537
－27	－81	－03	-15	212	193	4	3.58	－320	-24	2？4		259
-26	－80	37	－14	200	－-222	5	441	－485	-23	5 Sc		$\because 23$
－25	411	－424	-13	－35	－-34	c	754	709	-2	120		－1 53
－24	-80	－113	-12	24.	250	7	1490	1481	－ 21	136		-177
－23	258	－ 21	-11	120	－00	ε	224	209	－20	172		－155
－2．2	－80	-76	－ 10	217	200	9	140	－114	-19	412		－10
-21	54.3	531	－9	－82	くら	10	230	－ 252	-18	$1:$		－i i
-20	308	-310	－8	240	－22y	11	（2）${ }^{3}$	279	-17	344		325
－19	093	703	－7	229	-222	12	395	－373	-10	17%		214
－18	－79	5	－6	233	－1：30	13	350	372	－15	730		776
-17	473	-6.78	－5	－33	－04	14	124	113	-14	117		140
－16	295	293	－4	150	132	15	305	－2E3	-13	－ 07		－ 10
-15	511	－4＜0	－3	462	470	10	178	202	-12	475		－+85
－14	270	247	－2	125	－92	17	432	－371	－11	601		－504
-13	$18 ?$	143	－1	－－b	18	13	-32	-27	-10	238		-130
-12	635	－625				－ 19	370	303	－3	768		711
－ 21	－75	－47	$H=$	1.	$k=5$	20	－己4	－32	－3	133		193
－10	243	－ 210				21	318	335	－ 7	1158	－：	11：5
－9	－75	40	0	030	601	22	175	-19%	－5	020		072
－8	390	391	1	622	604	23	240	－221	－5	212		－190
-7	300	302	2	392	457	－23	-54	－ッ	－4	－6S		－58
－0	323	319	3	115	-103	－27	335	-340	－3	1093		1111
－5	－77	112	4	520	－－ご5	－20	-34	－35	－2	779		－ Bj_{6}
－4	16.0	-1.25	5	775	－730	-25	274	－290	－1	134		－113
－3	483	-893	6	140	$-\cup 3$	－$三$	－35	10				
-2	275	2只1	7	－6， 8	－4	-23	451	504	$t i=$	7.	$r=$	5
－1	-78	50	8	471	4.4	-22	2es：	373				
			9	536	507	-21	443	476	0	1 ic		150
1 仁	12．	$k=4$	12	193	－21	－20	4.21	－400	1	3 3－		$-3 \div 7$
			11	217	250	-19	30．	-321	2	131		720
0	－ 60	6\％	12	$1 \equiv 1$	102	－13	-73	－31	3	1250		1320
1	－82	－7．2	13	472	くら）	－17	537	-531	4	29\％		30%
2	－82	c． 4	14	170	-330	－15	-71	127	j	622		6.45
3	580	$-5 e^{3}-1$	15	337	-3.0	-15	510	－503	6	$3=1$		－ 303
4	－55	－8－1	10	-17	$+0$	－1	011	019	7	3 c 2		-037
5	174	－154	17	2． 3	-207	-13	342	315	8	14%		－14
6	－87	－y0	18	－30	75	$-1=$	－65	－57	9	－ご0		12
7	431	4.3	$1 \geqslant$	3く9	－－25	-11	97	－11	10	－31		35
-27	5－8	－5：3	20	-101	3．2	－1．	－03	37	11	177		-150
$-\because 0$	177	$-1 \cdots ?$	21	－－3	101	－-3	203	ち6．	12	115		164
－？5	172	－203	22	－ 10	$-.300$	-8	10.2	－10：	13	$\therefore \mathrm{Ca}$		－20！
-24	－－5	－115	23	531	530	－7	－07	．53	12	$-3:$		－75
－23	42！	417	24	-107	－97	－0	276	－202	1%	142		1：7
－22	-35	－132	25	2： 8	－2 ${ }^{\text {y }}$	－s	C3）	-6.70	10	133		-3
－ 2.1	c．y	073	-27	－31	-16	－	630	595	$!7$	$1{ }^{1}$		194
-20	－84	$12 \cdot 4$	－20	20%	－213	－3	ここ，	-100	－29	328		－ご

L	FO	1 C	1	F． 6	\boldsymbol{f}	L	F 11	FC	L	10	$\mathrm{F}^{\circ} \mathrm{C}$
			0	－30	$\cdots 3$	－－1？	－8．5	-70	-16	195	234
-28 -87	－23！	100 $3: 315$	1	2：31	$\therefore 70$	-11	－ 115	－ 3	－13	－ 1.10	－4t
－80	－ 213	110	2	（i）	-300	-10	－シ810	－2	－1	$\because \because$	745
－85	430	4.314	3	－1．6	－044	－3	－－81000000	勺；	-11	1 19゙发	138
－24	－ 11	24	4	170	－1 028	－	－wes	i11	10	11.	103\％
－23	4－3	－5：3	5	いこ1	－いい	－ 7	196	－18 11	－3		－ 10308
-22	402	－30）	0	$\therefore 123$	$\therefore \mathrm{CO}$	－-	11^{16}	1.13	－1	$1 \begin{aligned} & 1 \\ & 1\end{aligned} 1$	－1 \％ 1
-1	¢－9\％	－Cser	7	4．1；	43\％			$x=6$	-6	－$-1,0$	1？
－20	3.3 .3	10 C	E	102	10%	$13=$	0，x	$x=0$	－-1	300	3154
-19	3819	401	－ 97	－	106	0		1000	－4	180	18：
-13	－74	－－： 0	-27 -21	Su＂	－－10－	1	16 1 1 0 1 3	184	－3	is $\%$ ？	－11
-17 -10	314 -74	311 -74	－28 -25 -25	い？	-1 -5 -50	2	10.3 -70	73 70	－2	新\％	－1．4
－15	618	（1）1	－24	－－ 1	－3	3	607	－015	－1	6＇） 7	1：3
-11	3.7	－ave	－2．	874	－1920	4	15023	－1号く，			
-13	-71	－11	－ 22	103	Sues	5	1703	－1：！	$11=$	4，ri	$i=0$
－1\％	128	130	－ 21	（1） 7	ci 6	0	8i5\％	－ 307	0	げ「4	－931
-11	－ 62	－6	$-\therefore 0$	$\angle 14$	－－${ }^{\text {co }}$	7	74．4	－7－0	0	57.9	－－7，
－10	－6． 7	7	－19	1 的	－130	3	－6．0	77	？	$\because 18$	－ 2 2 ${ }^{2}$
－9	2.11	－2．1	-18	－： 0	－－4	19	8 l	77 282	3	－（6）	－24 9
－ 8	11！	779	-17		－ 3	10	\cdots	36	4	803	7 \％
－ 7	328	-349	-10	－（1）	26	11	－ 6	－30，	5	40，	475
－6	274	$\therefore 81$	－15	3：\therefore	－ $\boldsymbol{c}^{2} \times$	12	14\％＇	142	5	40.	\％
－5	835	805	-1.	$\cdots 5$	$\therefore 14$	13	$3 \mathrm{3}, 0$	－339	0	7%	7，3．8
－4，	（0：3）	－627	-13	$1<2$	1 col	1 \％	－73	－ 6		1）	1.0
－3	4 \％ 1	418	-1.2	－$\therefore 0$	77	16	369	$4<1$	${ }^{6}$	－ 83	－ 12
－2	285	－$\because 18$	－11	－30	13	10	－ 5	－344	3	420	－ 290
－1	400	－463	$-: 0$	－-0	47	17	＜${ }^{\text {d }}$	く ${ }^{\text {®\％}}$	10	4.0	－Ca）
			－9	－19	－ 34	13	343	39．3	11	30	311
$H=$	9.6	$\therefore=5$	－8	432	$\cdots 4$.	19	24：	-250	12	． 307	－320
H－	－		－7	c12	187	20	30t	Ciso	13	507	276
0	258	277	－6	210	－2！ 1	21	4．00	－45：	14	coy	こロこ
1	2： 6	200	－5	－31	－1 0.1	$\angle 2$	2\％ 1	-275	10	？ 78	－c）
2	328	$3: 4$	－	1：3	183	23	1－3	100	$!$	400	46，
3	－80	Eq	－ 3	101	－139	C^{4}	11		17	$1<1$	-414
4	179	-143	－	－32	$9{ }^{\circ}$	25	24.1	231	18	4	\cdots
5	355	-8.30	－1	-30	60	26	$31: 3$	－362	19	－ 3.4	
6	124	-138							O	3	20
7	20	－201	$r=$	13.	$k=5$	$H=$	2.	$k=0$	81	\because	3．
8	150	175							7	－3，	109\％
9	こ71	$: 27$	0	$\bigcirc 32$	－247	0	－0\％	56	－27	$1{ }^{1} 3$	－13，
10	-80	－ 5	1	2い？	－ 24.3	，	033	3641	－	31	327
11	187	180	：	101	－171	2	$5{ }^{5}$	－$\quad 0 \times 1$	－	2e7	270
12	－83	10	3	224	－ 23.3	3	B72	－-351	－	－31	3
13	191	173	-25	$\therefore 14$	2.43	4	342	$2-351$	－ 25	$33:$	－30
14	2ら！	－219	－2\％	178	1 ！	5	144	115	-2	3 3：	－ 0
－	225	26.3	－23	¢， 90	243	9	153	$3-101$	－． 1	3 cos	－ 3 － 2
-29	－\％？	－9	－2i	－34	4	7	11？	？3＜7	－－10	300	－${ }^{3}$
－27	－830	30	－21	c： 5	2.36	3	1203	；12＝3	－1 ${ }^{1}$	420	－413
－26	1\％\％	－15．4	－ 20	－ 0 it	－ 3	9	－ 0.3	$3-57$	－1．	0.18	－－3，
－ 2.5	319	－31\％	－19	548	－350	10	－ 69	9 －－	－18	\％	40.
－ 24	20.0	－2 515	－13	－3．	－－1．	11	70.1	i－113	－18	513	$\rightarrow 30$
－23	036	－ 055	－11	－ 51	－\square^{1}	12	43 －	；－\％ 21	－13	40	41．4
－22	－7．1	20	－15	130	116	13	－73	－17	－1	4	41.
－21	220	－216	－13	$\therefore 1$	$\therefore 77$	14	$1 \because 0$	－－173	－10	603	－2．31
－20	1 cos	12	－14，	－7\％	3 －	15	？ 28	3 253	-12	202	－1
－13	$8: 2$	8ご	－1．3	－（3）	37	16	174	－172	－11	－0\％	-108
－18	－2：1	－2：	-12	$? \sim 1$	$1-04$	17	410	$)-130$	－10	－， 3	－4 5.3
-17	－78	－70	－11	1；		13	21.1	$\because 30$	－	20\％	43
－10	259	－－－」	-10	－3．	$?-1 \cdot$	it	$\therefore 11$	$\bigcirc-25$	3	10，	－13
－15	6，51	－0．3	-9	－ 01	3 461	20	15\％	$) \quad-\div 1$	－1	302	－3．3
-14	－7e，	－31	－${ }^{-1}$	－：1	137	21	－	－117	）	372	5
-1.3	12 is	5.	－7	80	－－2 3	\because	27	$3-2 \cdots$	－ 9	$10 \cdot 6$	－10，
-12	S 5，e，	Etos	－6	$\checkmark 31$	$1 \quad \therefore 3$	23	$4 \cdot 10$	1 － 831	，	1 1 $\div 3$	－1 ${ }^{\prime \prime}$
－11	301	32＂	－3	2：0	$0-2 * 3$	$\therefore \%$	－101	$1-191$	，	7	$\cdots 3$
-10	$\therefore 83$	300	－4	$\therefore 0$	4×23	－こ「	$? 0$	1－117	－	$\therefore \therefore$	$\cdots 5$
－9	15.3	－ 75	－3	$4 以$	－500	－2：	$こ$.	$)-233$	－1	$\therefore 71$	2ers
－ 8	116	－ 1.10	－2	$1-0$	$3-1.2$	－2	-1	－－9			
-7	c．at	－$\quad 1$	－1	$\therefore 27$	7 14，	－$\therefore \stackrel{\Delta}{4}$	－：	$5 \quad 152$	$11=$	0.	N
－ 5	$5 \cdot .9$	，－6／0				－23	$\because 7$ ¢	3 3 5			
－5	218	－ 3^{3}	$\mathrm{H}_{1}=$	15.	$r=3$	－2d	－${ }^{\circ}$	1204	，	$2: 3$	－311
－ 4	270	－・シう				－21	$1 \cdot 1$	2105	1	1） 0	，－
－3	But	－－	－10	－ 30	0 1：	－20	．\quad－	$2 \cdots 3$	c	503	－ 01
－2	24,	，	-17	10	3 14，	－19	－78	$1-3$	3	762	17.1
－1	124	，	－110	－${ }^{\text {d }}$	く－3．6	-15	$\therefore \therefore 0$	C－$\therefore 1$		5	－？
			－1	18	\therefore ive	-17	4.10	$0-13$		3.	－
$\mathrm{H}=$	11.	ド＝	－ 18	17	$9-179$	－1＇，	21	－－－215	7	－7	
			-13	-3	5－120	－15	1.5	31 －	7	： 25	－72

L	FO	FC	L	FO	FC	L	FO	FC	L	F	FC
6	92.4	－9．30	－ 8	＜ 93	2． 96	-6	150	161	－ 5	1062	1060
9	184	－212	－7	311	－310	-5	330	-330	，	458	521
10	-62	-84	－6	$0 \vdots 1$	－ujer	－4	404	475	－3	437	433
11	475	455	－5	90%	904	－ 3	246	－2．32	-2	115	－95
12	236	214	－4	1003	-1000	－2	105	129	－1	318	－330s
13	-81	40	－3	$4 \geqslant 0$	sou	－1	19：	184			
14	-80	23	－2	－73	－01				$H=$	3.	$k=$
15	12：	-148	－1	139	-215	$H=$	1% 。	$K=5$			
16	－82	－5？							0	265	292
11	181	193	$H=$	10．	$x=0$	－21	-37	－113	1	45	－4．1
18	－ह5e	-101				-20	－80	$-2!$	2	$\because 14$	23.3
-23	211	209	0	1 Br	125	－19	105	-130	3	110	140
-27	142	145	1	37%	307	－18	－ 5 ！	27	4	184	－ 159
-26	31.4	300	2	$1+5$	－14ia	-17	－ 4	34	5	230	272
-25	203	200	3	24%	－207	-10	－ 3^{2}	1.10	6	121	－154
－24	171	－190	4	261	－zu0	－15	－84	－32	7	377	せり1
-23	031	－64\％	5	231	－300	－14	－34	0	${ }^{3}$	154	176
－22	310	-319	6	－51	－11－4	-13	-634	-120	9	700	－71i
－21	353	$-3 ¢ 0$	7	205	24 is	-12	$\because 11$	-214	10	30%	300
-20	196	－227	1	503	509	-11	234	234	11	3：0	－351
-19	－78	13	3	149	130	-10	252	－251	12	031	－524
-18	219	182	10	101	1.61	-9	505	561	13	527	523
-17	352．	370	11	233	－274	－ 3	394	397	14	119	133
-16	161	172	-27	－34	－y0	－ 7	23	－214	15	658	634
-15	160	138	-20	$3: 6$	-340	－0	227	235	15	41.	406
－14	－72	－40	－ 25	183	－ 02	5	250	－244	17	309	－413
-13	193	193	-24	117	$1<0$	－4	－68	－30	18	249	－2：5
-12	Cis3	－242	－23	3.35	415	－3	150	155	19	431	－40．${ }^{\text {a }}$
－11	914	916	－22	290	$\cdots 80$	－2	232	-222	20	－3t	6.2
－10	280	－283	－21	204	237				21	446	450
-9	755	761	－2． 0	131	14.4	$H=$		$k=7$	$2 ?$	－y0	52^{2}
$-\varepsilon$	1035	10.3	－19	－31	106				-27	232	217
－7	858	-553	-18	237	-210	0	750	－713	－20	-83	－32
－6	127	140	-17	－i！ 3	-315	1	17	-187	－25	242	224
-5	408	－111	-15	351	－330	2	277	209	－2．	－01	57
－4	262	-273	-15	－30	d7	3	144	10.3	-23	-79	02
-3	839	879	-14	110	90	4	77	－769	－22	158	3
-2	753	－72d	-13	196	227	\bigcirc	4 H	－67J	－ 21	28	－2is
-1	171	-163	-12	477	471	6	25	200	－20	－3．	43
			-11	619	－E29	7	1434	1450	－19	608	-6.2
$H=$	8.	$k=6$	-10 -9	117 812	312 -820	8	333 879	-322 911	-19 -17	121 -7%	$-1+3$ 51
0	677	574	－8	759	－732	10	14.	-153	－： 0	-75	－42
1	479	403	－ 7	$3+3$	32 is	11	527	－521	－15	539	500
2	161	150	－6	176	-1 ± 7	12	155	191	－14	238	21.4
3	－30	129	－ 5	2；9	$22 y$	13	126	－10？	-13	347	－3．47
4	339	－333	－4	－ 50	70	14	112	－110	－12	137	－134
5	4 Cb 3	－439	－3	229	$-2 \div 5$	13	207	234	－11	1372	-1370
6	20.3	－220	－2	<38	くここ	15	14	－83	-10	200	－203
7	419	－405	－1	－01	30	18	14	125	－3	771	$7{ }^{7}+3$
8	－80	－53				18	－ど	71	－3	431	233
9	-79	84	$H=$	12.	$k=6$	19	－09	-571	－7	1＊11	1934
10	－79	92				29		－19	-6	$-6,5$	－－
11	$2<0$	194	0	322	-314	21	423	－423	－j	522	$-50+1$
12	－32	143	1	120	－10．3	22	－ l^{4}	－116	4	936	1003
13	143	-201	2	100	-100	23	－84	43	－3	14	13.3
14	－E＇	－79	3	258	－-32	24	－ 1.5	－43	－2	27	-271
15	147	143	4	132	124	－26	－ 83	0	－1	333	－-324
-28	-835	14	5	？ 16	137	$-2=$	$1!$	02			
－27	123	201	-25	－3：	4%	$-2!$	175	16！	$4=$		$\alpha=7$
-26	303	－ $2 \cdot 4$	－2．4	12．	34	-2.3	－is	111			
－25	$\dot{\chi} \dot{\prime}$	－くら2	－ 23	136	S65	－22	－ 7	－71	3	35e	$35 ?$
-24	－ 80	－ 33	－22	280	200	-21	$5{ }^{4}+$	－5i	，	－0，	23
－23	3ソ0	-31.7	－21	－ 33	－ji	－20	24：	－． 58	2	500	－5こ3
－2．2	3：0	$-33=$	-20	126	－1it	-19	こか	－2in	3	141	-100
－21	－ 3 ， 0	$1<8$	－19	C．0	－	-13	40	411	\downarrow	30	3 － 3 \％
－ 20	14%	132	-13	415	－ 371	-17	$3 ? 7$	－372	5	009	040
－19	1）${ }^{\text {c，}}$	，175	－17	－31	－ 03	-10	331	－340	6	140	170
－18	$5: 3$	524	-10	147	1 10	-15	445	－49！	7	1133	－1！！
-17	171	－119	-15	305	， $3=3$	-17	${ }^{2} 7$	1－322	8	$2 \because$	2引：
-16	$2 \cdot 3$	，－280	-14	251	呺 3	-13	50.	1452	7	54	-955
-15	983	－4か0	-13	17	1－102	$-1:$	いこ	72	10	－31	－ 9
-14	35	$3-305$	-12	－ 31	－50	-11	－ 6.	－-203	11	497	7 50：3
－13	4， 3	3404	-11	25	－-1%	-10	110	－107	12	130	－！？
-12	15	3 ： 03	-10	$17=$	－1000	－ 3	1 34	－1：0？	13	2.78	$3 \quad \because: 3$
－11	314	4302	－	$4) 7$	7 － 2	－3	10.	$-1 \cdots 7$	！ 4	136	－－
-10	5%	57\％	－：3	150	－：－	-7	Cras	2932	1．	240	－ 231
－9	10.52	-1035	－7	243	3 建	－0	28：	，200	10	－3c	37

