

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

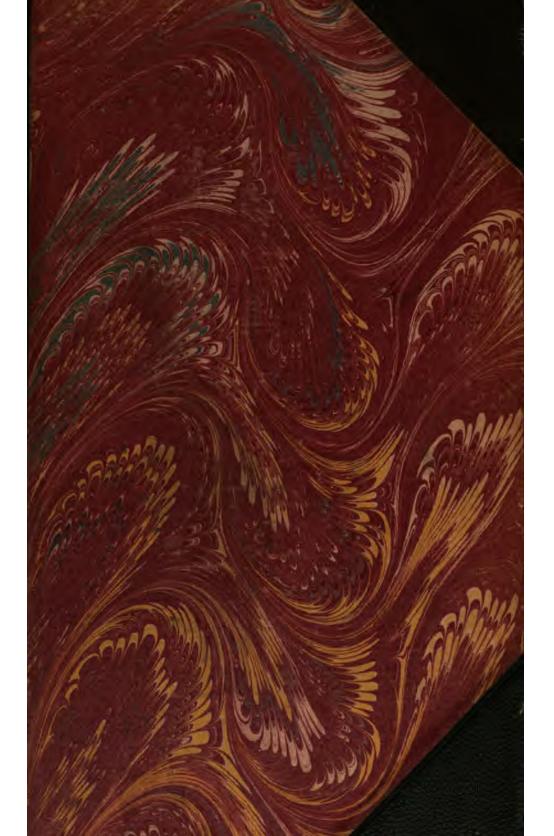
Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/



Sa 885.40

Harbard College Library

FROM THE BEQUEST OF

HORACE APPLETON HAVEN, OF PORTSMOUTH, N. H.

(Class of 1843.)

12 Feb. 1897 - 3/ Jan. 1898.

SCIENCE CENTER LIBRARY

NAME

Supplement for the year.

Zeitschrift

für

Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaktion

von

Dr. R. Mehmke und Dr. M. Cantor.

42. Jahrgang.

Mit in den Text gedruckten Figuren und drei lithographierten Tafeln,

Leipzig,

Verlag von B. G. Teubner.

1897.

Sec. 885.40

1897, Feb. 12 -1898, fr. 1.31.

Inhalt.

Attenuous und Analysis. Sene
Studien zu Raabe's Monographie über die Jacob-Bernoullische Funktion. Von
Louis Saalschütz
Zerlegung der Gleichung vierten Grades. Von Heilermann 60
Berichtigung dazu
Druckfehler in S. Gundelfinger-A. M. Nell's Tafeln zur Berechnung neunstelliger
Logarithmen. Von Joseph Blater 64
Uber Beziehungen zwischen den Determinanten einer Matrix. Von W. Ahrens 65
Die Transformation und Auflösung der Gleichung fünften Grades in elementarer
Darstellung. Von W. Heymann 81, 113
Ein Mittelwertsatz für ein System von nIntegralen. Von G. Kowalewski . 153
Über die Differentiation empirischer Funktionen. Von C. Runge 205
Uber Zahlenteiler ganzer Funktionen. Von K. Th. Vahlen
Uber einen Satz der Funktionentheorie und seine Anwendung auf isothermische
Kurvensysteme und auf einige Theorien der mathematischen Physik.
Von Holsmüller
Eine Determinantenformel. Von E. Schulze
Über eine von Abel untersuchte Funktionalgleichung. Von Paul Stäckel . 323
Synthetische, darstellende und analytische Geometrie.
Die singulären Punkte der Flüchen. Von Ernst Wölffing
Bemerkung zu den Bemerkungen über doppeltzentrische Vierecke. Von Chr.
Beyel
Aufgabe 1. Von S. Finsterwalder
Zur perspektivischen Lage kollinearer ehener Felder Von Kilbinger 104
Zur perspektivischen Lage kollinearer ebener Felder. Von Kilbinger 104 Zur Perspektive des Kreises Von Budolf Schüssler 107
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler
 Zur Perspektive des Kreises. Von Rudolf Schüssler
Zur Perspektive des Kreises. Von Rudolf Schüssler

Inhalt.

Mechanik (einschl. Kinematik).	Seite
Die kinematische Theorie der Hyperboloidenreibungsrüder. Von Fr. Schilling	37
Über ein Problem der Mechanik. Von A. Karl	105
Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl	
der Stützflächen. Von P. Somoff	161
Über einen Satz der Statik, Von K. Th. Vahlen	160
Grundzüge einer Grapho-Ballistik auf Grund der Kruppschen Tabelle. Von	
Carl Cranz	
Beiträge zur Theorie des ebenen Gelenkvierecks. Von R. Müller	
Konstruktion der Trägheitsaxen eines Dreiecks. Von Otto Richter	
Elastizitäts- und Festigkeitslehre.	
Aufgabe 2. Von C. B	280
Zum Gesetz der elastischen Dehnungen. Von R. Mehmke	327
Physik.	
Über eine neue Folgerung aus der Maxwellschen Theorie der elektrischen	
Erscheinungen. Von A. Scheye	157
Über einen Satz der Funktionentheorie und seine Anwendung auf isothermische	
Kurvensysteme und auf einige Theorien der mathematischen Physik.	
Von Holzmüller	217
Zur Theorie der Gleichung $\frac{\partial^2 \varphi}{\partial t^2} = a^2 \varDelta \varphi$ auf Grund der Kirchhoffschen Gleich-	
ung für das Huyghenssche Prinzip. Von J. Jung	278

ZEITSCHRIFT

MATHEMATIK UND PHYSIK.

BEGRUNDET 1856 DERECH

O. SCHLÖMILCH.

жийнив неваскоеннем von O. Schlömlich (1850—1896), В. Wyterschel (1856—1859), М. Carton (1859—1890), Е. Кані. (1860—1892).

OEGENWÄRTIG HERAUSGEGEBEN

W 1079

DR. R. MEHMKE UND DR. M. CANTOR.

42. BAND.). HEFT.

MER & TEXTSTOURES UND 2 LUTHOGRAPHICATEN VAPPLA.

Ausgegeben am 25, Januar 1807.

LETPZIG, VERLAG VON B. G. TEUBNER. 1897.

Verlag von Louis Nebert in Halle a.S.

Enneper, Prof. Dr. A., Elliptische Punktionen. Theorie und Geschichte. Akademische Vorträge Zwelte Anflage. Neu heurbeitet und herausgegeben ein Prof. Dr. Felix Müller. Lex. 8. geb. 18 Mark. Thomae, Hofiat, Prof. Dr. J., Die Kegelschnitte in rein projectiver Be-

handlung. gr. 8. geh. 8 Mark.

Thomae, Hoffat, Prof. Dr. J., Abriss einer Theorie der Funktionen einer complexen Veränderlichen und der Thetafunktionen. Britte, erheblich vermehrte Auflage. gr. 4. geb. 10 Mark

Thomae, Prof. Dr. J., Einleitung in die Theorie der bestimmten Integrale.

gr. 4. geh. 2 Mark so Pf

Thomae, Prof Dr J. Sammlung von Formeln, welche bei Anwendung der elliptischen und Rosenhain'schen Funktionen gebraucht werden. r. 4. geh 3 Mark

Thomae, Prof. Dr. J., Ueber eine specielle Klasse Abel'scher Funktionen.

Thomae, Prof. Dr. J., Ueber eine Funktion, welche einer linearen Differential- und Differensen-Gleichung IV. Ordnung Genüge leistet, gr. 4. geh. 1 Mark 50 Pf

Repetitorium der analytischen Geometrie, gr. 8. geh. 1 Mark 20 PL Hofmann, Dr. F., Methodik der stetigen Deformation von zweiblättrigen Riemann'schen Flächen. Ein Uebungsbach für den geometrischen Teil der Funktionentheorie, gr. 8. geh. 2 Mark Rulf, Prof W., Elemente der projektivischen Geometrie, gr. 8. geh. 2 M. 50 PL

Beau, Dr. O., Analytische Untersuchungen im Gebiete der trigonometrischen Reihen und der Fourier'schen Integrale. Zweite, verbesserte and vermebrie Anflage, gr. 4. geb. 5 Mark 50 Pf.

Odstreil, Prof. Dr. J., Kurze Anleitung zum Rechnen mit den (Hamilton-

schen) Quaternionen. gr. 8. geh. 2 Mark 25 Pf.

Hochheim. Prof. Dr. A., Kafi fil Hisab (Gentgrendes über Arithmetik) des Abu Bekr Muhammed Ben Alhusein Alkarkhl. 3 Hefte. gr. 4. gele 3 Mark 90 Pf.

Hochheim. Dr. A., Ueber die Differentialeurven der Kegelschnitte. gr. 8. geh. 3 Mark.

Hochheim. Dr. A., Ueber Pole und Polaren der parabolischen Curven

III. Ordnung, gr. 4 geh. I Mark.
Langer, Dr. P., Die Grundprobleme der Mechanik. Eine kosmologische Skizze, gr. 8. geh. I Mark 80 Pf.

Frege, Dr. G., Begriffsschrift, Eine der arithmetischen nachgebildete Fermelprache des reinen Denkens gr. S. geh. 3 Mark.

Radieke. A., Die Recursionsformeln für die Berechnung der Bernoullischen und Euler'schen Zahlen, gr. S. geh. 1 Mark 20 Pf.

Schobloch, Dr. A., Ueber Beta- und Gammafunktionen, gr. 4. geh. 60 Pf.

Dronke. Dr. A., Einleitung in die höhere Algebra. gr. S. geb. 4 M. 50 Pf.

Günther, Prof. Dr., Studien zur Geschiehte der mathematischen und physikalischen Geographie. gr. S. geb. 12 Mark.

Günther, Prof. Dr., Die Lehre von dem gewöhnlichen und verall-

Günther. Prof. Dr., Die Lehre von den gewöhnlichen und verall-

gemeinerten Hyperbelfunktionen. gr. 8. geh. 12 Mark.

J. B. Metzler'scher Verlag, Stuttgart.

Die Berechnung der trigonometrischen Vermessungen.

Mit Rücksicht auf die sphäroidische Gestalt der Erde.

Von J. G. F. Bohnenberger.

Deutsche Bearbeitung der Abhandlung "De computandis etc." von E. Hummer, Prof. a. d. Techn. Hochschule Stuttgart.

Studien zu Raabe's Monographie über die Jacob-Bernoullische Funktion.

Von

Prof. Dr. Louis Saalschütz

in Königsberg in Pr.

Die nachfolgende Arbeit knüpft an das grundlegende Werk Raabe's: "Die Jacob-Bernoullische Funktion" (Zürich 1848) an. In § 1 wird die Reihe, von welcher Raabe ausgeht [$\Phi(x)$ Gleichung 1), welche ich später mitunter die Raabesche Reihe nenne], in eine andere umgeformt, welche um x=1 herum brauchbar ist, und es wird die von Raabe unternommene Bestimmung ihres Grenzwertes für x=1 dadurch wesentlich verkürzt. In § 2 wird eine Gleichung des genannten Werkes, deren rechte Seite einen bestimmten Wert besitzt, während auf der linken Seite ein Integral von völlig unbestimmtem Werte steht, verbessert und verallgemeinert. In § 3 endlich wird die Raabesche Reihe summiert, das heisst in einen geschlossenen Ausdruck umgewandelt.

§ 1.

Raabe führt die Bernoullische Funktion gelegentlich der Betrachtung folgender Reihe, die wir mit $\Phi(x)$ bezeichnen wollen, in die Analysis ein:

die Analysis ein:
$$\frac{\Phi(x) =}{a_1 + 2^m a_2 x + 3^m a_3 x^2 + \dots + p^m a_p x^{p-1}} \\
+ (p+1)^m a_1 x^p + (p+2)^m a_2 x^{p+1} + (p+3)^m a_3 x^{p+2} + \dots + (p+p)^m a_p x^{3p-1} \\
+ (2p+1)^m a_1 x^{2p} + (2p+2)^m a_2 x^{2p+1} + (2p+3)^m a_3 x^{2p+2} + \dots + (2p+p)^m a_p x^{3p-1} \\
+ \text{ etc. in infin.}$$

Darin ist m eine positive ganze Zahl; auch x werde als positiv angenommen, dann kohvergiert jede der vertikalen Teilreihen und Zeitschrift f. Mathematik u. Physik. 42. Jahrg. 1897. 1. Heft.

somit auch $\Phi(x)$, so lange x ein echter Bruch ist. Wird nun, wie es geschehen soll, den a_k die Bedingung auferlegt:

$$\sum_{1}^{p} a_{k} = 0,$$

so hat auch $\lim_{x\to 1} \Phi(x)$ einen bestimmten Wert, und dieser wird, ziemlich weitläufig, von Raabe abgeleitet. Wir wollen nun $\Phi(x)$ oder vielmehr $x\Phi(x)$ in eine nach Potenzen von lx fortschreitende Reihe umwandeln, welche um x=1 herum zwischen meist engen, aber nicht zusammenfallenden Grenzen konvergiert. Wir benutzen dabei einen von Herrn Schlömilch bei seiner Methode, die Bernoullischen Funktionen (abgekürzt: B.F.) und die auf sie bezüglichen Sätze abzuleiten, ausgesprochenen Gedanken, indem wir $\Phi(x)$ als Differential-quotienten darstellen. — Soll der, zunächst hypothetisch vorausgesetzte, aber später (in § 3) wirklich hergestellte geschlossene Ausdruck, dessen Entwickelung unter Voraussetzung von 2) und für x < 1 die Reihe $\Phi(x)$ ergiebt, verstanden werden, so soll dafür die Bezeichnung F(x) gebraucht werden.

Der Koeffizient von a_k in $\Phi(x)$:

$$\{k^m + (p+k)^m x^p + (2p+k)^m x^{2p} + \cdots\} x^{k-1}$$

ist, mit Benutzung des Zeichens D_{σ}^{m} für $\frac{d^{m}}{dv^{m}}$:

3)
$$\begin{cases} = \frac{1}{x} D_{e}^{m} (e^{kv} + e^{(p+k)v} x^{p} + e^{(2p+k)v} x^{2p} + \cdots) x_{r=0}^{k}, \\ = \frac{1}{x} D_{e}^{m} \left(\frac{e^{kv} x^{k}}{1 - e^{pv} x^{p}} \right)_{r=0} = \frac{1}{x} D_{e}^{m} \left(\frac{e^{k(r+lx)}}{1 - e^{p(r+lx)}} \right)_{r=0}. \end{cases}$$

Setzen wir nun:

4)
$$V = \frac{p(v+lx)}{e^{p(v+lx)}-1},$$

5)
$$U = \frac{a_1 e^{v + lx} + a_2 e^{2(v + lx)} + \dots + a_p e^{p(v + lx)}}{(v + lx)},$$

so wird nach 3):

6)
$$px\Phi(x) = -D_{\mathfrak{o}}^{\mathfrak{m}}(VU)_{\mathfrak{o}=0} \qquad 0 \leq x < 1.$$

Dass x bis 0 hinuntergehen darf, folgt aus der Form des Produktes:

 $\frac{1}{x}VU = p^{\frac{a_1e^p + a_1e^2 \circ x + \cdots + a_pe^p \circ x^p - 1}{e^p \circ x^p - 1}};$

aber die Differentialquotienten auf der rechten Seite von 6) sind für je den endlichen Wert von x (auch für v=0 und über lx=0 hinweg) stetig. Dies ergiebt sich (für x>0) ohne Schwierigkeit mittelst der Reihenentwickelungen [für U mit Rücksicht auf 2)]:

$$U = \sum_{0}^{\infty} {}_{k} P_{k+1} \frac{(v+lx)^{k}}{(k+1)!},$$

worin:

$$P_{k+1} = a_1 + 2^{k+1}a_2 + \dots + p^{k+1}a_p;$$

$$\frac{1}{V} = z = \sum_{0}^{\infty} \frac{p^k (v + lx)^k}{(k+1)!},$$

wenn man sich der Formel:

$$D_{\sigma}^{n}(z^{-1}) = -\frac{(n+1)_{s}}{z^{2}}D_{\sigma}^{n}z + \frac{(n+1)_{s}}{z^{3}}D_{\sigma}^{n}z^{2} + \cdots \pm \frac{(n+1)_{n}+1}{z^{n}+1}D_{\sigma}^{n}z^{n}$$

erinnert. Wir erhalten somit F(x) als stetige Funktion, wenn wir sie durch die Gleichung:

$$-px F(x) = D_{\bullet}^{m}(VU)_{\bullet = 0}$$

definieren.

Mit Benutzung von 2) folgt hieraus:

$$-px F(x) = \sum_{1}^{p-1} a_k D_o^m \left(\frac{p(v+lx)}{e^{p(v+lx)} - 1} \cdot \frac{e^{k(v+lx)} - e^{p(v+lx)}}{v+lx} \right)_{v=0}$$

$$= \sum_{1}^{p-1} a_k D_o^m \left(\frac{p(v+lx)}{e^{p(v+lx)} - 1} \cdot \frac{e^{k(v+lx)} - 1}{v+lx} \right)_{v=0}$$

(unter Voraussetzung von m > 0) oder endlich:

$$= \sum_{1}^{p-1} a_k D_{\theta}^{m} \left(\frac{\frac{k}{p} p(e+lx) - 1}{e^{p(e+lx)} - 1} \right)_{e=0}$$

worin nun die Grössen $a_1, a_2, \ldots a_{p-1}$ voneinander vollkommen unabhängig sind. Hieraus folgt für x = 1:

$$-F(1) = -\lim_{x=1} \Phi(x) = \sum_{1}^{p-1} a_k D_s^m \left(\frac{e^{\frac{k}{p} \cdot pz} - 1}{e^{pr} - 1}\right)_{z=0}$$
oder wenn
$$\frac{k}{z} = z$$

und pv = w gesetzt wird:

10)
$$-F(1) = -\lim_{x \to 1} \Phi(x) = p^m \sum_{k=1}^{p-1} a_k D_w^m {e^{xw} - 1 \choose e^w - 1}_{w=0}$$

Der rechts stehende Differentialquotient ist der Schlömilchsche Ausdruck für die B.F. in der Form, wie sie von Raabe eingeführt worden ist, und soll nach dem Vorgang von Herrn Hermite durch $S_m(z)$ bezeichnet werden.

In der Gleichung 10) kann die Summation nach k auch bis p ausgedehnt werden, weil $S_m(1) = 0$ ist, und sie giebt dann genau das von Raabe gefundene Resultat.

Setzen wir nun:

11)
$$lx = u, -x F(x) = \psi(u),$$
 so ist nach 8):

4 Studien zu Raabe's Monographie über die Jacob-Bernoullische Funktion.

$$\begin{split} \psi^{(n)}(0) = & \sum_{1}^{p-1} k \ a_k \frac{d^n}{du^n} \left\{ \frac{d^m}{dv^m} \left(\frac{e^z p(v+u) - 1}{e p(v+u) - 1} \right)_{v=0} \right\}_{u=0} \\ = & \sum_{1}^{p-1} k \ a_k \frac{d^m + n}{d(u+v)^m + n} \left(\frac{e^z p(v+u) - 1}{e p(v+u) - 1} \right)_{u+v=0} \\ = & \sum_{1}^{p-1} k \ a_k p^{m+n} S_{m+n} \left(\frac{k}{p} \right) \end{split}$$

und somit ist der Mac-Laurinschen Reihe gemäss:

12)
$$\begin{cases} -x F(x) = \sum_{1}^{p-1} a_k \cdot p^m \left\{ S_m \left(\frac{k}{p} \right) + S_{m+1} \left(\frac{k}{p} \right) \frac{p l x}{1} + S_{m+2} \left(\frac{k}{p} \right) \frac{(p l x)^2}{2!} + S_{m+3} \left(\frac{k}{p} \right) \frac{(p l x)^3}{3!} + \cdots \right\}. \end{cases}$$

Dies ist die gesuchte Entwickelung und ihre Gültigkeit an die Bedingung:

13)
$$lx < \frac{2\pi}{p}$$
oder
$$e^{-\frac{2\pi}{p}} < x < e^{\frac{2\pi}{p}}$$

gebunden. Man erkennt dies entweder vermöge einer Darstellung der rechten Seite von 7) als Summe von Produkten unendlicher Reihen, deren langsamer konvergierende (das ist V und seine Ableitungen) von

$$lx = -\frac{2\pi}{p}$$
 bis $lx = +\frac{2\pi}{p}$

mit Ausschluss der Grenzen konvergent sind, oder einfacher aus der Natur der Funktion F(x) selbst. Dieselbe ist nämlich, wie sich in § 3 zeigen wird [siehe daselbst die Gleichung 31) oder die bald darauf hervorgehobene Stelle], eine rationale gebrochene Funktion, deren Nenner eine Potenz von $\frac{1-x^p}{1-x}$ oder, mittelst der Substitution lx=u, von $\frac{1-e^{pu}}{1-e^u}$ ist; wird sie also nach Potenzen von u entwickelt, so konvergiert sie bis zu dem Absolutwert desjenigen u, für welches $1-e^{pu}$, mit Ausschluss von u=0, zum ersten Mal verschwindet, das ist, wegen $1-e^{\pm 2i\pi}=0$, bis $u=\frac{2\pi}{n}$.

An die Gleichung 12) knüpfen sich noch zwei Bemerkungen:

1. Nehmen wir x < 1 an, so hat die, dann mit F(x) äquivalente, Reihe $\Phi(x)$ mit der rechten Seite von 12) die Strecke für x von $e^{-\frac{2\pi}{p}}$ bis 1 (mit Ausschluss der Grenzen) als eine solche gemeinsam, auf welcher beide Reihen konvergieren; folglich ist auch die Gleichung:

15)
$$-x \Phi(x) = p^m \sum_{1}^{p} a_k \left\{ S_m \left(\frac{k}{p} \right) + S_{m+1} \left(\frac{k}{p} \right) \frac{p l x}{1} + \cdots \right\}$$

$$e^{-\frac{2\pi}{p}} < x < 1$$

richtig.

2. Setzt man $x = 1 + \xi$, so ist:

$$F(1+\xi) = F(1) + \xi F'(1) + \frac{\xi^*}{2!}F''(1) + \cdots$$

und nun kann man die Koeffizienten dieser Reihe mittelst 12), deren rechte Seite den Gleichungen 11) gemäss als $\psi(lx)$ zu bezeichnen ist, finden; es ist nämlich:

$$-\left[F^{(n)}(1)+nF^{(n-1)}(1)\right]=[D_x^n\psi(lx)]_{lx=0}$$

und hieraus:

$$-F^{(n)}(1) = [D_x^n \psi(lx) - nD_x^{n-1} \psi(lx) + n(n-1)D_x^{n-2} \psi(lx) \mp \cdots + (-1)^{n-1}n \dots 2D_x \psi(lx) + (-1)^n n \dots 1\psi(lx)]_{lx=0}.$$

Mittelst der bekannten Formel*

$$\begin{cases} D_x^h \psi(lx) = \frac{1}{x^h} \\ \left\{ \psi^{(h)}(lx) - C_1^h \psi^{(h-1)}(lx) + C_2^h \psi^{(h-2)}(lx) \mp \dots + (-1)^{h-1} C_{h-1}^h \psi'(lx) \right\}, \end{cases}$$
 worin C_1^h , C_2^h ... die Fakultätenkoeffizienten sind, von denen

$$C_0^h = 1$$
, $C_{h-1}^h = (h-1)!$

sind, und der leicht beweisbaren Gleichung:

$$C_k^n + n C_{k-1}^{n-1} + n(n-1) C_{k-2}^{n-2} + \cdots + n(n-1) \dots (n-k+1) C_0^{n-k} = C_k^{n+1}$$

ergiebt sich nunmehr:

$$\begin{cases}
-F^{(n)}(1) = \psi^{(n)}(0) - C_1^{(n+1)}\psi^{(n-1)}(0) + C_2^{n+1}\psi^{(n-2)}(0) \mp \cdots \\
+ (-1)^{n-1}C_{n-1}^{n+1}\psi'(0) + (-1)^n n(n-1) \dots 1\psi(0) \\
= \sum_{1}^{p-1} a_k \left\{ S_{m+n} \left(\frac{k}{p} \right) p^{m+n} - C_1^{n+1} S_{m+n-1} \left(\frac{k}{p} \right) p^{m+n-1} \pm \cdots \\
+ (-1)^n C_n^{n+1} S_m \left(\frac{k}{p} \right) p^m \right\},
\end{cases}$$

wo auch bis p summiert werden darf. Der Radius des Konvergenzkreises ist, wie aus der Natur der Funktion hervorgeht, $2\sin\frac{\pi}{p}$; denn dies ist der Modul desjenigen ξ , für welches $\frac{(1+\xi)^p-1}{\xi}$ zum ersten Mal verschwindet.

^{*} Siehe Schlömilchs Compendium der höheren Analysis, 2. Bd. 1. Abhdlg., woselbst auch die Werte der Fakultätenkoeffizienten angegeben sind.

Im ersten Abschnitt der in Rede stehenden Monographie betont Raabe wiederholentlich, er wolle den Wert der oben [Gleichung 1)] mit $\Phi(x)$ bezeichneten Reihe an der Grenze der Konvergenz, wenn x noch um unendlich wenig von der Einheit übertroffen werde, bestimmen. Dennoch begegnet es ihm im dritten Abschnitt, dass er seine, für x=1 selbst, vollkommen unbestimmte Reihe,

wie etwa die Reihe
$$1-2x+3x^3-4x^3\pm\cdots$$
 für $x=1$,

in ein Integral umbildet, ohne, wie es scheint, zu merken, dass dieses auch ganz unbestimmt sein muss, wie es z. B. das in der Anwendung auftretende

 $\int_{0}^{\infty} v^{m} \sin^{2n+1} v \, dv$

[a.a.O.S 40 flg. Gleichungen 7) und 10)] in der That ist.

Diese ungenauen Resultate sollen im folgenden präzisiert und mit Hilfe von 12) verallgemeinert werden. Wir setzen, wobei bis auf den fraglichen Punkt die von Raabe benutzte Methode reproduziert wird, a_k gleich einer periodischen Funktion, nämlich, wenn wir unter a, b und r positive rationale Zahlen der Art verstehen, dass ra und rb ganze Zahlen sind:

17)
$$a_k = \varphi(\sin k \, a \, \delta, \, \cos k \, b \, \delta) \delta^{m+1};$$

darin soll δ unendlich klein, ferner p unendlich gross und

18)
$$p\delta = 2r\pi$$

sein, sodass die Vermehrung des Index k von a_k um ein Vielfaches von p den Wert von a_k ungeändert lässt. Dadurch wird:

$$x \Phi(x) = \sum_{k=1}^{\infty} a_k k^m x^k = \sum_{k=1}^{\infty} a_k k^m e^{kkx}.$$

Jetzt liege x sehr wenig unterhalb 1, und sei:

$$lx = -\epsilon = -\varrho \delta,$$

wobei o eine positive endliche Zahl ist; ferner sei:

$$k\delta = v;$$

dann ist:

$$klx = -\varrho v, \quad plx = -2r\pi\varrho.$$

Und nun geht $x \Phi(x)$ in ein Integral über:

19)
$$x \Phi(x) = \int_{0}^{\infty} v^{m} \varphi(\sin a v, \cos b v) e^{-\varrho v} dv.$$

Wollen wir nun die Gleichung 15) anwenden, so müssen die a_k der Bedingung 2) genügen, das heisst es muss, mit Fortlassung des sehr kleinen, aber nicht verschwindenden Faktors δ^m :

20)
$$\int_{0}^{2r\pi} \varphi(\sin av, \cos bv) dv = 0$$

sein.

Ferner ist die rechte Seite von 15):

$$\begin{cases} \int_{0}^{2r\pi} \varphi(\sin av, \cos bv)(2r\pi)^{m} \\ \left\{ S_{m}\left(\frac{v}{2r\pi}\right) - \frac{2r\pi\varrho}{1} S_{m+1}\left(\frac{v}{2r\pi}\right) + \frac{(2r\pi\varrho)^{2}}{1\cdot 2} S_{m+2}\left(\frac{v}{2r\pi}\right) \mp \cdots \right\} dv, \end{cases}$$

wobei jetzt die Klammer unter der Bedingung

$$r \rho < 1$$

konvergiert, oder vermöge der Substitution

auch:

 $\int_{-\infty}^{1} \varphi(\sin 2r a\pi z, \cos 2r b\pi z)(2r\pi)^{m+1} \Big\{ S_m(z) - \frac{2r\pi\varrho}{1} S_{m+1}(z) + \cdots \Big\}.$

Ist nun also φ eine Funktion, die der Bedingung 20) genügt, so gilt nach 15) die Gleichung:

gilt nach 15) die Gleichung:
$$\begin{pmatrix}
-\int_{0}^{\infty} v^{m} \varphi(\sin av, \cos bv) e^{-\varrho v} dv = (2r\pi)^{m+1} \\
\sum_{0}^{1} \varphi(\sin 2ra\pi z, \cos 2rb\pi z) \\
\times \left\{ S_{m}(z) - \frac{2r\pi\varrho}{1!} S_{m+1}(z) + \frac{(2r\pi\varrho)^{3}}{2!} S_{m+2}(z) - \frac{(2r\pi\varrho)^{3}}{3!} S_{m+3}(z) \pm \cdots \right\} dz$$
und im besonderen:
$$0 \le r\varrho$$

und im besonderen:

22)
$$\begin{cases} \lim_{\varrho=0} \int_{0}^{\infty} v^{m} \varphi(\sin a v, \cos b v) e^{-\varrho v} dv = -(2r\pi)^{m+1} \\ \times \int_{0}^{1} \varphi(\sin 2ra\pi z, \cos 2rb\pi z) S_{m}(z) dz. \end{cases}$$

Dies ist die verbesserte Raabe'sche Gleichung [S. 38, Gleichungen 4) bis 6)], während 21) eine Verallgemeinerung derselben ist.

Von den a. a. O. gegebenen Beispielen nehme ich folgende besonders einfache heraus:

 $\varphi(\sin av, \cos bv) = \sin v, r = 1$ und $\omega(\sin a v, \cos b v) = \cos v, r = 1.$

Beide genügen der Bedingung 20) und es gelten nun nach den von Raabe angegebenen Formeln:

Studien zu Raabe's Monographie über die Jacob-Bernoullische Funktion. 8

$$\int_{0}^{1} S_{2m}(z) \sin(2\pi z) dz = \frac{(-1)^{m+1}(2m)!}{(2\pi)^{2m+1}}, \int_{0}^{1} S_{2m+1}(z) \sin(2\pi z) dz = 0,$$

$$\int_{0}^{1} S_{2m+1}(z) \cos(2\pi z) dz = \frac{(-1)^{m}(2m+1)!}{(2\pi)^{2m+2}}, \int_{0}^{1} S_{2m}(z) \cos(2\pi z) dz = 0$$

olderde Gleichungen: $\begin{cases}
\int_{0}^{\infty} v^{2m} \sin v e^{-\varrho v} dv = (-1)^{m} (2m)! \\
\times \left\{ 1 - \frac{(2m+1)(2m+2)}{2!} \varrho^{2} + \frac{(2m+1)\dots(2m+4)}{4!} \varrho^{4} \mp \cdots \right\}, \\
\int_{0}^{\infty} v^{2m-1} \sin v e^{-\varrho v} dv = (-1)^{m-1} (2m-1)! \\
\times \left\{ \frac{2m}{1} \varrho - \frac{(2m)\dots(2m+2)}{3!} \varrho^{3} + \frac{(2m)\dots(2m+4)}{5!} \varrho^{5} \mp \cdots \right\}.
\end{cases}$ $\begin{cases}
\int_{0}^{\infty} v^{2m} \cos v e^{-\varrho v} dv = (-1)^{m} (2m)! \\
\times \left\{ \frac{2m+1}{1} \varrho - \frac{(2m+1)\dots(2m+3)}{3!} \varrho^{3} + \frac{(2m+1)\dots(2m+5)}{5!} \varrho^{5} \mp \cdots \right\}, \\
\int_{0}^{\infty} v^{2m-1} \cos v e^{-\varrho v} dv = (-1)^{m} (2m-1)! \\
\times \left\{ 1 - \frac{2m(2m+1)}{2!} \varrho^{2} + \frac{(2m)\dots(2m+3)}{4!} \varrho^{4} \mp \cdots \right\} \\
\text{and im besonderen:}
\end{cases}$ folgende Gleichungen:

und im besonderen:

25)
$$\begin{cases} \lim_{\varrho \to 0} \int_{0}^{\infty} v^{2m} \sin v e^{-\varrho \cdot v} dv = (-1)^{m} (2m)! \\ \lim_{\varrho \to 0} \int_{0}^{\infty} v^{2m-1} \sin v e^{-\varrho \cdot v} dv = 0, \text{ etc.} \end{cases}$$

Man kann diese vier Integrale auch direkt behandeln und erhält dann die Resultate in geschlossenen Ausdrücken. Diese, sowie die rechten Seiten der Gleichungen 23) und 24) gehen bei der Substitution

$$\varrho = tg \alpha$$

beziehungsweise in folgende trigonometrische Ausdrücke über:

$$(-1)^{m}(2m)! \cos^{2m+1}\alpha \cos(2m+1)\alpha,$$

$$(-1)^{m-1}(2m-1)! \cos^{2m}\alpha \sin 2m\alpha;$$

$$(-1)^{m}(2m)! \cos^{2m+1}\alpha \sin(2m+1)\alpha,$$

$$(-1)^{m}(2m-1)! \cos^{2m}\alpha \cos 2m\alpha.$$

In dieser Form gelten die Gleichungen 23) und 24), der Stetigkeit beider Seiten wegen, für jedes α zwischen Null und π mit Einschluss

beider Grenzen, wenn für die untere (Null) das Zeichen lim, wie in 25) geschehen, gebraucht wird.

Schliesslich möge bemerkt werden, dass diejenigen Resultate in Raabe's Buch, welche durch Elimination der linken Seite von 22) entstehen, wieder richtig sind.

Wir gehen jetzt an die Aufgabe, die Funktion F(x) in geschlossener fertiger Form darzustellen. Allerdings hat Raabe schon angegeben, wie man zu einem solchen Ausdruck gelangen könnte,* doch ist dies Verfahren rekursiv und verlangt überdies, um überflüssige Faktoren fortzuschaffen, die Division von Zähler und Nenner des auf den Nenner $(1-x^p)^{m+1}$ gebrachten Ausdrucks durch $(1-x)^{m+1}$.

Man könnte aber in Ermangelung eines besseren Weges folgendermassen verfahren. Nach 8) ist:

26)
$$-x F(x) = \sum_{1}^{p-1} a_k D_{\sigma}^m \left(\frac{e^{k(\sigma + lx)} - 1}{e^{p(\sigma + lx)} - 1} \right)_{\sigma = 0}$$
 oder da, wenn
$$lx = u$$

gesetzt wird, die Differentiationen nach u statt nach v ausgeführt werden dürfen, und daher schon vor der Differentiation v=0 gesetzt werden darf:

27)
$$\begin{cases} -x F(x) = \sum_{1}^{p-1} a_k D_u^m \left(\frac{e^k u - 1}{e^p u - 1} \right) \\ = \sum_{1}^{p-1} a_k D_u^m \left(\frac{1 + e^u + e^2 u + \dots + e^{(k-1)u}}{1 + e^u + e^2 u + \dots + e^{(p-1)u}} \right). \end{cases}$$

Führt man jetzt die Bezeichnungen:

28)
$$\begin{cases} a_1 + a_2 + \dots + a_{p-1} = \alpha_1 \\ a_2 + \dots + a_{p-1} = \alpha_2 \\ a_h + \dots + a_{p-1} = \alpha_h \\ a_{p-1} = \alpha_{p-1} \end{cases}$$

* Bezeichnet man (Raabe a.a. O.S. 4 und 10):

also insbesondere $X_m = a_1 + 2^m a_2 x + 3^m a_3 x^2 + \dots + p^m a_p x^{p-1},$ $X_0 = a_1 + a_2 x + a_3 x^2 + \dots + a_p x^{p-1},$ und F(x) für $m = 0, 1, \dots, m$ mit bez. Y_0, Y_1, \dots, Y_m , so ist:

$$Y_{0} = \frac{X_{0}}{1 - x^{p}}$$

$$Y_{m} = \frac{X_{m}}{1 - x^{p}} + (m)_{1} p x^{p} \frac{Y_{m-1}}{1 - x^{p}} + (m)_{2} p^{2} x^{p} \frac{Y_{m-2}}{1 - x^{p}} + \cdots$$

$$+ (m)_{m-1} p^{m-1} x^{p} \frac{Y_{1}}{1 - x^{p}} + p^{m} \frac{Y_{0}}{1 - x^{p}}.$$

nnd

$$29) - x F(x) = \sum_{k=0}^{p-3} \alpha_{k+1} D_{u}^{m} \left(\frac{e^{ku}}{1 + e^{u} + e^{2u} + \cdots + e^{(p-1)u}} \right),$$

worin die Grössen $\alpha_1, \alpha_2, \ldots, \alpha_{p-1}$ voneinander ebenso vollkommen unabhängig sind, wie die $a_1, a_2, \ldots a_{p-1}$ voneinander.

Benutzt man jetzt die Entwickelung:

30)
$$\begin{cases} \left(\frac{1-x^{p}}{1-x}\right)^{r} = (1+x+\cdots+x^{p-1})^{r} = 1+M_{1}^{r}x+M_{2}^{r}x^{2}+\cdots+M_{r(p-1)}x^{r(p-1)}, \end{cases}$$

deren Koeffizienten ich an anderer Stelle* angegeben habe, so kann man die rechte Seite von 29) nach den Formeln für höhere Differentialquotienten, insbesondere mit Hilfe der Gleichung, worin der Nenner von 29) als Funktion von u mit z bezeichnet ist:

$$\begin{split} D_u^h(z^{-1}) &= -\frac{(h+1)_3}{z^2} \left(e^u + 2^h e^{2u} + 3^h e^{3u} + \dots + (p-1)^h e^{(p-1)u} \right) \\ &+ \frac{(h+1)_3}{z^3} \left(M_1^2 e^u + 2^h M_2^2 e^{2u} + 3^h M_3^2 e^{3u} + \dots \right) \\ &+ \dots \\ &+ (-1)^h \frac{(h+1)_h}{z^h+1} \left(M_1^h e^u + 2^h M_2^h e^{2u} + 3^h M_3^h e^{3u} + \dots \right) \end{split}$$

ausführen, und erhält dann, nachdem e" durch x ersetzt und $1+x+\cdots+x^{p-1}$

mit y bezeichnet worden ist, nach einigen Zusammenziehungen

$$1 + x + \cdots + x^{p-1}$$
mit y bezeichnet worden ist, nach einigen Zusammenziehungen schliesslich:
$$\begin{pmatrix}
-x F(x) = \sum_{0}^{p-2} k \alpha_{k+1} D_u^m \left(\frac{e^k u}{x}\right) \\
D_u^m \left(\frac{e^k u}{x}\right) = \frac{k^m x^k}{y} \\
-\frac{(m)_1}{2} \frac{x^{k+1}}{y^2} \left\{ M_1^1(k+1)^{m-2}(2k+m+1) \\
+ M_2^1 2(k+2)^{m-2}(2k+2m+2)x \\
+ M_3^1 3(k+3)^{m-2}(2k+3m+3)x^2 + \cdots \right\} \\
+\frac{(m)_2}{3} \frac{x^{k+1}}{y^3} \left\{ M_1^2(k+1)^{m-3}(3k+m+1) \\
+ M_2^2 2^2(k+2)^{m-3}(3k+2m+2)x \\
+ M_3^2 3^2(k+3)^{m-3}(3k+3m+3)x^2 + \cdots \right\} \\
\mp \cdots \\
+ (-1)^m \frac{(m)_m}{m+1} \frac{x^{k+1}}{y^{m+1}} \left\{ M_1^m(k+1)^{-1}[(m+1)k+(m+1)] \\
+ M_2^n 2^m(k+2)^{-1}[(m+1)k+2(m+1)]x + \cdots \right\},$$

worin sämtliche Klammern soweit fortzusetzen sind, bis sie von selbst abbrechen und die letzten beiden Zeilen folgende einfachere Form annehmen:

^{*} Schriften der physik.-ökon. Gesellschaft zu Königsberg in Pr., 36. Jahrg. (1895) S. 67 flg. -- Bei M_r ist r natürlich auch Index.

$$+ (-1)^{m} \frac{x^{k+1}}{y^{m+1}} \{ M_{1}^{m} + M_{2}^{m} 2^{m} x + M_{3}^{m} 3^{m} x^{2} + \cdots + M_{m(p-1)}^{m} [m(p-1)]^{m} x^{m(p-1)-1} \}.$$

Wir gelangen jedoch mit Hilfe eines von mir a. a. O. (S. 73) aufgestellten, sogleich anzugebenden Satzes sehr leicht zu einem übersichtlicheren Resultat. Wir entnehmen nur noch der Gleichung 31) zum Vergleich mit dem Folgenden die Thatsache (wobei zunächst beiderseits die Division durch x ausgeführt zu denken ist):

F(x) lässt sich rational durch eine gebrochene Funktion darstellen, deren Nenner y^{m+1} ist, und deren Zähler, da k bis p-2 wächst, vom $(m+1)(p-1)-2^{\text{ten}}$ Grade ist.

Der erwähnte Satz lautet:

Wenn die Entwickelungskoeffizienten $M_0^r = 1$, M_1^r , M_2^r , ... $M_{r(p-1)}^r$ der Funktion $(1 + x + \dots + x^{p-1})^r$ beziehungsweise mit den Gliedern einer arithmetischen Reihe $r - 1^{\text{ten}}$ oder geringeren Grades und diese Produkte wieder mit den bis auf die Bedingung, dass ihre Summe Null sei, beliebigen und sich immer in gleicher Reihenfolge wiederholenden Zahlen $b_1, b_2, \dots b_p$ multipliziert werden, wobei in der letzten Wiederkehr der Zahlenreihe $b_1, b_2, \dots b_p$ dieselbe nicht vollständig verwendet zu sein braucht, so ist die Summe all dieser Produkte (aus je drei Faktoren) Null.

Wir multiplizieren nun die Raabe'sche Reihe [Gleichung 1)] mit $(1+x+\cdots+x^{p-1})^{m+1}$, das ist mit

wobei
$$1 + M_1^{m+1} \cdot x + M_2^{m+1} \cdot x^2 + \cdots + M_{s+2}^{m+1} x^{s+2},$$
32)
$$(m+1)(p-1) - 2 = s$$

gesetzt ist, und suchen den Koeffizienten von x^{ν} . Ist $\nu > s+2$, so wird x^{ν} nur von dem Teile

$$a_{\mu}(\nu-s-1)^{m} x^{\nu-s-2} + a_{\mu+1}(\nu-s)^{m} x^{\nu-s-1} + \cdots + a_{\rho}(\nu+1)^{m} x^{\nu}$$

der Raabe'schen Reihe geliefert werden, wobei $a_{\mu}, \ldots a_{q}$ die betreffenden, der Zahlenreihe $a_{1}, a_{2}, \ldots a_{p}, a_{1}, a_{2}, \ldots$ angehörigen Zahlen sind. Der Koeffizient selbst ist aber:

$$a_{\nu}(\nu+1)^{m}+a_{\nu-1}M_{1}^{m+1}\nu^{m}+\cdots+a_{\mu}M_{s+2}^{m+1}(\nu-s-1)^{m},$$

also, dem angegebenen Satze gemäss, da die Grössen a, der Gleichung 2) wegen, der in ihm gestellten Bedingung genügen, gleich Null. Auch der Koeffizient von x^{s+1} ist noch Null, denn er lässt sich:

$$a_{\varrho}(s+2)^m + a_{\varrho-1}M_1^{m+1}(s+1)^m + \cdots + a_1M_{s+1}^{m+1}1^m + a_{\varrho}M_{s+2}^{m+1}0^m$$

schreiben. Es sind also nur die Koeffizienten von x^0 bis x^1 von Null verschieden, was mit dem früheren Resultat übereinstimmt. Bezeichnen wir nunmehr den Koeffizienten von x^1 mit A_n , so ist:

Studien zu Raabe's Monographie über die Jacob-Bernoullische Funktion.

33)
$$F(x) = \frac{A_0 + A_1 x + A_2 x^3 + \dots + A_4 x^n}{(1 + x + x^3 + \dots + x^p - 1)^m + 1};$$

wir erhalten aber, wenn u_{σ} der Koeffizient von $(s+1)^m x^s$ in der Raabeschen Reihe ist:

$$A_s = a_{\sigma}(s+1)^m + a_{\sigma-1} M_1^{m+1} s^m + \cdots + a_1 M_s^{m+1} 1^m$$

oder, da die gleichweit von der Mitte entfernten M_h^{m+1} und M_{s+2-h}^{m+1} einander gleich sind:

der, da die gleichweit von der Mitte entfernten
$$M_h^{m+1}$$
 und M_{s+2-h}^{m+1} inander gleich sind:

$$\begin{pmatrix}
A_s = a_1 M_2^{m+1} 1^m + a_2 M_3^{m+1} 2^m + \cdots + a_{\sigma} M_{s+2}^{m+1} (s+1)^m, \\
A_h = a_1 M_{s-h+2}^{m+1} 1^m + a_2 M_{s-h+3}^{m+1} 2^m + \cdots + a_{\sigma-s+h} M_{s+2}^{m+1} (h+1)^m, \\
A_2 = a_1 M_s^{m+1} 1^m + a_2 M_{s+1}^{m+1} 2^m + a_3 M_{s+2}^{m+1} 3^m, \\
A_1 = a_1 M_{s+1}^{m+1} 1^m + a_2 M_{s+2}^{m+1} 2^m, \\
A_0 = a_1 M_{s+2}^{m+1} 1^m.$$

Ordnen wir diese nach $a_1, a_2, \ldots a_{p-1}$, wobei a_p nach 2) durch $-a_1-a_2-\cdots-a_{p-1}$ zu ersetzen ist, so findet noch eine interessante Beziehung statt. Wir suchen nämlich die Koeffizienten von $a_k \left(k < \frac{p}{2}\right)$ und a_{p-k} in A_k beziehentlich A_{s-k} auf. Der erstere ist (mit Fortlassung des oberen Index):

35) $M_{s-h+k+1}k^m - M_{s-h+p+1}p^m + M_{s-h+p+k+1}(p+k)^m \mp \cdots$ derjenige von a_{p-k} in A_{s-k} :

$$M_{k+p-k+1}(p-k)^m - M_{k+p+1}p^m + M_{k+2p-k+1}(2p-k)^m \mp \cdots$$

oder, wegen der bereits erwähnten Gleichheit von M_{τ} und $M_{s+2-\tau}$:

36)
$$M_{s-h-p+k+1}(p-k)^m - M_{s-h-p+1}p^m + M_{s-h-2p+k+1}(2p-k)^m \mp \cdots$$

Die Reihe 35) schliesst mit demjenigen M, dessen Index so nahe wie möglich s+2 liegt, die Reihe 36) mit demjenigen M, dessen Index so nahe wie möglich der 0 liegt. Ist nun m ungerade, so ist

$$(p-k)^m = -(k-p)^m$$
 etc.

und die Differenz der Koeffizienten 35) und 36) wird:

37)
$$\begin{cases} \cdots + M_{s-h-2p+k+1}(k-2p)^m - M_{s-h-p+1}(-p)^m \\ + M_{s-h-p+k+1}(k-p)^m - M_{s-h+1}0^m \\ + M_{s-h+k+1}k^m - M_{s-h+p+1}p^m \pm \cdots, \end{cases}$$

sodass der Unterschied zweier aufeinander folgender Indices sowohl, wie auch Basen zum Exponenten m abwechselnd p-k und k ist. Setzen wir nun in den dem angeführten Satz eigentümlichen Zahlen $b_k = 1$, $b_p = -1$ oder allgemeiner:

$$b_{\tau}=1, \quad b_{p-k+\tau}=-1$$

und die anderen p-2 Zahlen gleich Null, so sieht man, dass die obige Summe 37) verschwindet, das heisst: Der Koeffizient von x' im

Digitized by GOOGLE

Faktor von a_k ist gleich dem Koeffizienten von x^{s-h} im Faktor von a_{k-k} ; oder:

Liest man die Koeffizienten im Faktor von a_k vom Anfang zum Ende und im Faktor von a_{p-k} in entgegengesetzter Richtung, so erhält man dieselbe Zahlenreihe.

Ist m gerade, so tritt nur der Unterschied ein, dass man dem Faktor von $a_{\rho-1}$ das entgegengesetzte Zeichen des Faktors von a_k vorsetzen muss. Mittelst dieser Beziehungen wird die Rechnung etwa auf die Hälfte reduziert.

Aus den letzten Gleichungen 34) ersieht man, dass der Faktor von a_k mit x^{k-1} beginnt $\left(k \leq \frac{p}{2}\right)$, und ebenso, dass der Faktor von a_{p-k} mit x^{p-k-1} beginnt; daher schliesst der Faktor von a_k mit $x^{s-p+k+1}$, sodass überhaupt jeder Faktor aus s-p+3=m(p-1) Gliedern besteht.

Ist p gerade = 2n, so beginnt der Faktor von $a_{\frac{p}{2}} = a_n$ mit x^{n-1} und schliesst mit x^{n-1} . Die Koeffizienten der gleichweit von der Mitte abstehenden Glieder sind bei ungeradem m gleich, bei geradem m entgegengesetzt gleich; im ersteren Falle giebt es ein einzelnes Mittelglied.

Um mit einem einfachen Beispiele zu schliessen, sei p=3, m=4; dann ist:

$$F(x) = \frac{1}{(1+x+x^2)^5} \left\{ a_1 \left(1 + 5x - 66x^3 - 119x^3 + 110x^4 + 165x^5 + x^6 - 16x^7 \right) - a_2 (x^5 + 5x^7 - 66x^6 - 119x^5 + 110x^4 + 165x^3 + x^2 - 16x) \right\}.$$

Dezember 1895.

Die singulären Punkte der Flächen.

Von

Dr. ERNST WÖLFFING,
Privatdozent in Stuttgart.

Zu den noch wenig entwickelten Gebieten der Geometrie gehört die Lehre von den singulären Punkten der Flächen. Wohl existieren Monographien von Rohn* über die biplanaren und uniplanaren Knotenpunkte und von Korteweg** über die sogenannten Faltenpunkte; wohl haben Salmon*** und Cayley† bei ihren Untersuchungen über Reziprokalflächen die Plückerschen Zahlen für den Raum zu verallgemeinern gesucht und bei dieser Gelegenheit mehrere höhere Singularitäten eingeführt; insbesondere aber hat Zeuthen^{††} die letzteren mit grosser Sorgfalt untersucht und beschrieben. Woran es aber vor allem noch fehlt, das ist eine praktisch brauchbare und zuverlässige Methode, um ohne Herstellung eines Modells die gestaltlichen Verhältnisse einer algebraischen Fläche, deren Gleichung gegeben ist, in der Nähe eines singulären Punktes zu studieren und damit den letzteren erst wirklich als geometrisches Gebilde kennen zu lernen. In Anbetracht des grossen Vorteils, welchen das Newtonsche Parallelogramm bei der Untersuchung der ebenen Kurven gewährt^{†††}, ist es zu verwundern, dass anscheinend noch von keiner Seite der Versuch gemacht wurde, dasselbe auf den Raum zu übertragen. Dass dieser Gedanke ausführbar ist und wirklich zu einer allgemeinen Flächendiskussionsmethode führt, die auch in komplizierteren Fällen nicht versagt, gedenke ich in vorliegender Abhandlung zu zeigen. Durch Übertragung der Newtonschen Konstruktion auf den Raum gewinnt man zunächst einen polyedralen Zug (analytisches Polyeder), der sodann auf eine Ebene abgebildet wird (analytisches Netz). Dieses Netz erweist sich als wertvollstes Hilfsmittel für die weitere Forschung. Es dient zur Unter-

^{*} Math. Ann. 22 S. 124.

^{**} Wiener Ak. Ber. Math. Nat. Cl. 98 II a S. 1154.

^{***} Transactions Royal J. Ac. vol. 23 S. 461.

[†] Papers IV S. 21; VI S. 338, 577, 600.

tt Math. Ann. 10 S. 446.

^{†††} Vergl. Reuschle, Praxis der Kurvendiskussion. Stuttgart 1886.

suchung der Flächenkurven durch den singulären Punkt, zur Ermittelung der Durchdringungskurve zweier Flächen und führt zuletzt im Verein mit der bildlichen Darstellung des singulären Flächenpunktes vermittelst einer durchsichtigen Kugel zu einer Methode, durch welche man sich von der Gestalt der Fläche in der Nähe des singulären Punktes und von deren Anschluss an die Näherungs- und Hilfsflächen eine Vorstellung machen kann. Erst auf Grund einer solchen allgemeinen Untersuchungsmethode dürfte es möglich sein, zu einer genaueren Kenntnis der Flächensingularitäten zu gelangen. In einem zweiten Teile dieser Abhandlung gedenke ich diese Methode auf die Untersuchung solcher Singularitäten anzuwenden, welche auf mehrfachen Flächenkurven liegen. Hiermit wird eine kritische Revision der in den oben angeführten Abhandlungen über Reziprokalflächen besprochenen Singularitäten verbunden sein.

\$ 1.

Das analytische Polyeder.

Will man das Newtonsche Parallelogramm (Cramersches Dreieck) in den Raum übertragen, so hat man jedem Term der Flächengleichung $C.c^ay^bz^c$ den Punkt a, b, c in einem rechtwinkligen Koordinatensysteme zuzuordnen. Dann zieht man jede Verbindungsebene von drei oder mehr Punkten, welche den Koordinatenursprung von allen nicht auf ihr liegenden Punkten des Systems trennt. Alle diese Ebenen bilden einen in dem Oktanten der positiven x, y, z sich erstreckenden polyedralen Zug, den ich analytisches Polyeder nennen will. Die Terme der Flächengleichung, welche den auf dem Polyeder gelegenen Punkten entsprechen, sind die "niedrigsten Glieder" derselben. Die betreffenden Punkte liegen teils auf den Kanten und Flächen des Polyeders, teils bilden sie die Ecken desselben; die zugehörigen Terme sollen hiernach als Zwischenterme und Eckterme unterschieden werden. Die Flächen des Polyeders sind drei- oder mehreckig, durch Parallelverschiebung können sie soweit dem Ursprunge genähert werden, dass auf jede Koordinatenebene wenigstens eine Ecke fällt, während die Axen frei bleiben können. Die Terme der Flächengleichung, welche den Punkten einer Polyederfläche entsprechen, geben unter Weglassung etwaiger Potenzen von x, y, z als Faktoren für sich gleich Null gesetzt eine trinomische oder polynomische Näherungsfläche. Alle Näherungsflächen zusammen sind massgebend für den Verlauf der Fläche; aber keineswegs entsprechen den einzelnen Näherungsflächen verschiedene Zweige der Fläche, wie man dies nach der Analogie beim Cramerschen Dreieck erwarten sollte. Sollen durch den Flächenpunkt mehrere Flächenmäntel gehen, die sich in Doppelkurven durchdringen müssten, so ist eine Reihe von Bedingungen erforderlich, in welche sämtliche Glieder der Flächengleichung, nicht nur die

niedrigsten, eingehen. Im allgemeinen besitzt daher die Fläche im singulären Punkte nur einen Mantel, der sich den einzelnen Näherungsflächen in verschiedenen Teilen seines Verlaufs anschliesst. Über die Art und Weise, wie die Fläche von einer Näherungsfläche zur anderen übergeht, geben die Hilfsflächen Aufschluss, deren Gleichung man erhält, indem man die Terme, deren zugehörige Punkte alle je auf einer Kante des Polyeders liegen, ebenfalls unter Weglassung von Faktoren, welche Potenzen von x, y, z sind, für sich gleich Null setzt. Die Hilfsflächen sind immer binomische Flächen oder Produkte von solchen und bieten somit eine Analogie dar zu den binomischen Hilfskurven, welche in der ebenen Geometrie das Cramersche Dreieck an die Hand giebt. Jede binomische Hilfsfläche vermittelt den Zusammenhang zwischen den zwei Näherungsflächen, deren zugehörige Polyederflächen an die der Hilfsfläche zugehörige Polyederkante stossen. Beispiel: Die Fläche $0 = xy + x^3 + y^3 + z^3$ schliesst sich der Näherungsfläche $0 = xy + y^3 + z^3$ in der Nähe der Ebene x = 0, der Näherungsfläche $0 = xy + x^3 + z^3$ in der Nähe der Ebene y = 0 an; über ihren Übergang von einer zur anderen giebt die Hilfsfläche $0 = xy + z^3$ Aufschluss.

Um zu ermitteln, welche Teile der Näherungs- und Hilfsflächen für die Untersuchung der Fläche massgebend sind, ist es erforderlich, die durch den singulären Punkt hindurchgehenden Flächenkurven zu betrachten.

\$ 2.

Die Flächenkurven in einem singulären Punkte.

Eine Raumkurve durch den Ursprung sei durch die Entwickelung

gegeben:
$$\begin{cases} x = \lambda \varepsilon^{\alpha} + \cdots \\ y = \mu \varepsilon^{\beta} + \cdots \\ z = \nu \varepsilon^{\gamma} + \cdots \end{cases}$$
. Dabei kann der Parameter ε so gewählt

werden, dass eine der Reihen mit dem ersten Gliede abbricht. Einer der Koeffizienten λ , μ , ν kann gleich Eins angenommen werden. Die Anfangsexponenten α , β , γ nenne ich mit Björling* Indices der Raumkurve. Soll die letztere auf der in § 1 besprochenen Fläche liegen, so muss durch Einsetzen von x, y, z in die Gleichung derselben ein identisch verschwindender Ausdruck in ε entstehen. Ist ε^{ϱ} der in ε niedrigste Term, der beim Einsetzen entsteht, so tritt entweder

a) ein Term ε^{ϱ} auf; dann muss aber einer der Koeffizienten λ , μ , ν verschwinden, α , β , γ können also nicht Indices einer Flächenkurve sein.

Oder es treten

b) zwei Terme ε^ǫ auf (oder mehrere, deren zugehörige Systempunkte alle auf einer Geraden liegen). Die Summe ihrer

^{* &}quot;Über Raumkurvensingularitäten". Arch. für Math. u. Phys. II. Reihe, Band 8, S. 83.

Koeffizienten gleich Null gesetzt liefert eine Gleichung zwischen λ , μ , ν ; es liegen also unendlich viele Raumkurven von den Indices α , β , γ auf der Fläche. Ebenso ist es, wenn

c) drei oder mehr Terme se (deren zugehörige Punkte nicht auf einer Geraden liegen) auftreten. Es seien in letzterem Falle $x^a y^b z^a$, $x^{a'} y^{b'} z^{d'}$, $x^{a''} y^{b''} z^{d'}$ drei solcher Terme. Die zugehörigen Punkte liegen auf einer Polyederfläche. Denn es ist

$$\mathbf{\varrho} = a\alpha + b\beta + c\gamma = a'\alpha + b'\beta + c'\gamma = a''\alpha + b''\beta + c''\gamma,$$

$$\alpha : \beta : \gamma : -\mathbf{\varrho} = \begin{vmatrix} a & b & c & 1 \\ a' & b' & c' & 1 \\ a'' & b'' & c'' & 1 \end{vmatrix}.$$

also:

Die Ebene E der drei Punkte (a, b, c), (a', b', c'), (a'', b'', c'') hat

den Ursprungsabstand
$$d=\frac{1}{\sqrt{\alpha^3+\beta^2+\gamma^2}}\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix},$$
also ist $\alpha=\frac{-\varrho}{d\sqrt{\alpha^2+\beta^2+\gamma^2}}\begin{vmatrix} b & c & 1 \\ b' & c' & 1 \\ b'' & c'' & 1 \end{vmatrix} \cdots$

Es sei $x^{a'''}y^{b'''}z^{c'''}$ ein vierter Term, der beim Einsetzen $\varepsilon^{c'}$ liefert.

Dann ist
$$\varrho' = a'''\alpha + b'''\beta + c'''\gamma = \frac{-\varrho}{d\sqrt{a^2 + \beta^2 + \gamma^2}} \begin{vmatrix} a''' & b''' & c''' & 0 \\ a' & b' & c' & 1 \\ a'' & b'' & c'' & 1 \end{vmatrix}$$
.

Eine durch $(a''' \ b''' \ c''')$ parallel zu E gelegte Ehene E' h

Eine durch (a''', b''', c''') parallel zu E gelegte Ebene E' hat den

Eine durch
$$(a''', b''', c''')$$
 parallel zu E gelegte Ebene E' hat den
$$-a''' - b''' - c''' \ 0$$
 Ursprungsabstand $d' = \frac{1}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}} \begin{vmatrix} a & b & c & 1 \\ a' & b' & c' & 1 \\ a'' & b'' & c'' & 1 \end{vmatrix}$, also $\varrho' : \varrho = d' : d$.

Ist $\varrho' > \varrho$, so ist d' > d; daher müssen sich (a, b, c)(a', b', c')(a'', b'', c'')auf einer Polyederfläche befinden und auf dieser liegt jeder weitere Punkt (a^{IV}, b^{IV}, c^{IV}) , der beim Einsetzen ε^{ϱ} liefert.

Weil aber aus (a, b, c), (a', b', c'), (a'', b'', c'') das Verhältnis der Indices $\alpha:\beta:\gamma$ eindeutig berechnet werden kann, so entspricht jeder Polyederfläche eine Schar von Flächenkurven von konstanten Indices, zwischen deren Anfangskoeffizienten eine Gleichung besteht. Die Indices verhalten sich wie die Stellungskoordinaten der Polyederfläche.

Im Falle b) mögen zwei Terme $x^a y^b z^c$ und $x^{a'} y^{b'} z^{c'}$ den niedersten Grad & ergeben, so ist:

$$\varrho = a\alpha + b\beta + c\gamma = a'\alpha + b'\beta + c'\gamma.$$

Legt man durch die Punkte (abc) und (a'b'c') eine Ebene E mit den Stellungskoordinaten $\alpha : \beta : \gamma$, so ist dieselbe:

$$\alpha x + \beta y + \gamma z = a\alpha + b\beta + c\gamma = a'\alpha + b'\beta + c'\gamma = \varrho;$$

ihr Ursprungsabstand ist $d=\frac{\varrho}{\sqrt{\alpha^2+\beta^2+\gamma^2}}$. Durch einen nicht auf der Geraden (a,b,c), (a',b',c') liegenden Punkt (a'',b'',c''), für den also $a''\alpha+b''\beta+c''\gamma=\varrho'>\varrho$, legt man eine Ebene E' parallel zu E, so ist deren Ursprungsabstand $d'=\frac{\varrho'}{\sqrt{\alpha^2+\beta^2+\gamma^2}}$ also d'>d. Daraus folgt, dass man durch (abc), (a'b'c') eine Ebene legen kann, die alle nicht auf dieser Geraden befindlichen Systempunkte vom Ursprunge trennt. Daher muss die Gerade der Oberfläche des analytischen Polyeders angehören; sie kann keine Diagonale, sondern sie muss eine Kante desselben sein. Aber die Gleichung

$$a\alpha + b\beta + c\gamma = a'\alpha + b'\beta + c'\gamma$$

ist zur Bestimmung der Indices α , β , γ nicht mehr hinreichend. Das Verhältnis derselben besitzt also unendlich viele Werte, welche beim Einsetzen die Terme $x^a y^b z^c$ und $x^{a'} y^{b'} z^{c'}$ als niederste Glieder ergeben. Jedem Indicessystem entspricht eine durch die Polyederkarte (a, b, c), (a', b', c') gelegten Ebene mit den Stellungskoordinaten α , β , γ . nicht jede Ebene durch die Kante ist hierzu brauchbar, sondern nur diejenigen, welche alle nicht in die Kante fallenden Systempunkte vom Ursprunge trennen. Dieselben sollen die zur betreffenden Kante gehörigen uneigentlichen Polyederflächen heissen, wogegen die wirklich die Begrenzung des Polyeders bildenden Ebenen eigentliche Polyederflächen genannt werden mögen. Man erhält alle zur Kante gehörigen uneigentlichen Polyederflächen durch Drehung einer der an die Kante anstossenden eigentlichen Polyederflächen in die Lage der anderen, wobei der Ursprung nicht passiert wird. Liegt in einer Koordinatenebene nicht eine Fläche, sondern nur eine Kante des Polyeders, so kann man die an letztere anstossende Polyederfläche um die Kante bis in die Lage der Koordinatenebene drehen. Da bei weiterer Drehung keine uneigentlichen Polyederflächen mehr entstehen, die Koordinatenebene vielmehr die Reihe der letzteren beschliesst, so kann man dieselbe, ohne dass sie eine Fläche des Polyeders ist, den eigentlichen Polyederflächen beizählen. Liegt auf einer Koordinatenaxe kein Systempunkt - die entsprechende Axe ist dann Gerade der Fläche -, so projiziere man sämtliche Systempunkte vom unendlich fernen Punkte dieser Axe auf die gegenüberliegende Koordinatenebene. Von dem daselbst entstehenden Punktsysteme bestimme man das analytische Polygon nach der Cramerschen Regel und verbinde jede Seite desselben durch eine Ebene mit dem genannten unendlich fernen Punkte. Diese Ebenen, welche je Kanten des Polyeders enthalten, mögen Grenzflächen des Polyeders Auch sie sollen den eigentlichen Polyederflächen beigezählt werden, weil bei Drehung der anstossenden Polyederfläche um die Kante über die Grenzfläche hinaus keine uneigentlichen Polyederflächen mehr erzeugt werden.

§ 3.

Das analytische Netz.

Wie gezeigt wurde, verhalten sich die Indices oder Anfangsexponenten der Flächenkurven wie die Stellungskoordinaten der eigentlichen oder uneigentlichen Polyederflächen, es ist also für dieselben nur die Stellung dieser Ebenen, nicht ihr Ursprungsabstand massgebend. Es kann daher das ganze System dieser Ebenen leichter übersichtlich gemacht werden zunächst durch Abbildung auf eine Kugel. Als Bildpunkt einer Ebene $\alpha x + \beta y + \gamma z - \varrho$ dient der im ersten Oktanten gelegene Berührungspunkt einer parallel zu ihr an eine Kugel mit Mittelpunkt im Ursprunge und mit dem Radius Eins gelegten Tangentialebene, also der Punkt

$$x = \frac{\alpha}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}; \quad y = \frac{\beta}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}; \quad z = \frac{\gamma}{\sqrt{\alpha^2 + \beta^2 + \gamma^2}}.$$

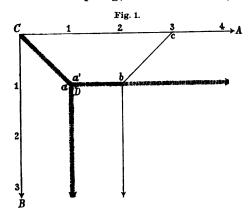
Diesen Punkt bildet man weiter ab auf die Tangentialebene z=1 durch Projektion vom Mittelpunkte aus und wenn man in dieser Ebene eine neue x- und y-Axe, parallel zur x- und y-Axe in der Ebene z=0, annimmt, so sind die Koordinaten des Bildpunktes $x = \frac{\alpha}{\gamma}$; $y = \frac{\beta}{\gamma}$. Also verhalten sich die homogenen Koordinaten des Bildpunktes in der Ebene z = 1 wie die Stellungskoordinaten der abzubildenden Ebene. Nun bilden sich aber auf der Kugel alle zu einer Kante gehörigen uneigentlichen Polyederflächen ab auf einem Grosskreisbogen zwischen den Bildpunkten der beiden an die Kante anstossenden eigentlichen Polyederflächen. Die auf der Kugel durch Abbildung sämtlicher Polyederflächen entstehende netzförmige Figur von Punkten, die durch Grosskreisbögen verbunden sind, projiziert sich auf die Ebene z=1 als eine ebenfalls netzförmige Figur, bestehend aus Punkten, verbunden durch gerade Linien, die Projektionen jener Grosskreisbögen. Diese Figur nenne ich analytisches Netz. Die Punkte heissen Ecken des Netzes; sie sind die Bildpunkte der eigentlichen Polyederflächen. Von ihnen gehen Gerade aus, Linien des Netzes; jede ist die Abbildung einer Polyederkante und jeder ihrer Punkte ist die Abbildung einer durch die Kante gehenden uneigentlichen Polyederfläche. Die Zahl der von einer Ecke ausgehenden Linien ist gleich der Zahl der Seiten der entsprechenden eigentlichen Polyederfläche. Die Ecken und die Punkte der Linien (Linienpunkte) sollen zusammen Netzpunkte heissen. Die von den Linien des Netzes eingeschlossenen, ebenen polygonalen Flächenräume heissen Maschen des Netzes; sie entsprechen den Ecken des Polyeders und sind daher den Ecktermen der Flächengleichung zugeordnet. Nur die letzteren werden durch die Maschen zur Darstellung gebracht; die auf den Kanten und Flächen des Polyeders liegenden Zwischenterme sind bei den Linien und Ecken des Netzes hinzu zu denken. Die Maschen

haben so viele Ecken, als Polyederflächen an die betreffende Polyederecke anstossen. Das Netz beschränkt sich auf den Quadranten der positiven x und y; als Randlinien treten die y-Axe, die x-Axe und die unendlich ferne Gerade auf. Da auch die Koordinatenebenen den eigentlichen Polyederflächen beigezählt wurden, treten im Netze im allgemeinen als Abbildungen derselben folgende Fundamentalpunkte auf:

der unendlich ferne Punkt der x-Axe, mit A bezeichnet, als Bildpunkt der Ebene x = 0,

der unendlich ferne Punkt der y-Axe, mit B bezeichnet, als Bildpunkt der Ebene y = 0,

der Ursprung, mit ℓ' bezeichnet, als Bildpunkt der Ebene z=0.



Die durch die Fundamentalpunkte gehenden Netzlinien mögen Ecklinien heissen. Die Grenzflächen des Polyeders werden abgebildet durch Grenzpunkte des Netzes, die auf den Randlinien gelegen sind, z. B. Punkt c in Figur 1.

Nach ihrem Verhalten gegenüber den Fundamentalpunkten teile ich die Maschen in drei Gruppen:

Vollmaschen haben keinen Fundamentalpunkt als Ecke, z. B. abcdea in Figur 3.

Eckmaschen haben einen Fundamentalpunkt als Ecke, z. B. abcCa in Figur 2.

Randmaschen haben zwei Fundamentalpunkte zu Ecken und daher eine vollständige Randlinie als Begrenzung, z. B. beABb in Figur 2.

Die Eckterme der Vollmaschen enthalten alle drei Veränderliche, diejenigen der Eckmaschen zwei, diejenigen der Randmaschen nur eine.

Für die Untersuchung der Flächen sind noch einige andere Punkte, Linien und Flächen des Netzes von Bedeutung, vor allem der Zentralpunkt D mit den homogenen Koordinaten 1:1:1; derselbe giebt zu einer weiteren Einteilung der Maschen in vier Klassen Anlass:

Zentralmaschen umschliessen den Zentralpunkt, z. B. abcdea in Figur 3.

Lateralmaschen haben den Zentralpunkt auf einer Linie (Zentrallinie), z. B. a'b'c'C'a in Figur 2.

Radialmaschen haben den Zentralpunkt als Ecke, z. B. b'a'c'C'b' in Figur 3.

Nebenmaschen haben den Zentralpunkt ausserhalb, z. B. bcABb in Figur 2.

Die Maschen der drei ersten Klassen könnte man Hauptmaschen nennen; ein Netz besitzt immer entweder eine Zentralmasche oder zwei Lateralmaschen, oder drei oder mehr Radialmaschen; daneben kann es beliebig viele Nebenmaschen enthalten. Während die Lage des Zentralpunktes über das Tangentialgebilde (§ 5) entscheidet, besitzen für das Verhalten der binomischen Hilfsflächen (§ 7) die drei Einheitspunkte eine gewisse

Wichtigkeit; es sind dies die auf Randlinien gelegenen Punkte

$$E = (0, 1, 1),$$

 $F = (1, 0, 1),$
 $G = (1, 1, 0);$

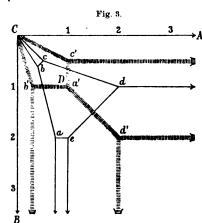
Einheitslinien mögen die Verbindungslinien AD, BD und CD des Zentralpunktes mit den Fundamentalpunkten heissen; als Einheitsdreiecke bezeichne ich die Dreiecke BCD, CAD, ABD, als Einheitsvierecke die

Vierecke AFDG, BGDE, CEDF.

Ist die Gleichung ^B einer Fläche gegeben, welche durch den Ursprung hindurchgeht, so kann man jederzeit das analytische Netz derselben entwerfen. Man

zeichnet (in einer perspektivischen Figur) das analytische Polyeder und bestimmt die Stellungskoordinaten der einzelnen Polyederflächen. Hiermit sind die homogenen Koordinaten der Netzecken gefunden; die letzteren

werden alsdann den Kanten des Polyeders entsprechend durch gerade Linien verbunden. Wie oben jede (eigentliche und uneigentliche) Polyeder-



fläche, so liefert jetzt jeder Netzpunkt (das heisst jede Ecke und jeder Linienpunkt) eine Schar von Flächenkurven mit bestimmten Anfangs-

exponenten.* Dieselbe berührt respektive die x, y, z-Axe, je nachdem der Netzpunkt im Einheitsdreieck BCD, CAD, ABC liegt; sie berührt respektive die Ebenen $x=0,\ y=0,\ z=0$, wenn der Netzpunkt respektive auf der Einheitslinie AD, BD, CD liegt; sie hat endlich die Ebene $x=0,\ y=0,\ z=0$ zur Schmiegungsebene, je nachdem der Netzpunkt sich im Einheitsvierecke AFDG, BGDE, CEDF befindet.

Zusatz: Damit eine aus Ecken, Linien und Maschen bestehende netzförmige Figur wirklich als analytisches Netz einer Fläche gedeutet werden kann, muss sie vor allem folgenden zwei Bedingungen genügen:

- a) Es dürfen sich nicht zwei Linien schneiden (ohne dass der Kreuzungspunkt als Ecke aufgefasst wird).
- b) Keine Masche darf einen einspringenden (oder auch nur flachen) Winkel besitzen.

Sind diese Bedingungen erfüllt, so kann zwar aus den durch die Ecken des Netzes bestimmten Ebenen ein Polyeder gebildet werden; es fragt sich aber noch, ob dieses die durch die Linien und Maschen des Netzes geforderten Kanten und Ecken besitzen kann. Jedenfalls ist jede Polyederfläche nur hinsichtlich ihrer Stellung bestimmt.

Zerfällt eine Fläche in das Produkt zweier Teilflächen, so besteht ihr Netz aus den aufeinander gelegten Netzen der Teilflächen, wobei Kreuzungen von Linien derselben als neue Eckpunkte einzuführen sind.

§ 4.

Die Durchdringungskurve zweier Flächen.

Eine erste Anwendung des analytischen Netzes ist die Lösung folgender Aufgabe: Gegeben zwei Flächen, welche durch den Ursprung gehen, gesucht die Zweige ihrer Durchdringungskurve daselbst. Zur Ermittelung der Anfangsexponenten dieser Zweige ergiebt sich nämlich sofort folgendes graphische Verfahren: Soll eine Raumkurve beiden Flächen angehören, so muss der durch ihre Indices bestimmte Punkt im Netze beider Flächen vorkommen; man erhält diese Punkte als gemeinsame Netzpunkte (Netzschnittpunkte), wenn man die beiden Netze aufeinander legt, sodass die Fundamentalpunkte beider zusammenfallen.

Dabei sind aber drei Fälle zu unterscheiden:

- a) Eine Ecke des einen Netzes fällt auf eine solche des anderen, das heisst es ist im einen Polyeder eine eigentliche Fläche zu einer solchen des anderen parallel.
- b) Eine Ecke des einen Netzes fällt auf eine Linie des anderen, das heisst es ist eine eigentliche Fläche des einen Polyeders zu einer uneigentlichen des anderen parallel.

^{*} Dabei liefern die Grenzpunkte Scharen von Flächenkurven, die nicht durch den Ursprung gehen.

c) Eine Linie des einen Netzes schneidet eine Linie des anderen, das heisst es ist eine uneigentliche Fläche des einen Polyeders einer solchen des anderen parallel.

Es kann aber auch vorkommen, dass Linien der beiden Netze ganz oder teilweise zusammenfallen. Als Netzschnittpunkte sind hierbei nur die an den Endpunkten des zusammenfallenden Linienstückes befindlichen Ecken anzusehen.

Es ist leicht zu sehen, dass immer mindestens ein Netzschnittpunkt existiert, wenn keine Grenzpunkte vorhanden sind. Zunächst kann ein Netz ohne Grenzpunkte nicht in zwei völlig getrennte Linienzüge zerfallen; also muss man von jeder Ecke aus auf den Linien des Netzes fortschreitend jeden Fundamentalpunkt erreichen können. Ferner hat jedes Netz ohne Grenzpunkte mindestens eine Ecke. Dann fällt eine Ecke des ersten Netzes entweder in eine Ecke oder auf eine Linie des zweiten (in welchem Falle bereits ein Netzschnittpunkt vorliegt) oder in eine Masche desselben. Diese ist im günstigsten Falle eine Randmasche, sodass die erwähnte Ecke mit zwei Fundamentalpunkten verbunden sein kann, ohne dass der betreffende Linienzug die Begrenzungslinien der Masche schneidet. Aber der dritte Fundamentalpunkt kann von der Ecke aus nur durch einen Linienzug erreicht werden, der entweder eine Ecke der Masche passiert oder eine Linie derselben kreuzt, womit der Satz bewiesen ist.

Jeder Netzschnittpunkt (α, β, γ) liefert einen oder mehrere Zweige der Durchdringungskurve.

Die ersten Glieder der Kurvenentwickelung sind nun:

$$\begin{cases} x = \lambda \varepsilon^{\alpha} \\ y = \mu \varepsilon^{\beta} \\ z = \nu \varepsilon^{\gamma} \end{cases}.$$

Zur Bestimmung der Koeffizienten nimmt man aus jeder Flächengleichung die Eckterme der an den Netzschnittpunkt stossenden Maschen unter Beifügung der dazwischen liegenden Zwischenterme und setzt dieselben je für sich gleich Null. Durch Einsetzen der Werte von x, y, z ergeben sich zwei Gleichungen (Koeffizientengleichungen) zur Bestimmung von $\lambda:\mu:\nu$. Einer dieser Koeffizienten (etwa ν) kann gleich Eins gesetzt werden. Man macht dann die Koeffizientengleichungen durch Einführung der homogenisierenden Veränderlichen n in λ und μ homogen. Bei der Lösung der Koeffizientengleichungen, die man als Gleichungen von Kurven (Koeffizientenkurven) in homogenen Koordinaten λ, μ, n deuten kann, ist folgendes zu beachten.

Die in die Ecken des Koordinatendreiecks fallenden Schnittpunkte bleiben ausser Betracht; auch werden die Koordinatenaxen weggelassen, wenn sie etwa als Bestandteile der Koeffizientenkurven auftreten.

Bei den übrig bleibenden Lösungen ist für den Fall, dass der Index γ , dessen Koeffizient $\nu=1$ gesetzt wurde, grösser als Eins ist, der

Parameter $\varepsilon = \sqrt[\gamma]{z}$ nicht eindeutig, sondern γ -deutig bestimmt. Also führen je γ -Wertesysteme für λ , μ , n nur auf einen Raumkurvenzweig, weil sich je γ Entwickelungen nur in der Wahl des Parameters unterscheiden.

Werden diese beiden Umstände berücksichtigt, so ist die Zahl der Lösungen der Koeffizientengleichungen von der Wahl des gleich Eins zu setzenden Koeffizienten unabhängig; zweckmässig ist es nach dem Vorstehenden hierzu denjenigen zu wählen, zu welchem der kleinste Index gehört. Den Parameter $\varepsilon = \sqrt[4]{z}$ behält man auch für die höheren Glieder der Reihen bei, sodass sich die Reihe für z auf $z = \varepsilon^{\gamma}$ beschränkt. Die Terme der Flächengleichung, welche auf die zweiten Glieder der Reihen für x und y Einfluss haben, findet man, indem man die zu (α, β, γ) gehörende eigentliche oder uneigentliche Polyederfläche vom Ursprunge weg parallel mit sich verschiebt, bis sie wieder durch einen oder mehrere auf der Oberfläche des Polyeders oder in seinem Innern gelegene Systempunkte geht. Die zugehörigen Terme treten zu den Termen der Koeffizientengleichungen hinzu, um die zweiten Glieder von x und y zu liefern.

Infolge besonderer Werte der Koeffizienten der Flächengleichungen treten oft bei Lösung der Koeffizientengleichungen eigentümliche Schwierigkeiten auf. Es kann ein Schnittpunkt der Koeffizientenkurven auf eine Koordinatenaxe fallen, wodurch sich einer der Indices erhöht; es können aber auch die Koeffizientenkurven ganz oder in einem Teile ihres Verlaufes zusammenfallen. Dann sind ihre Gleichungen zur Berechnung der Koeffizienten nicht mehr ausreichend. Die Ursache dieser Erscheinung ist, dass die beiden Flächengleichungen auf die Form gebracht werden können: $f = \varphi \psi + \chi = 0$ und $f' = \varphi \psi' + \chi' = 0$. Man schafft die störende Funktion φ weg, indem man bildet:

$$f'' = \psi' f - \psi f' = \psi' \chi - \psi \chi' = 0.$$

Die Fläche f''=0 schneidet f=0 in den Kurven $\begin{cases} f=0\\ f'=0 \end{cases}$ und $\begin{cases} f=0\\ \psi=0 \end{cases}$. Man berechnet daher die Zweige von $\begin{cases} f=0\\ f''=0 \end{cases}$ und lässt, um diejenigen von $\begin{cases} f=0\\ f'=0 \end{cases}$ zu bekommen, die Zweige von $\begin{cases} f=0\\ \psi=0 \end{cases}$ weg, wenn ψ nicht eine Konstante, sondern eine Funktion ist.

Tritt ein Schnittpunkt der Koeffizientenkurven m-fach zählend auf, so sind im allgemeinen nicht α , β , γ , sondern $m\alpha$, $m\beta$, $m\gamma$ die Indices des zugehörigen Raumkurvenzweiges, doch können unter Umständen auch m-Zweige mit Indices α , β , γ in höherer Berührung auftreten.

Als Beispiel werde die Durchdringungskurve der Flächen

$$Ax^{2} + Bxy + Cxz + Dz^{3} = 0$$
$$Ex + Fy + Gz = 0$$

ermittelt.

und

Das Netz der ersten Fläche, in Figur 1 ausgezogen, hat die Ecken a = (1, 1, 1), b = (2, 1, 1), den Grenzpunkt c = (3, 0, 1) und die Maschen $(aBC(x^3); CabcC(xy); BabB(xz); cABbc(x^3))$. Das Netz der zweiten Fläche, in Figur 2 quergestrichelt, hat die Ecke a' = (1, 1, 1) und die Maschen Ba'CB(x); Aa'CA(y); Aa'BA(z).

Netzschnittpunkte: Es liegt Ecke b auf Linie a'A: Ecke a auf Ecke a'.

Erster Zweig: $\begin{cases} x = l \ s^2 \\ y = \mu \varepsilon + \cdots \\ z = \nu \varepsilon + \cdots \end{cases}$ (es wurde $\lambda = 1$ gesetzt und mit l

homogen gemacht). Koeffizientengleichungen:

$$\left\{
 Bl^2 \mu + Cl^2 \nu + D \nu^3 = 0 \\
 F \mu + G \nu = 0
 \right\}.$$

 $\begin{cases} Bl^2\mu + Cl^2\nu + D\nu^8 = 0 \\ F\mu + G\nu = 0 \end{cases}.$ Die Lösung $\begin{cases} \mu = 0 \\ \nu = 0 \end{cases}$ bleibt weg; die beiden anderen Lösungen be-

ziehen sich nur auf eine Entwickelung, alsor

$$x = \varepsilon^{2}, \quad y - \frac{-G}{F} \sqrt{\frac{BG - CF}{DF}} \varepsilon + \cdots, \quad z = \sqrt{\frac{BG - CF}{DF}} \varepsilon + \cdots$$

$$z = \frac{1}{2} \varepsilon + \cdots$$

$$z = \frac{1}{2} \varepsilon + \cdots$$

$$z = \frac{1}{2} \varepsilon + \cdots$$

Koeffizientengleichungen: $Al + B\mu + C\nu = 0$ (Faktor l bleibt weg)

$$El + F\mu + G\nu = 0$$

also:

$$x = \varepsilon$$
, $y = \frac{CE - AG}{BG - CF} \varepsilon + \cdots$, $z = \frac{AF - BE}{BG - CF} \varepsilon + \cdots$

Die Berechnung der Durchdringungskurve ermöglicht auch die Lösung folgender wichtigen Aufgabe:

Betrachtet man eine Fläche f(x, y, z, t) = 0 von einem beliebigen Punkte (ξ, η, ζ, τ) aus, so besitzt das Bild derselben eine Umrisslinie, nämlich die Berührungskurve des von (ξ, η, ζ, τ) an die Fläche zu legenden Berührungskegels. Durch diese Kurve geht aber auch die erste Polarsläche des Punktes (ξ, η, ζ, τ) in Bezug auf die Fläche f = 0, also die Fläche:

$$P = \frac{\partial f}{\partial x} \xi + \frac{\partial f}{\partial y} \eta + \frac{\partial f}{\partial z} \zeta + \frac{\partial f}{\partial t} \tau = 0.$$

Hat f = 0 im Ursprunge einen zwei- oder mehrfachen Punkt, so geht durch denselben auch P=0, gleichviel, wo der Punkt $(\xi,\eta,\dot{\xi},\tau)$ gelegen ist. Dann geht also eine Umrisslinie der Fläche, die Durchdringungskurve von f = 0 und P = 0, durch den Ursprung und deren Zweige können nach dem eben geschilderten Verfahren ermittelt werden. Zu diesem Zwecke muss man auf das Netz der Fläche das Netz der Polarfläche eines beliebigen Punktes in Beziehung auf dieselbe legen; ich nenne das letztere Polarnetz der Fläche.

Beispiel: Umrisslinie der Flächen

$$f = xy^2 - x^3z - x^5 - y^5 - 32z^5 = 0$$

vom Punkte $(\xi, \eta, \zeta, 0)$ gesehen. Das Netz, in Figur 2 ausgezogen, hat die Ecken a = (1, 2, 2); b = (8, 11, 6); c = (3, 1, 1) und die Maschen $Cabc C(xy^2); Bab B(x^3z); CaB C(x^5); CcA C(y^5); BbcA B(z^5).$ Die Polarfläche des Punktes $(\xi, \eta, \zeta, 0)$ in Bezug auf f = 0 ist:

$$P = \xi(y^2 - 3x^2z - 5x^4) + \eta(2xy - 5y^4) + \xi(-x^3 - 160z^4) = 0.$$

Das Polarnetz, in Figur 2 quergestrichelt, hat die Ecken

$$a' = (1, 2, 1), b' = (3, 5, 2), c' = (2, 2, 1)$$

und die Maschen

$$Ca'b'c'C(xy)$$
, $Cc'AC(y^2)$, $Ca'BC(x^3)$, $Ba'b'B(x^2z)$, $Bb'c'AB(z^1)$.

Netzschnittpunkte:

1. Ecke a auf Linie a'C liefert:

$$\left\{ \begin{array}{l} x = \varepsilon \\ y = \frac{\zeta}{2\eta} \varepsilon^2 + \cdots \\ z = \left(\frac{\zeta^2}{4\eta^2} - 1\right) \varepsilon^2 + \cdots \end{array} \right\}.$$

2. Kreuzung der Linien bB und a'b' im Punkte (4, 7, 3) giebt:

$$\begin{cases} x = -2\sqrt[3]{4}\,\varepsilon^4 + \cdots \\ y = -\frac{3\,\xi}{\eta}\sqrt[3]{4}\,\varepsilon^7 + \cdots \\ z = \varepsilon^3 \end{cases}.$$

3. Kreuzung der Linien bc und c'C im Punkte (5, 5, 3) giebt:

$$\left\{ \begin{array}{l} x = 2 \sqrt[3]{\frac{\overline{\xi^3}}{\eta^3}} \varepsilon^5 + \cdots \\ y = -4 \sqrt[3]{\frac{\overline{\eta}}{\xi}} \varepsilon^5 + \cdots \\ z = \varepsilon^3 \end{array} \right\}.$$

Diese drei Zweige besitzt also die Umrisslinie der Fläche (siehe Fig. 4).

§ 5.

Das Tangentialgebilde.

Es ist nun erforderlich den Begriff, "singulärer Punkt einer Fläche" genau zu definieren. Ein gewöhnlicher Punkt besitzt bekanntlich folgende Eigenschaften:

- a) Eine beliebige Gerade durch ihn schneidet die Fläche in einem Punkte.
- b) Es giebt speziell unendlich viele Geraden (Tangenten) durch den Punkt, die die Fläche in zwei zusammenfallenden Punkten schneiden; dieselben liegen in einer Ebene (Tangentialebene).

c) In der Tangentialebene giebt es zwei Tangenten, welche die Fläche in drei zusammenfallenden Punkten schneiden (Haupttangenten).

Jeder Punkt, der nicht alle diese drei Eigenschaften besitzt, möge ein singulärer Punkt genannt werden. Schneidet eine beliebige Gerade durch einen solchen die Fläche nicht in einem, sondern in ν Punkten, so heisst der Flächenpunkt ein ν -facher. Alsdann liegen die in $\nu+1$ oder mehr Punkten schneidenden Geraden auf einem Kegel ν^{ter} Ordnung, mit Spitze im singulären Punkte, den ich als Tangentialgebilde bezeichne. Derselbe kann ganz oder teilweise in Ebenen zerfallen und reduziert sich im Falle des einfachen Flächenpunktes auf die Tangential-

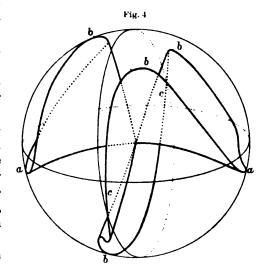
ebene. Liegt der Flächenpunkt im Koordinatenursprunge, so ergiebt sich die Gleichung des Kegels

durch Nullsetzen der Tangentialglieder, das heisst der Glieder der

Flächengleichung von niedrigster, also ν^{ter} Gesamtdimension in x, y, z.

Das Tangentialgebilde ist diejenige Fläche, der sich die gegebene Fläche um so inniger anschliesst, je mehr man sich dem

Flächenpunkte nähert. Dasselbe wird durch den Zentralpunkt bestimmt



- und je nach der Lage desselben im Netz sind drei Fälle möglich:
- I. Netz mit Zentralmasche. Ein Tangentialglied. Tangentialgebilde zerfällt in Koordinatenebenen.
 - a) Triplanarer Typus: Zentralmasche ist Vollmasche; Tangentialgebilde besteht aus allen drei Koordinatenebenen (Fig. 3).
 - b) Biplanarer Typus: Zentralmasche ist Eckmasche; Tangentialgebilde besteht aus zwei Koordinatenebenen (Fig. 2).
 - c) Uniplanarer Typus: Zentralmasche ist Randmasche; Tangentialgebilde beschränkt sich auf eine Koordinatenebene.

II. Netz mit zwei Lateralmaschen. Zwei Tangentialglieder. Tangentialgebilde besteht aus einem binomischen Kegel, zu dem noch Koordinatenebenen hinzutreten, wenn die Lateralmaschen nicht an die Fundamentalpunkte stossen. Der Kegel zerfällt in Ebenen, wenn die Zentrallinie oder ihre Verlängerung durch einen Einheitspunkt hindurchgeht.

III. Netz mit drei oder mehr Radialmaschen. Drei oder mehr Tangentialglieder. Das Tangentialgebilde ist ein trinomischer oder polynomischer Kegel, zu dem Koordinatenebenen hinzutreten können, wenn die Radialmaschen nicht an die Fundamentalpunkte stossen.

Aus dieser Zusammenstellung geht hervor, dass immer die Hauptmaschen die Eckterme der Tangentialglieder liefern.

§ 6.

Bildliche Darstellung einer Fläche in der Nähe eines singulären Punktes.

Zur Herstellung einer perspektivischen, die Gestalt der Fläche in der Nähe eines singulären Punktes darstellenden Zeichnung hat sich folgendes Verfahren als praktisch bewährt:

Man beschreibt um den singulären Punkt eine sehr kleine durchsichtige Kugel; dieselbe schneidet die Fläche in einer sphärischen Kurve, die ich Kugelkurve nennen will. Die Kugelkurve drängt sich an die Spur des Tangentialgebildes umso näher heran, je kleiner die Kugel angenommen wird.* Die Fläche selbst möge als undurchsichtig angenommen werden.

Alsdann nimmt man den ausserhalb der Kugel befindlichen Teil der Fläche weg und bildet die ganze Figur durch Projektion auf die Ebene y=0 ab und zwar von einem unendlich fernen Punkte aus (Parallelprojektion), wobei es zweckmässig ist, $\xi:\eta:\zeta=1:3:1$ zu setzen.

Zur Veranschaulichung der Kugel dienen drei Grosskreise, nämlich ihre Schnitte mit den Koordinatenebenen. Die Grosskreise x=0 und z=0 bilden sich auf der Ebene y=0 als Ellipsen vom Halbaxenverhältnisse 1:3 ab. Der Grosskreis y=0 möge mit dem Umriss der Kugel, der eigentlich eine Ellipse wäre, verwechselt werden, wodurch das Bild an Einfachheit und Klarheit bedeutend gewinnt. Wird die Kugel in dieser Weise angedeutet, so ist es nicht schwer, die Kugelkurve als sphärische Kurve zu sehen und sich demgemäss von der Gestalt der Fläche im Raume eine Vorstellung zu machen.

Um die Kugelkurve zu zeichnen, liegt es am nächsten, nach dem Vorgange von Möbius** sphärische Koordinaten auf der Kugel einzuführen. Die Gleichung einer sphärischen Kurve ist dann identisch mit der Gleichung des dieselbe vom Ursprunge aus projizierenden Kegels. Man erhält also die Gleichung der Kugelkurve durch Elimination von t aus der Flächengleichung f(x, y, z, t) = 0 und der Kugelgleichung $x^2 + y^2 + z^2 - \rho^2 t^2 = 0$ in der Form:

$$f(Qx, Qy, Qz, \sqrt{x^2 + y^2 + z^2}) = 0.$$

^{**} Grundformen der Linien III. Ordnung. Ges. Werke II, S. 115.

^{*} Vergl. Rohn, Math. Ann. 22, S. 128.

Aber man muss sich jetzt wohl hüten, diese Gleichung durch Wegschaffung des Wurzelzeichens rational zu machen; denn hierdurch käme neben der Kugelkurve auch ihre Gegenkurve* herein.

Man muss sich daher bei der Diskussion der Kugelkurve (die man auch auf eine Tangentialebene der Kugel projizieren könnte) an die irrationale Form ihrer Gleichung halten.

In einfacheren Fällen, insbesondere bei Näherungs- und Hilfsflächen, genügt für die Zeichnung der Kugelkurve folgendes Verfahren: Man zeichne die Spur des Tangentialgebildes auf der Kugel und bestimme ferner die Schnittpunkte der Kugelkurve mit den Koordinatenebenen. Diese Punkte liegen auf den drei Grosskreisen; man erhält sie durch Nullsetzen je einer Veränderlichen in der Flächengleichung; sie mögen Hauptpunkte heissen. Die Zahl der auf der Begrenzung eines Kugeloktanten gelegenen Hauptpunkte muss eine gerade sein. Ausserdem lassen sich auch die Schnittpunkte mit den Medianebenen

$$y \pm z = 0$$
; $z \pm x = 0$; $x \pm y = 0$

leicht ermitteln. Auch die Schnittpunkte der Kugelkurve mit dem Tangentialgebilde, soweit dieses nicht aus Koordinatenebenen besteht, sind nach § 4 unschwer zu berechnen.

Tritt ein n-fach zählender Teil des Tangentialgebildes auf, so wird dessen Spur von n Zweigen der Kugelkurve begleitet, die aber paarweise ganz oder in einem Teile ihres Verlaufes imaginär sein können. Daher ist die Spur immer wenigstens von einem Zweige begleitet, wenn n ungerade ist, während sie ganz frei oder teilweise ganz frei sein kann, wenn n gerade ist.

Mehrfache Punkte kann die Kugelkurve nur besitzen, wenn mehrfache Kurven durch den singulären Punkt hindurchgehen. Den Umriss der Kugel berührt die Kugelkurve, wo sie ihn trifft.

Die Kugelkurve ist aber zur bildlichen Darstellung der Fläche nur dann ausreichend, wenn der singuläre Punkt ein einfacher ist. Bei einem mehrfachen Punkte treten, wie in § 4 bereits bemerkt wurde, eine oder mehrere Umrisslinien auf. Ihre Berechnung wurde in § 4 angegeben. Die Zweige der Umrisslinien gehen vom Kugelmittelpunkt aus und laufen bis zur Kugelkurve, wo sie, dieselbe berührend, ihr Ende finden. Die Umrisslinien bilden daher eine Kontrolle bei der Zeichnung der Kugelkurve und geben insbesondere über scheinbare Doppelpunkte derselben, Ovale, die ausserhalb der Koordinatenebenen liegen u. s. f. Aufschluss.***

^{*} Möbius a. a. O. S. 97.

^{**} Grenzpunkte auf der Randlinie BC, CA, AB zeigen, dass die x-, y-, z-Axe der Fläche angehört. Die singuläre Natur dieser Flächengeraden ermittelt man vermittelst des in § 2 erwähnteu, von den Spuren der Grenzflächen gebildeten Polygons.

\$ 7.

Die Näherungs- und Hilfsflächen.

Einer Näherungsfläche gehört eine Polyederfläche, im Netze also eine Ecke, einer Hilfsfläche eine Polyederkante, also auch eine Netzlinie an. Das Netz einer Hilfsfläche beschränkt sich auf eine gerade Linie (die Verlängerung der zugehörigen Netzlinie), welche von einem Grenzpunkte zu einem anderen oder zu einem Fundamentalpunkte ver-Jeder Punkt dieser Geraden bestimmt ein Indicessystem; zu jedem dieser Systeme gehört eine Schar von Raumkurven auf der Hilfsfläche. Im Netze der gegebenen Fläche kommt aber die zur Hilfsfläche gehörige Gerade nur zum Teile vor (soweit sie eben Netzlinie ist); daher tritt von den unendlich vielen Raumkurvenscharen der Hilfsfläche nur ein Teil in Beziehung zu Kurven auf der Fläche. Diese Beziehung besteht darin, dass die Kurvenscharen auf der Hilfsfläche und auf der gegebenen Fläche in den Exponenten und Koeffizienten der ersten Glieder übereinstimmen. In diesem Sinne ist derjenige Teil der Hilfsfläche, auf welchem die erwähnten Kurvenscharen (massgebende Kurvenscharen) liegen, für die gegebene Fläche massgebend. Die Fläche schliesst sich der Hilfsfläche in der Nähe der Ebene x = 0; y = 0; z = 0 an, wenn die zugehörige Netzlinie die Einheitslinie AD, BD, CD kreuzt; ferner in der Nähe der x-, y-, z-Axe, wenn die Netzlinie im Einheitsdreieck BCD, CAD, ABD verläuft. Geht die Netzlinie durch den Zentralpunkt, so schliesst sich die Hilfslinie der Fläche in einem von den Koordinatenebenen entfernten Teile an.

Das Netz einer Näherungsfläche besteht aus einem Eckpunkte; von demselben laufen Gerade (die Verlängerungen der anstossenden Netzlinien) nach Grenz- oder Fundamentalpunkten. Jedem Netzpunkte der Näherungsfläche entspricht allerdings eine Schar von Raumkurven auf derselben. Aber jeder Linienpunkt des Netzes gehört zugleich dem Netze einer Hilfsfläche an; die von einem solchen gelieferten Kurven stimmen in den ersten Gliedern mit auf den Hilfsflächen liegenden überein, und deren Einfluss wurde bereits erörtert. Etwas Neues liefert nur der Eckpunkt des Netzes, nämlich eine massgebende Schar von Raumkurven, die nur auf der Näherungsfläche existiert und ebenfalls mit einer Schar von Flächenkurven gleiche erste Glieder besitzt. Der massgebende Teil der Näherungsfläche liegt wieder in der Nähe der Ebene x = 0; y = 0; z = 0, wenn die Netzecke auf der Einheitslinie AD, BD, ('D) liegt; ferner in der Nähe der x-, y-, z-Axe, wenn die Netzecke ins Einheitsdreieck BCD, CAD, ABD fällt; endlich entfernt von den Koordinatenebenen, wenn die Netzecke der Zentralpunkt selbst ist.

Aus dieser Betrachtung ergiebt sich ein bemerkenswerter Unterschied zwischen den Näherungs- und Hilfsflüchen hinsichtlich ihres

Einflusses auf das Verhalten der Fläche. Die Hilfsflächen enthalten je unendlich viele massgebende Scharen von Raumkurven, sind also selbst im allgemeinen in einem grösseren Teile ihres Verlaufes massgebend. Der Einfluss der Näherungsflächen mit je nur einer massgebenden Schar von Raumkurven auf das Verhalten der Fläche konzentriert sich auf einen räumlich beschränkten Teil der Fläche, ist aber gerade darum umso augenfälliger.

Während bei den trinomischen und polynomischen Näherungsflächen eine unabsehbar grosse Zahl verschiedener Typen auftritt, lässt sich für die binomischen Hilfsflächen folgende Einteilung aufstellen.

Die binomische Hilfsfläche sei $x^a = y^p z^y$ (wo x, y, z beliebig vertauschbar sind).

- A) Kein Exponent ist Null. Zwei Grenzpunkte. Rand- und Eckmasche. I. $\alpha < \beta + \gamma$. Uniplanarer Typus. Eine Tangentialebene. Zeutralrand- und Nebeneckmasche.
 - 1. $\alpha < \beta \le \gamma$. Alle Einheitspunkte auf der Begrenzung der Zentralmasche. Die Tangentialebene wird von der Hilfsfläche in zwei torsalen* Geraden berührt und fällt mit der Tangentialebene längs derselben zusammen, z. B. $x = y^2 z^2$.
 - 2. $\alpha = \beta < \gamma$. Zwei Einheitspunkte auf der Begrenzung der Zentralmasche, der dritte ist Grenzpunkt. Die Tangentialebene wird von der Hilfsfläche in einer torsalen Geraden berührt, längs deren sie Tangentialebene ist und in einer skrolaren* Geraden geschnitten, z. B. $x = yz^2$.
 - 3. $\beta < \alpha < \gamma$. Zwei Einheitspunkte in der Begrenzung der Zentralmasche, der dritte in derjenigen der Nebenmasche. Die Tangentialebene wird von der Hilfsfläche in einer torsalen Geraden berührt, längs deren sie Tangentialebene ist und in einer anderen torsalen Geraden geschnitten, längs deren sie nicht Tangentialebene ist, z. B. $x^2 = yz^3$.
 - 4. $\beta = \alpha = \gamma$. Zwei Einheitspunkte sind Grenzpunkte, der dritte liegt in der Begrenzung der Zentralmasche. Die Tangentialebene wird von der Hilfsfläche in zwei skrolaren Geraden geschnitten, z. B. $x = y\varepsilon$.
 - 5. $\beta < \alpha = \gamma$. Ein Einheitspunkt auf der Begrenzung der Zentralmasche, einer auf der der Nebenmasche, der dritte ist Grenzpunkt. Die Tangentialebene wird von der Hilfsfläche in einer skrolaren Geraden und in einer torsalen, längs der sie nicht Tangentialebene ist, geschnitten, z. B. $x^2 = yz^2$.
 - 6. $\beta \le \gamma < \alpha$. Ein Einheitspunkt auf der Begrenzung der Zentralmasche, zwei auf der der Nebenmasche. Die Tangentialebene wird von der Hilfsfläche in zwei torsalen Geraden geschnitten, längs deren sie nicht Tangentialebene ist z. B. $x^3 = y^2 z^2$.

^{*} Vergl. Salmon-Fiedler, Analyt. Geom. d. Raumes II., 3. Aufl. S. 372 (Anm.).

- II. $\alpha = \beta + \gamma$. Konischer Typus. Hilfsfläche ist ein Kegel. Eine Lateralrand- und eine Lateraleckmasche. Zwei Einheitspunkte auf der Begrenzung der ersteren, einer auf derjenigen der letzteren, z. B. $x^2 = yz$.
- III. $\alpha > \beta + \gamma$. Biplanarer Typus. Zwei Tangentialebenen. Eine Zentraleck- und eine Nebenrandmasche. Zwei Einheitspunkte auf der Begrenzung der ersteren, einer auf derjenigen der letzteren, z. B. $x^3 = yz$.
- B) Ein Exponent $\gamma = 0$. Nur ein Grenzpunkt. Netzlinie ist Ecklinie. Cylindrischer Typus. Die Fläche ist ein Cylinder. Zwei Randmaschen.
 - 1. $\alpha < \beta$. Zentral- und Nebenmasche, z. B. $x = y^2$.
 - 2. $\alpha = \beta$. Zwei Lateralmaschen. Der Cylinder zerfällt in Ebenen, z. B. $x^2 = y^2$.

Je nachdem α , β , γ gerade oder ungerade sind, ergeben sich (ausschliesslich der zerfallenden) 35 gestaltlich verschiedene Spezies von binomischen Hilfsflächen.

\$ 8.

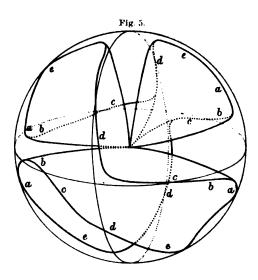
Untersuchung einer Fläche in der Nähe eines singulären Punktes.

Jede Fläche durch den Ursprung, deren niederste Glieder nicht für sich gleich Null gesetzt die Gleichung einer binomischen Hilfsfläche oder einer polynomischen Näherungsfläche liefern, besitzt ein Polygon mit mehreren Flächen und Kanten, also auch ein Netz mit Ecken und Linien und schliesst sich daher an eine Anzahl von Näherungsflächen und Hilfsflächen an. In komplizierteren Fällen ist zu ihrer bildlichen Darstellung das in § 6 gegebene Verfahren zur Zeichnung der Kugelkurve nicht mehr ausreichend. Aber die letztere kann nunmehr aus Näherungsbögen zusammengesetzt werden, welche von den Näherungs- und Hilfsflächen an die Hand gegeben werden. Man zeichnet nach § 6 die Bilder aller Näherungsflächen (a, b, c...) und aller Hilfsflächen $(\overline{ab}, \overline{ac}, \ldots)$, welche die Ecken und Linien des Netzes liefern. In diesen Figuren verdickt* man sämtliche Bögen (Näherungsbögen) der Kugelkurve, welche man gemäss § 7 als massgebend erkennt. Die Näherungsbögen der Näherungsflächen werden nun in die Hauptfigur eingetragen und durch Kurvenbögen, die den Näherungsbögen der Hilfsflächen entsprechen, verbunden; so erhält man den genäherten Verlauf der Kugelkurve der Fläche. Man kann dann diese Kurve natürlich durch Konstruktion einzelner Punkte genauer erhalten. Um bei der Verbindung der Näherungsbögen systematisch zu verfahren, kann man eine Gerade (ein Lineal) um den Zentralpunkt des Netzes im Sinne des Uhrzeigers drehen; man führt dann jede Verbindung

^{*} Vergl. das Verfahren bei Reuschle, Praxis der Kurvendiskussion. Stuttgart 1886, S. 4 fig.

mittelst eines Hilfsflächenbogens aus, während die Gerade die zugehörige Netzlinie passiert. Geht die Gerade in der Anfangslage durch den Punkt ℓ , so erhält man den Verlauf der Kugelkurve zuerst in der Nähe der Ebene z=0, dann geht man weiter vorbei an der y-Axe, der Ebene x=0, der z-Axe, der Ebene y=0, der x-Axe zurück zur Ebene z=0. Damit hat man die ganze Kugelkurve umlaufen. (Beispiel: In Figur 5 werden so der Reihe nach die Verbindungen cd, de, ea, ab, bc ausgeführt.) Praktisch ist dieses Verfahren bei Zentralmaschen. Bei Lateralmaschen müssen ausserdem die Näherungsbögen der den Endpunkten der Zentrallinie entsprechenden Näherungsflächen durch die vom Tangentialkegel gelieferten Näherungsbögen verbunden werden. Bei Radialmaschen existieren drei oder mehrere

Hilfskegelflächen, welche die Verbindung der vom Tangentialkegel gelieferten Näherungsbögen mit den übrigen Teilen der Kugelkurve herstellen. Durch dieses Verfahren werden die einzelnen Teile der Kugelkurve den Näherungs- und Hilfsflächen zugeordnet; sie sind daher in den Figuren mit a, b... bezeichnet. Und zwar gehört zu jeder Näherungs- und Hilfsfläche, also auch zu jeder Ecke und Linie des Netzes, ein Teil der Kugelkurve oder mehrere solche.



Freilich kann es auch vorkommen, dass der massgebende Teil einer Näherungs- oder Hilfsfläche imaginär wird. So zertällt in dem Beispiele $x^3y^3-x^2y^2z^2+x^3z^5+y^3z^5-z^{10}-x^{12}-y^{12}=0$ die Kugelkurve wegen der imaginären Hilfsflächen $y^2z^2+x^{10}=0$ und $x^2z^2+y^{10}=0$ in zwei völlig getrennte Teile, von denen der eine sich dem Kegel $xy-z^2=0$, der andere den Ebenen x=0 und y=0 anschliesst.

Die Hauptpunkte der Kugelkurve werden durch diejenigen Hilfsflächen geliefert, welche den Ecklinien des Netzes entsprechen. Dabei ist es praktisch, die betreffenden Teile der Kugelkurve derjenigen Näherungsfläche zuzuordnen, deren zugehörige Ecke den Endpunkt der betreffenden Ecklinie bildet.

Ergiebt ferner ein Schnittpunkt des Netzes und des Polarnetzes der in eine Ecke oder auf eine Linie des Netzes fällt, eine Umrisslinie der Fläche, so berührt diese die Kugelkurve innerhalb des Näherungsbogens, welchen die zur Ecke oder Linie gehörige Näherungsoder Hilfsfläche geliefert hat.

Im allgemeinen reichen, wie bei ebenen Kurven, so auch bei Flächen die vom analytischen Polyeder gelieferten Näherungs- und Hilfsflächen, also auch die niedrigsten Glieder der Flächengleichung, von denen diese abhängen, aus, um die Gestalt der Fläche im Ursprunge zu bestimmen. Eine Ausnahme tritt aber ein (analog wie bei ebenen Kurven), wenn Hilfs- oder Näherungsflächen mehrfach zählend vorkommen. Alsdann müssen zur Bestimmung der Flächengestalt höhere Glieder, eventuell auch im Innern des Polygons gelegene, beigezogen werden. In gestaltlicher Beziehung sei nur bemerkt, dass die mehrfach zählenden Näherungsbogen durch Beiziehung höherer Glieder in mehrere einfache Näherungsbogen umgewandelt werden, und dass manchmal ein doppelt (oder 2n-fach) zählender Näherungsbogen in einem Teile seines Verlaufes ungültig wird, indem die zwei nebeneinander herlaufenden, durch Umwandlung entstandenen Näherungsbogen, eine bestimmte Fläche berührend, ineinander übergehen (sich gewissermassen miteinander verzweigen). Näher kann hier auf diesen Gegenstand nicht eingegangen werden.

Beispiele:

1. Untersuchung der Fläche

$$xy^2 - x^3z - x^5 - y^5 - 32z^5 = 0.$$

Das Netz, Figur 2, und die Umrisslinien sind bereits in § 4 angegeben worden. Tangentialgebilde ist xy^3 .

Näherungsflächen:

$$a = y^2 - x^2z - x^4 = 0$$
 (bei der x-Axe),
 $b = xy^2 - x^3z - 32z^5 = 0$ (bei der z-Axe in der Nähe der Ebene $y = 0$),
 $c = xy^3 - y^5 - 32z^5 = 0$ (bei der Ebene $x = 0$).

Hilfsflächen:

$$aC = y^2 - x^4 = 0$$
 (Hauptpunkte auf $z = 0$),
 $aB = z + x^2 = 0$ (Hauptpunkte auf $y = 0$),
 $ab = y^2 - x^2z = 0$ (bei der Ebene $y = 0$),
 $\overline{bB} = x^3 + 32z^4 = 0$ (Hauptpunkte auf $y = 0$),
 $\overline{bc} = xy^2 - 32z^5 = 0$ (bei der z-Axe mit Annäherung an $x = 0$),
 $\overline{cA} = y^5 + 32z^5 = 0$ (Hauptpunkte auf $x = 0$),
 $\overline{cC} = x - y^3 = 0$ (Hauptpunkte auf $z = 0$).

Von den Umrisslinien (siehe § 4) gehört die erste der Näherungsfläche a, die zweite der Hilfsfläche bB, die dritte der Hilfsfläche bc an. Die Gestalt der Fläche zeigt Figur 4.

2. Untersuchung der Fläche:

$$xyz + x^3y^3 - y^4 + xz^3 + z^4 + x^5 = 0.$$

Das Netz, in Figur 3 ausgezogen, hat die Ecken:

$$a = (3, 8, 4), b = (2, 3, 5), c = (1, 1, 2), d = (2, 1, 1), e = (1, 2, 1)$$

die Zentralmasche abcdea(xyz) und die Nebenmaschen

C'bc C'
$$(x^2y^2)$$
, C'cd A C (y^4) , Bae B (xz^3) , Bed A B (z^4) , Bab C'B (x^5) .

Tangential gebilde ist xyz .

Näherungsflächen:

$$a = yz + z^3 + x^4 = 0$$
 (x-Axe mit Annäherung an $y = 0$),
 $b = yz + xy^2 + x^4 = 0$ (x-Axe mit Annäherung an $z = 0$)
 $c = xz + x^2y - y^3 = 0$ (bei der Ebene $z = 0$),

$$d = xyz - y^4 + z^4 = 0$$
 (bei $x = 0$),

$$e = xy + xz^2 + z^3 = 0$$
 (bei $y = 0$).

Hilfsflächen:

$$\overline{aB} = z^3 + x^4 = 0$$
 (Hauptpunkte auf $y = 0$),
 $\overline{ab} = yz + x^4 = 0$ (bei der x -Axe),
 $\overline{bC} = y^2 + x^3 = 0$ (Hauptpunkte auf $z = 0$),
 $\overline{bC} = z + xy = 0$ (bei der x -Axe mit Annäherung an $z = 0$),
 $\overline{cC} = x^2 - y^3 = 0$ (Hauptpunkte auf $z = 0$),
 $\overline{cd} = xz - y^3 = 0$ (bei der y -Axe),
 $\overline{dA} = y^4 - z^4 = 0$ (Hauptpunkte auf $x = 0$),
 $\overline{de} = xy + z^3 = 0$ (bei der z -Axe),
 $eB = x + z = 0$ (Hauptpunkte auf $y = 0$),

 $\overline{ea} = y + z^2 = 0$ (bei der x-Axe mit Annäherung an y = 0). Polarfläche vom Punkte $(\xi, \eta, \xi, 0)$ in Bezug auf die Fläche:

$$\xi(yz + zxy^2 + z^3 + 5z^4) + \eta(xz + zx^2y - 4y^3) + \xi(xy + 3xz^2 + 4z^3) = 0.$$

Das Polarnetz, in Figur 3 quergestrichelt, hat die Ecken:

$$a' = (1, 1, 1), b' = (1, 3, 3), c' = (2, 1, 2), d' = (2, 2, 1),$$

die Radialmaschen:

$$Cb'a'c'C(xy)$$
, $Bd'a'b'B(xz)$ und $Ac'a'd'A(yz)$

und die Nebenmaschen:

$$Ac'CA(y^3)$$
, $Bd'AB(z^3)$, $Cb'BC(x^4)$.

Umrisslinien:

a) Kreuzung von ab und a'b' im Punkte (1, 2, 2) giebt:

$$\left\{ \begin{array}{l} x = \varepsilon \\ y = \sqrt{\frac{\eta}{\xi}} \varepsilon^{2} + \cdots \\ z = -\sqrt{\frac{\xi}{\eta}} \varepsilon^{2} + \cdots \end{array} \right\} \quad \text{und} \quad \left\{ \begin{array}{l} x = \varepsilon \\ y = -\sqrt{\frac{\eta}{\xi}} \varepsilon^{2} + \cdots \\ z = \sqrt{\frac{\xi}{\eta}} \varepsilon^{2} + \cdots \end{array} \right\}$$

Battized by Google

Sie gehören dem Näherungsbogen $\bar{a}\bar{b}$ an.

b) Kreuzung von \overline{cd} mit $\overline{a'c'}$ im Punkte (3, 2, 3) giebt:

$$\left\{ \begin{array}{l} x = \sqrt{\frac{\xi}{\xi}} \, \varepsilon^3 + \cdots \\ y = - \, \varepsilon^9 \, * \\ z = -\sqrt{\frac{\xi}{\xi}} \, \varepsilon^3 + \cdots \end{array} \right\}.$$

Dieselbe gehört dem Bogen \overline{cd} an.

c) Kreuzung von \overline{dc} mit $a'\overline{d'}$ im Punkte (3,3,2) giebt:

$$\left\{ \begin{array}{l} x = \sqrt{\frac{\xi}{\eta}} \, \varepsilon^3 + \cdots \\ y = -\sqrt{\frac{\eta}{\xi}} \, \varepsilon^3 + \cdots \\ z = \varepsilon^2 \end{array} \right\}.$$

Sie gehört zum Bogen de.

Die Gestalt der Fläche giebt Figur 5.

Weitere Beispiele sind:

$$\begin{array}{c} xy^2 + x^2z^2 + y^4 + x^5 + z^6 = 0 \\ x^2yz + xz^5 + y^3z^4 - y^3 + z^{10} = 0 \end{array} \} \ \ \text{die Kugelkurve besteht je aus einen}$$
 Zug.

$$x^{2} + xz^{3} + xy^{3} + y^{8} - z^{6} = 0$$
 die Kugelkurve besteht je aus zwei $x^{3}y + x^{2}yz + x^{5} + y^{3}z^{2} + xy^{6} = 0$ Zügen.

$$x^2y^2z + xyz^3 + x^5y + x^4z^2 + xy^4z - z^6 + x^7 + y^3z^4 - y^{11} = 0$$
,
die Kugelkurve besteht aus drei Zügen und besitzt in der Nähe d

die Kugelkurve besteht aus drei Zügen und besitzt in der Nähe der y-Axe eigentümliche Ausbiegungen.

^{*} Hier wurde $y=-\varepsilon^2$ (nicht $y=\varepsilon^2$) gesetzt, um imaginäre Werte des Parameters zu vermeiden.

Die kinematische Theorie der Hyperboloidenreibungsräder.*

Von

Dr. Fr. SCHILLING,
Privatdozent an der Technischen Hochschule zu Aschen.

Hierzu Tafel I und II.

Einleitung.

Hyperboloidenreibungsräder, deren kinematische Theorie den Inhalt dieser Arbeit bildet, sind ihrer Gestalt nach entsprechende Segmente zweier einschaliger Rotationshyperboloide, die zu einander windschiefe Axen besitzen und sich längs einer Erzeugenden berühren. Gemäss dieser Eigenschaft können solche Räder, materiell ausgeführt, dazu dienen, die Umdrehung um die eine ihrer festgelagerten Axen auf die andere zu übertragen. Hyperboloidenpaare der genannten Art treten uns in der Kinematik noch in anderer Bedeutung entgegen. Sie stellen auch die Axoide für die gegenseitige Bewegung zweier Körper dar, die um zwei windschiefe Axen mit unveränderlichem Verhältnisse der Winkelgeschwindigkeiten rotieren, und bilden als solche die Grundkörper für Hyperboloidenzahnräder. Dass diese beiden Verwendungsarten solcher Hyperboloide in der That wohl zu unterscheiden sind, werden wir am besten klar machen können, wenn wir zunächst von dem speziellen Falle sprechen, in dem die Axen einander parallel sind beziehungsweise sich schneiden. Dann gehen die Hyperboloide, mögen sie Reibungsräder liefern sollen oder als Axoide gelten, in zwei Kreiscylinder beziehungsweise zwei Rotationskegel mit derselben Spitze über, die sich wieder längs einer Erzeugenden berühren. Für sie gelten die folgenden drei Sätze:

- 1. Sind irgend zwei entsprechende Segmente der Cylinder beziehungsweise Kegel als Reibungsräder ausgebildet, so ündert sich das Verhältnis der Winkelgeschwindigkeit des einen Rades zu der des anderen nicht, mag jenes oder dieses das treibende sein.
- 2. Das Verhältnis der Winkelgeschwindigkeiten bleibt gleichfalls ungeändert, welcher Stelle der Cylinder beziehungsweise Kegel diese Segmente auch angehören mögen.

^{*} Die vorliegende Arbeit ist die weitere Ausführung des Vortrages, den ich am 4. März 1896 zum Zwecke meiner Habilitation an der Kgl. Technischen Hochschule zu Aachen gehalten habe.

3. Das Verhältnis der Winkelgeschwindigkeiten der Cylinderbeziehungsweise Kegelreibungsräder ist identisch mit demjenigen der Zahnräder, deren Grundkörper die gleichen Cylinder oder Kegel sind.

Man sollte meinen, dass diese Sätze auch in dem allgemeinen Falle windschiefer Axen ihre Gültigkeit behielten. Dies findet jedoch keineswegs statt. Das Verhältnis der Winkelgeschwindigkeiten hyperboloidischer Reibungsräder ändert vielmehr seinen Wert, einmal wenn man an Stelle des einen Rades das andere als das treibende wählt, sodann auch je näher oder weiter entfernt von den Kehlkreisen der Hyperboloide die Segmente ausgewählt werden. Hiermit ist zugleich auch das Bestehen des dritten Satzes nicht mehr verträglich. Dieser Unterschied ist bisher in den Lehrbüchern der Kinematik oder technischen Mechanik nicht bemerkt worden; ja es finden sich dort bei gelegentlicher Erwähnung hyperboloidischer Reibungsräder ungenaue oder gar unrichtige Angaben.* Es ist das Hauptziel der vorliegenden Arbeit, die soeben ausgesprochenen Behauptungen zu beweisen und als positives Resultat insbesondere den Ausdruck für das Verhältnis der Winkelgeschwindigkeiten hyperboloidischer Reibungsräder aufzustellen, freilich unter der sich als notwendig erweisenden Beschränkung auf sehr dünne Räder.

Was die in den ersten Paragraphen durchgeführten geometrischen Untersuchungen meiner Arbeit betrifft, so war es zunächst nötig, eine neue Einführung der Hyperboloidenpaare zu geben; denn diejenige, welche sich in den bisherigen Darstellungen findet, erweist sich für unseren Zweck nicht brauchbar, da sie von vornherein die Verwendung der Hyperboloide als Axoide im Auge hat. An diese Einführung schliesst sich eine eingehende Untersuchung der besonderen geometrischen Eigenschaften, welche die verschiedenen Fälle der Hyperboloidenpaare darbieten. Insbesondere habe ich es mir angelegen sein lassen, genaue Begriffsbestimmungen zu geben. Da die bezüglichen Abschnitte in den Lehrbüchern oder Monographieen** in dieser Hinsicht viel zu knapp

^{*} lch nenne hier: Weisbach-Herrmann, Lehrbuch der Ingenieur- und Maschinenmechanik. III. Teil, 1. Abt.; S. 405 u. 406. Braunschweig 1876; Grashof, Theoretische Maschinenlehre, II. Band, S. 81 und 88. Leipzig 1877. — An diesen Stellen wird ausdrücklich den Hyperboloidenreibungsrädern dasselbe Verhältnis der Winkelgeschwindigkeiten zugesprochen, welches Hyperboloidenzahnräder besitzen, die dem gleichen Hyperboloidenpaare angehören, was keineswegs richtig ist. (Übrigens findet sich an der letztgenannten Stelle des Werkes von Grashof auch insofern ein Irrtum, als in dem fraglichen Falle, für den die Gleichung $\omega \sin \varphi = \omega' \sin \varphi'$ gilt, sich die Hyperboloide gar nicht als Elementenflächen ergeben, sondern wie im allgemeinen Falle als Evolventenflächen bestimmter Schraubenlinien, wie wir hier nicht weiter ausführen wollen.)

^{**} Als Litteratur sei erwähnt: Weisbach-Herrmann, l.c. §46 u. §86; Grashof, l.c. §24—26; Mac Cord, Kinematics, Nr. 151—170. New-York 1898. Hier finden sich besonders gut ausgeführte Figuren, während die Betrachtungen des Textes weniger übersichtlich sind. Tessari, Sopra la costruzione degli ingranaggi ad assi non concorrenti. Annali del R. Museo Industriale Italiano. Separatabdr. Torino 1871.

gehalten und nicht frei von Ungenauigkeiten* sind — es steht auch stets die Bedeutung der Hyperboloide als Axoide im Vordergrunde —, so kommen sie kaum neben meiner ausführlichen Untersuchung in Betracht, die gewiss vieles Neue bringt. Eine selbständige und vollständige Behandlung hyperboloidischer Reibungsräder ist meines Wissens überhaupt nirgends gegeben worden. Soll ich noch eine Einzelheit speziell herausgreifen, so will ich den Fall der sich berührenden Hyperboloide erwähnen, in dem sie sich ausserdem in zwei reellen Erzeugenden durchdringen, eine Möglichkeit, die an und für sich bekannt ist. Hier tritt jedoch die bisher nicht berührte Frage in den Vordergrund, ob trotz des reellen Durchdringens der Flächen entsprechende Segmente sich als Reibungsräder verwenden lassen. Wir werden sehen, dass dies in der That unter Beobachtung gewisser Bedingungen geschehen kann, die angegeben werden.

Wo sich eine Beziehung zu den Resultaten verwandter Gebiete zeigt, habe ich nicht unterlassen auf letztere in einer Anmerkung hinzuweisen. Ich habe mich bemüht, die Untersuchung mit elementaren und anschaulichen Mitteln durchzuführen; hierzu erwiesen sich besonders zweckmässig einfache Methoden der darstellenden Geometrie. Der Gegenstand selbst dürfte, hoffe ich, in gleicher Weise dem Mathematiker wie dem Techniker Interesse bieten.

§ 1.

Ableitung der Grundformel $p:q=\operatorname{tg}\alpha:\operatorname{tg}\beta$.

Wir denken, es seien uns irgendwie zwei einschalige Rotationshyperboloide mit den Axen a und b gegeben, die sich längs der Erzeugenden c berühren.** Da die gemeinsamen Normalen beider Flächen die drei Geraden a, b und c schneiden, und zwar letztere unter rechtem Winkel, so bilden sie ein hyperbolisches Paraboloid. Weil ferner die Gerade c alle Erzeugende der anderen Schar rechtwinklig schneidet, so muss sie zugleich eine Scheitelerzeugende des Paraboloids sein. Denn anderenfalls würde c, an den beiden Symmetrieebenen des Para-

^{*} Z. B. wird bei Weisbach-Herrmann S. 283 erwähnt, "dass die Axoide sich von aussen berühren, solange die Erzeugungslinie mit den Axen spitze Winkel bildet." Hiermit vergleiche man meine Ausführungen auf S. 46, die zeigen, dass im dritten Hauptfalle diese Behauptung nicht zutrifft.

Die sich längs einer Erzeugenden berührenden einschaligen Rotationshyperboloide, sowie ihre speziellen Fälle, sind keineswegs die einzigen Rotationsflächen, deren Segmente durch Reibungskräfte die Umdrehung einer Axe a auf eine zu ihr im allgemeinen windschiefe Axe b zu übertragen geeignet sind. Man vergleiche Rohn und Papperitz, Lehrbuch der darstellenden Geometrie, Band II, S. 44 flg., Leipzig 1896. Dort ist das allgemeine Gesetz angegeben, nach dem sich beliebige Rotationsflächen bestimmen lassen, die sich längs einer Kurve berühren, sowie ein komplizierteres Beispiel, besonders nach der zeichnerischen Seite, besprochen. Erwähnt sei hier jedoch, dass im Falle paralleler oder sich

boloids wiederholt gespiegelt, noch drei weitere Erzeugende geben, welche die gleiche Eigenschaft besässen, sodass diese vier Erzeugenden zusammen ein Viereck geben würden, in dem jede Seite auf den benachbarten senkrecht steht, das heisst ein ebenes Viereck, was nicht möglich ist. Das Paraboloid ist daher ein solches, dessen Scheitelerzeugende aufeinander senkrecht stehen. Da auch die zweite Scheitelerzeugende alle Erzeugenden der anderen Schar rechtwinklig schneidet, so gewinnen wir den Satz:

Die Berührungserzeugende c muss die Gerade des kürzesten Abstandes der Axen a und b treffen, welche die zweite Scheitelerzeugende ist. Diese als notwendig erkannte Bedingung erweist sich jetzt umgekehrt zugleich auch als hinreichend. Wir können in der That von einem beliebigen hyperbolischen Paraboloid ausgehen, dessen Scheitelerzeugende sich rechtwinklig schneiden, die eine von ihnen als Berührungserzeugende c wählen, irgend zwei andere Erzeugende derselben Schar als Axen a und b, und wir sind sicher, dass die Rotation der Geraden c um a und b zwei sich längs c berührende Hyperboloide liefert. Hierbei mögen zwei Fälle unterschieden sein, die sich ergeben, je nachdem die Axen a und b auf verschiedenen Seiten oder auf derselben Seite der Scheitelerzeugenden ausgewählt werden.

In Figur 2 (Tafel II) sei eine solche Konfiguration der drei Geraden a, b und c im Grund- und Aufriss dargestellt. Ihre Lage gegen die Tafeln ist so gewählt, dass die Gerade d des kürzesten Abstandes von a, b und c senkrecht zur ersten Tafel steht und demnach die Schnittpunkte A, B und C in erster Projektion zusammenfallen.

Wir wollen fernerhin stets voraussetzen, dass die erste Projektion der unteren Axe, die wir mit a bezeichnen, um einen spitzen (beziehungsweise rechten) Winkel p im positiven Sinne* um A' gedreht werden muss, bis sie zum ersten Male mit der ersten Projektion der oberen Axe b zusammenfällt. Falls diese Annahme für zwei gegebene Axen a und b nicht erfüllt ist, haben wir an ihrer Statt ihr Spiegelbild zu

^{*} Der positive Drehungssinn soll dem Gange des Uhrzeigers entgegengesetzt sein.

schneidender Axen, etwa der Geraden PR und QR der Figur 1 (Tafel II), jede beliebige Gerade PQ ihrer Ebene durch ihre Rotation um die Axen zwei sich längs derselben berührende Kegel (beziehungsweise Cylinder) liefert. Nur wenn die letztgenannte Gerade den Axen gleichfalls parallel ist beziehungsweise durch ihren Schnittpunkt geht, sind die Cylinder oder Kegel Grenzfälle unserer allgemeinen Hyperboloidenpaare. Zu den Hyperboloidenpaaren und ihren speziellen Fällen, die wir im Texte betrachten, sind daher noch die soeben erwähnten Fälle hinzuzunehmen, um alle Paare von Rotationsflächen zu umfassen, die sich längs einer Geraden berühren. (Abgesehen ist hier indes von dem ausgearteten Falle, dass man für parallele Axen als Berührungserzeugende eine beliebige, sie rechtwinklig kreuzende Gerade wählt, deren Rotation um jede Axe das doppelt zu denkende Aussere eines Kreises liefern würde.)

wählen. Jene beeinträchtigt daher die Allgemeinheit unserer Betrachtung nicht. In der Figur sind die Geraden a' und b' in Rücksicht auf spätere Verwendung (S. 52) mit Pfeilspitzen versehen der Art, dass die hierdurch ausgezeichneten Richtungen den spitzen (beziehungsweise rechten) Winkel γ bilden.* Sodann werden folgende Bezeichnungen eingeführt:

 $\alpha = <) < (a', c'), \quad \beta = <) < (c', b') \quad \text{und} \quad \gamma = <) < (a', b')$

mit der Relation: $\alpha + \beta = \gamma$,

sowie:
$$p = \overrightarrow{A'' C'''}, \quad q = \overrightarrow{C''' B''} \quad \text{und} \quad s = \overrightarrow{A'' B''}$$

mit der Relation: p + q = s.

Hier bezeichnet α , wie durch den hinzugefügten Pfeil näher angedeutet sein soll, den Winkel, durch den man die Gerade a' im positiven Sinne um A' drehen muss, bis sie zum ersten Male mit c' zusammenfällt, β den Winkel, durch den man die Gerade c' drehen muss, bis sie zum ersten Male mit b' zusammenfällt, und zwar im positiven oder negativen Sinne, je nachdem c' den Winkel γ oder seine Nebenwinkel durchschneidet. Als positiv sei auf der Geraden d die Richtung von A nach B gewählt. Die Strecke p z. B. ist daher positiv oder negativ, je nachdem C'' oberhalb oder unterhalb A'' liegt.

Es sei jetzt noch eine beliebige Erzeugende des hyperbolischen Paraboloids hinzugefügt, welche die Geraden a,b und c entsprechend in den Punkten P,Q,R schneiden möge. Da sie die horizontal gelegene Gerade c unter rechtem Winkel schneidet, ist auch in der Projektion < > P'R'A' gleich $\frac{\pi}{2}$. Dann gilt:

$$P'R': R'Q' = \operatorname{tg} \alpha : \operatorname{tg} \beta, \quad P'\bar{R'}: R'Q' = P''R'': R''Q'' = A''(''': C'''B'').$$

Also ist: $A''C'':C''B'' = \operatorname{tg} \alpha : \operatorname{tg} \beta$

$$p:q=\operatorname{tg}\alpha:\operatorname{tg}\beta.$$

Das Verhältnis der Abschnitte, in welche die Berührungserzeugende c den kürzesten Abstand der Axen a und b teilt, ist gleich dem Verhältnisse der Tangenten der Winkel, unter denen sie die Axen kreuzt.

Diese Gleichung bleibt bestehen, auch in Rücksicht auf die Vorzeichenbestimmung der einzelnen Grössen, wie man auch immer neben der Scheitelerzeugenden c eines geeigneten hyperbolischen Paraboloids die Axen a und b aus den Erzeugenden derselben Schar auswählen mag. Man überzeugt sich hiervon am einfachsten, indem man in Figur 2 die Axen a und b unverändert, aber c' mit dem Punkte R' sich um A' drehen lässt. Für jede Lage von c' sind durch R' auch die Punkte P', Q' und P'', Q'', R'' bestimmt und damit auch die zweite

^{*} Natürlich könnte man an Stelle des so ausgezeichneten Winkels auch seinen Scheitelwinkel wählen.

Projektion c''. Hierbei wird man schon zur Unterscheidung der drei Fälle geführt, die am Schlusse des nächsten Paragraphen durch ihre Ungleichungen umgrenzt sind.

§ 2.

Die verschiedenen möglichen Lagen der Berührungserzeugenden für gegebene Axen.

Sind zwei der Geraden a, b, c gegeben, so bleiben für die dritte noch einfach unendlich viele Lagen möglich, entsprechend der analytischen Thatsache, dass zwischen den Grössen p, q, α, β nur eine Bedingungsgleichung besteht. Wir wissen bereits, wenn ausser c noch eine der Axen gegeben ist, so ist die andere auf einem bestimmten hyperbolischen Paraboloid gelegen.

Jetzt seien beide Axen a und b gegeben — und zwar in allgemeiner Lage, indem wir die Betrachtung der speziellen Lagen uns für den § 6 aufsparen —, welche Lagen vermag dann die Berührungserzeugende c anzunehmen? Wir haben diese Frage bereits am Schlusse des vorigen Paragraphen gestreift; ihre anschauliche Beantwortung wird uns durch nähere Diskussion der Gleichung $p:q=\operatorname{tg}\alpha:\operatorname{tg}\beta$ geliefert.

Wir führen ein Cylinderkoordinatensystem z, r, < < ein. Als z-Axe sei die Gerade des kürzesten Abstandes AB von a und b gewählt, als ihr Nullpunkt der Mittelpunkt des letzteren, als ihre positive Richtung, wie oben, die von A nach B. Ferner sei $\varphi = 0$ diejenige durch die z-Axe begrenzte Halbebene, welche einen der spitzen Winkel halbiert, unter dem sich die Axen a und b kreuzen. In demjenigen Drehungssinne sei φ positiv gerechnet, der sich dem Gange des Uhrzeigers entgegengesetzt erweist, wenn man von B nach A blickt. Ein beliebiger Punkt S des Raumes ist dann durch die Länge r seines Lotes auf die z-Axe, die Koordinate z des Fusspunktes, sowie den Winkel φ , den die Halbebene durch S und z mit der Halbebene $\varphi = 0$ bildet, bestimmt und demgemäss eine beliebige Lage der auf AB senkrechten Geraden c durch ein solches Wertepaar z, φ . Auch in Rücksicht auf die Vorzeichen gelten stets die folgenden Beziehungen:

 $p = \frac{s}{2} + z, \quad q = \frac{s}{2} - z$

und $lpha = rac{\gamma}{9} + arphi, \;\; eta = rac{\gamma}{9} - arphi.$

oder:

Setzt man diese Werte in die Gleichung 1) ein, so ergiebt sich:

 $\left(\frac{s}{2}+z\right):\left(\frac{s}{2}-z\right)=\operatorname{tg}\left(\frac{\gamma}{2}+\varphi\right):\operatorname{tg}\left(\frac{\gamma}{2}-\varphi\right)$ $z=\frac{s}{2\sin\gamma}\cdot\sin2\varphi.$

 $z = \frac{1}{2\sin\gamma} \cdot \sin 2\varphi.$

Führt man die Schnittgeraden der Ebene z=0 mit den Halbebenen $\varphi=0$ und $\varphi=\frac{\pi}{2}$ als positive x- und y-Koordinatenaxe ein, so

gilt: $\sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}, \quad \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}},$

und unsere letzte Gleichung lässt sich überführen in:

$$z = \frac{s}{2 \sin \gamma} \cdot \frac{xy}{x^2 + y^2}.$$

Damit man alle Lagen der Berührungserzeugenden c erhält, muss φ alle Werte des durch folgende Ungleichung bestimmten Intervalles

$$-rac{\gamma}{2} \leq \varphi < \left(\pi - rac{\gamma}{2}
ight)$$

durchlaufen. Für jeden Wert φ giebt die Gleichung 2) eindeutig die zugehörige Koordinate des Schnittpunktes C von c mit der z-Axe an, während umgekehrt zu jedem Werte z des Intervalles, das durch folgende Ungleichung gegeben ist: $-\frac{s}{2\sin\gamma} < z < +\frac{s}{2\sin\gamma}$

zwei reelle Werte φ (beziehungsweise ein solcher in den Grenzen) in dem für diese Grösse angegebenen Intervalle gehören.

Um indes eine anschaulichere Vorstellung von der durch die Gleichung 2) definierten Fläche zu bekommen, denke man um die z-Axe den Cylinder mit dem Radius 1 gelegt und seine Schnittkurve mit der Fläche auf eine Ebene abgewickelt. Deutet man φ und z als rechtwinklige Koordinaten dieser Ebene, so stellt die Gleichung 2) unmittelbar die Gleichung der abgewickelten Kurve dar, Figur 3 (Tafel II). Sie ist eine sogenannte "Sinusoide" das heisst eine periodische Kurve, die aus der gewöhnlichen Sinuslinie $z = \sin \varphi$ durch Affinität entsteht, wobei die φ -Axe Affinitätsaxe ist und die Richtung der Affinitätsstrahlen auf dieser senkrecht steht. Für $\varphi = \frac{\pi}{4}$ bezw. $\frac{3\pi}{4}$ (und für die analogen Werte) erreicht die Kurve ihr Maximum bezw. Minimum

$$z = \pm \frac{s}{2 \sin \gamma}$$

Ist dieselbe jetzt umgekehrt auf den Einheitscylinder aufgewickelt, wie es Figur 4 (Tafel II) im Grund- und Aufriss zeigt, so geben die von allen Punkten der Kurve ausgehenden zur z-Axe senkrechten Geraden das gewünschte Bild unserer Fläche. Wir fassen unser Resultat in den Satz zusammen: Die Gesamtheit aller möglichen Lagen der Berührungserzeugenden r für gegebene Axen erfüllt eine geradlinige Fläche dritter Ordnung [gemäss der Gleichung 2')], die sich längs eines Stückes der z-Axe selbst durchdringt, das "Cylindroid von Cayley."*

^{*} Man vergleiche Ball, The theory of screws, Dublin 1876, pag. 15, insbesondere auch das Titelbild. Dort ergiebt sich dieselbe Fläche als Ort der Axe einer unendlich kleinen Schraubenbewegung, welche die Resultante zweier beliebiger unendlich kleiner Drehungen um zwei feste Axen a und b darstellt. In der Anmerkung daselbst ist insbesondere der Name "Cylindroid" für diese

Der Schnittpunkt C wird je zweimal in den Punkt A bezw. B hineinfallen, für $\varphi = -\frac{\gamma}{2}$ und $\frac{\pi}{2} + \frac{\gamma}{2}$, bezw. $\varphi = +\frac{\gamma}{2}$ und $\frac{\pi}{2} - \frac{\gamma}{2}$. Für $\varphi = -\frac{\gamma}{2}$ bezw. $+\frac{\gamma}{2}$ ist die Gerade c mit a bezw. b zusammengefallen, während sie für $\varphi = \frac{\pi}{2} + \frac{\gamma}{2}$ bezw. $\frac{\pi}{2} - \frac{\gamma}{2}$ die Axe b bezw. a rechtwinklig kreuzt. Diese letztgenannten Lagen der Geraden c sind als gestrichelte Durchmesser c_2' und c_1' im Grundrisse der Figur 4 (Tafel II) hinzugefügt. Ausser diesen speziellen Lagen der Geraden c haben wir die drei Hauptfälle zu unterscheiden, die sich ergeben, je nachdem die erste Projektion c':

I. den Winkel
$$(\overrightarrow{a'}, \overrightarrow{b'})$$
 oder

II. den Winkel $(\overrightarrow{b'}, \overrightarrow{c_1'})$ bezw. $(\overrightarrow{c_2'}, \overrightarrow{a'})$,

III. den Winkel $(\overrightarrow{c_1'}, \overrightarrow{c_2'})$ durchschneidet.

Im ersten und dritten Falle liegt der Punkt C innerhalb der Strecke AB, im zweiten Falle ausserhalb derselben, entweder oberhalb B oder unterhalb A, was keinen wesentlichen Unterschied ausmacht. Analytisch sind die drei Fälle durch folgende Ungleichungen charakterisiert:

I. Fall:
$$0 < \alpha < \gamma$$
 und zugleich $\gamma > \beta > 0$,

II. Fall: $\gamma < \alpha < \frac{\pi}{2}$ und zugleich $0 < -\beta < \frac{\pi}{2} - \gamma$,

oder: $\frac{\pi}{2} + \gamma < \alpha < \pi$ und zugleich $\frac{\pi}{2} < -\beta < \pi - \gamma$,

III. Fall: $\frac{\pi}{2} < \alpha < \frac{\pi}{2} + \gamma$ und zugleich $\frac{\pi}{2} - \gamma < -\beta < \frac{\pi}{2}$.

§ 3.

Diskussion der verschiedenen Arten zusammengehöriger Hyperboloide.

Welche Besonderheiten werden jetzt in den im letzten Paragraphen angegebenen Fällen die verschiedenen Hyperboloide beziehungsweise ihre Ausartungen darbieten, die durch Rotation der Berührungserzeugenden c um die Axen a und b entstehen?

Was zunächst die dort angegebenen speziellen Lagen der Geraden c betrifft, so ergeben sich unmittelbar die folgenden Sätze:

Ist die Gerade c mit der Axe a (bezw. b) zusammengefallen (für $\varphi = -\frac{\gamma}{2}$ bezw. $+\frac{\gamma}{2}$), so ist das eine Hyperboloid in diese

Fläche auf Grund einer von Cayley gegebenen projektiven Erzeugungsweise erklärt, die indes nicht so anschaulich ist, als die von uns oben besprochene. Letztere liegt auch dem Fadenmodell dieser Fläche zu Grunde, welches Herr H. Wiener im Verlege von L. Brill in Darmstadt hat erscheinen lassen. — Das Cylindroid findet sich zuerst beschrieben bei Plücker, Neue Geometrie des Raumes, S. 97, Leipzig 1868.

Axe selbst ausgeartet, die zugleich eine Erzeugende des anderen nicht singulären Hyperboloids bildet.

Schneidet dagegen die Gerade c die Axe a (bezw. b) nur im Punkte A (bezw. B), ohne mit ihr zusammenzufallen, ist also

$$\varphi = \frac{\pi}{2} + \frac{\gamma}{2} \left(\text{bezw. } \frac{\pi}{2} - \frac{\gamma}{2} \right),$$

so ist das Hyperboloid der Axe a (bezw. b) in einen Rotationskegel mit der Winkelöffnung $2\left(\frac{\pi}{2}-\gamma\right)$, dasjenige der Axe b (bezw. a) dagegen in das doppelt zu denkende Äussere eines Kreises ausgeartet, welches den Kegel längs c berührt.

Letzterer liegt daher mit seinen beiden Hülften auf verschiedenen Seiten der Ebene des Kreises. Ein solcher Fall, für $\varphi = \frac{\pi}{2} + \frac{\gamma}{2}$, sei im Grund- und Aufrisse, wobei die zweite Tafel senkrecht zur Axe b gewählt ist, durch Figur 5 (Tafel II) veranschaulicht.

In jedem der drei am Schlusse des vorigen Paragraphen unterschiedenen Hauptfälle ist keines der beiden Hyperboloide ausgeartet. Doch tritt jetzt die Frage in den Vordergrund, ob sie, abgesehen von der Berührungserzeugenden, noch sonst reelle Punkte gemeinsam haben oder nicht. Von vornherein ist klar, wenn überhaupt die Flächen sich noch reell durchdringen, so muss dies notwendig in zwei Erzeugenden derjenigen Schar geschehen, der die Berührungserzeugende nicht angehört. Denn die durch einen beliebigen, etwa noch vorhandenen gemeinsamen Punkt gehende Erzeugende des einen Hyperboloids, welche die Berührungserzeugende schneidet, hat auch mit dem anderen Hyperboloid drei Punkte gemeinsam — von denen zwei freilich unendlich nahe liegen —, muss demnach auch ihm als Erzeugende angehören.

Nun denken wir durch einen beliebigen Raumpunkt O Parallele zu sämtlichen Erzeugenden beider Hyperboloide, sowie zu ihren Axen gelegt. Dann entstehen zwei Rotationskegel, die sich gleichfalls längs einer Erzeugenden berühren. Es gilt der Satz: Stets dann und nur dann werden die beiden Hyperboloide sich noch in zwei reellen Erzeugenden schneiden, wenn das Gleiche für die Rotationskegel statt hat.*

Dass die Rotationskegel sich noch in zwei Erzeugenden durchdringen, falls es die Hyperboloide thun, ist ja sofort klar. Umgekehrt bedingt eine Schnitterzeugende der Kegel auf jedem Hyperboloid eine Erzeugende derselben Richtung in derjenigen Schar, der die Berührungserzeugende nicht angehört. Beide müssen identisch sein, da die Tangentialebenen ihres Schnittpunktes mit der Berührungserzeugenden

^{*} Dieser Satz findet sich kurz angegeben bei Fiedler, Lehrbuch der darstellenden Geometrie Bd. II, S. 302, Nr. 11, Leipzig 1885, und in weiterer Ausführung bei Rohn u. Papperitz, Lehrbuch d. darstellenden Geometrie, Bd. II, S. 49, Leipzig 1896, sowie bei De la Gournerie, Traité de Géométrie descriptive, Art. 754, Paris 1880.

zusammenfallen. In Figur 6, I, II, III, (siehe Tafel II), ist für die drei Hauptfälle der gemeinsame Meridianschnitt beider Kegel dargestellt, der eine Symmetrieebene der räumlichen Figur ist. Unter Bezugnahme auf die am Schlusse des § 2 aufgestellten Ungleichungen überzeugt man sich leicht, dass stets im Falle I beziehungsweise II der eine Meridianschnitt völlig ausserhalb beziehungsweise völlig innerhalb des anderen gelegen ist, im Falle III dagegen jeder Meridianschnitt zum Teil innerhalb, zum Teil ausserhalb des anderen. Diese Beziehung lässt sofort den Satz erkennen:

Im dritten Hauptfalle, und nur in diesem, durchdringen sich die Kegel und also auch die Hyperboloide noch in zwei reellen Erzeugenden.

Da die beiden Hyperboloide durch eine halbe Umdrehung um die Gerade d des kürzesten Abstandes der Axen in sich selbst übergehen, so liegen die beiden Schnitterzeugenden symmetrisch zur Geraden d, das heisst ihre Schnittpunkte S_1 und S_2 mit der Berührungserzeugenden sind vom Punkte C gleichweit entfernt.

Im ersten Hauptfalle liegt jedes der beiden Hyperboloide ganz ausserhalb des anderen; sie berühren sich mit ihren Aussenseiten.*

Im zweiten Hauptfalle liegt das Hyperboloid mit kleinerem Kehlkreis — für $\gamma < \alpha < \frac{\pi}{2}$ ist es das Hyperboloid mit der Axe b, für $\frac{\pi}{2} + \gamma < \alpha < \pi$ das mit der Axe a — völlig innerhalb des anderen, jenes berührt daher mit seiner Aussenseite dieses an der Innenseite.

Im dritten Hauptfalle dagegen berühren sich beide Hyperboloide längs der Strecke S_1 S_2 mit ihren Innenseiten, längs des übrigen Teiles der Berührungserzeugenden mit ihren Aussenseiten. Denn der dem Berührungspunkte C diametral gegenüberliegende Punkt C_1 des Kehlkreises des einen Hyperboloids liegt stets ausserhalb des anderen; zwischen C_1 und C befindet sich auf jeder Hälfte des Kehlkreises ein Punkt C_1 beziehungsweise C_2 der einen oder anderen Schnitterzeugenden, sodass also der den Punkt C enthaltende Teil C_1 , C_2 jedes Kehlkreises notwendig innerhalb des anderen Hyperboloids liegt

Beispiele der drei Hauptfälle geben im Grund- und Aufrisse die Figuren I, II, III der Tafel I.** Die erste Projektion der Berührungs-

^{*} Als Aussenseite des Hyperboloids ist diejenige bezeichnet, welche der Axe nicht zugewandt ist.

^{**} Wegen der Konstruktion der Figuren sehe man den § 7 dieser Arbeit. — Immerhin dürften die Hyperboloide des dritten Falles in ihrem ganzen Verlaufe ohne ein räumliches Modell nur schwer zu überblicken sein. Ein solches und zwar ein Fadenmodell, welches die Verhältnisse deutlich zur Anschauung bringt, habe ich für die Sammlung für darstellende Geometrie an der Technischen Hochschule zu Aachen anfertigen lassen.

erzeugenden ist die eine Asymptote der Umrisshyperbeln des Grundrisses. Nur im dritten Hauptfalle haben letztere gemeinsame Tangenten, eben die ersten Projektionen der Schnitterzeugenden s_1 und s_2 . Die Nebenaxen der Umrisshyperbeln sind, abgesehen vom Vorzeichen, gleich 2p ctg α und 2q ctg β . Auf Grund der Gleichung 1) ergiebt sich daher der Satz: Die Meridianhyperbeln der Hyperboloide haben gleiche Nebenaxen. Hieraus folgt dann noch weiter, dass die beiden Hyperboloide in den Punkten der Kehlkreise dasselbe Gaussische Krümmungsmass besitzen.*

§ 4.

Geometrische Eigenschaften entsprechender Segmente der Hyperboloide in Rücksicht auf ihre Verwendung als Reibungsräder.

Ein solcher Teil des Raumes sei als inneres beziehungsweise äusseres Segment des einzelnen Hyperboloids bezeichnet, der durch zwei zur Axe senkrechte Ebenen aus dem Inneren beziehungsweise Äusseren des letzteren ausgeschnitten wird. Ein äusseres Segment möge indes stets durch eine hinreichend grosse, koaxiale Cylinderfläche abgeschnitten und nach aussen begrenzt sein. "Entsprechende" Segmente beider Hyperboloide sollen dieselbe Strecke der Berührungserzeugenden besitzen. Denken wir diese Segmente irgendwie materiell hergestellt, so werden sie uns die Reibungsräder liefern, deren Eigenart in den einzelnen Fällen wir im folgenden näher betrachten wollen. Während wir das Rad eines inneren Segmentes unmittelbar um seine

* Es sei gestattet, auch die analytische Lösung einiger der im Texte berührten Fragen einzussechten. Dieselbe verdanke ich im wesentlichen einer freundlichen Mitteilung des Herrn Fr. Schur, wie ich überhaupt aus seinen Vorlesungen über darstellende Geometrie an der Technischen Hochschule zu Aachen die Anregung zu dieser Arbeit geschöpft habe.

Wir wählen als ξ -Axe eines neuen rechtwinkligen Koordinatensystems die Gerade des kürzesten Abstandes AB — ihre positive Richtung sei die von A nach B —, als ξ -Axe die Berührungserzeugende c, als η -Axe die zu beiden senkrechte Gerade, wobei die positive Richtung der ξ -Axe in jene der η -Axe durch eine dem Uhrzeigergange entgegengesetzte Drehung, von der positiven Seite der ξ -Axe aus betrachtet, übergehen möge. Die Gleichungen der beiden Hyperboloide lauten alsdann:

1)
$$\eta^{2}(1 - tg^{2}\alpha) + 2\xi\eta tg\alpha + \xi^{2} + 2\xi p = 0,$$
2)
$$\eta^{2}(1 - tg^{2}\beta) - 2\xi\eta tg\beta + \xi^{2} - 2\xi q = 0,$$

wo die Grössen p, q, α, β , auch hinsichtlich ihres Vorzeichens, die im § 1 definierte Bedeutung haben. Offenbar werden die Erzeugenden der zweiten Schar mit Hilfe des Parameters λ entsprechend dargestellt durch die Gleichungspaare:

1')
$$\zeta = \lambda \eta$$

$$\eta (1 - tg^2 \alpha) + 2 \xi tg \alpha + \lambda (\xi + 2 p) = 0,$$

$$\zeta = \lambda \eta$$

$$\eta (1 - tg^2 \beta) - 2 \xi tg \beta + \lambda (\xi - 2 q) = 0.$$

Die für den gleichen Wert λ definierten drei Ebenen schneiden sich stets in einem Punkte der ξ -Axe, wie man auf Grund der Relation $p:q=\operatorname{tg}\alpha:\operatorname{tg}\beta$ leicht

in festen Lagern ruhende Axe sich drehen lassen können, werden wir das Rad eines äusseren Segmentes etwa in einer festliegenden cylindrischen Führung laufend zu denken haben, wie es im Meridianschnitte durch Figur 7 (Tafel II) dargestellt ist.

Im ersten Hauptfalle (Figur I der Tafel I) lassen sich nur entsprechende innere Segmente als Reibungsräder ausführen. Im zweiten Hauptfalle (Figur II der Tafel I) dagegen haben wir bei dem Hyperboloid mit kleinerem Kehlkreise ein inneres, bei dem mit grösserem Kehlkreise ein äusseres Segment zu wählen. Im übrigen kann die den entsprechenden Segmenten gemeinsame Strecke der Berührungserzeugenden beliebig gross sein. Im dritten Hauptfalle (Figur III der Tafel I) endlich hat man die entsprechenden Segmente der Hyperboloide jedenfalls so auszuwählen, dass ihnen nicht gleiche Strecken der Schnitterzeugenden angehören. Legt man durch irgend einen Punkt P der Berührungserzeugenden c Parallelebenen zu den Kehlkreisebenen der Hyperboloide, so treffen diese jede Schnitterzeugende s_1 beziehungsweise s_2 in zwei Punkten, die auf verschiedenen Seiten ihres Schnittpunktes S_1 beziehungsweise S_2 liegen. Die Berührungserzeugende liegt nämlich im spitzen Winkel der genannten Parallelebenen, eine Parallele durch P zur einen oder anderen Schnitterzeugenden dagegen im stumpfen Winkel, da das Analoge der Fall ist, wenn man als Punkt P gerade den Punkt C wählt. Man macht sich diese Beziehung am besten am Grundrisse der Figur III der Tafel I klar unter Berücksichtigung der

zeigt. Sollen sie sich aber in derselben Geraden schneiden, so muss eine lineare Relation zwischen ihnen bestehen, das heisst die beiden unteren Gleichungen 1') und 2') müssen nach Multiplikation ihrer beiden Seiten mit ctg α beziehungsweise ctg \(\beta \) und nachheriger Addition bis auf einen Faktor die obere Gleichung ergeben. Als Bedingung hierfür findet man:

oder vereinfacht

$$\lambda^{9} = \frac{(\operatorname{tg} \alpha - \operatorname{ctg} \alpha) + (\operatorname{tg} \beta - \operatorname{ctg} \beta)}{\operatorname{ctg} \alpha + \operatorname{ctg} \beta}$$
$$\lambda^{9} = \operatorname{tg} \alpha \operatorname{tg} \beta - 1.$$

Setzt man wieder $\alpha = \frac{\gamma}{2} + \varphi$, $\beta = \frac{\gamma}{2} - \varphi$, ein, so kommt schliesslich:

$$1^2 = \frac{\cos \gamma}{\sin^2 \varphi - \cos^2 \frac{\gamma}{2}}$$

 $\lambda^2 = \frac{\cos \gamma}{\sin^2 \varphi - \cos^2 \frac{\gamma}{2}}.$ Der Parameter λ wird daher reell sein, wenn $\sin^2 \varphi > \cos^2 \frac{\gamma}{2}$ ist; diese Bedingung ist aber identisch mit unserem geometrisch gefundenen Resultate.

Die Länge der Strecken S_1 $C = S_2$ $C = I_0$, welche im dritten Hauptfalle durch die Schnitterzeugenden auf der Berührungserzeugenden abgeschnitten werden, ist gleich der Koordinate ξ in der zweiten Gleichung 1'), wenn man in ihr $\eta = \xi = 0$ setzt und dem Parameter 1 den soeben bestimmten Wert giebt. Es wird dann:

$$l_0^2 = \frac{\lambda^2 p^2}{\lg^2 \alpha} = \frac{(\lg \alpha \lg \beta - 1) \cdot p^2}{\lg^2 \alpha}$$

oder unter Berücksichtigung der Relation $p: q = \operatorname{tg} \alpha : \operatorname{tg} \beta$ $l_0^2 = p q (1 - \operatorname{ctg} \alpha \operatorname{ctg} \beta).$

Man vergleiche S. 51 dieser Arbeit, woselbst die gleiche Relation auf geometrischem Wege gefunden wird.

Thatsache, dass die ersten Projektionen der Schnitterzeugenden gemeinsame Tangenten an die Umrisshyperbeln sind. Stets dann und nur dann werden daher entsprechende Segmente der Hyperboloide nicht gleiche Strecken der Schnitterzeugenden besitzen, wenn das ihnen gemeinsame Stück der Berührungserzeugenden entweder ganz innerhalb oder ganz ausserhalb der Strecke $S_1 S_2$ (wobei die Punkte S_1 und S_2 gleichzeitig zum Inneren und Äusseren der Strecke S, S, hinzugerechnet seien) gelegen ist. Dies ist die einzige Bedingung, die den Segmenten aufzuerlegen ist. Man hat zwei innere Segmente zu wählen, wenn sie dem Äusseren der Strecke S, S, dagegen zwei äussere Segmente, wenn sie der Strecke S_1S_2 selbst angehören sollen. Denn in letzterem Falle werden sich die ihnen angehörenden Zonen der Hyperboloidflächen wie zwei Ringe einer Kette durchschlingen. Die Figur 8 (Tafel II) stellt, genau dem Aufriss in Figur III der Tafel I entsprechend, solche den Kehlkreis in der Mitte enthaltende Zonen der Hyperboloide dar.

Wir fügen im folgenden noch einige geometrische Hilfsbetrachtungen hinzu, die sogleich im nächsten Paragraphen ihre Anwendung finden.

1. Der Abstand r_a bezw. r_b eines beliebigen Punktes P der Berührungserzeugenden von der Axe a bezw. b wird durch den Ausdruck gegeben: $r_a = \sqrt{p^2 + l^2 \sin^2 \alpha}$, bezw. $r_b = \sqrt{q^2 + l^2 \sin^2 \beta}$,

wo l die Strecke PC bezeichnet.

2. Um den Neigungswinkel \varkappa_a der Berührungserzeugenden c gegen die durch P gehende Meridianebene des Hyperboloids mit der Axe a zu bestimmen, ist in der im Zweitafelsysteme gezeichneten Figur 9 (Tafel II) die Meridianebene des Punktes C als erste Projektionsebene, die Axe a als trennende Axe x_{1,2} der ersten und zweiten Projektions-Senkrecht zu letzteren mit den Axen $x_{1,3}$ und $x_{2,3}$ ebene gewählt. ist noch eine dritte Tafel benutzt und in bekannter Weise seitlich umgelegt. Die durch den Punkt P gehende Meridianebene hat ihre erste und zweite Spur in der Axe x_1 , ihre dritte Spur ist e_3 . Man fälle von C das Lot auf die Meridianebene von P, seine wahre Grösse wird durch $C_0 F_0$ gegeben. Es ist jetzt:

Wird durch
$$C_0 F_0$$
 gegeben. Es ist jetzt:
$$C_0 F_0 = A C_0 \sin \psi = p \sin \psi \text{ und } \sin \psi = \frac{P''' C_0}{p''' A} = \frac{P'' P_x}{r_a} = \frac{l \sin \alpha}{r_a}.$$
Folglich ist:
$$\sin \varkappa_a = \frac{C_0 F_0}{l} = \frac{p \cdot \sin \alpha}{r_a}$$
oder:
$$\sin \varkappa_a = \frac{\sin \alpha}{\sqrt{1 + \left(\frac{l}{p}\right)^2 \sin^2 \alpha}}.$$

Analog ergiebt sich für den Neigungswinkel z, der Berührungserzeugenden c mit der durch P gehenden Meridianebene des Hyperboloids b:

 $\sin \varkappa_b = \frac{\sin \beta}{\sqrt{1 + \left(\frac{l}{\mu}\right)^2 \sin^2 \beta}}.$

Indem wir noch festsetzen, dass gerade derjenige Winkel mit \varkappa_a beziehungsweise \varkappa_b bezeichnet sein soll, der für $\lim l = 0$ kontinuierlich in den Winkel α beziehungsweise β übergeht, haben wir in obigen Ausdrücken den Wurzelzeichen stets ein positives Vorzeichen zu geben. Die geometrische Anschauung sowohl, wie die obigen Formeln zeigen, dass für $\lim l = \infty$ der Winkel \varkappa_a beziehungsweise \varkappa_b sich dem Werte 0 oder $\pm \pi$ nähert, je nachdem α beziehungsweise β kleiner oder grösser als $\frac{\pi}{2}$ ist.

- 3. Wir denken ferner die Tangenten an die durch P gehenden Parallelkreise beider Hyperboloide gezogen. Der Winkel \varkappa zwischen denselben ist gleich dem der beiden Meridianebenen des Punktes P. Dieser aber hat den Wert $\varkappa_a + \varkappa_b$. Denn diese Relation stimmt in den drei Hauptfällen zunächst für l=0, folglich gilt sie allgemein, da an Stelle von $\varkappa_a + \varkappa_b$ nur dann $\pm (\varkappa_a \varkappa_b)$ treten könnte, wenn für irgend einen endlichen Wert von l entweder \varkappa_a oder \varkappa_b verschwinden würde, was nicht der Fall ist. Der Grenzbedingung $0 < l < \infty$ entsprechend gilt im ersten und zweiten Hauptfalle: $\gamma > \varkappa > 0$, im dritten Hauptfalle: $\gamma < \varkappa < \pi$.
- 4. Kann die Tangente in einem Punkte P der Berührungserzeugenden an den Parallelkreis des einen Hyperboloids, etwa desjenigen mit der Axe a, die Axe b des anderen schneiden?

Wenn dies der Fall wäre, müsste jene zugleich Tangente an den durch P gehenden Meridian des Hyperboloids mit der Axe b sein. Beide Hyperboloide hätten dann notwendig noch eine zweite Erzeugende gemeinsam, nämlich das Spiegelbild der Geraden c in Bezug auf die Tangente in der gemeinsamen Tangentialebene. Der Punkt P könnte daher nur einer der Punkte S_1 und S_2 der Hyperboloide des dritten Hauptfalles sein. Umgekehrt überzeugt man sich leicht, dass in der That die Tangente im Punkte S_1 oder S_2 an den Parallelkreis des einen Hyperboloids stets die Axe des anderen schneidet.* Für die Punkte S_1 und S_2 ist daher der Winkel α gleich $\frac{\pi}{2}$. Es gilt demnach: $\sin^2 \alpha_a + \sin^2 \alpha_b = 1$,

oder nach 2): $\frac{\sin^2\alpha}{1+\left(\frac{l_0}{p}\right)^2\sin^2\alpha}+\frac{\sin^3\beta}{1+\left(\frac{l_0}{q}\right)^2\sin^2\beta}=1,$

indem wir wieder die spezielle Bezeichnung l_0 für l setzen. Die einfache Umrechnung ergiebt der Reihe nach:

$$\frac{p^2}{p^2(1+\operatorname{ctg}^2\alpha)+l_0^2}+\frac{q^2}{q^2(1+\operatorname{ctg}^2\beta)+l_0^2}=1,$$

$$l_0^4+l_0^2(p^2\operatorname{ctg}^2\alpha+q^2\operatorname{ctg}^2\beta)=p^2q^2(1-\operatorname{ctg}^2\alpha\operatorname{ctg}^2\beta),$$

oder in Rücksicht auf die Fundamentalbeziehung $p \operatorname{ctg} \alpha = q \operatorname{ctg} \beta$:

^{*} Die Gesamtheit der Tangenten an die Parallelkreise des Hyperboloids mit der Axe a (oder b) in allen Punkten der Berührungserzeugenden bildet ein hyperbolisches Paraboloid. Nur im dritten Hauptfalle wird dieses von der Axe b (oder a) in zwei reellen Punkten geschnitten.

das heisst:

$$(l_0^2 + pq \operatorname{ctg} \alpha \operatorname{ctg} \beta)^2 = p^3 q^2,$$

$$l_0^2 = pq(1 - \operatorname{ctg} \alpha \operatorname{ctg} \beta),$$

wie wir bereits in der Anmerkung S. 48 fanden.

§ 5.

Das Verhältnis der Winkelgeschwindigkeiten und der gegenseitige Drehungssinn der Hyperboloidenreibungsräder.

Es sei jetzt irgend ein Paar entsprechender Hyperboloidenreibungsräder, die wir kurz durch ihre Axen a und b bezeichnen wollen, gegeben. Wir denken sie mit einem gewissen Drucke gegeneinander gepresst, so dass sie sich infolge ihrer Deformation in einem schmalen Flächenstreifen längs der Geraden c berühren. Das Rad a sei als treibendes Rad durch äussere Einwirkung in gleichmässige Umdrehung versetzt.

Welches Verhältnis der Winkelgeschwindigkeiten und welchen Drehungssinn werden nun beide Räder darbieten? Wir wollen uns darauf beschränken, die Räder als unendlich dünn, die ihnen gemeinsame Strecke der Berührungserzeugenden als unendlich klein vorauszusetzen.*

Die auf das anfangs in Ruhe befindliche Rad b wirkende Reibungskraft, welche von der Bewegung des Rades a herrührt, wird so lange eine Winkelbeschleunigung des Rades b hervorrufen**, als von den beiden Komponenten der relativen Bewegung*** des Rades a gegen das Rad b an der Berührungsstelle, welche als Richtungen die Tangenten an den Parallelkreis und die Meridianlinie des Rades b besitzen, diejenige in der Richtung der Tangente an den Parallelkreis nicht verschwindet. Mit anderen Worten: Das Rad b wird seine Geschwindigkeit (während der Zeit des sogenannten "Anlaufens") so lange steigern, bis es — was erfahrungsgemäss sehr bald eintritt — eine solche Endgeschwindigkeit erlangt hat, dass das Berührungselement des Rades a sich relativ zu dem des

Afgitized by Google

^{*} Bei Rädern endlicher Dicke würde die Beantwortung der aufgeworfenen Fragen vor allem die Kenntnis von der Verteilung der Reibungskraft in den einzelnen Punkten der Berührungsstrecke fordern, worüber sich indes ohne willkürliche Annahmen nichts aussagen lässt, so dass unsere Beschränkung sich berechtigt erweist.

^{**} Hierbei ist vorausgesetzt, dass die beschleunigende Komponente der Reibungskraft den auf die Berührungsstelle reduzierten Widerstand gegen die Bewegung des Rades b an Grösse übertrifft, weil sonst eine Bewegung überhaupt nicht eintreten würde.

Die momentane relative Bewegung des Berührungselementes des Rades a ist identisch mit der absoluten Bewegung, die dadurch hervorgeht, dass man dem Elemente des Rades a ausser seiner eigenen Geschwindigkeit noch eine zweite Geschwindigkeit erteilt, nämlich diejenge, welche der des Berührungselementes des Rades b gleich und entgegengesetzt gerichtet ist.

Rades b in der Richtung der Meridianlinie des letzteren

bewegt.*

Es seien mit r_a und v_b die Lineargeschwindigkeiten des Berührungselementes der Räder, mit ω_a^c und ω_b ihre Winkelgeschwindigkeiten bezeichnet; r_b und ω_b mögen überdies gerade die Endwerte der Geschwindigkeiten sein, die uns allein interessieren. Es gilt zunächst $r_a = \omega_a$. r_a , $r_b = \omega_b$. r_b , wo r_a und r_b die Abstände des Berührungspunktes von den Axen a und b bezeichnen. Das Resultat der obigen Betrachtung drückt sich dann, wenn wir vorerst vom Vorzeichen absehen, in der Gleichung aus: $v_b = v_a$. $\cos \varkappa$, wo \varkappa der in der Hilfsbetrachtung 3 des vorigen Paragraphen definierte Winkel ist. Denn diese Gleichung ist der analytische Ausdruck dafür, dass die Resultante der Geschwindigkeiten v_a und $-v_b$ die Richtung der Tangente an den Meridianschnitt des Rades b besitzt. Hieraus folgt durch Einsetzung:

 $\frac{\omega_b}{\omega_a} = \frac{r_a}{r_b} \cdot \cos \varkappa.$

Diese Gleichung beantwortet den ersten Teil unserer Seite 51 aufgeworfenen Frage; sie bestimmt das Verhältnis der Winkelgeschwindigkeiten der Räder. Wir sehen, dasselbe ist eine Funktion der Grösse l, da r_a , r_b und \varkappa von l abhängen. Das Verhältnis der Winkelgeschwindigkeiten ändert seinen Wert mit der Stelle der Berührungserzeugenden, der die Reibungsräder angehören.

Was den gegenseitigen Drehungssinn der Räder betrifft, so wollen wir diejenige Drehung jedes Hyperboloids als positiv ansehen, welche von der in Figur 2 (Tafel I) durch eine Pfeilspitze ausgezeichneten Richtung der Axe aus gesehen dem Uhrzeigergange entgegengesetzt ist. Zunächst seien jetzt in jedem der drei Hauptfälle die Kehlkreisräder betrachtet. In der für alle drei Fälle gemeinsam giltigen Figur 10 (Tafel II), deren Ebene die Tangentialebene des Punktes C ist, bezeichnen a_0 und b_0 die Tangenten an die Meridiane. Durch CP und CQ seien die Lineargeschwindigkeiten v_a und v_b der Grösse und Richtung nach dargestellt; die Resultante von v_a und $-v_b$ muss die Richtung der Tangente b_0 besitzen. Indem man beachtet, dass der Punkt C im ersten und dritten Hauptfalle innerhalb, im zweiten ausserhalb der Strecke AB gelegen ist, ergiebt sich leicht die Richtigkeit der hinsichtlich des Vorzeichens erweiterten Formel:

$$\frac{\omega_b}{\omega_a} = (-1)^{\epsilon} \cdot \frac{|p|}{|q|} \cdot \cos \gamma,$$

wo im ersten, zweiten oder dritten Hauptfalle ε beziehungsweise gleich 1, 2 oder 3 zu setzen ist und p, q die absoluten Werte der Grössen p, q bezeichnen. Wir behaupten, dass in allen drei Fällen die analoge Formel:

^{*} Gauz ähnliche Verhältnisse bietet das Rädchen eines Polarplanimeters dar, das auf der Zeichenebene zugleich gleitet und rollt.

$$\frac{\omega_b}{\omega_a} = (-1)^{\bullet} \cdot \frac{r_a}{r_b} \cos x$$

jetzt für beliebige Räder giltig ist. Der Beweis folgt unmittelbar aus unseren Hilfsbetrachtungen 3 und 4 im vorigen Paragraphen. Im ersten und zweiten Hauptfalle muss das Vorzeichen von $\frac{\omega_b}{\omega_a}$ stets dasselbe sein, welcher Stelle der Berührungserzeugenden auch die Räder angehören. Im dritten Hauptfalle dagegen muss das Vorzeichen ein verschiedenes sein, je nachdem die Räder zu dem Inneren oder dem Äusseren der Strecke S_1S_2 gehören, da, wie wir sahen, gerade in den Punkten S_1 und S_2 die Tangente an den Parallelkreis des einen Hyperboloids die Axe des anderen schneidet. Diese Verhältnisse werden in unserer Formel durch das Vorzeichen von $\cos \varkappa$ in der That richtig dargestellt.

Ausführlich lautet unsere Formel in Rücksicht auf die Hilfsbetrachtungen 1 und 2 des vorigen Paragraphen:

$$3') \begin{cases} \frac{\omega_b}{\omega_a} = (-1)^s \cdot \frac{V p^{\frac{3}{2}} + l^{\frac{2}{3}} \sin^2 \alpha}{V q^{\frac{2}{2}} + l^{\frac{2}{3}} \sin^2 \beta} \cdot \left[\pm \sqrt{1 - \frac{p^{\frac{3}{3}} \sin^2 \alpha}{p^2 + l^{\frac{3}{3}} \sin^2 \alpha}} \cdot \sqrt{1 - \frac{q^{\frac{3}{3}} \sin^2 \beta}{q^2 + l^{\frac{2}{3}} \sin^2 \beta}} - \frac{\sin \beta}{\sqrt{1 + \left(\frac{l}{p}\right)^2 \sin^2 \beta}} \cdot \sqrt{1 + \left(\frac{l}{q}\right)^2 \sin^2 \beta} \right] \cdot \end{cases}$$

Hier gilt das obere Vorzeichen im ersten und zweiten, das untere im dritten Hauptfalle; für sämtliche Wurzeln sind die positiven Werte zu wählen. Unser Resultat lautet in Worten:

Erteilen wir dem Rade a eine positive Umdrehung, so wird das Rad b im ersten Hauptfalle stets eine negative, im zweiten eine positive Umdrehung ausführen, welcher Stelle der Berührungserzeugenden die beiden Räder auch angehören mögen; im dritten Hauptfalle dagegen eine negative oder eine positive Umdrehung, je nachdem die Räder dem Inneren oder dem Äusseren der Strecke S_1S_2 angehören. (Positiv und negativ ist überall zu vertauschen, wenn wir dem Rade a eine negative Umdrehung erteilen.) Das Verhalten der Reibungsräder im dritten Hauptfalle erweist sich also besonders überraschend.

Wir haben bisher immer angenommen, dass das Rad a das treibende ist. Wenn wir statt dessen das Rad b als das treibende wählen, so haben wir in der Formel (3') die Indices a und b und die Grössen p, q sowie a, β miteinander zu vertauschen. Ersichtlich erhalten wir dann allgemein einen anderen Wert für das Verhältnis $\frac{\omega_b}{\omega_a}$. Das Verhältnis der Winkelgeschwindigkeiten nimmt daher einen verschiedenen Wert an, je nachdem wir bei demselben Räderpaare das eine oder das andere Rad als das treibende ansehen.

Für die im Anfange des § 3 aufgestellten Übergangsfälle spezialisiert sich unser Resultat folgendermassen. Es wird das Verhältnis $\frac{\omega_b}{\omega_a}$, wenn wieder das Rad a als das treibende gewählt ist,

a) für
$$\varphi = -\frac{\gamma}{2}(\alpha = 0)$$
 gleich 0.

b) für
$$\varphi = + \frac{\gamma}{2}(\alpha = \gamma)$$
 gleich ∞ .

c) für
$$\varphi = \frac{\pi}{2} + \frac{\gamma}{2} \left(\alpha - \frac{\pi}{2} \right)$$
 gleich $\frac{1}{\cos \gamma}$.

d) für
$$\varphi = \frac{\pi}{1} + \frac{\gamma}{2} \left(\alpha = \frac{\pi}{2} + \gamma \right)$$
 gleich $\frac{l^9 \cos \gamma}{s^2 + l^2}$.

Besonders zu beachten ist, dass nur im letzten Falle $\frac{\omega_b}{\omega_a}$ noch von l abhängig bleibt.

Für $\lim l = \infty$ geht die Formel 3) der vorigen Seite für alle Fälle über in:

 $\lim_{l=\infty}^{\omega_b} \frac{\omega_b}{\omega_a} = -\frac{\sin \alpha}{\sin \beta},$ das heisst:

Je weiter von den Kehlkreisen entfernt die Räder gewählt werden, um so mehr nähert sich das Verhältnis ihrer Winkelgeschwindigkeiten dem einfachen Werte $-\frac{\sin\alpha}{\sin\theta}$.

Zusatz:

Dasselbe Winkelgeschwindigkeitsverhältnis $-\frac{\sin\alpha}{\sin\beta}$ kommt zweien sich längs einer Erzeugenden berührenden Hyperboloiden zu, wenn wir diese als Axoide oder Grundkörper hyperboloidischer Zahnräder ansehen. Ohne dass wir im einzelnen auf diese Verhältnisse eingehen,* sei es gestattet, den hier obwaltenden Unterschied mit wenigen Worten zu beleuchten. Bei Zahnrädern sind es nicht Reibungskräfte, sondern Druckkräfte, welche die Bewegung von einem Rade auf das andere übertragen, so dass von vornherein ganz andere Verhältnisse zur Geltung kommen. Obwohl daher im Grenzfalle** die Hyperboloide selbst als "Elementenflächen" (die allgemein zur Begrenzung der Zähne geeignete Flächen sind) sich ergeben können, besitzen doch, wie wir gesehen haben, beliebige aus ihnen ausgeschnittene Räder, da diese dann als Reibungsräder wirken, nicht das Winkelgeschwindigkeitsverhältnis $-\frac{\sin\alpha}{\sin\beta}$ der Axoide.

Um den hier vorliegenden Gegensatz besonders anschaulich zu überblicken, wollen wir ein einfacheres Beispiel heranziehen, das analoge Verhältnisse darbietet. Wir denken, wie Figur 11 (Tafel II) in schiefer

** Wie z. B. in Grashof, Theoretische Maschinenlehre, Band II, Leipzig 1877. § 25 S. 81 gezeigt ist.

^{*} Zur näheren Orientierung sei z.B. auf die Darstellung in Weisbach-Herrmann, Lehrbuch der Ingenieur- und Maschinenmechanik, III. Teil, 1. Abteilung, Braunschweig 1876, § 46 (S. 228 flg.) und § 86 (S. 418 flg.) verwiesen.

Parallelperspektive zeigt, auf einem beliebig langen Parallelstreifen in gleichem Abstande von einander und in schräger Richtung schmale, senkrechte Streifchen angebracht, die den Zähnen eines Rades entsprechen. Zwei derartige, genau gleiche Parallelstreifen a und b ("Zahnstangen") mögen dann mit zugekehrten Zähnen aufeinander gelegt sein (Figur 12, Tafel II). Ferner soll, etwa durch prismatische Führungen, dafür gesorgt sein, dass jeder Streifen sich nur in der Richtung seiner ihn begrenzenden Parallelgeraden bewegen kann. Wird dann der Streifen a in der Richtung des hinzugefügten Pfeiles, also von links nach rechts, bewegt, so wird durch den Eingriff der Zähne der Streifen b sich nach unten bewegen. Dieses Verhältnis wird bestehen bleiben, wenn wir auch die Zähne beliebig klein denken, so dass sie fast unsichtbar sind. Werden dagegen zwei Parallelstreifen ohne Zähne in genau derselben Lage mit einem gewissen Drucke aufeinander gepresst (Figur 13, Tafel II) und wieder der Streifen a von links nach rechts bewegt, so wird der Streifen b jetzt sich nach oben be-Dieses Beispiel, bei dem wir nicht länger verweilen wollen, möge man am besten vergleichen mit zwei hyperbolischen Zahnrädern beziehungsweise Reibungsrädern des dritten Hauptfalles, deren zugehörige Hyperboloidenzonen den Kehlkreis in ihrer Mitte enthalten (vergl. Figur 8, Tafel II).

§ 6. Die speziellen Fälle
$$\gamma=\frac{\pi}{2},\ \gamma=0$$
 und $s=0.$

Jetzt gilt es für die zu Anfang des § 2 ausgeschlossenen besonderen Lagen der Axen a und b unsere bisherigen Betrachtungen zu spezialisieren.*

1. Ist der Winkel γ der beiden Axen gleich $\frac{\pi}{2}$, so geht die Gleichung 2) über in:

2*)
$$z = \frac{s}{2} \cdot \sin 2\varphi,$$
 oder
$$z = \frac{s}{2} \cdot \cos 2\beta.$$

Die hierdurch dargestellte Fläche dritter Ordnung unterscheidet sich in ihrer Gestalt nicht von jener des allgemeinen Falles, nur ist die Axe a bezw. b jetzt ihre tiefste bezw. höchste Erzeugende, wenn man die z-Axe wieder vertikal annimmt. Der Punkt C ist dementsprechend für jeden Wert α oder φ niemals ausserhalb der Strecke AB gelegen.

Fällt die Berührungserzeugende c mit einer der Axen a oder b selbst zusammen, so ist das eine Hyperboloid in das doppelt zu denkende

^{*} Die trivialen Grenzfälle, dass entweder beide Axen zusammengefallen sind, oder aber eine von ihnen ins Unendliche gerückt ist, seien hier nur erwähnt.

Äussere eines Kreises, das andere in eine Tangente desselben ausgeartet, ein Grenzfall, von dem wir weiterhin absehen wollen. Da im allgemeinen Falle die beiden durch denselben Punkt ℓ' gehenden Berührungserzeugenden entgegengesetzt gleichen Werten β entsprechen, also zu den Ebenen (a,ℓ') und (b,ℓ') symmetrisch liegen, so folgt unmittelbar, dass ihre Rotation um die Axen a und b dasselbe Hyperboloidenpaar liefert. Die beiden Hyperboloide berühren sich stets in zwei Erzeugenden. (Figur 14, Tafel II.) Nur dann sind entsprechende Segmente der Hyperboloide — und zwar stets innere — als Reibungsräder verwendbar, wenn die ihnen gemeinsame Strecke der Berührungserzeugenden nicht den Punkt ℓ' im Inneren enthält. Das in derselben Weise wie im § 5 bestimmte Verhältnis α der Winkelgeschwindigkeiten wird durch den Ausdruck gegeben:

$$\begin{cases} \omega_{b} = \frac{\sqrt{p^{2} + l^{2} \sin^{2} \alpha}}{\sqrt{q^{2} + l^{2} \sin^{2} \beta}} \\ \cdot \left[\pm \sqrt{1 - \frac{p^{2} \sin^{2} \alpha}{p^{2} + l^{2} \sin^{2} \alpha}} \cdot \sqrt{1 - \frac{q^{2} \sin^{2} \beta}{q^{2} + l^{2} \sin^{2} \beta}} - \frac{\sin \alpha}{\sqrt{1 + \left(\frac{l}{p}\right)^{2} \sin^{2} \alpha}} \cdot \sqrt{1 + \left(\frac{l}{q}\right)^{2} \sin^{2} \beta}} \right];$$

alle Wurzelzeichen sind mit positivem Vorzeichen zu nehmen, es gilt das obere beziehungsweise untere Zeichen in der Klammer, je nachdem die den Rädern zugehörige Berührungserzeugende c_1 oder c_2 einem positiven oder negativen Werte β entspricht. Das Verhältnis der Winkelgeschwindigkeiten ist negativ oder positiv, je nachdem β positiv oder negativ ist.

2. Im Grenzfalle $\gamma=0$, das heisst bei paralleler Lage der Axen, giebt uns wieder am besten die Gleichung 2) Auskunft. Für $\varphi=0$ oder $\frac{\pi}{2}$ wird z völlig unbestimmt, für alle übrigen Werte von φ dagegen unendlich gross. Unsere Fläche dritter Ordnung ist daher in die unendlich ferne Ebene, die für unseren Zweck nicht weiter in Betracht kommt, und in zwei sich längs der Geraden AB rechtwinklig schneidende Ebenen zerfallen, deren eine die Axen a und b enthält. Dem Werte $\varphi=0$ entspricht der gewöhnliche Fall zweier Cylinder, die sich äusserlich oder innerlich längs einer Erzeugenden berühren. Für das Verhältnis der Winkelgeschwindigkeiten gilt die von l unabhängige Formel:

$$\frac{\omega_a}{\omega_b} = -\frac{a}{a}$$
.

Für $\varphi = \frac{\pi}{2}$ dagegen sind die beiden Hyperboloide in jedem Falle in das doppelt zu denkende Äussere zweier sich berührender Kreise ausgeartet. Wenn C innerhalb AB liegt, haben dieselben überdies noch zwei Tangenten gemeinsam, die den Schnitterzeugenden s_1 und s_2 des dritten Hauptfalles des § 3 entsprechen.

3. Wenn endlich s=0 ist, das heisst die Axen a und bsich schneiden, so zerfällt die Gleichung 2') in $x^2 + y^2 = 0$ und = 0. Der reelle Teil der Fläche dritter Ordnung besteht also aus der z-Axe, die nicht weiter für uns in Betracht kommt, und der Ebene der Axen a und b. In letzterer kann die Berührungserzeugende c zunächst mit einer der Axen a, b selbst oder mit einer ihrer Senkrechten c,, c, zusammen fallen (Figur 15, Tafel II). Von den durch ihre Rotation um die Axen a und b entstehenden Flächen ist dann stets die eine entweder in die Axe a oder b selbst oder in die zu einer von ihnen senkrechte Ebene ausgeartet, während die andere einen Kegel darstellt. Ausser diesen speziellen Lagen haben wir wieder die drei Hauptfälle zu unterscheiden, dass die Gerade c in einem der Winkelräume I, II oder III liegt. In diesen Fällen entstehen durch Rotation der Geraden c um die Axen stets zwei Kegel (Doppelkegel). Im ersten und dritten Hauptfalle berühren sich dieselben mit ihren Aussenseiten, im zweiten Hauptfalle berührt der grössere Kegel mit seiner Innenseite den kleineren an der Aussenseite. Kegel des dritten Hauptfalles haben indes noch zwei Schnitterzeugende gemeinsam, dementsprechend sind nur dann entsprechende Segmente als Reibungsräder verwendbar, wenn die ihnen gemeinsame Strecke der Berührungserzeugenden den Schnittpunkt der Axen nicht im Inneren enthält. Den beiden Kegeln gemeinsamen Meridianschnitt der drei Hauptfälle geben die Figuren 6, I, II, III (Tafel II). Das Verhältnis der Winkelgeschwindigkeiten wird, auch in Rücksicht auf das Vorzeichen, durch den Ausdruck $\frac{\omega_b}{\omega_a} = -\frac{\sin \alpha}{\sin \beta}$ gegeben, der wieder von l unabhängig ist.

Ist insbesondere noch $\gamma = \frac{\pi}{2}$, so werden die beiden Kegel sich stets doppelt berühren. Die den Reibungsrädern angehörende Strecke der einen oder anderen Berührungserzeugenden darf den Schnittpunkt der Axen nicht im Inneren enthalten.

§ 7.

Die zeichnerische Darstellung der drei allgemeinen Hauptfälle.

Die Darstellung der beiden Hyperboloide im Zweitafelsysteme Figuren I, II, III, Tafel I) lässt bei zweckmässiger Anordnung ihre symmetrische Lage in Bezug auf die Gerade AB klar hervortreten; sie besitzt daher vor der (orthogonalen) axonometrischen Darstellung (Figur IV, Tafel I) zweifellos den Vorzug grösserer Anschaulichkeit. Immerhin dürfte auch die letztere als eine gute Übungsaufgabe der axonometrischen Methode einer näheren Betrachtung wert sein. Wir

wollen im folgenden uns auf die Angabe der wesentlichen Punkte beschränken, die bei der Konstruktion zu beachten sind.*

Gegeben seien stets die Axen a und b und der Punkt C. Bei der Darstellung im Zweitafelsysteme wird man das Gebilde gegen die beiden Tafeln wie in Figur 2 (Tafel II) so anordnen, dass die Gerade A B auf der ersten Tafel senkrecht steht. Bei der axonometrischen Darstellung, die wir zunächst näher betrachten wollen, sei als z-Axe die Gerade AB, als x-Axe die Axe a gewählt; XYZ sei das Spurendreieck der Zeichenebene (Figur 16, Tafel II). Man klappe die xz-Ebene um XZ in die Zeichenebene um; es wird dann $A^*C^*=p$ und $C^*B^*=q$. Ebenso werde auch die xy-Ebene um XY in die Zeichenebene umgelegt. Es gilt jetzt zunächst die Projektion unseres Gebildes auf die xy-Ebene in der Umklappung zu zeichnen. Diese Konstruktion verläuft genau wie jene in der Grundrissebene bei der Darstellung im Zweitafelsysteme; nur stimmt der positive Drehungssinn infolge der Umlegung mit dem Gange des Uhrzeigers überein. Wir werden unsere weitere Betrachtung, die dann auch für die Zeichnung des Grundrisses im Zweitafelsysteme gültig ist, an Figur 16 (Tafel II) anknüpfen. Um einen beliebigen Punkt R_0 der umgelegten Projektion c_0 der Berührungserzeugenden c auf die xy-Ebene zu finden, beachte man, dass, wie in Figur 2 (Tafel II), einmal <); $P_0 R_0 A_0 = \frac{\pi}{2}$, sodann:

$$P_0 R_0 : R_0 Q_0 = p : q = P_0 S : SA_0$$

ist, wo $R_0S \mid h_0$ sei. Nimmt man daher P_0 beliebig an, so ist durch diese Beziehungen R_0 zweideutig bestimmt, wie es sein muss. Die weitere Konstruktion in der umgelegten xy-Ebene bietet keine Schwierigkeit, da einmal c_0 die eine Asymptote für beide Umrisshyperbeln ist, anderseits die Halbaxen derselben durch p und q gegeben sind. Die Hyperboloide selbst seien beiderseits durch zu ihrer Axe senkrechte Ebenen begrenzt, deren Schnitte wir als Grundkreise bezeichnen wollen. In Figur 16 (Tafel II) führt der Punkt R_0 zu zwei Hyperboloiden des ersten Hauptfalles (Figur IV, Tafel I), der Punkt (R_0) zu solchen des dritten Hauptfalles. Letzteres ist in Figur 17 (Tafel II) weiter ausgeführt. Im dritten Hauptfalle hat man ja noch die Schnitterzeugenden zu zeichnen, deren Projektionen gemeinsame Tangenten HK beziehungsweise H_1K_1 an die Umrisshyperbeln sind. Es besteht die Proportion: $\Delta HJA_0: \Delta KJA_1 = HJ: JK$.

Nun ist jedes dieser Dreiecke bezüglich gleich demjenigen, welches durch die Asymptoten und die Scheiteltangente der zugehörigen

^{*} Ausführlich wird diese Konstruktion behandelt bei De la Gournerie l. c. Art. 729 · 738, sowie bei Rohn und Papperitz l. c. Art. 561. Meine Angaben im Texte erheben nicht den Anspruch, irgendwie Neues zu geben, wenn auch vielleicht hier und da eine kleine Vereinfachung erzielt sein mag.

Hyperbel begrenzt wird. Und da beide Hyperbeln dieselbe imaginäre Axe haben, so verhält sich schliesslich:

$$HJ:JK=q:p.$$

Diese Gleichung liefert die Richtung der parallelen Tangenten HK und H_1K_1 und damit diese selbst.

Um jetzt die axonometrische Projektion selbst beziehungsweise den Aufriss der Hyperboloide zu zeichnen, beachte man noch folgende Sätze. Die Axe a beziehungsweise b (oder ihre zweite Projektion) ergiebt allemal die Symmetrielinie ihres Hyperboloids. In ihr liegen die kleinen Axen der die Grundkreise darstellenden Ellipsen; deren grosse Axen sind gleich den Durchmessern der Kreise. Da noch die Schnittpunkte der Ellipsen mit der Geraden e bekannt sind, so lassen sich diese unmittelbar zeichnen. Gehört zu dem einen oder anderen Hyperboloid dann eine Umrissellipse, wie z. B. zu dem Hyperboloid mit der Axe b im Aufrisse der Figur I der Tafel I. so ist ihre grosse Axe gleich dem bekannten Durchmesser des Kehlkreises. Sie ist vollends bestimmt bei axonometrischer Darstellung durch die eine Tangente bildende Berührungserzeugende c, bei der Darstellung im Zweitafelsysteme durch die vertikalen Tangenten der Umrisshyperbel des Grundrisses, welche dann zugleich die Tangenten in den Endpunkten der kleinen Axe sind. Die reelle Axe einer etwa vorkommenden Umrisshyperbel der axonometrischen Projektion beziehungsweise des Aufrisses aber ist ebenfalls gleich dem Durchmesser des Kehlkreises. Die Asymptoten ferner sind die Tangenten an die Ellipse, welche einen der Grundkreise des zugehörigen Asymptotenkegels darstellt. Letztere ist ihrerseits zu der den entsprechenden Grundkreis des Hyperboloids darstellenden Ellipse ähnlich und ähnlich gelegen, und ihre grosse Axe ist gleich einer Sehne des letztgenannten Grundkreises im Abstande des Kehlkreisradius vom Mittelpunkte. Zugleich findet man die Berührungspunkte der Umrisshyperbel mit jeder Grundellipse des Hyperboloids als Schnitt der letzteren mit derjenigen Parallelen, die man zu ihrer grossen Axe durch die bekannten Berührungspunkte der die Asymptoten darstellenden Tangenten an die entsprechende Grundellipse des Asymptotenkegels legt. Schliesslich mag man noch in beliebiger Zahl Erzeugende beider Hyperboloide hinzufügen. Dies geschieht am zweckmässigsten, indem man jedes Hyperboloid in seitlicher Ansicht darstellt und die hier leicht einzuzeichnenden Erzeugenden dann überträgt, wie es z. B. in der umgelegten xy-Ebene der Figur IV (Tafel I) ausgeführt ist.

