PHY SCI 2 ENGR TC 824 C2 A2 10.160-93 FIA V.? c.1

• r e 10 4 st No. of st 3 where it seems - at the are the the

194. 1.111 *

J. . . 1

3.LTL 5 4 J. J. A.

5. 1. 1. 1. 5. 7. 1. 1. 5.

3.0

.

1 1 1 1 1 1 11 1 1 4

4 . . .

ک د ، د .

1280 1948.

TC824 C2 A2 no. 160-93 v.2 Final Phys Sci Lib Stx

CALIFORNIA WATER PLAN UPDATE

Volume 2

NOV 3 5 1994 CUVA. 5 JUS. - LIDDARY all and been an all and an y other all seasons . The tight was the only .

MAG 1 (M 1 - 7 377 -

101 + 1

4.11

کس م

1 1 3 28 1 4 6g

•

and the second 1451 10100 - 1450 1451 10100 - 1450 1-5 11000

MITTY 5 4 J. 3215 -1497 1997 -10 * 1987 * 0

TC824 C2 A2 no. 160-93 v.2 Final Phys Sci Lib Stx

CALIFORNIA WATER PLAN UPDATE

Volume 2

NOV 35 1994 COVI. JUSS. - LIDDARY

CALIFORNIA WATER PLAN UPDATE

VOLUME 2

Bulletin 160-93 October 1994

> Pete Wilson Governor State of California

Douglas P. Wheeler Secretary for Resources The Resources Agency

David N. Kennedy Director Department of Water Resources

© Department of Water Resources, Sacramento, 1994

Copies of this bulletin may be purchased at \$25.00 for Volumes 1 and 2 from:

State of California Department of Water Resources P. O. Box 942836 Sacramento, CA 94236-0001

Make checks payable to: Department of Water Resources

California residents add current sales tax.

Contents

Summary of Volume II	,
Public Involvement	• •
Water Supply	
Water Demand	
Urban Water Demand: Agricultural Water Demand; Environmental Water Demand; Demand Reduction—Water Conservation;	
California Water Budget	
Local Water Supply Issues	
North Coast Region	29
Population:Land Use	
Water Supply 30	
Supply with Existing Facilities and Water Management Programs; Supplies with Additional Facilities and Water Management Programs	
Water Use	
Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	
Issues Affecting Local Water Resource Management	
Water Balance	
San Francisco Bay Region	51
Population; Land Use	
Water Supply	
Water Use	
Urban Water Use: Agricultural Water Use; Environmental Water Use: Other Water Use	
Issues Affecting Local Water Resource Management	
Water Balance	
Central Coast Region	75
Population; Land Use	
Water Supply	
Water Use	
Issues Affecting Local Water Resource Management	
Water Balance	

South Coast Region	9	7
Population; Land Use		
Water Supply Supply with Existing Facilities and Water Management Programs; Supply with Additional Facilities and Water Management Programs		
Water Use Urban Water Use; Agricultural Water Use; Environmental Water Use; Other	108	
Water Demand Issues Affecting Local Water Resource Management	114	
Legislation and Litigation; Local Issues Water Balance	118	
Sacramento River Region	12	1
Population; Land Use Water Supply	124	
Supply with Existing Facilities and Water Management Programs; Supply with Additional Facilities and Water Management Programs	'n	
Water Use Urban Water Use: Agricultural Water Use; Environmental Water Use; Other Water Use	130	
Issues Affecting Local Water Resource Management Legislation and Litigation; Regional Issues; Local Issues		
Water Balance	147	
San Joaquin River Region	15	1
Population; Land Use Water Supply Supply with Existing Facilities and Water Management Programs; Supply with Additional Facilities and Water Management Programs		
Water Use	160	
Issues Affecting Local Water Resource Management Legislation and Litigation: Regional Issues	170	
Water Balance	173	
Tulare Lake Region	179	9
Population; Land Use Water Supply Supply with Existing Facilities and Water Management Programs; Supply with Additional Facilities and Water Management Programs		
Water Use	186	
Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	100	
Issues Affecting Local Water Resource Management <i>Regional Issues; Local Issues</i>		
Water Balance	199	
North Lahontan Region Population; Land Use	203	3
Water Supply Supply with Existing Facilities and Water Management Programs; Supply with Additional Facilities and Water Management Programs		
Water Use Urban Water Use: Agricultural Water Use; Environmental Water Use; Other Water Use	210	
Issues Affecting Local Water Resource Management Legislation and Litigation; Regional Issues		
Water Balance	220	

South Lahontan Region	225
Population; Land Use	
Water Supply	228
Supply with Existing Facilities and Water Management Programs; Supply with Additional Facilities and Water Management Programs	
Water Use Urban Water Use; Agricultural Water Use; Environmental Water Use; Other Water Use	231
Issues Affecting Local Water Resource Management Legislation and Litigation	237
Water Balance	241
Colorado River Region	245
Population; Land Use Water Supply	9.40
Water Supply Supply with Existing Facilities and Water Management Programs; Supply with Additional Facilities and Water Management Programs	
Water Use Urban Water Use: Agricultural Water Use: Environmental Water Use: Other Water Use	251
Issues Affecting Local Water Resource Management Legislation and Litigation; Contracts and Agreements	259
Water Balance	265

Tables

Table S-1.	California Water Supplies with Existing Facilities and Programs	Л
Table S-2.	Level 1 Demand Management Programs	
Table S-3.	Level I Water Supply Management Options	
Table S-4.	California Water Supplies with Level I	Ű
	Water Management Programs	7
Table S-5.	State Water Project Supplies	8
Table S-6.	Use of Ground Water by Hydrologic Region	9
Table S-7.	Ground Water Overdraft by hydrologic Region 1	0
Table S-8.	Total Water Recycling and Resulting New Water Supply	,
Table S-9.	by Hydrologic Region	
	California Water Demand 1	
Table S-10.	Population Projections by Hydrologic Region 1	
Table S-11.	Urban Water Demand by Hydrologic Region 1	5
Table S-12.	California Crop and Irrigated Acreage	
	by Hydrologic Region 1990 1	6
Table S-13.	California Crop and irrigated Acreage by Hydrologic	
	Region 2020 (Forecasted) 1	7
Table S-14.	Agricultural Water Demand by Hydrologic Region 1	8
Table S-15.	Environmental Water Needs by Hydrologic Region 2	0
Table S-16.	Annual Applied Water and Depletion Reductions Due to	
	Conservation from 1990 to 2020 by Hydrologic Region 2	1
Table S-17.	California Water Budget 2	2
Table NC-1.	Population Projections 3	0
Table NC-2.	Major Reservoirs 3	2

Table NC-3.	Water Supplies with Existing Facilities and Programs	34
Table NC-4.	Water Supplies with Level I Water Management Programs	35
Table NC-5.	Urban Water Demand	37
Table NC-6.	Irrigated Crop Acreage	38
Table NC-7.	1990 Evapotranspiration of Applied Water by Crop	38
Table NC-8.	Agricultural Water Demand	39
Table NC-9.	Environmental Instream Water Needs	40
	Wetland Water Needs	
	Total Water Demands	
	Water Budget	
	Population Projections	
Table SF-2.	Major Reservoirs	
Table SF-3.	Water Supplies with Existing Facilities	
Table SF-4.	Water Supplies with Level I Water Management Programs	
Table SF-5.	Urban Water Demand	
Table SF-6.	Irrigated Crop Acreage	
Table SF-0. Table SF-7.	••••	
	1990 Evapotranspiration of Applied Water by Crop	
Table SF-8.	Agricultural Water Demand	
Table SF-9.	Wetland Water Needs	
	Environmental Instream Water Needs	
	Total Water Demands	
	Water Budget	
	Population Projections	
	Major Reservoirs	
	Water Supplies with Existing Facilities and Programs	
	Water Supplies with Level I Water Management Programs	
	Urban Water Demand	
	Irrigated Crop Acreage	
	1990 Evapotranspiration of Applied Water by Crop	
	Agricultural Water Demand	
Table CC-9.	Environmental Instream Water Needs	89
Table CC-10.	Total Water Demands	91
Table CC-11.	Water Budget	94
Table SC-1.	Population Projections	98
Table SC-2.	Major Reservoirs	101
Table SC-3.	Water Supplies with Existing Facilities and Programs	103
Table SC-4.	Water Supplies with Level I Water Management Programs	107
Table SC-5.	Urban Water Demand	109
Table SC-6.	Irrigated Crop Acreage	111
Table SC-7.	1990 Evapotranspiration of Applied Water by Crop	111
Table SC-8.	Agricultural Water Demand	113
Table SC-9.	Wetland Water Needs	114
Table SC-10.	Total Water Demands	116
Table SC-11.	Water Budget	119
Table SR-1.	Population Projections	
Table SR-2.	Major Reservoirs	
Table SR-3.	Water Supplies with Existing Facilities and Programs	
Table SR-4.	Water Supplies with Level I Water Management Programs	

Table SR-5.	Urban Water Demand	132
Table SR-6.	Irrigated Crop Acreage	134
Table SR-7.	1990 Evapotranspiration of Applied Water by Crop	134
Table SR-8.	Agricultural Water Demand	135
Table SR-9.	Environmental Instream Water Needs	137
Table SR-10	Wetland Water Needs	138
Table SR-11.	Total Water Demands	142
Table SR-12.	Water Budget	149
Table SJ-1.	Population Projections	152
Table SJ-2.	Major Reservoirs	
Table SJ-3.	Water Supplies with Existing Facilities and Programs	
Table SJ-4.	Water Supplies with Level I Water Management Programs	159
Table SJ-5.	Urban Water Demand	162
Table SJ-6.	Irrigated Crop Acreage	163
Table SJ-7.	1990 Evapotranspiration of Applied Water by Crop	
Table SJ-8.	Agricultural Water Demand	
Table SJ-9.	Wetland Water Needs	. 167
Table SJ-10.	Environmental Instream Water Needs	168
Table SJ-11.	Total Water Demands	170
Table SJ-12.	Water Budget	174
Table TL-1.	Population Projections	180
Table TL-2.	Major Reservoirs	182
Table TL-3.	Water Supplies with Existing Facilities and Programs	. 183
Table TL-4.	Water Supplies with Level I Water Management Programs	
Table TL-5.	Urban Water Demand	
Table TL-6.	Irrigated Crop Acreage	. 189
Table TL-7.	1990 Evapotranspiration of Applied Water by Crop	
Table TL-8.	Agricultural Water Demand	
Table TL-9.	Wetland Water Needs	. 192
Table TL-10.	Total Water Demands	. 193
Table TL-11.	Water Budget	. 200
Table NL-1.	Population Projections	. 204
Table NL-2.	Major Reservoirs	. 206
Table NL-3.	Water Supplies with Existing Facilities and Programs	. 208
Table NL-4.	Water Supplies with Level I Water Management Programs	. 209
Table NL-5.	Urban Water Demand	. 211
Table NL-6.	Irrigated Crop Acreage	. 212
Table NL-7.	1990 Evapotranspiration of Applied Water by Crop	. 212
Table NL-8.	Agricultural Water Demand	. 213
Table NL-9.	Wetland Water Needs	. 214
Table NL-10.	. Total Water Demands	. 216
Table NL-11.	. Water Budget	. 221
Table SL-1.	Population Projections	. 226
Table SL-2.	Major Reservoirs	. 228
Table SL-3.	Water Supplies with Existing Facilities and Programs	. 229
Table SL-4.	Water Supplies with Level I Water Management Programs	. 230
Table SL-5.	Urban Water Demand	. 232
Table SL-6.	Irrigated Crop Acreage	. 233

Table SL-7.	1990 Evapotranspiration of Applied Water by Crop 2	34
Table SL-8.	Agricultural Water Demand 2	34
Table SL-9.	Environmental Instream Water Needs 2	35
Table SL-10.	Total Water Demands 2	37
Table SL-11.	Water Budget 2	43
Table CR-1.	Population Projections 2	46
Table CR-2.	Water Supplies with Existing Facilities and Programs 2	49
Table CR-3.	Water Supplies with Level I Water Management Programs 2	50
Table CR-4.	Urban Water Demand 2	53
Table CR-5.	Irrigated Crop Acreage 2	54
Table CR-6.	1990 Evapotranspiration of Applied Water by Crop 2	55
Table CR-7.	Agricultural Water Demand 2	56
Table CR-8.	Wetland Water Needs 2	57
Table CR-9.	Total Water Demands 2	59
Table CR-10.	Water Budget 2	67
Table D-1.	Developed and Undeveloped Hydroelectric Plant Sites 2	96
Table D-2.	Developed and Planned Development of	
	Hydroelectric Resources Summary 2	97
Table D-3.	Developed and Planned Development of Hydroelectric Resources	aa
	nyuroeleetiite Kesourees	55

Figures

Figure S-1.	Hydrologic Regions in California	. 3
Figure NC-1.	North Coast Region Land Use, Imports, and Exports	31
Figure NC-2.	North Coast Region Water Supply Sources	32
Figure NC-3.	North Coast Region Net Water Demand	36
Figure NC-4.	North Coast Region Urban Applied Water Use by Sector	36
Figure NC-5.	North Coast Region 1990 Acreage, ETAW, and Applied Water for Major Crops	39
Figure NC-6.	North Coast Region Hydroelectric Power Plants, Wild and Scenic Rivers, and Water Recreation Areas	43
Figure SF-1.	San Francisco Bay Region Land Use, Imports, and Exports	53
Figure SF-2.	San Francisco Bay Region Water Supply Sources	56
Figure SF-3.	San Francisco Bay Region Net Water Demand	62
Figure SF-4.	San Francisco Bay Region Urban Applied Water Use by Sector	62
Figure SF-5.	1990 San Francisco Bay Region Acreage, ETAW, and Applied Water for Major Crops	64
Figure SF-6.	San Francisco Bay Region Hydroelectric Power Plants and Water Recreation Areas	69
Figure CC-1.	Central Coast Region Land Use, Imports, and Exports	78
Figure CC-2.	Central Coast Region Water Supply Sources	79
Figure CC-3.	Central Coast Region Net Water Demand	84
Figure CC-4.	Central Coast Region Urban Applied Water Use by Sector	84
Figure CC-5.	1990 Central Coast Region Acreage, ETAW. and Applied Water for Major Crops	86
Figure CC-6.	Central Coast Region Hydroelectric Power Plants and Water Recreation Areas	
Figure SC-1.	South Coast Region Land Use, Imports, and Exports	99
Figure SC-2.	South Coast Region Water Supply Sources	100

Figure SC-3.	South Coast Region Net Water Demand 108
Figure SC-4.	South Coast Region Urban Applied Water Use by Sector 109
Figure SC-5.	South Coast Region Acreage, ETAW, and Applied Water for Major Crops
Figure SC-6.	South Coast Region Hydroelectric Power Plants, Wild and Scenic Rivers, and Water Recreation Areas
Figure SR-1.	Sacramento River Region Land Use, Imports, and Exports
Figure SR-2.	Sacramento River Region Water Supply Sources
Figure SR-3.	Sacramento River Region Net Water Demand
Figure SR-4.	Sacramento River Region
inguie on in	Urban Applied Water Use by Sector
Figure SR-5.	1990 Sacramento River Region Acreage, ETAW, and Applied Water for Major Crops
Figure SR-6.	Sacramento River Region Hydroelectric Power Plants, Wild and Scenic Rivers, and Water Recreation Areas
Figure SJ-1.	San Joaquin River Region Land Use, Imports, and Exports
Figure SJ-2.	San Joaquin River Region Water Supply Sources
Figure SJ-3.	San Joaquin River Region Net Water Demand 161
Figure SJ-4.	San Joaquin River Region Urban Applied Water Use by Sector
Figure SJ-5.	1990 San Joaquin River Region Acreage, ETAW, and Applied Water for Major Crops
Figure SJ-6.	San Joaquin River Region Hydroelectric Power Plants, Wild and Scenic Rivers, and Water Recreation Areas
Figure TL-1.	Tulare Lake Region Land Use, Imports, and Exports
Figure TL-2.	Tulare Lake Region Water Supply Sources 182
Figure TL-3.	Tulare Lake Region Net Water Demand 186
Figure TL-4.	Tulare Lake Region Urban Applied Water Use by Sector
Figure TL-5.	1990 Tulare Lake Region Acreage, ETAW, and Applied Water for Major Crops
Figure TL-6.	Tulare Lake Region Hydroelectric Power Plants, Wild and Scenic Rivers, and Water Recreation Areas
Figure NL-1.	North Lahontan Region Land Use, Imports, and Exports 205
Figure NL-2.	North Lahontan Region Water Supply Sources
Figure NL-3.	North Lahontan Region Net Water Demand
Figure NL-4.	North Lahontan Region Urban Applied Water Use by Sector
Figure NL-5.	North Lahontan Region 1990 Acreage, ETAW. and Applied Water for Major Crops
Figure NL-6.	North Lahontan Region Hydroelectric Power Plants, Wild and Scenic Rivers, and Water Recreation Areas
Figure SL-1.	South Lahontan Region Land Use, Imports, and Exports
Figure SL-2.	South Lahontan Region Water Supply Sources
Figure SL-3	South Lahontan Region Net Water Demand
Figure SL-4.	South Lahontan Region Urban Applied Water Use by Sector 231
Figure SL-5.	1990 South Lahontan Region Acreage, ETAW, and Applied Water for Major Crops
Figure SL-6.	South Lahontan Region Water Hydroelectric Power Plants and Recreation Areas 236

Figure CR-1.	Colorado River Region Land Use, Imports, and Exports 247
Figure CR-2.	Colorado River Region Water Supply Sources 248
Figure CR-3.	Colorado River Region Net Water Demand 251
Figure CR-4.	Colorado River Region Urban Applied Water Use by Sector 252
Figure CR-5.	Colorado River Region 1990 Acreage, ETAW,
	and Applied Water for Major Crops
Figure CR-6.	Colorado River Region Hydroelectric Power Plants
	and Water Recreation Areas
Figure C-1.	Statewide Land Ownership 271
Figure C-2.	Planning Subareas, North Coast Region 272
Figure C-3.	Land Ownership, North Coast Region 273
Figure C-4.	Planning Subareas, San Francisco Bay Region 274
Figure C-5.	Land Ownership, San Francisco Bay Region 275
Figure C-6.	Planning Subareas, Central Coast Region 276
Figure C-7.	Land Ownership, Central Coast Region
Figure C-8.	Planning Subareas, South Coast Region 278
Figure C-9.	Land Ownership, South Coast Region 279
Figure C-10.	Planning Subareas, Sacramento River Region
Figure C-11.	Land Ownership, Sacramento River Region 281
Figure C-12.	Planning Subareas, San Joaquin River Region 282
Figure C-13.	Land Ownership, San Joaquin River Region
Figure C-14.	Planning Subareas, Tulare Lake Region 284
Figure C-15.	Land Ownership, Tulare Lake Region
Figure C-16.	Planning Subareas, North Lahontan Region
Figure C-17.	Land Ownership, North Lahontan Region
Figure C-18.	Planning Subareas, South Lahontan Region 288
Figure C-19.	Land Ownership, South Lahontan Region 289
Figure C-20.	Planning Subareas, Colorado River Region
Figure C-21.	Land Ownership, Colorado River Region 291

Sidebars

California's Water Su	pply Availability	• • • • • • • • • • • • •	 	1
Definitions of Terms			 	. 12

Volume II

Bulletin 160-93 is organized into two volumes. Volume 1 discusses statewide issues; presents an overview of current and future water management activities while detailing statewide water supplies and water demands; and updates various elements of California's statewide water planning. Volume 11 examines current water demands and available supplies in each of the State's ten major hydrologic regions; discusses regional and local water-related issues; and details forecasts of supplies and demands for each region to the year 2020.

To best illustrate overall demand and supply availability, two water supply and demand scenarios, an average year and a drought year, are presented for the 1990 level of development and for forecasted development in 2020. Shortages shown under average conditions are chronic shortages indicating the need for additional long-term water management measures. Shortages shown under drought conditions can be met by both long-term and short-term measures, depending on the frequency and severity of the shortage and water service reliability requirements.

Regional water budgets present 1990 level and future water demands to 2020 and compare them with supplies from existing facilities and water management programs, and with future demand management and water supply augmentation programs. Future water management programs are presented in two levels to better reflect the status of investigations required to implement them.

Level I options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a higher likelihood of being implemented by 2020.

California's Water Supply Availability

Average year supply is the average annual supply of a water development system over a long period. For this report the SWP and CVP average year supply is the average annual delivery capability of the projects over a 70-year study period (1922–91). For a local project without long-term data, it is the annual average deliveries of the project during the 1984–86 period. For dedicated natural flow, it is the long-term average natural flow for wild and scenic rivers, or it is environmental flows as required for an average year under specific agreements, water rights, court decisions, and congressional directives.

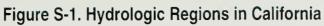
Drought year supply is the average annual supply of a water development system during a defined drought period. For this report, the drought period is the average of water years 1990 and 1991. For dedicated natural flow, it is the average of water years 1990 and 1991 for wild and scenic rivers, or it is environmental flows as required under specific agreements, water rights, court decisions, and congressional directives.

Summary of Volume II

Level II options are those programs that could fill the remaining gap shown in the balance between supply and urban, agricultural, and environmental water demands. These options require more extensive investigation and alternative analyses.

At the end of this chapter is the California Water Budget and a brief overview of local water management issues. The remaining chapters of Volume II discuss water demands, water supplies, and water management issues related to each of the ten major hydrologic regions of the State (Figure S-1). Appendix C presents regional planning subarea and land ownership maps and Appendix D lists hydroelectric facilities of the State by region.

Public Involvement


California's water policies are still evolving as new statutes, court decisions, and agreements become effective. In light of this, the California legislature passed and Governor Wilson signed AB 799 in 1991 requiring the California Water Plan be updated every 5 years. This water plan update was developed with extensive public involvement including an outreach advisory committee made up of urban, agricultural, and environmental interests. This committee was established in June 1992 to review and comment on the adequacy of work in progress. That process has been valuable in developing Bulletin 160-93 into a comprehensive water plan for water management in California.

In addition, the California Water Commission held hearings in each of the State's ten hydrologic regions during January and February 1994, to receive public comments about the November 1993 draft *California Water Plan Update*. After considering comments received from over 100 individuals, the commission developed several recommendations which added policy guidance for the final water plan update. Public comments are, to the extent applicable, incorporated into this report or are included in Appendix B,Volume 1.

Water Supply

Since the last water plan update in 1987, *California Water: Looking to the Future*, *Bulletin 160-87*, evolving environmental policies have introduced considerable uncertainty about much of the State's developed water supply. For example, the winter-run chinook salmon and the Delta smelt were listed under the State and federal Endangered Species Acts, imposing restrictions on Delta exports, and the Central Valley Project Improvement Act (P.L. 102-575) was passed in 1992, reallocating over a million acre-feet of CVP supplies for fish and wildlife. Other actions that could have far-reaching consequences are the EPA's proposed standards for the Bay-Delta Estuary and future State Water Resources Control Board Bay-Delta standards.

These actions affect the export capability from California's most important water supply hub, the Sacramento-San Joaquin Delta, while also imposing restrictions on upstream diverters. The Delta is the source from which two-thirds of the State's population and millions of acres of agricultural land receive part or all of their supplies. Today, areas of the State relying on the Delta for all or a portion of their supplies find these supplies unreliable. Such uncertainty of water supply delivery and reliability will continue until issues involving the Delta and other long-term environmental water management concerns are resolved. Table S-1 shows California water supplies, with existing facilities and water management programs (under SWRCB Water Rights Decision 1485). Water supplies shown do not take into account recent actions to protect aquatic species for the 1990 level of development and forecasted 2020 development.

Table S-1. California Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies)

Supply	19	90	20	00	20	10	20	20
,	average	drought	average	draught	average	drought	averoge	drought
Surface								
Locol	10.1	8.1	10.1	8.1	10.2	8.3	10.3	8.4
Local imports ⁽¹⁾	1.0	0.7	1.0	0.7	1.0	0.7	1.0	0.7
Colarado River	5.2	5.1	4.4	4.4	4.4	4.4	4.4	4.4
CVP	7.5	5.0	7.7	5.1	7.7	5.2	7.7	5.2
Other federal	1.2	0.8	1.3	0.8	1.3	0.8	1.3	0.8
SWP ⁽¹⁾	2.8	2.1	3.2	2.0	3.3	2.0	3.3	2.0
Reclaimed	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Ground water ⁽²⁾	7.1	11.8	7.1	12.0	7.2	12.1	7.4	12.2
Ground water averdraft ⁽³⁾	1.3	1.3	_	_	_	_	_	_
Dedicated natural flaw	27.2	15.3	27.4	15.4	27.4	15.4	27.4	15.4
TOTAL	63.5	50.4	62.4	48.9	62.7	49.1	63.0	49.4

(millions of acre-feet)

(1) 1990 SWP supplies are normalized and do not reflect additional supplies delivered to offset the reduction of supplies from the Mono and Owens basins to the South Coast

hydrologic region. (2) Average ground water use is prime supply of ground water basins and does not include use of ground water which is artificially recharged from surface sources into the ground water basins water basins

(3) The degree future shortages are met by increased overdroft is unknown. Since overdraft is not sustainable, it is not included as a future supply.

Annual reductions in total water supply for urban and agricultural uses could be in the range of 500,000 af to 1,000,000 af in average years and 2,000,000 to 3,000,000 af in drought years. These reductions result mainly from compliance with the ESA biological opinions and proposed EPA Bay-Delta standards. While these impacts do not consider the potential reductions in Delta exports due to "take limits" under the biological opinions, they basically fall within the 1,000,000-to-3,000,000-af range for proposed additional environmental demands for protection and enhancement of aquatic species.

Californians are finding that existing water management systems are no longer able to provide sufficiently reliable water service to users. In most areas of the State, as a result of the 1987-92 drought, water conservation and rationing became mandatory for urban users, many agricultural areas had surface water supplies drastically curtailed, and environmental resources were strained. Until a Delta solution that meets the needs of urban. agricultural, and environmental interests is identified and implemented, there likely will be water supply shortages in both dry and average years.

While the six-year drought stretched California's developed supplies to their limits, innovative water management actions, water transfers, water supply interconnections, and changes in project operations to benefit fish and wildlife all helped to reduce the harmful effects of the prolonged drought. Today, water managers are looking into a wide variety of demand management and supply augmentation programs to supplement, improve, and make better use of existing resources. The following sections summarize results from regional and statewide analyses of water supplies and the water supply benefits of Level I water management programs. Tables S-2 and S-3 list the major water management programs included in Level 1 analyses and described in more detail in Chapter 11 of Volume 1. The contribution of these programs to future regional water supplies is included in Table S-4, which shows water supplies for the 1990 level of development and compares them to forecasted supplies in 2020, with Level 1 water management programs in place. Note that Delta supplies are assumed to be operated under SWRCB D-1485 criteria, and that areas receiving Delta supplies are already impacted by reduced export capability as a result of recent actions to protect aquatic species through criteria more stringent than D-1485. As such, statewide and regional water supplies are overstated.

Program	Applied Water Reduction (1,000 AF)	Redu	r Demand Ictian 10 AF)	Economic Unit Cost (\$/AF) ^(a)	Comments
		average	drought		
Long-term Demand Management:					
Urbon Water Conservation	1,300	900	900	315-390 ^(b)	Urbon BMPs
Agriculturol Water Conservation	1,700	300	300	Not Avoiloble	Increased irrigotion efficiency
Lond Retirement	130	130	130	60	Retirement of land with drainoge problems in west Son Joaquin Valley; cost is at the Delta.
All American Conal Lining	68	68	68	-	Water conservation project; increases supply to South Coost Region
Short-term Demand Management:					
Demand Reduction	1,300	0	1,000	Not Available	Drought year supply
Land Following/Short-term Woter Tronsfers	800	0	800	125	Drought year supply; cost is ot the Delto.

Table S-2. Level I Demand Management Programs

(a) Economic costs include capital and OMP&R costs discaunted over a 50-year period at 6 percent discount rate. These costs da not include applicable transportation and treatment costs. (b) Costs are for the ultra-low-flush tailet retrafit and residential water audit programs

Progrom	Туре	Capacity (1,000 AF)	Ann Sup (1,000	ply	Economic Unit Cost (\$/AF) ⁽¹⁾	Comments
			average	drought		
Statewide Water Management:						
Long-term Delta Solution	Delto Water Monogement Program	-	200	400	Not Avoiloble	Under study by Bay/Delta Oversight Council; woter supply benefit is elimination of corriage woter under D-1485.
Interim South Delta Water Monagement Progrom	South Delto Improvement	-	60	60	60	Finol draft is scheduled to be released in late 1994
Los Bonos Grondes Reservoir ^(2 & 7)	Offstream Storage	1,730(3)	250-300	260	260	Schedule now coincides with BDOC process
Kern Water Bank ⁽⁷⁾						
Kern Fon Element	Ground Woter Storage	1,000	90	140	105-155	Evoluction under way
Local Elements	Ground Water Storage	2,000	90	290	180-460	Schedule now coincides with BDOC process
Coostal Bronch– Phose II (Santo Ynez Extension)	SWP Conveyonce Focility	57	N/A	N/A	630-1,110	Notice of Determination wos filed in July 1992; construction began in late 1993.
American River Flood Control ⁽⁴⁾	Flood Control Storoge	545 ⁽³⁾	-	-	-	Feasibility report ond environmental documentotion completed in 1991.
Local Water Management:						
Woter Recycling	Reclamation	1,321	923	923	125-840	New water supply
Ground Water Reclomotion	Reclamation	200	100	100	350-900	Primarily in South Coost
El Dorodo County Water Agency Woter Progrom	Diversion from South Fork American River		24	23 ⁽⁵⁾	280	Certified final Progrommotic EIR identifying preferred olternotive; woter rights hearings, new CVP contract following EIR/EIS preporation
Los Voqueros Reservoir-Contra-Costra Woter District	Offstreom Storage Emergency Supply Water Quality	100	N/A	N/A	320-950	EIR certified in October 1993, 404 permit issued in April 1994.
EBMUD	Conjunctive Use and Other Options		N/A	43	370	Final EIR certified in October 1993
New Los Podres Reservoir-MPWMD	Enlorging existing reservoir	24	22	18	410	T&E species, steelhead resources, cultural resources in Carmel River
Domenigoni Volley Reservoir-MWDSC	Offstreom storage of SWP ond Colorado River woter, drought yeor supply	800	0	264	410	Final EIR certified
Inlond Feeder-MWDSC	Conveyance Focilities	_	_	_	_	
Son Felipe Extension- PVWA	CVP Conveyance Facility		N/A	N/A ⁽⁵⁾	140	Capital costs only; convey 18,000 AF annuolly
City of Son Luis Obispo-Solinos Reservoir	Enlorging existing reservoir	18		1.6	-	Final EIR is expected to be certified in 1994.

Table S-3. Level I Water Supply Management Options

(1) Economic costs include copital and OMP&R casts discounted over a 50-year periad at 6 percent discaunt rate. These casts do not include applicable transportation and treatment casts.
 (2) Annual supply and unit cast figures are based an Delta water supply availability under D-1485 with an Interim South Delta Water Management Program in place.
 (3) Reservoir copacity.
 (4) Folsom Lake fload control reservation would return to original 0.4 MAF.
 (5) Yield of this project is in part or fully comes from the CVP.
 (6) N/A. Not Applicable
 (7) These programs are only feasible if a Delta Water Management Program is implemented.

Summary of Volume II

Local surface water development includes direct stream diversions as well as supplies in local storage facilities. As a result of economic, environmental, and regulatory obstacles, local agencies are finding it difficult to undertake new water projects to meet their needs where supply shortfalls exist or are projected to occur in the future. Thus, many local and regional water agencies are advocating or implementing incentive programs for water conservation to reduce demand where such programs are cost effective. Implementation of urban Best Management Practices and agricultural Efficient Water Management Practices will reduce demands in the future, and reductions caused by these practices were incorporated into water demand forecasts to 2020. (See the *Demand Reduction* section in this chapter.) However, these practices only partially improve water service reliability. Local water agencies should continue to plan for water demand management and supply augmentation actions to increase or assure water service reliability to meet future needs.

Ongoing local water supply programs include the Metropolitan Water District of Southern California's Domenigoni Valley Reservoir, East Bay Municipal Utility District's water management program, El Dorado County Water Agency's water program, City of San Luis Obispo's Salinas Reservoir enlargement, and Monterey Peninsula Water Management District's New Los Padres Reservoir. By 2020, additional local surface water management programs could improve local annual supplies by about 40,000 af and 344,000 af for average and drought years, respectively.

Local imported supplies are undergoing transition. Court-ordered restrictions on diversion from the Mono Basin and Owens Valley have reduced the amount of water the City of Los Angeles can receive. These restrictions have brought into question the reliability of Mono-Owens supply for the South Coast Region.

Supply	19	90	20	00	20	10	20	20
	average	drought	average	drought	average	drought	average	drought
Surface								
Locol	10.1	8.1	10.2	8.2	10.2	8.3	10.3	8.4
Locol imports ⁽¹⁾	1.0	0.7	1.0	0.8	1.0	1.0	1.0	1.0
Colorodo River	5.2	5.1	4.4	4.4	4.4	4.4	4.4	4.4
CVP	7.5	5.0	7.7	5.2	7.7	5.2	7.7	5.2
Other federal	1.2	0.8	1.3	0.8	1.3	0.8	1.3	0.8
SWP ⁽¹⁾	2.8	2.1	3.4	2.1	3.9	3.0	4.0	3.0
Reclaimed	0.2	0.2	0.7	0.7	0.8	0.8	0.9	0.9
Ground water ⁽²⁾	7.1	11.8	7.1	11.9	7.2	12.2	7.3	12.3
Ground water overdraft ⁽³⁾	1.3	1.3	-		-	-	_	_
Dedicated natural flow	27.2	15.3	27.5	15.4	27.5	15.4	27.5	15.4
TOTAL	63.5	50.4	63.3	49.5	64.0	51.2	64.5	51.6

Table S-4. California Water Supplies with Level I Water Management Programs

(Decision 1485 Operating Criteria for Delta Supplies) (millions of acre-feet)

(1) 1990 SWP supplies are normalized and do not reflect additional supplies delivered to offset the reduction of supplies from the Mono and Owens basins to the South Coast hydrologic region.

(2) Average ground water use is prime supply of ground water basins and does not include use of ground water which is artificially recharged from surface sources into the ground

water basins. (3) The degree future shortages are met by increased overdroft is unknown. Since overdroft is not sustainable, it is not included as a future supply. Colorado River supplies to the Colorado River and South Coast regions for urban and agricultural uses could decline from about 5,200,000 af to California's basic apportionment of 4,400,000 af annually. With Arizona and Nevada using less than their apportionment of water, their unused supply of Colorado River water was made available to meet California's requirements during recent years. Southern California was spared from severe rationing during most of the 1987-92 drought primarily as a result of about 600,000 af annually of surplus and unused Colorado River water that was made available to the Metropolitan Water District of Southern California. Even with this supply, however, much of Southern California experienced significant rationing in 1991. Supplemental Colorado River water cannot be counted on to meet needs in the future as Arizona and Nevada continue to use more of their allocated share of Colorado River water.

Local imported supplies are discussed in detail in the following chapters about each hydrologic region. Chapter 3, Volume I, includes a general summary of the major local imported water supply projects.

Central Valley Project yield will remain about the same. The U. S. Bureau of Reclamation is required by the CVPIA to study replacement sources for 800,000 af of water recently allocated to environmental uses in the Central Valley, but has no authority under CVPIA to implement projects identified in this study. Additional supplies needed for potential future CVP conveyance facilities, such as the San Felipe extension, will probably come from reallocation of already contracted CVP supplies.

Level of		SWP Delivery Capability ⁽¹⁾							
Development	With Existin	g Facilities	With Leve Managemen		Export Demand				
	average	drought	average	drought					
1990	2.8	2.1	_	_	3.0				
2000	3.2	2.0	3.4	2.1	3.7				
2010	3.3	2.0	3.9	3.0	4.2				
2020	3.3	2.0	4.0	3.0	4.2				

Table S-5. State Water Project Supplies (millions of acre-feet)

(1) Assumes D-1485. SWP capability is uncertain until salutions to complex Delta problems are implemented and future actions to protect aquotic species are identified. Includes SWP conveyance losses.

(2) Level 1 programs include South Delta Water Management Programs, lang-term Delta Water Management Programs, the Kern Water Bank (including Locol Elements), and Las Banos Grandes facilities.

Note: Feather River Service Area supplies are not included. FRSA average and draught supplies are 927,000 and 729,000 AF respectively.

State Water Project supply studies were conducted to evaluate the delivery capability of the Project with: (1) existing facilities and (2) Level I water management programs under SWRCB D-1485 operating criteria (see Table S-5). SWP supplies for the 1990 level were 2,800,000 af and 2,100,000 af for average and drought years, respectively. SWP 1990 average supply is normalized and does not reflect additional supplies delivered to offset reduction of Mono-Owens deliveries to South Coast Region. Additional Level I programs include the South Delta Water Management Program, long-term Delta water management programs, the Kern Water Bank (including local elements), Los Banos Grandes Reservoir, and the Coastal Branch Extension of the

California Aqueduct. With the Level I programs, SWP supplies could increase to about 4,000,000 af and 3,000,000 af in average and drought years by the year 2020.

Hydrologic Region	19	90	20	00	20	10	2020		
	average	draught	average	draught	average	draught	average	draught	
North Coast	263	283	275	295	286	308	298	316	
San Francisco Boy	100	139	126	174	160	174	165	174	
Central Coast	688	762	694	769	695	776	698	781	
South Coast	1,083	1,306	1,100	1,325	1,125	1,350	1,150	1,375	
Sacramento River	2,496	2,865	2,463	2,985	2,426	3,033	2,491	3,038	
San Joaquin River	1,098	2,145	1,135	2,202	1,156	2,227	1,161	2,252	
Tulare Lake	915	3,773	918	3,758	921	3,726	926	3,758	
North Lahonton	121	146	128	154	138	165	147	173	
South Lahontan	221	252	220	237	226	271	258	271	
Colorado River	80	80	79	79	80	80	79	79	
TOTAL	7,100	11,800	7,100	12,000	7,200	12,100	7,400	12,200	

Table S-6. Use of Ground Water by Hydrologic Region⁽¹⁾ (thousands of acre-feet)

(1) Average year graund water use represents use of prime supply of graund water basins Graund water averdraft is nat included

California's ground water resources played a vital role in helping the State through the 1987-92 drought. Recent studies by DWR indicate that many of the San Joaquin Valley's ground water aquifers substantially recovered from the 1976-77 drought during the late 1970s and early 1980s when surface runoff and Delta exports were above average. Conjunctive use operations, which helped make this possible, will continue to be refined and made more effective in the future. The 1990 level average annual net ground water use in California is about 8,400,000 af, including 1,300.000 af of ground water overdraft. During droughts, ground water use is increased significantly to offset reduction in surface water supplies, as shown in Table S-6. Annual ground water overdraft has been reduced by about 700,000 af since 1980. when ground water overdraft was last studied (see Table S-7). This reduction has mainly occurred in the San Joaquin Valley and is due to the benefits of imported supplies to the San Joaquin River and Tulare Lake regions, and construction and operation of Hidden and Buchanan dams. These local reservoirs provided controlled surface water releases and opportunities for greater ground water recharge during the 1970s and 1980s.

Average ground water use (not including overdraft) shown in Table S–6 represents use of the prime supply of ground water. Prime supply of a ground water basin is the average annual natural recharge of the basin by deep percolation of rainfall and percolation from streambeds and lakes.

Ground water overdraft in a basin can induce movement of water from adjacent areas. If the adjacent areas contain poor quality water, degradation would occur in the basin. There is a west-to-east ground water gradient in the San Joaquin Valley from Merced County to Kern County. Poor quality ground water moves eastward along this gradient, displacing good quality ground water in the trough of the valley. The total dissolved solids in the west side of the valley generally ranges from 2,000 to 7,000 milligrams per liter; the east-side water from 300 to 700 milligrams per liter. This adverse effect of overdraft and possible degradation of ground water quality in San Joaquin Valley has been evaluated and included in ground water overdraft analyses.

Region	1990
North Coast	0
San Francisca Bay	0
Central Coast	240
South Coast	20
Sacramento River	30
San Joaquin River	210
Tulare Lake	650
North Lahontan	0
Sauth Lahantan	70
Colorado River	80
STATEWIDE	1.300

Table S-7. Ground Water Overdraft by Hydrologic Region (thousands of acre-feet)

Because ground water is usually used to replace much of the shortfall in surface water supplies, recent limitations on Delta exports will exacerbate ground water overdraft in the San Joaquin River and Tulare Lake regions, and in other regions receiving a portion of their supplies from the Delta. For example, in 1993, an above-normal runoff year, environmental restrictions limited CVP deliveries to 50 percent of contracted supply for federal water service contractors from Tracy to Kettleman City.

Water reclamation programs such as water recycling, reclamation of contaminated ground water, ocean water desalting, and desalting of agricultural drainage water were evaluated (see Volume I, Chapter 11 for a detailed discussion of these problems). Projected water recycling is based on evaluation of water recycling data presented in *Future Water Recycling Potential*, *1993 Survey*, a report by the WateReuse Association of California, and information provided by local water and sanitation districts. Table S-8 shows the estimated water recycling contribution (new water supply) to water supply by hydrologic region.

Ground water reclamation programs could be implemented to recover degraded ground water. Currently, most ground water reclamation programs in the planning process are in Southern California. The supply benefit of ground water reclamation by the year 2000 is estimated at about 90,000 af and is included with ground water supplies.

	19	90	20	00	20	10	20	20
Hydrologic Regions	Total Water Recycling	New Water Supply	Total Water Recycling	New Water Supply	Total Water Recycling	New Water Supply	Total Water Recycling	New Water Supply
North Coast								
Existing	14	11	-	_	_	_	-	-
Level I	_	—	23	14	23	17	23	20
Level II	—	-	2	2	4	4	6	6
San Francisca Bay								
Existing	36	36	_	_	_	_	_	_
Level I	_	_	74	74	111	111	119	119
Level II	-	_	20	20	40	40	59	59
Central Coast								
Existing	40	15	_	_	_	_	_	_
Level I		_	74	59	87	70	87	70
Level II		_	0	0	0	0	0	0
South Coast								
Existing	140	82	_	_	_	_	-	_
Level	_	_	632	481	814	580	888	679
Level II	_		110	110	246	246	302	302
Sacramento River								
Existing	9	0	_	_	_	_	_	_
Level I	_	_	10	0	11	0	11	0
Level II	_		0	0	0	0	0	0
San Joaquin River			-			-	-	-
Existing	24	0	_	_	_	_	_	_
Level	_	_	30	0	35	0	48	0
Level II	_	_	0	0	0	0	0	0
Tulare Lake			Ū	Ŭ	-		-	
Existing	63	0			_	_	_	_
Level I	_	_	68	0	73	0	80	0
Level II			0	0	0	0	0	0
North Lahontan			Ū	0	Ŭ	Ū	Ū	Ū
Existing	8	8	_	_	_	_	_	_
Level I	_	_	8	8	8	8	8	8
Level II	_	_	1	1	1	1	1	1
South Lahontan								
Existing	13	13	_	_	_	_	_	_
Level I	- 15	15	13	13	14	14	14	14
Level II			1	1	14	14	2	2
Colorado River							2	2
Existing	7	7		_			_	
Level 1	/	/	26	9	37	12	43	13
Level II	_		0	0	0	0	43	0
				0				
TOTAL								
Existing	354	172	_	-	_	-	_	-
Level I Level II	-	—	958 134	658 134	1,213 292	812 292	1,321 370	923 370

Table S-8. Total Water Recycling and Resulting New Water Supply by Hydrologic Region (thousands of acre-feet)

Water Demand

Extensive evaluation and analyses of water demand were conducted for this water plan update. These analyses recognize the water demands of all beneficial uses: urban, agricultural, environmental, and other uses including water-based recreation, and power generation. Water-based recreation is discussed more extensively in Volume 1, Chapter 9. Table S-9 summarizes statewide estimated water demands.

Definitions of Terms

- Applied water: The amount of water from any source needed to meet the demand of the user. It is the quantity of water delivered to any of the following locations:
 - The intake to a city water system or factory;
 - The farm headgate;
 - A marsh or wetland, either directly or by incidental drainage flows; this is water for wildlife areas; and
 - For existing instream use, applied water demand is the portion of the stream flow dedicated to instream use or reserved under the federal or State Wild and Scenic Rivers Acts or the flow needed to meet salinity standards in the Sacramento-San Joaquin Delta under SWRCB standards.
- Average year demand: The demand for water under average weather conditions for a defined level of development.
- Depletion: The water consumed within a service area and no longer available as a source of water supply. For agriculture and wetlands it is ETAW plus irrecoverable losses. For urban areas it is the exterior ETAW, sewage effluent that flows to a salt sink, and incidental ET losses. For instream needs it is the dedicated flow that proceeds to a salt sink.
- Drought year demand: The demond for water during a drought period for a defined level of development. It is the sum of average year demand and water needed for any additional irrigation of farms and landscapes due to the lack of precipitation or increase in evapotranspiration during drought.
- Evapotranspiration: The quantity of water transpired (given off) and evaporated from plant tissues and surrounding soil surfaces. Quantitatively, it is expressed in terms of volume of water per unit acre of depth of water during a specified period of time. Abbreviation: ET.
- Evapotranspiration of applied water: The portion of the total evapotranspiration which is provided by irrigation. Abbreviation: ETAW.
- Irrecoverable losses: The water lost to a salt sink or water lost by evaporation or evapotranspiration from conveyance facilities or drainage canals.
- Net water demand: The amount of water needed in a water service area to meet all the water service requirements. It is the sum of evapotranspiration of applied water in an area, the irrecoverable losses from the distribution system, and the outflow leaving the service area, including treated municipal outflow.
- Normalized demand: The result of adjusting actual water use in a given year to account for unusual events such as dry weather conditions, government interventions for agriculture, rationing programs, etc.

Category of Use	19	90	20	00	20	10	2020		
• •	average	drought	averoge	drought	average	drought	averoge	drought	
Urban									
Applied water demand	7.8	8.1	9.3	9.7	10.9	11.4	12.7	13.2	
Net water demand	6.8	7.1	7.9	8.3	9.2	9.6	10.5	11.0	
Depletion	5.7	6.0	6.4	6.7	7.3	7.7	8.4	8.8	
Agricultural									
Applied water demand	31.1	32.8	30.2	31.9	29.4	31.1	28.8	30.4	
Net water demand	26.8	28.2	26.1	27.4	25.4	26.7	24.9	26.1	
Depletion	24.2	25.6	23.7	25.1	23.2	24.6	22.8	24.1	
Environmental									
Applied water demand	28.8	16.8	29.3	17.3	29.3	17.3	29.3	17.3	
Net water demand	28.4	16.4	28.8	16.8	28.8	16.8	28.8	16.8	
Depletion	24.4	12.9	24.7	13.3	24.7	13.3	24.7	13.3	
Other ⁽¹⁾									
Applied water demand	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
Net water demand	1.5	1.5	1.5	1.4	1.5	1.4	1.5	1.4	
Depletion	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
TOTAL									
Applied water demand	68.0	58.0	69.1	59.2	69.9	60.1	71.1	61.2	
Net water demand	63.5	53.2	64.3	53.9	64.9	54.5	65.7	55.3	
Depletian	55.3	45.5	55.8	46.1	56.2	46.6	56.9	47.2	

Table S-9. California Water Demand

(millions of acre-feet)

(1) Includes majar conveyance facility losses, recreation uses, and energy production.

Urban Water Demand

Urban water demand forecasts are primarily based on statewide population projections which show an increase of almost 19 million people from 1990 to 2020, from roughly 30 million to 49 million people. About half the projected population increase will happen in the South Coast Region. Population projections for the *California Water Plan Update* are based on the Department of Finance baseline series. The DOF population estimates are taken from the 1990 census as the base year. Table S-10 shows projections of population by hydrologic region.

Urban annual net water demand could increase from 6.800,000 af in 1990 to 10,500,000 af by 2020, after accounting for implementation of conservation measures that are forecasted to reduce urban annual net water demand by about 900,000 af. Urban water demand forecasts are based on: (1) population projections; and (2) unit urban water use values, considering probable effects of future water conservation measures, and trends such as increases in multi-family housing and greater growth in warmer inland areas of the State. Table S-11 shows urban water demand forecasts by hydrologic region. A comprehensive analysis of unit urban water use is presented in Volume 1, Chapter 6.

Hydrologic Regions	1990	2000	2010	2020
Narth Coast	0.6	0.7	0.8	0.9
San Francisco	5.5	6.2	6.6	6.9
Central Coast	1.3	1.5	1.8	2.0
South Coast	16.3	19.3	22.1	25.3
Sacramenta River	2.2	2.9	3.5	4.1
San Jaaquin River	1.4	2.0	2.6	3.2
Tulare Lake	1.5	2.2	2.8	3.5
North Lahontan	0.1	0.1	0.1	0.1
Sauth Lahantan	0.6	1.0	1.4	1.9
Colorada River	0.5	0.6	0.8	1.0
TOTAL	30.0	36.5	42.5	48.9

Table S-10. Population Projections by Hydrologic Region (millions)

Agricultural Water Demand

To compute agricultural water demand, the *California Water Plan Update* integrates the results of three forecasting methods used to estimate irrigated agricultural acreage and crop type:

- Review of local historical crop acreage along with the availability of water and impacts of urban encroachment;
- Crop Market Outlook; and
- Central Valley Production Model.

Every five to seven years since 1948, DWR has physically surveyed agricultural land use to help assess the locations and amounts of irrigated crops. Acreages of crops grown are estimated on a yearly basis, using the annual crop data produced by county Agricultural Commissioners (adjusted on the basis of DWR land use surveys) and estimates of urban expansion onto irrigated agricultural land.

The Crop Market Outlook is based on the expert opinion of bankers, farm advisors, commodity marketing specialists, and others regarding trends in factors which affect crop production in California. Several factors are evaluated, but the four primary ones are: (1) the current and future demand for food and fiber by the world's consumers; (2) the shares of the national and international markets for agricultural productions that are met by California's farmers and livestock producers; (3) technical factors, such as crop yields, pasture carrying capacities, and livestock feed conversion ratios: and (4) competing output from dryland (non-irrigated) acres in other states. The results determine the forecasted future potential California production of various crops.

Hydrologic Region	19	90	20	00	20	10	2020		
	average	drought	overage	drought	overage	drought	average	drought	
North Coast						_			
Applied water demand	168	177	186	195	204	214	219	230	
Net water demand	168	177	186	195	204	214	219	230	
Depletion	110	112	119	122	127	132	136	142	
San Francisco Bay									
Applied water demand	1,186	1,287	1,298	1,390	1,365	1,486	1,406	1,530	
Net water demand	1,186	1,287	1,298	1,390	1,365	1,486	1,406	1,530	
Depletion	1,079	1,175	1,185	1,271	1,247	1,362	1,287	1,403	
Central Coast									
Applied water demand	273	277	315	321	365	373	420	429	
Net water demand	229	233	263	268	304	311	349	357	
Depletion	203	206	235	239	272	278	315	321	
South Coast									
Applied water demand	3,851	3,997	4,446	4,617	5,180	5,381	6,008	6,244	
Net water demand	3,511	3,641	4,010	4,161	4,623	4,799	5,309	5,514	
Depletion	3,341	3,463	3,536	3,677	3,993	4,158	4,596	4,785	
Sacramento River	-,	-/	-,	-/	-,	.,	.,=.=	.,	
Applied water demand	744	807	911	989	1,076	1,167	1,231	1,335	
Net water demand	744	807	911	989	1,076	1,167	1,231	1,335	
Depletion	236	257	293	318	349	378	400	434	
San Joaquin River	200	207	2.0		• • •		-00		
Applied water demand	495	507	663	684	839	867	1,029	1,063	
Net water demand	353	366	468	490	587	616	717	752	
Depletian	192	194	258	265	332	340	410	420	
Tulare Lake		174	200	200	001	040	410	-20	
Applied water demand	523	523	716	716	892	892	1,116	1,116	
Net water demand	214	214	292	292	364	364	454	454	
Depletion	214	214	292	292	364	364	454	454	
North Lahontan	214	214	272	272	504	504	404	404	
Applied water demand	37	38	43	44	46	48	51	52	
Net water demand	37	38	43	44	40	48	51	52	
Depletion	14	15	17	18	19	20	21	21	
Sauth Lahantan	14	10	17	10	17	20	21	21	
	187	193	292	302	409	423	550	565	
Applied water demand Net water demand	187	193	292 191	302 198	409 269	423 277	360	365	
Depletion	123	125	191	198	269	277	360	372	
Colorado River	001	201	200	200	510	510	(01	(01	
Applied water demand	301	301	399	399	512	512	621	621	
Net water demand	204	204	272	272	349	349	424	424	
Depletian	204	204	272	272	349	349	424	424	
TOTAL									
Applied water demand	7,800	8,100	9,300	9,700	10,900	11,400	12,700	13,200	
Net water demand	6,800	7,100	7,900	8,300	9,200	9,600	10,500	11,000	
Depletion	5,700	6,000	6,400	6,700	7,300	7,700	8,400	8,800	

Table S-11. Urban Water Demand by Hydrologic Region (thousands of acre-feet)

The Central Valley Production model is an economic model which accounts for crop production costs in different areas of the Sacramento and San Joaquin valleys in conjunction with the effect of overall production levels on the market prices for California crops. This helps to estimate how the total California production will be distributed among counties.

Some crop shifts are expected to happen as growers move from low price to high price crops. Alfalfa and pasture lands are forecasted to decrease by about 331,000 acres, mostly in the San Joaquin and Tulare Lake regions. Crop acreages expected to increase include vegetables, nuts (almonds and pistachios), and grapes, while low-quality (bulk) wine grape acreage is decreasing in the San Joaquin Valley, the acreage of high-quality table wine grapes is increasing in other regions.

Irrigated Crop	NC	SF	сс	SC	SR	SJ	TL	NL	SL	CR	Totol
Grain	82	2	28	11	303	182	297	6	1	76	988
Rice	0	0	0	0	494	21	1	1	0	0	517
Cotton	0	0	0	0	0	178	1,029	0	0	37	1,244
Sugar beets	2	0	5	0	75	64	35	0	0	35	216
Corn	1	1	3	5	104	181	100	0	0	8	403
Other field	3	1	16	4	155	121	135	0	1	55	491
Alfalfa	53	0	27	10	141	226	345	43	34	256	1,135
Pasture	121	5	20	20	357	228	44	110	19	32	956
Tomatoes	0	0	14	9	120	89	107	0	0	13	352
Other truck	21	10	321	87	55	133	204	1	2	187	1,021
Almonds/pistachios	0	0	0	0	101	245	164	0	0	0	510
Other deciduous	7	6	20	3	205	147	177	0	4	1	570
Citrus/alives	0	0	18	164	18	9	181	0	0	29	419
Grapes	36	36	56	6	17	184	393	0	0	20	748
TOTAL crap area ⁽¹⁾	326	61	528	319	2,145	2,008	3,212	161	61	749	9,570
Double crops	0	0	98	30	44	53	65	0	0	102	392
Irrigated land area	326	61	430	289	2,101	1,955	3,147	161	61	647	9,178

Table S-12. California Crop and Irrigated Acreage by Hydrologic Region⁽¹⁾ 1990 (normalized, in thousands of acres)

(1) Total crap area is the land area plus the amount of land with multiple craps.

The 1990 level (base year) crop acreage and crop types are based on agricultural land use surveys which have been normalized to take into account the impact of the 1987-92 drought, government set-aside programs, and other annual crop acreage fluctuations. Tables S-12 and S-13 show the 1990 and 2020 level California crop and irrigated acreage by hydrologic region, respectively. Forecasts of agricultural water needs are based on: (1) agricultural acreage forecasts, (2) crop type forecasts, (3) crop unit applied water and unit evapotranspiration of applied water values (in acre-feet for each crop acre), and (4) estimates of future water conservation.

Irrigated Crop	NC	SF	сс	SC	SR	SJ	TL	NL	SL	CR	Total
Grain	72	2	23	1	295	179	258	9	0	70	909
Rice	0	0	0	0	482	15	0	1	0	0	498
Cattan	0	0	0	0	0	178	949	0	0	67	1,194
Sugar beets	10	0	5	0	72	45	25	0	0	40	197
Corn	1	0	6	2	115	183	98	1	0	3	409
Other field	3	1	15	0	158	122	130	0	0	26	455
Alfalfa	65	0	24	6	152	156	240	52	26	226	947
Pasture	122	4	15	6	320	171	22	104	19	30	813
Tamatoes	0	0	15	4	132	88	85	0	0	14	339
Other truck	28	11	347	43	65	201	350	2	1	203	1,250
Almonds/pistachias	0	0	0	0	125	263	173	0	0	0	561
Other deciduaus	7	6	19	3	217	151	178	0	2	2	585
Citrus/alives	0	0	16	116	29	11	190	0	0	30	392
Vineyard	38	40	81	3	24	189	363	0	0	15	753
TOTAL crap area	346	64	566	184	2,186	1,952	3,061	169	48	726	9,302
Dauble craps	0	0	137	12	72	68	90	0	0	123	502
Irrigated land area	346	64	429	172	2,114	1,884	2,971	169	48	603	8,800

Table S-13. California Crop and Irrigated Acreage by Hydrologic Region 2020 (Forecasted) (thousands of acres)

Agricultural water needs were evaluated by determining crop types and acreages for each region. Forecasts indicate that irrigated agricultural acreage will decline by about 378,000 acres between 1990 and 2020, from 9,178,000 acres to about 8,800,000 acres. This decline represents a 700,000-acre reduction from a peak in 1980.

For the State as a whole, agricultural annual net water demand will decrease by about 1,900,000 af, from 26,800,000 af in 1990 to 24,900,000 af in 2020. Many of agriculture's unit applied water values have decreased during the past decade. Part of this decrease is due to improvements in irrigation efficiency and increased emphasis on water conservation since the 1976-77 drought. Table S-14 shows the 1990 level and future agricultural water demands by hydrologic region. For a comprehensive analysis of agricultural water use, refer to Volume 1. Chapter 7.

Hydrologic Region	19	90	20	00	2010		2020	
	average	draught	average	drought	average	drought	average	draught
North Coast								
Applied water demand	839	915	868	948	891	972	907	989
Net water demand	744	760	748	764	761	776	771	787
Depletian	592	647	611	669	627	686	637	698
San Francisco Bay								
Applied water demand	92	103	94	104	94	104	94	103
Net water demand	88	99	90	100	90	100	90	99
Depletion	80	89	82	90	82	90	82	89
Central Coast								
Applied water demand	1,140	1,178	1,166	1,206	1,182	1,220	1,189	1,233
Net water demand	893	961	910	982	920	991	921	1,003
Depletian	884	950	901	971	911	980	911	992
South Coast								
Applied water demand	727	753	632	655	499	518	382	396
Net water demand	644	668	569	592	458	474	356	370
Depletion	644	668	569	592	458	474	356	370
Sacramento River								
Applied water demand	7,848	8,645	7,698	8,517	7,592	8,475	7,558	8,333
Net water demand	6,788	7,394	6,602	7,222	6,506	7,184	6,497	7,049
Depletion	5,477	6,123	5,426	6,149	5,439	6,151	5,437	6,151
San Jaaquin River	-,	-,	-,	-,	-,	-,	-,	-,
Applied water demand	6,298	6,757	6,052	6,500	5,817	6,227	5,665	6,080
Net water demand	5,778	6,217	5,561	5,967	5,346	5,695	5,215	5,572
Depletian	4,719	5,064	4,605	4,909	4,490	4,777	4,383	4,678
Tulare Lake	.,	-,	.,	.,	.,	.,	,	.,
Applied water demand	9,613	9,849	9,306	9,518	9,075	9,281	8,833	9,038
Net water demand	7,723	7,895	7,518	7,685	7,347	7,505	7,169	7,320
Depletion	7,704	7,876	7,499	7,666	7,328	7,486	7,150	7,301
Narth Lahontan	1,104	,,,,,,,	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,010	,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,
Applied water demand	522	587	523	589	525	591	536	602
Net water demand	460	511	458	510	457	508	469	521
Depletion	378	426	385	433	393	442	399	449
South Lahantan	370	420	505	400	575	442	377	
Applied water demand	317	321	266	270	258	262	253	257
Net water demand	290	293	242	245	235	238	233	234
Depletion	290	293	242	245	235	238	231	234
Colarado River	270	275	242	245	200	200	201	204
Applied water demand	3,705	3,705	3,598	3,598	3,453	3,453	3,363	3,363
Net water demand	3,703	3,439	3,362	3,398 3,362	3,262	3,455 3,262	3,383	3,181
Depletion	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181
TOTAL								
Applied water demand	31,100	32,800	30,200	31,900	29,400	31,100	28,800	30,400
Net water demand	26,800	28,200	26,100	27,400	25,400	26,700	24,900	26,100
Depletion	24,200	25,600	23,700	25,100	23,200	24,600	22,800	24,100
Depienon	24,200	25,000	23,700	25,100	23,200	24,000	22,000	24,100

• Agricultural Water Demand by Hydrologic Region (thousands of acre-feet)

Environmental Water Demand

Estimates of environmental water demand are based on water needs of managed fresh water wetlands (and Suisun Marsh), environmental instream flow needs. Delta outflow, and wild and scenic rivers. Wetlands water needs were tabulated from investigation of existing public and private wildlife refuges and inclusion of additional wetlands water demand required by the CVPIA. Environmental instream flow needs were compiled by reviewing existing fishery agreements, water rights, and court decisions pertaining to water needs of aquatic resources of streams. Additional flows in the Trinity River, as noted in the CVPIA, are also included in projections of environmental instream demand. Environmental water needs in drought years are considerably lower than in average years, reflecting the variability of the natural flows of rivers and lower lishery flow requirements such as in D-1485 for the Bay-Delta during drought. Table S-15 summarizes environmental water needs by hydrologic region. Furthermore, regulatory agencies have proposed a number of changes in instream flow needs for major rivers, including the Sacramento and San Joaquin. These proposed flow requirements are not necessarily additive; however, an increase from 1,000,000 af to 3,000,000 af is presented to envelop potential environmental water needs that could result from proposed additional instream needs and actions under way by regulatory agencies. (A more comprehensive discussion of environmental water needs is presented in Volume 1, Chapter 8.)

Demand Reduction—Water Conservation

Water conservation has become an accepted method for helping to reduce water demand in California. Therefore, water conservation, including urban Best Management Practices and agricultural Efficient Water Management Practices, was incorporated into water demand computations and forecasts of demand to 2020. More than 100 of California's major urban water agencies have agreed to BMPs. Those measures, which are detailed in Chapter 6 of Volume I, are expected to reduce urban annual applied water demand by about 1,300,000 af by 2020. The annual depletion and net water reduction from urban BMPs could amount to 935,000 af. This amount is in addition to 400,000 af annual net savings as the result of urban conservation measures put into place between 1980 and 1990. Agricultural water conservation, land retirement, and crop shifting would reduce agricultural annual applied water by about 2,300,000 af by 2020. Agricultural water conservation, through improved irrigation efficiency, could reduce agricultural annual applied water by about 710,000 af by 2020 and depletions by 330,000 af. Although water conservation measures will reduce water demand, they alone are not sufficient to eliminate forecasted shortages during the next 30 years with available supplies.

Hydrologic Region	1990		2000		2010		2020	
	overoge	draught	average	drought	average	drought	average	drought
Narth Coast							t	
Applied water demand ⁽¹⁾	19,199	9,299	19,326	9,426	19,326	9,426	19,326	9,426
Net water demand ⁽¹⁾	19,087	9,187	19,212	9,312	19,212	9,312	19,212	9,312
Depletion ⁽¹⁾	19,085	9,185	19,210	9,310	19,210	9,310	19,210	9,310
San Francisca Bay								
Applied water demand	4,775	3,245	4,775	3,245	4,775	3,245	4,775	3,245
Net water demand	4,775	3,245	4,775	3,245	4,775	3,245	4,775	3,245
Depletion	4,775	3,245	4,775	3,245	4,775	3,245	4,775	3,245
Central Coast			,			,	,	,
Applied water demand	4	2	4	2	4	2	4	2
Net water demand	1	0	1	0	1	0	1	0
Depletion	1	0	1	0		0	1	0
South Coast								, in the second s
Applied water demand	2	2	6	6	6	6	6	6
Net water demand	2	2	6	6	6	6	6	6
Depletion	2	2	6	6	6	6	6	6
Sacramento River	-	-	Ŭ	Ŭ	Ŭ	Ŭ	U	U
Applied water demand	3,927	3,493	4,117	3,638	4,117	3,638	4,117	3,638
Net water demand	3,717	3,299	3,860	3,442	3,860	3,442	3,860	3,443
Depletian	168	168	207	207	207	207	207	208
San Joaquin River	100	100	207	207	207	207	207	208
Applied water demand	599	511	744	656	744	656	744	656
Net water demand	554	466	670	582	670	582		582
	190						670	
Depletion Talaas tala	190	190	306	306	306	306	306	306
Tulare Lake	00	00	12/	10/	10/	107	10/	10/
Applied water demand Net water demand	82	82	136	136	136	136	136	136
	34	34	56	56	56	56	56	56
Depletian North Laborat	34	34	56	56	56	56	56	56
North Lahontan	17							
Applied water demand	17	17	17	17	17	17	17	17
Net water demand	17	17	17	17	17	17	17	17
Depletion	17	17	17	17	17	17	17	17
South Lahantan								
Applied water demand	128	122	128	122	128	122	128	122
Net water demand	128	122	128	122	128	122	128	122
Depletion	73	67	73	67	73	67	73	67
Calarada River								
Applied water demand	39	39	44	44	44	44	44	44
Net water demand	39	39	44	44	44	44	44	44
Depletian	39	39	44	44	44	44	44	44
TOTAL								
Applied water demand	28,800	16,800	29,300	17,300	29,300	17,300	29,300	17,300
Net water demand	28,400	16,400	28,800	16,800	28,800	16,800	28,800	16,800
Depletion	24,400	12,900	24,700	13,300	24,700	13,300	24,700	13,300

Table S-15. Environmental Water Needs by Hydrologic Region (thousands of acre-feet)

(1) Includes 17.8 MAF and 7 9 MAF flows for Narth Coast Wild and Scenic Rivers for overage and drought years, respectively.

Table S-16 summarizes annual applied water reductions and depletions due to conservation from 1990 to 2020 by hydrologic region. Reductions in depletion caused by water conservation vary greatly, depending on the opportunity for water reuse within an area. For example, Sacramento River Region water is reused extensively. thus the reduction of 265,000 af of applied agricultural water will not result in any reduction in depletion for the region. Effective water conservation in any region is the reduction in depletion, which is defined as reduction of the ETAW, irrecoverable losses from distribution systems, and outflow to the ocean or a salt sink. Therefore, a larger water savings potential exists in the western San Joaquin Valley, Colorado River, and coastal regions, where excess applied water generally enters saline sinks (Salton Sea or the ocean) or saline ground water basins and cannot be economically reused. Outflow from water service areas within the Sacramento region is generally "reused" within the region and is also used to maintain water quality and flow standards in the Bay-Delta. Reductions in applied water can reduce pumping and treatment costs and diversions from streams, thus benefiting fish and wildlife. However, care must be taken to look at impacts on downstream reuse such as other farms or managed fresh water wetlands that rely on excess applied water from upstream farms.

Table S-16. Annual Applied Water and Depletion Reductions Due to Conservationfrom 1990 to 2020 by Hydrologic Region

	Ur	ban	n Agricultu		Te	otal
HSA	Applied Water Reductions	Reductions in Depletion	Applied Water Reductions	Reductions in Depletion	Applied Water Reductions	Reductions in Depletion
NC	65	55	0	0	65	55
SF	250	250	0	0	250	250
СС	30	30	20	0	50	30
SC	610	490	65	10	675	500
SR	110	25	265	0	375	25
SJ	60	20	40	20	100	40
TL	65	20	130	90	195	110
NL	5	0	0	0	5	0
SL	50	10	10	10	60	20
CR	40	35	200	200	240	235
TOTAL	1,285	935	730	330	2,015	1,265

(thousands of acre-feet)

California Water Budget

The California Water Budget, Table S-17, compares total net water demand with supplies from 1990 through 2020. (Delta supplies assume SWRCB's D-1485 operating criteria.) Average annual supplies for the 1990 level of development, including 1,300,000 af of ground water overdraft, were generally adequate to meet average demands. However, during drought, 1990 level supplies were insufficient to meet demand, which resulted in a shortage of over 2,700,000 af under D-1485 operating criteria in 1990. In drought years 1991 and 1992, these shortages were reflected in urban mandatory water conservation, agricultural land fallowing and crop shifts, reduction of environmental flows, and short-term water transfers.

Table S-17. California Water Budget (millions of acre-feet)

Water Demand/Supply	19	90
	average	drought
Net Demand		
Urban—with 1990 level af conservation	6.8	7.1
reductions due to long-term conservation measures (Level I)	0	0
Agricultural—with 1990 level of conservation	26.8	28.2
—reductions due to long-term conservation measures (Level I)	0	0
land retirement in paar drainage areas af San Jaaquin Valley (Level I)	_	_
	28.4	16.4
Environmental	1.5	1.5
Other ⁽¹⁾		
Subtotal	63.5	53.2
Proposed Additional Environmental Water Demands ⁽²⁾		
Case I - Hypothetical 1 MAF	_	-
Case II - Hypothetical 2 MAF	_	-
Case III - Hypothetical 3 MAF	—	-
Tatal Net Demand	63.5	53.2
Case I		-
Case II		_
Case III	_	-
Water Supplies w/Existing Facilities Under D-1485 far Delta Supplies		
Developed Supplies		
Surface Water ⁽³⁾	27.9	22.1
Ground Water	7.1	11.8
	1.3	1.3
Graund Water Overdraf ⁽³⁾		35.2
Subtotal	36.3	
Dedicated Natural Flaw	27.2	15.3
TOTAL Water Supplies	63.5	50.5
Demand/Supply Balance	0.0	-2.7
Case I	_	-
Case II	_	-
Case III	-	-
Level 1 Water Management Pragrams ⁽⁴⁾		
Lang-term Supply Augmentation		
Reclaimed	_	_
Lacal	_	_
Central Valley Project	_	_
, ,	_	
State Water Project		
Short-Term Drought Management		1.0
Patential Demand Management	_	
Draught Water Transfers	_	0.8
Subtatal - Level I Water Management Pragrams		1.8
Net Ground Water ar Surface Water Use Reduction		
Resulting from Level I Programs	-	0.0
NET TOTAL Demand Reduction/Supply Augmentation	0.0	1.8
Remaining Demand/Supply Balance Requiring Level II Optians	0.0	-0.9
Case I	_	_
Cose II	_	_
		_
Case III		

(1) Includes major canveyance facility lasses, recreatian uses, and energy productian.
(2) Proposed Environmental Water Demands—Case I-III envelop potential and uncertain demands and have immediate and future cansequences on supplies from the Delta, beginning with actions in 1992 and 1993 to protect winter run salman and delta smelt (actions which cauld also protect ather fish species).

Table S-17. California Water Budget (millions of acre-feet)

20	000	20	10	20	20
average	draught	average	drought	average	drought
8.3	8.7	9.9	10.3	11.4	11.9
-0.4	-0.4	-0.7	-0.7	-0.9	-0.9
26.4	27.7	25.8	27.1	25.4	26.6
	-0.2	-0.3	-0.3	-0.4	-0.4
-0.2		-0.1			
-0.1	-0.1		-0.1	-0.1	-0.1
28.8	16.8	28.8	16.8	28.8	16.8
1.5	1.4	1.5	1.4	1.5	1.4
64.3	53.9	64.9	54.5	65.7	55.3
1.0	1.0	1.0	1.0	1.0	1.0
2.0	2.0	2.0	2.0	2.0	2.0
3.0	3.0	3.0	3.0	3.0	3.0
		_	_	_	
65.3	54.9	65.9	55.5	66.7	56.3
66.3	55.9	66.9	56.5	67.7	57.3
	56.9	67.9	57.5	68.7	58.3
67.3	30.7	07.7	57.5	00.7	50.5
27.8	21.5	28.1	21.6	28.2	21.7
7.1	12.0	7.2	12.1	7.4	12.2
_	_	_	_	_	_
34.9	33.5	35.3	33.7	35.6	33.9
27.4	15.4	27.4	15.4	27.4	15.4
62.3	48.9	62.7	49.1	63.0	49.3
		2.0	-6.4	-3.7	-7.0
-3.0	-6.0	-3.2			
-4.0	-7.0	-4.2	-7.4	-4.7	-8.0
-5.0	-8.0	-5.2	-8.4	-5.7	-9.0
0.5	0.5	0.6	0.6	0.8	0.8
0.0	0.1	0.0	0.3	0.0	0.3
0.0	0.0	0.0	0.0	0.0	0.0
0.2	0.1	0.6	1.0	0.7	1.0
	1.0		1.0	_	1.0
			0.8		0.8
	0.8	1.0		1.5	
0.7	2.5	1.3	3.8	1.5	3.9
0.1	0.0	0.1	0.2	0.1	0.2
0.7	2.5	1.4	4.0	1.6	4]
				_	
-2.3	-3.5	-1.8	-2.4	-2.1	-2.9
-3.3	-4.5	-2.8	-3.4	-3.1	-3.9
-4.3	-5.5	-3.8	-4.4	-4.1	-4.9
-4.5	-0.0	-3.0	4,4	-44, 1	4.7

(3) The degree future shortages are met by increased overdraft is unknown. Since overdraft is not sustainable, it is not included as a future supply. (4) Protection of fish and wildlife and a long-term salution to complex Delta problems will determine the feasibility of several water supply ougmentation proposals and their water supply benefits.

The forecasted 2020 net demand for urban, agricultural, and environmental water needs amounts to 65,700,000 af in average years and 55,300,000 af in drought years, after accounting for future reductions of 1,300,000 af in net water demand due to increased water conservation efforts (resulting from implementation of urban BMPs, and increased agricultural irrigation efficiencies) and another 130,000-af reduction due to future land retirement. It should be noted that several pending actions designed to protect and restore aquatic species will increase environmental water needs in a range of 1,000,000 to 3,000,000 af. These actions include:

- Biological opinions for winter-run salmon and Delta smelt, which place operational constraints on Delta exports and vary yearly.
- Implementation of the CVPIA—the allocation of 800,000 af of annual CVP supplies for environmental water use in the Central Valley streams and about 200,000 af for wetlands.
- EPA's proposed Bay–Delta standards: the total impacts on urban and agricultural water supplies will not be known until final standards are adopted sometime in 1994 and later implemented.
- SWRCB's water quality control plan for the Bay-Delta and subsequent water right proceedings: in March 1994, SWRCB began a series of workshops to review Delta protection standards and examine proposed EPA standards. The total impacts on water supply for urban and agricultural use will not be known until a final plan is adopted and the water rights proceedings are completed.

Considering that much of the hypothetical range for additional environmental water has now been mandated or formally proposed by the above actions, California is now facing more frequent and severe water supply shortages for the year 2000 and beyond. In 1993, an above-normal year, some CVP contractors had their supplies cut by 50 percent. These unanticipated shortages point to the need for a quick resolution of Delta problems through federal cooperation and participation as well as the need to move forward with demand management and supply augmentation programs at both the State and local levels.

By 2020, without additional facilities and improved water management, annual shortages of 3,700,000 to 5,700,000 af could occur during average years, again depending on the outcome of various actions listed above. Average year shortages are considered chronic and indicate the need for implementing long-term water supply augmentation and management measures to improve water service reliability. Similarly, by year 2020, annual drought year shortages could increase to 7,000,000 to 9,000,000 af under D-1485 operating criteria, also indicating the need for long-term measures.

However, water shortages would vary from region to region and sector to sector. For example, the South Coast Region's population is expected to increase to over 25 million people by 2020, requiring an additional 1,800,000 af of water each year. Population growth and increased demand, combined with a possibility of reduced supplies from the Colorado River, mean the South Coast Region's annual shortages for 2020 could amount to 400,000 af for average years and 850,000 af in drought years; this is before consideration of the additional 1,000,000 to 3,000,000 af of environmental water needs, which could reduce existing SWP supplies from the Delta. Thus, forecasted shortages could be larger if solutions to complex Delta problems are not found and implemented along with proposed local water management programs and additional facilities for the SWP. Implementation of Level I water management programs could reduce but not eliminate forecasted shortages in 2020 by implementing short-term drought management options (demand reduction through urban rationing programs or water transfers that reallocate existing supplies through use of reserve supplies and agricultural land fallowing programs) and long-term demand management and supply augmentation options (increased water conservation, agricultural land retirement, additional water recycling, benefits of a long-term Delta solution, more conjunctive use programs, and additional south-of-the-Delta storage facilities). These Level I programs combined leave a potential shortfall in annual supplies of about 2,100,000 to 4,100,000 af in average years and 2.900,000 to 4.900,000 af in drought years by 2020. The shortfall must be made up by Level II water supply augmentation and demand management programs. (Volume 1, Chapter 11 explains these programs.) The California Water Budget, Table S–17, indicates the potential magnitude of water shortages that can be expected in average and drought years if no actions are taken to improve water supply reliability.

Local Water Supply Issues

The following sections highlight local issues of concern. Each regional chapter contains more specific information on water supply issues affecting that region.

In the **North Coast Region**, a number of smaller communities have continuing water supply reliability problems, often related to the lack of economic base to support water management and development costs. Small communities along the coast, such as Moonstone, Smith River, and Klamath, either experience chronic water shortages or have supplies inadequate to meet projected growth. Water use is already low due to conservation, so most of these problems will have to be solved by either constructing or upgrading community water systems.

In the **San Francisco Bay Region**, Marin Municipal Water District has relied, in part, on imported supply from Sonoma County Water Agency and extensive conservation efforts by its customers to ensure adequate supplies throughout the recent drought. Under 2025 demand conditions, without supplemental supplies, the district estimates a 40-percent deficiency once every 10 years. To improve reliability, MMWD has negotiated an agreement with SCWA to import an additional 10,000 af. This supplemental supply, in conjunction with the district's water conservation and water management plans, should limit water shortages to about 10 percent once every 10 years.

Imported supplies by the City of San Francisco, Santa Clara Valley Water District, and East Bay Municipal Utilities District also suffered deficiencies during the 1987-92 drought. During 1991, the City of San Francisco was able to reduce expected rationing from 45 to 25 percent through purchases of 50.000 af from the 1991 State Drought Water Bank and 20,000 af from Placer County Water Agency. Customers were still required to reduce indoor use by 10 percent and outdoor use by 60 percent. During 1989-91, Santa Clara Valley Water District was able to get through with 25 percent rationing by purchasing 69,000 af from Yuba County, 14,000 af from Placer County, and 20,000 af from the State Drought Water Bank.

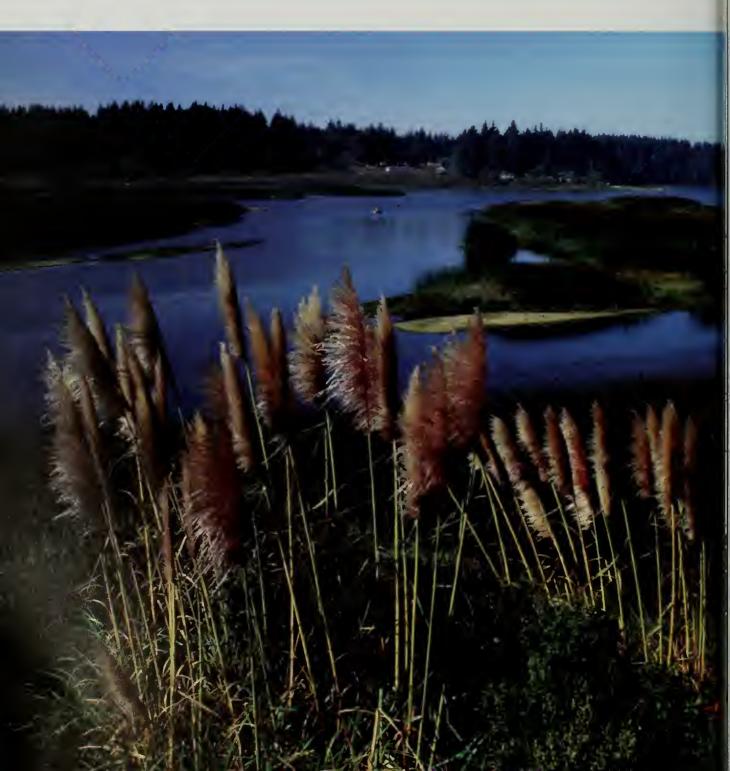
Water supplies in much of the **Central Coast Region** are greatly dependent upon the region's ground water basins; the storage in these basins is small and fluctuates from year to year. Since ground water and limited local surface supplies are its primary source of water, the region is vulnerable to droughts. As ground water extractions exceed ground water replenishment, several of the region's coastal aquifers are experiencing overdraft conditions, allowing sea water intrusion. The 1987-92 drought required many communities in the region to implement stringent water conservation programs. The cities of Santa Barbara and Morro Bay constructed sea water desalination plants to improve their water service reliability.

The **South Coast Region** is home to more than one half of the State's population, 16 million people. The region's population is expected to increase to more than 25 million people by 2020. Such growth poses several critical water supply difficulties, most notably increased demand with limited ability to increase supply. Further, imports from Mono Lake tributaries, Owens Valley, and the Colorado River will be reduced and limits on Sacramento-San Joaquin Delta exports could further reduce water service reliability in the South Coast Region. MWDSC has several programs in progress to improve its water delivery and supply capability, including the construction of Domenigoni Valley Reservoir, and supports improved Delta transfer capabilities to improve reliability of its SWP supplies.

Sacramento River Region water users are concerned about protecting their area's ground water resources from export. Organized ground water management efforts in the region are currently under way in Butte, Colusa, Glenn, Shasta, Tehama, and Yolo counties. Also, several foothill areas that rely heavily on ground water are finding those supplies limited. With many people relocating to these areas, concern about ground water availability and the potential for its contamination is increasing.

Flood protection is another major concern for the region, especially along the Sacramento and American rivers near Sacramento. In 1991, the U.S. Army Corps of Engineers completed a feasibility report and environmental documentation for a flood detention dam at the Auburn site in combination with levee modification along the lower American River to increase flood protection for the Sacramento area. The report, however, generated much controversy over whether Auburn Dam should be a flood detention only (dry dam) or multipurpose dam.

Foothill areas of both the **San Joaquin River** and **Tulare Lake regions** share the Sacramento River Region's problem of limited water supplies. Major concerns for this region's agricultural community are agricultural drainage disposal and treatment costs and potential reduction of imported supplies. CVP supplies will be reduced by the CVPIA, and both the CVP and SWP supplies are impacted by endangered species actions and other actions proposed to protect aquatic species in the Delta. These actions will also cause ground water overdraft to increase in these regions.


In the **North Lahontan Region** years of disputes over the waters of the Truckee and Carson rivers led to the 1990 enactment of the Truckee-Carson-Pyramid Lake Water Rights Settlement Act. This federal act makes an interstate allocation of the rivers between California and Nevada, provides for the settlement of certain Native American water rights claims, and provides for water supplies for specified environmental purposes in Nevada. The act allocates to California 23,000 af annually in the Lake Tahoe Basin, 32,000 af annually in the Truckee River Basin below Lake Tahoe, and water corresponding to existing water uses in the Carson River Basin. Provisions of the Settlement Act, including the interstate water allocations, will not take effect until several conditions are met, including negotiation of the Truckee River Operating Agreement required by the act.

Growth has long been a major issue in the Tahoe Basin and strict controls have been adopted by local agencies under the lead of the Tahoe Regional Planning Agency. These controls have been very effective. For example, the City of South Lake Tahoe grew by only 4 percent in the 1980s, while population of the Lassen County portion of the region increased by nearly 30 percent over the same period. Potential ground water export from the Honey Lake Valley is a controversial issue in the North Lahontan Region. The Truckee Meadows Project. as proposed, could export at least 13,000 af of ground water annually from the Nevada portion of Honey Lake Valley to the Reno area. Lassen County and the Pyramid Lake Paiute Indian Tribe oppose the project on the grounds that it would deplete the local ground water supply and harm the environment. The U.S. Bureau of Land Management, which must issue a right-of-way permit before the 80-mile pipeline project can be implemented, released a draft Environmental Impact Statement in May 1993. In March 1994, the Secretary of the Interior suspended work on the EIS until significant environmental issues are resolved. The issues include the ground water model used in the EIS, impacts to ground water cleanup activities at the Sierra Army Depot, and reduction of inflows to Pyramid Lake.

Water exports from the **South Lahontan Region** have been the subject of litigation since the early 1970s. In 1972, the County of Inyo sued the City of Los Angeles claiming that increased ground water pumping for export was harming the Owens Valley. Consequently, the City of Los Angeles and Inyo County implemented enhancement projects to mitigate the impacts of ground water pumping. In 1989, the parties reached agreement on the long-term ground water management plan for Owens Valley and the EIR was accepted by the court.

Another long-standing issue is the Los Angeles Department of Water and Power diversions from Mono Lake tributaries and the impact of these diversions on the lake level. As a result of extensive litigation between the City of Los Angeles and a number of environmental groups, LADWP is now prohibited by court order from diverting from the tributaries until the lake level stabilizes. SWRCB concluded Mono Lake water rights hearings in February 1994. A draft decision regarding lake levels and stream flows on the four tributaries is expect in late 1994. The Mono-Owens system had provided 17 percent of LADWP's water supply and 1.5 percent of its hydroelectric energy supply. Replacement water and energy are being sought. One source of replacement water will be from water reclamation projects to be funded by the Environmental Water Fund, which was created by the Legislature in 1989 to fund projects mutually agreed upon by LADWP and the Mono Lake Committee.

The **Colorado River Region** faces increasingly difficult issues involving water quality. In the late 1960s, 1970s, and early 1980s, the Salton Sea suffered from high water levels caused by increased agricultural runoff, treated urban waste water, and above-average rainfall. In 1984, the State Water Resources Control Board (responding to DWR's referral of the matter to the SWRCB following an investigation at the request of a farmer), adopted Water Rights Decision 1600, and required Imperial Irrigation District to prepare a conservation plan and take other steps to improve its delivery system. Following a 1988 SWRCB order, Imperial Irrigation District implemented a program with funds provided by MWDSC to conserve water. The sea level has stabilized somewhat during recent years, due in part to conservation measures taken by 1ID. The Salton Sea dilemma illustrates the complexity and opportunities for cooperative solutions of water management issues in California. The greenery surrounding Big Lagoon in Humboldt County is typical of the North Coast area. The region has the highest average annual rainfall in the State.

The North Coast Region comprises all of the California area tributary to the ocean from the mouth of Tomales Bay north to the Oregon border and east along the border to a point near Goose Lake. It encompasses over 12 percent of the State's area, including redwood forests, inland mountain valleys, and the desert-like Modoc Plateau.

Much of the region is mountainous and rugged. Only 13 percent of the land is classified as valley or mesa, and more than half of that is in the northeastern part around the Upper Klamath River Basin. The dominant topographic features in the region are the California Coast Range and the Klamath Mountains. The eastern boundary is formed by mountains that average around 6,000 feet above sea level with a few peaks over 8,000 feet. About 400 miles of ocean shoreline form the western boundary of the region.

Average annual precipitation in the North Coast Region is 53 inches, ranging from over 100 inches in eastern Del Norte County to less than 15 inches in the Lost River drainage area of Modoc County. A relatively small fraction of the precipitation is in the form of snow. Only at elevations above 4,000 feet does snow remain on the ground for appreciable periods. The heavy rainfall concentrated over the mountains makes this region the most water-abundant area of California. Mean annual runoff is about 28,886,000 af, which constitutes about 40 percent of the State's total natural runoff. There is also 1,860,000 af of average annual runoff flowing into the region from Oregon.

Population

Much of the North Coast Region is sparsely populated. Most of the population (nearly 60 percent) lives in and around Santa Rosa, within the Russian River Basin. Most of the remainder of the population is concentrated in the Eureka-Arcata-McKinleyville area around Humboldt Bay and the Crescent City area. Other sizable towns include the county seats of Yreka (Siskiyou), Weaverville (Trinity), and Ukiah (Mendocino).

Overall, the North Coast Region's population has grown from 467,890 in 1980 to 571,750 in 1990 and accounts for 1.9 percent of California's population. During the

Region Characteristics

Average Annual Precipitation: 53 inches	Average Annual Runoff: 28,886,000 af
Land Area: 19,590 square miles	1990 Population: 571,750

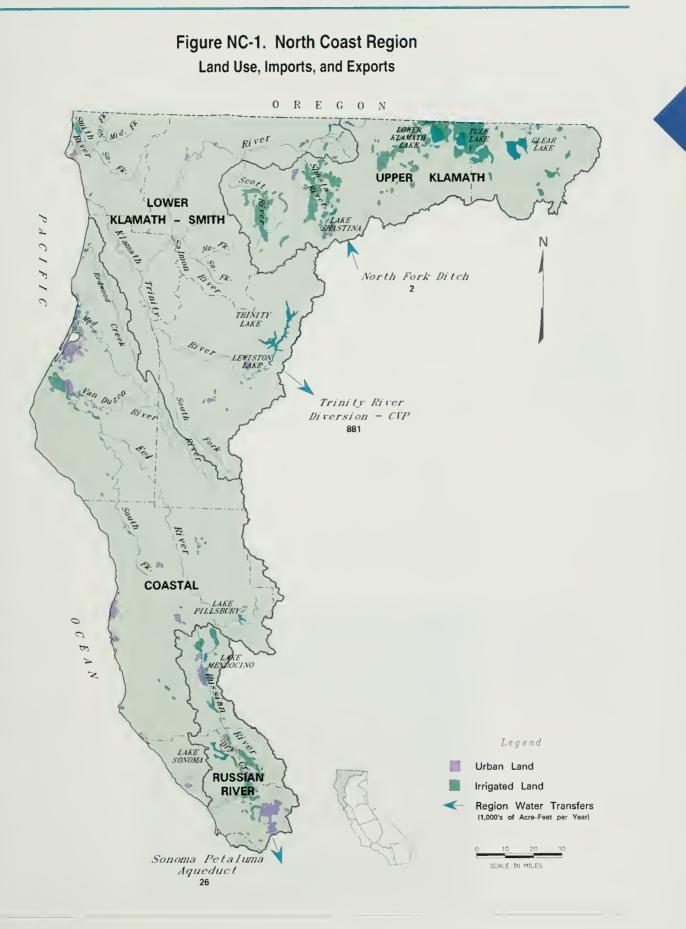
North Coast Region

1980s, the population in the Santa Rosa area grew by 31 percent, due primarily to spillover from the Bay Area, while essentially no growth occurred in the Modoc and Siskiyou county portions of the region. Average annual population growth rate in the northern half of the region has been relatively slow at 3 percent. One exception is Crescent City, which had a population increase of 81 percent in 1991, resulting from the annexation of the new Pelican Bay State Prison. Previous growth rates in Crescent City have been 6.5 percent and 14 percent in 1989 and 1990, respectively.

