
PHYSICAL
SCI.LIB.
TC
824
°C2
A2
NO.160-
93
DRAFT
v.2

-

·

.

.

. .

Draft Bulletin 160–93

CALIFORNIA WATER PLAN UPDATE

Volume II November 1993

Summary of Volume II 1
Water Supply
Water Demand 11
Urban Water Demand; Agricultural Water Demand; Environmental Water Demand; Demand Reduction—Water Conservation
California Water Balance
Local Water Supply Issues
Public Involvement
North Coast Region
Water Supply
Water Use
Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use
Issues Affecting Local Water Resource Management
Water Balance
San Francisco Bay Region
Water Supply
Supply with Existing Facilities; Supplies with Additional Facilities and Water Management Programs
Water Use
Urban Water Use: Agricultural Water Use; Environmental Water Use; Other Water Demand
Issues Affecting Local Water Resource Management
Legislation and Litigation; Local Issues
Water Balance
Central Coast Region
Water Supply
Supply with Existing Facilities; Supply with Additional Facilities and Water Management Programs
Water Use
Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use
Issues Affecting Local Water Resource Management
Legislation and Litigation; Regional Issues; Local Issues
Water Balance

South Coast Region 101	
Population; Land Use	
Water Supply 104	
Supply with Existing Facilities and Water Supply Management Programs; Supply with Additional Facilities and Water Management Programs	
Water Use	
Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Demand	
Issues Affecting Local Water Resource Management	
Legislation and Litigation; Local Issues	
Water Balance	
Sacramento River Region	
Water Supply	
Supply with Existing Facilities; Supply with Additional Facilities and Water Management Programs	
Water Use	
Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	
Issues Affecting Local Water Resource Management	
Legislation and Litigation; Regional Issues; Local Issues	
Water Balance	
San Joaquin River Region	
Population; Land Use	
Water Supply	
Supply with Existing Facilities; Supply with Additional Facilities and Water Management Programs	
Water Use	
Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	
Issues Affecting Local Water Resource Management	
Legislation and Litigation; Regional Issues	
Water Balance	
Tulare Lake Region 193 Population; Land Use	
Water Supply	
Supply with Existing Facilities; Supply with Level I Water Management Programs	
Water Use	
Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	
Issues Affecting Local Water Resource Management	
Contracts and Agreements; Regional Issues; Local Issues	
Water Balance	

	North Lahontan Region	25
	Population; Land Use	
	Water Supply	
	Supply with Existing Facilities; Supply with Additional Facilities and Water Management Programs	
	Water Use	
	Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	
	Issues Affecting Local Water Resource Management	
	Legislation and Litigation; Regional Issues	
	Water Balance	
	South Lahontan Region	49
	Water Supply	
	Supply with Existing Facilities; Supply with Additional Facilities and Water Management Programs	
	Water Use	
	Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	
	Issues Affecting Local Water Resource Management	
	Legislation and Litigation	
	Water Balance	
Col	lorado River Region	
CU	Population; Land Use	
	Water Supply	
	Supply with Existing Facilities; Supply with Additional Facilities and Water Management Programs	
	Water Use	
	Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	
	Issues Affecting Local Water Resource Management	
	Legislation and Litigation; Contracts and Agreements	
	Water Balance	
	Appendix C Planning Subarea and Land Ownership Maps	
	Appendix D Hydroelectric Resources of California	
	FIGURES	
	Figure S-1. Ten Hydrologic Regions in California	3
	Figure NC-1. North Coast Region Land Use, Imports, Exports, and Water Supplies	31
	Figure NC-2. North Coast Region Water Supply Sources (Average Conditions) 1990 level	33
	Figure NC-3. North Coast Region Net Water Demand (Average Conditions) 1990 level	37
	Figure NC-4. North Coast Region Applied Urban Water Demand (Average Conditions) 1990 level	38

Figure NC-5. North Coast Region	40
1990 Acreage, ETAW, and Applied Water for Major Crops	40
Figure NC–6. North Coast Region Water Recreation Areas	46
Figure SF–1. San Francisco Bay Region Land Use, Imports, Exports, and Water Supplies	55
Figure SF-2. San Francisco Bay Region Water Supply Sources (Average Conditions) 1990 level	56
Figure SF-3. San Francisco Bay Region Net Water Demand (Average Conditions) 1990 level	65
Figure SF–4. San Francisco Bay Region Applied Urban Water Demand (Average Conditions) 1990 level	66
Figure SF–5. 1990 San Francisco Bay Region Acreage, ETAW, and Applied Water for Major Crops	69
Figure SF–6. San Francisco Bay Region Water Recreation Areas	72
Figure CC-1. Central Coast Region Land Use, Imports, Exports, and Water Supplies	79
Figure CC–2. Central Coast Region Water Supply Sources (Average Conditions) 1990 level	81
Figure CC-3. Central Coast Region Net Water Demand (Average Conditions) 1990 level	87
Figure CC-4. Central Coast Region Applied Urban Water Demand (Average Conditions) 1990 level	88
Figure CC–5. 1990 Central Coast Region Acreage, ETAW, and Applied Water for Major Crops	90
Figure CC–6. Central Coast Region Water Recreation Areas	94
Figure SC-1. Land Use, South Coast Region	103
Figure SC–2. South Coast Region Water Supply Sources (Average Conditions) 1990 level	104
Figure SC-3. South Coast Region Net Water Demand (Average Conditions) 1990 level	113
Figure SC-4. South Coast Region Applied Urban Water Demand (Average Conditions) 1990 level	115
Figure SC–5. South Coast Region Acreage, ETAW, and Applied Water for Major Crops	117
Figure SC–6. South Coast Region Water Recreation Areas	121
Figure SR-1. Sacramento River Region Land Use, Imports, Exports, and Water Supplies	129
Figure SR–2. Sacramento River Region Water Supply Sources (Average Conditions) 1990 level	130
Figure SR–3. Sacramento River Region Net Water Demand (Average Conditions) 1990 level	138

Figure SR-4. Sacramento River Region Applied Urban Water Demand (Average Conditions) 1990 level	139
Figure SR–5. 1990 Sacramento River Region Acreage, ETAW, and Applied Water for Major Crops	143
Figure SR–6. Sacramento River Region Water Recreation Areas	150
Figure SJ-1. San Joaquin River Region Land Use, Imports, Exports, and Water Supplies	164
Figure SJ-2. San Joaquin River Region Water Supply Sources (Average Conditions) 1990	167
Figure SJ–3. San Joaquin River Region Net Water Demand (Average Conditions) 1990 Level	172
Figure SJ-4. San Joaquin River Region Applied Urban Water Demand (Average Conditions) 1990 Level	173
Figure SJ–5. 1990 San Joaquin River Region Acreage, ETAW, and Applied Water for Major Crops	177
Figure SJ-6. San Joaquin River Region Water Recreation Areas	183
Figure TL-1. Tulare Lake Region Land Use, Imports, Exports, and Water Supplies	195
Figure TL-2. Tulare Lake Region Water Supply Sources (Average Conditions) 1990 level	198
Figure TL-3. Tulare Lake Region Net Water Demand (Average Conditions) 1990 level	205
Figure TL-4. Tulare Lake Region Applied Urban Water Demand (Average Conditions) 1990 level	208
Figure TL-5. 1990 Tulare Lake Region Acreage, ETAW, and Applied Water for Major Crops	210
Figure TL-6. Tulare Lake Region Water Recreation Areas	217
Figure NL-1. North Lahontan Region Land Use, Imports, Exports, and Water Supplies	227
Figure NL-2. North Lahontan Region Water Supply Sources (Average Conditions) 1990 Level	228
Figure NL-3. North Lahontan Region Net Water Demand (Average Conditions) 1990 Level	233
Figure NL-4. North Lahontan Region Applied Urban Water Demand (Average Conditions) 1990 Level	234
Figure NL-5. North Lahontan Region 1990 Acreage, ETAW, and Applied Water for Major Crops	237
Figure NL-6. North Lahontan Region Water Recreation Areas	241
Figure SL-1. South Lahontan Region Land Use, Imports, Exports, and Water Supplies	252
Figure SL-2. South Lahontan Region Water Supply Sources (Average Conditions) 1990 Level	253

Figure SL-3. South Lahontan Region Net Water Demand (Average Conditions) 1990 Level	257
Figure SL-4. South Lahontan Region Applied Urban Water Demand (Average Conditions) 1990 Level	259
Figure SL-5. South Lahontan Region 1990 Acreage, ETAW, and Applied Water for Major Crops	262
Figure SL-6. South Lahontan Region Water Recreation Areas	265
Figure CR-1. Colorado River Region Land Use, Imports, Exports, and Water Supplies	276
Figure CR-2. Colorado River Region Water Supply Sources (Average Conditions) 1990 Level	277
Figure CR-3. Colorado River Region Net Water Demand (Average Conditions) 1990 Level	282
Figure CR-4. Colorado River Region Total Applied Urban Water Demand (Average Conditions) 1990 Level	284
Figure CR–5. Colorado River Region 1990 Acreage, ETAW, and Applied Water for Major Crops	288
Figure CR-6. Colorado River Region Water Recreation Areas	293

SIDEBARS

California's Water Supply Availability	1
Definition of Terms	12

TABLES

Table S-1. California Water Supply with Existing Facilities and Programs	4
Table S-2. Level I Demand Management Options	4
Table S-3. Level I Water Supply Management Options	5
Table S-4. California Water Supply with Level I Water Management Options	6
Table S-5. State Water Project Supplies	8
Table S-6. Net Ground Water Use by Hydrologic Region	9
Table S-7. Ground Water Overdraft by Hydrologic Region	10
Table S-8. Waste Water Recycling — Annual Fresh Water Displaced	11
Table S-9. California Water Demand	13
Table S-10. Population Projections By Hydrologic Region	14
Table S-11. California Urban Water Demand	15
Table S-12. California Crop and Irrigated Acreage by Hydrologic Region 1990 (Normalized)	17
Table S – 13. California Crop and Irrigated Acreage by Hydrologic Region 2020 (Forecasted)	18
Table S-14. California Agricultural Water Demand	19
Table S-15. California Environmental Water Needs	21
Table S-16. Annual Applied Water and Depletion Reductions Due to Conservation from 1990 to 2020 by Hydrologic Region	23
Table S-17. California Water Balance	25
Table NC-1. Population Projections	30
Table NC-2 Major Reservoirs	32

	0.4
Table NC-3. Water Supplies with Existing Facilities and Programs	34
Table NC-4. Water Supplies with Level I Water Management Programs	36
Table NC-5. Urban Water Demand	39
Table NC-6. Irrigated Crop Acreage	41
Table NC-7. 1990 Evapotranspiration of Applied Water by Crop	41
Table NC-8. Agricultural Water Demand	42
Table NC-9. Environmental Instream Water Needs	43
Table NC-10. Wetlands Water Needs	44
Table NC-11. Total Water Demands	47
Table NC-12. Water Balance	52
Table SF-1. Population Projections	54
Table SF-2. Major Reservoirs	57
Table SF-3. Water Supplies with Existing Facilities and Programs	58
Table SF-4. Water Supplies with Level I Water Management Programs	62
Table SF-5. Urban Water Demand	67
Table SF-6. Irrigated Crop Acreage	68
Table SF-7. 1990 Evapotranspiration of Applied Water by Crop	68
Table SF-8. Agricultural Water Demand	70
Table SF-9. Wetlands Water Needs	70
Table SF-10. Environmental Instream Water Needs	71
Table SF-11. Total Water Demands	73
Table SF-12. Water Balance	76
Table SF - 12. Water Balance	70
Table CC-1. Population Projections	78
Table CC-2. Major Reservoirs	82
Table CC-3. Water Supplies with Existing Facilities and Programs	82
Table CC-4. Water Supplies with Level I Water Management Programs	85
	89
Table CC-5. Urban Water Demand	
Table CC-6. Irrigated Crop Acreage	91
Table CC-7. 1990 Evapotranspiration of Applied Water by Crop	91
Table CC-8. Agricultural Water Demand	92
Table CC-9. Environmental Instream Water Needs	93
Table CC-10. Total Water Demands	95
Table CC-11. Water Balance	100
This CO. 1. Branchetier Projections	102
Table SC-1. Population Projections	
Table SC-2. Major Reservoirs	106
Table SC-3. Water Supplies with Existing Facilities and Programs	108
Table SC-4. Water Supplies with Level I Water Management Programs	112
Table SC-5. Urban Water Demand	114
Table SC-6. Irrigated Crop Acreage	118
Table SC-7. 1990 Evapotranspiration of Applied Water by Crop	118
Table SC-8. Agricultural Water Demand	119
Table SC-9. Wetlands Water Needs	120
Table SC-10. Total Water Demands	122
Table SC-11. Water Balance	125
	120
Table SR-1. Population Projections	128
Table SR-2. Major Reservoirs	131
Table SR-3. Water Supplies with Existing Facilities and Programs	134
and on the orbits of the second of the secon	

Table SR-4. Water Supplies with Level I Water Management Programs	137
Table SR-5. Urban Water Demand	141
Table SR-6. Irrigated Crop Acreage	142
Table SR-7. 1990 Evapotranspiration of Applied Water by Crop	144
Table SR-8. Agricultural Water Demand	145
Table SR-9. Environmental Instream Water Needs	147
Table SR-10. Wetlands Water Needs	148
Table SR-11. Total Water Demands	152
Table SR – 12. Water Balance	160
Table SJ-1. Population Projections	162
Table SJ-2. Major Reservoirs	165
Table SJ-3. Water Supplies with Existing Facilities and Programs	169
Table SJ-4. Water Supplies with Additional Level I Water Management Programs	170
Table SJ-5. Urban Water Demand	174
Table SJ-6. Irrigated Crop Acreage	175
Table SJ-7. 1990 Evapotranspiration of Applied Water by Crop	176
Table SJ-8. Agricultural Water Demand	178
Table SJ – 9. Wetlands Water Needs	180
Table SJ – 10. Environmental Instream Water Needs	181
Table SJ = 10. Environmental instream water receds Table SJ = 11. Total Water Demands	184
Table $SJ = 11$. Total water Demands	190
	190
Table TL-1. Population Projections	194
Table TL-2. Major Reservoirs	194
Table TL-2. Wajor Reservoirs Table TL-3. Water Supplies with Existing Facilities and Programs	190
Table TL-9. Water Supplies with Level I Water Management Programs	203
Table TL-4. Water Supplies with Level 1 water Management Programs Table TL-5. Urban Water Demand	205
	200
Table TL-6. Irrigated Crop Acreage Table TL-7. 1000 Europatropagingtion of Applied Water by Crop.	209
Table TL-7. 1990 Evapotranspiration of Applied Water by Crop Table TL-8. A grigultural Water Demond	209
Table TL-8. Agricultural Water Demand Table TL-8. Agricultural Water Demand	
Table TL-9. Wetlands Water Needs Table TL-10. Table TL-10.	214
Table TL-10. Total Water Demands	216
Table TL-11. Water Balance	223
The NI 1 Deriver Designations	226
Table NL-1. Population Projections Table NL-2. Mine Dependence	226
Table NL-2. Major Reservoirs	229
Table NL-3. Water Supplies with Existing Facilities and Programs Table NL-4. Water Supplies with A life	231
Table NL-4. Water Supplies with Additional Facilities and Programs Table NL-4. Water Supplies with Additional Facilities and Programs	232
Table NL-5. Urban Water Demand	235
Table NL-6. Irrigated Crop Acreage	236
Table NL-7. 1990 Evapotranspiration of Applied Water by Crop	236
Table NL-8. Agricultural Water Demand	236
Table NL-9. Wetlands Water Needs	239
Table NL-10. Total Water Demands	242
Table NL-11. Water Balance	247
Table SL-1. Population Projections Table SL-1. Population Projections	250
Table SL-2. Major Reservoirs	254
Table SL-3. Water Supplies with Existing Facilities and Programs	255
Table SL-4. Water Supplies with Level I Water Management Programs	256

Table SL-5. Urban Water Demand	260
Table SL-6. Irrigated Crop Acreage	261
Table SL-7. 1990 Evapotranspiration of Applied Water by Crop	261
Table SL-8. Agricultural Water Demand	263
Table SL-9. Environmental Instream Water Needs	264
Table SL-10. Total Water Demands	266
Table SL-11. Water Balance	272
Table CR-1. Population Projections	274
Table CR-2. Water Supplies with Existing Facilities and Programs	278
Table CR-3. Water Supplies with Level I Water Management Programs	281
Table CR-4. Urban Water Demand	283
Table CR-5. Irrigated Crop Acreage	285
Table CR – 6. 1990 Evapotranspiration of Applied Water by Crop	286
Table CR-7. Agricultural Water Demand	287
Table CR-8. Wetlands Water Needs	291
Table CR-9. Total Water Demands	292
Table CR-10. Water Balance	302

* * *

-

SUMMARY OF VOLUME II

SUMMARY OF VOLUME II

Bulletin 160–93 is organized into two volumes. Volume I discusses statewide issues; presents an overview of current and future water management activities while detailing statewide water supplies and water demands; and updates various elements of California's statewide water planning. Volume II examines current water demands and available supplies in each of the State's ten major hydrologic regions; discusses regional and local water-related issues; and details DWR's 30-year projections of supplies and demands for each region.

To best illustrate overall demand and supply availability, two water supply and demand scenarios, an average year and a drought year, are presented for the 1990 level of development and for projections to 2020. Shortages shown under average conditions are chronic shortages indicating the need for additional long-term water management measures. Shortages shown under drought conditions can be met by both long-term and short-term measures, depending on the frequency and severity of the shortage and water service reliability requirements.

Regional water balances present 1990 level and future water demands to 2020 and compare them with supplies from existing facilities and with future demand management and water supply management options. Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a higher likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap shown in the balance between supply and urban, agricultural, and environmental water demands. These options require more extensive investigation and alternative analyses.

California's Water Supply Availability

Average year supply: the average annual supply of a water development system over a long period. For this report, the SWP and CVP average year supply is the average annual delivery capability of the projects over a 70-year study period (1922-91). For a local project, it is the annual average deliveries of the project during 1984–1986 period. For dedicated natural flow, it is the long-term average natural flow for wild and scenic rivers or it is environmental flow as required for an average year under specific agreements, water rights, court decisions, and congressional directives.

Drought year supply: the average annual supply of a water development system during a defined drought period. For this report, the drought period is the average of water years 1990 and 1991. For dedicated natural flow, it is the average of water years 1990 and 1991 for wild and scenic rivers or it is environmental flows as required under specific agreements, water rights, court decisions, and congressional directives.

Bulletin 160–93 Administrative Draft

Summary of Volume II

This chapter summarizes regional water supplies and demands for the 1990 level of development and for projections to the year 2020. At the end of this chapter is the California Water Balance and a brief overview of local water supply issues. The remaining chapters of Volume II discuss water demands, water supplies, and water management issues related to each of the ten major hydrologic regions of the State (Figure 1). Appendix C presents regional planning subarea and land ownership maps and Appendix D lists hydroelectric facilities of the State by region.


Water Supply

Since the last water plan update in 1987, *California Water: Looking to the Future, Bulletin 160–87*, evolving environmental policies have introduced considerable uncertainty about much of the State's water supply. For example, the winter run chinook salmon and the Delta smelt, having experienced substantial population declines, were listed under the State and federal Endangered Species Acts, imposing restrictions on Delta exports, and the Central Valley Project Improvement Act (P.L. 102–575) was passed in 1992, reallocating over a million acre–feet of CVP supplies for fish and wildlife.

These actions affect the export capability from California's most important water supply hub, the Sacramento–San Joaquin Delta, while also imposing restrictions on upstream diverters. The Delta is the source from which two–thirds of the State's population and millions of acres of agricultural land receive part or all of their supplies. Other events, such as the State Water Resources Control Board's Bay/Delta Proceedings, and the federal Environmental Protection Agency's promise to promulgate Bay/Delta standards of its own, suggest even more stringent requirements could be imposed. Table S–1 shows California water supplies, with existing facilities and water management programs for the 1990 level of development and projections to 2020.

Californians are finding that existing water management systems are no longer able to provide sufficiently reliable water service to users. In most areas of the State, as a result of 1987–92 drought, water conservation and rationing became mandatory for urban users, many agricultural areas had surface water supplies drastically curtailed, and environmental resources were strained. Until a Delta solution that meets the needs of urban, agricultural, and environmental interests is identified, there likely will be water supply shortages in dry and average years.

While the six-year drought stretched California's developed supplies to their limits, innovative water management actions, water transfers, water supply interconnections, and changes in project operations to benefit fish and wildlife all helped to reduce the harmful effects of the prolonged drought. Today, water managers are looking into a wide variety of demand management and supply augmentation programs to supplement, improve, and make better use of existing resources. The following sections summarize results from regional and statewide analyses of water supplies and the water supply benefits of water management programs under Level I options. Tables S-2 and S-3 list the major water management programs included in Level I analyses and described in more detail in Chapter 11 of Volume I. The contribution of these programs to future regional water supplies is included in Table S-4, which shows water supplies for the 1990 level of development and compares them to projected supplies in 2020, with Level I water management programs in place. Note that Delta supplies are assumed to be operated under SWRCB D-1485

OCTOBER 1992

Bulletin 160–93 Administrative Draft

criteria; and, that some areas receiving Delta supplies are already impacted by reduced export capability as a result of recent actions to protect aquatic species.

Table S-1. California Water Supply with Existing Facilities and Programs

(Decision 1485 Operating Criteria without Endangered Species Action for Delta Supplies) (millions of acre-feet)

	(1	millions of acre-	-ieel)			
Supply	199	90	2020		Cha	nge
Supplies Surface:	Average	Drought	Average	Drought	Average	Drough
Local	10.1	8.2	10.3	8.4	0.2	0.2
Imports by local agencies ¹	1.0	0.7	1.0	0.7	0.0	0.0
Colorado River	5.2	5.1	4.4	4.4	-0.8	-0.7
CVP	7.5	5.0	7.9	5.1	0.4	0.1
Other federal	1.2	0.8	1.2	0.8	0.0	0.0
SWP ¹	2.8	2.2	3.4	2.1	0.6	-0.1
Reclaimed	0.2	0.2	0.2	0.2	0.0	0.0
Ground Water	7.5	12.2	8.3	12.9	0.8	0.7
Ground Water Overdraft	1.0	1.0	0.7	0.7	-0.3	-0.3
Dedicated Natural Flow	27.2	15.1	27.8	15.6	0.6	0.5
Total Supplies	63.7	50.5	65.2	50.9	1.5	0.4

¹ 1990 SWP supplies are normalized and do not reflect additional supplies needed to offset reduction of supplies from the Mono and Owens basins to the South Coast hydrologic region.

Table S-2. Level I Demand Management Options

Programs	Applied Water Reduction (1,000 AF)	Redu	r Demand Iction 0 AF)	Economic Unit Cost (\$/AF) ¹	Comments
	(1,000 AF)	Average	Drought	(\$/24)	
Long-term Demand Management:		· · · · · · · · · · · · · · · · · · ·			
Urban Water Conservation	1,300	900	900	315-390	Urban BMPs
Ag. Water Conserva- tion	1,700	300	300	Not Available	EWMPs and increased ir- rigation efficiency
Land Retirement	130	130	130	60	Retirement of land with drainage problems in west San Joaquin Valley. Cost is at the Delta.
Short-term Demand Management:					
Demand Reduction	1,300	0	1,000	Not Available	Drought year supply
Land Fallowing/ Drought Water Bank	800	0	800	125	Drought year supply. Cost is at the Delta.

¹ Economic costs include capital and OMP&R costs discounted over a 50 year period at 6 percent discount rate. These costs do not include applicable transportation and treatment costs.

Table S-3. Level I Water Supply Management Options

		Canacity		Supply 0 AF)	Economic Unit Cost	
Programs	Туре	Capacity (1,000 AF)	Average	Drought	(\$/AF) ¹	Comments
atewide Water Manager	nent:					
Long-term Delta Solution	Delta Water Management Program	-	200	400	Not Available	Under study by Bay/Delta Oversight Council. Water supply benefit is eliminatio of carriage water under D-1485.
"Interim" South Delta Water Management Program	South Delta Improvement	-	66	95	60	Final draft is scheduled to be released in late 1993
Los Banos Grandes Reservoir ²	Offstream Storage	1,730 ³	250-300	260	260	Schedule now coincides with BDOC process
Kern Water Bank ²	Ground Water Storage	3,000 ³	44	430	140	Schedule now coincides with BDOC process
Coastal Branch – Phase II (Santa Ynez Extension)	SWP Conveyance Facility	57	N/A ⁶	N/A	630-1,110	Notice of Determination wa filed in July 1992. Construction is scheduled to begin in late 1993.
American River Flood Control ⁴	Flood Control Storage	545 ³	-	-	-	Feasibility report and envi- ronmental documentation completed in 1991.
cal Water Management						
Waste Water Recycling	Reclamation	800	450	450	125-840	Fresh water displaced
Ground Water Reclamation	Reclamation	200	100	100	350-900	Primarily in South Coast
El Dorado County Wa- ter Agency Water Pro- gram	Diversion from South Fork American R.		24	23 ⁵	280	Certified final Programmat EIR identifying preferred a ternative; water rights hea ings,new CVP contract fol- lowing EIR/EIS preparation
Los Vaqueros Reservoir-Contra Costa Water District	Offstream Storage Emergency Supply	100	N/A	N/A	320-950	T&E species, inundation of ag. land. Costs vary with different operation scenar- ios.
EBMUD	Conjunctive Use and Other Options		N/A	20-70	370-1,830	Investigating 6 alternatives Draft EIR/EIS released in Dec. 1992
New Los Padres Reservoir – MPWMD	Enlarging existing reservoir	24	22	18	410	T&E species, steelhead fis ery in Carmel River
Domenigoni Valley Reservoir – MWDSC	Offstream storage of SWP and Colorado River water, drought year supply	800	0	264	410	Final EIR certified.
Inland Feeder- MWDSC	Conveyance Facilities	-	-	-	-	
San Felipe Extension - PVWA	CVP Conveyance Facility		N/A	N/A ⁵	140	Capital costs only. Convert 18,000 AF annually.

Economic costs include capital and OMP&R costs discounted over a 50 year period at 6 percent discount rate. These costs do not include app treatment costs. transpo treatment costs. ² These programs are only feasible if a Delta water management program is implemented. ³ Reservoir capacity. ⁴ Folsom Lake flood control reservation would return to original 0.4 MAF. ⁵ Yield of this project is in part or fully comes from the CVP. ⁶ NA: Not Applicable

Table S-4. California Water Supply with Level I Water Management Options

(Decision 1485 Operating Criteria without Endangered Species Actions for Delta Supplies)

(millions of acre-feet)2

	(
Supply	199	90	202	20	Chai	nge
Supplies Surface:	Average	Drought	Average	Drought	Average	Droug
Local	10.1	8.2	10.3	8.4	0.2	0
Imports by local agencies ¹	1.0	0.7	1.0	1.0	0.0	0
Colorado River	5.2	5.1	4.4	4.4	-0.8	-0
CVP	7.5	5.0	7.9	5.1	0.4	C
Other federal	1.2	0.8	1.2	0.8	0.0	
SWP ¹	2.8	2.2	4.1	3.0	1.3	C
Reclaimed	0.2	0.2	0.7	0.7	0.5	0
Ground water	7.5	12.2	7.8	12.8	0.3	0
Ground water overdraft	1.0	1.0	0.5	0.5	-0.5	-0
Dedicated Natural Flow	27.2	15.1	27.8	15.6	0.6	0
Total	63.7	50.5	65.7	52.3	2.0	1

¹ 1990 SWP supplies are normalized and do not reflect additional supplies needed to offset reduction of supplies from the Mono and Owens basins to the South Coast hydrologic region.

Local surface water development includes direct stream diversions as well as supplies in local storage facilities. Local agencies are finding it difficult to undertake new water projects to meet their needs where supply shortfalls exist or are projected to occur in the future, as a result of economic, environmental, and regulatory obstacles. Thus, some water agencies are advocating or implementing incentive programs for water conservation to reduce demand where such programs are cost effective. Implementation of urban Best Management Practices and agricultural Efficient Water Management Practices will reduce demands in the future, and reductions caused by these practices were incorporated into water demand forecasts to 2020. (See the Demand Reduction section in this chapter.) However, these practices only partially improve water service reliability. Local water agencies must continue to plan for water demand management and supply augmentation actions to increase water service reliability and meet future needs.

Ongoing local water supply programs include The Metropolitan Water District of Southern California's Domenigoni Valley Reservoir, East Bay Municipal Utility District's water management program, El Dorado County Water Agency's water program, and Monterey Peninsula Water Management District's New Los Padres Reservoir. By 2020, additional local water management programs could improve local annual supplies by about 40,000 and 350,000 AF for average and drought years, respectively.

Local Imported Supplies. Court order restrictions on diversion from the Mono Basin and Owens Valley have reduced the amount of water the City of Los Angeles can receive. These restrictions have brought into question the reliability of Mono–Owens supply for the South Coast Region.

Colorado River supplies to the south Coast Region for urban and agricultural uses could eventually decline from about 5.0 MAF to California's allocated supply of 4.4 MAF annually as a result of Arizona and Nevada taking more of their allocated supplies. With those states using less than their apportionment of water, their unused supply of Colorado River water was made available to meet California's require-

Bulletin 160–93 Administrative Draft

Summary of Volume II

ments. Southern California was spared from severe rationing during most of the 1987–92 drought primarily as a result of the 600,000 AF annually of Arizona and Nevada's unused Colorado River water that was made available to The Metropolitan Water District of Southern California. Even with this supply, however, much of Southern California experienced significant rationing in 1991. Supplemental Colorado River water cannot be counted on to meet needs in the future as Arizona and Nevada continue to use more of their allocated share of Colorado River water.

Central Valley Project yield will remain about the same as present. The USBR is required by the CVPIA to find replacement sources for 800,000 AF of water recently allocated to environmental uses. Additional supplies needed for future CVP conveyance facilities, such as the San Felipe extension, will probably come from reallocation of already contracted CVP supplies.

State Water Project supply studies were conducted to evaluate the delivery capability of the Project (1) with existing facilities and (2) with Level I water management programs under SWRCB D-1485 operating criteria (see Table S-5). SWP supplies for the 1990 level were 2.8 MAF and 2.2 MAF for average and drought years, respectively. SWP 1990 average supply is normalized and does not reflect additional supply needed to offset reduction of Mono-Owens supplies to South Coast Region. Additional Level I programs include the South Delta Water Management Program, long-term Delta water management programs, the Kern Water Bank (including local elements), Los Banos Grandes, and the Coastal Branch (the Coastal Branch is a conveyance facility). With the Level I programs, SWP supplies can increase to about 4.1 MAF and 3.0 MAF in average and drought years by the year 2020.

7

		SWP Deli	very Capability ¹		
Level of Develop- ment Average	With Existin	ng Facilities		ter Management rams ²	- SWP Delta Export
	Drought	Average	Drought	Demand	
1990	2.8	2.2			3.0
2000	3.3	2.1	3.6	2.6	3.7
2010	3.4	2.1	4.0	3.0	4.2
2020	3.4	2.1	4.1	3.0	4.2

Table S-5. State Water Project Supplies (millions of acre-feet)

¹Assumes D-1485. SWP capability with Level I water management programs is uncertain until solutions to complex Delta problems are implemented and future actions to protect aquatic species are identified. Includes conveyance losses.

²Level I programs includes South Delta Water Management programs, long-term Delta water management programs, the Kern Water Bank and Local Elements, and Los Banos Grandes Facilities.

Note: Feather River Service area supplies are not included. FRSA average and drought supplies are 927,000 and 729,000 AF respectively.

California's ground water resources played a vital role in helping the State through the 1987–92 drought. Recent studies by DWR indicate that many of the San Joaquin Valley's ground water aquifers substantially recovered from the 1976–77 drought during the late 70s and early 80s when surface runoff and Delta exports were above average. Conjunctive use operations, which helped make this possible, will continue to be refined and made more effective in the future. The 1990 level average annual net ground water use in California is about 8.5 MAF, including 1.0 MAF of ground water overdraft. During droughts, ground water use is increased significantly to offset reduction in surface water, as shown in Table S–6. Annual ground water overdraft has been reduced by about half since 1980, when ground water overdraft was last studied (see Table S–7). This reduction has mainly occurred in the San Joaquin Valley and is due to the benefits of imported supplies to the San Joaquin River and Tulare Lake regions and construction and operation of Hidden and Buchanan dams, which provide controlled releases and opportunities for greater ground water recharge during the 1970s and 80s.

The overdraft amounts shown in Table S–7 do not include an estimated 200,000 AF of overdraft resulting from possible degradation of ground water quality in basins in the trough of the San Joaquin Valley. There is a west–to–east ground water gradient in this valley from Merced County to Kern County. Poor quality ground water moves eastward along this gradient, displacing good quality ground water in the trough of the basin. The total dissolved solids in the west side of the valley generally range from 2,000 to 7,000 milligrams per liter, the eastside basin TDS from 300 to 700 milligrams per liter. This displacement of good quality ground water should be investigated for overdraft estimates because degraded ground water cannot be economically put to use. However, the amount is difficult to ascertain and no water quality monitoring data are available to verify the calculations.

In the short term, those areas of California that rely on Delta exports for all or a portion of their surface water supplies face great uncertainty in terms of water supply reliability due to the uncertain outcome of a number of actions being undertaken to protect aquatic species in the Delta. For example, in 1993, an above normal runoff year, environmental restrictions limited CVP deliveries to 50 percent of contracted supply for federal water service contractors from Tracy to Kettleman City. Because ground water is used to replace much of the shortfall in surface water supplies, limitations on Delta exports will exacerbate ground water overdraft in the San Joaquin River and Tulare Lake regions, and in other regions receiving a portion of their supplies from the Delta.

	(ulousands o	i acre-ieelj			
Region	19	990		h Existing Programs ¹		Additional Programs ¹
	Average	Drought	Average	Drought	Average	Drought
North Coast	260	280	300	320	290	310
San Francisco Bay	100	130	160	170	110	140
Central Coast	940	1,020	1,000	1,110	910	1,050
South Coast	1,110	1,320	1,610	1,610	1,540	1,610
Sacramento River	2,510	2,880	2,530	3,080	2,510	3,080
San Joaquin	1,280	2,340	1,070	2,280	1,050	2,270
Tulare Lake	1,730	4,550	1,660	4,410	1,320	4,230
North Lahontan	120	150	150	170	150	170
South Lahontan	300	330	330	340	310	340
Colorado River	160	160	150	150	100	100
Statewide	8,510	13,160	8,960	13,640	8,290	13,300

Table S-6. Net Ground Water Use by Hydrologic Region (thousands of acre-feet)

¹ Assumes SWRCB D-1485 operating criteria for surface water supplies from the Delta. Recent actions to protect aquatic species have made supplies from the Delta more uncertain; which will increase ground water overdraft in portions of the San Joaquin Valley.

			2020 ¹			
Region	1980	1990	with Existing Facilities & Programs	with Additional Facilities & Programs		
North Coast	0	0	0	0		
San Francisco Bay	0	0	0	0		
Central Coast	230	250	249	249		
South Coast	110	20	0	0		
Sacramento River	120	30	33	33		
San Joaquin	420	210	0	0		
Tulare Lake	990	340	280	55		
North Lahontan	0	0	0	0		
South Lahontan	100	70	71	71		
Colorado River	60	80	67	60		
Statewide	2,030	1,000	700	468		

Table S-7. Ground Water Overdraft by Hydrologic Region (thousands of acre-feet)

¹ Assumes SWRCB D-1485 operating criteria for surface water supplies from the Delta. Recent actions to protect aquatic species have made supplies from the Delta more uncertain; which will increase ground water overdraft in portions of the San Joaquin Valley.

Water reclamation programs such as waste water recycling, reclamation of contaminated ground water, ocean water desalting, and desalting agricultural drainage water were evaluated (see Volume I, Chapter 11 for a detailed discussion of these problems). Projected water recycling is based on evaluation of water recycling data presented in *Water Recycling 2000*, a September 1991 report by the State Water Conservation Coalition Reclamation/Reuse Task Force and the Bay–Delta Reclamation Subwork Group and information provided by local water and sanitation districts. Table S–8 shows the estimated water recycling contribution (annual fresh water displaced) to water supply by hydrologic region.

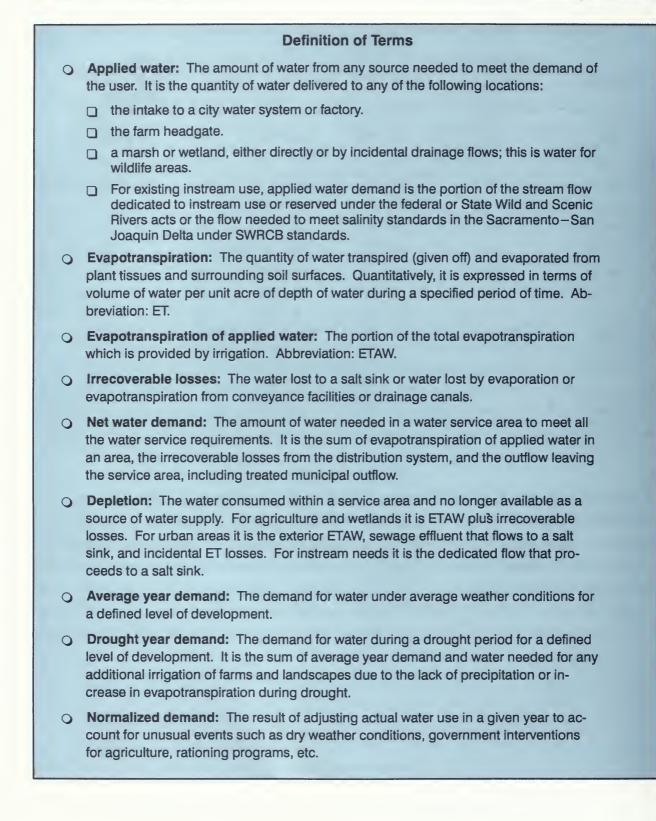

Region	1990	2000	2010	2020	1990-2020 Change
NC	12	15	18	21	9
SF	32	43	53	70	38
CC	6	37	44	50	44
SC	76	234	296	357	281
SR	9	9	9	9	0
SJ	24	27	35	41	17
TL	63	74	92	111	48
NL	8	8	8	8	0
SL	2	2	2	4	2
CR	3	4	4	5	2
Total	235	453	561	676	441

Table S-8. Waste Water Recycling — Annual Fresh Water Displaced (thousands acre-feet)

Ground water reclamation programs could be implemented to recover degraded ground water. Currently, most ground water reclamation programs in the planning process are in Southern California. The supply benefit of ground water reclamation by year 2000 is projected at about 90,000 AF and is included with ground water supplies.

Water Demand

Extensive evaluation and analyses of water demand were conducted for this water plan update. These analyses recognize the water demands of all beneficial uses: urban, agricultural, environmental, and other uses including water based recreation, and power generation. Water based recreation is discussed more extensively in Volume I, Chapter 9. Table S–9 summarizes statewide estimated water demands for each category of use.

		1990		2020	1990-202	0 Change
Category of Use	average	drought	average	drought	average	drought
Urban					:	
Applied water	7.8	8.1	12.6	13.1	4.8	5.0
Net water	6.7	7.0	10.5	11.0	3.8	4.0
Depletion	5.7	6.0	8.5	8.9	2.8	2.9
Agricultural		1. Y				
Applied water	30.9	32.8	28.9	30.4	-2.0	-2.4
Net water	27.0	28.4	25.1	26.3	-1.9	-2.1
Depletion	24.4	25.8	22.9	24.2	-1.5	-1.6
Environmental						
Applied water	28.6	16.4	29.5	17.3	0.9	0.9
Net water	28.2	16.1	29.0	16.9	0.8	0.8
Depletion	24.4	12.7	24.7	13.0	0.3	0.3
Other ¹						
Applied water	0.5	0.5	0.7	0.5	0.2	0.0
Net water	1.8	1.7	1.8	1.5	0.0	-0.2
Depletion	1.3	1.3	1.3	1.1	0.0	-0.2
Total		<u>;</u>				i.
Applied water	67.9	57.8	71.7	61.3	3.8	3.5
Net water	63.7	53.2	66.4	55.7	2.7	2.5
Depletion	55.8	45.8	57.4	47.2	1.6	1.4

Table S-9. California Water Demand (millions of acre-feet)

1 Other includes conveyance losses, recreation uses, and energy production.

Urban Water Demand

Urban water demands are primarily based on statewide population projections which show an increase of almost 19 million people from 1990 to 2020, from roughly 30 million to 49 million people. About half the projected population increase will happen in the South Coast Region. Population projections for the *California Water Plan* are based on the Department of Finance baseline series. The DOF population estimates are taken from the 1990 census as the base year. Table S-10 shows projections of population by hydrologic region.

Hydrologic Regions	1990	2020	1990-2020 Change
North Coast	0.6	0.9	0.3
San Francisco	5.5	6.9	1.4
Central Coast	1.3	2.0	0.7
South Coast	16.2	25.3	9.1
Sacramento River	2.2	4.1	1.9
San Joaquin River	1.4	3.2	1.8
Tulare Lake	1.6	3.5	1.9
North Lahontan	0.1	0.1	0.0
South Lahontan	0.6	1.9	1.3
Colorado River	0.5	1.0	0.5
Total	30.0	48.9	18.9

Table S-10. Population Projections By Hydrologic Region

(millions)

Urban annual net water demand could increase from 6.7 MAF in 1990 to 10.5 MAF by 2020, after accounting for implementation of conservation measures that are projected to reduce urban annual net water demand by about 0.9 MAF. Urban water demand projections are based on: (1) population projections; and (2) unit urban water use values, considering probable effects of future water conservation measures, and trends such as increases in multi–family housing and greater growth in warmer inland areas of the State. Table S–11 shows urban water demand projections by hydrologic region. A comprehensive analysis of unit urban water use is presented in Volume I, Chapter 6.

(millions of acre-feet) 1990 1990-2020 Change 2020 **Hydrologic Regions** drought average drought drought average average North Coast 0.2 0.2 0.0 0.0 0.2 0.2 Applied Water 0.2 0.0 0.2 0.2 0.2 0.0 Net Water 0.1 0.1 0.1 0.0 0.0 Depletion 0.1 San Francisco **Applied Water** 1.2 1.3 1.4 1.5 0.2 0.2 Net Water 1.2 1.3 1.4 1.5 0.2 0.2 1.2 1.3 1.5 0.2 0.3 Depletion 1.1 **Central Coast Applied Water** 0.3 0.3 0.4 0.4 0.1 0.1 Net Water 0.2 0.2 0.3 0.4 0.1 0.2 0.3 0.1 Depletion 0.2 0.2 0.3 0.1 South Coast 2.1 2.2 **Applied Water** 3.9 4.0 6.0 6.2 Net Water 3.5 3.6 5.3 5.5 1.8 1.9 Depletion 3.3 3.5 4.8 5.0 1.5 1.5 Sacramento River 0.5 0.5 0.8 1.2 1.3 **Applied Water** 0.7 0.7 1.2 1.3 0.5 0.5 Net Water 0.8 0.4 0.4 0.2 0.1 0.2 0.3 Depletion San Joaquin River 0.5 0.5 1.0 1.1 0.5 0.6 **Applied Water** 0.7 0.3 0.4 Net Water 0.4 0.4 0.8 Depletion 0.2 0.2 0.4 0.4 0.2 0.2 **Tulare Lake Applied Water** 0.5 1.1 1.1 0.6 0.6 0.5 Net Water 0.2 0.2 0.5 0.5 0.3 0.3 0.2 0.2 Depletion 0.2 0.2 0.4 0.4 North Lahontan 0.1 0.1 Applied Water (1) 0.0 0.0 0.1 0.1 Net Water (1) 0.0 0.0 0.1 0.1 0.1 0.1 0.0 Depletion (1) 0.0 0.0 0.0 0.0 0.0 South Lahontan 0.2 0.2 0.6 0.6 0.4 0.4 Applied Water Net Water 0.1 0.1 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.3 Depletion 0.1 0.1

Table S-11. California Urban Water Demand

	(millions of acre-feet)										
Undrelegie Desiene	19	90	202	20	1990-202	0 Change					
Hydrologic Regions	average	drought	average	drought	average	drought					
Colorado River		1		1		Y.					
Applied Water	0.3	0.3	0.6	0.6	0.3	0.3					
Net Water	0.2	0.2	0.4	0.4	0.2	0.2					
Depletion	0.2	0.2	0.4	0.4	0.2	0.2					
Total											
Applied Water	7.8	8.1	12.6	13.1	4.8	5.0					
Net Water	6.7	7.0	10.5	11.0	3.8	4.0					
Depletion	5.7	6.0	8.5	8.9	2.9	2.9					

Table S-11. California Urban Water Demand (continued)

Agricultural Water Demand

To compute agricultural water demand, the California Water Plan integrates the results of three forecasting methods used to project irrigated agricultural acreage and crop type:

- Review of local crop acreage trends along with the availability of water and impacts of urban encroachment;
- Crop Market Outlook; and
- Central Valley Production Model.

Every five to seven years since 1948, DWR has surveyed agricultural land use to help assess the locations and amounts of irrigated crops. Acreages of crops grown are estimated on a yearly basis, using the annual crop data produced by county Agricultural Commissioners, adjusted on the basis of DWR land use surveys, and estimates of urban expansion onto irrigated agricultural land.

The Crop Market Outlook is based on the expert opinion of bankers, farm advisors, commodity marketing specialists, and others regarding trends in factors which affect crop production in California. Several factors are evaluated, but the four primary ones are: (1) the current and future demand for food and fiber by the world's consumers; (2) the shares of the national and international markets for agricultural productions that are met by California's farmers and livestock producers; (3) technical factors, such as crop yields, pasture carrying capacities, and livestock feed conversion ratios; and (4) competing output from dryland (non–irrigated) acres in other states. The results determine the projected future potential California production of various crops.

The Central Valley Production model is an economic model which accounts for crop production costs in different areas of the Sacramento and San Joaquin valleys in conjunction with the effect of overall production levels on the market prices for California crops. This helps to estimate how the total California production will be distributed among counties.

Some crop shifts are expected to happen as growers move from low value and high water use crops to high value and low water use crops. Alfalfa and pasture lands are projected to decrease by about

Bulletin 160–93 Administrative Draft

330,000 acres mostly in the San Joaquin and Tulare Lake regions. Crop acreages expected to increase include vegetables, vineyard, and nuts (almonds and pistachios).

The 1990 level (base year) crop acreage and crop types are based on agricultural land use surveys which have been normalized to take into account the impact of the 1987–92 drought, government set aside programs, and other annual crop acreage fluctuations. Tables S–12 and S–13 show the 1990 and 2020 level California crop and irrigated acreage by hydrologic region, respectively. Projections of agricultural water needs are based on: (1) agricultural acreage forecasts, (2) crop type forecasts, (3) crop unit applied water and unit evapotranspiration of applied water values (in acre–feet for each crop acre), and (4) estimates of future water conservation.

Irrigated Crop	NC	SF	CC	SC	SR	SJ	TL	NL	SL	CR	Total
Grain	82	2	28	11	303	182	297	6	1	76	988
Rice	0	0	0	0	494	21	1	1	0	0	517
Cotton	0	0	0	0	0	178	1,029	0	0	37	1,244
Sugar Beets	2	0	5	0	75	64	35	0	0	35	216
Corn	1	1	3	5	104	181	100	0	0	8	403
Other Field	3	1	16	4	155	121	135	0	1	55	491
Alfalfa	53	0	27	10	141	226	345	43	34	255	1,134
Pasture	121	5	20	20	357	228	44	110	19	31	955
Tomatoes	0	0	14	9	120	89	107	0	0	13	352
Other Truck	21	10	321	87	55	133	204	1	2	190	1,024
Almonds/ Pistachios	0	0	0	0	101	245	164	0	0	0	510
Other Decidu- ous	7	6	20	3	205	147	177	0	4	1	570
Citrus/Olives	0	0	18	164	18	9	181	0	0	29	419
Grapes	36	36	56	6	17	184	393	0	0	20	748
Total Crop Area ¹	326	61	528	319	2,145	2,008	3,212	161	61	750	9,571
Double Crops	0	0	98	30	44	53	65	0	0	102	392
Irrigated Land Area	326	61	430	289	2,101	1,955	3,147	161	61	648	9,179

Table S-12. California Crop and Irrigated Acreage by Hydrologic Region11990

Total crop area is the land area plus the amount of land with multiple crops.

Irrigated Crop	NC	SF	CC	SC	SR	SJ	TL	NL	SL	CR	Total
Grain	72	2	23	1	295	179	258	9	0	80	920
Rice	0	0	0	0	482	15	0	1	0	0	498
Cotton	0	0	0	0	0	178	949	0	0	67	1,194
Sugar Beets	10	0	5	0	72	45	25	0	0	40	197
Corn	1	0	6	2	115	183	98	1	0	3	409
Other Field	3	1	15	1	158	122	130	0	1	26	456
Alfalfa	65	0	24	6	152	156	240	53	26	226	947
Pasture	122	4	15	6	320	171	22	106	19	30	815
Tomatoes	0	0	15	4	132	88	85	0	0	14	339
Other Truck	28	11	347	43	65	201	350	2	1	203	1,250
Almonds/ Pistachios	0	0	0	0	125	263	173	0	0	0	561
Other Deciduous	7	6	19	3	217	151	178	0	2	1	584
Citrus/Olives	0	0	16	116	29	11	190	0	0	30	392
Vineyard	38	40	81	3	24	189	363	0	0	15	753
Total Crop Area	346	64	566	185	2,186	1,952	3,061	171	49	735	9,315
Double Crops	0	0	137	12	72	68	90	0	0	123	501
Irrigated Land Area	346	64	429	173	2,114	1,884	2,971	171	49	612	8,814

Table S-13. California Crop and Irrigated Acreage by Hydrologic Region 2020 (Forecasted) (thousands of acres)

Agricultural water needs were evaluated by determining crop types and acreages for each region. Current projections indicate that irrigated agricultural acreage will decline by about 365,000 acres between 1990 and 2020, from 9.2 million acres to about 8.8 million acres. This decline represents a 700,000 acre reduction from a peak in 1980.

For the State as a whole, agricultural annual net water demand will decrease by about 1.9 MAF, from 27 MAF in 1990 to 25.1 MAF in 2020. Many of agriculture's unit applied water values have decreased during the past decade. Part of this decrease is due to improvements in irrigation efficiency and increased emphasis on water conservation since the 1976–77 drought. Table S–14 shows the 1990 level and projections of agricultural water demands by hydrologic region. For a comprehensive analysis of agricultural water use, refer to Volume I, Chapter 7.

18

	(milli	ons of acre	-feet)			
Hydrologic Regions	19	90	20	20	1990-202	0 Change
nyurologic negions	average	drought	average	drought	average	drought
North Coast				1		
Applied Water	0.8	0.9	0.9	1.0	0.1	0.1
Net Water	0.7	0.8	0.8	0.8	0.1	0.0
Depletion	0.6	0.6	0.6	0.7	0.0	0.1
San Francisco		. 1				
Applied Water	0.1	0.1	0.1	0.1	0.0	0.0
Net Water	0.1	0.1	0.1	0.1	0.0	0.0
Depletion	0.1	0.1	0.1	0.1	0.0	0.0
Central Coast		, (1		
Applied Water	1.1	1.2	1.2	1.2	0.1	0.0
Net Water	0.9	1.0	0.9	1.0	0.0	0.0
Depletion	0.9	1.0	0.9	1.0	0.0	0.0
South Coast						
Applied Water	0.7	0.8	0.4	0.4	-0.3	-0.4
Net Water	0.6	0.7	0.4	0.4	-0.2	-0.3
Depletion	0.6	0.7	0.4	0.4	-0.2	-0.3
Sacramento River				· · · · · ·		
Applied Water	7.8	8.6	7.6	8.3	-0.2	-0.3
Net Water	6.8	7.3	6.5	7.0	-0.3	-0.3
Depletion	5.5	6.1	5.4	6.1	-0.1	0.0
San Joaquin River					-	
Applied Water	6.3	6.8	5.7	6.1	-0.6	-0.7
Net Water	5.8	6.2	5.2	5.6	-0.6	-0.6
Depletion	4.7	5.1	4.4	4.7	-0.3	-0.4
Tulare Lake						
Applied Water	9.6	9.8	8.8	9.0	-0.8	-0.8
Net Water	7.9	8.1	7.3	7.5	-0.6	-0.6
Depletion	7.9	8.1	7.3	7.4	-0.6	-0.7
North Lahontan				, i i i i i i i i i i i i i i i i i i i		
Applied Water	0.5	0.6	0.5	0.6	0.0	0.0
Net Water	0.5	0.5	0.5	0.5	0.0	0.0
Depletion	0.4	0.4	0.4	0.4	0.0	0.0
South Lahontan						
Applied Water	0.3	0.3	0.3	0.3	0.0	0.0
Net Water	0.3	0.3	0.2	0.2	-0.1	-0.1
Depletion	0.3	0.3	0.2	0.2	-0.1	-0.1

Table S-14. California Agricultural Water Demand (millions of acre-feet)

(minions of acte-reet)								
II. distants Bastons	19	90	202	20	1990-202	0 Change		
Hydrologic Regions	average	drought	average	drought	average	drought		
Colorado River					3			
Applied Water	3.7	3.7	3.4	3.4	-0.3	-0.3		
Net Water	3.4	3.4	3.2	3.2	-0.2	-0.2		
Depletion	3.4	3.4	3.2	3.2	-0.2	-0.2		
Total								
Applied Water	30.9	32.8	28.9	30.4	-2.0	-2.4		
Net Water	27.0	28.4	25.1	26.3	-1.9	-2.1		
Depletion	24.4	25.8	22.9	24.2	-1.5	-1.6		

Table S-14. California Agricultural Water Demand (continued) (millions of acre-feet)

Environmental Water Demand

Estimates of environmental water demand are based on water needs of managed fresh water wetlands (and Suisun Marsh), environmental instream flow needs, Delta outflow, and wild and scenic rivers. Wetlands water needs were tabulated from investigation of existing public and private wildlife refuges and inclusion of additional wetlands water demand required by the CVP Improvement Act of 1992. Environmental instream flow needs were compiled by reviewing existing fishery agreements, water rights, and court decisions pertaining to water needs of aquatic resources of the stream. Additional flows in the Trinity River, required by the CVPIA, are also included in the environmental instream demand. Environmental water needs in drought years are considerably lower than in average years, reflecting the variability of the natural flows of rivers and lower fishery flow requirements such as in D–1485 for the Bay/Delta during drought. Table S–15 summarizes environmental water demands by hydrologic region. A more comprehensive discussion of environmental water demands is presented in Volume I, Chapter 8.

Table S-15. California Environmental Water Needs

(millions of acre-feet)

		1990		2020	1990-202	1990-2020 Change	
Hydrologic Regions	average	drought	average	drought	average	drought	
North Coast							
Applied Water	19.2	9.0	19.4	9.2	0.2	0.2	
Net Water	19.1	8.9	19.2	9.0	0.1	0.1	
Depletion	19.1	8.9	19.2	9.0	0.1	0.1	
San Francisco							
Applied Water	4.8	3.3	4.8	3.3	0.0	0.0	
Net Water	4.8	3.3	4.8	3.3	0.0	0.0	
Depletion	4.8	3.3	4.8	3.3	0.0	0.0	
Central Coast							
Applied Water	0.0	0.0	0.0	0.0	0.0	0.0	
Net Water	0.0	0.0	0.0	0.0	0.0	0.0	
Depletion	0.0	0.0	0.0	0.0	0.0	0.0	
South Coast							
Applied Water	0.0	0.0	0.0	0.0	0.0	0.0	
Net Water	0.0	0.0	0.0	0.0	0.0	0.0	
Depletion	0.0	0.0	0.0	0.0	0.0	0.0	
Sacramento River							
Applied Water	3.9	3.5	4.4	4.0	0.5	0.5	
Net Water	3.7	3.3	4.2	3.9	0.5	0.6	
Depletion	0.2	0.2	0.2	0.2	0.0	0.0	
San Joaquin River							
Applied Water	0.6	0.5	0.7	0.6	0.1	0.1	
Net Water	0.5	0.4	0.6	0.5	0.1	0.1	
Depletion	0.2	0.2	0.3	0.3	0.1	0.1	
Tulare Lake		· .					
Applied Water	0.0	0.0	0.1	0.1	0.1	0.1	
Net Water	0.0	0.0	0.1	0.1	0.1	0.1	
Depletion	0.0	0.0	0.1	0.1	0.1	0.1	
North Lahontan							
Applied Water	0.0	0.0	0.0	0.0	0.0	0.0	
Net Water	0.0	0.0	0.0	0.0	0.0	0.0	
Depletion	0.0	0.0	0.0	0.0	0.0	0.0	
South Lahontan							
Applied Water	0.1	0.1	0.1	0.1	0.0	0.0	
Net Water	0.1	0.1	0.1	0.1	0.0	0.0	
Depletion	0.1	0.1	0.1	0.1	0.0	0.0	

	(millions of acre-feet)								
		1990		2020	1990-202	0 Change			
Hydrologic Regions	average	drought	average	drought	average	drought			
Colorado River									
Applied Water	0.0	0.0	0.0	0.0	0.0	. 0.0			
Net Water	0.0	0.0	0.0	0.0	0.0	.00			
Depletion	0.0	0.0	0.0	0.0	0.0	0.0			
Total	\$								
Applied Water	28.6	16.4	29.5	17.3	0.9	0.9			
Net Water	28.2	16.1	29.0	16.9	0.8	9.0			
Depletion	24.4	12.7	24.7	13.0	0.3	0.3			

Table S-15. California Environmental Water Needs (continued)

Demand Reduction—Water Conservation

Water conservation has become an accepted method for helping reduce water demand in California. Therefore, water conservation, including urban Best Management Practices and agricultural Efficient Water Management Practices, was incorporated into water demand computations and projections of demand to 2020. More than 100 of California's major urban water agencies have agreed to BMPs. Those measures, which are detailed in Chapter 6 of Volume I, are projected to reduce urban annual applied water demand by about 1.3 MAF by 2020. The annual depletion and net water reduction from urban BMPs could amount to 935,000 AF. This amount is in addition to 400,000 AF annual net savings as the result of urban conservation measures put into place between 1980 and 1990. Agricultural water conservation, land retirement, and crop shifting would reduce agricultural annual applied water by about 1.9 MAF by 2020. As a result, annual agricultural water depletions are expected to be reduced by 330,000 AF by 2020. Although water conservation measures will reduce water demand, they alone are not sufficient to eliminate projected shortages during the next 30 years with available supplies.

Table S–16 summarizes annual applied water reductions and depletions due to conservation from 1990 to 2020 by hydrologic region. Impacts of water conservation on depletions vary greatly, depending on the opportunity for water reuse within an area. For example, Sacramento River Region water is reused extensively, thus the reduction of 265,000 AF of applied agricultural water will not result in any reduction in depletion for the region. Effective water conservation in any region is the reduction in depletion, which is defined as reduction of the ETAW, irrecoverable losses from distribution systems, and outflow to an ocean or a salt sink. Therefore, a larger water savings potential exists in the western San Joaquin Valley, Colorado River, and coastal regions, where excess applied water generally enters saline sinks (Salton Sea or the ocean) or saline ground water basins and cannot be economically reused. Outflow from water users within the Sacramento region is generally "reused" within the region and is also used to maintain water quality and flow standards in the Bay–Delta. Reductions in applied water can reduce pumping and treatment costs and diversions from streams, thus benefiting fish and wildlife. However, care must be taken to look at impacts on downstream reuse such as other farms or managed fresh water wetlands that rely on excess applied water from upstream farms.

Table S-16. Annual Applied Water and Depletion Reductions Due to Conservation from 1990 to 2020 by Hydrologic Region

i i soo to zozo by i lydrologio neg

	Ur	ban	Agric	ultural	Тс	otal
HSA	Applied Water Reductions	Reductions in Depletion	Applied Water Reductions	Reductions in Depletion	Applied Water Reductions	Reductions in Depietion
NC	65	55	0	0	65	55
SF	250	250	0	0	250	250
CC	30	30	20	0	50	30
SC	610	490	65	10	675	500
SR	110	25	265	0	375	25
SJ	60	20	40	20	155	80
TL	65	20	90	90	115	70
NL	5	0	0	0	5	0
SL	50	10	10	10	60	20
CR	40	35	200	200	240	235
Total	1,285	935	710	330	1,990	1,265

(thousands of acre-feet)

California Water Balance

The California water balance, Table S–17, compares total net water demand with supplies from 1990 through 2020. (Delta supplies assume SWRCB's D–1485 operating criteria without endangered species actions.) Average annual supplies for the 1990 level of development are generally adequate to meet average demands. However, during drought, 1990 level supplies are insufficient to meet demand, which results in a shortage of over 2.7 MAF under D–1485 operating criteria. In drought years 1991 and 1992, these shortages were reflected in urban mandatory water conservation, agricultural land fallowing and crop shifts, reduction of environmental flows, and short–term water transfers.

Projected 2020 net demand for urban, agricultural, and environmental water needs amounts to 66.4 MAF in average years and 55.7 MAF in drought years, after accounting for future reductions of 1.3 MAF in net water demand due to increased water conservation efforts (resulting from implementation of urban BMPs, and increased agricultural irrigation efficiencies) and another 0.15–MAF reduction due to future land retirement. These demand amounts could increase by 1 to 3 MAF depending on the outcome of a number of actions being taken to protect aquatic species (see Volume I, Chapter 8).

By 2020, without Level I water management programs, an annual shortage of 2.2 to 4.2 MAF could occur during average years depending on the outcome of various actions taking place to protect aquatic species. This shortage is considered chronic and indicates the need for implementing long-term water supply augmentation and management measures to improve water service reliability. Similarly, by year

Bulletin 160–93 Administrative Draft

2020, annual drought year shortages could amount to 5.8 to 7.8 MAF under D-1485 operating criteria, also indicating the need for long-term measures.

However, water shortages would vary from region to region and sector to sector. For example, the South Coast Region's population is expected to increase to over 25 million people by 2020, requiring an additional average year water supply of 1.5 MAF. Population growth and increased demand combined with a possibility of reduced supplies from the Colorado River means the South Coast Region's annual shortages for 2020 could amount to 0.4 MAF for average years and 1.0 MAF in drought years. Projected shortages would be larger if solutions to complex Delta problems are not found and proposed local water management programs and additional facilities for the SWP are not constructed.

Level I water management options could reduce ground water overdraft and projected shortages in 2020 by implementing short-term drought management options (demand reduction through urban rationing programs or water transfers that reallocate existing supplies through use of reserve supplies and agricultural land fallowing programs) and long-term demand management and supply augmentation options (increased water conservation, agricultural land retirement, additional waste water recycling, benefits of a long-term Delta solution, more conjunctive use programs, and additional south-of-the-Delta storage facilities). These factors combined leave a potential shortfall in annual supplies of about 1.6 to 3.6 MAF in average years and 2.5 to 4.5 MAF in drought years that must be made up by future water supply augmentation and demand management programs shown as Level II options. (Volume I, Chapter 11 explains these options.).

24

I

Table S-17. California Water Balance (millions of acre-feet)

Net Demand/Supply/Balance	19	90	20	2020	
	average	drought	average	drought	
Net Demand					
Urban - with 1990 level of conservation	6.7	7.1	11.4	11.9	
 reductions due to long-term conservation measures (Level I) 	-	-	-0.9	-0.9	
Agricultural – with 1990 level of conservation	27.0	28.3	25.5	26.8	
 reductions due to long-term conservation measures (Level I) 	-	_	-0.4	-0.4	
- land retirement in poor drainage areas of San Joaquin Valley (Level 1)	_	-	-0.1	-0.1	
Environmental	28.2	16.1	29.1	16.	
Other	1.8	1.7	1.8	1.	
Subtotal	63.7	53.2	66.4	55.	
Proposed Additional Environmental Water Demands ¹					
Case I – Hypothetical 1 MAF	_	_	1.0	1.0	
Case II-Hypothetical 2 MAF	_	_	2.0	2.0	
Case III – Hypothetical 3 MAF	-	_	3.0	3.0	
Total Net Demand	63.7	53.2			
Case I	-	-	67.4	56.7	
Case II	_	_	68.4	57.7	
Case III	_	-	69.4	58.7	
Water Supplies w/Existing Facilities Under D-1485 Operating Criteria for D	Jolta Expor	to			
Developed Supplies		ເອ			
Surface Water	28.0	22.2	28.4	21.7	
Ground Water	7.5	12.2	8.3	12.9	
Ground Water Overdraft	1.0	1.0		0.7	
Subtotal			0.7		
Dedicated Natural Flow	36.5 27.2	35.4 15.1	37.4	35. 3	
Total Water Supplies	63.7	50.5	27.8 65.2	50.9	
			05.2	50.3	
Demand/Supply Balance	0.0	-2.7			
Case I	-	-	-2.2	-5.8	
Case II	-	-	-3.2	-6.8	
Case III			-4.2	-7.8	
Level I Water Management Options: ²					
Long-Term Supply Augmentation					
Reclaimed	-	-	0.5	0.5	
Local	_	_	0.0	0.3	
Central Valley Project	_	_	0.0	0.0	
State Water Project	_	_	0.7	0.9	
Short-term Drought Management					
Potential Demand Management	_	1.0	_	1.0	
Drought Water Transfers	_	0.8	_	0.8	
Subtotal – Level I Water Management Options:	_	1.8	1.2	3.	
Net Ground or Surface Water Use Reduction Resulting from Level I Programs	_	-	-0.6	-0.2	
Net Total Demand Reduction/Supply Augmentation	_	1.8	0.6	3.3	
Remaining Demand/Supply Balance Requiring Future Level II Options	0.0	-0.9	0.0		
Case I	0.0	-0.9	-1.6	-2.5	
Case II	_	-			
	-	-	-2.6	-3.5	
Case III	-	-	-3.6	-4.	

¹ Proposed Environmental Water Demands-Case I-III envelope potential and uncertain demands that have immediate and future consequences on supplies available from the Delta, beginning with actions in 1992 and 1993 to protect winter-run salmon and Delta smelt (actions which could also indirectly protect other fish species).

² Protection of fish and wildlife and a long-term solution to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

Local Water Supply Issues

The following highlights local issues of concern. Each regional chapter contains more specific information on water supply issues affecting that region.

In the North Coast Region, a number of smaller communities have continuing water supply reliability problems, often related to the lack of economic base to support water management and development costs. Several small communities along the coast, such as Moonstone, Smith River, and Klamath, either experience chronic water shortages or have supplies inadequate to meet projected growth. Water use is already low due to conservation, so most of these problems will have to be solved by either constructing or upgrading community water systems.

Marin Municipal Water District in the **San Francisco Bay Region** has relied on imported supply from Sonoma County Water Agency and extensive conservation efforts by its customers to ensure adequate supplies throughout the recent drought. Without supplemental supplies, the district estimates a 40 percent deficiency once every 10 years. MMWD negotiated an agreement with SCWA to import an additional 10,000 AF. This could decrease the MMWD deficiency to about 10 percent.

Imported supplies by the City of San Francisco and East Bay Municipal Utilities District also suffered deficiencies during the recent drought. During 1991, the City of San Francisco was able to reduce expected rationing from 45 to 25 percent through purchases of 50,000 AF from the 1991 State Drought Water Bank and 20,000 from Placer County Water Agency. Customers were still required to reduce indoor use by 10 percent and outdoor use by 60 percent.

Water supplies in much of the **Central Coast Region** are greatly dependant upon the region's ground water basins whose storage is small and fluctuates from year to year. Since ground water and limited local surface supplies are its primary source of water, the region is vulnerable to droughts. As ground water extractions exceed ground water replenishment, several of the region's coastal aquifers are experiencing overdraft conditions, allowing sea water to permeate into the freshwater aquifers. The recent drought required many communities in the region to implement stringent water conservation programs. The City of Santa Barbara constructed a sea water desalination plant to improve its water service reliability.

The **South Coast Region** is home to more than one half of the State's population, 16 million people. The region's population is expected to increase to more than 25 million people by 2020. Such growth poses several critical water supply difficulties, most notably increased demand with limited ability to increase supply. Further, imports from Mono Lake and the Colorado River will be reduced and limits on Sacramento–San Joaquin Delta exports imposed by endangered species actions could further reduce water service reliability in the South Coast Region. MWDSC has several programs in progress to improve its water delivery and supply capability, including the construction of Domenigoni Valley Reservoir, and supports improved Delta transfer capabilities to improve reliability of its SWP supplies.

Sacramento Valley water users are concerned about protecting their area's ground water resources from export. Organized ground water management efforts in the **Sacramento River Region** are currently under way in Butte, Colusa, Glenn, Shasta, Tehama, and Yolo counties. Also, several foothill areas that rely heavily on ground water are finding those supplies limited. With many people relocating to these areas, concern about ground water availability and the potential for contamination is increasing. In

Bulletin 160–93 Administrative Draft

Summary of Volume II

many areas within this region, there is no readily available alternative water supply if the ground water becomes depleted or contaminated.

Flood protection is another major concern for the region, especially along the Sacramento and American rivers near Sacramento. In 1991, the U.S. Army Corps of Engineers completed a feasibility report and environmental documentation for a flood detention dam at the Auburn site in combination with levee modification along the lower American River to increase flood protection for the Sacramento area. The report, however, generated much controversy over whether Auburn Dam should be a flood detention only (dry dam) or multipurpose dam. A separate effort is now under way by the USBR and local sponsors to evaluate a multipurpose reservoir.

Foothill areas of both the **San Joaquin River** and **Tulare Lake regions** face limited water supplies. The **San Joaquin Valley**, the largest block of irrigated land in California, contains about 5.5 million acres. Major concerns for this region's agricultural community are agricultural drainage disposal and treatment costs and potential reduction of imported supplies. The CVP and SWP supplies will be reduced by the CVP Improvement Act of 1992 and by endangered species actions in the Delta.

In the North Lahontan Region years of disputes over the waters of the Truckee and Carson rivers led to the 1990 enactment of the Truckee–Carson–Pyramid Lake Water Rights Settlement Act. This federal act makes an interstate allocation of the rivers between California and Nevada, provides for the settlement of certain Native American water rights claims, and provides for water supplies for specified environmental purposes in Nevada. The act allocates to California: 23,000 AF annually in the Lake Tahoe Basin, 32,000 AF annually in the Truckee River Basin below Lake Tahoe, and water corresponding to existing water uses in the Carson River Basin. Provisions of the Settlement Act, including the interstate water allocations, will not take effect until several conditions are met, including negotiation of the Truckee River Operating Agreement required by the act.

Growth has long been a major issue in the Tahoe Basin and strict controls have been adopted by local agencies under the lead of the Tahoe Regional Planning Agency. These controls have been very effective. For example, the City of South Lake Tahoe grew by only 4 percent in the 1980s, while population of the Lassen County portion of the region increased by nearly 30 percent over the same period. A major contributor to Lassen's growth was the construction of the California Correctional Center–Susanville, which houses about 4,000 inmates and employs a staff of about 1,000. Potential ground water export from the Honey Lake Valley is a controversial issue in the North Lahontan Region. The Truckee Meadows Project is proposed to export at least 13,000 AF of ground water annually from the Nevada portion of Honey Lake Valley to the Reno area. Lassen County and the Pyramid Lake Paiute Indian Tribe oppose the project on the grounds that it would deplete the local ground water supply and harm the environment. Presently, the U.S. Bureau of Land Management is preparing an Environmental Impact Statement for a pipeline that would take the water from Honey Lake to the north Reno area. The EIS also covers the area of export and the area of import.

Water exports from the South Lahontan Region have been the subject of litigation since the early 1970s. In 1972, the County of Inyo sued the City of Los Angeles claiming that increased ground water pumping for export was harming the Owens Valley. Consequently, the City of Los Angeles and Inyo County implemented enhancement projects to mitigate the impacts of ground water pumping. In 1989,

Bulletin 160–93 Administrative Draft

the parties reached agreement on the long-term ground water management plan for Owens Valley and the EIR was accepted by the court.

Another long standing issue is the Los Angeles Department of Water and Power diversions from Mono Lake tributaries and the impact of these diversions on the lake level. As a result of extensive litigation between the City of Los Angeles and a number of environmental groups, LADWP is now prohibited by court order from diverting from the tributaries until the lake level stabilizes at 6,377 feet above sea level.

The **Colorado River Region** faces increasingly difficult issues involving water quality. In the late 1960s, 1970s, and early 1980s, the Salton Sea suffered from high water levels caused by increased agricultural runoff, treated urban waste water, and above average rainfall. In 1984, the State Water Resources Control Board, responding to a farmer's lawsuit, adopted Water Right Decision 1600, and forced Imperial Irrigation District to prepare a conservation program and take other steps to improve its delivery system. Imperial Irrigation District agreed to follow a nine–year plan designed to conserve irrigation water and lower the Salton Sea's water level by about 8 feet. The sea level has stabilized during recent years, due primarily to conservation measures taken by IID. However, salinity concentrations have increased at a rate of about 500 parts per million per year. Higher salinity has harmed fish and wildlife as well as the recreational resources in the area. Since 1987, the Salton Sea task force has been studying the sea's problems to find a way to continue its viability to support various aquatic species. The Salton Sea dilemma illustrates the complexity and opportunities for cooperative solutions of water management issues in California.

Public Involvement

California's water policies are still evolving as new statutes, court decisions, and agreements become effective. In light of this, the California legislature passed and Governor Wilson signed AB 799 in 1991 requiring the California Water Plan be updated every 5 years. This water plan update was developed with extensive public involvement including an outreach advisory committee, made up of urban, agricultural, and environmental interests. This committee was established in June 1992 to review and comment on the adequacy of work in progress. That process has been valuable in developing Bulletin 160–93 into a comprehensive water plan for water management in California.

* * *

28

NORTH COAST REGION

NORTH COAST REGION

The North Coast Hydrologic Region comprises all of the California area tributary to the ocean from the mouth of Tomales Bay north to the Oregon border and east along the border to a point near Goose Lake. It encompasses over 12 percent of the State's area, including redwood forests, inland mountain valleys, and the desert–like Modoc Plateau.

Much of the region is mountainous and rugged. Only 13 percent of the land is classified as valley or mesa, and more than half of that is in the northeastern part around the upper Klamath River basin. The dominant topographic features in the region are the California Coast Ranges and the Klamath Mountains. The eastern boundary is formed by mountains that average around 6,000 feet above sea level with a few peaks over 8,000 feet. About 400 miles of ocean shoreline form the western boundary of the region.

Average annual precipitation in the North Coast Region is 53 inches, ranging from over 100 inches in eastern Del Norte County to less than 15 inches in the Lost River drainage area of Modoc County. A relatively small fraction of the precipitation is in the form of snow. Only at elevations above 4,000 feet does snow remain on the ground for appreciable periods. The heavy rainfall concentrated over the mountains makes this region the most water abundant area of California. Mean annual runoff is about 29 MAF, which constitutes about 40 percent of the State's total natural runoff. There is also 1.86 MAF of average annual runoff flowing into the region from Oregon.

Population

Much of the North Coast Region is sparsely populated with most of the population living (nearly 60 percent) in and around Santa Rosa, within the Russian River Basin. Most of the remainder of the population is concentrated in the Eureka–Arcata–McKinleyville area around Humboldt Bay and the Crescent City area. Other sizable towns include the county seats of Yreka (Siskiyou), Weaverville (Trinity), and Ukiah (Mendocino).

Overall, the North Coast Region's population has grown from 467,890 in 1980 to 571,750 in 1990 and accounts for 1.9 percent of California's population. During the 1980s, the population in the Santa Rosa area grew by 31 percent, due primarily to spillover from the Bay Area, while essentially no growth occurred in the Modoc and Siskiyou County portions of the region. Average annual population growth rate in the northern half of the region has been relatively slow at 3 percent. One exception is Crescent City, which had a population increase of 81 percent in 1991, resulting from the annexation of the new Pelican Bay State prison. Previous growth rates in Crescent City have been 6.5 percent and 14 percent in 1989 and 1990, respectively.

Rapid growth is projected for the Santa Rosa area over the next 30 years, while only moderate expansion is expected in Humboldt County. The traditional economic bases of timber, cattle, and fishing are in

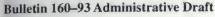
Region Characteristics

Average Annual Precipitation: 53 inches Land Area: 20,000 square miles

Average Annual Runoff: 28,886,000 AF 1990 Population: 571,750 a state of flux. Recreation, government, and retirees are becoming the major growth generating activities in the north part of the region. Table NC-1 shows regional population projections to 2020.

(thousands)								
Planning Subareas 1990 2000 2010 20								
Upper Klamath	29	34	39	43				
Lower Klamath – Smith	46	62	75	88				
Coastal	160	189	211	233				
Russian River	337	403	464	510				
Total	572	688	789	874				

 Table NC-1. Population Projections


Land Use

About 97 percent of the land area is forest or range land. Much of this land lies within national forests, State and national parks, and Indian reservations. A considerable amount of the remainder is privately owned forest land, often held in large ownerships. Only about 325,000 acres (2.6 percent) of the region's area are irrigated. Of that total, 225,900 acres lie in the Upper Klamath River Basin, above the confluence of the Scott and Klamath rivers. (See Appendix C for maps of the planning subareas and land ownership in the region.) In the Upper Klamath area, the main irrigated crops are pasture and alfalfa, grain, and potatoes. Orchards and vineyards are found in the Russian River drainage area. Pasture, alfalfa, and grain are the predominate crops in irrigated areas throughout the remainder of the region.

Besides small areas of urban and agricultural development (mainly around the Santa Rosa and Eureka areas) land is used for timber production and wildlife habitat. Land use issues in the region include activities causing soil erosion, such as road construction, gravel mining, and logging. Figure NC-1 shows land use in the North Coast Region.

Water Supply

About 94 percent of the region's 1990 level average water supply is dedicated natural runoff, primarily for wild and scenic rivers. Summer water supplies are limited throughout much of the area when rainfall and runoff is much less. The few surface water supply projects that exist on tributary streams are small and provide limited carryover capacity to deal with extended months of low rainfall. Larger water supply projects include the U.S. Bureau of Reclamation's Klamath Project, the U.S. Army Corps of Engineers' Russian River Project (Lakes Mendocino and Sonoma), and the Humboldt Bay Municipal Water District's Ruth Reservoir and Eureka to McKinleyville distribution system. The largest reservoirs in the region (the Central Valley Project's Clair Engle Lake and the Corps' Lake Sonoma) export to adjacent hydrologic regions, while Clear Lake Reservoir supplies water to the USBR Klamath Project. Table NC–2 lists major reservoirs in the region.

North Coast Region

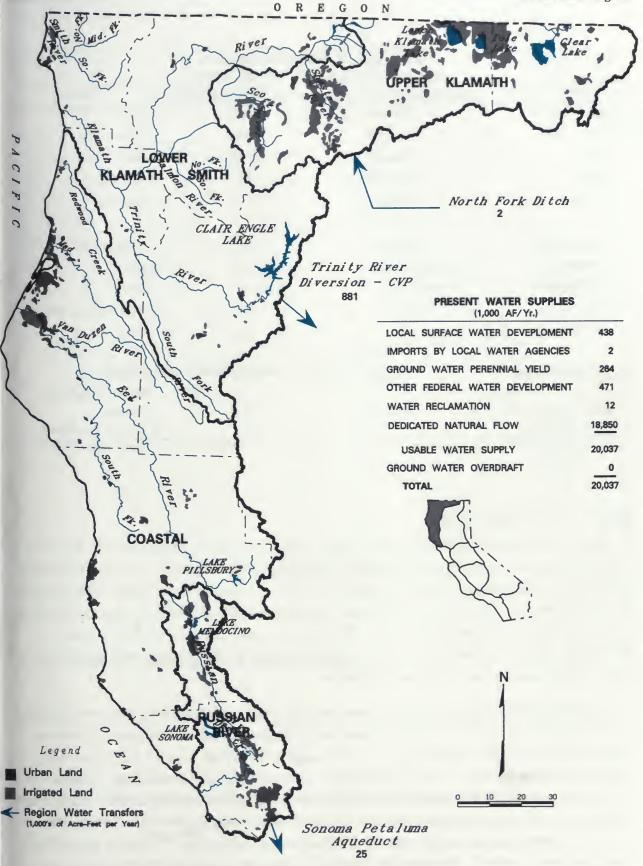
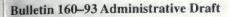


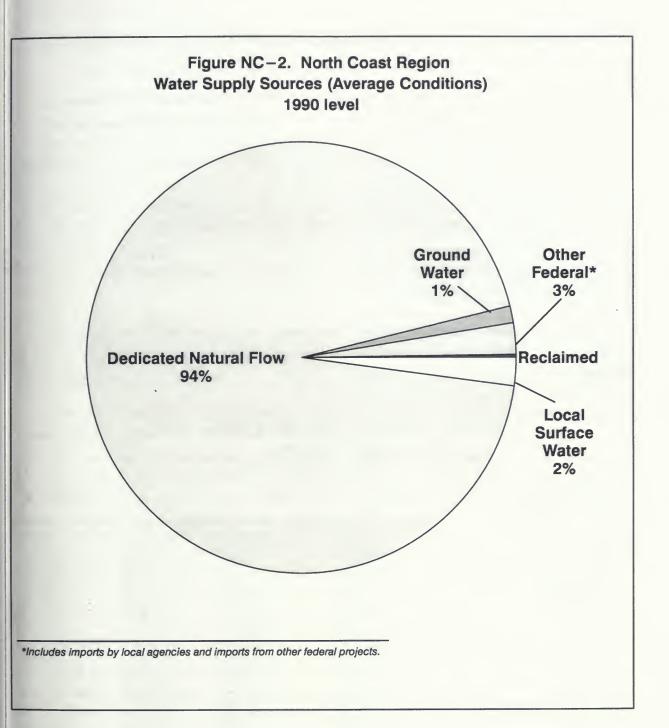
Figure NC-1. North Coast Region Land Use, Imports, Exports, and Water Supplies

Reservoir Name	River	Capacity (1,000 AF)	Owner
Upper Klamath	Klamath	873.3	USBR
Clear Lake	Klamath	526.8	USBR
Gerber	Klamath	94.3	USBR
Сорсо	Klamath	77.0	PP&L Co.
Iron Gate	Klamath	58.0	PP&L Co.
Lake Shastina	Shasta	50.0	Montague WCD
Lewiston	Trinity	14.7	USBR
Clair Engle	Trinity	2,447.7	USBR
Ruth	Mad	51.8	Humboldt Bay MWD
Lake Pillsbury	Eel	80.5	PG&E
Lake Mendocino	Russian	122.4	US Army Corps of Engineers
Warm Springs Lake Sonoma	Dry Creek	381.0	US Army Corps of Engineers

Table NC-2. Major Reservoirs


PP&L = Pacific Power and Light Company

PG&E = Pacific Gas and Electric Co.


Supply with Existing Facilities

The Klamath Project, in Klamath County, Oregon, and in Siskiyou and Modoc counties, was the first federal reclamation projects. It drained and reclaimed lakebed lands of Lower Klamath and Tule lakes and developed water supplies from the Klamath and Lost rivers to irrigate the reclaimed lands. The principal project storage facilities are Upper Klamath Lake in Oregon (873,300 AF) and Clear Lake Reservoir on the Lost River in California (527,000 AF). The project normally irrigates over 230,000 acres (100,000 of which lie in California) through a network of about 185 miles of canals with associated diversion dams, pumping plants, and drainage facilities.

The Klamath River Basin Compact addresses interstate water sharing matters in the upper Klamath River and Lost River basins. Negotiated by the states of Oregon and California, approved by their respective Legislatures, and consented to by the U.S. Congress in 1957, the compact is to (1) facilitate orderly development and use of water, and (2) further cooperation between the states in the equitable sharing of water resources. The compact is administered by the Klamath River Compact Commission, which is chaired by a federal representative appointed by the President. The commission provides a forum for communication between the various interests concerned with water resources in the upper Klamath River Basin. Its recent activities have focused on water delivery reductions caused by the drought and operating restrictions to protect two species of endangered sucker fish. Other pressing issues are water supplies for wildlife refuges and upper basin impacts on anadromous fisheries in the lower Klamath River.

North Coast Region

The Bureau of Reclamation constructed the Trinity River Division in the early 1960s to augment CVP water supplies in the Sacramento and San Joaquin valleys. The principal features of this part of the CVP are Trinity Dam and the 2.5 MAF Clair Engle Lake on the upper Trinity River and the 10.7-mile Clear Creek Tunnel beginning at Lewiston Dam and ending at Whiskeytown Lake in the Sacramento River Basin. Exports from the Trinity River began in May 1963 and, since 1980, have averaged 926,000 AF annually. There are no in-basin deliveries of water from the Trinity River Division. However, the Central Valley Improvement Act of 1992 allocated an additional 123,000 AF to instream environmental use.

The Russian River Project, constructed by the Corps of Engineers, includes Lake Mendocino (122,000 AF) formed by Coyote Dam on the East Fork of the Russian River near Ukiah and the Lake Sonoma (381,000AF) behind Warm Springs Dam on Dry Creek near Geyserville. Lake Mendocino was completed in 1958 and Lake Sonoma in 1982. Both reservoirs provide flood protection to the lower Russian River area, reservoir recreation, and water supply for urban, irrigation, and instream uses. Most of the water supply made available by the Russian River Project is contracted to the Sonoma County Water Agency. The SCWA delivers about 29,000 AF per year via aqueduct to Santa Rosa, Rohnert Park, Cotati, and Forestville. In addition, the agency exports approximately 25,000 AF per year from the North Coast's Russian River Project to the San Francisco Bay Region. This water is delivered via several aqueducts to Novato, Petaluma, the Valley of the Moon, and Sonoma areas.