L	FO	）FC	L	FO	FC	L	Fo	FC	L	FO	FC
-1	－6，7	719	－14	-30	－5	－4	313	$3-321$	9	－79	－22
			－13	6；${ }^{\text {\％}}$	4.00	－3	286	－2．23	10	306	279
$H=$	6.	$K=3$	-12	134	-170	－ 2	306	－3，${ }^{3}$	11	－81	－74
			－11	502	504	－1	－85	31	12	－82	－72
0	405	385	-10	-19	52				13	4 とこ	－472
1	453	3494	-9	570	－571	$t:=$	14．	$k=8$	14	-81	－57
2	1240	－1221	-3	402	－433				15	128	-123
3	220	193	－7	715	－700	-15	-35	-13	16	－81	－20
4	431	－419	－5	－7：	－24	-15	321	－297	17	355	－349
5	－79	3 39	－5	175	150	－11	－87	85	10	－35	－35
0	325	， $3 \div 3$	－4	750	740	-13	196	，-203	19	－4is	38
7	221	－200	－3	$4<^{3} 0$	102	-12	－860	29	20	203	－233
8	199	172	－2	5 ± 0	595	-11	327	329	－25	129	-157
9	453	－447	－1	－80	－90	-10	－ 57	93	－24	451	－433
10	201	-183				－9	279	274	-23	275	2.34
11	374	351	$H=$	10．$k=$	3	－8	－83	24	-22	141	－94
12	－ 31	99							－21	21.1	＋15
13	－82	－7	0	C口O	－279	$\mathrm{H}=$		$K=9$	－20	474	401
14	－8．3	$3-18$	1	$2<9$	－2ちつ				-19		－504
15	508	－4．30	2	450	474	0	1509	－1505	-13	198	-176
16	－ 37	－383	3	117	-120	1	105	$5-117$	-17	$-\varepsilon$ ！	-44
1.7	130	， 1.33	4	2.03	194	2	591	538	-15	342	－340
-27	170	-171	5	170	－148	3	－ 08	－79	－15	C：	-243
－26	232	－240	5	-50	-157	4	564	579	-14	－7\％	-102
－25	－63	－ 87	7	－24	58	5	815	－-323	-13	－78	111
－24	309	283	8	－37	－135	6	537	－ 533	-12	－70	-72
-23	－82	－74	9	300	293	7	－73	50	-11	135	-142
-22	499	50.5	-25	－35	－101	8	687	－695	-10	437	-432
－ 21	265	－277	－2．4	$1 \therefore 0$	-150	9	467	7440	－9	537	003
－20	202	－279	－23	-33	－13	10	294	322	－8	750	370
-19	156	－-130	-22	490	-415	11	-78	$3-102$	-7	300	333
－13	－82	-125	-21	322	325	12	149	Y3	－6	061	6003
-17	473	3460	－20	2.30	134	13	-20	115	－5	342	-703
-16	-75	33	－1．	132	175.	14	-80	11	－4	387	－383
-15	600	－-607	－18	216	214	15	255	-257	－3	134	-125
-14	－7t	$c_{5} 7$	－17	403	-471	10	174	171	－2	355	－4．11
-13	－7b	－－	－15	－：30	-33	17	-81	05	－1	＜30	-214
-12	-76	－-90	-15	571	575	13	151	3149			－
－11	900	913	-14	-33	－155	19	417	－421	$H=$	5.	9
-10	12^{25}	1＋2	－13	219	$\ddot{413}$	20	454	－44 4			
－9	173	－1．33	－12	－32	3	21	210	22.5	0	1253	1233
-8	－7．	$3-103$	－11	802	-770	22	132	－100	1	－76	－35
－7	316	－295	-10	134	－184	$-\mathrm{CH}$	－34	－94	2	369	-367
－6	348	－343	$-y$	179	－100	-23	144	－-149	3	149	-124
－5	382	$2-414$	－3	－31	-5.3	-2.2	47 x	：－40？	4	779	－797
－4	175	－100	－7	261	230	－21	415	337	5	773	775
－3	3.38	－371	6	130	151	－20	294	302	6	237	303
－2	1054	1057	－5	212	$24+$	-19	－79	125	7	219	≥ 03
－1	402	411	－4	220	206	－18	-70	53	3	693	50
			－3	301	302	-17	370	－374	9	339	－323
$H=$	8,	$k=8$	-2	334	－3：3	-16	－ 80	77	10	243	-272
			－1	172	-151	-15	－78	-111	11	-30	¢0
0	406	－410				－14	143	151	12	233	-203
1	175	，1c14	$H=$	12，K＝	3	－13	505	－575	13	151	－iu0
2	172	-134				-12	137	169	1%	115	13
3	154	-10.5	0	205	244	-11	－7	－5i	15	－0．-2	30
4	32.	－ 324	1	－ 26	-118	-10	＜4\％	－2633	16	－こ5	-2
5	$2: 6$	－145	2	126	137	－3	20］	-273	17	－36	-43
6	254	240	3	－37	2.4	－8	－71	－5\％	－20	6.35	－6．53
7	－81	－05	-23	－ 36	32	-7	H0\％	90%	－．25	103	171
8	142	－1／4	－ 22	－8．	－ 3	－6	049	Lel	-24	－34	32
8 10	201	－165	－21	1．1	152	－5	340	115	-23	3．30	3.37
10	212	－173	－ 20	4.1	454	－4	8太ぐ	904	-22	70」	710
11	158	151	-17	－－ 4	－53	－3	－ 60	， 3	-21	$4) \therefore$	－303
12	140	－7u	-12	$\therefore 70$	-250	－2	75：	－76゙う	－20	225	－230
13	176	，－101	-17	－ $2 \cdot$	－	－1	－0．3	3 －	－1．1	3．？	-311
－26	137	ro7	-10	－34	-111				－：3	23\％	－250
-25	208	）$-10 y$	-15	－8！	23	H＝	3.	$K=\quad \rightarrow$	-17	c37	250
-24	¢07	$4{ }^{4}+03$	-14	－－					－16	117	－ 4
-23	-30	－32	-13	207	-271	0	9^{4}	975	－15	12.	－1：3
－2．2	－77	－29	－1，	－－ 2	リ＋	1	115	-42	－14	－74	－5it
-21	－80	－ 393	-11	c．${ }^{19}$	-292	2	06.5	474	-13	0.3	5.2
-30	339	－3ヶ？	－10	－32	－04	． 3	105	107	－12	－77	-110
-19	108	，145	－4	1，3	200	4	230	－ 293	-11	290	319
－18	4．05	473	－	209	二2！	\therefore	247	230	－13	－76	3.4
-17	－80		-7	423	$\div 2$.	$\stackrel{\square}{6}$	236	-272	-9	407	$\therefore 1$
-16	137	10	－5	－12	31	\because	せ \％	578	－ij	－70	－$\because \vec{i}$
－： 5	154	-171	－S	－43	3.7	3	－7．	-33	－7	504	－－1

L	FO	FC	L	FO	FC	L	Fo	FC	L	FO		C
11	－85，	115	$H=$	］．$\leqslant=$	$=11$	－S	240	-2.37	-11		-349	
－ 28	16.1	171				－ 5	497	－520	-10	231	207	
－2．3	385	－．37．3	0	15	－211	－7	175	－10t	－9	－81		103
-22	179	-17%	1	－7	-112	－	311	111	－3	53		514
－	240	－ $0 \cdot 0$	2	259	ご誰	－－5	－？ 9	-137	－7	－${ }^{2}$		-46
－20	－6゙1	$-1 \ddot{3}$	3	1003	31 sy	－4	121	113	－6	33b		-353
－19	356	349	\％	-16	-22	－3	471	474	－5	－ 3.3		76
-18	160	-133	5	3 ± 6	，－3056	-2	193	－20y	－4	300		－305
-17	494	409	6	337	－－310	-1	114	-94	－3	341		-353
-16	146	136	7	－19	－－ 3				－2	3．37		311
-15	－80	102	${ }^{\text {c }}$	25.	1 c＇3	$11=$		$k=12$	－1	－51		－49
－14	－80	－72	3	171	－180							
-13	226	-228	10	－4	）S－i 3	0	229	241	$H=$	9.		11
$-1 \vec{c}$ ？	271	－277	11	300	3	1	153	110				
-11	311	－35\％	$1 \therefore$	20 \％	－cyo	2	－： 0	－71	0	130		-107
-10	590	600	13	300	－ 2 S	3	$2 \div 6$	－309	1	－32		－8
－9	－u2	60.	14	534	－511	4	－80	－0j	2	－30		5
－8	-81	46°	15	315	－－305	5	207	300	3	172		150
－7	213	231	15	－32	$\because \quad \therefore 3$	0	306	319	4	－84		62
－6	300	-373	17	－－04	-53	7	195	$1: 4$	5	213		－197
－ 5	－ 32	59	13	A18	d it！ 3	8	12.4	-101	5	－33		－85
－4	465	482	1%	-35	$-1<1$	9	241	22亏	-21	170		43
－3	190	－193	20	－bi	－$-4 i$	10	7：9	－735	-20			30.7
－2	$3: 1$	． 356	-21	250	2．43	11	306	-273	－： 9	$3 \cdot 5$		363
-1	450	－447	－20	410	410	12	355	300	－13	$\because 02$		174
			－13	23	1200	13	292	－209	－17	23		303
$H=$	10，	$k=10$	－18	－ 30	－0d	14	491	475	-16	270		-286
			-17	12	107	15	195	18.4	－15	164		-164
0	124	-104	-16	ことt	－－2＜2	-23	138	173	-14	5×6		－540
1	135	1604	－13	3t4	－-352	－＂20	－ 3 年	76	-13	270		-257
2	134	123	－1！	409	－413	－21	225	－225	-12	14.3		157
3	241	－225	－13	403	$3-370$	－20	522	-5.27	－11	－61		-2.2
4	252	223	-12	173	3409	－19	$4 \% 8$	－402	-10	$6: 7$		570
5	255	－ 245	－11	－ 30	－ 70	-13	－ 3	－122	－3	－と！		58
6	－87	－103	-10	4， 8	8710	-17	－5	-297	－${ }^{-1}$	14%		-216
－22	932	－4．32	－9	112	－13	-10	348	－ 345	－7	－61		72
－21	二号	202	－ 3	683	$7-7 i 7$	-15	340	303	－6	E－31		－こ？
－20	4 4？ 1	$\therefore 13$	－？	135	－ 200	－110	536	55	－	15%		－1 30
-19	391	410	－ 0	729	－75y	$-1=$	320	333	－4	140		121
-18	－ 84	02	－5	2E2	$2-2+1$	-12	230	-214	－3	－31		-119
-17	－ 33	－37	－4	531	351	-11	－ $3:$	－45	－2	143		151
-16	1%	-152	－3	204	$4-242$	-10	080	-705	－1	$2 ¢ 2$		304
-15	49.9	－500	-2	－70	－－i2	－ 3	－81	55				
-14	130	－159	－1	393	3415	－8	270	275	$H=$	11.	K	11
-13	163	－127				－7	172	－153				
-12	$2: 7$	226	$\mathrm{H}=$	3.	$k=11$	－5	524	551	0	140		－1／1
－11	183	109				－5	120	81	-19	308		-312
-10	－82	－\％\％	0	120	115	－4	270	－239	-17	－ 37		－68
-9	270	20.4	1	$25:$	25	－3	198	17＊	-16	j／5		－379
-8	146	-133	2	14	2 175	-2	155	－136	-15	323		－318
－7	129	149	3	C11	$1-136$	－1	130	－19j	-14	－is5		33
-6	133	135	4	154	$4-173$				-13	126		－4．3
－5	145	－35	5	297	7－304	$1=$		$K=11$	-12	6.4		645
－4	124	－84	0	530	－ 200				－11	215		225
-3	315	－285	7	125	6 114	0	－ 31	59	-10	－35		0
－2	－02	－84	8	022	＜し ふ0．	1	151	-1.3	－9	161		-119
－1	-83	100	9	－8．	250	2	－8？	－155	－8	こち3		-353
			10	44	－-40	3	167	213	－7	－34		7
$H=$	12.	$k=10$	11	197	7 a゙う	4	253	273	－3	－6\％		130
			12	¢＇\％	$7-540$	3	131	167	－5	－ 36		<3
-18	－ 86	70	13	3.3	$2-\operatorname{Les}$	5	． 324	－2．3）	－4	190		183
-17	350	-323	！	27	7 こりご	7	10%	－153	－ 3	176		1 \because－
-15	1：2	－18．	15	$\therefore 3$.	\therefore－3．3	3	407	－426	－2	187		-122
-15	189	-136	10	$23:$	120	4	－85	－19	－1	－88		28
－14	－37	15	17	－80	¢5	10	-37	122				
-13	－36	－ 77	－2？	12^{2}	－－ 2	11	－56	－132	H＝	0 ．		－ 12
-12	318	2.25	-21	こ $=1$	－2＂a	-2.3	214	-213				
-11	195	132	－20	－ 3	＜ 73	-25	－34	21	0	370		-304
-10	2：？	－ 2.304	－1	－ 8	－33	-21	${ }^{2} 93$	－2 已	1	327		－331
－9	－35	－1，	－18	$\therefore 3$	$\therefore \quad-2.3$	－2．）	13.	$=-102$	2	132		$1<9$
－8	－ 35	－04	-11	－30	－103	-19	-81	－！${ }^{2}$	3	601		－60
－ 7	-8.8	－-31	-16	22	$0-230$	－1	400	i $0 \rightarrow$	9	140		$-1 \div 3$
－6	237	2\＆7	－15	± 1	）－4 60	-17	－セ0	－り	5	－60		-103
-5	－87	－27	－14	53	$\because 00.3$	-15	295	203	0	159		-2.04
－4	くこった	$1-230$	-13	$x^{\prime 2}$	\therefore cb：	－15	431	913	7	201		296
－3	120	60	－12	$1 \mathrm{Cl}^{5}$	，1033	-14	10	－ 174	t	－ 30		-62
-2	320	－ 332	-11	こu	\therefore 3：	-13	117	－1	9	$1 ? 5$		－1，
			-10	5．	$1-200$	-12	83	－－jy	10	051		500