Rapid growth is projected for the Santa Rosa area over the next 30 years, while only moderate expansion is expected in Humboldt County. The traditional economic bases of timber, cattle, and fishing are in a state of flux. Recreation, government, and retirees are becoming the major growth generating activities in the north part of the region. Table NC-1 shows regional population projections to 2020.

Planning Subarea	1990	2000	2010	2020
Upper Klamath	29	34	39	43
Lower Klamath-Smith	46	62	75	88
Coastal	160	189	211	233
Russian River	337	403	464	510
TOTAL	572	688	789	874

Table NC-1. Population Projections (thousands)


Land Use

About 97 percent of the land area is forest or range land. Much of this land lies within national forests, State and national parks, and Indian reservations. A considerable amount of the remainder is privately owned forest land, often held in large ownerships. Only about 326,000 acres (2.6 percent) of the region's area are irrigated. Of that total, 225,900 acres lie in the Upper Klamath River Basin, above the confluence of the Scott and Klamath rivers. (See Appendix C for maps of the planning subareas and land ownership in the region.) In the Upper Klamath area, the main irrigated crops are pasture and alfalfa, grain, and potatoes. Orchards and vineyards are found in the Russian River drainage area. Pasture, alfalfa, and grain are the predominant crops in irrigated areas throughout the remainder of the region.

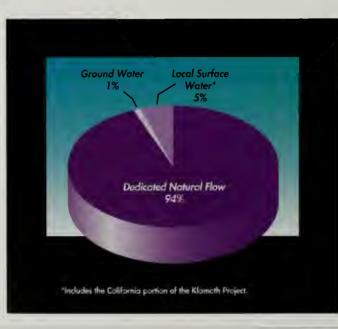
Besides small areas of urban and agricultural development (mainly around the Santa Rosa and Eureka areas) land is used for timber production and wildlife habitat. Land use issues in the region include activities causing soil erosion, such as road construction, gravel mining, and logging. Figure NC-1 shows land use, imports, and exports in the North Coast Region.

Water Supply

About 94 percent of the region's 1990 level average water supply is dedicated natural runoff, primarily for wild and scenic rivers. Summer water supplies are limited because rainfall and runoff are much less. The few surface water supply projects that exist on tributary streams are small and provide limited carryover capacity to deal with extended months of low rainfall. Larger water supply projects include the U.S. Bureau of Reclamation's Klamath Project, the U.S. Army Corps of Engineers' Russian River Project (Lakes Mendocino and Sonoma), and the Humboldt Bay Municipal Water

District's Ruth Reservoir and Eureka to McKinleyville distribution system. The largest reservoirs in the region (the Central Valley Project's Clair Engle Lake and the Corps' Lake Sonoma) export to adjacent hydrologic regions, while Clear Lake Reservoir supplies water to the USBR Klamath Project, which is mainly in Oregon. Table NC-2 lists major reservoirs in the region.

Reservoir Name	River	Capacity (1,000 AF)	Owner
Upper Klamath (Oregon)	Klamath	735.0	USBR
Clear Lake	Klamath	526.8	USBR
Gerber (Oregon)	Klamath	94.3	USBR
Сорсо	Klamath	77.0	PP&L Ca.
Iron Gate	Klamath	58.0	PP&L Co.
Lake Shastina	Shasta	50.0	Montague WCD
Lewiston	Trinity	14.7	USBR
Clair Engle (Trinity)	Trinity	2,447.7	USBR
Ruth Lake	Mad	48.0	Humboldt Bay MWD
Lake Pillsbury	Eel	80.5	PG&E
Lake Mendacina	Russian	122.4	US Army Corps of Engineers
Lake Sanama Warm Springs Dam	Dry Creek	381.0	US Army Corps of Engineers


Table NC-2. Major Reservoirs

PP&L = Pacific Pawer and Light Co. PG&E = Pacific Gas and Electric Co.

Supply with Existing Facilities and Water Management Programs

The Klamath Project, in Klamath County, Oregon, and in Siskiyou and Modoc counties, was one of the first federal reclamation projects. It drained and reclaimed lakebed lands of Lower Klamath and Tule lakes and developed water supplies from the Klamath and Lost rivers to irrigate the reclaimed lands. The principal project storage facilities are Upper Klamath Lake in Oregon (735,000 af) and Clear Lake Reservoir on the Lost River in California (526,800 af). The project normally irrigates over 230,000 acres (100,000 of which lie in California) through a network of about 185 miles of

Figure NC-2. North Coast Region Water Supply Sources (1990 Level Average Conditions)

canals with associated diversion dams, pumping plants, and drainage facilities.

The Klamath River Basin Compact addresses interstate water-sharing matters in the Upper Klamath River and Lost River basins. Negotiated by the states of Oregon and California, approved by their respective Legislatures, and consented to by the U.S. Congress in 1957. the compact is to (1) facilitate orderly development and use of water, and (2) further cooperation between the states in the equitable sharing of water resources. The compact is administered by the Klamath River Compact Commission, which is chaired by a federal representative appointed by the President. The commission provides a forum for communication between the various interests concerned with water resources in the upper Klamath River Basin. Its recent activities have focused on water delivery reductions caused by drought and operating restrictions to protect two species of endangered sucker fish. Other pressing issues are water supplies for wildlife refuges and upper basin impacts on anadromous fisheries in the lower Klamath River.

The USBR constructed the Trinity River Division in the early 1960s to augment CVP water supplies in the Sacramento and San Joaquin valleys. The principal features of this part of the CVP are Trinity Dam and the 2,477,700 af Clair Engle Lake on the upper Trinity River and the 10.7-mile Clear Creek Tunnel beginning at Lewiston Dam and ending at Whiskeytown Lake in the Sacramento River Basin. Exports from the Trinity River began in May 1963. Long-term average annual exports are about 881,000 af. From 1980 through 1992, these exports have averaged 864,000 af annually. There are no in-basin deliveries of water from the Trinity River Division. However, the CVPIA allocated a minimum of 340,000 af per year through 1996 for instream environmental use. A permanent flow release criteria is scheduled to be established by 1996 by the Secretary of the Interior based on the results of a 12-year flow evaluation study.

The Russian River Project, constructed by the Corps of Engineers, includes Lake Mendocino (122,400 af), formed by Coyote Dam on the East Fork of the Russian River near Ukiah, and Lake Sonoma (381,000 af) behind Warm Springs Dam on Dry Creek near Geyserville. Lake Mendocino was completed in 1958 and Lake Sonoma in 1982. Both reservoirs provide flood protection, reservoir recreation, and water supply for urban, agricultural, and instream uses. Most of the water supply made available by the Russian River Project is contracted to the Sonoma County Water Agency. The SCWA delivers about 29,000 af per year via aqueduct to Santa Rosa, Rohnert Park, Cotati, and Forestville. In addition, the agency exports approximately 25,000 af per year from the North Coast's Russian River Project to the San Francisco Bay Region. This water is delivered via several aqueducts to Novato. Petaluma, the Valley of the Moon, and Sonoma areas.

The principal reaches and major tributaries of the Klamath, Eel, and Smith rivers are designated Wild and Scenic under federal and State law, and therefore are protected from large scale water development. Figure NC-2 shows the region's 1990 level sources of supply and Table NC-3 shows water supplies with existing facilities and water management programs. There is no SWP, CVP, or Colorado River water supplied to this area, and none of the ground water basins are overdrafted.

Supplies with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses to determine their feasibility.

Water demand within the North Coast Region is met by projects which range from relatively large and well-organized municipal systems serving communities such

as Yreka, Weaverville, Hayfork, Willits, Crescent City, and Fort Bragg to small residential or agricultural water systems (usually based on ground water) in locations like Mendocino, Garberville, and Shelter Cove. Future improvements in many of these systems are planned to improve water supply reliability. For example, Weaverville Community Services District, supplied by East Weaver Creek, is planning to construct a 5-mile pipeline to the Trinity River to meet its future needs.

Supply	19	1990 2000 2010		1990 2000 2010 20		0 2000 2010		2010		2020	
	average	drought	average	drought	average	drought	average	drought			
Surface						-					
Local	438	433	450	446	470	463	483	481			
Lacal imports	2	2	2	2	2	2	2	2			
Colorado River	0	0	0	0	0	0	0	0			
CVP	0	0	0	0	0	0	0	0			
Other federal	471	471	471	471	471	471	471	471			
SWP	0	0	0	0	0	0	0	0			
Ground water	263	283	275	295	286	308	298	316			
Overdraft ⁽¹⁾	0	0	_	_	_	_	_	_			
Reclaimed	11	11	11	11	11	11	11	11			
Dedicated natural flaw	18,850	8,950	18,973	9,073	18,973	9,073	18,973	9,073			
TOTAL	20,035	10,150	20,182	10,298	20,213	10,328	20,238	10,354			

Table NC-3. Water Supplies with Existing Facilities and Programs

(thousands of acre-feet)

(1) The degree future shortages are met by increased overdraft is unknown. Since overdraft is not sustainable, it is not included as a future supply.

The projected 30-percent increase in average urban water demand by 2020 can be provided largely by upgrading existing water supply systems. However, there is currently no economically or environmentally feasible solution to significantly augment dry-year irrigation supplies in the North Coast Region.

Due to the absence of large urban concentrations or extensive agriculture, and the cool wet weather patterns, the North Coast did not experience large-scale water shortages during the 1987-92 drought. Therefore, most of this region did not have to reduce water use significantly. Unlike most other regions, water conservation in the North Coast does not benefit another hydrologic area where either the water supply originates in or flows to. However, water conservation can play a vital role in reducing urban demand and waste water treatment costs.

Areas irrigated with surface water will likely continue to manage with water available from existing facilities. A few additional wells are expected to augment irrigation supplies in the Butte Valley-Tule Lake area. Pressure for additional ground water development in areas like Scott and Shasta valleys will be greater if some salmon races are listed or if strict application of Department of Fish and Game code regulations reduce the supplies available from existing water developments or natural runoff.

Present water supplies and modest expansion of local water sources will generally be adequate to meet the region's expected municipal and industrial demands over the next 30 years. The Humboldt Bay-McKinleyville area will continue to be adequately served by Ruth Reservoir on the Mad River, with supplies possibly augmented by ground water. The system draws water from the Mad River through Ranney collector wells that are being undercut by erosion of streambed gravels. Humboldt Bay Municipal Water District is investigating the problem and hopes to solve it soon. HBMWD system may ultimately be expanded to serve the Trinidad-Moonstone area, which is experiencing water supply deficiencies.

Crescent City has an adequate supply from the Smith River but needs to increase system transmission and storage capacity. It may also be facing construction of an expensive surface water treatment facility. Trinity County Waterworks District No. 1 serves the town of Hayfork from the 800-af Ewing Reservoir. Growth in the service area has almost reached the design capacity of the existing system, and the district plans to enlarge its offstream reservoir within the next few years. This expansion was planned at the time the project was constructed in the late 1960s. The Weaverville Community Services District plans to divert from the Trinity River at Douglas City to provide needed future water supplies.

Table NC-4 shows water supplies with additional facilities and water management programs. There are no CVP or SWP supplies to this area and ground water overdraft within the region is not expected.

Supply	19	90	2000		20	10	20	20
	average	drought	average	drought	average	drought	average	drought
Surface								
Local	438	433	450	446	470	463	483	481
Lacal imparts	2	2	2	2	2	2	2	2
Colarada River	0	0	0	0	0	0	0	0
CVP	0	0	0	0	0	0	0	0
Other federal	471	471	471	471	471	471	471	471
SWP	0	0	0	0	0	0	0	0
Ground water	263	283	272	292	280	302	289	307
Overdraft ⁽¹⁾	0	0	_	_	-	_	_	_
Reclaimed	11	11	14	14	17	17	20	20
Dedicated natural flow	18,850	8,950	18,973	9,073	18,973	9,073	18,973	9,073
TOTAL	20,035	10,150	20,182	10,298	20,213	10,328	20,238	10,354

Table NC-4. Water Supplies with Level I Water Management Programs

(thousands of acre-feet)

(1) The degree future shartages are met by increased overdraft is unknown. Since overdraft is nat sustainable, it is not included as a future supply.

Water Use

Although the North Coast Region produces nearly half of California's surface runoff, urban and agricultural water use within the region is relatively low because it is sparsely populated and has few irrigated acres. Irrigation accounts for 744,000 af of the region's net water use, while municipal and industrial use is 168,000 af. These water needs are generally met by small local developments and limited ground water extractions. Because of economic and physical restrictions on development of new irrigated areas and the small estimated population growth, neither irrigation nor municipal and industrial uses are expected to increase greatly. Annual water use in the region is forecasted to increase 203,000 af by 2020.

Urban Water Use

The current total urban water use in the North Coast Region, 168,000 af per year, represents about 2.5 percent of the State's total urban water use. Per capita use varies from around 130 gpcd in the Humboldt Bay area to about 300 gpcd in the warmer

Figure NC-3. North Coast Region Net Water Demand (1990 Level Average Conditions)

inland area of the Lost River Basin. Municipal use in areas directly influenced by the coastal climate is up slightly from the 1980 level, while use in the interior valleys remains level. Around 54,000 af per year was used by high water-using industries (primarily wood and pulp processing plants in the Humboldt Bay area) in 1990. This has at least temporarily decreased by 22,000 af per year as a result of the recent indefinite

closure of the Simpson pulp mill. This annual water supply will be available in Humboldt Bay Municipal Water District's Ruth Reservoir to future users or to supply the Simpson pulp mill if it reopens. Because of the present uncertainty over the length of the mill closure, the area's water use is forecasted to remain at preclosure levels until the year 2000. Table NC-5 shows urban water demands for the region to 2020.

Volume 1, Chapters 6 and 7, contains a detailed explanation of the methods used in estimating regional water use. The impacts of water conservation and best management practices are also discussed in those chapters.

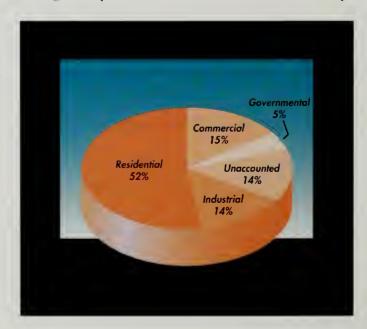


Figure NC-4. North Coast Region Urban Applied Water Use by Sector (1990 Level Average Conditions)

Planning Subarea	19	90	20	00	20	10	20	20
	average	drought	overage	drought	averoge	drought	average	draught
Upper Klamath								
Applied water demand	10	10	11	11	13	13	14	14
Net water demand	10	10	11	11	13	13	14	14
Depletian	5	5	5	5	6	6	7	7
Lawer Klamath-Smith								
Applied water demand	10	11	13	14	16	17	18	19
Net water demand	10	11	13	14	16	17	18	19
Depletion	6	6	8	8	9	10	11	12
Coastal								
Applied water demand	78	80	84	84	87	88	92	93
Net water demand	78	80	84	84	87	88	92	93
Depletian	71	71	75	75	77	78	80	81
Russian River								
Applied water demand	70	76	78	86	88	96	95	104
Net water demand	70	76	78	86	88	96	95	104
Depletion	28	30	31	34	35	38	38	42
TOTAL								
Applied water demand	168	177	186	195	204	214	219	230
Net water demand	168	177	186	195	204	214	219	230
Depletion	110	112	119	122	127	132	136	142

Table NC-5. Urban Water Demand

(thousands of acre-feet)

Agricultural Water Use

Total irrigated acreage within the North Coast Region in 1990 was 326,000 acres. The number of irrigated acres in the region is expected to remain nearly level over the next three decades. Table NC-6 summarizes irrigated land and Table NC-7 shows evapotranspiration of applied water by crop in the region. Figure NC-5 shows 1990 crop acreages, evapotranspiration, and applied water for major crops. The applied

Sprinkler systems such as the one shown are commonly used to irrigate crops, in this case pasture land, in the North Coast Region. In the inland valleys, there is more irrigable land than can be irrigated with existing supplies. water and net demand shown in Table NC-8 were derived from irrigated acreages by applying unit water use factors determined by DWR. These unit use factors, which are unique to each detailed analysis unit (a portion of a planning subarea), reflect local conditions of climate and cultural practices. Applied water amounts vary with the source of water supply (surface or ground water and the type of water year). In drought years additional irrigation is required to replace water normally supplied by rainfall and to meet higher-than-normal evapotranspiration demands. The trend of unit water use in the region is generally stable. The values employed in the trend calculations are representative of current water use in the region and estimates of future agricultural use are based on the 1990 unit use values. Net agricultural water use in the region is expected to increase by only one percent by 2020.

Planning Subarra	1990	2000	2010	2020
Planning Subarea	1990	2000	2010	2020
Upper Klamath	226	232	236	239
Lawer Klamath-Smith	13	13	13	13
Caastal	32	34	36	38
Russian River	55	55	55	56
TOTAL	326	334	340	346

Table NC-6. Irrigated Crop Acreage (thousands of acres)

Climate, soils, water supply, and remoteness from markets limit the crops that can be grown profitably throughout most of the region. In the inland valley areas, there is more irrigable land than can be irrigated with existing supplies. During dry years, the region experiences substantial water deficiencies that are greatest in the arid inland portions of the region. The agricultural trend in the past decade has been one of land consolidation and slow growth; this reflects the low crop values, lack of additional low-priced surface water supplies, and use of only the most economically developable ground water sources.

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	82	119
Sugar beets	2	4
Corn	1	2
Other field	3	4
Alfalfa	53	128
Pasture	121	253
Other truck	21	33
Other deciduous	7	10
Vineyard	36	26
TOTAL	326	579

Table NC-7. 1990 Evapotranspiration of Applied Water by Crop

Table NC-8. Agricultural Water Demand (thousands of acre-feet)

Planning Subarea	19	90	2000		20	10	2020	
· ·	overage	drought	average	drought	averoge	drought	average	draught
Upper Klamath								
Applied water demand	664	729	689	757	709	778	721	791
Net water demand	584	589	587	591	596	600	602	606
Depletion	459	505	477	524	490	539	498	548
Lawer Klamath-Smith								
Applied water demand	31	31	32	32	32	32	32	32
Net water demand	29	29	29	29	29	29	29	29
Depletian	22	22	22	22	22	22	22	22
Caastal								
Applied water demand	62	63	66	68	69	71	73	75
Net water demand	62	63	64	66	68	69	72	74
Depletian	49	49	51	53	54	55	56	58
Russian River								
Applied water demand [,]	82	92	81	91	81	91	81	91
Net water demand	69	79	68	78	68	78	68	78
Depletion	62	71	61	70	61	70	61	70
TOTAL								
Applied water demand	839	915	868	948	891	972	907	989
Net water demand	744	760	748	764	761	776	771	787
Depletian	592	647	611	669	627	686	637	698

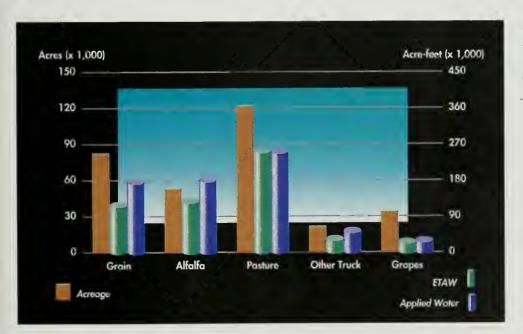


Figure NC-5. North Coast Region 1990 Acreage, ETAW, and Applied Water for Major Crops

Environmental Water Use

The principal environmental water use for the region is for instream flow needs, including wild and scenic rivers, as shown in Table NC-9. The region's total environmental instream water needs are 18,850,000 af in average years and 8,950,000 af in drought years. Wetland water needs for six wildlife refuges amount to annual net water demands of 237,000 af (Table NC-10).

Through the California Wild and Scenic Rivers Act of 1972. Californians determined that the vast majority of water in the North Coast Region will remain in the rivers to preserve their free-flowing character and provide for environmental uses. Most of the Eel, Klamath, and Smith rivers are designated wild and scenic and their waterways cannot be modified in a manner that affects their free-flowing pristine character. The Trinity River also receives protection under the federal Wild and Scenic River system. Such protection includes prohibitions of water resource project construction that could adversely affect the flow of the rivers.

Instream fishery needs on the Trinity River below Lewiston Dam are under study. The study is expected to be finished in 1996 and will then be given to Congress for review. This study could result in even more water than the 1990 level of 340,000 af per year being allocated to Trinity River instream flows and could reduce Sacramento River flows by an equal amount.

Stream	19	1990		00	20	10	2020	
	average	drought	average	drought	average	drought	average	draughi
Klamath River							· · · · · · · · · · · · · · · · · · ·	
Applied water demand	833	833	833	833	833	833	833	833
Net water demand	833	833	833	833	833	833	833	833
Depletian	833	833	833	833	833	833	833	833
Trinity River								
Applied water demand	217	217	340	340	340	340	340	340
Net water demand	217	217	340	340	340	340	340	340
Depletion	217	217	340	340	340	340	340	340
Wild and Scenic Rivers								
Applied water demand	17,800	7,900	17,800	7,900	17,800	7,900	17,800	7,900
Net water demand	17,800	7,900	17,800	7,900	17,800	7,900	17,800	7,900
Depletion	17,800	7,900	17,800	7,900	17,800	7,900	17,800	7,900
TOTAL								
Applied water demand	18,850	8,950	18,973	9,073	18,973	9,073	18,973	9,073
Net water demand	18,850	8,950	18,973	9,073	18,973	9,073	18,973	9,073
Depletion	18,850	8,950	18,973	9,073	18,973	9,073	18,973	9,073

Table NC-9. Environmental Instream Water Needs

(thousands of acre-feet)

Wetland	19	90	20	2000		10	2020	
	overage	drought	average	drought	average	draught	overage	drought
Lower Klamath NWR								
Applied water demand	115	115	115	115	115	115	115	115
Net water demand	77	77	77	77	77	77	77	77
Depletion	76	76	76	76	76	76	76	76
Butte Valley WA								
Applied water demand	10	10	10	10	10	10	10	10
Net water demand	10	10	10	10	10	10	10	10
Depletion	10	10	10	10	10	10	10	10
Clear Lake NWR								
Applied water demand	42	42	42	42	42	42	42	42
Net water demand	28	28	28	28	28	28	28	28
Depletion	28	28	28	28	28	28	28	28
Tule Lake NWR								
Applied water demand	180	180	180	180	180	180	180	180
Net water demand	120	120	120	120	120	120	120	120
Depletion	119	119	119	119	119	119	119	119
Shasta Valley Refuge								
Applied water demand	0	0	4	4	4	4	4	4
Net water demand	0	0	2	2	2	2	2	2
Depletion	0	0	2	2	2	2	2	2
Arcata Marsh								
Applied water demand	2	2	2	2	2	2	2	2
Net water demand	2	2	2	2	2	. 2	2	2
Depletion	2	2	2	2	2	2	2	2
TOTAL		_		_				
Applied water demand	349	349	353	353	353	353	353	353
Net water demand	237	237	239	239	239	239	239	239
Depletion	235	235	237	237	237	237	237	237

Table NC-10. Wetland Water Needs

(thousands of acre-feet)

The principal wetland uses of water occur in the Lower Klamath, Tule Lake, and Clear Lake national wildlife refuges and the State's Butte Valley Wildlife Area. A major share of the wildlife water needs in Butte Valley are met by approximately 3,000 af per year of ground water. The other refuges in the region are served from surface supplies. The prevalent crops grown in the refuges are wheat, alfalfa, barley, millet, and milo. Alkali bulrush is an important naturally occurring food source for wildlife found in most of these areas. The predominant types of wildlife using the refuges are Canadian, snow, and white-fronted geese; mallard. pintail, gadwall, teal, canvasback, and redhead ducks; and pheasant. Other wildlife species such as songbirds, raptors, shorebirds, antelope, and deer also depend heavily on the refuges and agricultural land during the winter.

Environmental water use within this region will probably remain relatively unchanged to 2020. However, releases below existing dams could be modified in response to the findings of future instream flow need studies and the potential endangered species listing of declining fish populations. Existing instream flow requirements downstream from a number of major dams are shown in Volume 1, Chapter 8.

Other Water Use

Figure NC-6 shows water recreation areas in the North Coast Region which attract over 10 million people annually. This area has rugged natural beauty and some of the most renowned fishing streams in North America. It has diverse topography, including scenic ocean shoreline; a forested belt immediately inland, which includes more than half of California's redwoods; and extensive inland mountainous areas, including 10 wilderness areas, managed mainly by the U.S. Forest Service. Over 40 State parks and one national park are in the region. In addition to the natural attractions, the area contains scores of small reservoirs which are extensively used for recreation. Rafting and canoeing are popular on the Smith, Klamath, Salmon, Trinity, Eel, and Russian rivers.

Public recreation use of national forests and small local reservoirs is probably several times that of parks. The job base and economic value of travel and recreation have exceeded that of the lumber industry in some Northern California counties. The demand for recreation in the region is expected to continue growing. Table NC-11 shows the total water demands for this region.

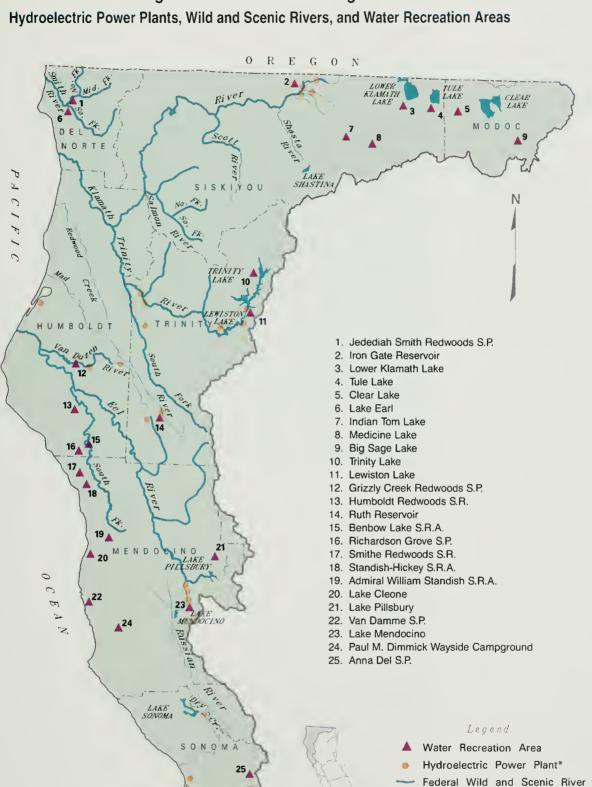

Category of Use	19	90	2000		20	10	2020	
	average	drought	average	drought	average	drought	average	drought
Urban	· · · · ·							
Applied water demand	168	177	186	195	204	214	219	230
Net water demand	168	177	186	195	204	214	219	230
Depletion	110	112	119	122	127	132	136	142
Agricultural								
Applied water demand	839	915	868	948	891	972	907	989
Net water demand	744	760	748	764	761	776	771	787
Depletion	592	647	611	669	627	686	637	698
Environmental ⁽¹⁾								
Applied woter demand	19,199	9,299	19,326	9,426	19,326	9,426	19,326	9,426
Net water demand	19,087	9,187	19,212	9,312	19,212	9,312	19,212	9,312
Depletion	19,085	9,185	19,210	9,310	19,210	9,310	19,210	9,310
Other ⁽²⁾								
Applied water demand	1	1	1	1	۱	1	1	1
Net water demand	36	35	36	35	36	35	36	35
Depletion	9	9	9	9	9	9	9	9
TOTAL								
Applied water demand	20,207	10,392	20,381	10,570	20,422	10,613	20,453	10,646
Net water demand	20,035	10,159	20,182	10,306	20,213	10,337	20,238	10,364
Depletian	19,796	9,953	19,949	10,110	19,973	10,137	19,992	10,159

Table NC-11. Total Water Demands

(thousands of acre-feet)

(1) Includes 17.8 MAF and 7.9 MAF far Narth Caast Wild and Scenic Rivers, respectively.

(2) Includes major conveyance facility tasses, recreation uses, and energy production.

Figure NC-6. North Coast Region

*From 1992 California Energy Commission Maps. See Table D-3 in Appendix D for plant information.

SCALE IN MILES

Issues Affecting Local Water Resource Management

The low population growth in the North Coast Region is not creating any pressing water issues that cannot be solved by local water management, planning, and system upgrading. An impediment to improving water supply reliability in small communities is disagreement between residents who favor growth and those who want to limit it through restrictions on water hookups. The principal water-related issues in the North Coast Region revolve around water quality (upgraded treatment requirements) and growth-related environmental concerns.

One government action having great impact on North Coast water supplies was the CVPIA decision by the Secretary of the Interior to increase instream flow releases to the Trinity River below Lewiston Dam to 340,000 af per year instead of the 1990 level of 217,000 af per year. The CVPIA directed the Secretary to continue releases at the 340,000-af level through 1996. The result of this decision is an unquantified enhancement of Trinity River fishery habitat and a decrease of 123,000 af per year of water supply for the Sacramento River and Delta during drought years. The U.S. Fish and Wildlife Service is presently conducting a 12-year flow evaluation study on the Trinity, which is to be completed in 1996 and forwarded to Congress for review. This study will recommend an instream flow release schedule which could differ substantially from the present releases. The potential exists for further reductions in federal CVP yield in exchange for betterment of the Trinity River fishery habitat.

Drinking Water Standards. A primary issue affecting water managers in this region is complying with new EPA-mandated drinking water standards. Compliance could require filtration for most communities and would be very expensive to implement.

Trinity River Sediment Control. The construction of Buckhorn Mountain Dam in 1990, in combination with sediment pool construction at the mouth of Grass Valley Creek to collect decomposed granite sand, has largely controlled the flow of sediment to the Trinity River. This 70-foot-high dam traps a large portion of the creek's sand sediment and prevents it from flowing into the Trinity River where it damages salmon spawning and rearing areas. The portion of sediment that flows in below the dam is largely controlled by sediment ponds at the mouth of the creek. In addition, the recent acquisition of the more erosive portion of the watershed by the Trinity River Task Force will help prevent future erosion-causing activities and allow for greater healing of this fragile area.

Instream Flow Issues. At several locations throughout the region, there is conflict between water supplies for agricultural and urban use versus fishery needs. Examples include the Klamath River below Iron Gate Dam, the Shasta and Scott rivers below irrigation diversions, the upper Eel River below Lake Pillsbury, and the reaches of the Russian River below Lakes Mendocino and Sonoma. For most of the North Coast Region, few major changes in the water supply capabilities of existing facilities are expected over the next 30 years. However, on the Klamath River below Iron Gate Dam or the Trinity River below Lewiston Dam, flow changes could occur in response to the findings of ongoing or proposed instream flow studies below existing reservoirs, and could change water supply allocations. Presently, however, there is no reliable means of quantifying the effects of potential demands for increased instream flows in the Klamath, Trinity, upper Eel, or lower Russian rivers. The effect of the State and federal Endangered Species acts on future instream flow requirements as additional species are listed cannot be predicted.

Identifying the Primary Causes of Fishery Declines. Fish populations have declined precipitously on all north coast streams since the 1960s. Many people tend to identify dams as the main cause of these fishery declines, yet undammed streams such as the Smith. Van Duzen, and Mattole rivers have also suffered steep reductions in salmon populations. There are many factors contributing to fishery declines, such as prolonged drought, commercial ocean fishing, logging, importing of fish from other stream systems, poaching, overfishing, and disease.

Endangered

Species. Two species of sucker fish found in the Klamath Project area have been listed as endangered under the federal and State Endangered Species acts. In response, the USFWS imposed restrictions on project operations that reduced dry-period water supply capabilities. As a result, roughly 7,000 acres of normally irrigated land in California was taken out of production in 1992. This modified operation of

The Klamath River is one of several Wild and Scenic Rivers in the North Coast Region. The Klamath and Trinity rivers are the focus of many regional environmental issues, including increased instream flows and endangered species habitat.

the Klamath Project, to accommodate the needs of the listed suckers, also reduced flows below Iron Gate Dam that are critical to salmon and steelhead survival in the middle and lower Klamath. This problem was alleviated in 1993 by heavy rainfall.

Pelican Bay State Prison. Opened in December 1989, Pelican Bay State Prison houses 4,000 inmates. An independent water supply line serves the prison from Crescent City's Ranney collectors on the Smith River. The prison currently uses about 672 af annually, and waste water from the prison facilities is treated on-site. A Del Norte County advisory measure allowing the Department of Corrections to build a second prison was passed by the voters and construction is likely to proceed. It appears that the increased water demand can be met through increased use of Smith River supplies.

Humboldt Bay Municipal Water District. This district supplies an average of 62,000 af per year in the Humboldt Bay area, including Eureka, Arcata, McKinleyville, and several pulp and lumber mills. The district's supply from Ruth Reservoir on the Mad River is allocated through existing contracts. About 4,480 af per year of unallocated supply is available to meet future demands or alleviate drought conditions. The HBMWD considered enlarging Ruth Reservoir, but engineering aspects of the project do not appear to be feasible and recent changes in health regulations would require expensive additional treatment of water from that source. Complying with the surface water treatment rules established in the 1986 amendment to the Safe Drinking Water Act presents a difficult, costly challenge for the Eureka area. Further, water from HBMWD's Ranney collectors in the Mad River has been designated as

ground water under the influence of surface water and must be filtered. A regional filtration plant is estimated to cost \$16 million. Thus, HBMWD is considering the feasibility of developing ground water to replace a portion of the Mad River supply for residential and commercial use only. About 50,400 af of the district's 62,720-af average annual water use (80 percent) was normally supplied to the Eureka pulp mills. This water does not require treatment. Since closure of the Simpson pulp mill, the district will deliver only about 28,000 af per year to this industry.

Russian River Instream Flow Decision and Supply Allocations. With water available from Lake Sonoma (Warm Springs Dam), and State Water Resources Control Board Decision 1610 defining instream flow requirements and operating criteria, most major water supply reliability questions in the Russian River Basin have been resolved to beyond 2010. However, there is growing concern over the extent of sedimentation in Lake Pillsbury and Lake Mendocino and the resulting reductions in dry-year carryover water supplies. Additionally, Mendocino County is concerned that Decision 1610 will prevent the county from obtaining additional water from the Russian River. Through the Eel-Russian River Commission, the two counties are exploring possibilities for augmenting available water supplies, including construction of additional storage on the upper Eel River and conjunctive use of ground water with existing surface supplies.

Water Supply Reliability Problems in Small Communities. A number of smaller communities throughout the region have continuing supply problems, often related to the lack of economic base to support water supply management and development costs. For example, the areas north and south of the town of Trinidad in Humboldt County depend on small springs and shallow wells which provide an inadequate supply during late summer and fall. They have attempted to hook up to Trinidad's system, supplied from Luffenholtz Creek, but have been unsuccessful due to local fears of overtaxing this small system. The City of Willits has had chronic problems with turbidity, taste, and odor in its Morris Reservoir and high arsenic, iron, and manganese levels in its well supply. These problems have been largely solved by the construction of Centennial Dam and associated treatment facilities.

The City of Fort Bragg has water shortage problems and has hired a consultant to investigate alternative solutions. The city's historic ability to use surface waters has been impaired by several factors, including fish bypass requirements, possible listing of the coho salmon as an endangered species, and additional water quality standards relating to treatment resulting in substantial new capital and operating expenditures. The city has undertaken a substantial amount of study work on alternative sources of supply, including ground water, water recycling, additional surface sources, and sea water desalination. Desalination is now seriously considered as an alternative to increasing the City of Fort Bragg's water supply reliability.

Many north coast ground water wells located on low terraces near the ocean are vulnerable to sea water intrusion if over-pumped. For example, the well serving the relocated town of Klamath has recently begun pumping sea water. Several small communities along the coast, such as Moonstone. Smith River, and Hiouchi, either experience chronic water shortages or have inadequate supplies to meet projected growth in the future. Water use is already very low due to extensive conservation, so most of these problems will likely need to be solved by constructing or upgrading community water systems. Factors hindering development of community systems are a low population base contributing to lack of funding, and community disagreements on the desirability of growth.

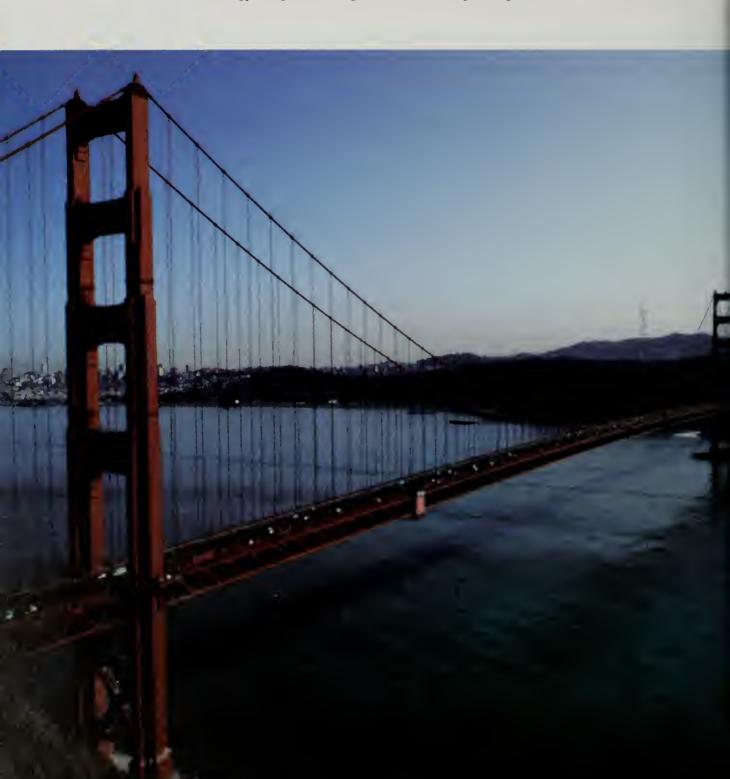
Lakes Earl and Talawa. To increase wildlife habitat, these linked lakes north of Crescent City are being allowed to reach higher levels than historically permitted. Local fears that these actions would interfere with operation of surrounding septic systems have subsided after a year of higher lake levels without significant problems. The lake levels are kept higher by breaching an ocean-formed sandbar at the common outlet when the water reaches approximately 10 feet in elevation. Agreement among agencies on the maximum allowable levels has not been reached yet, and studies continue. Higher late-summer levels in these lakes could increase water availability to surrounding shallow wells. Recent objections to higher uncontrolled lake levels has been expressed by a representative of Pacific Shores subdivision, which was formed in the 1960s.

Water Balance

Water budgets were computed for each planning subarea in the North Coast Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be more or less severe than the shortage shown. This depends on (1) how supplies are allocated within the region, (2) a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and (3) the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table NC-12 presents water demands for the 1990 level and for future water demands to 2020 and compares them with (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 20,035,000 and 10,159,000 af for average and drought years, respectively. Those demands are forecasted to increase to 20,238,000 and 10,364,000 af, respectively, by the year 2020, after accounting for a 55,000-af reduction in urban water demand resulting from water conservation measures. Urban net water demand is forecasted to increase by about 51,000 af by 2020, primarily due to expected increases in population; agricultural net water demand is forecasted to increase by about 27,000 af, primarily due to an expected increase in vineyards in the region. Environmental net water demands are increasing by 125,000 af, due primarily to implementation of the CVPIA, which increases Trinity River flows for fisheries by about 123,000 af, and a 2,000-af increase in wetland water needs.


Averageannual supplies are generally adequate to meet average netwater demands in this region out to the year 2020. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual drought year shortages are expected to continue to be nearly 9,000 af.

The only Level I water management program planned for this region is in the Russian River PSA. That program is 9,000 af of water recycling, which will reduce ground water pumping for this area by a similar amount. The remaining shortage of 9,000 af is in the Upper Klamath PSA, which requires both additional short-term drought management and future Level II water management programs, depending on the overall level of water service reliability deemed necessary by local agencies.

Water Demand/Supply	19	90	2000		2010		2020	
	average	drought	average	drought	average	drought	overoge	drought
Net Demand								
Urban—with 1990 level of conservation —reductions due to	168	177	210	219	247	257	274	285
long-term conservation measures (Level I)	_	-	-24	-24	-43	-43	-55	-55
Agricultural—with 1990 level of conservation	744	760	748	764	761	776	771	787
—reductions due to long-term conservation								
measures (Level I)	-	-	0	0	0	0	0	0
Environmental	19,087	9,187	19,212	9,312	19,212	9,312	19,212	9,312
Other ⁽¹⁾	36	35	36	35	36	35	36	35
TOTAL Net Demand	20,035	10,159	20,182	10,306	20,213	10,337	20,238	10,364
Water Supplies w/Existing Facilities Develaped Supplies								
Surface Water	922	917	934	930	954	947	967	965
Ground Water	263	283	275	295	286	308	298	316
Ground Water Overdraft ⁽²⁾	0	0	_	_	_	_	_	_
Subtotal	1,185	1,200	1,209	1,225	1,240	1,255	1,265	1,281
Dedicated Natural Flow	18,850	8,950	18,973	9,073	18,973	9,073	18,973	9,073
TOTAL Water Supplies	20,035	10,150	20,182	10,298	20,213	10,328	20,238	10,354
Demand/Supply Balance	0	-9	0	-8	0	-9	0	-10
Level I Water Management Programs								
Long-term Supply Augmentation								
Reclaimed	-	_	3	3	6	6	9	9
Local	_	-	0	0	0	0	0	0
Central Valley Project/								
Other Federal	—		0	0	0	0	0	0
State Water Project	—	-	0	0	0	0	0	0
Subtotat - Level I Water Management Programs	0	0	3	3	6	6	9	9
Net Ground Water or Surface Water Use Reduction								
Resulting from Level I Progroms	—	_	-3	-3	-6	6	-9	-9
Remaining Demand/Supply Balance R		-	-					
	0	-9	0	-8	0	-9	0	-10

Table NC-12. Water Budget (thousands of acre-feet)

Includes major conveyonce facility losses, recreation uses, and energy production.
 The degree future shortages are met by increased averdraft is unknown. Since overdraft is not sustainable, it is not included as a future supply.

Looking from Marin County, the Golden Gate Bridge spans the bay into San Francisco. The City of San Francisco is typical of the densely urbanized areas of the region. The San Francisco Bay Region extends from Pescadero Creek in southern San Mateo County to the mouth of Tomales Bay in the north and inland to the confluence of the Sacramento and San Joaquin rivers near Collinsville. The total land area of the region is about 3 percent of the State's area. For much of the following discussion, the region is divided into the North Bay and South Bay planning subareas, which are divided by the bay waterways. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The highest peaks of the Coast Range, which make up much of the eastern boundary, are over 3,000 feet above sea level. Other prominent geographic features include San Francisco, San Pablo, and Suisun bays, and the San Francisco and Marin peninsulas. The region also includes many small creeks which flow to the Pacific Ocean or into the bays.

The climate is generally cool and often foggy along the coast, with warmer Mediterranean-like weather in the inland valleys. The average high temperature is nearly 10 degrees higher inland than at San Francisco, resulting in higher outdoor water use in the inland areas. The gap in the hills at Carquinez Strait allows cool air to flow at times from the Pacific Ocean into the Sacramento Valley. Most of the interior North Bay and the northern parts of the South Bay also are influenced by this marine effect. The southern interior portions of the South Bay, by contrast, experience very little marine air movement. Average precipitation ranges from 14 inches at Livermore in the South Bay to almost 48 inches at Kentfield in Marin County in the North Bay.

Population

The region is highly urbanized and includes the San Francisco, Oakland, and San Jose metropolitan areas. There are large undeveloped areas in the western, northern, and southern parts of the region. In 1990, 18 percent of the State's total population lived in the region and almost 88 percent, or 4,800,000, of those residents lived in the South Bay. During the1980s, the region's population grew by approximately 695,000; the North Bay grew by about 20 percent and the South Bay grew by 14 percent.

In the North Bay PSA, the inland cities of Fairfield, Vallejo, Benicia, and Suisun City grew by 33, 36, 59, and 105 percent, respectively, from 1980 to 1990. These cities

Region Characteristics

Average Annual Precipitation: 31 inches	Average Annual Runoff: 1,245,500 af
Land Area: 4,400 square miles	Population: 5,484,000

San Francisco Bay Region

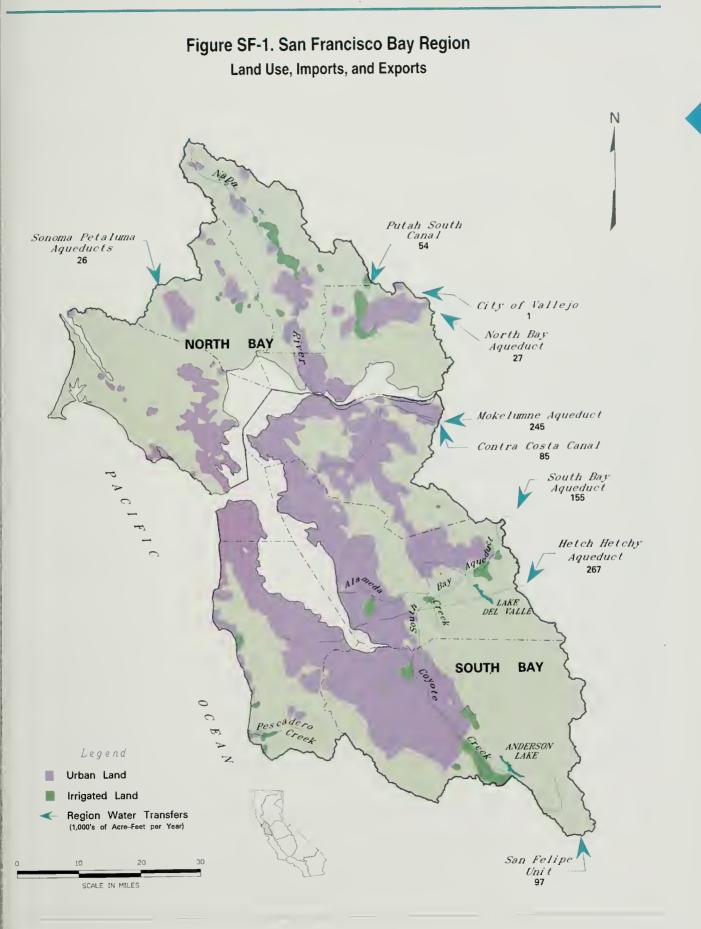
alone accounted for an increase of almost 70,000 people during the decade. Over the same period, most of the cities in Marin County grew very slowly. San Rafael, the county's largest city, grew at a modest 8 percent, while Fairfax actually declined in population. Further north and east, Petaluma and Napa grew by 28 and 22 percent, respectively.

The most rapid growth in the South Bay PSA also took place in the eastern part of that area. A number of cities had growth rates greater than 40 percent during the 1980s, including Dublin, Martinez, Pittsburg, Pleasanton, and San Ramon. Hercules, in the northern part of the PSA, grew by 282 percent. Growth during the 1980s was numerically significant in the larger urban centers: Oakland (32,905), Fremont (41,394), San Francisco (44,985), and San Jose (152,702). Table SF-1 shows regional population projections.

Planning Subarea	1990	2000	2010	2020
North Bay	680	817	889	941
South Bay	4,804	5,398	5,722	6,003
TOTAL	5,484	6,215	6,611	6,944

Table SF-1. Population Projections (thousands)

Land Use


Land use in the region is truly diverse. The San Francisco Bay Region is home to the world-famous Napa Valley and Sonoma County wine industry; international business and tourism in San Francisco; the technological development and production in the "Silicon Valley"; as well as urban, suburban, and rural living. Urban land accounts for 23 percent (655,600 acres) of the land area. Irrigated agricultural land in 1990 was 61,400 acres. Forecasted land use reflects an increase in urban areas to 870,900 acres, or 37 percent of the region's land area, by 2020. Point Reyes National Recreation Area, as well as other federal and State parks and reservoirs, make up a small portion of the total region.

While a relatively large portion of the land area is urbanized, a wide variety of crops also are grown in the region. Agricultural land use is strongly influenced by the climatic and urban growth factors mentioned above. In almost every area of the region, urban development is encroaching on agricultural lands.

Within the North Bay, vineyards account for over three-fourths of the irrigated acres in Sonoma and Napa counties. There are 4,200 acres of pasture and about 3,900 acres of deciduous trees (primarily walnuts, prunes, and pears in Solano County) in the North Bay. The coastal area of the South Bay supports rangeland, flowers, and a number of high-value specialty vegetables, such as artichokes. Vegetables, flowers, vineyards, and many suburban ranchettes with irrigated pasture are found in the Santa Clara Valley. Alfalfa, truck crops, and wine grapes are grown in the Livermore Valley. Figure SF-1 shows land use, imports, and exports in the San Francisco Bay Region.

Water Supply

Water supply sources include local surface water, imported surface water (both locally developed and purchased from other local agencies), ground water, Central Valley Project water, other federal project water (Solano Project), State Water Project

water, and a small amount of recycled waste water. About 66 percent of the urban supplies are imported to the region. Figure SF-2 shows the region's 1990 level sources of supply.

Supply with Existing Facilities and Water Management Programs

Ground water is found in both the alluvial basins and upland hard rock areas. Well yields in the alluvial basins range from less than 100 to over 3,000 gallons per minute. The yield from wells in the hard rock areas is generally much lower, but is usually sufficient for most domestic or livestock purposes. Recharge to the alluvial basins occurs primarily from rainfall and seepage from adjacent streams. However, a significant percentage, especially in the South Bay, is through artificial recharge facilities and incidental recharge from irrigation.

For 1990, drought supplies (including dedicated natural flow) were 28 percent less than average. Supply reductions occurred in local surface and imported supplies. Ground water use increased primarily because users and suppliers often rely more heavily on storage in aquifers in dry years.

The major reservoirs in the region are listed in Table SF-2. Table SF-3 shows water supplies with existing facilities and programs.

Reservoir Name River Hennessey Conn Creek		Owner		
Conn C reek	31.0	City of Nopa		
Nicasio Creek	22.4	Marin MWD		
Logunitos Creek	32.9	Marin MWD		
Logunitos Creek	8.9	Marin MWD		
Wolker Creek	10.6	Marin MWD		
San Pablo Creek	38.6	East Bay MUD		
Son Leondro Creek	41.4	East Boy MUD		
Son Leandro Creek	10.4	East Bay MUD		
Bear Creek	60.5	East Bay MUD		
Arroyo del Valle	77.1	DWR		
San Antonio Creek	50.5	City of San Francisco		
Coyote Creek	22.9	Santa Clara Valley WD		
Coyote Creek	89.7	Sonta Clara Valley WD		
Los Gatos Creek	19.8	Santa Clara Volley WE		
Los Gatos Creek	6.2	Son Jose Water Works		
Coloveros Creek	96.9	City of San Francisco		
Son Andreos Creek	19.0	City of San Francisco		
San Mateo Creek	58.4	City of San Francisco		
	Nicasio Creek Logunitos Creek Logunitos Creek Wolker Creek Son Poblo Creek Son Leondro Creek Bear Creek Bear Creek Arroyo del Valle San Antonio Creek Coyote Creek Los Gatos Creek Los Gatos Creek Coloveros Creek Son Andreos Creek	Nicasio Creek22.4Logunitos Creek32.9Logunitos Creek8.9Wolker Creek10.6Son Poblo Creek38.6Son Leondro Creek41.4Son Leondro Creek10.4Bear Creek60.5Arroyo del Valle77.1San Antonio Creek50.5Coyote Creek89.7Los Gatos Creek19.8Los Gatos Creek6.2Coloveros Creek96.9Son Andreos Creek19.0		

Table SF-2. Major Reservoirs

North Bay. At the 1990 level, the average year local surface water supply for the North Bay is 226,000 af. This includes 150,000 af of local surface water used to meet Suisun Marsh wetlands requirements.

Marin Municipal Water District serves the most populated, southeastern portion of Marin County. Local supply is obtained from its reservoirs in Marin County which can store about 79,600 af and supply up to 32,000 af annually, but have an estimated reliable supply of about 25,000 af per year.

North Marin Water District supplements its imported Sonoma County Water Agency supply with just over 1,000 af from Stafford Lake. The City of Napa uses local surface supply from Lake Hennessey and Lake Milliken, and St. Helena receives water from Bell Canyon Reservoir. The City of Vallejo gets water from Lake Curry in Napa County. Vineyards along the Napa River annually divert approximately 6,000 af from the river for irrigation and frost protection. Since no major local supply projects are anticipated, the local surface supplies are forecasted to remain constant through 2020.

Table SF-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies)

Supply	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Surface								
Lacal	365	253	365	253	365	253	365	253
Local imports	539	503	563	514	587	514	591	514
Colarada River	0	0	0	0	0	0	0	0
CVP	180	160	213	183	228	183	232	183
Other federol	54	44	54	44	54	44	54	44
SWP ⁽¹⁾	182	124	213	126	208	121	208	122
Graund water ⁽²⁾	100	139	126	174	160	174	165	174
Overdraft ⁽³⁾	0	0	-	_	_	_	_	_
Reclaimed	36	36	36	36	36	36	36	36
Dedicated natural flaw	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
TOTAL	6,071	4,344	6,185	4,415	6,253	4,410	6,266	4,411

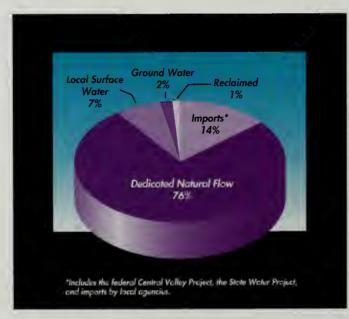
(thousands of acre-feet)

(1) SWP supplies may be higher in any year ta help recharge graund water basins for drought years. (2) Average graund water use is prime supply af graund water basins and does not include use of graund water which is artificially recharged from surface saurces into the graund water basins

(3) The degree future shartages are met by increased averdraft is unknawn. Since averdraft is not sustainable, it is nat included as a future supply.

Imports by Local Agencies. In the North Bay, water is imported from the Russian and Eel rivers (North Coast Region) by Sonoma County Water Agency and from the Delta by the City of Vallejo through the SWP. Sonoma County Water Agency delivers water from the Russian River Project (which includes Lake Mendocino and Lake Sonoma, and the Potter Valley Project) to eight principal contractors, including four in the San Francisco Bay Region (Petaluma, Sonoma, Valley of the Moon, and North Marin water districts).

Marin Municipal Water District currently supplements its local supply with 4,300 af from Sonoma County Water Agency, according to their "Off-peak Water Agreement." MMWD recently negotiated a new agreement with SCWA for an additional 10,000 af "as available." MMWD is now seeking to make these contracts as reliable as possible by working with SCWA, expanding its own conveyance facilities, and supporting SCWA in its SWRCB water rights permit application.


Ground water. The North Bay 1990 level average supply of ground water is about 24,000 af. The increase in ground water supply during drought years reflects a greater dependence on ground water during periods of surface water deficiencies. Future ground water supply is projected to remain fairly constant.

The larger alluvial basins in the North Bay PSA include Suisun-Fairfield Valley, Napa Valley-Sonoma Valley. Petaluma Valley. and Novato Valley. Ground water levels indicate the basins are probably not in overdraft. Estimated ground water storage in the basins is 1,700,000 af. Salt water intrusion has been a problem in the bayside portions of the Sonoma and Napa valleys, but this has been substantially mitigated by using imported surface water instead of ground water. The ground water quality in the North Bay is generally good. Some isolated areas experience elevated levels of dissolved solids, iron, boron, hardness, and chloride. High levels of nitrates occur in the Napa and Petaluma valleys as a result of past agricultural practices.

Other Federal Projects. Solano County Water Agency contracts for water from Lake Berryessa via the Solano Project and delivers it to farmers and cities within the county. The project was built by the U.S. Bureau of Reclamation and began operation in 1959. The project has an annual dependable supply of 201,000 af but can deliver as much as 212,000 af. The majority of the Solano Project entitlement water goes to agricultural users in the Sacramento River Region. The 1990 level average project supply for the North Bay is 54,000 af. The drought year supply shows a 15-percent deficiency, which was imposed by the USBR in 1991. Solano County Water Agency supplies are projected to increase only slightly through 2020.

State Water Project. The SWP delivers water through the North Bay Aqueduct to the Solano County Water Agency and Napa County Flood Control and Water Conservation District. The Aqueduct extends over 27 miles from Barker Slough to the Napa Turnout Reservoir in southern Napa County. Maximum SWP entitlements are for 67,000 af annually. The Aqueduct also conveys water for the City of Vallejo, which purchased capacity in the NBA.

Water Recycling. About 800 af of recycled water is used in Marin, Napa, and southern Sonoma counties, primarily for landscape irrigation. In Solano County, over 2,000 af of water is recycled by the Fairfield-Suisun Sewer District for agricultural irrigation, mostly on turf farms. The total 1990 average and drought year recycled

water supply in the North Bay is 3,000 af.

South Bay. The 1990 average local surface supply for the South Bay is 139,000 af. The drought year shortage is significantly affected by a 67-percent reduction in local surface supplies. Future supplies from existing facilities should relatively remain constant through 2020.

Imports by Local Agencies. San Francis-

co Water District imports Tuolumne River water via the 150-mile-long Hetch Hetchy System. In addition to supplying water to the City and County of San Francisco, SFWD sells water wholesale to 30 water districts, cities, and local agencies in Alameda, Santa

Figure SF-2. San Francisco Bay Region Water Supply Sources (1990 Level Average Conditions) Clara, and San Mateo counties. SFWD now has three pipelines capable of delivering 336,000 af annually to the Bay Area.

EBMUD imports water from the Mokelumnc River through its aqueducts and delivers water to much of Alameda and Contra Costa counties. The district supplies water to approximately 1.200,000 people in 20 cities and 15 unincorporated communities. EBMUD has water rights and facilities to divert up to 364,000 af annually from the Mokelumne River, depending on streamflow and water use by other water rights holders.

Ground water. The major ground water basins of the South Bay PSA include Santa Clara Valley, Livermore Valley, and the Pittsburg Plain. The total ground water storage in the South Bay basins is estimated to be 6,500,000 af.

Artificial recharge programs are in place in several South Bay localities. Alameda County Flood Control & Water Conservation District, Zone 7, uses

The San Francisco Bay Region relies on imported water for most of its urban and agricultural supplies. Increases in population will require water supply planners to face the challenges of meeting increased demand with limited supply.

several abandoned gravel pits to recharge ground water in the Livermore Valley. Alameda County Water District uses a series of artificial barriers and abandoned gravel pits to slow runoff and increase percolation in and along Alameda Creek.

Santa Clara Valley Water District has supplemented the ground water basin yield by developing an extensive recharge program. SCVWD augments the natural recharge by artificial recharge in percolation ponds and streambeds of major creeks in the Santa Clara Valley subbasins. Ground water users pay for ground water replenishment through a ground water charge based on measured ground water use. SCVWD manages an extensive conjunctive use program and during water supply shortages provides a financial incentive to influence water retailers to choose between ground water and treated surface water.

These programs have resulted in a general rise to near-historic highs in ground water levels in many of the basins. Recharge and surface water substitution in the Pittsburg Plain were successful in restoring ground water basins which were overdrafted in the past. These efforts mitigated or eliminated low ground water level problems, such as salt water intrusion in the Pittsburg Plain. Land subsidence in northern Santa Clara Valley has also been controlled. Alameda County Water District has begun an Aquifer Reclamation Program to mitigate salt water intrusion into its ground water basin near San Francisco Bay. The program includes pumping and disposing of saline water using a series of wells and creating a salinity intrusion barrier using 4-5 wells in the upper aquifer. The district anticipates that the basin's annual

perennial yield will be increased 3.500 af at the completion of the Aquifer Reclamation Program.

Ground water quality is still a problem to various degrees in many South Bay locations. The Livermore Valley has elevated levels of dissolved solids, chloride, boron, and hardness. The highly urbanized areas of the Santa Clara Valley have experienced ground water pollution over large areas from organic solvents used in electronics manufacturing. However, SCVWD has an extensive ground water protection program to administer ground water cleanup operations and to prevent degradation of the ground water basin through well sealing and ground water quality monitoring.

Central Valley Project. CVP water is delivered through the Contra Costa Canal to Contra Costa Water District and through the San Felipe Project to SCVWD. CCWD delivers water throughout eastern Contra Costa County, including a portion of the district in the San Joaquin River Region. CVP water was first delivered by CCWD in 1940. The current contract with USBR is for a supply of 195.000 af per year. The district also has a right to divert almost 27,000 af from Mallard Slough on Suisun Bay. Most of CCWD's demands are met through direct diversions from the Delta through the Contra Costa Canal. CCWD has very little regulatory or emergency water supply storage to replace Delta supplies when water quality is poor. As a result, CCWD service area voters authorized funding for Los Vaqueros Reservoir in 1988. The proposed reservoir will improve supply reliability and water quality by allowing the district to pump and store water from the Delta during high flows.

SCVWD's maximum entitlement from the CVP's San Felipe Division, which became operational in 1987, is 152,500 af. Average 1990 deliveries to the region are about 93,200 af. By 1989, much sooner than anticipated, the district was requesting, but did not receive, its full entitlement to reduce impacts of the 1987-92 drought. Normally, about one-half of the CVP water is used for recharge; the rest is used as direct supply.

State Water Project. The South Bay Aqueduct conveys SWP water to SCVWD, ACFC&WCD Zone 7, and ACWD. The aqueduct is over 42 miles long beginning at SWP's South Bay pumping plant on Bethany Reservoir and ending at the Santa Clara Terminal Facilities. SWP water is used in South Bay PSA for municipal and industrial supply, agricultural deliveries, and ground water recharge.

Water Recycling. There are several water recycling projects in the South Bay PSA which provide 33,000 af to various uses such as environmental, industrial, landscape, and construction.

Supplies with Additional Facilities and Water Management Programs

With increasing populations and the resulting increased water demand, Bay Area water agencies are looking at a number of options to increase supplies as well as ensure the reliability of their existing water sources. Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level l options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Supplies in the North Bay are adequate during average years to meet the water demand through 2020. For drought years, shortages range from 36,000 af in 1990 to 67,000 af in 2020 with existing facilities. With additional facilities, drought year shortages are reduced to about 33,000 af in 2020. Some areas that may have difficulty meeting water demand include MMWD, the Solano Project service area, and SWP contractor service areas. MMWD has the ability to use unused conveyance space in Sonoma County Water Agency and NMWD aqueducts, thus improving the water district's water supply reliability through water transfer. In November 1992, district voters approved funding for a program which includes building new facilities to eliminate or at least lessen the district's reliance on surplus capacity in NMWD and SCWA aqueducts.

With existing facilities, the South Bay's shortages would be about 30,000 af in 2020 during average years. During drought years, with existing facilities, shortages will increase from 272,000 af in 1990 to 417,000 af in 2020. With additional facilities, the South Bay will be able to meet average year demands to 2020 and drought year supply shortages would be reduced to about 228,000 af. Each of the six major water agencies in the South Bay is served by at least one of the import water systems connected to the Delta. These connections allow the transfer of water from agencies upstream of the Delta. Table SF-4 shows regional water supplies with additional (Level l) water management programs.

Supply	19	1990		2000		2010		2020	
	average	drought	averoge	drought	average	drought	averoge	drought	
Surface	····				· - · · · · · · · · · · · · · · · · · ·		_		
Locol	365	253	365	253	365	253	365	253	
Local imports	539	503	563	557	587	557	591	557	
Colorodo River	0	0	0	0	0	0	0	0	
CVP	180	160	213	183	228	183	232	183	
Other federol	54	44	54	44	54	44	54	44	
SWP ⁽¹⁾	182	124	220	130	212	200	216	201	
Ground water ⁽²⁾	100	139	87	194	87	194	110	198	
Overdraft ⁽³⁾	0	0	_	_	_	_	_	_	
Reclaimed	36	36	74	74	111	111	119	119	
Dedicated notural flow	4,615	3,085	4,609	3,079	4,609	3,079	4,609	3,079	
TOTAL	6,071	4,344	6,185	4,514	6,253	4,621	6,296	4,634	

Table SF-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies)

(thousands of acre-feet)

(1) SWP supplies may be higher in ony year ta help recharge graund water basins for draught years. (2) Average ground water use is prime supply af ground water basins and does not include use af graund water which is artificially recharged from surface sources into the ground water basins.

(3) The degree future shartages are met by increased overdraft is unknawn. Since overdraft is nat sustainable, it is not included as a future supply.

Water Supply Reliability and Drought Management Strategies. The San Francisco Bay Region weathered both the 1976-77 and 1987-92 droughts with moderate but only temporary impacts. These experiences verify that the region's flexibility to move water efficiently is a valuable asset in drought years. Three major factors contribute to this flexibility and the region's successful drought strategies: (1) effective water conservation and rationing programs, (2) available interconnections between water providers, and (3) diversity of water sources. While the region's dependency on somewhat less reliable imported supplies is substantial in drought years, water sources are geographically diverse and emergency supplies and water transfers can help alleviate drought impacts. The following paragraphs describe some recent drought management actions taken in the region.

During the 1976-77 drought, MMWD received supplemental water through an elaborate sequence of interconnections. The transfer involved delivery of SWP water made available by agencies in Southern California, which took more water from the Colorado River. Water was conveyed through the South Bay Aqueduct and then by exchange and interconnected through the water systems of the SFWD, City of Hayward, and EBMUD, to a temporary pipeline across the Richmond-San Rafael Bridge. During the 1987–92 drought, MMWD customers achieved a 39-percent reduction in water use during the voluntary reduction period targeted at 25 percent.

Another example of drought-induced interconnections occurred during the recent drought when SFWD requested DWR to install the San Antonio turnout from the SWP South Bay Aqueduct that had also been used in the 1976-77 drought.

EBMUD has facilities to transfer water to both CCWD and the City of Hayward, while SFWD is able to transfer water to SCVWD. All of the major agencies of the South Bay have access to facilities capable of transferring water from other agencies upstream of the Delta. These transfers can be brought in through the Contra Costa Canal (CVP), the South Bay Aqueduct (SWP), or the San Felipe Project (CVP). During the recent drought, EBMUD adopted both voluntary and mandatory water use reduction programs of up to 25 percent.

SCVWD received 32 percent of its maximum CVP supply in 1991, which included 10,000 af of hardship supply. In addition, it received 30 percent of its SWP supply. As a result of these deficient supplies, the district elected to purchase 14,000 af of water from Placer County Water Agency, 26,000 af of water from Yuba County, and 20,000 af from the 1991 State Drought Water Bank. In addition to supplementing its supplies, the district instituted conservation programs designed to save 25 percent of 1987 water use.

Locally imported supplies by SFWD and EBMUD also suffered deficiencies during the recent drought. The Hetch Hetchy deficiency was reduced from an initial 45 to 25 percent for 1991. Customers were required to reduce indoor use by 10 percent and outdoor use by 60 percent. The deficiency reduction was made possible by purchases of 50,000 af from the 1991 State Drought Water Bank and 20,000 af from PCWA.

ACWD and ACFC&WCD, Zone 7 were both subject to 80-percent deficiencies in their 1991 SWP supplies. ACWD received 14,800 af from the 1991 State Drought Water Bank and an increase in its share of Lake Del Valle supplies. These supplemental supplies allowed the district to scale back its rationing plan to 25 percent reductions. ACFC&WCD, Zone 7 was able to make up for SWP deficiencies by increased ground water pumping. ACFC&WCD, Zone 7 also acquired a small supplemental supply from the 1991 State Drought Water Bank and instituted a conservation education program with a 25-percent reduction goal.

Future Water Management Options. Since 1975 MMWD has had one of the least reliable supplies in the Bay Area. The district had to rely on supplemental imported supply from Sonoma County Water Agency and a very responsive reduction effort by customers to ensure adequate supplies throughout the 1987–92 drought.

Assuming "base case" growth to 2025 and no supplemental supplies, the district had estimated a 40-percent deficiency once every 10 years. MMWD's new contract with SCWA will decrease that deficiency to approximately 10 percent.

MMWD currently has no participation rights in SCWA facilities and uses excess capacity in SCWA's and NMWD's systems to convey Russian River water to Novato and into the MMWD system. MMWD developed and voters approved an Integrated Water Resources Management Program, which includes conservation, recycled water, and facilities expansion to accommodate the increased imported supply from the Russian River. The program is intended to provide sufficient supply to the district through 2025 and allows for manageable deficiencies in dry years, which will minimize costs and environmental impacts.

Other suppliers in the area are much less vulnerable. Solano County Water Agency's principal contractors, for example, have very reliable supplies. Using historic hydrology and 2010 demands. Solano County Water Agency forecasts no supply deficiencies for the system.

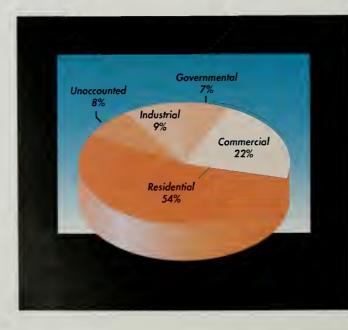
EBMUD's supply is vulnerable in at least three ways: (1) drought, (2) decreasing availability of supplies due to increased use by senior water rights holders and an increasing emphasis on environmental needs, and (3) the integrity of its delivery system, especially the security of the aqueducts from earthquakes or floods as they cross the Delta. EBMUD has recently completed work on an Updated Water Supply Management Program that includes a number of improvements to its water supply system. A detailed discussion of this program is in Volume 1, Chapter 11. A main element of EBMUD's program is the conjunctive use of ground water. In average and wet years, available water would be stored in ground water aquifers in the lower Mokelumne River basin and withdrawn in dry years. This program will yield 43,000 af in drought years. EBMUD's Board of Directors has also directed the district's staff to continue working with San Joaquin County water interests regarding development of a joint conjunctive use project, with the option of using the district's contract with USBR for 150,000 af per year of American River water.

Local imported supply would increase by 43,000 af in the future for drought years, reflecting EBMUD's conjunctive use alternative. American River water is potentially available from a previously unused CVP contract for 150,000 af that was originally to be delivered through Folsom South Canal to the Mokelunine Aqueducts. The district is still considering building its own extension of the Folsom South Canal so water could be delivered to its aqueducts.

As described previously, CCWD is pursuing the development of Los Vaqueros Reservoir near Byron to secure additional reliability and better quality for its water supplies. In addition, water recycling projects are becoming a cost-effective method of meeting increased demand in the San Francisco Bay Region. By 2020, the region could have an additional supply of about 83,000 af of recycled water to help meet its demands.

Water Use

Water use in the region has undergone dramatic changes over the last 40 years. A 1949 land use survey recorded 163,000 acres of irrigated agriculture in the region: the 1990 level land use analysis showed 61,400 acres, a 62-percent reduction. The 1990 level agricultural net water demand was 88,000 af. Urban water demand was


Figure SF-3. San Francisco Bay Region Net Water Demand (1990 Level Average Conditions)

1,186,000 af; and environmental water use was about 4,775,000 af. Almost all environmental water use in the region is associated with the Suisun Marsh demands and required Delta outflow. Total water use is forecasted to increase from approximately 6,071,000 af in 1990 to 6,296,000 af in 2020, primarily due to population increases. Figure SF-3 shows the distribution of 1990 level net water demands for the San Francisco Bay Region.

Urban Water Use

Urban water demand is computed using population and per capita water use. Census data and State Department of Finance projections were used to tabulate the region's population. Per capita use in the region varies significantly, depending on factors such as climate, income, population density, residential yard size, and volume of commercial and industrial use. Generally, per capita use showed an upward trend after the 1976-77

drought to pre-drought levels. Recently, per capita use values have dropped again. although not to the levels of the previous drought. This most recent drop is due to conservation efduring forts the 1987-92 drought. After a return to near-normal use, per capita use is forecasted to continue to drop slowly over the next three decades due to implementation of Best Management Practices (Volume I, Chapter 6).

Figure SF-4. San Francisco Bay Region Urban Applied Water Use by Sector (1990 Level Average Conditions) The cooler coastal portions of the region have the lowest per capita water use. The low per capita use values of approximately 100 gpcd in San Mateo County and 139 gpcd in San Francisco are generally related to a cooler climate, small yards, and higher population densities than in inland areas. Bayside communities in Marin and Sonoma counties use approximately 170 gpcd.

Santa Clara County's per capita use averages approximately 200 gpcd. The warmer and drier climate results in increased outdoor use. Residential areas reflect a range of uses, from high-density multi–unit dwellings to some areas of very low density suburban homes. The county also has a mix of water-using industries, such as food processing and computer and electronics manufacturing, which tend to raise per capita use.

The highest per capita use in the South Bay is in Contra Costa County, where use averages 230 gpcd because many residential areas consist of large estate-size lots which have high landscape water requirements; there also is considerable industrial water use concentrated along the Bay. The average daily per capita use for the region was 193 gallons in 1990. Figure SF-4 shows applied 1990 level urban water use by sector.

Urban water demands are displayed in Table SF-5. With a 27-percent increase in population anticipated by 2020, urban water demand is forecasted to increase roughly 19 percent after accounting for increases in household population density and savings from implementing water conservation measures such as urban Best Management Practices. The overall regional per capita use should decrease by about 6 percent by 2020.

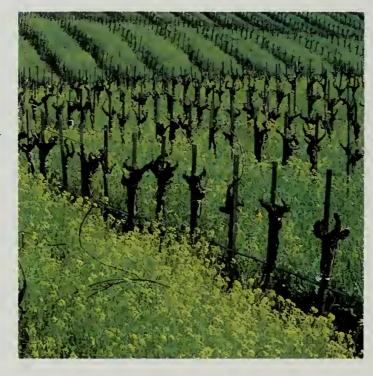
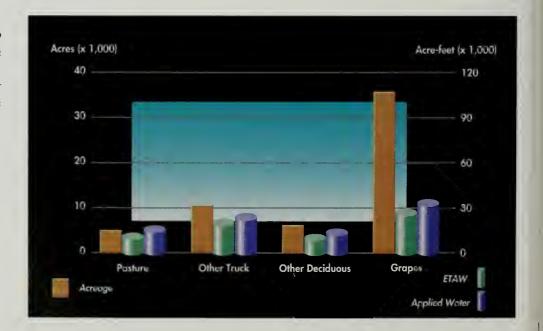

Planning Subarea	19	1990		2000		2010		20
	average	drought	average	drought	average	drought	average	drought
North Bay								_
Applied water demand	153	167	176	193	190	218	198	228
Net water demand	153	167	176	193	190	218	198	228
Depletian	135	148	156	171	168	194	176	203
South Bay								
Applied water demand	1,033	1,120	1,122	1,197	1,175	1,268	1,208	1,302
Net water demand	1,033	1,120	1,122	1,197	1,175	1,268	1,208	1,302
Depletion	944	1,027	1,029	1,100	1,079	1,168	1,111	1,200
TOTAL								
Applied water demand	1,186	1,287	1,298	1,390	1,365	1,486	1,406	1,530
Net water demand	1,186	1,287	1,298	1,390	1,365	1,486	1,406	1,530
Depletion	1,079	1,175	1,185	1,271	1,247	1,362	1,287	1,403

Table SF-5. Urban Water Demand

(thousands of acre-feet)

Agricultural Water Use


Figure SF-5 shows the irrigated acreage, ETAW, and applied water for major crops grown in the region. The following sections discuss agricultural water use in the North and South Bay areas.

North Bay.

Agricultural water use in the North Bay is influenced by the climate of the area. The cool air entering San Pablo Bay from the west is a factor in determining crop viabiland irrigation itv There is practices. very little agriculture remaining in Marin County, currently about 700 irrigated acres. Sonoma and Napa counties, on the other hand, have actually increased agricultural acreage, due to an increase in vine-

yards and adoption of drip irrigation on lands too steep for furrow or sprinkler irrigation practices. Most of these agricultural lands are served by ground water or direct diversions from the Napa River and other local streams. Forecasts are that vineyard acreage will continue to increase, while other crop acreages, with the exception of pasture (forecasted to decrease 20 percent), are expected to remain about the same.

Vineyard acreage is increasing in the Napa Valley. Most water for irrigation comes from ground water or diversions from the Napa River. Drip irrigation is one of many efficient practices that agricultural users are instituting in the area.

Figure SF-5. 1990 San Francisco Bay Region Acreage, ETAW, and Applied Water for Major Crops **South Bay.** The climate of the South Bay is warmer as you move inland from the coast. The area produces many high-value crops including artichokes, brussels sprouts, and cut flowers. The Santa Clara Valley was historically one of the garden spots for California agriculture. Urbanization over the last 40 years has reduced irrigated agricultural acreage from over 100,000 acres to less than 17,000 in 1990. Most of the remaining lands in production are along the Highway 101 corridor, north of Morgan Hill. Crops grown are primarily high-value truck, fruit, and nut crops. Also, one- to five-acre suburban ranchettes, with sprinkler-irrigated pasture for horses, are now found on formerly nonirrigated range land and compete for limited ground water supplies.

(thousands of acres)									
Planning Subarea	1990	2000	2010	2020					
North Bay	44	48	48	48					
South Bay	17	16	16	16					
TOTAL	61	64	64	64					

Table SF-6. Irrigated Crop Acreage

The Livermore Valley is partially separated from interior Bay climate patterns by the Diablo Range. The valley is significantly warmer, reflected in higher outdoor water use. There are approximately 2,500 acres of irrigated agriculture, primarily vineyards, grain, and truck crops.

Table SF-6 shows the irrigated agricultural land use by PSA and for the region, for 1990 through 2020. Table SF-7 shows 1990 evapotranspiration of applied water by crop. Table SF-8 summarizes the 1990 and forecasted agricultural water demand in the region.

Table SF-7. 1990 Evapotranspiration of Applied Water by Crop

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	2	1
Corn	1	1
Other field	1	1
Pasture	5	11
Other truck	10	19
Other deciduous	6	10
Vineyord	36	27
TOTAL	61	70

Planning Subarea	19	1990		2000		10	2020	
	average	drought	average	draught	average	drought	average	drought
North Bay								
Applied water demand	57	65	59	65	59	66	59	66
Net water demand	53	61	55	61	55	62	55	62
Depletian	48	55	50	55	50	56	50	56
South Bay								
Applied water demand	35	38	35	39	35	38	35	37
Net water demand	35	38	35	39	35	38	35	37
Depletion	32	34	32	35	32	34	32	33
TOTAL								
Applied water demand	92	103	94	104	94	104	94	103
Net water demand	88	99	90	100	90	100	90	99
Depletion	80	89	82	90	82	90	82	89

Table SF-8. Agricultural Water Demand

(thousands of acre-feet)

Environmental Water Use

The Suisun Marsh and Hayward Marsh are the only identified managed wetlands in the San Francisco Bay Region requiring water supplies. The Suisun Marsh consists of approximately 55,000 acres of managed wetlands. The State owns about 10,000 acres while about 44,000 acres are under private ownership and managed as duck clubs. The estimated water demand of the marsh is about 150,000 af per year. The additional instream demands for the Suisun Marsh are about 15,000 af in an average year and 145,000 af during drought years and is included in environmental instream water needs (Table SF-10). Additional Suisun Marsh instream demands are based on an estimated supplemental flow required over the eight-month period when Suisun Marsh Salinity Gates are operational to meet SWRCB D-1485 standards downstream of the gates in the Delta. The Hayward Marsh is a part of the Hayward Shoreline Marsh Expansion Project. The project represents an effort by several local agencies working together to create the largest wetlands restoration project on the west coast. The 1,800-acre site is managed by the East Bay Regional Park District. As part of the project, 10,000 af of recycled water from the Union Sanitary District is blended with the Bay's brackish water and applied to the 145-acre marsh, restoring habitat for fish, waterfowl, and the endangered salt marsh harvest mouse. Table SF-9 shows wetlands water needs.

19	90	2000		2010		2020	
average	drought	average	drought	average	drought	average	draught
150	150	150	150	150	150	150	150
150	150	150	150	150	150	1.50	150
150	150	150	150	150	150	150	150
10	10	10	10	10	10	10	10
10	10	10	10	10	10	10	10
10	10	10	10	10	10	10	10
					_		
160	160	160	160	160	160	160	160
160	160	160	160	160	160	160	160
160	160	160	160	160	160	160	160
	average 150 150 150 10 10 10 10 160 160	150 150 150 150 150 150 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	average drought average 150 150 150 150 150 150 150 150 150 150 150 150 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	average drought average drought 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 160 160 160	average drought average drought average 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 160 160 160 160	average drought average drought average drought 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 160 160 160 160 160 160 160	average drought average drought average drought average 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 160 160 160 160 160 160 160 160

Table SF-9. Wetland Water Needs

(thousands of acre-feet)

The largest environmental water use in the region is for Delta outflow to meet SWRCB D-1485 salinity requirements, which requires about 4,600,000 and 2,940,000 af for average and drought years, respectively. Other instream flows for small streams throughout the region were not included in the water use tables. Environmental instream water needs are shown in Table SF-10 and includes Suisun Marsh instream needs. Recent and future actions to protect aquatic species in the Delta will increase environmental water needs for this region. Volume I, Chapter 8 presents a broad discussion of water needs for the Bay-Delta.

Table SF-10. Environmental Instream Water Needs

(thousands of acre-feet)

1990		2000		2010		2020	
average	drought	average	drought	average	drought	average	drought
4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
							· · · · · ·
4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
	average 4,615 4,615 4,615 4,615 4,615	average draught 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085	average drought average 4,615 3,085 4,615 4,615 3,085 4,615 4,615 3,085 4,615 4,615 3,085 4,615 4,615 3,085 4,615 4,615 3,085 4,615	average draught average draught 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085	average drought average drought average 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615	average drought average drought average drought 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085 4,615 3,085	average drought average drought average drought average 4,615 3,085 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 3,085 4,615 4,615 3,085 4,615 3,085 4,615 3,085 4,615

Other Water Use

Other water demand includes water losses by major conveyance facilities in the region, water needs of recreational facilities, and water demand of power plants and other energy production. Figure SF-6 shows water recreation areas in the San Francisco Bay Area. Table SF-11 shows the total water demand for 1990 and forecasts to 2020 for the San Francisco Bay Region.

Table SF-11. Total Water Demands

(thousands of acre-feet)

Category of Use	19	90	2000		2010		2020	
	average	drought	average	drought	average	drought	average	drough
Urban				-				
Applied water demand	1,186	1,287	1,298	1,390	1,365	1,486	1,406	1,530
Net water demand	1,186	1,287	1,298	1,390	1,365	1,486	1,406	1,530
Depletion	1,079	1,175	1,185	1,271	1,247	1,362	1,287	1,403
Agricultural								
Applied water demand	92	103	94	104	94	104	94	103
Net water demand	88	99	90	100	90	100	90	99
Depletion	80	89	82	90	82	90	82	89
Environmental								
Applied water demand	4,775	3,245	4,775	3,245	4,775	3,245	4,775	3,245
Net water demand	4,775	3,245	4,775	3,245	4,775	3,245	4,775	3,245
Depletion	4,775	3,245	4,775	3,245	4,775	3,245	4,775	3,245
Other ⁽¹⁾								
Applied water demand	4	4	4	4	4	4	4	4
Net water demand	22	21	22	21	23	21	25	21
Depletian	22	21	22	21	23	21	25	21
TOTAL								
Applied water demand	6,057	4,639	6,171	4,743	6,238	4,839	6,279	4,882
Net water demand	6,071	4,652	6,185	4,756	6,253	4,852	6,296	4,895
Depletian	5,956	4,530	6,064	4,627	6,127	4,718	6,169	4,758

(1) Includes major conveyance facility losses, recreation uses, and energy production.

Issues Affecting Local Water Resource Management

The principal water management issues facing the region are population growth and environmental concerns. The following paragraphs describe legislation, litigation, and issues affecting the region.

Legislation and Litigation

EBMUD Supplies. The SWRCB held hearings in November 1992 regarding instream flow requirements for the Mokelumne River. The Department of Fish and Game, private fishing groups, and environmental interest groups want to increase flows below Camanche Reservoir to protect the river's fishery. In addition, several water agencies in the Sierra foothills, San Joaquin County, and the Delta contend that they should receive some priority in the distribution of Mokelumne River water. If the SWRCB rules against EBMUD, the district could be forced to take a large portion of its water from the Delta rather than through the Mokelumne Aqueducts. Lower quality water from the Delta would mean increased treatment costs which would be passed on



Figure SF-6. San Francisco Bay Region

*From 1992 California Energy Commission Maps. See Table D-3 in Appendix D for plant information.

to EBMUD customers. In a separate process, the Federal Energy Regulatory Commission is reviewing the district's hydropower operations. In November 1993, FERC issued a final EIS which recommends fish flows significantly greater than the district's Lower Mokelumne River Management Plan. The district filed a motion for a technical conference to provide additional information which the district believes should be the basis for revision of FERC's final decision. Final settlement is expected in 1994.

EBMUD diverted its contracted American River water only once, during the 1976-77 drought, when the district took 25,000 af from the Delta to supplement its depleted supplies under an emergency agreement with USBR. In 1972, a suit was filed protesting EBMUD's right to divert water at Folsom South Canal. In 1986, the SWRCB affirmed the right and referred the lawsuit to Alameda Superior Court for litigation. A preliminary decision in 1989 confirmed the right to divert water at Folsom South Canal and established minimum flows for the American River below Nimbus Dam that would be required before EBMUD could divert its supplies. A final decision was made in 1990, which cleared the way for the district to seriously consider a connection between the canal and the Mokelumne Aqueducts. An EIS/EIR will focus on technical, public health and safety, social, and environmental factors for the project. EBMUD, Sacramento County, Environmental Defense Fund, and DFG are cooperatively conducting fishery studies on the American River.

Recently EBMUD filed a lawsuit against Contra Costa County to block use of scarce EBMUD water for a housing development. The county certified an EIR for the Dougherty Valley development despite the concerns about water supply expressed by the district. EBMUD told the county that it does not have the water to supply the proposed 11,000-home development.

CVPIA. Implementation of the 1992 CVPIA will have some cost impacts on Bay Area water users in the form of higher prices for CVP water. The Act allocates a portion of CVP water to environmental uses and allows municipal and industrial users to purchase water from agricultural users. (See Volume 1, Chapter 2.)

Local Issues

Slow-growth Movement. Anti-growth sentiment is increasing in some Bay Area communities as was evident during many of the 1992 local elections. Napa and Contra Costa counties elected several slow-growth candidates. Marin County residents had opposed efforts to improve their water system delivery capabilities beyond limited expansion of local supplies, fearful that more water would mean uncontrolled growth. The Marin Municipal Water District has had for the last three years a moratorium on new connections within its service area due to limited water supplies. The operational yield of present district facilities indicated a 5,000 af deficit for 1990. After more than 20 years of consistently rejecting plans to import more surface water, voters narrowly approved financing to increase the district's capacity to import water from the Sonoma County Water Agency in order to reduce the frequency and severity of drought year shortages.

Contra Costa Water District. The quality and reliability of CCWD's Delta water supply has been an issue for the district. The proposal to build Los Vaqueros Reservoir addresses a number of related issues for the district's water supply and the Delta. The proposed reservoir would be an offstream storage facility and would allow more flexibility in CCWD's operations. Specifically, the district could divert higher quality water to Los Vaqueros Reservoir during high flows in the Delta. Los Vaqueros water would then be available to improve water quality by blending with water delivered throughout the year from the Delta and to provide emergency storage. By storing water at certain times of the year, the district could shut down its pumps during periods when the fisheries are most sensitive to large diversions. CCWD is planning to have the project online by 2000.

Lagunitas Creek. The SWRCB has not established permanent instream flow requirements below Peters Dam on Lagunitas Creek. Interim regulations require an average of 4,000 af annually to preserve or enhance the anadromous fishery of the creek. Significant changes in the permanent requirements would reduce Marin MWD's operational yield.

Drinking Water Standards. The California Department of Health Services is rewriting its surface water treatment requirements to comply with the Environmental Protection Agency's new drinking water standards. SFWD was recently given an extension of its operating permit to propose specific plans to meet DHS requirements. SFWD estimates that new facilities for treating Hetch Hetchy supplies, if required, could cost about \$50 million.

Water Balance

Water budgets were computed for each planning subarea in the San Francisco Bay Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be more or less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume 1, Chapter 11 presents a broader discussion of demand management options.

Table SF-12 presents water demands for the 1990 level and for future water demands to 2020 and compares them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options. Regional net water demands for the 1990 level of development totaled 6,071,000 and 4,652,000 af for average and drought years, respectively. Those demands are forecasted to increase to 6,296,000 and 4,895,000 af, respectively, by the year 2020, after accounting for a 250,000-af reduction in urban water demand resulting from additional long-term water conservation measures.

Urban net water demand is forecasted to increase by 470,000 af by 2020, without additional long-term water conservation measures, primarily due to expected increases in population, while agricultural net water demand remains essentially level. Environmental net water demands under SWRCB D-1485 would remain the same but could increase substantially depending on the outcome of several actions currently being undertaken to protect aquatic species.

Average annual supplies with existing water management programs are inadequate to meet average net water demands in this region, resulting in a shortage of about 30,000 af by 2020. During droughts, without additional water management programs, annual drought year shortages are expected to increase to about 484,000 af by 2020.