The principal reaches and major tributaries of the Klamath, Eel, and Smith rivers are designated Wild and Scenic under federal and State law, and therefore are precluded from large scale water development. Figure NC-2 shows the region's 1990 level sources of supply and Table NC-3 shows water supplies with existing facilities and water management programs.

Sumplies	19	90	20	00	ຸ20	10	20	020
Supplies	average	drought	average	drought	average	drought	average	drought
Surface								
Local	438	433	451	446	470	464	483	480
Local Imports	2	2	2	2	2	2	2	2
Colorado River	0	0	0	0	0	0	0	0
CVP	0	0	0	0	0	0	0	0
Other federal	471	471	471	471	471	471	471	471
SWP	0	0	0	0	0	0	0	0
Ground water	264	283	275	296	285	308	296	317
Overdraft	0	0	0	0	0	0	0	0
Reclaimed	12	12	12	12	12	12	12	12
Dedicated natural flow	18,850	8,704	18,973	8,827	18,973	8,827	18,973	8,827
Total Supply	20,037	9,905	20,184	10,054	20,213	10,084	20,237	10,109

Table NC-3. Water Supplies with Existing Facilities and Programs (thousands of acre-feet)

Supplies with Additional Facilities

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Most of the water demand within the North Coast Region is supplied by the above projects, and many other smaller local water developments. These water suppliers range from relatively large and well organized municipal systems serving communities such as Yreka, Weaverville, Hayfork, Willits, Crescent City, and Fort Bragg to small residential or agricultural water systems (usually based on ground water) in locations like Mendocino, Garberville and Shelter Cove. Future upgrades in these systems to improve water supply reliability are planned. These projects are generally relatively small local projects. For example, Weaverville Community Services District, supplied by East Weaver Creek, is planning to construct a 5-mile pipeline to the Trinity River to meet its future needs.

The projected 30 percent increase in average urban water demand by 2020 can be provided largely by existing or upgraded water supply systems. However, there is currently no economically or environmentally feasible solution to significantly augment dry-year irrigation supplies in the North Coast Region.

Due to the absence of either large urban concentrations or extensive agriculture, and the cool and wet weather patterns, the North Coast did not experienced any large-scale water shortages during the 1987-92 drought and most of this region did not have to reduce water use significantly. Unlike most other regions, water conservation in the North Coast region does not benefit another hydrologic area where either the water supply originates in or flows to . However, water conservation can play a vital role in reducing urban demand and waste water treatment costs.

Areas irrigated with surface water will likely continue to make-do with water available from existing facilities. A few additional wells are expected to augment irrigation supplies in the Butte Valley/Tule Lake area. Pressure for additional ground water development in areas like Scott and Shasta valleys will be greater if some salmon races are listed or if strict application of Department of Fish and Game code regulations reduce the supplies available from existing water developments or natural runoff.

Present water supplies and modest expansion of local water sources will generally be adequate to meet the region's expected municipal and industrial demands over the next 30 years, and the Humboldt Bay-McKinleyville area will continue to be adequately served by Ruth Reservoir on the Mad River, with supplies possibly augmented by ground water. Humboldt Bay Municipal Water District's system may ultimately be expanded to serve the Trinidad-Moonstone area, which is experiencing deficiencies. However, the system draws water from the Mad River through Ranney collector wells that are being undercut by erosion of stream bed gravels. HBMWD is investigating the problem and hopes to solve it soon.

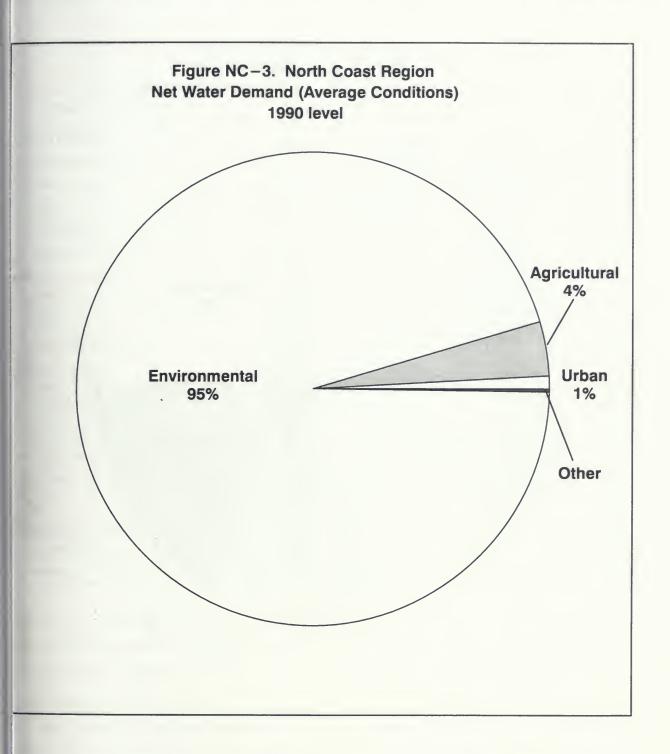
Crescent City has an adequate supply from the Smith River but needs to increase system transmission and storage capacity. It may also be facing construction of an expensive surface water treatment facility. Trinity County Waterworks District No. 1 serves the town of Hayfork from the 800–AF Ewing Reservoir and has plans for expanding its surface water system. Growth in the service area has almost reached the design capacity of the existing system, and the district plans to enlarge its offstream reservoir within the next few years. This expansion was planned at the time the project was constructed in the late 1960s. The Weaverville CSD plans to divert from the Trinity River at Douglas City to provide needed future water supplies.

Table NC-4 shows water supplies with additional facilities and water management programs.

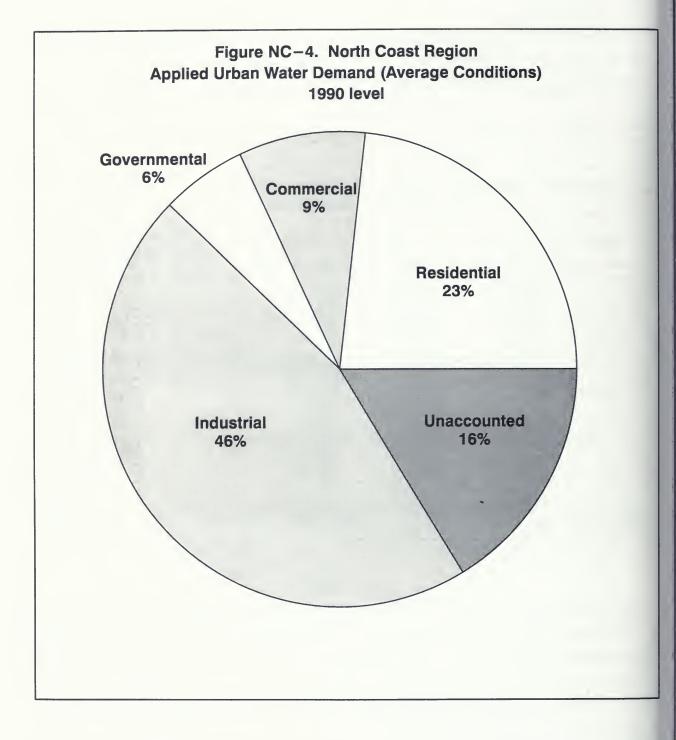
Cumpling	19	90	433 451 446 2 2 2 0 0 0 0 0 0 471 471 471 0 0 0	2010		20	20	
Supplies	average	drought	average	drought	average	drought	average	drought
Surface).		
Local	438	433	451	446	470	464	483	481
Local Imports	2	2	2	2	2	2	2	2
Colorado River	0	0	0	0	0	0	0	0
CVP	0	0	0	0	0	0	0	0
Other federal	471	471	471	471	471	471	471	471
SWP	0	0	0	0	0	0	0	0
Ground water	264	283	272	293	279	302	288	308
Overdraft	0	0	0	0	0	0	0	0
Reclaimed	12	12	15	15	18	18	21	21
Dedicated natural flow	18,850	8,704	18,973	8,827	18,973	8,827	18,973	8,827
Total	20,037	9,905	20,184	10,054	20,213	10,084	20,238	10,110


Table NC-4. Water Supplies with Level I Water Management Programs (thousands of acre-feet)

Water Use


Although the North Coast Region produces nearly half of California's surface runoff, urban and agricultural water use within the region is relatively low because it is sparsely populated and has few irrigated acres. Irrigation accounts for 746,000 AF of the region's water use, while municipal and industrial (M&I) use is 169,000 AF. These water needs are generally met by small local developments and limited ground water extractions. Because of economic and physical restrictions on development of new irrigated areas and the small estimated population growth, neither irrigation nor municipal and industrial uses are expected to increase greatly. Annual water use in the region is projected to increase only 75,000 AF by 2020.

Urban Water Use


The current total urban water use in the North Coast Region, 169,000 AF per year, represents about 2.5 percent of the State's total urban water use. Per capita use varies from around 130 gallons per day in the Humboldt Bay area to about 300 gallons per day in the warmer inland area of the Lost River Basin. Municipal use in areas directly influenced by the coastal climate is up slightly from the 1980 level, while

North Coast Region

he interior valleys remain level. Around 54,000 AF per year was used by high water using industries primarily wood and pulp processing plants in the Humboldt Bay area) in the 1990 level of development. This has at least temporarily decreased by 22,000 AF per year as a result of the recent indefinite closure if the Simpson pulp mill. This water will be retained in Humboldt Bay Municipal Water District's Ruth Reservoir for future users or to supply the Simpson pulp mill if it reopens. Because of the present uncerainty over the length of the mill closure, the area's water use is projected to remain at preclosure levels ntil the year 2000. Table NC-5 shows urban water demands for the region to 2020.

Planning Subareas	19	90	20	00	20	10	2020		
Planning Subareas	average	drought	average	drought	average	drought	average	drought	
Upper Klamath				,			5		
Applied water demand	10	10	11	11	13	13	14	14	
Net water demand	10	10	11	11	13	13	14	14	
Depletion	5	5	5	5	, 6	6	7	7	
Lower Klamath-Smith									
Applied water demand	10	11	13	14	16	17	18	19	
Net water demand	10	° 11	13	14	16	17	18	19	
Depletion	6	6	8	8	9	10	11	12	
Coastal					990	1			
Applied water demand	78	80	84	84	87	88	92	93	
Net water demand	78	80	84	84	87	88	92	93	
Depletion	71	71	75	75	77	78	80	81	
Russian River						þ		×	
Applied water demand	70	76	78	86	88	96	95	104	
Net water demand	70	76	78	86	88	96	95	104	
Depletion	28	30	31	34	35	38	38	42	
Total					-	× 6			
Applied water demand	169	176	186	196	203	214	219	230	
Net water demand	169	176	186	196	203	214	219	230	
Depletion	110	112	119	123	127	132	136	142	

Table NC-5. Urban Water Demand (thousands of acre-feet)

Volume 1, chapters 6 and 7, of this report contains a detailed explanation of the methods used in estimating regional water use. The impacts of water conservation and best management practices are also discussed in those chapters.

Agricultural Water Use

Total irrigated acreage within the North Coast Region in 1990 was 326,000 acres. The number of irrigated acres in the region is expect to remain nearly level over the next three decades. Table NC–6 summarizes irrigated land and Table NC–7 shows evapotranspiration of applied water by crop in the region. Figure NC–5 shows 1990 crop acreages, evapotranspiration, and applied water for major crops. The applied water and net demand shown in Table NC–8 were derived from irrigated acreages by applying unit water use factors determined by DWR. These unit use factors, which are unique to each detailed analysis unit (a portion of a planning subarea), reflect local conditions of climate and cultural practices. Applied water amounts vary with the source of water supply (surface or ground water and the type of water year). Drought year factors reflect the need for additional irrigation to replace water normally sup-

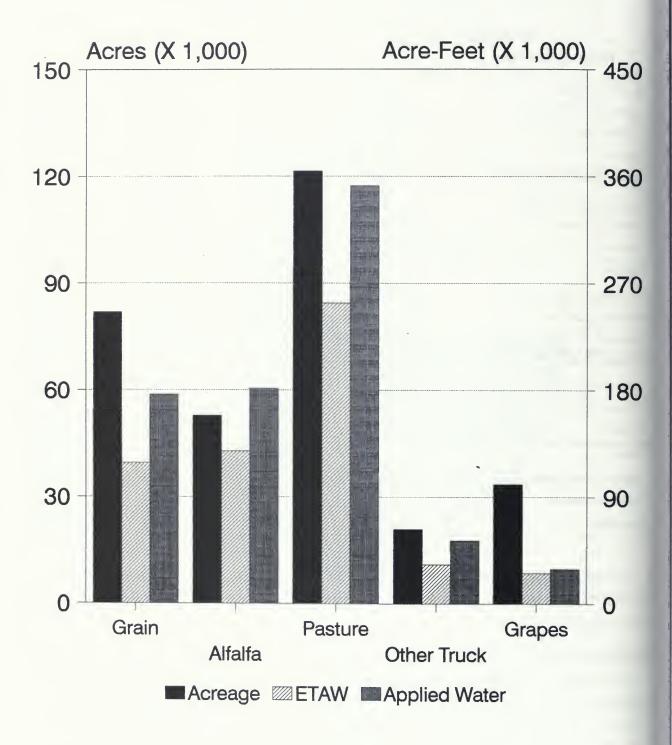


Figure NC-5. North Coast Region 1990 Acreage, ETAW, and Applied Water for Major Crops

Bulletin 160–93 Administrative Draft

plied by rainfall and to meet higher than normal evapotranspiration demands. The trend of unit water use in the region is generally stable. The values employed in the trend calculations are representative of current water use in the region and estimates of future agricultural use are based on the 1990 unit use values. Net agricultural water use is expected to increase by only one percent by 2020 in the region.

Climate, soils, water supply, and remoteness from markets limit the crops that can be grown profitably throughout most of the region. In the inland valley areas, there is more irrigable land than can be irrigated with existing supplies. During dry years, the region experiences substantial water deficiencies that are particularly noticeable in the arid inland portions of the region. The agricultural trend in the past decade has been one of land consolidation and slow growth; this reflects the low crop values, lack of additional low-priced surface water supplies, and use of only the most economically developable ground water sources.

(thousands of acres)								
1990	2000	2010	2020					
227	232	236	239					
13	13	13	13					
32	34	36	38					
54	55	55	56					
326	334	340	346					
	1990 227 13 32 54	1990 2000 227 232 13 13 32 34 54 55	227232236131313323436545555					

Table NC-6. Irrigated Crop Acreage (thousands of acres)

Table NC-7. 1990 Evapotranspiration of Applied Water by Crop

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)	Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)	
Grain	82	119	Pasture	121	253	
Sugar beets	2	4	Other deciduous	7	10	
Corn	1	2	Vineyard	36	26	
Other field	3	4	Other truck	21	33	
Alfalfa	53	128				
			Total	326	579	

Planning Subareas	19	90	20	00	20	10	2020	
	average	drought	average	drought	average	drought	average	drought
Upper Klamath					i.	1		
Applied water demand	664	729	689	757	709	778	721	791
Net water demand	585	589	587	592	596	601	602	607
Depletion	459	505	477	524	490	539	498	548
Lower Klamath-Smith				:		1		
Applied water demand	31	31	32	32	32	32	32	32
Net water demand	29	29	29	29	29	29	29	29
Depletion	22	22	22	22	22	22	22	22
Coastal	_							
Applied water demand	62	63	66	68	69	71	73	75
Net water demand	62	63	64	66	68	69	72	74
Depletion	49	49	51	53	54	55	56	58
Russian River						а 		h
Applied water demand	82	92	81	91	81	91	81	91
Net water demand	69	79	68	78	68	78	68	78
Depletion	62	71	61	70	61	70	61	70
Total								•
Applied water demand	840	916	867	947	891	971	906	989
Net water demand	745	760	748	766	761	778	771	787
Depletion	592	648	611	669	627	686	638	699

Table NC-8. Agricultural Water Demand (thousands of acre-feet)

Environmental Water Use

The principal environmental water use for the region is for environmental instream needs, Table NC-9. The region's total dedicated natural runoff is 18.9 MAF in average years and 8.7 MAF in drought years. Wetland water needs for several national wildlife refuges amount to annual net water demands of 237,000 AF, Table NC-10.

Through the California Wild and Scenic Rivers Act of 1972, Californians determined that the vast majority of water in the North Coast Region will remain in the rivers to preserve their free-flowing character and provide for environmental uses. Most of the Eel, Klamath, and Smith rivers are designated wild and scenic and their waterways cannot be modified in a manner that affects their free-flowing pristine character. The Trinity River also receives protection under the federal Wild and Scenic River system. Such protection includes prohibitions to water resource project construction that could adversely affect the value of the rivers. The Trinity River is also protection under the federal Wild and Scenic River sys-

tem, which similarly prohibits construction of facilities that adversely affect the river's free-flowing and aesthetic values.

Chroom	19	90	2000		2010		2020			
Stream	average	drought	average	drought	average	drought	average	drought		
Klamath River				1						
Applied water demand	833	833	833	833	833	833	833	833		
Net water demand	833	833	833	833	833	833	833	833		
Depletion	833	833	833	833	833	833	833	833		
Trinity River										
Applied water demand	217	217	340	340	340	340	340	340		
Net water demand	217	217	340	340	340	340	340	340		
Depletion	217	217	340	340	340	340	340	340		
Wild and Scenic		i i				<u>}</u>				
Applied water demand	17,800	7,654	17,800	7,654	17,800	7,654	17,800	7,654		
Net water demand	17,800	7,654	17,800	7,654	17,800	7,654	17,800	7,654		
Depletion	17,800	7,654	17,800	7,654	17,800	7,654	17,800	7,654		
Total						<u>.</u>				
Applied water demand	18,850	8,704	18,973	8,827	18,973	8,827	18,973	8,827		
Net water demand	18,850	8,704	18,973	8,827	18,973	8,827	18,973	8,827		
Depletion	18,850	8,704	18,973	8,827	18,973	8,827	18,973	8,827		

Table NC-9. Environmental Instream Water Needs (thousands of acre-feet)

Instream fishery needs on the Trinity River below Lewiston Dam have been under study. The study is expected to be finished in 1996 and then given to Congress for review. This study could result in even more water than the 1990 level of 340,000 AF per year being allocated to Trinity River instream flows and unavailable to the Sacramento River under the CVPIA.

Planning Subareas	19	90	2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Lower Klamath NWR								111
Applied water demand	115	115	115	115	115	115	115	115
Net water demand	77	77	77	77	77	77	77	77
Depletion	76	76	76	76	76	76	76	76
Butte Valley WA								
Applied water demand	10	10	10	10	10	10	10	10
Net water demand	10	10	10	10	10	10	10	- 10
Depletion	10	10	10	10	10	10	10	10
Clear Lake NWR		1						-
Applied water demand	42	42	42	42	42	42	42	42
Net water demand	28	28	28	28	28	28	28	28
Depletion	28	28	28	28	28	28	28	28
Tule Lake NWR				ş .	-			
Applied water demand	180	180	180	180	180	180	180	180
Net water demand	120	120	120	120	120	120	120	120
Depletion	119	119	119	119	119	119	119	119
Shasta Valley Refuge		×		<u>5</u>	•			
Applied water demand	0	0	4	4	4	4	4	4
Net water demand	0	0	2	2	2	2	2	2
Depletion	0	0	2	2	2	2	2	2
Arcata Marsh		0		e -				
Applied water demand	2	2	2	2	2	2	2	2
Net water demand	2	2	2	2	2	2	2	2
Depletion	2	2	2	2	2	2	2	2
Total				5				
Applied water demand	349	349	353	353	353	353	353	353
Net water demand	237	237	239	239	239	239	239	239
Depletion	235	235	237	237	237	237	237	237

Table NC-10. Wetlands Water Needs (thousands of acre-feet)

The principal wetland uses of water occur in the Lower Klamath, Tule Lake, and Clear Lake National Wildlife Refuges and the State's Butte Valley Wildlife Area. A major share of the wildlife water needs in Butte Valley are met by approximately 3,000 AF per year of ground water; the other refuges in the region are served from surface supplies. The prevalent crops grown in the refuges are wheat, alfalfa, barley, millet, and milo. Alkali bulrush is an important naturally occurring food source for wildlife. The predomi-

nant types of wildlife using the refuges are Canadian, snow and white fronted geese; mallard, pintail, gadwall, teal, canvas back, and redhead ducks; and pheasant. Other wildlife species such as songbirds, raptors, shorebirds, antelope, and deer also depend heavily on the refuges and agricultural land during the winter.

Environmental water use within this region will probably remain relatively unchanged to 2020. The absence of projected large-scale population growth and the abundance of water in this region leads to relatively stable long-term water use patterns. However, releases below existing dams could be modified in response to the findings of ongoing or future instream flow need studies for anadromous fisheries. Existing instream flow requirements downstream from a number of major dams are shown in Chapter 8 of Volume I.

Other Water Use

Figure NC-6 shows water recreation areas in the North Coast Region. Millions of people throughout the State and nation come to the North Coast Region for recreation. The region is an area of rugged natural beauty with some of the most renowned fishing streams in North America. It has diverse topography, including scenic ocean shoreline; a forested belt immediately inland, which includes more than half of California's redwoods; and extensive inland mountainous areas, including 10 wilderness areas, managed mainly by the U.S. Forest Service. Over 40 State parks and one national park are in the region. In addition to the natural attractions, the area contains scores of small reservoirs which are extensively used for recreation. Rafting and canoeing are popular on the rivers in the area. White water and river sports are particularly popular on the Smith, Klamath, Salmon, Trinity, Eel and Russian rivers.

During 1990, the visitation to the parks in the region was over 10.5 million visitor-days. Public recreation use of national forests and small local reservoirs is probably several times that of parks. The job base and economic value of travel and recreation has exceeded that of the lumber industry in some Northern California counties. Based on studies of recreation and economic development within California, the demand for recreation is expected to continue to grow. **Bulletin 160–93 Administrative Draft**

North Coast Region

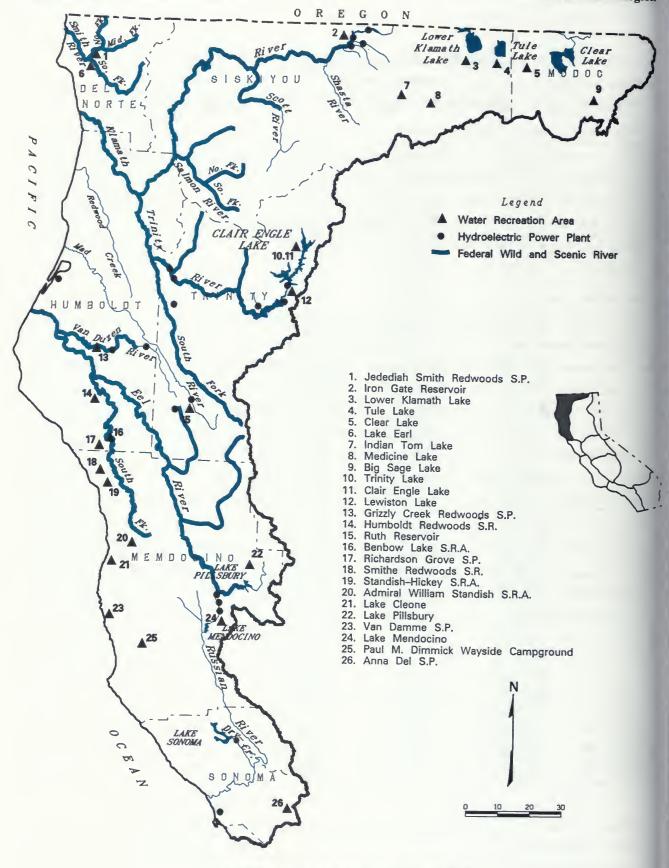


Figure NC-6. North Coast Region Water Recreation Areas

Category of Use	19	90	20	00	20	10	2020	
	average	drought	average	drought	average	drought	average	drought
Urban								
Applied water demand	169	176	186	196	203	214	219	230
Net water demand	169	176	186	196	203	214	219	230
Depletion	110	112	119	123	127	132	136	142
Agricultural	-							
Applied water demand	840	916	867	947	891	971	906	989
Net water demand	745	760	750	765	761	777	771	787.7
Depletion	592	648	611	669	627	686	638	699
Environmental								,
Applied water demand	19,199	9,053	19,326	9,180	19,326	9,180	19,326	9,180
Net water demand	19,087	8,941	19,212	9,066	19,212	9,066	19,212	9,066
Depletion	19,085	8,939	19,210	9,064	19,210	9,064	19,210	9,064
Other ¹								
Applied water demand	1	1	1	1	1	1	1	1
Net water demand	36	35	356	35	36	35	36	35
Depletion	9	9	9	9	9	9	9	9
Total								
Applied water demand	20,209	10,146	20,381	10,323	20,421	10,366	20,452	10,400
Net water demand	20,037	9,912	20,182	10,0621	20,212	10,092	20,237	10,118
Depletion	19,796	9,708	19,948	9,864	19,973	9,891	19,992	9,914

Table NC-11. Total Water Demands (thousands of acre-feet)

Includes conveyance losses, recreation uses, and energy production.

Despite the importance of recreation to its economy, the region's consumptive water use for recretion is relatively minor. Table NC-11 shows the total water demands for this region.

Issues Affecting Local Water Resource Management

Generally, the moderate to low population growth in the North Coast Region is not creating any pressing water issues that cannot be solved by local water management, planning, and system upgrading or construction. The main impediment to improving water supply reliability in communities is disagreenent between residents who favor growth and those who want to limit it through restrictions on water tookups. The principal water-related issues in the North Coast Region revolve around water quality and invironmental concerns.

An action pursuant to the Trinity River Restoration Act, having great impact on North Coast water upplies, was the 1991 decision by the Secretary of the Interior to increase instream flow releases to the Trinity River below Lewiston Dam to 340,000 AF per year instead of the 1990 level of 217,000 AF per year. The CVPIA directed the Secretary to continue releases at the 340,000 AF level through 1996. The

result of this decision is an unquantified enhancement of Trinity River fishery habitat and a decrease of Improvement Act 123,000 AF per year of water supply for the Sacramento River and Delta during drought years. The U.S. Fish and Wildlife Service is presently conducting a 12-year flow evaluation study on the Trinity, which is to be completed in 1996 and forwarded to Congress for review. The result of this study will be a recommended instream flow release schedule which could differ substantially from the present schedule. The potential exists for further reductions in federal CVP yield in exchange for betterment of fishery habitat.

Drinking Water Standards. A primary issue affecting water managers in this region is complying with new EPA-mandated drinking water standards. Compliance could require filtration for most communities and would be very expensive to implement.

Trinity River Sediment Control. The construction of Buckhorn Mountain Dam in 1990, in combination with sediment pool construction at the mouth of Grass Valley Creek to collect decomposed granite sand, has made high periodic flow releases from Trinity Dam less necessary. This 70–foot–high dam will keep a large portion of the creeks sand sediment from flowing into the Trinity River where it damages spawning and rearing areas. The portion of sediment that flows in below the dam is largely controlled by sediment ponds at the mouth of the creek. In addition, a proposal to purchase the creek's watershed and place it in public ownership for prevention of future soil disturbance is being investigated by the Trinity River Task Force.

Instream Flow Issues. At several locations throughout the region, there is conflict between water supplies for in-basin needs and fishery requirements. Examples include the Klamath River below Iron Gate Dam, the Shasta and Scott rivers below irrigation diversions, the upper Eel River below Lake Pillsbury, and the reaches of the Russian River below Lakes Mendocino and Sonoma. For most of the North Coast Region, few major changes in the water supply capabilities of existing facilities are expected over the next 30 years. However, some significant possibilities, primarily related to increased instream flows below existing reservoirs, could change water supply allocations. Presently, however, there is no reliable means of quantifying the effects of potential demands for increased instream flows in the Klamath, Trinity, upper Eel, or lower Russian rivers. The effect of the State and federal Endangered Species acts as additional species are listed cannot be estimated with any certainty.

Identifying the Primary Causes of Fishery Declines. Fish populations have declined precipitously on all north coast streams since the 1960s. Many people tend to identify dams as the main cause of these fishery declines, yet undammed streams such as the Smith, Van Duzen, and Mattole rivers have also suffered steep reductions in salmon populations. There are many factors contributing to fishery declines, such as prolonged drought, commercial ocean fishing and logging disturbances blocking tributary streams.

Endangered Species. Two species of sucker fish found in the Klamath Project area have been listed as endangered under the federal and State Endangered Species Acts. In response, the U.S. Fish and Wild-life Service imposed restrictions on project operations that reduced dry period water supply capabilities. As a result, roughly 7,000 acres of normally irrigated land in California was taken out of production in

48

North Coast Region

992. This modified operation of the Klamath Project, to accommodate the needs of the listed suckers, uso reduced flows below Iron Gate Dam that are critical to salmon and steelhead survival in the middle and lower Klamath. The conflicting needs between listed species must be addressed.

Pelican Bay State Prison. Opened in December 1989, Pelican Bay State Prison houses 4,000 innates. An independent water supply line serves the prison from Crescent City's Ranney collectors on the Smith River. The prison currently uses about 672 AF annually, and waste water from the prison facilities s treated on-site. A Del Norte County advisory measure allowing the Department of Corrections to vuild a second prison was passed by the voters and construction is likely to proceed. It appears that the ncreased water demand can be met through increased use of Smith River supplies.

Humboldt Bay Municipal Water District. This district supplies an average of 62,000 AF per year in he Humboldt Bay area, including Eureka, Arcata, McKinleyville, and several pulp and lumber mills. The district's supply from Ruth Reservoir on the Mad River is allocated through existing contracts. About 4,480 AF per year of additional supply is available to meet future demands or alleviate drought conditions. HBMWD considered enlarging Ruth Reservoir, but this does not appear to be engineeringly easible and recent changes in health regulations would require expensive additional treatment of water rom that source. Complying with the surface water treatment rules established in the 1986 amendment o the Safe Drinking Water Act presents a difficult, potentially costly, challenge for the Eureka area. Furher, water from HBMWD's Ranney collectors in the Mad River has been designated as ground water nder the influence of surface water and must be filtered. A regional filtration plant is estimated to cost 16 million. Thus, HBMWD is considering the feasibility of developing ground water to replace a porion of the Mad River supply for residential and commercial use only. About 50,400 AF of the district's 2,720 AF average annual water use (80 percent) was normally supplied to the Eureka pulp mills for in-ustrial purposes. This water does not require treatment. Since closure of the Simpson pulp mill, the istrict will deliver only about 28,000 AF per year to this industry.

Russian River Instream Flow Decision and Supply Allocations. With water available from Lake onoma (Warm Springs Dam), and State Water Resources Control Board Decision 1610 defining intream flow requirements and operating criteria, most major water supply reliability questions in the Rusian River Basin have been resolved to beyond 2010. However, there is growing concern over the extent f sedimentation in Lake Pillsbury and Lake Mendocino and the resulting reductions in dry-year caryover water supplies. Additionally, Mendocino County is concerned that Decision 1610 will prevent the ounty from obtaining additional water from the Russian River. Through the Eel–Russian River Comnission, the two counties are exploring possibilities for maintaining or augmenting available water suplies, including construction of additional storage on the upper Eel River and conjunctive use of ground vater with existing surface supplies.

Water Supply Reliability Problems in Small Communities. A number of smaller communities nroughout the region have continuing supply problems, often related to the lack of economic base to upport water supply management and development costs. For example, the areas north and south of the own of Trinidad in Humboldt County depend on small springs and shallow wells which provide an inadequate supply during late summer and fall. They have attempted to hook up to Trinidad's system, supplied from Luffenholtz Creek, but has been unsuccessful due to local fears of over taxing this small system. The City of Willits has had chronic problems with turbidity, taste, and odor in its Morris Reservoir and high arsenic, iron, and manganese levels in its well supply. These problems have been largely solved by the construction of Centennial Dam and associated treatment facilities.

The City of Fort Bragg has shortage problems with its individual wells and has hired a consultant to investigate alternative solutions. A possible solution is an offstream storage project. Many north coast wells located on low terraces near the ocean are vulnerable to sea water intrusion if over pumped. For example, the well serving the relocated town of Klamath has recently begun pumping sea water. Several small communities along the coast, such as Moonstone, Smith River, and Hiouchi, either experience chronic water shortages or have inadequate supplies to meet projected growth in the future. Water use is already very low due to extensive conservation, so most of these problems will likely need to be solved by constructing or upgrading community water systems. Factors hindering development of community systems are low population base contributing to lack of funding and community disagreements on the desirability of growth.

Lakes Earl and Talawa. To increase wildlife habitat, these linked lakes north of Crescent City are being allowed to reach higher levels than historically permitted. Local fears, that these actions would interfere with operation of surrounding septic systems, have subsided after a year of higher lake levels without significant problems. The lake levels are kept higher by breaching an ocean-formed sand bar at the common outlet at a higher level. Agreement among agencies on the maximum allowable levels has not been reached yet, and studies continue. Higher late summer levels in these lakes could increase water availability to surrounding shallow wells.

Water Balance

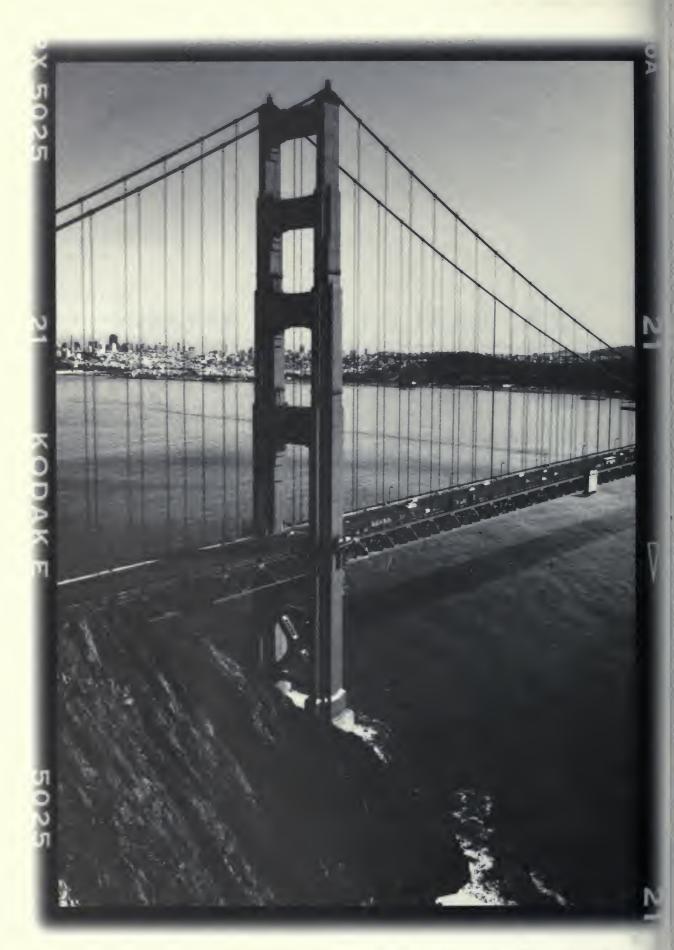
Water balances were computed for each Planning Subarea in the North Coast Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the over-all level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table NC-12 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 20.0 and 9.9 MAF for average and drought years respectively. Those demands are projected to increase to 20.2 and 10.1 MAF, respec-

tively, by the year 2020, after accounting for a 55,000 AF reduction in urban water demand resulting from additional long-term water conservation measures. Urban net water demand is projected to increase by about 50,000 AF by 2020, primarily due to expected increases in population; while, agricultural net water demand is projected to increase by about 26,000 AF, primarily due to an expected increase in vine-yards in the region. Environmental net water demands are increasing by 125,000 AF due to implementation of the Central Valley Improvement Act, which increases Trinity River flows for fisheries by about 123,000 AF.

Average annual supplies are generally adequate to meet average net water demands in this region out to the year 2020. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual drought year shortages are expected to continue to be nearly 10,000 AF.


The only Level I water management program planned for this region is in the Russian River planning subarea. That program is 9,000 AF of water recycling, which will reduce ground water pumping for this PSA by a similar amount. The remaining shortage of 9,000 AF is in the Upper Klamath PSA, which requires both additional short-term drought management and future Level II options depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region.

Demand/Supply	19	1990			
Demand/Supply	average	drought	average	dr	
Net Demand				A CON	
Urban-with 1990 level of conservation	169	176	274		
-reductions due to long-term conservation measures (Level I)			-55		
Agricultural	745	760	771		
-reductions due to long-term conservation measures (Level I)			0		
Environmental	19,087	8,941	19,212	Ĺ	
Other (1)	36	35	36		
Total Net Demand	20,037	9,912	20,237	1	
Water Supplies w/Existing Facilities					
Developed Supplies					
Surface Water	923	918	968		
Ground Water	264	283	296		
Ground Water Overdraft	0	0	0		
Subtotal	1,187	1,201	1,264		
Dedicated Natural Flow	18,850	8,704	18,973		
Total Water Supplies	20,037	9,905	20,237	້ 1	
Demand/Supply Balance	0	-7	0	-	
Future Water Management Options Level I				N.	
Long-term Supply Augmentation	~				
Reclaimed			9		
Local			0		
Central Valley Project			0		
State Water Project			0		
Subtotal – Water Management Options Level I			9		
Ground Water/Surface Water Use Reduction Resulting from Level I Programs			-9		
Remaining Demand/Supply Balance Requiring Short Term Drought Manage and/or Future Level II Options	ment		0		
(1) Includes conveyance losses, recreation uses and energy production.					

Table NC-12. Water Balance (thousands of acre-feet)

* * *

SAN FRANCISCO BAY REGION

Looking through the Golden Gate Bridge at San Francisco.

SAN FRANCISCO BAY REGION

The San Francisco Bay Region extends from Pescadero Creek in southern San Mateo County to the mouth of Tomales Bay in the north and inland to the confluence of the Sacramento and San Joaquin rivers near Collinsville. The total land area of the region is about 3 percent of the State's area. For much of the following discussion, the region is divided into the North Bay and South Bay planning subareas, which are divided by the bay waterways. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The highest peaks of the Coast Range, which make up much of the eastern boundary, are over 3,000 feet. Other prominent geographic features include San Francisco, San Pablo, and Suisun bays, and the San Francisco and Marin peninsulas. The region also includes many small creeks which flow to the Pacific Ocean or into the bays.

The climate is generally cool and often foggy along the coast, with warmer Mediterranean-like weather in the inland valleys. The average high temperature is nearly 10 degrees higher inland than at San Francisco, resulting in higher outdoor water use in the inland areas. The gap in the hills at Carquinez Strait allows cool air to flow at times from the Pacific Ocean to the Sacramento Valley. Most of the interior North Bay and the northern parts of the South Bay also are influenced by this marine effect. The southern interior portions of the South Bay, by contrast, experience very little air movement, and therefore, have more moderate weather. Average precipitation ranges from 14 inches at Livermore, in the South Bay, to almost 48 inches at Kentfield in Marin County in the North Bay.

Population

The region is highly urbanized and includes the San Francisco, Oakland, and San Jose metropolitan areas. There are large undeveloped areas in the western, northern and southern parts of the region. In 1990, 18 percent of the State's total population lived in the region and almost 88 percent, or 4.8 million, of those residents lived in the South Bay. During the1980s, the region's population grew by approximately 695,000; the North Bay grew by about 20 percent and the South Bay grew by 14 percent.

In the North Bay planning subarea, the inland cities of Fairfield, Vallejo, Benicia, and Suisun City grew by 33, 36, 59, and 105 percent, respectively, from 1980 to 1990. These cities alone accounted for an increase of almost 70,000 people during the decade. Over the same period, most of the cities in Marin County grew very slowly. San Rafael, the county's largest city, grew at a modest 8 percent, while Fairfax actually declined in population. Further north and east, Petaluma and Napa grew by 28 and 22 percent, respectively.

The most rapid growth in the South Bay also took place in the eastern part of that area. A number of cities had growth rates greater than 40 percent during the 1980s, including Dublin, Martinez, Pittsburg,

2	painn	Charact	eristics
r	egion	Characi	erwics

Average Annual Precipitation: 31 inches Land Area: 4,100 square miles

Average Annual Runoff: 1,245,500 AF Population: 5,484,000 Pleasanton, and San Ramon. Hercules, in the northern part of the PSA, grew by 282 percent. Growth during the 1980s was most significant in the larger urban centers: Oakland (32,905), Fremont (41,394), San Francisco (44,985), and San Jose (152,666). Table SF–1 shows regional population projections.

		(thousands)		
Planning Subareas	1990	2000	2010	2020
North Bay	680	817	889	941
South Bay	4,804	5,398	5,722	6,003
Total	5,484	6,215	6,611	6,944

Table	SF-1.	Population	Projections
		(thousands)	

Land Use

Land use in the region is truly diverse. The San Francisco Bay Region is home to the world famous Napa Valley and Sonoma County wine industry; international business and tourism in San Francisco; the leading technological development and production center of Silicon Valley; as well as urban, suburban, and rural living. Urban land accounts for 23 percent (655,600 acres) of the land area. Irrigated agricultural land in 1990 was 61,400 acres. Projected land use reflects an increase in urban areas to 870,900 acres, or 37 percent of the region's land area, by 2020. Point Reyes National Recreation Area, as well as other federal and State parks and reservoirs, make up a small portion of the total region.

While a relatively large portion of the land area is urbanized, a wide variety of crops also are grown in the region. Agricultural land use is strongly influenced by the climatic and urban growth factors mentioned above. In almost every area of the region, urban development is encroaching on agricultural lands.

Within the North Bay, vineyards account for over three–fourths of the irrigated acres in Sonoma and Napa counties. There are 4,200 acres of pasture and about 3,900 acres of deciduous trees (primarily walnuts, prunes, and pears in Solano County) in the North Bay. The coastal area of the South Bay supports rangeland, flowers, and a number of high–value specialty vegetables, such as artichokes. Vegetables, flowers, vineyards, and many suburban ranchettes with irrigated pasture are found in the Santa Clara Valley. Alfalfa, truck crops, and wine grapes are grown in the Livermore Valley. Figure SF–1 shows land use, imports, exports, and water supplies in the San Francisco Bay Region.

Water Supply

Water supply sources include local surface water, imported surface water (both locally developed and purchased from other local agencies), ground water, CVP water, other federal project water (Solano Project), SWP water, and a small amount of reclaimed waste water. About 66 percent of the urban supplies are imported to the region. Figure SF–2 shows the region's 1990 level sources of supply.

54

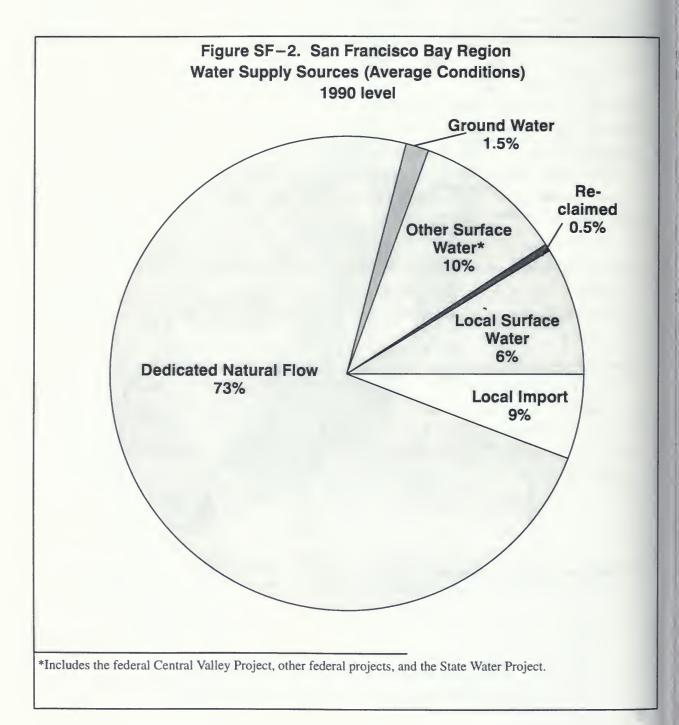



Figure SF-1. San Francisco Bay Region Land Use, Imports, Exports, and Water Supplies

Supply with Existing Facilities

Ground water is found in both the alluvial basins and upland hard rock areas. Well yields in the alluvial basins range from less than 100 to over 3,000 gallons per minute. The yield from wells in the hard rock areas is generally much lower, but are usually sufficient for most domestic or livestock purposes. Recharge to the alluvial basins occurs primarily from rainfall and seepage from adjacent streams. However, a significant percentage, especially in the South Bay, is through artificial recharge facilities and incidental recharge from irrigation.

For 1990, drought supplies (including dedicated natural flow) were 28 percent less than normal. Supply reductions occurred in local surface and imported supplies. Ground water use increased primarily because users and suppliers often rely more heavily on aquifers in dry years.

The major reservoirs in the region are listed in Table SF–2. Table SF–3 shows water supplies with existing facilities and programs.

Reservoir Name	River	Capacity (1,000 AF)	Owner		
Lake Hennessey	Conn Creek	31.0	City of Napa		
Nicasio	Nicasio Creek	22.4	Marin MWD		
Kent	Lagunitas Creek	32.9	Marin MWD		
Alpine	Lagunitas Creek	8.9	Marin MWD		
Soulajule	Lagunitas Creek	10.6	Marin MWD		
San Pablo	San Pablo Creek	38.6	East Bay MUD		
New Upper San Leandro	San Leandro Creek	41.4	East Bay MUD		
Chabot	San Leandro Creek	10.4	East Bay MUD		
Briones	Bear Creek	60.5	East Bay MUD		
Del Valle	Arroyo Del Valle	77.1	DWR		
San Antonio	San Antonio Creek	50.5	City of San Francisco		
Coyote	Coyote Creek	22.3	Santa Clara Valley WD		
Leroy Anderson	Coyote Creek	89.1	Santa Clara Valley WD		
Lexington	Los Gatos Creek	19.8	Santa Clara Valley WD		
Austrian	Los Gatos Creek	6.2	San Jose Water Works		
Calaveras	Calaveras Creek	96.9	City of San Francisco		
San Andreas	San Andreas Creek	19.0	City of San Francisco		
Crystal Springs	San Mateo Creek	58.4	City of San Francisco		

Table SF-2. Major Reservoirs

Querrate	19	90	20	00	2010		2020	
Supply	average	drought	average	drought	average	drought	average	drought
Surface				-				
Local	364	253	364	253	364	253	364	253
Local Imports	551	512	575	512	594	514	601	516
Colorado River	0	0	0	0	0	0	0	0
CVP (1)	363	336	456	314	479	306	477	298
Other federal	43	40	42	40	42	40	42	40
SWP	238	173	300	178	300	170	300	169
Ground water	97	133	103	166	152	171	162	165
Overdraft	0	0	0	0	0	0	0	0
Reclaimed	32	32	32	32	32	32	32	32
Dedicated natural flow	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
Total Supply	6,303	4,564	6,487	4,580	6,578	4,571	6,593	4,558

Table SF-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

(1) CVP supplies include Delta outflow carriage water released from storage. The 1990 level CVP carriage water is estimated to be 183,000 AF for average years and 176,000 AF for drought years.

(2) SWP supplies include Delta outflow carriage water released from storage. The 1990 level SWP carriage water is estimated to be 61,000 AF for average years and 58,000 AF for drought years.

North Bay. At the 1990 level, the average year <u>local surface water supply</u> for the North Bay is 75,000 AF. An additional 150,000 AF of local surface water is used to meet Suisun Marsh wetlands requirements. Recent experiences indicate that local supplies drop by about 22 percent during drought conditions to about 58,000 AF.

Marin Municipal Water District serves the most populated, southeastern portion of Marin County. Local supply is obtained from its reservoirs in Marin County which can store up to 79,200 AF and supply of about 30,000 AF annually.

North Marin Water District supplements its imported Sonoma County Water Agency supply with just over 1,000 AF from Stafford Lake. The City of Napa produces local surface supply from Lake Hennessey and Lake Milliken, and St. Helena receives water from Bell Canyon Reservoir. The City of Vallejo gets water from Lake Curry in Napa County. Vineyards along the Napa River annually divert approximately 6,000 AF from the River for irrigation and frost protection. Since no major local supply projects are anticipated, the local surface supplies are projected to remain constant through 2020.

Imports by Local Agencies. In the North Bay, water is imported from the Russian and Eel rivers (North Coast Region) by Sonoma County Water Agency and from the Delta by the City of Vallejo through the SWP. SCWA delivers water from the Russian River Project, which includes Lake Mendocino and Lake Sonoma, and the Potter Valley Project, which is operated by PG&E for hydropower production to eight principal contractors, including four in the San Francisco Bay Region (Petaluma, Sonoma, Valley of the Moon, and North Marin water districts).

MMWD recently negotiated with SCWA to add 10,000 AF to its annual deliveries. The delivery initially would be on an "as available" basis until a water right is recognized by the State Water

Resources Control Board. MMWD customers recently approved financing to provide the necessary project facilities. The North Bay's 1990 average imported supply by SCWA and Vallejo is 39,000 AF.

<u>Ground water.</u> The North Bay 1990 level average supply of ground water is about 26,000 AF. The increase in ground water supply during drought years reflects a greater dependence on ground water during periods of surface water deficiencies. Future ground water supply is projected to remain fairly constant.

The important alluvial basins in the North Bay PSA include Suisun–Fairfield Valley, Napa Valley–Sonoma Valley, Petaluma Valley, and Novato Valley. Ground water levels indicate the basins are probably not in overdraft. Estimated ground water storage in the basins is 1.7 MAF. Salt water intrusion has been a problem in the bayside portions of the Sonoma and Napa valleys, but this has been substantially mitigated by using imported surface water instead of ground water. The ground water quality in the North Bay is generally good. Some isolated areas experience elevated levels of dissolved solids, iron, boron, hardness, and chloride. High levels of nitrates occur in the Napa and Petaluma valleys as a result of past agricultural practices.

Other Federal Projects. Solano County Water Agency contracts for water from Lake Berryessa via the Solano Project and delivers it to farmers and cities within the county. The project was built by the U.S. Bureau of Reclamation and began operation in 1959. The project supply is 201,000 AF annually and the majority of its entitlement water goes to agriculture in the Sacramento River Region. The 1990 level average project supply for the North Bay is 43,000 AF. The drought year supply shows a 15 percent deficiency, which was imposed by the USBR in 1991. Since use under SCWA's contract is approaching the project's yield, supplies are projected to increase only slightly through 2020.

State Water Project. The SWP delivers water through the North Bay Aqueduct to the Solano County Water Agency and Napa County Flood Control and Water Conservation District. The Aqueduct extends over 27 miles from Barker Slough to the Napa Turnout Reservoir in southern Napa County. Maximum SWP entitlements are for 67,000 AF annually. The Aqueduct also conveys water for the City of Vallejo, which purchased capacity in the NBA.

<u>Waste Water Reclamation</u>. About 500 AF of reclaimed waste water is used, primarily for landscape irrigation in Marin County. Water is also reclaimed by NMWD and Petaluma in the Sonoma County Water Agency service area. The total 1990 average and drought waste water reclamation supply in the North Bay is 3,000 AF.

South Bay. The 1990 average <u>local surface supply</u> for the South Bay is 139,000 AF. The drought year shortage is significantly affected by a 67 percent reduction in local surface supplies. Future supplies from existing facilities would remain relatively constant through 2020.

Imports by Local Agencies. SFWD imports Tuolumne River water via the 150-mile-long Hetch Hetchy System. In addition to supplying water to the City and County of San Francisco, SFWD sells water wholesale to 30 water districts, cities, and local agencies in Alameda, Santa Clara, and San Mateo counties. SFWD now has three pipelines capable of delivering 336,000 AF annually to the Bay Area.

EBMUD imports water from the Mokelumne River through its aqueducts and delivers water in much of Alameda and Contra Costa counties. The district supplies water to approximately 1.1 million people in 20 cities and 15 unincorporated communities. EBMUD has water rights and facilities to divert up to 364,000 AF annually from the Mokelumne River, depending on streamflow and water use by other water right holders.

<u>Ground water</u>. The major ground water basins of the South Bay PSA include Santa Clara Valley, Livermore Valley, and the Pittsburg Plain. The total ground water storage in the South Bay basins is estimated to be 6.5 MAF.

Artificial recharge programs are in place in several South Bay localities. ACFC&WCD, Zone 7, uses several abandoned gravelpits to recharge ground water in the Livermore Valley. Alameda County Water District uses a series of artificial barriers and abandoned gravel pits to retard runoff and increase percolation in and along Alameda Creek. SCVWD uses a similar system to recharge ground water along Coyote and Los Gatos creeks in Santa Clara Valley.

The SCVWD has supplemented the yield of its ground water aquifers by developing an extensive conjunctive use program. Water supplies recharge ponds are located along major creeks in the Santa Clara Valley. SCVWD monitors ground water pumping by requiring most agricultural and municipal and industrial users to be metered. Ground water users pay for recharged surface water through a basic user fee. Decisions on ground water pumping are made by all ground water users, generally in a spirit of cooperation.

These programs have resulted in a general rise to near historic highs in ground water levels in many of the basins. Recharge and surface water substitution in the Pittsburg Plain was successful in restoring ground water basins which were overdrafted in the past. These efforts mitigated or eliminated low ground water level problems, such as salt water intrusion in the Pittsburg Plain and portions of northern Santa Clara Valley. Land subsidence in northern Santa Clara Valley has also been greatly reduced. Alameda County Water District has begun an Aquifer Reclamation Program to mitigate salt water intrusion into the ground water basin near San Francisco Bay. The program includes pumping and disposing of saline water using a series of wells and creating a salinity intrusion barrier using 15 wells in the upper aquifer. The district anticipates that the basins annual perennial yield will be increased 3,500 AF at the completion of the Aquifer Reclamation Program.

Ground water quality is still a problem to various degrees in many South Bay locations. The Livermore Valley has elevated levels of dissolved solids, chloride, boron, and hardness. The highly urbanized areas of the Santa Clara Valley have experienced ground water pollution over large areas from organic solvents used in electronics manufacturing. As a result, a small number of municipal wells have been forced out of production.

<u>Central Valley Project.</u> CVP water is delivered through the Contra Costa Canal to Contra Costa Water District and through the San Felipe Project to SCVWD. CCWD delivers water throughout eastern Contra Costa County, including a portion of the district in the San Joaquin River Region. CVP water was first delivered by CCWD in 1940. The current contract with USBR is for a supply of 195,000 AF

60

per year. The district also has a right to divert almost 27,000 AF from Mallard Slough on Suisun Bay. Most of CCWD's demands are met through direct diversions from the Delta through the Contra Costa Canal. CCWD has very little regulatory or emergency water supply storage to replace Delta supplies when water quality is poor. As a result, CCWD service area voters authorized funding for Los Vaqueros Reservoir in 1988. The proposed reservoir will improve supply reliability and water quality by allowing he district to pump and store water from the Delta during high flows.

SCVWD's maximum entitlement from the CVP's San Felipe Division, which became operational in 1987, is 152,500 AF. Average 1990 deliveries to the region are about 93,200 AF. By 1989, much sooner than anticipated, the district was requesting, but did not receive, its full entitlement to reduce impacts of the 1987–92 drought. Normally, about two-thirds of the CVP water is used for recharge; the rest is used as direct supply.

State Water Project. The South Bay Aqueduct conveys SWP water to SCVWD, ACFC&WCD Zone 7, and ACWD. The aqueduct is over 42 miles long beginning at SWP's South Bay pumping plant on Bethany Reservoir and ending at the Santa Clara Terminal Facilities. SWP water is used in South Bay PSA for municipal and industrial supply, agricultural deliveries, and ground water recharge.

<u>Waste Water Reclamation</u>. There are several waste water reclamation projects in the South Bay PSA which provide 29,000 AF to various uses such as environmental, industrial, landscape, and construction.

Supplies with Additional Facilities and Water Management Programs

With increasing populations and the resulting increased water demand, Bay Area water agencies are looking at a number of options to increase supplies as well as ensure the reliability of their existing water sources. Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Supplies in the North Bay are available during average years with additional Level I options facilities to meet the water use through 2020. For drought years, shortages range from 30,000 AF in 1990 to 74,000 AF in 2020 with existing facilities. With additional facilities, drought year shortages are about 53,000 AF in 2020. Some areas that may have difficulty meeting water demand include MMWD, the Solano Project service area, and SWP contractor service areas. MMWD has the ability to use unused conveyance space in SCWA and NMWD aqueducts, thus improving the water district's water supply reliability through water transfer.

With existing facilities, the South Bay's supplies will meet projected demands through 2020 during average years. During drought years, with existing facilities, shortages will increase from 280,000 AF in

1990 to 404,000 AF in 2020. With additional facilities, the South Bay will be able to meet average year demands to 2020 and drought year supply shortages could be about 290,000 AF. Each of the six major water agencies in the South Bay is served by at least one of the import water systems connected to the Delta. These connections allow the transfer of water from agencies upstream of the Delta assuming a water management program to address key Delta issues has been implemented. Table SF-4 shows regional water supplies with additional (Level I) water management programs.

	(11	lousanus	s of acres	-ieel)				
Cumphy	19	90	20	000	20	10	20	020
Supply	average	drought	average	drought	average	drought	average	drought
Surface								
Local	364	253	364	253	364	253	364	253
Local Imports	551	512	581	555	594	557	601	557
Colorado River	0	0	0	0	0	0	0	0
CVP (1)	363	336	456	314	479	306	477	298
Other federal	43	40	42	40	40	40	42	40
SWP (2)	238	173	299	212	332	247	330	247
Ground water	97	133	97	157	97	150	112	143
Overdraft	0	0	0	0	0	0	0	0
Reclaimed	32	32	43	43	53	53	70	70
Dedicated natural flow	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
Total	6,303	4,564	6,497	4,659	6,574	4,691	6,611	4,693

Table SF-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

(1) CVP supplies include Delta outflow carriage water released from storage. The 1990 level CVP carriage water is estimated to be 183,000 AF for average years and 176,000 AF for drought years.

(2) SWP supplies include Delta outflow carriage water released from storage. The 1990 level SWP carriage water is estimated to be 61,000 AF for average years and 58,000 AF for drought years.

Water Supply Reliability and Drought Management Strategies. The San Francisco Bay Region weathered both the 1976–77 and 1987–92 droughts with moderate but only temporary impacts. These experiences verify that the region's flexibility to efficiently move water is a valuable asset in drought years. Three major factors contribute to their flexibility and the region's successful drought strategies: (1) effective water conservation and rationing programs, (2) available interconnections between water providers, and (3) diversity of water sources. While the region's dependency on imported supplies are enough in drought years, water sources are geographically diverse and emergency supplies and water transfers can help alleviate drought impacts. The following paragraphs describe some recent drought management actions taken in the region.

During the 1976–77 drought, MMWD received supplemental water through an elaborate sequence of interconnections. The transfer involved delivery of SWP water made available by agencies in Southern

California, which took more water from the Colorado River. Water was conveyed through the South Bay Aqueduct and then by exchange and interconnected through the water systems of the SFWD, City of Hayward, and EBMUD, to a temporary pipeline across the Richmond–San Rafael Bridge. MMWD customers also achieved a 39 percent reduction in water use during the voluntary reduction period argeted at 25 percent in the recent drought.

Another example of drought induced interconnections occurred during the recent drought when SFWD requested DWR to install the San Antonio turnout from the South Bay Aqueduct that had been used in the 1976–77 drought.

EBMUD has facilities to transfer water to both CCWD and the City of Hayward, while SFWD is able to transfer water to SCVWD. All of the major agencies of the South Bay have access to facilities capable of transferring water from other agencies upstream of the Delta. These transfers can be brought in hrough the Contra Costa Canal (CVP), the South Bay Aqueduct (SWP), or the San Felipe Project CVP). During the recent drought, EBMUD adopted both voluntary and mandatory water use reduction programs of up to 25 percent.

SCVWD received 32 percent of its maximum CVP supply in 1991, which included 10,000 AF of hardship supply. In addition, it received 30 percent of its SWP supply and 75 percent of its Hetch Hetchy supply. As a result of these deficient supplies, the district elected to purchase 10,000 AF of water from Placer County Water Agency and 20,000 AF from the 1991 State Emergency Drought Water Bank. In addition to supplementing its supplies, the district instituted conservation programs designed to save 20 percent of the average water use.

Locally imported supplies by SFWD and EBMUD also suffered deficiencies during the recent drought. The Hetch Hetchy deficiency was reduced from an initial 45 to 25 percent for 1991. Customers were required to reduce indoor use by 10 percent and outdoor use by 60 percent. The deficiency reduction was made possible by purchases of 50,000 AF from the 1991 State Emergency Drought Water Bank and 20,000 AF from PCWA.

ACWD and ACFC&WCD, Zone 7 were both subject to 80 percent deficiencies in their 1991 SWP supplies. ACWD received 14,800 AF from the 1991 State Emergency Drought Water Bank and an ncrease in its share of Lake Del Valle supplies. These supplemental supplies allowed the district to scale back its rationing plan to 25 percent reductions. ACFC&WCD, Zone7 was able to make up for SWP deficiencies by increased ground water pumping. ACFC&WCD, Zone 7 also acquired a small supplemental supply from the 1991 State Emergency Drought Water Bank and instituted a conservation education program with a 25 percent reduction goal.

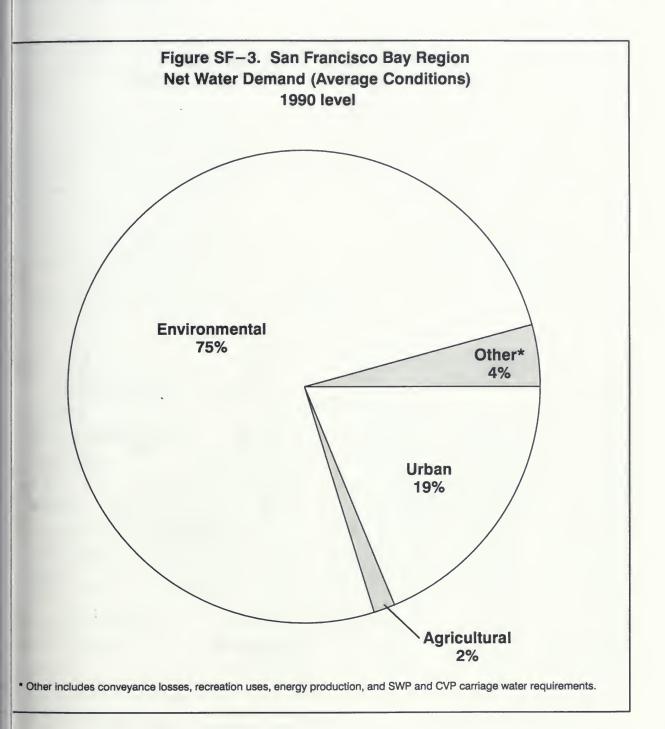
Future Water Management Options. MMWD had one of the least reliable supplies in the Bay Area. The district had to rely on supplemental imported supply from Sonoma County Water Agency and a very responsive reduction effort by customers to ensure adequate supplies throughout the recent drought. Assuming "base case" growth to 2025 and no supplemental supplies, the district had estimated a 40 percent deficiency once every 10 years. MMWD's new contract with SCWA will decrease the deficiency to approximately 10 percent.

MMWD currently has no participation rights in the SCWA facilities and uses excess capacity in NMWD's system to convey Russian River water as far as Novato. In order to avoid future supply deficiencies, the district is proposing its own pipeline to bypass the NMWD system. To do this, MMWD will need to participate in SCWA's facilities expansion as well.

Other suppliers in the area are much less vulnerable. SCWA's principal contractors, for example, have very reliable supplies. Using historic hydrology and 2010 demands, SCWA forecast no supply deficiencies for the system.

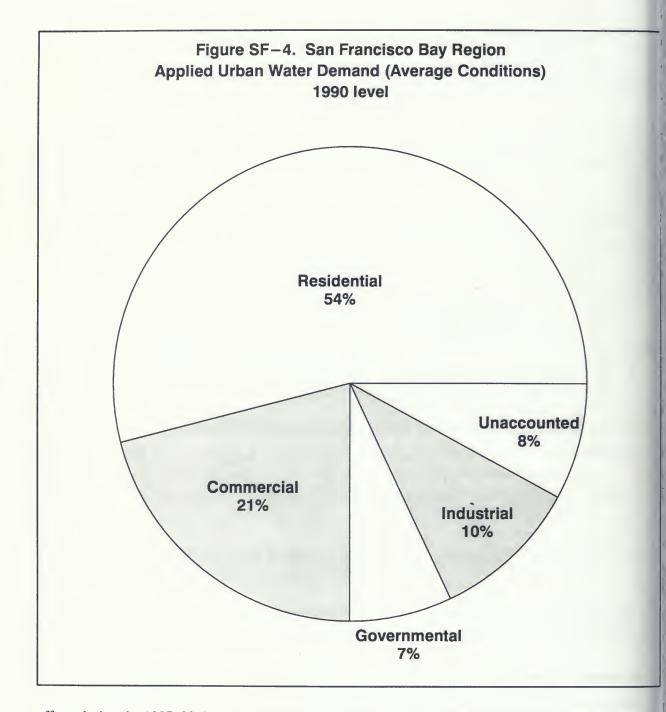
EBMUD's supply is vulnerable in at least three ways: (1) drought, (2) decreasing availability of supplies due to increased use by senior water right holders and an increasing emphasis on environmental needs, and (3) the integrity of its delivery system, especially the security of the aqueducts from earthquakes or floods as they cross the Delta. EBMUD is currently working on an Updated Water Supply Management Program that includes a number of improvements to its water supply system. A detailed discussion of this program is in Volume I, Chapter 12, "Options of Balancing Water Supply and Demand." A main element of EBMUD's program is the conjunctive use of ground water. In average and wet years, available water wold be stored in the lower Mokelumne River's ground water basin and withdrawn in dry years. This program will yield 43,000 AF in drought years.

Local imported supply would increase by 43,000 AF in 2000 for drought years, reflecting EBMUD's conjunctive use alternative. American River water is potentially available from a previously unused CVP contract for 150,000 AF that was originally to be delivered through Folsom South Canal to the Mokelumne Aqueducts. The district is still considering building its own extension of the Folsom South Canal so water could be delivered to its aqueducts.


As described previously, CCWD is pursuing the development of Los Vaqueros Reservoir near Byron to secure additional reliability and better quality for its water supplies.

Water recycling projects are becoming a cost effective method of meeting increased demand in the San Francisco Bay Region. By 2020, the region will have a supply of about 40,000 of recycled water to meet its demands.

Water Use


Water use in the region has undergone dramatic changes over the last 40 years. A 1949 land use survey recorded 163,000 acres of irrigated agriculture in the region; the 1990 level land use analysis showed 61,400 acres, a 62 percent reduction. The 1990 level agricultural net water demand was 88,000 AF. Urban water demand is approximately 1.2 MAF; and environmental water use is about 4.8 MAF. Almost all environmental water use in the region is associated with the Suisun Marsh demands and required Delta outflow. Total water use is projected to increase from approximately 6.3 MAF in 1990 to 6.6 MAF, primarily due to population increases, in 2020. Figure SF–3 shows the distribution of 1990 level net water demands for the San Francisco Bay Region.

64

Jrban Water Use

Urban water demand is computed using population and per capita water use. Census data and State Department of Finance projections were used to tabulate the region's population. Per capita use in the egion varies significantly, depending on factors such as climate, income, population density, residential /ard size, and volume of commercial and industrial use. Generally, per capita use showed an upward rend after the 1976–77 drought to pre-drought levels. Recently, per capita use values have dropped ugain, although not to the levels of the previous drought. This most recent drop is due to conservation

efforts during the 1987–92 drought. Per capita use is projected to continue to drop slowly over the next three decades due to implementation of Best Management Practices (Volume I, Chapter 6).

The cooler coastal portions of the region have the lowest per capita water use. The low per capita use values of approximately 100 gpcd in San Mateo County and 139 gpcd in San Francisco are generally related to a cooler climate, small yards, and higher population densities than in inland areas. Bayside communities in Marin and Sonoma counties use approximately 170 gpcd.

Santa Clara County's per capita use averages approximately 200 gpcd. The warmer and drier climate results in increased outdoor use. Residential areas reflect a range of uses, from high density multiunit

dwellings to some areas of very low density suburban homes. The county also has a mix of water using industries, such as food processing and computer and electronics manufacturing, which tend to raise per capita use.

The highest per capita use in the South Bay is in Contra Costa County, where use averages 230 gpcd because many residential areas consist of large estate size lots which have high landscape water requirements, and there is considerable industrial water use concentrated along the Bay. The average daily per capita use for the region was 193 gallons in 1990. Figure SF–4 shows applied 1990 level urban water demands, by sector.

Urban water demands are displayed in Table SF–5. With a 27 percent increase in population anticipated by 2020, urban water use should increase roughly 17 percent after accounting for savings from implementing water conservation measures such as urban Best Management Practices. The overall regional per–capita use should decrease by about 6 percent.

	(tr	nousands	s of acre-	(thousands of acre-feet)										
Planning Subareas	19	90	20	00	20	2010		2020						
Flamming Subareas	average	drought	average	drought	average	drought	average	drought						
North Bay						:								
Applied water demand	151	165	174	191	188	216	196	226						
Net water demand	151	165	174	191	188	216	196	226						
Depletion	133	146	154	169	166	191	173	200						
South Bay							ŧ							
Applied water demand	1,033	1,120	1,122	1,197	1,175	1,268	1,208	1,302						
Net water demand	1,033	1,120	1,122	1,197	1,175	1,268	1,208	1,302						
Depletion	938	1,022	1,023	1,095	1,072	1,163	1,102	1,260						
Total		· · ·				ł								
Applied water demand	1,184	1,285	1,296	1,388	1,363	1,484	1,404	1,528						
Net water demand	1,184	1,285	1,296	1,388	1,363	1,484	1,404	1,528						
Depletion	1,071	1,168	1,177	1,264	1,238	1,354	1,275	1,460						

Table SF-5. Urban Water Demand (thousands of acre-feet)

Agricultural Water Use

Figure SF-5 shows the irrigated acreage, ETAW, and applied water for major crops grown in the region. The following sections discuss agricultural water use in the North and South Bay areas.

North Bay. Agricultural water use in the North Bay is influenced by the climate of the area. The cool air entering San Pablo Bay from the west is a factor in determining crop viability and irrigation practices. There is very little agriculture remaining in Marin County, currently about 700 irrigated acres. Sonoma and Napa counties, on the other hand, have actually increased agricultural acreage, due to an increase in vineyards and adoption of drip irrigation on lands too steep for furrow or sprinkler irrigation practices. Most of these agricultural lands are served by ground water or direct diversions from the Napa

and other local streams. Projections are that vineyard acreage will continue to increase, while other crop acreages, with the exception of pasture (projected to decrease 20 percent) are expected to remain about the same.

South Bay. The climate of the South Bay is also warmer as you move inland from the coast. The area produces many high value crops including artichokes, brussels sprouts, and cut flowers. The Santa Clara Valley was historically one of the garden spots for California agriculture. Urbanization over the last 40 years has reduced irrigated agricultural land acreage from over 100,000 acres to less than 17,000 in 1990. Most of the remaining lands in production are along the Highway 101 corridor, north of Morgan Hill. Crops grown are primarily high value truck, fruit, and nut crops. Also, one– to five–acre suburban ranchettes, with sprinkler–irrigated pasture for horses, are now found on formerly nonirrigated range land and compete for limited ground water supplies.

The Livermore Valley is partially separated from the interior bay climate patterns by the Diablo Range. The valley is significantly warmer, reflected in higher outdoor water use. There are approximately 2,500 acres of irrigated agriculture, primarily vineyards, grain, and truck crops.

Table SF–6 shows the irrigated agricultural land use by PSA and for the region, for 1990 through 2020. Table SF–7 shows agricultural water demand for 1990 through 2020. Table SF–8 summarizes the 1990 and projected agricultural water demand in the region.

Planning Subareas	1990	2000	2010	2020
North Bay	44	48	49	49
South Bay	17	16	16	16
Total	61	64	65	65

Table SF-6. Irrigated Crop Acreage (thousands of acres)

Table SF-7.	1990 Evapotrans	piration of Ap	plied Water by Crop

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)	Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	2	1	Pasture	5	11
Corn	1	1	Other truck	10	19
Other field	1	1	Other deciduous	6	10
			Vineyard	36	27
			Total	61	70

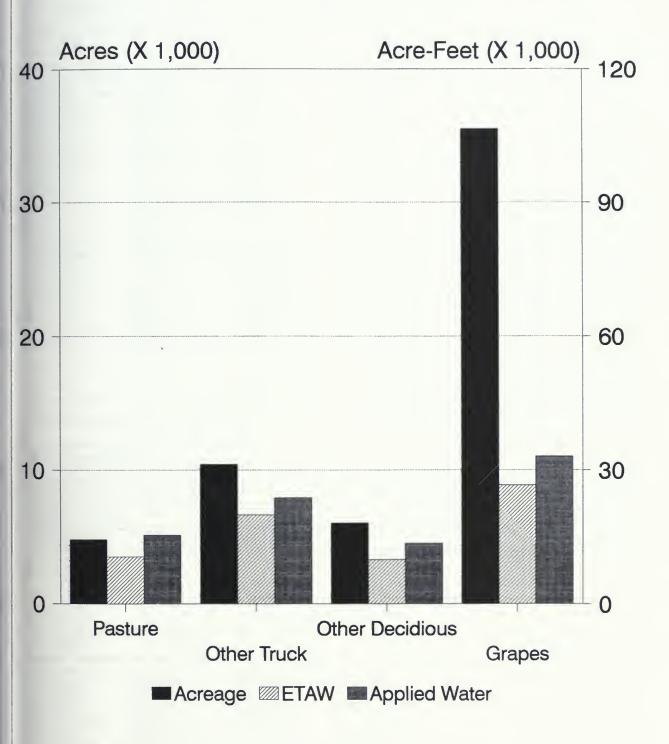


Figure SF-5. 1990 San Francisco Bay Region Acreage, ETAW, and Applied Water for Major Crops

Planning Subareas	19	90	20	00	2010		2020		
	average	drought	average	drought	average	drought	average	drought	
North Bay									
Applied water demand	57	65	59	65	59	66	59	66	
Net water demand	53	61	55	61	55	62	55	62	
Depletion	48	55	50	55	50	56	50	56	
South Bay									
Applied water demand	35	38	35	39	35	38	35	37	
Net water demand	35	38	35	39	35	38	35	37	
Depletion	32	34	32	35	32	34	32	33	
Total								3	
Applied water demand	92	103	94	104	94	104	94	103	
Net water demand	88	99	90	100	90	100	90	99	
Depletion	80	89	82	90	82	90	82	89	

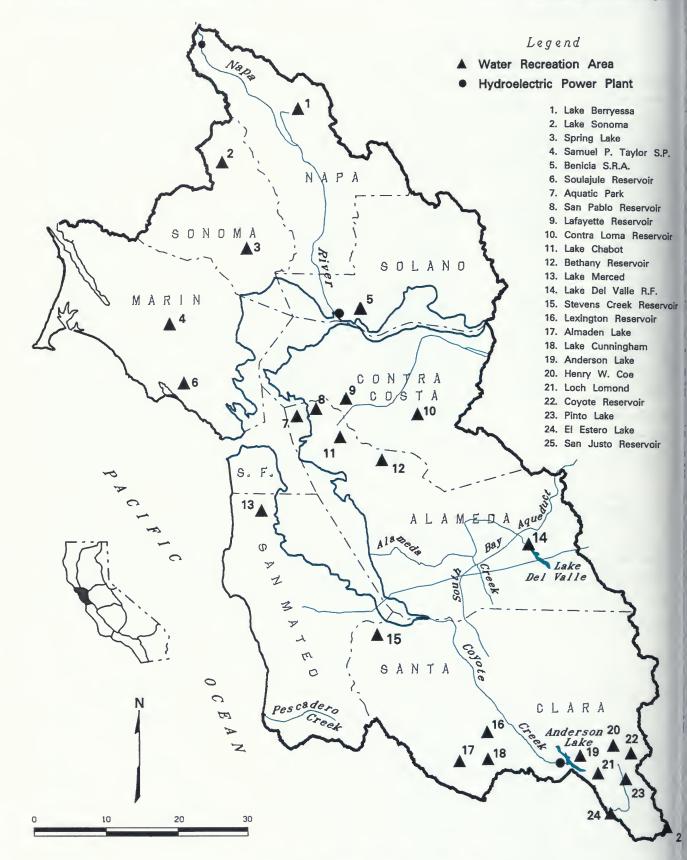
Table SF-8. Agricultural Water Demand (thousands of acre-feet)

Environmental Water Use

The Suisun Marsh is the only identified managed wetland in the San Francisco Bay Region requiring water supplies. The brackish water marsh consists of approximately 55,000 acres of managed wetlands. The State owns about 10,000 acres and about 44,000 acres are under private ownership and managed as duck clubs. The estimated water demand of the marsh is about 150,000 AF per year. The additional instream demands for the Suisun Marsh are about 15,000 AF in an average year and 145,000 AF during drought years. Additional Suisun Marsh instream demands are based on an estimated supplemental flow required over the eight–month period when Suisun Marsh Salinity Gates are operational to meet D–1485 standards downstream of the gates in the Delta. Table SF–9 shows wetlands water needs.

	(thousands of acre-feet)										
Wetlands 1990 2000 2010 2020											
Wellands	average	drought	average	drought	average	drought	average	drought			
Suisun Marsh						ų., į					
Applied water	150	150	150	150	150	150	150	150			
Net water	150	150	150	150	150	150	150	150			
Depletion	150	150	150	150	150	150	150	150			
Total		9									
Applied water	150	150	150	150	150	150	150	150			
Net water	150	150	150	150	150	150	150	150			
Depletion	150	150	150	150	150	150	150	- 150			

Table SF-9. Wetlands Water Needs


The largest water use in the region is for Delta outflow to meet SWRCB salinity requirements, which requires about 4.6 and 2.9 MAF for average and drought years, respectively. Other instream flows for streams throughout the region were not included in the water use tables. Environmental instream water needs are shown in Table SF–10. Recent and future actions to protect aquatic species in the Delta will increase environmental water needs for this region. Volume I, Chapter 8 presents a broad discussion of proposed water needs for the Bay/Delta.

Stream	19	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought	
Bay-Delta				1.				,	
Applied Water	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085	
Net Water	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085	
Depletion	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085	
Total		4							
Applied Water	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085	
Net Water	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085	
Depletion	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085	

Table SF-10. Environmental Instream Water Needs (thousands of acre-feet)

Other Water Demand

Other water demand includes water losses by major conveyance facilities in the region, water needs of recreational facilities, water demand of power plants and other energy production, and the SWP and CVP carriage water requirements. Figure SF–6 shows water recreation areas in the San Francisco Bay area. Table SF–11 shows the total water demand for 1990 and projections to 2020 for the San Francisco Bay Region.

Category of Use	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Urban								
Applied water	1,184	1,285	1,296	1388	1363	1484	1404	1528
Net water	1,184	1,285	1,296	1388	1363	1484	1404	1528
Depletion	1,071	1,168	1,177	1264	1238	1354	1275	1460
Agricultural								
Applied water	92	103	94	104	94	104	94	103
Net water	88	99	90	100	90	100	90	99
Depletion	80	89	82	90	82	90	82	89
Environmental				1	¢			
Applied water	4,765	3,235	4,765	3,235	4,765	3,235	4,765	3,235
Net water	4,765	3,235	4,765	3,235	4,765	3,235	4,765	3,235
Depletion	4,765	3,235	4,765	3,235	4,765	3,235	4,765	3,235
Other (1)						i.		\$
Applied water	248	238	328	179	339	168	331	157
Net water	266	255	346	196	358	185	352	174
Depletion	266	255	346	196	358	185	352	174
Total								1
Applied water	6,289	4,861	6,483	4,906	6,561	4,991	6,594	5,023
Net water	6,303	4,874	6,497	4,919	6,576	5,004	6,611	5,036
Depletion	6,182	4,747	6,370	4,785	6,443	4,864	6,474	4,958

Table SF-11. Total Water Demands (thousands of acre-feet)

(1) includes conveyance losses, recreational uses, energy production, and SWP and CVP carriage water requirements

Issues Affecting Local Water Resource Management

The principal water management issues facing the region are population growth and environmental concerns. The following paragraphs describe legislation, litigation, and issues affecting the region.

Legislation and Litigation

EBMUD supplies. The SWRCB held hearings in November 1992 regarding instream flow requirements for the Mokelumne River. The Department of Fish and Game, private fishing groups, and environmental interest groups want to increase flows below Camanche Reservoir to protect the river's fishery. In addition, several water agencies in the Sierra foothills, San Joaquin County, and the Delta contend that they should receive some priority in the distribution of Mokelumne River water. If the SWRCB rules against EBMUD, the district could be forced to take a large portion of its water from the Delta rather than through the Mokelumne Aqueducts. Lower quality water from the Delta would mean increased treatment costs which would be passed on to EBMUD customers. In a separate process, the

Federal Energy Regulatory Commission is reviewing the district's hydropower operations and could independently rule for higher fish flows.

EBMUD diverted its contracted American River water only once, during the 1976–77 drought, when the district took 25,000 AF from the Delta to supplement its depleted supplies under an emergency agreement with USBR. In 1972, a suit was filed protesting EBMUD's right to divert water at Folsom South Canal. In 1986, the SWRCB affirmed the right and referred the lawsuit to Alameda Superior Court for litigation. A preliminary decision in 1989 confirmed the right to divert water at Folsom South Canal and established minimum flows for the American River below Nimbus Dam that would be required before EBMUD could divert its supplies. A final decision was made in 1990, which cleared the way for the district to seriously consider a connection between the canal and the Mokelumne Aqueducts. An EIS/EIR will focus on technical, public health and safety, social, and environmental factors for the project.

Recently, EBMUD filed a lawsuit against Contra Costa County to block use of scarce EBMUD water for a housing development. The county certified an EIR for the Dougherty Valley development despite the concerns about water supply expressed by the district. EBMUD told the county that it does not have the water to supply the proposed 11,000-home development.

CVP Improvement Act. Implementation of the 1992 CVPIA will have some cost impacts on Bay Area water users in the form of higher prices for CVP water. The Act allocates a portion of CVP water to environmental uses and allows municipal and industrial users to purchase water from agricultural users. (See Volume I, Chapter 2.)

Local Issues

Slow-growth movement. Anti-growth sentiment is increasing in some Bay Area communities and was evident during many of the 1992 local elections. Solano, Napa, and Contra Costa counties elected several slow-growth candidates. Marin County residents had opposed efforts to improve their water system delivery capabilities beyond limited expansion of local supplies, fearful that more water would mean uncontrolled growth. The Marin Municipal Water District has had for the last three years a moratorium on growth within its service area due to limited water supplies. The operational yield of present district facilities indicated a 5,000 AF deficit for 1990. After more than 20 years of consistently rejecting plans to import more surface water, voters narrowly approved financing to increase the district's capacity to import water from the Sonoma County Water Agency to reduce the frequency and severity of drought year shortages.

Contra Costa Water District. The quality and reliability of CCWD's Delta water supply has been an issue for the district. The proposal to build Los Vaqueros Reservoir addresses a number of related issues for the district's water supply and the Delta. The proposed reservoir would be an off-stream storage facility and would allow more flexibility in CCWD's operations. Specifically, the district could divert higher quality water to Los Vaqueros reservoir during high flows in the Delta. Los Vaqueros water would then be available to improve water quality delivered throughout the year and in dry years and provide emergency storage. By storing water at certain times of the year, the district could shut down its pumps

74

during periods when the fisheries are most sensitive to large diversions. CCWD is planning to have the project online by 2000.

Lagunitas Creek. DFG has not established permanent instream flow requirements below Peters Dam on Lagunitas Creek. Interim regulations require an average of 4,000 AF annually to preserve or enhance the anadromous fishery of the creek. Significant changes in the permanent requirements would alter Marin MWD's operational yield.

Drinking Water Standards. The California Department of Health Services is rewriting its surface water treatment requirements to comply with the Environmental Protection Agency's new drinking water standards. SFWD was recently given an extension of its operating permit to propose specific plans to meet DHS requirements. SFWD estimates that new facilities for treating Hetch Hetchy supplies, if required, could cost about \$50 million.

Water Balance

Water balances were computed for each Planning Subarea in the San Francisco Bay Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table SF-12 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 6.3 and 4.9 MAF for average and drought years respectively. Those demands are projected to increase to 6.6 and 5.0 MAF, respectively, by the year 2020, after accounting for a 250,000 AF reduction in urban water demand resulting from additional long-term water conservation measures.

Urban net water demand is projected to increase by 470,000 AF by 2020, primarily due to expected increases in population; while, agricultural net water demand remains essentially level. Environmental net water demands would remain the same but could increase substantially depending on the outcome of several actions currently being undertaken to protect aquatic species.

Average annual supplies with existing water management programs are inadequate to meet average net water demands in this region resulting in a shortage of about 18,000 AF by 2020. During droughts, without additional water management programs, annual drought year shortages are expected to increase to about 478,000 AF by 2020.