L	F 17	1 C	L	F（1）	Fe	L	10	\％C	L	$r 0$	1 C
11	5 Cos	569	－11	S6：	419				-11	E13	$-50=$
$1:$	\％ 23	？ $0_{0}+1$	-10	1．4	$-7 \cdot 6$	$11=$	10．r $=$	1%	-11	：4，${ }^{\prime}$	3.60
13	12.03	－178	-13	1•，${ }^{3}$	－100				-16	120	＂3＂
18	$=10$	－496	－ 3	－ 01	1：	0	175	－140	－1 14	1 15，	
15	-810	$\therefore \therefore$	\％	$\therefore 13$	230	－11	－53	133	-14 -13	32.	744 -183
10	3us	－3us	0	－31	91	－16	534	－i ${ }^{1}$	－1	－	－1．-13
17	－822	5	－ 5	11%	0	$-1 \leq$	$1{ }^{12}$	1：1	-1.	－： 0	－13
18	$3 \cdot 5$	3.15	－	$-\therefore 1$	79	-14	？ 0.1	－210	-11	－60	11，
14	－と．5，	4.3	－ 3	\therefore cia	－4，${ }^{\circ}$	－1．3	－816		-10 -9	103	－1\％
$11=$	2． $1=$	12	－1	200	－\％ 7	－11	－－ 7	－）	उ	－ 61	27
H－	$4 \cdot \mathrm{l}$	1.	．			-10	2．3：3	$\checkmark 31$	－7	$3{ }^{3}$	314
0	-80	－29	$H=$	¢． $\mathrm{m}_{\text {，}}$	12	－4	1 ${ }^{\prime \prime}$	$1 \therefore 3$	－6	1．3	－136
1	208	－$\therefore 34$				－8	$\therefore 1$	－270	－ 5	－0i	3） 7
2	307	30，	0	130	142	－ 7	207	－2．30	－4	1：0	－ 8 ，
3	3ご，	－315	1	$\therefore 37$	$\because{ }^{3}$	－	－30	6i4	－ 1	233	2
4	71%	－ers	2	≤ 38	－ 3.36	－	$3: 36$	321	2	5，10	
5	653	C20）	3	$\therefore \therefore 4$	230	－	50 P	$4{ }^{4}$	－1	6，${ }^{1}$	－5e7
6	－82	-0.3	4	らソ0	3）3	－ 3	13.4	103			
7	1．3	-105	5	$54 . ?$	－5\％u	？	－：35	－ 73	$H=$	S．	$r=13$
0	200	res	0	-31	35	-1	－ 85	－8c			
3	145	171	7	－ 32	－ 23				0	303	510
10	－81	11	3	ごずい	－201	$1=$	1．\ldots	13	\％	$4.0:$	－391
11	－ 22	42	4	－ 35	－${ }^{-18}$				3	－ 2	－33
1%	¢，${ }^{\text {a }}$	－560	10	13%	－111	0	375	-344 -740	3	C． -31	231 -41
13	10.5	－： 32	11	193	－4：	－	706	－70\％	¢	－-81	-41 -117
16	273	－26．3	－21	$\therefore 7$	234	\％	－2．	330	\bigcirc	－－？	－117
13	－8．3	-3.3	－ 20	131	－： 61	3	のビ品	－5） 0	${ }^{3}$	220	－153
10	310	280	－19	-33	\cdots	4	－ 33	40	7	43.	－43．
17	－80	－37	－18	4： 1	475	5	150	175	¢	－3\％	37
-20	$-\mathrm{Et}$	153	－17	－ 0 ，	－03	9	$\because 38$	303	9	159	141
-13	－8）	115	－10	E00	490	7	45%	$44_{3} 3$	10	1 と0	－173
－18	498	－． 5088	－15	130゙	－5；	3	－ह．C	－122	－11	－ 3	3 $-\frac{2}{3}$
-17	－83	12	－14	－31	3）	${ }^{3}$	110	－120	－1：	364 168	343 -177
-10	527	－510	－13	－bc	1－3	10	16.4	$16!$	－13	14 -43	－177
-15	-79	10	－1 2	号ら5	－ 205	$1!$	－836	123	－17	－ 3	－77
－14	124	105	－11	1． 2	：2＇？	$1 \because$	－${ }^{4}$	103	－1，	－1	－18，
－13	20	－196	－13	C34	－30．2	13	－ 3	－ 0	－13	¢\％	－ $3<$
－12	840	355	－	c＇i ${ }^{\prime}$		$1+$	$\because 10$	－－－－	-14	155	132
－11	－81	－ 5 ¢	－8	213	234	15	173	-172	－13	－ 30	
-10	150	14.0	－7	－3c	： 55	10	3：0	-377	－18	347 -33	－3＋3
－9	211	185	0	－31	－ 214	-13	－－	11．	-11	－32	－73
－8	209	－nob	－－	6． 2	－723	-1%	-33	3！	-10	148	－1123
－ 7	$2 \div 2$	-253	4	7．1	－742	－10	2）？	－3：35	－9	150	103
－ 8	18.3	1 U	-3	－31	－42	－15	205	くこ4	－3	＊ 60	403
－ 5	810	830	－2	144	1903	－1：	161	-123	－ 7	$\therefore 8$	－
－4	940	450	1	2.30	$2+7$	－23	125	-112	－6	30%	－ 210
－3	116	25				$-1<$	410	$+2.2$	－ 5	416	－＋6，
－2．	368	－3：0	$13=$	（3．）	12	－11	$1 y^{5}$	130	4	101	－1．3 ${ }^{1}$
-1	105	-180				－10	16.	10^{1}	－ 3	$1 \cdot 1$	－13，
			0	－01	-92	－ 3	101	－－25	－ 2	cos	249
$\mathrm{H}=$	4．$k=$	12	1	－81	40	-3	4.1	－ 283	-1	－31	5
			2	131	－30	－ 7	400	－A54			
0	275	277	3	220	－2a3	－6	322	334	$H=$	7.	$x=13$
1	218	194	4	－ 53	－75	－5	S！！	勺い？			
2	-80	$1+$	5	143	－132．	4	$14 ?$	191	0	－ 33	3 2？
3	410	40.9	i	－35	－14＊	3		C82	2	270	－${ }^{\text {aj3 }}$
4	－81	$\therefore 1$	7	－ 50	113	－ 2	308	-403	2	347	－ 310
5	-80	02	－20	153	123	-1	143	-11.	3	113	3 －－j j
0	196	2.57	-1 \％	－4．4．	-3				4	150	$0-141$
7	$25 ?$	－201	－1 3	3：7，	53	$11=$	3．$k=$	13	5	340	O－－－
${ }^{1}$	30.4	274	－1	－ 30	1 0				6	13\％	7 －${ }^{\text {a }}$
4	$3 \cdot \square$	276	－15	140	$-1+2$	0	14.3	121	7 -15	－どら	2ioi
10	$5 \cdot 7$	－55？	-15	-31	－1：	1	$2<1$	-173	－18	250	－ 23
11	$3<1$	－$\quad 1$ ）	-1.	$5: 4$	-551	2	3.11	$3: 2$	－18	－	i－－-3
$1 ?$	$44^{\prime} 6$	－4： 1	-13	36.7	345	3	－si	51	－15	－－	$1-35$
13	－bic．	\＆ 5	$-1{ }^{1}$	$1<0$	－13．	4	－ 0	3.	－15	－ 3.4	\％－－
14	$\therefore 30$	412	－11	$3 \div 0$	－－i1	5	431	47%	－1：	$\therefore 8$	1 －－
-1	－ 23	－$\quad .1$	-10	to． 1	043	0	275	－2ら：	－13	16	）1－，
－20	20.	－20	－ 7	－30	31	：	175	－1 ¢	-12	－ 6 ？	2－－
-19	-8.5	13	－${ }^{-1}$	-30	10.3	8	419	405	－1！	－	－
－1 とi	53.0	$-5>+$	－7	17%	-1.3	7	160	－101	－10	-25	2 1
-17	－82	－3	－5	2：0	－$\because 00$	10	－	51	－4	14	$01=7$
－10	301	305	－	1：32	－12．a	11	127	25	－ 3	－79	1 －53
－1：	－80	42	－4	－－1	-83	12	910	$-2-2$	－ 7	こ＇1	－ $0^{3} 3$
-14	Es ${ }^{5}$	6，cot	－3	$3 \therefore 2$	297	13	100	－111	－ 8	1 cre	¢ ！＇，
－13	？？	－ 7 ：	－2	$3: 3$	1： 3	1.	－ 7	－ 5 ？	－5	42	－$\because 0$
-10	203	-103	－1	ご）	4 C	-19	$1<^{\prime} 2$	，	－	－${ }^{1}$	1

L	80	FC	L	$F 0$	$F C$	L	FU		$F C$	L	FO	FC
－3	－80	49	－6	103	133	-12	－ 2.3		－30	0	501	496
－2	512	510	－5	411	$4: 0$	－11	－ 35		－115	1	353	34ら
-1	52	56.2	－ 1	201	$\cdots 20.3$	-10	－－8．7		－ご	2	－30	35
－			$-.3$	130	10.	-9	$\therefore 0.2$		202	3	$\because 42$	－ 250
$t=$	9．$K=$	13	－2	542	-575	－9	313		－325	4	351	－3e2
H	9．K－	1	－1	170	．139	－7	140		－1：7	－1．3	406	474
0	2044	－2．15				－6	204		210	－12	191	147
-15	3.39	270	$H=$	4．$火=$	14	-5	$2: 3$		-270	－ 11	152	－107
－14	315	－295				－4	$1: 0$		140	-10	－04	111
－13	－8， 6	0	2	お55	ららい	－3	239		2.24	－9	237	－ 253
-12	170	18.3	1	－33	-112	－2	206		210	－8	101	-14 35
－11	－35	64	2	133	133	－1	－ 234		02	－7	－ 84	－35
-10	140	139	3	475	438					－6	37.3	-357
－9	－83	－20	4	－33	4	$\mathrm{H}^{\prime}=$	1，	$k=$	15	－5	312	377
－8	434	－425	5	117	-59					－ 4	263	－245
－ 7	276	－230	6	307	－30．	0	422		－428	-3	$\because 10$	－209
－5	193	18 ？	7	313	－293	1	455		-420	－2	176	－10\％
－5	270	254	5	－	33	2	135		115	-1	172	-132
－4	$2: 0$	25\％	9	225	－14	3	421		<04			
－3	109	154	10	14.2	113	4	491		40	$H=$	7 ，	$x=15$
－2	－53	－23	-17	213	-102	5	-32		97			
-1	－83	73	－15	211	$\cdots 209$	6	147		-119	－8	274	－ミ837
			－15	-34	－ 80	7	158		－165	－7	2.10	223
$H=$	0，$k=$	14	－14	100	203	8	2500		－24？	－6	170	－171
H	O，		－13	－83	84	9	－85		$-11 t$	－5	－80	23
0	746	－779	－12	120	-73	10	－84		5	－4	340	3：\％
1	－\＆ 1	－50	－11	210	220	11	245		221	－3	320	－3．4
2	－どO	－41	-10	142	00	-13	440		$\cdots 45$			
3	502	－479	－8	146	-150	－12	130		－－47	$12=$	0.	$k=16$
4	－80	62	－ 3	270	201	-11	375		377			
5	313	315	－7	251	270	10 -10 -9	－ 26		27	0	237 -35	-274 -9.3
6	4.11	409	0	314	－340	－9	265		273	1	－35	－9 113
7	407	399	-5	208	240	－8	$1 \geqslant 1$		153 -158	2	153 140	113
8	117	-125	－4	-81	－47	－7	199		-158 4	3	140 -34	719
9	2．31	－271	-3	320	-320	0	43.3		736 -433	5	－374	259
10	－ 21	－54	－2	－31	-116	－5	402		－433	5	273	253 -35
11	－8．2	65	－1	-79	-10	－4	-33		93	$\stackrel{4}{4}$	－34	－35
12	$1 ¢ 0$	120				－3	Su0		294	7	1 yy	-153
13	157	112	$\mathrm{H}=$	5．$k=$	14	－2	371		－402	8	132	140
14	191	－200				－1	－82		15			
15	－84	45	0	339	$\Rightarrow 32$					$H=$	2.	$k=16$
			1	215	233	$H=$	3.		15			
$\mathrm{H}=$	2．$k=$	14	2	3：1	－375					0	-85 -84	40 -77
			3	－ 63	－i	0	302		310	2	-84 -85	-77 123
0	128	-160	4	283	－271	1	－63		－3．3	3	－85	123
1	123	-104	5	305	－32．	2	360		346	3	－85	135
2	Qt． 5	463	6	－86	30	3	$25: 3$		2839	4	185	$13{ }^{2}$
3	－¢il	41	-10	123	114	4	－5，		36	5	－36	－72
4	277	252	-15	－ 35	－67	5	$2 \div 9$		-257	－9	$3: 1$	354
5	344	353	－14	－ 64	92	\bigcirc	32.		－30\％	-8	157	155
6	－ 50	-32	-13	234	22.3	7	127		－100	－7	404	－+10
7	35.5	－335	－1 2	134	－17y	8	200		-135	－5	284	－-2
8	132	－110	-11	－3¢	－41	-13	207		202	－5	174	－131
9	18.1	-131	-10	－ 24	51	-12	160		143	－4	241	－2，
10	193	182	－9	－3	3.	－11	427		390	-3	167	130
11	－3．5	25	－8	100	-16.3	-10	－i， 5		30	－2	140	-123
12	－837	－144	－7	477	410°	－7	－32		-18	－1	－ 25	17
13	236	－205	－	131	－1 21	－ 8	296		310			
-10	134	-152	－	300	－3．34	－－	22		－219	$11=$	4	$N=16$
-15	－82	4	－4	－81	52	0	－34		58			
-14	－84	－64	－ 3	3－0	－こy4	－ 5	－85		-23	0	264 -86	54
－1．6	2 CO	－132	-2	42^{2}	$\therefore \div 2$	－4	53.		－ 320	－ 1	－85	163 -249
-12	170	220	－1	－33	$=0$	－3	3：0		3 4 1	－7	253	－293
-11	－ご	160				－2	173		-120	－ 3	－85	－53
-10	-1	-122	$1=$	8．	14	-1	$3 j$		－321	－-5	230	217 -133
－9	－50	－104								－	-83 -120 109	－103
．－8	ご4	$20:$	0	332	-377	$r=$	5.	$\cdots=$	15	-3	129	139
-7	402	-451	-13	$-i \%$	－83					－2	140	－1．2

Table B-5

L	10	rc	1.	FO	1 C	L	10	$F C$	L	10	16
I	360	393	－${ }^{\text {a }}$	－01	17	－1：	521	¢リ＂	-14	129	111
2	310	$30 ?$	－1	－67	－82	-16	$\because 8.7$	29%	-13	－Ses	－13
3	12．3	111				-13	300	－こど！	-12	cors	－701
6	－1，8	1？	$11=$	0．$k=$	12	$-1 ?$	$\therefore i r$,	－20 0°	-11	$4 \% 3$	－ 403
4	$11:$	$\cdots{ }^{-\cdots} r^{\prime}$				-11			10 -10 -9	403	is！ 1
6	－－80	－i 2	－ 0	117	108 202	－19	1：4，	17%	－-5	acco	－4 3\％
－ 20	100	11%	-10 -10	2206 200	1205 210	－8	と－1	－ 7 － 51	－7	${ }_{6}=10$	－413
－1\％	－8\％ $=3$	118 -1.8	－18	260 -90	－3is	－7	［ \sim ：	－－0\％	－${ }^{-1}$	号：	－ 03
－1\％	－\＆！	${ }_{6} 63$	－ 10	20\％	－232	－6	$\because \mathrm{i}$	73%	－9	1 ≤ 31	1 $\because 3$
-16		diss	－15	－9， 6	-1.3	－ 5	$1 c^{\circ} \mathrm{C}$	514	4	10． 8	－20\％
-14	111：	－ 180	-14	177	$1 / 4$	－ 2	704	－$\because 17$	3	13.8	－10，
-10	4？？	－ 3.38	－ 1 ！	2.33	$\therefore \therefore:$	－3	514	－ 513	$-{ }^{-1}$	140	10＊． 7
-1%	－03	11	$-1 i$	1：C	－230	－2	（ $3^{3} 2$	－50	-1	－！ 1	
$-1 i$	-62	25	－11	3．54	-301	－1	1：76	2410			$r=3$
－11	－ 6 ？	27	-10	100	－？				11：	2.	$r=3$
-10	168	－16\％	－ 0	203	$2 ; 0$	1	1.	$r=1$	0	on	－ 5711
-4	ぞ	－ 50	－8）	133	17：＇				1	30%	－10\％
－8	－6．1	$\cdots 84$	－ 7	243	－255	0	513	-104 -210	1	771	\％$\because \%$
－ 7	2 CH	20¢	－6	10%	－150	1	150	－610	3	40.1	481
－ 6	203	221	－5	－6y	04	8	75%	2 ？	3	119	10
－5	271	－\％os	－ 8	129	159	3	1どひ	134	\％	${ }_{4} 19$	4．${ }^{1}$
－4	130	－－－	－ 3	：113	－茐	\％	2．7	－ 368	5	U，	－とic
-3	20\％	－217	$\cdots 2$	165	－133	5	8： 3	－ 70	0	1 i	83
－2	S25	52%	－1	－7：	－ 9.3	6	\＆゙o令	850	7	－4	－
－	\％	－65				7	7 ど系	78.4	B	－6へ	－：2
			$1:=$	0．$k=$	13	8	$2: ?$	－2＜3	9	31.	－－＂
$16=$	$0 . k$	$=10$				9	501	－ 418	10	\cdots	－2，
			－17	125	103	10	2.10	－214	11	2：3	
0	430	4.38	－11）	122	134	11	153	$13 ?$	1	320	316
1	110	1.0	－15	100	93	12	403	401	13	1 10	$\cdots: 8$
2.	－65	－95	-18	14.7	－1－30	13	－60	－36	14	245	－2．02
3	112	-125	-13	225	-231	14	210	-298	－ 6	－ 0.9	－
4	－71	－8． 0	-18	$-1,0$	34	$1:$	$\because ¢$	－63	-14	\therefore この	-36.5
－ 00	17%	-173	－11	－70	1.2	16	18%	170	－18	－60	3
-19	-4%	76.	－1）	－0．8	67	-19	－67	－30	-17	39	3．3 3
－1	200	236	－9	－0．	-56	-10	－id	2 23	－16	1－0	
-17	$\because 60$	－ 378	$-\mathrm{E}$	10%	-107	－17	142	－ 7	－1．	！ 29	$?$
－16	458	-433	－7	-6.4	51	－16	320	3138	-14	324	－325
－13	241	251	－ 15	107	136	-15	1 W1	-176	13	247	－＜ 30
-14	5%	Eかt	-5	106	－14，	-14	≥ 10	$-3 C ?$	-1.	6.50	－e＇s
-13	31；7	377	－ 8	－73	－1201	-13	133	3 105	－11	56,5 -51	1－10
-12	174	－10	－3	100	120	－12	$\because 7$	1473	－10	－21	－401
－11	220	-237				-11	12	， 147	，	4.1	-407
－ 20	343	2．5	$\cdots=$	0.15	14	－10	－1 1	－－23	－8	1.11	107
－9	603	COI				-9	315	－-370	－8		305
－8	－66	82	-15	137	$-12 ?$	-8	115	－190	－6	181	\％6
－7	378	－376	-16	180	120	－7	48	414	－9	＇2，	－－－${ }^{4}$
－ 6	－68	－136	-1^{13}	208	－0¢	-6	$\bigcirc{ }^{1} 4$	4－5E0	\pm	1090	）－1 1－－
－5	107	84	$-1 ?$	－12	－： 68	－5	700	－731	3	1320	$1{ }^{1} 1$
－4	$4 \% 1$	900	－11	210	－219	－4	－5\％	－ 717	？	1.02	1104
－3	－70	110	-10	－70	47	－ 3	73	3 － 114	－ 1		$\cdots+1$
－2	A55	-481	－ 9	171	160	－2	CCO	23.3			
－1	-71	-75	－－${ }^{-1}$	140	130	－1	± 70	－102	11－	1.	$r=4$
			－ 7	－72	－74						
$H=$	0.	$r=11$				$H=$	1.	$k=2$	0	3.15	20， 20
			$H=$	1．$R=$	0				，	21：	\％265
0	－70	-35				0	1535	－ $1=30$	2	Er\％	$3-810$
1	170	-148	0	c33	27：	1	150	16：	3	$3 \cdot 3$	$3-3=8$
2	-72	72	1	1305	－1603	2	ce＇	？－54t	\pm	$4: 0$	－¢
－20	179	1 <1 ！	2	570	－ 6.81	． 1	こって	$3-342$	$\stackrel{*}{*}$	$3 \cdot!$	$13 \cdot \%$
-19	$2 \cdot 6$	－ 5 Sa	3	2814	－ 300	4	776	く とご	0	1721	1 178
－10	174	－193	${ }_{6}$	716	－ 130	6	－1	7 2l．「	7	117	7 －195
-17	1360	156	5	92.7	83年	6	$\because 1$	$1-343$	0	14.4	－－－19
-16	160	-170	c	1004	－1¢21	7	$\therefore 5$	$4-481$	\＃	20：	1 －18
-15	$10 \cdot$	105	7	1830	－1．0．21	8	－E	，－ 10	16	1.1	1 －
-14	－6：	-10	R	187	$12+1$	9	くと。	3 ごひ	$1!$	385	－－－＂
－13	309	－－11	\bigcirc	22.3	210	10	二○。	3 2？	1%	1：	：－$\quad \therefore$
-12	350	Ser 3	10	－2 2	42	11	17	$7-1 \pm 3$	，	$\cdots{ }^{\text {－}}$	
-11	300	76，el	11	$\because 40$	－ 2 c	12	40.	$0-4 C 8$	－ 19	20	1 ぐごい
-10	172	－ 18.4	12	405	-504	13	1：	7147	-18	－2，	
－9	226	-330	13	－1．3	10 ？	14	$\therefore \mathrm{Cl}$	3 く22	-17	102	$2-155$
－8	$1) 1$	-121	14	$48:$	$4 \because 0$	15	1.3	3 ，5	－16	\therefore－	－－！
－7	15%	14.3	15	－－3）	－0	－19	12	3140	－15	1 －	－151
－ 0	887	¢St，	16	145	－170	－1：	4.4	3 21\％	－14	いぢ	\rightarrow 5：
－	15.5	－173	-183	－6，	-30	－17	3．	$1-21=$	－13	11	1 $\because 2$
－	304	－-73	－： 7	－13） 6	－？${ }^{\text {－}}$	－：-1	12	$1-1: 9$	－！${ }^{-1}$	？${ }^{\text {a }}$	5 －－－\％
－3	－5	90	-16	100	－173	-15	131	－しごて	－11		