Water Demand/Supply	19	90	20	00	2010		2020	
	average	drought	average	drought	average	drought	average	drought
Net Demand								
Urbon—with 1990								
level of conservation	1,186	1,287	1,409	1,501	1,559	1,680	1,656	1,780
-reductions due to								
long-term conservation			111	111	104	104	250	250
meosures (Level I)	_		-111	-111	-194	-194	-250	-250
Agricultural—with 1990 level of conservation	88	99	90	100	90	100	90	99
—reductions due to	00		/0	100		100	,0	
long-term conservation								
meosures (Level I)	_	_	0	0	0	0	0	0
Environmentol	4,775	3,245	4,775	3,245	4,775	3,245	4,775	3,245
Other ⁽¹⁾	22	21	22	21	23	21	25	21
TOTAL Net Demand	6,071	4,652	6,185	4,756	6,253	4,852	6,296	4,895
Water Supplies w/Existing Facilities U Developed Supplies				115/	1 (70	1.151	1.407	1.150
Surfoce Water ⁽²⁾	1,356	1,120	1,444	1,156	1,478	1,151	1,486	1,152
Ground Water	100	139	126	174	160	174	165	174
Ground Water Overdroff ⁽³⁾	0	0	1.570	1 000	1 (00	1.005	-	1.00/
Subtotat	1,456	1,259	1,570	1,330	1,638	1,325	1,651	1,326
Dedicated Natural Flow	4,615	3,085	4,615	3,085	4,615	3,085	4,615	3,085
TOTAL Water Supplies	6,071	4,344	6,185	4,415	6,253	4,410	6,266	4,411
Demand/Supply Balance	0	-308	0	-341	0	-442	-30	-484
Level I Water Management Pragrams	(4)							
Long-term Supply Augmentation								
Reclaimed		_	38	38	75	75	83	83
Locol		_	0	43	0	43	0	43
Central Valley Project/								
Other Federal	-	_	0	0	0	0	0	0
Stote Woter Project	-	_	7	4	4	79	8	79
Subtotal - Level I Water								
Management Programs	0	0	45	85	79	197	91	205
Net Ground Water or								
Surface Water Use Reduction Resulting from Level I Programs			-45	14	-79	14	-61	18

Table SF-12. Water Budget

(thousands of acre-feet)

Includes major conveyance facility lasses, recreation uses, and energy production.
 Existing and future imparted supplies that depend an Delto export capabilities are based on SWRCB D-1485 and da nat take into account recent actions to protect aquatic species. As such, regional water supply shartages are understated(nate: proposed environmental water demands of 1 to 3 MAF are included in the California water budget).
 The degree future shartages are met by increased averdraft is unknown. Since averdraft is nat sustainable, it is nat included as a future supply
 Protection of fish and wildlife and a lang-term solution to complex Delto problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

0

-242

0

-231

0

-261

Ł

-308

0

With Level I water management programs, supplies would meet the future water demand of the region in average years. However, during droughts, shortages could be reduced to about 261,000 af per year by 2020. This remaining shortage requires both additional short-term drought management, water transfers and demand management programs, and future Level II water management programs, depending on the overall level of water service reliability deemed necessary by local agencies. This region depends on export from the Sacramento-San Joaquin Delta for a portion of its supplies. Shortages stated above are based on SWRCB D-1485 operating criteria for Delta supplies and do not take into account recent actions to protect aquatic species in the estuary. As such, regional water supply shortages are understated.

Morro Rock provides a stunning backdrop for these boats anchored in Morro Bay. Morro Bay is a popular community on the Central Coast whose primary industries are commercial ocean fishing and tourism.

44

The Central Coast Region accounts for about 7 percent of California's total land area. It encompasses the area adjacent to the Pacific Ocean including Santa Cruz County in the north through Santa Barbara County in the south to the Diablo and Temblor mountain ranges on the east. Its topographic features include Monterey and Morro Bay: the Pajaro, Carmel, Santa Maria, Cuyama, and Salinas valleys; and a number of mountain ranges. The Central Coast Region is best known for its rugged Pacific coastline, scenic bays, and redwood forests.

The varied geography of the region creates diverse climates. During the summer months, temperatures are generally cool along the coastline and warm inland. In the winter, temperatures remain cool along the coast and become even cooler inland.

Annual precipitation in the region ranges from 14 to 45 inches, usually in the form of rain. The average annual precipitation near the City of Salinas is about 14 inches while in the higher elevations of the Big Sur area, approximately 30 miles south of Monterey along the coast, precipitation averages about 40 inches a year. In 1983, the Big Sur area had a surprising 85 inches of rain. Average annual precipitation in the southern coastal basins ranges from 12 to 20 inches, with most of it occurring from November through April. The southern interior basins usually receive 5 to 10 inches per year, the mountain areas receiving more than the valley floors.

Population

With a 1990 population slightly under 1.3 million, the Central Coast Region contains roughly 4 percent of California's population. While most of California experienced a substantial population increase over the past 10 years, growth in this region exceeded the State's average. The collective population of incorporated cities in the Salinas Valley increased 37 percent during the past decade. Population centers along the coast, such as San Luis Obispo and Santa Maria, also had large population increases of 23 and 54 percent, respectively. In addition, significant increases were recorded in the Santa Ynez Valley and smaller communities in Salinas Valley. An inviting atmosphere of good weather, clean air, and close proximity to the mountains and urbanized areas encouraged this growth. However, building moratoriums limited population growth in the area near Santa Barbara.

Region CharacteristicsAverage Annual Precipitation: 20 inchesAverage Annual Runoff: 2,477,000 afLand Area: 11,280 square miles1990 Population: 1,292,900

Central Coast Region

Population growth in the northern part of the region is also associated with space availability and affordable housing prices. While above the national average, the cost of homes in this area is affordable compared to many other parts of California. Much of the region's growth is the result of people migrating from the San Francisco Bay and Los Angeles areas. Current growth in the region's northern area is primarily in and around Hollister, Salinas, and the Watsonville area. Table CC-1 shows population projections to 2020 for the region.

Table CC-1. Population Projections (thousonds)

Planning Subarea	1990	2000	2010	2020
Northern	702	823	969	1,129
Southern	591	699	792	888
TOTAL	1,293	1,522	1,761	2,017

Despite the population increases, much of the region is sparsely populated. The principal population centers are Santa Cruz, Salinas, Watsonville, Monterey, San Luis Obispo. Santa Maria, Santa Barbara, and Lompoc. Most of the region's future population growth continues to be in areas showing recent growth.

The economy in many areas of the region is tied to military installations. Fort Ord, Hunter-Liggett Military Reservation, Camp Roberts, and Vandenberg AFB are the major military facilities in the region. The Monterey Peninsula area is now preparing for the closure of Fort Ord. The cities of Seaside and Marina will suffer the greatest impacts, but the entire area is expected to be affected by the loss of military personnel, civilian workers, and their families.

Land Use

Publicly-owned lands constitute approximately 28 percent of the region's area. The four major military installations within the region occupy 340,000 acres. (See Appendix C for maps of the planning subareas and land ownership in the region.) The abundance of state parks and national forest land (Los Padres, 1.3 million acres) offers the public many recreational opportunities. Elkhorn Slough National Estuarine Research Reserve, one of the few remaining coastal wetlands, showcases miles of scenic wetlands and rolling hills. The slough is on a migratory flyway and is an important feeding and resting ground for a variety of waterfowl. Irrigated and nonirrigated agriculture still remains the dominant land use for most of the Central Coast region. Intensive agriculture exists in the Salinas and Pajaro valleys in the north and the Santa Maria and lower Santa Ynez valleys in the south. Moderate levels of agricultural activity also occur near the Upper Salinas, South Coast, and Cuyama areas. Most of the region's irrigated agriculture is in the northern and southwestern valleys, and in recent years irrigated acreage has remained fairly stable. Figure CC-1 shows land use, along with imports and exports for the Central Coast Region.

Wine grape acreage has increased in the upper Salinas Valley in San Luis Obispo County but decreased in the lower valley within Monterey County. However, acreage planted to vegetables and other truck crops far surpassed that planted to vineyards and orchards. Cut flowers, strawberries, and specialty crops, such as asparagus, mushroom, artichokes, and holly, are distinctive to the region's northern area. The flower seed industry in Lompoc Valley is a thriving business which also attracts many

Central Coast Region

tourists each year. Portions of the upper Salinas Valley and Carrizo Plain are dry-farmed to produce winter grain. These areas also support sheep and cattle ranching. Industries other than agriculture are not well developed, but there are petroleum refining operations near Santa Maria and a significant oil well field in the Cuyama Valley, as well as frozen food plants in the Pajaro Valley.

Urban development is beginning to encroach on the agricultural lands in the highly productive inland valleys. Total irrigated agricultural land acreage in the Central Coast Region decreased from 459,000 acres in 1980 to 430,000 acres in 1990 (-6 percent). Total crop acreage decreased from 531,000 acres in 1980 to 528,000 acres in 1990. Although the Southern PSA total irrigated land decreased from 156,000 acres to about 145,000 acres, total crop acres increased from about 155,000 acres in 1980 to acres in 1980. This indicated an increase in multiple cropping. Urban acreage also increased from 182,000 acres to 240,100 acres during the same period.

Increases in defense-related jobs associated with the space shuttle and missile testing programs at Vandenburg Air Force Base accelerated the urbanization of the Santa Maria and lower Santa Ynez valleys during the 1970s. Growth was experienced in all areas of urban land use, but primarily in the residential and industrial categories. Some agricultural land was lost to the initial wave of development. However,

Houses nestled in the Santa Barbara hillside. Adequate water supplies to serve the area's growing urban population is an important issue facing the region.

some local growers have compensated for the agricultural land losses by multiple croppings and use of nonirrigated pasture lands.

Much of the coastal strip has not been developed because of steep slopes, inaccessibility, and military-use restrictions. Developed coastal areas consist primarily of tourist and resort areas (Monterey Bay, Cambria, Morro Bay, and Pismo Beach) and middle-to-upper-income residential communities (Carmel, Lompoc, Goleta, and Santa Barbara).

Water Supply

Ground water is the most significant source of water supply for the region. Imported supplies account for only 5 percent of the total. Completion of the Coastal Branch of the State Water Project, as well as other local projects, will lessen the reliance on ground water supplies. Figure CC-2 shows the region's 1990 level sources of supply.

The average water supply for the Central Coast Region for the 1990 level of development is estimated at 1,143,000 af. In 1990, ground water pumping amounted to 82 percent of total supplies, 21 percent of which was in excess of the estimated prime supply and is considered overdraft.

Supply with Existing Facilities and Water Management Programs

There are in excess of 60 reservoirs within the Central Coast Region, the majority of which are owned by private concerns. The reservoirs in the region are used for residential and municipal water needs, flood control, recreation, irrigation, and riparian habitat. The major reservoirs in the region are listed in Table CC-2.

Reservoir Name	River	Capacity (1,000 AF)	Owner
Santa Margarita Lake	Salinos	24	US Army Corps of Engineers
Son Antonio	San Antonio	335	MCWRA
Nacimiento	Nocimienta	340	MCWRA
Gibralter	Sonto Ynez	9	City of Santa Barbara
Cachuma (Bradbury)	Santa Ynez	190	U.S. Bureau af Reclamation
Whole Rock	Old Creek	41	Department of Woter Resources
Lopez	Arrayo Grande Creek	52	SLOCFCWCD
Vaquero (Twitchell)	Cuyomo River	240	U.S. Bureau af Reclamation

Table CC-2. Major Reservoirs

In the Northern PSA, ground water is the primary source of water for both urban and agricultural use. The Carmel, Pajaro, and Salinas rivers provide most of the ground water recharge for the area. The San Antonio and Nacimiento reservoirs regulate the Salinas River. Table CC-3 shows water supplies with existing facilities and water management programs.

Basins in the Southern PSA are smaller, but important to their local communities. These shallow basins underlie seasonal coastal streams. During years with normal or above-normal rainfall, aquifers in the basins are continuously replenished by creek flows. In years of belownormal precipitation, the creek flows are intermittent, flow is insufficient for both agricultural and municipal uses, wells become dry,

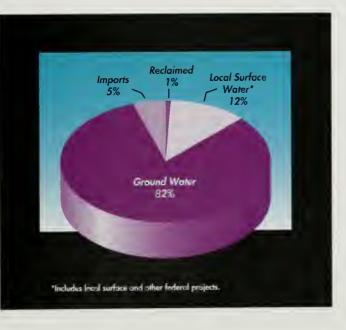


Figure CC-2. Central Coast Region Water Supply Sources (1990 Level Average Conditions)

and sea water intrudes into some coastal ground water basins.

Supply	19	1990		2000		2010		2020	
	average	drought	average	drought	averoge	drought	averoge	drought	
Surface					• • •				
Local	76	56	76	56	76	56	76	56	
Local imports	0	0	0	0	0	0	0	0	
Colorado River	0	0	0	0	0	0	0	0	
CVP	53	19	56	19	80	23	83	23	
Other federal	65	46	65	46	65	46	65	46	
SWP	0	0	0	0	0	0	0	0	
Ground water ⁽¹⁾	688	762	694	769	695	776	698	781	
Overdraft ⁽²⁾	245	245	_	_	_	_	_	_	
Reclaimed	15	15	23	23	23	23	23	23	
Dedicated natural flaw	1	0	1	0	1	0	1	0	
TOTAL	1,143	1,143	915	913	940	924	946	929	

Table CC-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

(1) Average ground water use is prime supply of ground water basins and does not include use of ground water which is artificially recharged from surface sources into the ground water basins.

(2) The degree future shartages are met by increased averdraft is unknawn. Since averdraft is not sustainable, it is not included as a future supply.

Water Supply Reliability and Drought Management Strategies. Many large and small communities in the region have initiated both voluntary and mandatory water conservation practices. Practices range from voluntary water conservation and limited outdoor watering to mandatory water rationing and little or no outdoor watering. The City of Salinas relies on outdoor watering restrictions based upon time-of-day water use limitation, and voluntary water conservation practices. Recently, many of the communities which mandated water rationing during the drought have elected to implement a voluntary water conservation program. For example. Monterey has an outdoor watering schedule based upon time-of-day restrictions, and the city's water waste ordinance is still in effect. The communities of Watsonville and Santa Cruz have voluntary water conservation programs in place. Water runoff from overwatering is prohibited in these communities.

The Marina County Water District in Monterey County, near Fort Ord, has stepped up its conservation efforts to deal with the issue of drought and sea water intrusion. In 1991, the Marina County Water District adopted an ordinance designed to prohibit water waste and encourage conservation efforts. Water conservation projects initiated included a low-flow showerhead retrofit program, resulting in the replacement of one-third of all showerheads in the district. A water audit program was also initiated to provide owners of both businesses and residences with a personalized water conservation plan.

Water supply shortages occurred in the South Coast, San Luis Obispo, Morro Bay, and North Coast areas of the region because of the 1987-92 drought in the Central Coast Region. Dwindling surface water supplies forced retail water agencies in these areas to depend more on limited ground water supplies and water conservation to make up deficits. Portions of the Southern PSA experienced unprecedented supply shortages. In the summer of 1990, retail water agencies in the service area of Lake Cachuma were confronted with the prospect that only 12 months of supply remained in that reservoir. Two of these agencies were the Goleta Water District and the City of Santa Barbara. The Goleta Water District began implementing a mandatory water rationing program in 1988 for all urban and agricultural customers within its service area. The historical water use by all customers was evaluated and a percentage reduction was assigned to cach; financial penalties were established to prevent noncompliance. In addition, the agency established a rebate program that involved the purchase and installation of ultra-low-flush toilets for residential customers, passed ordinances that temporarily banned certain water-related activities, and vigorously advertised water conservation. The conservation efforts by retail customers exceeded the savings levels imposed by the district and resulted in extra water supplies being delivered to agricultural customers.

The City of Santa Barbara implemented similar strategies in combating supply shortages. The city also established a drought patrol to monitor water use behavior, and penalties and citations were handed out to violators. In addition, the city examined and approved action to: 1) import emergency SWP water from Ventura County and 2) examine the potential of sea water desalination. An emergency pipeline was installed to bring SWP water into the Santa Barbara-Carpenteria area from Casitas Lake in Ventura County by exchange, and a sea water desalination plant was constructed in 1991-92 that is capable of producing 7,500 af per year. The plant operated until early June 1992, when it was shut down; the plant will remain on stand-by mode due to plentiful surface supplies. The cost to produce the water was relatively high for an area that relies on existing local surface supplies and ground water.

To minimize the impacts of the drought, the City of Morro Bay operated a sea water desalting plant with a capacity of 400 gallons per minute. This plant is operated under an emergency-only permit (drought emergency). The city has applied to the California Coastal Commission for a permit to use the plant on an as-needed basis.

During the height of the drought, the counties of San Luis Obispo and Santa Barbara relaxed certain health restrictions on the use of gray water for residential landscape irrigation. Homeowners in San Luis Obispo County were permitted to use secondary washing machine rinse water for irrigation but were required to discharge the water underground.

In Santa Barbara, irrigation with grey water was permitted on nonedible plant materials only and homeowners were required to discharge the water through drip systems or leach lines. Regulations on the grey water use were not relaxed in other parts of the region.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Increased use of SWP water in the Southern PSA and CVP water in the Northern PSA will require additional transportation facilities. As outlined in the water supply section, many agencies are looking to these import sources for their future supplies. Local alternatives being examined include increasing capacity in local storage reservoirs or, in some cases, authorizing new projects. Cloud seeding and desalination are showing to be effective in parts of the region. The following sections summarize water management programs under active consideration in the region.

To improve the reliability of water supplies in the Monterey Bay area, the Monterey Peninsula Water Management District has taken a number of actions including water conservation, water reclamation, and investigating several water development alternatives. Improvements to the system also are needed to provide water for municipal and industrial as well as environmental needs of the area. Current supply is inadequate during drought years when shortages develop due to lack of adequate storage facilities. The Monterey Peninsula Water Management District investigated 32 water supply alternatives before selecting five alternatives for final analysis. The preferred environmentally superior alternative is the 24,000-af New Los Padres Reservoir, with or without desalination. The New Los Padres Dam would be on the Carmel River and would completely inundate the existing dam and reservoir. The New Los Padres Reservoir could provide 22,000 af of supply in an average year to the Monterey Peninsula's water supply system.

Table CC-4. Water Supplies with Level I Water Management Programs

(Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

Supply	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Surface								
Locol	76	56	100	78	100	78	100	78
Locol imports	0	0	0	0	0	0	0	0
Colorado River	0	0	0	0	0	0	0	0
CVP	53	19	56	19	100	30	103	30
Other federal	65	46	65	46	65	46	65	46
SWP	0	0	53	25	53	43	53	43
Graund water ⁽¹⁾	688	762	678	768	682	775	686	780
Overdraft ⁽²⁾	245	245	_					_
Reclaimed	15	15	67	67	78	78	78	78
Dedicated natural flaw	1	0	17	6	17	6	17	6
TOTAL	1,143	1,143	1,036	1,009	1,095	1,056	1,102	1,061

(1) Average ground water use is prime supply af graund water basins and daes not include use of graund water which is artificially recharged from surface sources into the ground water basins.

(2) The degree future shortages are met by increased averdraft is unknawn. Since averdraft is nat sustainable, it is nat included as a future supply.

Many areas within the Southern PSA use local surface water projects and ground water extractions as their primary sources of water. Surface water storage facilities include Salinas Reservoir, Twitchell Reservoir, and Lake Cachuma. Annual precipitation and spring runoff from nearby mountains determine the reliability of these vital water supplies. In some instances, emergency measures, such as those in 1990 when local and SWP water from Ventura County was wheeled to Santa Barbara, must be implemented to ensure an adequate supply of water. In 1992, Santa Barbara and San Luis Obispo counties approved extending the Coastal Branch of the SWP,

which will increase their future water supply reliability. Table CC-4 shows water supplies with additional Level I water management programs.

Agencies within San Luis Obispo County have requested 4,830 af from the SWP, while requests from Santa Barbara County total 42,486 af. Availability of SWP supplies in Santa Barbara and to a lesser degree San Luis Obispo counties will lessen the severity and frequency of water supply shortages and will help alleviate ground water overdraft. The County of San Luis Obispo is also negotiating to take delivery of its full entitlement of 17,500 af of Nacimiento Reservoir water by the year 2000.

The City of San Luis Obispo has actively been pursuing the Salinas Reservoir Expansion Project to supplement its water supply. The project involves installation of spillway gates to expand the storage capacity of the existing reservoir from about 23,840 af to 41,790 af. This project will increase the reservoir storage by about 17,950 af and increase the City annual supplies by about 1.650 af. The Environmental Impact Report for the project is expected to be certified in 1994.

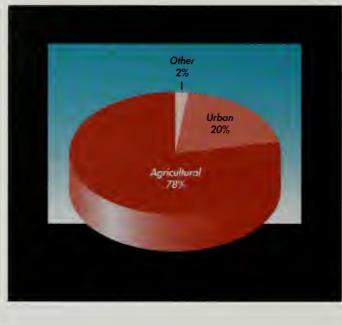
The City of Lompoc has voted not to take its 4,000-af entitlement of SWP water and plans to negotiate for federal water from Lake Cachuma. Currently, Lake Cachuma water goes to residents in the Santa Barbara area and to the Santa Ynez River Water Conservation District.

Other measures to augment water supplies are under consideration by various water agencies. Cloud seeding has been effective in the Monterey County mountains. Desalination, reservoir enlargement, and importing surface water are options to increase surface water supplies. The USBR completed a study of the cost effectiveness of extending the San Felipe Project of the federal CVP, which would deliver water to the Pajaro Valley. Several local government and water agencies are preparing water management plans which will address short-, medium-, and long-term schemes to reduce water use and bring in additional water.

Water recycling will play an increasing role in supplies for nonconsumptive use. The Carmel Area Wastewater District will begin construction during 1993 of a water recycling project that will serve seven golf courses and two recreational areas in the Pebble Beach area of Monterey County. Plans call for enough recycled water to meet almost 100 percent of the users' irrigation demands. The project is being developed with the Pebble Beach Community Services District.

Water recycling facilities have been built by the City of Santa Barbara and by the Goleta Water District. The City recently completed Phase II of its project, bringing the total delivery capability of the City to about 1,200 af per year. Goleta Sanitary District and Goleta Water District have recently dedicated a desalination plant with a capacity of 2,300 gallons per minute.

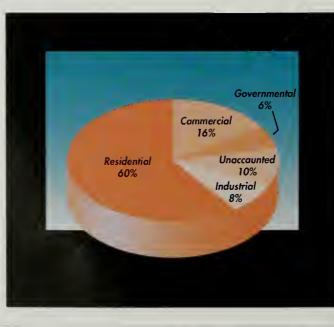
The Monterey Regional Water Pollution Control Agency was formed in the 1970s to seek solutions to the problem of water pollution, and is comprised of a dozen local entities. During the late 1970s the MRWPCA began purchasing the treatment plants and outfalls owned by its member agencies. To comply with regulations of the SWRCB and the U.S. EPA, old outfalls were replaced by a large outfall discharging two miles offshore. The installation of interceptor pipelines and pump stations to divert waste water from Pacific Grove, and the upgrade of the Monterey Treatment Plant were completed in 1981. In 1983, a series of interceptor pipelines, pump stations, and a new ocean outfall were completed.


The Monterey County Water Resources Agency is in the process of screening nine major project alternatives, each with several components, to bring the Salinas Basin

into balance and reduce sea water intrusion. Some of the alternatives include enlarging the capacities of San Antonio and Nacimiento reservoirs, constructing a tunnel to transport water from Nacimiento to San Antonio, constructing dams on the Arroyo Seco River and Chalone Creek, and developing a dispersed well system and transportation system to convey water from south Monterey County to water deficient areas in north Monterey County.

Water Use

ln 1990, water use in the region was divided 60 and 40 percent between the Northern and Southern PSAs, respectively. Agricultural water use accounts for 78


Figure CC-3. Central Coast Region Net Water Demand (1990 Level Average Conditions)

percent of the region's total water use, while urban water use is 20 percent of the total. The remainder of the region's water use is for energy production, environmental needs. conveyance losses, and recreation. The 1990 level net water use in the is about region 1,143,000 af. Forecasts indicate that average annual water demand will increase about 13 percent to 1,291,000 af by 2020. Figure CC-3 shows net water

demand for the 1990 level of development. The 1990 level drought demand is 1,213,000 af and is projected to increase to 1,379,000 by 2020.

Urban Water Use

Population in the Central Coast is expected to grow by about 56 percent by 2020 to over 2 million people. Figure CC-4 shows applied urban water demand, by sector, for the 1990 level of develop-CC-5 ment. Table shows urban water demand projections to 2020.

In the Southern PSA, average 1990 level per capita use for the San Luis Obispo and Santa Barbara

Figure CC-4. Central Coast Region Urban Applied Water Use by Sector (1990 Level Average Conditions) areas was 190 and 187 gallons, respectively. The per capita water use for the Southern PSA is 187 gallons, while that in the Upper Salinas Valley area, in the region's warmer interior, is 223 gallons.

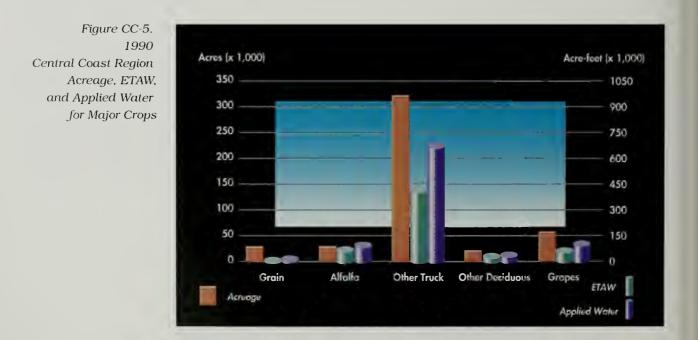
In the Northern PSA, the average per capita use for the region is about 190 gallons per day. This value varied from a high of about 250 gallons per day in the warmer inland communities of Hollister and King City to a low of about 150 gallons per day in the chronically water-short Monterey-Carmel area.

With a few exceptions, most cities and metropolitan centers as well as predominant urban water demands in the region are geographically near U.S. Highway 101. Construction is primarily in the form of single-and multiple-family style housing units and commercial services. Even though demand has generally increased in the region, per capita water use values have not changed significantly. This is because: (1) higher water-using industries have not established themselves in areas with new construction and, (2) the number of multiple-family dwelling units built counterbalance the single-family units.

Table CC-5 projects the applied and net urban water use for the next 30 years. While the population is expected to increase 56 percent, the comparatively low per capita use rate in the areas where growth is expected, coupled with water-saving technologies employed in new developments, will not produce a proportional increase in water use for the region.

Planning Subarea	19	1990		2000		2010		20
	average	drought	average	draught	average	drought	average	draught
Northern								
Applied woter demond	151	152	176	178	207	210	242	245
Net woter demond	131	132	152	154	179	182	209	212
Depletion	118	118	137	138	160	162	187	189
Southern								
Applied water demand	122	125	139	143	158	163	178	184
Net water demand	98	101	111	114	125	129	140	145
Depletian	85	88	98	101	112	116	128	132
TOTAL								
Applied water demand	273	277	315	321	365	373	420	429
Net woter demand	229	233	263	268	304	311	349	357
Depletion	203	206	235	239	272	278	315	321

Table CC-5. Urban Water Demand (thousands of acre-feet)


Agricultural Water Use

Forecasts indicate that agricultural water use will increase, from the 1990 level, by 3 percent by 2020. Irrigated agriculture in the northern Central Coast Region has remained relatively stable during the past decade. Total agricultural land acreage has not changed significantly and total crop acreage has increased due to an increase in multiple cropping of vegetables in the Salinas Valley. There has been a slight shift away from permanent crops such as grapes and apples to annual crops. Acreage planted in strawberries, a very high-market value annual crop, has increased. Lettuce and other annual crops have also increased acreage since 1980. In the southern portion of the region, irrigated agricultural acreage is forecasted to increase slightly by 2020. Although total irrigated land will gradually decrease, while planted and harvested crop acres will increase because of the: (1) intensification of multiple-cropping and (2) conversion of undeveloped and formerly nonirrigated lands to irrigable lands. Vineyards (primarily wine grapes) show the most significant acreage expansion. Truck crop and citrus and subtropical fruit orchard acres will remain relatively stable, while other crop categories will experience decreases. Table CC-6 shows irrigated acreage projections to 2020. Figure CC-5 shows the 1990 level irrigated acreage, ETAW, and applied water for major crops in the region.

Planning Subarea	1990	2000	2010	2020
Northern	346	356	371	379
Southern	182	186	187	187
TOTAL	528	542	558	566

Table CC-6. Irrigated Crop Acreage (thousands of acres)

Despite the recent drought and continued long-term overdraft in some areas, agricultural water supplies have remained dependable. Virtually all applied irrigation water was pumped ground water until water from the CVP San Felipe Project was introduced into San Benito County in June 1987. Ground water still constitutes a large majority (82 percent) of the water supply; and, although not without its problems, such as sea water intrusion, the ready availability of ground water is important to the stability of this area. Irrigated crop acreage is expected to remain roughly stable with only a slight increase. Table CC-7 shows the 1990 level evapotranspiration of applied water by crop. Table CC-8 shows agricultural water demand projections to 2020.

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	28	5
Sugar beets	5	8
Corn	3	3
Other field	16	17
Alfalfa	27	68
Pasture	20	51
Tamataes	14	21
Other truck	321	415
Other deciduous	20	28
Vineyard	56	61
Citrus/alives	18	27
TOTAL	528	704

Table CC-7. 1990 Evapotranspiration of Applied Water by Crop

About one-third of the wine grape acreage in the Salinas Valley has been converted to low-volume irrigation systems in recent years. There has also been a slight trend towards buried drip irrigation in vegetable crops in the same area. This trend is even more pronounced in San Benito County. About one-fourth of these plantings are currently using this method. In this same area the small acreage of new deciduous tree plantings are on low-volume systems. Water conservation measures implemented by

growers for their irrigation operations are often related to operating-cost reductions. Drip, lowflow emitters, and sprinklers are used for many of the grape, citrus, and subtropical fruit orchards (vineyards are also retrofitted with overhead sprinklers for frost protection). Growers also use hand-moved sprinklers to meet pre-irrigation and seed germination requirements for most truck, corn, tomato. and some field crops;

Rows of lettuce stretch out to the horizon in Salinas Valley. Irrigated crop acreage in the region is forecasted to increase only slightly.

this is usually followed by furrow irrigation. Seedling transplants for some truck crops eliminate the need for seed germination irrigation.

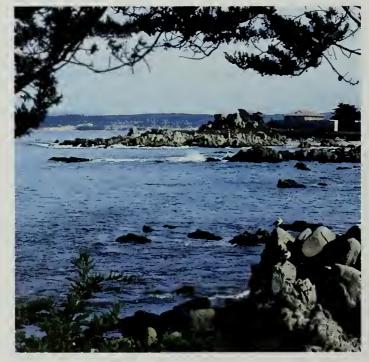

Planning Subarea	19	1990		2000		2010		20
	average	drought	overoge	drought	overoge	drought	averoge	drought
Northern				<u></u>				
Applied water demand	705	711	735	742	766	773	781	787
Net water demand	551	594	569	615	587	634	593	647
Depletion	542	583	560	604	578	623	583	636
Southern								
Applied water demand	435	467	431	464	416	447	408	446
Net water demand	342	367	341	367	333	357	328	356
Depletion	342	367	341	367	333	357	328	356
TOTAL					·			
Applied water demand	1,140	1,178	1,166	1,206	1,182	1,220	1,189	1,233
Net water demand	893	961	910	982	920	991	921	1,003
Depletion	884	950	901	971	911	980	911	992

Table CC-8. Agricultural Water Demand

(thousands of acre-feet)

Environmental Water Use

The recent drought has created problems for the fish and wildlife in the region. Along the rivers, riparian habitat has diminished. Likewise, the lack of precipitation has weakened or killed trees and native vegetation in the foothill and mountain areas, creating potential fire problems. insect infestation, and disease.

The Carmel River, San Luis Obispo Creek, Santa Ynez River, and other coastal streams have historically been habitats for steelhead. However. steelhead migration has been dam reduced by low construction, flows due to surface diversions, water ground water pumping, poor water quality, and habitat degradation. A number of projects have been proposed for these systems, ranging from dam enlargements on

Sea gulls sun themselves on rocks along the shore of Monterey Bay. The bay is home to the California sea otter, which is now enjoying a resurgence in its population.

> the Carmel and Santa Ynez rivers to a water reclamation project on San Luis Obispo Creek. Environmental net water demand accounts for 1,000 af. Table CC-9 shows the total environmental instream water needs for the region.

In the Southern portion of the Central Coast Region, there are no federal or State wildlife refuges. To the north. Elkhorn Slough National Estuarine Research Reserve is a 1,340-acre coastal area which protects the habitat of many species of birds, fish, and invertebrates. The reserve isowned by the Department of Fish and Game. The slough isome of the few relatively undisturbed coastal wetlands remaining in California. It also serves as a feeding and resting ground for migratory fowl. The reserve receives no fresh water.

Stream	19	1990		2000		2010		20
	average	drought	average	drought	average	drought	average	drought
Carmel River								
Applied water demand	4	2	4	2	4	2	4	2
Net water demand	1	0	1	0	1	0	1	0
Depletion	1	0	1	0	1	0	1	0
TOTAL								
Applied water demand	4	2	4	2	4	2	4	2
Net water demand	1	0	1	0	1	0	1	0
Depletion	1	0	1	0	1	0	1	0

Table CC-9. Environmental Instream Water Needs (thousands of acre-feet)

Other Water Use

Other water uses in the region include water for recreation and energy production. Water for recreation and energy is equivalent to roughly 1 percent of total demand for the region and is expected to remain about the same in coming years. Recreational opportunities in the region benefit from the many lakes, rivers, parks, and forests. Activities include hiking, swimming, fishing, boating, camping, and water skiing. Recreational water use accounted for over 1,000 af in 1990. There does not appear to be any additional future recreation water use prospects for the region. Surface water recreation is available at San Antonio, Nacimiento. Lopez Lake, Twitchell, and Lake Cachuma reservoirs, among others. Most offer fishing, boating, camping, and water skiing. Figure CC-6 shows water recreation areas in the region.

Cooling water is integral to the operations of electrical power plants (gas, oil, and nuclear). Many of the region's power plants are located along the coastline and use sea water for cooling. Injection of freshwater into the underground oil fields accounted for almost 14,000 af of water use in 1990 for the Santa Ynez area. Table CC-10 shows the total water demands for this region.

Issues Affecting Local Water Resource Management

The Central Coast Region, with its inland valleys and coastal ground water basins, presents diverse water management issues. With limited surface supply and few surface water storage facilities, the growing demand for water places an increased dependence on ground water pumping, which is necessary to meet the region's needs. As ground water extractions exceed ground water replenishment, many of the region's aquifers are experiencing overdraft conditions. This condition has allowed sea water to advance into some coastal freshwater aquifers. Sea water intrusion is a continuing threat to ground water reservoirs, and limits on ground water pumping and use are currently being discussed. The recent drought required many communities in the region to implement stringent water rationing programs. Unless additional water supplies are secured, the region will not be able to support existing water uses, let alone additional water users.

Figure CC-6. Central Coast Region Hydroelectric Power Plants and Water Recreation Areas

*From 1992 California Energy Commission Maps, See Table D-3 in Appendix D for plant information.

Table CC-10. Total Water Demands

(thousands of acre-feet)

Category of Use	19	90	20	00	20	10	2020	
	average	drought	average	drought	averoge	drought	average	drought
Urban								
Applied water demand	273	277	315	321	365	373	420	429
Net water demand	229	233	263	268	304	311	349	357
Depletion	203	206	235	239	272	278	315	321
Agricultural								
Applied water demand	1,140	1,178	1,166	1,206	1,182	1,220	1,189	1,233
Net water demand	893	961	910	982	920	991	921	1,003
Depletion	884	950	901	971	911	980	911	992
Environmental								
Applied water demand	4	2	4	2	4	2	4	2
Net water demand	1	0	1	0	1	0	1	0
Depletion	1	0	1	0	1	0	1	0
Other ⁽¹⁾								
Applied water demand	17	18	17	18	17	18	17	18
Net water demand	20	19	20	19	20	19	20	19
Depletion	20	19	20	19	20	19	20	19
TOTAL								
Applied water demand	1,434	1,475	1,502	1,547	1,568	1,613	1,630	1,682
Net water demand	1,143	1,213	1,194	1,269	1,245	1,321	1,291	1,379
Depletion	1,108	1,175	1,157	1,229	1,204	1,277	1,247	1,332

(1) Includes major conveyance facility lasses, recreation uses, and energy production.

Legislation and Litigation

Nacimiento Releases. Over the past several years, two lawsuits were filed seeking to control the water releases from Nacimiento Reservoir. The first one was filed by a group of homeowners and interested individuals in the Nacimiento area. Initially, the group obtained a temporary restraining order preventing water releases from the reservoir. However, the order was later released and the plaintiff's request for an injunction was denied. In addition, the court found that the Monterey County Water Resources Agency was not required to comply with CEQA in setting its yearly release schedule. The second lawsuit was settled shortly after it was filed by a recreation concessionaire at Nacimiento to maintain the recreation at the reservoir during the drought. The Monterey County Water Resources Agency agreed to retain water in the reservoir for recreation uses for the year, but the action did not set a precedent for future years.

Regional Issues

Cloud Seeding. In early 1990, the Monterey County Water Resources Agency initiated a cloud seeding program which was designed to increase rainfall and runoff for the Arroyo Seco River, as well as the San Antonio and Nacimiento reservoirs. As part of the rainfall enhancement program, aircraft seeding operations dispensed silver iodide. An experimental radio-controlled, ground-based propane dispenser was also installed in the Arroyo Seco area. Overall, the Monterey County Water Resources Agency concluded that rainfall increased from 12-16 percent for water year 1990-91.

16 to 20 percent for water year 1991-92, and preliminary results show an increase from 12 to 21 percent for water year 1992-93.

Santa Barbara County proposed a cloud seeding design for the 1992-93 winter program similar to the previous year. The proposed project design is ideally suited to conduct a state-of-the-art operation. The key components are a dedicated weather radar, a seeding aircraft, remotely controlled ground generators, a computerized GUIDE model, and an experienced weather modification meteorologist familiar with the area.

For the past two years, in San Luis Obispo County, the City of San Luis Obispo, and Zone 3 of the San Luis Obispo County Flood Control and Water Conservation District conducted a cloud seeding program.

Local Issues

Pajaro Valley Shortages. The Pajaro Valley is experiencing adverse effects from the recent drought, most notably ground water overdraft and accelerated sea water intrusion. About 70 homes in one development along the coastline have had their water supply affected by sea water intrusion. Local homeowners installed expensive water purification equipment, purchased bottled water, or trucked in water to solve the problem. The homeowners currently are negotiating with City of Watsonville officials to obtain a potable water supply. Watsonville officials proposed a pipeline from the city limits to the Sunset Beach area at a cost of \$10,000 per home. The pipeline construction project will take approximately three years to complete, but will provide a potable water supply for the residents.

To better manage its water resources, the Pajaro Valley Water Management Agency, in cooperation with the USBR, is preparing a Basin Management Plan for the Pajaro Valley. To meet the future demands of the area, a combination of alternatives must be employed.

Pajaro Valley Water Augmentation. A Basin Management Plan for the Pajaro Valley was approved in December 1993 by the directors of the Pajaro Valley Water Management Agency. Key elements of the preferred alternative include a dam on College Lake to create a 10,000-af reservoir and a connection to the San Felipe branch of the CVP, and a coastal pipeline to meet the needs of agricultural users between Highway 1 and the ocean. The proposed San Felipe extension involves transporting water from the existing Santa Clara Conduit, a key feature of the San Felipe Division, which delivers water from San Luis Reservoir into Santa Clara County, with a fork into San Benito County. The pipeline, with a capacity up to 67 cfs, could provide a maximum annual volume of 19,900 af annually for municipal and industrial, as well as agricultural, water use in the Watsonville area. The supply for the San Felipe extension will probably come from reallocation of CVP supply. To date, no contract negotiations have occurred to bring water into the Watsonville area; however, PVWMA and USBR held several discussions to develop a process to address PVWMA needs under the CVPIA.

The Salinas Basin aquifers have been in a state of overdraft for many years resulting in sea water intrusion in the coastal areas. The rate of sea water intrusion has increased rapidly because of increased agricultural production, urban development, and the effects of the recent drought. Evidence of seawater intrusion has been detected in wells a few miles from the City of Salinas.

The Monterey County Water Resources Agency continues to investigate several methods to bring the Salinas Basin into balance. These methods include both water management measures and capital facilities projects.

Monterey Peninsula Problems. Improvements to the Monterey Peninsula's water supply system are needed for several reasons. Water supply in average rainfall years far exceeds demand; however, the area is vulnerable to climate variability and the impact of multi-year droughts. When dry years occur, shortages rapidly develop due to inadequate storage on the Carmel River and increased pumping and overdraft of ground water basins. Urban growth has also contributed to the need for an increased drought period water supply. Tourism, a major industry for the region, has also increased since construction of the Monterey Bay Aquarium. Without an increase in the water supply for the region, the risk of more frequent shortages in dry years will increase. The Monterey Peninsula Water Management District has taken a number of actions to address the need for a reliable water supply. The district has already implemented several programs, including an urban water conservation program.

Water Balance

Water budgets were computed for each Planning Subarea in the Central Coast Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas, which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some local areas during drought periods. Local and regional shortages could also be more or less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary. Volume 1, Chapter 11 presents a broader discussion of demand management options.

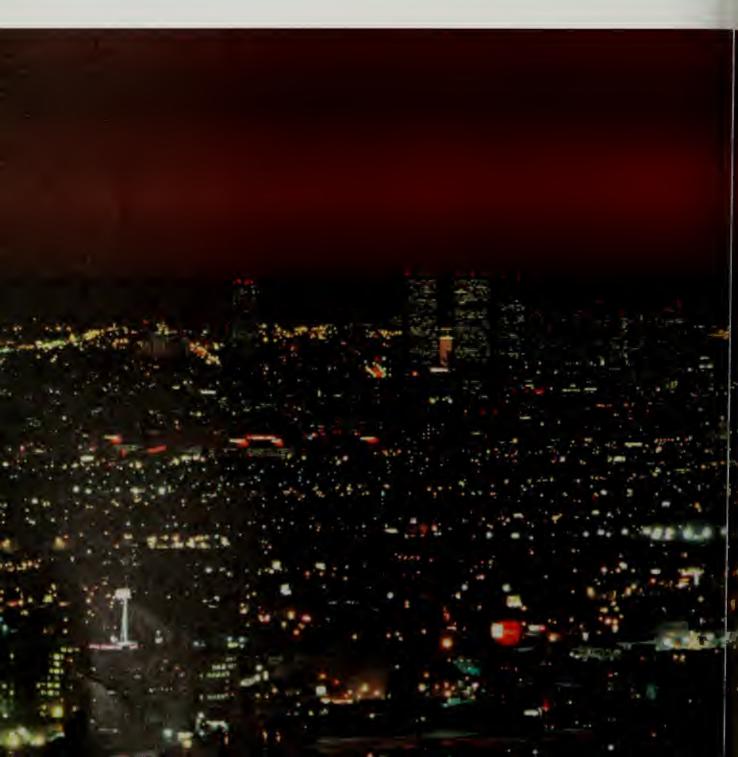
Table CC-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (I) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 1,143,000 and 1,213,000 af for average and drought years, respectively. Those demands are forecasted to increase to 1,291,000 and 1,379,000 af, respectively, by the year 2020, after accounting for a 30,000-af reduction in urban water demand resulting from additional long-term water conservation measures.

Urban net water demand is forecasted to increase by about 52 percent by 2020, due to projected increases in population. Agricultural net water demand is forecasted to increase by about 3 percent, primarily due to an expected increase in double cropping in the region. Environmental net water demands, under existing rules and regulations, will remain essentially level; however, there are several Central Coast Region streams where increases in instream flow for fisheries have been proposed.

Average annual supplies, including 245,000 af of ground water overdraft, were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual average and drought year shortages by 2020 are expected to increase to about 345,000 and 450,000 af, respectively.

Table CC-11. Water Budget


(thousands of acre-feet)

Water Demand/Supply	19	90	20	00	20	10	20.	20
	average	drought	average	drought	average	draught	average	drough
Net Demand								
Urbanwith 1990								
level of conservation	229	233	276	281	327	334	379	387
reductions due to								
long-term conservation								
measures (Level 1)	_	_	-13	-13	-23	-23	-30	-30
Agricultural—with 1990				000	000	001	001	1 000
level of conservation	893	961	910	982	920	991	921	1,003
-reductions due to								
long-term conservation			0	0	0	0	0	0
measures (Level 1)		_	0	0	1			0
Environmental	1	0	1	0		0	1	
Other ⁽¹⁾	20	19	20	19	20	19	20	19
TOTAL Net Demand	1,143	1,213	1,194	1,269	1,245	1,321	1,291	1,379
Nater Supplies w/Existing Facilities I	Under D-1485	for Delta Sup	plies					
Developed Supplies								
Surface Water ⁽²⁾	209	136	220	144	244	148	247	148
Ground Water	688	762	694	769	695	776	698	781
Ground Water Overdraft ⁽³⁾	245	245			_	_	_	
Subtotal	1,142	1,143	914	913	939	924	945	929
Dedicated Natural Flow	1,142	0	1	0	1	0	1	0
TOTAL Water Supplies	1,143	1,143	915	913	940	924	946	929
Demand/Supply Balance	0	70	-279	-356	-305	-397	-345	-450
Level I Water Management Programs	s ^{{4} }							
Long-term Supply Augmentation								
Reclaimed			44	44	55	55	55	55
Local	_	_	24	22	24	22	24	22
Central Valley Project/								
Other Federal	_		0	0	20	7	20	7
State Water Project	_		53	25	53	43	53	43
Subtotal - Level I Water								
Management Pragrams	0	0	121	91	152	127	152	127
Net Ground Water ar								
Surface Water Use Reduction								
Resulting from Level 1 Programs		_	-19	-4	-16	-4	-15	-4
			1		1			
Remaining Demand/Supply Balance	Requiring Sha	rt-term Droug	ght Managem	ent and/or L	evel II Option	S		

Includes major conveyonce facility losses, recreatian uses, and energy productian.
 Existing and future imported supplies that depend an Delta export capabilities are based on SWRCB D-1485 and da not take into account recent actions to pratect aquatic species. As such, regianal water supply shortages are understated (note: proposed environmental water demands of 1 to 3 MAF are included in the Colifornia water budget).
 The degree future shortages are met by increased averdraft is unknown. Since overdraft is not sustainable, it is not included as a future supply.
 Protection of fish and wildlife and a lang-term solution to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

With planned Level I water management programs, average and drought year shortages could be reduced to 208,000 and 327,000 af, respectively. The remaining shortage requires both additional short-term drought management, water transfers, and demand management programs, and future long-term Level II water management programs, depending on the overall level of water service reliability deemed necessary by local agencies, to sustain the economic health of the region. This region depends on export from the Sacramento-San Joaquin Delta for a portion of its supplies. Shortages stated above are based on D-1485 operating criteria for Delta supplies and do not take into account recent actions to protect aquatic species in the estuary. As such, regional water supply shortages are understated.

Los Angeles is California's most populated urban area. Urban land use accounts for 25 percent of the total land area in the South Coast Region.

The most urbanized region in California is the South Coast. Although it covers only about 7 percent of the State's total land area, it is home to roughly 54 percent of the State's population. Extending eastward from the Pacific Ocean, the region is bounded by the Santa Barbara-Ventura county line and the San Gabriel and San Bernardino mountains on the north, the Mexican border on the south, and a combination of the San Jacinto Mountains and low-elevation mountain ranges in central San Diego County on the east. Topographically, the region is comprised of a series of broad coastal plains, gently sloping interior valleys, and mountain ranges of moderate elevations. The largest mountain ranges in the region are the San Gabriel, San Bernardino, San Jacinto, Santa Rosa, and Laguna mountains. Peak elevations are generally between 5,000 and 8,000 feet above sea level; however, some peaks are nearly 11,000 feet high. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The climate of the region is Mediterranean-like, with warm and dry summers followed by mild and wet winters. In the warmer interior, maximum temperatures during the summer can be over 90°F. The moderating influence of the ocean results in lower temperatures along the coast. During winter, temperatures rarely descend to freezing except in the mountains and some interior valley locations.

About 80 percent of the precipitation occurs during the four-month period of December through March. Average annual rainfall quantities can range from 10 to 15 inches on the coastal plains and 20 to 45 inches in the mountains. Precipitation in the higher mountains commonly occurs as snow. In most years, snowfall quantities are sufficient to support a wide range of winter sports in the San Bernardino and San Gabriel mountains.

There are several prominent rivers in the region, including the Santa Clara, Los Angeles, San Gabriel, Santa Ana, Santa Margarita, and San Luis Rey. Some segments of these rivers have been intensely modified for flood control. Natural runoff of the region's streams and rivers averages around 1,200,000 af annually.

Population

Growth has been fairly steady since the first boom of the 1880s. The 1990 population was up 26 percent from 12,970,000 in 1980. Much of the population

Region Characteristics

Average Annual Precipitation:18.5 inchesAverage Annual Runoff:1,227,000 afLand Area:10,950 square miles1990 Population:16,292,800

South Coast Region

increase is due to immigration, both from within the United States and from around the world. Most of the region's coastal plains and valleys are densely populated. The largest cities are Los Angeles, San Diego, Long Beach, Santa Ana, and Anaheim. Each of these is among California's top ten most populated cities; Los Angeles and San Diego also are the second and sixth largest cities in the United States, respectively. The region is also home to six of the State's ten fastest growing cities in the 50,000 to 200,000 population range. These are Corona, Fontana, Tustin, Laguna Niguel, National City, and Rancho Cucamonga. Areas undergoing increased urbanization include the coastal plains of Orange and Ventura counties, the Santa Clarita Valley in northwestern Los Angeles County, the Pomona/San Bernardino/Moreno valleys, and the valleys north and east of the City of San Diego. The region's population is expected to increase by 55 percent by 2020. Table SC-1 shows regional population projections to 2020.

Planning Subarea	1990	2000	2010	2020
Santa Clara	834	1,063	1,301	1,556
Metropolitan Los Angeles	8,501	9,445	10,376	11,505
Santa Ana	4,023	5,155	6,230	7,384
San Diega*	2,935	3,610	4,191	4,870
TOTAL	16,293	19,273	22,098	25,315

Table SC-1. Population Projections (thousands)

* The San Diega PSA includes parts of Riverside and Orange counties.

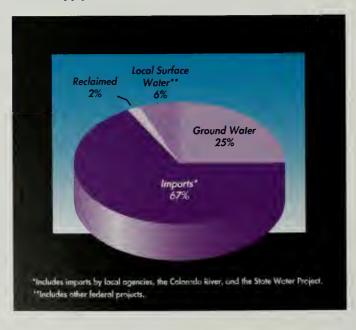
Land Use

Despite being so urbanized, about one-third of the region's land is publicly owned. Approximately 2,300,000 acres is public land, of which 75 percent is national forest. Urban land use accounts for about 1,700,000 acres, and irrigated cropland accounts for 288,000 acres. Figure SC-1 shows land use in the South Coast Region.

The major industries in the region are national defense, aerospace, recreation and tourism, and agriculture. Other large industries include electronics, motion picture and television production, oil refining, housing construction, government, food and beverage distribution, and manufacturing (clothing and furniture). While defense, aerospace, and oil refining are currently in a decline, the South Coast Region has a strong and growing commercial services sector. International trading, financing, and basic services are major economic contributors to the region.

One of the most important land use issues in the South Coast Region is whether to prohibit housing and other urban land uses from spreading into the remaining agricultural land and open space. Some of the region's agricultural land is currently protected through the State's Williamson Act. Some local governments have established agricultural preserves in their areas. The desire to retain open space in the Los Angeles area also has led to parkland status for parts of the Santa Monica Mountains. Preservation of coastal wetlands and lagoons in the region is another prime concern. A 1993 agreement between federal, State, and local agencies to protect endangered gnatcatcher habitat is a good example of protection of open space to benefit wildlife.

South Coast Region


The largest amount of irrigated agriculture is in Ventura County, where 116,600 acres of cropland are cultivated. Most of it is fresh market vegetables, strawberries, and citrus and avocados. San Diego planning subarea has more than 110,600 acres in irrigated agriculture, most of which is planted in citrus and avocados. Fresh market vegetables and other crops are grown in some of the county's coastal and inland valleys. The region is also ideally suited for growing other high-value crops, such as nursery products and cut flowers. Other irrigated agriculture includes forage and field crops related to the dairy industry and vineyards.

Water Supply

About 67 percent of the region's 1990 level water supply comes from surface water imports. The remaining portion is supplied by ground water (25 percent) and to a lesser extent by local surface water (6 percent) and reclaimed water (2 percent). Since the turn of the century, water development has been carried out on a massive scale throughout the South Coast Region. Steady expansion of the population and economy lead to sufficient demand and financial backing to build large water supply projects for importing water into the region. Figure SC-2 shows the region's sources of supply.

Supply with Existing Facilities and Water Management Programs

Local and imported surface water account for about 73 percent of the region's 1990 level water supply. In 1913, the Los Angeles Aqueduct began importing water from the Mono-Owens area to the South Coast region. With the addition of a second conduit in 1970, the Mono-Owens supply is about 10 percent of the region's 1990 level water supply. Court-ordered restrictions on diversions from the Mono Basin and

Owens Valley have reduced the amount of water the City of Los Angeles can receive and have brought into question the reliability of Mono-Owens supply for Los Angeles (see South Lahontan Region). In 1941, the Metropolitan Water District of Southern California completed the Colorado River Aqueduct, which now provides about 29 percent of the region's supply with Colorado River water. The State Water Project began delivering

water from the Sacramento-San Joaquin Delta to the South Coast region in 1972, and today furnishes about 28 percent of the region's supply. The remainder of the surface supply (about 6 percent of the 1990 level total) is provided by local projects. Table SC-2 lists the major reservoirs in the region.

Figure SC-2. South Coast Region Water Supply Sources (1990 Level Average Conditions)

Reservoir Name	River	Capacity (1,000 AF)	Owner		
Casitas	Coyote Creek	254	USBR		
Lake Piru	Piru Creek	88.3	United WCD		
Pyromid	Piru Creek	171.2	DWR		
Matilija	Matilija Creek	1.5	Ventura CO FCD		
Castaic	Castaic Creek	323.7	DWR		
Cogswell	Son Gabriel	8.9	Los Angeles CO FCD/Dept. of Public Works		
San Gabriel	San Gobriel	42.4	Los Angeles CO FCD/Dept. of Public Works		
Big Bear Lake (Bear Valley)	Bear Creek	73.4	Big Bear MWD		
Perris	Bernosconi Pass	131.5	DWR		
Mathews	Trib Cajolco Creek	179.3	MWDSC		
Lake Hernet	Son Jocinto River	13.5	Lake Hemet MWD		
Railraad Canyon	Son Jacinto River	11.9	Temescal Water Co.		
Irvine Loke (Santiago Creek)	Sontiago Creek	25.0	Serrono ID/Irvine Ranch WD		
Skinner	Tucalota Creek	44.2	MWDSC		
Vail	Temecula Creek	50.0	Rancho Colifornia WD		
Henshaw	Son Luis Rey River	53.4	Visto ID		
lake Hodges	Son Dieguito River	37.7	City of San Diego		
Sutherland	Santo Ysobel Creek	29.0	City of San Diego		
San Vicente	San Vicente Creek	90.2	City of Son Diego		
El Capitan	San Diego River	112.8	City of San Diego		
Cuyamaca	Boulder Creek	11.8	Helix WD		
Lake Jennings	Quoil Conyon Creek	9.8	Helix WD		
Murray	Choparral Canyon	6.1	City of San Diego		
Lake Loveland	Sweetwoter River	25.4	Sweetwater Authority		
Sweetwater	Sweetwater River	28.1	Sweetwater Authority		
Lower Otay	Otoy River	49.5	City of San Diego		
Morena	Cottonwood Creek	50.2	City of Son Diego		
Barrett	Cottonwood Creek	37.9	City of San Diego		
Miramar	Big Surr Creek	7.3	City of San Diego		
Seven Oaks	Santa Ana	146	COE under construction		
Prado	Santa Ana	183.2	COE 1941		

Table SC-2. Major Reservoirs

There are numerous ground water basins along the coast and inland valleys of the region. Many of these basins arc adjudicated or managed by a public agency (see Volume I, Chapters 2 and 4). Recharge occurs from natural infiltration along river valleys, but in many cases, basin recharge facilities are in place using local, imported, or reclaimed supplies. Some ground water basins are as large as several hundred square miles in area and have a capacity exceeding 10,000,000 af. The current estimated annual net ground water use approaches 1,100,000 af.

Basins close to the coast often have troubles with sea water intrusion. Historically, additional recharge or a series of injection wells forming a barrier have been used to mitigate this problem. Other ground water quality concerns are high TDS, nitrates, PCE, sulfates, pesticide contamination (DBCP), selenium, and leaking fuel storage tanks.

Approximately 82,000 af of new water was produced by recycled water in 1990, about 2 percent of the region's supply. Recycled water is most often used for irrigating freeway and other urban landscaping. golf courses. and some agricultural land; it is also used in ground water recharge and sea water barrier projects. The Central and West Basin Water Replenishment Districts recharge the Central and West Coast ground water basins with 50,000 af per year of recycled water. The Orange County Water District injects about 5,000 af of recycled water into the ground at the Alamitos Barrier Project. This process prevents further sea water intrusion into the district's ground water supply and frees imported supplies for other uses.

Drought Water Management Strategies. To minimize the impacts caused by the shortfalls in imported surface water supplies, most agencies in the region established and implemented rationing programs during the 1987-92 drought to bring demand in line with supplies. Customer rationing allotments were determined by the customer's use prior to the drought. Rationing levels, or reductions, ranged from 15 to 50 percent.

Programs implemented by the cities of San Diego and Los Angeles are typical of the efforts agencies throughout the region made to combat recent drought-induced shortages. The City of San Diego implemented a 20-percent rationing program for its customers during 1991; a 10-percent program had been in place since 1988. Other programs and activities by San Diego included establishing customer rebates for the installation of ultra-low-flush toilets, distributing free showerheads, providing turf and home audit service, expanding the existing public information program (with a 24-hour hotline), establishing a field crew to handle waste-of-water complaints, constructing a xeriscape demonstration garden, and retrofitting city water facilities. Landscape designs for new private and public construction are regulated for water conservation by a 1986 city ordinance. San Diego also has ordinances that permit enacting water conservation measures and programs during critical water supply situations and that require all residential dwellings to be retrofitted prior to resale.

The City of Los Angeles has had a rationing program in place since 1986. The program was mandatory for all its customers until early in 1992, when it was revised to voluntary status. The program originally called for a 10-percent reduction; however, it was amended to 15 percent during 1992 when the State's water supply situation worsened. Programs established by Los Angeles are similar to those described for San Diego. Los Angeles also established a "drought buster" field program with staff patrolling neighborhoods looking for water wasters. Table SC-3 shows the region's water supplies with existing facilities and programs.

Water Management Options with Existing Facilities. MWDSC is pursuing additional supplies to replace those it has lost under recent court rulings. Water use in its service area has increased from 2,800,000 af in 1970 to 4,000,000 af in 1990. The increase reflects a large population growth. Moreover, the City of Los Angeles is increasing its reliance upon MWDSC's water to make up for its loss of imported water from the Mono-Owens Basin. Following are highlights of major MWDSC water supply and demand management programs, most of which are in place, that would provide options for additional supplies, especially in critical years.

The Imperial Irrigation District-MWDSC Water Conservation program began in January 1990. In return for financing certain conservation projects. MWDSC is entitled to the amount of water saved by IID except under limited conditions specified in the agreement. Conservation projects include lining existing canals, constructing local reservoirs and spill interceptor canals, installing nonleak gates and automation equipment, and instituting distribution system and on-farm management activities.

Table SC-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies)

(thousands af acre-feet)

Supply	19	90	20	00	20	10	20	20
	average	drought	average	drought	average	drought	average	drought
Surface								
Lacal	254	118	254	118	254	118	254	118
Lacal imports ⁽¹⁾	425	208	425	208	425	208	425	208
Colorado Ríver ⁽²⁾	1,266	1,230	656	656	656	656	656	656
CVP	0	0	0	0	0	0	0	0
Other federal	22	21	22	21	22	21	22	21
SWP ⁽¹⁾	1,225	1,032	1,744	1,085	1,899	1,152	1,901	1,156
Ground water ⁽³⁾	1,083	1,306	1,100	1,325	1,125	1,350	1,150	1,375
Overdraft ⁽⁴⁾	22	22	_	_	_	_		_
Reclaimed	82	82	82	82	82	82	82	82
Dedicated natural flow	0	0	0	0	0	0	0	0
TOTAL	4,379	4,019	4,283	3,495	4,463	3,587	4,490	3,616

(1) 1990 supplies are normalized and do not reflect additional supplies delivered to affset the reduction of supplies from the Mana and Owens basins. SWP supply was used in 1990 to replace reduction of supplies from Mana and Owens basins, putting additional demand on Delta supplies. SWP supplies may be higher in any year to help recharge ground water basins for drought years.

(2) Colorado River supplies for the year 2000 and beyond reflect elimination of surplus and unused Colorado River supplies and the availability of 106,000 AF from the Colorado River region as a result of currently agreed upon conservation programs being implemented by Imperial Irrigation District. Miscellaneous perfected rights and future court decision on Indian water rights could impact Colorado River supplies to the South Coast Region.

(3) Average ground water is prime supply of ground water basins and does not include use of ground water which is ortificially recharged from surface sources into ground water basins. However, the ground water includes ground water reclamation.

(4) The degree future shortages are met by increased overdroft is unknown. Since overdroft is not sustainable, it is not included as a future supply.

MWDSC has an advance delivery agreement with Desert Water Agency and Coachella Valley Water District for ground water storage. Under this agreement MWDSC makes advance deliveries of Colorado River water (conditions permitting) to the two agencies for recharging the Coachella Valley ground water basin. MWDSC, in turn, may use the SWP entitlements of the two agencies (up to 61,200 af per year). Water stored in the basin was used by the two agencies during the recent drought, enabling MWDSC to make full use of available DWA and CVWD entitlements.

Under the Chino Basin and San Gabriel Basin Cyclic Storage Agreement, imported water is delivered to and stored in the Chino and San Gabriel basins. When water supplies are abundant, advance deliveries of MWDSC's ground water replenishment supplies are provided for later use. When imported supplies are limited, MWDSC has the option of meeting the replenishment demands through surface deliveries or a transfer of the stored water. MWDSC's maximum storage entitlements are 100,000 af in the Chino Basin and 142,000 af in the San Gabriel Basin. As of July 1990, 28,000 af was stored in the Chino Basin and 58,000 af in the San Gabriel Basin. MWDSC is also planning for additional conjunctive use programs.

MWDSC promotes water reclamation through its Local Projects Program of 1981. Under this program, the district provides financial assistance for local water reclamation projects which develop new water supplies. The program's primary focus is on increasing the use of recycled water in landscape irrigation and industry, thereby reducing the demand for potable water supplies. To date, MWDSC is participating in 32 projects, with a total ultimate yield of 147,000 af per year. Currently, four additional projects submitted to MWDSC for inclusion in the program are in various stages of review. These proposed projects have a combined estimated ultimate yield of 21,700 af per year.

MWDSC promotes conjunctive use at the local agency level under its Seasonal Storage Service Program of 1989 by discounting rates for imported water placed into ground water or reservoir storage. The discounted rate and program rules encourage construction of additional ground water production facilities allowing local agencies to be more self-sufficient during shortages. Additionally, the program is designed to reduce the member agencies' dependence upon district deliveries during the peak summer demand months. As of December 31, 1992, approximately 1,240,000 af of water was delivered as Seasonal Storage Service.

The West Basin Municipal Water District began reclaiming 1.5 mgd (1,680 af annually) of brackish ground water with a new desalination plant in the City of Torrance in 1993. This facility will help contain a seawater plume that has moved inland since the construction of the West Coast seawater injection barrier in the late 1950s.

Other water management options include water banking, short-term fallowing of farm land, desalination, reclaiming waste water (water recycling) and brackish ground water, water conservation, and additional offstream storage facilities for imported supplies.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

With planned Level I programs, 2020 average and drought year shortages could be reduced to 373,000 and 848,000 af, respectively, under Decision 1485 operating criteria for Delta supplies. A shortage of this magnitude could have severe economic impacts on the region. This remaining shortage requires both additional short-term drought management, water transfers, and demand management programs, and future long-term and Level II programs depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region. In the short-term, some areas of this region that rely on Delta exports for all or a portion of their supplies face greater uncertainty in terms of water supply reliability due to the uncertain outcome of actions undertaken to protect aquatic species in the Delta. Local water districts are seeking to improve water service reliability of their service area through water transfers, water recycling, conservation, and supply augmentation. The following paragraphs summarize the various water management programs under active consideration in the South Coast Region.

Water Management Options with Additional Facilities. The U.S. Bureau of Reclamation is studying the potential for recycled water use under its "Southern California Comprehensive Water Reclamation Study." The goal of the \$6 million. three-phase study is to "identify opportunities and constraints for maximizing water reuse in Southern California." Phase I is expected to be complete in one year; the scheduling of phases II and III will be determined during the first phase. Expected completion date is March 1999. The USBR believes the success of the study depends on the active participation of local and State agencies.

MWDSC authorized preliminary studies for a 5-mgd (5,600-af-per-year) desalination pilot plant (distillation method). Although the location is undecided, plans call for the plant to be near an existing power plant on the coast. Planned ultimate capacity of the plant is 100 mgd (112,000 af per year).

The Colorado River Banking Plan is a proposal that would create an additional water supply for MWDSC by making use of available SWP water in place of Colorado River water. Under the plan. MWDSC would adjust its Colorado River diversions according to the availability of water from the SWP. In years when SWP supplies are adequate, MWDSC would take more of its SWP water and correspondingly less Colorado River water. The difference between available Colorado River water and MWDSC's actual diversions would remain in Lake Mead and be credited to a water management account. Any additional water lost by spills or evaporation due to the storage of such water would be deducted from the water management account.

MWDSC, the Southern Nevada Water Authority, and the Central Arizona Water Conservation District have implemented a program to demonstrate the feasibility of interstate underground storage of Colorado River water. From 1992 to 1993, 100,000 af of Colorado River water, unused by Arizona, California, and Nevada, was diverted through the Central Arizona Project to water users in Central Arizona who reduced ground water pumping and used Colorado River water instead, thereby increasing water in ground water storage. In the future, following a flood-control release from Lake Mead or a determination that surplus Colorado River water is available, MWDSC and SNWA will be able to divert a portion of Arizona's Colorado River water while Arizona water users use the previously stored water. This arrangement protects Central Arizona water users from shortages and creates an additional water supply for MWDSC and

SNWA. MWDSC and SNWA have expressed interest in storing additional Colorado River water underground in Central Arizona.

A draft Environmental Impact Report/Statement for a water storage and exchange program between MWDSC and Arvin-Edison was issued in 1992. The program would allow MWDSC to store up to 800,000 af of water in Arvin-Edison's ground water basin. This stored water

would be recovered in dry years when Arvin-Edison would pump MWDSC's stored water in exchange for MWDSC receiving a portion of Arvin-Edison's Central Valley Project A scene of typical new housing starts in the South Coast Region, in this case in the City of Irvine. The region's population is projected to increase substantially by 2020, creating an even larger demand for not only housing, but water supplies as well. water via the California Aqueduct. Arvin-Edison would benefit from the program by higher ground water levels and an improved distribution system, to be funded by MWDSC, while MWDSC would have water in storage. The final EIR/EIS for the program has been delayed pending resolution of environmental and institutional issues in the Sacramento-San Joaquin Delta.

The Semitropic/Metropolitan Water Storage and Exchange Program would involve ground water storage and recovery operation. Under the program, MWDSC would store water in the ground water basin underlying the Semitropic Water Storage District when Metropolitan's water supplies are in excess of its demand. During shortage years, Semitropic would pump MWDSC's stored water from the ground water basin into the California Aqueduct through facilities owned and operated by Semitropic. A minimum pumpback of 40,000 to 60,000 af per year would be guaranteed. In addition, Semitropic could exchange a portion of its SWP entitlement water for MWDSC's stored water, thereby substantially increasing the annual yield of this program. An initial agreement to store water in 1993 was executed and approximately 45,000 af of MWDSC's 1992 SWP carryover entitlement water was stored.

In October 1991, MWDSC certified the final EIR for the Eastside Reservoir Project (Domenigoni Valley Reservoir). Final design and land acquisition activities for the reservoir are proceeding. The ERP, combined with the ground water storage program, will: (1) maximize ground water storage by regulating imported water supplies for conjunctive use programs, (2) provide emergency water reserves if facilities are damaged as a result of a major earthquake, (3) provide supplies to reduce water shortages during droughts, (4) meet seasonal operating requirements, including seasonal peak demands, and (5) preserve operating reliability of the distribution system. This conjunctive use program should eventually provide two years of drought or carryover storage protection for MWDSC (528,000 af). The project should be completed by 1999.

Under the Ground Water Recovery Program of 1991, MWDSC will improve regional water supply reliability by providing financial assistance for local agencies to recover contaminated ground water. The goal of the Ground Water Recovery Program is to recover 200,000 af per year of degraded ground water. About half of this ultimate annual production will be untapped local yield. The remainder will require replenishment from MWDSC's imported water to avoid basin overdraft. Those projects will produce water, including during droughts, but will only receive replenishment water when imported supplies are available. Currently, MWDSC has approved participation of eight projects, with an estimated ultimate production of 21,800 af per year. The program is expected to reach its goal of 200,000 af per year by the year 2004. The net projected yield associated with natural replenishment from the Ground Water Recovery Program through the year 2020 is:

Year	Net Projected Yield Acre-Feet Per Year
1993	1,554
2000	86,100
2010	95,540
2020	95,540

Local surface water supplies provide a small contribution to the South Coast Region, making up only about 6 percent of the region's total supplies. For the most part, during drought years, these surface supplies dry up. However, during the winter, this region can be hit with devastating floods. Many people speculate that more local surface reservoirs could help alleviate the region's need for increased imported supplies. However, the cost of developing local surface water supply projects for rare or limited runoff makes them impractical at present. Table SC-4 shows water supplies with additional Level I facilities and programs.

San Diego County Water Authority has developed a Water Resources Plan that evaluates current and future demands, and available local and imported supplies. A specified plan of resource development was adopted that satisfies the SDCWA's reliability goal of meeting all demand during average years, and no less than 88 percent of demand during a drought year. The recommended resource mix includes imported supplies, additional local supply development, and full implementation of Best Management Practices. Local supply development includes water recycling, ground water, and desalination. Carryover storage and transfers were identified to help meet the dry-year supply reliability goal. The plan examines both average water year supplies and drought year supplies and recommends a practical implementation schedule for resource development.

Table SC-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies)

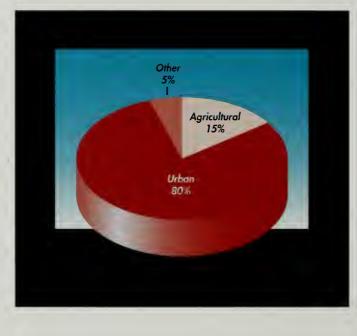
Supply	19	90	20	00	20	10	20	20
	average	drought	average	draught	average	drought	averoge	drought
Surface				·				
Locol	254	118	254	118	254	118	254	118
Local imports ⁽¹⁾	425	208	425	208	425	472	425	472
Colorado River ⁽²⁾	1,266	1,230	724	724	724	724	724	724
CVP	0	0	0	0	0	0	0	0
Other federal	22	21	22	21	22	21	22	21
SWP(1)	1,225	1,032	1,770	1,067	2,142	1,832	2,235	1,832
Ground water ⁽³⁾	1,083	1,306	1,159	1,384	1,195	1,419	1,219	1,444
Overdraft ⁽⁴⁾	22	22	-	_	_	-	-	_
Reclaimed	82	82	481	481	580	580	679	679
Dedicated natural flow	0	0	0	0	0	0	0	0
TOTAL	4,379	4,019	4,835	4,003	5,342	5,166	5,558	5,290

(thousands of acre-feet)

(1) 1990 supplies are normalized and do not reflect additional supplies delivered to offset the reduction of supplies from the Mano and Owens basins. SWP supply was used in 1990 to replace reduction of supplies from Mano and Owens basins, putting additional demand on Delta supplies. SWP supplies may be higher in any year to help recharge ground water basins for drought years.

(2) Colorado River supplies for the year 2000 and beyond reflect elimination of surplus and unused Colorado River supplies, the availability of 106,000 AF from the Colorado River region as a result of currently agreed upon conservation programs being implemented by Imperial Irrigation District, and the availability of 68,000 AF from the Colorado River region as a result of an IID/MWDSC agreement negatiated but not yet executed relating to the lining of a portion of the All American Conol. Miscelloneous perfected rights and future court decision on Indian water rights could impact Colorado River supplies to the South Coast Region.
(3) Average ground water is prime supply of ground water basins and does not include use of ground water which is artificially recharged from surface sources into ground water basins.

(3) Average ground water is prime supply of ground water bosins and does not include use of ground water which is artificially recharged from surface sources into ground water basins. Ground water includes supply from ground water reclamation. For example, the MWDSC ground water recovery program could provide additional supplies of 85,000 AF by year 2000 and 95,000 AF by 2010 and beyond.


(4) The degree future shortages are met by increased overdroft is unknown. Since overdroft is not sustainable, it is not included as a future supply.

Water Use

Urban water demands for the South Coast Region have progressively increased over the last decade due to tremendous population growth rates and rapidly expanding urbanized areas. In many areas, urban expansion has led to reductions in agricultural acreage and water use. Figure SC-3 shows the distribution of 1990 level net water demands for the region.

Urban Water Use

Total municipal and industrial applied water use in 1990 was about 3,851,000 af (Table SC-5), an increase of 1,071,000 af from 1980. The increase is attributed to population and economic growth. Table SC-5 shows that 1990 applied urban water use in

the Metropolitan Los Angeles planning subarea is about half of the region's total. Forecasts indicate that urban applied water use in the region will increase by 56 percent between 1990 and 2020.

Although overall demands have increased since 1980, per capita water use has leveled off somewhat in older urbanized areas. There are modest increases in the newer urbanized areas, particularly in the warmer

interior sections of the region. Since there is little space for expansion, the older urban core areas are being renovated and converted from one type of use to another, such as single-family residential to multi-family residential. Such conversions tend to decrease household water use because of associated reductions in exterior water use with multi-family housing structures.

Average 1990 per capita water use by PSA for the region is 211 gpcd. This daily per capita value ranges from 246 gallons for the Santa Ana PSA to 204 gallons in the Metropolitan Los Angeles PSA. With continued water conservation, the region's average per capita water use is expected to increase slightly to 212 gpcd by 2020. primarily due to growth in inland areas of the region. Figure SC-4 shows 1990 level applied urban water demand by sector.

Figure SC-3. South Coast Region Net Water Demand (1990 Level Average Conditions)

Planning Subarea	19	90	20	00	20	10	20 average 345	2020	
	average	drought	overage	drought	averoge	drought	average	drought	
Santa Clara								_	
Applied water demand	183	190	231	240	287	298	345	358	
Net water demand	153	158	194	201	241	250	290	301	
Depletion	150	155	171	178	212	221	259	270	
Metropolitan Las Angeles									
Applied water demand	1,911	1,985	2,055	2,135	2,270	2,359	2,520	2,620	
Net water demand	1,833	1,904	1,971	2,048	2,177	2,263	2,417	2,512	
Depletion	1,802	1,873	1,759	1,836	1,900	1,986	2,135	2,231	
Santa Ana									
Applied water demand	1,067	1,111	1,344	1,401	1,665	1,736	2,020	2,108	
Net water demand	848	882	1,045	1,087	1,265	1,317	1,500	1,564	
Depletion	720	746	872	905	1,036	1,077	1,209	1,257	
San Diego									
Applied water demand	690	711	816	841	958	988	1,123	1,158	
Net water demand	677	697	800	825	940	969	1,102	1,137	
Depletion	669	689	734	758	845	874	993	1,027	
TOTAL									
Applied water demand	3,851	3,997	4,446	4,617	5,180	5,381	6,008	6,244	
Net water demand	3,511	3,641	4,010	4,161	4,623	4,799	5,309	5,514	
Depletion	3,341	3,463	3,536	3,677	3,993	4,158	4,596	4,785	

Table SC-5. Urban Water Demand

(thousands of acre-feet)

Recent State laws require that most urban water wholesale and retail agencies prepare urban water management and water shortage contingency plans. Under the Urban Water Management Act of 1985 most agencics must analyze their water conveyance operations and water use in their service areas, identify areas for improvement.

and develop and implement plans to correct any inefficiencies. The plans must be updated at 5-year intervals. The act requires that agencies examine operations and demands in their service area during droughts and develop plans to cope with the shortfall in supply. These plans will complement existing urban water management plans.

Most of the water conservation programs

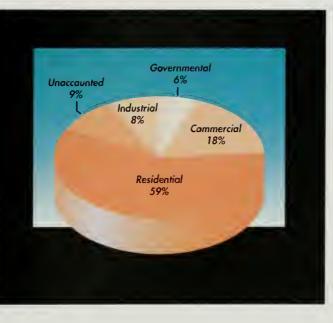


Figure SC-4. South Coast Region Urban Applied Water Use by Sector (1990 Level Average Conditions) identified in these plans are a part of a package known collectively as the *Best Management Practices* (a more detailed discussion about urban BMPs is in Volume I, Chapter 6). BMPs help agencies develop specific strategies to augment or stretch their dependable water supplies to meet ever-increasing water demands within their service areas. Plans must be implemented on a set timetable once an agency decides to adopt these practices.

Since 1980, many water and local governmental agencies have developed and implemented water conservation programs, similar to those required on the Best Management Practices list. Many local agencies provide technical assistance to schools who wish to incorporate discussions on water resources and conservation into their natural science curricula. Total urban water use will be reduced through these ongoing programs, which include implementing BMPs, building and plumbing code modifications, and more efficient irrigation operations for major landscaping projects.

Agricultural Water Use

Total agricultural applied water use for the normalized 1990 level was approximately 727,000 af, a decrease of approximately 26 percent since 1980. The Santa Clara PSA used the most agricultural water in 1990, roughly 34 percent of the total, followed closely by San Diego PSA with 33 percent and Santa Ana PSA with 31 percent. The Metropolitan Los Angeles PSA had the least demand, using only about 2 percent of the region's total applied agricultural water. Figure SC-5 shows the irrigated acreage, ETAW, and applied water for major crops grown in the region.

The South Coast Region's 1990 normalized crop acreage was almost 319,000 acres (Table SC-6). The major agricultural operations in the region are found in the Santa Clara, San Diego, and Santa Ana PSAs. A 42-percent decrease in total irrigated crop acres (including multiple cropped acres) is forecast for the region, to about 184,000 acres by 2020. This is primarily due to urbanization of irrigated lands, while rising water costs and reduced water supply reliability are also contributing factors. The region's total irrigated land acreage is forecasted to decrease by about 117,000 acres over the same time period.

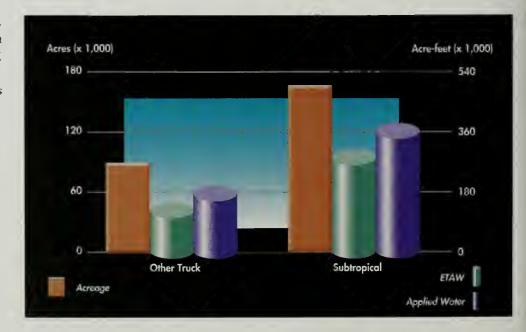


Figure SC-5. South Coast Region Acreage, ETAW, and Applied Water for Major Crops

Planning Subarea	1990	2000	2010	2020
Sonta Clara	118	110	94	71
Metropolitan Los Angeles	7	6	5	5
Santa Ana	83	66	48	30
San Diego*	111	105	88	78
TOTAL	319	287	235	184

Table SC-6. Irrigated Crop Acreage

(thousands of acres)

* The San Diega PSA includes portions of Riverside and Orange counties.

The five major crops produced in the region are subtropical fruit, truck (vegetables and nursery products), improved pasture, grains, and alfalfa (Table SC-7). Slightly more than half of the total cropped acres and gross applied water in the region is associated with citrus and subtropical fruit orchards. Citrus (mostly oranges, lemons, and grapefruit) is found in all parts of the South Coast Region, but the largest amounts are in the San Diego and Santa Clara PSAs. Avocados are generally grown in the hills above the Santa Clara River in Ventura County and in the hills in the extreme southwestern part of Riverside County (Santa Ana PSA) and San Diego County. The region also has a substantial cut-flower industry. Truck crops follow citrus and subtropical fruit in terms of planted and harvested acres and use of applied water. Small acreages of irrigated grain are cultivated in southern San Diego County, southwestern San Bernardino County, and southwestern Riverside County. Irrigated pasture and alfalfa are grown primarily in southwestern San Bernardino County.

Irrigated Crap	Total Acres (1,000)	Tatal ETAW (1,000 AF)
Groin	11	2
Carn	5	7
Other field	4	8
Alfalfa	10	26
Posture	20	55
Tomotoes	9	20
Other truck	87	123
Other deciduaus	3	8
Vineyard	6	9
Citrus/olives	164	282
TOTAL	319	540

Table SC-7. 1990 Evapotranspiration of Applied Water by Crop

Vineyards in Pomona Valley are on the decline; however, modest acreages in southwestern Riverside County have remained stable since 1980. Deciduous tree crops are relatively small, but there is a concentration of apples and pears in central San Diego County.

Even though the region's forecasted acres are expected to decline, subtropical fruits, vegetables and flowers, truck crops, and nursery products will continue to produce significant revenues on the remaining acres.

Water conservation efforts by the growers will contribute to the reduction of agricultural water demands in the region. Most citrus and subtropical growers use the latest irrigation system technologies of

drip emitters and low-flow sprinklers. Growers are also managing their irrigation operations with more efficiency. The best potential for conservation beyond current achievements will be in the citrus and subtropical orchard irrigation operations. Much of the potential for savings will occur by the end of the decade, possibly up to an additional 5 percent. Increased use of drip irrigation, improved furrow irrigation, plastic mulches, and irrigation scheduling services will save water in the other crop categories too.

Table SC-8 shows 1990 level and forecasted agricultural water demand in the region. Drought year demands reflect the need for additional irrigation to replace water normally supplied by rainfall and to meet higher-than-normal evapotranspiration demands. The region's total applied agricultural water use is expected to decrease 47 percent by 2020. Urbanization of irrigated agricultural land is the main factor in this reduction. Other factors include continued improvements in on-farm irrigation operations and irrigation system technologies. Decreases range from about 66 percent to 34 percent among the PSAs.

Unharvested avocados hang in trees in Fallbrook, an agricultural community near San Diego. Agricultural land use is declining in the region.

Planning Subarea	19	90	20	00	20	10	20	20
·	average	drought	average	drought	average	drought	average 138 126 126 9 8 8 77 68 68 68 158 154 154	drought
Santa Clara								
Applied water demand	245	256	222	233	184	193	138	145
Net water demand	214	224	197	207	167	175	126	133
Depletion	214	224	197	207	167	175	126	133
Metropolitan Los Angeles								
Applied water demand	15	16	11	12	10	11	9	9
Net water demand	13	14	10	11	9	9	8	8
Depletian	13	14	10	11	9	9	8	8
Santa Ana								
Applied water demand	227	232	179	181	127	129	77	78
Net water demand	186	190	149	152	109	110	68	69
Depletian	186	190	149	152	109	110	68	69
San Diega								
Applied water demand	240	249	220	229	178	185	158	164
Net water demand	231	240	213	222	173	180	154	160
Depletion	231	240	213	222	173	180	154	160
TOTAL								
Applied water demand	727	753	632	655	499	518	382	396
Net water demand	644	668	569	592	458	474	356	370
Depletion	644	668	569	592	458	474	356	370

Table SC-8. Agricultural Water Demand

(thousands of acre-feet)

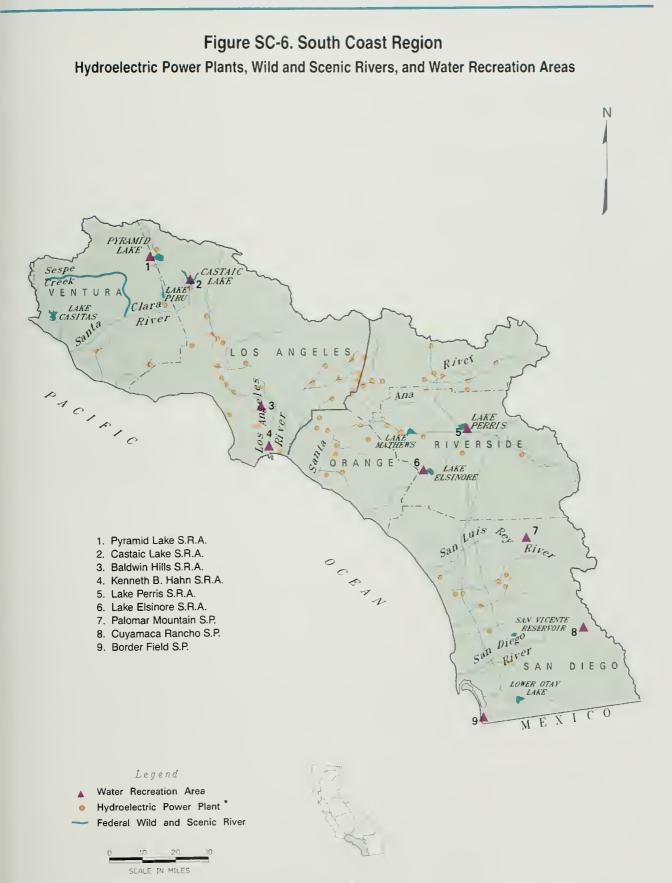
Environmental Water Use

Currently, the State's San Jacinto Wildlife Area occupies approximately 5,000 acres, and there are applications to increase the size of the facility by 1,600 acres. The SJWA is run by the Department of Fish and Game. It is unique in that it is the first such operation in the State to use recycled water. Eastern Municipal Water District supplies the facility with recycled water from its Hemet/San Jacinto Water Reclamation Plant. Recycled water allocations to the SJWA are 2,200 af a year, even though only 400 af and 800 af were used in 1990 and 1991, respectively. By the year 2000, the allocation will be 4,500 af. Table SC-9 shows wetland water needs to 2020.

Additional environmental water supply requirements may be needed for the Sespe Wilderness. This preserve is in the Ventura County portion of the Los Padres National Forest and totals approximately 219,700 acres. A portion of Sespe Creek has been added to the federal list of Wild and Scenic Rivers.

Wetland	19	90	20	00	20	10	20	20
	average	drought	average	drought	average	draught	average	drought
Son Jacinto WA								
Applied water demand	2	2	6	6	6	6	6	6
Net water demand	2	2	6	6	6	6	6	6
Depletian	2	2	6	6	6	6	6	6
TOTAL								
Applied water demand	2	2	6	6	6	6	6	6
Net water demand	2	2	6	6	6	6	6	6
Depletion	2	2	6	6	6	6	6	6

Table SC-9. Wetland Water Needs (thousands of acre-feet)


Other Water Demand

Recreational water use in the South Coast Region amounted to almost 23,000 af in 1990. Most recreational facilities in the region consist of campgrounds and parks, and their use entails water for lawns, toilets, showers, and facility maintenance and public service. Use in the Santa Clara, Metropolitan Los Angeles, Santa Ana, and San Diego PSAs in 1990 amounted to about 8,000 af; 8,000 af; 3,000 af; and 3,000 af, respectively. Figure SC-6 shows water recreation areas in the South Coast Region.

Conveyance losses account for 160,000 af and are realized in the transmission of water via the three major aqueducts in the region. Cooling water for power plants amounts to 35,000 af, while approximately 5,000 af is used to inject water in deep wells to extract oil. Table SC-10 shows total water demand forecasts to 2020 for the South Coast Region.

Issues Affecting Local Water Resource Management

Each PSA in the region has its own set of geographic and demographic conditions which present several water management issues. In general, though, the South Coast Region faces several critical water supply issues, most notably increasing demand with limited ability to increase supply, and ground water degradation. The most significant events in recent years regarding regional water supplies were the court decisions regarding Mono Lake and Colorado River diversions.

*From 1992 California Energy Commission Maps. See Table D-3 in Appendix D for plant information.

Table SC-10. Total Water Demands

(thousands af acre-feet)

Category of Use	19	90	20	00	20	10	20	20
0 7	average	drought	average	drought	average	drought	average	drought
Urban	_							
Applied water demand	3,851	3,997	4,446	4,617	5,180	5,381	6,008	6,244
Net water demand	3,511	3,641	4,010	4,161	4,623	4,799	5,309	5,514
Depletian	3,341	3,463	3,536	3,677	3,993	4,158	4,596	4,785
Agricultural								
Applied water demand	727	753	632	655	499	518	382	396
Net water demand	644	668	569	592	458	474	356	370
Depletian	644	668	569	592	458	474	356	370
Environmental								
Applied water demand	2	2	6	6	6	6	6	6
Net water demand	2	2	6	6	6	6	6	6
Depletion	2	2	6	6	6	6	6	6
Other ⁽¹⁾								
Applied water demand	62	57	67	62	72	67	72	67
Net water demand	222	210	227	215	232	220	232	220
Depletion	222	210	227	215	232	220	232	220
TOTAL								
Applied water demand	4,642	4,809	5,151	5,340	5,757	5,972	6,468	6,713
Net water demand	4,379	4,521	4,812	4,974	5,319	5,499	5,903	6,110
Depletian	4,209	4,343	4,338	4,490	4,689	4,858	5,190	5,381

(1) Includes major conveyance facility lasses, recreation uses, and energy production.

Legislation and Litigation

Legislation and litigation played a very important part in developing water supplies for the South Coast Region. Most court decisions and legislation that affect the region are those which also affect statewide water resources. A complete discussion of these decisions and laws are in Volume 1, Chapter 2.

MWDSC is the largest water purveyor in the region: it has 27 member agencies. some of whom rely solely on MWDSC for their water supply. Many other agencies, like the City of Los Angeles, rely on MWDSC to supplement their existing water supplies. MWDSC lost a large part of an extremely important supply of water when its Colorado River entitlement was cut by 662,000 af; the City of Los Angeles lost a large part of an important supply of water when its Mono Lake and Owens Valley water supplies were reduced.

A brief synopsis of agreements and litigation which affect regional water matters follows:

Untreated Sewage from Mexico. Tijuana's excess sewage has plagued the City of San Diego and its South Bay beaches since the 1930s. During frequent failures of Tijuana's inadequate, antiquated sewage treatment system, millions of gallons of raw sewage have been carried across the border through the Tijuana River to its estuary in San Diego County. San Diego's first attempt to alleviate this nuisance was in 1965, when the city agreed to treat Tijuana's waste on an emergency basis. In 1983, the

United States and Mexico signed an agreement stating that Mexico would modernize and expand Tijuana's sewage and water supply system and build a 34-mgd sewage treatment plant.

Mexico received a grant for \$46.4 million from the Inter-American Development Bank to help finance the expansion and was to spend an additional \$11 million to build the waste water treatment plant, 5 miles south of the International Border. Phase 1 of the facility was completed in January 1987. The plant was fully operational in September 1987, only to break down a month later. In May 1988, the facility was again operational.

A future facility will be funded jointly by Mexico and the U.S. at a cost of \$192 million. Additional phases will be added as needed, with an ultimate capacity of 100 mgd. The effluent will be discharged to the Pacific Ocean just north of the Mexican border and will meet U.S. standards.

San Bernardino Ground Water. As late as the 1940s, the lowest portion of the San Bernardino Valley was composed mainly of springs and marshlands. It now boasts a thriving urban complex and industrial center, but ground water levels in the area remain high, impairing the use of some buildings. The San Bernardino Valley Municipal Water District began alleviating the high ground water problem by pumping ground water from the pressure area to the Colton-Rialto Basin through the Baseline Feeder.