Zerlegung der Gleichung vierten Grades.

Von Dr. Heilermann in Godesberg.

Um die allgemeine Gleichung vierten Grades

1)
$$F = ax^4 + 4bx^3 + bcx^2 + 4dx + c = 0$$

in zwei quadratische Gleichungen zu zerlegen, nehme man an, dass die Summe F zunächst in eine sehr allgemeine leicht zerlegbare Form verwandelt worden sei, nämlich in:

2)
$$\begin{cases} F = m(\alpha x^{2} + 2\beta x + \gamma)^{2} + 2n(\alpha x^{2} + 2\beta x + \gamma)(\alpha_{1}x^{2} + 2\beta_{1}x + \gamma_{1})^{2} \\ + (\alpha_{1}x^{2} + 2\beta_{1}x + \gamma_{1})^{2}. \end{cases}$$

Demnach müssen die neun neuen Koeffizienten m, n, p, α etc. folgenden fünf Bedingungen genügen:

3)
$$\begin{cases} m\alpha^{2} + 2n\alpha\alpha_{1} + p\alpha_{1}^{2} = a, & m\alpha\beta + n(\alpha\beta_{1} + \beta\alpha_{1}) + p\alpha_{1}\beta_{1} = b, \\ m\gamma^{2} + 2n\gamma\gamma_{1} + p\gamma_{1}^{2} = c, & m\beta\gamma + n(\beta\gamma_{1} + \gamma\beta_{1}) + p\beta_{1}\gamma_{1} = d, \\ m(\alpha\gamma + 2\beta^{2}) + n(\alpha\gamma_{1} + \gamma\alpha_{1} + 4\beta\beta_{1}) + p(\alpha_{1}\gamma_{1} + 2\beta_{1}^{2}) = 3c. \end{cases}$$

Um die letzte Bedingung den vorangehenden ähnlicher zu gestalten, setze man an ihre Stelle die zwei Gleichungen:

3*) $m\beta^2 + 2n\beta\beta_1 + p\beta_1^2 = c - \lambda$, $m\alpha\gamma + n(\alpha\gamma_1 + \gamma\alpha_1) + p\alpha_1\gamma_1 = c + 2\lambda$, in denen vorläufig λ eine unbekannte Zahl bezeichnet.

Dann kann man diese Bedingungen in folgende Gruppen zu je dreien ordnen:

$$\begin{cases} \alpha(m\alpha + n\alpha_1) + \alpha_1(p\alpha_1 + n\alpha) - a = 0, \\ \beta(m\alpha + n\alpha_1) + \beta_1(p\alpha_1 + n\alpha) - b = 0, \\ \gamma(m\alpha + n\alpha_1) + \gamma_1(p\alpha_1 + n\alpha) - (c + 2\lambda) = 0; \\ (\alpha(m\beta + n\beta_1) + \alpha_1(p\beta_1 + n\beta) - b = 0, \\ \beta(m\beta + n\beta_1) + \beta_1(p\beta_1 + n\beta) - (c - \lambda) = 0, \\ \gamma(m\beta + n\beta_1) + \gamma_1(p\beta_1 + n\beta) - d = 0, \\ (\alpha(m\gamma + n\gamma_1) + \alpha_1(p\gamma_1 + n\gamma) - (c + 2\lambda) = 0, \\ \beta(m\gamma + n\gamma_1) + \beta_1(p\gamma_1 + n\gamma) - d = 0, \\ \gamma(m\gamma + n\gamma_1) + \gamma_1(p\gamma_1 + n\gamma_1) - c = 0. \end{cases}$$

Wenn man danach aus diesen Gruppen die zweigliedrigen Summen $m\alpha + n\alpha_1$, $p\alpha_1 + n\alpha$ etc. eliminiert, so erhält man eine neue Gruppe von drei Gleichungen, nämlich:

4)
$$\begin{cases} a(\beta \gamma_1 - \gamma \beta_1) + b(\gamma \alpha_1 - \alpha \gamma_1) + (c+2\lambda)(\alpha \beta_1 - \beta \alpha_1) = 0, \\ b(\beta \gamma_1 - \gamma \beta_1) + (c-\lambda)(\gamma \alpha_1 - \alpha \gamma_1) + d(\alpha \beta_1 - \beta \alpha_1) = 0, \\ (c+2\lambda)(\beta \gamma_1 - \gamma \beta_1) + d(\gamma \alpha_1 - \alpha \gamma_1) + c(\alpha \beta_1 - \beta \alpha_1) = 0. \end{cases}$$

Da in diesen Gleichungen nur die zwei Verhältnisse von den Verbindungen der neuen Koeffizienten als Unbekannte anzusehen sind, so können die drei Gleichungen nur unter der Bedingung nebeneinander bestehen, wenn die Determinante aus ihren Koeffizienten Null ist. Also muss die bisher unbekannte Zahl λ der Gleichung:

$$\begin{vmatrix} a & b & c+2\lambda \\ b & c-\lambda & d \\ c+2\lambda & d & e \end{vmatrix} = 0,$$

oder

5)
$$4\lambda^3 - (ac - 4bd + 3c^2)\lambda + acc + 2bcd - ad^2 - b^2c - c^3 = 0$$
 Genüge leisten und kann daher drei verschiedene Werte annehmen.

Nachdem durch diese Gleichung, die unter dem Namen der kubischen

Resolvente bekannt ist, die Hilfsgrösse & ermittelt ist, erhält man für die Diskriminante der Gleichung 2) folgende Werte aus den Gleichungen 3):

6)
$$\begin{cases} n^2 - mp = \frac{b^2 - ac + a\lambda}{(\alpha\beta_1 - \beta\alpha_1)^2} = \frac{d^2 - ce + e\lambda}{(\beta\gamma_1 - \gamma\beta_1)^2} = \frac{(c + 2\lambda)^2 - ae}{(\gamma\alpha_1 - \alpha\gamma_1)^2} \\ = \frac{(c - \lambda)(c + 2\lambda) - bd}{(\alpha\beta_1 - \beta\alpha_1)(\beta\gamma_1 - \gamma\alpha_1)} = \frac{be - cd - 2d\lambda}{(\beta\gamma_1 - \gamma\beta_1)(\gamma\alpha_1 - \alpha\gamma_1)} - \frac{ad - bc - 2b\lambda}{(\gamma\alpha_1 - \alpha\gamma_1)(\alpha\beta_1 - \beta\alpha_1)}. \end{cases}$$
Where diese Crises der Kann mann wit II having a sixty.

Wenn diese Grösse der Kürze wegen mit D bezeichnet, so ist $mF = [(m\alpha + n\alpha_1)x^2 + 2(m\beta + n\beta_1)x + m\gamma + n\gamma_1]^2 - D(\alpha_1x^2 + 2\beta_1x + \gamma_1)^2,$ und daher zerfällt die Gleichung 1) in die quadratischen Gleichungen:

7)
$$\begin{cases} (m\alpha + n\alpha_{1} - \alpha_{1}\sqrt{D})x^{2} + 2(m\beta + n\beta_{1} - \beta_{1}\sqrt{D})x \\ + m\gamma + n\gamma_{1} - \gamma_{1}\sqrt{D} = 0, \\ (m\alpha + n\alpha_{1} + \alpha_{1}\sqrt{D})x^{2} + 2(m\beta + n\beta_{1} + \beta_{1}\sqrt{D})x \\ + m\gamma + n\gamma_{1} + \gamma_{1}\sqrt{D} = 0. \end{cases}$$

Multipliziert man die erste von diesen beiden Gleichungen mit

 $\frac{m\alpha + n\alpha_1 + \alpha_1 VD}{m}$, die andere mit $\frac{m\alpha + n\alpha_1 - \alpha_1 VD}{m}$,

so wird das erste Glied in beiden rational, und sie gehen über in:

8)
$$\begin{cases} ax^{2} + 2(b - \sqrt{b^{2} - ac + a\lambda})x + c + 2\lambda - \sqrt{(c + 2\lambda)^{2} - ac} = 0, \\ ax^{2} + 2(b + \sqrt{b^{2} - ac + a\lambda})x + c + 2\lambda + \sqrt{(c + 2\lambda)^{2} - ac} = 0. \end{cases}$$

Das Produkt beider ist:

$$aF = (ax^{2} + 2bx + c + 2\lambda)^{2} - (2xVb^{2} - ac + a\lambda + V(c + 2\lambda)^{2} - ac)^{2} = 0.$$

Wenn man aber in den Gleichungen 7) aus den mittleren Gliedern die Wurzeln durch entsprechende Multiplikationen wegschafft, so erhält man:

9)
$$\begin{cases} (b + \sqrt{b^2 - ac + a\lambda})x^2 + 2(c - \lambda)x + d - \sqrt{d^2 - cc + c\lambda} = 0, \\ (b - \sqrt{b^2 - ac + a\lambda})x^2 + 2(c - \lambda)x + d + \sqrt{d^2 - cc + c\lambda} = 0 \end{cases}$$

und als deren Produkt:

$$(c-\lambda)F = (bx^2 + 2(c-\lambda)x + d)^2 - (x^2 \cdot \sqrt{b^2 - ac + a\lambda} - \sqrt{d^2 - ce - e\lambda})^2.$$

In gleicher Weise lassen sich auch aus dem absoluten Gliede der Gleichungen 7) die Wurzeln entfernen; dadurch erscheinen sie in der Form:

10)
$$\begin{cases} (c + 2\lambda - \sqrt{(c+2\lambda)^2 - ae})x^2 + 2(d + \sqrt{d^2 - ce + e\lambda})x + e = 0, \\ (c + 2\lambda + \sqrt{(c+2\lambda)^2 - ae})x^2 + 2(d - \sqrt{d^2 - ce + e\lambda})x + e = 0, \\ \text{und ihr Produkt ist:} \end{cases}$$

$$eF = [(c+2\lambda)x^2 + 2dx + e]^2 - (x^2 \cdot \sqrt{(c+2\lambda)^2 - ue} - 2x \cdot \sqrt{d^2 - ce + e\lambda})^2 = 0.$$

Aus jedem dieser drei Paare von Gleichungen erhält man die beiden anderen, wenn man die Wurzelgrössen aus einem Gliede durch die geeignete Multiplikation entfernt und dabei die obigen Werte 6) beachtet.

In der vorstehenden Umformung und Zerlegung ist ausser anderen auch diejenige enthalten, die ich im Programm der Realschule zu Trier 1855 mitgeteilt habe. Setzt man nämlich $\alpha = \alpha_1 = 1$, $\gamma = \beta^2$, $\gamma_1 = \beta_1^2$, so ist nach 2):

$$F = m(x+\beta)^4 + 2n(x+\beta)^2 \cdot (x+\beta_1)^3 + p(x+\beta_1)^4,$$

und daraus folgt wie oben:

$$mF = [m(x+\beta)^2 + n(x+\beta_1)^2]^2 - (n^2 - mp)(x+\beta_1)^4.$$

Daher kann die Gleichung F=0 ersetzt werden durch die quadratischen Gleichungen:

$$(m+n+VD)x^2+2(m\beta+n\beta_1+\beta_1VD)x+m\beta^2+n\beta_1^2+\beta_1^2\cdot V\overline{D}=0,$$
 $(m+n-VD)x^2+2(m\beta+n\beta_1-\beta_1VD)x+m\beta^2+n\beta_1^2-\beta_1^2\cdot V\overline{D}=0;$ und diese gehen ebenso, wie die Gleichungen 7), in eines der dort folgenden Paare über, wenn man den ersten, zweiten oder dritten Koeffizienten rational macht. Nach diesen Umformungen ist die Auflösung der Gleichung 1) zweckmässig folgende.

Bezeichnet man ihre Wurzeln mit x_1 , x_2 , x_3 , x_4 und die der kubischen Resolvente mit λ_1 , λ_2 , λ_3 , so ist nach den Gleichungen 8):

$$\begin{split} x_1 + x_2 &= -\frac{2}{a} \left(b - \sqrt{b^2 - a c + a \lambda_1} \right), \\ x_3 + x_4 &= -\frac{2}{a} \left(b + \sqrt{b^3 - a c + a \lambda_1} \right), \\ x_1 + x_3 &= -\frac{2}{a} \left(b - \sqrt{b^2 - a c + a \lambda_2} \right), \\ x_2 + x_4 &= -\frac{2}{a} \left(b + \sqrt{b^2 - a c + a \lambda_2} \right), \\ x_1 + x_4 &= -\frac{2}{a} \left(b - \sqrt{b^2 - a c + a \lambda_3} \right), \\ x_2 + x_3 &= -\frac{2}{a} \left(b + \sqrt{b^2 - a c + a \lambda_3} \right). \end{split}$$

Wenn man diese Werte paarweise verbindet, so entsteht:

$$\begin{aligned} x_1 + x_2 + x_3 + x_4 &= -\frac{4}{a} \cdot b, \\ x_1 + x_2 - x_3 - x_4 &= \frac{4}{a} \cdot \sqrt{b^2 - ac + a\lambda_1}, \\ x_1 - x_2 + x_3 - x_4 &= \frac{4}{a} \cdot \sqrt{b^2 - ac + a\lambda_2}, \\ x_1 - x_2 - x_3 + x_4 &= \frac{4}{a} \cdot \sqrt{b^2 - ac + a\lambda_3}, \end{aligned}$$

und daraus erhält man durch Addition und Subtraktion als Werte der Wurzeln:

$$x_{1} = \frac{1}{a} \left(-b + \sqrt{b^{2} - ac + a\lambda_{1}} + \sqrt{b^{2} - ac + a\lambda_{2}} + \sqrt{b^{2} - ac + a\lambda_{3}} \right),$$

$$x_{2} = \frac{1}{a} \left(-b + \sqrt{b^{2} - ac + a\lambda_{1}} - \sqrt{b^{2} - ac + a\lambda_{2}} - \sqrt{b^{2} - ac + a\lambda_{3}} \right),$$

$$x_{3} = \frac{1}{a} \left(-b - \sqrt{b^{2} - ac + a\lambda_{1}} + \sqrt{b^{2} - ac + a\lambda_{2}} - \sqrt{b^{2} - ac + a\lambda_{3}} \right),$$

$$x_{4} = \frac{1}{a} \left(-b - \sqrt{b^{2} - ac + a\lambda_{1}} - \sqrt{b^{2} - ac + a\lambda_{2}} + \sqrt{b^{2} - ac + a\lambda_{3}} \right).$$

In dem Produkte aus diesen vier Werten ist neben rationalen Gliedern auch $\sqrt{a^2 - ac + a\lambda_1} \cdot \sqrt{b^2 - ac + a\lambda_2} \cdot \sqrt{b^2 - ac + a\lambda_3}$ enthalten, daher muss auch dieses rational sein; die Rechnung ergiebt:

$$Vb^2 - ac + a\lambda_1 \cdot Va^2 - ac + a\lambda_2 \cdot Vb^2 - ac + a\lambda_3 = -\frac{2b^3 - 3abc + a^2d}{2}$$

Das Entsprechende gilt wegen der Gleichung 10), wenn man die reziproken Werte von den obigen Werten als ihre Wurzeln auffasst, auch von dem entsprechenden Produkte, nämlich von

$$\sqrt{d^2 - ce + e\lambda_1} \cdot \sqrt{d^2 - ce + e\lambda_2} \cdot \sqrt{d^2 - ce + e\lambda_3} = -\frac{2d^3 - 3cde + b^2e}{2}.$$

Bemerkung zu den Bemerkungen über doppeltzentrische Vierecke.*

Von Dr. Chr. Beyel in Zürich.

Herr Dr. Holzmüller macht mich darauf aufmerksam, dass in der erwähnten kleineren Mitteilung Zeile 10 von oben der Satz: "weil im Kreisviereck..." als Begründung nicht genügt.** Ich teile daher noch mit, dass mich ein anderer Gedanke zu der ganzen Überlegung führte. Durch die Konstruktion der Linien q, s wird der Strahlenbüschel zweiter Ordnung q den Linien s eindeutig zugeordnet. In dieser Zuordnung entsprechen sich die Gegenseiten g, h; e, f des Vierecks ABCD vertauschbar. Also ist die Korrespondenz involutorisch. s muss q vertauschbar entsprechen und J^2 berühren. Ich suchte damals — und suche also auch jetzt noch einen einfachen, rein geometrischen Beweis, der nicht wie der obige Gedanke eine Untersuchung der erwähnten Korrespondenz voraussetzt.

Sind die Kreise J^2 , U^2 konzentrisch, so springt die Richtigkeit der Sätze sofort in die Augen.

Aufgabe 1.***

Von S. Finsterwalder in München.

Das Netz eines Kugelballons besteht aus einer sehr grossen Anzahl (96 und mehr auf dem Umfange) rhombischer Maschen mit Winkeln von 60° und 120°, deren kurze Diagonalen nach Parallelkreisen und deren lange nach Meridianen angeordnet sind. Ihre Dimensionen wachsen regelmässig vom

^{*} Vergl. Band 40 S. 372 dieser Zeitschrift.

^{**} Was Poncelet (traité I, No. 566) zum Beweise beibringt, ist weitläufig und -cheint mir nicht zwingend zu sein. Dr. Holzmüller giebt im dritten Teile seines methodischen Lehrbuches der Elementar-Mathematik (B. G. Teubner 1895) S. 11 und 12 einen gerechneten Beweis und macht mich auf einen Beweis von Dr. Junker (Schulprogramm, Crefeld 1892) aufmerksam.

^{***} Wir beabsichtigen, versuchsweise von jetzt an derartige aus der Praxis stammende Aufgaben in der Zeitschrift zu bringen und empfehlen dieselben den Mathematikern zur Lösung. D. Red.

oberen Ventilringe bis zum Äquator. Das Netz reicht in dieser Form etwas unter den Äquator. Die Figur desselben ist demnach genähert durch zwei Scharen von Kugelloxodromen gebildet, die sich unter einem Winkel von 60° schneiden.

Ein solches, für einen Ballon von bestimmtem Radius konstruiertes Netz soll nun für einen grösseren Kugelballon, oder auch für einen Ballon von anders geformtem Meridian benützt werden. Welche Figur bildet dann das Netz? Bis zu welchem Kugelradius lässt sich dasselbe noch verwenden? Welche Erscheinung tritt auf, wenn der Radius grösser wird? Welche Form hat das Netz in dem speziellen Falle eines unendlich grossen Radius, wenn also das Netz symmetrisch im Kreise herum in eine Ebene ausgebreitet wird?

Druckfehler in S. Gundelfinger-A. M. Nell's Tafeln zur Berechnung neunstelliger Logarithmen.

(Darmstadt 1891, A. Bergsträsser.)

Gefunden von Joseph Blater in Baden-Baden.

Corrigenda zu Tafel I (Seite 2-37).

Seite:	Loga - rithmen:	Statt:	Soll stehen:	Seite:	Loga - rithmen :	Statt:	Soll stehen:
4	1574	7428	4728	22	6002	5991	5991
6	2360	2093	2003	24	6824	9108	9018
6	2502	838	828	26	7264	6886	5836
8	2552	00670	0670	31	8216	0431	0431
8	2593	480	380	31	8256	9984	9684
10	3024	1587	1787	32	8704	8882	8882
12	3532	0795	0695	32	8873	0382	0482
14	4130	0752	0052	34	9323	6842	568 4
18	5051	6369	7369	35	9237	533	553
18	5492	0529	0529				

Baumgärtner's Buchhandlung, Leipzig.

Dovb Jede Buchhandlung to builden

Die Geometrie der Lage.

Vorträge von Prof. Dr. Th. Reye, ord. Professor un der Universität Strassburg.

Abt. II (5. Auft.). Mit 20 Teetfiguren. Brooch 9 Mt. in Hallsfranzgelanden 11 Mk.

Abt. III (non). Browth 6 Mb., in Hulbfranz gebanden 8 Mk.

Ald. I (3. Auft.). Wit 92 Textfiguren. Browch. 7 Mk., in Hulbfranz

And there bespreiding von Galda Hennk- "Unserem Varfalser gebührt das Verbieset, das System jenes growen Gescheiter (Standt) von seinem Einsteligkeiten befreit und daßgreit nich nur seinem klast, sendern vor allem für die Weiterf nierung der Wissenschaft nutskar gebescht es haben. Diese hat denn mich in der letzien Beremilen eine iderme freinbilere Weiterenheitekenne erfahren, an erblies det Verfasser durch seine iderinken Auflate in der verfasser durch seine iderinken der Letzien in der verfasser durch seine in den Auslan der Letzien in der verfasser in der verfasser und den Auslan der Letzien werden der verfasser durch seine der Verfasser durch seine der Verfasser durch seine der Verfasser der verfasser und der bestehe Wask stellt in diener seiner nonen Auflage das erflattendigste Lehebneh dur neugenn Gentrattie der"

Freie Perspektive (Centrale Projektion)

in ihrer Begründung und Anwendung

von Dr. G. A. V. Peschka,

K. K. Regier-Bat, and Prof. & direct-lienden Generates. Rimer wave.

Kweite sullständig umgearheifete und vermehrte Auflage in 2 Hünden.

Hill, I. Mit 10 hithogr. Tafeln. Brooch, 14 Mk. In Halbfr, geb. 16 Mk. Bil. II. Mit 30 Textfiguren v. 16 lithogr. Tafele. Brooch, 14 Mk. In Halbfr, geb. 16 Mk.

Die erse Anflass beseilts besprach a Z (Zeitschrifte-für Mathematik a Physia Då XIV
Haft in Gall Env Fred Schlossifich, Dressien, mit den Worten Erwerent glaum nicht werden, weben er das verliegeniet Work für das beste ansete Lebrimon der Perspektive schlart.

Unter die zeitschlasse Anflage aber sogt die Zeitsche C methomat u mathematiken schlart.

Die Parseilleut in angesprachenlich klar. Eine Fulle interessanter und element darramatikerter Aufgaben dient zur Tereiberbeitung des Stoffes, wie zur Vertiefene der TheorieLoss Besch wird jedem Prennete gesenetrischer Perspikung welle Befriedigung gewähren.

3m Declage von Otto Meifiner in Gamburg in eben erfchienen:

Die Planimetrie

m ausführlicher Darftellung und mit besonderer Berndfichtigung neuerer Cheorien. Habft einem Unbange über Regelichnitte.

Mit 800 giguren im Cett und mehr als 1200 Hebungsfahen und Ronftruftionsaufgaben. VIII und 512 Seiten.

von M. Aröger.

Pieis: 8 Mart.

Der Derfasser entwickelt in henriftisch saenetischer Weise das vollständige Sesion aller letnenswerten planimetrischen Wahrheiten. Don neueren Cheorien kommen zur Darsstellungs die Symmetrie, das harmonische Punkts und Strahlengebilde, die Potenzialität und Aehnlichkeit der Kreise, die Kreisbüschel, elliptische und hyperbolische Punkts und Strahlenspieme, die Kreispolacität, die Polacifation, das Prinzip der reziproken Robien und die Projektivität. Die zahlreichen Uebungsfatze und Aufgaben find mit gemigenden Auleitungen versehen und bieben viel Interesantes und Kehrzeiches.

Das Buch dürfte flo besonders für den Selbstunterricht einfestizzed by COOGLO

INHALT.

Studion on Ranke's Monographic Sher die dae de Bornoullische Pontetion. Von	
Prof. Dr. Loron Faatauntre	
Die ringelären Punkte der Flächen. Um Dr. Essay Wanzenen	14
On kinemetische Theorie der Hyperbolojdenreibungsrüder. Von Dr. Fa. Semigno-	
(Tabel I and II)	1
Applogung der (Geichung eierten Grades Von Dr. Hanandass	00
Houserkung a. d. Hemerkungen üb. doppeltzentrische Vierseke. Von Dr. Can Havan. Aufgebe L. Von S. Fisstrauwarmun.	OH
Druckfelder in S. Gundelfinger-A. M. Nell's Tafeln pur Berechnung neunstelliger	8.0
Lagarithman, Gefunden von Joseph Braven	04

Historisch-litterarische Abteilung besondere paginiert).	
Wilhelm Schrentzel. Von Prof. Dr. L. Schussmann	- L
Epper of moore " Von Dr. med. G. Brarmona	
Sexenaionen:	
Work, Dr. R., Taschenbuch für Mathematik, Geodisse und Astro-	
nomic. Von Casron	
Schum, Tanonen, Das Dunlitätsgesetz. Von Casson	
Establish, V., Die Grundgebilde d. ebenen (soometrie Von H. Wit Lubni-	10
Korsin, G., La Géometrie reglée et ses Applications. Von H. Williams. Karé de Salestra, Sur la génération des courbes par roulement. Von	18
H. Willonop	18
Your, H. Leyons sur la résolution algèbrique des équations. Von	
Bonner Franke	
KRAUSE, Dr. Martin, Theorie der doppeltperiodischen Funktionen.	
einer veränderlichen Grösse. Von Roums Fmenn	20
Johnan, W., Hamilbuch der Vermessungshunde. Von Kraus	26
Frank, B., Lehrbuch der elementaren Planimetrie, Von E. Janske.	20
Honzudunn, G., Methodisches Lehrbuch der Elementar-Mathematilia	
Von E. Januar Segrasmore, A., Leitfaden d. elementaren Mathematik. Von E. Januar	20
Showevencom, A., Leitfaden der Arithmetik nebst Übungsbeispielen.	
Von E. Janner	
Serenaun, G., Über unbestimmte Gleichungen. Von E. Januar.	
SHREASKROOM, A., Leitfaden d. elementaren Mathematik. Von E. Januar	
Sucassenner, A., Ubungsbuch zur Algebra. Von E. Jansen	
Subservance, A., Übungsbuch zur Algebra. Von E. Janser. Winten, W., Trigonometrio. Von E. Janser. Winten, W., Stermunstrio. Von E. Janser.	
WINTER, W., Sterisometric, Von K. Januare.	30
Horrwass, A. Sammlung planimetrischer Aufgaben nebst Aufoltung zu deren Auflösung. Von E. Janker	75.1
Runer, F., Sammlung von Aufgaben und Beispielen aus der Trigono-	***
metrie und Stereometrie. Von E. Jansen	21
STREET, J. Essai sur la théorie des nombres. Von E. January	
Holastoria, G., Methodisches Lehrbuch der Elementar-Mathematik	
Von E. Janke	64
Ettan, L., Zwei Abhandlungen über sphär, Trigonometrie. Von Corron	
Assa., N. H., Untersuchungen über die Reihe $1 + \frac{m}{1}x + \frac{m(m-1)}{1-2}x^2 + \cdots$	
(1826). Herausgegeben von Wassenns. Von Carron Schutze, Dr. Easse, Eine Theorie der Konvergenz unendlicher Reihen.	(ii)
Von Caston	870
Weilliam, Signature, Due 2000 marine Problem der Trisektion des	1
Winkels Von Carron	118
Bibliographic vom 31. Oktober bis 26. November 1896	119

Alle Sendungen

für die allgemeine Abteilung dieser Zeitschrift sind an Prof. Dr. R. Mehmke, Stuttgart. Immenhoferstrasse 4¹¹¹, für die historisch-litterarische Abteilung an Hofrat Prof. Dr. M. Cantor, Heldelberg. Gaisbergstr. 15, zu richten. — Die Zeitschrift erscheint in Bänden von je 6 Heften, der Preis des Bandes von 36 Druckbogen beträgt 20 Mark. Alle Buchhandlungen und Postanstalten nehmen Bestellungen an.

Bruss and II I Valuer in Drenden, Zwingerstr 20. Verlig von it il. Tenhaer in Leipring Claur 8.

ZEITSCHRIFT

MATHEMATIK UND PHYSIK.

DEGRUNDET 1856 DURCH O SCHLÖMILCH

унбики пинасоковнем уок (), Schlömlen (1856—1896), В. Wiezsehel (1846—1889), М. Canton (1859—1896), Е. Кана (1860—1899),

GEGENWÄRTIG HERAUSGEGEREN.

YOU.

DR. R. MEHMKE UND DR. M. CANTOR.

42. BAND. 2, HEFT.

MIT I TEXTFERENCES

Ausgegeben am 6. Märs 1897.

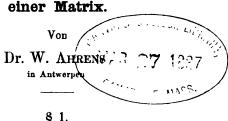
LEIPZIG, VERLAG VON B. G. TEUBNER 1897.

Neuester Verlag von B. G. Teubner in Leipzig.

1896.

- Cranz, Prof. Dr. Carl, Lehrer für Physik an der Kgl. Oberrealschule und Dozunt an der Kgl. Technischen Hochschule in Stuttgart, Compendium der thenretischen Busseren Ballistik. Zum Gebrauch von Lehren der Mechanik anst Physik an Hochschulen; von Artillerisofficieren; Instructoren an Schlessschulen, Artillerischulen und Kriegsakademien; Mitgliedern von Artillerisund Gewehr-Profungscommissionen; Gewehrtechnikern. Mit 110 Figuren im Text [XII u. 511 S.] gr. 8. 1896. geh. n. 20.—
- v. Lilienthal, Dr. R., a. o. Professor der Mathematik an der Kgl. Akademie zu. Münster I. W., Grundlagen einer Krümmungslehre der Curvenscharen. [VII v 114 S.] gr. 8. 1896. geh. n. 26 5-
- Markoff, A. A., o. Professor an der Kaiserlichen Universität zu St. Petersburg, o. Mitglied der Kaiserlichen Akademie der Wissenschaften zu St. Petersburg, Differen sehrechnung. Autorisierte deutsche Übersetzung von Taxonum Fannsannung und Enten Patien. Mit einem Vorwurte von R. Manuar, o. Prof. an der h. technischen Hochschule zu Stuttgart. [VI. u. 1948.] gr. 8. 1896. geh. n. 377
- Netto, Dr. Eugen, v. ö. Professor der Mathematik an der Universität zu Giesson, Vorlesungen über Algebra. In zwei Händen. Erster Hand. Mit eingedruckten Holzschnitten. [Xu. 388 S.] gr. 8, 1896. gob. n. 4, 12.—
- Stahl, Dr. Hermann, Professor der Mathematik in Tübingen, Theorie der Abel'achen Funktionen. Mit Figuren im Text. [Xu. 354 S.] gr. S. 1896. geh n. 3 12.—
- Binnehi, Dr. Luigi, Professor an der Universität Pisa, Vorlesungen über Differentialgeometrie. Autoriaierte deutsche Übersetzung von Max Lukar, Oberlehrer in Hamburg. In 2 Lieferungen. 1. Lieferung. [336 S.] gr. 8 1890. geh. n. 4 12.—
- Staude, Dr. Otto, ordentlicher Professor der Mathematik an der Universität Rostock, die Feguleigenschaften der Flüchen zweiter Ordnung. Ein neues Kapitel zu den Lehrbüchern der analytischen Geometrie des Raumes. Mit 49 Figuren im Text. [VIII a. 185 S.] gr. 8. 1896, geh. n. # 7.—
- Sturm, Dr Rudolf, ord Professor an der Königl Universität zu Breslau, die Gebilde ersten und zweiten Grades der Liniengeometrie in synthetischer Behandlung. In 3 Theilen. III (Schlufl-)Theil. Die Strahlenkomplexe zweiten Grades. gr. 8, 1896, geb. n. #18.—
- Cantor, Moritz, Vorlesungen über Geschichte der Mathematik. In 3 Bänden BL (Schluß-)Band. H. Abteilung Die Zeit von 1700 bis 1728. Mit 30 Figuren im Text. [472 S.] gr 8, 1896. geb. n. # 6.—
- Grassmann's, Hermann, gesammelte mathematische und physikalische Werke. Auf Veranissung der mathematisch-physischen Klasse der Kgl. Sachsischen Gesellschaft der Wissenschaften und auter Mitwirkung der Harren Jason Lenora, Eduard Study, Joseps Grassmann, Hasman Grassmann n. J., Gross Schwerkes herausgegeben von Frankenen Rome. In 3 Bänden. I. Band II. Theil: Die Ausdehnungstahre von 1862. Mit 57 Figuren im Text. [VIII n. 512 S.] gr. s. 1896. geh. n. 2/16.—
- Koenigsberger, Dr. Leo, Professor der Mathematik an der Universität an Heidelberg, Hermann von Helmholtz's Untersuchungen über die Grundlagen der Mathematik und Mechanik. Mit einem Bildnis Hermann von Helmholtz's von Fassz von Lassaca vom 30 April 1894. [IV u. 58 S.] gr. 8. 1896. geh. u. # 2.40.

Über Beziehungen zwischen den Determinanten



In einer früheren Note* ist von mir die Frage untersucht worden, unter welchen Umständen in einer Matrix von m Zeilen und n Kolonnen (m < n) das Verschwinden einiger Determinanten m^{ten} Grades das aller Determinanten dieses Grades nach sich zieht. Die vorliegende Arbeit bezweckt nun eine Erweiterung jener, insofern als jetzt die betreffende Frage nicht bloss mit Bezug auf die Determinanten des höchst möglichen (m^{ten}) Grades, sondern für die Determinanten beliebigen Grades in der Matrix behandelt werden soll.

Das damals erhaltene Resultat ist kurz folgendes: Es sei die betrachtete Matrix:

1)
$$M = \begin{vmatrix} a_{11} \dots a_{1n} \\ \vdots & \vdots \\ a_{m1} \dots a_{mn} \end{vmatrix} (m < n);$$

unter $i_1, i_2 \ldots i_m$ werde, wenn die i irgend welche Indices aus der Reihe $1 \ldots n$ sind, die aus den Kolonnen $i_1, i_2 \ldots i_m$ gebildete Determinante m^{ten} Grades verstanden. Wenn alsdann von allen $\binom{n}{m}$ Determinanten m^{ten} Grades n-m+1 verschwinden, d. h. also, wenn wir in der angegebenen Bezeichnung ein Gleichungssystem von der Form:

$$\begin{cases}
 i_{11}, & i_{12} \dots i_{1m} = 0 \\
 i_{21}, & i_{22} \dots i_{2m} = 0 \\
 \vdots & \vdots \\
 i_{s1}, & i_{s2} \dots i_{sm} = 0
\end{cases}$$

haben, wo s zur Abkürzung für n-m+1 gesetzt ist, so verschwinden unter gewissen weiteren Bedingungen alle Determinanten dieses Grades.

[•] Diese Zeitschrift, 1895, S. 177.

Der Beweis hierfür wurde geführt durch successive Anwendung des Schlusses, dass aus dem Bestehen von zwei Gleichungen:

3)
$$\begin{cases} A = |i_1, i_2 \dots i_{m-1}, i_m| = 0 \\ B = |i_1, i_2 \dots i_{m-1}, i_{m+1}| = 0 \end{cases}$$

unter bekannter Bedingung folgt, dass jede aus irgend m dieser m+1 Kolonnen gebildete Determinante verschwindet, was wir jetzt bezeichnen wollen durch das Symbol:

Von den Determinanten A und B, welche in m-1 ihrer m Kolonnen übereinstimmen,* wollen wir sagen, sie bilden zusammen die Gruppe

$$G(i_1, i_2 \ldots i_m, i_{m+1}) = G(A, B),$$

und wollen die rein formale Operation, welche zur Bildung dieser Gruppe aus den beiden Determinanten A und B führt, kurz als Operation G bezeichnen. Genau dieselbe Bezeichnung wenden wir an, wenn es sich nicht nur um zwei, sondern beliebig viele solcher Determinanten handelt, also sagen wir: die Determinanten

5)
$$\begin{cases} A_0 \equiv i_1, i_3 \dots i_{m-1}, i_m \\ A_1 \equiv i_1, i_2 \dots i_{m-1}, i_{m+1} \\ \vdots \\ A_k \equiv i_1, i_2 \dots i_{m-1}, i_{m+k} \end{cases}$$

bilden zusammen die Gruppe

$$G(A_0, A_1 \ldots A_k) \equiv G(i_1, i_2 \ldots i_m, i_{m+1} \ldots i_{m+k})$$

und schreiben das aus den Gleichungen:

$$A_0 = 0, A_1 = 0 \dots A_k = 0$$

unter der bekannten weiteren Bedingung abzuleitende, der Gleichung 4) entsprechende Resultat in der Form:

6)
$$|i_1, i_2, \dots i_m, i_{m+1}, \dots i_{m+k}| = 0.$$

Eine solche aus k+1 Determinanten abgeleitete Gruppe wollen wir als vom Range k bezeichnen, also die einfachste aus zwei Determinanten hergeleitete vom Range 1.

Damit nun durch successive Anwendung dieser Operation G aus den Determinanten des Systems 2) leicht alle Determinanten m^{ten} Grades der Matrix hergeleitet werden konnten, war angenommen, dass sich in dem System 2) eine solche Anordnung treffen liess, dass von den Indices jeder Zeile in 2) gerade m-1 in den vorhergehenden Zeilen schon vorkommen. Nimmt man an, dass in dem obigen

^{*} In dem allgemeinen, weiterhin zu behandelnden Falle, wo nicht alle betrachteten Determinanten denselben Zeilen angehören, tritt hierzu natürlich als weitere Bedingung für eine Gruppe, dass die Zeilen beider Determinanten dieselben sind resp. die Kolonnen, wenn m-1 der Zeilen übereinstimmen.

Schema diese Anordnung bereits getroffen ist, und ferner, dass die neu hinzutretenden Indices in jeder Zeile an erster Stelle stehen, so sieht man, dass alsdann in der ersten Horizontal- und der ersten Vertikalreihe von 2) alle n Indices vorkommen.

Die Bedingung, dass in jeder Reihe des Systems 2) jedenfalls ein neuer Index zu den früheren hinzutritt, involviert, dass, wie wir sagen wollen, das System "unabhängig" ist, d. h., dass es nicht möglich ist, eine der Determinanten 2) aus den anderen durch Anwendung der Operation G herzuleiten. Eine unmittelbare Konsequenz dieser ersten Bedingung ist alsdann, dass in dem System 2) in jeder Zeile auch höchstens ein neuer Index hinzutritt, so dass die successive Anwendung der Operation G dort überall möglich ist und alle Determinanten G Grades liefert. Ein solches System nun von einer Matrix G angehörenden Determinanten eines bestimmten Grades, aus dem sich durch successive Anwendung der Operation G alle Determinanten dieses Grades herleiten lassen, wollen wir "vollständig" und ein solches, bei dem dies nicht möglich ist, "unvollständig" nennen.

Schliesslich muss noch bemerkt werden, dass, damit nicht bloss die rein formale Operation G alle Determinanten liefert, sondern sich auch das Verschwinden derselben ergiebt, bei jeder Anwendung der Operation G die weitere Bedingung hinzutritt, dass unter den m Determinanten $(m-1)^{\rm ten}$ Grades, welche aus den dem System 5) gemeinsamen m-1 Kolonnen gebildet werden können, wenigstens eine nicht verschwindet.

§ 2.

Wir stellen uns jetzt die Frage: Wie viele Determinanten von einem beliebigen, r^{ten} Grade in einer Matrix müssen mindestens verschwinden, damit dies das Verschwinden aller Determinanten desselben Grades nach sich zieht? oder, was dasselbe ist: Welches ist die Minimalzahl von Determinanten, welche ein vollständiges unabhängiges System bilden können?

Die Indices der Zeilen resp. Kolonnen der vorgelegten Matrix seien durch 1... m resp. 1...n bezeichnet; repräsentieren

$$i_1, i_2 \ldots i_r$$

irgend r dieser Zeilen- und $k_1, k_2 \ldots k_r$ irgend r dieser Kolonnen-Indices, so bezeichnen wir die aus den betreffenden Zeilen und Kolonnen gebildete Determinante r^{ten} Grades mit

$$|i_1, i_2, \ldots i_r; k_1, k_2 \ldots k_r|$$

Die $\binom{n}{r} \cdot \binom{n}{r}$ verschiedenen Determinanten r^{ten} Grades der Matrix M denken wir uns in der Weise angeordnet, dass die denselben Zeilen der Matrix M angehörenden Determinanten in derselben Horizontal, und die denselben Kolonnen von M angehörenden in derselben Ver-

tikalreihe stehen, so zwar, dass unter den verschiedenen Horizontalund Vertikalreihen die Reihenfolge nach steigenden Indices erfolgt, so dass z. B. für den Fall m=3, n=4, r=2

sich die Anordnung ergiebt:

$$|1,2;1,2|; |1,2;1,3|; |1,2;1,4|; |1,2;2,3|; |1,2;2,4|; |1,2;3,4| |1,3;1,2|; |1,3;1,3|; |1,3;1,4|; |1,3;2,3|; |1,3;2,4|; |1,3;3,4| |2,3;1,2|; |2,3;1,3|; |2,3;1,4|; |2,3;2,3|; |2,3;2,4|; |2,3;3,4|.$$

Wir denken uns nun ein beliebiges vollständiges System, dessen Determinanten gleichfalls in dieser Weise geordnet sein mögen; alsdann muss es nach dem Begriffe der Vollständigkeit möglich sein, die bei dieser Anordnung frei bleibenden Plätze durch successive Anwendung der Operation G auf die ursprünglichen Determinanten zu fällen, wobei die Operation G natürlich auf Determinanten derselben Horizontal- wie derselben Vertikalreihen anzuwenden ist. Da das System vollständig sein soll, so müssen jedenfalls mindestens zwei Determinanten in demselben vorkommen, welche zusammen eine Gruppe bilden. Wendet man die Operation G auf alle eine Gruppe bildenden Determinanten an, so erhält man, je nachdem es sich um eine Gruppe ersten, zweiten ... kten Grades handelt:

$$\binom{r+1}{1} - 2$$
, $\binom{r+2}{2} - 3 \dots \binom{r+k}{k} - (k+1)$

neue Determinanten hinzu. Diese bilden dann wieder Gruppen mit anderen, und so ergeben sich durch successive Anwendung der Operation G schliesslich alle $\binom{m}{r}$. $\binom{n}{r}$ Determinanten vom Grade r.

Um die zu Anfang dieses Paragraphen aufgeworfene Frage beantworten zu können, wollen wir zunächst zeigen, dass sich jedes vollständige System durch ein ihm äquivalentes von besonders übersichtlicher Bildung, seine "Normalform", ersetzen lässt, und machen zu diesem Zwecke zunächst folgende Vorbemerkung: Die aus den Determinanten A und B gebildete Gruppe G(A,B) würde sich auch aus irgend zwei von einander verschiedenen Determinanten der Gruppe ergeben und wir können uns daher die Gruppe vollständig repräsentiert denken durch irgend zwei von ihren Determinanten, können uns also offenbar in einem System irgend zwei Determinanten, welche zusammen eine Gruppe bilden, ersetzt denken durch irgend zwei Determinanten dieser Gruppe, ohne dass hierdurch an dem Charakter des ganzen Systems hinsichtlich der Vollständigkeit oder Unabhängigkeit etwas geändert wird.

Hiernach beginnen wir nun die beabsichtigte Reduktion des vollständigen Systems auf die Normalform und suchen auf Grund der eben gemachten Bemerkung zunächst die Determinanten der letzten Horizontalreihe zu ersetzen durch solche, welche den früheren Reihen

angehören. Fassen wir irgend eine Determinante X der letzten Reihe ins Auge, so können wir, wenn in derselben Vertikalreihe mit dieser bereits eine resp. mehrere der r(m-r) Determinanten, welche mit ihr eine Gruppe bilden können, stehen, nach der obigen Bemerkung X ersetzen durch eine der Determinanten, welche die Anwendung der Operation G liefern würde, und welche notwendig einer der früheren Zeilen angehört. Haben wir dagegen in der betreffenden Vertikalreihe eine solche mit X eine Gruppe bildende Determinante ursprünglich noch nicht, so ist es wegen der Vollständigkeit des Systems jedenfalls möglich, durch Anwendung der Operation G eine solche herzuleiten, und sind hierfür zwei Fälle denkbar: Entweder wird diese Herleitung einer solchen Determinante bewerkstelligt mit Benutzung von X oder ohne dieselbe. Im letzteren Falle erhalten wir also aus gewissen Determinanten A, B, C... des ursprünglichen Systèms durch die Operation G eine Determinante Y, welche mit X eine Gruppe bildet. Alsdann können wir nach der obigen Bemerkung X offenbar ersetzen durch eine Determinante Z, welche der durch X und Y repräsentierten Gruppe angehört und notwendig in einer der früheren Zeilen steht; denn das System $A, B, C \dots X$ ist völlig äquivalent mit $A, B, C \dots Z$, weil das erstere zunächst Y und dieses mit X zusammen Z, das letztere dagegen zunächst gleichfalls Y und dieses dann mit Z zusammen X liefert. Dies geht jedoch nicht mehr an, wenn die Herleitung von Y nur mit Benutzung von X möglich ist; eine solche Herleitung ist nur in folgender Weise denkbar: Da nach unserer Annahme X in diesem Falle mit keiner Determinante derselben Vertikalreihe verbunden werden kann, so kann es nur in der Weise benutzt werden. dass es mit einer Determinante derselben Horizontalreihe zusammen eine Gruppe liefert. Dann können wir uns X ersetzt denken durch eine andere Determinante dieser Gruppe und das Verfahren geht dann so weiter. Wir haben diese Determinante dann eventuell wieder zu ersetzen durch eine solche derselben Horizontalreihe etc., schliesslich aber müssen wir aus dieser Horizontalreihe herausgeführt werden. da dies Verfahren ja eben diente zur Herleitung einer einer früheren Zeile angehörenden Determinante. So vermindert sich hierdurch also jedenfalls die Zahl der Determinanten der letzten Horizontalreihe um eine. Man sieht, dass es auf diese Weise gelingt, das ursprüngliche System zu ersetzen durch ein ihm hinsichtlich der Vollständigkeit und l'nabhängigkeit völlig äquivalentes, in dem keine Determinante der letzten Horizontalreihe mehr vorkommt. In diesem neuen System suchen wir nun die Determinanten der nunmehr letzten Horizontalreihe zu ersetzen durch solche, welche früheren Reihen angehören. Hier ergeben sich wieder dieselben verschiedenen Fälle wie oben und führt in jedem derselben ein dem betreffenden obigen genau analoges Verfahren zum Ziele; in dem zuletzt betrachteten Falle ist es denkbar, dass man benötigt ist, wieder Determinanten der vorher schon aus-

Digitized by GOOGLE

gemerzten letzten Horizontalreihe einzuführen, doch muss die successive Anwendung der Operation G ja, wie ersichtlich, wieder aus dieser herausführen und verschwinden somit diese Determinanten wieder aus dem System. Wir erhalten somit ein neues äquivalentes System, in dem die beiden letzten Horizontalreihen fehlen und dies geht offenbar so lange fort, bis wir ein System haben, in dem nur noch Determinanten der ersten m-r+1 Horizontalreihen vorkommen. Würde man da nämlich auf zwei Determinanten derselben Vertikalreihe die Operation G anwenden, so würde man nur Determinanten erhalten, welche späteren Horizontalreihen angehören, während bis dahin dies offenbar stets wenigstens eine einer früheren Horizontalreihe angehörende Determinante liefern musste, und zwar musste auch bis dahin, was wesentlich ist, in jeder Vertikalreihe mindestens noch ein Platz frei sein, da nicht mehr als die ersten m-r+1 Determinanten derselben Vertikalreihe in dem System vorkommen dürfen, wenn dasselbe unabhängig sein soll, was wir voraussetzen wollen. Wir haben damit das Resultat gewonnen, dass jedes unabhängige vollständige System sich ersetzen lässt durch ein ihm äquivalentes, dessen Determinanten sämtlich den m-r+1 ersten Horizontalreihen angehören.

In diesem System, das ja auch vollständig ist, muss es nun möglich sein, die einzelnen Horizontalreihen zu vervollständigen und wir können daher mit Bezug auf diese offenbar dasselbe Verfahren anwenden wie vorher auf die Vertikalreihen. Dabei ist zu beachten, dass hierbei keinerlei Veranlassung vorliegt, wieder Determinanten der bereits ausgemerzten Horizontalreihen einzuführen. Denn zunächst müssten schon mindestens zwei eine Gruppe bildende Determinanten eingeführt werden, damit aus ihnen etwas Neues hergeleitet werden könnte, sagen wir etwa die Determinanten:

und
$$i_1, i_2 \dots i_s, i_{s+1} \dots i_r; k_1, k_2 \dots k_{r-1}, k \mid i_1, i_2 \dots i_s, i_{s+1} \dots i_r; k_1, k_2 \dots k_{r-1}, k' \mid i_r \mid i_r$$

wobei die Indices $i_1, i_2 \dots i_s$ in der Reihe $1, 2 \dots r-1$ enthalten sein mögen. Diese Determinanten können in dem vorliegenden System aber nur gewonnen werden aus den Gruppen:

resp.
$$G(1, 2 \ldots r-1, i_{s+1}, i_{s+2} \ldots i_r; k_1, k_2 \ldots k_{r-1}, k)$$
$$G(1, 2 \ldots r-1, i_{s-1}, i_{s+2} \ldots i_r; k_1, k_2 \ldots k_{r-1}, k').$$

Haben wir diese aber bereits, so können wir ja schon in einer der ursprünglichen Reihen, etwa in

1,
$$2 cdots r - 1$$
, i_{s+1} oder 1, $2 cdots r - 1$, i_{s+2} etc.

jede der gewünschten Kombinationen der Indices $k_1, k_2 \dots k_{r-1}, k, k'$ herleiten, und sind somit nicht gezwungen, aus den ersten m-r+1 Horizontalreihen herauszugehen.

So können wir offenbar dieses System ersetzen durch ein ihm äquivalentes, dessen Determinanten alle den ersten n-r+1 Vertikalreihen angehören, und dieses nennen wir die "Normalform". Wir haben also das Resultat gewonnen:

"Jedes unabhängige vollständige System lässt sich auf ein ihm äquivalentes reduzieren, in dem alle in derselben Horizontal-, wie auch alle in derselben Vertikalreihe stehenden Determinanten eine Gruppe bilden."

§ 3.

Auf Grund des im vorigen Paragraphen erhaltenen Resultats ist nun die Frage nach der Minimalzahl von Determinanten eines vollständigen Systems sehr leicht zu beantworten. Denn da ein System in der dort eingeführten Normalform offenbar nur dann vollständig ist, wenn es alle den m-r+1 ersten Horizontal- und den n-r+1 ersten Vertikalreihen angehörenden Determinanten enthält, so folgt, dass ein vollständiges System mindestens aus

$$p = (m-r+1)(n-r+1)$$

Determinanten bestehen muss. Dagegen ist es sehr wohl möglich, dass ein System p oder mehr Determinanten enthält, ohne vollständig oder abhängig zu sein. Fügt man einem solchen System diejenigen Determinanten hinzu, welche erforderlich sind, um dasselbe zu einem vollständigen zu machen, so erhält man ein abhängiges System.

§ 4.

Es entsteht nun die Frage, für welche Werte der Grössen m, n, r ein unabhängiges System von

$$p = (m-r+1)(n-r+1)$$

Determinanten stets vollständig ist resp. ob solche Wertsysteme überhaupt existieren. Wir beantworten diese Frage, indem wir umgekehrt zeigen, wann es unabhängige unvollständige Systeme von p Determinanten giebt, und wann nicht. Hierfür ist folgende Bemerkung wesentlich: Existiert für gewisse Werte der Grössen m, n, r ein unabhängiges unvollständiges System von p Determinanten, so existiert auch für m'=m+d, n'=n+d, r'=r+d,

wo d eine beliebige positive ganze Zahl ist, ein unabhängiges unvollständiges System von

p' = (m'-r'+1)(n'-r'+1)

Determinanten. Es ist nämlich p'=p und wir brauchen in dem ursprünglichen unabhängigen unvollständigen System zu allen Kombinationen der Zeilen- und Kolonnen-Indices nur die d neuen Zeilenresp. Kolonnen-Indices hinzuzufügen, um so ein den neuen Werten m', n', r' entsprechendes unabhängiges unvollständiges System von p' Determinanten zu erhalten.

Auf Grund dieser Vorbemerkung untersuchen wir die oben aufgeworfene Frage nach der Existenz unabhängiger unvollständiger Systeme von p Determinanten nur für den Fall r=3, wo alsdann

$$p = (m-2)(n-2)$$

ist, und zwar wollen wir zunächst den Fall m=n ins Auge fassen. Die m Zeilen-Indices liefern $\binom{m}{3}$ Kombinationen zu je drei; fügen wir zu jeder derselben die gleiche Kombination der n=m Kolonnen-Indices hinzu, so erhalten wir für m>3 offenbar ein unabhäugiges unvollständiges System von $\binom{m}{3}$ Determinanten, und da, wenn

$$m \ge 4$$
 ist, $\binom{m}{3} > (m-2)^2$ ist,

so hat dieses System auch die gewünschte Anzahl von p Determinanten. Dieses System, welches wir im folgenden kurz als System A bezeichnen wollen, besitzt also in den $\binom{m}{3}$ verschiedenen Reihen bei der Anordnung des § 2 je eine Determinante. Wir wollen nun übergehen zu einer Matrix von m'=m Zeilen und n'=n+1 Kolonnen, an die Stelle von p tritt dann offenbar

$$p'=p+m-2.$$

Wollen wir nun aus dem System A ein solches von p' Determinanten für diesen neuen Fall herleiten, so müssen wir also noch m-2 Determinanten zu dem alten System hinzufügen. Dies kann nun in folgender Weise geschehen: Es sei zunächst $m \geq 6$. wählen alsdann irgend zwei Horizontalreihen des Systems A, sagen wir kurz: R₁ und R₂, oder was dasselbe ist, irgend zwei Indiceskombinationen zu je drei aus; dieselben enthalten zusammen sechs verschiedene Indices resp. weniger, im letzteren Falle fügen wir so viele andere hinzu, dass wir sechs haben, was bei der Annahme $n \geq 6$ natürlich möglich ist. Alsdann setzen wir in jede dieser beiden Reihen R_1 und R_2 je drei Kombinationen dieser sechs Indices zu je zwei Elementen, so zwar, dass die in einer Reihe stehenden drei Kombinationen jedes der sechs Elemente nur einmal und auch nur diejenigen kombiniert enthalten, welche in der betreffenden Kombination der drei Indices noch nicht zusammen vorkommen, oder schematisch dargestellt: Die ausgewählten Indiceskombinationen können

sein; alsdann treffen wir folgende Anordnung:

 $-\text{zu } R_1:1,4;\ 2,5;\ 3,6$ $-\text{zu } R_2:1,5;\ 2,3;\ 4,6.$

Haben wir 2.: $R_1:1,2,3$ $R_2:1,4,5$, so ordnen wir an: $R_1:1,4;2,5;3,6$ $R_2:1,2;4,3;5,6$. Haben wir 3.: $R_1:1,2,3$ $R_2:4,5,6$, so schreiben wir: $R_1:1,4;2,5;3,6$ $R_2:4,5,6$, $R_1:1,4;2,5;3,6$ $R_2:4,5,6$, $R_1:1,4;2,5;3,6$

Die übrigen der n Kolonnen-Indices ausser diesen sechs teilen wir in zwei gleiche Teile (I und II), zu welchem Zwecke wir bei ungeradem n einen beliebigen fortlassen, schreiben diese beiden Teile untereinander und verbinden je zwei untereinander stehende Indices mit einander und fügen diese Kombinationen dann der ersten der obigen zwei Zeilen (R1) hinzu. Sodann führen wir in der Reihe II eine cyklische Vertauschung aller Elemente aus* und verbinden dann wieder die unter einander stehenden Indices von I und II mit einander und fügen diese Kombinationen dann der Reihe R, hinzu. Alsdann fügen wir zu allen diesen Kombinationen zu je zwei Elementen in den Reihen R_1 und R_2 noch den dem System A noch nicht angehörenden (n+1)ten Kolonnen-Index hinzu, so dass wir alsdann lauter Kombinationen zu je drei haben; auch wenn wir hierzu noch die in der betreffenden Reihe des Systems A schon vorkommende Kombination zu drei Elementen rechnen, so haben wir in keiner der Reihen ein Paar von Kombinationen, das in mehr als einem Index übereinstimmt, und ferner haben die Reihen R_1 und R_2 keine Kombination gemein. Fügen wir diesen Kombinationen von Kolonnen-Indices dann die Zeilenkombinationen der Reihen R_1 und R_2 des Systems A bei, so erhalten wir offenbar nach Hinzuziehung der Determinanten A wieder ein unabhängiges unvollständiges System B und zwar enthält dies, wenn n gerade ist, n und wenn n ungerade ist, n-1 Determinanten mehr als A; es enthält B also jedenfalls p' Determinanten, wie verlangt war. Von diesem Systeme B können wir nun durch Hinzunahme eines weiteren Kolonnen-Index ein neues unabhängiges unvollständiges System C von den Konstanten

$$m'' = m'$$
, $n'' = n' + 1$, $p'' = p' + (m' - 2) = p' + m - 2$

in genau analoger Weise herleiten, indem wir statt der Reihen R_1 und R_2 zwei andere R_3 und R_4 nehmen und dies geht offenbar so weiter,

^{*} Diese cyklische Vertauschung wird für $n \le 9$ zwar illusorisch, doch liefern in diesen Fällen die übrigen Operationen schon die erforderliche Anzahl neuer Determinanten.

bis alle Reihen von A verbraucht sind. Dieser Fall wird eintreten, wenn zum Systeme A bereits $\left\lceil \frac{1}{2} {m \choose 3} \right\rceil$ neue Kolonnen-Indices hinzugefügt sind, wo durch die eckige Klammer angedeutet werden soll, dass die nächst kleinere ganze Zahl zu $\frac{1}{2} \cdot {m \choose 3}$ zu nehmen ist. Anzahl dieser so neu hinzugetretenen Kolonnen-Indices ist aber, wie man leicht sieht, $\geq m$ für m > 5. Wir wählen nun irgend mdieser neuen Kolonnen-Indices aus und schreiben die m Indices von A darunter, bilden sodann alle $\binom{m}{3}$ Kombinationen dieser neuen m Indices zu je drei und verbinden jede dieser Kombinationen von Kolonnen-Indices mit der Kombination der darunter stehenden alten Indices und sehen letztere als Zeilen-Kombinationen an; wir erhalten so $\binom{m}{3}$ neue Determinanten, welche wir dem zuletzt erhaltenen unabhängigen unvollständigen System anfügen können, ohne dass dessen Unabhängigkeit oder Unvollständigkeit dadurch aufgehoben wird. Hierbei erhält dann jede Reihe offenbar eine Determinante hinzu; nehmen wir nun wieder einen Kolonnen-Index hinzu, so können wir mit diesem in Bezug auf die jetzt erst neu hinzugetretenen Determinanten des letzt erhaltenen Systems dieselben Operationen vornehmen wie beim Übergange vom System A zu B und so geht dies offenbar immer fort.

Für m=5 lässt sich im wesentlichen dieselbe Methode anwenden. Alsdann ist p'=p+3 und diese drei Determinanten, welche das System B hier mehr als A enthalten muss, ergeben sich in folgender Weise:

Während A das System:

1, 2, 3; 1, 2, 3 |
1, 2, 4; 1, 2, 4
1, 2, 5; 1, 2, 5 |
1, 3, 4; 1, 3, 4
1, 3, 5; 1, 3, 5 |
1, 4, 5; 1, 4, 5
2, 3, 4; 2, 3, 4 |
2, 3, 5; 2, 3, 5 |
2, 4, 5; 2, 4, 5
3, 4, 5; 3, 4, 5 |

ist, treten für B hierzu noch die Determinanten:

etwa hinzu und im übrigen geht es dann so weiter, wie oben. Damit haben wir jedenfalls folgendes Resultat gewonnen:

Wenn $r \ge 3$ und $\binom{m}{n} \ge r + 2$ sind, so giebt es stets mindestens ein unabhängiges unvollständiges System von

$$p = (m - r + 1)(n - r + 1)$$

Determinanten.

Es bleiben jetzt noch die Fälle, wo von den Grössen m oder n wenigstens eine $= r_c$ oder r + 1 ($r \ge 3$) ist und schliesslich der Fall r = 2.

Es sei $m \le n$. Wir haben zunächst den Fall

$$m = r$$

zu betrachten; ist auch n = r, so haben wir den trivialen Fall einer Determinante, welche für sich natürlich stets ein unabhängiges vollständiges System bildet.

Der Fall n = r + 1, p = 2 liefert natürlich auch nur unabhängige vollständige Systeme von zwei Determinanten, im Falle n = r + 2 giebt es jedoch für r > 3 ein unabhängiges vollständiges System von p = 3 Determinanten, nämlich folgendes:

1)
$$\begin{cases} |1, 2 \dots r; 1, 2 \dots r-2, r-1, r| \\ |1, 2 \dots r; 1, 2 \dots r-2, r+1, r+2| \\ |1, 2 \dots r; 1, 2 \dots r-4, r-1, r, r+1, r+2|, \end{cases}$$

dagegen ist für r=3, m=3, n=5 jedes unabhängige System von drei Determinanten vollständig. In den drei Determinanten des Systems 1) kommen offenbar 3r Kombinationen der r+2 Kolonnen zu je r-1 vor und zwar sind alle verschieden, es kommen also noch nicht vor $\binom{r+2}{r-1}-3$ $r=\frac{(r+2)(r+1)r}{1\cdot 2\cdot 8}-3r$,

ein Ausdruck, der, wenn r > 3 ist, > 1 ist. Wir können also jedenfalls noch eine in 1) noch nicht vorkommende Kombination von r-1 Kolonnen-Indices auswählen; fügen wir zu diesen dann einen $(r+3)^{\text{ten}}$ neuen Index hinzu und bilden mit dieser Kolonnen- und Zeilen-Kombination von 1) eine Determinante, so bildet diese mit den drei Determinanten von 1) ein unabhängiges unvollständiges System von p=4 Determinanten. Dies Verfahren lässt sich offenbar fortsetzen und wir haben somit das Resultat gewonnen: Für m=r, $n \ge r+2$, r>3 giebt es stets unabhängige unvollständige Systeme von

p = (m-r+1)(n-r+1)

Determinanten.

Während wir für r=3, m=3, n=5 bei p=3 Determinanten noch kein unabhängiges unvollständiges System haben, so tritt dies jedoch schon bei r=3, m=3, n=6, p=4 ein, es ist nämlich das System:

In diesem System kommen zwölf Kombinationen von je zwei Kolonnen-Indices vor, es fehlen also noch drei, nämlich hier:

Wählen wir eine von diesen aus und fügen zu ihr einen siebenten Kolonnen-Index hinzu, so erhalten wir durch Hinzufügung einer solchen Determinante zu dem System 2) ein unabhängiges unvollständiges System von p=5 Determinanten und dies geht offenbar so fort. Wir haben damit das Resultat gewonnen: Für

$$m=r=3, n\geq 6$$

existiert stets ein unabhängiges unvollständiges System von p Determinanten.

Ist nun ferner m=r+1 und zunächst m=n, so ist p=4. Wir können nun die r+1 Zeilen- wie Kolonnen-Indices zu je r+1 verschiedenen Kombinationen von je r vereinigen; bilden wir nun aus den übereinstimmenden Kombinationen von Zeilen- und Kolonnen-Indices Determinanten, so erhalten wir offenbar ein unabhängiges unvollständiges System und zwar ist die Anzahl der Determinanten desselben =r+1, also, wenn $r\geq 3$ ist, >p. Man sieht sofort, dass wir jetzt, um auch für grössere Werte von n unabhängige unvollständige Systeme von p Determinanten zu erhalten, diese aus dem eben erhaltenen successive in genau analoger Weise, wie oben schon mehrfach auseinandergesetzt, erhalten können und haben damit das Resultat: Für m=r+1, $n\geq m$, r>3

giebt es stets ein unabhängiges unvollständiges System von p Determinanten.

Zusammenfassend haben wir also das Resultat gewonnen:

Für $r \ge 3$ existiert stets ein unabhängiges unvollständiges System von p Determinanten, ausgenommen den trivialen Fall m = n = r, sowie die Fälle m = r, n = r + 1, und den vereinzelten Fall m = r = 3, n = 5.

§ 5.

In allen diesen Fällen haben wir Gewicht darauf gelegt, eine Methode anzugeben, welche zur Bildung unvollständiger unabhängiger Systeme von p Determinanten ohne jede Gruppe (nach der Terminologie des § 1) führt. Es giebt nämlich auch unabhängige Systeme von p Determinanten ohne jede Gruppe (nach der Terminologie des § 1) führt.

minanten, welche eine ein- oder mehrmalige Anwendung der Operation G gestatten, ohne jedoch dabei vollständig zu sein. Dies mag beispielsweise an dem Falle

$$m=4, n=6, r=3, p=8$$

erläutert werden.

Während das System:

die Anwendung der Operation G gar nicht gestattet, ist eine einmalige Anwendung dieser Operation dagegen möglich bei dem System:

eine zweimalige Anwendung der Operation G würde ermöglicht, wenn die zweite Reihe des eben angegebenen Systems ersetzt würde durch:

und eine dreimalige, wenn ausserdem die dritte Reihe durch:

erse**tzt würde**.

$$[1, 3, 4; 3, 4, 5], [1, 3, 4; 3, 4, 6]$$

Das System:

lässt sogar eine viermalige Anwendung der Operation G in Bezug auf die ursprünglichen Determinanten und sodann noch eine zweimalige auf die bereits derivierten zu, so dass man im ganzen 20 Determinanten erhält, ohne dass das System vollständig ist.

§ 6.

Nunmehr wenden wir uns dem in § 4 noch unbehandelt gebliebenen Falle r=2 zu und machen zu diesem Zwecke zunächst folgende Vorbemerkung: Die $\binom{2t}{2}$ Kombinationen von 2t Elementen zu je zwei lassen sich stets in 2t-1 Gruppen einteilen, so dass jede

Gruppe von t Kombinationen jedes Element ein-, aber auch nur einmal enthält.*

Wir nehmen zunächst an, m und n seien gerade, also etwa

$$m=2\mu$$
, $n=2\nu$, $n\geq m$.

Alsdann denken wir uns die m Zeilen-Indices wie die n Kolonnen-Indices in dem Sinne der eben angegebenen Vorbemerkung angeordnet und verbinden dann je eine solche Gruppe von Kombinationen der Zeilen-Indices mit je einer von Kombinationen der Kolonnen-Indices, wodurch also jedesmal $\mu\nu$ Determinanten entstehen. Da dies für alle $2\mu-1$ Gruppen (m < n) gemacht werden kann, so erhalten wir auf diese Weise ein offenbar unabhängiges unvollständiges System (D) von Determinanten, deren Anzahl

$$= \mu \nu (2\mu - 1), \text{ also } > (2\mu - 1)(2\nu - 1),$$

d. h. > p ist, wenn $\mu > 2$, $m \ge 4$ ist. Dabei bleiben dann von den $2\nu - 1$ Gruppen, in die die Kombinationen der Kolonnen-Indices eingeteilt sind, noch $2\nu - 2\mu$, jede ν Kombination enthaltend, übrig. Damit ist gezeigt, dass für gerade Werte von m und n(m, n > 4) jedenfalls stets ein unabhängiges unvollständiges System von p Determinanten existiert; ja es ist hieraus weiter sofort zu sehen, dass dies auch noch für andere Fälle gilt.

Die Anzahl $\mu\nu(2\mu-1)$ von Determinanten unseres Systems ist nämlich für $\mu \geq 3$ auch noch grösser als die zu den Werten:

1.
$$\begin{cases} m = 2\mu + 1 \\ n = 2\nu, \end{cases}$$
2.
$$\begin{cases} m = 2\mu \\ n = 2\nu + 1, \end{cases}$$
3.
$$\begin{cases} m = 2\mu + 1 \\ n = 2\nu + 1 \end{cases}$$

gehörigen Werte von p, deren grösster $4\mu\nu$ ist, so dass damit für alle geraden und ungeraden Werte von m, $n \ge 6$ die Frage erledigt ist.

Hiernach haben wir jetzt nur noch die Fälle m=2,3,5 zu untersuchen; in allen anderen Fällen existierte für r=2 ein unabhängiges unvollständiges System von p Determinanten. Für m=5 können wir die zehn Kombinationen der fünf Zeilen-Indices zu je zwei so zu Paaren anordnen, dass in keinem Paare ein Index zweimal vorkommt, etwa in der Weise:

^{*} Eine einfache Lösung dieser Aufgabe findet sich bei Lucas, Récréations mathématiques, tome II, 1896, p. 177.

$$\begin{cases}
1, 2; 3, 5 \\
1, 3; 4, 5 \\
1, 4; 2, 3 \\
1, 5; 2, 4 \\
2, 5; 3, 4.
\end{cases}$$

Nehmen wir nun zunächst n als gerade, etwa = 2ν an, so können wir nach der oben gemachten Vorbemerkung die $\binom{n}{2}$ Kombinationen der Kolonnen-Indices in $2\nu-1$ Gruppen von je ν ordnen, so zwar, dass in jeder Gruppe jeder Index gerade einmal vorkommt. Alsdann können wir die in 3) in je einer Reihe stehenden Zeilen-Kombinationen verbinden mit allen Kolonnen-Kombinationen je einer solchen Gruppe, wodurch wir jedesmal 2ν Determinanten, im ganzen also deren 10ν erhalten und zwar ist dies stets möglich, wenn

$$2\nu - 1 > 5$$
, $n \ge 6$

ist. So erhält man offenbar ein unvollständiges unabhängiges System; die Anzahl der Determinanten desselben ist =5n, also >p, da

$$p=4(2\nu-1),$$

ja diese Anzahl ist auch noch grösser als der zu

$$m = 5, n = 2\nu + 1$$

gehörige Wert von p, nämlich 8ν , so dass damit auch für die ungeraden Werte von n, welche ≥ 7 sind, die Frage erledigt ist. Für den noch übrig bleibenden Fall m=n=5, p=16 erhält man ein unabhängiges unvollständiges System von sogar 20 Determinanten, wenn man oben in 3) aus den Kombinationen je einer Reihe vier Determinanten bildet, indem man jede der beiden Kombinationen zweimal zur Zeilen- und zweimal zur Kolonnenkombination nimmt.

Für m=2 giebt es, wie man sofort sieht, kein unabhängiges unvollständiges System von p Determinanten, ebensowenig für m=n=3, dagegen ist für m=3, n=4, p=6 das System:

unabhängig und unvollständig.

Die Fälle m=3, n>4 nehmen nun eine Sonderstellung ein, insofern als hier zwar auch noch überall unabhängige unvollständige Systeme von p Determinanten existieren, jedoch nicht mehr, wie dies sonst stets der Fall war, solche ohne jede Gruppe, sondern nur solche mit Gruppen. Wir nehmen zunächst an: m=3, n=2v. Alsdann können wir die $\binom{n}{2}$ Kombinationen der n Kolonnen-Indices zu je zwei

in $2\nu-1$ Gruppen teilen, so dass in jeder Gruppe jeder Index gerade einmal vorkommt. Verbinden wir nun jede der drei Kombinationen der drei Zeilen mit je einer dieser Gruppen, so erhalten wir 3ν Determinanten, welche offenbar ein unabhängiges unvollständiges System bilden und zwar ohne jede Gruppe, jedoch ist die Zahl $3\nu < p$, welches den Wert $2(2\nu-1)$ hat, ausser für den schon besprochenen Fall $\nu=2$, n=4. Wir erhalten daher für m=3, $n\geq 5$ kein unabhängiges unvollständiges System von p Determinanten ohne Gruppen, dagegen wohl solche mit Gruppen, und zwar ergiebt sich für m=3, n=5, p=8 ein solches, indem wir in dem oben für m=3, n=4 angegebenen Systeme von 6 Determinanten zu den beiden ersten Reihen die Kombination 1, 5 etwa hinzufügen. Tritt dann noch eine sechste Kolonne

Man sieht somit, dass, abgesehen von den wenigen angegebenen Fällen, nämlich:

hinzu, so geht dies offenbar in derselben Weise so fort.

$$m = n = r;$$
 $m = r, n = r + 1;$ $m = r = 3, n = 5;$
 $m = r = 2;$ $r = 2, m = n = 3$

der Schluss, dass ein unabhängiges System von p Determinanten auch vollständig ist, nicht berechtigt ist, vielmehr in jedem einzelnen Falle eine diesbezügliche Untersuchung stattfinden muss.

Die Transformation und Auflösung der Gleichung fünften Grades in elementarer Darstellung.

Von

Dr. W. HEYMANN in Chemnitz.

1. Einleitende Bemerkungen.

Die Auflösung der Gleichungen fünften Grades ist durch das vereinte Vordringen der hervorragendsten Forscher seit Mitte dieses Jahrhunderts derartig gefördert und zu einem gewissen Abschluss gebracht worden, dass es beinahe gewagt erscheint, wenn dieser Gegenstand nochmals einer Bearbeitung unterzogen wird. Aber es ist wohl nicht zu verkennen, dass die moderne Auflösung der Gleichung fünften Grades zur Zeit nur als gelegentliche, wenn auch tiefgehende Anwendung höherer Prinzipien erscheint, und das ist in der transzendenten Natur jener Lösung historisch wie sachlich wohl begründet. Die von Jacobi überlieferten Modulargleichungen sechsten Grades der elliptischen Funktionen wurden für Hermite, Kronecker und Brioschi einerseits, die von Schwarz und Klein konstruierte Ikosaedergleichung für Gordan und Klein anderseits die Quelle, aus welcher späterhin all' die bemerkenswerten Resultate geschöpft worden sind, welche eine "Konstruktion" jener lange gesuchten Lösung ermöglicht haben. Das soll heissen: Die Elemente, welche die Lösung zusammensetzen, wie z. B. das Ikosaeder, sind nicht aus der Gleichung fünften Grades selbst gewonnen worden; man hat vielmehr diese Hilfsmittel an die Spitze gestellt, aber ihr Ursprung liegt auf anderem Gebiet.

Es dürfte daher wohl berechtigt sein, einer Transformationstheorie nachzugehen, welche aus sich selbst heraus alles erschliesst, was zur Lösung einer Gleichung fünften Grades nötig ist, welche dabei nur mit der Gleichung selbst operiert und nach keiner Seite hin spezifische Voraussetzungen macht, beziehentlich fertige Resultate von irgend welcher Seite übernimmt, abgesehen natürlich von einer Transzendenten, wie die elliptische oder hypergeometrische Funktion, ohne welche die Algebra hier eine definitive Lösung bewiesenermassen nicht zu geben vermag.

Eine solche Theorie soll nun folgen; sie wird der Anlage nach durchaus elementar ausfallen. Wir werden zeigen, dass eine beliebige Gleichung fünften Grades auf die spezielle Resolvente

$$h\,\eta^5 - 10\,\eta^2 + 15\,\eta - 6 = 0$$

zurückgeführt werden kann, welche fortan η -Resolvente heissen soll, und welche thatsächlich in unserer Darstellung eine wesentliche Rolle spielt. Auf die besonderen Vorzüge, welche gerade diese Resolvente besitzt, können wir erst in den betreffenden Abschnitten eingehen, sie zeigen sich aber dort ganz evident.

Die hier auftretenden Fragen haben wir bereits in einer früheren Arbeit* berührt, aber die dortigen Entwickelungen bewegen sich infolge Anlehnung an die Gordan-Kleinsche Theorie zum Teil in anderer Richtung und erscheinen dementsprechend nicht durchweg selbständig. — Diese Selbständigkeit ist dagegen in der vorliegenden Abhandlung vollkommen gewahrt; ohne Voreingenommenheit dürfte man sie leicht erkennen. Inzwischen möchte Verfasser ausdrücklich hervorheben, dass er nur auf Grund seiner ersten Arbeit und somit insbesondere durch das Studium der einschlägigen Arbeiten von Gordan und Klein zu der neuen Darstellung gelangt ist.

Manche Resultate der Ikosaedertheorie erscheinen nun geradezu "arithmetisiert"; die elementare Algebra ist wieder in ihr Recht eingesetzt. Daher wird sich die Arbeit vielleicht nicht allerorts Freunde erwerben. — Aber es steht ja nichts im Wege, unserer Darstellung sogleich die Theorie des Ikosaeders respektive der Modulfunktionen anzuschliessen. Durch eine solche Behandlung wird die Gleichung fünften Grades aus ihrer Sonderstellung herausgehoben und direkt neben ihre Schwestern, die Gleichungen niederen Grades gestellt. Auch bei diesen wird bei einer ersten Inangriffnahme der Aufgabe die Lösung direkt aus der Gleichung abgeleitet, erst dann folgt eine Diskussion, und diese Behandlungsweise lässt sich didaktisch nur zu gut rechtfertigen.

Aber auch sonst hat die erwähnte Arithmetisierung, welche im allgemeinen keineswegs überschätzt werden soll, gerade für die Gleichung fünften Grades und verwandte Probleme Berechtigung, denn man muss unbedingt verlangen, dass alle Keime der Lösung in einer solch fundamentalen Aufgabe selbst enthalten sind. Die Fruchtbarkeit dieses Prinzipes zeigt sich dann unter anderem auch darin, dass unsere η -Resolventen in allen Graden $2n+1; n=2,3,\ldots$ auftreten und zu einer bemerkenswerten Transformation verwandter Gleichungen Anlass geben, während die entsprechenden geometrischen Hilfsmittel

^{*} Zeitschrift für Mathematik und Physik, 39. Jahrgang: "Uber die Auflösung der Gleichungen vom fünften Grade." — Diese Arbeit werde in der Folge kurz durch (A) zitiert.

vom siebenten Grade ab versagen. Durch diese einleitenden Bemerkungen dürften die nun folgenden weiteren Ausführungen vielleicht hinreichend motiviert sein.

2. Die allgemeine Gleichung.

Die Auflösung der Gleichung fünften Grades

1)
$$x^5 + a_1 x^4 + a_2 x^3 + a_3 x^3 + a_4 x + a_5 = 0$$

zerfällt in zwei wesentlich getrennte Teile. Der eine besteht in der Transformation der allgemeinen Gleichung in speziellere, welche möglichst wenig Parameter enthalten. Der Vorgang ist hier ein rein algebraischer; er führt zu Gleichungen mit nur einem absoluten Parameter, welche Resolventen genannt werden. Der zweite Teil hat alsdann die Auflösung dieser Resolventen in Angriff zu nehmen, und dieses kann nur durch transzendente Prozesse geschehen; es müssen hypergeometrische Reihen oder elliptische Modulfunktionen herbeigezogen werden.

Eine erste und tiefgehende Transformation der Gleichung 1) besteht in der Reduktion auf die Form

2)
$$y^5 + 5ay^2 + 5by + c = 0$$
,

welche Hauptgleichung genannt wird. In jener Reduktion liegt etwas Unbestimmtes, denn man kann eine unbegrenzte Anzahl von Tschirnhaus-Transformationen angeben, die solches leisten. Die Beseitigung des Koeffizienten von y^3 führt zu einer quadratischen Gleichung, und diese belastet nun die weitere Rechnung mit einer Quadratwurzel ("accessorische Irrationalität"), welche je nach der Transformation verschieden ausfällt, keinesfalls aber ganz vermieden werden kann (vergl. A. 14 und 15).

Wir verfolgen diesen merkwürdigen Umstand hier nicht weiter, weil sich unsere Betrachtungen nur auf die Hauptgleichung 2) beziehen sollen, die wir von jetzt ab als gegeben voraussetzen.

3. Die Resolventen der η .

Die Hauptgleichung selbst giebt Anlass zur Bildung einer Resolvente mit nur einem Parameter. Wir fragen: Wie müssen die Koeffizienten der Gleichung 2) beschaffen sein, wenn ihre Form durch die noch zu motivierende Substitution

$$yz = y + z$$

nicht geändert werden soll? Die neue Gleichung in z lautet:

$$(1+5a+5b+c)z^5-5(3a+4b+c)z^4+5(3a+6b+2c)z^5 -5(a+4b+2c)z^2+5(b+c)z-c$$
 = 0,

und setzen wir:

$$3a + 4b + c = 0 3a + 6b + 2c = 0$$
,
$$a = \frac{1}{2}c, b = -\frac{1}{2}c,$$

so ergiebt sich

weshalb die Gleichungen für y und z übergehen in

$$-6c^{-1}y^5 - 10y^2 + 15y - 6 = 0
(1 + 6c^{-1})z^5 - 10z^2 + 15z - 6 = 0$$

Nun möge von jetzt ab die Bezeichnung:

$$y = \eta_1, \quad z = \eta_2; \quad -6c^{-1} = h_1, \quad 1 + 6c^{-1} = h_2$$

gewählt werden, dann entsteht:

3)
$$\begin{cases} \alpha & h_1 \eta_1^5 - 10 \eta_1^2 + 15 \eta_1 - 6 = 0, \\ \beta & h_2 \eta_2^5 - 10 \eta_3^2 + 15 \eta_2 - 6 = 0. \end{cases}$$

Diese in der Form übereinstimmenden Gleichungen nennen wir die "Resolventen der η ." Sie sind durch die Substitution:

 $\eta_1 \eta_2 = \eta_1 + \eta_2$

aneinander geknüpft, und ihre Parameter genügen der Bedingung:

$$b_1 + b_2 = 1,$$

weshalb der eine das "Komplement" des anderen genannt werde.

Es ist gelegentlich vorteilhaft die η durch ihre reziproken Werte zu ersetzen. Für $\eta_i = \xi_i^{-1}$ entstehen die "Resolventen der ξ ", nämlich:

6)
$$h_i = 10\xi_i^8 - 15\xi_i^4 + 6\xi_i^5, \qquad (i = 1, 2)$$

wobei einfach

$$\zeta_1 + \zeta_2 = 1.$$

Bemerkenswert ist die Beziehung:

8)
$$\frac{dh_i}{d\xi_i} = 30\,\xi_i^2(1-\xi_i)^2$$

durch das vollständige Quadrat auf der rechten Seite. Diese Eigenschaft, welche auch bei der bekannten Resolvente von Brioschi stattfindet, weist darauf hin, dass unsere Resolventen der η und ξ durch das Verschwinden der Invariante "B" charakterisiert sind. Man kann deshalb die Resolvente des ξ_1 in der konzisen Form:

9)
$$h_{1} = 30 \int_{0}^{\xi} [\xi_{1}(1-\xi_{1})]^{2} d\xi_{1}$$

geben und übersieht hierdurch die Transformation mittelst

$$\zeta_1 = 1 - \zeta_2$$

in die Resolvente der ξ_2 auf sehr bequeme Weise. — Es würde sich jetzt auch Gelegenheit bieten, von einer Gattung Gleichungen zu sprechen, welche 9) als speziellen Fall in sich fasst; man brauchte nur an Stelle des Quadrats im Integral eine n^{te} Potenz zu setzen. Wir verschieben dieses jedoch bis an den Schluss unserer Darlegungen.

4. Simultane Resolventen der η .

Unter simultanen Resolventen der η verstehen wir solche rationale Gleichungen, welche η_1 und η_2 gleichzeitig enthalten. Der einfachste Fall hierfür ist die Beziehung:

$$\eta_1\eta_2=\eta_1+\eta_2,$$

und diese giebt nun in Verbindung mit den Originalresolventen 3α , β) eine unbegrenzte Anzahl von Gleichungen, welche eben die η gemischt enthalten. Im allgemeinen lässt sich eine beliebige rationale Funktion Φ der beiden η in die Form:

10)
$$\Phi = A\eta_1^2 + B\eta_2^2 + D\eta_1 + E\eta_2 + F$$

bringen, worin das Glied mit $\eta_1\eta_2$ zufolge 4) nicht vorkommt. Denn führt man sowohl in das gegebene Φ als auch in die rechte Seite von 10) den Wert von η_2 aus 4) ein, schafft die Nenner fort und bringt alle Glieder auf eine Seite, so entsteht eine ganze Funktion des η_1 , welche identisch verschwinden muss. Aber diese Funktion lässt sich mittelst der Resolvente 3α) successive auf den vierten Grad herabdrücken und kann also durch die fünf Konstanten A bis F, welche nur linear auftreten, thatsächlich zum Verschwinden gebracht werden. So die Methode im allgemeinen; im speziellen kommt man meist leichter zum Ziele, wie sogleich zu zeigen sein wird.

Wir betrachten einen Augenblick die lineare Verbindung:

$$y = p \eta_1 + q \eta_2,$$

in welcher p und q disponible Konstanten sein mögen. Jener Ausdruck genügt, weil das eine η vom anderen eindeutig abhängt, einer Gleichung fünften Grades, deren Koeffizienten mit drei Parametern, nämlich p, q und h_1 , respektive h_2 ausgestattet sein werden. Aber diese Gleichung kommt mit einer Hauptgleichung überein, denn es ist bei Summation von je fünf Wurzelpotenzen:

$$\Sigma y = 0$$
, $\Sigma y^2 = 0$,

weil einzeln $\Sigma \eta_1 = 0$, $\Sigma \eta_2 = 0$, $\Sigma \eta_1^2 = 0$, $\Sigma \eta_2^2 = 0$

und weil ausserdem mit Rücksicht auf 4):

$$\Sigma \eta_1 \eta_2 = 0.$$

Hiermit rechtfertigt sich insbesondere die Substitution 4); es ist ersichtlich, dass in selbiger eine additive Konstante zweckwidrig, faktorielle Konstanten aber überflüssig sein würden.

Wenn wir die betreffende Hauptgleichung wirklich bilden wollen, bedürfen wir noch der aus der fünften Potenz von y entspringenden η -Verbindungen: $\eta_1^4 \eta_2$, $\eta_1^3 \eta_2^3$, $\eta_1^2 \eta_3^3$, $\eta_1 \eta_2^4$,

was offenbar auf die Berechnung von vier gewissen simultanen η -Resolventen hinausläuft. Schreiben wir die Resolvente 3α) wie folgt:

$$h_1 \eta_1^5 = 10 \eta_1^2 - 15 \eta_1 + 6,$$
 die Gleichung 4) dagegen $\frac{\eta_2}{\eta_1} = \eta_2 - 1,$

multiplizieren sodann die entsprechenden Seiten und berücksichtigen, dass $\eta_1^2 \eta_2 = \eta_1(\eta_1 + \eta_2) = \eta_1^3 + \eta_1 + \eta_2,$ so entsteht $h_1 \eta_1^4 \eta_2 = 10 \eta_1 + \eta_2 - 6.$

Genau auf dieselbe Weise gewinnt man:

$$h_1 \eta_1^3 \eta_2^2 = \eta_2^2 + 3 \eta_2 + 6$$
,

und die übrigen folgen durch Vertauschung von η_1 mit η_2 und h_1 mit h_2 . Wir stellen nun die Resultate zusammen, wie wir sie im nächsten Abschnitt gebrauchen:

12)
$$\begin{cases} h_1 \eta_1^{5} = 10 \eta_1^{2} - 15 \eta_1 + 6, \\ h_1 \eta_1^{4} \eta_2 = 10 \eta_1 + \eta_2 - 6, \\ h_1 \eta_1^{3} \eta_2^{2} = \eta_2^{2} + 3 \eta_2 + 6, \\ h_2 \eta_1^{2} \eta_2^{3} = \eta_1^{2} + 3 \eta_1 + 6, \\ h_2 \eta_1 \eta_2^{4} = \eta_1 + 10 \eta_2 - 6, \\ h_2 \eta_2^{5} = 10 \eta_2^{2} - 15 \eta_2 + 6. \end{cases}$$

Ausser diesen giebt es noch eine simultane Resolvente des fünften Grades, welche homogen sowohl in den η als in den h ist und sich durch ihre symmetrische Gestalt besonders auszeichnet. Wir erhalten selbige, wenn wir in die Resolvente 3α) die Substitution 4) in der Form: $\eta_1 = \frac{\eta_1}{n} + 1$

einführen; es entsteht:

13) $h_1(\eta_1^5 + 5\eta_1^4\eta_2 + 10\eta_1^8\eta_2^9) - h_2(10\eta_1^2\eta_2^8 + 5\eta_1\eta_2^4 + \eta_2^5) = 0$, und die auftretenden Binomialkoeffizienten lassen sofort erkennen, nach welcher Richtung hier eine Erweiterung möglich sein wird.

5. Konstruktion einer Hauptgleichung.

Jene Hauptgleichung, welcher die Verbindung:

$$y = p \eta_1 + q \eta_2$$

genügt, kann so erhalten werden, dass man letzteren Ausdruck in:

$$y^5 + 5ay^2 + 5by + c = 0$$

einführt und die linke Seite mittelst der Resolventen 12) auf die Form:

$$M\eta_1^2 + N\eta_2^2 + P\eta_1 + Q\eta_2 + R$$

bringt. Da eine solche Verbindung der η einer weiteren Reduktion nicht mehr unterliegt, so müssen die Koeffizienten M bis R einzeln verschwinden. Es ergiebt sich aber ohne Mühe:

und hieraus ersieht man folgendes: Die Klammergrössen des M und N sind nicht verschieden und führen, gleich Null gesetzt, zur Bestimmung von a. Trägt man dieses a in die Klammergrössen des P und Q ein, so werden auch diese einander gleich und führen, gleich Null gesetzt, zur Bestimmung von b. Endlich ergiebt die Forderung R=0 einen Ausdruck für c. Wir gelangen somit zu folgenden Ausdrücken:

$$\begin{aligned} p^8h_1^{-1} + q^8h_2^{-1} &= -\frac{1}{2}a, \\ p^8h_1^{-1}(p-2q) - q^8h_2^{-1}(2p-q) &= \frac{1}{8}b, \\ p^8h_1^{-1}(p^8 - 5pq + 10q^8) + q^8h_2^{-1}(10p^8 - 5pq + q^8) &= -\frac{1}{6}c, \end{aligned}$$

und mittelst derselben lässt sich die zu konstruierende Hauptgleichung (Hauptresolvente der y) ohne weiteres angeben.

6. Reduktion der Hauptgleichung auf die Resolventen der η .

Wir fragen jetzt, ob eine beliebig vorgelegte Hauptgleichung auf eine η -Resolvente zurückgeführt werden kann, das heisst, ob sich die Transformationskoeffizienten p, q und der Resolventenparameter h_1 , respektive h_2 durch die Koeffizienten a, b, c ausdrücken lassen. Dieses ist in der That möglich, und man bedarf hierzu nur einer quadratischen Gleichung, deren Quadratwurzel unter allen Umständen dieselbe wird, also nicht der Unbestimmtheit unterliegt, welche wir in Abschnitt 2 erwähnten.

Um nun die in Aussicht genommene Berechnung durchzuführen, wende man sich an das Gleichungssystem 14) und bestimme aus den ersten beiden Gleichungen:

15)
$$h_1 = -\frac{\frac{18}{9}p^{8}(p-q)}{3a(2p-q)-2b}, h_2 = -\frac{18q^{8}(p-q)}{3a(p-2q)+2b}$$

Trägt man dieses in die dritte Gleichung ein und setzt zur Ab-kürzung:

16)
$$p-q=\sqrt{r}, p+q=s,$$
 so entsteht: $12ar+6bs-c=0.$

Verbindet man die Ausdrücke 15) mit der in Abschnitt 3 aufgestellten Bedingungsgleichung:

$$5) h_1 + h_2 = 1,$$

und berücksichtigt zugleich die Beziehung 17), so gelangt man zu einer quadratischen Gleichung für r, nämlich:

18)
$$\begin{cases} (a^4 + abc - b^3)(12r)^2 - (2a^3c + 11a^2b^2 + bc^2)(12r) \\ + (ac - 8b^2)^2 = 0. \end{cases}$$

Endlich ergiebt sich aus 15) unter steter Berücksichtigung der bereits aufgestellten Gleichungen:

19)
$$h_1 h_2 = \frac{3 \cdot 12^2 b \, p^3 q^3}{12 (ac - b^2) r - c^3},$$

ein Ausdruck, der im Vereine mit Gleichung 5) eine Berechnung der Parameter h_1 und h_2 vermittelt.

Bemerken wir noch, dass die Gleichung für r auf eine Quadratwurzel führt, deren Radikand:

20) $\Delta = 108 a^5 c - 135 a^4 b^2 + 90 a^3 b c^2 - 320 a b^3 c + 256 b^5 + c^4$, abgesehen von einem numerischen Faktor, mit der Diskriminante der vorgelegten Hauptgleichung zusammenfällt, und dass also jene Quadratwurzel eine rationale Funktion der Wurzeln genannter Gleichung 2) darstellt.

7. Die Resolventen der η als Sonderfälle der Hauptgleichung.

Wir haben in Abschnitt 3 die Koeffizienten einer Hauptgleichung dahin spezialisiert, dass die η -Resolventen in einer gewissen Normalform mit einem absoluten Parameter erscheinen; wir fanden ohne Rücksicht auf die beiden Indices:

$$h\eta^5 - 10\eta^2 + 15\eta - 6 = 0.$$

Setzen wir $k \eta = y$, unter k eine unbestimmte Zahl verstanden, so entsteht: $hy^5 - 10k^3y^2 + 15k^4y - 6k^5 = 0$,

und vergleichen wir dies mit der Hauptgleichung:

$$y^5 + 5ay^2 + 5by + c = 0,$$

so haben wir

21)
$$a = -2k^3h^{-1}, b = 3k^4h^{-1}, c = -6k^5h^{-1}.$$

Die Elimination von k ergiebt:

$$3ac - 4b^2 = 0,$$

und letztere Bedingung ist es nun, welche die Hauptgleichung als η -Resolvente charakterisiert.

Eine η -Resolvente besitzt sonach zwei Parameter; letztere lassen sich aber rational auf einen einzigen absoluten Parameter h reduzieren. Selbiger wird gefunden, wenn man k aus irgend zwei der Gleichungen 21) eliminiert, und es ergiebt sich in Übereinstimmung mit 22):

23)
$$\begin{cases} h = \frac{16b^3}{27a^4} = \frac{3c^4}{16b^5}, \\ k = -\frac{2b}{3a} = -\frac{c}{2b}. \end{cases}$$

Die Unbestimmtheit, welche den η -Resolventen solchergestalt anhaftet, wird indessen völlig beseitigt, wenn man verlangt, dass die verbindende Substitution die ausgesucht einfache Gestalt:

4)
$$\eta_1 \eta_2 = \eta_1 + \eta_2$$
 annehme; es wird dann $k = 1$.

Mit Beziehung auf die vorigen beiden Abschnitte können wir jetzt sagen: Jede Hauptgleichung 2) kann durch die Substitution:

$$y = y_1 + y_2$$

in zwei andere gespalten werden, so zwar, dass die Koeffizienten der neuen Gleichungen für y_1 und y_2 die Bedingung 22) erfüllen und jene Gleichungen also auf die η -Resolventen hinauskommen.

8. Eine quadratische Transformation der Hauptgleichung.

Zwei Hauptgleichungen mögen verwandt heissen, wenn ihre η -Resolventen ein und denselben absoluten Parameter h_1 respektive h_2 besitzen. Die Substitutionen, welche jene Hauptgleichungen in die betreffenden η -Resolventen überführen, sind nach dem früheren:

11)
$$y = p \eta_1 + q \eta_2$$
 und $y' = p' \eta_1 + q' \eta_2$,

wobei p, q nur von den Koeffizienten der einen, p', q' nur von jenen der anderen Hauptgleichung abhängen. Löst man die Substitutionen rückwärts nach η_1 und η_2 auf, so entsteht:

11a)
$$\eta_1 = my + m'y'$$
 und $\eta_2 = ny + n'y'$, und dieses giebt in

$$\eta_1 \eta_2 = \eta_1 + \eta_2$$

eingetragen eine gewisse quadratische Gleichung zwischen y und y', vermöge welcher zwei verwandte Hauptgleichungen ineinander transformiert werden können. Die hier berührte quadratische Transformation ist nicht die allgemeinste ihrer Art, aber wir kommen mit ihr aus, wenn wir unserem Programme gemäss nicht über Hauptgleichungen hinausgehen.

Aus den Lösungen y und y' zweier verwandter Hauptgleichungen, welche indessen speziell sein können und nur einen Parameter zu enthalten brauchen (Resolventen), lässt sich stets die Lösung Y einer allgemeinen Hauptgleichung zusammensetzen und zwar mittelst der Substitution: Y = Py + Qy',

denn diese reduziert sich vermöge der Ausdrücke 11) auf

$$Y = P'\eta_1 + Q'\eta_2,$$

wobei P, Q respektive P' Q' disponible Konstanten sind.

In der Auswahl der die allgemeine Hauptgleichung konstituierenden Resolventen herrscht daher eine gewisse Willkür, und in der That, bei Gordan und Klein wird die Hauptgleichung aus zwei Resolventen zusammengesetzt, die aus den η -Resolventen vermittelst

$$y = \eta_1 + \eta_2$$
 und $y' = \eta_1 - \eta_2$

hervorgehen. Jene Resolventen sind ebenda durch die Theorie des Ikosaeders und zugehörigen Oktaeders wohl motiviert (vergl. A. 6). Indessen kann vom Standpunkte einer blossen Transformationstheorie aus nicht bezweifelt werden, dass die η -Resolventen die einfacheren Elemente sind. Denn letztere sind durch die einde utige und symmetrische Substitution 4) aneinander geknüpft, während die vorigen y, y' offenbar in dem Zusammenhange:

stehen.
$$y^2 - y'^2 - 4y = 0$$

Unter den Hauptgleichungen giebt es gewisse spezielle, wie z. B. die Bring-Jerrardsche Form, welche eine transzendente Auflösung direkt zulassen; diese erscheinen jetzt vermöge der Transformation ebenfalls als Resolventen der allgemeinen Hauptgleichung. Inzwischen ist es aber nicht nötig, auf die letztere zurückzugehen; an ihre Stelle setzen wir die η -Resolventen, aus denen sie ja zusammengesetzt wird. Unsere Aufgabe wird: Wie transformiert man die η -Resolventen in andere, welche eine transzendente Auflösung unmittelbar gestatten? — Den historischen Vorgängen folgend skizzieren wir zuerst den Übergang zur Bring-Jerrardschen Form, obwohl die dann folgende Transformation in die Ikosaedergleichung zweckmässiger ist und den wichtigeren Teil unserer Untersuchung ausmacht.

9. Die Bring-Jerrardsche Form.

Wir haben es hier mit der speziellen Hauptgleichung zu thun, in welcher a=0 und können ohne Beeinträchtigung der Allgemeinheit ausserdem b=1 wählen, dann verbleibt:

$$25) y^5 + 5y + c = 0.$$

Soll nun die Verbindung zwischen dieser Gleichung und den η -Resolventen hergestellt werden, so ist zunächst das Gleichungssystem 14) zu berücksichtigen. Die erste der betreffenden Gleichungen liefert:

26)
$$p = \mu \sqrt[8]{h_1}, \quad q = -\mu \sqrt[8]{h_2},$$

unter μ einen Proportionalitätsfaktor verstanden; die anderen beiden Gleichungen gehen damit über in:

$$\mu^{4}(\sqrt[3]{h_{1}} + \sqrt[3]{h_{2}}) = \frac{1}{9},$$

28)
$$\mu^{5}(\sqrt[8]{h_{1}^{2}} - \sqrt[8]{h_{2}^{2}}) = \frac{1}{54}c.$$

Um sonach die η -Resolventen mittelst der Bring-Jerrardschen Form aufzulösen, berechne man μ aus 27) und c aus 28), wobei die h als gegeben gelten. Die η selbst folgen aus den Beziehungen 4) und 11), das heisst aus

$$y = \mu (\eta_1 \sqrt[3]{h_1} - \eta_2 \sqrt[3]{h_2}),$$

$$\eta_1\eta_2=\eta_1+\eta_2,$$

wobei y jede der fünf Lösungen von 25) bedeutet, welche bekanntlich in Gestalt von elliptischen Funktionen oder hypergeometrischen Reihen vierter Ordnung erscheinen. Diese Art der Auflösung ist die älteste, aber nicht die zweckmässigste.

Da bereits gezeigt wurde, dass jede Gleichung fünften Grades in die η -Resolventen transformierbar ist, so haben wir hiermit auch eine successive Transformation der allgemeinen Gleichung in die trinomische Form erreicht. Es sei besonders hervorgehoben, dass die kubische Hilfsgleichung, welche niemals vermieden werden kann, bei Verwendung von η -Resolventen die denkbar einfachste, eine binomische wird.

Man bemerke noch, dass von jener kubischen Gleichung nur die reelle Wurzel verwendet zu werden braucht. Berücksichtigt man auch die beiden komplexen Wurzeln, so erlangt c drei verschiedene Werte, und man hat demgemäss drei Bring-Jerrardsche Formen, welche natürlich "verwandt" sind. Bezeichnet man ihre entsprechenden Lösungen durch y, y' und y'', so besteht zwischen je zwei Lösungen die in Abschnitt 8 auseinandergesetzte quadratische Transformation; alle drei Lösungen dagegen erfüllen, wie leicht zu sehen, die lineare Bedingungsgleichung:

$$gy + g'y' + g''y'' = 0,$$

wobei g, g' und g'' bestimmte von h_1 und h_2 , nicht aber von η_1 und η_2 abhängige Konstanten bedeuten.

Was endlich die Vierdeutigkeit des μ nach Gleichung 27) betrifft, so hängt diese damit zusammen, dass in der trinomischen Form 25) b=1 gesetzt wurde, was eben die Adjunktion einer vierten Wurzel bedingt. Lassen wir b frei veränderlich bestehen, so können wir umgekehrt $\mu=1$ wählen, und dann kommt jene Irrationalität zunächst überhaupt nicht in Frage.

10. Die Ikosaedergleichung.

Unter den Hauptgleichungen fünften Grades

2)
$$y^5 + 5ay^2 + 5by + c = 0$$

giebt es eine sehr einfache, welche schon Euler im neunten Teile der "neuen Kommentarien der St. Petersburgischen Akademie der Wissenschaften", vom Jahre 1764 betrachtet hat; es ist die Gleichung, welcher einfach:

$$g_2$$

$$y = \varepsilon y_1 - \varepsilon^2 y_2$$

genügt,* und für welche sonach:

31.
$$a = -y_1y_2^2$$
, $b = y_1^3y_2$, $c = -(y_1^5 - y_2^5)$

wird. Die ε bezeichnen irgend eine fünfte Wurzel der Einheit; indessen kommt für unseren Ansatz nur die relle Lösung:

$$32) y = y_1 - y_2$$

in Frage, und wir wollen daher weniger von der Eulerschen Gleichung sprechen, als vielmehr von einer gewissen Identität, welche die Gestalt einer Hauptgleichung besitzt.

Erörtern wir jetzt den Zusammenhang zwischen dieser Identität und den η -Resolventen. Es ist nicht zu erwarten, dass ein so trivialer Ansatz zu einer definitiven Lösung wie im vorigen Abschnitte führt, es tritt uns vielmehr ein Formenproblem der y_1, y_2 entgegen, durch welches eine neue und höchst charakteristische Irrationalität definiert wird; wir gelangen zur Ikosaedergleichung.

Bei den nun folgenden Ausführungen wolle man durchgängig die Resultate des Abschnittes 6 zu Grunde legen. Zunächst ist wegen 31):

$$a^4 + abc - b^3 = 0$$

die einzige und wesentliche Bedingung unseres Spezialfalles. Die Gleichung 18) liefert jetzt nur eine brauchbare Wurzel, nämlich

$$34) r = y_2^4 (7y_1^5 + y_2^5)^2 : 12f_1$$

wobei

$$f = y_1 y_2 (y_1^{10} + 11 y_1^5 y_2^5 - y_2^{10}),$$

und sodann ergiebt sich nach 17):

36)
$$s = y_1^3 (-y_1^{10} + 39y_1^5 y_2^5 + 26y_2^{10}) : 6f.$$

Nun ist noch der Ausdruck 19) zu bilden, und man findet nach gehöriger Reduktion:

$$h_1 h_2 = \frac{1}{4} \cdot \frac{12^3 f^5}{H^3},$$

wobei

38)
$$H = -(y_1^{20} + y_2^{20}) + 228(y_1^{15}y_2^{5} - y_1^{5}y_2^{15}) - 494y_1^{10}y_2^{10}$$

Zur Einzelbestimmung von h_1 und h_2 hat man die Beziehung:

$$b_1 + b_2 = 1$$

und ausserdem, mit Rücksicht auf 37):

$$h_1 - h_2 = \frac{\sqrt{12^3 f^5 - H^5}}{24 f^2 \sqrt{3} f}.$$

^{*} Euler setzt eine Summe an; wir haben eine Differenz gewählt, weil wir damit genau auf die Ikosaederformen kommen, wie sie sich bei Gordan und Klein finden. Mit einer Summe $(y=y_1+y_2)$ gelangt man zu den Ausdrücken von Schwarz, die sich von den erstgenannten bekanntlich nur ganz unwesentlich unterscheiden.

Aber die Quadratwurzel im Zähler lässt sich ausziehen und liefert:

$$\begin{array}{c} 40) \\ \text{sodass also:} \\ 39\,\mathbf{a}) \end{array} \begin{cases} T = (y_1^{\,90} + y_2^{\,90}) + 522(y_1^{\,25}y_2^{\,5} - y_1^{\,5}y_2^{\,25}) \\ - 10005(y_1^{\,20}y_2^{\,10} + y_1^{\,10}y_2^{\,20}), \\ h_1 - h_2 = \frac{T}{24f^{\,2}V\overline{3}f}. \end{array}$$

Man kann dieses Resultat übrigens auch direkt erhalten, wenn man auf die Ausdrücke 15) zurückgeht und selbige vermöge 16) in r und s schreibt; sie lauten dann

41)
$$\begin{cases} h_1 = -\frac{9(s+\sqrt{r})^3\sqrt{r}}{6a(s+8\sqrt{r})-8b}, \\ h_2 = +\frac{9(s-\sqrt{r})^3\sqrt{r}}{6a(s-3\sqrt{r})-8b}, \end{cases}$$

und es wird ersichtlich, dass der Parameter h_1 seinem Komplement h_2 konjugiert ist, das heisst, der Übergang vom einen zum anderen ist durch einen Vorzeichenwechsel der Irrationalität Vr bedingt. Infolgedessen wird:

$$h_1 - h_2 = \varkappa \sqrt{r_r},$$

wobei \varkappa das r nur rational enthält; jene Differenz muss daher, abgesehen von \sqrt{f} , durchaus rational in y_1 , y_2 und in der That führt die weitere Berechnung genau zum Ausdruck 39a), sodass der nachträgliche Vergleich mit 39) die wichtige Identität:

43)
$$T^{3} = 12^{3} f^{5} - H^{3}$$

abermals erschliesst.

Hiermit haben wir die drei Formen gewonnen, welche den bekannten Formenkreis des Ikosaeders bilden, nämlich die eigentliche Ikosaederform f, deren Hessesche Determinante H und die Funktionaldeterminante beider, die Form T. Dass die Formen H und T invariantentheoretisch auf die Grundform f zurückkommen, geht aus unserem elementaren Ansatz zunächst noch nicht hervor. Ziehen wir aber den Differentialbegriff herbei und fragen nach der Differentialresolvente, das heisst nach jener linearen Differentialgleichung zweiter Ordnung, welche die y_1 und y_2 zu Fundamentalintegralen besitzt, so wird sich diese Angelegenheit von selbst erledigen. Vergleiche Abschnitt 15. Das Formenproblem, welches eben dort seinen definitiven Abschluss findet, wird darin bestehen, die y_1 und y_2 aus 35) und 38) bei festgegebenen Werten von t und H zu berechnen oder, was den Kernpunkt ausmacht, das Verhältnis der beiden y aus der sogenannten Ikosaedergleichung 37) bei vorgelegtem h_1 respektive h_2 zu bestimmen. - Bevor wir hierzu übergehen, erörtern wir den Zusammenhang zwischen der Ikosaedergleichung und einigen wichtigen Resolventen fünften Grades, insbesondere den η -Resolventen.

11. Zurückführung der η -Resolventen auf die Ikosaedergleichung.

Der Zusammenhang ist sofort durch die Beziehungen:

44)
$$\begin{cases} y = p \eta_1 + q \eta_2 = y_1 - y_2, \\ \eta_1 \eta_2 = \eta_1 + \eta_2 \text{ (vergl. 4, 11 und 32)} \end{cases}$$
 hergestellt, wo $p = \frac{1}{2}(s + \sqrt{r}), q = \frac{1}{2}(s - \sqrt{r}) \text{ (vergl. 16)},$

speziell durch die Werte 34) und 36) auszudrücken sind. Da die zweite Gleichung in 44) quadratisch ist, so werden sich die η zunächst in Form einer Quadratwurzel ergeben. Trotzdem muss das Resultat rational werden, denn man könnte, wenn auch weniger einfach, die Rechnung eindeutig durchführen, indem man eine der η -Resolventen, z. B. die von η_1 hinzuzieht und η_1 als gemeinsame Wurzel zweier Gleichungen ansieht, deren Koeffizienten, abgesehen von \sqrt{f} , durchaus rational in den y_1 , y_2 sind.

Obige Gleichungen liefern nun:

45)
$$\frac{1}{\eta_1} = \frac{1}{2} + \frac{y_2^{3}(7y_1^{5} + y_2^{5}) \pm \sqrt{Y}}{4(y_1 - y_2)\sqrt{3}f}, \quad \frac{1}{\eta_2} = 1 - \frac{1}{\eta_1},$$
 wobei:

46)
$$\begin{cases} VY = 2y_1^7 + 2y_1^6y_2 - 7y_1^5y_2^2 + 10y_1^4y_2^3 - 10y_1^4y_2^3 \\ + 6y_1^2y_2^5 + 6y_1^6y_2^6 - y_2^7. \end{cases}$$

Nehmen wir diese Wurzel negativ, so wird 45) durch $(y_1 - y_2)$ teilbar; mithin entsteht:

47)
$$\frac{1}{\eta_{1}} = \frac{1}{2} - \frac{t}{2\sqrt{3f}}, \quad \frac{1}{\eta_{2}} = \frac{1}{2} + \frac{t}{2\sqrt{3f}},$$
oder
$$48) \qquad \eta_{1} = -\frac{2\sqrt{3f}}{t - \sqrt{3f}}, \quad \eta_{2} = \frac{2\sqrt{3f}}{t + \sqrt{3f}},$$

und die neu auftretende Grösse t kommt mit einer Oktaederform überein, welche mit dem Ikosaeder innig verwandt ist, nämlich:

49)
$$t = y_1^6 + 2y_1^5 y_2 - 5y_1^4 y_2^2 - 5y_1^2 y_2^4 - 2y_1 y_2^5 + y_3^6.$$

Beachten wir, dass die Ikosaederformen f, H, T in keiner Weise verändert werden, wenn y_1 , respektive y_2 mit $\pm y_1 \varepsilon^3$, respektive $\pm y_2 \varepsilon^2$, vertauscht wird, unter ε die fünfte Einheitswurzel:

$$\varepsilon = e^{\frac{2\pi i}{5}}$$

verstanden, dass hingegen die Oktaederform übergeht in:

49a)
$$\begin{cases} t_{\nu} = \varepsilon^{3\nu} y_{1}^{6} + 2\varepsilon^{2\nu} y_{1}^{5} y_{2} - 5\varepsilon^{\nu} y_{1}^{4} y_{2}^{2} - 5\varepsilon^{4\nu} y_{1}^{2} y_{2}^{4} \\ - 2\varepsilon^{3\nu} y_{1} y_{2}^{5} + \varepsilon^{2\nu} y_{2}^{6} \end{cases}$$

und für $\nu = 0, 1, 2, 3, 4$ fünfwertig wird, dann ergiebt sich folgendes:

Die Ausdrücke 48), welche von der nullten Dimension in den y sind, vermitteln die vollständige Auflösung der η -Resolventen, sobald das Verhältnis der y aus der Ikosaedergleichung:

37)
$$\frac{H^3}{12^3f^5} = 4h_1h_2, \quad (h_1 + h_2 = 1)$$

berechnet ist.

Weil nach 48):

$$\eta_1 + \eta_2 = \eta_1 \eta_2 = -\frac{12f}{t^2 - 3f},$$

so können die η_1 und η_2 als Wurzeln der quadratischen Gleichung:

51)
$$(t^2 - 3f)\eta^2 + 12f\eta - 12f = 0,$$

und h_1 , h_2 mit Rücksicht auf 37) als Wurzeln von

$$52) h^2 - h + \frac{1}{4}J = 0$$

angesehen werden, wobei

$$J = \frac{H^3}{12^3 f^4}$$

den sogenannten Ikosaederparameter bezeichnet. Durch die letzten Gleichungen ist der Zusammenhang zwischen den η -Resolventen und der Ikosaedergleichung in sehr konziser Weise dargestellt.

12. Die Resolvente von Brioschi.

Wenn wir den Ausdruck für η_1 oder η_2 aus 48) in die betreffende η -Resolvente 3α) oder 3β) eintragen, so muss eine neue Resolvente erscheinen, deren Lösung durch 49) respektive 49a) gegeben ist. Wir erhalten in beiden Fällen die Brioschische Normalform:

54)
$$t^5 - 10ft^3 + 45f^2t - T = 0,$$

welche, in den y_1 , y_2 geschrieben, eine Identität vorstellt und als solche eine Kontrolle liefert, dass das Vorzeichen der Quadratwurzeln in 39) und 45) richtig gewählt wurde. Die Gleichung 54) bildete in unserer früheren Arbeit (A. 1 und 10) den Ausgangspunkt; in der vorliegenden Transformationstheorie besitzt sie trotz ihrer Wichtigkeit nur sekundäre Bedeutung.

Am bequemsten verfolgt man die Transformation an den entsprechenden Integralformen (vergl. Abschnitt 3, Nr. 9), das heisst an:

$$h_1 = 30 \int_0^{\zeta_1} [\zeta_1(1-\zeta_1)]^2 d\zeta_1, \quad \text{resp. } h_2 = 30 \int_0^{\zeta_2} [\zeta_2(1-\zeta_2)]^2 d\zeta_2,$$

welche die Resolventen der reziproken η vorstellen. Setzt man:

$$\xi_1 = \frac{1}{2}(1-v)$$
, resp. $\xi_2 = \frac{1}{2}(1+v)$,

so entsteht:

tent:
$$h_1 = -\frac{15}{16} \int [1-v^2]^2 dv$$
, resp. $h_2 = \frac{15}{16} \int [1-v^2]^2 dv$,

oder:

96 Die Transformation und Auflösung der Gleichung fünften Grades etc.

respektive
$$3v^5 - 10v^3 + 15v - 8(1 - 2h_1) = 0,$$
$$3v^5 - 10v^3 + 15v - 8(2h_2 - 1) = 0.$$

Nun ist aber mit Bezug auf 39a):

$$1 - 2h_1 = 2h_2 - 1 = \frac{T}{24f^2\sqrt{3}f},$$

folglich haben wir in beiden Fällen:

$$3v^5 - 10v^3 + 15v - \frac{T}{3f^2\sqrt{3f}} = 0,$$

eine Gleichung, welche für

$$v = \frac{t}{\sqrt{3f}}$$

in die Brioschische Resolvente übergeht. — Die angeführten Integrale lassen eine schon in Abschnitt 3 erwähnte Verallgemeinerung zu.

13. Die Resolventen von Gordan und Klein.

Die betreffenden Resolventen sind gewisse Hauptgleichungen, welche durch r=0 und s=0 charakterisiert werden; wir betrachten nur die erstgenannte, die am einfachsten und von fundamentaler Bedeutung ist (vergl. A. 6). Wenn r=0, so wird p=q, und also geht das System 14) über in:

$$a = -2p^{3}(h_{1}h_{2})^{-1},$$

 $b = -3p^{4}(h_{1}h_{2})^{-1},$
 $c = -36p^{5}(h, h_{2})^{-1}.$

sodass folgende Gleichung vorliegt:

$$h_1 h_2 y^5 - 10 p^3 y^2 - 15 p^4 y - 36 p^5 = 0$$

welcher nach 48) den Ausdruck:

$$y = p(\eta_1 + \eta_2) = p \eta_1 \eta_2 = -\frac{12 p f}{t^2 - 3 f}$$

genügen muss. Trägt man weiter aus 37):

$$h_1 h_2 = \frac{1}{4} \cdot \frac{H^3}{12^3 f^5}$$

$$p = -\frac{H}{12f}$$

ein, wählt:

und schreibt W statt y, so entsteht die gewünschte Resolvente:

$$55) W^5 + 40f^2W^2 - 5fHW + H^2 = 0$$

mit der Lösung:

$$W = \frac{H}{t^3 - 3f}.$$

Ersetzt man noch f, H, t durch die Ausdrücke 35), 38), 49) und dividiert aus, so ergiebt sich die Form des "Würfels":

57)
$$\left\{ \begin{array}{l} W = -y_1^8 + y_1^7 y_2 - 7y_1^6 y_2^2 - 7y_1^6 y_2^8 + 7y_1^8 y_2^5 \\ -7y_1^2 y_2^6 - y_1 y_2^7 - y_2^8, \end{array} \right.$$

oder allgemeiner, durch die bereits beim Oktaeder benutzte Vertauschung,

$$\begin{cases} W_{r} = -\epsilon^{4r}y_{1}^{8} + \epsilon^{8r}y_{1}^{7}y_{2} - 7\epsilon^{2r}y_{1}^{6}y_{2}^{2} - 7\epsilon^{r}y_{1}^{5}y_{2}^{8} + 7\epsilon^{4r}y_{1}^{8}y_{2}^{5} \\ -7\epsilon^{8r}y_{1}^{2}y_{2}^{6} - \epsilon^{2r}y_{1}y_{2}^{7} - \epsilon^{r}y_{2}^{8}. \end{cases}$$

Dieses ist neben dem Oktaeder die einfachste fünfwertige Form, welche aus den y zusammengesetzt werden kann. Zwischen den η und W besteht die Beziehung [vergl. 50)]:

58)
$$\eta_1 + \eta_2 = \eta_1 \eta_2 = -\frac{12 f W}{H},$$

weshalb die η als Wurzeln der quadratischen Gleichung:

$$59) H\eta^2 + 12fW\eta - 12fW = 0$$

angesehen werden können.

Man bemerke auch, dass die Resolvente 55), als spezielle Hauptgleichung aufgefasst, durch die Bedingung:

$$ac - 8b^2 = 0$$

charakterisiert wird. Es ergiebt sich dieses sowohl aus den anfangs für a, b, c aufgeschriebenen Werten als auch aus der Forderung, dass die quadratische Gleichung 18) die Lösung r=0 besitzen soll. Wenn auch umgekehrt infolge der Bedingung 60) nur die Lösung r=0 in Betracht kommen soll, so darf die Quadratwurzel, auf welche die Gleichung 18) führt, nur mit dem Minuszeichen versehen werden (vergl. Klein "Ikosaeder", S. 194).

Die Unterscheidung des Vorzeichens jener Wurzel führt auch sonst zu eigentümlichen Resultaten, die hier kurz gestreift werden mögen (vergl. A. 13). Zunächst sei an die Gordansche Auflösung der Gleichung fünften Grades durch "doppelt binäre Formen mit zwei Reihen unabhängiger Variabelen" erinnert. Dort können beide Wurzeln r_1 und r_2 der Gleichung 18) gebraucht werden; man kann aber auch nur eine derselben herausgreifen, womit dann eine Reihe der Variabelen bevorzugt ist. — Wenn man dagegen die Transformationstheorie betonen will, wie es unserer Darstellung durchweg entspricht, so hat man eine Transformation der einfachsten Resolventen genau nach dem Schema einer Hauptgleichung wie in Abschnitt 6, und zwar unter Berücksichtigung der Zweideutigkeit des r, durchzuführen. Von den hier in Frage kommenden Resolventen, greifen wir nur die der η heraus und setzen demgemäss:

$$a = -2h^{-1},$$

 $b = 3h^{-1},$
 $c = -6h^{-1};$

 $y=\eta$

wodurch die Hauptgleichung 2) die Gestalt:

Zeitschrift f. Mathematik u. Physik. 42. Jahrg. 1897. 2. Heft.

98 Die Transformation u. Auflösung d. Gleichung etc. Von Dr. W. HEYMANN.

61)
$$h\eta^5 - 10\eta^2 + 15\eta - 6 = 0$$

erlangt. Die Gleichung 18) ergiebt jetzt:

$$r_1 = 1$$
, $r_2 = \frac{25}{16 + 9h}$

und folglich wird nach 17):

$$s_1 = 1$$
, $s_2 = \frac{28 - 3h}{16 + 9h}$

Des weiteren haben wir nach 4), 11) und 16):

62)
$$\begin{cases} \eta = p \eta_1 + q \eta_2, \\ \eta_1 \eta_2 = \eta_1 + \eta_2, \\ p = \frac{1}{2}(s + \sqrt{r}), \\ q = \frac{1}{2}(s - \sqrt{r}), \end{cases}$$

und benutzen wir zuerst die Lösung r_1 sowie s_1 , so finden wir mit Hinblick auf 15) $\eta = \eta$, $h = h_1$, das heisst, die Gleichung 61) fällt zusammen mit der Resolvente für η_1 . Ebenso würden wir durch Vertauschung der Vorzeichen von \sqrt{r} auf die Resolvente für η_2 kommen. Verwenden wir dagegen die Lösung r_2 sowie s_2 , so erhalten wir aus 19) den Ausdruck:*

63)
$$h_1 h_2 = \frac{27h(1-h)^3(128-3h)^3}{16(16+9h)^5},$$

welcher, mit der Bedingung:

$$b_1 + b_2 = 1$$

verknüpft, zu den neuen Parametern führt.

In den vereinigten Gleichungen 62) endlich haben wir eine quadratische Transformation gewonnen, vermöge welcher eine η -Resolvente 61) mit dem absoluten Parameter h in eine andere für η_1 oder η_2 verwandelt werden kann, deren absolute Parameter h_1 oder h_2 in der eben geschilderten Weise von h abhängen. — Man vergleiche die Transformation zwischen verwandten Gleichungen in Abschnitt 8, von welcher obige ein Spezialfall ist.

* Substituiert man in 63): $h = -\frac{16(x+8)}{3(3x-1)},$ so entsteht: $J = 4h_1h_2 = \frac{x^3(x+5)^2(x+8)}{64(3x-1)},$

ein Wert, zu welchem Herr Klein von ganz anderer Seite her gelangt ist (vergl. Math. Annalen XII. Bd. S. 176: "Über lineare Differentialgleichungen"), und welcher als Nr. XII in die Schwarz-Brioschische Tabelle (Math. Annalen XI. Bd. S. 401) einzuordnen wäre.

(Schluss folgt.)

Über das Einstellen der dreiteiligen Fluchtpunktschiene.

Von R. Mehmke in Stuttgart.

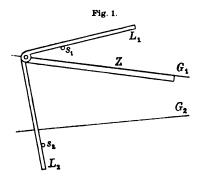
Unter den wenigen praktisch brauchbaren und in keinem Falle versagenden Hilfsmitteln, welche man hat, um nach unzugänglichen Punkten gerade Linien zu ziehen, ist ohne Frage die dreiteilige Fluchtpunktschiene* das einfachste. Dass die Verbreitung dieses nützlichen Werkzeuges keine so grosse ist, als man erwarten sollte, mag wohl an einigen Vorurteilen liegen, die gegen dasselbe zu bestehen scheinen. So wird in der "Anleitung zur Perspektive" von Frangenheim und Posern (Handbuch der Baukunde, Abteilung I, Heft 2) auf S. 380 gesagt: "... die dreiteilige Schiene kann zur Benützung nicht empfohlen werden, weil das Einstellen sehr langsam zu bewerkstelligen ist, zwei Schienen für "rechts" und "links" notwendig sind und ausser dem Horizonte noch eine Linie gegeben sein muss, welche nach dem Verschwindepunkte geht." Dem letzten Einwande ist kein Gewicht beizulegen, da in manchen Fällen ein unzugänglicher Fluchtpunkt von vornherein durch zwei nach ihm gehende Linien bestimmt ist und man sich andernfalls leicht und ohne nennenswerten Zeitaufwand solche Linien verschaffen kann. Der mit Recht gerügte Übelstand, dass früher eine Schiene nicht für alle Fälle ausreichte, ist von K. W. Ellersdorfer durch Änderung des Schlosses** und auf andere Weise - allerdings nur unter Aufgeben der geometrischen Richtigkeit und unbedingten Anwendbarkeit - von Schupmann*** beseitigt worden; eine von mir

^{*} Die Erfindung derselben schreibt man gewöhnlich Streckfuss zu. Streckfuss giebt in seinem Lehrbuche der Perspektive, zweite Auflage, S. 54, 1874, an, er habe die fragliche Schiene zuerst in dem Kunstblatte "Die Dioskuren" im Jahre 1865 bekannt gegeben, bald darauf aber das Werk "Practical geometry, linear perspective and projection, London by Bradley 1834" kennen gelernt, in welchem ein ähnliches Instrument beschrieben und abgebildet sei, als dessen Erfinder John Farey genannt werde. Einer gütigen Mitteilung des Herrn geh. Regierungsrat Prof. Dr. Hauck in Berlin verdanke ich die Kenntnis der Thatsache, dass bedeutend früher dieselbe Erfindung bereits von Peter Nicholson gemacht worden ist, dem sie 1814 die silberne Medaille der Society of Arts eingetragen hat. Diese Angabe ist mit einer Beschreibung und Abbildung des vom Erfinder Centrolineal genannten Instrumentes in dessen Werk "The rudiments of practical perspective, London 1822" enthalten. In dem Kataloge von Zeichengeräten der Firma W. F. Stanley in London ist (unter Nr. 2451 der Ausgabe von 1891) "Nicholsons Centrolinead" aufgeführt und abgebildet; dasselbe war auch von genannter Firma zur mathematischen Ausstellung in München, Herbst 1893, geschickt worden. Die Benennung "Fluchtpunktschiene" rührt, wie es scheint, von Streckfuss her.

^{**} Mit diesem abgeänderten Schlosse versehene Schienen liefert die mathematisch-mechanische Werkstätte von Eduard Preisinger in München seit 1883.

^{***} L. Schupmann, Vereinfachung des perspektivischen Lineals, Deutsche Bauzeitung, S. 228, 1885.

angegebene Konstruktion ist ebenfalls von demselben frei.* Es bleibt also nur der, schon öfters erhobene Vorwurf, dass die Einstellung auf einen bestimmten Fluchtpunkt schwierig und zeitraubend sei, zu entkräften. Streckfuss giebt (a. a. O. S. 55) eine zur Einstellung dienende geometrische Konstruktion an, bemerkt aber dazu, dass das Einstellen durch Probieren vorzuziehen sei. In den Gebrauchsanweisungen, die seitens der Händler den Fluchtpunktschienen beigegeben werden, ist nur vom Probieren die Rede. Da der Erfolg eines derartigen Verfahrens unsicher ist und sehr von der Übung und Geschicklichkeit des Einzelnen abhängt, so können die lautgewordenen Klagen nicht Wunder nehmen. Ich will nun eine seit vielen Jahren von mir benützte Methode zur Einstellung der in Rede stehenden Fluchtpunktschiene mitteilen, die ohne jede Vorbereitung und ohne dass besondere Vorrichtungen an der Schiene vorhanden sein müssten, in allen Fällen sicher und so schnell, als man verlangen kann, zum Ziele führt. Ferner soll gezeigt werden, wie mittelst einer Teilung, die ein jeder auf der Zeichenschiene selbst anbringen kann, die Einstellung auf einen unzugänglichen Fluchtpunkt, der in gegebener Richtung und Entfernung



von irgend einem Punkte der Zeichnung liegt, sich sehr rasch und bequem bewerkstelligen lässt.

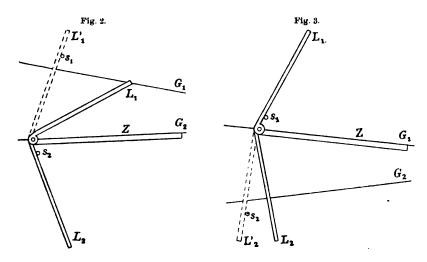
1. Der unzugängliche Punkt, auf welchen die Schiene einzustellen ist, möge der Schnittpunkt der beiden Geraden G_1 und G_2 sein. Nachdem ausserhalb der Fläche, die von der Schiene soll bestrichen werden können (jedenfalls ausserhalb der von G_1 und G_2 begrenzten), in zwei beliebigen Punkten, die jedoch mindestens um eine Lineal-

breite von G_1 respektive G_2 entfernt sein müssen, die beiden Führungsstifte s_1 und s_2 befestigt worden sind, bringe man bei gelöster Schraube das Instrument auf beliebige Weise** in solche Lage, dass die Zeichenkante Z (obere Kante des mittleren, auf der Zeichenfläche ruhenden Lineals) mit G_1 zusammenfällt und die äusseren Lineale oder Leitschienen L_1 und L_2 sich an die Stifte lehnen (siehe Fig. 1). Hierauf stelle man durch Anziehen

^{*} Siehe Katalog mathematischer Modelle, Apparate und Instrumente, im Auftrage der Deutschen Mathematiker-Vereinigung herausgegeben von W. Dyck, S. 227, München 1892. Ich bin im Jahre 1890 auf diese Konstruktion durch den Wunsch geführt worden, eine Fluchtpunktschiene zu haben, die sowohl für rechts, als für links liegende Fluchtpunkte anwendbar wäre, aber im Gegensatze zu Schupmanns perspektivischen Lineal geometrisch richtig zeichnete.

^{**} Es wird allerdings zur Beschleunigung des Verfahrens dienen, wenn man schon anfangs der richtigen Einstellung so nahe wie möglich zu kommen sucht, indem man in Gedanken durch die Mittelpunkte der Stifte und den, seiner Lage nach geschätzten unzugänglichen Punkt einen Kreis zieht und den Zapfen, der die drei Lineale verbindet, ungefähr auf diesen Kreis bringt.

der Schraube die drei Lineale gegeneinander fest und bewege sie, ohne die Berührung zwischen dem Stifte s_2 und der zugehörigen Leitschiene L_2 aufzugeben, bis die Zeichenkante an der Geraden G_2 anliegt (siehe Fig. 2). Wenn nicht etwa infolge eines glücklichen Zufalls die gegenseitige Stellung der Lineale schon die richtige ist, so wird jetzt das Lineal L_1 den Stift s_1 nicht mehr berühren. Man drücke nun mit einer Hand gleichzeitig auf die Zeichenschiene und die Leitschiene L_2 , damit sie ihre Lage nicht ändern können, löse dann mit der anderen Hand die Schraube, drehe die Leitschiene L_1 , bis sie am Stift s_1 anliegt (gestrichelt gezeichnete Lage L_1' in Fig. 2), und ziehe die Schraube wieder an. Wird hierauf das Instrument



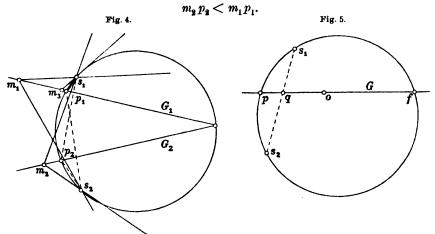
zurückbewegt, die Schiene L_1 leicht gegen den Stift s_1 gedrückt, und die Zeichenkante mit G_1 zur Deckung gebracht, und zeigt es sich, dass dann auch L_2 den Stift s_2 berührt, so ist die Einstellung fertig. Wenn es noch nicht der Fall ist, so halte man mit einer Hand Z und L_1 fest, löse mit der anderen Hand die Schraube, bringe das Lineal L_2 zur Berührung mit dem Stifte s_2 (Lage L_2 , in Fig. 3 gestrichelt) und schraube wieder zu. Wenn alsdann unter Andrücken der Leitschienen an die Führungsstifte das Instrument bewegt wird, so fällt die Zeichenkante Z meistens schon genau genug mit G_2 zusammen. Sollte das noch nicht zutreffen, so hat man zu verschieben, bis Z die Linie G_2 deckt und L_2 in Berührung mit s_2 kommt, dann unter Festhalten von Z und L_2 die Lage von L_1 zu verbessern etc.

Es muss bewiesen werden, dass man durch Anwendung des obigen Verfahrens unter allen Umständen bei jedem Schritte der richtigen Stellung näher kommt. Letztere wird vorhanden sein, wenn der Mittelpunkt m des Zapfens auf dem Kreise liegt, welcher durch die Mittelpunkte der Führungsstifte und den Schnittpunkt von G_1 mit G_2 gezogen werden kann. Befindet sich nun m (siehe Fig. 4, in welcher die Stifte als Punkte, die Lineale als blosse Linien dargestellt sind) anfangs in m_1 , dann in m_2 ,

hierauf in m_3 etc., bezeichnet man ferner durch p_1 und p_2 die Schnittpunkte von G_1 und G_2 mit dem genannten Kreise, so sind vermöge des angewendeten Verfahrens die Winkel $p_1m_1s_2$ und $p_2m_2s_2$ einander gleich, ebenso die Winkel $m_1p_1s_2$ und $m_2p_2s_2$ als Nebenwinkel zu zwei Peripheriewinkeln über demselben Bogen in jenem Kreise. Daher sind die Dreiecke $m_1p_1s_2$ und $m_2p_2s_2$ einander ähnlich, woraus die Proportion

$$m_1 p_1 : m_2 p_2 = p_1 s_2 : p_2 s_2$$

folgt. Weil aber $p_2 s_2 < p_1 s_2$ ist, so erhält man



Auf ähnliche Weise lässt sich zeigen, dass $m_8 p_1 < m_* p_*, m_A p_* < m_8 p_1$ etc.

ist. Also kommt in der That der Punkt m dem Kreise, auf dem er liegen soll. unaufhörlich näher; und zwar, wie man sieht, um so schneller, je grösser p_1s_2 im Verhältnisse zu p_2s_2 und p_2s_1 im Verhältnisse zu p_1s_1 ist, weshalb man gut thut, die Stifte möglichst nahe bei den Geraden G_1 und G_2 , aber möglichst entfernt von ihrem Schnittpunkte einzustecken, und sich die Sache günstiger gestaltet, wenn der Winkel zwischen G_1 und G_2 gross, als wenn er klein ist.

Diese Methode der schrittweisen Annäherung, die grosse Ähnlichkeit mit gewissen Methoden der Analysis (z. B. zur Auflösung numerischer Gleichungen) zeigt, erweist sich auch dann als nützlich, wenn man die Einstellung mit Hilfe einer geometrischen Konstruktion (etwa der von Streckfuss angegebenen) vorgenommen, aber aus irgend einem Grunde ein ungenaues Ergebnis erhalten hat. Statt wieder von vorn anzufangen, wird man in solchem Falle besser durch das mitgeteilte Verfahren die vorhandene Ungenauigkeit beseitigen.

2. Nehmen wir jetzt an, dass der unzugängliche Fluchtpunkt f durch eine einzige nach ihm laufende Gerade G sowie die Entfernung von irgend einem Punkte o dieser Geraden gegeben sei (siehe Fig. 5). Bei der Bewegung der richtig eingestellten Fluchtpunktschiene bleibt der Mittelpunkt m des Drehzapfens bekanntlich auf dem durch die drei Punkte s_1 , s_2 und f be-

stimmten Kreise. Schneidet letzterer die Gerade G zum zweiten Male in p, ist ferner q der Schnittpunkt von $s_1 s_2$ mit G, so hat man

$$pq = \frac{s_1 q \cdot q s_2}{qf}$$

Da die Längen der Strecken qf = qo + of, s_1q und s_2q bekannt sind, beziehungsweise gemessen werden können, so lässt sich pq mit Hilfe obiger Formel berechnen, wobei in der Regel die Genauigkeit, welche der Rechenschieber gewährt, ausreichen wird.

Wäre an der Zeichenkante ein gewöhnlicher Massstab vorhanden, dessen Anfangspunkt im Drehpunkte m läge, so könnte die Einstellung in der Weise geschehen, dass man die Zeichenkante an G legte, und zwar so, dass sich der zum berechneten Werte von pq gehörige Teilstrich des Massstabes dem Punkte q gegenüber befände, hierauf mit einer Hand die Zeichenkante festhielte, mit der anderen Hand die Schraube löste, die Leitschienen gegen die zugehörigen Leitstifte s_1 und s_2 lehnte und wieder befestigte. Wünschte man die Fluchtpunktschiene auch für unzugängliche Punkte zu benützen, die auf der anderen Seite von q liegen, und zwar ohne die Leitstifte versetzen zu müssen, so wäre eine Verlängerung des Massstabes nach der negativen Seite über den Nullpunkt hinaus erforderlich, es könnte aber die Verlängerung der Zeichenschiene nach jener Seite dadurch umgangen werden, dass man den Nullpunkt des Massstabes um eine beliebige Strecke, z. B. 100 mm, in positivem Sinne verlegte, in welchem Falle natürlich vor der Einstellung der Punkt q der Zeichnung um denselben Betrag verschoben werden müsste.

Will man jedoch beim Gebrauche der Fluchtpunktschiene der Mühe des Bechnens ganz enthoben sein, so muss man sich entschliessen, den Entfernungen s_1q und qs_2 , oder wenigstens ihrem Produkte, ein für allemal einen festen Wert zu geben, z. B.:

$$s_1 q = q s_2 = 300 \text{ mm.*}$$

Es können dann im voraus für verschiedene einfache Werte der Entfernung qf die Werte von pq berechnet werden, und indem man die letzteren Werte von dem angenommenen Nullpunkte aus auf der Zeichenkante abträgt und neben die so gefundenen Punkte die betreffenden Werte von qf schreibt, erhält man auf der Zeichenschiene eine (ungleichmässige) Teilung, mit deren Hilfe die Einstellung auf eine vorgeschriebene Entfernung des unzugänglichen Punktes f ungemein schnell und leicht von statten geht.

^{*} Man wird wohl in der Regel $s_1 s_2$ senkrecht zu G annehmen, aber nötig ist das offenbar nicht.

Zur perspektivischen Lage kollinearer ebener Felder.

Von Dr. Kilbinger in Mülhausen i. Els.

In der zweiten Abteilung, dritte Auflage, S. 20 seiner Geometrie der Lage, zeigt Herr Reye, dass zwei kollineare ebene Felder η und η_1 , deren unendlich ferne Geraden einander nicht entsprechen, auf zweifache Weise in perspektivische Lage gebracht werden können. Hierbei wird bewiesen, dass in η zwei und nur zwei gerade Punktreihen u und v vorkommen, welche den homologen u_1 und v_1 in η_1 projektivisch gleich sind. Die Geraden u, v und u_1, v_1 sind zu den Fluchtlinien ihrer Felder parallel. Werden η und η_1 so in perspektivische Lage gebracht, dass entweder die Punktreihen u und u_1 oder v und v_1 alle ihre Punkte entsprechend gemein haben, und ausserdem die Ebenen η und η_1 aufeinander liegen, so haben die beiden Felder noch einen Strahlenbüschel entsprechend gemein, woraus dann folgt, dass in η zwei Strahlenbüschel existieren, welche den homologen in η_1 projektivisch gleich sind.

Bei der Betrachtung über die perspektivische Lage von η und η_1 können wir auch unabhängig von den projektivisch gleichen Punktreihen der Felder die Existenz zweier Strahlenbüschel in η nachweisen, welche den homologen in η_1 projektivisch gleich sind. Zu dem Zwecke machen wir jeden Punkt von η zum Mittelpunkte einer rechtwinkligen Strahlen-Die Strahlen eines jeden Büschels projizieren dann auf der unendlich fernen Geraden g_{∞} von η ein und dieselbe involutorische Punktreihe, so dass also durch je zwei konjugierte Punkte von g_{∞} zwei konjugierte Strahlen einer jeden Strahlen
involution hindurchgehen. Ist nun g_1 die Fluchtlinie von η_1 , so entspricht der involutorischen Punktreihe g_{∞} eine solche von g_1 . Da nun eine rechtwinklige Strahleninvolution keine reellen Ordnungselemente hat, so haben also auch die Punktinvolutionen g_{∞} und g_1 keine reellen Ordnungselemente. Es giebt alsdann in η_1 zwei und nur zwei Punkte P_1 und Q_1 , aus welchen die Punktinvolution g_1 durch eine rechtwinklige Strahleninvolution projiziert wird. Je zwei senkrechten Strahlen der Büschel P_1 , Q_1 entsprechen dann in η zwei senkrechte Strahlen des Büschels Prespektive Q, und die Strahlenbüschel P, P_1 und Q, Q_1 sind somit projektivisch gleich. Hiermit ist also bewiesen, dass in η zwei und nur zwei Strahlenbüschel vorkommen, die den homologen von η_1 projektivisch gleich sind. Die Punkte P_1 und Q_1 haben gleichen Abstand von g_1 und ihre Verbindungsgerade steht auf g_1 senkrecht (vergl. Reye, Geometrie der Lage, I. Abteilung, Auflage 3, S. 154).

Werden die ebenen Felder η und η_1 so in perspektivische Lage gebracht, dass die homologen Strahlen von P und P_1 (oder Q und Q_1) sich decken, so haben η und η_1 noch die Punkte einer Geraden p entsprechend gemein. Da nun p zu den Fluchtlinien beider Felder parallel läuft, weil jede die ihr entsprechende unendlich ferne Gerade in dem unendlich fernen Punkte von p schneiden muss, und ferner g_1 auf der Geraden P_1 $Q_1(PQ)$

senkrecht steht, so schneidet also auch letztere Gerade p und die Fluchtlinie h von η rechtwinklig. Die Geraden PQ und P_1Q_1 sind also die beiden homologen Geraden von η und η_1 , welche auf ihren Fluchtlinien senkrecht stehen. Die Fluchtlinie h geht durch den Mittelpunkt der Strecke PQ. Zum Beweise des Letzteren bezeichnen wir den unendlich fernen Punkt der Geraden P_1Q_1 mit $S_{1\infty}$ und ihren Schnittpunkt mit G_1 durch M_1 ; dann sind $S_{1\infty}$, P_1 , M_1 , Q_1 vier harmonische Punkte, denen, wenn sie dem Felde η_1 angehören sollen, die respektiven vier harmonischen Punkte S, P, M_{∞} , Q in η entsprechen. Da nun M_{∞} unendlich fern liegt, so muss Punkt S (der auf h liegt) die Mitte von PQ sein.

Die Gerade p enthält zwei projektivisch gleiche Punktreihen u und u_1 von η respektive η_1 . Es lässt sich nun unschwer nachweisen, dass in η noch eine zweite Punktreihe v vorkommt, welche der homologen v_1 in η_1 projektivisch gleich ist. Gleichwie nun u und u_1 , so sind auch v und v_1 zu den Fluchtlinien ihrer Felder parallel; ferner hat h von u denselben Abstand wie von v, und es ist der Abstand von g_1 und u_1 gleich dem von g_1 und v_1 . In dem Falle, dass bei der oben angegebeneu perspektivischen Lage die Fluchtlinien g_1 und h zusammenfallen, liegen die Felder η und η_1 involutorisch.

Über ein Problem der Mechanik.

Von A. Karl in Paris.

Ist $\varphi(u, v) = \frac{a}{\sqrt{u+v}}$ eine zusammengesetzte Funktion von u und v der einzigen unabhängigen Variablen t, so bekommt man vermöge der bekannten Formel:

$$\varphi(u, v) = \int \frac{\partial \varphi}{\partial u} du + \int \left(\frac{\partial \varphi}{\partial v} - \frac{\partial}{\partial v} \int \frac{\partial \varphi}{\partial u} du \right) dv + c,$$

oder auch der Formel

$$\varphi(u, v) = \int \frac{\partial \varphi}{\partial v} dv + \int \left(\frac{\partial \varphi}{\partial u} - \frac{\partial}{\partial u} \int \frac{\partial \varphi}{\partial v} dv \right) du + c'$$

die Gleichungen:

$$\int \frac{\partial \varphi}{\partial u} du = \frac{a}{\sqrt{u+v}} + c, \int \frac{\partial \varphi}{\partial v} dv = \frac{a}{\sqrt{u+v}} + c',$$

das heisst, die Integration der Differentialausdrücke $\frac{\partial \varphi}{\partial u} du$, $\frac{\partial \varphi}{\partial v} dv$ reproduziert, bis auf eine Konstante, die Funktion $\varphi(u, v)$ selbst; solche Funktionen sind auch diejenigen der Form: $\frac{a}{u_1+v_1}+\frac{b}{u_2+v_2}+\cdots$, wo die u und v irgend welche differentierbare Funktionen einer unabhängigen Variablen t bezeichnen. Ist nun allgemein:

$$U_{i} = f m_{i} \sum_{k} \frac{m_{k}}{\Delta_{i, k}}, \text{ wo } \Delta_{i, k} = \sqrt{(\alpha_{i} - \alpha_{k})^{2} + (\beta_{i} - \beta_{k})^{8} + (\gamma_{i} - \gamma_{k})^{8}}, \quad i = 0, 1, ... n$$

$$i \leq k$$

eine zusammengesetzte Funktion von den α , β , γ der einzigen unabhängigen Variablen t, so hat man also:

$$\alpha) \int \frac{\hat{c} U_i}{c \alpha_i} d\alpha_i = U_i + c_i, \quad \int \frac{\partial U_i}{\partial \hat{\beta}_i} d\beta_i = U_i + c_i, \quad \int \frac{\hat{c} U_i}{c \gamma_i} d\gamma_i = U_i + c_i''$$

Dies festgesetzt, seien nun die Differentialgleichungen gegeben:

$$\begin{cases}
m_i \frac{d^2 \alpha_i}{dt^2} = f m_i \sum_{k} \frac{m_k (\alpha_k - \alpha_i)}{\Delta_{i,k}^3} = \frac{\hat{c} U_i}{\partial \alpha_i} \\
m_i \frac{d^2 \beta_i}{dt^2} = f m_i \sum_{k} \frac{m_k (\beta_k - \beta_i)}{\Delta_{i,k}^3} = \frac{\hat{c} U_i}{\partial \beta_i} \\
m_i \frac{d^2 \gamma_i}{dt^2} = f m_i \sum_{k} \frac{m_k (\gamma_k - \gamma_i)}{\Delta_{i,k}^3} = \frac{\hat{c} U_i}{\partial \gamma_i}.
\end{cases}$$

Multipliziert man die Gleichungen A) respektive mit $d\alpha_i$, $d\beta_i$, $d\gamma_i$ und integriert, so bekommt man nach der bemerkenswerten Eigenschaft von U_i beziehungsweise der Gleichung α):

1)
$$\frac{m_i}{2} \left(\frac{d\alpha_i}{dt}\right)^2 = U_i + c, \quad \frac{m_i}{2} \left(\frac{d\beta_i}{dt}\right)^2 = U_i + c'_i, \quad \frac{m_i}{2} \left(\frac{d\gamma_i}{dt}\right)^2 = U_i + c''_i.$$

Aus den Gleichungen 1) folgt:

1')
$$\left(\frac{d\alpha_i}{dt}\right)^2 - \left(\frac{d\beta_i}{dt}\right)^2 = A_i, \quad \left(\frac{d\alpha_i}{dt}\right)^2 - \left(\frac{d\gamma_i}{dt}\right)^2 = B_i,$$

wo die A und B konstante Grössen bezeichnen; und folglich

$$\left(\frac{d\alpha_i}{dt} + \frac{d\beta_i}{dt}\right) \cdot \left(\frac{d\alpha_i}{dt} - \frac{d\beta_i}{dt}\right) = A_i = \lambda_i \cdot \mu_i$$

und schliesslich:

2)
$$\alpha_i = \varrho_i t + \varrho_i', \quad \beta_i = \sigma_i t + \sigma_i', \quad \gamma_i = \tau_i t + \tau_i'$$

wo die ρ, σ, τ konstante Grössen sind.

Differentiert man die Gleichungen 2), nimmt Rücksicht auf die Gleichungen 1') und 1) und differentiert die 1), so bekommt man nach Division respektive durch $\frac{d\alpha_i}{dt}$, $\frac{d\beta_i}{dt}$, $\frac{d\gamma_i}{dt}$ die ursprünglichen Gleichungen A).

Bemerkung: Denkt man sich im Raume n+1 materielle Punkte $M_0, M_1, \ldots M_n$ mit den respektiven Massen $m_0, m_1, \ldots m_n$, so kann man bekanntlich folgende Gleichung beweisen:

$$OK = \frac{m_0 M_0 O + m_1 M_1 O + \cdots + n_m M_n O}{m_0 + m_1 + \cdots + m_n}$$

wo O irgend ein fester Punkt, K der Schwerpunkt und $\Sigma m_i = 0$. Denken wir uns jetzt die Punkte M_i projiziert auf eine feste Ebene, welche den Punkt O enthält und setzen wir:

$$OK = re^{i\omega \sqrt{-1}}, \quad OM_i = \varrho_i e^{\theta i \sqrt{-1}}, \quad i = 0, 1, ... n,$$

so ergiebt sich

$$re^{w}V^{-1} = \frac{\sum m_i \varrho_i e^{\theta_i}V^{-1}}{\sum m_i} = a_0\varrho_0 e^{\theta_0}V^{-1} + a_1\varrho_1 e^{\theta_1}V^{-1} + \cdots + a_n\varrho_n e^{\theta_n}V^{-1}$$

wo $\Sigma a_i = 1$. Kennt man also die Bahnen von M_i , so kann man für verschiedene Stellen in verschiedenen Zeitintervallen die Bahn des Schwerpunktes K berechnen. — Setzt man:

$$Z = re^{\omega \sqrt{-1}}, \quad \varrho_i = \varrho^i, \quad \theta_i = i\theta, \quad z = \varrho e^{\theta \sqrt{-1}},$$
 so bekommt man: $Z = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n.$

Die Glieder dieses Polynoms des n^{ten} Grades entsprechen offenbar den Ecken eines bestimmten Polygons; jedem Werte von z entspricht ein Polygon und der Schwerpunkt seiner materiellen Ecken; jedem Werte von Z entsprechen n Polygone und ihre ähnlichen und ähnlich liegenden (homothetischen) Polygone. Sind α_0 , $\alpha_1 \ldots \alpha_n$ die Wurzeln des Polynoms, für welche also der Schwerpunkt K auf O fällt, so hat man:

$$re^{wV-1} = \Pi_i r_i e^{\varphi iV-1}$$
, das heisst $r = r_1 r_2 \cdots r_n$, $w = \varphi_1 + \varphi_2 + \cdots + \varphi_n$.

Beschreibt also der Schwerpunkt K die Kreise r=c, so beschreibt z die Kurven: $r_1r_2 \ldots r_n=c$. Den Strahlen $w=\gamma$ entsprechen die Kurven $\varphi_1+\varphi_2+\cdots+\varphi_n=\gamma$.

Zur Perspektive des Kreises.

Von Dr. Rudolf Schüssler in Graz.

Der geometrische Ort der Punkte, von welchen ein Kreis k auf eine Ebene E wieder als Kreis projiziert werden kann, ist bekanntlich eine gleichseitige Hyperbel, welche den Kreis k in den Endpunkten eines Durchmessers schneidet und deren Ebene auf der Schnittlinie der Kreisebene und der Ebene E normal steht. — Sollen sich zwei in einer Ebene liegende Kreise aus demselben Zentrum auf eine Ebene als Kreise projizieren,* so muss das Projektionszentrum in der durch die Zentrallinie der beiden Kreise gehenden, auf der Ebene derselben normalen Ebene liegen und ist als Schnittpunkt zweier gleichseitiger Hyperbeln leicht zu konstruieren, während die Bildebene E parallel zur Chordale der gegebenen Kreise sein muss.

Dieselbe Konstruktion leitete Herr Geheimrat Schlömilch** in sehr einfacher Weise nach den Prinzipien der analytischen Geometrie, sowie Herr Dr. Chr. Beyel,*** gestützt auf die involutorischen Gesetze der Kollineation, ab.

Zu denselben Resultaten kann man auch auf elementar-geometrischem Wege nur unter Voraussetzung der einfachsten Hilfsmittel der gewöhnlichen Perspektive gelangen, ähnlich wie Herr Geheimrat Schlömilch die Konstruktion von Kegelschnitten aus fünf Punkten oder fünf Tangenten auf die perspektivische Darstellung des Kreises zurückführt.[†]

^{*} Diese Aufgabe wurde von Herrn Geheimrat Schlömilch in der Zeitschrift des Vereines deutscher Zeichenlehrer 1894, S. 381, gestellt.

^{**} Zeitschrift für Mathematik und Physik, 1895, S. 57.

^{***} Ebendaselbst S. 255.

[†] Ebendaselbst, 1894, S. 117.

1. Sucht man die wahre Grösse eines ebenen Gebildes, dessen perspektivisches Bild gegeben ist, so ist zu beachten, dass sich in der Bildspur E^b das Bild einer Geraden und deren Umlegung um E^b in die Bildspur E^b in die Bildspur Bildspur E^b in die Bildspur Bil

Fig. 1. |(C)(b)

ebene schneiden. dass die Fluchtspur E^{ν} die Bilder aller unendlich fernen Punkte der Ebene E enthält, E, und das Bild eines Punktes mit dessen Umlegung um E^{\prime} auf einer Geraden $\operatorname{durch}(C)$, die Umlegung des Projektionszentrums um E', liegen; sucht man daher z. B. zu dem Bilde b'c' einer Geraden deren Umlegung um E^b , so hat man E^b durch den Spurpunkt & der Geraden zum um-Fluchtgelegten (C)o die strahl Parallele zu ziehen; (c) liegt auf (C)c'etc.

2. Es frägt sich nun: Wie muss man E^b , E^r , (C) annehmen, damit ein gegebener Kreis k' das Bild eines in E gelegenen Kreises k' ist?

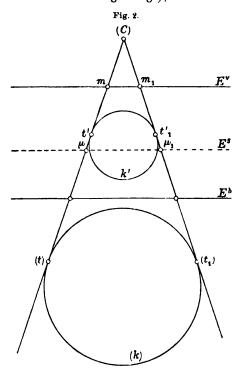
Die zu E^b parallelen Tangenten in a' und b' sind Bilder von Tangen-

ten der Originalkurve k, welche auch zu E^b parallel sind; daher ist a'b' das Bild eines Durchmessers ab, der zur E^b normal sein muss, wenn k ein Kreis sein soll; es muss also a'b' und (a)(b) in eine Gerade normal zu E^b fallen,

welche auch (C) enthält, oder: (C) muss in dem zur E^b normalen Durchmesser des Bildkreises liegen. — Um zu a'b' die Umlegungen zu finden, benütze man zwei beliebige Gerade $\delta \varphi$ und $\delta_1 \varphi_1$ durch b' und a', welche sich in einem Punkte c' der Peripherie schneiden und erhält (b)(a)(c). Soll die Originalkurve k ein Kreis sein, so muss $\Rightarrow (a)(c)(b)$ ein Rechter sein und wegen des Parallelismus der Schenkel auch $(\varphi(C)\varphi_1)$. Dann liegen (C) und c' mit φ und φ_1 auf einem Kreise, dessen Mittelpunkt o auf E' liegt; er wird gefunden, wenn man die Kreistangente in c' mit E' zum Schnitte bringt (weil dann $c'o\varphi_1$ und $c'o\varphi$ gleichschenklige Dreiecke sind, wie aus der Gleichheit der Peripheriewinkel über demselben Bogen folgt); daher ist oc'=o(C).

Soll die Originalkurve ein Kreis sein, dies für jeden muss Punkt c' der Peripherie k' gelten, das heisst E'muss der Ort jener Punkte o sein, deren Tangenten an k' gleich ihren Entfernungen von (C) sind, oder E^{ν} muss die Chordale schen (C) und k' sein.* Dies ist die notwendige und hinreichende dingung, damit die Originalkurve ein Kreis ist.

Ist demnach k' gegeben, so können wir (C) beliebig wählen; E' ist dann schon bestimmt und wird am einfachsten gefunden, wenn man aus (C) an k' die beiden Tangenten legt und deren



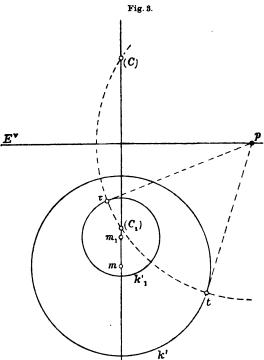
Halbierungspunkte m und m_1 , wo (C)m = mt' und $(C)m_1 = m_1t'_1$ ist, verbindet. E^0 ist eine beliebige zu E^r parallele Gerade. Wählt man dieselbe speziell als Berührungssehne $t't'_1$ der erwähnten Tangenten, so decken sich Bild und Umlegung des Originalkreises.

3. Sucht man zur Umlegung eines ebenen Gebildes das perspektivische Bild, so vertritt die Rolle von E^* die Gegenaxe E^* , das ist die Umlegung um E^* jener Geraden von E, welche in der durch das Projektionszentrum parallel zur Bildebene gehenden Ebene liegt. E^* ist parallel zu E^* und

^{*} Die Chordaleigenschaft bleibt erhalten, wenn der Radius des einen Kreises Null wird.

hat davon dieselbe Entfernung wie (C) von E^r ; die Gegenaxe E^r ist der Ort der Umlegungen jener Punkte einer Ebene, welche unendlich ferne Bilder besitzen.

Dieselben Betrachtungen wie früher für E' und k' gelten jetzt für E' und (k), sodass man als notwendige und hinreichende Bedingung, damit das Bild eines Kreises, dessen Umlegung (k) gegeben ist, wieder ein Kreis wird, erhält: E^* muss die Chordale zwischen dem beliebig gewählten (C) und (k) sein; E^* wird am einfachsten gefunden, indem man von (C) an (k) die Tangenten legt und die Halbierungspunkte μ und μ_1 derselben verbindet. E^* oder E^* kann man beliebig parallel zu E^* wählen;



in jedem Falle ist dann die andere der beiden Geraden bestimmt.

Wählt man speziell E' identisch E', so fallen Bild und Umlegung des Original-kreises zusammen und E^b wird zur Berührungssehne $(t)(t_1)$ der erwähnten Tangenten.

4. Sind das Bild k' und die Umlegung (k) des Originalkreises gegeben, so muss (C')
ein Ähnlichkeitspunkt derselben sein, das heisst entweder der Schnittpunkt der äusseren oder inneren gemeinsamen Tangenten. E' ist dann wie oben bestimmt als Chordale von (C) und k'; E' als Chordale von (C) und (k) und E' wird die Chordale von (k) und k'.

5. Sollen zwei in einer Ebene liegende Kreise k und k_i aus demselben Zentrum auf die

Bildebene sich als Kreise k' und k'_1 projizieren, so muss für beide Kreise die oben als notwendig und hinreichend angegebene Bedingung erfüllt sein, das heisst:

 E^r muss sowohl Chordale von (C) und k' als von (C) und k'_1 seindaher ist E^r die Chordale von k' und k'_1 und dadurch eindeutig bestimmt wenn k' und k'_1 als gegeben vorliegen. (C) liegt auf der Zentrallinie mm_1 von k' und k'_1 und hat von jedem Punkte der E^r eine Entfernung gleich der Potenz dieses Punktes bezüglich der beiden Kreise: pt = p(C). Man erhält zwei Lösungen entsprechend den beiden Umlegungen von C um E^r in die Bildebene. — Sowohl die Konstruktion als auch die Bedeutung von E^r ergeben, dass die Aufgabe nur dann lösbar, wenn k' und k'_1 keine

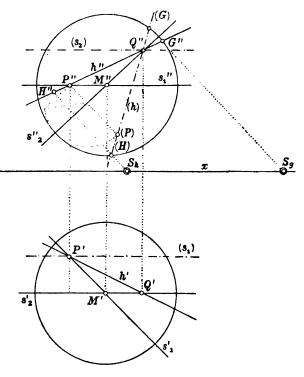
reellen Schnittpunkte besitzen. — Ebenso muss E^s sowohl Chordale von (C) und (k) als von (C) und (k_1) sein, das heisst E^s ist Chordale von (k) und (k_1) und dadurch eindeutig bestimmt, wenn (k) und (k_1) als gegeben vorliegen. (C) wird in analoger Weise wie früher bestimmt; auch hier erhält man nur Lösungen, wenn (k) und (k_1) keine reellen Schnittpunkte besitzen. — E^b kann in beiden Fällen willkürlich parallel zu E^r respektive E^s gewählt werden; wählt man E^b speziell so, das E^r respektive E^s die Entfernung von (C) und E^b halbiert, so decken sich die Bilder mit den Umlegungen der Originalkreise.

Eine Aufgabe aus der Schattenlehre.

Von Dr. Chr. Beyel in Zürich.

In den mir bekannten Lehrbüchern über Schattenkonstruktionen vermisse ich — abgesehen davon, dass diese Lehrbücher der Affinität, Kol-

lineation etc. zumeist sehr behutsam aus dem Wege gehen - einen Punkt. der mir bei den Konstruktionen des Schlagschattens sehr wesentlich erscheint. Es handelt sich gewöhnlich darum, den Schlagschatten auf verschiedene Ebenen zu finden. Beschränken wir uns zunächst auf zwei Ebenen, so fällt ein Teil des Schattens - soweit er sichtbar ist - auf die eine Ebene. Ein anderer Teil fällt auf die zweite Ebene. Die zwei Schattenfiguren treffen sich in der Schnittlinie der Ebenen. Es empfiehlt sich nun die Konstruktion mit der Bestimmung dieser Schnittpunkte an-



zufangen. Ich will zeigen, wie dieselben stets sehr schnell gefunden werden können.

Wir wollen — der Einfachheit wegen — annehmen, dass die Ebenen, auf welche der Schlagschatten fällt, Grund- und Aufrissebene seien. L sei

der leuchtende Punkt und S sei die Kurve des Eigenschattens. Dann legen wir eine Ebene durch L und x und konstruieren ihre Schnittpunkte mit S. Die Schlagschatten dieser Punkte liegen in der x-Axe.

Die Konstruktion gestaltet sich besonders einfach, wenn — wie gewöhnlich — paralleles Licht angenommen wird, und wenn die Projektionen der Lichtrichtung mit der x-Axe Winkel von 45° bilden. In diesem Falle haben alle Punkte, welche gleichweit von den zwei Projektionsebenen entfernt sind und im ersten Quadranten liegen, ihre Schlagschatten in der x-Axe. Der Ort dieser Punkte ist eine Ebene H durch x, welche den ersten Quadranten halbiert.

Jede Gerade enthält einen Punkt dieser Ebene H. Wir finden ihn, indem wir zu einer Projektion der Geraden in Bezug auf die x-Axe die orthogonal symmetrische Linie zeichnen. Sie trifft die andere Projektion in dem erwähnten Punkte. Kennen wir zwei Projektionen der Selbstschattengrenze S, so zeichnen wir zu einer in Bezug auf x die orthogonal symmetrische Figur. Sie schneidet die andere Projektion in den Punkten, deren Schatten auf x liegen. Wir wollen diese Punkte die Grenzpunkte für den Schlagschatten nennen. Sie teilen S so, dass ein Teil von S seinen sichtbaren Schatten auf die Grundrissebene wirft und der andere seinen Schatten auf die Aufrissebene. Wir müssen nur den Schlagschatten von je einem dieser zwei Teile konstruieren.

Liegt S in einer Ebene E, so zeichnen wir am besten die Schnittlinie h dieser Ebene mit der Ebene H. Auf h liegen die Grenzpunkte. Wir wollen zum Schlusse zeigen, mit wie wenig Linien die Konstruktion der Grenzpunkte für den Kugelschatten ausgeführt werden kann.

Die Ebene des Selbstschattenkreises wird durch die Spurparallelen $s_1 s_2$, welche durch den Mittelpunkt M der Kugel gehen, bestimmt (siehe vorstehende Figur). Die orthogonal symmetrischen Linien zu s_1'' , s_2' schneiden s_1' , s_2'' in den respektiven Punkten P, Q der Linie h. Ihre Umlegung (h) giebt die Schnittpunkte G, H der Geraden h mit dem Selbstschattenkreise. Ihre Schatten sind die Grenzpunkte des Schlagschattens.

Berichtigung.

In Heft 1, S. 60, (Heichung 2) muss rechts beim zweiten Faktor des zweiten Gliedes der Exponent 2 gestrichen und beim dritten Gliede der Koeffizient ρ hinzugefügt werden.

- Bohltmunch, Dr. P., Prandent der physikalisch-technischen Reichsanstalt in Charlottenburg, Leitfaden der praktischen Physik mit einem Anhang das absolute Man-System. S. vermehrte Aufl. [XVI n. 192 S. m. mahl: Textifg.] gr. S. 1896. Biege in Lord geh. n. # 7.—
- Lie, Sophus, Geometrie der Berührungstransformationen Dargedell on Scenes Lat and Gross Scarress in 2 Bladen, 1 Band Mit Figure im Test, [XII n 694 S.] gr. s. 1896, geh. n. # 24.
- Minkowski, Dr. Hermann, o. Professor der Mathematik an der Universitä Kunigsborg O/Pr., Geometrie der Zahlen. In zwei Laeferungen. Erste Lieferung., [240 S.] gr. 8. 1826 geb. n. 4 8.—
- Pittaker's, Julius, gesammelte wissenschaftliche Abhandlungen. In Auftrag der Egl Gesellschaft der Wissenschaften zu Göttingen berausgeg, von A. Schrousveiss u. Fu. Pocker. In 2 Bänden, gr. 8. geb. n. # 50.—
 - I Book Mathematische Akhandiungen Brez von A Schussyntes Mit soom Bill ness Pinckers und 13 in den Text gedruckten Piguren. (XXXVI n. 020 8.) 400
 - 11 Cand : Physicalization Abbandings n Brig von Fn. Poenga. Min is Textingues and a Tursin [XVIII n et al. S.] 1866 n -8 36 -
- Schlogel, Dr. V., Professor an der Gewerbeschule in Hagen, die Grassmann selve Ausdehnungslehre Ein Beitrag zur Geschiehte der Mathematik is don letzten Hinfrig Johren. [44 S.] gr. 8 1896, geh n. # 2-
- Store, Dr. Otto, ord. Professor an der Universität zu Innebruck, Grundsüge der Differential- und Integralrechnung. In 2 Theilen. II. Theile Complexe Verlanderliche und Functionen. Mit 33 Figuren im Text [IX n 338 S.] gr. 5 1896. geh. n. 48,-
- Volkmann, P., ord. Professor an der Universität Königsberg i. Pr., orkenntnis (henretische Grundwäge der Katurwissenschaften und ihre Be «Lohungen zum Geisteslahen der Gegenwart Allgemein wissenschaft liche Vorträge. [XII o. 181 S.] gr. 8. 1896. geb. n. # 6.—
- Wallner, Adolph, Lehrbuch der Experimentalphysik. 4 Bande. Erster Band. Allgemains Physik und Akustik. Pänfte, vielfach ungescheitete und verbesserte Auf. Mit 321 in den Text gedruckten Abbildungen und [X n. 1000 S l gr. 8, 1895, geh. n. .# 12,-

Zweiter Band. Die Lehre von der Würme, Fünfte, vielfach Abbilderigen und Figuren, [XI a. 936 S.] gr. 8. 1896, geh. a. # 12.

Sternel Lif, Magnetismos and Elektricithi, by units der Press. Band IV, Lohre so

INHALT.

W Assistant worker im Determinanten einer Matrix. Von Dr. The Transferring Von Dr. W. Haveker Photochong funtten Grades in elementarer Darrettellung Von Dr. W. Haveker Rhort Class Facots flow decitedingen Fluchtpanktschiene. Von R. Manner Inc. paragre kelle inchen Lage hallinenrer ebener Felder. Von Dr. Kommun im paragre kelle inchen der Machanik.

Ther can Problem der Muchanik. Von A. Kanz. Ener Anticalta une der Schattenlehre. Von Dr. Cm. Berra.

Historisch-litterarische Abteilung (besonders pagimert). Rezensionen: "

Emergons, Dr. Acnost, Ein althabylonischer Fehlerphan. Von Caston 10	
r. Jacons, Himman, Das Volk der Siebener-Zähler. Von Caston 42	
Renca, Junes, Das Quadrivium aus Severm Bar Saldet's Buch the	
Dialogo, Von Caston	
HEATH, T. L., Apollonius of Perga Treatine on come sections. Von	
CANTOR	
Kmas, Casa Perus, Cher einige Eltere Bearbeitungen des Buch-	
Mercan, Can Fa., Henricus Grammateus und sein Algorismus de	
integris: Von Carron . At Otermen, Stromero, Jakob Ziegler. Von Carron	
Cama, A ed Favaro, A., Bibliografia Galileiana Von Caston 4	
Tooma, Dr. Eaxar, Ober die Begründung der Intnitesimalrechnung	
durch Newton and Leibniz. Von Carron	
Bayen, Jacques, Le mathématicien Franc-Comtois François Joseph	
	ő.
Massons, Prof. P., Notice sur les travaux mathematiques de Engunes	
Charles Catalan. Von Cavron	
	2
Momera, A. Nepri e Varren, T., Questioni e formule di geometria	
Louis, Giso, Il passato ed il presente delle principali teori gen-	
	п
Schnöben, E., Vorlesungen über die Algebra der Logik. Von J. Léwozn. 6.	
Schousering, A. and Pockars, Vn., Julius Phickers gesammelte	
	3
Verosion, G., Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten geradliniger Einhelten in elementarer	
and the state of t	
Knarra, W., Bemerkungen über Veromone transfinite Zahlen. Von	
W. Fr. Mayen	
ALC: A CONTRACT OF THE PARTY OF	'n
	4
Hoxynein, Joseph, Der logische Algorithmus in seinem Wesen, in	
seiner Anwendung und in seiner philosophischen Bedeutung	
Von Max Mayer	ы
Lamaces, Prof. Jos., Die Grundlehren der ebenen Trigonometrie	
Von Max Meyen	
Grand, Dr. Jenns, Zur Konstruktion des Schwerpunktes eines ehenem	
	ij.
Paislevi., P., Legons sur l'intégration des équations différentielles	
raphie vom 26. November 1896 bis 28. Januar 1897	ĸ.

Alle Sendungen

für die allgemeine Abteilung dieser Zeitschrift sind an Prof. Dr. R. Mchmke, Stuttgart, Immenhoferstrasse 4¹¹¹, für die historisch-litterarische Abteilung an Hofrat Prof. Dr. M. Cantor, Heidelberg. Gaisbergstr. 15, zu richten. — Die Zeitschrift erscheint in Bänden von "e. 6 Heften, der Preis des Bandes von 36 Druckbogen beträgt 20 Mark. Alle Buchhandlungen und Postanstalten nehmen Bestellungen an.

Brunk von B. G. Yeubner in Dresden, Zwingerstr. 20. Verlag von B. G. Tenbuse in Leipzig, Process of

ZEITSCHRIFT

F1773

MATHEMATIK UND PHYSIK.

BRURUNDET 1856 DURCH

O. SCHLÖMILCH.

PROBER BERAUSGEGEBEN VON O. Schlänben (1856-1858), B. Witzermer (1856-1859), M. Canton (1859-1896), E. Kam. (1860-1890).

GEGENWÄRTIG HERAUSGEGEREN

TON

Da. R. MEHMKE UND DR. M. CANTOR

42. BAND. S. HEFT.

MIT SO TEXTFIGURES.

Ausgegeben am 6 Juli 1897.

LEIPZIG, VERLAG VON B. G. TEUBNER. 1897.

Beilagen von Siemens & Halske in Berlin, dem Internationalen Barbematiker-Kongress in Zürich und B. G. Tenbuer in Leipzig. Enneper, Post Dr. A., Elliptische Funktionen. Theorie und Geschichte. Aliademische Vorträge. Zweite Auflage. Neu bearbeitet und berausgegeben von Prof. Dr. Felix Müller. Lex.-8. geb. 18 Mark.
omme. Hofest, Prof. Dr. J.. Die Kegelschnitte in rein projectiver Be-

Thomae, Holmit, Prof. Dr. J., Die Kegelschnitte in rein projectiver Behandlung, 2c 8. geh. 6 Mark.

Thomae, Hofmt, Prof. Dr. J., Abriss einer Theorie der Funktionen einer complexen Veränderlichen und der Thetafunktionen. Dritte, erhellich

Thomae, Prof. Dr. J., Sammlung von Formein, welche bei Anwendung der elliptischen und Rosenhain'schen Funktionen gebraucht werden.

Thomae, Prof. Dr. J., Ueber eine specielle Klasse Abel'scher Funktionen.

Thomae, Prof Dr J., Ueber eine Funktion, welche einer linearen Differential - und Differenzen-Gleichung IV. Ordnung Genüge leistet, gr. 4. goh. 1 Mark 50 Pf.

Repetitorium der analytischen Geometrie, gr. 8. geb. 1 Mark 20 lbf. Hofmann, Dr. F. Methodik der stetigen Deformation von zweiblättrigen Riemann'schen Flächen. Ein Uebungsbuch für den geometrischen Teil ter Funktionentheorie, gr. 8. geh. 2 Mark.

Rulf, Prof.W., Elemente der projektivischen Geometrie, gr. 8. geh. 2 M. 50 Pf. Rean. Dr. O. Analytische Untersuchungen im Gebiete der trigonometrischen Reihen und der Fourier'sehen Integrale. Zwelte, verbesserte

und vermehrte Auflage, gr. 4. geh. 5 Mark 50 Pf.

Odstreil, Prof. Dr. J., Kurze Anleitung zum Rechnen mit den (Hamiltonschen) Quaternionen. gr. 8. geh. 2 Mark 25 Pf.

Hochheim, Prof. Dr. A., Käfi fil Hisäb (Genügendes über Arithmetik des Abu Bekr Muhammed Ben Alhusein Alkarkhi. 3 Hefte gr. 4. geb. 3 Mark 90 Pf.

Hochhelm, Dr. A., Ueber die Differentialeurven der Kegelschnitte, gr. S. geh. 3 Mark.

Hochheim, Dr. A., Ueber Pole und Polaren der parabolischen Curven III. Ordnung, gr. 4. geh. 1 Mark.

Langer, Dr. P., Die Grundprobleme der Mechanik. Eine kosmologische Skizze. gr. 8. geb. 1 Mark 80 Pf.

Frege. Dr. G., Begriffsschrift. Eine der acithmetischen nachgebildete Formelprache des veinen Denkens, gr. 8. geh, 3 Mark

Radicke. A. Die Recursionsformeln für die Berechnung der Bernoulli-

sehen und Euler'schen Zahlen, gr. 8. geh. 1 Mark 20 Pf.

Schobloch, Dr. A., Ueber Beta- und Gammafunktionen. gr. 4. geh. 60 Pf. Dronke, Dr. A., Einleitung in die höhere Algebra, gr. 8. geb. 4 M. 50 Pf. Günther, Prof. Dr., Studien zur Geschichte der mathematischen und physikalischen Geographie. gr. 8. geh. 12 Mark.

Günther, Prof. Dr., Die Lehre von den gewöhnlichen und verall-

gemeinerten Hyperbelfunktionen. gr. 8. geh. 12 Mark.

Zu beziehen durch alle Buchhandlungen des In- und Auslandes.

Ende November 1898 erschien und vom Verfasser (Budapest, II. Bezirk) DIE

ELEKTRODYNAMISCHEN GRUNDGESETZE

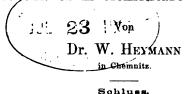
EIGENTLICHE ELEMENTARGESETZ

FRANZ KERNTLER.

8" 68 Seiten. — Preis 1 ft. 20 kr. 5, W. (2 Mark);

Inhaltsabersicht: Einfeitung (2 S.). Die Ampère'sche Annahme und alle sus ihr resultirenden Gesetze (17 S.). Die allgemeinste Annahme und die OO Desich ergebenden (iesetze (10 S.). Maxwells allgemeines elektrodynamisches (19 juli-gesetz (4 S.). Das eigentliche Elementargesetz und dessen Begröndung (7 S.) Valuere Durstellung des eigentlichen Elementargesetzes (9 S.). Das Varhalton

Die Transformation und Auflösung der Gleichung fünften Grades in elementarer Darstellung.



14. Auflösung der Hauptgleichung.

 $y^5 + 5ay^2 + 5by + c = 0$

Wir fanden für die Hauptgleichung:

die Zerlegung:

$$y = p \eta_1 + q \eta_2,$$
wobei

$$\begin{cases} \eta_1 = -\frac{2\sqrt{3}f}{t - \sqrt{8}f}, \\ \eta_2 = +\frac{2\sqrt{3}f}{t + \sqrt{8}f}. \end{cases}$$
Weil nach 16):

$$p = \frac{1}{2}(s + \sqrt{r}),$$

$$q = \frac{1}{2}(s - \sqrt{r}),$$

so ergiebt die Zusammenstellung:

2)

64)
$$y = -2 \cdot \frac{3sf + t\sqrt{3rf}}{t^2 - 3f},$$
 und wird noch
$$W = \frac{H}{t^3 - 3f}$$

berücksichtigt, so erscheint der Ausdruck:

$$(55) y = -2 \cdot \frac{3sfW + tW \cdot \overline{3rf}}{H}.$$

Hier sind für f, H, t, W die früher angegebenen Formen einzutragen, während das Verhältnis $y_1:y_2$ der Ikosaedergleichung 37) zu entnehmen ist; die übrigen Grössen sind in Abschnitt 6 einzusehen. Es ist wichtig zu bemerken, dass die Irrationalität $\sqrt{3rf}$ nur eine scheinbare ist. Beachtet man nämlich einerseits die Beziehung:

Zeitschrift f. Mathematik u. Physik. 42. Jahrg. 1897. 3. Heft.

114 Die Transformation und Auflösung der Gleichung fünften Grades etc.

$$h_1 - h_2 = \chi \sqrt{r_1},$$

wo z das r nur rational enthält, anderseits die Gleichung:

39a)
$$h_1 - h_2 = \frac{T}{24 f^2 \sqrt{3} f}$$
, so wird: $\sqrt{3rf} = \frac{T}{24 \pi f^2}$

thatsächlich rational.

Bevor wir die transcendente Auflösung der Ikosaedergleichung in Angriff nehmen, womit obige Lösungen erst ihren definitiven Abschluss finden, sei über allgemeine Gleichung fünften Grades:

1)
$$x^5 + a_1 x^4 + a_2 x^3 + a_3 x^2 + a_4 x + a_6 = 0$$

folgendes bemerkt. Die Tschirnhaus-Transformation, vermöge welcher die Gleichung 1) auf eine Hauptgleichung reduziert wird, besitzt jedenfalls die Form:

$$x = b_0 + b_1 y + b_2 y^2 + b_3 y^3 + b_4 y^4$$

wobei nun

$$y = p\eta_1 + q\eta_2$$

zu setzen ist. Aber das Ergebnis kann nach den Auseinandersetzungen in Abschnitt 4) umgestaltet werden in

68)
$$x = A\eta_1^2 + B\eta_2^2 + D\eta_1 + E\eta_2 + F,$$

wobei die A bis F rational aus a_1 bis a_5 zusammengesetzt sind und ausserdem neben der Quadratwurzel aus der Discriminante der Gleichung 1) die in Abschnitt 2 erwähnte accessorische Irrationalität enthalten. Mit a_1 verschwindet gleichzeitig F, mit a_2 verschwinden A und B, das heisst, man kommt zur Hauptgleichung zurück (vergl. A. 14 und 15).

15. Die Differentialresolvente der Ikosaedergleichung.

Man frage nach der linearen Differentialgleichung (Differentialresolvente) zweiter Ordnung, welche die Veränderlichen y_1 und y_2 als Fundamentalintegrale besitzt, das heisst also, nach der Differentialgleichung, welcher die Wurzeln des Gleichungssystems:

69)
$$f(y_1, y_2) = k \text{ und } H(y_1, y_2) = u$$

genügen, unter f, H die Formen 35) und 38), unter k eine Konstante und unter u die unabhängige Veränderliche verstanden. Es ergiebt sich unmittelbar:

$$20 T \frac{dy_1}{du} = \frac{\partial f}{\partial y_2},$$
$$20 T \frac{dy_2}{du} = -\frac{\partial f}{\partial y},$$

wobei sich T als Funktionaldeterminante von f und H herausstellt und ausgeführt mit dem Ausdruck 40) zusammenfällt.

Eine nochmalige Differentiation nach u liefert:

$$T^2 \frac{d^2 y_i}{du^2} = -T \frac{dT}{du} \cdot \frac{dy_i}{du} - \frac{11}{400} H' y_i, \qquad (i=1, 2)$$

wo H' die Hessesche Determinante von f wird und ausgerechnet genau mit dem früheren H übereinstimmt, weshalb auch der Strich wieder unterdrückt werden kann. Beachtet man die Identität:

43)
$$T^3 = 12^8 f^5 - H^3$$

und ersetzt u durch H, so gelangt man zur Differentialresolvente der Ikosaedergleichung:

70)
$$(12^{8}f^{5} - H^{3})\frac{d^{2}y}{dH^{3}} - \frac{3}{2}H^{2}\frac{dy}{dH} + \frac{11}{400}Hy = 0,$$

welche y_1 und y_2 als partikuläre Integrale besitzt.

Führt man den Ikosaederparameter

$$J = \frac{H^3}{12^3 f^5}$$

als neue Veränderliche ein, dann entsteht die Differentialgleichung der hypergeometrischen Reihe:

71)
$$J(1-J)\frac{d^3y}{dJ^2} + \left[\gamma - (\alpha + \beta + 1)J\right]\frac{dy}{dJ} - \alpha\beta y = 0,$$

in welcher die Elemente α , β , γ folgende Werte haben:

72)
$$\alpha = \frac{11}{60}, \quad \beta = -\frac{1}{60}, \quad \gamma = \frac{2}{3},$$

und damit ist alles in wohlbekannte Bahnen geleitet.

Streifen wir auch kurz die Verallgemeinerung, welcher der obige Ansatz fähig ist.

Es mögen f und H irgend zwei homogene rationale Funktionen der Veränderlichen y_1 und y_2 vorstellen, und man setze wie oben die beiden Gleichungen 69) an. Jedenfalls existiert jetzt eine homogene lineare Differentialgleichung zweiter Ordnung, für welche y_1 und y_2 zwei wesentlich verschiedene partikuläre Integrale vorstellen; es frägt sich nur, wie f und H beschaffen sein müssen, damit die Koeffizienten dieser Differentialgleichung rationale Funktionen der unabhängigen Veränderlichen u = H werden.

Setzt man f vom Grade n voraus, so liefert derselbe Differentiations-prozess wie vorhin die Beziehung:

73)
$$G^{2} \frac{d^{3}y}{du^{2}} + \frac{1}{2} \frac{dG^{2}}{du} \cdot \frac{dy}{du} + \frac{F}{n-1}y = 0,$$
 wobei

74)
$$F = \begin{bmatrix} \frac{\partial^2 f}{\partial y_1^2} & \frac{\partial^2 f}{\partial y_1 \partial y_2} \\ \frac{\partial^2 f}{\partial y_1 \partial y_1} & \frac{\partial^2 f}{\partial y_2^2} \end{bmatrix}, \quad G = \begin{bmatrix} \frac{\partial f}{\partial y_1} & \frac{\partial f}{\partial y_2} \\ \frac{\partial H}{\partial y_1} & \frac{\partial H}{\partial y_2} \end{bmatrix}.$$

Lässt man nun F mit H bis auf einen numerischen Faktor zusammenfallen und berücksichtigt nur solche Fälle, in denen G^2 rational

durch f = k und H = u ausdrückbar wird, so stellt 73) in der That die gewünschte Differentialresolvente des vorliegenden Formenproblems dar. Fälle der gedachten Art können aber, wie von anderer Seite her bekannt ist, wirklich eintreten, und zwar kommen hier dreigliedrige Identitäten von der Form:

$$G^{2} = \lambda H^{3} + \mu f^{r}$$

in Frage. Da f vom n^{ten} , H vom $2(n-2)^{\text{ten}}$, G vom $3(n-2)^{\text{ten}}$ Grade ist, so bestimmt sich die ganze positive Zahl ν durch

$$\nu = \frac{6(n-2)}{n},$$

und es ergeben sich für n=3, 4, 6, 12, das heisst $\nu=2$, 3, 4, 5 die einzig möglichen und wirklich vorhandenen Fälle. Insbesondere gelangt man zu den Formen der regulären Polyeder mit ihren Resolventen und erzielt eine definitive Auflösung durch die hypergeometrische Reihe, deren Elemente die Werte:

77)
$$\alpha = \frac{n-1}{6(n-2)}, \quad \beta = \frac{-1}{6(n-2)}, \quad \gamma = \frac{2}{3}$$

haben (vergl. A. 12).

Unser Ansatz lässt sich auch auf ternäre Formen ausdehnen, sobald das volle Formensystem durch die Originalform und drei zugehörige Kovarianten abgeschlossen ist. Es erscheint zweckmässig, das Problem dadurch zu reduzieren, dass man eine der Formen der Null gleich setzt, eine Beschränkung, deren nachträgliche Aufhebung möglich und besonders bemerkenswert ist. Verschwindet die Originalform, so findet zwischen den drei Kovarianten eine dreigliedrige Identität statt, genau wie bei binären Formen, und zwar ergiebt sich, wenn n den Grad der Originalform bezeichnet, der Exponent v der ersten Kovariante aus

78)
$$\nu = \frac{2(4n-9)}{n-2},$$

weshalb hier nur die Fälle n=3,4, das heisst $\nu=6,7$ möglich sind. Thatsächlich erledigt man auf diese Weise die ternären kubischen Formen ganz allgemein, dann die besondere Form:

$$\varphi = y_1^n + y_2^n + y_3^n$$

und endlich jene ternäre biquadratische Form:

$$\varphi = y_1^3 y_2 + y_2^3 y_3 + y_3^3 y_1,$$

welche der linearen Substitutionsgruppe vom 168. Grade angehört.

Die Differentialresolventen werden entsprechend von der dritten Ordnung, und man gewinnt, was die letzte Form angeht, sehr leicht jene Differentialgleichung, welche Brioschi und Hurwitz unter anderen Gesichtspunkten in den Math. Annalen, XXVI. Bd. S. 106 und 117 gefunden haben. — Wir wollen indessen diese abseits liegenden Fragen hier nicht weiter verfolgen.

16. Die Resolventen der η höheren Grades.

In den folgenden drei Abschnitten sollen einige Fragen erledigt werden, die zwar nicht die Gleichungen fünften Grades, wohl aber die Transformationstheorie, beziehentlich die η -Resolventen im allgemeinen betreffen.

Am Schlusse des dritten Abschnitts haben wir bereits angedeutet, dass man zwei in der Form völlig übereinstimmende Gleichungen $(2n+1)^{\text{ten}}$ Grades mit einem wesentlichen Parameter durch die Integrale:

79)
$$h_{i} = x \int_{0}^{\zeta_{i}} [\zeta_{i}(1-\zeta_{i})]^{n} d\zeta_{i} \qquad (i=1,2)$$

definieren kann. Wir wählen \varkappa so, dass mit $\zeta_i = 1$ gleichzeitig $h_i = 1$ werde, mithin

$$1 = \varkappa \int_{0}^{\pi} [\xi(1-\xi)]^{n} d\xi,$$

das heisst:

$$\varkappa = \frac{(2n+1)!}{n! \, n!}.$$

Diese allgemeinen ξ -Resolventen sind dann durch die Beziehung 7) $\xi_1 + \xi_2 = 1$ aneinander gebunden, und ihre absoluten Parameter sind Komplemente, also

$$b_1 + b_2 = 1.$$

Für $\xi_i = \eta_i^{-1}$ gelangen wir zu den verallgemeinerten η -Resolventen, die im Falle n=2 genau mit den betreffenden Resolventen fünften Grades zusammenfallen und mittelst

4)
$$\eta_1 \eta_2 = \eta_1 + \eta_2$$
 ineinander transformiert werden können. Die Form einer solchen η -Resolvente ist:

81)
$$h\eta^{2n+1} + \alpha_n\eta^n + \alpha_{n-1}\eta^{n-1} + \cdots + \alpha_1\eta + \alpha_0 = 0$$
, wobei die α nur von n abhängen, während die n -Koeffizienten der Potenzen η^{2n} bis η^{n+1} überhaupt nicht vorhanden sind.

Aus den η-Resolventen lässt sich vermöge

$$y = p\eta_1 + q\eta_2$$

eine allgemeinere Resolvente mit drei Parametern zusammensetzen, in welcher die Potenzen y^{2n} bis y^{n+1} fehlen, und zwar deckt sich bei den Gleichungen fünften Grades diese Resolvente mit der Hauptgleichung; bei den Gleichungen höheren Grades erreicht man eine entsprechend allgemeine Form natürlich nicht.

Es möge noch die symmetrische homogene Resolvente Platz finden, welcher das Verhältnis der beiden η genügt. Sie lautet (vergl. Nr. 13):

118 Die Transformation und Auflösung der Gleichung fünften Grades etc.

$$82) \begin{cases} h_1 \left[\eta_1^{2n+1} + \binom{2n+1}{1} \eta_1^{2n} \eta_2 + \dots + \binom{2n+1}{n} \eta_1^{n+1} \eta_2^n \right] \\ -h_2 \left[\eta_2^{2n+1} + \binom{2n+1}{1} \eta_1 \eta_2^{2n} + \dots + \binom{2n+1}{n} \eta_1^n \eta_2^{n+1} \right] \end{cases} = 0$$
and geht aus
$$(\eta_1 + \eta_2)^n = 0$$

hervor, falls die ersten (n+1) Glieder mit dem Faktor h_1 , die letzten (n+1) Glieder mit den Faktor $-h_2$ versehen werden.

Auch die Resolvente von Brioschi findet hier ihr Seitenstück. Setzt man wie in Abschnitt 12:

83)
$$\zeta_1 = \frac{1}{2}(1-v)$$
, resp. $\zeta_2 = \frac{1}{2}(1+v)$,

so entsteht:

stent:
$$h_1 = -\frac{\pi}{2^{2n+1}} \int_{1}^{v} [1-v^2]^n dv, \quad \text{resp. } h_2 = \frac{\pi}{2^{2n+1}} \int_{-1}^{v} [1-v^2]^n dv;$$

aber diese beiden Gleichungen sind wegen der Bedingung 5) voneinander nicht verschieden, sie können zusammengefasst werden in

84)
$$\int_{0}^{v} [1-v^{2}]^{n} dv = \frac{2^{2n}(1-2h_{1})}{n} = \frac{2^{2n}(2h_{2}-1)}{n},$$

und dieses ist die betreffende Resolvente $(2n+1)^{\text{ten}}$ Grades, in welcher gerade Potenzen nicht vorkommen, abgesehen vom Absolutglied, welches den wesentlichen Parameter der Gleichung bildet. Der Übergang zu den η -Resolventen wird durch

$$v = \frac{\eta_1 - 2}{\eta_1} = \frac{2 - \eta_2}{\eta_3}$$

vermittelt. — Bildet man die Ableitungen von h nach ξ , η oder v, so erhält man natürlich binomische Ausdrücke, weshalb auch die Diskriminanten aller dieser speziellen Resolventen die Gestalt eines Binoms erlangen.

17. Resolventen der η vom siebenten Grade.

Betrachten wir kurz den Fall n=3. Aus 79) ergiebt sich für $\xi_1=\eta_1^{-1}$ unmittelbar:

86)
$$h_1 \eta_1^7 = 35 \eta_1^3 - 84 \eta_1^2 + 70 \eta_1 - 20,$$

und hieraus leitet man mittelst 4) noch die simultanen Resolventen:

87)
$$\begin{cases} h_1 \eta_1^6 \eta_2 = 35 \eta_1^3 - 49 \eta_1 + \eta_2 + 20, \\ h_1 \eta_1^5 \eta_2^2 = \eta_2^2 + 35 \eta_1 + 5 \eta_2 - 20, \\ h_1 \eta_1^4 \eta_3^3 = \eta_2^3 + 4 \eta_3^2 + 10 \eta_2 + 20 \end{cases}$$

ab; andere entsprechende ergeben sich durch gleichzeitige Vertauschung von η_1 mit η_2 und h_1 mit h_2 .

Die Resolvente in v wird nach 84):

88)
$$5v^7 - 21v^5 + 35v^8 - 35v + 16(1 - 2h_1) = 0.$$

Bestimmen wir nun die Koeffizienten einer Gleichung:

89)
$$y^7 + 7ay^3 + 7by^2 + 7cy + d = 0$$

derartig, dass ihr die lineare Verbindung

$$y = p \eta_1 + q \eta_2$$

genügt. Genau dieselben Prinzipien, welche wir bei den Gleichungen fünften Grades (vergl. Abschnitt 5) in Anwendung brachten, liefern hier:

$$\begin{cases} p^4h_1^{-1} + q^4h_2^{-1} = -\frac{1}{5}a, \\ p^4h_1^{-1}(3p - 5q) - q^4h_2^{-1}(5p - 3q) = \frac{1}{4}b, \\ p^4h_1^{-1}(p^2 - 4pq + 5q^3) + q^4h_2^{-1}(5p^2 - 4pq + q^2) = -\frac{1}{10}c, \\ \begin{cases} p^4h_1^{-1}(p^3 - 7p^3q + 21pq^3 - 35q^3) \\ -q^4h_2^{-1}(35p^3 - 21p^2q + 7pq^2 - q^3) = \frac{1}{20}d, \end{cases}$$

und nimmt man die Koeffizienteu a, b, c, d als gegeben an, so lassen sich die Grössen $h_1, h_2; p, q$ leicht berechnen. Aus den ersten beiden Gleichungen ergiebt sich:

91)
$$h_1 = -\frac{160 p^4 (p-q)}{4 a (5p-3q)-5b}, \quad h_2 = -\frac{160 q^4 (p-q)}{4 a (3p-5q)+5b};$$

führt man diese Werte in die letzten beiden Gleichungen ein und setzt:

$$16) p-q=\sqrt{r}, p+q=s,$$

so folgt:

92)
$$20ar + 5bs - 4c = 0$$
 und $10br + 10cs - d = 0$,

woraus:

93)
$$r = \frac{1}{10} \cdot \frac{bd - 8c^2}{b^2 - 4ac}, \quad s = -\frac{2}{5} \cdot \frac{ad - 2bc}{b^2 - 4ac}$$

Infolgedessen gehen die Ausdrücke für die absoluten Parameter über in: $(s+v_r^{-})^4 \cdot v_r^{-}$

94)
$$\begin{cases} h_1 = -\frac{10(s+\sqrt{r})^4 \cdot \sqrt{r}}{4a(s+4\sqrt{r})-5b}, \\ h_2 = +\frac{10(s-\sqrt{r})^4 \cdot \sqrt{r}}{4a(s-4\sqrt{r})-5b}; \end{cases}$$

sie sind also einander konjugiert und führen, in die Gleichung:

$$b_1 + b_2 = 1$$

eingesetzt, zu jener rationalen Bedingungsgleichung zwischen den Koeffizienten der Gleichung 89), unter welcher diese in die η -Resolventen siebenten Grades transformiert werden kann. — Berücksichtigt man die Beziehungen 11), 16) und 85), dann gelangt man zu

$$y = 2 \frac{s + v \vee r}{1 - v^*},$$

womit die Gleichung 89) auf 88) reduziert ist.