L	FO	FC	L	FG	$F C$	L	FO	$F \mathrm{~F}$	L．	FO	FC
					－102	－20	-67	－17	-16	222	－227
-10	9.80	E94	－3	784	－ 750	－19	267	-275	-15	－65	－24
－9	$27 \pm$	261 -85	-2	764 -55	-74 -34	－13	± 71	－38\％	－14	216	211
-8 -7	－504	－450	－1	－35	34	-17	4.16	215	-13 -1%	177	145 -265
－6	2：54	$\because 214$	15	1．$k=$	7	-16	307 106	－501	\cdots	2.10	－207
－5	SS2	1 C				－14	323	－320	－10	-87	4.7
－4	745	750	0	552	－560	-14 -13	－-5	－165	－9	1.93	$14 ?$
－3	¢ 53	-787	2	161	－ 1.16	-12	142	130	－8	$1 \cdot 7$	167
－2	105	49	$?$	－00	102	－11	4，${ }_{\text {c }}$	hive	－7	138	－123
－1	771	－699	3	-1.3 -68	102	－10	1：1	－102	－ 0	292	－301
Hz	1．$k=$	$=5$	5	234	－25	－9	450	－480	－ 5	col	209
Hz	1．$K=$	－S	6	－09	－18	－8	340	351	-4 -3	133 -70	121 -15
0	530	－518	7	237	224	－ 7	002	464 3	－2	109	－142
1	150	－174	8	－73	－1	－5	－63	30		． 0	
2	730	703	－21	254	243 -07	－4	－355	-333	$H=$	1．$K=$	13
3	130	130	-20	－03	-07 -143	－3	A51	4 C \％			
4	112	-116	-19	152	-143	－3	20\％	268	－17	－6．8	72
5	－6．3	-35	$-1 ?$	－6\％		-1	304	－ごつ	-10	188	202
6	－66	57	-17	277	271	－1	ご，	～－	－15	－68	66
7	228	241	-16	432	4 く1	$r=$	1.	$=10$	－1／t_{r}	245	－26\％
8	129	129	-15	184	－	$r_{1}=$	1.	－ 10	－13	177	-173
9	341	－3．34	-16	507	－510	0	164	168	－12	202	207
10	152	－156	－13	83：	－3	1	－70	102	－11	1：5	193
11	$1 \approx 0$	169	-12	－ 149	107	2	127	－100	-10	－ 1.9	-13
－21	246	238	－11	149 -55	107	3	179	－200	－9	100	-35
－20	－69	42	－1c	－55	－809	－20	－¢ 7	－79	－ 8	－70	－ 63
－19	320	－32．8	－	796 89	-809 57	－ 218	135	141	－7	24.5	2.37
－18	122	-159	－8	89 770	30 30%	－19	10%	102	－6	179	175
－17	－ 6.5	64	－ 7	779 97	308 41	－17	256	-416	-5	183	-187
-16	156	17%	－5	504	－604	－16	189	-152			
－15	－6	－17	－5	169	－ 160	-15	173	165	$H=$	1．$K=$	14
－14	573	$-56 ?$	－ 3	169	－163	－14	E02	こ29			
－13	$1: 3$	16\％	3	-50	547	－13	$3{ }_{3}$	337	-13	－ 74	33
-12	4.64	470	－？	550 -59	54	－12	239	－205	－12	247	－235
－11	105	171 -750	1	－59	0	－11	¢ 64	－259	－11	－71	－71
-10	747	－759			0	－10	1こし	216			
－ 3	66\％	－691	$H=$	1．	0	－9	224	＜2\％	$h=$	1．$K=$	$=-14$
－8	815	－370				－9	134	－100			
－7	3.37	－319	$?$	－6．5	14	－8	22 s	－282	5	－70	68
－6	42%	－372	1	234	203	－ 6	CG	－277	0	200	－19is
－5	1191	－1145	2	－70	71	－ 0	16	－ 82	7	－69	－43
－4	645	－ 549	3	331	-332	－4	180	177	U	217	211
－3	411	400	4	$10 ?$	$\therefore 1$	－ 7	234	－2c2	5	187	185
－2	3：9	363	5	185	212	－ 2	278	－256	10	－68	－15
－1	396	361	6	－70	63	－2	270 -71	－78	11	183	－： 0.5
			7	175	－1230	－1	－71	－78	12	119	－133
$\mathrm{H}=$	1．	$=6$	-21	172	－16：5		1.	$k=11$	1.3	219	208
			－20	$15=$	160 330	$H=$	1.	$k=11$	12	130	134
0	422	430	-19	304	3.30				15	205	-177
1	438	43.3	－18	339	$3 \div 5$	0	177	－103	15		
2	204	-203	$-1 ?$	350	－385	－20	129	152	$11=$	1．K	$=-13$
3	12 O	-100	-15	399	－385	-20	12.7	－159			
4	134	151	-15	194	20！	－ie	－6i	-190	2	137	154
5	－68	79	－14	2.6	20\％	－17	－ 6.7	－40	3	－57	－3
6	－68	－5	－13	254	－13	－15	102	124	4	282	-274
7	234	－217	-12	160	－14．4	－15	$1-2$	271	5	－65	10
8	119	-125	-11	$3: 0$	－ 21.6	－1i	\div	－	${ }_{3}$	－	91
9	－7i	87	-10	311	3	－13	－60	－07	7	－5．3	40
10	－71	65	－ 9	758	－ 780	－13	－ 3	336	8	－05	－2e
－21	261	－276	－9	206	－ 180	－12	－ 3	230	S	－0．0	－80
－20	－uも	－97	？	A0＊	－ 11	－110	$2: 4$	－200	： 0	12.2	－11：
-19	2？	245	－ 6	1.8	－11．3	－18	11.1	－141	11	－63	13
－18	110	のを	－5	311	$\begin{array}{r}2 \times 3 \\ \hdashline 40\end{array}$	－-2	－6\％	－49	12	169	123
-17	254	-338	－	230	－17	－-7	－C5	159	11	$2: 4$	－2：3
-16	202	－211	－． 3	173	－-77	－8	142	179	1 is	135	－1 32
－15	274	c\％ 9	－ 2	433	-430	－5	2\％1	－280	$1=$	102	12：
－14	430	436	－1	107	－90	－5	250	-248	10	149	1：7
－13	250	235				－3	－0．	10	17	－08	父で
-12	101	－205	$h=$	1.1		2	153	14.			
－11	29．	－247					－69	58	$r=$	1．	$=-12$
－10	E1？	567	0	490	-51.	－1	－0	58	H＝	1.	
－9	4：2	48	$!$	－69	－30			$r=12$	0	110	93
－8	217	174	2	302	$30 ?$	$1=$				－6， 6	－53
－ 7	213	－2cr	3	193	203		25	256	2	$31=$	－3－1
－6	c． 0	－＋5，	4	－71		－19	13	163	？	－60	$\cdots 1$
－5	$4{ }_{1}^{2} \cdot 3$	415	5	211	-193	－18	1×1	－ 73		369	251
－4	10%	131	－2：	48	3.	－17		－ 1			

L．	10	c－C	1.	FO	16	L	10	$1 . \mathrm{C}$	1	FO	$1{ }^{-1}$
－？	2：1	28.6	？	549	－＇4，	is	$: \therefore 7$	24：	9	310	3．1
－1	－¢	-30	3	2is	$\because 26$	0	－ 3		10	rcie	
			4	10：1	40	7	（．1	－ 2.4	11	2． 9	$-\therefore 1$
15	3．$k=$	-6	5.	1.11	1.1	H	$\cdots 32$	C．＇	$1 ?$	119	－106
			8	－ 0 \％		$)$	1\％3	171	1 ，	$\because 51$	$22_{4} 4$
0	3．） 4	人\％\％	7	1 3 ． 5	$-1 \therefore 1$	10	$\therefore 20$	－ 3.10	$\cdots 19$	183	10.9
1	＂\％1	－？ 5	＇	－＝」	<0	11	St	－－5\％	-115	＜ 5	－？：」
2.	$\therefore 13$	－\because ：$?^{2}$	9	914	838	12	：\because	－－13	-17	$\because 1$	－$\because:$ ： 4
3	$\therefore 71$	$=15$	10	-8.7	－？	$1: 1$	953	3：か）	-10	$\because 79$	31.2
4	7 －		11	$\therefore \therefore 0$	$-\because: ?$	14	－ 6	－－3	-15,	173	1 ど5
5	$1 \therefore 5$	270	1 ！	－0．1	$\therefore \therefore$	$1:$	$\therefore 13$	－$\because 3$.	-1.1	－ 01	3－1
C	リン0	－$\because 73$	13	$4 y^{6}$	5：\％	！ 1 ．	148	－ 11%	－1． 1	？ 1.0	－\％ 97
7	－¢	218	$1 \prime$	35	$\because 37$	－i	：－${ }^{\text {\％}}$	－－ 0°	－1\％	is， 7	－5：
8	cies	F2：	15	－ 135	-75	－1c	－<7	－06	－： 1	117	－110
9	14%	$5!3$	15	3.31	－ 22	-15	$\therefore 8$ ，	$\therefore \therefore 0$	-10	219	293
10	$\therefore 87$	80	17	©，	どリ	－14	133	1 1 3	－	540	－ 535
11	－18	－ 371	－1 i	－70	－\％，	-13	$1: 3$	，$-1 / 10$	－ t^{2}	744	－ 31
12	183	－：An	－1！	20%	1ソ6	\cdots	－-0	61	－	しやろ	－917
13	708	$\because 2+0$	－ 1 1	-67	47	$\cdots 11$	4．0	－10	－ 0	0.32	－6312
14	390	6－4	-1.3	$3 コ$ こと	－ 314	-10	135	10こ	－－	1530	$16: 3$
15	314	－$=10$	-1%	1．0．	－14\％	\rightarrow ；	$\therefore 2 ?$	－ 31	－4	378	-2.7
10	202	-211	-11	276	2% ！	$\cdots!$	（1）	－－ 200	－． 3	1217	-12.7
17	－67	$\therefore 9$	-10	S．is	$\therefore 2 \%$	-7	＜S 2	－411	2＇	$51:$	cos．
10	270	こくF	-9	2，0	$\therefore 87$	\cdots	106	，117	－1	1109	10\％3
-13	-71	-193	-8	cosis	－ $\mathrm{c}^{2} 0$	－-1	$11: 10$	937			
－12．	227	－2．00	－7	Sco．	－-2.0	－4	100	-4.34	$1:=$	4.	$k=$
-11	－is	77	-6	41%	41%	－ 5	$1: 3.7$	$-13=6$			
-10	395	2×1	－5	± 10	490	$\cdots{ }^{-}$	1111	－？120	0	240	－23i
－3	145	$-1=5$	－4	3.31	$\cdots 6.60$	-1	$\because<3$	1 り！	1	$-¢ 1$	¢
-8	370	－≥-6	－3	840					2	A01	$37:$
－7	100	\cdots－${ }^{\text {－}}$ ： 2	－？	23	－1506	$11=$		$k=-1$	3	463	－－485
－6	193	765	－1	876	307				4	66，0	－083
－5		E？				0	490	－ 471	5	\cdots	1%
－4	173	14.1	$\mathrm{H}=$		$\therefore=: \quad-3$	1	238	-100	t	202	250
－3	786	－ 8 －				2	149	1：7	7	104	115
－？	－54	－ごで	0	86.6	－ 4.65	－	$5 \% 3$	－401	8	1：5	$\cdots: r: 0$
-1	479	45	1	911	7	4	134	120	9	ごご	－360
			2		18	5	151	151	10	－－	＂，
$H=$	3．$k=$	－5	3	931	－50． 0	6	C 10	002	11	2：9	812
			4	295	－20s	7	340	3.33	12	－cs	-4
0	416	－－0	\square	2：${ }^{\text {a }}$	－－135	8	$\because 58$	－Sors	－80	134	$-1<5$
1	1018	E．9	0	03	－r．es	$?$	210	－8：	-18	261	－2． 0^{1}
2	1194	$1 \cos ^{\circ}$	7	or 5	6．6．3	10	－6？	1	-18	173	18？
3	5.08	－¢ 号㠰	ε	63%	－こここ	11	113	118	－1\％	2くす	2，${ }^{2}$
4	805	－7，${ }^{5}$	9	35.2	－ 360	：？	A＋4	－¢90	－10	11%	－120
5	220	229	10	$5 \cdot 7$	55	$1: 3$	$\because \because$	-210	－15	314	－ 3.2
6	531	2：3	1 i	－00	－87	1%	$1: 3$	10e	-14	119	111
7	-52	－6：	1.3	ここし	23	15	$2 \therefore 5$	25：	-13	281	2.33
8	34\％	－． 240	13	2：6	－ $20 \cdot$	-18	－ 6	4	-12	243	202
9	（4）	－5837	12	302	－356	－．： 7	313	290	-11	284	－ 20
10	－50	陙	15	－2．ss	－5	-10	\cdots－¢	23	-10	5	－ 312
11	597	937	16	318	28.6	-15	121	－134	－${ }^{\text {r }}$	764	705
12	-62	－23	17	1.22	－ 19%	$-1 \div$	－： 6	do	－s	207	2．$\because 6$
13	こッ3	－625	-17	1.31	10%	-13	31 ？	30%	－7	42.	2.17
14	$8 \therefore 0$	-46	-16	－ 8.8	70	$-1 ?$	1：0	167	－ 6	$7 i 0$	－ 820
15	258		-15	360	-341	－1：	$1 \geq 5$	50	－5	1102	－1016
16	2．7	247	-14	130	－ $1 . \%$	-10	c 7 c	－201	－${ }^{\text {a }}$	430	\therefore ¢
17	－0\％	－ 0	-13	ご＜${ }^{\text {e }}$	205	-3	$\cdots:$	-26	－ 3	397	4.34
18	$30:$	－3： 7	$-1 ?$	100	111	$-\varepsilon$	170	149	-2	340	－24
-16	10%	-1 ± 5	-11	4－3	－Citer	-7	102	420	－1	014	－185
-1.3	2.31	Stic	-1%	53.3	－651	－$<$	$\therefore \therefore 9$	-280			
-12	120	$13^{3} 7$	$-r^{5}$	13 ic	－12？	－－	－： 4	－7	$r_{1}=$	4.	$r=2$
-11	？以	-827	－ 4	33^{2}	$3: 5$	－ 2	186	1267			
-10	ごく！	－ざる	－ 7	：${ }^{\text {a }}$	211	－	ごつ3	0．	0	384	2.40
－9	155	－15	－	$4 \cdot 9$	－4．381	－2	779	－47：	1	$5: C$	-520
－8	173	189	－5	4．＇	－$\because=3$	－1	101	－17\％	2	70.5	－7c1
－7	3.30	308	－	4 is	$\therefore<4$				3	50	6， $0^{\text {c }}$
－6	40%	－6 ： 3	－3	$\because 0$	8．2	$r=$	0.	$r=0$	4	361	31
－5	525	－ $51:$	－？	5：：	－ 20				5	117	$1 こ 4$
－ 5	103	7－3？	－1	10\％	-530	0	200	20%	6	15	-1.38
－3	43：	615				1	4 Cu	－ 4 こe	7	136	-183
-2	3834	A？ 0	$H=$	3.	$\because=-2$	${ }^{\prime}$	$\therefore 2 ;$	－40．0	3	12？	173
－1	619	53，				3	254	$=10$	4	325	34.2
			0	1279	1183	4	10.3	16：0	10	－68	－あの
$11=$	3．$r_{0}=$	－4	1	9：． 4	$\therefore 0 \text { ? }$	5	18%	－176	11	245	－2：
			$?$	－ 5	0	c．	－ 1 ？	$-30 \cdot 6$	$-\therefore 1$	1くい	－：り＂
0	731	CO^{-}	3	40.3	$\therefore 2 ?$	7	14．3	－173	-20	CC\％	？ 51
1	3504	－40：	4	$3 \because 6$	415	4	50	1.33	-19	333	二人曻