Demand/Supply	19	90	2020	
Demand/Supply	average	drought	average	drought
Net Demand				
Urban-with 1990 level of conservation	1,184	1,285	1,654	1,778
-reductions due to long-term conservation measures (Level I)			-250	-250
Agricultural	88	99	90	99
-reductions due to long-term conservation measures (Level I)			0	C
Environmental	4,765	3,235	4,765	3,235
Other (1)	266	255	352	174
Total Net Demand	6,303	4,874	6,611	5,036
Water Supplies w/Existing Facilities Under D-1485 for Delta Supplies				
Developed Supplies				
Surface Water	1,591	1,346	1,816	1,30
Ground Water	97	133	162	16
Ground Water Overdraft	0	0	0	(
Subtotal	1,688	1,479	1,978	1,473
Dedicated Natural Flow	4,615	3,085	4,615	3,085
Total Water Supplies	6,303	4,564	6,593	4,558
Demand/Supply Balance	0	-310	-18	-478
Future Water Management Options Level I (2)				
Long-term Supply Augmentation	-			
Reclaimed			38	3
Local			0	4
Central Valley Project			0	
State Water Project			30	7
Subtotal – Water Management Options Level I			68	15
Ground Water/Surface Water Use Reduction Resulting from Level I Programs			-50	-2
Remaining Demand/Supply Balance Requiring Short Term Drought Management and/or Future Level II Options			0	-34

Table SF-12. Water Balance (thousands of acre-feet)

(1) Includes conveyances losses, carriage water, recreational uses, and energy production.


(2) Protection of fish and wildlife and a long-term solution to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

With planned Level I options, drought year shortages could be reduced to about 343,000 AF by 2020. This remaining shortage requires both additional short-term drought management, water transfers and demand management programs, and future Level II options depending on the overall level of water service reliability deemed necessary by local agencies, to sustain the economic health of the region.

* * *

E

CENTRAL COAST REGION

Along the coast in Monterey Bay.

CENTRAL COAST REGION

The Central Coast Region accounts for about 7 percent of California's total land area. It normalises the area adjacent to the Pacific Ocean including Santa Cruz County in the north through anta Barbara County in the south to the Diablo and Temblor mountain ranges on the east. Its opographic features include Monterey and Morro Bay; the Pajaro, Carmel, Santa Maria, Cuyama and alinas valleys; and a number of mountain ranges. The Central Coast Region is best known for its ugged Pacific coastline, scenic bays and redwood forests.

The varied geography of the region creates diverse climates. During the summer months, emperatures are generally cool along the coastline and warm inland. In the winter, temperatures remain ool along the coast and become even cooler inland.

Annual precipitation in the region ranges from 14 to 45 inches, usually in the form of rain. The verage annual precipitation near the City of Salinas is about 14 inches while in the Big Sur area, pproximately 30 miles south of Monterey along the coast, precipitation averages about 40 inches a year. n 1983, however, the Big Sur area had a surprising 85 inches of rain. Average annual precipitation in ne southern coastal basins ranges from 12 to 20 inches, with most of it occurring from November nrough April. The southern interior basins usually receive 5 to 10 inches per year; the mountain areas eceiving more than the valley floors.

opulation

With a 1990 population slightly under 1.3 million, the Central Coast Region contains roughly 4 ercent of California's population. While most of California experienced a substantial population ncrease over the past 10 years, growth in this region exceeded the State's average. The collective eopulation of incorporated cities in the Salinas Valley increased 37 percent during the past decade. Population centers along the coast, such as San Luis Obispo and Santa Maria, also had large population ncreases of 23 and 54 percent, respectively. In addition, significant increases were recorded in the Santa (nez Valley and smaller communities in Salinas Valley. An inviting atmosphere of good weather, clean ir, and close proximity to the mountains and urbanized areas encouraged this growth. Land and water upply limitations and building moratoriums limited population growth in the area near Santa Barbara.

Population growth in the northern part of the region is also associated with space availability and iffordable housing prices. While above the national average, the cost of homes in this area is affordable compared to many other parts of California. Much of the region's growth is the result of people nigrating from the San Francisco Bay and Los Angeles areas. Current growth in the region's northern urea is primarily in and around Hollister, Salinas, and the Watsonville area. Table CC-1 shows population projections to 2020 for the region.

Region Characteristics

Average Annual Precipitation: 20 inchesAverage Annual Runoff: 2,477,000 acre-feetLand Area: 11,300 square miles1990 Population: 1,292,900

(thousands)								
Planning Subareas	1990	2000	2010	2020				
Northern	702	823	969	1,129				
Southern	591	699	792	888				
Total	1,293	1,522	1,761	2,017				

Table CC-1. Population Projections

Despite the population increases, much of the region is sparsely populated. The principal population centers are Santa Cruz, Salinas, Watsonville, Monterey, San Luis Obispo, Santa Maria, Santa Barbara, and Lompoc. Most of the region's future population growth continue to be in areas showing recent growth. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The economy of many areas of the region is tied to military installations. Fort Ord, Hunter–Liggett Military Reservation, Camp Roberts, and Vandenberg AFB are the major facilities. The Monterey Peninsula area is now preparing for the closure of Fort Ord. The cities of Seaside and Marina will suffer the greatest impacts, but the entire area is expected to be affected by the loss of military personnel, civilian workers, and their families.

Land Use

Publicly-owned lands constitute approximately 28 percent of the region's area. The four major military installations within the region occupy 340,000 acres. The abundance of state parks and national forest land (Los Padres, 1.3 million acres) offers the public many recreational opportunities. Elkhorn Slough National Estuarine Research Reserve, one of the few remaining coastal wetlands, showcases miles of scenic wetlands and rolling hills. The slough is on a migratory flyway and is an important feeding and resting ground for a variety of waterfowl. Irrigated and nonirrigated agriculture still remains the dominant land use for most of the Central Coast region. Intensive agriculture exists in the Salinas and Pajaro valleys in the north and the Santa Maria and lower Santa Ynez valleys in the south. Moderate levels of agricultural activity also occur near the Upper Salinas, South Coast, and Cuyama areas. Most of the region's irrigated agriculture is in the northern and southwestern valleys, and in recent years irrigated acreage has remained fairly stable. Figure CC-1 shows land use, along with imports, exports, and water supplies for the Central Coast Region.

Wine grape acreage has increased in the upper Salinas Valley in San Luis Obispo County but decreased in the lower valley within Monterey County. However, acreage planted to vegetables and other truck crops far surpassed that planted to vineyard and orchards. Cut flowers and specialty crops, such as asparagus, mushroom, artichokes, and holly, are distinctive to the region's northern area. The flower seed industry in Lompoc Valley is a thriving business which also attracts many tourists each year. Portions of the upper Salinas Valley and Carrizo Plain are dry farmed to produce winter grain. These areas also support sheep and cattle ranching. Industries other than agriculture are not well developed, but there are petroleum refining operations near Santa Maria and a significant well field in the Cuyama Valley as well as frozen food plants in the Pajaro Valley.

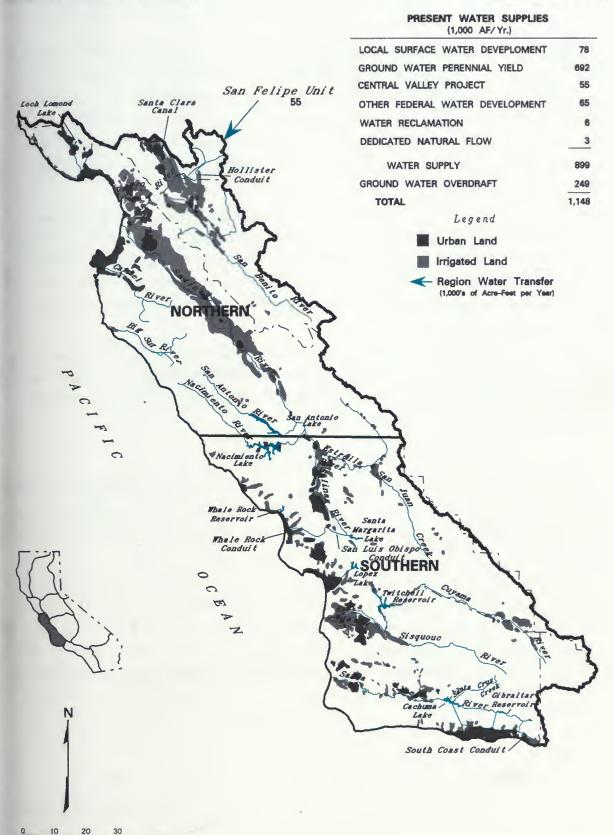
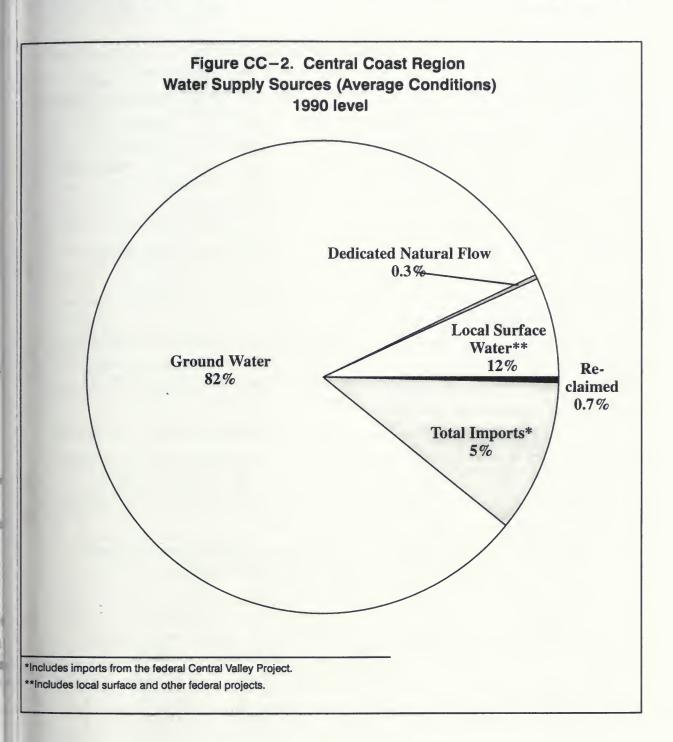


Figure CC-1. Central Coast Region Land Use, Imports, Exports, and Water Supplies Urban development is beginning to encroach on the agricultural lands in the highly productive inland valleys. Total irrigated agricultural land acreage in the Central Coastal Region decreased from 459,000 acres in 1980 to 430,000 acres in 1990 (-6 percent). Total crop acreage decreased from 531,000 acres in 1980 to 528,000 acres in 1990. Although in the Southern PSA total irrigated land decreased from 156,000 acres to about 145,000 acres, total crop acres in receased from about 155,000 acres in 1980 to about 182,000 acres in 1990. This indicated an increase in multiple cropping. Urban acreage also increased from 182,000 acres to 240,100 acres during the same period.

Increases in defense related jobs associated with the space shuttle and missile testing programs, at Vandenburg Air Force Base accelerated the urbanization of the Santa Maria and lower Santa Ynez valleys during the 1970's. Growth was experienced in all areas of urban land use, but primarily in the residential and industrial categories. Prime agricultural land was lost to the initial wave of development. However, some local growers have compensated for the agricultural land losses by utilizing nonirrigated pasture lands.

Much of the coastal strip has not been developed because of steep slopes, inaccessibility, and military-use restrictions. Developed coastal areas consist primarily of tourist and resort areas (Monterey Bay, Cambria, Morro Bay, and Pismo Beach) and middle-to-upper income residential communities (Carmel, Lompoc, Goleta, and Santa Barbara).


Water Supply

Ground water is the most significant source of water supply for the region. Supplies from federal and local surface projects account for roughly 17 percent of the total supply. Completion of the Coastal Branch of the State Water Project, as well as other local projects, will lessen the reliance on ground water supplies. Figure CC-2 shows the region's 1990 level sources of supply.

The average water supply for the Central Coastal Region for the 1990 level of development is estimated at 1.15 MAF. Water supplies are projected to increase approximately 134,000 AF by 2020. The projected increases in supply come from the San Felipe project of the CVP, the Coastal Branch of the SWP, and the Los Padres Dam enlargement/desalination project, a local water supply project. In 1990, ground water pumping amounted to 82 percent of total supplies, 26 percent of which was in excess of the estimated perennial yield and is considered overdraft.

80

Bulletin 160-93 Administrative Draft

Supply with Existing Facilities

There are in excess of 60 reservoirs within the Central Coastal region, the majority of which are owned by private concerns. The reservoirs in the region are used for individual and municipal water needs, flood control, recreation, irrigation, and riparian habitat. The major reservoirs in the region are listed in Table CC-2.

Reservoir Name	River	Capacity (1,000 AF)	Owner		
Santa Margarita	Salinas	24	US Corps of Engineers		
San Antonio	San Antonio	330	MCWRA		
Nacimiento	Nacimiento	340	MCWRA		
Gibralter	Santa Ynez	9	City of Santa Barbara		
Cachuma	Santa Ynez	190	USBR		
Whale Rock	Old Creek	41	DWR		
Lopez	Arroyo Grande Creek	52	SLOCFCWCD		
Twitchell	Cuyama River	240	USBR		

Table CC-2. Major Reservoirs

In the Northern PSA, ground water is the primary source of water for both urban and agricultural use. The Carmel, Pajaro, and Salinas rivers provide most of the ground water recharge for the area. The San Antonio and Nacimiento reservoirs regulate the Salinas River. Table CC–3 shows water supplies with existing facilities and water management programs.

Basins in the Southern PSA are smaller, but important to their local communities. These shallow riparian basins underlie seasonal coastal streams. During years with normal or above normal rainfall, aquifers in the basins are continuously replenished by creek flows. In years of below normal precipitation, the creek flows are intermittent, flow is insufficient for both agricultural and municipal uses, wells become dry, and seawater intrudes some coastal basins.

(Inousands of acre-teet)								
Supply	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Surface				1				
Local	78	56	78	56	78	56	78	56
Imports by local	0	0	0	0	0	0	0	0
Colorado River	0	0	0	0	0	0	0	0
CVP	55	23	55	23	60	23	63	23
Other federal	65	46	65	46	65	46	65	46
SWP	0	0	0	0	0	0	0	0
Ground water	692	774	686	772	724	817	755	858
Overdraft	249	249	249	249	249	249	249	249
Reclaimed	6	6	6	6	6	6	6	6
Dedicated natural flow	3	0	3	0	3	0	3	0
Total	1,148	1,154	1,142	1,152	1,185	1,197	1219	1238

Table CC-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies)

Water Supply Reliability and Drought Management Strategies. Many large and small communities in the region have initiated both voluntary and mandatory water conservation practices. These procedures will undoubtedly be initiated or revived for future critical water years. Practices range from voluntary water conservation and limited outdoor watering to mandatory water rationing and little or no outdoor watering. The City of Salinas relies on outdoor watering restrictions based upon time of day water use limitations, and voluntary water conservation practices. Recently, many of the communities who mandated water rationing during the drought have elected to implement a voluntary water conservation program. Currently, Monterey has an outdoor watering schedule based upon time of day restrictions, and the city's waste water ordinance is in effect. The communities of Watsonville and Santa Cruz have voluntary water conservation programs in force. Outdoor watering is based upon the weather in Watsonville. Water runoff is prohibited in these communities.

The Marina County Water District in Monterey County, near Fort Ord, has stepped up its conservation effort to deal with the issue of drought and sea water intrusion. In 1991, the Marina County Water District adopted an ordinance designed to prohibit water waste and encourage conservation efforts. Water conservation projects initiated included a low-flow showerhead retrofit program, resulting in the replacement of one-third of all showerheads in the district. A water audit program was also initiated to provide owners of both businesses and residences with a personalized water conservation plan.

Water supply shortages occurred in the South Coast, San Luis Obispo, Arroyo Grande, and North Coast areas of the region because of the 1987–92 drought in the Central Coast Region. Dwindling surface water supplies forced retail water agencies in these areas to depend more on limited ground water supplies and water conservation to make up deficits. Portions of the Southern PSA experienced unprecedented supply shortages. In the summer of 1990, retail water agencies in the service area of Lake Cachuma were confronted with the prospect that only 12 months of supply remained in that reservoir. Two of these agencies were the Goleta Water District and the City of Santa Barbara. The Goleta Water District began implementing a mandatory water rationing program in 1988 for all urban and agricultural customers within its service area. The historical water use by all customers was evaluated and a percentage reduction was assigned to each; financial penalties were established to prevent noncompliance. In addition, the agency established a rebate program that involved the purchase and installation of ultra–low flush toilets for residential customers, passed ordinances that temporarily banned certain water related activities, and vigorously advertised water conservation. The conservation efforts by the retail customers exceeded the savings levels imposed by the district and resulted in extra water supplies being delivered to agricultural customers.

The City of Santa Barbara implemented similar strategies in combating supply shortages. The city also established a drought patrol to monitor water use behavior, and penalties and citations were handed out to violators. In addition, the city examined and approved action to: 1) import emergency SWP water from Ventura County and 2) examine the potential of sea water desalination. An emergency pipeline was installed to bring SWP water into the Santa Barbara–Carpenteria area from Casitas Lake in Ventura

County by exchange, and a sea water desalination plant was constructed in 1991–92 that is capable of producing 10,000 AF per year.

During the height of the drought, the counties of San Luis Obispo and Santa Barbara relaxed certain health restrictions on the use of grey water for residential landscape irrigations. Homeowners in San Luis Obispo County were permitted to use secondary washing machine rinse water for these irrigations and were required to discharge the water underground.

In Santa Barbara, irrigations with grey water were permitted on nonedible plant materials only and homeowners were required to discharge the water through drip systems or leach lines. Regulations on the grey water use were not relaxed in other parts of the region.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Increased use of SWP water in the Southern PSA and CVP water in the Northern PSA will require additional transportation facilities. As outlined in the water supply section, many agencies are looking to these import sources for their future supplies. Local alternatives being examined include increasing capacity in local storage reservoirs or, in some cases, authorizing new projects. Cloud seeding and desalination are showing to be effective in parts of the region.

New Los Padres Reservoir. To improve the reliability of water supplies in the Monterey Bay area, the Monterey Peninsula Water Management District has taken a number of actions including water conservation, water reclamation, and investigating several water development alternatives. Improvements to the system also are needed to provide water for municipal and industrial as well as environmental water needs of the area. Current supply is inadequate during drought years when shortages develop due to lack of adequate storage facilities. The Monterey Peninsula Water management District investigated 32 water supply alternatives before selecting five alternatives. The preferred environmentally superior alternative is the 24,000 AF New Los Padres Reservoir with or without desalination. The New Los Padres Dam would be on the Carmel River and would completely inundate the existing dam and reservoir. The New Los Padres Reservoir could provide an average water supply of 22,000 AF usable storage to the Monterey Peninsula's water supply system.

Many areas within the Southern PSA use local surface projects and ground water extractions as their primary sources of water. Surface water storage facilities include Salinas Reservoir, Twitchell Reservoir, and Lake Cachuma. Annual precipitation and spring runoff from nearby mountains determine the

Bulletin 160–93 Administrative Draft

reliability of these vital water supplies. In some instances, emergency measures, such as wheeling local and SWP water from Ventura County to Santa Barbara in 1990, must be implemented to ensure an adequate supply of water. In 1992, Santa Barbara and San Luis Obispo counties approved extending the Coastal Branch of the SWP, which will increase their future water supply reliability, assuming present limitations of Delta diversions can be removed and additional SWP facilities and programs can be implemented. Table CC-4 shows water supplies with additional Level I water management programs.

Cumply	19	90	20	00	20	10	20)20
Supply	average	drought	average	drought	average	drought	average	drought
Surface								
Local	78	56	102	78	102	. 78	100	74
Imports by local	0	0	0	0	0	0	0	0
Colorado River	0	0	0	0	0		0	0
CVP	55	23	74	23	99	23	102	23
Other federal	65	46	65	46	65	46	65	46
SWP	0	0	43	36	43	36	43	36
Ground water	692	774	595	716	615	760	656	804
Overdraft	249	249	249	249	249	249	249	249
Reclaimed	6	6	37	37	44	44	50	50
Dedicated natural flow	. 3	0	3		3	0	3	0
Total	1,148	1,154	1,168	1,185	1,220	1,236	1,268	1,282

Table CC-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Deita Supplies) (thousands of acre-feet)

Agencies within San Luis Obispo County have requested almost 4,830 AF from the SWP, while requests from Santa Barbara County total approximately 42,486 AF. The County of San Luis Obispo is also negotiating to take delivery of its full entitlement of over 17,000 AF of Nacimiento Reservoir water by the year 2000. Availability of SWP supplies in San Luis Obispo and Santa Barbara counties will lessen the severity and frequency of water supply shortages and will help alleviate ground water overdraft.

The City of Lompoc has voted not to take its 4,000 AF entitlement of SWP water and plans to negotiate for federal water from Lake Cachuma. Currently, Lake Cachuma water goes to residents in the southern portion of the Central Coast Region, in the Santa Barbara area, and in the Santa Ynez River Water Conservation District.

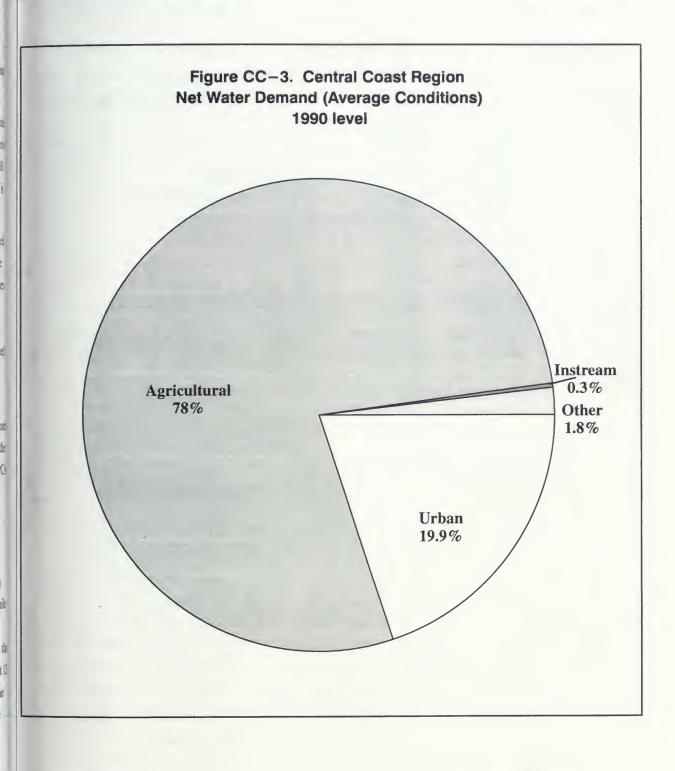
Other measures to augment water supplies are under consideration by various water agencies. Cloud seeding was effective in the Monterey County mountains. Desalination, reservoir enlargement, and importing surface water are options to increase surface water supplies. The USBR is studying the cost effectiveness of extending the San Felipe Project of the federal CVP, which would deliver water to the

Pajaro Valley. Several local government and water agencies are preparing water management plans which will address short-, medium-, and long-term schemes to reduce water use and bring in additional water.

Reclaimed water will play an increasing role in water supplies for nonconsumptive use. The Carmel Area Wastewater District will begin construction during 1993 of a reclaimed water project that will serve seven golf courses and two recreational areas in the Pebble Beach area of Monterey County. Plans call for enough reclaimed water to meet almost 100 percent of the users' irrigation demands. The project is being developed with the Pebble Beach Community Services District.

The Monterey Regional peninsula Water Pollution Control Agency was formed in the 1970s to seek solutions to the problem of water pollution, and is comprised of a dozen local entities. During the late 1970s the MRWPCA began purchasing the treatment plants and outfalls owned by its member agencies. To comply with regulations of the SWRCB and the U.S. EPA, old outfalls were replaced by a large outfall discharging two miles offshore. The installation of interceptor pipelines and pump stations to divert waste water from Pacific Grove and the upgrade of the Monterey Treatment Plant was completed in 1981. In 1983, a series of interceptor pipelines, pump stations, and a new ocean outfall were completed.

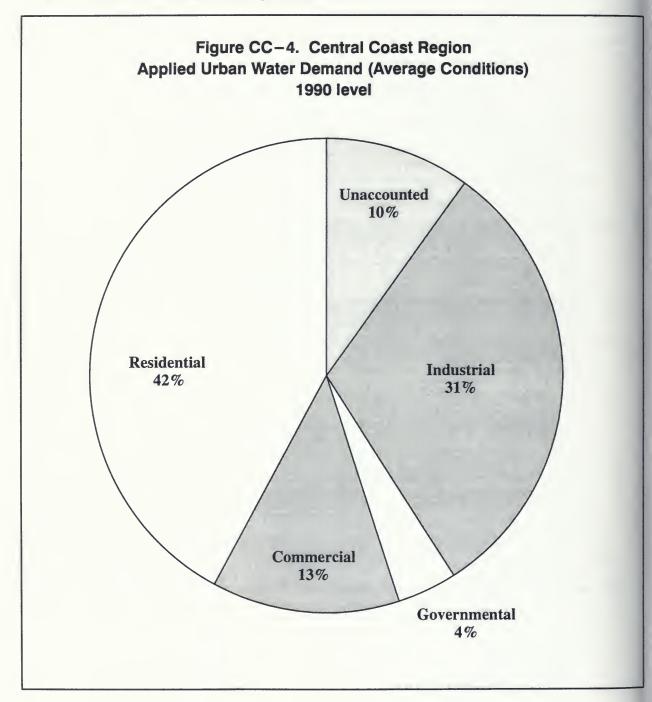
In the final EIS of the Salinas Valley Seawater Intrusion Program, construction of a tertiary treatment plant is proposed adjacent to the regional plant. The facility would intercept waste water flows after the secondary treatment and process them to produce filtered effluent suitable for irrigation. The MRWPCA has hired CH₂MHill to prepare preliminary designs for the project, of which are expected to be completed by the end of 1993.


Water Use

In 1990, water use in the region was divided 60 to 40 percent between the Northern and Southern PSAs, respectively. Agricultural water use accounts for 78 percent of the region's total water use, while urban water use is 20 percent of the total. The remainder of the region's water use is for energy production, environmental needs, conveyance losses, and recreation. The 1990 level net water use in the region is about 1.15 MAF. Projections indicate that average annual water demand will increase about 12 percent to 1.3 MAF by 2020. Water supplies for the region will increase about 12 percent by that time with planned additional water management programs. Figure CC–3 shows net water demand for the 1990 level of development.

Bulletin 160–93 Administrative Draft

12


Central Coast Region

The 1990 level drought demand is 1.21 MAF and it will increase to 1.38 MAF, or 14 percent, by 2020. Water supplies during drought are projected to increase by 12 percent. Additional ground water overdraft and shortages are anticipated to occur as demand increases.

Urban Water Use

Population in the Central Coast is expected to grow by about 56 percent by 2020 to over 2 million people. Figure CC-4 shows applied urban water demand, by sector, for the 1990 level of development. Table CC-5 shows urban water demand projections to 2020.

Planning Subareas	19	90	20	00	20	10	20	020
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Northern								
Applied water demand	151	152	176	178	207	210	242	245
Net water demand	131	132	152	154	179	182	209	212
Depletion	118	118	137	138	160	162	187	189
Southern								
Applied water demand	122	125	139	143	158	163	178	184
Net water demand	98	101	111	114	125	129	140	145
Depletion	98	101	111	114	125	129	140	145
Total				1	5		1	
Applied water demand	273	277	315	321	365	373	420	429
Net water demand	229	233	263	268	304	311	349	357
Depletion	216	219	248	252	285	291	327	334

Table CC-5. Urban Water Demand (thousands of acre-feet)

In the Southern PSA, average 1990 level per capita use for the San Luis Obispo and Santa Barbara areas was 190 and 187 gallons, respectively. The per capita water use for the Southern PSA is 187 gallons, while that in the Upper Salinas Valley area, in the region's warmer interior, is 223 gallons. Per capita use could increase by about 5 percent in San Luis Obispo and Santa Barbara by 2020.

In the Northern PSA, the average per capita use for the region is about 190 gallons per day. This value varied from a high of about 250 gallons per day in the warmer inland communities of Hollister and King City to a low of about 150 gallons per day in the chronically water short Monterey–Carmel area.

With a few exceptions, most cities and metropolitan centers as well as predominant urban water demands in the region are geographically near U.S. Highway 101. Construction is primarily in the form of single and multiple-family style housing units and commercial services. Even though demand has generally increased in the region, per capita water use values have not changed significantly. This is because: (1) higher water using industries have not established themselves in areas with new construction and, (2) the number of multiple-family dwelling units built counterbalance the single-family units.

Table CC-5 projects the applied and net urban water use for the next 30 years. While the population is expected to increase 56 percent, the comparatively low per capita use rate in the areas where growth is expected, coupled with water saving technologies employed in new developments, will not produce a proportional increase in water use for the region.

Agricultural Water Use

Projections indicate that agricultural water use will increase, from the 1990 level, 4 percent by 2020. Irrigated agriculture in the northern Central Coast Region has remained relatively stable during the past

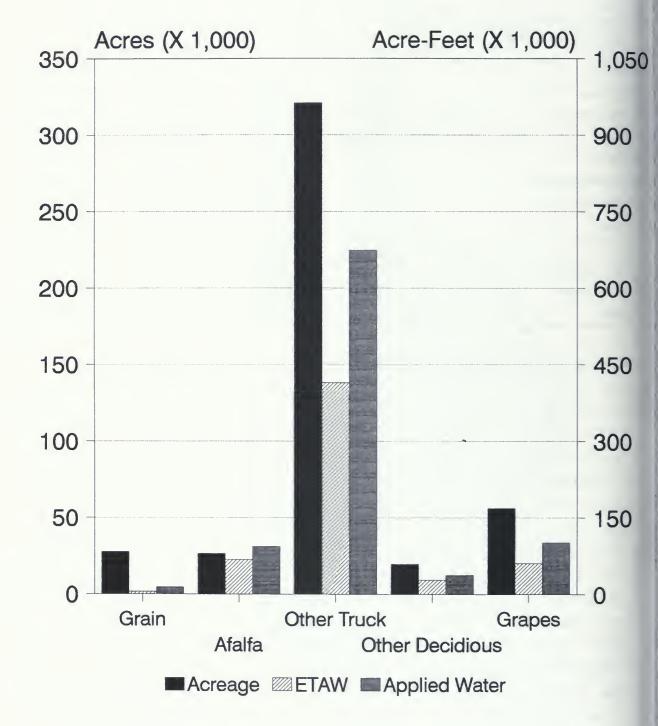


Figure CC-5. 1990 Central Coast Region Acreage, ETAW, and Applied Water for Major Crops

Bulletin 160-93 Administrative Draft

lecade. Total agricultural land acreage has not changed significantly and total crop acreage has increased lue to an increase in multiple cropping of vegetables in the Salinas Valley. There has been a slight shift way from permanent crops such as grapes and apples to annual crops. Acreage planted in strawberries, very high-market value annual crop, has increased. Lettuce and other annual crops have also increased creage since 1980. In the southern portion of the region, irrigated agricultural activity is projected to ntensify slightly by 2020. Although total irrigated land will gradually decrease, planted and harvested crop acres will increase because of the: (1) intensification of multiple-cropping and (2) conversion of indeveloped and formerly nonirrigated lands to irrigable lands. Vineyards (primarily wine grapes) show he most significant acreage expansion. Truck crop and citrus and subtropical fruit orchard acres will emain relatively stable, while other crop categories will experience decreases. Table CC-6 shows rrigated acreage projections to 2020. Figure CC-5 shows the 1990 level irrigated acreage, ETAW, and applied water for major crops in the region.

Despite the recent drought and continued long-term overdraft in some areas, agricultural water supplies have remained dependable. Virtually all applied irrigation water was pumped ground water, intil water from the CVP San Felipe Project was introduced into San Benito County in June 1987. Ground water still constitutes a large majority (82 percent) of the water supply; and, although not without ts problems, such as sea water intrusion, the ready availability of ground water is important to the stability of this area. Irrigated crop acreage is expected to remain roughly stable with only a slight ncrease. Table CC-7 shows the 1990 level evapotranspiration of applied water by crop. Table CC-8 shows agricultural water demand projections to 2020.

Planning Subareas	1990	2000	2010	2020
Northern	346	356	371	379
Southern	182	186	187	187
Total	528	542	558	566

Table CC-6. Irrigated Crop Acreage (thousands of acres)

Table CC-7. 1990 Evapotranspiration of Applied Water by Crop

Irrigated Crop	Total Acres (thousands)	Total ETAW (thousands of acre-feet)	Irrigated Crop	Total Acres (thousands)	Total ETAW (thousands of acre-feet)
Grain	28	5	Pasture	20	51
Sugar beets	5	8	Tomatoes	14	21
Corn	3	3	Other truck	321	415
Other field	16	17	Other deciduous	20	28
Alfalfa	27	68	Vineyard	56	61
			Citrus/olives	18	27
			Total	528	704

	19	90	20	00	20	10	20	20
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Northern						1		
Applied water demand	707	711	737	742	767	772	792	796
Net water demand	553	594	571	615	589	634	602	647
Depletion	543	583	561	604	579	623	592	636
Southern						.		
Applied water demand	434	467	431	464	416	447	408	448
Net water demand	342	367	341	367	333	357	328	356
Depletion	342	367	341	367	333	357	328	358
Total								
Applied water demand	1,141	1,178	1,168	1,206	1,183	1,219	1,200	1,242
Net water demand	895	961	912	982	922	991	930	1,003
Depletion	885	950	902	971	912	980	920	992

Table CC-8. Agricultural Water Demand (thousands of acre-feet)

About one-third of the winegrape acreage in the Salinas Valley has been converted to low volume irrigation systems in recent years. There has also been a slight trend to buried drip irrigation in vegetable crops in the same area. This trend is even more pronounced in San Benito County. About one-fourth of these plantings are currently using this method. In this same area the small acreage of new deciduous tree plantings are on low volume systems. Water conservation measures implemented by growers for their irrigation operations are often related to operating cost reduction. Drip, low-flow emitters, and sprinklers are used for much of the grape, citrus, and subtropical fruit orchards (vineyards are also retrofitted with overhead sprinklers for frost protection). Growers also use hand-moved sprinklers to meet pre-irrigation and seed germination requirements for most truck, corn, tomato, and some field crops; this is usually followed by furrow irrigation. Seedling transplants for some truck crops eliminates the need for seed germination irrigation.

Environmental Water Use

The recent drought has created problems for the fish and wildlife in the region. Along the rivers, riparian habitat has diminished. Likewise, the lack of precipitation has weakened or killed trees and native vegetation in the foothill and mountain areas, creating potential fire problems, insect infestation, and disease.

The Carmel River, San Luis Obispo Creek, and Santa Ynez River have historically been major spawning habitats for steelhead. However, steelhead migration has been reduced by dam construction, low flows due to surface water diversions, poor water quality, and habitat degradation. A number of projects have been proposed for these systems, ranging from dam enlargement on the Carmel and Santa

ulletin 160-93 Administrative Draft

'nez rivers to a water reclamation project on San Luis Obispo Creek. Environmental net water demand ccounts for 3,000 AF. Table CC-9 shows the total environmental instream water needs for the region.

In the Southern portion of the Central Coast Region, there are no federal or State mandated wetlands. 'o the north, Elkhorn Slough National Estuarine Research Reserve is a 1,340 acre coastal area which rotects the habitat or many species of birds, fish, and invertebrates. The reserve is owned by the bepartment of Fish and Game. The slough is one of the few relatively undisturbed coastal wetlands emaining in California. It also serves as a feeding and resting ground for migratory fowl. The reserve eccives no fresh water.

Stream	19	90		2000		2010		2020			
Stream	average	drou	ight	average	droi	ught	average	drou	ght	average	drought
Carmel River			J						And and		
Applied Water	4		2	4		2	4		2	4	2
Net Water	3		0	3		0	3		0	3	0
Depletion	3	ан 67.,	0	3		0	3	1 -	0	3	0
Total		5	1			1			and the second		
Applied Water	4		2	4		2	4		2	4	2
Net Water	3		0	3		0	3		0	3	0
Depletion	3		0	3		0	3		0	3	0

Table CC-9. Environmental Instream Water Needs (thousands of acre-feet)

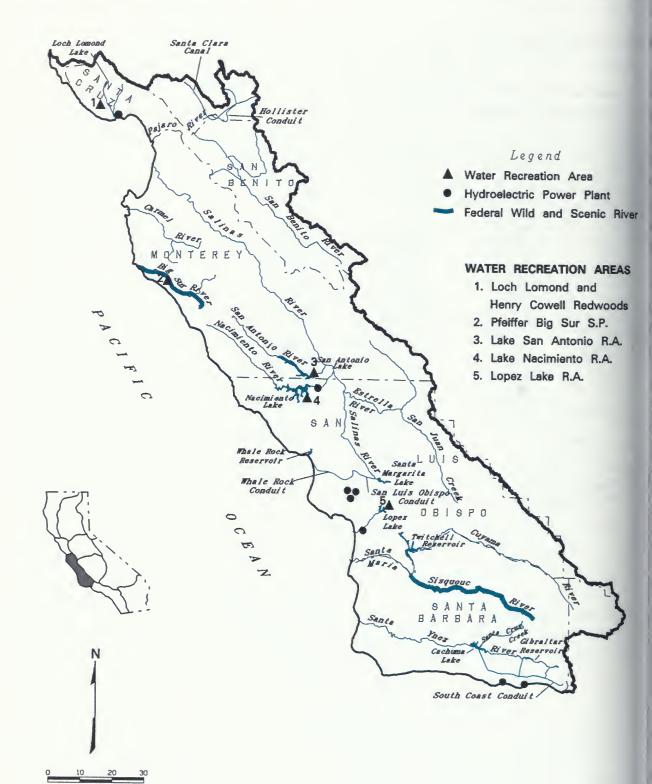


Figure CC-6. Central Coast Region Water Recreation Areas

ulletin 160-93 Administrative Draft

Other Water Use

Other water uses in the region include water for recreation and energy production. Water for ecreation and energy is equivalent to roughly one percent of total demand for the region and is expected or remain stable in coming years. Recreational opportunities in the region benefit from the many lakes, ivers, parks and forests. Activities include hiking, swimming, fishing, boating, camping, and water kiing. Recreational water use accounted for over 1,000 AF in 1990. There does not appear to be any dditional future recreation water use prospects for the region. Surface water recreation is available at an Antonio, Nacimiento, Lopez Lake, Twitchell, and Lake Cachuma reservoirs, among others. Most ffer fishing, boating, camping, and water skiing. Figure CC–6 shows water recreation areas in the egion.

Cooling water is integral to the operations of electrical power plants (gas, oil, and nuclear). Many of ne region's power plants are located along the coastline and use sea water for cooling. Injection of reshwater into the underground oil fields accounted for almost 14,000 AF of water use in 1990 for the anta Ynez area. Table CC-10 shows the total water demands for this region.

Category of Upp	19	90	20	00	20	10	2020	
Category of Use	average	drought	average	drought	average	drought	average	drought
Urban								
Applied water	273	277	315	321	365	373	420	429
Net water	229	233	263	268	304	311	349	357
Depletion	216	219	248	252	285	291	327	334
Agricultural								6
Applied water	1,141	1,178	1,168	1,206	1,183	1,219	1,200	1,242
Net water	895	961	912	982	922	991	930	1003
Depletion	885	950	902	971	912	980	920	992
Environmental								
Applied water	4	2	4	2	4	2	4	2
Net water	3	0	3	0	3	0	3	C
Depletion	3	0	3	9 O	3	0	3	C
Other (1)								-
Applied water	18	18	18	18	18	18	18	18
Net water	21	19	21	19	21	19	21	19
Depletion	21	19	21	19	21	19	21	19
Total		· ·						
Applied water	1436	1475	1505	1547	1570	1612	1642	1691
Net water	1148	1213	1199	1269	1250	1321	1303	1379
Depletion	1125	1188	1174	1242	1221	1290	1271	1345

Table CC-10. Total Water Demands (thousands of acre-feet)

Issues Affecting Local Water Resource Management

The Central Coast Region, with its inland valleys and coastal ground water basins, presents distinctive water management issues. With limited surface supply and fewer surface water storage facilities and a growing demand for water, an increased dependence on ground water pumping is necessary to meet the region's needs. As ground water extractions exceed ground water replenishment, many of the region's aquifers are experiencing overdraft conditions. This condition has allowed sea water to advance into some coastal freshwater aquifers. Sea water intrusion is a continuing threat to ground water reservoirs, and limits on ground water pumping and use are currently being discussed. Unless additional local surface water storage facilities are built and water is imported by the CVP and SWP, the region will not be able to support existing water uses let alone additional water users. Recently, the drought has required many communities in the region to implement stringent water conservation programs.

Legislation and Litigation

Nacimiento Releases. Over the past several years, two lawsuits were filed seeking to control the water releases from Nacimiento Reservoir. The first one was filed by a group of homeowners and interested individuals in the Nacimiento area. Initially, the group obtained a temporary restraining order preventing water releases from the reservoir. However, the order was later released and the plaintiff's request for an injunction was denied. In addition, the court found that the Monterey County FCWCD (now Monterey County Water Agency) was not required to comply with CEQA in setting its yearly release schedule. The decision is now on appeal. The second lawsuit was settled shortly after it was filed by a recreation concessionaire at Nacimiento to maintain the reservoir for recreation uses for the year, but the action did not set a precedent for future years.

Regional Issues

SWP Water. Recently, San Luis Obispo and Santa Barbara counties voted to extend the SWP Coastal Branch to ensure their domestic and agricultural water supplies. The most pressing issue for the region at this time is determining how the SWP water will be used. The San Luis Obispo County Board of Supervisors approved sending draft water supply contracts to cities and water districts to determine their interest in water supplies and amounts from the SWP. A group of farmers and property owners near the Nipomo Community Services District decided to form an irrigation district to receive SWP water. The City of Paso Robles is declining any SWP water and is working with other communities to get water from Lake Nacimiento.

Cloud Seeding. In early 1990, the Monterey County FCWCD initiated a cloud seeding program which was designed to increase rainfall and runoff for the Arroyo Seco River, as well as the San Antonio and Nacimiento reservoirs. As part of the rainfall enhancement program, aircraft seeding operations dispensed silver iodide. An experimental radio controlled, ground based propane dispenser was also installed in the Arroyo Seco area. Overall, the Monterey County Water Agency concluded that rainfall increased from 12–16 percent for water year 1990–91.

Santa Barbara County proposed a cloud seeding design for the 1992–1993 winter program similar to the previous year. The proposed project design is ideally suited to conduct a state–of–the–art operation. The key components are a dedicated weather radar, a seeding aircraft, remotely controlled ground generators, computerized GUIDE model, and an experienced weather modification meteorologist familiar with the area.

For the past two years, in San Luis Obispo County, the City of San Luis Obispo, and Zone 3 of the San Luis Obispo County Flood Control and Water Conservation District conducted a cloud seeding program.

Local Issues

Desalination. The City of Santa Barbara's sea water desalination plant began operation in early March 1992. The plant operated until early June, when it was shut down; the plant will remain shut down until it is needed. Operations of the plant in 1992 helped to alleviate further reductions in agricultural, municipal and residential water use. The cost to produce the water was relatively high for an area that relies on local surface supplies and ground water.

Pajaro Valley Shortages. The Pajaro Valley is experiencing adverse effects from the recent drought, most notably ground water overdraft and accelerated sea water intrusion. Coastal wells and the ground water are becoming unusable in the Sunset Beach, Pajaro Dunes, and Springfield areas. Local homeowners installed expensive water purification equipment, purchased bottled water, or trucked water in to solve the problem. The homeowners currently are negotiating with City of Watsonville officials to obtain a potable water supply. Watsonville officials proposed a pipeline from the city limits to the Sunset Beach area at a cost of \$10,000 per home. The pipeline construction project will take approximately three years to complete, but will provide a potable water supply for the residents.

To better manage its water resources, the Pajaro Valley Water Management Agency, in cooperation with the USBR, is preparing a Basin Management Plan for the Pajaro Valley. To meet the future demands of the area, a combination of alternatives must be employed.

Pajaro Valley Water Augmentation. A \$92 million Basin Management Plan for the Pajaro Valley Water Management Agency was approved in May 1993 by agency directors. Key elements of the preferred alternative includes a dam on College Lake to create a 10,000 AF reservoir and a connection to the San Felipe branch of the CVP and a coastal pipeline to meet agricultural users between Highway 1 and the ocean. The proposed San Felipe extension involves transporting water from the existing Santa Clara Conduit, a key feature of the San Felipe Division, which delivers water from San Luis Reservoir into Santa Clara County, with a fork into San Benito County. The pipeline, with a capacity up to 67 cfs, could provide a maximum annual volume of 19,900 AF annually for municipal and industrial, as well as agricultural, water use in the Watsonville area. The supply for the San Felipe extension will probably come from reallocation of CVP supply. To date, no contract negotiations have occurred to bring water into the Watsonville area.

Monterey Peninsula Problems. Improvements to the Monterey Peninsula's water supply system are needed for several reasons. Water supply in average rainfall years far exceeds demand; however, the area is vulnerable to climate variability and the impact of multi-year droughts. When dry years occur, shortages rapidly develop due to inadequate storage on the Carmel River. The drought, increases in ground water pumping, limited surface water storage facilities, and urban growth have all contributed to the need for an increased firm water supply. Demands for water will continue to increase as new homes and businesses are built. Tourism, a major industry for the region, has also increased since construction of the Monterey Bay Aquarium. Without an increase in the firm water supply for the region, the risk of shortages in dry years will increase. The Monterey Peninsula Water Management District has taken a number of actions to address the need for a reliable water supply. The district has already implemented several programs, including an urban water conservation program.

Water Balance

Water balances were computed for each Planning Subarea in the Central Coast Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table CC-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 1.15 and 1.21 MAF for average and drought years respectively. Those demands are projected to increase to 1.30 and 1.38 MAF, respectively, by the year 2020, after accounting for a 30,000 AF reduction in urban water demand resulting from additional long-term water conservation measures.

Urban net water demand is projected to increase by about 52 percent by 2020, due to projected increases in population. Agricultural net water demand is projected to increase by about 5 percent, primarily due to an expected increase in double cropping in the region. Environmental net water demands, under existing rules and regulations, will remain essentially level; however, there are several Central Coast Region streams that have proposed increases in instream flow for fisheries.

Average annual supplies were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual average and drought year shortages by 2020 are expected to increase to about 84,000 and 140,000 AF, respectively, excluding ground water overdraft.

Bulletin 160-93 Administrative Draft

With planned Level I options, average and drought year shortages could be reduced to 35,000 and 97,000 AF respectively. This remaining shortage requires both additional short-term drought management, water transfers and demand management programs, and future long-term Level II options depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain he economic health of the region.

Demand/Supply	19	90		2020
Demand/Suppry	average	drought	average	drought
Net Demand		•		
Urban-with 1990 level of conservation	229	233	379	387
-reductions due to long-term conservation measures (Level I)		·	-30	-30
Agricultural	895	961	930	1,003
-reductions due to long-term conservation measures (Level I)		· / /	0	. (
Environmental	3	0	3	
Other (1)	21	19	21	19
Total Net Demand	1,148	1,213	1,303	1,379
Water Supplies w/Existing Facilities Under D-1485 for Delta Supplies		8. £		*
Developed Supplies				
Surface Water	204	131	212	13
Ground Water	692	774	755	858
Ground Water Overdraft	249	249	249	249
Subtotal	1,145	1,154	1,216	1,238
Dedicated Natural Flow	3	0	3	i i
Total Water Supplies	1,148	1,154	1,219	1,238
Demand/Supply Balance	0	-59	-84	-141
Future Water Management Options Level I (2)				- ¹
Long-term Supply Augmentation	•			
Reclaimed			44	44
Local			22	18
Central Valley Project			39	· · · (
State Water Project			43	36
Subtotal – Water Management Options Level I			148	98
Ground Water/Surface Water Use Reduction Resulting from Level I Programs	S		-99	-54
Remaining Demand/Supply Balance Requiring Short Term Drought Management and/or Future Level II Options			-35	-97

Table CC-11. Water Balance (thousands of acre-feet)

 (1) Includes conveyance losses, recreation uses, and energy production.
 (2) Protection of fish and wildlife and long-term Delta solutions will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

* * *

SOUTH COAST REGION

SOUTH COAST REGION

The most urbanized region in California is the South Coast. Although it covers only about 7 percent of the State's total land area, it is home to roughly 54 percent of the State's population. Extending eastward from the Pacific Ocean, the region is bounded by the Santa Barbara–Ventura county line and the San Gabriel and San Bernardino mountains on the north, the international border with Mexico on the south, and a combination of the San Jacinto Mountains and low–elevation mountain ranges in central San Diego County on the east. Topographically, the region is comprised of a series of broad coastal plains, gently sloping interior valleys, and mountain ranges of moderate elevations. The largest mountain ranges in the region are the San Gabriel, San Bernardino, San Jacinto, Santa Rosa, and Laguna mountains. Peak elevations are between 5,000 and 8,000 feet above sea level; however, some peaks are nearly 11,000 feet high. (See Appendix C for maps of the planning subareas and land ownership in the region.

The climate of the region is Mediterranean-like, with warm and dry summers followed by mild and wet winters. In the warmer interior, maximum temperatures during the summer can ascend to over 90°F. The moderating influence of the ocean results in lower temperatures along the coast. During winter, temperatures rarely descend to freezing except in the mountains and some interior valley locations.

About 80 percent of the precipitation occurs during the four month period, December through March. Average annual rainfall quantities can range from 10 to 15 inches on the coastal plains and 20 to 45 inches in the mountains. Precipitation in the higher mountains commonly occurs as snow. In most years, snowfall quantities are sufficient to support a wide range of winter sport activities in the San Bernardino and San Gabriel mountains.

There are several prominent rivers in the region, including the Santa Clara, Los Angeles, San Gabriel, Santa Ana, and San Luis Rey. Some segments of these rivers have been intensely modified for flood control. Natural runoff of the streams and rivers averages around 1.2 MAF annually.

Population

Growth has been fairly steady since the first boom of the 1880s. The 1990 population was up 26 percent from 12.97 million in 1980. Much of the population increase is due to immigration, both from within the United States and from around the world. Most of the region's coastal plains and valleys are densely populated. The largest cities are Los Angeles, San Diego, Long Beach, Santa Ana, and Anaheim. Each of these is among in California's top ten most populated cities; Los Angeles and San Diego also are the second and sixth largest cities in the United States, respectively. The region is also home to six of the State's ten fastest growing cities in the 50,000 to 200,000 population range. These are Corona, Fontana, Tustin, Laguna Niguel, National City, and Rancho Cucamonga. Areas undergoing increased urbanization include the coastal plains of Orange and Ventura counties, the Santa Clarita Valley in northwestern Los Angeles County, the Pomona/San Bernardino/Moreno val-

Region CharacteristicsAverage Annual Precipitation: 18.5 inchesAverage Annual Precipitation: 18.5 inchesLand Area: 10,955 square miles19

Average Annual Runoff: 1,227,000 AF 1990 Population: 16,292,800 leys, and the valleys north and east of the City of San Diego. The region's population is expected to increase by 55 percent by 2020. Table SC-1 shows regional population projections to 2020.

		(thousands)	-,	
Planning Subareas	1990	2000	2010	2020
Santa Clara	834	1,063	1,301	1,556
Metropolitan Los Angeles	8,501	9,445	10,376	11,505
Santa Ana	4,023	5,155	6,230	7,384
San Diego	2,935	3,610	4,191	4,870
Total	16,293	19,273	22,098	25,315

Table SC-1, Population Projections

Land Use

Despite being so urbanized, about one-third of the region's land is publicly owned. Approximately 2.3 million acres is public land, of which 75 percent is national forest. Urban land use accounts for about 1.7 million acres, and irrigated cropland accounts for 288,000 acres. Figure SC-1 shows land use in the South Coast Region.

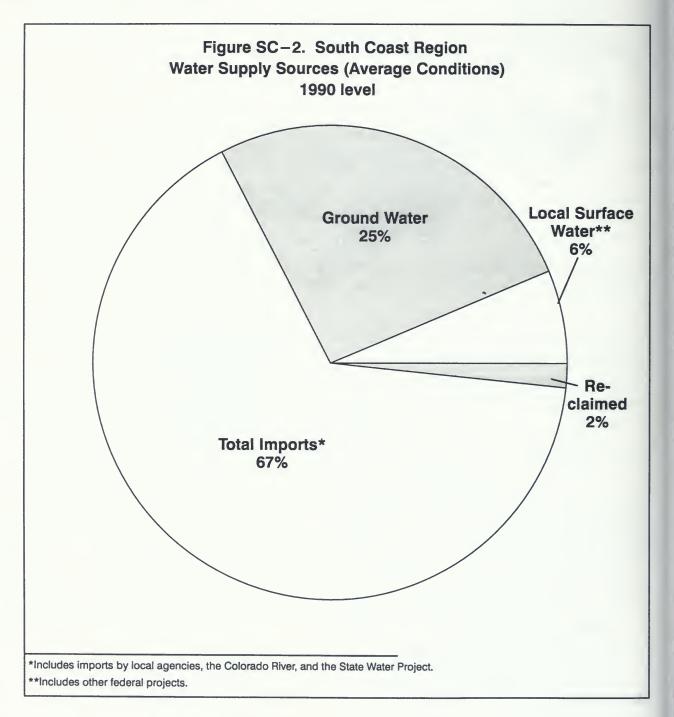
The major industries in the region are national defense, aerospace, recreation and tourism, and agriculture. Other significant industries include electronics, motion picture and television production, oil refining, housing construction, government, food and beverage distribution, and manufacturing (clothing and furniture). While defense, aerospace, and oil refining are currently in a decline, the South Coast Region has a strong and growing commercial services sector. International trading, financing, and basic services are major economic contributors to the region.

One of the most important land use issues in the South Coast Region is whether to prohibit housing and other urban land uses from spreading into the remaining agricultural land and open space. Some of the regions agricultural land is currently protected through the State's Williamson Act. Some local governments are attempting to establish agricultural preserves in their areas. The desire to retain open space in the Los Angeles area also has led to parkland status for parts of the Santa Monica Mountains. Preservation of coastal wetlands and lagoons in the region is another prime concern. A 1993 agreement between federal, State, and local agencies to protect endangered gnat catcher habitat is a good example of protection of open space to benefit wildlife.

The largest amount of irrigated agriculture is in Ventura County, where 116,600 acres of cropland is cultivated. Most of it is fresh market vegetables, strawberries, and citrus and avocados. San Diego PSA has more than 110,600 acres in irrigated agriculture, most of which is planted in citrus and avocados. Fresh market vegetables and other crops are grown in some of the county's coastal and inland valleys. The region is also ideally suited for growing other high value crops, such as nursery products and cut flowers. Other significant irrigated agriculture includes forage and field crops related to the dairy industry and vineyards.

20

30


10

PRESENT WATER SUPPLIES (1,000 AF/Yr.) LOCAL SURFACE WATER DEVELOPMENT 254 IMPORTS BY LOCAL WATER AGENCIES 380 GROUND WATER PERENNIAL YIELD 1,128 OTHER FEDERAL WATER DEVELOPMENT 22 STATE WATER PROJECT 1,232 WASTE WATER RECLAMATION 76 COLORADO RIVER 1,265 California Aqueduct USABLE WATER SUPPLY 4.357 1,232 Los Angeles GROUND WATER OVERDRAFT 22 Aqueduct TOTAL 4,379 380 Pr Sespe SANTA Creek *ROPOLITAN* PACIFIC Colorado River Aqueduct OCEAN Legend DIEGO Urban Land icente Irrigated Land oi **Region Water Transfer** (1,000's of Acre-Feet per Year) Otaj ke MEXICO

> Figure SC-1. South Coast Region Land Use, Imports, Exports, and Water Supplies

Water Supply

About 67 percent of the region's 1990 level water supply comes from surface water imports. The remaining portion is supplied by ground water (25 percent) and to a lesser extent by local surface water (6 percent) and reclaimed water (2 percent). Since the turn of the century, water development has been carried out on a massive scale throughout the South Coast Region. Steady expansion of the population and economy lead to sufficient demand and financial backing to build large water supply projects for importing water into the region. Figure SC–2 shows the region's sources of supply.

Bulletin 160–93 Administrative Draft

Supply with Existing Facilities and Water Supply Management Programs

Local and imported surface water account for about 73 percent of the region's 1990 level water supply. In 1913, the Los Angeles Aqueduct began importing water from the Mono–Owens area to the South Coast region. With the addition of a second conduit in 1970, the Mono–Owens supply is about 10 percent of the region's 1990 level water supply. Court–ordered restrictions on diversions from the Mono Basin and Owens Valley have reduced the amount of water the City of Los Angeles can receive and have brought into question the reliability of Mono–Owens supply for Los Angeles (see South Lahontan Region). In 1941, the Metropolitan Water District of Southern California completed the Colorado River Aqueduct, providing about 29 percent of the region's supply with Colorado River water. The State Water Project began delivering water from the Sacramento–San Joaquin Delta to the South Coast region in 1972, furnishing about 28 percent of the supply. The remainder of the surface supply (about 6 percent of the 1990 level total) is provided by local projects. Table SC–2 list the major reservoirs in the region.

Reservoir Name	River	Capacity (1,000 AF)	Owner
Casitas	Coyote Creek	254	USBR
Lake Piru	Piru Creek	88.3	United WCD
Pyramid	Piru Creek	171.2	DWR
Matilija	Atilija Matilija Creek		Ventura CO FCD
Castaic	Castaic Creek	323.7	DWR
Cogswell	San Gabriel	8.9	Los Angeles CO FCD/Dept. of Public Works
San Gabriel	San Gabriel	42.4	Los Angeles CO FCD/Dept. of Public Works
Bear Valley	Bear Creek	73.4	Big Bear MWD
Perris	Bernasconi Pass	131.5	DWR
Lake Mathews	Trib Cajalco Creek	179.3	MWDSC
Lake Hemet	San Jacinto River	13.5	Lake Hemet MWD
Railroad Canyon	San Jacinto River	11.9	Temescal Water Co.
Santiago Creek	Santiago Creek	25.0	Serrano ID/Irvine Ranch WD
Skinner	Tucalota Creek	44.2	MWDSC
Vail Lake	Temecula Creek	50.0	Rancho California WD
Henshaw	San Luis Rey River	50.0	Vista ID
Lake Hodges	San Dieguito River	37.7	City of San Diego
Sutherland	Santa Ysabel Creek	29.0	City of San Diego
San Vicente	San Vicente Creek	90.2	City of San Diego
El Capitan	San Diego River	112.8	City of San Diego
Cuyamaca	Boulder Creek	11.8	Helix WD
Lake Jennings	Quail Canyon Creek	9.8	Helix WD
Murray	Chaparral Canyon	6.1	City of San Diego
Lake Loveland	Sweetwater River	25.4	Sweetwater Authority
Sweetwater	Sweetwater River	28.1	Sweetwater Authority
Lower Otay	Otay River	49.5	City of San Diego
Morena	Cottonwood Creek	50.2	City of San Diego
Barrett	Cottonwood Creek	37.9	City of San Diego
Miramar	Big Surr Creek	7.3	City of San Diego

Table SC-2. Major Reservoirs

Bulletin 160-93 Administrative Draft

There are numerous ground water basins along the coast and inland valleys of the region. Many of these basins are adjudicated or managed by a public agency (see Vol. I, chapters 2 and 4). Recharge occurs from natural infiltration along river valleys, but in many cases, basin recharge facilities are in place using local, imported, or reclaimed supplies. Some basins are as large as several hundred square miles in area and have a capacity exceeding 10 MAF. The current estimated annual use approaches 1.1 MAF.

Basins close to the coast often have troubles with sea water intrusion. Historically, additional recharge or a series of injection wells forming a barrier have been used to mitigate this problem. Other ground water quality concerns are high TDS, nitrates, PCE, sulfates, pesticide contamination (DBCP), selenium, and leaking fuel storage tanks.

Approximately 76,000 AF of fresh water was displaced by reclaimed water in 1990, about 2 percent of the region's supply. Reclaimed water is used for irrigating freeway and other urban landscaping, golf courses, and some agricultural land; it is also used in ground water recharge and sea water barrier projects. The Central and West Basin Water Replenishment District annually recharges the Central and West Coast ground water basins with 50,000 AF of reclaimed water. The Orange County Water District injects about 5,000 AF of reclaimed water into the ground at the Alamitos Barrier Project. This process prevents further sea water intrusion into the district's ground water supply and frees imported supplies for other uses.

Drought Water Management Strategies. To minimize the impacts caused by the shortfalls in imported surface water supplies, most agencies in the region established and implemented rationing programs during the 1987–92 drought to bring demand in line with supplies. Customer rationing allotments were determined by the customer's use prior to the drought. Rationing levels, or reductions, ranged from 15 to 50 percent.

Programs implemented by the Cities of San Diego and Los Angeles are typical of the efforts agencies throughout the region made to combat recent drought-induced shortages. The City of San Diego implemented a 20 percent rationing program for its customers during 1991; a 10 percent program had been in place since 1988. Other programs and activities by the City of San Diego included establishing customer rebates for the installation of ultra-low flush toilets, distributing free showerheads, providing turf and home audit service, expanding the existing public information program (with a 24-hour hotline), establishing a field crew to handle waste-of-water complaints, constructing a xeriscape demonstration garden, and retrofitting city water facilities. Landscape designs for new private and public construction are regulated for water conservation by a 1986 City ordinance. San Diego also has ordinances that permit enacting water conservation measures and programs during critical water supply situations and that require all residential dwellings to be retrofitted prior to resale.

The City of Los Angeles has had a rationing program in place since 1986. The program was mandatory for all its customers until early in 1992, when it was revised to voluntary status. The program originally called for a 10 percent reduction; however, it was amended to 15 percent during 1992 when the State's water supply situation worsened. Programs established by the City of Los Angeles are similar as those described for San Diego. Los Angeles also established a "drought buster" field program with staff patrolling neighborhoods looking for water wasters. Table SC–3 shows the region's water supplies with existing facilities and programs.

Table SC-3. Water Supplies with Existing Facilities and Programs

(Decision 1485 Operating Criteria for Delta Supplies)

(thousands of acre-feet)

Supply	19	90	20	00	20	10	20)20
Supply	average	drought	average	drought	average	drought	average	drought
Surface								
Local	254	118	254	118	254	118	254	118
Imports by local ¹	425	208	425	208	425	208	425	208
Colorado River ²	1,265	1,230	626	626	626	626	626	626
CVP	0	0	0	0	0	0	0	0
Other federal	22	21	22	21	22	21	22	21
SWP ¹	1,232	1,032	1,746	1,072	1,901	1,140	1,903	1,154
Ground water ³	1,083	1,296	1,379	1,524	1,515	1,611	1,611	1,611
Overdraft	22	22	5	5	0	0	0	0
Reclaimed	76	76	76	76	76	76	76	76
Dedicated natural flow	0	0	0	0	0	0	0	0
Total	4,379	4,003	4,533	3,650	4,819	3,800	4,917	3,814

¹ 1990 supplies are normalized and do not reflect additional supplies needed to offset reduction of supplies from the Mono and Owens basins. SWP supply was used in 1990 to replace reduction of supplies from Mono and Owens basins, putting additional demand on Delta supplies.

² Colorado River supplies for the year 2000 and beyond reflect elimination of surplus Colorado River supplies and the transfer of 76,000 AF of water from the Colorado River Region as a result of currently agreed upon conservation programs ³ Includes ground water reclamation. MWDSC ground water recovery program would provide additional supplies of 85,000 AF by year 2000 and 95,000 AF by 2010 and beyond.

Water Management Options with Existing Facilities. MWDSC is pursuing additional supplies to replace those it has lost under recent court's rulings. Other factors contribute to a growing demand for water from MWDSC. Water use in its service area has increased from 2.8 MAF in 1970 to 4.0 MAF in 1990. The increase reflects a large population growth. Moreover, the City of Los Angeles is increasing its reliance upon MWDSC's water to make up for its loss of imported water from the Owens River–Mono Basin. Following are highlights of major MWDSC water supply and demand management programs, most of which are in place, that would provide options for additional supplies, especially in critical years.

Imperial Irrigation District Water Conservation Agreement (Phase I) began in January 1990. In return for financing certain conservation projects, MWDSC is entitled to the amount of water saved by IID. Conservation projects include lining existing canals, constructing local reservoirs and spill interceptor canals, installing nonleak gates and automation equipment, and instituting distribution system and on-farm management activities.

MWDSC has an advance delivery agreement with Desert Water Agency and Coachella Valley Water District for ground water banking. Under this agreement MWDSC makes advance deliveries of Colorado River water (conditions permitting) to the two agencies for recharging the Coachella Valley ground water basin. MWDSC, in turn, may use the SWP entitlements of the two agencies (61,200 AF per year). Water stored in the basin during the recent drought was used by the two agencies, enabling MWDSC to make full use of the DWA and CVWD entitlements.

Bulletin 160–93 Administrative Draft

Under the Chino Basin and San Gabriel Basin Cyclic Storage Agreement, imported water is delivered to and stored in the Chino and San Gabriel basins. When water supplies are abundant, advance deliveries of MWDSC's ground water replenishment supplies are provided for later use. When imported supplies are limited, MWDSC has the option of meeting the replenishment demands through surface deliveries or a transfer of the stored water. MWDSC's maximum storage entitlements are 100,000 AF in the Chino Basin and 142,000 AF in the San Gabriel Basin. As of July 1990, 28,000 AF was stored in the Chino Basin and 58,000 AF in the San Gabriel Basin. MWDSC is also planning for additional conjunctive use programs.

MWDSC promotes water reclamation through its Local Projects Program of 1981. Under this program, the district provides financial assistance for local water reclamation projects which develop new water supplies. The programs' primary focus is on increasing the use of reclaimed water in landscape irrigation and industry, thereby reducing the demand for potable water supplies. To date, MWDSC is participating in 32 projects, with a total ultimate yield of 147,000 AF per year. Currently, four additional projects submitted to MWDSC for inclusion in the program are in various stages of review. These proposed projects have a combined estimated ultimate yield of 21,700 AF per year.

MWDSC promotes conjunctive use at the local agency level under its Seasonal Storage Service Program of 1989 by discounting rates for imported water placed into ground water or reservoir storage. The discounted rate and program rules encourage construction of additional ground water production facilities allowing local agencies to be more self sufficient during shortages. Additionally, the program is designed to reduce the member agencies' dependence upon district deliveries during the peak summer demand months. As of December 31, 1992, approximately 1.24 MAF of water has been delivered as Seasonal Storage Service.

Other water management options include water banking, short-term fallowing of land, desalination, reclaiming waste water and brackish ground water, water conservation, and additional offstream storage facilities for imported supplies.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

With planned Level I options, 2020 average and drought year shortages could be reduced to 373,000 and 1,001,000 AF, respectively. A shortage of this magnitude could have severe economic impacts on the region. This remaining shortage requires both additional short-term drought management, water transfers and demand management programs, and future long-term and Level II options depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region. In the short-term,

some areas of this region that rely on Delta exports for all or a portion of their supplies face greater uncertainty in terms of water supply reliability due to the uncertain outcome of a number of actions undertaken to protect aquatic species in the Delta. Local water districts are seeking to improve water service reliability of their service area through water transfers, water recycling, conservation, and supply augmentation.

Water Management Options with Additional Facilities. The USBR is studying the potential for recycled water use under its "Southern California Comprehensive Water Reclamation Study." The goal of the \$6 million, three-phase study is to "identify opportunities and constraints for maximizing water reuse in Southern California. Phase I is expected to be complete in one year; the scheduling of phases II and III will be determined during the first phase. Expected completion date is March 1999. The USBR believes the success of the study depends on the active participation of local and State agencies.

MWDSC authorized preliminary studies for a 5-mgd (5,600 AF per year) desalination pilot plant (distillation method). Although the location is undecided, plans call for the plant to be near an existing power plant on the coast. Planned ultimate capacity of the plant is 100 million gallons per day (112,000 AF per year).

The Colorado River Banking Plan is a proposal that would create an additional water supply for MWDSC by making use of available SWP water in place of Colorado River water. Under the plan, MWDSC would adjust its Colorado River diversions according to the availability of water from the SWP. In years when SWP supplies are adequate, MWDSC would take more of its SWP water and correspondingly less Colorado River water. The difference between available Colorado River water and MWDSC's actual diversions would remain in Lake Mead and be credited to a water management account. Any additional water lost by spills or evaporation due to the storage of such water would be deducted from the water management account.

The final environmental impact report for the Arvin–Edison Water Exchange Program, involving an agreement between MWDSC and the Arvin–Edison Water Storage District, is scheduled for 1993. Arvin–Edison is a Central Valley Project contractor in southeastern Kern County. Its CVP water is delivered through the California Aqueduct by arrangement with the State. According to the proposed contract, MWDSC will help construct Arvin–Edison's partially completed distribution system and deliver a portion of its SWP water in wet years for use in Arvin–Edison's replenishment programs. In return, MWDSC will receive some of Arvin–Edison's CVP water during dry years. Through this proposed agreement, MWDSC expects to store as much as 135,000 AF per year of SWP water in the southern San Joaquin Valley. During wet periods, MWDSC could accumulate a storage account of up to 800,000 AF. In dry periods, the program would make roughly 100,000 AF per year available for MWDSC. In another exchange program, MWDSC negotiated with Kern County Water Agency to store SWP supplies in the Semitropic Water Storage District's ground water basin. (See Volume I, Chapter 11.)

In October 1991, MWDSC certified the final environmental impact report for the Eastside Reservoir Project (Domenigoni Valley Reservoir). Final design and land acquisition activities for the reservoir, which will be in the Domenigoni Valley, are proceeding. The ERP, combined with the ground water storage program, will: (1) maximize ground water storage by regulating imported water supplies for conjunctive use programs, (2) provide emergency water reserves if facilities are damaged as a result of a major earthquake, (3) provide supplies to reduce water shortages during droughts, (4) meet seasonal operating requirements, including seasonal peak de-

110

mands, and (5) preserve operating reliability of the distribution system. This conjunctive use program should eventually provide two years of drought or carryover storage protection for MWDSC (528,000 AF). The project should be completed by 1999.

Under the Ground Water Recovery Program of 1991, MWDSC will improve regional water supply reliability by providing financial assistance for local agencies to recover contaminated ground water. The goal of the Ground Water Recovery Program is to recover 200,000 AF per year of degraded ground water. About half of this ultimate annual production will be untapped local yield, or new supplies. The remainder will require replenishment from MWDSC's imported water to avoid basin overdraft. Those projects will produce water, including during droughts, but will only receive replenishment water when imported supplies are available. Currently, MWDSC has approved participation of eight projects, with an estimated ultimate production of 21,800 AF per year. The program is expected to reach its goal of 200,000 AF per year by the year 2004. The net projected yield associated with natural replenishment from the Ground Water Recovery Program through the year 2020 is:

Year	Net Projected Yield Acre–Feet Per Year	
1993	1,554	
· 2000	86,100	
2010	95,540	
2020	95,540	

Local surface water supplies provide a minor contribution to the South Coast Region, making up only about 6 percent of the region's total supplies. During drought years, these surface supplies, for the most part, dry up. However, during the winter, this region can be hit with devastating floods. Many people speculate that more local surface reservoirs could help alleviate the region's need for increased imported supplies. However, the cost of developing local surface water supply projects for rare or limited runoff makes them impractical at present. Table SC-4 shows water supplies with additional Level I facilities and programs.

Table SC-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies)

(th	ousar	nds	of	acre-	-feet)

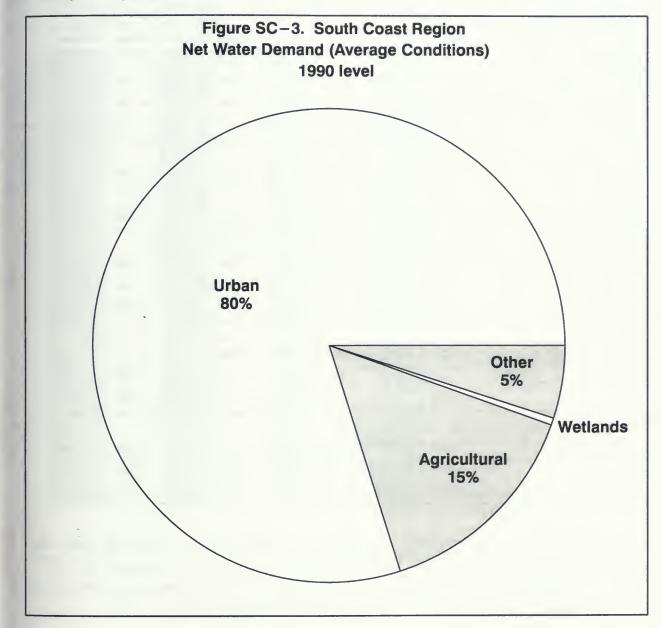
Supply	1990		2000		2010		2020	
Supply	average	drought	average	drought	average	drought	average	drought
Surface								
Local	254	118	254	118	254	118	254	118
Imports by local ²	425	208	425	208	425	472	425	472
Colorado River ¹	1,265	1,230	696	696	696	696	696	696
CVP	0	0	0	0	0	0	0	0
Other federal	22	21	22	21	22	21	22	21
SWP ²	1,232	1,032	1,846	1,336	2,233	1,815	2,237	1,834
Ground water ³	1,083	1,296	1,273	1,488	1,341	1,537	1,539	1,611
Overdraft	22	22	5	5	0	0	0	0
Reclaimed	76	76	234	234	296	296	357	357
Dedicated natural flow	0	0	0	0	0	0	0	0
Total	4,379	4,003	4,755	4,106	5,267	4,955	5,530	5,109

¹ Colorado River supplies for year 2000 and beyond reflect elimination of surplus Colorado River supplies, ransfer of 76,000 AF of water as a result of currently agreed upon conservation programs, and an additional 70,000 – AF water transfer from the Colorado River Region as a result of IID/MWDSC agreement on lining of the All American Canal.

² 1990 supplies are normalized and do not reflect additional supplies needed to offset reduction of supplies from the Mono and Owens basins. SWP supply was used in 1990 to replace reduction of supplies from Mono and Owens basins, putting additional demand on Delta supplies.

³ Includes ground water reclamation. MWDSC ground water recovery program would provide additional supplies of 85,000 AF by year 2000 and 95,000 AF by 2010 and beyond.

Water Use


Urban water demands for the South Coast Region have progressively increased over the last decade. Tremendous population growth rates and rapidly expanding urbanized areas contributed heavily to this increase. In many areas, urban expansion has lead to reductions in agricultural acreage and water use. Figure SC-3 shows the distribution of 1990 level net water demands for the region.

Urban Water Use

Total municipal and industrial applied water use in 1990 is estimated at 3.85 MAF (Table SC–5), an increase of 1.10 MAF from 1980. The increase is attributed to population and economic growth. Table SC–5 shows that 1990 applied urban water use in the Metropolitan Los Angeles planning subarea is about half of the region's total. Projections indicate that urban applied water use in the region will increase by 56 percent between 1990 and 2020.

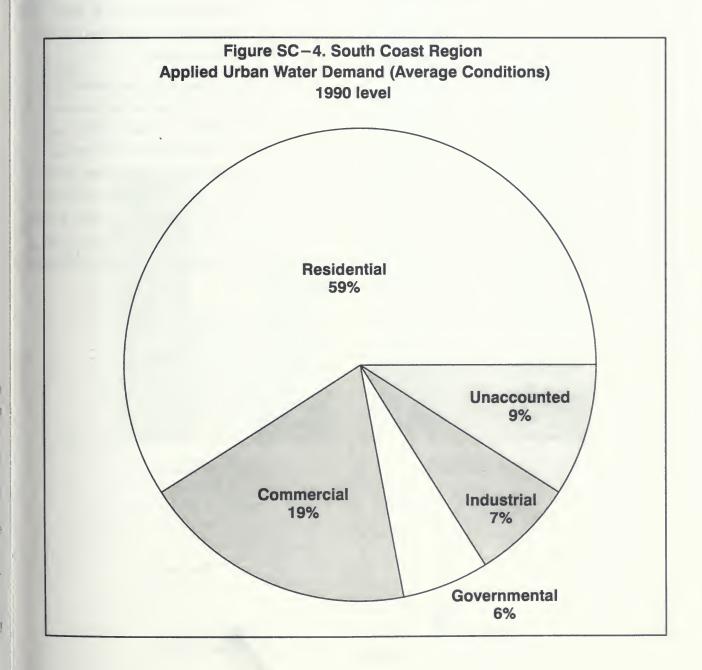
Although overall demands have increased since 1980, per capita water use has leveled off somewhat in older urbanized areas with modest increases in the newer urbanized areas, particularly in the warmer interior sections of the region. Since there is little space for expansion, the older urban core areas are being renovated and converted from one type of use to another, such as single-family residential to multi-family residential. Such conversions

tend to decrease household water use because of reductions in the exterior water uses associated with these multi-family housing structures.

Blonning Subarasa	1990		2000		2010		2020	
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Santa Clara				1				<u> </u>
Applied water demand	183	190	231	240	287	298	345	358
Net water demand	153	158	194	201	241	250	290	301
Depletion	149	154	186	193	231	240	278	289
Metropolitan Los Angeles								
Applied water demand	1,911	1,985	2,055	2,135	2,270	2,359	2,520	2,620
Net water demand	1,833	1,904	1,971	2,048	2,177	2,263	2,417	2,512
Depletion	1,795	1,866	1,888	1,965	2,074	2,160	2,294	2,390
Santa Ana								
Applied water demand	1,067	1,111	1,344	1,401	1,665	1,736	2,020	2,108
Net water demand	848	882	1,045	1,087	1,265	1,317	1,500	1,564
Depletion	720	746	872	905	1,036	1,077	1,209	1,257
San Diego		X (1
Applied water demand	690	711	816	841	958	988	1,123	1,158
Net water demand	677	697	800	825	940	969	1,102	1,137
Depletion	666	687	733	758	857	886	1,003	1,037
Total								
Applied water demand	3,851	3,997	4,446	4,617	5,180	5,381	6,008	6,244
Net water demand 3,5"		3,641	4,010	4,161	4,623	4,799	5,309	5,514
Depletion 3,330		3,453	3,679	3,821	4,198	4,363	4,784	4,973

Table SC-5. Urban Water Demand (thousands of acre-feet)

Average 1990 per capita water use by PSA for the region is 211 gallons daily. This daily per capita value ranges from 246 gallons for the Santa Ana PSA to 204 gallons in the Metropolitan Los Angeles PSA. With continued water conservation, the region's average per capita water use is expected to increase slightly to 212 gallons daily by 2020. Figure SC-4 shows 1990 level applied urban water demand by sector.


Recent State laws require that most urban water wholesale and retail agencies prepare urban water management and water shortage contingency plans. Under the Urban Water Management Act of 1985 most agencies must analyze their water conveyance operations and water use in their service areas, identify areas for improvement, and develop and implement plans to correct any inefficiencies. The plans must be updated at 5-year intervals. The act requires that agencies examine operations and demands in their service area during droughts and develop plans to cope with the shortfall in supply. These plans will be attached to existing urban water management plans.

Most of the water conservation programs identified in these plans are a part of a package known collectively as the *Best Management Practices* (a more detailed discussion about urban BMPs is in Volume I, Chapter 6).

Bulletin 160-93 Administrative Draft

BMPs assist agencies develop specific strategies to augment or stretch their dependable water supplies to meet ever-increasing water demands within their service areas. Plans must be implemented on a timetable once an agency decides to adopt these practices.

Since 1980, many water and local governmental agencies have developed and implemented water conservation programs, similar to those required in the Best Management Practices list. Many local agencies provide technical assistance to schools who wish to incorporate discussions on water resources and conservation into their natural science curricula. Total urban water use will be reduced through these ongoing programs, implemented BMPs, building and plumbing code modifications, and more efficient irrigation operations for major landscaping projects.

Agricultural Water Use

Total agricultural applied water use for the 1990 level was approximately 727,000 AF, a decrease of approximately 26 percent since 1980. The Santa Clara PSA used the most agricultural water in 1990, roughly 34 percent of the total, followed closely by San Diego PSA with 33 percent and Santa Ana PSA with 31 percent. The Metropolitan Los Angeles PSA had the least demand, using only about 2 percent of the region's total applied agricultural water. Figure SC–5 shows the irrigated acreage, ETAW, and applied water for major crops grown in the region.

The South Coast Region's 1990 normalized crop acreage was almost 318,000 acres (Table SC–6). The major agricultural operations in the region are found in the Santa Clara, San Diego and Santa Ana PSAs. A 42 percent decrease in total irrigated crop acres (including multiple cropped acres) is projected for the region, to about 184,000 acres by 2020 primarily due to economics and the urbanization of irrigated lands. The region's total irrigated land acres are also projected to decrease about 115,000 acres over the same time period.

Five major crops produced in the region are citrus and subtropical fruit, truck (vegetables and nursery products), improved pasture grass, small grains, and alfalfa. Slightly more than half of the total cropped acres and gross applied water in the region is associated with citrus and subtropical fruit orchards. Citrus (mostly oranges, lemons, and grapefruit) is found in all parts of the South Coast Region, but the largest amounts are in the San Diego and Santa Clara PSAs. High-value crops, such as avocados, are generally grown in the hills above the Santa Clara River in Ventura County and in the hills in the extreme southwestern Riverside County (Santa Ana PSA) and San Diego County. The region also has a substantial cut-flowers industry. Truck crops follow citrus and subtropical fruit in terms of planted and harvested acres and use of applied water. Irrigated grain is cultivated in southern San Diego County, southwestern San Bernardino County, and southwestern Riverside County. Irrigated pasture and alfalfa are grown primarily in southwestern San Bernardino County.

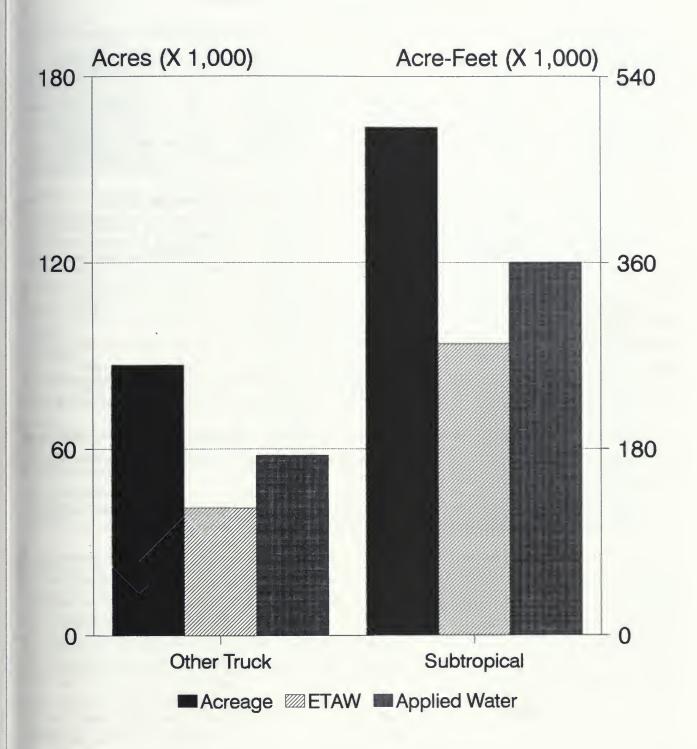


Figure SC-5. South Coast Region Acreage, ETAW, and Applied Water for Major Crops

(thousands of acres)								
Planning Subareas 1990 2000 2								
118	110	94	71					
7	6	5	5					
83	66	48	30					
111	105	88	78					
319	287	235	184					
	1990 118 7 83 111	1990 2000 118 110 7 6 83 66 111 105	1990 2000 2010 118 110 94 7 6 5 83 66 48 111 105 88					

Table SC-6. Irrigated Crop Acreage (thousands of acres)

Table SC-7. 1990 Evapotranspiration of Applied Water by Crop

Irrigated Crop	Total Acres (thousands)	Total ETAW (thousands of acre-feet)	Irrigated Crop	Total Acres (thousands)	Total ETAW (thousands of acre-feet)
Grain	11	2	Tomatoes	9	20
Corn	5	7	Other truck	87	123
Other field	4	8	Other deciduous	3	8
Alfalfa	10	26	Vineyard	6	9
Pasture	20	55	Citrus/olives	164	282
			Total	319	540

Vineyards in Pomona Valley are on the decline; however, modest acreages in southwestern Riverside County have remained stable since 1980. Deciduous tree crops are relatively small, but there is a concentration of apples and pears in central San Diego County.

Even though the region's projected acres are expected to decline, citrus and subtropical fruit and truck crops will be significant portions of the remaining cropped acres.

Water conservation efforts by the growers will contribute to the reduction of agricultural water demands in the region. Most citrus and subtropical growers use the latest irrigation system technologies of drip emitters and low-flow sprinklers. Also, they are managing their irrigation operations with more efficiency. The best potential for conservation beyond current achievements will be in the citrus and subtropical orchard irrigation operations. Much of the potential for savings will occur by the end of the decade, possibly up to an additional 5 percent. Increased use of drip irrigation, improved furrow irrigation, plastic mulches, and irrigation scheduling services will save water in the other crop categories.

Table SC–8 shows 1990 level and projected applied agricultural water demand in the region. Applied water amounts vary with the source of water supply (surface or ground water). Drought year factors reflect the need for additional irrigation to replace water normally supplied by rainfall and to meet higher than normal evapotranspiration demands. The region's total applied agricultural water use is expected to decrease 47 percent by 2020. Urbanization of irrigated agricultural land is the main factor in this reduction. Other factors include continued improvements in on–farm irrigation operations and irrigation system technologies. Decreases range from about 66 percent to 34 percent among the PSAs.