In 1969, the Superior Court of Riverside County, in response to a lawsuit filed by the Western Municipal Water District of Riverside County against the East San Bernardino County Water District, limited the amount of water that can be produced or exported from the San Bernardino Basin area. The ruling requires the SBVMWD to replenish the basin when ground water pumping exceeds the specified amount.

Local Issues

Ventura County Ground Water. Ground water is the main water supply for irrigation and urban uses over much of the coastal plain of Ventura County (including the Oxnard Plain). As a result of increasing water demand, the ground water aquifers underlying the plain have been overdrafted. The overdraft within the United Water Conservation District averaged 18,900 af per year during 1976-85. The Fox Canyon Ground Water Management Agency was formed to manage the ground water resources underlying the Fox Canyon aquifer zone. To eliminate the overdraft in all aquifer zones, the agency adopted ordinances requiring meter installation on all wells pumping more than 50 af per year. The objective of the ordinances is to limit the amount of ground water that can be pumped and to restrict drilling of new wells in the North Las Posas Basin. In February 1991, United Water Conservation District completed construction of the Freeman Diversion Improvement Project on the Santa Clara River. The improved structure increases average annual diversions by about 43 percent, from 40,000 af to 57,000 af. The diverted water is used for ground water recharge and agricultural irrigation, thereby reducing agricultural ground water demand.

In an effort to prevent degradation of the Ojai ground water basin, a coalition of growers, public agencies, water utilities, and pumpers decided in early 1990 to have legislation enacted to form the Ojai Basin Ground Water Management Agency. Its activities include implementing agency ordinances; monitoring key wells; determining amounts of extractions, ground water in storage, and operational safe yield; surveying land use within the agency's boundaries: compiling water quality data; and recharging the basin.

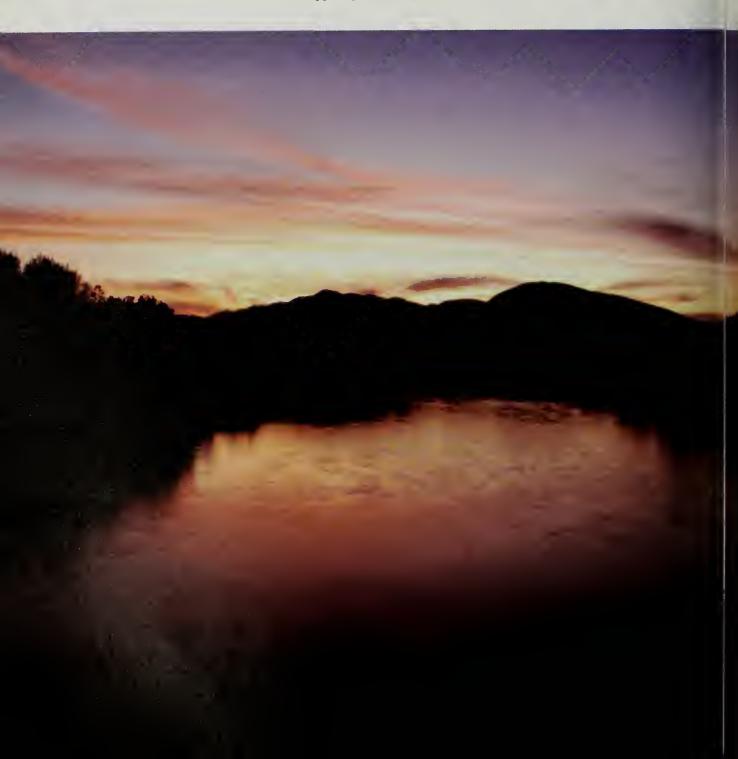
Water Balance

Water budgets were computed for each planning subarea in the South Coast Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas. Local and regional shortages could also be more or less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary. Volume 1, Chapter 11 presents a broader discussion of demand management options.

Table SC-11 presents water demands for the 1990 level and for future water demands to 2020 and compares them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management programs.

Regional net water demands for the 1990 level of development totaled 4,379,000 and 4,521,000 af for average and drought years, respectively. Those demands are forecasted to increase to 5,903,000 and 6,110,000 af, respectively, by the year 2020. This forecast accounts for a 490,000-af reduction in urban water demand resulting from implementation of long-term conservation measures, and a 10,000-af reduction in agricultural demand resulting from additional long-term water conservation measures.

Urban net water demand is projected to increase by about 1,798,000 af by 2020, primarily due to expected increases in population; agricultural net water demand is forecasted to decrease by about 288,000 af, primarily due to lands being taken out of production resulting from the high cost of imported water supplies and urbanization. Environmental net water demands, under existing rules and regulations, are forecasted to increase from 2,000 to 6,000 af annually due to increased acreage at the San Jacinto Wildlife Area.


Average annual supplies, including 22,000 af of ground water overdraft, were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual average and drought year shortages are expected to increase to nearly 1,413,000 and 2,494,000 af by 2020, respectively. With implementation of Level 1 programs, shortages could be reduced to 373,000 af and 848,000 af for average and drought years, respectively. This region depends on exports from the Sacramento-San Joaquin Delta for a portion of its supplies. Shortages stated above are based on Decision 1485 operating criteria for Delta supplies and do not take into account reduction of Delta supplies due to recent actions to protect aquatic species in the estuary. As such, regional water supply shortages are understated.

		(thou	sands of a	cre-teet)				
Water Demand/Supply	1990		20	2000		2010		20
	average	draught	average	drought	average	draught	average	draugh
let Demand								
Urban—with 1990								
level of canservation —reductions due to	3,511	3,641	4,228	4,379	5,004	5,180	5,799	6,004
long-term conservation measures (Level I)	—	_	-218	-218	-381	-381	-490	-490
Agricultural—with 1990 level af conservation —reductions due to	644	668	572	595	465	481	366	380
long-term conservation measures (Level I)	_	_	-3	-3	-7	-7	-10	-10
Enviranmental	2	2	6	6	6	6	6	6
Other ⁽¹⁾	222	210	227	215	232	220	232	220
TOTAL Net Demand	4,379	4,521	4,812	4,974	5,319	5,499	5,903	6,110
Vater Supplies w/Existing Facilities Un Developed Supplies	nder D-1485	for Delta Sup	plies					
Surface Water ⁽²⁾	3,274	2,691	3,183	2,170	3,338	2,237	3,340	2,241
Graund Water	1,083	1,306	1,100	1,325	1,125	1,350	1,150	1,375
Graund Water Overdraft ⁽³⁾	22	22	-	-	_			
ubtotal	4,379	4,019	4,283	3,495	4,463	3,587	4,490	3,616
edicated Noturol Flaw	0	0	0	0	0	0	0	0
OTAL Water Supplies	4,379	4,019	4,283	3,495	4,463	3,587	4,490	3,616
Demand/Supply Balance	0	-502	-529	-1,479	-856	-1,912	-1,413	-2,494
evel I Water Management Programs ¹⁴)							
Long-term Supply Augmentation								
Reclaimed	-	_	399	399	498	498	597	597
Local	-	_	0	0	0	264	0	264
Calarado River	_	-	68	68	68	68	68	68
State Water Project	-	_	26	22	243	680	334	676
ubtotal - Level I Water anagement Programs	0	0	493	489	809	1,510	999	1,605
Net Ground Water or Surface Water Use Reduction Resulting from Level I Progroms	_	_	36	36	47	46	4]	41
Remaining Demand/Supply Balance R	equiring Shar		-					
	0	-502	0	-954	0	-356	-373	-848

Table SC-11. Water Budget (thousands of acre-feet)

Includes major conveyance facility losses, recreation uses, and energy production.
 Existing and future imported supplies that depend an Delta export capabilities are based on SWRCB D-1485 and da nat take into account recent actions to protect aquatic species. As such, regional water supply shartages are understated (nate: proposed environmental water demands of 1 to 3 MAF are included in the California water budget).
 The degree future shortages are met by increased averdraft is unknown. Since overdraft is nat sustainable, it is nat included as a future supply
 Protection of fish and wildlife and a lang-term solution to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits

Sunset over the Sacramento River near Redding. The river provides many recreational opportunities, habitat for fish and wildlife, and water supplies for much of the region.

The Sacramento River Region contains the entire drainage area of the Sacramento River and its tributaries and extends almost 300 miles from Collinsville in the Sacramento-San Joaquin Delta north to the Oregon border. The crest of the Sierra Nevada and Cascade Ranges form the region's eastern border; the western side is defined by the crest of the Coast Range. The vast watershed of the American River and the northern Sacramento-San Joaquin Delta form the southern border. Snow-capped Mt. Shasta, rising 14,162 feet above sea level, dominates the north end of the region, followed by Mt. Lassen, at 10,457 feet above sea level. Both mountains are part of the Cascade Range. About 100 miles south of those mountain peaks stand the Sutter Buttes, which are the remnants of a prehistoric volcano, and have been called the smallest mountain range in the world. Winding its way through the entire region is the State's largest river, the Sacramento. The region contains 17 percent of the State's total land area. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The climate varies considerably in the region. However, three distinct climate patterns can be defined: (1) The northernmost area, mainly high desert plateau, is characterized by cold, snowy winters with only moderate rainfall, and hot, dry summers. This area depends on melting snowpack to provide a summertime water supply. Average annual precipitation in the area ranges from 10 to 20 inches. (2) Other mountainous parts in the north and east have cold, wet winters with major amounts of snow providing considerable runoff for the summer water supply. These higher mountainous areas may receive precipitation during any month of the year. Summers are usually mild and precipitation totals from about 20 to over 80 inches. (3) The Sacramento Valley, the south-central part of the region, has mild winters with less precipitation. Precipitation usually occurs from October through May. Summers in the valley are hot and dry with virtually no precipitation from June to September. Sacramento's average annual precipitation is 18 inches.

Population

The 1990 census showed 535,000 more people in the region than in 1980, a 32-percent increase. Inunigration from other parts of California played a big role in the increase. The fastest growing town was Loomis. a foothill community about 25 miles

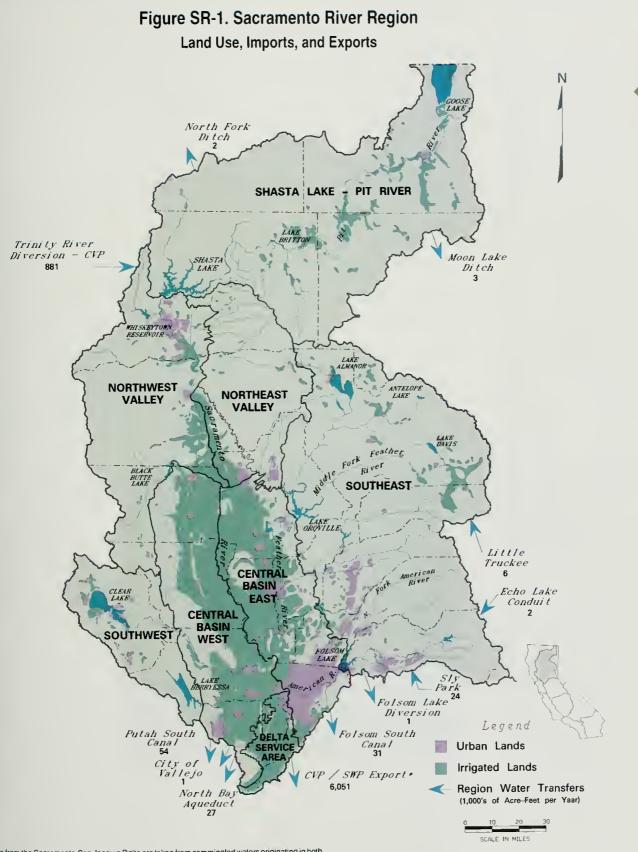
Region Characteristics

Average Annual Precipitation: 36 inchesAverage Annual Runoff: 22,389,700 afLand Area: 26,960 square milesPopulation: 2,208,900

Sacramento River Region

northeast of Sacramento, where there was a 344-percent population increase between 1980 and 1990. The City of Sacramento had the greatest number of new residents: more than 93,600 additional people. More than half of the region's population lives in the greater metropolitan Sacramento area. Other fast-growing communities include Vacaville, Dixon, Redding, Chico, and various Sierra Nevada foothill towns. Table SR-1 shows population projections to 2020 for the Sacramento River Region.

Planning Subarea	1990	2000	2010	2020	
Shasta-Pit	31	35	39	43	
Narthwest Valley	110	132	153	176	
Nartheast Valley	187	258	311	365	
Southeast	253	329	400	467	
Central Basin West	242	328	390	461	
Central Basin East	1,267	1,629	1,977	2,316	
Sauthwest	53	72	91	110	
Delta Service Area	66	85	108	125	
TOTAL	2,209	2,869	3,467	4,063	


Table SR-1. Population Projections (thousands)

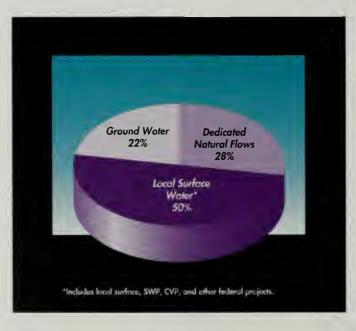
Land Use

A wide variety of crops is grown in the Sacramento River Region, where agriculture is the largest industry. The region produces a significant amount of the overall agricultural tonnage in California, especially rice, grain, tomatoes, field crops, fruit, and nuts. Because of comparatively mild weather and good soil, some double cropping occurs in the region. The largest acreage of any single crop is rice, which represents about 23 percent of the total.

The Sacramento River Region supports about 2,145,000 acres of irrigated agriculture (22 percent of State total). About 1,847,000 acres are irrigated on the valley floor. The surrounding mountain valleys within the region add 298,000 irrigated acres (primarily pasture and alfalfa) to the region's total. Crop statistics show that irrigated agricultural acreage in the region peaked during the 1980s and has since declined. The main reason for this decline is the conversion of irrigated agricultural lands to urban development. The comparison of 1980 and 1990 crop patterns shows that grain, field, rice, and pasture crops decreased by 137,000 acres. On the other hand, orchard, alfalfa, and tomato crops gained a total of 106,000 acres. The net decrease between 1980 and 1990 was 31,000 acres of irrigated crops.

The rapid growth in single and multi-family housing has had a major impact on the Sacramento County area, as well as the surrounding areas like Placer, El Dorado, Yolo, Solano, and Sutter counties. Most of the development has been along the major highway corridors and has taken some irrigated agricultural land out of production. Suburban "ranchette" homes on relatively large parcels often surround the urban areas, sometimes converting previously non-irrigated areas into irrigated pasture or small orchards. Most of the land in these "ranchette" areas is typically non-irrigated. Figure SR-1 shows land use, imports, and exports for the Sacramento River Region.

*Transfers from the Sacramento-San Joaquin Delta are taken from commingled waters originating in both the Sacramento River and San Joaquin River regions.


Water Supply

The Sacramento River Region is the main water supply source for much of California's urban and agricultural areas. Basin runoff averages 22,389,000 af, providing nearly one-third of the State's total natural runoff. Major supplies in the region are provided through surface storage reservoirs and through direct ground water pumping. Local sources supply 9,195,000 af of water to the region. About 2,529,000 af of net ground water is used in the region. Figure SR-2 shows the region's 1990 level sources of supply.

Supply with Existing Facilities and Water Management Programs

Major reservoirs in the region providing water supply, recreation, power, environmental, or flood control benefits are shown in Table SR-2. Table SR-3 shows the water supplies with existing facilities and programs.

The region's water supply moves through a complex natural and engineered conveyance system. Water is both imported into the region and exported from the region. On the import side, the Clear Creek Tunnel carries roughly 881,000 af annually from Lewiston Lake on the Trinity River into Whiskeytown Reservoir. Since 1876. Pacific Gas and Electric has imported 2,000 af annually from Echo Lake in the North Lahontan Region to the South Fork of the American River. Sierra Valley imports about 6,000 af annually from the Little Truckee River. Shasta Valley water users export 2,000 af from Sacramento Basin to the Klamath River watershed, and 3,000 af is exported to the Madeline Plains in the North Lahontan Region. About 6,000,000 af of the outflow from the Sacramento River Region is also exported to regions to the south and west through local. State, and federal conveyance facilities.

Ground water provides about 22 percent of the water supply in the region. Ground water is found in both the alluvial and in the basins hard rock upland areas. Well yields in the alluvial basins vary from less than 100 to over 4,000 gallons per minute. Yields in most of the upland hard rock areas are generally much less but can support most domestic activities or livestock. Some wells in the

volcanic hard rock areas of the upper Sacramento River and Pit River watersheds yield large amounts of water. Ground water recharge in the region's alluvial basins is primarily from river and stream seepage or infiltration of applied agricultural water. Additional recharge occurs as rainfall and snow melt percolate into the basins. A detailed description of water supplies for the different areas of the region follows.

Figure SR-2. Sacramento River Region Water Supply Sources (1990 Level Average Conditions)

Reservoir Name	River	Capacity (1,000 AF)	Owner		
McCloud	McClaud River	35.2	PG&E		
Iron Canyon	Pit River	24.2	PG&E		
Lake Britton	Pit River	40.6	PG&E		
Pit No. 6	Pit River	15.9	PG&E		
Pit No. 7	Pit River	34.6	PG&E		
Shasta	Sacramenta	4,552.0	USBR		
Keswick	Sacramento	23.8	USBR		
Whiskeytown	Clear Creek	241.1	USBR		
Lake Almanor	Feather River	1,143.8	PG&E		
Mountain Meadows	Feather	23.9	PG&E		
Butt Valley	Butt Creek	49.9	PG&E		
Bucks Lake	Bucks Creek	105.6	PG&E		
Antelope	Indian Creek	22.6	DWR		
Frenchman	Little Last Chance Creek	55.5	DWR		
Loke Davis	Big Grizzly Creek	84.4	DWR		
Little Grass Valley	Feather	94.7	Oraville-Wyandatte ID		
Sly Creek	Lost Creek	65.7	Oroville-Wyandatte ID		
Thermalito	Feather	81.3	DWR		
Oroville	Feather	3,537.6	DWR		
Bullards Bar (New Bullards Bar)	Yuba River	966.1	Yuba Ca. WA		
Jockson Meadows	Yuba River	69.2	Nevada ID		
Bowman Lake	Canyon Creek	68.5	Nevada ID		
French Lake	Canyon Creek	13.8	Nevada ID		
Lake Spaulding	Yuba River	74.8	PG&E		
Englebright	Yuba River	70.0	USCE		
Scotts Flat	Deer Creek	48.5	Nevada ID		
Rollins	Bear River	66.0	Nevada ID		
Camp Far West	Bear River	104.0	Sauth Sutter WD		
French Meadows	American River	136.4	Placer Ca. WA		
Hell Hole	Rubican River	207.6	Placer Ca. WA		
Loon Lake	Gerle Creek	76.5	SMUD		
Slab Creek	American River	16.6	SMUD		
Caples Lake	Caples Creek	26.6	PG&E		
Union Valley	Silver Creek	277.3	SMUD		
Ice House	Silver Creek	46.0	SMUD		
Folsom Lake	American River	976.9	USBR		
Loke Natoma	American River	9.0	USBR		
East Park	Stony Creek	50.9	USBR		
Stony Gorge	Stony Creek	50.4	USBR		
Block Butte	Stany Creek	143.7	USCE		
Clear Lake	Cache Creek	313.0	Yala Co. FCWCD		
Indian Valley	Cache Creek	300.0	Yalo Co. FCWCD		
Lake Berryessa	Putah Creek	1,600.0	USBR		

Table SR-2. Major Reservoirs

1990		2000		2010		2020	
average	drought	average	drought	average	drought	average	drought
3,105	2,818	3,138	2,844	3,238	2,958	3,294	3,015
8	8	8	8	8	8	8	8
0	0	0	0	0	0	0	0
2,529	2,115	2,628	2,205	2,627	2,206	2,632	2,217
238	215	241	215	242	215	242	215
2	1	7	5	10	8	13	11
2,496	2,865	2,463	2,985	2,426	3,033	2,491	3,038
33	33	_		_	_	_	_
0	0	0	0	0	0	0	0
3,323	2,905	3,323	2,905	3,323	2,905	3,323	2,905
11,734	10,960	11,808	11,167	11,874	11,333	12,003	11,409
	average 3,105 8 0 2,529 238 2 2,496 33 0 3,323	average drought 3,105 2,818 8 8 0 0 2,529 2,115 238 215 2 1 2,496 2,865 33 33 0 0 3,323 2,905	average drought average 3,105 2,818 3,138 8 8 8 0 0 0 2,529 2,115 2,628 238 215 241 2 1 7 2,496 2,865 2,463 33 33 0 0 0 3,323 2,905 3,323	average drought average drought 3,105 2,818 3,138 2,844 8 8 8 8 0 0 0 0 2,529 2,115 2,628 2,205 238 215 241 215 2 1 7 5 2,496 2,865 2,463 2,985 33 33 - 0 0 0 0 3,323 2,905 3,323 2,905	average drought average drought average 3,105 2,818 3,138 2,844 3,238 8 8 8 8 8 0 0 0 0 0 2,529 2,115 2,628 2,205 2,627 238 215 241 215 242 2 1 7 5 10 2,496 2,865 2,463 2,985 2,426 33 33 - 0 0 0 0 0 3,323 2,905 3,323 2,905 3,323	average drought average drought average drought 3,105 2,818 3,138 2,844 3,238 2,958 8 8 8 8 8 8 8 0 0 0 0 0 0 2,529 2,115 2,628 2,205 2,627 2,206 238 215 241 215 242 215 2 1 7 5 10 8 2,496 2,865 2,463 2,985 2,426 3,033 33 33 - - - 0 0 0 0 0 0 3,323 2,905 3,323 2,905 3,323 2,905	average drought average drought average drought average 3,105 2,818 3,138 2,844 3,238 2,958 3,294 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 2,529 2,115 2,628 2,205 2,627 2,206 2,632 238 215 241 215 242 215 242 2 1 7 5 10 8 13 2,496 2,865 2,463 2,985 2,426 3,033 2,491 33 33 - - - - - - 0 0 0 0 0 0 0 0 0 3,323 2,905 3,323 2,905 3,323 2,905 3,323 2,905 3,323

Table SR-3. Water Supplies with Existing Facilities and Programs (thousands of acre-feet)

(1) The degree future shartages are met by increased averdraft is unknawn. Since averdraft is not sustainable, it is not included as a future supply.

Mountains and Foothill Areas. It is often thought that the Sierra Nevada foothills of California have a lot of water because of the many creeks, rivers, and reservoirs in the area. However, water is scarce in much of the foothill area because many creeks that carry high flows during winter and spring become dry or nearly dry during summer and fall. This is also true for foothill regions on the west side of the Sacramento Valley, including the Clear Lake and Lake Berryessa areas. Most of the water for the more densely populated mountain and foothill areas comes from local surface sources.

Mining operations of the Gold Rush era brought about the first water development in the Sierra area. When hydraulic mining operations ceased, some of the mining ditches were incorporated into what eventually became part of PG&E's hydroelectric power system or local water supply systems, such as that of the Nevada Irrigation District. Currently, these remnants of the early mining days provide both agricultural and urban water supplies. The conveyance systems tend to have large but not irrecoverable losses. A number of areas lack distribution systems to convey surface water to the places of need.

Although ground water is a lesser source of water in the foothills, it plays an important role in meeting the needs of many individuals. Ground water within the mountain counties exists mostly in fractured rock. Ground water quality in this area is generally good, depending on the rock type from which the water is produced. Locally significant ground water quality problems may occur where ground water is in contact with radon-or uranium-bearing rock, or sulfide mineral deposits that contain heavy metals. Moderate levels of hydrogen sulfide can be found in the volcanic and geothermal areas in the western portion of the region. There is also a potential for ground water quality degradation where septic systems have been constructed in high density subdivisions.

Valley Area. Geologically, the Sacramento Valley is a trough partially filled with clay, silt, sand, and gravel deposited through millions of years of flooding. Although

ground water is in all the younger sediments, only the more permeable sand and gravel aquifers provide enough for pumping. Throughout the valley these younger sediments overlie older marine sediments that contain brackish or saline water. The depth to saline water in the Sacramento Valley ranges from less than 500 feet in the north to over 3,000 feet in the south.

Ground water quality in the Sacramento Region is generally excellent. However, there are areas with local ground water contamination or pollution. In some parts of the region, elevated levels of naturally occurring chemicals make ground water use problematic.

While ground water is available in most valley areas, surface water is often less expensive and therefore preferred for irrigation use. Agriculture's water supply varies considerably, with many irrigation districts supplying surface water through an intricate distribution system of sloughs, ditches, and canals devoted to conveying irrigation water. Sacramento Valley water users have some of the oldest rights to the surface water. Some water rights go back before the Gold Rush to old Spanish land grants.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level l options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

No major additional water supply facilities are currently scheduled to come on line by the year 2020 in this region. However, El Dorado County Water Agency has issued a Final Environmental Impact Report for the El Dorado Project, which will augment supplies in the El Dorado Irrigation District service area. The preferred alternative includes: (1) obtaining consumptive use rights to PG&E water currently used solely for power generation; (2) increasing the district's contract for Central Valley Project water from Folsom Reservoir; and (3) constructing the White Rock Project, which will convey water from the South Fork American River to proposed EID treatment and distribution facilities. The additional supplies from this alternative are 17,000 af of supply (average and drought) from PG&E water, and 7,500 and 5,600 af for average and drought years, respectively, from Folsom Reservoir. (These increments of Sacramento River Region supply will come from the allocation of existing CVP supplies.) The White Rock Project is strictly a conveyance project, which will not supplement EID's water supply. Table SR-4 shows water supplies with Level I water management programs.

Water Service Reliability and Drought Water Management Strategies. Urban areas in the central part of the region generally have sufficient supplies to survive dry periods with only voluntary cutbacks. However, communities in Butte, Lake, and Shasta counties, and areas served from Folsom Lake have had to use rationing or water transfers during recent droughts to manage shortages.

The Redding Basin is fundamentally an area of abundant water supplies, but outlying areas are subject to severe shortages in dry years due to the terms of U.S. Burcau of Reclamation contracts and the lack of alternative supplies. Small districts located virtually in the shadow of Shasta Dam face chronic water shortages.

Supply	1990		2000		2010		2020	
	average	drought	averoge	drought	average	drought	average	drought
Surface								
Locol	3,105	2,818	3,138	2,846	3,238	2,961	3,288	3,021
Local imports	8	8	8	8	8	8	8	8
Colorado River	0	0	0	0	0	0	0	0
CVP	2,529	2,115	2,628	2,211	2,627	2,212	2,638	2,223
Other federol	238	215	241	215	242	215	242	215
SWP	2	1	7	5	10	8	13	11
Ground water	2,496	2,865	2,463	2,985	2,426	3,034	2,491	3,040
Overdroft ⁽¹⁾	33	33	_	_	_	_	_	
Reclaimed	0	0	0	0	0	0	0	0
Dedicated natural flow	3,323	2,905	3,323	2,905	3,323	2,905	3,323	2,905
TOTAL	11,734	10,960	11,808	11,175	11,874	11,343	12,003	11,423

Table SR-4. Water Supplies with Level I Water Management Programs (thousands of acre-feet)

(1) The degree future shartages are met by increased overdraft is unknown. Since averdraft is not sustainable, it is not included as a future supply.

Mountain valley areas in the region that depend on surface water are generally irrigated to the extent water is available; when water runs low or runs out, irrigation is cut back. This type of drought management is a way of life for the ranchers. Holders of riparian and pre-1914 water rights on perennial streams generally enjoy reliable supplies, even during droughts. They are technically subject to restriction during times of shortage, but, as a practical matter, such restrictions have not been enforced in the past.

The 30 percent of the region's lands that are irrigated with ground water generally enjoy a very reliable supply. Ground water levels may decline moderately during an extended drought, but the main result is a modest drop in well production and an increase in pumping costs.

Much of the rural foothill area relies on ground water to meet water needs. Ground water supplies are highly variable and do not contain significant volumes due to the nature of the fractured rock characteristic of the area. Droughts can severely reduce supplies in such areas.

The majority of diverters along the Sacramento and Feather Rivers existed before major CVP and State Water Project reservoirs were constructed. Their water rights were filed long before the federal and State projects were built; some go back to before the turn of the century. The diverters executed water rights settlement contracts with the USBR and DWR after the CVP and SWP water rights were filed. These contracts generally provide for maximum deficiencies of only 25 to 50 percent in extremely dry years, whereas CVP and SWP contractors can receive much larger deficiencies.

CVP contractors account for 20 percent of the region's water use and are subject to sizable cutbacks in drought years; some contractors suffered a 75-percent reduction

in 1991. The effects of such cuts depend on what alternatives are available. Some areas can fall back on ground water; others have no feasible alternatives.

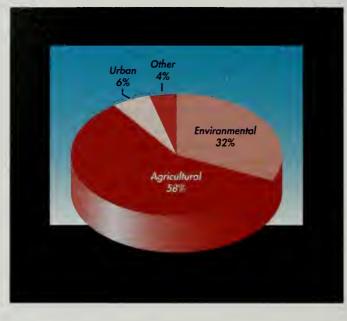
A final category of water users includes those who depend primarily on return flow from upstream areas. These users usually do not have a firm water right because an upstream user is not generally obliged to continue to provide return flows. The recent drought, the resulting water banking activities, and increased emphasis on water conservation have reduced return flows available for downstream users. Among those affected have been State and federal wildlife areas and various privately owned duck clubs.

Water Management Options with Existing Facilities. Changes in the surface water allocation within the region will probably result from pressure for environmental restoration, negotiations for renewal of CVP contracts. expanded conjunctive use of surface and ground water, and various proposals and designs for water transfers. Cumulatively, these changes could stimulate substantial increases in ground water use in the region. Water transfers are becoming increasingly important throughout California. Since the Sacramento River system potentially is the major source of future water transfers, this region will probably experience more water transfer activities in the future.

Water conservation efforts in this region usually result in limited actual water savings because water not consumptively used is available for reuse downstream. Most water delivered in the Sacramento Region that is not consumptively used is returned to surface or ground water sources from which it may be diverted and used again. Some water users would find themselves without a supply if upstream users did not provide surplus runoff from their "inefficient" application of water. If return flows were reduced by upstream water conservation efforts, downstream users who have the rights to do so would elect to divert more water from the Sacramento River to meet their needs.

Water Management Options with Additional Facilities. Many potential surface water developments within the Sacramento River Region have been examined over the last 40 years. Most of these studies were geared primarily to producing additional water supplies for use in other regions of the State. Agricultural payment capacity within the Sacramento River Region generally is insufficient to justify expensive new reservoir projects.

The most attractive surface water projects in the Sacramento River Region have already been built. High construction costs and the increasing emphasis on environmental considerations have greatly restricted the remaining options for additional surface water development. A few reservoir projects remain under consideration within the region, but none is far enough along in the planning and environmental review analysis to be constructed within the 30-year forecast presented here.

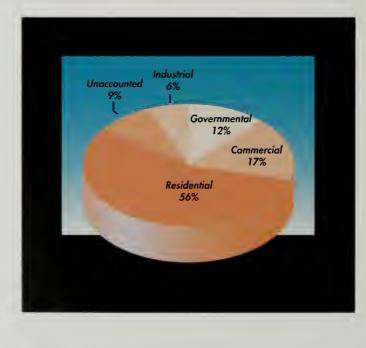

Additional ground water development will most likely meet a significant share of the limited increasing water demands of the region. The potential for developing new supplies from ground water is most favorable in the northern portion of the Sacramento Valley; the southern portion is already operating close to perennial yield in many areas. From the standpoint of overall basin management, increasing use of ground water will come partially at the expense of depleting existing surface supplies. Table SR-4 shows water supplies with additional facilities and programs. The indicated future increases in surface water and CVP supplies reflect the buildup in urban demands under existing contracts.

129

Water Use

The 1990 level annual net water use in the Sacramento River Region is 11,734,000 af, and net use is forecasted to increase to 12,036,000 af in the year 2020.

Figure SR-3. Sacramento River Region Net Water Demand (1990 Level Average Conditions)


Since 1980, urban use has increased while agricultural use has remained relatively stable except for the peak in irrigated acreage during the early 1980s. A minor increase in irrigated agricultural acreage is forecast, but there will be limited reductions in some areas, primarily due to encroachment urban onto agricultural land. Overall, agricultural in water use the Sacramento River Region is expected to

decline slightly during the next 30 years as agricultural irrigation efficiencies continue to improve. Environmental use is expected to increase by 143,000 af by 2020 under existing fishery and wetland requirements. Figure SR-3 shows net 1990 level water demands for the Sacramento River Region.

Urban Water Use

A few of the larger cities in the region take a major share of their water supplies from the major rivers. But throughout most of the Sacramento River Region, ground

Figure SR-4. Sacramento River Region Urban Applied Water Use by Sector (1990 Level Average Conditions)

water is the principal source of water for urban and rural dwellers. In the last decade, rapid growth on the outskirts of cities with surface supplies has led to a number of residential developments using ground water.

An average of 75 percent of the total residential water use is for landscaping. Per capita water use averages 248 gallons per day for valley residents. In the northern part of the region per capita

water use ranges from about 200 to around 350 gpd. The higher unit use is generally

associated with the hot, dry lloor of the northern Sacramento Valley. Overall, daily per capita urban water use of 300 gallons has not changed significantly over past years except during droughts. At those times, communities with high water use have reduced their use by employing standard water conservation methods.

Overall, the region's population is expected to more than double by 2020. Municipal and industrial use is expected to increase along with the region's population from 1990 to 2020. Much of the growth will be in the southern part of the region including El Dorado, Placer, and Sacramento counties.

The high-water-using industries of the region are closely tied to agriculture and forestry. Tomato and stone fruit processing, sugar mills, paper pulp, and lumber mills consume large amounts of water and many have their own supplies. Table SR-5 summarizes the applied and net urban water demands for the region. Figure SR-4 shows applied 1990 level urban water use by sector.

New housing construction in Sacramento County. Many new homes are being built in the flood plain. The pumps shown in the foreground pump rainfall runoff from the area into the Sacramento River during storms.

Table SR-5. Urban Water Demand (thousands of acre-feet)

Planning Subarea	19	90	20	2000		10	20	20
Ū	average	drought	average	drought	average	drought	average	drought
Shasta-Pit								
Applied water demand	11	13	13	15	14	16	15	18
Net water demand	11	13	13	15	14	16	15	18
Depletion	5	6	6	7	7	8	7	9
Northwest Valley								
Applied water demand	53	54	61	63	68	70	77	79
Net water demand	53	54	61	63	68	70	77	79
Depletion	19	20	24	24	27	28	31	32
Nartheast Valley								
Applied water demand	55	58	75	79	90	95	104	110
Net water demand	55	58	75	79	90	95	104	110
Depletion	27	29	37	39	45	47	52	55
Sautheast								
Applied water demand	74	81	92	101	110	120	126	138
Net water demand	74	81	92	101	110	120	126	138
Depletion	25	28	32	35	37	41	43	47
Central Basin West								
Applied water demand	71	76	86	94	100	108	116	125
Net water demand	71	76	86	94	100	108	116	125
Depletian	22	22	26	28	31	33	36	38
Central Basin East								
Applied water demand	448	490	543	593	644	704	736	803
Net water demand	448	490	543	593	644	704	736	803
Depletion	127	140	154	170	185	202	211	232
Sauthwest								
Applied water demand	9	10	13	14	16	17	19	20
Net water demand	9	10	13	14	16	17	19	20
Depletion	4	5	6	6	7	8	9	9
Delta Service Area								
Applied water demand	23	25	28	30	34	37	38	42
Net water demand	23	25	28	30	34	37	38	42
Depletian	7	7	8	9	10	11	11	12
TOTAL								
Applied water demand	744	807	911	989	1,076	1,167	1,231	1,335
Net water demand	744	807	911	989	1,076	1,167	1,231	1,335
Depletian	236	257	293	318	349	378	400	434

Agricultural Water Use

Agricultural water use is estimated using crop acreages and corresponding applied water and evapotranspiration of applied water unit use values for each crop. Figure SR-5 shows irrigated acreage, ETAW, and applied water for major crops grown in the region. On-farm irrigation efficiencies vary widely. depending on individual crops, soils, irrigation methods, sysreuse. water tem scarcity, and irrigation costs. Areas de-

Rice fields like these can be found throughout the Sacramento River Valley. Much of the water is "put back" into the water supply system once the fields are drained.

pending on ground water or limited surface water tend to be very efficient. Others with higher priority water rights to dependable supplies are often less conservative in their water usage, but excess water applied generally returns to the supply system through drainage canals, or recharges ground water. Basin efficiency is usually very good because downstream users recycle return flows for their own use. In many places, return flows are the only water source for downstream users. The capital investment necessary to increase on-farm irrigation efficiency is generally not considered warranted unless water supplies are unreliable.

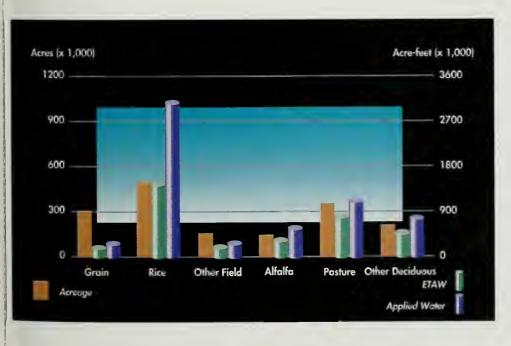


Figure SR-5. 1990 Sacramento River Region Acreage, ETAW, and Applied Water for Major Crops

Planning Subarea	1990	2000	2010	2020
Shasta-Pit	147	142	144	146
Northwest Valley	129	139	146	149
Northeast Valley	89	91	93	93
Sautheast	104	104	104	104
Central Basin West	786	784	804	833
Central Basin East	679	664	653	648
Southwest	22	21	22	23
Delta Service Area	189	189	190	190
TOTAL	2,145	2,134	2,156	2,186

Table SR-6. Irrigated Crop Acreage (thousands of acres)

Rainfall during the growing season is virtually nonexistent. During normal years, surface and ground water are plentiful and water availability is not the limiting factor in production. Much of the region is irrigated using various flood irrigation methods. Table SR-6 shows irrigated crop acreage for the region. Table SR-7 presents 1990 ETAW by crop, and Table SR-8 shows agricultural water demands to 2020.

Irrigated Crop	Total Acres	Tatal ETAW
•	(1,000)	(1,000 AF)
Groin	303	183
Rice	494	1,458
Sugar Beets	75	165
Corn	104	232
Other field	155	197
Alfalfa	141	326
Posture	357	809
Tomotoes	120	303
Other truck	55	65
Almonds/pistachios	101	234
Other deciduous	205	475
Vineyard	17	28
Citrus/alives	18	35
TOTAL	2,145	4,510

Table SR-7. 1990 Evapotranspiration of Applied Water by Crop

In the Sacramento River Region, several crops are expected to decrease in acreage, especially on the valley floor, due mainly to urban encroachment on irrigated agricultural land and changes in market factors and technology. Pasture is the crop forecasted to have the largest decrease in acreage at 37,000 acres (10 percent), followed by rice at 10,000 acres (2 percent), grains at 8,000 acres (3 percent), and sugar beets at 3,000 acres (4 percent). However, between 1990 and 2020, a net increase in irrigated crop acreage of about 41,000 acres, or 2 percent, is forecasted.

Almost all of this increase is expected to occur north of the Sutter Buttes where there exist adequate farmable soils with sufficient available surface and ground water supplies. The crops projected to have the largest increase in acreage are almonds, miscellaneous truck crops, tomatoes, vineyard, corn, and miscellaneous deciduous orchards.

Environmental Water Use

Instream flow requirements of major streams in the region are listed in Table SR-9. The instream applied water for each river listed is based on the largest fish flow

		(thousands of acre-feet)							
Planning Subarea	19	90	20	00	20	10	20	20	
	average	drought	average	drought	average	drought	overage	drought	
ihasta-Pit									
Applied water demand	440	469	433	463	440	470	449	479	
Net water demand	379	395	374	391	380	397	386	404	
Depletion	330	358	325	352	330	358	335	363	
Northwest Valley									
Applied water demand	472	569	490	590	505	609	508	612	
Net water demand	466	487	485	507	504	527	510	534	
Depletion	356	433	374	455	388	471	392	476	
Northeast Valley									
Applied water demand	306	353	306	353	310	358	310	358	
Net water demand	298	312	299	314	304	319	303	318	
Depletion	231	268	235	272	239	278	239	278	
outheast									
Applied water demand	358	426	355	423	351	418	351	418	
Net water demand	343	388	341	384	338	380	338	380	
Depletion	261	306	261	306	261	304	261	306	
entral Basin West									
Applied water demand	2,830	3,081	2,804	3,052	2,803	3,049	2,812	3,057	
Net water demand	2,193	2,483	2,181	2,467	2,173	2,454	2,181	2,451	
Depletian	1,896	2,153	1,919	2,179	1,947	2,210	1,970	2,235	
entral Basin East									
Applied water demand	2,907	3,124	2,781	3,020	2,660	2,960	2,605	2,799	
Net water demand	2,612	2,753	2,471	2,635	2,371	2,588	2,332	2,444	
Depletion	1,950	2,151	1,923	2,132	1,886	2,080	1,852	2,042	
iauthwest		,							
Applied water demand	74	77	72	74	70	74	70	73	
Net water demand	71	72	68	69	67	69	68	68	
Depletion	50	51	47	48	46	47	45	46	
Delta Service Area									
Applied water demand	461	546	457	542	453	537	453	537	
Net water demand	426	504	383	455	369	450	379	450	
Depletion	403	403	342	405	342	403	343	405	
TOTAL									
Applied water demand	7,848	8,645	7,698	8,517	7,592	8,475	7,558	8,333	
Net water demand	6,788	7,394	6,602	7,222	6,506	7,184	6,497	7,049	
Depletion	5,477	6,123	5,426	6,149	5,439	6,151	5,437	6,151	

Table SR-8. Agricultural Water Demand

135

specified in the entire reach of the river. Instream net water needs in each river is the portion of applied water which flows throughout the river or is the flow leaving the region. Total 1990 level instream net water needs for this region were about 3,323,000 af.

The Sacramento River Region contains the largest and the most wetlands areas in the State, totalling approximately 175,000 acres. Water for these wetlands is from several sources, including CVP supplies, agricultural return flows, and ground water. The estimated wetland applied water, shown in Table SR-10, is about 484,000 af. The forecasted needs for year 2000 are expected to go up by 30 percent due to the 1992 CVP Improvement Act which allocated more water to wetlands. In the year 2000, 629,000 af would be allocated for wetlands. The CVP Improvement Act is discussed in Volume I, Chapter 2.

The Butte and Sutter basins contain large wetlands areas which serve as critical habitat for migratory waterfowl in the Pacific Flyway. There are about 13,000 acres of publicly owned and managed waterfowl habitat in the Butte Basin. In addition, private hunting clubs maintain more than 30,000 acres of habitat during normal years. The Sutter Basin has almost 2,600 acres of publicly owned waterfowl habitat, all in the Sutter National Wildlife Refuge. Private duck hunting clubs provide an additional 1,500 acres of waterfowl habitat.

Table SR-9. Environmental Instream Water Needs (thousands of acre-feet)

average	drought	average	1 1.				
		Ŭ	drought	average	drought	average	drought
1,903	1,702	1,903	1,702	1,903	1,702	1,903	1,702
1,903	1,702	1,903	1,702	1,903	1,702	1,903	1,702
0	0	0	0	0	0	0	0
280	240	325	240	325	240	325	240
174	1.50	174	150	174	150	174	150
0	0	0	0	0	0	0	0
977	784	977	784	977	784	977	784
977	784	977	784	977	784	977	784
0	0	0	0	0	0	0	0
234	234	234	234	234	234	234	234
234	234	234	234	234	234	234	234
0	0	0	0	0	0	0	0
49	49	49	49	49	49	49	49
35	35	35	35	35	35	35	35
0	0	0	0	0	0	0	0
3,443	3,009	3,488	3,009	3,488	3,009	3,488	3,009
3,323	2,905	3,323	2,905	3,323	2,905	3,323	2,905
0	0	0	0	0	. 0	. 0	0
	1,903 0 280 174 0 977 977 0 234 234 0 234 234 0 49 35 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

(1) Includes Clear Creek, Bear River, Cache Creek, and Putah Creek

Table SR-10. Wetland Water Needs

(thousands of acre-feet)

Wetland	19	90	20	00	20	10	20	20
	average	drought	average	drought	average	drought	average	drought
Modac NWR					· · ·			
Applied water demand	20	20	20	20	20	20	20	20
Net water demand	17	17	17	17	17	17	17	17
Depletion	15	15	15	15	15	15	15	15
Sacramento NWR								
Applied water demand	43	43	50	50	50	50	50	50
Net water demand	43	43	50	50	50	50	50	50
Depletion	18	18	18	18	18	18	18	18
Calusa NWR								
Applied water demand	19	19	25	25	25	25	25	25
Net water demand	19	19	25	25	25	25	25	25
Depletian	9	9	9	9	9	9	9	9
Butte Sink NWR								
Applied water demand	2	2	2	2	2	2	2	2
Net water demand	1	1	1	1	1	1	1	2 1`;
Depletion	1	1	1	1	1	1	1	1
Delevan NWR								
Applied water demand	24	24	30	30	30	30	30	30
Net water demand	24	24	30	30	30	30	30	30
Depletion	12	12	12	12	12	12	12	12
Sutter NWR								
Applied water demand	9	9	30	30	30	30	30	30
Net water demand	4	4	30	30	30	30	30	30
Depletion	4	4	4	4	4	4	4	4
Gray Lodge WA	~	4	4			-	-	
Applied water demand	44	44	44	44	44	44	44	44
Net water demand	38	38	38	38	38	38	38	38
	21	21	21	21	21	21	21	21
Depletion Ash Creek WA	21	21	21	21	21	21	21	21
	10	10	10	13	13	13	13	13
Applied water demand	13	13	13 12	13	13	13	13	13
Net water demand	12	12			12	12	12	12
Depletion	12	12	12	12	12	12	12	12
Upper Butte Basin WA	0	0	54	57	56	56	56	56
Applied water demand	0	0	56	56				49
Net water demand	0	0	49	49	49	49	49	
Depletion	0	0	27	27	27	27	27	27
Yala Bypass WA						-	0	0
Applied water demand	0	0	8	8	8	8	8	8
Net water demand	0	0	8	8	8	8	8	8
Depletion	0	0	2	2	2	2	2	2
Stane Lakes NWR						_		10
Applied water demand	0	0	40	40	40	40	40	40
Net water demand	0	0	40	40	40	40	40	40
Depletian	0	0	10	10	10	10	10	10
Butte Basin Refuge								
Applied water demand	125	125	125	125	125	125	125	125
Net water demand	79	79	79	79	79	79	79	79
Depletion	33	33	33	33	<u>`</u> 33	33	33	33

Table SR-10. Wetland Water Needs (Continued) (thousands of acre-feet)

Wetland	19	90	20	2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought	
Colusa Basin Refuge									
Applied water demand	108	108	108	108	108	108	108	108	
Net water demand	80	80	80	80	80	80	80	80	
Depletion	25	25	25	25	25	25	25	25	
American Basin Refuge									
Applied water demand	31	31	31	31	31	31	31	31	
Net water demand	31	31	31	31	31	31	31	31	
Depletion	7	7	7	7	7	7	7	7	
Sutter Basin Refuge									
Applied water demand	16	16	16	16	16	16	16	16	
Net water demand	16	16	16	16	16	16	16	16	
Depletion	4	4	4	4	4	4	4	4	
Yola Basin Refuge									
Applied water demand	21	21	21	21	21	21	21	21	
Net water demand	21	21	21	21	21	21	21	21	
Depletion	5	5	5	5	5	5	5	5	
Sherman Island Refuge									
Applied water demand	9	9	9	9	9	9	9	9	
Net water demand	9	9	9	9	9	9	9	9	
Depletian	2	2	2	2	2	2	2	2	
Casumnes River Refuge	10 Å								
Applied water demand	0	0	1	1	1	1	1	1	
Net water demand	0	0	1	1	1	1	1	1	
Depletion	0	0	0	0	0	0	0	0	
TOTAL									
Applied water demand	484	484	629	629	629	629	629	629	
Net water demand	394	394	537	537	537	537	537	538	
Depletion	168	168	207	207	207	207	207	208	

Other Water Use

Figure SR-6 shows water recreation areas in the Sacramento Region Table SR-11 shows the total water demands for the region.

Issues Affecting Local Water Resource Management

Legislation and Litigation

Bay/Delta Proceedings and Other Delta Issues. A comprehensive discussion of the Bay/Delta hearings and other Delta issues can be found in Volume I, Chapters 2 and 10.

Sacramento River Fisheries and Riparian Habitat Management Plan (Senate Bill 1086). The salmon and steelhead fishery in the upper Sacramento River has declined greatly in the last few decades. Contributing to this decline are problems on the river's main stem: unsuitable water temperatures, toxic heavy metals from acid mine drainage, degraded spawning gravels, obstructions to fish migration, fish losses from diversions and harvest, and riparian habitat loss. In 1986, the Legislature enacted Senate Bill 1086, which called for development of a riparian habitat inventory and an Upper Sacramento River Fisheries and Riparian Habitat Management Plan. The final plan contained a conceptual Riparian Habitat Restoration Plan recommending two major actions dealing with riparian habitat along the river and its major tributaries. It also contained a more specific Fishery Restoration Plan, listing 20 actions to help restore the salmon and steelhead fisheries of the river and its tributaries. In September 1989, the Legislature approved Senate Concurrent Resolution No. 62, declaring a State policy to implement the recommendations of the management plan.

About half of the proposed restoration actions are now under way, funded by a combination of federal, State, and local sources, but progress in obtaining major federal funding has been slow. The CVP Improvement Act includes many of the CVP-related fishery restoration measures recommended by the SB 1086 plan. This act should accelerate implementation of the major actions needed to restore the upper Sacramento River salmon and steelhead fisheries by providing needed funding.

Glenn-Colusa Irrigation District Intake Screen Deficiencies. The GClD has 720,000 af of prior water rights supplemented by 105,000 af of CVP contract water. In May 1972, Department of Fish and Game constructed a 40-drum rotary fish screen at the intake to the GClD main pump station. The rotary drum screen is one of the largest ever built, allowing a diversion from the Sacramento River of 3,000 cfs. However, the design performance of the screens was never realized, primarily because local river bed erosion gradually lowered the water surface. This resulted from the cutoff of a large downstream river bend during the high water of 1970, which dropped the normal water surface elevation at the screen by approximately 31/2 feet. The ensuing operational deficiencies caused high juvenile fish mortalities.

In 1987, GCID and DFG entered into a joint memorandum of understanding to fund an investigation of potential solutions. The engineering firm CH²M Hill was selected to perform this investigation. Their proposed solution was a new V-type screen combined with gradient restoration in the river. In 1989, the U.S. Army Corps of Engineers was directed by special federal legislation to proceed with engineering and design to restore the river hydraulics near the screen to 1970 conditions. The Corps has recently completed an initial design and environmental assessment of a gradient restoration project.

Sacramento River Region

The listing of the winter-run chinook salmon in 1991 required GCID to consult with the National Marine Fisheries Service on operating the existing screen and constructing a new screen. A court order set requirements for operating the existing screen which limit the amount of water GCID can divert. In the summer of 1992 a second contractor, HDR Engineering, Inc., was hired by the State under a cost-sharing agreement with GCID to perform a feasibility-level study of selected screen design alternatives and prepare environmental documentation.

The CVPIA of 1992 includes fishery mitigation at the GCID pumping plant in the Act's list of mandatory environmental restoration actions. USBR will participate with other parties, including the Reclamation Board, in implementing the work required by the Act. In 1993, GCID completed a flat plate screen to provide interim fishery protection pending completion of a long-term solution.

Regional Issues

Water Transfers. Individuals and water districts from several counties have recently sold or considered selling surface water and ground water to downstream users. As a result, many north valley water users are concerned about protecting ground water resources from export. Surface water transfers caused considerable controversy in local areas (see Volume I for a more complete discussion of water transfers and the 1991 State Drought Water Bank). Organized ground water management efforts are currently under way in Butte, Colusa, Glenn, Shasta, Solano, Sutter, Sacramento, Tehama, and Yolo counties.

Endangered Species. Threatened and endangered species are affecting management of the region's water supplies. While few specific water supply requirements have yet been established for individual species, a number of operating restrictions may be considered that will impact the statewide water demand balance. For example, the listing of the winter-run chinook salmon has had a major impact on GCID operations, and pumping into the North Bay Aqueduct has been restricted to protect the threatened Delta smelt. Other Sacramento River water diverters are concerned about the listing of additional fish runs. Additionally, the bank swallow, a State threatened species, has limited bank protection efforts along the Sacramento River.

Foothill Development. Although some foothill areas have abundant surface water supplies, several rely heavily on ground water to meet their needs. With many people relocating to foothill and mountain regions, there is increasing concern about ground water availability in hard rock areas and the potential for contaminating these supplies. In many mountain counties, homes are built on small parcels away from regional sewer systems and municipal water supplies. Most of these homes rely on a single well for their potable water supply and a septic system to dispose of their sewage. In many areas where this development is occurring, there is no readily available alternative water supply if the ground water becomes depleted or contaminated.

In some areas, current development will cause water supply needs to exceed available supplies. Downstream areas have already developed the least costly reservoir sites, and a number of recent State and federal mandates further limit water development. Financial and other local agency constraints can make it virtually impossible for these regions to develop supplies on their own.

Local Issues

Sacramento River Water Guality. Water quality in the entire watershed is generally excellent, making it one of the most desirable water sources in the State.

Table SR-11. Total Water Demands

(thousands of acre-feet)

Category of Use	19	90	20	00	20	10	2020	
	average	draught	average	drought	average	drought	average	drought
Urban								
Applied water demand	744	807	911	989	1,076	1,167	1,231	1,335
Net water demand	744	807	911	989	1,076	1,167	1,231	1,335
Depletian	236	257	293	318	349	378	400	434
Agricultural								
Applied water demand	7,848	8,645	7,698	8,517	7,592	8,475	7,558	8,333
Net water demand	6,788	7,394	6,602	7,222	6,506	7,184	6,497	7,049
Depletian	5,477	6,123	5,426	6,149	5,439	6,151	5,437	6,151
Environmental								
Applied water demand	3,927	3,493	4,117	3,638	4,117	3,638	4,117	3,638
Net water demand	3,717	3,299	3,860	3,442	3,860	3,442	3,860	3,443
Depletion	168	168	207	207	207	207	207	208
Other ⁽¹⁾								
Applied water demand	1	1	1	1	1	1	1	1
Net water demand	485	421	468	412	465	411	448	411
Depletion	71	60	71	60	71	60	71	60
TOTAL		·						#_ ***
Applied water demand	12,520	12,946	12,727	13,145	12,786	13,281	12,907	13,307
Net water demand	11,734	11,921	11,841	12,065	11,907	12,204	12,036	12,238
Depletion	5,952	6,608	5,997	6,734	6,066	6,796	6,115	6,853

(1) Includes major conveyance facility losses, recreation uses, and energy production.

Figure SR-6. Sacramento River Region Water Recreation Areas

Shown on map.

Ι.	Gaase Lake
2	Castle Crags S.P
3.	West Valley Reservair
1	Blue Lake
5.	Ahjumaw Lava Springs S.P.
5.	Tule Lake
7.	McArthur-Burney Falls M S.P
В.	Lake McClaud
7	Shasta Lake
10.	Iron Canyon Reservair
11	Lake Brittan
12.	Whiskeytawn Reservair
13.	Crater Lake
14	Manzanita Lake
15.	Lake Almanar
16.	William B. Ide Adabe S.H.P
17.	Butte Valley Reservair
18.	Raund Valley Reservair

20.	Waadsan Bridge S.R.A
21.	Snag Lake
22	Lake Davis
23.	Frenchman Lake
24	Black Butte Lake

19 Antelape Lake R.F

- 25. Bidwell River Park S.R.A. 25. Plumas-Eureka S.P.
- 27. Bucks Lake 28. Lakes Basin Recreation Are

- Stony Gorge Reservair
 Thermalita Atterbay R.F.
 Thermalita Farebay R.F.
 Lake Oraville S.R.A
 Little Gravitle S.R.A

- 33.Little Gross Valley Reservoir50.Scatts Flat Lake68.Echa Lake34.New Bullards Bar Reservoir51.Inclian Valley Reservoir69.Falsam lake S.R.35.Malakaff Diggins S.H.P.52.Camp Far West Lake70.Lake Natama36.Bawman Lake53.Rallins Lake71.Brannan Island

- 39
 Prosser Creek Reservair
 56.
 French Meadar

 30.
 Plaskett Lake
 57.
 Clear Lake S.P.

 40.
 Plaskett Lake
 58.
 Andersan Marsi
 41. Callins Lake

 - 45. Eagle Lake46. Martis Creek Lake

- 56. French Meadaws Reservair
- 58. Andersan Marsh S.H.P.
- 59. Auburn S.R.A
- South Yuba Trail Project
 South Yuba Trail Project
 Lake Spaulding
 Lake Valley Reservair
 Lake Valley Reservair
 Eagle Lake
 Hell Hale Reservair 61. Marshall Gold Discovery S.H.P

 - 63. Loon Lake
- 40.
 Mianti Creek Lake
 64
 Unian Valley Reservair

 47.
 Blue Lakes-Lake Caunty
 65.
 Jenkinson Lake Sly Park R.A.
- 48.
 Lake Pillsbury
 65.
 Jenkinson Lake

 49.
 Colusa-Sacramenta River S.R.A.
 66.
 Ice Hause Re

 50.
 Scatts Flat Lake
 68.
 Echa Lake
 66. Ice Hause Reservair

- 37.
 Jackson Meadow Recreation Area
 54.
 Englebright Reservoir

 38.
 Baca Reservoir
 55.
 Sugar Pine Reservoir

 - 69. Falsam lake S.R.A
 - 71. Brannan Island S.R.A.

However, the system is vulnerable to pollution from sources such as the July 1991 toxic spill from a train derailment into the Sacramento River near Dunsmuir. The upper Sacramento River is slowly recovering from that metam sodium spill, which killed essentially all life for miles of this river system. Native rainbow trout from tributaries are redistributing themselves in the river, and the smaller benthic organisms are steadily returning to the river. DFG continues to closely monitor the river's recovery. Current plans are to restrict sport fishing until there is substantial recovery of the river's historic wild trout population.

Problems such as turbidity and high pesticide concentrations affect not only the fisheries but also the drinking water supplies. One of the most significant water quality problems on the upper Sacramento River is heavy metals loading caused by acid mine drainage from a region of past copper/lead/zinc mining above Redding. The major contributor, Iron Mountain Mine, is included in EPA's Superfund program, and remedial and water quality enforcement actions have been under way there for many years. Acid mine drainage from this region has caused significant fish losses in the Sacramento River. USBR operates Spring Creek Debris Dam, upstream of Keswick Reservoir, to control runoff from part of the Iron Mountain area. Mine drainage is impounded in the reservoir and released when downstream flows are large enough to provide dilution. Sometimes when Spring Creek Reservoir is full, releases must be made from Shasta Reservoir to provide dilution. This reduces CVP yield but is necessary to protect the fishery. Additional reservoir storage is planned as part of EPA's remedial program for Iron Mountain Mine. Another alternative would be to bypass the mine by diverting streams upstream of the mine directly to Keswick.

Discharges from paper mills near Anderson have also caused water quality problems. Other problems relate to degraded agricultural return flows, particularly those bearing significant pesticide residues.

Sacramento County Supplies. The county is heavily dependent on ground water for its agricultural and urban water needs. However, this reliance has caused ground water levels to decline considerably in some areas of the county over the past 70 years. Currently, Sacramento County is responsible for purveying water to only a small part of the total urbanized areas of the county; however, the county will serve the majority of new growth areas south of the American River. At this time, no surface water supplies exist to meet this future demand, and ground water availability is under study. The county is also investigating a multifaceted conjunctive use program to meet short-term and long-term water demands in the area.

North Delta Contract. On January 28, 1981, DWR and North Delta Water Agency signed the North Delta Contract. One of the water quality standards in the contract is measured at Emmaton on Sherman Island, where salinity fluctuates widely in low flow conditions due to tidal influences. The North Delta Contract allows DWR to construct an overland facility as an alternative to meeting the Emmaton Standard. The Overland Facility would divert water from Threemile Slough and deliver it to other parts of the island where offshore water is of higher salinity. In 1986, however.. Sherman Island landowners requested that DWR purchase their land instead of building the overland facility.

The Western Delta Water Management Program was developed to satisfy and include the landowners' desire to develop Sherman Island into a wildlife refuge. The program would: (1) improve levees for flood control: (2) protect Delta water quality; (3) meet water supply and water quality needs of Sherman Island; (4) provide habitat for waterfowl and wildlife; (5) minimize oxidation and subsidence on Sherman Island; (6) protect the reliability of the SWP, Contra Costa Canal, and the CVP: (7) protect Highway 160 and utilities: and (8) provide additional recreational opportunities.

DWR has been negotiating land purchases with the landowners. To date, DWR owns or has offers accepted for about 13 percent of the island. In 1991, as part of these efforts, DWR negotiated a draft agreement that had elements of water banking and acknowledges the intent to have DWR purchase lands.

El Dorado County Supplies. Currently El Dorado County has problems with distribution, storage, and water rights. The 1992 Cleveland fire in El Dorado County destroyed a large portion of the PG&E El Dorado canal. The canal supplies about one third of El Dorado Irrigation District's water supply. PG&E has repaired the damaged portion of the canal, and it is back in operation. The American River watershed produces ample water, but other agencies hold the water rights, leaving El Dorado County deficient. The El Dorado County Water Agency and El Dorado Irrigation District have jointly filed for additional water rights from the American River Basin.

El Dorado County Water Agency has issued a final EIR for the El Dorado Project, which will augment supplies in EID's service area. EDCWA has determined that combining water right permits, contractual entitlements, and water exchanges with the construction of water facilities will provide a viable supplemental water supply to the year 2020.

Placer County Distribution. Currently, Placer County lacks sufficient delivery capacity to meet its future demands. There is currently no permanent system to deliver American River water supplies to western Placer County, which has American River water rights, entitlement to water from PG&E's Yuba-Bear system, and a CVP contract for American River water with the USBR. These supplies are sufficient to meet 2020 needs. The county is studying various delivery systems to serve western Placer County's agricultural needs.

Redding Basin Supplies. An active planning effort is under way to provide for the future water supply for developing areas in and around the cities of Redding, Anderson, and Shasta Lake in south-central Shasta County. The Redding Area Water Council is considering local water transfers. conjunctive use of ground water, and additional surface water developments. It is also anticipated that a local ground water management program will be developed.

Cloud Seeding. A number of cloud seeding operations are conducted in the egion, including programs by PG&E in the Feather River Basin and Solano County Water Agency in the Lake Berryessa watershed. In 1991, DWR initiated a prototype project to augment snowpack by cloud seeding using ground-based propane lispensers in Plumas and Sierra counties. These dispensers are expected to produce a 10-percent increase in snow depths within an area in the upper Middle Fork Feather River Basin during average and dry years. Increased snow depths are forecasted to esult in an additional downstream water yield of 22,400 af in a year of near-normal precipitation. The project suspends operation when it appears that the year will have theavy snow pack. By seeding approximately 50 percent of all suitable storms, it will ake an estimated five years to statistically determine the percentage increase in snow lepth (and ultimate water yield) produced by the project. Environmental monitoring of he effects of this new technology is an important component of the program. There has been local resistance to this program because of the possible additional burden on Plumas County resulting from increased snow depths. DWR has committed to pay for iny additional snow removal costs attributed to seeding.

Control of Upper Sacramento River Water Temperatures. During the summer and fall of 1990-92, extremely low water elevations in Shasta Lake caused Sacramento River water temperatures to rise above safe levels for fall-and winter-run salmon. Large amounts of water from the lowest lake intakes, bypassing the power generators, had to be released to prevent fish mortalities. These releases were expensive and could have been avoided if the dam was equipped with a multi-level temperature control structure. Design of such a structure is presently under way but construction is still several years away. The estimated cost is \$80 million and the funding source will be the CVP Improvement Act. A construction contract could be awarded as early as the 1994-95 fiscal year.

Butte and Sutter Basins. The water-related problems of the Butte and Sutter basins include fish passage and habitat degradation, water quality, flooding and drainage problems, and water rights. The issues are complex because of competing uses and the maze-like pattern of water flow. Spring salmon runs in the Butte Creek watershed have decreased from around 20,000 in 1960 to less than 500 in 1992. The studies completed under SB 1086 toward a Sacramento River Fisheries Management Plan identified Butte Creek as a watershed in urgent need of fisheries mitigation work. The Butte and Sutter basins also provide a major part of the waterfowl wetland habitat in the Sacramento Valley, but are in need of more dependable water supplies.

This area's greatest water management issue from a local perspective is the widely perceived need for local ground water basin management. Local concern is motivated by fears that other areas of the State may try to purchase ground water to the possible detriment of the local economy and rural lifestyle. The Butte Basin Water Users Association recently formed to develop a ground water management plan that would protect local interests in the area north of the Sutter Buttes. Another new organization, the Northern California Water Association, was formed to protect the water rights of Sacramento Valley area farmers.

Colusa Basin Drainage and Flooding. The Colusa Basin comprises over 1,000,000 acres of valley floor and foothill lands in the southwest part of the Sacramento Valley. It includes portions of Glenn, Colusa, and Yolo counties. Over 450,000 acres of the valley land within the basin are normally irrigated and it contains about one-third of the total irrigated acreage of the Sacramento Valley.

The basin has historically experienced flooding, drainage, water quality, and subsidence problems. In 1984, a task force was created to develop solutions to basin problems following the passage of SB 674. This legislation authorized DWR's Colusa Basin Appraisal, which was completed in 1990. In 1987, the California Legislature passed the Colusa Basin Drainage District Act, creating a multi-county district to implement solutions to the area's flooding and drainage problems.

The Drainage District Act required that an economically feasible initial plan be developed. In November 1988, the Board of Directors for the Colusa Basin Drainage District was organized and began work on the District's initial plan. DWR's 1990 Colusa Basin Appraisal was used as a guideline for implementing the initial plan. The appraisal concluded that the potential for structural solutions to Colusa Basin problems is limited and recommended that a management plan be implemented to address drainage problems first, then flooding.

The plan in its present form lacks the necessary support to be adopted through a district election, and a vote on the plan is currently not scheduled. The board plans to consider modifications that could broaden the scope of the initial plan to include new district objectives such as water transfers and ground water management. The

1

tistrict has worked to establish a Memorandum of Understanding with the three ounties and Reclamation District 2047. Negotiations for these agreements are ingoing but the major area of contention is how much private landowners would be issessed to implement the management plan and which landowners should be neluded.

Water Guality in Clear Lake. The most severe problem in Lake County is the nutrient-rich character of Clear Lake water. High nutrient levels cause uncontrollable lgae growth, with its associated odor and aesthetic problems. Nutrient sources nelude septic leach lines, sewage treatment plants, and runoff water from upland reas. The predominant blue-green algae form thick mats and scums, which residents nd tourists find noxious. Decomposition of the dense algal growths also causes severe issolved oxygen reduction in the water column, which at times kills fish. Lake County eceived a Clean Lakes grant from the U.S. EPA to analyze methods for the control of he nuisance algae. The county contracted with the University of California at Davis to onduct this work. Elevated mercury levels have been found in fish from the "Oaks rm" of the lake, prompting DFG to advise against eating fish from the lake. The source f mercury is an abandoned mercury mine at Sulphur Bank near Clear Lake Oaks. In ate 1992, the U.S. EPA awarded funds to UCD to investigate the significance of the hercury problem and develop remedial measures.

West Delta Program. DWR is implementing a unique land use management rogram that could effectively control subsidence and soil erosion on Sherman and witchell islands, while also providing significant wildlife/waterfowl habitat values. WR and DFG have jointly developed the Wildlife Management Plan for Sherman and witchell islands to accomplish this objective. The plan is also designed to benefit ildlife species that occupy wetland, upland, and riparian habitat on the islands, and rovide recreational opportunities for hunting and wildlife viewing. Property acquired nd habitat developed through DWR's contribution will be available for use as utigation for impacts associated with ongoing DWR Delta water management rograms.

This plan would significantly reduce subsidence by minimizing oxidation and rosion of the peat soils on the islands by replacing present farming practices with land se management practices designed to stabilize the soil. Such practices range from unimizing tillage to establishing wetland habitat. Altering land use practices on herman and Twitchell islands could provide up to 13,600 acres of managed wildlife nd waterfowl habitat and responds directly to the underlying need for additional 'etlands, as expressed in national and State policies for wetlands enhancement and xpansion. Delta issues are also discussed in the San Joaquin Region chapter.

later Balance

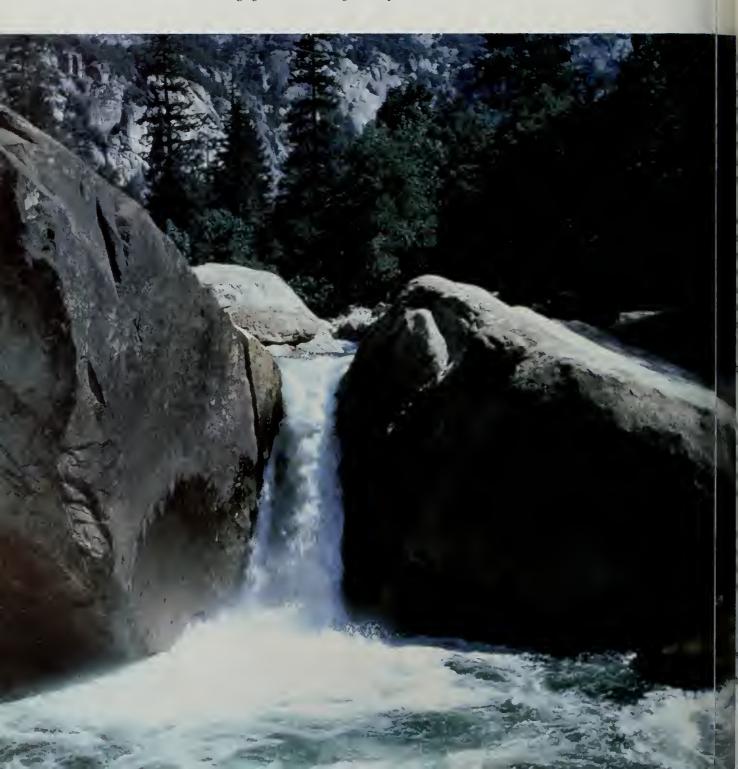
Water budgets were computed for each Planning Subarea in the Sacramento iver Region by comparing existing and future water demand forecasts with the precasted availability of supply. The region total was computed by summing the emand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas, which can be hidden when lanning subareas are combined within the region. Thus, there could be substantial nortages in some areas during drought periods. Local and regional shortages could lso be more or less severe than the shortage shown, depending on how supplies are ilocated within the region, a particular water agency's ability to participate in water 'ansfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table SR-12 presents water demands for the 1990 level and for future water demands to 2020 and compares them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management programs. Regional net water demands for the 1990 level of development totaled 11,734,000 and 11,921,000 af for average and drought years, respectively. Those demands are forecasted to increase to 12,036,000 and 12,238,000 af, respectively, by the year 2020, after accounting for a 25,000-af reduction in urban water demand resulting from implementation of long-term conservation measures.

Urban net water demand is forecasted to increase by about 487,000 af by 2020, due to expected increases in population, while agricultural net water demand is projected to decrease by about 291,000 af, primarily due to changes in cropping patterns. Environmental net water demands, under existing rules and regulations, will increase by 143,000 af, reflecting increased water allocation to wildlife refuges in the Sacramento Valley.

Average annual supplies, including 33,000 af of ground water overdraft, were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands by about 961,000 af per year. Without additional water management programs, annual drought year shortages are expected to decrease to about 829,000 af by 2020. This decrease is due primarily to reductions in agricultural water use.

Several environmental improvement actions currently in progress, including implementation of the CVPIA, have proposed increases for instream flow for fisheries ¹ that could further reduce the availability of supplies for urban and agricultural use in the region.


Level I water management programs would reduce drought year shortages by only about 14,000 af. The remaining 815,000 af drought shortage requires both additional short-term management programs, and future long-term Level II programs depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region.

Water Demand/Supply	1990		2000		2010		2020	
	average	drought	average	drought	average	draught	average	drough
et Demand								
Urban—with 1990								
level af conservatian reductians due to lang-term conservatian	744	807	922	1,000	1,095	1,186	1,256	1,360
measures (Level I)	_	_	-11	-11	-19	-19	-25	-25
Agricultural—with 1990 level of conservation —reductions due to	6,788	7,394	6,602	7,222	6,506	7,184	6,497	7,049
lang-term conservation measures (Level I)	_	_	0	0	0	0	0	0
Environmental	3,717	3,299	3,860	3,442	3,860	3,442	3,860	3,443
Other ⁽¹⁾	485	421	468	412	465	411	448	411
DTAL Net Demand	11,734	11,921	11,841	12,065	11,907	12,204	12,036	12,238
ater Supplies w/Existing Facilities Developed Supplies								
Surface Water	8,360	8,004	8,467	8,244	8,533	8,410	8,662	8,486
Ground Water	2,496	2,865	2,463	2,985	2,426	3,033	2,491	3,038
Ground Water Overdraft ⁽²⁾	33	33					_, . , .	_
btotal	10,889	10,902	10,930	11,229	10,959	11,443	11,153	11,524
dicated Natural Flow	3,323	2,905	3,323	2,905	3,323	2,905	3,323	2,905
DTAL Water Supplies	11,734	10,960	11,808	11,167	11,874	11,333	12,003	11,409
mand/Supply Balance	0	-961	-33	-898	-33	-871	-33	-829
vel I Water Management Programs								
Lang-term Supply Augmentation								
Reclaimed ⁽³⁾	_	-	0	0	0	0	0	0
Local	-	_	0	2	0	3	-6	6
Central Valley Praject/ Other Federal	_	_	0	6	0	6	6	6
State Water Project	_	_	0	0	0	0	0	0
btatal - Level I Water inagement Pragrams	0	0	0	8	0	9	0	12
Net Ground Water or Surface Water Use Reduction								
Resulting fram Level I Pragrams	—	—	0	0	0	1	0	2
maining Demand/Supply Balance R		at toom Decur	ht Managom	ont and /or lu	wel II Option	c		

Table SR-12. Water Budget (thousands of acre-feet)

Includes major conveyance facility losses, recreation uses, and energy production.
 The degree huture shortages are met by increased averdraft is unknown. Since averdraft is not sustainable, it is not included as a future supply.
 Because of existing reuse within region, reclaimed water does not add supply to the region.

The Merced River cascades down rocks in Yosemite National Park. The Merced River is one of four in the San Joaquin River Region which have significant instream flow requirements.

Located in the heart of California, the San Joaquin River Hydrologic Region is bordered on the east by the crest of the Sierra Nevada and on the west by the coastal mountains of the Diablo Range. It extends from the Delta and the Cosumnes River drainage south to include all of the San Joaquin River watershed. (See Volume I, Chapter 10 for details about the Sacramento-San Joaquin Delta area.) It is rich in natural wonders, including the Yosemite Valley, Tuolumne Meadows, Moaning Caverns, and Calaveras Big Trees. The region comprises about 10 percent of California's land area. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The region is diverse but can be divided into two main topographies and associated climates: (1) the mountain and foothill areas and (2) the valley area. The climates of many of the upland areas west of the valley resemble those of foothills. Precipitation in the mountainous areas varies greatly. The annual precipitation of several Sierra Nevada stations averages about 35 inches. Snowmelt runoff from the mountainous areas is the major contributor to local water supplies for the eastern San Joaquin Valley floor. The climate of the valley floor is characterized by long, hot summers and mild winters, and average annual precipitation ranges from 17 inches in the northeast to 9 inches in the south.

Population

About 5 percent of the State's population lives in the region. From 1980 to 1990, the region's population grew 41 percent, primarily in Merced, Stanislaus, and San Joaquin counties. Communities such as Stockton, Modesto, Merced, and Tracy, once valley farm centers, are now major regional urban centers. These communities and their smaller neighboring cities, such as Lodi, Galt, Madera, and Manteca, are expected to continue expanding into the mostly agricultural northern San Joaquin Valley. Several counties expect their populations to nearly double by 2010.

Some of this growth is due to the expansion from the San Francisco Bay Area and Sacramento. Nine new communities have been proposed for development in southern San Joaquin County, two of which were approved, New Jerusalem and Riverbrook, with proposed populations of **22**,000 and 7,000, respectively. As currently proposed, hese developments would increase the county's population by about 30,000 people

Region Characteristics

Average Annual Precipitation: 13 inches	Average Annual Runoff: 7,933,300 af
Land Area: 15,950 square miles	1990 Population: 1,430,200

San Joaquin River Region

and require about 4,000 acres. The relatively inexpensive housing available in the area offsets the long commute to Bay Area jobs for some San Joaquin County residents. Larger cities such as Stockton and Modesto are industrial and commercial centers in their own right.

In contrast to the large valley urban centers, separated by flat agricultural fields and linked by freeways, the foothills are sprinkled with small communities connected by small two-lane roads. Much of the foothill population lives along the old Mother Lode route of the 1849 Gold Rush, Highway 49. Towns such as Jackson, Angels Camp, San Andreas, Sonora, and Oakhurst have grown significantly in the last decade. Off from the north-south trending Highway 49 is a series of roads that lead to Sierra Nevada mountain passes. These mountain roads (Highways 88, 4, 108, 120) generally follow east-west trending ridges, which are separated by one of the nine major river systems draining the Sierra. The economies of mountain communities along these routes depend on tourist and travel industries. These communities are also retirement areas for many former Bay Area or Southern California residents.

The western side of the region, south of Tracy, is sparsely populated. Small farming communities provide services for farms and ranches in the area, all relatively close to Interstate 5, the chief north-south transportation route in California.

Historically, the economy of the San Joaquin River Region has been based on agriculture. By far, agriculture and food processing are still its major industries. Other major industries include the production of chemicals, lumber and wood products, glass, textiles, paper, machinery, fabricated metal products, and various other commodities. Table SJ-1 shows population projections to 2020 for the San Joaquin River Region.

Planning Subarea	1990	2000	2010	2020
Sierra Foothills	140	214	284	357
Eastern Valley Floor	312	376	445	536
Delta Service Area	156	229	315	423
Western Uplands	64	109	150	197
East Side Uplands	44	60	66	92
Valley East Side	653	905	1,192	1,489
Valley West Side	61	82	103	127
West Side Uplands	0	0	0	0
TOTAL	1,430	1,975	2,555	3,221

Table SJ-1. Population Projections (thousands)

Land Use

Much of the Sierra Nevada Range is national forest land, while the San Joaquin Valley is predominantly agricultural. In the Sierra Nevada, there are the El Dorado. Stanislaus, and Sierra national forests and Yosemite National Park. The valley constitutes about 3,500,000 acres, the eastern foothills and mountains total 5,800,000 acres, and the western coastal mountains comprise 900,000 acres.

Public lands amount to about one-third of the region. The national forest and park lands encompass over 2,900,000 acres of the region; state parks and recreational areas and other State-owned property account for about 80,000 acres; and Bureau of

Land Management and military properties occupy some 221,000 and 37,000 acres, respectively.

About 1,955,000 of the region's 10,200,000 acres (19 percent) were devoted to irrigated agriculture in 1990. Some of the major crops include almonds, alfalfa, pasture, grain, grapes, cotton, and field corn. Urban land usage in 1990 totaled 295,300 acres. Figure SJ-1 shows land use, imports, and exports for the San Joaquin River Region.

Water Supply

About 47 percent of the region's 1990 level water supply comes from local surface sources, while 29 percent is from imported surface supplies. Ground water provides about 19 percent of the total 1990 level average annual water supply for the region. The pumping facilities of the federal Central Valley Project, the State Water Project, and the Contra Costa Canal are in the Delta. The CVP provides much of the water supply (about 63 percent) for the west side of the region's valley area. The Hetch Hetchy reservoir system on the Tuolumne River provides water to the southern San Francisco Bay Area and Peninsula through a system of reservoirs, power plants, and aqueducts. The East Bay Municipal Utility District receives water from Pardee Reservoir on the Mokelumne River. This water is conveyed by the Mokelumne Aqueduct to the East Bay MUD's service area, which includes Oakland, Berkeley, Richmond, and Walnut Creek.

Supply with Existing Facilities and Water Management Programs

Surface water systems in the region form a general pattern. A series of reservoirs gathers and stores snowmelt in the upper mountain valleys of the Sierras. Water here is generally used for hydrogeneration as it is released down river. Some diversion for consumptive use occurs for local communities, but most flows are caught downstream in other reservoirs located in the foothills or at the eastern edge of the valley floor. Irrigation canals, along with municipal pipelines, commonly carry water from these storage facilities. Water released downstream in the river can be picked up for irrigation and other uses on the valley floor as it heads for the Delta. Figure SJ-2 shows the region's 1990 level sources of supply.

Of the 57 major reservoirs in the region, there are 16 with storage capacities greater than 100,000 af, four of which have capacities of 1,000,000 af or more. Fifteen of these reservoirs were built primarily for flood control; however, many of them also have additional storage capacity for water supply and other uses included in their design. In addition to federal agencies, local irrigation districts own and operate many of the major facilities; most are managed for multipurpose uses. The region's major reservoir systems are briefly described in Table SJ-2.

* Transfers from the Sacramento-San Joaquin Delta are taken from commingled waters originating in both the Sacramento River and San Joaquin River regions.

Reservoir Name	River	Capacity (1,000 AF)	Owner
New Melones	Stanislaus	2,420	U.S. Bureau of Reclamation
New Don Pedro	Tualumne	2,030	Turlack and Madesto Irrigation Districts
Hetch Hetchy	Tuolumne	360	City af San Francisco
Lake McClure	Merced	1,024	Merced Irrigation District
San Luis	N/A	2,040	USBR and Dept. af Water Resources
Shover	San Joaquin	135	Southern California Edison
Pardee	Mokelumne	210	East Bay Municipal Utility District
Salt Springs	Makelumne	142	Pacific Gas & Electric Company
Millerton	San Jaaquin	520	U.S. Bureau af Reclamatian
Edison	San Joaquin	125	Southern Califarnia Edisan
Lloyd (Cherry) Lake	Tuolumne	269	City of San Francisca
Mammoth Pool	San Jaaquin	123	Southern Califarnia Edisan
Camanche	Makelumne	417	East Bay Municipal Utility District
New Hogan	Calaveras	317	U.S. Army Corps of Engineers
Eastman	Chowchilla	150	U.S. Army Corps of Engineers
New Spicer Meadow	Tualumne	189	CCWD

Table SJ-2. Major Reservoirs

The U.S. Bureau of Reclamation completed New Melones Dam in 1979, and the reservoir was initially filled in 1983. According to USBR's 1980 New Melones allocation report, this reservoir has an estimated annual additional yield of 180.000 af. None of this yield has been delivered yet. To date. Stockton East Water District has contracted with USBR for 75,000 af of interim water; Central San Joaquin Water District has contracted for 49,000 af of average and drought year supply and 31,000 af of interim New Melones water. Some of the facilities to transport this water were completed in 1993, and 20,000 af was requested by the two districts but no delivery was made because the interim water supply was used to meet CVPIA requirements. Water supplies vary by areas in the region, as discussed below.

Mountain and Foothill Areas. The major mountain and foothill areas of the region include the west side Sierra Nevada mountain counties of Mariposa, Tuolumne, Calaveras, Amador, and portions of Alpine and El Dorado. There are dozens of small communities in these counties, generally located along Highway 49. Most of these communities, and the sparse agricultural land in the area, receive their water

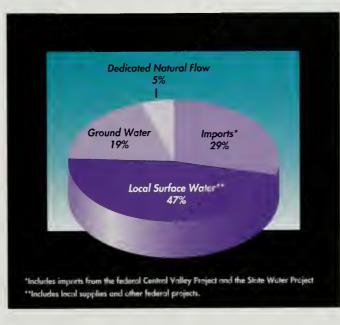


Figure SJ-2. San Joaquin River Region Water Supply Sources (1990 Level Average Conditions) from local surface supplies. In the 1850s, hydraulic mining for gold and other minerals promoted the construction of an extensive network of canals and ditches to bring water from main rivers and tributaries to the mine sites. When the mining industry waned, power companies, like Pacific Gas and Electric Company, took control of many of these facilities. Today, in addition to supplying water to hydroelectric power plants, these facilities convey water to many of the small mountain communities. For example, in Amador County, the Cosumnes River supplies water to the community of Plymouth and the Mokelumne River supplies water to the communities of Jackson and Ione. In Calaveras County, water is distributed via pipelines and ditches from the Stanislaus and Calaveras rivers to the communities of Angels Camp, Arnold, and Jenny Lind. In Tuolumne County. water from the Lyons Reservoir is diverted to several communities along Highway 108, including Tuolumne, Jamestown, Columbia, and Sonora. Groveland receives water from the Hetch Hetchy system.

In addition to surface water, many of these mountain communities pump ground water from hard rock wells and old mines to augment their surface supplies. Ground water generally is no more than about 15 percent of the total supply for most of them. Valley Springs in Calaveras County is an exception; it relies entirely on ground water for its water needs. The communities of Plymouth and Mariposa had to turn to ground water to supplement surface supplies during the 1976-77 and the 1987-92 droughts. Also, for many mountain residents who are not connected to a water conveyance system, ground water is their only source.

The Delta-Mendota Canal is one of the major canal systems distributing water in the San Joaquin River Region. The canal is part of the Central Valley Project.

Valley Area. The nine major river systems feeding into the valley from the Sierra Nevada provide more than 50 percent of the region's total supply. Irrigation districts transport much of the local surface water to valley agricultural users. Modesto Irrigation District and Turlock Irrigation District supply both agricultural and municipal users through the Modesto and Turlock Canals. Other irrigation districts, such as Merced, Oakdale, and South San Joaquin, operate similar facilities. The Folsom South Canal used to divert about 17,000 af from the American River for cooling at the Rancho Seco Nuclear Power Plant, which has been closed. The canal continues to deliver water for agricultural uses in local districts, such as Galt Irrigation District.

Adding to the valley's surface water supply are three major canal systems: the California Aqueduct, Delta-Mendota Canal, and Madera Canal. The CVP also delivers water from its Mendota Pool, O'Neil Forebay, and Millerton Lake facilities. Only the

Oak Flat Water District receives water from the SWP. Within the Delta service area, agricultural water users pump directly from Delta sloughs and water courses. The City of Stockton can receive up to 25,000-af-per-year surface flows from the New Hogan Reservoir via the Stockton East Pipeline (from Stockton East Water District) in an effort to correct the condition of ground water overdraft in its service area. The community of Tracy receives about 5,000 af annually from the CVP Delta-Mendota Canal.

In an average year, about 19 percent, or 1,307,000 af, of the region's water requirements are met by pumping ground water. Agriculture uses about 70 percent of the ground water pumped. The other 30 percent is used to meet a variety of water demands including urban, rural residential, industrial, and environmental. On the valley floor, the majority of communities, industries, and rural residents rely on ground water as their primary or only source of water supply. Some of the wildlife refuges in the region may also use ground water to supplement their surface water supplies, especially in years of below-normal surface deliveries.

The availability and use of ground water for the region is influenced mainly by water quality problems. The valley floor is essentially one large ground water basin consisting of alluvial sediments. Much of the western portion of the valley is underlain by the Corcoran clay, which generally lies at depths between 100 and 400 feet. The Corcoran clay divides the basin sediments into confined and unconfined aquifers. On the west side, high total dissolved solids and sulfates are found in varying degrees in both the confined and unconfined aquifers. East of the San Joaquin River, the valley is underlain by older, less productive sediments. The shallow ground water quality is generally very good here and several water districts have drainage wells that pump into their distribution systems. However, in some areas of the central and northeastern portion of the valley, nitrates and organic contaminants have been found, mostly localized around point sources.

Ground water overdraft for the 1990 level is estimated at about 209,000 af a year. Areas most affected are found in San Joaquin and Madera counties, with an estimated 70,000 and 45,000 af of overdraft, respectively. Table SJ-3 shows water supplies with existing facilities and water management programs.

Table SJ-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies)

(thousands of acre-feet)

Supply	19	90	20	2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought	
Surface	· · · · · · · · · · · · · · · · · · ·								
Local	3,030	2,844	3,011	2,803	2,979	2,781	3,003	2,797	
Local imports	0	0	0	0	0	0	0	0	
Colorada River	0	0	0	0	0	0	0	0	
CVP	1,998	1,388	2,055	1,449	2,066	1,462	2,064	1,462	
Other federal	155	34	156	34	158	36	160	37	
SWP	5	3	4	3	4	3	4	3	
Ground water	1,098	2,145	1,135	2,202	1,156	2,227	1,161	2,252	
Overdraft ⁽¹⁾	209	209	_	_	_	_	_	-	
Reclaimed	0	0	0	0	0	0	0	0	
Dedicated natural flow	331	243	331	243	331	243	331	243	
TOTAL	6,826	6,866	6,692	6,734	6,694	6,752	6,723	6,794	
		• • • •		,					

(1) The degree future shartages are met by increased averdraft is unknawn. Since overdraft is not sustainable, it is not included as a future supply.

Supply with Additional Facilities and Water Management Programs

The San Joaquin River Region withstood drought conditions by employing several water management options: conservation, exchanges, transfers, and supplementing surface supplies with ground water. In the long run, however, with continued population growth and shifts in types of water use, the region's water resource managers will also look for strategies that increase surface supply reliability and provide for additional recharge of ground water basins. Means of improving water quality will have to be built into these strategies. Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Other than planned SWP additions, there are no other major water supply facilities currently scheduled to come on line by 2020. Table SJ-4 shows water supplies with Level I water management programs.

Supply	19	90	20	2000 2010		10	2020	
	average	drought	averoge	drought	average	drought	average	drought
Surface					<u> </u>			
Lacal	3,030	2,844	3,013	2,804	2,981	2,782	3,005	2,798
Lacal imparts	0	0	0	0	0	0	0	0
Colorada River	0	0	0	0	0	0	0	0
CVP	1,998	1,388	2,055	1,449	2,066	1,462	2,064	1,462
Other federol	155	34	156	34	158	36	160	37
SWP	5	3	5	4	5	3	5	3
Ground water	1,098	2,145	1,132	2,200	1,163	2,236	1,158	2,253
Overdraft ⁽¹⁾	209	209	_	-	_	_	_	_
Reclaimed	0	0	0	0	0	. 0	0	0
Dedicated natural flow ⁽²⁾	331	243	431	248	431	248	431	248
TOTAL	6,826	6,866	6,792	6,739	6,804	6,767	6,823	6,801

Table SJ-4. Water Supplies with Level I Water Management Programs

(Decision 1485 Operating Criteria for Delta Supplies)

(thousands of acre-feet)

The degree future shortages are met by increased overdraft is unknown. Since averdraft is not sustainable, it is not included as a future supply.
 Increase in dedicated natural flaw reflects implementation of EBMUD Water Supply Management Program.