L	$F \mathrm{O}$	FC	1.	FO	FC	L	FO	FC	L	FO	re
			－9	419	－36	2	224	230			
-18	－05	-90 -210	－2	418	－383	3	-70	\cdots	-20	103	109
－18	141	－ 80	－7	121	-140	－ 4	$\bigcirc 69$	－271	－15	101 -6.8	108 -788
－15	9．： 3	420	－6	1356	1－2！t	－21	\cdots	8，${ }^{2}$	－18	－616	－-87
－14	15%	158	－5	025	03.1	-20 -19	115 150	－1＜2	－ 10	－6．6	-23
-13	$3) 7$	－ 420	－-3	101	－102	－18	－65	－25	-15	234	c 41
-12	4：1	－4C\％	－3	55	－537	－17	3.7	$33^{4} 4$	-12	239	$25 ?$
-11	805	849	-2 -1	114	－119	-16	325	－223	－13	－60	－59
-10	6.75 -81	©5	－1	114	1.9	-15	214	－ 220	-12	2：4	－210
-9 -6	－58	－5－2	H：	4：K	5	-14	－66	101	-11	－06	${ }^{3}$
－6	$\mathrm{S}_{5}^{5} 59$	-535 -489	H－	45	\mathcal{L}	-13	－＜	－31	-10	－67	95
－ 6	13：3	694	0	384	-375	－1\％	206	263	－0	－c7	6， 6
－5	1307	1266	1	378	350	－11	－63	69	－83	100 213	2：3
－4	635	－605	2	160	15	10	－ 12	－7	－6	118	116
－3	0．3	－607	3	－0．8	－i	\cdots	－-2	－ 35	－5	370	393
－2	205	333	4	305	－．1！	－7	－8，	＜33	－ $0^{\text {c }}$	－70	0.46
－1	10.0	994	5 6	161 358	－ 1506	－	－¢5	34	-3	230	－ 276
	4．$K=$	3	9	2 ：	¢ ¢	-5	－ 25	27	-2	－71	-14
$H=$	4.1		－21	-6.7	－61	－介	208	ジセ			
0	102	155	－20	255	－24？	-3	くこi	と？．4	$\mathrm{r}_{1}=$	4.	
1	－6\％	$\wedge 2$	-10	148	－14\％	－2	－	－ 0.69	－18	－c， 3	C
2	4．54	452	-18	－6．5	C．	－1	Q－	－ 4.09	-17	149	1\％
3	144	176	-17	$\square 20$	307	$r=$	＜	$=8$	－16	－63	$\% 1$
4	253	－26\％	－10	－8\％	-25	r－	，		－15	193	$-22 ?$
5	－05	-21	－15	275	－297		－ú	57	－1\％	1－1	-183
6	31%	394	－14	93 88	41 47	c		－10c	-13	165	170
7	276	279	－13	A82	270	2	三	－275	－ 12	10.5	152
8	171	－151	－12	275 -57	270 25	-21	2－8	－10	$-1 i$	－ 5	－40
9	179	－105	-11 -10	-57 672	－476	－i	187	134	-10	15%	－175
10	－69	48	－10	672	-476 -128	－1	$2 亏 5$	239	－93	－62	－
－ 21	151	－ 133	－2	12 23	$-1<8$ 550	－13	－60	34	-8	142	136
-20	261	-254 -173	-8 -8	530	91.	－17	¢3	－333	－ 7	160	124
-19	151	$\begin{array}{r}173 \\ \hline 79\end{array}$	－ 0	C8\％	－68\％	-16	－20	－439	－	-73	-125
－18	－105	79 126	－6	324	－ 324	-15	100	－60	－5	205	－207
－17	103	120 -230	－	354	－3¢3	－1．4	22！	225			
-15	4.20	－4？	－3	187	192	-13	－6	118	$\mathrm{H}=$	4	$r=$
-14	－60	－20	-2	201	－ $0 ⿰$	－ 1	146	－ 26	-16	－69	－32．
－13	434	464	－1	456	－ 63	－ 11	5 C	± 29	－15	2 ± 8	2.27
－12	4.12	430				－ 5	103	－74	-14	－73	117
－11	436	－ 400	15	4.1	0	－	－67	－55	$-1 j$	170	-165
－10	c10	－ 12				－7	－6it	－43	－12	16.7	－200
－9	337	429	0	200	－219	－6	115	121	－11	112	－25
－8	6.7	636	2	306 223	－203	－5	168 288	277	-10	15	1？
－7	333	372	2	22.3 -07	-203 08	－4	260 3	－257			
－6	673	－ 936	3	－07	20\％	－4	－ 6	－－ 74	r．\because		$k=-15$
－5	905	－668	1	253	207 34	－	－0．5	27			
－4	140	129	5	－ 29	－ 54	－1	－ 48	336	7	115	－100
－3	550	55%	5	27.	－-23	－1	－ 8	36	8	152	－1\％ 5
－2	370	-335	-22	225	－-23	$i-1=$	4.	バン $\quad 9$	9	123	$3-10$
－1	809	－¢51	-21 -20	-69 183	180	$11=$		א－ 9	10	135	125
HF	A．	$=4$	－19	180	190	0	102	－760		4.	$r:=-14$
H－－	4.	－	-18	129	-127	－2i	$\because 79$	260	\％$=$	4.	r．$=-14$
0	45	429	-17	227	－234	－2？	－65	－29	2	－70	－－04
1	333	－ 3.5	－1\％	212	－228	－19	－6t	\％－245	3	170	）igs
2	$\because 90$	－27	－15	225	28	－18	2引	－ 227	4	173	3105
3	275	292	－is	－0，	－ 0	－10	－65	）-33	5	126	$6-157$
4	こ6\％	ぐを	－1？	314	－104	－10	－108	－－132	6	$23!$	！－233
5	189	OC5	-12	152	-107	－1．	－108	－－12	7	10	$3-52$
6	168	$-1+2$	$-1!$	553	5：3	－12	118	）－1：9	8	103	3113
7	287	－ 308	－10	553	5	－12	2 rs	$5-200$	9	175	5100
0	141	1，5	－9	－27	－ 7	－1．	－${ }^{1}$	－－－	10	160	6－1i3
9	120	111	－ 9	497	－483	－110	－¢ ¢	$:-257$	1 1	17	1 －！¢
－21	－i3	-20	7	277	－2 0	－10	168	8 1－2	12	20	－18．3
－20	143	173	－ 6	209	－c－3	－8	－07	7 －2	13	$1<$	3 i 3
-17	\％	－？	－5	－61	－80	－7	330	0321	14	－60	$3-8$
-18	-62	6	－4	277	－20，		－-	910			
-17	231	－ 238	－	277 -0.5		－ 5	\pm	$4-213$	$m=$	4.	$k=-13$
－16	$1 \div 3$	－1．90	－2	－65	－1070	－－	－	$3-20$			
－15	6.50	49.3	－1	490	46		22	7 －19	0	15.	$11 \geq 1$
-14	－6	\％					－7	$0-75$	1	27	532%
-13	327	－¢5\％	$r=$	4.			$2 \leq$	$7-220$	2	－5，	i）－${ }^{2}$
-12	203	－¢ ¢								25	$3-2 \therefore 4$
－： 1	155	1：	？	$1-170$	－175	H＝	4.	$r=10$	4	－6	－2
-10	4もら	4ご3		－cio	10	m＝	4.	$\cdots=10$			

L	$F O$	FC	L	$F \mathrm{O}$	FC	L	FO	56	L	ro	C
5	151	167	10	-6.3	20	－1	500	のとお	6	10.3	86
6	－6．9	－1	11	1－7	－123				7	1013	1：
7	－25	-15	12	105	47	$\mathrm{H}=$	4，K＝	－ 7	せ	＇ 15	－：： 0
8	10%	$-11 e^{\prime}$	13	405	nel				9	3 c 7	－ $2 \cdot 0$
9	－eir	93	14	103	10%	0	871	777	10	4812	0.148
10	＜ 21	218	$1 '$.	3月	－ 353	1	545	¢10	11	114	1 （1）
11	－C． 0	6%	$1{ }^{1}$	135	－1．\％	2	40	42.8	12	－63	－1．4
1%	2e	－10\％	17	211	817	3	0%	$\ddot{\text { cs }}$	13	1 130	－17\％
13	16，	－170	－ 8	2.31	－ 220	4	cos	－$\because \because$	14	16\％．	18.0
14	10%	100	－ 6	1：0	-117	\pm	－ 39	807	15	10，7	202
13	\cdots－its	200	－6	－61	02	6	40.3	45	10	204	20？
10	－6， 3	－20	－5	140	162	1	－勺\％	46	17	133	－110
－1	－68	0	-4	14.4	－11：	8	477	－490	－15	140	-18.5
			－3	－6：	-53	8	9ぐ）	－¢ 14	-14	－e．e	23
$\mathrm{H}=$	4．$k^{\prime}=$	－1：	－2	12\％	87	10	－ 60	87	-13	203	2615
			－ 1	19%	176	11	426	40%	-12	11.7	$-1: 0$
0	103	c，				12	3.34	-347	-11	こり4	－ 2 r．a
1	21%	-157	$H=$	4．$k=$	-9	13	43	$-4: 0$	-10	283	－ 20.5
2	－ 26	$\cdots 73$				14	292	26． 1	-4	－ 2.2	3.3
3	301	2 ${ }^{\text {\％}}$	0	100	-11	15	421	445	－0	426	43%
4	－60	63	1	291	237	16	239	＜ 34	－7	18%	－1\％e
5	－650	－6． 4	2	87	－05	17	－c7	－3	－6	697	-6802
0	16！	-133	3	205	－200	-12	114	150	－ 5	101	－15．
7	－65	-17	4	－57	-17	-11	191	-172	－8	7ε ？	750
E	35.2	359	5	246	230	-10	153	-171	－3	041	0.12
$?$	$1: 2$	－151	0	U0！	$4{ }^{1}$	－0	$20 ?$	2rib	－2	117	7%
10	360	－392	7	$5 \therefore 0$	－549	－8	－8：3	2り	－1	$8 \div 0$	－79is
11	310	－$\because 02$	8	48.	－824	－7	207	-169			－
12	108	149	0	203	－¢ 17	－6	302	－700	$1=$	4．$k=$	$=-4$
13	315	320	10	－6．4	fys	－5	378	$-3 \% d$			
14	－＜－2	819	11	202	205	－ 1	－60	05	0	439	487
15	216	－15：8	12	102	－115	-3	481	4 Cl	1	940	－ $\sin 1$
16	116	－88	13	40？	－516	－2	8．4：3	－793	2	1170 －	－ 1 U7
17	253	272	18	103	－100	－1	349	－304	3	$8{ }^{80 y}$	780
－4	108	-131	15	203	25				4	2 64	$28:$
－3	－67	-12	ij	－05	21	$H=$	4． $1 .=$	－6	5	216	－¢ く
－2	－60	53	17	－68，	-75				0	641	－ $2 \cdot 31$
-2	－C8	74	－： 0	205	－200	0	$1 \leqslant 0$	170	7	15%	－1\％，
			－9	－68	12	1	353	-314	e	64：	i． 3
$H=$	4． $1=$	-11	-8 -7	305	$2^{6} 9$	2	250	$-25 s$	10	442 $=3$	130 -200
0	－66	-90	－6	261	－ 243	4	773	720	11	178	－－-c
1	？ 1	215	－5	－07	－00	5	－52	72	1%	－64	－8．0
2	159	-153	－4	283	227	6	1 ± 3	-139	13	101	\％o
3	401	－403	－3	323	323	7	263	-242	14	120	10
4	－6．	-17	－2	147	-121	8	102	ことら	15	258	
5	95	18	－1	405	－409	9	34.3	ごった	10	253	－24
0	203	190				10	261		－10	－ers	－
7	－45	－7A	$\mathrm{H}=$	6．$k=$	-8	11	$\div 91$	－ 385	-15	160	14.4
8	$3 C 2$	-344				$1 \frac{1}{2}$	＜ 35	23.8	-1.1	－65	10
5	198	214	$?$	112	103	15	ご名	－45	-13	30.	－3C1
10	451	435 -254	1	473	－+5	1%	¢：3	－-8.8	-12	－00	－ 25
11	$2: 8$	－ 254	2	150	-153	15	$2 \cdot 9$	－-52	－11	353	$\because ?$
12	192	-200	3	597	570	16	$20 c^{\prime}$	$-1 \% 6$	－10	$30: 1$	3：u
13	98	-8.3	9	207	759	17	－ 6	5.5	－5	－e0	－－5
14	－6	－ 20	5	247	－303	-10	－ic	C2	－3	700	－73：
15	$2{ }^{2}$	2こ3	5	033	－6is ${ }^{\text {c }}$	-13	$1 e^{\text {c }}$	-202	－ 7	$+24$	－30\％
16	200	200 -270	7	1：7	－84	-12	－c	－40	－6	231	2．19
17 -6	201	-276 -200	8	402	$4!?$	$-1:$	977	2゙岳	－-3	4e\％	512
－6	218 -60	-209 30	10	400	－37\％	－10	$11:$	－09	－2	2.37	－603
－5	-60 -67	39 85	10 11	2el 420	－ 258	－5	10 4.31	-421	－	bes 160	1108 -265
－3	－64	－ 3	12	3 ct	－ 363	－7	10.2	－12？	－1	07？	くも＊
－2	310	217	13	430	44，0	－	$1: 0$	18゙す			
－1	130	151	14	－0．4	35	－ 5	2.30	¢01	H二	ง．$:=$	$=-3$
			15	$3 C 1$ $2 y d$	－3＜1	－4	3 7	－ 40.			
$11=$	4．$k=$	-10	16	241 -61	－265	$-\frac{2}{2}$	1010	-94 -302 -302	0	13.12	$-:>70$
0	－64	－Ge	-11	1．1e	20.4	－1	425	425	2	3ce	－43
1	300	-309	-10	？2？	239				3	340	－301
2	20%	－211	－2	－0¢．	－0．4	$t=$	4．$火=$	－5	4	－6．5	$\therefore 2$ ？
3	150	154	-8	173	－1i9				5	74	10
4	106	133	－7	こ0つ	197	0	291	-175	es	750	$\overrightarrow{-5}$
5	100	-30	－ 5	1：0	151	1	711	719	7	262	254
6	¢） 3	－50， 6	-5	147	162	2	$1: 5$	－161	8	34y－	-115
7	－C． 3	－38	－	20\％	－ 23.	3	374	$-3<8$	5	1 l	－100
8	475	491	－3	502	－ 525	$\stackrel{7}{2}$	$\leqslant 80$	－ciso	17	$2=0$	23
9	132	116	-2	48	13：	5	2 ± 2	－2£0	11	349	3：2