Blanding Subarasa	19	90	20	00	20	10	20)20
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Santa Clara								
Applied water demand	245	256	222	233	184	193	138	145
Net water demand	214	224	197	207	167	175	126	133
Depletion	214	224	197	207	167	175	126	133
Metropolitan Los Angeles		} 1						
Applied water demand	15	16	11	12	10	11	9	9
Net water demand	13	14	10	11	9	9	8	. 8
Depletion	13	14	10	11	9	9	8	8
Santa Ana								
Applied water demand	227	232	179	181	127	129	77	78
Net water demand	186	190	149	152	109	110	68	69
Depletion	186	190	149	152	109	110	68	69
San Diego								
Applied water demand	240	249	220	229	178	185	158	164
Net water demand	231	240	213	222	173	180	154	160
Depletion	231	240	213	222	173	180	154	160
Total								
Applied water demand	727	753	632	655	499	518	382	396
Net water demand	644	668	569	592	458	474	356	370
Depletion	644	668	569	592	458	474	356	370

Table SC-8. Agricultural Water Demand (thousands of acre-feet)

Environmental Water Use

Currently, the State's San Jacinto Wildlife Area occupies approximately 5,000 acres, and there are applications to increase the size of the facility by 1,600 acres. The SJWA is run by DFG. It is unique in that it is the first such operation in the State to use reclaimed waste water. Eastern Municipal Water District supplies the facility with reclaimed water from its Hemet/San Jacinto Water Reclamation Plant. Reclaimed water allocations to the SJWA are 2,200 AF a year, even though only 400 AF and 800 AF were used in 1990 and 1991, respectively. By the year 2000, the allocation will be 4,500 AF. Table SC-9 shows wetland water needs to 2020.

Wetlands	19	90	20	00	20	10	20)20
wettanus	average	drought	average	drought	average	drought	average	drought
San Jacinto WA				X				
Applied water	2	2	6	6	6	6	6	6
Net water	2	2	6	6	6	6	6	6
Depletion	2	2	6	6	6	6	6	6
Total								
Applied water	2	2	6	6	6	6	6	6
Net water	2	2	6	6	6	6	6	6
Depletion	2	2	6	6	6	6	6	6

Table SC-9. Wetlands Water Needs (thousands of acre-feet)

Additional environmental water supply requirements may be needed for the Sespe Wilderness. This preserve is in the Ventura County portion of the Los Padres National Forest and totals approximately 219,700 acres. A portion of Sespe Creek has been added to the list of Wild and Scenic Rivers.

Other Water Demand

Recreational water use in the South Coast Region amounted to almost 23,000 AF in 1990. Most recreational facilities in the region consist of campgrounds and parks, and their use entails water for lawns, toilets, showers, and facility maintenance and public service. Use in the Santa Clara, Metropolitan Los Angeles, Santa Ana, and San Diego PSAs in 1990 amounted to about 8,000 AF; 8,000 AF; 3,000 AF; and 3,000 AF, respectively. Figure SC–6 shows water recreation areas in the South Coast Region.

Conveyance losses account for 160,000 AF and are realized in the transmission of water via the three major aqueducts in the region. Cooling water for power plants amounts to 35,000 AF, while approximately 5,000 AF is used to inject water in deep wells to extract oil. Table SC–10 shows total water demand projections to 2020 for the South Coast Region.

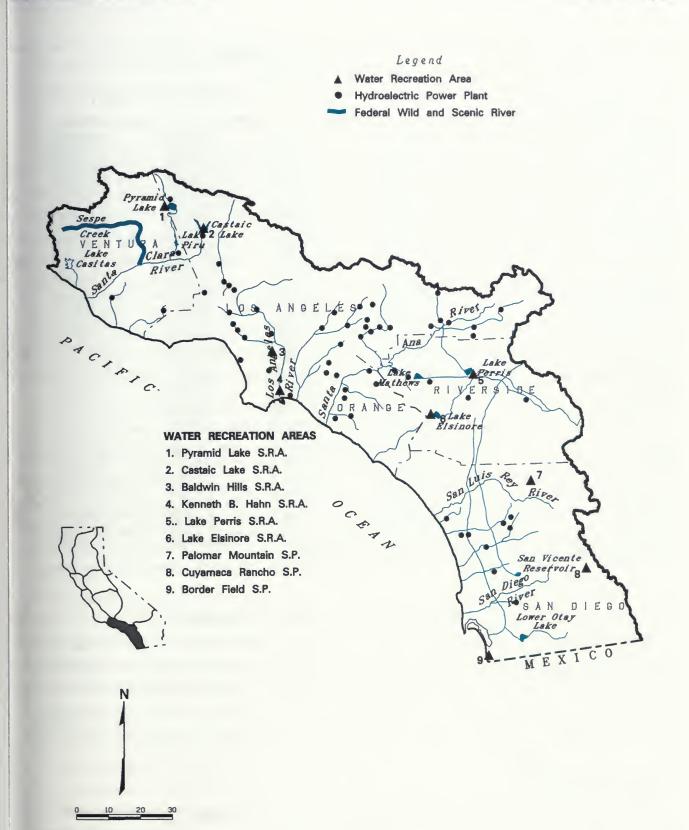


Figure SC-6. South Coast Region Water Recreation Areas

Catagory of Lice	19	90	20	00	20	10	20	020
Category of Use	average	drought	average	drought	average	drought	average	drought
Urban								1
Applied water	3,851	3,997	4,446	4,617	5,180	5,381	6,008	6,244
Net water	3,511	3,641	4,010	4,161	4,623	4,799	5,309	5,514
Depletion	3,330	3,453	3,679	3,821	4,198	4,363	4,784	4,973
Agricultural								
Applied water	727	753	632	655	499	518	382	396
Net water	644	668	569	592	458	474	356	370
Depletion	644	668	569	592	458	474	356	370
Environmental		£		. 1				*
Applied water	2	2	6	6	6	6	6	6
Net water	2	2	6	6	6	6	6	6
Depletion	2	2	6	6	6	6	6	6
Other (1)		5						-
Applied water	62	57	67	62	72	67	72	67
Net water	222	210	227	215	232	220	232	220
Depletion	222	210	227	215	232	220	232	220
Total								
Applied water	4,642	4,809	5,151	5,340	5,757	5,972	6,468	6,713
Net water	4,379	4,521	4,812	4,974	5,319	5,499	5,903	6,110
Depletion	4,198	4,333	4,481	4,634	4,894	5,063	5,378	5,569

Table SC-10. Total Water Demands (thousands of acre-feet)

includes conveyance losses, recreational uses, and energy production

Issues Affecting Local Water Resource Management

Each PSA in the region has its own set of geographic and demographic conditions which present several water management issues. In general, though, the South Coast Region faces several critical water supply issues, most notably increasing demand with limited ability to increase supply, and ground water degradation. The most significant events in recent years regarding regional water supplies were the court decisions regarding Mono Lake and Colorado River diversions. (For a detailed discussion about these court decisions, see Volume I, Chapter 2.)

Legislation and Litigation

Legislation and litigation played a very important part in developing water supplies for the South Coast Region. Most court decisions and legislation that affect the region are those which also affect statewide water resources. A complete discussion of these decisions and laws are in Volume I, Chapter 2.

MWDSC is the largest water purveyor in the region; it has 27 member agencies, some of whom rely solely on MWDSC for their water supply. Many other agencies, like the City of Los Angeles, rely on MWDSC to supple-

nent their existing water supplies. MWDSC lost an extremely important supply of water when its Colorado River entitlement was cut by 650,000 AF; the City of Los Angeles lost an important supply of water when its Mono Lake and Owens Valley water supplies were reduced. Details are provided in Volume I, Chapter 3.

A brief synopsis of agreements and litigation which affect regional water matters follows:

Untreated Sewage from Mexico. Tijuana's excess sewage has plagued the City of San Diego and its South Bay beaches since the 1930s. During frequent failures of Tijuana's inadequate, antiquated sewage treatment sysem, millions of gallons of raw sewage have been carried across the border through the Tijuana River to its estuury in San Diego County. San Diego's first attempt to alleviate this nuisance was in 1965, when the city agreed to reat Tijuana's waste on an emergency basis. In 1983, the United States and Mexico signed an agreement stating hat Mexico would modernize and expand Tijuana's sewage and water supply system and build a 34-mgd sewage reatment plant.

Mexico received a grant for \$46.4 million from the Inter-American Development Bank to help finance the expansion and was to spend an additional \$11 million to build the waste water treatment plant, 5 miles south of he International Border. Phase I of the facility was completed in January 1987. The plant was fully operational n September 1987, only to break down a month later. In May 1988, the facility was again operational.

A future facility will be funded jointly by Mexico and the U.S. at a cost of \$192 million. Additional phases vill be added as needed, with an ultimate capacity of 100 mgd. The effluent will be discharged to the Pacific Dcean just north of the Mexican border and will meet U.S. standards.

San Bernardino Ground Water. As late as the 1940s, the lowest portion of the San Bernardino Valley was composed mainly of springs and marshlands. It now boasts a thriving urban complex and industrial center, but ground water levels in the area remain high, impairing the use of some buildings. The San Bernardino Valley Municipal Water District began alleviating the high ground water problem by pumping ground water from the pressure area to the Colton–Rialto basin through the Baseline Feeder.

In 1969, the Superior Court of Riverside County, in response to a lawsuit filed by the Western Municipal Waer District of Riverside County against the East San Bernardino County Water District, limited the amount of waer that can be produced or exported from the San Bernardino Basin area. The ruling requires the SBVMWD to eplenish the basin when ground water pumping exceeds the specified amount. This has appeared at times to be t cross purposes with attempts to alleviate the effects of the high ground water.

local Issues

Ventura County Ground Water. Ground water is the main water supply for irrigation and urban uses over nuch of the coastal plain of Ventura County (including the Oxnard Plain). As a result of increasing water denand, the ground water aquifers underlying the plain have been overdrafted. The overdraft within the United Nater Conservation District averaged 18,900 AF per year during 1976–85. The Fox Canyon Ground Water Mangement Agency was formed to manage the ground water resources underlying the Fox Canyon aquifer zone. To liminate the overdraft in all aquifer zones, the agency adopted ordinances requiring meter installation on all vells pumping more than 50 AF per year. The objective of the ordinances is to limit the amount of ground water hat can be pumped and to restrict drilling of new wells in the North Las Posas Basin. In February 1991, United Conservation District completed construction of the Freeman Diversion Improvement Project on the Santa Clara River. The improved structure increases average annual diversions by about 43 percent, from 40,000 AF to 57,000 AF. The diverted water is used for ground water recharge and agricultural irrigation, thereby reducing agricultural ground water demand.

In an effort to prevent degradation of the Ojai ground water basin, a coalition of growers, public agencies, water utilities, and pumpers decided in early 1990 to have legislation enacted to form the Ojai Basin Ground Water Management Agency. Its activities include implementing agency ordinances; monitoring key wells; determining amounts of extractions, ground water in storage, and operational safe yield; surveying land use within the agency's boundaries; compiling water quality data; and artificial recharge of the basin.

Water Balance

Water balances were computed for each Planning Subarea in the South Coast Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table SC-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 4.4 and 4.5 MAF for average and drought years respectively. Those demands are projected to increase to 5.9 and 6.1 MAF, respectively, by the year 2020, after accounting for a 490,000 AF reduction in urban water demand resulting from implementation of long-term conservation measures and a 10,000 AF reduction in agricultural demand resulting from additional long-term water conservation measures.

Urban net water demand is projected to increase by about 1.8 MAF by 2020, primarily due to expected increases in population; while, agricultural net water demand is projected to decrease by about 288,000 AF, primarily due to lands being taken out of production resulting from the high cost of imported water supplies and urbanization. Environmental net water demands, under existing rules and regulations, are projected to increase from 2,000 to 6,000 AF annually due to increased acreage at the San Jacinto Wildlife Area.

Average annual supplies were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual average and drought year shortages are expected to increase to nearly 1.0 and 2.3 MAF by 2020 respectively. With implementation of Level I programs, shortages could be reduced to 0.4 MAF and 1.0 MAF for average and drought years, respectively.

Liemand/Supply	13	1990		2020
Demand/Supply	average	drought	average	drought
Net Demand			1.1	
Urban-with 1990 level of conservation	3,511	3,641	5,799	6,004
-reductions due to long-term conservation measures (Level I)			-490	-490
Agricultural	644	668	366	380
-reductions due to long-term conservation measures (Level I)		·,	-10	-10
Environmental	2	2	6	6
Other (1)	222	210	232	220
Total Net Demand	4,379	4,521	5,903	6,110
Water Supplies w/Existing Facilities Under D-1485 for Delta Supplies			5	5
Developed Supplies				
Surface Water	3,274	2,685	3,306	2,203
Ground Water	1,083	1,296	1,611	1,611
Ground Water Overdraft	22	22	0	0
Subtotal	4,379	4,003	4,917	3,814
Dedicated Natural Flow	0	0	0	.) O
Total Water Supplies	4,379	4,003	4,917	3,814
Demand/Supply Balance	0	-518	-986	-2,296
Future Water Management Options Level I (2)				
Long-term Supply Augmentation				
Reclaimed			281	281
Local			0	264
Colorado River			70	70
State Water Project			334	680
Subtotal – Water Management Options Level I			685	1,295
Ground Water/Surface Water Use Reduction Resulting from Level I Program	าร		-72	C
Remaining Demand/Supply Balance Requiring Short Term Demand Management and/or Future Level II Options			-373	-1,001

Table SC-11. Water Balance (thousands of acre-feet)

Includes conveyance losses, recreation uses and energy production.
 Protection of fish and wildlife and the ultimate Delta transfer solution will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

* * *

South Coast Region

126

Bulletin 160-93, November 1993

SACRAMENTO RIVER REGION

Sacramento River Region

SACRAMENTO RIVER REGION

The Sacramento River Region contains the entire drainage area of the Sacramento River and its tributaries and extends almost 300 miles from Collinsville in the Sacramento–San Joaquin Delta north to the Oregon border. The crest of the Sierra Nevada forms the region's eastern border; the northern is bounded by the crest of California's Cascade Range; and the western side is defined by the crest of the Coast Range. The vast watershed of the American River and the Sacramento–San Joaquin Delta form the southern border. The snow–capped Mt. Shasta, rising 14,162 feet above sea level, dominates the north end of the region, and is followed closely in by Mt. Lassen, at 10,457 feet above sea level. Both mountains are part of the Cascade Range. About 100 miles south of those mountain peaks stand the Sutter Buttes; the remnants of a prehistoric volcano, which has been called the smallest mountain range in the world. Winding its way through the entire region is the State's largest river, the Sacramento. The region contains 17 percent of the State's total land area. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The climate varies considerably in the region; however, three distinct climate patterns can be defined. The northernmost area, mainly high desert plateau, is characterized by cold snowy winters with only moderate rainfall, and hot, dry summers. This area depends on melting snowpack to provide a summertime water supply. Average annual precipitation is 12 inches. Other mountainous parts in the north and east have cold, wet winters with major amounts of snow providing considerable runoff for the summer water supply. These higher mountainous areas may receive rainfall during any month of the year. Summers are usually mild. Precipitation totals from 21 to 41 inches. The Sacramento Valley, the south–central part of the region, has mild winters with less precipitation. Precipitation usually takes place from October through May; virtually no precipitation occurs from June to September. Summers in the valley are hot and dry. Sacramento's average annual precipitation is 18 inches.

Population

The 1990 census shows that there are 535,000 more people in the region than in 1980, a 32 percent increase. Immigration from other parts of California played a big role in the increase. The fastest growing town was Loomis, a foothill community about 25 miles northeast of Sacramento, where there was a 344 percent increase in the number of people between 1980 and 1990. The City of Sacramento had the greatest number of new residents: more than 93,600 additional people. More than half of the region's population lives in the greater metropolitan Sacramento area. Other fast growing communities include Vacaville, Dixon, Redding, Chico, and the Sierra Nevada foothill counties. Table SR–1 shows population projections to 2020 for the Sacramento Region.

Region Characteristics

Average Annual Precipitation: 36.0 inches Land Area: 26,960 square miles Average Annual Runoff: 22,389,700 AF Population: 2,208,900

	(t	housands)		
Planning Subareas	1990	2000	2010	2020
Shasta-Pit	31	35	39	43
Northwest Valley	110	132	153	176
Northeast Valley	187	258	311	365
Southeast	253	329	400	467
Central Basin West	242	328	390	461
Central Basin East	1,267	1,629	1,977	2,316
Southwest	53	72	91	110
Delta Service Area	66	85	108	125
Total	2,209	2,869	3,467	4,063

Table SR-1. Population Projections

Land Use

A wide variety of crops are grown in the Sacramento River Region, where agriculture is the largest industry. The region produces a significant amount of the overall agricultural tonnage in California, especially rice, grain, tomatoes, field crops, fruit, and nuts. Because of comparatively mild weather and good soil, double cropping occurs in the region. The largest acreage of any single crop is rice, which represents about 23 percent of the total.

Crop statistics show that irrigated agricultural acreage in the region peaked during the 1980s and is now decreasing. The main reason for this decline is the conversion of irrigated agricultural lands to urban development. The comparison of 1980 and 1990 crop patterns shows that grain, field, rice, and pasture crops decreased a total of 137,000 acres. On the other hand, orchard, alfalfa, and tomato crops gained a total of 106,000 acres. The net decrease between 1980 and 1990 was 31,000 acres of irrigated crops. The Sacramento Region supports about 2.1 million acres of irrigated agriculture (23 percent of State total). About 1.7 million acres are irrigated on the valley floor and the surrounding mountain valleys within the region add 0.5 million irrigated acres (primarily pasture and alfalfa) to the region's total.

The rapid growth in single and multi-family housing has had a major impact on the Sacramento County area, as well as the surrounding areas like Placer, El Dorado, Yolo, Solano, and Sutter counties. Most of the development has been along the major highway corridors and has taken some irrigated agricultural land out of production. Suburban "ranchette" homes on relatively large parcels often surround the urban areas, sometimes converting previously non-irrigated areas into irrigated pasture or small orchards. Most of the land in these "ranchette" areas is typically non-irrigated. Figure SR-1 shows land use, imports, exports, and water supplies for the Sacramento Region.

Water Supply

The Sacramento River Region is the main water supply source for much of California's urban and agricultural areas. Basin runoff averages 22.4 million acre-feet, providing nearly one-third of the State's

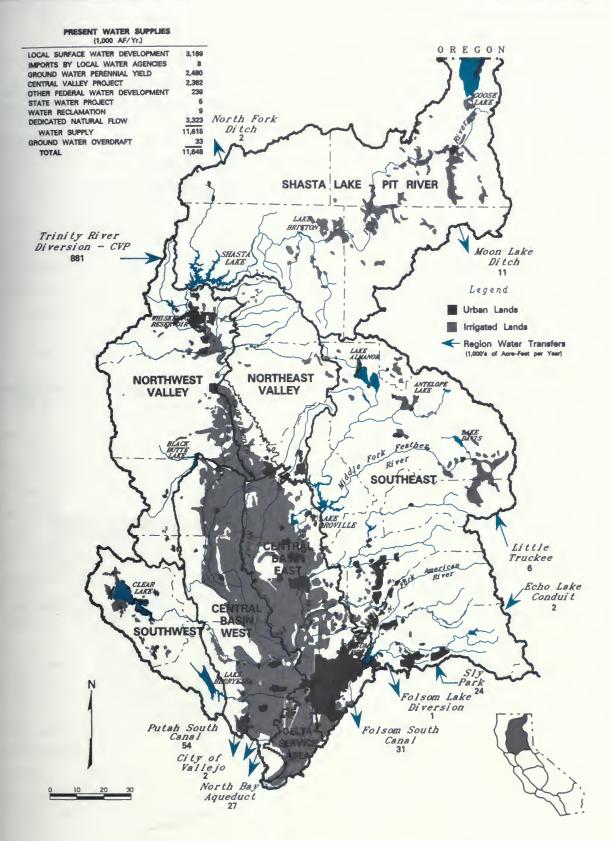
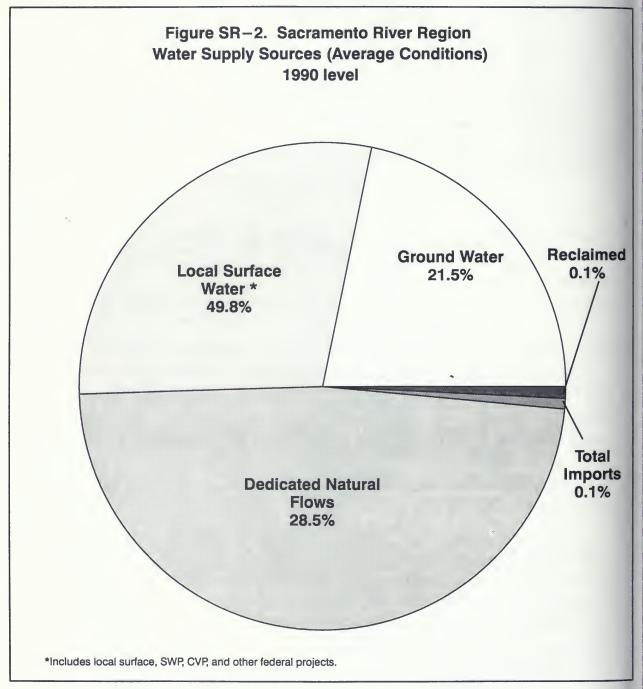



Figure SR-1. Sacramento River Region Land Use, Imports, Exports, and Water Supplies

total natural runoff. Major supplies in the region are provided through surface storage reservoirs and through direct ground water pumping. These sources supply 8 MAF of water to the region. About 2.5 MAF of ground water is pumped from the region's ground water basins. Figure SR-2 shows the region's 1990 level sources of supply.

Supply with Existing Facilities

Major reservoirs in the region providing water supply, recreation, power, environmental, or flood control benefits are shown in Table SR–2.

Sacramento River Region

Reservoir Name	River	Capacity (1,000 AF)	Owner		
McCloud	McCloud River	35.2	PG&E		
Iron Canyon	Pit River	24.2	PG&E		
Lake Britton	Pit River	40.6	PG&E		
Pit No. 6	Pit River	15.9	PG&E		
Pit No. 7	Pit River	34.6	PG&E		
Shasta	Sacramento	4,552.0	USBR		
Keswick	Sacramento	23.8	USBR		
Whiskeytown	Clear Creek	241.1	USBR		
Lake Almanor	Feather River	1,143.8	PG&E		
Mountain Meadows	Feather	23.9	PG&E		
Butt Valley	Butt Creek	49.9	PG&E		
Bucks Lake	Bucks Creek	105.6	PG&E		
Antelope	Indian Creek	22.6	DWR		
Frenchman	Little Last Chance Creek	55.5	DWR		
Lake Davis	Big Grizzly Creek	84.4	DWR		
Little Grass Valley	Feather	94.7	Oroville Wyandotte ID		
Sly Creek	Lost Creek	65.7	Oroville Wyandotte ID		
Thermalito	Feather	81.3	DWR		
Oroville	Feather	3,537.6	DWR		
New Bullards Bar	Yuba River	966.1	Yuba County WA		
Jackson Meadows	Yuba River	69.2	Nevada ID		
Bowman Lake	Canyon Creek	68.5	Nevada ID		
French Lake	Canyon Creek	13.8	Nevada ID		
Spaulding	Yuba River	135.7	PG&E		
Englebright	Yuba River	70.0	USACOE		
Scotts Flat	Deer Creek	48.5	Nevada ID		
Rollins	Bear River	66.0	Nevada ID		
Camp Far West	Bear River	104.0	So. Sutter WD		
French Meadows	American River	136.4	Placer Co. WA		
Hell Hole	Rubicon River	207.6	Placer Co. WA		
Loon Lake	Gerle Creek	76.5	SMUD		
Slab Creek	American River	21.6	SMUD		
Caples Lake	Caples Creek	16.6	PG&E		
Union Valley	Silver Creek	277.3	SMUD		
Ice House	Silver Creek	46.0	SMUD		
Folsom Lake	American River	974.5	USBR		

Table SR-2. Major Reservoirs

Reservoir Name	River	Capacity (1,000 AF)	Owner	
Lake Natoma	American River	9.0	USBR	
East Park	Stony Creek	50.9	USBR	
Stony Gorge	Stony Creek	50.0	USBR	
Black Butte	Stony Creek	143.7	Santa Clara USCE	
Clear Lake	Cache Creek	313.0	Yolo Co. FCWCD	
Indian Valley	Cache Creek	301.0	YCFCWCD	
Lake Berryessa	Putah Creek	1,600.0	USBR	

Table SR-2. Major Reservoirs (continued)

The region's water supply moves through a complex natural and engineered conveyance system. Water is both imported into the region and exported from the region. On the import side, the Clear Creek Tunnel on the Trinity River system carries roughly 926,000 AF annually from Lewiston Lake Reservoir into Whiskeytown Reservoir. Since 1876, PG&E has imported 2,000 AF annually from Echo Lake in the North Lahontan Region to the South Fork of the American River. Sierra Valley imports about 6,000 AF annually from the Little Truckee River.

Shasta Valley exports 2,000 AF from Sacramento Basin to the Klamath River watershed, and 3,000 AF is exported to the Madeline Plains in the North Lahontan Region. About 6 MAF is also exported to the regions to the south and west through local, State, and federal conveyance facilities.

Ground water provides about 22 percent of the water supply in the region. Ground water is found in both the alluvial basins and in the upland hard rock areas. Well yields in the alluvial basins vary from less than 100 to over 4,000 gallons per minute. Yields in most of the upland hard rock areas are generally much less, but can support most domestic activities or livestock. Some wells in the volcanic hard rock areas of the upper Sacramento River and Pit River watersheds yield large amounts of water. Ground water recharge in the region's alluvial basins is primarily from river and stream seepage or infiltration of applied agricultural water. Additional recharge occurs as rainfall and snow melt percolates into the basins. A detailed description of water supplies for the different areas of the region follows.

Mountains and Foothill Areas. It is often thought that the Sierra Nevada foothills of California have a lot of water because of the many creeks, rivers, and reservoirs in the area. However, water is scarce in much of the foothill area because many creeks that experience high flows during the winter rains and spring runoff become dry or nearly dry during summer and fall. This is also true for foothill regions on the west side of the Sacramento Valley, including the Clear Lake and Lake Berryessa areas. Most of the water for the mountains and foothills come from local surface sources.

Mining operations of the Gold Rush resulted in the first water development in the Sierra area. When hydraulic mining operations ceased, some of the mining ditches were incorporated into what eventually became the PG&E's hydroelectric power system or local water supply systems, such as that of the Nevada Irrigation District. Currently, they provide agricultural and urban water supplies. The

conveyance systems tend to have large but not irrecoverable losses. A number of areas lack distribution systems to convey the water to the places of need.

Though ground water is a lesser source of water in the foothills, it plays an important role in meeting the needs of many individuals. The ground water within the mountain counties exists mostly in fractured rock and provides approximately 17 percent of their water supply, about 7,300 AF annually.

Ground water quality in this area is generally good, depending on the rock type from which the water is produced. Locally significant ground water quality problems may occur where ground water is in contact with radon or uranium-bearing rock, or sulfide mineral deposits that contain heavy metals. There is also a potential for ground water quality degradation where septic systems have been constructed in high density subdivisions. Moderate levels of hydrogen sulfide can be found in the volcanic and geothermal areas in the western portion of the region.

Valley Area. The Sacramento Valley geologically is a trough partially filled with clay, silt, sand, and gravel deposited through millions of years of flooding. Although ground water is in all the younger sediments, only the more permeable sand and gravel aquifers provide enough for pumping. These younger sediments overlie older marine sediments throughout the valley, which contain brackish or saline water. The depth to saline water in the Sacramento Valley ranges from less than 500 feet in the north to over 3,000 feet in the south.

The ground water quality in the Sacramento Region is generally excellent. However, there are areas where local contamination or pollution of the ground water supplies exist. In some parts of the region, elevated levels of naturally occurring chemicals make ground water use problematic.

Agriculture's water supply varies considerably, with a large number of irrigation districts supplying surface water through regulated rivers, sloughs, and pipelines. USBR, PG&E, SWP, and county water agencies have developed some of the water for the region.

Ground water is available in much of the areas, but often surface water is less expensive and therefore preferred. Surface supplies are available either through riparian or appropriative water rights, or through an agency which delivers the water. The valley floor has an intricate water distribution system of sloughs, ditches, and canals devoted to conveying irrigation water. Water users also have some of the oldest rights to the surface water. Some water rights go back before the Gold Rush to old Spanish land grants.

Reclaimed water, primarily from urban waste water reclamation plants total 9,000 AF. About half of that supply comes from projects on the west side of the Northern Sacramento Valley. Table SR-3 shows water supplies with existing facilities and water management programs.

	(th	nousands	s of acre-	-feet)				
Cumply	19	90	20	00	20	10	020	
Supply	average	drought	average	drought	average	drought	average	drought
Surface				<u>.</u>				
Local	3,169	2,856	3,205	2,890	3,301	3,003	3,352	3,060
Local imports	8	8	8	8	8	8	8	8
Colorado River	0	0	0	0	0	0	0	0
CVP	2,382	1,996	2,453	2,064	2,458	2,065	2,462	2,075
Other federal	239	218	243	218	243	218	243	218
SWP	5	5	7	7	7	7	7	7
Ground water	2,480	2,850	2,469	2,982	2,430	3,032	2,497	3,044
Overdraft	33	33	33	33	33	33	33	33
Reclaimed	9	9	9	9	9	9	9	9
Dedicated natural flow	3,323	2,929	3,749	3,355	3,749	3,355	3,749	3,355
Total	11,648	10,904	12,176	11,566	12,238	11,730	12,360	11,809

Table SR-3. Water Supplies with Existing Facilities and Programs

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

There are no major additional water supply facilities coming on line by the year 2020 in this region. However, El Dorado County Water Agency has issued a Final Environmental Impact Report for the El Dorado Project, which will augment supplies in the El Dorado Irrigation District service area. The preferred alternative includes: (1) obtaining consumptive use rights to PG&E water currently used solely for power generation; (2) increasing the district's contract for CVP water from Folsom Reservoir; and (3) construction of the White Rock Project, which will convey water from the South Fork American River to proposed EID treatment and distribution facilities. The additional supplies from this alternative are 17,000 AF of firm supply (average and drought) from PG&E water, and 7,500 and 5,600 AF for average and drought years, respectively, from Folsom Reservoir. The White Rock Project is strictly a conveyance project, which will not supplement the district's water supply.

Water Service Reliability and Drought Water Management Strategies. Urban areas in the central part of the region generally have sufficient supplies to survive dry periods with only voluntary cutbacks.

However, communities in Butte, Lake, and Shasta counties, and areas served from Folsom Lake have used rationing or water transfers.

The Redding Basin is fundamentally an area of abundant water supplies, but outlying areas are subject to severe shortages in dry years due to the terms of USBR contracts and the lack of alternative supplies. Small districts located virtually in the shadow of Shasta Dam face chronic water shortages.

Mountain valley areas in the region that depend on surface water are generally irrigated to the extent water is available; when water runs low or runs out, irrigation is cut back. This type of drought management is a way of life for the ranchers. Holders of riparian and pre–1914 water rights on perennial streams generally enjoy reliable supplies, even during droughts. They are technically subject to restriction during times of shortage, but, as a practical matter, such restrictions have not been enforced in the past.

The 30 percent of the region's lands that are irrigated with ground water generally enjoy a very reliable supply. Ground water levels may decline moderately during an extended drought, but the main result is a modest drop in well production and an increase in pumping costs.

Much of the foothill area relies on ground water to meet water needs. Ground water supplies are highly variable and do not contain significant volumes due to the nature of the fractured rock characteristic of the area.

There are roughly two dozen CVP contractors for project water, but the majority of diverters along the Sacramento River existed before major reservoirs were constructed. There are only three Sacramento River Region SWP contractors: Plumas County Flood Control and Water Conservation District, Butte County, and Yuba City. The Feather River had a similar history before the construction of the SWP's Oroville Reservoir. The diverters executed water rights settlement contracts with the USBR and DWR after the CVP and SWP water rights were filed. These contracts normally provide for deficiencies of only 25 to 50 percent in extremely dry years, whereas CVP and SWP contractors can receive much larger deficiencies. These water rights settlement contracts include these provisions because their water rights were filed long before the federal and State projects were built; most go back to before the turn of the century.

CVP contractors account for 20 percent of the region's water use and are subject to sizeable cutbacks in drought years; some contractors suffered a 75 percent reduction in 1991. The effects of such cuts depend on what alternatives are available. Some areas can fall back on ground water; others have no feasible alternatives.

A final category of water users includes those who depend primarily on return flow from upstream areas. These users usually do not have a firm water right because an upstream user is not generally obliged to continue to provide return flows. The recent drought, the resulting water banking activities, and increased emphasis on water conservation have reduced return flows available for downstream users. Among those affected have been State and federal wildlife areas and various privately owned duck clubs.

Water Management Options with Existing Facilities. Changes in the surface water allocation within the region will probably result from pressure for environmental restoration, negotiations for

renewal of CVP contracts, expanded conjunctive use of surface and ground water, and various proposals and designs for water transfers. Cumulatively, these changes could result in further substantial increases in ground water use in the region. Water transfers are becoming increasingly important throughout California. Since the Sacramento River system potentially is the major source of future water transfers, this region will probably experience more water transfer activities in the future.

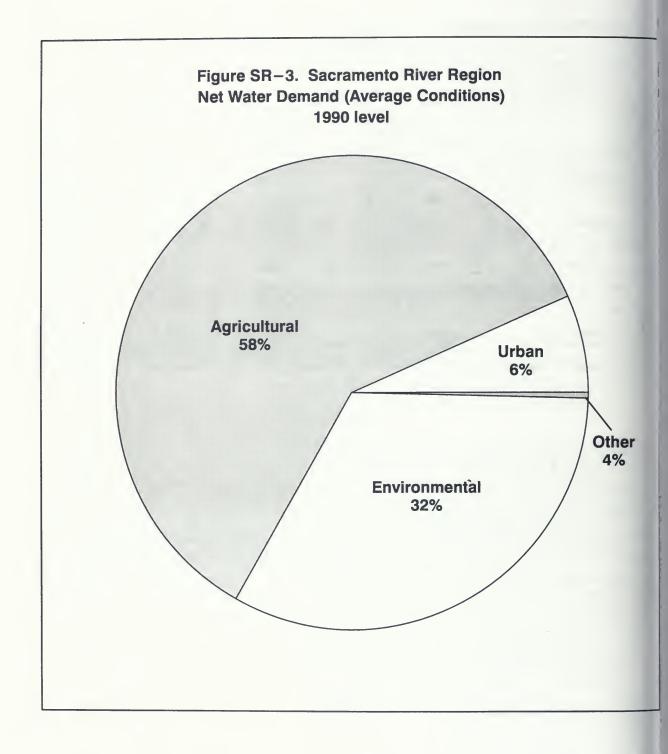
Water conservation efforts in this region do not usually result in substantial actual water savings because water not consumptively used is available for reuse downstream. For example, most water delivered in the Sacramento Region that is not consumptively used is returned to surface or ground water sources from which it may be diverted and used again.

Some water users would find themselves without a supply if upstream users did not provide surplus runoff from their "inefficient" application of water. If return flows were reduced by upstream water conservation efforts, downstream users who have the rights to do so would elect to divert more water from the Sacramento River to meet their needs.

Water Management Options With Additional Facilities. Many potential surface water developments within the Sacramento River Region have been examined over the last 40 years. Most of these studies were geared primarily to producing additional water supplies for use in other regions of the State. Agricultural payment capacity within the Sacramento River Region generally is insufficient to justify expensive new reservoir projects.

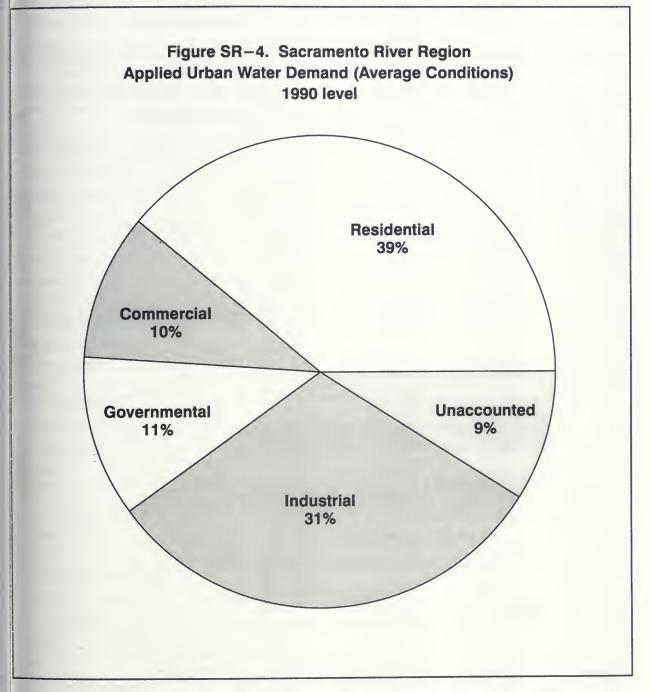
The most attractive surface water projects in the Sacramento River Region have already been built. High construction costs and the increasing emphasis on environmental considerations have greatly restricted the remaining options for additional surface water development. There are a few reservoir projects under consideration within the region, but none is far enough along in the planning and environmental review analysis to be constructed within the 30–year forecast presented here. The proposed Auburn Dam is discussed earlier in the "Local Issues" section of this chapter.

Additional ground water development will most likely provide for the limited increasing water demands of the region. The potential for developing new supplies from ground water is most favorable in the northern portion of the Sacramento Valley; the southern portion is already operating close to perennial yield in many areas. From the standpoint of overall basin management, increasing use of ground water will come partially at the expense of depleting existing surface supplies. Table SR-4 shows water supplies with additional facilities and programs.


136

Cumply	19	90	20	00	20	10	20	20
Supply	average	drought	average	drought	average	drought	average	drought
Surface		-		ĺ				
Local	3,169	2,856	3,222	2,907	3,318	3,020	3,369	3,077
Local imports	8	8	8	8	8	8	8	8
Colorado River	0	· · · 0	0	0	0	0	0	0
CVP	2,382	1,996	2,453	2,070	2,459	2,071	2,469	2,081
Other federal	239	218	243	218	243	218	243	218
SWP	5	5	7	7	7	7	7	7
Ground water	2,480	2,850	2,452	2,982	2,413	3,032	2,480	3,044
Overdraft	33	33	33	33	33	33	33	33
Reclaimed	9	9	9	9	9	9	9	9
Dedicated natural flow	3,323	2,929	3,749	3,355	3,749	3,355	3,749	3,355
Total	11,648	10,904	12,176	11,588	12,239	11,753	12,367	11,832

Table SR-4. Water Supplies with Level I Water Management Programs (thousands of acre-feet)


Water Use

The 1990 level water usage in the Sacramento River Region is 11.6 MAF, and is projected to rise to Imost 12.4 MAF in the year 2020. Since 1980, urban use has increased while agricultural use has emained relatively stable except for the peak in acreage during the early 1980s. A general decline in gricultural acreage is forecast, but there will be limited expansion in some areas. Therefore, agricultural vater use is expected to decline slightly during the next 30 years as agricultural irrigation efficiencies ontinue to improve. Environmental use is expected to increase by 0.5 MAF by 2020 under existing ishery and wetland requirements. Figure SR–3 shows net 1990 level water demands for the Sacramento liver Region.

Urban Water Use

Cities in the region tend to be on or near major rivers and much of the population receives its water supplies from those rivers. Ground water supplies some cities and rural dwellers and also supplements surface supplies in some areas. In the last decade, rapid growth on the outskirts of cities with surface supplies has led to a number of residential developments using ground water.

An average of 75 percent of the total residential water use is for landscaping. Per capita water use averages 248 gallons per day for valley residents. In the northern part of the region per capita water use ranges from about 200 to around 350 gpd. The higher unit use is generally associated with the hot, dry

floor of the northern Sacramento Valley. Overall, daily per-capita urban water use of 300 gallons has not changed significantly over past years except during droughts. At those times, communities with high water use have reduced their use by employing standard water conservation methods.

Overall, the region's population is expected to more than double. Municipal and industrial use is expected to increase along with the region's population from 1990 to 2020. Much of the growth will be in the southern part of the region including El Dorado, Placer and Sacramento counties.

The high water using industries of the region are closely tied to agriculture and forestry. Tomato and stone fruit processing, sugar mills, paper pulp, and lumber mills consume large amounts of water and many have their own supplies. Table SR-5 summarizes the applied and net urban water use projections for the region. Figure SR-4 shows applied 1990 level urban water demand, by sector.

	19	90	20	00	20	10	20	020
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Shasta-Pit								
Applied water demand	11	13	13	15	14	16	15	18
Net water demand	11	13	13	15	14	16	15	18
Depletion	5	6	6	7	7	8	7	9
Northwest Valley					9			2
Applied water demand	53	54	61	63	68	70	77	79
Net water demand	53	54	61	63	68	70	77	79
Depletion	19	20	24	24	27	28	31	32
Northeast Valley							1	*
Applied water demand	55	58	75	79	90	95	104	110
Net water demand	55	58	75	79	90	95	104	110
Depletion	27	29	37	39	45	47	52	55
Southeast								
Applied water demand	75	82	93	102	111	121	127	139
Net water demand	75	82	93	102	111	121	127	139
Depletion	25	28	32	35	37	41	43	47
Central Basin West					1			*s
Applied water demand	71	76	87	95	100	109	116	125
Net water demand	71	76	87	95	100	109	116	125
Depletion	22	22	26	28	31	33	36	38
Central Basin East				<u> </u>				*
Applied water demand	448	490	543	593	645	705	735	803
Net water demand	448	490	543	593	645	705	735	803
Depletion	127	140	154	170	185	202	211	232
Southwest			1			*		S.
Applied water demand	9	10	13	14	16	17	19	20
Net water demand	9	10	13	14	16	17	19	20
Depletion	4	5	6	6	7	8	9	9
Delta Service Area					ł	a.		a,
Applied water demand	23	25	27	30	34	37	38	42
Net water demand	23	25	27	30	34	37	38	42
Depletion	7	7	8	9	10	11	11	12
Total			£	a.			1	
Applied water demand	745	809	912	989	1,078	1,169	1,230	1,334
Net water demand	745	809	912	989	1,078	1,169	1,230	1,334
Depletion	238	256	293	318	348	378	399	433

Table SR-5. Urban Water Demand (thousands of acre-feet)

Agricultural Water Use

Agricultural water use is estimated using crop acreages and corresponding applied water and evapotranspiration of applied water unit use values for each crop. Figure SR–5 shows irrigated acreage, ETAW, and applied water for major crops grown in the region. On–farm irrigation efficiencies vary widely, depending on individual crops, soils, irrigation methods, system reuse, water scarcity, and irrigation costs. Areas depending on ground water or limited surface water tend to be very efficient. Others who enjoy high priority rights to dependable supplies are often less conservative in their water usage. Excess water supplied simply returns to the supply system through drainage canals. Basin efficiency is usually very good because downstream users recycle return flows for their own use. In many places, return flows are the only water source for downstream users. The capital investment necessary to increase on–farm irrigation efficiency is generally not considered warranted unless water supplies are unreliable. Along with that, many farmers are working with a narrow profit margin and are growing the most profitable crop for the soil and climate in the area; additional production costs often may not be an option, but rather will cause the farming operation to cease.

Rainfall during the growing season is virtually non-existent. During normal years, surface and ground water are plentiful and water availability is not the limiting factor in production. Much of the valley is irrigated using various flood irrigation methods. Table SR-6 shows irrigated acreage projections for the region. Table SR-7 presents 1990 ETAW by crop and Table SR-8 shows agricultural water demands to 2020.

Planning Subareas	1990	2000	2010	2020
Shasta-Pit	147	142	144	146
Northwest Valley	129	139	146	149
Northeast Valley	89	91	93	93
Southeast	104	104	104	104
Central Basin West	786	784	804	815
Central Basin East	679	664	653	642
Southwest	22	21	22	23
Delta Service Area	189	189	190	190
Total	2,145	2,134	2,156	2,162

Table SR-6. Irrigated Crop Acreage (thousands of acres)

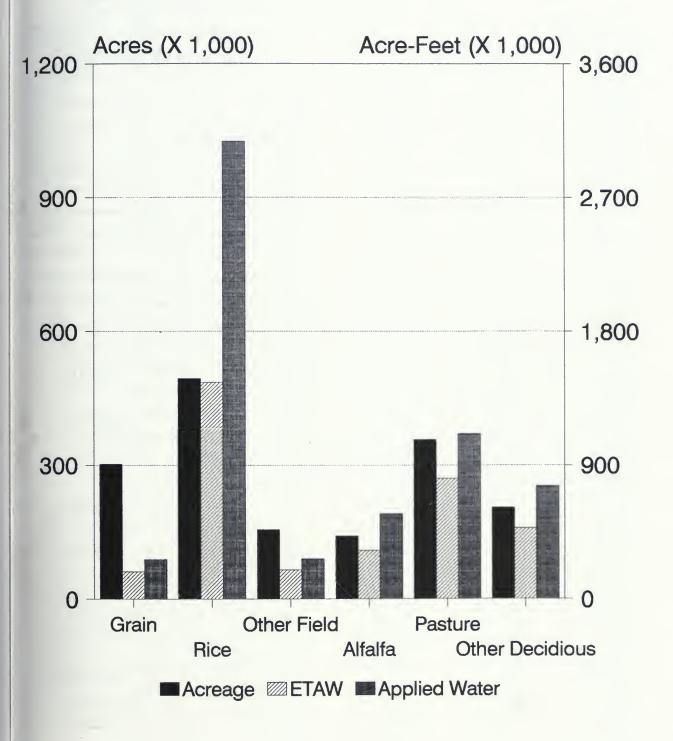


Figure SR-5. 1990 Sacramento River Region Acreage, ETAW, and Applied Water for Major Crops

Irrigated Crop	Irrigated Crop Total Acres (1,000 AF) Irrigated Crop		Total Acres (1,000)	Total ETAW (1,000 AF)	
Grain	303	183	Pasture	357	809
Rice	494	1,458	Tomatoes	120	303
Sugar Beets	75	165	Other truck	55	65
Corn	104	232	Almonds/pistachios	101	234
Other field	155	197	Other deciduous	205	475
Alfalfa	141	326	Vineyard	17	28
			Citrus/olives	18	35
			Total	2,145	4,510

Table SR–7. 1990 Evapotranspiration of Applied Water	Table SR-7.	0 Evapotranspiration of Appl	led Water by Crop
--	-------------	------------------------------	-------------------

In the Sacramento River Region, several crops are expected to decrease in acreage, especially on the valley floor. The main reasons for the decreases in certain crops are urban encroachment on irrigated agricultural land and changes in market factors and advanced technology. Pasture is the crop projected to have the largest decrease in acreage at 35,500 acres (10 percent), followed by rice at 11,900 acres (2 percent), small grains, 9,200 acres (3 percent) and sugar beets, 3,000 acres (4 percent). However, between 1990 and 2020, a net increase in irrigated crop acreage of about 17,000 acres, or 1 percent, is forecast. Almost all of this increase is expected to occur north of the Sutter Buttes where there exists adequate farmable soils with sufficient surface and ground water supplies. The crops projected to have the largest increase in acreage are almonds, miscellaneous truck crops, tomatoes, vineyard, corn, and miscellaneous deciduous orchards.

Planning Subareas	19	90	20	00	20	10	20	020
	average	drought	average	drought	average	drought	average	drought
Shasta-Pit						·		
Applied water demand	440	469	433	463	440	470	449	479
Net water demand	379	396	374	391	380	397	387	405
Depletion	330	358	325	352	330	358	335	363
Northwest Valley								\$
Applied water demand	472	569	490	590	505	609	508	612
Net water demand	460	485	480	506	498	525	504	532
Depletion	356	433	374	455	388	471	392	476
Northeast Valley								2
Applied water demand	306	353	306	353	310	358	310	358
Net water demand	298	312	299	314	304	319	303	318
Depletion	230	266	234	271	238	276	239	276
Southeast		1.				<u>.</u>		ž.
Applied water demand	358	426	355	423	351	418	351	418
Net water demand	346	388	344	385	341	381	341	381
Depletion	261	306	261	306	261	304	261	306
Central Basin West								ł
Applied water demand	2,830	3,081	2,804	3,052	2,803	3,049	2,812	3,057
Net water demand	2,159	2,397	2,168	2,456	2,159	2,443	2,167	2,440
Depletion	1,896	2,153	1,919	2,179	1,947	2,210	1,970	2,235
Central Basin East						ŝ.		
Applied water demand	2,907	3,124	2,781	3,020	2,660	2,960	2,605	2,799
Net water demand	2,613	2,754	2,463	2,627	2,363	2,580	2,324	2,435
Depletion	1,950	2,151	1,923	2,132	1,886	2,080	1,852	2,042
Southwest				(» ••		
Applied water demand	74	77	72	74	70	74	70	73
Net water demand	71	72	69	69	67	69	68	68
Depletion	50	51	47	48	46	47	45	46
Delta Service Area			1	.				
Applied water demand	461	546	457	542	453	537	453	537
Net water demand	426	504	383	455	369	450	379	450
Depletion	403	403	342	405	342	403	343	405
Total		ŧ.						
Applied water demand	7,847	8,645	7,697	8,516	7,594	8,475	7,558	8,333
Net water demand	6,752	7,308	6,580	7,203	6,480	7,164	6,473	7,029
Depletion	5,476	6,121	5,425	6,147	5,438	6,148	5,437	6,150

Table SR-8. Agricultural Water Demand (thousands of acre-feet)

Environmental Water Use

Instream flow requirements of major streams in the region are listed in Table SR–9. This region contains the largest wetland areas in the State, totalling approximately 175,000 acres. Water for these wetlands is from several sources, including CVP supplies, agricultural return flows, and ground water. The estimated wetland applied water, shown in Table SR–10, is about 456,000 AF. The projected supply for year 2000 is expected to go up by 34 percent due to the 1992 CVP Improvement Act of 1992 which allocated more water to wetlands. In the year 2000, 612,000 AF would be allocated for wetlands. The CVP Improvement Act of 1992 is discussed in Volume I, Chapter 2.

The Butte and Sutter basins contain large wetlands areas which serve as critical habitat for migratory waterfowl in the Pacific Flyway. There are about 13,000 acres of publicly owned and managed waterfowl habitat in the Butte Basin. In addition, private hunting clubs maintain more than 30,000 acres of habitat during normal years. The Sutter Basin has almost 2,600 acres of publicly owned waterfowl habitat, all are in the Sutter National Wildlife Refuge. Private duck hunting clubs provide an additional 1,500 acres of waterfowl habitat.

Stream	19	20	00	20	10	2020		
	average	drought	average	drought	average	drought	average	drought
Sacramento River								
Applied Water	1,903	1,702	1,903	1,702	1,903	1,702	1,903	1,702
Net Water	1,903	1,702	1,903	1,702	1,903	1,702	1,903	1,702
Depletion	0	0	0	0	0	0	0	0
Yuba River								÷
Applied Water	280	280	600	600	600	600	600	600
Net Water	174	174	600	600	600	600	600	600
Depletion	0	0	0	0	0	0	0	0
Feather River								\$
Applied Water	977	784	977	784	977	784	977	784
Net Water	977	784	977	784	977	784	977	784
Depletion	0	0	0	0	0	0	0	0
American River								9
Applied Water	234	234	234	234	234	234	234	234
Net Water	234	234	234	234	234	234	234	234
Depletion	0	0	0	0	0	0	0	0
Others (1)					×	1		e.
Applied Water	49	49	49	49	49	49	49	49
Net Water	35	35	35	35	35	35	35	35
Depletion	0	0	0	0	0	0	0	0
Total) /				2		
Applied Water	3,443	3,049	3,763	3,369	3,763	3,369	3,763	3,369
Net Water	3,323	2,929	3,749	3,355	3,749	3,355	3,749	3,355
Depletion	0	0	0	0	0	0	. 0	, 0

Table SR-9. Environmental Instream Water Needs (thousands of acre-feet)

Wetlands	1990 2000			20		2020		
	average	drought	average	drought	average	drought	average	drough
Modoc NWR								
Applied water	20	20	20	20	20	20	20	2
Net water	17	17	17	17	17	17	17	1
Depletion	15	15	15	15	15	15	15	1
Sacramento NWR								-
Applied water	35	35	50	50	50	50	50	5
Net water	30	30	30	30	30	30	30	3
Depletion	18	18	18	18	18	18	18	1
Colusa NWR								
Applied water	17	17	25	25	25	25	25	. 2
Net water	14	14	14	14	14	14	14	1
Depletion	9	9	9	9	9	9	9	
Butte Sink NWR		6						
Applied water	2	2	2	2	2	2	2	
Net water	1	1	1	1	1	1	1	
Depletion	1	1	1	1	1	. 1	1	
Delevan NWR				2				
Applied water	23	23	30	30	30	30	30	3
Net water	20	20	20	20	20	20	20	2
Depletion	12	12	12	12	12	12	12	1
Sutter NWR								
Applied water	9	9	30	30	~ 30	30	30	3
Net water	4	4	30	30	30	30	30	3
Depletion	4	4	4	4	4	4	4	
Gray Lodge WA				-				
Applied water	44	44	44	44	44	44	44	4
Net water	36	36	36	36	36	36	36	4
Depletion	21	21	21	21	21	21	21	2
Ash Creek WA		61	21		61	21	21	
Applied water	10	10	10	10	10	10	10	
Net water	13	13	13	13	13	13	13	1
Depletion	13 12	13	13	13	13	13	13	1:
Upper Butte Basin	12	12	12	12	12	12	12	1:
								1
Applied water	0	0	56	56	56	56	56	5
Net water	0	0	49	49	49	49	49	4
Depletion	0	0	27	27	27	27	27	2

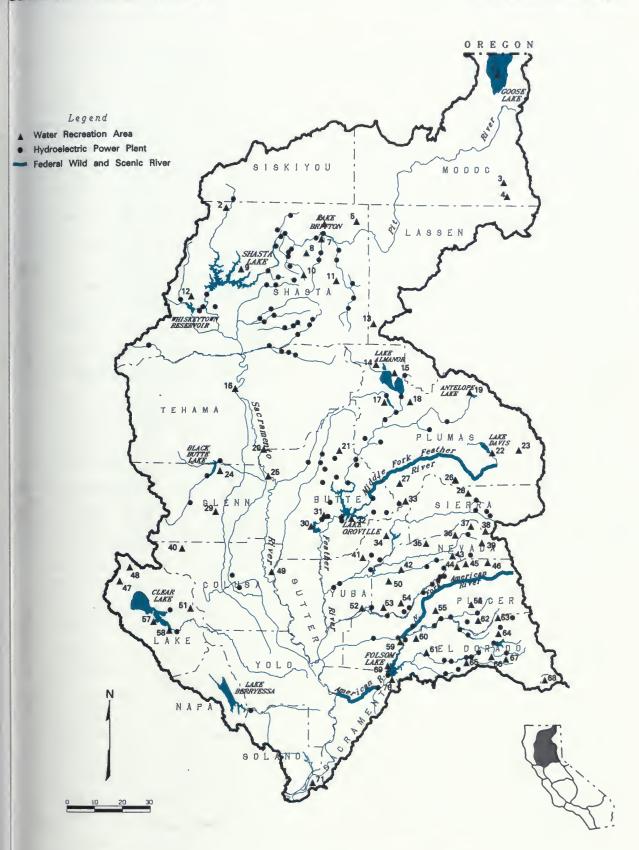
Table SR-10. Wetlands Water Needs (thousands of acre-feet)

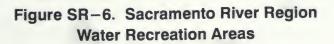
				,				
Yolo Bypass			. 8		2			
Applied water	0	0	8	8	8	8	8	8
Net water	0	0	8	8	8	8	8	8
Depletion	0	0	2	2	2	2	2	2
Stone Lakes			1					
Applied water	0	0	40	40	40	40	40	40
Net water	0	0	40	40	40	40	40	40
Depletion	0	0	10	10	10	10	10	10
Butte Basin		(ĺ	•				
Applied water	120	120	120	120	120	120	120	120
Net water	74	74	74	74	74	74	74	74
Depletion	33	33	33	33	33	33 ,	33	33
Colusa Basin	1.					4		
Applied water	97	97	97	97	97	97	97	97
Net water	68	68	68	68	68	68	68	68
Depletion ·	25	25	25	25	25	25	25	25
American Basin								
Applied water	31	31	31	31	31	31	31	31
Net water	31	31	31	31	31	31	31	31
Depletion	7	7	7	7	7	7	7	7
Sutter Basin	3		1					
Applied water	16	16	16	16	16	16	16	16
Net water	16	16	16	16	16	16	16	16
Depletion	4	4	4	4	4	4	4	4
Yolo Basin			8	à				
Applied water	21	21	21	21	21	21	21	21
Net water	21	21	21	21	21	21	21	21
Depletion	5	5	5	5	5	5	5	5
Sherman Island	1	1						
Applied water	9	9	9	9	9	9	9	9
Net water	9 .	9	9	9	9	9	9	9
Depletion	2	2	2	2	2	2	2	2
Cosumnes River								
Applied water	0	0	1	1	1	1	1	1
Net water	0	0	1	1	1	1	1	1
Depletion	0	0	0	0	0	0	0	0
Total								
Applied water	456	456	612	612	612	612	612	612
Net water	354	354	478	478	478	478	478	478
Depletion	167	167	207	207	207	207	207	207

Table SR-10. Wetlands Water Needs (continued) (thousands of acre-feet)

Other Water Use

Figure SR-6 shows water recreation areas in the Sacramento Region. Table SR-11 shows the total water demands for the region.


Figure SR-6. Sacramento River Region Water Recreation Areas


Shown on map.

- 1. Goose Lake
- 2. Castle Crags S.P.
- 3. West Valley Reservoir
- 4. Blue Lake
- 5. Ahjumaw Lava Springs S.P.
- 6. Tule Lake
- 7. McArthur-Burney Falls M.S.P.
- 8. Lake McCloud
- 9. Shasta Lake
- 10. Iron Canyon Reservoir
- 11. Lake Britton
- 12. Whiskeytown Reservoir
- 13. Crater Lake
- 14. Manzanita Lake
- 15. Lake Almanor
- 16. William B. Ide Adobe S.H.P.
- 17. Butte Valley Reservoir
- 18. Round Valley Reservoir
- 19. Antelope Lake R.F.
- 20. Woodson Bridge S.R.A.
- 21. Snag Lake
- 22. Lake Davis
- 23. Frenchman Lake
- 24. Black Butte Lake

- 25. Bidwell River Park S.R.A.
- 26. Plumas-Eureka S.P.
- 27. Bucks Lake
- 28. Lakes Basin Recreation Are
- 29. Stony Gorge Reservoir
- 30. Thermalito Afterbay R.F.
- 31. Thermalito Forebay R.F.
- 32. Lake Oroville S.R.A.
- 33. Little Grass Valley Reservoir
- 34. New Bullards Bar Reservoir
- 35. Malakoff Diggins S.H.P.
- 36. Bowman Lake
- 37. Jackson Meadow Recreation Area
- 38. Boca Reservoir
- 39. Prosser Creek Reservoir
- 40. Plaskett Lake
- 41. Collins Lake
- 42. South Yuba Trail Project
- 43. Lake Spaulding
- 44. Lake Valley Reservoir
- 45. Eagle Lake
- 46. Martis Creek Lake
- 47. Blue Lakes-Lake County
- 48. Lake Pillsbury

- 49. Colusa-Sacramento River S.R.A.
- 50. Scotts Flat Lake
- 51. Indian Valley Reservoir
- 52. Camp Far West Lake
- 53. Rollins Lake
- 54. Englebright Reservoir
- 55. Sugar Pine Reservoir
- 56. French Meadows Reservoir
- 57. Clear Lake S.P.
- 58. Anderson Marsh S.H.P.
- 59. Auburn S.R.A.
- 60. Stumpy Meadows Reservoir
- 61. Marshall Gold Discovery S.H.P.
- 62. Hell Hole Reservoir
- 63. Loon Lake
- 64. Union Valley Reservoir
- 65. Jenkinson Lake Sly Park R.A.
- 66. Ice House Reservoir
- 67. Wrights Lake
- 68. Echo Lake
- 69. Folsom lake S.R.A.
- 70. Lake Natoma
- 71. Brannan Island S.R.A.

Ostansa of line	1990		2000		2010		2020	
Category of Use	average	drought	average	drought	average	drought	average	drought
Urban								
Applied water	744	808	911	988	1077	1168	1229	1333
Net water	745	809	912	989	1078	1169	1230	1334
Depletion	238	256	293	318	348	378	399	433
Agricultural								
Applied water	7,847	8,645	7,697	8,516	7594	8475	7558	8333
Net water	6,752	7,308	6,580	7,203	6480	7164	6473	7029
Depletion	5,476	6,121	5,425	6,147	5438	6148	5437	6150
Environmental								
Applied water	3,899	3,505	4,375	3,981	4375	3981	4375	3981
Net water	3,677	3,283	4,227	3,833	4227	3833	4227	3833
Depletion	167	167	207	207	207	207	207	207
Other (1)								
Applied water	1	1	1	1	1	1	1	1
Net water	475	408	458	398	455	398	438	398
Depletion	71	60	71	60	71	60	71	60
Total				2				
Applied water	12,491	12,959	12,984	13,487	13046	13625	13163	13649
Net water	11,648	11,807	12,176	12,423	12239	12564	12367	12593
Depletion	5,952	6,605	5,995	6,733	6063	6793	6113	6849

Table SR-11, Total Water Demands (thousands of acre-feet)

s, recreational uses, and energy production

Issues Affecting Local Water Resource Management

Legislation and Litigation

Bay/Delta Proceedings and Other Delta Issues. A comprehensive discussion of the Bay/Delta hearings and other Delta issues can be found in Volume I, Chapter 2 and Chapter 10.

Sacramento River Fisheries and Riparian Habitat Management Plan (Senate Bill 1086). The salmon and steelhead fishery in the upper Sacramento River has declined greatly in the last few decades. Contributing to this decline are problems on the river's main stem: unsuitable water temperatures, toxic heavy metals from acid mine drainage, limited spawning gravels, obstructions to fish migration, fish losses from diversions, and riparian habitat loss. In 1986, the Legislature enacted Senate Bill 1086, which called for development of a riparian habitat inventory and an Upper Sacramento River Fisheries and Riparian Habitat Management Plan. The final plan contained a conceptual Riparian Habitat Restoration Plan recommending two major actions dealing with riparian habitat along the river and its major tributaries. It also contained a more specific Fishery Restoration Plan, listing 20 actions to help restore the salmon and steelhead fisheries of the river and its tributaries. In September 1989, the

Legislature approved Senate Concurrent Resolution No. 62, declaring a State policy to implement the recommendations of the management plan.

About half of the proposed restoration actions are now underway, funded by a combination of federal, State, and local sources, but progress in obtaining major federal funding has been slow. The CVP Improvement Act includes many of the CVP related fishery restoration measures recommended by the SB 1086 plan. This Act should accelerate implementation of the major actions needed to restore the upper Sacramento River salmon and steelhead fisheries by providing needed funding.

Glenn–Colusa Irrigation District Intake Screen Deficiencies. The GCID has 700,000 AF of prior rights supplemented by 120,000 AF of CVP water. In May 1972, DFG constructed a 40 drum rotary screen at the intake to the GCID main pump station. The rotary drum screen is one of the largest ever built, allowing a diversion from the Sacramento River of 3,000 cfs. However, the design performance of the screens was never realized because local river bed erosion gradually lowered the water surface. This resulted from the cutoff of a large downstream river bend during the high water of 1970, which dropped the normal water surface elevation at the screen by approximately 3–1/2 feet. The ensuing operational deficiencies caused high juvenile fish mortalities.

In 1987, GCID and DFG entered into a joint memorandum of understanding to fund an investigation of potential solutions. The engineering firm CH2MHill was selected to perform this investigation. Their proposed solution was a new V-type screen combined with gradient restoration in the river. In 1989, the U.S. Army Corps of Engineers was directed by special federal legislation to proceed with engineering and design to restore the river hydraulics near the screen to 1970 conditions. The Corps has recently completed an initial design and environmental assessment of a gradient restoration project.

The listing of the winter run chinook salmon in 1991 required GCID to consult with the National Marine Fisheries Service on operating the existing screen and constructing a new screen. A court order set requirements for operating the existing screen which limit the amount of water GCID can divert. In the summer of 1992 a second contractor, HDR Engineering, Inc., was hired to perform a feasibility level study of selected screen design alternatives and prepare environmental documentation.

The CVP Improvement Act of 1992 includes fishery mitigation at the GCID pumping plant in the Act's list of mandatory environmental restoration actions. USBR will participate with other parties, including the Reclamation Board, in implementing the work required by the Act.

Regional Issues

Ground Water Export. Individuals and water districts from several counties have recently sold or considered selling surface water and ground water to downstream users. As a result, many north valley water users are concerned about protecting ground water resources from export. Surface water transfers caused considerable controversy in local areas (see Volume I for a more complete discussion of water transfers and the 1991 State Emergency Drought Water Bank). Organized ground water management efforts are currently under way in Butte, Colusa, Glenn, Shasta, Tehama, and Yolo counties.

Endangered Species. Threatened and endangered species are affecting management of the region's water supplies. While few specific water supply requirements yet have been established for individual

species, a number of operating restrictions may be considered that will impact the statewide water demand balance. For example, the listing of the winter run chinook salmon has had a major impact on GCID and ACID operations. Anderson–Cottonwood Irrigation District and other Sacramento River water diverters are concerned about the listing of additional fish runs. Additionally, the bank swallow, a State threatened species, has limited the bank protection efforts along the Sacramento River.

Foothill Ground Water. Although most of the foothill areas have abundant surface water supplies, several rely heavily on ground water to meet their needs. With many people relocating to foothill and mountain regions, there is increasing concern about ground water availability in hard rock areas and the potential for contaminating these supplies. In many mountain counties, homes are built on small parcels away from regional sewer systems and municipal water supplies. Most of these homes rely on a single well for their potable water supply and a septic system to dispose of their sewage. In many areas where this development is occurring, there is no readily available alternative water supply if the ground water becomes depleted or contaminated.

In some areas, current development will cause water supply needs to exceed available supplies. Downstream areas have already developed the least costly reservoir sites, and a number of recent State and federal mandates further limit water development. Financial and other local agency constraints can make it virtually impossible for these regions to develop supplies on their own.

Local Issues

Sacramento River Water Quality. Water quality in the entire watershed is generally excellent, making it the one of the most desirable water sources in the State. However, the system is vulnerable to pollution from several sources such as the July 1991 toxic spill into the Sacramento River near Dunsmuir from a train derailment. The upper Sacramento River is slowly recovering from that metam sodium spill which killed essentially all life for miles of this river system. Native rainbow trout from tributaries are redistributing themselves in the river and the smaller benthic organisms are steadily returning to the river. DFG continues to closely monitor the river's recovery. Current plans are to keep sport fishing closed until there is substantial recovery of the river's historic wild trout population.

Problems such as turbidity and high pesticide concentrations affect not only the fisheries, but also the drinking water supplies. One of the most significant water quality problems on the upper Sacramento River is heavy metals loading caused by acid mine drainage from a region of past copper/lead/zinc mining above Redding. The major contributor, Iron Mountain Mine, is included in EPA's Superfund program, and remedial and water quality enforcement actions have been underway there for many years. Acid mine drainage from this region has caused significant fish losses in the Sacramento River. USBR operates Spring Creek Debris Dam, upstream of Keswick Reservoir, to control runoff from part of the Iron Mountain area. Mine drainage is impounded in the reservoir and released when downstream flows are large enough to provide dilution. Sometimes when SCDD is full, releases must be made from Shasta Reservoir to provide dilution. This reduces CVP yield but is necessary to protect the fishery. Enlargement of SCDD to provide additional reservoir storage has been one of the alternatives considered in EPA's remedial plans for Iron Mountain Mine.

Discharges from paper mills near Anderson have also caused water quality problems. Other problems relate to degraded agricultural return flows, particularly those bearing significant pesticide residues.

North Delta Contract. On January 28, 1981, DWR and North Delta Water Agency signed the North Delta Contract. One of the water quality standards in the contract is measured, at Emmaton on Sherman Island, which is situated where salinity fluctuates widely in low flow conditions, due to tidal influences.

The North Delta Contract allows DWR to construct an overland facility as an alternative to meeting the Emmaton Standard. The Overland Facility would divert water from Threemile Slough and deliver it to other parts of the island where offshore water is of higher salinity. In 1986, however, Sherman Island landowners requested that DWR purchase their land instead of building the overland facility.

The Western Delta Water Management Program was developed to include the landowners' desire and to develop Sherman Island into a wildlife refuge. This would: (1) improve levees for flood control; (2) protect Delta water quality; (3) meet water supply and water quality needs of Sherman Island; (4) provide habitat for waterfowl and wildlife; (5) minimize oxidation and subsidence on Sherman Island; (6) protect the reliability of the SWP, Contra Costa Canal, and the CVP; (7) protect Highway 160 and utilities; and (8) provide additional recreational opportunities.

DWR has been negotiating land sales with the landowners. To date, DWR owns or has offers accepted for about 13 percent of the land on the island. In 1991, as part of these efforts, DWR negotiated a draft agreement that had elements of water banking and acknowledgement of the intent to have DWR purchase lands.

El Dorado County Supplies. Currently El Dorado County has problems with distribution, storage, and water rights. The 1992 Cleveland fire in El Dorado County destroyed a large portion of the PG&E El Dorado canal. The canal supplies about one third of El Dorado Irrigation District's water supply. PG&E will repair the damaged portion of the canal. The American River watershed produces ample water, but other agencies hold the water rights, leaving El Dorado County deficient. The El Dorado County Water Agency and El Dorado Irrigation District have jointly filed for additional water rights from the American River Basin.

El Dorado County Water Agency has issued a final EIR for the El Dorado Project, which will augment supplies in EID's service area. EDCWA has determined that combining water right permits, contractual entitlements and water exchanges, with the construction of water facilities will provide a viable supplemental water supply to the year 2020.

Placer County Distribution. Currently, Placer County lacks sufficient delivery capacity to meet its future demands. There is currently no permanent system to deliver American River water supplies to western Placer County which has American River water rights, entitlement to water from PG&E's Yuba–Bear system, and a CVP contract for American River water with the USBR. These supplies are

sufficient to meet 2020 needs. The county is studying various delivery systems to serve western Placer County agricultural uses.

Cloud Seeding DWR initiated a prototype project to augment snowpack by cloud seeding using ground based propane dispensers in Plumas and Sierra counties during 1991. These dispensers are expected to produce a 10 percent increase in snow depths within an area in the upper Middle Fork Feather River Basin during average and dry years. Increased snow depths are projected to result in an additional downstream water yield of 22,400 AF in a year of near normal precipitation. The project suspends operation when it appears that the year will have a heavy snow pack. By seeding approximately 50 percent of all suitable storms, it will take an estimated five years to statistically determine the percentage increase in snow depth (and ultimate water yield) produced by the project. Environmental monitoring of the effects of this new technology is an important component of the program. There has been local resistance to this program because of the possible additional burden on Plumas County resulting from increased snow depths. The DWR has committed to pay for any additional snow removal costs attribute to seeding.

Control of Upper Sacramento River Water Temperatures. During the last summer and fall of 1990–92, extremely low water elevations in Shasta Lake caused Sacramento River water temperatures to raise above safe levels for fall and winter run salmon. Large amounts of water from the lowest lake intakes, bypassing the generators, had to be released to prevent extreme fish mortalities. These releases were expensive and could have been avoided if the dam was equipped with a multi-level temperature control structure. Design of such a structure is presently underway but construction is still several years away. The estimated cost is \$80 million and the funding source will be the CVP Improvement Act. A construction contract could be awarded as early as October 1994.

Butte and Sutter Basins. The water-related problems of the Butte and Sutter basins include fish passage and habitat degradation, water quality, flooding and drainage problems, and water rights. The issues are complex because of competing uses and the maze-like pattern of water flow. Spring salmon runs in the Butte Creek watershed have decreased from around 20,000 in 1960 to less than 500 in 1992. The studies completed under SB 1086 toward a Sacramento River Fisheries Management Plan identified Butte Creek as a watershed in urgent need of fisheries mitigation work. The Butte and Sutter basins also provide a major part of the waterfowl wetland habitat in the Sacramento Valley, but are in need of more dependable water supplies.

This area's greatest water management issue from a local perspective is the widely perceived need for a ground water basin management plan. Development of this plan is motivated by fears that other areas of the State may try to purchase ground water to the possible detriment of the local economy and rural lifestyle. The Butte Basin Water Users Association recently formed to develop a ground water management plan which would protect local interests in the area north of the Sutter Buttes. Another new organization, the Northern California Water Association, was formed to protect the water rights of Sacramento Valley area farmers.

156

Colusa Basin Drainage and Flooding. The Colusa Basin comprises over 1,000,000 acres of valley floor and foothill lands in the southwest part of the Sacramento Valley. It includes portions of Glenn, Colusa, and Yolo counties. Over 450,000 acres of the valley lands within the basin are normally irrigated and it contains about one-third of the total irrigated acreage of the Sacramento Valley.

The basin has historically experienced flooding, drainage, water quality, and subsidence problems. In 1984, a task force was created to develop solutions to basin problems following the passage of SB 674. This legislation authorized the Colusa Basin Appraisal by DWR which was completed in 1990. In 1987, the California Legislature passed the Colusa Basin Drainage District Act which created a multicounty district to implement solutions to the area's flooding and drainage problems.

The Drainage District Act required that an economically feasible initial plan be developed. In November 1988, the Board of Directors for the Colusa Basin Drainage District was organized and work began on the District's initial plan. The DWR's Colusa Basin Appraisal in May 1990, was used as a guideline for implementing the initial plan. The appraisal concluded that the potential for structural solutions to Colusa Basin problems is limited and recommended that a management plan be implemented to address drainage problems first, then flooding.

The plan in its present form lacks the necessary support to be adopted through a district election, and a vote on the plan is currently not scheduled. The Board plans to consider modifications which could broaden the scope of the initial plan to include new district objectives such as water transfers and ground water management. The district has worked to establish a Memorandum of Understanding with the three counties and Reclamation District 2047 which is now responsible for maintenance of the Colusa Basin Drain. Negotiations for these agreements are ongoing but the major area of contention is how much private landowners would be assessed to implement the management plan and which landowners should be included.

Water Quality in Clear Lake. The most severe problem in Lake County is the nutrient rich character of Clear Lake water. High nutrient levels cause uncontrollable algae growth, with its associated odor and aesthetic problems. Nutrient sources include septic leach lines, sewage treatment plants, and runoff water from upland areas. The predominant blue–green algae form thick mats and scums which residents and tourists find noxious. Decomposition of the dense algal growths also causes severe dissolved oxygen reduction in the water column, which at times kills fish. Lake County received a Clean Lakes grant from the U.S. EPA to analyze methods for the control of the nuisance algae. The county contracted with the University of California at Davis to conduct this work. A draft report was due in spring 1993. Elevated mercury levels have been found in fish from the "Oaks arm" of the lake, prompting DFG to advise against eating fish from the lake. The source of mercury is an abandoned mercury mine at Sulphur Bank near Clear Lake Oaks. In late 1992, the U.S. EPA awarded funds to UCD to investigate the significance of the mercury problem and develop remedial measures.

West Delta Program. DWR is implementing a unique land use management program that could effectively control subsidence and soil erosion on Sherman and Twitchell islands, while also providing significant wildlife/waterfowl habitat values. DWR and DFG have jointly developed the Wildlife

Management Plan for Sherman and Twitchell to accomplish this objective. The plan is also designed to benefit wildlife species that occupy wetland, upland, and riparian habitat on the islands, and provide recreational opportunities for hunting and wildlife viewing. Property acquired and habitat developed through DWR's contribution will be available for use as mitigation for impacts associated with ongoing DWR Delta water management programs.

This plan would significantly reduce subsidence by minimizing oxidation and erosion of the peat soils on the islands by replacing present farming practices with land use management practices designed to stabilize the soil. Such practices range from minimizing tillage to establishing wetland habitat.

Altering land use practices on Sherman and Twitchell islands could provide up to 13,600 acres of managed wildlife and waterfowl habitat and responds directly to the underlying need for additional wetlands, as expressed in national and State policies for wetlands enhancement and expansion. Delta issues are also discussed in the San Joaquin Region.

Water Balance

Water balances were computed for each Planning Subarea in the Sacramento River Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

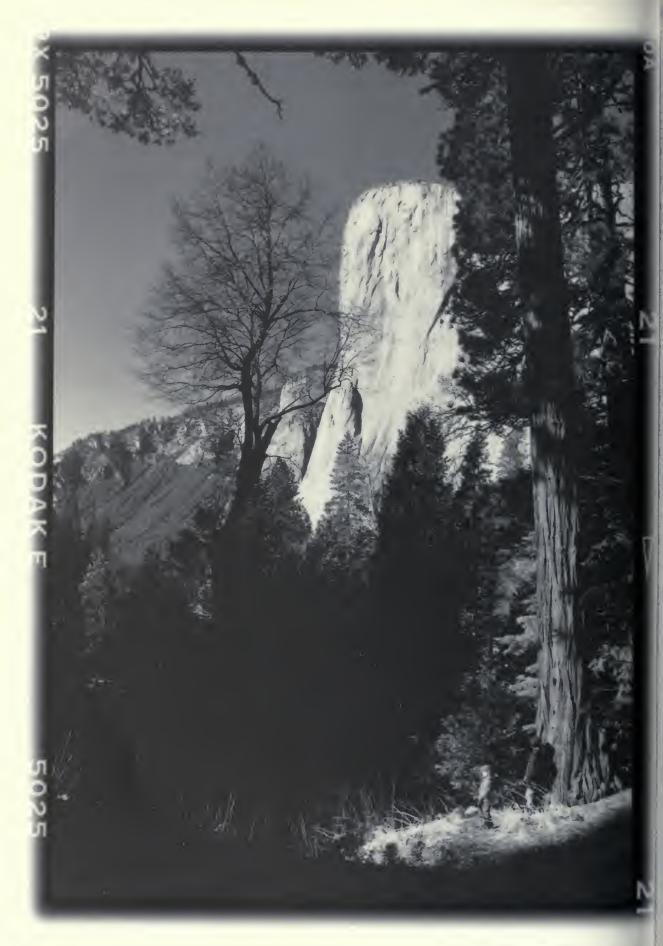
Table SR-12 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 11.6 and 11.8 MAF for average and drought years respectively. Those demands are projected to increase to 12.4 and 12.6 MAF, respectively, by the year 2020, after accounting for a 25,000 AF reduction in urban water demand resulting from implementation of long-term conservation measures and a 10,000 AF reduction in agricultural demand resulting from additional long-term agricultural water conservation measures.

Urban net water demand is projected to increase by about 485,000 AF by 2020, due to expected increases in population; while, agricultural net water demand is projected to decrease by about 278,000 AF, primarily due to changes in cropping patterns. Environmental net water demands, under existing rules and regulations, will increase by 550,000 AF, reflecting increased water allocation to wildlife refuges in the Sacramento Valley and increased Yuba River instream flow required recently by the Federal Energy Regulatory Commission.

Average annual supplies were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual drought year shortages are expected to decrease from about 784,000 to 761,000 AF by 2020. This decrease is due primarily to reductions in agricultural water use.

There are several actions currently in progress, including implementation of the Central Valley Project Improvement Act, that have proposed increases in instream flow for fisheries that could affect the availability of supplies for urban and agricultural use in the region.


With planned Level I programs, drought year shortages would be reduced by 23,000 AF. The remaining 761,000 AF drought shortage requires both additional short-term drought management, water transfers and demand management programs, and future long-term Level II options depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region.

Demand/Supply	19	90		2020
Demand/Supply	average	drought	average	drought
Net Demand				
Urban-with 1990 level of conservation	745	809	1,255	1,359
-reductions due to long-term conservation measures (Level I)			-25	-25
Agricultural	6,752	7,308	6,483	7,039
-reductions due to long-term conservation measures (Level I)			-10	-10
Environmental	3,677	3,283	4,227	3,833
Other (1)	475	408	438	398
Total Net Demand	11,648	11,807	12,367	12,593
Water Supplies w/Existing Facilities				
Developed Supplies				
Surface Water	5,812	5,092	6,081	5,377
Ground Water	2,480	2,850	2,497	3,044
Ground Water Overdraft	33	33	33	33
Subtotal	8,325	7,975	8,611	8,454
Dedicated Natural Flow	3,323	2,929	3,749	3,355
Total Water Supplies	11,648	10,904	12,360	11,809
Demand/Supply Balance	0	-903	-7	784
Future Water Management Options Level I	•			
Long-term Supply Augmentation				
Reclaimed (2)			0	C
Local			17	17
Central Valley Project			7	6
State Water Project			0	() ()
Subtotal – Water Management Options Level I			24	23
Ground Water/Surface Water Use Reduction Resulting from Level I Program	ns		-17	0
Remaining Demand/Supply Balance Requiring Short Term Drought Management and/or Future Level II Options			0	-761

Table SR-12. Water Balance (thousands of acre-feet)

(2) Because of existing reuse within region, reclaimed supplies do not add supply to the region.

SAN JOAQUIN RIVER REGION

SAN JOAQUIN RIVER REGION

Located in the heart of California, the San Joaquin River Hydrologic Region is bordered on the east by the crest of the Sierra Nevada and on the west by the coastal mountains of the Diablo Range. It extends from the Delta and the Cosumnes River drainage south to include all of the San Joaquin River watershed. It is rich in natural wonders, including the Yosemite Valley, Tuolumne Meadows, Moaning Caverns, and Calaveras Big Trees. The region comprises about 10 percent of California's land area. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The region is diverse but can be divided into two main topographies and associated climates for discussion: (1) the mountain and foothill areas and (2) the valley area. The climates of many of the upland areas west of the valley resemble those of foothills. Precipitation in the mountainous areas varies greatly. The annual precipitation of several Sierra Nevada stations average about 35 inches. Snowmelt runoff from the mountainous areas is the major contributor to local water supplies for the eastern San Joaquin Valley floor, whereas the climate of the valley portion of the region is characterized by long hot summers and mild winters. Average annual precipitation on the valley floor ranges from 17 inches in the northeast to 9 inches in the south.

Population

About 5 percent of the State's population lives in the region. From 1980 to 1990, the region's population grew 41 percent, primarily in Merced, Stanislaus, and San Joaquin counties. Communities such as Stockton, Modesto, Merced, and Tracy, once valley farm centers, are now major urban centers in the region. These communities and their smaller neighboring cities, such as Lodi, Galt, Madera, and Manteca, are expected to continue expanding into the mostly agricultural northern San Joaquin Valley. Several counties expect their populations to nearly double by 2010.

Some of this growth is due to the expansion from the San Francisco Bay Area and Sacramento into the previously agriculturally based areas. Nine new communities have been proposed for development in southern San Joaquin County, two of which were approved, New Jerusalem and Riverbrook, with proposed populations of 22,000 and 7,000, respectively. As currently proposed, these developments would increase the county's population by about 30,000 people and require about 4,000 acres.

Region Characteristics

Average Annual Precipitation:13 inchesAverage Annual Runoff:7,933,300 acre-feetLand Area:15,946 square miles1990 Population:1,430,200

The relatively inexpensive housing available in the area offsets the long commute to Bay Area jobs for some San Joaquin County residents. Larger cities such as Stockton and Modesto are industrial and commercial centers in their own right.

In contrast to the large valley urban centers, separated by flat agricultural fields and linked by freeways, the foothills are sprinkled with small communities connected by small two–lane roads. Much of the foothill population lives along the old Mother Lode route of the 1849 Gold Rush, Highway 49. Towns such as Jackson, Angels Camp, San Andreas, Sonora, and Oakhurst have grown significantly in the last decade. Leading off from the north–south trending Highway 49 is a series of roads that lead to Sierra Nevada mountain passes. These mountain roads (Highways 88, 4, 108,120) generally follow eastwest trending ridges, which are separated by one of the nine major river systems draining the Sierra. The economies of mountain communities along these routes depend on tourist and travel industries. These communities are also retirement areas for many former Bay Area or Southern California residents.

The western side of the region, south of Tracy, is sparsely populated. Small farming communities provide services for farms and ranches in the area, all relatively close to Interstate 5, the chief north-south transportation route in California.

Historically, the economy of the San Joaquin River Region has been based on agriculture. By far, agriculture and food processing are still its major industries. Other major industries include the production of chemicals, lumber and wood products, glass, textiles, paper, machinery, fabricated metal products, and various other commodities. Table SJ–1 shows population projections to 2020 for the San Joaquin River Region.

(thousands)									
Planning Subareas	1990	2000	2010	2020					
Sierra Foothills	140	214	284	357					
Eastern Valley Floor	312	376	445	536					
Delta Service Area	156	229	315	423					
Western Uplands	64	109	150	197					
East Side Uplands	44	60	66	92					
Valley East Side	653	905	1,192	1,489					
Valley West Side	61	61 82 1		127					
West Side Uplands	0	0	0	0					
Total	1,430	1,975	2,555	3,221					

Table SJ-1. Population Projections

Land Use

Much of the Sierra Nevada Range is national forest land, while the San Joaquin Valley is predominantly agricultural. In the Sierra Nevada, there are the El Dorado, Stanislaus, and Sierra national forests and Yosemite National Park. The valley constitutes about 3.5 million acres, the eastern foothills and mountains total 5.8 million acres, and the western coastal mountains comprise 0.9 million acres.

The national forest and park lands encompass over 2.9 million acres of the region; state parks and recreational areas and other state owned property account for about 80,000 acres; Bureau of Land Management and military properties occupy some 221,000 and 37,000 acres respectively. Public lands, therefore, comprise about one-third of the region.

About 1,956,000 of the region's 10.2 million acres (19 percent) were devoted to irrigated agriculture in 1990. Some of the major crops include almonds, alfalfa, pasture, grain, grapes, cotton, and field corn. Urban land usage in 1990 totaled 295,300 acres. Figure SJ–1 shows land use, along with imports, exports, and water supplies for the San Joaquin River Region.