Die Auflösung der speziellen Resolventen in η und v soll hier nicht weiter verfolgt werden; es möge aber noch jene Resolvente siebenten Grades mitgeteilt werden, welche unter transformationstheoretischen Gesichtspunkten jener fünften Grades von Gordan und Klein entspricht (vergl. Abschnitt 13). Sie wird charakterisiert durch q = p, das heisst ihr genügt:

96)
$$y = p(\eta_1 + \eta_2) = p \eta_1 \eta_2 = \frac{4p}{1-v^2},$$

und ihre Form ist:

97)
$$h_1 h_2 y^7 - 35 p^4 y^3 - 56 p^5 y^2 - 140 p^6 y - 400 p^7 = 0,$$

oder einfacher, z. B. für $p = \frac{1}{2}$

98)
$$Ky^7 - 35y^3 - 28y^2 - 35y - 50 = 0,$$

wobei $K = 16 h_1 h_2$ den einzigen wesentlichen Parameter vorstellt.

18. Resolventen der η für die Gleichung sechsten Grades.

Verlangt man von der Hauptgleichung sechsten Grades:

99)
$$y^6 + 6ay^3 + 6by^2 + 6cy + d = 0,$$

dass sie die wesentliche Eigenschaft einer η -Resolvente annehmen, das heisst, dass sie vermöge der Substitution:

$$yz = y + z$$

in eine Gleichung derselben Form übergehe, so bleiben nur noch zwei Parameter willkürlich, wie denn auch eine Reduktion der Gleichung sechsten Grades auf eine Resolvente mit nur einem Parameter bisher nie erreicht worden und höchstwahrscheinlich unmöglich ist. Indem wir des weiteren ähnlich wie in Abschnitt 3 vorgehen und die y, z mit η_1 , η_2 vertauschen, gelangen wir zu folgenden η -Resolventen:

100)
$$\begin{cases} \alpha) & h_{1}\eta_{1}^{6} - 10(1+g)\eta_{1}^{8} + 15(2+g)\eta_{1}^{2} \\ & - 6(5+g)\eta_{1} + 10 = 0, \\ \beta) & h_{2}\eta_{2}^{6} - 10(1-g)\eta_{2}^{3} + 15(2-g)\eta_{2}^{2} \\ & - 6(5-g)\eta_{2} + 10 = 0, \end{cases}$$

wobei

101)
$$h_1 = \frac{1}{2}(h+g), \quad h_2 = \frac{1}{2}(h-g)$$

und

$$\eta_1 \eta_2 = \eta_1 + \eta_2$$

Die Grössen g und h oder auch g, h_1 , h_2 ; letztere jedoch mit der Bedingung:

$$102) h_1 - h_2 = g$$

sind die absoluten Parameter. Indem g einfach das Vorzeichen wechselt, verwandelt sich eine Resolvente in die andere.

Man kann sich noch die simultanen Resolventen mit $\eta_1^{5}\eta_2$, $\eta_1^{4}\eta_2^{5}$, etc. verschaffen und sodann mittelst:

$$y = p \eta_1 + q \eta_2$$

eine neue Gleichung, die Hauptresolvente, zusammensetzen, welche genau so allgemein ist wie 99). Wir unterlassen es, die weitere Rechnung durchzuführen, da eine Auflösung der einen oder anderen Resolvente zur Zeit nicht geleistet werden kann. Immerhin dürften obige Resolventen vom Gesichtspunkte der Transformationstheorie aus Interesse gewähren.

Um hier nur eines zu erwähnen, sei auf die Jerrard-Transformation hingewiesen, vermöge welcher die reduzierte Form:

103)
$$y^6 + 6by^2 + 6cy + d = 0$$

hergestellt wird. Verschwindet nämlich a, so ist in der Hauptgleichung $\Sigma y^3 = 0$; anderseits ist in der Hauptresolvente:

und hier kann die Klammergrösse dadurch annulliert werden, dass man das Verhältnis p:q aus einer rein kubischen Gleichung bestimmt (vergl. Abschnitt 9).

Von den simultanen Resolventen seien zwei angeführt, die sich durch ihre Symmetrie auszeichnen und daher sofort eine Verallgemeinerung auf den Grad 2n zulassen. Die eine lautet:

104)
$$\begin{cases} h_1 \eta_1^6 + 6 h_1 \eta_1^5 \eta_2 + 15 h_1 \eta_1^4 \eta_2^2 + 10 (h_1 + h_2 - 1) \eta_1^3 \eta_2^5 \\ + 15 h_2 \eta_1^2 \eta_2^4 + 6 h_2 \eta_1 \eta_2^5 + h_3 \eta_3^6 = 0; \end{cases}$$

sie ist homogen in den η , aber nicht homogen in den h, und sie hängt deshalb im Gegensatz zu der entsprechenden Gleichung fünften Grades (vergl. Abschnitt 4) von zwei Parametern ab.

Die andere hat folgende Gestalt:

105)
$$h_1\eta_1^3 + h_2\eta_2^3 + 3h_1\eta_1^2 + 3h_2\eta_2^2 + 6h_1\eta_1 + 6h_2\eta_2 - 20 = 0$$
 und repräsentiert eine Kurve dritter Ordnung, welche mit der in 4) enthaltenen Hyperbel $\eta_1\eta_2 - \eta_1 - \eta_2 = 0$

sechs Schnittpunkte liefert, entsprechend den sechs Wurzeln der einen oder anderen η -Resolvente.

Bemerkenswert sind gewisse spezielle η -Resolventen mit nur einem Parameter, z. B. jene für $g=\pm 1$ oder $h=\pm 1$ u. s. f. Auf erstere wird man geführt, wenn man gleich anfangs von einer Gleichung sechsten Grades mit a=0 ausgeht, und aus ihnen können mittelst der Substition 11) neue Resolventen zusammengesetzt werden, die indessen allesamt mangels eines zweiten Parameters nur Sonderfälle der Hauptgleichung 99) vorstellen.

Loci of the equations $p = \varphi^u e$ and $p = \varphi^u \psi^v e$.

By

E. W. HYDE, Cincinnati, Ohio, U. S. A.

We will consider the significance of these equations in two and three dimensional space, beginning with the former.

The letter p represents a variable point generating a locus, φ and ψ are linear point functions, e is a fixed point, and u and v are scalar functions of x and y respectively, which are real scalar variables.

Let e_0 , e_1 , e_2 be reference points for two dimensional space, and let us write

$$1) e = n_0 e_0 + n_1 e_1 + n_2 e_2,$$

the n's being scalar. φ will be defined by the equation

2)
$$\varphi()=A_0e_0\cdot e_0|()+A_1e_1\cdot e_1|()+A_2e_2\cdot e_2|(),$$
 in which the A's are scalar; so that

3)
$$p = \varphi^{u}e = A_{0}^{u}n_{0}e_{0} + A_{1}^{u}n_{1}e_{1} + A_{2}^{u}n_{2}e_{3} = \sum_{0}^{2} A^{u}ne.$$

We will first treat the case when u = x, and afterwards consider cases when u is such a function of x that some of its values are imaginary.

Only real values of x will be considered. We are then first to discuss the equation

$$p = \varphi^x e = \sum_{n=1}^{\infty} A^x n e.$$

In this equation p cannot be a unit point, for this would require that the condition $\sum_{0}^{2} A^{x}n = 0$ should be satisfied, which would not allow the variation of x. When x = 0, p = e, so that the curve always passes through e.

Differentiating 4) we have

5)
$$\frac{dp}{dx} = (\varphi^x \log \varphi)e = \sum_{0}^{2} (A^x n e \log A).$$

If p were a *unit* point, $\frac{dp}{dx}$ would be a point at ∞ on the tangent line to the locus, i. e. a vector \parallel to the tangent at p, but as the *weight* as well as the position of p varies, $\frac{dp}{dx}$ is some finite point on the tangent line. The tangent line will therefore be

$$\begin{cases} p \frac{dp}{dx} = \varphi^x e \cdot (\varphi^x \log \varphi) e \\ = A_0^x A_1^x n_0 n_1 \log \frac{A_1}{A_0} \cdot e_0 e_1 + A_1^x A_2^x n_1 n_2 \log \frac{A_2}{A_1} \cdot e_1 e_2 \\ + A_2^x A_0^x n_2 n_0 \log \frac{A_0}{A_2} \cdot e_2 e_0. \end{cases}$$

The tangent line cuts the sides e_1e_2 , e_2e_0 , e_0e_1 of the reference triangle in the three points

7)
$$\begin{cases} p \frac{dp}{dx} | e_0 = A_1^x n_1 \log \frac{A_1}{A_0} \cdot e_1 - A_1^x n_2 \log \frac{A_0}{A_2} \cdot e_2 \\ p \frac{dp}{dx} | e_1 = A_2^x n_2 \log \frac{A_1}{A_1} \cdot e_2 - A_0^x n_0 \log \frac{A_1}{A_0} \cdot e_0 \\ p \frac{dp}{dx} | e_2 = A_0^x n_0 \log \frac{A_0}{A_2} \cdot e_0 - A_1^x n_1 \log \frac{A_2}{A_1} \cdot e_1 \end{cases}$$

If Up designate the unit of p, then $Up = \varphi^x e \div \sum_{n=1}^{3} A^x n$,

8)
$$\frac{dUp}{dt} = \frac{B_0(e_3 - e_1) + B_1(e_0 - e_3) + B_2(e_1 - e_0)}{(\Sigma A^2 n)^3} \cdot \frac{dx}{dt}$$

in which B_0 , B_1 , B_2 are the coefficients of e_1e_2 , e_2e_0 , e_0e_1 , respectively, in equation 6). $\frac{dUp}{dt}$ is the velocity of p as it generates the curve.

We will now apply these results to the determination of the nature of the curve. In the first place the A's must always be positive in order to exclude imaginary points, and we shall assume for convenience $A_0 < A_1 < A_2$

which simply arranges the curve in a certain way as regards the reference triangle. If the n's are all positive e is inside the reference triangle; if n_0 is negative e has passed outside the triangle. In fact the four points

$$e_0$$
, Σne , $n_1e_1 + n_2e_2$ and $-n_0e_0 + n_1e_1 + n_2e_2$

form a harmonic range, so that, if the curve be constructed with positive values of the n's, the other cases may all be found from this. If n_0 be negative draw any ray $e_0\varepsilon$, ε being some vector, cutting the curve already constructed in p, and the side e_1e_2 in $e_0\varepsilon \cdot e_1e_3$; then the fourth harmonic to e_0 , p, $e_0\varepsilon \cdot e_1e_2$ will be a point of the locus required. The same method of course applies mutatis mutantis when n_1 or n_2 is negative.

Case (a) [see Fig. 1]. The n's all positive. When $x = -\infty$, A_1^x and A_2^x become indefinitely small compared with A_0^x and hence p approaches indefinitely near to e_0 which is its limiting position. When x = 0, p = e. When $x = \infty$, A_2^x becomes indefinitely larger than A_0^x or A_1^x , and hence p approaches coincidence with e_2 . This includes the whole range of real values of x, so that p never goes outside the reference triangle, but starts from e_0 and stops at e_2 . By eq. 6) the



tangent lines at e_0 and e_2 are e_0e_1 and e_1e_2 respectively. By eqs. 7) the tangent line cuts e_1e_2 between e_1 and e_2e_3 between e_0 and e_1e_3 between e_2e_4 and e_3e_4 are some point not between e_2e_4 and e_3e_5 . Eq. 8) shows that the velocity of e_1e_4 approaches zero near e_0e_4 or e_2e_5 as must evidently be the case. The curve is shown in Fig. 1, e_1e_4 being taken as the centroid of the triangle.

Case (b): n_0 negative. The curve will be as shown in Fig. 1. It has an asymptote parallel to the line joining e_0 with the point where the curve (a) is cut by the line $(e_0 + e_1)(e_2 + e_0)$.

Case (c): n_1 negative. The curve will have three forms according as the curve (a) cuts the line $(e_0 + e_1)(e_1 + e_2)$ in two real, coincident, or imaginary points. The last form is shown in Fig. 1. In the first form the curve has two branches, and two real asymptotes parallel to the lines joining e_1 with the points where the curve (a) cuts the line $(e_0 + e_1)(e_1 + e_2)$. The second form is parabolic, and has a double point at infinity on the line joining e_1 with the point of contact of the curve (a) with the line $(e_0 + e_1)(e_1 + e_2)$.

Case (d): n_2 negative. The curve is of similar character to the curve (b). It has an asymptote parallel to the line joining e_2 with the point where the curve (a) cuts the line $(e_1 + e_2)(e_2 + e_0)$, as shown in Fig. 1.

Let us now consider the case when u in eq. 3) is some function of x. If it is such a function that u may have all values from $-\infty$ to $+\infty$, then the locus of p will be the same as when u=x, though a part, or the whole of the curve may be repeated two or more times. If however u is a function some values of which are impossible, then the locus of p will be a portion of one of the curves already discussed. Suppose for instance, that we have

$$u = \sin x$$
, or $u = \sec x$, or $u = \sqrt{u^2 - x^2}$.

In the first case u cannot be greater than 1 nor less than -1, and hence the locus is that portion of the curves already considered lying between the points φe and $\varphi^{-1}e$. In the second case u has all values except those between -1 and +1, and hence the curve consists of two parts, one extending from e_0 to $\varphi^{-1}e$ and the other from φe to e_2 . In the third case the curve only extends from $\varphi^{-a}e$ to $\varphi^a e$. If we assume

9)
$$u = mx \pm k\sqrt{-(x^2 - a_1^2)(x^2 - a_1^2) \dots (x^2 - a_n^2)};$$

then m and k can be so taken that u will be now real, now imaginary, in succession, and the locus of p will consist of a series of disconnected portions.

For instance, if

$$u = x \pm \frac{1}{100} \sqrt{(x^2 - 1)(x^2 - 4)(9 - x^2)}$$

the curve will consist of three parts extending respectively from a point very near to $\varphi^{-3}e$ to one very near to $\varphi^{-2}e$, from one very near to $\varphi^{-1}e$ to one very near to φe , and from one very near to $\varphi^{2}e$ one very near to $\varphi^{3}e$.

We will next consider the corresponding equation in three-dimensional space, viz.

$$p = \varphi^u e = \sum_{0}^{3} A^u n c.$$

As before we treat first the case when u = x, and have, for the tangent at p, the line

11)
$$p\frac{dp}{dx} = \varphi^x e(\varphi^x \log \varphi) e = \sum \left(A_i^x A_k^x n_i n_k \log \frac{A_k}{A_i} \cdot e_i e_k\right),$$

in which l and k are to have all values from 0 to 3. Of course terms in which l = k will disappear, because $e_k e_k = 0$. The point where the tangent line pierces the reference plane $e_1 e_2 e_3$ is

12)
$$p \frac{dp}{dx} \Big| e_0 = A_1^x n_1 \log \frac{A_1}{A_0} \cdot e_1 + A_2^x n_2 \log \frac{A_2}{A_0} \cdot e_2 + A_3^x n_3 \log \frac{A_3}{A_0} \cdot e_3$$

and the points where the tangent pierces the other faces of the reference tetrahedron may be found from this by cyclic permutation of the suffixes.

If $A_0 < A_1 < A_2 < A_3$, the curve will start at e_0 , when $x = -\infty$, in the direction of e_0e_1 , and reach e_3 , when $x = \infty$, in the direction of e_2e_3 .

As in the previous case the nature of the curve will depend on the location of the fixed point e, i. e. on the signs of the n's. If e is inside the reference tetrahedron, the curve will be wholly within this tetrahedron; and in any case p will be confined to the same region of space which contains e, if we understand by a region of space the locus of all points abtained by assigning positive values to the n's in such an expression as $n_0e_0-n_1e_1+n_2e_2+n_3e_3$. There are eight such regions, and therefore eight curves, which are all harmonically related, so that, one being given, all the rest may be constructed from it. We will designate by C the curve mentioned above for which e is inside the tetrahedron $e_0e_1e_2e_3$, and will use $C_0, \ldots C_3, C_{01}, C_{02}, C_{03}$ to designate the others, the suffix indicating which term, or terms, of the value of e is negative.

The curves C_0 and C_3 are of similar character, each having a single asymptote parallel, in one case, to the line joining e_0 , with the point where C pierces the plane $(e_0 + e_1)(e_0 + e_2)(e_0 + e_3)$, and in the other to the line joining e_3 with the point where C pierces the plane

$$(e_{\bf 8}+e_{\bf 0})(e_{\bf 8}+e_{\bf 1})(e_{\bf 8}+e_{\bf 2}).$$

The curves C_1 and C_2 are also of like character and have each two asymptotes, real, coincident or imaginary, according as the respective planes $(e_1 + e_2)(e_1 + e_3)(e_1 + e_0)$, or $(e_2 + e_3)(e_2 + e_0)(e_3 + e_1)$, cut the curve C in two real, coincident, or imaginary points.

The curves C_{01} and C_{02} are of like character, each having a single asymptote whose direction may be thus found. Let p_0 be the point where C pierces the plane $(e_0 + e_8)(e_8 + e_1)(e_1 + e_2)$, then the asymptote to C_{01} is parallel to the line $p_0e_0e_1 \cdot p_0e_2e_3$. The direction of the asymptote of C_{02} may be similarly found.

The curve C_{03} has two real, coincident, or imaginary asymptotes according as the plane $(e_0 + e_1)(e_1 + e_3)(e_3 + e_3)$ cuts the curve C in

two real, coincident, or imaginary points. If these points, when real, are p_1 and p_2 , then the two asymptotes will be parallel to the lines

respectively.
$$p_1e_1e_2 \cdot p_1e_3e_0$$
 and $p_2e_1e_2 \cdot p_2e_3e_0$

If we now give to u the form of eq. 9); then, as in plane space, the curve will be made up of detached portions of the curve obtained when u = x, each portion being a double line, because, in general, the same value of u is found from two different values of x.

If two A's become equal in eq. 3), say $A_0 = A_1$, then the curve reduces to a straight line, in this case

$$(n_0e_0+n_1e_1)e_2$$

If $A_0 = A_1$ in eq. 10), that equation may be written

13)
$$p = A_0^{u}(n_0e_0 + n_1e_1) + A_2^{u}e_2 + A_3^{u}e_3,$$

which represents a plane curve of the same kind as that of eq. 3), starting from $n_0e_0 + n_1e_1$ and ending at e_3 .

If u is of such form that its only real values lie between -a and +a, say $a = a \sin x$;

then the ends of the curve, $\varphi^{-a}e$ and $\varphi^{a}e$, may be chosen arbitrarily, so long as they are in the same region, as previously defined. For let

$$p_1 = \Sigma l e$$
 and $p_2 = \Sigma m e$

be two arbitrarily chosen points; then

$$p_{1} = \sum l e = \varphi^{a \sin \frac{\pi}{2}} e = \varphi^{a} e = \sum A^{a} n e,$$
and
$$p_{2} = \sum m e = \varphi^{a \sin \frac{3\pi}{2}} e = \varphi^{-a} e = \sum \frac{n}{A^{a}} e.$$

$$\vdots \qquad l_{0} = A_{0}^{a} n_{0}, \qquad l_{1} = A_{1}^{a} n_{1}, \quad \text{etc.}$$
and
$$m_{0} = A_{0}^{--a} n_{0}, \qquad m_{1} = A_{1}^{--a} n_{1}, \quad \text{etc.}$$

$$\vdots \qquad n_{0} = \sqrt{l_{0}} m_{0}, \qquad n_{1} = \sqrt{l_{1}} m_{1}, \quad \text{etc.}$$
and
$$A_{0} = \sqrt[2a]{\frac{l_{0}}{m_{0}}}, \qquad A_{1} = \sqrt[2a]{\frac{l_{1}}{m_{1}}}, \quad \text{etc.}$$

Thus real values of the A's and n's will be found whenever the corresponding l's and m's are of the same sign, i. e. when p_1 and p_2 are in the same region.

Equation
$$p = \varphi^u \psi^v e$$
.

We will first consider the case when u = x, and v = y. Let

$$\varphi() = \sum_{k=1}^{3} A_k e_k \cdot e_k |(), \quad \text{and} \quad \psi() = \sum_{k=1}^{3} B_k e_k \cdot e_k |(),$$

while as before $e = \sum_{i=0}^{3} n_k e_i$: then we are to discuss the equation

$$p = \varphi^x \psi^y e = \sum_{k=0}^{8} A_k^x B_k^y n_k e_k.$$

This equation evidently represents a surface, since it contains two independent scalar variables. If y be given any constant value b_1 , while x varies, the equation $p = \varphi^x \psi^{b_1} e$ is of the same kind as eq. 10) and therefore represents a curve of the species already discussed. If to y be assigned a series of values $b_1 \dots b_n$ a series of such curves will be obtained. Similarly by assigning constant values $a_1 \dots a_n$ to x_n , while y varies, a second series of curves will be obtained lying on the surface. Since the two curves $\varphi^{a_m}\psi^y e$ and $\varphi^x\psi^n e$ have the common point $\varphi^{a_m}\psi^{b_n}e$, every curve of the system a will intersect every curve of the system a. Two curves of the same system can have no common point except the two points at which they all terminate. If the a's are all positive the surface will be wholly within the reference tetrahedron, while if one or more of them be negative it will be wholly outside the same. The surfaces in the different regions of space are harmonically related as in the case of the curves.

Differentiating 14) we have the two points

$$\frac{\partial p}{\partial x} = (\varphi^x \psi^y \log \varphi) e$$
 and $\frac{\partial p}{\partial y} = (\varphi^x \psi^y \log \psi) e$,

each of which is in the tangent plane to the surface at p: hence the plane is

15)
$$P_{\iota} = \varphi^{x} \psi^{y} e(\varphi^{x} \psi^{y} \log \varphi) e(\varphi^{x} \psi^{y} \log \psi) e,$$

which cuts the edges of the reference tetrahedron at

$$P_t \cdot e_0 e_1$$
, $P_t \cdot e_1 e_2$ etc.

We proceed to show that by a proper choice of values for the A's and B's equation 14) will represent a ruled surface.

Let us express y in terms of x and a new variable z by the equation y = mx + z.

Then
$$\begin{cases} p = \varphi^{x} \psi^{mx+s} e = (\varphi \psi^{m})^{x} \psi^{s} e = \sum_{0}^{3} (AB^{m})^{x} B^{s} n e \\ = (A_{0} B_{0}^{m})^{x} \left[B_{0}^{s} n_{0} e_{0} + \left(\frac{A_{2} B_{1}^{m}}{A_{0} B_{0}^{m}} \right)^{x} B_{2}^{s} n_{2} e_{3} \right] \\ + (A_{1} B_{1}^{m})^{s} \left[B_{1}^{z} n_{1} e_{1} + \left(\frac{A_{3} B_{3}^{m}}{A_{1} B_{1}^{m}} \right)^{x} B_{3}^{z} n_{3} e_{3} \right]. \end{cases}$$

Let the A's and B's be now so taken that

$$-\frac{A_1B_1^m}{A_0B_0^m} = \frac{A_1B_3^m}{A_1B_1^m} = 1;$$

then the equation of the surface becomes

17)
$$p = A_{3}^{x} B_{0}^{mx} [B_{0}^{s} n_{0} e_{0} + B_{s}^{r} n_{s} e_{s}] + A_{1}^{x} B_{1}^{mx} [B_{1} n_{1} e_{1} + B_{3}^{s} n_{3} e_{s}].$$

If in 17) some constant value be assigned to z, while x varies, p will move along the straight line

$$(B_0^s n_0 e_0 + B_2^s n_2 e_2)(B_1^s n_1 e_1 + B_3^s n_3 e_3);$$

thus, by giving a series of values to z, a series of straight lines will be obtained lying wholly in surface between the lines e_0e_2 and e_1e_3 , and the surface may be regarded as generated by the motion of a straight line terminating in these edges of the reference tetrahedron. It is therefore a ruled, and in fact a skew surface, wholly confined within the reference tetrahedron when the n's are all positive, and bounded by the four sects e_0e_1 , e_1e_3 , e_2e_3 and e_2e_0 .

If, using as before the relation 16), we assume

$$A_0 B_0^m = A_1 B_1^m = A_2 B_2^m,$$

equation 14) becomes

18)
$$p = (A_0 B_0^m)^x \sum_{k=0}^{2} B_k^x n_k e_k + (A_3 B_3^m)^x B_3^x e_3,$$

which represents a cone generated by a sect whose extremities are the point c_s and the variable point $\sum_{0}^{2} B^{i}nc$. Its vertex is therefore at c_s and it is wholly within the tetrahedron.

The two sets of curves obtained from the equation $p = \varphi^x \psi^y e$, first by assigning various constant values to x and then to y, may be arranged in three different ways as regards their terminal points.

1st The initial and terminal points of both sets may coincide.

2nd The two sets may have one terminal point in common, and the other different.

3d One set may have both of its terminals different from those of the other.

In any one of these cases the constants may be so taken as to make the surface a ruled surface.

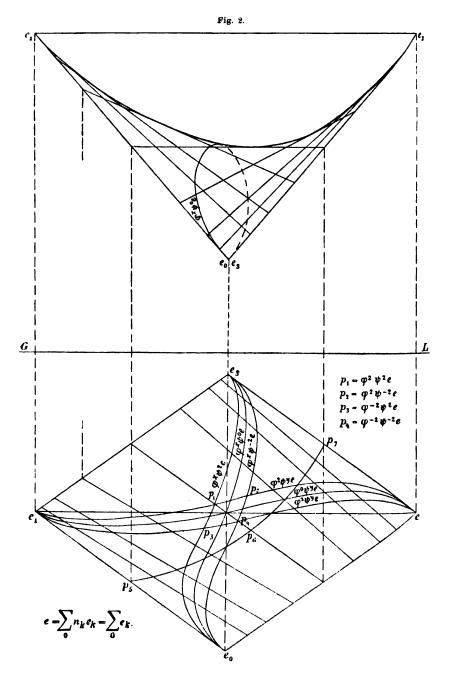
Surfaces which from their equations, written in the form

$$p = \varphi^x \psi^y e$$

appear to be different, may in fact be identical, though the sets of curves $x=a_1,\ a_2\ldots,\ y=b_1,\ b_2\ldots$ will be different; for it appears from eq. 17) that, so long as the two ratios $\frac{B_2}{B_0}$ and $\frac{B_3}{B_1}$ remain unchanged, the rectilinear generators of the surface will be the same, and therefore the surface identical no matter what values be assigned to A_0 , B_0 , A_1 and B_1 . Changes in these last however may affect materially the curves $x=a_1,a_2,\ldots,y=b_1,b_2,\ldots$ For instance the two equations

19)
$$p = 1^{x} \cdot 9^{y} e_{0} + 2^{x} \cdot 4^{y} e_{1} + 3^{x} \cdot 3^{y} e_{2} + 4^{x} \cdot 2^{y} e_{3},$$
and

20)
$$p = 1^{x} \cdot 3^{y} e_{0} + 2^{x} \cdot 4^{y} e_{1} + 3^{x} \cdot 1^{y} e_{2} + 4^{x} \cdot 2^{y} e_{3},$$



Curve $p_5 p_6 p_7$ is section by a horizontal tangent plane.

both represent the same surface, which is shown in figure 2, though the two systems of curves in 19) are conterminal, while those in 20) terminate in e_0 and e_s , and in e_s and e_1 respectively.

Let us designate by S the surface $\varphi^x \psi^y e$ when the n's are all positive, by S_0 the surface when n_0 is negative and the other n's positive, etc. All the surfaces will be wholly exterior to the reference tetrahedron except S, which is wholly interior. The surface S_k , (k = 0, 1, 2, 3), will have an asymptotic surface of which a conedirector will be the cone whose vertex is at e_k and whose directrix is the section of S by the plane which bisects the three edges of the reference tetrahedron which meet in e_k . The surface S_{a1} will be asymptotic to a ruled surface whose generators are parallel to those of the skew surface whose directrices are e₀e₁, e₄e₅ and the section of S by the plane which bisects the four edges e_0e_2 , e_0e_3 , e_1e_2 and e_1e_3 . The other two surfaces of this kind S_{02} and S_{03} possess similar asymptotic properties obtained by simple interchanged of suffixes. If S is a ruled surfaces one of these three bisecting planes of the tetrahedron will cut a generator from S, so that the director surface in this case will be of the second order.

We will consider now the more general case

$$p = \varphi^u \psi^v e$$

when $u = f_1 x$ and $v = f_2 x$. Suppose first

21)
$$u = a \sin x, \quad v = b \sin y;$$

then all real values of u lie between a and -a, and all real values of v between b and -b, hence the surface is a curvilinear quadrilateral whose corners are at $\varphi^a\psi^b e$, $\varphi^a\psi^{-b}$, $\varphi^{-a}\psi^b e$, $\varphi^{-a}\psi^{-b}e$. If we write

$$u = a \sec x, \quad v = b \sec y,$$

we have the case just reversed, and the surface has a quadrilateral hole through it, the boundaries being the same as before. If

$$u = a \sin x, \quad v = b \sec y,$$

we have two triangular strips with corners at

 $\varphi^a \psi^b e$, $\varphi^u \psi^\infty e$, $\varphi^{-a} \psi^b$, and at $\varphi^a \psi^{-b} e$, $\varphi^u \psi^{-\infty} e$, $\varphi^{-a} \psi^{-b} e$, respectively. Finally if

22)
$$\begin{cases} u = mx \pm k\sqrt{-(x^2 - a_1^2)(x^2 - a_2^2) \dots (x^3 - a_n^2)} \\ v = m'y \pm k'\sqrt{-(y^2 - b_1^2)(y^2 - b_2^2) \dots (y^2 - b_n^2)} \end{cases}$$

the surface may be broken up into a checkerboard pattern of separate real quadrilaterals with imaginary strips between them.

If u and v be as in eqs. 21), three corners of the quadrilateral may be arbitrarily chosen in the same region, when the fourth will be determined.

Loci of the equations $p = \varphi^n e$ and $p = \varphi_n \psi^n e$. By E. W. Hydr.

For let
$$\sum_{0}^{8} \varkappa e, \quad \sum_{0}^{8} \lambda e, \quad \sum_{0}^{3} \mu e, \quad \sum_{0}^{3} \nu e$$

be any four points whatever, and write

132

$$\begin{array}{lll} \varphi^{a\sin\frac{\pi}{2}}\psi^{b\sin\frac{\pi}{2}}e=&\Sigma A^aB^bne&=\Sigma \varkappa e,\\ \varphi^{a\sin\frac{\pi}{2}}\psi^{b\sin\frac{3\pi}{2}}e=&\Sigma A^aB^-bne&=\Sigma \varkappa e,\\ \varphi^{a\sin\frac{3\pi}{2}}\psi^{b\sin\frac{\pi}{2}}e=&\Sigma A^-aB^-bne&=\Sigma \varkappa e,\\ \varphi^{a\sin\frac{3\pi}{2}}\psi^{b\sin\frac{\pi}{2}}e=&\Sigma A^{-a}B^-bne&=\Sigma \mu e,\\ \varphi^{a\sin\frac{3\pi}{2}}\psi^{b\sin\frac{3\pi}{2}}e=&\Sigma A^{-a}B^-bne&=\Sigma \nu e.\\ &\vdots A_0{}^aB_0{}^bn_0=\varkappa_0, &A_0{}^aB_0{}^-n_0=\varkappa_0,\\ &A_0{}^{-a}B_0{}^bn_0=\mu_0, &A_0{}^{-a}B_0{}^{-b}n_0=\nu_0, \end{array}$$

with three other similar sets of equations for the coefficients of the other points. Hence $n_0^2 = \kappa_0 \nu_0 = \lambda_0 \mu_0$,

so that, if \varkappa , λ , μ are assumed ν is determined by them. We find also

$$A_0 = \left(\frac{\varkappa_0}{\mu_0}\right)^{\frac{1}{2\,a}}, \quad B_0 = \left(\frac{\varkappa_0}{\lambda_0}\right)^{\frac{1}{2\,b}}, \quad \text{etc.}$$

Reciprocal equations. If $\Lambda = \sum_{0}^{2} n'e$ be a fixed line, and $\Pi = \sum_{0}^{3} n'e$

be a fixed plane, then we may write the three exquations

23)
$$L = \Phi^{u} \Lambda = \sum_{0}^{3} A^{u} n | e,$$
24)
$$P = \Phi^{u} \Pi = \sum_{0}^{3} A^{u} n | e,$$
25)
$$P = \Phi^{u} \Psi^{v} \Pi = \sum_{0}^{3} A^{u} B^{o} n | e,$$

which are reciprocal respectively to equations 3), 10) and 14). Eq. 23) is that of a curve enveloped by L=p, in plane space; eq. 24) is that of a developable surface enveloped by P=|p| in solid space, and eq. 25) is that of a convex or skew surface enveloped by P=|p|. We shall not discuss the properties of these envelopes, as they are easily seen from those of their reciprocals already considered.

It is believed that the curves and surfaces treated in this paper have not been hitherto discussed by Grassmann's methods.

Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen.

Von

P. SOMOFF in Warschau.

1. Die meisten Untersuchungen über Verschiebungen, welche einem festen Körper möglich bleiben, wenn er sich auf feste, unbewegliche Flächen stützt, beziehen sich auf die Bewegung desselben parallel einer Ebene oder um einen festen Punkt. Eine systematische Betrachtung dieser Frage findet sich zuerst, soviel mir bekannt ist, bei Reuleaux in seiner "Theoretischen Kinematik",* als Grundlage bei der Untersuchung der höheren kinematischen Paare. In dem Umstande, dass in der praktischen Kinematik die ebene Bewegung eine vorwiegende Bedeutung hat, liegt zum Teil der Grund davon, dass auch in den weiteren Untersuchungen,** welche Reuleaux' Betrachtungen bedeutend vervollständigten, der allgemeinste Fall der Stützflächen, bei welchem dem festen Körper Schraubengeschwindigkeiten möglich bleiben, nur sehr wenig in Betracht gezogen wurde.

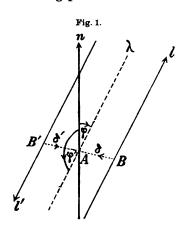
In der vorliegenden Arbeit wird ein Versuch gemacht, solche Schraubengeschwindigkeiten bei gegebenen Lagen von Stützflächen zu untersuchen. Analytisch würde das eine Aufgabe über Gebietsbestimmungen im Raume von fünf Dimensionen sein; dabei würde aber, was die wirkliche Verteilung von Schraubengeschwindigkeiten betrifft, alle Anschaulichkeit, welche in solchen Fragen sehr wesentlich ist, verloren gehen. Es ist daher nur eine unmittelbar geometrische Darstellung dem Ziele entsprechend.

2. Wir werden nur unendlich kleine Verschiebungen oder, was gleichbedeutend ist, Geschwindigkeiten betrachten und dabei die Krümmung der Stützflächen und der Flächen, welche den festen Körper umgrenzen, ausser Acht lassen.

^{* §§ 18, 19} und 20.

^{**} Es mögen unter anderen genannt werden: Rittershaus, "Civilingenieur", 1875, S. 438; Beck, "Civilingenieur", 1876, S. 571; Grashof, Theoretische Maschinenlehre II, 1883, S. 21; Burmester, Lehrbuch der Kinematik, 1886, S. 256.

Indem wir mit p den Parameter der Schraubengeschwindigkeit, das heisst das Verhältnis der Translationsgeschwindigkeit u längs der Schraubenaxe l zur Winkelgeschwindigkeit ω um dieselbe bezeichnen, werden wir p positiv rechnen, wenn die Richtungen der beiden Geschwindigkeitskomponenten zusammenfallen, wobei der Vektor ω in derjenigen Richtung auf der Schraubenaxe abgetragen werden soll, von wo gesehen die Drehung im Sinne der Uhrzeiger zu erfolgen scheint. Als positive Richtung der Normale n einer Stützfläche Σ in ihrem Berührungspunkte M zur Körperfläche wollen wir die Richtung an-



nehmen, nach welcher der Körper sich von der Stützfläche entfernen kann. Es sei weiter δ der kürzeste Abstand zwischen n und l, stets positiv gerechnet, und φ der Winkel zwischen diesen Geraden, welcher auf folgende Weise bestimmt werden soll. Es sei AB (Fig. 1) die kürzeste Entfernung zwischen n und l und λ eine parallel zu l durch den Punkt A gezogene Gerade; indem wir von B aus die Ebene (n, λ) betrachten, messen wir den Winkel φ von der positiven Normalenrichtung bis zur ersten Begegnung mit λ im Sinne der Uhr-

zeigerdrehung. Somit werden die Winkel φ und φ' für zwei parallele aber auf verschiedenen Seiten von n gelegene Schraubenaxen l und l' einander zu zwei rechten Winkeln ergünzen (Fig. 1). Der Winkel (n, ω) wird immer zwischen den positiven Richtungen dieser Geraden gemessen werden und kann daher entweder gleich φ oder gleich $\pi - \varphi$ sein.

Eine Stützfläche.

3. Wenn bei irgend einer Bewegung die Fläche des festen Körpers eine Stützfläche berührt, so haben alle Punkte der gemeinschaftlichen Normalen beider Flächen bekanntlich die Eigenschaft, dass ihre Geschwindigkeiten auf dieser Normalen senkrecht stehen. Wenn aber bei der Verschiebung des festen Körpers dieser sich von der Stützfläche entfernt, so bildet die Geschwindigkeit des Berührungspunktes, und daher auch aller anderen Punkte der Normalen, mit der positiven (§ 2) Richtung dieser Normalen einen spitzen Winkel. Für jede mögliche Bewegung des festen Körpers muss also die Schraubengeschwindigkeit so beschaffen sein, dass für jeden Punkt der Normalen die Bedingung $v \cdot \cos(v, n) \geq 0$

erfüllt werde. Wählen wir den Punkt A (Fig. 1) dazu, so finden wir leicht, wenn wir nur das im § 2 über p und φ Gesagte beachten, Folgendes:

Jede Gerade des Raumes kann als Schraubenaxe dienen und die Winkelgeschwindigkeit kann auf derselben jede der beiden entgegengesetzten Richtungen haben; es muss aber dabei, wenn die Winkelgeschwindigkeit mit der positiven Normalen einen spitzen Winkel bildet,

1)
$$p \ge \delta \operatorname{tg} \varphi$$
, wenn dagegen $\langle (n, \omega) > \frac{\pi}{2} \operatorname{ist},$

2)
sein. Die Figuren 2, 3, 4
und 5 stellen vier verschiedene Fälle dar, welche
dabei eintreten können.
Die Fälle (Fig. 4 und 5)
sind mit denjenigen identisch, welche man erhalten
würde, wenn man in den

bracht hätte.

Es ist leicht einzusehen, wie die für p
gegebenen Bedingungen im
Falle, dass

Fällen (Fig. 2 und 3) die

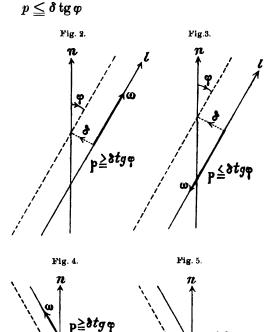
Schraubenaxe sich selbst parallel auf die andere Seite der Normalen n ge-

$$\langle \langle (n, \omega) = \frac{\pi}{2} \rangle$$

ist, ausarten.

Ebenso brauchen wir nicht die einfache Frage zu untersuchen, um welche Axen und nach welcher Richtung eine einfache Drehung oder eine Translation möglich ist.

4. Die Berührung mit einer festen Fläche ist be-



kanntlich nicht die allgemeinste Form eines Zwanges für den festen Körper, wie es zuerst Thomson und Tait* gezeigt haben. Es ist aber leicht auch für die allgemeinste Form des Zwanges die entsprechenden Bedingungen für p aufzustellen, wenn man nur beachtet, dass bei jeder Zwangsbedingung, welche in Form einer Gleichung zwischen den 6 kine-

^{*} A treatise on natural philosophy, § 201.

matischen Elementen gegeben ist, alle für den Körper möglichen Schrauben (p) einer einzigen Schraube mit bestimmtem Parameter P reciprok sind;* sodass $(p+P)\cos\varphi - \delta\sin\varphi = 0$

ist, wo δ und φ die kürzeste Entfernung und den Winkel zwischen den zwei Schraubenaxen (p) und (P) bedeuten. Wenn die Bedingung für die kinematischen Elemente ausser dem Gleichheitszeichen auch ein Ungleichheitszeichen enthält, so finden wir, das im § 2 Gesagte beachtend, entweder $p > \delta \log \varphi - P$ oder $p < \delta \log \varphi - P$,

je nachdem o mit einer bestimmten Richtung der reciproken Schraubenaxe einen spitzen oder einen stumpfen Winkel bildet.

Die weitere Untersuchung für mehrere Zwangsbedingungen würde sich somit wenig von unserer Betrachtung für Stützflächen unterscheiden, es würde aber dabei zum grossen Teil die Anschaulichkeit verloren gehen. Zudem wird ja ein Zwang für den festen Körper in der That immer durch eine oder mehrere Stützflächen erreicht, und alle anderen Fälle können, wenn die Zahl der Bedingungen grösser als eins ist, auf diesen einzigen Fall zurückgeführt werden. Wir brauchen daher weiter den genannten allgemeinsten Fall des Zwanges nicht zu betrachten.

Zwei Stützflächen.

5. Für die Richtung der Winkelgeschwindigkeit auf der Schraubenaxe können hier vier verschiedene Fälle eintreten, welche wir in drei Gruppen teilen wollen:

1. Gruppe:
$$(n_1\omega) < \frac{\pi}{2}, \quad (n_2\omega) < \frac{\pi}{2};$$
2. Gruppe:
$$(n_1\omega) < \frac{\pi}{2}, \quad (n_2\omega) > \frac{\pi}{2},$$
oder
$$(n_1\omega) > \frac{\pi}{2}, \quad (n_2\omega) < \frac{\pi}{2};$$

$$(n_1\omega) > \frac{\pi}{2}, \quad (n_2\omega) < \frac{\pi}{2};$$
3. Gruppe:

$$(n,m) > \frac{\pi}{2}, \quad (n,m) > \frac{\pi}{2},$$

 $(n_1\omega)>\frac{\pi}{2}, \quad (n_2\omega)>\frac{\pi}{2},$ 6)

wo n, und n, die positiven Richtungen der Normalen zweier Stützflächen in ihren Berührungspunkten mit dem festen Körper bezeichnen.

Die Fälle, wo die Winkelgeschwindigkeit zu einer oder zu beiden Normalen senkrecht ist, werden wir später betrachten.

Die Punkte einer Kugelfläche, die mit beliebigem Radius beschrieben ist, sollen die Richtungen der Winkelgeschwindigkeit, welche

^{*} Ball, Theoretische Mechanik starrer Systeme, S. 357.

dieselbe auf der Schraubenaxe bekommt, bestimmen. Diese Kugel wollen wir Parameterkugel nennen, da die Lagen der Punkte auf derselben mit den Ungleichheiten, durch welche die Werte von p begrenzt werden, zusammenhängen. Zwei durch das Zentrum der Kugel gelegte Ebenen CA_1DB_1 und CA_2DB_2 (Fig. 6), welche auf den Normalen n_1 und n_2 senkrecht stehen, teilen die Kugelfläche in vier Gebiete CA_2DB_1 , CA_1DA_2 , CB_1DB_2 und CB_2DA_1 , welche den vier Fällen 3), 4), 5) und 6) und zugleich den vier Paaren von Ungleichheiten:

7)
$$p \geq \delta_1 \operatorname{tg} \varphi_1, \quad p \geq \delta_2 \operatorname{tg} \varphi_2,$$

$$p \geq \delta_1 \operatorname{tg} \varphi_1, \quad p \leq \delta_2 \operatorname{tg} \varphi_2,$$

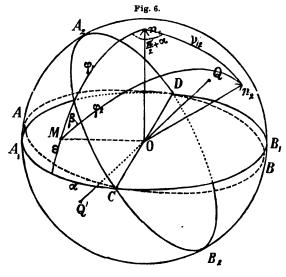
9)
$$p < \delta_1 \operatorname{tg} \varphi_1, \quad p > \delta_2 \operatorname{tg} \varphi_2,$$

10)
$$p \leq \delta_1 \operatorname{tg} \varphi_1, \quad p \leq \delta_2 \operatorname{tg} \varphi_2,$$

entsprechen. Das erste und letzte, sowie die anderen zwei Gebiete kann man als paarweise konjugiert betrachten, da auf jeder Schraubenaxe zwei entgegengerichteten

Winkelgeschwindigkeiten solche Punkte auf der Kugel entsprechen, welche zu zwei Gebieten desselben Paares gehören.

Wenn die Richtung der Winkelgeschwindigkeit dem Gebiete 3) angehört, so muss der Parameter einer mög-



lichen Schraubengeschwindigkeit auf jeder dieser Richtung parallelen Axe der Bedingung 7) genügen, er darf also nicht kleiner als jede der beiden Grössen:

$$\delta_1 \operatorname{tg} \varphi_1, \quad \delta_2 \operatorname{tg} \varphi_2$$

sein. Wenn die Winkelgeschwindigkeit die entgegengesetzte ist, so entspricht ihr ein Punkt des konjugierten Gebietes 6), und es besteht die Bedingung 10), p darf also die kleinere von den Grössen 11) nicht übersteigen.

Somit sehen wir, dass auf jeder Axe, welche den konjugierten Gebieten 3) und 6) entspricht, Schraubengeschwindigkeiten möglich sind; wobei der Parameter einen Wert haben muss, welcher nicht zwischen den Grössen 11) liegt. Die Winkelgeschwindigkeit der

Schraubenbewegung kann auf jeder solchen Axe, je nach den Be-

dingungen 7) oder 10) beide Richtungen bekommen.

Bei jeder den Gebieten 3) und 6) entsprechenden Richtung giebt es Axen, für welche die Grössen 11) einander gleich werden; auf solchen Axen kann p jeden beliebigen Wert bekommen.

Nehmen wir jetzt an, dass die Winkelgeschwindigkeit dem Gebiete 4) angehört; p muss dann den Ungleichheiten 8) genügen, welche dann vereinbar sind, wenn die Lage der Axe der Bedingung:

$$\delta_1 \operatorname{tg} \varphi_1 \leq \delta_2 \operatorname{tg} \varphi_2$$

genügt. Auf allen anderen Axen von derselben Richtung sind keine Schraubengeschwindigkeiten mit gegebener Richtung der Winkelgeschwindigkeit möglich; auf allen diesen Axen sind aber Schraubengeschwindigkeiten mit entgegengesetzter Winkelgeschwindigkeit möglich; denn diesen Axen entsprechen die Ungleichheiten 9), welche für alle diese Axen vereinbar sind, da die letzteren jetzt der Bedingung:

13)
$$\delta_1 \operatorname{tg} \varphi_1 > \delta_2 \operatorname{tg} \varphi_2$$

genügen. Wir finden also:

Auf allen Axen, auf welchen einer von den Winkeln $(n_1 \omega)$, $(n_2 \omega)$ spitz und der andere stumpf ist, sind Schraubengeschwindigkeiten möglich; die Winkelgeschwindigkeit kann aber auf jeder dieser Axen nur eine von den beiden Richtungen haben, je nachdem die Lage der Axe der Bedingung 12) oder 13) genügt. Auf allen diesen möglichen Schraubenaxen muss der Wert des Parameters p zwischen den Grössen 11) liegen. Diese Grössen sind übrigens für verschiedene Schraubenaxen derselben Richtung im allgemeinen verschieden.

Auf einer Schraubenaxe, für welche

ist, kann p nur diesen einzigen Wert bekommen, für die Winkelgeschwindigkeit bleiben aber dabei beide Richtungen möglich. Alle diese Axen gehören offenbar demjenigen Komplexe zweiten Grades an, welcher alle Schrauben enthält, die für den festen Körper möglich sind, wenn er beständig zwei feste Flächen berührt.

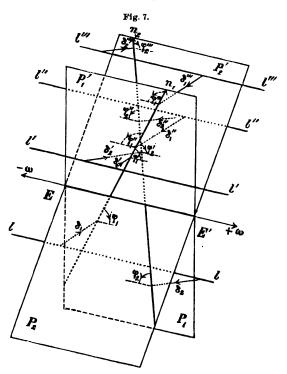
Alle diesem Komplexe angehörenden Axen von derselben Richtung liegen in einer Ebene, welche im folgenden Paragraph näher untersucht werden soll, da sie im weiteren eine besondere Bedeutung hat.

6. Es sei ein System paralleler Axen gegeben, deren Richtung den konjugierten Gebieten 4) und 5) entnommen ist. Durch die Normalen n_1 und n_2 legen wir Ebenen $P_1P'_1$ und $P_2P'_2$ (Fig. 7), welche der gegebenen Axenrichtung parallel sind, und welche wir Normalebenen nennen wollen. Da für zwei Axen, welche auf verschiedenen Seiten einer solchen Ebene liegen, δ tg φ verschiedene Zeichen hat, so ist leicht einzusehen, dass den vier von den Normalebenen gebildeten Winkeln vier verschiedene Zeichenverbindungen der

Grössen 11) entsprechen. Für eine Gerade l, welche im Winkel (P_1P_2) liegt, haben diese Grössen die Zeichen (++), für l' im Winkel $(P'_1P'_2)$ (+-), für l'' im Winkel $(P_1P'_2)$ (-+) und für l''' im Winkel $(P'_1P'_2)$ (--).

Dabei ist in der Figur 7 vorausgesetzt, dass n_1 mit der gegebenen Axenrichtung EE' einen spitzen, n_2 aber einen stumpfen Winkel bildet. Nehmen wir jetzt an, dass ω auf irgend einer der gegebenen Axen diese Richtung EE' hat, und daher p den Bedingungen 9) genügt. Dann finden wir, dass für alle Axen, welche im Winkel

 (P_1P_2) liegen, diese Bedingungen erfüllt werden und daher alle diese Axen mögliche Schraubenaxen sind; für die Axen aber, welche $(P_1' P_2)$ im Winkel liegen, sind die Ungleichheiten 9) nicht vereinbar, dieser Winkel enthält also keine möglichen Schraubenaxen. Um in den beiden anderen Winkeln $(P_1 P_2)$ und $(P'_1P'_2)$, in welchen die Zeichen der beiden Grössen 11) gleich sind, mögliche Schraubenaxen zu finden, ziehen wir durch EE' eine Ebene S_{12} , welche in diesen beiden Scheitelwinkeln liegt und sie in solche Teile



teilt, dass ihre Sinus im umgekehrten Verhältnisse zu den Tangenten der Winkeln φ_1 und φ_2 stehen. Diese Ebene, welche im weiteren eine wichtige Rolle spielt, wollen wir Grenzebene nennen. Für alle Geraden der gegebenen Richtung, welche in dieser Ebene liegen, sind die Grössen 11) gleich. Zu einer Seite dieser Ebene liegen diejenigen Geraden, für welche die Bedingungen 12) erfüllbar sind; alle diese Geraden, mögen sie in den Winkeln (P_1P_2) , $(P'_1P'_2)$ oder ausserhalb derselben liegen, stellen mögliche Schraubenaxen dar, wenn nur die Winkelgeschwindigkeit ω die angenommene Richtung EE' behält.

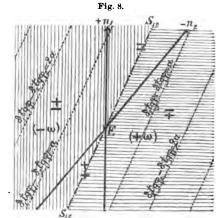
Alle Axen, welche zur anderen Seite der Grenzebene liegen, werden mögliche Schraubenaxen, wenn für die Winkelgeschwindigkeit die entgegengesetzte Richtung angenommen wird.

Wir sehen also, dass wieder alle Axen einer gegebenen Richtung mögliche Schraubenaxen sind; sie werden nur in Bezug auf die mögliche Richtung der Winkelgeschwindigkeit durch die Grenzebene in zwei Gruppen geteilt.

7. Bei grösserer Zahl von Stützflächen wird eine perspektivische, der Figur 7 analoge Darstellung unbequem sein; wir werden daher folgende graphische Darstellung auf einer zu dem gegebenen System paralleler Geraden senkrechten Ebene vorziehen.

Die Winkelgeschwindigkeit werden wir als positiv bezeichnen $(+\omega)$, wenn sie gegen den Zuschauer gerichtet ist, wenn man also die entsprechende Drehung im Sinne der Uhrzeiger sieht; im anderen Falle schreiben wir $(-\omega)$.

Um anzugeben, wie eine Normale n zu der Zeichnungsebene geneigt ist, werden wir bei der Projektion des positiven Endpunktes



der Normalen das Zeichen (+) oder (-) anbringen, je nachdem die Normale mit der positiven

Winkelgeschwindigkeit einen spitzen oder einen stumpfen Winkel bildet.

Die Punkte der Ebene werden die Lagen der gegebenen Axen bezeichnen. Die Zeichen (+) und (-), welche in den von den Projektionen der Normalen gebildeten Gebieten stehen, werden, der Reihe nach von oben nach unten geschrieben, die Zeichen der Grössen δ_1 tg φ_1 , δ_2 tg φ_2 , ... angeben.

Endlich werden wir das Gebiet, welches mögliche Schraubenaxen mit positiver Winkelgeschwindigkeit bestimmt, horizontal, dasjenige aber mit entgegengesetzter Winkelgeschwindigkeit — vertikal schraffieren.

In der Figur 8 ist auf diese Weise der im § 6 betrachtete Fall zweier Stützflächen dargestellt. Die Spur der Grenzebene S_{12} , welche wir in der Folge Grenzgerade nennen werden, ist strichpunktiert gezeichnet.

Zur Bestimmung der Lage der Grenzebene und der möglichen Schraubenaxen, welche auf der einen oder anderen Seite dieser Ebene liegen, kann man folgende Regeln aufstellen.

a) Die Grenzgerade S_{ik} , welche durch den Durchschnittspunkt der Geraden n_i und n_k geht, liegt in demjenigen Paare der von diesen Geraden gebildeten Scheitelwinkel, in welchen die Grössen δ_i tg φ_i und δ_k tg φ_k gleiche Zeichen haben, das heisst (Fig. 8) in den Gebieten (++) und (--). Dabei muss man voraussetzen, dass die Normalen n_i und n_k in der graphischen Darstellung von entgegengesetzten

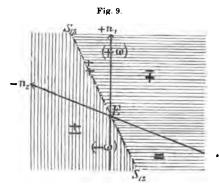
Zeichen begleitet werden; denn sonst verliert die Grenzebene ihre Bedeutung.

b) Wenn der Winkel zwischen den positiven Richtungen der Normalenprojektionen die Zeichen (--) enthält, so liegt das Gebiet der möglichen Schraubenaxen mit positiver Winkelgeschwindigkeit auf derjenigen Seite der Geraden S_{ik} , auf welcher das Ende der mit negativem Vorzeichen versehenen Normalenprojektion sich befindet $(-n_i)$ in der Fig. 8); wenn aber der genannte Winkel mit den Zeichen (++) versehen ist, so liegt das Gebiet $(+\omega)$ auf der anderen Seite von S_{ik} $(+n_i)$ in der Fig. 9).

Die Grenzebene hat eine Bedeutung auch bei der Bestimmung der Grenzen 11) für die Werte des Parameters p. Es ist nämlich die Differenz dieser Grenzen für diejenigen Schrauben gleich, welche in einer der Grenzebene parallelen Ebene liegen; sie ist dabei der Ent-

fernung zwischen den beiden Ebenen proportional. Die Grenzwerte selbst sind übrigens für verschiedene Axen derselben Ebene verschieden. In der Figur 8 sind die Spuren einiger solcher Ebenen durch Punktierung angegeben.

8. Die Lage der Normalebenen und der Grenzebene hängt offenbar davon ab, welcher Punkt M der Parameterkugel (Fig. 6) die Richtung der Winkelgeschwindigkeit und zugleich des Systems



paralleler Schraubenaxen bestimmt. Wenn der Punkt M auf den Grenzen des Gebietes A, DA, C' einen Umlauf macht, so ergiebt sich folgendes. Für die Lage C dieses Punktes ist der Winkel zwischen den Normalenebenen $P_1 P_1'$ und $P_2 P_2'$ (Fig. 7) dem Winkel $(n_1 n_2)$ gleich, die Gerade EE' fällt mit der Geraden der kürzesten Entfernung zusammen und die Lage der Grenzebene bleibt unbestimmt, da beide Grössen 11) jetzt unendlich sind. Aber in diesem Falle kann man leicht unmittelbar einsehen, dass jetzt einerseits eine Translation ($p = \infty$) nach beiden Richtungen, andererseits eine einfache Drehung (p = 0) um diejenigen Axen der gegebenen Richtung möglich ist, welche in den Scheitelwinkeln $(P_1 P_2)$ und $(P_1 P_2)$ liegen: im ersteren Winkel $-(+\omega)$ und in dem zweiten $-(-\omega)$. Daher ist um alle diese Axen auch eine Schraubengeschwindigkeit von willkürlichem Parameter möglich, wenn nur die entsprechende Winkelgeschwindigkeit eine bestimmte Richtung bekommt. Eine Ausnahme macht nur die Gerade EE', auf welcher beide Richtungen der Winkelgeschwindigkeit möglich sind. Während der Punkt M auf dem Bogen CA_1D fortschreitet, bleibt immer tg $\varphi_1=\infty$ und die Grenzebene, wie es aus § 7 folgt, fällt mit der Ebene P. P', zusammen. Ebenso, wenn der Punkt M den Bogen DA_2C beschreibt, fällt die Grenzebene mit der Ebene $P_2P'_2$ zusammen. Wenn dieser Punkt sich auf einem Kreise CADBC, welcher CD zum Durchmesser hat, bewegt, das heisst, wenn man Winkelgeschwindigkeiten, welche einer gegebenen Ebene parallel sind, betrachtet, so beschreibt die Gerade EE' (Fig. 7) ein hyperbolisches Paraboloid. Rückt der Punkt M von C nach A, so wird $\ll (n_1n_2) = 0$ und die Grenzebene wird den Geraden n_1 und n_2 parallel.

Bemerken wir noch — und das wird später eine Anwendung finden — dass, wenn der Winkel zwischen der Ebene CADBC und CA_1DB_1C oder CA_2DB_2C genügend klein ist, so dass das Verhältnis $\operatorname{tg} \varphi_1: \operatorname{tg} \varphi_2$ oder $\operatorname{tg} \varphi_2: \operatorname{tg} \varphi_1$ nach seinem Zahlenwerte genügend gross bleibt, die Gerade S_{12} (Fig. 8) auch einen beliebig kleinen Winkel mit der Geraden $(+n_1)$ oder respektive $(-n_2)$ bildet. Daraus folgt, dass man im betrachteten Falle in den konjugierten Gebieten 4) und 5) immer solche Punkte wählen kann, dass die Grenzebene einen beliebig kleinen Winkel mit P_1P_1' oder mit P_2P_2' bildet.

Wenn der Punkt M auf der Parameterkugel durch die Winkelkoordinaten ε und α (Fig. 6) bestimmt wird und wir mit ν_{12} den Winkel (n_1n_2) , mit β den Winkel zwischen den Ebenen $P_1P'_1$ und $P_2P'_2$ (oder zwischen $+n_1$ und $-n_2$ der Figur 8) und endlich mit s_1 den Winkel zwischen $P_1P'_1$ und der Grenzebene bezeichnen, so finden wir:

$$\cot g \, s_1 = \cot g \, \beta + \frac{\cot g \, \varepsilon}{\cos \alpha \sin \nu_{12}} \sqrt{1 - \frac{\cos^2 \alpha \sin^2 \nu_{12}}{\sin^2 \beta}},$$

wo der Winkel & aus der Gleichung:

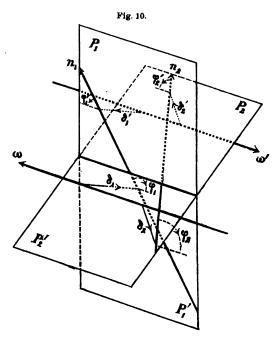
 $\cos \nu_{12} \sin \beta - \cos \varepsilon \cos \alpha \sin \nu_{12} \cos \beta + \sin \varepsilon \sqrt{\sin^2 \beta - \cos^2 \alpha \sin^2 \nu_{12}} = 0$ bestimmt wird.

9. Um solche Axen aufzusuchen, um welche einfache Drehung (p = 0) möglich ist, bemerken wir, dass für solche Richtungen der Winkelgeschwindigkeit, welche den Bedingungen 7) entsprechen, dass grössere von den Produkten 11) nicht positiv werden darf; keiner von den Winkeln φ_1 , φ_2 darf also spitz werden. Ebenso, für die entgegengesetzte Richtung von w dürfen dieselben Produkte nicht negativ, φ_1 und φ_2 also nicht stumpf werden. Um die entsprechenden Gebiete möglicher Drehaxen zu finden, ziehen wir durch n, und n, Ebeneu, welche einer der gegebenen, den Ungleichheiten 7) oder 10) entsprechenden Richtungen parallel sind (Fig. 10). Die Winkel $(P_1P'_2)$ und P', P2), deren Schenkel die positive Richtung einer von den Normalen und die negative Richtung der anderen enthalten, stellen dann die gesuchten Gebiete dar. Im Falle, dass das System paralleler Axen den Ungleichheiten 8) und 9) entspricht, liegen die möglichen Drehungsaxen in den Winkeln, welche ebenso bestimmt werden $(P'_{2}P_{2})$ und (P_1P_2) der Fig. 7).]

Einfache Translationsgeschwindigkeiten $(p = \infty)$ sind offenbar nach solchen Richtungen möglich, welche auf der Parameterkugel (Fig. 6) durch das Gebiet CA_2DB_1C bestimmt werden.

10. Es seien jetzt die Normalen n_1 und n_2 einander parallel. Wir müssen hier zwei Fälle unterscheiden: den, dass die Normalen gleichgerichtet und den, dass ihre Richtungen entgegengesetzt sind. Im ersten Falle werden die Gebiete A_2DB_1C und A_1CB_2D (Fig. 6) zu halben Kugelflächen, und man findet dann nach der allgemeinen Regel, dass um jede Axe, welche zu den beiden Normalen nicht senkrecht ist, Schraubengeschwindigkeiten möglich sind, wenn nur p

nicht einen zwischen den Grössen 11) liegenden Wert hat. Da die anderen zwei Gebiete auf der Parameterkugel nur durch Punkte eines Kreises. dessen Ebene zu den Normalen n,, n, senkrecht ist, bestimmt werden, so sind für die entsprechenden Richtungen der Schraubenaxen die Grössen 11) unendlich. Wenn man beachtet, dass eine einfache Drehung um diejenigen Axen dieser Richtungen möglich ist, welche nicht zwischen den Normalen durchgehen, eine Translation aber nach allen zu den Normalen senkrechten Richtungen möglich bleibt,



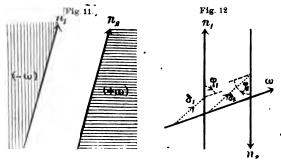
so sieht man, dass jetzt um alle zu den Normalen senkrechten, aber nicht zwischen denselben gelegenen Axen Schraubengeschwindigkeiten mit beliebiger Parametergrösse zulässig sind. Die Winkelgeschwindigkeit kann übrigens auf jeder dieser Axen nur eine von den beiden Richtungen haben (Fig. 11).

Im zweiten Falle, wenn die Normalen ungleiche Richtung haben, muss der Wert von p für jede Axe, welche zu den Normalen nicht senkrecht ist, zwischen den Grössen 11) liegen, da die Winkelgeschwindigkeit auf jeder solchen Axe mit der einen Normale einen spitzen und mit der anderen einen stumpfen Winkel bildet. Für die Schraubenaxen, welche auf einer Seite der beiden Normalen liegen, ist $\varphi_1 = \varphi_2$.

Nehmen wir an, dass für irgend eine dieser Axen die Winkel φ_1 , φ_2 und $(n_1\omega)$ spitz sind (Fig. 12); dann sind um diese Axen Schraubengeschwindigkeiten möglich, wenn

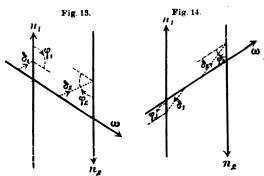
 $\delta_1 \operatorname{tg} \varphi_1 \leq p \leq \delta_2 \operatorname{tg} \varphi_2$

ist. Für die Möglichkeit dieser Bedingung ist es notwendig, dass $\delta_1 \leq \delta_2$ ist. Auf diese Weise sieht man überhaupt, dass um jede Axe, welche nicht



zwischen den Normalen hindurchgeht, Schraubengeschwindigkeiten möglich sind; es muss aber dabei: 1. der Wert von pzwischen den Grössen 11) liegen und 2. die Winkelgeschwindigkeit mit derjenigen Normalen, deren kürzeste Entfernung von der Schraubenaxe die

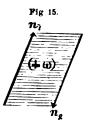
kleinere ist, einen spitzen Winkel bilden. Wenn die Schraubenaxe zwischen den Normalen liegt (Fig. 14), so ist $\varphi_1 + \varphi_2 = \pi$; dann muss



ist $\varphi_1 + \varphi_2 = \pi$; dann muss die Winkelgeschwindigkeit, damit die Bedingungen 15) erfüllt werden, mit derjenigen Normalen einen spitzen Winkel bilden, für welche der Winkel φ stumpf ist. — Ebenso muss für die Axen, welche auf einer Seite der beiden Normalen liegen, für welche die Winkel φ_1 und φ_2 aber stumpf sind, die Winkelgeschwindigkeit der

entgegengesetzten Forderung genügen (Fig. 13).

Wenn eine Schraubenaxe, wieder im Falle ungleich gerichteter paralleler Normalen, zu denselben senkrecht ist und zwischen ihnen



liegt, so bleibt der Parameter beliebig, die entsprechende Drehung kann aber dann nur in einem Sinne erfolgen (Fig. 15). Liegt die Axe auf einer Seite der beiden Normalen, so ist auf ihr keine Schraubengeschwindigkeit von endlichem Parameter möglich.

Wenn die Schraubenaxe nicht zu den Normalen senkrecht aber der Ebene derselben parallel

ist, so bleibt für p nur ein bestimmter Wert möglich, da die Grössen 11) einander gleich werden; dieser Wert wird Null, es bleibt also nur eine Drehung möglich, wenn die Axe die beiden Normalen schneidet.

Eine besondere Bedeutung in Bezug auf den grössten Zwang eines festen Körpers mit zwei Stützflächen hat der Fall, wo die entgegengesetzt gerichteten Normalen auf einer Geraden liegen. Obgleich dann wieder jede Gerade des Raumes eine mögliche Schraubenaxe darstellt, bekommt der Parameter auf jeder Axe nur einen bestimmten Wert, da die Grenzen desselben 11) immer einander gleich bleiben.

Drei Stützflächen.

11. In Bezug auf die Richtungen der Winkelgeschwindigkeit kann man die hier eintretenden acht Fälle in vier Gruppen zerlegen, je nachdem die Winkelgeschwindigkeit entweder mit allen drei Normalen n_1 , n_2 , n_3 , oder mit zweien, oder nur mit einer, oder endlich mit keiner von ihnen Winkel bildet, welche einen rechten Winkel nicht übertreffen. Diesen vier Gruppen entsprechen nach § 3 folgende acht Systeme von Ungleichheiten:

16)
$$p \ge \delta_1 \operatorname{tg} \varphi_1, \quad p \ge \delta_2 \operatorname{tg} \varphi_2, \quad p \ge \delta_3 \operatorname{tg} \varphi_3;$$
2. Gruppe:

17)
$$p \geq \delta_1 \operatorname{tg} \varphi_1, \quad p \geq \delta_2 \operatorname{tg} \varphi_2, \quad p \leq \delta_3 \operatorname{tg} \varphi_3,$$

18)
$$p \geq \delta_1 \operatorname{tg} \varphi_1, \quad p \leq \delta_2 \operatorname{tg} \varphi_2, \quad p \geq \delta_3 \operatorname{tg} \varphi_3,$$

19)
$$p \leq \delta_1 \operatorname{tg} \varphi_1, \quad p \geq \delta_2 \operatorname{tg} \varphi_2, \quad p \geq \delta_3 \operatorname{tg} \varphi_3;$$

3. Gruppe:

20)
$$p \leq \delta_1 \operatorname{tg} \varphi_1, \quad p \leq \delta_2 \operatorname{tg} \varphi_2, \quad p \geq \delta_3 \operatorname{tg} \varphi_3,$$

21)
$$p \leq \delta_1 \operatorname{tg} \varphi_1, \quad p \geq \delta_2 \operatorname{tg} \varphi_2, \quad p \leq \delta_3 \operatorname{tg} \varphi_3,$$

22)
$$p \geq \delta_1 \operatorname{tg} \varphi_1, \quad p \leq \delta_2 \operatorname{tg} \varphi_2, \quad p \leq \delta_3 \operatorname{tg} \varphi_3;$$

4. Gruppe:

23)
$$p \leq \delta_1 \operatorname{tg} \varphi_1, \quad p \leq \delta_2 \operatorname{tg} \varphi_2, \quad p \leq \delta_3 \operatorname{tg} \varphi_3.$$

Auf der Parameterkugel entsprechen diesen Ungleichheiten acht Gebiete, welche durch drei Kreislinien, deren Ebenen durch das Zentrum der Kugel gehen und zu den Normalen senkrecht sind, gebildet werden und paarweise konjugiert sind (§ 5). In der Figur 16 entsprechen den Bedingungen 16)... 23) folgende acht sphärische Dreiecke:

$$ABC(16)$$
, $BDC(17)$, $AEB(18)$, $ACF(19)$, $AEF(20)$, $DCF(21)$, $EBD(22)$ und $EDF(23)$.

Dabei sind als konjugiert zu betrachten:

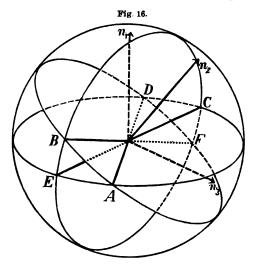
Es ist wesentlich, zu bemerken, dass jedes Paar der konjugierten Gebiete wirklich existiert; jedes derselben kann übrigens in zwei Kreisbögen oder sogar nur in zwei Punkte, die Enden eines Durchmessers der Parameterkugel, ausarten.

12. Die Schraubengeschwindigkeiten, welche der ersten und vierten Gruppe entsprechen, brauchen nicht ausführlicher untersucht zu werden. Jede Axe, welche den konjugierten Gebieten ABC und EDF angehört, kann mögliche Schraubengeschwindigkeiten enthalten, wenn der Parameter entweder nicht kleiner als jede der Grössen:

$$\delta_1 \operatorname{tg} \varphi_1, \quad \delta_2 \operatorname{tg} \varphi_2, \quad \delta_3 \operatorname{tg} \varphi_3$$

ist oder keine derselben übersteigt.

Im ersten Falle muss die Winkelgeschwindigkeit dem Gebiete ABC



und im zweiten Falle dem Gebiete EDF angehören, also die entgegengesetzte Richtung haben. Natürlich sind die Grenzen, ausser welchen p bleiben muss, für verschiedene Axen derselben Richtung verschieden.

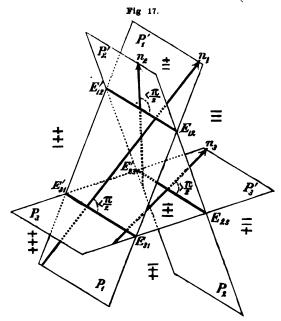
Bei drei Stützflächen giebt es also immer noch solche Richtungen, dass alle denselben entsprechenden Geraden mögliche Schraubenaxen darstellen.

13. Für die Schraubenaxen, welche der zweiten

und dritten Gruppe angehören, ist eine nähere Untersuchung notwendig. Der Parameterwert solcher Schraubenaxen liegt, wie aus den Ungleichheiten 17)...22) ersichtlich ist, immer zwischen gewissen Grenzen. Betrachten wir das Gebiet BDC und die ihnen entsprechenden Bedingungen 17). Damit eine Gerade, welche diesem Gebiete entnommen ist, mögliche Schraubenaxe wird, müssen diese Bedingungen mit einander vereinbar sein. Legen wir durch die Normalen n_1 , n_2 , n_3 die der gegebenen Axenrichtung parallelen Ebenen $P_1P'_1$, $P_2P'_2$, $P_3P'_3$ (Fig. 17); sie schneiden sich in den derselben Richtung parallelen Geraden E_{23} , E'_{23} , E_{31} , E'_{31} , E_{12} , E'_{12} und teilen den ganzen Raum in sieben Gebiete, welchen in Bezug auf das gegebene Bündel paralleler Geraden, sieben verschiedene Kombinationen der Zeichen (+) und (—) für die Grössen 24) aus den acht überhaupt jetzt möglichen Zeichenverbindungen entsprechen. Diese sieben Gebiete sind in der Figur 17 perspektivisch und in der Figur 18 nach der Regel des § 7 dargestellt.

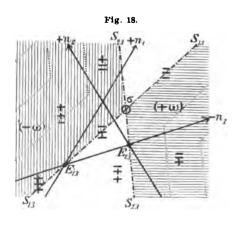
In den Gebieten (++-), (+--) und (-+-) sind die Ungleichheiten 17) für keine Axe vereinbar; dagegen sind sie im Gebiete (--+) für alle Geraden vereinbar. In den übrigen Gebieten können die Bedingungen 17) teilweise vereinbar sein. Nämlich im Gebiete (---)

muss die mögliche Schraubenaxe der Bedingung genügen, dass die absoluten Werte von $\delta_1 \operatorname{tg} \varphi_1 \operatorname{und} \delta_2 \operatorname{tg} \varphi_2$ grösser als $\delta_3 \lg \varphi_3$ seien. Das wird nur für diejenigen Geraden stattfinden, welche auf einer Seite der Grenzebenen (§6) S_{13} und S_{23} liegen. Die Spuren dieser Ebenen, heisst die ..Grenzgeraden" sind in der Figur 18 durch Strichpunktierung und das Gebiet (+ \omega) möglicher Schraubengeschwindigkeiten mit positiver Winkelgeschwindig-



keitsrichtung durch horizontale Schraffierung hervorgehoben. Dieses Gebiet enthält auch einen Teil des Gebietes (-++).

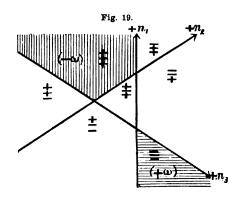
Dieselben Grenzgeraden S_{13} und S_{23} bestimmen auch das Gebiet möglicher Schraubengeschwindigkeiten mit entgegengesetzter Richtung der Winkelgeschwindigkeit $(-\omega)$. In der Figur 18 ist dieses Gebiet, welches den Bedingungen 20) entspricht, durch vertikale Schraffierung angegeben und enthält, wie man sieht, das ganze Gebiet (++-) und zum Teil die Gebiete (+--), (-+-) und (+++).



Auf ähnliche Weise kann man die Richtungen, welche den Ungleichheiten 18) und 21), oder 19) und 22) entsprechen, untersuchen. Der Unterschied wird nur in den Zeichenverbindungen und noch darin bestehen, dass anstatt der Ebenen S_{13} , S_{23} jetzt respektive die Ebenen S_{32} , S_{12} , oder S_{12} , S_{13} die Hauptrolle spielen werden.

In allen Fällen, welche in der zweiten und dritten Gruppe enthalten sind, erfüllen die möglichen Schraubenaxen einer gegebenen Richtung den Raum zweier Scheitelwinkel, welche von den Grenzebenen, die durch die Durchschnittsgeraden zweier Normalebenen mit einer dritten gehen, gebildet werden.

Die anderen zwei Scheitelwinkel enthalten keine möglichen Schraubenaxen. Bei zwei Stützflächen konnte ein solcher Fall nicht eintreten; denn alle Geraden des Raumes konnten als Schraubenaxen dienen. Wir sehen also, dass zur Existenz solcher Geraden, welche keine



möglichen Schraubenaxen sein können, mindestens drei Stützflächen nötig sind.

Da die Richtungen der Grenzebenen S_{13} u. S_{23} (Fig. 18) von den Verhältnissen

 $\operatorname{tg} \varphi_1 : \operatorname{tg} \varphi_2 : \operatorname{tg} \varphi_3$ abhängen und jede dieser Tangenten im gegebenen Gebiete auf der Parameterkugel beliebig gross werden kann, so kann die Durchschnitts-

gerade der Ebenen S_{13} , S_{23} , welche in der Figur 18 durch den Punkt σ dargestellt ist, jede mögliche Lage in den Gebieten (---) und (+++) annehmen. Diese Bemerkung wird später eine Anwendung finden.

In derselben Figur 18 sind durch feinere Punktierung diejenigen den Grenzebenen parallelen Ebenen angegeben, in welchen Schraubenaxen mit gleicher Differenz zwischen den Grenzen für den Parameterwert liegen (§ 7).

14. Um solche Geraden aufzufinden, um welche unter anderen Schraubenverschiebungen auch eine einfache Drehung möglich ist, muss man in der zur gegebenen Axenrichtung senkrechten Ebene die Gebiete suchen, in welchen alle drei Grössen 24) den Wert Null bekommen können. Bei den Axen der ersten und vierten Gruppe muss für die eine Richtung der Winkelgeschwindigkeit $(+\omega)$ das Gebiet (---) genommen werden (Fig. 19), da das grösste von den Produkten 24) den Ungleichheiten 16) gemäss Null nicht übertreffen darf; bei der entgegengesetzten Richtung $(-\omega)$, welcher die Bedingungen 23) entsprechen, gehören die Axen möglicher Drehung dem Gebiete (+++) an. Wenn die Axenrichtung der zweiten und dritten Gruppe z. B. den konjugierten Gebieten BDC und AEF auf der Parameterkugel angehört, also für die eine Richtung der Winkelgeschwindigkeit die Be-

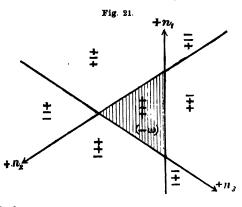
dingungen 17) und für die entgegengesetzte Richtung die Bedingungen 20) erfüllt werden, so entsprechen (Fig. 18) dem Werte p=0 respektive die Gebiete(--+) und(++-).

In den betrachteten zwei Beispielen erstrecken sich die Gebiete, in welchen die Axen einfacher Drehung lagen, ins Unendliche; man kann aber solche Lagen dreier Stütznormalen oder auch solche Axenrichtungennehmen, dass das eine von den Gebieten $(+\omega)$, $(-\omega)$ verschwindet und das andere geschlossen bleibt. Um die ses zu erreichen, bemerken wir, $+n_z$ dass in der Ebene, welche zur

Fig. 20.

gegebenen Axenrichtung senkrecht ist, von den acht Zeichenverbindungen immer nur sieben vorhanden sind; man kann dabei die Lage der Nor-

malen so nehmen, dass die abwesende Zeichenverbindung zu einem der zwei Gebiete möglicher Drehung gehört; das andere Gebiet kommt dann in das geschlossene Dreieck zwischen den Projektionen der drei Normalen hinein. Solche Fälle sind in den Figuren 20, 21, 22 und 23 dargestellt; es ist leicht einzusehen, wie die +n/2 ersten zwei Figuren aus der Figur 19 und die anderen zwei aus der Figur 18 entstanden sind.



Die Bestimmung der Gebiete einfacher Drehung ist übrigens der Bestimmung möglicher Geschwindigkeitspole der ebenen Bewegung für den Fall von drei Stützkurven ganz analog.*

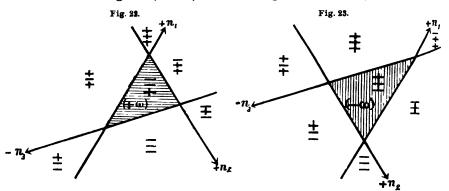
Wenn das Dreieck möglicher Drehungen in den letzten vier Figuren sich in einen Punkt verwandelt, so bleibt für die gegebene Richtung nur eine Drehungsaxe möglich. Alle solche Axen gehören offenbar zu einer Schar der Erzeugenden des Hyperboloides, dessen andere Schar von Erzeugenden die drei Stütznormalen enthält.

15. Wir setzen jetzt voraus, dass zwei von den Stütznormalen einander parallel sind. Sie mögen zuerst gleichgerichtet sein; dann verwandeln sich die Gebiete ABC, BDC, AEF und EDF der Parameterkugel (Fig. 16) in sphärische Zweiseite und die übrigen vier

^{*} Man vergl.: Reuleaux, Theoretische Kinematik, 1875, S. 109—112.

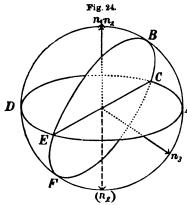
Gebiete bleiben nur als Grenzen der vorhergehenden vorhanden. Die entsprechende Darstellung auf der Parameterkugel ist in der Figur 24 gegeben.

Bei jeder Axenrichtung, welche den konjugierten Gebieten EBC1 und EFCD angehört, sind, wie im allgemeinen Falle, Schrauben-



geschwindigkeiten möglich, wenn nur p ausserhalb der Grenzen liegt, welche durch das kleinste und das grösste von den Produkten 24) bestimmt werden.

Den Gebieten EDCB und EACF entsprechen die Ungleichheiten 17) und 20). Von den sieben Gebieten der Figur 18 bleiben jetzt nur

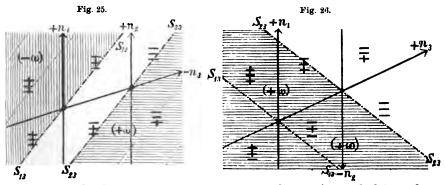


sechs übrig (Fig. 25). Es ist das Gebiet (+--) verschwunden; aber bei einer anderen Lage der Normalen könnte auch ein anderes Gebiet verschwinden. Die Grenzebenen S_{13} und S_{23} werden jetzt parallel; denn das Verhältnis tg φ_1 : tg φ_3 im Gebiete (+++) ist jetzt dem Verhältnisse tg φ_2 : tg φ_3 im Gebiete (---) gleich, da hier die Winkel φ_2 , φ_3 die Winkel φ_1 , φ_3 des ersten Gebietes zu zwei Rechten ergänzen. Die möglichen Schraubenaxen werden also in der Figur 25 durch alle Punkte, welche nicht zwischen den beiden Grenzgeraden S_{13} , S_{23} liegen,

bestimmt. Auf der einen Seite dieser Geraden befindet sich das Gebiet $(+\omega)$, und auf der anderen Seite $(-\omega)$. Für die einen Axen sind δ_2 tg φ_2 und δ_3 tg φ_3 die Grenzen für p, für die anderen Axen sind diese Grenzen δ_1 tg φ_1 und δ_3 tg φ_3 . Durch feinere Punktierung sind Axen mit gleicher Parameterdifferenz angegeben.

Einfache Drehung, je nach der Richtung derselben, bleibt um die Axen der Gebiete (--+) oder (++-) möglich; einfache Translation kann nach solchen Richtungen erfolgen, welche auf der Parameterkugel (Fig. 24) durch das Gebiet EBCA bestimmt werden.

Nehmen wir jetzt an, dass die parallelen Normalen entgegengesetzt gerichtet sind. In diesem Falle nehmen die Gebiete AEB, EBD, DCF und ACF (Fig. 16) die Form von sphärischen Zweiseiten an, die übrigen vier Gebiete aber bleiben nur als Grenzen der ersteren bestehen. Wir werden wieder die Figur 24 im Auge behalten, nur mit der Annahme, dass die Normale n. die in den Klammern angezeigte Richtung hat. Dann entsprechen die konjugierten Gebiete EBCA und EFCD den Ungleichheiten 18) und 21); die möglichen Parameterwerte bleiben immer zwischen gewissen Grenzen eingeschlossen. Von den sieben Gebieten der ebenen Darstellung bleiben wieder nur sechs vorhanden (Fig. 26). Nur die eine von beiden Grenzebenen, S₂₃, behält jetzt ihre Bedeutung, da nur die Projektionen von n_2 und n_3 , und nicht von n_1 und n_3 , entgegengesetzte Vorzeichen haben (§ 7). Dass die Grenzebene S_{23} allein jetzt die möglichen Schraubenaxen von den unmöglichen abgrenzt, davon kann man sich auf folgende Weise überzeugen. Im Gebiete (--+) sind die Bedingungen 18) nicht vereinbar; im Gebiete (-++) sind nur die ersten

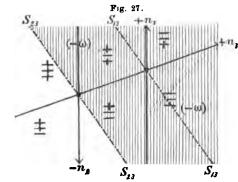


zwei dieser Bedingungen überall vereinbar, die zweite und dritte aber nur auf der einen Seite von S_{23} . In den Gebieten (+++) und (++-)ist $\delta_1 \lg \varphi_1 < \delta_2 \lg \varphi_2$, da dort $\varphi_1 = \varphi_2$ und $\delta_1 < \delta_2$ ist; daher sind die Bedingungen 18) nur im Gebiete (++-) überall vereinbar, im Gebiete (+++) aber sind die zweite und dritte von diesen Bedingungen nur auf der einen Seite von S_{23} vereinbar. Im Gebiete (-+-) sind die Ungleichheiten 18) überall vereinbar, im Gebiete (---) nur die zwei ersten, die zweite und dritte aber wieder nur auf einer Seite von S_{23} . Somit bestimmt das ganze Gebiet auf der einen Seite von S23 mögliche Schraubengeschwindigkeiten, wenn dabei die Winkelgeschwindigkeit positive Richtung $(+\omega)$ hat. Mit der entgegengesetzten Richtung von ω sind überhaupt keine Schraubenaxen gegebener Richtung möglich, da die Ungleichheiten 21) in keinem von den sechs Gebieten (Fig. 26) vereinbar sind. — Obgleich jetzt die Ebene S_{13} als Grenzebene keine Rolle spielt, so behält sie doch ihre Bedeutung bei der Bestimmung der Grenzen für den Parameter möglicher Schraubengeschwindigkeiten; nämlich es dienen als solche Grenzen eutweder δ_1 tg φ_1 und δ_2 tg φ_2 oder δ_3 tg φ_3 und δ_2 tg φ_2 ,

je nach der Seite von S_{13} , auf welcher die Schraubenaxe liegt; der erstere Fall tritt z. B. im Gebiete (++-) und der andere im Gebiete (-++) ein.

Wenn die Normalprojektionen $(+n_1)$, $(-n_2)$ in anderer Ordnung folgen (Fig. 27), so ist keine Schraubengeschwindigkeit mit positiver Richtung $(+\omega)$, dagegen eine solche mit entgegengesetzter Richtung von ω möglich; die betreffenden Schraubenaxen liegen wieder auf einer Seite der Grenzebene S_{23} .

Bei der Betrachtung der konjugierten Gebiete, welche den Bedingungen 19) und 22) entsprechen, kommen wir zu analogen Resultaten,



wobei nur anstatt der Ebene S_{23} die Ebene S_{13} als Grenze möglicher Schraubenaxen dienen wird.

Wir wollen jetzt die Grenzen der vier Gebiete der Parameterkugel (Fig. 24) betrachten.

Wenn die Normalen n₁ und n₂ gleichgerichtet sind, so entsprechen den Richtungen, welche durch die Punkte des

Kreises AEDC bestimmt werden, nur unendliche Werte von δ_1 tg q_1 und δ_2 tg q_2 . Die Grenzebenen S_{13} und S_{23} (Fig. 25) fallen daher mit den Normalebenen von n_1 und n_2 zusammen. Eine der Grenzen von p wird jetzt unendlich; im übrigen kann die weitere Untersuchung ebenso wie im vorhergehenden Falle gemacht werden. Bei den Richtungen, welche durch die Punkte des Kreises EBCF bestimmt werden, wird δ_3 tg q_3 unendlich; die Ebenen S_{13} und S_{23} fallen dann mit der Normalenebene von n_3 zusammen. Es verschwindet daher das Gebiet unmöglicher Schraubenaxen, welches zwischen diesen Ebenen gelegen war.

Nehmen wir jetzt an, dass n_1 und n_2 entgegengesetzt gerichtet sind. Den Punkten des Kreises AECD auf der Parameterkugel (Fig. 24) entsprechend, fallen wieder die Grenzebenen S_{13} , S_{23} (Fig. 26) mit den Normalenebenen von n_1 und n_2 zusammen. Da δ_1 tg φ_1 und δ_2 tg φ_2 unendlich gross geworden sind, so kann p, den Ungleichheiten 18) gemäss, nur in den Gebieten (-++) und (-+-) endliche Werte bekommen Ebenso in dem Falle, welchem die Figur 27 entspricht, bekommt p nur in den Gebieten (+-+) und (+--) endliche Werte.

Für die Richtungen, welche durch die Punkte des Kreises EBCF bestimmt werden, ist δ_3 tg φ_3 unendlich; S_{13} und S_{23} fallen daher mit der Normalenebene von n_3 zusammen. Für p bleibt die Bedingung

$$\delta_1 \operatorname{tg} \varphi_1 \le p \le \delta_2 \operatorname{tg} \varphi_2$$

notwendig, mit der Voraussetzung, dass die dritte Stützfläche der Winkelgeschwindigkeit $(+\omega)$ nicht hinderlich ist; das wird (Fig. 26) in den

Gebieten (++-), (-+-) und (---) erfüllt. Ahnliches finden wir auch im Falle der Figur 27.

Die Voraussetzung, dass die Winkelgeschwindigkeit den Grenzen der Gebiete auf der Parameterkugel (Fig. 24) entspricht, fallen lassend, merken wir noch einen speziellen Fall zweier entgegengesetzt gerichteter Normalen an: wenn sie auf einer Geraden liegen. Wäre die dritte Stützfläche nicht vorhanden, so könnte jede Gerade des Raumes als mögliche Schraubenaxe dienen, aber nur mit einem für jede Gerade bestimmten Werte des Parameters (§ 10). Durch die dritte Stützfläche werden mögliche Schraubenaxen jeder gegebenen Richtung von einer der Grenzebenen S_{13} oder S_{23} begrenzt, je nachdem die Projektion von n_1 oder n_2 auf die zu dieser Richtung senkrechte Ebene das andere Vorzeichen als die Projektion von n_3 bekommt. Im ganzen genommen bekommt jetzt der feste Körper einen grösseren Zwang als in den vorhergehenden Fällen, in welchen auch nur eine von den beiden Grenzebenen die Rolle spielte, aber der Parameter möglicher Axen keinen bestimmten Wert hatte, sondern nur zwischen gewissen Grenzen lag.

(Schluss folgt.)

Ein Mittelwertsatz für ein System von n Integralen.*

Von G. Kowalewski in Leipzig.

 $\varphi(t)$ und $\psi(t)$ seien reelle und in dem Intervall $(a \dots b)$ stetige Funktionen. Zu jedem Wert t aus diesem Intervall gehört alsdann ein bestimmter komplexer Wert $w = \varphi(t) + i\psi(t)$, dem in bekannter Weise ein Punkt der komplexen Ebene entspricht, welcher kurz als der zu jenem Wert t gehörige Punkt w bezeichnet werden soll. Seine rechtwinkligen Koordinaten sind $x = \varphi(t), y = \psi(t)$. Wir vermeiden den Ausdruck "Kurve" für die Gesamtheit der Punkte w, da man gewöhnlich unter einer Kurve ein Gebilde versteht, das sich durch die Bewegung eines Punktes erzeugen lässt, also an jeder Stelle eine bestimmte Richtung hat. Dies folgt aber keineswegs schon aus der Stetigkeit der Funktionen φ und ψ, sondern setzt ausserdem ihre Differentiirbarkeit voraus. Man kennt nun eine grosse Anzahl von Beispielen für stetige, nichtdifferentiirbare Funktionen, und, um anzudeuten, dass diese von dem Geltungsbereich des hier zu beweisenden Satzes nicht ausgeschlossen sein sollen, wollen wir die Gesamtheit der Punkte w nicht als Kurve, sondern einfach als die Punktmenge w bezeichnen. Zunächst entwickeln wir einige ihrer Eigenschaften, auf die sich der Beweis unseres Satzes stützen wird.

1. Die Punktmenge w liegt ganz innerhalb eines endlichen Quadrates. Wegen der Stetigkeit von φ und ψ ist es nämlich möglich, eine positive Grösse M so zu bestimmen, dass in dem ganzen Intervall $(a \dots b)$ die

Digitized by GOOgle

^{*} Vorliegende Arbeit enthält eine in einzelnen Punkten vereinfachte Darstellung eines Satzes, den ich in Crelles Journal Heft 3 Band 117 veröffentlicht habe.

Ungleichungen $|\varphi(t)| < M$, $|\psi(t)| < M$ bestehen. Daraus ist aber ersichtlich, dass sämtliche Punkte w innerhalb des durch die geraden Linien

$$x = \pm M, \quad y = \pm M$$

gebildeten Quadrates liegen.

2. Liegt innerhalb und ausserhalb eines geradlinigen Dreiecks ein Punkt w, so giebt es einen solchen auch auf der Begrenzung des Dreiecks.

Die Koordinaten eines Punktes P auf der Begrenzung des Dreiecks lassen sich ansehen als stetige Funktionen einer Variablen s, für welche man z. B. die längs der Begrenzung und in bestimmtem Sinne gemessene Entfernung desselben von einer Ecke des Dreiecks wählen kann. Da ausserdem die Koordinaten eines Punktes w stetige Funktionen von t sind, so folgt, dass die Distanz Pw von zwei solchen Punkten eine stetige Funktion der Variablen s und t ist, von denen t zwischen a und b, s zwischen 0und p variiert (wenn p den Umfang des Dreiecks bedeutet). Sollte also gegen die Behauptung der Fall Pw = 0 niemals eintreten, so mitsste sich eine positive Grösse α angeben lassen derart, dass immer $Pw > \alpha$ wäre (dies ergiebt sich aus der Stetigkeit der Funktion Pw, da eine stetige Funktion, wenn sie beliebig kleine Werte annimmt, auch den Wert Null annehmen muss). Der Voraussetzung gemäss gehöre nun zu $t = t_0$ ein Punkt w innerhalb, zu t = T ein solcher ausserhalb des Dreiecks. Dann kann man durch Einschaltung von $t_1, t_2, \ldots t_{n-1}$ das Intervall (t_0, \ldots, t_n) in n gleiche Teile teilen und dabei n so gross wählen, dass für zwei beliebige aufeinander folgende Teilpunkte t_i , t_{i+1} (wobei $t_n = T$ ist) die Ungleichungen bestehen:

$$|\varphi(t_{i+1}) - \varphi(t_i)| < \frac{\alpha}{2}, \quad |\psi(t_{i+1}) - \psi(t_i)| < \frac{\alpha}{2}.$$

Bezeichnen wir mit w_i den zu t_i gehörigen Punkt w, sodass also $w_i = \varphi(t_i) + i\psi(t_i)$ ist, so folgt für die Entfernung $\overline{w_iw_{i+1}}$ von zwei aufeinander folgenden Punkten der Reihe $w_0, w_1 \dots w_n$ (dabei ist w_n der zu T gehörige Punkt w):

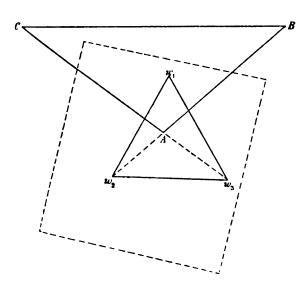
$$\frac{1}{w_i w_{i+1}^2} < \frac{\alpha^2}{2}$$
, also sicher $\frac{1}{w_i w_{i+1}} < \alpha$.

Ist aber die Entfernung zweier Punkte w kleiner als α , so liegen entweder beide innerhalb oder beide ausserhalb des Dreiecks. Anderenfalls würde auf ihrer geraden Verbindungsstrecke ein Punkt der Begrenzung liegen, dessen Abstand von jedem der beiden Punkte w dann auch kleiner als α wäre, was nach der Bestimmung von α nicht sein kann. Gehört also, wie vorausgesetzt, zu $t=t_0$ ein Punkt innerhalb des Dreiecks, so würde dies successiv für $t_1,t_2\ldots t_n$ folgen. Zu $t_n=T$ gehört aber nach der Voraussetzung ein Punkt w ausserhalb des Dreiecks.

3. w_1 , w_2 , w_3 seien drei Punkte w, die nicht in gerader Linie liegen. Wir betrachten einen Punkt A im Innern des Dreiecks $w_1w_2w_3$. Verlängert man, wie es in der Figur geschehen ist, zwei der Verbindungslinien Aw_1 , Aw_2 , Aw_3 , z. B. Aw_2 und Aw_3 , über A hinaus, so kann man sie offenbar so weit verlängern, dass die Verbindungslinie BC ihrer Endpunkte g^{anz}

ausserhalb jenes Quadrates liegt, dessen Existenz unter 1) bewiesen wurde (in der Figur ist es punktiert gezeichnet). Dann enthält BC keinen Punkt w, da alle diese Punkte innerhalb jenes Quadrates liegen. Nun können wir aber auf das Dreieck ABC den unter 2) bewiesenen Satz anwenden. In der That liegt ein Punkt w (nämlich w_1) innerhalb und ein Punkt w (nämlich w_2 oder auch w_3) ausserhalb desselben. Also liegt nach jenem Satz auch auf der Begrenzung ein Punkt w, und zwar, da BC keinen solchen enthält, entweder auf AB oder auf AC. Wenn wir also von w_2 und von w_3 aus geradlinig über A hinausgehen, so treffen wir sicher auf einen Punkt w, falls nicht A selbst ein solcher Punkt ist. Jeder Punkt im Innern eines durch drei Punkte w gebildeten Dreiecks ist also entweder selbst ein Punkt w, oder er liegt auf der geraden Verbindungsstrecke von zwei solchen Punkten.

Um dieses Resultat und auch die folgenden kürzer ausdrücken zu können, führen wir folgende Bezeichnung ein: Wir nennen w jeden Punkt,



der entweder selbst ein Punkt w ist oder auf der geraden Verbindungsstrecke von zwei Punkten w liegt (man würde also die Punktmenge w aus der Punktmenge w dadurch erhalten, dass man alle möglichen Paare von Punkten w Bei einer verbindet. Kurve im eigentlichen Sinne wären dies alle Sehnen derselben). Mit Hilfe dieser Bezeichnung können wir unser Resultat jetzt so aussprechen: Die ganze Fläche eines durch

drei Punkte w bestimmten Dreiecks besteht aus Punkten \overline{w} (offenbar gilt dieser Satz auch, wenn w_1 , w_2 , w_3 in gerader Linie liegen).

4. Nimmt man n Punkte w $(w_1, w_2, \ldots w_n)$, so überdecken die aus allen möglichen Kombinationen dieser Punkte zu je dreien hervorgehenden Dreiecke ein gewisses Stück der Ebene, dessen Punkte somit mach 3) sämtlich Punkte \overline{w} sind.

Nun zeigt man leicht, dass $\lambda_1 w_1 + \lambda_2 w_2 + \cdots + \lambda_n w_n$ unter der Voraussetzung, dass $\lambda_1, \lambda_2, \ldots, \lambda_n$ positiv und von der Summe

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$$

sind, ein Punkt dieses Ebenenstückes, mithin ein Punkt \overline{w} ist. Der Beweis beruht auf einem Schluss von n auf n+1.

5. Für unsern eigentlichen Zweck brauchen wir nur noch eine Eigenschaft der Punktmenge \overline{w} . Sind

$$\varphi(t) + i\psi(t)$$
 und $\varphi(\overline{t}) + i\psi(\overline{t})$

zwei Punkte w, so hat ein beliebiger Punkt auf der Verbindungsstrecke beider die Koordinaten

$$x = \lambda \varphi(t) + \overline{\lambda} \varphi(\overline{t}), \quad y = \lambda \psi(t) + \overline{\lambda} \psi(\overline{t}),$$

wo λ , $\overline{\lambda} \geq 0$ und $\lambda + \overline{\lambda} = 1$. Man erhält offenbar alle Punkte w, wenn man λ von 0 bis 1 und t, \overline{t} zwischen a und b variieren lässt. Nun sei A + iB ein Punkt, von dem man weiss, dass in beliebiger Nähe von ihm Punkte w liegen, also eine sogenannte Häufungsstelle oder ein Grenzpunkt (nach Georg Cantor) der Menge w. Dann nimmt also die Funktion:

$$[A - \lambda \varphi(t) - \overline{\lambda} \varphi(\overline{t})]^2 + [B - \lambda \psi(t) - \overline{\lambda} \psi(\overline{t})]^2$$

welche das Quadrat der Entfernung eines Punktes \overline{w} vom Punkte A+iB ausdrückt, beliebig kleine Werte, mithin als stetige Funktion der darin auftretenden Variablen λ , t, \overline{t} auch den Wert Null an. A+iB fällt also mit einem Punkte \overline{w} zusammen, oder jede Häufungsstelle von \overline{w} gehört selbst zu \overline{w} . Eine solche Punktmenge nennt man wohl auch eine abgeschlossene, und \overline{w} ist demnach eine abgeschlossene Punktmenge.

Kehren wir nach diesen Vorbereitungen zu den Funktionen $\varphi(t)$, $\psi(t)$ zurück, so ist der Beweis des beabsichtigten Satzes ziemlich kurz zu führen.

Wir betrachten die Integrale:

$$J_1 = \int_a^b \varphi(t) dt, \quad J_2 = \int_a^b \psi(t) dt.$$

Nach der Definition des Integrales ist:

$$J_1 + \varepsilon_1 = \sum_{i=0}^{n-1} (t_{i+1} - t_i) \varphi(t_i), \quad J_2 + \varepsilon_2 = \sum_{i=0}^{n-1} (t_{i+1} - t_i) \psi(t_i),$$

wenn $t_0 = a$, $t_n = b$ und $t_1 t_2 \dots t_{n-1}$ in dieser Reihenfolge zwischen a und b eingeschaltet sind. Addieren wir die mit i multiplizierte zweite Gleichung zur ersten (i ist natürlich $\sqrt{-1}$ und nicht mit dem Index i zu verwechseln, setzen ferner $\varphi(t_i) + i\psi(t_i) = ic_{i+1}, \ t_{i+1} - t_i = \lambda_{i+1}(b-a)$, so ergiebt sich:

$$\frac{J_1+iJ_2}{b-a}+\frac{\varepsilon_1+i\varepsilon_2}{b-a}=\lambda_1w_1+\lambda_2w_2+\cdots+\lambda_nw_n.$$

Da λ_1 , λ_2 , ... λ_n positiv und von der Summe $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$ sind, so ist nach 4) $\lambda_1 w_1 + \lambda_2 w_2 + \cdots + \lambda_n w_n$ ein Punkt \overline{w} . Beachtet man ausserdem, dass sich ε_1 und ε_2 durch passende Wahl der $t_1, t_2, \ldots, t_{n-1}$ und Vergrösserung von n beliebig verkleinern lassen, so

erkennt man, dass in beliebiger Nähe des Punktes $\frac{J_1+iJ_2}{b-a}$ Punkte \overline{w} liegen, und kann endlich nach 5) schliessen, dass $\frac{J_1+iJ_2}{b-a}$ selbst ein Punkt \overline{w} ist. Unter 5) wurde ferner ausgeführt, dass die Koordinaten jedes Punktes \overline{w} durch $\lambda \varphi(t) + \overline{\lambda} \varphi(\overline{t})$, $\lambda \psi(t) + \overline{\lambda} \psi(\overline{t})$ ausdrückbar sind. Es ist also, ausführlich geschrieben:

$$\int_{a}^{b} \varphi(t)dt = (b-a)[\lambda \varphi(t) + \overline{\lambda} \varphi(\overline{t})],$$

$$\int_{a}^{b} \psi(t)dt = (b-a)[\lambda \psi(t) + \overline{\lambda} \psi(\overline{t})].$$

Dies ist das Resultat, auf welches wir kommen wollten. In Worten lässt es sich so formulieren:

Sind $\varphi(t)$, $\psi(t)$ Funktionen, von denen nur vorausgesetzt wird, dass sie reell und in dem Intervall $(a \dots b)$ stetig sind, so lassen sich stets zwei positive Zahlen λ $\bar{\lambda}$ von der Summe $\lambda + \bar{\lambda} = 1$, ferner zwei Werte t, t aus dem Intervall $(a \dots b)$ so bestimmen, dass die obigen Gleichungen bestehen.

Für *n* Integrale $\int_{a}^{b} \varphi_{i}(t)dt$ (i = 1, 2, ..., n) gilt ein ganz analoger Satz,

den wir ohne Beweis hier nur aussprechen wollen:

Sind die φ_i reelle, von a bis b stetige Funktionen, so lassen sich n positive Grössen $\lambda_1, \lambda_2, \ldots \lambda_n$ von der Summe

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1,$$

ferner aus dem Intervall $(a \dots b)$ die Werte $t_1, t_2, \dots t_n$ so bestimmen, dass die n Gleichungen bestehen:

$$\int_{a}^{b} \varphi_{i}(t)dt = (b-a)[\lambda_{1}\varphi_{i}(t_{1}) + \lambda_{2}\varphi_{i}(t_{2}) + \cdots + \lambda_{n}\varphi_{i}(t_{n})] \quad (i=1, 2, \ldots n).$$

Über eine neue Folgerung aus der Maxwellschen Theorie der elektrischen Erscheinungen.

Von Dr. A. Scheye in Göttingen.

Auf den Umstand, dass bis jetzt keinerlei Wirkungen des galvanischen Stromes auf ruhende Elektrizität beobachtet worden sind, stützt bekanntlich Clausius* seinen Einwand gegen Webers Grundgesetz der Elektrodynamik; er weist nämlich nach, dass dasselbe nur dann mit der erwähnten Erfahrung in Einklang steht, wenn man die — seiner Meinung nach unwahr-

^{*} Clausius, Journal für die reine und angewandte Mathematik, Band 82, S. 89, 1877.

scheinliche — Annahme macht, dass im elektrischen Strome sich beide Elektrizitäten, und zwar in entgegengesetztem Sinne, bewegen. Er selbst stellt daher ein neues Grundgesetz auf, das an diesem angeblichen Mangel nicht leidet. Demgegenüber erscheint es mir von Interesse, zu untersuchen, was die auf ganz anderen Voraussetzungen beruhende Maxwellsche Theorie über diesen Gegenstand aussagt.

Aus den allgemeinen Maxwellschen Gleichungen erhält man den Fall des stationären Stromes dadurch, dass man die Abgeleiteten der elektrischen und magnetischen Kraftkomponenten nach der Zeit = 0 setzt. Es ergiebt sich alsdann, dass die elektrischen Kräfte überall, im Leiter wie im Dielektrikum, ein Potential φ besitzen, welches die Gleichung $\Delta \varphi = 0$ befriedigt. Ferner erfordern die Grenzbedingungen an der Berührungsstelle zweier beliebigen homogenen Körper, also auch eines Leiters und eines Dielektrikums, dass die tangentielle Komponente der elektrischen Kraft stetig ist.* Da nun der Strom, mithin auch die elektrische Kraft an der Berührungsfläche des Isolators und des Leiters in letzterem tangentiell verläuft und im allgemeinen von 0 verschieden ist, so folgt schon hieraus, dass auch im Dielektrikum in der Nähe des Leiters elektrische Kräfte wirksam sein müssen.

Es mögen zwei aufeinander senkrechte, in der Oberfläche des Leiters gelegene Richtungen mit λ und μ , die Normale zur Fläche mit ν bezeichnet werden, dann fordern die Grenzbedingungen, wenn sich der Index 1 auf den Leiter, der Index 2 auf den Isolator bezieht, dass an der Berührungsstelle der beiden Körper stets $\frac{\partial \varphi_1}{\partial \lambda} = \frac{\partial \varphi_2}{\partial \lambda},$

 $\frac{\partial \lambda}{\partial \mu} = \frac{\partial \lambda}{\partial \mu},$ $\frac{\partial (\varphi_1 - \varphi_2)}{\partial \lambda} = \frac{\partial (\varphi_1 - \varphi_2)}{\partial \mu} = 0$

oder

ist, das heisst, dass längs der Grenzfläche $\varphi_1 - \varphi_2$ einen konstanten Wert hat.

Ist nun φ_1 für den Leiter bereits gefunden, so hat man, um das elektrische Feld im Isolator zu ermitteln, noch folgende Aufgabe zu lösen: Es ist zu bestimmen eine Funktion φ_2 , welche im ganzen Dielektrikum mit ihren Ableitungen stetig ist, der Gleichung $\Delta \varphi_2 = 0$ genügt, an einer bestimmten Fläche den gegebenen Wert φ_1 annimmt und im Unendlichen = 0 wird. Allerdings ist φ_1 nur bis auf eine Konstante bekannt, und im allgemeinen Falle müsste zu φ_2 noch eine Funktion ψ addiert werden. welche die Gleichung $\Delta \psi = 0$ befriedigt, im Unendlichen 0 wird und an der Grenzfläche gegen den Leiter einen konstanten Wert k hat; doch würde dieses Glied des Potentials nur eine statische Ladung des Leiters anzeigen, die sich dem elektrischen Strome superponiert. — Nicht berücksichtigt sind hierbei die Unstetigkeiten, welche bei gleichzeitiger Berührung zweier Leiter und eines Dielektrikums auftreten; man kann jedoch leicht

^{*} Vergl. Hertz, Wiedemanns Annalen 40, S. 590 und 591, 1890.

eine Anordnung ersinnen, bei der solche Kontaktstellen nicht in Betracht zu ziehen sind.

Die Stetigkeitsbedingungen für den Übergang vom Leiter zum Isolator ermöglichen es, wenn das Potential für den Leiter bekannt ist, ohne weitere Rechnung wenigstens den Wert der tangentiellen Komponente der elektrischen Kraft im Isolator unmittelbar am Leiter anzugeben. Es fliesse z. B. der Strom durch eine Zelle von folgender Beschaffenheit: Die Anode bestehe aus einem massiven Metallcylinder vom Radius a und der Höhe h, den eine leitende Flüssigkeit umgiebt; als Kathode diene ein Hohlcylinder aus demselben Metall, der den inneren Radius b hat, und dessen Achse mit der des ersten Cylinders zusammenfällt. Vernachlässigt man den Widerstand des Metalles gegen den der Flüssigkeit, nimmt also das Potential an der Oberfläche der Elektroden als konstant an, so ist innerhalb des flüssigen Leiters

$$\varphi = \frac{\varphi_1 - \varphi_2}{\log \frac{a}{b}} \cdot \log \varrho + \text{const},^*$$

wo ϱ den Abstand von der Achse der beiden Cylinder, φ_1 und φ_2 die Werte des Potentials an den beiden Berührungsflächen zwischen Metall und Flüssigkeit bedeuten; die an diesen beiden Stellen stattfindenden Potentialsprünge können vernachlässigt werden, da sie sich gegenseitig aufheben. Haben die Zuleitungsdrähte nur geringen Widerstand, so kann $\varphi_1 - \varphi_2 = E$, der elektromotorischen Kraft der Batterie, gesetzt werden, folglich:

$$\varphi = -\frac{E}{\log \frac{a}{b}} \log \varrho + \text{const},$$

$$-\frac{\partial \varphi}{\partial \varrho} = \frac{E}{\varrho \log \frac{b}{a}}.$$

Ist b etwa = ea, wo e die Basis des natürlichen Logarithmensystems, so ist die tangentielle Komponente der elektrischen Kraft im Isolator dicht am Leiter $=\frac{E}{e}$. Da elektrostatisches Maß zu Grunde gelegt ist, so ist für 1 Volt $\frac{1}{300}[C^{\frac{1}{2}}S^{-1}]$ zu setzen, und man erkennt leicht, dass sich für mässige Werte der elektromotorischen Kraft sehr kleine Kraftwirkungen im Isolator ergeben. Es ist also nicht unwahrscheinlich, dass diese geringen Kräfte bisher der Beobachtung entgangen sind und durch eine sorgfältige experimentelle Untersuchung wirklich nachgewiesen werden können, zu der die Anregung zu geben der Zweck dieser Darlegung ist.

^{*} Vergl. Kirchhoff, Vorlesungen über Elektrizität und Magnetismus, S. 124.

Über einen Satz der Statik.

Von K. Th. Vahlen in Königsberg i. Pr.

Ein räumliches Kräftesystem ist auf unendlich viele Arten entweder auf zwei nicht in einer Ebene wirkende Kräfte oder auf ein Kräftepaar und eine nicht in dessen Ebene wirkende Kraft zu reduzieren. Unter den ersteren Reduktionen sind am bemerkenswertesten die auf zwei gleiche Kräfte, unter den letzteren diejenige, bei der die Richtung der einzelnen Kraft auf der Ebene des Kräftepaares senkrecht steht. Dass eine solche Reduktion möglich ist, stimmt mit dem Satze überein: Eine beliebig kleine Bewegung eines Körpers könne als Schraubenbewegung aufgefasst werden mit aufeinander senkrechten Richtungen des Fortschreitens und der Drehung. Hieraus erklärt sich die Bezeichnung der Geraden, in welcher jene Einzelkraft wirkt, als der "Hauptdrehlinie" des Kräftesystems.

Über diese Hauptdrehlinie ist von Schweins* ein Satzaufgestellt worden, den später Möbius** in einfacherer Weise bewies. Dieser Satz lautet:

Hat ein System von Kräften zwei nicht in einer Ebene wirkende Kräfte zu Resultanten, so wird von der Geraden, welche diese zwei Kräfte rechtwinklig schneidet, auch die Hauptdrehlinie des Systems rechtwinklig geschnitten.

Diese Eigenschaft der Hauptdrehlinie ergiebt sich am einfachsten und natürlichsten, wenn man die Zurückführung zweier Kräfte auf ein Kräftepaar und eine dazu senkrechte Kraft durch eine geeignete Konstruktion wirklich ausführt.

Es seien nämlich PP' und QQ' die beiden Kräfte, PQ die kürzeste, auf beiden senkrechte Verbindungslinie, R der Mittelpunkt von P'Q'. Durch PQ werde eine Ebene E senkrecht zur Ebene PQR gelegt. Zerlegt man nun PP' und QQ' respektive in PP'', PP''' und QQ'', QQ''', so dass die Kräfte PP''', QQ'' in der Ebene E, die Kräfte PP''', QQ''' senkrecht zu ihr wirken, so bilden PP'', QQ'' ein Kräftepaar, während sich die Kräfte PP''', QQ''' zu einer einzigen, zur Ebene E des Kräftepaares senkrechten zusammensetzen: die Gerade, in der diese Kraft wirkt, ist also die Hauptdrehlinie des Systems. Dieselbe schneidet PQ rechtwinklig, wie aus der Konstruktion hervorgeht.

Berichtigung.

In Figur 2, S. 130 muss an der Kurve $e_1 p_4 p_4 e_2$ die Bezeichnung $\varphi - 2 \psi \psi e$ (statt $\varphi^2 \psi \psi e$) stehen.

^{*} Crelles Journal Band 32, S. 227-230.

^{**} Crelles Journal Band 36, S. 89 90. Möbius' Werke Band 3, S. 567 - 570.

Herdersche Verlagshandlung, Freiburg um Breisgan

Dressel, L., S. J., Elementares Lehrbuch der Physik nach den neuesten Anschmungen für hühere Schulen und zum Selbstunterricht. Mit 402 Figuren. gr. 8° (XX u. 700 S. und eine Tabelle.) - 5 7.501 geb. in Halbleder mit Goldtitel & S.

Die Park ist eine getlegene Griginalleierung, die nile Empfehlung verdirus.

Es grant knapp, elementer und doch gründlich einem Urberblich über den jetzigen Standungkt der Physik in einer Wolse, die um en anvendung wirkt, als man inrikt, dass der Verfasser Physik in einer Wolse, die um en anvendung wirkt, als man inrikt, dass der Verfasser abgestil selfastendig kritisch urteilt; der Leser virt ihnstehelle in inringeführt in die houtigen, abersil selfastendig kritisch urteilt; der Leser virt ihnstehelle das solltentielten Strupen und ist Wiesenzisch des Verfassers und legt schliesellen das lünft hin mit denn johnalen Wuns be, an Klasserrisch des Verfassers und legt schliesellen das lünft hin mit denn johnalen Wuns be, an gist Lesenz der Vieles vorgeführten Probleme weitsen Aubeit zu nehmen.

To night class allen grossen Emfang des Werkers herbeitenfihren, musste die Berteilung meglichet were gehalten werden, und bierbei zeigt sich der Verfasser als Meister des processes des Werk ist in seiner Ausführung für nobare Schutten als such zum Selfstennömen einer Ausführung für nobare Schutten die sich mit dem beutigen einer in den den beutigen die sich mit dem beutigen will alleht armängeln, es allen denjenigen, wärne sie ein mit dem beutigen des Physik durch eigenes Studium vertraut machen wollen, warm en empfanten, machen alle processes des Physik durch eigenes Studium vertraut machen wollen, warm en empfanten, machen beite bei Physik durch eigenes Studium vertraut machen wollen, warm ist empfanten, machen bei processes der Physik durch eigenes Studium vertraut machen wollen, warm ist empfanten, machen beite bei processes der Physik durch eigenes Studium vertraut machen wollen, warm ist empfanten.

Neuester Verlag von B. G. Teubner in Leipzig. 1897.

- Föppl, Dr. A., Prof der Mechanik an der Technischen Hochschule zu München, die Gebinetrie der Wirbelfelder. In Anlehnung an das Buch des Verf. über die Maxwell'sche Theorie der Elektricität und zu dessen Ergänzung. [X u. 108 S.] gr 8, 1897. geh. n. 4 3.60.
- Prischauf, Dr. Johannes, Prof. an der Universität Graz, Vorlesungen über Kreis und Kugel-Funktionen-Reihen. [VI u. 60 S.] gr. 8, 1897, geh. a 2.
- Cantor, Dr H., Prof an der Kantonsschule in Anrau und Dr. F. Rudio, Prof. am Polytechnikum in Zürich, die Elemente der analytischen Geometrie. Zum Gebrauch an höheren Lehraustalten sowie zum Selbststudium. Mit zahlrüchen Übungsbeispielen. I. Teil. Die analytische Geometrie der Elemente der Land von der Elemente der Land von der Elemente der Land von der Elemente der Elemente
- Gundelfinger, Dr Sigmund, Prof an der Tochnischen Hochschule zu Darmstudt, Tateln zur Berechnung der reellen Wurzeln sämtlicher trinomischer Gleichungen. Hinzugefügt sind vierstellige Additions-, Subtraktions-und Briggische Logarithmen sowie eine Interpolationstafel für alle Differenzen unter Hundert. [IV u. 15 S.] 4. 1897. Steif geh. n. # 1.40.
- Keller, Dr. phil. H., in Münster i.W., über den Urstoff und seine Energie.
 T. Teil. Eine physikalisch-ehemische Untersuchung über die theoretische
 Bedeutung der Gesetze von Duzono-Purur und Kore auf der Grundlage einer
 kinetischen Theorie des festen Aggregatzustandes. [58 S.] gr. 8. 1896. geh. n. .# 2 -
- Kirchhoff, Gustav, Vorlesungen über mathematische Physik. I. Band: Mechanik. 4. Anfl. herausgegeben von Prof. Dr. W. Wien. Mit 15 Figuren im Text. [X m. 464 S.] gr. 8. 1897. geh n. # 13.
- Behlesinger, Prof. Dr. Ludwig, Privatdozent an der Universität Berlin, Hand-buch der Theorie der linearen Differentialpleichungen. In zwei Handen Zweiter Band. I. Theil. Mit Figuren im Text. [XVIII a. 532 S.] gr 8. 1897, geh. n. .# 18.-
- Serret, J.-A., † Membre de l'Institut et du Bureau des Longitudes Paris, Lehr-buch der Differential- und Integral-Rechnung. Mit Genehmigung des Verlassers deutsch bearbeitet von Dr. Axer Hannack, ? Prof. am der Technischen Hochschule zu Dresden. Zweite, durchgesehene Auflage von Dr. G. Boncwass., Privatslozent an der Universität zu Göttingen. In zwei Bänden. I. Band. Differentialrechnung. Mit 85 in den Text gedruckten. Figuren. XVI a. 570 S.) gr. 8. 1897. geh. n. 4 10.— Deibzed by Crook C.

INHALT.

Die Transformation und Auflisung der Gleichung Gofton Grades in chemontasse Darutellung: Von Dr. W. Bernsten (Salah)	
Loci of the equations are not and	
The state of the s	
The Mittelworkerts file all Santon	
Pher eine neue Folgerung aus der Maxwellschen Theorie der nicktrischen Erschelnungen. Von Dr. A Senve-	159
Cher einen Satz der Statik. Von K. Tu Vannex	-107
THE VARIANCE OF THE VARIANCE O	700
Historisch-litterarische Abteilung (besonders pagintert)	
Internationaler Mathematiker-Kongress in Zürich 1897	
Berensianen:	7.0
Knary, France Abries des appropriée de la restaute de la	
rights Von Morrey	
Mirria, An. Lagrebox i Algalian Vac Con-	77
Passab. E., Teoria delle funzioni ellittiche Von Passa Jacom, C.G. J., Über die vierfach periodischen Funktionen sweier Variabeln: Green A. Franco de Passabelni et de la	90
Perioden Van Ferranden sweier Variablen mit vie	
Wistings, W. Untersuphysics that There is a second	11 12
ZOTH, OSKAR, Die Projektions Linguister L.	84
	N4 155
Vouce, H. W., Prof Dr. Hamiltonik Jon B. Namer.	8.0
CHESTIANSEN, C., Elemente der theoretischen Physik, Von B. Name, Louise, E. von, Leirbuch der Experimental Physik, Von B. Namer,	HB 87
Kottene Junes Kutuckisana Land	34
	88
Karsen, H., Lehrbuch der Physik für Studierende. Von B. Name. Hatset, Jacon, Lehrbuch der Physik für Gymnasien. Realgymnasien.	50
The second secon	90
The state of the s	01
Mathematisches Abhandlungsregister. 1896. Erste Halffe: 1 Januar	
	9/2

Alle Sendungen

für die allgemeine Abteilung dieser Zeitschrift sind an Prof. Dr. R. Mchmke, Stuttgart, Immenhoferstrasse 4111, für die historischlitterarische Abteilung an Hofrat Prof. Dr. M. Cantor, Heidelberg. Gaisbergstr. 15, zu richten. - Die Zeitschrift erscheint in Bänden von je 6 Heften, der Preis des Bandes von 36 Druckbogen beträgt 20 Mark. Alle Buchhandlungen und Postanstalten nehmen Bestellungen an,

ZEITSCHRIFT

FUR

MATHEMATIK UND PHYSIK.

REGRUSDET 1856 DURCH

O. SCHLÖMILCH.

B. W122-01101. (1866-1850), M. CANTON (1850-1890), E. KAIII. (1860-1892).

GEGENWÄRTIG HURAUSGEGEBEN

VOR

DR. R. MEHMKE UND DR. M. CANTOR.

42. BAND. 4. HEFT.

ONE 12 TEXTFOUREN UND T LITHOGRAPHIERTEN TAPPE.

Ausgegeben am 28. September 1897.

LEIPZIG, VERLAG VON B. G. TRUBNER. 1897. Verlag von B. G. Teubner in Leipzig.

Hettner's Geographische Zeitschrift

Monattich 1 Heff von elrea 60 Seiten. Halbjährlich B Mk.

Jedem Gebildeten wie allen Schulen

Aus dem Inhalt der letzten Hefte:

Die Insel Kreta. Von Prof. Dr. E. Die deutschen Geographen der Re-Fabricius. Daissance. Von Dr. V. Hantzsch.

Das Kartenzeichnen in der Schule. Von Dr. E. Bludan. Die deutschen Geographen der Renaissance. Von Dr. V. Hantzsch. Die neueren Forschungen über die Korallenriffe, Von Dr. R. Lannenbeck

Kleineré Mittellungen — Beographische Neuigkeiten — Bücherbesprechungen Eingesandle Bücher, Aufsätze und Karten — Zeltschriftenschau.

Prospekte und Probehefte gratis und franko

von der Verlagsbuchkandlung B. G. Taubner in Leipzig, Poststrasse 3.
Abonnements nehmen alle Postanstalten und Buchkandlungen an.

Baumgärtner's Buchhandlung, Leipzig.

Darch Jede Buchhandlung zu besiehen:

Die Geometrie der Lage.

Vorträge von Prof. Dr. Th. Reye, ord. Professor an der Universität Strassburg.

Abt. II (3. Auft.). Mit 26 Textfiguren. Bruch 9 Mk., in Halbfronz gebumben 11 Mk.

Abt. HI (mm). Brich, 6 Mk., in Halbfronz gebonden 8 ML. Bereits früher erschien:

Ald. I. (S. Aufl.). Mil 92 Textfiguren. Broch. 7 Mk., in Halbfranz gelmiden 9 Mk.

Aus einer Besprechung von Guide Hauck: "Unserem Verfasser gebührt das Verdienst, das System jenen grossen Geometers (Standt) von seinen Einseitigkeiten befreit und dadurch nicht nur schmackhaft, sondern vor allemfür die Weiterförderung der Wissenschaft nutzbar gemacht zu haben. Diese hat denn auch in den letzten Dezennien eine überaus fruchtbare Weiterentwickelung erfahren, an welcher der Verfasser durch seine bahabrechenden Arbeiten in hervorragender Weise beteiligt war. Es sei dabei namentlich auf den Ausbau der Liniengeometrie hingewiesen... Das auch bereits ins Französische und Italienische und jetzt auch ins Englische übersetzte Werk stellt in dieser seiner neuen Auflage dus vollstandigste Liehrbuch der neuenen Geometrie dar."

eines festen Körpers

Über Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Zahl von Stützflächen.

Von

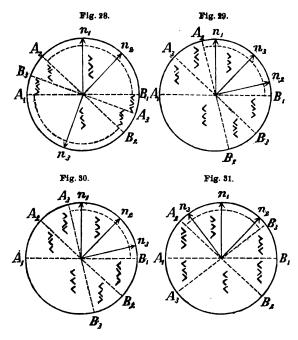
P. Somoff

in Warschau.

Sohluss.

16. Wenn alle drei Normalen einer Ebene parallel sind, so verwandelt sich ein Paar konjugierter Gebiete auf der Parameter-kugel (Fig. 16, Heft 3) in Punkte; und das kann mit jedem der vier

Paare konjugierter Gebiete geschehen. den Figuren 28, 29, 30 und 31, welche diese vier Fälle darstellen, sind durch punktierte Gerade die Spuren der drei zu den Normalen senkrechten Centralebenen bezeichnet, und die zwischen denselben stehenden Ungleichheitszeichen entsprechen den Bedingungen $16) \dots 23$ Die Verteilung möglicher Schraubenaxen schiedenerRichtungen, welche sechs den übrig gebliebenen Geentsprechen,



stellt nichts wesentlich neues dar; über die Schraubenaxen aber, welche zu den drei Normalen senkrecht sind, bemerken wir folgendes. Da nach den beiden Richtungen dieser Axen eine Translation möglich ist, so sind auf allen denjenigen dieser Axen, um welche eine einfache

Zeitschrift f. Mathematik u. Physik. 42 Jahrg. 1897. 4. Heft.

Drehung erfolgen kann, auch Schraubengeschwindigkeiten mit willkürlichem Parameterwerte möglich. Die Aufsuchung solcher Axen kommt also auf die im § 14 betrachtete Frage hinaus; der Unterschied besteht nur darin, dass jetzt in den Figuren 19, 20, 21, 22 und 23 (siehe Heft 3): 1. die Vorzeichen (+), (—) bei den Spuren der Normalebenen wegfallen und 2. die dort bestimmten Gebiete möglicher Drehungsaxen zu Gebieten möglicher Schraubenaxen von willkürlichem Parameter werden. Wenn nur ein geschlossenes Gebiet (Fig. 20, 21, 22 und 23, Heft 3) vorhanden ist und sich in einen Punkt zusammenzieht, so bleibt nur eine Schraubenaxe mit willkürlicher Parametergrösse möglich.

17. Es werden weiter die Normalen zu den Stützflächen einander parallel vorausgesetzt. Man muss hier zwei Fälle unterscheiden: wenn alle drei Normalen gleichgerichtet sind, und wenn eine von ihnen den beiden anderen entgegengerichtet ist. Den ersten Fall brauchen wir weiter nicht zu untersuchen, da er offenbar zu ähnlichen Resultaten führt, wie der Fall von zwei parallelen und gleichgerichteten Normalen (§ 10).

Wir nehmen also weiter an, dass die eine Normale, na, den zwei anderen entgegengerichtet ist. Seien Q, Q, (Fig. 32) eine zu den Normalen senkrechte Ebene, AEBF und CEDF (Fig. 33) zwei Centralebenen der Parameterkugel, welche resp. den Normalen n3, n1 und n_2 , n_3 parallel sind, und ACBD eine zu den letzteren senkrechte Centralebene. Die Oberfläche der Parameterkugel wird somit in acht Gebiete geteilt, welche für die Richtungen möglicher Schraubenaxen bestimmend sein werden. Es möge zuerst die Richtung der Winkelgeschwindigkeit dem Gebiete BEC angehören; dann liegt in der nach § 7 gemachten ebenen Darstellung (Fig. 34) die Gerade $(-n_3)$ ausserhalb der Geraden $(+n_1)$, $(+n_2)$; und da jetzt ω mit n_1 und n_2 spitze Winkel bildet, so muss p den Bedingungen 17) genügen. Es ist leicht einzusehen, dass dieselben in allen vier Gebieten der Figur 34 erfüllt werden, da überall $\delta_1 \operatorname{tg} \varphi_1$ und $\delta_2 \operatorname{tg} \varphi_2$ kleiner als δ_8 tg φ_8 sind. Für die entgegengesetzte Richtung der Winkelgeschwindigkeit, welche also aus dem Gebiete DAF genommen ist (Fig. 35), finden wir keine möglichen Schraubenaxen; denn die diesem Falle entsprechenden Ungleichheiten werden in keinem der vier Gebiete erfüllt. Ähnliche Resultate bekommt man auch bei der Betrachtung der konjugierten Gebiete AED und BCF, mit dem Unterschiede nur, dass zur Möglichkeit der Schraubenaxen notwendig ist, dass die Richtung der Winkelgeschwindigkeit dem zweiten dieser Gebiete angehört, dieselbe also mit den Normalen n, und n, stumpfe Winkel bildet.

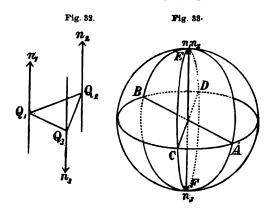
Mit den Winkelgeschwindigkeiten, welche den übrigen vier Gebieten BED, CAF, CEA und BDF angehören, sind keine Schraubengeschwindigkeiten möglich. Wenn wir z. B. die Winkelgeschwindigkeitsrichtung aus dem Gebiete BED nehmen, also die Bedingungen 17)

beachten, so finden wir, dass in der zu dieser Richtung senkrechten Ebene der Figur 36 die Ungleichheiten 17) in keinem der vier Gebiete vereinbar sind. Ähnliches bekommt man auch für die übrigen drei genannten Gebiete.

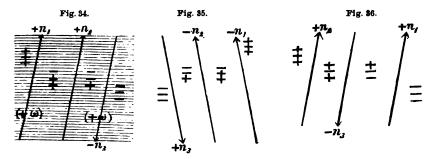
Alle diese Bemerkungen zusammenfassend, kann man sagen:

Wenn die drei Normalen zu den Stützebenen einander parallel sind und die dritte von ihnen den zwei ersten entgegengerichtet ist,

so ist für die Möglichkeit der Schraubenaxen einer gegebenen Richtung notwendig und hinreichend, dass die durch die dritte Normale zur gegebenen Richtung parallel gezogene Ebene zwischen den anderen zwei Normalebenen von derselben Richtung liegt. Auf allen dieser Bedingung genügenden Axen sind Schraubengeschwindigkeiten mög-



lich, wenn ihre Parameter zwischen gewissen, für verschiedene Axen verschiedenen, aber im allgemeinen endlichen Grenzen liegen. Auf allen anderen Axen sind keine Schraubengeschwindigkeiten möglich,



die zu den Normalen senkrechten Geraden ausgenommen, welche mögliche Translationsrichtungen darstellen.

Hier finden wir den einzigen Fall, wo bei drei Stützflächen solche Richtungen existieren, dass keine Geraden dieser Richtungen als mögliche Schraubenaxen dienen können.

In der obigen Betrachtung müssen alle den Normalen parallelen Axen ausgeschlossen werden; denn für diese Richtung bleiben die Normalebenen unbestimmt. Aber es ist unmittelbar ersichtlich, dass um solche Axen nur eine einfache Drehung, und zwar nach beiden Richtungen, möglich ist.

Wenn die drei parallelen Normalen in einer Ebene P liegen und die mittlere von ihnen den zwei anderen Normalen entgegengerichtet ist, so werden die Bedingungen für mögliche Schraubenaxen nur bei denjenigen Geraden erfüllt, welche der Ebene P parallel sind; denn auf der Parameterkugel werden die Richtungen möglicher Schraubenaxen nur durch die Punkte der Kreislinie bestimmt, deren Ebene eine zur Ebene P parallele Centralebene ist. Auf jeder solchen Schraubenaxe kann der Parameter nur einen bestimmten Wert haben. Dieser Wert ist für die Axen, welche in der Ebene P selbst liegen und zu den Normalen nicht senkrecht sind, gleich 0; sind diese Axen ausserdem zu den Normalen senkrecht, so bleibt für sie jeder Parameterwert möglich. Endlich bleibt noch jede zu den Normalen senkrechte Translation und um jede zu denselben parallele Gerade eine einfache Drehung möglich.

Die zuletzt betrachtete Lage der Normalen hat die Eigentümlichkeit, dass dabei der feste Körper den grössten bei drei Stütz-

flächen möglichen Zwang bekommt.

In der That, bei jeder anderen Lage der Normalen existieren auf der Parameterkugel ganze sphärische Gebiete möglicher Schraubenaxenrichtungen und der Parameter hat auf jeder Axe nicht einen bestimmten Wert, sondern bleibt nur in gewisse Grenzen geschlossen, mit Ausnahme eines am Ende des § 15 betrachteten Falles, wobei aber für die Schraubenaxen alle Richtungen möglich bleiben.

Vier Stützflächen.

18. Die obige Betrachtungsweise können wir auch bei vier und mehr Stützflächen beibehalten. Die Grenzebenen werden dabei wieder eine wesentliche Rolle spielen.

Dem Falle von drei Stützflächen analog kann man, wenn vier Stützflächen gegeben sind, die Gebiete auf der Parameterkugel in fünf Gruppen teilen, je nachdem die Zahl der Normalen, mit welchen die Winkelgeschwindigkeit spitze Winkel bildet, gleich 4, 3, 2, 1 oder 0 ist.

Diesen fünf Gruppen entsprechen der Reihe nach 1, 4, 6, 4, 1 Gebiete der Parameterkugel, nach der Zahl der Zeichenverbindungen, welche bei den Grössen:

25)
$$\delta_1 \operatorname{tg} \varphi_1$$
, $\delta_2 \operatorname{tg} \varphi_2$, $\delta_3 \operatorname{tg} \varphi_3$, $\delta_4 \operatorname{tg} \varphi_4$

auftreten können. Nicht alle diese 16 Gebiete können aber auf der Parameterkugel zugleich vorhanden sein; denn die vier zu den Normalen senkrechten Centralebenen teilen die Kugel nur in 14 Gebiete, der allgemeinen Formel:

26)
$$A_k = k(k-1) + 2$$

gemäss, wo k die Zahl der gezogenen Ebenen und A_k die Zahl der erhaltenen Gebiete bezeichnet.

Überhaupt, wenn k>3 ist, so bleibt $A_k<2^k$, und dann werden nicht für alle Zeichenverbindungen der Grössen δ tg φ entsprechende Gebiete auf der Parameterkugel sich vorfinden. Da alle gebliebenen Gebiete paarweise konjugiert sind, so sind auch die verschwindenden Gebiete konjugiert.

Um zu bestimmen, welches Paar konjugierter Gebiete bei vier Stützflächen verschwindet, betrachten wir die acht Gebiete (Fig. 16, Heft 3), welche den drei ersten Normalen n_1 , n_2 , n_3 entsprechen; dann wird das Verschwinden zweier konjugierten Gebiete davon abhängen, in welches der acht genannten Gebiete das positive Ende der Normalen n_1 hineinfällt. Z. B., wenn die Richtung $(+n_4)$ im Gebiete ABC der Figur 16 (Heft 3) sich befindet, so wird dieses ganze Gebiet, welches den Ungleichheiten 16) entspricht, auch den Ungleichheiten:

- 27) $p > \delta_1 \operatorname{tg} \varphi_1$, $p \ge \delta_2 \operatorname{tg} \varphi_2$, $p \ge \delta_3 \operatorname{tg} \varphi_3$, $p > \delta_4 \operatorname{tg} \varphi_4$ und ebenso das ganze ihm konjugierte Gebiet EDF, welches den Ungleichheiten 23) entspricht, den Ungleichheiten:
- 28) $p \le \delta_1 \operatorname{tg} \varphi_1$, $p \le \delta_2 \operatorname{tg} \varphi_2$, $p < \delta_3 \operatorname{tg} \varphi_3$, $p \le \delta_4 \operatorname{tg} \varphi_4$ entsprechen. Dagegen werden die Bedingungen:
- 29) $p \ge \delta_1 \operatorname{tg} \varphi_1$, $p \ge \delta_2 \operatorname{tg} \varphi_2$, $p \ge \delta_3 \operatorname{tg} \varphi_3$, $p \le \delta_4 \operatorname{tg} \varphi_4$ und die ihnen entgegengesetzten Bedingungen:

30)
$$p \le \delta_1 \lg \varphi_1$$
, $p \le \delta_2 \lg \varphi_2$, $p \le \delta_3 \lg \varphi_3$, $p \ge \delta_4 \lg \varphi_4$

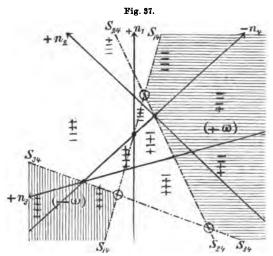
in keinem der vorhandenen Gebiete erfüllt, da diesen Ungleichheiten, welche die Bedingungen 16) und 23) in sich schliessen, nur ein Teil der Gebiete ABC und EDF genügen könnte. Ähnliche Betrachtungen können auch auf die übrigen sieben Fälle angewandt werden.

19. Auf allen Geraden, welche den konjugierten Gebieten der ersten und fünften Gruppe angehören, sind Schraubengeschwindigkeiten möglich, wenn p, wie im Falle von drei Stützflächen, ausserhalb der Grenzen liegt, welche durch das kleinste und das grösste der Produkte 25) Diese Axen brauchen weiter nicht untersucht bestimmt werden. zu werden; aber in Bezug auf die Frage über den grössten Zwang des festen Körpers ist folgende Eigentümlichkeit bemerkenswert, welche dann eintritt, wenn die Zahl der Stützflächen grösser als drei ist. Nach dem im vorigen Paragraphen Gesagten sehen wir, dass den vier Normalen solche Richtungen gegeben werden können, dass die Schraubenaxen der ersten und fünften Gruppe ganz verschwinden; dann werden überhaupt keine solche Schraubengeschwindigkeiten übrig bleiben, deren Parameter ausserhalb gewisser Grenzen liegt, denn bei allen Schraubenaxen der zweiten, dritten und vierten Gruppe bleibt p zwischen, im allgemeinen, endlichen Grenzen eingeschlossen. Alles Vorhergehende beachtend, finden wir also:

Damit es möglich sei, durch Stützflächen, deren Normalen in den Berührungspunkten mit dem festen Körper nicht einander parallel sind, den Parameter aller möglichen Schraubengeschwindigkeiten zwischen gewissen, im allgemeinen endlichen Grenzen einzuschliessen, sind wenigstens vier Stützflächen nötig.*

Natürlich sind die Grenzen für p, welche von δ und φ abhängen, für verschiedene Schraubenaxen verschieden.

20. Von den vier Fällen der zweiten und vierten Gruppe genügt es, einen zu betrachten. Wir wollen voraussetzen, dass die Richtung der Winkelgeschwindigkeit entweder mit den Normalen n_1 , n_2 , n_3 spitze und mit n_4 einen stumpfen Winkel bildet oder entgegengesetzt gerichtet ist; für p haben wir dann resp. die Bedingungen 29) oder 30).



Die Gebiete möglicher Schraubenaxen werden dann durch die Grenzebenen S_{14} , S_{24} und S_{34} bestimmt. Nachdem die Aufsuchung dieser Gebiete im Falle von zwei oder drei Stützflächen ausführlich gezeigt wurde, können wir uns jetzt mit einer kurzen Angabe der Resultate begnügen. Auf der zur gegebenen Richtung senkrechten Ebene kann das Gebiet geschlossen nicht geschlossen oder sein: das wird von der

Lage der Geraden $(+n_1)$, $(+n_2)$, $(+n_3)$, $(-n_4)$ und von den Verhältnissen der Grössen 25) untereinander abhängen, also auch von der Richtung der Winkelgeschwindigkeit in den für sie bestimmten Grenzen.

In der Figur 37 ist das Gebiet $(+\omega)$ von allen drei Geraden S_{14} , S_{24} , S_{34} begrenzt, aber nicht geschlossen. Da bei der Änderung der Winkelgeschwindigkeitsrichtung in die entgegengesetzte, die Ungleichheiten 29) in die Bedingungen 30) übergehen, die Zeichen der elf Gebiete in der Ebene aber dieselben bleiben, so kann das Gebiet $(-\omega)$ in Bezug auf das Gebiet $(+\omega)$ auf folgende Weise bestimmt werden: es liegt auf der anderen Seite aller drei Grenzgeraden S_{14} , S_{24} , S_{34} .

^{*} Im Falle paralleler Stütznormalen wird das auch bei kleinerer Zahl von Stützflächen erreicht, nur gewisse spezielle Axenrichtungen ausgenommen (§ 10 und § 17).

In der Figur 37 ist dieses Gebiet nur durch zwei dieser Geraden

 S_{14} , S_{34} begrenzt.

In der Figur 38 sind die Projektionen der Normalen so genommen, dass das Gebiet möglicher Schraubenaxen geschlossen werden kann. Damit das wirklich erzielt werde, muss die Richtung der Winkelgeschwindigkeit in dem für sie auf der Parameterkugel bestimmten Gebiete gewissen ergänzenden Bedingungen genügen, welche nur kurz für das in der Figur 38 dargestellte Beispiel angegeben werden sollen. Die Richtung der Geraden S_{14} , S_{24} , S_{34} kann in den Grenzen der sie enthaltenden Winkel, welche die Gerade $(-n_4)$ mit $(+n_1)$, $(+n_2)$ und

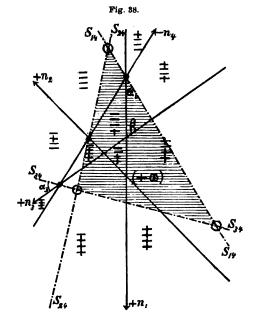
 $(+ n_3)$ bildet, geändert werden und hängt von den Verhältnissen:

 $\delta_1 \operatorname{tg} \varphi_1 : \delta_2 \operatorname{tg} \varphi_2 : \delta_3 \operatorname{tg} \varphi_3 \\ : \delta_4 \operatorname{tg} \varphi_4$

ab (§ 7 und § 8). Wenn z. B. die Gerade S_{24} schon im voraus nach der allgemeinen Regel gezogen ist, muss der Schnittpunkt der Geraden S_{14} und S_{34} auf diejenige Seite von S_{24} fallen, wo das Gebiet, für welches

 $p \ge \delta_2 \operatorname{tg} \varphi_2$, $p \le \delta_4 \operatorname{tg} \varphi_4$ ist, sich befindet, also in der Figur 38 auf der rechten Seite von S_{24} .

Das wird der Fall sein, wenn $\alpha_1 + \alpha_3 + \beta < \pi$ ist und kann unter andern erreicht werden, wenn α_1 und

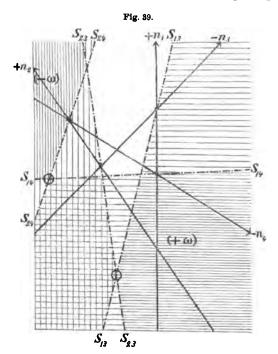


 a_3 , d. h., wenn tg φ_4 : tg φ_1 und tg φ_4 : tg φ_3 genügend klein sind. Diese Forderung kann immer erfüllt werden. Wenn nämlich auf der Parameterkugel die den Ungleichheiten 29) und 30) entsprechenden Gebiete existieren, so kann ein Punkt des Gebietes ABC (Fig. 16, Heft 3) zur Bestimmung der negativen Richtung der Normalen n_4 genommen werden: dann werden alle Punkte dieses Gebietes den Bedingungen 29) und alle Punkte des Gebietes EDF den Bedingungen 30) genügen. Dann können in diesen Gebieten für die Schraubenaxen solche Richtungen genommen werden, welche mit n_4 einen beliebig kleinen Winkel bilden, sodass auch tg φ_4 : tg φ_1 und tg φ_4 : tg φ_3 beliebig klein werden.

Wenn mögliche Schraubenaxen von einer gegebenen Richtung durch ein geschlossenes Gebiet (Fig. 38) bestimmt werden, so kann die Winkelgeschwindigkeit auf denselben nur eine von den beiden

Richtungen bekommen; mit der entgegengesetzten Richtung werden dann gar keine möglichen Schraubenaxen existieren; denn dieselben müssten auf der entgegengesetzten Seite von allen drei Grenzebenen S_{14} , S_{34} , S_{34} liegen, was jetzt unmöglich ist.

Alles oben gesagte beachtend, finden wir: Damit alle möglichen Schraubenaxen von gegebener Richtung auf der zu ihr senkrechten Ebene durch ein geschlossenes Gebiet bestimmt werden, sind wenigstens vier Stützflächen nötig. Dabei bleibt dieses Gebiet nicht nur für die gegebene Richtung, sondern auch für andere, genügend nahe Richtungen



geschlossen. Der Parameterwert liegt für alle solche Axen im allgemeinen zwischen endlichen Grenzen.

21. Um die Fälle der dritten Gruppe zu untersuchen, bringen wir in Erinnerung (§13), dass bei drei Stützflächen, wenn der Parameter einem der Systeme von Ungleichheiten 17), 18), 19) der entgegengesetzten 20), 21), 22) genügt, die möglichen Schraubenaxen in einem Scheitel-Paare von winkeln eingeschlossen sind, welche durch zwei Grenzebenen gebildet

werden; dabei kann die Winkelgeschwindigkeit auf den Axen des einen Scheitelwinkels die eine Richtung und auf den Axen des anderen die entgegengesetzte Richtung bekommen. Nehmen wir jetzt aus den sechs Fällen der dritten Gruppe die folgenden zwei konjugierten:

- 31) $p \ge \delta_1 \operatorname{tg} \varphi_1$, $p \ge \delta_2 \operatorname{tg} \varphi_2$, $p < \delta_3 \operatorname{tg} \varphi_3$, $p \le \delta_4 \operatorname{tg} \varphi_4$;
- 32) $p \le \delta_1 \operatorname{tg} \varphi_1$, $p \le \delta_2 \operatorname{tg} \varphi_2$, $p > \delta_3 \operatorname{tg} \varphi_3$, $p \ge \delta_4 \operatorname{tg} \varphi_4$, und suchen zuerst, nach der Regel des § 6, das Paar von Scheitelwinkeln, welche den Bedingungen:
 - 33) $p \ge \delta_1 \operatorname{tg} \varphi_1, \quad p \ge \delta_2 \operatorname{tg} \varphi_2, \quad p \le \delta_3 \operatorname{tg} \varphi_3, \text{ oder}$
 - 34) $p \leq \delta_1 \operatorname{tg} \varphi_1, \quad p \leq \delta_2 \operatorname{tg} \varphi_2, \quad p \geq \delta_3 \operatorname{tg} \varphi_3,$

und dann das Paar von Scheitelwinkeln, welche den Bedingungen:

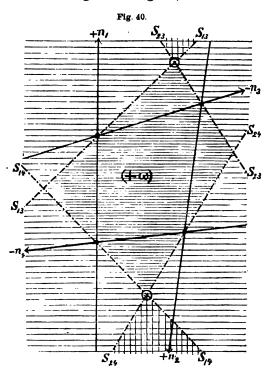
35)
$$p \ge \delta_1 \operatorname{tg} \varphi_1, \quad p > \delta_2 \operatorname{tg} \varphi_2, \quad p \le \delta_4 \operatorname{tg} \varphi_4,$$

36)
$$p \le \delta_1 \operatorname{tg} \varphi_1, \quad p \le \delta_2 \operatorname{tg} \varphi_2, \quad p \ge \delta_4 \operatorname{tg} \varphi_4$$

entsprechen. Mögliche, d. h. den Ungleichheiten 31) oder 32) genügende Schraubenaxen müssen in den Gebieten liegen, welche den Winkeln 33) und 35) oder 34) und 36) gemein sind. Solcher Gebiete können sich entweder zwei (je mit der einen und mit der anderen Richtung der Winkelgeschwindigkeit) oder ein (nur mit einer von den beiden Richtungen der Winkelgeschwindigkeit) oder keines

vorfinden. Diesen Fällen entsprechen die Figuren 39, 40, 41 und 42, wobei, wie früher, durch horizontale Schraffierung das Gebiet $(+\omega)$ und durch die vertikale das Gebiet $(-\omega)$ bezeichnet ist.

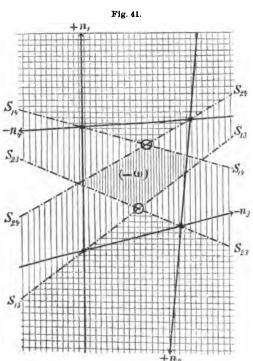
Mögliche Schraubenaxen werden dann durch diejenigen Gebiete stimmt, in welchen die Striche von derselben, horizontalen oder vertikalen Richtung zusammenfallen, also doppelt dicht sind. Eine ausführ-Beschreibung liche überflüssig, da die Bestimmung der Zeichen in den von den Geraden $(+n_1)$, $(+n_3)$, $(-n_3)$, $(-n_4)$ gebildeten Gebieten und der davon abhängenden Lage der Grenzgeraden S₁₃, S₂₃



und S_{14} , \widetilde{S}_{24} analog ist, wie in den Fällen von zwei und drei Stützflächen. Der Parameterwert bleibt bei den Schraubenaxen, welche den Figuren 39, 40 und 41 entsprechen, zwischen gewissen, im allgemeinen, endlichen Grenzen eingeschlossen. Die Figur 42 stellt den Fall dar, wo gar keine Schraubenaxen von gegebener Richtung möglich sind. Dieses war bei drei Stützflächen nur im Falle von drei parallelen und gehöriger Weise gelegenen Normalen möglich; man kann also sagen: Damit im Falle von nicht einander parallelen Stütznormalen solche Richtungen sich vorfinden, dass keine Schraubenaxen dieser Richtungen möglich bleiben, darf die

Zahl der Stützflächen nicht kleiner als vier sein, und zwei von den Stütznormalen müssen mit der gegebenen Richtung spitze, zwei andere Stütznormalen stumpfe Winkel bilden. Natürlich müssen ausserdem die Lage der Stütznormalen und die Winkelgrössen φ_1 , φ_2 , φ_3 , φ_4 gewissen ergänzenden Bedingungen, welche wir weiter nicht untersuchen werden, genügen.

22. Für die Axen einer gegebenen Richtung, um welche eine einfache Drehung möglich sein soll (p=0), findet man, dass auf der zu dieser Richtung senkrechten Ebene entweder zwei nicht geschlossene

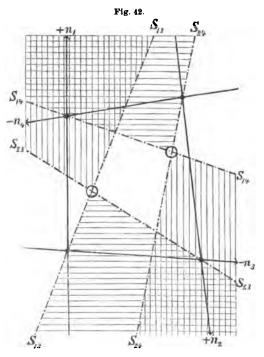


oder ein geschlossenes Gebiet existieren, oder dass keine Geraden der gegebenen Richtung mögliche Drehungsaxen sein können. Die Grenzebenen für die Drehungsaxen sind Normalebenen, wie es schon oben, im § 14, für den Fall von drei Stützflächen bemerkt wurde. Ohne darüber ausführlicher sprechen, bemerken wir nur folgendes: Wenn drei Stütznormalen gegeben sind, so kann man die vierte Stütznormale so wählen, dass eine Drehung um keine von den Axen einer gegebenen Richtung und anderer zu ihr genügend naher Richtungen möglich wird. Es genügt, dieses nur für irgend einen Fall zu zeigen, da in

allen anderen Fällen es auf ähnliche Weise gemacht werden kann. Es möge die gegebene Richtung den konjugierten Gebieten der ersten und fünften Gruppe angehören, sodass p resp. den Ungleichheiten 27) und 28) genügt. Wir entnehmen die Projektionen der ersten drei Normalen n_1 , n_2 , n_3 aus der Figur 19 (Heft 3) und überlassen uns die Wahl der vierten Normalen. Die möglichen Drehungsaxen, auf welchen die Winkelgeschwindigkeit den Bedingungen 27) entspricht, müssen durch das Gebiet (---) bestimmt werden, da nur dort p=0 gesetzt werden kann; und ebenso der entgegengesetzten Richtung von ω muss das Gebiet (++++) dienen. Da solche Gebiete nur zu den Gebieten (---) und (+++) der Figur 19 (Heft 3) gehören können, so wird es von der Lage der Projektion der vierten Normalen

abhängen, ob das gesuchte Gebiet wirklich existiert oder nicht. Die Figuren 43, 44, 45 und 46 sind Wiederholungen der Figur 19 (Heft 3) mit einer Ergänzung durch die vierte Gerade $(+n_4)$: in der Figur 43

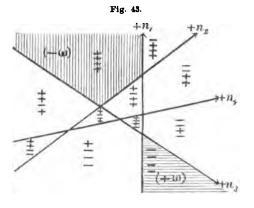
ist dieselbe so genommen, dass die Gebiete $(+\omega)$ und (- \omega) der Figur 19 (Heft 3) ungeändert bleiben; in der Figur 44 hat bei einem von diesen Gebieten eine Abnahme stattgefunden; in der Figur 45 bleibt nur das eine Gebiet (++++), d. h. $(-\omega)$, vorhanden, und in der Figur 46 sind beide Gebiete verschwunden. Ähnliches kann auch in den Figuren 20, 21, 22 und 23 (Heft 3) mit Hilfe der Normalen projektion $(+n_4)$ oder $(-n_A)$ ausgeführt werden. Und es ist immer möglich, durch eine entsprechende Lage dieser Geraden das vollkommene Verschwinden beider Ge-



biete $(+ \omega)$ und $(- \omega)$ zu erreichen; denn diese Gerade teilt die ganze Ebene in zwei Gebiete, welche die Drehungsaxen $(+ \omega)$ _und $(- \omega)$ be-

stimmen, und kann immer so gezogen werden, dass diese Gebiete die entgegengesetzten Gebiete $(-\omega)$ und $(+\omega)$, welche den ersten drei Stütznormalen entsprachen, vollkommen decken.

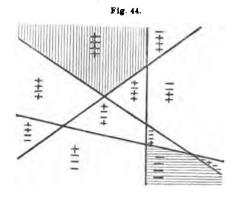
Daraus kann man noch nicht schliessen, dass eine solche Lage von vier Stütznormalen möglich sei, bei welcher überhaupt keine möglichen Drehungs-



axen bleiben. Übrigens werden wir unten (§ 26) sehen, dass dieses für alle Axenrichtungen, nur eine ausgenommen, erreicht werden kann.

Es möge noch daran erinnert werden, dass bekanntlich durch vier Stützflächen der feste Körper gezwungen werden kann, nur Drehungsverschiebungen zu behalten, wozu die Stütznormalen durch einen Punkt gehen und ihre Richtungen so gewählt werden müssen, dass auf der Parameterkugel (Fig. 16, Heft 3) das Gebiet ABC durch Hinzufügung der vierten Normalen verschwindet.

23. Wenn zwei von den Stütznormalen n_1 , n_2 einander parallel sind, können für eine gegebene Axenrichtung wieder vier Fälle ein-

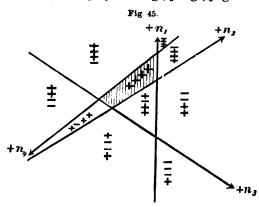


treten: die Hinzufügung der vierten Normalen kann

- 1. die Gebiete möglicher Schraubenaxen unverändert lassen,
- 2. das eine von denselben oder
- 3. beide vermindern und
- 4. ganz zum Verschwinden bringen.

Der erste, zweite und vierte dieser Fälle kann nur dann eintreten, wenn die Grenzebenen S_{14} und S_{24} den Grenzebenen S_{13} und S_{23} parallel werden. Dazu

braucht nicht n_4 der Normalen n_3 parallel zu sein: es ist nur nötig (§6), dass die Verhältnisse $\operatorname{tg} \varphi_1 : \operatorname{tg} \varphi_4$ und $\operatorname{tg} \varphi_2 : \operatorname{tg} \varphi_4$ resp. den Verhältnissen $\operatorname{tg} \varphi_1 : \operatorname{tg} \varphi_3$ und $\operatorname{tg} \varphi_2 : \operatorname{tg} \varphi_3$ gleich werden, d. h., dass n_4 mit



der gegebenen Richtung der Schraubenaxen denselben Winkel wie n_3 bildet.

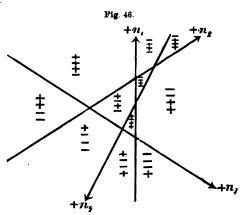
In der Figur 47 ist der vierte von den bezeichneten Fällen dargestellt. Diese Figur ist aus der Figur 25 (Heft 3) durch die Hinzufügung der Geraden (— n₄), welche der obengenannten Bedingung genügt, entstanden; diese Gerade ist

so gewählt, dass die Gebiete $(+\omega)$ und $(-\omega)$ der Figur 25 (Heft 3) von den Gebieten $(-\omega)$ und $(+\omega)$, welche der Grenzgeraden S_{24} entsprechen, gedeckt werden. Eine ähnliche Rolle könnte auch die Grenzgerade S_{14} spielen, wenn nur der Schnittpunkt von $(-n_4)$ und $(+n_1)$ zwischen den Grenzgeraden S_{13} und S_{23} gelegen wäre.

24. Ähnliches findet man, wenn die vier Stütznormalen paarweise parallel sind. Es werden folgende Bemerkungen darüber genügen.

Wenn in einem dieser Paare n_1 , n_2 die Normalen gleichgerichtet sind, so wird für keine Richtungen eine vollkommene Aufhebung möglicher Schraubenaxen erzielt. Sind die Normalen n_3 , n_4 auch gleichgerichtet, so ist es von selbst klar; wenn aber dieselben entgegengesetzt gerichtet sind (Fig. 48), so kann man nach dem in § 10 Gesagten sehen, dass das eine von den Gebieten $(+\omega)$ und $(-\omega)$, im gegebenen Falle das Gebiet $(+\omega)$, verschwindet. Ein vollkommenes

Verschwinden beider Gebiete kann erreicht werden, wenn auch die Normalen n_1 , n_2 entgegengesetzt gerichtet sind, denn bei drei Stütznormalen n_1, n_2, n_3 bleibt dann nur das eine von den Gebieten $(+\omega)$, $(-\omega)$ [Fig. 26 u. 27, Heft 3] bestehen, welches jetzt durch die Hinzufügung der vierten Normalen von dem Gebiete mit entgegengesetzter Winkelgeschwin-

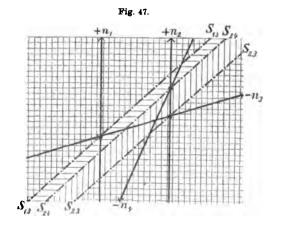


digkeit gedeckt werden kann. Solche Fälle sind in den Figuren 49 und 50, welche entsprechende Ergänzungen der Figuren 26 und 27 enthalten, dargestellt.

Um alle Richtungen, für welche keine Schraubenaxen möglich sind, zu finden, legen wir in der Parameterkugel (Fig. 51) zwei

Zentralebenen LMNP und LKNQ, den Ebenen der Normalenpaare (n_1, n_2) und (n_3, n_4) [Fig.52] parallel. Indem man die Figuren 51 und 52 mit den Figuren 49 und 50 vergleicht, findet man leicht, dass die möglichen Richtungen der Schraubenaxen auf der Parameterkugel durch die sphärischen einander konjugierten Zweiseite

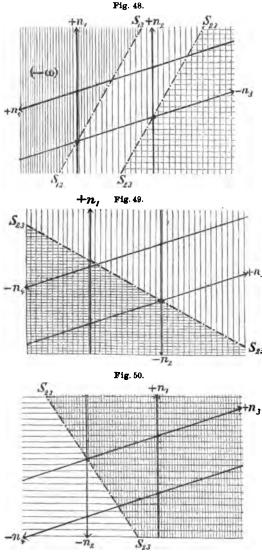




man die Normalenpaare als zwei Kräftepaare betrachtet, kann man sagen: Die Richtungen, nach welchen keine Schraubenaxen möglich sind, werden dadurch bestimmt, dass die Projektionen der Mo-

mente zweier Kräftepaare (n_1, n_2) und (n_3, n_4) auf dieselben entgegengesetzt sind.*

Betrachten wir noch den Fall, dass jedes Paar entgegengerichteter Normalen auf einer Geraden liegt. Wäre nur ein Paar solcher Nor-



malen gegeben, so könnte jede Gerade des Raumes eine Schraubengeschwindigkeit mit bestimmtem Parameterwerte otg o enthalten; kommt ein zweites solches Normalenpaar hinbleibt nur auf SO denjenigen Geraden eine Schraubengeschwindigkeit möglich, für welche die Grösse $\delta \operatorname{tg} \varphi$ in Bezug auf jede der vier Normalen dieselbe ist. Alle solche Geraden von einer gegebenen Richtung liegen in einer Ebene, mit welcher jetzt die Grenzebenen S_{14} , S_{23} (Fig. 53) zusammenfallen.

Die Beschränkung für den festen Körper ist jetzt Ss dieselbe, als wenn er zwei feste Flächen berührte und sich nicht von denselben entfernen dürfte. In diesem Falle bilden bekanntlich alle Schraubenaxen, welche gleichen Parameter haben, eine Kongruenz ersten Grades. Wir können also auf die gezeigte Weise, indem wir die Grenzebenen S_{14} , S_{23} und für verschiedene in ihnen liegende Geraden die Grösse 8 tg q

bestimmen, irgend eine, einer solchen Kongruenz angehörende Schraubenaxe von gegebener Richtung und gegebenem Parameterwert konstruieren.

^{*} Dieses Resultat findet offenbar seine kinetische Begründung, wenn man beachtet, dass die normalen Widerstände der vier Stützflächen die Richtungen der Normalen n_1 , n_2 , n_3 , n_4 haben.

25. Wenn drei von den vier Stütznormalen einander parallel sind, können wir uns auf die Resultate des § 17 stützen. Die Begrenzung, welche jetzt die Gebiete möglicher Schraubenaxen durch die Hinzufügung der vierten Normalen bekommen, können nach den schon mehrere

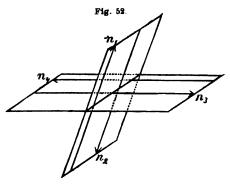
Male angewandten Regeln be-

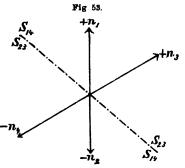
stimmt werden.

Wenn alle drei parallelen Normalen gleichgerichtet sind, so bleiben auf allen Geraden, auf welchen die Winkelgeschwindigkeit mit allen vier Normalen nur spitze oder nur stumpfe Winkel bildet, Schraubengeschwindigkeiten möglich, deren Parameter ausserhalb gewisser, im allgemeinen endlicher Grössen liegt. aber ω mit n_1 , n_2 , n_3 spitze und mit n_{\star} einen stumpfen Winkel, oder umgekehrt, so findet man für die möglichen Schraubenaxen solche Begrenzungen, wie sie im § 15 für den Fall, dass zwei von den drei Stütznormalen einander parallel und gleichgerichtet sind, sich ergaben. Jetzt wird also die eine von den drei Geraden $(+n_1)$, $(+n_2)$, $(+n_3)$, nämlich die mittlere, keine Rolle spielen (Fig. 54).

Wenn eine von den drei parallelen Geraden den beiden anderen entgegengerichtet ist, so sind, dem § 17 gemäss, entweder alle Geraden einer gegebenen Richtung mögliche Schraubenaxen, wobei die Drehung nur in einem Sinne erfolgen kann, oder keine einzige bleibt möglich. Im

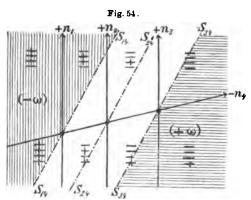
Fig. 51.





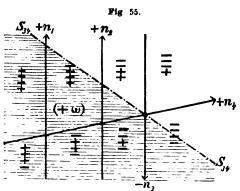
letzteren Falle fügt die vierte Normale nur eine Begrenzung hinzu, welche sich auf die zu den drei ersten Normalen senkrechten Translationen bezieht; im ersteren Falle dagegen wird, wie im § 15, die ganze Ebene durch eine Grenzebene in zwei Gebiete geteilt, von welchen nur das eine die möglichen Schraubenaxen bestimmt. Auf diesen Fall beziehen sich die Fi-

guren 55 und 56; in der zweiten Figur behält nur eine von den hier möglichen Grenzgeraden S_{14} , S_{24} ihre Bedeutung. In § 17 wurde gezeigt, welche Verschiebungen dem festen Körper möglich bleiben, wenn bei drei Stützflächen die Normalen derselben einander parallel sind, in einer Ebene liegen und die mittlere den beiden anderen entgegengerichtet ist. Die neue Begrenzung, welche durch die Einführung der vierten irgendwie gerichteten Normalen erreicht wird, besteht nicht



darin, dass das Gebiet möglicher Schraubenaxen vermindert wird, sondern es bleibt von beiden Richtungen, welche die Winkelgeschwindigkeit auf jeder Axe haben konnte (§ 17), nur eine Richtung möglich. Das Bündel paralleler Schraubenaxen wird nämlich durch die drei jetzt zusammenfallenden* Grenzebenen S_{14} , S_{24} , S_{34} in zwei Gruppen geteilt, je nach der einen oder anderen Richtung

der Winkelgeschwindigkeit. Die Translationsgeschwindigkeiten werden auch nur nach einer Seite begrenzt; und nur die zu allen vier Normalen senkrechten Trans-



malen senkrechten Translationen bleiben nach beiden Richtungen möglich.

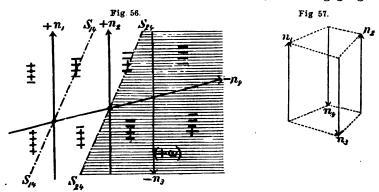
26. Es seien alle vier Normalen einander parallel. Wenn dieselben gleichgerichtet sind, findet man dasselbe, wie im Falle von drei solchen Normalen; wenn aber eine oder zwei von den Normalen den anderen entgegengerichtet sind, können durch geeignete Wahl ihrer Lage

alle Schraubengeschwindigkeiten, deren Parameter nicht Null oder unendlich ist, zum Verschwinden gebracht werden. Solche Lagen der Stütznormalen werden in der Praxis oft gebraucht; wir erwähnen dieselben nur, um zu zeigen, wie sie aus der allgemeinen hier dargestellten Methode erhalten werden können.

In § 17 wurde bemerkt, dass im Falle von drei Stützflächen, deren Normalen einander parallel sind, während zugleich die eine Normale

^{*} Weil nur zur Ebene der drei ersten Normalen parallele Schraubenaxen möglich sind.

den zwei anderen entgegengerichtet ist, solche Richtungen existieren, nach welchen keine Schraubenaxen möglich sind. Die dazu nötige Bedingung bestand darin, dass eine von den einer gegebenen Richtung parallelen Normalebenen, nämlich diejenige, welche die den anderen entgegengesetzte Normale enthielt, zwischen den anderen zwei Normalebenen liegen musste. Wenn vier parallele Stütznormalen gegeben sind, von welchen die eine, n_4 , den drei anderen entgegengerichtet



ist, kann diese Bedingung für alle Richtungen erfüllt werden: dazu ist nur nötig, dass n_4 im Inneren des dreiseitigen Prismas, welches von den anderen drei Normalen gebildet wird, sich befindet. Dann bleiben für den festen Körper nur zu den Normalen senkrechte Translationen und einfache Drehungen um Axen, welche den Normalen parallel sind, möglich, d. h. überhaupt Verschiebungen parallel einer Ebene.

Dieselbe oben ausgesprochene Bedingung kann offenbar auch erzielt werden, wenn zwei Normalen, n_s und n_4 , den zwei anderen entgegengerichtet sind. Die Normalen müssen dann ein vierseitiges Prisma ohne einspringende Winkel bilden und die gleichgerichteten Normalenpaare müssen in den Diagonalebenen desselben liegen (Fig. 57).

Fünf und mehr Stützflächen.

27. Wenn die Zahl der Stützflächen vier übersteigt, würde eine ausführliche Untersuchung verschiedener Fälle zum grossen Teile eine Wiederholung des Vorhergehenden sein; denn für jede gegebene Axenrichtung würden wieder dieselben Fälle wie früher eintreten können, nur mit Hinzufügung neuer Grenzebenen, welche keine wesentlich neue Begrenzungen geben könnten, da schon bei vier Stützflächen eine vollkommene Tilgung möglicher Schraubenaxen von gegebener Richtung erzielt werden kann. Wir werden daher nur einige allgemeine Bemerkungen machen und zur Anwendung des Vorhergehenden einige besondere Lagen der Stütznormalen betrachten.

Es seien fünf Stützflächen gegeben. Da jetzt 32 Kombinationen der Ungleichheitszeichen für p möglich sind, auf der Parameterkugel

aber nach der Formel 26) nur 22 Gebiete zugleich vorhanden sein können, so werden zehn Zeichenverbindungen in den verschiedenen für p möglichen Bedingungen und dementsprechend fünf Paare konjugierter Gebiete der Parameterkugel fehlen. Wenn man alle 32 Gebiete, wie es bei kleinerer Zahl von Stützflächen geschah, in Gruppen ordnet, deren Zahl jetzt sechs ist, so findet man, dass p wieder für jede Axenrichtung zwischen gewisse Grenzen eingeschlossen werden kann, da die erste und letzte Gruppe fehlen können. Die übrigen vier Gruppen werden aber dann durchaus ihre Vertreter auf der Parameterkugel haben.

Bei vier Stützflächen konnten nur in der mittleren, dritten Gruppe solche Richtungen existieren, dass keine ihnen parallele Gerade mögliche Schraubenaxen darstellte; jetzt kann man neue Grenzebenen benützen und diesen Fall in jeder der übriggebliebenen Gruppen eintreten lassen. Wenn eine entsprechende Richtung gefunden ist, so werden auch andere zu ihr genügend nahe Richtungen derselben Forderung genügen. Jedenfalls werden aber ganze Systeme von Schraubenaxen möglich bleiben; denn wenn der feste Körper fünf Flächen so berührt, dass er sich von denselben nicht entfernen kann, so bleibt ihm bekanntlich eine bestimmte Schraubengeschwindigkeit möglich; wenn aber die Flächen nur Stützflächen sind, so bleiben im allgemeinen verschiedene Gebiete auf der Parameterkugel, welchen ganze Scharen möglicher Schraubenaxen entsprechen. Die Aufsuchung solcher Gebiete könnte zum Gegenstande einer besonderen Untersuchung gemacht werden, welche wir aber nicht weiter verfolgen wollen.

Von speziellen Lagen der fünf Stütznormalen seien folgende erwähnt. Es mögen drei Stütznormalen in einer Ebene P liegen, einander parallel und die mittlere den zwei anderen entgegengerichtet sein; die anderen zwei Normalen nehmen wir auf einer die vorige Ebene schneidenden Geraden l und auch einander entgegengesetzt an. Dann bleiben nur solche Schraubenaxen möglich, welche der Ebene P parallel sind (§ 17) und bei einer gegebenen solchen Richtung in einer Grenzebene liegen, welche jedesmal durch eine der ersten drei und eine der anderen zwei Normalen bestimmt wird; der Parameter kann auf jeder dieser Axen nur einen bestimmten Wert bekommen (§ 10). Einfache Drehungen bleiben um solche Axen möglich, welche die Gerade l schneiden und dabei entweder in der Ebene P liegen, oder den drei ersten Normalen parallel sind. Liegt die Gerade l in der Ebene P, so bleiben dem festen Körper ausser den in der zu P jetzt senkrechten Grenzebene liegenden Schraubenaxen Drehungsaxen, welche in der Ebene P willkürlich liegen können, und noch eine zu denselben senkrechte Translation möglich. Diese Translation hat übrigens keine selbständige Bedeutung, da sie, mit einer der vorigen Drehungen zusammengesetzt, wieder eine Drehung um eine der Ebene P angehörende Axe giebt.

Wenn die vierte und fünfte Normale entgegengesetzt sind, aber nicht auf derselben Geraden liegen, so erweitert sich wieder das Gebiet möglicher Verschiebungen, ebenso wie bei verschiedenen anderen Abänderungen der Lage und der Richtung der Stütznormalen.

28. Wenn sechs Stützflächen gegeben sind, werden im ganzen 64 Zeichenverbindungen der sechs Ungleichheiten, welchen jetzt p genügen muss, möglich. Von den 64 Gebieten aber, welche dementsprechend auf der Parameterkugel auftreten können, sind nur 32 zugleich möglich. Wenn man also alle 64 Gebiete, dem Vorhergehenden analog, in sieben Gruppen teilt, und wenn man beachtet, dass diese Gruppen der Reihe nach 1, 6, 15, 20, 15, 6, 1 Gebiete enthalten, so kann man die Richtungen der Stütznormalen so wählen, dass alle Gebiete der ersten, zweiten, sechsten und siebenten Gruppe und einige Gebiete aus anderen Gruppen verschwinden. Dann ist die Zahl der Stütznormalen, mit welchen die Winkelgeschwindigkeit spitze oder stumpfe Winkel bildet, entweder 4 und 2 oder 3 und 3 oder 2 und 4. Demgemäss werden 8 oder 9 Grenzebenen auftreten können. Ohne weiter darauf einzugehen, bemerken wir nur, dass durch 6 Stützflächen, nach dem im vorigen Paragraphen Gesagten, ein vollkommenes Verschwinden aller dem festen Körper möglichen Verschiebungen nicht erreichbar ist. Es wäre nämlich auch dann nicht möglich, wenn der Körper sich von fünf Stützflächen nicht entfernen könnte; denn die dabei möglich bleibende Schraubenverschiebung könnte sich nach beiden Richtungen vollziehen, und eine sechste Stützfläche könnte dann nur eine dieser Richtungen unmöglich machen. In Wirklichkeit aber bleiben im Falle von fünf Stützflächen ganze Scharen von Schraubenverschiebungen möglich, welche desto weniger durch eine sechste Stützfläche getilgt werden können.

Von speziellen Lagen der sechs Stütznormalen erwähnen wir folgende:

- a) Durch vier parallele Stütznormalen kann der feste Körper gezwungen werden, nur einer Ebene parallele Verschiebungen zu behalten (§ 26); andererseits werden bei zwei entgegengerichteten und auf derselben Geraden liegenden Stütznormalen alle Drehungsaxen, welche diese Gerade nicht schneiden, unmöglich sein (§ 10). Wenn alle diese sechs Stütznormalen gegeben und die zwei letzteren den anderen vier Normalen nicht parallel vorausgesetzt sind, so bleiben dem festen Körper nur Drehungsaxen, welche den vier ersten Normalen parallel sind und die zwei anderen schneiden, und eine zu allen sechs Normalen senkrechte Translationsrichtung möglich. Diese Translation hat übrigens keine selbständige Bedeutung, da sie zu der Ebene der möglichen Drehungsaxen senkrecht ist.
- b) Im § 17 wurde der Fall dreier Normalen n_1 , n_2 , n_3 , von denen eine, n_3 , den anderen entgegengesetzt war, betrachtet. Mögliche Richtungen der Winkelgeschwindigkeit wurden dort durch das Gebiet eines

sphärischen Zweiseits EBCFE (Fig. 33) bestimmt. Fügen wir nun drei andere einander parallele Stütznormalen n_4 , n_5 , n_6 , von welchen die letztere den anderen zwei entgegengesetzt ist, hinzu, dann wird diesen Normalen auf der Parameterkugel (Fig. 33) ein ähnliches Gebiet möglicher Winkelgeschwindigkeitsrichtungen entsprechen. Diese drei Normalen können offenbar so genommen werden, dass die beiden Gebiete der Parameterkugel keine Punkte gemein haben werden; dann werden auch keine möglichen Schraubenaxen von endlichem Parameter bleiben. Es bleibt nur eine zu allen sechs Normalen senkrechte Translation möglich, und zwar nach beiden Richtungen.

c) In § 17 wurden mögliche Schraubenaxen unter der Voraussetzung betrachtet, dass drei parallele Normalen in einer Ebene liegen und die mittlere den anderen entgegengesetzt ist; alle diese Axen waren dieser Ebene parallel und hatten bestimmte Parameter. Wenn noch drei andere ähnliche, aber in einer anderen Ebene gelegene Normalen gegeben werden, so bleiben nur solche Schraubenaxen möglich, welche den beiden Ebenen parallel sind. Sie müssen dabei in derjenigen Grenzebene liegen, für welche die untereinander gleichen Grössen

gleich sind. Ausserdem bleibt noch eine zu allen sechs Normalen senkrechte Translation möglich.

Wenn insbesondere n_4 , n_5 , n_6 der Durchschnittslinie ihrer Ebene mit der Ebene der Normalen n_1 , n_2 , n_3 parallel sind, so fällt die Grenzebene mit der letzteren Ebene zusammen; dann gehen die möglichen Schraubenaxen in Drehungsaxen über.

Wenn alle sechs Normalen auf der Durchschnittslinie ihrer Ebenen senkrecht stehen, so bleiben, ausser der dieser Geraden parallelen Translation, Windungen um diese Gerade als Axe möglich, wobei der Parameter dieser Windung willkürlich bleibt.

d) Es mögen die Normalen (n_1, n_4) , (n_2, n_5) , (n_3, n_6) paarweise auf einer Geraden liegen und entgegengesetzt sein. Die Figur 16 (Heft 3) kann bei der Untersuchung dieses Falles benützt werden. Die dort bezeichneten Gebiete entsprechen dem Falle von drei Stütznormalen n_1 , n_2 , n_3 ; dieselben Gebiete entsprechen jetzt auch den Normalen n_4 , n_5 , n_6 , mit dem Unterschiede aber, dass dann die Ungleichheiten für p den Ungleichheiten 16) . . . 23) resp. entgegengesetzt sein müssen. Damit beide Systeme der Bedingungen für p vereinbar werden, muss man annehmen:

$$p = \delta_1 \operatorname{tg} \varphi_1 = \delta_4 \operatorname{tg} \varphi_4,$$
oder $p = \delta_2 \operatorname{tg} \varphi_2 = \delta_5 \operatorname{tg} \varphi_5,$
oder $p = \delta_8 \operatorname{tg} \varphi_8 = \delta_6 \operatorname{tg} \varphi_6;$

und für eine mögliche Schraubenaxe müssen diese drei Grössen einander gleich werden. Das kann aber nur für eine Durchschnittslinie zweier Grenzebenen eintreten; denn jede der Grenzebenen S_{23} , S_{31} , S_{12} enthält solche Geraden einer gegebenen Richtung, für welche zwei der Grössen δ_1 tg φ_1 , δ_2 tg φ_2 , δ_3 tg φ_3 einander gleich sind. Daraus folgt, dass für jede gegebene Richtung nur eine mögliche Schraubenaxe sich finden wird, und auf jeder derselben wird der Parameter nur einen bestimmten Wert haben können. Die zu der Windung gehörende Winkelgeschwindigkeit kann auf jeder Axe beide Richtungen bekommen; denn jede Grenzebene gehört zugleich den beiden Gebieten: $(+ \omega)$ und $(- \omega)$ an.

In dem betrachteten Falle bleibt der feste Körper bei jeder möglichen unendlich kleinen Windung mit drei Flächen, welchen die Normalen n_1 , n_2 , n_3 (oder auch n_4 , n_5 , n_8) entsprechen, in Berührung. Die gefundenen Schraubenaxen gehören also dem Systeme koaxialer Hyperboloide an, durch welche alle Schraubenaxen des festen Körpers mit drei Freiheitsgeraden bestimmt werden. Es ist hier also das Mittel gegeben, für den festen Körper mit drei Freiheitsgraden eine Schraubenaxe von gegebener Richtung aufzufinden und den ihr entsprechenden Parameter zu bestimmen.

29. Im Falle einer ungeraden Zahl, (2n+1) > 6, von Stützflächen können ihre Normalen so gerichtet sein, dass von den 2n+2 Gruppen, in welche jetzt, dem Vorhergehenden analog, alle Ungleichheiten für p zerlegt werden können, nur die zwei mittleren Gruppen, welche paarweise konjugierte Gebiete enthalten, übrig bleiben. Ist eine gerade Zahl von Stützflächen, welche sechs übersteigt, gegeben, so können die Stütznormalen so genommen werden, dass nur die eine, mittlere Gruppe der Gebiete übrig bleibt, d. h., dass jede Winkelgeschwindigkeit mit den Normalen ebensoviel spitze wie stumpfe Winkel bildet. Es ist nämlich die Zahl der auf der Parameterkugel zugleich auftretenden Gebiete für k Stützflächen:

$$A_k = k(k-1) + 2;$$

die Zahl der Gebiete aber, welche jede der mittleren Gruppen enthält, wenn k = 2n + 1 ist: $B_k = \frac{(2n+1)!}{n!(n+1)!}.$

Wenn n > 2, so ist $2B_k > A_k$. Wenn k = 2n, so ist die Zahl der Gebiete der einzigen mittleren Gruppe:

$$B_k = \frac{2n!}{n! \, n!},$$

also $B_k > A_k$, wenn n > 3 ist.

Es möge noch einiges über die Festlegung des festen Körpers durch Stützflächen gesagt werden. Die grösste Begrenzung, welche der feste Körper bei sechs Stützflächen bekommt, besteht darin, dass ihm nur eine Schraubengeschwindigkeit mit bestimmtem Parameter frei gelassen wird, wobei aber beide Verschiebungsrichtungen möglich

Digitized by GOOGLE

bleiben. Im § 28, b) wurde ein solcher Fall erwähnt, wenn nämlich der Körper nur eine zu allen sechs Normalen senkrechte Translation $(p=\infty)$ nach beiden Richtungen erhalten konnte. Daraus folgt, dass eine siebente Stützfläche nicht genügt, um den festen Körper unbeweglich zu machen, dass aber dieses durch acht Stützflächen immer erreicht werden kann. Zum Schlusse zeigen wir noch einige Beispiele so, wie sie von unserem Standpunkte sich darstellen.

- a) Durch vier Stützflächen kann der feste Körper gezwungen werden, nur einer Ebene parallele Verschiebungen zu haben; durch andere vier Stützflächen, deren Normalen dieser oder auch einer anderen zu dieser nicht senkrechten Ebene parallel sind, können alle diese Verschiebungen verhindert werden.
- b) Im § 28, b) wurden sechs Normalen so genommen, dass dem Körper nur eine Translation parallel einer Geraden möglich blieb. Diese Translation kann offenbar durch zwei neue Stützflächen getilgt werden.
- c) Mit Hilfe von vier Stützflächen, deren Normalen sich in einem Punkte schneiden, kann man bekanntlich alle Verschiebungen, ausser den Drehungen um diesen Punkt, dem festen Körper entziehen. Durch andere vier Stütznormalen kann man alle diese Drehungen unmöglich machen; denn diese Aufgabe kommt darauf hinaus eine sphärische Figur durch sphärische Stützkurven unbeweglich zu machen.

Die vorliegende Arbeit, welche hauptsächlich ein Mittel zur Bestimmung und anschaulichen Darstellung möglicher Schraubenaxen eines festen Körpers darzulegen zum Ziele hatte, erschöpft bei weitem nicht die umfangreiche Aufgabe über die Stützflächen überhaupt, in welcher noch mehrere Seiten, so viel es mir bekannt ist, nicht genügend untersucht sind. Dazu gehören u. a.: der Einfluss der Krümmung der Stützflächen und der Oberfläche des beweglichen Körpers auf die Möglichkeit nicht nur unendlich kleiner, sondern auch endlicher Verschiebungen desselben, die Grenzen auf der Parameterkugel, in welche, im Falle von mehr als drei Stützflächen, alle dem festen Körper unmöglichen Richtungen der Winkelgeschwindigkeit eingeschlossen sind, eine vollständigere Untersuchung verschiedener spezieller Lagen von mehr als vier Stütznormalen und endlich eine systematische Untersuchung der Bedingungen für solche Lagen der Stütznormalen, bei welchen dem festen Körper keine Verschiebungen möglich bleiben.

Grundzüge einer Grapho-Ballistik auf Grund der Kruppschen Tabelle.

Von

Prof. Dr. CARL CRANZ

Hierzu Tafel III.

Die Methoden, welche dazu dienen, die aus irgend einem Anlass, insbesondere bei der Anfertigung von Schusstafeln, sich darbietenden ballistischen Aufgaben zu lösen, sind zur Zeit vorwiegend rein rechnerischer Natur, und vermutlich wird das rechnerische Verfahren in der Ballistik für die nächste Zeit noch im Vordergrund des Interesses bleiben, zumal da gerade gegenwärtig von einer grösseren Anzahl von Ballistikern mit Erfolg daran gearbeitet wird, die Rechnungsmethoden zugleich zu vereinfachen und zu verschärfen. Immerhin ist es nicht unmöglich, dass sich im Laufe der Zeit innerhalb der Ballistik eine ähnliche Wandlung vollzieht, wie dies in den eigentlich technischen Wissenschaften zum Teil der Fall war, wo, wenigstens für gewisse Zwecke, die graphischen Methoden mehr und mehr an Boden gewonnen haben.

In der Ballistik empfiehlt sich die graphische Methode besonders für solche Fälle, wo nicht ausschliesslich für einen einzelnen Punkt der Flugbahn, etwa den Aufschlagpunkt oder den Scheitel, die verschiedenen Flugbahnelemente, d. h. die Ordinate y, die Bahngeschwindigkeit v, die Flugzeit t, die Horizontalneigung ω der Tangente gefordert werden, sondern wo ein vergleichender Überblick über diese Elemente für eine Reihe von Flugbahnpunkten, etwa zum Zweck der Ermittelung der Rasanz oder des bestrichenen Raumes, zu gewinnen ist.

Im folgenden soll als ein Beitrag zur graphischen Ballistik eine Methode entwickelt werden, welche in des Verfassers "Compendium der theoretischen äusseren Ballistik" (B. G. Teubner 1896) nur kurz angedeutet werden konnte, und welche an rechnerischen Grundlagen entweder die ohne Rücksicht auf die Schwerkraft durchgeführte Lösung des ballistischen Problems, oder einfacher die Kruppsche empirische Tabelle zu Hilfe nimmt. Es wird sich zeigen, dass hinsichtlich des Genauigkeitsgrads diese graphische Methode mit jeder Rechnungsmethode sich messen kann, ja manche derselben übertrifft.

1. Es sei gestattet, mit Rücksicht auf solche Leser, welche als mathematische Laien mit ballistischen Aufgaben sich zu beschäftigen haben, die Entwickelungen ausführlicher zu halten, als es unter anderen Umständen der Fall wäre. Zunächst möge auf die bisherige Litteratur des Gegenstandes mit wenigen Worten eingegangen werden.

Die Methode von Poncelet,* später von Didion** hinsichtlich einiger Einzelheiten vereinfacht, beruht auf dem Satz von der lebendigen Kraft; die Flugbahn $OO_1O_2O_3...$ wird stückweise aus den Bögen OO_1 , O_1O_2 , O_2O_3 u. s. w. zusammengesetzt: Die Anfanggeschwindigkeit des Geschosses von der Masse m sei v_0 , der anfängliche Luftwiderstand W_0 , in O_1 sei die Geschwindigkeit v_1 ; man wählt das Kurvenelement OO_1 beliebig, doch so klein, dass längs desselben der Luftwiderstand W_0 als konstant betrachtet werden kann, und hat die Gleichung: $\frac{m \cdot v_0^2}{2} - \frac{m \cdot v_1^2}{2} = W_0 \cdot OO_1;$

hieraus erhält man v_1 , analog ergiebt sich die Geschwindigkeit v_2 in O_2 u. s. f. Dieser Bogen OO_1 wird nun dadurch beschrieben, dass man den Krümmungsradius ϱ_0 in O ermittelt: Die Komponente N_0 der äusseren Kräfte, welche in O längs der Normale gerichtet ist, lässt sich aus dem Geschossgewicht und der Anfangsrichtung der Bewegung sofort ermitteln, und anderseits ist $N_0 = \frac{m \cdot v_0^2}{\ell_0}$, damit kennt man ϱ_0 ; diese Strecke trägt man auf der Normalen in O, also auf der zur Abgangsrichtung Senkrechten in O, nach der konkaven Seite der Flugbahn hin ab, aus dem Endpunkt dieser Strecke als Mittelpunkt beschreibt man mit ϱ_0 den Kreisbogen OO_1 , dessen Länge vorhin angenommen worden war; damit ist man zum zweiten Punkt O_1 gelangt, von welchem aus man analog weiter bis O_2 konstruiert, wie vorhin von O bis O_1 , u. s. w.

Während bei diesem eben skizzierten Verfahren die Flugbahn aus mehreren Kurvenelementen, nämlich Kreisbögen, aufgebaut wird, ersetzt Ökinghaus** die Flugbahn in ihrem ganzen Verlauf durch eine Hyperbel, deren eine Asymptote vertikal liegt und deren Konstruktion natürlich aus der Kegelschnittlehre folgt. Unter allen Umständen ist auch jede graphische Methode ein blosses Näherungsverfahren, übereinstimmend damit, dass die analytische Lösung der Differentialgleichungen des ballistischen Problems nicht in aller Strenge zu erreichen ist; im ersteren Falle liegt die Vernachlässigung vor allem darin, dass unendlich kleine Kurvenelemente durch endlich kleine von

^{***} E. Ökinghaus, "die Hyperbel als ballistische Kurve", Archiv für die Artillerie- und Ingenieuroffiziere des deutschen Reichs, von Jahrgang 1893 S. 241 bis 1895.

^{*} Poncelet, leçons de mécanique industrielle, Metz 1828/29, II. partie. pag. 55.

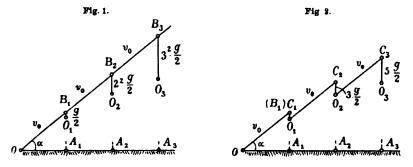
^{**} Didion, traité de balistique, Paris 1848, pag. 196 ff.

beschränkter Anzahl ersetzt werden, im zweiten Fall darin, dass für die ballistische Linie, deren jedenfalls sehr komplizierte Gleichung und Konstruktionsart man nicht kennt, ein Kegelschnitt substituiert wird. Da übrigens um so mehr Daten der Erfahrung einbezogen werden, aus je mehr endlichen Kurvenelementen verschiedener Gleichungsform die Flugbahn aufgebaut wird, so ist das Verfahren des ersten Falles einer höheren Steigerung der Genauigkeit fähig.

2. Das folgende Verfahren beruht auf dem Unabhängigkeitsprinzip der Mechanik und auf der Verwendung der empirischen Tabelle von Krupp.

Es sei zunächst an die bekannten Konstruktionen der Flugbahnparabel im leeren Raum erinnert (Fig. 1 bis 4).

In Figur 1 sei $OB_1B_2...$ die durch den Abgangspunkt O unter dem wahren Abgangswinkel α gegen den Horizont gezogene Gerade; darauf werden gleiche Strecken $OB_1 = B_1B_2 = \cdots$ abgetragen, welche unter Zugrundelegung einer bestimmten Längeneinheit die Anfangs-



geschwindigkeit v_0 oder einen konstanten Teil derselben, darstellen; von B_1, B_2, \ldots aus werden vertikal abwärts die zugehörigen Fallhöhen $B_1O_1, B_2O_2\ldots$, in der Figur 1 folglich $\frac{g}{2}$ 1², $\frac{g}{2}$ 2², $\frac{g}{2}$ 3², ..., abgetragen, dann sind $OO_1O_2\ldots$ Punkte der Flugbahn. (In der That, fragen wir, wo sich z. B. zwei Sekunden nach Verlassen der Mündung das Geschoss befindet, so erhalten wir die Lage durch die Überlegung: das Geschoss befindet sich in Wirklichkeit an demselben Ort, an welchem es sich dann befinden würde, wenn es zuerst lediglich infolge des Stosses der Pulvergase zwei Sekunden lang weiterginge und dann allein der Schwerkraft ebensolange überlassen bliebe, wenn es also gewissermaßen ruckweise zuerst von O nach B_2 , dann von B_2 nach O_2 ginge u. s. w.)