L	$F \mathrm{C}$	FC	L	F 11	F． C	1.	10	FC	1.	10	10
				178	－185	13	225	－290	-3	100	-81%
-14	109	－ne	－11	1．3	－ 180	10.	－（ 3	$3 ¢$	－2	316	913 ${ }^{3}$
－1．1	1： 5	－13	－19	28ic	－1：5	－：	－603	－ri 1	－1	430	4×2
－17	\cdots	－60	－9	104	$2: 4$	－i	－70	-163			
－10	50゙す	55	－7	32．	－30				$11=$	〕．トご	
－3	－62	-8.1	－ 0	231	－\square_{0}	1 －	3.1	$x=-12$	0	10°	106
－ 6	$45 ?$	－ 806	－${ }^{\text {a }}$	201	－ 43	0	-0.5	28	1	20，	\％ 07
－7	-2.3	－	－	113	117	1	－ 3	－ 2 j	2	－ 5 c	\because
－6	231	$? 0$	－ 3	112 -72	117 -32	2	－6\％	－－2	3	－ 5	－35
-3	≤ 11	511	2	－ 72	－3．0．	3	-63 2×3	2 －	4	－310	－ソり0
－	－ 05	－ 3 ，	$11=$	S．N	10	4	13 ？	114	4	－3is	444
－3	359	－30	1 ＝	2．${ }^{\text {－}}$	10	\bigcirc	$1 \leqslant 5$	137	ci	3：3．1	－1星
－？	－70	105 902			168	e	279	－286	7	2．6	$\because 84$
－1	5．8，4	472	－18	1788 -6.2	－23	7	－60	－？	8	40	－ 0 －
	5．$k=$	7	-17	120	-15%	0	107	103	9	－4．	－3？
$\mathrm{H}=$	S．	γ	－1t．	－ 20	2	3	179	－ 207	10	173	102
0	204	－1re	－15	218	21%	10	293	－-02	11	181	134 -103
1	107	36	－1．8	163	183 -131	11	146 -6.7	$-1<0$	13	278	－56
2	105	170	－13		－131	12	405	3：1	11	$31{ }^{\circ}$	2\％${ }^{2}$
－21	$1: 7$	102	-12	229	－243	14	124	11 星	1 ！	CGO	778
－20	131	-187	－11	$-6^{\prime \prime}$	217	15	1－10	－232	16	－：， 6	50.
－19	$15 ?$	－181	-10	20%	217	－4	$1 \rightarrow 4$	－180	-10	－71	47
－18	245	Fsc	－9	－49	－-24	－4	191	－ 20.	－－4	344	356
-17	35\％	$31<$	－3	134	－12．	－2	1.69	121	－-7	j91	208
-16	221	－ 903	－7	－73	－43	－1	3 38	376	－7	2：4	－231
－15	628	－64	1	118	120	－1	3C\％		－ 6	15%	-184
-14	233	－293	－5	235	240	$\mathrm{H}=$	5.	$k=-11$	－ 3	－－	－12
-13	107	118			11	$\mathrm{H}=$	5.	K＝J1	－${ }^{-1}$	2105	2：c
－1？	30＇，	345	$\mathrm{H}=$	S．	11	0	－65	8	－3	23，	212
-11	－05	10 $-5,65$				1	237	20？	－2	2：	－2．91
-10	Sel	－5，6， 5	-17	103 111	175	2	129	-110	－1	$1 \in 0$	－14 4
－9	141	11%	－1\％	11	－ 18	3	271	－＜ 1			
-8	30%	$\because 0 \%$	-15		－＜-111	4	－ 6 －	13	$11=$	5． $1:=$	-8
－7	190	16%	-14	110	－111	5	174	-173			
－ 6	－66	30	－13	270	221	6	－05	－45	0	－53	－子
－5	278	－ 280	－12	123	！${ }^{\text {a }}$	7	－65	52	1	515	－¢＾）
－s	2.10	140	－11	－ 11	-121		12%	－12\％	2	335	－301
-3	438	436	－ 10	－ 7.	-115	4	107	－ 3	3	5E4	508
－？	－69	-8.2	－9	－7i	－78	10	－ 60	47	4	3es	579
-1	333	－ 334				10	－-6	－43	5	5	－5．2
			$t=$	5，k＝	－15	12	－C．	－0C	5	$\therefore 8$	－2， 1
$\mathrm{H}=$	Ј．K	8	7	1065	－190	： 3	12.3	-124	7	133	125
				181	－1i1	1%	112	1．2	8	367	－35\％
－21	－71	81	9	110	y2	15	273	273	9	271	201
－21	174	－ 1 \％1？	9	120	¢	10	-67	－24	10	1：1	-130
－20	210	$1{ }^{1 / 4}$		5．k	－14	－6	：21	-110	11	200	－ $7: 0$
-19	17%	150	Hi_{1}	S． K	-14	－5	－68	4	12	103	123
-18	－6も	－ 56	1	169	-174	－ 5	－6．5	90	13	2：-	235
－1．	58	-95 -91	3	－6，	-20	－3	120	112	14	10^{3}	$-{ }^{-13}$
－10	-65 200	－91	3	319	312	－2	90	－73	15	29\％	－ 201
－14	109	214	a	121	103	－1	125	－207	16	280	－．03
-13	234	-2 ± 0	5	253	－245				－11	130	1 Cr
－12	293	－30\％	6	1 セ3	-163	！ $1=$	5.	$k=-10$	－10	1\％00	－ 10
－11	-6.8	119	7	－03	U1			－ 3	－ 81	257	－ 251
-10	<34	440	8	340	\bigcirc	S	－63	－007	－7	－0\％．	-20
-7	－6．7	10	？	1.1	129	1	40.	－$\quad 80$	－	1 － 6	1×6
－8	13%	100	10	\＆？	－\％ 1	2	－ 6	7 \％	－6	－1，${ }^{\text {d }}$	1）
－ 7	35	－ 314	11	-27	-23	$?$	2.18	1 207	－4		－ 57%
$-\mathrm{C}$	10！	－71	12	20.8	20\％3	1	11%	，12？	－-3	2：5	－2．183
－4	218	$1{ }^{18}$	13	12 ＇	117	5	－23	O	－2	413	$\because 3$
－4	－ 0	-33				6	40%	＋－－	－1	$5: 3$	5×2
-3	-2.9	－11\％	$\mathrm{H}=$	S．	$=-13$	7	105	1 －	－1	」i」	
－2	－6e	－60				ε	11	1 ¢ 74	$M=$	5，k	-7
－1	－6．3	-15	0	121	100	3	－60	$1{ }^{1}$	$H=$	5．	
			1	1．7	120	10	158	$3-2,4$			
$H:=$	5．k	$k=9$	$?$	－05	0	： 1	103	$3-6$	，	10	12
			3	100	－ 160	12	877	7 ＜ 1	！	14	二
－20	279	－ 276	c	－07	－ 3	13	151	1 1313	2	9． 0	－ 0
－19	122	－130	5	－03	53	1%	$3{ }^{3}$	$7-31$	3	－ 3	－
－18	－0 1	$? 2$	0	147	123	！${ }^{\text {c }}$	$3 \cdot 7$	7 －－	c		¢ \％
－1．	－－か	－8へ	7	－ 87	100	16	－10		\checkmark	－30	18
－18	－ 117	－9？	9	301	-269	－ 3	230	－270	\％	117	－1：0
－13	233	－ 3.7	4	－	－6 ${ }^{3}$	－7	11	9 10こ	？	2：2	－20？
-14	210	－ 21%	10	120	140	－	23	－－－	5	¢ $4=7$	－3i3
-13	177	$17 i^{2}$	11	121	112	－	－	－！	10	ios	
-12	354	338	12	21．	－ 515	－	12	3 －！	1	1×3	． 2

L	10	IC	L	FU	$F C$	L	50	$1{ }^{\circ} \mathrm{C}$	L	FO	1 C
L						－2	483	¢0． 4	5	－60	（1）${ }^{\text {d }}$
-16	176	165		6．$k=$	5	－2	． 70	－\％	6	-61	$\therefore \%^{\prime}$
-14	ち．5	610	$p=$	6．$k=$	5	－1	24.0	－250	7	＂4l	\cdots
-1%	－6．3	$-8,7$		－63	80	－1	＊ 0		H	$3 \leq 0$	－ 2 c．is
-13	\cos	－0：3	0	－6，	15	＋1＝	C．K	8	9	140	170
-12	－is		1	137	145	＋1－	$6 . k$		10	$\therefore ?$	$\therefore 82$
－11	そうご	ごに	？	－0．	－110	－20	$\because 77$	？05	11	－ 0.7	－11
-10	から1	$\cdots 3$	3	120	-110	－11	180	10	1？	－0，	－ 9.3
－9	310	－ 01	－0	14.3	－ 16	-14	183	－1：2	13	10.	－-9
－8	4．0\％	－4．06	-31	171	－ 210	-17	173	-102	－2	161	－1：${ }^{\text {－}}$
－7	-5.1	-3%	－－	120	－-130	-10	1.0	－coro	－1	－${ }^{1}$	－$\therefore 3$
－6	6\％＂	267	$\cdots!?$	120 -00	8 －8	-15	3：！	350			
－5	207	$1{ }^{2}$	－17	－06	6.8	-14	-67	$7{ }^{\prime}$	5ニ゙	G，$k=$	-1%
－4	310		－17	－ 2.6	－223	－13	いご，	－4，30			
－3	109	71	－10	236	－ $27 \mathrm{C}^{2}$	－12	$161{ }^{1}$	-160	0	131	－1：？
－2	－－9	－ $8^{\prime \prime}$	-15	301	－24\％	－11	-67	187	1	309	－3：7
－1	171	1号	-16	200	10.0	-10	158	150	$?$	－coer	-25
			-13	－6	－ 61	－－	-6.7	50	3	\％0	2い。
$11=$	6．$k=$	$=3$	-12	－0．	－82？	－${ }^{1}$	375	－ごら	$\stackrel{3}{4}$	110	113
			－11	021	－fices	-7	－3，	－j46	5	334	－－ing
0	－65	40	－10	24	－6io	－c	± 10	ご\％	\bigcirc	$23:$	－$:=0$
1	307	36.5	－9		Sides	－5	$39:$	30， 3	7	187	141
2	$-6,7$	57	－ 4	550	$3!8$ -204	－4	112	－100	6	204	2．3！
3	くら？	－ 346	－7	？．34	－2：4	－4	234	． 231	9	117	-105
4	220	－！－	－6	1	－1．	－	109	－120	10	1\％\％	－1． 2
5	$-6,7$	－\％${ }^{2}$	－5	157	101	－2	16	－1．	11	1 14	－175
C	300	207	A	2.24		$\mathrm{H}=$		4	12	－65	－41
7	－0．	1	－3	36 F	36	$\mathrm{H}=$			1.3	276	$2 \% 5$
－21	－c 5	-11	2	136,	0	－19	－69	－24	14	-07	－1／
-20	164	－19is	-1	26.0	－262	－18	210	159	－5	－73	-93
-19	-65	02			6	－17	－60	75	－4	2.32	$-2{ }^{-2}$
-13	216	213	Hi＝	6．K	6	－16	－is？	－71	－3	－083	－－${ }^{\text {\％}}$
－ 17	104	75				－15	3 C 4	-303	－2	31.0	378
-16	306	－303	$?$	－03	130 -115	－14	－e8	－72	－1	313	304
－15	$\therefore 16$	－672	1	106	－1150	－1i	390	374			
-14	－ 0.3	－47	2	12	－1．0	－：2	201	200	$r=$	G．K	-11
-13	433	421	－ 21	－\％ 7	－114	－ii	18.1	－1．3			
-12	－324	319	－20	230	2.15	－10	553	－301	0	129	1：5
-11	119	-160	－19	14%	133 -131	－14	120	S20	1	3 Cl 1	311
-10	239	－200	－1号	－17	－13	－ 6	c． 1.9	403	2	－cl	15
－9	－ 21	204	－17	100	－120	－7	－ 71	121	3	207	－ 50.
－8	455	$4 \% 5$	－16	1%	184	－ 6	－159	－16．	4	140	$-1: 3$
－7	101	－8\％	-15	－80	－17	－0	150	－1	b	101	88
－ 0	24.3	－200	－1 1	－Co	－54				0	f，8is	C6\％
－5	439	－4：3	－13	－0．0．	－1．9		6	$=10$	7	1×7	16.9
－4	244	24°	$-1 ?$	20%	－223	$r=$	c．	－	8	$4!$	$-4,31$
－3	311	296	－11	20	4	7	183	-123	9	－05	－ 5
－2	139	-133	-10	$5 \leq 2$	$5 ? 9$	－17	－7	-31	10	－6\％	－4
－1	462	－47	－9	274	－659	－15	307	3 3？	11	217	2．2
			－ 0	255	－4． 4	－14	－ 6 ，${ }^{\text {a }}$	40	12	1＊1	103
$\mathrm{H}=$	6．k	$k=4$	-7	$13!$	123	－14	-1 -3	－2	13	18：	-170
			－	132	2.6	－13	131	－1：3	16	－8． 8	－4，
0	－68	$-8,7$	－5	135	142	－11	1－1	0%	！	15.8	$1: 3$
1	247	-296	4	20%	－！\％	－11	151	120	－7	－73	－：${ }^{\text {－}}$
2	103	－${ }^{2}$	3	303	－ 310	－10	-72	0.3	－6	14.8	－1－13
3	213	2：	－2	$2: 7$	$\bigcirc 13$	－	－7\％	－18	-5	－ C^{1}	110
4	259	2ri	-1	130	120	－	12＊		－4	1：3	15．3
5	－71	-17				$r=$	6	$i=-10$	－3	1 $\because 3$	1 is 3
－21	12.3	159	$1!=$	6.	$r=$	$\mathrm{H}=$	\cdots	$\cdots-1$	－2	－ 0.01	－73
-20	201	$13^{3} 3$				1	110	－123	－1	231	－233
－14	－6．3	$\therefore 2$	0	11.6	－ 18.1	2	179	$1 \Leftrightarrow 2$			
-13	152	$-15!$	－？ 1	－ 20.6	－93	$\underline{\square}$	277	$\therefore 71$	$11=$	c． r ．	$=-10$
－17	-6.4	－17	－30	$20:$	－697	4	－08	－ 1 ；			
-10	259	？ 25	－10	12	－107	5	1 1－4	-147	0	330	－こ20
－15	310	S1？	－17	27	\％）1	0	－0．1	－1．${ }^{1}$	1	300	－ 270
－1is	70	-73	17	2：	－18	－	－4．\％	5.4	2	－30	－4 ${ }^{\text {d }}$
－13	1：0	－： 51	－10	$2: 1$	－	4	$\therefore 1$	$\therefore 0$	3	183	150
－12	1．2？	$-1=13$	-19	3.3	－3．00	，	－c	－73	4	4 6	a 0,7
－11	28 c	$32 ?$	$-1=$	－ヵ？	－：2		－c	－	5	1%	－1：3
-10	54	：it	-13	50.2	518	10	$=7$		6	is 3	－A，
－9	－8，2	1، ${ }^{\prime}$	－： 2	176	178	1	－ 7 －		$\%$	2 ± 9	2いし
－8	12.3	－1．15	－1！	？ 3	$\because 7$		\leqslant	$k=-13$	3	\％ 45	ここ
－ 7	112	$1 \therefore 3$	－10	St 4	－327	1 －				53	－－3
－6	249	239	\cdots	2\％	30				13	174	－1－2
－5	－6， 2	－A 2	-3	211	22.	0	$\bigcirc 5$		11	320	－ 344
－4	3.35	－37	－7	102	－02		－-1	－	12	－64	－$\therefore 1$
－3		－－4 5	－ 6	10.	－115	2		1	13	2 ± 3	2：0
－2	-80	－1）	－s	$3 \cdot 2$	－3．0	－		－io	14	－¢ 7	－3
－1	218	273	－9	367							