Water Supply

About 47 percent of the region's 1990 level water supply comes from local surface sources, while 29 percent is from imported surface supplies. Ground water provides about 19 percent of the total 1990 level average annual water supply for the region. The surface waters of all rivers in the region combine with the San Joaquin River in or above the Sacramento–San Joaquin Delta. Located in the Delta are the pumping facilities of the federal Central Valley Project, the State Water Project and the Contra Costa Canal. The CVP provides much of the water supply (about 63 percent) for the west side of the region's valley area. The Hetch Hetchy reservoir system, on the Tuolumne River, provides water to the southern San Francisco Bay Area and Peninsula through a system of reservoirs, power plants and aqueducts. The East Bay Municipal Utility District receives water from Pardee Reservoir on the Mokelumne River. This water is conveyed by the Mokelumne Aqueduct to the East Bay MUD's service area, which includes Oakland, Berkeley, Richmond, and Walnut Creek.

163

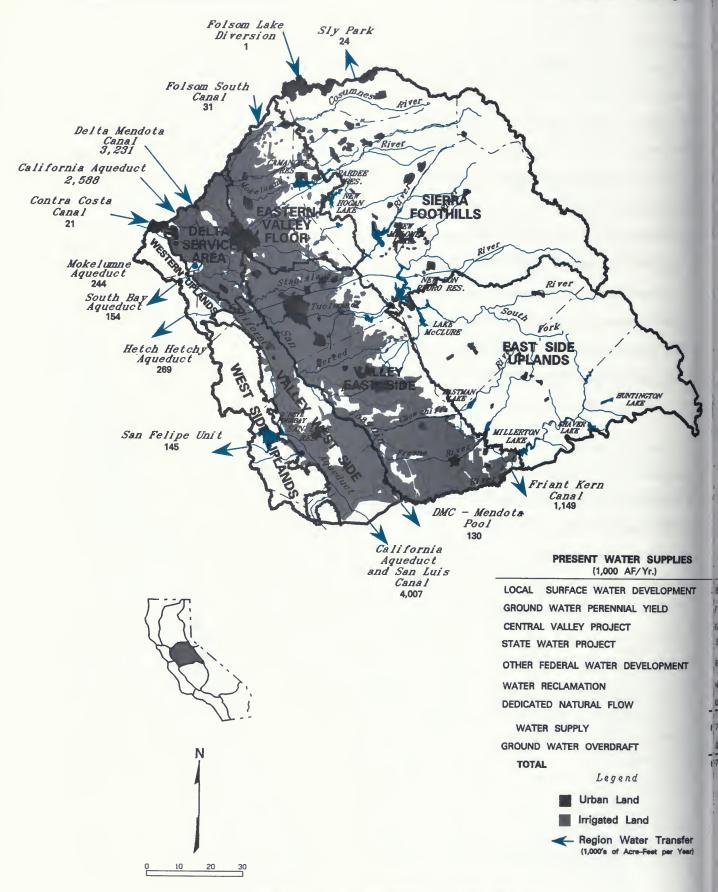


Figure SJ-1. San Joaquin River Region Land Use, Imports, Exports, and Water Supplies

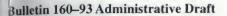
Supply with Existing Facilities

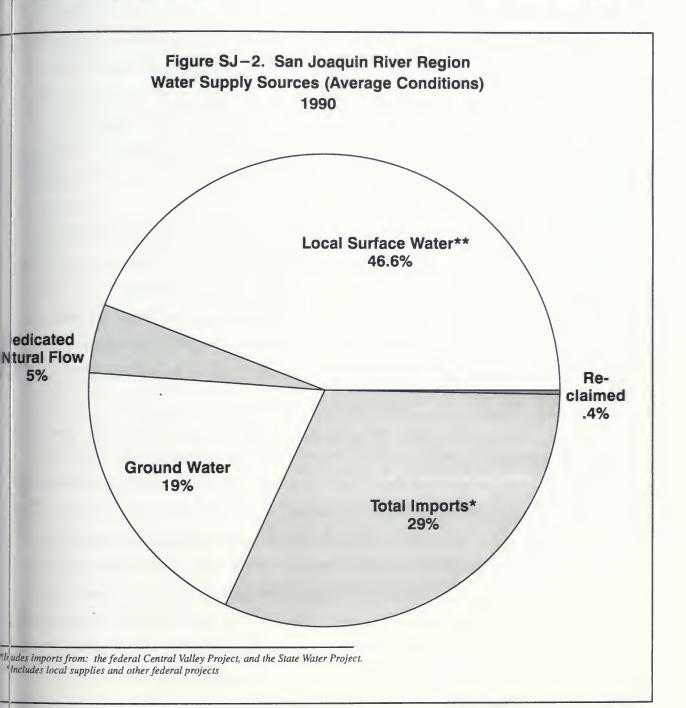
Surface water systems in the region form a general pattern. A series of reservoirs gather and store snowmelt in the upper mountain valleys of the Sierras. Water here is generally used for hydro–generation as it is released down river. Some diversion for consumptive use occurs for local communities, but most flows are caught downstream in other reservoirs located in the foothills or at the eastern edge of the valley floor. Irrigation canals, along with municipal pipelines, commonly carry water from these storage facilities. Water released downstream in the river can be picked up for irrigation and other uses on the valley floor as it heads for the Delta. Figure SJ–2 shows the region's 1990 level sources of supply.

Of the 57 major reservoirs in the region, there are 16 with storage capacities greater than 100,000 AF, four of which have capacities of 1 MAF or more. Fifteen of these reservoirs were built primarily for flood control; however, many of them also have additional storage capacity for water supply and other uses included in their design. In addition to federal agencies, local irrigation districts own and operate many of the major facilities; most are managed for multipurpose uses. The region's major reservoir systems are briefly described in Table SJ–2.

Reservoir Name	River	Capacity (1,000 AF)	Owner
New Melones	Stanislaus	2,420	U.S. Bureau of Reclamation
New Don Pedro	Tuolumne	2,030	Turlock and Modesto Irrigation Districts
Hetch Hetchy	Tuolumne	360.4	City of San Francisco
Lake McClure	McClure Merced 1,024		Merced Irrigation District
San Luis N/A 2,040		USBR and Dept. of Water Resources	
Shaver	San Joaquin	135	Southern California Edison
Pardee	Pardee Mokelumne 210		East Bay Municipal Util. District
Salt Springs	Mokelumne	139	Pacific Gas & Electric Company
Millerton	San Joaquin	520	U.S. Bureau of Reclamation
Edison	San Joaquin	125	Southern California Edison
Lloyd (Cherry)	Tuolumne	268	City of San Francisco
Mammoth Pool	San Joaquin	123	Southern California Edison
Camanche	Mokelumne	431	East Bay Municipal Util. District
New Hogan	Calaveras	325	U.S. Army Corps of Engineers
Eastman	Chowchilla	150	U.S. Army Corps of Engineers

Table SJ-2. Major Reservoirs


The U.S. Bureau of Reclamation completed New Melones in 1979, and the reservoir was initially filled in 1983. Although this reservoir has an estimated annual additional yield of 180,000 AF, none of this yield has been delivered yet due to a lack of conveyance facilities. To date, Stockton East Water District has contracted with USBR for 75,000 AF of interim water; Central San Joaquin Water District has


contracted for 49,000 AF of average and drought year supply and 31,000 AF of interim water. The facilities to transport this water may be completed by the end of 1993, and delivery may begin in 1994, depending on water availability. Water supplies vary by areas in the region, as discussed below.

Mountain and Foothill Areas. The major mountain and foothill areas of the region include the east side Sierra Nevada mountain counties of Mariposa, Tuolumne, Calaveras, Amador, and portions of Alpine and El Dorado. There are dozens of small communities in these counties, generally located along Highway 49; most of them, and the sparse agricultural land in the area, receive their water from local surface supplies. In the 1850s, hydraulic mining for gold and other minerals promoted the construction of an extensive network of canals and ditches to bring water from main rivers and tributaries to the mine sites. When the mining industry waned, power companies, like Pacific Gas and Electric Company, took control of many of these facilities. Today, in addition to supplying water to hydroelectric power plants, these facilities convey water to many of the small mountain communities. For example, in Amador County, the Cosumnes River supplies water to the community of Plymouth and the Mokelumne River supplies water to the communities of Jackson and Ione. In Calaveras County, water is distributed via pipelines and ditches from the Stanislaus and Calaveras Rivers to the communities of Angels Camp, Arnold, and Jenny Lind. In Tuolumne County, water from the Lyons Reservoir is diverted to several communities along Highway 108, including Tuolumne, Jamestown, Columbia, and Sonora. Groveland receives water from the Hetch Hetch yestem.

In addition to surface water, many of these mountain communities pump ground water from hard rock wells and old mines to augment their surface supplies. Ground water generally is no more than about 15 percent of the total supply for most of them. Valley Springs in Calaveras County, an exception to the general rule, relies entirely on ground water for its water needs. The communities of Plymouth and Mariposa had to turn to ground water to supplement surface supplies during the 1976–77 and the 1987–92 droughts. Also, for many mountain residents who are not connected to a water conveyance system, ground water is their only source.

166

Valley Area. The nine major river systems feeding into the valley from the Sierra Nevada provide more than 50 percent of the total supply. Irrigation districts transport much of the local surface water to valley agricultural users. Modesto Irrigation District and Turlock Irrigation District supply both agricultural and municipal users through the Modesto and Turlock Canals. Other irrigation districts, such as Merced, Oakdale, and South San Joaquin, operate similar facilities. The Folsom South Canal used to import about 17,000 acre–feet from the American River for cooling at the Rancho Seco Nuclear Power Plant, which has been closed. The canal continues to deliver water for agricultural uses in local districts, such as Galt Irrigation District.

San Joaquin River Region

Adding to the valley's surface water supply are three major canal systems: the California Aqueduct, Delta–Mendota Canal, and Madera Canal. The CVP also delivers water from its Mendota Pool, O'Neil Forebay, and Millerton Lake facilities. Only the Oak Flat Water District receives water from the SWP. Within the Delta service area, agricultural water users pump directly from Delta sloughs and water courses. The City of Stockton receives minor surface flows from the New Hogan Reservoir via the Stockton East Pipeline, and the community of Tracy receives about 5,000 acre–feet annually from the CVP Delta–Mendota Canal.

In an average year, about 19 percent, or 1,281,000 acre-feet, of the region's water requirements are met by pumping ground water. Agriculture uses about 70 percent of the ground water pumped. The other 30 percent is used to meet a variety of water demands including urban, rural residential, industrial and wildlife. On the valley floor, the majority of communities, industries, and rural residents rely on ground water as their primary or only source of water supply. Some of the wildlife refuges in the region may also use ground water to supplement their surface water supplies, especially in years of below normal surface deliveries.

The availability of ground water for the region is influenced mainly by water quality problems. The valley floor is essentially one large ground water basin consisting of alluvial sediments. Much of the western portion of the valley is underlain by the Corcoran clay, which generally lies at depths between 100 and 400 feet. The Corcoran clay divides the basin sediments into confined and unconfined aquifers. On the west side high total dissolved solids and sulfates, are found in varying degrees in both the confined and the deeper unconfined aquifers. East of the San Joaquin River the valley is underlain by older less productive sediments. The shallow ground water quality is generally very good here and several water districts have drainage wells that pump into their distribution systems. However, in some areas of the central and northeastern portion of the valley, nitrates and organic contaminants have been found, mostly localized around a point source.

Overdraft for 1990 is estimated at about 209,000 acre-feet a year. Areas most affected are found in San Joaquin and Madera counties, with an estimated 70,000 and 120,000 acre-feet of overdraft respectively.

Roughly 24,000 acre-feet of recycled water from municipal and industrial areas is used annually in the region. Table SJ-3 shows water supplies with existing facilities and water management programs.

168

Table SJ-3. Water Supplies with Existing Facilities and Programs

(Decision 1485 Operating Criteria for Delta Supplies)

(thousands of acre-feet)

Cumphy	19	90	20	00	2010		2020	
Supply	average	drought	average	drought	average	drought	average	drought
Surface		-				-		
Local	3,015	2,837	3,000	2,803	2,967	2,785	2,992	2,801
Local imports	0	0	0	0	0	0	0	0
Colorado River	0	0	0	0	0	0	0	0
CVP	1,997	1,389	2,160	1,450	2,171	1,463	2,169	1,463
Other federal	155	32	155	32	155	32	155	32
SWP	5	3	4	3	4	3	4	3
Ground water	1,072	2,127	1,058	2,245	1,081	2,272	1,072	2,284
Overdraft	209	209	100	100	15	15	0	0
Reclaimed	24	24	24	24	24	24	24	24
Dedicated natural flow	330	247	330	247	330	247	330	247
Total	6,807	6,868	6,831	6,904	6,747	6,841	6,746	6,854

Supply with Additional Facilities and Water Management Programs

The San Joaquin River Region withstood drought conditions by employing several water management options: conservation, exchanges, transfers, and supplementing surface supplies with ground water. In the long run, however, with continued population growth and shifts in types of water use, the region's water resource managers will also look for strategies that increase surface supply reliability and provide for additional recharge of ground water basins. Means of improving water quality will have to be built into these strategies. Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Table SJ-4 shows water supplies with Level I water management programs.

Total

(Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)										
Cumple	19	90	20	000	20	10	2020			
Supply	average	drought	average	drought	average	drought	average	drought		
Surface										
Local	3,015	2,837	3,001	2,804	2,968	2,786	2,992	2,801		
Local imports	0	0	0	0	0	0	0	0		
Colorado River	0	0	0	0	0	0	0	0		
CVP	1,997	1,389	2,165	1,450	2,175	1,463	2,173	1,463		
Other federal	155	32	155	32	155	32	155	32		
SWP	5	3	4	3	5	3	5	3		
Ground water	1,072	2,127	1,049	2,239	1,065	2,259	1,050	2,267		
Overdraft	209	209	100	100	15	15	0	0		
Reclaimed	24	24	27	27	35	35	41	41		
Dedicated natural flow	330	247	430	252	430	252	430	252		

6,807

6,868

6,931

6,907

6,848

6,845

6,846

6,859

Table SJ-4. Water Supplies with Additional Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

Water Supply Reliability and Drought Water Management Strategies. From 1987 through 1992, the San Joaquin River Region, like much of California, endured drought conditions. Many of the cities in the region had restricted water use even though ground water is the predominant source of supply for the communities in the region. Drought related problems developed, such as increased pumping depths, well failures, and accelerated degradation of water quality, but generally, there was no substantial reduction in supply. Nevertheless, conservation programs were introduced in nearly all of the communities in the region in reaction to the drought. Lack of water metering precludes the monitoring or implementation of mandatory rationing in most communities, but a number of other practices have been employed, ranging from voluntary water conservation with limitations on outdoor watering to mandatory water rationing with little or no outdoor watering. For example, the City of Modesto restricted outdoor water use based on several factors: the season, the day of the week, and the time of day. For indoor water use, the city relied on voluntary water conservation. The cities of Merced, Tracy, and Turlock had programs similar to Modesto. Because of the ability of the east side agencies, supplying urban customers and agricultural growers, to supplement reduced surface water allocations with ground water, annual crop acreages remained fairly stable during the drought.

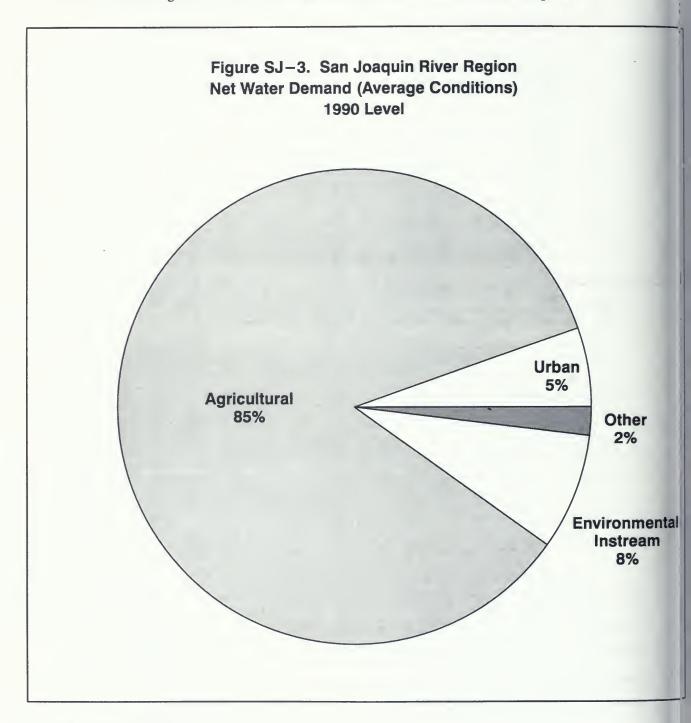
The foothill community of Mariposa relies on surface water and was hit hard by the reduced runoff. Its water supply comes from a 440–acre–foot water storage reservoir on Stockton Creek. Residents were at one point on a strict rationing program that fluctuated with the available water supply. Per capita re-

San Joaquin River Region

strictions were as low as 100 gallons per day for the first person of a household and 50 gpd for each additional person. In comparison, most San Joaquin Valley residents use ground water, and though most cities were practicing time of day or day of week outdoor watering restrictions and other conservation programs, water consumption averaged about 250 gpcd.

On the west side of the region, normally about 90 percent of the surface supply is obtained from the CVP. Over 60 percent of this amount comes by way of exchange contracts for San Joaquin River water. This exchange provides farmers with a good quality water. These contractors received only 75 percent of their normal entitlements in 1991 and 1992.

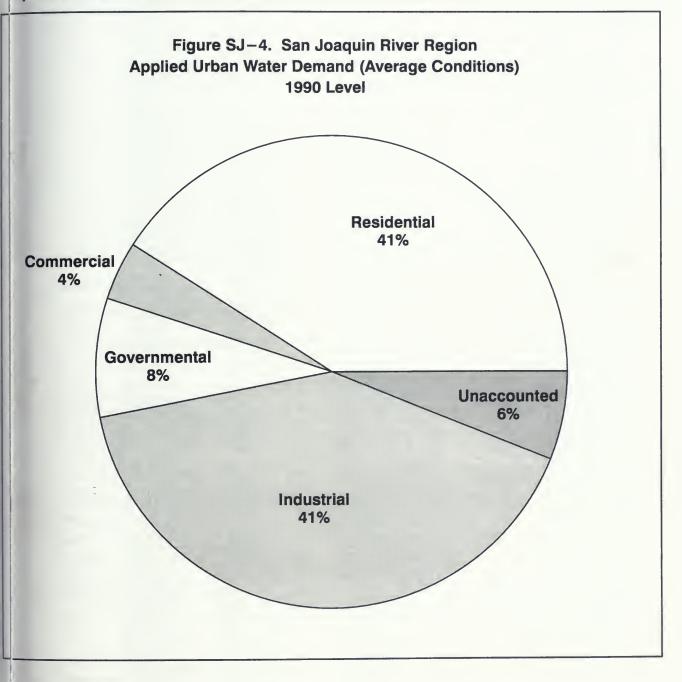
Those areas on the west side which receive contract water from the Delta–Mendota or San Luis Canals experienced much more severe cuts in water supply. During 1991 and 1992, only 25 percent of the entitlement amounts were delivered. Many of these areas lacked sufficient ground water pumping capabilities to fully make up for the cuts. There were substantial reductions in cropped acreage and under irrigation of permanent crops, resulting in decreased crop yields. Some State Water Bank water and federal hardship water was used primarily to ensure the survival of permanent crops.


Water Management Options with Additional Facilities. In 1984, the California Legislature authorized the proposed Los Banos Grandes reservoir in western Merced County as a facility of the SWP. Los Banos Grandes would store water pumped from the Delta through the California Aqueduct during wet months, primarily November through March. Stored water would be released during water-short periods for use by agencies with contracts for water from the SWP. This 1.73 MAF reservoir will help provide a more dependable water supply for the people and farms served by the SWP. (See Volume I, Chapter 11.) Although only one water district in the region will benefit directly, the reservoir will provide other indirect benefits to the area, such as recreational opportunities and supplemental flood protection for the local area.

The Mariposa Public Utility District in Mariposa County is developing the Saxon Creek Water Project, which will bring additional water to the 2,000 residents living within the district. The project involves tapping the Merced River and delivering water via a pipeline. The project is small, about 900 acre-feet annually at full development, but important to the community of Mariposa. It will help to provide a reliable water supply in an area that is already straining its water resources.

Water Use

Agricultural water demand is about 85 percent of the region's total demand of 6.8 million acre-feet. Urban demand, which includes urban residential, industry and rural residential, comprise approximately 5 percent of total demand. Environmental water use for the region's wetlands, and instream fishery require-


ments represent about 8 percent of the total water demand. Other water use includes recreation, water used for power plant cooling, and water lost during conveyance; this category constitutes about 2 percent of total demand. Figure SJ-3 shows net water demand for the 1990 level of development.

Urban Water Use

In 1990, urban applied water demand in the region totaled almost 495,000 AF, an increase of about 91,000 AF since 1980. This increase was primarily due to an increase in population. Average per-capita water use is about 309 gallons per day. Per-capita values range from about 350 gallons per day in Modesto, one of the larger cities, to 200 gallons per day and less in small communities like Dos Palos on the

west side and Riverbank on the east side. Higher per capita water use in communities like Modesto is generally due to a high concentration of industries. In the case of Modesto, food processing comprises a large segment of the industrial activity. Figure SJ-4 shows the 1990 level applied urban water demands by sector. Table SJ-5 shows applied water and net urban water demand to 2020.

Blanning Outbarrage	19	90	20	00	20	10	2020	
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Sierra Foothills		b						
Applied water demand	36	39	54	59	71	77	87	95
Net water demand	38	41	56	61	73	79	89	97
Depletion	10	11	15	16	20	22	25	27
Eastern Valley Floor		l						
Applied water demand	80	84	97	105	114	124	135	147
Net water demand	80	84	97	105	114	124	135	147
Depletion	23	24	27	30	32	35	39	42
Delta Service Area								
Applied water demand	35	37	50	54	65	71	85	92
Net water demand	35	37	50	54	65	71	85	92
Depletion	10	10	14	16	19	21	25	27
Western Uplands						2		
Applied water demand	37	38	45	46	51	53	59	57
Net water demand	37	38	45	46	51	53	59	60
Depletion	4	4	6	6	8	8	10	10
East Side Uplands								
Applied water demand	11	11	15	15	16	16	23	23
Net water demand	5	5	6	6	- 7	7	10	10
Depletion	5	5	6	6	7	7	10	10
Valley East Side								
Applied water demand	279	280	378	381	493	497	605	610
Net water demand	149	150	202	205	263	267	322	327
Depletion	116	116	163	164	217	218	270	272
Valley West Side								
Applied water demand	17	17	24	24	29	29	36	36
Net water demand	9	9	12	12	14	14	18	18
Depletion	7	7.	10	10	13	13	16	16
West Side Uplands				t.				
Applied water demand	0	0	0	0	0	· 0	0	0
Net water demand	0	0	0	0	0	0	0	0
Depletion	0	0	0	0	0	0	0	C
Total			2	5		,		
Applied water demand	495	506	663	683	839	867	1,029	1,059
Net water demand	353	364	468	489	587	615	718	751
Depletion	175	177	241	248	316	324	395	404

Table SJ-5. Urban Water Demand

(thousands of acre-feet)

San Joaquin River Region

Most urban water supply agencies in the region do not meter deliveries to residential customers. Generally, commercial and industrial deliveries are metered. Outdoor use probably accounts for about one-half of total urban use for most of the region. Warm summers and associated high water requirements for landscaping are the main factors behind this region's urban water use being higher than the statewide average.

Population projections indicate that more than twice as many people would reside in the San Joaquin River Region by 2020. Such growth is expected to drive the conversion of some agricultural lands to urban development. This may further stretch water supplies in some areas, or just shift water use from agriculture to urban. Given these population increases, urban net water demand could double by 2020.

Agricultural Water Use

Agriculture accounts for over 85 percent of the total applied water in the San Joaquin Region. The industry can best be described as widely diverse. Major crops in the region (alfalfa, almonds, grapes, grain, corn, and cotton) encompass over 100,000 acres each. Table SJ–6 shows irrigated crop acreage projections for the region to 2020. Table SJ–7 shows 1990 crop acreages and evapotranspiration of applied water. Figure SJ–5 shows crop acreages, ETAW, and applied water for major crops.

Planning Subareas	1990	2000	2010	2020
Sierra Foothills	7	8	9	11
Eastern Valley Floor	273	272	271	269
Delta Service Area	277	276	273	271
Western Uplands	13	12	12	12
East Side Uplands	2	2	2	2
Valley East Side	1,003	985	965	949
Valley West Side	433	435	436	437
West Side Uplands	0	0	0	0
Total	2,008	1,990	1,968	1,951

Table SJ-6. Irrigated Crop Acreage (thousands of acres)

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)	Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	182	130	Pasture	228	704
Rice	21	75	Tomatoes	89	181
Cotton	178	453	Other truck	133	164
Sugar Beets	64	157	Almonds/pistachios	245	513
Corn	181	342	Other deciduous	147	380
Other field	121	153	Vineyard	184	364
Alfalfa	Alfalfa 226 66		Citrus/olives	9	16
			Total	2,008	4,296

Table SJ-7.	1990 Evapotrans	piration of Applied	Water by Crop

Estimates of future agricultural water use were generally based on the 1990 unit use values. There may be room for some minor improvements in irrigation efficiencies; however increased efficiencies would only slightly reduce the overall agricultural water use. Double cropping accounted for about 52,700 acres in 1990, a decrease of about 35 percent since 1980. The double cropped acres represent less than 3 percent of the irrigated acreage. Table SJ–8 shows agricultural water demands to 2020.

San Joaquin River Region

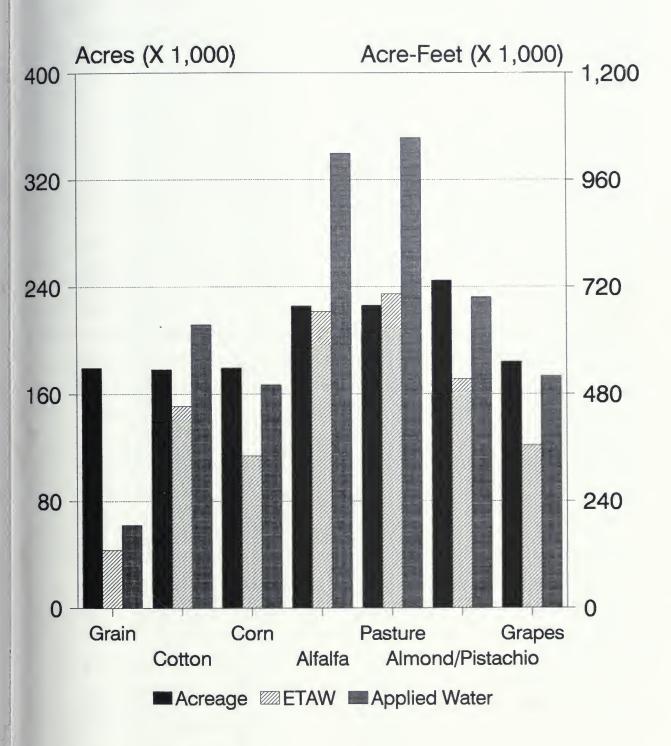


Figure SJ-5. 1990 San Joaquin River Region Acreage, ETAW, and Applied Water for Major Crops

	(thousands of acre-feet)								
Planning Subareas	1990		2000		2010		2020		
A1	average	drought	average	drought	average	drought	average	drought	
Sierra Foothills									
Applied water demand	21	25	23	27	26	35	30	35	
Net water demand	21	25	23	27	26	35	30	35	
Depletion	15	17	16	19	20	25	21	- 25	
Eastern Valley Floor									
Applied water demand	888	1,040	852	998	825	948	811	948	
Net water demand	874	1,028	803	988	765	904	751	903	
Depletion	637	747	628	735	619	715	612	715	
Delta Service Area								:	
Applied water demand	739	830	719	805	694	774	681	755	
Net water demand	690	772	673	749	650	721	638	705	
Depletion	552	620	542	606	532	591	522	. 578	
Western Uplands						t i			
Applied water demand	40	47	38	44	36	42	34	40	
Net water demand	43	49	40	46	38	44	37	42	
Depletion	30	35	29	34	28	32	27	31	
East Side Uplands								<u>.</u>	
Applied water demand	7	7	7	7	7	7	7	7	
Net water demand	4	4	4	4	4	4	4	4	
Depletion	4	4	4	4	4	4	4	4	
Valley East Side							1		
Applied water demand	3,193	3,366	3,059	3,230	2,926	3,086	2,841	3,013	
Net water demand	2,840	2,995	2,726	2,881	2,608	2,757	2,533	2,691	
Depletion	2,340	2,468	2,271	2,398	2,200	2,326	2,138	2,269	
Valley West Side		4					2		
Applied water demand	1,413	1,445	1,357	1,392	1,306	1,338	1,264	1,287	
Net water demand	1,312	1,349	1,272	1,277	1,233	1,235	1,198	1,196	
Depletion	1,139	1,171	1,113	1,111	1,085	1,082	1,057	1,054	
West Side Uplands							.,		
Applied water demand	0	0	0	0	0	0	0	0	
Net water demand	0	0	0	0	0	0	0	0	
Depletion	0	0	0	0	0	0	0	0	
Total				:					
Applied water demand	6,301	6,779	6,054	6,502	5,820	6,230	5,668	6,084	
Net water demand	5,783	6,222	5,541	5,972	5,324	5,700	5,191	5,577	
Depletion	4,718	5,063	4,604	4,908	4,489	4,776	4,382	4,677	

Table SJ-8. Agricultural Water Demand

San Joaquin River Region

Over the past 20 years, agricultural net water demand in the region has fluctuated, primarily as a result of changing crop patterns. For example, rice acreage normally planted near the City of Modesto has nearly disappeared due to the recent water shortages. Rice has been replaced by sugar beets and cotton, which require less water. In some areas, sugar beets have been replaced with other crops due to disease. Another factor is the trend of using low-volume irrigation systems in new plantings of orchards and vinevards. Some mature plantings are being converted to these systems as well.

A gradual decrease of about 10 percent in agricultural net water demand is predicted over the next 30 years. The majority of this reduction is expected in the Valley East Side and Valley West Side planning subareas. About one-third of this decrease is attributed to reduced plantings due to urbanization. The region's irrigated crop acreage is expected to decrease by almost 60,000 acres (3 percent), mostly in the Valley East Side PSA. The rest of the decrease in net water demand is primarily due to changing crop trends and slight increases in irrigation efficiencies.

Environmental Water Use

The region contains wildlife refuges, wetlands, and stretches of rivers that are designated Wild and Scenic under the California Wild and Scenic Rivers Act. The Grasslands area in western Merced County is an important stop along the Pacific Flyway for migrating waterfowl. In addition to the Grasslands area, there are ten other major wetlands that contribute to the region's environmental water demands. Water for conserving these wildlife habitats accounts for about 3 percent of the region's total net water demand. Refuges also provide areas for recreational use, a habitat for native vegetation, and flood and erosion control. Table SJ–9 summarizes projected wetland water needs for the region.

Instream flows are waters flowing in a natural stream channel providing vital support for fisheries. Four rivers in the region, the Mokelumne, Merced, Stanislaus, and Tuolumne, have significant instream flow requirements. (See Volume I, Chapter 8.) The region's annual water requirement for instream flows is 318,000 AF. In addition, the following minimum instream flows are required. At Merced Falls on the Merced River, 3 cubic feet per second is required for the minimum flow through the fish ladder. Below New Exchequer Dam on the Merced River, DFG requires annual flow release of 180 to 220 cfs during November 1 to April 1, plus spring flushing flows. Table SJ–10 summarizes environmental instream needs for the region.

Watlanda	19	90	20	00	20	10	20	020
Wetlands	average	drought	average	drought	average	drought	average	drought
San Luis				. 1				
Applied water	13	13	19	19	19	19	19	1
Net water	10	10	14	14	14	14	14	14
Depletion	10	10	14	14	14	14	14	14
Merced								
Applied water	13	13	16	16	16	16	16	16
Net water	10	10	12	12	12	12	12	1:
Depletion	10	10	12	12	12	12	12	1:
Volta								,
Applied water	10	10	16	16	16	16	16	1
Net water	8	8	12	12	12	12	12	12
Depletion	8	8	12	12	12	12	12	12
Los Banos								
Applied water	17	17	25	25	25	25	25	2
Net water	13	13	19	19	19	19	19	19
Depletion	13	13	19	19	19	19	19	19
Los Banos-Wolfson								
Applied water	7	7	7	7	7	7	7	1
Net water	6	6	6	6	. 6	6	6	
Depletion	6	6	6	6	6	6	6	6
Kesterson								
Applied water	3	3	10	10	10	10	10	1(
Net water	3	3	7	7	7	7	7	1
Depletion	3	3	7	7	7	7	7	A i
Grassland				1				
Applied water	125	125	180	180	180	180	180	180
Net water	91	91	135	135	135	135	135	135
Depletion	91	91	135	135	135	135	135	135
East Grassland								
Applied water	38	38	38	38	38	38	38	38
Net water	30	30	30	30	30	30	30	30
Depletion	30	30	30	30	30	30	30	30
Kesterson Mitigation								2
Applied water	0	0	62	62	62	62	62	62
Net water	0	0	46	46	46	46	46	46
Depletion	0	0	46	46	46	46	46	46

Table SJ-9. Wetlands Water Needs

Wetlands	19	1990		2000		2010		2020			
wellanus	average	drought	average	drought	average	drought	average	drought			
Delta		1									
Applied water	40	40	40	40	40	40	40	40			
Net water	40	40	40	40	40	40	40	40			
Depletion	7	7	7	7	7	7	7	7			
Total				* *	2	:	ś				
Applied water	266	266	413	413	413	413	413	413			
Net water	211	211	321	321	321	321	321	321			
Depletion	178	178	288	288	288	288	288	288			

Table SJ-9. Wetlands Water Needs (continued) (thousands of acre-feet)

Table SJ-10. Environmental Instream Water Needs (thousands of acre-feet)

Stream	19	2000		2010		2020		
	average	drought	average	drought	average	drought	average	drought
Mokelumne River								
Applied Water	14	14	14	14	14	14	14	14
Net Water	14	14	14	14	14	14	14	14
Depletion	0	0	0	0	0	0	0	0
Merced River					8			
Applied Water	84	67	84	67	84	67	84	. 67
Net Water	84	67	84	67	84	67	84	67
Depletion	0	0	0	0	0	0	0	0
Stanislaus River						1		:
Applied Water	110	98	110	98	110	98	110	98
Net Water	110	98	110	98	110	98	110	98
Depletion	0	0	0	0	0	0	0	0
Tuolumne River							<i>w w</i>	
Applied Water	122	68	122	68	122	68	122	68
Net Water	122	68	122	68	122	68	122	68
Depletion	0	0	0	0	0	0	0	0
Total				1	-	1	ę	
Applied Water	330	247	330	247	330	247	330	247
Net Water	330	247	330	247	330	247	330	247
Depletion	0	0	0	0	0	. 0	0	. 0

The U.S. Bureau of Reclamation and the California Department of Fish and Game are currently negotiating environmental regulations for rivers in the Sierra Nevada. The conclusion of these negotiations will determine the magnitude and the scheduling of releases required for environmental uses. An interim agreement, requiring releases from New Melones to the Stanislaus River to fall within the range of 98,300 to 302,100 AF annually has already been set. Further agreements will undoubtedly be reached requiring changes in water use practices.

The California Wild and Scenic Rivers Act of 1972 provides for the preservation of the natural watercourse and character of certain rivers in the State. In the San Joaquin River Region portions of the Tuolumne and Merced rivers are designated wild and scenic. The upper stretch of the Tuolumne River, below Hetch Hetchy Reservoir and above New Don Pedro Reservoir, was designated wild and scenic in 1984. In 1992, a bill was passed designating an eight-mile stretch of the Merced River from Briceburg to Bagby as wild and scenic. Much of the river was already given this status in 1987. In addition to protecting the river from development, the 1992 bill allows the county to proceed with the Saxon Creek Water Project, providing a reliable water supply to the community of Mariposa. Waterways designated as wild and scenic are protected by law from the construction of dams or diversion structures that would alter the natural free–flowing character of these rivers. The Saxon Creek Project involves pumping water from the Merced river at times when flows are high enough that the waterway would not be adversely affected. The region's current environmental net water demands are about 530,000 AF annually; this is expected to increase by 21 percent to 651,000 AF annually by 2020.

Other Water Use

Recreation in the national forests and Yosemite National Park includes camping, hiking, snow skiing, white water rafting, hunting, bike riding, rock climbing, and spelunking, to name only a few activities. An estimated 4 million visitors from all over the world toured Yosemite in 1992.

San Luis, New Melones, and New Don Pedro reservoirs, and Lake McClure are just four of the region's many public access reservoirs that provide facilities for boating, swimming, water skiing, wind surfing, and fishing. Near the City of Los Banos, in western Merced County, is the Grasslands area where several public and private wildlife refuges provide areas for waterfowl hunting, fishing and nature study. Figure SJ–6 shows water recreation areas in the San Joaquin River Region.

Water used in the region's recreation areas amounted to 4,500 AF in 1990. Most of it was distributed to campgrounds for drinking water and sanitation. Other minor usage in the region includes water for cooling, 20,000 AF annually. Recreational and cooling water uses together make up about 1 percent of the total regional demand. Table SJ–11 shows the total water demand for the region.

182

San Joaquin River Region

Figure SJ-6. San Joaquin River Region Water Recreation Areas

Category of Use	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Urban			1					
Applied water	495	506	663	683	839	867	1,029	1,059
Net water	353	364	468	489	587	615	718	75
Depletion	175	177	241	248	316	324	395	40-
Agricultural								
Applied water	6,301	6,779	6,054	6,502	5,820	6,230	5,668	6,08
Net water	5,783	6,222	5,541	5,972	5,324	5,700	5,191	5,57
Depletion	4,718	5,063	4,604	4,908	4,489	4,776	4,382	4,67
Environmental								
Applied water	596	513	743	660	743	660	743	66
Net water	541	458	651	568	651	568	651	56
Depletion	178	178	288	288	288	288	288	28
Other (1)								
Applied water	24	24	36	36	48	48	48	4
Net water	130	130	172	142	186	156	186	15
Depletion	84	84	84	84	84	84	84	8
Total Demands								
Applied water	7,416	7,802	7,496	7,881	7,450	7,805	7,488	7,85
Net water	6,807	7,174	6,832	7,171	6,748	7,039	6,746	7,05
Depletion	5,155	5,502	5,217	5,528	5,177	5,472	5,149	5,45

Table SJ-11. Total Water Demands (thousands of acre-feet)

includes conveyance losses, recreational uses, and energy projects

Issues Affecting Local Water Resource Management

Each area of the San Joaquin River Region has its own set of geographic and demographic conditions which present several water management issues. For example, during the 1987–92 drought, the Valley West Side planning subarea experienced severe shortages, primarily due to cutbacks in Central Valley Project water deliveries. This predominantly agricultural area receives more than 87 percent of its total water supply from the CVP. The cutbacks prompted nine water supplying agencies in the PSA to purchase a total of 2,630 AF in 1992 from the State Drought Water Bank. For the most part, the municipal and industrial water demands are met by pumping ground water, and these demands have been met satisfactorily. However, meeting the demands during the drought increased pumping costs and accelerated ground water deterioration in some areas.

Legislation and Litigation

Statutes and court decisions have influenced water allocation and use in the San Joaquin River Region considerably. An overview of the major statutes and proceedings follows.

San Joaquin River Region

Bay–Delta Proceedings. In 1978, the State Water Resources Control Board's Water Rights Decision 1485 set water quality and outflow standards for the Delta and put forth rules for operating water projects affecting the San Francisco Bay and Sacramento–San Joaquin Delta. There are several regulatory actions currently affecting the Bay/Delta, which are discussed in Volume I, Chapters 2 and 10.

South Delta Water Agency Lawsuit. In July 1982, SDWA filed a lawsuit claiming that SWP and CVP operations harmed their agricultural production by causing low water levels, poor water quality, and poor circulation. In October 1986, DWR, USBR, and SDWA signed an agreement solidifying a frame-work for settling the litigation. As a result of the agreement, during 1986 through 1992, DWR implemented operational criteria regarding Clifton Court gate openings, completed dredging and installed siphons in Tom Paine Slough, and constructed the Middle River barrier to improve water levels, circulation, and quality within parts of the SDWA area.

Continuing negotiations resulted in a draft long-term contract in 1990. The contract commits the three agencies to constructing and operating three permanent barriers in Middle River, Old River near Tracy, and Grant Line Canal, after a period of testing.

Delta Levees. More than 1,000 miles of levees act as the only barriers between land and water in the Delta. Behind these earthen walls lie over half a million acres of agricultural land and valuable wildlife habitat, many small communities, numerous roads, railroad lines, and utilities. With each passing year, the promise of protection provided by these levees grows weaker. The Delta islands, which commonly lie 10 to 15 feet below sea level and are composed mainly of highly organic (peat) soils, are constantly in danger of land subsidence and seepage.

The original levees were constructed in the late 1800s with heights of about 5 feet and founded on the soft, organic Delta soils. Due to continued subsidence of the levees and island interiors, it was necessary to continually add material to maintain freeboard and structural stability. Over the last century, the levees have significantly increased in size and are now between 15 to 25 feet high.

Several active faults, for example, the Antioch, Greenville, and Coast Range Sierra Nevada Boundary Zone faults, are located west of the Delta and are capable of delivering moderate to large shaking. There has been on-going concern about the potential for liquefaction of the levees and of the foundation materials on some islands. However, there is no record of a levee failure resulting from earthquake shaking, meaning the levee system has not really been tested for earthquake shaking. Several studies indicate there would probably be levee damage or failure induced by earthquake shaking within the next 30 years. Further investigations are needed to better define the expected performance of the levees.

185

San Joaquin River Region

Delta levees are classified as either "project" or "nonproject." Project levees are part of the Sacramento River Flood Control Project. Mostly found along the Sacramento and San Joaquin rivers, they are maintained to U.S. Army Corps of Engineers standards and generally provide dependable protection. Nonproject, or local, levees (65 percent of Delta levees) are those constructed and maintained to varying degrees by island landowners or local reclamation districts. Most of these levees have not been brought up to federal standards and are less stable, increasing the area's chances of flooding.

The Delta Levee Subventions Program, originally known as the "Way Bill" program, began in 1973. The bill authorized funding, which grew from \$200,000 annually in the 1970s to \$2 million annually in the 1980s for levee maintenance and rehabilitation costs, with up to 50 percent reimbursement to local agencies.

Since 1980, 17 islands have been partially or completely flooded, costing roughly \$100 million dollars for recovering property and completing repairs. As a result of 1986 floods, the Delta Flood Protection Act of 1988, Senate Bill 34, was enacted. It provides \$12 million a year for 10 years for the long standing Delta Levees Subventions Program and for developing special flood control programs to protect eight western Delta islands and the communities of Walnut Grove and Thornton.

Senate Bill 34 was enacted partly because of a commitment the State made in its 1983 Hazard Mitigation Plan for the Delta. (Hazard Mitigation Plans are required by the Federal Emergency Management Agency). The plan recommended an increase in funding to the Subventions program to aid the districts in maintaining and upgrading their levees to minimum standards until a major federal levee rehabilitation project could be implemented. Through SB 34, legislative intent for funding the Delta Subventions program increased to up to \$6 million a year and allows up to 75 percent reimbursement to the local agencies for their levee work. The other \$6 million is for implementing special flood control projects. Recent activities include planning and design of major levee rehabilitation projects on Twitchell Island and New Hope Tract, repair of threatened levee sites on Sherman Island, Twitchell Island, Bethel Island, and Webb Tract, and other special projects and studies to determine the causes of Delta land subsidence. On Twitchell Island, a five-mile reach of levees along the San Joaquin River has been significantly upgraded.

In 1991, the U.S. Army Corps of Engineers, DWR, and the Reclamation Board signed an agreement to work further toward solving Delta flood control and environmental problems. The agreement calls for a six-year special study that will define the extent of federal interest in implementing a long-term flood control plan for the Delta. The study will attempt to find long-term solutions to Delta problems after SB 34 lapses in 1999.

Bulletin 160–93 Administrative Draft

San Joaquin River Management Program. The San Joaquin River Management Program was created to address the needs of the San Joaquin River system. Existing conditions on the San Joaquin River do not fully satisfy present water supply, water quality, flood protection, fisheries, wildlife habitat, and recreational needs. Continuing present river management practices would further deteriorate the river system, adversely affecting all users. On September 18, 1990, the Governor signed Assembly Bill 3603 (now Chapter 1068, 1990 statutes), which charges SJRMP with the following:

- Provide a forum where information can be developed and exchanged to provide for the orderly development and management of the water resources of the San Joaquin River system.
- Identify actions which can be taken to benefit legitimate uses of the San Joaquin River system.
- Develop compatible solutions to water supply, water quality, flood protection, fisheries, wildlife habitat, and recreation needs.

Regional Issues

West–Side Drainage Problem. On the west side of the region, several hundred acres of land are underlain by shallow, semi–impermeable clay layers that prevent water from percolating downward. Inadequate drainage and accumulating salts have been long–standing problems in this area of the valley. With the importation of irrigation water from northern California during the last 20 years, the problem has intensified. Where water tables are high, subsurface drainage is necessary to remove and dispose of the water.

In 1984, the San Joaquin Valley Drainage Program was established as a joint federal–State effort o investigate drainage and drainage–related problems. In 1990, the SJVDP published its recommended plan for managing the west side drainage problem, and at the end of 1991, a Memorandum of Understanding was executed that allows federal and State agencies to coordinate activities for implementing the plan. Work on this program is ongoing.

Ground Water Quality—Radon. Concentrations of radioactive elements in ground water vary widely throughout the Sierra Nevada. Radon is a radioactive gas generated by naturally occurring uranium deposits in the earth's crust. Radon is not a problem in surface water because the gas is released to the atmosphere. It can be found in outdoor air and can seep into homes through basements or foundations. Ground water can also release the odorless radon gas when residents wash dishes or the laundry, or when they shower. Inhalation of radon's decay products increases the risk of lung cancer.

According to the U.S. Environmental Protection Agency, radon is the second leading cause of lung Cancer in the United States. In October 1990, DWR published *Natural Radioactivity in Ground Water of* the Western Sierra Nevada, which reported the quality of water sampled from 20 wells in the mountain and foothill areas of Mariposa and Madera counties. The highest concentrations of radon, uranium, and radium are found in wells drilled in granitic rock, while lower concentrations are associated with metamorphic rock formations. A notable radon and uranium "hot spot" in the region is located near Bass Lake in Madera County. Granitic rock formations can be found in Alpine, Amador, Calaveras, El Dorado, and Tuolumne counties.

Water Balance

Water balances were computed for each Planning Subarea in the San Joaquin River Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas, which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table SJ-12 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 6.8 and 7.2 MAF for average and drought years respectively. Those demands are projected to decrease slightly to 6.7 and 7.1 MAF, respectively, by the year 2020, after accounting for a 20,000 AF reduction in urban water demand resulting from implementation of long-term conservation measures and a 20,000 AF reduction in agricultural demand resulting from additional long-term agricultural water conservation measures and land retirement.

Urban net water demand is projected to increase by about 365,000 AF by 2020, due to expected increases in population; while, agricultural net water demand is projected to decrease by about 590,000 AF, primarily due to lands being taken out of production due to ubanization of irrigated lands and land retirement in areas with poor drainage conditions on the west side of the San Joaquin Valley. Environmental net water demands, under existing rules and regulations, will increase 110,000 AF over the next 30 years, reflecting increased supplies for managed wetlands resulting from implementation of the Central Valley Project Improvement Act. However, there are several actions currently in progress, including further implementation of the CVPIA, that have proposed increases in instream flow for fisheries that will affect the availability of supplies for urban and agricultural use now and in the future.

Bulletin 160–93 Administrative Draft

Urban and environmental water demands will increase over the next 30 years, but the agricultural water demand will decrease significantly causing total net water demand for the region to decrease for both average and drought conditions. The majority of the decrease will come from the southern half of the region.

Future average annual supplies are expected to continue to meet average net water demands in the San Joaquin Region. However, during drought conditions, substantial shortages occur at the 1990 level of development, as was evident during the 1987–1992 drought. Drought year shortages are projected to decrease at the 2020 level of development due to reduced water demands and Level I surface water augmentations.

Two planning subareas in the region rely heavily on ground water to supplement surface supplies to meet demands. Consequently, these areas are in significant overdraft. Eastern Valley Floor PSA has 89,000 AF of overdraft, with 70,000 AF in San Joaquin County. Valley East Side PSA has 120,000 AF of overdraft, mostly in Madera County.

In both planning subareas, water demand is expected to shift, like the rest of the region, from agriculture to urban over the next 30 years. This change in net water demand will result in about a 6 percent decrease in overall agricultural and urban demand by 2020.

The Eastern Valley Floor PSA will soon receive supplies from New Melones reservoir. Two area water districts have contracts with USBR for 155,000 AF, 106,000 AF interim and 49,000 AF average and drought year, of New Melones Project water. Distribution and conveyance facilities are nearly completed. With this additional surface supply, this PSA could rely less on ground water pumping thereby reducing or eliminating ground water overdraft.

Agricultural and urban net water demands in the Valley East Side PSA are expected to decrease 148,000 AF by 2020. Existing surface and ground water supplies should meet future demands. Ground water overdraft could also be reduced or eliminated in this planning subarea.

The Valley West Side PSA supplies are mainly imported from the Delta by the CVP. Changes in CVP Delta supplies will affect the Valley West Side's ability to meet future demands.

Table SJ-12. Water Balance (thousands of acre-feet)

Demand/Supply				2020
	average	drought	average	drought
Net Demand		3		
Urban-with 1990 level of conservation	353	364	738	771
-reductions due to long-term conservation measures (Level I)			-20	-20
Agricultural	5,783	6,222	5,215	5,601
-reductions due to long-term conservation measures		J	-28	-20
 reductions due to land retirement in poor drainage areas of San Joaquin Valley (Level I) 			-4	-4
Environmental	541	458	651	568
Other (1)	130	130	186	156
Total Net Demand	6,807	7,174	6,746	7,052
Water Supplies w/Existing Facilities Under D-1485 for Delta Supplies		• • •		
Developed Supplies				
Surface Water	5,196	4,285	5,344	4,324
Ground Water	1,072	2,127	1,072	2,284
Ground Water Overdraft	209	209	0	0
Subtotal	6,477	6,621	6,416	6,608
Dedicated Natural Flow	330	247	330	247
Total Water Supplies	6,807	6,868	6,746	6,855
Demand/Supply Balance	0	-306	0	-197
Future Water Management Options Level I (2)				
Long-term Supply Augmentation				
Reclaimed (3)			17	17
Local			0	0
Central Valley Project			4	0
State Water Project			1	- 0
Subtotal – Water Management Options Level I			22	17
Ground Water/Surface Water Use Reduction Resulting from Level I Programs	S		-22	-17
Remaining Demand/Supply Balance Requiring Short Term Drought Mana and/or Future Level II Options	agement		0	-197

(1) Includes conveyance losses, recreation uses and energy production.

(2) Protection of fish and wildlife and a long-term solution to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

(3) Because of existing reuse within this region, reclaimed water does not add supply to the region.

With planned Level I options, drought year shortages would not change; however, ground water use would be reduced by nearly 250,000 AF by 2020 and consequently long-term ground water overdraft would also be eliminated for this region.

The remaining drought shortage requires both additional short-term drought management, water transfers and demand management programs, and future long-term Level II options depending on the

Bulletin 160–93 Administrative Draft

San Joaquin River Region

overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region. In the short-term, some areas of this region that rely on the Delta exports for all or a portion of their supplies face great uncertainty in terms of water supply reliability due to the uncertain outcome of a number of actions undertaken to protect aquatic species in the Delta. For example, in 1993, an above normal runoff year, environmental restrictions limited CVP deliveries to 50 percent of contracted supply for federal water service contractors from Tracy to Kettleman City. Because ground water is used to replace much of the shortfall in surface water supplies, limitations on Delta exports will exacerbate ground water overdraft in this region.

* * *

-

TULARE LAKE REGION

Carrots growing in the southern San Joaquin Valley near Wheeler Ridge.

TULARE LAKE REGION

The Tulare Lake Region includes the southern San Joaquin Valley and tributary Sierra Nevada and Coast Range from the southern limit of the San Joaquin River watershed to the crest of the Tehachapi Mountains. It stretches from the Sierra Nevada Crest in the east to the Coast Range in the west. Many small agricultural communities dot the eastern side of the valley, and the rapidly growing cities of Fresno and Bakersfield anchor the region, which encompasses almost 10 percent of the State's total land area. (See Appendix C for maps of the planning subareas and land ownership in the region.)

Four main areas make up this mostly agricultural region: the western side of the San Joaquin Valley floor, the Sierra Nevada foothills on the region's eastern side, the central San Joaquin Valley floor, and the Kern Valley floor. The major rivers in the region, the Kings, Kaweah, Tule and Kern, begin in the Sierras and generally flow east to west into the valley. They are sustained by snow melt from the upper elevations. The Kern River follows a more north–south alignment for much of its path. All of them terminate on the valley floor in lakes or sinks; water does not find its way to the ocean from the basin, as it once did under natural conditions, except in extremely wet years. There is a considerable drainage area on the west and south sides of the valley, but scant rainfall has not produced water development there.

The region's climate varies between valley and foothill areas. The valley areas experience mild springs and hot, dry summers. Winters are typically cold with some temperatures below freezing, but snowfall is rare. In some parts of the valley, thick tule fog is common at times during the winter. Climate in the foothills is typical of mountainous foothill areas. Winters and springs are cold with snowfall at higher elevations.

Most of the region's runoff is stored for summer water supply to the drier valley floor areas. In most years, imported water from northern California supplements local supplies to meet the region's high agricultural water demand.

Population

Population in the region increased substantially in the 1980s, led by 50– to 60–percent growth in the Fresno, Bakersfield, and Visalia–Tulare urban areas. Fresno's population, which had one of the highest growth rates among large metropolitan areas in the United States during the 1980s, grew by more than 60 percent—from 217,000 in 1980 to 354,000 in 1990. A high birth rate contributed to this growth and

Region Characteristics

Average Annual Precipitation:14 inchesAverage Annual Runoff:3,313,500 acre-feetLand Area:16,518 square miles1990 Population:1,554,000

Water Supply

The main local surface water supplies in the Tulare Lake Region come from Sierra Nevada rivers. Imported water is by way of the federal Central Valley Project's Delta–Mendota Canal and Friant–Kern Canal, and the State Water Project's California Aqueduct, which enters the region as part of the Joint–Use Facilities with the CVP's San Luis Unit. Ground water pumping meets the remaining water demands. Figure TL–2 shows the region's 1990 level sources of supply.

Supply with Existing Facilities

Local surface supplies on the western side of the region are limited to flood flows into the Tulare lakebed from the Kings, Tule, and Kaweah rivers. Excess flows from the Kings River flow through Fresno Slough to the Mendota Pool. Local supplies from snow melt and runoff in Sierra Nevada systems are more plentiful than imported sources in the central portion and eastern edge of the valley, but not as reliable throughout the year. Major reservoirs in the region are listed in Table TL–2. Table TL–3 shows water supplies with existing facilities and water management programs.

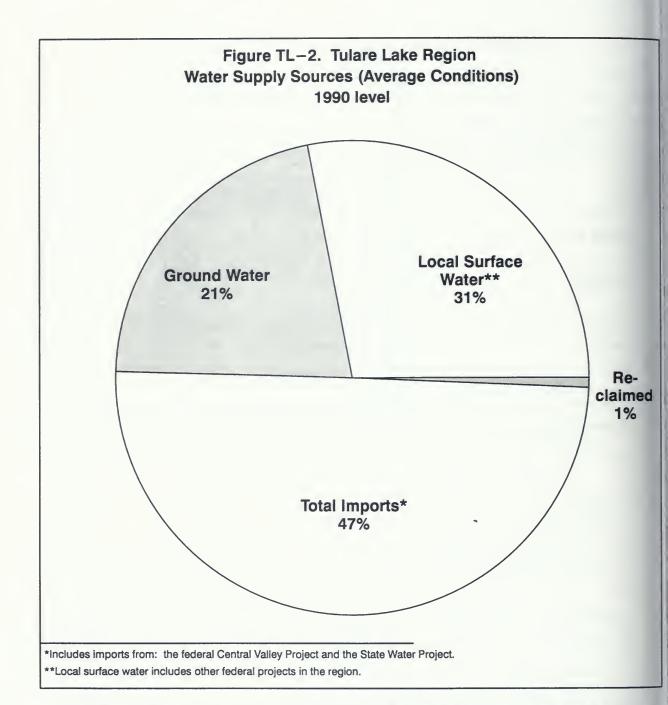

Reservoir Name	River	Capacity (1,000 AF)	Owner
Courtright	Helms Creek	123	Pacific Gas & Electric Co.
Wishon	Kings	118	Pacific Gas & Electric Co.
Pine Flat	Kings	1,000	U.S. Army Corps of Engineers
Terminus	Kaweah	143	U.S. Army Corps of Engineers
Lake Success	Tule	82	U.S. Army Corps of Engineers
Lake Isabella	Kern	568	U.S. Army Corps of Engineers

Table TL-2. Major Reservoirs

Mountain and Foothill Areas. Cities in the Sierra Nevada foothills often have less dependable drought supplies than valley communities. In many foothill areas, local surface water connections or rights are not available. Ground water is limited to small pockets of water formed from runoff trickling into fissures in the rock strata. During drought years, the ground water in the fissures is scarcely replenished and urban water supplies in foothill areas are often exhausted. A few cities, such as Lindsay in eastern Tulare County and Orange Cove in eastern Fresno County, receive imported surface water through the CVP's Friant–Kern Canal.

Table TL-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

Cumply	19	90	2000		20	10	2020	
Supply	average	drought	average	drought	average	drought	average	drought
Surface		*						
Local	2,347	1,240	2,347	1,240	2,347	1,240	2,347	1,240
Local imports	0		0	0	0	0	0	0
Colorado River	0	0	0	0	0	0	0	0
CVP	2,704	1,288	2,704	1,288	2,704	1,288	2,704	1,288
Other federal	243	0	243	0	243	0	243	0
SWP	1,226	847	1,043	692	965	622	967	625
Ground water	1,391	4,209	1,440	4,223	1,439	4,204	1,375	4,129
Overdraft	341	341	350	350	320	320	280	280
Reclaimed	63	63	63	63	63	63	63	63
Dedicated natural flow	0	0	0	0	0	0	0	0
Total	8,315	7,988	8,189	7,656	8,080	7,737	7,979	7,625

Valley Area. Many valley cities, including Fresno and Bakersfield, rely on ground water for urban use, occasionally obtaining supplemental supplies from local surface water and some imported water. Fresno, for example, uses ground water for its main urban supply. Fresno also purchases local Kings River water and imported water from the Friant–Kern Canal and replenishes ground water through local recharge basins. In Bakersfield, the Kern County Water Agency treats CVP Cross Valley Canal water to supplement its urban ground water supply(26 TAF in 1991, more than 10 percent of its municipal and industrial supply). In isolated parts of the valley's western side, smaller cities like Avenal, Huron, and Coalinga rely on imported surface water from the San Luis Canal for their municipal demands.

Tulare Lake Region

The SWP, through San Luis Reservoir and the California Aqueduct, provides an average of 1.2 million acre–feet of surface water yearly to the region during normal years. The U.S. Bureau of Reclamation supplies an average of 2.7 MAF during normal years from the CVP via the Delta–Mendota Canal, the Friant–Kern Canal, the Madera Canal, and the San Luis Canal of the CVP/SWP San Luis Joint–Use Facilities. The Friant–Kern and the Madera canals receive water from Millerton Lake and the San Joaquin River; the Delta–Mendota Canal and the California Aqueduct divert water from the Sacramento–San Joaquin Delta.

The region covers four major ground water basins and part of a fifth basin; three are overdrafted. The valley floor is mostly one large ground water basin that consists of alluvial sediments. In the western half to three quarters, the Corcoran clay layer, which generally lies at depths of 300 to 900 feet, divides the basin into two aquifers. South of the Kern River, the Corcoran horizon drops below well depths but other clay layers provide some confinement. On the eastern side of the valley, both north and south of the Kern County line, older formations are tapped by wells that usually exceed 2,000 feet in depth. A small ground water subbasin, with little hydraulic connection to the main aquifers, exists on the western side of Fresno, Kings, and Kern counties from Coalinga to Lost Hills. Two other small subbasins in Kern County are separated from the main basin by the White Wolf and Edison faults. Productive aquifers with good quality water are the general rule, except in the Tulare Lake area where lakebed clays yield little water, along the extreme eastern edge of the region where shallow depth to granite limits aquifer yields, and along the western side where quality is poor.

The Kings-Kaweah-Tule River Planning Subarea accounts for just over 50 percent of net water demand of the Tulare Region. Supplies for the KKTR PSA are split three ways: local surface provides about 39 percent, imported water provides 30 percent, and ground water provides 31 percent. Reductions in Delta diversions will influence this PSA only slightly, since only about 225,000 AF of its supplies come from the Delta. On the other hand, the San Luis West Side and Kern Valley Floor PSAs will be heavily affected by CVP and SWP reduced deliveries. The SLWS meets over 90 percent of its demand with imported water, especially CVP water from the Delta. With future CVP deliveries unknown and limited available ground water and local surface supplies, the SLWS could have problems meeting future demand. Although ground water and local surface supplies are available, the KVF PSA could face similar problems as the SLWS PSA; more than 60 percent of its demand is met by imported water. Changes in SWP deliveries from the Delta would have the most effect in this PSA.

The City of Bakersfield operates a 2,800-acre recharge facility southwest of Bakersfield where the city and some local water agencies recharge surplus Kern River and occasionally, SWP and Friant-Kern

Canal water; this water then is "banked" and withdrawn in drier years. The recharge facility is one of the largest single areas in California and during wet years, more than 100,000 AF of water may be recharged.

The reclaimed water for the region includes 42,300 AF from the Kings–Kaweah–Tule rivers areas and 17,100 AF from the Kern Valley Floor area. In both areas, the main source of reclaimed water is treated urban waste water (sewage), mainly from Fresno and Bakersfield. In other areas, minor amounts of reclaimed water also come from urban wastewater treatment.

Supply with Level I Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Some of the water management options available to the region include increasing local reservoir storage by raising existing dam heights and encouraging more urban water conservation while protecting water quality in city wells.

Water Supply Reliability and Drought Water Management Strategies. During drought, as surface supplies dwindle and carryover storage in reservoirs is not replaced, ground water pumping increases tremendously. The number of new wells drilled during the recent drought (1987–92) more than doubled compared to normal periods.

Along the eastern side of the region, the ability to make up deficits by ground water pumping was crucial to sustaining agricultural production during the drought. Allotments from the Friant–Kern Canal, which delivers CVP water along the eastern side of the region from Fresno County to Kern County, were greatly decreased in the last drought. Some growers who receive Friant–Kern Canal water along the eastern side of the region were not able to pump enough to make up the deficiencies. In these cases, permanent crops did not receive full irrigations and yields suffered. State Water Project agricultural contractors received only 50 percent of their normal delivery in 1990 and then the next two years received no delivery at all.

Although ground water pumping in western Fresno County reached all time highs during the 1987–92 drought, unprecedented since the arrival of CVP and SWP water, growers still could not afford to pump enough water to make up for the surface water deficiencies from reductions in CVP and SWP water. As a consequence, some acreage was fallowed. The situation was even worse in western Kern

County, where ground water is not generally available. Some water was obtained from the State Drought Water Bank to ensure the survival of permanent crops in 1991. Still, over 125,000 acres were fallowed in 1991 due to lack of water.

Some well problems have been experienced in the region's urban areas. These have primarily been an aggravation of already existing quality problems. Most communities enacted water use restriction ordinances during the current drought, generally including time-of-day watering and odd-even-day watering, a prohibition of driveway or other paved surface washing, and water waste patrols.

Water Management Options with Existing Facilities. Due to their hot climates, Fresno and Bakersfield have had relatively high per capita water use. As a result of continued urban growth and stricter federal drinking water standards, which have closed some wells with high pesticide levels, Fresno will have problems meeting its future urban water demand. To address this problem, the City of Fresno is preparing a ground water management plan to ensure the reliability of existing supplies. Among its efforts, Fresno established a water reclamation district that ponds storm runoff in recharge basins throughout the metropolitan area. The district could also pond additional surplus surface water when it is available. With proper management and some enhancement, the recharge basins can be used to meet Fresno's growing water demands.

DWR, in cooperation with the U.S. Bureau of Reclamation, is assisting local water agencies and districts in developing conservation plans that will be required of all CVP water users in the future because of the Reclamation Projects Authorization and Adjustment Act. With proper conservation planning, local agencies may better be able to deal with shortages of imported water during drought periods.

Water Management Options with Additional Facilities. For future agricultural needs along the eastern half of the central San Joaquin Valley area, the Tule River Association wants to increase the reservoir capacity of Lake Success on the Tule River by 28,000 acre–feet. The extra capacity would be used for flood control and better irrigation scheduling during summer months. Construction would be completed by 2000, if approved by the U.S. Army Corps of Engineers. This project is in the planning stage.

The Kaweah–St. Johns Rivers Association also has a project in the planning stages that could raise the height of Terminus Dam on Lake Kaweah and add 43,000 acre–feet of flood control capacity and off–basin storage of Kaweah River water by 1999. Projects like the conservation program started by the Orange Cove Irrigation District will probably be more common in the future as area farmers look to conservation rather than new water sources to alleviate shortages. OCID plans to replace 98 miles of

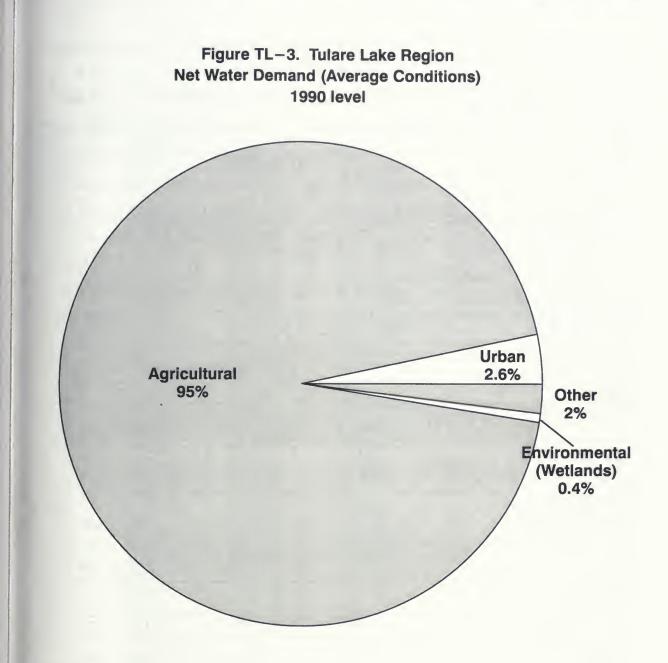
40-year-old pipelines to reduce leakage losses and add six regulating reservoirs and new metering equipment to make water delivery totals more precise.

Farmers on the Kern Valley floor will benefit from water transfers and banking of the Kern Water Bank Project when it is completed. Water districts and the SWP will be able to divert surplus water in wet years to recharge basins in the KWB project area, where the water will be stored in a vast underground aquifer. In dry years, users will be able to withdraw banked water from KWB to supplement SWP and other project deliveries.

Local supplies should remain at the 1990 level since there are no firm plans yet to increase reservoir capacity for the region. As surplus SWP supplies decline and urban water demand increases, increased ground water pumping will probably continue to make up the difference.

By the year 2010, SWP deliveries to the region are predicted to stabilize as the Los Banos Grandes Reservoir is completed and the Kern Water Bank is implemented at its full capacity. (See Volume I, Chapter 11 for detailed discussions of these programs.) Deliveries from the CVP are shown as remaining the same. Although the Central Valley Project Improvement Act will probably reduce agricultural water supplies to the region, its effects on future CVP deliveries are, as yet, unpredictable. Local surface supplies should remain at 1990 levels. Table TL-4 shows water supplies with additional Level I water management programs.

Cumply	19	1990		2000		10	2020	
Supply	average	drought	average	drought	average	drought	average	drought
Surface				1.0		1		
Local	2,347	1,240	2,347	1,240	2,347	1,240	2,347	1,240
Local imports	0	0	0	0	0	0	0	0
Colorado River	0	0	0	0	0	0	0	0
CVP	2,704	1,288	2,704	1,288	2,704	1,288	2,704	1,288
Other federal	243	0	243	0	243	0	243	0
SWP	1,226	847	1,127	876	1,251	762	1,253	753
Ground water	1,391	4,209	1,455	4,135	1,364	4,277	1,266	4,179
Overdraft	341	341	240	240	80	80	55	55
Reclaimed	63	63	74	74	92	92	111	111
Dedicated natural flow	0	0	0	0	0	0	0	0
Total	8,315	7,988	8,190	7,853	8,081	7,739	7,979	7,626


Table TL-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

If no additional capacity is added to the SWP and the CVP, water users in the region will probably rely more on ground water pumping as urban demands increase. Very little new agricultural land is expected to be brought into production, since most available productive agricultural land is already in use.

Water Use

Most water use in the Tulare Lake Region is used for irrigated agriculture. In a normal year, irrigated agriculture uses roughly 8 MAF, about 95 percent of the region's total water use; this is the largest agricultural demand for water of any hydrologic region in California. Municipal and industrial needs are about 215,000 acre-feet annually. Wildlife refuges and other nature areas account for one-third of one percent of the region's water needs. Agriculture will continue to be the major water user in the region in the future. However, as the population grows, municipal and industrial use will increase considerably. Figure TL-3 shows net demand for the 1990 level of development.

Municipal and industrial net water use is expected to increase 87 percent due to large population increases throughout the region, while agricultural water use may decline slightly (6 percent) as farm irrigation efficiencies increase and some agricultural land is converted to urban land. The total net water use for the region is projected to decrease 2 percent by 2020.

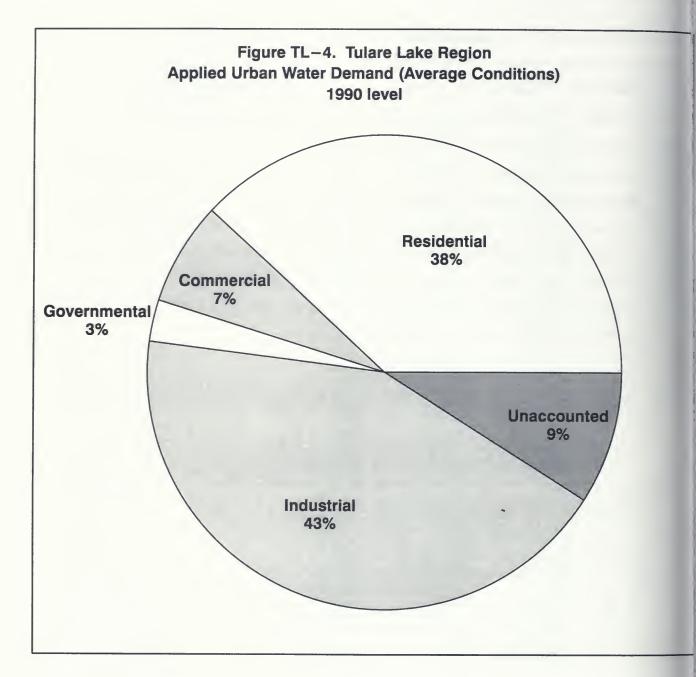
Urban Water Use

Total urban applied water for the region was 523,000 acre-feet in 1990; the 1990 urban net water use for the region was 215,000 AF. The Sierra Nevada foothill area (Uplands planning subarea) had a net water use of about 6,000 acre-feet (1990). Since the mid-1980s, urban water use has declined in the central San Joaquin Valley floor and on the western side of the valley floor, but it has increased in the other areas. Table TL-5 shows urban applied and net water demand to 2020.

Planning Subareas	19	90	2000		20	10	2020	
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Uplands						> 		
Applied water demand	12	12	18	18	26	26	35	35
Net water demand	7	7	7	9	10	10	14	14
Depletion	5	5	6	7	9	9	13	13
Kings-Kaweah-Tule								
Applied water demand	319	319	432	432	547	548	694	694
Net water demand	134	134	181	181	230	230	290	290
Depletion	92	92	139	139	187	187	248	248
San Luis West Side								
Applied water demand	10	10	14	14	16	16	18	18
Net water demand	4	4	6	6	7	7	7	7
Depletion	3	3	4	4	5	5	6	6
Western Uplands								1
Applied water demand	2	2	2	2	3	3	4	4
Net water demand	1	1	1	1	1	1	2	2
Depletion	1	1	1	1	1	1	2	2
Kern Valley Floor				<u>.</u>				
Applied water demand	180	180	250	250	299	299	365	365
Net water demand	70	70	97	97	116	116	141	141
Depletion	53	53	80	80	99	99	124	124
Total Urban								
Applied water demand	523	523	716	716	891	892	1,115	1,115
Net water demand	215	215	292	294	364	364	454	454
Depletion	154	154	230	231	301	301	393	393

Table TL-5. Urban Water Demand (thousands of acre-feet)

The average per-capita daily water use within the Tulare Lake Region is about 301 gallons. Water use in the foothills was 202 gpcd, while that of the Kern Valley floor was 374 gpcd. The region has a fairly high urban water consumption rate due to its hot summers, which cause greater demand for drinking, cooling, and landscaping water. Additionally, the per capita consumption number in the Kern Valley area represents an average of many urban areas and water districts that may have high industrial water use due to petroleum refining and production.


Municipal water use in valley cities represents up to 80 percent of total M&I net water use. About 60 percent of the total municipal and industrial net use occurs outdoors; landscaping accounts for 90 percent

Bulletin 160-93. Administrative Draft

Tulare Lake Region

of this percentage and swimming pools the remaining 10 percent. Indoor water use (for drinking, washing, and cooking) accounts for 40 percent of total municipal and industrial net water use. Both Fresno and Bakersfield have a high per capita water use, about 280 and 330 gpcd, respectively. Both cities have water use regulations and water education programs to promote water conservation. Figure TL-4 shows the 1990 level applied urban water demands by sector.

For the year 2020, municipal and industrial applied water is expected to increase in the Tulare Lake Region due to population increases in Fresno and other cities. The population for the valley and the foothills will more than double by 2020. Per capita water consumption in the central San Joaquin Valley (Kings–Kaweah–Tule rivers planning subarea) floor area is expected to decline because of implementation of water conservation measures. On the Kern Valley floor, per capita use should decrease, while use in the foothills should average about 190 gallons. Per capita water use on the western side of the valley floor should average about 225 gallons.

Agricultural Water Use

Irrigated agriculture accounts for more than 95 percent of the 1990 level water use in the Tulare Lake Region. Many different crops are grown throughout the region. In the future, however, urbanization and increasingly higher costs for water could reduce the variety and acreages of crops and thus ultimately, agricultural water use. Figure TL-4 shows 1990 crop acreages, evapotranspiration, and applied water for major crops.

Climate, water supply, and salt buildup in the soils may limit the crops that can be grown profitably throughout the region. Most good irrigable land with access to dependable imported or local surface

Bulletin 160-93. Administrative Draft

water has been developed. Crop acreages have generally declined in the region over the last decade, due o the limited availability of water and a drop in demand due to the sluggish economy. Cotton acreages, for example, declined from 1989 to 1992. Its price dropped from about 75 cents per pound in the late 1980s to about 50 cents per pound in 1992. In addition to decreased demand for cotton, the drought reduced SWP deliveries along the western side of the region. Table TL-6 shows irrigated crop acreage projections to 2020. Table TL-7 shows 1990 evapotranspiration of applied water by crop.

Planning Subareas	1990	2000	2010	2020
Uplands	8	9	9	9
Kings-Kaweah-Tule	1,721	1,667	1,618	1,565
San Luis West Side	620	620	618	621
Western Uplands	0	0	0	0
Kern Valley Floor	863	863	869	866
Total	3,212	3,159	3,114	3,061

Table TL-6. Irrigated Crop Acreage (thousands of acres)

Table TL-7. 1990 Evapotranspiration of Applied Water by Crop

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)	Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	297	294	Pasture	44	141
Rice	1	3	Tomatoes	107	245
Cotton	1,029	2,569	Other truck	204	275
Sugar Beets	35	91	Almonds/pistachios	164	392
Corn	100	199	Other deciduous	177	470
Other field	135	262	Vineyard	393	817
Alfalfa	345	1,045	Citrus/olives	181	344
			Total	3,212	7,147

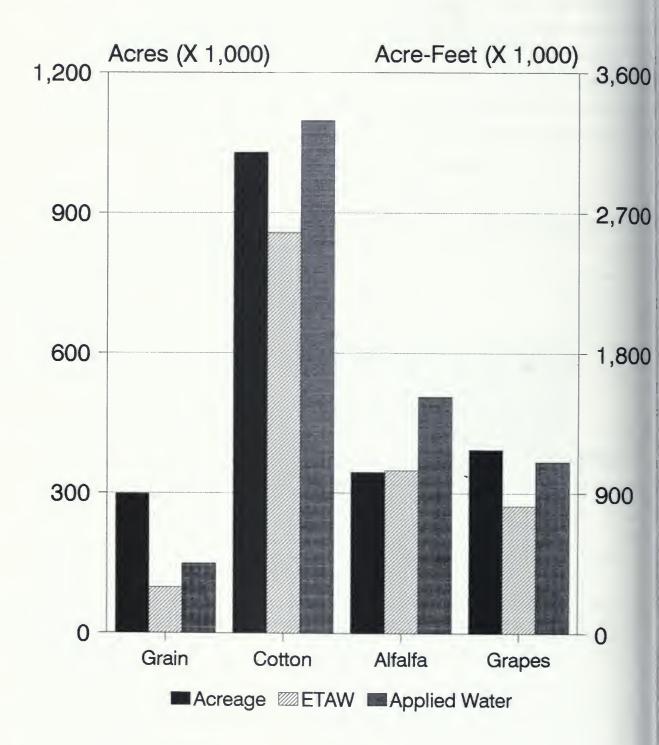


Figure TL-5. 1990 Tulare Lake Region Acreage, ETAW, and Applied Water for Major Crops

Tulare Lake Region

The average year applied water and net water demands were derived from irrigated acreages by applying water use factors for average year conditions. The unit use factors reflect local conditions of climate and cultural practices. Applied water amounts vary with the source of water supply (surface or ground water and the type of water year). During drought years, there will be a need for additional irrigation to replace water normally supplied by rainfall and to meet higher than normal evapotranspiration demands.

Applied water use amounts can be reduced with more efficient irrigation management. Farmers in some areas are practicing these techniques. On the western side of the San Joaquin Valley they are using more sprinkler irrigation and less flood or furrow irrigation. In 1990, less than half of the irrigated land was flood irrigated, where only five years ago, farmers irrigated over 60 percent of the land in the area with flood methods. Now, many use sprinklers and drip irrigation, especially on truck crops where small applications of water early in the growing season are highly beneficial. Also, almost all new plantings of trees and vines are on drip or trickle systems.

In the central San Joaquin Valley much of the citrus growing area of the region, which converted to drip irrigation years ago, is now moving towards highly efficient microjet irrigation through microsprinklers. About half of all new plantings of table grape vineyards are on drip irrigation and some existing vineyards have changed from furrow to drip irrigation. Finally farmers throughout the area are improving irrigation management based on better knowledge of evapotranspiration requirements and soil moisture content. Table TL-8 shows agricultural water demand projections for the Tulare Lake Region to 2020.

Planning Subareas	19	90	2000		20	10	2020	
r anning ouvereas	average	drought	average	drought	average	drought	average	drought
Uplands								
Applied water demand	29	29	29	29	29	29	29	29
Net water demand	20	20	20	20	20	20	20	2(
Depletion	20	20	20	20	20	20	20	20
Kings-Kaweah-Tule								
Applied water demand	5,205	5,393	4,971	5,149	4,793	4,960	4,600	4,757
Net water demand	4,065	4,211	3,910	4,049	3,777	3,911	3,635	3,760
Depletion	4,039	4,182	3,884	4,021	3,752	3,884	3,611	3,734
San Luis West Side								*
Applied water demand	1,695	1,721	1,685	1,700	1,665	1,684	1,665	1,693
Net water demand	1,514	1,532	1,496	1,514	1,467	1,484	1,459	1,476
Depletion	1,514	1,532	1,496	1,514	1,467	1,484	1,459	1,476
Western Uplands						1. 1		
Applied water demand	0	0	0	0	0	0	0	(
Net water demand	0	0	0	0	0	0	0	. (
Depletion	0	0	0	0	0	0	0	(
Kern Valley Floor								
Applied water demand	2,684	2,706	2,621	2,640	2,588	2,608	2,539	2,559
Net water demand	2,304	2,323	2,257	2,275	2,238	2,255	2,195	2,212
Depletion	2,304	2,323	2,257	2,275	2,238	2,255	2,195	2,212
Total								
Applied water demand	9,613	9,848	9,305	9,518	9,075	9,281	8,833	9,039
Net water demand	7,903	8,086	7,682	7,858	7,501	7,670	7,309	7,468
Depletion	7,877	8,057	7,657	7,830	7,477	7,643	7,285	7,442

Table TL-8. Agricultural Water Demand (thousands of acre-feet)

Environmental Water Use

Wetlands in the region are mainly freshwater wetlands that provide habitat for migratory waterfowl. In Fresno County, the Mendota Wildlife Area had a 1990 water demand of 29,650 acre–feet for development of the refuge's 10,851 acres. Existing water supplies (supplies that are available and can be delivered in an average year) can provide about 18,000 AF of water annually. Recently, the refuge received an average of 23,000 AF. Water in the Mendota Wildlife Area is fairly reliable since the refuge is a regulating basin for the Delta–Mendota Canal.

Bulletin 160–93. Administrative Draft

Tulare Lake Region

In Kern County, the Kern National Wildlife Refuge, also a habitat for migratory waterfowl, needs an annual water supply of 25,000 acre-feet for management of its 2,800 acres of natural wetlands. However, the refuge has no firm supplies and usually relies on surplus SWP water and ground water. In an average water year, the refuge receives about 10,000 AF of water.

In Tulare County, the Pixley National Wildlife Refuge has a water demand of 6,000 acre-feet for development of its 5,100 acres, used for migratory waterfowl. However, the refuge has no firm supplies and relies on flood flows from Deer Creek and ground water from recharge basins in the Pixley Irrigation District. Consequently, the refuge received an average of only 1,280 acre-feet of water in recent years.

Besides these refuges, there are 2,879 acres of privately managed wetlands in the region, including duck clubs, nature preserves owned by nonprofit organizations, and rice lands. In normal water years, an estimated 6,910 acre-feet is supplied to the duck clubs. In the Tulare lakebed area, most of the original wetlands surrounding the old Tulare Lake have been drained for agriculture. Evaporation ponds established to deal with agricultural drainage disposal are potentially hazardous to migrating waterfowl. Additional wetlands habitat could be built to deal with these problems, but a firm supply of water is necessary. Table TL-9 shows wetland water needs to 2020.

Wetlands	19	90	20	00	20	10	2020	
Totalia	average	drought	average	drought	average	drought	average	drought
Kern								
Applied water	10	10	25	25	25	25	25	25
Net water	8	8	19	19	19	19	19	19
Depletion	8	8	19	19	19	19	19	19
Pixley								
Applied water	1	1	6	6	6	6	6	6
Net water	1	1	4	4	4	4	4	4
Depletion	1	1	4	4	4	4	4	4
Mendota WA								
Applied water	23	23	30	30	30	30	30	30
Net water	17	17	22	22	22	22	22	22
Depletion	17	17	22	22	22	22	22	22
Tulare Basin								
Applied water	7	7	7	7	7	7	7	7
Net water	5	5	5	5	5	5	5	5
Depletion	5	5	5	5	5	5	5	5
Total	··· ·							
Applied water	41	41	68	68	⁻ 68	68	68	68
Net water	31	31	50	50	50	50	50	50
Depletion	31	31	50	50	50	50	50	50

Table TL-9. Wetlands Water Needs (thousands of acre-feet)

Another environmental water consideration involves the water conveyance facilities in the region. Certain endangered species, such as the San Joaquin kit fox and the blunt-nosed leopard lizard, are using the canals, flood control channels, and banks of the California Aqueduct for habitat as native vegetation grows around the facilities. DWR monitors these areas to prevent maintenance operations from disturbing these species and their habitat. DWR's Kern Water Bank in western Kern County will provide wetlands and refuges for endangered species as part of its overall program. Of the 20,000 acres that will be used for the Kern Water Bank, several thousand acres will be used for wildlife needs.

Other Water Use

Kings Canyon National Park and Sequoia National Park together use about 500 acre–feet of water annually for drinking water and other domestic uses. The parks obtain most of their water from ground water wells and local surface water diversions from the upper Kings River. During the 1987–92 drought,

Bulletin 160-93. Administrative Draft

Tulare Lake Region

some campgrounds in Kings Canyon and Sequoia that relied on wells were closed for part of the camping season due to low ground water levels.

Some water use in recreation areas can be described as indirect usage. Along the California Aqueduct, there are many specially designated areas for fishing that include easy access from area roads and vehicle parking areas. In the Tulare Lake Region, there are five fish access areas; Three Rocks, Huron, Kettleman City, Lost Hills, and Buttonwillow. In the foothills, three major lakes (Pine Lake, Lake Success, and Isabella Lake) have recreation areas that are used for fishing, boating, camping, and other recreational uses. Both the fish access and the recreation areas show reduced use during drought periods and low flow months.