Gleichbedeutend mit dieser Konstruktion ist, wie sich leicht zeigen lässt, die andere (Fig. 2): Ziehe OC_1 gleich v_0 in der Abgangsrichtung und $C_1O_1 = \frac{g}{2}$, sodann O_1C_2 gleich und parallel OC_1 und

$$C_2 O_2 = 3 \cdot \frac{g}{2}$$

ferner O_2C_3 gleich und parallel O_1C_2 und $C_3O_3=5\cdot\frac{g}{2}$ etc.

Ebenfalls nur eine Modifikation der ursprünglichen Konstruktion von Figur 1 ist die Sehnen-Konstruktion Figur 3: Ziehe OD_1 gleich r_0 in der Abgangsrichtung und $D_1 O_1$ gleich $\frac{g}{2}$, sodann OO_1 mit Verlängerung um sich selbst bis D_2 und $D_2 O_2$ vertikal abwärts gleich $2 \cdot \frac{g}{2}$, weiter OO_2 mit Verlängerung bis D_3 , sodass wieder

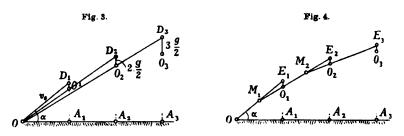
$$A_2 A_3 = A_2 A_1 = O A_1$$

ist, und $D_3 O_3$ vertikal abwärts gleich $3 \cdot \frac{g}{2}$ u. s. f.

Aus der letzteren Konstruktion lässt sich endlich die folgende besonders bequeme ableiten: Man trage wieder (Fig. 4) auf der horziontalen Äbscissenaxe durch den Abgangspunkt O die gleichen Strecken

$$0A_1 = A_1A_2 = A_2A_3 = \cdots$$

ab und ziehe durch A_1 , A_2 ,... die Vertikalen; OE_1 sei die Anfangstangente der Flugbahn; mache $E_1 O_1$ gleich $\frac{g}{2}$ (falls OE_1 die Anfangsgeschwindigkeit v_0 in met/sec darstellt, andernfalls mache $E_1 O_1$ gleich



der entsprechenden Fallhöhe im ersten Zeitteilchen), verbinde O_1 mit der Mitte M_1 von OE_1 , die Verlängerung von M_1O_1 schneidet die Vertikale durch A_2 in E_2 , mache E_2O_2 gleich E_1O_1 und ziehe M_2O_2 , wo M_2 die Mitte von O_1E_1 ist, u. s. f. In diesem Fall ist die Flugbahn durch die Flugbahnpunkte $OO_1O_2O_3\dots$ und die zugehörigen Flugbahntangenten OM_1 , M_1O_1 , M_2O_2 , M_3O_3 u. s. w. dargestellt; und dieses Verfahren giebt den Vorteil an die Hand, dass man dieselbe Länge

$$\frac{g}{2} = E_1 O_1 = E_2 O_2 = \cdots$$

im Zirkel behalten kann.

3. Alle diese Konstruktionen lassen nun Verallgemeinerungen für den lufterfüllten Raum zu, also für den Fall, der uns praktisch interessiert.

Zunächst gehen wir von der ersten Konstruktion (Fig. 1) aus und verallgemeinern dieselbe folgendermaßen: Wir denken uns die Geschossbewegung in eine grössere Anzahl von kleinen gleichen Zeitteilchen Δt (in der Figur 5 ist $\Delta t = 1$ Sekunde angenommen) zerlegt, die Strecke, die das Geschoss allein infolge des Stosses der Pulvergase in einem

solchen Zeitteilchen in der Richtung der Anfangstangente zurücklegen würde, sei auf dieser Linie vom Abgangspunkt O aus als

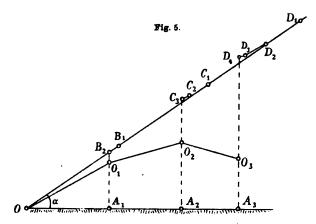
$$OB_1 = B_1C_1 = C_1D_1 = \cdots$$

wiederholt abgetragen.

Ferner denken wir uns das ballistische Problem ohne Rücksicht auf die Schwere aufgestellt, unter Voraussetzung eines bestimmten Luftwiderstandsgesetzes, dem des Chapel-Vallier'schen oder des neuen Siacci'schen Gesetzes; die betreffende Differenzengleichung liefert uns alsdann die Geschwindigkeitsverluste Δv , welche das Geschoss in den einzelnen Zeitteilen Δt erfährt; die halben Geschwindigkeitsverluste in dem 1., 2., 3.... Zeitteilchen seien resp. s_1 , s_2 , s_3 ...

Wo befindet sich nun das Geschoss am Schluss des ersten Zeitteilchens?

Das Resultat ist nach dem Unabhängigkeitsprinzip dasselbe, wie wenn die drei Wirkungen der Pulverkraft, des Luftwiderstandes und



der Schwerkraft zeitlich nacheinander, gewissermaßen ruckweise einträten: Durch die Anfangsgeschwindigkeit, welche das Geschoss der Pulverkraft verdankt, allein würde das Geschoss von O nach B_1 getrieben, durch den Luftwiderstand von B_1 nach B_2 (Fig. 5) um eine Strecke gleich s_1 zurückgeführt (wobei wir voraussetzen, das Zeitteilchen sei so klein gewählt, dass nahe genug der Luftwiderstand nur in der Richtung B_1 O wirke); endlich durch die Schwerkraft allein würde es von B_2 nach O_1 um eine Strecke gleich $\frac{g}{2} \cdot \Delta t_1^s$ herabfallen; am Schlusse des Zeitteilchens Δt_1 befindet es sich sonach thatsächlich in O_1 .

Ebenso ist das Geschoss nach Verfluss des zweiten Zeitteilchens Δt_2 in einem Punkt O_2 angelangt, den wir durch die folgende Überlegung erhalten: In den zwei Zeitteilchen würde das Geschoss allein infolge des Anfangsstosses von O nach C_1 gelangen; sodann lediglich infolge des Luftwiderstandes von C_1 nach C_3 zurück, nämlich zuerst

von C_1 nach C_2 parallel der Anfangstangente OB_1 zurück um eine Strecke C_1C_2 gleich $3 \cdot s_1$, dann von C_2 nach C_3 um s_2 parallel der Richtung OO_1 , die wir als die Richtung des Luftwiderstandes im zweiten Zeitteilchen um so genauer betrachten können, je kleiner dasselbe ist; endlich allein infolge der Schwerkraft von C_3 nach O_2 vertikal abwärts, um eine Strecke gleich

$$\frac{g}{2}(3\cdot\Delta t_1^2+\Delta t_2^2)$$
, oder $\frac{g}{2}\cdot2^2\cdot\Delta t^2$,

wenn die Zeitteilchen gleich gewählt sind.

Dementsprechend findet sich der nächste Flugbahnpunkt O_3 , indem man $D_1D_2=5s_1$ parallel zu OB_1 , $D_2D_3=3\cdot s_2$ parallel zu OO_1 und $D_3D_1=s_3$ parallel zu O_1O_2 zieht und von D_4 um eine Strecke D_4O_3 gleich $\frac{g}{2}\cdot 3^2\cdot \Delta t^2$ abwärts geht u. s. w

Um zu vermeiden, dass die zu benützende Verlängerung der Linie $OB_1C_1D_1\ldots$ über das Zeichenpapier hinausfällt, wird man hierbei die zur Konstruktion Figur 2 analoge Modifikation für den lufterfüllten Raum verwenden, also durch O_1 eine Linie O_1C_1 gleich und parallel B_2C_1 ziehen, sodann von C_1 rückwärts den Polygonzug $C_1C_2C_3$ kongruent mit $C_1C_2C_3$ zeichnen und von C_3 vertikal abwärts gehen um eine Strecke C_3O_2 gleich $3\cdot\frac{g}{2}$, (falls für jene Zeitteilchen Sekunden gewählt werden), u. s. f.

4. Erheblich einfacher gestaltet sich das Verfahren, wenn man die Konstruktion von Figur 4, für den lufterfüllten Raum verallgemeinert, anwendet. Hierzu ist es vor allem erforderlich, die Horizontalprojektion der Geschossbewegung zu kennen, entweder durch Integration der betreffenden Differentialgleichung oder aber, falls es nicht auf die Verwendung eines bestimmten Luftwiderstandsgesetzes ankommt, weit einfacher und auch genauer durch Entnahme der betreffenden Zahlen aus der empirischen Tabelle* von Krupp. Diese wertvolle, auf einem gewaltigen Versuchsmaterial beruhende Tabelle giebt für alle horizontalen Geschwindigkeitskomponenten von 700 m/sec an abwärts absteigend von Meter zu Meter bis 140 m/sec folgende Grössen: erstens den Luftwiderstand W auf 1 qcm des Geschossquerschnitts in Kilogramm,

^{*} Enthalten im Anhang der Schrift: "Über die Lösung der Probleme des direkten und indirekten Schiessens", von † Generallieutenant N. Mayevski, deutsch von Hauptmann Klussmann. Berlin 1886. Mittler & Sohn 127 S. – Neuerdings wurde die Tabelle von Krupp aufwärts bis zur Geschwindigkeit 1000 m/sec und abwärts bis 50 m fortgesetzt: "Die Berechnung der Schusstafeln seitens der Gussstahlfabrik Fr. Krupp, Essen, Buchdruckerei der Gussstahlfabrik von Fr. Krupp", S. 33 bis 81. Da letztere Schrift nicht dem Buchhandel übergeben ist, so hat der Verfasser nicht das Recht, diese Tabelle hier zu wiederholen, sondern muss auf das oben erwähnte Werk von Mayevski-Klussmann verweisen; der Geschwindigkeitsbereich 140 bis 700 m genügt in der That noch immer für die Lösung der meisten Aufgaben. Eine kleine Erläuterung der Tabelle und klare Anweisung zum Gebrauch derselben an der Hand mehrerer Beispiele der Praxis hat Klussmann, S. 98 bis 102 seiner Schrift, gegeben.

zweitens den Weg Δx in Metern, der einer Geschwindigkeitsabnahme um 1 m entspricht, drittens die Summe $\Sigma \Delta x$ dieser Wege von Anfang der Tabelle ab, viertens die Zeiten Δt in Sekunden, die der Geschwindigkeitsabnahme von 1 m entsprechen, und endlich fünftens die Summe $\Sigma \Delta t$. Diese Zahlen beziehen sich sämtlich auf die Querschnittsbelastung 1, d. h. man hat bei der Verwendung der Tabelle in einem speziellen Fall die betreffenden Zahlen $\Sigma \Delta x$ und $\Sigma \Delta t$ der Tabelle noch mit dem Faktor

 $\mathbf{x} = \frac{P}{R^2 \pi \cdot \frac{\delta}{\delta_1} \cdot \lambda}$

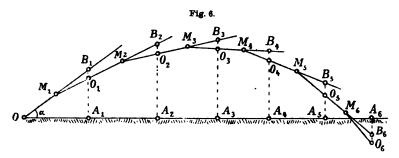
multipliziert zu denken; hierbei ist P das Geschossgewicht in Kilogramm; $R^2\pi$ der Geschossquerschnitt in qcm; δ das Gewicht von einem Kubikmeter Luft am Versuchstag in Kilogramm; δ, dasselbe für den in der Ballistik meist zu Grunde gelegten mittleren Barometerstand 750 mm, die mittlere Temperatur 150 C. und die relative Feuchtigkeit $50^{\circ}/_{\circ}$, also $\delta_1 = 1,206$ kg; λ ist der mit der Geschossform veränderliche sogenannte Formkoeffizient, der für Kruppsche Geschosse nahezu = 1 ist und der am vorteilhaftesten aus der Erfahrung bestimmt wird, durch Entnahme der horizontalen Komponente der Anfangsgeschwindigkeit und Endgeschwindigkeit, die zu einer bekannten Schussweite gehören, und zwar werden letztere Zahlen entweder der Schusstafel für das betreffende Geschoss selbst oder wenigstens für ein Geschoss eines möglichst ähnlichen Geschütz- oder Gewehrsystems entnommen. Die Tabelle von Krupp liefert sodann die gesamte Horizontalprojektion der Geschossbewegung. (Weiterhin verfährt Krupp zur Bestimmung der Flugbahn selbst nach der in einer gewissen Weise modifizierten Siaccischen Methode mittelst der Siaccischen Funktionen D, J, A, T; die Versuche von Krupp haben dabei gezeigt, dass die Tabelle nicht nur für kleine Elevationen mit rasanter Flugbahn, sondern auch für grössere Elevationen Geltung behält.) Die mehrfach erwähnte Tabelle von Krupp ist zu umfangreich, um hier Platz finden zu können, ihr Anfang ist der folgende:

v _e m	W kg	Δx m	Σ Δ <i>x</i> m	Δt Sek.	$\Sigma \Delta t$ Sek.
700 699 698 697	1,925 1,919 1,913	37 37 37	37 74 111	0,053 0,053 0,053	0,053 0,106 0,159

Damit kennt man in den successiven Punkten O, A_1 , A_2 , A_3 ... der horizontalen Abscissenaxe durch den Abgangspunkt O die Horizontalprojektionen v_{\star} der Bahngeschwindigkeit v und die Zeiten Δt_1 , Δt_2 ,..., welche die Horizontalprojektion des Geschosses erfordert, um von O nach A_1 , von A_1 nach A_2 u. s. w. zu gelangen.

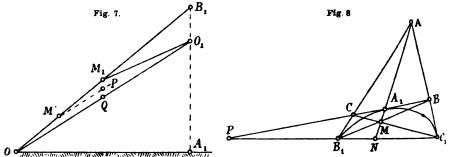
Der Abgangswinkel, also der Neigungswinkel der Anfangstangente OB_1 gegen den Horizont im Abgangspunkt O, sei gegeben gleich α .

Es lässt sich nun von O aus ein zweiter Flugbahnpunkt, nämlich derjenige, dessen Projektion A_1 ist, sogleich finden, indem man von B_1 aus die Strecke $B_1 O_1$ gleich $\frac{g}{2} \cdot \Delta t_1^2$ vertikal abwärts abträgt. Als Flugbahntangente in dem neuen Punkt O wählen wir die Verbindungs-



linie $M_1 O_1 B_2$ der Mitte M_1 von $O B_1$ mit O_1 , dann lässt sich von O_1 aus ganz analog weiter konstruieren, wie vorhin von O aus; die Vertikale $A_2 B_2$ in B_2 trifft nämlich die vorhin erwähnte $M_1 O_1$ bezw. ihre Verlängerung in B_2 , von B_2 geht man um $B_2 O_2 = \frac{g}{2} \cdot \Delta t_2^2$ vertikal abwärts und zieht $M_2 O_2$, wo M_2 die Mitte von $O_1 B_2$; so ist O_2 ein dritter Flugbahnpunkt und $M_2 O_3$ die Bahntangente in diesem Punkt O_2 u. s. w

Bei diesem Verfahren stellt sich die Flugbahn als Einhüllende ihrer Tangenten dar; und ferner kommt, wie leicht zu sehen ist, das



Verfahren darauf hinaus, die Flugbahn aus ebensovielen Bögen verschiedener Parabeln mit vertikaler Axe zusammenzusetzen, als man Stücke OA_1 , A_1A_2 , ... auf der Abscissenaxe angenommen hat. In der That, betrachten wir z. B. das erste Parabelstück zwischen O und O_1 (Fig. 7). Für dieses sind gegeben die beiden Punkte O und O_1 , die vertikale Axenrichtung, und die Tangente OB_1 im ersten Punkt O. Soll nun O_1 die Tangente einer solchen Parabel im zweiten Punkt O_1

sein, so muss M_1 die Mitte von OB_1 sein. Berühren nämlich die Seiten eines Dreiecks ABC (Fig. 8) einen Kegelschnitt in den Punkten A_1 , B_1 , C_1 und zieht man AA_1 , BB_1 , CC_1 , so gehen letztere Verbindungslinien nach dem Satz von Brianchon durch denselben Punkt M, und P, B_1 , N, C_1 sind vier harmonische Punkte; lässt man nun die Seite CB und damit A_1 ins Unendliche rücken, so wird der Kegelschnitt eine Parabel; deren Axe sei vertikal; die Verbindungslinie MQ (Fig. 7) des Schnittpunkts M_1 der beiden Tangenten M_1O_1 und M_1O_1 mit der Mitte Q von OO_1 wird Parabeldurchmesser, also vertikal und parallel zu A_1B_1 .

Zugleich sieht man, dass die Mitte P von M_1Q ein weiterer Punkt der Parabel ist. Darin liegt ein sehr einfaches Mittel, beliebige weitere Flugbahnpunkte zu konstruieren und die Tangente in einem beliebigen Flugbahnpunkt zu ziehen, indem man diesem immer näher kommt: Verbindet man nämlich M_1 mit der Mitte Q von OO_1 und halbiert M_1Q in P, so ist P ein weiterer Punkt der Flugbahn; die Tangente in diesem Punkt P ist die Verbindungslinie von P mit der Mitte von OM_1 u. s. f.

Es lässt sich noch fragen, in welcher Weise die Schussweite, also das Stück der Abscissenaxe zwischen Abgangspunkt O und Auffallpunkt, in Teile OA_1 , A_1A_2 , A_2A_3 ... zerlegt werden soll. — Naturgemäss wird die Konstruktion um so genauer sein, je mehr Zwischenpunkte A_1 , A_2 , A_3 ... man annimmt; eine Grenze ist jedoch dadurch gegeben, dass das Ziehen der Verbindungslinien M_1O_1 , M_2O_2 ,... sicher genug erfolgen muss.

Dabei kann man entweder

a) die Einteilung so treffen, dass die Zeitteilchen Δt_1 , Δt_2 ,... alle gleich werden; dies giebt den Vorteil, dass die Fallhöhen $B_1 O_1$, $B_2 O_2$,... sämtlich mit gleicher Zirkelweite abgetragen werden können, dagegen die grössere Unbequemlichkeit, dass in der Kruppschen Tabelle interpoliert werden muss.

Beispiel.

Panzergranate der 40 cm-Stahlkanone der italienischen Küstenartillerie.

Geschossgewicht P=920 kg; Kaliber 2R=40 cm; Anfangsgeschwindigkeit $v_0=550$ m/sec; der Formkoeffizient λ möge aus Mangel spezieller Daten = 1 angenommen werden.

Gegeben der Abgangswinkel $\alpha = 13\frac{1}{4}^{0}$

Gesucht die Schussweite X, der Auffallwinkel α' , die Flugzeit T, die Abscisse und Ordinate des Scheitels.

Es ist $\alpha = \frac{P}{R^2\pi \cdot 1} = \frac{920}{20^2 \ 3,14} = 0,732$. Die Zwischenzeiten Δt_1 , Δt_2 ... mögen etwa sämtlich je gleich zwei Sekunden, also die Fallhöhen B_1O_1 , B_2O_2 , B_2O_3 ... unter sich gleich und rund = 20 m ge-

wählt werden. Man hat dann mit Benützung der Tabelle von Krupp, in der man von der horizontalen Komponente:

$$v_0 \cdot \cos \alpha = 550 \cdot \cos 13 \frac{1}{4}^0 = 535 \text{ m}$$

auszugehen hat, folgende Zahlenreihe:

	Horizontale	$\Sigma \Delta x$, von O ab gezählt			
	$\begin{array}{c} \text{Geschwindig-} \\ \text{keit } v_x \end{array}$	in der Tabelle von Krupp	multipliziert mit 0,782		
in O	535	0	0		
$,, A_1$	506,5	1430	1045		
$_{p}$ A_{2}	481	2775	2030		
$, A_3$	458	4053	2960		
$, A_4$	437	5280	3850		
A_5	418	6450	4710		
$, A_6$	401	7560	5520		
$, A_7$	386	8650	6315		
$, A_8$	372,6	9660	7055		
$, A_9$	360,5	10670	7780		
A_{10}	350,5	11650	8500		
A_{11}	341,6	12620	9200		
" A ₁₂	334	13510	9880		
	etc.	etc	etc.		

Es ist also
$$OA_1 = 1045 \text{ m}$$
, $OA_2 = 2030 \text{ m}$, u. s. w., ferner $B_1 O_1 = B_2 O_2 = \cdots = 20 \text{ m}$; $tg \alpha = 0.2355$.

Die Konstruktion (nach Fig. 6) wurde auf Millimeterpapier im Maßstab 1 mm = 10 m mit hartem Bleistift so genau als möglich ausgeführt; die einzelnen Meter konnten im Resultat geschätzt, die Winkel auf Minuten genau aufgetragen und erhalten werden.

Man setzt die Konstruktion soweit fort, bis man die horizontale Abscissenaxe wieder erreicht hat und etwas darunter kommt; wenn nötig, werden sodann nach der Konstruktion Figur 7 ein oder zwei weitere Flugbahnpunkte eingeschaltet; vielfach aber, und so auch hier, genügt proportionale Interpolation; es fand sich u. a. der Tangens des Auffallwinkels α' zwischen

$$\frac{283}{1000}$$
 und $\frac{340}{1000}$;

durch Interpolation proportional den Entfernungen wird

$$\alpha' = 17^{\circ} 20';$$

zusammen ist das Resultat der graphischen Lösung:

Schussweite X = 9520 m (die Schusstafel* giebt 9500 m); Auffallwinkel $\alpha' = 17^{\circ}20'$ (, , , , , $17^{\circ}42'$); Flugzeit T = 23,0 Sek.(, , , , , 23,1 Sek.); Abscisse des Scheitels $x_* = 5100$ m; Ordinate , , , $y_* = 660$ m.

b) Oder aber können die Zwischenstrecken Δx auf der horizontalen Abscissenaxe, also die Abstände OA_1 , A_1A_2 , A_2A_3 ,... unter sich gleich gross angenommen und aus der Kruppschen Tabelle die zugehörigen Geschwindigkeiten und Zwischenzeiten Δt_1 , Δt_2 ,... entnommen werden.

Beispiel.

Panzergranate der Kruppschen 30,5 cm-Kanone für Küsten- und Schiffsartillerie** (1893 in Chicago ausgestellt).

Kaliber 2R = 30.5 cm; Geschossgewicht P = 455 kg; Anfangsgeschwindigkeit $v_0 = 550$ m/sec.

Gesucht ist die Schussweite für den Abgangswinkel

$$\alpha = 22^{\circ} 27'$$
, (tg $\alpha = 0.41318$).

Es seien die Zwischenstrecken

$$OA_1 = A_1 A_2 = A_2 A_3 = \cdots = 1000 \text{ m}$$

angenommen; dann findet sich für die einzelnen Flugzeiten Δt_1 , Δt_2 ,... zwischen O und A_1 , A_1 und A_2 u. s. w. aus der Tabelle von Krupp der Reihe nach:

also sind die entsprechenden Fallhöhen $\frac{g}{2} \cdot \Delta t^2$, oder die Strecken $B_1 O_1$, $B_2 O_2$ u. s. w.:

Danach ist die Flugbahn nach Figur 6 mit den Zahlen

$$tg \alpha = \frac{4181.8}{10000}$$
, $OA_1 = A_1A_2 = \cdots = 1000 \text{ m}$; $O_1B_1 = 15.3 \text{ m}$, $B_2O_2 = 17.1 \text{ m}$

aufzubauen. Die Ausführung der Zeichnung im Maßstab 1 mm = 20 m lieferte das folgende Resultat:

Schussweite X = 14250 m (die Schusstafel giebt 14000 m); Auffallwinkel $\alpha' = 34^{\circ}10'$ (, , , , $32^{\circ}30'$); Endgeschwindigkeit v' = 341 m (, , , , , 341 m); Flugzeit T = 38,5 Sek. (, , , , , 37,9 Sek.); Scheitelabseisse $x_s = 8400 \text{ m}$; Scheitelordinate $y_s = 1970 \text{ m}$.

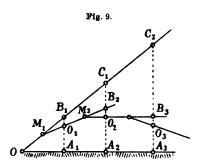
^{*} Archiv für die Artillerie- und Ingenieuroffiziere des deutschen Reichs, Jahrgang 1891, S. 487 flg; Auszug aus dem Manuele d'Artigleria.

^{**} Vergl. Waffenlehre von Wille, Generalmajor z. D., Berlin 1896, S. 210.

c) Endlich können die Zwischenpunkte A_1 , A_2 , A_3 ... der Horizontalprojektion auch beliebig angenommen und die zugehörigen Zwischenzeiten Δt der Tabelle von Krupp entnommen werden. Dieses Verfahren ist dasjenige, welches am einfachsten und mühelosesten zum Ziel führt; man wird die Abstände OA_1 , A_1A_2 , A_2A_3 ... ungefähr gleich annehmen; doch so, dass in der Tabelle von Krupp nicht interpoliert werden muss. Beispiele sind weiter unten durchgeführt.

Will man vermeiden, dass bei flachen Flugbahnen die einzelnen Tangenten $M_1 O_1$, $M_2 O_2$, ... sich unter zu kleinen Winkeln schneiden, so vergrössert man allein den Maßstab der Ordinaten; die durch Zeichnung erhaltene Schussweite X wird dadurch nicht geändert (denn man hat zwei kollineare Kurvensysteme mit der Abscissenaxe als Kollineationsaxe).

Soll ferner umgangen werden, dass man die mitunter sehr kleinen Fallhöhen $B_1 O_1$, $B_2 O_3 \ldots$ einzeln mit dem Zirkel abzustechen und



in der Zeichnung einzutragen hat, wodurch sich Fehler summieren können, so lassen sich auch (vergl. Fig. 9) die grösseren Strecken $B_1 O_1$, $C_2 O_2$, $C_3 O_3 \ldots$, welche sämtlich von der Anfangstangente aus gerechnet sind, leicht berechnen und sodann als Ganzes eintragen.

Sind nämlich bei gleichen Zwischenstrecken

$$OA_1 = A_1A_2 = \cdots$$

die Fallhöhen B_1O_1 , B_2O_2 , B_3O_3 ... bezw. kurz mit s_1 , s_2 , s_3 ... bezeichnet, so ist leicht zu zeigen, dass man hat

$$B_1 O_1 = s_1,$$

$$C_2 O_2 = 3s_1 + s_2,$$

$$C_3 O_3 = 5s_1 + 3s_2 + s_3$$

$$C_4 O_4 = 7s_1 + 5s_2 + 3s_3 + s_4$$
u. s. w.

Diese Längen erhält man durch blosse Addition nach dem Schema:

u. s. w.

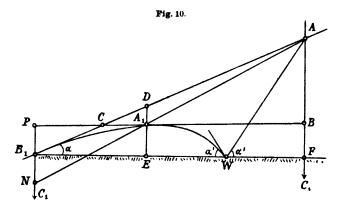
Z.B. waren in dem obigen Beispiel der 30,5 cm-Kanone die Strecken B_1O_1 , C_2O_2 , C_3O_3 , C_4O_4 ... der Reihe nach:

15,3; 63,2; 147,5; 273,3; 445,8; 671,4; 957,3 1313,8; 1746,9; 2267,4; 2885,8; 3615,1; 4468,5; 5461,1 m.

Übrigens wird bei diesem Verfahren, abgesehen von der Mühe der weiteren Vorberechnung, der Nachteil erzeugt, dass zur Verlängerung der Anfangstangente ()B₁ ein sehr grosses Zeichenblatt verwendet werden muss. Es wird selten diese letztere Modifikation notwendig werden.

5. Wenigstens von theoretischem Interesse ist es, das im Vorhergehenden beschriebene Verfahren noch etwas zu verallgemeinern.

Es ist nicht notwendig, M_1 als Mittelpunkt von O und B_1 , M_2 als Mitte von O_2 und B_2 u. s. w. anzunehmen; man kann vielmehr auch OB_1 , O_1B_2 ... nach bestimmten andern Verhältnissen, die von 1:1 wenig



verschieden sind, in M_1 , M_2 ... teilen. In diesem Fall kommt die Konstruktion darauf hinaus, die einzelnen Flugbahnstrecken zwischen O und O_1 , O_1 und O_2 u. s. w. aus ebensovielen verschiedenen Hyperbelbögen zusammenzusetzen, welche sich in den successiven Flugbahnpunkten O_1 , O_2 , O_3 ... berühren, und welche sämtlich eine vertikale Asymptote gemeinsam haben sollen (einer bekannten Eigenschaft der ballistischen Linie zufolge):

Man betrachte zu diesem Zweck wieder die obige Figur 8; hier werde AB zur Asymptote, es rücke also allein der Berührungspunkt C_1 ins Unendliche; dann ist (Fig. 10) $PB_1 = NB_1$ und parallel der Asymptote AB, also vertikal; zieht man also noch durch A_1 die Parallele DE zur Asymptote, so verhält sich

$$B_1C: CD = PB_1: DA_1 = B_1N: DA_1 = B_1D: B_1A = B_1F: EF;$$

 B_1F ist in unserem Falle die horizontale Abscissenaxe, auf welcher die Punkte B_1 und E (in Fig. 6 z. B. mit O und A_1 bezeichnet) gegeben sind; falls die Lage der Asymptote, d. h. der Punkt F gegeben

ist, kennt man somit das Verhältnis $B_1C:CD$, in welchem B_1D zu teilen ist, um C und damit die Tangente CA_1 in dem auf den Flugbahnpunkt B_1 folgenden nächsten Punkt A_1 zu erhalten. Kehren wir also zu den Bezeichnungen von Figur 6 oder auch Figur 9 zurück, so ist das Resultat folgendes: man teilt OB_1 im Verhältnis $OF:A_1F$ (F der Schnittpunkt der vertikalen gemeinschaftlichen Asymptote mit der Abscissenaxe; der Teilpunkt sei M_1) dann ist M_1O_1 die Tangente in O_1 . Ferner teilt man O_1B_2 in M_2 nach dem Verhältnis $A_1F:A_2F$ und zieht M_2O_2 , so ist dies die Tangente in O_3 u. s. f.

Um jedoch die Lage der Asymptote zu finden, kann man mit Ökinghaus die Näherungsannahme machen, die Flugbahn sei eine einzige Hyperbel; lässt man dann den variablen Punkt A_1 (Fig. 10) mit dem Auffallpunkt W zusammenfallen, so erkennt man leicht, dass der Punkt A der Asymptote erhalten wird, indem man im Auffallpunkt W den spitzen Auffallwinkel α' an die Abscissenaxe im Sinne wachsender Abscissen anträgt und den freien Schenkel mit der Abgangslinie B_1D in A zum Schnitt bringt; die Vertikale durch A ist dann die Asymptote; da meist der Punkt A über das Zeichenblatt hinausfallen würde, so wird man — die Richtigkeit ergiebt sich leicht aus dem Vorhergehenden — die Entfernung B_1F der Asymptote vom Abgangspunkt mittelst des Ausdrucks berechnen:

$$X \cdot \frac{\operatorname{tg} \alpha'}{\operatorname{tg} \alpha' - \operatorname{tg} \alpha},$$

wobei α der Abgangswinkel, α' der Auffallwinkel, X die Schussweite ist. Man wird sonach zunächst die frühere Methode anwenden und einen ersten Wert X der Schussweite, sowie den Auffallwinkel α' graphisch ermitteln und erhält mit dem eben angeführten Ausdruck die Lage der Asymptote, also den Punkt F; damit hat man die Verhältnisse, nach denen die Strecken

$$OB_1, O_1B_2, O_2B_3...$$
 in $M_1, M_2, M_3...$

zu teilen sind; so führt man die Konstruktion nochmals aus.

Zugleich sieht man, dass in der That in diesem Verfahren eine Verallgemeinerung des früheren liegt; nimmt man nämlich speziell die sämtlichen Verhältnisse $OM_1: M_1B_1$, $O_1M_2: M_2B_2$ u. s.w. unter sich gleich und gleich 1 an, so rückt F ins Unendliche und die Hyperbel geht in den Grenzfall der Parabel über. Bei der praktischen Ausführung zeigt sich auch, dass diese Modifikation des früheren einfacheren Verfahrens vielfach nur darauf hinauskäme, beim Ziehen von M_1O_1 , M_2O_2 ... das Lineal etwas näher an M_1 , M_2 ... anzulegen, als an O_1 , O_2 ...

Um ein Beispiel anzuführen, so fanden wir oben bei der Kruppschen 30,5 cm-Kanone die Schussweite und den Auffallwinkel, daraus wird nun die Entfernung der Mündung von der vertikalen Asymptote OF = 39800 m; somit ist das Teilungsverhältnis $OM_1: M_1B_1$ im Anfang der Flugbahn = 39800:38800 = 0,506; dagegen am Ende der

Flugbahn wird dieses Verhältnis 26800: 25800 = 0,509; die Zwischenwerte des Teilungsverhältnisses kann man durch Interpolation bestimmen. Auf diese Weise wurde die Flugbahn aufs neue stückweise konstruiert; es fand sich:

Schussweite X = 14170 m, Scheitelabscisse $x_i = 8300 \text{ m}$, Scheitelordinate $y_i = 1910 \text{ m}$, Flugzeit T = 38,5 Sek., Auffallwinkel $\alpha' = 34^0 10'$.

Also ist der Unterschied zwischen der jetzigen und der nach dem früheren Verfahren erhaltenen Schussweite ein nur geringer. Die Ausführung der Konstruktion für zahlreiche Beispiele der Praxis zeigte dem Verfasser, dass die Verschärfung der Methode durch Anwendung der Hyperbelbögen bei weitem weniger ins Gewicht fällt, als die richtige Bestimmung des Formkoeffizienten λ bei der Anwendung der Kruppschen Tabelle.

Wie schon oben angedeutet, empfiehlt es sich am meisten, den Faktor λ empirisch zu bestimmen*; in solchen Fällen, wo hierfür nicht geeignete Schusstafelwerte vorliegen, leisten die Tabellen von Ingalls,*** Vallier*** und von Wuich† gute Dienste.

Mit Rücksicht auf die praktische Verwendung möge unter den erwähnten Methoden die im Vorhergehenden als die einfachste und bequemste bezeichnete Methode besonders hervorgehoben, für die einzelnen ballistischen Aufgaben spezialisiert und durch Beispiele erläutert werden.

Zusammenstellung der graphischen Methode.

1. Aufgabe.

Gegeben sei die Anfangsgeschwindigkeit v_0 m, der Abgangswinkel α^0 ; ferner Gewicht P(kg) und Querschnitt $R^2\pi(qcm)$ des Geschosses, sowie dessen Formkoefficient λ .

Gesucht ist die Schussweite X, der spitze Auffallwinkel α' , die Koordinaten x_s , y_s des Scheitels, die ganze Flugzeit T, die Endgeschwindigkeit v' und für eine beliebige Entfernung x die Ordinate der Flugbahn, die Flugzeit t und der Horizontalneigungswinkel ω der Tangente.

Vergl. das oben angeführte Werk von Mayevski-Klussmann.

^{**} James M. Ingalls, Captain, First Artillery: Journal of the United States Artillery, April 1895, Nr. 2, Vol. IV, p. 191; vergl. auch den Auszug dieser Arbeit in der Zeitschrift "Mitteilungen über Gegenstände des Artillerie- und Genie-Wesens", Wien, Jahrgang 1896, 7. Heft, S. 411.

^{***} E. Vallier, chef d'escadron d'Artillerie, "balistique expérimentale", Paris 1894, p. 10.

[†] Nic. von Wuich, Oberst im Artilleriestab, "Lehrbuch der äusseren Ballistik", Wien 1882, S. 122 flg.

Man denkt sich die horizontale Schussweite (Abscissenaxe) in mehrere annähernd gleiche Teile OA_1 , A_1A_2 , A_2A_3 ... geteilt und entnimmt, nach Ausrechnung des Faktors

$$\varkappa = \frac{P}{R^2\pi \cdot \lambda^{\bullet} \cdot \frac{\delta}{\delta_1}},$$

aus der Tabelle von Krupp die zu A1, A2, A3, ... gehörigen Werte der horizontalen Geschwindigkeiten v_x und der Flugzeiten $t = \sum \Delta t$; zu den betreffenden Zwischenzeiten Δt berechnet man die Fallhöhen $\frac{g}{2} \cdot \Delta t^2$ oder die Strecken $B_1 O_1$, $B_2 O_2$, $B_3 O_3 \dots$ (Fig. 6) und konstruiert sodann die Flugbahn vom Abgangspunkt O aus stückweise wie folgt: Auf Millimeterpapier trägt man in entsprechendem möglichst grossem Maßstab (Infanterie 1 mm = 2 m bis 5 m, Artillerie 1 mm = 5 mbis 20 m) die gewählten Zwischenstrecken Δx , also OA_1 , A_1A_2 , A_2A_3 ... auf und zieht unter dem Abgangswinkel α die Linie OB_1 , welche die Vertikale von A_1 in B_1 trifft; mache $B_1 O_1$ gleich der ersten Fallhöhe $\frac{g}{2} \Delta t_1^2$ und verbinde O_1 mit der Mitte M_1 von OB_1 , so ist O_1 ein zweiter Flugbahnpunkt und M_1O_1 die Tangente in diesem; ebenso mache B_2O_2 gleich der zweiten Fallhöhe $\frac{g}{2} \cdot \Delta t_2^2$ und verbinde O_2 mit der Mitte M_2 von O_1B_2 , so ist O_2 der Flugbahnpunkt, dessen Projektion A_2 ist, und $M_2 O_2$ die Tangente in O_2 . So fährt man fort, bis der Boden wieder erreicht ist und geht mit der Konstruktion noch etwas darunter.

Falls es notwendig wird, erhält man weitere Flugbahnpunkte durch die Konstruktion von Figur 7: Um z. B. zwischen O und O_1 Punkte einzuordnen, zieht man OO_1 , Mitte Q, dann ist die Mitte P von $M_1 Q$ ein Flugbahnpunkt und die Tangente in P ist die Verbindungslinie von P mit der Mitte M' von OM_1 . Analog lässt sich noch ein weiterer Punkt samt seiner Tangente zwischen O und P einordnen u. s. f. Vielfach genügt aber proportionale Interpolation.

Der Flugbahnscheitel und der bestrichene Raum ergeben sich auf einem horizontal und vertikal eingeteilten Zeichenpapier ohne weiteres. Die Flugzeiten und die horizontalen Geschwindigkeiten v_x hat man aus der Kruppschen Tabelle; eine Bahngeschwindigkeit v selbst erhält man, indem man der Zeichnung den zugehörigen Neigungswinkel ω (auf Minuten genau, und zwar direkt den Tangens von ω) entnimmt, mittelst $v = v_x : \cos \omega$.

Von besonderer Wichtigkeit für die Genauigkeit des Resultats ist die Kenntnis des richtigen Formkoeffizienten λ .

Ist die Flugbahn sehr rasant, so wird der Maßstab der Ordinaten entsprechend grösser gewählt, als der der Abscissen; hierdurch wird erreicht, dass die Fallhöhen $B_1 O_1$, $B_2 O_2 \ldots$ genauer abzutragen sind, und dass die successiven Tangenten sich nicht unter zu kleinen Winkeln in der Zeichnung schneiden.

Die Wahl der Grösse der Zwischenstrecken OA_1 , A_1A_2 , A_2A_3 ... geschieht derart, dass diese zwar annähernd gleich gross sind, dass aber in der Kruppschen Tabelle nicht interpoliert zu werden braucht; und die Zahl dieser Zwischenstrecken (8-15) wird darnach bemessen, dass die zu verbindenden Punkte M_1 und O_1 , M_2 und O_2 u. s. w. nicht so nahe liegen, dass das Ziehen der Verbindungslinien unsicher wird.

Wenn die Abnahme der Luftdichte δ mit Zunahme der Höhe y mit berücksichtigt werden soll, so kann dies in einfacher Weise dadurch geschehen, dass von Punkt zu Punkt andere Worte von δ , also von z benutzt werden.

1. Beispiel.

Schwere deutsche Feldkanone C/73, mit Schrapnel C/91 oder Sprenggranate.

Anfangsgeschwindigkeit $v_0=442$ m; Abgangswinkel $\alpha=$ Erhebungswinkel $15\frac{1}{2}^0+$ Abgangsfehlerwinkel $\frac{6}{16}^0=15\frac{14}{16}^0;$ tg $\alpha=\frac{273,2}{1000}.$ Kaliber 2R=8,8 cm; Geschossgewicht P=7,5 kg; $\delta=\delta_1,~\lambda=1,23$ (aus der Schusstafel bestimmt), also $\alpha=\frac{P}{R^2\pi-1}=0,100_4;$ horizontale Anfangsgeschwindigkeit: $v_{x_0}=v_0\cdot\cos\alpha=442\cdot\cos15\frac{14}{16}^0=425$ m.

Die Zwischenstrecken OA_1 , A_1A_2 ... oder Δx auf der horizontalen Abscissenaxe mögen so gewählt werden, dass sie um beiläufig 500 m fortschreiten; sonach müssen die Werte $\Sigma \Delta x$ in der Kruppschen Tabelle um beiläufig $\frac{500}{0,100_4} = 5000$ m fortschreiten, jedoch so, dass nicht interpoliert werden muss. Darnach hat man folgende Zahlen der Tabelle zu entnehmen:

	Horizontale Ge- schwindig- keit	In der Tabelle von Krupp		Durch Multiplikation mit 0,100 wahre Werte von		Zugehörige Fallhöhen	
	v _z	$\Sigma \Delta x$	$\Sigma \Delta t$	$\sum \Delta x$ m von O ab	Δt Sek. von O ab	$\frac{g}{2}$ · Δt^2 m	
in O	425	23711	36,93	0	0	0	
$_{"}A_{1}$	358	28619	49,57	491	1,264	7,8	
$^{"}_{"}A_{2}$	316	33734	64,87	1002	1,530	11,5	
$, A_3$	287	38830	81,78	1512	1,691	14,0	
$, A_4$	263	43858	100,07	2015	1,829	16,4	
$, A_5$	242	48730	119,39	2502	1,930	18,2	
$, A_6$	223 ′	53655	140,61	2994	2,122	22,1	
" A ₇	206	58750	164,40	3504	2,379	27,8	
$, A_8$	191	63961	190,69	4025	2,629	33,8	
$,, A_9$	179	68725	216,47	4501	2,578	3 2,6	
$^{''}_{,}$ A_{10}	16 8	73624	244,74	4991	2,827	39,1	

Somit ist für die Konstruktion nach Figur 6 zu nehmen: $OA_1 = 491 \text{ m}$, $OA_2 = 1002 \text{ m}$, $OA_3 = 1512 \text{ m}$ u.s.w.; $B_1O_1 = 7.8 \text{ m}$, $B_2O_3 = 11.5 \text{ m}$ u.s.w.

Die Ausführung im Maßstab 1 mm = 5 m auf der Abscissenaxe und 1 mm = 2 m auf der Ordinatenaxe ist in beiliegender Tafel III gezeigt (bei der Vervielfältigung wurde die ursprüngliche Zeichnung auf die Hälfte reduziert und die Millimeterlinien weggelassen).

Die Resultate der graphischen Lösung sind die folgenden:

Schussweite
$$X = 4501 \text{ m}$$
 (d. Schusstfl.* giebt 4500 m), Auffallwinkel $\alpha' = 24^{\circ}53\frac{1}{2}'$, $\left(\text{tg}\,\alpha' = \frac{232}{500}\right)\left(\text{ " " 24 $\frac{14^{\circ}}{16}\right)$, ganze Flugzeit $T = 18,0 \text{ Sek.}$ (" " 18,1 Sek.), horiz. Endgeschwind. $= 179 \text{ m}$ also Endgeschwind. $v = \frac{179}{\cos 24^{\circ}53\frac{1}{2}'} = 197,3 \text{ m}$ (" " 198 m),$

Abscisse des Scheitels = 2600 m, Ordinate " = 412 m.

Ferner lassen sich aus der Zeichnung direkt folgende Tangenten-Neigungswinkel ω und folgende Flughöhen y abnehmen:

In der Entfernung:

$$x = 0$$
 m $\omega = \alpha = 24^{\circ} 52'$; (tg = 0,2732, siehe oben; $y = 0$), $x = 491$, $\omega = 12^{\circ} 38'$ (tg = 112:500), $y = 126,0$ m, $x = 1002$, $\omega = 11^{\circ} 31'$ (tg = 102:500), $y = 239,5$ m, $x = 1512$, $\omega = 8^{\circ} 45'$ (tg = 77:500), $y = 329,5$ m, $x = 2015$, $\omega = 4^{\circ} 55'$ (tg = 43:500), $y = 388,0$ m, $x = 2502$, $\omega = 0^{\circ} 52'$ (tg = 7,5:500), $y = 411$ m, $x = 2994$, $\omega = -4^{\circ} 50'$ (tg = -42,5:500), $y = 394,5$ m, $x = 3504$, $\omega = -11^{\circ} 5'$ (tg = -98:500), $y = 325,5$ m, $x = 4025$, $\omega = -18^{\circ} 0'$ (tg = -162,5:500), $y = 188,5$ m, $x = 4501$, $\alpha' = -24^{\circ} 53'$ (tg = -232:500), s. oben, $y = 0$ bis erc $0,2$ m

Zur Illustration des oben über das Einordnen weiterer Flugbahnpunkte Gesagten ist in der Zeichnung zwischen O_8 und O_9 der weitere Flugbahnpunkt P einkonstruiert; es ist O_8 O_9 gezogen, in Q halbiert, die Mitte von M_9 Q ist P.

2. Beispiel.

Leichte Feldkanone. 2R = 7.85 cm; P = 5.07 kg; λ aus Mangel anderer Daten = 1 genommen; so ist $\alpha = \frac{P}{R^2\pi} = 0.10476$; $v_0 = 465$ m.

Gegeben ferner $\alpha = 13^{\circ} 35' 17''$. Gesucht X, α' , v', T, x_{\bullet} , y_{\bullet} .

Es wird $v_0 \cdot \cos \alpha = 452,0$ m; die horizontalen Zwischenstrecken mögen wiederum so gewählt sein, dass die Abscissen um beiläufig 500 m fortschreiten. Man hat sodann aus der Tabelle von Krupp:

^{*} Vergl. z. B. den Leitfaden für den Unterricht in der Waffenlehre auf den königl. Kriegsschulen. Auf Veranlassung der General-Inspektion des Militär-Erziehungs- und Bildungswesens ausgearbeitet. 8. Auflage. Berlin 1897. Verlag von E. S. Mittler und Sohn, Anhang.

	Horizon- tale Kom- ponenten der Geschwin- digkeit	In der Tabelle von Krupp			Durch Multiplikation mit 0,10476			
		$\Sigma \Delta x$	ΣΔŧ	Diff. Δt	Abscissen x von O ab	wahre Zeit- diffe- renzen	dazu gehörige Fallhöhen $\frac{g}{2} \cdot \Delta t^2$	
	m	m	Sek.		m	Sek.	m	
in O	452	11347	20,345	0	0	0	0	
, A1	375	16418	32,702	12,357	531,2	1,294	8,2	
, A.	325	21663	47,831	15,129	1081,3	1,587	12,3	
, A ₃	294	26729	64,264	16,433	1611	1,722	14,5	
, A ₄	268	32013	83,040	18,776	2165	1,967	18,5	
" A ₅	245	37257	103,516	20,476	2714	2,145	22,5	
" A6	225	42353	125,237	21,721	3248	2,275	25,4	
$, A_7$	208	47357	148,388	23,151	3772	2,425	28,8	
" A ₈	194	52110	172,066	23,678	4270	2,480	29,9	

Somit hat man für die Konstruktion nach Figur 6 zu nehmen:

$$OA_1 = 531 \text{ m}, OA_2 = 1081 \text{ m} \text{ u. s. w.};$$

 $B_1O_1 = 8.2 \text{ m}, B_2O_2 = 12.3 \text{ m} \text{ u. s. w.}$

Das Resultat wurde:

Schussweite

X=4310 m (die Schusstafel giebt für dasselbe α

X = 4300 m,

Auffallwinkel

 $\alpha' = 20^{\circ} 20' \text{ (tg} = 370:1000),$

Horizontale Endgeschwindigkeit $v'_x = 194 \text{ m}$,

Flugzeit

T = 15,8 Sek.,

Scheitelkoordinaten $\begin{cases} x_s = 2450 \text{ m}, \\ y_s = 325 \text{ m}. \end{cases}$

3. Beispiel.

28 cm-Haubitze. Kaliber 2R = 28 cm; Geschossgewicht P = 215 kg; Anfangsgeschwindigkeit $v_0 = 355$ m; Formkoeffizient $\lambda = 0.9$. Abgangswinkel $\alpha = 45^{\circ}$.

Es wird
$$\alpha = \frac{215}{14^2 \cdot \pi} = 0.3880; \quad v_0 \cos \alpha = 251.3 \text{ m}.$$

Die Abscissen OA_1 , OA_2 ... mögen fortschreiten um ungefähr gleich viel, nämlich um ungefähr $1000\,\mathrm{m}$, also müssen die Werte $\Sigma\Delta x$ der Tabelle von Krupp derart entnommen werden, dass sie in dieser Tabelle fortschreiten um ungefähr $\frac{1000}{0.888}$, d. h. 2564, jedoch so, dass nur für die erste horizontale Geschwindigkeit in O, aber später nicht mehr in der Tabelle interpoliert werden muss:

	Hori- zontale Ge- schwin- digkeit	$egin{array}{c} oldsymbol{\Sigma} oldsymbol{\Delta} x \ ext{in der} \ ext{Tabelle} \ ext{m} \end{array}$	Diffe- renzen m	Diese Differenzen multipliziert mit 0,388; also wirkliche Abscissen von O ab	Zeiten $\Sigma \Delta t$ in der Tabelle Sek.	Diffe- renzen Sek.	Daraus Fallhöhen m
$\frac{1}{\text{in }O}$	251,3	46511			110,39		
$, A_1$	241	48973	2462	955	120,40	10,01	74
\ddot{A}_{2}	231	51495	4984	1934	131,09	10,69	84,3
$, A_3$	221	54215	7704	2990	143,13	12,04	107
$, A_4$	212	56857	10346	4014	155,34	12,21	110
$, A_5$	204	59405	12894	5002	167,60	12,26	110,9
$, A_6$	196	62145	15634	6065	181,30	13,70	138,5
" A ₇	190	64336	17825	6916	192,66	11,36	95,3
$, A_8$	183	67073	20562	7977	207,34	14,68	159
$, A_9$	177	69575	23064	8948	221,25	13,91	143
" A ₁₀	171	72231	25720	9977	236,52	15,27	172
$, A_{11}$	166	74577	28066	10889	250,45	13,93	143

Somit ist $OA_1 = 955 \text{ m}$, $OA_2 = 1934 \text{ m}$ u. s. w.; $B_1 O_1 = 74 \text{ m}$, $B_2 O_2 = 84 \text{ m}$ u. s. w.

Die Ausführung der Zeichnung im Maßstab 1 mm = 10 m gab als Resultate:

Schussweite X = 9505 m (beobachtet wurde 9588 m; die Berechnung nach der Methode Siacci-Krupp giebt 9482 m),

Auffallwinkel
$$\alpha' = 52^{\circ} \ 0' \left(\text{tg} = \frac{1280}{1000} \right);$$

Horizontale Endgeschwindigkeit $v'_x = 173.8$ (durch Interpolation), also Endgeschwindigkeit in der Bahn: $v' = \frac{173.8}{\cos 52^0} = 282.3$ m;

Scheitel:
$$x_s = 5010 \text{ m}$$
; $y_s = 2677 \text{ m}$.

Ferner z. B. für die Entfernung x = 3000 m ist Flughöhe y = 2202 m und Neigungswinkel der Tangente $\omega = 24^{\circ}$ 8' (tg = 448 : 1000).

2. Aufgabe.

Gegeben Schussweite X, Anfangsgeschwindigkeit v_0 , sowie Masse und Form des Geschosses, also P, 2R, λ .

Gesucht Abgangswinkel α und die übrigen ballistischen Elemente. — Man löst wie vorhin graphisch die Aufgabe, indem man für α probeweise einen Näherungswert α_1 wählt — am besten durch Vergleichung der Schusstafel eines möglichst ähnlichen Gewehr- oder Geschützsystems. — Dadurch erhält man eine gewisse Schussweite X_1 , die nicht mit der gegebenen X zusammenfallen wird. Hierauf dreht ("schwenkt") man die konstruierte Flugbahn wie eine starre krumme

Linie* um den Abgangspunkt O, bis die Schussweite die gegebene X wird. Den Winkel $\Delta \alpha$, um welchen man die Flugbahn abwärts oder aufwärts drehen musste, hat man von dem zuerst angenommenen Abgangswinkel α , abzuziehen resp. zu diesem hinzuzufügen. Damit hat man α und wie Nr. 1 auch die übrigen ballistischen Grössen, alles bezogen auf die Linie der wahren Schussweite als Abscissenaxe.

1. Beispiel.

Schwere Feldkanone C/73. Gegeben $v_0 = 442 \,\mathrm{m}$, $X = 4300 \,\mathrm{m}$; ferner P = 7.5 kg; 2R = 8.8 cm; $\lambda = 1.23$. Gesucht α .

Probeweise wird mit $\alpha_1 = 15^{\circ} 52'$ die Flugbahn konstruiert (dies geschah im obigen Beispiel, siehe Fig. 11 der beiliegenden Tafel); die Schussweite X, wurde damit zu 4501 m gefunden; es wird nun die Flugbahn um O gedreht, bis die Schussweite 4300 m wird; man beschreibt also einen Kreisbogen um O mit Radius $OW_1 = 4300$, der die schon gezeichnete Flugbahn in W trifft und zieht OW, so ist dies die wahre Abscissenaxe. Der Winkel W_1OW oder $\Delta\alpha$, um welchen dabei gedreht wurde, ergiebt sich aus

$$tg \Delta \alpha = \frac{97}{4000}; \ \Delta \alpha = 1^{\circ} \ 23';$$

dieserWinkel ist von dem vorher gewählten Abgangswinkel abzuziehen; vorher wurde gewählt α_1 = Erhebungswinkel $15\frac{1}{2}^{6}$ + konstant. Abgangsfehlerwinkel $\frac{60}{16}$, also ist der richtige Erhebungswinkel für die Schussweite 4300 m: = 15° 30' - 1° 23 - 14° 07' (die Schusstafel giebt 14_{16}^{4}).

=
$$15^{\circ} 30' - 1^{\circ} 23^{\circ} - 14^{\circ} 07'$$
 (die Schusstafel giebt 14_{16}^{4}).

2. Beispiel.

Leichte Feldkanone. Gegeben $v_0 = 465 \text{ m}, X = 4000 \text{ m};$ z = 0.10476. Gesucht a.

Die Konstruktion werde probeweise mit dem Erhebungswinkel 13 16 ausgeführt (vergl. obiges Beispiel bei Nr. 1); es findet sich $X_1 = 4310 \text{ m}$; es muss die Flugbahn gedreht werden um $\Delta \alpha$, wobei $\operatorname{tg} \Delta \alpha - \frac{106}{4000}$; Δu-1° 35'; also ist der Erhebungswinkel für die Schussweite 4000 m:

=
$$13^{\circ} 15' - 1^{\circ} 35' = 11^{\circ} 40'$$
 (die Schusstafel giebt $11\frac{11^{\circ}}{16}$)

3. Aufgabe.

Gegeben Schussweite X und Abgangswinkel α , ferner P, 2R und λ . Gesucht v_0 und die anderen Grössen.

Man wählt am einfachsten durch Vergleichung einer anderen Schusstafel einen Wert von r_0 , der voraussichtlich dem gesuchten v_0 nahe kommt;

^{*} Über dieses sogenannte "Prinzip des Schwenkens der Flugbahnen", welches mit Rücksicht auf den Genauigkeitsgrad der Lösung in bestimmten Grenzen in der That gestattet ist und in der Ballistik sehr viel Verwendung findet, vergleiche u. a.: N. von Wuich, Lehrbuch der äusseren Ballistik, Wien 1882, S. 26. --A. Mieg, königl. bayer. Major z. D., theoretische äussere Ballistik, Berlin 1884, Verlag von Mittler & Sohn; hier ist das Prinzip durchweg verwendet; übrigens ist die Bemerkung S. 97, Schluss, nur mit Einschränkung richtig. Digitized by Google

sodann entnimmt man von der horizontalen Geschwindigkeit $v_0 \cos \alpha$ ab die betreffenden Zahlen der Kruppschen Tabelle und führt die Zeichnung aus. Man erhält damit eine gewisse Schussweite X_1 , die mit der gegebenen nicht identisch sein wird. Fällt X_1 kleiner als X aus, so wählt man einen zweiten Wert von v_0 derart, dass nachher die Schussweite grösser als X wird; hiermit wird eine zweite Zeichnung ausgeführt, die eine zweite Schussweite X, liefert. Durch Interpolation proportional den Differenzen zwischen X_1 resp. X_2 und X erhält man sodann die gesuchte Anfangsgeschwindigkeit v_0 . — Eine bedeutende Ersparnis der Mühe liegt darin, dass man nicht nötig hat, die ganze Liste der Werte $OA_1, A_1A_2..., B_1O_1$ B, O, ... zweimal zu berechnen; vielmehr wird man nur die ersten Zahlen neu aufstellen; man wird also nur das erste Intervall vergrössern oder verkleinern, sodass die übrigen Zahlen der Tabelle, welche man der Konstruktion zu Grunde legt, bleiben, dagegen die horizontale Geschwindigkeit in O, ferner die erste Zwischenstrecke Δx_i oder OA_i und die erste Fallhöhe B_1O_1 eine andere wird. — (Ganz analog muss bei dem rechnerischen Verfahren nach der Methode von Siacci die Flugbahn zweimal berechnet und sodann interpoliert werden.)

4. Aufgabe.

Gegeben v_0 , α und X. Gesucht Faktor α (z.B. gesucht λ , wenn P und 2R gegeben ist).

Diese wichtige Aufgabe, welche bei dem Rechnungsverfahren nach Siaccis Methode eine zweimalige Berechnung und darauffolgende Interpolation erfordert, und welche nur bei Anwendung der Braccialini-Hojel-Vallierschen Methode mit Hilfe der sogenannten sekundären Funktionen im Fall kleiner Abgangswinkel weniger Mühe verursacht, verlangt auch hier, ganz analog dem Siaccischen Rechnungsverfahren, eine zweimalige Konstruktion der Flugbahn: Man versucht — am zweckmässigsten nach Betrachtung einer anderen verwandten Schusstafel — einen ersten Wert von \varkappa , konstruiert die Flugbahn und erhält einen Wert X_1 der Schussweite; versucht sodann einen zweiten Wert \varkappa und erhält einen zweiten Wert \varkappa der Schussweite; endlich wird proportional interpoliert.

Es zeigt sich so, dass das beschriebene graphische Verfahren für die Zwecke der Praxis völlig genügt und in manchen Fällen mit wenig Mühe zu einem übersichtlicheren Resultat führt als das rechnerische Verfahren. Bei Lösung einer grösseren Zahl von ballistischen Aufgaben der Praxis ergab sich dem Verfasser, dass, wenn nur der Formkoefficient λ richtig ermittelt war und in genügend grossem Maßstab genau konstruiert wurde, der Fehler des Resultats gegenüber der Lage des mittleren Treffpunkts stets kleiner war als der mittlere Fehler eines einzelnen Schusses, und dass wenigstens in einigen Fällen dieses graphische Verfahren selbst den neusten Rechnungsmethoden an Genauigkeit überlegen war.— Möchten die Herren Ballistiker dieser graphischen Methode, welche keinerlei Hilfsmittel der höheren Mathematik erfordert, nähertreten.

Über die Differentiation empirischer Funktionen.

Von

C. RUNGE

Wenn wir die Vorgänge oder Zustände der Wirklichkeit messend verfolgen, so zeigt es sich nicht selten, dass unsere Apparate nicht die eigentlichen zu messenden Funktionswerte angeben, sondern Mittelwerte. Die Apparate integrieren über ein Intervall, statt uns den Funktionswert anzugeben und gleichen dadurch Schwankungen, die in der Wirklichkeit vorkommen, unter Umständen so weit aus, dass sie nicht mehr wahrgenommen werden.

Hierauf beruht es z. B., dass man bis zu den Versuchen von Langley* die grosse Ungleichmässigkeit des Windes nicht hinreichend erkannt hatte. Die gebräuchlichen Anemometer besassen soviel Trägheit, dass sie nicht die augenblickliche Geschwindigkeit der Luft erkennen liessen, sondern einen Durchschnittswert, der auch von den vorhergehenden Windgeschwindigkeiten beeinflusst war. Erst Langley baute Anemometer von sehr geringer Trägheit und verminderte so das Intervall der Integration.

Auf demselben Grunde beruht auch z. B. das beschränkte Trennungsvermögen optischer Apparate. Das Bild, das eine Linse von einem leuchtenden Punkte entwirft, ist, wenn man von den Diffraktionsringen absieht, die ihrer geringeren Intensität wegen nicht von Belang sind, eine kleine Scheibe, deren Fläche für Licht derselben Wellenlänge der Öffnung des Lichtkegels umgekehrt proportional ist, der in einem ihrer Punkte seine Spitze hat. Das Bild irgend eines Objektes ist deshalb nicht getreu, sondern immer bis zu einem gewissen Grade verwaschen, und die Intensität des Bildes an irgend einem Punkte ist nicht proportional der Intensität des Originals an dem entsprechenden Punkte, sondern ist ein Durchschnittswert der Intensität aller derjenigen Punkte des Originals, deren Scheiben den betreffenden Bildpunkt noch enthalten.

^{*} Langley, Le Travail intérieur du vent. Revue de l'aeronautique. 1893.

Diese Integration der Apparate lässt sich bis zu einem gewissen Grade durch Rechnung wieder rückgängig machen, wie in dem Folgenden für einen besonderen Fall gezeigt werden soll. Ich nenne in der Überschrift diese Reduktion der beobachteten Integralwerte "Differentiation", obwohl sich der Begriff nicht ganz mit der Differentiation deckt. Die hier gegebene Methode ist von Herrn Paschen in ausgedehntem Maße bei der Reduktion seiner bolometrischen Messungen über die Strahlung erhitzter Körper verwendet worden.* Von ihm rührt die Formulierung des Problems der Reduktion seiner bolometrischen Messungen her.

Wenn man das Spektrum einer Lichtquelle entwerfen will, so verfährt man bekanntlich so, dass man das Licht durch einen Spalt schickt. Die Lichtstrahlen, die durch den Spalt dringen, werden durch passende Anordnung von Linsen oder Spiegeln so gelenkt, dass sie nach dem Passieren des zerstreuenden Apparates, mag das nun ein Prisma, ein Prismensatz, oder ein Gitter sein, sich wieder zu einem Spaltbilde vereinigen. Der zerstreuende Apparat bewirkt, dass die Spaltbilder verschiedener Farben nicht an derselben Stelle entworfen sind, sondern nunmehr zu einem Streifen ausgebreitet das Spektrum der Lichtquelle bilden. Die Bilder des Spaltes haben nun immer eine gewisse Breite. Selbst für einen unendlich feinen Spalt würde dies gelten. Auch sein Bild behält eine gewisse Breite, die von der Öffnung des Lichtbündels und von der Wellenlänge abhängt. Es vermischen sich daher die Spaltbilder nahe benachbarter Farben und das Spektrum wird unrein, um so mehr, je breiter der Spalt gemacht wird. Ist der Spalt nicht sehr enge, so können wir das Bild des rechteckigen Spaltes ohne merklichen Fehler als Rechteck betrachten. In einem unreinen Spektrum ist die Intensität an irgend einer Stelle des Spektrums nicht proportional der Intensität der betreffenden Farbe, sondern es ist ein Durchschnittswert der Intensitäten aller der Farben, deren Spaltbilder die betreffende Stelle noch enthalten. bezeichne x die Längsausdehnung des Spektrums von einem festen Punkt bis zu irgend einer Stelle. An dieser Stelle liegt die Mitte des Spaltbildes einer gewissen Farbe, von deren Wellenlänge wir sagen wollen, dass sie dem Wert x entspricht. Das Spaltbild möge sich von $x-\frac{a}{2}$ bis $x+\frac{a}{2}$ erstrecken und wir wollen annehmen, dass die Breite des Spaltbildes a für alle Farben merklich dieselbe ist. Die Energiemenge des Lichtes, dessen Wellenlängen dem Intervall x bis x + dx entsprechen und das in einer gegebenen Zeit durch den Apparat geht, ist dann im Spektrum nicht auf das Intervall x bis x + dx konzentriert, sondern in dem Intervall $x-\frac{a}{2}$ bis $x+\frac{a}{2}$ ausgebreitet. Wir bezeichnen diese Energiemenge mit $a \cdot dE_x$, wo also dE_x die Energiemenge

^{*} F. Paschen, Über die Spektren fester Körper. Wied. Ann. 1897.

bedeutet, die einer Spaltbreite entspricht, für die das Spaltbild die Breite 1 hat.

Alsdann kommt auf das Intervall x bis x + dx nur der Bruchteil $dE_x \cdot dx$. Dafür aber greifen die Spaltbilder der benachbarten Farben, die den Werten $x - \frac{a}{2}$ bis $x + \frac{a}{2}$ entsprechen, über das Intervall, so dass wir im ganzen in dem Intervall x bis x + dx die Energiemenge erhalten:

$$dx \int_{-\frac{a}{2}}^{+\frac{a}{2}} dE_{z+v} \cdot dv.$$

Die Intensität des Spektrums an der Stelle x ist nun zu definieren als die Energie des unendlich kleinen Intervalls x bis x+dx dividiert durch dx. Mithin ist die Intensität des unreinen Spektrums gleich

$$\int_{-\frac{a}{4}}^{\frac{a}{2}} \frac{dE_{x+v}}{dx} dv = E\left(x+\frac{a}{2}\right) - E\left(x-\frac{a}{2}\right).$$

Die Intensität des reinen Spektrums erhalten wir, wenn wir die Spaltbildbreite unendlich klein werden lassen:

$$\frac{dE_x}{dx}a.$$

Zugleich mit der Reinheit wird dann aber auch die Intensität unendlich klein. In Wirklichkeit lässt sich die Spaltbildbreite bei einem gegebenen Apparat nicht beliebig klein machen. Für einen unendlich schmalen Spalt behält das Spaltbild immer noch eine endliche Breite. Ein absolut reines Spektrum ist eine Abstraktion, die nicht verwirklicht werden kann.

Die Intensität des reinen Spektrums ist es, die wir suchen, wobei es aber auf einen Proportionalitätsfaktor nicht ankommt.

Bei bolometrischen Messungen wird nun auch die Intensität des eben betrachteten unreinen Spektrums nicht beobachtet. Man bringt hier bekanntlich einen Metallstreifen in das Spektrum und misst die Änderung, die sein elektrischer Widerstand durch die Bestrahlung erfährt. Die Messung liefert Grössen, die der Energiemenge des Lichtes proportional sind, das auf den Metallstreifen fällt. Nun hat aber der Metallstreifen eine gewisse Breite und wird daher die Energie eines gewissen Intervalls des oben betrachteten unreinen Spektrums anzeigen.

Liegt die Mitte des Bolometerstreifens bei x und ist seine Breite b, so empfängt er in der gegebenen Zeit die Energiemenge:

$$F(x) = \int_{\frac{b}{a}}^{\frac{b}{a}} E\left(x + v + \frac{a}{2}\right) - E\left(x + v - \frac{a}{2}\right) dv;$$

dieser Funktion werden die Ausschläge des Galvanometers proportional und es kommt nun darauf an, durch Rechnung die Werte zu finden, die $\frac{dE_x}{dx}$ proportinal sind.

Wird $\frac{dE}{dx}$ mit f(x) bezeichnet, so ergiebt sich nach der Taylorschen Reihe:

$$E(x+v+\frac{a}{2}) = E(x) + f(x)\left(v+\frac{a}{2}\right) + \frac{1}{2!}f'(x)\left(v+\frac{a}{2}\right)^{2} + \cdots$$

und

$$\int_{\frac{b}{2}}^{\frac{b}{2}} E\left(x+v+\frac{a}{2}\right) dv = E(x)b + f(x)\frac{p^2-q^2}{2!} + f'(x)\frac{p^3-q^3}{8!} + \cdots$$

$$-\frac{b}{2}$$
wo $p = \frac{a+b}{2}$, $q = \frac{a-b}{2}$ gesetzt ist.

wo
$$p = \frac{a+b}{2}$$
, $q = \frac{a-b}{2}$ gesetzt ist

Analog ist:

$$\int_{-\frac{b}{2}}^{+\frac{b}{2}} E\left(x+v-\frac{a}{2}\right) dv = E(x)b - f(x)\frac{p^2-q^2}{2!} + f'(x)\frac{p^3-q^3}{3!} + \cdots$$

Mithin
$$F(x) = 2\left(f(x)\frac{p^2-q^2}{2!}+f''(x)\frac{p^4-q^4}{4!}+\cdots\right)$$

Für hinreichend kleine Werte von p und q ist also in erster Annäherung: $F(x) = f(x)(p^2 - q^2) = f(x)ab.$

Die Wirkung auf den Bolometerstreifen wächst daher annähernd proportional ab.

Der Unterschied zwischen dem vom Bolometer registrierten unreinen Spektrum F(x) und dem reinen Spektrum $f(x) \cdot ab$ ist in erster Annäherung gleich $f''(x)\frac{p^4-q^4}{8A}=f''(x)\cdot ab\frac{a^2+b^2}{A!}$

Dieser Ausdruck giebt also ein Maß der Unreinheit an. Für eine gegebene Wirkung auf den Bolometerstreifen erzielt man möglichste Reinheit, wenn man das Verhältnis von a und b so wählt, dass

$$ab \cdot \frac{a^2+b^2}{4!}$$

für einen gegebenen Wert von ab möglichst klein wird. Daraus folgt a = b als günstigstes Verhältnis. Der Bolometerstreifen muss gerade die Breite des Spaltbildes haben, wenn bei gegebenen Ausschlägen das Spektrum möglichst rein sein soll.

Für b = a erhalten wir nun:

$$F(x) = f(x)a^2 + f''(x)\frac{a^4}{3\cdot 4} + f^{(4)}(x)\frac{a^6}{3\cdot 4\cdot 5\cdot 6} + \cdots$$

und es ergiebt sich die Aufgabe f(x) zu finden, wenn F(x) gegeben ist. Man könnte zunächst daran denken, f(x) durch eine Summe von Gliedern darzustellen, die F(x), F''(x), $F^4(x)$... enthalten. Durch Differentiation erhält man sogleich

$$F''(x) = f''(x) \cdot a^2 + f^4(x) \frac{a^4}{3 \cdot 4} + \cdots$$
$$F^4(x) = f^4(x) \cdot a^2 + f^6(x) \frac{a^6}{3 \cdot 4} + \cdots$$

Und wenn man die Gleichungen der Reihe nach $C_1 C_2 C_3 \ldots$ multipliziert und zu der Gleichung oben addiert, so ergiebt sich:

$$F(x) + C_1 F''(x) + C_2 F^{(4)}(x) + \dots = f(x)a^2 + f''(x) \left(C_1 a^2 + \frac{a^4}{3 \cdot 4} \right) + f^{(4)}(x) \left(C_2 a^2 + C_1 \frac{a^4}{3 \cdot 4} + \frac{a^6}{3 \cdot 4 \cdot 5 \cdot 6} \right) + \dots$$

Nun würde man C_1 , C_2 ... durch die Rekursionsformeln zu bestimmen haben:

$$C_1 a^2 + \frac{a^4}{3 \cdot 4} = 0,$$

$$C_2 a^2 + C_1 \frac{a^4}{3 \cdot 4} + \frac{a^6}{3 \cdot 4 \cdot 5 \cdot 6} = 0$$

Es ist indessen viel zweckmässiger statt der Differentialquotienten F''(x), $F^{(4)}(x)$, ... die Differenzen $\Delta^2 F$, $\Delta^4 F$, ... einzuführen. Denn man muss bedenken, dass F(x) nur empirisch, nicht analytisch gegeben ist, und dass daher die Differenzen leichter zu bilden sind, als die Differentialquotienten.

In symbolischer Schreibweise hat man:

$$F(x) = \frac{e^{aD} + e^{-aD-2}}{D^2} \cdot f(x),$$

wo Df für $\frac{df}{dx}$ steht. Daraus folgt durch zweimalige Differentiation:

$$D^{2}F = (e^{xD} + e^{-aD} - 2)f(x)$$

$$= f(x+a) + f(x-a) - 2f(x)$$

$$= \Delta^{2}f(x).$$

Anderseits folgt aus derselben Gleichung durch Differenzen bilden: $\Delta^2 F = F(x+a) + F(x-a) - 2F(x)$

$$=\frac{e^{aD}+e^{-aD}-2}{D^2}\cdot\Delta^2f(x).$$

Mithin:

$$\Delta^{2}F = (e^{aD} + e^{-aD} - 2)F(x)$$

$$= \frac{(e^{aD} + e^{-aD} - 2)^{2}}{D^{2}} \cdot f(x).$$

Bildet man hier von neuem die zweite Differenz, so ergiebt sich

$$\Delta^{4}F = (e^{aD} + e^{-aD} - 2)^{2}\Delta^{2}F$$
$$= \frac{(e^{aD} + e^{-aD} - 2)^{3}}{D^{3}} \cdot f(x).$$

So fortfahrend beweist man allgemein die Formel:

$$\Delta^{2n}F = \frac{(e^{aD} + e^{-aD} - 2)^{n+1}}{D^2} \cdot f(x).$$

Sollen nun die Konstanten C_1 , C_2 , C_3 ... so bestimmt werden, dass

$$F + C_1 \Delta^2 F + C_2 \Delta^4 F + \cdots = f(x)a^2$$

wird, so hat man demnach:

$$[(e^{aD} + e^{-aD} - 2) + C_1(e^{aD} + e^{-aD} - 2)^2 + C_2(e^{aD} + e^{-aD} - 2)^3 + \cdots] \frac{f}{D^2} = f \cdot a^2$$

oder

$$(e^{aD} + e^{-aD} - 2) + C_1(e^{aD} + e^{-aD} - 2)^2$$

$$+ C_2(e^{aD} + e^{-aD} - 2)^3 + \dots = a^2D^2.$$

 C_1, C_2, \ldots dürfen dabei nicht von D abhängen. Führt man die Bezeichnungen:

$$u = aD,$$
 $z = e^{u} + e^{-u} - 2 = 4 \operatorname{Sin}^{2} \frac{u}{2}$

ein, so lässt sich die Bedingung, der die Faktoren C_1 , C_2 ,... genügen sollen, auch so ausdrücken, dass

$$z + C_1 z^2 + C_2 z^3 + \cdots = u^2$$

für beliebige Werte von u und konstante Werte von $C_1 C_2 \ldots$ erfüllt sein soll. Mit anderen Worten, es soll, wenn

$$z=4\operatorname{\mathfrak{Sin}}^2rac{u}{2}$$

ist, u^2 nach Potenzen von z entwickelt werden. Zu dem Ende setzen wir

$$t = \mathfrak{Sin} \frac{u}{2}$$
, also $t^2 = \frac{z}{4}$.

Dann ist

$$u=2$$
 Ar Sin t

$$u^2=4(\mathfrak{Ar}\,\mathfrak{Sin}\,t)^2.$$

Daraus folgt:

$$\frac{(du^2)}{dt} = \frac{8 \operatorname{Ar} \operatorname{Sin} t}{\sqrt{1+t^2}}$$

$$\frac{d^2(u^2)}{dt^2} = \frac{8}{1+t^2} - 8 \operatorname{Ar} \operatorname{Sin} t \cdot \frac{t}{\sqrt{1+t^2}}$$

Mithin

$$(1+t^2)\frac{d^2(u^2)}{dt^2}+t\cdot\frac{d(u^2)}{dt}=8.$$

Nun ist:

$$u^2 = 2^2t^2 + C_12^4t^4 + C_22^6t^6 + \cdots$$

und daher

$$\frac{d^{2}(u^{3})}{dt} = 2^{2} \cdot 2t + C_{1}2^{4} \cdot 4t^{3} + C_{2}2^{6} \cdot 6t^{5} + \cdots$$

$$\frac{d^{2}(u^{2})}{dt^{2}} = 2^{2} \cdot 2 + C_{1}2^{4} \cdot 4 \cdot 3 \cdot t^{2} + C_{2}2^{6} \cdot 6 \cdot 5t^{4} + \cdots$$

und folglich:

$$(1+t^2)\frac{d^3(u^2)}{dt^2} + t\frac{d(u^3)}{dt} = 2^2 \cdot 2 + (C_1 2^4 \cdot 4 \cdot 3 + 2^3 \cdot 2 + 2^2 \cdot 2)t^2 + (C_2 \cdot 2^6 \cdot 6 \cdot 5 + C_1 2^4 \cdot 4 \cdot 3 + C_1 2^4 \cdot 4)t^4 + (C_3 \cdot 2^8 \cdot 8 \cdot 7 + C_2 2^6 \cdot 6 \cdot 5 + C_2 2^6 \cdot 6)t^6 + \cdots$$

was für die gesuchten Konstanten die Rekursionsformeln ergiebt:

 $C_n \cdot 2^{2n+2} \cdot 2n + 2 \cdot 2n + 1 + C_{n-1} \cdot 2^{2n} \cdot 2n \cdot 2n = 0,$

oder

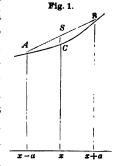
$$C_n = -\frac{n \cdot n}{2n + 2 \cdot 2n + 1} \cdot C_{n-1},$$
 $C_1 = -\frac{1 \cdot 1}{4 \cdot 3}.$

Die gesuchte Intensität $f(x)a^2$ des reinen Spektrums ist mithin aus der beobachteten Funktion F(x) nach der Formel zu berechnen

$$f(x) \cdot a^2 = F - \frac{1 \cdot 1}{4 \cdot 3} \Delta^2 F + \frac{2 \cdot 2 \cdot 1 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3} \Delta^4 F - \frac{3 \cdot 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1}{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3} \Delta^6 F + \cdots$$

Wenn von den Werten von x, für die F(x) beobachtet worden ist, je zwei aufeinanderfolgende um die Grösse a voneinander ver-

schieden sind, so ist es am bequemsten die Differenzen $\Delta^2 F$, $\Delta^4 F$,... einfach auszurechnen. Sind dagegen diese Werte von F(x) nicht gegeben, so kann man sie entweder interpolieren oder man kann eine graphische Darstellung von F(x) benützen, um $\Delta^2 F$ abzugreifen. Verbindet man nämlich die Punkte A, B (Fig. 1) der Kurve, deren Abscissen x-a und x+a sind, so schneidet diese Sehne die zu x gehörige Ordinate oder deren Verlängerung in einem Punkte S, der von dem betreffenden Punkte S der Kurve um $\frac{\Delta^2 F}{2}$ absteht,



wobei der Abstand negativ zu rechnen ist, wenn der Schnittpunkt unter dem Kurvenpunkte liegt. Um $\Delta^4 F$ zu finden, hat man $\Delta^2 F$ als Ordinate aufzutragen und ebenso zu verfahren und so weiter, so lange bei der Genauigkeit der gegebenen Beobachtungen die Korrektionsglieder noch mit einiger Sicherheit ermittelt werden können.

Was die Konvergenz der Darstellung

$$f(x)a^2 = F - \frac{1\cdot 1}{4\cdot 3}\Delta^2 F + \frac{2\cdot 2\cdot 1\cdot 1}{6\cdot 5\cdot 4\cdot 3}\Delta^4 F - \cdots$$

betrifft, so fanden wir oben, dass

$$4(\mathfrak{A}\mathfrak{r} \, \mathfrak{Sin} \, t)^2 = 2^{\,2}t^{\,2} - \frac{1 \cdot 1}{3 \cdot 4} \, 2^4t^4 + \frac{2 \cdot 2 \cdot 1 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3} \, 2^{\,6}t^6 - \cdots$$

war. Setzt man auf beiden Seiten it an Stelle von t und dividiert beide Seiten durch -1, so ergiebt sich:

$$4(arc\sin t)^2 = 2^2t^2 + \frac{1\cdot 1}{4\cdot 3}\cdot 2^4\cdot t^4 + \frac{2\cdot 2\cdot 1\cdot 1}{6\cdot 5\cdot 4\cdot 3}\cdot 2^6t^6 + \cdots$$

Diese Reihe konvergiert noch für t=1 und ergiebt für diesen Wert: $\pi^2 = 2^2 + \frac{1 \cdot 1}{4 \cdot 2} \cdot 2^4 + \frac{2 \cdot 2 \cdot 1 \cdot 1}{4 \cdot 5 \cdot 4 \cdot 2} \cdot 2^6 + \cdots$

oder

$$\frac{\pi^2}{4} = 1 + \frac{1 \cdot 1}{4 \cdot 3} \cdot 4 + \frac{2 \cdot 2 \cdot 1 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3} \cdot 4^2 + \cdots$$

Unsere Entwickelung von $f(x)a^2$ bleibt also selbst dann noch unbedingt und gleichmässig konvergent, wenn $\Delta^2 F$, $\Delta^4 F$, $\Delta^6 F$... nicht stärker als die Potenzen 4, 4^3 , 4^3 , ... oder Grössen, die diesen proportional sind, wachsen sollten.

Ist z. B. von $\Delta^6 F$ an jede Differenz $\Delta^{2n} F$ absolut genommen nicht grösser als $M \cdot r^n$.

wo $r \leq 4$ ist, so wird der Fehler, den man begeht, wenn man sich mit den beiden Korrektionsgliedern

$$-\frac{1\cdot 1}{4\cdot 3}\Delta^{2}F+\frac{2\cdot 2\cdot 1\cdot 1}{6\cdot 5\cdot 4\cdot 3}\Delta^{4}F$$

begnügt, nicht grösser sein als

$$\frac{4 \cdot 4 \cdot 2 \cdot 2 \cdot 1 \cdot 1}{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3} \cdot Mr^{8} + \frac{6 \cdot 6 \cdot 4 \cdot 4 \cdot 2 \cdot 2 \cdot 1 \cdot 1}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3} Mr^{4} + \cdots,$$

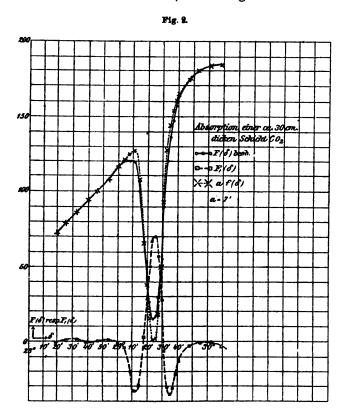
das heisst nicht grösser als

$$4\frac{M}{r}\left(arc\sin\frac{1}{2}\sqrt{r}\right)^{2}-M\left(1+\frac{1\cdot 1}{4\cdot 8}r+\frac{2\cdot 2\cdot 1\cdot 1}{6\cdot 5\cdot 4\cdot 3}r^{2}\right).$$

Für r=1 z. B. ist der Fehler nicht grösser als

In der nebenstehenden Figur 2 ist die bolometrische Messung eines Absorptionsstreifens der Kohlensäure dargestellt, die Herr F. Paschen ausgeführt hat. Nach der Dicke der Gasschicht sollte man in der Mitte des Absorptionsstreifens die Ordinate Null erwarten. In dem beobachteten Spektrum ist das nicht der Fall. Aber nachdem die ersten beiden Korrektionsglieder angebracht sind, wird der Wert der Ordinate in der That unmerklich.

Man könnte die hier behandelte Aufgabe noch in mannigfacher Weise variieren und es liessen sich manche physikalische Messungen anführen, bei denen ebenfalls die gemessenen Funktionen Integrale sind, die man differentiieren muss, um die gesuchten Funktionen zu



finden. Die Integrale können dabei anders gebildet sein, als das hier behandelte. Es kann z. B. unter dem Integralzeichen ein Dämpfungsfaktor vorkommen, so dass die weiter abliegenden Funktionswerte weniger zum Werte des Integrals beitragen. Es möge indessen genügen, darauf hinzuweisen, dass sich solche Fälle ähnlich behandeln lassen, wie der hier ausgeführte.

Über Zahlenteiler ganzer Funktionen.*

Von K. Th. Vahlen in Königsberg i. Pr.

Eine ganze Funktion $f(x_1, ..., x_n)$ mit beliebigen Koeffizienten werde statt nach den Potenzen nach den Faktoriellen

$$\begin{pmatrix} x_{\nu} \\ i_{\nu} \end{pmatrix} = \frac{x_{\nu}(x_{\nu}-1)\dots(x_{\nu}-i_{\nu}+1)}{1\cdot 2\dots i_{\nu}}$$

geordnet, also auf die Form gebracht:

$$\sum_{i_{y}=0,1,\ldots,N_{y}} A_{i_{1},i_{2},\ldots,i_{n}} {x_{i} \choose i_{1}} {x_{i} \choose i_{2}} \cdots {x_{n} \choose i_{n}}.$$

$$= 1, 2, \ldots, n$$

Aus den Gleichungen:

$$\sum_{\substack{(i_1,\ldots,i_n)}} A_{i_1,\ldots,i_n} \binom{k_1}{i_1} \ldots \binom{k_n}{i_n} = f(k_1,k_2,\ldots,k_n) \quad \binom{k_r=0,\ 1,\ldots,N_r}{r=1,\ 2,\ldots,n}$$

folgt durch Auflösung nach den Grössen $A_{i_1...i_n}$ die Äquivalenz der beiden Systeme $A_{i_1...i_n}$ und $f(k,...k_n)$ entweder aus der Bemerkung, dass die Determinante jener in den $A_{i_1...i_n}$ linearen Gleichungen in der Diagonale nur Einsen, rechts der Diagonale nur Nullen enthält; oder direkt, es ist nämlich:

$$\begin{cases} \sum_{h_{y}=0,1,\dots,k_{y}} (-1)^{h_{1}+\dots+h_{n}} \binom{k_{1}}{h_{1}} \cdots \binom{k_{n}}{h_{n}} f(h_{1},\dots,h_{n}) \\ i_{y}=1,2,\dots,n \\ = \sum_{i=1}^{n} (-1)^{h_{1}+\dots+h_{n}} A_{i_{1},\dots,i_{n}} \binom{k_{1}}{h_{1}} \binom{h_{1}}{i_{1}} \cdots \binom{k_{n}}{h_{n}} \binom{h_{n}}{i_{n}} \\ i_{y}=0,\dots,k_{y} \\ i_{y}=0,\dots,k_{y} \\ i_{y}=0,\dots,k_{y} \\ i_{y}=1,2,\dots,n \\ = (-1)^{k_{1}+\dots+k_{n}} A_{k_{1},\dots,k_{n}}, \end{cases}$$

weil
$$\sum_{h} (-1)^{h} {k \choose h} {h \choose i} = \sum_{h} (-1)^{h} {k \choose i} {k-i \choose k-h} = (-1)^{k} {k \choose i} (1-1)^{k-1}$$
 ist.

Also ist auch das durch:

$$f(x_1,\ldots x_n) = \sum_{(i_1,\ldots i_n)} A'_{i_1,\ldots i_n} {x_1 - g_1 \choose i_1} \ldots {x_n - g_n \choose i_n}$$

bei beliebigen ganzen Zahlen g definierte System A'_{i_1,\ldots,i_n} äquivalent jedem der drei Systeme:

$$f(g_1 + i_1, \ldots, g_n + i_n), \quad A_{i_1, \ldots, i_n}, \quad f(i_1, \ldots, i_n), \quad \begin{pmatrix} i_r = 0, 1, \ldots, N_r \\ v = 1, 2, \ldots, n \end{pmatrix}$$

^{*} Den wesentlichen Inhalt dieser Zeilen hatte ich am 16. Juni 1893 im Mathematischen Verein zu Berlin als Beantwortung einer gestellten Frage mitgeteilt. Die damals unterlassene Veröffentlichung hole ich jetzt nach, da der Gegenstand inzwischen durch Herrn Hensels Aufsatz: "Über den grössten gemeinsamen Teiler aller Zahlen, welche durch eine ganze Funktion von n Veränderlichen darstellbar sind" (Crelles Journal Band 116 S. 350—356) an Interesse gewonnen hat.

So ergiebt sich der Satz:

Soll eine ganze Funktion $f(x_1, \ldots, x_*)$ mit beliebigen Koeffizienten für alle ganzzahligen Wertsysteme der Variablen x_1, x_2, \ldots, x_n ganzzahlige Vielfache einer gegebenen Grösse Q ergeben, so müssen die Koeffizienten in jeder ihrer Darstellungen:

$$\sum_{\substack{(i_1,\ldots,i_n)}} A_{i_1,\ldots,i_n} {x_1-g_1 \choose i_1} \cdots {x_n-g \choose i_n}$$

ganzzahlige Vielfache von Q sein; der grösste gemeinsame Teiler der ganzen Zahlen $\frac{A_{i_1...i_n}}{Q}$ ergiebt sich auch als grösster gemeinsamer Teiler der ganzen Zahlen:

$$\frac{f(g_1+i_1,\ldots,g_n+i_n)}{Q}, \quad {i_n=0,\ldots N_r \choose \nu=1,\ldots n}.$$

Das erweiterte Theorem von Bour.

Von Dr. F. Ebner in Greiz i. V.

Nach dem schönen Theorem von Bour giebt es bekanntlich zweifach unendlich viele Schraubenflächen, die auf eine vorgelegte Rotationsfläche abwickelbar sind. Dieses Theorem ist indessen nur ein spezieller Fall eines allgemeineren, welches zuerst von Herrn M. Lévy ausgesprochen worden ist,* und welches lautet: es giebt zweifach unendlich viele Spiralflächen, welche auf eine vorgelegte Spiralfläche abwickelbar sind. Der Beweis dieses Theorems lässt sich in der folgenden vereinfachten Form führen:

Es sei eine Spiralfläche gegeben, deren Quadrat des Linienelements die charakteristische Form besitzt:***

1)
$$ds^{2} = e^{2 i \cdot v} \cdot E^{2} (du^{2} + dv^{2})$$

unter u und v die isometrischen Koordinaten der Fläche, unter k eine gegebene Konstante, unter E eine gegebene Funktion von u verstanden.

Die Gleichung irgend einer andern allgemeinen Spiralfläche lautet nun aber in räumlichen Polarkoordinaten:**

$$z = z_0 e^{\mathbf{k} \cdot \mathbf{r}}, \quad r = r_0 e^{\mathbf{k} \cdot \mathbf{r}}, \quad \varphi = \varphi_0 + c v$$

unter k, c Konstanten, unter z_0 , r_0 , φ_0 Funktionen von u verstanden. Soll also die Fläche 2) auf die Fläche 1) abwickelbar sein, so muss ihr Linienelement sich auf die Form 1) bringen lassen, was für die willkürlichen Grössen c, z_0 , r_0 , φ_0 auf die Bestimmungsgleichungen führt:

$$\begin{cases} r_0'^2 + \varphi_0'^2 r_0^2 + z'^2 &= E^2, \\ r_0 r_0' + k \varphi_0' r_0^2 + z_0 z_0' &= 0, \\ (1 + k_0^2) r_0^2 + z_0^2 &= E^2, \end{cases}$$

Vergl. Compt. rend. 1878. p. 789 fig. der Note vom 18. November.

^{**} Vergl. Darboux, Leçons sur la théorie générale des surfaces, Band I, p. 109 und 110.

wo $k_0 = \frac{c}{k}$ gesetzt ist, und die Accente der Differentiation nach u bezeichnen. Für $1 + k^2 = 0$, d. i. den Fall der imaginären Spiralflächen, wie wir zur Abkürzung sagen wollen, ergiebt die Elimination von φ_0' und z_0 aus dem System 3) sofort die in r_0^2 lineare Differentialgleichung:

4)
$$(E^{2}-E'^{2})r_{0}^{2}+2EE'r_{0}r_{0}'+E^{2}E'^{2}=0$$

aus der sich r_0 durch Ausführung einer blossen Quadratur bestimmt, worauf dann aus 3): φ_0 und z_0 folgen; da in 4) noch eine willkürliche Integrationskonstante auftritt, so giebt es einfach unendlich viele, durch blosse Quadraturen bestimmbare imaginäre Spiralflächen, die auf die vorgelegte Fläche 1) abwickelbar sind.

Ist dagegen: $1 + k^2 > 0$, so eliminiere man aus 3) φ_0' und r_0 , worauf man nach Ausführung der dazu erforderlichen Rechnung für z_0 auf die Differentialgleichung geführt wird:

6)
$$z_0 = \frac{tf}{\sqrt{1+t^2}}, \quad z_0' = \frac{f}{\sqrt{1+t^2}}$$

bewirkten transformierten Form:

7)
$$\frac{dt}{du} = (1+t^2)\left(1-\frac{f'}{f}t\right)$$

erkennt, welche zugleich die Gleichungsform der geodätischen Linien der Spiralflächen ist. Sie wird indessen auf Quadraturen zurückführbar, wenn:

$$\frac{d}{du} \left(\log f(u) = \frac{f'(u)}{f(u)} = \text{const} \right)$$

wird, was z. B. der Fall ist für $E=e^{au}$; alle Spiralflächen, welche also auf die Fläche mit dem Linienelementquadrat:

8)
$$ds^{2} = e^{2kv + 2au}(du^{2} + dv^{2})$$

abwickelbar sind, können durch blosse Quadraturen bestimmt werden, welches auch die Konstante a sei.

^{*} Für k=0 folgt aus diesem erweiterten Theorem wieder das ursprüngliche für die Schraubenflächen, die selbst nur ein besonderer Fall der Spiralflächen sind.

Mushackes deutscher Schul-Kalender

für das Schuljahr 1897/98. 47. Jahrgang.

Michaelis-Ausgabe 1897: v. l. Sept. 1897 b. 3l. Dez. 1898 reichend.

16. In biegsamen Leinwandband gebunden # 1.20.

Jährelien 2 Ausgaben; 1) Michaelis-Ausgabe; com 1, September eines Jahres bis Endo des nächstfolgenden Jahres und 2) Oster-Ausgabe: von Anfang eines Jahres bis zum 30. April des nächstfolgenden Jahres reichend.

Twhals: Elected and astronom Kalender, Genealogie, Postinris and Telegr-Ushahren, Solislands for die Zeit 1) vom 1. September his Ende des nachstfolgenden Jahres reichend, and 2) = a Astang eines Jahres bis 36 April des nachstfolgenden Jahres reichend, Lektionsplane for Diraksurse und Lehrer, Ordinariasisistem, Consurticion, Noticen für Kanfroduren, seillaheno, gelbehana, und neue Bürher, Adressen, 2 Rogen weisess, 1 Rogen gewürfeltes Faustr u. 3 V.

Die "Woohenschrift für klassische Philologie", 1890 Nr. 40 (vom 1. Oktober), sagt über obigen Kalender:

Einen ellen Frand verlauscht min nicht wie einen alten Rock. Si werden viele bei ausgehöhrer viel lieber Bren alten Muchacke beibehalten, als einen der zehlreichen Ausgabe in Gebrauch nehmen. Die verläugende Ausgabe ist state geginnet dam bereichten iennesen neue Freunde zu gawinnen – auch der Preis ist erzige der Wir berassen die neue Ausgabe mit ganz besonderer Freude und michaen er une zu Kollegen driugend empfehieur sie zeichnet sich durch Zwerkmassigkeit und Resingsmeit nicht bless vor ihren Vorgängern, sondern soch vor kimfichen Kalennien mechat verteilbatt zu.

Neuester Verlag von B. G. Teubner in Leipzig. 1897.

Föppl, Dr. A., Prof. der Mechanik an der Technischen Höchachule 2n München, die Geometrie der Wirbolfelder. In Anlehnung an das Buch des Verf. über die Maxwell'sche Theorie der Elektricität und zu dessen Ergänzung. [X u 108 S.] gr. 8. 1897. geh. n. M 3.60.

Frischauf, Dr. Johannes, Prof. an der Universität Graz, Vorlesungen über Kreis- und Kugel-Punktionen-Reihen. [VI u. 60 S.] gr. 8. 1897. geh. M 2.

Gantor, Dr. H., Prof. an der Kantonsschule in Aarau und Dr. F. Rudio, Prof. am Polytechnikum in Zerich, die Elemente der analytischen Geometrie. Zum Gebruuch an höheren Lehranstalten sowie zum Selbstatudium. Mit zahlreichen Chungsbeispuelen. I. Teil. Die analytische Geometrie der Ebene z. rerb Auflage. [VI u. 176 S.] Mit 54 Figuren im Text. gr. S. 1897. geh. # 2.40.

Gundelfinger, Dr Sigmund, Prof. an der Technischen Hochschule zu Darmstadt,
Tufeln zur Berechnung dar reellen Wurzelu sämtlicher trinomiacher Gleichungen. Hinzugefügt sind vierstellige Additions-, Subtraktionsund Briggische Legarithmen sowie eine Interpolationstafel für alle Differenzen
unter Hundert. [IV u. 15 S.] 4. 1897. Steif geh. n. df 1.40.

Januschke, Hans, k. k Direktor der Staats-Oberrealschule in Teschen, das Prinzip der Erhaltung der Energie und seine Anwendung in der Naturlehre. Ein Hilfsbuch für den höheren Unterricht. Mit 25 Figuren im Test. [X. u. 456 S.] gr. S. In Leinwand gebanden "# 12.—

Keller, Dr. phil, H., in Mänster i W., über den Urstuff und seine Energie.

I Teil. Eine physikalisch-chemische Untersuchung über die theoretische Bedeutung der Gesetze von Drassa-Parra und Korr auf der Grundlage einer Bedeutung. Theorie, der festen, Aggrapatyustanules. [58 S.] und 1890. kingtlachen Theorie des festen Aggregatzustandes. [58 S.] gr. 8. 1896.

Eirchhoff, Gustav, Vorlesungen über mathematische Physik, I. Band, Machanik, 4. Aufl, berausgegeben von Prof. Dr. W Wien. Mit 18 Piguren

in Tast [X n. 464 5.] gr. 8, 1897. geh. n. . # 13. Klain, Felix and A. Sommerfeld, über die Theorie des Kreisels. Heft is

g, Felix and an sommertein, aver die Theorie des Kreisels. Heft le die kinematischen und kinetischen Grundlagen der Theorie, (IV u. 200 S.) PE S. 15 5.60.

INHALT.

Ther Schraubengeschwindigkeiten eines festen Körpers bei verschiedener Kahl-	
von Stätzflächen. Von P. Sowere (Schlass) Grondräge einer Grapho-Ballistik auf Grond der Kroppochen Tabelle. Von	103
Prof. Dr. Case. Crass (Tufel III)	
Cher die Differentiation empirischer Funktionen. Von C Reson.	
Dier Zahlenteiler ganzer Funktionen. Von E. Tu. Vannen	
Das sywolterte Theorem von Bour. Von Dr. P Rusen	
Historisch-litterarische Abteilung (besonders pagimert).	
Quantrat- und Kubikwurzeln bei den Griechen nach Heron's neu aufgefundenen	
Meroiva. Von Maximilian Control	110
Die Schlussaufgabe in Diophants Schrift üb. Polygonalanhlen, Von G. Wautream	
Resenviouen:	
Entgegnung. Von Martin Knauss	THE
Angenborn, William, Leitfaden der Physik mit Einschluss der ein-	
fachsten Lehren der mathematischen Geographio, Von B. Neze	183
Bonssters, Richato, Die Fortschritte der Physik im Jahre 1992.	
Von B. Nama	
Bung, Wharks, Physikalische Aufgaben für die oberen Klassen	
höherer Lehranstalten. Von B. Nama.	
Heers, Heisenen, Gesammelte Werke, Von B. Nusen	100
Beauers, Sie Charles, Die Gesetze der Pherkaltung und Goffier-	
punktremiedrigung, Von B. Name	284
Oversons, A. J. vos., Abhandlungen über Thermometrie von Fahren-	
heit, Reaumur, Calmus. Von B. Nunen.	
Dammuass, Fancouca, Otto von Guericke's Nene "Magdeburigiache"	
Versuche über den leeren Raum. Von B. Neuer	10.0
Hans, Grond, Grundzüge d, mathematischen Chemie. Von B. Nams	
HERE, RICHARD, Cher d. Methode d. kleinsten Quadrate. Von B. Namer	131
Ziwat, Arganom, An elementary treatise on theoretical mechanics	
Von B. Namer	(dL)
Kanstess, Kant, Fine neue Berechnung der mittleren Tiefen der	
Oceane. Von B. Nankl.	T.Y.
Taxon, Honacu, Hydrodynamics. Von B. Naug.	100
The Fortpflanzungsgeschwindigkeit des Schalles in einem theoreti-	
schen Gase. Von B. Nunn.	101
Saussune, Rexé de, Essai de thermodynamique graphique. Von	
Michalitschen, Awron, Über eine raumliche Darstellung der Ton-	
reibe und deren Ausnützung in einem Apparatu ab Lehr-	
mittel im musiktheoretischen Unterrichte Eine rinne	
liche Darstellung der Toureibe und die Ausnützung der-	
selben in einem Apparat als Lehrmittel im Musikunterricht	
- Ein Monochord mit spiralförmigem Stoge war Dar-	
stellung der pythagoraischen, der physikalischen und der	
gleichschwebend temperierten Tonintervalle. Von II. Neus	
ZESSER, Wilmern, Streiflichter auf eine neue Weltenschanung in	
Bezug auf die Beleuchtung, Erwärmung und Bewohnbar-	
keit der Himmelskörper, Von B. Namer	1.60
Barmen, Kosaao, Das System der Chergewalt oder dus smalytisch-	
synthetische Prinzip der Natur. Von R. Nesen.	LAD
Bibliographie vom 13, Mai bis 19, August 1897	143

Alle Sendungen

für die allgemeine Abteilung dieser Zeitschrift sind an Prof. Dr. R. Mehmke, Stuttgart, Immenhoferstrasse 4th, für die Insterpallitterarische Abteilung an Hofrat Prof. Dr. M. Cantor, Heidelberg, Gaisbergstr. 15, zu richten. — Die Zeitschrift erscheint in Bänden von 16 Heften, der Preis des Bandes von 36 Druckbegen betregt 20 Mei Alle Buchhandlungen und Postanstalten nehmen Bestellungen an.

ZEITSCHRIFT

POR

MATHEMATIK UNDS PHYSIK.

BEGRÜNDET 1856 DURCH

O. SCHLÖMILCH.

DOUTHOR HERACHROBEN VOS O. SCHLÖMLICH (1856-1896), H. Wittschier (1856-1859), M. Cantor (1859-1896), E. Kahl (1860-1892).

GEGENWÄRTIG HERAUSGEGEBEN

VOS

DR. R. MEHMKE UND DR. M. CANTOR.

42. BAND. 5. HEFT.

MIT IN TEXTFIGURES.

Ausgegeben um 30, November 1897.

LEIPZIG, VERLAG VON B. G. TEUBNER. 1897.

Google

Neuester Verlag von B. G. Tenbner in Leipzig. 1897.

Föppl, Dr A., Prof. der Mechanik an der Technischen Hochschule zu München, die Geometrie der Wirhelfelder. In Anlehnung an das Buch des Verf.

X u. 108 S. gr. 8. 1897. geh. n. .# 3.60.

Fricke, R., Professor in Braunschweig, and Klein, Felix, Professor in Göttingen, Vorlesungen über die Theorie der automorphen Funktionen. I Band: Die grappentheoretischen Grundlagen. Mit 192 Figuren im Text. [XIV n. 654 S.] gr. 8. geh. # 22.— Frischauf, Dr. Johannes, Prof. an der Universität Graz, Vorlesungen über

Frischauf, Dr. Johannes, Prof. an der Universität Graz, Vorlesungen über Kreis- und Kugel-Funktionen-Reihen. [VI n. 60 S.] gr. 8. 187. geh. 2 - Gantor, Dr. H., Prof. an der Kantonsschule in Anrau und Dr. F. Rudio, Prof. am Polytechnikum in Zürich, die Elemente der analytischen Geometrie, Zum Gebrauch an höheren Lehranstalten sowie zum Selbststudium. Mit tahlnüchen Übungsbeispielen. I. Teil. Die analytische Geometrie der Ebene 3 verb, Auflage. [VI n. 176 S.] Mit 54 Figuren im Text. gr. 8. 1897. geh. 2 2 40. Gundelfinger, Dr. Sigmund, Prof. an der Technischen Hochschule zu Darmstadt, Tafeln zur Berechnung der reellen Wurzeln sämtlicher trinomischer Gleichungen. Hinzugefügt sind vierstellige Additions-, Subtruktionsund Briggische Logarithmen sowie eine Interpolationstafel für alle Differenzen unter Hundert. [IV n. 15 S.] 4. 1897. Steif geh. n. # 1.40.
Januschke, Hans, k. k. Direktor der Staats-Oberrealschule in Teschen, das

Januschke, Hans, k k Direktor der Staats-Oberrealschule in Teschen, das Prinzip der Erhaltung der Energie und seine Anwendung in der Naturlahre. Ein Hilfsbuch für den höheren Unterricht. Mit 95 Figuren

im Text. [X, u. 456 S.] gr. S. In Leinwand gebunden .# 12.— Kuller, Dr. phil. H., in Münsteri/W., über den Urstoff und seine Energie I Teil Eine physikalisch-chemische Untersuchung über die theoretische Bedeutung der Gesetze von Dulong-Petit und Korr auf der Gründlage einer kinetischen Theorie des festen Aggregatzustandes, [58 S.] gr. 8. 1896. geh, n. . 2

Kirchhoff, Gustav, Vorlesungen über mathematische Physik. J. Baml:

Mechanik. 4. Aufl. berangogeben von Prof. Dr. W. Wien. Mit 18 Figuren im Text. [X n 464 S.] gr. 8. 1897. geh n. # 13.—
Klein, Felix, Professor in Göttingen und A. Sommerfeld, Privatdozent Dr. in Göttingen, über die Theorie des Kreisels. Heft I: die kinematischen und kinetischen Grundlagen der Theorie. [IV n. 200 S.] gr. 8. # 5.50.

J. B. Metzler'scher Verlag, Stuttgart.

Die Berechnung der trigonometrischen Vermessungen.

Mit Rücksicht auf die sphäroidische Gestalt der Erde.

Von J. G. F. Bohnenberger.

Deutsche Bearbeitung der Abhandlung "De computandis etc." von E. Hammer, Prof. a. d. Techn. Hochschule Stuttgart.

- Mark 1. 80. -

Alle Sendungen

für die allgemeine Abteilung dieser Zeitschrift sind an Prof. Dr. R. Mehmke. Stuttgart, Immenhoferstrasse 4111, für die historischlitterarische Abteilung an Hofrat Prof. Dr. M. Canter, Heidelberg, Gaisbergstr. 15, zu richten. - Die Zeitschrift erscheint in Bänden von je 6 Heften, der Preis des Bandes von 36 Druckbogen beträgt 20 Mark. Alle Buchhandlungen und Postanstalten nehmen Bestellungen an-

Über einen Satz der Funktionentheorie und seine Anwendung auf isothermische Kurvensysteme und auf einige Theorien der mathematischen Physik.

Von

Prof. Dr. HOLZMÜLLER, Direktor der Hagener Gewerbeschule.

§ 1. Die Linien gleicher Stromstärke und Stromrichtung bei stationärer Elektrizitätsströmung.

Ist Z = f(z) oder U + Vi = f(x + yi) eine Funktion komplexen Arguments, und ist Z' = f'(z) oder

$$R(\cos \Phi + i \sin \Phi) = f'[r(\cos \varphi + i \sin \varphi)]$$

ihr Differentialquotient, so ist bekanntlich der absolute Betrag des letzteren

 $R = \sqrt{\left(\frac{\hat{o} U}{\partial x}\right)^2 + \left(\frac{\hat{c} U}{\hat{c} y}\right)^2} = \sqrt{\left(\frac{\hat{c} V}{\partial x}\right)^2 + \left(\frac{\hat{c} V}{\hat{c} y}\right)^2},$

seine Abweichung aber, abgesehen von der Periode π,

$$\mathbf{\Phi} = \arctan \frac{\frac{\hat{\sigma}V}{\partial x}}{\frac{\hat{\sigma}U}{\hat{\sigma}x}} = \frac{\pi}{2} - \arctan \frac{\frac{\partial U}{\partial x}}{\frac{\partial V}{\partial x}}.$$

Dabei ist auch Z' eine Funktion komplexen Arguments und genügt ebenso, wie ihr reeller und auch ihr imaginärer Teil, der partiellen Differentialgleichung $\Delta^2 u = 0$. Da nun aber auch $\lg Z'$ eine Funktion komplexen Arguments ist, die sich schreiben lässt:

$$\lg Z' = \lg[R(\cos \Phi + i \sin \Phi)] = \lg R + \lg(\cos \Phi + i \sin \Phi)$$
$$= \lg R + \lg e^{\Phi i} = \lg R + i\Phi,$$

so müssen auch $\lg R$ und der Differentialgleichung $\Delta^2 u = 0$ genügen.

Der Logarithmus des absoluten Betrags R vom Differentialquotienten einer Funktion komplexen Arguments genügt der Differentialgleichung $\Delta^2 u = 0$. Dasselbe gilt von der Abweichung Φ des Differentialquotienten.

Zeitschrift f. Mathematik u. Physik 42. Jahrg. 1897. 5. Heft.

Digiti16d by Google

Aus diesem einfachen Satze entspringt eine Reihe von Folgerungen für die Geometrie und die mathematische Physik. Um diese zu erläutern, sei an einige Elementarsätze der Funktionentheorie erinnert.

Bekanntlich gilt bei der Abbildung Z = f(z) für je zwei einander entsprechende Bogenelemente der Z- und z-Ebene die Gleichung dS = Rds, wo R die obige Bedeutung hat. Diese Beziehung gilt an der betreffenden Stelle für alle Richtungen der Bogenelemente. Dagegen giebt die Abweichung Φ an, dass dS gegen ds um $+\Phi$, ds gegen dS um $-\Phi$ gedreht erscheint. R giebt also ein Vergrösserungsverhältnis, Φ eine Drehung an.

Nun entsprechen bei jeder Abbildung Z = f(z) oder

$$X + Yi = f(x + yi)$$

den Parallelen X=a und Y=b der Z-Ebene zwei orthogonale Isothermenscharen der z-Ebene, die sich, wenn der konjugierte Ausdruck X-Yi mit $f_1(x-yi)$ bezeichnet wird, schreiben lassen als

$$\frac{f(x+yi)+f_1(x-yi)}{2}=a, \quad \frac{f(x+yi)-f_1(x-yi)}{2}=b.$$

In der Z-Ebene erhält man mit Hilfe einer arithmetischen Reihe, z. B.: $\ldots, -3c, -2c, -c, 0, c, 2c, 3c, \ldots,$

deren Glieder der Reihe nach für a und b eingesetzt werden, eine quadratische Einteilung. Dieser Einteilung entspricht in der z-Ebene eine solche in unendlich kleine (krummlinige) Quadrate durch die beiden Isothermenscharen. Hat nun jedes kleine Quadrat der Z-Ebene die Seite dS, so hat jedes entsprechende "Quadrat" der z-Ebene die Seite $ds = \frac{1}{R}ds$, der horizontalen Richtung von dS entspricht aber eine Neigung $-\Phi$, der senkrechten von dS_1 eine Neigung $-\Phi$.

Also:

Die Grösse der kleinen Quadratseiten in der z-Ebene ist umgekehrt proportional dem absoluten Betrage R des Differentialquotienten Z', ihre Neigungen aber sind gleich — Φ bezw. $\frac{\pi}{2} - \Phi$, wo Φ die Abweichung des Differentialquotienten ist.

Um diejenigen Quadrate der z-Ebene zu finden, die von gleicher Grösse sind, braucht man nur R gleich einer Konstanten k oder e^c zu setzen. Längs jeder Kurve

1) oder
$$1*) \qquad lg \sqrt{\left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2} = k = e^c,$$

$$lg \sqrt{\left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2} = lg k = c,$$

wobei auch V statt U geschrieben werden kann, sind die kleinen Quadrate der z-Ebene gleich gross.

Will man hingegen die Stellen kennen lernen, wo die Bogenelemente der beiden Isothermenscharen der z-Ebene parallel sind, so hat man nur nötig, Φ gleich einer Konstanten γ zu setzen. Längs jeder Kurve von der Gleichung

2)
$$\arctan \frac{\frac{\partial V}{\partial x}}{\frac{\partial U}{\partial x}} = \gamma$$

sind also die Bogenelemente jeder der beiden Isothermenscharen der z-Ebene gleichgerichtet, ihre Tangenten demnach parallel.

Bei der Schreibweise 1*) und 2) genügen die linken Seiten beider Kurvengleichungen der Differentialgleichung $\Delta^2 u = 0$, und da $\lg R + \Phi i$ eine Funktion komplexen Arguments ist, handelt es sich wieder um zwei orthogonale Isothermenscharen.

Das Gesamtresultat ist folgendes:

Jede Isothermenschar U=a und ihre Orthogonalschar V=b haben bei quadratischer Einteilung die gleichgrossen Quadrate auf Kurven von der Gleichung:

$$\lg \sqrt{\left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2} = c \quad \text{oder} \quad \lg \sqrt{\left(\frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2} = c,$$

dagegen die gleichgeneigten Quadrate auf Kurven von der Gleichung: ∂V

$$\arctan \frac{\frac{\partial V}{\partial x}}{\frac{\partial U}{\partial x}} = \gamma \quad \text{oder} \quad \arctan \frac{\frac{\partial U}{\partial x}}{\frac{\partial V}{\partial x}} = \frac{\pi}{2} - \gamma.$$

Lässt man c und γ die Werte der Glieder derselben arithmetischen Reihe annehmen, so erhält man auch durch diese Kurven eine quadratische Einteilung.

Geometrisch folgt daraus:

Legt man in eine Isothermenschar eine Schar berührender Parallelen, so bilden die Berührungspunkte eine Kurve der Schar 2). Wählt man als Neigungen verschiedener Parallelenscharen die Werte der Glieder einer arithmetischen Reihe, so erhält man eine sogenannte isothermische Einteilung.

Man kann z.B. die Reihe

$$0, \pm \frac{2\pi}{n}, \pm \frac{4\pi}{n}, \pm \frac{6\pi}{n}, \cdots$$

wählen.

Ob man von der gewählten Isothermenschar oder ihrer Orthogonalschar ausgeht, ist dabei gleichgiltig.

Die Schar 1) ist weniger bequem zu konstruieren.

Kennt man den Umfang u_1 einer Kurve R = k der Schar 1), so ist für die entsprechende Kurve der Z-Ebene der Umfang gleich $u_1 R = u_1 k$.

Beispiel. Das Kreisbüschel durch die Punkte ± 1 und die orthogonale Kreisschar seien gegeben. Es wird behauptet, dass die "Kurven gleicher Abweichung" ein Büschel gleichseitiger Hyperbeln durch die Punkte ± 1 sind, die "Kurven gleichen Vergrösserungsverhältnisses" dagegen die zugehörige Lemniskatenschar bilden.

Beweis. In isothermischer Schreibweise lautet die Gleichung der Kreisschar:

$$\lg \frac{p}{q} = c_1,$$

oder

$$U = \lg \sqrt{\frac{(x+1)^2 + y^2}{(x-1)^2 + y^2}} = \frac{1}{2} \{ \lg[(x+1)^2 + y^2] - \lg[(x-1)^2 + y^2] \} = c_1.$$

Die linke Seite giebt:

$$\left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2 = R^2 = \frac{4}{p^2q^2}, \text{ oder } R = \frac{2}{pq}.$$

Die Kurven $\frac{2}{pq} = c$, oder $pq = \frac{2}{c}$ sind aber konfokale Lemniskaten.

Das Kreisbüschel hat die Gleichung $\vartheta_2 - \vartheta_1 = \gamma_1$ (γ_1 ist der konstante Peripheriewinkel), oder

$$V = \arctan \frac{y}{x-1} - \arctan \frac{y}{x+1} = \gamma.$$

Die linken Seiten geben:

$$\Phi = \arctan \frac{\frac{\partial V}{\partial x}}{\frac{\partial U}{\partial x}} = \arctan \frac{2xy}{x^2 - y^2 - 1} = \arctan \frac{y}{x + 1} + \arctan \frac{y}{x - 1} = \vartheta_1 + \vartheta_2.$$

Die Kurven $\vartheta_1 + \vartheta_2 = \gamma$ sind aber ein Büschel gleichseitiger Hyperbeln durch ± 1 . Bildet man R mit Hilfe von

$$\left(\frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2$$

so erhält man dasselbe wie vorher. Vertauscht man in der Berechnung von Φ die Grössen V und U, so erhält man:

$$\vartheta_1 + \vartheta_2 = \frac{\pi}{9} - \gamma.$$

Dabei war vorausgesetzt, dass eine Funktion U+Vi=f(x+yi) existiert, die das Kreisbüschel und die Kreisschar in die Parallelenscharen der Z-Ebene verwandelt. Diese Funktion ist bekanntlich

$$Z = \lg \frac{z+1}{z-1}$$

Man findet sie aus:

$$\begin{split} U + Vi &= \lg \frac{p}{q} + i(\vartheta_1 - \vartheta_2) = \lg \left[\frac{p}{q} \left[\cos(\vartheta_1 - \vartheta_2) + i \sin(\vartheta_1 - \vartheta_2) \right] \right] \\ &= \lg \frac{p(\cos\vartheta_1 + i \sin\vartheta_1)}{q(\cos\vartheta_2 + i \sin\vartheta_2)} = \lg \frac{x + yi + 1}{x + yi - 1}, \end{split}$$

oder

$$U + Vi = \lg \frac{z+1}{z-1}$$

Dabei ist $Z' = \frac{2}{(z+1)(z-1)}$. Multiplikation mit der Konjugierten giebt $R^2 = \frac{4}{pq}$ oder $R = \frac{2}{pq}$, wie oben. Dazu gehört als zugeordnete Funktion $\vartheta_1 + \vartheta_2 = \gamma$.

Bekanntlich kann man den Umfang der Lemniskaten zweiter Ordnung bestimmen. Will man die Kurven erhalten, die ihnen bei obiger Abbildung in der Z-Ebene entsprechen, so schreibe man ihre Gleichung in der Form:

$$\begin{aligned} p \cdot q &= \sqrt{[(x+1)^2 + y^2] \cdot [(x-1)^2 + y^2]} \\ &= \sqrt{(x+1+yi)(x+1-yi)(x-1+yi)(x-1-yi)} = \frac{2}{c} \cdot \\ \text{Aus } Z &= \lg \frac{z+1}{z-1} \quad \text{folgt } z = \frac{e^z+1}{e^z-1} \quad \text{oder } x+yi = \frac{e^x+Yi+1}{e^x+Yi-1}, \text{ zugleich folgt } x-yi = \frac{e^x-Yi+1}{e^x-Yi-1} \cdot \end{aligned}$$

Setzt man dies ein, so ergiebt sich als entsprechende Kurvenschar:

$$\frac{4e^{X}}{e^{2X}-2e^{X}\cos Y+1}=\frac{2}{c}.$$

Die rechte Seite ist für c=2 oder R=2 gleich 1 und dies entspricht der gewöhnlichen Lemniskate. Für diesen Fall ist der Umfang der letzten Kurve das Doppelte von dem der Lemniskate. Man erhält also bei solchen Abbildungen Kurvenscharen, deren Rektifikation sich leicht erledigen lässt, sobald nur die eine Schar rektifizierbar ist.

Die behandelten Kurven haben auch eine kartographische Bedeutung, denn die im Beispiele besprochene Abbildungsfunktion giebt die direkte Übertragung der Karte der östlichen Halbkugel auf die Merkartorkarte. Es handelt sich also bei 3) um die Kurven gleichen Kartenfaktors, d. h. konstanten Vergrösserungsverhältnisses für die beiden Darstellungen des Globus. Die Kurven gleicher Abweichung zu bestimmen, ist ein einfaches Übungsbeispiel.

Allgemein bekannt ist ferner die Deutung isothermischer Kurvensysteme für die stationäre elektrische und Wärme-Strömung. In der Z-Ebene handle es sich um die Parallelströmung in der Richtung der positiven reellen Axe, dann sind die Linien U=a die Linien gleichen Potentials für die z-Ebene, die Linien V=b die Stromlinien. Bei der quadratischen Einteilung handelt es sich um konstante Potentialdifferenzen, also ist das Gefälleverhältnis des Potentials umgekehrt proportional den Dimensionen der Quadrate, und dasselbe gilt von der Stromgeschwindigkeit, ebenso auch von der Stromdichte oder Stromstärke, denn die gleiche Anzahl von Stromfäden wird bald auf einen breiteren, bald auf einen engeren Kanal verteilt, und zwar bei gleicher Dicke δ der unendlich dünnen Platte. Folglich:

222

Bei der stationären elektrischen Strömung sind nicht nur die Strom- und Niveaulinien, sondern auch die Linien gleicher Stromstärke und gleicher Stromrichtung Orthogonalscharen von Isothermen.

Entsprechendes gilt von der Wärmeströmung. Auf Deutungen für andere physikalische Theorien soll unten eingegangen werden.

Am einfachsten gestaltet sich alles bei punktförmigen Elektroden von beliebiger Anzahl bei unbegrenzter Platte. Bei einiger Kenntnis der isothermischen Kurvenscharen und der entsprechenden Abbildungsfunktionen lassen sich die Resultate sofort hinschreiben. Aber auch lineare Aus- und Einströmungen lassen sich in grosser Zahl behandeln. Zahlreiche Beispiele nebst Zeichnungen findet man in meiner Einführung in die Theorie der isogonalen Verwandtschaften (Leipzig bei B. G. Teubner). Dort sind jedoch nur die Strom- und Niveaulinien behandelt, nicht die der gleichen Stromstärke und Stromrichtung. Daher sollen einige Beispiele für die letzteren unter Auslassung der eigentlichen Rechnungen angegeben werden.

§ 2. Einige Beispiele von Linien gleicher Stromrichtung und Stromstärke.

1. Bei allen Abbildungen von der Form $Z = \lg z^n$ ist $Z' = \frac{n}{z}$. also der absolute Betrag des Differentialquotienten $\frac{n}{r}$. Bei reellem n sind die Linien gleicher Stromstärke von der Form $\frac{n}{r} = c$ oder $r = \frac{n}{c}$ d. h. konzentrische Kreise um den Nullpunkt. Die Linien gleicher Stromrichtung ergeben sich aus dem Richtungskoeffizienten

$$\frac{1}{\cos\vartheta + i\sin\vartheta} = \cos(-\vartheta) + i\sin(-\vartheta),$$

sodass es sich um Gerade durch den Nullpunkt $\vartheta = \gamma_1$ handelt. Dies ist von Wichtigkeit für die Geometrie der hierher gehörigen Stromund Niveaulinien, deren Gleichungen durch

$$r^n \cos n \vartheta = c$$
 und $r^n \sin n \vartheta = c$

gegeben sind. Diese Kurven sind als Scharen von regulären Hyperbeln n^{ter} Ordnung zu betrachten. Sie spielen eine Rolle in einer grossen Gruppe Saint Venantscher Torsionsprobleme.

2. Die Abbildung $Z = \lg [(z - z_1)(z - z_2)]$ verwandelt die konfokalen Lemniskaten und das Büschel gleichseitiger Hyperbeln in die Parallelenscharen der Z-Ebene. Dabei ist

$$Z' = 2 \frac{z - \frac{z_1 + z_2}{2}}{(z - z_1)(z - z_2)},$$

mit Hilfe des konjugierten Ausdrucks und Ausziehung der Quadratwurzel erhält man als absoluten Betrag $R = \frac{2\varrho}{r_1 r_2}$, wo die Radii vec-

tores r_1 und r_2 von den Punkten z_1 und z_2 ausgehen, ϱ vom Schwerpunkte $\frac{z_1+z_2}{2}$. Aus $\lg \frac{R}{2} = \lg \varrho - (\lg r_1 + \lg r_2)$ geht hervor, dass die ergänzende Funktion $\varphi - (\vartheta_1 + \vartheta_2)$ ist, wobei es sich um die Neigungswinkel der Radii vectores handelt. Die Linien gleicher Stromstärke $\frac{\varrho}{r_1 r_2} = c$ und $\varphi - (\vartheta_1 + \vartheta_2) = \gamma$ sind mehrfach in meiner Einführung abgebildet.

3. Durch $Z = \lg [(z - z_1)(z - z_2)(z - z_3)]$ verwandelt man Lemnis-katen und Hyperbeln dritter Ordnung in die Parallelscharen. Legt man den Koordinatenanfang in den Schwerpunkt der Wurzelpunkte, so geht das ausgerechnete Produkt über in

$$z^3 + z(z_1z_2 + z_2z_3 + z_3z_1) - z_1z_2z_3$$

denn das Glied $z^2(z_1+z_2+z_3)$ fällt weg, da für den Schwerpunkt $\frac{z_1+z_2+z_3}{3}=0$ ist. Jetzt wird

$$Z'=3\,\frac{z^2+\frac{z_1\,z_2+z_2\,z_3+z_3\,z_1}{3}}{(z-z_1)(z-z_2)(z-z_3)}=3\,\frac{(z-\zeta_1)(z-\zeta_2)}{(z-z_1)(z-z_2)(z-z_3)}\,,$$

wo ξ_1 und ξ_2 die Wurzelpunkte des Zählers sind. Mit Hilfe der Konjugierten etc. erhält man als absoluten Betrag:

$$R=3\,\frac{\varrho_1\,\varrho_2}{r_1\,r_2\,r_3}$$

Aus $\lg \frac{R}{3} = \lg \varrho_1 + \lg \varrho_2 - (\lg r_1 + \lg r_2 + \lg r_3)$ erkennt man, dass die Abweichung ist: $\Phi = (\varphi_1 + \varphi_2) - (\vartheta_1 + \vartheta_2 + \vartheta_3)$.

Zu den Niveaulinien $p_1 p_2 p_3 = c$ und den Stromlinien $\vartheta_1 + \vartheta_2 + \vartheta_3 = \gamma$ gehören also als Linien gleicher Stärke und Richtung der Strömungen die Kurven

 $\frac{\varrho_1\,\varrho_2}{r_1\,r_2\,r_3}=c\quad\text{und}\quad (\varphi_1+\varphi_2)-(\vartheta_1+\vartheta_2+\vartheta_3)=\gamma,$

die selbst Lemniskaten und Hyperbeln gebrochener Ordnung sind. Ist das Dreieck ein regelmässiges, so wird

$$R=3\,\frac{\varrho^3}{r_1\,r_2\,r_3},\quad \Phi=2\,\varphi-(\vartheta_1+\vartheta_2+\vartheta_3).$$

4. Durch $Z = \lg[(z - z_1)(z - z_2) \dots (z - z_n)]$ verwandelt man Lemniskaten und Hyperbeln n^{ter} Ordnung in Parallelenscharen. Ihre Gleichungen sind $p_1 p_2 \cdots p_n = c$ und $\vartheta_1 + \vartheta_3 + \cdots + \vartheta_n = \gamma$.

Die Asymptoten der letzteren gehen durch den Schwerpunkt der Wurzelpunkte. Wählt man diesen als Koordinatenanfang, so fällt das zweite Glied des ausgerechneten Bruches weg (Reduktion der Gleichungen durch Substitution). Nötig ist aber diese Verlegung nicht. Hier ist

$$Z' = \frac{1}{z - z_1} + \frac{1}{z - z_2} + \cdots + \frac{1}{z - z_n}$$

Die Vereinigung der Brüche giebt eine Funktion, die im Nenner n^{ten} Grades, im Zähler $(n-1)^{\text{ten}}$ Grades ist. Letzterer ist also ein Produkt von (n-1) Faktoren, sodass man schliesslich hat:

224 Über einen Satz der Funktionentheorie und seine Anwendung etc.

$$Z' = \frac{(z-\zeta_1)(z-\zeta_2)\dots(z-\zeta_{n-1})}{(z-z_1)(z-z_2)\dots(z-z_n)};$$

daraus folgt als absoluter Betrag bezw. Abweichung, abgesehen vom Faktor n,

$$R = \frac{\varrho_1 \varrho_2 \dots \varrho_{n-1}}{r_1 r_2 \dots r_n},$$

$$\Phi = (\varphi_1 + \varphi_2 + \dots + \varphi_{n-1}) - (\vartheta_1 + \vartheta_2 + \dots + \vartheta_n).$$

Liegen die gegebenen Punkte regelmässig verteilt auf einem Kreise, so wird: $R = n \frac{e^{n-1}}{r \cdot r \cdot \dots r_n}, \quad \Phi = (n-1)\varphi - (\vartheta_1 + \vartheta_2 + \dots + \vartheta_n).$

Den Fall der Regelmässigkeit habe ich im 83. Bande des Crellschen Journals behandelt, den der allgemeinen Lage und die noch folgenden im Programm 1880 der Hagener Gewerbeschule. Weitere Litteratur ist in der "Einführung" angegeben. Der erstgenannte Fall ist wichtig für die Geometrie der Kegelflächen.

5. Die Abbildung $Z = \lg \frac{(z - \xi_1)(z - \xi_2) \dots (z - \xi_n)}{(z - \eta_1)(z - \eta_2) \dots (z - \eta_n)}$ verwandelt die

Lemniskaten und Hyperbeln von der Ordnung $\frac{n}{n}$, nämlich die Kurven:

$$\frac{p_1 p_2 \dots p_n}{q_1 q_2 \dots q_n} = c, \quad (\vartheta_1 + \vartheta_2 + \dots + \vartheta_n) - (\varphi_1 + \varphi_2 + \dots + \varphi_n) = \gamma$$

in Parallelenscharen. Dabei ist der Differentialquotient:

$$Z' = \sum_{1}^{n} \frac{1}{z - \zeta_m} - \sum_{1}^{n} \frac{1}{z - \eta_m}$$

Man kann alles in einem einzigen Bruch vereinigen, dessen Nenner vom $2n^{\text{ten}}$ Grade, dessen Zähler vom $(2n-1)^{\text{ten}}$ Grade ist. Zerlegt man auch den letzteren in Faktoren, so erhält man:

$$Z' = \frac{\prod_{1}^{2n-1}(z-x_m)}{\prod_{1}^{n}(z-\zeta_m)\prod_{1}^{n}(z-\eta_m)}$$

Der absolute Betrag wird von der Form:

$$R = \frac{\varrho_1 \varrho_2 \dots \varrho_{2n-1}}{p_1 p_2 \dots p_n \cdot q_1 q_2 \dots q_n}$$

Die Abweichung wird von der Form:

$$\Phi = (\psi_1 + \psi_2 + \dots + \psi_{2n-1}) - [(\vartheta_1 + \vartheta_2 + \dots + \vartheta_n) + (\varphi_1 + \varphi_2 + \dots + \varphi_n)].$$

R=c und $\Phi=\gamma$ geben die Linien gleicher Stromstärke und Stromrichtung.

Ist die Zahl der Faktoren im Zähler und Nenner ungleich, z. B. oben n, unten m und n > m, so folgt für den Fall gleicher Mächtigkeit

der Ein- und Ausströmungen in allen Elektroden, dass der überschiessende Teil einströmender Elektrizität nach dem Unendlichen abfliessen muss. Bei n < m muss das Fehlende aus der Unendlichkeit heranströmen. In der Gestalt der Gleichungen wird wesentliches nicht geändert.

6. Sind die Mächtigkeiten der Einströmungen durch die Zahlen $\nu_1, \nu_2, \ldots \nu_n$, die der Ausströmungen durch $\mu_1, \mu_2 \ldots \mu_m$ charakterisiert, so muss, wenn keine Elektrizität nach dem Unendlichen abströmen oder von dort heranströmen soll,

$$\nu_1 + \nu_2 + \cdots + \nu_n = \mu_1 + \mu_2 + \cdots + \mu_m$$

sein. Diese Bedingung braucht aber nicht erfüllt zu werden, dann hat man den allgemeinsten Fall punktförmiger Elektroden. Dabei hat man sich bei jeder Elektrode $\nu_1, \nu_2, \ldots, \nu_n, \mu_1, \mu_2, \ldots, \mu_m$ Einzelelektroden gleicher Mächtigkeit zu denken und erhält dann folgendes:

Die abbildende Funktion wird

$$Z = \lg \frac{(z - \zeta_1)^{\nu_1} (z - \zeta_2)^{\nu_2} \dots (z - \zeta_n)^{\nu_n}}{(z - \eta_1)^{\mu_1} (z - \eta_2)^{\mu_2} \dots (z - \eta_m)^{\nu_m}} = \sum_{1}^{n} \nu \lg (z - \zeta) - \sum_{1}^{m} \mu \lg (z - n).$$

Die Niveaulinien werden von der Form:

$$\frac{p_1^{\nu_1} p_2^{\nu_2} \dots p_n^{\nu_n}}{q_1^{\mu_1} q_2^{\mu_2} \dots q_m^{\mu_m}} = c;$$

die Stromlinien von der Form:

$$(\nu_1 \vartheta_1 + \nu_2 \vartheta_2 + \dots + \nu_n \vartheta_n - (\mu_1 \varphi_1 + \mu_2 \varphi_2 + \dots + \mu_m \varphi_m) = \gamma.$$
Dabei wird
$$Z' = \sum_{z=z}^{n} \frac{\nu}{z-\zeta} - \sum_{z=\eta}^{m} \frac{\mu}{z-\eta},$$

d. h., wenn man alle Brüche in einen einzigen zusammenfasst, eine Funktion, die im Nenner vom $(n+m)^{\text{ten}}$ Grade, im Zähler vom $(n+m-1)^{\text{ten}}$ Grade, also nach entsprechender Produkterlegung von der Form:

$$Z' = \frac{\prod_{1}^{n+m-1}(z-\kappa)}{\prod_{1}^{n}(z-\xi)\prod_{1}^{m}(z-\eta)}$$

wird. Daraus folgt, dass der absolute Betrag von der Form:

$$R = \frac{\prod_{1}^{n+m-1} \varrho}{\prod_{1}^{n} p \prod_{1}^{m} q},$$

die Abweichung von der Form:

$$\Phi = \sum_{i=1}^{n+m-1} \psi - \left[\sum_{i=1}^{n} \vartheta + \sum_{i=1}^{m} \varphi \right]$$

wird. Durch R = c und $\Phi = \gamma$ sind wiederum die Linien gleicher Stromstärke und Stromrichtung gegeben.

7. Absichtlich wurden die positiven und negativen Elektroden bisher getrennt behandelt, um die Anschauung zu erleichtern. Man erzielt aber eine elegantere Schreibweise, wenn man diesen Unterschied fallen lässt, und n Elektroden annimmt, die von den teils positiv, teils negativ anzunehmenden Mächtigkeiten $\nu_1, \nu_2, \ldots, \nu_n$ sind. Man erhält jetzt als abbildende Funktion einfacher:

$$Z = \lg[(z-\zeta_1)^{\nu_1}(z-\zeta_2)^{\nu_2}\dots(z-\zeta_n)^{\nu_n}] = \sum_{i=1}^n \nu \lg(z-\zeta),$$

als Niveau- und Stromlinien:

$$p_1^{\nu_1}p_2^{\nu_2}\dots p_n^{\nu_n}=c$$
 oder $\prod_{i=1}^n p^{\nu}=c$,

bezw.

$$\nu_1 \vartheta_1 + \nu_2 \vartheta_2 + \dots + \nu_n \vartheta_n = \gamma \quad \text{oder } \sum_1^n \nu \vartheta = \gamma.$$

Dabei wird der Differentialquotient von der Form:

$$Z' = \sum_{1}^{n} \frac{v}{z - \xi} = \frac{\varphi(z)}{(z - \xi_1)(z - \xi_2) \dots (z - \xi_n)} = \frac{(z - x_1)(z - x_2) \dots (z - x_{n-1})}{(z - \xi_1)(z - \xi_2) \dots (z - \xi_n)},$$

sein absoluter Betrag von der Form:

$$R = \frac{\varrho_1 \varrho_2 \dots \varrho_{n-1}}{r_1 r_2 \dots r_n^2} = \frac{\prod_{1}^{n-1} \varrho}{\prod_{1}^{n} r},$$
or Form:

die Abweichung von der Form:

$$\Phi = (\psi_1 + \psi_2 + \cdots + \psi_{n-1}) - (\vartheta_1 + \vartheta_2 + \cdots + \vartheta_n) = \sum_{1}^{n-1} \psi - \sum_{1}^{n} \vartheta.$$

Damit sind die Linien gleicher Stromstärke und Stromrichtung als Kurven $R=c, \quad \Phi=\gamma$ charakterisiert.

Das bisherige Gesamtresultat ist demnach folgendes:

Für alle Fälle punktförmiger positiver und negativer Elektroden bei unbegrenzter Platte sind nicht nur die Niveauund Stromlinien, sondern auch die Linien gleicher Stromstärke und gleicher Stromrichtung Isothermenscharen von der Gestalt der allgemeinsten Lemniskaten und Hyperbeln ganzer oder gebrochener Ordnung.

Von den Niveau- und Stromlinien war dies bekannt. Für die Linien gleicher Stromrichtung und Stromstärke habe ich in der mir zugänglichen reichen Litteratur das angegebene Resultat bisher nicht vorgefunden. Sollte es trotzdem schon ausgesprochen sein, so würde ich entsprechende Mitteilungen aus dem Leserkreise dankbar entgegennehmen und entsprechende Prioritätsansprüche selbstverständlich anerkennen.

Die Bedeutung der Lemniskaten und Hyperbeln höherer Ordnung ist aber eine noch weiter gehende. Bei jedem Stromnetze können nämlich die Strom- und Niveaulinien ihre Rolle vertauschen, ohne dass dabei die Linien gleicher Stromstärke und Stromrichtung ihre Rolle ändern.

Es handelt sich dann nämlich statt der Abbildung Z = U + Vi um die Abbildung $Z_1 = Zi = Ui + iVi = -V + Ui$, was die vorigen Isothermenscharen in die um 90° gedrehten Parallelenscharen verwandelt. Die Linien gleicher Stromstärke werden jetzt durch

$$\sqrt{\left(\frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2} = \sqrt{\left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2} = c$$

charakterisiert, was mit dem Früheren übereinstimmt.

Bei dieser Vertauschung treten aber an Stelle der punktförmigen Elektroden lineare, sodass zu jedem Punktproblem ein Linearproblem gehört.

Nun ändert sich aber nichts, wenn man längs der Stromlinien des Punktproblems Teile der unbegrenzten Ebene ausschneidet, z. B. eine Sichel zwischen zwei Büschelkreisen des Zweipunkt-Problems. Trifft man also das Arrangement so, dass längs der Stromlinien ein begrenztes, einfach zusammenhängendes Stück der Ebene ausgeschnitten wird, und führt man dann das Vertauschungsproblem ein, so erhält man ein sogenanntes Randproblem und kann ohne weiteres aus den Gleichungen des Punktproblems die des Randproblems ablesen, womit man zur Lösung einer der Fundamentalaufgaben der neueren Funktionentheorie gelangt.

An einem einfachen Beispiele soll dies erläutert werden.

Vorläufig aber sei bemerkt, dass die obigen Betrachtungen nicht nur für Punktprobleme gelten, sondern auch für Linearprobleme. So wird z. B. durch die Abbildung

$$Z = arc cos z$$

das Netz der konfokalen Ellipsen und Hyperbeln in das der Parallelen verwandelt. Dabei kann man die Brennlinie als Elektrode annehmen und die Elektrizität im Unendlichen ableiten, sodass die konfokalen Hyperbeln Stromlinien sind; oder man kann die beiderseitigen Fortsetzungen der Brennlinien als positive und negative Elektrode betrachten, wobei die konfokalen Ellipsen Stromlinien werden. Dabei ist

 $Z' = -\frac{1}{V^{1-z^2}} = -\frac{1}{V^{(1+z)(1-z)}}$

Multiplikation mit dem konjugierten Ausdrucke giebt

$$R^2 = \frac{1}{\sqrt{r_1^2 r_2^2}} = \frac{1}{r_1 r_2}$$

 $R^2 = \frac{1}{\sqrt{r_1^2 r_2^2}} = \frac{1}{r_1 r_2},$ sodass der absolute Betrag $R = \frac{1}{\sqrt{r_1} r_2}$, die Abweichung:

$$\Phi = -\frac{1}{2}(\vartheta_1 + \vartheta_2)$$

ist. Demnach sind die Linien gleicher Stromstärke und Stromrichtung konfokale Lemniskaten mit den Brennpunkten ± 1 und das zugehörige Hyperbelbüschel, was schon bei dem Kreisbüschel und der Kreisschar der Fall war.

Man kann aus dieser Übereinstimmung geometrische Schlüsse ziehen. Zu den Brennpunkten ± 1 gehört erstens die Doppelschar konfokaler Ellipsen und Hyperbeln, sodann ein Kreisbüschel nebst Kreisschar. Denkt man sich beide Netze mit den Brennpunkten aufeinandergelegt, so herrscht längs jeder durch ±1 gehenden gleichseitigen Hyperbel ein konstanter Richtungsunterschied zwischen den Stromlinien beider Netze, längs jeder konfokalen Lemniskate aber ein konstantes Verhältnis in den Dimensionen der kleinen Quadrate beider Netze. Auf diesen Punkt soll später noch einmal eingegangen werden.

In der "Einführung" sind noch andere lineare Einströmungsfälle behandelt worden, die mit dem doppeltperiodischen Funktionen zusammenhängen. Auch für diese kann man die Linien gleicher Stromstärke und Stromrichtung sofort hinschreiben. Die dort behandelten Kurvenscharen lassen sich durch stereographische Projektion aus den sphärischen Kegelschnitten ableiten, was ihnen ein besonderes Interesse verleiht. Es lassen sich also entsprechende Betrachtungen auch für die Kugeloberfläche und mittels der Jacobischen Abbildung für die Ellipsoidfläche durchführen. Nur sei darauf aufmerksam gemacht, dass bei einer Abbildung zwar die Strom- und Niveaulinien wieder in solche übergehen, im allgemeinen aber nicht die Linien gleicher Stromstärke und -Richtung. Geht nämlich Z in Z_1 über, so geht nicht Z' in Z'_1 über, denn es ist für $Z_1 = Z[f(z)]$ der Differentialient: $Z'_1 = Z' \frac{df(z)}{dz} = Z'f'(z)$. Zwischen Z'_1 und Z' besteht also ein anderer funktionaler Zuquotient:

sammenhang als zwischen Z_1 und Z.

Zur Frage der höheren Differentialquotienten und ihrem Zusammenhang mit den Krümmungsradien vergleiche man § 46 der Einführung. Hier soll darauf nicht eingegangen werden. Dagegen sei bemerkt, dass man jeden Aus- und Einströmungspunkt als Projektion eines unendlich langen Drahtes betrachten kann, in dem sich ein Strom in der einen oder anderen Richtung bewegt. Die Niveau- und Kraftflächen des Feldes geben in den Normalschnitten die hier behandelten Kurven. Die Linien gleicher Intensität und Richtung werden aus ihnen ebenso, wie oben, abgeleitet.

§ 3. Übergang von den Punkt- zu den Randproblemen.

Liegen sämtliche Elektroden auf einer Geraden, so findet gegen diese Linie Symmetrie des Stromnetzes statt. Liegen sie sämtlich auf einem Kreise, so findet gegen diesen Reziprozität statt. Dabei muss jedoch ein Abfliessen der Elektrizität nach dem Unendlichen und ein Zuströmen von dorther ausgeschlossen werden, weil sonst noch ausserhalb des Kreises eine Elektrode liegen würde. Reziprozität würde in solchem Falle nur möglich sein, wenn der Mittelpunkt des Kreises ebenfalls Elektrode wäre. Sollen diese Fälle ausgeschlossen werden, so handelt es sich um die oben besprochene Beziehung:

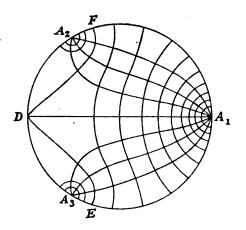
$$\nu_1 + \nu_2 + \nu_3 + \cdots + \nu_n = 0.$$

Wählt man unter dieser Voraussetzung den Fall dreier punktförmiger Elektroden, durch die sich stets ein Kreis legen lässt, so

gehört dieser zu den Stromlinien und man hat ein besonders einfaches Beispiel.

In nebenstehender Figur ist des bequemen Skizzierens halber der symmetrische Fall gewählt, wo die Elektroden A_1 , A_2 und A_3 ein gleichseitiges Dreieck bilden und A_2 und A_3 von gleicher Mächtigkeit sind, so dass z. B:

$$v_1 = 2,$$
 $v_2 = -1,$
 $v_3 = -1$



ist. Dann gehört der Durchmesser A_1D zu den Stromlinien. Die abbildende Funktion ist nach dem Früheren:

$$Z = \lg[(z - \zeta_1)^2(z - \zeta_2)^{-1}(z - \zeta_3)^{-1}],$$

der Differentialquotient:

$$Z' = \frac{2}{z - \zeta_1} - \frac{1}{z - \zeta_2} - \frac{1}{z - \zeta_3} = \frac{(z - \zeta_2)(z - \zeta_3) - (z - \zeta_3)(z - \zeta_1)(z - \zeta_2)}{(z - \zeta_1)(z - \zeta_2)(z - \zeta_3)}$$

Setzt man den Zähler gleich Null und löst man die quadratische Gleichung auf, so findet man die Wurzelpunkte x_1 und x_2 , sodass wird: $(z-x_1)(z-x_2)$

 $Z' = \frac{(z - \mathsf{x_1})(z - \mathsf{x_2})}{(z - \xi_1)(z - \xi_2)(z - \xi_3)} \cdot$

Die Linien gleichen Potentials werden nach Obigem

$$p_1^2 p_2^{-1} p_3^{-1} = c,$$

also Lemniskaten höherer Ordnung, deren Radii vectores von A_1 , A_2 , A_3 ausgehen.

Die Strömungslinien werden von der Form:

$$2\vartheta_1-(\vartheta_2+\vartheta_3)=\gamma,$$

wo die & die Neigungswinkel der genannten Radii vectores sind.

Die Linien gleicher Stromstärke werden, da $R = \frac{\rho_1 \, \rho_2}{p_1 \, p_2 \, p_3}$ ist,

$$\frac{\varrho_1\,\varrho_2}{p_1\,p_2\,p_3}=c_1,$$

wobei ϱ_1 und ϱ_2 von den Wurzelpunkten \varkappa_1 und \varkappa_2 des Zählers von Z' ausgehen. Die Linien gleicher Stromrichtung endlich:

4)
$$\psi_1 + \psi_2 - (\vartheta_1 + \vartheta_2 + \vartheta_3) = \gamma_1.$$

Sämtliche Gleichungen gelten zugleich für das Vertauschungsproblem. Bei diesen handelt es sich um Elektrizitäts- oder Wärmeströmungen, die dadurch entstehen, dass Bogen A_3A_1 auf konstantem Potential oder Temperatur gehalten wird, ebenso Bogen $A_1 A_2$ und Bogen A_{2} , A_{3} . Es fragt sich nur, wie die Potentiale zu wählen sind, damit volle Identität erhalten bleibt. Vorher strömten von A, doppelt soviel Stromlinien aus, als in A_1 bezw. A_2 mündeten. Jetzt münden. wenn Übereinstimmung herrscht, in A_1 doppelt soviel Isothermen als in A_2 bezw. A_3 . Von Isotherme zu Isotherme hat man bei der Quadrateinteilung konstanten Potentialunterschied. Die Potentialdifferenz zwischen den Bogen $A_3A_1=b_1$ und A_1A_2 ist also doppelt so gross, wie die zwischen $A_1 A_2 = b_2$ und $A_2 A_3 = b_3$ bestehende, und auch doppelt so gross, wie die zwischen $A_2 A_3 = b_3$ und $A_3 A_1 = b_1$ bestehende. Nennt man die den Bogen b_1 , b_2 , b_3 entsprechenden Potentiale oder Temperaturen t_1 , t_2 , t_3 , so muss demnach sein:

$$(t_1-t_2):(t_2-t_3):(t_3-t_1)=\nu_1:\nu_2:\nu_3=2:-1:-1.$$

Wählt man z. B. für b_1 die konstante Temperatur 16°, für b_2 dagegen 0°, für b_3 endlich 8°, so hat man

$$t_1 - t_2 = 16^\circ$$
, $t_2 - t_3 = -8^\circ$, $t_3 - t_1 = -8^\circ$,

sodass der obigen Proportion genügt ist. Abgesehen von einem konstanten Faktor u_1 , den man nach rechts werfen kann, hat man die Gleichungen des Problems, sobald man für v_1 , v_2 , v_3 in die obigen Gleichungen $(t_1 - t_2)$, $(t_2 - t_3)$, $(t_3 - t_1)$ einsetzt.

Ganz ebenso ist es, wenn man statt von 3, von n Teilbogen ausgeht. Folglich:

Werden die aufeinanderfolgenden Bogen $b_1, b_2, \ldots b_n$ eines Kreises auf konstanten Temperaturen oder Potentialen $t_1, t_2, \ldots t_n$ gehalten, so sind die Niveaulinien von der Form:

1)
$$\vartheta_1(t_1-t_2) + \vartheta_2(t_2-t_3) + \cdots + \vartheta_n(t_n-t_1) = \gamma$$
, die Stromlinien von der Form:

2)
$$(t_1 - t_2) \lg p_1 + (t_2 - t_3) \lg p_2 + \dots + (t_n - t_1) \lg p_n = c,$$
die Linien gleicher Stromstärke von der Form:

$$\frac{\varrho_1\,\varrho_2\,\ldots\,\varrho_n-1}{p_1\,p_2\,\ldots\,p_n}=c_1,$$

die Linien gleicher Stromrichtung:

4)
$$(\psi_1 + \psi_2 + \cdots + \psi_{n-1}) - (\partial_1 + \partial_2 + \cdots + \partial_n) = \gamma_1.$$

Dabei sind die Teilpunkte des Kreises die Ausgangspunkte der Radii vectors p, die Wurzelpunkte des Zählers vom Differentialquotienten der abbildenden Funktion dagegen sind die Ausgangspunkte der p. Diese abbildende Funktion ist (abgesehen von einem konstanten Faktor und einer additiven Konstanten):

5) $Z = (t_1 - t_2) \lg(z - z_1) + (t_2 - t_3) \lg(z - z_2) + \dots + (t_n - t_1) \lg(z - z_n)$, ihr Differential quotient:

$$Z' = \frac{t_1 - t_2}{z - z_1} + \frac{t_2 - t_3}{(z - z_2)} + \dots + \frac{t_n - t_1}{z - z_n}$$

Vereinigt man die Brüche, so wird der Zähler vom $(n-1)^{\text{ten}}$ Grade, lässt sich also in (n-1) lineare Faktoren vereinigen, sodass man hat

$$Z' = \frac{(z - n_1)(z - n_2) \dots (z - n_{n-1})}{(z - z_1)(z - z_2) \dots (z - z_n)}.$$

Um für jeden Punkt des Innern den Spannungs- oder Temperaturwert genau anzugeben, sodass auch die Konstanten bestimmt sind, kann man folgendermassen verfahren: Man schreibe Gleichung 1) in der Form

$$1^*) t_1(\vartheta_1-\vartheta_2)+t_2(\vartheta_2-\vartheta_3)+\cdots+t_n(\vartheta_n-\vartheta_1)=\gamma.$$

Hier bedeuten die Klammern die Winkel zwischen je zwei aufeinanderfolgenden Radii vectores p. Rückt nun der Punkt, dem sie angehören, in das Kreiszentrum, so nehmen die Klammern die Werte $\beta_1, \, \beta_2, \ldots \beta_n$ der Centriwinkel an, die zu den Kreisbogen $b_1, \, b_2 \ldots b_n$ gehören. Rückt dagegen der Punkt auf den Kreisrand, so handelt es sich im wesentlichen um Peripheriewinkel, wobei nur ein Winkel eine Ausnahme macht. Rückt nämlich der Punkt auf den Bogen b_1 , so bleibt der diesem Bogen zugehörige Winkel $(\vartheta_1 - \vartheta_2)$ eine Art von Aussenwinkel von der Grösse $\pi + \frac{\beta_1}{2}$ (denn die des zugehörigen Sehnenvierecks sind $\frac{\beta_1}{2}$ und $\pi - \frac{\beta_1}{2}$). Die übrigen Winkel werden

$$\frac{\beta_2}{2}$$
, $\frac{\beta_8}{2}$, $\dots \frac{\beta_n}{2}$.

Auf dem Bogen b, also handelt es sich um den Funktionswert:

$$t_1\left(\pi + \frac{\beta_1}{2}\right) + t_2\frac{\beta_2}{2} + t_3\frac{\beta_3}{2} + \cdots + t_n\frac{\beta_n}{2} = \gamma_1,$$

oder um

$$t_1 \pi + \frac{t_1 \beta_1 + t_2 \beta_2 + \cdots + t_n \beta_n}{2} = \gamma_1.$$

Demnach ist für den Rand bei b₁:

$$t_1 = \frac{\gamma_1}{\pi} - \frac{t_1 \beta_1 + t_2 \beta_2 + \cdots + t_n \beta_n}{2\pi}$$

Setzt man statt γ_1 den allgemeinen Funktionswert ein, so erhält man als allgemeinen Ausdruck für die Temperatur in jedem Punkte des Innern:

1**)
$$t = \frac{t_1(\theta_1 - \theta_2) + t_2(\theta_2 - \theta_3) + \cdots + t_n(\theta_n - \theta_1)}{\pi} - \frac{t_1 \beta_1 + t_2 \beta_2 + \cdots + t_n \beta_n}{2\pi}$$

Die Probe zeigt, dass dieser Ausdruck in der That auf jedem Bogen den vorgeschriebenen Temperaturwert annimmt. Im Kreiszentrum nimmt er den Wert:

$$t_m = \frac{t_1 \beta_1 + t_2 \beta_2 + \cdots + t_n \beta_n}{\pi} - \frac{t_1 \beta_1 + t_2 \beta_2 + \cdots + t_n \beta_n}{2 \pi},$$

$$t_m = \frac{t_1 \beta_1 + t_2 \beta_2 + \cdots + t_n \beta_n}{2 \pi}$$

oder

an, oder, wenn man oben unten mit r multipliziert, den Wert

$$t_m = \frac{t_1 b_1 + t_2 b_2 + \cdots + t_n b_n}{2 r \pi},$$

sodass es sich um den mittleren Randwert handelt. Der Temperatur- oder Potentialwert für das Kreiszentrum ist also der Mittelwert der gegebenen Randwerte. Dieses Resultat erscheint ganz naturgemäss, da der Einfluss aller Randpunkte der gleichen Entfernung wegen für das Zentrum derselbe ist.

In der Figur handelt es sich bei den Temperaturen 16° , 0° , 8° in der Mitte in der That um 8° . Die Stromlinien enthalten eine ausnahmsweise gebrochene Linie EDF. Rechts von dieser Linie strömt Wärme vom Bogen EA_1 nach FA_1 . Links davon geschieht zweierlei, Wärme strömt vom Bogen EA_3 nach A_3D_1 und ebenso strömt Wärme von DA_2 nach A_3F . Die Isotherme A_1D gabelt sich bei D in die beiden Kreisbogen DA_3 und DA_2 .

Für die Teilpunkte des Randes ist die Funktion t unstetig, denn sie springt von den einen der gegebenen Werte plötzlich zum anderen über. Es handelt sich dort um singuläre Punkte.

Damit ist folgende Aufgabe der Potential- und Funktionentheorie gelöst:

Es soll eine reelle Funktion U bestimmt werden, die der Differentialgleichung $\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0$ genügt und auf dem Rande eines gegebenen Kreises bogenweise die vorgeschriebenen reellen Werte $t_1, t_2, \ldots t_n$ annimmt. Die Funktion soll im Innern des Kreises überall stetig, endlich und eindeutig sein. Wie lautet der Funktionswert für jeden Punkt des Kreisinnern?

Die Auflösung ist:

$$\begin{split} U &= \frac{t_1(\varphi_1 - \varphi_2) + t_2(\varphi_2 - \varphi_3) + \dots + t_n(\varphi_n - \varphi_1)}{\pi} - \frac{t_1\beta_1 + t_2\beta_2 + \dots + t_n\beta_n}{2\pi}, \\ \text{oder auch} \quad U &= \frac{1}{\pi} \left[\vartheta_1(t_1 - t_2) + \vartheta_2(t_2 - t_3) + \dots + \vartheta_n(t_n - t_1) \right] + C, \\ \text{wo} \quad C &= \frac{t_1\beta_1 + t_2\beta_2 + \dots + t_n\beta_n}{2\pi} = \frac{t_1b_1 + t_2b_2 + \dots + t_nb_n}{2r\pi} \end{split}$$

ist. U ist zugleich reeller Teil derjenigen Funktion komplexen Arguments Z = U + Vi, deren reeller Teil auf dem Rande die vorgeschriebenen Werte annimmt. Die ergänzende Funktion V ist nach Gleichung 2) von der Form:

2*)
$$V = (t_1 - t_2) \lg p_1 + (t_2 - t_3) \lg p_2 + \cdots + (t_n - t_1) \lg p_n + C_1$$

Ist ihr Wert für einen einzigen Punkt des Innern vorgeschrieben, z.B. als V_1 , so hat man

$$V_1 = (t_1 - t_2) \lg p'_1 + (t_2 - t_3) \lg p'_2 + \dots + (t_n - t_1) \lg p'_n + C_1,$$

und nun kann die willkürliche Konstante C_1 durch beiderseitige Subtraktion entfernt werden. Abgesehen von den Konstanten handelt es sich um die Funktion komplexen Arguments, die unter 5) angegeben ist.

Der Übergang zu unendlich vielen vorgeschriebenen Randwerten kann nun auf dem gebräuchlichen Wege geschehen, der Übergang zu anderen einfach zusammenhängenden Flächenformen durch Abbildung.

Damit ist unter Benutzung der Lemniskaten und Hyperbeln höherer Ordnung ein synthetischer Weg zu einem grundlegenden Satz der Funktionentheorie gegeben, der ohne weitergehende Vorkenntnisse gangbar ist und bei der unausgesetzten Berührung mit der mathematischen Physik sehr anschaulich bleibt. Ist auf diesem Wege das Verständnis angebahnt, so wird auch die analytische Betrachtungsweise keine Schwierigkeiten bieten.

Ich habe auf diesen Punkt schon im 33. Bande dieser Zeitschrift im Anschluss an eine lehrreiche Arbeit des Herrn Dr. Veltmann aufmerksam gemacht. Dort trat aber die Form der Funktion zu unvermittelt auf, während im obigen der Begriff des Vertauschungsproblems genügte, einem naturgemässen Übergang von dem leichten Punktprobleme zum Randprobleme zu geben. Damit dürfte die funktionentheoretische Bedeutung der Lemniskaten und Hyperbeln höherer Ordnung zur Genüge klar gelegt sein.

§ 4. Physikalische Bemerkungen.

Die Lemniskaten und Hyperbeln höherer Ordnung sind von mir im 83. Bande des Crelleschen Journals und im Programm 1880 der Hagener Gewerbeschule eingehend behandelt worden. Die bis 1882 reichende Litteratur, an der auch die Namen Darboux, Lucas, Haton de la Goupillière beteiligt sind, ist in meiner Einführung in die Theorie der isogonalen Verwandtschaften angegeben. Später hat sich auch Herr Prof. Biermann im 89. Bande der Sitzungsberichte der Wiener Akademie (Sitzung vom 10. Januar 1884) mit diesen Kurven beschäftigt. Sie können zur Kontrolle bei Erledigung gewisser physikalischer Streitfragen benutzt werden, auf die mit einigen Worten hingewiesen werden möge.

Bekanntlich hat Herr Professor A. Guébhard zu Paris den Versuch gemacht, die Linien gleichen Potentials bei stationärer Strömung in Gestalt von Interferenzringen galvanischer Niederschläge zu veranschaulichen. In den Berichten der Académie des Sciences, im Electricien, im Journal de Physique ist im Anfang der achziger Jahre vielfach darüber berichtet worden (für Litteratur vergl. die Einführung). Während nun die Schönheit der Guébhardschen Farbenringe und ihre Ähnlichkeit mit den Potentialkurven überall Erstaunen erregte, wurde die Angelegenheit von anderer Seite kritisch behandelt wurden Messungen und Vergleichungen mit den theoretisch konstruierten Kurven durchgeführt, teils wurden theoretische Erläuterungen für die Guébhardschen Ringe gegeben. Wenn von einigen Seiten behauptet wurde, durch Riemanns Theorie der Nobilischen Farbenringe sei die Angelegenheit bereits zu Ungunsten der Guébhardschen Auffassung entschieden, so ist dies nicht ohne weiteres berechtigt, da die Experimente Guébhards eine abweichende Anordnung haben. ferner behauptet, die Guébhardschen Ringe seien Kurven gleicher Stromstärke, so beruht dies, soweit es sich um Strömung in der Platte oder in einer Flüssigkeitsschicht von geringer Höhe, also um ein zweidimensionales Problem handeln soll, auf einem Irrtum. Die oben behandelten Kurven gleicher Stromstärke weichen von den Guébhardschen Ringen derart ab, dass von einem Vergleiche gar nicht die Rede sein kann. Im übrigen ist oben gezeigt worden, dass ein System von Linien gleicher Stromstärke ganz verschiedenen Stromnetzen zugleich angehören kann, z. B. das der Lemniskaten und Hyperbeln sowohl dem Probleme des Kreisbüschels, als auch dem der konfokalen Ellipsen.

Anders ist es, wenn von einer Strömung im Raume, d.h. in der Flüssigkeit und Platte zugleich die Rede sein soll. Die Frage aber, welchen Anteil die Platte an der Erscheinung nimmt, und welche Rolle die Polarisation bei der Angelegenheit spielt, ist durchaus noch nicht erledigt. Wenigstens hat mir im Jahre 1890 Helmholtz (gelegentlich der Berliner Schulkonferenz) erklärt, weder die Abhandlungen der Herren H. Meyer und W. Voigt, noch die der Herren Mach und Ditscheiner reichten aus, die grosse Ähnlichkeit der Guébhardschen Ringe mit dem Potentialkurven aufzuklären. Er selbst vermute einen ganz anderen Zusammenhang und habe das Problem schon dreimal durch hervorragend beanlagte Schüler im Physikalischen Institut behandeln lassen. Leider seien jedesmal Störungen in den persönlichen Verhältnissen

dieser Herren eingetreten, die den Abschluss der Untersuchungen vereitelt hätten. Dies werden gewisse Herren, die Helmholtz näher standen, bestätigen können. Helmholtz erklärte mir ferner, er habe die Absicht, die Frage demnächst noch einmal aufzugreifen. - Ich selbst enthalte mich in der Angelegenheit der Experimente jedes Urteils. Sollten jedoch irgend welche Physiker die Frage der Guébhardschen Ringe noch einmal bearbeiten wollen, so stehen ihnen nach obigem zum Zweck der Kontrolle nicht nur die Gleichungen der Niveau- und Stromlinien, sondern auch die der Linien gleicher Stromstärke und Stromrichtung für alle Arten von punktförmiger Einund Ausströmung zur Verfügung. Die Frage der linearen Einströmung scheint nach einer Mitteilung des Herrn Margules in den Wiener Berichten insofern Schwierigkeit zu machen, als die Annahme konstanten Potentials in der Einströmungslinie gewagt erscheint. (Bericht vom 11. Mai 1877.) Herr Haubner hat die Untersuchung der stationären Strömung auch für Fälle wechselnden Leitungsvermögens angebahnt. (Wiener Berichte, 12. Januar 1882.)

§ 5. Zur Umkehrung der ersten Aufgabe.

Oben wurde die Aufgabe gelöst, für ein gegebenes Strömungsnetz die Linien gleicher Stromstärke und Stromrichtung zu finden. Man kann fragen, ob man umgekehrt zu einem gegebenen Netz der letzteren Linien das zugehörige Strömungsnetz bestimmen kann. Es wird sich zeigen, dass für jeden Fall unendlich viele Lösungen möglich sind.

1. Schon in § 1 wurde gezeigt, dass sämtliche Strömungsnetze von der Form: $r^n \cos n \vartheta = c$, $r^n \sin n \vartheta = c_1$,

also von der Form der Hyperbelscharen beliebiger Ordnung ein und dasselbe System von Isothermen die konzentrischen Kreise und ihre Radien als Linien gleicher Stromstärke und Stromrichtung haben. Allerdings gehört zu jedem n eine besondere Potenz von r, die den absoluten Betrag des Differentialquotienten giebt, und ebenso erhält für jeden Fall das zugehörige φ seinen besonderen Faktor. In den verschiedenen Fällen handelt es sich also nicht um dieselben Individua der Kurvenschar, aber das Gesamtsystem ist dasselbe. Man kann daher allgemein folgenden Satz aussprechen:

Sämtliche Funktionen Z = f(z), bei denen der Differentialquotient Z' als absoluten Betrag eine reelle Funktion

$$R = \varphi(r)$$

hat, geben an Stelle der Parallelenscharen X=a und Y=b der Z-Ebene in der z-Ebene Strömungskurven, denen dasselbe Netz von Linien gleicher Stromstärke und Richtung r=c und $\theta=\gamma$ zugehört. Hierzu gehören z. B. alle Funktionen $Z=z^n$

Legt man zwei solche Netze mit den Koordinatenaxen aufeinander, so herrscht auf jedem Kreise r=c um den Nullpunkt zwischen den kleinen Quadraten beider Netze dasselbe Vergrösserungsverhältnis, und auf jeden vom Nullpunkte ausgehenden Strahle ein konstanter Richtungsunterschied der Stromlinien beider Netze, von deren Niveaulinien ganz dasselbe gilt.

2. Ebenso kann man fragen, welche Stromnetze die konfokalen Lemniskaten zweiter Ordnung mit den Brennpunkten ± 1 zu Linien gleicher Stromstärke haben. Es handelt sich um sämtliche Funktionen Z = f(z), deren Differentialquotient einen absoluten Betrag $R = \varphi(r_1 r_2)$ hat, wo φ reelle Funktion der betreffenden Radii vectores ist. Bei diesen Funktionen entsprechen den Linien X = a und Y = b zu Z-Ebenen in den z-Ebenen Kurven, bei denen das Verlangte stattfindet.

Soll es sich z. B. um $R=(r_1r_2)^m$ handeln, so gehört dazu als Differentialquotient der abbildenden Funktion $Z'=[(1+z)(1-z)]^m$, sodass die Funktionen $Z=\int [1-z^2]^m dz$

eine Gruppe der betreffenden Funktionen bilden.

Für m = -1 erhält man

$$\int \frac{dz}{1-z^2} = \frac{1}{2} \lg \frac{1+z}{1-z},$$

was auf das Kreisbüschel durch ± 1 und die zugehörige Kreisschar führt. Für $m=-\frac{1}{2}$ findet man

$$\int_{V_{1-z^2}}^{\infty} dz = -\arccos z,$$

was auf die konfokalen Ellipsen und Hyperbeln mit den Brennpunkten ± 1 führt. Dies waren die oben behandelten Beispiele.

Für m=1 erhält man

$$\int_{z}^{z} (1-z^2)dz = z - \frac{z^3}{3},$$

was Kurven dritten Grades von der Gleichung:

$$-\frac{x^3}{3} + x + xy^2 = c$$
 bezw. $\frac{y^3}{3} + y - x^2y = c_1$

giebt. So kann man weiter fortfahren.

3. Soll es sich um die schon sehr allgemeinen Lemniskaten höherer Ordnung

 $R = \frac{\varrho_1 \varrho_2 \dots \varrho_{n-1}}{r_1 r_2 \dots r_n}$

handeln, wo die r von Punkten $\xi_1, \xi_2, \ldots \xi_n$ ausgehen, die ϱ von den

Wurzelpunkten des Zählers von $\sum_{1}^{n} \frac{\nu}{z-\zeta}$, so giebt:

$$Z' = \left[\sum_{1}^{n} \frac{v}{z - \zeta}\right]^{m}$$

eine Gruppe der verlangten Kurven durch die Funktion:

$$Z = \int \left[\sum_{1}^{n} \frac{v}{z - \zeta} \right]_{0}^{m} dz.$$

In ähnlicher Weise kann man zu schwierigeren Fällen übergehen. Hier jedoch soll darauf nicht näher eingegangen werden. Der Hinweis auf die Vieldeutigkeit der Lösung bei der angenommenen Fragestellung dürfte für die Bemerkungen des vorigen Abschnitts genügen.

§ 6. Zusammenhang mit der Torsionstheorie von Saint Venant.

In den Mémoires des Savants Etrangers XIV (1856) von Seite 234 bis 560 entwickelt Saint Venant seine berühmt gewordene Theorie der Torsion von Prismen. Im 9. Kapitel von Seite 415 ab beweist er über die Krümmung der ursprünglich ebenen Querschnitte einen Satz, dessen Inhalt in der hier üblichen Schreibweise folgendermassen dargestellt werden möge.

U sei der reelle Teil einer Funktion komplexen Arguments, Vi der zugehörige imaginäre Teil, der sich aus U bestimmen lässt als Integral der Differentialgleichung:

$$dV = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy = 0,$$
sodass
$$V = -\int dx \frac{\partial u}{\partial y} + \int dy \frac{\partial u}{\partial x} + \int dx \int dx \frac{\partial^2 u}{\partial x^2}$$

ist. Sollen nun die durch V=c dargestellten Isothermen die Niveaulinien für die gekrümmten Querschnitte des auf Torsion beanspruchten Cylinders darstellen, so hat man V in die Lösung der Differentialgleichung:

$$\alpha(x dx + y dy) + \left(\frac{\partial u}{\partial y} dx - \frac{\partial u}{\partial y} dy\right) = 0,$$
d. h. in
$$\alpha(x dx + y dy) + \left(\frac{\partial u}{\partial y} dx - \frac{\partial u}{\partial y} dy\right) = 0,$$

einzusetzen, um die Randkurve für das Prisma zu finden, welches der Forderung genügen soll.

Dabei bedeutet α die Drehung für die Stablänge l=1. Die Fläche jedes gekrümmten Querschnitts gehorcht der Gleichung:

$$z = V + c,$$

sodass in der That die Projektionen der Niveaulinien die Kurvenschar V=c geben, während die Kurven U=c die Projektionen der Steilungslinien sind, d.h. die der Linien grösster Steilheit.

Beispiel 1. Im Kapitel VI behandelt Saint Venant das Beispiel des elliptischen Cylinders, auf welches man nach obigem Satze folgendermassen gelangt. Man wähle willkürlich als U die Funktion $U = -4 \, Axy$ und bestimme daraus $V = 2 \, A(x^2 - y^2)$, was die bekannten Scharen gleichseitiger Hyperbeln zweiter Ordnung bedeutet (vergl. Fig. 28 meiner Einführung in die Theorie der isogonalen Verwandtschaft). Einführung von V in Gleichung 2 giebt als Randkurve:

$$\frac{\alpha}{2}(x^2+y^2)-2A(x^2-y^2)=C,$$

oder

5)
$$x^2 \frac{\alpha - 4A}{2C} + y^2 \frac{\alpha + 4A}{2C} = 1,$$

sodass es sich um eine Ellipse mit den Halbaxen

$$a = \sqrt{\frac{2C}{\alpha - 4A}}$$
 und $b = \sqrt{\frac{2C}{\alpha + 4A}}$

handelt. Wird ein so gestalteter elliptischer Cylinder der Torsion unterworfen, so nehmen die ursprünglich ebenen Querschnitte die Gestalt der Fläche $z = 2\,A(x^2-y^2) = 2\,Ar^2\cos2\vartheta$

an, wobei von der Konstante c, die der Höhenlage des Querschnitts entspricht, abgesehen ist. Nach Saint Venant hat die Konstante A die Bedeutung $A = \frac{1}{4} \frac{a^2 - b^2}{a^2 + b^2} \alpha,$

wo a und b die Halbaxen der Ellipse sind und α die oben angegebene Bedeutung hat. Es ist also schliesslich die Flächengleichung:

6)
$$z = \frac{1}{4} \frac{a^2 - b^2}{a^2 + b^2} \alpha (x^2 - y^2) = \frac{1}{4} \frac{a^2 - b^2}{a^2 + b^2} \alpha r^2 \cos 2 \vartheta.$$

Die Projektionen der Niveaulinien sind also:

7)
$$V = \frac{1}{4} \frac{a^2 - b^2}{a^2 + b^2} \alpha (x^2 - y^2) = C,$$

die der Steilungslinien:

8)
$$U = -\frac{1}{4} \frac{a^2 - b^2}{a^2 + b^2} \alpha xy = C.$$

Nehmen die beiden C Werte an, die der arithmetischen Reihe

$$\cdots$$
, $-3c$, $-2c$, $-c$, 0 , c , $2c$, $3c$, \cdots

entsprechen, so erhält man die quadratische Einteilung der Ebene.

Die Gleichung 6) stellt ein hyperbolisches Paraboloid dar, welches für $x = \pm y$ die Geraden z = 0 enthält, die aufeinander senkrecht stehen. Für y = 0 erhält man den parabolischen Hauptschnitt:

für
$$x = 0$$
 den Schnitt

$$z = \frac{1}{4} \frac{a^2 - b^2}{a^2 + b^2} \alpha x^2,$$

$$z = -\frac{1}{4} \frac{a^2 - b^2}{a^2 + b^2} \alpha y^2.$$

Quadrantenweise hat die Fläche abwechselnd positive und negative Ordinaten, sodass konvex und konkav aufeinander folgen.

Nun waren die Linien, welche Quadrate gleicher Grösse der isothermischen Einteilung durchlaufen, für den vorliegenden Fall nach § 2 konzentrische Kreise. Von der Grösse der Quadrate aber hängt die Steilheit der Fläche 6) ab, folglich:

Errichtet man auf der Grundebene in den Punkten der um den Nullpunkt geschlagenen Kreise Lote, so geben ihre Durchstosspunkte mit der Fläche 6) auf dieser die Kurven gleicher Steilheit an.

Dies folgt auch aus der bekannten Formel für die Differentiation nach den Normalen der Niveaulinien, die auf

9)
$$\frac{dz}{dn} = \tan \alpha = \sqrt{\left(\frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2} = R = c$$

führt, was mit den oben behandelten absoluten Betrage des Differentialquotienten Z' der Funktion Z = U + Vi übereinstimmt.

Das Strahlenbüschel durch den Nullpunkt giebt zu anderen Loten Veranlassung. Diese schneiden die Fläche 6) in Kurven, welche die Stellen miteinander verbinden, wo die Tangenten der Steilungslinien parallele Projektionen haben.

Dabei handelt es sich um die frühere Gleichung:

10)
$$\arctan \frac{\frac{\partial U}{\partial x}}{\frac{\partial V}{\partial x}} = \Phi = \gamma.$$

Die oben behandelten Linien gleicher Stromstärke und Stromrichtung geben also für die Saint Venantschen Querschnittsflächen die Linien gleicher Steilheit und gleicher Abweichung der Steilungslinien an, deren Projektionen sich als Isothermenscharen ergeben.

Das am Beispiele erläuterte Resultat gilt eben für alle mögliehen Lösungen des Torsionsproblems.

[Den meisten Lesern wird die deutsche Ausgabe des bekannten Handbuchs der theoretischen Physik von Thomson und Tait zugänglicher sein, als die Mémoires. Einen Auszug aus der Saint Venantschen Arbeit findet man dort nebst Figuren von Seite 231 des Bandes I2 ab. Auf Seite 239 befindet sich jedoch ein Druckfehler. Auf Zeile 3 von unten muss es heissen normalen Ebene statt parallelen Ebene in Bezug auf die Stabaxe.]

Ist a = b, so geht die Ellipse in einen Kreis über, für den also Gleichung 6) die Form z = 0 annimmt, mit anderen Worten: Bei dem Kreiscylinder bleiben die Querschnitte eben.

Beispiel 2. Geht man willkürlich von den der Gleichung $\Delta^2 U = 0$ gehorchenden und zusammengehörigen Ausdrücken:

11)
$$U = 2r^n A \sin n \vartheta \quad \text{und} \quad V = 2r^n A \cos n \vartheta$$

aus, so erhält man nach obigem als Randkurve für den Cylinder in Polarkoordinaten:

$$\frac{\alpha}{2}r^2 - 2r^n A \cos n \vartheta = c.$$

Setzt man den Exponenten n der Reihe nach gleich 1, 2, 3, 4,..., so erhält man Randkurven 1., 2., 3., 4.,... Grades. In der Wahl der Konstanten findet man bei den höheren Graden eine grosse Mannigfaltigkeit, zu der Saint Venant Beispiele giebt. Über die Fläche

$$z = 2r^n A \cos n \vartheta,$$

die man als hyperbolisches Paraboloid n^{ter} Ordnung bezeichnen kann, ist Entsprechendes wie vorher zu sagen. Die Zahl der Geraden durch den Nullpunkt ergiebt sich aus $\cos n \vartheta = 0$, eine Gleichung, die durch

 $\vartheta = \frac{\pi}{2n}, \frac{2\pi}{2n}, \frac{3\pi}{2n}, \cdots$ wird sodoss as sich um 2m Stroblon

erfüllt wird, sodass es sich um 2n Strahlen, d. h. um n Gerade handelt. Die Letzteren haben abwechselnd positive und negative Ordinaten. Für $\cos n\vartheta = 1$ erhält man Hauptschnitte $z = 2Ar^n$, was Parabeln n^{ter} Ordnung giebt. Nach § 2 geben die Lote in den Kreisen und ihren Radien Kurven derselben Eigenschaften auf der Fläche, wie vorher.

Allgemeine Lösung. Die allgemeine Lösung des Torsionsproblems findet man bekanntlich, indem man von einer willkürlichen Funktion komplexen Arguments:

ausgeht und den konjugierten Ausdruck $U - Vi = f_1(x - yi)$ benutzt. Dann ist:

14)
$$U = \frac{f(x+yi) + f_1(x-yi)}{2},$$

15)
$$V = \frac{f(x+yi) - f_1(x-yi)}{2i} = -\frac{i}{2}f(x+yi) + \frac{i}{2}f_1(x-yi),$$
 also

16)
$$W = \frac{\alpha}{2}(x^2 + y^2) + \frac{i}{2}f(x + yi) - \frac{i}{2}f_1(x - yi) = C.$$

Dabei giebt 16) die Randkurve an, z = V die gekrümmte Querschnittsfläche. Der absolute Betrag des Differentialquotienten Z', nämlich:

$$R = \sqrt{\left(\frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2}$$

giebt die Kurven R=c als Projektion der Linien gleicher Steilheit α (tan $\alpha=R=c$) auf der Fläche; seine Abweichung:

18)
$$\Phi = \arctan \frac{\frac{\partial U}{\partial x}}{\frac{\partial V}{\partial x}}$$

giebt, gleich γ gesetzt, die Projektion der Linien, welche auf der Fläche durch die Punkte gleicher Abweichung der Steilungslinien gehen.

Damit ist der Zusammenhang der Isothermen $\lg R = c$ und $\Phi = \gamma$ mit dem allgemeinen Torsionsproblem nachgewiesen. Sie geben die Kurven gleicher Steilheit des gekrümmten Querschnitts und die Kurven gleicher Abweichung der Steilungslinien an. Auf die aus den letzten Darlegungen hervorgehende Möglichkeit der konformen Übertragung der Resultate braucht wohl nur hingewiesen zu werden.

§ 7. Verschiedene Arten von Potentialflächen und Niveauflächen.

Es handle sich wieder um stationäre elektrische oder Wärme-Strömung in unbegrenzter Platte, z. B. bei punktförmigen Elektroden positiver und negativer Art, ohne dass dieses gerade zur Bedingung gemacht werden soll.

Trägt man in jedem Punkte den Wert:

1)
$$z = \nu_1 \lg r_1 + \nu_2 \lg r_2 + \cdots + \nu_n \lg r_n$$

als Lot auf, so erhält man durch die Endpunkte die Gleichung der durch 1) dargestellten Fläche. Die rechte Seite genügt der Differentialgleichung $\Delta^2 u = 0$. Der Diagrammkörper wird also durch eine sogenannte Potentialfläche begrenzt. Die Niveaulinien sind Kurven konstanten Potentials.

Errichtet man auf der Grundebene in den durch

2)
$$\sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = x = e^c$$
, oder $\lg \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = c$

gegebenen Kurven Lote, so treffen diese die Potentialfläche in den oben besprochenen Kurven gleicher Steilheit. Die durch

$$\arctan \frac{\frac{\partial w}{\partial x}}{\frac{\partial z}{\partial x}} = \gamma$$

bestimmten Kurven, wo w die Ergänzungsfunktion:

242 Über einen Satz der Funktionentheorie und seine Anwendung etc.

4)
$$w = \nu_1 \vartheta_1 + \nu_2 \vartheta_2 + \cdots + \nu_n \vartheta_n$$

zu z ist, geben die Kurven gleicher Abweichung für die Projektionen der Steilungslinien, die durch $w = \gamma$ dargestellt sind.

Nimmt man nun das Vertauschungsproblem, so errichte man überall Lote von der Länge:

$$b) w = v_1 \partial_1 + v_2 \partial_2 + \cdots + v_n \partial_n.$$

Da nun

$$\sqrt{\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2} = \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \kappa = e^c = \tan \alpha$$

ist, so sind jetzt in denselben Punkten, wie vorher, Lote zu errichten, wenn man die Linien gleicher Steilheit haben will. Die Linien gleicher Steilheit α haben also für beide Potentialflächen 1) und 5) identische Projektionen.

Die Steilungslinien sind aber senkrecht gegeneinander gerichtet, was mit der Gleichung:

6)
$$\gamma_{1} = \arctan \frac{\frac{\partial s}{\partial x}}{\frac{\partial w}{\partial x}} = \frac{\pi}{2} + \gamma = \frac{\pi}{2} + \arctan \frac{\frac{\partial w}{\partial x}}{\frac{\partial s}{\partial x}}$$

harmoniert.

Errichtet man dagegen auf der Stromebene in jedem Punkt den Wert:

$$h=R=\sqrt{\left(rac{\partial z}{\partial x}
ight)^2+\left(rac{\partial z}{\partial y}
ight)^2}+\sqrt{\left(rac{\partial w}{\partial x}
ight)^2+\left(rac{\partial w}{\partial y}
ight)^2},$$

so erhält man die Diagrammfläche der gleichen Stromgeschwindigkeiten für beide Probleme.

[Bildet man dazu

$$\sqrt{\left(\frac{\partial h}{\partial x}\right)^2 + \left(\frac{\partial h}{\partial y}\right)^2} = c,$$

so findet man die Linien gleicher Strombeschleunigung für beide Probleme. Ob dem bei den Saint Venantschen Problemen die Linien gleich starker Deformation entsprechen, bedarf noch einer besonderen Untersuchung.]

Ähnlich würde die Errichtung von Loten

$$\Phi = \arctan \frac{\frac{\partial z}{\partial x}}{\frac{\partial w}{\partial x}} = \frac{\pi}{2} + \arctan \frac{\frac{\partial w}{\partial x}}{\frac{\partial z}{\partial x}}$$

für beide Probleme die Diagrammfläche der Abweichungen ergeben. Es ist jedoch besser, diese mit der Fläche

$$h_1 = \lg R = \lg \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \lg \sqrt{\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2}$$

zu vergleichen, da diese beiden Flächen wieder zusammengehörige Potentialflächen wie die vorigen sind

Die Errichtung von Loten $h_2 = \frac{1}{h} = \frac{1}{R}$ würde das Diagramm der Grössenverhältnisse für beide Probleme ergeben. Ist für irgend welche physikalische Theorie das Errichten von Loten $h_3 = f(R)$ oder $h_4 = f(z)$ nötig, so würden auch die so entsprechenden Diagrammflächen leicht zu untersuchen sein. Ein solcher Fall soll im folgenden Abschnitt behandelt werden.

§ 8. Forchheimer Theorie der Grundwasserbewegung.

Herr Forchheimer hat im 7. Hefte des Jahrgangs 1886 der Zeitschrift des Architekten- und Ingenieurvereins zu Hannover eine Theorie der Grundwasserbewegung gegeben, die auf der Annahme beruht, dass bei stationärer Strömung über horizontaler undurchlässiger Schicht die Geschwindigkeit lediglich proportional sei dem Gefällverhältnis der Oberfläche der Grundwassereinstellung, im übrigen aber unabhängig von der Tiefe an der entsprechenden Stelle.

Durch diese Annahme wird die Frage der Geschwindigkeit von der dritten Dimension befreit, es wird

$$v = - x \tan \vartheta = - x \frac{\partial z}{\partial n} = - x \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2},$$

wo z eine von der Durchlässigkeit des homogenen Erdreichs abhängige Konstante ist, z aber die Höhe des Grundwassers über der undurchlässigen Schicht.

Hat nun ein normal gegen die Stromrichtung liegendes und senkrecht stehendes Rechteck die Breite b und von der undurchlässigen Schicht aus gerechnet die Höhe z, so passiert durch das (bis zur Oberfläche des Grundwassers reichende) Rechteck in der Zeiteinheit die Wassermenge

 $Q = \pi b z v = -bz \frac{\partial z}{\partial n}.$

Handelt es sich z. B. um die Parallelströmung in der Richtung der X-Axe, so folgt:

$$zdz=-\frac{Q}{bx}dx,$$

sodass

$$\frac{z^2}{2} = -\frac{Qx}{bx} + C,$$

und

$$z^2 = -\frac{2Q}{bx}x + C_1$$

ist. Dies ist die Gleichung einer Parabel, die ihre Axe in der undurchlässigen Schicht hat. Die Integrationskonstante C_1 ist gleich Null zu setzen, wenn man den Koordinatenanfang in den Scheitel legt. Dann ist also $z^2 = -\frac{2}{\pi} \frac{Q}{h} x.$

Für negatives x erhält man also die Quadrate der Höhen des Grundwasserstandes über der undurchlässigen Schicht.

Denkt man sich z. B. durch einen See einen Damm gelegt, dem (um die Sache mathematisch zu machen) senkrechte Seitenwände gegeben werden, und wird der eine Teil soweit ausgepumpt, bis schliesslich infolge wachsenden Niveauunterschieds die durchsickernde Wassermasse dem Pumpverlust ausgleicht, so ist die Form der Oberfläche des Grundwassers im Querschnitte des Dammes durch diejenige Parabel bestimmt, die durch die beiderseitigen Niveaupunkte geht, und ihre Axe in der durchlässigen Schicht hat.

[Bei der Parallelströmung der Wärme oder Elektrizität würde die Diagrammkurve des Geschwindigkeitspotentials sein

$$s = -\frac{2Q}{bx}x,$$

was der Differentialgleichung $\Delta^2 s = 0$ genügt. Hier aber handelt es sich um $s = \sqrt{-\frac{2Q}{bx}x}$, wo die rechte Seite der Differentialgleichung $\Delta^2 z = 0$ nicht genügt.]

Denkt man sich eine kreisförmige Insel im Meere, mit einer horizontalen undurchlässigen Untergrundsschicht und in der Mitte einen bis dorthin reichenden Brunnenschacht mit kontinuierlichen Pumpbetriebe bei konstanter Höhe des Wasserstandes im Brunnen, wobei also die Wasserentnahme genau durch das Nachsickern ersetzt wird, so geht nach obiger Theorie durch jeden konzentrischen Cylinder die Wassermasse $Q = 2r\pi z n \, tan \, \vartheta.$

durch einem bestimmten dieser Cylinder z. B.:

$$Q_1 = 2r_1\pi z_1 \times \tan \vartheta_1,$$

sodass, da des stationären Zustandes halber $Q = Q_1$ ist:

$$\frac{rz}{r_1z_1} = \frac{\tan\vartheta_1}{\tan\vartheta} = \frac{\tan\vartheta_1}{\left(\frac{dz}{dr}\right)}$$

sein muss. Daraus folgt

$$zdz=r_1z_1\tan\vartheta_1\frac{dr}{r},$$

und durch beiderseitige Integration:

$$\frac{z^2}{2} = r_1 z_1 \tan \vartheta_1 \lg r + C,$$

oder auch:

$$z^2 = 2r_1 z_1 \tan \vartheta_1 \lg r + C,$$

wo C eine Integrationskonstante ist.

Bei dieser Schreibweise genügt die rechte Seite der Differentialgleichung $\Delta^2 u = 0$. Sie würde die Potentialfläche der elektrischen Strömung bei einer punktförmigen Elektrode und Einströmung im unendlich fernen Bereiche darstellen, sobald nur links z statt z^2 stände. Es handelt sich also hier um eine Niveaufläche:

$$z = \sqrt{2r_1z_1\tan\vartheta_1\lg r + c},$$

bei der die Höhen die Quadratwurzeln von den Höhen der Potentialfläche sind. Setzt man hier den Wert von Q aus

$$Q_1 = 2 r_1 \pi z_1 \times \tan \vartheta_1$$

ein, so ergiebt sich

$$s^2 = \frac{Q}{\pi x} \lg r + C,$$

für eine bestimmte Stelle also

$$z_1^2 = \frac{Q}{\pi \pi} \lg r_1 + C$$

und durch Subtraktion

$$z^2-z_1^2=\frac{Q}{\pi x}\lg\frac{r}{r_1},$$

wodurch die Integrationskonstante entfernt, bezw. durch z_1^2 ersetzt ist. Ist z. B. z_2 die Tiefe der undurchlässigen Schicht unter der Meeresoberfläche, r_2 der zugehörige Radius der Insel, ist ferner z_1 der Wasserstand des bis zur undurchlässigen Schicht reichenden Schachtes und sein Radius gleich r_2 , so ist die konstante Wasserentnahme:

$$Q = \frac{\pi \times (z_1^2 - z_s^2)}{\lg r_s - \lg r_s} = \frac{\pi \times (z_1^2 - z_s^2)}{\lg \frac{r_s}{r_s}}.$$

Zugleich folgt allgemein aus

$$z^2 - z_s^2 = \frac{Q}{\pi x} \left(\lg r - \lg r_s \right)$$

durch Entfernen von Q die rein geometrische Gleichung:

$$\frac{z^2-z_s^2}{z^2-z_s^2}=\frac{\lg r-\lg r_s}{\lg r_s-\lg r_s}=\frac{\lg\left(\frac{r}{r_s}\right)}{\lg\left(\frac{r_s}{r_s}\right)}$$

für die den Grundwasserstand an jeder Stelle r darstellende Rotationsfläche.

Ganz allgemein lässt sich nun folgendes schliessen:

Kennt man für irgend eine Elektrizitätsströmung stationärer Art in ebener Platte die Potentialfläche, z. B.:

$$z = \nu_1 \lg r_1 + \nu_2 \lg r_2 + \cdots + \nu_n \lg r_n$$

und bildet man die neue Fläche:

$$\varepsilon^2 = \nu_1 \lg r_1 + \nu_2 \lg r_2 + \cdots + \nu_2 \lg r_4$$

indem man statt der Höhen ihre Quadratwurzeln einsetzt, so hat man die Niveaufläche des Grundwassers für das entsprechende Arangement von Brunnenanlagen.

Hier mögen die ν sämtlich als positiv betrachtet werden, sodass es sich um n Brunnen von verschiedener Ergiebigkeit handelt.

Der Einströmung durch lineare Elektroden würde die Wasserentnahme aus Sickerschlitzen entsprechen, mögen diese nun geradlinig oder krumm sein. Dem Ausschneiden von Flächenstücken aus der Platte längs der Niveaulinien entspricht die Begrenzung des Grundwasserterrains durch einen See oder Fluss. Bei geradliniger Begrenzung würden die bekannten Spiegelbilder anzuwenden sein, bei mehreren Brunnen auf kreisförmiger Insel die reziproken Spiegelbilder u. s. w.

Schlussbemerkung.

Weder über die Saint Venantsche Torsionstheorie, noch über die Forchheimersche Theorie der Grundwasserbewegung, ebensowenig über die der stationären Elektrizitäts- und Wärmeströmung soll hier behauptet werden, dass sie der richtigen Sachlage entsprechen. Sowohl diese Theorien als auch die Helmholtzsche Theorie der Flüssigkeitsbewegungen unter Annahme der Existenz eines Geschwindigkeitspotentials und seine (zweidimensionale) Theorie der freien Ausflussstrahlen sind auf die Voraussetzung gegründet, dass die konforme Abbildung der Resultate von einem Grundfalle auf alle anderen gestattet sei. Diese gemeinschaftliche Grundhypothese könnte also die physikalischen Hypothesen ersetzen. Man kann auch Fragen der Biegungsfestigkeit und der Kapillarität den Forderungen der konformen Abbildung anbequemen, wodurch man allerdings nur angenäherte Resultate erzielen wird. Über den Grad der Annäherung würde dann das Experiment in ähnlicher Weise zu entscheiden haben. wie neuerdings Herr Prof. v. Bach Versuche zur Prüfung der Theorie von Saint Venant angestellt hat, deren Resultat ein befriedigendes für die zu Grunde gelegten Hypothesen sein soll.

Jedenfalls erkennt man an den obigen Darlegungen, dass sich die Methode der konformen Abbildung sehr wohl dazu eignet, in die genannten Theorien vorläufig elementar einzuführen, sogar zu den Elementen der modernen Funktionentheorie hin, dass man leicht Beispiele ausfindig machen kann, die das Verständnis der Theorie erleichtern, dass aber dabei namentlich die Lehre von den Hyperbeln und Lemniskaten höherer Ordnung von ausserordentlichen Nutzen ist. An den vorbereitenden Vortrag kann sich dann der höhere, rein analytische, dessen abstrakter Charakter häufig abschreckend auf den Zuhörer einwirkt, in leichter verständlicher Weise anschliessen. Auf diesen Weg aufmerksam zu machen und zugleich eine Ergänzung zum Kapitel meiner Einführung in die isogonalen Verwandtschaften zu geben, das war die eigentliche Absicht dieser Zeilen.

Beiträge zur Theorie des ebenen Gelenkvierecks.

Von

Dr. R. MÜLLER,

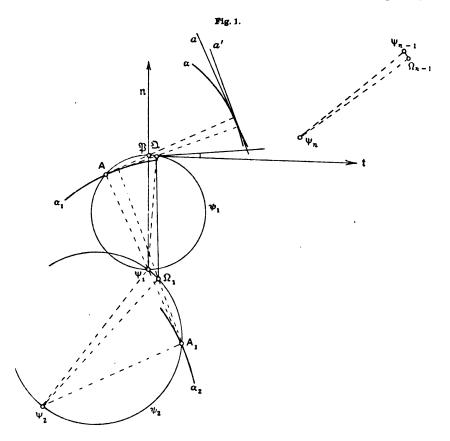
Professor an der Technischen Hochschule zu Braunschweig.