L	10	FC	1	1 C	rc	1.	F． 0	$F C$	1	FO	rc
			－7	470	467	－4	-67	41	7	P18	230
$11 \sim$	8．$k=$	0	－6	30.0	305	－3	1：1	101	3	160	141
$11=$	0．	0	－ 5	1 10，	－163	-2	118	－100	3	1172	－1．4H
0	-60	－119	－4	356	－40！	－1	-2.1	－10	10	$1-0$	－1c．
1		－23\％	－3	-68	－61				11	－60	
2	－ 6,6	30	－ 2	35	310	$11=$	ย．$K=$	0	－ 1	2¢5	218
3	291	zrig	－1	203	370				－3	－70	d
4	－64	5				-19	－ 68	－：9	－？	327	$3{ }^{3} 1$
5	178	－1ni．	$\mathrm{H}=$	8．$k=$	3	-18	$2 \leq 3$	－こと山	－1	$1: 2$	Le
6	300	－2 21				-17	1 5\％	15			
-19	115	－115	0	20.3	211	－ 118	159	10%	1 H	8.1	－1
－10	170	-127	1	137	139	-15	1.3	152			18.0
-17	-64	-11	$?$	$-8,9$	－ 12.5	－18	－64	－219	1	188 -64	18.6 -33
-1%	113	11%	3	－19	－114	-13	270 -15	－－1	2	－64	-33 -135
－15	487	371	－80	203	－ 205	－12	－	101	3	15%	－10．
－14	－6．0	－8\％	-18 -18	-07 208	187	-11 -10	160	10	4	13%	1\％
-13 -15	4.32 -0.5	－ 41%	－18	-208 -60	187	-9	130	－128	5	3 Cl	304
－．11	151	134	－16	19 C	－185	－ 2	99	－ど兄	6	－-1.	－4：
-10	103	－5． 1	-15	－ 60	－12．3	－ 8	－6．5	60	7	2%	－209
-9	329	－ 3 ？	－19	1\％？	130	－0	220	22^{20}	8	136	－120
-8	2 20	－303	－13	176	102	－	120	138	3	12.	2
－ 7	－62	63	-12	－uC	－82	－8	177	－177	10	12.8	118 -89
－6	363	3 ± 5	－11	250	－271	－	－6	1	11	－1．	－166
－5	－60	80	－19	217	－201				－6	－-1.	-160 -8.2
－	461	－48？	－9	204	20：7	$H=$	8．$K=$	7	－6	－C	－81
－3	111	-127	－84	272	249 -109				－-4	－235	23%
－2	201	250	－7	373	－4．09	$\cdots 1:$	199 -69	204	－ 3	－2\％	25
－1	330	342	－ 0	322	－323	－17	199 -41	－212	－2	－Cos	-147
		1	－5	284	232 144	－16	＜41	－272	－1	－co	－ 7
$1=$	8．$k=$	1	－3	-120	38	－14	－ 8.6	$1 ?$			
0	265	250	－2	$3: 1$	－370	－：3	295	293	$\mathrm{H}=$	A．K	-10
1	230	－ 20	-1	$3{ }^{3} 7$	－323	-12	$-6{ }^{\circ}$	10	0	216	－258
2	199	－ 17%				－11	241	－252	－	137	－111
3	251	－2t：	$\mathrm{H}=$	8，K＝	4	$\cdots 10$	－6\％	－ CH	1	137	－ 23
4	－ 68	$-7 \varepsilon^{2}$				－9	-67	59	2	232	－229
5	209	203	0	－63	－78	－	210	27.8	3	170	192
－19	1.33	132	1	－6y	－1	-7	－73	－0\％	4	140	3
-18	168	1：6，	－-1	21：	107	－C	259	-253	5	113	－113
-17	21%	505	-19	－67	43				7	210	162
-16	143	－199	-13	271	-26.2	$11=$	E．$x=$	8	7	210	
－15	345	－ 322	－！ 7	－ i_{5}	-55				8	133	1． 6
－1．1	364	24.	－16	11.3	76	－： 5	217	240	9	108	－ 5
－13	187	$1: 37$	－15	－65	－4	-14	131	$-1: 0$	10	100	-165
-12	124	-123	－18	－204	-72	-13	$2-2$	－264	11	－63	43
－11	－63	-16	-13	：－ 4	－ 134	－： 2	1% 12	141	12	－174	
－10	88	24	-12	－65	3	－1：	14.2	122	－3	－8，	83
－9	214	2＞2	-11	342	346	－1！	-30	22	－ 7	－	87
－8	200	25i）	－10	－ver	¢				－6	－0，	－
－7	120	-141	－9	$20 ¢$	－2．29	$1=$	8． $\mathrm{K}=$	-14	－5	－ 6	－3
－6	SG	－7e	－3	－ 0 ，	-10				－4	120	-14%
－ 5	311	231	－ 7	254	228	4	121	－101	－3	－63	
－4	430	433	－6	－05	64	5	159	-157	－2	260	2： 121
－3	cb 7	241	－5	－60	－5s				－1	129	－121
－2	183	－ 157	－ 1	$13: 3$	－1．0	$r:=$	8．k	－13			
－1	423	－4．7	-3	1.73	－130				$\mathrm{H}=$	8．k	－ 9
			－2	$3 \cdot 13$	3 11	0	28.0 -89	261 23	0	－ 6.7	130
$p:=$	6．$k=$	$?$	－1	－6， 8	11	1	-69 $1: 4$	－ 177	1	－6，	210
0	306	-297	1 た	日．$k=$	5	3	－c5	${ }^{8}$	2	211	－218
1	317	－334				4	－6i7	72	3	$-i$ ？	－10
2	－60	ど0	－20	174	-134	5	237	210	4	くと：	¢ 7 ！
3	201	18B	-1.1	－0\％	-1.2	0	－63	-43	5	37%	－${ }^{-18}$
4	101	9	-18	273	272	7	226	-216	\bigcirc	1 i	－1：8
－20	-71	124	-17	－6ら	74	2	－ 70	－ 20	7	こくこ	－13）
-19	－60	－ 63	－16	－ 0^{2}	－4，	9	296	$27=$	8	－c．	－5
-18	228	－．3．31	-15	！と：	-179	－1	－65	らり	$\stackrel{1}{6}$	－¢ 0	ら゙つ
-17	25，	－ここの	－17	－0＇s	30				10	－ 174	10.5
-10	223	$2 \cdot 3$	-13	151	153	$11=$	E．K＝	$=-12$	1：	$1 \cdots$	－130
$-1 \leq$	－0．3	$1 i$	－12	－\％io	22				$1 \stackrel{1}{1}$	$3: 0$	－ $3=5$
－1\％	294	－271	-11	2：3	－232	0	134	－13	－10	－：	$\leq ?$
-13	271	-201	－10	－04	18	1	－66	-10	－${ }^{\text {a }}$	1－7	143
-12	－C．5	90.	－10	$2 \cdot 6$	245	2	－05	$3:$	－	－ 06	－5
-11	$10 \cdot 3$	53	－ 3	110	140	3	＜11	2 ± 1	－ 7	－ 6	－20
-10	218	2.3	－7	145	-170	4	－67	-13	－	-4	－？
－S	107	－－¢ 5	－6	172	－1E1	5	345	－20：	－	$17 ?$	132
-8	262	－251	－5	－6． 7	－72	C	213	－187	－-	237	－0，

1.	10	FC	L	FO	$1 . C$	L	10	HC	1.	$f 0$	$1{ }^{\circ} \mathrm{C}$
		257	-7	－71	13.	8	145	－191	－1．3	－67	-34
-3	208	201	-7	－78	－	4	130	131	－12	134	$15 \cdots$
－1	－-2.8	23.3	$11:$	9． $1 .=$	-13	10	805	214	-11	－ 4	C． 1
－1	－－${ }^{\text {－}}$					-10	112	111	-10	\cdots	0
$11=$	9．$k=$	3	0	180	801	－ 9	120	$1 \leqslant 1$	－	120	140 -00
P1－	－$K=$		1	－05	－－31	－8	-17	-20	－¢	－C5	$\because 0$
0	233	2.35	$?$	－c．1．	－-1	－？	1%	－113	－ 7	31：2	$\therefore 1$
-1%	－（．0）	53	3	－ 8 \％	-176	－\because	： 16	－ 111	－ 0	117	70
-16	2\％ 8	$\because 248$	1	160	1．9	－${ }^{\text {c }}$	－${ }^{1}$	1.			
-17	$\cdots 00$	－ 42	5	191	15	－	145	102	4	1．5	18
-10	100	-181	e	－68）	－101	－3	2．-1.4	-20 50	－ 2	310	320
－15	1：0	－1．1．				－1	-1.4 -4	50 -31	－1	－	-69
-14	ジこ	213	$11=$	8．k＝	-12	－1	－2 4	-21	－1	－	
-13	24と	2%							$\mathrm{H}_{1}=$	9．$r=$	-5
－12	－64	-23	0	15\％	-159	$11=$	9.	$k=-0$	H＝	9．	－
-11	$23:$	－ 2 － 1	1	3：	\cdots		370	－384	0	37：	381
-10	112	－C． 9	7	317	301 16,9	1	－ 20	－7\％	O	251	26＇1
-9	18.2	20	1	180	16,9 $-36,0$	$\frac{1}{2}$	－11．5	150	\％	32.4	-317
－ 6	－120	$5 ?$	4	31%	－ 26.0	$\frac{2}{2}$	11.5 -105	13 c	3	3.75	－32゙
－ 7	203	－2゙か	5	20.5	-231	2	\cdots	－14：	4	－01	－ 9 －
－0	＂ら4	－－3 ter	$1)$	103	ह1	5	164	－17\％	5	221	21 cs
－5	109	$-\mathrm{C}^{3} \mathrm{~S}$	7	106	101	6	184 -18	－17：	e	431	23）
-4	35.2	$3 \cdot 3$	ε	－61	13	\bigcirc	－6？	P\％	7	200	-201
-3	$: 14$	$\because \geqslant 4$	-3	120	155	7	30	203	8	14%	－1？
－2	277	－：35	-2	c＊5	245	8	2 C 2	2	G	12.	－120
－1	100	-75	-1	－0と	-1186	9	215	－ 215	． 15	1－67	$\begin{array}{r}16 \\ \hline 13\end{array}$
						10	150	$-1{ }^{+10}$	$\cdots 15$	－67	73
11＝	9．$N^{\prime}=$	4	$14=$	9．$k=$	＊ 11	－11	105	$1{ }^{1} 0$	－14	121	1.3
						－10	－ 6.7	－ 7 ¢	-13	－6	－100
-19	－68	-8.3	0	120	12.0	3	$1 E 5$	－21	-1.	－ 35	－141
-18	ごッ	-273	1	$1: 5$	-131	－ 3	－65	－24	-11	130	－164
-17	－0．3	7	2	214	-214	－	220	23	－10	12	3i，
-16	177	165	3	－13	$-1 j$	-6	165	177	－	5×2	38
－15	1：2	180	4	220	207	\cdots	－ 1	－265	－0	－60	
-14	$\because 48$	－ 26.5	5	24	222	－ 4	$-\epsilon S$	－111	？	324	－50
-13	342	－へら？	6	－ご	－109	－ 3	$1<0$	1工发	＜	151	1 －
-12	－0．	85	7	220	－6：0	－2	139	123	－	117	1
-11	228	30．	Q	－ 66	－5．	－1	$1: 3$	37 ？	－ 1	125	！rer
-10	1ヶ2	175	7	115	120				3	53	－ $6=2$
-9	－68	－121	-6	－67	-12	$12=$	9.	$k_{0}=-7$	－2	54.4	－302
－8	－1． 2	－－	-5	－6．5	75				－1	1.	－119
-7	173	178	－$\%$	197	189	0	$5: 0$	216			
－ 0	150	23「	3	114	-169	1	$\bigcirc 02$	$\cdots=01$	$n=$	$3 \cdot \times$	
－5	－65	1 （）	－2	236	－261	2	こ：	$2-3 \cup 8$			
－4	3×3	－3川5	－1	140	126	2	124	－－1．0	0	22.	－ 239
－3	102	－ 0				4	170	－17\％	1	305	－32．
－2	171	172	$1=$	9．$k=$	$-: 0$	5	2ES	$5 \quad \therefore 15$	E	$\therefore 14$	235
－2	171	172				C	－¢ 4	12	3	267	20.5
$1:=$	9．$k=$	5	0	120	6.6	7	319	$3-306$	4	－ 60	11 ？
H：	9．$k=$		1	274	-273	8	113	$3-10$	5	$3 C 8$	－？ 00
-18	270	ごす	2	214	20.3	9	2：－	－ 23	6	101	－17
－17	－43	37	3	424	422	-13	－ 1.8	－2	7	270	2.84
-10	105	－155	\wedge	－64	15	-12	1：	$3-1+c$	3	101	135
－15	12 is	－7：	5	276	-207	－：$:$	－¢	－－¢2	-16	－0．3	
-14	$10 ?$	157	6	－0．8	0.6	-10	10.3	3 110	－1．3	－t．	－35
－：3	278	2？	7	252	251	－9	154	4 1\％	-19	$12 \cdot$	$-1+3$
-12	－2．	－ 0	8	－0．4	4 y	3	－64	－－1\％	－13	214	$\therefore 0$
-11	375	－373	9	16.7	－：36	-7	457	$7-405$	-12	$1 \therefore 3$	$\because \mathrm{C}$
－ 80	－4C	－4	13	209	-191	c．	－cf	6 －bl	-11	－ゼ－	1
-9	215	2：3	－8	－1，4	-3	\pm	32	$\because 334$	-10	$1 \therefore \times$	－－
－ 8	－1， 8	$\therefore ?$	-7	-67	4 C	－	－3	3 －	－9	くご兄	－4．10
-7	137	－133	－0	145	1．3	－	－	－80	を	－16	
－6	251	－ 263	－5	15.1	-130	－2	2．	$2-20.6$	-7	$3 i$	－1．
-5	－6＇3	36	－ 4	323	－ 3.7	－1	－6．	$\div \quad-<0$	－5	101	－1：－
－4	315	501	－ 3	1 ± 1	170					－0．2	
			－2	165	$1 \% 4$	$H=$	9.	$k=-6$	－		－3：-2
$r=$	9．$k=$	$=6$	－1	$-1,0$	－：33				－3	－ 4	411
-17	－70	5	$\mathrm{H}=$	9．ス゚＝	$=-9$	1	－65	5 － 6.8	－	201	-149
－10	－08	18				2	47	7 く＂ツ			
－15	－67	\therefore	0	101	42	3	304	4 204	$H=$	9.	
-14.	100	－15	$:$	$2 \vdots 3$	2.35	3	－Ci	$0 \quad->0$			
-13	232	-84	2	120	－201	5	21	$3-350$	C	100	1.5
－12	11.3	111	3	20.3	-273	（）	－é	$4-10$	1	$\cdots 1$ \％	204
－1！	240	$2 \leq \geq$	4	－C．4	－20	8	1.4	4119	？	$1: 3$	－
-10	107	－i ：	5	1 ¢ ${ }^{\text {c }}$	121	63	－C	－No	3	$\because C 0$	－ 0.0
－9	178	－180	t	－ 1.2	－2？	\because	19.	\％－1－\％	8	10%	12
－ 3	180	－： 0.5	7	20%	－195	-14	22	$7-201$	5	$\because 6.3$	5

L	$F 0$	FC	1	FO	fr	1.	10	18	1.	10	r
3	110	-1.9	-11	－0，7	-87	-10	18.9	1： 1	－2	10.3	－97
4	170	$1 \times$	$-1: 3$	－ 610	－ 9	－\％	140	－11＇，	－1	－3！	
5	204	31.3	－18	172	132	－	10%	16			
c	－6\％	-70	-11	－03	17	－1	： 0 ？	15	\cdots	1	－c．
－10	101	7	-19	131	\cdots	－C	－C＂	． 1	0	106	－8084
-13	－0．0	－5	？	－ 6	－6\％		11．K゚ニ	2	1	\cdots－（ 1	－$\square^{\prime \prime}$
－1？	208	－ 0^{-1}	-7	＂号	－ 30	1 ）	1J．	\cdots	？	1 ¢	$1: 1$
-11	19%	－1＂へ	-7	\％	$2=0$ 181			1is！	3	\％－＂	＂，
-10	－ 0.5	8,5 18,0	-6 -5 -8	13%	141 -1.11	-12	$15 ?$	－1！	4	$\because \%$	-100
－9	1.34 -250	190 -100	－	120	－1：3	－12	43	$\therefore 10$	-12	： 31	1.0
－8	$3: 0$	-383	－3	$11:$	108	－： 0		153	－11	13	178
－0	－6． 6.4	41	－	97	$10!$	－ 5	171	1＂s	－ 10	\％＇1，	－${ }^{1}$
－5	2：c	20．＂	－1	－68	－4 4				－ 8	11	16.0
－ 0	279	？io？				1\％	11．15＝	-11	－0	1×2	21\％
－3	371	－ 330	$r=$	$10, \%=$	1					1%	1.1
-2	550	－ 5				0	10.3	181	－	－	－5， 1
－1	186	$1 \% 3$	0	3， 3	238	1 －	11．$K=$	-10	－	1．3＂	$\cdots \cdots$
$11=$	10．$k=$	－ 2	$?$	「ら。	－200				3	$\cdots!$	90
1.	10．K．		3	24%	－ 240	0	$\therefore 7$	－\％Cs	－3	128 ${ }^{2}$	140
0	3.36	－ 3 －	－17	－ن¢	－10．	1	－8，7	$\cdots 31$	－1	$\cdots 3$	8
1	－6．	－ 3	-16	221	－208	$?$	こ\％0	－			
2	195	10	-15	207	－20？	3	－6\％	7 C	$H=$	11．K	，
3	29：3	258	－14	1 137	176	－5	20.3	－ 2.6			1
4	1%	－165	－13	143	10%	－4	－71	－	0	coy	10
5	358	－ 37%	－12	2ゾ	－200	－． 3	340	311	1	1 －	1.3
c	152	$1 \% 6$	－11	－03	－64	－	178	1	$\frac{2}{3}$	－ 15	－183
－15	－60	-30	-19	140	$1 \% 0$	－1	124	－141	-13	150	－180
－14	－67	$-1 \% 3$	－	$1<8$	111				－12	12.3	－：0\％
－13	－60	-12	－ 3	-64	－ 20	$r=$	11．$k=$	－	－i	1，${ }^{\text {c }}$	－113
-12	2 21	－ 56	－7	329	-326				－11	1－2	－2：0
－11	1.33	$1 \% \%$	－6	¢07	－301	0	203	－0	\cdots	14i	$1<3$
-10	94	$\cdots 2$	-5	2.13	220	1	－ 2	－0	－		
-9	216	-2.35	－4	105	110	2	ごす！	－－204	－${ }^{1}$	－	－
－8	$1: 0$	13.	－3	105	171	3	－Col	ご	－	r	－．．
－7	260	$2<\%$	－？	2』1	-261	${ }^{1}$	$? 20$	$2 \because$	－ 0	－	
－6	18.7	-110	－1	91	-4	－7	そこ 5	－ rb_{6}	－＇	Car	1！＂，
－ 5	109	20				－6	－ 69	18.	－4	18.3	$\cdots 12$
－4	－66	1.5	$\mathrm{H}=$	11．$k=$	0	－5	199	152	3	－${ }^{\text {d }}$	1
－3	405	517				－4	147	－ 1110	－	－ 3	－ 4
－2	－6\％	6,8	-15	104	－20	－3	2ヶ4	－ $20 \leq$	-1	123	48
－1	320	-310	－19	$2 C 8$	-185	\because	18？	－153			
			-17	－いい	$\subseteq 4$	－1	$1 \% 0$	14,3	$H=$	11．K	-6
$H=$	10．$k=$	-3	－12	103	176						
			－11	$1: 9$	147	$H=$	11．K＝	-8	0	－6	-43
0	214	273	-10	117	-127				？	－1：8	10
1	110	114	－9	？ 5	-270	0	28%	-887	2	$1: 9$	102
2	305	－ 215	-9	－50，	17	1	－CB	102	3	1 －－	1%
3	279	-273	－7	277	275	2	203	： 13	-14	$1=4$	－1／1
4	300	374	－6	－6．	$9+$	3	－2	－45	-13	－2＇s	－ 5
5	203	3\％4	－5	127	-112	4	101	-152	－12	？：． 5	$\therefore+1$
-10	－ 60	－35	－ 4	100	-140	-4	14.4	-133	-11	1 ご	－17\％
-15	－00	35	3	130	124	－	171	190	-10	1 －	－118
-14	178	147	-2	131	150	－ 7	183	110	－ 0	－ 0.5	－ 3
-13	－65	44				－ 6	150	－ 164	－ 8	－24	1，${ }^{1}$
－12	345	－ 330	$t=$	11．	1	－5	152	-14%	－ 7	111	10.1
-11	－65	-30				4	110	117	－6	1！	4
－10	2ら，	Pat	-15	－c．e	28	－3	30：	20．	－	$1 \therefore 0$	$-1 \cdot 1$
－s	1ciel	1サ4	-10	－ 0.8	74	－？	101	117	4	？ $0: 1$	－203
－$\underbrace{\text { d }}$	－ 4.	10	-13	－106	－ 3	－1	210	-2.4	$?$	－1：	－：
－7	－0	-70	$-1 ?$	$11:$	－i 2				2	＇7	20\％
－6	－64	41	－11	re3	－－24	$11=$	1：K＝	－7	1	11	－
－5	238	213	-10	223	2？						
－-1	－6c	-6.4	－9	207	239	0	352	$3: 6$	$M=$	11.10	
－3	502	－435	－8	－ 2.7	-86	，	143	－is．			
－2	110	－105	－ 7	$1: 1$	－1』2	2	222	－2．4	0	－68	－81
－1	212	1\％？	－ 6	－68	－5	3	$1 \leq 5$	－1．7	1	－8．7	－－ 1
			－5	132	$1<0$	\therefore	－70	S1	－	1：3	－1．j
H＝	10．	$=-?$	－ 4	112	14%	－11	－69	－ 9 i	－1．1	173	107
						-10	143	1.58	－13	－cces	6 ！
0	186	－ $\mathrm{O}_{1} 1$	$H=$	11．	$=2$	－9	210	$\therefore 2$.	－i．	こご	－3！
1	133	－1？1				－8	26.6	－213	－： 1	1こう	－180
2	26？	P： 5	-15	$13:$	－136	-7	210	$-\underbrace{1}$	-12	－Co	CO2
3	－60	8 c	－1．	150	－1：3	－6	121	40	－	－ber	$11:$
4	167	－ 20.	-1.3	110	-113	－． 5	1？	$12+$	－ 8	－6．4	＜．1．
－16	1 1，2	112	-12	160	143	－4	－ 6	－： 1	－ 7	26り	$\cdots 3$
-15	－60	94	－11	$\therefore 4.5$	こ2	3	11.3	$-1 \div 3$	0	100	10