During normal years, white water rafting is a popular activity on the Kings and Kern rivers. The Kings River supports white water rafting above Pine Flat Reservoir for the experienced rafters while the river below the reservoir is satisfactory for beginners. The Kern River has expert–level white water rafting and kayaking above Isabella Reservoir while below the reservoir, beginners as well as experts can practice their white water rafting. Stretches of the upper Kings and Kern rivers have been declared wild and scenic by federal legislation. The Kings River is designated as such on both the middle and south fork of the upper portion above Mill Flat Creek. The Kern River is designated wild and scenic on both the north and south fork of the upper portion above Isabella Reservoir.

The many reservoirs and lakes throughout the Tulare Lake Region support many recreational activities including fishing, camping, hiking, water skiing, and boating. Courtright and Wishon reservoirs on the Kings River have native trout fisheries, camping, and hiking on the trails of the John Muir and Dinkey Lakes wilderness areas. Also, Pine Flat Reservoir on the Kings, Lake Isabella on the Kern, and Lake Kaweah on the Kaweah River are popular recreational areas in the region. Figure TL–6 shows water recreation areas in the region. Table TL–10 shows the total water demand for the region.

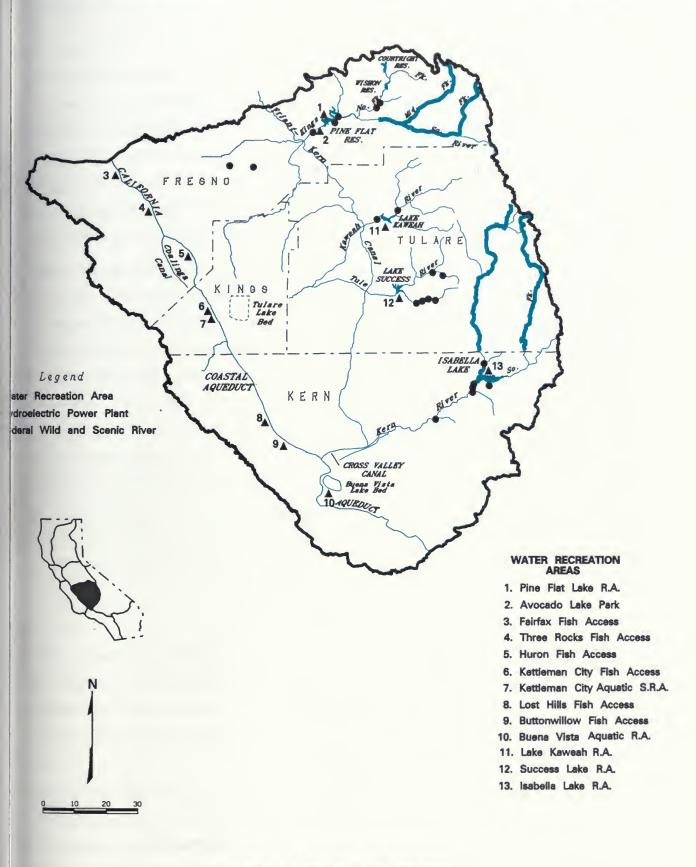

Catagony of Uso	19	90	2000		20	010	2020	
Category of Use	average	drought	average	drought	average	drought	average	drought
Urban		<u>)</u>						
Applied water	523	523	716	716	891	892	1,115	1,115
Net water	215	215	292	294	364	364	454	454
Depletion	154	154	230	231	301	301	393	393
Agricultural								2
Applied water	9,613	9,848	9,305	9,518	9,075	9,281	8,833	9,039
Net water	7,903	8,086	7,682	7,858	7,501	7,670	7,309	7,468
Depletion	7,877	8,057	7,657	7,830	7,477	7,643	7,285	7,442
Environmental				1				
Applied water	41	41	68	68	68	68	68	68
Net water	31	31	50	50	50	50	50	50
Depletion	31	31	50	50	50	50	50	50
Other (1)								
Applied water	102	102	102	102	102	102	102	102
Net water	166	166	166	166	166	166	166	166
Depletion	166	166	166	166	166	166	166	166
Total								2
Applied water	10,279	10,514	10,191	10,404	10,136	10,342	10,118	10,323
Net water	8,315	8,498	8,190	8,367	8,081	8,249	7,979	8,138
Depletion	8,227	8,407	8,103	8,277	7,994	8,160	7,893	8,050

Table TL-10. Total Water Demands (thousands of acre-feet)

(1) Other includes conveyance losses, recreational uses, and energy production

Issues Affecting Local Water Resource Management

Each area of the Tulare Lake Region has its own set of geographic and demographic conditions that have led to varied water supply circumstances. For example, the foothill cities along the eastern edge of the region experienced severe water shortages in the recent drought. However, the Fresno area managed to meet most of its water needs. In addition to these problems, water resource managers in the region must consider court rulings, changes in laws, and contracts or agreements when planning and implementing water resource management programs.

Contracts and Agreements

In western Kern County, 85 percent of the land related SWP water entitlements of the Devil's Den Water District have been bought by the Castaic Lake Water Agency, which has transferred the water to the South Coast Region for urban use in the Santa Clarita urban area. The transfer resulted in the loss of some seasonal agricultural jobs and more than 20 full–time agricultural positions within the district. State planners in the future will be faced with this situation again, as metropolitan areas seek alternative water supplies. The needs of urban residents will have to be balanced against the potential loss of agricultural jobs and of agricultural production capacity brought on by the reallocation of water.

The final environmental impact report for the Arvin–Edison Water Exchange Program, involving an agreement between MWDSC and the Arvin–Edison Water Storage District, is scheduled for 1993. Arvin–Edison is a Central Valley Project contractor in southeastern Kern County. Its CVP water is delivered through the California Aqueduct by arrangement with the State. According to the proposed contract, MWDSC will help construct Arvin–Edison's partially completed distribution system and deliver a portion of its SWP water in wet years for use in Arvin–Edison's replenishment programs. In return, MWDSC will receive some of Arvin–Edison's CVP water during dry years. Through this proposed agreement, MWDSC expects to store as much as 135,000 AF per year of SWP water in the southern San Joaquin Valley. During wet periods, MWDSC could accumulate a storage account of up to 800,000 AF. In dry periods, the program would make roughly 100,000 AF per year available for MWDSC. In another exchange program, MWDSC negotiated with Kern Čounty Water Agency to store SWP supplies in the Semitropic Water Storage District's ground water basin. (See Volume I, Chapter 11.)

Regional Issues

Population Growth. One of the most important issues in the Tulare Lake Region is whether to allow growth and development to continue at its current rate or location or restrict urban development to preserve prime agricultural land, wetlands and other wildlife habitat. Although converting agricultural land to urban use increases water use slightly (less than 1 acre–foot per acre annually), urban water use may require higher water quality and water supplies must be reliable.

For example, Fresno and surrounding towns draw ground water from the same basin. As Fresno has expanded into former agricultural areas, it has encountered degraded ground water, in some places by pesticide contamination from DBCP and other farm chemicals used before the 1980s. This degraded water quality has shifted dependence to wells that produce good quality water. Urban growth in Fresno is also occurring in outlying areas at higher elevations than many older portions of the city. These new

suburbs have switched from the surface water supplies used by agriculture to new ground water wells. The urban ground water demand has created a fast drawdown of the aquifer, which has increased the depth to ground water, raised the cost of pumping, and decreased water quality because the lower elevation parts of the city draw in poorer quality water from the agricultural regions.

Finally, converting agricultural land to urban use tends to diminish natural recharge of ground water basins because of the nonporous nature of concrete and asphalt used in urban areas. While Fresno has existing recharge facilities, it may raise development taxes to finance more recharge basins to protect current levels of ground water in the city.

Ground Water Overdraft Problems. Agriculture, in areas with no surface water supply and good quality ground water, has overdrafted ground water basins where long-term replenishment is inadequate to maintain the water table, inducing subsurface flow from adjacent districts. Such an area exists along the valley trough in Fresno County and affects adjacent districts. Other overdraft areas are in the subbasin around Coalinga and in Westlands Water District, where subsidence occurs during droughts. Overdraft also occurs in Kern County.

Subsidence has stabilized in western Fresno County and southern Kern County except during droughts. No data has been available for Tulare County since 1970. Canals and wells have required repair because of the effects of subsidence.

Reliability of Supplies in Foothill and Mountain Communities. In foothill and mountain areas, some urban water needs are met by ground water. However, the ground water is found in thin layers of alluvial sediments and in underlying hard rock. Recharge to these underground reservoirs is very slow and during the recent drought, some foothill communities relied on imported surface water to supplement their supplies.

Orange Cove is a typical foothill community that relies on imported water delivered through the Friant-Kern Canal as its most economical alternative to limited ground water supplies, especially during drought periods. Ground water in the foothills can be scarce and expensive to extract. During severe drought conditions in 1990, Orange Cove allowed people to use only 125 gpcd. A water transfer enabled the city to relax this standard during 1991. Small foothill towns like Orange Cove will need greater priority to water during droughts to prevent future severe rationing.

Water supply is often more limited in mountain communities than in valley or foothill cities in the region. Wofford Heights in eastern Kern County is a typical mountain community. Although Lake Isabella is nearby, the Arden Water Company would have to install almost 40 miles of pipeline to provide service and it can't afford the connection. During the recent drought, seven of Wofford Heights' 10

existing wells went dry and had to be abandoned. Arden Water Company was able to drill 3 new wells, but it had to drill 450 to 500 feet. Previous wells had only been drilled to 300 feet. The sites for the new wells were carefully chosen to intersect two or more pockets of water, and Arden built new above–ground storage tanks to provide more dependable deliveries during droughts.

Reliability of Supplies for Wildlife. Many of the region's environmental needs, including maintenance of the Mendota Wildlife Area, the Kern National Wildlife Refuge, and various duck clubs and wetlands, require firm water supplies that are now unavailable. The CVP water supplied to the Mendota area and the surplus water supplied to the Kern Refuge are usually the only water available. The duck clubs and wetlands have relied partly on tail water from upstream sources.

Local Issues

Drinking Water in Fresno. As a result of continued urban growth and stricter federal drinking water standards, more than 40 wells have been closed in the region. As mentioned earlier, these wells have a high level of DBCP or other contaminants, including trichloroethylene. Because of these well closings and future strict EPA requirements that the water be tested for a wide variety of chemical contaminants, the City of Fresno could have problems meeting its future urban water demand.

In addition, during past years, Fresno did not have to chlorinate its municipal supply because of its high quality ground water in storage under the city. With recent EPA standards for coliform and other bacteria levels, Fresno has begun to chlorinate the municipal water supply at the wellheads. Although the city expects no problems with trihalomethanes, a byproduct of chlorination often found in chlorinated surface water, there have been some complaints about the taste and smell of the chlorinated water. As urban development continues, Fresno may attempt to supplement its ground water supply with surface water from the Friant–Kern Canal and the Kings River, which could affect agriculture in dry years.

Arroyo Pasajero. DWR is currently seeking solutions to flood problems threatening the California Aqueduct near the intersection with a natural drainage channel called Arroyo Pasajero. The aqueduct, completed in 1967, formed a barrier to arroyo water and sediment flow. By design, arroyo runoff was retained in a 1,900–acre ponding basin and periodically discharged into the aqueduct through four inlet gates. The runoff for the arroyo was found to be greater than anticipated. After a 1980 investigation determined that arroyo runoff was also raising asbestos levels in aqueduct water, concerns were voiced over possible health risks associated with consuming water containing high levels of asbestos. DWR has been studying methods of managing arroyo runoff without discharging it into the aqueduct. A non–structural method of routing arroyo discharge is being considered and environmental studies are underway.

Agricultural Drainage. On the western side of the valley, where ground water quality is marginal to unusable for agriculture, farmers use good quality surface water when it is available; this allows the aquifer to fill and causes drainage problems. The high water table is exacerbated by clay–rich soils that slow drainage in some areas. Poor quality ground water in the unconfined aquifer in Westlands Water District is increasing by about 110,000 acre–feet per year. In Kern County, west of the California Aqueduct, the few available wells also show rising water levels. This marginal to poor quality ground water has reached plant root zones in many areas along the western side and must be removed by drains if agriculture is to continue in these areas.

Westside Ground Water Quality. Most naturally occurring, poor quality ground water is found along the region's western side. Total dissolved solids, sulfate, boron, chloride, and selenium limit the usefulness of ground water in this area. Several contaminants are present, including pesticides, petroleum products, and industrial solvents. One of the pesticides, dibromochloropropane (DBCP), is also found over large areas on the eastern side of the valley. Concentrations of DBCP (which the U.S. Environmental Protection Agency banned in 1977) are declining but are still above acceptable limits in many areas. Rising levels of nitrates have been found in numerous wells in rural areas. Many of them contain nitrate levels above the maximum contaminant level for nitrates in drinking water.

Water Balance

Water balances were computed for each Planning Subarea in the Tulare Lake Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table TL-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 8.3 and 8.5 MAF for average and drought years respectively. Those demands are projected to decrease to 8.0 and 8.1 MAF,

respectively, by the year 2020, after accounting for a 20,000 AF reduction in urban water demand resulting from implementation of long-term conservation measures, a 90,000 AF reduction in agricultural demand resulting from additional long-term agricultural water conservation measures, a 120,000 AF reduction due to land retirement on the west side of the region.

Urban net water demand is expected to increase by about 100 percent by 2020, due to expected increases in population; while, agricultural net water demands is projected to decrease by about 10 percent, primarily due to lands being taken out of production due to poor drainage conditions on the west side of the San Joaquin Valley. Environmental net water demands, under existing rules and regulations, will increase by 19,000 AF. However, there are several actions currently in progress, including implementation of the Central Valley Improvement Act, that have proposed increases in instream flow for fisheries that will affect the availability of supplies for urban and agricultural use.

Average annual supplies, including about 340,000 AF overdraft, were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, drought year annual shortages are expected to remain at nearly 510,000 AF.

With planned Level I options, overall ground water use could be reduced by 330,000 and 175,000 AF during average and drought years, respectively. The net effect of improved surface water deliveries would be to reduce long-term ground water overdraft in this region.

The remaining drought shortage of about 512,000 AF by 2020 requires both additional short-term drought management, water transfers and demand management programs, and other future long-term Level II options depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region. In the short-term, some areas of this region that rely on the Delta exports for all or a portion of their supplies face great uncertainty in terms of water supply reliability due to the uncertain outcome of a number of actions undertaken to protect aquatic species in the Delta. For example, in 1993, an above normal runoff year, environmental restrictions limited CVP deliveries to 50 percent of contracted supply for federal water service contractors from Tracy to Kettleman City. Because ground water is used to replace much of the shortfall in surface water supplies, limitations on Delta exports will exacerbate ground water overdraft in this region.

Demand/Supply	19	90		2020	
Demand/Suppry	average	drought	average	drought	
Net Demand					
Urban-with 1990 level of conservation	215	215	474	474	
-reductions due to long-term conservation measures (Level I)			-20	-20	
Agricultural	7,903	8,086	7,487	7,646	
-reductions due to long-term conservation measures (Level I)			-90	-90	
-land retirement in poor drainage areas of San Joaquin Valley (Level I)			-88	-88	
Environmental	31	31	50	50	
Other (1)	166	166	166	166	
Total Net Demand	8,315	8,498	7,979	8,138	
Water Supplies w/Existing Facilities Under D-1485 for Delta Supplies					
Developed Supplies					
Surface Water	6,583	3,438	6,324	3,216	
Ground Water	1,391	4,209	1,375	4,129	
Ground Water Overdraft	341	341	280	280	
Subtotal	8,315	7,988	7,979	7,625	
Dedicated Natural Flow	0	0	0	0	
Total Water Supplies	8,315	7,988	7,979	7,625	
Demand/Supply Balance	0	-510	-0	-513	
Future Water Management Options Level I (2)		¢			
Long-term Supply Augmentation					
Reclaimed (3)			48	48	
Local			0	0	
Central Valley Project			. 0	0	
State Water Project			286	128	
Subtotal – Water Management Options Level I			334	176	
Ground Water/Surface Water Use Reduction Resulting from Level I Program	าร		-334	-175	
Remaining Demand/Supply Balance Requiring Short Term Drought Man and/or Future Level II Options			-0	-512	

Table TL-11. Water Balance (thousands of acre-feet)

 (1) Includes conveyance losses, recreation uses and energy production.
 (2) Protection of fish and wildlife and a long-term solution to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

(3) Because of existing reuse within this region, reclaimed water does not add supply to the region.

Faft of The California Water Plan Update

Bulletin 160-93, November 1993

NORTH LAHONTAN REGION

Emerald Bay on Lake Tahoe.

NORTH LAHONTAN REGION

The eastern drainages of the Cascade Range and the eastern Sierra Nevada, north of the Mono Lake rainage, make up the North Lahontan Region. The region forms part of the western fringe of the Great asin, a large landlocked drainage that includes most of Nevada and northern Utah, and stretches about 70 miles from the Oregon border to the southern boundary of the Walker River drainage in Mono ounty. At its widest part, the region measures about 60 miles across; it narrows to scarcely 5 miles in erra County. Its land area represents less than 4 percent of the State's total land area. The topography generally mountainous and rugged with large desert valleys between mountain ranges in the north and arrow alpine valleys in the south. (See Appendix C for maps of the planning subareas and land wnership in the region.)

The region comprises two planning subareas: the northern most is the Lassen Group PSA, which cludes the Modoc and Lassen county portions of the region, plus a small corner of northeastern Sierra ounty that drains to Honey Lake. The southern PSA is the Alpine Group from mid–Sierra county to ear Mono Lake, which includes Lake Tahoe and the Truckee, Carson, and Walker River drainages. The tountain crests forming the western boundary of the region range up to elevation 11,000 feet. The mited amount of valley land in the Alpine PSA is primarily pasture land above elevation 5,000 feet ong the Carson and Walker Rivers.

Annual precipitation is as much as 70 inches at the crest of the Sierra Nevada, closest to Lake Tahoe and as little as 4 inches at the Nevada boundary in Surprise Valley and in the Honey Lake Basin. The region's streams flow either to Nevada or to intermittent lakes in California. Natural runoff of the reams and rivers averages around 1.8 million acre-feet per year of which about three-quarters comes om the region's southern portion.

opulation

Almost 65 percent of the 78,000 residents in the North Lahontan Region live in the Truckee–Tahoe asin, where the largest community is the City of South Lake Tahoe with a 1990 population of 21,600. he main population center of the Lassen subarea is Susanville, the county seat of Lassen County, with ,279 residents. Also located in the region are Bridgeport, the county seat of Mono County, and larkleeville, the county seat of Alpine County, which has a total county population of 1,100. Population s quite sparse between these towns, consisting of ranches and tourist and service centers primarily along

Region Characteristics

Average Annual Precipitation: 32 inches Land Area: 3,890 square miles Population: 78,000 Highway 395. Only about one-fourth of one percent of California's people live in the region. Table NL-1 shows population projections to 2020 for the North Lahontan Region.

(thousands)											
Planning Subareas	1990	2000	2010	2020							
Lassen Group	25	32	36	39							
Alpine Group	53	63	71	79							
Total	78	95	107	118							

Table NL-1. Population Projections (thousands)

Land Use

Much of the North Lahontan Region is national forest land. The major privately owned lands are in the valley areas of Modoc and Lassen counties. Relatively small portions of the Truckee–Tahoe area and the Carson and Walker river basins are in private ownership, but those small areas are of considerable economic significance.

Cattle raising is the principal agricultural activity in the region, although the acreage of irrigated land is relatively small (less than 4 percent of the region's land area). Pasture and alfalfa are the dominant irrigated crops. About 70 percent of the irrigated land is in Modoc and Lassen counties, and most of the remainder is in the Carson and Walker river valleys in Alpine and Mono counties.

Tourism and recreation are the principal economic activities in the Truckee–Tahoe area and the surrounding mountains. On a typical summer day, the number of recreationists within the Tahoe Basin may equal the number of full–time residents. A similar but smaller peak in the number of recreationists visiting the basin occurs during the winter sports season. Figure NL–1 shows land use, along with imports, exports, and water supplies for the North Lahontan Region.

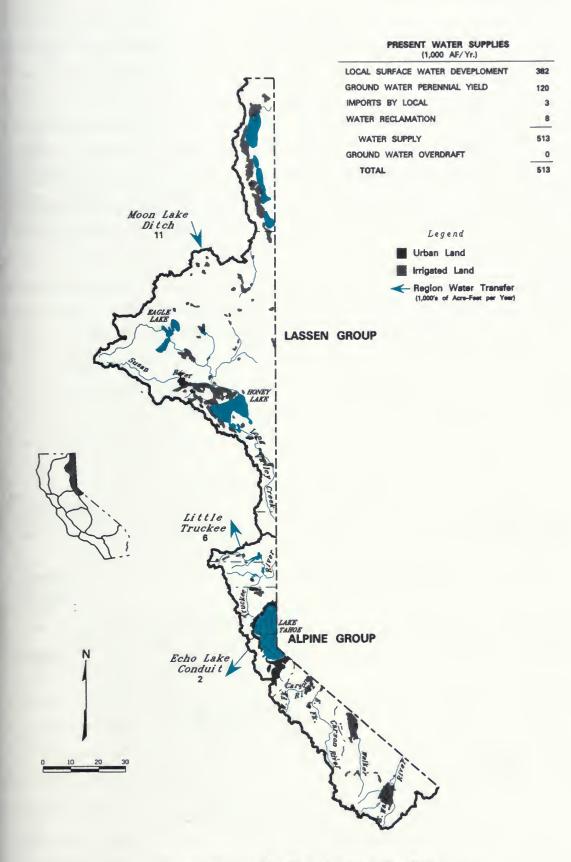
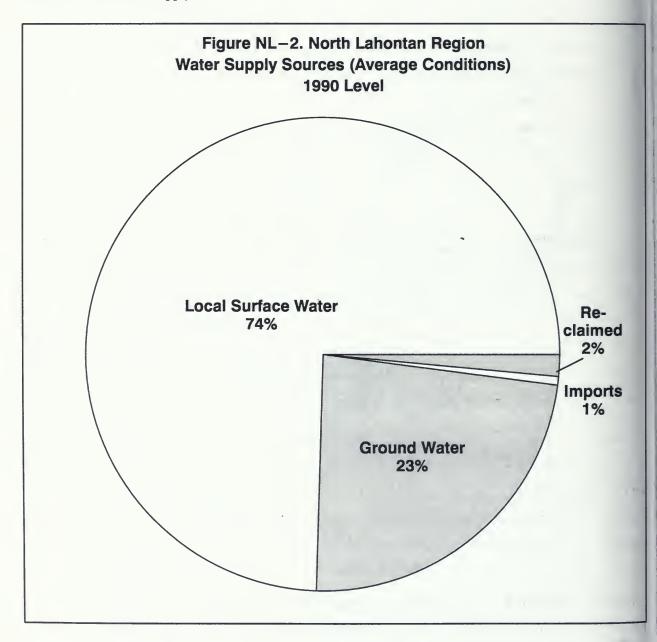



Figure NL-1. North Lahontan Region Land Use, Imports, Exports, and Water Supplies

Water Supply

About 74 percent of the region's 1990 level water supply comes from surface sources. Ground water supply amounts to 23 percent. Throughout most of the North Lahontan Region, water development has been carried out on a modest scale by local interests, with many projects built in the late 1800s. In the northern portion of the region, these developments include numerous small reservoirs which retain winter runoff for summer irrigation. Among the more notable is the Moon Lake project . It imports about 3,000 acre–feet per year from the South Fork Pit River drainage for irrigation in the Madeline Plains area. The Lassen Irrigation District developed three small reservoirs in the Susan River drainage beginning in 1891— McCoy Flat reservoir, Hog Flat reservoir, and Lake Leavitt. Figure NL–2 shows the region's 1990 level sources of supply.

Supply with Existing Facilities

One of the most cost-effective storage structures ever built is a small dam at the outlet of Lake Tahoe. This 14-foot-high dam, constructed in the 1870s, controls the upper 6.1 feet of the lake and creates up to 732,000 AF of storage capacity. The Lake Tahoe Dam is operated by the Truckee-Carson Irrigation District and controlled by the U.S. Bureau of Reclamation under an easement from Sierra Pacific Power Company. Its operations are supervised by the federal watermaster under the Orr Ditch Decree. Similar outlet dams constructed on natural lakes during the 1930s increased storage at Independence Lake by 18,000 AF and at Donner Lake by 10,000 AF. These dams are operated by Sierra Pacific Power Company. Table NL-2 lists major reservoirs in the region.

Federal water storage projects in the region include Stampede Reservoir, Boca Reservoir, and Prosser Creek Reservoir. These three USBR reservoirs were constructed on tributaries of the Truckee River, primarily to provide water supply for service areas in Nevada, downstream flood protection, and local recreation. The U.S. Army Corps of Engineers completed the 20,000 AF Martis Creek Dam in 1971; this single–purpose structure provides flood protection for the Reno–Sparks area. Operations criteria for these projects are changing, mostly due to water requirements of the cui–ui and Lahontan cutthroat trout. The cui–ui is classified as *endangered* and the Lahontan cutthroat as *threatened* under the federal Endangered Species Act.

Reservoir Name	River	Capacity (1,000 AF)	Owner
Stampede	Little Truckee	227	U.S. Bureau of Reclamation
Boca	Little Truckee	41	39 29
Prosser Creek	Prosser Creek	30	39 33
Lake Tahoe	Truckee	732	53 59
Bridgeport	E. Walker	43	Walker River Irrigation District
Martis Creek Dam	Martis Creek	20	U.S. Army Corps of Engineers

Table NL-2. Major Res	servo	irs
-----------------------	-------	-----

An average of about 2,000 AF per year is exported from the Tahoe Basin to the South Fork American River in conjunction with a power development that began in 1876. Another 7,000 AF is diverted from the Little Truckee River for irrigation use in Sierra Valley (Feather River Basin of Sacramento River Region). Much of the supply from the Truckee, Carson, and Walker rivers is reserved for use by Nevada interests under various water rights settlements and agreements.

Ground water supplies meet many of the municipal and industrial water needs throughout the northern portion of the region. In the North Lahontan portions of Lassen and Modoc counties, nearly 120,000 AF is pumped annually. The City of Susanville derives its municipal supplies from Cady and

North Lahontan Region

Bagwell Springs and from ground water. Municipal water supply in the Lake Tahoe basin comes from a combination of surface and ground water. Some systems divert directly from the lake, some from tributary streams or springs, and some use wells. Municipal supplies in the Truckee River Basin downstream of Lake Tahoe are almost entirely from ground water; the largest purveyor is the Truckee–Donner Public Utility District.

Both alluvial basins and hard rock areas in the region contain ground water. The major basins in the north include Long, Honey Lake, Secret, Willow Creek, and Surprise Valleys and the Madeline Plains. Cross basin ground water flow is limited by geologic faults between basins. Well yields are greatest in alluvial sand and gravel and from buried basalt flows. Some wells yield greater than 3,000 gallons per minute.

Yields from hard rock wells are usually low but are generally sufficient for domestic uses. Ground water quality in the north ranges from excellent to poor. Wells that obtain their supply from lake deposits can have high levels of boron, arsenic, and fluoride and high adjusted sodium absorption ratio. Some domestic wells in the Standish area of Honey Lake Valley have arsenic levels above safe drinking water standards. The total ground water in storage within the Lassen Subarea is estimated to be about 5 MAF.

The major ground water basins in the Alpine Group PSA include the Bridgeport, Antelope, Carson, and Martis valleys, as well as the Tahoe Basin. Ground water recharge occurs primarily from infiltration of snow melt and precipitation while discharge from the basins occurs mainly from streams flowing east into Nevada. The estimated total ground water pumping from these basins is 12,300 AF annually. There is some agricultural ground water pumping in Antelope Valley, however most occurs on the Nevada side of the basin. Ground water pumping in the hard rock area occurs at scattered locations throughout the subarea but is most heavily relied on in the area east of Martis Valley. Yields from these hard rock wells are usually low but sufficient to provide domestic or livestock supplies. Although pumping and ground water level information within the subarea is limited, there are no reported instances of basin overdraft so current pumping is probably within the perennial yield. The total ground water in storage is estimated at 1.8 MAF, and the water quality in the Alpine Group PSA is usually good.

Some municipal wells in the Lake Tahoe Basin produce water high in uranium, radon, or radionuclides. Elevated levels of uranium or radon, or both, may occur in ground water in other areas of the PSA given the granitic rocks and sediments from which ground water is produced. Some test wells on the west side of the Lake Tahoe Basin produce poor quality water that contains high concentrations of arsenic. Elevated levels of arsenic and other constituents have been found in ground water near areas of geothermal activity along the front of the Sierra Nevada. High levels of boron and fluoride have been /reported in ground water in parts of the Antelope Valley.

Table NL-3 shows water supplies with existing facilities and water management programs.

Supply	19	1990			20	10	2020		
Supply	average	drought	average	drought	average	drought	average	drought	
Surface								(
Local	383	338	378	340	371	340	378	344	
Local imports	3	3	3	3	3	3	3	3	
Colorado River	0	0	0	0	0	0	0	0	
CVP	0	0	0	0	0	. 0	0	0	
Other federal	0	0	0	0	0	0	0	0	
SWP	0	0	0	0	0	0	0	1. O	
Ground water	120	146	128	154	138	165	147	173	
Overdraft	0	0	0	0	0	0	0	0	
Reclaimed	8	8.	8	8.	8.	8.	8.	8	
Dedicated natural flow	0	0	0	0	0	0	0	0	
Total	514	495	517	505	520	516	536	528	

Table NL-3. Water Supplies with Existing Facilities and Programs (thousands of acre-feet)

Supply with Additional Facilities and Water Management Programs

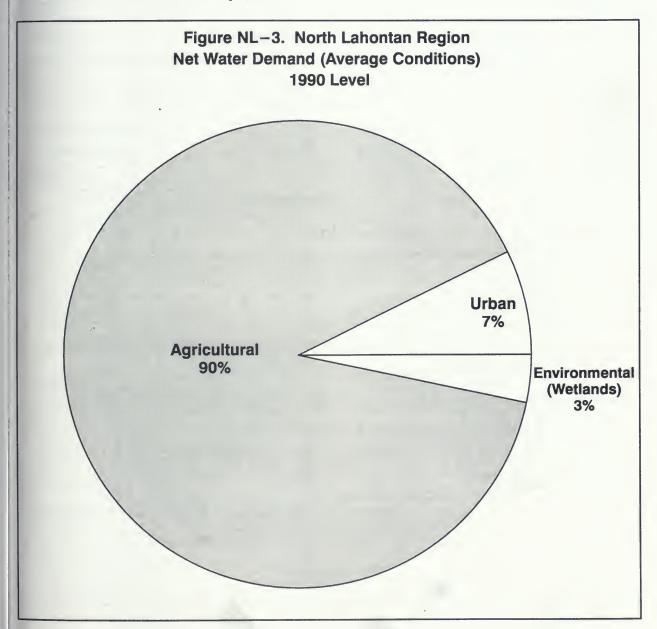
Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

In the North Lahontan Region water supplies are not expected to change to year 2020. Irrigated agriculture is already constrained by economically available water supplies, with a small amount of agricultural expansion expected in areas that can support minor additional ground water development. Similarly, the modest needs for additional municipal and industrial supplies can be met by minor expansion of present surface systems or by increased use of ground water. No significant additional Level I or Level II surface water development in the region is anticipated.

Table NL-4 shows water supplies with additional Level I water management programs. Since there are no planned Level I water management programs, the table is identical to Table NL-3.

About 5,000 AF of reclaimed waste water is exported out of the Tahoe Basin by South Tahoe Public Utility District for agricultural use in the Carson River watershed. Truckee Tahoe Sanitation Agency


meet changing or higher priority needs within the basins. In California, this has meant acquisit some agricultural land and water rights for environmental needs throughout the basin and for m needs downstream in Nevada.

In the Walker River basin, agricultural supplies may be supplemented by increasing use of water and conjunctive use in areas such as Antelope Valley. Water conservation for agricultural (that is, ditch lining and soil moisture controlled irrigation scheduling) may become increasingl important as more water rights are sold or otherwise transferred to urban and environmental use

Water Use

The 1990 level annual net water use within the North Lahontan Region is about 514,000 AF per year, of which about 90 percent is for irrigated agriculture. Most of the 37,000 AF of municipal and industrial use takes place in the Susanville and Tahoe–Truckee areas. Despite the importance of recreation in the region's economy, the water needs of recreation are a minor component of total water use. The principal wildlife water needs are those of the State's Honey Lake and Willow Creek wildlife areas in southern Lassen County, and instream flows.

The primary users of ground water in the Alpine subarea are the municipalities in the Lake Tahoe Basin and Martis Valley, and to a lesser extent in Bridgeport Valley. Figure NL-3 shows net water demand for the 1990 level of development.

Urban Water Use

Population projections indicate that by 2020, the region's population will increase by 51 percent over 1990 levels. Most people will still be located in the Alpine subarea. Average daily per-capita water use is about 421 gallons. In the two planning subareas, use ranges from 607 gallons per capita daily in the Lassen Group to 337 gpcd in the Alpine Group. The significantly larger per-capita use in the northern PSA is due to high-water-use industry (mostly energy production—cogeneration and geothermal), which accounts for about half of the urban water use in this area. Per capita use values for areas such as the Tahoe Basin are distorted as well because they are based on permanent population while a substantial share of the water use is by tourists and temporary residents. Figure NL-4 shows the 1990 level applied urban water demands by sector.

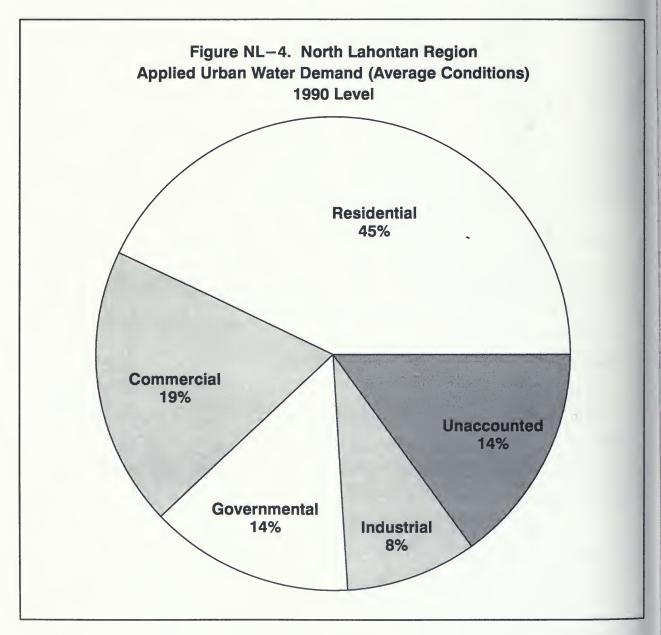


Table NL-5 shows applied water and net urban water demand through 2020. Urban water use is not expected to increase proportionately with population due to water saving techniques employed with new construction and other water conservation measures.

Diamping Subarasa	19	90	20	000	20	10	2020		
Planning Subareas	average	drought	average	drought	average	drought	average	drought	
Lassen		1		5				Þ	
Applied water demand	17	17	19	19	20	20	21	21	
Net water demand	17	17	19	19	20	20	21	21	
Depletion	7	7	8	8	9	9	9	9	
Alpine		1		1				1	
Applied water demand	20	21	23	24	26	27	29	g 3 (
Net water demand	20	21	23	24	26	27	29	30	
Depletion	7	8	9	9	10	10	12	12	
Total .	1	1						N	
Applied water demand	37	38	42	43	46	47	50	51	
Net water demand	37	38	42	43	46	47	50	51	
Depletion	14	15	17	17	19	19	21	21	

Table NL-5. Urban Water Demand (thousands of acre-feet)

The recent drought forced Susanville to pump more ground water to supplement reduced surface water supplies. The State Department of Corrections is planning to expand the Susanville Correctional Center to double its capacity from 4,000 to a maximum of 8,000 inmates. As a result, the area's water demand is expected to increase. The city is requiring the developer of one large subdivision to produce a water supply for its project that is independent of existing city sources. Present plans are to meet this demand with ground water supplies.

Agricultural Water Use

Total irrigated land within the North Lahontan Region in 1990 was 161,000 acres, an increase of about seven percent since 1980. Table NL-6 shows irrigated crop acreage projections for the region. The number of irrigated acres in the region is expected to increase slightly over the next three decades. Table NL-7 shows 1990 crop acreages and evapotranspiration of applied water. Figure NL-5 shows 1990 crop acreages, evapotranspiration, and applied water for major crops.

Planning Subareas	1990	2000	2010	2020
Lassen Group	120	122	125	128
Alpine Group	41	41	41	41
Total	161	163	166	169

Table NL-6. Irrigated Crop Acreage (thousands of acres)

Table NL-7. 1990 Evapotranspiration of Applied Water by Crop19

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)	Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	6	10	Pasture	110	233
Rice	1	2	Other truck	1	2
Alfalfa	43	103	Total	161	350

Table NL-8 summarizes 1990 and projected agricultural water demand in the region. The applied water values were derived by applying unit water use factors to the irrigated acreages in the region. Applied water amounts vary according to crop, soil type, and cultural practices. During drought years, there is an increased need for additional irrigation to replace water normally supplied by rainfall and to meet higher than normal evapotranspiration demands.

Diamping Cuberees	19	90	20	00	20	10	2020	
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Lassen								
Applied water demand	344	380	352	389	362	400	371	409
Net water demand	294	316	299	322	306	329	316	340
Depletion	270	301	277	308	285	317	291	324
Alpine								12
Applied water demand	178	207	171	200	163	191	165	193
Net water demand	166	195	159	188	151	179	153	181
Depletion	108	125	108	125	108	125	108	125
Total						¢		1.
Applied water demand	522	587	523	589	525	591	536	602
Net water demand	460	511	458	510	457	508	469	521
Depletion	378	426	385	433	393	442	399	449

Table NL-8. Agricultural Water Demand (thousands of acre-feet)

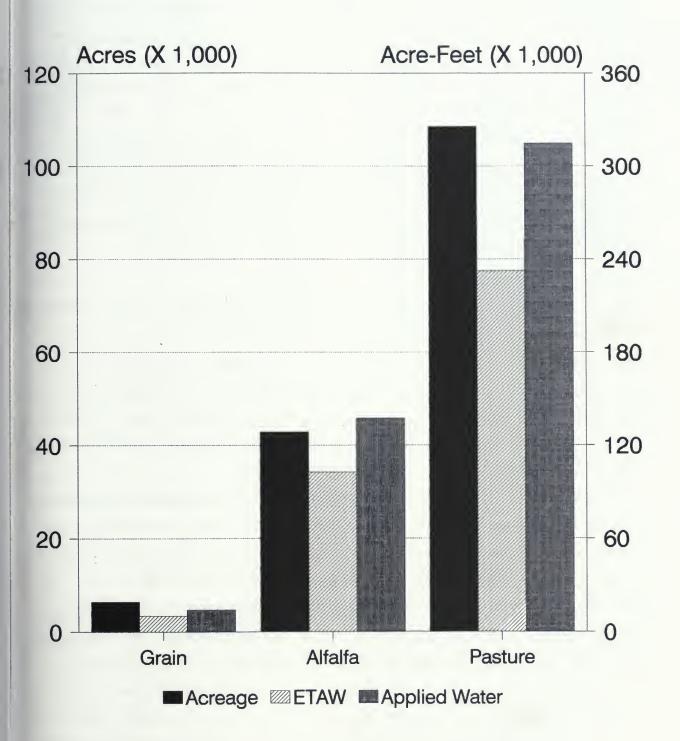


Figure NL-5. North Lahontan Region 1990 Acreage, ETAW, and Applied Water for Major Crops

Most of the area irrigated by surface water in the region has limited water storage facilities, so it is dependent on snow melt and spring and summer rainfall. Portions of the region that are irrigated by ground water, or a combination of ground and surface water, have a more stable water supply. Flood irrigation of pasture is expected to be shifted almost entirely to sprinkler irrigation in the near future. Irrigation efficiencies will increase slightly because of operating costs, water shortages, and improved irrigation practices.

Madeline Plains has shown a rapid growth in irrigated alfalfa acreage. During the past eight years, alfalfa acreage has increased from 300 to over 10,000 acres. Wild rice is a new crop to the area, and there were 500 acres of it planted in 1990. Much of the increase in irrigation can be attributed to an innovative method of collecting winter runoff in a large sump in a closed basin, then using it, in conjunction with ground water, for irrigation.

Environmental Water Use

The principal environmental water use in the region is for wetlands near Honey Lake. The Honey Lake Wildlife Area in southern Lassen County consists of the 4,271–acre Dakin Unit and the 3,569–acre Fleming Unit. The two units provide important habitat for several threatened or endangered species, including the bald eagle, sandhill crane, bank swallow, and peregrine falcon. These wildlife areas have winter storage rights from the Susan River from November 1 until the last day of February. The HLWA also operates eight wells, each producing between 1,260 and 2,100 gallons per minute. In an average year, the HLWA floods 3,000 acres by March 1 for waterfowl brood habitat.

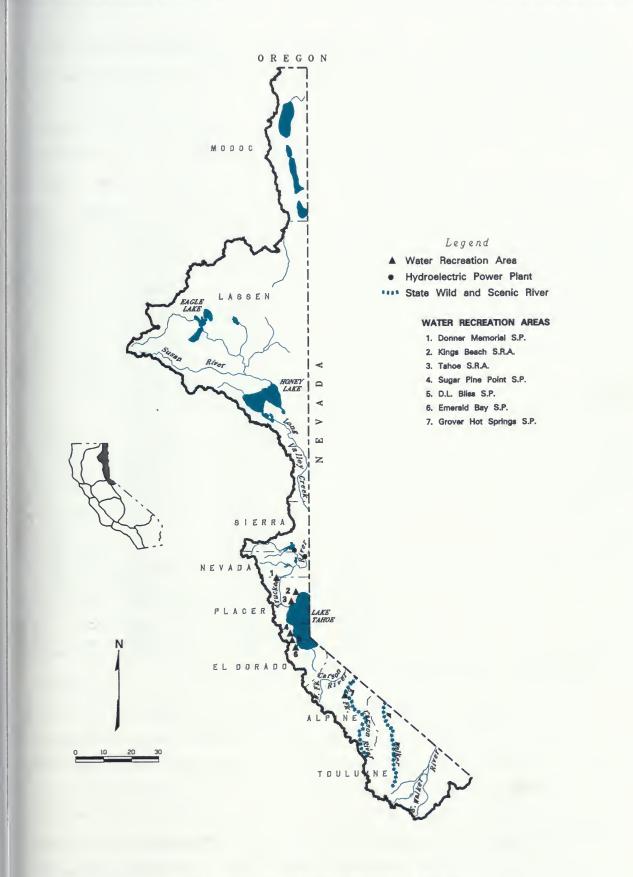
In 1989, the California Department of Fish and Game purchased the 2,714–acre Willow Creek Wildlife Area in Lassen County to preserve existing wetlands and increase the potential for waterfowl production and migration habitat. About 2,000 acres are wetland and riparian habitats. The endangered bald eagle and sandhill crane inhabit this area. In addition to the Honey Lake and Willow Creek Wildlife Areas, Department of Fish and Game operates the Doyle Wildlife Area, also located in the Honey Lake Basin. This wildlife area is preserved as dryland winter range for deer and requires less water than the Honey Lake or Willow Creek areas. Table NL–9 summarizes projected wetlands water needs for the region.

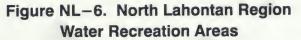
Watlanda	19	90		2000			20	10	2020	
Wetlands	average	dro	ught	average	dro	ught	average	drought	average	drought
Honey Lake										
Applied water	14		14	14		14	14	14	14	14
Net water	14		14	14		14	14	14	14	14
Depletion	14		14	14		14	14	14	14	14
Willow Creek			i i i i i i i i i i i i i i i i i i i					9		
Applied water	3	AL AND	3	3		3	3	3	3	3
Net water	3		3	3		3	3	3	3	3
Depletion	3		3	3		3	3	3	3	3
Total	_									ŧ
Applied water	17		17	17		17	17	17	17	17
Net water	17		17	17		17	17	17	17	17
Depletion	17		17	17	Jan 1	17	17	17	17	17

Table NL-9. Wetlands Water Needs (thousands of acre-feet)

DFG is concerned about maintaining instream flows and reservoir levels in the California portions of the Carson and Walker river basins. Portions of these rivers are protected by the California Wild and Scenic Rivers Act. In conjunction with American Land Conservancy, a private land trust organization, DFG has been acquiring lands and water rights at Heenan Lake in the upper watershed of the East Fork Carson River. This small reservoir, formerly used to supply irrigation water for lands in Nevada, is now being used by DFG to raise Lahontan cutthroat trout to stock in other locations throughout the Sierras. Parts of the upper Carson River are managed by DFG as wild trout waters, where stocking of hatchery fish is not allowed. Recreational trout fishing is a popular activity on both the upper Carson and Walker Rivers.

Bridgeport Reservoir on the East Walker River near the California–Nevada border was the site of a recent significant State Water Resources Control Board action on water requirements for the trout fishery. This reservoir supplies water to agricultural lands in Nevada. The operation of the reservoir during the recent drought caused a fishery resource to decline in the river downstream. As part of ensuing legal actions, instream flow releases and other conditions were imposed on reservoir operation. The Board's modifications to the permits for Bridgeport Reservoir are being challenged in litigation in the U.S. District Court in Nevada.


Other Water Use


By far, the heaviest concentration of recreation use in the North Lahontan Region occurs within the Lake Tahoe Basin. Recreation development in other areas of the region is limited due to the relatively low

population density and their remoteness. Roughly half of the visitors to this region come from the San Francisco metropolitan area, about 30 percent from the Los Angeles metropolitan area, and 15 percent from out–of–state.

Public recreation areas include 3 national forest districts, 12 Bureau of Land Management recreation complexes, 7 State parks, and 6 county parks. There are more than 30 major private recreation areas, which include ski resorts, golf courses, resorts, and marinas.

Several natural waterways in the region provide access for fishing, swimming, boating, hiking, and picnicking. River touring, a popular sport in California, is a common activity in the Truckee, Carson, East Fork Carson, West Walker, and East Walker rivers. Figure NL–6 shows water recreation areas in the region.

North Lahontan Region

Bulletin 160–93 Administrative Draft

Current visitor attendance to the region is estimated at 12 million visitor days annually. Total consumptive water use for recreation in the region is small, estimated at 500 to 2,000 acre–feet per year. Table NL–10 shows the total water demands for this region.

Category of Use	19	90	20	00	20	10	20)20
Category of Use	average	drought	average	drought	average	drought	average	drought
Urban								
Applied water	37	38	42	43	46	47	50	. 51
Net water	37	38	42	43	46	47	50	51
Depletion	14	15	17	17	19	19	21	21
Agricultural				Ŋ.				
Applied water	522	587	523	589	525	591	536	602
Net water	460	511	458	510	457	508	469	521
Depletion	378	426	385	433	393	442	399	449
Environmental								
Applied water	17	17	17	17	17	17	17	17
Net water	17	17	17	17	17	17	17	17
Depletion	17	17	17	17	17	17	17	17
Other (1)								•
Applied water	0	0	0	0	0	0	0	
Net water	0	0	0	0	[°] 0	0	0	
Depletion	0	0	0	0	0	0	0	. (
Total								
Applied water	576	642	582	649	588	655	603	670
Net water	514	566	517	570	520	572	536	589
Depletion	409	458	419	467	428	478	437	488

Table NL-10. Total Water Demands

(thousands of acre-feet)

Issues Affecting Local Water Resource Management

The principal water-related issues in the North Lahontan Region center around interstate water allocations, population growth, limitations of existing water supply systems, protection of water quality, and management of ground water.

Legislation and Litigation

Interstate River Issues. Years of disputes over the waters of the Truckee and Carson rivers finally led to congressional enactment of the Truckee–Carson–Pyramid Lake Water Rights Settlement Act in 1990. The act makes an interstate allocation of the waters between California and Nevada, provides for the settlement of certain Native American water rights claims, and provides for water supplies for

North Lahontan Region

specified environmental purposes in Nevada. The act allocates to California: 23,000 AF annually in the Lake Tahoe Basin; 32,000 AF annually in the Truckee River Basin below Lake Tahoe; and water corresponding to existing water uses in the Carson River Basin. Provisions of the Settlement Act, including the interstate water allocations, will not take effect until several conditions are met, including negotiation of the Truckee River Operating Agreement required in the act.

DWR and SWRCB staff have represented California interests in negotiating the Truckee River Operating Agreement. DWR is a lead agency with the U.S. Bureau of Reclamation and the U.S. Fish and Wildlife Service in developing the Environmental Impact Report/Statement for the agreement. A major purpose of the TROA is to establish detailed river operations procedures to meet the goals laid out in the act. It may also address some aspects of implementing California's water allocation. Issues of concern to California include implementation of surface and ground water allocations, including the amount of water charged for snow-making at ski resorts and allocations for operation of Truckee River storage facilities to protect lake and instream beneficial uses.

Present-day operations of the Truckee, Carson, and Walker Rivers are governed in large part by existing federal court water right decrees administered by court-appointed watermasters. The interstate nature of the rivers, combined with the long history of disputes over water rights, has created a complex system of river management criteria. On the Carson River for example, it took the federal court 55 years to sort out the water rights and issue the Alpine Decree, which governs operation of the river today.

Regional Issues

Population Growth. Growth has long been a major issue in the Tahoe Basin and strict controls have been adopted by local agencies under the lead of the Tahoe Regional Planning Agency. These controls have been very effective. For example, the City of South Lake Tahoe grew by only 4 percent in the 1980s.

Population of the Lassen County portion of the region increased by nearly 30 percent over the past decade. A major contributor to this growth was the construction of the California Correctional Center — Susanville, which houses about 4,000 prisoners and employs a staff of about 1,000. This growth and the 1987–92 drought have revealed the limits of local surface water supplies. There is increasing interest in assuring that water will be available to meet urban needs without reducing agricultural supplies or overdrafting ground water. State proposals to double the capacity of the correctional facility led to intense local debate in 1991. One of the principal issues was the growth–inducing impact of the proposal and the resulting increased pressure on existing water supplies. The question was eventually put on the ballot, and a substantial majority of the voters approved the expansion. Recent water quality issues have arisen regarding the municipal supply for the City of Susanville (potential contamination of spring

supplies by urban development located upslope) and the nearby resort subdivision at Eagle Lake, where there is apparent contamination from septic tank discharge.

The Lahontan Regional Water Quality Control Board has been concerned about ground water contamination and eutrophication at Eagle Lake since 1982. Numerous studies, including one completed by DWR in October 1990, have shown widespread bacterial contamination in domestic wells in this area. Blooms of noxious species of algae appear to be increasing in frequency in the lake in response to nutrient enrichment, suspected to result from increased residential development in the basin. The Regional Board issued Cease and Desist Orders in 1991 requiring subdivision residents to abandon use of septic tanks. The State Water Resources Control Board was petitioned by residents of Spalding Tract and Stones–Bengard subdivisions for relief from these orders, and the Board agreed to allow formation of a septic system maintenance district in lieu of a regional waste water collection system. The Regional Board will be establishing guidelines for formation of this district and monitoring requirements to ensure that ground water contamination does not continue.

Further development, west of Susanville, has been constrained by concerns expressed by the City of Susanville and the Regional Board over septic tank leachfield effluent contaminating ground water. Local interests assume ground water in the area contributes to flows at Cady Springs, a major source of drinking water for Susanville, and studies are under way.

Reno Water Supplies. Although not strictly a California issue, local interests in the northern part of the region have been apprehensive about the Reno area's aggressive quest for additional water supplies. In the late 1980s, the *Silver State Plan* triggered concerns as far north as Modoc County (over 150 miles north of Reno). The plan envisioned constructing a pipeline north nearly to the Oregon border to tap ground water basins, some of which extend across the California–Nevada line. More recently, the proposed Truckee Meadows Project generated concerns about depletion of ground water supplies (see below).

Ground water management is closely related to the issue of water supply for the Reno area. Concern over protecting local ground water resources has led to establishment of formal ground water management mechanisms in the Honey Lake and Long Valley basins in Lassen and Sierra counties. Similar arrangements are being considered in Surprise Valley and the pending interstate allocation establishes limits on ground water withdrawals in the Lake Tahoe and Truckee River basins. At present, neither the Honey Lake nor Long Valley ground water management districts is active, but either can be activated whenever a need is perceived.

Water Quality. There is a potential for future ground water pollution in those areas where single–family septic systems have been installed in high density subdivisions, especially in the hard rock

North Lahontan Region

areas. Water quality has also become a greater issue for many surface water systems around Lake Tahoe. The recent drought dropped lake levels to all-time lows and left some system intakes in shallow water. In addition, the 1986 amendments to the Safe Drinking Water Act are forcing many of the smaller private systems to consolidate or change ownership since they are unable to afford the new monitoring and treatment requirements of the amended act. South Tahoe Public Utility District, the largest water purveyor in the basin, is also experiencing some difficulty in planning to meet these requirements.

Truckee Meadows Ground Water Transfer Project. In the mid–1980s, a plan for the Truckee Meadows Project was developed to export ground water from Nevada's portion of Honey Lake Valley ground water basin to the Reno area. Applications were filed with the Nevada State Engineer to transfer about 23,000 acre–feet per year. Concerns about the transfers and possible side effects resulted in a 1987 agreement among DWR, the State of Nevada, and the U.S. Geological Survey to jointly determine the ground water flow system in eastern Honey Lake Valley. When the USGS study was completed, the Nevada State Engineer opened hearings in the summer of 1990 regarding applications to transfer ground water from Honey Lake Valley to the Reno area. The Nevada State Engineer ruled that only about 13,000 acre–feet could be transferred from the basin. Currently, the Truckee Meadows Project developers are completing an Environmental Impact Statement for the 80–mile pipeline to transfer ground water. Lassen County and the Pyramid Lake Paiute Tribe have challenged the State Engineer's decision in a Nevada Court.

Long Valley Ground Water Transfers. In the late 1980s, there was a proposal to export about 3,000 acre-feet per year from Long Valley to the Reno area. The project developers were asked to submit an application to the Long Valley Ground Water Management District for a permit to export ground water from the district. To date, the project proponents have not filed an application.

Water Balance

Water balances were computed for each Planning Subarea in the North Lahontan Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas, which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table NL-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 0.51 and 0.57 MAF for average and drought years respectively. Those demands are projected to increase to 0.54 and 0.59 MAF, respectively, by the year 2020. Urban net water demand is projected to increase by about 13,000 AF, primarily due to expected increases in population, while agricultural net water demand remains essentially level. Environmental net water demands are also expected to remain level out to 2020.

Average annual supplies are generally adequate to meet average net water demands in this region out to the year 2020. However, during drought, present supplies are insufficient to meet present demands of irrigated agricultural lands, and, without additional water management programs, annual drought year shortages are expected to continue to be about 62,000 AF.

This drought year shortage of about 61,000 AF was reflected in reduced surface water supplies available for irrigation primarily in Alpine, Mono, Lassen, and Modoc counties during the recent drought. There are no major water management programs planned for this region. Plans for augmenting supplies for the Reno–Sparks area, such as ground water import from California, could affect future supplies in the region. Future water management programs depend on economic viability of new water management programs and the overall level of water service reliability deemed necessary by local agencies to sustain the economic health of the region.

Demand/Supply	19	90	20	020	
	verage	drought	average	drought	
Net Demand					
Urban-with 1990 level of conservation	37	38	50	51	
-reductions due to long-term conservation measures (Level I)			0	0	
Agricultural	460	511	469	521	
-reductions due to long-term conservation measures (Level I)			0	0	
Environmental	17	17	17	17	
Other (1)	0	0	0	0	
Total Net Demand	514	566	536	589	
Water Supplies w/Existing Facilities					
Developed Supplies					
Surface Water	394	349	389	355	
Ground Water	120	146	147	173	
Ground Water Overdraft	0	0	0	0	
Subtotal	514	495	536	528	
Dedicated Natural Flow	0	0	0	0	
Total Water Supplies	514	495	536	528	
Demand/Supply Balance	0	-1	0	-61	
Future Water Management Options Level I					
Long-term Supply Augmentation					
Reclaimed			0	0	
Local			0	0	
Central Valley Project			0	0	
State Water Project			0	0	
Subtotal – Water Management Options Level I			0	0	
Ground Water/Surface Water Use Reduction Resulting from Level I Programs			0	0	
Remaining Demand/Supply Balance Requiring Short Term Drought manage and/or Future Level II Options	jement		0	-61	
(1) Includes conveyance losses, recreation uses and energy production.				_	

Table NL-11. Water Balance (thousands of acre-feet)

* * *

SOUTH LAHONTAN REGION

One of many tufa towers in Mono Lake.

South Lahontan Region

SOUTH LAHONTAN REGION

The South Lahontan Region encompasses the area from the mountain divide north of Mono Lake to the divide south of the Mojave River, which runs through the Mojave Desert. It is bordered on the east by the Nevada state line and on the west by the crest of of the Sierra Nevada.

The region is a closed basin with many desert valleys that contain central playas, or dry lakes, especially in the south. The north portion is dominated by the Sierra Nevada and the White–Inyo Mountain Ranges. In the south are smaller mountain ranges with broad alluvial fans. Other prominent topographic features in the region include Mt. Whitney (the highest mountain in the contiguous 48 states, with an elevation of 14,495 feet), the Mono volcanic tableland, Death Valley (the lowest point at elevation 282 feet below mean sea level), and the Owens Valley. (See Appendix C for maps of the planning subareas and land ownership in the region.)

Average annual precipitation for the region's numerous valleys ranges between 4 and 10 inches. Depending on location, variations above and below this range do occur. For example, Death Valley receives only 1.9 inches annually. The Sierra Nevada Mountains can receive up to 50 inches annually, with much of it in the form of snow. In some years, the community of Mammoth Lakes can have snow accumulations of more than 10 feet.

Population

In 1990, the South Lahontan Region's population was almost 600,000, about 2 percent of California's total. Although not densely populated, the region contains some of the fastest growing urban areas in California, including the cities of Lancaster and Palmdale in the Antelope Valley of Los Angeles County and the Victor and Apple valleys of San Bernardino County. Many of the new residents in these valleys are workers who have accepted a long commute to employment centers in the greater Los Angeles area in exchange for affordable new homes. Future population growth in the region will probably be concentrated in the vicinity of these locations. Major local employment includes the aerospace industry at Palmdale Airport and Edwards Air Force Base. Bishop, Ridgecrest, and Barstow are the other important centers in the region. The City of Ridgecrest's continued growth will be tied to the economic conditions of the nearby China Lake Naval Weapons Center and mining operations at Searles Lake.

Region Characteristics

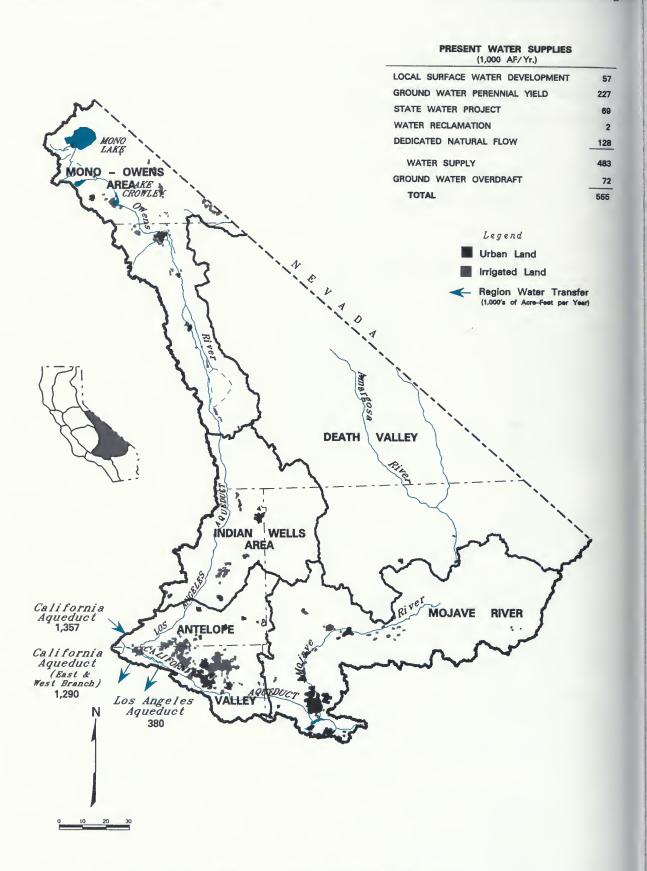
Average Annual Precipitation:8 inchesAverage Annual Runoff:1,334,000 acre-feetLand Area:32,907 square miles1990 Population:599,900

While the identified growth centers will probably continue to expand, there is little reason to expect much population growth elsewhere in the region. The Owens Valley and eastern Sierra area should remain sparsely populated, with the string of small communities serving recreationists and travelers along U.S. Highway 395. Barstow, a services center for railroads and travelers, is strongly tied to the U.S. Army's Fort Irwin. It has grown modestly in recent years. Most of the other towns and communities in this portion of the region are highway service centers or farm service centers. Table SL–1 shows population projections to 2020 for the South Lahontan Region.

(thousands)					
Planning Subareas	1990	2000	2010	2020	
Mono-Owens	25	29	35	43	
Death Valley	1	1	1	1	
Indian Wells	48	75	108	141	
Antelope Valley	260	499	738	986	
Mojave River	265	399	547	748	
Total	599	1,003	1,429	1,919	

Table SL-1. Population Projections

Land Use

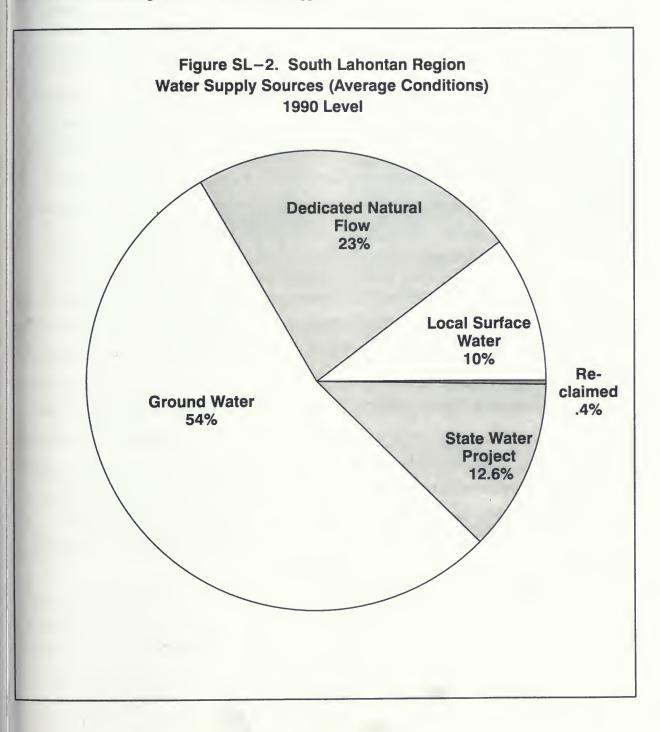

Public lands constitute about 75 percent (14 million acres) of the region's area. Much of this land is national monument and scenic areas, national forests, and military reservations.

About 1 percent of the 18.6 million acres in the South Lahontan Region is used for urban and agricultural activities. In 1990, urban and suburban land uses occupied about 170,000 acres; a 21 percent increase from 1980. Over 80 percent of this increase was in urban acreage concentrated in the Antelope and Mojave River Valleys. The only other area showing much urban growth was the Indian Wells Valley. Much of this increase was associated with construction of new single and multiple–family dwellings. Modest increases are associated with new commercial services and light industry. Industries supporting the region's economy include the military, recreation and tourism, travelers' services, agriculture, and mining. These industries should remain strong in the future.

About 61,000 acres is irrigated crop land (less than one percent of the region's total land area). Multiple cropping is not generally practiced in the region. Most of the irrigated acreage is in the Mono–Owens planning subarea where roughly 30,000 acres are irrigated. This PSA includes the Owens Valley, the Crowley Lake area northwest of Bishop, and the Hammil and Fish Lake valleys. Alfalfa and pasture are the primary crops.

South Lahontan Region

Moderate levels of irrigated agriculture subsist in the Mojave River, Antelope, and Indian Wells valleys. Most of the activity and acreage produces alfalfa, pasture grass, or deciduous fruit. Figure SL-1 shows land use, along with imports, exports, and water supplies for the South Lahontan Region.



South Lahontan Region

Water Supply

Historically, the South Lahontan Region has relied mostly on ground water, the mainstay of many of the local urban and farming communities in the early part of the century. Natural surface water supplies, such as the Mono Lake tributaries, the Owens River, and the Mojave River, also contribute to the domestic and agricultural supplies. Table SL-2 lists the major reservoirs of the region. Figure SL-2 shows the shows the region's 1990 level water supplies.

Reservoir Name	River	Capacity (1,000 AF)	Owner
Saddlebag Lake	Lee Vining Creek	11	Southern California Edison Co.
Gem Lake	Rush Creek	17	Southern California Edison Co.
Grant Lake	Rush Creek	48	Los Angeles Dept. Water & Power
South Lake	South Fork Bishop Creek	13	Southern California Edison Co.
Lake Crowley	Owens	183	Los Angeles Dept. Water & Power
Tinemaha	Owens	16	Los Angeles Dept. Water & Power
Haiwee	Rose Valley	41	Los Angeles Dept. Water & Power
Lake Silverwood	West Fork Mojave	73	Department of Water Resources

Table SL-2. Major Reservoirs

In 1913 and 1970, the first and second Los Angeles aqueducts were completed and began conveying water from the Mono–Owens area to the City of Los Angeles. The combined carrying capacity of both aqueducts amounts to 780 cubic feet per second. Court–ordered restrictions on diversions from the Mono Basin and Owens Valley have reduced the amount of water the city can receive and have brought into question the reliability of the Mono–Owens supply for Los Angeles. (See the *Legislation and Litigation* section under *Issues Affecting Local Water Resource Management*.) As demand continues to grow, the decreased diversions have forced the City of Los Angeles to become more dependent on other sources.

In the 1970s, the Antelope Valley–East Kern Water Agency began receiving deliveries of State Water Project water and recharging the valley's ground water basin. Ground water levels in some portions of the basin are reported to have risen 40 feet or more since the introduction of SWP water.

Supply with Existing Facilities

Table SL-3 shows water supplies with existing facilities and water management programs. Ground water is the only source of domestic and agricultural water in the Death Valley and Indian Wells planning subareas. Very little, if any, of the surface water flow in these PSAs is used for other than natural ground water recharge. The Antelope Valley receives over 66 percent of its domestic and agricultural water supply from the State Water Project, with the remainder drawn from ground water and local surface supplies. The Mono–Owens and Mojave River PSA's rely on both surface and ground water supplies to meet demands.

Table SL-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

Supply	19	90	20	00	20	10	20	020
Suppiy	average	drought	average	drought	average	drought	average	drought
Surface								_
Local	57	44	57	44	57	. 44	57	44
Local imports	0	0	0	0	0	0	0	C
Colorado River	0	0	0	0	0	0	0	C
CVP	0	0	0	0	0	0	0	C
Other federal	0	0	0	0	0	0	0	C
SWP	69	54	165	101	163	98	163	98
Ground water	227	256	189	274	221	271	263	270
Overdraft	72	72	36	36	71	71	71	71
Reclaimed	2	2	2	2	2	2	2	2
Dedicated natural flow	128	122	128	122	128	122	128	122
Total	555	550	577	579	642	608	684	607

Ground water is extremely important in supplying water to the region. As many as 47 distinct ground water basins covering thousands of square miles have been identified in the South Lahontan Region. Storage capacities vary by basin, but combined basin capacities in both the Mojave River and and Antelope Valley PSAs, for example, total about 70 MAF each. Usable storage is significantly less but provides the major, if not the only, water source in most areas. Water quality also varies and this influences water supply. Basins are recharged through percolation from irrigation return flow, natural stream flow, and intermittent stream flow from snowmelt, depending on location.

Natural runoff, carried by numerous streams on the eastern slopes of the Sierras, is about 1.3 MAF annually in average years. Estimated projected average year deliveries to the City of Los Angeles are about 425,000 AF a year for 2000 to 2020. Under drought conditions, deliveries are projected to be 208,000 AF a year for 2000 to 2020.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

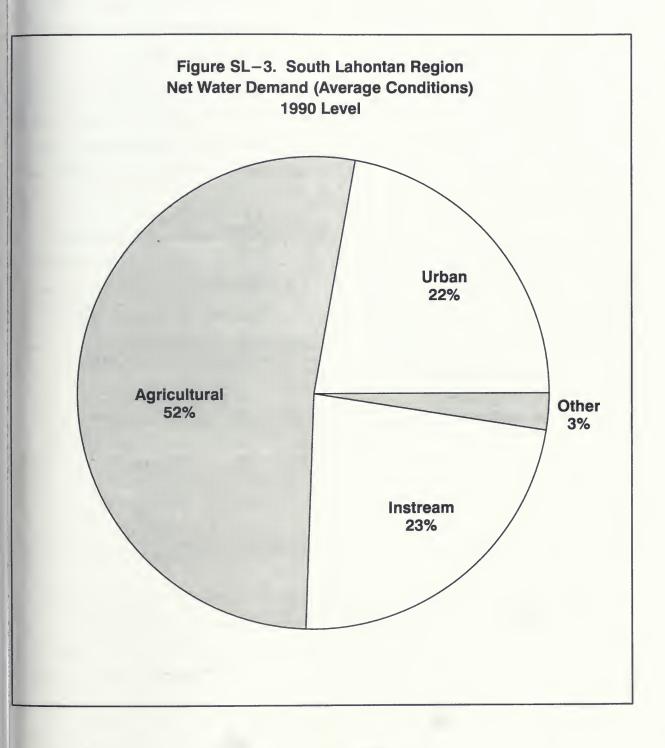
 Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020. • Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Table SL-4 shows water supplies with Level I water management programs.

Cumpler	19	90	2000		2010		2020	
Supply	average	drought	average	drought	average	drought	average	drought
Surface								
Local	57	44	57	44	57	44	57	44
Local imports	0	0	0	0	0	0	0	C C
Colorado River	0	0	0	0	0	0	0	C
CVP	0	0	0	0	0	0	0	C
Other federal	0	0	0	0	0	0	0	·
SWP	69	54	174	127	194	151	195	152
Ground water	227	256	191	217	196	241	240	269
Overdraft	72	72	25	25	71	71	71	71
Reclaimed	2	2	2	2	2	2	4	4
Dedicated natural flow	128	122	128	122	128	122	128	122
Total	555	550	577	537	648	631	695	662

Table SL-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

The larger urban and agricultural areas of the South Lahontan Region — Owens Valley, Victorville, Hesperia, and Antelope Valley — have several water management options for the future, including: formation of ground water management agencies or replenishment districts; reclamation of brackish ground water; desalination; and institution of conjunctive use operations to make more efficient use of surface and ground water supplies.


Most of the water demands are being met with ground water and local surface water, and several of the ground water basins are in overdraft. SWP water is being delivered to residents in the Antelope Valley and, in 1995, the Mojave Water Agency after completion of the Morongo Pipeline. Also, a feasibility study is being initiated for the Mojave Water Agency's proposed Mojave River Pipeline to the City of Barstow and the community of Newberry Springs. More on this water management plan can be found in the Legislation and Litigation section later in this chapter.

Water Use

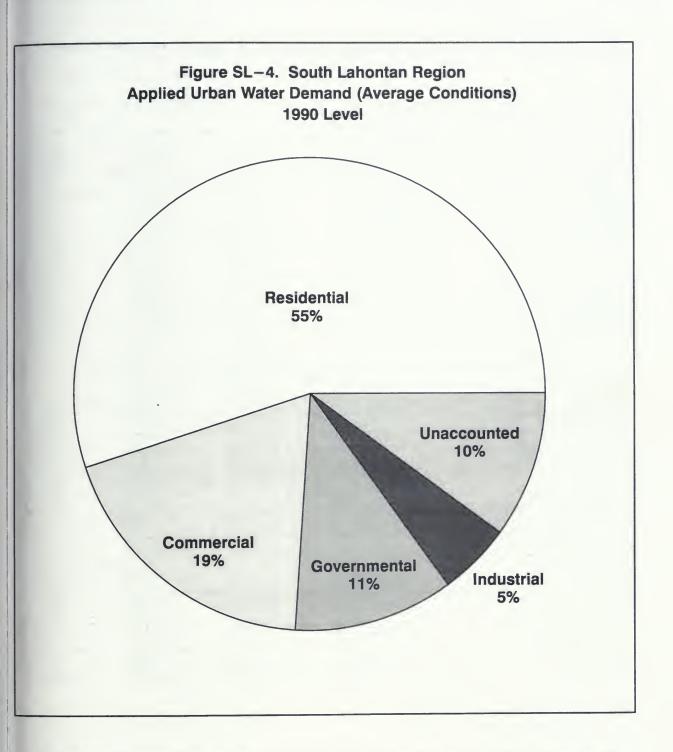
Estimated 1990 level annual net water use within the South Lahontan Region is about 555,000 AF per year. Irrigated agriculture accounts for 52 percent of the region's 1990 level net water use, while urban use amounts to about 22 percent, and environmental and other water use account for 26 percent.

Bulletin 160–93 Administrative Draft

Net water use for urban and agricultural purposes in the South Lahontan Region increased by almost 4 percent between 1980 and 1990. By 2020, net water demand for the region is projected to climb an additional 32 percent because of continued expansion of urban centers. Figure SL–3 show net water demand for the 1990 level of development.

Since the 1970s, population in some urban centers in Antelope, Mojave River, Apple, and Victor valleys has increased dramatically. Urban development alone in the Antelope and Mojave River Valleys increased net water use by almost 125 percent since 1980.

Urban Water Use


Population projections indicate that by 2020, the regions population will increase by over 300 percent from the 1990 level. Medium-sized cities such as Lancaster, Palmdale, and Barstow will continue to expand; however, development in the rest of the region will be sporadic.

Total municipal and industrial applied water use in 1990 was about 188,000 AF, an increase of about 98 percent from the 1980 level of 95,000 AF. Urban net water demand is projected to increase by almost 200 percent by 2020. Most of the increase in new water use will be in the residential category, while increases in water use related to business and manufacturing services will be modest. Figure SL-4 shows the 1990 level applied urban water demand by sector.

Normalized 1990 per capita water use for the region was 280 gallons daily. However, daily per capita use ranged from 124 gallons for the Death Valley PSA to 503 gallons for the Mono–Owens PSA. Possible reasons for the relatively high per capita values in the Mono–Owens area are the large numbers of tourists (greatly exceeding the residential population). In Death Valley, there is little outdoor residential water use, which accounts for the relatively low per capita use value for the area.

South Lahontan Region

Bulletin 160–93 Administrative Draft

In 1990, the Antelope Valley and Mojave River PSAs combined accounted for about 86 percent of the region's total urban applied water, while the Mono–Owens and Indian Wells PSAs accounted for the remaining 14 percent. Applied regional water demands for urban use are projected to climb to almost 550,000 AF by 2020, an increase of 194 percent over the 1990 level. Table SL–5 shows applied water net urban water demand to 2020.

2020

Planning Subaraga	1990		2000		2010		2020	
Planning Subareas	average	drought	average	drought	average	drought	average	drought
Mono-Owens		Š. 1					1	
Applied water demand	14	15	16	17	19	20	24	24
Net water demand	8	8	9	9	11	11	13	14
Depletion	8	8	9	9	11	11	13	14
Death Valley						à		
Applied water demand	0	0	0	0	0	0	0	0
Net water demand	0	0	0	0	0	0	0	0
Depletion	0	0	0	0	0	0	0	0
Indian Wells								
Applied water demand	12	12	18	19	27	28	36	37
Net water demand	7	7	10	11	15	16	20	21
Depletion	7	7	10	11	15	16	20	21
Antelope Valley		N. (-					2
Applied water demand	66	68	122	126	180	186	243	250
Net water demand	45	46	83	86	123	126	165	S 170
Depletion	45	46	83	86	123	126	165	170
Mojave River		<u>, </u>						
Applied water demand	95	98	136	140	183	189	247	254
Net water demand	63	64	89	92	120	124	162	167
Depletion	63	64	89	92	120	124	162	167
Total								
Applied water demand	187	193	292	302	409	423	550	565
Net water demand	123	125	191	198	269	277	360	372
Depletion	123	125	191	198	269	277	360	372

Table SL-5. Urban Water Demand (thousands of acre-feet)

2000

2010

1990

Agricultural Water Use

Agricultural average annual net water use is expected to decline from the 1990 level of 290,000 AF to 231,000 AF annually by 2020. This decrease of planted and harvested crop acres in the region is due to urbanization and land going out of production for economic reasons. The only area that registered an increase in planted acres was the Owens–Mono PSA. The area projected to undergo the most significant transformation is the Antelope Valley PSA. Between 1990 and 2020, the projected irrigated acres for this PSA is expected to decrease from slightly less than 10,000 to 1,000 acres. Other PSAs are expected to

experience less dramatic decreases. Table SL-6 shows irrigated crop acreage projections for the region. Table SL-7 shows 1990 crop acreages and evapotranspiration of applied water.

Planning Subareas	1990	2000	2010	2020
Mono-Owens	29	29	29	29
Death Valley	2	2	2	2
Indian Wells	4	3	3	3
Antelope Valley	11	2	1	1
Mojave River	15	14	14	13
Total	61	50	49	48

Table SL-6. Irrigated Crop Acreage (thousands of acres)

Table SL-7. 1990 Evapotranspiration of Applied Water by Crop

Irrigated Crop	Total • Acres (1,000)	Total ETAW (1,000 AF)	Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	1	1	Other truck	2	3
Other field	1	2	Other deciduous	4	8
Alfalfa	34	147			
Pasture	19	83	Total	61	244

Figure SL-5 shows the 1990 crop acreage, ETAW, and applied water for the major crops in the region. Table SL-8 shows projections of agricultural water demands to 2020 for this region. Projections indicate the region's total agricultural applied water will decrease by about 20 percent between 1990 and 2020.

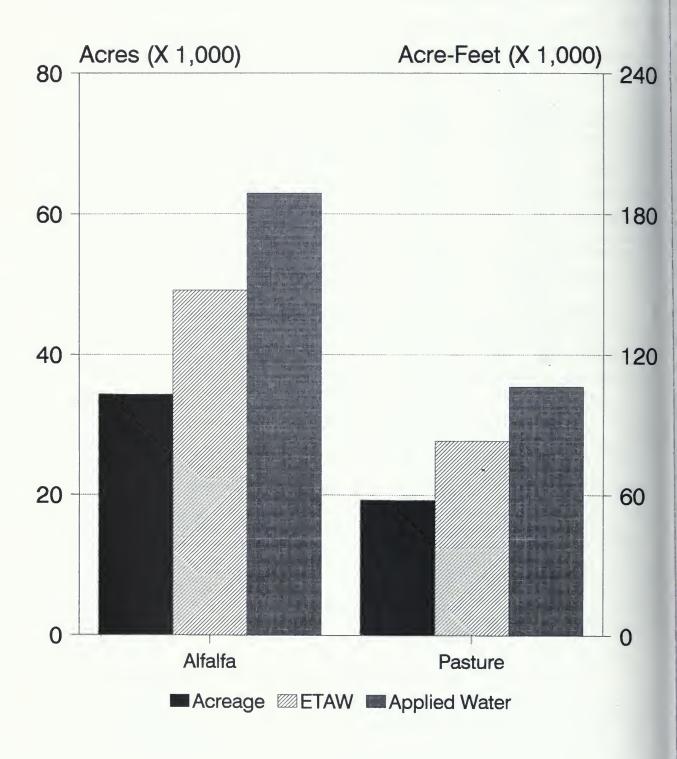


Figure SL-5. South Lahontan Region 1990 Acreage, ETAW, and Applied Water for Major Crops

Planning Subareas	19	90	20	00	20	10	2020	
Flamming Subareas	average	drought	average	drought	average	drought	average	drought
Mono-Owens							1	
Applied water demand	161	165	156	160	156	160	156	160
Net water demand	147	150	144	147	144	147	144	147
Depletion	147	150	144	147	144	147	144	147
Death Valley				:				
Applied water demand	10	10	10	10	10	10	10	10
Net water demand	9	9	9	9	9	9	9	9
Depletion	9	9	9	9	9	9	9	9
Indian Wells				``````````````````````````````````````			1	
Applied water demand	18	18	17	17	17	17	17	17
Net water demand	17	17	15	15	15	15	15	15
Depletion	17	17	15	15	15	15	15	15
Antelope Valley						ļ		1
Applied water demand	49	49	9	9	5	5	3	З
Net water demand	47	47	8	8	4	4	3	3
Depletion	47	47	8	8	4	4	3	3
Mojave River								
Applied water demand	79	79	74	74	70	70	67	67
Net water demand	70	70	66	66	63	63	60	60
Depletion	70	70	66	66	63	63	60	60
Total		4. - 4.					No.	λ.
Applied water demand	317	321	266	270	258	262	253	257
Net water demand	290	293	242	245	235	238	231	234
Depletion	290	293	242	245	235	238	231	234

Table SL-8. Agricultural Water Demand (thousands of acre-feet)

Environmental Water Use

Spring runoff and snowmelt from the eastern Sierra Nevada create a unique ecological setting in the Mono Lake and Owens Valley areas. Preserving a balance between environmental, agricultural, and domestic water needs of the Mono–Owens area and those of the Los Angeles area is a vital concern in the region. This situation is discussed under *Issues Affecting Local Water Resource Management* later in this chapter. The Mono Lake and Owens River average annual instream requirements are about 73,000 and 55,000 AF respectively and drought year requirements are 67,000 and 55,000 AF respectively. There are no wetlands water requirements in the South Lahontan Region. Table SL–9 shows environmental instream water needs for the region.

Chroom	19	90	20	00	2010		2020	
Stream	average	drought	average	drought	average	drought	average	drought
Mono Lake								
Applied Water	73	67	73	67	73	67	73	67
Net Water	73	67	73	67	73	67	73	67
Depletion	73	67	73	67	73	67	73	67
Owens River		<u> </u>						
Applied Water	55	55	55	55	55	55	55	55
Net Water	55	55	55	55	55	55	55	55
Depletion	0	0	0	0	0	0	0	0
Total								
Applied Water	128	122	128	122	128	122	128	122
Net Water	128	122	128	122	128	122	128	122
Depletion	73	67	73	67	73	67	73	67

Table SL-9. Environmental Instream Water Needs (thousands of acre-feet)

Other Water Use

Other water uses in the region include energy production and water used at recreation facilities for public service, showers, toilets, and watering some limited landscaping. Power plant cooling water accounted for about 6,000 AF of the regional water use in 1990, of which 4,000 AF were used in the Mojave River PSA, 1,000 AF in the Antelope Valley PSA, and 1,000 AF in the Indian Wells PSA. Water used at recreation facilities during 1990 was 3,000 acre–feet.

Water-related recreation in the region includes fishing and skiing, and recreational areas offer opportunities for camping and hiking. For instance, Crowley Lake, located about 25 miles northwest of Bishop, is operated to provide optimum environmental and recreational benefits, as well as to provide water and power to the Los Angeles Aqueduct system. Fishing, camping, water skiing, sailing, and water jet skiing are among the recreational activities prevalent. Figure SL-6 shows water recreation areas in the region. Table SL-10 shows the total water demands for this region.

264

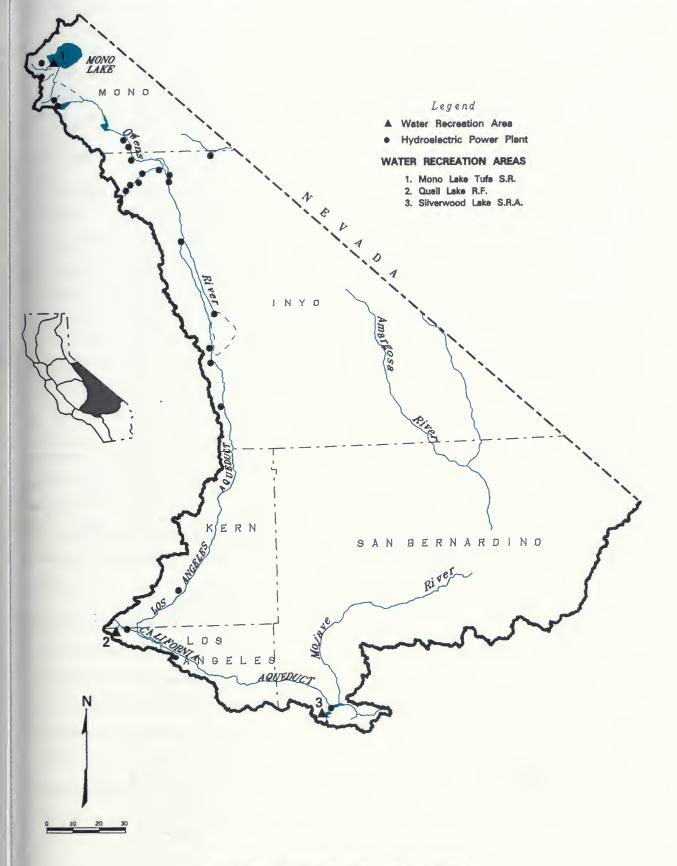


Figure SL-6. South Lahontan Region Water Recreation Areas

Catagony of Lloo	19	90	2000		2010		2020	
Category of Use	average	drought	average	drought	average	drought	average	drought
Urban								
Applied water	187	193	292	302	409	423	550	565
Net water	123	125	191	198	269	277	360	372
Depletion	123	125	191	198	269	277	360	372
Agricultural								
Applied water	317	321	266	270	258	262	253	257
Net water	290	293	242	245	235	238	231	234
Depletion	290	293	242	245	235	238	231	234
Environmental								
Applied water	128	122	128	122	128	122	128	122
Net water	128	122	128	122	128	122	128	122
Depletion	73	67	73	67	73	67	73	67
Other (1)								
Applied water	9	9	9	9	9	9	9	9
Net water	14	14	16	15	16	15	16	15
Depletion	14	14	16	15	16	15	16	15
Total								
Applied water	641	645	695	703	804	816	940	953
Net water	555	554	577	580	648	652	735	743
Depletion	500	499	522	525	59 ³	597	680	688

Table SL-10. Total Water Demands (thousands of acre-feet)

Includes conveyance losses, recreational uses, and energy production

Issues Affecting Local Water Resource Management

The 1987–92 drought raised several water management issues in the South Lahontan Region. In 1991, retail urban water agencies in the region implemented ordinances requesting that their customers reduce their overall demand. Reductions ranged from 10 to 25 percent. Most agricultural operations were generally not hindered, as ground water supplies were generally adequate to meet demands. However, the City of Los Angeles cut back its deliveries to growers and ranchers in the Owens Valley, which resulted in a minor decline in planted and harvested acreage and yield. In addition, some alfalfa acreage in the Antelope Valley was fallowed so ground water supplies could be used to irrigate deciduous fruit orchards that were affected by reduced supplies from the State Water Project. The ground water was pumped into the California Aqueduct and transported to the orchards.