Water Supply Reliability and Drought Water Management Strategies. From 1987 through 1992, the San Joaquin River Region, like much of California, endured drought conditions. Many of the cities in the region had restricted water use even though ground water is the predominant source of supply. Drought-related problems developed, such as increased pumping depths, well failures, and accelerated degradation of water quality, but generally, there was no substantial reduction in supply. Nevertheless, conservation programs were introduced in nearly all of the region's communities in reaction to the drought. Cities that were completely metered, like Stockton, implemented comprehensive conservation programs, However, a lack of water metering precludes the monitoring or implementing of mandatory rationing in most communities. A number of other practices have been employed, ranging from voluntary water conservation with limitations on outdoor watering to water rationing by allowing little or no outdoor watering. For example, the City of Modesto restricted outdoor water use based on several factors: the season, the day of the week, and the time of day. For indoor water use, the city relied on voluntary water conservation. The cities of Merced, Tracy, and Turlock had programs similar to Modesto. Because of the ability of the east side water agencies, supplying both urban and agricultural users, to supplement reduced surface water allocations with ground water, annual crop acreages remained fairly stable during the drought.

The foothill community of Mariposa relies on surface water and was hit hard by the reduced surface runoff. Its water supply comes from a 440-af water storage reservoir on Stockton Creek. At one point, residents were on a strict rationing program that fluctuated with the available water supply. Per capita restrictions were as low as 100 gallons per day for the first person of a household and 50 gpd for each additional person. In comparison, most San Joaquin Valley residents use ground water, and though most cities were practicing time of day or day of week outdoor watering restrictions and other conservation programs, water consumption still averaged about 250 gpcd.

On the west side of the region, normally about 90 percent of the surface supply is obtained from the CVP. Over 60 percent of this comes by way of exchange contracts for San Joaquin River water which provides farmers with good quality water. These contractors received only 75 percent of their normal entitlements in 1991 and 1992.

Those areas on the west side, which receive contract water from the Delta-Mendota or San Luis Canals, experienced severe cuts in water supply during 1991 and 1992. Only 25 percent of the entitlement amounts were delivered. Many of these areas lacked sufficient ground water pumping capabilities to fully make up for the cuts. There were substantial reductions in cropped acreage and under irrigation of permanent crops, resulting in decreased crop yields. Some State Drought Water Bank water and federal hardship water was used primarily to ensure the survival of permanent crops.

Water Management Options with Additional Facilities. In 1984, the California Legislature authorized the proposed Los Banos Grandes Reservoir in western Merced County as a facility of the SWP. Los Banos Grandes would store water pumped from the Delta through the California Aqueduct during wet months, primarily November through March. Stored water would be released during water-short periods for use by agencies with contracts for water from the SWP. This 1,730,000-af reservoir would help provide a more dependable water supply for the people and farms served by the SWP. (See Volume 1, Chapter 11.) Although only one water district in the region could benefit directly, the reservoir would provide other indirect benefits to the area, such as recreational opportunities and supplemental flood protection. The feasibility of the reservoir is being reevaluated in the light of proposed Delta standards and requirements of Delta smelt and winter-run salmon biological opinions.

The Mariposa Public Utility District in Mariposa County is developing the Saxon Creek Water Project, which will bring additional water to the 2,000 residents living within the district. The project involves tapping the Merced River and delivering water via a pipeline. The project is small, about 900 af annually at full development, but important to the community of Mariposa. It will help to provide a reliable water supply in an area that is already straining its water resources.

Water Use

Agricultural water demand is about 85 percent of the region's total demand of 6.826,000 af. Urban demand, which includes urban residential, industrial, and rural residential, comprises approximately 5 percent of total demand. Environmental water use for the region's wetlands and instream fishery requirements represent about 8 percent of the total water demand. Other water use includes recreation, water used for power plant cooling, and water lost during conveyance: this category constitutes about 2 percent of total demand. Figure SJ-3 shows net water demand for the 1990 level of development.

Urban Water Use

The 1990 level urban applied water demand in the region totaled almost 495,000 af, an increase of about 91,000 af since 1980. This increase was primarily due to an increase in population. Average per capita water use is about 309 gallons per day. Per capita values range from about 350 gallons per day in Modesto, one of the larger cities. to 200 gallons per day and less in small communities like Dos Palos and Riverbank. Higher per capita water use in communities like Modesto is generally due to a high

L

concentration of industries. In the case of Modesto, food processing comprises a large segment of the industrial activity. Figure SJ-4 shows the 1990 level urban applied water use by sector. Table SJ-5 shows applied water and net urban water demand to 2020.

Most urban water supply agencies in the region do not meter deliveries to residential customers. Generally, commercial and industrial deliveries are me-Outdoor use tered. probably accounts for about one-half of total urban use for most of the region. Warm summers and associated high water requirements for landscaping are the main factors behind this region's urban water use being higher than the statewide average.

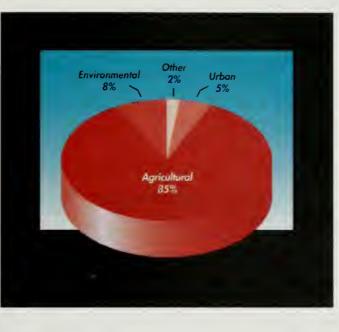


Figure SJ-3. San Joaquin River Region Net Water Demand (1990 Level Average Conditions)

Population projections indicate that more than twice as many people would reside in the San Joaquin River Region by 2020. Such growth is expected to drive the conversion of some agricultural lands to urban development. This may further stretch water supplies in some areas, or just shift water use from agricultural to urban. Given these population increases, urban net water demand could double by 2020.

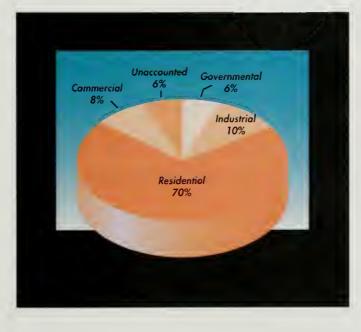


Figure SJ-4. San Joaquin River Region Urban Applied Water Use by Sector (1990 Level Average Conditions)

Table SJ-5. Urban Water Demand

(thousands of acre-feet)

Planning Subarea	19	90	20	00	20	10	20	20
·	average	draught	average	draught	average	draught	average	droughi
Sierra Foothills								
Applied water demand	36	40	54	59	71	77	87	95
Net water demand	38	43	56	62	73	80	89	98
Depletian	10	11	15	16	20	22	25	27
Eastern Valley Floor								
Applied water demand	80	84	97	105	114	124	134	147
Net water demand	80	84	97	105	114	124	134	147
Depletion	23	24	27	30	32	35	39	42
Delta Service Area								
Applied water demand	35	37	50	54	65	71	85	92
Net water demand	35	37	50	54	65	71	85	92
Depletian	10	10	14	16	19	21	25	27
Western Uplands								
Applied water demand	37	38	45	46	51	53	59	60
Net water demand	37	38	45	46	51	53	59	60
Depletion	4	4	6	6	8	8	10	11
East Side Uplands								
Applied water demand	11	11	15	15	16	16	23	23
Net water demand	5	5	6	6	7	7	10	10
Depletion	5	5	6	6	7	7	10	10
Valley East Side								
Applied water demand	279	280	378	381	493	497	605	610
Net water demand	149	150	202	205	263	267	322	327
Depletion	131	131	178	179	232	233	284	286
Valley West Side								
Applied water demand	17	17	24	24	29	29	36	36
Net water demand	9	9	12	12	14	14	18	18
Depletion	9	9	12	12	14	14	17	17
West Side Uplands								
Applied water demand	0	0	0	0	0	0	0	0
Net water demand	0	0	0	0	0	0	0	0
Depletion	0	0	0	0	0	0	0	0
TOTAL								
Applied water demand	495	507	663	684	839	867	1,029	1,063
Net water demand	353	366	468	490	587	616	717	752
Depletion	192	194	258	265	332	340	410	420

Agricultural Water Use

Agriculture accounts for 85 percent of the total applied water in the San Joaquin Region. The industry can best be described as widely diverse. Major crops in the region that encompass over 100,000 acres each are alfalfa, almonds. grapes, grain, corn, and cotton. Table SJ-6 shows irrigated crop acreage for the region to 2020. Table SJ-7 shows 1990 crop acreages and evapotranspiration of applied water. Figure SJ-5 shows crop acreages, ETAW, and applied water for major crops.

Planning Subarea	1990	2000	2010	2020	
Sierra Faothills	7	8	9	11	
Eastern Valley Flaar	273	272	271	269	
Delta Service Area	277	276	273	271	
Western Uplands	13	12	12	12	
East Side Uplands	2	2	2	2	
Valley East Side	1,003	985	965	950	
Valley West Side	433	435	436	437	
West Side Uplands	0	0	0	0	
TOTAL	2,008	1,990	1,968	1,952	

Table SJ-6. Irrigated Crop Acreage

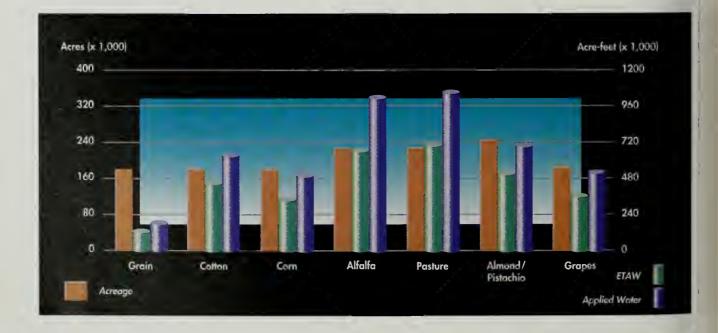
(thausands of acres)

Estimates of future agricultural water use were generally based on the 1990 unit use values. There may be room for some minor improvements in irrigation efficiencies: however, increased efficiencies would only slightly reduce the overall agricultural water use. Double cropping accounted for about 52,700 acres in 1990, a decrease of about 35 percent since 1980. The double-cropped acres represent less than 3 percent of the irrigated acreage. Table SJ-8 shows agricultural water demands to 2020.

Table SJ-7. 1990 Evapotranspiration of Applied Water by Crop

Irrigated Crap	Total Acres (1,000)	Total ETAW (1,000 AF)	
Groin	182	130	
Rice	21	75	
Cattan	178	453	
Sugar beets	64	157	
Carn	181	342	
Other field	121	153	
Alfalfa	226	665	
Pasture	228	704	
Tomatoes	89	181	
Other truck	133	164	
Almonds/pistachios	245	513	
Other deciduaus	147	380	
Vineyard	184	364	
Citrus/alives	9	16	
TOTAL	2,008	4,297	

Over the past 20 years, agricultural net water demand in the region has fluctuated, primarily as a result of changing crop patterns. For example, rice acreage normally planted near the City of Merced has nearly disappeared due to the recent water



shortages. Rice has been replaced by sugar beets and cotton, which require less water. In some areas. sugar beets have been replaced with other crops due to disease. Another factor is the trend of using low-volume irrigation systems in new plantings of orchards and vinevards. Some mature plantings are being converted to these systems as well.

A gradual decrease of about 10 percent in agricultur-

Figure SJ-5. 1990 San Joaquin River Region Acreage, ETAW, and Applied Water for Major Crops

al net water demand is predicted over the next 30 years. The majority of this reduction is expected in the Valley East Side and Valley West Side planning subareas. About onethird of this decrease is attributed to reduced plantings due to urbanization. The region's irrigated crop acreage is expected to decrease by 57,000 acres (3 percent), mostly in the Valley East Side PSA. The rest of the decrease in net water demand is primarily due to changing crop trends and slight increases in irrigation efficiencies.

Drip lines are suspended on hooks at this San Joaquin Valley vineyard. More efficient irrigation practices are being used throughout the region.

Tab	le SJ	-8.	Agricu	ltural	Water	Demand

(thousands of acre-feet)

Planning Subarea	19	90	20	00	20	10	2020	
	aver a ge	drought	average	draught	average	drought	average	drought
Sierra Faathills								
Applied water demand	20	24	22	26	25	34	29	34
Net water demand	17	21	19	23	22	31	26	31
Depletion	15	17	16	19	20	25	21	25
Eastern Valley Floor								
Applied water demand	886	1,038	850	996	823	946	809	946
Net water demand	873	1,027	827	987	791	903	778	903
Depletion	639	749	630	737	621	717	614	717
Delta Service Area								
Applied water demand	739	830	719	805	694	774	681	755
Net water demand	690	772	673	749	650	721	639	705
Depletian	552	620	542	606	532	591	522	578
Western Uplands								
Applied water demand	40	47	38	44	36	42	34	40
Net water demand	43	49	40	46	38	44	37	42
Depletion	30	35	29	34	28	32	27	31
East Side Uplands								
Applied water demand	7	7	7	7	7	7	7	7
Net water demand	4	4	4	4	4	4	4	4
Depletian	4	4	4	4	4	4	4	4
Valley East Side								
Applied water demand	3,193	3,366	3,059	3,230	2,926	3,086	2,841	3,012
Net water demand	2,840	2,995	2,726	2,881	2,608	2,757	2,533	2,691
Depletion	2,340	2,468	2,271	2,398	2,200	2,326	2,138	2,269
Valley West Side								
Applied water demand	1,413	1,445	1,357	1,392	1,306	1,338	1,264	1,286
Net water demand	1,311	1,349	1,272	1,277	1,233	1,235	1,198	1,196
Depletion	1,139	1,171	1,113	1,111	1,085	1,082	1,057	1,054
West Side Uplands								
Applied water demand	0	0	0	0	0	0	0	0
Net water demand	0	0	0	0	0	0	0	0
Depletion	0	0	0	0	0	0	0	0
TOTAL								
Applied water demand	6,298	6,757	6,052	6,500	5,817	6,227	5,665	6,080
Net water demand	5,778	6,217	5,561	5,967	5,346	5,695	5,215	5,572
Depletion	4,719	5,064	4,605	4,909	4,490	4,777	4,383	4,678

Environmental Water Use

The region contains wildlife refuges, wetlands, and stretches of rivers that are designated Wild and Scenic under the California Wild and Scenic Rivers Act. The Grasslands area in western Merced County is an important stop along the Pacific Flyway for migrating waterfowl. In addition to the Grasslands area, there are ten other major wetlands that contribute to the region's environmental water demands. Water for conserving these wildlife habitats accounts for about 3 percent of the region's total net water demand. Refuges also provide areas for recreational use, a habitat for native vegetation, and flood and erosion control. Table SJ-9 summarizes forecasted wetland water needs for the region.

Instream flows are waters flowing in a natural stream channel providing vital support for fisheries. Four rivers in the region, the Mokelumne, Merced, Stanislaus, and Tuolumne, have significant instream flow requirements. (See Volume 1, Chapter 8.) The region's annual water requirement for instream flows is 331,000 af. Table SJ-10 summarizes environmental instream needs for the region. In addition, the following minimum instream flows are required which are not included in Table SJ-10. At Merced Falls on the Merced River, 3 cubic feet per second is required for the minimum flow through the fish ladder. Below New Exchequer Dam on the Merced River, DFG requires annual flow release of 180 to 220 cfs during November 1 to April 1, plus spring flushing flows.

The California Wild and Scenic Rivers Act of 1972 provides for the preservation of the natural watercourse and character of certain rivers in the State. In the San Joaquin River Region portions of the Tuolumne and Merced rivers are designated wild and scenic. The upper stretch of the Tuolumne River, below Hetch Hetchy Reservoir and above New Don Pedro Reservoir, was designated wild and scenic in 1984. In 1992, a bill was passed designating an eight-mile stretch of the Merced River from Briceburg to Bagby as wild and scenic. Much of the river was already given this status in 1987. In addition to protecting the river from development, the 1992 bill allows the county to proceed with the Saxon Creek Water Project, providing a reliable water supply to the community of Mariposa. Waterways designated as wild and scenic are protected by law from the construction of dams or diversion structures that would alter the natural free-flowing character of these rivers. The Saxon Creek Project involves pumping water from the Merced River at times when flows are high enough that the waterway would not be adversely affected. The region's current environmental net water demands are about 554,000 af annually; this is expected to increase by 21 percent to 670,000 af annually by 2020.

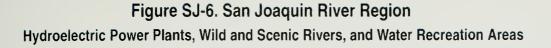
Table SJ-9. Wetland Water Needs

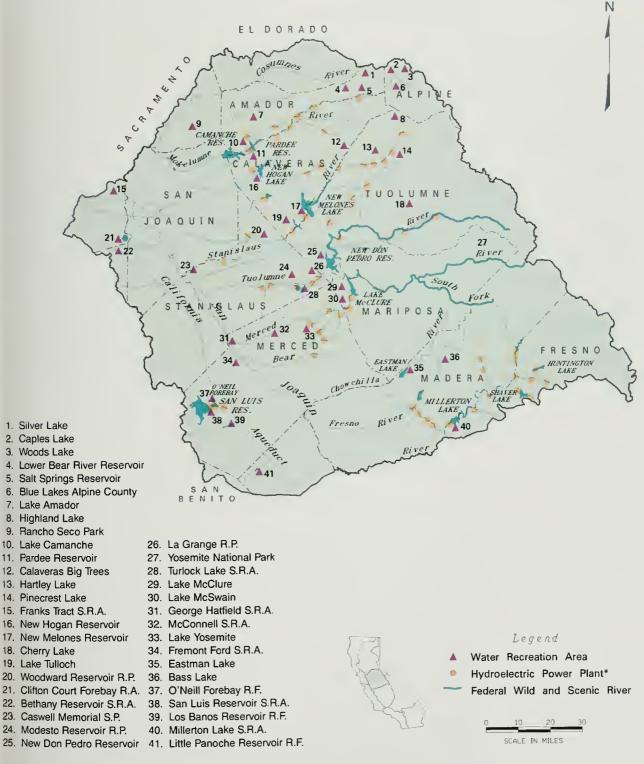
(thousands of acre-feet)

Wetland	19	90	20	00	20	10	2020	
	average	drought	average	drought	average	drought	overage	drought
Cosumnes River Preserve								
Applied water demand	0	0	0	0	0	0	0	0
Net water demand	0	0	0	0	0	0	0	0
Depletion	0	0	0	0	0	0	0	0
San Luis NWR								
Applied water demand	13	13	19	19	19	19	19	19
Net water demand	11	11	15	15	15	15	15	15
Depletion	11	11	15	15	15	15	15	15
Merced NWR								
Applied water demand	14	14	16	16	16	16	16	16
Net water demand	11	11	13	13	13	13	13	13
Depletian	11	11	13	13	13	13	13	13
Volta WA								
Applied water demand	10	10	16	16	16	16	16	16
Net water demand	8	8	13	13	13	13	13	13
Depletion	8	8	13	13	13	13	13	13
Los Banos WA								
Applied water demand	17	17	25	25	25	25	25	25
Net water demand	13	13	20	20	20	20	20	20
Depletian	13	13	20	20	20	20	20	20
Los Banos-Walfson Refuge								
Applied water demand	7	7	7	7	7	7	7	7
Net water demand	6	6	6	6	6	6	6	6
Depletion	6	6	6	6	6	6	6	6
Kesterson NWR								
Applied water demand	4	4	10	10	10	10	10	10
Net water demand	3	3	8	8	8	8	8	8
Depletion	3	3	8	8	8	8	8	8
Grassland RCD	Ū	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ
Applied water demand	125	125	180	180	180	180	180	180
Net water demand	100	100	144	144	144	144	144	144
Depletion	100	100	144	144	144	144	144	144
East Grassland Refuge	100	,00	,	,	,		,	1.44
Applied water demand	38	38	38	38	38	38	38	38
Net water demand	31	31	31	31	31	31	31	31
Depletion	31	31	31	31	31	31	31	31
Kesterson Mitigation Refuge	51	51	51	51	51	51	51	51
Applied water demand	0	0	62	62	62	62	62	62
Net water demand	0	0	49	49	49	49	49	49
Depletion	0	0	49	49	49	49	47	47
Delta Refuge	0	0	47	47	47	47	47	47
Applied water demand	40	40	40	40	40	40	40	40
Net water demand	40 40							
Depletion	40 7	40	40 7	40 7	7	40 7	40 7	40 7
TOTAL								
Applied water demand	268	268	413	413	413	413	413	413
Net water demand	208	200	339	339	339	339	339	339
Depletion	190	190	339	339	339	339	339	306
Depienon	190	190	308	300	308	308	300	306

Stream	19	90	20	00	20	10	20	20
	average	draught	average	draught	average	draught	average	drought
Mokelumne River								
Applied water demand	14	14	14	14	14	14	14	14
Net water demand	14	14	14	14	14	14	14	14
Depletion	0	0	0	0	0	0	0	0
Merced River								
Applied water demand	84	67	84	67	84	67	84	67
Net water demand	84	67	84	67	84	67	84	67
Depletion	0	0	0	0	0	0	0	0
Stanislaus River								
Applied water demand	110	98	110	98	110	98	110	98
Net water demand	110	98	110	98	110	98	110	98
Depletian	0	0	0	0	0	0	0	0
Tuolumne River								
Applied water demand	123	64	123	64	123	64	123	64
Net water demand	123	64	123	64	123	64	123	64
Depletion	0	0	0	0	0	0	0	0
TOTAL								
Applied water demand	331	243	331	243	331	243	331	243
Net water demand	331	243	331	243	331	243	331	243
Depletian	0	0	0	0	0	0	0	0

Table SJ-10. Environmental Instream Water Needs


(thousands of acre-feet)


Other Water Use

Recreation in the national forests and Yosemite National Park includes camping, hiking, snow skiing, white water rafting, hunting, bike riding, rock climbing, and spelunking, to name only a few. An estimated 4 million visitors from all over the world toured Yosemite in 1992.

San Luis, New Melones, and New Don Pedro reservoirs, and Lake McClure are just four of the region's many public access reservoirs that provide facilities for boating, swimming, water skiing, wind surfing, and fishing. Near the City of Los Banos, in western Merced County, is the Grasslands area where several public and private wildlife refuges provide areas for waterfowl hunting, fishing, and nature study. Figure SJ-6 shows water recreation areas in the San Joaquin River Region.

Water used in the region's recreation areas amounted to 4,500 af in 1990. Most of it was distributed to campgrounds for drinking water and sanitation. Other minor usage in the region includes water for power plant cooling, 20,000 af annually. Together these make up about 1 percent of the total regional demand. Table SJ-11 shows the total water demand for the region.

"From 1992 California Energy Commission Maps. See Table O-3 in Appendix D for plant information

7.

Table SJ-11. Total Water Demands

(thousonds of acre-feet)

Category of Use	19	90	20	00	20	10	20	20
	average	drought	average	drought	average	drought	overoge	droughi
Urban								
Applied water demand	495	507	663	684	839	867	1,029	1,063
Net water demand	353	366	468	490	587	616	717	752
Depletian	192	194	258	265	332	340	410	420
Agricultural								
Applied water demand	6,298	6,757	6,052	6,500	5,817	6,227	5,665	6,080
Net water demand	5,778	6,217	5,561	5,967	5,346	5,695	5,215	5,572
Depletion	4,719	5,064	4,605	4,909	4,490	4,777	4,383	4,678
Enviranmental								
Applied water demand	599	511	744	656	744	656	744	656
Net water demand	554	466	670	582	670	582	670	582
Depletion	190	190	306	306	306	306	306	306
Other ⁽¹⁾								
Applied water demand	24	24	36	36	48	48	48	48
Net water demand	141	141	148	148	161	162	161	162
Depletion	84	84	84	84	84	84	84	84
TOTAL								
Applied water demand	7,416	7,799	7,495	7,876	7,448	7,798	7,486	7,847
Net water demand	6,826	7,190	6,847	7,187	6,764	7,055	6,763	7,068
Depletion	5,185	5,532	5,253	5,564	5,212	5,507	5,183	5,488

(1) Includes major conveyance facility losses, recreation uses, and energy production.

Issues Affecting Local Water Resource Management

Each area of the San Joaquin River Region has its own set of geographic and demographic conditions which present several water management issues. For example, during the 1987-92 drought, the Valley West Side planning subarea experienced severe shortages, primarily due to cutbacks in CVP water deliveries. This predominantly agricultural area receives about 95 percent of its total water supply from the CVP. The cutbacks prompted nine water-supplying agencies in the PSA to purchase a total of 2,630 af in 1992 from the State Drought Water Bank. For the most part, the municipal and industrial water demands are met by pumping ground water, and these demands have been met satisfactorily. However, meeting the demands during the drought increased pumping costs and accelerated ground water deterioration in some areas.

Legislation and Litigation

Statutes and court decisions have influenced water allocation and use in the San Joaquin River Region considerably. An overview of the major statutes and proceedings follows.

Bay-Delta Proceedings. In July 1978, the State Water Resources Control Board 1 began hearings to adopt a water quality control plan and water rights decision for the Bay-Delta estuary. In addition, several other regulatory actions affecting the Bay-Delta have taken place, which are discussed in Volume I, Chapters 2 and 10. **South Delta Water Agency Lawsuit.** In July 1982. SDWA filed a lawsuit claiming that SWP and CVP operations harmed their agricultural production by causing low water levels, poor water quality, and poor circulation. In October 1986, DWR, USBR, and SDWA signed an agreement solidifying a framework for settling the litigation. As a result of the agreement, during 1986 through 1993, DWR implemented operational criteria regarding Clifton Court gate openings, completed dredging and installed siphons in Tom Paine Slough, and constructed the Middle River barrier to improve water levels, circulation, and quality within parts of the SDWA area.

Continuing negotiations resulted in a draft long-term contract in 1990. The contract commits the three agencies to constructing and operating three permanent barriers—Middle River, Old River near Tracy, and Grant Line Canal—after a period of testing.

Other Litigation. Litigations affecting water resources management of the San Joaquin River Region include the following: (1) Stockton East Water District, Central San Joaquin Water Conservation District, the City of Stockton, San Joaquin County, and California Water Service Company have challenged the USBR's refusal to deliver water from the New Melones Project as well as implementation of the CVPIA by the United States: (2) Westlands Water District. San Benito County Water District, San Luis Water District, and Panoche Water District are raising similar challenges for implementation of the CVPIA by the USBR (*Westlands Water District v. United States*); and (3) the Natural Resources Defense Council has challenged the USBR that the Friant Project must make releases pursuant to Fish and Game Code Section 5937.

Delta Levees. More than 1,000 miles of levees act as the only barriers between land and water in the Delta. Behind these earthen walls lie over half a million acres of agricultural land and valuable wildlife habitat, many small communities. numerous roads, railroad lines, and utilities. With each passing year, the promise of protection provided by these levees grows weaker. The Delta islands, which commonly lie 10 to 15 feet below sea level and are composed mainly of highly organic (peat) soils, are constantly in danger of land subsidence and seepage.

The original levees were constructed in the late 1800s with heights of about 4 feet and founded on the soft, organic Delta soils. Due to continued subsidence of the levees and island interiors, it was necessary to continually add material to maintain freeboard and structural stability. Over the last century, the levees have significantly increased in size and are now between 15 and 25 feet high.

Several active faults, for example, the Antioch, Greenville, and Coast Range Sierra Nevada Boundary Zone faults, are west of the Delta and are capable of delivering moderate to large shaking. There has been ongoing concern about the potential for liquefaction of the Delta levees and of the foundation materials on some islands. However, there is no record of a levee failure resulting from earthquake shaking, meaning the levee system has not really been tested for earthquake shaking. Several studies indicate there would probably be levee damage or failure induced by earthquake shaking within the next 30 years. Further investigations are needed to better define the expected performance of the levees.

Delta levees are classified as either "project" or "nonproject." Project levees are part of the Sacramento River and San Joaquin River Flood Control Projects. Mostly found along the Sacramento and San Joaquin rivers, they are maintained to U.S. Army Corps of Engineers standards and generally provide dependable protection. Nonproject, or local, levees (65 percent of Delta levees) are those constructed and maintained to varying degrees by island landowners or local reclamation districts. Most of these levees have not been brought up to federal standards and are less stable, increasing the area's chances of flooding.

The Delta Levee Subventions Program, originally known as the "Way Bill" program, began in 1973. The bill authorized funding, which grew from \$200,000 annually in the 1970s to \$2 million annually in the 1980s, for levee maintenance and rehabilitation costs with up to 50 percent reimbursement to local agencies.

Since 1980, 17 islands have been partially or completely flooded, costing roughly \$100 million dollars for recovering property and completing repairs. As a result of 1986 floods, the Delta Flood Protection Act of 1988, Senate Bill 34, was enacted. It provides \$12 million a year for 10 years for the long-standing Delta Levees Subventions Program and for developing special flood control programs to protect eight western Delta islands and the communities of Walnut Grove and Thornton.

Senate Bill 34 was enacted partly because of a commitment the State made in its 1983 Hazard Mitigation Plan for the Delta. (Hazard Mitigation Plans are required by the Federal Emergency Management Agency.) The plan recommended an increase in funding to the Subventions program to aid the districts in maintaining and upgrading their levees to minimum standards until a major federal levee rehabilitation project could be implemented. Through SB 34, legislative intent for funding the Delta Subventions program increased up to \$6 million a year and allows up to 75-percent reimbursement to the local agencies for their levee work. The other \$6 million is for implementing special flood control projects. Recent activities include planning and designing major levee rehabilitation projects on Twitchell Island, Bethel Island, and Webb Tract, and other special projects and studies to determine the causes of Delta land subsidence. On Twitchell Island, a five-mile reach of levees along the San Joaquin River has been significantly upgraded.

In 1991, the U.S. Army Corps of Engineers, DWR, and the Reclamation Board signed an agreement to work further toward solving Delta flood control and environmental problems. The agreement calls for a six-year special study that will define the extent of federal interest in implementing a long-term flood control plan for the Delta. The study will attempt to find long-term solutions to Delta problems after SB 34 lapses in 1999.

San Joaquin River Management Program. The San Joaquin River Management Program was created to address the needs of the San Joaquin River system. Existing conditions on the San Joaquin River do not fully satisfy present water supply, water quality, flood protection, fisheries, wildlife habitat, and recreational needs. Continuing present river management practices would further deteriorate the river system, adversely affecting all users. On September 18, 1990, the Governor signed Assembly Bill 3603 (Chapter 1068, 1990 statutes), which charges SJRMP with the following:

- Provide a forum where information can be developed and exchanged to provide for the orderly development and management of the water resources of the San Joaquin River system.
- Identify actions which can be taken to benefit legitimate uses of the San Joaquin River system.
- Develop compatible solutions to water supply, water quality, flood protection, fisheries, wildlife habitat, and recreation needs.

Regional Issues

West-Side Drainage Problem. On the west side of the region, over 100,000 acres of land are underlain by shallow, semi-impermeable clay layers that prevent water from percolating downward. Inadequate drainage and accumulating salts have been long-standing problems in this area of the valley. With the importation of irrigation water from northern California during the last 20 years, the problem has intensified. Where water tables are high, subsurface drainage is necessary to remove and dispose of the water.

In 1984, the San Joaquin Valley Drainage Program was established as a joint federal-State effort to investigate drainage and drainage-related problems. In 1990, the SJVDP published its recommended plan for managing the west side drainage problem, and at the end of 1991, a Memorandum of Understanding was executed that allows federal and State agencies to coordinate activities for implementing the plan. Work on this program is ongoing.

Ground Water Quality—Radon. Concentrations of radioactive elements in ground water vary widely throughout the Sierra Nevada. Radon is a radioactive gas generated by naturally occurring uranium deposits in the earth's crust. Radon is not a problem in surface water because the gas is released to the atmosphere. It can be found in outdoor air and can seep into homes through basements or foundations. Ground water can also release the odorless radon gas when residents wash dishes or the laundry, or when they shower. Inhalation of radon's decay products increases the risk of lung cancer.

According to the U.S. Environmental Protection Agency, radon is the second leading cause of lung cancer in the United States. In October 1990, DWR published *Natural Radioactivity in Ground Water of the Western Sierra Nevada*, which reported the quality of water sampled from 20 wells in the mountain and foothill areas of Mariposa and Madera counties. The highest concentrations of radon, uranium, and radium are found in wells drilled in granitic rock, while lower concentrations are associated with metamorphic rock formations. A notable radon and uranium "hot spot" in the region is near Bass Lake in Madera County. Granitic rock formations can be found in Alpine, Amador, Calaveras, El Dorado, and Tuolumne counties.

Water Balance

Water budgets were computed for each Planning Subarea in the San Joaquin River Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas, which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be more or less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table SJ-12 presents water demands for the 1990 level and for future water demands to 2020 and compares them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management programs.

Table SJ-12. Water Budget

(thousands of acre-feet)

Water Demand/Supply	19	90	20	00	20	10	20	20
	average	drought	average	drought	average	drought	average	drought
Net Demand								
Urban—with 1990 level of conservation —reductions due to	353	366	477	499	603	632	737	772
long-term conservation measures (Level I)	_		-9	-9	-16	-16	-20	-20
Agricultural—with 1990 level of conservation	5,778	6,217	5,571	5,977	5,365	5,714	5,245	5,602
—reductians due to long-term conservation measures (Level I)	_	_	-7	-7	-13	-13	-20	-20
—reductions due to land retirement in poor drainage areas of San								
Joaquin Valley (Level 1)	_	-	-3	-3	-6	-6	-10	-10
Environmental	554	466	670	582	670	582	670	582
Other ⁽¹⁾	141	141	148	148	161	162	161	162
TOTAL Net Demand	6,826	7,190	6,847	7,187	6,764	7,055	6,763	7,068
Ground Water Ground Water Overdraft ⁽³⁾ Subtotal Dedicated Natural Flow	1,098 209 0 331	2,145 209 0 243	1,135 — 0 331	2,202 — 0 243	1,156 — 0 331	2,227 — 0 243	1,161 — 0 331	2,252 — 0 243
TOTAL Water Supplies	6,826	6,866	6,692	6,734	6,694	6,752	6,723	6,794
Demand/Supply Balance	0	-324	-155	-453	-70	-303	-40	-274
Level I Water Management Programs Long-term Supply Augmentation	(4)							
Reclaimed ⁽⁵⁾	_	_	0	0	0	0	0	0
Local	_	_	2	1	2	1	2	1
Central Valley Project	_		0	0	0	0	0	0
State Water Project	_	_	1	1	ĩ	0	1	0
Subtotal - Level I Water								
Management Programs Net Ground Water or	0	0	3	2	3	1	3	1
Surface Water Use Reduction Resulting from Level 1 Programs	_	_	-3	-2	7	9	-3	1
Remaining Demand/Supply Balance	Requiring Sho	rt-term Draug	ht Managem	ent and/or L	evel II Option	<u> </u>		

Includes mojor conveyance facility lasses, recreation uses, and energy production.
 Existing and future imported supplies that depend an Delta expart capabilities are based on SWRCB D-1485 and da not take into account recent actions to protect aquatic species. As such, regional water supply shortages are understated (note: proposed environmental water demonds of 1 to 3 MAF are included in the California water budget).
 The degree future shartages are within region, reclaimed water daes not add supply to the region.

ł.

Regional net water demands for the 1990 level of development totaled 6,826,000 and 7,190,000 af for average and drought years, respectively. Those demands are forecasted to decrease slightly to 6,763,000 and 7,068,000 af, respectively, by the year 2020. This decrease accounts for a 20,000-af reduction in urban water demand resulting from implementing long-term conservation measures, a 20,000-af reduction in agricultural demand resulting from additional long-term agricultural water conservation measures, and a 10,000-af reduction due to land retirement in poor drainage areas.

Urban net water demand is forecasted to increase by about 364,000 af by 2020, due to expected increases in population. Agricultural net water demand is forecasted to decrease by about 563,000 af, primarily due to lands being taken out of production because of ubanization of irrigated lands and land retirement. Environmental net water demands, under existing rules and regulations, will increase 116,000 af over the next 30 years, reflecting increased supplies for managed wetlands resulting from implementing the CVPIA. However, there are several actions currently in progress, including further implementation of the CVPIA, that have proposed increases in instream flow for fisheries that will affect the availability of supplies for urban and agricultural use now and in the future.

Urban and environmental water demands will increase over the next 30 years, but the agricultural water demand will decrease significantly causing total net water demand for the region to decrease for both average and drought conditions. The majority of the decrease will come from the southern half of the region.

Future average annual supplies are not adequate to meet average net water demands in the San Joaquin Region, resulting in shortages of about 40,000 af by 2020. During drought conditions, substantial shortages occur at the 1990 level of development, as was evident during the 1987-92 drought. Drought year shortages are forecasted to decrease to about 272,000 af at the 2020 level of development due to reduced water demands and implementation of Level I water management programs.

In the Eastern Valley Floor PSA distribution and conveyance facilities to receive New Melones water are nearly completed; some segments which are completed could have received water in 1993 from New Melones Reservoir, but no deliveries were made. Two area water districts have contracts with USBR for 155,000 af. 106,000 af interim, and 49,000 af average and drought years, of New Melones Project water. If the districts receive additional surface supply, this PSA could rely less on ground water pumping, thereby reducing ground water overdraft. However, with the CVPIA requirements on New Melones supplies, it is unknown how much water is available to meet the 155,000-af contracts.

Total agricultural and urban net water demands in the Valley East Side PSA are expected to decrease 134,000 af by 2020. Existing surface and ground water supplies should meet future demands. Ground water overdraft could also be reduced or eliminated in this planning subarea.

The Valley West Side PSA supplies are mainly imported from the Delta by the CVP. Changes in CVP Delta supplies will affect the Valley West Side's ability to meet future demands.

The San Joaquin River Region depends on exports from the Sacramento-San Joaquin Delta for a portion of its supplies. Shortages stated above are based on D-1485 operating criteria for Delta supplies and do not take into account recent actions to protect aquatic species in the estuary. As such, regional water supply shortages are understated.

Year 2020 average and drought years shortages require both additional short-term drought management, water transfers and demand management programs, and future long-term Level II programs depending on the overall level of water service reliability deemed necessary. In the short-term, some areas of this region that rely on the Delta exports for all or a portion of their supplies face great uncertainty in terms of water supply reliability due to the uncertain outcome of actions undertaken to protect aquatic species in the Delta. For example, in 1993, an above normal runoff year, environmental restrictions limited CVP deliveries to 50 percent of contracted supply for federal water service contractors from Tracy to Kettleman City. Because ground water is used to replace much of the shortfall in surface water supplies, limitations on Delta exports will exacerbate ground water overdraft in this region. This mature almond orchard is in Kern County. Almond and pistachio orchards typically use about 2.5 acre-feet of applied water per acre.

31

The Tulare Lake Region includes the southern San Joaquin Valley from the southern limit of the San Joaquin River watershed to the crest of the Tehachapi Mountains. It stretches from the Sierra Nevada Crest in the east to the Coast Range in the west. Many small agricultural communities dot the eastern side of the valley, and the rapidly growing cities of Fresno and Bakersfield anchor the region, which encompasses almost 10 percent of the State's total land area. (See Appendix C for maps of the planning subareas and land ownership in the region.)

Four main geographical areas make up this mostly agricultural region: the western side of the San Joaquin Valley floor, the Sierra Nevada foothills on the region's eastern side, the central San Joaquin Valley floor, and the Kern Valley floor. The major rivers in the region, the Kings, Kaweah, Tule, and Kern, begin in the Sierras and generally flow east to west into the San Joaquin Valley. They are sustained by snow melt from the upper mountain elevations. The Kern River follows a more north-south alignment for much of its path. All of the rivers terminate on the valley floor in lakes or sinks; water does not find its way to the ocean from the basin, as it once did under natural conditions, except in extremely wet years. There is also a considerably large drainage area on the west and south sides of the valley, but scant rainfall has not produced water development there.

The region's climate varies between valley and foothill areas. The valley areas experience mild springs and hot, dry summers. Winters are typically cold with some temperatures below freezing, but snowfall is rare. In some parts of the valley, thick tule fog is common at times during the winter. Climate in the foothills is typical of mountainous foothill areas where winters and springs are cold and where snowfall occurs at higher elevations.

Most of the region's winter and spring runoff is stored for later use in the summer for supplying the drier valley floor areas. In most years, imported water from northern California supplements local supplies to meet the region's large agricultural water demand.

Population

Population in the region increased substantially in the 1980s, led by 50- to 60-percent growth in the Fresno. Bakersfield, and Visalia-Tulare urban areas. Fresno's

Region Characteristics

Average Annual Precipitation: 14 inchesAverage Annual Runoff: 3,313,500 afLand Area: 16,520 square miles1990 Population: 1,554,000

Tulare Lake Region

population, which had one of the highest growth rates among large metropolitan areas in the United States during the 1980s, grew by more than 60 percent—from 217,000 in 1980 to 354,000 in 1990. A high birth rate contributed to this growth and relatively low-cost housing encouraged immigration from out-of-state as well as from the San Francisco Bay and Los Angeles areas.

The region's population is projected to more than double in the next 30 years. Most of the future growth is expected in Fresno, the Visalia-Tulare area, and Bakersfield. Limited population growth is projected in the foothill communities. Little economic growth is expected there and limited ground water supplies will most likely restrict urban development. Table TL-1 shows population projections to 2020 for the Tulare Lake Region.

Planning Subarea	1990	2000	2010	2020
Uplands	55	81	117	158
Kings-Kaweah-Tule	1,022	1,411	1,827	2,327
San Luis West Side	39	52	60	68
Western Uplands	7	10	14	18
Kern Valley Floor	431	612	754	929
TOTAL	1,554	2,166	2,772	3,500

Table TL-1. Population Projections (thousands)

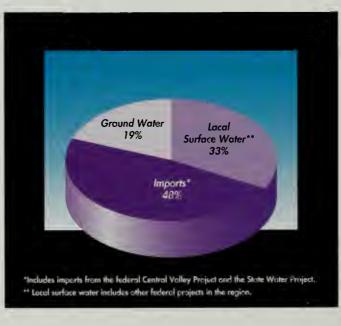
Land Use

The State and federal governments own about 3 percent of the land in the region, including 1.7 million acres of national forest, 0.8 million acres of national parks and recreation areas, and 0.5 million acres of land managed by the U.S. Bureau of Land Management. The region's foothills border Kings Canyon and Sequoia National Parks and Sierra National Forest. Privately owned land totals about 7.4 million acres. Irrigated agriculture accounts for more than 3 million acres of the private land, while urban areas take up 176,300 acres. Other agricultural lands and areas with native vegetation cover an additional 1,400,000 acres. The principal crops grown in the region are cotton, grapes, and deciduous fruits. Substantial acreages of almonds and pistachios are also grown, as well as increasing acreages of truck crops, such as tomatoes and corn.

In the eastern Sierra Nevada foothills, agriculture and timber production account for most of the land use. Deciduous and citrus trees are the main agricultural crops in the lower foothills, while timber harvesting occurs throughout many of the higher elevation areas. Figure TL-1 shows land use, along with imports and exports for the Tulare Lake Region.

Water Supply

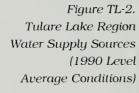
The main local surface water supplies in the Tulare Lake Region come from Sierra Nevada rivers. Imported water is by way of the federal Central Valley Project's Delta-Mendota Canal and Friant-Kern Canal, and the State Water Project's California Aqueduct, which enters the region as part of the Joint-Use Facilities with the CVP's San Luis Unit. Ground water pumping meets the remaining water demands. Figure TL-2 shows the region's 1990 level sources of supply.


Supply with Existing Facilities and Water Management Programs

Local surface supplies on the western side of the region come from the Kings. Tule, Kaweah, and Kern rivers. Excess flows from the Kings River flow through Fresno Slough to the Mendota Pool. Local supplies from snowmelt and runoff in Sierra Nevada systems are more plentiful than imported sources in the central portion and eastern edge of the valley, but not as reliable throughout the year. Major reservoirs in the region are listed in Table TL-2. Table TL-3 shows water supplies with existing facilities and water management programs.

Table TL-2. Major Reservoirs

Reservoir Name	River	Capacity (1,000 AF)	Owner
Caurtright	Helms Creek	123	Pacific Gas & Electric Ca.
Wishon	Kings	128	Pacific Gas & Electric Ca.
Pine Flat	Kings	1,000	U.S. Army Corps of Engineers
Lake Kaweah (terminus)	Kaweah	143	U.S. Army Carps of Engineers
Success Lake	Tule	82	U.S. Army Corps of Engineers
Isabella Lake	Kern	568	U.S. Army Corps of Engineers


Mountain and Foothill Areas. Cities in the Sierra Nevada foothills often have less dependable drought supplies than valley communities. In many foothill areas, local surface water connections are not available. Ground water is limited to small pockets of water formed from runoff trickling into fissures in the rock strata. During drought years, the ground water in the fissures is scarcely replenished and urban water supplies in foothill areas are often exhausted. A few cities, such as Lindsay in eastern Tulare County and Orange Cove in eastern Fresno County, receive imported

surface water through the CVP's Friant-Kern Canal.

Valley Area. Many valley cities, including Fresno and Bakersfield, rely pnmarily on ground water | for urban use, occasionally obtaining supplemental supplies from local surface water and some imported i water. Fresno, for example, uses ground water for its main urban supply. Fresno also purchases local Kings River water and im-

ported water from the Friant-Kern Canal and replenishes ground water through recharge basins. In Bakersfield, the Kern County Water Agency treats CVP Cross Valley Canal water to supplement its urban ground water supply (26,000 af in 1991, more than 10 percent of its municipal and industrial supply). In isolated parts of the valley's

western side, smaller cities like Avenal, Huron, and Coalinga rely on imported surface water from the San Luis Canal for their municipal demands.

The SWP, through San Luis Reservoir and the California Aqueduct, provides an average of about 1,200.000 af of surface water yearly to the region. The U.S. Bureau of Reclamation supplies an average of 2,700,000 af during normal years from the CVP via Mendota Pool, the Friant-Kern Canal, and the San Luis Canal of the CVP/SWP San Luis Joint-Use Facilities. The Friant-Kern canal receives water from Millerton Lake on the San Joaquin River; Mendota Pool and the California Aqueduct receive water from the Sacramento-San Joaquin Delta.

Supply	19	90	20	00	20	10	20	20
	average	drought	average	drought	averoge	drought	average	drough
Surface						·		
Lacol	2,398	1,239	2,398	1,240	2,398	1,240	2,398	1,240
Lacal imports	0	0	0	0	0	0	0	0
Colorodo River	0	0	0	0	0	0	0	0
CVP	2,705	1,288	2,705	1,288	2,705	1,288	2,705	1,288
Other federal	243	0	243	0	243	0	243	0
SWP	1,225	846	1,047	679	950	609	987	612
Ground water	915	3,773	918	3,758	921	3,726	926	3,758
Overdraft ⁽¹⁾	650	650	_	_	_	_	_	_
Reclaimed	0	0	0	0	0	0	0	0
Dedicoted natural flaw	0	0	0	0	0	0	0	0
TOTAL	8,136	7,796	7,311	6,965	7,217	6,863	7,259	6,898

Table TL-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies)

(1) The degree future shartages are met by increased averdraft is unknawn. Since averdraft is nat sustainable, it is nat included as a future supply.

The valley floor overlies mostly one large ground water basin that consists of alluvial sediments. In the western half to three quarters, the Corcoran clay layer, which generally lies at depths of 300 to 900 feet, divides the ground water basin into two aquifers. South of the Kern River, the Corcoran horizon drops below well depths but other clay layers provide some confinement. On the eastern side of the valley, both north and south of the Kern County line, older formations are tapped by wells that usually exceed 2,000 feet in depth. A small ground water subbasin, with little hydraulic connection to the main aquifers, exists on the western side of Fresno, Kings, and Kern counties from Coalinga to Lost Hills. Two other small subbasins in Kern County are separated from the main basin by the White Wolf and Edison faults. Productive aquifers with good quality water are the general rule, except in the Tulare Lake area where lakebed clays yield little water, along the extreme eastern edge of the region where shallow depth to granite limits aquifer yields, and along the western side where water quality is poor.

The Kings-Kaweah-Tule River Planning Subarea accounts for just over 50 percent of net water demand of the Tulare Lake Region. Supplies for the KKT PSA are split three ways: local surface provides about 46 percent, imported water provides 25 percent, and ground water provides 29 percent. The San Luis West Side and Kern

Valley Floor PSAs will be heavily affected by reduced CVP and SWP deliveries. The SLWS meets over 90 percent of its demand with imported water, especially CVP water from the Delta. With future CVP deliveries unknown and limited available ground water and local surface supplies, the SLWS could have problems meeting future demand. Although ground water and local surface supplies are available, the KVF PSA could face similar problems as the SLWS PSA; more than 60 percent of its demand is met by imported water. Changes in SWP deliveries from the Delta would have the most effect in this PSA.

The City of Bakersfield operates a 2.800-acre recharge facility southwest of Bakersfield where the city and some local water agencies recharge surplus Kern River and occasionally, SWP and Friant-Kern Canal water; this water then is "banked" and withdrawn in drier years. The recharge facility is one of the largest single recharge areas in California, and during wet years, more than 100,000 af of water may be recharged.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level I options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level ll options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Some of the water management options available to the region include increasing local reservoir storage by raising existing dam heights and encouraging more urban water conservation while protecting water quality in city wells.

Supply	19	90	20	00	20	10	20	20
	average	drought	average	drought	average	drought	average	drought
Surface								
Local	2,398	1,239	2,398	1,240	2,398	1,240	2,398	1,240
Local imports	0	0	0	0	0	0	0	0
Colorada River	0	0	0	0	0	0	0	0
CVP	2,705	1,288	2,705	1,288	2,705	1,288	2,705	1,288
Other federal	243	0	243	0	243	0	243	0
SWP	1,225	846	1,111	704	1,235	749	1,237	741
Ground water	915	3,773	914	3,633	921	3,779	926	3,779
Overdraft ⁽¹⁾	650	650	_		_	_	_	_
Reclaimed	0	0	0	0	0	0	0	0
Dedicated natural flow	0	0	0	0	0	0	0	0
TOTAL	8,136	7,796	7,371	6,865	7,502	7,056	7,509	7,048

Table TL-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

(1) The degree future shortages are met by increased averdraft is unknown. Since averdraft is not sustainable, it is not included as a future supply.

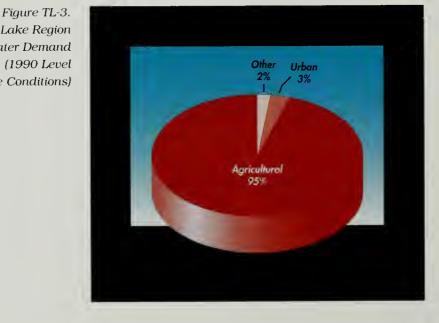
Water Supply Reliability and Drought Water Management Strategies. During drought, as surface supplies dwindle and carryover storage in reservoirs is not replaced, ground water pumping increases tremendously. The number of new wells drilled during the recent drought (1987-92) more than doubled compared to normal periods.

Along the eastern side of the region. the ability to make up deficits by ground water pumping was crucial to sustaining agricultural production during the drought. Allotments from the Friant-Kern Canal, which delivers CVP water along the eastern side of the region from Fresno County to Kern County, were greatly decreased in the 1987–92 drought. Some growers who receive Friant-Kern Canal water along the eastern side of the region were not able to pump enough water to make up the deficiencies. In these cases, permanent crops did not receive full irrigations and yields suffered. State Water Project agricultural contractors received only 50 percent of their normal delivery in 1990 and then received no delivery in 1991, but 45 percent was available during 1992.

Although ground water pumping in western Fresno County reached all time highs during the 1987-92 drought, unprecedented since the arrival of CVP and SWP water, growers still could not afford to pump enough water to make up for the surface water deficiencies from reductions in CVP and SWP water. As a consequence, some acreage was fallowed. The situation was even worse in western Kern County, where ground water is not generally available. Some water was obtained from the State Drought Water Bank to ensure the survival of permanent crops in 1991. Still, over 125,000 acres were fallowed in 1991 due to lack of water.

Most communities enacted water use restriction ordinances during the recent drought, generally including time-of-day watering and odd-even-day watering, a prohibition of driveway or other paved surface washing, and water waste patrols. In addition, some well problems involving water quality have been experienced in the region's urban areas.

Water Management Options with Existing Facilities. Due to their hot climates, Fresno and Bakersfield have had relatively high per capita water use, when compared to statewide averages. As a result of continued urban growth and stricter federal drinking water standards, which have closed some wells with high contaminant levels. Fresno may have problems meeting its future urban water demand. The City of Fresno receives water allotments from the Kings River and the federal Friant-Kern Canal and uses some of this water to recharge its ground water basins. The city also makes use of its many flood control ponds throughout the metropolitan area for recharge.


DWR. in cooperation with the U.S. Bureau of Reclamation, is assisting local water agencies and districts in developing conservation plans that are required of all CVP water users because of the Reclamation Projects Authorization and Adjustment Act. With proper conservation planning, local agencies may better be able to deal with shortages of imported water during drought periods.

Water Management Options with Additional Facilities. To meet future agricultural water needs along the eastern half of the central San Joaquin Valley area, the Tule River Association wants to increase the reservoir capacity of Lake Success on the Tule River by 28,000 af. The extra capacity would be used for flood control and better irrigation scheduling during summer months. Construction would be completed by the year 2000, if approved by the U.S. Army Corps of Engineers. This project is in the planning stage.

The Kaweah-St. Johns Rivers Association also has a project in the planning stage that could raise the spillway of Terminus Dam on Lake Kaweah by 21 feet and add 43,000 af of flood control capacity and off-basin storage of Kaweah River water by 1999. Projects like the conservation program started by the Orange Cove Irrigation District will probably be more common in the future as area farmers look to cost-effective conservation rather than new and expensive water sources to alleviate shortages. OCID plans to replace 98 miles of 40-year-old pipelines to reduce leakage losses and add six regulating reservoirs and new metering equipment to make water delivery more precise.

Farmers on the Kern Valley floor will benefit from water transfers and banking of the Kern Water Bank Project when it is completed. Water districts and the SWP will be able to divert surplus water in wet years to recharge basins in the KWB project area, where the water will be stored in a vast underground aquifer. In dry years, users will be able to withdraw banked water from KWB to supplement SWP and other project deliveries.

Local supplies should remain at the 1990 level since there are no firm plans to increase reservoir capacity in the region. As surplus SWP supplies decline and urban water demand increases, increased ground water pumping will probably continue to make up for reductions in surface water. Although the Central Valley Project Improvement Act could reduce agricultural water supplies to the region, its effects on future CVP deliveries are, as yet, unknown. Table TL-4 shows water supplies with additional Level I water management programs. Very little new agricultural land is expected to be brought into production, since most available productive agricultural land with a water supply is already in use.

Water Use

Water supplies in the Tulare Lake Region are mostly used for irrigated agriculture. In a normal year, irrigated agriculture uses 7,723,000 af, about 95 percent of the region's total water use; this is the largest agricultural demand for water of any hydrologic region in California. Municiindustrial and pal about needs are 214,000 af annually. Wildlife refuges and other nature areas ac-

count for one-third of one percent of the region's water needs. Agriculture will continue to be the major water user in the region in the future. However, as the population grows, municipal and industrial use will increase considerably. Figure TL-3 shows net demand for the 1990 level of development.

Municipal and industrial net water use is expected to increase 112 percent by 2020 due to large population increases throughout the region, while agricultural water

Tulare Lake Region Net Water Demand (1990 Level Average Conditions) use may decline by 554,000 af (7 percent) as farm irrigation efficiencies continue to increase and some agricultural land is converted to urban land. The total net water use for the region is projected to decrease by 292,000 af (or by 4 percent) by 2020.

Urban Water Use

In 1990, total urban applied water for the region was 523,000 af; urban net water use for the region was 214,000 af. The Sierra Nevada foothill area (Uplands planning subarea) had a net water use of about 6,000 af. Since 1980 per capita use has declined in most San Joaquin Valley communities. Table TL-5 shows urban applied and net water demand to 2020.

The average per capita daily water use within the Tulare Lake Region was about 301 gallons. Water use in the foothills was 202 gpcd, while that of the Kern Valley floor was 374 gpcd. The region has a fairly high urban water consumption rate primarily due to its hot summers, which cause greater demand for drinking, cooling, and landscaping water. Additionally, the per capita consumption rate in the Kern Valley area represents an average of many urban areas and water districts that serve high-water-use industries such as food processing and petroleum refining and production.

Municipal water use in valley cities represents up to 80 percent of total municipal and industrial net water use. About 60 percent of the total municipal and industrial net use occurs outdoors; landscaping accounts for 90 percent of this percentage and swimming pools the remaining 10 percent. Indoor water use (for drinking, washing, and cooking) accounts for 40 percent of total municipal and industrial net water use. Both Fresno and Bakersfield have a high per capita water use, about 280 and 330 gpcd, respectively. Both cities have water use regulations and water education programs to promote water conservation. Figure TL-4 shows the 1990 level applied urban water demands by sector.

For the year 2020, municipal and industrial applied water is expected to increase in the **Tulare Lake Region due** to population increases in Fresno and other cities. The population for the valley and the foothills will more than double by 2020. Per capita water consumption in the central San Joaquin Valley floor (Kings-Kaweaharea Tule rivers planning subarea) is expected to decline because of implementation of addi-

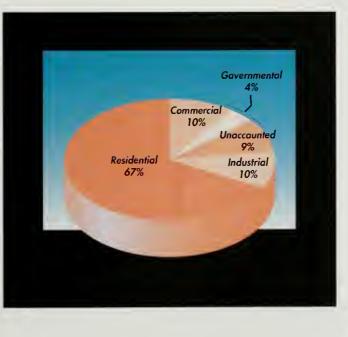


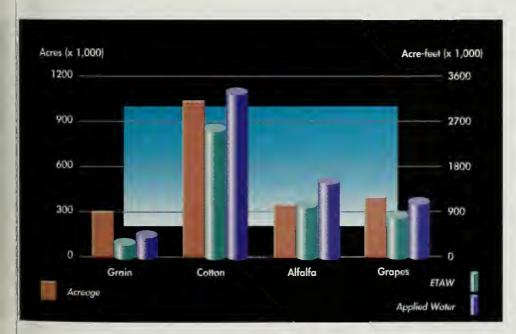
Figure TL-4. Tulare Lake Region Urban Applied Water Use by Sector (1990 Level Average Conditions)

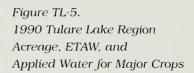
tional water conservation measures. On the Kern Valley floor, per capita use should decrease, while use in the foothills should average about 190 gallons. Per capita water use on the western side of the valley floor should average about 225 gallons.

Planning Subarea	19	90	20	00	20	10	2020	
0	overage	drought	average	drought	average	drought	average	drought
Uplands								
Applied water demand	12	12	18	18	26	26	35	35
Net water demand	5	5	7	7	10	10	14	14
Depletian	5	5	7	7	10	10	14	14
Kings-Kaweah-Tule								
Applied water demand	319	319	432	432	548	548	694	694
Net water demand	134	134	181	181	230	230	290	290
Depletion	134	134	181	181	230	230	290	290
San Luis West Side								
Applied water demand	10	10	14	14	16	16	18	18
Net water demand	4	4	6	6	7	7	7	7
Depletian	4	4	6	6	7	7	7	7
Western Uplands								
Applied water demand	2	2	2	2	3	3	4	4
Net water demand	1	1	1	1	1	1	2	2
Depletion	1	1	1	1	1	1	2	2
Kern Valley Flaar								
Applied water demand	180	180	250	250	299	299	365	365
Net water demand	70	70	97	97	116	116	141	141
Depletian	70	70	97	97	116	116	141	141
TOTAL								
Applied water demand	523	523	716	716	892	892	1,116	1,116
Net water demand	214	214	292	292	364	364	454	454
Depletion	214	214	292	292	364	364	454	454

Table TL-5. Urban Water Demand

(thousands of ocre-feet)


Agricultural Water Use


Irrigated agriculture accounts for more than 95 percent of the 1990 level water use in the Tulare Lake Region. Many different crops are grown throughout the region. In the future, however, urbanization, increasingly high costs for water, and the reliability of water supplies could reduce the variety and acreages of crops and thus. ultimately, agricultural water use. Figure TL-5 shows 1990 crop acreages, evapotranspiration, and applied water for major crops.

Climate, water supply, and salt buildup in the soils may limit the crops that can be grown profitably throughout the region. Most good irrigable land with access to dependable imported or local surface water has been developed. Crop acreages have generally declined in the region over the last decade, due to the limited availability of surface water and a drop in agricultural demand due to the sluggish economy. Cotton acreages, for example, declined from 1989 to 1992. Its price dropped from about 75 cents per pound in the late 1980s to about 50 cents per pound in 1992. In addition to decreased demand for cotton, the drought reduced SWP deliveries along the western side of the region. Table TL-6 shows irrigated crop acreage projections to 2020. Table TL-7 shows 1990 evapotranspiration of applied water by crop. The average year applied water and net water demands were derived from irrigated acreages by applying water use factors for average year conditions. The unit use factors reflect local conditions of climate and cultural practices. Applied water amounts vary with the source of water supply (surface or ground water and the type of water year). During drought years, there will be a need for additional irrigation to replace water normally supplied by rainfall and to meet higher-than-normal evapotranspiration demands.

	Table TL-6. Irrig (thousa	je		
Planning Subarea	1990	2000	2010	2020
Uplands	8	9	9	9
Kings-Kaweah-Tule	1,721	1,690	1,661	1,630
San Luis West Side	620	606	594	581
Western Uplands	0	0	0	0
Kern Valley Floor	863	854	850	841
TOTAL	3,212	3,159	3,114	3,061

Applied water use amounts could be reduced further in some areas with more efficient irrigation management. On the western side of the San Joaquin Valley, farmers are using more sprinkler irrigation and less flood or furrow irrigation. In 1990, less than half of the irrigated land was flood irrigated, where only five years ago, farmers irrigated over 60 percent of the land in the area with flood methods. Now, many use sprinklers and drip irrigation, especially on truck crops where small applications of water early in the growing season are highly beneficial. Also, almost all new plantings of trees and vines are on drip or trickle systems.

In the central San Joaquin Valley, much of the citrus-growing area. which had converted to drip irrigation years ago, is now moving towards highly efficient microjet irrigation through use of microsprinklers. In addition, about half of all new plantings of table grape vineyards are on drip irrigation and some existing vineyards have changed from furrow to drip irrigation. Finally farmers throughout the area are improving irrigation management based on better knowledge of evapotranspiration requirements and soil moisture content. Table TL-8 shows agricultural water demand projections for the Tulare Lake Region to 2020.

Irrigated Crop	Tatal Acres (1,000)	Total ETAW (1,000 AF)
Grain	297	294
Rice	1	3
Cattan	1,029	2,569
Sugar beets	35	91
Corn	100	199
Other field	135	262
Alfalfa	345	1,045
Pasture	44	141
Tomatoes	107	245
Other truck	204	275
Almands/pistachias	164	392
Other deciduaus	177	470
Vineyard	393	817
Citrus/alives	181	344
TOTAL	3,212	7,147

Table TL-7. 1990 Evapotranspiration of Applied Water by Crop

Planning Subarea	19	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought	
Uplands									
Applied water demand	29	29	29	29	29	29	29	29	
Net water demand	20	20	20	20	20	20	20	20	
Depletion	20	20	20	20	20	20	20	20	
Kings-Kaweah-Tule									
Applied water demand	5,205	5,393	5,043	5,226	4,924	5,099	4,780	4,950	
Net water demand	4,007	4,147	3,920	4,055	3,842	3,970	3,749	3,870	
Depletion	3,988	4,128	3,901	4,036	3,823	3,951	3,730	3,851	
San Luis West Side									
Applied water demand	1,695	1,721	1,636	1,646	1,590	1,600	1,547	1,559	
Net water demand	1,514	1,532	1,454	1,472	1,403	1,419	1,357	1,374	
Depletion	1,514	1,532	1,454	1,472	1,403	1,419	1,357	1,374	
Western Uplands									
Applied water demand	0	0	0	0	0	0	0	0	
Net water demand	0	0	0	0	0	0	0	0	
Depletion	0	0	0	0	0	0	0	0	
Kern Valley Floor									
Applied water demand	2,684	2,706	2,598	2,617	2,532	2,553	2,477	2,500	
Net water demand	2,182	2,196	2,124	2,138	2,082	2,096	2,043	2,056	
Depletian	2,182	2,196	2,124	2,138	2,082	2,096	2,043	2,056	
TOTAL									
Applied water demand	9,613	9,849	9,306	9,518	9,075	9,281	8,833	9,038	
Net water demand	7,723	7,895	7,518	7,685	7,347	7,505	7,169	7,320	
Depletion	7,704	7,876	7,499	7,666	7,328	7,486	7,150	7,301	

Table TL-8. Agricultural Water Demand

(thousands of acre-feet)

Environmental Water Use

Wetlands in the region are mainly freshwater wetlands that provide habitat for migratory waterfowl. In Fresno County, the Mendota Wildlife Area has an applied water demand of 30,000 af for development of the refuge's 10,851 acres. The refuge has only received an average of 23,000 af. This supply of water for the Mendota Wildlife Area is fairly reliable, however, since the refuge is a regulating basin for the Delta-Mendota Canal.

In Kern County, the Kern National Wildlife Refuge, also a habitat for migratory waterfowl. needs an annual water supply of 25.000 af for management of its 2,800 acres of natural wetlands. However, the refuge has no firm supplies and usually relies on surplus SWP water and ground water. In an average water year, the refuge receives about 10,000 af of applied water.

In Tulare County, the Pixley National Wildlife Refuge has a water demand of 6.000 af for development of its 5.100 acres, used for migratory waterfowl. However, the refuge has no firm supplies and relies on flood flows from Deer Creek and ground water from recharge basins in the Pixley Irrigation District. Consequently, the refuge has received an average of about 1,000 af of water in recent years.

Besides these refuges, there are 2,879 acres of privately managed wetlands in the region, including duck clubs, nature preserves owned by nonprofit organizations, and rice lands. In average water years, an estimated 6,910 af is supplied to duck club properties. In the Tulare lakebed area, most of the original wetlands surrounding the old Tulare Lake have been drained for agriculture. However, evaporation ponds established to deal with agricultural drainage disposal in the area are potentially hazardous to migrating waterfowl. Table TL-9 shows wetland water needs to 2020.

Wetland	1990		20	00	20	10	2020	
	average	drought	average	draught	average	drought	average	drought
Kern NWR								
Applied water demand	10	10	25	25	25	25	25	25
Net water demand	8	8	21	21	21	21	21	21
Depletion	8	8	21	21	21	21	21	21
Pixley NWR								
Applied water demand	1	1	6	6	6	6	6	6
Net water demand	τ	1	5	5	5	5	5	5
Depletion	1	1	5	5	5	5	5	5
Mendota WA								
Applied water demand	23	23	30	30	30	30	30	30
Net water demand	19	19	24	24	24	24	24	24
Depletian	19	19	24	24	24	24	24	24
Tulare Basin NWR								
Applied water demand	7	7	7	7	7	7	7	7
Net water demand	6	6	6	6	6	6	6	6
Depletion	6	6	6	6	6	6	6	6
TOTAL								
Applied water demand	41	41	68	68	68	68	68	68
Net water demand	34	34	56	56	56	56	56	56
Depletion	34	34	56	56	56	56	56	56

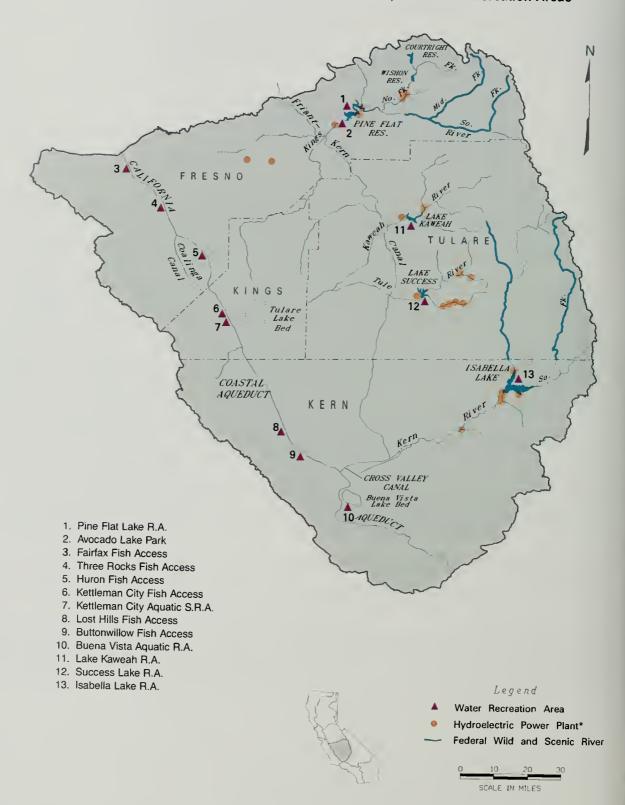
Table TL-9. Wetland Water Needs

(thousands of acre-feet)

Another environmental water consideration involves the water conveyance facilities in the region. Certain endangered species, such as the San Joaquin kit fox and the blunt-nosed leopard lizard, are using the canal banks, flood control channels, and banks of the California Aqueduct for habitat as native vegetation grows around the facilities. DWR monitors these areas to prevent maintenance operations from disturbing these species and their habitat. DWR's Kern Water Bank in western Kern County will provide wetlands and refuges for endangered species as part of its overall program. Of the 20,000 acres that will be used for the Kern Water Bank, several thousand acres will be used for wildlife needs.

Other Water Use

Kings Canyon National Park and Sequoia National Park together use about 500 af of water annually for drinking water and other domestic uses. The parks obtain most of their water from ground water wells and local surface water diversions from the upper Kings River. During the 1987-92 drought, some campgrounds in Kings Canyon and Sequoia that relied on wells were closed for part of the camping season due to low ground water levels.


Some water use in recreation areas can be described as indirect usage. Along the California Aqueduct, there are many specially designated areas for fishing that include easy access from area roads and vehicle parking areas. In the Tulare Lake Region, there are five fishing access areas: Three Rocks, Huron, Kettleman City, Lost Hills, and Buttonwillow. In the foothills, three major lakes (Pine Lake, Lake Success, and Isabella Lake) have recreation areas that are used for fishing, boating, camping, and other recreational uses. Both the fishing access and the recreation areas show reduced use during drought periods and low-flow months.

Category of Use	19	90	20	00	20	10	2020	
	average	drought	average	draught	average	drought	average	drough
Urban					•			
Applied water demand	523	523	716	716	892	892	1,116	1,116
Net water demand	214	214	292	292	364	364	454	454
Depletion	214	214	292	292	364	364	454	454
Agricultural								
Applied water demand	9,613	9,849	9,306	9,518	9,075	9,281	8,833	9,038
Net water demand	7,723	7,895	7,518	7,685	7,347	7,505	7,169	7,320
Depletion	7,704	7,876	7,499	7,666	7,328	7,486	7,150	7,301
Enviranmental								
Applied water demand	41	41	68	68	68	68	68	68
Net water demand	34	34	56	56	56	56	56	56
Depletion	34	34	56	56	56	56	56	56
Other ⁽¹⁾								
Applied water demand	102	102	102	102	102	102	102	102
Net water demand	165	165	165	165	165	165	165	165
Depletian	165	165	165	165	165	165	165	165
TOTAL				·				
Applied water demand	10,279	10,515	10,192	10,404	10,137	10,343	10,119	10,324
Net water demand	8,136	8,308	8,031	8,198	7,932	8,090	7,844	7,995
Depletion	8,117	8,289	8,012	8,179	7,813	8,071	7,825	7,976

Table TL-10. Total Water Demands (thousands of acre-feet)

(1) Includes major conveyance facility lasses, recreation uses, and energy production.

Figure TL-6. Tulare Lake Region Hydroelectric Power Plants, Wild and Scenic Rivers, and Water Recreation Areas

*From 1992 California Energy Commission Maps. See Table D-3 in Appendix D for plant information.

During normal years, white water rafting is a popular activity on the Kings and Kern rivers. The Kings River supports white water rafting above Pine Flat Reservoir for the experienced rafters while the river below the reservoir is satisfactory for beginners. The Kern River has expert-level white water rafting and kayaking above Isabella Lake while below the reservoir, beginners as well as experts can practice their white water rafting. Stretches of the upper Kings and Kern rivers have been declared wild and scenic by federal legislation. The Kings River is designated as such on both the middle and south fork of the upper portion above Mill Flat Creek. The Kern River is designated wild and scenic on both the north and south fork of the upper portion above Isabella Lake.

The many reservoirs and lakes throughout the Tulare Lake Region support recreational activities including fishing, camping, hiking, water skiing, and boating. Courtright and Wishon reservoirs on the Kings River have native trout fisheries, camping, and hiking on the trails of the John Muir and Dinkey Lakes wilderness arcas. Also, Pine Flat Reservoir on the Kings, Isabella Lake on the Kern, Lake Kaweah on the Kaweah River, and Lake Success on Tule River are popular recreational arcas in the region. Figure TL-6 shows water recreation areas in the region. Table TL-10 shows the total water demand for the region.

Issues Affecting Local Water Resource Management

Each area of the Tulare Lake Region has its own set of geographic and demographic conditions that have led to varied water supply circumstances. For example, the foothill cities along the eastern edge of the region experienced severe water shortages in the recent drought, while the Fresno area managed to meet most of its water needs. The following sections summarize major regional and local issues affecting water resources management.

Regional Issues

Population Growth. One of the most important issues in the Tulare Lake Region is whether to allow growth and development to continue at its current rate and location

or restrict urban development to preserve prime agricultural land, wetlands, and other wildlife habitat. Although converting agricultural land to urban use can increase water use slightly, urban water use often requires higher water quality. and water supplies must be more reliable.

For example, Fresno and surrounding towns draw ground water from the same basin. As

An aerial view of Bakersfield. Central Valley cities like Bakersfield are expected to grow substantially over the next few decades. causing more agricultural land to be converted to urban use. Fresno has expanded into former agricultural areas, it has encountered degraded ground water quality, in some places by pesticide contamination from DBCP and other farm chemicals used before the 1980s. This degraded water quality has shifted dependence to wells that produce good-quality water. Urban growth in Fresno is also occurring in outlying areas at higher elevations than many older portions of the city. These new suburbs have switched from the surface water supplies used by agriculture to new ground water wells. The urban ground water demand has created a fast drawdown of the aquifer, which has increased the depth to ground water, raised the cost of pumping, and decreased water quality.

Finally, converting agricultural land to urban use tends to diminish natural recharge and deep percolation of agricultural applied water to the ground water basins because of the nonporous nature of concrete and asphalt used in urban areas. While Fresno has existing recharge facilities, it may raise development taxes to finance more recharge basins to maintain current ground water levels underlying the city.

Ground Water Overdraft Problems. Agriculture, in areas with no surface water supply and good quality ground water, has overdrafted ground water basins where long-term replenishment is inadequate to maintain the water table. This in turn has induced subsurface flow from adjacent districts. Such an area exists along the valley trough from Madera to Kern counties and affects adjacent districts. Other overdrafted areas are in the subbasin around Coalinga and in Westlands Water District, where subsidence has occurred during droughts.

In western Fresno County and southern Kern County subsidence has stabilized. except during droughts. No subsidence data have been available for Madera, Kings. Kern, and Tulare counties since 1970. Subsidence can potentially compact the sediments and lower infiltration capabilities of a ground water aquifer and therefore has an undesired impact on conjunctive use programs in the region. Canals and wells have also required repair because of the effects of subsidence.

Reliability of Supplies in Foothill and Mountain Communities. In foothil and mountain areas, some urban water needs are met by ground water. However, the ground water is found in thin layers of alluvial sediments and in underlying hard rock fractures. Recharge to these underground reservoirs is very slow and during the recen drought, some foothill communities relied on imported surface water to supplemen their supplies.

Orange Cove is a typical foothill community that relies on imported wate delivered through the Friant-Kern Canal; it is the most economical alternative to limited ground water supplies, especially during drought periods. Ground water in the foothills can be scarce and expensive to extract. During severe drought conditions in 1990, Orange Cove allowed residents to use only 125 gpcd. A water transfer agreemen enabled the city to relax this standard during 1991. Small foothill towns like Orang Cove will need to buy transfer water during droughts to prevent future sever rationing.

Water supply is often more limited in mountain communities than in valley o foothill cities of the region. Wofford Heights in eastern Kern County is a typica mountain community. Although Lake Isabella is nearby, the Arden Water Compan would have to install almost 40 miles of pipeline to provide water service from the source, and it cannot afford the connection. During the recent drought, seven (Wofford Heights' 10 existing wells went dry and had to be abandoned. Arden Wate Company was able to drill three new wells, but it had to drill them 450 to 500 feet deep Previous wells had only been drilled to 300 feet. The sites for the new wells wer carefully chosen to intersect two or more pockets of water, and Arden built new above-ground storage tanks to provide more dependable deliveries during droughts.

Reliability of Supplies for Wildlife. Many of the region's environmental needs, including maintenance of the Mendota Wildlife Area, the Kern National Wildlife Refuge, and various duck clubs and wetlands. require firm water supplies that are currently unavailable. The CVP water supplied to the Mendota area and the surplus water supplied to the Kern Refuge arc usually the only water supplies available. The duck clubs and wetlands have relied partly on tail water from upstream sources.

Transfers and Exchanges. In western Kern County, 85 percent of the land related to SWP water entitlements of the Devil's Den Water District has been bought by the Castaic Lake Water Agency, which has transferred the water to the South Coast Region for urban use in the Santa Clarita urban area. The transfer resulted in the loss of some seasonal agricultural jobs and more than 20 full-time agricultural positions within the district. State planners in the future will be faced with this situation again, as metropolitan areas seek alternative water supplies. The needs of urban residents will have to be balanced against the potential loss of agricultural jobs and of agricultural production capacity brought on by the reallocation of water and its impacts on rural economies.

The final Environmental Impact Report for the Arvin-Edison Conjunctive Use Program, involving an agreement between MWDSC and the Arvin-Edison Water Storage District, is on hold until the program is reformulated under new Delta operating criteria. Arvin-Edison is a Central Valley Project contractor in southeastern Kern County. Its CVP water is delivered through the California Aqueduct by arrangement with the State. According to the proposed contract, MWDSC will help construct Arvin-Edison's partially completed distribution system and deliver a portion of its SWP water in wet years for use in Arvin-Edison's ground water replenishment programs. In return, MWDSC will receive some of Arvin-Edison's CVP water during dry years. Through this proposed agreement, MWDSC expects to store SWP water in the southern San Joaquin Valley during wet periods. In dry periods, the program could make up to 93,000 af per year available for MWDSC. In another exchange program, MWDSC negotiated with Kern County Water Agency to store SWP supplies in the Semitropic Water Storage District's ground water basin. (See Volume 1, Chapter 11.)

Local Issues

Drinking Water in Fresno. As a result of continued urban growth and stricter federal drinking water standards, more than 40 wells have been shut down (closed) in the region. As mentioned earlier, these wells have a high level of dibromochloropropane or other contaminants, including trichloroethylene. Because of these well closings and future strict EPA requirements that the water be tested for a wide variety of chemical contaminants, the City of Fresno could have problems meeting its future urban water demand.

In addition, during past years, Fresno did not have to chlorinate its municipal supply because of its high-quality ground water in storage under the city. With recent EPA standards for coliform and other bacteria levels, Fresno has begun to chlorinate the municipal water supply at the wellheads. Although the city expects no problems with trihalomethanes, a byproduct of chlorination often found in chlorinated surface water, there have been some complaints about the taste and smell of the chlorinated water. As urban development continues, Fresno may attempt to supplement its ground water supply with surface water from the Friant-Kern Canal and the Kings River.

Arroyo Pasajero. DWR is currently seeking solutions to flood problems threatening the California Aqueduct near the intersection with a natural drainage channel called Arroyo Pasajero. The aqueduct, completed in 1967, formed a barrier to arroyo water and sediment flow. By design, arroyo runoff was retained in a 1,900-acre ponding basin and periodically discharged into the aqueduct through four inlet gates. Unfortunately, the runoff for the arroyo was found to be greater than anticipated. After a 1980 investigation determined that arroyo runoff was also raising asbestos levels in aqueduct water, concerns were voiced over possible health risks associated with consuming water containing high levels of asbestos. DWR has been studying methods of managing arroyo runoff without discharging it into the aqueduct. A nonstructural method of routing arroyo discharge is being considered and environmental studies are under way.

Agricultural Drainage. On the western side of the valley, where ground water quality is marginal to unusable for agriculture, farmers use good quality surface water to irrigate crops. This irrigation causes the shallow aquifer to fill, and this results in

problems. drainage The high water table is exacerbated by clay-rich soils that slow drainage in some areas. Poor-quality ground water in the unconfined aquifer in Westlands Water District is increasing by about 110,000 af per year. In Kern County, west of the California Aqueduct, the few available wells also show rising water levels. This marginal to poor quality ground water has reached plant root zones in many areas along the western side and Ø

-

must be removed by drains if agriculture is to continue in these areas.

Ground Water Guality. Most naturally occurring, poor-quality ground water is found along the region's western side. Total dissolved solids, sulfate, boron, chloride, and selenium limit the usefulness of ground water in this area. Several contaminants are present, including pesticides, petroleum products, and industrial solvents. One of the pesticides, dibromochloropropane, is also found over large areas on the eastern side of the valley. Concentrations of DBCP (which the U.S. Environmental Protection Agency banned in 1977) are declining but are still above acceptable limits in many areas. Rising levels of nitrates have been found in numerous wells in rural areas. Many of them contain nitrate levels above the maximum contaminant level for nitrates in drinking water.

Nearly one-third of the Tulare Lake Region's total irrigated crop acreage is planted in cotton.

Water Balance

Water budgets were computed for each Planning Subarea in the Tulare Lake Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be more or less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11 presents a broader discussion of demand management options.

Table TL-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 8,136,000 and 8,308,000 af for average and drought years, respectively. Those demands are forecasted to decrease to 7,844,000 and 7,995,000 af, respectively, by the year 2020, after accounting for a 20,000-af reduction in urban water demand resulting from implementation of long-term conservation measures, a 90,000-af reduction in agricultural demand resulting from additional long-term agricultural water conservation measures, and a 120,000-af reduction due to land retirement on the west side of the region.

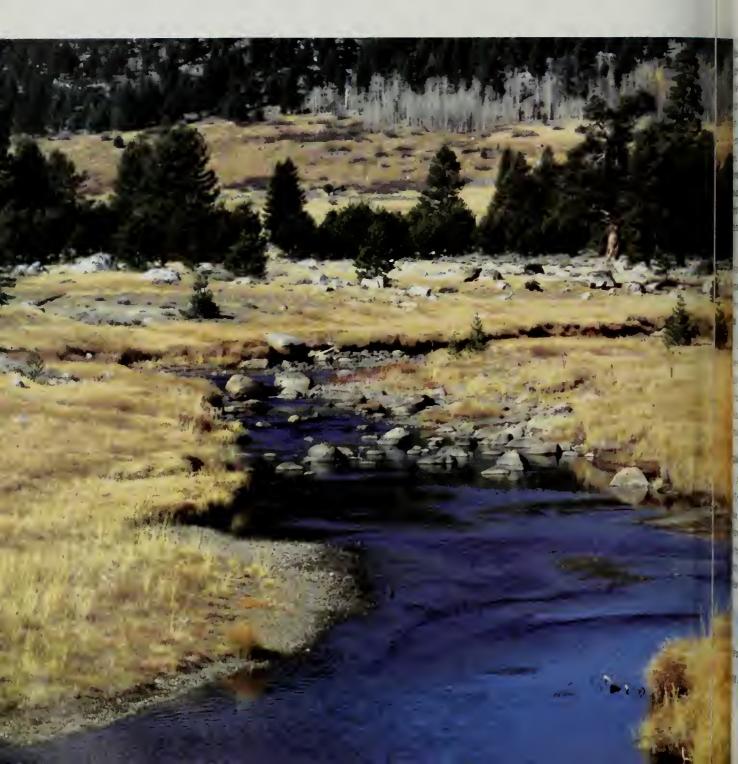
Urban net water demand is expected to increase by about 112 percent by 2020, due to expected increases in population, while agricultural net water demand is projected to decrease by about 7 percent, primarily due to lands being taken out of production because of poor drainage conditions on the west side of the San Joaquin Valley, urbanization, and increases in irrigation efficiency. Environmental net water demand, under existing rules and regulations, will increase by 22,000 af. However, there are several actions currently in progress, including implementation of the Central Valley Improvement Act, that have proposed increases in instream flow for fisheries that will affect the availability of supplies for urban and agricultural use.

Average annual supplies, including about 650,000 af overdraft, were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands, resulting in shortages of about 512,000 af in 1990. Without additional water management programs, drought year annual shortages are expected to be about 1,097,000 af by 2020.

With planned Level 1 programs, overall ground water use could be reduced. Reduction in ground water use will reduce ground water overdraft. Therefore, the net effect of improved surface water deliveries would be to reduce long-term ground water overdraft in this region, as well as reduce shortages.

The remaining shortages of about 335,000 and 947,000 af in average and drought years, respectively, by 2020 requires both additional short-term drought management (water transfers and demand management programs) and other future long-term Level II programs depending on the overall level of water service reliability

Table TL-11. Water Budget


(thousands of acre-feet)

Water Demand/Supply	1990		2000		2010		2020	
	average	draught	average	draught	average	drought	average	drough
et Demond								
Urban—with 1990								
level of conservation	214	214	301	301	380	380	474	474
-reductions due to								
long-term conservatian								
measures (Level I)		_	-9	-9	-16	-16	-20	-20
Agriculturol—with 1990								
level of conservatian	7,723	7,895	7,588	7,755	7,487	7,645	7,379	7,530
—reductions due to								
long-term conservation								
measures (Level I)	—	—	-30	-30	-60	-60	-90	-90
—reductions due ta								
lond retirement in poor								
drainage areas of San								
Jooquin Valley (Level I)	_	_	-40	-40	-80	-80	-120	-120
Environmentol	34	34	56	56	56	56	56	56
Other ⁽¹⁾	165	165	165	165	165	165	165	165
					7.000	0.000	7 9 4 4	7,995
OTAL Net Demand Vater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾				8,198	6,296	8,090	6,333	3,140
Vater Supplies w/Existing Facilities U Developed Supplies	Inder D-1485	for Delta Sup	plies					
/ater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾	Inder D-1485 6,571	for Delta Sup 3,373		3,207	6,296 921	3,137 3,726		
/ater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water	6,571 915	for Delta Sup 3,373 3,773	6,393		6,296	3,137	6,333	3,140
/ater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Woter Overdroft ⁽³⁾	6,571 915 650	for Delta Sup 3,373 3,773 650	oplies 6,393 918	3,207 3,758	6,296 921 —	3,137 3,726	6,333 926 —	3,140 3,758 —
/ater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroft ⁽³⁾ ubtotal	6,571 915	for Delta Sup 3,373 3,773	6,393	3,207	6,296	3,137	6,333	3,140
/ater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water	6,571 915 650 8,136	for Delto Sup 3,373 3,773 650 7,796	6,393 918 	3,207 3,758 — 6,965	6,296 921 7,217	3,137 3,726 	6,333 926 7,259	3,140 3,758
Vater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Woter Overdroft ⁽³⁾ ubtotal edicated Naturol Flow DTAL Water Supplies	6,571 915 650 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0	6,393 918 7,311 0	3,207 3,758 — 6,965 0	6,296 921 7,217 0	3,137 3,726 6,863 	6,333 926 — 7,259 0	3,140 3,758
Tater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroft ⁽³⁾ Ubtotal edicated Naturol Flow DTAL Water Supplies emand/Supply Bolance	e,571 915 650 8,136 0 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0 7,796	6,393 918 	3,207 3,758 6,965 0 	6,296 921 	3,137 3,726 	6,333 926 7,259 0 7,259	3,140 3,758
Vater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroff ⁽³⁾ ubtotal edicated Naturol Flow OTAL Water Supplies emand/Supply Balance	e,571 915 650 8,136 0 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0 7,796	6,393 918 	3,207 3,758 6,965 0 	6,296 921 	3,137 3,726 	6,333 926 — 7,259 0 7,259	3,140 3,758
Vater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroft ⁽³⁾ ubtotal edicated Naturol Flow DTAL Water Supplies emand/Supply Bolance evel I Water Monogement Programs Long-term Supply Augmentation	e,571 915 650 8,136 0 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0 7,796	6,393 918 7,311 0 7,311 -720	3,207 3,758 	6,296 921 7,217 0 7,217 -715	3,137 3,726 	6,333 926 — 7,259 0 7,259	3,140 3,758
Vater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Woter Overdroft ⁽³⁾ Ubtotal edicated Naturol Flow DTAL Water Supplies emand/Supply Bolance evel I Water Monogement Programs Long-term Supply Augmentation Recloimed ⁽⁵⁾	e,571 915 650 8,136 0 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0 7,796	6,393 918 7,311 0 7,311 -720 0	3,207 3,758 	6,296 921 	3,137 3,726 	6,333 926 — 7,259 0 7,259 —585	3,140 3,758
Vater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Woter Overdroft ⁽³⁾ Ubtotal edicated Naturol Flow DTAL Water Supplies emand/Supply Bolance evel I Water Monogement Programs Long-term Supply Augmentation Reclaimed ⁽⁵⁾ Local	e,571 915 650 8,136 0 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0 7,796	0 0 0 0 0 0	3,207 3,758 	6,296 921 	3,137 3,726 	6,333 926 7,259 0 7,259 -585 0 0	3,140 3,758
ater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroft ⁽³⁾ bbtotal edicated Naturol Flow DTAL Water Supplies emand/Supply Balance vel I Water Monogement Programs Long-term Supply Augmentation Recloimed ⁽⁵⁾ Local Central Valley Project	e,571 915 650 8,136 0 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0 7,796	0 0 0 0 0 0 0 0	3,207 3,758 	6,296 921 	3,137 3,726 6,863 0 6,863 -1,227 0 0 0	6,333 926 — 7,259 0 7,259 —585 0 0 0 0	3,140 3,758
ater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroff ⁽³⁾ Instatal edicated Naturol Flow DTAL Water Supplies emand/Supply Balance vel I Water Monogement Programs Long-term Supply Augmentation Reclaimed ⁽⁵⁾ Local Central Valley Project State Water Project	e,571 915 650 8,136 0 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0 7,796	0 0 0 0 0 0	3,207 3,758 	6,296 921 	3,137 3,726 	6,333 926 7,259 0 7,259 -585 0 0	3,140 3,758
ater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroff ⁽³⁾ Instatal edicated Naturol Flow DTAL Water Supplies emand/Supply Balance vel I Water Monogement Programs Long-term Supply Augmentation Reclaimed ⁽⁵⁾ Local Central Valley Project State Water Project Ubtotal - Level I Water	ender D-1485 6,571 915 650 8,136 0 8,136 0 (4) (4) (4)	for Delto Sup 3,373 3,773 650 7,796 0 7,796 -512 	6,393 918 - 7,311 0 7,311 -720 0 0 0 0 6,393 918 -720 0	3,207 3,758 	6,296 921 7,217 0 7,217 -715 0 0 0 0 285	3,137 3,726 	6,333 926 7,259 0 7,259 -585 0 0 0 0 0 250	3,140 3,758
Tater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroff ⁽³⁾ ubtatal edicated Natural Flow DTAL Water Supplies emand/Supply Balance evel I Water Monogement Programs Long-term Supply Augmentation Reclaimed ⁽⁵⁾ Local Central Valley Project State Water Project Ubtatal - Level I Water lanagement Programs	e,571 915 650 8,136 0 8,136 0	for Delta Sup 3,373 3,773 650 7,796 0 7,796	0 0 0 0 0 0 0 0	3,207 3,758 	6,296 921 	3,137 3,726 6,863 0 6,863 -1,227 0 0 0	6,333 926 — 7,259 0 7,259 —585 0 0 0 0	3,140 3,758
Vater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroff ⁽³⁾ ubtotal edicated Naturol Flow OTAL Water Supplies emand/Supply Bolance evel I Water Monogement Programs Long-term Supply Augmentation Recloimed ⁽⁵⁾ Local Central Valley Project State Water Project Ubtotal - Level I Water lanagement Programs Net Ground Water or	ender D-1485 6,571 915 650 8,136 0 8,136 0 (4) (4) (4)	for Delto Sup 3,373 3,773 650 7,796 0 7,796 -512 	6,393 918 - 7,311 0 7,311 -720 0 0 0 0 6,393 918 -720 0	3,207 3,758 	6,296 921 7,217 0 7,217 -715 0 0 0 0 285	3,137 3,726 	6,333 926 7,259 0 7,259 -585 0 0 0 0 0 250	3,140 3,758
Vater Supplies w/Existing Facilities U Developed Supplies Surface Water ⁽²⁾ Graund Water Graund Water Overdroff ⁽³⁾ ubtotal edicated Naturol Flow OTAL Water Supplies emand/Supply Balance evel I Water Monogement Programs Long-term Supply Augmentation Reclaimed ⁽⁵⁾ Local Central Valley Project State Water Project ubtotal - Level I Water Vanagement Programs	ender D-1485 6,571 915 650 8,136 0 8,136 0 (4) (4) (4)	for Delto Sup 3,373 3,773 650 7,796 0 7,796 -512 	6,393 918 - 7,311 0 7,311 -720 0 0 0 0 6,393 918 -720 0	3,207 3,758 	6,296 921 7,217 0 7,217 -715 0 0 0 0 285	3,137 3,726 	6,333 926 7,259 0 7,259 -585 0 0 0 0 0 250	3,140 3,758

Includes major conveyance facility lasses, recreation uses, and energy production.
 Existing and future imported supplies that depend on Delto export capabilities are based on SWRCB D-1485 and do not take into account recent actions to protect aquatic species. As such, regional water supply shortages are understated (note: proposed enviranmental water demands of 1 to 3 MAF are included in the California water budget).
 The degree future shartages are met by increased averdraft is unknown. Since averdraft is not sustainable, it is not included as a future supply.
 Pratection of fish and wildlife and a lang-term solution to complex Delta prablems will determine the feasibility of several water supply augmentation proposals and their water supply benefits (5) Because of existing reuse within region, reclaimed water daes not add supply to the region.

deemed necessary by local agencies to sustain the economic health of the region. This region depends on exports from the Sacramento-San Joaquin Delta for a portion of its supplies. Shortages stated above are based on D-1485 operating criteria for Delta supplies and do not take into account reduction of supplies due to recent actions to protect aquatic species in the Bay-Delta estuary. As such, regional water supply shortages are understated. In the short-term, some areas of this region that rely on the Delta exports for all or a portion of their supplies face great uncertainty in terms of water supply reliability. For example, in 1993, an above-normal runoff year, environmental restrictions limited CVP deliveries to 50 percent of contracted supply for federal water service contractors from Tracy to Kettleman City. Because ground water is used to replace much of the shortfall in surface water supplies, limitations on Delta exports will exacerbate ground water overdraft in this region.