Die vorliegende Mitteilung bildet einen Auszug aus einer grösseren Arbeit mit gleichem Titel in der Festschrift, welche die technische Hochschule zu Braunschweig aus Anlass der diesjährigen Naturforscherversammlung herausgegeben hat. Ausgehend von der Betrachtung gewisser Punktketten, die in Ermangelung einer besseren Benennung als Wende- und Rückkehrpole höherer Ordnung bezeichnet werden, giebt der Aufsatz eine Übersicht über alle singulären Fälle, die bei der Momentanbewegung der Koppelebene eines Gelenkvierecks eintreten können. Wichtig erscheint hierbei vor allem die Untersuchung solcher Koppellagen, bei denen ein Systempunkt eine Bahnkurve mit sechspunktig berührender Tangente beschreibt — eine Frage, die mit dem Problem der angenäherten Geradführung unmittelbar zusammenhängt.

I. Allgemeine Sätze über die Bewegung eines starren ebenen Systems in seiner Ebene.

1. Die Kette der Rückkehrpole. Sind S und S' zwei unendlich benachbarte Lagen eines komplan bewegten starren ebenen Systems, $\mathfrak P$ und $\mathfrak Q$ die zugehörigen Pole, a und a' die entsprechenden Lagen einer beliebigen Systemgeraden, a ihre Hüllbahnkurve, so schneiden sich die Lote von $\mathfrak P$ und $\mathfrak Q$ bez. auf a und a' im Krümmungsmittelpunkte $\mathfrak A$ der Kurve a (Fig. 1). Die Punkte $\mathfrak P$, $\mathfrak Q$, $\mathfrak A$ bestimmen den Rückkehrkreis ψ_1 der Systemlage S; auf diesem erhalten wir als Gegenpunkt zu $\mathfrak P$ den Rückkehrpol $\mathfrak P_1$. Bezeichnen wir die unendlich kleine Strecke $\mathfrak P \mathfrak Q$ mit ds und den Winkel der beiden Systemlagen S und S' mit $d\mathfrak P$, so ist der Durchmesser von ψ_1 gleich $\frac{ds}{d\mathfrak P}$. Wir setzen im folgenden voraus, dass dieser Quotient endlich und von Null verschieden ist.

Verstehen wir unter Ω_1 den Rückkehrpol für die Systemlage S', so treffen sich die Lote von Ψ_1 auf $\mathfrak{P}A$ und von Ω_1 auf $\mathfrak{Q}A$ im Krümmungsmittelpunkte A_1 der Evolute α_1 von α , und dann befinden sich die Krümmungsmittelpunkte der Evoluten aller Hüllbahnkurven, die von den Systemgeraden erzeugt werden, momentan auf einem Kreise ψ_2 , der über der Sehne $\Psi_1\Omega_1$ den Peripheriewinkel $d\mathfrak{F}$ fasst; wir nennen ihn den zweiten Rückkehrkreis und den zugehörigen



Gegenpunkt Ψ_2 von Ψ_1 den zweiten Rückkehrpol der Systemlage S.

— Das Dreieck $\Psi_1 \Omega_1 \Psi_2$ hat bei Ω_1 einen rechten Winkel, bei Ψ_2 den Winkel $d\vartheta$ und ist gleichsinnig ähnlich dem Dreieck $\mathfrak{PQ}\Psi_1$.

Die Gerade $A_1\Psi_2$ ist eine Normale der Evolute α_2 von α_1 , oder der zweiten Evolute von α . Bestimmen wir für diese wieder den Krümmungsmittelpunkt A_2 , dann für ihre Evolute α_3 den Krümmungsmittelpunkt A_4 u. s. f., so gelangen wir schliesslich zu dem Satze: Die Normalen der n-1^{ten} Evoluten aller Hüllbahnkurven, die von den Systemgeraden erzeugt werden, gehen für jede Systemlage S durch einen bestimmten Punkt Ψ_{n-1} , den n-1^{ten} Rück-

kehrpol der Systemlage. Die Krümmungsmittelpunkte dieser Evoluten sind die Fusspunkte der aus dem nten Rückkehrpole Y, auf jene Normalen gefällten Lote; sie erfüllen den n^{ten} Rückkehrkreis ψ_n , der die Strecke $\Psi_{n-1}\Psi_n$ zum Durchmesser hat.

Der Pol \mathfrak{P} und die n ersten Rückkehrpole $\Psi_1 \ldots \Psi_n$ bilden ein Aquivalent für n+2 unendlich benachbarte Systemlagen.

2. Formeln für die Koordinaten der Rückkehrpole. Ω_{n-1} der n-1 der Rückkehrpol der Systemlage S', so folgt aus der Ahnlichkeit der Dreiecke $\Psi_{n-1}\Omega_{n-1}\Psi_n$ und $\mathfrak{PQ}\Psi_1$ die Proportion

$$\Psi_{n-1}\Omega_{n-1}:\Omega_{n-1}\Psi_n=\mathfrak{PO}:\mathfrak{Q}\Psi_1.$$

Wir bezeichnen nun mit ξ_n , η_n die rechtwinkligen Koordinaten des Punktes Y, für B als Anfangspunkt und die Polbahntangente t als \xi-Axe; dabei rechnen wir die Gerade t positiv in der Richtung von 🎖 nach 🖸 und nehmen als positive η-Axe denjenigen Teil der Polbahnnormale n, der nach einer Drehung um 90° im Sinne der Drehung des Systems mit der positiven Geraden t zusammenfällt. Betrachten wir die Strecke βΨ, als das geometrische Bild der komplexen Grösse $\zeta_n = \xi_n + i\eta_n$ und verstehen unter $d\tau$, $d\tau + d^2\tau$ bez. die Kontingenzwinkel der Polbahn bei \$\mathbb{B}\$ und \$\mathbb{O}\$, so ist

$$\mathfrak{P}\Omega_{n-1} = ds + e^{i(d\tau + d^2\tau)}(\zeta_{n-1} + d\zeta_{n-1}) = \zeta_{n-1} + d\zeta_{n-1} + i\zeta_{n-1}d\tau + ds.$$

Hieraus finden wir sofort $\Psi_{n-1}\Omega_{n-1}$ und $\Omega_{n-1}\Psi_n$, und da

$$\mathfrak{D}\Psi_1 = -i\frac{ds}{dv}$$

ist, so ergiebt sich aus der obigen Proportion zur Berechnung von 🐛 die Rekursionsformel:

1)
$$\zeta_n d\vartheta = \zeta_{n-1} (d\vartheta + d\tau) - i d\zeta_{n-1} - i ds,$$

oder

$$\begin{cases} \xi_n d\vartheta = \xi_{n-1}(d\vartheta + d\tau) + d\eta_{n-1} \\ \eta_n d\vartheta = \eta_{n-1}(d\vartheta + d\tau) - d\xi_{n-1} - ds. \end{cases}$$

Für den Punkt Ψ, ist

$$\xi_1 = 0, \quad \eta_1 = -\frac{ds}{d\theta}.$$

Betrachten wir das Bogenelement ds der Polbahn immer als konstant, so folgt für den Punkt Ψ₂:

4)
$$\xi_2 = \frac{ds}{d\vartheta^3} d^2\vartheta, \quad \eta_2 = -\frac{ds}{d\vartheta^2} (2d\vartheta + d\tau);$$

dabei bedeutet das den Zuwachs, den der Drehungswinkel das erhält, wenn das System aus der Lage S' in die folgende Lage S'' übergeht. Wir finden ferner

5)
$$\begin{cases} \xi_{3} = \frac{ds}{d\theta^{4}} [3d^{2}\theta(d\theta + d\tau) - d\theta d^{2}\tau], \\ \eta_{3} = -\frac{ds}{d\theta^{5}} [d\theta^{2}(3d\theta^{2} + 3d\theta d\tau + d\tau^{2}) - 3d^{2}\theta^{2} + d\theta d^{5}\theta] \end{cases}$$

3. Die Kette der Wendepole. Durch Umkehrung der Bewegung folgt unmittelbar aus den Sätzen des Art. 1: Die Normalen der n-1ten Evoluten aller Systemkurven, welche gerade Linien umhüllen, gehen für jede Systemlage S durch einen bestimmten Punkt — wir nennen ihn den $n-1^{\text{ten}}$ Wendepol W_{n-1} der Systemlage. Die Krümmungsmittelpunkte jener $n-1^{ten}$ Evoluten sind die Fusspunkte der aus dem nten Wendepol W, auf die zugehörigen Normalen gefällten Lote; sie erfüllen den n^{ten} Wendekreis w_n , der die Strecke $W_{n-1}W_n$ zum Durchmesser hat.

Die umgekehrte Bewegung hat $W_1, W_2 \dots$ zu Rückkehrpolen; sie besteht in einer Reihe von Drehungen der bisher festen Ebene um die Winkel $-d\vartheta$, $-(d\vartheta+d^2\vartheta)$... und zwar um diejenigen Punkte der Polkurve, die nacheinander mit den Punkten B, D... der Polbahn zusammenfallen. Nun hat die Polkurve bei B den Kontingenzwinkel $d\vartheta + d\tau$, bezeichnen wir also mit x_n , y_n die Koordinaten von W_n in Bezug auf das frühere Koordinatensystem und setzen

$$x_n + iy_n = x_n$$

so erhalten wir aus Gleichung 1) durch Vertauschung von ζ, dθ, dτ bez. mit z_n , $-d\vartheta$, $d\vartheta + d\tau$ für z_n die Rekursionsformel:

6)
$$z_n d\theta = -z_{n-1} d\tau + i dz_{n-1} + i ds,$$

und die Gleichungen 2) bis 5) verwandeln sich in:

7)
$$\begin{cases} x_n d\vartheta = -x_{n-1} d\tau - dy_{n-1} \\ y_n d\vartheta = -y_{n-1} d\tau + dx_{n-1} + ds, \end{cases}$$

$$\begin{cases} x_1 = 0, \\ y_1 = \frac{ds}{d\vartheta}, \\ x_2 = \frac{ds}{d\vartheta} d^2\vartheta, \\ y_2 = \frac{ds}{d\vartheta^2} (d\vartheta - d\tau), \\ x_3 = \frac{ds}{d\vartheta^4} [d^2\vartheta (d\vartheta - 3d\tau) + d\vartheta d^2\tau], \\ y_3 = \frac{ds}{d\vartheta^5} [d\vartheta^2 (d\vartheta^2 - d\vartheta d\tau + d\tau^2) - 3d^2\vartheta^2 + d\vartheta d^3\vartheta]. \end{cases}$$
Digitized by Coogle

4. Zwischen den Koordinaten der Rückkehr- und der Wendepole besteht die einfache Beziehung:

$$x_n = \sum_{k=1}^{n} (-1)^{2} {n+1 \choose k+1} \xi_{k}, \quad y_n = \sum_{k=1}^{n} (-1)^{2} {n+1 \choose k+1} \eta_{k}.$$

Der Beweis ergiebt sich mittels des Schlusses von n auf n+1 unter Benutzung der Gleichungen 1) und 6).

5. Wird die Systembewegung durch Angabe von Polbahn und Polkurve bestimmt und sind

$$\pi = \frac{ds}{d\tau}$$
 und $p = \frac{ds}{d\vartheta + d\tau}$

bez. die Krümmungsradien dieser Kurven im Punkte \mathfrak{P} , so gehen die Formeln für die Punkte Ψ_n und W_n über in

9)
$$\begin{cases} (\pi - p)\xi_n = \pi \xi_{n-1} + \pi p \frac{d\eta_{n-1}}{ds} \\ (\pi - p)\eta_n = \pi \eta_{n-1} - \pi p \frac{d\xi_{n-1}}{ds} - \pi p, \end{cases}$$

$$\begin{cases} (p - \pi)x_n = px_{n-1} + p \pi \frac{dy_{n-1}}{ds} \\ (p - \pi)y_n = py_{n-1} - p \pi \frac{dx_{n-1}}{ds} - p\pi. \end{cases}$$

Bezeichnen wir mit $\pi_1, \pi_2 \dots p_1, p_2 \dots$ die zugehörigen Krümmungsradien der aufeinander folgenden Evoluten beider Rollkurven, so ist

$$\frac{d\pi}{ds} = -\frac{\pi_1}{\pi}, \quad \frac{d\pi_n}{ds} = (-1)^{n+1} \frac{\pi_{n+1}}{\pi},$$

und analoge Gleichungen gelten für $\frac{dp}{ds}$, $\frac{dp_n}{ds}$. Dann werden mit Hilfe der Gleichungen 9) und 10) die Koordinaten von Ψ_n und W_n ausgedrückt durch die Krümmungsradien

$$\pi$$
, π ₁, π ₂ ... p , p ₁, p ₂ ...

6. Spezielle Fälle.* I. Liegen von den n ersten Wendepolen $W_1, W_2 \dots W_n$ alle Punkte mit geradem Index auf einer durch den Pol $\mathfrak B$ gehenden Geraden und alle Punkte mit ungeradem Index auf einer zu dieser senkrechten Geraden, so beschreibt der Schnittpunkt K beider Geraden — der Ballsche Punkt — momentan eine Bahnstelle mit n+2 punktig berührender Tangente, und umgekehrt. Denn in K schneiden sich gegenwärtig alle Wendekreise von w_1 bis w_n ; der Punkt K kann also als eine ausgeartete Systemkurve betrachtet werden, welche in n+2 aufeinander folgenden Lagen eine feste Gerade berührt.

^{*} Vergl. Mehmke, über die Bewegung eines starren ebenen Systems in seiner Ebene, diese Zeitschrift Bd. 35, S. 1 und 65.

II. Aus dem letzten Satze folgt unmittelbar: Wenn in der Kette der Wendepole von W_3 bis W_n alle Punkte von geradem Index mit \mathfrak{P} und alle Punkte von ungeradem Index mit W_1 zusammenfallen, so durchschreiten alle Punkte von w_1 Bahnstellen mit n+2 punktig berührender Tangente, mit Ausnahme des Pols \mathfrak{P} und desjenigen Punktes K, der zugleich auf dem ersten von w_1 verschiedenen Wendekreise w_{n+1} liegt; die Bahnkurve dieses Punktes hat mit der Geraden W_1K n+3 unendlich benachbarte Punkte gemein. In diesem Falle ist:

$$p = \frac{\pi}{2}, \ \pi_1 = \pi_2 = \cdots = 0,$$
 $p_1 = p_2 = \cdots p_{n-2} = 0,$
 $p_{n-1} = \frac{\pi_{n-1}}{2^{n+1}},$

ferner für

 $k = 1 \dots n, \quad \xi_k = 0, \quad \eta_k = y_1(1 - 2^k),$ $\Psi_1 \Psi_2 = 2 \cdot \mathfrak{P} \Psi_1 \dots \Psi_{n-1} \Psi_n = 2 \cdot \Psi_{n-2} \Psi_{n-1}.$

also

III. Ist die Polbahn eine gerade Linie, so sind die Wendepole die dem Punkte \$\mathbb{B}\$ entsprechenden Krümmungsmittelpunkte der Polkurve und ihrer Evoluten (Art. 5). Ist anderseits in irgend einer Systemlage

$$\mathfrak{P}W_1 \perp W_1 W_2 \perp W_2 W_3 \ldots W_{n-2} W_{n-1} \perp W_{n-1} W_n$$

so hat die Polbahn im Punkte \mathfrak{P} eine n+1 punktig berührende Tangente.

IV. Sind die beiden Rollkurven Kreise mit den Radien π und p, so folgt aus den Gleichungen 9):

$$\xi_1 = \xi_2 = \dots = 0, \quad \eta_1 = -\frac{p\pi}{\pi - p},$$

$$\eta_2 = \eta_1 - p\left(\frac{\pi}{\pi - p}\right)^2$$

$$\eta_n = \eta_{n-1} - p\left(\frac{\pi}{\pi - n}\right)^n,$$

und allgemein

und analoge Formeln gelten für die Koordinaten von $W_1 W_2 \dots$ Daraus ergiebt sich eine einfache Konstruktion der Punkte Ψ_i und W_i

V. Sind beide Rollkurven symmetrisch in Bezug auf die Polbahnnormale \mathfrak{n} , so liegen die sämtlichen Wende- und Rückkehrpole auf dieser Geraden. Denn konstruieren wir zu zwei Systemgeraden a und b, die in Bezug auf \mathfrak{n} symmetrisch liegen, die Krümmungsmittelpunkte $A, A_1 \ldots B, B_1 \ldots$ der zugehörigen Hüllbahkurven und ihrer Evoluten, so sind die entstehenden Punktketten symmetrisch in Bezug auf \mathfrak{n} und es schneiden sich $A_{\mathfrak{n}-1}A_{\mathfrak{n}}$ und $B_{\mathfrak{n}-1}B_{\mathfrak{n}}$ in $\Psi_{\mathfrak{n}}$

7. Die Krümmungradien der Evoluten einer Hüllbahnkurve. Wir betrachten in der Systemlage S eine beliebige Systemkurve c mit den Evoluten c_1, c_2, \ldots und bezeichnen mit $\gamma, \gamma_1, \gamma_2, \ldots$ die zugehörige Hüllbahnkurve und deren Evoluten, mit C und Γ die Krümmungsmittelpunkte von c und γ auf der durch \mathfrak{P} gehenden Normale beider Kurven, mit $C_1, C_2, \ldots, \Gamma_1, \Gamma_2, \ldots$ die entsprechenden Krümmungsmittelpunkte von $c_1, c_2, \ldots, \gamma_1, \gamma_2, \ldots$ (Fig. 2). In der unendlich benachbarten Systemlage S' kommen die Kurven c, c_1, c_2, \ldots nach c', c'_1, c'_2, \ldots ; dann bestimmt die Tangente aus dem Pole \mathfrak{Q} an c'_1 den

Berührungspunkt von c' und γ und diesem entsprechen auf

$$c'_1, c'_2, \ldots, \gamma_1, \gamma_2, \ldots$$

bez. die Krümmungs-
mittelpunkte

$$D', D'_1 \ldots \Delta, \Delta_1 \ldots$$

Setzen wir

$$LC$$
 $\mathfrak{P}\mathfrak{Q} = \boldsymbol{\varphi},$

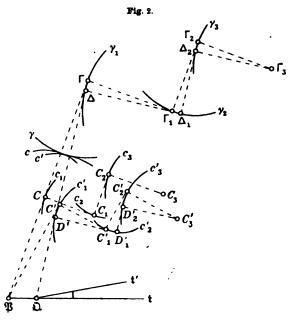
$$\Re C = r$$
,

$$C'C_1 = r_1,$$

 $C'_1C_2 = r_2$.. $\mathfrak{B}\Gamma = \varrho$,

$$\Gamma\Gamma_1 = \varrho_1 \dots,$$

so bildet Ω D' mit der Tangente t' der Polbahn in Ω den Winkel $q + d\varphi$, und es ist



$$\mathfrak{Q}D'=r+dr, \quad D'D'_1=r_1+dr_1\ldots\mathfrak{Q}\Delta=\varrho+d\varrho,$$
$$\Delta\Delta_1=\varrho_1+d\varrho_1\ldots$$

Dabei verstehen wir unter φ denjenigen zwischen 0° und 180° liegenden Winkel, um welchen $\mathfrak{P}C$ im Sinne der Drehung des Systems gedreht werden muss, um mit der positiven Polbahntangente t zusammenzufallen, und wir rechnen $r, r_1 \dots \varrho, \varrho_1 \dots$ positiv, wenn nach dieser Drehung bez. die Strecken $\mathfrak{P}C$, $CC_1 \dots \mathfrak{P}\Gamma$, $\Gamma\Gamma_1 \dots$ zur positiven Polbahntangente oder zur negativen Polbahnnormale parallel sind.

Bezeichnen wir die Winkel $\mathfrak{D}\Gamma\mathfrak{P}$ und $\mathfrak{D}C'\mathfrak{P}$ bez. mit $d\mu$ und $d\nu$, so folgt aus dem Dreieck $\mathfrak{P}\mathfrak{D}C'$:

$$d\nu = \frac{ds}{r}\sin\varphi,$$

und da $\angle C \mathfrak{P} C' = d\vartheta$ ist, so wird

$$d\mu = d\nu - d\vartheta = \frac{ds\sin\varphi - rd\vartheta}{r}.$$

Dann ergiebt sich unmittelbar aus der Figur:

11)
$$\varrho = \frac{ds}{d\mu} \sin \varphi = \frac{r ds \sin \varphi}{ds \sin \varphi - r d\vartheta},$$

12)
$$\varrho_{1} = \frac{\Gamma \Delta}{d\mu} = -\frac{d\varrho + ds \cos \varphi}{d\mu} = -\frac{r(d\varrho + ds \cos \varphi)}{ds \sin \varphi - r d\vartheta},$$

$$\varrho_{2} = \frac{\Gamma_{1} \Delta_{1}}{d\mu} = \frac{d\varrho_{1}}{d\mu}$$

und es gilt allgemein für n=2,3... zur Berechnung von ϱ_n die Rekursionsformel:

13)
$$\varrho_n = (-1)^n \frac{d\varrho_{n-1}}{d\mu} = (-1)^n \frac{r d\varrho_{n-1}}{ds \sin \varphi - r d\vartheta}$$

Die Ausdrücke für $d\varrho$, $d\varrho_1$... enthalten noch die Differentiale von r und φ . Nun folgt aus dem Dreieck $\mathfrak{PQ}C'$:

$$dv + \varphi - d\vartheta = \varphi + d\varphi + d\tau + d^2\tau,$$

$$d\varphi = dv - (d\vartheta + d\tau) = \frac{ds}{\tau}\sin\varphi - (d\vartheta + d\tau),$$

also

und es ist ferner

$$r_1 dv = C' D' = -dr - ds \cos \varphi,$$

 $r_2 dv = C'_1 D'_1 = dr_1$

folglich

$$dr = -ds\cos\varphi - \frac{r_1}{r}ds\sin\varphi$$

und allgemein für n=1, 2...

$$dr_n = (-1)^{n+1} \frac{r_{n+1}}{r} ds \sin \varphi.$$

Für den Fall, dass die Systembewegung durch den Pol $\mathfrak P$ und die Kette der Rückkehrpole $\Psi_1\Psi_2\dots$ bestimmt ist, finden wir aus den Gleichungen des Art. 2:

$$d\vartheta = \frac{d\eta_1}{\xi_2}, \quad ds = -\frac{\eta_1}{\xi_2}d\eta_1, \quad d\vartheta + d\tau = \frac{\eta_2 - \eta_1}{\eta_1 \xi_2}d\eta_1,$$

und dann gehen die Gleichungen 11) bis 13) über in

11')
$$\varrho = \frac{\eta_1 r \sin \varphi}{r + \eta_1 \sin \varphi},$$
12')
$$\varrho_1 = \frac{r}{r + \eta_1 \sin \varphi} \left(\frac{\xi_2}{d \eta_1} - \eta_1 \cos \varphi \right),$$
13')
$$\varrho_n = (-1)^{n-1} \frac{\xi_2 r}{r + \eta_1 \sin \varphi} \cdot \frac{d \varrho_{n-1}}{d \eta_1}, \qquad (n = 2, 3...)$$
Hierbei ist:
$$\frac{d \varphi}{d \eta_1} = \frac{1}{\xi_2} \left(1 - \frac{\eta_2}{\eta_1} - \frac{\eta_1}{r} \sin \varphi \right),$$

$$\frac{d r}{d \eta_1} = \frac{\eta_1}{\xi_2} \left(\frac{r_1}{r} \sin \varphi + \cos \varphi \right),$$

$$\frac{d r_n}{d \eta_2} = (-1)^n \frac{\eta_1 r_{n+1}}{\xi_2 r} \sin \varphi \qquad (n = 1, 2...)$$

und nach 2):

$$\begin{split} \frac{d\,\xi_n}{d\,\eta_1} &= \frac{1}{\xi_2} \left(\eta_1 - \,\eta_{n+1} + \frac{\eta_2 - \eta_1}{\eta_1} \,\eta_n \right), \\ \frac{d\,\eta_n}{d\,\eta_1} &+ \frac{1}{\xi_2} \left(\xi_{n+1} - \frac{\eta_2 - \eta_1}{\eta_1} \,\,\xi_n \right). \end{split}$$

Die Gleichungen 11') bis 13') dienen umgekehrt auch zur Bestimmung der Rückkehrpole, wenn von zwei beliebigen Systemkurven die Hüllbahnkurven bekannt sind.

8. Die Punkte stationärer Krümmung. Tritt an die Stelle der Kurve c ein einziger Systempunkt C, so bestimmen die Gleichungen 11') bis 13') die Krümmungsradien der zugehörigen Bahnkurve ρ und ihrer Evoluten, wenn $r_1 = r_2 = \cdots = 0$ gesetzt wird. Beschreibt nun der Punkt C momentan eine Bahnstelle mit vierpunktig berührendem Krümmungskreise, so hat der Krümmungsradius $r-\varrho$ in den Systemlagen S und S' denselben Wert, d. h. es ist

$$\frac{d(r-\varrho)}{d\eta_1}=0.$$

Setzen wir hier für ϱ den Wert aus Gleichung 11') und für $\frac{d\varphi}{d\eta_1}$ und $\frac{dr}{d\eta_1}$ die vorhin gefundenen Ausdrücke, so erhalten wir

14) $r(\eta_2 \cos \varphi - \xi_2 \sin \varphi) + 3\eta_1^2 \cos \varphi \sin \varphi = 0$ als Gleichung der Kreispunktkurve der Systemlage S, d. h. des Ortes aller Systempunkte, die momentan Bahnstellen mit stationärem Krümmungskreise durchlaufen.

Die Kurve γ hat mit ihrem Krümmungskreise in C nicht nur vier, sondern fünf unendlich benachbarte Punkte gemein, wenn auch der Differentialquotient der linken Seite von Gleichung 14) verschwindet; dies führt zu der Bedingung:

15)
$$\begin{cases} r^{2} [\xi_{3} \cos \varphi + (\eta_{3} - \eta_{1}) \sin \varphi] \\ + r \eta_{1} [3 \eta_{1} \cos^{2} \varphi + 4 \xi_{2} \cos \varphi \sin \varphi + (4 \eta_{2} - 3 \eta_{1}) \sin^{2} \varphi] \\ + 3 \eta_{1}^{3} \sin \varphi = 0. \end{cases}$$

Die Gleichungen 14) und 15) bestimmen im allgemeinen vier Punkte (r, φ) , die wir als die Burmesterschen Punkte der Systemlage S bezeichnet haben.*

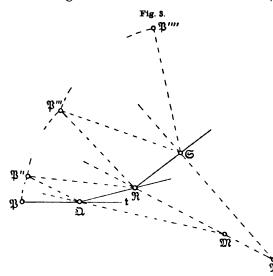
Soll endlich der Punkt C in sechs unendlich benachbarten Lagen auf einem Kreise bleiben, so erhalten wir aus 15) durch Differentiation nach η_1 die neue Bedingung:

$$16)\begin{cases} r^{2}(\xi_{4}\sin\varphi - \eta_{4}\cos\varphi) + r\eta_{1} \\ [(2\xi_{8}+10\xi_{2})\cos^{2}\varphi - (3\eta_{3}-16\eta_{2}+12\eta_{1})\cos\varphi\sin\varphi + (5\xi_{3}-6\xi_{2})\sin^{2}\varphi] \\ + \eta_{1}^{2}[(-2\eta_{2}+6\eta_{1})\cos^{3}\varphi + 20\xi_{2}\cos^{2}\varphi\sin\varphi \\ + (6\eta_{2}+12\eta_{1})\cos\varphi\sin^{2}\varphi + 12\xi_{2}\sin^{3}\varphi] = 0. \end{cases}$$

^{*} Über die Bewegung eines starren ebenen Systems durch fünf unendlich benachbarte Lagen, diese Zeitschrift Bd. 37, S. 145; sowie Konstruktion der Burmesterschen Punkte für ein ebenes Gelenkviereck, daselbst erste Mitteilung Bd. 37, S. 213, zweite Mitteilung Bd. 38, S. 129.

Die Gleichungen 11'), 14), 15), 16) dienen zur Bestimmung von $\Psi_1 \dots \Psi_4$, wenn wir vorschreiben, dass zwei Systempunkte C und D sich in sechs unendlich benachbarten Lagen auf zwei gegebenen Kreisen bewegen sollen. — Die entsprechenden Gleichungen für die Wendepole ergeben sich aus den vorigen durch Vertauschung von r, η_i , ξ_i bez mit ϱ , y_i , x_i .

9. Der Pol als Systempunkt. Die in Art. 7 abgeleiteten Formeln gelten nicht für die Bahnkurve p desjenigen Systempunkts,



der in der Systemlage S mit dem Pole B zusammenfällt. Dieser bleibt beim Übergang von S in S' fest und gelangt in den folgenden Systemlagen Drehungen um die Pole Q, R, S... bez. nach P", P", P""...; der dem Punkte B entsprechende Krümmungsmittelpunkt von p ist also der Schnittpunkt M der Halbierungslinien der Winkel BOB" und B"RP" (Fig. 3).

Nun ist der Kontigenzwinkel der Polbahn bei $\mathfrak Q$ gleich $d\tau + d^2\tau$ und $\angle \mathfrak P \mathfrak Q \mathfrak P'' = d\mathfrak D + d^2\mathfrak D$, $\angle \mathfrak P'' \mathfrak R \mathfrak P''' = d\mathfrak D + 2d^2\mathfrak D + d^3\mathfrak D$,

mithin ergiebt sich aus dem Dreieck ORM:

$$\Re \mathfrak{M} = ds \frac{d\vartheta + 2d\tau + d^2\vartheta + 2d^2\tau}{d\vartheta - d\tau + 2d^2\vartheta - d^2\tau}.$$

Hieraus folgt: Der mit dem Pole $\mathfrak B$ zusammenfallende Systempunkt beschreibt im allgemeinen eine Spitze vom Krümmungsradius Null. Ist jedoch $d\mathfrak F = d\mathfrak r$, so hat die Kurve $\mathfrak p$ in $\mathfrak B$ eine Schnabelspitze mit dem endlichen Krümmungsradius:

$$\mathfrak{r} = \frac{3dsd\vartheta}{2d^2\vartheta - d^2\tau}$$

In diesem Falle wird zufolge den Gleichungen 8):

$$y_2 = 0$$
, $x_3 = \frac{ds}{d\theta^3} (d^2\tau - 2d^2\theta)$;

die vorige Gleichung geht demnach über in:

$$\mathfrak{r} = -3 \frac{y_1^2}{x_2}$$

Der Punkt \$\mathbb{B}\$ beschreibt also im allgemeinen eine Schnabelspitze von endlicher Krümmung, wenn der zweite Wendepol auf der Polbahntangente liegt. Befindet sich gleichzeitig der dritte Wendepol auf der Polbahnnormale, so wird der Krümmungsradius r unendlich gross.

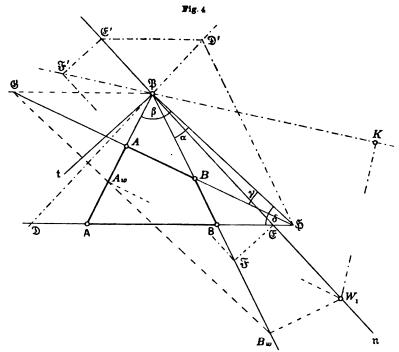
Bezeichnen wir noch mit \mathfrak{N} den Schnittpunkt von $\mathfrak{R}\mathfrak{M}$ und der Halbierungslinie des Winkels $\mathfrak{P}'''\mathfrak{S}\mathfrak{P}''''$, so erhalten wir für den zugehörigen Krümmungsradius \mathfrak{r}_1 der Evolute \mathfrak{p}_1 von \mathfrak{p} :

18)
$$r_1 = \frac{\mathfrak{M}\mathfrak{N}}{L\mathfrak{L}\mathfrak{M}\mathfrak{M}} = \frac{4dsd\vartheta}{(d\vartheta - d\mathfrak{r})^2} = 4\frac{y_1}{y_2}^3.$$

Beschreibt demnach der Punkt \mathfrak{P} eine Spitze vom Krümmungsradius Null, so hat die Kurve \mathfrak{p}_1 in \mathfrak{P} einen gewöhnlichen Punkt vom Krümmungsradius \mathfrak{r}_1 . Besitzt dagegen die Kurve \mathfrak{p} in \mathfrak{P} eine Schnabelspitze mit endlichem Krümmungsradius \mathfrak{PM} , so ist \mathfrak{M} ein Wendepunkt der Evolute \mathfrak{p}_1 und $\mathfrak{r}_1 = \infty$.

II. Anwendungen auf das Gelenkviereck.

10. Die Wendepole W_1 , W_2 und der Ballsche Punkt K für eine beliebige Koppellage. In Figur 4 ist ABBA ein Gelenk-



viereck mit dem festen Gliede AB und der Koppel AB. Bekanntlich entspricht jeder Koppellage, für welche der Pol nicht unendlich fern ist, ein en dlicher Wendekreis w_1 ; jede solche Systemlage S genügt

also der früher gemachten Voraussetzung, dass der Quotient $\frac{ds}{d\vartheta}$ endlich und von Null verschieden sei. Bestimmen wir dann die zugehörigen Wendepole W_1, W_2, \ldots , so können wir leicht die Bedingungen angeben, denen die betrachtete Systemlage genügen muss, wenn bezüglich der Momentanbewegung der Koppelebene einer der in Art. 6 behandelten Sonderfälle eintreten soll. Die erhaltenen Resultate können schliesslich durch einen einfachen Grenzübergang auch auf den Fall ausgedehnt werden, wo der Pol unendlich fern liegt.

Die Geraden AA und BB schneiden sich im Pole \mathfrak{P} der gezeichneten Koppellage. Um den ersten Wendepol W_1 zu ermitteln, bestimmen wir den Schnittpunkt \mathfrak{H} von AB und AB, ziehen \mathfrak{H} parallel zu AB bis AB und durch \mathfrak{G} zu \mathfrak{H} eine Parallele, die AA und BB bez. in A_w , B_w schneidet. Die in A_w , B_w bez. zu AA, BB errichteten Lote treffen sich in W_1 .

Setzen wir:

 $\mathfrak{P}\mathfrak{H}=h$, $L\mathfrak{H}\mathfrak{P}B=\alpha$, $L\mathfrak{H}\mathfrak{P}A=\beta$, $LA\mathfrak{H}\mathfrak{P}=\gamma$, $LA\mathfrak{H}\mathfrak{P}=\delta$, so folgt aus der Figur:

19)
$$\Re W_1 = y_1 = h \frac{\sin \gamma \sin \delta}{\sin \alpha \sin \beta \sin(\delta - \gamma)}$$

Nach den in Art. 2 getroffenen Festsetzungen geht durch W_1 die positive Polbahnnormale n. Nehmen wir an, die Koppelebene drehe sich momentan um $\mathfrak B$ im Sinne des Uhrzeigers, so haben wir unter positiver Polbahntangente denjenigen durch $\mathfrak B$ gehenden Strahl t zu verstehen, für welchen $L\mathfrak n\mathfrak B t$, im angegebenen Sinne gelesen, gleich 90° ist. Dann ist für den Punkt A der früher mit φ bezeichnete Winkel $A\mathfrak B t = \alpha$, für $B LB\mathfrak B t = \beta$; setzen wir daher:

$$\mathfrak{P}A=r, \quad \mathfrak{P}B=r', \quad \mathfrak{P}A=\varrho, \quad \mathfrak{P}B=\varrho'$$

und vertauschen in Gleichung 14) die Bezeichnungen η_1 , ξ_2 , η_3 bezeint y_1 , x_2 , y_2 , sowie r und φ einerseits mit ϱ und α , anderseits mit ϱ' und β , so erhalten wir für die Koordinaten des zweiten Wendepols W_2 die Gleichungen:

20)
$$\begin{cases} \varrho\left(x_{2}\sin\alpha - y_{2}\cos\alpha\right) = 3y_{1}^{2}\sin\alpha\cos\alpha, \\ \varrho\left(x_{2}\sin\beta - y_{2}\cos\beta\right) = 3y_{1}^{2}\sin\beta\cos\beta. \end{cases}$$

Hieraus ergiebt sich:

$$\varrho \, \varrho' \, y_2 \sin(\alpha - \beta) = -3 \, y_1^2 \sin \alpha \sin \beta (\varrho \cos \beta - \varrho' \cos \alpha),
\varrho \, \varrho' \, x_2 \sin(\alpha - \beta) = -3 \, y_1^2 \cos \alpha \cos \beta (\varrho \sin \beta - \varrho' \sin \alpha).$$

Nun ist aber

$$\varrho = h \frac{\sin \delta}{\sin(\beta + \delta)}, \quad \varrho' = h \frac{\sin \delta}{\sin(\alpha + \delta)};$$

setzen wir also zur Abkürzung:

$$\frac{h\sin\delta}{\sin(\alpha+\delta)\sin(\beta+\delta)}=m,$$

$$\rho\rho'=mh\sin\delta,$$

$$\varrho \cos \beta - \varrho' \cos \alpha = m \sin(\alpha - \beta) \cos \delta,$$

$$\varrho \sin \beta - \varrho' \sin \alpha = -m \sin(\alpha - \beta) \sin \delta,$$

und die Gleichungen für y_2 und x_2 gehen über in:

21)
$$\begin{cases} y_2 = -\frac{3y_1 \sin \gamma \cos \delta}{\sin(\delta - \gamma)} \\ x_2 = \frac{3y_1 \cos \alpha \cos \beta \sin \gamma \sin \delta}{\sin \alpha \sin \beta \sin(\delta - \gamma)}. \end{cases}$$

Der Ballsche Punkt K der betrachteten Systemlage ist der Schnittpunkt des Wendekreises w_i mit der Geraden $\mathfrak{P}W_2$; bezeichnen wir daher mit z den Winkel KBt, so ist:

22)
$$\tan \chi = \frac{y_2}{x_2} = -\frac{\tan \alpha \tan \beta}{\tan \delta}.$$

Dies führt zu folgender Konstruktion des Punktes K: Wir errichten in B zu Bh ein Lot, welches die Gerade AB in D, die Parallele durch H zu BB in D' schneidet, legen durch D und D' in beliebiger Richtung zwei Parallelen und bestimmen deren Schnittpunkte & und E' mit n (in Fig. 4 fällt DE zusammen mit AB). Ziehen wir dann EF || t bis BB, FF' | n und E'F' || t, so ist K der Fusspunkt des Lotes von W, auf BF'.

11. Der Punkt K beschreibt momentan eine Bahnstelle mit fünfpunktig berührender Tangente, wenn die Gerade W1 W3 auf BW, senkrecht steht, d. h. wenn

$$23) y_2(y_3 - y_1) + x_2x_3 = 0$$

ist. Setzen wir nun zur Abkürzung:

 $y_1 \rho [3y_1(\cos^2\alpha - \sin^2\alpha) + 4x_2\cos\alpha\sin\alpha + 4y_2\sin^2\alpha] + 3y_1^3\sin\alpha = -\mathfrak{T}$ und verstehen unter I' den Ausdruck, in welchen I sich verwandelt, wenn wir ϱ und α bez. mit ϱ' und β vertauschen, so erhalten wir aus 15) für die Koordinaten des Punktes W, die Gleichungen:

24)
$$\left\{ \begin{array}{l} \varrho^3 \left[x_3 \cos \alpha + (y_3 - y_1) \sin \alpha \right] = \mathfrak{T}, \\ \varrho'^3 \left[x_3 \cos \beta + (y_3 - y_1) \sin \beta \right] = \mathfrak{T}'; \end{array} \right.$$

hieraus folgt:

eraus folgt:
$$24') \begin{cases} \varrho^2 \varrho'^2 x_3 \sin(\alpha - \beta) = -\mathfrak{T} \varrho'^2 \sin\beta + \mathfrak{T}' \varrho^2 \sin\alpha, \\ \varrho^2 \varrho'^2 (y_3 - y_1) \sin(\alpha - \beta) = \mathfrak{T} \varrho'^2 \cos\beta - \mathfrak{T}' \varrho^2 \cos\alpha. \end{cases}$$

Demnach geht Gleichung 23) über in:

$$\mathfrak{T}\varrho'^{2}(y_{2}\cos\beta-x_{2}\sin\beta)-\mathfrak{T}'\varrho^{2}(y_{2}\cos\alpha-x_{2}\sin\alpha)=0,$$

oder nach 20):

$$\mathfrak{T}\varrho'\sin\beta\cos\beta-\mathfrak{T}'\varrho\sin\alpha\cos\alpha=0$$
,

oder ausführlich geschrieben:

$$\begin{aligned} \varrho\,\varrho'\sin(\alpha-\beta)[3\,y_1\cos(\alpha-\beta)-4\,y_2\sin\alpha\sin\beta] \\ +3\,y_1^{\,2}\sin\alpha\sin\beta\,(\varrho\cos\alpha-\varrho'\cos\beta) &= 0. \end{aligned}$$
 Hierbei ist:
$$\varrho\cos\alpha-\varrho'\cos\beta = m\sin(\alpha-\beta)\cos(\alpha+\beta+\delta).$$

Setzen wir überdies für $\varrho \varrho'$, y_1 , y_2 die früher gefundenen Werte, so ergiebt sich:

25)
$$\cos(\alpha - \beta)\sin(\gamma + \delta) - \sin\gamma\cos(\alpha + \beta - \delta) = 0$$
, oder

25')
$$2\cot\delta = \cot\alpha + \cot\beta - \cot\gamma(1 + \cot\alpha\cot\beta)$$

als Bedingung dafür, dass in der betrachteten Lage der Koppelebene ein gewisser Punkt K eine Bahnstelle mit fünfpunktig berührender Tangente durchläuft. — Die Gerade W_1K hat für die Bahnkurve \varkappa des Punktes K den Charakter einer Inflexionstangente, die sich so innig an die Kurve anschmiegt, dass auch innerhalb endlicher Grenzen der Punkt K sich auf dieser Geraden zu bewegen scheint; wir sagen deshalb, das Gelenkviereck ABBA bewirkt eine fünfpunktige Geradführung des Punktes K auf der Geraden W_1K . In der unmittelbaren Umgebung von K befinden sich unendlich viele Systempunkte, deren Bahnkurven drei dicht aufeinander folgende Wendepunkte haben und darum gleichfalls eine auffällig gestreckte Gestalt besitzen.*

Fügen wir der Gleichung 25) noch die Bedingung hinzu, dass die vier Seiten des Vierecks ABBA von gegebener Länge sein sollen, so erhalten wir fünf Gleichungen zur Bestimmung der fünf Unbekannten h, α , β , γ , δ . Bei jedem Gelenkviereck giebt es daher Koppellagen, in denen dasselbe eine fünfpunktige Geradführung bewirkt.

12. Sechspunktige Geradführung. Nach Art. 6 I hat die Kurve \varkappa mit der Geraden W_1K sechs unendlich benachbarte Punkte gemein, wenn W_1W_3 auf $\mathfrak{P}W_2$ senkrecht steht, und wenn überdies der Punkt W_4 auf $\mathfrak{P}W_2$ liegt, d.h. wenn neben der Gleichung 25) noch der Bedingung genügt wird:

$$x_2y_4 - x_4y_2 = 0.$$

Bestimmen wir x_4 und y_4 mit Hilfe der Gleichung 16), so geht nach einfacher Rechnung, die der im vorigen Artikel ausgeführten ganz analog ist, die letzte Gleichung über in:

^{*} Konstruktion der Burmesterschen Punkte u. s. w., zweite Mitteilung. Vergl. auch L. Allievi, cinematica della biella piana, Napoli 1895. Dasellst wird die Aufgabe der fünfpunktigen Geradführung unter Beschränkung auf solche Koppellagen behandelt, für welche die Kreispunktkurve in irgend einer Weise ausartet.

$$(12\cot\alpha\cot\beta - 5)[2\cot\delta - (\cot\alpha + \cot\beta) + \cot\gamma(1 + \cot\alpha\cot\beta)] + 5[(1 - \cot\alpha\cot\beta)(\cot\gamma + \cot\delta) - (\cot\alpha + \cot\beta)(1 - \cot\gamma\cot\delta)] = 0.$$

Hier verschwindet nach 25') das erste Glied, und wir erhalten

d. h.:

$$\sin(\gamma+\delta-\alpha-\beta)=0,$$

 $\gamma + \delta = \alpha + \beta.$

Dann verwandelt sich 25) in

$$\sin 2\gamma = \sin 2\alpha + \sin 2\beta.$$

Die Gleichungen 26) und 27) bilden die notwendige und hinreichende Bedingung dafür, dass in der betrachteten Systemlage der Ballsche Punkt eine Bahnstelle mit sechspunktig berührender Tangente beschreibt. Es giebt demnach ∞ Gelenkvierecke, die eine sechspunktige Geradführung bewirken. — Da jeder Punkt der Koppelebene eine Kurve sechster Ordnung erzeugt, so ist die soeben ermittelte Geradführung von rein theoretischem Standpunkte aus die vollkommenste, die überhaupt mit Hilfe eines Gelenkvierecks erreicht werden kann.

13. Der geradgeführte Punkt K liegt auf der Koppelgeraden. Aus der in Art. 10 abgeleiteten Konstruktion des Ballschen Punktes K ergiebt sich leicht, dass der Punkt K auf die Gerade AB fällt, sobald die Winkel α , β , γ , δ der Gleichung genügen:

$$\cot \delta = \cot \alpha \cot \beta \cot \gamma,$$

und dann geht Gleichung 22) über in

$$\chi = 90^{\circ} + \gamma.$$

Fordern wir ausserdem, dass der Punkt K momentan eine Bahnstelle mit sechspunktig berührender Tangente beschreibt, so gelten für die Koppellage AB gleichzeitig die Bedingungen 26), 27) und 28); aus diesen folgt:

30)
$$\beta = 60^{\circ} + \alpha, \quad \gamma = 60^{\circ} - \alpha, \quad \delta = 3\alpha.$$

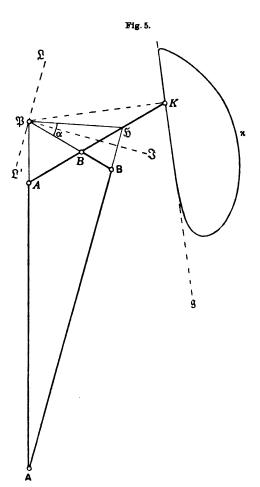
Es giebt daher ∞^2 Gelenkvierecke, welche die sechspunktige Geradführung eines auf der Koppelgeraden liegenden Punktes bewirken.

In Figur 5 ist ein Gelenkviereck dargestellt, bei welchem die Strecke $\mathfrak{P}\mathfrak{P}$ und der Winkel α beliebig gewählt sind und die Winkel β , γ , δ den letzten Gleichungen genügen. Für den zugehörigen Punkt K ist nach 29): $LK\mathfrak{P}\mathfrak{P} = 90^{\circ} + \gamma - (\alpha + \beta) = 90^{\circ} - \delta;$

fällen wir also von \$\mathbb{B}\$ auf AB ein Lot \$\mathbb{B}\$\$ und ziehen durch \$\mathbb{B}\$ eine Gerade, die mit \$\mathbb{B}\mathbb{D}\$ den Winkel \$\mathbb{B}\mathbb{B}\$\$ einschliesst, so schneidet die-

selbe AB in K. Die Bahnkurve \varkappa ist symmetrisch in Bezug auf AB und nur zur Hälfte gezeichnet; die sechspunktig berührende Tangente g steht senkrecht auf $\Re K$.

Im Dreieck \overrightarrow{ABB} ist jeder Winkel gleich 60°, d.h. in jeder Systemlage, in welcher ein Punkt der Koppelgeraden eine Bahnstelle mit sechspunktig berührender Tangente durch-



läuft, bilden die drei beweglichen Glieder des Vierecks — oder deren Verlängerungen — ein gleichseitiges Dreieck.

Für
$$\alpha = 30^{\circ}$$
 wird $AB = BB = BK$, $AA = AB = \infty$

und wir erhalten die bekannte genaue Geradführung durch das gleichschenklige Schubkurbelgetriebe, bei welcher sich der Punkt A auf der Geraden BA und der Punkt K auf einer zu dieser senkrechten Geraden bewegt. Wir schliessen hieraus, auch im allgemeinen Fall Annäherung Kurve z an die Gerade a umso vollkommener sein wird, je grösser die Differenz der beiden Arme des Gelenkvierecks ist. wenn gleichzeitig die Koppel und der kleinere Arm einander nahezu gleich sind.

Ziehen wir in Figur 5 durch \$\mathfrak{B}\$ die Gerade \$\mathfrak{Q}\mathfrak{E}' \ \mathfrak{D}\mathfrak{A}\$, so ist:

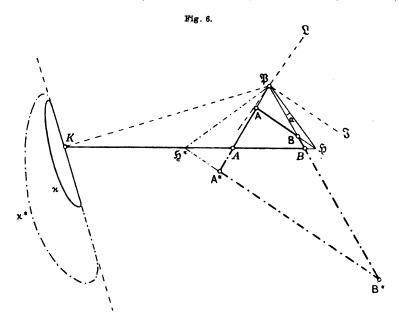
$$LB \mathfrak{P} \mathfrak{L}' = 180^{\circ} - \delta - \alpha = 2(90^{\circ} - 2\alpha) = 2 \cdot LK \mathfrak{P} B,$$
 und ebenso
$$LA \mathfrak{P} \mathfrak{L} = 2 \cdot LK \mathfrak{P} A.$$

Diese Bemerkung dient zur Lösung der Aufgabe: Auf einer Geraden sind drei Punkte A, B, K gegeben. An die Strecke AB als Koppel soll ein Gelenkviereck angeschlossen werden.

welches die sechspunktige Geradführung des Punktes K bewirkt (Fig. 6). Um ein solches Viereck zu bestimmen, zeichnen wir über AB das gleichseitige Dreieck AB \mathfrak{P} , machen

$$L\mathfrak{LRA} = 2 \cdot LA\mathfrak{R} K$$

errichten in \mathfrak{P} zu $\mathfrak{P}\mathfrak{L}$ das Lot $\mathfrak{P}\mathfrak{J}$ und bestimmen den Schnittpunkt \mathfrak{H} der Geraden AB mit der Halbierungslinie des Winkels $K\mathfrak{P}\mathfrak{J}$. Durch \mathfrak{H} ziehen wir zu $\mathfrak{P}\mathfrak{L}$ eine Parallele; diese trifft $\mathfrak{P}A$ und $\mathfrak{P}B$



bez. in A und B. Dann ist ABBA das gesuchte Viereck, und zwar ist es gerade in derjenigen Systemlage gezeichnet, in welcher K eine Bahnstelle mit sechspunktig berührender Tangente durchläuft. — Halbieren wir statt des Winkels $K\mathfrak{PS}$ dessen Nebenwinkel durch die Gerade \mathfrak{PS}^* und ziehen durch ihren Schnittpunkt \mathfrak{S}^* mit AK eine Parallele zu \mathfrak{PS} , so entsteht das Viereck A^*B^*BA ; die gestellte Aufgabe hat also zwei Lösungen.

14. Fortsetzung. In Figur 6 folgt aus dem Dreieck $A \mathfrak{P} B$ nach dem Satze des Menelaus:

Dabei ist
$$\frac{\frac{A}{\mathfrak{P}}\mathsf{A}}{\frac{\mathcal{P}}{\mathfrak{P}}} \cdot \frac{\mathcal{P}}{B} \cdot \frac{\mathcal{P}}{A} \frac{\mathcal{P}}{\mathfrak{P}} = 1.$$
$$\frac{B}{A} \frac{\mathcal{P}}{\mathfrak{P}} = \frac{\sin \alpha}{\sin (60^{\circ} + \alpha)};$$

setzen wir daher AA = a, BB = b, AB = c, so wird

31)
$$\frac{\sin\alpha}{\sin(60^0+\alpha)} = \frac{b(c-a)}{a(c-b)}.$$

Im Dreieck BPS ist ferner

$$\mathfrak{PB} = c - b = c \frac{\sin 60^{\circ}}{\sin (60^{\circ} - \alpha)} \cdot \frac{\sin 3\alpha}{\sin 4\alpha}$$

Aus den beiden letzten Gleichungen ergiebt sich durch Elimination von α für die drei beweglichen Glieder a, b, c die Beziehung:

32)
$$\begin{cases} a^3b^5 + b^3c^3 + c^3a^3 - 3abc[a^2(b+c) + b^2(c+a) + c^2(a+b)] \\ + 15a^2b^2c^2 = 0. \end{cases}$$

Bezeichnen wir noch die Länge des festen Gliedes AB mit d, so haben wir:

$$d = A \mathfrak{F} - B \mathfrak{F} = (c-a) \frac{\sin(60^{\circ} + \alpha)}{\sin 3\alpha} - (c-b) \frac{\sin \alpha}{\sin 3\alpha},$$
 und hieraus folgt nach 31):

33)
$$d = \frac{a^2b^2 + b^2c^2 + c^2a^2 - abc(a+b+c)}{3abc}.$$

Analoge Beziehungen bestehen zwischen den Gliedern des Vierecks A*B*BA, nur mit dem Unterschiede, dass an Stelle von a und b die negativen Längen der Glieder A*A, B*B treten, weil diese Strecken entgegengesetzte Richtung haben wie AA, BB. Es gilt demnach überhaupt der Satz: Hat ein Gelenkviereck die Eigenschaft, dass ein auf der Koppel liegender Punkt eine Bahnkurve mit sechspunktig berührender Tangente beschreibt, so genügen die Längen seiner Glieder, mit geeigneten Vorzeichen versehen, den Gleichungen 32) und 33) — und umgekehrt.

In Figur 6 ist $\angle A \Re K = 30^{\circ} + 2\alpha$ und folglich das Teilungsverhältnis des Punktes K in Bezug auf die Strecke AB:

$$\mu = \frac{AK}{BK} = \frac{\sin(30^{\circ} + 2\alpha)}{\cos 2\alpha}.$$

Aus dem Dreieck ABB folgt aber:

also wird:

34)

$$\mathsf{AB} + \mathsf{A}\mathfrak{P} - \mathsf{B}\mathfrak{P} = (c-a)rac{\sin{(30\,^\circ + 2\,lpha)}}{\cos{2\,lpha}},$$
 $\mu = rac{d-a+b}{a-a-b},$

und diese Gleichung lässt sich auch umformen in:

$$\mu = \frac{c - b}{d + a - b}.$$

15. Folgerungen aus den vorigen Gleichungen I. Da die Gleichungen 32) und 33) symmetrisch sind in Bezug auf a, b, c, so folgt ohne weiteres der Satz: Bewirkt das Gelenkviereck ABBA die sechspunktige Geradführung eines auf der Koppelgeraden liegenden Punktes K, so behält es diese Eigenschaft, wenn die drei beweglichen Glieder AA, AB, BB untereinander beliebig vertauscht werden. Bilden wir aus dem Viereck ABBA zwei neue Vierecke A'B'B'A' und A"B"B"A", indem wir

$$A'B' = A''B'' = AB$$
, $A'A' = A''A'' = AB$, $B'B' = A''B'' = BB$
and $A'B' = B''B'' = AA$

machen, so enthält jedes dieser Vierecke auf seiner Koppel einen Punkt K' bez. K'', der eine Bahnkurve \varkappa' bez. \varkappa'' mit sechspunktig berührender Tangente beschreibt. Dabei ist:

$$\frac{A'K'}{B'K'}=1-\mu$$

und

$$\frac{A''K''}{B''K''}=1-\frac{1}{u}.$$

Die Kurven x' und x" sind ähnlich zur Bahnkurve x des Punktes K. Dies alles ergiebt sich übrigens auch unmittelbar aus dem Satze, dass, wenn man bei einem Gelenkviereck die Koppel mit einem der Arme vertauscht, die von den Punkten der neuen und der ursprünglichen Koppel beschriebenen Bahnkurven einander paarweise ähnlich sind.*

II. Für a = b geht die Gleichung 32) über in

$$(a-c)^{2}(a-4c)=0.$$

Die Annahme a=c führt nach 33) zu der unbrauchbaren Lösung d=0. Ist dagegen a=4c, so wird d=3c und $\mu=-1$, und wir gelangen zu der bekannten Geradführung von Tschebischeff, bei welcher der Punkt K in der Mitte der Koppel AB liegt. Wegen der Gleichheit der Arme AA und BB ist nach der Bemerkung in Art. 13 die hier erreichte Annäherung der Kurve \varkappa an die Gerade $\mathfrak g$ verhältnismässig gering.

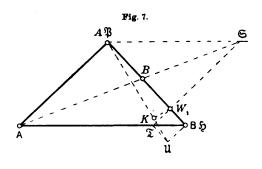
III. Der Annahme $\mu=2$ entspricht einerseits die in Art. 13 erwähnte genaue Geradführung mit $a=d=\infty$, b=-c, anderseits folgt aus den Gleichungen des vorigen Artikels noch die Lösung b=c=4a, d=3a. Diese geht aus der Tschebischeffschen Geradführung hervor, wenn wir bei dieser die Koppel mit einem Arme des Vierecks vertauschen.

- 16. Alle Punkte des Wendekreises w_1 mit Ausnahme des Pols und des Ballschen Punktes befinden sich momentan in Undulationspunkten ihrer Bahnkurven, wenn für die betrachtete Systemlage der zweite Wendepol W_2 mit dem Punkte $\mathfrak P$ identisch ist (Art. 6 II). Hieraus ergeben sich folgende Fälle:
- I. Zufolge den Gleichungen 21) wird der Bedingung $x_2 = y_2 = 0$ einerseits genügt durch die Annahme $\alpha = \delta = 90^{\circ}$. Dann liegt in Figur 4 der Punkt B unendlich fern und das Gelenkviereck artet in einen Schubkurbelmechanismus aus, bei welchem der Arm AA momentan mit der Polbahnnormale zusammenfällt.**

^{*} Vergl. z. B. Koenigs, leçons de cinématique, Paris 1897, p. 266.

^{**} Allievi a. a. O. S. 142.

II. Die Koordinaten von W_2 verschwinden ferner für $\alpha = \gamma = 0$, $\beta = 90^{\circ}$, und dann erhalten wir das in Figur 7 dargestellte Viereck, dessen Koppel sich momentan in einer Totlage befindet und dabei auf dem Arm AA senkrecht steht. Dabei sind $\mathfrak P$ und die positive Polbahtangente t bez. identisch mit A und AA; ziehen wir also durch A zu



AB eine Parallele, welche AB in S schneidet, und durch S ein Lot auf AB, so trifft dieses die Gerade AB in W₁. Da auch W₂ mit A zusammenfällt, so ist der Ballsche Punkt K der Fusspunkt des Lotes von A auf W₁ W₃, folglich \(\sum_{1} M_{1} M_{2} M_{3} M_{3} M_{4} M_{5} M_{5}

tangente einschliesst, oder $\tan \angle W_1 A K = -\frac{y_3 - y_1}{x_3}$

Bezeichnen wir nun die Glieder unseres Vierecks wie früher mit a, b, c, d und setzen in der ersten der Gleichungen 24) $\varrho = a$, $\alpha = 0$ in der zweiten $\varrho' = b + c$, $\beta = 90^{\circ}$, so folgt:

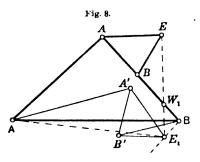
$$x_3 = -3\frac{y_1^2}{a}, \quad y_3 - y_1 = 3y_1^2\frac{b+c-y_1}{(b+c)^2},$$

es ist also:

$$\tan L \, W_1 \, A \, K = \frac{a \, (b + c - y_1)}{(b + c)^2} = \frac{A \, \mathbf{A} \cdot W_1 \, \mathbf{B}}{A \, \mathbf{B}^2} \cdot$$

Ziehen wir durch daher den Schnittpunkt $\mathfrak T$ von AB und $\mathfrak E W_1$ eine Parallele zu AB, durch B eine Parallele zu AA und verbinden den Schnittpunkt $\mathfrak U$ beider Geraden mit A, so ist K der Fusspunkt des Lotes von W_1 auf A $\mathfrak U$.

In Figur 8 ist E ein beliebiger Punkt auf dem Kreise w_1 der vorigen Figur, also $AE \perp W_1E$. Der Punkt E beschreibt eine



Bahnkurve ε , die in E einen Undulationspunkt hat mit der Tangente W_1E . Machen wir

$$LE_1BA = LEAB$$

und verstehen unter E_1 den Schnittpunkt der Geraden B E_1 mit EW_1 , so ergiebt sich leicht, dass

$$LAE_1B = 180^{\circ} - LBEA$$

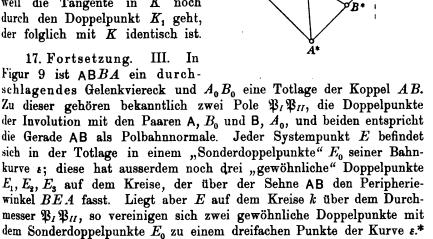
ist. Der Punkt E_1 liegt also auf dem Kreise, der über der Sehne AB

den Peripheriewinkel BEA fasst und der bekanntlich durch die drei Doppelpunkte der Kurve ε geht. Konstruieren wir noch über AE_1 und BE_1 bez. die Dreiecke AE_1A' , BE_1B' mit den Seiten AA' = a,

 $E_1A' = EA$, BB' = b, $E_1B' = EB$, so lässt sich beweisen, dass $LB'E_1A' = LBEA$ ist. Die Dreiecke ABE und $A'B'E_1$ sind also kongruent; folglich ist E_1 ein Doppelpunkt von ϵ . — In Figur 8a ist die Kurve ε gezeichnet. Bringen wir die Koppel AB in die Lage A^*B^* , die zu AB symmetrisch ist in Bezug auf AB, so gelangen die Punkte E und W_1 nach E^* und W_1^* , und dann ist W_1^* der erste Wendepol und E* ein Punkt des ersten Wendekreises für die neue Systemlage, also offenbar wieder ein Undulationspunkt von ε mit der Tangente E^*E_i . Wir erhalten somit den Satz: Wenn bei dem Gelenkviereck ABBA die Koppel AB in einer Totlage mit dem Arm AA einen rechten Winkel bildet, so beschreibt jeder Punkt E des zugehörigen Wendekreises w, momentan einen Undulations-

punkt. Die Bahnkurve & des Punktes E hat einen zweiten Undulationspunkt E^* , und die Tangenten in beiden Punkten schneiden sich in einem Doppelpunkte E_1 von ε . — Ersetzen wir den Punkt E durch den Ballschen Punkt K der Figur 7, so hat die Gerade W, K fünf unendlich benachbarte Punkte mit der zugehörigen Bahnkurve z gemein; K ist also gleichzeitig ein Doppelpunkt der Kurve x, weil die Tangente in K noch durch den Doppelpunkt K, geht, der folglich mit K identisch ist.

17. Fortsetzung. III. Figur 9 ist ABBA ein durch-



Im vorliegenden Falle sind die beiden Rollkurven symmetrisch in Bezug auf die Gerade AB, die dem Pol \mathfrak{P}_I entsprechenden Wendepole $W_1 W_2 \dots$

^{*} Über die Doppelpunkte der Koppelcurve, diese Zeitschrift Bd. 36, S. 68.

liegen also sämtlich auf dieser Geraden (Art. 6, V). Bezeichnen wir die Entfernungen der Punkte A, B, A_0 , B_0 , W_1 , W_2 ... von \mathfrak{P}_I bez. mit ϱ , ϱ' , r, r', y_1 , y_2 ..., so ist:

35)
$$\frac{1}{y_1} = \frac{1}{r} - \frac{1}{\varrho} = \frac{1}{r^{\bar{j}}} - \frac{1}{\varrho^{\bar{j}}}.$$

Vertauschen wir ferner in Gleichung 15) r, ξ_i , η_i bez. mit. ϱ , x_i , y_i und setzen $x_i = 0$, $\varphi = 90^\circ$, so ergiebt sich:

$$\varrho^2(y_3-y_1)+\varrho\,y_1(4y_2-3y_1)+3y_1^3=0,$$

und eine analoge Gleichung gilt für ø'; wir erhalten demnach:

$$y_2 = \frac{3}{4} y_1^2 \left(\frac{1}{y_1} - \frac{1}{\varrho} - \frac{1}{\varrho'} \right)$$

Soll daher der Punkt W2 mit B1 zusammenfallen, so muss

sein, oder nach 35):
$$\frac{1}{y_1} = \frac{1}{\varrho} + \frac{1}{\varrho'}$$
$$\frac{2}{y_1} = \frac{1}{\varrho} + \frac{1}{r'}$$

Nun sind aber \mathfrak{P}_I , \mathfrak{P}_{II} , A, B_0 vier harmonische Punkte, also ist auch

$$\frac{2}{\mathfrak{P}_{l}\,\mathfrak{P}_{ll}}=\frac{1}{\varrho}+\frac{1}{r'},$$

d.h. $y_1 = \mathfrak{P}_I \mathfrak{P}_{II}$, oder W_1 identisch mit \mathfrak{P}_{II} und der Wendekreis w_1 identisch mit dem Kreise k. Fällt also in einer Totlage eines durchschlagenden Gelenkvierecks der dem Punkte \mathfrak{P}_I entsprechende Wendepol W_1 zusammen mit \mathfrak{P}_{II} , so beschreiben alle Punkte des Kreises w_1 Undulationspunkte, und jeder solche Punkt befindet sich gleichzeitig in einem dreifachen Punkte seiner Bahnkurve.

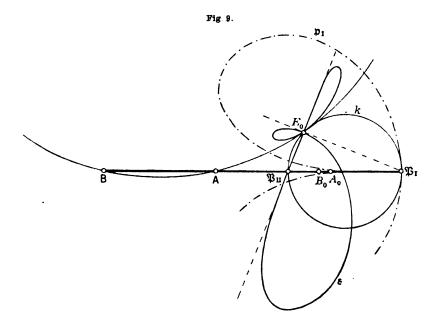
Dieser Fall ist in Figur 9 dargestellt. Dabei sind die Punkte \mathfrak{P}_I , A, A_0 beliebig angenommen, \mathfrak{P}_{II} ist als der zugehörige Wendepol in bekannter Weise konstruiert worden; B und B_0 sind die vierten harmonischen Punkte bez. zu \mathfrak{P}_I , \mathfrak{P}_{II} , A_0 und \mathfrak{P}_I , \mathfrak{P}_{II} , A. Ein beliebiger Punkt E des Kreises über \mathfrak{P}_I \mathfrak{P}_{II} beschreibt die Bahnkurve ε , die in E_0 einen dreifachen Punkt hat mit den Tangenten $\mathfrak{P}_I E_0$ und $\mathfrak{P}_{II} E_0$: die letzte hat mit ε vier unendlich benachbarte Punkte gemein. Überdies berührt der durch A, B, E_0 gehende Kreisbogen die Kurve ε in E_0 und schneidet sie noch in einem Doppelpunkte, der hier ein isolierter Punkt ist.

In der Systemlage, die \mathfrak{P}_I zum Pole hat, ist dieser zugleich der Ballsche Punkt; seine Bahnkurve \mathfrak{p}_I hat also mit der Geraden AB in \mathfrak{P}_I fünf unendlich benachbarte Punkte gemein und schneidet sie zum sechsten Male wieder in \mathfrak{P}_I .

IV. Hierher gehört endlich der früher behandelte Fall eines Gelenkvierecks, dessen Koppel in einer bestimmten Lage auf den beiden

Armen senkrecht steht.* Dann beschreibt jeder Punkt der Polbahntangente, in welche hier der Kreis w_1 ausartet, einen Undulationspunkt mit Ausnahme des Ballschen Punktes K, der wiederum zugleich ein Doppelpunkt seiner Bahnkurve ist. Sind überdies die beiden Arme einander gleich, so ist K der Mittelpunkt der Koppelstrecke. (Fünfpunktige Geradführung von Watt.)

Aus den letzten Darlegungen folgt weiter, dass für keine Koppellage eines eigentlichen Gelenkvierecks gleichzeitig der Punkt W_2 mit \mathfrak{P} und W_3 mit W_1 zusammenfallen kann; es können also nicht alle



Punkte von w_1 zugleich Bahnstellen mit fünfpunktig berührender Tangente durchschreiten.

18. Der Pol als Systempunkt. Polkurve und Übergangskurve. Nach Art. 9 beschreibt der Punkt $\mathfrak P}$ im allgemeinen eine Schnabelspitze mit endlichem Krümmungsradius $\mathfrak P}$, wenn für die betrachtete Systemlage $\mathfrak P}_2=0$ ist. Nun verschwindet $\mathfrak P}_2$ entweder, wenn $\mathfrak P}=0$, oder wenn $\mathfrak P}=0$ 0 ist. Im ersten Falle muss auch $\mathfrak P}=0$ 0 gleich Null sein, und dann ist $\mathfrak P}=0$ 1 identisch mit dem Punkte $\mathfrak P}=0$ 2, der einen Kreis um A durchläuft und sich augenblicklich in einem Umkehrpunkte seiner Bahn befindet. Es bleibt somit nur die Bedingung $\mathfrak P}=0$ 0, d. h. der Systempunkt $\mathfrak P}=0$ 0 beschreibt eine Schnabelspitze, wenn

^{*} Konstruktion der Burmesterschen Punkte u.s.w., zweite Mitteilung S.145, vergl. auch Allievi S.148.

die Gerade \$\mathbb{B}\$ auf dem festen Gliede AB senkrecht steht (Fig. 10). Dann ist nach Gleichung 19):

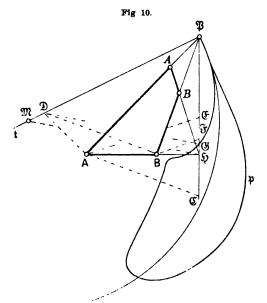
$$y_1 = h \frac{\sin \gamma}{\sin \alpha \sin \beta \cos \gamma},$$

und aus 24') ergiebt sich:

$$x_3 = -3y_1 \frac{\sin \gamma}{\sin \alpha \sin \beta \cos^2 \gamma} [\cos(\alpha - \beta)\cos \gamma - \sin(\alpha + \beta)\sin \gamma],$$

also wird nach 17):
$$r = -\frac{y_1^2}{x_3} = \frac{\frac{h}{\cos \alpha \cos \beta}}{1 + \tan \alpha \tan \beta - (\tan \alpha + \tan \beta) \tan \gamma}$$

Um daher den Krümmungsmittelpunkt $\mathfrak M$ zu konstruieren, ziehen wir die Geraden A $\mathfrak D \perp \mathfrak B A$, B $\mathfrak D \perp \mathfrak B B$; dann ist $\mathfrak B \mathfrak D$ die positive Pol-



bahntangente t. Bestimmen wir ferner die Schnittpunkte &, &, F von PS
bez. mit den Geraden
A& \pm PB, sowie A& und
BF \pm AB, machen auf
P& die Strecke

$$\mathfrak{GC} = \mathfrak{CS} + \mathfrak{FS}$$

und ziehen durch S zu SD eine Parallele, so trifft diese t in M. Der zugehörige Krümmungskreis hat in B mit der Kurve p fünf zusammenfallende Punkte gemein: er schneidet sie folglich noch in einem reellen Punkte.

Der Krümmungsradius r wird unendlich gross, wenn $\tan \gamma = \frac{1 + \tan \alpha \tan \beta}{\tan \alpha + \tan \beta} = \frac{\Re \mathfrak{C}}{\Im A + \Im B}$

ist. Der Punkt \$\partial hat dann wieder das Aussehen einer gewöhnlichen Spitze der Kurve \$\partial \, aber mit f\u00fcnfpunktig ber\u00fchrender Tangente \$\pi \.

Berechnen wir in Figur 10 den Winkel α aus den Seiten a, b, c, d des Gelenkvierecks, so finden wir eine Gleichung sechsten Grades für $\sin \alpha$. Diese bestimmt zwölf Lagen des Armes BB, die paarweise in Bezug auf AB symmetrisch sind, und jeder von ihnen entspricht eine Koppellage, für welche $\Re \mathfrak{H}$ senkrecht steht auf AB. Bei jedem Gelenkviereck giebt es also im allgemeinen zwölf Koppellagen, für welche der Pol eine Schnabelspitze beschreibt.

Das soeben erhaltene Resultat steht in Zusammenhang mit der früher behandelten Frage nach der Gestaltung aller Bahnkurven, die

von den sämtlichen Punkten der Koppelebene beschrieben werden.* Wir haben als Übergangskurve q der bewegten Ebene den Ort derjenigen Systempunkte bezeichnet, welche Bahnkurven mit zwei zusammenfallenden Doppelpunkten beschreiben; die Kurve q ist von der zehnten Ordnung und hat Doppelpunkte in A und B und vierfache Punkte in den imaginären Kreispunkten. Andrerseits befinden sich alle diejenigen Systempunkte, deren Bahnen eine Spitze enthalten, auf der Polkurve p, einer bizirkularen Kurve achter Ordnung mit vierfachen Punkten in A und B. Die Kurven p und q zerschneiden die Koppelebene in eine Anzahl von Feldern in der Weise, dass alle Punkte desselben Feldes Bahnkurven beschreiben, die in Bezug auf ihre Doppelpunkte denselben Charakter besitzen. Nun entsteht eine Schnabelspitze aus der Vereinigung eines Knotenpunktes mit einer gewöhnlichen Spitze; demnach liegt jeder Punkt X der Koppelebene, der eine Bahnkurve mit Schnabelspitze erzeugt, zugleich auf den beiden Kurven p und q. Den Systempunkten auf q zu beiden Seiten von X entsprechen Bahnkurven mit drei Doppelpunkten, von denen zwei zu einem Selbstberührungspunkte vereinigt sind. Jeder von diesen letzten zwei Punkten hat also für sich den Charakter eines Knotenpunktes, und nur für die Stelle X wird einer von ihnen zur Spitze. Wir schliessen daraus, dass wir beim Durchlaufen der Übergangskurve in X die Polkurve nicht überschreiten, denn andernfalls würde sich hierbei ein Knotenpunkt in einen isolierten Punkt verwandeln. Die Kurven p und q berühren sich demnach in X. Da nun beide Kurven von den Punkten A und B und den imaginären Kreispunkten abgesehen noch $8 \cdot 10 - 4 \cdot 8 = 48$ Punkte gemein haben, so ergiebt sich der Satz: Die Übergangskurve und die Polkurve berühren sich in den zwölf Punkten, welche Bahnkurven mit Schnabelspitze beschreiben, und sie schneiden sich überdies noch in vierundzwanzig Punkten. Ein solcher Schuittpunkt beschreibt eine Bahnkurve mit einem Selbstberührungspunkt und einer Spitze.

^{*} Über die Doppelpunkte der Koppelkurve, diese Zeitschrift Bd. 34 S. 303 und 372.

Anwendung der Integralkurve zur Volumteilung.

Von

ERNST BRAUER

in Karlsruhe.

Die zeichnerische Beschäftigung mit der Integralkurve neben dem Studium der Differential- und Integralrechnung ist sehr geeignet, die Schwierigkeiten überwinden zu helfen, welche dem Anfänger die Grundbegriffe dieser Wissenschaft bereiten.

Als Übungsbeispiel hierzu eignet sich u. a. die Aufgabe, für ein durch Zeichnung gegebenes Gefäss von der Form eines Rotationskörpers den Rauminhalt zu bestimmen und durch Horizontalebenen in eine gewisse Anzahl, z. B. zehn, gleiche Teile zu teilen.

Sind x und y die in der Figur eingeschriebenen Koordinaten eines beliebigen Punktes A der Meridianlinie, V das den Koordinaten entsprechende Teilvolum, so ist:

$$dV = \pi x^2 dy.$$

Ersetzt man x^2 durch das Rechteck au, dessen Seite a für alle x konstant, dessen u aber mit x veränderlich ist, so kann u nach der Gleichung:

$$\frac{u}{x} = \frac{x}{a}$$

mittels ähnlicher Dreiecke konstruiert werden, und man erhält in der Form:

$$V = \pi a \int_{0}^{\pi} u \, dy$$

das Volum dargestellt als Prisma von der Höhe πa und einer Grundfläche, welche dem Integral entspricht.

Wird nun auch diese Fläche in ein Rechteck von der konstanten Basis b und der mit y veränderlichen Seite v verwandelt, d. h.:

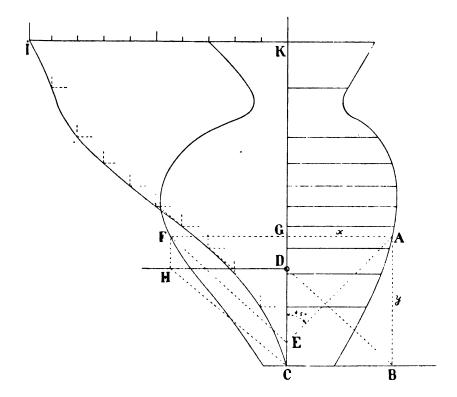
$$\int_{0}^{y} u \, dy = b v$$

gesetzt, wonach auch

5)
$$\frac{dv}{dy} = \frac{u}{b},$$
so folgt aus 3) und 4):
$$V = \pi abv.$$

Das Teilvolum V ist hiernach, da πab konstant, mit v direkt proportional, und, wenn zu jedem y der Wert von v bekannt ist, so kann auch für die gleichmässig abgestuften V oder v die entsprechende Höhe y gefunden werden.

Die Konstruktion zerfällt in die punktweise Verzeichnung der abgeleiteten Kurve mit den Koordinaten y und u und in die Zusammen-



setzung der Kurve (y, v) als Integralkurve zu (y, u) aus tangentialen Elementen.

Für die erste Aufgabe dient als Grundlage Gleichung 2). Projiziert man den beliebigen Punkt A der gegebenen Kurve (x, y) auf die X-Axe nach B, trägt auf der Y-Axe die beliebig gewählte Strecke a als CD auf, zieht ferner durch A unter 45° die Linie AE und durch E die Parallele zu BD, so schneidet diese auf der Horizontalen durch A den Punkt F an als Punkt der (y, u)-Kurve; denn es folgt aus der Ähnlichkeit der Dreiecke FGE und BCD:

$$FG: GE = BC: CD$$
,

was mit Gleichung 2) identisch ist.

Die Konstante b, deren man für die Konstruktion der Integrakurve bedarf, ist willkürlich. Sie kann sonach gleich a gesetzt werden, was in unserer Zeichnung geschehen ist. Projiziert man F auf die Horizontale durch D nach H und verbindet H mit C, so ist:

$$HD:CD=u:b,$$

sonach muss das in der Horizontalen durch A liegende Element der Integralkurve mit Rücksicht auf Gleichung 5) die Richtung von HC haben. In derselben Weise bestimmt man die Tangentenrichtung der Integralkurve für eine hinreichend grosse Zahl von Punkten der yu-Kurve und setzt durch Ziehen von geradlinigen Elementen parallel zu den entsprechenden CH die vollständige Kurve zusammen. Als beliebiger Anfangspunkt hierbei ist C gewählt worden. Die Strecke JK ist der Wert v für den ganzen Gefässinhalt. Dieser ist sonach:

$$V_1 = \pi \cdot CD \cdot CD \cdot JK$$
.

Teilt man JK in zehn gleiche Teile, zieht durch die Teilpunkte senkrechte Linien bis zur Integralkurve und durch die Schnittpunkte horizontale Linien, so sind diese die linearen Projektionen der gesuchten Teilebenen.

Nach Gleichung 6) kann man natürlich auch für einen beliebigen Wert von V die Strecke

$$v = \frac{V}{\pi a b}$$

berechnen und dazu mit Hilfe der Integralkurve das entsprechende *y* suchen, d. h. angeben, wie hoch die Flüssigkeit steht, wenn ihr Volum gegeben ist.

Die Aufgabe lässt sich durch die Form der gegebenen Profikurve sehr variieren, mehr noch durch Neigung der Axe oder durch Aufgeben der Rotationsform. In diesem Falle wird die Aufsuchung der (yu)-Kurve, deren u den horizontalen Querschnitten proportional sein müssen, eine viel verwickeltere Aufgabe, die am besten mit dem Planimeter gelöst wird.

Technische Anwendung findet die behandelte Aufgabe, abgesehen von der Calibrierung von Messgefüssen, Büretten u. s. w. im grossen. wenn es sich darum handelt, Wasserbehälter von mehr oder weniger unregelmässiger Form zu füllen oder zu entleeren. Bei gleichmässigem Zu- oder Abfluss entsprechen die Horizontalebenen gleicher Volumabschnitte auch gleichen Zeitabschnitten.

Für schwimmende Gefässe findet sich in gleicher Weise die Tauchtiefe für gegebene Wasserverdrängung, d. h. für bestimmte Belastung.

Auch in der Turbinentheorie hat die Aufgabe praktische Anwendung, sofern man die Lagen, in welche eine materielle Ebene in einem Turbinenkanal nach gleichen Zeiten gelangt, angenähert durch Einteilung der ganzen Kanalfülle in Abschnitte gleichen Volums bestimmen kann. Aus diesen Lagen lassen sich näherungsweise die Wassergeschwindigkeiten, ferner die Beschleunigungen und danach die Verschiedenheiten des Druckes in den einzelnen Punkten, z. B. auch die Flächen gleichen Druckes sowie die für die Triebkraft massgebenden Unterschiede des Druckes auf Rücken- und Brustfläche der Schaufeln ermitteln.

Über Nachbargebiete im Raume.

Von Paul Stäckel in Kiel.

Wenn man ein System von Gebieten auf einer Oberfläche, deren jedes an jedes andere grenzt, und zwar immer längs einer Linie, nicht bloss in Punkten, Nachbargebiete nennt, so entsteht die Frage, welches die Maximalzahl der Nachbargebiete auf einer Fläche von gegebenem Geschlechte ist.*

Ganz entsprechend wird man im Raume ein System von dreifach ausgedehnten Gebieten, deren jedes an jedes andere grenzt, und zwar immer längs einer Fläche, nicht bloss in Punkten oder Linien, Nachbargebiete nennen, und es wird abermals die Frage nach der Maximalzahl der Nachbargebiete entstehen. Während jedoch bei zweifach ausgedehnten Mannigfaltigkeiten diese Maximalzahl eine bestimmte, endliche Zahl ist, lässt sich zeigen, dass man im Raume beliebig viele Nachbargebiete konstruieren kann.

Um dies nachzuweisen, denke ich mir eine Ebene beliebig in n getrennte Gebiete geteilt und senkrecht über diesen Gebieten Cylinder konstruiert, die durch eine zweite parallele Ebene begrenzt werden. Diese so begrenzten Cylinder mögen der Reihe nach mit $1, 2, 3, \ldots, n$ bezeichnet werden. Ihre oberen Endflächen teile man in je n-1 getrennte Gebiete, die beim ν^{ten} Cylinder die Nummern:

$$1, 2, \ldots, \nu-1, \nu+1, \ldots, n$$

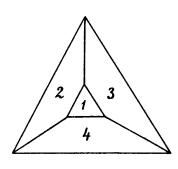
tragen sollen. Jetzt verbinde man diese Gebiete auf der oberen Endfläche des $\nu^{\rm teo}$ Cylinders durch schlauchartige Gebilde mit denjenigen Gebieten der n-1 übrigen Cylinder, welche die Nummer ν tragen. Indem man dieses Ver-

^{*} Man vergleiche die Abhandlung: Über das Problem der Nachbargebiete von L. Heffter (Mathematische Annalen, Bd. 38, 1891, S. 477—508), wo auch die weitere Litteratur über den Gegenstand angegeben ist.

fahren für alle Werte $\nu = 1, 2, ..., n$ durchführt und darauf achtet, dass die Schläuche getrennt voneinander verlaufen, erhält man

$$\frac{1}{2}n(n-1)$$

Verbindungsräume, in deren Mitte man immer eine Scheidewand anbringen kann. Jeder der n Cylinder bekommt somit n-1 Auswüchse, die zu ihm gerechnet werden sollen, und es ergeben sich so n Gebiete im Raume, von denen jedes mit jedem eine Grenzfläche, nämlich eine jener



$$\frac{1}{2}n(n-1)$$

Scheidewände, gemeinsam hat. Mithin ist die Anzahl der Nachbargebiete im Raume beliebig gross.

Will man zu einer endlichen Anzahl von Gebieten gelangen, so muss man eine weitere Beschränkung hinzufügen. Eine solche Beschränkung könnte etwa darin bestehen, dass die Nachbargebiete lauter konvexe Polyeder sein sollen. Einer Mitteilung von

Herrn Heffter, dem ich diese Aufgabe vorlegte, entnehme ich, dass in der Ebene vier konvexe Polygone Nachbargebiete sein können. Die entsprechende Konstruktion im Raume ergiebt fünf Nachbargebiete der verlangten Art. Es scheint, als ob es nicht mehr giebt; jedoch ist mir ein strenger Beweis hierfür noch nicht gelungen.

Über einen Mechanismus, durch den ein beliebiger Winkel in eine beliebige ungerade Anzahl gleicher Teile geteilt werden kann.

Von A. Korselt in Meerane i. S.

Man nennt die Auflösung einer geometrischen Aufgabe nur dann elementargeometrisch, wenn sie mit Zirkel und Lineal geschehen kann. Die Gründe dafür sind rein praktische. Diese Werkzeuge sind die denkbar einfachsten und daher genauesten und sind für den Mittelschulunterricht mehr als ausreichend. An sich aber kann jede Auflösung geometrisch genannt werden, die durch Modelle auf Grund geometrischer Sätze in der Theorie absolut, in der Praxis hinlänglich genau ausgeführt werden kann. Der Begriff "geometrische Lösung" hängt also von den Fortschritten der praktischen Mechanik ab, und Probleme, die zur Zeit nicht elementar lösbar sind, können es durch Konstruktion geeigneter Instrumente werden.

Ein Beispiel ist die Vielteilung eines beliebigen Winkels, wovon die Dreiteilung besonders berühmt geworden ist. Nur für diesen Fall waren

bis vor kurzem Lösungen bekannt. Sie erfordern die Konstruktion einer nicht elementaren Kurve, sei es eines Kegelschnitts oder einer höheren Linie. Das ist umständlich und ungenau, also ohne praktische Bedeutung. Nur die in dieser Zeitschrift Bd. 38, litterarische Abteilung S. 37 beschriebene Vorrichtung von Pegrassi macht eine Ausnahme.

Neuerdings hat aber der Stadtrat Herr Dr. jur. Clauss in Meerane einen Mechanismus zur beliebigen Ungeradteilung eines beliebigen Winkels konstruiert und für die Drei- und Fünfteilung wirklich herstellen lassen, der nach meiner Erfahrung in diesen beiden Fällen hinlänglich genau arbeitet. Der Erfinder hat ihn als Gebrauchsmuster unter der Bezeichnung "der Clausssche Winkel" beim kaiserlichen Patentamte angemeldet.

Das Instrument besteht aus einem in seinem Scheitel beweglichen Winkel, zwischen dessen Schenkeln verschiebbare Verbandstücke so an-

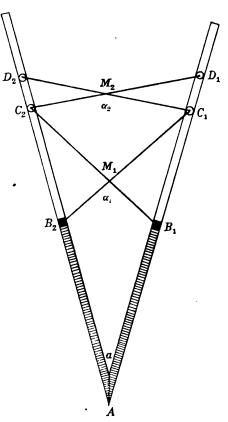
gebracht sind, dass je zwei derselben stets Winkel bilden, die der Reihe nach das Drei-, Fünf-, Siebenu. s. w.-fache des ersten Winkels sind.

Wenn man, wie in nebenstehender Zeichnung, auf den beiden Schenkeln eines Winkels $A=\alpha$ gleiche Strecken AB_1 und AB_2 je AB_1 und mit derselben Länge von den Endpunkten aus je den anderen Schenkel des Winkels AB_1 und BB_2 und BB_3 und BB_4 durchschneidet, so ist der Winkel BB_4 der letzteren Geraden gleich BB_4 aus, so ist

$$<)$$
; $\alpha_2 = 5 \alpha \text{ u. s. w.}$

Der Beweis ist durch Aussenwinkel zu führen.

In der Vorrichtung sind nun die Punkte B_1 und B_2 festgelegt, die Längen B_1 C_2 , B_2 C_1 , C_1 D_2 , C_2 D_1 u. s.w. dagegen verschieben ihre Endpunkte bei einer Veränderung des Winkels α von selbst auf den Schenkeln.



Wird der Schenkel AB_1 festgehalten, der andere bewegt, so beschreiben die Punkte M_1M_2,\ldots algebraische und zwar unikursale Kurven mit tg $\frac{\alpha}{2}$ als Parameter. Die Kurve von M_1 bestimmt sich z.B. aus den Gleichungen (A Ursprung, AB_1 positive x-Axe des Koordinatensystems):

$$(A M_1)$$
 $\frac{y}{x} = \operatorname{tg} \frac{\alpha}{2} = m,$ $(B_1 M_1)$ $\frac{y}{x-a} = \operatorname{tg} 2 \alpha.$

Schafft man hieraus vermittelst der bekannten Beziehung:

$$\operatorname{tg} 2\alpha = \frac{4m(1-m^2)}{1-6m^2+m^4}$$

den Winkel α heraus und lässt die triviale Lösung y=0 ausser Betracht, so erhält man als Gleichung des gesuchten Ortes:

$$3x^4 + 2x^2y^2 - y^4 - 4ax^3 + 4axy^2 = 0$$

Durch das beschriebene Instrument sind alle Dreieckskonstruktionen aus Seiten, Höhen, Mittellinien, Radien des Umkreises, der In- und Ankreise, aus inneren und äusseren Winkelhalbierenden lösbar. Nur die inneren Winkelhalbierenden für sich machen eine Ausnahme (eine Mitteilung des Verfassers hierüber wird im nächsten Hefte dieser Zeitschrift erscheinen). Der praktische Zeichner (z. B. Musterzeichner oder Ornamentenzeichner) wird damit beliebige Kreisbogen teilen und so leichter Verzierungen entwerfen können.

Zur Theorie der Gleichung $\frac{\partial^2 \varphi}{\partial t^2} = a^2 \Delta \varphi$ auf Grund der Kirchhoffschen Gleichung für das Huyghenssche Prinzip.

Von J. Jung in Prag.

Nach dieser Gleichung giebt alle, gewisse Stetigkeitsbedingungen erfüllende Lösungen von

1)
$$\frac{\hat{o}^2 \varphi}{\hat{o}t^2} = a^2 \Delta \varphi$$

in einem Raumteil T mit der Begrenzung s das Integral:

$$\left\{ \begin{array}{c} \varphi_0 = \frac{1}{4\pi} \int ds \\ \left(\frac{\hat{\sigma}}{\hat{\sigma}} \frac{1}{r} P\left(t - \frac{r}{a}\right) - \frac{1}{ar} \frac{\partial r}{\partial n} \frac{\hat{\sigma}P\left(t - \frac{r}{a}\right)}{\delta t} - \frac{1}{r} Q\left(t - \frac{r}{a}\right) \right) \end{array} \right.$$

wo P, Q bloss alle diejenigen Paare von mit t veränderlichen Wertverteilungen über s zu sein brauchen, bei denen

$$q_0 = 0$$

für alle Punkte O ausserhalb T.

Trifft 2) nicht zu, dann giebt P, Q durch φ_0 zwar auch stets eine Lösung von 1) im ganzen Raume, aber in T nichts Neues gegenüber den Paaren gemäss 2). — Die Werte φ_0 ausserhalb T sind die stetige Fortsetzung der inneren, falls nicht P=0.

Dies und die weiteren Betrachtungen sind Nachbildungen der Poincaréschen über die Gleichung:

$$\Delta \varphi + k^2 \varphi = 0.$$

("Mathematische Theorie des Lichtes", übersetzt von Gumlich und Jaeger, 1894, S. 73 flg.)

Denn sind $\xi = \text{const.}$, $\eta = \text{const.}$ zwei rechtwinklige Kurvenscharen auf s, und ist α ein Punkt unendlich nahe dem s-Punkte γ auf deren Normale ausserhalb T und β ein solcher in T, so gilt beim Überschreiten von s:

wo
$$\begin{cases} \left(\frac{\partial p + q + r \, \boldsymbol{\varphi}_0}{\partial \, \boldsymbol{\xi} \, \boldsymbol{p} \, \partial \, \boldsymbol{\eta}^{\, 2} \, \partial \, \boldsymbol{n}^{\, 2}}\right)_{\boldsymbol{\beta}} - \left(\frac{\partial \, p + q + r \, \boldsymbol{\varphi}_0}{\partial \, \boldsymbol{\xi} \, \boldsymbol{p} \, \partial \, \boldsymbol{\eta}^{\, 2} \, \partial \, \boldsymbol{n}^{\, 2}}\right)_{\boldsymbol{\alpha}} \\ = \begin{cases} \left(\frac{\partial \, p + q \, (\delta \varrho \, P)}{\partial \, \boldsymbol{\xi} \, \boldsymbol{p} \, \partial \, \boldsymbol{\eta}^{\, 2}}\right)_{\boldsymbol{\gamma}} \, \text{für } \, \, r = 2 \, \varrho \\ \left(\frac{\partial \, p + q \, (\delta \varrho \, Q)}{\partial \, \boldsymbol{\xi} \, \boldsymbol{p} \, \partial \, \boldsymbol{\eta}^{\, 2}}\right)_{\boldsymbol{\gamma}} \, \text{für } \, \, r = 2 \, \varrho + 1, \end{cases}$$

$$\boldsymbol{\delta} = \frac{1}{a^2} \, \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial \eta^2}.$$

Dabei ist $\delta^0 P = P$. 3) ergiebt sich, wenn nach Herleitung von

4)
$$(\varphi_0)_{\beta} - (\varphi_0)_{\alpha} = (P)_{\gamma}, \quad \left(\frac{\partial \varphi_0}{\partial n}\right)_{\beta} - \left(\frac{\partial \varphi_0}{\partial n}\right)_{\alpha} = (Q)_{\gamma}$$

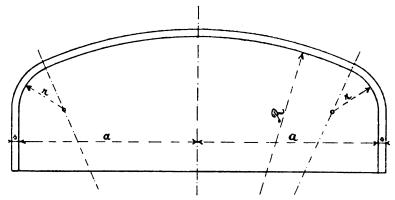
- unter $\varrho=0$ in 3) enthalten — die Unabhängigkeit des Δ vom Koordinatensystem und der Bestand von 1) für φ_0 beiderseits von s beachtet wird. $\frac{\partial}{\partial \xi}$ z. B. links in 3) bedeutet die Differentiation in der Richtung parallel der Tangente an $\eta=$ const. durch γ .

4) zeigt, dass 2) nicht bloss notwendig, sondern auch hinreichend ist zu stetiger Fortsetzbarkeit eines gegebenen P gemäss 1) in T hinein derart, dass der Differentialquotient der Fortsetzung nach n längs s zur gegebenen Wertverteilung Q wird. Denn beim Bestand von 2) verschwinden die Subtrahenden links in den Gleichungen 4).

Aufgabe 2.*

Von C. B.

Der gewölbte, einen Umdrehungskörper bildende Boden — vergl. Abbildung — schliesst einen Hohlcylinder von der Lichtweite 2(a+s), mit dem er durch Nietung verbunden ist, ab. Die Meridianlinie der Innenfläche des Bodens setzt sich zusammen: aus den zwei Kreisbögen von den Halbmessern R bezw. r und aus einer Geraden, welche im Abstande a von der Umdrehungsaxe liegt und den Kreisbogen vom Halbmesser r berührt. Die



Wandstärke des Bodens ist s. In dem Hohlcylinder befindet sich eine Flüssigkeit von der Pressung $p_i \, kg/qcm$, ausserhalb desselben eine solche von der Pressung p_a , sodass der Boden einem inneren Überdruck $p_i - p_a$ ausgesetzt ist.

Es wird verlangt:

- 1. Bestimmung der elastischen Fläche, in welche die ursprüngliche Mittelfläche unter Einwirkung von p_i und p_a übergeht,
- 2. Die Ermittelung der Anstrengung des Bodens an einer beliebigen Stelle,
- 3. Bestimmung des Ortes und der Grösse der stärksten Inanspruchnahme, welche in dem Boden auftritt.

^{*} Vergl. Anmerkung 3, Heft 1, S. 63 dieses Bandes.

Baumgärtner's Buchhandlung, Leipzig.

Ourch fede Buchbandlung to beziehen:

Die Geometrie der Lage.

Vorträge von Prof. Dr. Th. Reye, and Professor an der Universität Strassburg.

Abt. II (5, Auft.). Mit 26 Textpiguren. Broch 9 Mk., in Halbfranz gebunden 11 Mk.

Ald III (new) Brock & Mk., in Hulbfranz gehanden 8 Mb

Abt. I (3. Auft.). Mit 92 Textfiguren. Broch. 7 Mb., in Hallifennz gebunden 0 Mk.

Aus einer Besprechung von Guide Hauck: "Unserem Verfasser gebührt das Verdienst, das System jenes grossen Geometers (Staudt) von seinen Einseltigkeiten befreit und dadurch nicht nur schmackhaft, sondern vor allem für die Weiterfürderung der Wissenschaft nufzbar gemacht zu haben. Diese hat dem auch in den letzten Dezennien eine überaus fruchtbare Weiterentwickelung erfahren, an welcher der Verfasser durch seine bahnbrechenden Arbeiten in hervorragender Weise beteiligt war. Es sei dabei namentlich auf den Ausbau der Liniengeometrie hingewiesen. Das auch bereits ins Französische und Italienische und jetzt auch ins Englische übersetzte Werk stellt in dieser seiner neuen Auflage das sollsständigste Lehrbuch der neueren Geometrie dar."

Verlag von B. G. Teubner in Leipzig.

Hettner's Geographische Zeitschrift

Monatlich 1 Helt von eiren 60 Seiten. Halbjährlich 8 Mk.

Jedem Gebildeten wie allen Schulen

Aus dem Inhalt der letzten Hefte:

Ole Insel Kreta. Von Prol. Dr. E. Fabricius.

Ole deutschen Geographen der Renalssance, Von Or. V. Hantzsch. Die neueren Forschungen über die

Das Karlenzeichnen in der Schole. Von Dr. E. Bluday.

Von Or. E. Bludau. Korallenriffe. Von Or. A. Langenbeck.
Kleinere Mitteilungen — Geographische Neuigkeiten — Bücherbesprechungen

Eingesandle Bücher, Aufsätze und Karten — Zeitschriftenschau.

Prospekte und Probehefte gratis und franko

you der Verlagsbuchhandlung B. G. Teubner in Leipzig, Poststrasse 3.
Abonnements nehmen alle Postanstalten und Buchhandlungen an.

INHALT.

Ober einen Satz der Funktionentheorie und shine Anwendung auf im thermes he.	
Kurvensysteme und auf einige Theorien der mathematischen Physik. Von	
Prof. Dr. Houseverse	
Southing our Theorie des cheuen Gelenkvierecks. Von Dr. R. Mentant	E
Anwendung der Integralkurre zur Volumbeilung. Von Enzag Beaten	
Ober Nachbargehiete im Raume. Von Para Strong	
Phor einen Mechanismus, darch den ein beliebiger Winkel in eine beliebige ungerade Anzahl gleicher Teile gefeilt werden kunn, Von A. Konsun	
diagoratic Anzani girichet Telle gereits werton aante, von al Annaels	
Zur Theorie der Gleichung $\frac{\partial^2 \Phi}{\partial t^2} = a^2 \Delta \Phi$ auf Grand der Kirchhoffschen	
Gleichung für das Hayghenssche Prinzip: Von J. Juan	
Aufgabe 2. Von C. B.	
Historisch-litterarische Abteilung (besonders paginiert)	
Die Quadratwurzelformel des Heron bei den Arabern und bei Regiomontan	
and damit Zusammenhängendes. Von Maximutas Curran	
Rezensionen: Gessuann, G.W., Magnetismus und Hypnotismus. Von R. Nesser.	160
Manrix, Tu. C., Nicola Tesla's Untersuch, (ib. Mehrphasenströme und	200
üb. Wechselströme hoher Spannsong u. Frequenz Von B. Noses	170
Pages, William Armur, A treatise on the measurement of electrical,	
resistance. Von B. Names.	180
Schuck, A., Magnetische Beobachtungen an der deutschen Bricht	
der Nardsee, und Elemente des Erdmagnetismus an festen	
Stationen Europas Von B. Naum. Schwartze, Tu., Die Lehre von der Elektrizität und deren praktische	
Verwendung. Von B. Name.	180
Lunyann, O., Elektrizität und Licht Von B. Nauer.	1.00
LEBRANN, O., Dr. J. Fricks Physikalische Technik. Von B. Neuer.	
Schmar, C., With, Olbers, sein Leben u. seine Worke. Von B. Navan.	150
Wishrouses, Walter F., Astronomische Chronologie, Von B. Neuer.	38
PAUTH, Pans, Astronomische Beobachtungen und Resultate uns den	115
Jahren 1893 und 1894. Von B. Nemer.	150
Welter, About, Die tiefen Temperaturen. Von B Neuen	
Manu, Principii della teoria matematica del movimento dei corpo-	
Corso di meccanica razionale. Von J Lenora	100
Semurz-Dynost, O., Naturphilosophie als exakte Wissenschaft	
OLIVIER, JULIOS VON, Was ist Raum, Zoit, Bewogung, Monsov Was	
ist die Erscheinungswelt? Von Max Meyen	
Schwaff, I. J., A Geometrical Treatment of Curves which are Joognaph	
Conjugate To A Straight Line Whit Respect, To A Triangle	
Von Max Mexer	930
Hazav, M. En., Exercices Methodiques do Calcul Integral. Von	
Max Mayen . Kürmu, Dr. Famparcu, Ableitung der verschiedenen Formen der	
Kurven dritter Ordnung. Von Max Maren	
Bonk, H., Mathematische Hauptsätze für Gymnasien, Von E. Jaussa	
HARTE, H., Chungsbuch für den Unterricht in der allgameinen	
Arithmetik und Algebra. Von E. Janson	
Seinken, Tu., Lehrbuch der ebenen und sphärischen Trigonometrie	
School, R., Katechismus der Algebra, Von E. Jansen	
Frikker, H., Arithmetische Aufgaben Von E. Janker	(%)
Mannan, G., Leitfaden für den Anfangsunterricht in der Planimetrie.	
Von E. Januar	
Köstern, H., Leitfaden der ebenen Geometrie. Von E. Januar	
Serikan, Tu., Lehrbuch der Stereometrie Von E. Januar Schülke, A., Vierstellige Logarithmentafeln. Von H. Januar	13
Holzwiller, G., Method, Lebrb, d. Elementarmathem. Von E. Januar	
TANKER, PALE et CH. HENRY, Octover do Fermat, Von G. Wertings	12
Pronow, M., Démonstration de l'axiome XI d'Enclide. Von Stress	12
Chiverz, Tu., Essai sur le postulut d'Euclide Von Srackes of le	
Criverz, Tu., Essai sur le postulat d'Euclide Von Sy Cos Se Demandre, H., Cours d'Analyse. Von W. Fu. Neurola Cos Se Dibliographie von 19 August bis 14 Oktober 1815	
this linear and the room 10 American him 14 Observate 1862	

Druck you B. C. Tenbure in Dreaden, Ewingerstr 30. Yeslag eve E. G. Tenbure in

ZEITSCHRIFT

ATTEN

MATHEMATIK UND PHYSIK.

BEGRÜNDET 1856 DURCH

O. SCHLÖMILCH.

рибини пинавановическим усл. О. Schlömhon (1856—1896), В Wpreschen (1856—1850), М. Canton (1859—1890), Е. Кант (1860—1892).

GEGENWÄRTIG HERAUSGEGEBEN

VAX

DE. R. MEHMKE UND DR. M. CANTOR.

42. RAND. 6. HEFT.

AUT + TEXTFIGURES.

Ausgegeben am 31 Dezember 1897.

LEIPZIG, YKHLAG VON B. G. TEUBNER. 1897.

, Google

Nenester Verlag von B. G. Teubner in Leipzig. 1897.

Curnolius, Hans, Psychologie als Erfahrengawisasnachaft XV .

14th 5 gr. 8, 1897, geh. n. 210, -Toppl, Dr. A., Prof on der Technischen Hechschule au München, Varlesungen

Füppi, Dr. A., Prof. an der Technischen Hochschule au Münsten. Varlesungen über technische Mechanik. Dritter Bandt Festigkeitslehre. Mit 70 Figuren im Test. (XVI a. 472 S.) gr. n. 1897. Gehanden u. J. 12 Fricke, Robert, und Felix Klein, Vorlesungen über die Theorie der automorphen Funktionen. I. Rand: Die gruppentheoretischen Grondlagen. Mit 192 in den Text gedrackten Figuren. (XIV a. 634 S.) gr. s. 1897. geh a. J. 22.

Januschke, Hans, k. k. Direktor der Staats-Oberrenischule in Teschon, das Prinzip der Erhaltung der Energie und seine Anwendung in der Naturlehre. Ein Hilfsbuch für den höheren Unterricht. Mit 95 Figures im Text. [X u. 456 S.] gr. s. 1897. Gebanden z. 12.

Klain, F., and A. Sommerfeld, über die Theorie des Kreisels. Haft I. Die kinomatischen und kinetischen Grundlagen der Theorie. [IV u. 200 S.] gr. s. 1897. geh u. J. 5.60.

Routh, John Edward, Sc. D., Li. D., F. R. S., etc., Ehrenmitglied von Peter-touse, Cambridge; Mitglied des Senats der Universität London, die Dyna-mik der Systeme starrer Körper. In zwei Binden mit sahlreiche Beispielen Autorisierte deutsche Ausgabe von Anone Semee, Premierlioutement a D. zu Wiesbaden. Mit einem Vorwort von Prof. Dr. Fran Kraos au Göttingen. Erster Band: Die Elemente. Mit 57 Figuren im Text XII u 172 5 | gr 8, 1897, Gebunden u # 10 -

Verlag von B. F. Voigt in Weimar.

Elementarbuch der erential- und Integralrechnung

mit zahlreichen Anwendungen aus der Analysis, Geometrie, Mechanik, Physik etc.

Fr. Autenheimer.

Vierte verbesserte Auflage.

Mit 157 Abbildungen.

Geh. 9 Mark. Vorrätig in allen Buchhandlungen.

Biographisch-Literarisches

der exacten Wissenschaften.

Ba. 111. Tast. 11.

Herausgegeben von Dr. W. Feddersen Prof. Dr. A. J. v. Oettingen, Prog. M 3 -

Das Werk enthält biograph, Notisca und Angaben aller Arbeiten von Mathematikern, Astronomen, Physikern. Chemikern, Mineralogen, Geologen, Geographen u.s. w. aller Välker mol Zeiten. Der III. Band umfasst die Jahrs 1858 bis 1883. Prospekte gratis durch den Verlag von

Johann Ambrosins Barth to Dicke-

Bei Beendigung des vorliegenden Bandes der "Zeitschrift für Mathematik und Physik" empfinde ich es als eine angenehme Pflicht, den verehrten Mitarbeitern für ihre mir so wertvolle Unterstützung meinen aufrichtigen Dank zu sagen. Möchte mir dieselbe auch künftig in gleichem Maße zu teil werden!

Als ich nach dem bedauerlichen Rücktritte des hochverdienten Begründers dieser Zeitschrift, des Herrn Geheimrat Schlömilch, die Leitung des ersten Teiles derselben übernahm, geschah es mit der Absicht, der Zeitschrift allmählich eine entschiedene Richtung nach der Seite der angewandten Mathematik zu geben. Es hatte ja bis dahin an einem Organ für die mathematische Exekutive (um einen Ausdruck des Herrn Klein zu gebrauchen), wie für die Anwendungen der Mathematik im allgemeinen und auf Probleme der Technik im besonderen gefehlt, und wenn die in den letzten Jahren mehrfach zu Tage getretenen Bemühungen, ein solches ins Leben zu rufen, trotz des von allen Seiten anerkannten Bedürfnisses ohne Erfolg geblieben waren, so durfte daraus wohl die Lehre gezogen werden, dass es besser sei, an eine bestehende Zeitschrift anzuknüpfen, als den in so übergrosser Zahl vorhandenen mathematischen Zeitschriften eine neue hinzuzufügen. Es erschien aber auch "Schlömilchs Zeitschrift" hierzu besonders geeignet, weil darin das numerische Rechnen, die darstellende Geometrie mit Schattenkonstruktion und Perspektive, die Kinematik etc. von jeher gepflegt worden sind, mithin zwar das bisherige Gebiet durch Einbeziehung der technischen Mechanik (im weitesten Sinne) erweitert werden musste, sonst aber in der Hauptsache nur schon Bestehendes auszubauen und zu vertiefen war. Hierauf besonders hinzuweisen. wurde aus verschiedenen Gründen bis jetzt unterlassen, erscheint aber nunmehr geboten, nachdem mehrere namhafte Techniker sowohl als auf den bezeichneten Gebieten thätige Mathematiker als Mitarbeiter gewonnen sind und so die Durchführung jener Absicht als gesichert anzusehen, auch in dem jetzt abgeschlossenen Bande bereits dieser und jener Schritt in der angestrebten Richtung zu bemerken ist.

Es erübrigt noch, einige damit im Zusammenhang stehende besondere Maßnahmen zu erwähnen. Vom nächsten Bande an sollen

regelmässig Verzeichnisse der in technischen Zeitschriften erschienenen Abhandlungen mit vorwiegend mathematischem oder physikalischem Inhalte gebracht werden, wozu die Verlagsbuchhandlung mit dankenswerter Bereitwilligkeit den nötigen Raum zur Verfügung gestellt hat. Ferner beabsichtige ich, die Leser der Zeitschrift über die neuesten Fortschritte auf dem Gebiete der Rechen- und Zeichen-Apparate auf dem Laufenden zu erhalten und zur Verbreitung der neueren Methoden des graphischen Rechnens, insbesondere der Herstellung graphischer Tafeln, nach Kräften beizutragen. Wie schon in diesem Bande versuchsweise geschehen ist, sollen auch künftig aus der Praxis stammende Aufgaben gestellt werden, nicht bloss um die Mathematiker überhaupt zur Beschäftigung mit solchen anzuregen, sondern um dieselben der Lösung entgegenzuführen, wenn letztere für die Technik ein wirkliches Bedürfnis ist, aber besondere mathematische Kenntnisse und Gewandtheit in der Handhabung mathematischer Werkzeuge erfordert, also die Mitwirkung der Mathematiker von Fach wünschenswert erscheinen lässt.

Es versteht sich von selbst, dass bei alledem die reine Mathematik nicht ausgeschlossen zu werden braucht und den Bedürfnissen des Unterrichts eher in erhöhtem Maße Rechnung getragen werden kann.

Stuttgart, Ende 1897.

R. Mehmke.

Der kubische Kreis mit Doppelpunkt.

Von

Dr. CHR. BEYEL

Ein Kreis wird bekanntlich durch zwei projektivische Büschel hervorgebracht, für welche der Winkel von zwei Strahlen des einen Büschels der Grösse und dem Sinne nach gleich dem Winkel der entsprechenden Strahlen ist. Eine Verallgemeinerung dieser Erzeugungsweise führt zu Kurven n^{ter} Ordnung mit einem n-1 fachen Punkte. Wir untersuchen unter diesen Kurven eine solche von der dritten Ordnung, welche als eine der einfachsten Typen einer Kurve dritter Ordnung betrachtet werden kann. Wir stellen diese Kurve mit Hilfe von Zirkel und Lineal dar und leiten dabei eine Reihe von Eigenschaften ab. Um uns bei dieser Darstellung einfach ausdrücken zu können, wollen wir die Kurve mit K^5 bezeichnen und kubischen Kreis mit Doppelpunkt nennen. Der Gang unserer Überlegungen wird zeigen, dass dieser Name durch manche Analogien der Kurve mit dem Kreise gerechtfertigt wird.

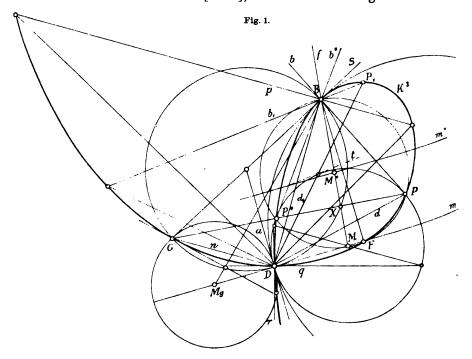
Wir schicken unserer Untersuchung einige Bezeichnungen voraus, welche oft wiederkehrende Gebilde durch ein Symbol auszudrücken gestatten. Wir bezeichnen mit:

- S_b , S_d Strahlenbüschel mit den Scheiteln B, D. b, d seien resp. Strahlen der Büschel.
- (D), (B) seien Kreise mit den Mittelpunkten D, B.
- (D) A sei ein Kreis durch A, dessen Mittelpunkt D ist.
- (D) a sei ein Kreis aus D, welcher die Linie a berührt.
- [A], [AB], [ABC] seien Kreise durch A, AB, ABC.
- [Aa] sei ein Kreis, der a in A berührt.
- [ABb] sei ein Kreis durch A und B, welcher b in B berührt.
- J_g sei eine Punkteinvolution auf der Geraden g.
- J_d sei eine Strahleninvolution am Scheitel D.

I.

1. Wir gehen von zwei Strahlenbüscheln S_d und S_b aus. Wir ordnen die Strahlen der Büschel in der Weise einander zu, dass je zwei Strahlen des Büschels S_b einen Winkel einschliessen, der gleichgerichtet und doppelt so gross ist wie der Winkel der entsprechenden Strahlen des Büschels S_d . Diese Zuordnung wird durch ein entsprechendes Paar d, b bestimmt. Wir beweisen, dass sich entsprechende Strahlen beider Büschel in Punkten einer Kurve dritter Ordnung schneiden und diese Kurve ist K^3 (Fig. 1).

Um den Beweis zu führen, legen wir durch den Schnittpunkt P von d und b einen Kreis [DPb], welcher durch D geht und b in P



berührt. Wir benutzen diesen Kreis zur Konstruktion weiterer Strahlenpaare der Büschel. Soll etwa zu d_1 der entsprechende Strahl b_1 gefunden werden, so zeichnen wir im zweiten Schnittpunkte von d_1 mit [DPb] die Tangente t. Wir ziehen durch B eine Parallele zu t. Diese ist b_1 weil $<> dd_1 = \frac{1}{2} <> bt = \frac{1}{2} <> bt_1$.

Suchen wir zu b_1 den Strahl d_1 , so ziehen wir an [DPb] die Tangenten, welche parallel b_1 sind und zeichnen ihre Berührungspunkte. Durch jeden dieser Punkte und D geht ein Strahl, welcher b_1 entspricht.

Aus dieser Konstruktion schliessen wir, dass jedem Strahle d ein Strahl b entspricht. Jedem Strahle b korrespondieren aber zwei Strahlen von S_d . Die zwei Büschel stehen also in einer einzweideutigen Beziehung. Folglich ist der Ort der Schnittpunkte entsprechender Strahlen eine Kurve dritter Ordnung. D ist ein Doppelpunkt; B ist ein einfacher Punkt von K^3 .

2. Wir ziehen aus der Darstellung von K^3 mit Hilfe von [DPb]einige Schlüsse. Jeder Durchmesser m von [DPb] schneidet diesen Kreis in zwei Punkten, deren Tangenten zu einander parallel sind. Der Parallelstrahl b^* durch B zu diesen Tangenten entspricht also den zwei Strahlen d*, d,*, welche durch die Berührungspunkte der Tangenten gehen. Dreht sich m um den Mittelpunkt M von [DPb], so bilden die Strahlenpaare $d^*d_1^*$ eine Rechtwinkelinvolution J_d . Ihre Paare sind durch K³ den Strahlen des Büschels S₆ eindeutig zugeordnet. Wir charakterisieren diese Zuordnung näher, indem wir sie für die Doppelstrahlen von J_d untersuchen. Im allgemeinen entsprechen ihnen Strahlen durch B, welche in den resp. Schnittpunkten mit den Doppelstrahlen die Kurve K³ berühren. In unserem Falle schneiden diese Doppelstrahlen den Kreis [DPb] in den imaginären Kreispunkten. Ziehen wir durch B zu den Tangenten in diesen Punkten die Parallelen b*, so gehen sie ebenfalls durch die imaginären Kreispunkte und treffen also in diesen die entsprechenden Strahlen d^* . Folglich berühren die Geraden b* die Kurve K³ in den imaginären Kreispunkten. Wir schliessen daher:

Ordnen wir die Paare einer Rechtwinkelinvolution den Strahlen eines Büschels in der Weise eindeutig zu, dass die Doppelstrahlen der Involution aus den entsprechenden Strahlen des Büschels die imaginären Kreispunkte schneiden, so entsteht der kubische Kreis mit Doppelpunkt. Er ist zirkular und die Tangenten an K^s in den imaginären Kreispunkten schneiden sich in einem Punkte B der Kurve.

Wir nennen diesen ausgezeichneten Punkt B der Kurve Brennpunkt. Wir bemerken noch, dass die Zuordnung zwischen J_d und S_b durch ein Paar der Rechtwinkelinvolution und den entsprechenden Strahl des Büschels bestimmt wird.

3. Die bewiesenen Darstellungen von K^3 führen zu weiteren Eigenschaften der Kurve.

Bezeichnen wir die Strecke zwischen zwei Punkten von K^3 , welche — ausser B — auf einer Geraden durch B liegen, als Brennpunktsehne, so folgt:

Jede Brennpunktsehne erscheint vom Doppelpunkte aus unter rechtem Winkel.

Zwei Brennpunktsehnen, welche aufeinander senkrecht stehen, seien zu einander konjugiert. Dann ergiebt sich aus den Winkeleigenschaften, welche die Erzeugung von K³ definierten (1):

Wird eine Brennpunktsehne vom Doppelpunkte D aus durch das Rechtwinkelpaar dd_1 projiziert, so muss die konjugierte Sehne von D aus durch die Halbierungslinien von dd_1 projiziert werden.

Aus diesem Satze schliessen wir, dass B im allgemeinen Falle keine Brennpunktsehne halbiert; denn läge B in der Mitte einer Brennpunktsehne, so müssten nach bekannten Kreiseigenschaften die Endpunkte dieser und der konjugierten Sehne mit D auf einem Kreise liegen, der B zum Mittelpunkte hat. Dann ist dieser Kreis ein Teil der Kurve K^3 , d. h. diese Kurve degeneriert.

In der Projektivität von J_d und S_b korrespondieren im allgemeinen dem Verbindungsstrahle der Scheitel die resp. Tangenten in diesen

Scheiteln. Daraus folgt für K3:

Die Tangenten qr im Doppelpunkte von K^8 stehen zu einander senkrecht und gehen durch die zwei Punkte, welche der zu DB senkrechte Durchmesser von [DPb] aus diesem Kreise schneidet.

Für die Tangente s in B folgt:

DB schneidet [DPb] zum zweiten Male in einem Punkte, dessen Tangente parallel s ist.

Nun bildet die Tangente a in D an [DPb] mit DB denselben Winkel wie die Tangente im zweiten Schnittpunkte von DB mit dem Kreise [DPb]. Also folgt:

Die Tangente a in D an [DPb] und die Tangente s in B an K^s sind Seiten eines gleichschenkligen Dreiecks, dessen Basis DB ist.

Der Tangente s entspricht in der Projektivität von J_d und S_b ausser DB noch die Gerade n, welche in D zu DB senkrecht steht. Folglich schneidet n aus s einen Punkt G von K^s .

Der Tangente a in D an [DPb] entspricht eine Parallele durch B. Daraus folgt:

Der reelle unendlich ferne Punkt von K³ liegt auf a.

Spezialisieren wir das Gesetz über konjugierte Brennpunktsehnen für qr und BD, so folgt:

Die Normale p in B zu BD wird von den Halbierungslinien des Winkels qr in zwei Punkten der Kurve K^3 getroffen.

Der Geraden m des Büschels S_d , welche durch den Mittelpunkt M des Kreises [DPb] geht, entspricht eine Linie f, welche zu m senkrecht steht. Daraus schliessen wir:

Fällen wir aus B die Senkrechte auf m, so liegt ihr Fusspunkt F auf K^3 .

Durch B geht — ausser b — eine zweite Tangente b * an [DPb]. Der Strahl des Büschels S_d , welcher dieser Tangente entspricht, muss durch ihren Berührungspunkt P * gehen. Folglich liegt P * auf K *.

4. Indem wir K^3 aus dem Kreise [DPb] konstruierten, haben wir angenommen, dass dieser Kreis durch einen beliebigen Punkt P von K^3 geht. Es giebt also unendlich viele Kreise, aus denen K^3 in gleicher Weise konstruiert werden kann. Alle diese Kreise haben in D dieselbe Tangente a, weil a parallel zu der reellen Asymptote von K^3 ist. Sie bilden ein Büschel von Kreisen [Da] und wir untersuchen nun die Beziehungen dieses Büschels zu K^3 .

Wir haben gesehen, dass die Tangenten durch B an [DPb] diesen Kreis in Punkten P, P^* von K^3 berühren. Verallgemeinern wir dies für die Kreise [Da], so folgt:

Konstruieren wir aus einem Punkte B die Tangenten an die Kreise eines Büschels [Da], so ist K^s der Ort der Berührungspunkte.

Wir erhalten die Berührungspunkte, indem wir über B und den resp. Mittelpunkten M der Kreise [Da] die Kreise [MB] beschreiben. Die Mittelpunkte aller Kreise [Da] liegen auf m. Also liegen die Mittelpunkte der Kreise [MB] auf einer Linie m^* parallel m, welche die Entfernung Bm halbiert. Folglich bilden die Kreise [MB] ein Büschel, welches B und F zu Grundpunkten hat. Wir können daher K^3 auch durch zwei Kreisbüschel wie folgt ableiten:

Gegeben sei ein Kreisbüschel [Da] und ein zweites [BF]. Die Centrale des ersten Büschels stehe in F zu derjenigen des zweiten Büschels senkrecht. Konstruieren wir einen Kreis [BF] durch den Mittelpunkt eines Kreises [Da], so liegen die gemeinsamen Punkte beider Kreise auf K^3 .

Die Berührungspunkte PP^* der Tangenten, welche aus B an einen Kreis [Da] gehen, liegen auf einem Kreise (B). Dieser steht zum Kreise [Da] senkrecht. Wir finden daher K^3 auch nach folgendem Gesetze:

Konstruieren wir zu jedem Kreise (B) eines konzentrischen Büschels den orthogonalen Kreis, welcher eine gegebene Gerade a in einem gegebenen Punkte D berührt, so liegen die Schnittpunkte dieser Kreispaare auf einer Kurve K^3 .

Für besondere Kreise der erwähnten Büschel ergiebt sich noch:

Der Kreis [Da] durch B berührt in B die Kurve K^s . Der Punkt B erscheint als Nullkreis der Kreise (B) und berührt als solcher K^s dreifach u. z. in B und in den imaginären Kreispunkten.

5. Wir wenden uns nochmals zum Büschel der Kreise [Da]. Ziehen wir durch B die Tangenten an einen Kreis des Büschels, so liegen ihre Berührungspunkte PP^* (Fig. 1) auf der Polare von B in Bezug auf den Kreis. Nach einem bekannten Satze gehen aber die Polaren eines Punktes in Bezug auf die Kreise eines Büschels durch einen Punkt. Dieser liegt auf s; denn s ist die Polare von B in Bezug auf den Kreis [DaB] des Büschels. Ferner liegt dieser Punkt auf

der Polare von B in Bezug auf den Nullkreis D des Büschels. Diese Polare steht in D zu BD senkrecht, d. h. sie fällt mit n zusammen. Folglich ist der Schnittpunkt G von n und s derjenige Punkt, durch welchen die Polaren von B gehen. Sie bilden ein Strahlenbüschel S_p . Zu jedem Kreise [Da] gehört ein Strahl g des Büschels. Derselbe steht zu der Linie senkrecht, welche B mit dem Mittelpunkte M von [Da] verbindet. Dreht sich jetzt g um G, so gehört zu jeder Lage von g eine Normale durch B. Der Ort der Schnittpunkte dieser entsprechenden Geraden ist ein Kreis. G und B sind die Endpunkte eines Durchmessers. D liegt auf dem Kreise, weil

$$<) < GDB = 90^{\circ}$$

Sein Mittelpunkt ist der Schnitt von s mit a, weil dieser Punkt die Spitze des gleichschenkligen Dreiecks ist, welches BD zur Basis hat. m berührt den Kreis, weil $m \perp a$. Benutzen wir [DBG] um die Zuordnung der Linien g zu den Kreisen [Da] zu vermitteln, so gelangen wir zu folgender allgemeinen Konstruktion von K^{5} .

 \overline{B} , G seien die Endpunkte eines Kreisdurchmessers. D sei ein beliebiger Punkt der Peripherie und m sei die Tangente in D. Verbinden wir irgend einen Punkt X des Kreises mit B und G und konstruieren wir aus dem Schnittpunkte M von BX mit m einen Kreis durch D, so schneidet er GX in zwei Punkten von K^3 .

Dem Kreise [GDa] korrespondiert in der abgeleiteten Zuordnung die Tangente in G an K^3 . Daraus folgt: Verbinden wir den Mittelpunkt M_g des Kreises [GDa] mit B, so schneidet diese Linie aus dem Kreise [DBG] einen Punkt der Geraden, welche K^3 in G berührt. Diese Tangente trifft den Kreis [GDa] zum zweiten Male in einem Punkte von K^3 (Fig. 1).

11.

6. Wir stellen der in 1. entwickelten Konstruktion von entsprechenden Paaren der Büschel S_d , S_b eine neue an die Seite.

Es sei wieder db ein entsprechendes Paar, welches sich im Punkte P von K^3 schneidet (Fig. 2). Wir suchen b_1 zu d_1 . Wir zeichnen zu diesem Zwecke den symmetrischen Strahl d_2 zu d_1 in Bezug auf d. Dann ziehen wir durch P eine Parallele d_2^* zu d_2^* , welche d_1 in H treffe. Wir konstruieren den Kreis [PHB]. Er schneide d_1 zum zweiten Male in Q. Nun ist

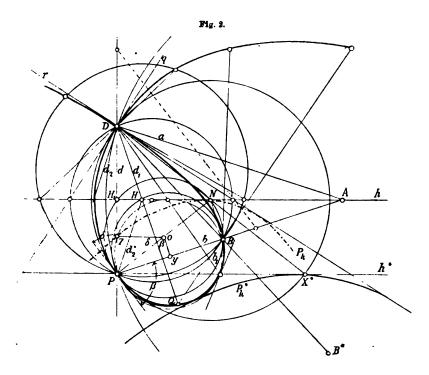
$$<$$
 $>$ $<$ $> PHQ = 2 \cdot <$ $> dd_1 = PBQ$
 $2 <$ $<$ $<$ $> dd_1 = <$ $> $<$ $> bb_1$.$

Folglich ist BQ die gesuchte Linie b_1 und Q liegt auf K^8 . Halten wir jetzt die Linie d fest, während d_1 sich um D dreht, so bestimmt jede Lage von H mit DP als Basis ein gleichschenkliges

Dreieck. Die Kreise durch HPB bilden ein Büschel mit den Grundpunkten PB. K^3 entsteht also in folgender Weise:

DP sei die gemeinschaftliche Basis von gleichschenkligen Dreiecken. B sei ein beliebiger Punkt, der nicht auf DP liegt. Dann schneidet jeder Kreis des Büschels [BP], welcher durch die Spitze H eines Dreiecks geht, aus der Seite DH dieses Dreiecks einen Punkt von K^3 .

Die Spitzen aller Dreiecke DPH liegen auf einer Geraden h, welche in der Mitte von DP zu dieser Linie senkrecht steht. h schneidet



jeden Kreis des Büschels [BP] in zwei Punkten. Daraus ergiebt sich folgende Darstellung von K^3 :

Sei h eine beliebige Gerade, zu welcher die Punkte P, D orthogonal symmetrisch liegen, so machen wir P und einen beliebigen Punkt B, der nicht auf PD liegt, zu Grundpunkten eines Kreisbüschels [BP]. Projizieren wir die Schnittpunkte eines Kreises [BP] mit h aus D auf den Kreis, so erhalten wir zwei Punkte von K^3 .

Unter den Kreisen des Büschels [BP] giebt es im allgemeinen zwei, welche h berühren. Projizieren wir den Berührungspunkt eines solchen Kreises aus D auf den Kreis zurück, so gelangen wir zu einem Punkte von K^3 , in welchem diese Kurve von dem Kreise berührt wird.

7. Der Kreis des Büschels [BP], welcher durch den Schnittpunkt H_1 von h und DP geht, führt zur Konstruktion von Tangenten und Normalen in Punkten von K^3 . Bei diesem Kreise fallen nämlich in P zwei benachbarte Punkte zusammen. Der Kreis berührt K^3 in P und es folgt:

Der Kreis, welcher durch B und einen beliebigen Punkt P von K^3 sowie durch die Mitte der Strecke DP geht, berührt K^3 in P.

Errichten wir in den Mitten Y und Z von PB und PH_1 die Senkrechten (Fig. 2), so schneiden diese sich im Mittelpunkte O des Berührungskreises. Seien β , δ die Winkel, welche die Tangente in P resp. mit b, d einschliesst, so ist:

$$\frac{\sin\delta}{\sin\beta} = \frac{PZ}{PY} = \frac{\frac{1}{4}PD}{\frac{1}{2}PB} = \frac{PD}{2PB},$$

das heisst:

Der Sinus des Winkels, den die Tangente in P mit d bildet, verhält sich zum Sinus des Winkels zwischen Tangente und b wie der Abstand DP zum doppelten Abstande BP.

Daraus ergiebt sich folgende Tangentenkonstruktion: Wir tragen PD von P aus in der Richtung PB auf b ab und 2PB von P aus in der Richtung PD auf d. Wir verbinden die Endpunkte. Dann ist die Tangente in P zu dieser Verbindungslinie parallel.

Errichten wir in B eine Senkrechte zu PB, so muss diese h in einem Punkte N der Kurvennormalen PO schneiden; denn

$$PH_1 = 2PZ$$
 und $PB = 2PY$.

Also folgt:

Das Stück PN der Kurvennormalen in P, welches zwischen P und dem Schnittpunkte N mit h liegt, wird von B aus unter rechtem Winkel gesehen.

8. Ein Kreis des Büschels [PB] zerfällt in die unendlich ferne Gerade und die Linie PB. Projizieren wir den Schnittpunkt A von h und PB aus D auf die unendlich ferne Gerade, so erhalten wir also den reellen unendlich fernen Punkt von K^3 . DA giebt folglich die Richtung dieses Punktes an und fällt mit der oben (4) gefundenen Linie a zusammen. Dreht sich jetzt b um B, so bleibt a fest und A durchläuft a. Dabei ist stets AD = AP. Mithin kann K^3 wie folgt hervorgebracht werden:

Gegeben sei ein Punkt D, eine Gerade a durch D und ein beliebiger Punkt B, der nicht auf a liegt. Konstruieren wir aus irgend einem Punkte A von a einen Kreis durch D, so schneidet er die Linie AB in zwei Punkten von K^3 .

Daraus schliessen wir weiter:

Die Mitten aller Brennpunktsehnen von K^s liegen auf der Geraden, welche den Doppelpunkt mit dem reellen unendlich fernen Punkte von K^s verbindet.

Einer der Kreise [PB] geht durch D. Er schneidet h in zwei Punkten. Projizieren wir diese aus D auf den Kreis zurück, so fallen die Projektionen mit D zusammen. Folglich berühren die Projektionsstrahlen qr die Kurve K^3 in D. Wie wir auch P wählen, stets erhalten wir dieselben Linien qr. Daraus schliessen wir umgekehrt, dass jeder Kreis [PBD] aus den Geraden qr zwei Punkte schneidet, deren Verbindungslinie die zu P gehörende Gerade h ist, welche in der Mitte zwischen P und D liegt. Benutzen wir diese Eigenschaft zur Konstruktion von P, so folgt:

Sind DB die Grundpunkte eines Kreisbüschels und qr die Schenkel eines rechten Winkels, dessen Spitze in D liegt, so schneidet jeder Kreis des Büschels aus q, r zwei weitere Punkte. Zeichnen wir zu D den orthogonal symmetrischen Punkt P in Bezug auf die Verbindungslinie h dieser zwei Punkte, so ist K^3 der Ort der Punkte P.

9. Jedem Punkte P von K^3 ist eine Linie h zugeordnet. Diese Linien h sind Durchmesser der resp. Kreise [PBD] und erscheinen also von B aus unter rechtem Winkel. Sie umhüllen daher eine Parabel P_A , welche B zum Brennpunkte und qr zu Tangenten hat.

Weil q zu r senkrecht steht, liegt D auf der Direktrix von P_h . Soll K^3 aus P_h abgeleitet werden, so geschieht dies also in folgender Weise:

Wir zeichnen zu einem Punkte *D*, welcher auf der Direktrix der Parabel liegt, die orthogonal symmetrischen Punkte in Bezug auf die Tangenten der Parabel. *K*³ ist Ort dieser Punkte.

Aus dieser Darstellung von K^3 ergiebt sich eine andere, bei welcher K^3 als eine besondere Fusspunktkurve einer Parabel erscheint. Ziehen wir nämlich durch jeden Punkt P von K^3 eine Parallele h^* zu dem h, welches P entspricht, so umhüllen diese Linien h^* eine neue Parabel P_h^* , welche q und r berührt. D liegt auch auf der Direktrix von P_h^* . Also folgt:

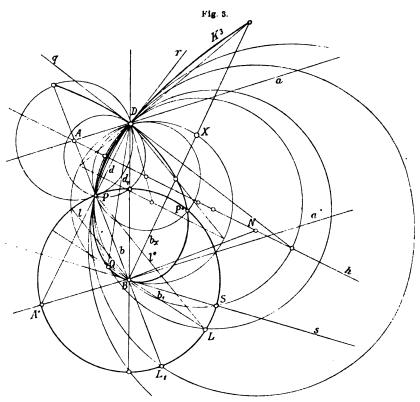
 K^3 ist die Fusspunktkurve einer Parabel P_{h}^* für einen Punkt D der Direktrix dieser Parabel.

Wir ziehen aus dieser Darstellung noch einige Schlüsse. Durch einen beliebigen Punkt X der Ebene gehen zwei Tangenten an P_h^* . Fällen wir auf diese Linie aus D die Senkrechten, so liegen ihre Fusspunkte auf K^3 . Diese Fusspunkte liegen also auch auf einem Kreise, welcher DX zu einem Durchmesser hat. Nehmen wir nun an, dass X^* ein Punkt der Parabel sei, so fallen die zwei Tangenten an P_h^* zusammen. Der Kreis über DX^* muss K^3 berühren. Allgemein heisst dies:

Konstruieren wir über D und einem Punkte X^* der Parabel P_h^* einen Kreis, so berührt dieser K^3 in seinem zweiten Schnittpunkte mit der Geraden, welche in X^* die Parabel tangiert.

Die Mittelpunkte N der Kreise $[DX^*]$ halbieren die Strecken DX^* und liegen also auf der ursprünglichen Parabel P_h . Daraus folgt:

Alle Kreise, welche durch einen festen Punkt D auf der Direktrix einer Parabel P_h gehen und deren Mittelpunkte auf P_h liegen, umhüllen K^3 . Der Berührungspunkt je eines



Kreises liegt orthogonal symmetrisch zu D in Bezug auf die Tangente der Parabel, welche im Mittelpunkte des Kreises berührt.

III.

10. Wir entwickeln in Anknüpfung an die ursprüngliche (1) Definition von K^3 eine weitere Konstruktion (Fig. 3). Seien wieder db_i , d_1b_1 entsprechende Paare von S_d , S_b , welche sich in den resp. Punkten P, Q von K^3 schneiden, so ist $A \subset A \subset A$. Wir ziehen durch $A \subset A$ eine Gerade $A \subset A$, welche den Winkel $A \subset A$ halbiert.

Es ist also: $\langle bl \rangle = \frac{1}{2} \langle c \rangle$

 l^* sei die Parallele durch P zu l. Sie schneide b_1 in L. Dann ist $<\!\!\!\!< l^*b_1 = <\!\!\!\!> dd_1$ oder $<\!\!\!\!< PDQ = <\!\!\!\!< PLQ,$

d. h. die vier Punkte PDQL liegen auf einem Kreise. Ferner ist $<>< l^*b = << l^*b_1$.

Daraus folgt BP = BL.

Halten wir nun den Punkt P fest, während sich b_1 um B dreht so durchläuft der Punkt L einen Kreis (B) mit dem Radius BL = BP. Mit Hilfe dieses Kreises finden wir auf irgend einer Geraden b_1 durch B zwei Punkte von K^3 , indem wir die Schnittpunkte LL^* von b_1 mit (B) bestimmen. Legen wir einen Kreis durch DPL und einen zweiten durch DPL^* , so schneidet jeder dieser Kreise aus b_1 einen zweiten Punkt, der auf K^3 liegt. Alle Kreise [DP] bilden ein Büschel. K^3 entsteht aus diesem Büschel und dem Kreise (B) in folgender Weise:

Gegeben sei ein Kreis (B) und ein Kreisbüschel [DP], dessen Grundpunkt P auf (B) liegt. Durch jeden Punkt L von (B) geht ein Kreis des Büschels. Er wird vom Durchmesser BL des Kreises (B) zum zweiten Male in einem Punkte von K^3 geschnitten.

Wir heben einige Kreise des Büschels [DP] hervor.

Ein Kreis [DP] steht im Punkte P zum Kreise (B) normal und schneidet (B) zum zweiten Male in einem Punkte P^* , dessen Tangente durch B geht. Folglich liegt P^* auf K^3 und wir schliessen:

Zwei Punkte von K^s , welche auf einem Kreise aus B liegen, sind auch auf einem Kreise durch D gelegen, welcher zum Kreise (B) senkrecht steht (4).

Konstruieren wir die zwei Kreise [DP], welche durch die zwei Schnittpunkte der Geraden DB mit (B) gehen, so schneidet jeder dieser Kreise aus K^3 zwei in D zusammenfallende Punkte. Folglich berühren diese Kreise die Kurve K^3 in D. Ihre Tangenten sind die Linien q, r. Weil diese Geraden zu einander senkrecht stehen, müssen auch die zwei erwähnten Kreise zu einander rechtwinklig sein und ihre Mittelpunkte liegen resp. auf q und r. Sie liegen ferner auf der Geraden h, welche in der Mitte von PD zu PD senkrecht steht und sind also die Schnittpunkte von h mit q und r. Durchläuft jetzt P die Kurve K^3 , so umhüllen die Linien h die Parabel P_h und es folgt:

Konstruieren wir aus den Punkten, in welchen die zwei zu einander senkrechten Parabeltangenten q, r von einer dritten Tangente geschnitten werden, die Kreise durch den Schnitt der senkrechten Tangenten, so treffen sich diese Kreise zum zweiten Male in einem Punkte von K^3 .

11. Ein Kreis des Büschels [DP] zerfällt in DP und die unendlich ferne Gerade. Schneiden wir DP zum zweiten Male mit dem

Kreise (B), so geht durch diesen Schnittpunkt A^* und B eine Linie a^* , auf welcher der reelle unendlich ferne Punkt von K^3 liegt. Die Linie a^* bleibt für alle Kreise (B) dieselbe. Wir können sie daher zur Konstruktion von K^3 benützen und haben folgendes Gesetz:

Gegeben sind zwei Punkte DB und eine Gerade a^* durch B. Verbinden wir irgend einen Punkt A^* von a^* mit D, so schneidet der Kreis aus B durch A^* die Verbindungslinie zum zweiten Male in einem Punkte von K^3 .

Führen wir die Konstruktion für je zwei Punkte A^* aus, welche auf einem Kreise (B) liegen, so folgt:

Projizieren wir die zwei Punkte, in welchen ein Kreis (B) die Linie a^* schneidet, auf diesen Kreis zurück, so erhalten wir zwei Punkte von K^3 .

Unter den Kreisen des Büschels [DP] geht einer durch B. Er schneide den Kreis (B) zum zweiten Male in S. Dann fallen auf dem Durchmesser BS des Kreises (B) in B zwei benachbarte Punkte von K^3 zusammen, d. h. dieser Durchmesser S berührt in S die Kurve S. Halten wir S fest, während S die Gerade S und S die Kurve S0 durchläuft, so entsteht diese in folgender Weise:

Gegeben sind zwei Punkte DB und eine Gerade s durch B. Legen wir durch D, B und einen Punkt S von s einen Kreis, so schneidet er den Kreis (B)S zum zweiten Male in K^3 .

Sei L_1 der zweite Schnittpunkt von BP mit (B), so geht durch L_1 ein Kreis des Büschels [DP]. Er trifft den Durchmesser L_1P in einem Punkte von K^3 , welcher mit P zusammenfällt. Also berührt dieser Kreis die Kurve K^3 in P. Allgemein folgt daraus:

Zeichnen wir zu irgend einem Punkte P von K^s in Bezug auf B den zentrisch symmetrischen Punkt L_1 , so geht durch ihn, D und P, ein Kreis, welcher K^s in P berührt.

Auch aus diesem Satze lässt sich indirekt (wie bei 3) zeigen, dass im allgemeinen keine Brennpunktsehne durch B halbiert wird.

12. Der Durchmesser BP des Kreises (B) muss K^3 in einem dritten Punkte schneiden. Wir finden ihn, indem wir den Kreis des Büschels [DP] konstruieren, für welchen in P zwei zusammenfallende Punkte liegen. Dieser Kreis berührt also (B) in P. Sein Mittelpunkt ist der Schnitt von BP mit der zu P gehörenden Linie h, d. h. der auf a liegende Punkt A (8). Wir haben somit wieder bewiesen, dass ein Kreis (A) durch D die Linie BA in zwei Punkten von K^3 trifft.

Konstruieren wir zu B je den vierten harmonischen in Bezug auf ein solches Punktepaar, so können wir zeigen, dass der Ort der vierten harmonischen Punkte ein Kreis ist. Diese Punkte liegen nämlich auf den resp. Polaren des Punktes B in Bezug auf die Kreise (A)D. Weil diese Kreise ein Büschel bilden, sind auch die Polaren Strahlen eines Büschels. Jeder Geraden b entspricht ein Strahl des letzteren Büschels. b ist Durchmesser eines Kreises, in Bezug auf welchen der

korrespondierende Strahl Polare ist. Folglich stehen die entsprechenden Strahlenpaare zueinander senkrecht und erzeugen einen Kreis. Derselbe muss — als Ort der erwähnten vierten harmonischen Punkte — die Kurve K^3 in B berühren und durch D gehen. Er wird daher in B von s und also in D von a berührt. Es folgt daraus:

Die erste Polare von B in Bezug auf K^3 ist der Kreis [DBa].

Ist dieser Kreis bekannt, so lässt sich aus ihm K^3 finden. Wir suchen auf jeder Geraden b_x ein Punktepaar, welches von D aus unter rechtem Winkel erscheint und durch B, sowie den zweiten Schnittpunkt X von b_x mit [DBa] harmonisch getrennt wird. Ziehen wir durch den Mittelpunkt des Kreises [DBa] eine Senkrechte zu b_x , so schneidet diese bekanntlich aus dem Kreise zwei Punkte, welche durch X und B harmonisch getrennt werden. Folglich finden wir K^3 auch so:

Wir gehen von einem Kreise aus. D, B seien zwei seiner Punkte. Wir ziehen durch B eine beliebige Gerade b und fällen auf sie die Senkrechte aus dem Mittelpunkte des Kreises. Projizieren wir ihre Schnittpunkte mit dem Kreise aus D auf b, so erhalten wir zwei Punkte von K^s .

13. Aus der Beziehung zwischen K^3 und dem Kreise [BDa] ergeben sich noch einige Eigenschaften für die Sehnen und Tangenten von K^3 .

Schneiden zwei Gerade b, b_1 (Fig. 4)* den Kreis [BDa] zum zweiten Male in XX_1 und die Kurve K^3 resp. in YZ, Y_1Z_1 , so ist

$$(BXYZ) = -1$$
 und $(BX_1Y_1Z_1) = -1$.

Also müssen sich die Geraden YY_1 und ZZ_1 in einem Punkte U von XX_1 schneiden. Ferner treffen sich die Geraden YZ_1 und Y_1Z in einem Punkte V von XX_1 . Lassen wir b mit b_1 zusammenfallen, so gehen die Sehnen in Tangenten über und es folgt:

Die Tangenten an K^3 in den Endpunkten einer Brennpunktsehne b schneiden sich in einem Punkte U_i , durch welchen auch die Tangente im zweiten Schnittpunkte von b mit dem Kreise [BDa] geht.

Die Linien YY_1 , ZZ_1 und YZ_1 , Y_1Z_1 bestimmen ein Vierseit, für welches Y_1Z_1 , YZ und UV gegenüberliegende Ecken sind. Projizieren wir diese aus einem Punkte — etwa aus D —, so erhalten wir Paare einer Involution. Nun erscheinen die Punkte YZ von D aus unter rechtem Winkel und ebenso die Punkte Y_1Z_1 . Folglich sind zwei Paare der erwähnten Involution rechtwinklig. Diese ist eine Rechtwinkelinvolution und die Punkte U, V werden ebenfalls von D aus unter rechtem Winkel gesehen. Fällt jetzt wieder b mit b_1

^{*} Siehe S. 295.

zusammen, so wird aus U der Schnittpunkt U_t der Tangenten in Y und Z an K^3 . V liegt in X und wir schliessen:

Der Schnittpunkt U_t der Tangenten an K^3 in den Endpunkten einer Brennpunktsehne b und der zweite Schnittpunkt X von b mit dem Kreise [BDa] erscheinen vom Punkte D aus unter rechtem Winkel.*

Wir finden nach diesem Satze die reelle Asymptote a_s von K^s , indem wir den Kreis [BDa] mit a^* schneiden und im Schnittpunkte X_a die Tangente konstruieren. Errichten wir sodann in D die Senkrechte zu DX_a , so trifft diese die erwähnte Tangente in einem Punkte von a_s (Fig. 4).

IV.

14. Wir wenden uns zu Darstellungen von K³, bei denen diese Kurve entweder als Schnitt einer besonderen Regelfläche oder als Projektion einer speziellen Raumkurve erscheint.

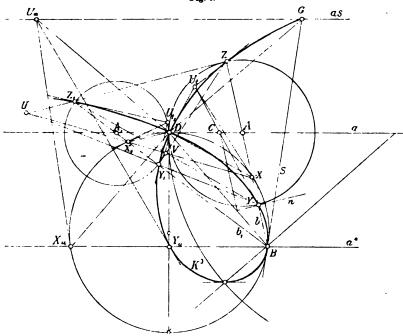
Um die Regelfläche hervorzubringen knüpfen wir an die Konstruktion von K^8 aus den Kreisen (A) D an (8 und 12). Wir bezeichnen die Ebene, in welcher K3 liegt, mit E. Dann ziehen wir in einer Normalebene durch a zu E eine Linie l, welche mit a einen Winkel von 45° bildet. In B errichten wir eine Normale p zu E. Wir konstruieren nun durch einen beliebigen Punkt A_l von l, dessen Orthogonalprojektion in A liege, diejenigen Transversalen r_1r_2 zu p, welche mit E Winkel von 45° bilden. Die Orthogonalprojektionen dieser Linien fallen mit AB zusammen. r_1r_2l liegen auf einem geraden Kreiskegel, mit der Spitze A, und der Axe A, A. Seine Mantellinien schliessen mit E Winkel von 45° ein (45° Kegel). Folglich ist seine Basis ein Kreis aus A durch D. Die Mantellinien $r_1 r_2$ des Kegels schneiden diesen Kreis (A)D in zwei Punkten Y, Z von K^3 . Konstruieren wir jetzt aus allen Punkten A_l von l die resp. Transversalen $r_1 r_2$, so liegen diese auf einer Regelfläche dritten Grades R3. Denn sie schneiden l, p und den Kreis, welchen die oo ferne Ebene mit allen 45° Kegeln gemein hat. Dieser Kreis, l und p sind somit die Leitlinien der Regelfläche. l schneidet den unendlich fernen Kreis in einem Punkte. Also ist $2 \cdot 2 \cdot 1 \cdot 1 - 1 = 3$ der Grad der Regelfläche.

R³ ist unter den Regelflächen dritten Grades dadurch ausgezeichnet. dass die Doppelgerade l die Leitgerade p unter 45° kreuzt. Ferner bilden alle Geraden der Regelfläche mit p Winkel von 45°. Wir bezeichnen daher R³ als 45° Regelfläche dritten Grades. p sei ihre Axe. Dann folgt: Jede Ebene, welche zur Axe einer 45° Regelfläche dritten Grades senkrecht steht, schneidet diese Regelfläche in einem kubischen Kreise K³.

Digitized by GOOGLE

^{*} Zu jedem Punkte X des Kreises [BDa] gehört ein Punkt U_t . Der Ont dieser Punkte ist eine zirkulare Kurve dritter Ordnung, welche in D eine Spitze hat. Vergl. meine Abhandlung über Kurven vierter Ordnung mit drei doppelten Inflexionsknoten. Zeitschrift für Mathematik und Physik, Band XXX (1885) S. 74

15. Wir benützen die Regelfläche R^3 , um für Punkte von K^3 die Tangenten zu konstruieren (Fig. 4). Zeichnen wir in einem Punkte Y von K^3 die Tangentialebene an R^3 , so berührt ihre Schnittlinie mit E die Kurve K^3 in Y. Zur Konstruktion dieser Tangentialebene wenden wir einen bekannten Satz an, nach welchem die Tangentialebenen durch eine Erzeugende r_1 einer Regelfläche zur Reihe der Berührungspunkte projektivisch liegen. Die Projektivität wird durch drei Punkte von r_1 und ihre Tangentialebenen bestimmt. Wir können leicht drei solche Punkte mit ihren Tangentialebenen angeben. Der eine ist der Schnitt von r_1 mit p. Seine Tangentialebene schneidet E in der Geraden BA. Ein zweiter Punkt ist der Schnitt von r_1 mit l.



Seine Tangentialebene trifft E in der Geraden DY. Ein dritter Punkt ist der unendlich ferne Punkt von r_1 . Seine Tangentialebene berührt in Y den Kreis (A)D und schneidet also E in einer Normalen n durch Y zu BA. Projizieren wir die drei in r_1 liegenden Berührungspunkte der erwähnten Tangentialebenen auf BA, so erhalten wir B, A und den unendlich fernen Punkt von BA. Ihnen entsprechen die drei Linien YB, YD und n. Konstruieren wir in dieser projektivischen Zuordnung zu Y die entsprechende Gerade, so berührt sie in Y die Kurve K^3 . Wir können die Konstruktion so ausführen, dass wir die drei Linien YB, YD und n mit DB schneiden. Dann entstehen auf AB und DB perspektivische Reihen, in welchen B sich selbst entspricht. A, D ist ein korrespondierendes Paar. Dem Schnittpunkte

von n mit BD entspricht der unendlich ferne Punkt. Die Verbindungslinie dieser zwei Punkte schneidet also aus AD das Perspektivzentrum C. Durch dieses und Y geht die gesuchte Tangente Daraus ergiebt sich folgende allgemeine Konstruktion:

Wir ziehen im Punkte Y von K³ die Normale n zu BY, schneiden mit derselben BD und projizieren den Schnittpunkt in der Richtung von BY auf a. Durch die Projektion C geht die Tangente in Y.

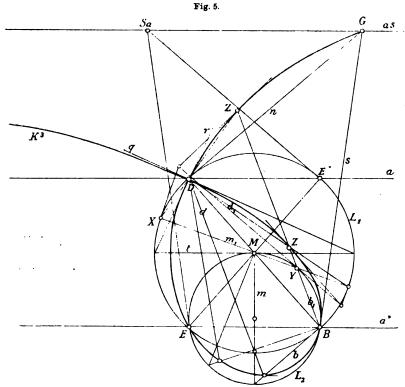
16. Um K³ als Projektion einer Raumkurve zu zeichnen, gehen wir von folgender Konstruktion aus (Fig. 5): Wir beschreiben aus der Mitte M von BD einen Kreis (M) durch B und D. Ferner legen wir einen beliebigen Kreis [MB] durch M und B. Dann ziehen wir durch D zwei beliebige Gerade dd_1 und verbinden die Punkte, in welchen diese Geraden den Kreis (M) zum zweiten Male schneiden, mit M. Diese Verbindungslinien m, m_i treffen den Kreis [MB] je in einem zweiten Punkte. Durch diese Schnittpunkte und B gehen zwei Gerade bb_1 , für welche $\langle bb_1 = \langle mm_1 \rangle$. Aber $\langle mm_1 = 2 \rangle \langle dd_1 \rangle$. Also ist $\langle bb_1 = 2 \rangle dd_1$. Folglich sind $d, b; d, b_1$ entsprechende Paare der Büschel S_dS_b und schneiden sich in Punkten von K^3 . Wir nehmen jetzt an, dass die Kreise (M) und [MB] Leitkurven von zwei Kegeln K_1K_2 seien. Wir fassen D und B als Projektionen der Spitzen M_1M_2 der Kegel aus einem beliebigen Punkte C des Raumes auf. Die Verbindungslinie der Spitzen treffe die Ebene der Leitkurven in M. Dann sind die Geraden m Spuren von Ebenen, welche durch M1, M2 gehen. Die Geraden d, b sind Projektionen von Mantellinien der Kegel und K³ ist das Bild der Durchdringungskurve beider Kegel. Diese ist von der vierten Ordnung. Sie erscheint als Kurve dritter Ordnung. weil das Projektionszentrum C als Schnitt der Mantellinien M_1D und M. B auf der Durchdringungskurve liegt. Wir schliessen daher:

Zwei Kegel K_1K_2 , deren Leitkurven Kreise einer Ebene sind, sollen so angeordnet sein, dass die Bilder D, B der resp. Spitzen M_1M_2 in den Endpunkten eines Durchmessers vom Leitkreise L_1 des einen Kegels K_1 liegen. Die Verbindungslinie der Kegelspitzen gehe durch den Mittelpunkt M dieses Kreises. Der andere Kreis L_2 gehe durch M und B. Dann durchdringen sich beide Kegel in einer Kurve, deren Bild auf die Ebene E die Kurve K^3 ist.

17. Konstruieren wir K^8 in bekannter Weise als Bild der Durchdringungskurve von K_1K_2 , so ergeben sich dabei noch einige Schlüsse.

Der Punkt E, welchen der Kreis (M) mit dem Kreise [MB] ausser B noch gemeinsam hat, liegt auf K^3 . Schneide die Gerade ME den Kreis (M) zum zweiten Male in E^* , so ist BE DE^* . Diese Geraden treffen sich aber in einem Punkte von K^3 . Folglich giebt BE die reelle Asymptotenrichtung von K^3 an.

Eine Gerade m_1 durch M schneide die Kreise (M) und [MB] resp. in X, Y. Die Geraden BY und DX treffen sich in einem Punkte Z von K^3 . Dann muss die Tangente in Y an [MB] aus der Geraden, welche in X den Kreis (M) berührt, einen Punkt schneiden, durch welchen die Tangente in Z an K^3 geht. Spezialisieren wir diese Tangentenkonstruktion, indem wir an Stelle von m_1 die Gerade DB treten lassen, so folgt, dass die Tangente s in B an [MB] die Kurve K^3 berührt. Ferner ergiebt sich, dass die Tangente n in D an M0 aus M1 die Linie M2, so folgt, dass die Tangente in M3 aus



der Tangente in E^* an (M) einen Punkt S_a schneidet, durch welchen die reelle Asymptote as von K^3 geht. Nun ist:

Also ist: $\Delta BGD \sim ES_aE^*.$ $BG = ES_a.$

Daraus folgt EB^+S_aG . Durch S_a geht aber die reelle Asymptote von K^3 und ist parallel EB. Folglich ist S_aG die Asymptote und wir schliessen:

Die reelle Asymptote von K^3 geht durch den Punkt G, in welchem die Brennpunkttangente s in B die Kurve K^3 zum dritten Male schneidet.

Zeitschrift f. Mathematik u. Physik. 42. Jahrg. 1897. 6. Heft.

Oben (8.) haben wir bewiesen, dass auf einer Brennpunktsehne zwei Punkte von K^3 liegen, deren Entfernung durch a halbiert wird. Auf der Brennpunktsehne s sind B und G ein solches Punktepaar. Durch B geht a^* , durch G geht as. Also folgt:

a liegt in der Mitte zwischen a* und as.

Die Linie t, welche in M den Kreis [MB] berührt, trifft den Kreis (M) in zwei Punkten, durch welche die Tangenten q, r im Doppelpunkte D gehen. Nun schliesst t mit MB denselben Winkel ein wie s. Folglich muss $t \parallel a$. Die Punkte, welche t aus dem Kreise (M) schneidet, werden durch den Mittelpunkt M und den unendlich fernen Punkt harmonisch getrennt. Projizieren wir diese harmonische Gruppe aus D, so erhalten wir die Strahlen q, r, DB und a. Daraus folgt:

Die Tangenten q, r im Doppelpunkte D werden durch DB und a harmonisch getrennt.

V.

18. Wir entwickeln aus den abgeleiteten Darstellungen und Eigenschaften von K^3 eine Reihe von Konstruktionen, bei denen die Kurve durch gegebene Elemente bestimmt wird.

Eine Kurve K³ wird in eindeutiger Weise gegeben durch:

a) D, B und einen beliebigen Punkt. Wir konstruieren nach 1, 6, 10 oder 16.

b) D, B und die Richtung der reellen Asymptote. Wir ziehen durch D die Parallele a* zur Asymptotenrichtung und

benützen Kreise (A)D (8.).

c) D und drei beliebige Punkte PQR. Wir suchen B. Wir errichten zu diesem Zwecke in der Mitte von DQ eine Normale und bestimmen ihre Schnittpunkte P_1 , R_1 mit DP, DR. Dann legen wir einen Kreis durch PQP_1 und einen zweiten Kreis durch RQR_1 . Beide Kreise schneiden sich in Q und dem gesuchten Punkte B; denn

und
$$\langle PP_1Q = 2 \rangle \langle PDQ = \rangle \langle PBQ \rangle$$

 $\langle RR_1Q = 2 \rangle \langle RDQ = \rangle \langle RBQ \rangle$

- d) D und zwei beliebige Punkte PQ, sowie die Asymptotenrichtung. Wir ziehen a und zeichnen zwei Kreise, die a in D berühren und resp. durch P, Q gehen. Die Tangente in P an den einen Kreis schneidet aus der Geraden, welche in Q den anderen Kreis berührt, den Punkt B (1.).
- e) D und zwei beliebige Punkte PQ, sowie die Tangente p in P. Wir konstruieren wie bei c) den Kreis $[PQP_1]$. Ein zweiter Kreis, der p in P berührt und durch die Mitte von PD geht (7.) schneidet den Kreis $[PQP_1]$ in P und B.
- f) D, einen beliebigen Punkt P und die Asymptote as. Wir ziehen a und die Linie a*, welche zu as in Bezug auf D

- symmetrisch liegt. Dann legen wir durch P einen Kreis, der a in D berührt. Die Tangente in P an diesen Kreis trifft a^* in B.
- g) D, G und die Asymptote as durch G. Wir ziehen a*. B liegt auf a* und auf der Geraden, welche in D zu DG senkrecht steht.
- h) B und die Tangenten q, r im Doppelpunkte D. Wir zeichnen den Kreis, welcher DB zu einem Durchmesser hat. Die Linien q, r treffen diesen Kreis in zwei Punkten, deren Verbindungslinie die Asymptotenrichtung angiebt. Dann konstruieren wir wie bei b).
- i) q, r und G. Wir ziehen $DB \perp DG$ und konstruieren zu DB den vierten harmonischen Strahl a in Bezug auf q, r (17.). Wir zeichnen as und verfahren wie bei g).
- k) q, r und zwei beliebige Punkte Q, R. Wir zeichnen die Normalen in den Mitten von QD und RD. Sie bestimmen mit q, r die Parabel P_{A} (9.).
- 1) q, r und einen beliebigen Punkt P mit seiner Tangente p. Wir zeichnen einen Kreis, der p in P berührt und durch die Mitte von DP geht. Dann errichten wir in dieser Mitte die Senkrechte h zu DP und bestimmen ihre Schnittpunkte mit q, r. Durch diese, D und P, geht ein zweiter Kreis (8.). Beide Kreise schneiden sich in P und B.
- m) q, r und einen beliebigen Punkt P und die Asymptotenrichtung. Wir ziehen a, zeichnen den vierten harmonischen Strahl BD zu a in Bezug auf q, r. Dann liegt B auf einer Geraden, welche in P den Kreis [PDa] berührt, und auf dem erwähnten vierten harmonischen Strahle.
- n) q, r und die Asymptote as. Wir ziehen a, konstruieren wieder DB als vierten harmonischen Strahl zu a in Bezug auf qr. Dieser schneidet aus der Geraden a^* , welche zu as in Bezug auf a symmetrisch liegt, den Punkt B.
- 19. Vier resp. zwei Kurven K^s werden bestimmt, wenn gegeben sind:
 - o) B und drei beliebige Punkte PQR. Wir suchen die möglichen Lagen von D und gehen dabei von der Winkelbeziehung aus, durch welche die Kurve definiert wurde. Dann ergiebt sich folgende Konstruktion: Ein Kreis aus B, welcher durch Q geht, schneide die Geraden BP, BR resp. in $P^*P_1^*$ und $R^*R_1^*$. Wir konstruieren die Kreise $[QPP^*]$ und $[QPP_1^*]$, sowie die Kreise $[QRR^*]$ und $[QRR_1^*]$. Jeder der zwei ersten Kreise schneidet jeden der zwei anderen Kreise ausser in Q noch in einem Punkte. Diese vier Schnittpunkte sind vier mögliche Lagen von D_*

- p) B und zwei beliebige Punkte PQ, sowie die Tangente p in P. Wir konstruieren wie bei o) die zwei Kreise $[PQP^*]$ und $[PQP_1^*]$. Dann zeichnen wir zu P in Bezug auf B den symmetrischen Punkt und legen durch ihn einen Kreis, der p in P berührt. Dieser Kreis schneidet die Kreise $[PQP^*]$ und $[PQP_1^*]$ ausser in P noch je in einem Punkte. Diese zwei Schnittpunkte können Doppelpunkte von zwei Kurven K^3 sein.
- q) B und zwei beliebige Punkte PQ und die Richtung der reellen Asymptote. Wir zeichnen wieder die Kreise $[PQP^*]$ und $[PQP_1^*]$. Dann ziehen wir a^* und bestimmen die zwei Schnittpunkte dieser Geraden mit dem Kreise aus B durch Q. Durch jeden dieser Punkte und Q geht eine Gerade. Diese zwei Geraden schneiden aus den zwei Kreisen $[PQP^*]$ und $[PQP_1^*]$ die vier möglichen Lagen der Doppelpunkte.
- r) B, ein beliebiger Punkt P und die Asymptote as. Wir ziehen a* und zeichnen a in der Mitte von a* und as. Dann konstruieren wir die zwei Kreise, welche BP in P berühren und a zur gemeinsamen Tangente haben. Ihre Berührungspunkte mit a sind zwei Lagen von D.
- s) B, G und ein beliebiger Punkt P. Wir beginnen die Konstruktion wie bei o). Der Kreis aus B durch P schneide die Gerade BG in G^* , G_1^* . Dann legen wir einen Kreis durch GPG^* und einen Kreis durch GPG_1^* . Auf jedem dieser Kreise kann D liegen. D liegt aber auch auf dem Kreise, welcher BG zum Durchmesser hat. Folglich schneidet dieser Kreis aus $[GPG^*]$ und $[GPG_1^*]$ ausser G noch zwei Punkte, welche Doppelpunkte einer Kurve K^3 sein können.
- t) B, G und die Asymptotenrichtung. Wir ziehen a in der Mitte zwischen B und G. Ein Kreis mit dem Durchmesser BG schneidet a in zwei möglichen Lagen von D.

Die Konstruktionen o), p), q) versagen, wenn die zwei beliebigen Punkte P, Q auf einem Kreise (B) liegen. Für diesen Fall bemerken wir, dass durch P, Q und D ein Kreis geht, der in P und Q zum Kreise (B) orthogonal steht. Der Mittelpunkt dieses Orthogonalkreises liegt im Schnittpunkte der Geraden, welche in P und Q den Kreis (B) berühren. Zeichnen wir nun bei o) die Schnittpunkte des Orthogonalkreises mit den Kreisen $[QRR^*]$ und QRR_1^* , so ist Q der eine dieser Punkte. Die zwei anderen sind Lagen von D. Im Falle p) schneidet der Berührungskreis in P an K^3 aus dem Orthogonalkreise [PQ] zu (B) einen Punkt D aus. Im Falle Q verbinden wir Q und Q mit den Punkten, in welchen Q aus Kreise Q trifft. Diese vier Verbindungslinien schneiden sich paarweise auf Q in Q und überdies in zwei Punkten, welche mögliche Lagen von Q vorstellen.

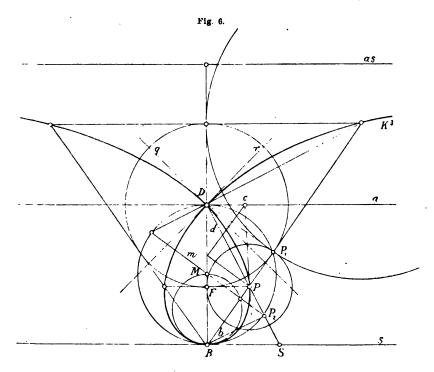
VI.

20. Wir untersuchen schliesslich eine spezielle Form K_s^3 des kubischen Kreises (Fig. 6).

Der Winkel φ , den ein Strahl d mit c einschließst, ist halb so gross wie der Winkel, den der entsprechende Strahl b mit s bildet.

Aus diesem Satze ergeben sich einige Konstruktionen von K_s^3 .

Wir zeichnen über DB als Durchmesser einen Kreis [BDa]. b schneide diesen Kreis in P_1 . Dann ist <> $> b = <> BDP_1$. Halbieren



wir den letzteren Winkel, so ist diese Halbierungslinie die zu b gehörende Linie d und trifft b in einem Punkte P von K_s . Allgemein folgt daraus:

Verbinden wir die Endpunkte D, B eines Kreisdurchmessers mit einem beliebigen Punkte P, des Kreises, so

schneiden die Halbierungslinien des Winkels P_1DB aus P_1B zwei Punkte von K_1 .

Treffe d den Kreis [BDa] in P_2 und die Linie s in S, so ist:

Aber <><
$$P_2BS = <$$
>< P_2DB .
Aber <>< $P_2DB = \frac{1}{2} <$ < PBS .
Also ist
$$P_2BS = \frac{1}{2} <$$
< PBS , d. h.:

Verbinden wir D und B mit einem beliebigen Punkte P_2 des Kreises [BDa] und zeichnen wir zu s die symmetrische Linie in Bezug auf P_2B , so trifft sie P_2D auf K_3 .

Weil $P_2 B$ zu $D P_2$ senkrecht steht, ist $P P_2 = P_2 S$, d.h.:

Halbieren wir auf den Geraden durch D die Strecke, welche zwischen dem Schnittpunkte mit s und dem dritten Schnittpunkte mit K_s liegt, so ist der Ort dieser Mittelpunkte ein Kreis über BD.

21. Fällen wir aus P die Normale auf c und sei F der Fusspunkt, so ist $PF = PP_1$, weil P auf der Halbierungslinie des Winkels P_1DF liegt. Folglich muss ein Kreis aus P durch P_1 die Linie c berühren. Daraus ergiebt sich folgende Darstellung von K_s :

Sind D, B die Durchmesserendpunkte eines Kreises, so gehen durch jeden Punkt P_1 dieses Kreises zwei Kreise, welche DP_1 in P_1 berühren und die Gerade DB zur Tangente haben. Die Mittelpunkte dieser Kreise liegen auf K_s .

Die Punkte P_1 und F liegen auf einem Kreise (D), für welchen die Geraden P_1P und PF Tangenten sind. Daraus folgt allgemein:

Die Tangenten durch B an einen Kreis (D) schneiden aus den Geraden, welche in den Schnittpunkten von BD mit (D) diesen Kreis berühren, vier Punkte von K_* ³.

Nach diesem Satze erhalten wir die Punkte von K_s^3 paarweise in orthogonal symmetrischer Lage zu c und in Gruppen von vier Punkten. welche ein doppelt zentrisches Kreisviereck bilden. Spezialisieren wir diese Konstruktion für den Kreis (D)B, so folgt, dass er in B die Kurve K_s^3 berührt. Die Tangente in seinem zweiten Schnittpunkte mit BD ist die reelle Asymptote as. Eine bequeme Darstellung von K_s^3 ergiebt sich auch, wenn wir diese Kurve als Bild der Durchdringung von zwei Kegeln zweiten Grades auffassen (16.). Die Leitkurven dieser Kegel sind zwei Kreise und zwar der Kreis, welcher BD zu einem Durchmesser hat und der Kreis, für welchen B und die Mitte M der Strecke BD Endpunkte eines Durchmessers sind. Eine Gerade durch M schneidet beide Kreise. Indem wir diese Schnittpunkte resp. mit D und B verbinden, erhalten wir Punkte von K_s^3 . Wir bemerken noch, dass BP auf MP_2 senkrecht steht. Folglich lässt sich K_s^3 auch durch einen Kreis (M) so erzeugen:

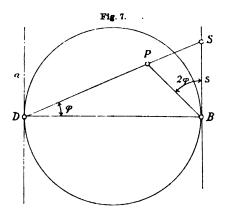
Wir ziehen einen Durchmesser m des Kreises und verbinden seine Schnittpunkte mit dem Endpunkte D eines zweiten Durchmessers. Fällen wir aus dem anderen Endpunkte B dieses Durchmessers die Senkrechte auf m, so trifft sie die erwähnten Verbindungslinien in zwei Punkten von K_s^3 .

Um die Tangente in einem Punkte P von K_*^3 zu zeichnen, verfahren wir — nach 15 — wie folgt:

Wir ziehen in P die Senkrechte zu BP, schneiden mit dieser DB und projizieren den Schnitt in der Richtung von BP auf a. Durch die Projektion C geht die Tangente in P.

Wir haben uns in der vorstehenden Monographie einer besonderen Kurve dritter Ordnung vollständig auf die graphische Darstellung dieser Kurve beschränkt und sind allen Verallgemeinerungen, sowie allen analytischen Betrachtungen aus dem Wege gegangen. Was die Ver-

allgemeinerungen betrifft, so lassen sich aus den entwickelten Erzeugungen und Eigenschaften von K^3 durch Transformation leicht Entstehungen und Eigenschaften von allgemeinen Kurven dritter Ordnung mit einem Doppelpunkte herleiten. Ferner liegt es nahe, die zirkulare Kurve dritter Ordnung ohne Doppelpunkt zu untersuchen, deren Tangenten in den imaginären Kreispunkten sich in einem Punkte der Kurve



schneiden. Diese Kurve wäre als kubischer Kreis (ohne Doppelpunkt) zu bezeichnen.

Die analytische Betrachtung knüpft bequem an die Kurve K_* an, welche eine ähnliche Form hat wie das Folium von Descartes. Machen wir D zum Nullpunkte, a zur y-Axe und sei DB = c; $<< PDB = \varphi$ Fig. 7), so ist: $y = x \operatorname{tg} \varphi$ die Gleichung von DP und

$$y = (x - c) \operatorname{tg} (90^{\circ} + 2\varphi) \operatorname{die} \operatorname{Gleichung} \operatorname{von} BP.$$

Eliminieren wir φ , so ergiebt sich:

$$x^3 - x^2c + y^2(x+c) = 0$$

als Gleichung von K_i . Transformieren wir diese Gleichung, indem wir die Tangenten q, r in D zu Axen machen, so folgt die Gleichung:

$$x^3 - y^3 - x^2y + y^2x + 2c\sqrt{2} \cdot xy = 0.$$

Über das Problem der Winkelhalbierenden.

Von

A. KORSELT, Reallebrer in Meerane i S.

Die bis jetzt behandelten elementar-geometrischen Aufgaben sind:

- a) solche, welche sich durch Lineal und Zirkel, also durch Quadratwurzeln lösen lassen;
- b) solche, deren Lösung nur durch Ausziehen höherer Wurzeln möglich ist, z. B. das Delische Problem, die Dreiteilung eines beliebigen Winkels;
- c) solche, die überhaupt nicht auf algebraische Gleichungen führen, z.B. die Quadratur des Kreises.

Die Aufgabe nun, die Seiten eines Dreiecks aus den inneren Winkelhalbierenden zu bestimmen, ist von einer neuen Art, denn

> sie lässt sich im allgemeinen weder mit Lineal und Zirkel, noch mit Hilfe beliebiger Wurzelgrössen lösen.

Das will ich jetzt zeigen. Der erste Teil dieser Behauptung, der nur ein besonderer Fall des zweiten Teiles ist, wurde schon im ersten Hefte der Zeitschrift für mathem. und naturw. Unterricht von Hoffmann 1897 bewiesen. Dabei muss ich zuweilen das neue Werk: Weber, Lehrbuch der Algebra, 2 Bde (W.) anführen.

Sind $a_1 a_2 a_3$ die Seiten, $w_1 w_2 w_3$ die entsprechenden innern Winkelhalbierenden eines Dreiecks, so ist bekanntlich:

1)
$$w_1^2 = -\frac{a_2 a_3 [(a_2 + a_3)^3 - a_1^2]}{(a_2 + a_3)^2} \cdots,$$

also

$$\left(\frac{w_2}{w_1}\right)^2 = \frac{a_1}{a_2} \frac{(a_3 + a_2)^2}{(a_3 + a_1)^2} \frac{a_3 + a_1 - a_2}{a_3 - a_1 + a_2},$$

setzt man nun:

3)
$$\frac{w_2}{w_1} = e_1, \quad \frac{w_3}{w_1} = e_2, \quad \frac{a_2}{a_1} = x_2, \quad \frac{a_3}{a_1} = x_3,$$

so erhält man:

4)
$$e_2^2 = \frac{(x_3 + x_2)^2 (x_3 - x_2 + 1)}{x_2 (x_3 + 1)^2 (x_3 + x_2 - 1)},$$

oder nach a, geordnet:

5)
$$\begin{cases} x_2^3 + x_2^2 [e_2^2 x_3^2 + (2e_2^2 + 1)x_3 + e_2^2 - 1] \\ + x_2 [e_2^2 x_3^3 + (e_2^2 - 1)x_3^2 - (e_2^2 + 2)x_3 - e_2^2] \\ - x_3^3 - x_3^2 = 0. \end{cases}$$

Man findet noch:

6)
$$\frac{e_3^2}{e_2^3} = \frac{x_2 (x_3 + 1)^2 (x_2 - x_3 + 1)}{x_2 (x_2 + 1)^2 (x_3 - x_3 + 1)},$$
oder:
$$\begin{cases} x_2^2 (e_3^2 x_3^2 - 1) + x_2 [c_2^2 x_3^3 + (e_2^2 + 2e_3^2) x_3^2 - (e_2^2 + 2) x_3 - e_2^2] \\ + e_3^2 x_3^2 - x_3^2 = 0. \end{cases}$$

5), 7) sind Gleichungen für die Unbekannten x_2x_3 und haben die Form: $ax_2^3 + bx_2^2 + cx_2 + d = 0$.

$$a'x_2^3 + b'x_2^2 + c'x_2 + d' = 0,$$

₩O:

$$a = 1, \quad b = e_2^2 x_3^2 + (2e_2^2 + 1)x_3 + e_2^2 - 1,$$

$$a' = 0, \quad b' = e_3^2 x_3^2 - 1,$$

$$c = e_2^2 x_3^3 + (e_2^2 - 1)x_3^2 - (e_2^2 + 2)x_3 - e_2^2,$$

$$c' = e_2^2 x_3^3 + (e_2^2 + 2e_3^2)x_3^2 - (e_2^2 + 2)x_3 - e_2^2,$$

$$d = -x_3^3 - x_3^2$$

$$d' = (e_3^2 - 1)x_3^2.$$

Versteht man nun unter (mn') den Ausdruck mn'-m'n, so ist nach Salmon-Fiedler: "Vorlesungen über die Algebra der linearen Transformationen" S.93 die Resultante R der Gleichungen 5), 7):

8)
$$\begin{cases} R \equiv (ad')^8 - 2(ad')(ab')(cd') - (ad')(ac')(bd') + (ac')^2(cd') \\ + (bd')^2(ab') - (ab')(bc')(cd') = 0. \end{cases}$$

Hierbei ist:

$$(ab') = e_3^2 x_3^2 - 1,$$

$$(ac') = e_2^2 x_3^3 + (e_2^2 + 2e_3^2) x_3^2 - (e_2^2 + 2) x_3 - e_2^2,$$

$$(ad') = (\hat{e}_3^2 - 1) x_3^2,$$

$$(bc') = (e_2^4 - e_2^2 e_3^2) x_3^5 + (3e_2^4 + e_2^2 e_3^2 + e_2^2 + e_3^2) x_3^4 + (2e_2^4 + 5e_3^2 e_3^2 - e_2^4 + 4e_3^2) x_3^3 + (-2e_2^4 + 3e_2^2 e_3^2 - 5e_2^2 - 2e_3^2 - 3) x_3^2 + (-3e_2^4 - 3e_2^2) x_3 - e_2^4,$$

$$(bd') = e_3^2 x_3^5 + (e_2^2 e_3^2 - e_2^2 + e_3^2) x_3^4 + (2e_2^2 e_3^2 - 2e_2^2 + e_3^2 - 2) x_3^3 + (e_2^2 e_3^2 - e_2^2 - e_3^2 x_3^2,$$

$$(cd') = e_2^2 x_3^6 + (e_2^2 + 2e_3^2 + e_2^2 e_3^2) x_3^5 + (e_2^2 e_3^2 - e_2^2 + e_3^2 - 1) x_3^4 + (-e_2^2 e_3^2 - e_2^2 - 2e_3^2) x_3^3 + (-e_2^2 e_3^2) x_3^2.$$
Digitized by

Setzt man diese Werte in 8) ein, multipliziert aus und bezeichnet abkürzend $\frac{R}{\bar{x}^3}$ mit R_1 , x_3 mit x, $ae_2{}^me_3{}^n$ mit $a\cdot mn$, so erhält man nach einer allerdings mühsamen Rechnung:

$$\begin{cases} R_1 = (1 \cdot 44 - 1 \cdot 62)x^{10} \\ + (1 \cdot 46 - 1 \cdot 64 - 4 \cdot 62 - 2 \cdot 44 + 2 \cdot 26 + 1 \cdot 60 + 1 \cdot 06 - 1 \cdot 42 - 1 \cdot 24)x^8 \\ + (-4 \cdot 64 - 3 \cdot 62 - 15 \cdot 44 + 4 \cdot 60 + 6 \cdot 42 - 10 \cdot 24)x^8 \\ + (-6 \cdot 46 - 4 \cdot 64 + 8 \cdot 62 - 12 \cdot 44 - 12 \cdot 26 + 2 \cdot 24 + 4 \cdot 60 \\ + 26 \cdot 42 - 6 \cdot 06 + 8 \cdot 22 - 4 \cdot 40 - 4 \cdot 04)x^7 \\ + (-4 \cdot 46 + 4 \cdot 64 + 17 \cdot 44 + 14 \cdot 62 + 4 \cdot 06 + 21 \cdot 42 \\ + 30 \cdot 24 - 4 \cdot 60 + 12 \cdot 04 - 12 \cdot 40)x^6 \\ + (9 \cdot 46 + 10 \cdot 64 + 18 \cdot 26 + 13 \cdot 44 + 2 \cdot 62 + 11 \cdot 06 - 4 \cdot 24 - 13 \cdot 42 \\ -10 \cdot 60 - 9 \cdot 04 - 18 \cdot 22 - 9 \cdot 40)x^5 \\ + (12 \cdot 46 + 4 \cdot 64 - 21 \cdot 44 - 14 \cdot 62 - 12 \cdot 06 - 30 \cdot 24 \\ -17 \cdot 42 - 4 \cdot 60 + 4 \cdot 40 - 4 \cdot 04)x^4 \\ + (-4 \cdot 64 + 4 \cdot 46 - 8 \cdot 26 - 26 \cdot 44 - 8 \cdot 62 + 12 \cdot 42 - 2 \cdot 24 + 4 \cdot 06 \\ + 4 \cdot 60 + 6 \cdot 04 + 12 \cdot 22 + 6 \cdot 40)x^3 \\ + (-4 \cdot 64 - 6 \cdot 44 + 3 \cdot 62 + 10 \cdot 24 + 15 \cdot 42 + 4 \cdot 60)x^2 \\ + (-1 \cdot 64 + 1 \cdot 44 + 4 \cdot 62 + 1 \cdot 24 + 2 \cdot 42 + 1 \cdot 60 - 2 \cdot 22 - 1 \cdot 40 - 1 \cdot 04)x \\ + (1 \cdot 20 - 1 \cdot 00)1 \cdot 42 = 0. \end{cases}$$

Im folgenden werden in einer Funktion f der Variabeln x, y... zuweilen für letztere andere Ausdrücke a, b... zu setzen sein; wir wollen dies mit f(x = a, y = b, ...) bezeichnen.

Die Gleichung 9) habe ich durch vielfache Proben bestätigt gefunden. Man findet z.B.:

$$\begin{aligned} 10) \begin{cases} \frac{R_1 \cdot (e_2 = e_3 = e)}{-e^4} &= 4e^4x^9 + (4e^6 + 18e^4)x^8 + (10e^6 + 16e^4 - 26e^2)x^7 \\ &\quad + (-31e^4 - 51e^2)x^6 + (-19e^6 - 33e^4 + 12e^2 + 36)x^5 \\ &\quad + (-16e^6 + 35e^4 + 63e^2)x^4 \\ &\quad + (42e^4 - 18e^2 - 24)x^3 + (4e^6 + 3e^4 - 29e^2)x^2 \\ &\quad + (e^6 - 5e^4 - 4e^2 + 4)x - e^4 + e^2 \\ &\quad + (2e^2x^3 + 3e^2x^2 - 4x - e^2)[2e^2x^6 + (2e^4 + 6e^2)x^5 \\ &\quad + (2e^4 - e^2 - 9)x^4 + (-3e^4 - 9e^2)x^3 \\ &\quad + (-4e^4 + 4e^2 + 6)x^2 + (-e^4 + 5e^2)x + e^2 - 1], \end{aligned}$$
 oder abgekürzt,
$$= \varphi_1 \varphi_2,$$

und $\varphi_1 = 0$ ist auch gerade diejenige Gleichung, welche man aus 1) unter der Annahme $w_2 = w_3$, also im Falle eines gleichschenkligen Dreiecks findet. In etwas vereinfachter Gestalt ist dies Gleichung 7)

in meiner Bemerkung S. 82 der Hoffmannschen Zeitschrift, Jahrgang 1897.

Wir haben nun zu beweisen, dass die Gleichung $R_1 = 0$, aus welcher sich das Verhältnis zweier Seiten durch die Winkelhalbierenden bestimmt, nicht auflösbar ist und zerlegen den Beweis in zwei Teile.

a) R_1 ist eine unzerlegbare Funktion von x.

Jeder Faktor R_1 müsste nämlich e_2 und e_3 enthalten. Denn wäre ein solcher Faktor z. B. von e_2 unabhängig, so müsste er in allen Koeffizienten desjenigen Ausdrucks aufgehen, der aus R_1 durch Ordnen nach Potenzen von e_2 hervorgeht. Diese Koeffizienten haben aber nur 1 als gemeinsames Maß. Ähnliches findet man für e_3 . Also wäre R_1 auch eine zerlegbare Funktion von e_2 und e_3 für beliebige Werte von x, welche nur die Dimension von R_1 in Bezug auf e_2 und e_3 nicht erniedrigen, z. B. für x=1. Dann ist aber:

$$\begin{cases} R_1(x=1) = 2R_2 \\ = 2(8e_2^4e_3^6 + e_2^6e_3^2 - 25e_2^4e_3^4 + 25e_2^4e_3^2 - 2e_2^2e_3^4 + e_3^6 - 8e_2^4). \end{cases}$$

 R_2 müsste also zerlegbar sein. Nun beweist man wie vorhin, dass jeder Faktor von R_2 sowohl e_2 als e_3 enthalten muss. Also muss R_2 eine zerlegbare Funktion von e_2 bleiben für jeden Wert von e_3 , der den Grad von R_2 in Bezug auf e_2 nicht erniedrigt, z.B. für $e_3 = i$. Dann ist aber:

12)
$$R_2(e_3=i)=-R_3=-(e_2^6+66e_2^4+2e_2^2+1).$$

 $R_3=0$ hat nur komplexe Wurzeln, jeder reelle Faktor von R_3 muss geraden Grades sein. Wie man leicht sieht, hat $R_3=0$ keine rationalen Wurzeln, R_3 müsste daher, weil es sechsten Grades ist, einen quadratischen Faktor $e_2^2+ae_2+b$ haben, der in zwei komplexe lineare Faktoren zerfällt. b ist $=\pm 1$, infolge des eben angegebenen Umstandes ist es =1. R_3 enthält nur gerade Potenzen von e_3 , dasselbe muss für $e_2^2+ae_2+b$ gelten, also ist a=0. R_3 müsste also durch e_2^2+1 teilbar sein, was nicht geschieht. Also ist R_3 unzerlegbar im Bereiche der rationalen Zahlen und damit auch R_1 .

b) R₁ = 0 ist durch Wurzelgrössen nicht auflösbar.

Wäre $R_1 = 0$ algebraisch auflösbar, so wäre es umsomehr

$$\begin{array}{c} R_1(e_2=e_3=i)=2\,R_4\\ =2\,(2\,x^3+3\,x^2+4\,x-1)(x^6+2\,x^5+3\,x^4-3\,x^3+x^2+3\,x+1)=0,\\ \text{oder abgekürzt:} \qquad \qquad 2\,R_4=2\,f_1\,f_2=0. \end{array}$$

Da $f_1 = 0$ als Gleichung dritten Grades auflösbar ist, so müsste es auch $f_2 = 0$ sein. Wir beweisen nun, dass das Letztere nicht stattfindet.

b_1) f_2 ist unzerlegbar.

 $f_2 = 0$ hat nämlich keine rationalen und nur komplexe Wurzeln, müsste also, wenn es zerlegbar wäre, einen unzerlegbaren quadratischen Faktor $x^2 + ax + b$ haben, der in komplexe lineare Faktoren zerfiele. Daher und da b eine ganze in 1 aufgehende Zahl sein soll, kann b nur = 1 sein, also a nur entweder = 0 oder = \pm 1. Keiner der so entstehenden Ausdrücke geht aber in f_2 auf. Also ist f_2 unzerlegbar.

$$b_2$$
) $f_2 = 0$ ist nicht auflösbar.

Wir hatten unter b) die Gleichung $R_1 = 0$ als auflösbar angenommen und in a) und b_1) die Funktionen R_1 und f_2 als unzerlegbar nachgewiesen. Wir benutzen nun den Satz (W. II, S. 296):

Wenn eine unzerlegbare Gleichung, in deren Graders mehr als eine Primzahl aufgeht, durch folgeweise Adjunktion von Wurzelgrössen in Faktoren zerfällt, so wird eine Zerfällung in s Faktoren r^{ten} Grades herbeigeführt durch Adjunktion der Wurzeln einer auflösbaren Gleichung r^{ten} Grades.

Darnach müsste R_1 entweder ein Produkt $f_{1,\,5}f_{2,\,5}$ von zwei Faktoren fünften Grades werden durch Adjunktion der Wurzeln einer quadratischen Gleichung $\varrho_2=0$, oder ein Produkt $f_{1,\,2}\dots f_{5,\,2}$ aus fünf Faktoren zweiten Grades durch Adjunktion der Wurzeln einer Gleichung fünften Grades $\varrho_5=0$. Diese Faktoren kann man immer so einrichten, dass durch die Substitution $e_2=e_3=i$ kein Koeffizient unendlich oder unbestimmt wird und nicht alle Koeffizienten eines Faktors verschwinden. Durch diese Substitution wird dann in beiden Fällen der höchste Koeffizient nur eines Faktors verschwinden, da R_1 dadurch eine Funktion neunten Grades wird. $f_{1,\,5}f_{2,\,5}(e_2=e_3=i)$ ist also ein Produkt aus einem Faktor vierten und einem fünften Grades, $f_{1,\,2}\dots f_{5,\,2}(e_2=e_3=i)$ besteht aus einem Faktor ersten und vier Faktoren zweiten Grades. Das Produkt $2R_4$, in welches nach 13) R_1 durch diese Substitution übergeht, hat aber keine von diesen Formen, und da

in jedem bestimmten Rationalitätsbereich eine ganze Funktion nur auf eine Art in unzerlegbare Faktoren zerlegt werden kann (Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, S. 13),

so muss jeder Faktor f_1 und f_2 von R_4 durch jede der obigen Adjunktionen zerfallen. Nun ist $f_1=0$ unzerlegbar und dritten Grades. die Adjunktion $\varrho_2=0$ kann also diese Gleichung nicht zerlegen, und es bleibt nur die Adjunktion der Wurzeln einer Gleichung $\varrho_5=0$ zu betrachten übrig.

Durch $\varrho_5(e_2 = e_3 = i) = 0$ muss also f_1 in lineare und f_2 in Faktoren von nicht höherem als zweiten Grade zerfallen. f_2 ist sechsten Grades, und es besteht der Satz (W.II, S. 296):

Um alle auflösbaren Gleichungen sechsten Grades in einem Körper Q zu erhalten, adjungiere man dem Körper Q eine Quadratwurzel und bilde in dem erweiterten Körper alle kubischen Gleichungen, oder man adjungiere die Wurzel einer kubischen Gleichung und bilde in dem erweiterten Körper alle quadratischen Gleichungen.

Daher muss $\varrho_5(c_2=c_3=i)=0$ einen solchen unzerlegbaren Faktor dritten Grades e_3 enthalten, dass die Adjunktion der Wurzeln von $\varrho_3=0$ die Ausdrücke f_1 und f_2 zerfällt. Die Gleichungen $f_1=0$ und $f_2=0$ müssen also äquivalent sein, d.h. eine Wurzel der einen Gleichung ist eine rationale Funktion einer Wurzel der anderen Gleichung. Wir dürfen daher geradezu $f_1=0$ oder eine ihr äquivalente Gleichung als $\varrho_3=0$ annehmen.

Nehmen wir z. B. die Gleichung, die aus $f_1 = 0$ hervorgeht, durch die Substitution:

14)
$$x = -\frac{y+1}{y-1}$$
 oder $y = \frac{x-1}{x+1}$,

so erhält man:

15)
$$y^3 - y^2 + 2y + 2 = 0.$$

Wir benutzen nun die Begriffe der Dedekindschen Theorie der algebraischen Zahlen, die sich in dem letzten Supplemente von Dirichlets "Vorlesungen über die Zahlentheorie" (Braunschweig 1894) findet. Darnach sind die Wurzeln von 15) ganze algebraische Zahlen, und wenn y_{μ} eine derselben, so ist der Körper (y_{μ}) dritten Grades, und jede Zahl desselben hat die Form:

$$m = \frac{a + b y_{\mu} + c y^{2}_{\mu}}{k},$$

wo a, b, c, k ganze teilerfremde Zahlen sind, deren letzte positiv genommen werden kann. Es soll nun bewiesen werden, dass

m nur dann in (y_{μ}) eine ganze algebraische Zahl ist, wenn k=1 ist.

Denn die Diskriminante von 15) ist:

$$D = -200$$

und k kann nach der benutzten Theorie nur solche Faktoren enthalten, deren Quadrate in D aufgehen. Also kann k nur eine der Zahlen 1, 2, 5 sein.

Ist aber z_{μ} ($\mu = 1, 2, 3$) eine jede Wurzel der Gleichung:

15')
$$z^3 - p_1 z^2 + p_2 z - p_3 = 0,$$

so ist allgemein:

16)
$$\begin{cases} \prod_{u}^{1,3} (u + u_0 + v z_{\mu} + w z_{\mu}^2) = u^3 + [3u_0 + p_1 v + (p_1^2 - 2p)u]u^2 \\ + (3u_0^2 + 2[p_1 v + (p_1^2 - 2p_2)w]u_0 + p_2 v^2 \\ + (p_1 p_2 - 3p_3)vw + (p_2^2 - 2p_1 p_3)w^2)u \\ + u^3 + [p_1 v + (p_1^2 - 2p_2 w]u_0^2 + [p_2 v^2 + (p_1 p_2 - 3p_3)vw + (p_2^2 - 2p_1 p_3)w^2]u_0 + p_3(v^3 + p_1 v^2 w + p_2 v w^2 + p_3 v^3). \end{cases}$$

In unserem Falle ist:

$$p_1 = 1$$
, $p_2 = 2 = -p_3$, $u_0 = \frac{a}{k}$, $v = \frac{b}{k}$, $w = \frac{c}{k}$

Nach der Definition der ganzen algebraischen Zahlen müssen die Koeffizienten der Potenzen von u in 16) ganze rationale Zahlen sein, also:

17)
$$\begin{cases} 3a_3 + b - 3c \equiv 0 \pmod{k}, \\ 3a^2 + (2b - 6c)a + 2b^2 + 8bc + 8c^2 \equiv 0 \pmod{k^2}, \\ a^3 + (b - 3c)a^2 + (2b^2 + 8bc + 8c^2)a - 2b^3 - 2b^2c - 4bc^2 + 4c^3 \end{bmatrix} \\ \pmod{k^3}.$$

Aus der ersten Kongruenz folgt:

$$b \equiv 3c - 3a \pmod{k},$$
oder
$$b = 3c - 3a + kb,$$

und dies in die zweite eingesetzt ergiebt:

$$15a^2 - 10kab_1 + 50c^2 + 20kcb_1 - 60ac \equiv 0 \pmod{k^3},$$

oder da k nur 1, 2, 5 sein kann:

18)
$$15a^2 + 50c^2 - 60ac = 15(a - 2c)^2 - 10c^2 = 0(k^2).$$

Ist also k=2, so folgt:

$$a \equiv 0, \ b \equiv c \pmod{2},$$

daher aus 17₈):

$$b \equiv 0 \equiv c \equiv 0 \pmod{2},$$

gegen die Voraussetzung, dass a, b, c, k teilerfremd sind. Ist aber k = 5, so folgt aus 18):

$$a(a+c)\equiv 0(5),$$

also entweder

$$a \equiv 0$$
, oder $a + c \equiv 0 \pmod{5}$.