South Lahontan Region

Legislation and Litigation

Of the many factors influencing water resource management, legislation and litigation have significantly changed water supply management in the South Lahontan Region. Several court cases have altered water diversions and ground water pumping in the region. A few of the landmark cases are described here.

Owens Valley Area. At the turn of the century, the City of Los Angeles faced a severe shortage of water due to a growing urban population. In 1913, the City of Los Angeles completed its first aqueduct from Owens Valley to the City of Los Angeles. This aqueduct has a carrying capacity of 480 cubic feet per second. Due to increased population and industries in Los Angeles, a second aqueduct was completed in 1970 with a capacity of 300 cfs. The Los Angeles Department of Water and Power diverts both surface and ground water from the Owens Valley and surface water from the Mono Basin.

In 1972, the County of Inyo filed suit against the City of Los Angeles, claiming that increased ground water pumping for the second aqueduct was harming the Owens Valley environment. The County of Inyo asked that LADWP's ground water pumping be analyzed in an Environmental Impact Report in accordance with the provisions of the California Environmental Quality Act.

Since 1984, the City of Los Angeles and Inyo County have spent about \$5 million to determine the effects of ground water pumping on native vegetation. Together with the U.S. Geological Survey, the two parties gathered the data needed to formulate a long-term ground water management plan and Environmental Impact Report. Within the scope of these studies, numerous enhancement and mitigation projects were implemented. Revegetation and irrigation of certain wildlife habitats and recreation areas constituted the bulk of these projects.

As of August 1, 1989, the parties reached agreement on the long-term ground water management plan for the Owens Valley. However, the EIR has been rejected by the Third District Court of Appeals in Sacramento, which required a more comprehensive environmental assessment of the agreements. The highlights of the agreement are:

- Formation of a technical group and a standing committee to oversee all operations pertaining to water and how its use affects the environment in the Owens Valley and adjacent areas.
- Formation of designated management areas.
- Development of a ground water pumping program including new wells and allowable production capacity.
- Construction of ground water recharge facilities including location and operation.

- Modification of Haiwee Reservoir operations.
- Provisions of financial assistance required by the City of Los Angeles.
- Release of city–owned lands.
- Development of projects and other provisions involving numerous enhancement and mitigation measures and transfer of ownership of the water systems of several towns.

Continued study of the Owens Valley appears to be benefiting all concerned.

Mono Basin. Mono Lake, which lies just east of Yosemite National Park at the base of the eastern Sierra Nevada, is the second largest lake completely within California. It has long been recognized as a valuable environmental resource because of its rare scenic and biological characteristics. The area is famous for its tufa towers and spires, structures formed by years of mineral deposition in the lake's unique saline waters. The lake has no outlet, and there are two islands in the lake that provide a protected breeding area for large colonies of California gulls and a haven for migrating waterfowl.

Much of the water flowing into Mono Lake comes from snowmelt via five fresh water creeks. Since 1941, the Los Angeles Department of Water and Power has diverted water from four of these creeks — Lee Vining, Walker, Parker, and Rush creeks. Tunnels and pipelines carry the water to the Owens Valley drainage, where it is eventually transferred, together with Owens River flows, to Los Angeles via the Los Angeles Aqueduct.

Diversions of instream flow from its tributaries lowered Mono Lake's water level by 45 feet to an historic low of 6,372 feet above sea level reached in December 1981. With decreased inflow of fresh water, the lake's salinity has increased dramatically, which may threaten local food chains. There is evidence that higher salinities reduce algal blooms, the food supply for the lake's abundant brine shrimp and brine flies. Such a change poses a threat to bird populations that feed on the shrimp and brine flies. In addition, drops in water levels to 6,375 feet or lower create a land bridge to Negit Island, one of the lake's two islands, allowing predators to reach gull rookeries; this first happened in 1978 and again during the 1987–92 drought. Large areas of the lake bed have also become exposed, and the dust formed by dried alkali silt causes air quality problems, especially during wind storms.

As a result of these impacts, the lake and its tributaries have been the subject of extensive litigation between the City of Los Angeles and a number of environmental groups since the late 1970s. (A more detailed discussion of key court cases is provided in Volume 1, Chapter 2.) Los Angeles Department of Water and Power is now prohibited by court order from diverting the tributaries until the lake level stabilizes at 6,377 feet above sea level, the level identified by state and federal agencies to protect the ecosystem and control air pollution. During the 1987–92 drought, Mono Lake remained near the target

level, but the diversion limit resulted in an estimated loss of 100,000 AF per year to Los Angeles' water supply by the end of 1992. In addition, releases into four of the lake's tributaries have been ordered by another court ruling to protect and restore once thriving trout fisheries. Instream flow requirements for the tributaries have been set on an interim basis and will be reviewed once field studies are completed. The State Water Resources Control Board is preparing an EIR that will determine what instream flows and lake levels are required to protect Mono Lake's ecosystem and the fisheries. In the meantime, Los Angeles is making efforts to conserve water and approved a mandatory conservation ordinance during the drought. Since 1989, annual water deliveries to the City of Los Angeles from the Mono–Owens system have decreased by an average of 39 percent from previous levels in the 1980s. The decrease is in part drought related. Los Angeles is also investigating potential alternative sources of water.

Antelope Valley Area. In December 1991, the Palmdale Water District made public its intentions to create, through state legislation, a ground water management agency so that long-term overdrafting in the valley could be arrested. Several constituents within the Antelope Valley expressed their opposition. In the ensuing months, several local groups held meetings to reach a consensus on formation of the agency. The Antelope Valley East Kern-Water Agency suggests that a ground water management agency is "premature" and unnecessary. Due to public outcry over this issue, the Palmdale Water District Board of Directors has withdrawn its proposal. The Antelope Valley agencies have since formed an advisory board to discuss water issues, including ground water.

High Desert Area. Recent court cases involving, among others, the Cities of Barstow, Victorville, and Hesperia, have led to concerns over water rights in the Mojave River Basin. The Mojave Water Technical Advisory Committee reports that a preliminary estimate of overdraft for 1990 would be between 65,000 and 75,000 AF. Projected overdraft for the year 2015 amounts to 90,000 AF, based on 2015 population forecasts. The Mojave Water Agency Board of Directors has approved initiating a feasibility study for a 37–mile Mojave River Pipeline to convey State Water Project water to the City of Barstow and the community of Newberry Springs.

In addition, the SWP water will provide a supplemental supply for a district within the Mojave Water Agency, which now has only ground water available and whose extraction is exceeding the natural replenishment. In June 1990, the district voted to approve issuance of \$66.5 million in general obligation bonds to finance the Morongo Pipeline. Ground breaking for the 70-mile pipeline was held in December 1992, with construction scheduled for completion by July 1994. It will deliver water from the Hesperia Turnout of the California Aqueduct to the Morongo Basin in the Yucca Valley, in the Colorado

269

River Region. The Morongo Basin has an entitlement to 7,257 AF of SWP water. The Board of Directors of the Mojave Water Agency has decided to oversize the pipeline to provide capacity for water to recharge the Mojave River. Increasing the pipeline's first section from 30 inches in diameter to 54 inches will give it the capacity to put as much as 30,000 AF a year into the river.

The City of Barstow filed a suit in 1990 against some Upper Basin water districts requesting that the Superior Court guarantee it an annual supply of 30,000 AF of Mojave River water (to be received at a particular stream gaging station downstream of Barstow). Barstow alleges that this was the natural river flow to the city in 1950, before Victor Valley's growth began to cause overdrafting of the Mojave River Basin's ground water. It further alleges that it now receives less than half of the flow it did 40 years ago. Currently, Mojave Water Agency is developing a water management plan, as required by the court . The parties, with the assistance of a facilitator, drafted a set of preliminary principles of adjudication of water rights. They are attempting to expedite an agreement or a stipulated judgment to avoid a potential moratorium on new development and to create a workable long–term solution. In another suit, between Barstow and the City of Hesperia, the court's ruling emphasized the necessity for Mojave Water Agency to exercise its authority as a key agent in settling the region's long–term water problems.

Water Balance

Water balances were computed for each Planning Subarea in the South Lahontan Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas, which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table SL-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 550,000 AF for average and drought years. Those demands are projected to increase to 735,000 AF for average and drought years by the year 2020, after accounting for a 10,000 AF reduction in urban water demand resulting from

270

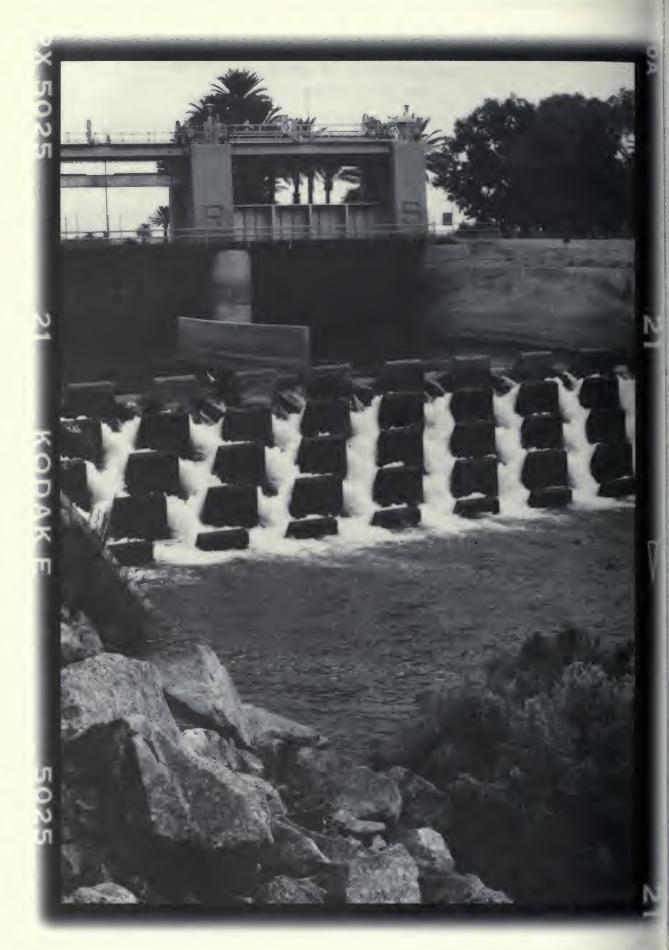
mplementation of long-term conservation measures and a 10,000 AF reduction in agricultural demand resulting from additional long-term agricultural water conservation measures.

Urban net water demand is projected to increase by about 240,000 AF (200 percent) by 2020 from he 1990 level of 123,000 AF, due to increases in population. Agricultural net water demand is projected o decrease by about 60,000 AF by 2020, primarily due to lands being taken out of production resulting irom the high cost of developed water supplies. Environmental net water demands, under existing rules und regulations, will remain essentially level out to 2020.

Average annual supplies were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual average and drought year shortages are expected to increase to nearly 50,000 and 140,000 AF by 2020 respectively.

With planned Level I programs, average and drought year shortages could be reduced to about 40,000 und 80,000 AF respectively. This remaining shortage requires both additional short-term drought nanagement, water transfers and demand management programs, and other future long-term Level II options depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region. In the short- term, some areas of this region will experience nore frequent and severe water shortages.

Demand/Supply	19	90		2020
Demand/Supply	average	drought	average	drought
Net Demand) (
Urban-with 1990 level of conservation	123	125	370	382
-reductions due to long-term conservation measures (Level I)			-10	-10
Agricultural	290	293	241	244
-reductions due to long-term conservation measures (Level I)			-10	-10
Environmental	128	122	128	122
Other (1)	14	14	16	15
Total Net Demand	555	554	735	743
Water Supplies w/Existing Facilities Under D-1485 for Delta Supplies				
Developed Supplies				
Surface Water	128	100	222	144
Ground Water	227	256	263	270
Ground Water Overdraft	72	72	71	. 71
Subtotal	427	428	556	485
Dedicated Natural Flow	128	122	128	122
Total Water Supplies	555	550	684	607
Demand/Supply Balance	0	-4	-51	-136
Future Water Management Options Level I (2)			A	
Long-term Supply Augmentation	~			
Reclaimed			2	2
Local			0	(
Central Valley Project			0	. (
State Water Project			32	. 54
Subtotal – Water Management Options Level I			34	56
Ground Water/Surface Water Use Reduction Resulting from Level I Program	IS		-23	-1
Remaining Demand/Supply Balance Requiring Short Term Drought Management and/or Future Level II Options			-40	-81


Table SL-11. Water Balance (thousands of acre-feet)

(1) Includes conveyance losses, recreation uses and energy production.

(2) Protection of fish and wildlife and a long-term solution to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

* * *

COLORADO RIVER REGION

Control gates on the Colorado River Aqueduct.

Colorado River Region

COLORADO RIVER REGION

The Colorado River Region encompasses the southeastern corner of California. The region's northern boundary, a drainage divide, begins along the southern edge of the Mojave River watershed in the Victor Valley area of San Bernardino County and meanders northeast across the Mojave Desert to the Nevada state line. The southern boundary is the international border with Mexico. A drainage divide forms the jagged western boundary through the San Bernardino, San Jacinto, and Santa Rosa Mountains and the Peninsular Ranges (which include the Laguna Mountains). The Nevada state line and the Colorado River (the boundary with Arizona) delineate the region's eastern boundary.

Covering over 12 percent of the total land area in the State, the region is California's most arid. It includes mountain ranges and hills of volcanic origin; distinctive sand dunes; broad areas of the joshua tree, alkali scrub, and cholla communities; and elevated river terraces. Despite its dry climate and rugged terrain, the region contains some of the State's most productive agricultural areas and vacation resorts. (See Appendix C for maps of the planning subareas and land ownership in the region.)

Much of the region's topography consists of flat plains punctuated by numerous hills and mountain ranges. Faulting and volcanic activities are partially responsible for the presence of many abrupt mountain ranges. The San Andreas fault slices through portions of the Coachella and Imperial Valleys.

A prominent topographic feature is the Salton Trough located in the south-central part of the region. Oriented in a northwest-southeast direction, the trough extends from San Gorgonio Pass in the north to the Mexican border and beyond to the Gulf of California. It includes the Coachella Valley in the north and Imperial Valley in the south. The low point of the trough is the Salton Sea, which was created between 1905 and 1907 when the headworks of an irrigation canal conveying Colorado River water to Imperial Valley broke. Large volumes of water flowed into the Salton Sink, resulting in the sea that exists today. In September 1993, the Salton Sea's water surface level was about 227 feet below sea level.

The climate for most of the region is subtropical desert. Average annual precipitation is much higher in the western mountains than in the desert areas. Winter snows generally fall above 5,000 feet; snow depths can reach several feet at the highest levels during winter. Most of the precipitation in the region falls during the winter; however, summer thunder storms can produce rain and local flooding in many areas.

Region Characteristics

Average Annual Precipitation: 5.5 inches Land Area: 19,730 square miles 1990 Population: 464,200

Average Annual Runoff: 178,700 acre-feet

Drainage in the region is internal except for the eastern portion, which drains into the Colorado River. Portions of the Coachella Valley are drained by the Whitewater River, which terminates in the Salton Sea. The Imperial Valley is drained by the Alamo and New Rivers, which originate in Mexico and terminate in the Salton Sea.

Population

The Colorado River Region's population increased from 313,000 in 1980 to 464,200 in 1990, over 48 percent. Most of the population is concentrated in the Coachella and Imperial Valleys. Major cities in the Coachella Valley include Palm Springs, Indio, Cathedral City, and Palm Desert. Other urban centers in the region include the Cities of El Centro, Brawley, and Calexico in Imperial Valley, the Cities of Beaumont and Banning in the San Gorgonio Pass area, and the cities of Needles and Blythe along the Colorado River. Table CR–1 shows the population projections for this region.

(t	housands)	•	
1990	2000	2010	2020
60	78	102	124
2	3	3	3
28	31	35	38
263	375	496	619
6	8	9	11
104	144	173	208
463	639	818	1,003
	1990 60 2 28 263 6 104	60 78 2 3 28 31 263 375 6 8 104 144	1990 2000 2010 60 78 102 2 3 3 28 31 35 263 375 496 6 8 9 104 144 173

Table CR-1. Population Projections

About 1.5 percent of California's population resides in the region. Urban development in the Coachella Valley is proceeding at a rapid pace due to affordable housing and the area's aesthetic appeal. Much of the growth is attributed to retirees and others finding the climate and real estate settings attractive.

Land Use

Federal and state government-owned lands account for about 14,270 square miles, or 72 percent of the total land area of the region. There are several military training and testing grounds, including the large U.S. Marine Corps Military Training Center at Twenty Nine Palms and the gunnery range in the Chocolate Mountains. Major parks include Joshua Tree National Monument and Anza-Borrego Desert State Park. The U.S. Bureau of Land Management oversees use of much of the desert lands.

The number one industry and most important source of income for the region is agriculture. Almost 90 percent, 647,000 acres, of the developed private land is being used for agriculture, most of which is

Bulletin 160–93 Administrative Draft

Colorado River Region

located in Imperial Valley. Because of a lack of significant rainfall, all crops planted and harvested in these areas receive irrigation water, imported mostly from the Colorado River. Some ground water supplies are used as well. Some of the more prominent crops include alfalfa, winter vegetables, spring melons, table grapes, dates, Sudan grass, and wheat. Figure CR–1 shows land use, along with imports, exports, and water supplies for the San Joaquin River Region.

Together, recreation and tourism have become the second most important industry and source of income for the region. In Coachella Valley, a heavy media advertising campaign over the past decade has promoted the positive aspects of resort lifestyle and golf, and has contributed to the influx of retirees and vacationers from around the world. To accommodate and maintain the increase in businesses, developers in the valley have constructed world–class hotels, country clubs, golf courses, and residential communities from Palm Springs to Indio. Over 90 golf courses have now been established in the valley. Other activities, such as boating, water sports, and fishing on the Salton Sea and Colorado River, snow skiing in the higher mountains, and camping, are also promoted to maintain the strong recreation and tourism industry.

Most of the remaining industries are generally associated with the region's intensive agricultural activities. These industries process, pack, and distribute harvested crops or manufacture and sell agricultural equipment and materials. Other industries in the region include geothermal and alternative energy developments near the Salton Sea and in Imperial Valley, wind farms near San Gorgonio Pass, and gold and miscellaneous mining operations.

The major issue involving land use in the Colorado River Region is how to balance long-term preservation and protection of the land while providing various kinds of recreational opportunities. Recent discussions have centered on proposed federal legislation that would enlarge and give national park status to the East Mojave National Scenic Area and Joshua Tree National Monument.

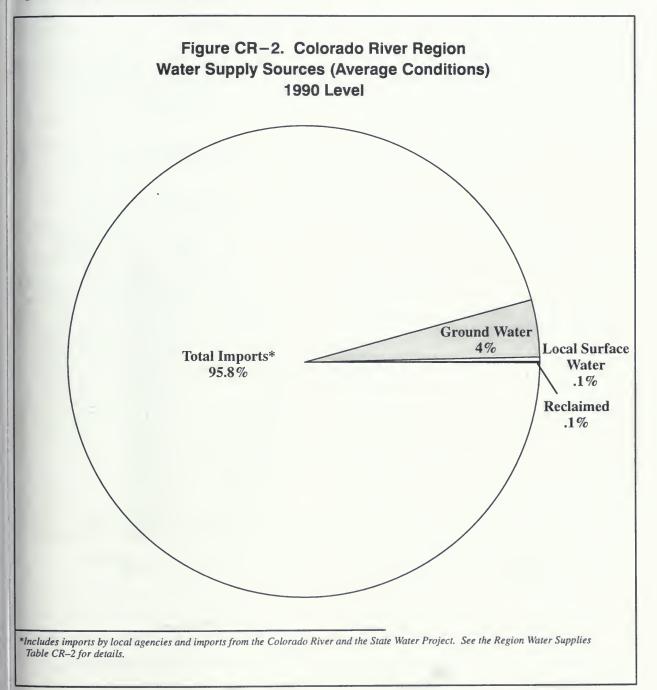


Figure CR-1. Colorado River Region Land Use, Imports, Exports, and Water Supplies

Colorado River Region

Water Supply

The region began its water development by depending mostly on ground water, as in the Coachella Valley, supplemented with a minimum of surface water (those rivers that supply water to the Palm Springs area). Water demands are met from the following sources: Colorado River (through local diversions, the Colorado River Aqueduct, and the All–American and Coachella Canals), State Water Project (indirectly), ground water, local surface water, and reclaimed water. Figure CR–2 shows the region's 1990 level sources of supply.

Supply with Existing Facilities

In 1938, the U.S. Bureau of Reclamation began conveying Colorado River water, via the All–American Canal, to the Imperial Valley, Coachella Valley, and Borrego. The All–American Canal can carry 15,100 cubic feet per second, which has provided these areas with an adequate and reliable supply of water. There are no major water supply reservoirs in the region beyond those on the Colorado River. Table CR–2 shows water supplies with existing facilities and water management programs.

The Colorado River also supplies water to areas served by the Colorado River Aqueduct, owned by The Metropolitan Water District of Southern California. The California apportionment of Colorado River water is 4.4 million AF annually plus one-half of any surplus. California consumptively used over 5.2 MAF of Colorado River water in 1990, of which 3.9 MAF was used in the Colorado River Region. Water from the Colorado River makes up about 95 percent of the region's total supply.

Table CR-2. Water Supplies with Existing Facilities and Programs

(Decision	1485 Operating	Criteria fo	or Delta	Supplies)
	(thousands	of acre-f	eet)	

Supply	19	90	20	00	20	10	2020	
Supply	average	drought	average	drought	average	drought	average	drought
Surface								Α.
Local	6	4	6	4	- 6	4	6	4.
Local imports	0	0	0	0	0	0	0	0
Colorado River ¹	3,898	3,898	3,774	3,774	3,774	3,774	3,774	3,774
CVP	0	0	0	0	0	0	0	0
Other federal	0	0	0	0	0	0	0	· 0
SWP	58	43	56	35	53	32	53	32
Ground water	79	79	76	76	79	79	79	79
Overdraft	80	80	68	68	65	65	67	67
Reclaimed	3	3	3	3	3	3	3	3
Dedicated natural flow	0	0	0	0	0	0	0	0
Total	4,124	4,107	3,983	3,960	3,980	3,957	3,982	3,959

¹Colorado River supplies for the year 2000 and beyond reflect elimination of surplus Colorado River supply and transfer of 76,000 AF of water to the South Coast Region as a result of currently agreed upon conservation programs.

Three State Water Project contractors are located in the region: Desert Water Agency, Coachella Valley Water District, and San Gorgonio Pass Water Agency. The SWP does not extend into the region at this time; however, MWDSC has signed an exchange agreement with Desert Water Agency and Coachella Valley Water District that allows MWDSC to take the two agencies' SWP entitlement water. In return, MWDSC releases the same quantity of pre-delivered water from its Colorado River Aqueduct into the Whitewater River for recharge of the ground water basin in the Coachella Valley. Local surface water supply in the Coachella subarea amounted to about 6,000 AF in 1990. This supply is derived from the Whitewater River. However, the supply is not dependable in times of drought.

About 2,700 AF of fresh water was displaced by reclaimed water in 1990. Most of the fresh water displacement occurred in the Coachella (about 2,000 AF) and Twenty–Nine Palms (almost 700 AF) PSAs, with less than 100 AF displaced in the Imperial PSA. Most of the reclaimed water was applied to golf courses and resort hotel common areas.

Total ground water supplies for 1990 were about 160,000 AF, almost 4 percent of the region's total supply. The Coachella PSA accounted for about 89,000 AF of the ground water use in the region, 56,000 AF of this use was overdraft. Recharge of various ground water basins depends on location. Streamflow, percolation, subsurface inflow, periodic Colorado River flooding, and canal leakage all provide ground water basin recharge.

From 1990 to 2020 overdraft could be reduced by over 16 percent (80,000 AF in 1990 to 67,000 AF in 2020) in the Colorado River Region. Reduced agricultural demand and increased SWP deliveries account for most of this decrease.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Drought Water Management Strategies. State requirements for water shortage contingency plans for urban water providers encourage urban water agencies to implement water conservation measures and practices within their respective service areas and to plan strategies for managing shortages. The Federal Reclamation Reform Act of 1982 requires that water suppliers who contract with the U. S. Bureau of Reclamation prepare water conservation plans and update them every five years. Most of the larger agencies in the region would be affected. (Volume I, Chapter 2 of the *California Water Plan Update* presents more details of the 1982 act.) These planning steps constitute the major drought water management efforts in the region. The recent drought has not adversely affected the area due to ample carryover of supplies in the lower Colorado River. *Water Management Options with Additional Facilities.* Currently, the San Gorgonio Pass Water Agency plans to construct facilities that would allow it to import its SWP entitlement (17,300 AF) plus an additional 50,000 AF to be used conjunctively in the ground water basin. Under this plan, facilities would have a carrying capacity of 32 cfs. The facilities are expected to be on–line in 1995 or 1996.

An estimated 1 MAF of evacuated space is available within the San Gorgonio ground water basins. At present, the agency is gathering hydrogeologic information to determine whether or not to make a feasibility study. To date, two 1,000-foot-deep exploration wells and two monitoring wells (100 feet and 250 feet deep) have been established in the potential recharge area.

The Mojave Water Agency is constructing the Morongo Basin Pipeline, which will convey State Water Project water from the Hesperia turnout of the California Aqueduct to the Morongo Basin–Johnson Valley area. The design capacity of the pipeline is 22 cubic feet per second. Construction is scheduled to be completed in 1994. The San Gorgonio Pass Water Agency, a SWP water contractor, has no physical facilities for transporting its SWP entitlement of 17,300 AF. The agency is currently designing facilities to take delivery of its entitlement. San Gorgonio serves the cities of Banning and Beaumont and the Morongo Indian Reservation. Table CR–3 shows water supplies with additional Level I water management programs

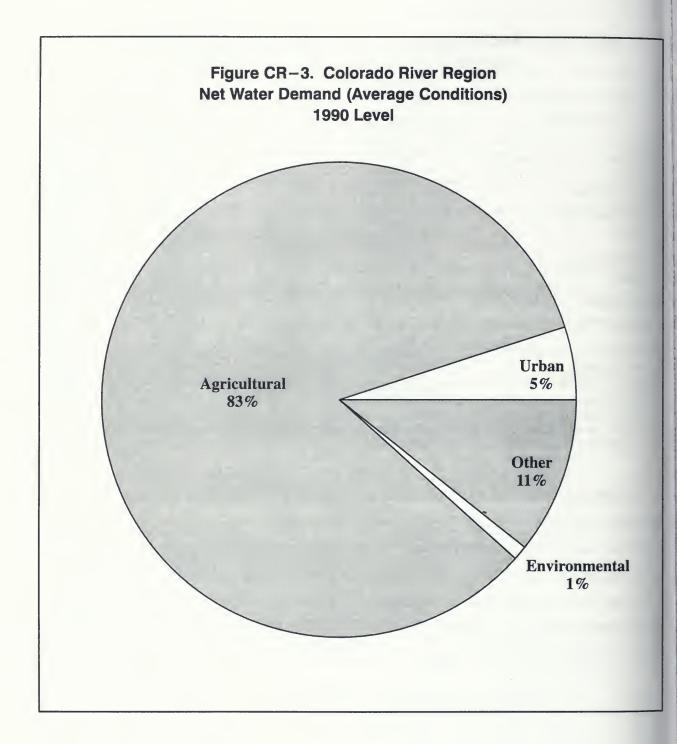
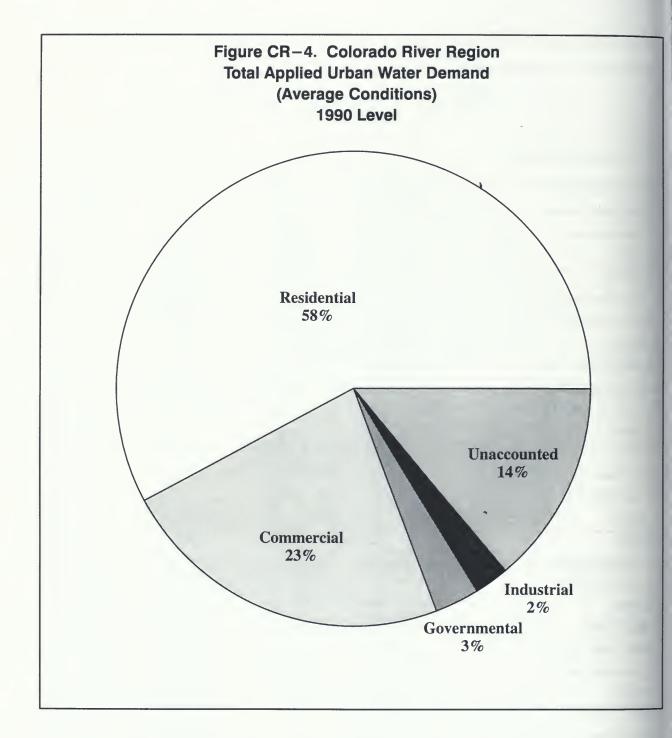

Supply	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Surface								
Local	6	4	6	4	6	4	6	4
Local imports	0	0	0	0	. 0	0	0	0
Colorado River ¹	3,898	3,898	3,704	3,704	3,704	3,704	3,704	3,704
CVP	0	0	0	0	0	0	0	0
Other federal	0	0	0	0	0	0	0	0
SWP	58	43	59	44	62	51	62	52
Ground water	79	79	76	76	84	84	43	43
Overdraft	80	80	68	68	60	60	60	60
Reclaimed	3	3	4	4	4	4	5	5
Dedicated natural flow	0	0	0	0	0	, : O	0	C
Total .	4,124	4,107	3,917	3,896	3,920	3,907	3,880	3,868

Table CR-3. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

¹Colorado River supplies for the year 2000 and beyond reflect elimination of surplus Colorado River supplies, the transfer of 76,000 AF of water as a result of a currently agreed upon conservation program, and the saving of 70,000 AF of water by lining the All American Canal, a Level I conservation program.

Water Use

The 1990 level annual net water demand within the Colorado River Region is about 4,124,000 AF. Agricultural irrigation accounts for 83 percent of the region's net water use, while municipal and industrial use accounts for almost 5 percent. The Colorado River Region's agricultural water use is the fourth highest in the State. Even though the region has a small permanent population base, the water requirements of its recreation and tourism industries make up a large portion of the region's municipal and industrial net water use of 204,000 AF. Figure CR–3 shows 1990 level of development net water demands for the Colorado River Region.



Urban Water Use

Population projections indicate that urban applied water demand will increase about 106 percent between 1990 and 2020, due to an expected population increase of roughly 117 percent during the same period. Table CR-4 shows the total urban applied net water demand, and depletion for the Colorado River Region through 2020. Much of the increase in urban water demand can be attributed to the development of recreation and resort facilities in Coachella Valley. Figure CR-4 shows the 1990 level applied urban water demands by sector.

(thousands of acre-feet)									
Planning Subareas	1990		2000		2010		20)20	
Planning Subareas	average	drought	average	drought	average	drought	average	drought	
Twenty Nine Palms	1								
Applied water demand	11	11	14	14	18	18	22	22	
Net water demand	6	6	8	8	11	11	13	13	
Depletion	6	6	8	8	11	11	13	13	
Chuckwalla									
Applied water demand	0	0	0	0	1	1	1	- 1	
Net water demand	0	0	0	0	0	0	0	0	
Depletion	0	0	0	0	0	0	0	0	
Colorado River									
Applied water demand	11	11	12	12	14	14	15	15	
Net water demand	6	6	7	7	8	8	9	9	
Depletion	6	6	7	7	8	8	9	9	
Coachella		ξ							
Applied water demand	251	251	335	335	431	431	524	524	
Net water demand	165	165	220	220	283	283	344	344	
Depletion	165	165	220	220	283	283	344	344	
Borrego), (
Applied water demand	2	2	2	2	3	3	3	3	
Net water demand	1	1	1	1	2	2	2	2	
Depletion	1	1	1	1	2	2	2	2	
Imperial Valley				<u>}</u>					
Applied water demand	26	26	36	36	45	45	56	56	
Net water demand	26	26	36	36	45	45	56	56	
Depletion	26	26	36	36	45	45	56	56	
Total								=	
Applied water demand	301	301	399	399	512	512	621	621	
Net water demand	204	204	272	272	349	349	424	424	
Depletion	204	204	272	272	349	349	424	424	

Table CR-4. Urban Water Demand (thousands of acre-feet)

Average 1990 level water use for the region was 336 gallons per capita daily. However, values range from 853 gpcd in the Coachella PSA to 163 gpcd in the less densely populated areas of the Twenty Nine Palms PSA. Average per capita water use is expected to increase by about 7 percent between 1990 and 2020.

The higher per capita values in 1990 are attributable to a large tourism industry, greater landscape irrigation requirements, and a rise in the number of people who reside in the region part-time. Lower

Colorado River Region

per-capita values are common in areas where the residential landscape requirements are lower and commercial and industrial water uses are extremely small.

Agricultural Water Use

The 1990 level irrigated crop acreage for the Colorado River Region amounted to 750,000 acres. Table CR-5 shows irrigated crop acreage projections to 2020. Most of the major agricultural operations in the region are in the Imperial Valley, Colorado River, and Coachella PSAs, with the largest and most intensive being located in the Imperial Valley PSA. Minor reductions of about three percent in total irrigated crop acres are projected to occur between 1990 and 2020. However, increases will occur in the planted and harvested acres for certain high market value crops, such as fresh market vegetables. Demand by both international and domestic markets for fresh vegetables will probably encourage growers to maintain current levels of crop production and, if possible, plant and harvest additional acres. Other crops expected to show minor to moderate increases are small grains, citrus and subtropical fruit, sugar beets, and cotton. For cotton, current pest problems caused by boll worm could be rectified and udditional acres planted, mainly in Imperial Valley. The silverleaf whitefly infestation, primarily in mperial Valley, has caused temporary minor reductions in the recent planted and harvested acreage. Bradication and management efforts should mitigate the problems caused by these pests and allow crop ucreage to return to normal levels. Table CR-6 shows the 1990 level evapotranspiration of applied water by crop.

Planning Subareas	1990	2000	2010	2020
Twenty Nine Palms	4	6	7	7
Chuckwalla	6	3	3	3
Colorado River	130	131	132	132
Coachella	74	64	48	37
Borrego	10	12	13	13
Imperial Valley	526	530	534	534
Total	750	746	737	726

Table CR-5. Irrigated Crop Acreage (thousands of acres)

Bulletin 160–93 Administrative Draft

The four top crops in terms of acreage and total gross applied water use are alfalfa, truck (vegetables and nursery), small grains, and miscellaneous field. In 1990, alfalfa used roughly 50 percent of the total gross applied agricultural water. Figure CR–5 compares 1990 crop acreages, evapotranspiration, and applied water for major crops.

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)	Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	76	152	Pasture	31	176
Cotton	37	121	Tomatoes	13	32
Sugar beets	36	134	Other truck	190	310
Corn	8	20	Other deciduous	1	5
Other field	55	146	Vineyard	20	65
Alfalfa	255	255 1,381 Citrus/olives	Citrus/olives	29	123
			Total	750	2,665

Table CR-6. 1990 Evapotranspiration of Applied Water by Crop (thousands of acres)

Reductions in irrigated acres are expected for crops or crop categories with low or fluctuating market values, such as alfalfa, corn, and miscellaneous field crops. Market competition (international and domestic) and the pressures from urban encroachment may cause decreases in acres planted with table grapes in the Coachella Valley. Total 1990 agricultural applied water demand was about 3.7 MAF and net water demand was about 3.4 MAF. Table CR-7 summarizes the 1990 and projected agricultural water demand in the region.

Planning Subareas	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Twenty-Nine Palms							*	
Applied water demand	22	22	28	28	32	32	34	34
Net water demand	20	20	24	. 24	28	28	30	30
Depletion ·	20	20	24	24	28	28	30	30
Chuckwalla								
Applied water demand	30	30	17	17	13	13	15	15
Net water demand	27	27	16	16	12	12	13	13
Depletion	27	27	16	16	12	12	13	13
Colorado River								
Applied water demand	785	785	751	751	705	705	698	698
Net water demand	606	606	588	588	566	566	559	559
Depletion	606	606	588	588	566	566	559	559
Coachella								
Applied water demand	393	393	342	342	260	260	202	202
Net water demand	313	313	277	277	215	215	168	168
Depletion	313	313	277	277	215	215	168	168
Borrego						1.		
Applied water demand	37	37	45	45	48	48	51	51
Net water demand	35	35	42	42	46	46	48	48
Depletion	35	35	42	42	46	46	48	48
Imperial Valley				¥				
Applied water demand	2,438	2,438	2,415	2,415	2,395	2,395	2,363	2,363
Net water demand	2,438	2,438	2,415	2,415	2,395	2,395	2,363	2,363
Depletion	2,438	2,438	2,415	2,415	2,395	2,395	2,363	2,363
Total							1	
Applied water demand	3,705	3,705	3,598	3,598	3,453	3,453	3,363	3,363
Net water demand	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181
Depletion	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181

Table CR-7. Agricultural Water Demand (thousands of acre-feet)

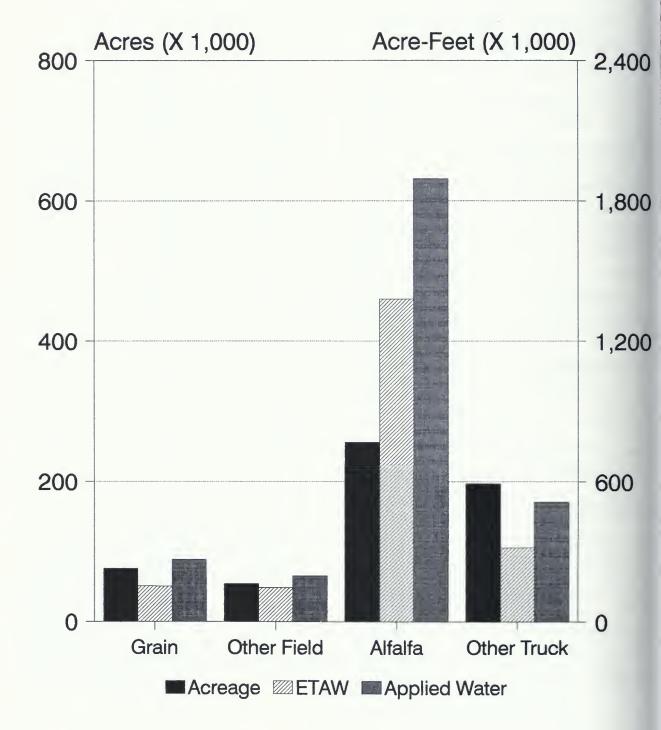


Figure CR-5. Colorado River Region 1990 Acreage, ETAW, and Applied Water for Major Crops

Bulletin 160–93 Administrative Draft

Colorado River Region

Minor reductions in crop acreage and applied water use are expected for the region. Projections indicate that the region's total applied agricultural water use will decrease by about 9 percent between 1990 and 2020. Improvements in on-farm irrigation operations and irrigation system technologies, the loss of irrigated land caused by urbanization, and minor shifts in crop type will contribute to the decrease. Table CR-7 shows increases of about 55 percent and 38 percent in applied agricultural water use between 1990 and 2020 in the Twenty-Nine Palms and Borrego PSAs, respectively. During the same period, decreases of about 50 percent are projected for both the Chuckwalla and Coachella PSAs.

Since the late 1970s, major efforts have been undertaken by local governments, water agencies, and growers to improve the efficiency of agricultural irrigation operations in the region. The most observable improvements have been made in the Imperial and Coachella Valleys. Agricultural conservation in the region can be placed into two categories: (1) on–farm irrigation system management and operation improvements and (2) conveyance system improvements. Examples of current on–farm improvements include: careful management and design of furrows, basin and sprinkler systems to minimize excessive tailwater runoff from the ends of fields into drains and to evenly irrigate the entire field; laser leveling of fields to improve movement of irrigation water in furrows and basin systems; implementing micro–irrigation technology (drip emitters and micro–jet sprinklers) for permanent crops; using different irrigation and cultivation techniques (hand–move sprinklers for pre–irrigation of fields and seed germination); reusing tailwater to supplement delivered water for the irrigation of another field; and irrigation scheduling. Subsurface irrigation systems are also being tested on certain crops in the region.

Conveyance system improvements have come in the form of: constructing regulatory reservoirs to enhance the delivery and storage capabilities of the system; concrete lining of canals and laterals with concrete to minimize supply losses due to seepage; automating the system with telemetry for improved control over the delivery of water; and installing seepage recovery and operational spill interceptor systems.

Environmental Water Use

Total 1990 environmental water use for the Colorado River Region amounts to nearly 40,000 AF. Demands are projected to increase 13 percent by 2000 and remain at the 44,000 AF level through 2020. Colorado River water supplies most of this use. Currently, there are two major areas where water is used for wildlife habitat in the region: the Salton Sea National Wildlife Refuge and Imperial Wildlife Area. There are also several private wetlands. Table CR–8 shows wetland water needs in the Colorado River Region.

The Salton Sea National Wildlife Refuge was established in 1930 by executive order. Originally, the refuge contained 23,425 acres, but due to inflow of agricultural drain water and a rise in the sea level, most of the refuge is now inundated. About 2,500 acres of manageable habitat remain, with about 1,068 acres managed as marsh land. In 1990, the refuge used about 4,900 AF of fresh water. Projections indicate the refuge will require about 10,000 AF of fresh water by the year 2000.

The Imperial Wildlife Area is operated and managed by the State Department of Fish and Game. The area is comprised of two units. The Finney–Ramer unit contains two lakes with a combined area of 320 acres and several small ponds. The total water surface area of the unit is about 2,050 acres, with total annual water use estimated at 7,600 AF. The Wister unit has a total water surface area of about 5,500 acres and total annual water use of almost 21,000 AF. Demands are projected to remain level through 2020.

Private wetlands in the Colorado River Region occupy about 2,225 acres and consumptively use roughly 5,330 AF of fresh water annually. These wetlands, scattered throughout Imperial and Riverside Counties, are used for duck hunting.

Wetlands	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Salton Sea								
Applied water	5	5	10	10	10	10	10	10
Net water	5	5	10	10	10	10	10	10
Depletion	5	5	10	10	10	10	10	10
Imperial						-		
Applied water	29	29	29	29	29	29	29	29
Net water	29	29	29	29	29	29	29	29
Depletion	29	29	29	29	29	29	29	29
Private				¥.	2			1
Applied water	5	5	5	5	5	5	5	5
Net water	5	5	5	5	5	5	5	5
Depletion	5	5	5	5	5	5	5	5
Total		N.		ş		:		;
Applied water	39	39	44	44	44	44	44	44
Net water	39	39	44	44	44	. 44	44	44
Depletion	39	39	44	44	44	44	44	44

Table CR-8. Wetlands Water Needs (thousands of acre-feet)

Other Water Use

Conveyance losses, primarily in the All-American and Coachella Canals, totaled about 360,000 AF in 1990. Both the Imperial Irrigation District and Coachella Valley Water District conveyance losses are calculated as the acre-feet of water allocated to them minus the amount of water actually sold to users by the districts. Conveyance losses are projected to decrease to 170,000 AF by 2020, as a result of conservation programs to line the canals. Geothermal power plants in Imperial Valley PSA produce about 379 megawatts per year and use about 74,200 AF of cooling water annually in their operation. Table CR-9 shows the total water demand for this region.

Recreational facilities are found in all PSAs; most consist of campgrounds and parks, and water is used for drinking, landscape watering, toilets, showers, and facility maintenance. Total water use in these areas amounted to almost 5,000 AF in 1990. The Colorado River PSA accounted for about 3,000 AF of that use. Recreation includes water skiing, boating, fishing, and swimming. Figure CR–6 shows water recreation areas in the Colorado River Region.

Category of Use	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Urban								
Applied water	301	301	399	399	512	512	621	621
Net water	204	204	272	272	349	349	424	424
Depletion	204	204	272	272	349	349	424	424
Agricultural						4		
Applied water	3,705	3,705	3,598	3,598	3,453	3,453	3,363	3,363
Net water	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181
Depletion	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181
Environmental					-			
Applied water	39	39	44	44	44	44	44	44
Net water	39	39	44	44	44	44	44	44
Depletion	39	39	44	44	44	44	44	44
Other ¹		8 - F						
Applied water	82	82	83	83	83	83	83	83
Net water	442	442	363	363	363	363	363	363
Depletion	442	442	363	363	363	363	363	363
Total								
Applied water	4,127	4,127	4,124	4,124	4,092	4,092	4,111	4,111
Net water	4,124	4,124	4,041	4,041	4,018	4,018	4,012	4,012
Depletion	4,124	4,124	4,041	4,041	4,018	4,018	4,012	4,012

Table CR-9. Total Water Demands (thousands of acre-feet)

¹Other includes conveyance losses, recreation uses, and water used in energy production.

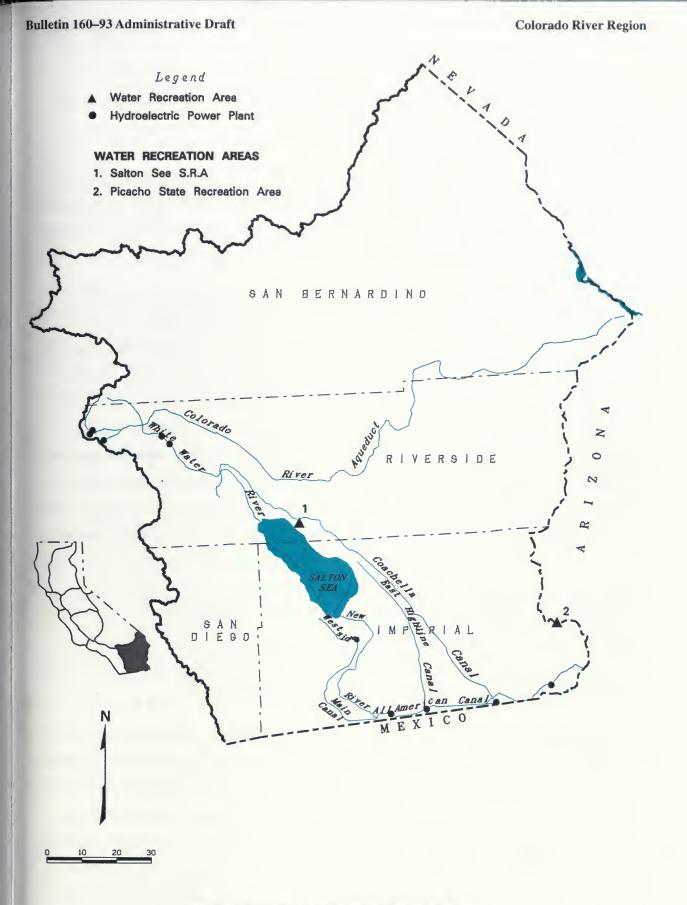


Figure CR-6. Colorado River Region Water Recreation Areas

Issues Affecting Local Water Resource Management

Legislation and Litigation

Colorado River Water Allocations. As a result of the 1964 U.S. Supreme Court decree in *Arizona v. California*, California's allocation of Colorado River water was quantified and five lower Colorado River Indian tribes were awarded 905,496 acre–feet of annual diversions, 131,400 AF of which were allocated for use in and chargeable to California pursuant to a later supplemental decree.

In 1978, the tribes asked the court to grant them additional water rights, alleging that the United States failed to claim a sufficient amount of irrigable acreage, called "omitted" lands, in the earlier litigation. The tribes also raised claims for more water based on allegedly larger reservation boundaries than had been assumed by the court in its initial award of water rights to the tribes, called "boundary" lands. In 1982, the special master appointed by the Supreme Court to hear these claims recommended that additional water rights be granted to the Indian tribes. In 1983, however, the court rejected the claims for omitted lands from further consideration and ruled that the claims for boundary lands could not be resolved until disputed boundaries were finally determined. Three of the five tribes - Fort Mohave Indian Tribe, Quechan Indian Tribe, and Colorado River Indian Tribe — are pursuing additional water rights related to the boundary lands claims in a further Supreme Court proceeding currently being held by still another special master. A settlement may be reached soon on the Fort Mohave claim. The Quechan claim has been rejected by the special master on the grounds that any such claim was necessarily disposed of as part of a Court of Claims settlement entered into by the tribe in a related matter in the mid–1980s. The Colorado River Indian Tribe case was presented to the special master in early 1993. As with all claims to water from the main stem of the Colorado River and any determination by the special master, only the U.S. Supreme Court itself can make the final ruling.

Any Colorado River or Fort Mohave tribal claims granted for additional water rights would reduce the amount of water available to satisfy the fourth priority demands of The Metropolitan Water District of Southern California under the 1931 California Seven Party Agreement, which established priorities for use of California's entitlement. Any Quechan tribal claims granted for additional water rights would reduce the amount of water available to satisfy the third priority demands of the Coachella Valley Water District under this agreement because the Quechan tribe receives Colorado River water under the Yuma Project Reservation Division's second priority. If all additional water rights claims were granted to the three Indian tribes, MWD could effectively lose up to 22,600 AF and Coachella up to 45,200 AF of their Colorado River supplies. The actual amounts to be granted, if any, are yet to be determined.

The Lower Colorado Water Supply Act. On November 14, 1986, the President signed the *Lower Colorado Water Supply Act*, Public Law 99–655, authorizing the U.S. Secretary of the Interior to construct, operate, and maintain a project consisting of a series of wells along the All–American Canal. The project would be capable of providing up to 10,000 AF of water annually from ground water storage to indirectly benefit the City of Needles, the community of Winterhaven, the U.S. Bureau of Land Management, and other municipal, industrial, and recreational users in California with no rights or insufficient rights to Colorado River water. Under PL 99–655, the Imperial Irrigation District or the Coachella Valley Water District, or both, would exchange a portion of their Colorado River water for an equivalent quantity and quality of ground water to be pumped from the well field into the All–American Canal during years that the total consumptive uses in the Lower Basin States are less than 7.5 MAF and apportioned but unused water is not available. The Lower Colorado Water Supply Project is now under construction and is scheduled for operation in 1994.

Effects of the Central Arizona Project on Colorado River Allocations. The Central Arizona Project, with an annual diversion capacity of 2.1 MAF, started delivering water in December 1985. All aqueduct facilities were completed in 1992 and are projected to divert about 675,000 AF for municipal, industrial, and agricultural uses in Central Arizona in 1993. Deliveries are expected to increase to 1.5 MAF annually under full development, with the capability of up to 2.1 MAF when it is available and needed.

When the Central Arizona Project begins diverting its full allocation of Colorado River water, California will be limited to its basic annual apportionment of 4.4 MAF when the Secretary of the Interior declares that a normal condition exists. Additional water can and has been made available when the Secretary determines a surplus condition exists, or when one or both of the other Lower Division states (Arizona and Nevada) are not fully using their apportioned water. Since 1985, neither Arizona nor Nevada has used its full basic apportionment, and the Secretary of the Interior has allowed California to use surplus water or Arizona's and Nevada's apportioned but unused Colorado River water. These factors have allowed California to divert and consumptively use 4.5 MAF to 5.2 MAF annually since 1985.

The availability of Colorado River water to California in 1993 was determined in the annual operating plan issued by the Secretary of the Interior in October 1992. The 1993 annual operating plan makes sufficient water available to supply all of California's reasonable beneficial consumptive use demands, but the plan contains a proviso that if the total mainstream consumptive use in the Lower Division states exceeds 7.5 MAF, the entity or entities responsible for the overuse will be required to compensate for such overuse by 1996.

Lining of the All-American Canal. The Secretary of the Interior (under PL 100–675 enacted in 1988) is authorized to line portions of the All-American Canal and the Coachella Canal, using funds provided by MWDSC, Coachella Valley Water District, Imperial Irrigation District, and Palo Verde Irrigation District. As of April 1993, the U.S. Bureau of Reclamation was preparing a final environmental impact statement/report regarding lining of a portion of the All-American Canal. Lining the canal or constructing a parallel canal from Pilot Knob to Drop Number 3, about 25 miles east of Calexico, would save roughly 67,700 AF annually.

The draft EIS/EIR for the project identified the preferred alternative to be a parallel concrete–lined canal. The final EIS/EIR is scheduled to be filed in 1993 and construction could begin in 1995. In addition, the U.S. Bureau of Reclamation is preparing a draft EIR/EIS regarding lining another section of the Coachella Canal, from which savings are expected to total 30,000 AF per year. Thus, if both canals were lined, as much as 97,700 AF of water could be made available for other uses.

Salinity Concentrations in the Colorado River. Salinity in the Colorado River varies from year to year because the river is subject to highly variable flows. As a result of high river flows from 1983 to 1986, releases from reservoir storage into the lower Colorado River were greatly in excess of the releases required for beneficial uses. These record high flows reduced salinity in the lower river. However, since 1987, with below normal water supply conditions and fewer reservoir releases being made to supply consumptive uses only, salinity levels have again increased.

Like most western rivers, the Colorado increases in salinity from its headwaters to its mouth, carrying a salt load of about 9 million tons annually (measured at Hoover Dam). Roughly 50 percent of the river's salinity results naturally from salt in saline springs, ground water discharge into the river, erosion and dissolution of sediments, and evaporation and transpiration. About 37 percent of the salt load comes from agricultural return flows, which carry dissolved salts from underlying saline soils and geologic formations. The remainder of the salt load results from out–of–basin exports, reservoir evaporation, development of energy resources in the Upper Colorado River Basin, and other municipal and industrial uses.

In 1972, the seven Colorado River Basin states adopted a policy that while they would continue to develop the Colorado River water apportioned to each of them, they would work with each other to maintain salinity concentrations in the lower main stem of the Colorado River at or below the flow weighted average annual salinity of 1972. Later that year, amendments to the Federal Water Pollution Control Act required that standards for salinity in the Colorado River be established. In 1973, the seven

basin states created the Colorado River Basin Salinity Control Forum to establish criteria and develop a plan for implementing a salinity control program.

In 1975, all the basin states adopted the salinity standards set forth in the report *Water Quality* Standards for Salinity, Including Criteria, and Plan of Implementation for Salinity Control, Colorado River System, as recommended by the forum. The state-adopted and EPA-approved standards call for maintenance of average annual flow weighted salinity concentrations of 723 milligrams per liter below Hoover Dam, 747 mg/L below Parker Dam, and 879 mg/L at Imperial Dam.

Because of changes in hydrologic conditions and water use within the Colorado River Basin, the forum reviews its plan of implementation every three years. The recommended revisions to the plan for 1990 appear in *Review, Water Quality Standards for Salinity, Colorado River System*. The revised plan of implementation is designed to control enough salt to maintain the salinity criteria adopted in 1975 under a long-term mean water supply of 15 million AF per year. The 1990 proposed plan of implementation includes:

- Completion of U.S. Bureau of Reclamation, Bureau of Land Management, and Department of Agriculture salinity control measures. Currently remaining federal construction funds for these activities total about \$669 million.
- Imposition of effluent limitations, principally under the National Pollutant Discharge Elimination System permit program for industrial and municipal discharges.
- Implementation of various forum-recommended policies on such subjects as use of brackish or saline waters for industrial purposes, NPDES standards for intercepted ground water, and fish hatcheries.

The forum reported that average salinity concentrations for 1990 were 578 mg/L below Hoover Dam, 600 mg/L below Parker Dam, and 702 mg/L at Imperial Dam, which were all below the forum's criteria. It also reported that there was no reason to believe the criteria would be exceeded during the 1990 to 1993 period. In fact, projections appearing in the 1990 review state, "...except for deviations caused by factors beyond human control, average annual salinity levels would be maintained through 2010 at or below the 1972 levels with the recommended plan of implementation."

Salton Sea. The Salton Sea is a 35-mile-long, 12-mile-wide, 40-foot-deep, saline body of water. It lies 228 feet below sea level in the desert of Imperial and Riverside Counties. In 1924, the federal government, recognizing the sea as a depository for agricultural drainage waters, placed lands lying below Elevation -220 feet in and around the sea in a public water reserve. In 1968, California enacted a statute declaring that the primary use of the Salton Sea is for collection of agricultural drainage water, seepage, leachate, and control waters. In 1980, a Salton Sea shore farmer wrote a letter to the State Water Resources Control Board alleging that the Imperial Irrigation District was wasting water to the sea and causing his land to be flooded. After several hearings, the board, in 1988, ordered IID to develop a plan to conserve 100,000 AF of water per year by 1994. The order required IID to make water delivery and irrigation practices more efficient and included a reservation of jurisdiction regarding the possible future conservation of up to 368,000 AF annually.

The order caused concerns that conservation measures would lower the sea's surface level and increase salinity concentrations at a slightly faster rate. The Salton Sea became increasingly saline between 1907 and 1934, largely because of high evaporation and reduced inflow of fresh water. Since 1934 the salinity has varied from 33,000 mg/L to 44,000 mg/L. Inflow from Imperial, Coachella, and Mexicali Valleys from 1989 to 1991 was 977,000 AF, 108,000 AF, and 141,000 AF, respectively. Irrigation return flows, precipitation (which averages less than 3 inches per year), and local runoff are the only fresh water supplies to the sea. As is common in arid environments, the equivalent of several years rain may arrive in a single storm. With a watershed exceeding 8,000 square miles, a large storm can elevate the sea by one foot or more.

Agricultural drainage carries with it varying amounts of nutrients, mainly compounds of nitrogen and phosphorus, which encourage the growth of algae. Although algae are very productive and support the higher trophic levels, algae blooms in the upper water levels discolor the water and, upon death and decomposition, often cause temporary anoxic conditions locally and produce obnoxious odors. Fish are occasionally killed by the temporary lack of oxygen. These conditions reduce the sea's aesthetic appeal and, to some extent, depress water contact recreation.

The presence of selenium in the Salton Sea area has recently focused attention on its source or sources. The selenium content in the Colorado River water delivered to the Imperial and Coachella Valleys has been found to be about 2 parts per billion and reflects selenium contributions from tributaries to the main stem of the Colorado River in the Upper Colorado River Basin. The concentration of selenium in the sea water is about 2.5 ppb. As the result of a concentration of leachates from the soils irrigated with Colorado River water, higher levels of selenium concentrations in agricultural drains have been found. Although drainage water consists of components (for example, tile water, tail water, and seepage) carrying different concentrations of selenium, the mixing that occurs in the drain channels results in a selenium concentration of about 8 ppb.

The State Water Resources Control Board has adopted a California Inland Surface Waters Plan with a performance goal of 5 ppb for selenium concentrations in agricultural drain channels. In an earlier action, the California Department of Health Services, concerned over the concentration of selenium in the tissue of fish in the sea, issued a health advisory that fish consumption by humans be limited to avoid any adverse health effects.

Four bird species residing in the Salton Sea area are potentially adversely affected by organochlorine pesticides. Such pesticides are mobilized from farm fields and transported to drains by tail water runoff. Resuspension of bottom sediments in the New and Alamo Rivers and drains is another source of these pesticides. Twenty-three different organochlorine pesticides have been found in various types of biota in the Imperial Valley.

The average salt loading of inflow the sea over the past 30 years has been 4.9 million tons per year. Since 1980, salinity concentrations have increased at a rate of 500 to 600 parts per million per year. As of December 1992, salinity levels in the Salton Sea were 44,000 parts of salt per million parts of water saltier than the ocean water, which averages 34,000 ppm.

Further increases in salinity could harm fish and wildlife and the recreational resources in the area. Salinity concentrations in the sea are projected to reach 50,000 ppm in the next 10 years, even without further conservation measures being implemented, which would increase the rate. It is not likely, even under the most favorable hydrologic conditions, that the salinity of the sea will return to concentrations below 40,000 ppm, even without any further water conservation. On the other hand, flooding has also adversely affected shoreline developments and recreation. The sea has maintained relatively stable water elevations for the past decade.

Since 1987, the Salton Sea Task Force, chaired by the State Resources Agency, has been studying these problems. This intergovernmental group's objective is to find a way to conserve water in the Salton Sea area while stabilizing the sea's salinity and water levels. Several plans have been proposed; however, all plans would incur substantial costs. The task force is continuing to explore various means of improving the financial feasibility of the plans and to seek some form of regional organization as a sponsoring entity to carry out and provide funding for preservation measures.

Contracts and Agreements

MWDSC Water Conservation Agreements. To compensate for the loss of Colorado River water under the Supreme Court decree in Arizona v. California, The Metropolitan Water District of Southern California is pursuing a number of programs to augment its supplies. In December 1988, MWDSC and Imperial Irrigation District signed the first of two agreements expected to make 106,110 AF of conserved water available to MWDSC annually, except under certain limited circumstances, through the implementation of structural and nonstructural water conservation projects within IID's service area. The conservation measures to be used are: (1) concrete lining of existing earthen canals, (2) construction of reservoirs and canal spill interceptors, (3) installation of non-leak gates and distribution system automation equipment, and (4) on-farm management of irrigation water. MWDSC will furnish an estimated \$222 million (1988 dollars) for the conservation projects. Increased conservation in the IID would reduce surface and subsurface fresh water inflow to the Salton Sea, thus shortening the time it takes for the sea to reach critical salinity concentrations. The potential for increasing the rate of salinity concentration is a controversial issue and, as yet, unresolved.

The Palo Verde Irrigation District signed an agreement with MWD for a two-year fallowing program involving 22,000 acres of land that could save 200,000 AF of Colorado River water (100,000 AF per year). The fallowing began August 1, 1992 and will end July 31, 1994. Program lands lying fallow in 1992 are required to lie fallow through July 31, 1994. Currently, about 90,000 AF has been conserved and that water is to be maintained in Lake Mead. MWDSC must use the water before the year 2000.

IID and MWD were considering a test fallowing and modified irrigation practice program to save up to 200,000 AF of Colorado River water over a two-year period for MWD's use. Fallowing and modified irrigation of alfalfa would be conducted by Imperial Valley farmers on a voluntary basis for monetary compensation.

Water Banking Proposal. The U.S. Bureau of Reclamation has formed a technical work group with representatives from California, Arizona, Nevada, and the Colorado River Indian tribes to explore the merits and feasibility of banking water in Lake Mead for use by California, Arizona, and Nevada, and the tribes. A banking proposal is being considered as a provision of proposed regulations being prepared by USBR for administration of Colorado River entitlements in the Lower Basin.

Yuma Desalting Plant. The high salinity of Colorado River water in past years led to protests from the Republic of Mexico and an agreement between the United States and Mexico. To enable the U.S. to comply with the agreement without depriving Colorado River basin states of any of their apportioned water, the Yuma Desalting Plant was authorized under Title I of PL 93–320 in 1974. The purpose of the desalter is to remove sufficient salts from irrigation drainage water from the Wellton–Mohawk Irrigation and Drainage District in Arizona to meet the established salinity control standards at the Northerly International Boundary when the treated drainage water is released into the river. At the Yuma Desalting Plant, the brine discharge is disposed of in a channel leading to the Santa Clara Slough in Mexico, and the treated water is blended with the remaining untreated drainage water and returned to the river. The

Colorado River Region

Yuma Desalting Plant began operation at one-third capacity in May 1992. Due to high flows in the Gila River early in 1993, the plant was shut down in January 1993.

Under full operation, the desalter will be able to take about 98,000 acre–feet of drainage water and produce 68,500 acre–feet of product water; this will be blended with about 10,000 acre–feet of untreated irrigation water, so that a total of 78,500 acre–feet will be returned to the river.

Water Balance

Water balances were computed for each planning subarea in the Colorado River Region by comparing existing and future water demand projections with the projected availability of supply. The region total was computed as the sum of the individual subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11, presents a broader discussion of demand management options.

Table CR-10 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 4.1 MAF for average and drought years. Those demands are projected to decrease to 4.0 MAF by the year 2020, after accounting for a 35,000 AF reduction in urban water demand resulting from implementation of long-term conservation measures and a 200,000 AF reduction in agricultural demand resulting from additional long-term agricultural water conservation measures.

Urban net water demand is expected to increase by about 220,000 AF by 2020, primarily due to increases in population, while agricultural net water demand is expected to decrease by about 260,000 AF. Environmental net water demands, under existing rules and regulations, will increase from 39,000 to 44,000 AF annually as a result of increased allocation of water to wildlife refuges.

Average annual supplies were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual average and drought year shortages are expected to be limited to about 0.03 and 0.05 MAF by 2020 respectively.

Demand/Supply	19	90	2020		
Demand/Suppry	average	drought	average	drought	
Net Demand				2	
Urban-with 1990level of conservation	204	204	459	459	
-reductions due to long-term conservation measures (Level I)			-35	-35	
Agricultural	3,439	3,439	3,381	3,381	
-reductions due to long-term conservation measures (Level I)		2}	-200	-200	
Environmental	39	39	44	44	
Other (1)	442	442	363	363	
Total Net Demand	4,124	4,124	4,012	4,012	
Water Supplies w/Existing Facilities Under D-1485 for Delta Supplies					
Developed Supplies					
Surface Water	3,965	3,948	3,836	3,813	
Ground Water	79	79	79	79	
Ground Water Overdraft	80	80	67	67	
Subtotal	4,124	4,107	3,982	3,959	
Dedicated Natural Flow	0	0	0	·) (
Total Water Supplies	4,124	4,107	3,982	3,959	
Demand/Supply Balance	0	-17	-30	-53	
Future Water Management Options Level I (2)		1			
Long-term Supply Augmentation					
Reclaimed			2	2	
Local (3)	~		0	C	
Colorado River			-70	-70	
State Water Project			9	20	
Subtotal – Water Management Options Level I		Q	-59	-48	
Ground Water/Surface Water Use Reduction Resulting from Level I Program	S		-27	-27	
Remaining Demand/Supply Balance Requiring Short-Term Drought Management and/or Future Level II Options			-62	-74	

Table CR-10. Water Balance (thousands of acre-feet)

(1) Includes conveyance losses, recreation uses and energy production.

(2) Protection of fish and wildlife and long-term solution to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

With planned Level I options, average and drought year shortages could be about 62,000 and 74,000 AF respectively. This remaining shortage requires both additional short-term drought management and future long-term Level II options depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region. Because of high priority of rights to Colorado River water by such areas in the Palo Verde Irrigation District, the Coachella Valley, and the Imperial Valley, any future shortages in these areas are expected to be limited.

302

* * *

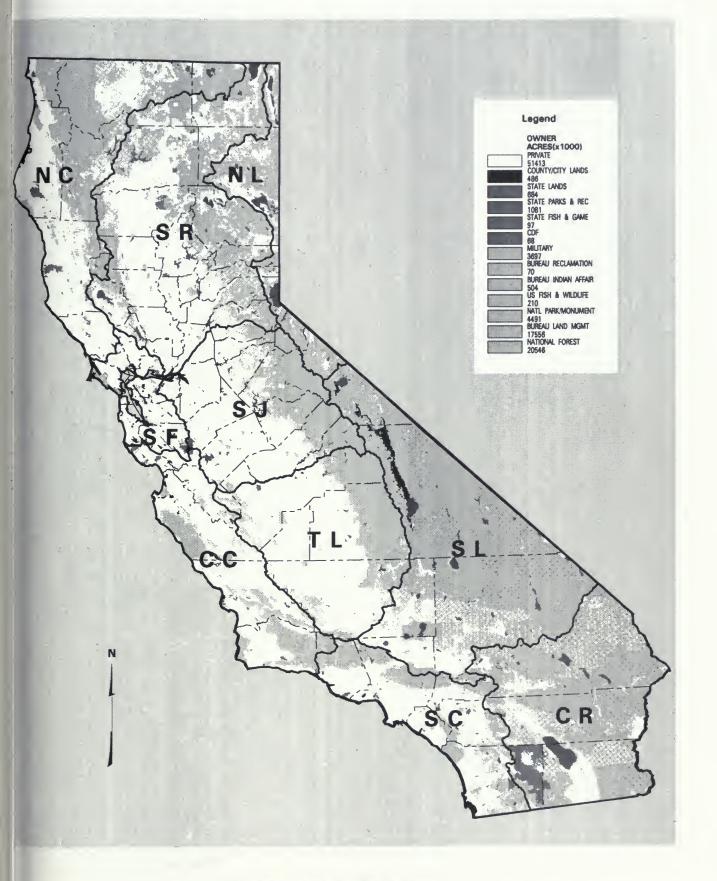
Draft of The California Water Plan Update

Bulletin 160-93, November 1993

APPENDIXES

Appendix CPlanning Subarea and
Land Ownership Maps

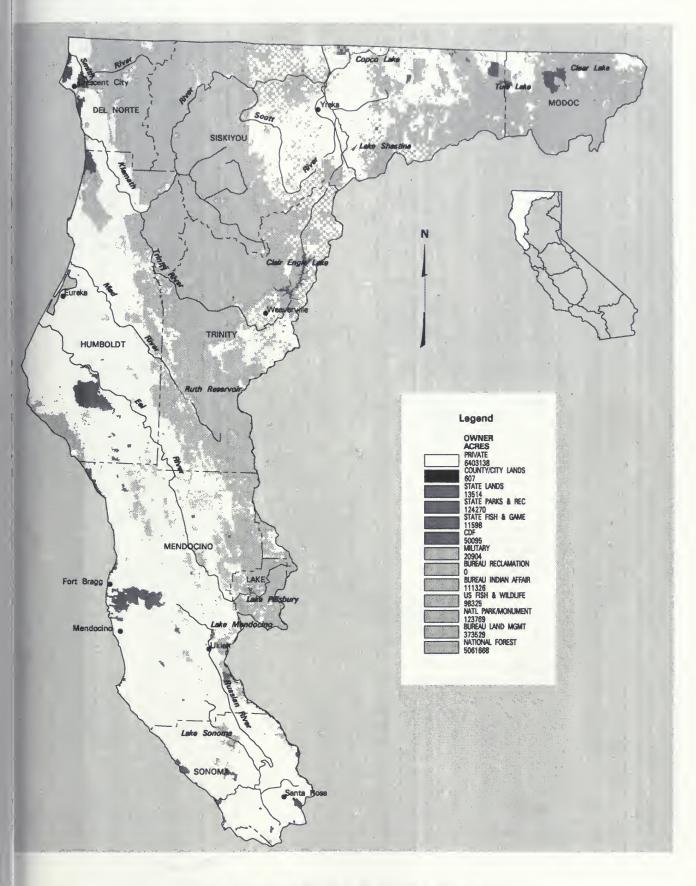
Appendix D Hydroelectric Resources of California



Bulletin 160-93, November 1993

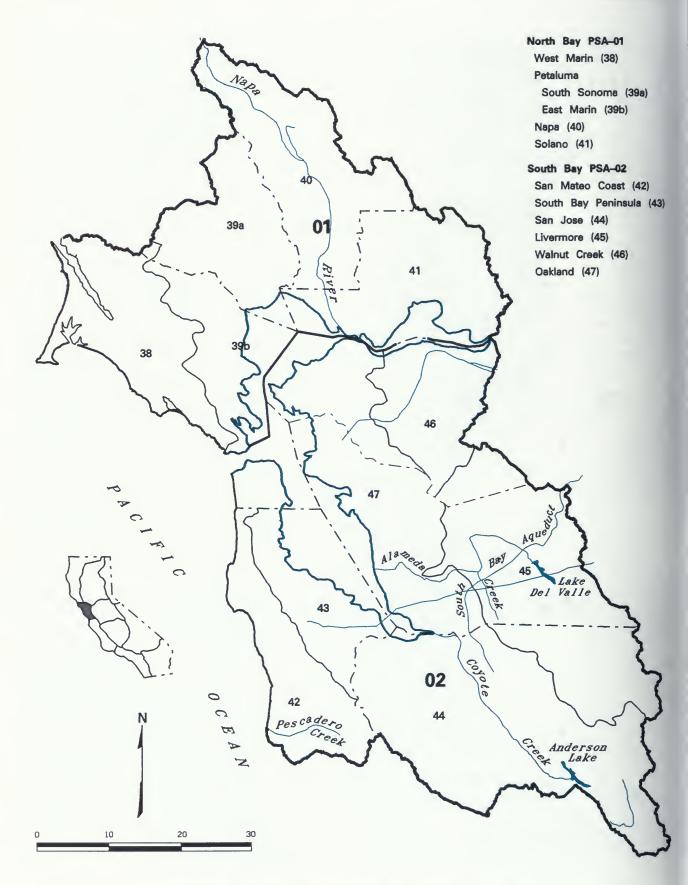
Appendix C

PLANNING SUBAREA AND LAND OWNERSHIP MAPS

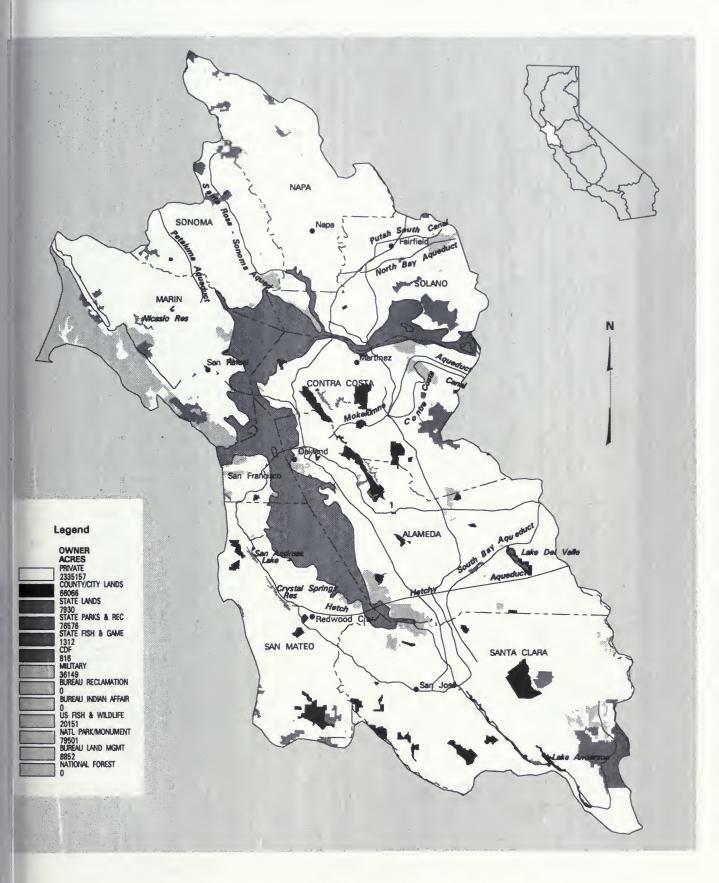

Statewide Land Ownership

Bulletin 160–93 Administrative Draft

Appendix C



Planning Subareas, North Coast Region

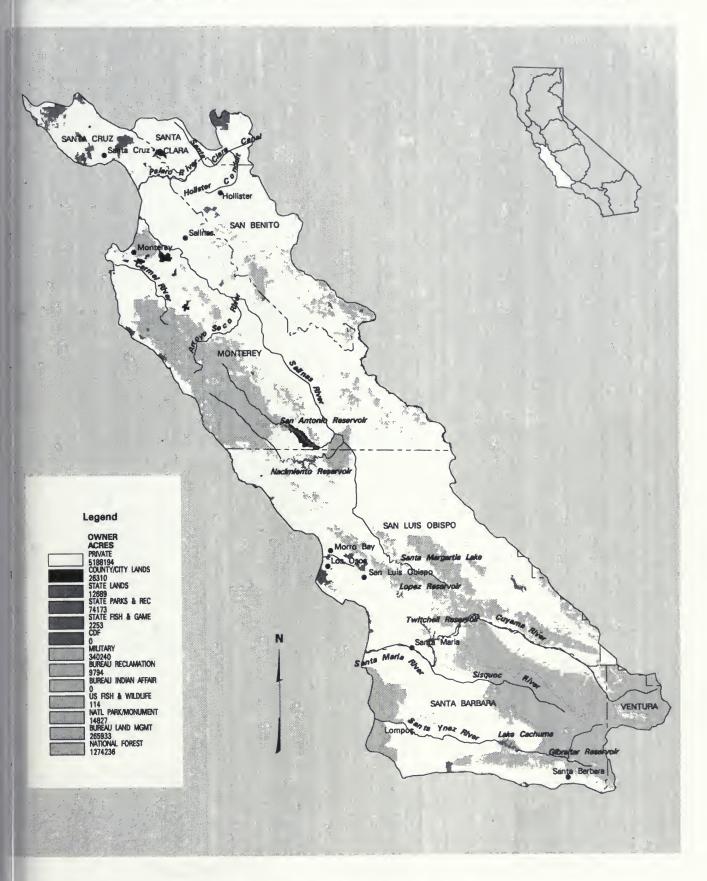


Land Ownership, North Coast Region

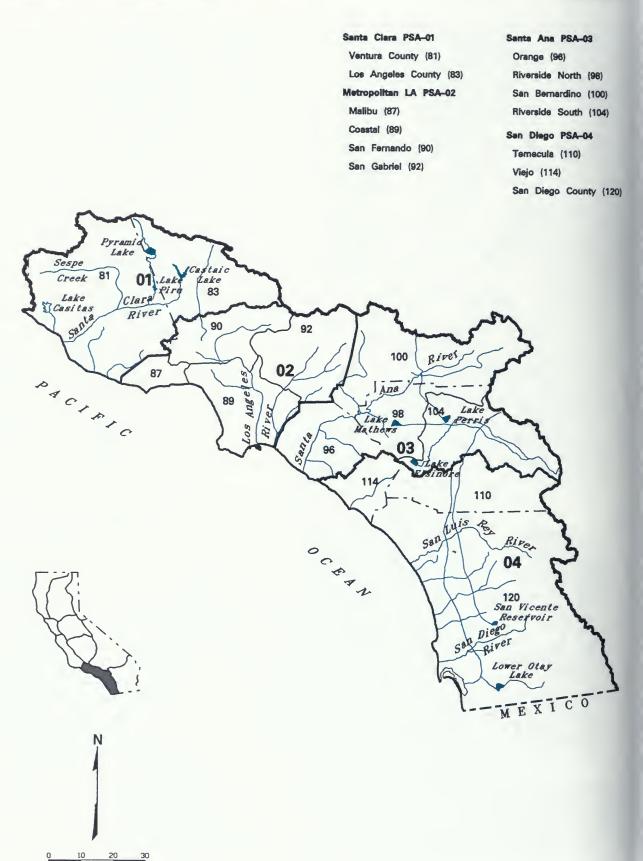
Appendix C

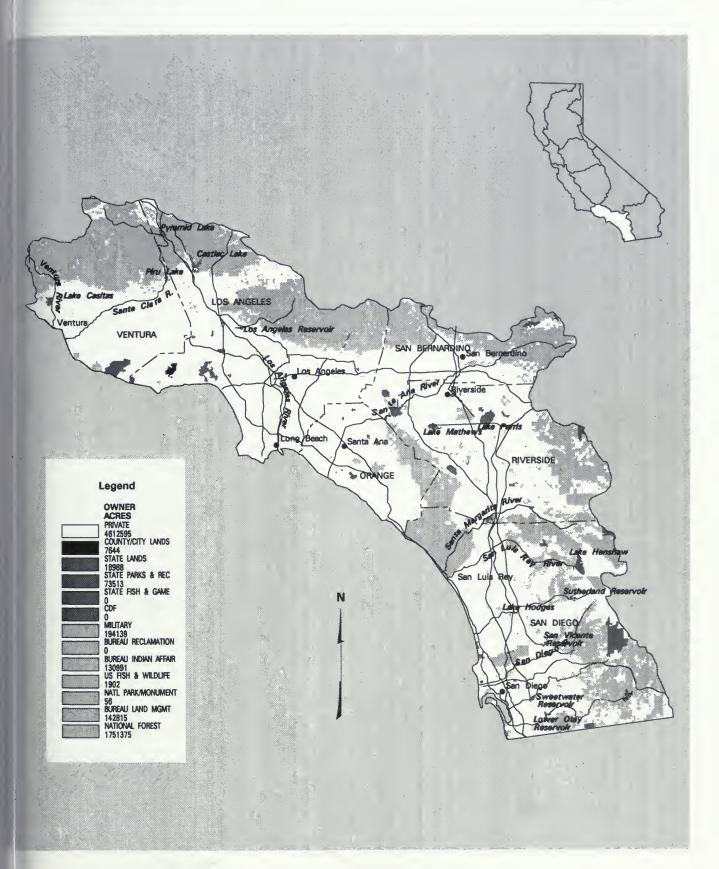


Planning Subareas, San Francisco Bay Region

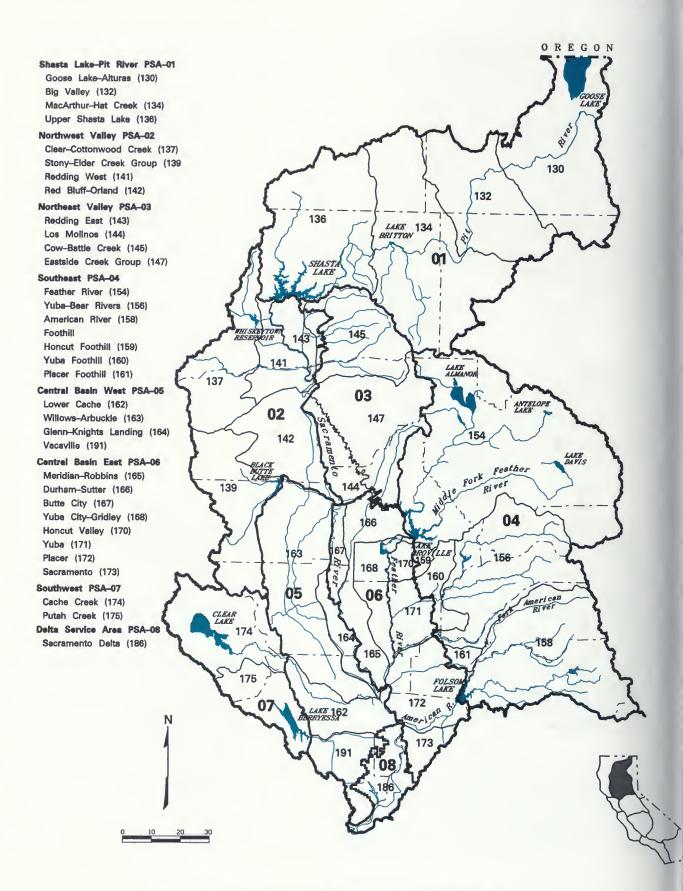


Land Ownership, San Francisco Bay Region

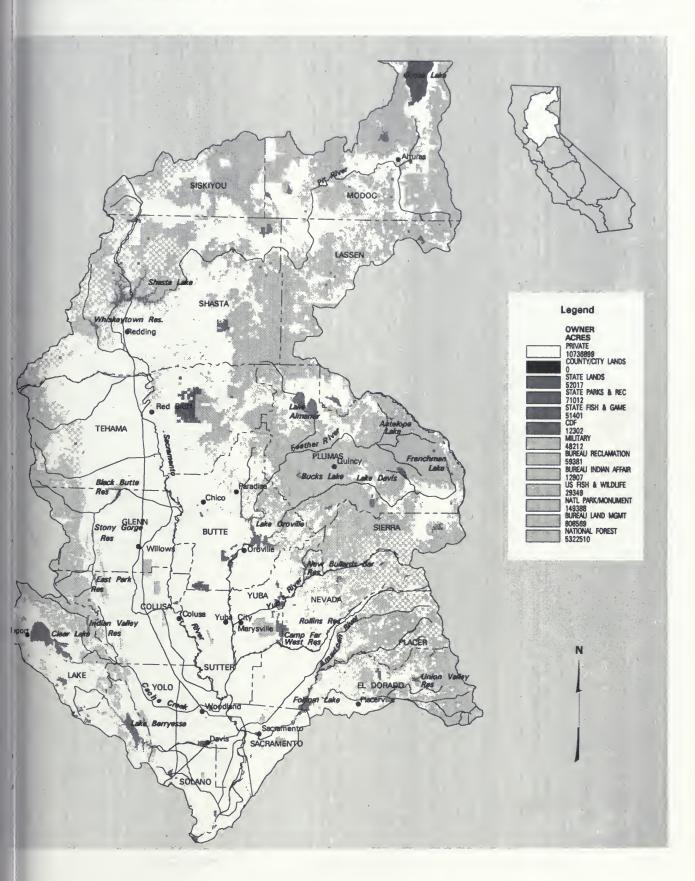



Planning Subareas, Central Coast Region

Land Ownership, Central Coast Region



Planning Subareas, South Coast Region



Land Ownership, South Coast Region

Appendix C

Planning Subareas, Sacramento River Region

Land Ownership, Sacramento River Region

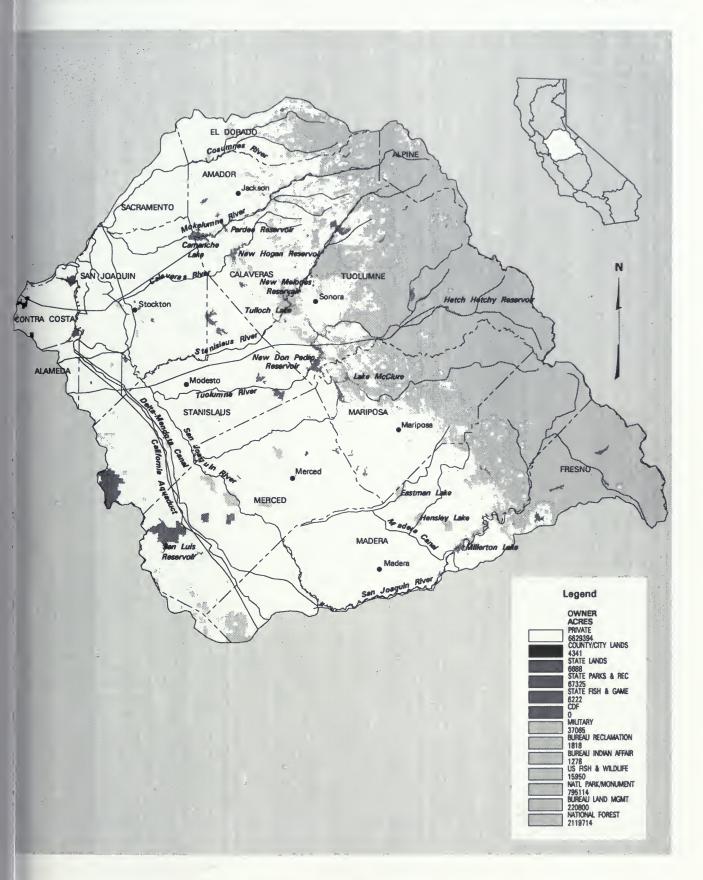
Appendix C

Eastern Valley Floor PSA-02 Elk Grove (180) lone-Jenny Lind (181) Lodi (182)