The waters of the Carson River and its tributaries support a variety of uses such as serving agricultural users, providing urban water supplies, and sustaining fish and wildlife habitat.

The eastern drainages of the Cascade Range and the eastern Sierra Nevada, north of the Mono Lake drainage, make up the North Lahontan Region. The region forms part of the western fringe of the Great Basin (a large landlocked drainage that includes most of Nevada and northern Utah) and stretches about 270 miles from the Oregon border to the southern boundary of the Walker River drainage in Mono County. At its widest part, the region measures about 60 miles across; it narrows to scarcely 5 miles in Sierra County. Its land area represents less than 3 percent of the State's total land area. The topography is generally mountainous and rugged with large desert valleys between mountain ranges in the north and narrow alpine valleys in the south. The mountain crests forming the western boundary of the region range up to 11,000 feet in elevation. (See Appendix C for maps of the planning subareas and land ownership in the region.)

The region comprises two planning subareas: the northernmost is the Lassen Group PSA, which includes the Modoc and Lassen county portions of the region, plus a small corner of northeastern Sierra County that drains to Honey Lake. The southern PSA is the Alpine Group from mid-Sierra County to near Mono Lake, which includes Lake Tahoe and the Truckee, Carson, and Walker river drainages.

Annual precipitation is as much as 70 inches at the crest of the Sierra Nevada, closest to Lake Tahoe, and as little as 4 inches at the Nevada boundary in Surprise Valley and in the Honey Lake Basin. The region's streams flow either to Nevada or to intermittent lakes in California. Natural runoff of the streams and rivers averages around 1,842,000 af per year; about three-quarters comes from the region's southern portion.

Population

Almost 65 percent of the 78,000 residents in the North Lahontan Region live in the Truckee-Tahoe Basin, where the largest community is the City of South Lake Tahoe with a 1990 population of 21,600. The main population center of the Lassen subarea is Susanville, the county seat of Lassen County, with 7,300 residents. Also in the region are Bridgeport, the county seat of Mono County, and Markleeville, the county seat of Alpine County. Population is quite sparse between these towns, consisting of ranches and tourist and service centers primarily along Highway 395.

Region Characteristics

Average Annual Precipitation: 32 inches	Average Annual Runoff: 1,842,000 af
Land Area: 3,890 square miles	Population: 78,000

North Lahontan Region

Only about one-fourth of one percent of California's people live in the region. Table NL-1 shows population projections to 2020 for the North Labortan Region.

(thousands)									
Planning Subarea	1990	2000	2010	2020					
Lossen Group	25	32	36	39					
Alpine Group	53	63	71	79					
TOTAL	78	95	107	118					

Table NL-1. Population Projections (thousands)

Land Use

Much of the North Lahontan Region is either national forest land or under the jurisdiction of the Bureau of Land Management. The major privately owned lands are in the valley areas of Modoc and Lassen counties. Relatively small portions of the Truckee-Tahoe area and the Carson and Walker river basins are in private ownership, but those small areas are of considerable economic significance.

Cattle raising is the principal agricultural activity in the region, although the acreage of irrigated land is relatively small (less than 4 percent of the region's land area).Commercial crop production is limited because of the short growing season. Although growing seasons vary from year to year, the mountain valleys are usually frost-free from late May to mid-September, or about 120 days. Pasture and alfalfa are the dominant irrigated crops. About 75 percent of the irrigated land is in Modoc and Lassen counties, and most of the remainder is in the Carson and Walker river valleys in Alpine and Mono counties. The irrigated land in the Carson and Walker river valleys is almost exclusively pasture at elevations above 5,000 feet.

Tourism and recreation are the principal economic activities in the Truckee-Tahoe area and the surrounding mountains. On a typical summer day, the number of recreationists within the Tahoe Basin may equal the number of full-time residents. A similar but smaller peak in the number of recreationists visiting the basin occurs during the winter. Figure NL-1 shows land use, along with water imports and exports for the North Lahontan Region.

Water Supply

About 75 percent of the region's 1990 level water supply comes from surface sources. Ground water supply amounts to 23 percent. Throughout most of the North Lahontan Region, water development has been carried out on a modest scale by local interests, with many projects built in the late 1800s. In the northern portion of the region, these developments include numerous small reservoirs which store winter runoff for summer irrigation. The Lassen Irrigation District developed three small reservoirs in the Susan River drainage beginning in 1891—McCoy Flat Reservoir, Hog Flat Reservoir, and Lake Leavitt. About 3,000 af per year is imported through the Moon Lake project from the South Fork Pit River for irrigation in the Madeline Plains area. Figure NL-2 shows the region's 1990 level sources of supply.

Supply with Existing Facilities and Water Management Programs

One of the most cost-effective storage structures ever built is a small dam at the outlet of Lake Tahoe. This 14-foot-high dam, constructed in the 1870s, controls the upper 6.1 feet of the lake and creates up to 732,000 af of storage capacity. The Lake Tahoe Dam is operated by the Truckee-Carson Irrigation District and controlled by the U.S. Bureau of Reclamation under an easement from Sierra Pacific Power Company. Its operations are supervised by the federal watermaster under the Orr Ditch Decree. Similar outlet dams constructed on natural lakes during the 1930s increased storage at Independence Lake by 18,000 af and at Donner Lake by 10,000 af. These dams are operated by Sierra Pacific Power Company. Table NL-2 lists major reservoirs in the region.

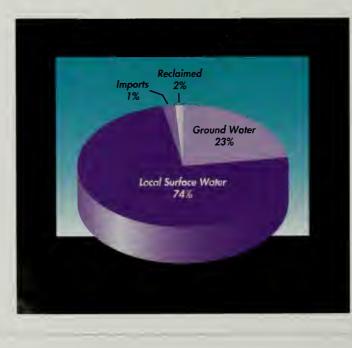
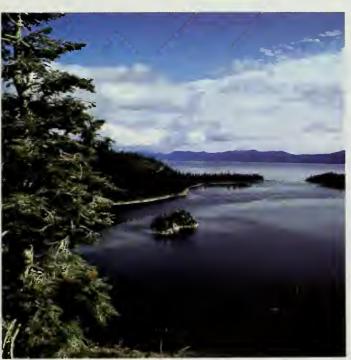

Reservoir Name	River	Capacity (1,000 AF)	Owner		
Stampede	Little Truckee	226	U.S. Bureou of Reclamation		
Boca	Little Truckee	41	"		
Prosser Creek	Prosser Creek	30	"		
Lake Tahoe*	Truckee	744	"		
Bridgeport	East Walker	43	Walker River Irrigation District		
Martis Creek Lake	Martis Creek	20	U.S. Army Corps of Engineers		

Table NL-2. Major Reservoirs

* Lake Tahoe Dam is constructed and controlled by USBR under on easement fram Sierra Pacific Power Campany.

Federal water storage projects in the region include Stampede Reservoir, Boca Reservoir, and Prosser Creek Reservoir. These three USBR reservoirs were constructed on tributaries of the Truckee River, primarily to provide water supply for service areas in Nevada, downstream flood protection, and local recreation. The U.S. Army Corps of Engineers completed the 20,000-af Martis Creek Dam in 1971; this single-purpose structure provides flood protection for the Reno-Sparks area. Operations criteria for these projects are changing, mostly due to water requirements of the cui-ui and Lahon-

Figure NL-2. North Lahontan Region Water Supply Sources (1990 Level Average Conditions)


tan cutthroat trout. The cui-ui is classified as endangered and the Lahontan cutthroat as threatened under the federal Endangered Species Act.

An average of about 2,000 af per year is exported from the Tahoe Basin to the South Fork American River in conjunction with a power development that began in 1876. Another 6,000 af is diverted from the Little Truckee River for irrigation use in Sierra Valley (Feather River Basin of Sacramento River Region). Much of the supply from the Truckee, Carson, and Walker rivers is reserved for use by Nevada interests under various water rights settlements and agreements.

The major ground water basins in the Lassen Group PSA are Long, Honey Lake, Willow Creek, and Surprise valleys and the Madeline Plains. Interbasin ground water flow is limited by geologic structures between basins. Of the 109,000 af of net ground water used in this area, about 96,000 af are for irrigation and the remaining 13,000 af are for municipal and industrial purposes. Well yields are greatest in alluvial sand and gravel deposits around the margins of the valleys and from buried basalt flows. Some wells yield greater than 3,000 gallons per minute. Yields from hard rock wells are usually low but are generally sufficient for domestic uses.

Ground water quality in the Lassen Group PSA ranges from excellent to poor. Wells that obtain their supply from lake deposits can have high levels of boron, arsenic, and fluoride and high adjusted sodium absorption ratio. Some domestic wells in the Standish area of Honey Lake Valley have arsenic levels above safe drinking water standards. The total ground water in storage within this group is estimated to be 5,000,000 af.

The major ground water basins in the Alpine Group PSA include the Bridgeport, Antelope, Carson, and Martis valleys as well as the Tahoe Basin. Ground water recharge occurs primarily from infiltration of snowmelt and precipitation, while discharge from the basins occurs mainly from streams flowing east into Nevada. The estimated total net ground water use from these basins is 12,000 af annually.

Emerald Bay at Lake Tahoe. Lake Tahoe supplies water to communities surrounding the lake and for urban and agricultural uses downstream in Nevada.

There is some agricultural ground water pumping in Antelope Valley: however, most occurs on the Nevada side of the basin. Ground water pumping in the hard rock area occurs at scattered locations throughout the subarea but is most heavily relied on in the area east of Martis Valley. Yields from these hard rock wells are usually low but sufficient to provide domestic or livestock supplies. Although pumping and ground water level information within the subarea is limited, there are no reported instances of basin overdraft, so current pumping is probably within the perennial yield. The total ground water in storage is estimated at 1,800,000 af. Although water quality in the Alpine Group PSA is usually good, some areas do have problems with water quality.

Some municipal wells in the Lake Tahoe Basin produce water high in uranium, radon, or radionuclides. Because of the granitic rocks and sediments from which

ground water is produced, elevated levels of uranium or radon, or both, may occur in ground water in other areas of the PSA. Some test wells on the west side of the Lake Tahoe Basin produce poor-quality water that contains high concentrations of arsenic.

Table NL-3 shows water supplies with existing facilities and water management programs.

Supply	19	2000		2010		2020		
	average	drought	average	drought	average	drought	average	drought
Surface								
Local	382	338	379	340	371	340	379	344
Lacal imports	3	3	3	3	3	3	3	3
Calarado River	0	0	0	0	0	0	0	0
CVP	0	0	0	0	0	0	0	0
Other federol	0	0	0	0	0	0	0	0
SWP	0	0	0	0	0	0	0	0
Graund water	121	146	128	154	138	165	147	173
Overdroft ⁽¹⁾	0	0	_	_	_	_	_	
Reclaimed	8	8	8	8	8	8	8	8
Dedicated natural flow	0	0	0	0	0	0	0	0
TOTAL	514	495	518	505	520	516	537	528

Table NL-3. Water Supplies with Existing Facilities and Programs (thousands of acre-feet)

(1) The degree future shartages are met by increased overdraft is unknawn. Since overdraft is nat sustainable, it is not included as a future supply.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level l options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level II options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Water supplies are not expected to change in the North Lahontan Region through the year 2020. Irrigated agriculture is already constrained by economically available water supplies; only a small amount of agricultural expansion is expected in areas that can support some additional ground water development. Similarly, the modest needs for additional municipal and industrial supplies can be met by minor expansion of present surface systems or by increased use of ground water. No significant additional Level I or Level II surface water development in the region is anticipated. The following sections summarize water management programs under active consideration in the region.

Table NL-4 shows water supplies with additional Level I water management programs. Since there are no planned Level I water management programs, the table is identical to Table NL-3.

About 5,500 af of recycled waste water is exported out of the Tahoc Basin by South Tahoe Public Utility District for agricultural use in the Carson River watershed. Truckee Tahoe Sanitation Agency treats waste water from the Tahoe Basin and returns about 4,000 af (which is used downstream in Nevada and does not contribute to California's supplies) to the Truckee River. The Susanville Sanitary District reclaims over 3,000 af of waste water for use on nearby irrigated pasture lands.

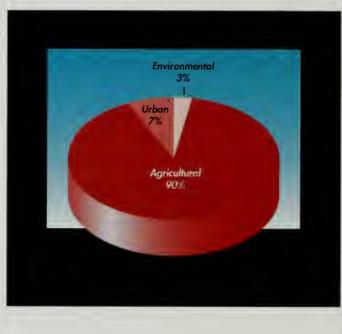
	•							
Supply	19	20	2000		2010		2020	
	average	drought	averoge	drought	average	drought	average	drough
Surface								
Lacal	382	338	379	340	371	340	379	344
Lacal imports	3	3	3	3	3	3	3	3
Colorado River	0	0	0	0	0	0	0	0
CVP	0	0	0	0	0	0	0	0
Other federal	0	0	0	0	0	0	0	0
SWP	0	0	0	0	0	0	0	0
Graund water	121	146	128	154	138	165	147	173
Overdraft ⁽¹⁾	0	0	_	_	_	_	_	_
Reclaimed	8	8	8	8	8	8	8	8
Dedicated natural flaw	0	0	0	0	0	0	0	0
TOTAL	514	495	518	505	520	516	537	528

Table NL-4. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies)

(thousands of acre-feet)

[1] The degree future shartages are met by increased averdraft is unknown. Since averdraft is not sustainable, it is nat included as a future supply.

In the northern portion of the region, drought is a way of life for agriculture; irrigators use the water available and then do without. In most irrigated areas there is little storage, and surface water runs out early in dry years. Drought water management consists mainly of making the best use of what water is available.

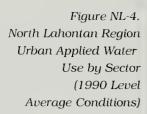

The Truckee River and Lake Tahoe Basin will be regulated by the Truckee River Operating Agreement if and when agreement is reached. The Carson and Walker rivers are controlled by federal watermasters according to federal court decrees. Further water development in these basins is unlikely. It is anticipated that water transfers will be used to meet changing or higher priority needs within the basins. In California, this has meant acquiring some agricultural land and water rights for both environmental needs throughout the basin and municipal needs downstream in Nevada.

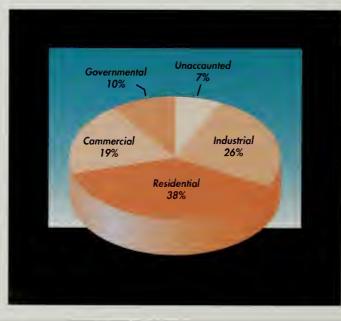
In the Walker River basin, agricultural supplies may be supplemented by increasing use of ground water and conjunctive use in areas such as Antelope Valley. Water conservation for agricultural users (that is, ditch lining and soil moisture controlled irrigation scheduling) may become increasingly important as more water rights are sold or otherwise transferred to urban and environmental uses.

Water Use

The 1990 level annual net water use within the North Lahontan Region is about 514,000 af per year. About 90 percent is for irrigated agriculture. Most of the 37,000 af of municipal and industrial use takes place in the Susanville and Tahoe-Truckee

Figure NL-3. North Lahontan Region Net Water Demand (1990 Level Average Conditions)


areas. Despite the importance of recreation in the region's economy, the water needs of recreation are a small component of total water use. The principal environmental water needs are instream flows, and those of the State's Honey Lake and Willow Creek wildlife areas in southern Lassen County.


The primary users of ground water in the Alpine subarea are the municipalities in the Lake Tahoe Basin and

Martis Valley, and to a lesser extent in Bridgeport Valley. Figure NL-3 shows net water demand for the 1990 level of development.

Urban Water Use

Population projections indicate that by 2020, the region's population will increase by 51 percent over 1990 levels. Most people will still be in the Alpine subarea. Average water use is about 421 gallons per capita daily. In the two planning subareas, use ranges from 607 gpcd in the Lassen Group to 337 gpcd in the Alpine Group. The significantly larger per capita use in the northern PSA is due to high-water-use indus-

try (mostly energy production-cogeneration and geothermal), which accounts for about half of the urban water use in this area. Per capita use values for areas such as the Tahoe Basin are distorted because they are based on permanent population. while a substantial share of the water use is by tourists and temporary residents. Figure NL-4 shows the 1990 level urban applied water use by sector.

Table NL-5 shows applied water and net urban water demand through 2020. Urban water use is not expected to increase proportionately with population due to water-saving techniques employed with new construction and other water conservation measures.

The 17,000 af of urban water use within the Lassen Group is mostly from ground water. The 4,000 af of surface water used as an urban water supply is almost all used by the City of Susanville. Susanville, the largest city in the northern group, derives most of its municipal water from Cady and Bogwell Springs and some ground water wells. Increased population and the recent drought have forced Susanville to increase ground water pumping to supplement reduced surface water supplies.

The area's water demand is expected to increase. The State Department of Corrections is planning to expand the Susanville Correctional Center from 4,000 to a maximum of 8,000 inmates. The city also is requiring the developer of one large subdivision to produce a water supply for its project that is independent of existing city sources. Present plans are to meet this demand with ground water supplies.

In the Alpine Group there are 12,000 af of ground water and 8,000 af of surface water supplies for municipal use. Some systems divert directly from the lake, some from streams or springs, and some use wells. The Alpine Group has the largest population center in the region, the Lake Tahoe Basin. Municipal supplies in the Truckee Basin downstream of Lake Tahoe are almost entirely from ground water wells; the largest purveyor is the Truckee-Donner Public Utility District.

Planning Subarea	1990		20	2000		10	2020	
·	average	drought	average	drought	average	drought	average	drought
Lassen								
Applied water demand	17	17	19	19	20	20	21	21
Net water demand	17	17	19	19	20	20	21	21
Depletion	7	7	8	8	9	9	9	9
Alpine								
Applied water demand	20	21	24	25	26	28	30	31
Net water demand	20	21	24	25	26	28	30	31
Depletion	7	8	9	10	10	11	12	12
TOTAL								
Applied water demand	37	38	43	44	46	48	51	52
Net woter demond	37	38	43	44	46	48	51	52
Depletion]4	15	17	18	19	20	21	21

Table NL-5. Urban Water Demand

(thousands of acre-feet)

Agricultural Water Use

Total irrigated land within the North Lahontan Region in 1990 was 161,000 acres, an increase of about 7 percent since 1980. Table NL-6 shows irrigated crop acreage for the region. The number of irrigated acres in the region is expected to increase slightly over the next three decades. Table NL-7 shows 1990 crop acreages and evapotranspiration of applied water. Figure NL-5 shows 1990 crop acreages, evapotranspiration, and applied water for major crops.

	•	,		
Planning Subarea	1990	2000	2010	2020
Lassen Group	120	122	125	128
Alpine Group	41	41	41	41
TOTAL	161	163	166	169

Table NL-6. Irrigated Crop Acreage (thousands of acres)

Table NL-8 summarizes 1990 and forecasted agricultural water demand in the region. The applied water use values were derived by applying unit water use factors to the irrigated acreages in the region. Applied water amounts vary according to crop, soil type, cultural practices, and the quantity, timing, and availability of irrigation water. During drought years, there is an increased need for additional irrigations to replace water normally supplied by rainfall and to meet higher-than-normal evapotranspiration demands.

Irrigated Crap	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	6	10
Rice	1	2
Alfalfa	43	103
Pasture	110	233
Other truck	1	2
TOTAL	161	350

Table NL-7. 1990 Evapotranspiration of Applied Water by Crop

The majority of the area irrigated by surface water, particularly in the Lassen Group, has limited water storage facilities and is dependant on snowmelt and spring and summer rainfall. Since most of the surface water irrigation operates with a nonfirm water supply, irrigated acreage and the length of time irrigation water is available fluctuates annually. The crop most subject to these changes is irrigated pasture. Even though acreage in some areas can remain relatively stable, the length of the irrigation season is often shortened since runoff generally decreases as summer progresses. As in most situations when water is in short supply, water is used sparingly and irrigation efficiencies increase. There is no evidence that there will be significant changes in future irrigation efficiencies; however, some increase can be anticipated due to improved irrigation management and the water conservation ethic in the area. The agricultural economy and water users have adapted to the erratic water supply.

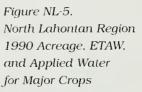

Planning Subarea	1990		20	2000		2010		2020	
	average	draught	average	drought	average	draught	average	draught	
Lassen									
Applied water demand	344	380	352	389	362	400	371	409	
Net water demand	294	316	299	322	306	329	316	340	
Depletion	270	301	277	308	285	317	291	324	
Alpine									
Applied water demand	178	207	171	200	163	191	165	193	
Net water demand	166	195	159	188	151	179	153	181	
Depletion	108	125	108	125	108	125	108	125	
TOTAL									
Applied water demand	522	587	523	589	525	591	536	602	
Net water demand	460	511	458	510	457	508	469	521	
Depletion	378	426	385	433	393	442	399	449	

Table NL-8. Agricultural Water Demand

(thousands of acre-feet)

Ground water accounts for 23 percent of the region's irrigation water needs and is often used to supplement nonfirm surface water supplies. Most areas irrigated by ground water are either sprinkler irrigated or are using a closed-basin type of irrigation system, both of which are very efficient. In contrast to land irrigated by ground water, land irrigated by surface water during the spring months has a higher-than-normal applied water rate. Some of the surplus water from the uncontrolled outflow from irrigated fields is spread on the soil where it deep-percolates and recharges ground water basins. Much of this water, if not applied for irrigation, would flow to the saline lakes in the area and evaporate.

The Madeline Plains area has shown a dynamic increase in irrigation water use. During the past eight years, alfalfa acreage has increased from 300 acres to over 10,000 acres. Wild rice, a new crop in the area, was estimated at about 500 acres in 1990. Most of the above mentioned crops were planted on land not irrigated prior to 1980. Much of the increase in irrigation can be attributed to an innovative method of collecting winter runoff and irrigation drainage in a large sump in a closed basin, then using it in conjunction with ground water for irrigation.

Environmental Water Use

The principal environmental water use in the region is for wetlands near Honey Lake. The Honey Lake Wildlife Area in southern Lassen County consists of the 4.271-acre Dakin Unit and the 3.569-acre Fleming Unit. The two units provide important habitat for several threatened or endangered species, including the bald eagle, sandhill crane, bank swallow, and peregrine falcon. This wildlife area has winter storage rights from the Susan River from November 1 until the last day of February. The HLWA also operates eight wells, each producing between 1.260 and 2.100 gallons per minute. In an average year, the HLWA floods 3,000 acres by March 1 for waterfowl brood habitat.

In 1989, the California Department of Fish and Game purchased the 2.714-acre Willow Creek Wildlife Area in Lassen County to preserve existing wetlands and to increase the potential for waterfowl production and migration habitat. About 2,000 acres are wetland and riparian habitats. The endangered bald eagle and sandhill crane also inhabit this area. In addition to the Honey Lake and Willow Creek Wildlife Areas, DFG operates the Doyle Wildlife Area, also in the Honey Lake Basin. This wildlife area is preserved as dryland winter range for deer and requires less water than the Honey Lake or Willow Creek areas. Table NL-9 summarizes projected wetlands water needs for the region.

Wetland	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought
Haney Lake WA								
Applied water demand	14	14	14	14	14	14	14	14
Net water demand	14	14	14	14	14	14	14	14
Depletion	14	14	14	14	14	14	14	14
Willow Creek WA								
Applied water demand	3	3	3	3	3	3	3	3
Net water demand	3	3	3	3	3	3	3	3
Depletian	3	3	3	3	3	3	3	3
TOTAL								
Applied water demand	17	17	17	17	17	17	17	17
Net water demand	17	17	17	17	17	17	17	17
Depletion	17	17	17	17	17	17	17	17

Table NL-9. Wetland Water Needs (thousands of acre-feet)

DFG is concerned about maintaining instream flows and reservoir levels in the California portions of the Carson and Walker river basins. Portions of these rivers are protected by the California Wild and Scenic Rivers Act. In conjunction with American Land Conservancy, a private land trust organization, DFG has been acquiring lands and water rights at Heenan Lake in the upper watershed of the East Fork Carson River. This small reservoir, formerly used to supply irrigation water for lands in Nevada, is now being used by DFG to raise Lahontan cutthroat trout to stock in other locations throughout the Sierras. Parts of the upper Carson River are managed by DFG as wild trout waters, where stocking of hatchery fish is not allowed. Recreational trout fishing is a popular activity on both the upper Carson and Walker rivers.

The productive, highly alkaline waters of Eagle Lake near Susanville in Lassen County support a renowned trout fishery. The endemic Eagle Lake rainbow trout, a recognized subspecies, is a variety also suitable for widespread planting and has become an important hatchery strain. Eagle Lake is a fishing recreation center for Northern California and Nevada.

Bridgeport Reservoir on the East Walker River near the California-Nevada border was the site of a recent State Water Resources Control Board action regarding water requirements for the trout fishery. This reservoir supplies water to agricultural lands in Nevada. The operation of the reservoir during the recent drought caused a fishery resource to decline in the river downstream. As part of ensuing legal actions, instream flow releases and other conditions were imposed on reservoir operation. The SWRCB's modifications to the permits for Bridgeport Reservoir are being challenged in the U.S. District Court in Nevada.

Other Water Use

By far, the heaviest concentration of recreation use in the North Lahontan Region occurs within the Lake Tahoe Basin. Recreation development in other areas of the region is limited due to the relatively low population density and remoteness. Roughly half of the visitors to this region come from the San Francisco metropolitan area, about 30 percent from the Los Angeles metropolitan area, and 15 percent from out-of-state.

Public recreation areas include three national forest districts, 12 Bureau of Land Management recreation complexes, seven State parks, and six county parks. There are more than 30 major private recreation areas which include ski areas, golf courses, resorts, and marinas.

Several natural waterways in the region provide access for fishing, swimming, boating, hiking, and picnicking. River touring, a popular sport in California, is a common activity in the Truckee, Carson, East Fork Carson, West Walker, and East Walker rivers. Figure NL-6 shows water recreation areas in the region.

Category of Use	19	90	20	00	20	10	2020	
	average	drought	average	drought	average	drought	average	drough
Urban								
Applied water demand	37	38	43	44	46	48	51	52
Net water demand	37	38	43	44	46	48	51	52
Depletion	14	15	17	18	19	20	21	21
Agricultural								
Applied water demand	522	587	523	589	525	591	536	602
Net water demand	460	511	458	510	457	508	469	521
Depletion	378	426	385	433	393	442	399	449
Environmental								
Applied water demand	17	17	17	17	17	17	17	17
Net water demand	17	17	17	17	17	17	17	17
Depletion	17	17	17	17	17	17	17	17
Other ⁽¹⁾								
Applied water demand	0	0	0	0	0	0	0	0
Net water demand	0	0	0	0	0	0	0	0
Depletion	0	0	0	0	0	0	0	0
TOTAL			·					
Applied water demond	576	642	583	650	588	656	604	671
Net water demand	514	566	518	571	520	573	537	590
Depletion	409	458	419	468	429	479	437	487

Table NL-10. Total Water Demands (thousonds of acre-feet)

(1) Includes major conveyance facility losses, recreation uses, and energy production.

*From 1992 California Energy Commission Maps. See Table D-3 in Appendix D for plant information.

Current visitor attendance to the region is estimated at 12 million visitor days annually. Total consumptive water use for recreation in the region is small. Table NL-10 shows the total water demands for this region.

Issues Affecting Local Water Resource Management

The principal water-related issues in the North Lahontan Region center around interstate water allocations, population growth, limitations of existing water supply systems, water quality protection, and ground water management.

Legislation and Litigation

Interstate River Issues. Years of disputes over the waters of the Truckee and Carson rivers finally led to congressional enactment of the Truckee-Carson-Pyramid Lake Water Rights Settlement Act in 1990. The act makes an interstate allocation of the waters between California and Nevada, provides for the settlement of certain Native American water rights claims, and provides for water supplies for specified environmental purposes in Nevada. The act allocates to California: 23,000 af annually in the Lake Tahoe Basin; 32,000 af annually in the Truckee River Basin below Lake Tahoe; and water corresponding to existing water uses in the Carson River Basin. Provisions of the Settlement Act, including the interstate water allocations, will not take effect until several conditions are met, including negotiation of the Truckee River Operating Agreement required in the act.

DWR and SWRCB staff have represented California interests in negotiating the Truckee River Operating Agreement. DWR is a lead agency, along with the U.S. Bureau of Reclamation and the U.S. Fish and Wildlife Service, in developing the Environmental Impact Refor port/Statement the agreement. A major purpose of the TROA is to establish detailed river operations procedures to meet the goals laid

out in the act. It may also address some aspects of implementing California's water allocation. Issues of concern to California include implementation of surface and ground water allocations. including the amount of water allocated for snow-making at ski resorts, and allocations for operation of Truckee River storage facilities to protect lake and instream beneficial uses.

Present-day operations of the Truckee, Carson, and Walker rivers are governed in large part by existing federal court water rights decrees administered by court-appointed watermasters. The interstate nature of the rivers, combined with the

The Carson River in Alpine County. The Carson and Truckee rivers were the center of a years-long water rights dispute which was settled in 1990 in the congressional Truckee-Carson-Pyramid Lake Water Rights Settlement Act. long history of disputes over water rights, has created a complex system of river management criteria. On the Carson River for example, it took the federal court 55 years to sort out the water rights and issue the Alpine Decree, which governs operation of the river today.

Regional Issues

Population Growth. Growth has long been a major issue in the Tahoe Basin and strict controls have been adopted by local agencies under the leadership of the Tahoe Regional Planning Agency. These controls have been very effective. For example, the City of South Lake Tahoe grew by only 4 percent in the 1980s.

Population of the Lassen County portion of the region increased by nearly 30 percent over the past decade. A major contributor to this growth was the construction of the California Correctional Center at Susanville, which houses about 4,000 prisoners and employs a staff of about 1,000. This growth and the 1987-92 drought have revealed the limits of local surface water supplies. There is increasing interest in assuring that water will be available to meet urban needs without reducing agricultural supplies or overdrafting the ground water basin. State proposals to double the capacity of the correctional facility led to intense local debate in 1991. One of the principal issues was the growth-inducing impact of the proposal and the resulting increased pressure on existing water supplies. The question was eventually put on the ballot, and a substantial majority of the voters approved the expansion.

Reno Water Supplies. Although not strictly a California issue, local interests in the northern part of the region have been apprehensive about the Reno area's aggressive quest for additional water supplies. In the late 1980s, the *Silver State Plant* triggered concerns as far north as Modoc County (over 150 miles north of Reno). The plan envisioned constructing a pipeline north nearly to the Oregon border to tap ground water basins, some of which extend across the California-Nevada line. More recently, the proposed Truckee Meadows Project generated concerns about depletion of ground water supplies.

Ground water management is closely related to the issue of water supply for the Reno area. Concern over protecting local ground water resources has led to establishment of formal ground water management mechanisms in the Honey Lake and Long Valley basins in Lassen and Sierra counties. Similar arrangements are being considered in Surprise Valley and the pending interstate allocation establishes limits on ground water withdrawals in the Lake Tahoe and Truckee River basins. At present, neither the Honey Lake nor Long Valley ground water management districts is active, but either can be activated whenever a need is perceived.

Water Guality. There is a potential for future ground water pollution in those areas where single-family septic systems have been installed in high density subdivisions, especially in the hard rock areas. Water quality has also become a greater issue for many surface water systems around Lake Tahoe. The recent drought dropped lake levels to all-time lows and left some system intakes in shallow water. In addition, the 1986 amendments to the Safe Drinking Water Act are forcing many of the smaller private systems to consolidate or change ownership since they are unable to afford the new monitoring and treatment requirements of the amended act. South Tahoe Public Utility District, the largest water purveyor in the basin, is also experiencing some difficulty in planning to meet these requirements.

The Lahontan Regional Water Quality Control Board has been concerned about ground water contamination and eutrophication at Eagle Lake since 1982. Numerous

studies, including one completed by DWR in October 1990, have shown widespread bacterial contamination in domestic wells in this area. Blooms of noxious species of algae appear to be increasing in frequency in the lake in response to nutrient enrichment, a suspected result of increased residential development in the basin. The regional board issued Cease and Desist Orders in 1991 requiring subdivision residents to abandon use of septic tanks. The State Water Resources Control Board was petitioned by residents of Spalding Tract and Stones-Bengard subdivisions for relief from these orders, and the SWRCB agreed to allow the formation of a septic system maintenance district in lieu of a regional waste water collection system. The regional board will be establishing guidelines for forming this district and monitoring requirements to ensure that ground water contamination does not continue.

A study of the potential contamination of Cady Springs by septic tank leachfield effluent from up-slope urban development is also being conducted. Cady Springs is the primary water supply for the City of Susanville. Until the completion of the study, further urban development of this area, west of Susanville, has been constrained by concerns expressed by the city and the Regional Water Quality Control Board.

Truckee Meadows Ground Water Transfer Project. In the mid-1980s, a plan for the Truckee Meadows Project was developed to export ground water from Nevada's portion of Honey Lake Valley ground water basin to the Reno area. Applications were filed with the Nevada State Engineer to transfer about 23,000 af per year. Concerns about the transfers and possible side effects resulted in a 1987 agreement between DWR, the State of Nevada, and the U.S. Geological Survey to jointly determine the ground water flow system in eastern Honey Lake Valley. When the USGS study was completed, the Nevada State Engineer opened hearings in the summer of 1990 regarding applications to transfer ground water from Honey Lake Valley to the Reno area. The Nevada State Engineer ruled that only about 13,000 af could be transferred from the basin. Currently, the Truckee Meadows Project developers are completing an Environmental Impact Statement for the 80-mile pipeline to transfer ground water. Lassen County and the Pyramid Lake Paiute Tribe have challenged the State Engineer's decision in a Nevada Court.

Long Valley Ground Water Transfers. In the late 1980s, there was a proposal to export about 3,000 af per year from Long Valley to the Reno area. The project developers were asked to submit an application to the Long Valley Ground Water Management District for a permit to export ground water from the district. To date, the project proponents have not filed an application.

Water Balance

Water budgets were computed for each planning subarea in the North Lahontan Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas, which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be less or more severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary. Volume I, Chapter 11 presents a broader discussion of demand management options.

Water Demand/Supply	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drough
let Demand								
Urban—with 1990								
level af canservation —reductians due ta	37	38	43	44	46	48	51	52
lang-term conservation								
measures (Level I)	_	_	0	0	0	0	0	0
Agricultural—with 1990			-					
level of conservation.	460	511	458	510	457	508	469	521
—reductions due to								
lang-term canservation								
measures (Level I)	_	-	0	0	0	0	0	0
Enviranmental	17	17	17	17	17	17	17	17
Other ⁽¹⁾	0	0	0	0	0	0	0	0
OTAL Net Demand	514	566	518	571	520	573	537	590
Vater Supplies w/Existing Facilities U Develaped Supplies	Inder D-1485	far Delta Sup	plies					
Surface Water	393	349	390	351	382	351	390	355
Graund Water	121	146	128	154	138	165	147	173
Ground Water Overdraft ⁽²⁾	0	0	_	_	_	_	_	_
iubtotal	514	495	518	505	520	516	537	528
Dedicated Natural Flow	0	0	0	0	0	0	0	0
OTAL Water Supplies	514	495	518	505	520	516	537	528
		71			0	-57	0	-62
emand/Supply Balance	0	-71	0	-66	0	-57	0	-02
evel I Water Management Pragrams								
Long-term Supply Augmentatian								
Reclaimed	—	-	0	0	0	0	0	0
Lacal	_	_	0	0	0	0	0	0
Central Valley Praject	_	_	0	0	0	0	0	0
State Water Praject	_	_	0	0	0	0	0	0
ubtotal - Level I Water								
Aanagement Programs	0	0	0	0	0	0	0	0
Net Graund Water ar								
Surface Water Use Reduction								
Resulting fram Level I Programs	—	-	0	0	0	0	0	0
Remaining Demand/Supply Balance	Requiring Shor	t-term Draug	ht Managem	ent and/or Le	evel II Options	5		

Table NL-11. Water Budget (thousands of acre-feet)

Includes major conveyance facility lasses, recreation uses, and energy production.
 The degree future shortages are met by increased averdraft is unknawn. Since averdraft is not sustainable, it is not included as a future supply.

Table NL-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 514,000 and 566,000 af for average and drought years, respectively. Those demands are forecasted to increase to 537,000 and 590,000 af, respectively, by the year 2020. Urban net water demand is forecasted to increase by about 14,000 af, primarily due to expected increases in population, while agricultural net water demand remains essentially level. Environmental net water demands are also expected to remain level out to 2020.

Average annual supplies are generally adequate to meet average water demands in this region to the year 2020. However, during drought, present supplies are insufficient to meet present and future demands without additional water management programs; annual drought year shortages are expected to be about 62,000 af by 2020.

The 1990 drought year shortage of about 71,000 af was reflected in reduced surface water supplies available for irrigation primarily in Alpine. Mono, Lassen, and Modoc counties. The shortages mentioned above for drought conditions are typically managed locally according to water availability. Specifically, available water supplies determine the amount of agricultural land in production in any given year. In most of these areas, supplies are delivered according to water rights or court decisions by local. state, and federal watermasters.

There are no major water management programs planned for this region. Plans for augmenting supplies for the Reno-Sparks area, such as ground water import from California, could affect future supplies in the region. The Truckee River operating agreement is currently being negotiated with Nevada interests but is not expected to limit supplies through 2020. Future water management programs depend on economic viability of such programs and the overall level of water service reliability deemed necessary by local agencies to sustain the economic health of the region.

Aerial view of the southern Sierra Nevada snow pack. Runoff from the eastern face of the Sierras is an integral part of the South Lahontan Region's water supply, part of which is exported to the South Coast Region.

The South Lahontan Region accounts for about 18 percent of California's total land area. It encompasses the area from the mountain divide north of Mono Lake to the divide south of the Mojave River, which runs through the Mojave Desert. It is bordered on the east by the Nevada state line and on the west by the crest of of the Sierra Nevada.

South Lahontan Region

The region is a closed basin with many desert valleys that contain central playas, or dry lakes, especially in the south. The northern portion is dominated by the Sierra Nevada and the White-Inyo Mountain Ranges. In the south are smaller mountain ranges with broad alluvial fans. Other prominent topographic features in the region include Mt. Whitney (the highest mountain in the contiguous 48 states, with an elevation of 14,495 feet), the Mono volcanic tableland, Death Valley (the lowest point at elevation 282 feet below mean sea level), and the Owens Valley. (See Appendix C for maps of the planning subareas and land ownership in the region.)

Average annual precipitation for the region's valleys generally ranges between 4 and 10 inches. Variations above and below this range do occur; for example, Death Valley receives only 1.9 inches annually. The Sierra Nevada Mountains can receive up to 50 inches annually, much of it in the form of snow. In some years, the community of Mammoth Lakes can have snow accumulations of more than 10 feet.

Population

In 1990, the South Lahontan Region's population was almost 600,000, about 2 percent of California's total. Although not densely populated, the region contains some of the fastest growing urban areas in California, including the cities of Lancaster and Palmdale in the Antelope Valley of Los Angeles County and the Victor and Apple valleys of San Bernardino County. Many of the new residents in these valleys are workers who have accepted a long commute to the greater Los Angeles area in exchange for affordable new homes. Future population growth in the region will probably be concentrated in these vicinities. Major local employment includes the aerospace industry at Palmdale Airport and Edwards Air Force Base. Bishop, Ridgecrest, and Barstow are the other important centers in the region. The City of Ridgecrest's continued growth will be tied to the economic conditions of the nearby China Lake Naval Weapons Center and mining operations at Searles Lake.

Region Characteristics

Average Annual Precipitation: 8 inchesAverage Annual Runoff: 1,334,000 afLand Area: 29,020 square miles1990 Population: 599,900

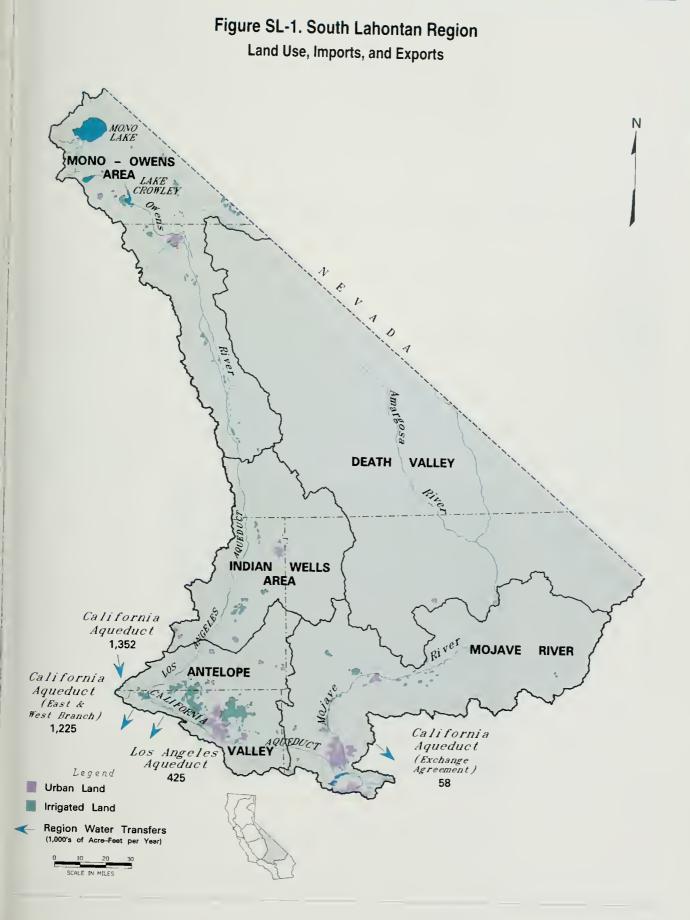
South Lahontan Region

While the identified growth centers will probably continue to expand, there is little reason to expect much population growth elsewhere in the region. The Owens Valley and eastern Sierra area should remain sparsely populated, with the string of small communities serving recreationists and travelers along U.S. Highway 395. Barstow, a service center for railroads and travelers, is strongly tied to the U.S. Army's Fort Irwin, which has grown modestly in recent years. Most of the other towns and communities in this portion of the region are highway service centers or farm service centers. Table SL-1 shows population projections to 2020 for the South Lahontan Region.

Table SL-1. Population Projections

(thousands)

Planning Subarea	1990	2000	2010	2020
Mona-Owens	25	29	35	43
Death Valley	1	1	1	1
Indian Wells	48	75	108	141
Antelape Valley	260	499	738	986
Mojave River	265	399	547	748
TOTAL	599	1,003	1,429	1,919

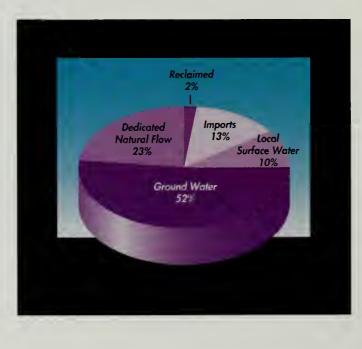

Land Use

Public lands constitute about 75 percent (14 million acres) of the region's area. Much of this land is national monument and scenic areas, national forests, and military reservations.

About 1 percent of the 18.6 million acres in the South Lahontan Region is used for urban and agricultural activities. In 1990, urban and suburban land uses occupied about 170,000 acres, a 21-percent increase from 1980. Over 80 percent of this increase was in urban acreage concentrated in the Antelope and Mojave River valleys. The only other area showing much urban growth was the Indian Wells Valley. Much of this increase was associated with construction of new single- and multiple-family dwellings. Modest increases are associated with new commercial services and light industry. Industries supporting the region's economy include the military, recreation and tourism, travelers' services, agriculture, and mining,

About 61,000 acres are irrigated crop land (less than 1 percent of the region's total land area). Multiple cropping is not generally practiced in the region. Most of the irrigated acreage is in the Mono-Owens planning subarea where roughly 30,000 acres are irrigated. This PSA includes the Owens Valley, the Lake Crowley area northwest of Bishop, and the Hammil and Fish Lake valleys. Alfalfa and pasture are the primary crops.

Moderate levels of irrigated agriculture subsist in the Mojave River, Antelope, and Indian Wells valleys. Most of the activity and acreage produces alfalfa, pasture, or deciduous fruit. Figure SL-1 shows land use, along with imports and exports for the South Lahontan Region.


Water Supply

Historically, the South Lahontan Region has relied mostly on ground water, the mainstay of many of the local urban and farming communities. Natural surface water supplies, such as the Mono Lake tributaries, the Owens River, and the Mojave River, also contribute to the domestic and agricultural supplies. Table SL-2 lists the major reservoirs of the region. Figure SL-2 shows the region's 1990 level water supplies.

Reservair Name	River	Capacity (1,000 AF)	Owner		
Saddlebag Lake	Lee Vining Creek	11	Southern California Edison Co.		
Gem Lake	Rush Creek	17	Southern California Edison Co.		
Grant Lake	Rush Creek	48	Los Angeles Dept. Water & Power		
South Loke	South Fork Bishop Creek	13	Southern Colifornia Edison Co.		
Lake Crowley	Owens	183	Los Angeles Dept. Water & Power		
Tinemaha	Owens	16	Los Angeles Dept. Water & Power		
Haiwee	Rose Valley	41	Los Angeles Dept. Water & Power		
Lake Silverwood	West Fork Mojave	75	Department of Water Resources		

Table SL-2. Major Reservoirs

In 1913 and 1970, the first and second Los Angeles aqueducts were completed and began conveying water from the Mono-Owens area to the City of Los Angeles. The combined carrying capacity of both aqueducts amounts to 780 cubic feet per second. Court-ordered restrictions on diversions from the Mono Basin and Owens Valley have reduced the amount of water the city can receive and have brought into question the

reliability of the Mono-Owens supply for Los Angeles. (See the Legislation and Litigation section under Issues Affecting Local Water Resource Management.) As demand continues to grow, the decreased diversions have forced the City of Los Angeles to become more other dependent on sources.

In the 1970s, the Antelope Valley-East Kern Water Agency began receiving deliveries of State Water Project water and recharging

the valley's ground water basin. Ground water levels in some portions of the basin are reported to have risen 40 feet or more since the introduction of SWP water.

Figure SL-2. South Lahontan Region Water Supply Sources (1990 Level Average Conditions)

Supply with Existing Facilities and Water Management Programs

Table SL-3 shows water supplies with existing facilities and water management programs. Ground water is the only source of domestic and agricultural water in the Death Valley and Indian Wells planning subareas. Very little, if any, of the surface water flow in these PSAs is used for other than natural ground water recharge. The Antelope Valley receives over 66 percent of its domestic and agricultural water supply from the State Water Project, with the remainder drawn from ground water and local surface supplies. The Mono-Owens and Mojave River PSAs rely on both surface and ground water supplies to meet demands.

Supply	19	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought	
Surfoce									
Local	57	44	57	44	57	44	57	44	
Local imports	0	0	0	0	0	0	0	0	
Colorado River	0	0	0	0	0	0	0	0	
CVP	0	0	0	0	0	0	0	0	
Other federal	0	0	0	0	0	0	0	0	
SWP	69	47	133	87	142	88	153	90	
Ground water	221	252	220	237	226	271	258	271	
Overdroft ⁽¹⁾	67	67	_	_		_	_	_	
Reclaimed	13	13	13	13	13	13	13	13	
Dedicated natural flaw	128	122	128	122	128	122	128	122	
TOTAL	555	545	551	503	566	538	609	540	

Table SL-3. Water Supplies with Existing Facilities and Programs (Decision 1485 Operating Criteria for Delta Supplies)

(thousands of acre-feet)

(1) The degree future shortages are met by increased averdraft is unknown. Since overdraft is not sustainable, it is not included as a future supply.

Ground water is extremely important in supplying water to the region. As many as 47 distinct ground water basins covering thousands of square miles have been identified in the South Lahontan Region. Storage capacities vary by basin. Ground water basin capacities in both the Mojave River and Antelope Valley PSAs, for example, total about 70,000,000 af each. Economically usable storage is significantly less but provides the major, if not the only, water source in many areas. Water quality also varies and this influences water supply. Basins are recharged through percolation from irrigation return flow, natural stream flow, and intermittent stream flow from snowmelt, depending on location.

Natural runoff, carried by numerous streams on the eastern slopes of the Sierras, is about 1,300,000 af annually in average years. Estimated projected average year deliveries to the City of Los Angeles are about 425,000 af a year for 2000 to 2020. Under drought conditions, deliveries are projected to be 208,000 af a year for 2000 to 2020.

Supply with Additional Facilities and Water Management Programs

Future water management options are presented in two levels to better reflect the status of investigations required to implement them.

- Level 1 options are those programs that have undergone extensive investigation O and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- O Level II options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Table SL-4 shows water supplies with Level I water management programs.

The larger urban and agricultural areas of the South Lahontan Region-Owens

Table SL-4. Water Supplies with Level I Water Management Programs

(Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

Supply	1990		20	00	2010		2020	
	average	drought	average	drought	average	drought	average	drought
Surface								
Lacal	57	44	57	44	57	44	57	44
Local imports	0	0	0	0	0	0	0	0
Coloroda River	0	0	0	0	0	0	0	0
CVP	0	0	0	0	0	0	0	0
Other federal	0	0	0	0	0	0	0	0
SWP	69	47	143	107	164	141	185	142
Graund water	221	252	219	237	226	237	236	271
Overdraft ⁽¹⁾	67	67	_	_	_	_	-	-
Reclaimed	13	13	13	13	14	14	14	14
Dedicated natural flow	128	122	128	122	128	122	128	122
TOTAL	555	545	560	523	589	558	620	593

(1) The degree future shartages are met by increased overdraft is unknown. Since overdraft is nat sustainable, it is not included as a future supply.

Urban Environmental 22% 23% Agricultural 52%

Valley, Victorville, Hesperia, and Antelope Valley-have several water management options that can improve the reliability of supplies, including: formation of ground water management agencies or replenishment districts; reclamation of brackish ground water: desalination; water recycling; and institution of conjunctive use operations to make more efficient use of surface and ground water supplies.

> Most of the water demands of the region being met with are

Figure SL-3 South Lahontan Region Net Water Demand (1990 Level Average Conditions)

South Lahontan Region

ground water and local surface water. Several of the ground water basins are in overdraft. SWP water is being delivered to residents in the Antelope Valley and will be delivered to the Mojave Water Agency after the Morongo Pipeline is completed in 1994. Also, a feasibility study is being initiated for the Mojave Water Agency's proposed Mojave River Pipeline to the City of Barstow and the communities of Newberry Springs (Helendale, Hinkley, Lenwood, Daggett). More on this water management plan can be found in the *Legislation and Litigation* section later in this chapter.

Water Use

Estimated 1990 level annual net water use within the South Lahontan Region is about 555,000 af per year. Irrigated agriculture accounts for 52 percent of the region's 1990 level net water use, while urban use amounts to about 22 percent, and environmental and other water use account for 26 percent. Net water use for urban and agricultural purposes in the South Lahontan Region increased by almost 4 percent between 1980 and 1990. By 2020, net water demand for the region is forecasted to climb an additional 32 percent because of continued expansion of urban centers. Figure SL-3 show net water demand for the 1990 level of development.

Since the 1970s, population in some urban centers in Antelope, Mojave River, Apple, and Victor valleys has increased dramatically. Urban development alone in the Antelope and Mojave River valleys increased net water use by almost 125 percent since 1980.

Urban Water Use

Population projections indicate that from 1990 to 2020, the region's population will increase by over 200 percent. Medium-sized cities such as Lancaster. Palmdale, Apple Valley, Victorville, Hesperia, and Barstow will continue to expand; however, development in the rest of the region will be sporadic.

Total municipal and industrial applied water use in 1990 was about 187,000 af, an increase of about 97 percent from the 1980 level. The 1990 level urban net water demand was about 123,000 af and is forecasted to increase by almost 200 percent by

2020. Most of the increase in new water use will be in the residential category, while increases in industrial water use will be modest. Figure SL-4 shows the 1990 level urban applied water use by sector.

Normalized 1990 per capita water use for the region was 280 gallons daily. However, daily per capita use ranged from 124 gallons for the Death Valley PSA to 503 gallons for the Mono-Owens PSA. Pos-

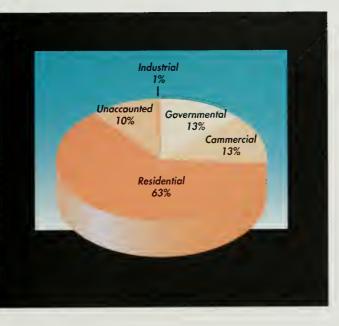


Figure SL-4. South Lahontan Region Urban Applied Water Use by Sector (1990 Level Average Conditions)

sible reasons for the relatively high per capita values in the Mono-Owens area are the

large numbers of tourists (greatly exceeding the residential population). In Death Valley, there is little outdoor residential water use, which accounts for the relatively low per capita use value for the area.

In 1990, the Antelope Valley and Mojave River PSAs combined accounted for about 86 percent of the region's total urban applied water, while the Mono-Owens and Indian Wells PSAs accounted for the remaining 14 percent. Regional applied water demands for urban use are forecasted to climb to almost 550,000 af by 2020, an increase of 194 percent over the 1990 level. Table SL-5 shows urban water demand to 2020.

Planning Subarea	19	90	20	00	20	10	2020	
v	overage	drought	average	drought	average	drought	average	drought
Mana-Owens		-						
Applied water demand	14	15	16	17	19	20	24	24
Net water demand	8	8	9	9	11	11	13	14
Depletian	8	8	9	9	11	11	13	14
Death Valley								
Applied water demand	0	0	0	0	0	0	0	0
Net water demand	0	0	0	0	0	0	0	0
Depletion	0	0	0	0	0	0	0	0
Indian Wells								
Applied water demand	12	12	18	19	27	28	36	37
Net water demand	7	7	10	11	15	16	20	21
Depletion	7	7	10	11	15	16	20	21
Antelope Valley								
Applied water demand	66	68	122	126	180	186	243	250
Net water demand	45	46	83	86	123	126	165	170
Depletian	45	46	83	86	123	126	165	170
Majave River								
Applied water demand	95	98	136	140	183	189	247	254
Net water demand	63	64	89	92	120	124	162	167
Depletion	63	64	89	92	120	124	162	167
TOTAL								-
Applied water demand	187	193	292	302	409	423	550	565
Net water demand	123	125	191	198	269	277	360	372
Depletion	123	125	191	198	269	277	360	372

Table SL-5. Urban Water Demand (thousands of acre-feet)

Agricultural Water Use

Agricultural average annual net water use is expected to decline from the 1990 level of 290.000 af to 231.000 af annually by 2020, reflecting reductions in irrigated crop acreage from the 1990 level of 61,000 acres to 48,000 acres in 2020. This decrease in regional crop acres is due to urbanization and land going out of production for economic reasons. The area forecasted to undergo the most significant transformation is the Antelope Valley PSA. Between 1990 and 2020, the forecasted irrigated acreage for this PSA is expected to decrease from slightly less than 11,000 to about 1,000 acres. Other PSAs are expected to experience less dramatic decreases. Table SL-6 shows irrigated crop acreage for the region. Table SL-7 shows 1990 crop acreage and evapotranspiration of applied water.

(thausands of ocres)										
Planning Subarea	1990	2000	2010	2020						
Mono-Owens	29	29	29	29						
Death Valley	2	2	2	2						
ndian Wells	4	3	3	3						
Antelope Valley	11	2	1	1						
Mojove River	15	14	14	13						
TOTAL	61	50	49	48						

THE CLARE FOR

Figure SL-5 shows the 1990 crop acreage, ETAW, and applied water for the major crops in the region. Table SL-8 shows agricultural water demands to 2020 for this region. Forecasts indicate the region's total agricultural applied water will decrease by about 20 percent between 1990 and 2020.

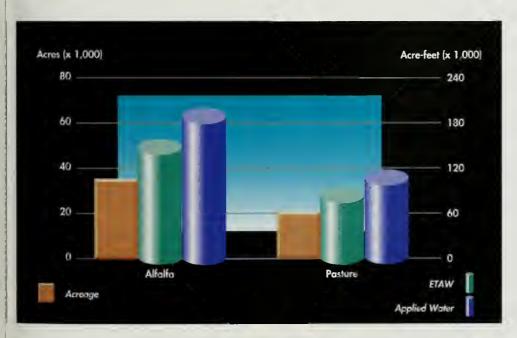


Figure SL-5. 1990 South Lahontan Region Acreage, ETAW. and Applied Water for Major Crops

Irrigated Crop	Total Acres (1,000)	Tatal ETAW (1,000 AF)
Grain	1	1
Other field	1	2
Alfalfa	34	147
Pasture	19	83
Other truck	2	3
Other deciduous	4	8
TOTAL	61	244

Table SL-7. 1990 Evapotranspiration of Applied Water by Crop

Environmental Water Use

Spring runoff and snowmelt from the eastern Sierra Nevada create a unique ecological setting in the Mono Lake and Owens Valley areas. Preserving a balance between environmental, agricultural, and domestic water needs of the Mono-Owens area and

Table SL-8. Agricultural Water Demand

(thousands of acre-feet)

Planning Subarea	19	90	20	00	20	10	2020	
0	average	drought	average	draught	average	drought	average	drough
Mana-Owens								
Applied water demand	161	165	156	160	156	160	156	160
Net water demand	147	150	144	147	144	147	144	147
Depletion	147	150	144	147	144	147	144	147
Death Valley								
Applied water demand	10	10	10	10	10	10	10	10
Net water demand	9	9	9	9	9	9	9	9
Depletion	9	9	9	9	9	9	9	9
Indian Wells								
Applied water demand	18	18	17	17	17	17	17	17
Net water demand	17	17	15	15	15	15	15	15
Depletian	17	17	15	15	15	15	15	15
Antelope Valley								
Applied water demand	49	49	9	9	5	5	3	3
Net water demand	47	47	8	8	4	4	3	3
Depletion	47	47	8	8	4	4	3	3
Majave River								
Applied water demand	79	79	74	74	70	70	67	67
Net water demand	70	70	66	66	63	63	60	60
•Depletion	70	70	66	66	63	63	60	60
TOTAL								
Applied water demand	317	321	266	270	258	262	253	257
Net water demand	290	293	242	245	235	238	231	234
Depletion	290	293	242	245	235	238	231	234

those of the Los Angeles area is a vital concern in the region. This situation is discussed under *Issues Affecting Local Water Resource Management* later in this chapter. The Mono Lake and Owens River average annual instream water needs are about 73,000 and 55,000 af, respectively, and drought year water needs are 67,000 and 55,000 af, respectively. There are no measurable wetlands water needs in the South Lahontan Region. Table SL-9 shows environmental instream water needs for the region.

Other Water Use

Other water uses in the region include energy production and water used at recreational facilities for public service, showers, toilets, and watering some limited landscaping. Power plant cooling water accounted for about 6,000 af of the regional water use in 1990: 4,000 af were used in the Mojave River PSA, and 1,000 af each in the Antelope Valley and Indian Wells PSAs. Water used at recreational facilities during 1990 was 3,000 af.

The East Branch of the State Water Project winds across sparsely vegetated hillsides past recently developed urban areas in the distance. Urban growth in the high desert area is expected to continue its rapid pace.

Table SL-9. Environmental Instream Water Needs (thousands of acre-feet)

Stream	1990		2000		2010		2020	
	average	drought	average	drought	overage	drought	average	drought
lono Lake								
Applied water demand	73	67	73	67	73	67	73	67
Net water demand	73	67	73	67	73	67	73	67
Depletion	73	67	73	67	73	67	73	67
wens River								
Applied water demand	55	55	55	55	55	55	55	55
Net water demand	55	55	55	55	55	55	55	55
Depletion	0	0	0	0	0	0	0	0
OTAL				-		-		
Applied water demand	128	122	128	122	128	122	128	122
Net water demand	128	122	128	122	128	122	128	122
Depletion	73	67	73	67	73	67	73	67

*From 1992 California Energy Commission Maps. See Table D-3 in Appendix D for plant information.

Water-related recreation in the region includes fishing and skiing, and region recreational areas offer opportunities for camping and hiking. For instance, Lake Crowley, about 25 miles northwest of Bishop, is operated to provide optimum environmental and recreational benefits, as well as providing water and power to the Los Angeles Aqueduct system. Fishing, camping, water skiing, sailing, and water jet skiing are among the prevalent recreational activities. Figure SL-6 shows water recreation areas in the region. Table SL-10 shows the total water demands for this region.

Table SL-10. Total Water Demands

Category of Use	19	90	20	00	20	10	2020	
	average	drought	averoge	drought	average	drought	overage	drought
Urban								
Applied water demand	187	193	292	302	409	423	550	565
Net water demand	123	125	191	198	269	277	360	372
Depletion	123	125	191	198	269	277	360	372
Agricultural								
Applied water demand	317	321	266	270	258	262	253	257
Net water demand	290	293	242	245	235	238	231	234
Depletion	290	293	242	245	235	238	231	234
Environmental								
Applied water demand	128	122	128	122	128	122	128	122
Net water demand	128	122	128	122	128	122	128	122
Depletian	73	67	73	67	73	67	73	67
Other ⁽¹⁾								
Applied water demand	9	9	9	9	9	9	9	9
Net water demand	14	14	16	16	16	16	16	16
Depletion	14	14	16	16	16	16	16	16
TOTAL								
Applied water demand	641	645	695	703	804	816	940	953
Net water demand	555	554	577	581	648	653	735	744
Depletion	500	499	522	526	593	598	680	689

(thousands of acre-feet)

(1) Includes major conveyance facility lasses, recreation uses, and energy production.

Issues Affecting Local Water Resource Management

The 1987-92 drought raised several water management issues in the South Lahontan Region. In 1991, retail urban water agencies in the region implemented ordinances requesting that their customers reduce their overall demand. Reductions ranged from 10 to 25 percent. Most agricultural operations were generally not hindered, as ground water supplies were generally adequate to meet demands. However, the City of Los Angeles cut back its deliveries to growers and ranchers in the Owens Valley, which resulted in a minor decline in planted and harvested acreage and yield. In addition, some alfalfa acreage in the Antelope Valley was fallowed so ground water supplies could be used to irrigate deciduous fruit orchards that were affected by reduced supplies from the State Water Project. (The ground water was pumped into the California Aqueduct and transported to the orchards.)

Legislation and Litigation

Of the many factors influencing water resource management. legislation and litigation have significantly changed water supply management in the South Lahontan Region. Several court cases have altered water diversions and ground water pumping in the region. A few of the landmark cases are described here.

Owens Valley Area. At the turn of the century, the City of Los Angeles faced a severe shortage of water due to a growing urban population. In 1913, the City of Los Angeles completed its first aqueduct from Owens Valley to the City of Los Angeles. This aqueduct has a carrying capacity of 480 cubic feet per second. Due to increased population and industries in Los Angeles, a second aqueduct was completed in 1970 with a capacity of 300 cfs. The Los Angeles Department of Water and Power diverts both surface and ground water from the Owens Valley and surface water from the Mono Basin.

In 1972, the County of Inyo filed suit against the City of Los Angeles, claiming that increased ground water pumping for the second aqueduct was harming the Owens Valley environment. The County of Inyo asked that LADWP's ground water pumping be analyzed in an Environmental Impact Report in accordance with the provisions of the California Environmental Quality Act.

Since 1984, the City of Los Angeles and Inyo County have spent about \$5 million to determine the effects of ground water pumping on native vegetation. Together with the U.S. Geological Survey, the two parties gathered the data needed to formulate a long-term ground water management plan and develop an EIR. Within the scope of these studies, numerous enhancement and mitigation projects were implemented. Revegetation and irrigation of certain wildlife habitats and recreation areas constituted the bulk of these projects.

As of August I, 1989, the parties reached agreement on the long-term ground water management plan for the Owens Valley. However, the EIR has been rejected by the Third District Court of Appeals in Sacramento, which required a more comprehensive environmental assessment of the agreement. The highlights of the agreement are:

- Formation of a technical group and a standing committee to oversee all operations pertaining to water and how its use affects the environment in the Owens Valley and adjacent areas.
- Formation of designated management areas.
- Development of a ground water pumping program including new wells and allowable production capacity.
- Construction of ground water recharge facilities including location and operation.
- () Modification of Haiwee Reservoir operations.
- Provisions of financial assistance required by the City of Los Angeles.
- Release of city-owned lands.
- Development of projects and other provisions involving numerous enhancement and mitigation measures and transfer of ownership of the water systems of several towns.

Continued study of the Owens Valley appears to benefit all concerned.

Mono Basin. Mono Lake, which lies just east of Yosemite National Park at the base of the eastern Sierra Nevada, is the second largest lake completely within

California. It has long been recognized as a valuable environmental resource because of its rare scenic and biological characteristics. The area is famous for its tufa towers and spires, structures formed by years of mineral deposition in the lake's unique saline waters. The lake has no outlet, and there are two islands in the lake that provide a protected breeding area for large colonies of California gulls and a haven for migrating waterfowl.

Much of the water flowing into Mono Lake comes from snowmelt via five freshwater creeks. Since 1941, the Los Angeles Department of Water and Power has diverted water from Lee Vining, Walker, Parker, and Rush creeks into tunnels and pipelines that carry the water to the Owens Valley drainage; it is eventually transferred, together with

Owens River flows, to Los Angeles via the Los Angeles Aqueduct.

Diversions of instream flow from its tributaries lowered Mono Lake's water level to an historic low of 6,372 feet above sea level, reached in December 1981. With decreased inflow of fresh water, the lake's salinity has increased dramatically. which may eventually threaten local food chains. There is evidence that higher salinities reduce algal

An aerial view of Mono Lake shows the island which is used as an avian nursery. Recent court decisions have set minimum water levels for the lake.

blooms, the food supply for the lake's abundant brine shrimp and brine flies. Such a change poses a threat to bird populations that feed on the shrimp and brine flies. In addition, when water levels drop to 6,375 feet or lower, a land bridge to Negit Island, one of the lake's two islands, is created, allowing predators to reach gull rookeries; this first happened in 1978 and again during the 1987-92 drought. Large areas of the lake bed have also become exposed, and the dust formed by dried alkali silt can cause air quality problems, especially during wind storms. The U.S. EPA, in November 1993, designated the Mono Basin as a nonattainment area under the Clean Air Act due to dust emissions from the dry lake bed.

As a result of these impacts, the lake and its tributaries have been the subject of extensive litigation between the City of Los Angeles and a number of environmental groups since the late 1970s. (A more detailed discussion of key court cases is provided in Volume I, Chapter 2.) Los Angeles Department of Water and Power is now prohibited by court order from diverting the tributaries water until the lake level stabilizes at 6.377 feet above sea level, the level identified by state and federal agencies to protect the ecosystem and control air pollution. During the 1987-92 drought, Mono Lake remained near the target level, but the diversion limit resulted in an estimated loss of 100,000 af per year to Los Angeles' water supply by the end of 1992. In addition, releases into four of the lake's tributaries have been ordered by another court ruling to

protect and restore once-thriving trout fisheries. Instream flow requirements for the tributaries have been set on an interim basis and will be reviewed once field studies are completed. SWRCB concluded Mono Lake water rights hearings in February 1994. A draft decision regarding lake levels and streamflows on the four tributaries is expected in late 1994. The final decision will be forwarded to the Alpine Superior Court for its approval. In the meantime, Los Angeles is making efforts to conserve water and has approved a mandatory conservation ordinance during the drought. Since 1989, annual water deliveries to the City of Los Angeles from the Mono-Owens system have decreased by an average of 39 percent from previous levels in the 1980s. The decrease is in part drought related. LADWP is also investigating potential alternative sources of water. The Mono Lake Committee recently signed a Memorandum of Understanding with LADWP. As a result of the MOU, an application is now being made for funds authorized by the Environmental Water Act to develop recycled water in Los Angeles to replace a portion of its lost supply. The CVPIA authorizes funds for replacing the water diverted from Mono Lake by a 25-percent contribution to develop recycled water.

Antelope Valley Area. In December 1991, the Palmdale Water District made public its intentions to create, through state legislation, a ground water management agency so that long-term overdrafting in the valley could be stopped. Several constituents within the Antelope Valley expressed their opposition. In the ensuing months, several local groups held meetings to reach a consensus on formation of the agency. The Antelope Valley-East Kern Water Agency suggests that a ground water management agency is "premature" and unnecessary. Due to public outcry over this issue, the Palmdale Water District Board of Directors has withdrawn its proposal. The Antelope Valley agencies have since formed an advisory board to discuss water issues, including ground water.

High Desert Area. Recent court cases involving, among others, the Cities of Barstow, Victorville, and Hesperia, have led to concerns over water rights in the Mojave River Basin. The Mojave Water Technical Advisory Committee reports that a preliminary estimate of overdraft for 1990 is between 65,000 and 75,000 af. Forecasted overdraft for the year 2015 amounts to 90,000 af, based on 2015 population forecasts. To help resolve the problem, the Mojave Water Agency completed a report for a 37-mile Mojave River Pipeline to convey State Water Project water to the City of Barstow and the community of Newberry Springs.

In addition, the SWP water will provide a supplemental supply for a district within the Mojave Water Agency, which now has only ground water available and whose extraction is exceeding replenishment. In June 1990, the district voted to approve issuing \$66.5 million in general obligation bonds to finance the Morongo Pipeline. Construction of the 70-mile pipeline is expected to be completed in summer 1994. The Morongo Basin has an entitlement to 7,257 af of SWP water. The Board of Directors of the Mojave Water Agency decided to oversize the pipeline to provide capacity for water to recharge the Mojave River. Increasing the pipeline's first section from 30 inches in diameter to 54 inches gives it the capacity to put as much as 30,000 af a year into the river for ground water replenishment.

The City of Barstow filed a suit in 1990 against major Upper Basin water districts requesting that the Superior Court guarantee an annual supply of at least 30,000 af of Mojave River water at the USGS gaging station at Barstow. Barstow alleges that this was the natural river flow to the city in 1950, before Victor Valley's growth began to cause overdrafting of the Mojave River Basin's ground water. It further alleges that it now receives less than half the flow that it did 40 years ago. The Mojave Water Agency.

after attempting a settlement, opted to expand the instream adjudication filed by Barstow to a "general stream" adjudication, encompassing the area both upstream and downstream of Barstow. A cross-complaint was filed by MWA to achieve this purpose in May 1991. The parties to the lawsuit, with the assistance of a facilitator, drafted a set of principles of adjudication and proceeded to draft a stipulated judgment for consideration by the court. In September 1993, the Riverside Superior Court issued an interim order basically binding those parties that had stipulated to the proposed judgment. This interim order has allowed a physical solution to the overdraft to proceed until the trial process is concluded with nonstipulating parties. A trial date has been set for February 1995.

In another suit, filed by Barstow regarding development proposed by the City of Hesperia, the court's ruling emphasized the necessity for Mojave Water Agency to exercise its authority as a key agent in settling the region's long-term water problems. Currently, Mojave Water Agency is developing a water management plan to address issues raised by the court.

Water Balance

Water budgets were computed for each Planning Subarea in the South Lahontan Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas, which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be more or less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume 1, Chapter 11 presents a broader discussion of demand management options.

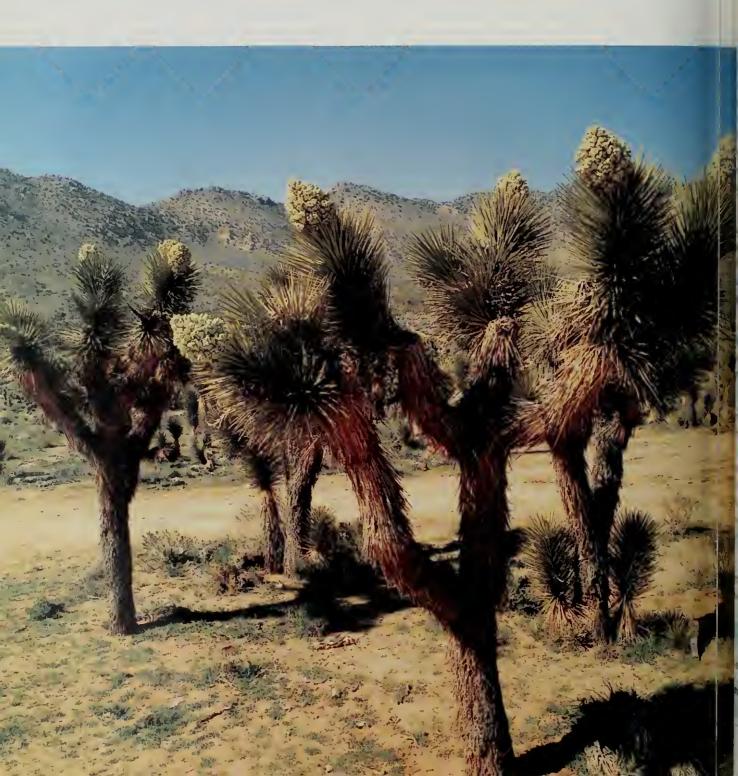
Table SL-11 presents water demands for the 1990 level and for future water demands to 2020 and balances them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management options.

Regional net water demands for the 1990 level of development totaled 555,000 and 554,000 af for average and drought years, respectively. Those demands are forecasted to increase to 735,000 and 744,000 af for average and drought years by the year 2020, after accounting for a 10,000-af reduction in urban water demand resulting from implementation of long-term conservation measures and a 10,000-af reduction in agricultural demand resulting from additional long-term agricultural water conservation measures.

Urban net water demand is forecasted to increase by about 237.000 af (193 percent) by 2020 from the 1990 level of 123,000 af, due to increases in population. Agricultural net water demand is forecasted to decrease by about 59,000 af by 2020, primarily due to lands being taken out of production as a result of the high cost of developed water supplies. Environmental net water demands, under existing rules and regulations, will remain essentially level out to 2020.

Average annual supplies, including 67,000 af of ground water overdraft, were generally adequate to meet average net water demands in 1990 for this region.

However, during drought, 1990 supplies were insufficient to meet the demands. resulting in a shortage of about 9,000 af. Without additional water management programs, annual average and drought year shortages are expected to increase to nearly 126,000 and 204,000 af by 2020, respectively.


With planned Level I programs, average and drought year shortages could be reduced to about 115,000 and 151,000 af, respectively. This remaining shortage requires both additional short-term drought management, water transfers and demand management programs, and other future long-term Level II programs depending on the overall level of water service reliability deemed necessary, by local agencies, to sustain the economic health of the region. In the short-term, some areas of this region will experience more frequent and severe water shortages. This region depends on exports from the Sacramento-San Joaquin Delta for a portion of its supplies. Shortages stated above are based on D-1485 operating criteria for Delta supplies and do not take into account recent actions to protect aquatic species in the estuary. As such, regional water supply shortages are understated.

Water Demand/Supply	19	90	20	00	20	10	202	20
	average	drought	average	drought	average	drought	average	drough
let Demand								
Urban—with 1990								
level of conservation —reductions due to	123	125	195	202	277	285	370	382
long-term conservation measures (Level I)	-	_	-4	-4	-8	-8	-10	-10
Agricultural—with 1990 level of conservotion	290	293	245	248	242	245	241	244
-reductions due to								
long-term conservation measures (Level I)	_	_	-3	-3	-7	-7	-10	-10
Environmental	128	122	128	122	128	122	128	122
Other ⁽¹⁾	14	14	16	16	16	16	16	16
OTAL Net Demand	555	554	577	581	648	653	735	744
Vater Supplies w/Existing Facilities U Developed Supplies	Inder D-1485	for Delta Sup	plies					
Surface Water ⁽²⁾	139	104	203	144	212	145	223	147
Ground Water	221	252	220	237	226	271	258	271
Ground Woter Overdraft ⁽³⁾	67	67	_	_	_	_	_	_
ubtotal	427	423	423	381	438	416	481	418
edicoted Natural Flaw	128	122	128	122	128	122	128	122
OTAL Water Supplies	555	545	551	503	566	538	609	540
emand/Supply Balance	0	-9	-26	-78	-82	-115	-126	-204
evel I Water Management Programs ⁱ	4}							
Long-term Supply Augmentation								
Long lern coppiy / lognenator	_	-	0	0	1	1	1	1
Reclaimed					0	0	0	0
	_	_	0	0	0	0		
Reclaimed Local	-	-	0	0	0	0		
Reclaimed	-	-	0	0	0	0	0	0
Reclaimed Local Central Valley Project/		-	-	-		-	0 32	0 52
Reclaimed Local Central Valley Project/ Other Federal State Water Project ubtotal - Level I Water			0 10	0 20	0 22	0 53	32	52
Reclaimed Local Central Valley Project/ Other Federal State Water Project ubtotal - Level I Water	_ _ _ 0	 0	0	0	0	0		
Reclaimed Local Central Valley Project/ Other Federal State Water Project State Water Project Subtotal - Level I Water Management Programs Net Ground Water or	 0	 0	0 10	0 20	0 22	0 53	32	52
Reclaimed Local Central Valley Project/ Other Federal State Water Project Subtotal - Level I Water Management Programs Net Ground Water or Surface Water Use Reduction	 0	 0	0 10 10	0 20 20	0 22 23	0 53 54	32 33	52 53
Reclaimed Local Central Valley Project/ Other Federal State Water Project Subtotal - Level I Water Management Programs Net Ground Water or	 	 	0 10	0 20	0 22	0 53	32	52

Table SL-11. Water Budget (thousands of acre-feet)

Includes major conveyance facility lasses, recreation uses, and energy production.
 Existing and future imported supplies that depend an Delta export copobilities are based an SWRCB D-1485 and da not take into account recent actions to protect aquatic species. As such, regianal water supply shartages are understated (note: proposed environmental water demands of 1 to 3 MAF are included in the California water budget).
 The degree future shortages are met by increased overdraft is unknown. Since averdraft is not sustainable, it is not included as a future supply.
 Pratection of fish and wildlife and a lang-term salutian to complex Delta problems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

These Joshua trees cast shadows on the desert floor. The Joshua Tree National Monument is in the Colorado River Region.

The Colorado River Region encompasses the southeastern corner of California. The region's northern boundary, a drainage divide, begins along the southern edge of the Mojave River watershed in the Victor Valley area of San Bernardino County and extends northeast across the Mojave Desert to the Nevada state line. The southern boundary is the Mexican border. A drainage divide forms the jagged western boundary through the San Bernardino, San Jacinto, and Santa Rosa mountains and the Peninsular ranges (which include the Laguna Mountains). The Nevada state line and the Colorado River (the boundary with Arizona) delineate the region's eastern boundary.

Covering over 12 percent of the total land area in the State, the region is California's most arid. It includes volcanic mountain ranges and hills: distinctive sand dunes: broad areas of the Joshua tree, alkali scrub, and cholla communities: and elevated river terraces. Despite its dry climate and rugged terrain, the region contains some of the State's most productive agricultural areas and vacation resorts. (See Appendix C for maps of the planning subareas and land ownership in the region.)

Much of the region's topography consists of flat plains punctuated by numerous hills and mountain ranges. Faulting and volcanic activities are partially responsible for the presence of many abrupt mountain ranges. The San Andreas fault slices through portions of the Coachella and Imperial valleys.

A prominent topographic feature is the Salton Trough in the south-central part of the region. Oriented in a northwest-southeast direction, the trough extends from San Gorgonio Pass in the north to the Mexican border and beyond to the Gulf of California. It includes the Coachella Valley in the north and Imperial Valley in the south. The low point of the trough is the Salton Sea, which was created between 1905 and 1907 when the headworks of an irrigation canal conveying Colorado River water to Imperial Valley broke. Large volumes of water flowed into the Salton Sink, resulting in the sea that exists today. In September 1993, the Salton Sea's water surface level was about 227 feet below sea level.

The climate for most of the region is subtropical desert. Average annual precipitation is much higher in the western mountains than in the desert areas. Winter snows generally fall above 5,000 feet: snow depths can reach several feet at the highest

Region Characteristics

Average Annual Precipitation:5.5 inchesAverage Annual Runoff:178,700 afLand Area:19,730 square miles1990 Population:464,200

Colorado River Region

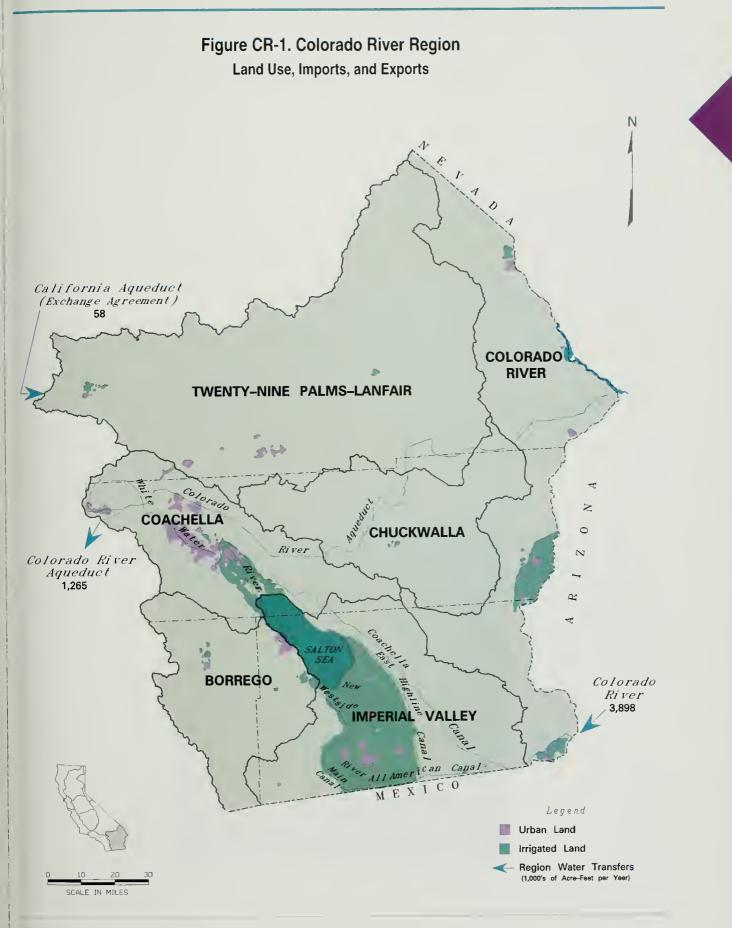
levels during winter. Most of the precipitation in the region falls during the winter; however, summer thunderstorms can produce rain and local flooding in many areas.

Drainage in the region is internal except for the eastern portion, which drains into the Colorado River. Portions of the Coachella Valley are drained by the Whitewater River, which terminates in the Salton Sea. The Imperial Valley is drained by the Alamo and New rivers, which originate in Mexico and terminate in the Salton Sea.

Population

The Colorado River Region's population increased 48 percent from 313,000 in 1980 to 464,200 in 1990. Most of the population is concentrated in the Coachella and Imperial valleys. Major cities in the Coachella Valley include Palm Springs. Indio, Cathedral City, and Palm Desert. Other urban centers in the region include the Cities of El Centro, Brawley, Yucca Valley, and Calexico in Imperial Valley: the Cities of Beaumont and Banning in the San Gorgonio Pass area; and the cities of Needles and Blythe along the Colorado River. Table CR-1 shows the population projections for this region.

Planning Subarea	1990	2000	2010	2020
Twenty-Nine Polms	61	78	102	124
Chuckwalla	2	3	3	3
Colorado River	28	31	35	38
Coachella	263	375	496	619
Borrego	6	8	9	11
Imperial Valley	104	144	173	208
TOTAL	464	639	818	1,003

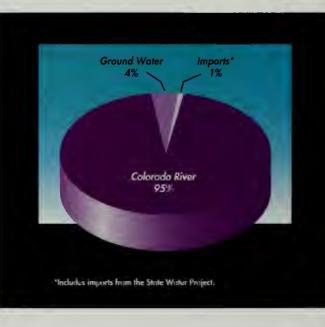

Table CR-1. Population Projections (thousands)

Less than 2 percent of California's population resides in the region. Urban development in the Coachella Valley is proceeding at a rapid pace due to affordable housing and the area's aesthetic appeal. Much of the growth is attributed to retirees and others who find the climate and real estate settings attractive.

Land Use

Federal and state government-owned lands account for about 14,270 square miles, or 72 percent, of the total land area of the region. There are several military training and testing grounds, including the large U.S. Marine Corps Military Training Center at Twenty-Nine Palms and the gunnery range in the Chocolate Mountains. Major parks include Joshua Tree National Monument and Anza-Borrego Desert State Park. The U.S. Bureau of Land Management oversees use of much of the desert lands.

The number one industry and most important source of income for the region is agriculture. Almost 90 percent (647,000 acres) of the developed private land is used for agriculture, most of which is in the Imperial Valley. Because of a lack of significant rainfall, all crops planted and harvested in these areas receive irrigation water, mostly from the Colorado River. Some ground water supplies are used as well. Some of the more prominent crops include alfalfa, winter vegetables, spring melons, table grapes, dates, Sudan grass, and wheat. Figure CR-1 shows land use, along with imports and exports, for the Colorado River Region.


Recreation and tourism together have become the second most important industry and source of income for the region. In Coachella Valley, a heavy advertising campaign over the past decade has promoted the resort lifestyle and golf, and has contributed to the influx of retirees and vacationers from around the world. To accommodate and maintain the increase in businesses, developers in the valley have constructed world-class hotels, country clubs, golf courses, and residential communities from Palm Springs to Indio. Over 90 golf courses have been established in the valley. Other activities, such as boating, water sports, and fishing on the Salton Sea and Colorado River, snow skiing in the higher mountains, and camping, are also popular.

Most of the remaining industries are generally associated with the region's intensive agricultural activities. These industries process, pack, and distribute harvested crops, or manufacture and sell agricultural equipment and materials. Other industries in the region include geothermal and alternative energy developments near the Salton Sea and in Imperial Valley, wind farms near San Gorgonio Pass, and gold and miscellaneous mining operations.

The major issue involving land use in the Colorado River Region is how to balance long-term preservation and protection of the land while providing various kinds of recreational opportunities. Recent discussions have centered on proposed federal legislation that would enlarge and give national park status to the East Mojave National Scenic Area and Joshua Tree National Monument.

Water Supply

At first, the region depended mostly on developed ground water supplies supplemented with a minimum of surface water. Water demands now are met primarily from surface deliveries from the following sources: the Colorado River (through the All-American and Coachella canals, local diversions, and the Colorado River Aqueduct through an exchange for State Water Project water), ground water, local surface water, and reclaimed water. Figure CR-2 shows the region's 1990 level sources of supply.

Supply with Existing Facilities and Water Management Programs

In 1938, the U.S. Bureau of Reclamation began conveying Colorado River water, via the All-American Canal, to the Imperial and Coachella vallevs. The All-American Canal can carry 15,100 cubic feet per second. which has provided these areas with an adequate and reliable supply of water. There are no major water supply reservoirs in the region beyond those on the Colorado River. Table CR-2 shows water supplies with existing facilities and water management programs.

Figure CR-2.