REFERENCES

1. W. P. Jencks, "Catalysis in Chomistry and Enzymology," HeGraw-Hill Book Company, New York, 1969, pl.
2. G. N. Schrauzer, "Advances in Chemistry Series," No. l00, R. F. Gould, Ed., Am. Chem. Soc. Publications, Washington, D. C., 1971, p 2.
3. W. P. Jencks, op. cit., pp 393-436.
4. W. Kauzmann, Advan. Protein Chem., 14, 1 (1959).
5. A. E. P. Watson, I. A. McLure, J. E. Bennett, and G. C. Benson, J. Phys. Chem., 59, 2753 (1965).
6. R. Murray and D. C. Smith, Coord. Chem. Revs., 3, 438 (1969).
7. R. W. F. Hardy, R. C. Burns, and G. W. Parshall, "Advances in Chemistry Series," No. loo, R. F. Gould, Ed., Arn. Chem. Soc. Publications, Washington, D. C., l971, pp 219-247.
8. T. L. Cairns, V. Ả. Engelharat, H. L. Jackson, J. H. Kalb, and J. C. Sauer, J. Am. Chem. Soc., 74, 5636 (1952).
9. J. C. Sawer and T. L. Cairns, J. Am. Chem. Soa., 79, 2659 (1957).
10. P. Heimbach, K. J. Ploner, and E. Thömel, Angew. Chem., 83, 285 (1971).
11. A. J. Chalk, J. Am. Chem. Soc., 94, 5928 (1972).
12. G. M. Whitesices and i. J. Emann, J. Am. Chem. Sog., 91, 3800 (1969).
13. A. W. Yarkins anc? R. C. Slade, J. Shem. Soc., Dalton Trans., 1352 (1975).
14. R. H. Gastinger, \because. D. Fauscin, D. F. Sulifonan, and J. Palenik, J. Am. Chem. Soc., in press.
15. M. D. Rausch, private communication.
16. Chemical Abstracts, 49, 7606e (1955). British patent no. 707337 (1954).
17. A. Ablov, Bull. Soc. Chim. Fr. Nem., 7, 151 (1940).
18. D. G. Batyr, M. P. Starysh, V. N. Shafranakii, and Yu. Ya. Kharitonov, Russ. J. Inorg. Chem., 17, 1728 (1972).
19. K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds," 2nd ed., John Wiley and Sons, New York, 1970, pp 230-232.
20. A. Nakahara, J. Fujita, and R. Tsuchida, Bull. Chem. Soc. Japan, 29, 296 (1955).
21. Y. Yamano, I. Masuda, and K. Shinra, Bull. Chem. Soc. Japan, 44, 1581 (1971).
22. J. Löliger and R. Scheffold, J. Chem. Ed., 49, 646 (1972).
23. D. F. Evans, J. Chem. Soc., 2003 (1957).
24. P. W. Ball and A. B. Blake, J. Chem. Soc. A, 1415 (I969).
25. M. J. Buerger, "X-Ray Crystallography," John wiley and Sons, New York, 1942 .
26. M. J. Buerger, "The Precession Method," John Wiley and Sons, New York, 1964.
27. George H. Stout and iyle H. Jensen, "X-Ray Structure Determination," The Macmiilan Company, New York, 1968.
28. C. W. Bunn, "Chemical Crystallography," Oxford univ. Press, London, 1961.
29. H. P. Hanson, E. Herman, J. D. Lea, anci S. Skillman, Acta Crystallogr., i7, 1040 (1964).
30. R. F. Stewart, E. R. Davidson, and i. T. Sinpson, J. Chem. Phys., $\pm 2,3175$ (1965).
31. P. A. Doyle and P. S. Turner, Acta Crystallogr., A24, 390 (1968).
32. A. J. C. Nilson, Nature, 150, 152 (1942).
33. A. J. C. Wilson, Acta Crystallogr., 2, 318 (1949).
34. $\because . \mathrm{M}^{\text {. Therger, }}$ "Crystal Structure Analysis," John Wiley and sons, Now York, 1960.
35. E. B. Fleischer, R. B. K. Dewar, and A. L. Stone, private conmunication (1966).
36. Rownrt B. K. Dewar, "Use of Computers in the x-Ray Phase Problem," Pin. D. Thesis, The University of Chicago, 1968.
37. R. N. Nay, Jr. and A. L. Underwood, "Ouantitative Analysis," prentice-Hall, Inc., Englewood Clifes, i. J., 1058.
38. K. Burger, I. Ruff, and F. Ruff, J. Inorg. Nucl. Chem., 27, 179 (1965).
39. G. Costin, G. 'augher, and A. Duxcddu, Inorg. Chim. Acta, 3, 41 (1969).
40. Sexpio Bxuckner and Lucio Randaccio, J. Chem. Soc., Dalion Trans., 1017 (1974).
41. Mario Calligaris, J. Chem. Soc., Dalton Trans., 1623 (1975).
42. G. N. Schmanzer, Accts. Chem. Res., 1, 97 (1968).
43. G. N. Schmauzer, "Advances in Chemistry Series," No. 100, R. 1. Gould, Ed., American Cnemical Sociaty pubJication, Washington, D. C., i971, ppli-20.
44. J. M. Pratt, "Inorganic Chemistry of Vitamin B_{12} " Acadenic Press, New York, 1972.
45. G. N. Schrauzor and J. W. Sibert, J. Am. Chem. Soc., 92, 1022 (1970).

4G. G. J. Palenik, D. A. Sulliran, and D. V. Naik, J. Ann. Chom. Sioc., in press.
47. P. G. icnhert, Chem. Commun., 980 (1967).
48. W. W. Fdans anci P. G. Lenkert, Acta Crystallogr., 329, 2:12 (1972).
49. A. Ablo \therefore M. N. Botochanskii, Yu. A. Simonov, T. I. *alimonstii, A. M. Goldman, and O. A. Bologa, Acai. Sci. USSR proc. (Engl. Trans.), 205, 763 (1972).
50. K. H. Prince, G. H. Sheldrick, D. A. Sotter, and R. Taylor, Chem. Commun., 854 (1974).
51. D. I. McFadden and A. T. McPhail, J. Chem. Soc., Dalton Trans., 363 (1974).
52. L. P. Battagla, A. B. Corrandi, C. Palmieri, M. Nardelli, and M. E. V. Tani, Acta Crystallogr., B30, 1114 (1974).
53. R. F. Chen and J. C. Kernohan, J. Biol. Chem., 242 5813 (1967).
54. C. K. Johnson, ORTEP, Report ORNL-3794 Revised, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1965.
55. K. Bowman, A. P. Goughan, and Z. Dori, J. Am. Chem. Soc., 94, 727 (1972).
56. L. E. Godycki and R. E. Rundel, Acta Crystallogr., 6, 487 (1953).
57. A. Vaciago and L. Zambonelli, J. Chem. Soc. A, 218 (1970).
58. The orthogonal coordinates XYZ (in $\stackrel{\circ}{A}$) are related to the monoclinic fractional coordinates, xyz, by the transformations: $X=a x+c z \cos \beta ; Y=b y$; and $Z=c z \sin \beta$.
59. The orthogonal coordinates $X Y Z$ (in $\stackrel{\circ}{A}$) are related to the triclinic fractional coordinates, xyz, by the transformations: $X=a x+b y \cos \gamma+c z \cos B ; Y=$ by $\sin \gamma-c z \sin \beta \cos \alpha^{*} ;$ and $z=c z \sin \beta \sin \alpha^{*}$.
60. D. W. J. Cruickshank and A. P. Robertson, Acta Crystallogr., 6, 698 (1953).
61. M. Calligaris, J. Chem. Soc., Dalton Trans., 1628 (1974).
62. James E. Huheey, "Inorganic Chemistry," Harper and Row, New York, 1972, p 497.
63. Linus Pauling, "The Nature of the Chemical Bond," 3rd ed., Cornell Univ. Press, Ithaca, N. Y., 1960, P 235.
64. T. G. Appleton, H. C. Clark, and L. E. Manzer, Cocrd. Chem. Revs., 10, 335 (1973).
65. P. G. Stecher, Ed., "Merck Index," 8th ed., Merck anca Co., Inc., Rahway, N. J., 1963, p 998.
66. D. D. Perrin, Ed., "Dissociation Constants of Organic Bases in Aqueous Solution: Supplement 1972," Butterworth and Co., Ltd., London, 1972.
67. R. C. Weast, Ed., "Handbook of Chemistry and Physics," 45th ed., Chemical Rubber Publishing Co., Clevoland, Ohio, 1964, p D76.
68. I. E. Dickson and R. Robson, Inorg. Chem., 13, 1301 (1974).
69. W. D. MeFadden, R. Robson, and H. Schaan, Inorg. Nuci. Chem. Letters, 11, 1777 (1972).
70. B. F. Hoskins, R. Robson, and H. Schata, Inorg. Nacl. Chem. Letters, 8, 21 (1972).
71. N. H. Pilkington and R. Robson, Aust. J. Chem., 23, 2225 (1970).
72. R. Robson, Aust. J. Chem., 23, 2217 (1970).
73. R. Robson, Inorg. Nucl. Chem. Letters, 6, 125 (1970).
74. A. B. Blake and I. R. Fraser, J. Chem. Soc., Dalton Trans., 2554 (1974).
75. K. T. McGregor, D. J. Hodgson, and W. E. Hatfield, Inorg. Chem., 12, 731 (1973).
76. A. B. P. Lever, L. K. Thompson, and W. M. Reiff, Inorg. Chem., 11, 104 (1972).
77. E. B. Fleischer, L. Sklar, A. Kendall-Torry, D. A. Tasker, and F. B. Taylor, Inorg. Nucl. Chom. Letters, 9, 1061 (1973).
78. L. K. Thompson, V. T. Chacko, J. A. Elridge, A. B. Lever, and R. V. Parish, Can. J. Chem., 47, 4141 (1969).
79. E. Sinn and C. M. Harris, Coord. Chem. Revs., 4, 391 (1969).
80. M. Kato, H. B. Jonassen, and J. C. Fanning, Chem. Rev., 64, 99 (1964).
81. A. D. Allen, "Advances in Chemistry Series," No. 100, R. F. Gould, Ed., Mmerican Chemical Society pubidcations, washington, D. C., 1971, pp 79-94.
82. E. E. Van Tamelen, "Advances in Chemistry Series," ino. 100, R. F. Gould, EB., American Cnemical socioty fublications, Washington, D. C., 1971, pp 95-110.
83. H. Okawa, T. Tokh, Y. Nonaka, Y. Muto, anc s. Kida, Bull. Chem. Soc. Javan, 46, 1462 (1973).
84. R. Restivo and G. J. Palenik, Acta Crystallogr., B26, 1397 (1970).
85. C. H. Macgillavry and G. D. Rieck, Eds., "International Tables for X-Ray Crystallography," Vol. III, The Kynoch Press, Birmingham, England, 1962, p 270.
86. J. E. Endrew and A. B. Blake, J. Chem. Soc. A, 1408 (1968).
87. J. Drew, M. B. Fursthouse, and P. Thornton, J. Chem Soc., Dalton Trans., 1658 (1972) and references therein.
88. H. S. Preston and C. H. L. Kennard, J. Chem. Soc. A, 2682 (1969).
89. M. L. E. Green and W. E. Silverthorn, J. Chem. Soc., Dalton Trans., 2164 (1974).
90. C. W. Bird, "Transition Metal Intermediates in Organic Synthesis," Logos Press, London, 1967.
91. M. D. Rausch, Pure and Applied Chem., 30, 523 (1972).
92. S. A. Gardner, P. S. Andrews, and M. D. Rausch, Inorg. Chem., 12, 2396 (1973).
93. M. D. Rausch, I. Sernai, B. R. Davies, A. Siegel, F. A. Higbie, and G. E. Westover, J. Coordn. Chem., 3, 149 (1974).
94. H. Yamazaki and 7. Hagihara, J. Organometal. Chem., 21, 431 (1970).
95. H. Yamazaki and W. Hagihara, Bull. Chem. Soc. Japan, 44, 2260 (1971).
96. H. Yamazaki, y. Watatsuki, Chem. Commun., 280 (1973).
97. H. Yamezaki, Y. Yate=siki, and K. Aoki, J. Am. Chem. Soc., 9 名, 5284 (1974).
98. I. R. Pateman, P. N. Maitiis, and L. E. Dahl, J. Im. Chem. Soc., 91,7294 (1969).
99. M. R. Churchill. "Eerspectires in Structural Chemistry," Vol. 3, J. D. Euntez ara J. A. Ibers, Eds. John Wiley and Sons, New rors, 1970, E91.
100. Joel T. Maque, Imorg. Chem., 9, 1610 (1970).
101. Joel T. Mague, Inorg. Chern., 12, 2649 (1973).
102. F. A. Cotton and J. G. Norman, Jr., J. Am. Chem. Soc., 93, 80 (1971).
103. H. J. S. Dewar and H. N. Schmeising, Tetrahedron, Il, 96 (1960).
104. O. Kennard, D. G. Watson, F. H. Allen, N. W. Isaacs, W. D. S. Motherwell, R. C. Pettersen, and W. G. Tomn, Eds., "Molecular Structures and Dimensions," Vol. El, N. V. A. Oosthoek, Utrecht, Netherlands, 1972, p 52.
105. J. Weaver and P. Woodward, J. Chem. Soc., Dalton Trans., 1060 (1973).
106. I. Bernal, B. R. Davis, M. Rausch, and A. Siegel, Chem. Commun., 1169 (1972).
107. M. R. Churchill, Inorg. Chem., 4, 1734 (1965).
108. G. G. Cash, J. F. Helling, M. Mathew, and G. J. Palenik, J. Organometal. Chem., 50, 277 (1973).
109. L. J. Guggenberger and R. Cramer, J. Am. Chem. Soc., 94, 3779 (1972).
110. C. P. Brock, J. P. Collman, G. Dolcetti, P. H. Farnham, J. A. Ibers, J. E. Lester, and C. A. Reed, Inorg. Chem., 12, 1304 (1973).
111. N. K. Hota, H. A. Patel, A. J. Carty, M. Mather, and G. J. Palenik, J. Organometal. Chem., 32, C55 (1971).
112. V. G. Albano, P. L. Bellon, and G. Ciani, J. Organometal. Chem., 38, 155 (;972).
113. T. E. Nappier, Jr., D. W. Meek, R. M. Kirchner, anć J. A. Ibers, J. Am. Chem. Soc., 95, il94 (1973).
114. S. A. Gardner, H. B. Gordon, and M. ©. Rausch, J. Orcanometal. Chem., 50, 179 (1973).
115. J. Olander, S. F. Bosen, and E. T. सaiser, J. Am. Chen. Soc., 9j, 1616 (1973).
115. A. D. Booth, "Fourier Techniques in x-Ray orgariz Structure analysis," Lniv. Iress, Cambridge, Enginan, 1948, p64.

BIOGRAPHICAL SKETCH

Douglas Allen Sullivan was born November 9, 1945, in Huntington, West Virginia. In May, l963, he was graduated from Vinson High School, muntington, West Virginia. He received the degree of Bachelor of Science in Chemistry from Marshall University in May, 1967. After studying at the University of Florida from September, 1967, to August, 1968, Mr. Sullivan taught chemistry, physics, physical science, and mathematics for the Wayne County (West Virginia) Board of Education. He then returned to the University of Florida in September, 1972, and received a Master of Science in Teaching degree majoring in chemistry in December, 1974. He is a member of the American Chemical Society. Mr. Sullivan is married to the former Jeanie Delaine Puckett of Titusville, Florida. They have a three-year-old son, David O'Donald Sullivan.

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation End is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scnolarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

This dissertation was submitted to the Graduate Faculty of the Department of Chemistry in the College of Arts and Sciences and to the Graduate Council, and was was accepted as partial fulfillment of the requiremerts for the degree of Doctor of Philosophy.

December, 1975

Dean, Graduate Schcol

[^0]: *These complexes were prepared using standard procedures 17 with synthetic details to be published at a later date.

[^1]: mor-Hydrogen… Acceptor, $D-Y$ at x, y, z.

[^2]: 1-bis (4-chlorophenyl)-2-chloroethylene.

[^3]: NE $=N(I f)$
 NS $=N V(I S)$
 NT $=N V: I T)$
 RVt $=$ NJ (! 1)