Beides giebt auf 17₈) angewandt:

$$c\equiv a\equiv b=0\,(5),$$

wiederum gegen Voraussetzung. Also ist in dem Ausdrucke m der Nenner k=1.

Es ist also $(1, y_{\mu}, y_{\mu}^2)$ eine "Minimalbasis" des Körpers (y_{μ}) . Würde nun f_2 durch Adjunktion der Wurzeln von 15) zerlegbar, so könnte man setzen:

19)
$$\begin{cases} f_2 = \prod_{\mu} [x^2 + (a_2 + a_1 y_{\mu} + a_0 y_{\mu}^2) x + b_2 + b_1 y_{\mu} + b_0 y_{\mu}^2] \\ = \prod_{\mu} [(x^2 + a_2 x) + b_2 + (a_1 x + b_1) y_{\mu} + (a_0 x + b_0) y_{\mu}^2]. \end{cases}$$

worin die Grössen ab rationale Zahlen sind. Wir beweisen noch, dass sie ganz sein müssen.

In der That sind alle Wurzeln der Gleichung $f_2 = 0$ ganze Zahlen, also muss auch jeder Faktor der rechten Seite von 19) nur ganze algebraische Zahlen als Wurzeln haben. Nun besteht der Satz:

Sind die Koeffizienten einer algebraischen Gleichung algebraische Zahlen und insbesondere der höchste = 1, und hat die Gleichung nur ganze algebraische Zahlen als Wurzeln, so sind alle Koeffizienten ganze Zahlen.

Der Beweis folgt daraus, dass Summe, Differenz und Produkt ganzer algebraischer Zahlen wieder algebraische Zahlen sind (W.II.S.491), und dass jede ganze Funktion n^{ten} Grades in n lineare Faktoren zerlegt werden kann.

Darnach, und weil $(1, y_{\mu}, y_{\mu}^2)$ eine Minimalbasis des Körpers (y_{μ}) ist, müssen die Grössen a und b in 19) sogar ganze rationale Zahlen sein.

Das Ausmultiplizieren der rechten Seite von 19) geschieht nach der Formel 16), wenn man darin setzt:

$$u = x^{2} + a_{2}x, \quad u_{0} = b_{2}, \quad v = a_{1}x + b_{1}, \quad w = a_{0}x + b_{0},$$

$$p_{1} = 1 \quad , \quad p_{2} = 2 , \qquad p_{3} = -2,$$

$$f_{2} = x^{3}(x + a_{2})^{3} + [3b_{2} + a_{1}x + b_{1} - 3(a_{0}x + b_{0})]x^{2}(x + a_{2})^{3} + (3b_{2}^{2} + 2r_{1})(x + a_{2}) + b_{3}^{3} + [a_{1}x + b_{1} - 3(a_{0}x + b_{0})]b_{3}^{2}$$

$$+ 2r_{2}b_{2} + 2r_{3},$$
oder:

$$20) \begin{cases} f_2 = x^6 + (3a_2 + a_1 - 3a_0)x^5 + [3a_2^2 + 3(b_2 - b_0)]x^4 \\ + [a_2^3 + (a_1 - 3a_0)a_2^2]x^8 + [3(b_2 - b_0)a_2^2 + 3b_2^2]x^2 \\ + [3b_2^3 + (a_1 - 3a_0)b_2^3]x + b_2^3 + (b_1 - 3b_0)b_2^3 + 2r_4, \end{cases}$$

wo $r_1r_2r_3r_4$ ganze ganzzahlige Funktionen der Grössen a, b, x sind. Vergleicht man aber die beiderseitigen Koeffizienten von x^5 und x^3 , so findet man:

$$2 \equiv 3a_2 + a_1 - 3a_0$$
$$-3 \equiv a_2^3 + (a_1 - 3a_0)a_2^3 \pmod{2},$$

oder da:

$$a_2^2 \equiv a_3 \pmod{2},$$

$$0 \equiv a_2 + a_1 - a_0,$$

$$1 \equiv a_2^2 + (a_1 - a_0) a_2 \equiv a_3 (a_2 + a_1 - a_0) \equiv 0 \pmod{2}.$$

Letztere Kongruenz ist ein Widerspruch, die Gleichung 20) kann also nicht bestehen, f_2 ist nicht durch Adjunktion der Wurzeln von 15) zerlegbar, also $R_1 = 0$ auch nicht algebraisch auflösbar.

Dies Ergebnis können wir auch so aussprechen:

Die Aufgabe, die Seiten eines Dreiecks aus den inneren Winkelhalbierenden zu bestimmen, lässt sich im allgemeinen weder mit Lineal und Zirkel noch durch Ausziehen beliebiger Wurzeln oder durch beliebige Winkelteilungen lösen.

Damit ist die Frage des Herrn Dr. Heymann auf S. 567 der Hoffmannschen Zeitschrift, Jahrgang 1896, ob das Gleichungensystem des Problems der Winkelhalbierenden auflösbar sei, verneinend entschieden.

Eine Determinantenformel.

Von

Prof. Dr. E. Schulze

in Friedenau bei Berlin.

Die doppelt orthosymmetrische Determinante ist sowohl in dieser Zeitschrift (Zehfuss, 7. Bd.; Weihrauch, 26. Bd.) als auch in anderen Crelle, 73. Bd., Abhandlung von Stern) wiederholt Gegenstand der Untersuchung gewesen. Als ihre wichtigste, auf verschiedenen Wegen abgeleitete Formel ist gefunden worden:

1)
$$\begin{vmatrix} a_{n} & a_{n-1} & a_{n-2} & \dots & a_{3} & a_{2} & a_{1} \\ a_{1} & a_{n} & a_{n-1} & \dots & \dots & a_{3} & a_{2} \\ a_{2} & a_{1} & a_{n} & \dots & \dots & \dots & a_{3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & \dots & \dots & \dots & a_{2} & a_{1} & a_{n} \end{vmatrix} = \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \dots \cdot \alpha_{n},$$

 $\alpha_1, \ \alpha_2, \ \dots \ \alpha_n$ sind die Werte der n-wertigen Grösse

$$\alpha = a_1 e + a_2 e^2 + a_3 e^3 + \cdots + a_n e^n,$$

wo e eine der nien Wurzeln der Einheit ist.

In dieser Abhandlung soll gezeigt werden, dass nicht nur die doppelt orthosymmetrische Determinante sich in obiger Weise als Produkt von n Faktoren schreiben lässt, sondern eine Determinante von viel allgemeinerer Form, von welcher jene nur einen ganz besonderen Fall darstellt. Es ist die Determinante, welche Weierstraß in seinem an Schwartz gerichteten Briefe (Göttinger Nachrichten 1884) mit

$$\varepsilon = \left| \sum_{k} \varepsilon_{\mu k r} \cdot a_{k} \right| \qquad (k, \mu, r = 1, 2, 3, \dots n)$$

bezeichnet hat; falls sie gleich Null ist, wird die Division zweier aus n Einheiten gebildeten komplexen Zahlen unmöglich, und ein Produkt kann verschwinden, ohne dass einer seiner Faktoren verschwindet.

Zunächst soll der Wert der Determinante ε , den Weierstraß nur in obiger kurzer Form angiebt, aber nicht ableitet, genauer entwickelt werden. Machen wir betreffs der Multiplikation zweier komplexen Zahlen-

$$\alpha = a_1 e_1 + a_2 e_2 + \cdots + a_n e_n, \quad \beta = b_1 e_1 + b_2 e_2 + \cdots + b_n e_n$$

die Annahme, dass die Produkte der Einheiten lineare Funktionen von ihnen sind, dass also

2)
$$\begin{cases} e_{1} \cdot e_{1} = \varepsilon_{111} e_{1} + \varepsilon_{211} e_{2} + \varepsilon_{311} e_{3} + \cdots + \varepsilon_{n11} e_{n} \\ e_{1} \cdot e_{2} = \varepsilon_{112} e_{1} + \varepsilon_{212} e_{2} + \varepsilon_{312} e_{3} + \cdots + \varepsilon_{n12} e_{n} \\ \vdots & \vdots & \vdots \\ e_{k} \cdot e_{r} = \varepsilon_{1kr} e_{1} + \varepsilon_{2kr} e_{2} + \cdots \varepsilon_{\mu kr} e_{\mu} + \cdots + \varepsilon_{nkr} e_{n} \\ \vdots & \vdots & \vdots \\ e_{n} \cdot e_{n} = \varepsilon_{1nn} e_{1} + \cdots + \varepsilon_{nnn} e_{n} \end{cases}$$

ist, so ergiebt sich:

$$\alpha \cdot \beta = \sum_{k} a_k e_k \cdot \sum_{r} b_r e_r = \sum_{r} a_k b_r \varepsilon_{\mu k r} e_{\mu}. \quad (k, \mu, r = 1, 2, \dots n).$$

Setzen wir $\alpha \cdot \beta = \gamma = c_1 e_1 + c_2 e_2 + \cdots + c_n e_n$, so ist

$$\sum a_k b_r \varepsilon_{\mu k r} e_\mu = \sum c_\mu e_\mu$$

und daher

$$\sum a_k b_r \varepsilon_{1kr} = c_1, \quad \sum a_k b_r \varepsilon_{2kr} = c_2, \cdots \sum a_{\mu} b_r \varepsilon_{nkr} = c_n.$$

Fassen wir $\beta = \frac{\gamma}{\alpha}$ als unbekannte Zahl auf, so haben wir zur Bestimmung der Koeffizienten $b_1, b_2, \ldots b_n$ die Gleichungen:

$$\left(\sum a_k \varepsilon_{1k1}\right) \cdot b_1 + \left(\sum a_k \varepsilon_{1k2}\right) b_2 + \dots + \left(\sum a_k \varepsilon_{1kn}\right) b_n = c_1$$

$$\left(\sum a_k \varepsilon_{2k1}\right) \cdot b_1 + \left(\sum a_k \varepsilon_{2k2}\right) b_2 + \dots + \left(\sum a_k \varepsilon_{2kn}\right) b_n = c_2$$

$$\left(\sum a_k \varepsilon_{nk1}\right) b_1 + \left(\sum a_k \varepsilon_{nk2}\right) b_2 + \dots + \left(\sum a_k \varepsilon_{nkn}\right) b_n = c_n.$$

Die Determinante dieses Gleichungensystems ist:

3)
$$\epsilon = \begin{bmatrix} \sum a_{k} \epsilon_{1k1} & \sum a_{k} \epsilon_{1k2} \dots \sum a_{k} \epsilon_{1kr} \dots \sum a_{k} \epsilon_{1kn} \\ \sum a_{k} \epsilon_{2k1} & \sum a_{k} \epsilon_{2k2} \dots \sum a_{k} \epsilon_{2kr} \dots \sum a_{k} \epsilon_{2kn} \\ \vdots & \vdots & \vdots & \vdots \\ \sum a_{k} \epsilon_{\mu k1} & \sum a_{k} \epsilon_{\mu k2} \dots \sum a_{k} \epsilon_{\mu kr} \dots \sum a_{k} \epsilon_{\mu kn} \\ \sum a_{k} \epsilon_{nk1} & \sum a_{k} \epsilon_{nk2} \dots \sum a_{k} \epsilon_{nkr} \dots \sum a_{k} \epsilon_{nkn} \end{bmatrix}$$

wo $\sum a_k \varepsilon_{\mu k r} = a_1 \varepsilon_{\mu 1 r} + a_2 \varepsilon_{\mu 2 r} + a_3 \varepsilon_{\mu 3 r} + \cdots + a_k \varepsilon_{\mu k r} + \cdots a_n \varepsilon_{\mu n r}$ ist.

Hiernach hat $\frac{\gamma}{\kappa}$ die Form:

4)
$$\frac{\gamma}{\alpha} = \frac{1}{\varepsilon} \left(\Delta_1 e_1 + \Delta_2 e_2 + \cdots \Delta_n e_n \right).$$

Aus Gleichung 4) folgt, dass für $\varepsilon = 0$ die Division unmöglich wird.

Wir wollen jetzt nach Dedekindscher Auffassung (Göttinger Nachrichten 1885) die Grössen $e_1, e_2, \ldots e_n$ nicht mehr als Einheiten, sondern als n-wertige Zahlen ansehen. Die n Werte von e_1 seien $e_1^{(1)}, e_1^{(2)}, \ldots e_n^{(n)}$, von e_2 $e_2^{(1)}, e_2^{(2)}, \ldots e_n^{(n)}$ u. s. f.; $e_1^{(n)}, e_2^{(n)}, \ldots e_n^{(n)}$ sollen zusammengehören. Dann ist auch α eine n-wertige Grösse; ihre n Werte sind:

$$\begin{cases} a_1 = a_1 e_1^{(1)} + a_2 e_2^{(1)} + \dots + a_n e_n^{(1)} \\ a_2 = a_1 e_{12}^{(2)} + a_2 e_3^{(2)} + \dots + a_n e_n^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ a_n = a_1 e_1^{(n)} + a_2 e_2^{(n)} + \dots + a_n e_n^{(n)}. \end{cases}$$

Bringen wir Gleichung 4) in die Form $\varepsilon = \alpha \cdot \varphi$, so können wir sie in die *n* Gleichungen

$$\varepsilon = \alpha_1 \varphi_1, \quad \varepsilon = \alpha_2 \varphi_2, \quad \varepsilon = \alpha_3 \varphi_3 \dots \varepsilon = \alpha_n \varphi_n$$

auflösen, d. h. ε enthält $\alpha_1, \alpha_2, \ldots, \alpha_n$ als Divisoren, und daher ist:

$$\boldsymbol{\varepsilon} = \boldsymbol{\lambda} \cdot \boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_2 \cdot \boldsymbol{\alpha}_3 \cdot \ldots \cdot \boldsymbol{\alpha}_n.$$

Es kommt nun darauf an, den Wert von λ zu ermitteln. Führen wir die Multiplikation des Produkts $\alpha_1 \cdot \alpha_2 \dots \alpha_n$ aus, so erhalten wir als ein Glied der Summe $a_k^n \cdot e_k^{(1)} \cdot e_k^{(2)} \dots e_k^{(n)}$.

Auch die Determinante ε lässt sich, da ihre Elemente Summen sind, in eine Summe von Determinanten gleichen Grades zerlegen; dasjenige Glied, welches von den Koeffizienten $a_1, a_2 \ldots a_n$ keinen andern als a_k enthält, ist:

Hiernach geht Gleichung 6) in die folgende über:

$$a_{k}^{n} \cdot \begin{vmatrix} \varepsilon_{1k1} & \varepsilon_{1k2} & \dots & \varepsilon_{1kn} \\ \varepsilon_{2k1} & \varepsilon_{2k2} & \dots & \varepsilon_{2kn} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \varepsilon_{nk1} & \varepsilon_{nk2} & \dots & \varepsilon_{nkn} \end{vmatrix} + \dots = \lambda \cdot a_{k}^{n} \cdot c_{k}^{(1)} \cdot e_{k}^{(2)} \cdot \dots \cdot e_{k}^{(n)} + \dots$$
und daher ist:
$$\begin{vmatrix} \varepsilon_{nk1} & \varepsilon_{nk2} & \dots & \varepsilon_{nkn} \\ \varepsilon_{1k1} & \varepsilon_{1k2} & \dots & \varepsilon_{1kn} \\ \vdots & \vdots & \vdots & \vdots \\ \varepsilon_{2k1} & \varepsilon_{2k2} & \dots & \varepsilon_{2kn} \\ \vdots & \vdots & \vdots & \vdots \\ \varepsilon_{nk1} & \varepsilon_{nk2} & \dots & \varepsilon_{nkn} \end{vmatrix} = \lambda \cdot e_{k}^{(1)} \cdot e_{k}^{(2)} \cdot \dots \cdot e_{k}^{(n)}.$$

Zur Bestimmung der n-wertigen Grösse e_k betrachten wir die n Einheitsprodukte:

$$e_k \cdot e_1 = \varepsilon_{1k1} e_1 + \varepsilon_{2k1} e_2 + \dots + \varepsilon_{nk1} e_n$$

$$e_k \cdot e_2 = \varepsilon_{1k2} e_1 + \varepsilon_{2k2} e_2 + \dots + \varepsilon_{nk2} e_n$$

$$e_k \cdot e_n = \varepsilon_{1kn} e_1 + \varepsilon_{2kn} e_2 + \dots + \varepsilon_{nkn} \varepsilon_n$$

und schreiben die Gleichungen in der Form:

$$0 = (\varepsilon_{1k1} - e_k)e_1 + \varepsilon_{2k1} \qquad e_2 + \cdots + \varepsilon_{nk1}e_n$$

$$0 = \varepsilon_{1k2} \qquad e_1 + (\varepsilon_{2k2} - e_k)e_2 + \cdots + \varepsilon_{nk2}e_n$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$0 = \varepsilon_{1kn} \qquad e_1 + \varepsilon_{2kn} \qquad e_2 + \cdots + (\varepsilon_{nkn} - e_k)e_n$$

Aus diesem Gleichungssystem folgt die Determinantengleichung:

8)
$$\begin{vmatrix} (\varepsilon_{1k1} - e_k) & \varepsilon_{1k2} & \varepsilon_{1k3} \dots & \varepsilon_{1kn} \\ \varepsilon_{2k1} & (\varepsilon_{2k2} - e_k) \varepsilon_{2k3} \dots & \varepsilon_{2kn} \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_{nk1} & \varepsilon_{nk2} \dots & \dots & (\varepsilon_{nkn} - e_k) \end{vmatrix} = 0.$$

Die Gleichung ist in Bezug auf e_k vom n^{ten} Grade; sie heisse:

$$e_{k}^{n} + q_{1}e_{k}^{n-1} + \cdots + q_{n} = 0.$$

Bekanntlich gilt für das Produkt der n Wurzeln dieser Gleichung die Beziehung: $e_k^{(1)} \cdot e_k^{(2)} \cdot e_k^{(3)} \cdots e_k^{(n)} = (-1)^n q_n$.

Anderseits finden wir, wenn wir die von e_k freien Glieder der Determinantengleichung 8) sammeln,

$$(-1)^n \cdot q_n = \begin{vmatrix} \varepsilon_{1\,k\,1} & \varepsilon_{1\,k\,2} & \dots & \varepsilon_{1\,k\,n} \\ \varepsilon_{2\,k\,1} & \varepsilon_{2\,k\,2} & \dots & \varepsilon_{2\,k\,n} \\ \dots & \dots & \dots & \dots \\ \varepsilon_{n\,k\,1} & \dots & \dots & \varepsilon_{n\,k\,n} \end{vmatrix}$$

Vergleichen wir diese Resultate mit Gleichung 7), so ergiebt sich $\lambda = 1$, und daher hat die Determinante ε den Wert:

9)
$$\varepsilon = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \ldots \cdot \alpha_n,$$

wo ε und $\alpha_1, \alpha_2, \ldots \alpha_n$ die in 3) und 5) angegebenen Werte haben.

Hiermit ist der Nachweis geführt, dass nicht nur die doppelt orthosymmetrische Determinante, sondern eine Determinante von viel allgemeinerer Form, eben die Determinante ε , sich als Produkt von n Faktoren darstellen lässt. Dass letztere die doppelt orthosymmetrische Determinante als besonderen Fall in sich schliesst, erkennen wir, wenn wir für das Gleichungssystem 2) die Form wählen:

1)
$$e_1 \cdot e_1 = e_2$$
, 2) $e_1 e_2 = e_3$, 3) $e_1 \cdot e_3 = e_4$, ... n) $e_1 e_n = e_1$.

Diese n Gleichungen sind hinreichend zur Bestimmung der n Grössen $e_1, e_2, \ldots e_n$; es ist:

$$e_1^n = 1$$
 und $e_k = e_1^k$.

Man erkennt leicht, dass in diesem Falle $\varepsilon_{\mu kr}$ entweder gleich 1 oder gleich 0 ist, je nachdem μ bezw. $n + \mu$ gleich oder ungleich k + r ist, und dass demgemäss die Determinante ε doppelt orthosymmetrisch wird und für sie die in der Einleitung hingeschriebene Gleichung 1) gilt.

Die Determinante s ist in ihrer allgemeinen Form 3) von ziemlich kompliziertem Bau, und die Formel 9) liefert infolgedessen nur bei besonders einfachen Annahmen brauchbare Resultate. Ausser der doppelt

orthosymmetrischen Determinante, die wohl den einfachsten und interessantesten Fall darstellt, mögen noch einige andere Determinanten, die verhältnismässig leicht zu behandeln sind, als Beispiele für die Determinante ε geboten und die Form, welche die Gleichung 9) für sie annimmt, in Kürze angegeben werden.

Eine etwas allgemeinere Annahme als die, welche auf die doppelt orthosymmetrische Determinante führt, ist die folgende:

1) $e_1 \cdot e_1 = p_1 e_2$, 2) $e_1 e_2 = p_2 e_3$, 3) $e_1 e_3 = p_3 e_4$, ... n) $e_1 e_n = p_n e_1$, wo $p_1, p_2, \ldots p_n$ beliebige reelle oder komplexe Zahlen seien. Hier ist:

$$e_1^{\ a} = p_1 \cdot p_2 \cdot p_3 \dots p_n$$
 und $e_k = \frac{1}{p_1 p_2 \dots p_{k-1}} e_1^{\ k}$.

Unsere Determinantenformel 9) nimmt hier, wie ohne Schwierigkeit zu erkennen ist, die Form an:

Vorliegende Determinante ist nur einfach orthosymmetrisch; sie wird zur doppelt orthosymmetrischen, wenn $p_1 = p_2 = \cdots = p_n = 1$ gesetzt wird.

Ein anderes Beispiel sei:

$$1) \quad e_1e_1=e_2,$$

$$2) \quad e_1 e_2 = e_3,$$

3)
$$e_1e_3=e_4,\ldots n_{-1})e_1e_{n-1}=e_n$$

n)
$$e_1 e_n = -e_1 - e_2 - e_3 - \cdots - e_n$$
.

Zur Bestimmung von $e_1, e_2, \dots e_n$ ergeben sich die Gleichungen:

$$\frac{e_1^{n+1}-1}{e_1-1}=0$$
 und $e_k=e_1^k$,

 e_1 bedeutet diesmal eine der $n+1^{ten}$ Wurzeln der Einheit, die Eins nicht mitgerechnet. Man erhält nach einiger Umformung:

$$\begin{vmatrix} -a_n & a_n - a_{n-1} & a_{n-1} \cdots a_{n-2} \cdots a_3 - a_2 & a_2 - a_1 \\ a_1 & -a_n & a_n - a_{n-1} \cdots a_4 - a_3 & a_3 - a_2 \\ a_2 - a_1 & a_1 & -a_n \cdots a_4 - a_3 \\ a_3 - a_2 & a_2 - a_1 & a_1 & -a_n \cdots a_5 - a_4 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} - a_{n-2} \cdots \cdots a_3 - a_2 & a_2 - a_1 & a_1 - a_n \end{vmatrix} = \alpha_1 \alpha_2 \alpha_3 \cdots \alpha_n,$$

$$\text{wo} \qquad \alpha_r = a_1 e_1^{(r)} + a_2 (e_1^{(r)})^2 + \cdots a_n (e_1^{(r)})^n$$

$$\text{und } e_1^{(r)} = e^{\frac{2\pi i r}{n+1}} \text{ ist, z. B.:}$$

$$\begin{vmatrix} -a_3 & a_3 - a_2 & a_2 - a_1 \\ a_1 & -a_3 & a_3 - a_2 \end{vmatrix} = (-a_1 - a_2 - a_3) \cdot (a_1 i - a_2 - a_3 i)$$

$$a_2 - a_1 & a_1 & -a_3 \end{vmatrix} = (-a_1 - a_2 - a_3) \cdot (a_1 i - a_2 + a_3 i).$$

In einem weiteren Beispiele nehmen wir n = 2m als gerade an; die Gleichungen, aus denen $e_1, e_2, \ldots e_n$ zu bestimmen sind, mögen lauten:

1)
$$e_1e_1 = e_2$$
, 2) $e_1e_2 = e_3$, ... 2_{m-1}) $e_1 \cdot e_{2m-1} = e_{2m}$,
 $2m$) $e_1e_{2m} = -e_1 + 2e_{m+1}$.
Aus ihnen folgt: $(e_1^m - 1)^2 = 1$ und $e_k = e_1^k$.

Die Determinantengleichung 9) erhält für diesen Fall die Gestalt:

Ferner werde $n=2^p$ als Potenz von 2 angenommen, und das Gleichungssystem heisse:

1)
$$e_1^2 = e_n$$
 2) $e_2^2 = e_n$ 3) $e_3 \cdot e_1 = e_4 \cdot e_2$ 4) $e_4^2 = e_n$ 5) $e_5 \cdot e_1 = e_8 \cdot e_4$ 6) $e_6 \cdot e_1 = e_8 \cdot e_3$ 7) $e_7 e_1 = e_8 \cdot e_2$ 8) $e_8^2 = e_n$

5)
$$e_5 \cdot e_1 = e_8 \cdot e_4$$
 6) $e_6 \cdot e_1 = e_8 \cdot e_8$ 7) $e_7 e_1 = e_8 \cdot e_2$ 8) $e_8^2 = e_8$

9)
$$e_9 \cdot e_1 = e_{16} \cdot e_8$$
 10) $e_{10} e_1 = e_{16} \cdot e_7 \dots 15$) $e_{15} e_1 = e_{16} \cdot e_2 \dots 16$) $e_{16}^2 = e_n \dots e_{16} \cdot e_1 = e_n \cdot e_1 \dots e_n = e_n \cdot e_n \dots e_n = e_$

Hieraus folgt: $e_n = 1$ $e_1^2 = e_2^2 = e_4^2 = e_8^2 = \cdots = 1$.

Durch $e_1, e_2, e_4, e_8, \ldots$ lassen sich die übrigen Grössen e_{μ} ausdrücken:

$$e_3 = e_1 e_2 e_4, \quad e_5 = e_1 e_4 e_8, \quad e_6 = e_2 e_4 e_8, \quad e_7 = e_1 e_2 e_8, \quad e_{n-3} = e_1 e_4,$$

$$e_{n-2} = e_2 e_4, \quad e_{n-1} = e_1 e_2.$$

Die Determinantengleichung 9) lautet in diesem Falle:

Als letztes Beispiel wählen wir das Gleichungssystem:

1)
$$e_1e_2 = e_3$$
 2) $e_2e_3 = e_4$ 3) $e_3e_4 = e_5$
4) $e_4e_5 = e_6 \dots n_{-1}$ $e_{n-1}e_n = e_1$ n) $e_ne_1 = e_2$.

Die Gleichungen sind dadurch charakterisiert, dass sie durch cyklische Vertauschung von e_1, e_2, e_3, \ldots ineinander übergehen.

Für n = 6 ergiebt z. B. die Rechnung:

Diese Beispiele mögen genügen, um die Anwendbarkeit der Formel 9) zu zeigen. Von den Koeffizienten $\varepsilon_{\mu kr}$, welche durch das Gleichungssystem 2) eingeführt sind, sind nur n^2 unabhängig, denn zur Bestimmung der n Grössen $e_1, e_2, \ldots e_n$ genügen n Gleichungen, z. B.:

$$e_{1}e_{1} = \epsilon_{111} e_{1} + \epsilon_{211} e_{2} + \dots + \epsilon_{n11} e_{n}$$

$$e_{1}e_{2} = \epsilon_{112} e_{1} + \epsilon_{212} e_{2} + \dots + \epsilon_{n12} e_{n}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$e_{1}e_{n} = \epsilon_{11n} e_{1} + \epsilon_{21n} e_{2} + \dots + \epsilon_{n1n} e_{n}$$

mit den n^2 Koeffizienten $\varepsilon_{111}, \varepsilon_{211}, \ldots \varepsilon_{n1n}$. Die übrigen Gleichungen des Systems 2) müssen identisch erfüllt sein. Weil aber die Berechnung der abhängigen Koeffizienten $\varepsilon_{\mu kr}$ durch die n^2 unabhängigen nur bei besonders einfachen Annahmen leicht zu bewestelligen ist und ausserdem zur Auffindung der Wurzeln $e_k^{(1)}, e_k^{(2)}, \ldots e_k^{(n)}$ eine Gleichung n^{ten} Grades (8) gelöst werden muss, ist die Ausnützung der Formel 9) eine beschränkte.

Im Prinzip freilich lässt sich nicht nur die Determinante ε , sondern jede beliebige Determinante $\sum \pm a_{11} a_{22} a_{33} \dots a_{nn}$ als Produkt von n Faktoren darstellen, man muss zu diesem Zwecke die n^2 unabhängigen Koeffizienten $\varepsilon_{\mu k r}$ durch die n^2 Elemente $a_{11}, a_{12}, \dots a_{nn}$ der Determinante $\sum \pm a_{11} a_{22} \dots a_{nn}$ mit Hilfe der n^2 Gleichungen:

$$a_{11} = a_1 \epsilon_{111} + a_2 \epsilon_{112} + \cdots + a_n \epsilon_{11n},$$

 $a_{21} = a_1 \varepsilon_{211} + a_2 \varepsilon_{212} + \dots + a_n \varepsilon_{21n}, \dots \quad a_{\mu k} = a_1 \varepsilon_{\mu k_1} + a_2 \varepsilon_{\mu k_2} + \dots + a_n \varepsilon_{\mu k_n}$ berechnen und die erhaltenen Werte in die Gleichung 8) einsetzen, wodurch die Wurzeln $e_k^{(1)}, e_k^{(2)}, \dots e_k^{(n)}$ gefunden werden können.

Weil in den obigen n^2 Gleichungen ausser den Koeffizienten $\varepsilon_{\mu ir}$ noch die Grössen $a_1, a_2, \ldots a_n$ vorkommen, lässt sich sogar aussprechen, dass jede Determinante auf unendlich viele Weisen als Produkt von n Faktoren dargestellt werden kann, da wir über diese Grössen oder statt ihrer über ebensoviele von den Koeffizienten $\varepsilon_{\mu ir}$ beliebig verfügen können.

Für n=3 wollen wir dies durch ein Beispiel erläutern. Da a_1 unbeschadet der Allgemeinheit gleich eins angenommen werden kann, sind zwei willkürliche Annahmen erlaubt. Es sei z. B. $\epsilon_{218} = \epsilon_{318} = 0$.

Dann ist:

$$\begin{aligned} e_1 \cdot e_1 &= \varepsilon_{111} e_1 + \varepsilon_{211} e_2 + \varepsilon_{311} e_3 \\ e_1 \cdot e_2 &= \varepsilon_{112} e_1 + \varepsilon_{212} e_2 + \varepsilon_{312} e_3 \\ e_1 \cdot e_3 &= \varepsilon_{113} e_1. \end{aligned}$$

Aus der dritten Gleichung folgt: $c_3 = \varepsilon_{118}$ und daher ist:

$$e_2 \cdot e_3 = \varepsilon_{113} e_2^2$$
 $e_3 \cdot e_3 = \varepsilon_{113} e_3$ $e_3 \cdot e_2 = \varepsilon_{122} e_1 + \varepsilon_{222} e_2 + \varepsilon_{322} e_3$

Wählt man $\epsilon_{122}, \epsilon_{222}, \epsilon_{822}$ als die abhängigen Koeffizienten, so findet man:

$$\begin{split} & \varepsilon_{122} = \frac{1}{\varepsilon_{211}} \left(\varepsilon_{2} \ _{2} \varepsilon_{112} + \varepsilon_{312} \varepsilon_{113} \right), \\ & \varepsilon_{222} = \frac{1}{\varepsilon_{211}} \left(\varepsilon_{311} \ \varepsilon_{112} + \varepsilon_{312}^{2} - \varepsilon_{212} \ \varepsilon_{111} - \varepsilon_{311} \varepsilon_{113} \right), \\ & \varepsilon_{322} = \frac{1}{\varepsilon_{311}} \left(\varepsilon_{311} \varepsilon_{112} + \varepsilon_{312} \varepsilon_{212} - \varepsilon_{312} \varepsilon_{111} \right). \end{split}$$

Aus den 9 Gleichungen:

$$\begin{aligned} a_{11} &= \varepsilon_{111} + a_2 \varepsilon_{112} + a_3 \varepsilon_{118} & a_{12} &= \varepsilon_{112} + a_2 \varepsilon_{122} & a_{13} &= \varepsilon_{118} \\ a_{21} &= \varepsilon_{211} + a_2 \varepsilon_{212} & a_{22} &= \varepsilon_{212} + a_2 \varepsilon_{222} + a_3 \varepsilon_{113} & a_{23} &= a_2 \varepsilon_{113} \\ a_{31} &= \varepsilon_{311} + a_2 \varepsilon_{312} & a_{32} &= \varepsilon_{312} + a_2 \varepsilon_{322} & a_{33} &= a_3 \varepsilon_{113} \end{aligned}$$

ergeben sich für die 9 Unbekannten $a_2, a_3, \epsilon_{111}, \epsilon_{211}, \epsilon_{211}, \epsilon_{112}, \epsilon_{212}, \epsilon_{312}, \epsilon_{113}$ die Werte:

$$a_{2} = \frac{a_{23}}{a_{13}} \quad a_{3} = \frac{a_{33}}{a_{13}} \quad \varepsilon_{113} = a_{13}$$

$$\varepsilon_{112} = \frac{1}{q} (a_{12}a_{21} - a_{2}a_{12}a_{11} + a_{2}a_{12}a_{33} - a_{23}a_{32}),$$

$$\varepsilon_{212} = \frac{1}{q} (a_{21}a_{22} - a_{21}a_{33} + a_{23}a_{31} - a_{2}a_{12}a_{21}),$$

$$\varepsilon_{312} = \frac{1}{q} (a_{21}a_{32} - a_{2}a_{12}a_{31}),$$

$$q - a_{21} + a_{2}a_{22} - a_{2}a_{11} - a_{2}^{2}a_{12},$$

$$\varepsilon_{111} = a_{11} - a_{33} - a_{2}\varepsilon_{112},$$

$$\varepsilon_{211} = a_{21} - a_{2}\varepsilon_{212},$$

$$\varepsilon_{311} = a_{31} - a_{3}\varepsilon_{312}.$$

wo

Hiernach ist:

$$\begin{array}{llll} a_{11} & a_{12} & a_{13} & \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} | = (e_1^{(1)} + \frac{a_{23}}{a_{13}} e_2^{(1)} + a_{33}) \cdot (e_1^{(2)} + \frac{a_{23}}{a_{13}} e_2^{(2)} + a_{33}) \\ \cdot (e_1^{(3)} + \frac{a_{23}}{a_{13}} e_2^{(3)} + a_{33}),$$

 $e_i^{(1)}, e_i^{(2)}, e_i^{(3)}$ sind die Wurzeln der kubischen Gleichung:

$$\begin{vmatrix} \boldsymbol{\varepsilon}_{111} - e_1 & \boldsymbol{\varepsilon}_{211} & \boldsymbol{\varepsilon}_{311} \\ \boldsymbol{\varepsilon}_{112} & \boldsymbol{\varepsilon}_{212} - e_1 & \boldsymbol{\varepsilon}_{312} \\ \boldsymbol{\varepsilon}_{113} & 0 & -e_1 \end{vmatrix} = 0,$$

 $e_1^{(1)}, e_2^{(2)}, e_3^{(3)}$ findet man aus einer der Gleichungen:

$$e_1 \cdot e_1 = \varepsilon_{111} \cdot e_1 + \varepsilon_{211} \cdot e_2 + \varepsilon_{311} \cdot a_{13} \quad \text{oder} \quad e_1 \cdot e_2 = \varepsilon_{113} \cdot e_1 + \varepsilon_{212} \cdot e_2 + \varepsilon_{312} \cdot a_{13}.$$

Beispielsweise ist:

$$\begin{vmatrix} 7 & -2 & 1 \\ 10 & 22 & 2 \\ -19 & -26 & 3 \end{vmatrix} = (1 + 2 \cdot 2 + 3) \cdot (2 + 2 \cdot \frac{5}{2} + 3) \cdot (3 + 2 \cdot 4 + 3) = 1120.$$

Falls

$$a_{11} = a_{23} = a_{32} = a,$$

 $a_{12} = a_{21} = a_{33} = b,$
 $a_{13} = a_{22} = a_{31} = c$

ist, wird die Determinante doppelt orthosymmetrisch, und die Rechnung ergiebt für diesen Fall:

Die Form, in welcher die doppelt orthosymmetrische Determinante hier als Produkt auftritt, weicht von der bekannten Form, wie sie Gleichung 1) liefert, nämlich:

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = - \begin{vmatrix} b & a & c \\ c & b & a \\ a & c & b \end{vmatrix} = - (c + a + b) \cdot \left(c \frac{-1 + i\sqrt{3}}{2} + a \frac{-1 - i\sqrt{3}}{2} + b \right) \cdot \left(c \frac{-1 - i\sqrt{3}}{2} + a \frac{-1 + i\sqrt{3}}{2} + b \right)$$

erheblich ab.

Erstere Form wird für den Fall, dass b=c ist, besonders einfach: es ist:

$$\begin{vmatrix} a & b & b \\ b & b & a \\ b & a & b \end{vmatrix} = (a + 2b)(a - b)(-a + b).$$

Über eine von Abel untersuchte Funktionalgleichung.

Von

Paul Stäckel

in Kiel.

In einer im ersten Bande von Crelles Journal veröffentlichten Abhandlung* hat Abel die Aufgabe behandelt, zu untersuchen, bei welchen Funktionen f(x, y) der Ausdruck:

$$f[\mathbf{z}, f(\mathbf{x}, \mathbf{y})]$$

eine symmetrische Funktion der drei unabhängigen Veränderlichen x, y, z wird, und ist zu dem eleganten Resultate gelangt, dass zu jeder Funktion f(x, y) der verlangten Beschaffenheit eine Funktion $\psi(u)$ gehört, für die identisch:

1)
$$\psi[f(x,y)] = \psi(x) + \psi(y)$$

ist. Nimmt man aber umgekehrt die Funktion $\psi(u)$ willkürlich an und bezeichnet die inverse Funktion mit $\psi_1(u)$, sodass

$$\psi[\psi_1(u)] \equiv u$$

ist, so wird durch die Gleichung:

3)
$$f(x,y) = \psi_1[\psi(x) + \psi(y)]$$

die allgemeinste Lösung der Aufgabe gegeben, denn es ist:

$$f[z, f(x, y)] = \psi_1[\psi(z) + \psi(x) + \psi(y)]$$

eine symmetrische Funktion von x, y, z.

Gegen die Herleitung dieser Lösung lässt sich indessen mehr als ein Einwand machen und da in den Anmerkungen, die Sylow und Lie den gesammelten Werken Abels hinzugefügt haben, über die betreffende Abhandlung nichts bemerkt wird, so sei es gestattet hierauf genauer einzugehen.

^{*} Wieder abgedruckt in den Oeuvres complètes, 1. Ausgabe S. 1-4, 2. Ausgabe S. 61-65.

Abel bemerkt zuerst, dass infolge der Symmetrie

4)
$$f[z, f(x, y)] = f[z, f(y, x)]$$

sein muss. Wenn er aber daraus den Schluss zieht, dass notwendig

$$f(x, y) = f(y, x)$$

sein müsse, so ist zu bemerken, dass durch diese Annahme allerdings die Gleichung 7) erfüllt wird, dass es jedoch sehr gut noch andere Lösungen von 4) geben könnte. Wäre z.B.:

$$f(x,y) = \sqrt{x^2 + y^2},$$

und dieser Ausdruck genügt der Gleichung 4), so wird 4) auch durch

$$f(x, y) = -f(y, x)$$

befriedigt.

P. . is

Glücklicherweise lassen sich jedoch die folgenden Entwickelungen Abels ohne Mühe so umgestalten, dass man die Gleichung:

$$f(x, y) = f(x, y)$$

gar nicht zu benützen braucht. Wenn nämlich Abel behauptet, infolge dieser Gleichung reduzierten sich die fünf Bedingungsgleichungen für die Symmetrie von f[z, f(x, y)] auf die beiden:

5)
$$\begin{cases} f[z, f(x, y)] = f[x, f(y, z)], \\ f[z, f(x, y)] = f[y, f(z, x)], \end{cases}$$

so braucht man dafür nur zu sagen: Soll

symmetrich in x, y, z sein, so ist sicher notwendig, dass die beiden Gleichungen:

eichungen:
6)
$$\begin{cases} f[z, f(x, y)] = f[x, f(y, z)], \\ f[z, f(x, y)] = f[y, f(x, z)] \end{cases}$$

bestehen. Die erste der Gleichungen 6) ist mit der ersten der Gleichungen 5) identisch, die zweite der Gleichungen 6) enthält rechts

$$f(x, z)$$
 statt $f(z, x)$,

und dadurch wird bewirkt, dass man die Gleichungen 6) genau ebenso behandeln kann, wie die Gleichungen 5) von Abel behandelt werden, aber ohne die Symmetrie von f(x, y) in x und y benutzen zu müssen.

In der That, setzt man zur Abkürzung

7)
$$f(x, y) = \tau, \quad f(y, z) = \varrho, \quad f(x, z) = \sigma,$$

so ergiebt sich durch Differentiation nach x, y, z:

8)
$$\begin{cases} \frac{\partial f(z,\tau)}{\partial \tau} \cdot \frac{\partial \tau}{\partial x} = \frac{\partial f(y,\sigma)}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial x}, \\ \frac{\partial f(x,\varrho)}{\partial \varrho} \cdot \frac{\partial \varrho}{\partial y} = \frac{\partial f(z,\tau)}{\partial \tau} \cdot \frac{\partial \tau}{\partial y}, \\ \frac{\partial f(y,\sigma)}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial z} = \frac{\hat{c}f(x,\varrho)}{\partial \varrho} \cdot \frac{\partial \varrho}{\partial z} \end{cases}$$

und hieraus folgt sofort:

9)
$$\frac{\partial \varrho}{\partial y} \cdot \frac{\partial \sigma}{\partial z} \cdot \frac{\partial \tau}{\partial x} = \frac{\partial \varrho}{\partial z} \cdot \frac{\partial \sigma}{\partial x} \cdot \frac{\partial \tau}{\partial y}$$

Legt man der Veränderlichen z einen festen Wert z_0 bei, so wird:

10)
$$\begin{cases} \frac{\partial \mathbf{\varphi}}{\partial y} : \frac{\partial \mathbf{\varphi}}{\partial z} = \chi(y, z_0) = \mathbf{\varphi}'(y), \\ \frac{\partial \mathbf{\sigma}}{\partial x} : \frac{\partial \mathbf{\sigma}}{\partial z} = \chi(x, z_0) = \mathbf{\varphi}'(x), \end{cases}$$

und aus 9) folgt: $\tau \equiv f(x, y) = \Omega[\varphi(x) + \varphi(y)],$

wo Ω eine willkürliche Funktion bedeutet. Das ist aber — von der Bezeichnung abgesehen* — genau das Ergebnis, zu dem Abel in seiner Gleichung 7) gelangt.

Die gesuchte Funktion f(x, y) hat also notwendig die Gestalt:

11)
$$f(x, y) = \Omega[\varphi(x) + \varphi(y)].$$

Bildet man jetzt $f(z, \tau)$, so kommt:

12)
$$f[z, f(x, y)] = \Omega[\varphi z + \varphi \Omega(\varphi x + \varphi y)],$$

und dieser Ausdruck muss symmetrisch in x, y, z sein. Wenn aber Abel hieraus folgert, dass das Argument:

$$\varphi z + \varphi \Omega [\varphi(x) + \varphi(y)]$$

selbst in x, y, z symmetrisch sein muss, so geht er wieder zu weit. Wäre z.B.: $f(x, y) = (\sqrt{x} + \sqrt{y})$

— und dieser Ausdruck genügt der Gleichung 11) —, so könnte jenes Argument bei den Vertauschungen von x, y, z sehr wohl sein Vorzeichen ändern, ohne dass die Funktion sich änderte.

Aber auch wenn man hiervon absieht, lässt die Untersuchung der Gleichung 12) zu wünschen übrig. Abel sagt nämlich, der Veränderlichen z möge ein solcher Wert beigelegt werden, dass

$$\varphi(z) = 0$$

ist. Setzt man aber z. B.:

$$\varphi(z)=e^{z},$$

so lässt sich diese Forderung nicht erfüllen, und es bleibt daher fraglich, ob man auf diesem Wege alle Lösungen der Aufgabe erhält.

Am einfachsten dürfte folgendes Verfahren zum Ziele führen. Setzt man zur Abkürzung:

13)
$$\varphi(x) = \xi, \quad \varphi(y) = \eta, \quad \varphi(z) = \zeta$$

so muss die Identität bestehen:

14)
$$\Omega[\zeta + \varphi \Omega(\xi + \eta)] = \Omega[\xi + \varphi \Omega(\eta + \zeta)].$$

Abel schreibt ψ statt Ω, da er jedoch das Zeichen Ψ nachher in einem andern Sinne verwendet, schien es zweckmässig, hier die Bezeichnung zu ändern.

326 Uber eine von Abel untersuchte Funktionalgleichung. Von PAUL STÄCKEL.

Differentiiert man nach x und y, so kommt:

$$\Omega'[\xi + \varphi \Omega(\xi + \eta)] \cdot \frac{\hat{c}}{\hat{c}\xi} \varphi \Omega(\xi + \eta) \cdot \varphi'(x) = \Omega'[\xi + \varphi \Omega(\eta + \xi)] \cdot \varphi'(x),$$

$$\Omega'[\xi + \varphi \Omega(\xi + \eta)] \cdot \frac{\hat{c}}{\partial \eta} \varphi \Omega(\xi + \eta) \cdot \varphi'(y)$$

$$=\Omega'[\xi+\varphi\Omega(\eta+\xi)]\cdot\frac{\partial}{\partial\eta}\,\varphi\Omega(\eta+\xi)\cdot\varphi'(y)$$

und da

$$\frac{\partial}{\partial \xi} \varphi \Omega(\xi + \eta) = \frac{\partial}{\partial \eta} \varphi \Omega(\xi + \eta)$$

$$\frac{\partial}{\partial \eta} \varphi \Omega(\eta + \xi) = 1,$$

$$\pi + \xi = \eta \text{ generat. wird.}$$

ist, so muss

mithin, wenn $\eta + \zeta = p$ gesetzt wird:

$$\varphi\Omega(p) = p + c$$

sein, wo c eine Konstante bedeutet. Das ist aber genau die Gleichung, zu der auch Abel gelangt.

Führt man jetzt, nach dem Vorgange von Abel, statt $\varphi(x)$ eine neue Funktion $\psi(x)$ durch die Gleichung:

$$\varphi(x) = \psi(x) - c$$

ein, so wird vermöge 15):

$$\psi \Omega (\mathbf{p}) = \mathbf{p},$$

und es ist daher:

1)
$$\psi f(x,y) = \psi x + \psi y.$$

Damit ist aber nachgewiesen, dass die von Abel gegebene Lösung der Aufgabe auch die allgemeinste Lösung ist, wofern man die Differentiierbarkeit von f(x, y) nach x und y voraussetzt.

Zum Gesetz der elastischen Dehnungen.

Von

R. MEHMKE

Die Grundlage der Elastizitäts- und Festigkeitslehre bildet auch in den neuesten Darstellungen, die ihr zu Teil geworden sind, noch immer der 1660 von Robert Hook e gefundene, 18 Jahre später von ihm veröffentlichte Satz, dass die Kraft, mit der ein elastischer Körper die natürliche Lage seiner Teile wieder herzustellen sucht, dem Betrage proportional sei, um den jene Teile, einerlei ob durch Zug oder durch Druck, daraus entfernt worden waren. Auf einen in seiner Längsrichtung gezogenen oder gedrückten Stab angewendet und durch eine Gleichung ausgedrückt heisst dies: $\sigma = E \varepsilon$ oder $\varepsilon = \alpha \sigma$,

wo σ die in dem Stab hervorgerufene (positive bezw. negative) Spannung, ϵ die zugehörige (positive bezw. negative) Dehnung, E eine für jedes Material konstant vorausgesetzte Grösse, den sogenannten Elastizitätsmodul, $\alpha - 1: E$ den "Dehnungskoeffizienten"* bezeichnet. "Hookesche Gesetz" oder, wie es auch genannt wird, das Gesetz der Proportionalität zwischen Spannung und Dehnung, oder das lineare Spannungs-Dehnungs-Gesetz, hat zwar zu keiner Zeit unbedingte Anerkennung gefunden; führten doch die, namentlich von seiten der Ingenieure in überaus grosser Zahl angestellten Zug-, Druck- und Biegungsversuche immer wieder — namentlich bei einzelnen für die Technik wichtigen Stoffen, wie Gusseisen, Stein, Holz - mehr oder minder bedeutende, auf keinen Fall zu übersehende Abweichungen vor Nachdem aber durch die Experimente mehrerer Physiker (Wertheim 1848, Morin 1862, Edlund 1861, 1865, Miller 1882) das Hookesche Gesetz scheinbar bestätigt worden war, drohte es zum Dogma zu werden; hat man es doch sogar schon als selbstverständlich oder aus Gründen allgemeiner Art folgend hingestellt.** Und während die Techniker dasselbe längst einer erneuten Kritik unterzogen hatten, ist dies seitens der Physiker erst 1891 geschehen. In diesem Jahre ist nämlich von J. O. Thompson durch Zugversuche mit 23 m langen Kupfer-, Stahl-, Messing- und Silberdrähten, die er unter F. Kohlrausch im physikalischen Institut der Universität Strassburg ausgeführt hat, nachgewiesen worden, dass auch bei geringen Belastungen das Proportionalitätsgesetz nur eine Annäherung an das wirkliche

^{*} C. Bach, Elastizität und Festigkeit, § 2, 1. Auflage. Stuttgart 1889.

^{**} Siehe z.B.: F. Auerbach in Winkelmanns Handbuch der Physik, Bd. I, S. 218, 1891.

Elastizitätsgesetz darstellt.* Thompson zeigt unter anderem, dass die (dem spannungslosen Zustand entsprechenden) wahren Elastizitätsmoduln bis 10 Prozent grösser sein können als die auf dem früher üblichen Wege ermittelten, weshalb er es für notwendig hält, physikalische Konstanten, die von dem Elastizitätsmodul abhängen, neu zu berechnen. Wenn, wie oben erwähnt wurde, die Ergebnisse einiger früheren Beobachter mit dem Hookeschen Gesetze sich scheinbar im Einklang befinden, so erklärt dies Thompson auf sehr glaubhafte Weise dadurch, dass jene Beobachter gewisse Fehlerquellen (Krümmungen und Knicke in den Drähten, elastische Nachwirkung) nicht zu beseitigen verstanden haben. Wir sehen hier den eigentümlichen Fall, dass die Physiker eine Zeit lang den Fortschritt in der Erkenntnis der Wirklichkeit gehemmt und indirekt die Entwickelung eines wichtigen Zweiges der Ingenieurwissenschaften aufgehalten haben. Nach einem Ausspruche, den C. Bach neuerdings gethan hat,** "gestatten die Anforderungen, welche die Technik an den Ingenieur stellt, heute nicht mehr - wenigstens in verschiedenen Fällen der Anwendung die Beziehung $\varepsilon = \alpha \sigma$, welche nur für eine Minderheit von Stoffen innerhalb gewisser Grenzen als zutreffend erscheint, als allgemeines Gesetz anzusehen und zur Grundlage der gesamten Elastizitäts- und Festigkeitslehre zu machen."

Es fehlt nicht an Versuchen, an Stelle obiger Gleichung eine dem thatsächlichen Verhalten elastischer Körper besser entsprechende zu setzen und für die Festigkeitslehre nutzbar zu machen, aber keiner scheint in weiteren Kreisen Beachtung gefunden zu haben. Nun hat im Anfange dieses Jahres C. Bach ein allgemeines Gesetz der elastischen Dehnungen veröffentlicht,*** das von einem seiner Schüler, Herrn W. Schüle, aus den Ergebnissen umfangreicher, sich über mehr als ein Jahrzehnt erstreckender Versuche Bachs abgeleitet worden ist. Es lautet: $\varepsilon = \alpha \sigma^m$:

α und m bezeichnen Konstanten, die vom Material abhängen und bei einem und demselben Material für Druck andere Werte haben, als für Zug. Als eine die Form andeutende Benennung dafür schlage ich "Potenzgesetz" vor.† Der Exponent m liegt in der Regel — bei Gusseisen, Kupfer, Körpern aus Cement u. s. w. — zwischen 1 und 2, seltener.

[†] Vergl. A. Steinhauser, Die Lehre von der Aufstellung empirischer Formeln, S 173, 1889.

^{*} Joseph Osgood Thompson, Über das Gesetz der elastischen Dehnung. Wiedemanns Annalen der Physik und Chemie, Neue Folge Bd. 44, S 555 bis 576, 1891.

^{**} C. Bach, Abhandlungen und Berichte, S. 294, Stuttgart 1897.

^{***} Zeitschrift des Vereins deutscher Ingenieure, Bd. 41, S. 248 bis 252, 1897. Übrigens ist, wie ich allerdings erst nachträglich bemerkt habe, das gleiche Gesetz schon früher in Vorschlag gebracht worden, 1729 von Bülffinger und 1822 von Hodgkinson (siehe die später folgende Zusammenstellung).

wie bei Leder, zwischen 0 und 1. Nur bei einer mässigen Zahl der in der Technik verwendeten Stoffe — Schmiedeisen und Stahl gehören zu ihnen — nähert sich m in beträchtlichem Grade dem Grenzwert 1, für den das Potenzgesetz in das Hookesche übergeht.

Das Potenzgesetz besticht durch seine Eleganz und giebt, wie sich zeigen wird, in den wichtigen Fällen des Gusseisens und der Körper aus Cement und Cementmörtel die Versuchsergebnisse besser wieder, als andere empirische Formeln mit nur zwei Konstanten. hat zugleich eine für die logarithmische Rechnung bequeme Gestalt und wird sich deshalb für manche Anwendungen vermutlich sehr gut eignen. Wenn man jedoch versucht, auch nur die Lehre von der Biegung gerader Balken diesem Gesetz gemäss umzugestalten, stösst man auf mathematische Schwierigkeiten. Nicht allein treten an Stelle des statischen und des Trägheitsmomentes, mit denen man in der alten Biegungslehre auskam, Integrale, die schon bei ganz einfachen Querschnittformen sich nicht mittels bekannter Funktionen auswerten lassen, es versagen auch bei diesen Integralen, die eine Art höherer Momente bilden, die meisten Methoden zur graphischen und mechanischen Bestimmung von Momenten höherer Ordnung, weil sie nur bei Momenten mit ganzzahliger Ordnung anwendbar sind. Die Aufgabe lässt sich zwar durch Benützung graphischer Hilfsmittel lösen, es schien mir jedoch von Wert, zu untersuchen, ob nicht innerhalb derselben Grenzen, zwischen denen das Potenzgesetz in guter Übereinstimmung mit den Beobachtungen gefunden worden ist, letztere mit hinreichender Genauigkeit durch eines der anderen früher vorgeschlagenen, dem fraglichen Zweck sich leichter anpassenden Gesetze, insbesondere das parabolische, dargestellt werden könnten. Indem ich mir vorbehalte, auf die Folgerungen für die Biegungslehre später einzugehen, beschränke ich mich heute darauf, sämtliche mir bekannt gewordenen Formeln, durch die man die Abhängigkeit der elastischen Dehnung von der Spannung teils allgemein, teils bei einzelnen bestimmten Stoffen hat ausdrücken wollen, zusammenzustellen und die Ergebnisse meiner, zur Prüfung des Potenzgesetzes unternommenen Rechnungen, die ich zu gelegenerer Zeit fortzusetzen gedenke, mitzuteilen.

I. Zusammenstellung der bis jetzt vorgeschlagenen empirischen Formeln zur Darstellung der Abhängigkeit der elastischen Dehnung von der Spannung.

(Ergänzungen vorbehalten.)

Des leichteren Vergleiches wegen sind die Bezeichnungen der verschiedenen Verfasser nicht immer beibehalten und ihre Gleichungen zum Teil umgeformt worden. Wo keine Materialien genannt sind, ist das betreffende Gesetz von seinem Urheber als für eine Vielzahl von solchen oder allgemein giltig gedacht, und zwar, wenn die Angabe der Art der Beanspruchung fehlt, für Zug sowohl als für Druck.

 ε = elastische Dehnung oder Zusammendrückung (Stauchung), bezogen auf die Längeneinheit; σ = Spannung bezw. Pressung, bezogen auf die Flächeneinheit des Querschnittes; α , β , γ , α , b, c, d, m vom Material (und in der Regel auch von der Art der Beanspruchung) abhängige Konstanten.

- 1. Lineares Gesetz: $\varepsilon = \alpha \sigma$. Hooke 1678.
- 2. Potenzgesetz: $\varepsilon = \alpha \sigma^m$. Bülffinger 1729 (Zug). Hodg-kinson 1822. Bach-Schüle 1897.
- 3. Parabolisches Gesetz: $\sigma = a\varepsilon b\varepsilon^2$. Hodgkinson 1849 (Gusseisen). Hartig 1893 (Gusseisen, Cement u. Cementmörtel).
- 4. Hyperbolische Gesetze:

a)
$$\varepsilon = \frac{\sigma}{a - h\sigma}$$

Cox 1850 (Gusseisen). Lang 1896 (Gusseisen, Steine, Mörtel).

$$\hat{\epsilon}^2 = a \sigma^2 + b \sigma.$$

Wertheim 1847 (organische Gewebe).

5. Kubisch- und biquadratisch-parabolisches Gesetz:

a)
$$\sigma := a\varepsilon + b\varepsilon^2 + c\varepsilon^3. \quad \text{Cox 1850 (Gusseisen)}.$$

$$\varepsilon = \alpha\sigma + \beta\sigma^2 + \gamma\sigma^3.$$

J. O. Thompson 1891 (Metalle, Zug).

b)
$$\sigma = a\varepsilon + b\varepsilon^2 + c\varepsilon^3 + d\varepsilon^4$$
. Hodgkinson 1849 (Gusseisen).
6. Exponential gesetze:

a) $\sigma = ce^{-\frac{1}{\epsilon}}$. Riccati 1731.

b)
$$\varepsilon = e^{m\sigma} - 1$$
. Imbert 1880 (Kautschuk).

c)
$$\sigma = c(e^{m\epsilon} - 1).$$

Hartig 1893 (Leder, Zug; gebrannter roter Thon, Druck).

d)
$$\varepsilon = \sigma(a + be^{m \sigma})$$
. Poncelet 1839 (Messing, Zug).

e)
$$\sigma = \frac{\varepsilon}{1-\varepsilon} \cdot e^{m\varepsilon}$$
. Hartig 1893 (Kork, Druck).

Litteratur und Bemerkungen zu vorstehender Zusammenstellung.

- 1. † Robert Hooke, De potentia restitutiva, London 1678. Die Arbeiten. deren. Titel † vorgesetzt ist, sind mir bis jetzt nicht zugünglich gewesen; ich führe dieselben grösstenteils nach folgendem ungemein reichhaltigen Werke an: Isaac Todhunter-Karl Pearson, A history of the theory of elasticity and of the strength of materials from Galilei to the present time, vol. I. 1886. vol. II. 1898.
- 2. De solidorum resistentia specimen G. B. Bulffingeri, ('ommentarii Academiae Petropolitanae, t. 4, ad annum 1729, p. 164 181. Petropoli 1785. -- Eaton Hodgkinson, On the transverse strain, and strength of materials. Memoirs of the Literary and Philosophical Society of Manchester, Second series, vol. 4, S. 225-289. London 1824 (gelesen 1822). -- C. Bach. Allgemeines Gesetz

der elastischen Dehnungen, Zeitschrift des Vereins deutscher Ingenieure, Bd. 41, S. 248 - 252, 1897.

- 8. † E. Hodgkinson, Report of the Commissioners appointed to inquire into the application of iron to railway structures. Appendix A, p. 47-67. London 1849. E. Hartig, Der Elastizitätsmodul des geraden Stabes als Funktion der spezifischen Beanspruchung, Civilingenieur Bd. 39, S. 113-138, 1893. Derselbe, Das elastische Verhalten der Mörtel und Mörtelbindematerialien, Ebenda S. 425 bis 472. Im Gegensatz zu Hodgkinson giebt Hartig den Koeffizienten a, b bei Druck dieselben Werte, wie bei Zug.
- **4.** a) Homersham Cox, The deflection of imperfectly elastic beams and the hyperbolic law of elasticity, Transactions of the Cambridge Philosophical Society, vol. 9, part. 2, p. 177-190, 1851 (gelesen 1850). G. Lang, Der Schornsteinbau, Heft 2, S. 127, 1896. Lang berücksichtigt auch die Temperatur; er nennt $E = \sigma$; ε das Elastizitätsmaß und setzt:

$$E = E_0 - c \cdot t - d \cdot \sigma,$$

wo E_0 das Elastizitätsmaß für den spannungslosen Zustand bei 0^o C bezeichnet, c und d Erfahrungszahlen sind. Die Spannungs-Dehnungs-Formel wird dann

$$\boldsymbol{\varepsilon} = \frac{\boldsymbol{\sigma}}{E_{\mathrm{o}} - c \cdot t - d \cdot \boldsymbol{\varepsilon}}.$$

Föppl giebt in seiner soeben erschienenen Festigkeitslehre (3. Bd. seiner Vorlesungen über technische Mechanik) auf S. 54 (unter Hinweis auf eine Abhandlung von Lang in der deutschen Bauzeitung, Jahrgang 1897, S. 54) als "Lang sche Formel" die Gleichung $E=E_0-c\sigma$. Er sagt, der Elastizitätsmodul E sei von Lang anscheinend im Sinne von $E=d\sigma/d\varepsilon$ verstanden worden, und leitet dementsprechend durch Integration die Gleichung

$$\varepsilon = \frac{1}{c} \lg \frac{E_0}{E_0 - c\sigma}$$

ab; daneben stellt er auch im Anschluss an die zweite mögliche Definition des Elastizitätsmoduls, $E = \sigma$; ϵ , die Gleichung

$$\mathbf{e} = \frac{\sigma}{E_0 - c \sigma}$$

- auf (a. a. O. S. 55, Gleichungen 26) und 27. Die erste dieser Gleichungen stimmt inhaltlich mit dem von Hartig bei Leder und rotem Thon gebrauchten Exponentialgesetz (7c der obigen Zusammenstellung) überein. Dass aber Lang nicht dieses Gesetz, sondern das hyperpolische im Auge gehabt hat, geht daraus hervor, dass er in der von Föppl zitierten Abhandlung in einem Beispiel als Bild der Spannungsverteilung eine aus zwei Hyperbelbögen zusammengesetzte Kurve angiebt und zeichnet, und es ist mir dies auch auf meine briefliche Anfrage von Herrn Lang bestätigt worden.
- 4. b) † G. Wertheim, Mémoire sur l'élasticité et la cohésion des principeaux tissus du corps humain. Annales de Chimie, t. 21, p. 355—414. Paris 1847. A. W. Volkmann († Über die Elastizität der organischen Gewebe, Archiv für Anatomie, Physiologie u. s. w., Bd. 1, S. 293—313, Leipzig 1859) hat gefunden, dass bei Seidenfäden, menschlichem Haar, Arterien, Nerven der Koefficient a positiv ist, bei Muskeln dagegen negativ, in welchem Falle also die Spannungs-Dehnungs-Kurve eine Ellipse wäre.
- 5. a) Cox a. a. O. (siehe unter 4a). Joseph Osgood Thompson. Über das Gesetz der elastischen Dehnung, Wiedemanns Annalen der Physik und Chemic, Neue Folge Bd. 44, S. 555—576, 1891. b) Hodgkinson, siehe unter 3.
- 6. a) Jacobi Riccati. Verae et germanae virium elasticarum leges ex phaenomenis demonstratae. De Bononiensi Academia Commentarii. t. 1, p. 523-544, Bononiae 1731. b) † A Imbert, Recherches théoriques et expérimentales sur

l'élasticité du caoutchouc, Lyon 1880 (nach Hartig angeführt). — c) Hartig in der unter 3 angeführten Abhandlung "Der Elastizitätsmodul des geraden Stabes...". — d) J. V. Poncelet, Introduction à la mécanique industrielle, physique et

expérimentale, 2ème édition, p. 348. Metz 1839.

Zu den in obiger Zusammenstellung gebrauchten Benennungen sei folgendes bemerkt. Nach einer aus dem Jahre 1850 stammenden Angabe von Cox (siehe unter 4a) trug damals schon die Voraussetzung, dass Proportionalität zwischen Spannung und elastischer Dehnung bestehe, in England den Namen "Dr Hooke's law". Cox hat (a. a. O.) die Namen "parabolic law" und "hyperbolic law" eingeführt, Pearson, der Herausgeber der unter 1 erwähnten History of the theory of elasticity den ähnlich gebildeten "linear law" für das Hooke'sche Gesetz hinzugefügt. Natürlich sind alle diese "Gesetze" nur Annäherungen an das noch unbekannte (in der Überschrift dieser Mitteilung gemeinte) wahre Elastizitätsgesetz und es wäre deshalb gegen die Ersetzung obiger Namen durch weniger hochtönende gewiss nichts einzuwenden, nur müsste dann gleichzeitig mit den übrigen auch die Bezeichnung "Hooke'sches Gesetz" fallen, weil letzteres ja den engsten Giltigkeitsbereich hat.

Es ist nicht meine Absicht, hier schon in weitere Erörterungen über die obigen empirischen Formeln einzutreten, dieselben z.B. bezüglich ihrer Brauchbarkeit und der Grenzen ihrer Giltigkeit zu vergleichen, vielmehr betrachte ich diese Mitteilung nur als Vorläuferin einer Reihe weiterer, die nachfolgen sollen. Um Ingenieuren und Mathematikern die Wiederholung längst ausgeführter Untersuchungen zu ersparen, scheint es mir z.B. angezeigt zu sein, die ganz in Vergessenheit geratenen älteren Bestrebungen, Aufgaben der Festigkeitslehre ohne

die Hookesche Annahme zu lösen, wieder ans Licht zu ziehen.

II. Beiträge zur Prüfung des Potenzgesetzes.

Für die sämtlichen Beispiele, die C. Bach in der wiederholt angeführten Arbeit (Zeitschrift des Vereins deutscher Ingenieure Jahrg. 1897) zur Stützung des Potenzgesetzes heranzieht, habe ich aus den gegebenen Werten von σ und den zugehörigen beobachteten Werten von ε die Konstanten des in der Form $\varepsilon = \alpha \sigma + \beta \sigma^2$

angenommenen parabolischen Gesetzes nach der Methode der kleinsten Quadratsummen bestimmt, für ein Beispiel auch die Konstanten des hyperbolischen und des kubisch-parabolischen Gesetzes. Die hiernach berechneten Werte von ε sind im folgenden mit den beobachteten und denjenigen, die das Potenzgesetz liefert, zusammengestellt, und zwar habe ich die letzteren (von W. Schüle berechneten) Werte einfach der Bachschen Arbeit entnommen. In den mit f überschriebenen Spalten stehen die Fehler (Differenzen aus den beobachteten und berechneten Werten) und am Fuss dieser Spalten die als Maß für die Brauchbarkeit der einzelnen Formeln dienenden mittleren Fehler. Die Spannungen sind in kg/qcm ausgedrückt.

Die Notwendigkeit derartiger Vergleiche, die leider sehr zeitraubende Rechnungen erfordern, leuchtet ein. ('ox hat schon 1850 solche angestellt (nämlich zwischen dem parabolischen und dem von ihm vorgeschlagenen hyperbolischen Gesetz an den Ergebnissen der Zugund Druckversuche mit Gusseisen von Hodgkinson) und Föppl hat sie neuerdings (a. a. O.) für die "Schülesche" und "Langsche" Formel

(also das Potenzgesetz und das hyperbolische Gesetz nach der hier gebrauchten Benennung) gefordert.

1. Gusseisen, Druck.

Die ε sind in 1/600 cm ausgedrückt und beziehen sich auf 75 cm Länge:

Potenzformel:

$$\varepsilon = \frac{75 \cdot 600}{1381700} \, \sigma^{1,0663} \,;$$

parabolische Formel:

 $\varepsilon = 0.04661 \cdot \sigma + 0.000004969 \cdot \sigma^2;$

hyperbolische Formel:

$$\varepsilon = \frac{0.04685 \cdot \sigma}{1 = 0.0000918 \cdot \overline{\sigma}}$$

kubisch-parabol. Formel: $\varepsilon = 0.04385 \cdot \sigma + 0.04383 \cdot \sigma^2 - 0.085970 \cdot \sigma^3$.

_					εbere	chnet			
σ	ε heob.	Potenz- gesetz	f	parab.	f	hyperb.	f	kub parab.	f
166	7,60	7,59	0.01	7.87	0,27	7.90	- 0,30	7,65	- 0,05
333	15,88	15.94	- 0,06	16.07	0,19	16.09	-0.21	15,89	- 0,01
499	24,60	24,54	0,06	24,50	0,10	24.50	0.10	24,54	0,06
666	33.42	33,38	0.04	33,25	0.17	33,23	0.19	33,44	- 0,02
832	42,34	42,32	0.02	42,22	0,12	42,20	0,14	42,42	-0.08
998	51,31	51,3× -	- 0,07	51.47	-0.16	51,47	- 0,16	51,31	0,00
Ŋ	littlere F	ehler:	0,06		0,22	_	0,24		0,057

Die Genauigkeit der Potenzformel ist hier auffallend gross und ungefähr gleich derjenigen der drei Konstanten enthaltenden kubisch-parabolischen Formel. Weil in diesem Beispiel die parabolische und die hyperbolische Formel annähernd gleich genau sind, habe ich letztere in den folgenden Beispielen nicht mehr berücksichtigt. Erst nach Beendigung meiner Rechnungen lernte ich die Vergleiche von Cox kennen, der die hyperbolische Formel 3 bis 4 mal genauer als die parabolische findet. Es bedarf dieser Punkt noch der Aufklärung.

2. Gusseisen, Zug.

Messlänge 15 cm, ε in 1/1000 cm.

Potenzformel:

$$\varepsilon = \frac{15 \cdot 1000}{1132700} \sigma^{1,395};$$

parabolische Formel:

 $\varepsilon = 0.01112 \cdot \sigma + 0.00001017 \cdot \sigma^2$.

S	1		s berechnet					
Spannungsstufe	ε heob.	Potenz- gesetz	f	parab.	' 1'			
103,52 — 258,80	2,27	2,22	0,05	2.30	- 0.03			
103,52 - 414,08	5.07	5,07	0,00	5.09	0.02			
103,52 - 569,30	8,33	8,38	0.05	8.37	-0.01			
103,52 - 724,64	12.08	12.08	0,00	12,05	0,03			
	Mittlere	Fehler:	0,05	i.	0,044			

Das parabolische und das Potenzgesetz stehen sich hier ziemlich gleich. Digitized by Google

3. Körper aus reinem Cement, Druck.

Es ist ε ausgedrückt in 1/600 cm auf die Länge 75 cm.

Formeln:

Körper Ia:
$$\varepsilon = \frac{75 \cdot 600}{254841} \sigma^{1,0908}$$
, $\varepsilon = \frac{1,6715}{7,8} \sigma + \frac{0,05214}{7,8^2} \sigma^2$;
" Ib: $\varepsilon = \frac{75 \cdot 600}{259131} \sigma^{1,0950}$, $\varepsilon = \frac{1,6998}{8,0} \sigma + \frac{0,05136}{8,0^2} \sigma^2$;
"Va u.Vb: $\varepsilon = \frac{75 \cdot 600}{231416} \sigma^{1,0928}$, $\varepsilon = \frac{1,8671}{7.9} \sigma + \frac{0,06008}{7,9^2} \sigma^2$.

Körper Ia.

Körper 1b.

							<u> </u>		
σ	ε beob.	Potenz-i II	echnet parab. f	σ	e beob.	Potenz- gesetz	εbere f	c h n e t parab.	<i>f</i>
7,8 15,7 23,5 31,3 39,2	5.56 7,56	5.58 0,03 7,55 0,01	5,48 0.08 7,52 0,04	8.0 15,9 23,9 31,8 39,8	3.60 5,60 7,62	1,683 8,593 5,610 7,677 9,804	0,017 0,007 - 0,010 - 0,057 - 0,031	5,562 7.621	- 0.051 - 0.005 0.038 - 0.001 - 0.013
Mittl	ere F	ehler: 0,032	0,074				0,040		0.038

Körper Va und Vb.

	1		e berechnet			
σ	a beob.	Potenz- gesetz	f	parab.	l f	
7,9	1,865	1,859	0,006	1.927	-0,062	
15,8	3,945	3,965	- 0,020	3,976	0,031	
23,7	6,175	6,17∺	-0,003	6,142	0.033	
31,6	8.485	8,460	0,025	8.430	0,055	
39,5	10,795	10,796	-0.001	10,838	-0.043	
	Mittler	e Fehler:	0,019		0,060	

Die Potenzformel giebt hier durchschnittlich die bessere Annäherung.

4. Körper aus Cementmörtel, Druck.

Federung ε in 1/600 cm auf 75 cm Länge.

Formeln:

Körper IIa, b, c:
$$\varepsilon = \frac{75.600}{355942} \sigma^{1,10981}$$
, $\varepsilon = \frac{1,3025}{8,1} \sigma + \frac{0,04779}{8,1} \sigma^2$;
" IIIa, b, c: $\varepsilon = \frac{75.600}{315239} \sigma^{1,11732}$, $\varepsilon = \frac{1.5769}{8,0} \sigma + \frac{0,07640}{8,0^2} \sigma^2$;
" IVa, b, c: $\varepsilon = \frac{75.600}{229026} \sigma^{1,16871}$, $\varepsilon = \frac{1,6351}{8,1} \sigma + \frac{0,08289}{8,1^2} \sigma^2$.

Körper IIa, b, c (1 Cement, 11/2 Sand).

	, ,		& berechnet			
σ	ε beob.	Potenz- gesetz	f	n n e t parab. 1.350 2.796 4.338 5.975 7.707	f	
8,1	1,297	1,293	0,004	1,350	- 0,053	
16.2	2,796	2,791	0,005	2,796	+0,000	
24,3	4,366	4.377	-0,011	4,338	0,028	
32.3	6,028	6,024	0,001	5,975	0,048	
40.4	7,703	7,716	-0.013	7.707	-0.004	
	Mittler	e Fehler:	0,011		0,044	

Körper IIIa, b, c (1 Cement, 3 Sand).

	, ,		s berechnet			
σ	ε beob.	Potenz- gesetz	f	parab.	ť	
8,0	1,550	1,550	+ 0,000	1,646	0,096	
16,0	3,457	3,435	0,022	3,459	-0.002	
24,1	5,483	5,470	0,013	5,418	0,065	
32,1	7,587	7,610	-0.023	7,530	0,057	
40,1	9,783	9,831	-0,048	9,795	-0,012	
	Mittler	e Fehler:	0,034		0,075	

Körper IVa, b, c (1 Cement, 4½ Sand).

	1		s berechnet			
σ	a beob.	Potenz- gesetz	f	parab.	f	
8,1	1,625	1,624	0,001	1,717	- 0,092	
16,1	5,605	3,573	0,032	3,600	0,005	
24,2	5,725	5,813	- 0,088	5,647	0,078	
32,2	7,875	7,938	- 0,063	7,859	0,016	
40,3	10,245	10,248	- 0.003	10,235	0,010	
	Mittler	e Fehler:	0,065		0,071	

Auch hier giebt die Potenzformel die bessere Annäherung; auffallend ist die absolute und relative Abnahme ihrer Genauigkeit mit der Menge des Sandzusatzes.

5. Körper aus Beton, Druck.

Federung & ausgedrückt in 1/600 cm auf 75 cm Länge.

Formeln:

Körper XVIa, b, c:
$$\varepsilon = \frac{75.600}{217260} \sigma^{1,15662}$$
, $\varepsilon = \frac{2.2237}{7.9} \sigma + \frac{0.1433}{7.9^2} \sigma^2$;
" XVIIa, b, c: $\varepsilon = \frac{75.600}{367018} \sigma^{1,20677}$, $\varepsilon = \frac{1.4415}{7.9} \sigma + \frac{0.1294}{7.9^2} \sigma^2$.

Körper XVIa, b, c.

			& berechnet			
σ	ε beob.	Potenz- gesetz	f	chnet parab. 2,367 5,021 7,961 11,188 14,702	f	
7,9	2,287	2,263	0.024	2,367	- 0,080	
15,9	5,017	5,045	-0.028	5,021	-0.004	
23,8	8,013	8,066	-0.053	7,961	0,052	
31.7	11,193	11,250	-0.057	11,188	0,005	
39,6	14.6×0	14,536	0.144	14,702	-0.022	
-	Mittler	e Fehler:	0,097	1	0,057	

Körper XVIIa, b, c.

	Ī	7	s berechnet			
σ	a beob.	Potenz- gesetz	i f	parab.	f	
7,9	1,487	1,497	-0,010	1,571	-0,0×4	
15.8	3,400	3,414	-0.014	3,400	$^{\circ} \pm 0.000$	
23,7	5,523	5,570	-0.047	5,489	0,034	
31,6	7,867	7,881	-0.014	7,836	0,031	
39,5	10.410	10,317	0,093	10,441	-0.031	
	Mittler	e Fehler:	0,062	i	0,058	

Hier ist die Potenzformel im Nachteil.

6. Granit, Druck und Zug.

a) Druck:

Körp.I:
$$\epsilon$$
 in 1/600 cm auf 75 cm; $\epsilon = \frac{75 \cdot 600}{249540} \sigma^{1.132}$, $\epsilon = \frac{3,3928}{13,8} \sigma + \frac{0.2167}{13.8^{\circ}} \sigma^{\circ}$;
,. II: ϵ in 1/600 cm auf 50 cm; $\epsilon = \frac{50 \cdot 600}{339750} \sigma^{1.109}$, $\epsilon = \frac{1,7218}{14.9} \sigma + \frac{0.0911}{14.9^{\circ}} \sigma^{\circ}$.

Körper I.

	l I	s berechnet					
σ	ε beob.	Potenz- gesetz	f	parab.	f		
13,8	3,50	3,50	± 0,00	3,61	- 0.11		
27,75	7,76	7,76	\pm 0.00	7,65	0.11		
41,3	12,09	12.17	- 0,08	12,13	- 0.01		
	Mittler	e Fehler:	0,08	'	0,16		

Körper II.

			ε berechnet				
σ	ε beob.	Potenz- gesetz	f	parab.	f		
14,9	1,77	1,77	+ 0.00	1,81	-0.04		
29,7	3,85	3,79	0,06	3,81	0.04		
44,6	5,97	5,96	0.01	5,99	-0.02		
	Mittlen	. Foblos.	0.06	Ţ	0.00		

b) Zug: Körper III: s in 1/1200 cm auf 50 cm;

$$\varepsilon = \frac{50 \cdot 1200}{234600} \sigma^{1,874} = \frac{1,4983}{3,50} \sigma + \frac{0,2135}{3,50^2} \sigma^2.$$

	, ,		s berechnet				
σ	ε beob.	Potenz- gesetz	f	parab.	f		
3,50	1,43	1,43	± 0,00	1,71	-0,28		
7,00	3,82	3,71	0,11	3,85	-0,03		
14,00	9,61	9,61	± 0.00	9,41	0,20		
21,01	16,60	16,78	-0,18	16,68	-0,08		
	Mittler	e Fehler:	0,15		0,25		

7. Kupfer, Zug.

Federade Ausdehnung ε in 1/1000 cm auf 10 cm.

Formeln:
$$\varepsilon = \frac{10 \cdot 1000}{2084000} \sigma^{1,093}, \ \varepsilon = \frac{1,3537}{160,75} \sigma + \frac{0,0219}{160,75^4} \sigma^2.$$

9		s berechnet			
Spannungsstufe	ε beob	Potenz- gesetz	f	parab.	f
160,75 — 321,5	1,40	1,40	± 0,00	1,42	- 0,02
160,75 482,25	2,89	2,87	0,02	2,88	0,01
160,75 643,0	4,89	4,39	+0,00	4,39	$\pm 0,00$
160,75 - 803,75	5,95	5,94	0,01	5,94	0,01
160,75 — 964 ,6	7,53	7,53	± 0,00	7,54	- 0,01
Mittlere Fehler:		0,013	1	0,014	

8. Leder, Zug.

Federnde Ausdehnung ε in Millimetern auf 780,7 mm Länge.

Formeln:
$$\varepsilon = \frac{780,7}{415} \sigma^{0,7}, \quad \varepsilon = \frac{3,092}{3,88} \sigma - \frac{0,0951}{3,88^3} \sigma^2.$$

Spannungsstufe	ε beob.	s berechnet			
		Potenz- gesetz	f	parab.	f
3,88 — 11,65	5,5	5,6	- 0,1	5,4	0,1
3,88 - 19,4	10,0	10,1	-0,1	10,1	-0,1
3,88 - 27,2	14,0	14,1	-0,1	14,0	+0,0
	Mittlere	Fehler:	0,17		0,14

In den letzten Beispielen halten einander die parabolische und die Potenzformel beinahe die Wage.

Das Ergebnis dieser Untersuchungen ist, dass bei den betrachteten Materialien und innerhalb der angenommenen Spannungsgrenzen das Potenzgesetz die Beziehung zwischen Spannung und elastischer Dehnung im ganzen genauer zum Ausdruck bringt, als das parabolische. Jedoch genügt, wie mir scheint, auch beim letzteren die Genauigkeit für etwaige

Anwendungen in der Festigkeitslehre. Zwei Bemerkungen sind noch zu machen. Erstens kommen die Versuchsergebnisse von Bach durch die obigen Näherungsgleichungen nicht voll zum Ausdruck, weil jedesmal der Vergleich nur bis zu einer Spannung fortgeführt ist, die ungefähr mit der höchsten, in der Technik bei dem betreffenden Material für zulässig gehaltenen übereinstimmt. Es können z.B., worauf Bach selbst bereits hingewiesen hat (in den schon erwähnten gesammelten Abhandlungen und Berichten, S. 294) die bei manchen von Bach gezeichneten Spannungs-Dehnungs-Kurven auftretenden Wendepunkte durch das Potenzgesetz ihre Erklärung nicht finden; allerdings, wie wir hinzufügen müssen, durch das parabolische, hyperbolische und manches andere Gesetz ebenso wenig. Zweitens fehlt noch die Prüfung in der Nähe des Nullpunkts, wozu in den Ergebnissen der mit sehr kleinen Belastungen vorgenommenen Zugversuche J. O. Thompsons ein vorzügliches Material vorhanden ist, das durch neuere Versuche Bachs, deren Veröffentlichung bevorsteht, eine willkommene Ergänzung erhalten wird. Die angedeuteten Lücken auszufüllen, soll in einem späteren Aufsatze versucht werden.

Konstruktion der Trägheitsaxen eines Dreiecks.

Von Dr. Otto Richter in Leipzig.

In der graphischen Statik wird die Hauptträgheitsellipse ("Zentralellipse") eines Dreiecks mit Hilfe konjugierter Durchmesser und Tangenten ermittelt, worauf sich die Hauptträgheitsaxen als Hauptaxen der Ellipse ergeben. Im folgenden ist die Aufgabe gelöst, die Hauptträgheitsaxen eines Dreieckes direkt zu konstruieren. Mit Hilfe der Ellipse:

$$-\frac{\xi^{2}}{\frac{1}{3}(q_{1}^{2}+q_{2}^{2}+q_{3}^{2})}+\frac{\eta^{2}}{\frac{1}{3}(p_{1}^{2}+p_{2}^{2}+p_{3}^{2})}=1,$$

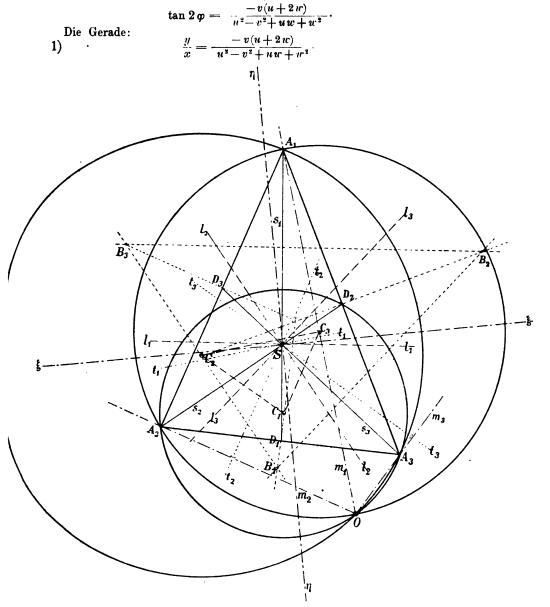
worin ξ , η die Hauptträgheitsaxen, und p_1 , p_2 , p_3 die Projektionen der Verbindungslinien des Schwerpunktes mit den Seitenmitten auf die ξ -Axe, q_1 , q_2 , q_3 auf die η -Axe bedeuten, kann man auf Grund des Satzes von C. Neumann u. Clebsch die Trägheitsaxen für einen beliebigen Punkt finden.*

Bezeichnungen für das folgende: Gegebenes Dreieck A_1 , A_2 , A_3 ; Schwerpunkt S; $SA_i = s_i (i = 1, 2, 3)$; das in S auf SA_i errichtete Lot l_i ; x, y zwei rechtwinklige Axen durch S, und zwar soll x mit l_1 , y mit s_1 zusammenfallen; x_i , y_i Koordinaten von A_i . Dann ist $x_1 = 0$. Ferner sei $y_1 = u$, $x_2 = v$, $y_2 = w$. Hieraus folgt $(\Sigma x_i = \Sigma y_i = 0)$

$$x_3 = -v, \quad y_3 = -u - w.$$

^{*} A. Clebsch, Zur Theorie der Trägheitsmomente etc., Crelles Journal Bd. 57, und R. Mehmke, Über die Bestimmung von Trägheitsmomenten etc., Math. Annal. XXIII.

Die Bedingung dafür, dass ξ , η die Hauptträgheitsaxen sind, ist $\Sigma \xi_i \eta_i = 0$,* oder wenn der Winkel der ξ -Axe mit der x-Axe φ genannt wird:



werde mit t_1 bezeichnet. Dann sind ξ , η die Halbierungslinien der von l_1 und t_1 gebildeten Winkel. Wie t_1 der Ecke A_1 , so entspricht

^{*} R. Hoppe, Das Dreieck bezogen auf die Hauptträgheitsaxen, Hoppes Archiv Ser. 2 Bd. XII. Hieraus folgt übrigens, dass die Hauptträgheitsaxen eines Dreieckes diejenigen rechtwinkligen Axen durch den Schwerpunkt sind, für die $abs \cdot | \Sigma \xi^2 t - \Sigma \eta^2 t|$ ein Maximum ist.

eine Gerade t_2 der Ecke A_2 , und t_3 , sodass ξ , η auch die Halbierungslinien der von l_2 und t_2 , sowie der von l_3 und t_3 gebildeten Winkel sind. Stellt man nun (durch Koordinatentransformation) in demselben Axensysteme x, y die Gleichungen von t_2 und t_3 auf, so findet man:

2)
$$\frac{y}{x} = \frac{v(u^2 - v^2 - w^2)}{(v^2 + w^2)(u + w) + u^2w},$$

3)
$$\frac{y}{x} = \frac{-v(2uw + v^2 + w^2)}{u^3 + 2u^2w + 2uw^2 + w(v^2 + w^2)}$$

Fällt man von A_i auf t_i das Lot m_i , so findet man, dass sich diese drei Lote m_i in einem Punkte treffen. Dieser Punkt sei O. Er hat also mit Beziehung auf S und irgend zwei Ecken, z. B. A_1 und A_2 , folgende Eigenschaft: Verbindet man ihn mit A_1 , A_2 (m_1, m_2) , fällt von S auf diese Linien die Lote (t_1, t_2) , und errichtet auf s_1 , s_2 in S die Lote (l_1, l_2) , so fallen die Halbierungslinien der von l_1 und l_1 gebildeten Winkel mit denen der Geraden l_2 , l_2 zusammen. Welches ist der geometrische Ort eines Punktes O, der bei gegebenen S, A_1 , A_2 diese Eigenschaft hat?

Durch ganz elementare Betrachtungen (mit Hilfe des Sehnenviereckes $m_1t_1m_2t_2$) findet man als geometrischen Ort den Kreis, der sich durch Spiegelung des dem Dreieck SA_1A_2 umbeschriebenen Kreises an A_1A_2 ergiebt. Spiegelt man also die Umkreise von SA_1A_2 , SA_2A_3 , SA_3A_1 an A_1A_2 , A_2A_3 , A_3A_1 , so gehen die drei neuen Kreise durch einen Punkt O (dies gilt selbstverständlich, auch wenn S nicht der Schwerpunkt ist).

Man gelangt also zur folgenden Konstruktion der Hauptträgheitsaxen: Spiegele die Umkreise der Dreiecke SA_iA_k an den zugehörigen Seiten A_iA_k (es genügen zwei solche Kreise; in der Figur sind alle drei gezeichnet). Der Schnittpunkt dieser Kreise sei O. Verbinde O mit einer Ecke A_i ; fälle von S das Lot t_i auf OA_i , errichte auf SA_i in S das Lot t_i , halbiere die Winkel (t_i, t_i) ; die Halbierungslinien sind die gesuchten Axen.

In der Figur sind B_i die drei Umkreismittelpunkte, C_i die Mittelpunkte der Ortskreise, D_i die Seitenmitten. Da sich nun z.B. die Kreise C_2 , C_3 in A_1 und O treffen, so ist C_2C_3 das Mittellot von A_1O u.s.w. Hieraus folgt als einfachste Konstruktion diese:

Zeichne von zwei Seiten, z.B. A_1A_2 und A_1A_3 , die Mittellote. Verbinde die Seitenmitten D_3 , D_2 mit A_3 , A_2 , Schnittpunkt S. Errichte das Mittellot auf A_1S , das die beiden ersten Mittellote in B_3 , B_2 treffe. Trage auf B_3D_3

$$\begin{array}{ll} D_{\bf 3} C_{\bf 3} = B_{\bf 3} D_{\bf 3}, & \text{auf } B_{\bf 2} D_{\bf 2} \\ D_{\bf 2} C_{\bf 2} = B_{\bf 2} D_{\bf 2} \end{array}$$

ab. Ziehe durch S zu C_2C_3 , B_2B_3 die Parallelen (t_1, t_1) . Die Halbierungslinien der Winkel dieser Linien sind die Hauptträgheitsaxen.

Auf viele sich hier anschliessende rein geometrische Beziehungen kann der Kürze wegen nicht eingegangen werden; die Spezialfälle sind leicht zu erledigen.

Verlag von B. G. Tenbner in Leipzig.

Hettner's Geographische Zeitschrift

Monattich 1 Heff von eines 60 Seiten. Halbjährlich 8 Mk.

Jedem Gebildeten wie allen Schulen

sum Abonnement emploblen.

Aus dem Inhalt der letzten Hefte:

Der gegenwärtige Stand der Verkehrsgeographie. Von Prof. Dr. A. Nettner im Tübingen.

Das Entwerfen von Kartenskizzen im Unterricht n. d. nenen Lehrplänen. Von Dr. Rittau.

Das Vorkommen des Goldes in der Natur. Von Dr. A. v. Elterlein.

Der Starnberger See. Von Dr. W. Die.

Kleinere Mitteilungen — Geographische Neuigkeiten — Bücherhesprechungen Eingesandte Bücher, Aufsätze und Karten — Zeitschriftenschau.

Prospekte und Probehefte gratis und franko

von der Verlagsbuchhandlung B. G. Teubner in Leipzig, Poststrasse 3.
Alennements nehmen alle Postanstalten und Buchhandlungen an.

Verlag von B. G. Teubner in Leipzig.

Sughen reselven:

Mushackes deutscher Schul-Kalender

für das Schuljahr 1898/99. 48. Jahrgang.

Ostern-Ausgabe 1898; v. 1. Jan. 1898 b. 30, April 1899 reichend,

16. In biegsamen Leinwandband gebunden # 1,20.

Jührlich 2 Ausgaben; 1) Michaelis-Ausgabe: vom 1 September eines Jahres bis Ende des nächstfolgenden Jahres und 2) Oster-Ausgabe; von Aufaug eines Jahres bis zum 30. April des nächstfolgenden Jahres reichend.

Tablel: Kirebi, und astronom, Kalender, Genealogie, Postfarif und Telegr-Gebülten, Nationen für die Zeit II vom I. September bis Ende des nacharfelgenden Jahres reichten), und 2) ein Anfang eines Jahres bis 30 April des nächstelgenden Jahres reichten), und im Anfang eines Jahres die 30 April des nächstelgenden Jahres reichten, plane für Butter, Ordinariatslisten, Generatieten, Notizen für Konternorserrichtenes, gelichens, und neue Bücher, Adressen, 2 Bogen weisess. I Bogen gewärfeltes Papier in a. e.

Die "Wochenschrift für klassische Philologie", 1890 Nr. 40 (vom 1. Oktober), sagt über obigen Kalender:

Planen alben Presend vertierscht man nicht wie einen allen Rock. So werden viele Gymnischlahrer viel fieber ihren alten Mushacke beibehalten, als einen der enhlreichen neuen Kankurrens-Taubenhalender im Gebrauch nehmen. Die verliegende Ausgabe int gans zwirzet, dem bewährten Genassen neue Preunde zu gestimen. Jach der Preis bei herzilige ein. Wie begrassen die neue Ausgabe mit gant bewährten France und niechten sie ansern Kollegen dringend empfehlen sie zeichnet sich durch Zweckmanigkeit und Gestiegenbeit micht bloos vor üben Vergangern, sondern unch vor Einfalleben Kalendern bechaften:

INHALT.

	151
	104
	110
	19.
	147
	150
Historisch-litterarische Abteilung (bewonder pagimert	
Levensionen:	
Exposi., Farancio, Hermani Grassmanni Gesammolto mathomati- sche und physikalische Werke. Von V. Songann.	
Goldscheiden, Preize, Uber die Gaussiche Osterformel. Von Strocker. 1	92
	94
	Mã
Favaro, Astosio, Intorno alla vita ed al Iavori di Tito Livio Burn-	
	90
Diegsreis, S., Hoene Wronski. Von Casron 1 Festschrift der Naturforschenden Gesellschaft in Zürich 1746 - (896.	97
	97
Harmer, J., and Treevers, P., Lehrbuch der Elementargementrie	04
	98
Parsosmon, Prof. Dr. Anexen, Die Grundlage der modernen Werts	
Jacon, C.G.J., Über die Bildung und die Eigenschaften der Deter- minanten und über die Funktionaldsderminanten. Von	
Sronz, Dr. Orro, Grundzüge der Differential- und Integralrochnung	
Koggo, Max, Die geometrische Teilung des Winkels. Van Max	100
HAGES, Jon. G., Index operum Leonardi Euleri confectus. Von	
PLUCKER, J., Gesammelte Wissenschaftliche Abhandlungen, Von	
Elmors, E. B., An Introduction to the Algebra of Quanties. Non	
Gare, J. H., Der Briefwechsel zwischen Jacob Steiner und Andwig-	
Mathematisches Abhandlungsregister. 1896. Zweite Hälfte: 1. Juli	11

Alle Sendungen

für die allgemeine Abteilung dieser Zeitschrift sind an Prof. Dr. R. Mehmke. Stuttgart, Immenhoferstrasse 4^{III}, für die historischlitterarische Abteilung an Hofrat Prof. Dr. M. Cantor, Heidelberg. Gaisbergstr. 15, zu richten. Die Zeitschrift erscheint in Bänden von je 6 Heften, der Preis des Bandes von 36 Druckbogen beträgt 20 Mark.

Alle Buchhandlungen und Postanstalten nehmen Bestellungen an.

Historisch-litterarische Abteilung

der

Zeitschrift für Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaktion

von

Dr. R. Mehmke und Dr. M. Cantor.

42. Jahrgang.

Leipzig, Verlag von B. G. Teubner. 1897.

Druck von B. G. Teubner in Dresden.

Inhalt.

I. Abhandlungen.	Scite
Wilhelm Schrentzel. Von L. Schlesinger	5 73 113 nzahl 121
II. Rezensionen.	
Geschichte der Mathematik.	
Hammer, Eulers Abhandlungen über sphärische Trigonometrie. Von M. CANTOR Wangerin, Abels Abhandlung über die Binomialreihe. Von M. CANTOR Eisenlohr, Ein altbabylonischer Felderplan. Von M. CANTOR	37 41 42 42 43 44 44
Müller, Henricus Grammateus und sein Algorismus de integris. Von M. Cantor Günther, Jakob Ziegler. Von M. Cantor	46 47 47 48
Günther, Kepler und Galilei. Von M. CANTOR	50 51

Seite
Loria, Il passato ed il presente delle principali teorie geometriche. Von M. Canton
Schoenflies und Pockels, Julius Plückers gesammelte wissenschaftliche Ab-
handlungen, Bd. I und II. Von W. Fr. Meyer 62, 203
Weber, Abhandlungen von Jacobi, Göpel. Rosenhain über mehrfach periodische
Funktionen. Von R. FRICKE
v. Öttingen, Abhandlungen über Gefrierpunktserniedrigung und Thermometrie
von Blayden, Fahrenheit, Réaumur, Celsius. Von B. NEBEL
Dannemann, Otto von Guerickes Magdeburgische Versuche. Von B. Nebel 135
Schilling, Wilhelm Olbers, sein Leben und seine Werke, Bd. I. Von B. Nebel. 157
Wislicenus, Astronomische Chronologie. Von B. Nebel
Fermat, Ocuvres T. III. Von G. Weitheim
Goldscheider, Über die Gausssche Osterformel. Von P. Stäcker
Euclidis Data ed. Menge. Von M. Canton
Sturm, Das Delische Problem. Von M. Caxton
Wertheim, Die Arithmetik des Elia Misrachi. Von M. CANTOR
Favaro, Tito Livio Buratini. Von M. Canton
Dickstein, Hoene Wronski. Von M. Canton
Festschrift der Naturforschenden Gesellschaft in Zürich. Von M. Canton . 196
Pringsheim, Dan. Bernoullis Theorie der Wertbestimmung von Glücksfällen.
Von M. Cantor
Stäckel, Jacobis Abhandlungen über Determinanten. Von M. Canton 19
Hagen, Index operum L. Euleri. Von F. ENGEL
Graf, Der Briefwechsel zwischen Jacob Steiner und Ludwig Schläfli. Von
W. Fr. MEYER
Philosophie, Didaktik.
Schröder, Vorlesungen über die Algebra der Logik, III, 1. Von J. Lürotu . 5
Hontheim, Der logische Algorithmus. Von M. MEYER
Simon und Kiessling, Didaktik und Methodik des Rechnen-, Mathematik-
und Physik-Unterrichtes. Von M. Müller
Schmitz-Dumont, Naturphilosophie als exakte Wissenschaft. Von M MEYER 16
v. Olivier, Was ist Raum, Zeit, Bewegung, Masse? Von M. Meyer 17
v. Olivier, was 1st naum, zeit, bewegung, masse? von M. Meres
Arithmetik, Analysis, Ausdehnungslehre, Algebra.
Vogt, Leçons sur la résolution algébrique des équations. Von R. Faicκε.
Krause, Theorie der doppeltperiodischen Funktionen einer veränderlichen
Grösse, Bd. I. Von R. Fricke
Entgegnung von Martin Krause
Sickenberger, Leitfaden der Arithmetik. Von E. JAHNKE
Sickenberger, Ubungsbuch zur Algebra. Von E. JAHNKE
Speckmann, Uber unbestimmte Gleichungen. Von E. Jahnke
Stieltjes, Essai sur la théorie des nombres. Von E. Jahnke
Schimpf, Eine Theorie der Convergenz unendlicher Reihen. Von M. Caston 3
Kraft, Abriss des geometrischen Kalküls. Von K. Zinder
Meyer, Laerebog i Algebra. Von R. Fricke
2 discour, 1 conta tannon chittiene, von it, i in ke
Wirtinger, Untersuchungen über Thetafunktionen. Von R. Fricks S.

Inhalt.

Seite
Brahy, Exercises méthodiques de calcul intégral. Von M. Maran 173
Hartl, Übungsbuch für allgemeine Arithmetik und Algebra. Von E. Jahren 176
Schurig, Katechismus der Algebra. Von E. Jannes
Fenkner, Arithmetische Aufgaben. Von E. Jahnes
Schülke, Vierstellige Logarithmentafal. Von E. Jahre
, ,
Desmartres, Cours d'Analyse, III. Von W. Fr. Meyer
Grassmann, Werke Bd. I, 2. Von V. Schlegel
Schubert, Arithmetik und Algebra. Von M. CANTOB
Stolz, Grundzüge der Differential- und Integralrechnung, II. Von M. Meyer 200
Elliott, An introduction to the algebra of quantics. Von W. Fa. MEYER 205
Synthetische und analytische Geometrie.
Wolf, Taschenbuch. Von M. Canton
Schmid, Das Dualitätsgesetz. Von M. Cantos
Beerhard, Die Grundgebilde der ebenen Geometrie. Von H. Willemon 10
De Saussure, Sur la génération des courbes par roulement. Von H. Willerod 18
Féaux-Busch, Elementare Planimetrie. Von E. Jannes
Holzmüller, Lehrbuch der Elementarmathematik, I (2. Auflage). Von E. Jahnes 29
Holzmüller, Lehrbuch I, Gymnasialausgabe. Von E. Jahner 177
Holzmüller, Lehrbuch der Elementarmathematik, III. Von E. Jahren 34
Sickenberger, Stereometrie und Trigonometrie. Von E. Jahnes 29
Winter, Trigonometrie. Von E. JAHNKE
Winter, Stereometrie. Von E. Jahnes
Hoffmann, Planimetrische Aufgaben. Von E. Jahren
Reidt, Aufgaben und Beispiele aus Trigonometrie und Stereometrie. Von
E. JAHNER
Wellisch, Das 2000 jährige Problem der Trisektion des Winkels. Von M. Canton 88
Modona e Vannini, Questioni e formole di geometria analitica. Von M. Cartor 58
Nievenglowski, Cours de géométrie analytique, III. Von M. Canton 58
Veronese (Schepp), Grundzüge der Geometrie von mehreren Dimensionen und
mehreren Arten geradliniger Einheiten. Von W. Fr. MEYER 63
Killing, Bemerkungen über Veroneses transfinite Zahlen. Von W. Fz. MEYER 67
Macaulay, Geometrical conics. Von M. MEYER
Mahler, Ebene Geometrie. Von M. MEYER
Mahler, Anfangsunterricht in der Planimetrie. Von E. Jahre 176
Gysel, Zur Konstruktion des Schwerpunktes einer ebenen Vielecksfläche. Von
M. Mryer
Schwatt, Curves which are isogonal conjugate to a straight line. Von M. MEYER 172
Kölmel, Verschiedene Formen der Kurven dritter Ordnung, II. Von M. Meyer 174
Bork, Mathematische Hauptsätze für Gymnasien. Von E. Jahnee 174
Spieker, Lehrbuch der ebenen und sphärischen Trigonometrie. Von E. Jahnke 175
Spieker, Lehrbuch der Stereometrie. Von E. Jahnke
Köstler, Leitfaden der ebenen Geometrie. Von E. JAHNKE
Frolow, Démonstration de l'axiome XI d'Euclide. Von P. STÄCKEL 179
Crivets, Essai sur le postulat d'Euclide. Von P. STÄCKEL
Henrici und Treutlein, Elementargeometrie, H. Von M. Canton 198
Koenig. Die geometrische Teilung des Winkels II Von M. Meyer 200
minutes, the ventuelinature require the vincers of von Willey vincers vincers

 $\mathsf{Digitized}\,\mathsf{by}\,Google$

Geodäsie. Methode der kleinsten Quadrate. Astronomie.	Beite
Jordan, Handbuch der Vermessungskunde, I. Von F. KLEIN	26
Henke, Über die Methode der kleinsten Quadrate. Von B. Nebel	136
Breuer, Mathematische Vorschule der Astronomie. Von B. Nebel	158
Fauth, Astronomische Beobachtungen und Resultate aus den Jahren 1893	
	158
Washanik Dhyaik	
Mechanik, Physik.	52
Annuaire du Bureau des longitudes pour 1896. Von M. Canton	
Painlevé, Leçons sur l'intégration des équations différentielles de la Mécanique.	
Von M. MEYER	70
Gelcich, Ottica. Von B. Nebel	
Zoth, Die Projektions-Einrichtung. Von B. Nebel	
Poincaré (Gumlich und Jäger), Mathematische Theorie des Lichtes. Von B. NEREL	
Gruson, Im Reiche des Lichtes. Von B. Nebel	
Vogel, Handbuch der Photographie, II. Von B. Neber.	
Christiansen (Müller), Elemente der theoretischen Physik. Von B. NEBEL .	
v. Lommel, Lehrbuch der Experimentalphysik. Von B Nebel	88
Kollert, Katechismus der Physik. Von B. Nebel	. 88
	. 88
•	89
Heussi-Leiber, Lehrbuch der Physik für Gymnasien. Von B. Nebel	
Abendroth, Leitfaden der Physik mit Einschluss der einfachsten Lehren der	
mathematischen Geographie, I. Von B. Nebel	
Börnstein, Fortschritte der Physik im Jahre 1898. Von B. NEBEL	
Budde, Physikalische Aufgaben. Von B. Nebel	
Herz, Gesammelte Werke, III. Von B. Nebel	
Helm, Grundzüge der mathematischen Chemie. Von B. Nebel	
Ziwet, An elementary treatise on theoretical mechanics, II u. III. Von B. NEBEL	
Karstens, Eine neue Berechnung der mittleren Tiefen der Oceane. Von B. NEREL	
Lamb, Hydrodynamics. Von B. Nebel	
Die Fortpflanzungsgeschwindigkeit des Schalles in einem theoretischen Gase.	
	138
De Saussure, Essai de thermodynamique graphique. Von B. Nebel	
Michalitschke, Abhandlungen über Musik. Von B. Nebel	
Zenker, Streiflichter auf eine neue Weltanschauung. Von B. Nehel	
Beyrich, Das System der Übergewalt. Von B. Nebel	
Gessmann, Magnetismus und Hypnotismus. Von B. Nebel	
Martin (Maser), Teslas Untersuchungen. Von B. Nebel	
Price, A treatise on the measurement of electrical resistance. Von B. Nebel.	
Schück, Magnetische Beobachtungen. Von B NRBEL	155
Schwartze, Die Lehre von der Elektrizität und deren praktische Verwendung.	
TOIL DE LEADER.	155
Lehmann, Elektrizität und Licht. Von B. Nebel	
	156
Welter, Die tiefen Temperaturen. Von B. Nebel	
Maggi, Principii della teoria matematica del movimento dei corpi. Von J. Lüвотн	
Bibliographie Seite 39, 71, 91, 141, 182.	208
Mathematisches Abhandlungsregister: 1. Januar bis 30. Juni 1896	95
1 Juli his 21 Dezember 1898	

Historisch-litterarische Abteilung.

Wilhelm Schrentzel.

Von

Prof. Dr. L. Schlesinger

in Berlin.

Am 26. Januar 1896 ist Dr. Wilhelm Schrentzel, ordentlicher Lehrer an der städtischen Viktoria-(Mädchen-)Schule zu Berlin, in Davos-Platz einem chronischen Brustübel erlegen. Mit ihm ist in jungen Jahren ein Mathematiker hingeschieden, dessen Inauguraldissertation "Über die Integration der Differentialgleichung zweiter Ordnung der Fuchsschen Klasse mit drei im Endlichen gelegenen singulären Punkten", mit der er im Jahre 1893 bei der philosophischen Fakultät der Berliner Universität promovierte, von dem ernsten Streben und der nicht geringen Begabung des Verfassers für mathematische Forschung Zeugnis ablegt, und tief beklagen lässt, dass es nun Anderen überlassen bleiben muss, die schönen und originellen Untersuchungen, die Schrentzel in dieser Arbeit in Angriff genommen hat, weiter zu führen.

Wir wollen kurz die Gesichtspunkte hervorheben, die Schrentzel in seiner Arbeit geleitet haben, und die Resultate angeben, zu denen er gelangt ist.

Um die Bedeutung des Problems, mit welchem sich die Arbeit befasst, deutlich hervortreten zu lassen, schicken wir folgendes voraus.

Wenn man eine homogene lineare Differentialgleichung zweiter Ordnung der Fuchsschen Klasse mit den σ im Endlichen gelegenen singulären Punkten $r_0, r_1, \dots r_{\sigma-1}$

von dem Gliede mit der ersten Ableitung der abhängigen Variabeln befreit, so hat dieselbe bekanntlich die Form:

$$\frac{d^2\eta}{dx^2} + \frac{A_0 x^{2\sigma-2} + A_1 x^{2\sigma-3} + \dots + A_{2\sigma-2}}{(x-r_0)^2 (x-r_1)^2 \dots (x-r_{\sigma-1})^2} \eta = 0,$$

wo die $A_0, A_1, \ldots A_{2\sigma-2}$ Konstanten bedeuten. Denkt man sich die Differenzen:

$$\lambda_0, \lambda_1, \ldots \lambda_{\sigma-1}, \lambda$$

der Wurzeln der zu den singulären Punkten

$$r_0, r_1, \ldots r_{\sigma-1}, \infty$$

gehörigen determinierenden Fundamentalgleichungen gegeben, so bestimmen diese $\sigma + 1$ Gleichungen zwischen den $A_0, A_1, \ldots A_{2\sigma-2}, so$ dass also abgesehen von den singulären Stellen selbst im allgemeinen noch $\sigma = 2$ Parameter in den Koeffizienten der Differentialgleichung Nur wenn $\sigma = 2$ ist, wird die Differentialunbestimmt bleiben. gleichung durch Angabe der λ_0 , λ_1 , λ vollkommen bestimmt, und zwar kennt man dann unmittelbar nicht nur die Koeffizienten der Differentialgleichung, sondern auch die Koeffizienten der Substitutionen, die ein Fundamentalsystem erfährt, wenn die unabhängige Variable x Umläufe um die singulären Punkte vollzieht. Es entspricht dieser Fall bekanntlich der Differentialgleichung, der die Gausssche Reihe $F(\alpha, \beta, \gamma, x)$ Genüge leistet. — Schon der nächste Fall $\sigma = 3$, eben der, mit dem sich Schrentzels Arbeit beschäftigt, bietet dadurch, dass bei ihm durch Angabe der λ_0 , λ_1 , λ_2 , λ weder die Koeffizienten der Differentialgleichung noch die Umlaufsubstitutionen vollkommen bestimmt sind, Veranlassung zu einer Reihe tiefer und schwieriger Probleme, die zum grössten Teile von einer Lösung noch weit entfernt sind.

In einer im Jahre 1875 auf Anregung von Herrn Fuchs in Göttingen verfassten Dissertation, hat Herr Seifert einen interessanten Beitrag zur Behandlung des Falles $\sigma=3$ geliefert, in welchem er, Analogieen mit der Differentialgleichung der Gaussschen Reihe verfolgend, sein Augenmerk hauptsächlich auf die Bestimmung jener Umlaufssubstitutionen richtet, aber zu keinen abschliessenden Ergebnissen kommt.

Schrentzel geht in seiner Arbeit von einer Form der Differentialgleichung aus, die der von Herrn Seifert benützten ähnlich, aber allgemeiner ist als diese, von der Form nämlich:

$$\mathbf{a}) \left\{ \begin{aligned} &\frac{d^2 \, \eta}{d \, x^2} + \frac{1}{4} \left\{ \frac{1 - \lambda_0^2}{x^2} + \frac{1 - \lambda_1^2}{(x - r_1)^2} + \frac{1 - \lambda_2^2}{(x - r_2)^2} \right. \\ &+ \frac{(\lambda_0^2 + \lambda_1^2 + \lambda_2^2 - \lambda^2 - 2) \, x + (\mu_1^2 - \lambda_2^2 - \lambda_0^2 + 1) \, r_1 + (\mu_2^2 - \lambda_0^2 - \lambda_1^2 + 1) \, r_2}{x \, (x - r_1) \, (x - r_2)} \right\} \eta = 0, \end{aligned} \right.$$

wo $r_0 = 0$ angenommen wurde und μ_0 , μ_1 , μ_2 Konstanten bedeuten, die mit den Wurzeldifferenzen λ_0 , λ_1 , λ_2 , λ der determinierenden Fundamentalgleichungen durch die Beziehung

1)
$$\mu_0^2 + \mu_1^2 + \mu_2^2 = \lambda_0^2 + \lambda_1^2 + \lambda_2^2 + \lambda^2 - 1$$

verknüpft sind. Macht man dann in a) die Substitution:

$$\eta = x^{\alpha_0} (x - r_1)^{\alpha_1} (x - r_2)^{\alpha_2} y,$$

wo die Konstanten α_0 , α_1 , α_2 durch die Formeln:

3)
$$\alpha_x = \frac{1 + \delta_x \lambda_x}{2}, \quad \delta_x^2 = 1, \quad (x = 0, 1, 2)$$

in zweideutiger Weise bestimmt werden, so genügt y einer Differentialgleichung, die Schrentzel in die Form setzt:

D)
$$x^2 D_{12}(y) - r_1 x D_2(y) - r_2 x D_1(y) + r_1 r_2 D(y) = 0$$
, worin

$$\begin{split} D_{12}(y) &= x^2 \frac{d^2 y}{dx^2} + 2 \left(\alpha_0 + \alpha_1 + \alpha_2\right) x \frac{dy}{dx} + \left[\left(\alpha_0 + \alpha_1 + \alpha_2 - \frac{1}{2}\right)^2 - \frac{\lambda^2}{4} \right] y, \\ D_2(y) &= x^2 \frac{d^3 y}{dx^2} + 2 \left(\alpha_0 + \alpha_2\right) x \frac{dy}{dx} + \left[\left(\alpha_0 + \alpha_2 - \frac{1}{2}\right)^2 - \frac{\mu_1^2}{4} \right] y, \\ D_1(y) &= x^2 \frac{d^3 y}{dx^2} + 2 \left(\alpha_0 + \alpha_1\right) x \frac{dy}{dx} + \left[\left(\alpha_0 + \alpha_1 - \frac{1}{2}\right)^2 - \frac{\mu_2^2}{4} \right] y, \\ D(y) &= x^2 \frac{d^2 y}{dx^2} + 2 \alpha_0 x \frac{dy}{dx} + \left[\left(\alpha_0 - \frac{1}{2}\right)^2 - \frac{\lambda_0^2}{4} \right] y \end{split}$$

zu nehmen ist. Diese vier Differentialausdrücke sind von der Lage der singulären Punkte r_0, r_1, r_2 unabhängig.

Statt nun wie gewöhnlich die Lösung der Differentialgleichung D) in Form einer einfachen nach Potenzen von x fortschreitenden Reihe darzustellen, versucht Schrentzel die Differentialgleichung durch eine Reihe von der Form:

$$y = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{y_{m,n}}{r_1^m r_2^n}$$

zu befriedigen, wo $y_{m,n}$ von r_1 , r_2 unabhängige Funktionen von x bedeuten mögen. Dank der durch die Gleichungen 3) gekennzeichneten Wahl der Grössen α_0 , α_1 , α_2 ergiebt sich, dass die $y_{m,n}$ so eingerichtet werden können, dass die obige Entwickelung die Differentialgleichung befriedigt und die Form annimmt:

$$y = \sum_{m} \sum_{n} C_{m,n} u^{m} v^{n},$$

wo die $C_{m,n}$ Konstanten bedeuten, die sich durch eine Rekursionsformel bestimmen lassen, und

$$u = \frac{x}{r_1}, \quad v = \frac{x}{r_2}$$

gesetzt wurde. Die Rekursionsformel für die $C_{m,n}$ versagt niemals, wenn die Entwickelungen der Integrale der Differentialgleichung D) in der Umgebung von x=0 keine Logarithmen enthalten; diese Beschränkung wird im folgenden festgehalten.

Nun konvergiert die Reihe 4) für unbestimmte Werte der u, v, wenn

 $|uv|<1, \quad \left|\frac{u+v}{1+uv}\right|<1$

ist; also, wenn für u, v ihre Werte 5) genommen werden, für

$$|x^2| < r_1 r_2, \quad |x^2 + r_1 r_2| > x(r_1 + r_2)|.$$

Die erste dieser Ungleichungen repräsentiert das Innere eines Kreises, die letztere das Äussere einer Kurve vierter Ordnung in der Ebene der komplexen Variabeln x.

Die zweideutige Bestimmung der Grössen α_0 , α_1 , α_2 durch die Gleichungen 3) bewirkt, dass sich acht verschiedene Entwickelungen 4) ergeben. Je vier derselben, die den verschiedenen Werten

$$\delta_1 = \pm 1, \quad \delta_2 = \pm 1$$

entsprechen, unterscheiden sich nur durch einen konstanten Faktor: dagegen entsprechen bei fixierten δ_1 , δ_2 , den beiden Wahlen

$$\delta_0 = +1$$
 und $\delta_0 = -1$

zwei linear unabhängige Entwickelungen, die also ein Fundamentalsystem von D) bestimmen.

Der grösste Teil der Arbeit ist dem Konvergenzbeweise für die Reihe 4) gewidmet, einzelne Details des Beweises sind, wie der Verfasser bemerkt, aus dem der Fakultät vorgelegten Manuskripte bei der Drucklegung weggelassen worden. Der Konvergenzbeweis bedient sich im wesenflichen der Methoden von Gauss (Disquisitiones circa seriem etc.). Zum Schlusse bemerkt der Verfasser, dass die Reihe 4) für unbestimmte u, v, der partiellen Differentialgleichung

$$\begin{cases} (u \, v - u - v + 1) \left(u^{2} \frac{\partial^{2} y}{\partial u^{2}} + 2 \, u \, v \, \frac{\partial^{2} y}{\partial u \, \partial v} + v^{2} \frac{\partial^{2} y}{\partial v^{2}} \right) \\ + \left[2 \left(\alpha_{0} + \alpha_{1} + \alpha_{2} \right) u \, v - \left(\alpha_{0} + \alpha_{1} \right) \, u - \left(\alpha_{0} + \alpha_{2} \right) \, v + \alpha_{0} \right] \left(u \, \frac{\partial y}{\partial u} + v \, \frac{\partial y}{\partial v} \right) \\ + \left[\left(\alpha_{0} + \alpha_{1} + \alpha_{2} - \frac{1}{2} \right)^{2} - \frac{\lambda^{2}}{4} \right] u \, v - \left[\left(\alpha_{0} + \alpha_{1} - \frac{1}{2} \right)^{2} - \frac{\mu^{2}}{4} \right] u \\ - \left[\left(\alpha_{0} + \alpha_{2} - \frac{1}{2} \right)^{2} - \frac{\mu^{1}}{4} \right] v + \left[\left(\alpha_{0} - \frac{1}{2} \right)^{2} - \frac{\lambda^{2}}{4} \right] y = 0 \end{cases}$$

Genüge leistet, die durch die Substitution:

$$\eta = u^{g_1} v^{g_2} (u-1)^{a_1} (v-1)^{a_2} y, \qquad \beta_1 + \beta_2 = \alpha_0$$

aus einer der Gleichung a) analog gebildeten partiellen Differentialgleichung für η hervorgeht. Man erhält diese letztere partielle Differentialgleichung direkt aus a), wenn man a) zunächst so umformt, dass der Koeffizient von η nur von den Verbindungen

$$u=\frac{x}{r_1}, \quad v=\frac{x}{r_2}$$

abhängt, und dann berücksichtigt, dass

$$x^{2} \frac{d^{2}y}{dx^{2}} = u^{2} \frac{\partial^{2}\eta}{\partial u^{2}} + 2 u v \frac{\partial^{2}\eta}{\partial u \partial v} + v^{2} \frac{\partial^{2}\eta}{\partial v^{2}}$$

ist. Es ergiebt sich, dass für diese partielle Differentialgleichung den Grössen $\lambda_0, \lambda_1, \lambda_2, \lambda, \mu_0, \mu_1, \mu_2$

eine ähnliche Bedeutung beigelegt werden kann, wie sie den λ_0 , λ_1 , λ_2 , λ_3 für die Differentialgleichung a) zukommt.

Dem der Dissertation angefügten Curriculum vitae zufolge ist Schrentzel im Jahre 1861 in Stettin geboren, studierte seit 1880 in Berlin und bestand 1886 das Examen pro facultate docendi. Seine Prüfungsarbeit löst in trefflicher Weise die Aufgabe, die Fälle, in welchen die Gausssche Reihe $F(\alpha, \beta, \gamma, x)$ eine algebraische Funktion von x definiert, mit Hilfe der Methoden aufzuzählen, die Herr Fuchs für die Entscheidung der allgemeineren Frage, wann das allgemeine Integral einer linearen homogenen Differentialgleichung zweiter Ordnung mit rationalen Koeffizienten eine algebraische Funktion ist, gegeben hat. Wahrscheinlich ist Schrentzel durch Beschäftigung mit dieser (von Herrn Fuchs gestellten) Aufgabe auf die Studien hingelenkt worden, deren Ergebnisse seine Dissertation enthält.

In nahen Beziehungen hat Schrentzel zu Kronecker gestanden, dem er während acht Jahren bei der Redaktion und Drucklegung seiner mathematischen Arbeiten behilflich war. Dem Andenken Kroneckers hat Schrentzel auch seine Dissertation gewidmet.

Berlin, 30. Januar 1896.

"Eppur si muove."

Von

Dr. med. G. BERTHOLD in Ronsdorf.

In einem beachtenswerten, übrigens in sehr gereiztem Tone geschriebenen Artikel* hat bekanntlich seinerzeit E. Heis in Münster das Unhistorische des obigen Ausspruches, welchen Galilei bei Gelegenheit seiner Abschwörung gethan haben soll, nachzuweisen versucht. Auf Grund seiner Nachforschungen,** bei welchen Heis von dem Jesuiten Dr. K. Braun unterstützt wurde, war er zu dem Resultate gelangt, "dass der Ursprung jener historischen Lüge im verflossenen Jahrhunderte bei unserem Nachbarvolke, den Franzosen, zu suchen sei." Indem er ausführt, dass es ihm nicht gelungen sei, den Ausspruch früher ausfindig zu machen, schreibt er: "Zum ersten Male

^{*} Natur und Offenbarung. Münster 1868. Band XIV, Heft 8, S. 371-376.

** Zu den von Heis zitierten historischen Wörterbüchern, welche die Legende noch nicht bringen, von Zedler (1735), Moréri (20 Auflagen von 1673-1759), Barral (1758), ist Chaufepié's Nouveau Dictionnaire historique et critique (1750) hinzuzufügen: die Wörterbücher von Bayle und von Marchand enthalten keinen Artikel Galilei.

treffen wir in dem "Dictionaire historique ou histoire abregée ... par une societé. 7. édition Caen Leroy" im vierten Bande von 1789, bei Gelegenheit der Abschwörung, die folgende Stelle: Au moment qu'il se releva, agité par le remord d'avoir fait un faux serment, les yeux baissés vers la terre, on pretend, qu'il dit en la frappant du pied, E pur si muove." Schliesslich zeigte Heis, dass der Ex-Jesuit Feller in der zweiten Auflage seines Dictionnaire historique (Band IV vom Jahre 1794)* das "on prétend" einfach fortgelassen hatte.

Später wurde von P. H. Grisar nachgewiesen,*** dass sich die Legende bereits 1774 bei Fr. N. Steinacher findet, indem es bei letzterem heisst:*** "Die Abbitte des Galilei war weder ernstlich noch standhaft genug; denn in dem Augenblicke, da er wieder aufstand und sein Gewissen ihm sagte, dass er falsch geschworen habe, schlug er die Augen nieder, stampfte mit dem Fusse und sagte: E pur si muove, sie bewegt sich doch." Gestützt auf dieses von P. Grisar beigebrachte Zitat aus Steinacher ist in neuester Zeit die Vermutung ausgesprochen: "Anscheinend eignet dieser Sage ein deutscher Ursprung." Hierbei ist übersehen, dass Herr F. H. Reusch in scharfsinniger Weise bereits darauf aufmerksam gemacht hatte, †† dass der Schlusssatz bei Steinacher "wie eine Übersetzung des oben französisch angeführten Satzes klingt, vielleicht nach einer älteren Auflage des Dictionnaire."

Es handelt sich hier um das von dem Abbé Chaudon herausgegebene Dictionnaire historique, dessen erste Auflage im Jahre 1766 erschienen ist, und dessen siebenter Auflage von 1789 Heis sein Zitat entnommen hatte. Bereits die erste Auflage bringt denn auch in der That die Legende (ohne "on prétend"): "Galilée à l'âge de 70 ans demanda pardon d'avoir soutenu une vérité, & l'abjura les genoux à terre & les mains sur l'Evangile comme une Absurdité, une Erreur & une Hérésie. Au moment qu'il se releva, agité par le remords d'avoir fait un faux serment, les yeux baissés vers la terre, il dit en la frappant du pied: Cependant elle remue, e pur si move."

Ferner wurde inzwischen auf eine Fundstelle hingewiesen, welche weiter als das Jahr 1766 zurückreicht, indem Herr Gretschel er-

^{*} Die zweite Auflage erschien Augsbourg et Liège 1789 – 1794.

^{**} Zeitschrift für katholische Theologie. Zweiter Jahrgang. Innsbruck 1878.

^{***} Lehrbuch der philosophischen Geschichte. Würzburg 1774. S. 336. -- Auch hier fehlt das "on prétend".

[†] S. Günther, Kepler. Galilei. Berlin 1896. S. 144, S. 217 flg., Λη-merkung 197.

tt Der Prozess Galilei's und die Jesuiten. Bonn 1879. S. 334, Anmerkung 2 ttt [Dom Chaudon] Nouveau Dictionnaire historique-portatif, ou Histoire abrégée de tous les hommes qui se sont fait un nom... Par une Société de Gens de Lettres. A Amsterdam, Chez Marc-Michel Rey, Libraire. 1766. t. ll. p 207. — Ein Exemplar dieser seltenen Ausgabe befindet sich in meinem Besitz

wähnt,* dass die Legende "sich anscheinend zuerst im dritten Bande der "Querelles littéraires" von Irailh (Paris 1761) findet."

An der betreffenden Stelle,** in einem Essay, betitelt: Le Système du Monde, schreibt der Canonicus Irailh:

- [p. 48] "Il [sc. Galilée] ne dut sa délivrance qu'à la foiblesse qu'il eut d'abjurer ses opinions & de blasphêmer contre la vérité. Il jura sur les saints évangiles de ne plus croire au mouvement de la terre: les inquisiteurs reçurent eux-mêmes ses sermens.(×)
 - (×) Aux pieds bénits de la docte assemblée, Voyez-vous pas le pauvre Galilée Qui, tout contrit, leur demande pardon, Bien condamné pour avoir eu raison.
- [p. 49] Au moment, assure-t-on, qu'il fut mis en liberté, le remords le prit. Il baissa les yeux vers la terre, & dit, en la frappant du pied: Cependant elle remue. (*)

 (*) E pur si move."

Aus dem Wortlaut ergiebt sich ohne weiteres, dass Chaudon auf Irailh fusst;*** aber ein Punkt ist wohl zu beachten. Während der Kanonikus Irailh einfach berichtet, Galilei habe, wie man versichere, den Ausspruch gethan: "au moment, qu'il fut mis en liberté", bringt der Abbé Chaudon die Legende in pointiertester Form, Galilei habe nach der Abschwörung, welche er knieend geleistet. beim Aufstehen die Worte gesprochen. Wir sehen, wie sich hier vor unseren Augen die Legende bildet, indem der Abbé Chaudon den angeblichen Ausspruch Galilei's mit dem legendenhaften Zusatze ausschmückt, der vor allem in neuerer Zeit den Zweifel geweckt hat, da sämtliche Berichte über den Prozess Galilei's nichts von der Sache melden; und zum anderen, hätte Galilei den Ausspruch gethan unter den Umständen, wie es die Legende berichtet, "so hätte er leicht das werden können, was er nicht geworden ist, ein Martyrer seiner wissenschaftlichen Überzeugungen", wie Herr Reusch sehr richtig bemerkt.

Soweit es sich um diese Legende handelt, bleibt demnach die Behauptung von Heis in voller Kraft, dass die Legende französischen Ursprunges, und der Abbé Chaudon der Urheber derselben ist, wie denn auch in erster Linie der Abbé Chaudon, und später der Ex-

^{*} Lexikon der Astronomie. Leipzig 1882. S. 165. -- Woher die Notiz entnommen, ist nicht angegeben. Eine Auskunft war nicht zu erlangen.

^{** [}Irailh, Augustin-Simon] Querelles littéraires, ou Mémoires Pour servir à l'Histoire des Révolutions de la République des Lettres, depuis Homere jusqu'à nos jours. A Paris, Chez Durand, Libraire, rue du Foin. 1761. 12°. t. III. p. 48 s.

^{***} In einem dem vierten Bande von Chaudons Dictionnaire historique angefügten Verzeichnisse der benutzten Werke werden ausdrücklich die Querelles littéraires des Abbé Irailh aufgeführt. Vergl. t. IV, Catalogue etc. p. 11.

Jesuit Feller durch ihre historischen Wörterbücher der Legende die allgemeinste Verbreitung verschafft haben.*

Ist nun der so berühmt gewordene Ausspruch gleichfalls in das Reich der Legende zu verweisen, oder lässt er sich auf Galilei zurückführen? Da ergiebt sich denn, dass es trotz sorgfältigster Nachforschungen nicht gelungen ist, den Ausspruch weiter als bis zum Jahre 1761 zurück zu verfolgen. Es liegt kein Grund vor anzunehmen, dass der Kanonikus Irailh, welcher den Ausspruch zuerst durch den Druck veröffentlicht hat, die Sache erfunden habe; es liegt vielmehr die Vermutung nahe, dass er durch mündliche Tradition davon Kenntnis erlangt hat. Da bekannt ist, mit welch' ängstlicher Scheu sowohl Galilei selbst als auch dessen nächsten Freunde und ergebensten Schüler es vermieden, selbst in vertrauten Briefen, die heikle Frage der Bewegung der Erde zu berühren, so könnte es nicht auffallend erscheinen, dass von dieser Seite eine so kompromittierende Ausserung, falls sie wirklich gefallen wäre, nicht in die Öffentlichkeit gelangte, sondern dass sie nur in den vertrautesten Kreisen mündlich zirkulierte. Jedoch das späte Auftauchen des angeblichen Ausspruches, und gerade der Umstand, dass durch den Satz für die innerste Überzeugung Galilei's, die zu verschweigen die Vorsicht gebot, eine so prägnante Formel gegeben wird, lassen an dem legendenhaften Ursprunge kaum einen Zweifel aufkommen. Wir sind demnach nicht berechtigt, den Satz als einen Ausspruch Galilei's zu zitieren. Nichts steht aber im Wege, das "Eppur si muove" als einen der innersten Überzeugung Galilei's adaquaten Satz auch ferner zu verwenden, wenn es gilt, im Namen der Wissenschaft Protest zu erheben gegen jegliche klerikale Anmassung, komme diese nun von katholischer oder von protestantischer Seite.

^{*} Die neunte und letzte Ausgabe von Chaudons Dictionnaire historique erschien Paris 1810. — Fellers Dictionnaire historique wurde viermal aufgelegt, 1781, 1789, 1797 und 1818. Gegenüber der Diatribe von E. Heis verdient hervorgehoben zu werden, dass nicht etwa von Seiten der Freidenker, sondern durch katholische Priester der Ausspruch zuerst verbreitet, und die legendenhafte Ausschmückung erfunden ist.

Rezensionen.

Taschenbuch für Mathematik, Geodäsie und Astronomie von Dr. R. Wolff, Professor. Sechste, durch dessen Nachfolger, Professor A. Wolfer, Direktor der eidgenössischen Sternwarte in Zürich, vollendete Auflage. Zürich 1895. Druck und Verlag von Friedrich Schulthess. XXIV, 388 S.

Wir haben im 22. Bande dieser Zeitschrift, Historisch-litterarische Abteilung S. 185—186 die fünfte Auflage von 1877 unseren Lesern anzeigen, beziehungsweise empfehlen dürfen. Die nach Verlauf von achtzehn Jahren nötig gewordene neue Auflage hat Herr Wolfer besorgt, der ja auch in anderen Veröffentlichungen das Erbe seines verstorbenen Amtsvorgängers angetreten hat. R. Wolf hatte übrigens schon umfassende Vorbereitungen zu dem Neudrucke getroffen, so dass es nur galt, in seinem Sinne fortzuarbeiten und zusammen zu drängen, denn dahin lässt Wolfs Programm für die neue Auflage sich aussprechen. Die leisen Bemerkungen unseres Berichtes im 22. Bande sind nicht berücksichtigt worden.

Das Dualitätsgesetz von Theodor Schmid. Sonderabdruck aus dem Jahresberichte der kaiserl. königl. Staats-Oberrealschule in Steyr für das Schuljahr 1894—1895. 25 S.

Wenn Gergonne bei Gelegenheit seines bekannten Streites mit Poncelet über die Erfindung des Dualitätsgesetzes ein besonderes Gewicht darauf legte, er habe gezeigt, dass jenes Gesetz schon bei den ersten Schritten des Studiums der Geometrie hervorgehoben werden könne, so hat er damit den Lehrwert dualistischer Auffassung deutlicher als sein Gegner, dem es auf Erfindung von Sätzen in erster Linie ankam, erkannt. Herr Schmid hat nun in einer eigenen Programmabhandlung duale Sätze aus Gebieten der Elementargeometrie zusammengestellt, welche zu verschiedenen Zeiten aufgetreten sind, und hat gezeigt, wie sie im Unterrichte verwertet werden können. Da überall die Quellen angegeben sind, so hat die Abhandlung auch Wert in geschichtlicher Beziehung. Am verhältnismässig ausführlichsten sind die dualen Sätze der sphärischen Trigonometrie behandelt.

Die Grundgebilde der ebenen Geometrie. Von V. EBERHARD. Erster Band. Mit fünf Figurentafeln. Leipzig 1895. B. G. Teubner. XLVIII und 302 S. 14 Mark.

Dieses Werk, dessen erster Teil uns vorliegt, giebt die Grundlage einer rein aus der Anschauung entwickelten Geometrie und in dieser Hinsicht beschäftigt sich auch der erste Teil der ausführlichen Vorrede (III—XXIX): "Über die Grundlagen und Ziele der Raumlehre", der auch als Separatabdruck erschienen ist und von jedem Lehrer der Mathematik gelesen zu werden verdient, mit der Frage, inwieweit die Anschauung im stande ist, die Natur der Raumgebilde zu erkennen.

Es wird zunächst dargelegt, wie die Grundgebilde: Fläche, Linie, Punkt aus der Erfahrung sich ergeben, wie sie durch Abstraktionsvorgänge entstehen, die sich auf die Kritik der Sinne gründen, und in dieser Bedeutung ist auch der erste Satz der Vorrede zu verstehen, in dem es heisst: "Unsere Erkenntnis unterscheidet vier Anschauungsformen: Den Raum, die Fläche, die Linie, den Punkt", ein Satz, der sonst wohl Widerspruch finden dürfte, da ja Flächen, Linien und Punkte uns nicht durch die Anschauung gegeben sind, vielmehr erst aus ihr abstrahiert werden müssen. Eingehend wird behandelt, wie die Abstraktionen der Ebene und der Geraden aus den Erscheinungen der Natur in uns entstehen und welche Bedeutung ihnen zukommt. Sehr beachtenswert sind die Ausführungen über die Beschreibung der Gestaltsverhältnisse einer ganz beliebigen (endlichen) Fläche. Während die Anschauung im stande ist, die unmittelbar oder mittelbar hervortretenden Diskontinuitäten eines Gebildes zu erkennen, zeigen die durchweg stetigen Elementarteile eines solchen keinen näher angebbaren Charakter. -Nachdem kurz der Anteil festgestellt worden ist, welchen einerseits die Anschauung, anderseits die Rechnung an der Entwickelung der Raumlehre in unserem Jahrhunderte genommen hat und die Wechselwirkung beider festgestellt ist, wird die Frage, ob die Anschauung allgemeine Kriterien besitzt, um einen einförmigen Flächen- oder Kurventeil als einen gesetzmässigen zu erkennen, dahin beantwortet: Eine Fläche oder eine Linie ist allemal dann und nur dann als ein einziges gesetzmässiges Punktkontinuum aufzufassen, wenn zwischen irgend einem festen Systeme einer endlichen, wenn auch noch so grossen Zahl diskreter Elemente der Mannigfaltigkeit und einem frei in letzterer beweglichen Punkte eine konstante anschauungsgemässe Abhängigkeit statthat. Freilich sind dadurch nur algebraische Gebilde bestimmt und der Referent muss gestehen, durch die dahin gehenden Erörterungen (S. XXIX) nicht überzeugt zu sein, dass bei Aufrechterhaltung des vorher genannten Satzes unsere Raumanschauung durch die Vorstellungen der transzendenten Flächen und Kurven bereichert werden kann.

Da an Stelle der Flächen und Linien (vorläufig wenigstens der algebraischen) das System der bestimmenden Punkte gesetzt werden kann, so stellt sich die urprüngliche Frage in der Fassung dar: Unter welchen Bedingungen erkennt die Anschauung ein beliebiges im Raume gegebenes Punktsystem als ein unabhängiges oder als ein abhängiges an? Eine un-

mittelbare Antwort lässt sich für das einfachste räumliche Punktsystem, vier Punkte in tetraedraler Lage, geben. Es besteht das durchgängig unterscheidende Charakteristikum für die allgemeine und die besondere Lage von Grundelementen darin, dass die erstere bei ganz beliebigen, die letztere aber nur bei ganz bestimmten stetigen Bewegungen jedes einzelnen Elementes erhalten bleibt. — Von dem Tetraedralsysteme werden dann noch einige Eigenschaften und zugleich der Begriff von abgeleiteten Punktsystemen entwickelt.

Der zweite Teil der Vorrede enthält eine genetische Schilderung des Gedankenganges und eine übersichtliche Zusammenstellung der hauptsächlichsten Resultate des Bandes, so dass es natürlich ist, wenn sich der Referent in seiner Darstellung des Inhaltes mit dieser mannigfach begegnet.

Nach den vorigen Ausführungen lassen sich "alle gesetzmässigen Raumgebilde auf sie bestimmende elementar abhängige Punktsysteme zurückführen, und es muss sich daher die Natur jener aus der Eigenart dieser entwickeln lassen. Die Frage nach dem Zusammenhange und den Singularitäten einer, nach dem Durchschnittssysteme respektive der Berührung zweier und mehrerer gegebenen Flächen oder Kurven wird an letzter Stelle durch den differenzierten Charakter der das einzelne oder das zusammengesetzte Gebilde ersetzenden Punktgruppe entschieden. Es wird daher die Theorie der räumlichen Punktund Ebenensysteme und ihrer planaren Netze für die Lehre der doppelt gekrümmten Flächen und Kurven, die Theorie der ebenen Punkt- und Geradensysteme und ihrer linealen Netze für die Lehre von den ebenen Kurven die natürliche Grundlage bilden." Und der Herr Verfasser sagt an anderer Stelle mit Recht: Falls eine Theorie der algebraischen Flächen rein auf dem Boden der Anschauung möglich ist, wird sie ihren Ausgang von den räumlichen Punktsystemen nehmen.

Das uns vorliegende Werk beschäftigt sich mit der Natur der ebenen Punktsysteme.

Um den Charakter eines ebenen Punktsystemes festzustellen, werden zunächst die Eigenschaften eines Punktetripels zusammengestellt und zwar sowohl die inneren oder absoluten, die, welche lediglich auf der gegenseitigen Lage der Punkte des Tripels beruhen, wie auch die äusseren oder relativen, nämlich die, welche die räumliche Stellung des Tripels zu dem Beobachter kennzeichnen. Die ersteren erstrecken sich auf die Teilung der Ebene in Punkt- beziehentlich Strahlenkontinua und deren Beziehungen zu einander, die zweiten auf die positive und negative Richtung in einer Geraden und den positiven und negativen (links- und rechtsseitigen) Drehungssinn eines Strahles in einem Büschel. Umschreitet man das Dreieck $\mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$ in der Reihenfolge seiner Ecken und liegt dabei die Dreiecksfläche links, so bezeichnet man dieses durch die symbolische Gleichung

$$c(\mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3)=+1,$$

im entgegengesetzten Falle durch

$$\mathfrak{c}\left(\mathfrak{p}_{1}\,\mathfrak{p}_{2}\,\mathfrak{p}_{3}\right)=-1,$$

während man für den Fall, dass die drei Punkte in gerader Linie liegen:

$$\mathfrak{c}(\mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3)=0$$

setzt und nennt diese Zahl +1, -1 oder 0 die Charakteristik des Punktetripels. Haben zwei Punktetripel gleiche Charakteristiken, so werden sie isothetische Systeme genannt. Für dieselben gilt der Satz: Zwei isothetische allgemeine Punktetripel können unter Erhaltung ihres beiderseitigen Charakters stets stetig ineinander übergeführt werden. Der Herr Verfasser fasst nun "in Bezug auf irgend ein vorgelegtes ebenes Punktsystem

$$\mathfrak{P}_n \equiv \mathfrak{p}_1, \, \mathfrak{p}_2, \, \mathfrak{p}_3, \, \mathfrak{p}_4 \dots$$

die Gesamtheit der Charakteristiken

$$\mathfrak{c}(\mathfrak{p}_i,\,\mathfrak{p}_k,\,\mathfrak{p}_l)=+1,\ -1,\ 0$$

aller seiner Punktetripel

Di, Dr. Di

als das Fundament oder die erste Stufe in dem Charakter des Punktsystemes auf." Es ergeben sich da die fundamentalen Aufgaben:

- 1. alle diejenigen Systeme von Punktetripeln zu ermitteln, welche die für die Gesamtheit der Tripel notwendigen und hinreichenden Bestimmungen enthalten,
- 2. aus einem solchen Fundamentalsysteme von Punktetripeln die Charakteristiken der übrigen abzuleiten.

Vorher wird jedoch in § 2 erörtert, wie vielen einfachen Singularitäten die in einem gegebenen Punktsysteme vorhandenen Singularitäten gleichwertig sind, wenn eine einfache Singularität oder einfache Bedingung diejenige ist, bei welcher drei Punkte \mathfrak{p}_i , \mathfrak{p}_k , \mathfrak{p}_i in gerader Linie liegen, also $\mathfrak{c}(\mathfrak{p}_i, \mathfrak{p}_k, \mathfrak{p}_i) = 0$ ist.

Da bei einer grösseren Zahl von Punkten die Charakterisierung eines ebenen Punktsystemes durch die Charakteristiken seiner $\binom{n}{3}$ Tripel wegen der grossen Zahl der Bedingungen sehr wenig übersichtlich wird und dadurch dem Studium grosse Schwierigkeiten in den Weg gelegt werden, so wird das Indexsystem oder Ortszeichensystem eingeführt. Denken wir uns einen Punkt \mathfrak{p}_i des Systemes als Mittelpunkt eines Strahlenbüschels, gehen von einem Strahle aus, auf dem etwa der Punkt $\mathfrak{p}_i^{(i)}$ liegt und lassen von hier aus einen Strahl das Strahlenbüschel links (oder rechts) herum durchlaufen, so werden die einzelnen Punkte des Systemes in einer gewissen Reihenfolge getroffen, die nur für diejenigen Punkte unbestimmt ist, welche auf einem und demselben Strahle liegen. Diese Punktefolge wird der Index des \mathfrak{p}_i genannt und bei linksseitigem oder positivem Drehungssinn gesetzt: ${}^{i}J(\mathfrak{p}_i) := \mathfrak{p}_1^{(i)}\mathfrak{p}_2^{(i)}\ldots(\mathfrak{p}_n^{(i)}\ldots\mathfrak{p}_n^{(i)})\ldots\mathfrak{p}_{n-1}^{(i)},$

bei rechtsseitigem oder negativem Drehungssinne:

$$J'(\mathfrak{p}_i) = \mathfrak{p}_1^{(i)} \mathfrak{p}_{n-1}^{(i)} \ldots (\mathfrak{p}_b^{(i)} \ldots \mathfrak{p}_a^{(i)}) \ldots \mathfrak{p}_a^{(i)},$$

wo jede eingeklammerte Reihe eine Punktreihe bezeichnet, die auf einer durch \mathfrak{p}_i gehenden Geraden liegen. Ist der Drehungssinn ein unbestimmter, so wird der Index $J(\mathfrak{p}_i)$ geschrieben. Einem gegebenen Punktsysteme entspricht ein unzweideutig bestimmtes Indexsystem:

$$'J(\mathfrak{p}_1), 'J(\mathfrak{p}_2) \ldots 'J(\mathfrak{p}_n)$$

und dieses wird als die erste Charakteristik des gegebenen Punktsystemes bezeichnet. Es stehen nun in einem ebenen Punktsysteme

$$\mathfrak{P}_n \equiv \mathfrak{p}_1, \, \mathfrak{p}_2, \ldots \, \mathfrak{p}_n$$

das Charakteristikensystem der $\binom{n}{3}$ Punktetripel

$$p_1, p_2, p_3; p_1, p_2, p_4; \dots p_{n-2}, p_{n-1}, p_n$$

und das System der n Indices

$$'J(\mathfrak{p}_1), 'J(\mathfrak{p}_2) \ldots 'J(\mathfrak{p}_n)$$

in eindeutig umkehrbarer Abhängigkeit. Mittelst des Begriffes der Indices wird dann die Aufgabe gelöst: "Die durch ein beliebig gegebenes Punktsystem bedingte Einteilung des ebenen Strahlenfeldes in ein System einander ausschliessender Strahlenbereiche vollständig zu beschreiben." Der Begriff des primären Strahlenbereiches ist dadurch definiert, dass "zwei ausserhalb der n-Punkte des Systems beliebig in der Ebene gewählte Gerade den nämlichen oder verschiedenen Strahlenbereichen angehören, je nachdem sie entweder ohne oder nur mittelst eines Durchganges durch einen Punkt \mathfrak{p}_i stetig ineinander überführbar sind." Die Punktgruppe, die einen solchen Strahlenbereich abgrenzt, heisst primäre Punktgruppe. Dabei findet sich zum Schluss des § 4, dass in allen ebenen Punktsystemen mit der gleichen Singularität A (Zahl der entsprechenden einfachen Singularitäten) der Ausdruck: $x_3 - x_6 - 2x_6 - 3x_7 - \cdots$,

wo x_n die Zahl der primären m-Ecke bezeichnet, einen von der Anzahl und der gegenseitigen Lage der Punkte des Systemes völlig unabhängigen invarianten Wert 4 + 2A hat.

Die Methode zur Bestimmung aller Primärvielecke einer gegebenen Punktgruppe \mathfrak{P}_n ergiebt die wichtige Eigenschaft, dass sämtliche Primärpolygone von \mathfrak{P}_n bereits aus n-1 beliebigen Indices abgeleitet werden können. Es wird dieses an einem bestimmten Beispiele erläutert, das zugleich Anlass zu einer anderen allgemeinen Untersuchung giebt, deren Ergebnis ist, dass in einem allgemeinen Punktsysteme \mathfrak{P}_n höchstens n-Primärflächen in ihren Indices übereinstimmen können. Zugleich werden weitere Abhängigkeiten zwischen den Indices der Elemente eines Punktsystemes abgeleitet und im § 6 die Grundgesetze des Indexsystemes entwickelt, ausgehend von der durch die Anschauung gegebenen Beziehung

$$\mathfrak{p}_i \mid \mathfrak{p}_i, \mathfrak{p}_k \mid + \mathfrak{p}_k \mid \mathfrak{p}_i, \mathfrak{p}_i \mid = \mathfrak{p}_i \mid \mathfrak{p}_i, \mathfrak{p}_k \mid + 2\Delta(\mathfrak{p}_i, \mathfrak{p}_k, \mathfrak{p}_i),$$

wo \mathfrak{p}_x \mathfrak{p}_s , \mathfrak{p}_y die Fläche ist, welche von einem von \mathfrak{p}_x ausgehenden Strahle bei positiver Drehung von \mathfrak{p}_y nach \mathfrak{p}_s beschrieben wird. Als allgemeines wichtiges Beispiel dient die Ableitung des n^{ten} aus gegebenen n-1 Indices eines Punktsystemes \mathfrak{P}_n .

Unter allen primären Punktgruppen sind die Fundamentaltripel für das Punktsystem von grundlegender Bedeutung und sie werden daher im § 7 besonders eingehend behandelt. Ihre Zahl beträgt im Punktsysteme %,

mindestens n. Besonders wichtig ist der Satz, dass ein ebenes Punktsystem \mathfrak{P}_a bei einer stetigen Bewegung seiner Elemente so lange einen invarianten Charakter bewahrt, wie das System seiner primären Punktetripel bestehen bleibt. "Die ausgezeichnete Stellung der primären Punktetripel legt es nahe, in ihnen die notwendigen und hinreichenden Bestimmungstücke für die Charakterisierung aller Punktetripel zu vermuten und unter Angabe ihrer Charakteristiken und Hauptpunkte die vollständige Beschreibung des Punktsystemes zu versuchen." Diese Untersuchungen werden zunächst an den verschiedenen Punktsystemen \mathfrak{P}_4 , \mathfrak{P}_5 und \mathfrak{P}_6 ausgeführt, und dann wird in den §§ 11—13 allgemein bewiesen, dass ein Indexsystem durch die Gruppe seiner vollständig definierten Fundamentaltripel unzweideutig bestimmt ist, wobei sich eine grosse Zahl von Sätzen über Indexsysteme ergiebt, in betreff deren wir jedoch bei der Eigenartigkeit und Neuheit der Untersuchungen auf das Buch selbst verweisen müssen.

Im § 14 wird als Beispiel aus der Gesamtheit der Fundamentaltripel eines Systems \mathfrak{P}_s das Indexsystem desselben bestimmt.

Im Anhange behandelt der Herr Verfasser zunächst das endliche ebene Geradensystem: $G_n \equiv g_1, g_2 \dots g_n,$

das sich dem endlichen Punktsysteme

$$\mathfrak{P}_n = \mathfrak{p}_1, \mathfrak{p}_2, \ldots \mathfrak{p}_n$$

koordiniert gegenüberstellt. Es tritt dabei freilich die Schwierigkeit ein, dass sich die Fortschreitungsrichtung in einem Strahle bei einer Drehung um 180° umkehrt, und es fehlt darnach zunächst ein Mittel, die Fortschreitungsrichtungen auf der einzelnen Geraden unterscheiden zu können. Da diese Schwierigkeit auch nicht dadurch gehoben wird, die linksseitige Rotation ein für allemal als Übergangsweise zu wählen, so führt der Herr Verfasser einen Punkt po, der ausserhalb der n Geraden des Systems gelegen ist, als Grenzpol ein. Ein in positivem Sinne um po sich drehender Strahl bestimmt auf einer Geraden g eine Folge von Punkten und diese Fortschreitungsrichtung heisst die positive. Dadurch ist der Index einer Geraden g als Aufeinanderfolge der Geraden bestimmt, welchen ein die Gerade g in positiver Richtung durchlaufender Punkt begegnet und auch die Definition der Charakteristik eines Geradentripels ist damit genau gegeben. Es lassen sich darnach die Gesetze eines endlichen Punktsystemes ohne weiteres auf ein endliches Geradensystem übertragen. - Der letzte Paragraph ist einer Besprechung der gemischten Grundgebilde, der aus Punkten und Geraden zusammengesetzten gewidmet.

Hoffen wir, dass wir recht bald eine Fortsetzung des trefflichen und klar geschriebenen Werkes begrüssen können, das uns in ganz neue Untersuchungen einführt, die unsere Anschauungen wesentlich bereichern, und möge uns der Herr Verfasser später auch mit einer Anwendung auf die Theorie der ebenen Kurven erfreuen, die dadurch von einem ganz neuen Gesichtspunkte aus würden dargestellt werden.

H. Willegrod.

La Géometrie reglée et ses Applications. Von G. Koenig. Paris 1895. Gauthier-Villars et Fils. 4°. 148 p.

Dieses Buch ist eine teilweise Reproduktion einer Vorlesung, welche der Herr Verfasser 1887/88 im Collège de France gehalten hat und beabsichtigt, den Leser in die analytische Geometrie der geraden Linie und ihrer Systeme einzuführen. Es werden zwar auch, wo sich die Gelegenheit bietet, Sätze auf synthetischem Wege abgeleitet, doch werden dieselben dann allemal noch analytisch bewiesen. Infolge seiner klaren und leicht verständlichen Darstellung, dem durchsichtigen Aufbau der Lehre von den linearen Komplexen ist das Buch recht geeignet, in die analytische Geometrie der geraden Linien einzuführen und eine Vorstufe für das Studium der neueren Arbeiten auf diesem Gebiete, besonders der Herren Klein und Lie, zu bilden.

Um ein Bild von der Methode des Buches zu geben, muss sich der Referent erlauben, auch auf die einleitenden allgemein bekannten Kapitel etwas genauer einzugehen.

I. Die Koordinaten der geraden Linie. Allgemeines. S. 3-15. Nach einer kurzen Einleitung über die Bedeutung der Geraden in der Geometrie werden die Koordinaten der Geraden abgeleitet, indem dieselbe sowohl als Ort von Punkten wie auch als Durchschnitt zweier Ebenen betrachtet wird. Beide Formen erweisen sich als identisch. Da die quadratische Fundamentalform:

$$\omega(x) \equiv 2(x_1x_2 + x_3x_4 + x_5x_6)$$

und die Polarform:

$$\omega(x,x') = \frac{1}{2} \sum_{i} \frac{d \omega(x)}{d x_i} x'_i$$

bei einer linearen Transformation erhalten bleiben, so kann man jetzt vom Punktraume ganz absehen und als Grunderklärung, aus welcher sich alles Weitere ergiebt, den Satz aufstellen: Jedem Systeme von sechs Variabeln $x_1, x_2 \dots x_6$, die durch eine quadratische Relation $\omega(x) = 0$ verbunden sind, deren Diskriminante nicht Null ist, kann man eine bestimmte Gerade des Raumes entsprechen lassen, wobei die Gleichung w(x, x') = 0 ausdrückt, dass sich die Geraden x, x' schneiden. Daraus ergiebt sich dann sogleich, dass $x_i = \lambda a_i + \mu b_i$ die Gleichung eines Büschels ist, wenn $\omega(a,b)=0$ and dass, wenn a, b and c sich schneiden, $x_i=\lambda a_i+\mu b_i+\nu c_i$ die Gleichung eines Strahlenbündels oder eines Strahlenfeldes ist. Für beide wählt der Herr Verfasser, da sie analytisch durch dieselbe Gleichung dargestellt werden, den glücklichen Namen "hyperfaisceau", dem wir nach dem Wissen des Referenten einen deutschen nicht gegenüberzustellen haben. Allgemein hängt eine Gerade von vier Parametern ab und je nach der Zahl der Bedingungsgleichungen erhalten wir einen Komplex, eine Kongruenz, eine Regelschar und eine endliche Zahl von Geraden. Als Grad eines Komplexes wird die Zahl der Geraden bezeichnet, welche ein beliebiges Strahlenbüschel mit demselben gemein hat.

II. Die linearen Komplexe von Geraden. S. 16—24. Die linearen Komplexe (Strahlengewinde)* sind diejenigen, die mit einem beliebigen Büschel nur eine Gerade gemein haben, bei denen infolgedessen die Bedingungsgleichung linear ist. Die Geraden, die von einem Punkte eines solchen Komplexes ausgehen, bilden einen Büschel und die Ebene dieses Büschels nennt man die Polare des Punktes (Nullpunkt, Nullebene). Die Polaren der Punkte einer Geraden schneiden sich in einer Geraden, wobei das Doppelverhältnis der Punkte gleich dem der entsprechenden Ebenen ist, und die beiden Geraden heissen konjugiert (Polare). Die synthetisch gefundenen Sätze werden auch analytisch abgeleitet und dabei der aus der Kleinschen Invariante sich ergebende Begriff des speziellen linearen Komplexes (Strahlengebüsch) entwickelt, bei welchem alle Gerade eine bestimmte, die Leitgerade, schneiden.

III. Die Systeme von linearen Komplexen. S. 25-56. Nach einleitenden allgemeinen Bemerkungen über Beziehungen zwischen den Punkten einer Geraden und den durch dieselbe hindurchgelegten Ebenen, das Chaslessche Korrespondenzprinzip, die anharmonischen und involutorischen Beziehungen, werden zwei lineare Komplexe (A, B) betrachtet. Die beiden konjugierten Geraden, welche dieselben gemeinsam haben, gehören zugleich allen Komplexen des Systemes $\lambda A + \mu B$ an. gehen in den beiden Spezialkomplexen des Systemes in die Leitgeraden über. Die Geraden, welche diese beiden konjugierten Geraden schneiden, bilden die gemeinsame lineare Kongruenz des Systemes, deren Invariante aufgestellt wird. Ist dieselbe gleich Null, so ist die Kongruenz singulär. Ausser diesen gemeinsamen Eigenschaften des ganzen Systemes werden noch diejenigen abgeleitet, welche den einzelnen Komplexen zukommen. Pole einer durch eine Gerade der gemeinsamen Kongruenz des Systemes A + kB = 0 gehenden Ebene in den Komplexen, welche den Werten $k = \alpha, \beta, \gamma, \delta$ entsprechen, bilden ein Doppelverhältnis, gleich dem Doppelverhältnisse der Grössen $\alpha, \beta, \gamma, \delta$. Nimmt man nun als zwei der Komplexe die beiden Spezialkomplexe des Systemes, so ist der Wert des Doppelverhältnisses für zwei gegebene Systeme konstant, und es ergiebt sich aus ihm der Winkel der beiden Komplexe, wobei allerdings der Begriff Axe nicht definiert wird. Ist der Winkel ein rechter, so sind die beiden Komplexe in Involution. — Nach Untersuchung der Systeme $\lambda A + \mu B = 0$ werden die drei-, vier- und fünfgliedrigen Gruppen von Komplexen behandelt und ihre Eigenschaften hergeleitet.

IV. Grundlehren der Geometrie des Unendlich-Kleinen in Geradenkoordinaten. S. 57-91. Es wird von der linearen singulären Kongruenz der Tangenten einer windschiefen Fläche längs einer Erzeugenden ausgegangen. Zwei benachbarte dieser Kongruenzen haben die eine Regel-

^{*} Die Bezeichnungen in Klammern sind die bei uns gebräuchlichen nach R. Sturm: "Die Gebilde ersten und zweiten Grades der Liniengeometrie in synthetischer Behandlung."

schar des oskulierenden Hyperboloids der Fläche gemeinsam. Die andere Schar desselben gehört den Komplexen an, welche eine Berührung zweiter Ordnung mit der Fläche haben, und zwar bilden dieselben ein dreigliedriges System. Auch die Systeme von linearen Komplexen, welche eine dreiund vierfache Berührung mit der Fläche haben, werden untersucht, sowie das oskulierende Ebenenbüschel. Eine oskulierende Ebene und der Berührungspunkt bilden ein Liesches Berührungselement. Nach einer kurzen Besprechung von Ebenenbüscheln, die von mehreren Parametern abhängen, werden die einen linearen Komplex berührenden linearen Komplexe behandelt. Ist die dabei auftretende Kleinsche Invariante gleich Null, so ist die betreffende Gerade eine singuläre Gerade und die Ebenenbüschel, die zu allen singulären Geraden gehören, umhüllen die Singularitätenfläche, von welcher jede Regelfläche des Komplexes in einer gewissen Anzahl von Punkten berührt wird. Es werden dann die schon länger bekannten differentiellen Eigenschaften der linearen Kongruenzen abgeleitet, auf die wir der mannigfachen Einzelheiten wegen hier nicht eingehen.

V. Kleinsche Koordinaten. Anallagmatische Geometrie. S. 92—146. Die Gleichungen $\omega(x)=0$, $x_i=0$ (i eine der Zahlen 1 bis 6) stellen bei Plückerschen Koordinaten singuläre Komplexe dar, deren Leitgerade die Kanten eines Tetraeders sind. Aus diesen Plückerschen Koordinaten ergeben sich die Kleinschen durch Umformung. Setzt man:

$$4\omega(r) = 4r_{41}r_{23} + r_{42}r_{31} + r_{48}r_{12}$$

$$= (r_{41} + r_{12})^2 + (r_{42} + r_{31})^2 + (r_{43} + r_{12})^2$$

$$+ [\sqrt{-1} (r_{41} - r_{23})]^2 + [\sqrt{-1} (r_{42} - r_{31})]^2 + [\sqrt{-1} (r_{43} - r_{12})]^2$$

$$= x_1^2 + x_2^2 + \dots + x_8^2,$$

so erhält man aus diesen Grössen x_i durch allgemeine orthogonale Substitution die Kleinschen Koordinaten y_i . Von diesem eigentümlichen sechsfach orthogonalen oder involutorischen Koordinatensysteme, welches fünfzehn Parameter enthält, werden die Haupteigenschaften abgeleitet, die zehn Fundamentalflächen zweiten Grades, sowie die fünfzehn Fundamentaltetraeder, die sich dabei ergeben, genauer untersucht. Der bei der Transformation dieser Koordinaten zuletzt abgeleitete Satz: "Wenn die Gleichungen der linearen Transformation:

$$x'_{i} = a_{i_1}x_1 + a_{i_2}x_2 + \cdots + a_{i_6}x_6 \quad (i = 1, 2 \dots 6)$$

 $\omega(x) = \omega(x')$ ergeben, so stellen sie zwischen den Geraden x und x' eine homographische oder eine dualistische Beziehung her", ist für Herrn Klein der Ausgangspunkt gewesen für eine sonderbare Beziehung zwischen der Geometrie der Geraden im Raume und derjenigen der metrischen Eigenschaften in einem Raume von vier Dimensionen. Es giebt derselbe auch dem Herrn Verfasser Gelegenheit auf Räume von n Dimensionen einzugehen und dabei besonders die anallagmatischen Transformationen zu berücksichtigen.

Sur la génération des courbes par roulement. Von René de Saussure. Genève 1895. Aubert Schuchardt. gr. 8°. 94 p. 2 Tafeln Figuren.

Eine jede ebene Kurve kann man sich durch die Bewegung eines Punktes in der Weise erzeugt denken, dass eine mit ihm fest verbundene Gerade auf einer Kurve rollt oder umgekehrt eine fest mit ihm verbundene Kurve auf einer Geraden. Beide Erzeugungsarten sind auf einfach unendlich verschiedene Weisen möglich. Die erste Art wird eine bestimmte, wenn die Gerade gezwungen ist, zur entstehenden Kurve stets senkrecht zu sein. es muss dann der Punkt auf der Geraden liegen und die erzeugte Kurve ist eine Evolvente der festen Kurve, letztere die Evolute der ersteren. Bei der zweiten Art ist die Erzeugung nur in begrenzter Zahl möglich, wenn die Gerade eine Basis der erzeugten Kurve sein, das heisst sie in sämtlichen Schnittpunkten senkrecht treffen soll. Die erzeugte Kurve heisst Rollkurve, und während man gewöhnlich die Gleichung der Rollkurve sucht, ist hier ausserdem das inverse Problem gelöst, aus der Gleichung der Rollkurve die der Erzeugenden zu bestimmen. Diese Aufgabe wird für die Kegelschnitte eingehend behandelt, nachdem dem Rollen zweier Kurven aufeinander und insbesondere den cykloidischen Linien die nötige Aufmerksamkeit gewidmet ist. Es stellt sich dabei heraus, dass beim Rollen eines Kreises vom Radius r auf einem solchen vom Radius R auch für imaginäre Werte von r eine reelle Kurve entstehen kann, nämlich wenn $r=rac{R}{5}+arrho i$, wo arrho einen beliebigen Wert hat. Die in diesem Falle entstehenden Kurven nennt der Herr Verfasser Paracykloiden.

Im zweiten Teile geht der Herr Verfasser auf den Raum über, wobei definiert wird, dass eine Raumkurve auf einer Ebene rollt, wenn ihre Tangentenfläche auf der Ebene rollt, sodass an Stelle der Kurve die abwickelbare Fläche treten kann, deren Rückkehrkante die Kurve ist. Zur Vorbereitung des allgemeinen Falles lässt Herr Saussure eine ebene Kurve auf einer festen ebenen Kurve so rollen, dass ihre beiden Ebenen einen Winkel einschliessen, der sich nach einem bestimmten Gesetze ändert. Es werden dann nacheinander behandelt das Rollen eines Cylinders auf einer Ebene, das eines Kegels auf einer Ebene und umgekehrt und einer allgemeinen abwickelbaren Fläche auf einer Ebene und umgekehrt. Beim Rollen zweier abwickelbaren Flächen aufeinander kommen je zwei geradlinige Erzeugende nur dann zur Deckung, wenn die Rückkehrkanten beider in entsprechenden Punkten gleiche erste Krümmung haben, sonst findet die Berührung nur in einem Punkte statt. In Bezug auf den letzteren Fall wird auf das Rollen eines Kegels auf einem Cylinder eingegangen.

H. WILLGROD.

Leçons sur la résolution algèbrique des équations. Par H. Voor. Avec une préface de Jules Tannery. Paris 1895 .201 p.

Herr H. Vogt, welcher bereits in seinen früheren selbständigen Arbeiten mehr den analytischen, als den geometrischen Untersuchungen zuneigte.

ist mit seinem hier vorliegenden Buche offenbar auf das richtige Feld seiner Beanlagung gelangt. Der Herr Verfasser bietet zwar in seinen "Vorlesungen über die algebraische Auflösung der Gleichungen" nichts Neues; aber die wirklich in die Tiefen des behandelten Gegenstandes eindringende Darstellung, die reife Disposition im grossen wie im einzelnen, sowie vor allem eine fast überall klare und präzise Ausdrucksweise machen die Lektüre des Buches zu einer wahrhaft genussreichen. Dass auch einmal Ausnahmen vorkommen, zeige etwa der vorletzte, mit den Worten "Toute équation dont les coefficients..." beginnende Absatz S. 62. Der Sinn des ersten Satzes in diesem Absatze ist überhaupt unverständlich: Die Koeffizienten einer Gleichung bilden denselben Rationalitätsbereich, wie die symmetrischen Funktionen der Wurzeln; dieserhalb ist die im gedachten Satze gegebene Definition der "équations particulières" nicht verständlich. Die weiterhin an die Gleichungen mit rationalen Koeffizienten geknüpften Betrachtungen sind gleichfalls nicht recht glücklich gewählt. Weit lieber möchte man hier den gegenteiligen Satz finden, dass wenigstens für jeden Primzahlgrad unendlich viele "affektlose" Gleichungen mit rationalen Koeffizienten existieren; auch im weiteren Verlaufe des Buches habe ich diesen Satz nicht gefunden. Doch dürften derartige Stellen, in denen eine Präzisierung des Gedankenganges wünschenswert erscheint, im vorliegenden Buche sehr selten sein; und sie kommen gegenüber den schon genannten Vorzügen des letzteren kaum in Betracht.

Der vom Verfasser behandelte Stoff deckt sich fast vollständig mit dem Inhalte des bekannten und geschätzten Werkes von Herrn Netto über Substitutionentheorie; letzteres Werk ist sogar mehrfach direkt vorbildlich gewesen. Daneben macht sich eine etwas grössere Einwirkung Kroneckers geltend, als sie bei Netto vorliegt, so z. B. in der Theorie der Reduzibilität der Gleichungen. Dieser Umstand ist natürlich durch die verschiedene Entstehungszeit beider Werke begründet.

Betreffs der Anordnung des Stoffes möchte Unterzeichneter auf einen Punkt hinweisen. Einer der Hauptsätze der Galoisschen Theorie, nämlich derjenige über Auflösung der Gleichung durch Lösung einer Kette von Resolventen (den Faktoren der Zusammensetzung der zugehörigen Gruppe entsprechend), ist vom Verfasser erst auf der vorletzten Seite des Buches aufgestellt. Die allgemeine Theorie der algebraisch auflösbaren Gleichungen auf Grundlage Abelscher Sätze wird weit früher behandelt. Die letzteren Entwickelungen müssen natürlich in dieser Form durchaus bestehen bleiben und sind überdies vom Verfasser vorzüglich dargestellt. Dagegen ist wohl kein Zweifel, dass ein Leser, der sich bereits im Besitze des vorgenannten Satzes der Galoisschen Theorie befindet, weit leichter den Überblick über die vielfältigen algebraischen Deduktionen des Abelschen Beweises gewinnt. Diese Bemerkung ist um so schwererwiegend, als der fragliche Satz der Galoisschen Theorie ein fast unmittelbares Ergebnis aus den vorentwickelten Begriffen von Gruppe und Rationalitätsbereich einer Gleichung ist.

Folgende kurze Inhaltsangabe möge die Besprechung abschliessen. Die fünf ersten Kapitel sind den substitutionentheoretischen Grundlagen gewidmet.

Der Begriff der Permutationsgruppen wird vorangestellt, die Untergruppen und ihre Artunterscheidungen werden eingeführt, die Zerlegung einer Gruppe in eine Kette jeweils ausgezeichneter Untergruppen wird besprochen, und endlich die Einfachheit der alternierenden Gruppe für n>4 bewiesen. Weiter werden die zu den einzelnen Gruppen gehörenden rationalen und ganzen Funktionen betrachtet. Für diese ist dann das Theorem von Lagrange über Darstellung aller Funktionen einer Gruppe durch eine unter ihnen fundamental; speziell kommt der Fall einer Galoisschen Funktion zur Behandlung. Das fünfte Kapitel ist den cyklischen und metacyklischen Gruppen und Funktionen gewidmet. Nun wird weiter von den Begriffen des Rationalitätsbereiches und der Reduzibilität gehandelt.

Im folgenden Teil des Werkes, welcher aus den Kapiteln VII bis XIII besteht, ist die Anwendung der vorhergehenden Entwickelungen auf die Theorie der Gleichungen gegeben. Zuvörderst wird der Begriff der Resolventen und der Gruppe einer Gleichung behandelt. Im Anschlusse an die Besprechung der Gleichungen zweiten bis vierten Grades finden die Untersuchungen von Lagrange ihren Platz. Es folgt sodann das Kapitel über die algebraisch lösbaren Gleichungen, welches wir bereits oben erwähnten; und ihm schliessen sich drei Kapitel mit speziellen Untersuchungen, nämlich über Abelsche Gleichungen, über Kreisteilungsgleichungen und über Galoissche Gleichungen an. Das letzte Kapitel ist wieder allgemeineren Auffassungen der Galoisschen Theorie gewidmet.

ROBERT FRICKE.

Theorie der doppeltperiodischen Funktionen einer veränderlichen Grösse. Von Dr. Martin Krause, Professor an der technischen Hochschule in Dresden. Leipzig, B. G. Teubner 1895. Erster Band, VIII und 328 S.

Die Besprechung des vorliegenden neuesten Buches über doppeltperiodische Funktionen ist deshalb ein wenig erschwert, weil nur erst die erste Hälfte des zweibändig geplanten Werkes erschienen ist, das doch als Ganzes beurteilt sein will. Freilich giebt der Verfasser im Vorworte zum vorliegenden ersten Bande die im zweiten zu behandelnden Gegenstände kurz an; derselbe soll nämlich die Anfänge der Transformationstheorie auf neuer Grundlage, sowie trigonometrische Reihen und Differentialgleichungen für die Funktionen zweiter und dritter Art behandeln. Vielleicht darf man hoffen, dass die Grundlagen der Transformationstheorie, welche Herr Krause solcherweise verspricht, neue und interessante Gesichtspunkte in diese Theorie hineintragen. Das vorliegende Werk könnte dann vielleicht, als Ganzes betrachtet, originell erscheinen und würde sich der sehr entwickelten Litteratur über elliptische Funktionen als neues wertvolles Glied anreihen. Hoffnung darf jedoch nicht hindern, den allein erst zugänglichen ersten Band für sich zu acceptieren und die Behandlung der in ihm zur Sprache kommenden Gegenstände gegen den sonstigen hierfür in Betracht kommenden Entwickelungsstand der Theorie zu orientieren.

Auf den ersten Abschnitt (Einleitung in die Funktionentheorie nach Weierstrass) braucht nicht eingegangen zu werden, da es sich hier nur um bekannte und längst festliegende Dinge handelt.

Im zweiten Abschnitte wird die Theorie der doppeltperiodischen Funktionen auf Grundlage der gewöhnlichen &-Funktionen behandelt. Herr Krause wählt hier den Eingang zu seinen eigentlichen Betrachtungen in eleganter Weise von der Theorie der "linear-periodischen Funktionen" aus. Dabei muss allerdings der S. 39 aufgestellte Lehrsatz, die Theorie dieser Funktionen lasse sich auf die Theorie der multiplikativ und die der additiv periodischen Funktionen zurückführen, beanstandet werden. Die linear-periodischen oder automorphen Funktionen umfassen einen viel weiteren Bereich und besitzen eine ungleich reichhaltigere Theorie. Der fragliche Satz bezieht sich vielmehr einzig auf diejenigen elementaren Funktionen, welche nur gegenüber einer einzigen Substitution und ihren Potenzen invariant sind. Im Verfolge des Überganges zu den 3-Funktionen macht sich wiederholt der Mangel geometrischer Vorstellungen fühlbar. Insbesondere wäre es wünschenswert gewesen, dass der Übergang von den multiplikativ periodischen Funktionen zu den doppeltperiodischen in seiner geometrischen Bedeutung als Abbildung eines von zwei Kreisen begrenzten Ringes auf ein Parallelogramm erfasst wäre. Ich will bei den nächsten Angaben das gänzliche Fehlen geometrischer Anschauungen nicht immer wieder erwähnen (ist doch vor allem die Vorstellung des Periodenparallelogrammes nirgends explicit entwickelt); dagegen ist ausdrücklich zu betonen, dass es sich hierbei nicht etwa ausschliesslich um eine Frage des Geschmackes handelt. Den geometrischen Vorstellungen wohnt zum mindesten eine weitgehende didaktische Bedeutung inne; und es hätten zumal bei Heranziehung Riemannscher Anschauungsweisen gewisse späterhin noch zu nennende Grundsätze der Transformationstheorie weit klarer und weit weniger unbestimmt ausgesprochen werden können.

Die Entwickelung des Buches nimmt nun zunächst den Fortgang, dass die multiplikativ periodischen "Primfunktionen" in unendliche Produkte entwickelt werden, für welche dann nach Jacobi die Umsetzung in unendliche Reihen dargeboten wird. Letztere werden späterhin unmittelbar zum Ausgange für die Aufstellung der &-Reihen. Demnächst werden die Eigenschaften der doppelt-periodischen Funktionen aus denen der multiplikativ periodischen abgeleitet; die Unmöglichkeit dreifach periodischer eindeutiger Funktionen (dies ist die passendere Wendung an Stelle der vom Verfasser Seite 53 flg. gewählten Ausdrucksweise) wird nach Jacobi bewiesen; die vier gewöhnlichen &-Funktionen werden durch ihre Produktentwickelungen und ihre Periodeneigenschaften definiert, und mit Hilfe dieser Funktionen werden die doppelt periodischen Funktionen zweiter und dritter Art eingeführt und näher untersucht.

Von besonderer Wichtigkeit sind die nun folgenden Entwickelungen über \mathfrak{F} -Funktionen n^{ter} Ordnung und über den zugehörigen Satz Hermites von den n linear-unabhängigen \mathfrak{F} -Funktionen n^{ter} Ordnung der einzelnen Charakteristik. Von diesem Satze macht Herr Krause in der Transformationstheorie den aus-

Digitized by GOOGLE

gedehntesten Gebrauch und benennt denselben dieserhalb schon hier als das "Hermitesche Transformationsprinzip". Es handelt sich hierbei um einen Satz, der als Spezialfall in dem allgemeinen Riemann-Rochschen Satze enthalten ist. Der vom Verfasser gewählte Beweis stützt sich auf die Reihenentwickelungen der 3-Funktionen; es ist dies der ursprüngliche Hermitesche Gedankengang.

Es folgen nun ausgedehnte Entwickelungen über die ϑ -Funktionen erster Ordnung, über die zwischen ihnen bestehenden quadratischen Relationen und ihre Additionstheoreme auf Grundlage des Hermiteschen Satzes. Auf der gleichen Grundlage erwachsen auch die Darstellungen der ϑ -Funktionen n^{ter} Ordnung in denen der ersten Ordnung. Der Rest des zweiten Abschnittes ist im wesentlichen der Einführung der Moduln k, k', der Weierstrassschen Funktionen Al(u) und der Jacobischen Funktionen sin amu, $\cos amu$, Δamu gewidmet, für welche eine Reihe von Fundamentaleigenschaften entwickelt wird.

Der dritte Abschnitt "Die Transformation der elliptischen Funktionen nebst Anwendungen" gliedert sich in folgender Weise:

- 1. Einführung des Transformationsproblemes und Transformation ersten und zweiten Grades (S. 102 bis 122). Das Problem der rationalen Transformation wird in allgemeiner, wenn auch nicht allgemeinster Form entwickelt. Die nüchsten Anwendungen beziehen sich auf die lineare und die Landensche Transformation. Überall liegt der Hermitesche Satz der funktionentheoretischen Schlussweise zu Grunde.
- 2. Anwendungen zur Ausgestaltung der analytischen Theorie der elliptischen Funktionen (S. 122 bis 156). Es werden hier die Ableitungen der doppeltperiodischen Funktionen nach dem Argumente u rational in $\sin amu$ etc. dargestellt. Die Potenzreihen für $\sin amu$ etc. werden nun explicite behandelt, und nebenher wird auch der Weierstrassschen p-Funktion gedacht. Es folgen weiter Differentialrelationen für die ϑ -Funktionen, die Funktionen Al(u), den Modul k etc., sowie Formeln für die Berechnung des Moduls und des Periodenverhältnisses.
- 3. Multiplikation der elliptischen Funktionen (S. 156 bis 173). Für die Lösung des Multiplikationsproblemes, die Funktionen sin am nu, cos am nu, rational in den ursprünglichen darzustellen, werden insgesamt fünf Methoden angegeben. Die erste Methode gründet sich auf den Hermiteschen Satz, während bei der zweiten eine interessante Differentialgleichung von Jacobi zur rekurrenten Berechnung der Koeffizienten in den gewünschten Formeln herangezogen wird. Weiterhin kommen die Teilwerte von sin am u etc. zur Verwendung; auch die bekannte Kiepertsche Determinante findet Erwähnung.
- 4. Transformation höheren Grades mit Ausführungen für n=3 und n=5 (S. 174 bis 191). Vergleiche die Ausführungen unter Nr. 6.
- 5. Modulfunktionen, Modular- und Multiplikatorgleichungen (S. 191 bis 246). Um die Theorie der Hermiteschen φ-Funktion, sowie diejenige der Modular- und Multiplikatorgleichungen durchführen zu können, sendet der Herr Verfasser eine drei Seiten füllende Besprechung des Begriffes der Modulfunktionen voraus. Hierbei hätte doch gesagt werden sollen, dass die-

jenigen Untergruppen G, zu welchen im Sinne des Verfassers Funktionen $\psi(\tau)$ gehören, einen verschwindend kleinen Bruchteil aller Untergruppen G bilden. Dem Satze, dass geradezu nur eine endliche Zahl solcher Funktionen $\psi(\tau)$ und Gruppen G in der Transformationstheorie existiert, galten nachhaltige Bemühungen Giersters, der diesen Satz für Primzahltransformation wirklich nachwies. Die allerdings nicht recht deutlich ausgesprochene Meinung des Verfassers, es existiere eine unendliche Fülle solcher Funktionen $\psi(\tau)$ (cf. S. 194, zweiter sowie letzter Absatz) dürfte demnach dem Thatbestande nicht entsprechen und ist jedenfalls nicht bewiesen. Die späterhin zur Geltung kommenden Funktionen, an welche der Verfasser zu denken scheint, sind nur in Ausnahmefällen von der Art der Funktionen $\psi(\tau)$.

6. Allgemeine Ansätze zur Transformationstheorie (S. 247 bis 262). Hier interessieren vor allem die Darlegungen S. 254: Der Herr Verfasser entwickelt dort, was er für den eigentlichen Inhalt der Transformationstheorie ansieht. Zuvörderst liegt das Problem vor, die transformierten doppeltperiodischen Funktionen oder auch 3-Funktionen in den ursprünglichen darzustellen. Die Koeffizienten in den gewünschten rationalen Ausdrücken sind zwar von u unabhängig, stellen aber Funktionen des Periodenquotienten vor, nämlich allgemein zu reden Nullwerte transformierter 3-Funktionen. Bei der Aufstellung der zuerst erwähnten allgemeinen Transformationsgleichungen (vermöge einer Methode der Reihenentwickelungen) stellen sich nun unendlich viele Relationen zwischen den fraglichen 3-Nullwerten ein, und in der Aufstellung dieser Relationen in möglichst grosser Zahl sieht Herr Krause die zweite Hauptaufgabe der Transformationstheorie. In diesem Sinne ist die Transformationstheorie bereits bei denjenigen Entwickelungen gehandhabt, welche vorhin unter Nr. 4 rubriziert wurden. Die Meinung des Herrn Verfassers ist jedoch, dass die an letzter Stelle benutzten Regeln nicht ausreichen, um für allgemeine Transformationsgrade n die formulierten Aufgaben zu lösen, dass indes eine etwas weitere Fassung des Problemes die Lösung anbahnen möchte. Die Erweiterung soll darin bestehen, dass Transformationsgleichungen beliebiger Gestalt und zwar nicht nur für einen, sondern für mehrere neben einander vorkommende Repräsentanten aufgestellt werden sollen. Ihnen gehen dann auch wieder entsprechende Relationen zwischen den &-Nullwerten parallel. Dieser Ansatz findet für n=3 und n=5 nähere Ausführung.

Weitere Beiträge zur Lösung des Transformationsproblemes im angedeuteten Sinne soll der vierte Abschnitt "Die Theorie der doppeltperiodischen Funktionen auf Grund der ϑ -Funktionen mit gebrochener Charakteristik" liefern. Bis auf Exponentialfaktoren handelt es sich hierbei um die Funktionen $\vartheta_{\alpha}\left(u+\frac{g\,\tau+h}{n}\right)$, und damit treten im weiteren nun auch die Teilwerte der ϑ -Funktionen explicit in die Untersuchung ein. Die Beziehung dieser ϑ -Funktionen mit gebrochener Charakteristik zu den früher bereits betrachteten elliptischen Funktionen n^{ter} Ordnung wird betrachtet und an den Beispielen n=3 und n=5 illustriert. Es werden auf Grund

Digitized by GOOGLE

des Hermiteschen Satzes gewisse lineare Relationen zwischen den n^{ten} Potenzen jener 3-Funktionen mit gebrochener Charakteristik entwickelt, zugehörige Additionstheoreme werden aufgestellt etc. Letzten Endes werden Anwendungen auf die Theorie der doppelt periodischen Funktionen zweiter und dritter Art vollzogen. —

Um nun, wie schon oben in Aussicht genommen, die Darstellung des Herrn Verfassers gegen sonst verbreitete Auffassungen der Theorie der elliptischen Funktionen zu orientieren und mit denselben zu vergleichen, so dürften zunächst die grosse Menge und Eleganz der analytischen Entwickelungen die Stärke des vorliegenden Buches ausmachen. Natürlich sind diese Entwickelungen grösstenteils nicht neu, doch stellen namentlich die der Transformationstheorie in oben skizzierter Weise entspringenden V-Relationen das eigene Gebiet des Herrn Verfassers dar, auf welches sich zahlreiche Publikationen desselben und seiner Schüler beziehen.

Gegenüber analytischen Rechnungen treten funktionentheoretische Überlegungen der Entwickelung überall stark in den Hintergrund. So ist denn auch die funktionentheoretische Bedeutung der Reihendarstellungen vielfach nur zu kurz angedeutet. Man vergleiche in dieser Hinsicht als ein charakteristisches Beispiel die Art, wie S. 99 die Reihenentwickelungen für sin amu eingeführt werden. Es bleibt hier dem Leser überlassen, die Berechtigung der gemachten Ansätze, die Konvergenzbezirke der entspringenden Reihen und dergleichen aus eigener Kraft zu ergänzen.

Im übrigen ist der funktionentheoretische Standpunkt des Herrn Verfassers in Ansehung der engeren Theorie der elliptischen Funktionen derselbe, wie er sich zum Beispiel in dem seinerzeit so ausgezeichneten Werke von Königsberger ausspricht. Nur liegt der allerdings sehr weittragende Unterschied vor, dass Herr Königsberger seinen Entwickelungen in ausgedehnter Weise die Vorstellungen Riemanns zu Grunde legt, während diese dem Krauseschen Buche fremd bleiben. Bei dieser Sachlage bleiben denn auch diejenigen drei Momente, welche für die neuere Fortentwickelung der Theorie der elliptischen Funktionen besonders folgenreich wurden (ich meine die Weierstrasssche Theorie, die Gewinnung der Gruppentheorie für die gesamte Lehre von den elliptischen Funktionen und speziell der Theorie der algebraischen Funktionen für die Transformation), ohne wesentlichen Einfluss auf das Krausesche Buch.

Die Vorzüge der Weierstrassschen Theorie namentlich bei der Transformation ersten und höheren Grades brauchen heutzutage nicht mehr verteidigt zu werden. Auf der anderen Seite kann der Herr Verfasser freilich mit Recht hervorheben, dass die Transformationsgleichungen in der Jacobischen Theorie formell einfacher ausfallen. In einem Buche, in dem mehr nur auf die formale Seite der Endresultate in der Transformationstheorie Gewicht gelegt wird, werden demnach die Fortschritte der Weierstrassschen Theorie wirkungslos bleiben.

Etwas weniger zur allgemeinen Kenntnisnahme ist bislang der zweite Gesichtspunkt gelangt, in welcher Weise die Begriffe der Gruppentheorie

sowie der Riemannschen Theorie der algebraischen Funktionen innerhalb der Kleinschen Theorie der Modulfunktionen von fortbildender Wirkung für die elliptischen Funktionen geworden sind. Die Gruppentheorie hat ihre klärende Wirkung in der That auch innerhalb der Theorie der elliptischen Funktionen im vollen Umfange bezeugt; und es ist nicht zweifelhaft, dass jemand, der den wunderbaren Organismus des gruppentheoretischen Aufbaues dieser ganzen Theorie deutlich erfasst hat, hiermit den besten Überblick gewonnen hat, sowohl über den Gesamtumfang der Theorie, sowie auch über das gegenseitige Verhältnis der einzelnen Teile, z. B. dasjenige der Weierstrassschen zu den Jacobischen Schöpfungen. Den Einwand, die Gruppentheorie betreffe stets nur Formalien und könne nie die Sache selbst erschöpfen, will ich hier gleich nennen; den Vergleich mit der durch die weiter folgenden Bemerkungen berührten Sachlage wird der Leser selber vollziehen.

In der That bleibt nun noch ein, und zwar besonders wichtiger Gesichtspunkt zu besprechen. Es handelt sich um die Krausesche Auffassung der Transformationstheorie; und ich gehe dabei gleich zu dem Hauptgegenstande, nämlich zu den oben wiederholt genannten Relationen zwischen den Nullwerten der 3-Funktionen, welche bei Transformation und Teilung höheren Grades n auftreten. Der Herr Verfasser stellt für die Anfangswerte n Relationen dieser Art von eleganten formalen Gesetzen in grosser Zahl auf und betont oft wiederholt, es gäbe bei jedem einzelnen Grade eine unendliche Menge weiterer ähnlicher Relationen. Zugleich kennzeichnet er als sein eigentliches Ziel, für beliebig grosse n allgemein Transformationsgleichungen und im besonderen 3-Relationen dieser Art zu erkennen.

Es hat nun unter anderen auch diese &-Relation betreffend die Kleinsche Theorie der Modulfunktionen ausserordentlich aufklärend gewirkt. Nach derselben stellen alle die unendlich vielen &-Relationen des gleichen Grades nund des gleichen Systems der Theta immer nur wieder in wechselnder Gestalt ein und dasselbe algebraische Gebilde beziehentlich ein und dieselbe algebraische Korrespondenz auf einem solchen Gebilde dar. Die auf die prinzipielle Auffassung ausgehende Untersuchung muss demnach nicht nach den "möglichst allgemeinen" Relationen des einzelnen Falles suchen (für welche überhaupt eine korrekte Definition schwerlich gegeben werden möchte), sondern vielmehr nach der "einfachsten" und sieht dann in den übrigen Relationen immer kompliziertere Ausdrucksformen desselben zu Grunde liegenden Gebildes.

Man ist es seit lange gewohnt, einen Hauptcharakter der modernen Mathematik darin zu sehen, dass sie bestrebt ist, wo es angeht, den Gedanken an die Stelle der Rechnung zu setzen; man meint, die Mathematik sei nicht dazu da, um möglichst viel, sondern um möglichst wenig zu rechnen. Darf ich dies als eine berechtigte und anerkannte Tendenz ansehen, so ist weiter nicht fraglich, dass die rein rechnerischen Entwickelungen zahlreicher, dasselbe Gebilde oder dieselbe Korrespondenz darstellender Relationen in der algebraischen Theorie dieses Gebildes beziehentlich dieser Korrespondenz ihren eigentlichen Gedankeninhalt gewinnen. Es ist freilich

Digitized by GOOGLE

ein Anderes mit der Absicht des Verfassers, bei allgemeinen Geraden n zur Kenntnis von Transformationsgleichungen und 3-Relationen zu gelangen. Die explicite Kenntnis dieser Relationen ist bisher auf die niedersten Grade eingeschränkt, und es ist dieserhalb nur zu wünschen, dass die Bemühungen des Verfassers in dieser Richtung von Erfolg gekrönt sein möchten. Aber das alleinige Betonen der formalen Seite des Gegenstandes, sei es im allgemeinen Falle, sei es bei niederen Transformationsgraden, ohne Darlegung der inneren funktionentheoretischen Bedeutung kann nur ein Zurückbleiben hinter der heutigen Ausbildung der Theorie genannt werden. bei dieser Sachlage nicht, wie es wohl gelegentlich gehört wurde, von zwei einander parallel gehenden Methoden der Herren Klein und Krause sprechen; sondern man kann es eben nur bedauern, dass die ausgezeichnete analytische Kraft, welche der Herr Verfasser in seinem Buche dokumentiert, das weite und wichtige Terrain, welches für die fundamentale Auffassung der behandelten Gegenstände von anderer Seite gewonnen wurde, sich nicht zu eigen machte. -

Wie ich hoffe, wird der Kundige mein Bemühen, bei den vorstehenden Erörterungen nur sachliche Rücksichten walten zu lassen, nicht verkennen. Aber ich sehe mich leider genötigt, hier am Schlusse noch eine persönliche Bemerkung anzufügen, die meinen Anteil an der Fortbildung der Theorie der Modulfunktionen betrifft. Das im B. G. Teubnerschen Verlage erschienene zweibändige Werk über die Modulfunktionen ist zum guten Teile auf Grund meiner eigenen mehr als fünfjährigen Arbeit entstanden, und was in dieser Beziehung namentlich in der Vorrede zum ersten Bande des genannten Werkes gesagt ist, erfreute sich damals wie noch heute des vollen Einverständnisses meines hochverehrten Lehrers und Freundes F. Klein. Herr Krause zitiert das fragliche Werk an verschiedenen Stellen und übergeht meinen Namen dabei vollständig. Zu meinem Bedauern sehe ich mich genötigt, dieses Verfahren als eine durch nichts begründete Missachtung meiner Rechte zu charakterisieren.

Handbuch der Vermessungskunde. Von W. Jordan. Erster Band: Ausgleichungs-Rechnung nach der Methode der kleinsten Quadrate.

4. Auflage. Stuttgart 1895.

Ich habe mich in letzter Zeit wiederholt und nachdrücklich dafür ausgesprochen, dass die Mathematiker alle Ursache haben, sich um die Anwendungen ihrer Wissenschaft in höherem Masse zu kümmern, als in den letzten Jahrzehnten durchschnittlich der Fall gewesen ist; insbesondere habe ich betont, dass beim akademischen Unterricht eine Mitberücksichtigung der hauptsächlichen Anwendungsgebiete, wie namentlich auch der Methoden der mathematischen Exekutive — des Zahlenrechnens und des Zeichnens — eine unabweisbare Forderung der Zeit ist.* Von diesem Standpunkte aus

^{*} Vergl. verschiedene Aufsätze und Vorträge, die man am bequemsten in den Jahrgüngen 1895—1896 der Hoffmannschen Zeitschrift für mathematischen etc Unterricht beisammen findet.

mochte ich nicht ablehnen, als ich aufgefordert wurde, dem in neuer Auflage erscheinenden ersten Bande des Jordanschen Werkes einige Zeilen der Besprechung zu widmen. Selbstverständlich kann es sich dabei in keiner Weise darum handeln, dass ich die Bedeutung des Jordanschen Handbuches für die eigentlichen geodätischen Kreise darlege: Ich würde dazu durchaus inkompetent sein; es wäre dies aber auch vollkommen überflüssig, insofern das Jordansche Werk innerhalb der Fachlitteratur längst seine anerkannte Stellung besitzt. Mein Ziel kann einzig dieses sein, dass ich meine engeren mathematischen Kollegen auf den Inhalt und die allgemeine methodologische Bedeutung der Jordanschen Darlegungen aufmerksam mache.