(1990 Level

Colorado River Region

Water Supply Sources

Average Conditions)

Supply	19	1990		2000		2010		2020	
	average	drought	average	drought	average	drought	average	drought	
Surface									
Local	6	4	6	4	6	4	6	4	
Local imports	0	0	0	0	0	0	0	0	
Colorado River ⁽¹⁾	3,898	3,898	3,744	3,744	3,744	3,744	3,744	3,744	
CVP	0	0	0	0	0	0	0	0	
Other federal	0	0	0	0	0	0	0	0	
SWP	58	40	65	42	61	39	61	39	
Ground water	80	80	79	79	80	80	79	79	
Overdraft ⁽²⁾	75	75	_	_	_	_	_	_	
Reclaimed	7	7	7	7	7	7	7	7	
Dedicated natural flow	0	0	0	0	0	0	0	0	
TOTAL	4,124	4,104	3,901	3,876	3,898	3,874	3,897	3,873	

Table CR-2. Water Supplies with Existing Facilities and Programs

(Decision 1485 Operating Criteria for Delta Supplies)

(thousands of acre-feet)

 Calorada River supplies far the year 2000 and beyond reflect elimination of surplus and unused Colorada River supplies, and the availability of 106,000 AF of water to the South Caast region as a result of a currently agreed-upan conservation program being implemented by the Imperial Irrigation District and MWDSC.
 The degree future shortages are met by increased averdraft is unknown. Since averdraft is not sustainable, it is not included as a future supply.

The Colorado River also supplies water to areas served by the Colorado River Aqueduct, owned by the Metropolitan Water District of Southern California. The California apportionment of Colorado River water is 4.400,000 af annually plus any unused Arizona and Nevada water and one-half of any surplus made available by the

Secretary of the Interior. California consumptively used over 5,200,000 af of Colorado River water in 1990. of which 3.900,000 af was used in the Colorado River Region. Water from the Colorado River makes up about 95 percent of the region's total supply.

Four State Water Project contractors are located in the region: Desert Water Agency, Coachella Valley Water District, Mojave Water Agency

and San Gorgonio Pass Water Agency. The SWP does not extend into the region at this

The Colorado River Aqueduct makes its way across the valley floor, with Iron Mountain providing the backdrop. This aqueduct has been providing about 1,000,000 af annually to the South Coast Region. time. (The Morongo Basin Pipeline will bring SWP water into the Colorado Region in 1994.) MWDSC has an exchange agreement with Desert Water Agency and Coachella Valley Water District that allows MWDSC to take the two agencies' SWP entitlement water. In return, MWDSC releases water from its Colorado River Aqueduct for ground water recharge in the Coachella Valley. Local surface water supply in the Coachella subarea amounted to about 6,000 af in 1990. This supply is derived from the Whitewater River; however, the supply is not dependable in times of drought.

About 7,000 af of fresh water was produced by water recycling in 1990. About 2,000 af of the water recycling occurred in the Coachella. Most of the recycled water was applied to golf courses and resort hotel common areas.

Total ground water supplies for 1990 were about 155,000 af, almost 4 percent of the region's total supply. The Coachella PSA accounted for about 85,000 af of the ground water use in the region, 52,000 af of which was overdraft. Streamflow percolation, subsurface inflow, periodic Colorado River flooding, and canal leakage all provide ground water basin recharge at various locations in the region.

Supply with Additional Facilities and Water Management Programs

Future water management programs are presented in two levels to better reflect the status of investigations required to implement them.

- ✓ Level 1 options are those programs that have undergone extensive investigation and environmental analyses and are judged to have a high likelihood of being implemented by 2020.
- Level ll options are those programs that could fill the remaining gap between water supply and demand. These options require more investigation and alternative analyses.

Supply	19	90	20	00	20	10	20	20
	average	drought	average	draught	average	drought	average	drought
Surface								
Locol	6	4	6	4	6	4	6	4
Lacal imparts	0	0	0	0	0	0	0	0
Colorada River ⁽¹⁾	3,898	3,898	3,676	3,676	3,676	3,676	3,676	3,676
CVP	0	0	0	0	0	0	0	0
Other federal	0	0	0	0	0	0	0	0
SWP	58	40	70	42	71	59	71	60
Ground water	80	80	79	79	81	81	80	80
Overdraft ⁽²⁾	75	75	_	_	_	_	_	-
Reclaimed	7	7	9	9	12	12	13	13
Dedicated natural flow	0	0	0	0	0	0	0	0
TOTAL	4,124	4,104	3,840	3,810	3,846	3,832	3,846	3,833

Table CR-3. Water Supplies with Level I Water Management Programs (Decision 1485 Operating Criteria for Delta Supplies) (thousands of acre-feet)

(1) Colorado River supplies for the year 2000 and beyond reflect elimination of surplus and unused Colorado River supplies, the availability of 106,000 AF of water to the South Coast region as a result of a currently agreed-upon conservation program being implemented by the Imperial Irrigation District and MWDSC, and an additional 68,000 AF of water made available from the Colorado River region as a result of an IID/MWDSC agreement negatived, but not yet implemented relating to the lining of a portion of the All American Conal, a Level I conservation program.

(2) The degree future shortages are met by increased overdroft is unknown. Since overdroft is not sustainable, it is not included as a future supply.

The following sections summarize water management programs under active consideration in the region.

Drought Water Management Strategies. State requirements for water shortage contingency plans for urban water providers encourage urban water agencies to implement water conservation measures and practices and to plan strategies for managing shortages. The Federal Reclamation Reform Act of 1982 and the CVPIA of 1992 require that water suppliers who contract with the U.S. Bureau of Reclamation prepare water conservation plans and update them every five years. Most of the larger agencies in the region would be affected. (Volume I, Chapter 2 of the *California Water Plan Update* presents more details of the 1982 and 1992 acts.) These planning steps constitute the major drought water management efforts in the region. The recent drought did not adversely affect the area due to ample carryover of supplies in lower Colorado River reservoirs.

Water Management Options with Additional Facilities. The Mojave Water Agency is constructing the Morongo Basin Pipeline which will convey State Water Project water from the Hesperia turnout of the California Aqueduct to the Morongo Basin-Johnson Valley area. The design capacity of the pipeline is 22 cubic feet per second. Construction is scheduled to be completed in 1994. The San Gorgonio Pass Water Agency has no physical facilities for transporting its SWP entitlement of 17,300 af. The agency is currently designing facilities to take delivery of its entitlement plus an additional 50,000 af to be used conjunctively in the ground water basin. Under this plan, facilities would have a carrying capacity of 32 cfs. The facilities are expected to be on-line in 1995 or 1996. An estimated 1,000,000 af of storage space is available within the San Gorgonio ground water basins. To date, two 1,000-foot-deep exploration wells and two monitoring wells (100 feet and 250 feet deep) have been established in the potential recharge area. San Gorgonio serves the cities of Banning and Beaumont and the Morongo Indian Reservation. Table CR-3 shows water supplies with additional Level I water management programs.

Water Use

The 1990 level annual net water demand within the Colorado River Region is about 4,124.000 af. Agricultural irrigation accounts for 83 percent of the region's net water use, while municipal and industrial use accounts for almost 5 percent. The Colorado River Region's agricultural water use is the fourth highest in the State. Even though the region has a small permanent population

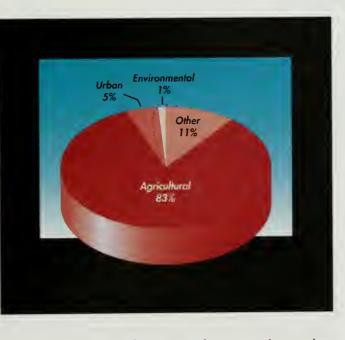


Figure CR-3. Colorado River Region Net Water Demand (1990 Level Average Conditions)

base, the water requirements of its recreation and tourism industries make up a large

portion of the region's municipal and industrial net water use of 204,000 af. Figure CR-3 shows 1990 level net water demands for the Colorado River Region.

Urban Water Use

Population projections indicate that urban applied water demand will increase about 106 percent between 1990 and 2020, due to an expected population increase of roughly 117 percent during the same period. Table CR-4 shows the total urban applied, net water demand, and depletion for the Colorado River Region through 2020. Much of the increase in urban water demand can be attributed to the development of recreational and resort facilities in Coachella Valley. Figure CR-4 shows the 1990 level urban applied water use by sector.

Average 1990 level urban net water use for the region was 579 gpcd. However, values range from 853 gpcd in the Coachella PSA to 163 gpcd in the less densely populated areas of the Twenty-Nine Palms PSA. Average per capita water use is expected to decrease by about 4 percent between 1990 and 2020, primarily due to increased conservation efforts.

The high per capita values in 1990 are attributable to a large tourism industry, greater landscape irrigation requirements, and a rise in the number of people who reside in the region part-time. Lower per capita values are common in areas where the residential landscaping requirements are lower and commercial and industrial water uses are small.

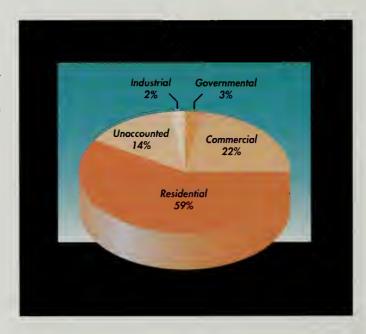


Figure CR-4. Colorado River Region Urban Applied Water Use by Sector (1990 Level Average Conditions)

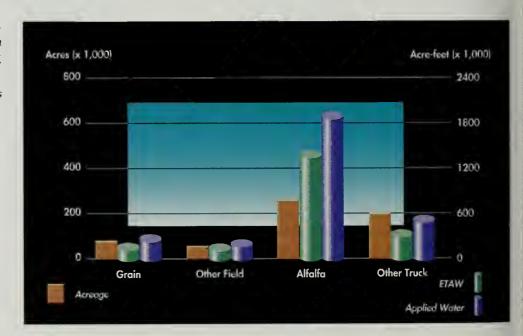
Planning Subarea	19	90	20	00	20	10	2020		
	average	drought	average	drought	average	drought	average	draught	
Twenty-Nine Palms	<u> </u>	·							
Applied water demand	11	11	14	14	18	18	22	22	
Net water demand	6	6	8	8	11	11	13	13	
Depletian	6	6	8	8	11	11	13	13	
Chuckwalla									
Applied water demand	0	0	0	0	1	1	1	1	
Net water demand	0	0	0	0	0	0	0	0	
Depletion	0	0	0	0	0	0	0	0	
Calorado River									
Applied water demand	11	11	12	12	14	14	15	15	
Net water demand	6	6	7	7	8	8	9	9	
Depletian	6	6	7	7	8	8	9	9	
Coachella									
Applied water demand	251	251	335	335	431	431	524	524	
Net water demand	165	165	220	220	283	283	344	344	
Depletion	165	165	220	220	283	283	344	344	
Barrego									
Applied water demand	2	2	2	2	3	3	3	3	
Net water demand	1	1	1	1	2	2	2	2	
Depletian	1	1	1	1	2	2	2	2	
Imperial Valley									
Applied water demand	26	26	36	36	45	45	56	56	
Net water demand	26	26	36	36	45	45	56	56	
Depletion	26	26	36	36	45	45	56	56	
TOTAL									
Applied water demand	301	301	399	399	512	512	621	621	
Net water demand	204	204	272	272	349	349	424	424	
Depletion	204	204	272	272	349	349	424	424	

Table CR-4. Urban Water Demand

(thousands of acre-feet)

Agricultural Water Use

The 1990 level irrigated crop acreage for the Colorado River Region amounted to 749,000 acres. Table CR-5 shows irrigated crop acreage forecasts to 2020. Most of the major agricultural operations in the region are in the Imperial Valley, Colorado River, and Coachella PSAs. Minor reductions of about three percent in total irrigated crop acres are forecasted to occur between 1990 and 2020. However, increases will occur in the planted and harvested acres for certain high-market-value crops, such as fresh market vegetables. Demand by both international and domestic markets for fresh vegetables will probably encourage growers to maintain current levels of crop production and, if possible, plant and harvest additional acres. Other crops expected to show minor to moderate increases are grains, citrus and subtropical fruit, sugar beets, and cotton. For cotton, current boll worm problems could be rectified and additional acres planted, mainly in Imperial Valley. The silverleaf whitefly infestation, primarily in Imperial Valley, has caused temporary minor reductions in the recent planted and harvested acreage. Eradication and management efforts should mitigate


the problems caused by these pests and allow crop acreage to return to normal levels. Table CR-6 shows the 1990 level evapotranspiration of applied water for the region.

The four major crops in terms of acreage and total applied water use are alfalfa, truck (vegetables and nursery), grains, and miscellaneous field. In 1990, alfalfa used roughly 50 percent of the total applied agricultural water. Figure CR-5 compares 1990 crop acreages, evapotranspiration, and applied water for major crops.

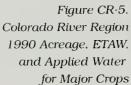

Planning Subarea	1990	2000	2010	2020
Twenty-Nine Palms	4	6	7	7
Chuckwalla	6	3	3	3
Colorado River	130	131	132	132
Coacheila	74	64	48	37
Borrega	10	12	13	13
Imperial Valley	525	530	534	534
TOTAL	749	746	737	726

Table CR-5. Irrigated Crop Acreage (thousands of acres)

Reductions in irrigated acres are expected for crops or crop categories with low or fluctuating market values, such as alfalfa, corn, and miscellaneous field crops. Market competition (international and domestic) and the pressures from urban encroachment may cause decreases in acres planted with table grapes in the Coachella Valley. Total 1990 agricultural applied water demand was about 3,705,000 af and net water demand was about 3,439,000 af. Table CR-7 summarizes the 1990 and forecasted agricultural water demand in the region.

Minor reductions in crop acreage and applied water use are expected for the region. Forecasts indicate that the region's total applied agricultural water use will decrease by about 9 percent between 1990 and 2020. Improvements in on-farm

irrigation operations and irrigation system technologies, the loss of irrigated land caused by urbanization, and minor shifts in crop type will contribute to the decrease. Table CR-7 shows increases of about 12,000 and 14,000 af in applied agricultural water use between 1990 and 2020 in the Twenty-Nine Palms and Borrego PSAs, respectively. During the same period, decreases of about 15,000 and 191,000 af are forecasted for both the Chuckwalla and Coachella PSAs, respectively.

Table CR-6.	1990 Evapotranspiration of Applied Water by Crop	
	(thousands of acres)	

Irrigated Crop	Total Acres (1,000)	Total ETAW (1,000 AF)
Grain	76	152
Cattan	37	121
Sugar beets	35	134
Corn	8	20
Other field	55	146
Alfalfa	256	1,594
Pasture	32	176
Tamataes	13	32
Other truck	187	310
Other deciduaus	1	5
Vineyard	20	65
Citrus/alives	29	123
TOTAL	749	2,878

Since the late 1970s, major efforts have been undertaken by local governments, water agencies, and growers to improve agricultural irrigation efficiency in the region. The most observable improvements have been made in the Imperial and Coachella valleys. Agricultural conservation in the region can be placed into two categories: (1) on-farm irrigation system management and operation improvements, and (2) conveyance system improvements. Examples of current on-farm improvements include: carefully managing and designing furrows, basin and sprinkler systems to minimize excessive tailwater runoff from the ends of fields into drains and to evenly irrigate the entire field; laser leveling of fields to improve irrigation water movement in furrows and basin systems; implementing micro-irrigation technology (drip emitters and micro-jet sprinklers) for permanent crops; using different irrigation and cultivation techniques (hand-moved sprinklers for pre-irrigation of fields and seed germination); reusing tailwater to supplement delivered water for the irrigation of other fields; and irrigation scheduling. Subsurface irrigation systems are also being tested on certain crops in the region.

Conveyance system improvements have come in the form of: constructing regulatory reservoirs to enhance system delivery and storage capabilities; lining canals and laterals with concrete to minimize supply losses due to seepage; automating the system with telemetry for improved control over the delivery of water; and installing seepage recovery and operational spill interceptor systems.

Planning Subarea	19	90	20	00	20	10	20	20
	average	drought	average	drought	average	drought	average	drought
Twenty-Nine Palms								
Applied water demand	22	22	28	28	32	32	34	34
Net water demand	20	20	24	24	28	28	30	30
Depletion	20	20	24	24	28	28	30	30
Chuckwalla								
Applied water demand	30	30	17	17	13	13	15	15
Net water demand	27	27	16	16	12	12	13	13
Depletion	27	27	16	16	12	12	13	13
Colorado River								
Applied water demand	785	785	751	751	705	705	698	698
Net water demand	606	606	588	588	566	566	559	559
Depletian	606	606	588	588	566	566	559	559
Coachella								
Applied water demand	393	393	342	342	260	260	202	202
Net water demand	313	313	277	277	215	215	168	168
Depletion	313	313	277	277	215	215	168	168
Borrego								
Applied water demand	37	37	45	45	48	48	51	51
Net water demand	35	35	42	42	46	46	48	48
Depletion	35	35	42	42	46	46	48	48
Imperial Valley								
Applied water demand	2,438	2,438	2,415	2,415	2,395	2,395	2,363	2,363
Net water demand	2,438	2,438	2,415	2,415	2,395	2,395	2,363	2,363
Depletion	2,438	2,438	2,415	2,415	2,395	2,395	2,363	2,363
TOTAL								
Applied water demand	3,705	3,705	3,598	3,598	3,453	3,453	3,363	3,363
Net water demand	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181
Depletion	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181

Table CR-7. Agricultural Water Demand

(thousands of acre-feet)

Environmental Water Use

Total 1990 environmental water use for the Colorado River Region amounts to nearly 39,000 af. Demands are forecasted to increase 13 percent by 2000 and remain at 44,000 af through 2020. Colorado River water supplies most of this use. Currently, there are two major areas where water is used for wildlife habitat in the region: the Salton Sea National Wildlife Refuge and the Imperial Wildlife Area. There are also several private wetlands. Table CR-8 shows wetlands water needs in the Colorado River Region.

The Salton Sea National Wildlife Refuge was established in 1930 by federal executive order. Originally the refuge contained 23,425 acres, but due to inflow of agricultural drain water and a rise in the sea level, most of the refuge is now inundated. About 2,500 acres of manageable habitat remain, with about 1,068 acres managed as marsh land. In 1990, the refuge used about 4,900 af of freshwater. Forecasts indicate the refuge will require about 10,000 af of freshwater by the year 2000.

The Imperial Wildlife Area is operated and managed by the State Department of Fish and Game. The area is comprised of two units. The Finney-Ramer unit has a total water surface area of about 2,050 acres, with total annual water use estimated at 7,600 af. The Wister unit has a total water surface area of about 5,500 acres and total annual water use of almost 21,000 af. Demands are forecasted to remain level through 2020.

Private wetlands in the Colorado River Region occupy about 2,225 acres and consumptively use roughly 5,330 af of freshwater annually. These wetlands, scattered throughout Imperial and Riverside Counties, are primarily used for duck hunting.

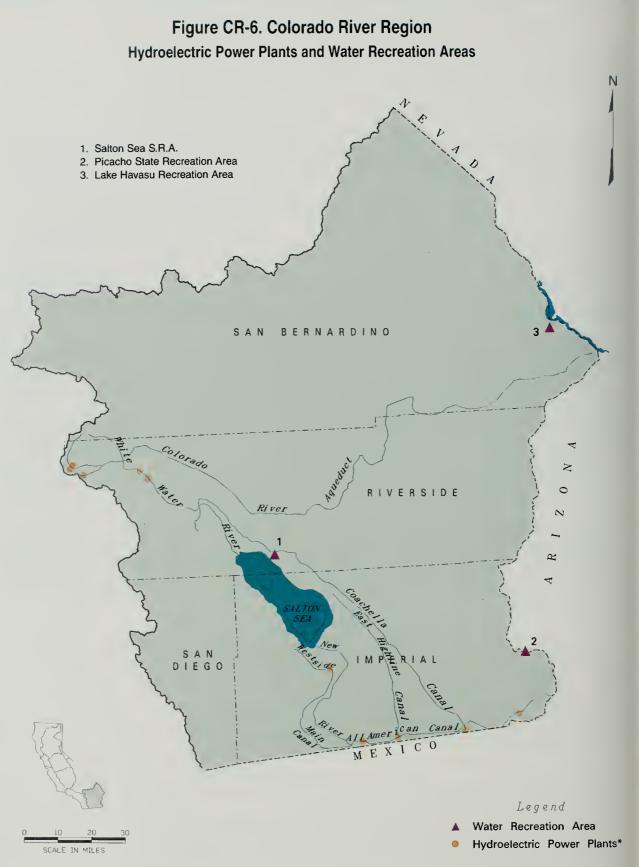

Wetland	19	90	20	00	20	10	20	20
	average	drought	average	drought	averoge	drought	average	droughi
alton Sea NWR								
Applied water demand	5	5	10	10	10	10	10	10
Net water demand	5	5	10	10	10	10	10	10
Depletion	5	5	10	10	10	10	10	10
nperial WA								
Applied water demand	29	29	29	29	29	29	29	29
Net water demand	29	29	29	29	29	29	29	29
Depletion	29	29	29	29	29	29	29	29
rivate Refuges								
Applied water demand	5	5	5	5	5	5	5	5
Net water demand	5	5	5	5	5	5	5	5
Depletion	5	5	5	5	5	5	5	5
OTAL								
Applied water demand	39	39	44	44	44	44	44	44
Net water demand	39	39	44	44	44	44	44	44
Depletian	39	39	44	44	44	44	44	44

Table CR-8. Wetland Water Needs (thousands of acre-feet)

Other Water Use

Conveyance losses in the All-American, Coachella, and intermediate canals averaged about 360,000 af in 1990. Both the Imperial Irrigation District and Coachella Valley Water District conveyance losses are calculated as the acre-feet of water diverted minus the amount of water actually delivered to users by the districts. Conservation measures could reduce conveyance losses by 100,000 af per year. Geothermal power plants in Imperial Valley PSA produce about 379 megawatts per year and use about 74,200 af of cooling water annually in their operation. Table CR-9 shows the total water demand for this region.

Recreational facilities are found in all PSAs; most consist of campgrounds and parks where water is used for drinking, landscape, toilets, showers, and facility maintenance. Total water use in these areas amounted to almost 5,000 af in 1990. The Colorado River PSA accounted for about 3,000 af of that use. Recreation includes water skiing, boating, fishing, and swimming. Figure CR-6 shows water recreation areas in the Colorado River Region.

*From 1992 California Energy Commission Maps. See Table D-3 in Appendix D for plant information.

Table CR-9. Total Water Demands

(thousands of acre-feet)

Category of Use	19	90	2000		20	10	2020	
	average	drought	average	drought	average	drought	average	drought
Urban								
Applied water demand	301	301	399	399	512	512	621	621
Net water demand	204	204	272	272	349	349	424	424
Depletion	204	204	272	272	349	349	424	424
Agricultural								
Applied water demand	3,705	3,705	3,598	3,598	3,453	3,453	3,363	3,363
Net water demand	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181
Depletion	3,439	3,439	3,362	3,362	3,262	3,262	3,181	3,181
Environmental								
Applied water demand	39	39	44	44	44	44	44	44
Net water demand	39	39	44	44	44	44	44	44
Depletion	39	39	44	44	44	44	44	44
Other ⁽¹⁾								
Applied water demand	82	82	83	83	83	83	83	83
Net water demand	442	442	363	363	363	363	363	363
Depletian	442	442	363	363	363	363	363	363
TOTAL								
Applied water demand	4,127	4,127	4,124	4,124	4,092	4,092	4,111	4,111
Net water demand	4,124	4,124	4,041	4,041	4,018	4,018	4,012	4,012
Depletion	4,124	4,124	4,041	4,041	4,018	4,018	4,012	4,012

(1) Includes majar conveyance facility lasses, recreatian uses, and energy production.

Issues Affecting Local Water Resource Management

Legislation and Litigation

Colorado River Water Allocations. As a result of the 1964 U.S. Supreme Court decree in *Arizona v. California*, California's allocation of Colorado River water was quantified and five Lower Colorado River Indian tribes were awarded 905,496 acre-feet of annual diversions, 131,400 af of which were allocated for use in and chargeable to California pursuant to a later supplemental decree.

In 1978, the tribes asked the court to grant them additional water rights, alleging that the United States failed to claim a sufficient amount of irrigable acreage, called "omitted" lands, in the earlier litigation. The tribes also raised claims for more water based on allegedly larger reservation boundaries than had been assumed by the court in its initial award, called "boundary" lands. In 1982, the special master appointed by the Supreme Court to hear these claims recommended that additional water rights be granted to the Indian tribes. In 1983, however, the court rejected the claims for omitted lands from further consideration and ruled that the claims for boundary lands could not be resolved until disputed boundaries were finally determined. Three of the five tribes—Fort Mohave Indian Tribe. Quechan Indian Tribe, and Colorado River Indian Tribe—are pursuing additional water rights related to the boundary lands claims. A settlement may be reached soon on the Fort Mohave claim. The Quechan claim has been rejected by the special master on the grounds that any such claim was

necessarily disposed of as part of a Court of Claims settlement entered into by the tribe in a related matter in the mid-1980s. The Colorado River Indian Tribe case was presented to the special master in early 1993. As with all claims to water from the main stem of the Colorado River and any determination by the special master, only the U.S. Supreme Court itself can make the final ruling.

Any Colorado River or Fort Mohave tribal claims granted for additional water rights would reduce the amount of water available to satisfy the fourth priority demands of MWDSC under the 1931 California Seven Party Agreement, which established priorities for use of California's entitlement. Any Quechan tribal claims granted for additional water rights would reduce the amount of water available to satisfy the third priority demands of the Coachella Valley Water District under this agreement because the Quechan Tribe receives Colorado River water under the Yuma Project Reservation Division's second priority. If all additional water rights claims were granted to the three Indian tribes, MWDSC could effectively lose up to 22,600 af and Coachella up to 45,200 af of their Colorado River supplies. The actual amounts to be granted, if any, are yet to be determined.

The Lower Colorado Water Supply Act. On November 14, 1986, the President signed the Lower Colorado Water Supply Act, Public Law 99-655, authorizing the U.S. Secretary of the Interior to construct, operate, and maintain a project consisting of a series of wells along the All-American Canal. The project would be capable of providing up to 10,000 af of water annually from ground water storage to indirectly benefit the City of Needles, the community of Winterhaven, the U.S. Bureau of Land Management, and other municipal, industrial, and recreational users in California with no or insufficient rights to Colorado River water. Under PL 99-655, the Imperial Irrigation District, the Coachella Valley Water District, or both, would exchange a portion of their Colorado River water for an equivalent quantity and quality of ground water supplies are not available. The Lower Colorado Water Supply Project is now under construction and is scheduled for operation in 1994.

Effects of the Central Arizona Project on Colorado River Allocations. The Central Arizona Project, with an annual diversion capacity of 2,100,000 af, started delivering water in December 1985. All aqueduct facilities were completed in 1992 and about 1,034,000 af of water were diverted for municipal, industrial, and agricultural uses in Central Arizona in 1993. Deliveries are expected to increase to 1,500,000 af annually under full development, with the capability of up to 2,100,000 af when it is available and needed in the future.

When the Central Arizona Project begins diverting its full allocation of Colorado River water, California will be limited to its basic annual apportionment of 4,400,000 af when the Secretary of the Interior declares that a normal condition exists. Additional water can be and has been made available when the Secretary determines a surplus condition exists, or when one or both of the other Lower Division states (Arizona and Nevada) are not fully using their apportioned water. Since 1985, neither Arizona nor Nevada has used its full basic apportionment, and the Secretary of the Interior has allowed California to use surplus water or Arizona's and Nevada's apportioned but unused Colorado River water. These factors have allowed California to divert and consumptively use from 4.500.000 af to 5,200,000 af annually since 1985.

The availability of Colorado River water to California in 1993 was determined in the annual operating plan issued by the Secretary of the Interior in October 1992. The 1993 annual operating plan makes sufficient water available to supply all of California's reasonable beneficial consumptive use demands, but the plan contains a proviso that if the total mainstream consumptive use in the Lower Division states exceeds 7,500,000 af, the entity or entities responsible for the overuse will be required to compensate for such overuse by 1996.

Lining of the All-American Canal. The Secretary of the Interior (under PL 100-675 enacted in 1988) is authorized to line portions of the All-American Canal and the Coachella Canal, using funds provided by MWDSC, Coachella Valley Water District, and Imperial Irrigation District. As of December 1993, the U.S. Bureau of Reclamation was preparing a final Environmental Impact Statement/Report regarding lining a portion of the All-American Canal. Lining the canal or constructing a parallel canal from Pilot Knob to Drop Number 3, about 25 miles east of Calexico, would save roughly 67,700 af annually.

The draft EIS/EIR for the project identified a parallel concrete-lined canal as the preferred alternative. The final EIS/EIR is scheduled to be filed in 1994 and construction could begin in 1995. In addition, the U.S. Bureau of Reclamation released a draft EIR/EIS in January 1994 regarding lining another section of the Coachella Canal to reduce seepage by about 30,900 af per year. Thus, if both canals were lined, as much as 98,600 af of water could be made available for other uses.

Salinity Concentrations in the Colorado River. Salinity in the Colorado River varies from year to year because the river is subject to highly variable flows. As a result of high river flows from 1983 to 1986, releases from reservoir storage into the lower Colorado River were greatly in excess of the releases required for beneficial uses. These record high flows reduced salinity in the lower river. However, since 1987, with below-normal water supply conditions and fewer reservoir releases, salinity levels have again increased.

Like most western rivers, the Colorado increases in salinity from its headwaters to its mouth, carrying a salt load of about 9 million tons annually (measured at Hoover Dam). Roughly 50 percent of the river's salinity results naturally from salt in saline springs, ground water discharge into the river, erosion and dissolution of sediments, and evaporation and transpiration. About 37 percent of the salt load comes from agricultural return flows, which carry dissolved salts from underlying saline soils and geologic formations. The remainder of the salt load results from out-of-basin exports, reservoir evaporation, development of energy resources in the Upper Colorado River Basin, and other municipal and industrial uses.

In 1972, the seven Colorado River Basin states adopted a policy that while they would continue to develop the Colorado River water apportioned to each of them, they would work with each other to maintain salinity concentrations in the lower main stem of the Colorado River at or below the flow-weighted average annual salinity of 1972. Later that year, amendments to the Federal Water Pollution Control Act required that standards for salinity in the Colorado River be established. In 1973, the seven basin states created the Colorado River Basin Salinity Control Forum to establish criteria and develop a plan for implementing a salinity control program.

In 1975, all the basin states adopted the salinity standards set forth in the report *Water Quality Standards for Salinity, Including Criteria, and Plan of Implementation for Salinity Control, Colorado River System,* as recommended by the forum. The state-adopted and EPA-approved numeric criteria call for maintenance of average annual flow-weighted salinity concentrations of 723 milligrams per liter below Hoover Dam, 747 mg/L below Parker Dam, and 879 mg/L at Imperial Dam.

Because of changes in hydrologic conditions and water use within the Colorado River Basin, the forum reviews its implementation plan every three years. The most recent recommended revisions to the plan appear in the 1993 *Review, Water Quality Standards for Salinity, Colorado River System.* The revised implementation plan is designed to control enough salt to maintain the salinity criteria adopted in 1975 under a long-term mean water supply of 15,000,000 af per year. The 1993 proposed implementation plan includes:

- Completion of U.S. Bureau of Reclamation, Bureau of Land Management, and Department of Agriculture salinity control measures. The plan's current remaining federal construction cost for USBR and Department of Agriculture activities are about \$483 million.
- Imposition of effluent limitations, principally under the National Pollutant Discharge Elimination System permit program for industrial and municipal discharges.
- Implementation of various Forum-recommended policies on such subjects as use of brackish or saline waters for industrial purposes, NPDES standards for intercepted ground water, and fish hatcheries.
- Implementation of nonpoint source management plans developed by the states and approved by EPA.

The forum reported that average salinity concentrations for 1992 were 657 mg/L below Hoover Dam, 688 mg/L below Parker Dam, and 781 mg/L at Imperial Dam, which were all below the Forum's numeric criteria. It also reported that there was no reason to believe the criteria would be exceeded during the next three years. In fact, forecasts appearing in the 1993 review state, "The plan will control salinity levels so that, with long-term mean water supply conditions, salinity levels below Hoover Dam will be about 25 mg/L below the numeric criteria."

Salton Sea. The Salton Sea is a 35-mile-long, 12-mile-wide. 40-foot-deep, saline body of water. In 1924, the federal government, recognizing the sea as a depository for agricultural drainage waters, placed lands lying 220 below sea level in and around the sea in a public water reserve.

In 1968, California enacted a statute declaring that the primary use of the Salton Sea is for collection of agricultural drainage water, seepage, leachate, and control waters. In 1980, a local farmer wrote a letter to the State Water Resources Control Board alleging that the Imperial Irrigation District was wasting water to the sea and causing his land to be flooded. After an investigation by DWR and several hearings by the SWRCB, the board, in 1988, ordered IID to develop a plan to conserve 100,000 af of water per year by 1994. The order required IID to make water delivery and irrigation practices more efficient and included a reservation of jurisdiction regarding the possible future conservation of up to 368,000 af annually.

The order caused concerns that conservation measures would lower the sea's surface level and increase salinity concentrations at a slightly faster rate. The Salton Sea became increasingly saline between 1907 and 1934, largely because of high evaporation and reduced inflow of freshwater. Since 1934 the salinity has varied from 33,000 mg/L to 45,000 mg/L. Inflow from Imperial, Coachella, and Mexicali valleys for 1989, 1990, and 1991 was 977,000 af, 108,000 af, and 141,000 af, respectively. Irrigation return flows, precipitation (which averages less than 3 inches per year), and local runoff are the only fresh water supplies to the sea. As is common in arid environments, the equivalent of several years' rain may arrive in a single storm. With

Rater

a watershed exceeding 8,000 square miles, a large storm can elevate the sea by one foot or more.

Agricultural drainage carries with it varying amounts of nutrients, mainly compounds of nitrogen and phosphorus, which encourage the growth of algae. Although algae are very productive and support the higher trophic levels, algae blooms in the upper water levels discolor the water and, upon death and decomposition, often cause temporary local anoxic conditions and produce obnoxious odors. Fish are occasionally killed by the temporary lack of oxygen. These conditions reduce the sea's aesthetic appeal and, to some extent, depress water-related recreation.

Recent attention has been focused on the source of the selenium found in the Salton Sea. The selenium content in the Colorado River water delivered to the Imperial and Coachella Valleys has been found to be about 2 parts per billion and reflects selenium contributions from tributaries to the main stem of the Colorado River in the Upper Colorado River Basin. The concentration of selenium in the sea water is about 2.5 ppb. As the result of a concentration of leachates from the soils irrigated with Colorado River water, higher levels of selenium concentrations in agricultural drains have been found. Although drainage water consists of components (for example, tile water, tail water, and seepage) carrying different concentrations of selenium, the mixing that occurs in the drain channels results in a selenium concentration of about 8 ppb.

The SWRCB has adopted a California Inland Surface Waters Plan with a performance goal of 5 ppb for selenium concentrations in agricultural drain channels. In an earlier action, the California Department of Health Services, concerned over the concentration of selenium in the tissue of fish in the sea, issued a health advisory that fish consumption by humans be limited to avoid any adverse health effects.

Four bird species residing in the Salton Sea area are potentially adversely affected by organochlorine pesticides. Such pesticides are mobilized from farm fields and transported to drains by tail water runoff. Resuspension of bottom sediments in the New and Alamo rivers and drains is another source of these pesticides. Twenty-three different organochlorine pesticides have been found in various types of biota in the Imperial Valley.

The average salt loading of inflow to the sea over the past 30 years has been 4.9 million tons per year. Since 1980, salinity concentrations have increased at a rate of 500 to 600 parts per million per year. As of December 1993, salinity levels in the Salton Sea were 45,000 parts of salt per million parts of water—saltier than ocean water, which averages 35,000 ppm.

Further increases in salinity could harm fish and wildlife and the recreational resources in the area. Salinity concentrations in the sea are forecasted to reach 50,000 ppm in the next 10 years, even without further conservation measures being implemented, which would increase the rate. It is not likely, even under the most favorable hydrologic conditions, that the salinity of the sea will return to concentrations below 40,000 ppm. On the other hand, occasional flooding has also adversely affected shoreline developments and recreation. The sea has maintained relatively stable water elevations for the past decade.

Since 1987, the Salton Sea Task Force, chaired by the State Resources Agency, has been studying these problems. This intergovernmental group's objective is to find a way to conserve water in the Salton Sea area while stabilizing the sea's salinity and water levels. Several plans have been proposed; however, all plans would incur

substantial costs. The task force is continuing to explore various means of improving the financial feasibility of the plans and to seek some form of regional organization as a sponsoring entity to carry out and provide funding for preservation measures.

Contracts and Agreements

MWDSC Water Conservation Agreements. To compensate for the loss of Colorado River water under the Supreme Court decree in Arizona v. California, MWDSC is pursuing a number of programs to augment its supplies. In December 1988, MWDSC and Imperial Irrigation District signed the first of two agreements expected to make 106,110 af of conserved water available to MWDSC annually, except under certain limited circumstances, by implementing structural and nonstructural water conservation projects within IID's service area. The conservation measures to be used are: (1) concrete lining of existing earthen canals, (2) construction of reservoirs and canal spill interceptors, (3) installation of non-leak gates and distribution system automation equipment, and (4) on-farm management of irrigation water. MWDSC will furnish an estimated \$222 million (1988 dollars) for the conservation projects. Increased conservation in the IID would reduce surface and subsurface fresh water inflow to the Salton Sea, thus shortening the time it takes for the sea's salinity concentration to increase. Of the funds provided by MWDSC, \$23 million is for indirect costs including, among other items, environmental mitigation and litigation relating to the impact, if any, of the water conservation program on the water level or quality of the Salton Sea, the New and Alamo rivers, to the extent such costs are not reimbursable.

The Palo Verde Irrigation District signed an agreement with MWDSC for a twoyear fallowing program involving 20,000 acres of land that could save 186,000 af of Colorado River water (93,000 af per year). The fallowing began August 1, 1992, and will

end July 31, 1994. Program lands lying fallow in 1992 are required to lie fallow through July 31, 1994. MWDSC must use the water, which is being stored in Lake Mead, before the year 2000. hn

heir

723

ATS

Iqt6

: ON

.ema

die

IID and MWDSC have considered, but have not yet implemented, a test fallowing and modified irrigation practice program to save up to 200,000 af of Colorado River water over a two-year period for MWDSC's use. Fallowing and modified

A farmer adjusts water flow from the main pipe to the sprinkler lines. Innovative water conservation agreements between several water agencies in the region allow agricultural water to be available for future use in urban areas.

irrigation of alfalfa would be conducted by Imperial Valley farmers on a voluntary basis for monetary compensation.

Water Banking Proposal. The U.S. Bureau of Reclamation has formed a technical work group with representatives from California, Arizona, Nevada. and the Colorado River Indian tribes to explore the merits and feasibility of banking water in Lake Mead for use by California, Arizona, Nevada, and the tribes. A banking proposal is being considered as a provision of proposed regulations being prepared by USBR for administration of Colorado River entitlements in the Lower Basin.

Yuma Desalting Plant. The high salinity of Colorado River water in past years led to protests from the Republic of Mexico and an agreement between the United States and Mexico. To enable the U.S. to comply with the agreement without depriving Colorado River basin states of any of their apportioned water, the Yuma Desalting Plant was authorized under Title I of PL 93-320 in 1974. The purpose of the desalter is to remove sufficient salts from irrigation drainage water from the Wellton-Mohawk Irrigation and Drainage District in Arizona to meet the established salinity control standards at the Northerly International Boundary when the treated drainage water is released into the river. At the Yuma Desalting Plant, the brine discharge is disposed of in a channel leading to the Santa Clara Slough in Mexico, and the treated water is blended with the remaining untreated drainage water and returned to the river. The Yuma Desalting Plant began operation at one-third capacity in May 1992. Due to high flows in the Gila River early in 1993, the plant was shut down in January 1993.

Under full operation, the desalter will be able to take about 98,000 af of drainage water and produce 68,500 af of water; this will be blended with about 10,000 af of untreated drainage water, so that a total of 78,500 af will be returned to the river.

Water Balance

Water budgets were computed for each planning subarea in the Colorado River Region by comparing existing and future water demand forecasts with the forecasted availability of supply. The region total was computed by summing the demand and supply totals for all the planning subareas. This method does not reflect the severity of drought year shortages in some local areas which can be hidden when planning subareas are combined within the region. Thus, there could be substantial shortages in some areas during drought periods. Local and regional shortages could also be more or less severe than the shortage shown, depending on how supplies are allocated within the region, a particular water agency's ability to participate in water transfers or demand management programs (including land fallowing or emergency allocation programs), and the overall level of reliability deemed necessary to the sustained economic health of the region. Volume I, Chapter 11, presents a broader discussion of demand management options.

Table CR-10 presents water demands for the 1990 level and for future water demands to 2020 and compares them with: (1) supplies from existing facilities and water management programs, and (2) future demand management and water supply management programs. Regional net water demands for the 1990 level of development totaled 4,124,000 af for average and drought years. Those demands are forecasted to decrease to 4,012,000 af by the year 2020, after accounting for a 35,000 af reduction in urban water demand resulting from implementation of long-term conservation measures and a 273,000 af reduction in agricultural demand resulting from additional long-term agricultural water conservation measures.

Urban net water demand is expected to increase by about 220,000 af by 2020, due to increases in population, while agricultural net water demand is expected to decrease by about 258,000 af. Environmental net water demands, under existing rules and regulations, will increase from 39,000 to 44,000 af annually as a result of increased allocation of water to wildlife refuges.

Average annual supplies, including 75,000 af of ground water overdraft, were generally adequate to meet average net water demands in 1990 for this region. However, during drought, present supplies are insufficient to meet present demands and, without additional water management programs, annual average and drought year shortages are expected to be about 115,000 and 139,000 af by 2020, respectively.

a Der

꼜

koldu sobra

馔

50

20

isto ioro

With planned Level I programs, average and drought year shortages could be reduced to about 56,000 and 69,000 af, respectively. This remaining shortage requires both additional short-term drought management and future long-term Level II programs depending on the overall level of water service reliability deemed necessary. Because of high priority rights to Colorado River water by such areas in the Palo Verde Irrigation District, the Coachella Valley, and the Imperial Valley, any future shortages in these areas are expected to be limited. However, this region also depends on exports from the Sacramento-San Joaquin Delta for a portion of its supplies. Shortages stated above are based on Decision 1485 operating criteria for Delta supplies and do not take into account recent actions to protect aquatic species in the estuary. As such, water supply shortages are understated for the areas which depend on Delta supplies.

Net Demand Urban—with 1990 204 204 288 288 376 376 459 442 reductions due to long term conservation -	Water Demand/Supply	1990		2000		2010		2020	
Urbon—with 1990 level of conservation 204 204 288 288 376 376 459 44		average	drought	average	drought	average	drought	average	droughi
level of conservation 204 204 288 288 376 376 459 445 reductions due to long-term conservation measures (level I) - - -16 -27 -27 -35 -5 Agriculturalwith 1990 level of conservation 3,439 3,439 3,499 3,465 3,465 3,454 3,454 3,454 3,454 3,454 3,454 -27 -27 -35 -5 Agriculturalwith 1990 level of conservation messares (level I) - - -137 -137 -203 -273 -227 Environmental 39 39 44 40 40 40 40 40 40 40 40 40 40 40 <td< td=""><td>Net Demand</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Net Demand								
reductions due to long-term conservation measures (laved I) 6 27 <td>Urban—with 1990</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Urban—with 1990								
long-term conservation mesoures (level I) 16 16 27 27 35 35 Agriculturelwith 1990 3,439 3,439 3,499 3,465 3,465 3,454 3,454	level of conservotion	204	204	288	288	376	376	459	459
measures (Lewel II) 16 16 27 27 35 35 Agriculturalwith 1990 Iseed of conservation 3,439 3,439 3,499 3,465 3,66 3,63 363 363 363 363 365 367									
Agricultural—with 1990 3,439 3,439 3,439 3,499 3,495 3,465 3,465 3,454 3,454				1 /	1.4	07	07	0.5	0.5
level of conservation 3,439 3,439 3,499 3,499 3,465 3,455 3,454 3,457 3,657 3,657 3,575 5,55 5,55 5,55 5,55 5,55 5,55 5,55 6,56 2,55 5,55 6,56 2,55 5,55		_		-16	-16	-27	-27	-35	-35
reductions due to long-term conservation measures (Level I) -		2 420	2 420	2 400	2.400	2 4/5	2.445	2 45 4	2 45 4
long-term conservation measures (Level I) -		3,439	3,439	3,499	3,499	3,460	3,465	3,454	3,454
measures (Level I) - - - -137 -137 -203 -203 -273 City of the construction of the									
Environmental Other ⁽¹⁾ 39 39 44 4		_		-137	-137	-203	-203	-273	-273
Other ⁽¹⁾ 442 442 363		39	30					-	44
COTAL Net Demond 4,124 4,124 4,041 4,018 4,018 4,012 4,012 Water Supplies Developed Supplies Surface Water ⁽²¹⁾ 3,969 3,949 3,822 3,797 3,818 3,794 3,818 3,795 Ground Water 80 80 79 79 80 80 79 77 Ground Water Overdroff ⁽³¹⁾ 75 75 — … … 3,876 3,898 3,874 3,897 3,87 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877<									363
Water Supplies w/Existing Facilities Under D-1485 for Delta Supplies Developed Supplies 3,969 3,949 3,822 3,797 3,818 3,794 3,818 3,775 Ground Water 80 80 79 79 80 80 79 76 Ground Water Overdroff* ¹⁰ 75 75 - 3,874 3,897 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,875 3,874 3,897 3,877 3,876 3,898 <td>Oner</td> <td>442</td> <td>442</td> <td></td> <td>202</td> <td></td> <td>202</td> <td>303</td> <td>303</td>	Oner	442	442		202		202	303	303
Developed Supplies 3,969 3,949 3,822 3,797 3,818 3,794 3,817 3,897 3,874 3,897 3,870 3,870 3,874 3,897 3,877 3,870 3,874 3,897 3,877 3,87 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,877 3,876 3,898	'OTAL Net Demand	4,124	4,124	4,041	4,041	4,018	4,018	4,012	4,012
Surface Water ⁽²⁾ 3,969 3,949 3,822 3,797 3,818 3,794 3,8174 3,897 3,877 3,875 Subtotal Vatural Flow 0<	Water Supplies w/Existing Facilities U	Jnder D-1485	for Delta Sup	plies					
Ground Water 80 80 79 79 80 80 79 7 Ground Water Overdroff ^[13] 75 75 — … … 3.874 3.897 3.873 3.873 3.877 3	Developed Supplies								
Ground Water 80 80 79 79 80 80 79 77 Ground Water Overdroff ^[3] 75 75	Surfoce Woter ⁽²⁾	3,969	3,949	3,822	3,797	3,818	3,794	3,818	3,794
Subtotal 4,124 4,104 3,901 3,876 3,898 3,874 3,897 3,87 Dedicoted Natural Flow 0	Ground Water	80	80	79	79	80			79
Dedicated Natural Flow 0	Ground Water Overdroft ⁽³⁾	75	75	_	_	_	_	_	-
Dedicated Natural Flow 0	Subtotal	4,124	4,104	3,901	3,876	3,898	3,874	3,897	3,873
Demond/Supply Balance 0 -20 -140 -165 -120 -144 -115 -13 Long-term Supply Augmentation Reclaimed - - 2 2 5 6 Local - - 0 0 0 0 0 0 Colorodo River - - - - 68 -68 </td <td>Dedicoted Natural Flow</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>	Dedicoted Natural Flow								0
Advance of the second of the	OTAL Water Supplies	4,124	4,104	3,901	3,876	3,898	3,874	3,897	3,873
Long-term Supply AugmentationReclaimed22556Local00000Colorodo River68-68-68-68-68-68-68State Woter Project5010201020Subtotal - Level I WaterManagement Programs00-61-66-53-43-52-44Net Ground Water or Surface Water Use Reduction Resulting from Level I Programs7070717111111Remaining Demand/Supply Balance Requiring Short-term Drought Management and/or Level II Options	Demond/Supply Balance	0	-20	-140	-165	-120	-144	-115	-139
Long-term Supply AugmentationReclaimed22556Locol00000Colorodo River68-68-68-68-68-68-68State Woter Project5010201020Subtotal - Level I WaterManagement Programs00-61-66-53-43-52-44Net Ground Water or Surface Water Use Reduction Resulting from Level I Programs7070717111111Remaining Demand/Supply Balance Requiring Short-term Drought Management and/or Level II Options	evel I Water Management Programs	(4)							
Reclaimed22556Local00000Colorodo River68-68-68-68-68-68State Woter Project5010201022Subtotal - Level I WaterManagement Programs00-61-66-53-43-52-44Net Ground Water or Surface Water Use Reduction Resulting from Level I Programs7070717111111Remaining Demand/Supply Balance Requiring Short-term Drought Management and/or Level II Options									
Local00000Colorodo River68686868686868State Woter Project5010201022iubtotal - Level I WaterManagement Programs0061665343524Net Ground Water or Surface Woter Use Reduction Resulting from Level I Programs7070717111111Resulting from Level I Programs7070717111111		_	_	2	2	5	5	6	6
Colorodo River68		_	_						0 0
State Woter Project — — 5 0 10 20 10 2 Subtotal - Level I Water Management Programs 0 0 -61 -66 -53 -43 -52 -2 Net Ground Water or Surface Water Use Reduction		_	_	-					-68
Subtotal - Level I Water Management Programs 0 0 -61 -66 -53 -43 -52 -43 Net Ground Water or Surface Water Use Reduction Resulting from Level I Programs - 70 70 71 71 111 11 Remaining Demand/Supply Balance Requiring Short-term Drought Management and/or Level II Options -		_	_						21
Management Programs 0 0 -61 -66 -53 -43 -52 -43 Net Ground Water or Surface Water Use Reduction Resulting from Level I Programs — — 70 70 71 71 111 11 Remaining Demand/Supply Balance Requiring Short-term Drought Management and/or Level II Options — …	,			5	U	10	20	10	21
Net Ground Water or Surface Water Use Reduction Resulting from Level I Programs — 70 70 71 71 111 11 Remaining Demand/Supply Balance Requiring Short-term Drought Management and/or Level II Options		0	0	-61	-66	-53	-43	-52	-41
Surface Water Use Reduction Resulting from Level I Programs — 70 70 71 71 111 11 Remaining Demand/Supply Balance Requiring Short-term Drought Management and/or Level II Options		U	0	01	00		40	52	-41
Resulting from Level I Programs — — 70 70 71 71 111 11									
		_	_	70	70	71	71	111	111
	Remaining Demand / Supply Balance	Requiring Shor	t-term Droug	ht Managem	ent and/or Le	vel II Ontions			
0 -20 -131 -161 -102 -116 -56 -6	a surger of her surger		-	-		-		-56	-69

Table CR-10. Water Budget (thousands of acre-feet)

Includes major canveyonce facility losses, recreation uses and energy production.
 Existing and future imported supplies that depend on Delta export copobilities are based on SWRCB D-1485 and do nat take into account recent actions to protect equatic species. As such, regional water supply shortages are understated (note: proposed environmental water demands af 1 to 3 MAF are included in the California water buget).
 The degree future shortages are met by increased overdraft is unknown. Since overdraft is not sustainable, it is not included as a future supply
 Pratection of fish and wildlife and a long-term solution to complex Delta prablems will determine the feasibility of several water supply augmentation proposals and their water supply benefits.

, |

Appendix C

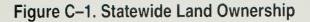
Each hydrologic region is divided into several planning subareas, which, in turn, are divided into detailed analysis units. Data collected at the DAU level is aggregated to the PSA level and then to the hydrologic region level. DWR districts have data for each DAU, and specific requests or questions about the DAU data or the aggregations should be directed to the appropriate district. For your convenience, the addresses and phone numbers of the four district offices are listed below, and a map showing district boundaries is shown on the next page.

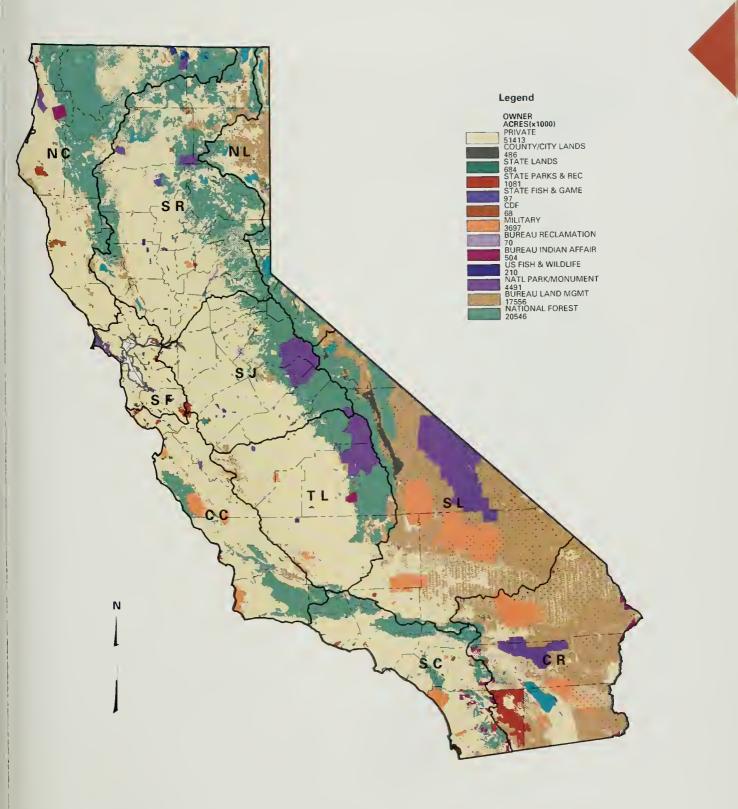
Planning Subareas and Land Ownership

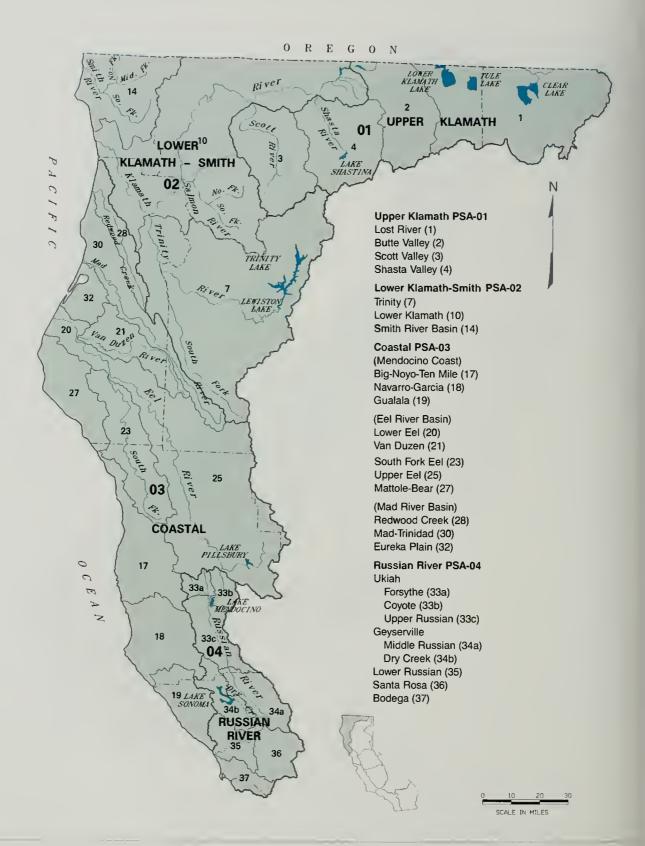
Northern District

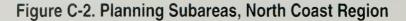
2440 Main Street Redding, CA 96080-2398 (916) 529-7300

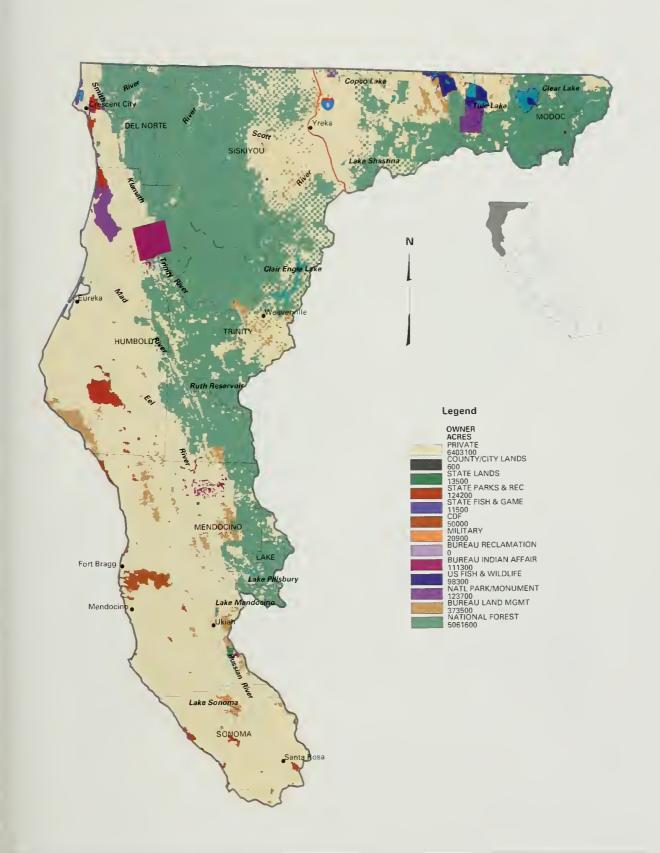
Central District

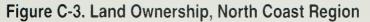

3251 S Street Sacramento, CA 95816-7017 (916) 445-683

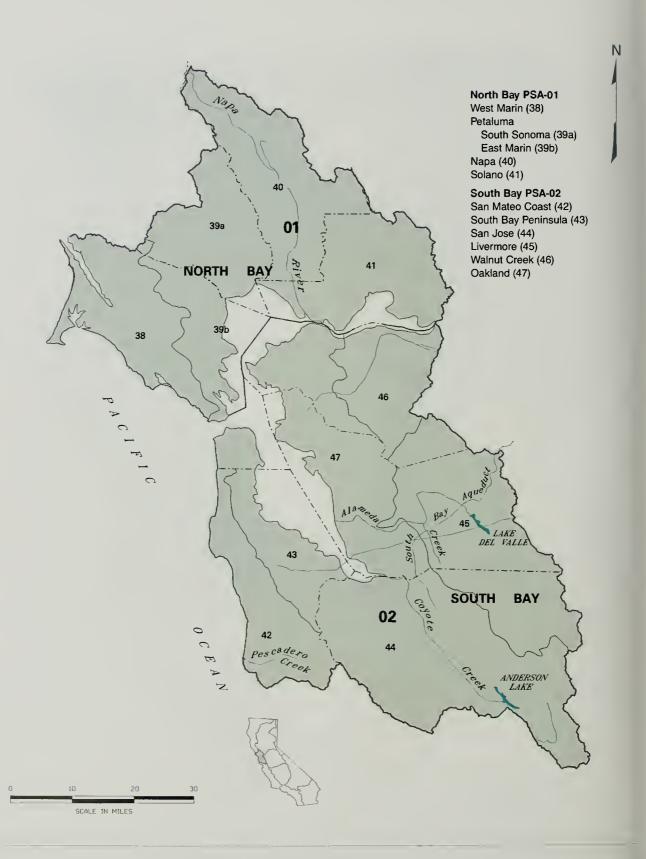

San Joaquin District

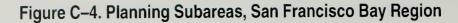

3374 East Shields Avenue Fresno, CA 93726-6990 (209) 445-5443


Southern District


770 Fairmount Avenue Glendale, CA 91203-1035 (818) 543-4600







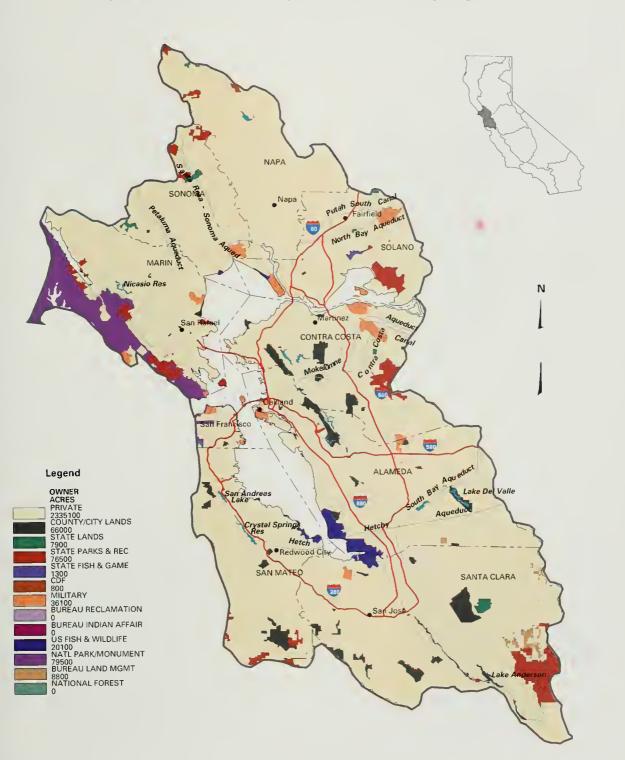
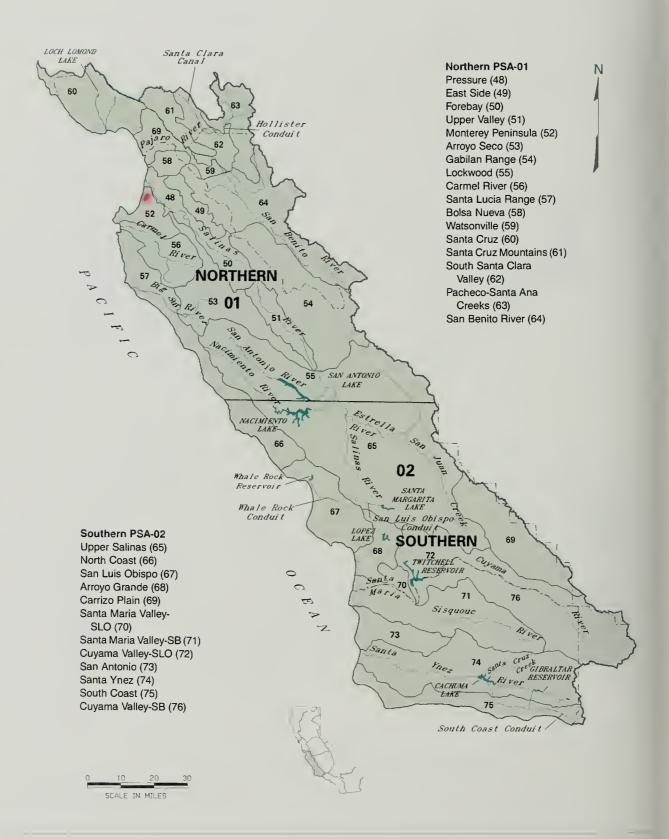
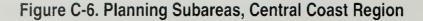
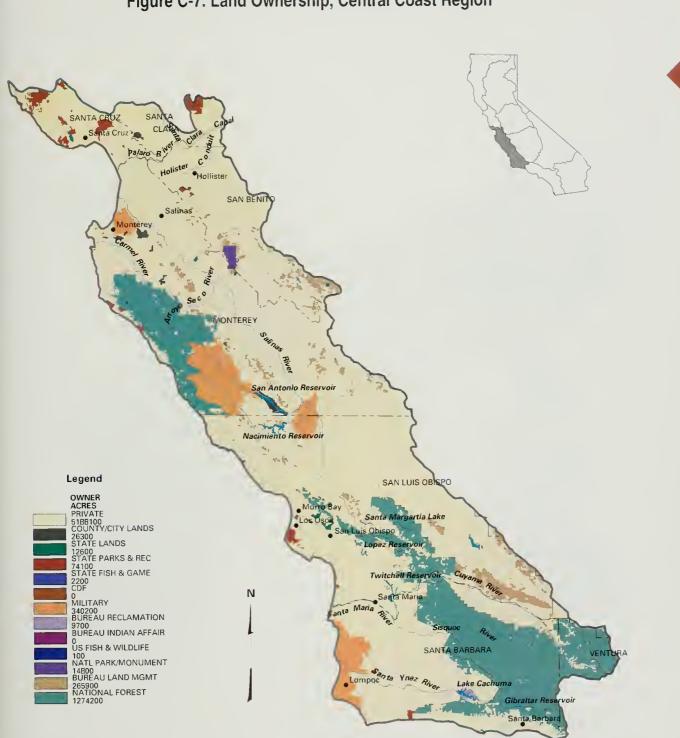
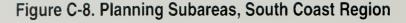





Figure C-5. Land Ownership, San Francisco Bay Region



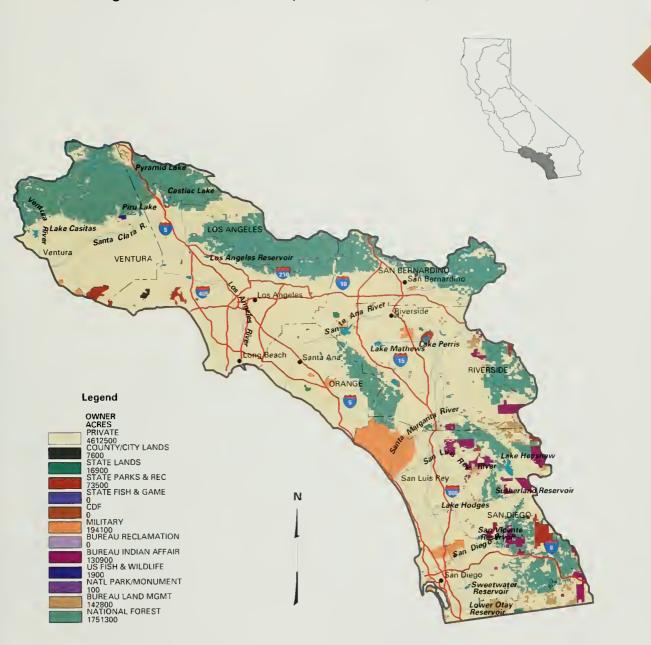
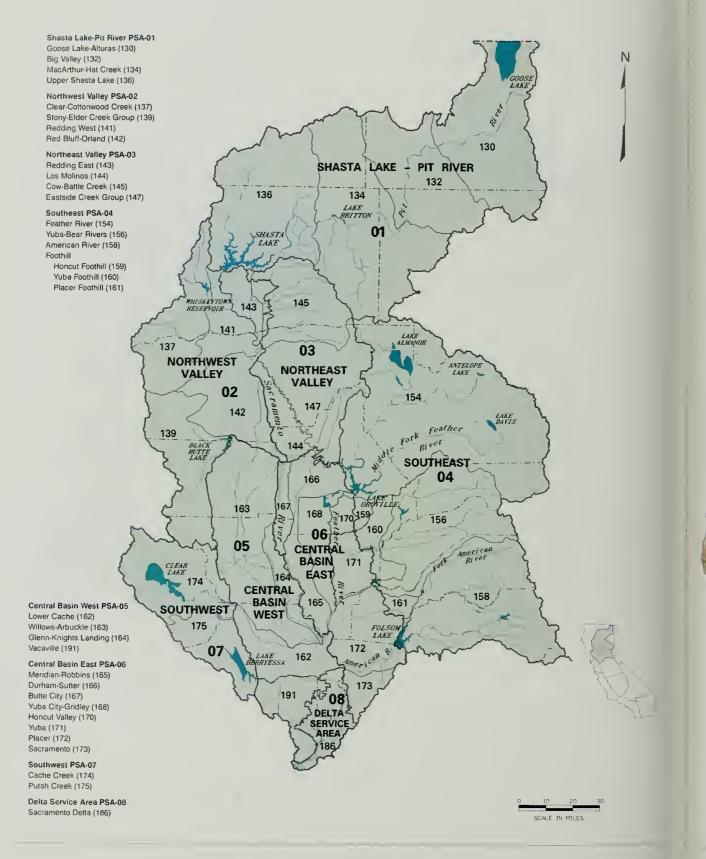
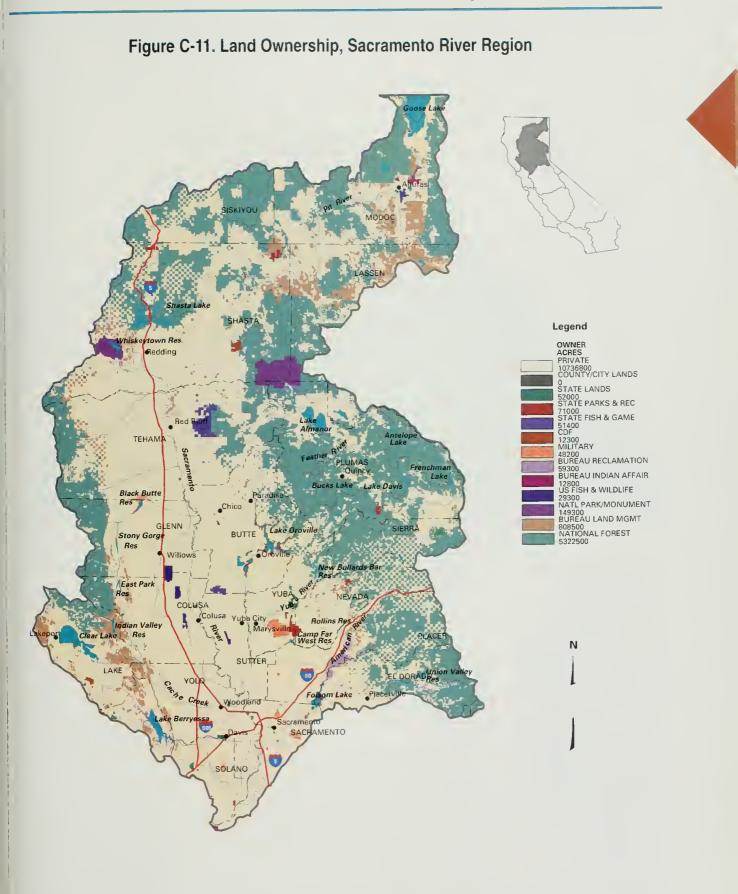
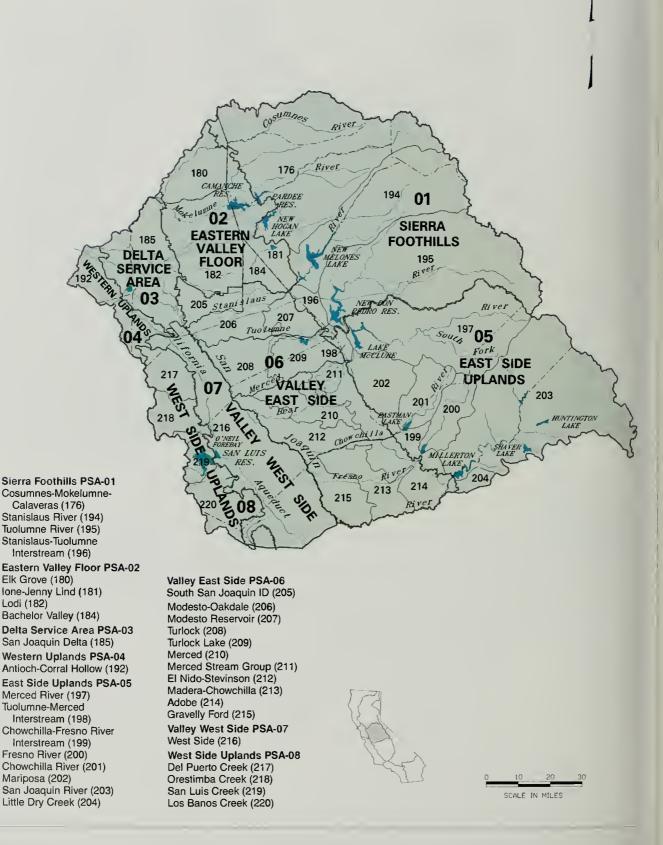


Figure C-7. Land Ownership, Central Coast Region







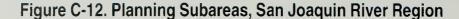
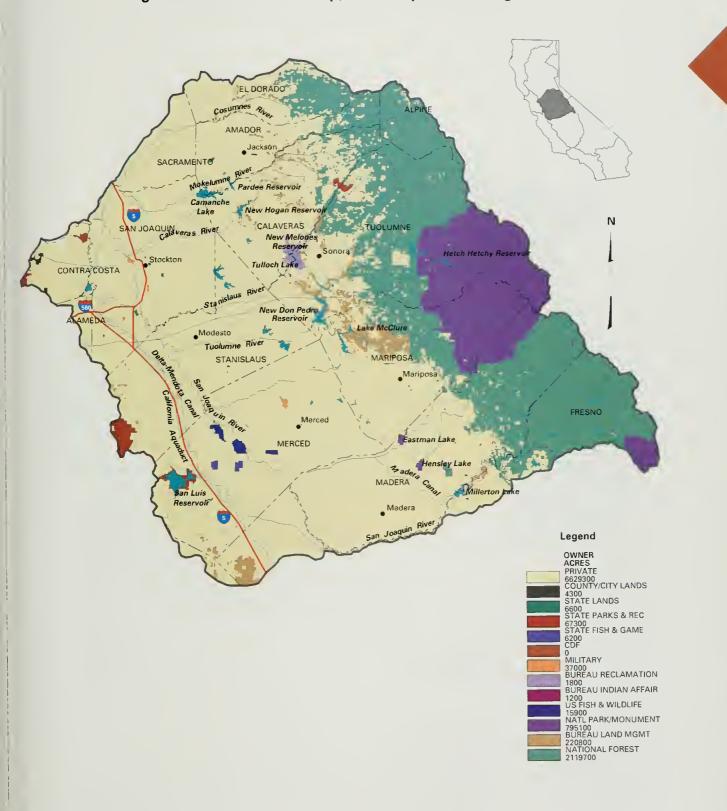
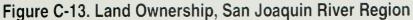
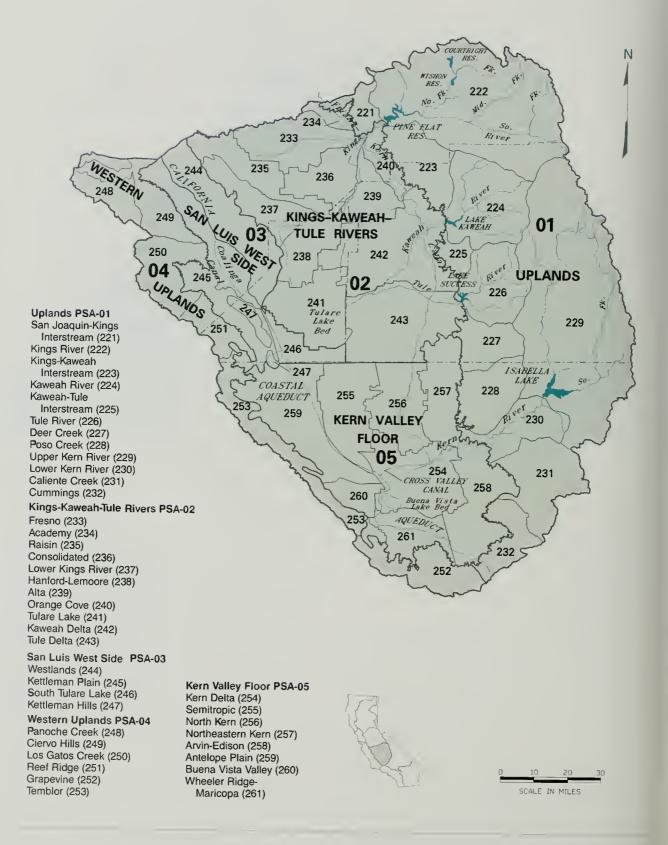
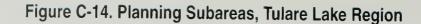


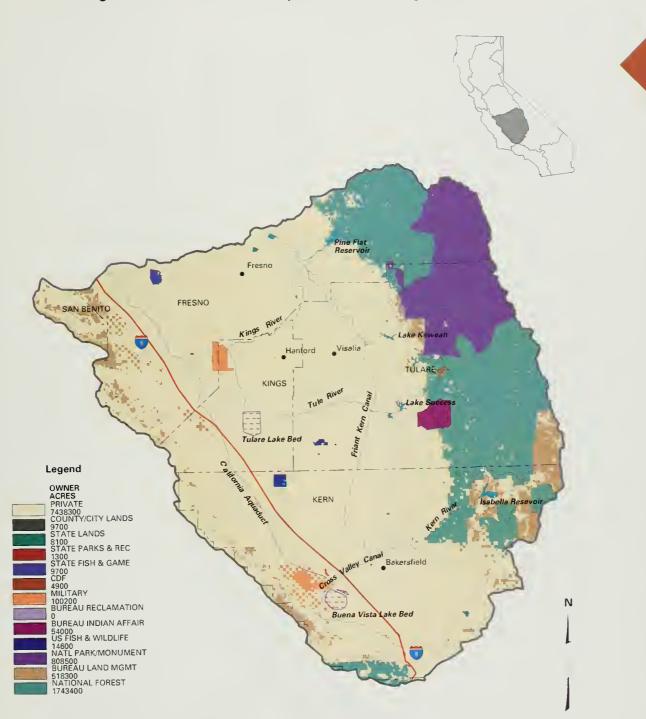
Figure C-10. Planning Subareas, Sacramento River Region

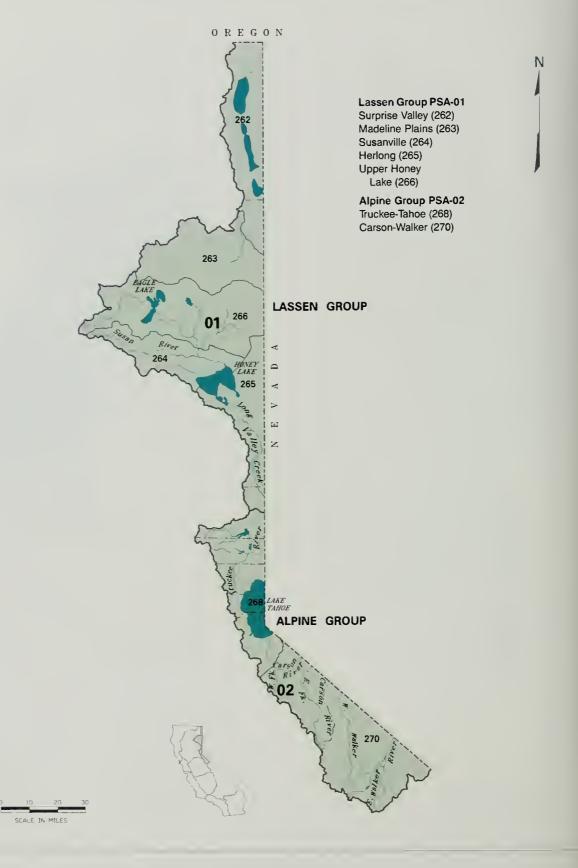









N



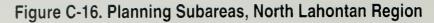
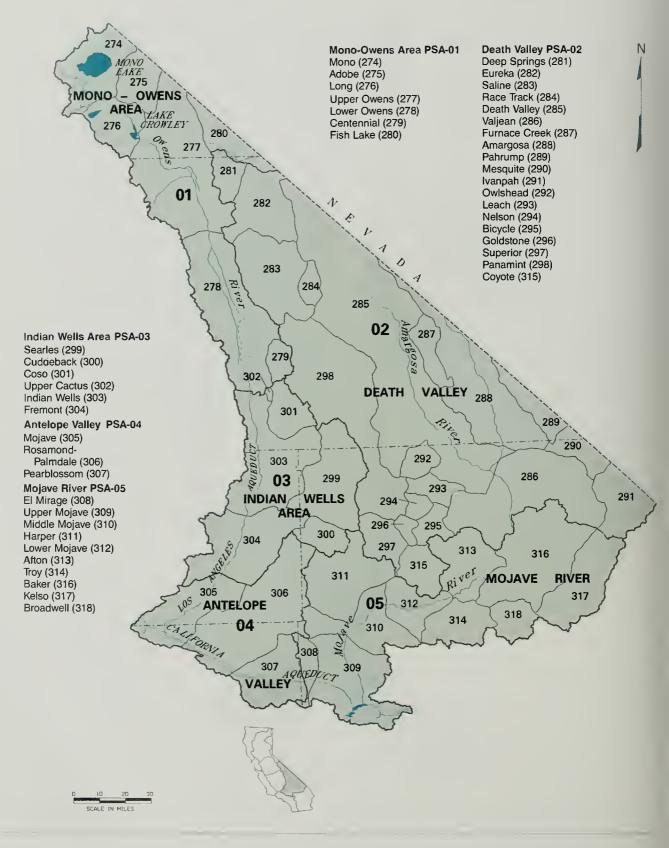




Figure C-15. Land Ownership, Tulare Lake Region



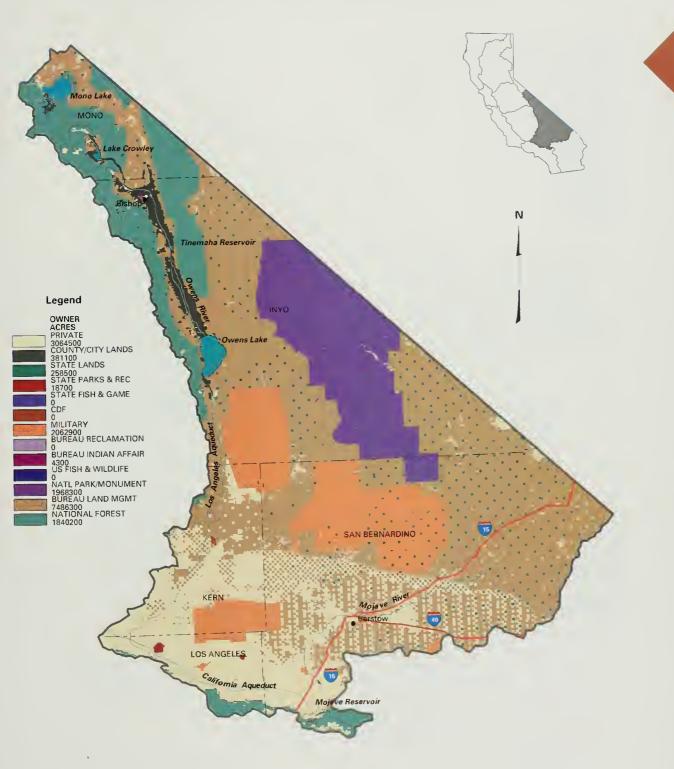
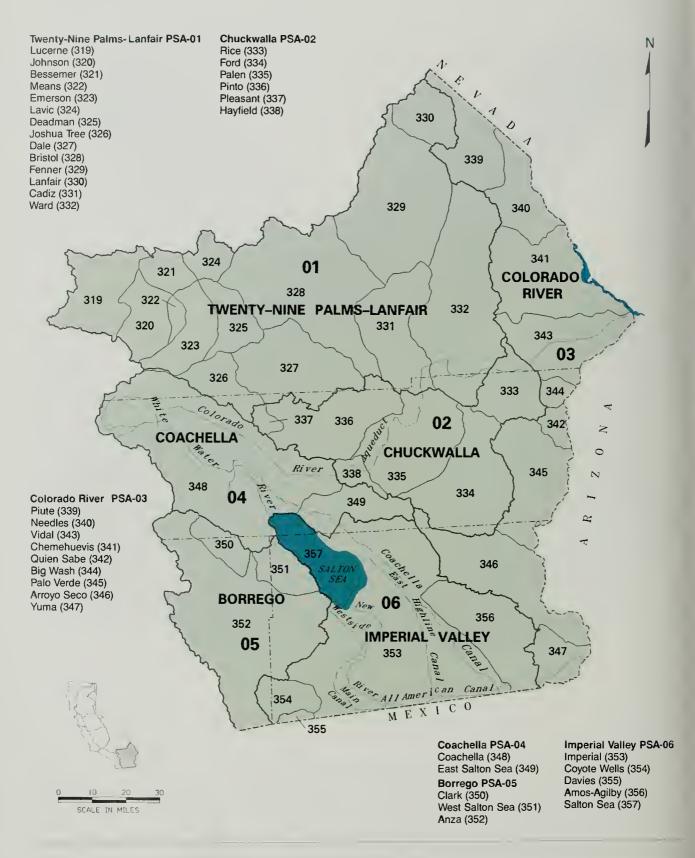


Figure C-17. Land Ownership, North Lahontan Region


Figure C-18. Planning Subareas, South Lahontan Region

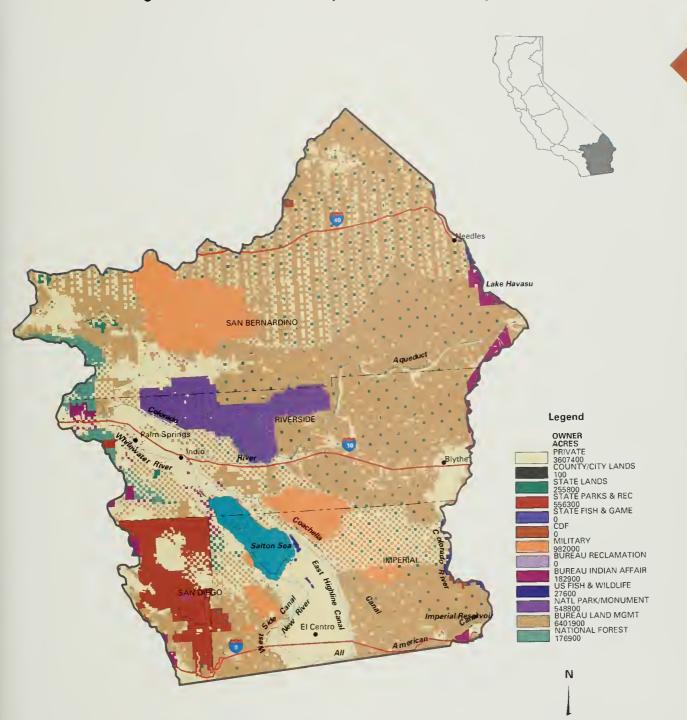


Figure C-19. Land Ownership, South Lahontan Region

Figure C-20. Planning Subareas, Colorado River Region

-

A

ן ד ד ר

j Ti N

eder

rapac regule projec istril detail iydro sourc trom t that o

Appendix D

This appendix condenses information from the following sources:

- C The California Energy Commission, California Power Plant Maps, July 1992.
- The Federal Energy Regulatory Agency. *Hydroelectric Power Resources of the United States, Developed and Undeveloped*, January 1988.
- The Federal Energy Regulatory Agency, SFRO Project Assignments by Project Number, September 16, 1992 (unpublished).

The proposed developments in Tables D-1 and D-3 are only those that have a Federal Energy Regulatory Commission number or are listed by the California Energy Commission.

There are 416 operating hydroelectric plants in California with an installed capacity of 11.4 million kilowatts. Another 76 planned developments are in the regulatory process. Table D-1 shows the distribution of developed and planned projects among the hydrologic regions, and Table D-2 further breaks down this distribution into river basins or planning subareas. Finally, Table D-3 presents a more detailed inventory of hydroelectric resources in California. The data sources differ as to hydroelectric plant names, owners, and capacities. FERC was generally the preferred source for the information in Table D-3, except when information was secured directly from the owner. The CEC designation is supplied when it is significantly different from that of FERC's or is not the owner's name.