Bachelor Valley (184) Delta Service Area PSA-03 San Joaquin Delta (185) Western Uplands PSA-04 Antioch-Corral Holiow (192)

East Side Uplands PSA-05 Merced River (197) Tuolumne-Merced Interstream (198) Chowchille-Fresno River Interstream (199) Fresno River (200) Chowchilia River (201) Mariposa (202) San Joaquin River (203) Little Dry Creek (204)

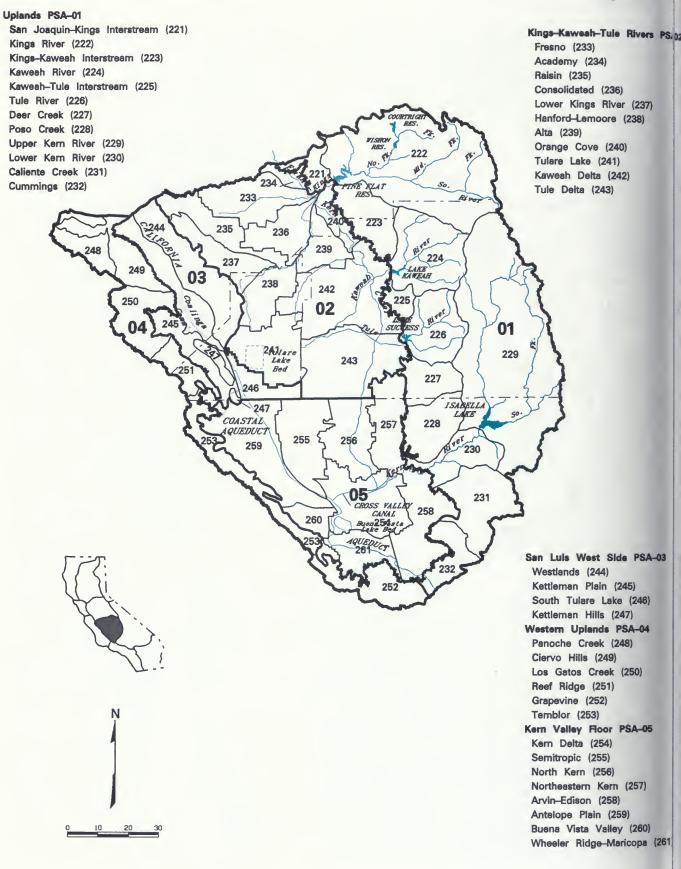
South San Joaquin ID (205) Modesto-Oakdale (206) Modesto Reservoir (207) Turlock Lake (209) Merced (210) Merced Stream Group (211) El Nido-Stevinson (212) Madera-Chowchilla (213) Adobe (214) Gravelly Ford (215) Velley West Side PSA-07 West Side (216) West Side Uplands PSA-08 Del Puerto Creek (217)

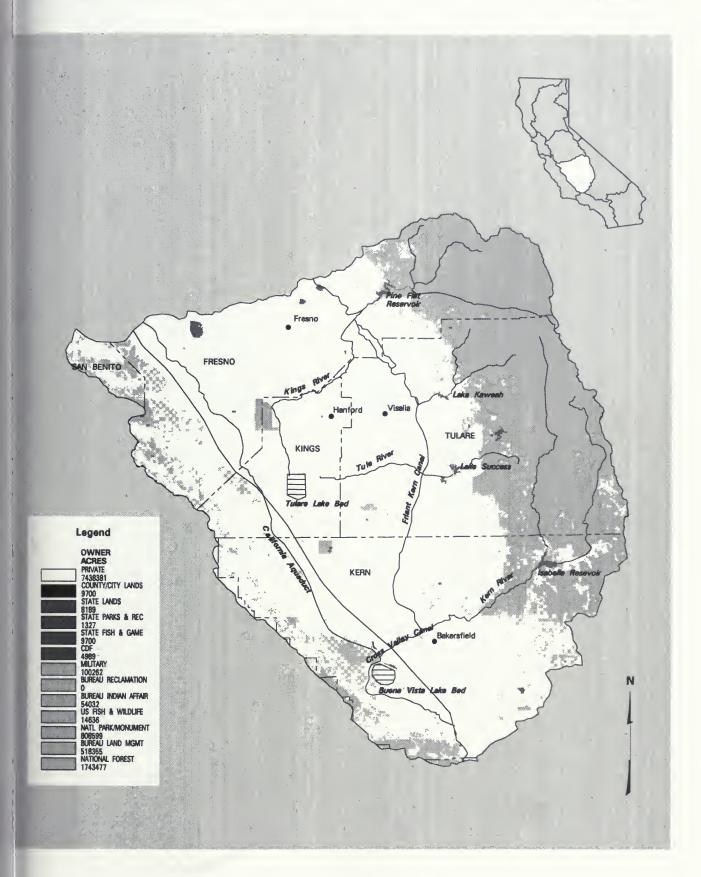

Orestimba Creek (218)

San Luis Creek (219)

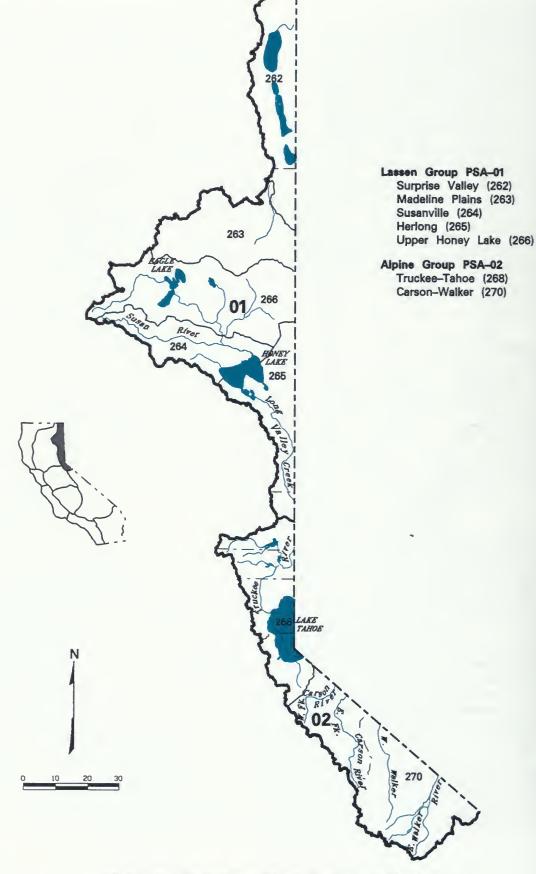
Los Banos Creek (220)

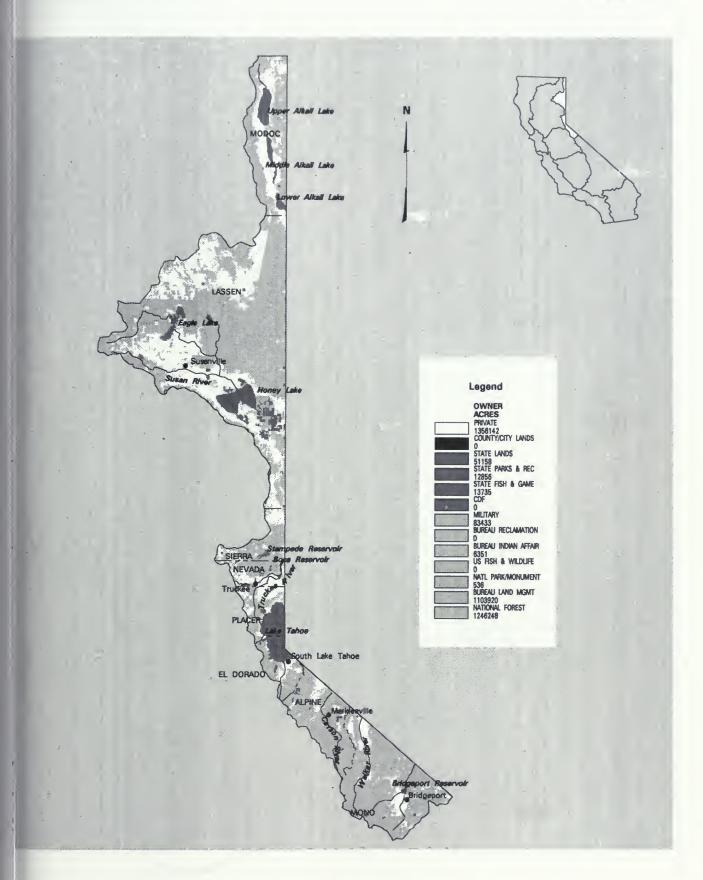
Planning Subareas, San Joaquin River Region


Appendix C

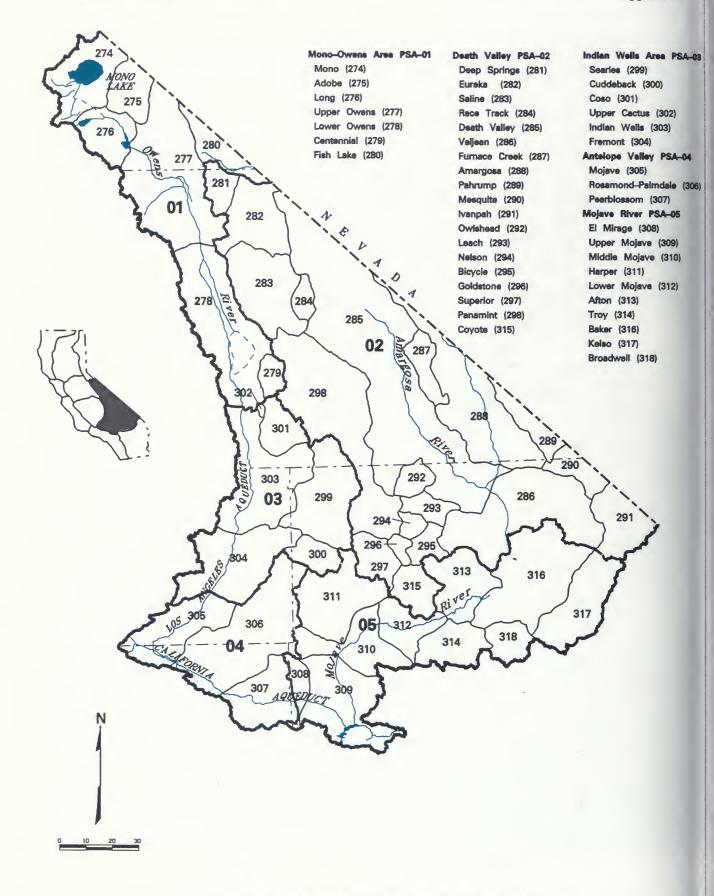

Land Ownership, San Joaquin River Region

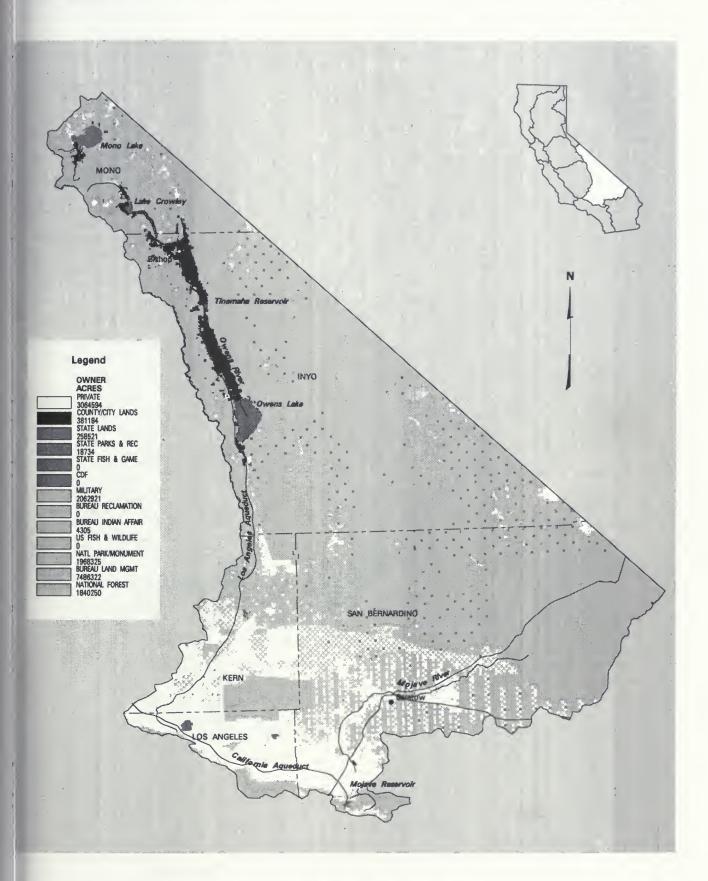
Bulletin 160–93 Administrative Draft


Appendix C

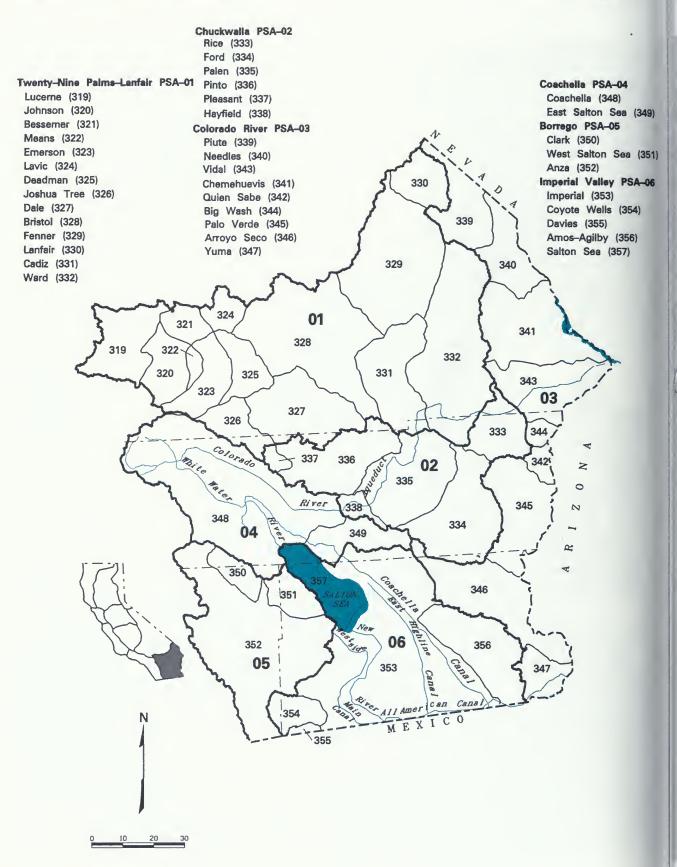

Planning Subareas, Tulare Lake Region

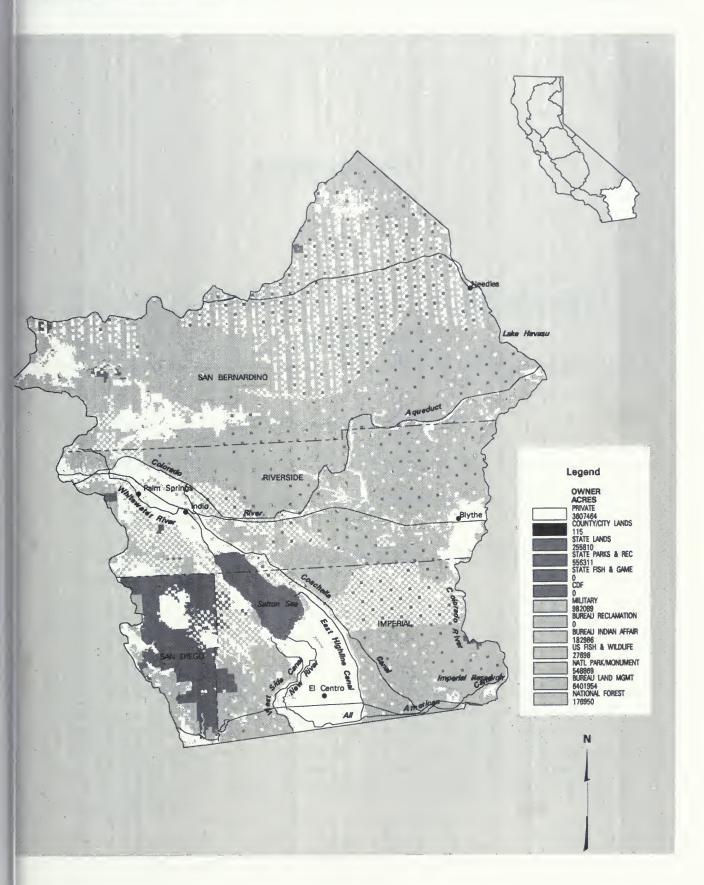
Land Ownership, Tulare Lake Region




Land Ownership, North Lahontan Region

Bulletin 160–93 Administrative Draft


Appendix C


Planning Subareas, South Lahontan Region

Land Ownership, South Lahontan Region

Planning Subareas, Colorado River Region

Land Ownership, Colorado River Region

324

Bulletin 160-93, November 1993

Appendix D

HYDROELECTRIC RESOURCES OF CALIFORNIA

This appendix condenses information from the following sources:

- O The California Energy Commission, *California Power Plant Maps*, July 1992.
- The Federal Energy Regulatory Agency, *Hydroelectric Power Resources of the United States, Developed and Undeveloped*, January 1988.
- The Federal Energy Regulatory Agency, *SFRO Project Assignments by Project Number*, September 16, 1992 (unpublished).

The proposed developments in Tables D-1 and D-3 are only those that have a Federal Energy Commission number or are listed by the California Energy Commission.

There are 416 operating hydroelectric plants with an installed capacity of 11.8 million kilowatts. Another 74 planned developments are in the regulatory process. Table D-1 shows the distribution of developed and planned projects among the hydrologic regions, and Table D-2 further breaks down hydroelectric resources in California. The data sources differ as to hydroelectric plant names, owners, and capacities. FERC is generally the preferred source for the information in Table D-3, except when information was secured directly from the owner. CEC designation is supplied when it is significantly different from that of FERC's or is not the owner's name.

* * *

Hydrologic Region	Develo	ped Sites	Undeveloped Sites	Total
River Basin/PSA	KW	Number	Number	
North Coast		-		
Klamath	49,532	9	4	13
Trinity River	114,526	9	4	13
Mad River	4,240	3	0	3
Eel River	25,968	5	0	5
Russian River	16,500	6	1	7
North Coast Total	210,766	32	9	41
San Francisco Bay				
North Bay	287	2	1	3
South Bay	800	1	2	3
San Francisco Bay Total	1,087	3	3	6
Central Coast				
Northern	90	1	1	2
Southern	7,335	9	2	11
Central Coast Total	7,425	10	3	13
South Coast				
Santa Clara	212,500	12	1	13
Metro Los Angeles	260,311	25	1	26
Santa Ana	326,344	32	2	34
San Diego	13,820	10	0	10
South Coast Total	812,975	79	4	83
Sacramento River				
Sacramento River	959,640	7	2	9
Pit and McCloud Rivers	817,227	22	4	26
West Side	28,143	10	1	11
East Side	78,836	28	3	31
Feather River	1,599,965	24	5	29
Yuba and Bear Rivers	708,366	35	7	42
American River	1,074,734	25	8	33
Sacramento River Total	5,266,911	151	30	181

Bulletin 160–93 Administrative Draft

Appendix D

			_)	
San Joaquin River				
Mokelumne River	246,590	9	I	10
Calaveras River	3,940	3	0	3
Stanislaus River	784,750	14	1	15
Tuolumne River	483,631	15	2	17
Merced River	107,000	6	0	6
San Joaquin River	1,598,024	28	4	32
San Joaquin River Total	3,223,935	75	8	83
Tulare Lake				
Kings River	1,713,000	7	3	10
Kawea River	23,850	4	0	4
Tule River	11,388	6	0	6
Kern River	105,450	6	0	6
Tulare Lake Total	1,853,688	23	3	26
North Lahontan Total	6,450	2	1	3
South Lahontan Total	201,302	27	9	36
Colorado River Total	209,395	14	4	18
Statewide Total	11,793,934	416	74	490

Table D-2. (continued)

		DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES	NNED DEVELOPN	IENT OF HYDF	OELECTRIC	RESOURCE	S		
					DEVELOPED	OPED		UNDEVELOPED	
~1							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION	OWNER OR FERC	RIVER BASIN OF PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	APPLI/LICENSEE	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	ΚW	1,000 KWH	КW	HEAD (FT)
NORTH COAST REGION		SMITH RIVER							
Boulder Cr.	Moore, CN	Boulder Cr., S.F.S.	Del Norte	8153					75
NORTH COAST REGION		KLAMATH R							
Fall Creek *	Pacific Power & Light Co.	Jenny Cr Klamath	Siskiyou	2082	1903	2,200	12,800		730
Copco 2 *	Pacific Power & Light Co	Klamath R	Siskiyou	2082	1925	27,000	141,200		152
Copco 1 *	Pacific Power & Light Co	Klamath R	Siskiyou	2082	1918	2,000	120,000		125
Lower Cold Springs	Foster, Harold et al	Cold Cr, Bogus C	Siskiyou	7059		95	660		245
Upper Cold Springs	Foster, Harold, et al	Cold Cr., Bogus C	Siskiyou	7279				50	230
Luckey	Luckey, Haward Paul	Cold Cr Bogus Cr	Siskiyou	7279				50	230
Prather Ranch	T K O Power	Prather Cr, L Sha	siskiyou	6634		100	680		517
Iron Gate *	Pacific Power & Light Co	Klamath R	Siskiyou	2082	1961	18,000	153,500	158	158
Cornwell	Cornwell, M H & J V	Trib to Merrill	Siskiyou	2987		12	35		N/A
Drager-Jones-Timmons	Drager, Tery et al	Clark Cr. Scott R.	Siskiyou			25	208		150
Shasta River	Difanics	Shasta River	Siskiyou			100	600		21
Shasta River	Smith, Dewey D.	Shasta R	Siskiyou	7400				480	35
Bluff Creek	Eckert, David & Penelope	Bluff Cr, Slate C.	Humboldt	6454				1	N/A
MORTE COAST REGION		TRINITY R							
Big Cr *	Xenaphon Enterprises	Big Cr, S Fk T	Trinity	7010	1987	4,800			
Eltapom Cr.	Rulofson, R.	Eltapom Cr. S. Fk	Trinity	6167				1,490	400
Cedar Flat *	Mega, Renewables	Cedar Flat Cr, MI	Trinity	6168		1,500	5,900		869
Hawkins Cr. *			Humbolt					400	
Biber Spellenburg *	Spellenburg, S.	Bidden Cr, Trinit	Trinity	6550		30	152		320
Willow Cr. *			Humboldt					1,700	
Lewiston *	Bureau of Reclamation	Trinity R	Trinity			350	2,600		60
Trinity *	Bureau of Reclamation	Trinity R	Trinity			105,556	409,000	214,000	469
Trinity Alps Creek	Mallett, F. & B.	Trinity Alps Cr	Trinity	4737		500	1,900		10
Bell (Upper)	Bell Enterprises	Battle Cr, Coffee	Trinity	4478		50	264		N/A
Bell Lower	Bell Enterprises	Battle Cr, Coffee	Trinity	4478				550	006
Mill Sulpher Crs *	North Coast Hydro	Miller	Humboldt	6154		066	-		

Appendix D

* On California Energy Commission Map and List

10 200 100 15 15 18 18 16 510 520 48 916 , 008 HEAD (FT STAT GROSS 300 UNDEVELOPED PROPOSED CAPACITY M 14,210 5,580 100 3,585 14,200 1,870 3,000 477 2,500 18,210 17,660 61,000 GENERATION 1,000 KWH AVERAGE ANNUAL DEVELOPED 140 750 1,500 1,250 3, 000 3, 500 200 160 25 4,950 380 400 20 INSTALLED CAPACITY M 1983 1987 1984 1988 1989 INSTALLED YEAR 6633 3430 10882 7120 4658 8936 5955 6062 9647 6959 3351 2841 4627 77 PROJECT NO. FERC COUNTY Mendocino Mendocino Mendocino Mendocino Mendocino Humboldt Humboldt Humboldt Humboldt Trinity Trinity Trinity rrinity Trinity Trinity Sonoma Sonoma RIVER BASIN AND PSA Bluford Cr., Eel R. Bluford Cr, Eel R Dry Cr, Russian R ۵ AND STREAM Kekawaka Cr, Eel R e: E Fk Russian R R Davis Cr, Mad Baker Cr, Van E Fk Russian MCBrindle Cr E Fk Russian PH disch Cnl Fk Trinity PH Disch Cnl Burgess Cr Ocean Trib RUSSIAN R Mad R EEL R R MAD 3 Pacific Gas & Electric Co General Plastics Mfg Co Kekawaka Kilowatts Inc Sonoma Co Water Agency al Ca. Fish Growers, Inc. Pan-Pacific Hydro Inc McFadden, Eugene J M Hammeken, W.H. et al Burgess, Edward et OWNER Humboldt Bay MUD Hunt, A R & B F Burgess, M & N Ukiah, City of Redwood Trails BES Hydro Co. Burgess, N.R. 4 PLANT OR SITE MORTE COAST REGION HYDROLOGIC NORTE COAST REGION . Schatz Tree Farm REGION **California Fish** NORTH COAST HSA Redwood Trails Kekawaka Creek McFadden Farms Bluford Creek Potter Valley Burgess Creek Warm Springs R W Matthews Baker Creek Three Forks Power Canal Davis Creek Weber Flat Mendocino Hammeken

Table D-3. Developed and Planned Development of Hydroelectric Resources

Bulletin 160–93 Administrative Draft

							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
SAN FRANCISCO BAY REGION		NORTH BAY PSA							
Yellowjacket *	Neerhout, John Jr	Yellowjacket Cr.	Napa				70		600
Stony Brook	Webster, John A	Unn Str, Murphy C	Napa			3	10		100
Fleming Hill	vallejo, City of	Fleming Hill WS P	Solano	5593		285	1,850		190
AM TRANCISCO BAY REGION		SOUTH BAY PSA							
Anderson Dam *	Santa Clara Valley WD	Anderson Cr	Santa Clara	5737		800	4,177		215
High Line Cnl	Santa Clara, City of		Santa Clara	7252					215
WTP No. 2	Alameda Co. WD		Alameda	10833					
MATCHE MALON IL MANAGE									
						000			
Graham H111		Granam HILL WTP	santa cruz			20			
San Antonio	Monterey Co FCS & WCD	San Antonio R, Salinas	Monterey	10618				6,000	
Nacimiento *	Monterey Co. FC&WCD	Nacimiento R, Sal	San Luis Obispo	6378	1987	3,750	9,500		115
San Luis Obispo WTP *	Energy Partners	Wtr Sup Pl	San Luis Obispo	-		130			110
Whale Rock *	Whale Rock Commission	old cr	San Luis Obispo	5890		75	650		176
San Luis Obispo	San Luis Obispo, City of	San Luis Obispo P	San Luis Obispo	5218				620	650
Stenner Cyn. *			San Luis Obispo			780			
CSL-WT-PP	San Luis Obispo, City of	San Luis Obispo	San Luis Obispo	9261					
Lopez WTP	San Luis Obispo CoFC & WCD	Wtr Sup Pl (Arroyo	San Luis Obispo	4804		120			
Gibraltar	Santa Barbara, City of	Santa Ynez R	Santa Barbara			1,500	4,200		142
Picay *	Montecito WD & Howard JE	Doulton Tunnel	Santa Barbara	8210	1989	130			663
Goleta *	Goleta WD		Santa Barbara		1986	150			
Cater *	Santa Barbara, City of		Santa Barbara		1985	700			
SOUTE COAST REGION		SANTA CLARA PSA							
Santa Felicia *	United Wtr Cons Dist	Piru Cr, santa Cl	Ventura	2153	1987	1,200	1,985		194
W E Warne *	Ca Dept of Wtr Resour	W Br Ca Aque (Pir	Los Angeles	2426	1983	75,000	394,200		739
Castaic 3 *	Ca Dpc W R & L A W P	W Br Ca Aque	Los Angeles	2426	1972	56,000	60,000		1,048
Conejo Pump Sta *	Calleguas MWD	conejo Pump Sta	Ventura	4611	1982	750	3,200		145
Chatsworth *	Calleguas MWD		Los Angeles	6868	1984	1,250			

4						DEVELOPED	OPED	UNDEVELOPED	
HYDROLOGIC			-			INSTALLED	AVERAGE	PROPOSED	GROSS
REGION PLANT OR SITE	OWNER OR FERC	RIVER BASIN OR PSA AND STREAM	COUNTY	FERC PROJECT NO.	YEAR INSTALLED	CAPACITY KW	GENERATION 1,000 KWH	CAPACITY KW	STAT HEAD (FT)
SOUTE COAST REGION		SANTA CLARA PSA							
West Coast Basin Bar *	Los Angeles Co FCD	G.W Inj (Col Ag)	Los Angeles	8434	1985	930			225
(Basin Barrier Hydro LP)									
WB-28 *	El Segundo, City of	MWD H Coast FDR	Los Angeles	8310	1989	520			196
Alamitos *	Los Angeles Co. FCD	Alamitos PL	Los Angeles	8006	1986	250	1,850		358
MWD Recovery Phase 1/4 *	Metro W Dist S Ca		Los Angeles		1980	29,000			
MWD Recovery Ph.II-IV/9*	Metro W Dist S Ca		Los Angeles		1982	47,200			
Santa Rosa Val. *	Calleguas MWD	Pressure Red Sta.	Ventura	9071	1986	250			N/N
Woodcreek Rd *	Camrosa CWD	W.S. P.L.	Ventura	9879	1987	150			215
Springville	Calleguas MWD		Ventura	11094					
SOUTE COAST REGION		METRO LOS ANGELES							
Sepulveda Can *	Metro Wtr Dist of So Ca	Sepulveda Fdr (Col	Los Angeles		1982	8,600	53,200		300
Santa Monica	Santa Monica, City of	Sepulveda Fdr (Col	Los Angeles	1190			800	150	203
Venice small cond. *	Metro Wtr Dist of S Ca	Sepulveda Fdr (Col	Los Angeles	5197	1982	10,100	60,000		280
Dominguez Gap Barrier *	Los Angeles Co. FCD	Dom. Gap P1	Los Angeles	9007	1986	275	2,200		325
Greg Avenue *	Metro Wtr Dist of So Ca	E. Valley Fdr Cnl	Los Angeles		1979	1,000	7,260		N/N
Franklin Canyon *	Los Angeles Dept. W & P	Franklin Can.	Los Angeles		1921	2,000	8, 800		283
East Portal	Calleguas Mn Wtr Dist	Santa Susana Cnl	Los Angeles	6868		1,000	6,000		86
San Fernando * (1 & 2)	LA Dept W & P	La Aque	Los Angeles		1922	5, 600	30,000		250
Foothill * (pp)	L A Dept W & P	La Aque	Los Angeles		1971	11,000	60,450		548
S. Francisquito 1 *	L A Dept W & P	La Aque	Los Angeles		1928	64,375	273,000		895
S. Francisquito 2 *	L A Dept W & P	La Aque (Santa Cl	Los Angeles		1932	42,000	15,000		540
Foothill Feeder	Metro Wtr. Dist. So. Ca.	Foothill Fdr Cnl	Los Angeles		1981	9,032	23,000		N/A
Sawtelle	LA Dept W & P		Los Angeles		1986	81,000			
Fulton Station	Three Valleys Mun Wrt Dist	Laverne Conn Tre	Los Angeles	10264	1987	300	976		188
Williame Station	Three Valleys Mun Wrt Dist	Laverne Conn Tre	Los Angeles	10265	1987	350	2,210		288
Miramar Treatment	Three Valleys Mun Wrt Dist	Miramar Ave 1Rea	Los Angeles	10263	1987	520			227.
								1	

331

Bulletin 1	60–9	3 A	dmi	nis	tra	tiv	e l	Dr	aft								
Table	D-	3.	D	ev	elo	pp	e	d a	an	d	Ρ	la	nned	D	ev	el	0
		ROSS	STAT	N/A	220	N/A	425	700	628	314	401	280	123	483	N/A	169	169

					DEVELOPED			UNDEVELOPED	
5							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION	OWNER OR FERC	RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	APPLI /LICENSEE	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
Verdugo	Glendale, City of	Metro Wtr Dist Pl	Los Angeles	6352		400	1,300		N/A
Rio Hondo	Metro Wtr Dist of So Ca	Middle Feeder Pl	Los Angeles	6093		1,910	12,300		220
San Dimas *	Metro Wtr Dist of S Ca	Foothill Cnl (Dal	Los Angeles	2896	1981	9,924	42,000		N/A
S Dimas Wash Turn	San Gabriel V MWD	Devil Canyon/Azus	Los Angeles	5648	1986	1,200			425
Ontario 1 *	So Ca Edison Co	San Antonio Cr, W	Los Angeles		1902	600	4,800		700
Sierra *	So Ca Edison co	San Antonio Cr, W	Los Angeles		1922	480	4,000		628
Ontario 2 *	So Ca Edison Co	san Antonio Cr, W	Los Angeles		1963	320	1,100		314
Azusa *	Pasadena, City of	San Gabriel R	Los Angelss	1250	1948	3,000	11,525		401
San Gabriel *	San Gabriel Hydro Ptnsp	San Gabriel R	Los Angeles		1987	4,980			280
Dist Terminal Sto *	Walnut V WD	Southern Cr, San	Los Angeles	8764	1984	195	600		123
SOUTH COAST REGION		SANTA ANA PSA							
Lytle Creek *	So Ca Edison Co	Lytle Cr, Santa A	San Bernardino	1932	1904	450	3,900		483
Lytle Creek	San Bernardino V Mun Wtr	Lytle Cr, Santa A	San Bernardino	2889				1,300	N/N
Site 1720 *	san Bernardino, City of	Muni Pl (Carjein C	San Bernardino	6155	1983	207	450		169
Sits 1895 *	San Bernardino, City of	Muni Pl (Carjein C	San Bernardino	6155	1984	70	220		169
Site 2100 *	San Bernardino, City of	Muni Pl (Carjein C	San Bernardino	6155	1987	83	260		169
Mill Creek 1 *	So. Ca Edison Co	Hill Cr, Santa An	San Bernardino	1934	1904	800	4,700		510
Mill Creek 2 *	So. Ca Edison Co	Mill Cr, Santa An	San Bernardino	1934	1904	250	1,500		620
Mill Creek 3 *	So. Ca Edison Co	Mill Cr, Santa An	San Bernardino	1934	1904	3,000	14,000		1911
Snow Creek *	Desert Water Agency	Snow Cr, Santa An	Riverside	6819	1988	300			760
MWD F-8	Fullerton, City of	MWD P1 F-8 Col R	orange	9735	1986	400			260
oc-17 Turnout *	Buena Park, City of	W Orange Fdr (LA A	Orange	7297	1985	120	870		240
Lambert Road *	La Habra, City of	Colorado R Aque	Orange	3797	1982	87	565		170
Yorba Linda *	Metro Wtr Dist of S Ca	Yorba Linda Cnl	Orange	2896	1981	5,100	39,000		N/N
valley view *	Metro Wtr Dist of So Ca	MWD Valley View	orange	8828	1985	4,100	13,600		421
Coyote Creek *	Metro Wtr Dist of S Ca	LOWER FDR (COYO	Orange	6174	1984	3,125	19,600		218
Santa Ana Pres Red S *	Mesa Consolidated WD	OC-44 ID Pl Colo	Orange	10742	1991	50			221
Santa Ana *	Santa Ana, City of		Orange		1986	200			
Upland *	Upland Wtr Dept	Upland FDR	San Bernardino	6688	1984	90	403		220
Cucamonga *	Cucamonga Co WD		San Bernardino		1981	20			
Devils Canyon *	Ca Dpt Wtr Resource	E Br Ca Aque	San Bernardino	2426	1976	279,700	1,510,000		1406

pment of Hydroelectric Resources

332

9					DEVELOPED			UNDEVELOPED	
			-				AVERAGE		
HYDROLOGIC		The of the second secon				INSTALLED	ANNUAL	PROPOSED	GROSS
MOTORY A	GENER	VEA NO NICK DASIN	COLINEIRO	DBO TERU	THEAR	CAFALLTT	1 DOD FRANCION	CAPACITY	TATE TAT
ATTO NO INVES	VITATIO						11111 00017		14.11 00000
Corona *	Metro Wtr Dist So Ca	MWD L Fdr Pl (Colo	Riverside	6010	1983	2,850	18,000		135
Temescal *	Metro Wtr Dist So Ca	MWD L Fdr Pl (Colo	Riverside	5938	1983	2,850	18,000		135
Lake Mathews *	Metro Wtr Dist So Ca	Lake Mathews Cnl	Riverside	2896	1980	4,900	39,000		250
Perris *	Metro Wtr Dist So Ca	Perris Bypass Pl	Riverside	6056	1983	7,900	40,000		N/A
oakcliff *	Lake Hemet Muni Wtr Dist	WD Pl (San Jacint	Riverside	5714	1982	100	360.		220
North Fork *	Lake Hemet Muni Wtr Dist	San Jacinto R	Riverside	7426		255	1,148		270
R-4 Station *	Monte Vista Wtr Dist	Muni Wtr Pl Ca A	San Bernardino	10484	1990	870			363
Fontana *	So Ca Edison Co	Lytle Cr, Santa A	San Bernardino		1917	2,950	8,800		658
Santa Ana 3 *	So Ca Edison Co	Santa Ana R	San Bernardino	2198	1947	1,200	7,000		354
Santa Ana 2 *	So Ca Edison co	Santa Ana R	San Bernardino	1933	1905	800	5,000		310
Santa Ana 1 *	So Ca Edison co	Santa Ana R	San Bernardino	1933	1899	3,200	18,000		726
Lucerne Val	Big Bear ARWA		San Bernardino	9186					
Zone I Reservoir *	Irvine Ranch WD	Sand Canyon P1 C	Orange	9186	1984	130			180
Turtle Rock-Quail Hi	Energy Res & Appl	MWD Feeder Pl (Co	Orange	7401	1984	187	1,416		196
SOUTE COAST REGION		SAN DIEGO PSA							
San Franciso Peak *	Oceanside, City of	Tri-Agencies Pl (M	San Diego	7147	1985	90	532		350
Squires Dam *	Costa Real Muni WD	Muni WS Pl Diego	San Diego	9902	1988	40			325
Roger Miller *	Olivernhain Mun WD	Gaty Res Pl San	San Diego	8886	1988	450			270
Rincon *	Escondido Mutual Water Co	San Luis Rey R	San Diego	176	1983	300	1,200		824
Bear Valley *	Escondido Mutual Water Co	Escondido Cr, Pac	San Diego		1986	1,400	5, 600		400
Alvarado *	San Diego Co Water Auth	Second Aque Pl (FI	San Diego	5670	1985	2,000	7,816		190
Badger Filt Plt *	San Diego Wtr Dist	Aliso Canyon (San	San Diego	5397	1987	1,490			350
Red Mountain *	Metro Water Dist of S Ca	SD P1	San Diego	8552	1985	5,900	37,900		232
Miramar *	San Diego Co Water Auth	Second Aque Pl (F	San Diego	5669	1985	800	3,995		72
Point Loma	San Diedo, City of	WWT Outfall (San D	San Diego	7510		1.350	3.300		89

Appendix D

2					DEVELOPED			UNCEVELOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
SACRAMENTO REGION		SACRAMENTO R							
Slate Creek	Slate Cr. Hydro Assoc.	Slate Cr, Sacramento	Shasta	3908		2,710	14,200		150
Lake Siskiyou	Siskiyou Co FC & WCD	Little Sac	Siskiyou	2796		5,000	21,900		191
Shasta *	Bureau of Reclamation	Sac R	Shasta			539,000	2,788,590		492
Keswick *	Bureau of Reclamation	Sacramento R	shasta			75,000	477,500		87
Spring Creek *	Bureau of Reclamation	Spring Cr, Sac	Shasta		1964	180,000	603,000		625
Spring Creek *	Iron Htn. Mines	Spring Cr.	Shasta					5,000	
Judge Francis Carr *	Bureau of Reclamation	Clear Cr. Thl.	Shasta		1963	154,400	531,232		695
Whiskeytown *	Redding, City of	Clear Cr, Sacrame	Shasta	2688	1986	3,530	8,658		240
Spring Creek	Redding, City of	Spring Cr, Sac	Shasta	9470					
SACRAMINTO ABOION		PIT and Mccloud R's							
Pit 4 *	Pacific Gas & Electric Co	Pit R	Shasta	233	1955	95,000	479,000		382
Pit 3 *	Pacific Gas & Electric Co	Pit R	Shasta	233	1925	70,000	385,400		315
Montgomery Cr. *	Sithe-Energies USA	Montgomery Cr, Pit	Shasta	3590	1987	2,400	10,800		24
Silver Springs *	Mega Renewables	Silver Springs, P	Shasta	8975	1982	600	4,000		555
Grasshopper Flat	Nelson Creek Power Inc	Nelson Cr, Pit R	Shasta	9029				1035	370
Burney Creek	Mega Renewables	Burney Cr, Pit R	Shasta	8671				3000	630
Muck Valley	Malacha Pwr Project Inc	Pit R	Shasta	8296		29,900	90,000		666
Goose Valley *	Mega Hydro Inc	Goose Cr, Burney	Shasta	6548		280			251
Hat Cr 2 *	Pacific Gas & Electric Co	Hat Cr, Pit R	Shasta	2661	1921	8,500	39,300		198
Hat Cr 1 *	Pacific Gas & Electric Co	Hat Cr, Pit R	Shasta	2661	1921	8,500	19,300		213
Hat Cr Hereford R *	Thompson, Robert	Hat Cr, Pit R	Shasta	4794	1982	100	006		16
Bidwell Ditch *	Bidwell, Floyd N.	Lost Cr, Hat Cr, Pit	Shasta	9334	1987	2,000	-		150
Lost Cr 2 *	Highland Hydro Const.	Lost Cr., Hat Cr	Shasta	5130	1985	500			85
Lost Cr 1 *	Biđwell, Floyd N.	Lost Cr, Hat Cr, Pit	Shasta	3863	1989	1,400			363
Pit 1 *	Pacific Gas & Electric Co	Pit R	Shasta	2687	1965	61,000	264,100		455
Turner Cr.	Turner Cr. Power Co.	Turner Cr.	Modoc	10048					
Fruit Growers Burney *		Burney Cr.	Shasta		1990	3,000			
Hatchet Cr *	Roseburg Lumber co	Hatchet Cr, Pit R	Shasta	5931	1987	6,890	21,270		1,210
Roaring Cr *	Roaring Cr Ranch	Roaring Cr, Pit R	Shasta	7282	1986	2,000	3,750		315
Coldwater *	Coldwater Pwr. Proj.	Roaring Cr.	Shasta		1990	5,000			760

334

88					DEVELOPED		-	UNDEVELOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
SACTAMENTO REGION		PIT AND MC CLOUD R'S							
Pit 7 *	Pacific Gas & Electric Co	Pit R	Shasta	2106	1965	112,000	495,100		205
Pit 6 *	Pacific Gas & Electric Co	Pit R	Shasta	2106	1965	80,000	334,600		155
James B. Black *	Pacific Gas & Electric Co	Pit R	Shasta	2106		172,000	539,700		1,226
Baker-Kosk Cr *	Pfeiffer, Dr. Harold W.	Kosk Cr, Pit R	Shasta	4826	1985	207	1,410		185
Pit 5 .	Pacific Gas & Electric Co	Pic R	Shasta	233	1944	156,000	920,000		615
SACRAMENTO REGION		WEST SIDE							
Stovall 1	Glenn-Colusa ID	Glenn-Colusa Cnl	Colusa	6805		120	433		14
Stovall 2 *	Glenn-Colusa ID	Glenn-Colusa Cnl	Colusa	6546		30	170		20
Arbuckle Mtn *	Arbuckle Mtn Hydro Pnsp	MF Cottonwood Cr	Shasta			400	950		50
Mile 41.1 *	Glenn-Colusa Irrig Dist	Glenn-Colusa Cnl	Colusa	9045		93	200		41
Black Butte *	Santa Clara, City of	Stony Cr, Sac	Tehama	3190	1989	6,200	16,900		78
High Line Canal *	Santa Clara, City of	Highline Cnl (Sto	Glenn		1989	500			29
Stony Gorge *	Santa Clara, City of	Stony Cr, Sac	Glenn	3193	1661	3,900	13,220		105
Indian Valley *	Yolo Co. FC & WCD	N FK Cache Cr, Sac	Lake	4066	1983	2,900	7,190		152
Clear Lake *	Yolo Co. FC & WCD	Cache Cr, Sac	Lake	4063	1,985	2,500			40
Monticello *	Solano ID	Putah Cr.	Napa	2780	1983	11,500	52,000		210
Monticello Tap	Pacific Gas & Electric Co.	Putah Cr.	Solano	5828					

6					DEVELOPED		-	UNDEVELOPED	
			÷				AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CÀPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
SACRAIGHTO REGION		EAST SIDE							
Centerville *	Pacific Gas & Elec. Co.	Butte Cr., Sac.	Butte	803	1900	6,400	43,800		557
De Sabla *	Pacific Gas & Elec. Co.	Butte Cr., Sac.	Butte	803	1963	18,500	120,100		1545
Forks of Butte *	Energy Growth Group et al	Butte Cr., Sac.	Butte	6896			11,600		720
Toadtown *	Pacific Gas & Elec. Co.	Hendricks Cnl. Bu	Butte	803	1986	1,700	8,430		185
Hamlin Canyon	Crow, Oliver M & Gail M	Hamlin Canyon, Bu	Butte	7466		5	6		17
Paradise Project C *	Paradise I.D.	Paradise Supply	Butte	6274		40			115
Paradise Project D *	Beckwith Sterling	Paradise Supply	Butte			40			
Mud Creek *	Perry Logging Co	Mud Cr, Sacramento	Butte	6330		300	1,300		176
Bailey Creek *	Bailey Creek Ranch	Bailey Cr, Battle	Shasta	3948	1982	9	5,000		100
Viola Church Camp *	No. Valley Baptist Church	Armstrong Dth (BAI	Shasta			50			N/A
Coleman *	Pacific Gas & Electric Co	Battle Cr, Sacrament	Shasta	1121	1911	13,000	63,481		482
Inskip *	Pacific Gas & Electric Co	S Fk Battle Cr	Tehama	1121	1910	8,000	60,645		383
south *	Pacific Gas & electric Co	S Fk Battle Cr	Tehama	1121	1979	7,000	44,000		516
Fire Mountain	Townsend, D. E.	Fern Spr. Cr	Tehama			45	130		9
Nikola 1	Lassen Research Co	Lower Booledth Pl	Tehama	5697				30	10
Digger Cr *	Forward Pwr & Engy co, Inc	S Digger Cr, Batt	Tehama	4714		750	5,300		465
Upper Bailey Cr	Lindauer, Frederick J	Bailey Cr, Battle	Shasta			250	1,250		74
Ponderosa Bailey *	Forward, Al	Bailey Cr, Battle	Shasta	8357	1990	1,100			300
volta 2 *	Pacific Gas & Electric Co	Cross Country Chl	Shasta	1121	1981	006	5,040		125
volta 1 *	Pacific Gas & Electric Co	Millseat Cr, N Fk	Shasta	1121	1981	9,000	57,000		1264
Sutters Mill *	Sutter, Fred N Jr	Millseat Cr, N Fk	Shasta	4283		150			60
Nichols (S.F. Bear Cr.) * Nichols, Frank B	Nichols, Frank B	S Fk Bear Cr	Shasta	5766	1986	3,000			650
McMillan *	McMillan Hydro Co	N FK Little Cow Cr	Shasta	6952		950			590
McMillian Power 2	McMillian Hydro Co.	COW Cr.	Shasta	8676				75	471
T & G Hydro *	T & G Hydro	Canyon Cr, old Cow	Shasta	6905		350	845		551
Mega Hydro 1 *	Mega Hydro Inc	Clover Cr, Sacram	Shasta	5306	1986	1,000	4,300		437
clover Leaf Ranch *	Mega Hydro Inc	Clover Cr, Sacram	Shasta	7057	1985	200	882		148
olsen *	Olsen Power Partners	old Cow Cr, Cow C	Shasta	8361	1990	5,000			596
Kilarc *	Pacific Gas & Electric Co	Old Cow, Cow C	Shasta	606	1903	3,200	22,000		1192
Poulton *	Poulton, W R	S COW CI	Shasta		1982	100	350		40
Cow Creek *	Pacific Gas & Electric Co	S COW CL, CLOW CL	Shasta	606	1907	1,800	12.000		715

10						DEVELOPED	OPED	UNDEVELOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	ΚW	1,000 KWH	KW	HEAD (FT)
SACRANGERTO REGION		FEATHER RIVER							
Gansner Creek *	Austin, L & K	Gansner Cr, E Br N	Plumas	7919		250	844		300
Peter Ranch	Peter, James B	Peters Cr, Lights	Plumas	6919		15	83		161
Five Bears *	Ditt Inc	Ward Cr, Indian Cr	Plumas	6281		066			1,000
Belden *	Pacific Gas & Elect Co	N FK Feather R	Plumas	2105	1969	125,000	245,300		770
Oak Flat *	Pacific Gas & Elect Co	N FK Feather R	Plumas	2105	1985	1,300	6,600		137
Caribou 2 *	Pacific Gas & Elect Co	N FK Feather R	Plumas	2105	1958	120,000	210,900		1,149
Caribou 1 *	Pacific Gas & Elect Co	N FK Feather R	Plumas	2105	1958	75,000	145,000		1,149
Butt Valley *	Pacific Gas & Elect Co	N FK Feather R	Plumas	2105	1958	40,000	84,200		358
Hamilton Branch *	Pacific Gas & Elect Co	Hamilton Cr, N Fk	Plumas	None	1921	4,800	15,800		410
Rock Cr 2	Oroville-Wyandotte ID	Rock Cr.	Sierra	3479					
Lime Saddle *	Pacific Gas & Elect Co	W Br N Fk Feather	Butte	None		2,000	11,000		462
French Cr	Oroville Wyandotte ID	French Cr N Fk Fe	Butte	5601				10,000	978
Poe *	Pacific Gas & Elect Co	N Fk Feather R	Butte	2107	1958	120,000	600, 670		477
Cresta *	Pacific Gas & Elect Co	N FK Feather R	Butte	1962	1949	70,000	330, 500		290
Camp Creek	Lassen Sta. Hydro. LP	Camp Cr, N Fk Fea	Butte	6120		066	4,778		500
Rock Creek *	Pacific Gas & Elect Co	N FK Feather R	Plumas	1962	1950	112,000	482,500		535
Bucks Creek *	Pacific Gas & Elect Co	N Fk Feather R	Plumas	619		57,500	241,300		2,558
Coal Canyon *	Pacific Gas & Elect Co	Miocene Cn 1 (W Br	Butte	None	1907	006	7,500		481

11					DEVELOPED			UNDEVELOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
Kanaka *	Television Comm In	sucker Run Cr, S	Butte	7242	1989	1,100			324
Forbestown *	Oroville-Wyandotte Irrig D	S Fk Feather R	Butte	2088	1963	28,800	183,100		835
woodleaf *	Oroville-Wyandotte Irrig Disd S Fk Feather R	S Fk Feather R	Butte	2088	1963	52,200	297,100		1,495
Sly Creek *	Oroville-Wyandotte Irrig Dist Lost Cr, S Fk Fea	Lost Cr, S Fk Fea	Butte	2088	1984	13,200	48,200		225
Graeagle	Henwood Assoc., Inc	Gray Eagle Cr, M	Plumas	3247		360	2,800		460
Feather River Hatche	Ca Dept of Water Resource	Feather R	Butte	2100				4,770	18
Thermalito *	Ca Dept of Water Resource	Off Stream	Butte	2100	1968	115,100			102
Thermalito Diversion *	Ca Dept of Water Resource	Feather R	Butte	2100	1987	3,000	19,700		74
Kelly Ridge *	Oroville-Wyandotte Irrg D	Kelly Ridge Cnl	Butte	2088	1963	10,000	79,00		668
Edward G Hyatt *	Ca Dept of Water Resource	Feather R	Butte	2100	1969	645,380	1,934,000		675
Graeagle Golf C.	Graeagle L & W Co.	Frazier Cr M Fk	Plumas	10505				06	255
BACRANDONTO REGION		YUBA-BEAR R'S							
Halsey *	Pacific Gas & Electric Co	S Fk Dry Cr	Placer	2310	1916	11,000	66,600		327
Bell *	Swiss American Co.	Fiddler Green Cn	Placer		1981	100			80
Wise 1 & 2 *	Pacific Gas & Electric Co.	Auburn Ravine	Placer	2310	1986	14,700	87,400		519
Garden Bar *	Garden Bar Farms, Inc	Camp Far W Dth	Placer	7745		84	427		40
Garden Bar	South Sutter WD	Bear R	Placer	5222					
VanjoP1 *	South Sutter W D	Conv. Cnl, Bear	Placer			350	1,233		13
Camp Far West *	South Sutter W D	Bear River	Placer	2997	1985	6,800	26,900		165
Haemnig	Haemmig, Adrian & Janice	N Fk Wolf Cr, Bear	Nevada	6253		14	94		15
Combie N *	Nevada I. D.	Combie N Aqueduct	Nevada	7731		350	2,500		40
Lake Combie *	Nevada I. D.	Bear R	Nevada	2981	1984	1,500	4,500		70
Rollins	Nevada I. D.	Bear R	Placer	2981	1980	12,200	77,000		215
Chicago Park *	Nevada I. D.	Chicago Park Flm	Placer	2981	1966	41,500	140,000		481
Dutch Flat 2 *	Nevada I. D.	Dutch Flat Cnl (B	Placer	2981	1966	26,000	120,000		591

Bulletin 160–93 Administrative Drat

12				DE	DEVELOPED			UNDEVELOPED	
							AVERAGE		
HYDROLOGIC		1				INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC.	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
BACRANDITO REGION		YUBA-BEAR R'S							
Dutch Flat 1 *	Pacific Gas & Electric Co	Dutch Flat Cnl	Placer	2310	1943	22,000	54,800		643
Alta *	Pacific Gas & Electric Co	Towle Cnl (L Bear	Placer	2310	1902	2,000	6,400		648
Drum 2 *	Pacific Gas & Electric Co	Drum Cnl (Bear R)	Nevada	2310	1965	49,500	35,000		1,370
Drum 1 *	Pacific Gas & Electric Co	Drum Cnl (Bear	Nevada	2310	1965	54,000	245,000		1,373
Little Bear Cr	Irvine, Robert	Little Bear Cr	Placer	6942		10	50		25
Newcastle	Pacific Gas & electric Co.	south Cnl	Placer	2310		11,500	49,000		419
Fish Power *	Corps of Engineers	Yuba R	Yuba			150			
Virginia Ranch Dam *	Browns Valley I. D.	Dry Cr, Yuba R	Yuba	3075	1984	1,000	4,030		125
Scotts Flat *	Nevada I. D.	Deer Cr, Yuba R.	Nevada	5930	1984	1,000	3,500		140
Deer Creek	Pacific Gas & Electric Co	s Yuba Cnl	Nevada	2310	1908	5,700	30,600		837
Miners Tunnel	Haypress Hydroelectric Inc.	S. Yuba R	Nevada	6727				2,500	48
Excelsior	Northwest & Power Co.	S. Yuba R.	Nevada	9806				14,000	155
Narrows *	Pacific Gas & Electric Co	N. Yuba R	Yuba	1403	1991	12,000	72,000		240
New Narrows *	Yuba County Water Agcy	N. Yuba R	Yuba	2246	1970	55, 500	210,000		240
Bowman *	Nevada I. D.	Canyon Cr, S Yuba	Nevada	2266	1986	3,600	16,000		162
Haypress-Bowman	Haypress Hydro, Inc.		Nevada	8255					
Spaulding 2 *	Pacific Gas & Electric Co	s Yuba Cnl (s Yub	Nevada	2310	1929	4,400	20,000		344
Spaulding 1 *	Pacific Gas & Electric Co	Drum Cnl (S Yuba	Nevada	2310	1929	7,000	38,000		197
Spaulding 3 *	Pacific Gas & Electric Co	Bow-SP Cnl (S Yuba	Nevada	2310	1929	5, 800	25,100		318
New Colgate *	Yuba County Water Agcy	Yuba R	Yuba	2246	1970	341,000	2,160,000		1390
North Yuba R	Gallery, D. F.	N Yuba R	Sierra	5841				7,500	700
Jackson Meadows	Nevada I. D.	N Yuba R	Nevada	2981				3,500	184
Bullards Bar	Yuba County Water Agcy	N Yuba R	Yuba	2246		150	1,130		560
Deadwood Cr. *	Enviro Hydro Inc	Deadwood Cr, N Yuba	Yuba	6780	1989	2,000			925
Wright Ranch	Bertillion, Bertha W	Rock Cr, N Fk Yuba	Sierra	7893				20	138
Salmon Creek *	Henwood Associates, Inc	Salmon Cr, N Yuba	Sierra	3730		600	5,100		460

13						DEVELOPED		UNDEVELOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
Charcoal Ravine *	Neocene Exploration Inc.	Charcoal Ravine	Sierra	7006		58	375		240
Middle Haypress Cr *	Mac Hydro-Power Co, Inc	Haypress Cr, N Yuba	Sierra	6061	1989	8,700			320
East Fork Cr.	Haypress Hydroelectric Inc	Haypress Cr, N Yuba	Sterra	9072					
Lower Haypress Cr *	Haypress Hydroelectric Inc	Haypress Cr, N Yuba	Sierra	6028	1989	6,100			400
SACTUMENTO REGION		AMERICAN R.							
Nimbus *	Bureau of Reclamation	American River	Sacramento		1955	13,500	91,100		43
Folsom *	Bureau of Reclamation	American River	Sacramento		1955	198,720	702,700		333
Akin	Akin, R. E.	Hangtown Cr, Webe	El Dorado	5055		127	380		173
Akin/Cola *	Akin, R. E.	EID MN Cul	El Dorado	8010	1984	250	1,100		387
Reservoir 3	El Dorado Irrigation Dist	El Dorado Mn Pl N	El Dorado					950	337
Weber Dam *	El Dorado Irrig Dist	N Fk Weber Cr	El Dorado	7454		175	680		74
chili Bar *	Pacific Gas & Electric Co	S Fk American R	El Dorado	2155	1965	7,020	37,000		60
White Rock *	Sacramento M U D	S Fk American R	El Dorado	2101	1968	190,000	618,000		852
Upper Rock Cr.	Lind Adssoc.	Rock Cr., S. Fk. Amer.	El Dorado	5192					
Rock Creek *	Sithe-Energies USA	Rock Cr, S Fk Ame	El Dorado	3189	1986	3,000	7,000		212
slab Creek	Sacramento M U D	Slab Cr, S Fk Ame	El Dorado	2101		482	2,950		N/A
camino *	Sacramento M U D	S Fk American R	El Dorado	2101	1968	142,500	441,600		1061
El Dorado *	Pacific Gas & Electric Co	S Fk Amer. R	El Dorado	184	1924	21,000	97,900		1910
Jaybird *	Sacramento M U D	Silver Cr, S Fk Am	El Dorado	2101	1961	133,000	575,000		1530
Union Valley *	Sacramento M U D	Silver Cr, S Fk Am	El Dorado	2101	1963	33,250	115,000		430
Jones Fork *	Sacramento M U D	S Fk Silver Cr	El Dorado	2101	1985	10,000	40,570		610
Robbs Peak *	Sacramento M U D	Tells Cr, Silver	El Dorado	2101	1965	23,750	55,000		400
29 Mile Creek	Hensley, Larry	UNN Str, S Fk Amer	El Dorado	1931				30	550
Foottrail	Keating, J. M.	Silver Fk. Sfk	El Dorado	3194				3,300	285
Sayles Flat	Keating, Joseph M	S Fk Amer R	Ef Dorado	3195				3,250	485
oxbow *	Placer Co Water Agency	M FK Amer R	Placer	2079	1966	6,570	36,500		88
Big M osquito Cr.	Nugget Hydro Electric	B. M osquito Cr. MF Ame	Ame Placer	6488					
canyon Creek *	Eagle Hydro Ptns.	Canyon Cr, M Fk Am	El Dorado	7192		480			980
Long Canyon Cr.	Enviro Hydro Inc.	Long Canyon Cr.	El Dorado	7722				2,400	560
Buckeye *			El Dorado			380			
Bell	Suter R.T.	Dardanells Cr.	Placer	9032				100	80
Dardanells Pond *	Suter, R.T.	Dardanells Cr	Placer	6142				200	950
Crivalaw Canton Cr	Therefore the Tan	Die Guinelan Gan Gan	mi manual.						

340

1

14					DEVELOPED		0	UNDEVELOPED	
							AVERAGE		
HYDROLOGIC		RIVER BASIN OR PSA		FERC	YEAR	INSTALLED CAPACITY	GENERATION	PROPOSED CAPACITY	GROSS
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
SACRANENTO REGION		AMERICAN R.							-
Georgetown Divide *	Georgetown Divide P U D	Georgetown Condui	El Dorado	4303		600			208
Grizzley Cr.	Enviro Hydro Inc.	Grizzley Cr.	El Dorado	6781					
Ralston *	Placer Co Water Agency	Rubicon R	Placer	2079	1966	79,200	476,300		1,250
Loon Lake *	Sacramento M U D	Gerle Cr, S Fk Ru	El Dorado	2101	1971	74,100	117,000		1,140
Hell Hole *	Placer Co Water Agency	Rubicon R	Placer	2079		725	2,930		359
French Meadows *	Placer Co Water Agency	Rubicon R	Placer	2079	1966	15,300	75,300		654
L J Stephenson (M.Fk) *		M Fk American R	Placer	2079		109,800	650,000		2101
Newcastle *	Pacific Gas & Electric Co	South Cnl (N Fk Am	Placer	2310	1986	10,800	49,000		419
SAN JOAQUIN REGION		COSUMNES R.					-		
Landis-Harde	Harde, D. D.	Perry Cr, Cos. M. Fk.	El Dorado	8722				100	101
BAN JOAQUIN REGION		MOKELUMNE R.							
Jackson Creek *	Jackson Valley Irrig Dist	Jackson Cr, Mokelumne RAmador	Amador	5388		460			152
(L. Amador Dam)									
camanche *	East Bay M U D	Mokelumne R	Amador	5536	1983	10,800	40,208		107
Pardee *	East Bay M U D	Mokelumne R	Amador	2916	1930	26,600	200,779		327
Electra *	Pacific Gas & electric Co	Mokelunne R	Amador	137	1948	92,000	347,200		1272
Devils Nose	Amador Co N.F.	Mokelumne R	Amador	8144				30,600	N/N
Middle Fork Dam *	Calaveras PUD	M Fk Mokelumne R	Calaveras	7506		230			80
(Schaad's Res)									
West Point *	Pacific Gas & Electric Co	N Fk Mokelumne R	Amador	137	1931	14,500	87,600		312
Tiger Creek *	Pacific Gas & Electric Co	N Fk Mokelumne R	Amador	137	1931	58,000	353,200		1219
Salt Springs 1	Pacific Gas & Electric Co	N Fk Mokelumne R	Amador	137	1931	11,000	50,000		257
Salt Springs 2 *	Pacific Gas & Electric Co	N Fk Hokelumne R	Amador	137	1931	33,000	125,600		2113
SAN JOAQUIN REGION		CALAVERAS R.							
CPUD Pipeline 1,2,3	Calaveras PUD	Calaveras R, CPUD Pl	Calaveras	7283		270			
New Hogan *	Calaveras Co Wtr Dist	Calaveras R	Calaveras	2903	1988	2,	10,110		195
Rock Creek *	Rock Creek WD	Rock Cr	Calaveras	8533		700	3,000		600

341

C 1					DEVELOPED	DPED		UNDEVELOPED	
					-		AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
SAN JOAQUIN NEGION		STANISLAUS R							
Tulloch *	Oakdale & S San Joaquin ID's	Stanislaus R	Calaveras	2067	1958	19,000	70,200		157
Woodward *	S San Joaquin ID	Simmons Cr, Stani	Stanislaus	3056	1982	2,300	7,000		41
Frankenheimer *	S San Joaquin ID	Main Cnl (Stanisl	Stanislaus	3113	1982	4,700	18,700		78
New Melones *	Bureau of Reclamation	Stanislaus R	Tuolumne		1979	300,000	385,000		583
Angels *	Pacific Gas & Electric Co	Angels Cr	Calaveras	2699	1940	1,000	6,200		444
Murphys *	Pacific Gas & Electric	Angels Cr	Calaveras	2019	1954	4,000	16,000		684
Columbia Dth (Yankee	Tuolumne, County of	Columbia DTH, S F	Tuolumne	8930		118	1,041		450
Columbia Dth (Old Oak	Toulumne, County of	Columbia DTH, S F	Tuolumne	8930		32	281		36
Collierville *	Calaveras Co Wtr Dist	Stanislaus R	Calaveras	2409	1990	254,300			872
Stanislaus *	Pacific Gas & Electric Co	M Fk Stanislaus R	Tuolumne	2130	1963	91,000	406,200		1,525
Sand Bar *	Oakdale & S San Joaquin I	M Fk Stanislaus R	Tuolumne	2975		16,200	84,000		389
Spring Gap *	Pacific Gas & Electric Co	Philadelphia Dthc	Tuolumne	2130	1921	7,000	48,500		1,865
Beardsley *	Oakdale & S San Joaquin I	M Fk Stanislaus R	Tuolumne	2005	1958	11,100	51,500		264
Donnells *	Oakdale & S San Joaquin I	M Fk Stanislaus R	Tuolumne	2005	1958	67,500	279,000		1,484
New Spicer Meadow	Calaveras Co Wtr Dist	Highnland Cr, Stan	Tuolumne	2409				5,200	839
BAN JOAQUIN REGION		TUOLUMNE R							
Drop 6	Turlock ID	Main Cnl	Stanislaus	3350		200	876		2
Hickman *	Turlock ID	Main Cnl	Stanislaus	2878	1979	1,100	5,000		17
Turlock Drop 1-3 *	Turlock I D	Main Cnl	Stanislaus	2871	1980	3,300	11,900		33
Stone Drop *	Modesto I D	L Main Cnl	Stanislaus	6147	1985.	600	1,872		13
Upper Dawson *	Turlock I D	Main Cnl	Stanislaus	3136	1983	4,427	15,900		18
La Grange *	Turlock I D	Tuolumne R	Stanislaus		1924	3,900	18,000		117
Don Pedro *	Turlock & Modesto I D's	Tuolumne R	Tuolumne	2299	1971	136, 515	598,000		529
Phoenix *	Pacific Gas & Electric Co	sullivan Cr (S Fk T.	Tuolumne	1061	1940	2,000	10,000		1,190
Phoenix Lake Bypass	Tuolumne, County of	Sullivan Cr (S Fk	Tuolumne	10480		31	255		37
Eureka Dth	Tuolumne, County of	Eureka DTH, N Fk	Tuolumne	8931		109	956		560
Shadybrook P. Sta. *	Tuolumne CWD 1	TCWD Sec 4 DTH	Tuolumne	7908		27	19		278

Table D-3	Developed and	Planned Dev	velopment of	Hydroelectric Resources
-----------	---------------	-------------	--------------	-------------------------

16					DEVI	DEVELOPED		UNDEVELOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
Moccasin Creek *	Hetch Hetchy Wtr & Pwr	Hetch Hetchy Aque	Tuolumne		1969	90,000	548,000		1.257
Moccaeln Low Mead *	San Francisco, City & Co	T. Morchaelin Cr		5795	1987	2 400			76
			ecuritor.	10081				000 001	000 8
Laver-	ATT & OO STRUTTOTOT	V JANDTO	atmintont	TONNT				000 077	000 " 0
R Kirkwood *	Hetch Hetchy Wtr & Pwr	Tuolumne R	Tuolumne		1967	104,022	433,000		1,450
D R Holm *	Hetch Hetchy Wtr & Pwr	Cherry Cr, Tuolum	Tuolumne		1960	135,000	772,000		2,481
Piute Creek	Hi-Head Hdro, Inc	Plute Cr, Tuolumn	Tuolumne	3580				371	N/A
SAN JOAQUIN REGION		MERCED R							
Merced Falls *	Pacific Gas & Electric Co	Merced R	Merced	2467	1930	3,500	19,100		26
McSwain *	Merced I D	Merced R	Mariposa	2179	1967	10,000	45,000		56
Exchequer *	Merced I D	Merced R	Mariposa	2179	1989	89,000	316,100		464
Parker, R. B. *	Merced I D	Merced M Cnl (Mer	Merced	3055	1982	2,700	9,750		22
Upper Gorge	Merced I D	Merced M Cnl (ME	Merced			006	3,600		30
Canal Creek *	Merced I D	Merced M Cnl (Mer	Merced	3114	1983	006	3,600		30
SAN JOAQUIN NEGION		SAN JOAQUIN R							
Wolfsen By-Pass *	Central Ca I D	CCID Outside Cnl,	Merced	5129	1985	705	3,900		23
Fairfield *	Merced ID	Fairfield Cnl, (Be	Merced	3116	1983	900	3, 600		30
Lewis Fk Cr	Lucas, Dale L R	Lewis Fk, Fresno R	Madera	8160				3,749	720
Madera Canal M.24	Madera Chowchilla Pwr	Hadera Cnl (Fresno	Madera	5765		440	333		50
Papazian *	Merced ID		Merced		1982	906			
RETA *	Merced ID		Merced			900			
San Luis By-Pass *	Central Ca I D	CCID Outside Cn1,	Merced	5128		494	2,300		27
o'Neill *	Bureau of Reclamation		Merced		1968	25,200			
Can Tuite +									

17					DEVELOPED			UNDEVLEOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
		SAN JOAQUIN R							
Friant Fish Release *	Friant Power Auth	San Joaquin R	Fresno	2892		450			N/A
Friant Dam	Friant Power Auth	San Joaquin R	Madera	2892	1985	25,000			87
Friant Transmission	Pacific Gas & Electric Co.		Fresno	7009					
Madera Canal *	Madera-Chowchilla Pwr	Madera Cnl (S J	Madera	2958		3,275	11,120		31
Madera Lat 104-10	Madera I D	Madera Cn1 (S J	Madera			150	850		10
Kerckhoff 2 *	Pacific Gas & Electric Co	San Joaquin R	Fresno	96		155,000	264,000		442
Kerckhoff 1 *	Pacific Gas & Electric Co	San Joaquin R	Fresno	96	1983	38,000	290,000		350
San Joaquin IA *	Pacific Gas & Electric Co	Willow Cr, S J	Madera	1354	1923	400	1,700		42
Wishon A G *	Pacific Gas & Electric Co	N Fk Willow Cr	Madera	1354	1910	20,000	94,200		1,412
San Joaquin 2 *	Pacific Gas & Electric Co	Ditch 1 (Willow C	Madera	1354	1923	3,200	22,000		307
San Joaquin 3 *	Pacific Gas & Electric Co	Willow Cr	Madera	1354	1923	4,200	17,500		405
Crane Valley *	Pacific Gas & Electric Co	Willow Cr	Madera	1354	1919	900	5,100		128
Big Creek 4 *	Southern Ca Edison Co	San Joaquin R	Fresno	2017	1951	92,000	428,000		416
Big Creek 3 *	Southern Ca Edison Co	San Joaquin R	Fresno	120	1980	147,450	1,275,040		827
John Eastwood *	So Ca Edison Co	san Joaquin R	Fresno		1987	207,000			
Big Creek 8 *	Southern Ca Edison Co	San Joaquin R	Fresno	67	1929	58, 500	337,000		713
Big Creek 2A *	Southern Ca Edison Co	Big Cr, San J	Fresno	67	1928	95,000	391,000		2,418
Big Creek 2 *	Southern Ca Edison Co	Big Cr, San J	Fresno	2175	1925	63,000	451,000		1875
Big Creek 1 *	Southern Ca Edison Co	Big Cr, San J	Fresno	2175	1925	70,000	655,560		2131
Portal *	Southern Ca Edison Co	Rancheria Cr, Big	Fresno	2174	1956	10,000	51,000		230
Mammoth Pool *	Southern Ca Edison Co	San J R	Madera	2085	1960	148,960	546,000		1,100
Rock Creek *	Mega Renewables	Rock Cr, San J	Madera	5756				1,750	669
Vermillion Val.	Southern Ca Edison Co	Mono Cr, San J	Fresno	2086				7,770	N/N
Kings River Siphon *	Orange Cove Irr Dist	Friant-Kern Cnl	Fresno	9399	1990	1,000			11

18					DEVELOPED			UNDEVELOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION	-	RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OMNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
TOLANE REGION		KINGS R							
Fishwater Release	Orange Cove ID	Kings	Fresno	11068	1990	1000			11
(Kings R. Siphon)									
Pine Flat *	Kings River Cons D	Kings R	Fresno	2741	1983	165,000	418,920		386
Kings River *	Pacific Gas & Electric Co	N Fk Kings R	Fresno	1988	1962	52,000	207,900		198
Balch 1 *	Pacific Gas & Electric Co	N Fk Kings R	Fresno	175	1958	34,000	61,400		2379
Balch 2 *	Pacific Gas & Electric Co	N Fk Kings R	Fresno	175	1958	105,000	552,200		2389
Haas *	Pacific Gas & Electric Co	N Fk Kings R	Fresno	1988	1958	144,000	517,500		2444
Helms *	Pacific Gas & Electric Co	N Fk Kings R	Fresno	2735	1984	1,212,000	64,000		1744
Tennile Cr.	Evans, L.D.	Tenmile Cr, Kings	Fresno	6017				4,950	1,345
Hume Lake	Evans, D	Tenmile Cr, Kings	Fresno	3208				3,500	1,450
TULARE REGION		KAWEAH R							
Terminus *	Kawealh R. Power Auth.	Kaweah R	Tulare	3947	1990	17,000			174
Kaweah 2 *	Southern Ca Edison Co	M Fk Kaweah R	Tulare	298	1929	1,800	13,000		367
Kaweah 1 *	Southern Ca Edison Co	E Fk Kaweah R	Tulare	298	1929	2,250	16,000		1,326
Deer Cr.	Bates, D.M.	E. Fk Kaweah R.	Tulare	1981					
Kawea 3 *	Southern Ca Edison Co	Kaweah R	Tulare	298	1913	2,800	25,000		775
TOLARE REGION		TULE R							
Success *	Lower Tule River I D	Tule R	Tulare	3038	1989	1,400	4,870		06
old oak Ranch *	Portwood, O & R	N Fk Tule R	Tulare	6136	1983	374	1,061		100
Tule River *	Pacific Gas & Electric Co	N Fk M Fk Tule R	Tulare	1333	1914	6,400	26,500		1,544
Sequoia Ranch *	Sequoia Land & Power Co.	M Fk Tule R	Tulare	8679	1994	1,090			169
Lower Tule *	Southern Ca Edison Co	M Fk Tule R	Tulare	372	1909	2,000	16,200		1,140
Tule R. Indian *	Tule R. Indian Reservation	S Fk Tule R	Tulare		1984	124	1,000		487
TULARE REGION		KERN R							_
Rio Bravo *	Olcese Water Dist	Kern R	Kern	4129	1989	16,000			105
Kern Canyon *	Pacific Gas & Electric Co	Kern R	Kern	178	1921	11,500	47,200		264
Kern River *	Southern Ca Edison Co	Kern R	Kern	1930	1907	24,800	214,240		877
Isabella *	Isabella Partners	Kern R	Kern	8377	1990	11,950			132
Borel *	Southern Ca Edison Co	Borel Cnl	Kern	382	1932	9,200	59,900		261
· · · · · · · · · · · · · · · · · · ·		the set of the set	5 - C	0000	1001	32 000	197 500		100

19					DEVELOPED		_	UNDEVELOPED	
							AVERAGE		
HYDROLOGIC						INSTALLED	ANNUAL	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STEAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	KW	HEAD (FT)
NORTE LARONTAN REGION		ALPINE GROUP PSA							
Farad *	Sierra Pacific Power Co	Truckee R	Nevada		1933	2,800	13,300		82
Stampede *	Bureau of Reclamation	L Truckee R	Sierra		1987	3,650	12,000		183
Sonora Peak	silver Star Hydro., Ltd.	Silver Cr., W. Walker R Mono	Mono	9156					
Dynamo Pond *	Henwood Associates, Inc	Green Cr, E. Walker R.	мопо	8142				700	N/A
SOUTH LABORTAN REGION									
Rush Creek *	June Lake PUD	Rush Cr	Mono	1389	1916	8,400	49,000		1,807
Poole *	So Ca Edison co	Lee Vining Cr	Mono	1388	1963	10,000	29,000		1,671
Leggett	Keating, J.M.	Lee Vining Cr	Mono	3272				2,200	332
Paoha	Keating Assoc.	Wilson Cr.	Mono	3259				370	98
Plute Creek *	H1-Head Hydro Inc.	Piute Cr, Chal San	oKuI	3580	1982	371	2,800		N/A
Lundy *	So Ca Edison Co	Mill Cr	Mono	1390	1912	3,000	9,300		785
Millner Creek No 1 *	Henwood Associates, Inc	Millner Cr	Inyo	4009	1983	400	2,600		1,100
cinnamon Ranch	Moss, Richard	Ditch Middle Cr	Inyo	6885		175	815		625
Cottonwood 1 *	Los Angeles W & P	Cottonwood Cr, Owens	Inyo		1989	800			
Cottonwood 2 *	Los Angeles W & P	Cottonwood Cr, Owens	Inyo		1909	800			
Cottonwood 3	Los Angeles Dept EW& P	Cottonwood Cr	Inyo		1909	1,500	6,000		1,267
Tungstar	Keating, J. M.	Morgan Cr., Pine Cr.	Inyo	7267				666	470
Pine Creek 2	Umetco Mini Co.	Morgan Cr Pine C	Inyo	8418				170	110
Pine Creek 1	Umetco Min. Co.	Morgan Cr, Pine C	Inyo	8418				80	111
Deep Springs	Deep Springs College	Irrig Pl Wyman	Inyo	8319				96	380
Independence Cr.	Inyo Co. WD	Independence Cr.	Inyo	6158					
Division Creek *	Los Angeles Dept W & P	Division Cr, Owen	oYul		1909	600	3,000		1,250
Big Pine 3	Los Angeles, City of	Big Pine Cr, Owen	Inyo		1925	3,200	14,000		1,243
Tinnemaha/Red Mtn.	Sierra Hydro Inc.	Tinnimaha Cr.	Inyo	6188					
Rancho Riata *	Symons, John L	Bishop Cr, Owens	Inyo	4669				400	190
Bishop Creek 6 *	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	1913	1,600	12,000		260
Bishop Creek 5 *	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	1991	3,500	18,000		420
Bishop Creek 4 *	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	1909	7,250	59,900		1,112
Bishop Creek 3 *	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	1913	7,150	34,000		808
Bishop Creek 2 *	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	1911	7,320	39,000		953
Bishop Creek 1 *	So Ca Edison Co.	Bishop Cr, Owens	Inyo	1394	1908	5,000			

Appendix D

20					DEVELOPED			UNDEVELOPED	
HYDROLOGIC		-				INSTALLED	AVERAGE	PROPOSED	GROSS
REGION		RIVER BASIN OR PSA		FERC	YEAR	CAPACITY	GENERATION	CAPACITY	STAT
PLANT OR SITE	OWNER	AND STREAM	COUNTY	PROJECT NO.	INSTALLED	KW	1,000 KWH	ΚW	HEAD (FT)
Pleasant Valley *	Los Angeles Dept W & P	Owens R	Inyo		1958	3,200	11,000		76
Pine Creek	Keating Assoc	Pine Cr.	Inyo	3258				4,150	366
Control Gorge *	Los Angeles Dept W & P	Owens R	Inyo		1952	37,500	133,000		780
Middle Gorge *	Los Angeles Dept W & P	Owens R	Mono		1952	37,500	133,000		795
Upper Gorge *	Los Angeles Dept W & P	Owens	Mono		1953	37,500	133,000		872
Desert Power *	Desert Power Co	Cottonwood Cyn	Inyo		1983	950			
Cottonwood Canyon	Cruz, Edward S et al	Lone Tree Cr	Inyo	3525		840	3,870		1,410
Haiwee	Los Angeles W & P	LA Aqueduct	Inyo		1927	5, 600	35,000		193
Power Recovery	Tehachapi-Cummings WD	TCC WD P1	Kern	7330	1989	46	150		50
Las Flores	Ca Dept of Water Resources	Mojave Siphon (E B	San Bernardino	2426				190	220
Palmdale *	Palmdale Water Dist	Lake Palmdale C	Los Angeles	8734	1987	100	745		120
Alamo (Cottonwood) *	Ca. Dept. Water Resources	E. Br. Ca. Aque	Los Angeles	2426		17,000	115,000		140
COLORADO RIVER REGION					<u>.</u>				
Double Weir *	Imperial Irrig Dist	Cent M Cnl (New R	Imperial		1961	560	2,000		11
Turnip *	Imperial Irrig Dist	W Side M Cnl (New R	Imperial		1964	420	1,200		17
Drop 5 *	Imperial Irrig Dist	All Amer Cnl (New R	Imperial		1984	4,000	18,500		24
Drop 4 *	Imperial Irrig Dist	All Amer Cnl (New R	Imperial		1984	19,600	89,400		51
Drop 3 *	Imperial Irrig Dist	All Amer Cnl (New R	Imperial		1984	9,800	43,000		26
Drop 2 *	Imperial Irrig Dist	All Amer Cnl (New R	Imperial		1984	10,000	50,000		26
Drop 1 *	Imperial Irrig Dist	All Amer Cnl (Cole	Imperial		1984	5,850	28,900		14
Pilot Knob *	Imperial Irrig Dist	All Amer Cnl (New R	Imperial		1966	33,000	145,000		55
East Highline *	Imperial ID	E. Highline Cnl.	Imperial		1984	2,415	8,400		
Whitewater *	Desert Water Agency	Whitewater R (Col	Riverside	4292	1986	1,000			
San Gorgonio 2 *	So Ca Edison Co	san Gorgonio Cr	Riverside	344	1923	750	800		868
San Gorgonio 1 *	So Ca Edison Co	San Gorgonio Cr	Riverside	344	1923	1,500	1,600		1,775
San Gorgonio Lower *	Banning, City of	San Gorgonio Cr	Riverside	9666	1989	500			390
San Gorgonio Middle	Banning, City of	San Gorgonio	Riverside	10085				249	420
San Gorgonio Upper	Banning, City of	San Gorgonio CR	Riverside					350	730
Cabzon Lower	Cross Flow Hydro Elec Inc	Id SM	Riverside	9820				375	560
Cabzon Upper	Cross Flow Hydro Inc	Id SM	Riverside	9820				550	920
Parker	Dureau of Declamation	Colorado R	San Bernardino			1000.001	659.600		781

Notes & Comments

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW
BOOKS REQUESTED BY ANOTHER BORROWER ARE SUBJECT TO IMMEDIATE RECALL
NOV 3 0 2007
N.
PSL
LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS
D4613-1 (5/02)M

E. Sai

E Ch

Pete Wilson Governor State of California

. .

David Kennedy Director Department of Water Resources

.

١

Douglas P. Wheeler Secretary for Resources Resources Agency

r