Es handelt sich bei dem vorliegenden Bande um ein in sich abgeschlossenes Lehrbuch der Ausgleichungsrechnung, bei welchem die Interessen der Geodäsie in erster Linie berücksichtigt sind. Aber mit dieser unseren Inhaltsangabe ist die Eigenart des Werkes und seine besondere Bedeutung noch in keiner Weise bezeichnet. Dieselbe liegt darin, dass die Theorie von Anfang an im genauen Anschlusse an die Praxis entwickelt wird, deren genaue Details der Verfasser als ein Meister beherrscht. durchweg der Grundsatz bestätigt; exempla plus prosunt, quam praecepta. Beispielsweise wird zu Anfang, wo es sich um die Ausgleichung überzähliger Beobachtungen linearer Funktionen irgend welcher Unbekannten handelt, der Fall zweier Unbekannter vorweg genommen und an ihm sofort die Rechnung mit allen numerischen Einzelheiten durchgeführt, und zwar in der Art, dass die herangezogenen Beispiele nicht willkürlich gebildet, sondern wirklichen Beobachtungsreihen entnommen sind. Die prinzipiellen Auseinandersetzungen über die Berechtigung der Methode der kleinsten Quadrate treten im ersten Kapitel überhaupt zurück, es handelt sich durchaus darum, den Leser zunächst zur vollen Beherrschung der in Praxi vorkommenden Zahlenaufgaben zu befähigen. Die so im allgemeinen gegebene Anleitung wird dann im zweiten und dritten Kapitel noch erst nach geodätischer Seite spezialisiert, indem jetzt unter Heranziehung voller Beobachtungsserien die Abgleichung der Dreiecksnetze in ausführlichster Weise zur Darstellung kommt. Nun erst, im vierten Kapitel, nimmt die Betrachtung mit einer ziemlich kurz gehaltenen Theorie der Fehlerwahrscheinlichkeit eine abstraktere Wendung. Aber dieselbe wird nicht lange festgehalten, vielmehr folgt im fünften (Schluss-) Kapitel noch ein historischer Bericht über wichtigere, insbesondere in Deutschland ausgeführte geodätische Vermessungen und die bei ihnen erreichte Genauigkeit.

Es braucht kaum gesagt zu werden, dass eine solche Darstellung neben der sonst üblichen abstrakten auch dem reinen Mathematiker eine Fülle der Anregungen bietet. Ich will dabei nicht einmal so sehr betonen, dass der Leser nebenbei in das wichtige Gebiet der Geodäsie einen Einblick erhält, als vielmehr, dass keine Disziplin geeigneter sein dürfte, in die eigentliche Bedeutung der Ausgleichungsrechnung direkter und tiefer einzuführen, als eben die Geodäsie. Denn in ihr hat diese Rechnung ihre

feinste und weitestgehende Ausbildung erfahren. Wenn dann weiter der Herr Verfasser davon redet, wie sehr im Gebiete der Geodäsie durch die systematische Ausgleichungsrechnung die wissenschaftliche Moral gewonnen hat, die Ehrlichkeit den eigenen Beobachtungen gegenüber, die Treue in der Darstellung des Erlangten und des Grades seiner Zuverlässigkeit, so muss dies jedem Leser einen bleibenden Eindruck hinterlassen. Ein Weiteres aber ist, dass der Studierende in nachdrücklichster Weise angeleitet wird, neben dem Wissen das Können nicht zu vernachlässigen. In dieser Hinsicht lässt der an den Hochschulen übliche mathematische Unterricht ja vielfach einen bedauernswerten Mangel erkennen.

Indem ich in solcher Weise die Vorzüge der Jordanschen Darstellung anerkenne, darf ich nicht verschweigen, dass ich allerdings eine freiere und tiefer eindringende Behandlung der allgemeinen mathematischen Prinzipien gewünscht haben wurde. Beispielsweise dürften sich manche Entwickelungen klarer und präziser geben lassen, als bei Jordan geschieht, wenn man in allgemeiner Form über die Lehre von den Determinanten und ihrer Bedeutung für die Auflösung linearer Gleichungen verfügt. Der Herr Verfasser wolle dies nicht als einen persönlichen Vorwurf empfinden. Jedes einzelne Gebiet der Mathematik hat heutzutage einen solchen Umfang angenommen, dass eine allseitige Beherrschung desselben wohl nur durch die Kooperation Mehrerer gelingt. Herr Jordan bezieht sich in seiner Darstellung mit Recht immer wieder auf das Vorbild der Gaussschen Arbeiten. Wir Theoretiker möchten bei unseren Bemühungen das Gleiche thun. Das eben ist die grosse historische Stellung von Gauss, dass in ihm noch verbunden war, was sich jetzt auf verschiedene Forschungsrichtungen verteilt.

Um aus den vielen neuen Entwickelungen, die Herr Jordan giebt, doch eine Einzelheit anzuführen, sei auf die im vierten Kapitel enthaltene Theorie des Maximalfehlers verwiesen (welche im Anhange noch weiter ausgeführt wird). Die Gausssche Funktion:

$$\frac{h}{\sqrt{\pi}} \cdot e^{-h^2 s^2},$$

die die Wahrscheinlichkeit der Fehlerverteilung ergiebt, wird hier durch die andere ersetzt: $\frac{1}{2} \cdot \frac{3 \cdot 5 \dots (2n+3)}{2 \cdot 4 \dots (2n+2)} \cdot \frac{1}{M} \left(1 - \frac{\varepsilon^2}{M^2}\right)^{n+1}$

für $\varepsilon = -M$ bis +M, und Null ausserhalb dieses Intervalles. Für grosse Werte von n stimmt diese Funktion beliebig genau mit $\frac{\hbar}{\sqrt{\pi}} \cdot e^{-h^2 \varepsilon^2}$ überein. Für eine gegebene Fehlerverteilung werden die beiden Konstanten M und n aus dem mittleren Fehler und aus dem Mittelwerte der vierten

Die vierte Auflage des vorliegenden Bandes ist ziemlich viel umfangreicher geworden als die dritte. Sie enthält 38 Bogen gegen 24 Bogen der dritten. Es ist dies namentlich durch die eingehenden Beispiele veranlasst, die der Herr Verfasser der von ihm vor einigen Jahren ausgeführten

Potenzen des Fehlers bestimmt.

Hannoverschen Stadttriangulation entnimmt. Leider ist infolge der hierdurch gegebenen Vermehrung des Umfanges ein Kapitel weggeblieben, welches in der dritten Auflage den Band schliesst und unter geometrischen Gesichtspunkten besonders interessant scheint; ich meine die "Theorie der Genauigkeit der geodätischen Punktbestimmung." Gerade weil das Kapitel in der neuen Auflage fehlt, sei hier ausdrücklich auf die hübschen in ihm enthaltenen Figuren hingewiesen, durch welche beispielsweise entschieden wird, ob es vorteilhafter ist, einen vierten Punkt relativ zu drei gegebenen Punkten durch Pothenotsche Bestimmung oder durch Vorwärtseinschneiden mit drei Strahlen festzulegen.

Lehrbuch der elementaren Planimetrie. Von B. Féaux. Achte Auflage, besorgt durch Fr. Busch. Paderborn 1894. Schöningh; VI und 216 S. 2,50 Mk.

Das vorliegende Lehrbuch, welches vielfach an Gymnasien Eingang gefunden hat, verlegt den Schwerpunkt des geometrischen Unterrichtes in das Beweisen von Lehrsätzen; die Konstruktionsaufgaben treten in den Hintergrund. So fehlen auch die in anderen Lehrbüchern den einzelnen Paragraphen beigefügten Konstruktionsaufgaben als Anwendung der vorhergehenden Lehrsätze.

Im Gegensatz zu der ersten Auflage zeigt die achte eine schärfere Fassung der Lehrsätze, eine klarere Darstellung der Beweise und auch sonst eine grössere Korrektheit im Ausdruck. Zu dem Anhange der ersten Auflage, welcher auf zehn Seiten einiges aus der neueren Geometrie bringt, ist ein zweiter Anhang getreten, behufs Einführung in den Koordinatenbegriff und in die Grundlehren von den Kegelschnitten. Hier fiel dem Referenten die folgende Fassung auf: "Wie bekannt, nennt man eine unbestimmte Gleichung auch Funktion."

Methodisches Lehrbuch der Elementar-Mathematik. Von G. Holzmüller. Erster Teil, nach Jahrgängen geordnet und bis zur Abschlussprüfung der Vollanstalten reichend. Zweite Doppelauflage. Leipzig 1895. B. G. Teubner. VIII und 229 S. 2,40 Mk.

In der zweiten Auflage ist die Ausdrucksweise verbessert, Druckfehler sind beseitigt und einige Einschaltungen gemacht worden, doch so, dass die laufenden Nummern der Abschnitte und Figuren ungeändert geblieben sind.

E. Jahnke.

Leitfaden der elementaren Mathematik. Von A. Sickenberger. Dritter Teil: Stereometrie. — Trigonometrie. München 1895. Zweite Auflage. Th. Ackermann. 103 S. 1,20 Mk.

Es ist eine knappe und geschickte Darstellung des trigonometrischen und stereometrischen Pensums für Gymnasien und Realschulen. Auch die Hauptsätze des sphärischen Dreiecks sind hergeleitet (S. 97—103). Leider

fehlen die Hauptsätze der Perspektive. Auch lassen die Figuren, deren übrigens recht wenige vorhanden sind, an Anschaulichkeit zu wünschen übrig. Die auf S. 70 befindliche Formulierung: "Die trigonometrischen Funktionen lassen sich als Strecken darstellen" dürfte dem Verständnis des Schülers nicht gerade förderlich sein. — Das Buch ist besonders des stereometrischen Teiles wegen der Beachtung zu empfehlen. Die zweite Auflage ist mit einer genügenden Anzahl von Übungsbeispielen ausgestattet.

E. JAHNKE.

Leitfaden der Arithmetik nebst Übungsbeispielen. Von A. SICKENBERGER. Sechste unveränderte Auflage. München 1895. Th. Ackermann. 1968.

Was den Rechenunterricht in der Sexta, Quinta, Quarta angeht, so dürfte es sich kaum empfehlen, den Schülern einen Leitfaden in die Hand zu geben; eine Aufgabensammlung wird vielmehr durchaus genügen, und als solche wird auch der vorliegende Leitfaden ein brauchbares Hilfsmittel abgeben.

E. Jahnke.

Über unbestimmte Eleichungen. Von G. Speckmann. Leipz. 1895 A. Koch. 118.

Der Verfasser will "einige einfache Lösungsformeln für die Pellsche Gleichung und für die allgemeinere Gleichung $T^2 - DU^2 = m^2$ ableiten und bekannt geben."

E. Jahnke.

Leitfaden der elementaren Mathematik. Von A. Sickenberger. Erster Teil: Algebra. Dritte Auflage. München 1894. Th. Ackermann. 75 S. 1,20 Mk. Übungsbuch zur Algebra. Von A. Sickenberger. Erste Abteilung. Zweite

Auflage. München 1894. Th. Ackermann. 106 S. 1,20 Mk.

Die neuen Auflagen von Leitfaden und Übungsbuch, über welche schon bei Gelegenheit des ersten Erscheinens referiert worden ist, unterscheiden sich nicht wesentlich von der ersten Auflage. E. JAHNKE.

Trigonometrie. Von W. Winter. Lehrbuch und Aufgabensammlung für Schulen. Zweite Auflage. München 1895. Th. Ackermann. 78 S. 1 Mk.

Das vorliegende Lehrbuch bringt das Wichtigste aus der ebenen und sphärischen Trigonometrie. Das Additionstheorem wird allein aus der Definition der trigonometrischen Funktionen heraus bewiesen. Den einzelnen Paragraphen sind eine Menge geschickt ausgewählter Aufgaben, unter anderen auch solche aus dem Gebiete der mathematischen Geographie und Astronomie beigefügt. Vornehmlich der letzteren wegen sei das Buch der Beachtung empfohlen. — Die zweite Auflage ist unverändert.

E. Jahnke.

Stereometrie. Von W. Winter. Lehrbuch und Aufgabensammlung für Schulen. Zweite Auflage. München 1895. Th. Ackermann. 115 S. 1,60 Mk.

Die Bearbeitung des stereometrischen Pensums für Schulen ist auch heute noch eine lohnende Aufgabe; und jeder Versuch, die stereometrischen

Entwickelungen weiter zu vereinfachen, darf sicher sein, dankbarer Anerkennung zu begegnen.

An der vorliegenden Darstellung, welche die neuesten Lehrbücher auf dem genannten Gebiete berücksichtigt, ist der Beweis des Cavalerischen Prinzips für das Rautenprisma (der Herr Verfasser bedient sich noch des Ausdrucks: Parallelepipedon), das allgemeine Prisma und die Pyramide hervorzuheben, sowie die Fülle von passenden, den einzelnen Kapiteln beigefügten Übungsaufgaben. Dagegen vermisst Referent ungern die Hauptregeln der Perspektive. Vielleicht entschliesst sich der Herr Verfasser, ihnen in einer nächsten Auflage eine Stelle einzuräumen. Auch die Figuren lassen, was Anschaulichkeit anbetrifft, noch zu wünschen übrig.

E. JAHNKE.

Sammlung planimetrischer Aufgaben nebst Anleitung zu deren Auflösung. Von A. Hoffmann. Fünfte verbesserte Auflage von J. Plassmann. Mit sechs lithographierten Figurentafeln. Paderborn 1895. F. Schöningh. X und 211 S.

Verschiedentlich ist, meist innerhalb des Rahmens eines Lehrbuches der Planimetrie, eine Anleitung zur Auflösung geometrischer Aufgaben versucht worden. Die vorliegende Sammlung ist ein schätzenswerter Beitrag zur Überwindung der Schwierigkeiten, welche der Unterricht in der Lösung geometrischer Aufgaben auf geometrischem Wege darbietet. Die Anleitungen sind zum grössten Teile allgemeiner Natur, so dass die Hilfe des Lehrers durchaus nicht überflüssig erscheint. Die Anzahl der Aufgaben ist eine recht beträchtliche, darunter eine grosse Zahl völlig neuer. Zu manchen bereits bekannten Aufgaben finden sich neue Lösungen vor. Gewicht hat der Verfasser auf die Determination gelegt und eine reiche Monge von Aufgaben beigebracht, deren Determination Gelegenheit bietet, Sätze der Algebra und Trigonometrie auf die Geometrie anzuwenden. Was die Weite des planimetrischen Pensums anlangt, das der Sammlung zu Grunde gelegt wird, so setzt der Verfasser die Kenntnis der Eigenschaften von Pol und Polare nicht voraus.

Die Sammlung zerfällt in drei Teile. Der erste Teil umfasst alle Aufgaben, welche die Elemente zur Auflösung sämtlicher Aufgaben überhaupt liefern, der zweite solche Aufgaben, welche die Anwendung der Proportionenlehre erfordern; und im dritten sind die Vierecksaufgaben zusammengestellt. E. JAHNKE.

Sammlung von Aufgaben und Beispielen aus der Trigonometrie und Stereometrie. Von F. REIDT. Erster Teil: Trigonometrie. Vierte Auflage. Herausgegeben von A. Much. Leipzig 1894. B. G. Teubner. 250 S. 4 Mk.

Noch vor etwa einem Jahrzehnt bot das vorliegende Buch die erste und einzige einigermassen umfassende grössere Sammlung trigonometrischer Aufgaben; und auch jetzt noch nimmt es, was Reichhaltigkeit und Vollständigkeit anbetrifft, die erste Stelle ein.

Die Aufgaben sind verschiedenen Gebieten, der Geometrie und Feldmesskunst, der Astronomie und Geographie, der Physik und im besonderen der Mechanik entnommen und so geordnet, dass sie den Unterricht von Anfang an gleichsam von Stunde zu Stunde begleiten. Der Lehrer ist daher nicht genötigt, den zur Anwendung und Einübung der einzelnen Sätze passenden Übungsstoff erst zusammenzusuchen. So sind die trigonometrischen Gleichungen nicht als solche in einem einzigen Abschnitt zusammengestellt, sondern nach den einzelnen trigonometrischen Lehrsätzen, die bei ihnen zur Anwendung kommen, geordnet. Der unmittelbare Gebrauch der Sammlung im Unterrichte wird noch durch die Beigabe der vollständig ausgeführten numerischen Beispiele zu den Fundamentalaufgaben erhöht.

Das Buch soll auch ein Hilfsmittel zur Einführung in die rechnerische Praxis bieten, daher wird der Gebrauch der Tafeln eingehender als in anderen Sammlungen erörtert. Weiter liefert es durch die an einzelnen Stellen vorausgeschickten Anleitungen und Erläuterungen eine Ergänzung und Erweiterung der gebräuchlichen Lehrbücher. So fiel dem Referenten besonders die geschickte Anleitung zur Auflösung trigonometrischer Gleichungen auf S. 13 auf. Den verschiedenen Abschnitten sind noch unter der Rubrik "Vermischte Aufgaben" Anhänge beigefügt, wo die zur Lösung führenden Wege nicht schon durch den Paragraphen, in welchem sich die Aufgaben befinden, angedeutet sind.

Die Sammlung zerfällt in drei Abschnitte: A) Goniometrie; B) Ebene Trigonometrie; C) Sphärische Trigonometrie. Ein Anhang zu A) behandelt ausführlich den Gebrauch der Hilfswinkel für logarithmische Rechnungen, ein solcher zu B) giebt Aufgaben über Maxima und Minima. In Abschnitt B) sind noch Aufgaben und Lehrsätze aus der Tetragonometrie und Polygonometrie zusammengestellt. Abschnitt C) stellt die Verbindung mit der als zweiter Band des Gesamtwerkes erschienenen Sammlung stereometrischer Aufgaben her. — Die vierte Auflage ist fast unverändert. Die Resultate zu sämtlichen Aufgaben sind wieder in einem besonderen Hefte zusammengestellt.

E. JAHNEE.

Essai sur la théorie des nombres. Von J. STIELTJES. Premiers éléments. Paris 1895. Gauthier-Villars. 103 p.

Die vorliegende Abhandlung, ein Auszug aus den Annalen der Toulouser Akademie, ist eine der letzten Arbeiten des für die Wissenschaft zu früh dahingeschiedenen französischen Mathematikers. Behandelt sie auch nur die ersten Elemente der Zahlentheorie, so lässt sie doch überall eine eigenartige Auffassung des genialen Verfassers klar hervortreten.

Folgendes ist kurz der Inhalt.

Auf ein einleitendes Kapitel über die Teilbarkeit der Zahlen folgt ein Kapitel über die Theorie der Kongruenzen. Mit dieser ist die Theorie der unbestimmten Gleichungen eng verknüpft. So giebt der Verfasser am Schlusse des zweiten Kapitels eine Diskussion der unbestimmten Gleichung:

$$a_1x_1 + a_2x_2 + \cdots + a_{n+1}x_{n+1} = u$$

wo $a_1, a_2, \ldots a_{n+1}, u$ gegebene Zahlen und $x_1, x_2, \ldots x_{n+1}$ Unbekannte bezeichnen, welche ganzzahlige Werte annehmen sollen. Es wird ein Verfahren hergeleitet, um alle Lösungen dieser Gleichung und jede Lösung nur einmal zu erhalten. Hieraus ergeben sich wichtige Hermitesche Sätze in ausserordentlich einfacher Weise. Im besonderen wird obige Gleichung noch für den Fall u=0 betrachtet, und nach dem Vorgange von S. Smith der Begriff eines Fundamentalsystems von Lösungen eingeführt. Das einfachste Verfahren, um ein Fundamentalsystem von Lösungen zu gewinnen, findet sich in einer nachgelassenen Schrift Eulers vor, worauf Jacobi in einer ebenfalls nachgelassenen Arbeit aufmerksam gemacht hat.

Das dritte Kapitel liefert eine Darstellung der Theorie der Systeme unbestimmter linearer Gleichungen und der Systeme linearer Kongruenzen, wie sie zuerst von S. Smith gegeben worden ist. Diese Theorie bezieht sich auf den Fall, wo die Analogie zwischen der Theorie der Kongruenzen und der Theorie der Gleichungen aufhört, auf den Fall nämlich, dass die Determinante des Systems:

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{i, m+n}x_{m+n} \equiv u_i \pmod{M}, \quad i = 1, 2, \ldots m$$

zu M nicht mehr prim ist. Hierbei spielt der von Sylvester eingeführte Begriff der Matrize eine grundlegende Rolle.

Zunächst werden die linearen unbestimmten Gleichungen und zwar der Fall $u_i = 0$ (i = 1, ...m) betrachtet. Es werden Theoreme entwickelt, vermittelst deren sich alle Lösungen und jede Lösung nur einmal ergeben. Ein System solcher Lösungen wird auch hier Fundamentalsystem genannt.

Hiernach bestimmt der Verfasser die notwendige und hinreichende Bedingung für die Existenz von Lösungen des obigen Gleichungssystems, in dem Falle $u_i \neq 0$. Eine Anwendung dieser Betrachtungen auf den Fall, dass

 $a_{ik} = \frac{\partial \Delta}{\partial a_{ik}}$ (i, k = 1, 2, ... m),

wird benutzt, um anzudeuten, wie S. Smith aus diesen Entwickelungen einen arithmetischen Beweis der Transformationsformel für die vielfachen Integrale herleiten konnte.

Nachdem die Operation der Multiplikation zweier Matrizen definiert worden ist, werden noch einige Probleme über Matrizen gelöst, unter anderen das Problem, alle Matrizen von bestimmtem Typus zu finden, deren Determinanten gegebene Werte haben.

Einer analogen Untersuchung werden die Systeme linearer Kongruenzen unterworfen. Dem gegebenen Kongruenzensystem entspricht hier die bilineare Form: $F = \sum_{i} a_{ik} x_i y_k.$

Der Verfasser beschränkt sich darauf, für den Fall $u_i = 0$ das folgende, von S. Smith herrührende Theorem über die Äquivalenzbedingungen zweier Formen herzuleiten:

Damit eine bilineare Form G in der Form F enthalten sei, ist notwendig und hinreichend, dass der Rang von G den von F nicht übersteige und dass die Invarianten von G teilbar seien durch die entsprechenden Invarianten von F.

Im Falle $u_i \neq 0$ wird auch hier die notwendige und hinreichende Bedingung für die Existenz von Lösungen entwickelt.

Auf die zahlreichen interessanten Anwendungen, welche Frobenius auf die algebraische Theorie der bilinearen Formen gemacht hat, geht der Verfasser nicht ein.

Der Verfasser giebt noch auf S. 47, 48, 103 eine Zusammenstellung der einschlägigen Litteratur. E. Jahnke.

Methodisches Lehrbuch der Elementar-Mathematik. Von G. HOLZMÜLLER. Dritter Teil, Lehr- und Übungsstoff zur freien Auswahl für die Prima realistischer Vollanstalten und höherer Fachschulen, nebst Vorbereitungen auf die Hochschul-Mathematik. Leipzig 1895. B. G. Teubner. XIII und 224 S. Mark 2,80.

Der vorliegende dritte Teil bildet den Abschluss des methodischen Lehrbuches des Verfassers. Es soll ein Ergänzungsband sein, der "ohne jede Systematik eine freie Auswahl methodisch bearbeiteter Gegenstände aus den verschiedenen Gebieten bringt, die auf der Prima der Realgymnasien, Ober-Realschulen und höheren Fachschulen zur Sprache kommen können." Unter den drei Bänden, aus welchen des Verfassers Lehrbuch besteht, ist es zweifellos der bedeutendste, weshalb eine längere Inhaltsübersicht folgen soll.

Die erste Abteilung handelt von der Geometrie. Die aus den Sätzen von Pascal und Brianchon fliessenden Konstruktionen, welche nur das Lineal erfordern, werden ausführlich besprochen und auf Zentralperspektive und Schliessungsprobleme für Tangenten-Sehnenvierecke angewandt. Hieran reiht sich das Schliessungsproblem der Tangenten-Sehnendreiecke, wo der für die reine Geometrie der Lage grundlegende Satz über perspektivische Drejecke zur Anwendung kommt. Der Beweis des Verfassers zeichnet sich durch Einfachheit und Eleganz aus und wird durch Auffassen der Figur als Zeichnung einer dreiseitigen Pyramide geführt. Die Konstruktionen nach Pascal und Brianchon werden im weiteren als projektivische Operationen gedeutet, welche zu der rein projektivischen Definition der Kegelschnitte hinleiten. Dass auch umgekehrt jede nach Pascal und Brianchon konstruierte Kurve ein Kegelschnitt ist, wird im Anschluss an eine Beweismethode von Herrn Schur (im Anhange des Buches) bewiesen. Um das Kapitel über die Geometrie der Lage zu einem befriedigenden Abschluss zu bringen, zeigt der Verfasser noch, dass die kinetische Parabeldefinition in Verbindung mit dem Satze von den gleichen Peripheriewinkeln im Kreise durch einfache Projektion die ganze Theorie in einfacher und schulgemässer Weise liefert. Ein weiteres Kapitel behandelt das Doppelverhältnis. Den Beschluss der ersten Abteilung bilden Übungen

aus der analytischen Geometrie, welche nur den Zweck haben, auf den Begriff des Krümmungskreises und Krümmungsradius vorzubereiten. Im übrigen tritt die analytische Geometrie in den Hintergrund.

Die zweite Abteilung ist stereometrischen Inhalts und beginnt mit einer Reihe schwierigerer Aufgaben, die mit dem Begriffe des Trägheitsmomentes ebener Flächen zusammenhängen. So werden Schwerpunktsbestimmungen für abgeschrägte Prismen und Cylinder und für Drehungskörper ausgeführt. Darauf werden die Kegelschnittsflächen und die zugehörigen Körper behandelt. Die Bestimmung der Segmente, welcher die Methode der konstanten Verkürzung bezw. Verlängerung zu Grunde gelegt wird, gestaltet sich besonders einfach. Hieran schliessen sich einige Anwendungen des Cavalerischen Prinzips und, im Interesse der Fachschulen, die wichtigsten Gewölbeformen. Weiter wird der von Gauss herrührende Fundamentalsatz der orthographischen Axonometrie auf einigen Zeilen in elementarer Weise bewiesen und hierdurch die Einführung namentlich in die Krystallographie und in die sphärische Trigonometrie erleichtert. Endlich folgt noch eine einfache, zentralperspektivische Darstellung der Kugel (vergl. des Verfassers "Einführung in das stereometrische Zeichnen").

Die dritte Abteilung hat die sphärische Trigonometrie zum Gegenstand. Die hier gegebene Darstellung weicht hinsichtlich der Berechnungen von der üblichen nicht ab, wohl aber, wie der Verfasser betont, in der geometrischen Darstellung, insofern auf die Zeichnung der Figuren besondere Sorgfalt verwendet wird. In einem besonderen Kapitel werden noch die Möglichkeit der Konstruktions- und Berechnungsaufgaben und die auftretenden Mehrdeutigkeiten rein geometrisch untersucht. Ein weiteres Kapitel giebt interessante Andeutungen über die sphärische Reziprozität. Am Schluss sind noch die wesentlichen Formeln zusammengestellt.

In der vierten Abteilung behandelt der Verfasser die algebraische Analysis. Auf ein einleitendes Kapitel über die ganzen rationalen Funktionen, wo u. a. eine einfache Herleitung der Interpolationsformel von Lagrange sowie Anwendungen auf Geometrie und Mechanik gegeben werden, folgt die Quadratur der gleichseitigen Hyperbel und im Anschluss hieran die Berechnung der Expansions- und Kompressionsarbeit von Gasen unter Zugrundelegung des Mariotteschen Gesetzes. Ein besonderes Kapitel bringt allgemeines über die unendlichen Reihen. An dem Beispiel bedingt konvergenter Reihen wird erläutert, dass man von den für endliche Gliederanzahl gültigen Gesetzen nicht ohne weiteres auf unendliche Reihen Anwendung machen darf. Die Ausdehnung des binomischen Lehrsatzes wird sodann für negative und gebrochene Exponenten gegeben. Als Beispiele werden u. a. brauchbare Reihen für arc sin y und $\frac{\pi}{4}$ hergeleitet. Jetzt folgt die Flächenermittelung für die Kurven $y=x^p$ bei beliebigem reellen p mit Anwendung auf die Diagrammberechnung für das Gravitationsgesetz (p = -2) und für die adiabatische Arbeit bei Druckluft-, Dampf- und Kompressionsmaschinen (p = 1.41 bezw. 1.125). Endlich kommen auch die

wichtigsten Reihenentwickelungen für transcendente Funktionen, so für den Logarithmus, für π und cyklometrische Funktionen zur Behandlung. Auch hier bildet eine Zusammenstellung der wichtigsten Resultate den Schluss des Abschnittes.

Die letzte Abteilung bringt die Gleichungen dritten und vierten Grades nebst Andeutungen über Gleichungen n^{ten} Grades. Bezüglich der Übungsaufgaben sei auf die Aufgabensammlung von Herrn Lampe (Müller, Berlin) hingewiesen.

Ein Anhang enthält eine Einführung in das Gebiet der Involution, den schon oben erwähnten Nachtrag zum Pascalsatz und eine sehr hübsche elementare Rektifikation der Parabel, welche vom Verfasser herrührt.

Diese Übersicht wird den Reichtum an Material sowohl als auch dessen geschickte Verarbeitung erkennen lassen, wodurch es dem Verfasser in hohem Masse gelingt, seine Absicht zu erreichen, einmal hinreichenden Stoff zur freien Auswahl für die Prima darzubieten und zweitens auf das Studium der Hochschule in elementarer Weise vorzubereiten, den Schüler fiberall auf die Unzulänglichkeit der Elementarmathematik hinzuweisen und ihn zu überzeugen, dass er nicht am Abschluss der Wissenschaft, sondern am Eingange zu einer neuen Welt steht.

E. JAHNKE.

Zwei Abhandlungen über sphärische Trigonometrie. Von Leonhard Euler. (1753 und 1779.) Aus dem Französischen und Lateinischen übersetzt von E. Hammer. Mit sechs Figuren im Texte. Leipzig 1896. Wilhelm Engelmann. 65 S. [Ostwalds Klassiker der exakten Wissenschaften Nr. 73.]

Unter den fast zahllosen Abhandlungen Eulers zwei als besonders lesenswert zu bezeichnen, wäre ein kühnes Unterfangen, und wir sind überzeugt, dass, wie der grössere Teil von Eulers Abhandlung über Variationsrechnung in Nr. 46 von Ostwalds Klassiker exakter Wissenschaften übersetzt ist, auch noch andere Abhandlungen aus seiner Feder Aufnahme finden werden und müssen. Die heute uns vorliegenden von Herrn Hammer bearbeiteten Abhandlungen über sphärische Trigonometrie sind diejenigen, auf welche die ganze spätere sphärische Trigonometrie sich aufgebaut hat, und deren Bezeichnungsweise sich so allgemein eingebürgert hat, dass die wenigsten mehr wissen, dass man früher anders schrieb, anders schreiben konnte. Wir erachten es deshalb als einen grundsätzlichen Fehler, dass im Drucke das Eulersche sin A² durch sin² A ersetzt wurde, wenn auch der Herausgeber in seinem Nachworte die Änderung hervorhebt und zu entschuldigen Auch die anderen weniger wichtigen Bezeichnungswechsel hätten unserer Meinung nach unterbleiben sollen. Der Aufsatz von 1753 ist dadurch merkwürdig, das in ihm, um uns eines vielleicht etwas derben Ausdruckes zu bedienen, mit Kanonen nach Spatzen geschossen ist. Euler leitet nämlich die ganze sphärische Trigonometrie aus dem Gedanken ab, dass drei auf der Kugelfläche gegebene Punkte untereinander durch kürzeste

Linien verbunden werden, oder anders ausgesprochen, die Trigonometrie ist ihm ein Beispiel zur Anwendung der Variationsrechnung. Der zweite Aufsatz von 1779 dagegen gründet die sphärische Trigonometrie auf durchaus einfache stereometrische Betrachtungen, wie sie in unseren Mittelschulen heimisch geworden sind.

Untersuchungen über die Reihe $1 + \frac{m}{1}x + \frac{m(m-1)}{1 \cdot 2}x^2 + \cdots$ (1826). Von N. H. Abel. Herausgegeben von A. Wangerin. Leipzig 1895. Wilhelm Engelmann. 46 S. [Ostwalds Klassiker der exakten Wissenschaften Nr. 71.]

Die grosse Bedeutung des im ersten Bande von Crelles Journal erschienenen Aufsatzes besteht bekanntlich darin, dass Abel in ihm ein untbertroffenes erstes Muster der strengen analytischen Behandlung von Reihen aufstellte, deren Variable wie deren in allgemeine Buchstaben gekleidete Konstanten komplex sind. Abels Abhandlung lässt sich in dieser Beziehung den Gaussschen Disquisitiones circa seriem etc. an die Seite stellen, welche gleich bahnbrechend auf dem Gebiete reeller Zahlen war. Eine fernere Ähnlichkeit beider Arbeiten besteht darin, dass Gauss wie nach ihm Abel von der Reihe ausging, nicht nach vorher allgemeiner Übung von einer in Reihengestalt zu verwandelnden geschlossenen Funktion. Trotzdem Abels Werke in zwei Auflagen vorhanden sind, ist deren Verbreitung vermöge des hohen Preises eine verhältnismässig geringe. Der Binominalaufsatz wenigstens sollte in der Bibliothek eines jeden Mathematikers sich befinden, und deshalb begrüssen wir seine Aufnahme in Ostwalds Sammlung.

CANTOR.

Eine Theorie der Konvergenz unendlicher Reihen. Von Dr. Ernst Schimpf.

Beilage zum Jahresberichte für 1894—1895 des städtischen Gymnasiums zu Bochum. 56 S. [1895. Programm Nr. 353.]

Anknüpfend an die Arbeiten von Kummer, von Du Bois-Reymond, von Dini, von Pringsheim, in denen die Konvergenz von Reihen mit anschliesslich positiven Gliedern dadurch geprüft wurde, dass man eine Vergleichsreihe von wesentlich einfacher Summe herzustellen sich angelegen sein liess, hat Herr Schimpf den gleichen Gedanken auch bei Reihen mit komplexen Gliedern zur Anwendung zu bringen gesucht. Er hat, wenn u_k das allgemeine Glied seiner Reihe bezeichnet, die etwas einschränkende Bedingung eintreten lassen, dass ein endlicher oder unendlicher Grenzwert des Gliederquotienten $\frac{a_k}{a_{k-1}}$ vorhanden sei. Dann ist

$$\sum_{0}^{n} A_{k} = \psi(n)$$

die Vergleichsreihe, und deren einzelne Glieder bilden sich mittels

$$A_k = \psi(k) - \psi(k-1).$$

Die Funktion $\psi(n)$ wird so gewählt, dass sie mit wachsendem n der Null zustrebt, sofern sie überhaupt einen endlichen Grenzwert besitzt; als Mittel der Vergleichung dient $\frac{a_k}{A_k}$. Der Herr Verfasser hat bei seiner Untersuchung einige neue Begriffe und Bezeichnungen eingeführt, welche, wie uns scheint, zur allgemeinen Annahme empfohlen zu werden verdienen. Unter $(\sigma)_n$ versteht er irgend eine Funktion von n, welche σ zum Grenzwert hat, wenn $n=\infty$ wird, man könnte vielleicht sagen irgend einen Anfangsausdruck von σ . Ist C eine von O verschiedene Konstante, ist ferner a die Funktion, welcher Σa_k , sofern die Reihe konvergiert, als Grenze sich

nähert, und ist $C \cdot F(n)$ ein Anfangsausdruck der Differenz $\sum_{k=0}^{\infty} a_k - a$, so heisst:

$$\lim_{n=\infty} \left[\left\{ \sum_{k=0}^{n} a_{k} - a \right\} : F(n) \right] = c$$

die Grenzgleichung der Reihe der a_k . Endlich ist der Quotient einer Reihe benutzt, das heisst der Ausdruck:

$$Q_{n+1}^{n+\nu} = -\frac{a_{n+1} + a_{n+2} + \cdots + a_{n+\nu}}{|a_{n+1} + a_{n+2} + \cdots + a_{n+\nu}|} \ge 1.$$

Wir können, ohne allzu ausführlich zu werden, nicht berichten, wie der Herr Verfasser sich seines Reihenquotienten bedient. Das möge der sehr lesenswerten Abhandlung selbst entnommen werden.

Das 2000 jährige Problem der Trisektion des Winkels. Von Ingenieur Sigismund Wellisch (Sonderabdruck aus der Zeitschrift des Östern Ingenieur- und Architektenvereins, Nr. 3, 1896). Wien 1896. Spielhagen und Schurich. 19 S.

Wir fürchten, der Herr Verfasser hat sich bei Mathematikern durch den Titel seiner Abhandlung geschadet. Wir beeilen uns deshalb zu berichten, dass Herr Wellisch von der Unausführbarkeit der Winkeldreiteilung mittels des Zirkels und des Lineals vollkommen Kenntnis hat, und dass er nur einige Methoden mitteilt, welche unter Anwendung anderer Hilfsmittel als der genannten, richtige Ergebnisse liefern. Unter den benutzten Kurven ist namentlich die Kardioide zu nennen, für deren Erzeugung eine Vorrichtung beschrieben ist.

Bibliographie

vom 31. Oktober bis 26. November 1896.

Periodische Schriften.

- Jahrbuch d. Erfindungen u. Fortschritte auf d. Gebieten d. Physik, Chemie und chem. Technol., d. Astronomie u. Meteorol. Leipzig, Quandt & Händel. 6 Mk.
- Veröffentlichungen des königl. preuss. meteorolog. Institutes. Ergebnisse an den Stationen II. und III. Ordnung im Jahre 1896, zugleich deutsches meteorologisches Jahrbuch für 1896. Beobachtungssystem des Königreichs Preussen und benachbarter Staaten. 1. Heft. Berlin, Asher & Co. 3 Mk.
- Berichte, math. u. naturw., aus Ungarn. 13. Band (Januar 1895 bis Dez. 1895).

 1. Hälfte. Budapest, Verlagsbur. d. ungar. Akad. d. Wissenschaften. 4 Mk.

Geschichte der Mathematik und Physik.

- HAGEN, JOA. G., Index operum Leonardi Euleri. Berlin, Dames. 2 Mk. Mach, E., Die Prinzipien der Wärmelehre. Historisch-kritisch entwickelt. Leipzig, Barth. 10 Mk.
- Landesvermessung, die schweizerische, 1832—1864 (Geschichte der Dufourkarte). Herausgegeben vom eidgenössischen topographischen Bureau. Bern, Schmid, Francke & Co.

 3 Mk. 35 Pf.
- Ernst, Adf., James Watt und die Grundlagen d. modernen Dampfmaschinenbaues. Berlin, Springer. 2 Mk.
- BERNHARDT, Philipp Melanchthon als Mathematiker und Physiker. Neue Ausgabe. Wittenberg (1865), Wünschmann. 1 Mk.

Reine Mathematik.

- Bendt, Frz., Katechismus der Differential- und Integralrechnung. Leipzig, Weber. geb. 3 Mk.
- KÜPPER, C., Nachtrag zu den "k-gonal-Kurven". Prag, Řivnáč 20 Pf. Rogel, Frz., Theorie der Eulerschen Funktionen. Prag. Ebendas. 72 Pf.
- STUDNIČKA, F. J., Über Potenzdeterminanten und deren wichtigste Eigenschaften. Prag. Ebendaselbst. 16 Pf.
- Schubert, Herm., Beispielsammlung zur Arithmetik und Algebra (Sammlung Göschen). Leipzig, Göschen. 80 Pf.
- SPORER, BENED., Niedere Analysis (Samml. Göschen). Leipzig, Göschen. 80 Pf. Wälsch, E., Über die Laméschen Polynome zweiter Ordnung einer Form
- fünfter Ordnung. Wien, Gerolds Sohn. 20 Pf. Bolte, F., Leitfaden für den Unterricht in der Planimetrie zum Gebrauche an Navigationsschulen. Hamburg, Penser. 1 Mk. 20 Pf.

Angewandte Mathematik.

- Weisbach, Jul., Lehrbuch der Ingenieur- und Maschinen-Mechanik. Fünfte Auflage von Herrmann, Gust. 1. Teil: Lehrbuch der theoretischen Mechanik. 2. Abdr. Braunschweig, Vieweg & Sohn. 26 Mk.
- BARTH, A.F., Uns. Weltsyst. E. Beitr z. Theor. d. Weltgeschehens. Leipz., Fock 1 Mk.

HARTMANN, JOHS., Die Beobschtung der Mondfinsternisse. Leipzig, Hirzel. 5 Mk. MACH, L., Weitere Versuche über Projektile. Wien, Gerolds Sohn. 1 Mk. 90 Pf. Unterweger, Johs., Über zwei trigonometrische Reihen für Sonnenflecken, Kometen und Klimaschwankungen. Wien, Gerolds Sohn. Vermessungswesen, Das, der königl. Haupt- und Residenzstadt Dresden. Die Triangulationen erster, zweiter, dritter Ordnung. Im Auftrage des Rats zu Dresden bearb. v. Stadtvermessungsamt. 1.Bd. Dresden, Baensch. 8 Mk. Handwörterbuch der Astronomie, herausgegeben von W. Valentiner. 1. Band. Breslau, Trewendt. 24 Mk. Bestimmungen, grundsätzliche, für die Durchführung hydrometrischer Erhebungen; herausgeg. vom kaiserl. königl. hydrogr. Zentralbureau. Wien, Braumüller. 1 Mk. 60 Pf. Regulativ für die hydrometrische Prüfungsanstalt des kaiserl. königl. hydrometrischen Zentralbureau in Wien. Wien, Braumüller. Vorschrift über die Verfassung, Sammlung und Evidenzhaltung von Situations-, Längenprofils- und Querprofilsplänen der Binnengewässer; herausgeg. vom kaiserl. königl. hydrographischen Zentralbureau. Wien, Braumüller. 2 Mk. KRELL sen., O., Hydrostatische Messinstrumente. Berlin, Springer. KRÖHNKE, G. H. A., Handbuch zum Abstecken von Kurven auf Eisenbahnund Wegelinien. 13. Auflage. Leipzig, B. G. Teubner. geb. 1 Mk. 80 Pf. FREIBERGER, H., Perspektive nebst einem Anhange über Schattenkonstruktion und Parallelperspektive (Sammlung Göschen). Leipzig, Göschen. 80 Pf. BECKER, H., Geometr. Zeichnen (Samml. Göschen). Leipzig, Göschen. 80 Pf. SINRAM, A., Kritik der Formel der Newtonschen Gravitationstheorie. Hamburg, Grafe & Sillem. 1 Mk. SPITALER, R., Bahnbest. d. Kometen 1890 VII. Wien, Gerolds Sohn. 1 Mk. 40 Pf.

Physik und Meteorologie.

WIEDEMANN, E., Das neue phys. Inst. d. Univers. Erlangen. Leipzig, Barth. 6 Mk. Benndorf, H., Weiterführung der Annäherungsrechnung in der Maxwellschen Gastheorie. Wien, Gerolds Sohn. 50 Pf. BOLTZMANN, L., Über die Berechung der Abweichungen der Gase vom Boyle-Charlesschen Gesetz u. d. Dissociation derselb. Wien, Gerolds Sohn. 30 Pf. DEETZ, ALFR., Die höchste u niedrig. Temperatur. Berlin, Friedrichshagen. 10 Pf. KLEMENČIČ, IGN., Üb. perm. Magnete a. steir. Wolframstahl. Wien, Gerolds S. 30 Pf. KOLÁČEK, FRZ., Üb. Berechn. d. Induktionskoeffiz. lang. Spulen. Prag, Řivnáč. 72 Pf. MÜTZEL, K., Über Röntgen-Strahlen, Breslau, Preuss & Jünger. WULF, THDR., Über Rückstandsbildung und Oscillationen bei verschiedenen Kondensatoren. Wien, Gerolds Sohn. 80 Pf. Busch, Fr., 100 einfache Versuche zur Ableitung elektrischer Grundgesetze. Münster, Aschendorff. 75. Pf. TRABERT, W., Meteorologie (Sammlung Göschen). Leipzig, Göschen. 80 Pf. HAUKE, ALFR., Über d. Refractionsäquiv.d. Elemente. Wien, Gerolds S. 80 Pf. Schweiger-Lerchenfeld, A.v., Das Buch der Experimente. Physikalische Apparate und Versuche. Wien, Hartleben. geb. 6 Mk.

Fig. 12.

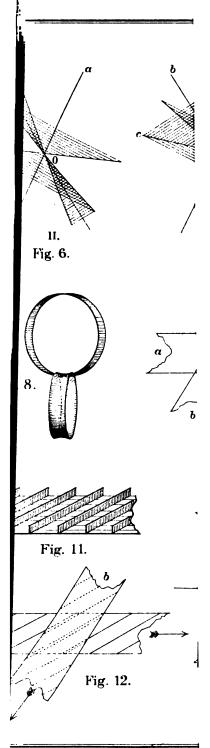
TRABERT, W., Meteorologie (Sammlung Göschen). Leipzig, Göschen. 86

HAUFE, ALFR., Über d. Refractionsäquiv.d. Elemente. Wien, Gerolds S. 86

SCH VERCHENFELD, A.v., Das Buch der Experimente. Physikali

Apparate und Versuche. Wien, Hartleben.

geb. 6



Historisch-litterarische Abteilung.

Rezensionen.

Ein altbabylonischer Felderplan nach Mitteilungen von F. V. Schen. herausgegeben und bearbeitet von Dr. August Eisenlohr, Professor an der Universität Heidelberg. Leipzig 1896. J. C. Hinrichssche Buchhandlung. 16 S.

Wir erfüllen eine angenehme Pflicht, indem wir unsere Leser auf einen hochbedeutsamen Fund aufmerksam machen, der für die Geschichte der babylonischen Feldmessung grundlegend zu werden verspricht. Es handelt sich um einen Felderplan mit beigeschriebenen Maßzahlen, der spätestens um 2400 v. Chr. angefertigt wurde. Herr August Eisenlohr, seiner Zeit durch die vortreffliche Übersetzung des Rechenbuches des Ahmes den Zugang zur altägyptischen Mathematik eröffnete, hat jetzt mit Erfolg sich bemüht, einen entsprechenden Einblick in die babylonischen Methoden zu gewinnen, welche mindestens 700 Jahre vor Ahmes in Übung waren. Das letzte Wort scheint uns, scheint auch unserem gelehrten Freunde Herrn Eisenlohr noch nicht gesprochen zu sein, aber folgende drei Thatsachen dürften heute schon als gewiss betrachtet werden können:

- 1. Die Babylonier waren bessere Rechner als Zeichner, denn der Plan stimmt nur nach wesentlichen Veränderungen mit den beigeschriebenen, unmittelbarer Messung entnommenen Zahlen.
- 2. Mit der Aufnahme waren zwei Feldmesser betraut, deren Namen genannt sind; der eine begann die Messung oben und maß nach unten, der andere begann unten und maß nach oben, sodass den Einzelfiguren, in welche der Plan zerfällt, zweierlei voneinander abweichende Flächenangaben entsprechen, zwischen denen ein dritter Beamter, eine Art von Oberbehörde, einen Mittelwert nach Art des arithmetischen Mittels als endgiltige Flächenangabe bestimmte.
- 3 Wie die beiden Feldmesser im engeren Sinne zu ihren Zahlen kamen, steht noch nicht ganz fest. Höchst wahrscheinlich betrachteten sie die Vierecke als Rechtecke, deren Höhe nach verglichenen Maßen der rechts und links von Feldmesser teils unmittelbar, teils mittelbar gewonnenen Längen angenommen wurde. CANTOR.

Das Volk der Siebener-Zähler. Rückschluss aus der Form der "arabischen Ziffern" auf ihre Herkunft von Herrman von Jacobs. Berlin 1896. Verlag der v. Jacobsschen Buchhandlung. 45 S.

Die Vermutung, welche der Verfasser in den Titelworten andeutet, besteht darin, es hätten die Sumero-Accad, jenes turanische Volk, das mit einem besiegten semitischen Stamme sich mischend die Euphratländer bewohnte, ein Zahlensystem besessen, dessen Grundzahl die Sieben gewesen sei. Gestützt wird diese Vermutung darauf, dass die heilige Zahl 7 in den mannigfachsten Redewendungen vorkommt, welche nach Babylon zurückzudeuten scheinen, ferner auf das Vorkommen der Zahl 7 in der indischen Sage, wo Bhodisatva im Zahlenwettkampfe je ein grösseres Längenmaß aus 7 kleineren bestehen lässt, auf die Thatsache, dass ein Bündel von 7 runden Stäben sich tadellos zusammenbinden lässt, wenn 6 äussere Stäbe einen ihnen gleichen umgeben, auf die Möglichkeit Zeichen, welche den sechs ersten Gobarziffern ähneln, aus 1 bis 6 Strichen zusammenzusetzen. Dass die Sumero-Accad im Soss die höhere Einheit eines Sexagesimalsystems besassen, stört Herrn v. Jacobs nicht. Diese Zusammenfassung habe man neben dem Siebenersystem erfunden, weil 60 vielfach teilbar, 7 dagegen teilerlos war. Von seiner grundlegenden Vermutung aus sucht alsdann der Verfasser sowohl die Namen als die Zeichen der Zahlen über 7 als Zusammensetzungen zu erklären und noch mancherlei auf Maße und Gewichte bezügliche Dinge zu erörtern. Herr v. Jacobs ist weit entfernt davon, seine Meinung für bewiesen zu halten. Er bietet sie wesentlich den Altertumsforschern zur Prüfung mittels schon bekannter und künftig noch bekannt werdender Fundergebnisse an, und insoweit darf man die kleine Schrift interessant nennen. Ob freilich die Prüfung der hier vertretenen Meinung günstig ausfallen wird? Referent kann nicht recht daran glauben. Vor allem ist ihm ein Sexagesimalsystem, welches neben einem Siebenersystem aus Gründen zweckmässiger Teilung urplötzlich auftaucht, ganz undenkbar.

CANTOR.

Das Quadrivium aus Severus Bar Šakkû's Buch der Dialoge. Inaugural-Dissertation zur Erlangung der Doktorwürde der philosophischen Fakultät der Universität Heidelberg, vorgelegt von Julius Ruska aus Bühl. Leipzig 1896. Druck von W. Drugulin. 79 S.

Severus Bar Šakků, ein im Jahre 1241 verstorbener Syrer, verfasste ein encyklopädisches Werk unter dem Titel des Buches der Dialoge, welcher über die gewählte Gesprächsform Auskunft giebt. Herr Ruska hat vorläufig einen Teil dieses Werkes in syrischer Sprache zum Abdruck gebracht und hat eine von zahlreichen Anmerkungen begleitete deutsche Übersetzung beigefügt. Er tritt damit in die Reihe der sehr wenig zahlreichen Gelehrten, welche mathematisches Wissen mit der Kenntnis morgenländischer Sprachen vereinigen, und welche dadurch das Recht, wenn nicht die Pflicht erworben haben, orientalische Handschriften zu durchstöbern und einem weiteren

Leserkreise bekannt zu geben, was dort an wertvollem Stoffe sich vorfindet. Nicht als ob wir durch diese Äusserung den Severus als einen besonders schätzbaren Schriftsteller bezeichnen wollten. Er war gewiss ein sehr fleissiger Mann, er hat den Nikomachus und ähnliche Neupythagoräer, wenn auch wahrscheinlich nicht in griechischer Sprache, doch in syrischen oder arabischen Auszügen genau gelesen und aus dem Auszuge einen neuen Auszug gefertigt, der von besserem Verständnisse zeugt, als was etwa 300 Jahre früher die lauteren Brüder aus ähnlichen Quellen zusammenschrieben; aber eigene Gedanken von irgend welcher Tragweite muss man bei Severus nicht suchen. Dagegen ist gerade die Art seiner Schriftstellerei ein kennzeichnendes Beispiel für eine ganze Schule, und von diesem Gesichtspunkte aus wird Herrn Ruskas Arbeit gewiss als eine des Dankes werte erachtet werden müssen, welche auch verdient fortgesetzt zu werden.

Apollonius of Perga Treatise on conic sections edited in modern notation with introductions including an essay on the earlier history of the subject by T. L. Heath, M. A. sometime fellow of Trinity College, Cambridge. Cambridge: at the university press 1896. CLXX, 254 p.

Derselbe Verfasser hat 1885 ein Werk über Diophant herausgegeben, welches wir damals in der Berliner Philologischen Wochenschrift vom 26. September 1885 (V. Jahrgang Nr. 39 S. 1223-1225) einer Besprechung unterzogen. Bei allem Lobe, welches wir der gründlichen, mehrfach neue Gesichtspunkte eröffnenden Arbeit zu spenden hatten, mussten wir in Bezug auf die erörterten Methoden die Frage stellen: Liest Herr Heath diese Methoden wirklich heraus oder hinein? Wir mussten hinzuftigen: Wir fürchten. man wird das letztere in mancher Beziehung behaupten müssen. Herr Heath hat bei Bearbeitung des Apollonius eine Anforderung selbst ausgesprochen, welche, wenn erfüllt, einen ähnlichen Vorwurf wie 1885 unmöglich macht. Die Bearbeitung, sagt er, soll Apollonius und nur Apollonius zum Gegenstand haben; nichts soll verändert werden, weder Inhalt noch Reihenfolge der Gedanken; nichts von irgend welcher Bedeutung soll weggelassen werden; Überschriften zu einzelnen Gruppen von Sätzen sollen den schriftstellerischen Plan des Apollonius deutlich hervortreten lassen. Im allgemeinen ist Herr Heath seinem Vorhaben treu geblieben. Allerdings kommen auch Stellen vor, z. B. S. 122-125, von welchen keine Silbe bei Apollonius oder bei seinem alten Kommentatoren zu finden ist. Herr Heath durfte streng genommen diese Seiten nicht zum Abdrucke bringen lassen, wenn er die Leser nicht irreführen wollte. An eine absichtliche Täuschung ist natürlich nicht zu denken, aber ein Widerspruch gegen die in der Vorrede gegebene Zusage ist trotz der Klammern, welche die lange Einschaltung einschliessen, vorhanden. Der Bearbeitung der Kegelschnitte des Apollonius geht eine längere geschichtliche Einleitung vorher, in welcher Herr Heath sich als überzeugten Schüler des bekannten Zeuthenschen Werkes über

Kegelschnitte erklärt. Wir haben allzuoft unsere entgegengesetzte Überzeugung ausgesprochen, als dass wir nötig hätten, es abermals zu thun. Die Heathsche Darstellung scheint uns einigermassen durchsichtiger als dessen Musterwerk, und uns wenigstens traten hier deutlicher als je zuvor die fast zahllosen unbewiesenen Behauptungen entgegen, auf welche der ganze Aufbau sich stützt. In diesem Sinne können wir Leser, welche noch keine feste Meinung sich gebildet haben, auf die Heathsche Einleitung hinweisen.

Sereni Antinoensis Opuscula edidit et latine interpretatus est J. L. Heiberg, Dr. phil., Prof. Hauniensis. Leipzig 1896. B. G. Teubner. XIX, 303 p.

Σερήνου 'Αντινσέως φιλοσόφου περί πυλίνδρου τομής. Diese Bezeichnung gehört der ältesten und besten Handschrift des Serenus, einem Vatikankodex aus dem XII.—XIII. Jahrhundert an. Der Heimatname ist offenbar unrichtig überliefert. Halley verbesserte ihn in ἀντισσέως, und seitdem kennt die Geschichte der Mathematik einen Serenus von Antissa. Aber Herr Heiberg hat (Biblioth. math. 1894 p. 97) darauf aufmerksam gemacht, dass das Ethnicon von Antissa gar nicht 'Αντισσεύς, sondern 'Αντισσαΐος lautete, dass also Halleys Vermutung keinen Nutzen gewährt. Er selbst schlug daher 'Avrivoéms vor, Serenus von Antinoeia, das heisst aus jener ägyptischen Stadt, welche Kaiser Hadrian im Jahre 122 zu Ehren des jungverstorbenen Antinous gründete. Herr Heiberg hat in der neuen Ausgabe des Serenus, welche uns heute vorliegt, jene Namensform beibehalten, an welche man sich hinfort wird gewöhnen müssen. Für das Zeitalter des Serenus ist damit so viel gewonnen, dass er frühestens Zeitgenosse des Klaudius Ptolemaeus gewesen sein kann. Seine Sprache scheint aber noch etwa zwei Jahrhunderte tiefer herabzuweisen, und deshalb nimmt Herr Heiberg keinen Anstand der schon von Chasles gehegten Meinung sich anzuschliessen, Serenus habe im IV. Jahrhundert zwischen Pappus und Theon von Alexandria geblüht. Die neue Ausgabe gehört der Bibliotheca Teubneriana an und ist von Herrn Heiberg besorgt. Jeder Fachmann weiss, was er diesen beiden Angaben zu entnehmen hat: Einen sorgsamen Druck bei kritisch hergestelltem Texte. CANTOR.

Sur l'origine du monde. Théories cosmogoniques des anciens et des modernes, par H FAYE, de l'Institut. Paris 1896. Gauthier-Villars et fils. 313 p.

Das Werk "über die Entstehung der Welt" besitzt einen doppelten Charakter, einen geschichtlichen und einen dogmatischen. Herr Faye erzählt, wie man zu den verschiedensten Zeiten die Entstehung der Welt sich dachte. Er krönt diese Erzählung durch die Darstellung seiner eigenen Lehre von diesem Entstehen. Wir fühlen uns nicht berufeu, über den zweiten Teil des Buches ein Urteil abzugeben. Dazu bedürfte es der vielseitigsten Kenntnisse in Astronomie, kosmischer Physik, Thermochemie etc.,

über welche wir nicht verfügen, und selbst mit diesen Kenntnissen ist und bleibt vermutlich immer Hypothese, was man äussert. Erweitertes Wissen hat bisher häufig genug ältere Vermutungen als unmöglich beseitigt, ohne beweisen zu können, welche Vorgänge vor Millionen von Jahren vielleicht wirklich stattfanden. Der geschichtlichen Darstellung des Verfassers folgten wir mit dem grössten Interesse. Herr Faye hat dabei den Weg eingeschlagen, der zuverlässig der allein richtige ist. Er lässt die Schriftsteller selbst zu Wort kommen. In französischen Übersetzungen führt er die Schöpfungsgeschichte der Genesis vor, die wichtigsten Stellen aus Platos Timaeus, aus dem Himmel des Aristoteles, aus dem Traume Scipios von Cicero, aus Lucretius, aus Vergil, aus Ovid. Er springt dann über zu Descartes, zu Newton, zu Kant, zu Laplace, mit welchem seine Ausführungen abschliessen. Herr Faye knüpft an alle Äusserungen seine kritischen Bemerkungen, wie es das Recht des Geschichtsschreibers ist, aber nirgend lässt er verkennen, was Bericht, was bestätigende oder widerlegende eigene Meinung ist. Gedanke wird schon bei Gelegenheit der biblischen Erzählung ausgesprochen, der uns lebhaft fesselte: Der Gedanke, dass die Schöpfungsgeschichte jedes Religionsbuches stets als Spiegelbild der physikalischen und astronomischen Glaubensbekenntnisse der Zeit, in welcher das Buch entstand, aufzufassen ist. Der Religionslehrer knüpfte nur seine Glaubensvorschriften an schon bestehende Volksmeinungen. Herr Faye geht in seinen kritischen Zusätzen uns mehrfach zu weit. Wenn er an der Überlieferung, dass nach Meinung der Pythagoräer in der Mitte das Feuer sei, um welches Erde und Gegenerde sich bewegen, die Änderung vornimmt, das Feuer könne nur die Sonne, die Gegenerde nur der Mond sein, so scheint uns das Bestreben, den Pythagoräern ausschliesslich vernünftige Meinungen zuschreiben zu wollen, mehr freundlich als richtig. Wenn Newtons Nichte mitteilt, ihr Onkel habe Descartes Schriften misswertig bei Seite geworfen, um nicht auf jedes Blatt die Randbemerkung "unrichtig" schreiben zu müssen, so dürften Herrn Fayes Zweifel ungerechtfertigt sein, selbst zugegeben, dass Newton zu Anfang mehr Cartesianer war, als er später Wort haben wollte, als er seiner schönen Nichte erzählte, was sie nur von ihm haben konnte. Auch an dem Laplaceschen "Ich habe die Gotteshypothese nicht nötig gehabt" übt Herr Faye seine Kritik, in diesem Falle auf den Bericht Aragos über eine Äusserung von Laplace selbst sich stützend. Laplace habe nur gegen Newton polemisiert, welcher ein Eingreifen Gottes für notwendig erachtete, so oft an der grossen Weltmaschine, wenn wir so sagen dürfen, Etwas haperte, während Laplaces weiter vorgeschrittene Analyse ein solches Eingreifen nicht mehr brauchte, nachdem die Anfangsbewegung vorhanden war, welche er gleichfalls voraussetzte. Besonders rühmend dürfen wir die an manchen Stellen dichterisch schöne Sprache des Verfassers hervorheben. Möchten doch die Schriftsteller der sogenannten schönen Litteratur innerhalb und ausserhalb seiner Heimat an seinem Muster sich bilden.

Über einige ältere Bearbeitungen des Buchhaltungs-Traktates von Luca Pacioli. Ein Beitrag zur Geschichte der Buchhaltung von CARL PETER KHEIL. Prag 1896. Boursik & Kohout, VI, 128 S.

Wir haben in unseren Vorlesungen der Geschichte der Mathematik II, 300 bis 301, Luca Paciuolo als denjenigen Schriftsteller bezeichnet, welcher zwar ohne allen Zweifel die doppelte Buchhaltung nicht erfand, aber zuerst ihre Lehre und Verbreitung sich angelegen sein liess. Wir freuen uns, dass Herr Kheil, ein Spezialist in der Buchhaltung, von der wir nur sehr nebensächliche Kenntnis besitzen, ebenfalls in Pacioli (über die Rechtschreibung wollen wir nicht streiten) den ersten Schriftsteller des Faches anerkennt und in überaus eingehender, durch seine an Seltenheiten reiche Bibliothek unterstützter Nachforschung zu ermitteln gewusst hat, wie die weitere Verbreitung stattfand. Jan Ympyn und Wolffgang Schweicker sen. sind vielleicht am lebhaftesten dabei beteiligt gewesen. Der erstere gab in Antwerpen 1543 eine vlämische und eine französische Anleitung zur Buchführung heraus, welche weiter ins Englische übersetzt wurde. Quelle war italienisch, und wenn auch nicht Paciuolos Werk, jedenfalls eine eng an dieses sich anlehnende Schrift eines unbekannten Verfassers, der vielleicht Juan Paulo di Bianchi aus Perugia hiess. Schweickers "Zwifach Buchhalten" ist 1549 in Nürnberg gedruckt und ist unter nachweislicher Benutzung des "Quaderno doppio" von 1534 bearbeitet, welches selbst von Domenico Manzoni, einem Nachahmer Paciuolos, herrührt. Unter den vielen beiläufigen Bemerkungen, durch welche Herr Kheil sein umfangreiches Wissen bewährt hat, nennen wir den Nachweis, dass der Kaufmann in Venedig, in dessen Hause Paciuolo langere Zeit lebte, nicht Ropiansi hiess, wie man seither druckte, sondern Rompiasi. CANTOR.

Henricus Grammateus und sein Algorismus de integris von Oberlehrer Christian Friedrich Müller. Beilage zum Jahresberichte des Gymnasiums zu Zwickau. Ostern 1896. 33 S. [1896. Programm Nr. 558].

Nachdem die Geschichte der Mathematik seit wenigen Jahrzehnten angefangen hat, Namen und Leistungen des Heinrich Schreiber aus Erfurt unverdienter Vergessenheit zu entreissen, hat Herr Müller noch weiteres Material über den tüchtigen Gelehrten beizuschaffen gewusst. Wir kennen durch Herrn Müllers Bemühungen jetzt das Todesjahr 1525 des Grammateus; wir wissen nun von einer lateinischen Schrift Algorithmus proportionum (Krakau 1514); wir erfahren, dass das deutsche Rechenbuch schon 1521 und zwar in Nürnberg gedruckt ist; wir lernen einen lateinischen 1523 in Erfurt geschriebenen Algorismus de integris in neuem Abdruck vollständig kennen. Herr Müller hat eine dankenswerte und erfolgreiche Arbeit angewandt, deren gesicherte Ergebnisse der Geschichte angehören. Der Algorismus de integris lehrt ungemein klar das Rechnen mit Einschluss der Regeldetri an ganzen Zahlen. Man findet in ihm auch (S. 33) unter dem

Namen Regula generalis pro solutione quorundam exemplorum die indische Umkehrungsrechnung, welche Leonardo von Pisa Regula versa [Cantor, Vorlesungen der Geschichte der Mathematik, II, 21] genannt hat.

CANTOR.

Jakeb Ziegler, ein bayerischer Geograph und Mathematiker. Von Sieg-MUND GÜNTHER [Sonderabdruck aus den "Forschungen zur Kulturund Litteraturgeschichte Bayerns." Herausgegeben von Karl von Reinhardstöttner. Buch IV (1896)]. Ansbach und Leipzig 1896. Max Eichinger. 63 S.

Jakob Ziegler starb 1548 in Passau nahezu 80 Jahre alt. So berichtet eine handschriftliche Randbemerkung in dem der Münchner Bibliothek angehörenden Exemplare von Zieglers Beschreibung des Heiligen Landes. Ziegler war ein für seine Zeit sehr tüchtiger Kartenzeichner und wusste besonders im Norden Europas, auf der skandinavischen Halbinsel gut Bescheid. Soweit dabei astronomisches und mathematisches Wissen erforderlich war, mag man ihn auch einen Mathematiker nennen, eigene mathematische Leistungen sind nicht auf ihn zurückzuführen.

Bibliografia Galileiana (1568—1895) raccolta ed illustrata da A. CARLI ed A. FAVARO. Roma 1896. Pubblicazione del Ministero della Pubblica Istruzione. VIII, 402 p.

Der von allen Freunden der Geschichte der mathematischen Wissenschaften stets betrauerte Fürst Boucompagni hatte Herrn Carli veranlasst, verschiedene Untersuchungen und Nachforschungen in der Florentiner National-Dort entstand bei Herrn Carli der Gedanke, bibliothek anzustellen einen Katalog der auf Galilei bezüglichen Handschriften, einen anderen für die auf Galilei bezüglichen Druckschriften anzufertigen. Inzwischen begann unter Herrn Favaros Leitung der Druck der neuen Galilei-Ausgabe. Was der Gedanke eines Einzelnen gewesen war, wurde zu einem Bestandteile des auf Staatskosten ins Leben tretenden Unternehmens. Heute liegt die Bibliographie vollendet vor uns, der Handschriftenkatalog soll folgen. Der erste Eindruck, welchen der Band auf uns machte, war der des Schreckens, des Schreckens darüber, dass die Galileilitteratur bereits auf über 2100 Nummern angewachsen ist, des Schreckens über den Fleiss, den beide Herausgeber anwenden mussten, um eine solche Vollständigkeit zu erzielen! Niemand wird es künftig wagen dürfen, an Galilei-Forschungen heranzutreten, ohne vorher die Bibliographie zu Rate gezogen zu haben. wer etwa schon im gleichem Sinne gearbeitet habe. Es schadet nicht, wenn dadurch einer oder der andere zurückgeschreckt, das, was noch zu thun übrig ist, den berufenen Händen überlässt, welche gegenwärtig das fast erschöpfte Feld bebauen.

Über die Begründung der Infinitesimalrechnung durch Newton und Leibniz von Dr. Ernst Tischer, Oberlehrer am Nicolaigymnasium zu Leipzig. Wissenschaftliche Beilage zum Jahresbericht des Nicolaigymnasiums zu Leipzig. 46 S. [1896. Programm Nr. 551.]

Wie kommt es, fragt Herr Tischer, dass hundert Jahre nach der Abhandlung von 1684, in welcher Leibniz die Differentialberechnung bekannt gemacht hat, eine Preisfrage der Berliner Akademie eine einwandfreie Begründung der Infinitesimalrechnung verlangte, dass L'Huilier mit einer Grenzmethode, welche dem Gedanken der Newtonschen ersten und letzten Verhältnisse nahe kommt, den Preis davontrug, dass wieder 13 Jahre später Lagrange das Unendlichkleine, die Grenzwerte und die Fluxionen ausdrücklich verwarf, und dass unsere heutige Wissenschaft wieder bald mit dem Unendlichkleinen, bald mit Grenzwerten operiert, wie es vor 200 Jahren der Fall war? Eine eigentliche Antwort auf die interessante Frage finden wir auch bei Herrn Tischer nicht, und wir persönlich wundern uns darüber nicht. So lange der Mensch das Gras nicht wachsen sieht, sondern das Gewachsensein allein erkennt, werden die erwähnten Skrupel stets von Zeit zu Zeit auftauchen, ohne eine Widerlegung finden zu können. Es ist eben, wie wir an einem anderen Orte einmal gesagt haben, die Begründung der Infinitesimalrechnung die alte zähe Speise, an der der Mensch viel tausend Jahre kaut, und noch kauen wird! Die Unerweislichkeit tritt und trat von jeher dadurch hervor, dass an irgend einer Stelle ein Axiom eingeführt wurde. Herr Tischer hat die Aufgabe seiner hochinteressanten Programmabhandlung dahin gestellt, dass er zunächst den infinitesimalen Charakter des antiken Exhaustionsverfahrens, wie es bei Euklid und reicher entwickelt bei Archimed sich benutzt findet, enthüllte, eine geistvolle nachträgliche Zusammenstellung, sofern man sie nur als solche betrachtet. Daran, dass Euklid, dass Archimed von der modernisierten Auffassung eine Ahnung gehabt hätten, ist natürlich nicht zu denken, und Herr Tischer mutet seinen Lesern eine solche Kraftprobe ihres Glaubens auch nicht zu. Dann überspringt er zwei Jahrtausende und gelangt zu Newtons Fluxionsrechnung. welche er darauf prüft, ob denn wirklich der strittige Gedanke des Unendlichkleinen in ihr vermieden sei, und eine eingehende Untersuchung der verschiedenen Schriften Newtons lässt erkennen, dass dem keineswegs so ist. Es war nur selbstverständlich, dass Herr Tischer seine Durchmusterung von Newtons Abhandlungen mit derjenigen verglich, welche Referent in dem ersten Abschnitte des III. Bandes seiner Vorlesungen über Geschichte der Mathematik angestellt hatte. Er erkannte dabei einige Unrichtigkeiten, die wir uns zu Schulden kommen liessen, und fand nachträglich, dass Herr Zeuthen in einem der Kopenhagener Akademie am 3. Mai 1895 eingereichten Aufsatze Sur quelques critiques faites de nos jours à Newton dieselben Vorwürfe gegen uns gerichtet hatte. Wir waren durch Herrn Zeuthens Darstellung bereits überzeugt, dass ein Vertrauen, welches wir sonst nie üben, Herr Weissenborn werde von ihm als unrichtig gerügte Beispiele buchstäblich aus Newton entnommen haben, uns irre geführt hat. Wir wollen

diese einmal begangene Flüchtigkeit keineswegs entschuldigen und wären in der Vorrede, von welcher der dritte und letzte Abschnitt des Bandes begleitet sein wird, darauf, sowie auf andere Mängel, auf die wir inzwischen teils von selbst, teils durch freundlichen Hinweis von Fachgenossen aufmerksam wurden, jedenfalls zurückgekommen. Da indessen jener dritte Abschnitt, wenn auch fortwährend in Arbeit, noch bei weitem nicht druckfertig ist, so benutzen wir gern die Gelegenheit, welche das Referat über das Tischersche Programm uns liefert, heute schon den Irrtum einzugestehen. Wir lieben es nicht, irgend jemand Unrecht zu thun, und am allerwenigsten einem Newton. Wir täuschten uns, als wir S. 179 uuseres III. Bandes angaben, Newton sei im Besitze eines Falles gewesen, in welchem das sogenannte binomische Integral in geschlossener Form gefunden werden könne. Er kannte, wie aus einem anderen Beispiele in demselben Briefe vom 24. Oktober 1676, dem wir unsere Behauptung entnahmen, hervorgeht, auch den zweiten Hauptfall. Wir täuschten uns auch, als wir S. 165 annahmen (wir haben erklärt, auf welche Veranlassung hin), Newton habe den Fehler begangen, von $x^3\dot{x} - 3x^2y\dot{x} + xy^2\dot{y} - y^3\dot{y} = 0$ auf

$$\frac{x^4}{4} - x^3y + \frac{xy^3}{3} - \frac{y^4}{4} = 0$$

zu schliessen; jenes Beispiel gehört Newton gar nicht an. Die Substitution von b-x statt x betreffend, welche Newton Opusc. I, 70 für gestattet erklärt, so geben wir zu, dass an eine Koordinatenverlegung gedacht werden kann, beziehungsweise an Benutzung einer Integrationskonstante. Newton sagt aber nicht, dass alsdann auch \dot{x} in $-\dot{x}$ verwandelt werden müsse, und dadurch erscheint die Stelle I, 70 willkürlicher als die I, 68, von welcher Herr Tischer spricht. Endlich die Gleichungen mit mehr als zwei Veränderlichen (Newton Opusc. I, 83) müssen wohl als totale, nicht als partielle Differentialgleichung aufgefasst werden. Alsdann ist das Verfahren, eine hypothetische Gleichung zwischen x und y anzusetzen, geeignet, zur Integration zu führen; berechtigt aber ist es damit noch keineswegs. Das sind, wie gesagt, Zusätze zu unserem III. Bande, zu deren Veröffentlichung Herrn Tischers Abhandlung uns die Gelegenheit bot. Dass seine Abhandlung selbst eine hochinteressante ist, haben wir oben bereits hervorgehoben, und wir wiederholen es am Schlusse, um dem Programme zahlreiche Leser zu verschaffen. CANTOR.

Le mathématicien Franc-Comtois François Joseph Servois ancien conservateur du musée d'artillerie d'après des documents inédits 1767—1847.

Par Jacques Boyer, professeur de sciences mathématiques et physiques à Paris. Besançon 1895. Imprimerie et lithographie Dodivers.

26 p. [Extrait des Mémoires de la Société d'Émulation du Doubs.]

In kurzen Zügen ist das Leben von Servois geschildert, das Leben eines Offiziers, der an den Feldzügen der Republik teilnahm, das Leben eines Lehrers, dem der mathematische Unterricht an verschiedenen militärischen Anstalten anvertraut war. Herr Boyer hat das Material zu seiner

Darstellung vielfach den Akten des französischen Kriegsministeriums ent nommen. Unter den Angaben tiber die wissenschaftlichen Veröffentlichungen von Servois vermissen wir einen Aufsatz im I. Bande (p. 337) der von Gergonne herausgegebenen Annales de mathématiques. Dort hat Servois das Wort Pol in die Geometrie der Kegelschnitte eingeführt, während Gergonne im III. Bande (p. 297) derselben Zeitschrift diesem Worte das andere Polare nachbildete.

Kepler und Galilei von Siegmund Günther, Professor an der technischen Hochschule in München. Berlin 1896. Ernst Hofmann & Co. 233 S. [22. Band der Geisteshelden herausgegeben von Anton Bettelheim.]

Die "Geistesbelden" gehören zu den Werken, welche die Wissenschaft in das Volk hinzustragen sollen. Sie sollen deshalb nicht zu schwer geschrieben sein; sie sollen so viel als möglich den Leser fesseln; sie sollen den in der Wissenschaft heimischen Kenner zum Mindesten nicht durch fehlerhafte Angaben entrüsten. Es war für den Herausgeber keineswegs leicht, Schriftsteller zu finden, welche zu solchen Darstellungen das nötige Können mit dem nötigeren Wissen vereinigten. Dass er mit der Wahl S. Günthers einen glücklichen Griff gethan haben werde, davon waren wir überzeugt noch bevor wir das Bändchen aufschnitten, und das Lesen hat unser günstiges Vorurteil bestätigt. Sein umfassendes geschichtliches Wissen, seine insbesondere reiche Quellenkenntnis zum Nachschlagen von Dingen, die allenfalls seinem kaum je ungetreuen Gedächtnisse entschlüpft sein sollten, seine Leichtigkeit in Auffindung des richtigen Wortes zur Ausserung seiner Gedanken eignen ihn vorzugsweise zu solchen Darstellungen wie die der Lebensschicksale von Kepler und von Galilei. Eine wesentliche Klippe, welche vermieden werden musste, war die einer etwas behäbigen Breite, welcher man leicht zu nahe kommt, wenn der Gegenstand einen fortreisst. Die vom Herausgeber geforderte, von Herrn Günther eingehaltene Raumgrenze, innerhalb deren wir doch nichts Wesentliches vermissen, zeugt dafür, wie sehr er sich zu beschränken wusste. Wir zweifeln nicht, dass das Bändchen bald zu den beliebteren der Sammlung gehören wird. CANTOR.

Franz Neumann (11. September 1798 bis 23. Mai 1895). Ein Beitrag zur Geschichte deutscher Wissenschaft. Dem Andenken an den Altmeister der mathematischen Physik gewidmete Blätter, unter Benutzung einer Reihe von authentischen Quellen gesammelt und herausgegeben von P.VOLKMANN, ordentlicher Professor an der Universität Königsberg i. Pr. Mit einem Bildnis Franz Neumanns. Leipzig 1896. B. G. Teubner. VII, 68 S.

Herr Volkmann hat zweimal Veranlassung gehabt, Gedächtnisreden auf Franz Neumann zu halten. Er sprach im Sterbehaus bei der am 27. Mai stattfindenden Beerdigung, er sprach bei der einen Monat nach dem Tode

am 23. Juni ausnahmsweise veranstalteten Gedächtnisseier in der akademischen Aula. Die erste Rede war, wenn wir so unterscheiden dürfen, persönlichen, die zweite sachlichen Inhaltes, die erste für Zuhörer aus dem Laienstande, die zweite für solche Gelehrte, welche in Neumanns wissenschaftlichen Arbeiten so heimisch sind, dass eine blosse Nennung der Stichwörter genügte, den Inhalt ins Gedächtnis zurückzurufen. Beide Reden ergänzen einander, und Herr Volkmann hat gewiss Recht daran gethan, der zweiten, welche Fachgenossen hauptsächlich zu fesseln im stande ist, die erste als Einleitung vorauszuschicken. Zwischen beiden Reden sind persönliche Erinnerungen eingeschaltet, welche von dem ältesten Sohne und von der Tochter des Verstorbenen herrühren. Der zweiten Rede folgen wissenschaftliche Anmerkungen, welchen wir eine etwas grössere Ausdehnung gewünscht hätten. Wenn z. B. in der Rede von Prinzipien gesprochen wird, welche von Franz Neumann herrühren, so durfte dort der Wortlaut jener Sätze fehlen, in den Anmerkungen vermisst man aber ungern die mathematische Formulierung. Das Verzeichnis der von Neumann gehaltenen Vorlesungen mit der jedesmaligen Zuhörerzahl, Angaben über solche Schüler Neumanns, welche durch ihre wissenschaftlichen Leistungen bekannt geworden sind, Bemerkungen über das mathematisch-physikalische Seminar in Königsberg sind ebensoviele dankenswerte Beigaben. CANTOR.

Ludwig Schläfii (1814—1895). Zum Andenken an die Errichtung des Grabmonumentes Schläflis und an die Beisetzung der sterblichen Reste Jacob Steiners, anlässlich der 100 jährigen Feier des Geburtstages des letzteren am 18. März 1896. Von Dr. phil. J. H. Graf, ordentlicher Professor der Mathematik an der Hochschule Bern. Mit dem Porträt und dem Faksimile Schläflis. Bern 1896. K. J. Wyss. 86 S. [Separatabdruck aus den Mitteilungen der naturforschenden Gesellschaft in Bern.]

Im Herbst 1843 begaben sich Dirichlet, Jacobi und Steiner nach Rom. Keiner war des Italienischen mächtig. Da schlug Steiner vor, einen Dolmetscher mitzunehmen und empfahl dazu einen Bekannten in Bern, für die Welt ein Esel, aber Sprachen lerne er wie ein Kinderspiel. Er meinte Ludwig Schläfli, und seine Ausdrucksweise, wie sie kennzeichnend für Steiner ist, zeigt uns auch das Bild des damals 29 jährigen, etwas linkischen, unter dem Drucke äusserer Verhältnisse zurückhaltenden, nach verschiedenen Richtungen hochbegabten Schläfli, dasselbe Bild, welches Herr Graf mit dem Pinsel des Freundes hinzumalen verstanden hat. Der hervorragende Gelehrte, der anregende Lehrer trägt auch hier die Züge der Unbeholfenheit oder mindestens allzugrosser Schüchternheit. Ihr ist es wohl zuzuschreiben, dass, während 70 mathematische Veröffentlichungen namhaft gemacht werden konnten, überdies noch 303 fertige Manuskripte in Schläflis Nachlasse aufgefunden wurden, von welchen nur etwa 20 schon gedruckt worden zu sein scheinen. Unsere Zeit liebt es, Gesamtausgaben von

Werken hervorragender Mathematiker zu veranstalten. Der Umfang des noch ungedruckten Nachlasses mahnt die Erben seiner Manuskripte doppelt daran, auch Schläflis Schriften zu einem Sammelbande zu vereinigen.

CANTOR.

Notice sur les travaux mathématiques de Eugène-Charles Catalan par P. Mansion, Professeur à l'Université de Gand, Membre de l'Académie royale de Belgique. Bruxelles 1896. F. Hayez. 62 p.

Es war im Sommer 1856. Referent befand sich in Paris. Einen Abzug der im I. Bande dieser Zeitschrift abgedruckten Abhandlung über die Einführung unserer gegenwärtigen Ziffern in Europa hatte er dem Altmeister geschichtlicher Forschung, dem trefflichen Michel Chasles überreicht, und war von dem durch Herzensgüte nicht minder als durch Gelehrsamkeit sich auszeichnenden Manne aufs wohlwollendste empfangen worden. Chasles war am sichersten in den Sitzungen der Akademie zu treffen, und das gab uns die Veranlassung, jene Sitzungen regelmässig zu besuchen. Einmal war auf den besonders dünn besetzten Bänken des Zuhörerraums ein Herr unser Nachbar, mit welchem wir in ein Gespräch kamen, und mit welchem zusammen wir die Akademie verliessen, noch lange Strassen hindurch plaudernd und Eindrücke austauschend. Jener Herr war Eugène Catalan. Im Jahre 1880 gereichte es uns zur grossen Freude, dass Catalan, mit dem wir damals einige Briefe wechselten, sich der 24 Jahre früher stattgehabten Begegnung mit einem zu jener Zeit vollständig unbekannten jungen Manne freundlich erinnerte. Das sind die persönlichen Beziehungen, deren Erwähnung man uns zu gut halten mag, weil sie zur Kennzeichnung von Catalans wunderbar treuem Gedächtnisse dienen, welche uns die Notiz, über die wir berichten, noch besonders interessant machten. Aber auch ohne solche Nebengründe wird der Leser sicherlich mit Vergnügen von Herrn Mansions Ausführungen Kenntnis nehmen, welche dazu dienen sollen, Catalan den ihm gebührenden Platz in der Geschichte der Mathematik anzuweisen. Lehre von den halbregelmässigen Vielflächnern, die Lehre von den Reihen, von den vielfachen Integralen, von den Kugelfunktionen sind es vorzüglich, welche er mit neuen Thatsachen bereichert hat, während zahlreiche Handbücher von ihm vermutlich noch geraume Zeit in den Händen französischer und belgischer Kandidaten des mathematischen Lehramtes sich nützlich erweisen werden. CANTOR.

Annuaire du Bureau des Longitudes avec des Notices scientifiques. Paris 1896. Gauthier Villars et fils.

Die sechs Abhandlungen des Bandes von 1896 führen folgende Titel: Fernkräfte und Wellenbewegung von A. Cornu. Fresnels optische Arbeiten von A. Cornu. Die Anfertigung neuer magnetischer Karten von De Bernardières. Das Mont Blanc-Observatorium von J. Janssen. Leben und Arbeiten des Contre-Admiral Fleuriais von De Bernardières. Reden beim

Leichenbegängnisse von Emil Brunner von J. Janssen und F. Tisserand. Von allgemeinstem Interesse sind die beiden ersten Abhandlungen, welche innerlich zusammengehören, wie sie auch von dem gleichen Verfasser herrühren. Steht doch Fresnels Name in glänzenden Buchstaben unter den Gelehrten, welche dem Begriffe der Fernwirkung ein Ende zu machen sich bestrebten, und hat doch erst seine Sicherung transversaler Lichtschwingungen die Grundlage einer mathematischen Optik wirklich geschaffen.. Ob deswegen die longitudinalen Lichtschwingungen, an welche Huygens, an welche Euler dachte, ganz aus der Wissenschaft verschwunden sind? Ob die Kathedenstrahlen sie wieder aufleben lassen? Diese Frage ist allzu neu, als dass Herr Cornu sie auch nur aufgeworfen hätte.

A. Neppi Modona e T. Vannini, Questioni e formole di geometria analitica (ad una e due dimensioni). Palermo 1896. Alberto Reber. II, 319 p.

Die Aufgaben, welche die beiden Herren Verfasser gesammelt haben, entstammen verschiedenen meistens französischen, auch einigen italienischen und englischen Quellenschriften. Die deutsche Litteratur des Faches ist unbenutzt geblieben. Jedem Kapitel sind die wichtigsten Formeln der analytischen Geometrie der Geraden und der ebenen Kurven zweiten Grades, welche in ihm zur Anwendung kommen, vorausgeschickt. Ihre Beweise sollen nach dem Plane der Verfasser aus den Vorlesungen des ersten Universitätsjahres bekannt sein. Die eigentlichen Aufgaben sind aber alsdann bald ausführlicher bald in gedrängter Kürze zur Auflösung gebracht. Man kann keinenfalls sagen, dass die Verfasser es ihren Lesern allzuleicht gemacht und ihnen eigenes Nachdenken erspart hätten. Ein deutscher Student im dritten Semester dürfte wenigstens nicht ohne einige Anstrengung das Buch durchzuarbeiten unternehmen, trotzdem Differentialrechnung nirgend vorausgesetzt ist. Wir meinen damit keinen Tadel gegen das Buch auszusprechen, sondern wollen nur feststellen, worauf der Leser sich gefasst Fortwährend sind in gemischter Anwendung die verzu machen hat. schiedensten Koordinatensysteme in Gebrauch, bald Punktkoordinaten, bald Linienkoordinaten, bald projektive Koordinaten, bald Dreieckskoordinaten etc. Anwendung von Determinanten ist gleichfalls von den ersten Seiten an als selbstverständlich betrachtet. Wer das Buch mit der Feder in der Hand durchzuarbeiten die Zeit hat, wird sicherlich grossen Nutzen daraus ziehen.

CANTOR.

Cours de géometrie analytique à l'usage des élèves de la classe de Mathématiques spéciales et des candidats aux écoles du Gouvernement par B. Nievenglowski. Tome III. Géométrie dans l'espace avec une note sur les transformations en géométrie par Émile Borel, maître de conférences à la faculté des sciences de Lille. Paris 1896. Gauthier-Villars et fils. 572 p.

Die beiden ersten von Herrn Niewenglowski selbst verfassten Bände, die analytische Geometrie der Ebene enthaltend, sind unseren Lesern bereits

Band 41, Hist.-litt. Abtlg. S. 26-28, bestens empfohlen. Der der analytischen Geometrie des Raumes gewidmete III. Band ist von Herrn Borel bearbeitet, und wir können nur erklären, dass die Fortsetzung sich den früheren Bänden würdig anschliesst, dass sie auch deren Schreibweise sich zum Muster genommen und so glücklich nachgeahmt hat, dass ohne die Namensangaben auf dem Titelblatte niemand auf den Gedanken käme, Schriften verschiedener Verfasser vor sich zu haben. Etwas schwieriger als die beiden ersten Bände ist der dritte Band immerhin, das liegt in dem Wesen seines allgemeinsten Gegenstandes, aber dem Standpunkte der Leser, als welche junge Leute gedacht sind, die zur Eintrittsprüfung in die höheren Unterrichtsanstalten wie École polytechnique und École normale sich vorbereiten, ist doch Rechnung getragen, und man darf weder hoffen noch fürchten, einer Vollständigkeit raumgeometrischer Thatsachen oder Methoden zu begegnen, wie sie beispielsweise von Salmon oder von Darboux angestrebt wurde. Herr Borel hält sich, ohne die Hilfe der Infinitesimalrechnung zu verschmähen, in elementareren Schranken, die ihn auch von Joachimsthal-Natani unterscheiden, den er in einfacheren Dingen bedeutend an Materialfülle übertrifft. Die Ebene und die Oberflächen zweiter Ordnung, letztere sowohl allgemein als in ihren einzelnen Abarten, sind mit besonderer Ausführlichkeit behandelt. Ein Anhang (S. 481-558) führt den Leser in die Lehre von den Transformationsgruppen ein. Herr Borel steht hier, wie er selbst erklärt, wesentlich unter dem Einflusse Lieschers Arbeiten, zu deren Studium er nur vorbereiten und anleiten wolle. CANTOR.

GINO LORIA, Il passato ed il presente delle principali teorie geometriche. Seconda edizione accresciuta ed interamente rifatta. Torino 1896. Carlo Clausen. XX, 346 p.

Im Jahre 1887 erschien die erste Auflage eines anspruchslos auftretenden, aber viele Ansprüche befriedigenden Werkchens, welches wir im 33. Bande dieser Zeitschrift, Hist.-litt. Abtlg. S. 194-195, unseren Lesern warm empfehlen durften. Eine mit Zusätzen des Verfassers selbst bereicherte deutsche Übersetzung folgte 1888 (vergl. Band. 34, Hist.-litt. Abtlg. S. 105). Heute haben wir das Vergnügen, eine zweite durchaus neue Bearbeitung in italienischer Sprache anzuzeigen, welche viel eher ein neues Werk, als eine neue Auflage darstellt. Der Zweck des Buches ist freilich derselbe geblieben. Herr Gino Loria will seine Leser in den Stand setzen, nicht bloss die Fragen kennen zu lernen, welche sich den Geometern im Laufe der Jahrhunderte darboten, welche insbesondere seit etwa einem Jahrhunderte sich in ungeahnter Weise vermehrten, sondern auch die zahlreichen Versuche, jene Fragen zu beantworten. Kein Reisehandbuch nach Art der Führer will das Werk sein (p. 41, Note), eher ein Fahrplan! Aber, wenn wir bei dem Bilde des Verfassers bleiben sollen, wie viele Zwischenstationen sind seit 1887 neu hinzugekommen, teils wirklich neu entstandene, teils solche, auf welche die Aufmerksamkeit in höherem Grade als früher ge-

lenkt wird! Die Brauchbarkeit eines solchen Werkes ist eine doppelte. Der Leser kann einen Überblick über das Entstehen und Wachsen der geometrischen Methoden gewinnen wollen, er kann wünschen für eine einzelne Frage, welche ihm wichtig ist, Litteraturnachweise zu erhalten. Letzterer Zweck erfordert ein genaues Inhaltsverzeichnis, und ein solches vermissen wir noch. Ein Namensverzeichnis, welches wir für vollständig zu halten allen Grund haben, ist vorhanden, auch eine nach Kapiteln und deren Abschnitten geordnete Angabe der allgemeinsten in ihnen behandelten Gegenstände, aber kein alphabetisches Wortverzeichnis. Wir wissen ganz genau, wie schwierig die Herstellung eines solchen ist, aber wir wissen auch, dass Herr Loria nicht der Mann ist, der vor einer Schwierigkeit zurückschreckt oder zurückzuschrecken braucht. Es hat allen Anschein, dass auch die neue Auflage sich nicht als die letzte erweisen werde; möge Herr Loria schon heute Hand anlegen, unseren Wunsch in der nächsten Auflage befriedigen zu können.

Vorlesungen über die Algebra der Logik (exakte Logik). Von E. Schröder.
Dritter Band: Algebra und Logik der Relative. Erste Abteilung.
Leipzig 1895. VIII und 649.*

Wenn man eine Reihe von natürlichen Zahlen paarweise zusammenstellt und untersucht, ob in einem Paare ij die Zahl i ein Teiler von j ist, so kann man sich von diesem Verhalten eine Übersicht verschaffen, indem man in einem Quadrat die Zeilen und Reihen mit den Zahlen bezeichnet und in den Schnittpunkt der Zeile i mit der Reihe j eine Eins oder eine Null setzt, je nachdem j durch i teilbar ist oder nicht. So entsteht eine "Matrix", von der ein Teil so aussieht:

	1	2	3	4	5	6
1	1	1	. 1	1	1	1
2	0	1	0	1	0	1
3	0	0	1	0	0	1
4	0	0	0	1	0	0
5	0	0	0	0	1	0
6	0	0	0	0	0	1

Diese Matrix nennt Charles S. Peirce, der Schöpfer der in Schröders Buch dargestellten Theorie, ein Relativ. Allgemein kann man sagen: Wenn ein Denkbereich aus einer endlichen Zahl von Elementen besteht, i und j

^{*} Eine Anzeige des ersten Bandes siehe diese Zeitschrift Band 36 Seite 161. Vom zweiten Bande des vorliegenden Werkes ist bis jetzt nur die erste Abteilung erschienen. Wir verschieben daher dessen Anzeige bis er ganz vorliegt.

irgend zwei sind, so vergleicht man sie hinsichtlich einer bestimmten Eigenschaft und bildet dann, nach Analogie des Obigen, eine Matrix, indem man in die Zelle, deren Reihe dem Individuum j und deren Zeile dem i entspricht, Eins oder Null einträgt, je nachdem das Paar ij die betreffende Eigenschaft hat oder nicht. Die so entstehende Matrix ist das zur fraglichen Eigenschaft gehörende Relativ.

Aus einem Relativ a lassen sich andere ableiten. Verfasser bezeichnet mit \overline{a} und nennt das Negat von a das Relativ, welches aus a entsteht, indem man in der Matrix alle Einer durch Nullen und umgekehrt ersetzt; mit \overline{a} , dem Konversen von a, wird das Relativ bezeichnet, welches aus der Matrix von a durch Transposition, das heisst durch Umstürzen um die Hauptdiagonale hervorgeht.

Zwei Relative a und b werden nach Rechengesetzen kombiniert, von denen zwei a+b und ab vom Verfasser als identische Addition und Multiplikation bezeichnet werden. Die entsprechenden Elemente beider Matrices werden bei jener addiert, bei dieser multipliziert, aber nach den Gesetzen, die für die logische Addition und Multiplikation in dem sogenannten identischen Kalkül gelten, wie er von Schröder im ersten Bande seines Werkes gelehrt worden ist. Bezeichnet man die Elemente der Matrix so, wie es bei Determinanten üblich ist, so ist $a_{ij} + b_{ij}$ bezw. $a_{ij}b_{ij}$ das Element von a+b und ab.

Neben diesen Operationen stehen die relativen Operationen, nämlich die relative Addition a + b, ausgesprochen "a piu b", und die relative Multiplikation a; b, gelesen "a von b". Diese Knüpfungen werden gebildet, indem man, ähnlich wie bei der Multiplikation der Determinanten, die Zeilen des einen Relativs mit den Reihen des andern kombiniert. Bei a + b ist das Element gegeben durch

$$\prod_{h} (a_{ih} + b_{hj}) \text{ und bei } a; b \text{ durch } \sum_{h} a_{ih} b_{hj},$$

wo diese Produkte und Summen nach den Regeln des identischen Kalküls auszuwerten sind.

Vier besondere Relative werden durch einfache Zeichen ausgezeichnet. Hat ein Relativ alle Elemente Null, so wird es mit 0, hat es alle Elemente Eins, mit 1 bezeichnet. Mit 0' soll es bezeichnet werden, wenn nur die Diagonale Nullen trägt, alle anderen Elemente aber Eins sind; und 1' ist das Zeichen des Relativs, in dem die Diagonalelemente die einzigen sind, die Einer tragen. Diese vier Relative heissen Moduln.

Einige dieser Rechnungsregeln haben grosse Ähnlichkeit mit den Regeln, die Cayley und Frobenius bei ihren Rechnungen mit Matrices anwenden. Das Schrödersche 1' ist das Frobeniussche E, Schröders a ist dort a', a+b hat bei beiden dieselbe Bedeutung, a; b wird von Frobenius mit ab bezeichnet. Die anderen Operationen kommen bei Frobenius nicht vor, bei dem die Matrices natürlich auch andere Zahlen als 0 und 1 tragen, deren Kombinationen auch nicht nach den Regeln des identischen Kalküls erfolgen.

Auch von der Subsumtion $a \neq b$ wird gesprochen, die durch die Subsumtionen $a_{ij} \neq b_{ij}$ definiert ist.

Die logische Bedeutung von a; b ist die Zusammensetzung. Bezeichnet z. B. a die Relation "i Teiler von j", b die Relation " $i \equiv j \mod 5$ ", so giebt a; b darüber Auskunft, ob i Teiler einer Zahl ist, die $\equiv j \mod 5$ ist.

Die Bildung eines Relatives braucht nicht auf einen Denkbereich mit einer endlichen Zahl von Individuen beschränkt zu werden. Man kann unendlich viele Individuen zulassen, einerlei ob sie abzählbar sind oder nicht, wenn man nur Mittel hat zu entscheiden, ob ein Paar ij von Individuen die Bedingung erfüllt, welche die Bildung des Relatives beherrscht. Freilich hat man es dann mit Relativen zu thun, die sich nur durch ein Quadrat von unendlich vielen Zeilen oder gar nicht graphisch darstellen lassen. Aber auch mit solchen kann man die angegebenen Rechnungen ausführen. Dies ist von Wichtigkeit, weil, wie Schröder zeigt, der Anzahlbegriff sich auf Operationen mit Relativen gründen lässt, ohne dass man einen Zirkel begeht.

Der ausführlichen Untersuchung der Rechenoperationen ist nun das vorliegende Buch Schröders gewidmet, während die Verwendung in der Logik für die zweite Abteilung vorbehalten ist. Die identische Addition und Multiplikation gehorchen dem Kommutations-, dem Assoziations- und dem Distributionsgesetz, wie die Symbole beim identischen (Klassen-)Kalkül. Die relative Addition und Multiplikation sind zwar assoziativ, aber nicht kommutativ, und folgen den Regeln:

$$a;(b+c) = a;b+a;c,$$
 $a \downarrow bc = (a \downarrow b)(a \downarrow c),$
 $a;(b \downarrow c) \neq a;b \downarrow c,$ $ab;c \neq a;b \cdot b:c.$

Was die Klammern hierbei angeht, so bringt Schröder die Operationen in die Ordnung $+ \cdot \cdot$; das heisst identische Addition, relative Addition, identische Multiplikation, relative Multiplikation, und stellt die Regel auf — wie für die gewöhnlichen Rechnungen in seinem Lehrbuche der Arithmetik und Algebra —, dass bei Deutung eines Ausdruckes immer die höhere Operation zuerst auszuführen ist; nur die identische Multiplikation ohne Malzeichen soll der relativen vorausgehen.

Es gelten auch die Beziehungen:

$$\overline{a} = a$$
, $\overline{a} = \overline{a}$, $\overline{a} = a$,
 $ab = \overline{a}b$, $a + b = \overline{a} + \overline{b}$, $a; b = \overline{b}; \overline{a}$, $a + \overline{b} = \overline{b}; \overline{a}$, $\overline{a} + \overline{b} = \overline{a}; \overline{b}; \overline{a}$, $\overline{a} + \overline{b} = \overline{a}; \overline{b}; \overline{a}$

und wenn $a \neq b$, ist $a \neq b$, $\overline{b} \neq \overline{a}$.

Ersetzt man in einer Gleichung oder einer Subsumtion zwischen Relativen alle unbestimmten Relative durch ihre konverse und konvertiert dann beide Seiten, so entsteht eine neue Formel, die zur ersten konjugiert heisst. Indem man ferner, in richtiger Weise, von beiden Formeln die Negationen nimmt, entstehen aus ihnen neue, sodass jede Formel im allgemeinen drei andere liefert.

Speziellerer Formeln giebt es natürlich sehr viele. So ist z. B.:

$$1 = a + \overline{a}, \quad a\overline{a} = 0,$$

$$1' \Leftarrow a + \overline{a}, \quad a\overline{a} \Leftarrow 0',$$

$$1' \Leftarrow a + \overline{a}, \quad a; \overline{a} \Leftarrow 0',$$

$$0 = 0 \cdot a = 0; \quad a = a; \quad 0,$$

$$1 = 1 + a = 1 + a = a + 1,$$

$$a = a \cdot 1 = a + 0 = a; \quad 1' = 1'; \quad a = a + 0' = 0' + a$$
und andere mehr.

Manche Sätze, wie z. B. 0'; 0'=1, gelten nur für Denkbereiche von mehr als zwei Individuen.

Unter den vielen von Peirce und dem Verfasser eingeführten Bezeichnungen wollen wir nur den Namen ausgezeichnete Relative erwähnen, die Schröder solchen Relativen wie 1; a; 1 oder $0 \downarrow a \downarrow 0$ gegeben hat, von denen das erste 1 ist für a = 0 und 0 für a = 0, während das zweite 0 ist für a = 1 und 1 für a = 1. Diese Relative, die schon von Peirce entdeckt wurden, können in manchen Problemen wie die diskontinuierlichen Faktoren der Mathematik verwendet werden.

Wie im identischen Kalkul lässt sich jede Subsumtion $a \neq b$ in die Form der Gleichung $a\overline{b} = 0$ bringen und jedes System von gleichzeitigen Gleichungen $a = 0, b = 0, \ldots$ durch eine Gleichung

$$a+b+c+\cdots=0$$

ersetzen. Der relative Kalkül gestattet aber nicht nur das System der gleichzeitigen Ungleichungen a = 0, b = 0... in der Gleichung:

$$1; a; 1; b \cdots = 1$$

zu vereinigen, sondern auch die Bedingung, dass eine oder die andere der Gleichungen a=0, b=0... oder der Ungleichungen a=0, b=10... gelte, durch die Gleichung:

beziehungsweise die

1;
$$a$$
; 1; b ; $\cdots = 0$
1; $(a + b + c + \cdots)$; $1 = 1$

auszudrücken. Es lassen sich somit alle Daten einer Aussage durch eine einzige Gleichung repräsentieren. Enthält eine solche Gleichung F(x)=0 das unbestimmte Relativ x und gilt sie nicht für jedes x, so bietet sich das Problem, sie nach x aufzulösen. Dies gelingt in manchen Fällen ohne weiteres, in anderen ist die Möglichkeit der Lösung an eine Resultante R=0 geknüpft, ohne deren Erfülltsein die Lösung nicht möglich ist. Es geht so neben jedem Auflösungsproblem eine Eliminationsaufgabe einher. die sich ganz allgemein lösen lässt, wenigstens in Formeln, deren Ausarbeitung freilich meistens nicht leicht ist. Jedenfalls kann man, wenn eine Wurzel a bekannt ist, jede Wurzel, mit Hilfe der Unbestimmten u, durch

$$a\{1; Fu; 1\} + u\{0 + \overline{F}u + 0\}$$

darstellen, wobei für jedes u = x, welches der Gleichung genügt, der Ausdruck = x wird. Die Auffindung einer Wurzel ist aber in den meisten

Fällen nicht leicht. Bei einer Subsumtion $x \neq \varphi(x)$, die sich auch als Gleichung $y = x \varphi(x)$ schreiben lässt, findet Schröder die Auflösung mit Hilfe von unendlichen Operationen. Setzt man nämlich $x \varphi(x) = f(x)$ und iteriert diese Funktion, so ist der Grenzwert $f^{\infty}(u)$ eine Lösung der gegebenen Gleichung. Mindestens gilt dies für einen Denkbereich von endlich vielen Individuen, während bei einem unbegrenzten Denkbereich eigentümliche, nicht ganz überwundene, Schwierigkeiten auftreten, die an ähnliche in der Mathematik erinnern.

Es bietet sich oft die Aufgabe dar, ein Relativ mit den Moduln zu verknüpfen. Um diese Rechnungen zu erleichtern, teilt der Verfasser die Zeilen in fünf Kategorien ein, je nach der Zahl der Einer oder Nullen, die sie tragen. Man kann aus einem Relativ dann andere ableiten, indem man die Zeilen einer oder mehrerer Kategorien mit lauter Einern oder mit lauter Nullen besetzt, oder die Nullen und Einer in ihnen vertauscht. Durch diese "Zeilenabwandlung" entstehen aus einem Relativ a 255 andere, die der Verfasser durch a, \overline{a} und \overline{a} ausdrückt. Durch eine zweckmässige Symbolik lassen sich diese Operationen, die man auch auf Reihen übertragen kann, leicht darstellen.

Im weiteren Verlaufe seines Buches behandelt der Verfasser Gleichungen. Zuerst die Umkehrung der elementaren Operationen; dann Gleichungen, in denen nur zwei Symbole vorkommen, wie z. B. x=x, oder x=x (die nicht lösbar ist); endlich Gleichungen mit drei Symbolen, unter welchen die $a\overline{x}=x$ besonders schwierig ist. Alle in diesem Rahmen möglichen Aufgaben werden vollständig erledigt.

Eine interessante Anwendung der Theorie macht Schröder auf die Dedekindsche Lehre von den Ketten, indem er die Sätze 22-24 und 36-63 der Schrift Dedekinds: "Was sind und was sollen die Zahlen", etwas verallgemeinert, durch Relativoperationen darstellt und beweist. Ein Relativ b heisst "Kette in Bezug auf a" wenn a; $b \neq b$ ist.

Mit den Erklärungen:

$$a_{00} = a + a; a + a; a; a + \cdots$$

 $a_{0} = 1' + a_{00}$

die a_{00} als "a-Bildkette" und a_0 als "a-Kette" definieren, aber den Schluss von n auf n+1 schon voraussetzen, werden zuerst die genannten Sätze durch Rechnung mit Relativen bewiesen. Um aber den Schluss von n auf n+1 zu umgehen, wird dann die a-Kette von b, a_0 ; b, mit Dedekind definiert als dasjenige umfassendste Relativ, welches allen Wurzeln der Subsumtion a; $u+b \in u$ gemeinsam ist; und von dieser Erklärung aus werden nun jene Theoreme bewiesen, die in dem Satze gipfeln, dass aus $b \notin c$ und a; $(a_0; b)c \notin c$ die Subsumtion $a_0; b \notin c$ folgt, von welchem Satze die vollständige Induktion ein besonderer Fall ist. Schröder vereinfacht dann die Kettentheorie, indem er a_0 definiert als das grösste Relativ, welches allen Wurzeln der Gleichung 1'+a; $u \notin u$ gemeinsam ist.

Die Theorie muss hierbei durch den Satz ergänzt werden, dass aus $a; b \neq b$ die Subsumtion

 $a; (b \downarrow \overleftarrow{b}) \neq b \downarrow \overleftarrow{b}$

folge. Die als das Produkt a_0 ; b zu definierende a-Kette von b genügt dann den Dedekindschen Festsetzungen.

Ein Relativ, dessen Matrix die Zeile mit Einern besetzt hat, welche dem Individuum i entspricht, sonst aber nur Nullen trägt, wird man mit i bezeichnen können. Das Rechnen mit diesen "Einzeilern" und den verwandten Relativen i, i, \overline{i} ist weiter Gegenstand von Schröders Forschungen. Neben dieses spezielle Relativ tritt das "Einauge", i:j, das einen einzigen Einer trägt in der Schnittstelle der Zeile i mit der Reihe j. Als Einzeiler ist x durch die Gleichung:

als Einauge durch
$$1' + \overline{x}; 1 = x, \\ 1' + \overline{x} + 1' = x; 1 + 1; x$$

vollständig charakterisiert. Die Regeln für die Rechnung mit solchen Relativen werden ausführlich erörtert. Dabei zeigt sich, dass, wenn die Individuen i und j in der Beziehung stehen, die durch ein Relativ a gegeben ist, zwischen den Einzeilern i,j, dem Einauge i:j und dem a die Subsumtionen gelten: $i \neq a; j, \quad i:j=ij \neq a$.

Ein "System" ist ein Relativ, in dem stets alle Elemente der nämlichen Zeile gleich sind; für ein solches Relativ ist die Gleichung a; 1=a bezeichnend. Auch \overline{a} ist dann ein System und die identische Summe, wie das identische Produkt von zwei Systemen ist wieder ein System. Ein System erscheint als die identische Summe von Einzeilern, von denen jeder ein Element des Denkbereichs darstellt. Durch ein solches Relativ wird also aus dem Denkbereich ein "System" von Individuen herausgehoben.

Diesen Untersuchungen folgen Studien über Eliminationsprobleme, worin Schröder teils Arbeiten von Peirce näher erörtert und in seiner Zeichensprache reproduziert, teils auch eigene Methoden angiebt, um die bei Eliminationen nötigen Summen- und Produktbildungen zu erleichtern.

Das letzte, zwölfte, Kapitel des Buches ist der Theorie der Abbildung gewidmet. Wenn man aus einem System b mit Hilfe eines Relativs a ein neues System a; b bildet, so kann dies als a-Bild von b bezeichnet werden. Man kann einer Abbildung vier Bedingungen, einzeln oder zusammen, auflegen, nämlich: Dass sie stets einen Sinn habe, nie mehrdeutig sei, dass die durch a vermittelte Abbildung nie undeutig oder nie mehrdeutig sei. Diese Bedingungen drücken sich beziehungsweise durch die Subsumtionen:

$$1' \notin \check{a}; a, \quad a; \check{a} \notin 1', \quad 1' \notin a; \check{a}, \quad \check{a}; a \notin 1'$$

aus. Durch Kombination dieser vier Bedingungen ergeben sich 15 Typen von Abbildungen, die in neun Haupttypen zerfallen. Zwei Relative a' und a'' vom nämlichen Typus liefern in a'; a''; b eine Abbildung von demselben Typus.

Erfüllt ein Relativ x die erste und zweite Bedingung, so heisst es "Funktion von —" oder "Bild von —" (im engsten Sinne des Wortes) und wird durch die Gleichung $1' \ddagger \overline{x} = x$ definiert. Das Relativ x, das der dritten und vierten Bedingung genügt, heisst "Argument" oder "Objekt von —". Eines, das die Gleichungen

$$x; \breve{x} = 1' = \breve{x}; x$$

erfüllt, genügt aber vier Bedingungen und heisst "Substitution". Man kann, wie Verfasser zeigt, Relative, die die eine oder andere dieser Bedingungen erfüllen, als Funktionen eines unbestimmten Relativs finden. Die Übereinstimmung des hier aufgestellten Begriffs einer Substitution mit dem gewöhnlichen wird eingehend dargelegt.

Zwei Systeme a und b heissen nach Cantor und Dedekind "gleichmächtig" oder "ähnlich" $(a \bowtie b)$, wenn sie sich gegenseitig eindeutig aufeinander abbilden lassen. Schröder stellt diese Aussage in mehreren Formen dar, deren einfachste ist, dass ein Relativ z existiert, für das

$$b = z; a, a = \widecheck{z}; b, z \in \widecheck{a}b, z; \widecheck{z} + \widecheck{z}; z \in 1'$$

ist. Diese Definition gestattet eine Anzahl Dedekindscher Sätze zu beweisen, ohne dass man nötig hat, auf die Individuen zurückzugehen, die die Systeme konstituieren. Die Aufgabe, die sich hieran schliesst, die Bedingung $a \bowtie b$ durch Gleichungen auszudrücken, die nur die Symbole a und b enthalten, lässt sich bis jetzt bloss in den einfachsten Fällen lösen, wo die Denkbereiche wenige Individuen enthalten. Sieht man davon ab, dass die Abbildung gegenseitig eindeutig sein soll, so giebt die Untersuchung des Verfassers die Subsumtion $a \neq 1$; b als Bedingung, und wenn diese erfüllt ist, ist die Abbildung stets möglich. Auch die Sätze Dedekinds über diese Abbildungsart werden vom Verfasser durch Rechnung bewiesen.

Der unermüdliche Fleiss und der grosse Scharfsinn, mit dem Schröder es verstanden hat, die an sich schwierigen und durch häufigen Wechsel der Bezeichnungen fast unverständlichen Ideen von Peirce aus dessen Abhandlungen herauszuziehen und in einem lesbaren Buche darzustellen, verdient hohe Anerkennung. Er hat auch an sehr vielen Stellen Eigenes zu der Theorie beigetragen, um sie auszugestalten und abzurunden. Wenn man sich die wenigen Rechnungsregeln zu eigen gemacht hat, ist es auch nicht schwierig, die Rechnungen in dem Buche zu verfolgen, da sie meistens sehr ausführlich gegeben sind, so dass auch der wenig Geübte sich von der Richtigkeit überzeugen kann.

Referent ist der Ansicht, dass die Auffindung von Problemen, die nicht ad hoc gemacht sind, sondern sich sozusagen in der Natur vorfinden, und durch logische Rechnung, sei es mit dem identischen oder dem Relativ-kalkul, leichter gelöst werden können, als auf gewöhnlichem Wege, eine Lebensfrage für diese ganze Disziplin ist. Wenn dies gelänge, so würde ein solcher Erfolg die Theorie nicht nur den Mathematikern und Logikern viel annehmbarer erscheinen lassen, sondern auch wesentlich zu

ihrer Ausgestaltung beitragen. Denn die Behandlang der Aufgaben würde lehren, was in der Theorie als unwesentlich auszuscheiden und was weiter zu entwickeln wäre. Vielleicht bringt die zweite Abteilung des dritten Bandes des Schröderschen Werkes, die hoffentlich bald erscheint, solche Probleme.

J. Lüroth.

Julius Plückers gesammelte wissenschaftliche Abhandlungen. Im Auftrage der königl. Gesellschaft der Wissenschaften zu Göttingen herausgegeben von A. Schoenflies und Fr. Pockels. I. Mathematische Abhandlungen. Herausgegeben von A. Schoenflies. Leipzig 1895. B. G. Teubner. XXXV und 620 S.

Die Geometer werden es mit Freude begrüssen, dass sich den Klassikerausgaben von Poncelet, Möbius, Steiner und Grassmann nun auch die von Plücker zugesellt.

Denn die Leistungen Plückers beherrschen nicht nur die moderne Geometrie, sondern auch auf manche Gebiete der Analysis haben seine grundlegenden Ideen fruchtbar eingewirkt, es sei etwa nur an die Theorie der partiellen Differentialgleichungen erinnert und an die Rolle, welche der "Wechsel des Raumelementes" daselbst spielt.

Der Inhalt des vorliegenden Bandes umfasst die mathematischen Abhandlungen Plückers; voraus geht die bekannte Gedächtnisrede von Clebsch, während den Schluss (zirka 30 Seiten) Anmerkungen des Herausgebers bilden. Die Aufgabe des letzteren war keine leichte, da die Originaldrucke an mannigfachen Druckfehlern und Ungenauigkeiten leiden. Herr Schoenflies hat eine Art Mittelweg eingeschlagen; bei geringfügigen und äusserlichen Fehlern hat er den Text ohne weitere Angabe korrigiert, die bedenklicheren Stellen sind je nachdem unverändert abgedruckt oder verbessert, in beiden Fällen aber in den Anmerkungen einer Erörterung unterzogen worden.

Die Anmerkungen enthalten aber noch mehr, sie bieten eine Fülle ergänzender und aufklärender historischer Hinweise, für die der Leser nicht dankbar genug sein kann. So hat der berühmte Streit zwischen Poncelet und Gergonne über das Prinzip der Dualität eine eingehende Würdigung erfahren, unter Wiedergabe der wichtigsten Originalbelege; vielfach wird darauf hingewiesen, in welchem Verhältnis eine Abhandlung zu den selbstständig erschienenen Schriften Plückers steht; ferner wird gezeigt, wie sich der Gedanke der Dreieckskoordinaten fast gleichzeitig bei Bobillier, Möbius und Plücker entwickelt hat u. s. f.

Plücker war einer der Schriftsteller, denen eine zu grosse Gedankenfülle nicht immer Muße lässt zu einer präzisen und einwandfreien Darstellung, von einzelnen Irrtümern ganz abgesehen. So hat es sich denn der Herausgeber ganz besondere Mühe kosten lassen, alle irgendwie zweiselhaften Stellen zu kommentieren. In einigen Punkten wird vielleicht der Leser, wie nicht anders zu erwarten ist, anderer Meinung sein.

Referent will sich hier auf eine einzige Stelle beschränken, die ihm besonderes Interesse darzubieten scheint.

Es handelt sich um den höheren Kontakt zweier algebraischen Flächen. Plücker betrachtet unter anderen eine vorgelegte Fläche dritter Ordnung F_* , und fragt nach den Bedingungen, unter denen eine unbekannte Fläche zweiter Ordnung F_2 in einem gegebenen Punkte P der F_3 einen Kontakt dritter Ordnung mit der F, hat. Das (rechtwinklige) Koordinatensystem wird so gelegt, das P der Anfangspunkt und die xy-Ebene gemeinsame Tangentialebene ist. Dann ergeben sich schliesslich zwei Bedingungsgleichungen für die Koeffizienten der F3, die nach Plücker aussagen, dass - bei ihrem Erfülltsein - zwei Gerade durch P hindurchgehen, die ganz auf der F, liegen. Wenn nun der Herausgeber gegen Plücker einwendet: "Diese beiden Gleichungen sind nicht Bedingungsgleichungen für die Fläche dritter Ordnung, sondern vielmehr Bedingungsgleichungen für die Lage des Koordinatensystemes . . . ", so scheint er damit doch Plücker Gewalt anzuthun. Denn P ist ja eben ein festgegeben gedachter Punkt der Fs, wie stets in der ganzen Abhandlung bei ähnlichen Aufgaben. Hätte Plücker den weiteren Schritt gethan, und P als gesuchten Punkt der F₈ aufgefasst, so würde er, 20 Jahre vor Salmon und Cayley, zur Existenz der 27 Geraden der F3 gelangt sein.

W. FR. MEYER.

Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten geradliniger Einheiten in elementarer Form entwickelt. Von G. Veronese. Mit Genehmigung des Verfassers und nach einer neuen Bearbeitung des Originals übersetzt von A. Schepp. Leipzig 1894. B. G. Teubner. XLVI und 710 S.

Das vorliegende Werk ist eines der eingehendsten und zugleich merkwürdigsten von den bisher über die Grundlagen der Geometrie erschienenen. Die Vorrede, in der der Verfasser, wie er sagt, einen Rechenschaftsbericht über seine Auffassungsmethode und Ergebnisse erstattet, umfasst 34 Seiten; der Einleitung "über die abstrakten mathematischen Formen" ist ein gutes Drittel des Buches gewidmet. Der Hauptstoff nimmt fast 400 Seiten ein; er zerlegt sich in zwei Teile, von denen der erste der Reihe nach die Gerade, die Ebene und den Raum von drei Dimensionen, der zweite den Raum von vier und mehr Dimensionen behandelt. Ein Anhang enthält eine wertvolle historisch-kritische Studie über die Prinzipien der Geometrie nebst einigen weiteren Noten. Wichtiger als diese Äusserlichkeiten ist die Thatsache, dass der Verfasser sich bemüht hat, die sämtlichen Begriffe, deren er für den Aufbau seines Systemes benötigt, bis auf die ersten logischen Quellen zurück zu verfolgen.

Der Verfasser tritt von vornherein der weit verbreiteten Anschauung entgegen, als ob die abstrakten oder numerischen Mannigfaltigkeiten von n Dimensionen mit den eigentlich sogenannten geometrischen Räumen vertauscht werden dürften, und als ob man diese Räume nur mittels der

Analysis sicher behandeln könne. Das Buch verfolgt gerade das Ziel, die Geometrie der Räume von mehr als drei Dimensionen als reine Wissenschaft vollkommen analog derjenigen der Ebene und des gewöhnlichen Raumes zu entwickeln, so zwar, dass die Geometrie von mehr als drei Dimensionen von ihren Anwendungen auf den gewöhnlichen Raum unabhängig erscheint.

Um dies deutlicher zu machen, sei gleich betont, wie der Verfasser auf konstruktivem Wege der Reihe nach die Räume von 2, 3,... Dimensionen aus Punkt und Gerade, die ihm die einzigen unabhängigen Raumelemente sind, aufbaut. Nachdem einmal die Begriffe von Punkt und Gerade festgelegt sind, wird ein weiterer Punkt P ausserhalb der Geraden als existierend angenommen, und nun entsteht die Ebene, kurz gesagt, als das Büschel von Strahlen, die P mit den Punkten der Geraden verbinden, entsprechend der gewöhnliche Raum als Strahlbündel u. s. f.

Auf ähnliche Weise hat man in der That in neuerer Zeit eine rein geometrische Theorie der Kurven und Flächen n^{ter} Ordnung und ihrer Polargebilde geschaffen.

Sehen wir zunächst von den Einwänden ab, die fragen, ob die auf diese Art konstruierten Räume wirklich die Gesamtheit aller Euklidischen und Nicht-Euklidischen Räume erschöpfen, so lag jedenfalls für den Verfasser die Hauptschwierigkeit darin, geeignete Definitionen für den Punkt und für die Gerade, als einen gewissen Inbegriff von Punkten, aufzustellen.

Beiden Begriffen liegt der der "abstrakten mathematischen Form" als allgemeines Denkschema zu Grunde: Man hat darunter die geistigen Gegenstände zu verstehen, deren Merkmale das Ganze, die Teile, die Ordnung und die Art der Position sind (S. 18); der eingehendsten Diskussion dieser Formen und ihrer Verknüpfungen ist eben die umfassende Einleitung gewidmet.

Mehrere Dinge der "Ordnung" nachdenken, heisst das eine nach dem anderen denken (S. 8), die Dinge heissen dann das erste, zweite, dritte u. s. f. Von der Position wird nur gesagt: "Wenn zwei Dinge verschieden sind, so können wir, auch wenn sie identisch sind, von ihnen sagen, sie hätten eine verschiedene "Position" (S. 5).

Wegen der Unbestimmtheit, die hierin für manchen noch liegen möchte, führen wir ein Beispiel mit den Worten des Verfassers an: "Nachdem die Vorstellung A gesetzt ist, wiederhole ich die Vorstellung A und dann wieder die Vorstellung A. Wenn man die während jeder Wiederholung verflossene Zeit in Betracht zieht, so erhält man ein in dem Begriff einfacher Reihenfolge und Ordnung nicht enthaltenes Positionsverhältnis, da die während der ersten Wiederholung verflossene Zeit von der während der zweiten verflossenen verschieden sein kann" (S. 18).

Unter "Grundelement" wird allgemein eine beliebige gegebene erste Form, unter "Grundelementen" alle mit jener identischen Formen verstanden; ihre Verschiedenheit ist dann eben durch die Position gegeben (S. 58). Für die Geometrie ist nun das Grundelement der "Punkt". Der Begriff des Punktes wird uns durch in Wirklichkeit ausser uns in der äusseren

Umgebung existierende Gegenstände geliefert, z. B. durch das Ende eines Fadens. Abstrahiert man von seinen physischen Eigenschaften, so erweckt das Ende des Fadens in uns die Vorstellung von demjenigen, was wir als Grundelement ansehen, oder von dem Punkt. Alle Punkte sind identisch.

Aus den Grundelementen werden nun "Systeme einer Dimension" aufgebaut, denen man noch die Beschränkung auferlegen kann, "homogen" zu sein, das ist im wesentlichen, sich in gleichartige Teile ("Segmente") zerlegen zu lassen (S. 71, 72).

Hierbei ist unter System einer Dimension die durch eine beliebige Reihe von Elementen und die umgekehrte Reihe gegebene Form, deren Ordnung von einem beliebigen ihrer Elemente an gegebenes Merkmal der Form ist; jeder Teil des Systemes, der wenigstens zwei verschiedene Elemente enthält, heisst Segment des Systemes.

Ist überdies ein solches homogenes System einer Dimension, von einem gegebenen Element desselben aus, nach beiderlei Richtung identisch, so wird es ein "in der Lage seiner Teile identisches System" genannt. Für ein derartiges System wird schliesslich auch der Stetigkeitsbegriff eingeführt, der ziemlich verwickelter Natur ist. Es genüge die Andeutung, dass sich der Verfasser hierin gedanklich der bekannten Dedekindschen Schnittdefinition anschliesst, nur dass ihm eben nicht die Gesamtheit der rationalen Punkte zu Gebote steht und er genötigt ist, durch abstrakte Umschmelzung von Anschauungsmomenten dafür logische Merkmale allgemeiner Art zu substituieren.

Nach diesen Erklärungen sind wir zur Not im stande, das zu erklären, was der Verfasser unter "Gerade" versteht: "Es giebt ein in der Position seiner Teile identisches Punktesystem einer Dimension, welches durch zwei seiner Punkte, die verschieden sind, bestimmt ist und stetig ist." "Dieses System heisst gerade Linie."

Nunmehr wir bis zu diesem Fundament der Theorie vorgedrungen sind, sei es gestattet, über die bisher aufgeführten Festsetzungen einiges zu bemerken.

Man erkennt bald, dass der wichtigste der angeführten Begriffe der der Position ist. Gehören Ganzes und Teile der reinen Logik an, ist die "Ordnung" die Grundlage der Arithmetik, so soll die "Position" das spezifisch-geometrische Element abgeben, ja man könnte geradezu im Sinne des Verfassers die Geometrie (im unendlichen Gebiete) als Lehre von der Position auffassen. Da sollte man erwarten, dass ein so bedeutungsvoller Begriff scharf festgelegt wird, dass sein Umfang genau abgegrenzt wird, dass gezeigt wird, wie die Geometrie je nach der stufenweisen Entwickelung dieses Begriffes verschiedene Stadien durchläuft u. s. f. Der Verfasser begnügt sich aber mit einer rein negativen Definition, wonach die Position als ein gemischtes Etwas erscheint, das bei einem geometrischen Gebilde ausser "Ganzes, Teile und Ordnung" noch existiert, führt zur Erläuterung nur einige wenige Beispiele an, und gebraucht je nach seinen Zwecken den Begriff in grösserer oder geringerer Ausdehnung. Hätte der Ver-

fasser ausser der Geraden (und dem Kreise) noch andere Kurven betrachtet, so wäre er genötigt gewesen, positive Lagerungsgesetze für die Punkte bestimmter Kurven anzugeben; für die Gerade reicht sein Positionsbegriff eben hin, da auch diese in negativer Weise festgelegt wird, als ein Gebilde, dem der grösste Teil der Eigenschaften irgend einer krummen Linie nicht zukommt.

So hat denn freilich der Verfasser den bekannten Standpunkt Euklids überwunden (wonach die Gerade durch die überhaupt nicht definierte Gleichförmigkeit beziehentlich ihrer Punkte erklärt wird), aber der Leser erhält nicht die Überzeugung der Existenz seiner "Geraden." Hier greift auch ein Einwand ein, den W. Killing in einer (unten zitierten) Arbeit macht: der Verfasser betrachte immer nur die Gerade (und entsprechend weiterhin die Ebene u. s. f.) als solche, unabhängig von ihrer Lage im Raume; Beispiele, die v. Helmholtz und er (Killing) gefunden hätten, zeigten aber, wie eine Gerade oder eine Ebene für sich definierbar sei, die doch niemals Grenzgebilde einer nächst höheren Mannigfaltigkeit sein könne.

Da im Unendlichen der Positionsbegriff überhaupt versagt, so setzt der Verfasser hier mit arithmetischen Hilfsmitteln ein. Diese Hilfsmittel sind sozusagen zweischneidiger Natur; neben dem Unbegrenzten, das im wesentlichen von denselben Gesetzen beherrscht wird, wie das Endliche selbst, führt er als toto genere aliud das absolut oder aktual Unendliche ein: umgekehrt, indem er von einer unbegrenzten respektive absolut-unendlichen Einheit ausgeht, gelangt er entsprechend zu zwei Arten von Stetigkeit, der relativen und der absoluten.

Der Erfolg ist freilich zunächst ein weittragender: indem die gemeinten Begriffe dem Parallelismus zu Grunde gelegt werden, wird nicht nur der Inhalt der Geometrie ein reicherer, sondern der Verfasser ist unter anderem nicht genötigt, mit Euklid die Lehre von den parallelen Geraden in der (vorher festgelegten) Ebene zu studieren, vielmehr kann er den umgekehrten Weg einschlagen und so Sätze logisch beweisen, die sonst auf die Anschauung zurückgeführt werden. Noch mehr, der Verfasser ist z. B. im stande, zwei Gebiete verschiedener Dimension punktweise eindeutig und stetig aufeinander zu beziehen, während bisher die Stetigkeit hierbei preisgegeben werden musste.

Es wird aber wohl nur wenige Leser geben, die davon überzeugt würen, warum die Cantorschen transfiniten Zahlen — die doch gerade auf seinem Wege lagen — für den Verfasser unannehmbar gewesen seien, und dass seine aktual unendlichen Zahlen Existenzberechtigung haben. Herr Cantor hat sich denn auch neuerdings (Math. Ann. 46) scharf gegen den Verfasser gewandt und ihm vorgeworfen, dass seine grundlegende Definition der Gleichheit zweier Zahlen (S. 31) einen Zirkel enthalte, insofern sie eben diesen Begriff bereits involviere.

Der Referent begnügt sich, da er sonst Gefahr laufen würde, selbst ein Buch zu schreiben, mit diesen wenigen Hindeutungen, und verweist den Leser auf das Werk selbst, auf die erwähnten Arbeiten von Killing, Cantor, sowie auf eine vortreffliche Besprechung von Schönflies (Göttinger Anzeiger 1895).

Trotz der Einwände, die schon gemacht sind und noch in Aussicht stehen — die der Verfasser sicher nicht unbeantwortet lassen wird* — sei aber doch betont, dass das vorliegende Werk, ganz abgesehen von der bewunderungswürdigen Systematik des Ganzen, im einzelnen soviel des Eigenartigen und Neuen aufweist, dass die Geometer nicht umhin können werden, sich ernstlich damit abzufinden. Sollte es sich auch als notwendig erweisen, einzelne Teile des kühnen Bauwerks von Herrn Veronese umzugestalten oder auch ganz herauszunehmen, so ist die Möglichkeit nicht ausgeschlossen, dass trotzdem der Charakter des Ganzen, die möglichste Auflösung der Anschauungsmomente in ihre logischen Urelemente erhalten bleibt.

Besondere Anerkennung verdient es noch, dass der Verfasser wohl kaum eine Arbeit eines anderen Forschers, die in seine Materie irgendwie eingreift, unbeachtet gelassen hat, und dass er dieser erdrückenden Mannigfaltigkeit von Richtungen gegenüber stets seine Selbständigkeit wahrt.

Die Übersetzung ist eine treue, vielfach zu treue. W. Fr. MEYER.

Bemerkungen über Veroneses transfinite Zahlen. Von W. Killing. Programm der Akademie. Münster 1895. Bredt. 11 S.

Siehe das voraufgehende Referat.

W. FR. MEYER.

Geometricals Conics by F. S. MACAULAY, M. A. Assistant Master at St. Paul's School. At the University Press. Cambridge 1895.

Der Inhalt dieses Buches bildet eine Ableitung der Eigenschaften der Kegelschnitte auf elementar-geometrischem Wege. Als Definition derselben dient das konstante Verhältnis des Abstandes eines Punktes von Brennpunkt und Leitlinie. Der Verfasser meint, dass über die beste Anordnung dieses Gebietes die Ansichten verschieden sind. Das ist wohl richtig, aber gegen die hier befolgte Anordnung liesse sich doch sehr viel einwenden. Nachdem er zunächst eine Darstellung der Grundeigenschaften der Kegelschnitte gegeben hat, unterbricht er dieselbe, um eine Zusammenstellung von Definitionen zu geben, die für den Leser zunächst unverständlich sind. Dass sie dort unpassend sind, sieht er selbst ein, da er dem Studierenden empfiehlt, dieselben zunächst auszulassen. Wäre es daher nicht praktischer, diese Zusammenstellung an den Schluss des Buches zu setzen? Hierauf folgt eine Erörterung über Maßeinheiten und über die unendlich ferne Gerade, welche besser der Betrachtung über die Kegelschnitte hätte vorausgeschickt werden können. Ein sich besonders häufig bemerkbar machender Fehler ist es, dass der Verfasser zu wiederholten Malen auf Sätze Bezug nimmt, die erst später bewiesen werden. So benutzt er z. B. Kapitel 1 den erst in Kapitel 9 bewiesenen Satz, dass der Schnitt eines geraden Kreiskegels mit einer Ebene mit dem auf oben angegebene Weise definierten Kegelschnitt übereinstimmt.

^{*} Eine solche Antwort ist inzwischen in den Mathem. Annalen Bd. 47 erschienen, worauf alsbald eine Gegenantwort von Killing (ebenda Bd. 48) erfolgt ist.

Wenig gründlich sind auch die Erörterungen über Stetigkeit in Kapitel 10, in dem sich der Verfasser mit Allgemeinheiten behilft, die bei einer strengen Beweisführung nicht verwendbar sind. So sagt er: "A varying magnitude generally, but not invariably, changes sign from positive to negative, or negative to positive, when it passes through a zero value; and the same happens when it passes through an infinite value" und bemerkt hierzu: "It is in fact evident, indepedently of any illustration of the law, that a varying magnitude must in general change sign, when it passes through a zero value, viz, from positive to negative if decreasing, and from negative to positive if increasing." Der Inhalt des Buches ist sehr reichhaltig; um nicht zu weitläufig zu werden, so sei nur die ziemlich ausführliche Behandlung konfokaler Kegelschnitte erwähnt. Das letzte Kapitel enthält die projektivischen Punktreihen und Strahlenbüschel, sowie die Darstellung der Kegelschnitte mit Hilfe derselben. Eine grosse Anzahl von Aufgaben bietet reichen Stoff zu Übungen dar. MAX MEYER.

Ebene Geometrie von G. Mahler, Professor der Mathematik am Gymnasium in Ulm. Mit 115 zweifarbigen Figuren. Stuttgart 1895. G. J. Göschensche Verlagshandlung.

Das vorliegende Werk enthält die wichtigsten Sätze des behandelten Gebietes. Von den meisten anderen Lehrbüchern unterscheidet es sich durch die zum Beweise verwandten Hilfsmittel, Drehung eines Teiles der Figur um eine Axe oder einen Punkt und die damit zusammenhängenden Begriffe der axialen und zentralen Symmetrie. Ob der Schüler sich leicht mit diesen vertraut machen wird, lässt sich nur durch längere Versuche entscheiden. Schon ein Blick auf die Figuren bei den Kongruenzsätzen zeigt, dass hier Schwierigkeiten zu überwinden sind. Allerdings werden dieselben durch die praktische Ausführung der Figuren verringert, da die Hilfslinien rot eingezeichnet sind und sich hierdurch deutlich von den anderen abheben. Auch eine hinreichende Anzahl von Übungsbeispielen ist vorhanden; vielleicht wäre es wünschenswerter, dass manches aus dem Übungsstoff in den eigentlichen Lehrteil herübergenommen wird, wo man es bei den meisten anderen Lehrbüchern zu finden gewohnt ist.

MAX MEYER.

Der logische Algorithmus in seinem Wesen, in seiner Anwendung uud in seiner philosophischen Bedeutung. Von Joseph Hontheim, S. J. Berlin 1895. Verlag von Felix L. Dames.

Der Zweck dieser kleinen Schrift ist, die Grundzüge desjenigen Gebietes auseinander zu setzen, welches sonst unter dem Namen "Algebra der Logik" oder "Logischer Kalkül" bekannt ist. Dieser Zweig der Wissenschaft macht es sich zur Aufgabe, die logischen Operationen auf ein rechnerisches Schema zurückzuführen. Der Verfasser giebt nun keine erschöpfende

Darstellung des ganzen Gebietes, bereichert dasselbe aber durch mancherlei beachtenswerte Vereinfachungen. Die Darstellung ist im allgemeinen übersichtlich, wenn auch manche Beweise etwas kurz ausgefallen sind. Wohlthuend wirkt besonders die Mässigung, mit welcher der Verfasser die Bedeutung des Gegenstandes beurteilt. Mit Recht hebt er hervor, dass der "Logische Algorithmus" nicht die gewöhnliche Logik verdrängen, sondern sich derselben nur als Hilfsmittel nutzbar machen soll. Da die deutsche Litteratur über dieses Gebiet nicht allzu reichlich und es nicht jedermanns Sache ist, ein so umfangreiches Werk wie das von Schröder durchzuarbeiten, so kann man das Erscheinen dieser Abhandlung nur willkommen heissen.

MAX MEYER.

Die Grundlehren der ebenen Trigonometrie. Ein Leitfaden für den Unterricht mit Übungsaufgaben von Jos. Lengauer, Professor am königl. alten Gymnasium zu Würzburg. Kempten 1895. Verlag der Jos. Köselschen Buchhandlung.

Dieses Lehrbuch der Trigonometrie ist mit Rücksicht auf die Lehrpläne der bayerischen Gymnasien entstanden. Infolgedessen hat sich der Verfasser nur auf das für diesen Zweck Notwendige beschränkt, wohingegen die Übungsaufgaben eine reichliche Auswahl darbieten. Die Darstellung ist klar und dem Verständnis des Schülers angemessen. Was die Anordnung des Lehrstoffes betrifft, so werden im ersten Abschnitt die trigonometrischen Funktionen spitzer Winkel erläutert, dem sich im zweiten die Trigonometrie des rechtwinkligen Dreiecks anschliesst. Der dritte Abschnitt behandelt die Goniometrie, der vierte die Trigonometrie des schiefwinkligen Dreiecks.

Max Meyer.

Zur Konstruktion des Schwerpunktes einer ebenen Vielecksfläche.

Beilage zum Jahresberichte des Gymnasiums Schaffhausen für 1894/95.

Von Dr. Julius Gysel, Direktor des Gymnasiums. Schaffhausen,

Buchdruckerei von Bolli & Böcherer.

Zieht man in einem Dreieck durch die Ecken Parallele zu den gegenüberliegenden Seiten, so entsteht ein dem ursprünglichen ähnliches Dreieck, und die Verbindungslinien der Ecken desselben mit entsprechenden Dreiecksecken schneiden sich im Schwerpunkt. Diese Konstruktion lässt sich ohne Anwendung des Zirkels mit Hilfe des Lineals und Winkeldreieckes ausführen. Herr Edmond Henry hat eine mit denselben Hilfsmitteln ausführbare Konstruktion für das Viereck geliefert, und Verfasser vorliegender Abhandlung stellt sich die Aufgabe, eine derartige Konstruktion für ein beliebiges Vieleck zu finden. Er giebt für dieselbe drei Lösungen, von denen die dritte eine Kombination der ersten und zweiten ist.

MAX MEYER.

Leçons sur l'intégration des équations différentielles de la Mécanique et applications par P. Painlevé, Maitre de conférences à la faculté des sciences de Paris. Paris 1895. Librairie scientifique A. Hermann.

Der Verfasser hat sich zur Aufgabe gemacht, die Integrationsmethoden von Lagrange, Poisson, Hamilton, Jacobi etc. in Bezug auf die in der Mechanik gebräuchlichen Gleichungen auseinander zu setzen. Den Mittelpunkt der Entwickelungen bilden die Gleichungen von Lagrange in der Form: $d \in \partial T \setminus \partial T$

 $\frac{d}{dt}\left(\frac{\partial T}{\partial q'_{j}}\right) - \frac{\partial T}{\partial q_{j}} = Q_{j}$

und besonders werden die Integrationsmethoden von Jacobi behandelt. Gelegentlich werden auch die Untersuchungen neuerer Forscher, wie z. B. eine Arbeit des Herrn Staeckel berücksichtigt und auch auf die Untersuchungen des Herrn Lie wird die Aufmerksamkeit gelenkt. Wie schon aus dieser Inhaltsangabe hervorgeht, ist das Werk kein eigentliches Lehrbuch der Mechanik, sondern es setzt im Gegenteil bei dem Leser eine sichere Kenntnis der mechanischen Grundlagen voraus, denn die kurze Behandlung einiger Sätze der Mechanik in den ersten Lektionen kann nur als Repetition dienen. Wenn der Studierende über die notwendigen Vorkenntnisse verfügt, so wird ihm die Durcharbeitung dieses Werkes gewiss von grossem Nutzen sein, besonders da zu den einzelnen Sätzen zahlreiche und interessante Beispiele gegeben werden. Störend machen sich nur die vielen Druckfehler bemerkbar.

Max Meyer.

Bibliographie

vom 26. November 1896 bis 28. Januar 1897.

Periodische Schriften. Denkschriften der kaiserl. Akademie der Wissenschaften. Mathem.-naturw. geb. M. 78. Klasse. 63. Band. Wien, Gerolds Sohn. Mitteilungen aus d. mech. - tech. Laborator. d. kgl. techn. Hochsch. München. Gegr. v. J. BAUSCHINGER. N.F. Hsg.v. Aug. Föppl. 24.H. Münch., Ackermann. M. 12. Arbeiten, astronom. geodätische. Veröffentlichung der königl. bayer. Kommission für die internationale Erdmessung. 1. Heft. München, Franz. Beobachtungen, deutsche überseeische meteorologische. Gesammelt u. herausgeg. von d. deutschen Seewarte. VII. Heft. Hamburg, Friederichsen & Co. M. 7. Fortschritte, die, der Physik im Jahre 1895. Dargestellt von der physikal. Gesellsch. zu Berlin. 51. Jahrg., 3. Abt. Braunschw., Vieweg & Sohn. M. 25. Sitzungsberichte, Münch. Mathem. Klasse. 1896. 2. Hft. München, Franz. M. 1. 20. Sitzungsberichte, Wiener. Mathem.-naturw. Klasse 1. Abteil. 105. Band. 5. — 7. Heft. Wien, Gerolds Sohn. Bulletin de l'académie impériale des sciences de St. Pétersbourg. 5. série, t. V, Nr. 1-3. Leipzig, Voss' Sort. in Kommission. à M. 2. 50. Fortschritte der Physik im Jahre 1895. Dargestellt von der physikal. Gesellschaft zu Berlin. 51. Jahrg., 2. Abt. Braunschweig, Vieweg & Sohn. 2. Physik des Äthers. Redigiert von RICH. BÖRNSTEIN. JÄGER, G., Wetter-u. Mondkalender für 1897. 3. Jahrg. Stuttgart, Kohlhammer.

Digitized by GOOM -. 30.

Geschichte der Mathematik und Physik.

Poggendorff's Handwörterbuch zur Geschichte der exakten Wissenschaften.

3. Band, 2.—6. Lieferung. Leipzig, Barth.

à M. 3.

Reine Mathematik.

- ZIMMERMANN, LUDW., Rechentafeln. Gr. Ausgabe. Liebenwerda, Reiss. geb. M. 5.

 ——, Tafeln für die Teilung der Dreiecke, Vierecke und Polygone. 2. Aufl.
 Liebenwerda, Reiss. geb. M. 4.
- , Die gemeinen oder Briggischen Logarithmen der natürlichen Zahlen 1—10009 auf vier Dezimalstellen, nebst einer Produktentafel, einer Quadrattafel, einer Tafel z. Berechnung d. Kathete u. Hypotenuse u. z. Bestimmung d. Wurzeln aus quadr. Gleichungen. Liebenwerda, Reiss. M.—. 50.
- CARDA, KARL, Elementare Bestimmung d. Punkttransformationen d. Raumes, welche alle Flächeninhalte invariant lassen. Wien, Gerolds Sohn. M.—. 10.
- Kröger, M., Die Planimetrie in ausführlicher Darstellung und mit besond.
 Berücksichtigung neuerer Theorien. Nebst einem Anhang über Kegelschnitte. Hamburg, Meissner.
 M. 8.
- LÖWENBERG, GEO., Lehrbuch d. Mathematik. Zum Selbststudium und für den Unterricht in Prima der höheren Lehranstalten, vermittelnd den Übergang vom Schulpensum z. Universitätsstudium. Leipzig, Arnd. M.4.50.
- MÜLLER-BERTOSSA, J. Aug., Anleitung zum Rechnen mit dem logarithm. Rechenschieber. 2. Aufl. Zürich, Raustein. M. 1. 80.
- TRAUB, K., Berechnung der Radien der acht Berührungskreise beim Apollonischen Problem. Lahr, Schauenburg. M.—. 50.
- STEINER, JAC., Systematische Entwickelung der Abhängigkeit geometrischer Gestalten von einander. Herausgeg. von A. J. von Oertingen. Zwei Teile (Ostw. Klass. Nr. 82 u. 83). Leipzig, Engelmann. 1. Teil: M. 2, 2. Teil: 2. 40.
- LIEBER, H., und v. LÜHMANN, F., Leitfaden d. Elementar-Mathematik. 1. u 3.T.

 1. Planimetrie. Einführ. in d. Trigonometr., Körperberechn. 12. Aufl. M. 1. 50.

 3. Erweiterung d. Planimetr., eb. Trigonometr., Stereometr., sphär. Trigono
 - metrie, Grundl. v. d. Koordin. u. Kegelschn. 8. Aufl. Berlin, Simion. M. 1. 80.
- DAUBLEBSKY V. STERNECK, R., Zur additiven Erzeugung der ganzen Zahlen. Wien, Gerolds Sohn. M. -. 50.
- FRICKE, ROB., Hauptsätze d. Differential u. Integralrechn., als Leitf. z. Gebrauch b. Vorlesungen zusammengestellt. 1. Teil. Braunschw., Vieweg & Sohn. M. 2.
- GUNDELFINGER, S., Taf z. Berechn. d. reellen Wurzeln sämtl. trinom. Gleichungen. Hinzugef. sind 4 stell. Additions-, Subtrakt.- u. Briggische Logarithm., sowie eine Interpolationstaf. f. a. Diff. unt. Hundert. Leipzig, B. G. Teubner. M. 1. 40.
- MERTENS, F., Üb. die Transcendenz d. Zahlen e u. π . Wien, Gerolds Sohn. M.—. 40. Schlesinger, Ludw., Handbuch der Theorie d. linearen Differentialgleichungen.
- 2. Band, 1. Teil. Leipzig, B. G. Teubner. M. 18. SERRET, J.-A., Lehrbuch d. Different. u. Integralrechn. Deutsch bearb. von Axel Harnack. 2. Aufl v. G. Bohlmann. 1. Bd. Different. Leipz, B. G. Teubner M. 10.
- GIRNOT, MART., Raumlehre für Baugewerkschulen und verwandte gewerbliche Lehranstalten. 2. Teil: Körperlehre. Leipzig, B. G. Teubner. Kart. M. 1.

Angewandte Mathematik.

Hesky, Carl, Einf. Objekte des Bau- u Maschinenfaches, Vorlagen für das angew. geometr. Zeichnen. 3. Aufl. (in 4 Lfg.) 1. Lfg. Wien, Gräser. M. 6. 25.

HILLEBRAND, CARL, Über den Einfluss der Elastizität auf die Schwankungen der Polhöhe. Wien, Gerolds Sohn. M. 1. 60. MANDL, Jul., Darstellung d. scheinbaren Beleuchtung krummer Flächen (direkte Konstruktion der Isophengen). Wien, Gerolds Sohn. GAUSS, F. G., Die Teilung d. Grundstücke insb. unt. Zugrlg. rechtw. Koord. Nebst 4 stell.logar.u.trigon. Taf. u. e. Quadratt. 3. Aufl. Berlin, v. Decker. geb. M. 6. Gysin, J., Peripheriew.-Taf. in a. Teilung (Sexagesimal-Teilg.) z. Abst. v. Eisenb.u. Strassenkurven f. Bogenlängen von 1-900 m und 1-100 cm von Radius 50 bis Rad. 10,000. 2. (Tit.-) Aufl. Liestal (1885), Gebr. Lüdin. geb M. 2. 30. -, Tafeln z. Abstecken von Eisenb. - u. Strassenk. in neuer Teilg. (Zentesimal-Teilung). 2. (Tit.-) Aufl. Liestal (1885), Gebr. Lüdin. geb. M. 4. 50. Jentzen, Ed., Flächen- u. Körperberechn. nebst vielen Beisp. z. prakt. Gebrauch für Bau- und Maschinentechniker 2. Aufl. Weimar, Vogt. HASENOEHRL, FRITZ, Ein mechanisch. Polycykel als Analogon der Induktionswirkungen beliebig vieler Kreisströme. Wien, Gerolds Sohn. M.-.. 40. Résultats, les, de la triangul. de la Suisse. Publication du bureau topogr. fédéral. 1. livr. Canton de Genève 1896. Bern, Schmid & Francke. ROSENMUND, M., Unters. üb. d. Anwend. des photogrammetr. Verfahrens f. topogr. Aufnahm. Ber. a. d. eidg. topogr. Bureau. Bern, Schmid & Francke. M. 1. 60. OEHLER, E., Graphische Tafeln zur Querschnittbestimmung von Holz- und Eisenkonstruktionen. Strassburg, Heinrich. geb. M. 3

Physik und Meteorologie. Lodge, Oliver J., Neueste Ansch. üb. Elektrizität. Übers. v. Anna v. Helmholtz u. Estelle du Bois-Reymond. Hrsg. d. R. Wachsmuth. Leipzig, Barth. M. 10. KERNTLER, FRZ., Die elektrodynamischen Grundgesetze und das eigentliche Elementargesetz. Budapest II, Selbstverlag. ZIEGLER JUL., u. KÖNIG, WALT., Das Klima von Frankf. a. M. Das. Könitzer. M. 6. Polis, P., Über wissensch. Ballonfahrten u. deren Bedeut. f. d. Phys d. Atmosph. Vortr. Hrsg.v d. naturw. Ges. Aachen, Aachen, Meteor. Stat. I. Ord. M. 1. 40. JÄGER, GUST., Zur Theorie d. Zustandsgl. d. Gase. Wien, Gerolds Sohn. M.—. 50. Helmholtz, H., Theorie d. Luftschwingungen i. Röhren m. offenen Enden (1859). Hrsg. v. A. Wangerin (Ostwalds Klassik. Nr. 80). Leipzig, Engelmann. M. 2. FARADAY, MICH., Experim.-Unters. üb. Elektr. (Aus den Philos. Transact. f. 1832.) Hrsg.v. A.J. Oettingen. (Ostw. Klass. Nr. 81.) Leipzig, Engelmann. M 1. 50. FALB, Rud., Neue Wetterprognosen und Kalender der kritischen Tage für 1897. Januar bis Juni. Berlin, Steinitz. FÖPPL, A., Die Geom. d. Wirbelfelder. In Anlehn. an d. Buch d. Verf. über d. Maxw. Theorie der Elektr. u zu dessen Ergänzung. Leipzig, B. G. Teubner. M. 3. 60. Indra, Alois, Über d. Bestimmung d. Temperatur einer veränderl. Wärmequelle in einer bestimmt gegebenen Zeit. Wien, Gerolds Sohn. M.—. 40. Keller, H., Üb d Urstoff u. seine Energie. 1. Teil. Leipzig, B. G. Teubner. M. 2 KORN, ARTH., Theorie d. Gravit. u d. elektr. Ersch. auf Grundl. d Hydrod. 2 Aufl. 2. Tl. Theor. d. elektr. Ersch. 1. Abschn. Ponder. Wirk. Berl., Dümmler. M. 2. 50. MÜLLER, P. A., Über die Temperatur und Verdunstung der Schneeoberfläche und die Feuchtigkeit in ihrer Nähe. Leipzig, Voss. Neudrucke von Schriften und Karten über Meteorol. u. Erdmagnetismus. Hrsg. von G. Hellmann. Nr. 7-9. Berlin, Asher & Co. WILD, H., Verbess. Konstrukt. magn. Unifilar-Theodolithe Leipzig, Voss. M. 11.

Historisch-litterarische Abteilung.

Internationaler Mathematiker-Kongress in Zürich 1897.

Wie bekannt sein wird, ist die Frage eines internationalen Mathematiker-Kongresses seit längerer Zeit Gegenstand lebhafter Verhandlungen seitens der Fachgenossen. Im Hinblick auf die Erfolge, welche durch internationale Verständigung auf andern Wissensgebieten erzielt worden sind, wurde die Wünschbarkeit einer internationalen Vereinigung auch der Mathematiker von allen, die sich mit der Frage beschäftigen, einmütig betont. Nachdem auf Grund mannigfacher mündlicher und schriftlicher Korrespondenzen das Projekt eine festere Gestalt anzunehmen begonnen hatte und auch die Ortsfrage wiederholt in Erwägung gezogen worden war, wurde es allgemein als zweckmässig bezeichnet, dass der erste Versuch von einem Lande ausgehen möchte, das durch seine Lage, seine Verhältnisse und durch seine Tradition zur Anbahnung internationaler Beziehungen besonders geeignet sei. So richteten sich denn bald die Blicke nach der Schweiz und insbesondere nach Zürich.

Obwohl sich die Züricher Mathematiker keineswegs die Schwierigkeit des Unternehmens verhehlten, glaubten sie doch, im Interesse der Sache die Anregungen, die ihnen von den verschiedensten Seiten her zugegangen waren, nicht von der Hand weisen zu dürfen. Sie erklärten sich daher gerne bereit, die erforderlichen Vorbereitungen zur Einberufung eines internationalen Mathematiker-Kongresses zu übernehmen und, soweit es an ihnen liege, das Unternehmen nach Kräften zu fördern. Mathematiker anderer Nationen schlossen sich ihnen an, und so trat das unterzeichnete internationale Komitee zusammen, mit der Aufgabe, für das Jahr 1897 in Zürich eine Zusammenkunft der Mathematiker aller Länder der Erde zu veranstalten.

Der Kongress, an welchem teilzunehmen alle Mathematiker von dem Komitee ergebenst eingeladen werden, soll in Zürich am 9., 10. und 11. August 1897 in den Räumen des eidgenössischen Polytechnikums

stattfinden. Das Komitee wird nicht verfehlen, rechtzeitig das genauere Arbeitsprogramm vorzulegen und sich alsdann die Zusage zur Beteiligung an dem Kongresse zu erbitten. Immerhin darf schon jetzt darauf hingewiesen werden, dass naturgemäss die wissenschaftlichen und die geschäftlichen Verhandlungen sich vorzugsweise um solche Fragen gruppieren werden, die ein allgemeineres Interesse besitzen und denen eine prinzipielle Bedeutung innewohnt.

Die Bedeutung wissenschaftlicher Kongresse beruht aber nicht minder auch auf der Pflege persönlicher Beziehungen. Das Lokalkomitee wird es sich angelegen sein lassen, auch dieser Seite des zu veranstaltenden Kongresses seine Aufmerksamkeit zuzuwenden und durch Entwerfung eines bescheidenen Festprogrammes Rechnung zu tragen.

Mögen die Erwartungen, welche sich an diese erste internationale Mathematikervereinigung knüpfen, in Erfüllung gehen! Möge eine zahlreiche Beteiligung die wissenschaftlichen und persönlichen Beziehungen der Fachgenossen fördern im Interesse gemeinsamer Arbeit und des Fortschrittes der mathematischen Wissenschaft!

H. Bleuler, Präsident des schweiz. Schulrates, Zürich.

H. Burkhardt, Prof. an der Universität Zürich. L. Cremona, Prof. in Rom. G. Dumas, Assistent am eidg. Polytechnikum Zürich. J. Franel, Prof. am eidg. Polytechnikum Zürich. C.F. Geiser, Prof. am eidg. Polytechnikum Zürich. A. Co. Greenhill, Prof. in Woolwich A. Hersog, Direktor des eidg. Polytechnikums Zürich. G.W. Hill, Prof. in West-Nyack (U.S.A.). A. Hurwitz, Prof. am eidg. Polytechnikum Zürich. F. Klein, Prof. in Göttingen. A. Markoff, Prof. in Petersburg. F. Mertens, Prof. in Wien. H. Minkowski, Prof. am eidg. Polytechnikum Zürich. G. Mittag-Leffler, Prof. in Stockholm. G. Oltramare, Prof. in Genf. H. Poincaré, Prof. in Paris. J. Rebstein, Assistent am eidg. Polytechnikum Zürich. F. Rudio, Prof. am eidg. Polytechnikum Zürich. K. Vondermühll, Prof. in Basel. F. H. Weber, Prof. am eidg. Polytechnikum Zürich.

(Korrespondenzen in Angelegenheiten des Kongresses sind an Prof. Geiser, Küsnacht-Zürich zu richten.)

Rezensionen.

Abriss des geometrischen Kalküls. Nach den Werken Grassmanns bearbeitet von Ferd. Kraft, Privatdozent an der Universität Zürich. Leipzig 1893. B. G. Teubner. XII und 255 S.

Die Einleitung (16 S.) entwickelt im Anschluss an Grassmanns A_1 hauptsächlich die wichtigsten Sätze aus der "allgemeinen Formenlehre", die sich damit befasst, die Gesetze aufzustellen, die allen mathematischen Operationen oder gewissen Klassen derselben gemeinsam sind.

Das erste Kapitel (46 S.) behandelt die geometrische Addition der Vektoren und die Summation der Punktgrössen. Die Auffassung der Zusammensetzung von Vektoren als Addition derselben wird hierbei in bekannter Weise motiviert; nicht so bei den Punktgrössen. Denn ein Satz wie "Weil Gleiches zu Gleichem addiert Gleiches giebt, so wird die Summe der Punktgrössen eines Punktvereins eine gewisse Punktgrösse sein" (S. 36) kann doch höchstens als argumentum ad hominem gelten, ist übrigens nicht richtig, wenn die Summe der Gewichte der Punktgrössen Null ist (der Verfasser unterscheidet sonst zwischen Punktgrössen und Strecken). Es hätte sich auch hier bei dieser fundamentalen Angelegenheit des § 8 empfohlen, auf die leitenden Gedanken Grassmanns (A, § 94-96) zurückzugehen, damit dem Leser Einführungen wie A = A + R - R nicht bloss als formale Kunstgriffe erscheinen. Es folgen einige einfache Anwendungen, z. B. die Bestimmung eines Polygons ungerader Seitenanzahl aus den Mittelpunkten der Seiten, der Satz von Desargues über perspektive Dreiecke, harmonische Teilung der Diagonalen eines vollständigen Vierseits.

Das zweite Kapitel (7 S.) behandelt in engem Anschluss an die einfachsten Teile des betreffenden Abschnitts in Schlegels "System der Raumlehre, I." die Anwendung der imaginären Einheit als Drehungsfaktor in der Ebene.

Das dritte Kapitel (30 S.) entwickelt die Theorie der äusseren Produkte, sowohl von Strecken als von Punkten nebst einigen Anwendungen (z. B. Gleichungen der Geraden und der Ebene in der einfachsten Form, Beweis des Satzes, dass die Mittelpunkte der drei Diagonalen eines vollständigen Vierseits in einer Geraden liegen).

Im vierten Kapitel (129 S.) wird der Begriff der Ergänzung eingeführt und der des inneren Produktes als des (äusseren) Produktes eines Faktors

in die Ergänzung des zweiten. Alle damit zusammenhängenden Rechnungen werden gesondert für Strecken und Punktgrössen und für die Systeme der verschiedenen Stufen durchgeführt und Anwendungen eingeflochten (Kreisgleichung, Beweis des Satzes von Euler über drei merkwürdige Punkte des Dreiecks in gerader Linie, die Grundformeln der sphärischen Trigonometrie). Die Theorie der gemischten Produkte wird soweit entwickelt, um damit die projektive Erzeugung der Kurven zweiter Ordnung und zweiter Klasse, der Regelflächen zweiter Ordnung und den Satz von Pascal behandeln zu können. Die Reduktion von Linienteilen (Kräften) auf verschiedene einfachste Formen wird durchgeführt. Schliesslich werden die einfachsten Determinantensätze aus der Theorie der Multiplikation der aus n Einheiten gebildeten Zahlen abgeleitet.

Das letzte Kapitel (27 S.) behandelt anhangsweise die Elemente der Quaternionenlehre, anfänglich den Ideen Grassmanns folgend ("Der Ort der Hamiltonschen Quaternionen in der Ausdehnungslehre", Math. Ann. XII), später auch mit Benützung der Werke Hamiltons.

Manche Stellen lassen auf flüchtige Stilisierung schliessen, so auf S. 74 der Satz: "Besteht zwischen ihnen (zwei Spatheckflächen) die Gleichung $\alpha\beta=m\gamma\delta$, dann fragt es sich, unter welchen Verhältnissen diese Gleichung richtig ist"; ferner der gesperrt gedruckte Satz auf S. 46. Im § 7, letzter Absatz, wird der Ausdruck "Abweichung eines Punktes B von einem Punkte A" gebraucht, ohne vorher definiert worden zu sein.

Es kommen aber auch mehrere wirkliche Fehler vor, von denen wir einige Proben zur Charakterisierung des Buches mitteilen müssen: Auf S. 42 oben wird irrtümlich behauptet, dass von drei Grössen ersten Grades, zwischen denen eine Zahlbeziehung besteht, zwei Strecken sein können, die dritte geltendes Gewicht haben kann. Ein ähnlicher Fehler findet sich am Schluss des folgenden § 10. — Die Ableitung der Gleichung 3) auf S. 129 ist ganz unbefriedigend; der Verfasser hätte nach seiner Methode ebensogut die Gleichung 1) links mit ε_1 statt mit ε_2 multiplizieren können und dann die Forderung $\varepsilon_1 \varepsilon = 0$ bekommen. Für die gemischten Produkte, die hier auftreten, gilt eben nicht mehr das associative Gesetz. — Auf S. 140 wird aus den Gleichungen:

$$(\alpha - \beta) | (\gamma - \delta) = 0,$$

$$(\beta' - \alpha') | (\gamma - \delta) = 0$$

geschlossen, dass die Strecken $\alpha-\beta$ und $\beta'-\alpha'$ parallel sind, was auf die Behauptung hinauskommt, dass zwei Strecken im Raum parallel sind, wenn sie auf derselben dritten senkrecht stehn(!). In der That ist der folgende Satz: "Die Kanten der Pyramide über den Fusspunkten der Höhenstrecken sind parallel zu den gegenüberliegenden Kanten des Tetraeders" sogar für die in Rede stehenden speziellen Tetraeder falsch, deren Höhen sich in einem Punkte schneiden.

Der Verfasser hat also keinen Grund gehabt, durch den selbstgefälligen Ton der Vorrede, in der manche benützten Quellen zwar nebenher genannt

aber nicht als solche bezeichnet sind, die Erwartungen der Leser höher zu spannen und ihre Kritik herauszufordern. Z. B. sagt er: "An diesen Grundriss sollen sich in Bälde kleinere Lehrbücher für die höhere Geometrie und die theoretische Mechanik fügen, ... denn erst dann kann die Tragweite der Schöpfung Grassmanns in weiteren Kreisen in richtiger Weise erfasst werden." Auch wenn der Verfasser billigen Anforderungen an Korrektheit genügt hätte (um von Forderungen positiver Vorzüge nicht zu reden), so käme er doch als alleiniger Apostel Grassmanns zu spät. Dies zeigt nicht nur das lange Litteratur-Verzeichnis, das Schlegel vor kurzem in dieser Zeitschrift veröffentlicht hat ("Die Grassmannsche Ausdehnungslehre"), sondern auch der Umstand, dass die Ausdehnungslehre und verwandte Gebiete nicht nur von den berufsmässigen Vertretern der Mathematik, sondern auch von Physikern gekannt und gewürdigt werden (siehe Föppls Einführung in die Maxwellsche Theorie der Elektrizität) und zwar in weiterem Umfange, als sie durch Krafts Buch geboten werden, das ja die Infinitesimalgeometrie der Ausdehnungslehre nicht mehr behandelt.

KONRAD ZINDLER.

Didaktik und Methodik des Rechnen-, Mathematik- und Physik-Unterrichts* von Dr. Max Simon, Professor am Lyceum in Strassburg und Dr. J. Kiessling, Professor an der Gelehrtenschule des Johanneums in Hamburg. Sonderausgabe aus Dr. A. Baumeisters "Handbuch der Erziehungs- und Unterrichtslehre für höhere Schulen." München 1895. C. H. Becksche Verlagsbuchhandlung (Oskar Beck).

Das Werk besteht aus zwei voneinander völlig unabhängigen Teilen: der erste umfangreichere Teil (128 S.), bearbeitet von dem zuerst genannten, durch seine Elemente der Arithmetik und Geometrie wohlbekannten Verfasser, handelt vom Unterricht in Rechnen und Mathematik, der zweite Teil (73 S.) ist dem Unterricht in Physik gewidmet. Es liegt in der Natur der behandelten Gegenstände, dass der Leser in manchen Punkten eine von den entwickelten Ansichten bald mehr, bald weniger abweichende, in Einzelheiten auch wohl die gerade entgegengesetzte Ansicht hat, doch wird man im allgemeinen den beiden Herren Verfassern beistimmen. "Die Darstellung beansprucht keineswegs Vorschriften aufzustellen, wie es gemacht werden soll, sondern sucht nur zu zeigen, wie es gemacht werden kann, und in einzelnen Fällen, wie es trotz langjähriger Tradition nicht gemacht werden darf" (II. Teil S. 3). Das ganze aus reicher Erfahrung und gründlichem Studium hervorgegangene Werk bietet in didaktischer und methodischer Hinsicht viele Anregung und Belehrung, dazu eine reiche Fülle von Litteraturangaben, so dass jeder Anfänger in unserem Lehrfache das Buch gründlich studieren sollte, vielleicht würde die Lektüre desselben auch

^{*} So der Titel; die sprachlich richtige Form: "Didaktik und Methodik des Unterrichts in Rechnen, Mathematik und Physik" findet sich auf der letzten Seite des Buches.

manchem älteren Lehrer von Nutzen sein, und einige Kapitel mehr allgemeineren Inhaltes dürften auch für den Nichtmathematiker Interesse haben. Als ich das Buch gelesen hatte, kam mir folgende Stelle aus A. W. Hofmanns trefflicher "Einleitung in die moderne Chemie" in den Sinn: "Es führen der Wege viele in ein unbekanntes Land, und die langgestreckte Grenze kann an zahllosen Punkten überschritten werden. Allein nicht alle Strassen sind gleichgebahnt, nicht alle Übergänge mit derselben Leichtigkeit zu bewerkstelligen. Von dem Führer, der uns begleitet, erwarten wir, dass er uns kurze und sichere Wege zeige, auf denen wir nebenbei des Anziehenden sehen, des Nützlichen lernen." Ja, als ein solcher weges- und landeskundiger Führer wird sich das vortreffliche, inhaltsreiche Buch gewiss erweisen, das wohl verdiente, Kapitel für Kapitel besprochen zu werden, wie es ursprünglich beabsichtigt war, doch dazu wäre ein Vielfaches des hier zur Verfügung stehenden Raumes nötig gewesen. Es muss sich daher diese Besprechung darauf beschränken, nur ganz wenige Punkte herauszugreifen, um daran einige Bemerkungen anzuschliessen.

Im dritten Kapitel, "der Rechenunterricht", sagt der Verfasser (S. 44), dass die Bezeichnung entgegengesetzte Grössen richtiger ist als negative. Die dafür gebrachte Begründung wird nicht jeder Leser anerkennen. Die negativen Zahlen bilden den Gegensatz zu den positiven, aber auch umgekehrt; jede der beiden Klassen von Zahlen ist der andern entgegengesetzt. Daher ist die bis jetzt gebräuchliche Bezeichnung mindestens so zutreffend wie die vom Verfasser bevorzugte.

Im sechsten Kapitel heisst es (S. 72): "Übrigens ist die geometrische Anschauung keineswegs rein räumliche, die Zeit spielt mit hinein, schon um die Figur aufzufassen (zu durchlaufen) brauchen wir Zeit." Wenn wir auch Zeit brauchen, um eine Figur aufzufassen, so hat doch die Zeit mit der fertigen geometrischen Anschauung nichts zu thun. Hiermit sei verglichen, was Herr Simon S. 39 sagt: "Was die Zeit betrifft, so brauchen wir zum Zählen allerdings Zeit, aber sehr richtig sagt Michaelis: (über Kants Zahlbegriff, Charlottenschule, Berlin 1884)" ""Sowenig die Nadel, die das Kleid genäht hat, ein Teil des fertigen Gewandes ist, ebensowenig ist die Zeit, die zum Zählen gehört, ein Element des fertigen Zahlbegriffes.""

So wichtig auch der Grenzbegriff ist, so wird derselbe doch an manchen Stellen zu stark betont, z. B. im Abschnitt über den Winkel, dem wohl nur wenige Leser zustimmen werden. Mag auch der Weg, auf welchem Herr Simon die Schüler in den Winkel einführen will, an sich recht schön erscheinen, so werden doch wohl nur wenige die angegebene Definition aufnehmen: "Der Winkel wird demzufolge definiert als die Grenze des Kreissektors bei fortwährend und über jedes Maß wachsendem Radius" (S. 83). Der Verfasser schreibt selbst seiner Auffassung den Vorzug zu, dass sie die beiden Hauptanschauungen: die Bertrandsche (Flächengrösse) und die Tribantsche (Drehungsgrösse) vereinige (— natürlich —, weil dies schon vorher in den Kreis hineingelegt wurde). Der Kreissektor ist nun aber eine ringsum geschlossene Figur; zu ihm gehört der Kreisbogen genau

so gut wie die beiden Radien, es muss der Bogen ebenso scharf angeschaut und klar aufgefasst werden wie die Radien. Daher lässt sich der Winkel auch nicht durch den Kreissektor definieren.

Bezüglich der Differentialrechnung heisst es S. 108: "Will der Lehrer Differential rechnung treiben, so hindere man ihn nicht, vorausgesetzt, dass er das Notwendige absolviert hat." Wenn mit "dem Notwendigen" alles das bezeichnet wird, was der Verfasser angegeben hat, und wenn unter "absolvieren" verstanden wird, dass das Angegebene gründlich durchgearbeitet, also nicht bloss einmal besprochen wird, so wird es wohl zur Differentialrechnung wenig kommen, und das ist auch nicht zu bedauern. Um von der Differentialrechnung ein Stück in solchem Umfang und solcher Tiefe durchzunehmen, dass wirklich die Bezeichnung Differentialrechnung berechtigt ist, bedarf es so vieler Stunden, als wohl nie dafür zur Verfügung stehen. Schon an sich scheint mir das Pensum, wie es Herr Simon skizziert, reichlich bemessen zu sein, und wohl nur bei einem sogenannten guten Jahrgang wird man alles in gehöriger Tiefe verarbeiten können, vorausgesetzt, dass sich der Lehrer mit der ganzen Klasse beschäftigt und nicht bloss mit einigen wenigen, die sich besonders für mathematische Dinge interessieren.

Von den trefflichen Ausführungen des zweiten der Physik gewidmeten Teiles sei besonders hervorgehoben, was der Verfasser über Lehrapparat (Ausarbeitung eines Experimentierbuches), dogmatische Behandlungsweise, Stellung der Hypothese im Unterricht und das Verhältnis des physikalischen zum mathematischen Unterricht sagt. Dagegen dürfte die S. 16 mitgeteilte, auf drei Semester berechnete Stoffauswahl für die Unterstufe nach dem Vorschlage von Börner wohl zum Widerspruch reizen. Dieselbe enthält viel zu viel und steht mehrfach den vom Verfasser selbst aufgestellten oder gebilligten Grundsätzen entgegen. In elf Stunden soll z. B. aus der Warmelehre durchgenommen werden: "Ausdehnung, Thermometer, unregelmässige Ausdehnung des Wassers, Schmelzen und Erstarren, Auflösen (Krystallbildung), Verdunsten, Verdampfen, Verdichten, Abhängigkeit des Siedepunktes vom Druck. Dampfstrahlpumpe, Dampfmaschine (Gaskraftmaschine). - Wärmeleitung, Wärmestrahlung (Nachweis, dass dunkle Wärmestrahlen dieselben Gesetze befolgen wie die Lichtstrahlen. Abhängigkeit der Absorption von der Oberfläche). - Quellen der Wärme (Reibung, Zusammendrücken von Gasen)." Selbst, wenn der Lehrer alles genau vorbereitet und iede Minute ausnützt, dürfte es sehr schwer fallen, wenn nicht unmöglich sein, das alles in elf Stunden "in ausreichender Weise zu erledigen", wie dies S. 17 hingestellt wird.

Das letzte Kapitel enthält "Bemerkungen zu den einzelnen Erscheinungsgebieten." Dieselben beziehen sich nach dem Ausspruch des Verfassers auf solche Punkte, deren Erledigung beim Unterricht dem Verständnis Schwierigkeiten mannigfaltigster Art bereitet, oder deren landläufige Behandlungsweise sich als unzweckmässig erwiesen hat. Gerade durch diese Bemerkungen hat sich der Verfasser, der teils eigene, teils fremde, in Zeitschriften zer-

streute Ansichten bringt, ein grosses Verdienst erworben, woran auch dann nichts geändert wird, wenn sich dieser oder jener Leser in wenigen Einzelheiten zum Widerspruch veranlasst sieht.

MÜLLER.

Ad. Meyer, Lacrebog i Algebra. Kjøbenhavn 1895. Lehmann & Stages Forlag.

Das vorliegende Buch hat als ein in dänischer Sprache geschriebenes elementares Lehrbuch der Algebra für den deutschen Studierenden kein direktes Interesse; es erscheint demnach hier nur eine kurze Angabe der Stellung und des Umfangs des Buches angezeigt.

Der Herr Verfasser hat sein Buch für den vorbereitenden mathematischen Unterricht an den polytechnischen Lehranstalten bestimmt. Dementsprechend wird ein tieferes Eingehen auf Stetigkeit und Grenzbegriff gemieden, in der Gleichungstheorie bleiben die modernen gruppentheoretischen Entwickelungen natürlich ganz ausserhalb, und auch der arithmetische Abschnitt bringt nur die ersten Elemente. Solche Stellen, an denen der Verfasser dem Bestreben nach tiefer gehender Begründung nachgegeben hat, sind durch kleineren Druck kenntlich gemacht. In letzterer Hinsicht finden wir eine an die Cantorschen Methoden sich anlehnende Theorie der irrationalen Zahlen, eine genauere Theorie der Potenzen mit irrationalen Exponenten; auch zahlreiche Entwickelungen des algebraischen Teils, so die Theoreme von Budan und Sturm, Entwickelungen über Interpolationsrechnung, über Eliminationstheorie u.s. w. sind in der genannten Art als für das erste Studium nicht in Betracht kommend gekennzeichnet.

Der ganze Stoff ist in drei Abschnitte angeordnet. Beim ersten passt indessen die Überschrift (Lehre von den irrationalen Grössen) nicht recht; denn hier werden auch ein paar Grundbegriffe, die Funktionen betreffend, entwickelt, die ersten Grundsätze über Logarithmen werden gegeben, und ein kurzer Abriss über Rentenrechnung wird dargeboten. Die Überschrift des zweiten Abschnitts (Lehre von den Gleichungen) trifft besser. Übrigens ist befremdend, dass gegenüber den reichlichen Ausführungen über binomische Gleichungen, sowie Gleichungen höheren Grades mit mehreren Unbekannten nirgends der direkten Auflösungsmethoden der Gleichungen dritten und vierten Grades gedacht wird. Der dritte Abschnitt hat überhaupt keine gemeinsame Überschrift. Derselbe ist den Elementen der Zahlentheorie gewidmet; vorausgeschickt werden einige Bemerkungen über arithmetische und geometrische Reihen.

Die Darstellung erscheint im einzelnen klar angeordnet, und das Buch ist für das einführende Studium wohl geeignet.

E. Pascal, Teoria delle funzioni ellittiche. Milano 1896. U. Hoepli. Preis 1,50 Lire.

Dieses Buch ist aus Vorlesungen hervorgegangen, welche der Herr Verfasser an der Universität zu Pavia im Laufe der beiden verflossenen

Jahre gehalten hat. Es handelt sich im wesentlichen um eine Theorie der doppeltperiodischen Funktionen, wobei als Eingang der Weg gewählt wird, welchen Jacobi in seiner "Theorie der elliptischen Funktionen, aus den Eigenschaften der 3-Reihen abgeleitet" eröffnet hat. Dementsprechend steht die Behandlung der 3-Funktionen und der Jacobischen Funktionen sn, cn, dn voran. Doch werden im Anschluss hieran die Weierstrassschen Funktionen $\sigma(u)$, p(u), p'(u) mit gleicher Ausführlichkeit behandelt. Herr Pascal ist als Kenner der modernen Funktionentheorie und namentlich ihrer invariantentheoretischen Seite bestens bekannt. Diese Richtung kommt auch im vorliegenden Buche mehrfach zum Ausdruck, namentlich in den letzten Kapiteln, welche von den elliptischen Integralen und von der invariantentheoretischen Darstellung der Funktionen o, p, etc. unter Zugrundelegung einer allgemeinen binären biquadratischen Form handeln. Übrigens nehmen sich diese beiden Kapitel im Vergleich zu den vier ersten (über die Funktionen ϑ , $sn, \ldots \sigma$, p, \ldots) mehr nur als ein Anhang aus. algebraische Fundament der Theorie tritt überall zurück, Riemannsche Vorstellungen werden nicht entwickelt, was natürlich einen weit grösseren Raum beansprucht haben würde. Sachlich liegen die Entwickelungen lange fest, nur dass vielleicht hier und da infolge der gewählten Disposition eine geringe Abweichung von dem sonst Herkömmlichen geboten schien. macht der Herr Verfasser beim Übergang von der Funktion 0, zu o Gebrauch von den Nullwerten auch der zweiten und dritten Ableitungen der 3-Funktionen, der durch D symbolisch bezeichnete invariante Prozess wird transcendent definiert (gegenüber der algebraischen Definition Halphens) und dergleichen mehr. Innerhalb der gesteckten Grenzen bringt der Verfasser in knapper präziser Darstellung stets das Wesentlichste des Gegenstandes. Die äussere Form des Buches ist rühmenswert; es ist in Taschenformat klar und übersichtlich gedruckt und hat einen Umfang von 27 Seiten.

FRICKE.

- C. G. J. Jacobi, Über die vierfach periodischen Funktionen zweier Variabeln (1834).
- A. Göpel, Entwurf einer Theorie der Abelschen Transcendenten erster Ordnung (1847).
- G. Rosenhain, Abhandlung über die Funktionen zweier Variablen mit vier Perioden (1851). Herausgegeben unter Nr. 64, 67, 65 in der Ostwaldschen Sammlung der Klassiker der exakten Wissenschaften von H. Weber, übersetzt aus dem Lateinischen bez. Französischen durch A. Witting. Leipzig 1895. Engelmann.

Den bisher in die Ostwaldsche Sammlung aufgenommenen mathematischen Untersuchungen reihen sich nun auch die drei berühmten in der Überschrift genannten Abhandlungen an, welche dem klassischen Schatze der Funktionentheorie angehören. Handelt es sich doch hier um drei epochemachende Arbeiten in der Begründung der vor — Riemannschen Theorie

der Abelschen Funktionen. Die Herren Weber und Witting haben in dankenswerter Umsicht die Neuausgaben der fraglichen drei Abhandlungen besorgt, und zumal hat ersterer durch eine Reihe wertvoller Anmerkungen den Text ergänzt und erläutert. So ist der Jacobischen Abhandlung eine längere Note über die neuere Geschichte der Frage nach den mehr- als—doppeltperiodischen Funktionen einer Variabeln angefügt. Riemann hat in dieser Frage besonders aufklärend gewirkt; neben ihm ist es namentlich Casorati, welcher dem Gegenstande mehrere Untersuchungen widmete. Der zweiten Abhandlung sind auch die biographischen Mitteilungen Jacobis und Crelles über die interessante Persönlichkeit Göpels angefügt.

Die Fortführung des Ostwaldschen Unternehmens auch für die Mathematik wird man gewiss allerseits lebhaft begrüssen.

FRICKE.

W. Wirtinger, Untersuchungen über Thetafunktionen. Leipzig 1895. B. G. Teubner.

Die vorliegende Arbeit des Herrn Wirtinger, welche von der philosophischen Fakultät der Universität in Göttingen durch Erteilung des Benecke-Preises ausgezeichnet wurde, bedeutet einen wesentlichen Fortschritt in der Theorie der allgemeinen & Funktionen von p Variabelen. Es handelt sich um zwei getrennte Untersuchungen, von denen die erste dem allgemeinen Falle gilt, während die zweite einer besonderen Klasse von Thetafunktionen gewidmet ist. Im ersten Teile (die allgemeine Untersuchung) steht eine p-dimensionale algebraische Mannigfaltigkeit M_p der Ordnung 2^{p-1} . p! im Raume von (2^p-1) Dimensionen im Centrum der Untersuchung. Dieses Gebilde M_p gewinnt man dadurch, dass man 2^p linear-unabhängige Thetafunktionen zweiter Ordnung der Charakteristik $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ als homogene Punktkoordinaten eines Raumes von $(2^{p}-1)$ Dimensionen ansetzt. Das einzelne Wertsystem der p Variabeln $v_1, v_2, \ldots v_p$ der Thetafunktionen liefert dann einen bestimmten Punkt des Raumes, und letzterer Punkt beschreibt bei beliebig variabel gedachten v_1, \ldots, v_p die Mannigfaltigkeit M_p . Dem einzelnen Punkte des Gebildes M_p korrespondieren unendlich viele Wertsysteme v_1, \ldots, v_p ; denn wir können, ohne die Verhältnisse der Theta zu ändern, das System v_1, \ldots, v_{ρ} um ein beliebiges System simultaner Perioden ändern, sowie andererseits beliebige Zeichenwechsel der Argumente vornehmen, da es sich um gerade Thetafunktionen handelt. Für p=2 ist M_2 die Kummersche Fläche im Raume Ra, und wir kommen auf die bekannte Borchardtsche Darstellung der Kummerschen Fläche durch Thetafunktionen zweier Variabeln zurück; man kann somit sagen, dass es sich hier um eine Verallgemeinerung des Borchardtschen Ansatzes auf beliebige p handelt. Auf den Fall p=2 ist neuestens Humbert mit grosser Ausführlichkeit eingegangen; es werden insbesondere die auf der Kummerschen Fläche gelegenen Kurven und zugehörigen besonderen 3-Funktionen näher untersucht. Der von Wirtinger behandelte allgemeine Fall bot natürlich

weit grössere Schwierigkeiten und konnte demnach nicht so weit in die Einzelheiten verfolgt werden. Schon bei der Bestimmung der Ordnung der Mannigfaltigkeit M_p und des Geschlechts der Schnittkurven, welche durch (p-1) Gleichungen gegebener Grade dargestellt werden, sind Hilbertsche Prinzipien über Moduln und deren charakteristische Funktionen heranzuziehen. Auch bei der algebraischen Darstellung der Mannigfaltigkeit M_p werden jene Prinzipien fundamental. Es zeigt sich, dass keine Mannigfaltigkeiten zweiten Grades bei allgemeinen Moduln τ_{ik} durch M_p gelegt werden können. Mannigfaltigkeiten dritten Grades kommen zwar für p > 2 vor. Dagegen sind die Relationen vierten Grades zweckmässiger; durch diese wird das Gebilde M_p in der That rein dargestellt. Durch Untersuchungen dieser Art fördert Herr Wirtinger die Theorie des Gebildes Mp soweit, dass diese Mannigfaltigkeit "in Zukunft als algebraisch bekannt anzusehen und ein Problem als theoretisch gelöst zu betrachten ist, falls es gelingt, dasselbe algebraisch auf der M_p zu formulieren." Als eine erste Anwendung folgt nunmehr eine schöne Theorie der auf der Mannigfaltigkeit M_p gelegenen algebraischen Kurven, welche durch (p-1) Gleichungen der Grade n_1, \ldots, n_{p-1} ausgeschnitten werden. Hierdurch entspringt im Einzelfalle ein algebraisches Gebilde mit einer unabhängigen Variabeln, für welches doch wenigstens das Geschlecht p' hier angegeben werden soll:

$$p' = 1 + p! \ 2^{p-2} \cdot \prod_{i=1}^{p-1} n_i \cdot \sum_{i=1}^{p-1} n_i$$

Hier bietet sich nun weiter die Aufgabe dar, die Theta der M_p mit den Riemannschen Theta sowie überhaupt der Riemannschen Theorie der fraglichen algebraischen Gebilde ausführlich in Beziehung zu setzen; dieser Aufgabe ist der Schluss des ersten Teiles gewidmet. Die Ergebnisse, betreffend den Übergang von den Riemannschen Theta zu den allgemeinen vermöge Ausübung einer bestimmten Transformation und Abspaltung gewisser Faktoren dürften dabei als die wichtigsten anzusehen sein.

Die Spezialentwickelungen des zweiten Teils haben insbesondere den Zweck, die allgemeinen Ergebnisse über die Beziehung der Riemannschen Theta zu den allgemeinen an aussichtsreichen Einzelfällen weiter zu verfolgen.

Es werden hier Flächen herangezogen, welche durch Übereinanderlagerung und zweckentsprechende Verzweigung aus n kongruenten Riemannschen Flächen aufgebaut sind. Ist p' das Geschlecht der einzelnen dieser Flächen, π dasjenige der entspringenden Gesamtfläche und 2k die Anzahl der Verzweigungspunkte, so ist:

$$2\pi - 2 = 2k + n(2p'-2).$$

Hier führt nun (in Übereinstimmung mit den allgemeinen Ergebnissen des ersten Teils) eine Transformation n^{ten} Grades die Riemannschen Theta der grossen Fläche in Gestalten über, bei welchen sie in die Riemannschen Theta von p' Variabelen der kleinen Fläche, sowie in weitere Theta von (n-p') Variabelen zerfallen. Letztere können für n=2, k<3 all-

gemeinere als Riemannsche Theta sein. Die Fortführung der Entwickelung bezieht sich auf den Fall n=2, k=0, für welchen der genannte Ansatz eine allseitige Untersuchung findet.

Manuali Hoepli. Ottica del professore Eugenio Gelcich. Con 217 incisioni. Ulrico Hoepli, editore-libraio della real casa Milano 1895. — 576 Seiten. Preis 6 Lire.

Im grossen und ganzen weicht die Behandlung des Stoffes von der üblichen nicht ab. Von den fünf Abschnitten, in welche das Buch zerfällt, sind die drei ersten und überwiegend grössten der eigentlichen Lehre des Lichts gewidmet, nämlich der erste der Dioptrik, Katoptrik und Dispersion, der zweite den optischen Instrumenten und der dritte der Interferenz und Polarisation. Während der vierte die optischen Phänomene der Atmosphäre zum Gegenstand hat, so sind in dem fünften verschiedene wichtige Notizen über die Optik enthalten, wie z. B. über die Geschwindigkeit des Lichts und dergleichen mehr. Zum Verständnis des Buches werden keine grösseren Anforderungen an Mathematik gestellt, es genügen die Kenntnisse unserer Gymnasien. - Während sich über den Druck nur Gutes sagen lässt, so kann dies bezüglich der Figuren leider nicht geschehen. Die schematischen Figuren sind nicht einheitlich durchgeführt, die meisten bestehen aus schwarzen Strichen auf weissem Grund, während einige wieder weisse Striche auf schwarzem Grund aufweisen, z. B. Fig. 32, 168, 169, 170; die einen umrahmt, die anderen nicht (Fig. 179 und 180); auch die Strichdicke variiert sehr stark, vergleiche Fig. 168 und 204. Dabei sind die Striche vielfach nicht rein. Die perspektivischen Abbildungen sind in den meisten Fällen nicht mustergiltig, vielfach undeutlich und häufig auch zu klein. Diese Mängel dürften bei einer Neuauflage wohl zu berücksichtigen sein. -Am Schluss des Werkes ist ein Verzeichnis von Werken über Optik angeführt, worin Deutschland gut vertreten ist. B. NEBEL.

Die Projektions-Einrichtung und besondere Versuchsanordnungen für physikalische, chemische, mikroskopische und physiologische Demonstrationen am Grazer physiologischen Institute; als Leitfaden bei Anlagen und Versuchen beschrieben von Oskar Zoth. Mit 25 Abbildungen im Texte und 6 Tafeln. Wien. Pest. Leipzig. A. Hartlebens Verlag. — 88 Seiten.

Das Werkchen giebt in Bild und Wort eingehenden Aufschluss über die Projektionseinrichtungen an dem Grazer physiologischen Institute, so dass sich jeder, der nicht, wie der Elektrotechniker und Physiker, mit derlei Dingen vertraut ist, ergiebigen Rat holen kann, was aus den Spezialwerken für Elektrotechnik und Physik für den Nichtfachmann nur mit grossen Schwierigkeiten verbunden ist. Die Mitteilung der Kostenüberschläge bewahrt jeden vor empfindlichen Täuschungen.

B. Nebel.

Mathematische Theorie des Lichtes. Vorlesungen gehalten von H. Poin-Caré. Redigiert von J. Blondin. Autorisierte deutsche Ausgabe von E. Gumlich und W. Jäger. Mit 35 in den Text gedruckten Figuren. Berlin 1894. Verlag von Julius Springer. — 295 Seiten. Preis 10 Mark.

Wir danken es den Herren Übersetzern, dass sie dieses verdienstvolle Werk von Poincaré dem deutschen Publikum zugänglicher gemacht haben. Lange hat der Kampf zwischen den Erfindern und deren Anhänger über die Richtigkeit der von ihnen aufgestellten Theorien des Lichtes gedauert, der indirekt von grossem Nutzen für die Optik selbst war. Noch ist nicht endgiltig die Entscheidung zwischen der Theorie von Fresnel und Neumann gefallen, da die experimentellen Untersuchungen neue Schwierigkeiten und infolgedessen neue Einwände heraufbeschwören. Es ist daher für alle, welche sich für die Fragen interessieren, von grossem Wert, statt die Theorien mühsam aus den Originalwerken erst heraussuchen zu müssen, dieselben in Kürze gegenübergestellt zu besitzen. Poincaré versteht es vorzüglich, sich von dem Bann der optischen Theorien völlig frei zu machen, und dieselben als das zu kennzeichnen, was sie in Wirklichkeit sind. Dadurch beherrscht er dieselben und steht über ihnen. Ein solches Beherrschen der verschiedenen Theorien wirkt sehr anregend, weshalb das Buch den jungen Physikern aufs wärmste zum Studium empfohlen wird, sobald sie mit den Gesetzen der Optik hinreichend vertraut sind.

Das Ergebnis, welches die Prüfung mehrerer Theorien nebeneinander hinsichtlich einer guten Erklärung der Beobachtungen ergiebt, besteht in der Einordnung aller dieser Theorien in zwei Gruppen, von denen die eine die Elastizität des Mediums als konstant vorausgesetzt wird, wie dies bei Fresnel der Fall ist, während bei der anderen die Dichte des Äthers unveränderlich ist. Der Vertreter der letzteren ist Neumann. Möge das Buch die Anreguug zu neuen experimentellen Beweisen für die eine oder die andere Theorie geben; denn nur auf diesem Wege kommen wir dem Ziele näher!

Im Reiche des Lichtes. Sonnen, Zodiakallichte, Kometen, Dämmerungslicht-Pyramiden nach den ältesten ägyptischen Quellen. Von Hermann Gruson. Zweite gänzlich umgearbeitete Auflage. Mit 57 Figuren und 8 Tafeln, zum Teil in farbiger Ausführung. Braunschweig 1895. Verlag von George Westermann. — 263 Seiten. Preis 8 Mark.

Die meisten der bisherigen Theorien über die Natur der Sonne und der auf ihr beobachteten Veränderungen lassen den Zusammenhang mit Vorgängen auf unserer Erde vermissen, tragen daher den Stempel der Unwahrscheinlichkeit an sich und müssen in Ermangelung eines Besseren eben hingenommen werden als Produkte der Studierstube. Die vorliegende Theorie ist dem Gebiete der Praxis entsprungen, indem der Verfasser, als Besitzer der grössten Eisengiesserei der Welt, durch sorgfältiges Beobachten und ziel-

bewusste Versuche eine Basis geschaffen hat, auf die er aufbauen kann, so dass seine Anschauungen nicht als leere Phantasiegebilde in der Luft schweben. Den Fundamentalversuch stellte er mit einer eisernen Flasche an, die der Schweisstemperatur von circa 1500 Grad ausgesetzt wurde. Durch die Wärme wurde die Luft verdünnt, sodass nach Eintritt des Gleichgewichtszustandes eine Mischung von Luft und Wärme der äusseren Atmosphäre das Gleichgewicht hielt. Im vorliegenden Versuch ergaben die Messungen, dass der Flascheninhalt aus 1/4 Luft und 3/4 Wärme bestand. Daraus folgt, je höher die Temperatur ist, um so weniger wird Luft vorhanden sein. Infolge der ungeheueren Temperatur auf der Sonne wird das Luft- bezw. Gasquantum so verschwindend klein sein, dass die die Sonne umgebende, zunächst gelegene Schicht als Vacuum aufgefasst werden kann, an welche sich eine an Dichte zunehmende Gasschicht anschliesst, die nach dem Äther relativ steil abfällt. Das granulierte Aussehen der Sonnenoberfläche, sowie das Auftreten der Sonnenflecke werden auf Erscheinungen zurückführt, die sich im Kleinen auch beim geschmolzenen Eisen beobachten lassen. Infolge der die Sonne umgebenden Lichtbrechungssphäre müssen die Flecken dunkel erscheinen. Da die Sonnenmaterie fortwährend in Bewegung begriffen ist, indem die Teile an der Oberfläche von dem Äquator nach den Polen hin abfliessen und von da nach dem Sonnencentrum zurückkehren, so folgt, dass die Entstehung der Sonnenwärme nicht auf Verbrennungsprozessen, sondern nur auf Reibung und Stoss infolge der verschiedenen Geschwindigkeit der Teile auf ihrer Bahn beruhen kann. In enger Beziehung damit steht auch die Erklärung der Sonnenfackeln und Protuberanzen. Nach Aufstellung der Theorie über die Sonnenstrahlung erklärt sich leicht das Flimmern der Fixsterne, sowie die Sonnenkorona. Ein besonderes Kapitel wird den Kometen gewidmet, dessen Schweif auf ungezwungene Weise mit Hilfe der Theorie über die Strahlung erklärt wird; auch das rätselhafte Aufleuchten und Verschwinden der Sterne wird als eine natürliche Folge dieser Theorie hingestellt. Die letzte Abteilung ist dem Tierkreislicht vorbehalten, welches der Verfasser in seinen schönsten Erscheinungen am Nil selbst beobachtet hat. Seine Entstehung wird auf die Reflexion der Sonnenstrahlen an der Atmosphäre zurückgeführt; es ist demnach eine Dämmerungserscheinung, deren Zustandekommen gewissen Bedingungen unterliegt, auf welche der Verfasser näher aufmerksam macht. Mit grosser Befriedigung und Spannung folgt man den einfachen Auseinandersetzungen. Jedem Naturfreund wird daher das treffliche Buch bestens empfohlen. B. NEBEL.