Hydroelectric Resources of California

Hydrologic Region	Develope	d Capacity	Proposed Developments	Total
	KW .	Number	Number	
North Coast	210,766	32	9	41
San Francisco Bay	1,087	3	3	6
Central Coast	7,425	10	3	13
South Coast	812,975	79	4	83
Sacramento River	4,890,855	151	30	181
San Joaquin River	3,217,435	75	8	83
Tulare	1,853,688	23	3	26
North Lahontan	6,450	2	1	3
South Lahantan	201,302	27	9	36
Colorado River	209,395	14	4	18
TOTAL	11,410,858	416	76	492

Table D-1. Developed and Undeveloped Hydroelectric Plant Sites

Hydragraphic Regian	Develop	ed Sites	Undeveloped Sites	Total
River Basin or PSA	KW	Number	Number	
North Coast				
Klamath River	49,532	9	4	13
Trinity River	114,526	9	4	13
Mad River	4,240	3	0	3
Eel River	25,968	5	0	5
Russian River	16,500	6	1	7
TOTAL Narth Coast	210,766	32	9	41
San Francisco Bay				
North Bay	287	2	1	3
South Bay	800	1	2	3
TOTAL San Francisca Bay	1,087	3	3	6
Central Coast				
Northern	90	1	1	2
Sauthern	7,335	9	2	11
TOTAL Central Coast	7,425	10	3	13
South Coast				
Santa Clara	212,500	12	1	13
Metra Las Angeles	259,791	24	2	26
Santa Ana	326,344	32	2	34
San Diega	13,820	10	0	10
TOTAL Sauth Coast	812,455	78	5	83
Sacramento				
Sacramenta River	959,640	7	2	9
Pit and McClaud Rivers	817,227	22	5	27
West Side	28,143	10	1	11
East Side	79,460	28	3	31
Feather River	1,223,285	25	5	30
Yuba and Bear Rivers	708,366	35	7	42
American River	1,074,734	25	8	33
TOTAL Sacramento	4,890,855	152	31	183

Table D-2. Developed and Planned Development of Hydroelectric Resources Summary

Hydrographic Region	Develop	ed Sites	Undeveloped Sites	Total
River Basin or PSA	KW .	Number	Number	
San Joaquin				
Mokelumne River	246,590	9	1	10
Colaveras River	3,940	3	0	3
Stanislaus River	778,250	14	1	15
Tualumne River	483,631	15	2	17
Merced River	107,000	6	0	6
San Jooquin River	1,598,024	28	4	32
TOTAL San Joaquin	3,217,435	75	8	83
Tulare				
Kings River	1,713,000	7	3	10
Kawea River	23,850	4	0	4
Tule River	11,388	6	0	6
Kern River	105,450	6	0	6
TOTAL Tulare	1,853,688	23	3	26
North Lahontan	6,450	2	1	3
South Lahontan	201,302	27	9	36
Colorado River	209,395	14	4	18
STATEWIDE TOTAL	11,410,858	416	76	492

Table D-2. Developed and Planned Development of Hydroelectric Resources Summary (Continued)

Ū
<u>٣</u>
ō
Š
C RESOURC
2
R
<u>с</u>
1
ö
Ř
H
F HYC
F
2
Ē
AE
F
O.
Ē
DEVELC
Δ
<u> </u>
ž
Z
≤
9
₽.
AN
JED AND PLANNED DEVELOPMENT OF HYDROELECTRIC
DEVELOPEI
ō
Ē
D

ES

					5.54	nadoianan		Undeveloped	
1 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Year Project No. Installed	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
North Coast Region Boulder Cr	Moore, CN	Smith River Boulder Cr, SFS	Del Norte	8153					75
Narth Coast Region		Klamath River							
Bluff Creek	Eckert, David & Penelape	Bluff Cr, Slate Cr	Humboldt	6454				-	
Fall Creek*	Pocific Power & Light Co	Jenny Cr	Siskiyou	2082	1 903	2,200	12,800		730
Copco 2°	Pocific Power & Light Co	Klamoth R	Siskiyou	2082	1925	27,000	141,200		152
Copco 1*	Pacific Power & Light Co	Klamath R	Siskiyou	2082	1918	2,000	120,000		125
Iran Gate*	Pacific Power & Light Co	Klamath R	Siskiyou	2082	1961	18,000	153,500	158	158
kower Cold Springs	Foster, Horold et al	Cold Cr, Bogus Cr	Siskiyou	7059		95	660		245
Upper Cold Springs	Foster, Harold et al	Cold Cr, Bogus Cr	Siskiyou	7279				50	230
Luckey	Luckey, Haward Paul	Cold Cr, Bogus Cr	Siskiyou	7279				50	230
Prather Ranch	T K O Power	Prother Cr, L Shasta	Siskiyou	6634		100	680		517
Cornwell	Cornwell, M H & J V	Trib to Merrill	Siskiyou	2987		12	35		
Drager-Janes-Timmans	Drager, Tery et al	Clark Cr Scatt R	Siskiyou			25	208		150
Shasto R	Difanics	Shosta River	Siskiyou			100	600		21
Shasta R	Smith, Dewey D.	Shasta River	Siskiyou	7400				480	35
North Coast Region		Trinity River							
Mill Sulpher Crs*	North Coast Hydro	Miller	Humboldt	6154		066			
Hawkins Cr*			Humboldt					400	
Willow Cr*			Humboldt					1,700	
Big Cr*	Xenaphan Enterprises	Big Cr, S Fk T	Trinity	7010	1987	4,800			
Eltapam Cr	Rulofson, R	Eltapom Cr S Fk	Trinity	6167				1,490	400
Cedar Flat*	Mega, Renewables	Cedar Flot Cr	Trinity	6168		1,500	5,900		869
Biber Spellenburg*	Spellenburg, S	Bidden Cr	Trinity	6550		30	152		320
Lewiston*	Bureau of Reclamation	Trinity R	Trinity			350	2,600		60
Trinity*	Bureau of Reclamation	Trinity R	Trinity			105,556	409,000	214,000	469
Trinity Alps Creek	Mallett, F & B	Trinity Alps Cr	Trinity	4737		500	1,900		10
Bell (Upper)	Bell Enterprises	Battle Cr, Coffee	Trinity	4478		50	264		
Bell (Lawer)	Bell Enterprises	Battle Cr, Caffee	Trinity	4478				550	900
Weber Flat	Pan-Pacific Hydro Inc	W Fk Trinity	Trinity	6959		750	3,000		510

DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued)

					Devel	Developed		Undeveloped	
2 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Year Project No. Installed	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Copacity KW	Gross Stat Head (FT)
North Coast Region		Mad River	-						
Schatz Iree Farm* Davis Creek	General Plastics Mfa Co	Davis Cr	Humbaldt Humbaldt	6633		100	774		520
R W Matthews*	Humbaldt Bay MUD	Mad R	Trinity	3430	1983	4,000	14,210		100
North Coast Region		Eel River							
Redwood Trails	Redwood Trails	McBrindle Cr	Humbaldt			160	2,500		48
Baker Creek*	Hunt, A R & B F	Baker Cr, Van D	Humbaldt	4627	1987	1,500	5,580		916
Burgess Creek	Burgess, Edward et al	Burgess Cr	Trinity	5955		25	100		10
Bluford Creek*	Burgess, M & N	Bluford Cr	Trinity	6062	1984	1,250	3,585		858
Three Forks	Burgess, NR	Bluford Cr	Trinity	10882					
Kekawaka Creek*	Kekawaka Kilowatts Inc	Kekawaka Cr	Trinity	7120	1989	4,950	14,200		1,008
North Coast Region		Russian River							
Mendocino	Ukiah, City of	E Fk Russian R	Mendocina	2841		3,500	17,660		100
McFadden Farms*	McFadden, Eugene J M	E Fk Russian R	Mendocino	4658		380	1,870		15
Power Canal*	BES Hydro Co	PH Disch Cnl	Mendacina	8936		400			18
Hammeken	Hammeken, WH et al	PH Disch Cnl	Mendacina	9647				300	16
Potter Valley*	Pacific Gas & Electric Co	E Fk Russian R	Mendacina	77		9,200	61,000		476
Warm Springs*	Sonoma Co Water Agency	Dry Cr	Sonoma	3351	1988	3,000	18,210		200
California Fish*	Ca Fish Grawers, Inc	Ocean Trib	Sonama			20			
San Francisco Bay Region		North Bay PSA							
Yellowjacket*	Neerhout, John Jr	Yellowjacket Cr	Napa				70		600
Stony Brook	Webster, Jahn A	Unn Str, Murphy C	Napa			2	10		100
Fleming Hill	Vallejo, City of	Fleming Hill WS P	Salana	5593		285	1,850		190
Son Francisco Bay Region		South Bay PSA							
WTP Na. 2	Alameda Co. WD		Alameda	10833					
Anderson Dam* High Line Cnl	Santa Clara Valley WD Santa Clara, City of	Coyate Creek	Santa Clara Santa Clara	5737 7252		800	4,177		215 215
. On California Energy Commission Man and List	of tist								

		NINED DEVELOFINE					10000		
					Developed	oped		Undeveloped	
3 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Year Project No. Installed	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Copacity KW	Gross Stat Head (FT)
Central Coast Regian San Antonio Nacimienta* San Luis Obispa WTP* Whale Rack* San Luis Obispa Stenner Cyn* CSL-WTPP Lapez WTP Cabrahar Picay* Galeta* Cater* Gaten Hill*	Monterey Ca. FC & WCD Manterey Ca. FC & WCD Energy Partners Whale Rack Cammissian San Luis Obispa, City af San Luis Obispa, City af Santu Barbara, City af Mantecita WD & Howard JE Galeta WD Santa Barbara, City af	San Antania R, Salinas Nacimienta R, Sal Wrr Sup Pl Old Cr San Luis Obispa Santa Ynez R Daultan Tunnel Graham Hill WTP	Manterey 10618 San Luis Obispo 6378 San Luis Obispo 6378 San Luis Obispo 5218 San Luis Obispo 5218 San Luis Obispa 9261 Santa Barbara 8210 Santa Barbara 8210 Santa Barbara 8210 Santa Barbara	10618 10	1987 1986 1986	3,750 130 75 780 120 1,500 130 150 700 700	9,500 650 4,200	6,000 620	160 115 115 176 650 663 663
Sauth Caast Regian W E Warne*	Ca Dept af Wtr Resaur	Santa Clara PSA W Br Ca Aque Piru	Las Angeles	2426	1983	75,000	394,200		739

* On California Energy Commission Map and List

The California Water Plan Update Bulletin 160–93

215

194 145

1,985 3,200

930 520 250 47,200 1,200 750 250 150

1987 1982 1986

2153 4611

Caneja Pump Sta Piru Cr, Santa Cl

United Whr Cans Dist

Calleguas MWD Calleguas MWD

Canejo Pump Sta* Santa Rasa Val* Waadcreek Rd^{*}

Santa Felicia*

Metro W Dist S Ca

MWD Recavery II-IV*

MWD Recovery 1*

Alamitos* WB-28*

Metro W Dist S Ca

Pressure Red Sta.

W.S. P.L.

Calleguas MWD Camrosa CWD

Springville

9071 9879

1094

1986 1980 1982

1,048

60,000

56,000 1,250

1984 1985 1989

6868

8434 8310

9008

Las Angeles

MWD H Coast FDR G.W Inj (Col Ag)

Alamitas PL

Las Angeles Ca. FCD

Las Angeles Ca FCD

West Caast Basin Bar*

Chatsworth*

Castaic 3*

Calleguas MWD

El Segundo, City of

Las Angeles Las Angeles Ventura Ventura Ventura Ventura Ventura

1972

2426

Los Angeles Las Angeles Las Angeles Las Angeles

W Br Ca Aque

Ca Dpt W R & L A W P Ca Dept af Wtr Resaur

225 196 358

1,850

Hydroelectric Resources of California

302

DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued)

	Gross Stat Head (FT)		300	203	280	325		283	86	250	548	895	540			188	288	227		220		425	700	628	314	401	280	123
Undeveloped	Proposed Capacity KW			150														520										
	Average Annual Generation 1,000 KWH		53,200	800	60,000	2,200	7,260	8,800	6,000	30,000	60,450	273,000	15,000	23,000		976	2,210		1,300	12,300	42,000		4,800	4,000	1,100	11,525		909
pade	Installed Capacity KW		8,600		10,100	275	1,000	2,000	1,000	5,600	11,000	64,375	42,000	9,032	81,000	300	350		400	1,910	9,924	1,200	909	480	320	3,000	4,980	195
Developed	Year Installed		1982		1982	1986	1979	1921		1922	1971	1928	1932	1981	1986	1987	1987	1987			1961	1986	1902	1922	1963	1948	1987	1984
	FERC Year Project No. Installed			2190	5197	9007			6868							10264	10265	10263	6352	6093	2896	5648				1250		8764
	County		Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Los Angeles	Las Angeles	Los Angeles	Los Angeles				
	River Basin or PSA and Stream	Metro Los Angeles	Sepulveda Fdr	Sepulveda Fdr	Sepulveda Fdr	Dom. Gap P1	E. Valley Fdr Cnł	Franklin Can	Santa Susana Cnl	La Aque	La Aque	La Aque	La Aque (Santa Cl)	Foathill Fdr Cnl		Laverne Conn Tre	Laverne Cann Tre	Miramar Ave 1Rea	Metro Wtr Dist Pl	Middle Feeder Pl	Foothill Cnl Dal	Devit Canyon/Azus	Son Antonio Cr, W	San Antonio Cr, W	San Antonio Cr, W	San Gabriel R	San Gabriel R	Southern Cr, San
	Owner		Metra Wtr Dist of So Ca	Santa Monica, City of	Metro Wtr Dist of So Ca	Los Angeles Co FCD	Metro Wtr Dist of So Ca	Los Angeles Dept W & P	Calleguas Mn Wtr Dist	L A Dept W & P	LADept W&P	L A Dept W & P	L A Dept W & P	Metro Wtr Dist So Ca	L A Dept W & P	Three Valleys Mun Wrt Dist	Three Valleys Mun Wrt Dist	Three Valleys Mun Wrt Dist	Glendale, City of	Metro Wtr Dist of So Ca	Metro Wtr Dist of So Ca	San Gabriel V MWD	So Ca Edison Co	So Ca Édison Co	So Ca Edison Co	Pasadena, City of	San Gabriel Hydro Phnsp	Walnut V WD
	4 Hydrologic Region Plant or Site	South Coast Regian	Sepulveda Can*	Santa Monica	Venice*	Dominguez Gap*	Greg Avenue*	Fronklin Canyon*	East Portal	San Fernanda*	Foothill*	S Francisquita 1*	S Francisquito 2*	Foothill Feeder	Sawtelle	Fulton Station	Williams Station	Miramor Treatment	Verdugo	Rio Honda	San Dimas*	S Dimas Wash Turn	Ontario 1*	Sierra*	Ontario 2*	Azusa"	San Gabriel*	Dist Terminal Sto*

Hydroelectric Resources of California

On California Energy Commission Map and List

ğ
ž
÷Ē.
5
9
S
U
Ľ
õ
ES
R
S
Ë
Ш
Ē
õ
HYDRO
≻
E.
0
누
É
Ň
ö
SVELC
_ <u></u> ⊇
DE
<u> </u>
ž
Z
≤
<u>а</u>
9
Ā
DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued of the second se
F
Q
Ē
<u> </u>

Juncles Juncles Amonga Monoga Monog						Developed	oped		Undeveloped	
Full Full South And FA South And FA <th< th=""><th>5 Hydrologic Region</th><th>Quinter</th><th>River Basin or PSA and Stream</th><th>1</th><th></th><th>Year Installed</th><th>Installed Capacity KW</th><th>Average Annual Generation 1,000 KWH</th><th>Proposed Capacity KW</th><th>Gross Stot Head (FT)</th></th<>	5 Hydrologic Region	Quinter	River Basin or PSA and Stream	1		Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stot Head (FT)
 Fulleton, City of Month Fei Gulk Overage 973 Fulleton, City of WOND Fei Gulk Overage 973 Fulleton, City of WOND Fei Gulk Overage 973 Rear Park, City of WOND Fei Gulk Overage 7297 Rear Park, City of Wond Wily View Overage 7297 Rear With Dia of So. Ca. Norbui Union Overage 882 Rear Mano, City of Kathon Mollay View Overage 812 Rear Mano, City of Kathon Mollay View Overage 812 Rear Mano, City of Kathon Mollay View Overage 812 Rear Mano, City of Kathon Mollay View Overage 812 Rear Mano, City of Kathon Mollay View Overage 812 Rear Mano, City of Kathon Mollay View Overage 813 Rear Mollay View Approx Rear Mollay View Mano Vi										
Fullence City of Latence (City of Latence (City of Latence (City of Latence (City of Latence (City of Latence (City of Mere Wr: Biol 6S.G.G. WMD P1 F-8 CalR (Calmody frag of Mere Wr: Biol 6S.G.G. Comage Field (City of Mere Wr: Biol 6S.G.G. WMD P1 F-8 CalR (Calmody frag Mere Wr: Biol 6S.G.G. Comage Mere Mere Wr: Biol 6S.G.G. Mere Wr: Biol 6S.G.G. Mere Mere Mere Mere Wr: Biol 6S.G.G. Mere Wr: Biol 6S.G.G. Mere Mere Mere Mere Mr: Biol 6S.G. Mere Mere Mere Mere Mere Mere Mere Mere	South Coast Region		Sonta Ano PSA				6			0,0
moder Buene Ferk, City of Intervo. City of Memory Wribing So. Caloradok Aque Comage Sol Total Memory Mr. Dia of So. Caloradok Aque Comage Sol Total Memory Mr. Dia Memory Mr. Dia Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr. Mr.	MWD F-8	Fullerton, City of	MWD P1 F-8 Col R	Orange	9735	1986	400			700
Lick Haber, City of Metro Wrr Dist of So. Ca. Colorado R. Aque Orange 3777 1982 87 55.5 Metro Wrr Dist of So. Ca. Worb uildo Cui Orange 2878 1981 5,100 39,000 Metro Wrr Dist of So. Ca. Newer EPR Coyo Orange 617.4 1984 3,125 19,600 Metro Wrr Dist of So. Ca. Newer EPR Coyo Orange 617.4 1984 3,125 19,600 Nearo Cransolidated WD CC-44.1D Fl Orange 107.42 1984 3,125 19,600 Nearo Cransolidated WD CC-44.1D Fl Orange 1741 984 3,125 19,600 Metro Wrr Dist So. Ca. MMOT Indir Corange 2401 1984 100 1,416 Metro Wrr Dist So. Ca. MMOT Indir Neweride 6910 1983 2,850 18,000 Metro Wrr Dist So. Ca. MMOT Indir Riverside 2,931 1,416 1,416 Metro Wrr Dist So. Ca. MMOT Indir R. Riverside 2,431 1,823 2,830 1,800 </td <td>OC-17 Turnout*</td> <td>Buena Park. City of</td> <td>W Orange Fdr LA A9</td> <td>Orange</td> <td>7297</td> <td>1985</td> <td>120</td> <td>870</td> <td></td> <td>240</td>	OC-17 Turnout*	Buena Park. City of	W Orange Fdr LA A9	Orange	7297	1985	120	870		240
Name Wr Dist of So Ca Verbal (So Ca <thv< td=""><td>I cmbert Road*</td><td>La Habra. City of</td><td>Calorado R Aque</td><td>Orange</td><td>3797</td><td>1982</td><td>87</td><td>565</td><td></td><td>170</td></thv<>	I cmbert Road*	La Habra. City of	Calorado R Aque	Orange	3797	1982	87	565		170
Merro Wrr Dis of So. Ca MWD Valley View Crange 882.8 1985 4,100 13,600 Atter of Vir Dis of So. Ca Lower FDR Coyo Corrage 6,17.4 1984 3,125 19,600 and Ano. Gray field Coc.44.0 FI Corrage 6,17.4 1984 3,125 19,600 and Ano. Gray field Anor Dist So. Ca NMO Freder FI Corrage 201 1984 137 1,416 and Ano. Gray field Anor Sond Canyon FI Corrage 201 1983 2,850 18000 Anor Over Dist So. Ca MWO Freder FI Corrage 501 1983 2,850 18000 Merro Wir Dist So. Ca MWO Freder FI Corrage 501 1983 2,850 18000 Merro Wir Dist So. Ca MWO Freder FI Riverside 571 1983 7,900 3,900 Merro Wir Dist So. Ca MWO Freder FI Riverside 571 1983 7,900 3,900 So. Ca Edition Co Hile Premeridino 1983 7,900 4,900 3,900	Yorha Linda*	Metro Wtr Dist of So Ca	Yorba Linda Cnł	Orange	2896	1981	5,100	39,000		
Metro Wrr Digi of So Ca Lower EPR Coyo Conge 6/17.4 194.4 3.125 19.600 air Free Consolidated WD CC-4410 Pl Orenge 107.42 1991 50 air Freery Res & Appl MWO Freeder Pl Orenge 107.42 1984 130 air Freery Res & Appl MWO Freeder Pl Orenge 2401 1984 130 Desert Writer Agency Save Cr, Samb An Riverside 6819 1983 2800 18,000 Mero Wr Dis So Ca MWO L Fdr Pl Riverside 571 1983 2,800 18,000 Mero Wr Dis So Ca MWO L Fdr Pl Riverside 571 1983 2,900 39,000 Mero Wr Dis So Ca MWO L Fdr Pl Riverside 571 1983 2,900 30,000 Mero Wr Dis So Ca MWO L So Ff Riverside 571 1983 2,900 30,000 So Ca Elison Ca MYO PI Sin Ender Pl Riverside 571 1983 2,000 30,000 So Ca E		Metro Wtr Dist of So Ca	MWD Valley View	Orange	8828	1985	4,100	13,600		421
 s Red S[*] Mesa Consolidated WD O C44 ID PI O comge 10742 1984 2010 2010 2010 2010 2011 2011 2011 2011 2011 2011 2012 2012 2013 2013 2014 2014 2014 2014 2014 2014 2014 2015 2015 2014 2014 2014 2014 2014 2015 2015 2015 2014 2014 2014 2014 2014 2014 2014 2015 2015 2015 2014 <	Covote Creek*	Metro Wtr Dist of So Ca	Lower FDR Coyo	Orange	6174	1984	3,125	19,600		218
Same Area, City of Traine Ronch WD Same Caryon Same Sanch WD Corange 1986 200 Frenzy Res & Appl Frenzy Res & Appl Seven Violer Agency Samed Caryon PI Orange 1916 1984 13 Desert Worer Agency NwO Fredear PI Orange 2401 1983 2.850 18.000 Metro Wrr Dist So Cc MWD I Edir PI Riverside 6819 1983 2.850 18.000 Metro Wrr Dist So Cc MWD I Edir PI Riverside 5714 1983 2.850 18.000 Metro Wrr Dist So Cc MWD I Fold Riverside 5714 2.850 18.000 Metro Wrr Dist So Cc MWD I Fold Riverside 5714 2.850 18.000 Metro Wrr Dist So Cc MWD I Fold Riverside 5714 2.850 18.000 San Bernactino, City of Nam Wrr Dist So Ca WO I Fold Riverside 5714 2.850 1.000 San Bernactino, City of Muni IP Carpin R Nam Mit Carpin C San Bernactino 2.92 2.90 3.900 San Bernactino, City of Muni IP Carpin C S	Santa Ana Pres Red S*	Mesa Consolidated WD	OC-44 ID PI	Orange	10742	1661	50			221
Invine Ranch WD Sand Canyon Pl Crange 9186 1984 130 Energy Res & Appl MWD Feeder Pl Corange 2401 1984 130 Deserve Cr, Sante An Neverside 6010 1983 2,850 18,000 Metro Wrr Dist So Ca MWD I Feder Pl Crange 5338 1983 2,850 18,000 Metro Wrr Dist So Ca MWD I Fedr Pl Riverside 5010 1933 2,850 18,000 Metro Wrr Dist So Ca MWD I Fdr Pl Riverside 5714 1983 2,850 18,000 Metro Wrr Dist So Ca Perit Bypacs Pl Riverside 5714 1983 2,900 4,000 Metro Wrr Dist So Ca Perit Bypacs Pl Riverside 5714 1983 2,000 3,000 Jake Hemet Muni Wrr Dist San Bernardino Ci Lyfle Cr, Santa A San Bernardino Ci 2,414 2,55 1,148 San Bernardino City of Muni Pl Carjein C San Bernardino City of Muni Pl Carjein C San Bernardino City of 4,700 2,55 1,	Santa Ana*	Santa Ana, City of		Orange		1986	200			
Freigy Res & Appl MWD Feeder Pl Comage 7401 1984 187 1,416 Desert Water Agency Snow Cr, Santo An Riverside 6819 1983 2850 18,000 Metro Wrr Dist So Cc MWD L Fdr Pl Riverside 6819 1983 2,850 18,000 Metro Wrr Dist So Cc MWD L Fdr Pl Riverside 503 1980 4,900 39,000 Metro Wrr Dist So Cc NWD L Fdr Pl Riverside 5714 1982 2,850 18,000 Metro Wrr Dist So Cc NWD H Fdr Cr, Santo A San Bernardino 7226 1983 7,900 30,000 Jake Hemest Muni Wrr Dist Won Kr Dist So Cc Public Cr, Santo A San Bernardino 1722 255 1,148 San Bernardino City of Muni PI Carpin C San Bernardino 2155 1983 200 4,000 San Bernardino, City of Muni PI Carpin C San Bernardino 2155 1,148 256 1,340 So Ga Edison Co Muni PI Carpin C San Bernardino 1924 70 <td>Zone Reservoir*</td> <td>Irvine Ranch WD</td> <td>Sand Canyon Pl</td> <td>Orange</td> <td>9186</td> <td>1984</td> <td>130</td> <td></td> <td></td> <td>180</td>	Zone Reservoir*	Irvine Ranch WD	Sand Canyon Pl	Orange	9186	1984	130			180
Desert Woher Ageroy Snow Cr, Santa An Riverside 6819 1988 300 Metro Wr Dist So Ca MWU L Fdr Pl Riverside 6010 1983 2.850 18,000 Metro Wr. Dist So Ca MWU L Fdr Pl Riverside 6010 1983 2.850 18,000 Metro Wr. Dist So Ca Everside 8056 1983 7,900 39,000 Metro Wr. Dist So Ca Perrit Byposs Pl Riverside 5714 1982 1983 3,900 Metro Wr. Dist So Ca Perrit Byposs Pl Riverside 5714 1982 100 3,60 Son Bernardino, City of Muni Wr. Dist Son Bernardino 2132 1904 4,50 3,900 Son Bernardino, City of Muni Pl Carjein C Son Bernardino 6155 1983 207 456 Son Bernardino, City of Muni Pl Carjein C Son Bernardino 2155 1984 70 220 1,360 Son Bernardino, City of Muni Pl Carjein C Son Bernardino 1924 70 220 400 <	Turthe Rock-Quail Hi	Energy Res & Appl	MWD Feeder Pl	Orange	7401	1984	187	1,416		196
Metro Wrr Dist So Ca MWD I Fdr PI Riverside 6010 1983 2.850 18,000 Nerro Wrr Dist So Ca Metro Wrr Dist So Ca Metro Wrr Dist So Ca Metro Wrr Dist So Ca Jake Mathews Crift Riverside 5938 1983 2,850 18,000 Nerro Wrr Dist So Ca Reiri Stypas R Riverside 5714 1982 1,000 360 R Iole Hennel Muni Wr Dist San Barnardino Riverside 5714 1982 100 360 R San Barnardino, City of Muni PI Carjant A San Barnardino, City of Muni PI Carjant A San Barnardino, City of Muni PI Carjant C San Barnardino, City of 450 3,900 1,300 R San Barnardino, City of Muni PI Carjant C San Barnardino 155 1984	Snow Creek*	Desert Water Agency	Snow Cr, Santa An	Riverside	6819	1988	300			760
Metro Wrr Dist So Ca MWD L Fdr Pl Riverside 5938 1983 2,850 18,000 news* Metro Wrr Dist So Ca Lake Mahlews Cnl Riverside 2896 1983 7,900 39,000 After Wir Dist So Ca Perris Byposs Pl Riverside 2055 1983 7,900 30,000 After Wir Dist So Ca Perris Byposs Pl Riverside 2014 982 7,900 30,000 After Main Wirr Dist WD Fight Scanta A San Bernardino 1932 1904 450 3,900 Son Bernardino, City of Muni Pl Carpiair C San Bernardino 155 1983 207 450 1,300 Son Bernardino, City of Muni Pl Carpiair C San Bernardino 155 1983 70 222 1,148 Son Bernardino, City of Muni Pl Carpiair C San Bernardino 155 1983 70 450 4,700 Son Bernardino, City of Muni Pl Carpiair C San Bernardino 153 1984 70 220 1,300 So Ca Edison Co<		Metro Wtr Dist So Ca	MWD L Fdr Pł	Riverside	6010	1983	2,850	18,000		135
Metro Wrth Dist So Ca Lake Mathews Cnl Riverside 2896 1980 4,900 39,000 Ker Jake Hemet Muni Wir Dist WO Pl Son Jocint Riverside 5714 1983 7,900 40,000 Ke Jake Hemet Muni Wir Dist WO Pl Son Jocint Riverside 5714 1983 7,900 40,000 Ke Son Gardison Cu Lyde (C, Santa A San Bernardino, City of Muni Pl Carjein C San Bernardino, City of <td>Temescol*</td> <td>Metro Wtr Dist So Ca</td> <td>MWD L Fdr Pl</td> <td>Riverside</td> <td>5938</td> <td>1983</td> <td>2,850</td> <td>18,000</td> <td></td> <td>135</td>	Temescol*	Metro Wtr Dist So Ca	MWD L Fdr Pl	Riverside	5938	1983	2,850	18,000		135
Metro Wrr Dist So. Ca Perris Bypass Pl Riverside 6056 1983 7,900 40,000 K* Lake Hemet Muni Wrr Dist WD Pl San Jacint Riverside 5714 1982 100 380 K* So Ca Edison Co Lyrle Cr, Santa A San Bernardino 1732 1904 450 3,900 * San Bernardino V Mun Wr Lyrle Cr, Santa A San Bernardino 1732 1904 450 3,900 * San Bernardino, City of Muni Pl Carijen C San Bernardino 6155 1984 70 220 * San Bernardino, City of Muni Pl Carijen C San Bernardino 6155 1984 70 220 * San Bernardino, City of Muni Pl Carijen C San Bernardino 6155 1984 70 220 * San Bernardino, City of Muni Pl Carjen C San Bernardino 1934 1904 3000 1,300 * San Bernardino 1934 1904 803 4700 220 1,300 * San Bernardino 1934 1904 3004 14,000 4700 * San Bernardino 1934 1904 300 14,000 * Sa Ca Edison Co <	Inke Mathews*	Metro Wtr Dist So Ca	Lake Mathews Cnl	Riverside	2896	1980	4,900	39,000		250
4: Lake Hernet Muni Wrr Dist WD PI San Jacint Riverside 5714 1982 100 360 4: Lake Hernet Muni Wrr Dist San Jacinto R Riverside 714 1982 100 360 4: San Bernardino V Mun Wr Lykle Cr, Santa A San Bernardino 1932 1904 450 3,900 7: San Bernardino, City of Muni PI Carjein C San Bernardino, Gity of Muni PI Carjein C San Bernardino, Gity of Muni PI Carjein C San Bernardino, Gity of 450 3,900 1,300 7: San Bernardino, City of Muni PI Carjein C San Bernardino, Gity of Muni PI Carjein C San Bernardino, Gity of 450 3,900 1,300 7: San Bernardino, City of Muni PI Carjein C San Bernardino, Gity of 410 220 4,700 8: So Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 230 1,400 8: So Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 230 1,500 8: Ca Depi Wr Upland FDR San Bernardino 1934 1904 </td <td>Perris*</td> <td>Metro Wtr Dist So Ca</td> <td>Perris Bypass Pl</td> <td>Riverside</td> <td>6056</td> <td>1983</td> <td>7,900</td> <td>40,000</td> <td></td> <td></td>	Perris*	Metro Wtr Dist So Ca	Perris Bypass Pl	Riverside	6056	1983	7,900	40,000		
** Iake Hemet Muni Wrr Dist San Bernardino V Z426 Z55 1,148 ** Sa Ga Edison Co Lydle Cr, Samta A San Bernardino 1932 1904 450 3,900 ** San Bernardino V Mun Wr Lydle Cr, Samta A San Bernardino 2889 207 450 3,900 ** San Bernardino V Mun Wr Lydle Cr, Samta A San Bernardino 6155 1983 207 450 1,300 ** San Bernardino, City of Muni Pl Carjein C San Bernardino 6155 1983 207 450 1,300 ** San Bernardino, City of Muni Pl Carjein C San Bernardino 6155 1984 70 220 ** Sac Edison Co Mill Cr, Santa An San Bernardino 1934 1904 2300 14,000 ** Sac Edison Co Mill Cr, Santa An San Bernardino 1934 1904 230 1,510,000 ** Upland Wr. Dept Upland FDR San Bernardino 6488 1984 90 4,700 ** Ca Dpt Wr. Resource E Br Ca Aque San Bernardino 6488 1994 90 4,000 ** Ca Dpt Wr. Resource E	Oakcliff*	Lake Hemet Muni Wtr Dist	WD PI San Jacint	Riverside	5714	1982	100	360		220
So Ca Edison Co Lylle Cr, Santa A San Bernardino 1932 1904 450 3,900 San Bernardino V Mun Wr Lylle Cr, Santa A San Bernardino 289 3,900 1,300 San Bernardino V Mun Wr Lylle Cr, Santa A San Bernardino 289 3,900 1,300 San Bernardino, City of Muni Pl Carjein C San Bernardino 6155 1983 207 450 2,00 so Ca Edison Co Hill Cr, Santa An San Bernardino 1934 1904 800 4,700 so Ca Edison Co Hill Cr, Santa An San Bernardino 1934 1904 260 1,500 so Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 260 1,500 so Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 200 1,500 so Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 200 1,500 so Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 200 1,500 or Ca Dpt Wr Resource E Br Ca Aque S	North Fork*	Lake Hemet Muni Wtr Dist	San Jacinto R	Riverside	7426		255	1,148		270
San Bernardino V Mun Wr Lyrle Cr, Santa A San Bernardino, City of Muni Pl Carjein C San Bernardino 1904 250 1,500 1,300 art Cacppt Wir Resource EBr Ca Aque San Bernardino 2426 1904 3000 1,510,000 Moni Moni Muni Wr Pl Ca San Bernardino 2426 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,200	Lytle Creek*	Sa Ca Edison Ca	Lytle Cr, Santa A	San Bernardino	1932	1904	450	3,900		483
San Bernardino, City of San Bernardino, City of Muill Cr, Santa An San Bernardino San Bernardino (1734) 6155 1983 207 450 2* So Ca Edison Co Mill Cr, Santa An Upland Wrr Dept Upland Wrr Dept Cac Dpt Wrr Resource Muni PL Carjanta An San Bernardino San Bernardino 1934 1904 2,00 4,700 10* Cac Dpt Wrr Resource E Br Ca Aque Monte Vista Wrr Dist San Bernardino 6488 1984 90 4,03 10* Cac Dpt Wrr Resource E Br Ca Aque San Bernardino San Bernardino 2426 1976 279,700 1,510,000 1 So Ca Edison Co Santa Ana R San Bernardino 10484 1990 8800 5,000 2* So Ca Edison Co Santa Ana R San Bernardino 1933 1905 8,000 5,000 1 Big Bear ARWA Santa Ana R San Bernardino 1933 1905 8,000 5,000 <td< td=""><td>Lytle Creek</td><td>San Bernardino V Mun Whr</td><td>Lytle Cr, Santa A</td><td>San Bernardino</td><td>2889</td><td></td><td></td><td></td><td>1,300</td><td></td></td<>	Lytle Creek	San Bernardino V Mun Whr	Lytle Cr, Santa A	San Bernardino	2889				1,300	
San Bernardino, City of San Bernardino Muni Pl Carjein C San Bernardino San Bernardino 6155 1984 70 220 2* So Ca Edison Co Hill Cr, Samb An San Bernardino 1934 1904 800 4,700 3* Upland Wr Dept Upland Wr Dept Upland FDR San Bernardino 1934 1904 3,000 14,000 1° Cucomonga Co Mill Cr, Santa An San Bernardino 1934 1904 3,000 14,000 1° Upland Wr Dept Upland FDR San Bernardino 1934 1904 3,000 14,000 1° Ca Dpt Wr Resource E Br Ca Aque San Bernardino 2426 1976 279,700 1,510,000 1° So Ca Edison Co Muri Wrr PI Ca A San Bernardino 2426 1976 279,700 1,510,000 1° So Ca Edison Co Santa Ana R San Bernardino 2426 1976 279,700 1,510,000 1°	Site 1720*	San Bernardino, City of	Muni Pl Carjein C	San Bernardino	6155	1983	207	450		169
San Bernardino, City of Muni Pl Carjein C San Bernardino 155 1987 83 260 2* So Ca Edison Co Hill Cr, Santa An San Bernardino 1934 1904 250 1,500 3* So Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 250 1,500 3* Upland Wir Dept Upland FDR San Bernardino 6488 1984 90 403 or Cucamonga Co WD Ca Dpt Wir Resource E Br Ca Aque San Bernardino 2426 1976 279,700 1,510,000 or Ca Dpt Wir Resource E Br Ca Aque San Bernardino 2426 1976 279,700 1,510,000 or Ca Dpt Wir Dist Muni Wir Pl Ca A San Bernardino 2426 1976 279,700 1,510,000 or So Ca Edison Co San Bernardino 2426 1976 279,700 1,510,000	Site 1895*	San Bernardino, City of	Muni Pl Carjein C	San Bernardino	6155	1984	70	220		169
1* So Ca Edison Co Hill Cr, Santa An San Bernardino 1934 1904 250 4,700 2* So Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 250 1,500 3* So Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 250 1,500 a* Upland Wrr Dept Upland FDR San Bernardino 6688 1984 90 403 a* Cucomonga Co WD San Bernardino 6488 1984 90 403 yon* Ca Dpt Wir Resource E Br Ca Aque San Bernardino 2426 1976 279,700 1,510,000 yon* Monte Vista Wrr Dist Muni Wrr PI Ca A San Bernardino 2426 1976 279,700 1,510,000 3* So Ca Edison Co San Bernardino 2426 1976 2,950 8,800 3* So Ca Edison Co San Bernardino 2198 1977 2,950 8,800 3* So Ca Edison Co San Bernardino <td>Site 2100*</td> <td>San Bernardino, City of</td> <td>Muni Pl Carjein C</td> <td>San Bernardino</td> <td>6155</td> <td>1987</td> <td>83</td> <td>260</td> <td></td> <td>169</td>	Site 2100*	San Bernardino, City of	Muni Pl Carjein C	San Bernardino	6155	1987	83	260		169
So Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 250 1,500 So Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 3,000 14,000 Upland Wrr Dept Upland FDR San Bernardino 6688 1984 90 403 Cucamorga Co WD San Bernardino 6488 1984 90 403 Monte Vista Wrr Dept Upland FDR San Bernardino 2426 1976 279,700 1,510,000 Monte Vista Wrr Dist Muni Wrr PI Ca A San Bernardino 2426 1976 279,700 1,510,000 So Ca Edison Co Lyfle Cr, Santa A San Bernardino 10484 1990 870 8,800 So Ca Edison Co Santa Ana R San Bernardino 2198 1947 1,200 7,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 <	Mill Creek 1*	So Ca Edison Co	Hill Cr, Santa An	San Bernardino	1934	1904	800	4,700		019
So Ca Edison Co Mill Cr, Santa An San Bernardino 1934 1904 3,000 14,000 1 Upland Wrr Dept Upland FDR San Bernardino 6688 1984 90 403 Cucamorga Co WD San Bernardino 6688 1984 90 403 Cucamorga Co WD San Bernardino 2426 1976 279,700 1,510,000 Monte Vista Wir Dist Muni Wir Pl Ca A San Bernardino 2426 1976 279,700 1,510,000 So Ca Edison Co Lyfle Cr, Santa A San Bernardino 10484 1990 870 8,800 So Ca Edison Co Santa Ana R San Bernardino 2198 1917 2,950 8,800 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 <t< td=""><td>Mill Creek 2*</td><td>So Ca Edison Co</td><td>Mill Cr, Sonta An</td><td>San Bernardino</td><td>1934</td><td>1904</td><td>250</td><td>005,1</td><td></td><td>070</td></t<>	Mill Creek 2*	So Ca Edison Co	Mill Cr, Sonta An	San Bernardino	1934	1904	250	005,1		070
Upland Wrr Dept Upland FDR San Bernardino 6688 1784 90 403 anyon* Ca Dpt Wir Resource E Br Ca Aque San Bernardino 2426 1976 279,700 1,510,000 1 on* Monie Viste Wir Dist Muni Wir PI Ca A San Bernardino 2426 1976 279,700 1,510,000 1 on* Monie Viste Wir Dist Muni Wir PI Ca A San Bernardino 10484 1990 870 8,800 on 3* So Ca Edison Co Santa Ana R San Bernardino 2198 1917 2,950 8,800 na 2* So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 na 1* So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 valbig Bear ARWA Santa Ana R San Bernardino 1933 1905	Mill Creek 3*	So Ca Edison Co	Mill Cr, Santa An	San Bernardino	1934	1904	3,000	14,000		1161
nga* Cucamonga Co WD San Bernardino 1981 20 anyon* Ca Dpt Wr Resource E Br Ca Aque San Bernardino 1476 279,700 1,510,000 1 on* Monte Vista Wir Dist Muni Wir Pl Ca A San Bernardino 2426 1976 279,700 1,510,000 1 on* Monte Vista Wir Dist Muni Wir Pl Ca A San Bernardino 10484 1990 870 8,800 on 3* So Ca Edison Co Lyrle Cr, Santa Ana R San Bernardino 2198 1917 2,950 8,800 na 2* So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 na 1* So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 val Big Bear ARWA San Bernardino 1933 1899 3,200 18,000	Upland"	Upland Wtr Dept	Upland FDR	San Bernardino	6688	1984	60	403		720
 Ca Dpt Wr. Resource E Br. Ca Aque San Bernardino 2426 1976 279,700 1,510,000 Monte Vista Wrr Dist Muni Wrr Pl Ca A San Bernardino 10484 1990 870 So Ca Edison Co Lyrlle Cr, Santa A San Bernardino 2198 1917 2,950 8,800 So Ca Edison Co Santa Ana R San Bernardino 2198 1947 1,200 7,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 Big Bear ARWA San Bernardino 9186 	Cucamonga	Cucamonga Co WD		San Bernardino		1981	20			
Monte Vista Wrr Dist Muni Wrr Pl Ca A San Bernardino 1990 870 So Co Edison Co Lyrlle Cr, Santa A San Bernardino 1917 2,950 8,800 So Ca Edison Co Santa Ana R San Bernardino 1917 2,950 8,800 So Ca Edison Co Santa Ana R San Bernardino 2198 1947 1,200 7,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 Big Bear ARWA San Bernardino 1933 1899 3,200 18,000	Devils Canyon*	Ca Dpt Wtr Resource	E Br Ca Aque	San Bernardino	2426	1976	279,700	1,510,000		1406
So Co Edison Co Uyrle Cr, Santa A San Bernardino 1917 2,950 8,800 So Ca Edison Co Santa Ana R San Bernardino 2198 1947 1,200 7,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1899 3,200 18,000 Big Bear ARWA San Bernardino 9186	R-4 Station*	Monte Vista Wtr Dist	Muni Wir Pl Ca A	San Bernardino	10484	0661	870	1		363
So Ca Edison Co Santa Ana R San Bernardino 2198 1947 1,200 7,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 Sa Ca Edison Co Santa Ana R San Bernardino 1933 1899 3,200 18,000 Big Bear ARWA San Bernardino 9186	Fontana*	So Co Edison Co	Lytle Cr, Santa A	San Bernardino		1917	2,950	8,800		658
So Ca Edison Co Santa Ana R San Bernardino 1933 1905 800 5,000 So Ca Edison Co Santa Ana R San Bernardino 1933 1899 3,200 18,000 Big Bear ARWA San Bernardino 9186	Santa Ana 3*	So Ca Edison Co	Santa Ana R	San Bernardino	2198	1947	1,200	7,000		354
Sa Ca Edison Co Santa Ana R San Bernardino 1933 1899 3,200 18,000 Big Bear ARWA San Bernardino 9186	Santa Ana 2°	So Ca Edison Co	Santa Ana R	San Bernardino	1933	1905	800	5,000		310
Big Bear ARWA San Bernardino	Santa Ana 1*	Sa Ca Edison Co	Santa Ana R	San Bernardino		1899	3,200	18,000		1.26
	Incerne Val	Bia Bear ARWA		San Bernardino	9186					

304

	DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued)	ANNED DEVELOPME	INT OF HYD	ORDELECTRI	c resou	RCES (Coi	ntinued)		
					Developed	oped		Undeveloped	
6 lydrologic Region ant or Site	Owner	River Basin ar PSA and Stream	County	FERC Year Project No. Installed		installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Copocity KW	Gross Stat Head (FT)
oast Region		San Diego PSA							
n Franciso Peak*	Oceanside, City af	Tri-Agencies PI (M)	San Diega	7147	1985	06	532		350
uires Dam [*]	Costa Real Muni WD	Muni WS Pl Diego	San Diego	9902	1988	40			325
ger Miller*	Olivernhain Mun WD	Gaty Res Pl San	San Diego	9888	1988	450			270
icon*	Escandida Mutual Water Ca		San Diego	176	1983	300	1,200		824
ar Valley*	Escondido Mutual Water Ca		San Diego		1986	1,400	5,600		400
arada"	San Diego Co Water Auth		San Diego	5670	1985	2,000	7,816		190
dger Filt Plt*	San Diego Whr Dist		San Diego	5397	1987	1,490			350
d Mauntain*	Metra Water Dist of So Ca		San Diega	8552	1985	5,900	37,900		232
ramar*	San Diega Ca Water Auth	Second Aque Pl (F)	San Diega	5669	1985	800	3,995		72
int Lama	San Diego, City af	WWT Outfall (San D)	San Diega	7510		1,350	3,300		89
ento Region		Sucramenta River							

Hydrologic Region Plant or Site	Owner	River Basin ar PSA and Stream	County	FERC Year Project No. Installed	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Copocity KW	Gross Stat Head (FT,
South Coast Region		San Diego PSA							
San Franciso Peak*	Oceanside, City af	Tri-Agencies Pl (M)	San Diega	7147	1985	60	532		350
Squires Dam [*]	Casta Real Muni WD	Muni WS Pl Diega	San Diega	9902	1988	40			325
Rager Miller*	Olivernhain Mun WD	Gaty Res Pl San	San Diega	9888	1988	450			270
Rincon*	Escandida Mutual Water Ca	San Luis Rey R	San Diega	176	1983	300	1,200		824
Bear Valley*	Escandida Mutual Water Ca	Escandida Cr, Pac	San Diega		1986	1,400	5,600		400
Alvarada*	San Diego Co Water Auth	Second Aque Pl (FI)	San Diega	5670	1985	2,000	7,816		190
Badger Filt Plt*	San Diego Wtr Dist	Aliso Canyan (San)	San Diego	5397	1987	1,490			350
Red Mauntain*	Metra Water Dist of So Ca	SD PI	San Diega	8552	1985	5,900	37,900		232
Miramar*	San Diega Ca Water Auth	Second Aque Pl (F)	San Diega	5669	1985	800	3,995		72
Paint Lama	San Diega, City af	WWT Outfall (San D)	San Diega	7510		1,350	3,300		89
Sacramenta Regian		Sacramento River							
Slate Creek	Slate Cr Hydro Assoc	Slate Cr, Sacramento	Shasta	3908		2,710	14,200		150
Shasta*	Bureau of Reclamatian	Sacramento R	Shasta			539,000	2,788,590		492
Keswick*	Bureau of Reclamatian	Sacramento R	Shasta			75,000	477,500		87
Spring Creek*	Bureau of Reclamation	Spring Cr, Sac	Shasta		1964	180,000	603,000		625
Spring Creek*	Iran Mtn Mines*	Spring Cr	Shasta					5,000	
Judge Francis Carr [•]	Bureau of Reclamation	Clear Cr Inl	Shasta		1963	154,400	531,232		695
Whiskeytown*	Redding, City of	Clear Cr, Sac	Shasta	2688	1986	3,530	8,658		240
Spring Creek	Redding, City of	Spring Cr, Sac	Shasta	9470					
Lake Siskiyau	Siskiyau Ca FC & WCD	Little Sacramento	Siskiyau	2796		5,000	21,900		161
Sacramento Region		Pit and McClaud Rivers							
Turner Cr	Turner Cr. Pawer Ca	Turner Cr	Madac	10048					
Pit 4°	Pacific Gas & Electric Ca	Pit R	Shasta	233	1955	95,000	479,000		382
Pit 3*	Pacific Gas & Electric Ca	Pit R	Shasta	233	1925	70,000	385,400		315
Mantgamery Cr Falls*	Deyl, C	Mantgomery Cr	Shasta					500	67
Mantgamery Cr*	Narthern Resources, Inc	Mantgamery Cr	Shasta	3590	1987	2,400	10,800		24
Silver Springs [*]	Basetti, Rick M	Silver Springs	Shasta	8975	1982	900	4,000		555
Grasshapper Flat	Nelson Creek Power Inc	Nelsan Cr	Shasta	9029				1035	370
Burney Creek	Mega Renewables	Burney Cr	Shasta	8671				3000	630
Muck Valley	Malacha Pwr Praject Inc	Pit R	Shasta	8296		29,900	000'06		666
Gaase Valley*	Mega Hydro Inc	Gaase Cr, Burney	Shasta	6548		280			251
Hat Cr 2*		Hat Cr	Shasta	2661	1921	8,500	39,300		198
Hat Cr 1.	Pacific Gas & Electric Ca	Hat Cr	Shasta	2661	1921	8,500	19,300		213

On California Energy Commission Mop and List

Hydroelectric Resources of California

					Devel	Developed		Undeveloped	
7 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Project No.	Year Installed	Installed Capacity KW	Averoge Annual Generotion 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
Sacramento Region		Pit and McCloud Rivers (Continued)							
Hat Cr Hereford R*	Thompson, Robert	Hat Cr	Shasta	4794	1982	100	900		16
Bidwelf Ditch*	Bidwell, Floyd N	Lost Cr, Hat Cr	Shasta	9334	1987	2,000			150
Lost Cr 2*	Highland Hydro Const	Lost Cr., Hat Cr	Shasta	5130	1985	500			85
Lost Cr 1*	Bidwell, Floyd N	Lost Cr, Hat Cr	Shasta	3863	1989	1,400			363
Pit 1*	Pacific Gas & Electric Co	Pit R	Shasta	2687	1965	61,000	264,100		455
Fruit Growers*		Burney Cr	Shasta		1990	3,000			
Hatchet Cr [•]	Roseburg Lumber Co	Hatchet Cr	Shasta	5931	1987	6,890	21,270		1,210
Raaring Cr*	Roaring Cr Ranch	Roaring Cr	Shasta	7282	1986	2,000	3,750		315
Caldwater*	Caldwater Pwr Proj	Roaring Cr	Shasta		1990	5,000			760
Pit 7*	Pacific Gas & Electric Co	Pit R	Shasta	2106	1965	112,000	495,100		205
Pit 6*	Pacific Gas & Electric Co	Pit R	Shasta	2106	1965	80,000	334,600		155
James B. Black [*]	Pacific Gas & Electric Co	Pit R	Shasta	2106		172,000	539,700		1,226
Baker-Kosk Cr*	Pfeiffer, Dr Harold W	Kask Cr	Shasta	4826	1985	207	1,410		185
Pit 5*	Pacific Gas & Electric Co	Pit R	Shasta	233	1944	156,000	920,000		615
Sacramento Region		West Side							
Stovall 1	Glenn-Calusa ID	Glenn-Calusa Cnl	Colusa	6805		120	433		14
Stavall 2*	Glenn-Calusa ID	Glenn-Calusa Cnl	Colusa	6546		30	170		20
Mile 41.1*	Glenn-Calusa Irrig Dist	Glenn-Colusa Cnl	Colusa	9045		93	200		41
High Line Canal*	Santa Clara, City of	Highline Cnl	Glenn		1989	500			29
Stony Gorge	Santa Clara, City of	Stony Cr, Sac	Glenn	3193	1661	3,900	13,220		105
Indian Valley*	Yolo Co FC & WCD	N Fk Cache Cr	Lake	4066	1983	2,900	7,190		152
Clear Lake*	Yolo Co FC & WCD	Cache Cr	Lake	4063	1985	2,500			40
Monticella*	Salana ID	Putah Cr	Napa	2780	1983	11,500	52,000		210
Arbuckle Mtn*	Arbuckle Mtn Hydra Pnsp	MF Cattonwood Cr	Shasta			400	950		50
Monticella Tap	Pacific Gas & Electric Co	Putah Cr	Solano	5828					
Black Butte*	Santa Clara, City of	Stany Cr	Tehama	3190	1989	6,200	16,900		78

DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued)

• On California Energy Commission Map and List

306

(jg
ntinue
ů
EVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (C
Ĩ,
RES
S
5
DELE
YDRO
Η
ц Б
Ę
MEI
0
KEI
DE DE
Ē
AN
Р
g
DA
OPE
VEL
DE

					Developed	oped		Undeveloped	
8 Hydrologic Region Plant ar Site	Owner	River Basin or PSA and Stream	County	FERC Praject No.	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
Sacramento Region		East Side							
Centerville*	Pacific Gas & Elec Co	Butte Cr	Butte	803	1900	6,400	43,800		557
De Sabla [®]	Pacific Gas & Elec Co	Butte Cr	Butte	803	1963	18,500	120,100		1545
Forks af Butte"	Energy Growth Group et al	Butte Cr	Butte	6896			11,600		720
Taadtown*	Pacific Gas & Elec Co	Hendricks Cnl	Butte	803	1986	1,700	8,430		185
Hamlin Canyon	Crow, Oliver M & Gail M	Hamlin Canyon	Butte	7466		5	6		17
Paradise Project C*	Beckwith, Sterling	Paradise Supply	Butte	6274		40			115
Paradise Project D*	Beckwith, Sterling		Butte			40			
Mud Creek*	Perry Lagging Ca	Mud Cr	Butte	6330		300	1,300		176
Bailey Creek*	Bailey Creek Ranch	Bailey Cr, Battle	Shasta	3948	1982	630	5,000		100
Viola Church Camp*	No Valley Baptist Church	Armstrong Dth	Shasta			50			
Coleman*	Pacific Gas & Electric Co	Battle Cr	Shasta	1121	1161	13,000	63,481		482
Ponderasa Bailey*	Forward, Al	Bailey Cr, Battle	Shasta	8357	1990	1,100			300
Volta 2°	Pacific Gas & Electric Co	Cross Country Chl	Shasta	1121	1981	900	5,040		125
Volta 1.	Pacific Gas & Electric Co	Millseat Cr, N Fk	Shasta	1121	1981	000'6	57,000		1264
Sutters Mill*	Sutter, Fred N Jr	Millseat Cr, N Fk	Shasta	4283		150			60
Nichals*	Nichols, Frank B	S Fk Bear Cr	Shasta	5766	1986	3,000			650
McMillan*	McMillan Hydra Co	N Fk Little Cow Cr	Shasta	6952		950			590
McMillian Power 2	McMillian Hydro Co	Cow Cr	Shasta	8676				75	471
T & G Hydro*	T & G Hydro	Canyan Cr, Old Caw	Shasta	6905		350	845		551
Mega Hydro 1*	Mega Hydro Inc	Claver Cr	Shasta	5306	1986	1,000	4,300		437
Claver Leaf Ranch*	Mega Hydro Inc	Claver Cr	Shasta	7057	1985	200	882		148
Olsen*	Olsen Power Partners	Old Cow Cr	Shasta	8361	1990	5,000			596
Kilarc*	Pacific Gas & Electric Ca	Old Cow	Shasta	606	1903	3,200	22,000		1192
Poulton*	Poulton, W R	S Cow Cr	Shasta		1982	100	350		40
Cow Creek*	Pacific Gas & Electric Co	S Cow Cr	Shasta	606	1907	1,800	12,000		715
Inskip*	Pacific Gas & Electric Co	S Fk Battle Cr	Tehama	1121	1910	8,000	60,645		383
South*	Pacific Gas & Electric Co	S Fk Battle Cr	Tehama	1121	1979	7,000	44,000		516
Fire Mauntain	Tawnsend, D E	Fern Spr Cr	Tehama			45	130		9
Nikala 1	Lassen Research Co	Lower Baoledth Pl	Tehama	5697				30	10
Digger Cr*	Forward Pwr & Engy Co, Inc	S Digger Cr	Tehama	4714		750	5,300		465

Hydroelectric Resources of California

On California Energy Commission Map and List

					Deve	Develaped		Undeveloped	
9 Hydralogic Regian Plant ar Site	Owner	River Basin ar PSA and Stream	County	FERC Project Na.	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Prapased Capacity KW	Grass Stat Head (FT)
Sacramento Region		Feather River							
Lime Saddle*	Pacific Gas & Elec Co	W Br N Fk	Butte			2,000	11,000		462
French Cr	Oraville Wyandotte ID	French Cr N Fk	Butte	5601				10,000	978
Poe*	Pacific Gas & Elec Co	N Fk Feather R	Butte	2107	1958	120,000	600,670		477
Cresta*	Pacific Gas & Elec Co	N Fk Feather R	Butte	1962	1949	70,000	330,500		290
Camp Creek	Lassen Sta. Hydro LP	Camp Cr, N Fk	Butte	6120		066	4,778		500
Coal Canyon*	Pacific Gas & Elec Co	Miocene Cn 1	Butte		1 907	006	7,500		481
Kanaka*	Television Comm In	Sucker Run Cr, S	Butte	7242	1989	1,100			324
Forbestown*	Oroville-Wyandotte Irrig Dist	S Fk Feather R	Butte	2088	1963	28,800	183,100		835
Waodleaf *	Oroville-Wyandotte Irrig Dist	S Fk Feather R	Butte	2088	1963	52,200	297,100		1,495
Sly Creek*	Oroville-Wyandotte Irrig Dist	Last Cr, S Fk	Butte	2088	1984	13,200	48,200		225
Feather River Hatch	Ca Dept of Water Resource	Feather R	Butte	2100				4,770	18
Thermalito*	Ca Dept of Water Resaurce	Off Stream	Butte	2100	1968	32,600	270,000		102
Thermalito Diversion*	Ca Dept of Water Resource	Feather R	Butte	2100	1987	3,000	19,700		74
Kelly Ridge*	Oroville-Wyandatte Irrig Dist	Kelly Ridge Cnl	Butte	2088	1963	10,000	2,900		668
Edward G Hyatt"	Ca Dept of Water Resource	Feather R	Butte	2100	1969	351,000	1,934,000		675
Gansner Creek*	Austin, L & K	Gansner Cr, E Br N	Plumas	6162		250	844		300
Gansner Bar*			Plumas			280			
Peter Ranch	Peter, Jomes B	Peters Cr, Lights	Plumas	6919		15	83		161
Five Bears*	Ditt Inc	Ward Cr, Indian Cr	Plumas	6281		066			1,000
Belden*	Pacific Gas & Elec Co	N Fk Feather R	Plumas	2105	1969	125,000	245,300		770
Oak Flat*	Pacific Gas & Elec Co	N Fk Feather R	Plumas	2105	1985	1,300	6,600		137
Caribou 2°	Pacific Gas & Elec Co	N Fk Feather R	Plumas	2105	1958	120,000	210,900		1,149
Caribou 1*	Pacific Gas & Elec Ca	N Fk Feather R	Plumas	2105	1958	75,000	145,000		1,149
Butt Valley*	Pacific Gas & Elec Co	N Fk Feather R	Plumas	2105	1958	40,000	84,200		358
Hamilton Branch*	Pacific Gas & Elec Co	Hamilton Cr, N Fk	Plumas		1921	4,800	15,800		410
Graeagle	Henwaod Assoc Inc	Gray Eagle Cr, M	Plumas	3247		360	2,800		460
Graeagle Golf C	Graeagle L & W Co	Frazier Cr M Fk	Plumas	10505				60	255
Rock Creek*	Pacific Gas & Elec Co	N Fk Feather R	Plumas	1962	1950	112,000	482,500		535
Bucks Creek*	Pacific Gas & Elec Co	N Fk Feather R	Plumas	619		57,500	241,300		2,558

DEVELOPED AND PLANNED DEVELOPMENT OF HYDROFLECTRIC RESOLINCES (Continued)

Hydroelectric Resources of California

3479

Sierra

Rock Cr

Oroville-Wyandotte ID

* On Colifornia Energy Commission Map and List

Rock Cr 2

(Continued)
<i>IRIC RESOURCES</i>
DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES
DEVELOPMENT
AND PLANNED D
DEVELOPED

Riv Pacific Gas & Electric Co Pacific Gas & Electric Co Pacific Gas & Electric Co Pacific Gas & Electric Co Northwest & Power Co Nevada I D Nevada I D	River Basin ar PSA and Stream Yuba-Bear Rivers Drum Cnl (Bear R) S Yuba Cnl Deer Cr S Yuba R S Yuba R Canyon Cr, S Yuba	County Nevada Nevada Nevada Nevada Nevada Nevada	FERC Project No. 2310 2310 5930 6727 9086 2266 8255 8255 8255	Year Installed 1965 1968 1984 1986	Installed Capacity KW 49,500 54,000 5,700 1,000 1,000 1,000 4,400	Average Annual Generation 1,000 KWH 35,000 30,600 3,500 3,500 16,000 38,000 38,000	Proposed Capacity KW 14,000	Gross Stat Head (FT) 1,370 1,373 837 1,373 837 1,373 1,373 1,373 1,373 1,373 1,373 1,373 1,373 1,373 1,373 1,370 1,400 1,40 1,4
y	u ba-Bear Rive rs rum Cnl (Bear R) rum Cnl (Bear R) Yuba Cnl eer Cr Yuba R Yuba R anyon Cr, S Yuba	Nevada Nevada Nevada Nevada Nevada Nevada	2310 2310 5930 6727 9086 8256 8255	1965 1965 1908 1984 1986	49,500 54,000 5,700 1,000 3,600 4,400	35,000 245,000 30,600 3,500 16,000 20,000 38,000	2,500 14,000	1,370 1,373 837 140 48 155 162 344
 y	rum Cnl (Bear R) rum Cnl (Bear R) Yuba Cnl eer Cr Yuba R Yuba R anyon Cr, S Yuba	Nevada Nevada Nevada Nevada Nevada Nevada	2310 2310 5930 6727 9086 8255 8255	1965 1965 1908 1984 1986	49,500 54,000 1,000 3,600 4,400	35,000 245,000 30,600 3,500 16,000 20,000 38,000	2,500	1,370 1,373 837 140 48 155 155 162 344
y 8	rum Cnl (Bear R) Yuba Cnl eer Cr Yuba R Yuba R anyon Cr, S Yuba	Nevada Nevada Nevada Nevada Nevada Nevada	2310 5930 6727 9086 8255 8255	1965 1908 1984 1986	54,000 5,700 1,000 3,600 4,400	245,000 30,600 3,500 16,000 20,000 38,000	2,500	1,373 837 140 48 155 162 344 344
y 8	Yuba Cnl eer Cr Yuba R Yuba R anyon Cr, S Yuba	Nevada Nevada Nevada Nevada Nevada	2310 5930 6727 9086 8256 8255 2310	1908 1984 1986	5,700 1,000 3,600 4,400	30,600 3,500 16,000 20,000 38,000	2,500	837 140 155 155 344 344
y 8	eer Cr Yuba R Yuba R anyon Cr, S Yuba	Nevada Nevada Nevada Nevada	5930 6727 9086 2266 8255 2310	1984 1986	1,000 3,600 4,400	3,500 16,000 20,000 38,000	2,500	140 48 155 162 344 197
y 8	Yuba R Yuba R anyon Cr, S Yuba Vidha Cal S Vidha	Nevada Nevada Nevada	6727 9086 2266 8255 2310	1986	3,600 4,400	16,000 20,000 38,000	2,500 14,000	48 155 162 344 197
	Yuba R anyon Cr, S Yuba Viiha Cal S Viiha	Nevada Nevada Nevada	9086 2266 8255 2310	1986	3,600 4,400	16,000 20,000 38,000	14,000	155 162 344 197
8	anyon Cr, S Yuba Vuha Cal S Vuha	Nevada Nevada	2266 8255 2310	1986	3,600 4,400	16,000 20,000 38,000		162 344 197
8 8	Vuha Cal S Vuha	Nevada	8255 2310		4,400	20,000 38,000		344 197
e e	Viba Cal S Viba		2310		4,400	20,000 38,000		344 197
8		Nevada		1929		38,000		197
8	Drum Cnl S Yuba	Nevada	2310	1929	7,000			
c Co	Bow-SP Cnl S Yuba	Nevada	2310	1929	5,800	25,100		318
c Ca E	N Yuba R	Nevada	2981				3,500	184
ى بى ت ئ	N Fk Walf Cr, Bear	Nevada	6253		14	94		15
ු ප	Cambie N Aqueduct	Nevada	7731		350	2,500		40
ۍ ع	Bear R	Nevada	2981	1984	1,500	4,500		70
	S Fk Dry Cr	Placer	2310	1916	11,000	66,600		327
•	Fiddler Green Cn	Placer		1981	100			80
² acific Gas & Electric Co Au	Auburn Ravine	Placer	2310	1986	14,700	87,400		519
Garden Bar Farms, Inc Ca	Camp Far W Dth	Placer	7745		84	427		40
South Sutter W D Ber	3ear R	Placer	5222					
-	Canv Cnl, Bear	Placer			350	1,233		13
South Sutter W D Ber	8ear R	Placer	2997	1985	6,800	26,900		165
Nevada I D Bec	Bear R	Placer	2981	1980	12,200	77,000		215
Vevada I D Ch	Chicago Park Flm	Placer	2981	1966	41,500	140,000		481
Nevada I D U	Dutch Flat Cnl (B)	Placer	2981	1966	26,000	120,000		591
Pacific Gas & Electric Co Du	Outch Flat Cnl	Placer	2310	1943	22,000	54,800		643
Pacific Gas & Electric Co Tov	iowle Cnl Bear	Placer	2310	1 902	2,000	6,400		648
-	ittle Bear Cr	Placer	6942		10	50		25
& Electric Co	South Cnl	Placer	2310		11,500	49,000		419
Gallery, D F N	N Yuba R	Sierra	5841				7,500	700
Sertillian, Bertha W Roc	Rock Cr, N Yuba	Sierra	7893				20	138
Henwood Associates Inc Sal	Salmon Cr, N Yuba	Sierra	3730		009	5,100		460

Haypress-Bowman

Bawman* Excelsior

Miners Tunnel

Scatts Flat*

Sacramento Region Drum 2* Drum 1* Deer Creek

10 Hydrologic Region Plant or Site

Jackson Meadows

Haemmig Cambie N° Lake Cambie* Halsey*

Bell* Wise 1 & 2*

Garden Bar*

Spaulding 2° Spaulding 1° Spaulding 3°

Hydroelectric Resources of California

Garden Bar Vanjap 1* Camp Far West*

Rallins

Chicago Park* Dutch Flat 2* Dutch Flat 1*

• On Colifornia Energy Commission Map and List

Salman Creek*

North Yuba R Wright Ranch

Newcastle

Little Bear Cr

Alta*

	Under
DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued)	Developed
DEVELOPED AND PLANNED DEVELOP	

					Pevel	neveloped		Undeveloped	
11 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Project No.	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
Sacramento Region		Yuba-Bear Rivers (Continued)							
Charcoal Ravine*	Neocene Exploration Inc	Charcoal Ravine	Sierra	2006		58	375		240
Middle Havpress Cr.	Mac Hydro-Power Co Inc	Havnress Cr. N Yuha	Sierro	6061	1989	8 700	5		320
Eost Fork Cr	Havpress Hvdroelectric Inc	Havaress Cr. N Yuha	Sierra	9072	2				040
fower Hoveress Cr*	Hownress Hydroelectric Inc	Howness Cr. N Yuha	Sierro	5.02 8008	1080	001.8			001
Fish Power"	Corps of Engineers	Yuba R	Yuba	0700	10/1	0,150			004
Virainia Ranch Dam*	Browns Valley I D	Drv Cr	Yuha	307.5	1984	000 1	4 030		125
Narrows*	Pacific Gas & Electric Co	N Yuba R	Yuba	1403	1661	12.000	72,000		240
New Narrows [*]	Yuba County Water Agcy	N Yuba R	Yuba	2246	1970	55,500	210,000		240
New Colgate*	Yuba County Water Agcy	Yuba R	Yuba	2246	1970	341,000	2,160,000		1390
Bullards Bar	Yuba County Water Agcy	N Yuba R	Yuba	2246		150	1,130		560
Deadwood Cr*	Enviro Hydro Inc	Deadwood Cr, N Yuba	Yuba	6780	1989	2,000			925
Socramento Regian		American River							
Akin	Akin, R E	Hangtown Cr, Weber	El Dorado	5055		127	380		173
Akin/Cola*	Akin, R E	EID Main Cnl	El Dorado	8010	1984	250	1,100		387
Weber Dam*	El Dorado Irrig Dist	N Fk Weber Cr	El Darada	7454		175	680		74
Chili Bar*	Pacific Gas & Electric Co	S Fk American R	El Dorada	2155	1965	7,020	37,000		60
White Rock*	Sacramento M U D	S Fk American R	El Dorado	2101	1968	190,000	618,000		852
Upper Rock Cr	Lind Adssoc	Rock Cr, S Fk Am	El Dorado	5192					
Rock Creek*	Keating, Joseph M	Rock Cr, S Fk Am	El Dorado	3189	1986	3,000	7,000		212
Slab Creek	Sacramento M U D	Slab Cr, S Fk Am	El Dorado	2101		482	2,950		
Camino*	Sacramento M U D	S Fk American R	El Dorada	2101	1968	142,500	441,600		1061
El Darada*	Pacific Gas & Electric Co	S Fk American R	El Dorado	184	1924	21,000	006'26		1910
Jaybird*	Sacramento M U D	Silver Cr, S Fk Am	El Darada	2101	1961	133,000	575,000		1530
Union Valley*	Sacramenta M U D	Silver Cr, S Fk Am	El Dorado	2101	1963	33,250	115,000		430
Janes Fork*	Sacramento M U D	S Fk Silver Cr	El Dorado	2101	1985	10,000	40,570		610
Robbs Peak*	Sacramento M U D	Tells Cr, Silver	El Dorado	2101	1965	23,750	55,000		400
29 Mile Creek	Hensley, Larry	UNN Str, S Fk Am	El Dorado	7931				30	550
Faottrail	Keating, J M	Silver Fk S Fk Am	El Dorado	3194				3,300	285
Sayles Flat	Keating, Joseph M	S Fk Amer R	El Dorada	3195				3,250	485
Canyon Creek*	Eagle Hydra Pins	Canyon Cr, M Fk Am	El Dorado	7192		480			980
Long Canyon Cr	Enviro Hydro Inc	Long Canyon Cr	El Dorado	7722				2,400	560
Buckeye*			El Dorado			380			
Grizzley Canyon Cr	Enviro Hydro Inc	Big Grizzley Can Cr	El Dorado	7723				4,000	1,580

(Continued)
IC RESOURCES
HYDROELECTR
EVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC
D PLANNED DE
DEVELOPED AN

					Developed	oped		Undeveloped	
12 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Year Project No. Installed	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
Sacramento Region		American River (Continued)							
Georgetown Divide*	Georgetown Divide P U D	Georgetown Condui	El Dorado	4303		909			208
Grizzley Cr	Enviro Hydro Inc	Grizzley Cr	El Dorado	6781					
Loon Lake*	Sacramento M U D	Gerle Cr, S Fk Ru	El Dorado	2101	1971	74,100	117,000		1,140
Ralston*	Placer Co Water Agency	Rubicon R	Placer	2079	1966	79,200	476,300		1,250
Hell Hole*	Placer Co Water Agency	Rubicon R	Placer	2079		725	2,930		359
French Meadows*	Placer Co Water Agency	Rubicon R	Placer	2079	1966	15,300	75,300		654
L J Stephenson*	Placer Co Water Agency	M Fk American R	Placer	2079		109,800	650,000		2101
Newcastle*	Pacific Gas & Electric Co	South Cnl N Fk Am	Placer	2310	1986	10,800	49,000		419
Oxbow*	Placer Co Water Agency	M Fk Amer R	Placer	2079	1966	6,570	36,500		89
Big Mosquito Cr	Nugget Hydro Electric	B Mosquito Cr MF Am	Placer	6488					
Bell	Suter, R T	Dardanells Cr	Placer	9032				100	80
Dardanells Pond [•]	Suter, R T	Dardonells Cr	Placer	6142				200	950
Nimbus*	Bureau of Reclamation	American River	Sacromento		1955	13,500	91,100		43
Folsom*	Bureau of Reclamation	American River	Sacromento		1955	198,720	702,700		333
San Joaquin Region		Cosumnes River							
Landis-Harde	Horde, D D	Perry Cr, M F	El Dorado	8722				100	101
San Joaquin Region		Mokelumne River							
Jackson Creek*	Jackson Valley i D	Jackson Cr	Amador	5388		460			152
Camanche*	East Bay M U D	Mokelumne R	Amador	5536	1983	10,800	40,208		107
Pardee*	East Bay M U D	Mokelumne R	Amador	2916	1930	26,600	200,779		327
Electra*	Pacific Gas & Electric Co	Mokelumne R	Amador	137	1948	92,000	347,200		1272
Devils Nose	Amador Co N F	Mokelumne R	Amador	8144				30,600	
West Point*	Pacific Gas & Electric Co	N Fk Mokelumne R	Amador	137	1631	14,500	87,600		312
Tiger Creek*	Pacific Gas & Electric Co	N Fk Mokelumne R	Amador	137	1661	58,000	353,200		1219
Salt Springs 1	Pacific Gas & Electric Co	N Fk Mokelumne R	Amador	137	1631	11,000	50,000		257
Salt Springs 2*	Pacific Gas & Electric Co	N Fk Mokelumne R	Amador	137	1631	33,000	125,600		2113
Middle Fork Dam*	Calaveras P U D	M Fk Makelumne R	Calaveras	7506		230			80
San Jaaquin Region		Calaveras River							
CPUD Pipeline 1,2,3	Calaveras P U D	Colaveras R	Calaveras	7283 2003	1000	270			301
New Hogan Rock Creek*	Calaveras Lo Witr Uist Rock Creek W D	Colaveras K Rock Cr	Calaveras Calaveras	27U3 8533	1700	700	3,000		6009

• On Colifornia Energy Commission Map ond List

JEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Col	(Continued)
JEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRI	C RESOURCES
JEVELOPED AND PLANNED DEVELOPMENT OF	HYDROELECTRI
DEVELOPED AND PLANNED DEV	ELOPMENT OF
EVELOPED AND	PLANNED DEV
11	DEVELOPED AND

					Developed	oped		Undeveloped	
13 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Project No.	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
San Joaquin Region		Stanislaus River							
Tullach	Oakdale & S San Joaquin I Ds	Stanislaus R	Calaveras	2067	1958	19,000	70,200		157
Colliervile*	Calaveras Co Wtr Dist	Stanislaus R	Calaveras	2409	0661	254,300			872
Angels*	Pacific Gas & Electric Co	Angels Cr	Calaveras	2699	1940	1,000	6,200		444
Murphys	Pacific Gas & Electric Co	Angels Cr	Calaveras	2019	1954	4,000	16,000		684
Woodward*	S San Joaquin I D	Simmons Cr	Stanislaus	3056	1982	2,300	7,000		41
Frankenheimer*	S San Joaquin I D	Main Cnl	Stanislaus	3113	1982	4,700	18,700		78
Columbia Dth (Yankee)	Tuolumne, County of	Columbia Dth	Tuolumne	8930		118	1,041		450
Columbia Dth (Old Oak)	Toulumne, County of	Columbia Dth	Tuolumne	8930		32	281		36
New Melones [*]	Bureau of Reclamation	Stanislaus R	Tuolumne		1979	300,000	385,000		583
Stanislaus [*]	Pacific Gas & Electric Co	M Fk Stanislaus R	Tuolumne	2130	1963	000′16	406,200		1,525
Sand Bar*	Oakdale & S San Jaaquin I Ds	M Fk Stanislaus R	Tuolumne	2975		16,200	84,000		389
Spring Gap*	Pacific Gas & Electric Co	Philadelphia Dth	Tuolumne	2130	1921	7,000	48,500		1,865
Beardsley*	Oakdale & S San Joaquin I Ds	M Fk Stanislaus R	Tuolumne	2005	1958	11,100	51,500		264
Donnells*	Oakdale & S San Joaquin I Ds	M Fk Stanislaus R	Tuolumne	2005	1958	67,500	279,000		1,484
New Spicer Meadow	Calaveras Co Wtr Dist	Highland Cr	Tuolumne	2409				5,200	839
San Joaquin Regian		Tuolumne River							
Hickman*	Turlock I D	Main Cnl	Stanislaus	2878	1979	1,110	3,940		18
Turlock Drop Lake*	Turlock I D	Main Cnl	Stanislaus	2871	1980	3,300	13,056		32
Stone Drop*	Modesto I D	L Main Cnl	Stanislaus	6147	1985	900	1,872		13
Upper Dawsan*	Turlock I D	Main Cnl	Stonislaus	3136	1983	4,427	23,980		25
La Grange*	Turlock I D	Tuolumne R	Stanislaus		1924	3,900	16,036		119
Don Pedro*	Turlock & Madesto I D's	Tuolumne R	Tuolumne	2299	1971	1 99,000	676,675		530
Phoenix*	Pacific Gas & Electric Co	Sullivan Cr (S Fk)	Tuolumne	1061	1940	2,000	10,000		1,190
Phaenix Lake Bypass	Tuolumne, County of	Sullivan Cr (S Fk)	Tuolumne	10480		31	255		37
Eureka Dth	Tuolumne, County of	Eureka DTH, N Fk	Tuolumne	8931		109	956		560
Shadybroak P Sta*	Tuolumne C W D 1	TCWD Sec 4 DTH	Tuolumne	7908		27	19		278
Moccasin*	Hetch Hetchy Wtr & Pwr	Hetch Hetchy Aque	Tuolumne		1969	90,000	548,000		1,257
Maccasin L H*	San Francisco, City & Co	L Moccasin Cr	Tuolumne	5295	1987	2,400	10,000		76
Clavey	Tuolumne Co & T I D	Clavey R	Tuolumne	10081				148,600	2,933
R Kirkwood*	Hetch Hetchy Wtr & Pwr	Tuolumne R	Tuolumne		1967	104,022	433,000		1,450
D R Holm*	Hetch Hetchy Wtr & Pwr	Cherry Cr	Tuolumne		1960	135,000	772,000		2,481
Piute Creek	Hi-Head Hdro Inc	Piute Cr	Tuolumne	3580				371	

DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued)

					Deve	Developed		Undeveloped	
14 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Project No.	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
San Joaquin Region		Merced River							
McSwain*	Merced I D	Merced R	Mariposa	2179	1967	10,000	45,000		56
Exchequer*	Merced I D	Merced R	Mariposo	2179	1989	89,000	316,100		464
Merced Falls*	Pocific Gas & Electric Co	Merced R	Merced	2467	1930	3,500	19,100		26
Porker, R B*	Merced I D	Merced M Cnl	Merced	3055	1982	2,700	9,750		22
Upper Gorge	Merced I D	Merced M Cnl	Merced			900	3,600		30
Conol Creek*	Merced I D	Merced M Cnl	Merced	3114	1983	906	3,600		30
San Joaquin Region		San Joaquin River							
Friant Fish Release*	Friant Power Auth	San Joaquin R	Fresno	2892		450			
Friont Transmission	Pacific Gas & Electric Co		Fresno	7009					
Kerckhaff 2*	Pacific Gas & Electric Co	San Joaquin R	Fresno	96		155,000	264,000		442
Kerckhoff 1*	Pocific Gas & Electric Co	San Joaquin R	Fresno	96	1983	38,000	290,000		350
Big Creek 4*	Southern Ca Edison Co	San Joaquin R	Fresno	2017	1951	92,000	428,000		416
Big Creek 3*	Southern Ca Edison Co	San Joaquin R	Fresno	120	1980	147,450	1,275,040		827
John Eastwood*	Southern Ca Edison Ca	San Joaquin R	Fresno		1987	207,000			
Big Creek 8*	Southern Ca Edison Co	San Jooquin R	Fresno	67	1929	58,500	337,000		713
Big Creek 2A*	Southern Ca Edison Co	Big Cr	Fresno	67	1928	95,000	391,000		2,418
Big Creek 2*	Southern Ca Edison Co	Big Cr	Fresno	2175	1925	63,000	451,000		1875
Big Creek 1*	Southern Ca Edison Co	Big Cr	Fresno	2175	1925	70,000	655,560		2131
Portal*	Southern Ca Edison Co	Rancheria Cr, Big	Fresno	2174	1956	10,000	51,000		230
Vermillion Val	Southern Ca Edison Co	Mano Cr	Fresno	2086				7,770	
Kings River Siphon*	Orange Cove Irr Dist	Friant-Kern Cnl	Fresno	9399	1990	1,000			1
Lewis Fk Cr	Lucas, Dale L R	Lewis Fk, Fresno R	Madera	8160				3,749	720
Modera Canal M24	Madera Chowchilla Pwr	Madera Cnl Fresno	Madera	5765		440	333		50
Friant Dam	Friant Power Auth	San Joaquin R	Modera	2892	1985	25,000			87
Madera Conal*	Madera-Chowchilla Pwr	Madera Cnl (SJ)	Madera	2958		3,275	11,120		31
Madera Lat 104-10	Madera I D	Madera Cnl (SJ)	Modera			150	850		10
San Joaquin IA*	Pacific Gas & Electric Co	Willow Cr, SJ	Modera	1354	1923	400	1,700		42
Wishon A G [*]	Pacific Gas & Electric Co	N Fk Willow Cr	Modera	1354	1910	20,000	94,200		1,412
Son Joaquin 2*	Pacific Gas & Electric Co	Ditch 1 Willow Cr	Modera	1354	1923	3,200	22,000		307
Son Joaquin 3*	Pacific Gas & Electric Co	Willow Cr	Madera	1354	1923	4,200	17,500		405
Crane Valley*	Pacific Gas & Electric Co	Willow Cr	Madera	1354	1919	900	5,100		128
Mammoth Pool*	Southern Ca Edison Co	San Joaquin R	Madera	2085	1960	148,960	546,000		1,100
Rock Creek*	Mega Renewables	Rock Cr	Madera	5756				1,750	669
Papazian*	Merced I D		Merced		1982	906			
RETA*	Merced I D		Merced			900			

* On California Energy Commission Map and List

					Deve	Developed		Undeveloped	
15 Hydralogic Region Plant ar Site	Owner	River Basin or PSA and Stream	County	FERC Project No.	Yeor Installed	Installed Capocity KW	Average Annuol Generotion 1,000 KWH	Proposed Capocity KW	Gross Stot Heod (FT)
San Joaquin Region		San Jaaquin River (Cantinued)							1
Walfsen By-Pass*	Central Ca I D	CCID Outside Cnl	Merced	5129	1985	705	3,900		23
Fairfield*	Merced I D	Fairfield Cnl	Merced	3116	1983	900	3,600		30
San Luis By-Pass*	Central Ca I D	CCID Outside Cnl	Merced	5128		494	2,300		27
O'Neill*	Bureau af Reclamatian	San Luis Cr	Merced		1968	25,200			
San Luis*	Bureau af Reclamatian	San Luis Cr	Merced		1969	426,000			
Tulare Region		Kings River							
Fishwater Release	Orange Cave I D	Kings R	Fresna	11068					
Pine Flat*	Kings River Cans D	Kings R	Fresna	2741	1983	165,000	418,920		386
Kings River*	Pacific Gas & Electric Co	N Fk Kings R	Fresna	1988	1962	52,000	207,900		798
Balch 1*	Pacific Gas & Electric Co	N Fk Kings R	Fresna	175	1958	34,000	61,400		2379
Balch 2*	Pacific Gas & Electric Ca	N Fk Kings R	Fresno	175	1958	105,000	552,200		2389
Haas*	Pacific Gas & Electric Ca	N Fk Kings R	Fresna	1988	1958	144,000	517,500		2444
Helms*	Pacific Gas & Electric Co	N Fk Kings R	Fresna	2735	1984	1,212,000	64,000		1744
Tenmile Cr	Evans, L D	Tenmile Cr	Fresna	6017				4,950	1,345
Hume Lake	Evans, D	Tenmile Cr	Fresna	3208				3,500	1,450
Tulare Region		Kawea River							
Terminus [*]	Tulare Hydra Assac	Kawea R	Tulare	3947	1990	17,000			174
Kawea 2*	Sauthern Ca Edisan Ca	M Fk Kawea R	Tulare	298	1929	1,800	13,000		367
Kawea 1*	Southern Ca Edison Co	E Fk Kawea R	Tulare	298	1929	2,250	16,000		1,326
Deer Cr	Bates, D M	E Fk Kawea R	Tulare	7981					
Kawea 3*	Sauthern Ca Edisan Ca	Kawea R	Tulare	298	1913	2,800	25,000		775
Tulare Region		Tule River							
Success	Lawer Tule River I D	Tule R	Tulare	3038	1989	1,400	4,870		60
Old Oak Ranch*	Portwoad, O & R	N Fk Tule R	Tulare	6136	1983	374	1,061		100
Tule R.	Pacific Gas & Electric Ca	N Fk M Fk Tule R	Tulare	1333	1914	6,400	26,500		1,544
Sequaia Ranch*	Sequaia L & P Ca	M Fk Tule R	Tulare	8679	1994	1,090			169
Lawer Tule*	Southern Ca Edisan Co	M Fk Tule R	Tulare	372	1909	2,000	16,200		1,140
Tule R Indian*	Tule R Indian Res.	S Fk Tule R	Tulare	5067	1984	124	1,000		487

DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued)

• On Colifornia Energy Commission Map and List

DEVELOPED AND PLANNED DEVELOPMENT OF HYDROELECTRIC RESOURCES (Continued)

					Develaped	aped		Undeveloped	
16 Hydrologic Region Plant or Site	Owner	River Basin or PSA and Stream	County	FERC Project No.	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
Tulare Region		Kern River							
Rio Bravo*	Olcese Water Dist	Kern R	Kern	4129	1989	16,000			105
Kern Canyon*	Pacific Gas & Electric Co	Kern R	Kern	178	1921	11,500	47,200		264
Kern River*	Southern Ca Edison Co	Kern R	Kern	1930	1907	24,800	214,240		877
Isabella*	Isabella Partners	Kern R	Kern	8377	1990	11,950			132
Borel*	Sauthern Ca Edison Co	Borel Cnl	Kern	382	1932	9,200	59,900		261
Kern River 3*	Southern Ca Edison Co	N Fk Kern R	Kern	2290	1921	32,000	197,500		821
North Lahontan Region		Alpine Group PSA							
Sonora Peak	Silver Star Hydro Ltd	Silver Cr, W Walker R	Mono	9156					
Dynamo Pond [*]	Henwood Associates Inc	Green Cr, E Walker R	Mono	8142				700	
Farad"	Sierra Pacific Power Co	Truckee R	Nevada		1933	2,800	13,300		82
Stampede*	Bureau of Reclamation	L Truckee R	Sierra		1987	3,650	12,000		183
South Lahontan Region									
Piute Creek*	Hi-Head Hydro Inc	Piute Cr	Inyo	3580	1982	371	2,800		
Millner Creek No 1	Henwood Associates Inc	Millner Cr	Inyo	4009	1983	400	2,600		1,100
Cinnamon Ranch	Moss, Richard	Ditch Middle Cr	lnyo	6885		175	815		625
Cottonwood 1*	Los Angeles W & P	Cottonwood Cr, Owens	lnyo		1989	800			
Cottonwood 2*	Los Angeles W & P	Cottonwood Cr, Owens	Inyo		1909	800			
Cottonwood 3	Los Angeles Dept EW& P	Cottonwood Cr	Inyo		1909	1,500	6,000		1,267
Tungstar	Keating, J M	Morgan Cr, Pine Cr	Inyo	7267				066	470
Pine Creek 2	Umetco Mini Co	Margan Cr, Pine Cr	Inyo	8418				170	011
Pine Creek 1	Umetco Mini Co	Morgan Cr, Pine Cr	lnyo	8418				80	[[]
Deep Springs	Deep Springs College	Irrig Pł Wyman	Inyo	8319				90	380
Independence Cr.	Inyo Co WD	Independence Cr	Inyo	6158					
Division Creek*	Los Angeles Dept W & P	Division Cr, Owen	lnyo		1909	600	3,000		1,250
Big Pine 3	Los Angeles, City of	8ig Pine Cr, Owen	Inyo		1925	3,200	14,000		1,243
Tinnemaha/Red Mtn.	Sierra Hydro Inc	Tinnimaha Cr	lnyo	6188					
Rancho Riata*	Symons, John L	Bishop Cr, Owens	lnyo	4669				400	190
Bishap Creek 6°	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	1913	1,600	12,000		260
Bishop Creek 5*	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	1661	3,500	18,000		420
Bishop Creek 4*	So Ca Edison Co	Bishop Cr, Owens	lnyo	1394	1909	7,250	59,900		1,112
Bishop Creek 3*	So Ca Edisan Co	Bishop Cr, Owens	hyo	1394	1913	7,150	34,000		809
Bishop Creek 2*	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	161	7,320	39,000		953
Bishop Creek 1*	So Ca Edison Co	Bishop Cr, Owens	Inyo	1394	1908	5,000			

On California Energy Cammissian Map and List

314

					Developed	oped		Undeveloped	
17 Hydralogic Regian Plant or Site	Owner	River Basin ar PSA and Stream	Caunty	FERC Project No.	Year Installed	Installed Capacity KW	Average Annual Generation 1,000 KWH	Proposed Capacity KW	Gross Stat Head (FT)
Sauth Lahontan Region (Continued)	ued)								
Pleasant Valley*	Los Angeles Dept W & P	Owens R	Inyo		1958	3,200	11,000		76
Pine Creek	Keating Assoc	Pine Cr	Inyo	3258				4,150	995
Cantrol Garge*	Los Angeles Dept W & P	Owens R	Inyo		1952	37,500	133,000		780
Desert Power*	Desert Power Ca	Cattonwood Cyn	Inyo		1983	950			
Cottanwood Canyon	Cruz, Edward S et al	Lane Tree Cr	Inyo	3525		840	3,870		1,410
Haiwee	Los Angeles W & P	LA Aqueduct	Inyo		1927	5,600	35,000		193
Power Recovery	Tehachapi-Cummings WD	TCC WD PI	Kern	7330	1989	46	150		50
Polmdale*	Palmdale Water Dist	Lake Palmdale	Los Angeles	8734	1987	100	745		120
Alamo (Cottanwood)*	Ca Dept Water Resources	E Br Ca Aque	Los Angeles	2426		17,000	115,000		140
Middle Garge*	Los Angeles Dept W & P	Owens R	Mono		1952	37,500	133,000		795
Upper Gorge	Los Angeles Dept W & P	Owens R	Mano		1953	37,500	133,000		872
Rush Creek	June Lake P U D	Rush Cr	Mono	1389	1916	8,400	49,000		1,807
Poole*	So Ca Edison Co	Lee Vining Cr	Mono	1388	1963	10,000	29,000		1,671
Leggett	Keating, J M	Lee Vining Cr	Mono	3272				2,200	332
Paoha	Keating Assoc	Wilsan Cr	Mono	3259				370	98
Lundy*	So Ca Edison Co	Mill Cr	Mano	1390	1912	3,000	9,300		785
Las Flores	Ca Dept of Water Resources	Mojave Siphon	San Bernardino	2426				061	220
Colorada River Region									
Double Weir*	Imperial Irrig Dist	Cent M Cnl New R	Imperial		1961	560	2,000		1
Turnip*	Imperial Irrig Dist	W Side M Cnl New R	Imperial		1964	420	1,200		17
Drop 5*	Imperial Irrig Dist	All Amer Cnl New R	Imperial		1984	4,000	18,500		24
Drop 4°	Imperial Irrig Dist	All Amer Cnl New R	Imperial		1984	19,600	89,400		51
Drop 3*	Imperial Irrig Dist	All Amer Cnl New R	Imperial		1984	9,800	43,000		26
Drop 2*	Imperial Irrig Dist	All Amer Cnl New R	Imperial		1984	10,000	50,000		26
Drop 1*	Imperial Irrig Dist	All Amer Cnl	Imperial		1984	5,850	28,900		14
Pilat Knob*	Imperial Irrig Dist	All Amer Cnl New R	Imperial		1966	33,000	145,000		55
East Highline*	Imperial I D	E Highline Cnl	Imperial		1984	2,415	8,400		
Whitewater*	Desert Water Agency	Whitewater R	Riverside	4292	1986	1,000			
San Gorgonio 2*	So Ca Edison Ca	San Gargonio Cr	Riverside	344	1923	750	800		898
San Gorgonio 1*	So Ca Edisan Co	San Gargonio Cr	Riverside	344	1923	1,500	1,600		c///1
San Gorgonio Lower*	Banning, City of	San Gorgonio Cr	Riverside	9994	1989	500			065
San Garganio Middle	Banning, City af	San Gorgonio Cr	Riverside	10085				249	420
Cabzon Lower	Cross Flow Hydro Elec Inc	WS PI	Riverside	9820				3/5	560 000
Cabzon Upper	Cross Flow Hydro Elec Inc	WS PI	Riverside	9820				550	07.6
Parker	Bureau of Reclamation	Colorado R	San Bernardino			120,000	659,600		78

On Colifornia Energy Commission Map and List

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

BOOKS REQUESTED BY ANOTHER BORROWER ARE SUBJECT TO IMMEDIATE RECALL

JUN 3 0 1996 RECEIVED JUL 1 1 1996 DEC 11 '96 RECEIVED DEC 0 4 1996 Physical Sciences Library

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Pete Wilson Governor State of California

Douglas P. Wheeler Secretary for Resources The Resources Agency

David N. Kennedy Director Department of Water Resources

3 1175 02041 1305

.

.

-

.