Handbuch der Photographie. Von Prof. Dr. H. W. Vogel. Vier Teile, enthaltend die photographische Chemie, Optik, Praxis und Kunstlehre. II. Teil: Das Licht im Dienste der Photographie und die neuesten Fortschritte der photographischen Optik. Vierte, gänzlich umgearbeitete, verbesserte und vermehrte Auflage. Berlin 1894. Ver-

lag von Robert Oppenheim (Gustav Schmidt). 367 Seiten. Preis 9 Mark.

Von den beiden Teilen, in welche die photographische Optik getrennt wurde, ist der zweite Teil, die Linsenkunde, durch Dr. Hugo Schröder vor dem jetzt vorliegenden ersten Teil, die allgemeinen Eigenschaften des Lichtes, herausgegeben worden. Verfasser geht aus von dem Lambertschen Gesetzen über die Lichtstärke und deren Messung mittels der optischen Photometer und erläutert die dabei verwendeten optischen Lichteinheiten. Die dadurch erzielten Resultate sind aber nur für das Auge richtig und geben in photographischer Hinsicht zu den grössten Täuschungen Anlass, weshalb besondere photographische Photometer und Lichteinheiten hergestellt werden mussten. Nach der Untersuchung über die chemische Helligkeit des Tages- und Sonnenlichtes werden die künstlichen Lichtquellen für die Zwecke der Photographie geprüft, womit im engen Zusammenhang das Studium der Reflexion steht. Bei der Betrachtung über die Zusammensetzung des Lichtes und der chemischen Wirkungen der verschiedenen Farben wurde damit die Geschichte der farbenempfindlichen Verfahren eingeleitet. Die Photographie in natürlichen Farben erschien lange als ein unerreichtes Ziel; nach den ersten glücklichen Ergebnissen wurde von allen Seiten tüchtig an dem weiteren Ausbau gearbeitet, so dass man mit den heutigen Resultaten schon sehr zufrieden sein kann. Dieser wichtigen Errungenschaft ist natürlich ein grösserer Teil dieses Buches gewidmet. Den Anhang bildet eine gemeinverständliche Darstellung der Grundzüge der photographischen Optik, damit auch der Laie auf dem Gebiete der Optik in populärer Weise über die wichtigsten Grundsätze der photographischen Linsenkonstruktion aufgeklärt wird. Dieser Teil ist in betreff seines Inhaltes nicht wesentlich verschieden von den entsprechenden Kapiteln in der früheren Auflage. - In dem Schlusskapitel werden mehrere neue Objektivkonstruktionen beschrieben, die nach Herausgabe des Schröderschen Teiles aufgekommen sind; denn die Entwickelung der Photographie ist zur Zeit ganz enorm. Erinnert sei nur an die seit dem Druck dieses Bandes aufgekommene Photographie in Lebensgrösse mittels Blitzlichts durch Dr. Fetzer in München und die Entdeckung der Röntgenschen Lichtstrahlen, welche einen ungeheueren Einfluss auf die Photographie ausüben werden.

Das Verständnis des Buches wird auch dem Nichtfachmann durch die zahlreichen Figuren wesentlich erleichtert, so dass dieses Werk für jeden ein trefflicher Ratgeber sein wird.

B. Nebell.

Elemente der theoretischen Physik. Von C. Christiansen. Deutsch herausgegeben von Joh. Müller. Mit einem Vorwort von E. Wiedemann. Mit 143 Figuren im Text. Leipzig 1894. Verlag von Johann Ambrosius Barth (Arthur Meiner). — 458 Seiten. Preis 10 Mark.

Das vorliegende Werk ist dazu bestimmt, den angehenden Physiker in die mathematische Physik einzuführen. Ausgehend von der allgemeinen

Bewegungslehre, dem freien Fall, der Wurfbewegung etc. wird übergegangen zur Elastizitätstheorie. An die Abschnitte über das Gleichgewicht und die Bewegung flüssiger Körper reihen sich notwendig diejenigen über innere Reibung und über Kapillarität an. Die Behandlung des Lichts und der Wärme folgt erst nach den Kapiteln über Elektrizität und Magnetismus. Am besten eignet sich das Buch zum gleichzeitigen Studium neben den Vorlesungen über Experimentalphysik, damit der junge Physiker möglichst bald mit dem mathematischen Gewand der Physik vertraut wird, was bisher nicht immer der Fall war. Es sei daher dieses Werk bestens empfohlen.

B. NEBEL.

Lehrbuch der Experimentalphysik. Von E. von Lommel. Mit 430 Figuren im Text. Zweite Auflage. Leipzig 1895. Verlag von Johann Ambrosius Barth (Arthur Meiner). — 550 Seiten. Preis 6,40 Mark geheftet und 7,20 Mark gebunden.

Wie rasch sich dieses Lehrbuch der Experimentalphysik eingebürgert hat, dafür spricht die Thatsache, dass schon nach Jahresfrist eine Neuauflage erforderlich war. Im grossen und ganzen sind nur geringe Änderungen gegenüber der ersten Auflage vorgenommen worden, die sich teils
auf ausgesprochene Wünsche, teils auf notwendige Ergänzungen beziehen.
Wie wir vermuten, konnten unsere früher geäusserten Wünsche bei der
inzwischen rasch erfolgten zweiten Herausgabe nicht mehr berücksichtigt
werden. Um Fühlung mit der Praxis zu haben, ist die geschichtliche Entwickelung bis auf die heute am häufigsten gebrauchten Apparate und Messinstrumente auszudehnen, wodurch die Brauchbarkeit des Buches nach dem
Verlassen der Hochschule an Wert nicht einbüsst.

B. Nebel.

Katechismus der Physik. Von Julius Kollert. Fünfte verbesserte und vermehrte Auflage. Mit 273 in den Text gedruckten Abbildungen. Leipzig 1895. Verlag von J. J. Weber. — 485 Seiten. Preis 4,50 Mark.

Verfasser war bei der Bearbeitung dieser Auflage bestrebt, früher gerügte Mängel zu beseitigen und den Inhalt, den Fortschritten der Wissenschaft entsprechend, zu ergänzen. Die Anordnung des Stoffes ist übersichtlich. Jedem, mit einer Nummer versehenen Abschnitt ist das Stichwort in fettem Druck vorangestellt, so dass man sich in kürzester Zeit orientieren kann. Das Buch eignet sich vorzüglich zur Vorbereitung für Examina, da es in knapper Weise einen äusserst reichhaltigen Stoff bietet, dem auch das Wesentliche der Elektrotechnik einverleibt ist. Der Vervollkommnung der Figuren dürfte der Verfasser immer noch seine Aufmerksamkeit schenken, vergl. z. B. die Tangentenbussole, Fig. 222.

B. Nebell.

Lehrbuch der Experimentalphysik. Von Adolph Wüllner. Erster Band.
Allgemeine Physik und Akustik. Fünfte vielfach umgearbeitete und

verbesserte Auflage. Mit 321 in den Text gedruckten Abbildungen und Figuren. Leipzig 1895. Verlag von B. G. Teubner. 1000 Seiten.

Wenn auch infolge der weiteren überraschenden Entwickelung der Physik bezüglich der Einteilung des Stoffes Änderungen angezeigt waren, wie z.B. die Voranstellung der Elektrizität vor die Optik, so hat doch im Charakter des Buches ein Wechsel nicht stattgefunden. Von grossem Wert sind die eingehenden Zusammenstellungen der Errungenschaften durch die Experimentalphysik, wodurch dieses Werk zu einem wichtigen Ratgeber für den Forscher wird, zumal die Hinweise auf die Litteratur bis in die neueste Zeit vorhanden sind. Neben den neueren Theorien sind auch die früher entwickelten angeführt, sobald die letzteren durch neuere Versuche ihre Bestätigung erfahren haben. Dies gab Veranlassung z. B. zur Besprechung der Boltzmannschen Theorie der inneren Reibung der festen Körper, auch wurde an Stelle der Meyerschen Theorie der Gasdiffusion die Stefansche ge-Erwähnt seien auch die Arbeiten von van't Hoff, welche den Ausgangspunkt für zahllose Arbeiten auf dem Gebiet der physikalischen Chemie gebildet haben. Dem Plan nach soll der vierte und letzte Band dieses Lehrbuches am Ende des Jahres 1895 erscheinen. Mögen der in Aussicht genommenen raschen Herausgabe der weiteren Bände keine Hindernisse entgegenstehen, da die grossen Erfolge der Physik in den letzten Jahren in zusammenhängender und übersichtlicher Form besser geeignet sind, den heranwachsenden Physiker zu neuen Arbeiten anzuregen. B. NEBEL.

Lehrbuch der Physik für Studierende. Von H. Kayser. Zweite verbesserte Auflage. Mit 334 in den Text gedruckten Abbildungen. Stuttgart 1894. Verlag von Ferdinand Enke. - 564 Seiten.

Die zweite Auflage ist voluminöser geworden, was auf das neue Gewand zurückzuführen ist, indem ein besserer Druck die aussere Ausstattung wesentlich gehoben hat. Der Inhalt selbst hat dagegen nennenswerte Änderungen nicht erfahren. - Schon die Thatsache, dass in relativ kurzer Zeit eine Neuauflage erforderlich war, spricht dafür, dass die Behandlung des Stoffes im grossen und ganzen Anklang gefunden hat. Auch wir können demselben unsere Anerkennung nicht versagen. — Indessen würden wir den Wert des Buches noch dadurch zu erhöhen suchen, dass wir das Einzelne noch mehr ausfeilten, eine Arbeit, die von dem jährlich den Stoff behandelnden Lehrer spielend geleistet wird. Ist zwischen zwei Beispielen zu wählen, so ist doch dasjenige vorzuziehen, welches noch einen anderen Zweck mit verbindet. Dieser weitere Zweck sollte die Brücke zum praktischen Leben sein. Der Physiker von Fach besitzt in kurzer Zeit mehrere Werke der Physik, dies trifft aber bei dem Mediziner, Naturwissenschaftler, Ingenieur, Maschinenbauer, Architekten nicht zu. Diese werden nur ein Physikbuch sich anschaffen und dasselbe nach der Examenszeit nicht mehr hervorholen, wenn es über die nunmehr herantretenden Fragen des Lebens keinen Aufschluss zu geben vermag. Als Beispiel möchten wir die Tabelle (S.411) anführen, welche eine Idee von den üblichen Helligkeiten zu geben hat. Talglichter sind in Städten kaum mehr zu finden. Die Wachslichter beschränken sich auf die fürstlichen Kronleuchter, dagegen fehlt der praktische Zusammenhang zwischen der deutschen Paraffinnormalkerze mit der Spermacetikerze, der Amylacetatlampe etc. Wir würden folgende Tabelle z.B. vorschlagen:

										Sp	erm	ace	tik	ery	ze =	= 1.
Deutsche NormP Stearinlicht Spermacetikerze Amylacetatlampe Carcellampe Platineinheit .	ara	ffin	keı	ze:	1		· · ·		ļ	Gasflamme	Sch	nit	tbi	ren	nei	·
Stearinlicht					$ \cdots$				¦		Rw	adb	re	nne	er	
Spermacetikerze					ļ	1				Gini i						
Amylacetatlampe					ļ	¦	1	ļ		Gluniampe		•	•	•	•	• • •
Carcellampe					· . • • •	¦	· · ·	1		Bogenlamp	е .					
Platineinheit .					¦	ļ			1	_						

Bei dem Bunsenschen Photometer wäre die Notiz von Wert, dass das Fettfleckpapier wegen seiner Veränderlichkeit neuerdings durch den Lummer-Brodhunschen Glaswürfel mit Vorteil ersetzt wird.

Vermisst wird z.B. auch die Einteilung der Dynamomaschinen; denn selbst ein junger Physiker muss wissen, dass die im Laboratorium befindlichen Accumulatoren nur mit Nebenschlussmaschinen zu laden sind. Wo findet sich die Erklärung des Vorganges bei dem Gas-resp. Spiritusglühlicht? Die alte Döbereiner Lampe würde sie geben.

Solche Dinge gleichen Goldkörnern, indem sie auch nach der Studienzeit belehrend wirken und das Buch vor der das Nutzlose einhüllenden Staubdecke bewahren.

Enttäuschungen werden dann beim Eintritt in das praktische Leben vermieden, die sonst unausbleiblich sind, da der junge Mann sieht, dass die Physik in der Praxis mit ganz anderen Apparaten arbeitet, während er in seinem Buch nur veraltete Methoden beschrieben findet ohne Hinweis auf das Neue.

Unser Standpunkt ist: Nicht erweitern, sondern ausseilen. B. NEBEL.

Lehrbuch der Physik für Gymnasien, Realgymnasien, Oberrealschulen und andere höhere Bildungsanstalten. Von Jacob Heussi. Sechste Auflage, neu bearbeitet von A. Leiber. Mit 422 in den Text gedruckten Abbildungen. Braunschweig 1894. Verlag von Otto Salle. — 503 Seiten. Preis 5 Mark.

Die Neuauflage verdankt ihre Entstehung teils den neuen preussischen Lehrplänen, teils den wichtigen Fortschritten auf dem Gebiete der Physik. Die Mechanik der festen Körper hat teilweise eine Umänderung des Stoffes erfahren, das Prinzip von der Erhaltung der Energie wurde seiner Wichtigkeit wegen schärfer hervorgehoben, weshalb auch die Einführung des absoluten Maßsystems erforderlich war. Die bisher an verschiedenen Stellen zerstreute Wellenlehre wurde, wie dies auch bei anderen Physikbüchern üblich ist, mit Rücksicht auf ihre Wichtigkeit in der Akustik, Wärme, Optik und neuerdings auch Elektrizitätslehre in einem besonderen Ab-

schnitte einheitlich behandelt. Die schwierigeren Teile der Optik, Polarisation und Doppelbrechung haben eine Umarbeitung erfahren. Die mechanische Wärmetheorie ist ihrer fundamentalen Bedeutung wegen mehr berücksichtigt worden. Dasselbe gilt bezüglich der Einführung des Potentials in die Elektrizitätslehre, welch letztere infolge der ungeheueren Fortschritte eine völlige Neubearbeitung erfahren hat. Als neu hinzugekommen sind die Abschnitte über Meteorologie und über die mathematische Geographie zu bezeichnen.

Was den Inhalt des Buches betrifft, so dürfte sich eine weitere Sichtung des Stoffes empfehlen, z. B. könnte auf Seite 425 der in grossem Druck vorhandene Abschnitt "Hare wickelte . . . " ohne Schaden gestrichen und dafür die Meidinger- und Leclanché-Elemente wegen ihrer grossen Verbreitung von dem unterordnenden kleinen Druck befreit werden. Ein Physikbuch für Mittelschulen soll die Schüler zunächst über die Vorgänge im täglichen Leben, z. B. Gasglühlicht etc. aufklären, dagegen allen unnötigen Ballast vermeiden. Das tiefere Eingehen sei den relativ wenigen Schülern vorbehalten, welche die Physik auf der Hochschule noch einmal hören.

Das heutige Leben erfordert praktische Männer und keine Dilettanten.

B. NEBEL.

Bibliographie

vom 28. Januar bis 13. Mai 1897.

Periodische Schriften.

Arbeiten, die astronom.-geodätischen, des k. u. k. militär-geograph. Institutes in Wien. (Publikationen f. d. internationale Erdmessung.) VIII. Bd. Das Präzisionsnivellement in der österr.-ungar. Monarchie. II.Westlicher Teil. Herausg. vom k. und k. militär-geograph. Institute. Wien, Lechner. M. 16.

Publications de l'observatoire central Nicolas sous la direction de O. Backlund. Série II, Vol. II. St. Pétersbourg. Leipzig, Voss. — II. Nyrén, M., Observations faites au cercle verticale.

M. 48.

Veröffentlichungen des k. astronom. Recheninstituts zu Berlin. Nr. 4. 4. Bauschinger, J., Genäherte Oppositions-Ephemeriden von 62 kleinen Planeten für 1897, Januar bis August. Unter Mitwirkung von A. Berberich und P. Neugebauer herausgegeben. Berlin, Dümmler. M. 1. 20.

Abhandlungen der k. sächsischen Gesellschaft der Wissenschaften. 40. Bd. (Mathem.-phys. Klasse, 23. Bd.) Leipzig, Hirzel. M. 29.

Annalen der Physik und Chemie. Sachregister zu Bd. 1-50 (1877-1893). Leipzig, Barth. M. 7.

Arbeiten, astronom., d. k. k. Gradmessungsbureau. 8. Bd. Breiten-, Azimut- und Winkelbestimmungen. Publikationen für die internationale Erdmessung. Wien und Prag, Tempsky.

M. 16.

Ergebnisse d. meteorol. Beobachtungen an den Landesstationen in Bosnien und der Hercegovina im Jahre 1895. Herausgegeben von der bosnischhercegovin. Landesregierung. Wien, Hof- u. Staatsdruckerei. M. 12.

Fortschritte, die, der Physik im Jahre 1890. Dargestellt von der physikal. Gesellschaft zu Berlin 46. Jahrg. 2. Physik d. Äthers. Redigiert von RICH. BÖRNSTEIN. Braunschweig, Vieweg & Sohn. Anzeiger der kaiserl. Akademie der Wissenschaften. Mathem.-naturw. Klasse. Jahrg. 1897. Wien, Gerolds Sohn. M. 3. Schriften der physikalisch ökonomischen Gesellschaft zu Königsberg in Pr. 37. Jahrg. 1896. Königsberg, Koch. Abhandlungen d. k. sächs. meteorol. Institutes. 2. Heft. Schreiber, Paul, Beiträge zur meteorol. Hydrologie der Elbe. Leipzig, Felix. M. 2. Arbeiten, die astronom.-geod., des k. u. k. militär-geograph. Institutes in Wien. Publikationen für die intern. Erdmessung. IX. Bd. Trigonometr. Arbeiten. 5. Die Beobachtungen im Dreiecknetze in Nieder- und Ober-Österreich und in den angrenzenden Teilen von Mähren, Ungarn und Steiermark. Wien, Lechner. M. 16. Jahrbuch über die Fortschritte der Mathematik. Hrsg. von Emil Lampe. 25. Bd. Jahrg. 1893 u. 1894. 3. (Schluss-) Heft. Berlin, Reimer. M. 19. Jahrbuch, deutsches meteorol., f. 1895. Meteorol. Station I. Ord. in Aachen. Hrsg. im Auftrage d. Stadtverw. von P. Polis. I. Jahrg. Aachen, Müller. M. 7. Jahrbuch der Astronomie und Geophysik. Herausgeg, von Herm. J. Klein. 7. Jahrg. 1896. Leipzig, Mayer. M. 7. Fortschritte der Physik im Jahre 1891. Dargestellt von der physik. Gesellschaft zu Berlin. 47. Jahrg. 1. Abt. Physik der Materie. Red. von Rich. Börn-Braunschweig, Vieweg & Sohn. Berichte d. sächs. Ges. d. Wiss. Math. - phys. Kl. 1896. IV-VI. Leipzig, Hirzel. à M. 1. Sitzungsberichte, Münch., Mathem. Kl. 1896. 3. Heft. München, Franz. M 1. 20. Vierteljahrsschrift d. astr. Gesellsch. 31. Jahrg. 3. Heft. Leipzig, Engelmann. M. 2.

Geschichte der Mathematik und Physik.

VILLICUS, FRZ., Die Geschichte der Rechenkunst vom Altertume bis zum XVIII. Jahrh. 3. Aufl. Wien, Gerolds Sohn. M. 3. 20. POGGENDORFFS Handwörterbuch zur Geschichte der exakten Wissenschaften. 3. Bd., 7. Lieferung. Leipzig, Barth. M. 3. LAMPE, EMIL, Karl Weierstrass, Gedächtnisrede. Leipzig, Ebendas. M. —. 60.

Reine Mathematik.

Furtwängler, Phpp., Zur Theorie d. in Linearfaktoren zerlegb., ganzzahligen ternären cub. Formen (Diss.). Göttingen, Vandenhoeck & Ruprecht. M. 1.60. Hesse's, Ludw. Otto, Gesammelte Werke. Hrsg. von d. mathem.-physikal Klasse der k. bayer. Akademie der Wissenschaften. München, Franz. M. 24. Gillmer, M., Elemente d. Algebra oder prakt. Anleitung z. rationellen Erlernung d. Auflösens d. Gleichungen vom 1.—3. Grade. Ilmenau, Schröter. geb. M. 6. Bobek, Karl, Einleitung in die projekt. Geometrie d. Ebene. Nach d. Vorträgen d. Hrn. C. Küpper bearbeitet. 2. wohlf. Ausgabe. Leipzig, B. G. Teubner. M. 2. Kiepert, Ludw., Grundriss der Differential- und Integralrechnung. II. Teil. Intralrechnung. 6. Aufl. des gleichnamigen Leitfadens von weil. Dr. Max Stegemann. Hannover, Helwing. M. 11.50.

Schubert, Herm., Fünfstellige Tafeln und Gegentafeln für logarithmisches und trigonometrisches Rechnen. Leipzig, B. G. Teubner. geb. M. 4.

Henselin, Adf., Rechentafel, enthaltend das grosse Einmaleins bis 999 mal 999, nebst einer Kreisberechnungstabelle. Berlin, Elsner. geb. M. 6.

BOLYAI DE BOLYA, WOLFG., Tentamen inventutem studiosam in elementa math. purae elementaris ac sublimioris methodo intuitiva evidentiaque huic propria introducendi, cum appendice triplici. Ed.II. Tom.I. Conspectus arithmeticae generalis. Mandato academiae scientiarum hungaricae suis atnotationibus adiectis ediderunt Jul. König et Maur. Réthy. Budapestini (Berlin, Friedländer & Sohn).

JUNKER, FR., Die symmetr. Funktionen d. gemeinsch. Variablenpaare tern. Formen.
Tafeln d. tern. symmetr. Funkt. v. Gewicht 1—6. Wien, Gerolds Sohn. M. 5. 80.

HERRMANN, OSK., Über algebr. Kurven, die sich beliebig eng an gegebene Kurvenpolygone anschliessen. Leipzig, Hinrichs Verlag. M. 1.

RIEM, J., Rechentabellen für Multiplikation und Division. Basel, Schweiz.
Verlagsdruckerei. M. 10.

FRICKE, ROB., Hauptsätze der Differential- und Integralrechnung. 2. Teil. Braunschweig, Vieweg & Sohn. M. 1. 50:

Krause, Aug., Über Fuchs'sche Differentialgleichnungen vierten Grades. Berlin, Mayer & Müller. M. 2.

Angewandte Mathematik.

Dietze, E., Graphische Tafeln zur Bestimmung des Umfangswiderstandes und Zahndruckes bei Rädern. 2. (Titel-) Aufl. Leipzig (1876), Ruhl. M. 1. 50.

Vollers, B., Die Bestimmung der Normalprofile eiserner I-Träger mittels logorith. und graph. Tabellen. Gotha, Gläser. M. 3.

Silber, O. H. P., Praktische Schattenkonstruktionen u. Perspektiven, Isometric,
Dachdurchdringungen und Dachausmittlungen. Berlin, Frantz. M. 12.

Kirchhoff, Gust., Vorlesungen über mathem. Physik. 1. Bd. Mechanik. 4. Aufl. Herausg. von Dr. W. Wien. Leipzig, B. G. Teubner. M. 13.

HEYN, Rud., Hauptsätzed. Perspektive. 2. wohlf. Ausg. Leipzig (1885), Felix. M. 5 Witt, G., Der Planet Saturn (aus., Himmel u. Erde"). Berlin, Pätel. M. —. 80. Handwörterbuch der Astronomie. 6—8 Lfg. Breslau, Trewendt. à M. 3. 60. Königsberger, Leo, Über verborgene Bewegung und unvollständige Probleme. Berlin, Reimer. M. 1.

KRÜMMEL, OTTO, Üb. Gezeitenwellen. Rektoratsrede. Kiel, Universitätsb. M. 1. 40. Örter, mittlere, von 622 Sternen und scheinbare Örter von 450 Sternen, nebst Reduktionstafeln für das Jahr 1899 und einem Anhang, enthalt.

mittlere Örter von 303 südl. Sternen für 1899. Berlin, Dümmler. M. 6. BOLTZMANN, LUDW., Üb. e. mechan. Satz Poincarés. Wien, Gerolds Sohn. M.—. 30. BRAUN, CARL, Die Gravitations-Konstante, die Masse und mittlere Dichte der

Erde nach einer neuen experim. Bestimmung. Wien, Gerolds Sohn. M. 5. 60.

MÜLLER, O., Hilfstafeln f. praktische Messkunde, nebst logarithm. trigonometr.

Tafeln. Zürich, Schulthess. M. 2. 40.
Schwarzschild, K., Die Foincaré'sche Theorie d. Gleichgewichts einer homogenen rotierenden Flüssigkeitsmasse. München, Franz. M. 5.

Debo, Ludw., Die Lage der neutralen Schichte bei gebogenen Körpern und die Druckverteilung im Mauerwerke bei excentrischer Belastung. Hannover, Schmorl & v. Seefeld Nachf.

M. 1. 80.

BEAU, Otto, Die Berechnung der Sonnen- und Mondfinsternisse. Für d	len
Selbstunterricht entwickelt. Programm. Sorau, Zeidler. M	75.
— II. Teil. Tafeln und Rechnungsergebnisse. Ebendaselbst. M	
Kutter, W. R., Bewegung des Wassers in Kanälen und Flüssen. 2. A	ufl.
2. Abdr. Berlin, Parey. geb. M	. 7.
HOLZMÜLLER, GUST., Die Ingenieurmathematik in elem. Behandlung. 1. T	eil,
enthält die stat. Momente u. Schwerpunktslagen, die Trägheits- u. Cent	tri-
fugalmomente f. die wichtigsten Querschnittformen u. Körper d. technisch	ien
Mechanik in rechn. u. graph. Behandlung. Leipzig, B. G. Teubner. geb. M	. 5.
Schulte, A., Wirkungsweise des Wassers im Laufrade der Turbinen. Ber	lin,
Siemens. M —.	80.
THAA, GEO. RITTER v., Anleitung z. Gebrauche d. logarithm. Rechenschiebers	
die Zwecke des Tecknikers. Wien, Hof- und Staatsdruckerei. M 8	
LUDENDORFF, HANS, Die Jupiter-Störungen der kleinen Planeten vom Hecul	ba-
Typus. Dissertation. Berlin, Mayer & Müller.	. 2.
Physik und Meteorologie.	
· · · · · · · · · · · · · · · · · · ·	•
Weinhold, Adf., F., Vorschule der Experimentalphysik. 4. Aufl. Leipz	•
Quandt & Händel. M. 1	
GRÄTZ, L., Die Elektrizität und ihre Anwendungen. 6. Aufl. Stuttga	. 7.
Engelhorn. M. Kohlrausch, Frdr., Statistik der Löslichkeit einer Gruppe von Salzen	
Wasser bei mittlerer Temperatur. Berlin, Reimer. M.—5	
PLANCK, MAX, Üb. irreversible Strahlungsvorg. 1. Mittlg. Berlin, Reimer. M 5	
WARBURG, E., Über die Verzögerung bei der Funkenentladung. Berh	
Reimer.	
LOHSE, O., Untersuchung des violetten Teils einiger linienreicher Meta	
spektra. Berlin, Reimer.	
ZENGER, K. W., Die Meteorologie der Sonne und das Wetter im Jahre 188	
zugleich Wetterprognose f. d. Jahr 1897. Prag, Rivnáč. M. 1.4	
HASENOEHRL, FRITZ, Über den Temperaturcoeffizienten der Dielektrizität	
konstante in festen Isolatoren. Wien, Gerolds Sohn. M.—.4	
LAMPA, Ant., Über die Brechungsquotienten einiger Substanzen für sehr kur	
elektrische Wellen. 2. Mittlg. Wien, Gerolds Sohn. M 2	
EXNER, FRZ. und HASCHEK, E., Über die ultravioletten Funkenspektra d	
Elemente. VI. Mittlg. Wien, Gerolds Sohn. M.—.4	
Tumlinz, O., Die Abweichung des gesättigten Wasserdampfes vom Mariott	
Gay-Lussac'schen Gesetze. Wien, Gerolds Sohn. M 3	
Wind, C. H., Über den dem Liouvilleschen Satze entsprechenden Satz d	
Gastheorie, Wien, Gerolds Sohn. M4	
KAHLBAUM, GEO. W. A., Studien über Dampfspannkraftmessungen. In G	
meinschaft mit C. G. v. Wirkner und anderen Mitarbeitern. II. Abt	
1. Hälfte. Basel, Schwabe.	_
KAPP, GISBERT, Elektrische Wechselströme. Deutsche Ausgabe von Her	
KAUFMANN 2. Aufl. Leipzig, Leiner.	2.
BEZOLD, WILH. v., Zur Theorie des Erdmagnetismus. Berlin, Reimer. M.	
LANGBEIN, H., Calorimetrische Heizwertbestimmung. Weimar, Steinert. M.	
in the state of th	

BISCAN, WILH., Die elektrischen Messinstrumente. Leipzig, Leiner.

Mathematisches Abhandlungsregister.

1896.

Erste Hälfte: 1. Januar bis 30. Juni.

Abelsche Transcendenten.

1. Sur les fonctions abéliennes. H. Poincarré. Compt. Rend. CXX, 239.

2. Sur une surface du sixième ordre liée aux fonctions abéliennes de genre trois. G. Humbert. Compt. Rend. CXX, 365, 425.

Absolute Geometrie.

3. Sur la géométrie non Enclidienne. Dauge. Mathesis, Sér. 2, VI, 7. — P. Mansion ibid. 12.

4. Premiers principes de métagéométrie P. Mansion. Mathesis, Sér. 2, VI, Supplément.

5. La géométrie non enclidienne avant Lobatchefsky. P. Mansion. Mathesis, Sér. 2, VI, Supplément.

Abzählende Geometrie.

6. Uber die Ordnung der Enveloppe solcher ebenen Kurvenreihen, deren Individuen sich in Gruppen von je w ordnen lassen, welche den Punkten einer Geraden projektiv sind. O. Zimmermann. Crelle CXVI, 10.

Analytische Geometrie der Ebene.

7. Remarques sur les courbes définies par une équation différentielle du premier ordre. Em. Picard. Compt. Rend. CXX, 522.

8. Construire un triangle dont les bissectrices sont données. Barbarin. Mathesis,

Sér. 2, VI, 143.

9. Propriété de la lemniscate. Droz-Farny etc. Mathesis, Sér. 2, VI, 49.

10. Propriétés de la strophoïde. Droz-Farny, Gillet, Klompers, Retali. Mathesis, Sér. 2, VI, 97.

Sur une série de limoçons de Pascal. Droz-Farny, Klompers, Retali, Verdeyen, Colart. Mathesis, Sér. 2, VI, 100.

12. Lieu de certains points de départ de trois tangentes à une parabole semi-cubique. J. Gillet. Mathesis, Sér. 2, VI, 183. Vergl. Ellipse. Kegelschnitte. Kreis. Parabel.

Analytische Geometrie des Raumes.

13. Compte Rendu de la Géométrie réglée de G. Koenigs. A. Demoulin. Mathesis, Sér. 2, VI, Supplément.

14. On certain general properties of point transformations. J. Brill. Quart. Journ. math. XXVII, 356.

15. Sur les droites de contact des courbes gauches et sur une famille de courbes

gauches. J. Andrade. Compt. Rend. CXXII, 1110. 16. Sur les courbes algébriques à torsion constante et sur les surfaces minima algébriques inscrites dans une sphère. E. Cosserat. Compt. Rend. CXX, 1252.

17. On twisted quartics of the second species. A. R. Forsyth. Quart. Journ. math. XXVII, 247.

18. Sur deux figures correspondentes dans deux plans, dont l'une reste la projection gauche de l'autre tandis qu'un des plans tourne. Hacken. Mathesis, Sér. 2, VI, 187. Vergl. Oberflächen. Oberflächen zweiter Ordnung.

Astronomie.

Sur l'intégration de l'équation différentielle du rayon vecteur d'un certain groupe des petites planètes. O. Backlund. Compt. Rend. CXXII, 1103.

20. Sur un procédé de vérification, applicable un calcul des séries de la Mécanique céleste. Poincarré. Compt. Rend. CXX, 57.

21. Sur le développement approché de la fonction perturbatrice. N. Coculesco. Compt. Rend. CXX, 32.
22. Sur la valeur approchée des coefficients des termes d'ordre élevé dans le développement de la partie principale de la fonction perturbatrice. Adr. Féraud. Compt. Rend. CXXII, 871.

23. Sur le développement approché de la fonction perturbatrice dans le cas des inégalités d'ordre élevé. M. Hamy. Compt. Rend. CXXII, 980.

24. The motion of a satellite about a spheroidal planet. F. W. Dyson. Quart. Journ. math. XXVII, 50.

25. Addition à la théorie du mouvement de Saturne par Le Verrier et rectification des tables. A. Gaillot. Compt. Rend. CXX, 26. 26. Sur les lacunes dans la zone des petites planètes. O. Callandreau. Compt.

Rend. CXX, 585. [Vergl. Bd. XL, Nr. 327.] Vergl. Chronologie.

Ausdehnungslehre.

27. Anwendung der Grassmann'schen Methoden auf die Theorie der Kurven und Flächen zweiten Grades. Emil Müller. Crelle CXV, 234. Vergl. Geschichte der Mathematik 185.

B.

Bestimmte Integrale.

- 28. Sulla definizione di integrale. G. Ascoli. Annali mat. Série 2, XXIII, 67. -G. Peano ibid. 153.
- 29. Sommation des séries à l'aide des intégrales définies. M. Petrovitch. Compt. Rend. CXX, 819.
- Sur un mode de décomposition des intégrales définies en éléments simples.
 M. Petrovitch. Compt. Rend. CXXII, 27.
 Sur l'intégration des équations linéaires à l'aide des intégrales définies.
 L. Schlesinger. Compt. Rend. CXX, 1396.
 Evaluation of two definite integrals. A. R. Forsyth. Quart. Journ. math.
- XXVII, 216.
- 33. Démontrer l'intégrale $\int_{a}^{a} \sqrt{b^2 2n^2 + \sqrt{4(a^2 b^2)x^2 + b^4}} \quad dx = \frac{\pi}{4\sqrt{2}} (a^2 + b^2)$

E. Fauquembergue. Mathesis, Sér. 2, VI, 22. Vergl. Differentialgleichungen 65. Gammafunctionen. Variationsrechnung.

C.

Chronologie.

34. Ableitung der Gauss'schen Formel zur Bestimmung des jüdischen Osterfestes. M. Hamburger. Crelle CXVI, 90.

35. Sur la formation du calendrier. A. Auric. Compt. Rend. CXXI, 804. -Flamant ibid. CXXII, 24.

Combinatorik.

36. Sur les séquences des permutations circulaires. Dés. André. Compt. Rend. CXX, 714.

37. Relation entre des nombres combinationes. Stuyvaert. Mathesis, Sér. 2, VI, 256.

D.

Determinanten.

38. Sur le convergence des déterminants d'ordre infini et des fractions continues. H. v. Koch. Compt. Rend. CXX, 144.

39. Sur les dépendances mutuelles des déterminante potentiels. De Jonquières. Compt. Rend. CXX, 408, 580. (Vergl. Nr. 415.)

Vergl. Differentialgleichungen 62.

Differentialgleichungen.

40. Sur l'integration des équations différentielles ordinaires. Alf. Guldberg. Compt. Rend. CXXI, 49.

41. Sur l'application aux équations différentielles de méthodes analogues à celles

de Galois. J. Drach. Compt. Rend. CXX, 73.

42. Sur l'extension des idées de Galois à la théorie des équations différentielles.

Ém. Picard. Compt. Rend. XXI, 789. 43. Zur Theorie der Differentialgleichungen, die Fundamentalauflösungen besitzen.

A. Guldberg. Crelle CXV, 111.

44. Sur une classe d'équations dont l'intégrale générale est uniforme. Ém. Picard. Compt. Rend. CXX, 402.

45. Verallgemeinerung eines Satzes von den algebraischen Integralen der Differentialgleichungen. L. Königsberger. Crelle CXV, 23.

46. Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reellen Werten des Arguments. Ad. Kneser. Crelle CXVI, 178.

47. Sur une application de la méthode de M. Darboux. Beudon. Compt. Rend. CXX, 902.

48. Sur les invariants intégraux. G. Koenigs. Compt. Rend. CXXII, 25.

19. Sur certaines classes d'équations de Laplace à invariants égaux. A. Thybant. Compt. Rend. CXXII, 834.

50. Zur Theorie der algebraischen Differentialgleichungen erster Ordnung. G. Wallenberg. Crelle CXVI, 1.

51. Sur les équations différentielles ordinaires du premier ordre. A. Korkine. Compt. Rend. CXXII, 1183. — P. Painlevé ibid. 1319.

52. Sur l'équation différentielle binome du premier ordre M. Petrovitch. Compt. Rend. XXI, 632.

53. Sur une équation différentielle du premier ordre. M. Petrovitch. Compt. Rend. CXXII, 1261.

54. Sur l'équation de Lamé. G. Floquet. Compt. Rend. CXXI, 805.

55. On the solution of Lamé's equation $\frac{d^2U}{du^2} = U[n(n+1)pu + B]$ in finite terms when 2n is an odd number. L. Crawford. Quart. Journ. math. XXVII, 93.

56. Sur les invariants ponctuels de l'équation différentielle ordinaire du second ordre. Tresse. Compt. Rend. CXX, 429.

- 57. Sur une équation différentielle du second ordre non linéaire et à coefficients doublement périodique. H. Gyldén. Compt. Rend. CXXII, 160, 585.
- 58. Sur les systèmes en involution d'équations du second ordre. E. Goursat. Compt. Rend. CXXII, 1258.

59. Über lineare Differentialgleichungen mit mehrwertigen algebraischen Koefficienten. L. W. Thomé. Crelle CXV, 33, 119.

- 60. Sur les équations linéaires et la méthode de Laplace. E Goursat. Compt. Rend. CXXII, 169.
- 61. Über gemeinsame Vielfache linearer Differentialausdrücke und lineare Differentialgleichungen derselben Klasse. L. Heffter. Crelle CXVI, 157.
- 62. Über den Zusammenhang zwischen den Fundamentaldeterminanten einer linearen Differentialgleichung nter Ordnung und ihrer n Adjungierten. E. Grünfeld. Crelle CXV, 328.

63. Zur Theorie der linearen homogenen Differentialgleichungen. A. Gutzmer. Crelle CXV, 79.

64. Über die bei den linearen homogenen Differentialgleichungen auftretende Fundamentalgleichung. M. Hamburger. Crelle CXV, 343.

Über die Integration linearer homogener Differentialgleichungen durch Quadraturen. L. Schlesinger. Crelle CXVI, 97.

66. Sur les équations différentielles linéaires homogènes dont l'intégrale générale est uniforme. G. Floquet. Compt. Rend. CXXI, 676.

67. Sur la théorie du système des équations différentielles. A. J. Stodolkievitz. Compt. Rend. CXX, 36, 595, 825.

68. Sur l'intégration du système des équations différentielles. A. J. Stodolkievitz. Compt. Rend. CXX, 1037.

69. Application des invariants intégraux à la reduction au type canonique d'un système quelconque d'équations différentielles. G. Koenigs. Compt. Rend. CXXI, 875.

 Zur Integration derjenigen Systeme von Differentialgleichungen erster Ordnung, deren Koefficienten unabhängige, unbestimmte Funktionen der unabhängigen Veränderlichen sind. G. Bohlmann. Crelle CXV, 89. [Vergl. Bd. XLI, Nr. 33.]

71. Sui sistemi simmetrici di equazioni a derivate parziali C. Somigliana. Annali

mat. Serie 2, XXII, 143.

72. Sur certains systèmes d'équations aux dérivées partielles. J. Beudon. Compt. Rend. CXX, 304.

73. Sur l'extension de la méthode de Cauchy aux systèmes d'équations aux dérivées partielles d'ordre quelconque. J. Beudon. Compt. Rend. CXXI, 808.

74. Extension du théorème de Cauchy aux systèmes les plus généraux d'équations aux dérivées partielles. E. Delassus. Compt. Rend. CXXII, 772.

 Über die Reihenentwickelung der Integrale eines Systems von Differentialgleichungen in der Umgebung gewisser singulärer Stellen. J. Horn. Crelle CXVI, 265.

 Sur les équations aux dérivées partielles à coefficients constants et les fonctions non analytiques. Ém. Borel. Compt. Rend. CXXI, 983.

77. Sur un problème relatif à la détermination des intégrales d'une équation aux dérivées partielles. E. Goursat. Compt. Rend CXXI, 671.

 Sur la théorie des équations aux dérivées partielles. Wlad. de Tannenberg. Compt. Rend. CXX, 674.

 Sur les équations linéaires aux dérivées partielles. Ém. Borel. Compt. Rend. CXX, 677.

80. Sur une classe étendue d'équations linéaires aux dérivées partielles dont toutes les intégrales sont analytiques. Ém. Picard. Compt. Rend. CXXI, 12.

81. Sur les équations linéaires aux dérivées partielles. Et. Delassus. Compt. Rend. CXXI, 46.

82. Sur une classe d'équations linéaires aux dérivées partielles. H.v. Koch. Compt. Rend. CXXI, 517.

83. Sull' equazioni lineari alle derivate parziali del 2º ordine (tipo ellittico e sopra una classificazione dei sistemi di linee ortogonali che si possono tracciare sopra una superficie. P. Burgatti. Annali mat. Serie 2. XXIII, 225.

84. Sur la méthode de M. Darboux pour l'intégration des équations aux dérivées partielles du second ordre. E. Goursat. Compt. Rend. CXX, 542.

85. Sur la théorie des équations aux dérivées partielles du second ordre. E. Goursat. Compt. Rend. CXX, 712.

86. Sur l'intégration des équations aux dérivées partielles linéaires et du second ordre à caractéristiques imaginaires. Le Roy. Compt. Rend. CXXII, 367.

87. Sur les équations aux dérivées partielles du second ordre à caractéristiques imaginaires. Ém. Picard. Compt. Rend. CXXII, 417.
Vergl. Astronomie 19. Bestimmte Integrale 31. Elasticität 102. Mechanik.

Differenzenrechnung.

88. Un contributo alla teoria delle forme lineari alle differenze. Etto. Bortolotti. Annali mat. Serie 2. XXIII, 309.

Dreiecksgeometrie.

 La bibliographie de la géométrie du triangle. E. Vigarié. Mathesis, Sér. 2, VI. Supplément.

- 90. Le point de Lemoine et une lettre de Gerono à Quetelet publiée dans la Correspondance mathématique et physique. Mathesis, Sér. 2, VI, 255.
- 91. Sur les points milieux des hauteurs d'un triangle. Droz-Farny. Mathesis, Sér. 2, VI, 177.
- 92. Théorème sur l'orthocentre. Poort, Delahaye, Fairon, J. Jonesco, Mathesis, Ser. 2, VI, 123. Colart, Barisien, Cristescu, De Nobele, Déprez ibid. 124.
- 93. Centre de transversales angulaires égales. G. Brocard. Mathesis, Sér. 2, VI, 217. J. Neuberg ibid. 221.
- 94. Sur trois droites menées à l'aide d'un triangle et qui concourent en un même point. Soons, J. Neuberg. Mathesis, Sér. 2, VI, 57.
- 95. Sur les triangles à la fois semblables et homologiques. V. Jeřabek. Mathesis, Sér. 2, VI, 81.
- 96. Sur certains triangles. E. N. Barisien. Mathesis, Sér. 2, VI, 38 60.
- 97. Propriétés d'un triangle sur deux des côtés duquel on construit extérieurement des losanges. Déprez etc. Mathesis, Sér. 2, VI, 237.
- 98. Propriétés du cercle circonscrit à un triangle en combinaison avec le cercle inscrit dans le triangle dont les sommets sont les milieux des côtés du premier. Droz-Farny, Déprez, B. Jonesco, Klompers. Mathesis, Sér. 2, VI, 260. Critescu ibid. 261.

E.

Elastizität.

- 99. On Chree's problem of the rotating elastic ellipsoid. D. Edwardes. Quart. Journ. math. XXVII, 81.
- 100. The equilibrium of un isotropic elastic solid ellipsoid under the action of normal surface forces of the second degree, and bodily forces derived from a potential of the second degree. C. Chree. Quart. Journ. math. XXVII, 338.
- Deformazione di una sfera isotropa. Rob. Marcolongo. Annali mat. Serie 2, XXIII, 111.
- 102. Sull' integrazione delle equazioni dell' equilibrio elastico. Gius. Lauricella. Annali mat. Serie 2, XXIII, 287.
- 103. Sur l'équilibre d'un corps élastique. H. Poincaré. Compt. Rend. CXXII, 154.

Elektrizität.

- 104. Le système du monde électrodynamique. Ch.V. Zenger. Compt. Rend. CXXI, 386.
- 105. Sur la méthode de Neumann et le problème de Dirichlet. H. Poincaré. Compt. Rend. CXX, 347.
- 106. Sur la loi de transmission de l'énergie entre la source et le conducteur, dans le cas d'un courant permanent. Vaschy. Compt. Rend. CXX, 80.
- 107. Sur la nature du courant de déplacement de Maxwell. Vaschy. Compt. Rend. CXX, 255.
- 108. Solution générale des équations de Maxwell pour un milieu absorbant homogène et isotrope. Birkeland. Compt. Rend. CXX, 1046.
- 109. Sur le potentiel d'une surface électrisée. J. Andrade. Compt. Rend. CXX, 605.

Ellipse.

- 110. Sur les cordes qui joignent dans une ellipse les extremités de deux diamètres conjugués. J. Jones co. Mathesis, Sér. 2, VI, 139.
- 111. Lieu de la projection d'un foyer d'une ellipse sur les normales à l'ellipse. Cl. Servais. Mathesis, Sér. 2, VI, 136.
- 112. Propriétés de l'ellipse circonscrite à un triangle donné et ayant pour centre son centre de gravité. J. Jones co. Mathesis, Sér. 2, VI, 23. Cl. Servais ibid. 25.
- 113. Sur la podaire de l'ellipse. Jerabek. Mathesis, Sér. 2, VI, 15.
- 114. Sur les points tels que deux normales abaissées sur une ellipse donnée soient rectangulaires entre elles. Cl. Servais. Mathesis, Sér. 2, VI, 135.
- 115. Sur deux ellipses concentriques et homothétiques. Cl. Servais. Mathesis, Sér. 2, VI, 137.
- 116. Génération d'une ellipse et d'une hyperbole confocales à une ellipse donnée. Liénard, Déprez. Mathesis, Sér. 2, VI, 262.

117. Sur les circonférences ayant le centre sur une ellipse et pour rayon le rayon du cercle osculateur de l'ellipse. Kulhoff. Mathesis, Sér. 2, VI, 73. Vergl. Gleichungen 200.

Elliptische Transcendenten.

118. La trasformazione, d'ordine pari, delle funzioni ellittiche. Fr. Brioschi. Annali mat. Serie 2, XXII, 313.

119. Nuove formole nella moltiplicazione e nella trasformazione delle funzioni ellittiche. Fr. Brioschi. Annali mat. Serie 2, XXIII, 73.

120. Sur l'equivalence des six formes différentes d'expression des quadratures de différentielles algébriques réductibles aux intégrales elliptiques. F. de Salvert. Compt. Rend. CXX, 1034.

121. Sur deux formules connexes concernant les fonctions complètes de troisième espèce, relatives à des modules complémentaires. F. de Salvert. Compt.

Rend. CXX, 1208.

122. Sur l'addition des arguments dans les fractions périodiques du second ordre. G. Fontené. Compt. Rend. CXXII, 172.

123. Sulle funzioni o ellittiche pari. E. Pascal. Annali mat. Serie 2, XXIII, 181. Vergl. Differentialgleichungen 57.

F. Formen.

- 124. Uber Fundamentalsysteme und bilineare Formen. G. Landsberg. Crelle CXVI, 331.
- 125 Dimostrazione algebrica del teorema di Weierstrass sulle forme bilineari Ben. Calò. Annali mat. Serie 2, XXIII, 159.
- 126. On the arithmetical theory of conjugate binary quadratic forms. G. B. Mathews. Quart. Journ. math. XXVII, 230.
- 127. Über indefinite ternäre quadratische Formen. A. Meyer. Crelle CXV, 150. CXVI, 307. [Vergl. Bd. XLI, Nr. 73.]
- 128. Sur le nombre des classes de formes quadratiques de déterminant négatif. M. Lerch. Compt. Rend. CXXI, 878. Vergl. Differenzenrechnung.

Funktionen.

- 129. Über einen neuen Fundamentalsatz in der Theorie der algebraischen Funktionen einer Variabeln. K. Hensel. Crelle CXV, 254.
- 130. Zur Theorie der algebraischen Funktionen. L. Baur. Crelle CXVI, 167.
- 131. Abgekürzte algebraische Division bei quadratischem und höherem Divisor. C. Reuschle. Zeitschr. Math. Phys. XLI, 93. [Vergl. Nr. 153.]

132. Sur les fonctions entières. Desaint. Compt. Rend. CXX, 548.

- 138. Démonstration élèmentaire d'un théorème de Mr. Picard sur les fonctions entières. Ém. Borel. Compt. Rend. CXXII, 1045. Ém. Picard ibid. 1048. Hadamard ibid. 1257.
- 134. Sur les polynômes de Bernoulli. Sonin. Crelle CXVI, 133, 147. Ch. Hermite ibid. 139.
- 135. Sur les fonctions uniformes définies par l'inversion de différentielles totales P. Painlevé. Compt. Rend. CXXII, 660.
- 136. Sur l'inversion des systèmes de différentielles totales. P. Painlevé. Compt. Rend. CXXII, 769.
- 137. Sur une propriété des fonctions méromorphes. Ém. Bor el. Compt.Rend.CXX,303.
- 138. Sur les zéros de la fonction $\zeta(s)$ de Riemann. Hadamard. Compt. Rend. CXXII, 1470.
- 139. Sur les fonctions de deux variables réelles et sur la notion de fonction arbitraire. Ém. Borel. Compt. Rend. CXXI, 811.
- 140. Sur les groupes d'opérations. Levavasseur. Compt. Rend. CXXII, 180, 516, 711.
- Funktionalgleichungen mit drei von einander unabhängigen Veränderlichen M. Cantor. Zeitschr. Math. Phys. XLI, 161.

142. Sur les équations fonctionelles. Leau. Compt. Rend. CXX, 427.
Vergl. Abellsche Transcendenten. Bestimmte Integrale. Combinatorik. Determinanten. Differentialgleichungen. Differenzenrechnung. Elliptische Transcendenten. Formen. Gammafunktionen. Geometrie (höhere). Gleichungen.

Hyperelliptische Funktionen. Interpolation. Invariantenthorie. Kettenbrüche. Mannigfaltigkeiten. Maxima und Minima. Quaternionen. Reihen. Substitutionen. Symmetrische Funktionen. Thetafunktionen. Transformationsgruppen. Variationsrechnung.

G.

Gammafunktionen.

143. Sur la fonction $\log \Gamma(a)$. Ch. Hermite. Crelle CXV, 201.

Geometrie (höhere).

- 144. Introduzione alla geometria sopra un ente algebrico semplicemente infinito. Cor. Segre. Annali mat. Serie 2, XXII, 42.
- 145. Uber die endlichen Gruppen von Korrelationen. S. Kantor. Crelle CXVI, 171.
- 146. La geometria delle serie lineari sopra una curva piana secondo il metodo geoetrico. E. Bertini. Annali mat. Serie 2, XXII, 1.
- 147. Sur les faisceaux réguliers et les équilatères d'ordre n. P. Serret. Compt. Rend. CXXI, 372.
- 148. Propriété de deux faisceaux homographiques de quatre rayons. Cl. Servais.
- Mathesis, Sér. 2, VI, 25.

 149. Circonférence passant par deux faisceaux homographiques de manière que deux rayons homologues quelconques la rencontrent en des points en involution. Cl. Servais. Mathesis, Sér. 2, VI, 134.
- Zur Maßbestimmung in den einförmigen Grundgebilden. K. Doehlemann. Zeitschr. Math. Phys. XLI, 265.
- 151. Sur les hyperboles équilatères d'ordre quelconque. P. Serret. Compt. Rend. CXXI, 340.

152. Sur les équilatères comprises dans les équations
$$0 = \sum_{1}^{2n-2} l_1 T_1^n \cdot H_n, \quad 0 = \sum_{1}^{2n-1} l_1 T_1^n \equiv H_n + \lambda H_1'$$

P. Serret. Compt. Rend. CXXI, 438.

- 153. Geometrische Bedeutung der Partialbruchzerlegung. C. Reuschle. Zeitschr. Math. Phys. XLI, 103. [Vergl. Nr. 131.] 154. Théorèmes sur la spirale d'Archimède publiés par Chasles dans la Correspon-
- dance mathématique et physique. Mathesis, Sér. 2, VI, 112.
- 155. Étude de la courbe aux trois foyers faite par Hachette dans la Correspondance mathématique et physique. Mathesis, Sér. 2, VI, 112.
- 156. Sur un quadrilatère connexe sur les côtés duquel on a construit des triangles isoscèles. Droz-Farny. Mathesis, Sér. 2, VI, 181.
 157. Engendrement d'une conchoide. Klompers. Mathesis, Sér. 2, VI, 257. Barisien ibid. 259.
- 158. Die geometrischen Konstruktionen 3. und 4. Grades, ausgeführt mittels der geraden Linie und einer festen Kurve dritter Ordnung. Fr. London. Zeitschr. Math. Phys. XLI, 129.
- 159. Sur les courbes de quatrième classe. G. Humbert. Compt. Rend. CXX, 863. Vergl. Absolute Geometrie. Abzählende Geometrie. Mehrdimensionale Geometrie. Schliessungsaufgaben. Singularitäten.

Geschichte der Mathematik.

- 160. Extraction des racines carrées dans la Grèce antique. V. V. Bobynin.
- Zeitschr. Math. Phys. XLI, Hist. litter. Abtlg. 193
 161. Esquisse de l'histoire du calcul fractionnaire. V. V. Bobynin. Biblioth. math. 1896, 97.
- 162. Sur l'inscription astronomique de Keskinto. P. Tannery. Compt. Rend. CXX, 363.
- 163. Geometrie mit konstanter Zirkelöffnung im Altertum. M. Kutta. Biblioth. math. 1896, 16.
- 164. Nochmals der Jakobsstab. H. Suter. Biblioth. math. 1896, 13. [Vergl. Bd. XLI, Nr. 106.]
- 165. Über die im Mittelalter zur Feldmessung benutzten Instrumente. M. Curtze. Biblioth. math. 1896, 65.

166. Johannes Anglicus und sein Quadrat. A. Steinschneider. Biblioth. math. 1896, 102.

167. Über die sogenannte Regel Ta Yen in Europa. M. Curtze. Zeitschr. Math. Phys. XLI, Hist. litter. Abtlg. 81.

168. Zur Geschichte der Übersetzungen der Elementa im Mittelalter. M. Curtze. Biblioth. math. 1896, 1.

169. Uber Johann von Gemunden. M. Curtze. Biblioth. math. 1896, 4.

170. Die Mathematik bei den Juden. M. Steinschneider. Biblioth. math. 1896.
33, 77, 109. | Vergl. Bd. XLI, Nr. 108. |
171. Le commentaire de Jakob Ziegler sur la "Saphea" de Zakali. G. Eneström.

Biblioth. math. 1896, 53.

172. Beitrag zur Geschichte der prosthaphäretischen Methode in der Trigonometrie A. v. Braunmühl. Biblioth. math. 1896, 105.

173. Das Problem der kürzesten Dämmerung. K. Zelbr. Zeitschr. Math. Phys. XLI, Hist. litter. Abtlg. 121, 153.

174. Ein Beitrag zur Geschichte der Physik im 14. Jahrhundert. Biblioth. math. 1896, 48.

175. Sur la plus ancienne série française d'observations thermométriques et météorologiques. Maze. Compt. Rend. CXX, 731.

176. Sur le premier thermomètre à mercure. Maze. Compt. Rend. CXX, 732.

177. Sur le premier thermomètre à alcool utilisé à Paris. Maze Compt. Rend. CXXI, 230.

178. Das Geburtsjahr von Johannes Hudde, J. Korteweg. Zeitschr. Math. Phys. XLI, Hist. litter. Abtlg. 22.

179. Vandermonde's Vornamen. H. Simon. Zeitschr. Math. Phys. XLI, Hist. litter. Abtlg. 83.

180. Paolo Ruffini e i primordii della teoria dei gruppi H. Burkhardt. (E. Pascal.

Annali mat Serie 2, XXII, 175. [Vergl. Bd. XXXVIII, Nr. 107.]
181. La traduction française de 1805 des Disquisitiones arithmetique de Gauss.
De Jonquières. Compt. Rend. CXXII, 829, 857.

182. Note bibliographique sur les femmes dans les sciences exactes. G. Eneström Biblioth. math. 1896, 73. [Vergl. Bd. XLI, Nr. 101.]

183. Sur les découvertes mathématiques de Wronski. S. Dickstein. Biblioth. math. 1896, 5. [Vergl. Bd. XL, Nr. 125.]

184. Riemann e la sua importanza nello sviluppo della matematica moderna F. Klein (E. Pascal). Annali mat. Serie 2, XXIII, 209.

185. Die Grassmann'sche Ausdehnungslehre. V. Schlegel. Zeitschr. Math. Phys. XLI, Hist. litter. Abtlg. 1, 41.

186. Nachruf auf A. Cayley (16. VIII. 1821 - 26. I. 1895), L. Schäfli (15. I. 1814 -20. III. 1895), J. Dienger (5. XI. 1818-27. XI. 1894). L. Fuchs. Crelle CXV, 349.

187. Notice sur A. Cayley. Ch. Hermite. Compt. Rend. CXX, 235.

188. Sur les travaux de Franz Neumann, † 23. V. 1895. J. Bertrand. Compt. Rend. CXX, 1189.

189. Notice sur les travaux de John Russell Hind, † 23. XII. 1895. F. Tisserand Compt. Rend. CXXII, 17.

190. Nécrologue de Joseph Graindorge (9. VIII. 1843 — 23. I. 1896). Sér. 2, VI, 48.

191. Zum Andenken an Ludwig Ofterdinger (18. V. 1810 – 10. IV. 1896). H. Künssberg. Biblioth. math. 1896, 50.

Vergl. Absolute Geometrie 5. Bestimmte Integrale 28. Dreiecksgeometrie 90. Geometrie (höhere) 154, 155. Kegelschnitte 217. Singularitäten 357. Tetraeder.

Gleichungen.

192. Uber den Eisenstein'schen Satz von der Irreduktibilität algebraischer Gleichungen. L. Königsberger. Crelle CXV, 53.

193. Sur les racines multiples des équations. F. Brioschi. Compt. Rend. CXXI, 582. 194. Transformations de l'équation $x^{4n}-1=0$ et conséquences géométriques qu'ou peut en tirer. Stuyvaert. Mathesis, Sér. 2, VI, 229.

195. $x^4 - 5p^3x + 8q^2 = 0$ n'a pas de racine entière, p étant un nombre pair et q un nombre différent dezéro. E. Fauquembergue. Mathesis, Sér. 2, VI. 30.

Digitized by GOOGIC

- 196. Didaktische Bemerkungen zur kubischen Gleichung. W. Heymann. Zeitschr. Math. Phys. XLI, 58, 326.
- 197. Problème d'algèbre tiré de la Correspondance mathématique et physique. Mathesis, Sér. 2, VI, 201.
- 198. Sur les racines communes à plusieurs équations. W. Dyck. Compt. Rend. CXX, 34. [Vergl. Bd. XL, Nr. 478.

 199. Zur Theorie der Resultanten. E. Netto. Crelle CXVI, 33.
- 200. Élimination de deux inconnues entre trois équations dont deux du troisième et une du second degré. E. Fauquembergue. Mathesis, Sér. 2, VI, 278.
- 201. Deux équations dont une cubique a au moins une racine réelle incommensurable quand l'autre a une racine entière. E. Fauquembergue. Mathesis, Sér. 2, VI, 54.
- 202. Sur les racines de certaines équations dépendantes entre elles. E. Fauquembergue. Mathesis, Sér. 2, VI, 140.
- 203. Sur les machines algébriques. Léon. Torres. Compt. Rend. CXXI, 245.
- 204. Abaque de l'équation des marées diurnes et semi-diurnes. M. d'Ocagne. Compt. Rend. CXXII, 298

Vergl. Geschichte der Mathematik 180. Symmetrische Funktionen.

H.

Hydrodynamik.

- 205. Recherches sur la houlle de mer. J. Boussinesq. Compt. Rend. CXX, 1240, 1310, 1381. CXXI, 15, 85.
- 206. Sur la pression intérieure et le viriel des forces intérieures dans les fluides. E. H. Amagat. Compt. Rend. CXX, 489.
- 207. Théorie de l'écoulement tourbillonant et tumultueux. J. Boussinesq. Compt.
- Rend. CXXII, 1289, 1369, 1445, 1517.
 208. On elliptic cylindrical vortices. A. E. H. Love. Quart. Journ. math. XXVII, 89.
 209. On the small oscillations of the first order of Kirchhoff's elliptic vortex
- cylinder. P. H. Cowell. Quart. Journ. math. XXVII, 227. 210. Calcul des trajectoires fluides. P. E. Touche. Compt. Rend. CXXI, 157.
- 211. Die Wasserwellen. Kurz. Zeitschr. Math. Phys. XLI, 111.
- 212. Quelques considérations sur la construction des grands barrages. M. Lévy. Compt. Rend. CXXI, 288.
- 213. Expression de la charge supportée par l'arbre d'une turbine hydraulique en marche. Théorème relatif à l'effet dynamique de l'eau sur les aubages. B. de Fontviolant. Compt. Rend. CXXI, 637. Vergl. Nautik.

Hyperelliptische Funktionen.

214. Relations différentielles entre les périodes des fonctions hyperelliptiques p=2. F. Brioschi. Crelle CXVI, 326.

I.

Interpolation.

215. Ein Analogon zu den Euler'schen Interpolationsformeln. E. Netto. Zeitschr. Math. Phys. XLI, 107.

Invariantentheorie.

216. Sur certains invariants relatifs au groupe de Hesse. Boulanger. Compt. Rend. CXXII, 178.

Vergl. Differentialgleichungen 48, 49, 56, 69. Oberflächen 282.

Kegelschnitte.

- 217. Discussion de l'équation générale du second degré publiée par Ampère dans la Correspondence mathématique et physique. Mathesis, Sér. 2, VI, 253.
- 218. Sur une propriété focale des coniques à centre. Stuyvaert. Mathesis, Sér. 2, VI, 129.
- 219. Sur les coniques qui se touchent en deux points donnés. V. Jeřabek. Mathesis, Sér. 2, VI, 37.

220. Über Kreise, welche einen Kegelschnitt doppelt berühren. B. Sporer. Zeitschr. Math. Phys. XLI, 200.

221. Sur les triangles équilatéraux inscrits à une conique. E. N. Barisien. Mathesis, Sér. 2, VI, 14. — Droz-Farny ibid. 107.

222. Quadrilatère circonscrit à une conique et dont deux côtés sout parallèles R. Buysens. Mathesis, Sér. 2, VI, 260.

223. Droites menées par quatre points d'une conique à centre, tels que les normales à la courbe en ces points soient concourantes. Buisseret. Mathesis,

Sér. 2, VI, 207. — Barisien, Déprez, Droz-Farny ibid. 208. 224. Conique sur laquelle se trouvent les 6 points de rencontre des côtés non homologues de deux triangles. Droz-Farny. Mathesis, Sér. 2, VI, 95. -

J. Neuberg ibid. 96. — Bastin, Déprez ibid. 97.
225. Sur un système de coniques. J. Neuberg. Mathesis, Sér. 2, VI, 164.
Vergl. Ausdehnungslehre. Ellipse. Kreis. Parabel.

Kettenbrüche.

226. Uber Näherungswerte und Kettenbrüche. K. Th. Vahlen. Crelle CXV, 221. 227. Relations entre la fonction Bessélienne de 1re espèce et une fraction continue. J. H. Graf. Annali mat. Série 2, XXIII, 45. Vergl. Determinanten 38.

Kinematik.

228. Beitrag zur kinematischen Theorie der Gelenkmechanismen. Joh. Kleiber. Zeitschr. Math. Phys. XLI, 177, 233, 281.
229. Sur un mode de description de la ligne droite au moyen de tiges articulées

R. Bricard. Compt. Rend. CXX, 69.

230. Toute surface algébrique peut être décrite par le moyen d'un système articulé. G. Koenigs. Compt. Rend. CXX, 861.

231. Toute condition algébrique imposée au mouvement d'un corps est réalisable par le moyen d'un système articulé. G. Koenigs. Compt. Rend. CXX, 981.

232. Sur le mouvement d'une figure plane dans son plan. A. Pellet. Compt Rend. CXX, 1204

233. Sur le déplacement d'un trièdre trirectangle autour de son sommet, la position de ce trièdre dépendant de deux paramètres. M. Fouché. Compt. Rend. XXII, 763.

Kreis.

234. Le cercles de Chasles. Droz-Farny. Mathesis, Sér. 2, VI, 193. — E. N. Barisien ibid. 265. [Vergl. Bd. XLI, Nr. 147.]

235. Sur les cercles radicaux. J. J. Duran Loriga. Mathesis, Sér. 2, VI. 105. 236. Enveloppe de l'axe radicale d'un cercle fixe avec un cercle mobile dont le centre parcourt une circonférence donnée; extension dans l'espace.

Tzitzéica. Mathesis, Sér. 2, VI, 70.
237. Génération de deux circonférences ayant pour centre de similitude un point donné. J. Neuberg. Mathesis, Sér. 2, VI, 83. Vergl. Dreiecksgeometrie 98. Ellipse 117.

M.

Magnetismus.

238. Kraftwirkung eines Magnets auf einen anderen. Kurz. Zeitschr. Math. Phys. XLI, 167.

239. Potentielle Energie eines Magnets. Kurz. Zeitschr. Math. Phys. XLI, 169

240. Potential einer magnetischen Kugel. Kurz. Zeitschr. Math. Phys. XLI, 172. 241. Die magnetische Induktion. Kurz. Zeitschr. Math. Phys. XLI, 175. 242. Solanoid, Ring- und Kugelspirale. Kurz. Zeitschr. Math. Phys. XLI, 226.

Mannigfaltigkeiten.

243. Ein Beitrag zur Mannigfaltigkeitslehre. J. Thomae. Zeitschr. Math. Phys. XLI, 231.

Maxima und Minima.

244. On donne deux points A, B et une droite d non situés dans un même plan. Trouver sur la droite un point X dont la somme des distances XA + XBaux points donnés soit un minimum. Soons etc. Mathesis, Sér. 2, VI, 28.

Mechanik.

245. On a theorem of Jacobi in dynamics. A. C. Dixon. Quart. Journ. math. XXVII, 362.

246. Sur l'intégration de l'équation différentielle de Hamilton. P. Stäckel. Compt. Rend. CXXI, 489. [Vergl. Bd. XL, Nr. 528.]

247. Une propriété des mouvements sur une surface. Hadamard. Compt. Rend.

248. Condition d'immobilité d'un disque sous l'action de trois forces tangentielles. J. Jonesco, Strymeersch, Klompers, Mandart. Mathesis, Sér. 2,

249. Sur les forces de l'espace et les conditions d'équilibre d'une classe de systèmes déformable. B. Mayor. Compt. Rend. CXXII, 1185.

250. Sur une classe de solutions périodiques dans un cas particulier du problème des trois corps. J. Perchat et J. Mascart. Compt Rend. CXX, 906.

251. Sur l'équilibre d'une enveloppe ellipsoidale. L. Lecornu. Compt. Rend. CXXII, 218.

252. Studien über die Bewegungsvorgänge in der Umgebung instabiler Gleichgewichtslagen. A. Kneser. Crelle CXV, 308.
253. Sur l'entretien du mouvement du pendule sans perturbations. G. Lippmann.

Compt. Rend. CXXII, 104.

254. Sur les solutions périodiques du problème du mouvement d'un corps pesant quelconque, suspendu par un de ses points. G. Koenigs. Rend. CXXII, 1048.

255. Sopra due moti di Poinsot concordanti. Rob. Marcolongo. Annali mat. Serie 2, XXII, 157.

256. Sur la rotation des solides. R. Liouville. Compt. Rend. CXX, 903.

257. A propos d'une communication de Mr. R. Liouville sur la rotation des solides. N. Jourkovsky. Compt. Rend. CXXII, 915.

258. Sur la rotation des solides et le principe de Maxwell. R. Liouville. Compt. Rend. CXXII, 1050.

259. Sur la rotation d'un corps variable. L. Picart. Compt. Rend. CXXII, 1264. 260. Sulle rotazioni permanenti stabili di un sistema in cui sussistono moti interni stazionarii. V. Volterra. Annali mat. Serie 2, XXIII, 269.
261. Sur la pénétration d'un projectile dans les semi-fluides et les solides. H. Resal.

Compt. Rend. CXX, 397.

262. Sur le mouvement des projectiles dans l'air. Chapel. Compt. Rend. CXX, 677. 263. Sur la définition générale du frottement. P. Painlevé. Compt. Rend. CXX, 596.

264. Sur les lois du frottement de glissement. P. Painlevé. Compt. Rend. CXXI, 112. 265. Sur un mode nouveau de régulation des moteurs. L. Lecornu. Compt.

Rend. CXXII, 1188, 1322. — H. Léauté ibid. 1191. 266. Sur la forme de l'intrados des voûtes en anse de panier. H. Resal. Compt.

Rend. CXX, 352. 267. Axoïdes de deux lignes planes. H. Resal. Compt. Rend. CXX, 483.

268. Une propriété générale des axoïdes. A. Mannheim. Compt. Rend. CXX, 671.

269. Sur les variations de l'écrouissage des métaux. Fau rie. Compt. Rend. CXX, 1407.

270. Sur les déformations permanentes et la rupture des corps solides. Compt. Rend. CXXI, 343.

271. Sur les poutres droites continues solidaires avec leurs piliers. Eug. Laye. Compt. Rend. CXX, 253.

272. Résistance des poutres droites à travées solidaires sur appuis élastiques. P. Toulon. Compt. Rend. CXXI, 872. CXXII, 304.

273. Sur des abaques des efforts tranchants et des moments de flexion développés dans les poutres à une travée par les surcharges du Règlement du 29. VIII. 1891 sur les ponts métalliques. Marc. Duplaix. Compt. Rend. CXXII, 128.

274. Marche et course en flexion. Comte & Regnault. Compt. Rend. CXXII, 401.

D&jitized by GOOGIC

275. Du rôle des membres postérieurs dans la locomotion du cheval. Le Hello. Compt. Rend. CXXII, 1357.

276. Mesure du travail dépensé dans l'emploi de la bicyclette. Bouny. Compt.

Rend. CXXII, 1391, 1528. — Marey ibid. 1395. Vergl. Astronomie. Elastizität. Elektrizität. Hydrodynamik. Kinematik. Magnetismus. Optik. Wärmelehre.

Mehrdimensionale Geometrie.

277. Sur l'emploi d'une quatrième dimension. De la Rive. Compt. Rend. CXX, 983. 278. Sur une généralisation de la formule de l'aire du triangle sphérique. H. Stouff. Compt. Rend. CXXII, 303.

N. Nautik.

279. Théorie du tangage sur une mer houleuse. A. Kriloff. Compt. Rend. CXXII, 183. 280. Étude de la stabilité des navires par la méthode des petits modèles. J. Leflaive. Compt. Rend. CXXII, 704.

O. Oberflächen.

281. Sur la théorie des surfaces et des groupes algébriques. Ém. Picard. Compt. Rend. CXX, 658.

282. Sur deux invariants nouveaux dans la théorie générale des surfaces algébriques. Ém. Picard. Compt. Rend. CXXII, 101.
283. Eine neue Formel für die mittlere Krümmung und das Krümmungsmaß einer

Fläche. V. Kommerell. Zeitschr. Math. Phys. XLI, 123.

284. Sur les lignes de courbure. Th. Craig. Compt. Rend. CXX, 672.

285. Sur les surfaces dont les lignes de courbure forment un réssau à invariants tangentiels égaux. A. Thybaut. Compt. Rend. CXXI, 519.

286. Sur les surfaces à lignes de courbure sphériques. E. Blutel. Compt. Rend. CXXII, 301.

287. Sur les courbes tracées sur une surface et dont le sphère osculatrice est tangente en chaque point à la surface. E. Cosserat. Compt. Rend. CXXI, 48.

288. Sur les lignes asymptotiques. E. Goursat. Compt. Rend. CXXII, 593. 289. On the continuous deformation of surfaces. D. B. Mair. Quart. Journ. math. XXVII, 1.

290. Sur la déformation des surfaces. P. Adam. Compt. Rend. CXXI, 551.

291. Zur simultanen Transformation quadratischer Differentialformen. J. Knoblauch. Crelle CXV, 185.

292. Sur les transformations biuniformes des surfaces algébriques. P. Painlevé. Compt. Rend. CXXII, 874.

293. Di alcune superficie che ammettono un sistema di linee eguali e un secondo sistema di linee eguali, o simili. Gem. Pirondini. Annali mat. Serie 2, XXIII, 93.

294. Sur le roulement de deux surfaces l'une sur l'autre. E. Cosserat. Compt. Rend. CXXI, 935.

295. Sur un système triple ortogonal. P. Adam. Compt. Rend. CXXI, 812. -E. Goursat ibid. 883. — J. Bertrand ibid. 921.

296. Konstruktion der Schmiegungsebenen der Schnittkurve zweier Kegel. A. Beck. Zeitschr. Math. Phys. XLI, 221.

297. On geodesic torsion. G B. Mathews. Quart. Journ. math. XXVII, 145.

298. Simmetria ortogonale rispetto a una superficie di revoluzione. Gem. Piron-

dini. Annali mat. Serie 2, XXII, 213.
299. Sulla costruzione della superficie del 3º ordine individuata da 19 punti.
M. Pannelli. Annali mat. Serie 2, XXII, 237.

300. Uber Isogonalflächen. L. Heffter. Crelle CXV, 1.

301. Über Modellierung von Isogonalflächen. L. Heffter. Zeitschr. Math. Phys. XLI, 168.

302. Propriété nouvelle de la surface de l'onde. A. Mannheim. Compt. Rend. CXXII, 708.

303. Sur les surfaces aspidales. A. Mannheim. Compt. Rend. CXXII, 1396. Vergl. Abel'sche Transcendenten 2. Differentialgleichungen 83. Kinematik 230. Mechanik. Singularitäten. Transformationsgruppen.

Oberflächen zweiter Ordnung.

304. Über die Konstruktion der Fläche zweiten Grades aus 9 gegebenen Punkten. H. Liebmann. Zeitschr. Math. Phys. XLI, 120. — Joh. Kleiber ibid. 228. Vergl. Ausdehnungslehre.

Optik.

- 305. Examples of the characteristic function. A. R. Hermann. Quart. Journ. math. XXVII, 191.
- 306. Principe d'Huygens dans les corps isotropes. E. Carvallo. Compt. Rend. CXX, 88. [Vergl. Bd. XL, Nr. 603.]
- 307. Sur le spectre cannelé. H. Poincaré. Compt. Rend. CXX, 757. A. Schuster ibid. 987.
- 308. Les rayons cathodiques et les vibrations longitudinales de l'éther. H. Poincaré. Compt. Rend. CXXI, 792. CXXII, 76, 520, 990. — G. Jaumann ibid. CXXII, 74, 517, 988.
- 309. Sur la caustique d'un arc de courbe réfléchissant les rayons émis par un point lumineux. A. Cornu. Compt. Rend. CXXII, 1455.
- 310. Sur l'entraînement des ondes lumineuses par la matière en mouvement. G. Foussereau. Compt. Rend. CXX, 85.
- 311. Sur le passage de la lumière à travers une lame mince dans le cas de la réflexion totale. Ch. Fabry. Compt. Rend. CXX, 314.
- 312. Absorption de la lumière dans les cristaux uniaxes. G. Moreau. Compt. Rend. CXX, 602.
- 313. Sur l'absorption de la lumière par les milieux doués du pouvoir rotatoire.
- E. Carvallo. Compt. Rend. CXXII, 985.
 314. Sur la dispersion rotatoire anomale des milieux absorbants cristallisés. G. Moreau. Compt. Rend. CXX, 258.
- 315. Recherches spectrales sur la rotation et les mouvements des planètes. H. Deslandres. Compt. Rend. CXX, 417. - H. Poincaré ibid. 420.

P.

Parabel.

- 316. Le problème de la duplication du curbe au moyen d'une parabole. G. de Longchamps. Mathesis, Sér. 2, VI, 245.
- 317. Sur les paraboles ayant un diamètre commun et touchant une droite donnée au bout de ce diamètre. Stuyvaert. Mathesis, Sér. 2, VI, 92.
- 318. Paraboles touchant une droite donnée en un point donné, leur directrices passant par un point donné. Droz-Farny, Déprez, Buisseret, Gob. Mathesis, Sér. 2, VI, 50. — Déprez, J. Jonesco ibid. 51.

 319. Parabole les points tels que, si l'on mène les trois normales à une
- parabole donnée, le cercle passant par les seconds points de rencontre des normales avec la parabole ait son centre sur l'axe de la parabole. Bastin, Cristescu, J. Jonesco. Mathesis, Sér. 2, VI, 26.
- 320. Sur les normales de deux points à une parabole donnée. Cristescu, Barisien, J. Jonesco. Mathesis, Sér. 2, VI, 180.
- 321. Propriété du triangle dont les sommets sont les pieds des normales abaissées d'un point sur une parabole et du second triangle formé par les tangentes en ces trois points. Cristesco. Mathesis, Sér. 2, VI, 332. Droz Farny, H. Brocard ibid. 234. Déprez ibid. 236.
- 322. Parabole lieu de la projection du centre d'osculation d'une parabole sur la droite qui joint le foyer au point d'osculation. Déprez. Mathesis, Sér. 2, VI, 188.
- 323. Parabole lieu du centre du cercle circonscrit à un triangle dont les sommets se trouvent sur une autre parabole. Gillet etc. Mathesis, Sér. 2, VI. 98. — Cristescu etc. ibid. 99.
- 324. Théorèmes sur une parabole et un cercle. Schoute, Bastin, Déprez, Droz-Farny, Verdeyen, J. Jonesco, V. Cristescu. Mathesis,

Digitized by GOOGLE

Sér. 2, VI, 116. — Cl. Servais ibid. 120. — Klompers, Buisseret, Buysens, Colart, Polak, B. Jonesco, Ratali ibid. 122.

325. Cordes d'une parabole qui en enveloppent une autre. Cristesco. Mathesis, Sér. 2, VI, 275.

Vergl. Quadratur 339.

Planimetrie.

326. Zur Übertragung der Rechnungsarten auf die Geometrie, insbesondere über die Möglichkeit der Multiplikation von Strecken mit Strecken. H. Vollprecht. Zeitschr. Math. Phys. XLI, 276.

327. Sur une nouvelle démonstration du postulatum d'Euclide. P. Mansion Mathesis, Sér. 2, VI, 109. — M. Frolov ibid. 225.

328. A rigorously euclidean demonstration of the theory of parallel straight lines to be introduced immediately after Eucl. I, 26. Thos. Cullovin. Quart. Journ. math. XXVII, 188, 225. — A. E. H. Love ibid. 353.

329. Sur le problème de mener par un point 0 situé dans l'angle CAB une transversale MN formant un triangle MAN d'aire donnée, problème traité dans la Correspondance mathématique et physique. Mathesis, traité dans la Correspondance mathématique et physique. Sér. 2, VI, 200.

330. Un triangle est isoscèle s'il a deux bissectrices intérieures égales. G. Tarry. Mathesis, Sér. 2, VI, 41.

331. La base BC d'un triangle ABC est divisée harmoniquement aux points D, E; quelles valeurs prend $AD^2 + AE^2$? Klompers. Mathesis, Sér. 2, VI, 189.

332. Propriétés d'un triangle sur les côtés duquel on a construit exterieurement des carrés. Droz-Farny etc. Mathesis, Sér 2, VI, 49.

333. Construire un pseudocarré, connaissant les longueurs de trois côtés. Klompers, Colart. Mathesis, Sér. 2, VI, 52. — Droz-Farny, J. Jonesco ibid. 53. — Déprez ibid. 75.

334. Pseudocarré construit au moyen d'un autre. Droz-Farny. Mathesis, Sér. 2, VI, 94. — Déprez, J. Jonesco ibid. 95.

335. Sur une transversale d'un parallélogramme donné qu'on fait tourner autour d'un point fixe. Hacken, Klompers, Poort. Mathesis, Sér. 2, VI, 69.

336. Sur les projections d'un point sur les côtés d'un quadrilatère. Colart.

Déprez, Klompers. Mathesis, Sér. 2, VI, 209. 337. Sur un système de quadrilatères. Klompers, Droz-Farny. Mathesis, Sér. 2, VI, 190.

Vergl. Dreiecksgeometrie. Kreis.

Quadratur.

338. Aire des paraboles d'ordre supérieur. H. Schoute. Compt. Rend. CXXII. 1113. — D. J. Korteweg ibid. 1399. G. Mannoury ibid. 1399.

339. Sur l'aire d'une partie de la parabole. Mendeleef. Compt. Rend. XXI, 421. 340. Aires et volumes relatifs à la chainette. C. E. Wasteels. Mathesis, Sér. 2, VI, 241.

341. Périmêtre et aire de la podaire d'une cardioïde et le sa développée. Fairon Mathesis, Sér. 2, VI, 185.

Vergl. Mehrdimensionale Geometrie 278.

Quaternionen.

342. Zur Theorie der Vektoren und Quaternionen. Beez. Zeitschr. Math. Phys. XLI, 35, 65.

R.

Rechnen.

343. Sur la définition de la multiplication. Laisant et Lemoine. Mathesis, Sér. 2, VI, 85.

Vergl. Geschichte der Mathematik 161. Planimetrie 326. Wurzelausziehung. Zinseszins.

Reihen.

344. Sur la divergence des séries de la mécanique céleste. H. Poincaré. Compt. Rend. CXXII, 497, 557.

345. Sur la sommation des séries divergentes. Ém. Bor el. Compt. Rend. CXXI, 1125

Digitized by GOOGLE

- 346. Sur la géneralisation de la notion de limite et sur l'extension aux séries divergentes sommables du théorème d'Abel sur les séries entières. Ém. Borel. Compt. Rend. CXXII, 73.
- 347. Applications de la théorie des séries devergentes sommables. Ém. Borel. Compt. Rend. CXXII, 805.
- 348. Sur le théorème de Taylor transformé. N. U. Bougaief. Compt. Rend. XCCI, 1127.
- 349. Sur le théorème de Taylor avec l'approximation du troisième degré. N. Bougaief. Compt. Rend. CXXII, 369.
- 350. Sur le développement des fonctions en série ordonnée suivant les puissances du sinus et du cosinus de la variable. F. Gomes Teixeira. Crelle CXVI, 14.
 351. Sur une suite récurrente. J. Neuberg. Mathesis, Sér. 2, VI, 88.
- 352. Sur une extension du théorème de Laurent. Ch. Hermite. Crelle CXVI, 85.
- 353. Über einige unendliche Produkte und Reihen. O. Schlömilch. Zeitschr. Math. Phys. XLI, 127.
- 354. Products and series involving prime numbers only. J. W. L. Glaisher. Quart. Journ. math. XXVII, 270.
- 355. On Hamilton's numbers. G. B. Mathews. Quart. Journ. math. XXVII, 184. --J. C. Glashan ibid. 242.
 - Vergl. Astronomie 20, 21, 22, 23. Bestimmte Integrale 29. Differentialgleichungen 75. Funktionen 134. Symmetrische Funktionen. Wurzelausziehung 408.

S.

Schliessungsaufgabe.

356. Cber Steiner'sche Kugelketten. K. Th. Vahlen. Zeitschr. Math. Phys. XLI, 153.

Singularitäten.

- 357. Mémoire de Michel Reiss daté de 1832 et publié dans la Correspondance mathematique et physique sur des propriétés des courbes algébriques. Mathesis, Sér. 2, VI, 42
- 358. Über Singularitäten ebener algebraischer Kurven. W. Köstlin. Zeitschr. Math. Phys. XLI, 1.
- 359. Uber die doppelpunktige Focalkurve. R. Müller. Zeitschr. Math. Phys. XLI, 62. 360. Über die Doppelpunkte der algebraischen Curven. H. Oppenheimer, Zeitschr.
- Math. Phys. XLI, 305. 361. Uber die ebenen Kurven vierter Ordnung vom Geschlechte eins. H. Lieb-
- mann. Zeitschr. Math. Phys. XLI, 85. 362. Sur une question concernant les points singuliers des courbes gauches algébriques. G. B. Guccia. Compt. Rend. CXX, 816.
- 363. Über einige Arten singulärer Punkte von Raumkurven. A. Meder. Crelle CXVI, 50, 247.
- 364. Sur les variétés unicursales à deux dimensions. L. Autonne. Compt. Rend. CXXI, 673.
- 365. Sur les variétés unicursales à trois dimensions. L. Autonne. Compt. Rend. CXXI, 881, 1129.
- 366. Sur les points doubles d'un faisceau de surfaces algébriques. G. B. Guccia. Compt. Rend. CXX, 896.

Sphärik.

- 367. Eine neue Ableitung der harmonischen Eigenschaften des Vierecks. A.W. Velten. Zeitschr. Math. Phys. XLI, 332.
- 368. On the nine-points circle of a spherical triangle. A. Cayley. Quart. Journ. math. XXVII, 35.
- 369. Dans deux triangles sphériques ayant leurs côtés proportionnels les angles du plus petit triangle sont moindres que ceux de l'autre. P. Mansion. Mathesis, Sér. 2, VI, 114.
- 370. On a little-circle spherical triangle. E. C. Hudson. Quart. Journ. math. XXVII, 378.
 - Vergl. Kreis 236. Trigonometrie 397.

Substitutionen.

371. Complemento alle cicerche sulle forme quaternarie quadratiche e sui gruppi poliedrici. L. Bianchi. Annali mat. Serie 2, XXIII, 1. [Vergl. Bd. XL.

372. Sur les substitutions. Zochios. Compt. Rend. CXX, 766.

373. Sur la théorie des substitutions échangeables. Demeczky. Compt.Rend.CXX, 39. 374. Sur un mode de formation de certains groupes primitifs. Edm. Maillet. Quart. Journ. math. XXVII, 119.

375. Application de la théorie des substitutions à celle des carrés magiques. Edm. Maillet. Quart. Journ. math. XXVII, 132.

376. Sur les types de groupes de substitutions dont l'ordre égale le degré. R. Levavasseur. Compt. Rend. CXX, 822, 899, 1206. CXXI, 238.

377. Sur une catégorie de groupes de substitutions associés aux groupes dont l'ordre égale le degré. R. Levavasseur. Compt. Rend. CXX, 1206. 378. Sur les groupes d'opérations. R. Levavasseur. Compt. Rend. CXXII,

180, 516, 711.

379. Sur les substitutions régulières non linéaires. Autonne. Compt. Rend. CXXII, 1043.

380. Intransitive substitution groups of 10 letters. Geo. A. Miller. Quart. Journ. math. XXVII, 99.

381. Sur les groupes de substitutions. A. Miller. Compt. Rend. CXXII, 370. 382. List of the transitive substitution groups of 10 and of 11 letters. F. N. Cole.

Quart. Journ. math. XXVII, 39. 383. On the 60 icosahedral substitutions. A. Cayley. Quart. Journ. math. XXVII, 236.

Symmetrische Funktionen.

384. Die elementaren symmetrischen Funktionen und die Potenzsummen einer oder mehrerer Reihen von Veränderlichen. Fr. Junker. Zeitschr. Math. Phys. XLI, 199. T.

Tetraeder.

385. Historique des Problèmes d'Estève et de Bruno sur le tétraèdre extrait de la Correspondance mathématique et physique. Mathesis, Sér. 2, VI, 18. Vergl. Zahlentheorie 424.

Thetafunktionen.

386. Über eine Darstellung der Richtungscosinus zweier orthogonalen Koordinatensysteme durch Thetafunktionen zweier Argumente, welche die Lösung mehrerer Probleme der Mechanik als Spezialfälle umfasst. Fr. Kötter. Crelle CXVI, 213.

Transformationsgruppen.

387. Sur la détermination des équations des groupes continus finis. E. Vessiot. Compt. Rend. CXX, 77.

388. Sur certains groupes algébriques. E. Cartan. Compt. Rend. CXX, 544.

389. I gruppi continui proiettivi semplicemente infiniti nello spazio ordinario G. Pittarelli. Annali mat. Serie 2, XXII, 61.

390. Sur les surfaces algébriques admettant un groupe continu de transformations birationelles en elles même. G. Castelnuovo et F. Enriques. Compt. Rend. CXXI, 242. - P. Painlevé ibid. 318.

391. Sur les groupes paramètres dans la théorie des substitutions. Ed. Maillet. Annali mat. Serie 2, XXIII, 199.

392. Sur un groupe continu de transformations avec 28 paramètres qu'on rencontre dans la théorie de la déformation des surfaces. P. Stückel. Compt. Rend. CXXI, 396.

Vergl. Geschichte der Mathematik 180.

Trigonometrie.

393. Sur la formale approximative $x = \sin x \cdot \frac{14 + \cos x}{9 + 6 \cos x}$ P. Mansion, Mathesis. Sér. 2, VI, 84.

- 394. C'ber algebraische Beziehungen an einem symmetrischen Kreissechseck. M. Stern. Zeitschr. Math. Phys. XLI, 272.
- 395. Trois droites se rencontrant en un point. Bastin, Déprez. Mathesis, Sér. 2, VI, 125.
- 396. Résoudre un système de deux équations trigonométriques. Hacken, B. Jones co. Déprez, Mandart. Mathesis, Sér. 2, VI, 277.
- 397. Der Resultantenbegriff in der sphärischen Trigonometrie. Franz Meyer. Crelle CXV, 209.

Vergl. Geschichte der Mathematik 172. Zahlentheorie 487.

V.

Variationsrechnung.

- 398. Sur les problèmes de variations qui correspondent aux droites de l'espace. G. Koenigs. Compt. Rend. CXXI, 1122.
- 399. Sur les problèmes de variations relatifs aux intégrales doubles. G. Koenigs. Compt. Rend. CXXII, 126.

W.

Wärmelehre.

- 400. Sur le problème de Fourier. E. Le Roy. Compt. Rend. CXX, 179, 599.
- 401. Sur la théorie des gaz. J. Bertrand. Compt. Rend. CXXII, 963, 1083, 1174, 1314. - Bolzmann ibid. 1173, 1314.
- 402. Die Elastizitätskoefficienten und die Wellenbewegungserscheinungen als Funktionen der Molekulargewichte und spezifischen Wärme. O. Förster. Zeitschr. Math. Phys. XLI, 258.
- 403. Erwärmung flüssiger und fester Körper durch Druck. Kurz. Zeitschr. Math. Phys. XLI, 113.
- 404. Adiabatische Ausdehnung realer Gase. Kurz. Zeitschr. Math. Phys. XLI, 117.

Wahrscheinlichkeitsrechnung.

- 405. Sur une application de la théorie de la probabilité des erreurs aux nivellements de haute précision. M. d'Ocagne. Compt. Rend. CXX, 717.
- 406. Sur la méthode des moindres carrés. J. Andrade. Compt. Rend. CXXII, 1400.

Wurzelausziehung.

- 407. Sur les valeurs principales des radicaux. De Tilly. Mathesis, Sér. 2, VI, 5. [Vergl. Bd. XLI, Nr. 240.]
- 408. Nouvelle méthode pour extraire les racines des nombres. M. V. Prada. Compt Rend. CXXI, 635.

Vergl. Geschichte der Mathematik 160.

Z.

Zahlentheorie.

- 409. Elementarer Beweis des Satzes, dass in jeder unbegrenzten arithmetischen Progression my+1 unendlich viele Primzahlen vorkommen. E. Wendt. Crelle CXV, 85.
- 410. Nouveaux theoremes d'arithmétique. P. Pepin. Compt. Rend. CXX, 1254. [Vergl. Bd. XL, Nr. 667.]
- 411. Du meilleur système de numération et de poids et mesures. E. Gelin. Mathesis, Sér. 2, VI, 161.
- 412. Über den grössten gemeinsamen Teiler aller Zahlen, welche durch eine ganze Funktion von n Veränderlichen darstellbar sind. K. Hensel. Crelle CXVI, 350.
- 413. Sur le cas général de la division des nombres entiers. M. Stuyvaert. Mathesis, Sér. 2, VI, 21.
- 414. Sur le moindre multiple. Stuyvaert. Mathesis, Sér 2, VI, 198, 229.
- 415. Démonstration d'un théorème sur les nombres entiers. De Jonquières. Compt. Rend. CXX, 534. [Vergl. Nr. 39.]
- 416. Sur une question d'algèbre qui a des liens avec le dernier théorème de Fermat. De Jonquières. Compt. Rend. CXX, 1139, 1236.
- 417. Quelques propriétés des racines primitives des nombres premiers. De Jonquières. Compt. Rend. CXXII, 1451.

418. Quelques propriétés des racines secondaires des nombres premiers. De Jon-

quières. Compt. Rend. CXXII, 1513.
419. On the reduction of Kroneckers modular systems.
Journ. math. XXVII, 147. H. Hancock. Quart.

420. Démonstration d'un théorème de Tchébychef. A. Markoff. Compt. Rend. CXX, 1032.

421. Cyclic numbers. L. E. Dickson. Quart. Journ. math. XXVII, 366.

422. Sur quelques théorèmes de l'arithmologie. N. Bougaief. Compt. Rend. CXX,432. 423. Sur les fractions décimales périodiques mixtes. N. Socolof. Mathesis, Sér. 2, VI, 132.

424. Rationale Tetraeder. K. Schwering. Crelle CXV, 301.

425. Un nombre parfait impair (s'il en existe) est le somme de deux carrés. Stuyvaert. Mathesis, Sér. 2, VI, 132.

426. Pour quelles valeurs de n la somme des carrés des n premiers triangulaires divisée par le somme des n premiers triangulaires est elle un carré parfait? E. Fauquembergue. Mathesis, Sér. 2, VI, 101.

427. Décomposition de $(a^2 + b^2)^6$ en somme de trois ou de quatre carrés. Soons. Mathesis, Sér. 2, VI, 27. — E. Fauquembergue ibid. 274.

- 428. Nombres triangulaires qui, augmentés d'une unité deviement des carrés. E. Fauquembergue. Mathesis, Sér. 2, VI, 28.
- 429. Sur l'équation $\frac{n(n+1)(n+2)(n+3)}{1\cdot 2\cdot 3\cdot 4} = p^2$. E. Fauquembergue. Mathesis, Sér. 2, VI, 76.
- 430. Sur les racines de $x^3+2=y^2$. E. Fauquembergue. Mathesis, Sér. 2, VI, 191.

431. Sur l'équation $v^4 + x^4 + y^2 = 2z^2$, la forme des valeurs de v, x, y étant donnée. E. Fauquembergue. Mathesis, Sér. 2, VI, 210, 212.

432. Fable des nombres triangulaires. Arnaudeau. Compt. Rend. CXX, 248. -Bouquet de la Grye ibid. 976.

433. Sommes de quatre et de trois triangulaires. J. Jonesco. Mathesis, Sér. 2, VI, 134.

434. La somme des puissances semblables des x premiers nombres, augmentée en diminuée de l'unité, est divisible par x+2. E. Fauquembergue Mathesis, Sér. 2, VI, 127.

- 435. Sur la congruence $\frac{r^{p-1}-1}{p} \equiv q_r \pmod{p}$. D. Mirimanoff. Crelle CXV, 295.
- 436. Problèmes d'arithmologie. E. Gelin. Mathesis, Sér. 2, VI, Supplément.
- 437. Sur les solutions entières $x_1 cdots x_n$, x_n , $x_1 cdots x_n$, k de l'équation x_1 acrtg $\frac{1}{x_1} + x_2$ arctg $\frac{1}{x_n} + x_n$ arctg $\frac{1}{x_n} = \frac{k \pi}{4}$. C. Storner. Compt. Rend. CXXII, 175, 225
- 438. Sur l'équation $\frac{x}{y} \cdot z = \frac{x}{y} + z$. Stuyvaert. Mathesis, Sér. 2, VI, 131. Vergl. Chronologie 34. Formen. Geschichte der Mathematik 167, 181 Kettenbrüche 226. Reihen 354. Substitutionen 375.

Zinseszins.

439. Sur le calcul des annuités viagères. E. Fagnart. Mathesis, Sér. 2, VI. 64.

Historisch-litterarische Abteilung.

Quadrat- und Kubikwurzeln bei den Griechen nach Heron's neu aufgefundenen Μετριπά.

Von

MAXIMILIAN CURTZE

in Thorn.

Es sind wohl kaum über irgend eine strittige Frage des griechischen Altertums eine grössere Zahl Vermutungen aufgestellt worden als über die Art, wie die Griechen Wurzeln aus Nichtquadratzahlen ausgewertet haben. Da, wo man die Erläuterung des Verfahrens zu finden erwarten durfte, im Kommentare des Eutokios zu der xúxlov μέτρησις des Archimedes, steht nur der Hinweis, dass man das Verfahren bei Theon und Heron nachlesen könne.* Da bis jetzt die Merqua des Heron, in welchen die Anleitung stehen sollte, für verloren galten, so blieb nur der Kommentar Theon's zum Almagest übrig, in welchem ja unser heutiges Verfahren, auf 60teilige Brüche angewendet, beschrieben ist. Wie dasselbe nach dem griechischen Muster auf die Rechnung mit Stammbrüchen zu übertragen ist, hat neuerdings Bobynin gezeigt.** Damit ist aber immerhin noch nicht das Verfahren Heron's aufgedeckt. Nun sind aber durch Herrn Wirklichen Geheimen Ober-Regierungsrat Dr. R. Schöne zu Berlin im Kodex Nr. 1 der Serailbibliothek zu Konstantinopel die drei Bücher Μετρικά Heron's wieder aufgefunden worden, und wird der Text derselben, herausgegeben von dem Sohne des Entdeckers, Herrn Dr. Hermann Schöne, nebst einer deutschen Übersetzung erscheinen. Als mir vor einigen Wochen Einblick in die vortrefflich erhaltene und vorzüglich geschriebene Pergamenthandschrift, die dem Schrift-

^{*} Archimedis opera omnia ed. Heiberg, vol. III, p. 270: ὅπως δὲ δεῖ σύνεγγυς τὴν δυναμένην πλευρὰν τὸν δοθέντα ἀριθμὸν εὐρεῖν, εἴρηται μὲν Ἡρωνι ἐν τοῖς μετρικοῖς, εἴρηται δὲ Πάππω καὶ Θέωνι καὶ ἐτέροις πλείοσιν ἐξηγουμένοις τὴν μεγάλην σύνταξιν τοῦ Κλαυδίου Πτολεμαίου. ὥστε οὐδὲν ἡμᾶς χρὴ περὶ τούτου ζητεῖν ἐξὸν τοῖς φιλομαθέσιν ἐξ ἐκείνων ἀναλέγεσθαι.

^{**} V. V. Bobynin, Extraction des racines carrées dans la Grèce Antique (Zeitschrift für Mathematik und Physik, Hist.-litt. Abt. 1896, 6. Heft, S. 193—211).

charakter nach im 10. Jahrhundert entstanden sein wird, gestattet wurde, war mir die Stelle des Eutokios nicht gegenwärtig; durch den Aufsatz Bobynin's darauf wieder aufmerksam geworden, wendete ich mich sofort an Herrn Geheimenrat Dr. Schöne mit der Bitte, den Text der Μετρικά daraufhin nachsehen lassen zu wollen, ob die durch Eutokios versprochene Stelle sich wirklich in demselben finde, und, wenn dies in der That der Fall sei, durch Veröffentlichung des betreffenden Abschnittes noch vor Herausgabe des Ganzen für eine so wichtige historisch-mathematische Streitfrage einen hoffentlich endgiltigen Abschluss herbeizuführen. Die daraufhin vorgenommene Textesdurchsicht ergab nun wirklich den gewünschten Nachweis, sie ergab aber noch mehr: die Anweisung, methodisch den angenäherten Wert von Kubikwurzeln aus Nichtkubikzahlen zu finden, also, wenn man von der bekannten Pappustelle absieht,* ein vollständiges Novum Dr. Hermann Schöne hatte die grosse Güte, mir die betreffenden Abschnitte aus dem 1. und dem 3. Buche jenes Werkes im Originalwortlaute mit seinen kritischen Bemerkungen versehen mitzuteilen; es wurde mir dabei aber gleichzeitig auch die Erlaubnis erteilt, dieselben noch vor der Herausgabe des vollständigen Textes der Μετρικά veröffentlichen zu dürfen, und so ist in hochherziger Weise, in einer Art, die zu erhoffen ich ja nie Grund hatte, meinem oben erwähnten Wunsche Rechnung getragen worden. Auch an dieser Stelle meinem tiefgefühltesten Danke für diese grosse Güte Ausdruck zu geben, ist mir zugleich Bedürfnis und angenehme Pflicht.

Zunächst lasse ich hier den Text der Anweisung, Quadratwurzeln näherungsweise zu finden, folgen, und werde dann daran einige weitere erläuternde Bemerkungen knüpfen. Nochmals wiederhole ich, dass sowohl die Textrezension als die kritischen Bemerkungen von Herm Dr. Hermann Schöne in Berlin stammen. Die Schreibweise der Handschrift ist sowohl bei den ganzen Zahlen als auch bei den Brüchen beibehalten, und nur die offenbaren Irrtümer sind berichtigt.

Codex Constantinopolitanus palatii veteris 1, fol. 70°:

1 ἐπεὶ οὖν αί ψκ ὁητὴν πλευρὰν οὖκ ἔχουσι, ληψόμεθα μετὰ διαφόρου ἐλαχίστου τὴν πλευρὰν οὖτως· ἐπεὶ ὁ συνεγγίζων τῷ ψκ τετράγωνός 5 ἐστιν ὁ ψκθ καὶ πλευρὰν ἔχει τὸν κζ, μέρισον τὰς ψκ εἰς τὸν κζ· γίγνεται κς καὶ τρίτα δύο. πρόσθες

Das heisst zu deutsch:

Da nun 720 eine rationale Wurzel nicht besitzt, so finden wir die Wurzel mit kleinster Differenz in folgender Weise. Da das 720 am nächsten kommende Quadrat 729 mit der Seite 27 ist, so teile 720 durch 27; es entsteht $26\frac{2}{3}$. Dazu addiere 27, es ergiebt sich $53\frac{2}{3}$: davon die Hälfte giebt $26\frac{1}{2}\frac{1}{3}$: also

^{*} Pappi Alexandrini collectionis quae supersunt ed. Fr. Hultsch. Vol. L. Berolini 1876, p. 33.

τὰς κζ. γίγνεται νη τρίτα δύο. τούτων τὸ ῆμισυ γίγνεται κς μ΄. ἔσται

10 ἄρα τοῦ ψκ ἡ πλευρὰ ἔγγιστα
τὰ κς μ΄. τὰ γὰρ κς μ΄ ἐφ΄ ἐαυτὰ
γίγνεται ψκ λ΄ς. ὥστε τὸ διάφορον
μονάδος ἐστὶ μόριον λ΄ς. ἐὰν δὲ
βουλώμεθα ἐν ἐλάσσονι μορίω

15 τοῦ λ΄ς τὴν διαφορὰν γίγνεσθαι,
ἀντὶ τοῦ ψκθ τάξομεν τὰ νῦν
εύρεθέντα ψκ καὶ λ΄ς. καὶ ταῦτα
ποιήσαντες εὐρήσομεν πολλῷ
ἔλαττον λ΄ς τὴν διαφορὰν γιγνο20 μένην.

ist die nächste Wurzel aus 720 gleich $26\frac{1}{2}\frac{1}{3}$. Denn $26\frac{1}{2}\frac{1}{3}$ mit sich selbst multipliziert giebt $720\frac{1}{36}$, so dass der Unterschied nur $\frac{1}{36}$ der Einheit beträgt. Wollen wir aber, dass der Unterschied in noch kleineren Teilen als $\frac{1}{36}$ sich ergäbe, so setzen wir an Stelle von 729 die jetzt gefundenen $720\frac{1}{36}$, und indem wir dieses thun, finden wir, dass der Unterschied um vieles geringer wird als $\frac{1}{36}$.

1. $\overline{\varrho\eta}$ $\tau\dot{\eta}\nu$ die Hs. — 3. $\tau\tilde{\omega}$ die Hs. — 11 zu Anfang $\tau\dot{\alpha}$ wohl als Dittographie zu tilgen. — 12, 13, 15, 17 $\overline{\lambda}$ 5, dagegen 19 λ 5 die Hs.

Im Obigen liegt offenbar die Formel verborgen (dabei bedeutet \sim nahezu gleich):

$$\sqrt{A} = \sqrt{a^2 \pm b} \sim \frac{1}{2} \left(a + \frac{A}{a} \right) = \alpha; \quad \sqrt{A} \sim \frac{1}{2} \left(\alpha + \frac{A}{\alpha} \right) = \alpha';$$

$$\sqrt{A} \sim \frac{1}{2} \left(\alpha' + \frac{A}{\alpha'} \right) = \alpha'' \text{ etc.}$$

Schreibt man dieselbe entwickelt so:

$$\sqrt{A} = \sqrt{a^2 \pm b} \sim \frac{1}{2} \left(a + \frac{a^2 \pm b}{a} \right) \sim a \pm \frac{b}{2a}$$

so sieht man, dass in der Heron'schen Formel die von allen Forschern als den Griechen bekannt vorausgesetzte Annäherung

$$\sqrt{a^2 \pm b} \sim a \pm \frac{b}{2a}$$

$$\sqrt{27^2-9}=27-\frac{9}{54}=27-\frac{1}{6}=26\frac{5}{6}$$

aber gerade aus diesem Beispiele ist klar, dass selbst bei so nahe liegender Anwendung der zweiten Form der obigen Regel doch die erste gewählt wurde. Sie ergiebt hier die Wurzel sofort in der gewünschten Form von Stammbrüchen zu $26\frac{1}{2}\frac{1}{3}$. Dass das als nächstes zu wählende Quadrat nicht jedesmal das einer ganzen Zahl zu sein brauchte, liegt in der Bemerkung am Ende der Anweisung, man solle, um grössere Annäherung zu finden, mit dem gefundenen Werte $26\frac{1}{2}\frac{1}{3}$ so weiter verfahren, wie vorher mit 27. So ist es z. B. klar, dass $\sqrt{3}$ näher an 2 als an 1 liegen muss, und eine kurze Überlegung zeigt, dass $\sqrt{3} \sim \frac{5}{3}$ eine gar nicht schlechte Annäherung ist; aus ihr folgt aber: $\sqrt{3} \sim \frac{1}{2} \left(\frac{5}{3} + \frac{9}{5}\right) = \frac{26}{15},$

der Wert Heron's; und weiter:

$$\sqrt{3} \sim \frac{1}{2} \left(\frac{26}{15} + \frac{45}{26} \right) = \frac{1351}{780},$$

der eine Wert des Archimedes.

Dieselbe Methode, wie die des Heron, finden wir in den beiden Briefen des Nicolaus Rhabdas auseinandergesetzt, welche Paul Tannery 1886 herausgab,* mit dem einzigen Unterschiede, dass Rhabdas die erste Annäherung nach der zweiten Form der aus der Heron'schen Anleitung folgenden Formel sucht. Er hat also nicht gesehen, dass seine zweite Annäherung sich genau so finden lassen würde wie seine erste. Dass, sobald Brüche in Frage kommen, das Heron'sche Verfahren bequemer ist als die abgeleitete Form, ist offen-Dieselbe Methode finden wir später in der Summa des Luca Paciuolo, wir finden sie bei Cataldi, wir finden sie bei Cardan und Tartaglia und, wissenschaftlich begründet, als die von Günther sogenannte zweite Methode Buzengeiger's.** Diese Methode, welche von Günther a. a. O. als versteckter Kettenbruchalgorithmus aufgedeckt ist, ist also sicher den alten Griechen bekannt gewesen, und es lassen sich mit demselben alle von Tannery*** als echt Heronisch bezeichneten Wurzeln mit Leichtigkeit ableiten. So ist z. B.:

^{*} Notice sur les deux lettres arithmétiques de Nicolas Rhabdas (Text grec et traduction) par M. Paul Tannery. Paris 1886. p. 40-41 und 68-75.

^{**} Man sehe darüber: Dr. S. Günther, Die quadratischen Irrationalitäten der Alten und deren Entwickelungsmethoden (Abhandlungen zur Geschichte der Mathematik, Heft 4, S. 1—134) § 11, S. 76—79 und § 13, S. 83—87.

^{***} P. Tannery, l'arithmétique des Grecs dans Héron d'Alexandrie (Mémoires de la Société des sciences phys. et. nat. de Bordeaux. 2° Sér. T. IV).

$$\sqrt{\frac{58\frac{7}{16}}{16}} \sim \frac{1}{2} \left(7\frac{1}{2} + 7\frac{19}{24}\right) = 7\frac{8_1}{48} \sim 7\frac{2}{8};$$

$$\sqrt{\frac{444}{9}} \sim \frac{1}{2} \left(20 + 22\frac{2}{9}\right) = 21\frac{1}{9} \sim \frac{1}{2} \left(21\frac{1}{9} + 21\frac{1}{19}\right) = 21\frac{14}{171} \sim 21\frac{1}{12};$$

$$\sqrt{\frac{3400}{3400}} \sim \frac{1}{2} \left(58 + 58\frac{18}{29}\right) = 58\frac{9}{29} \sim 58\frac{1}{3};$$

$$\sqrt{135} \sim \frac{1}{2} \left(11\frac{2}{3} + 11\frac{4}{7}\right) = 11\frac{13}{21};$$

$$\sqrt{6300} \sim \frac{1}{2} \left(79\frac{1}{3} + 79\frac{49}{119}\right) = 79\frac{19}{51};$$

$$\sqrt{\frac{43\frac{3}{4}}{4}} = \frac{1}{2} \left(6\frac{1}{2} + 6\frac{19}{26}\right) = 6\frac{8}{18};$$

$$\sqrt{\frac{1575}{15}} \sim \frac{1}{2} \left(39\frac{2}{3} + 39\frac{12}{17}\right) = 39\frac{35}{51};$$

$$\sqrt{\frac{216}{356}} \sim \frac{1}{2} \left(14\frac{2}{3} + 14\frac{8}{11}\right) = 14\frac{23}{33};$$

$$\sqrt{\frac{356}{15}} \sim \frac{1}{2} \left(18\frac{3}{4} + 18\frac{74}{75}\right) = 18\frac{521}{600} \sim 18\frac{7}{8};$$

$$\sqrt{\frac{87}{16}} \sim \frac{1}{2} \left(2\frac{2}{3} + 3\frac{21}{128}\right) = 2\frac{703}{768} \sim 2\frac{11}{12};$$

$$\sqrt{\frac{885}{16}} \sim \frac{1}{2} \left(29\frac{3}{4} + 29\frac{871}{476}\right) = 29\frac{13}{17};$$

$$\sqrt{\frac{108}{108}} \sim \frac{1}{2} \left(10 + 10\frac{4}{5}\right) = 10\frac{2}{5}.$$

Dass die Archimedischen Quadratwurzeln nicht nach dieser Methode entwickelt sein können, ist schon längst erkannt. Ob folgende Erwägung nicht beachtenswert sein dürfte, möchte ich anheimstellen. Richtet man z. B. in $1 / \frac{33}{1373943} \frac{33}{64}$

einfach die gemischte Zahl ein, und zieht dann, nur die Ganzen der Wurzel berücksichtigend, aus Zähler und Nenner die Wurzel, so entsteht $\frac{9377}{8} = 1172\frac{1}{8}$; ebensolches Verfahren mit $\sqrt{5472132\frac{1}{16}}$ giebt ohne weiteres $\frac{9357}{4} = 2339\frac{1}{4}$. Multipliziert man in $\sqrt{349450}$ den Radikand mit 64, so ist die ganze Wurzel 4729, was durch 8 dividiert 591 $\frac{1}{8}$ liefert, den ausser von Bobynin sonst nie gefundenen Archimedischen Wert. Ein gleiches Verfahren auf $\sqrt{3380929}$ angewendet giebt, nach Erweiterung mit 11 3 , $\frac{20227}{11} = 1838\frac{9}{11}$, wobei man, da Archimedes eine zu grosse Wurzel verlangt, freilich das nächst grössere Quadrat benutzen muss. Im ganzen Mittelalter findet man für die näherungsweise Quadratwurzelberechnung stets die Anwendung der Formel:

$$\sqrt{\frac{a}{b}} = \frac{1}{bc} \sqrt{abc^2}$$
 resp. $\sqrt{a} = \frac{1}{b} \sqrt{ab^2}$

angeordnet, wobei ausdrücklich gesagt wird, es sollen nur aus dem neuen Radikanden die Ganzen ausgezogen werden und der Rest weggelassen. Auch solle man sich nicht scheuen, wenn das nächste Quadrat nur um weniges grösser sei, dieses zu nehmen. Ob eben diese Anweisung nicht gleichfalls aus dem Altertume stammt, möchte ich der Erwägung anheimgeben. Sie giebt auch alle sonstigen Archimedischen Wurzelwerte direkt ohne jede Zwischenrechnung, sie liefert aber auch die beiden von Tannery* als nicht direkt ausgewertet bezeichneten Heron'schen Wurzeln $\sqrt{2460\frac{15}{16}}$ und $\sqrt{615\frac{15}{64}}$ sofort zu $\frac{10120}{204} = 49\frac{81}{51}$ und zu $\frac{10120}{408} = 24\frac{41}{51}$.

Ich komme zum zweiten Abschnitte der Μετφικά Heron's, der Kubikwurzelausziehung. Zunächst der Text desselben.

Codex Constantinopolitanus palatii veteris 1, fol. 108.

ώς δὲ δεῖ λαβεῖν τῶν ο μονάδων χυβικὴν πλευοὰν, νῦν ἐφοῦμεν.

λάβε τὸν ἔγγιστα κύβον τοῦ ο τόν τε ὑπερβάλλοντα καὶ τὸν δ ἐλλείποντα· ἔστι δὲ ὁ οκε καὶ ὁ ξδ· καὶ ὅσα μὲν ὑπερβάλλει, μονάδες κε· ὅσα δὲ ἐλλείπει, μονάδες λς· καὶ ποίησον τὰ ε ἐπὶ τὰ λς· γίγνεται οπ· καὶ τὰ ο· γίγνεται οπ· καὶ τὰ οπ παρὰ τὰ σπ· > γίγνεται θ ίδ. πρόσβαλε τῆ [κατὰ] τοῦ ἐλάσσονος κύβου πλευρᾶ, τουτέστι τῷ δ. γίγνεται μονάδες δ καὶ δ ίδ. τοσούτων ἔσται ἡ τῶν ο 15 μονάδων κυβικὴ πλευρὰ ὡς ἔγγιστα.

Wie aber die Kubikwurzel aus 100 Einheiten zu finden ist, wollen wir jetzt sagen.

Nimm die beiden 100 am nächsten kommenden Kubi, den grösseren und kleineren; es sind dies 125 und 64; und auch, um wieviel der erste grösser ist, d. i. 25, und um wieviel der andere kleiner, d. i. 36. Dann multipliziere 36 mit 5; es entsteht 180. Dazu die 100 addiert, giebt 280, (und dividiere 180 durch 280,> so entsteht $\frac{9}{14}$. Füge dies zu der Wurzel des kleineren Kubus hinzu, das ist zu 4, so entsteht $4\frac{9}{14}$. So gross ist die Kubikwurzel aus 100 Einheiten so genau als möglich.

1. τον die Hs. — 8. και beginnt fol. 108. — 10—11. < και ... σπ > ist ergänzt. — 12. κατὰ ist von späterer Hand getilgt. — 13. τὸ von erster Hand. φ hat eine spätere Hand übergeschrieben. — Zeile 10 hat eine jüngere Hand nach σπ das Zeichen '/. beigeschrieben; dieses Zeichen ist am Rande wiederholt und daru geschrieben: '/. και παραβεβλήσθω ταῦτα παρὰ τὰ ρπ. Diese offenbar auf Konjektur

^{*} Tannery, a. a. O., S. 22 des Separatabzuges.

beruhende Ergänzung der im Texte bemerkbaren Lücke trifft jedoch im Ausdruck nicht das Richtige. He ron gebraucht nämlich $\pi\alpha \rho \alpha \beta \acute{\alpha} lleiv \pi\alpha \rho \acute{\alpha}$ für "dividieren durch"; so sagt er z. B. wenige Zeilen vor dem ausgehobenen Abschnitt: $\imath \acute{\alpha}$ $\overline{\rho}$ $\imath \acute{\alpha}$ $i \acute{\alpha} \acute{\nu}$ $i \acute{\alpha}$ $i \acute{\alpha}$

Wenn in dem obigen Abschnitte 5 die Kubikwurzel aus 125 sein sollte, so würde die Bestimmung der Differenz 25 vollständig überflüssig sein; es kann daher 5 nur die Quadratwurzel aus 25 bedeuten sollen. In der obigen Anweisung liegt dann folgende Regel verborgen:

$$A = p^{3} - a = q^{3} + b;$$

$$\sqrt[3]{A} = q + \frac{b\sqrt{a}}{A + b\sqrt{a}} = q + \frac{(A - q^{3})\sqrt{p^{3} - A}}{A + (A - q^{3})\sqrt{p^{3} - A}}.$$

Die gefundene Wurzel $\sqrt[3]{100} = 4\frac{9}{14}$ ist merkwürdig genau. Ihre dritte Potenz ist gleich $100\frac{225}{2741} \sim 100\frac{1}{12}$.

In Stammbrüche nach Heron's sonstiger Art umgesetzt ist

$$4\frac{9}{14} = 4\frac{1}{2}\frac{1}{7} = 4,6428571,$$

während $\sqrt[8]{100} = 4,6415888...$ ist. $4\frac{1}{2}\frac{1}{6}$ wäre = 4,66 und $4\frac{1}{2}\frac{1}{8} = 4,625$, sodass $4\frac{1}{2}\frac{1}{7}$ wirklich dem wahren Werte näher kommt als irgend ein Stammbrüchen ausgedrückter Nachbarwert.*

Wie Heron auf dieses Verfahren gekommen ist, dürfte kaum zu ergründen sein. Bei anderen Zahlen giebt es meist einen bei weitem ungenaueren Wert. Von Interesse war es, für $\sqrt[3]{300}$ dasselbe zu prüfen, da bekanntlich das Verhältnis: $\frac{\alpha}{R} = \sqrt[3]{\frac{300}{216}}$

dasjenige der babylonischen zur hellenischen Elle darstellt, welches die Griechen zu $\frac{10}{9}$ annahmen.** Nun ist:

$$300 = 7^3 - 43 = 6^3 + 84$$

also a = 43, b = 84. Es ist aber:

$$\sqrt{43} = \frac{1}{2} \left(6 + 7\frac{1}{6} \right) = 6\frac{7}{12},$$

also:

[•] Hierauf machte mich mein verehrter Freund, Herr Hofrat Cantor, aufmerksam.

^{**} Man sehe: S. Günther, Antike Näherungsmethoden im Lichte moderner Mathematik (Abhandlungen der Böhmischen Gesellschaft der Wissenschaften. Neue Folge, 9. Band) S. 40 des Sonderabzuges.

$$b \cdot \sqrt{a} = 6\frac{7}{12} \cdot 84 = 553;$$

es folgt also:

$$\sqrt[3]{300} \sim 6\frac{558}{853} = 6,648 \cdots \sim 6,65.$$

Das Verhältnis 6,65:6 ist aber so nahe gleich 10:9, dass diese Verwechselung unbedenklich angenommen werden darf. Unmöglich wäre also diese Berechnung der $\sqrt[8]{300}$ auf dem Heron'schen Wege nicht.

Während so das Problem der Heron'schen Berechnung der Quadrat wurzeln aus Nichtquadratzahlen praktisch und theoretisch längst bekannt und vielfach geübt ist, und jedenfalls viel schneller als das gewöhnliche Verfahren ohne Hilfe der Logarithmen zu sehr genauen Werten führt, auch bei weitem schneller als das Verfahren durch die gewöhnlichen Kettenbrüche, giebt die Anweisung unseres Verfassers zur Bestimmung der Kubikwurzeln ein neues Problem auf: Wie ist Heron auf diesen eigentümlichen Weg gelangt? Dass derselbe nicht nur für \$\sqrt{100}\$ einen annehmbaren Wert liefert, habe ich oben dargethan. Wo ist der Oedipus, der dies Rätsel löst?

Thorn, 22. Januar 1897.

Die Schlussaufgabe in Diophants Schrift über Polygonalzahlen.

Von

G. WERTHEIM.

In der Einleitung zu seiner Schrift über Polygonalzahlen giebt Diophant in ganz bestimmter Weise an, was er in der Schrift zu behandeln gedenkt. Er will nach Herleitung der erforderlichen Hilfssätze beweisen, dass man immer eine Quadratzahl erhält, wenn man das 8fache einer Polygonalzahl mit der um 2 verminderten Anzahl der Ecken multipliziert und zum Produkt das Quadrat der um 4 verminderten Anzahl der Ecken addiert. Vermittelst dieses Satzes will er dann zeigen, wie man aus der Seite und der Zahl der Ecken die zugehörige Polygonalzahl, und wie man umgekehrt, wenn die Polygonalzahl und die Zahl der Ecken gegeben sind, die zugehörige Seite findet.

Nachdem er alles dieses in völlig zufriedenstellender Weise geleistet hat, beginnt er eine Aufgabe, die zwar nicht ausdrücklich in der Einleitung angekündigt worden ist, aber doch so nahe liegt, dass ein Mathematiker bei Behandlung des Gegenstandes wohl kaum umhin konnte, sie in Angriff zu nehmen. Er will bestimmen: "auf wie viele Arten eine gegebene Zahl Polygonalzahl sein könne". Wäre die Lösung dieser Aufgabe beendet, so würde sie sicherlich von niemand für einen fremden Zusatz zum Diophant erklärt worden sein; denn in der Darstellung unterscheidet sie sich in nichts von dem Vorhergehenden. Aber die Lösung bricht in der Mitte ab, eine Ergänzung schien schwierig, und da war es ein naheliegendes Mittel, die Aufgabe abzuthun, dass man sie überhaupt für unecht erklärte. So radikal sind freilich nicht alle Schriftsteller verfahren, die sich mit der Sache beschäftigt haben.

Bachet (S. 26) sagt in seinem Zusatz zu dem Bruchstück bloss, "dass vieles fehle, was er nicht erraten könne, und dass ihm das Ziel Diophants nicht hinlänglich klar sei." Er giebt dann den Gang der Lösung, soweit sie vorliegt, kurz und klar wieder und behandelt (S. 38) die Aufgabe selbständig in einer Weise, die mit dem Bruch-

stück in keinem Zusammenhang steht und hier um so eher übergangen werden kann, als sie von Nesselmann in seiner "Algebra der Griechen" (S. 469) allgemein dargestellt worden ist.

Fermat äussert sich über die Aufgabe folgendermaßen: "Die Frage, die mich beschäftigt hat, ohne dass ich bis jetzt eine Lösung habe finden können, ist die letzte in Diophants Schrift über Polygonalzahlen: Zu bestimmen, auf wie viele Arten eine gegebene Zahl Polygonalzahl sein könne.

Da der Text Diophants korrumpiert ist, so können wir seine Methode nicht erraten. Bachets Methode gefällt mir nicht und ist für grosse Zahlen zu schwierig. Ich habe freilich eine bessere gefunden, aber sie befriedigt mich noch nicht."

Im Anschluss hieran, fährt er fort, müsse man die Lösung der Aufgabe suchen:

"Eine Zahl zu finden, welche auf so viele und nicht auf mehr Arten, als verlangt wird, Polygonalzahl sei, und von den Zahlen, die dieses leisten, die kleinste anzugeben." — Oeuvres de Fermat, II, S. 435.

Über das Bruchstück selbst sagt Nesselmann: "Wie Diophant die Aufgabe gelöst habe, lässt sich aus dem Bruchstück nicht entnehmen; wenigstens ist es mir nicht gelungen, in dem Vorhandenen einen sicheren Fingerzeig auf das verloren gegangene Ziel des Weges zu entdecken."

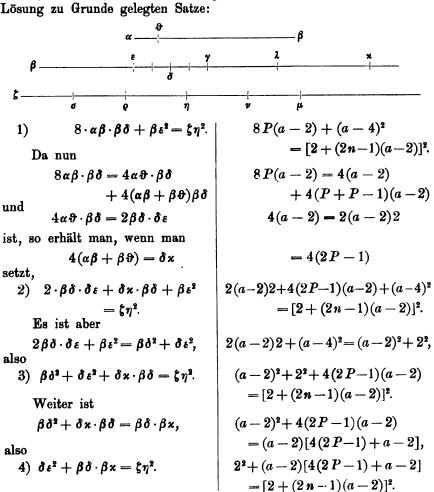
Ihm schliesst sich Cantor an (Vorlesungen über Geschichte der Mathematik, Bd. I, S. 455). Nachdem er den Wortlaut der Aufgabe gegeben und den Sinn derselben erläutert hat, bemerkt er: "Leider ist die Antwort auf diese Frage nicht so verständlich wie die Frage selbst. Sie bricht in der Mitte ab, ohne dass es bisher gelungen wäre, das Bruckstück dem Sinne entsprechend zu ergänzen."

Dagegen sagt Otto Schulz auf S. 619 seiner Diophant-Übersetzung: "Das Bruchstück hat ganz das Ansehen eines fremdartigen Zusatzes, der ohne Beeinträchtigung des Ganzen weggelassen werden könnte", und Herr Paul Tannery nennt es S. 477 des ersten Bandes seiner Diophant-Ausgabe "einen misslungenen Versuch eines Kommentators."

Ich werde jetzt im folgenden zu zeigen versuchen, dass man ohne Künstelei und nur mit Anwendung von Sätzen und Operationen, die Diophant zweifellos geläufig waren, die in dem Bruchstück begonnene Lösung der Aufgabe zu Ende führen kann. Damit glaube ich dann den Beweis erbracht zu haben, dass die Aufgabe wirklich zu der Schrift über Polygonalzahlen, wie sie Diophant abgefasst hat, gehört, und dass vielleicht nur die Länge und die Schwierigkeit der Lösung dem Abschreiber die Hoffnung geraubt haben, sich durchzuarbeiten, sodass er mitten in der Arbeit entmutigt den Griffel niederlegte.

Diophant wendet in seiner Schrift über Polygonalzahlen die lineare Methode Euklids an, nach welcher Zahlen durch Linien dargestellt und die geforderten Operationen an diesen Linien ausgeführt werden. Die Vorsicht erheischt es, diese Methode auch hier beizubehalten; denn dadurch werden unzulässige Schlüsse am leichtesten vermieden. Doch soll zur Erleichterung des Verständnisses die moderne Bezeichnung neben die alte gestellt werden.

Es soll also bestimmt werden, auf wie viele Arten die gegebene Zahl $\alpha\beta$ Polygonalzahl sein könne. Es wird $\alpha\vartheta=1$, $\beta\gamma=$ Zahl der Ecken, das ist α , $\varepsilon\delta=\delta\gamma=2$ angenommen. Dann ist nach dem der Lösung zu Grunde gelegten Satze:



Nun sei
$$\lambda$$
 die Mitte von δx , also
$$\delta \lambda = \lambda x = 2(2P-1)$$
$$\beta \lambda = \beta \delta + \delta \lambda. = a - 2 + 2(2P-1).$$
Digitized by GOOGLE

Dann giebt die Anwendung der Formel

Dann giebt die Anwendung der Formel
$$x(x+y) = \left(x + \frac{y}{2}\right)^2 - \left(\frac{y}{2}\right)^2:$$

$$\beta \delta \cdot \beta n = \beta \lambda^2 - \delta \lambda^2 \qquad (a-2)[4(2P-1) + a-2]$$

$$= [a-2+2(2P-1)]^2$$
Es ist also
$$-[2(2P-1)]^2.$$

$$5) \quad \delta \varepsilon^2 + \beta \lambda^2 - \delta \lambda^2 \qquad 2^2 + [a-2+2(2P-1)]^2$$

$$= \xi \eta^3, \qquad -[2(2P-1)]^2$$
oder
$$= [2+(2n-1)(a-2)]^2$$

$$6) \quad \beta \lambda^2 - \xi \eta^2 \qquad [a-2+2(2P-1)]^2$$

$$= \delta \lambda^2 - \delta \varepsilon^2. \qquad -[2+(2n-1)(a-2)]^2$$

$$= [2(2P-1)]^2 - 2^2.$$
Nun ist nach der Formel
$$x^2 = (x+2)(x-2) + 2^2:$$

$$\delta \lambda^2 = \varepsilon \lambda \cdot \gamma \lambda + \gamma \delta^2, \qquad [2(2P-1)]^2 = 4P(4P-4) + 2^2$$
und da
$$\gamma \delta = \delta \varepsilon \text{ ist, so erhalten wir}$$

7)
$$\beta \lambda^{2} - \zeta \eta^{2}$$

$$= \varepsilon \lambda \cdot \gamma \lambda.$$

$$[a-2+2(2P-1)]^{2}$$

$$-[2+(2n-1)(a-2)]^{2}$$

$$= 4P(4P-4).$$

$$\xi \mu = \beta \lambda.$$
 $= a - 2 + 2(2P - 1).$

Da sich nun leicht

$$\begin{aligned}
\varepsilon \lambda &= \varepsilon \delta + \delta \lambda = 2\alpha \vartheta + \frac{1}{2} \delta \varkappa \\
&= 2\alpha \vartheta + 2(\alpha \beta + \beta \vartheta) = 4\alpha \beta
\end{aligned}$$

und

$$\gamma \lambda = \delta \lambda - 2\alpha \vartheta = 4\beta \vartheta$$
 | $\gamma \lambda = 4(P-1)$

ergiebt, so folgt

8)
$$\zeta \mu^2 - \zeta \eta^2 = 16 \alpha \beta \cdot \beta \vartheta$$
.
$$[a-2+2(2P-1)]^2 - [2+(2n-1)(a-2)]^2 = 16P(P-1).$$

Nun ist

folglich

$$\zeta \mu = \zeta \eta + \eta \mu,$$

$$\zeta \mu^2 - \zeta \eta^2 = 2 \cdot \zeta \eta \cdot \eta \mu + \eta \mu^2,$$

wir erhalten somit

9)
$$2 \cdot \xi \eta \cdot \eta \mu + \eta \mu^{2} = 16 \cdot \alpha \beta \cdot \beta \vartheta$$

$$= \begin{cases} 2[2 + (2n-1)(a-2)][2(2P-2) \\ -2(a-2)(n-1)] + [2(2P-2) \\ -2(a-2)(n-1)]^{2} = 16P(P-1). \end{cases}$$

Diese Gleichung lehrt, dass $\eta\mu$ eine gerade Zahl, also $\eta\mu^2$ durch 4 teilbar ist.

Wir nehmen an, ν sei die Mitte von $\eta \mu$, also

$$\eta \nu = \nu \mu.$$
 $= 2(P-1) - (a-2)(n-1).$

So weit reicht das Bruchstück. Um die Lösung zu beenden, dividiere ich die Gleichung 9) durch 4 und erhalte

10)
$$\xi \eta \cdot \eta v + \eta v^2 = 4 \alpha \beta \cdot \beta \vartheta$$
,
$$\begin{cases} [2 + (2n-1)(a-2)] \times \\ [2(P-1) - (a-2)(n-1)] + [2(P-1) - (a-2)(n-1)]^2 \\ = 4 P(P-1), \end{cases}$$

oder

11)
$$\zeta \nu \cdot \eta \nu = 4\alpha\beta \cdot \beta\vartheta$$
.
$$\begin{cases} [2P + n(a-2)][2(P-1)] \\ -(a-2)(n-1)] = 4P(P-1). \end{cases}$$

Wird jetzt $\zeta \varrho = 2\alpha\beta$ und $\varrho \sigma = \eta \nu$, also $\eta \sigma = \varrho \nu$ angenommen, so ergiebt sich

$$\begin{aligned} \xi \sigma &= \xi \varrho - \varrho \sigma = 2\alpha\beta - \varrho \sigma, \\ \xi \nu &= \xi \varrho + \varrho \nu = 2\alpha\beta + \varrho \nu, \\ \eta \nu &= \varrho \sigma = 2\alpha\beta - \xi \sigma, \end{aligned} \end{aligned} = \begin{aligned} &= 2 + (a-2)(n-1), \\ &= 2P + n(a-2), \\ &= 2(P-1) - (a-2)(n-1), \end{aligned}$$

und die Gleichung 11) geht über in

12)
$$(2\alpha\beta + \varrho\nu)(2\alpha\beta - \zeta\sigma)$$

$$= 4\alpha\beta \cdot \beta\vartheta$$

$$= 4P(P-1).$$

oder

13)
$$4\alpha\beta^2 - 2\alpha\beta(\zeta\sigma - \varrho\nu)$$

 $-\varrho\nu \cdot \zeta\sigma = 4\alpha\beta^2 - 4\alpha\beta \cdot \alpha\vartheta$.

Es muss also

14)
$$2\alpha\beta(\zeta\sigma - \varrho\nu) + \varrho\nu \cdot \zeta\sigma$$

= $4\alpha\beta \cdot \alpha\vartheta$,

oder

er
15)
$$2\alpha\beta(2\alpha\vartheta + \varrho\nu - \zeta\sigma)$$
 $2P(a-2)$ $= \varrho\nu \cdot \zeta\sigma$ $= n(a-2)$

 $\begin{array}{c|c}
P - 2\alpha\beta(\zeta\sigma - \varrho\nu) & 4P^2 - 2P[(a-2)(n-1) + 2 - n(a-2)] \\
- \varrho\nu \cdot \zeta\sigma = 4\alpha\beta^2 - 4\alpha\beta \cdot \alpha\vartheta. & -n(a-2)[(a-2)(n-1) + 2] \\
= 4P^2 - 4P.
\end{array}$

14)
$$2\alpha\beta(\xi\sigma-\varrho\nu)+\varrho\nu\cdot\xi\sigma$$

= $4\alpha\beta\cdot\alpha\vartheta$, $2P[(a-2)(n-1)+2-n(a-2)]$
+ $n(a-2)[(a-2)(n-1)+2]$
er = $4P$,

$$2P(a-2) = n(a-2)[(a-2)(n-1)+2]$$

sein. Nun ist aber

$$\begin{split} \varrho \nu &= \xi \nu - \xi \varrho = \xi \mu - \nu \mu - \xi \varrho = \xi \mu - \frac{1}{2} \eta \mu - \xi \varrho \\ &= \beta \lambda - \frac{1}{2} \eta \mu - 2\alpha \beta = \beta \delta + \frac{1}{2} \delta \alpha - \frac{1}{2} \eta \mu - 2\alpha \beta \\ &= \beta \delta + 2\alpha \beta + 2\beta \vartheta - \frac{1}{2} \eta \mu - 2\alpha \beta = \beta \vartheta + 2\beta \vartheta - \frac{1}{2} \eta \mu \end{split}$$

und

$$\xi \sigma = \xi \varrho - \varrho \sigma = 2\alpha\beta - \frac{1}{9}\eta\mu$$

also

und
$$\begin{aligned} \varrho \nu - \zeta \sigma &= \beta \delta + 2\beta \vartheta - 2\alpha \beta = \beta \delta - 2\alpha \vartheta \\ \varrho \nu - \zeta \sigma + 2\alpha \vartheta &= \beta \delta. \end{aligned}$$

Weiter ergiebt sich

$$\begin{split} \varrho \nu &= \beta \delta + 2\beta \vartheta - \frac{1}{2} \eta \mu = \beta \delta + 2\beta \vartheta - \frac{1}{2} \beta \lambda + \frac{1}{2} \xi \eta \\ &= \beta \delta + 2\beta \vartheta - \frac{1}{2} \beta \delta - \frac{1}{2} \delta \lambda + \frac{1}{2} \xi \eta = \frac{1}{2} \beta \delta + 2\beta \vartheta - \frac{1}{2} \delta \lambda + \frac{1}{2} \xi \eta \\ &= \frac{1}{2} \beta \delta + 2\beta \vartheta - (\alpha \beta + \beta \vartheta) + \frac{1}{2} \xi \eta = \frac{1}{2} \beta \delta + \beta \vartheta - \alpha \beta + \frac{1}{2} \xi \eta \\ &= \frac{1}{2} \beta \delta - \alpha \vartheta + \frac{1}{2} \xi \eta = \frac{1}{2} (\beta \delta + \xi \eta - 2\alpha \vartheta). \end{split}$$

Nach dem Satze IX (S. 310 meiner Übersetzung) ist aber

Die Gleichung 15) geht somit über in

Es muss also das Doppelte einer Polygonalzahl durch die Seite teilbar sein, und der Quotient ist das um 2 vermehrte Produkt aus der um 1 verminderten Seite in die um 2 verminderte Zahl der Ecken.

Dieser Quotient $\xi \sigma$ ist bei den Dreieckzahlen gleich der um 1 vergrösserten Seite (n+1), also grösser als die Seite. Da derselbe nun um n-1 wächst, wenn die Zahl der Ecken um 1 zunimmt, so ist er immer grösser als die Seite; wir werden daher mit Hilfe von 17) auf folgende Weise finden, wie oft eine gegebene Zahl $\alpha \beta$ Polygonalzahl sein kann:

Wir zerlegen das Doppelte der gegebenen Zahl, also $2\alpha\beta$, auf alle möglichen Arten in je zwei ungleiche Faktoren, wobei die Zerlegung $1\cdot 2\alpha\beta$ ausgeschlossen bleibt. Den kleineren Faktor nehmen wir als Seite (n) an, den grösseren als $\xi\sigma$. Darauf vermindern wir den grösseren Faktor um 2 und dividieren den Rest durch die um 1 verringerte Seite (n-1). Wenn diese Division aufgeht, so ist die betrachtete Zerlegung brauchbar, und der Quotient, vermehrt um 2, ist gleich der Zahl der Ecken (a). Geht aber die Division nicht auf, so ist die betrachtete Zerlegung unbrauchbar. Eine Zahl $\alpha\beta$ ist also so oft Polygonalzahl, als es brauchbare Zerlegungen der Zahl $2\cdot\alpha\beta$ in je zwei ungleiche Faktoren giebt.

Eine brauchbare Zerlegung ist immer vorhanden, nämlich die in 2 und $\alpha\beta$; diese liefert das selbstverständliche Resultat, dass $\alpha\beta$ die zweite $(\alpha\beta)$ -Eckzahl ist.

Frankfurt a. M., Februar 1897.

Rezensionen.

Entgegnung.

In diesem Bande dieser Zeitschrift befindet sich eine Besprechung des ersten Bandes meines Werkes über doppeltperiodische Funktionen seitens des Herrn Fricke. In derselben werden mir Absichten untergelegt, die ich, wie aus der Einleitung zu dem Werke hervorgeht, gar nicht gehabt habe und auf Grund derselben werden eine Reihe von Einwendungen gegen meine Darstellung gemacht. Ich greife die folgenden heraus:

- 1. Fehlen der Weierstrassschen Funktionen,
- 2. Zurücktreten der funktionentheoretischen Überlegungen gegenüber analytischen Rechnungen,
- 3. Fehlen geometrischer Betrachtungen.

Daneben benutzt Herr Fricke die Gelegenheit, um die Bedeutung der Theorie der Modulfunktionen für die Transformationstheorie klarzulegen. Da ein jeder Autor beanspruchen darf, nach seinen Absichten beurteilt zu werden, so bin ich in dem Vorworte zum zweiten Bande ausführlicher auf die genannten Dinge eingegangen. Ich würde mich hiermit begnügt haben, wenn nicht einerseits der Leserkreis dieser Zeitschrift ein anderer wie der meines Werkes wäre und, wenn es sich nicht um Fragen handelte, die von allgemeinerBedeutung sind — insbesondere um die Frage, ob in der Mathematik in grossen Fragen nur ein überlegener Standpunkt vorhanden ist, von dem aus alle anderen zu verwerfen sind.

Unter solchen Umständen erlaube ich mir mit liebenswürdiger Erlaubnis der Redaktion einen Teil der Einleitung zum zweiten Bande hier nochmals abdrucken zu lassen.

"Der zweite Band meines Werkes über doppeltperiodische Funktionen, welcher hiermit der Öffentlichkeit übergeben wird, zerfällt in drei Teile, von denen der erste die Anfänge der Transformationstheorie auf der Grundlage von Additionstheoremen zwischen Thetafunktionen mit verschiedenen Moduln, der zweite die Entwickelung der doppeltperiodischen Funktionen, insbesondere zweiter und dritter Art in trigonometrische Reihen, der dritte endlich die mannigfaltigen Differentialgleichungen behandelt, denen die Funktionen zweiter Art Genüge leisten. Diese Theorien sind wohl bisher in keinem Werk vereinigt worden. Ursprünglich war es meine Absicht, dieselben allein mit denjenigen zu veröffentlichen, die sich im vierten Ab-

schnitt und einigen Paragraphen der vorangehenden Abschnitte des ersten Bandes befinden. Durch die Natur des behandelten Gegenstandes sah ich mich aber veranlasst, von meinem ursprünglichen Plane abzugehen und die schon vielfach behandelten elliptischen Funktionen mit in den Kreis der Betrachtungen hineinzuziehen. Der Zusammenhang zwischen den gewöhnlichen elliptischen Funktionen und den Funktionen zweiter und dritter Art ist nämlich ein so enger, dass die gesonderte Betrachtung der letzteren eines natürlichen Rahmens, sowie eines einheitlichen Gesichtspunktes entbehren würde und zu mannigfachen Übelständen geführt hätte. Wie ich aber schon in der Vorrede zum ersten Bande bemerkt habe und nochmals ausdrücklich hervorheben möchte, ist es keineswegs meine Absicht gewesen, eine alles umfassende Theorie der elliptischen Funktionen zu geben. Es sind im wesentlichen nur diejenigen allgemeinen und bekannten Untersuchungen hineingezogen worden, welche die Grundlage und die Gesichtspunkte für das ganze Werk abgeben und zum Verständnis der Theorie der Funktionen zweiter und dritter Art notwendig sind - diese letzteren bilden den eigentlichen Schwerpunkt meines Werkes.

Ich habe nun, nachdem im ersten Bande auf funktionentheoretische Grundlage hin die Thetafunktionen sich als Elementarfunktionen ergeben hatten, die weiteren Betrachtungen im Wesentlichen auf dem Hermiteschen Transformationsprinzip aufgebaut. Zu dieser Darstellung bin ich nach genauer Vergleichung der verschiedenen in der Theorie der periodischen Funktionen üblichen Methoden als der einfachsten und durchsichtigsten gelangt. Zwar ist es nicht zu verkennen, dass mit ihr gewisse Übelstände verbunden sind. Die Darstellung hat mehrfach etwas scheinbar Zufälliges, es ist nicht immer ersichtlich, warum gerade der oder jener Ansatz gemacht wird, daneben entspricht sie nicht der historischen Entwickelung. In der That ist in der Mehrzahl der Fälle das Prinzip erst angewandt worden, nachdem die betreffenden Formeln auf anderem Wege schon gefunden waren. Diese Übelstände aber - wenn die letztere Thatsache überhaupt als ein solcher bezeichnet werden darf - werden auf der andern Seite durch gewisse Vorteile bedeutend überwogen, die der von mir eingeschlagene Weg darbietet.

In dem Hermiteschen Transformationsprinzip konzentriert sich thatsächlich der überwiegende Teil der Theorie der doppeltperiodischen Funktionen. und findet in ihm seinen klarsten, einfachsten und allgemeinsten Ausdruck. Durch eine Modifikation der Fragestellung ergeben sich aus ihm der Reihe nach die einzelnen Sätze der Theorie in systematischer und folgerichtiger Weise.

In dieser meiner Auffassungsweise liegt es u. a. begründet, dass ich von der Einführung der Weierstrassschen Funktionen abgesehen habe. Die σ-Funktionen folgen nicht gleich den σ-Funktionen dem Transformationsprinzip — ihre ausführliche gesonderte Betrachtung würde mich auch nach anderer Richtung hin von dem vorgesetzten Ziele abgelenkt haben. Es möge bei dieser Gelegenheit auf eine Bemerkung von Herrn Scheibner

(Sitzungsbericht der Leipziger Gesellschaft der Wissenschaften 1888 S. 276) über das Verhältnis der σ -Funktionen zu den ϑ -Funktionen hingewiesen werden, die den richtigen Gesichtspunkt für die Vergleichung derselben geben dürfte:

"Es ist ja an sich leicht erklärlich, dass das Studium der Sigmafunktionen, deren Einführung in die Analysis durch Weierstrass in so vielen Beziehungen sich als wichtig und fruchtbar erwiesen, seit dasselbe den Mathematikern in grösseren Kreisen zugänglich geworden und ihr Interesse in Anspruch genommen hat, eine Zeit lang auf Kosten der länger bekannten Jacobi-Abelschen Thetafunktionen in den Vordergrund getreten ist. Im umgekehrten Falle würde es sich vermutlich gerade umgekehrt verhalten haben, während wir doch froh sein dürfen, dass für die Erfordernisse der Theorie wie der Praxis dem Mathematiker nach doppelter Richtung so interessante Funktionen zu Gebote stehen."

Um zur Hauptsache zurückzukommen: Der eigentümliche und im ganzen einheitliche Gang meines Werkes bringt es mit sich, dass in demselben nur die θ-Funktionen, nicht aber die σ-Funktionen berücksichtigt sind. Ebenso erklärt sich aus dem einheitlichen Gange meiner Darstellung das Fehlen mancherlei weitergehender funktionentheoretischer Sätze. An Stelle jener Sätze tritt eben das genannte Transformationsprinzip als das eigentlich Primäre, und jene Sätze kommen im wesentlichen nur so weit und nur in solcher Ausdehnung in Betracht, als sie sich aus diesem Prinzip als Folgerungen ergeben. Allerdings können dabei Rechnungen nicht vermieden werden. Wenn man heutzutage hin und wieder die Rechnung als "unmodern" bezeichnet und womöglich allen Arbeiten einen und denselben "modernen" Zuschnitt aufdrängen möchte, so scheint mir das doch einigermaßen unbillig.

Dass man im allgemeinen, wo es angeht, beschwerliche Rechnungen gern vermeiden wird, versteht sich wohl von selber und bedarf also kaum noch der Erwähnung. Oder hätten vielleicht die Mathematiker früherer Jahrhunderte oder Jahrtausende hierüber anders gedacht?

Aber häufig, namentlich beim Hineingehen in neue, noch unerforschte Gebiete oder auch bei der Eröffnung neuer Wege in schon bekannten Gebieten werden Fälle eintreten, in denen man die Rechnung nicht entbehren kann. Auch ist zu beachten, dass nicht zu weit getriebene Rechnungen manches anziehende Moment und eine gewisse pädagogische Kraft besitzen, die durch blosses Angeben von Ideen nicht erreicht wird, und dass überhaupt die Rechnung stets mit einer gewissen Notwendigkeit in Funktion treten wird, sobald es sich darum handelt, die Grösse und Mannigfaltigkeit eines Gedankens oder eines Prinzips nach allen Seiten hin klar zu legen.

Endlich erklärt sich aus dem einheitlichen Gange meines Werkes z. B. auch das Fehlen geometrischer Betrachtungen. Wenn ich auch, als Dozent einer technischen Hochschule, ausserordentlich geneigt bin, den geometrischen Betrachtungen die allergrösste Bedeutung beizulegen und meine hiesigen Vorlesungen über höhere Analysis auf durchaus geometrischer

Grundlage aufbaue, so folgt hieraus doch noch keineswegs die Notwendigkeit, in allen Teilen der so weit verzweigten Mathematik und unter allen Umständen stets das Geometrische zu bevorzugen. Vielmehr wird nach meiner Ansicht die Analysis auch in ihrer reinen Form neben der Geometrie stets ihre volle Berechtigung behalten. Die Vermischung geometrischer und analytischer Methoden, wie sie z. B. in den Arbeiten des Herrn F. Klein anzutreffen ist, wird vielfach zweckmässig sein. Sie als allgemeine und obligatorische Norm hinstellen zu wollen — daran wird doch wohl niemand denken.

Nach diesen allgemeinen Bemerkungen sei es mir gestattet, auf den ersten Abschnitt des zweiten hier vorliegenden Bandes etwas näher einzugehen. Der Zweck desselben ist es, die Anfänge einer Transformationstheorie auf der Grundlage von Additionstheoremen zwischen Thetafunktionen mit verschiedenen Moduln in elementarer Weise zu entwickeln. Ich lege hierbei das Hauptgewicht auf das Prinzip selber, nicht aber auf seine hier vorliegende Durchführung, die noch sehr der Ergänzung und Erweiterung bedarf. Der Ausgangspunkt für meine Anschauungsweise ist in meinen Arbeiten über die hyperelliptischen Funktionen gelegen. Ich versuchte dort die Methoden, wie sie für die elliptischen Funktionen maßgebend waren, auf die hyperelliptischen erster Ordnung zu übertragen, um eine Transformationstheorie derselben zu erhalten. Es gelang mir, die verschiedenen Arten von Transformationsgleichungen zu definieren und ihre Haupteigenschaften zu entwickeln - meine Versuche dagegen nach jenen früheren Methoden, Transformationsgleichungen wirklich zu bilden, stiessen auf die grössten Schwierigkeiten und führten mich zu keinem bemerkenswerten Resultate. So sah ich mich denn veranlasst, für die elliptischen Funktionen nach neuen Methoden zu suchen, nach solchen, die sich leicht übertragen liessen. Ein Teil der hierbei gefundenen Resultate findet sich im ersten Bande dieses Werkes angegeben, insbesondere in den §§ 59. 60, 61, 75 etc. Die Übertragung derselben auf die hyperelliptischen Funktionen ermöglichte die Darstellung von Transformationsgleichungen in besonders einfachen Fällen. Ich musste mich aber bald davon überzeugen, dass auch diese Methoden keine weitreichenden und befriedigenden seien so interessant die einzelnen gewonnenen Resultate auch an sich waren -, und kam auf diesem Wege im Anschluss an die bekannten Schröterschen Arbeiten zu der Aufstellung meiner Additionstheoreme und zu der Anschauungsweise, die in dem vorliegenden zweiten Bande dargelegt wird, Bei derselben ist das eigentliche Ziel: die wirkliche Aufstellung von Transformationsgleichungen und damit diejenige Aufgabe, welche als das eigentliche Transformationsproblem zu bezeichnen ist und seit längerer Zeit die Kräfte einer Reihe von Mathematikern in Anspruch genommen hat.

Als charakterisch sind bei dem von mir eingeschlagenen Wege folgende Punkte hervorzuheben.

Erstens können die Transformationsgleichungen, die sich für die elliptischen Funktionen ergeben, ohne Schwierigkeit auf die hyperellipti-

schen übertragen werden. Man kommt dabei zu einer Fülle von Transformationsgleichungen, die auf anderem Wege nur schwer dürften herzustellen sein.

Zweitens wird die allgemeine Transformationstheorie in enge Verbindung gebracht mit der speziellen Transformationstheorie, nämlich mit der Entwickelung der Konstantenrelationen. Ich habe es stets als unnatürlich empfunden, dass die Modular- und Multiplikatorbeziehungen in fremdartiger Weise, unter Heranziehung völlig neuer Prinzipien, und auf ganz anderem Wege als die gewöhnlichen Thetarelationen abgeleitet werden, obgleich sie doch im Grunde genommen nichts anderes als Thetarelationen sind, nur bezogen auf spezielle Werte der Argumente. Es erschien mir daher höchst wünschenswert, diese Konstantenrelationen durch Spezialisierung der Argumente aus allgemeinen Thetarelationen abzuleiten, sie also dem Hermiteschen Prinzip unterzuordnen und zu zeigen, dass auch für die spezielle Theorie das letztere von grösstem Nutzen ist.

Mit den soeben entwickelten Anschauungen befinde ich mich im Widerspruch mit den Anschauungen, wie sie in einer neuerdings erschienenen Besprechung des ersten Bandes dieses Werkes von Herrn Fricke enthalten sind. Legt dieselbe einerseits von einer in der Mathematik ungewöhnlichen Wertschätzung der eigenen Anschauungen des Herrn Fricke Zeugnis ab, so ist es anderseits doch zweifellos, dass die in derselben vertretenen Ansichten von einer grösseren Anzahl von Mathematikern geteilt werden, als deren Wortführer Herr Fricke anzusehen ist. Unter solchen Umständen habe ich geglaubt, mich hier in der Einleitung über meine Anschauungen etwas ausführlicher aussprechen zu müssen, als es sonst wohl geschehen wäre."

Leitfaden der Physik mit Einschluss der einfachsten Lehren der mathematischen Geographie nach der Lehr- und Prüfungsordnung von 1893 für Gymnasien. Von William Abendroth. I. Band. Kursus der Unter- und Obersekunda. Zweite Auflage. Mit 155 Holzschnitten. Verlag 1895. Verlag von S. Hirzel. — 222 Seiten. Preis 3,60 Mark.

Die neu aufgestellten Lehrpläne waren, wie in vielen anderen Fällen, so auch hier die Veranlassung zur Umarbeitung der vor zehn Jahren erschienenen ersten Auflage. Nach der sächsischen Studienordnung sind die Grundbegriffe der Chemie mit denen der Mineralogie zu verbinden und in Obertertia zu behandeln. Aus diesem Grunde konnte der früher erforderliche Abschnitt über Chemie zum Fortfall kommen. In betreff der Meteorologie wurden nur die physikalischen Grundgesetze zahlreicher atmosphärischer Vorgänge an den betreffenden Stellen hervorgehoben, sodass die Folgerungen hieraus, sowie das durch die Statistik bearbeitete Material der physischen Geographie zugewiesen werden mussten. — Neben der rein äusserlichen Ursache zur Herausgabe einer Neuauflage tritt noch der innere, wesent-

lichere Grund hinzu, dass die Physik infolge der bedeutenden Fortschritte in den letzten Jahren in einem ganz anderen Zusammenhang vorgetragen werden muss. Dies macht sich schon in dem ersten Unterricht geltend, indem die enorme Wichtigkeit des Prinzips von der Erhaltung der Energie schärfer hervorzuheben ist. Eine Folge davon ist die Einführung des absoluten Maßsystems, das nicht früh genug dem Schüler beigebracht werden kann.

Ferner ist der Versuch gemacht worden, den Begriff des Potentials verständlich zu machen, damit die Elektrizitätslehre in präziserer Fassung durchgenommen werden kann. — Da der Verfasser nach seinem Vorwort bestrebt ist, dem Schüler über dasjenige, was im täglichen Leben auf Schritt und Tritt ihm begegnet, Aufschluss zu geben, wie Bogenlicht, Glühlicht, Dynamomaschinen, Telephon, Mikrophon etc., so wird es auch angezeigt sein, die in alten Physikbüchern vorhandene, allmählich aber wieder ausgemerzte Döbereiner Lampe aufzunehmen, welche das Fundament für das heute wichtige Gas- bezw. Spiritusglühlicht bildet.

In Figur 83 Seite 129 ist die Verbindung der Drahtenden mit der Zinkund Kupferplatte nicht derart, dass der Apparat in der gezeichneten Lage schwimmt, vielmehr wird ein Neigen zur Seite stattfinden.

Die Ausstattung des Buches ist recht gut, insbesondere tragen die fettgedruckten Stichwörter wesentlich zur Übersicht bei.

B. NEBEL.

Die Fortschritte der Physik im Jahre 1893. Dargestellt von der Physikalischen Gesellschaft zu Berlin. 49. Jahrgang. Erste Abteilung. Enthaltend: Physik der Materie. Redigiert von RICHARD BÖRNSTEIN. Braunschweig 1895. Verlag von Friedrich Vieweg & Sohn. — 562 Seiten. Preis 20 Mark.

Mit Freuden begrüssen wir diesen neuen Band der Fortschritte der Physik, welche für den praktisch arbeitenden Physiker und Chemiker von ungeheuerem Werte ist. Der energischen Thatkraft der neuen Redaktion ist es gelungen, dieses Sammelwerk derart zu fördern, dass es gleichen Schritt mit dem laufenden Jahrgang hält. Die Lücke infolge einer früheren Stockung vermindert sich zusehends dank der Umsicht von Redaktion und Verleger, so dass in kurzem ein zusammenhängendes Werk vorliegt, welches der Physik auch ausserhalb Deutschlands zum grössten Vorteil gereicht.

B. NEBEL.

Physikalische Aufgaben für die oberen Klassen höherer Lehranstalten.

Aus den bei Entlassungsprüfungen gestellten Aufgaben ausgewählt und mit Hinzufügung der Lösungen zu einem Übungsbuche vereinigt von Wilhelm Budde. Zweite, unter Berücksichtigung der neuen Prüfungsordnungen abgeänderte und vermehrte Auflage.

Braunschweig 1894. Verlag von Friedrich Vieweg & Sohn. 149 Seiten. Preis Mark 2.50.

Bei der Herausgabe dieser zweiten Auflage wurden die neuen Prüfungsordnungen für die Reallehranstalten vom Jahre 1892 berücksichtigt. Infolge
der Einführung des absoluten Maßsystems wurden die früheren Maße in
der Elektrizitätslehre überflüssig, es musste daher auf diesem Gebiete eine
gründliche Umarbeitung stattfinden. Wenige Aufgaben wurden durch andere
ersetzt, dagegen kamen viele neue hinzu, sodass deren Zahl von solchen
mit Lösungen und von solchen, die Abhandlungen, Beschreibungen etc. betreffen, von 170 auf 563 gestiegen ist. Schon bei der Besprechung der
ersten Auflage haben wir auf den ausserordentlichen Nutzen eines solchen
Buches hingewiesen, das dem Schüler als Prüfstein dient, ob er das
Abiturientenexamen in der Physik mit Erfolg bestehen kann oder nicht.
Das Buch sei daher allen zur Einführung empfohlen, die das Studium der
Physik ernst und nicht als Unterhaltungsgegenstand betreiben wollen.

B. NEBEL.

Gesammelte Werke von Heinrich Hertz. Band 3. Die Prinzipien der Mechanik in neuem Zusammenhange dargestellt. Herausgegeben von Ph. Lenard. Mit einem Vorworte von H. von Helmholtz. Leipzig 1894. Verlag von Johann Ambrosius Barth (Arthur Meiner). 312 Seiten. Preis geheftet 9 Mark — gebunden Mark 10.15.

Auch dieses letzte Werk von Hertz, welches als dritter Band der gesammelten Werke erscheint und die Prinzipien der Mechanik in neuem Zusammenhange darstellt, giebt ein beredtes Zeugnis, welch' ungeheurer Verlust der Wissenschaft durch das allzu frühe Hinscheiden dieses genialen Mannes zu teil geworden ist. Kein geringerer als Helmholtz, der frühere Lehrer des noch jungen Gelehrten, fühlte sich veranlasst, das Vorwort zu diesem gleichsam nachgeborenen Buche zu schreiben, ein Vorwort, wie es wohl einzig in seiner Art dastehen dürfte. Es enthält ein Stück Geschichte der Physik, indem der Stand derselben bis zum Beginn der Hertzschen Thätigkeit klar gekennzeichnet wird. Dann folgt die Schilderung, an welchen Punkten Hertz die Arbeit aufgenommen, und in welch' grossartiger und scharfsinniger Weise er durch das Experiment die Entscheidung zwischen den herrschenden Theorien gegeben hat. Dieses Vorwort ist ein herrliches Denkmal, welches der Meister seinem bedeutendsten Schüler gesetzt hat. Ergreifend ist dabei auch der Schmerz des Meisters, dessen Hoffnung und Freude, den Erben seiner wissenschaftlichen Thätigkeit in dem so talentvollen Manne gefunden zu haben, entgegen dem natürlichen Lauf der Dinge durch das Schicksal grausam zerstört worden sind. - Hertz giebt in seiner ausgedehnten Einleitung mit grossem Scharfsinn die Gründe an, welche ihn veranlasst haben, die Prinzipien der Mechanik von einem Gesichtspunkt aus zu behandeln; er gestattet uns dabei einen Einblick in seine geistige Werkstätte, wie er das vorgesteckte Ziel auf dreifache Weise für erreichbar

hielt. Wir erfahren dabei, welche Gründe für und wider ihn bestimmt haben, die beiden ersten Geistesbilder aufzugeben und seine ganze Kraft der Durchführung des dritten Bildes zu widmen. Bei diesem wird von nur drei unabhängigen Grundvorstellungen, der Zeit, des Raumes und der Masse ausgegangen. Ein vierter Begriff, wie derjenige der Kraft oder der Energie. der den beiden ersten Bildern noch eigen war, kommt als selbständige Grundvorstellung nicht mehr in Betracht. Indessen erfordert die Mannigfaltigkeit der uns umgebenden Erscheinungen, dass noch eine Hypothese aufgestellt wird, damit sich alle Bewegungen der Körper auf einfache und durchsichtige Regeln zurückführen lassen. Dies lässt sich dadurch erreichen, dass die sichtbare Welt durch den unsichtbaren Teil ergänzt wird, um ein abgerundetes, in sich geschlossenes, gesetzmässiges Weltbild zu erhalten. Dieses verborgene Etwas, was sich als Kraft und Energie zu erkennen giebt, kann wiederum als Bewegung und Masse aufgefasst werden, und zwar als solche, welche sich von der sichtbaren an sich nicht unterscheidet, sondern nur in Bezug auf uns und auf unsere gewöhnlichen Mittel der Wahrnehmung. In diesem Hinzudenken einer unsichtbaren Bewegung und Masse liegt die Hertzsche Hypothese, welche ihn befähigt, dem ganzen Weltall den Charakter des einheitlich Gesetzmässigen zu verleihen. Die Begriffe Kraft und Energie sind dann nichts weiter als eine Wirkung von Masse und Bewegung, welche beide aber nicht immer als grobsinnlich aufzufassen sind. - Der Inhalt selbst, welcher den Aufbau der Mechanik nach diesem neuen Gesichtspunkt behandelt, zerfällt in zwei Bücher, deren erstes die Geometrie und Kinematik der materiellen Systeme behandelt, wobei die Überlegungen sich nicht auf die Erfahrung stützen. Das zweite Buch, die Mechanik der materiellen Systeme, betrachtet unter Zeiten, Räumen, Massen, Zeichen für Gegenstände der äusseren Erfahrung, die aber mit den Grössen des ersten Buches hinsichtlich ihrer Eigenschaften nicht im Widerspruch stehen. - Besonders hervorzuheben ist, dass dieses Werk zur Zeit nicht als Einführung in die Mechanik für die studierende Jugend benützt werden kann, sondern dass es für denjenigen bestimmt ist, welcher die bisherigen Anschauungen der Mechanik vollständig beherrscht; ihn soll es anregen, die gestellten Probleme auf Grund dieser neuen Basis zu lösen, und dadurch dieser zur Entscheidung ihrer Berechtigung oder Nichtberechtigung zu verhelfen. Leider ist dem Erbauer dieses Fundaments die Errichtung des darauf ruhenden Gebäudes nicht vergönnt gewesen, er, der der berufendste gewesen wäre, in kürzester Zeit die Entscheidung selbst herbeizuführen. Hertz, der vermöge seines scharfen Geistes, verstand, den Schleier der Natur zu lüften, durfte nicht weiter vorrücken; denn das Schicksal trat ihn entgegen mit der unabänderlichen Lösung: Alles bleibt Stückwerk hienieden. B. NEBEL.

Die Gesetze der Überkaltung und Gefrierpunktserniedrigung. Zwei Abhandlungen von Sir Charles Blagden (1788). Herausgegeben von A. J. von Öttingen. (Ostwald's Klassiker der exakten Wissen-

schaften, Nr. 56.) Leipzig 1894. Verlag von Wilhelm Engelmann. 49 Seiten. Preis 80 Pfg.

- Abhandlungen über Thermometrie von Fahrenheit, Réaumur, Celsius (1724, 1730—1733, 1742). Herausgegeben von A. J. von Öttingen. (Ostwald's Klassiker der exakten Wissenschaften, Nr. 57.) Leipzig 1894. Verlag von Wilhelm Engelmann. 140 Seiten. Preis Mark 2.40.
- Otto von Guericke's Neue "Magdeburigische" Versuche über den leeren Raum (1672). Mit 15 Textfiguren. Aus dem Lateinischen und mit Anmerkungen herausgegeben von Friedrich Dannemann. (Ostwald's Klassiker der exakten Wissenschaften, Nr.59.) Leipzig 1894. Verlag von Wilhelm Engelmann. 116 Seiten. Preis Mark 2.—.

Auch bei diesen drei weiteren Bändchen sind am Schluss Anmerkungen hinzugefügt worden, welche über Stellen im Text, bezw. über angeführte Personennamen näheren Aufschluss geben. Im Übrigen können wir auf frühere Besprechungen verweisen. — Hinsichtlich Nr. 56 sei besonders darauf aufmerksam gemacht, dass das landläufig genannte Celsiusthermometer nicht mit der von Celsius getroffenen Einteilung übereinstimmt; denn sein Nullpunkt bezw. Siedepunkt stimmt mit unserem Siedepunkt bezw. Nullpunkt überein.

B. Nebel.

Grundzüge der mathematischen Chemie. Energetik der chemischen Erscheinungen. Von Georg Helm. Mit 17 Figuren im Text. Leipzig 1894. Verlag von Wilhelm Engelmann 138 Seiten. Preis Mark 3.—.

Wiederholt wurde bei der Betrachtung der Physik und Chemie in theoretischer Hinsicht der grosse Nutzen hervorgehoben, welcher der ersteren durch die Anwendung der Mathematik zu teil wurde. Durch die zahlreichen. äusserst wichtigen Arbeiten der letzten Jahre auf dem Grenzgebiet der beiden Wissenschaften, nämlich der physikalischen Chemie, ist auch die Mathematik endlich zu ihrem Recht gelangt. Zunächst können wir deren Erfolge in der Chemie selbst als erst im Anfangsstadium stehend bezeichnen, zumal die Mehrzahl aller Chemiker einen horror vor allem Rechnen, geschweige denn vor der höheren Mathematik hat. Wie aber das Energieprinzip das Fundament der heutigen Physik bildet, so muss es auch dasjenige der Chemie sein. Es ist daher ein verdienstvolles Unternehmen des Verfassers, dieses Prinzip auch auf die chemischen Vorgänge zur Anwendung zu bringen. Im ersten Teil wird das Wesen des Energieprinzipes auseinandergesetzt und auf die verschiedenen Formen der Energie hingewiesen. Einige Beispiele dienen zur weiteren Erläuterung. Der zweite Teil, die Entropie betitelt, enthält im wesentlichen einen Auszug der mechanischen Wärmetheorie, dem die Beziehungen zwischen Wärme und elektrischer Energie als Anhang beigefügt sind. Die chemische Intensität, wie der Titel des dritten Teiles lautet, umsasst auch die Errungenschaften der physikalischen Chemie, die wesentlich durch van't Hoff, Arrhenius, Nernst, Ostwald und

andere gefördert worden ist. Der vierte, letzte und kürzeste Teil des Buches hat die Stufe der Mannigfaltigkeit oder Freiheit der chemischen Erscheinungen zum Gegenstand; es ist dies eigentlich der erste Schritt in die Chemie selbst. Ausgehend von der Phasenregel und dem Gleichgewicht der Phasen gelangte man noch zu einer kurzen Betrachtung der chemischen Reaktionen, die von mehreren Parametern abhängen. Das kleine Buch eignet sich sehr gut, den jungen Chemiker auch zur mathematischen Behandlung seiner Wissenschaft anzuregen.

Das international festgesetzte und auch angenommene elektrische Strommaß lautet Ampère und nicht Amper. Man muss diese nachträglich von einem deutschen Physiker eingeführte Kürzung schon deshalb zurückweisen, weil die beiden Worte im deutschen ganz verschieden ausgesprochen werden. Mit demselben Recht könnte man auch Om statt Ohm und Wat statt Watt schreiben. Auch hier zeigt sich der von den fremden Nationen so oft schon gerügte Fehler der Deutschen, dass jeder etwas besonderes will und sich dadurch gegen das allgemeine Interesse auf lehnt. Eine Nation kann nicht gross auftreten, wenn sie den Fehler der Kleinlichkeit nicht ablegt.

D. NEBEL.

Über die Methode der kleinsten Quadrate. Von Richard Henke. Zweite unveränderte Auflage. Nebst Zusätzen. Leipzig 1894. Verlag von B. G. Teubner. 77 Seiten.

Diese zweite Auflage ist ein ungeänderter Abdruck der im Jahre 1868 als Doktordissertation erschienenen Schrift. Verfasser hat absichtlich Änderungen unterlassen, damit der ursprüngliche Charakter nicht gestört wird. Der erste Teil umfasst eine Darstellung und Kritik der verschiedenen Begründungsweisen der Methode der kleinsten Quadrate, während in den beiden anderen eine allgemeine Auffassung der Methode der kleinsten Quadrate gegeben und begründet wird.

Als neu hat der Verfasser zwei Zusätze beigefügt, nämlich die Methode der kleinsten Quadrate und das Gausssche Fehlergesetz, sowie weitere litterarische Bemerkungen über Begründung und Bedeutung der Methode der kleinsten Quadrate. Die vorliegende Schrift trägt wesentlich dazu bei, die theoretischen Fundamente der in der Praxis allgemein verbreiteten Methode der kleinsten Quadrate auf ihre Festigkeit zu prüfen und durch eine allgemeinere Auffassung zu stützen. Der letzte Zusatz zeigt, wie emsig auch auf diesem Gebiet seit dem Erscheinen der ersten Auflage, die nicht in den Buchhandel gekommen war, gearbeitet worden ist.

B. NEBEL.

An elementary treatise on theoretical mechanics by Alexander Ziwer.

Part II: Introduction to dynamics; statics. 1893. 183 Seiten. Preis 8.6.

Part III: Kinetics. 1894. 236 Seiten. Preis 8/6. New-York und
London. Verlag von Macmillan and Co.

Der zweite Band wurde gleichzeitig mit dem ersten besprochen, weshalb hier nur darauf verwiesen wird. Der dritte Band führt den Titel:

Kinetics. Die erste Hälfte desselben beschränkt sich auf die Kinetik eines Teilchens, während der Rest diejenige eines starren Körpers umfasst und die wichtigsten Prinzipien der Kinetik eines Systems einer eingehenden Diskussion unterzieht. Zwischen dem Text eingestreut finden sich Aufgaben, deren Lösungen am Schluss des Buches zusammengestellt sind. Der Charakter des vorliegenden Bandes ist mit demjenigen der beiden früheren übereinstimmend. In dieser Beziehung sei auf die frühere Besprechung verwiesen. Die äussere Ausstattung ist sehr sorgfältig und könnte manchem Verleger in Deutschland zum Vorbild dienen. B Nebel.

Eine neue Berechnung der mittleren Tiesen der Oceane nebst einer vergleichenden Kritik der verschiedenen Berechnungsmethoden. Von der philosophischen Fakultät der Christian-Albrecht-Universität in Kiel mit dem neuschassischen Preise gekrönte Schrift. Von Karl Karstens. Kiel und Leipzig 1894. Verlag von Lipsius und Tischer. 32 Seiten und 27 Tabellen. Preis 2 Mark.

In dem ersten Abschnitt findet sich eine Zusammenstellung der bisher vorgenommenen Ermittelungen der mittleren Meerestiefen, die hinsichtlich der benützten Methoden für die Berechnung in dem zweiten Abschnitt einer näheren Kritik unterzogen werden. Von den drei in Frage kommenden Methoden: 1. Der planimetrischen, d. h. derjenigen, welche von der Arealvermessung der Tiefenstufen ausgehen. 2. Der Profilmethode. 3. Der Feldermethode wird die letztere der neuen Berechnung zu Grunde gelegt, weil sie nicht nur das sicherste Resultat für alle gut ausgeloteten Meere liefert, sondern auch den äusserst wichtigen Vorteil besitzt, jederzeit Nachträge und Änderungen zu gestatten, ohne eine Wiederholung der ganzen Arbeit zu veranlassen. In dem dritten Abschnitt und den dazu gehörigen Tabellen sind die Berechnungen, die sich auf die einzelnen Meere beziehen, zusammengestellt. Als Resultat aus sämtlichen Berechnungen ergiebt sich als mittlere Meerestiefe nach Karstens 3,496 km, eine Zahl, welche mit den besten der früheren Arbeiten hinreichend übereinstimmt. Für Geographen und Seeleute ist das Büchlein von grossem Wert. B. NEBEL.

Hydrodynamics. By Horace Lamb. Cambridge 1895. At the University press. 604 Seiten. Preis 20/.

Im Grunde genommen ist dieses Buch als die zweite Auflage des im Jahre 1879 unter dem Titel: Treatise on the mathematical theory of the motion of fluids erschienenen Werkes, welches auch ins Deutsche übersetzt worden war, anzusehen. Indessen wurde dasselbe in solcher Weise durch Änderungen und Erweiterungen umgestaltet, dass sich der Verfasser auch veranlasst sah, den Titel zu ändern.

Trotz der Vermehrung des Inhalts hat der Verfasser solche lange analytische Untersuchungen ausgeschlossen, deren Resultate sich nicht interpretieren lassen und war bei der Auswahl bemüht, dem physikalischen Interesse möglichst Rechnung zu tragen, wobei auch die eigenen, diese Wissenschaft fördernden Arbeiten des Verfassers erwähnt seien. In historischer Hinsicht war der Verfasser bestrebt, den einzelnen Arbeiten den wahren Autornamen beizufügen. Es würde zu weit führen, wenn noch auf den reichhaltigen Inhalt näher eingegangen werden sollte; aufmerksam sei nur darauf gemacht, dass z. B. das Kapitel über Zählflüssigkeit eine ausgedehnte Bearbeitung erfahren hat. Dem inneren Gehalt entspricht auch vollkommen die äussere Ausstattung, sodass dieses Werk überall willkommen sein wird.

B. NEBEL.

Die Fortpflanzungsgeschwindigkeit des Schalles in einem theoretischen Gase. Bearbeitet auf Grund der dynamischen Gastheorie. Verlag von H. Dominicus (Th. Gruss). Prag 1894. 12 Seiten. Preis 50 Pfg.

Ausgehend von der Definition eines theoretischen Gases und der Rechtfertigung über die Einführung eines solchen, in Wirklichkeit nicht vorhandenen Gases in die Physik stellt der Verfasser die Vorwürfe zusammen, welche man auf Grund wirklicher Beobachtungen der dynamischen Gastheorie von Krönig und Clausius machen muss. Da sich aber in den Schlussfolgerungen Fehler nicht nachweisen lassen, so muss in der grundlegenden Annahme der Irrtum zu suchen sein. Der Verfasser setzt daher an Stelle der Krönig-Clausiusschen Annahme, wonach ein Drittel aller Moleküle sich in je einer der drei Hauptaxen des einschliessenden Würfels bewege und zwar senkrecht gegen die Begrenzungsebene mit der vollen Molekulargeschwindigkeit die folgende: "In derselben Zeit, in welcher ein Sechstel der Molküle gegen eine Grenzwand wirkt, wird auch gegen jede andere Grenzwand je ein Sechstel derselben wirken, jedoch nicht mit der vollen Molekulargeschwindigkeit senkrecht zur Grenzwand, sondern unter der noch nicht angetasteten Bedingung, dass alle Auftreffrichtungen möglich sind." Dazu kommt: "Zwei Körper sind nur dann gleich warm, wenn die Arbeit der in der Zeiteinheit beiderseits an die Flächeneinheit der Grenzwand gelangenden Moleküle gleich gross ist." Auf Grund dieser Annahmen führt der Verfasser die Betrachtungen über die Fortpflanzung des Schalles in theoretischen Gasen durch und gelangt zu dem Resultat, dass dieselben mit den Erscheinungen bei permanenten Gasen sowohl im Wesen als auch den Zahlwerten nach so vollkommen als möglich übereinstimmen.

B. NEBEL.

Essai de thermodynamique graphique par René de Saussure. Extrait des Archives des Sciences physiques et naturelles. 3. Folge. Band 31. Mai 1894. Genf 1894. Verlag von Aubert-Schuchardt. 42 Seiten.

Setzt man voraus, dass ein Körper stets das gleiche Gewicht behält, so lässt sich der Zustand desselben in jedem Augenblick durch zwei Ele-

mente, nämlich die lebendige Kraft und die Dauer der Periode der Bewegung, bestimmen. Auf diese Weise hat Clausius gezeigt, wie man die Fundamentalprobleme der Thermodynamik auf die reine Mechanik zurückführen kann. Ein ähnlicher Vorgang spielt sich auch in der Vibrationstheorie ab, bei welcher es sich um die Feststellung des inneren Zustandes eines Körpers handelt, wenn seine Teile dem Einfluss der Wärme ausgesetzt sind. Es muss dabei die Natur der periodischen Bewegung der einzelnen Teile genau präzisiert werden, und dies ist ebenfalls durch zwei gegebene Grössen möglich, nämlich durch die Amplitude und durch die Dauer der Periode der Vibrations-Bewegung. Verfasser geht von diesen zwei Grössen als Koordinaten aus und stellt die Beziehung derselben mit der charakteristischen Oberflächengleichung: F(P, V, T) = 0 her, worin P gleich der Druck, V dem Volumen. T der absoluten Temperatur des Körpers entsprechen. Die weiteren mathematischen Untersuchungen führen zu dem interessanten Resultat, dass sich die gleichen F(P, V, T) = 0 durch drei Gleichungen zwischen den Grössen P, V, T und zwei Hilfskoordinaten Φ und S ausdrücken lässt, welche direkt von der Amplitude und der Dauer der Periode der Vibrations-Bewegung abhängen. Auf diese Weise erhält man eine viel vollständigere charakteristische Funktion, weil sie den Wert jeder der zwei spezifischen Wärmen getrennt liefert und somit in jedem Augenblick den Zustand der Vibrations-Bewegung als Funktion der gegebenen experimentellen Grössen ermitteln lässt. - Es ist dies ein sehr interessanter Beitrag zur Behandlung der Thermodynamik auf graphischem Weg. B. NEBEL.

- Über eine räumliche Darstellung der Tonreihe und deren Ausnützung in einem Apparate als Lehrmittel im musiktheoretischen Unterrichte. Von Anton Michalitschke. Separatabdruck der "Österreichischen Mittelschule". 5. Jahrgang. 2. Heft. 1891. 15 Seiten.
- Eine räumliche Darstellung der Tonreihe und die Ausnützung derselben in einem Apparat als Lehrmittel im Musikunterricht. Von Anton Michalitschke. Sonderabdruck aus "Lotos". 1892. Neue Folge. 12. Band. 14 Seiten.
- Ein Monochord mit spiralförmigem Stege zur Darstellung der pythagoräischen, der physikalischen und der gleichschwebend temperierten Tonintervalle. Von Anton Michalitschke. Sonderabdruck aus "Lotos". 1894. Neue Folge. 14. Band. 56 Seiten und eine Figurentafel.

Der Inhalt der beiden ersten Schriftchen ist im wesentlichen derselbe, indem darin gezeigt wird, auf welche Weise sich die Tonreihen als eine logarithmische Spirallinie darstellen lassen. Die dritte Abhandlung benützt die beiden ersten als die theoretische Grundlage und wiederholt kurz den wesentlichen Teil derselben. Diese Darstellung der Tonreihen als logarithmische Spirallinie giebt die Veranlassung zum Bau eines Monochords mit

spiralförmigem Stege, welcher durch ein auf einer Holzscheibe befestigtes, in Spiralform aufgewickeltes Messingband dargestellt wird. Die gespannte, unveränderliche Saite selbst bildet den Radiusvektor, dessen Länge durch die Drehung der den Steg tragenden Scheibe bestimmt wird. Im weiteren werden die Untersuchungen mitgeteilt, die an diesem neuen Monochord mit dem Quint-Tonsystem und den verschiedenen Tonleitern angestellt worden sind. Die beigefügte Figurentafel dient zur Erläuterung der erlangten Ergebnisse.

B. Nebel.

Streiflichter auf eine neue Weltanschauung in Bezug auf die Beleuchtung, Erwärmung und Bewohnbarkeit der Himmelskörper. Eine astrophysisch-metaphysische Hypothese über das innere Walten der Natur und die sich daraus ergebenden Konsequenzen auf die Ethik und Religion nebst einer Plauderei über die Möglichkeit eines "Weltunterganges" von Wilhelm Zenker. Siebente (1000) erweiterte Auflage mit einer Reihe offiziell wissenschaftlicher Zustimmungen. Braunschweig 1895. C.A. Schwetschke und Sohn. 88 Seiten. Preis 1 Mark.

Der grossartige vielversprechende Titel dieses Büchleins ist wohl die Ursache, dass es schon die 7. Auflage erleben durfte, denn der Inhalt bleibt hinter allen Erwartungen zurück. 43 Seiten hindurch werden die bestehenden Ansichten in abfälliger Weise besprochen, die auf Grund streng logischer Schlüsse mit Hilfe der Spektralanalyse zu Stande gekommen und zur Zeit allgemein anerkannte Anschauungen werden kurz abgefertigt durch Bezweifelung der Resultate, weil der greifbare Beweis fehle; - ein billiges Vergnügen. Die Spannung auf die Ansicht des Verfassers wird jäh zerstört durch die ganz willkürliche, in den Folgerungen logisch zusammenhanglose Annahme, dass die Sonne als grösserer und gewaltigerer Körper positiv auf die kleine, sich ihr negativ stellende Erde wirkt, wodurch der entstehende elektrische Strom in der Erdatmosphäre sich in Wärme umsetzt, während derselbe Strom sich in der Sonnenatmosphäre in Licht verwandelt. Grund, weil wir Menschen uns, wenn auch auf andere Weise elektrisch unser Dasein erhellen und behaglich machen können. Als Motto bei der Ansicht über den Weltuntergang diente wohl der Spruch: "Wasch' mir den Pelz, mach' ihn aber nicht nass." Das Ganze kennzeichnet sich als ein nutzloses, leeres Geschwätz. B. NEBEL.

Das System der Übergewalt oder das analytisch-synthetische Prinzip der Natur. Ein Beitrag zur Weltäther-, Stoff- und Kraftlehre und zur Lösung naturphilosophisch-kosmischer Probleme in elf Hauptthesen von Konrad Beyrich. Mit sieben Figuren. Berlin 1895. Verlag von Robert Oppenheim (Gust. Schmidt). 160 S. Preis Mk. 3. 60.

Das Buch hat einen ausschliesslich philosophischen Charakter, weshalb seine Besprechung eigentlich den philosophischen Fachzeitschriften vorbehalten sein sollte. Sein naturwissenschaftlicher Inhalt hat aber auch

à M. 1.

für alle Freunde der Naturwissenschaft Interesse. Der von der Physik hypothetisch eingeführte Äther wird verallgemeinert und hat demnach als Weltäther eine äusserst wichtige Rolle nicht nur in der gesamten Physik, sondern auch in der Chemie, Mineralogie, Astronomie, Medizin, Meteorologie, Mechanik, Physiologie etc. Auf Grund dieser Anschauung wird nachzuweisen gesucht, dass es kein absolutes Nichts giebt, also auch kein leerer Raum existieren kann.

B. Nebell.

Bibliographie

vom 13. Mai bis 19. August 1897.

Periodische Schriften. Jahresbericht der deutschen Mathematiker-Vereinigung. 4. Bd. 1894-1895. Berlin, Reimer. 4. Enthaltend die Chronik der Vereinigung für die Jahre 1894 und 1895, kurze Berichte über die auf den Versammlungen in Wien und Lübeck geh. Vorträge, sowie einen ausführlichen Bericht über die Theorie der algebraischen Zahlkörper, von Dav. Hilbert. Herausgegeben im Auftrage des Vorstandes v. A. WANGERIN und A. GUTZMER. M. 16. Veröffentlichungen des königl. preuss. meteorologischen Instituts. Herausgegeben durch dessen Dir. Wilh. v. Bezold, Ergebnisse der Beobachtungen an den Stationen II. und III. Ordnung im Jahre 1896, zugleich deutsches meteorolog. Jahrbuch für 1896. Beobachtungssystem des Königreichs Preussen und benachb. Staaten. 2. Heft. Berlin, Asher & Co. --- Dasselbe. Ergebnisse der meteorolog. Beobachtungen in Potsdam im Jahre 1895. Ebenda. Jahrbuch, deutsches meteorologisches. Jahrg. 1895. Meteorol. Beobachtungen in Württemberg im Jahre 1895. Mitteilungen der mit dem königl. statist. Landesamt verbund, meteorol, Zentralstation. Bearbeitet von Dr. L. MEYER unter Mitwirkung von Prof. Dr. Mack. Stuttgart, Metzler. Berichte, mathem. und naturw., aus Ungarn. 13. Bd. 2. Hälfte. Budapest, Verlagsbureau der Ungar. Akademie der Wissenschaften. Fortschritte, die, d. Physik im Jahre 1891. Dargest. von d. physikal. Gesellschaft zu Berlin. 47. Jahrg. 3. Abt. Braunschweig, Vieweg & Sohn. 3. Kosmische Physik. Red. von Rich. Assmann. Jahresbericht der deutschen Mathematiker-Vereinigung. 5. Bd. 1896. 1. Heft. Enthaltend die Chronik der Vereinigung für die Jahre 1896, sowie kurze Berichte über die auf der Versammlung in Frankfurt a. M. geh. Vorträge. Herausg. von A. Wangerin u. A. Gutzmer. Leipzig, B. G. Teubner. M. 2.80. Veröffentlichungen des königl preuss, meteorol. Instituts. Ergebnisse d. magnet. Beobachtungen im Jahre 1894. 2, Heft. Berlin, Asher & Co. M. 3. 50. - Dasselbe im Jahre 1895. 2. Heft. Ebenda. M. 3. 50.

- Dasselbe. Ergebnisse der Niederschlags-Beobachtungen im Jahre 1894.

Berichte der sächs. Gesellsch. der Wissensch. Mathem.-physik. Klasse. 1897.

Nachrichten von der königl. Gesellsch. der Wissensch. zu Göttingen. Mathem.-

physik. Klasse, nebst geschäftl. Mitteil, 1897. Göttingen, Horstmaun.

Ebenda.

I. und II. Leipzig, Hirzel.

Sitzungsberichte, Münchner. Mathem. Klasse. 1896. 4. Heft. München, Franz.
M. 1. 20.
Wiener. Mathemnaturw. Klasse. 1. Abteilung. 105. Bd. 8.—10. Heft. Wien, Gerolds Sohn.
Beobachtung des Tifliser physik. Observatoriums im Jahre 1895 (russisch
und deutsch). Tiflis. (St. Petersburg, Eggers & Co.) M. 10.
Jahresbericht des Zentralbureaus für Meteorologie und Hydrographie im
Grossherzogtum Baden, mit den Ergebnissen der meteorolog. Beobach-
tungen und der Wasserstandsaufzeichnungen am Rhein und an seinen
grösseren Nebenflüssen für das Jahr 1896. Mit einem Anhang betr. die
Hochwasserkatastrophe vom März 1896. Karlsruhe, Braun. M.6.
Publikation der astronom. Gesellsch. XXI. Gylden, Hugo, Hilfstafeln zur Be-
rechnung der Hauptungleichheiten in den absoluten Bewegungstheorien
der kleinen Planeten. Unter Mitwirkung von Dr. Oppenheim heraus-
gegeben. Leipzig, Engelmann. M. 30.
Jahrbuch über die Fortschritte der Mathematik. Herausgegeben von Emil
LAMPE. 26.Bd. Jahrg. 1895 (in 3 Heften). 1. Heft. Berlin, Reimer M. 13.50.
Mitteilungen der mathematischen Gesellschaft in Hamburg. 3. Bd. 7. Heft.
Leipzig, B. G. Teubner.
Beobachtungsergebnisse d. königl. Sternwarte zu Berlin. 7. Heft. MARCUSE, ADF.,
Photographische Bestimmungen der Polhöhe. Berlin, Dümmler. M.3.
Geschichte der Mathematik und Physik.
OBENRAUCH, FERD. Jos., Geschichte der darstellenden und projektiven Geo-
metrie. Brünn, C. Winiker. M. 9.
Bois-Reymond, Emil Du, Hermann von Helmholtz. Gedächtnisrede. Leipzig,
Veit & Co.
GOLDBECK, ERNST, Die Gravitationshypothese bei Galilei und Borelli. Pro-
gramm. Berlin, Gärtner. M. 1.
MACH, ERNST, Die Mechanik in ihrer Entwickelung historisch-kritisch dar-
gestellt (internationale wissenschaftl. Bibliothek, Bd. 59). 3. Aufl. Leipzig.
Brockhaus. M. 8.
Abhandl. der kaiserl. LeopoldinCarolinischen deutschen Akademie der Natur-
forscher, 71. Bd. Nr. 1—3.
1. Braunmühl, A. v., Beiträge z. Geschichte d. Trigonometrie Leipzig, Engelmann. M. 1. 50.
Engelmann. M. 1. 50. 2. — Nassir Eddin Tüsi und Regimontan. Ebenda M. 2.
3. Kutta, W. M., Zur Geschichte d. Geometrie mit konstanter Zirkel-
öffnung. Ebenda. M. 2.50.
Poggendorff's Handwörterbuch zur Geschichte der exakten Wissenschaften.
3. Bd. 8. und 9. Lieferung. Leipzig, Barth. à M.3.

Reine Mathematik.

Puchberger, Eman., Eine allgemeinere Integration der Differentialgleichungen. V. (Supp.-)Heft. Wien, Gerolds Sohn. M. 1. 60.

Burkhardt, Heinr., Funktionentheoretische Vorlesungen. 1. Th. Einführung in die Theorie der analytischen Funktionen einer komplexen Veränderlichen. Leipzig, Veit & Co.

RICHTER, OTTO, Die Berührungskegelschnitte d. ebenen Kurven vierter Ordnung mit zwei Doppelpunkten. Progr. Leipzig, Heinrichs' Sortiment. M. 1 20.

BIGLER, U., Ein Beitr. z. Theorie d. arithm Reihen. Aarau, Sauerländer & Co. M. 1.

Produktentafel, kleine. Herausgegeben von der trigonometrische Abteilung der königl. preuss. Landesaufnahme. Berlin, Mittler & Sohn. M. —. 15.

Taschentafel, 4 stellige, logarithm. Hrsg. von der trigonom Abteilung d. königl. preuss. Landesaufnahme. Ebenda. M. —. 30.

Weltzien, Carl, Üb. Produkte u. Potenzen v. Determinanten (od. üb. Komposition von linearen Substitutionen). Programm. Berlin, Gärtner. M. 1.

Becker, E., Logarithm.-trigonom. Handbuch auf fünf Dezimalen. 2. Ausg. Leipzig, Tauchnitz. M. 1.20.

Frischauf, Johs., Vorlesungen über Kreis- und Kugel-Funktionenreihen. Leipzig, B. G. Teubner. M. 2.

ISENKRAHE, C., Das Verfahren der Funktionswiederholung, seine geometr. Veranschaulichung u. algebr. Anwendung. Leipzig, B. G. Teubner. M. 2. 80.

Sturm, Ch., Lehrbuch der Analysis (Cours d'Analyse). Übers. von Privatdozent Dr. Thdr. Gross. 1.Bd. Berlin, Fischers technol. Verlag. M. 7. 50.

SCHMIDT, H. C., Zahlenbuch, Produkte aller Zahlen bis 1000 mal 1000. Entworfen von C. Cario. Aschersleben, Bennewitz. geb. M. 10.

Tengler, Frz. Konstruktion d. konjug. Durchmesser resp. Axen eines Kegelschn., der einem gegeb. polar rezipr. ist. Progr. Klagenfurt, v. Kleinmayr. M. 1.

Krause, Mart., Theorie d. doppeltperiod. Funktionen einer veränderl. Grösse.
2. (Schluss-)Bd. Leipzig, B. G. Teubner.

M. 12.

Kronecker's, Leop., Werke. Hrsg. von K. Hensel. 2. Bd Ebenda. M. 36.

Angewandte Mathematik.

Spitzer, Sim., Tabellen f. d. Zinseszinsen - u. Rentenrechn. m. Anwendung ders. auf Berechn. von Anlehen, Konstruktion von Amortisationsplänen u. s. w. 4. Aufl. Wien, Gerolds Sohn. M. 15.

Keck, Wilh., Vorträge üb. Mechanik als Grundl. f. d. Maschinenw. II. Tl. Mechanik elastisch-fester und flüssiger Körper. Hannover, Helwing. M. 12.

Lemke, H., Über die Mars-u. Jupiterstörungen der kl. Planeten vom Hebe-Typus.

Dissertation. Berlin, Mayer & Müller.

M. 2.

Hollefreund, Karl, Anwendungen des Gauss'schen Prinzipes vom kleinsten Zwange. Programm. Berlin, Gärtner. M. 1.

Schwarzmann, Max, Reziproke Krystallformen und rezipr. Krystallprojektionen. Leipzig, Hirzel M. 3.

Sinram, A., Fragmente zum kosm. Bewegungsgesetz (Incitationstheorie) u. zur Mechanik des Himmels. Hamburg, Gräfe & Sillem. M. 1.

GOLDSCHMIDT, LUDW., Die Wahrscheinlichkeitsrechnung. Versuch einer Kritik. Hamburg, Voss. M. 7.

Handwörterbuch der Astronomie. 9. Lieferg. Breslau, Trewendt. M. 3. 60. JORDAN, W., Handbuch d. Vermessungskunde. 2. Bd. Feld- u. Landmessung. 5. Aufl. (in 2 Lieferg). 1. Lieferung. Stuttgart, Metzler. M. 8.

Zehnder, L., Die Mechanik des Weltalls in ihren Grundzügen dargestellt.
Freiburg i. B., Mohr.

M. 3.

Ergebnisse, die, der Triangulation der Schweiz. Hrsg. d. d. topogr. Bureau.

Risultati della triangulatione della Svizzera. 2. u 3. Lieferung, Bern, Schmid & Francke. à M. 4.

REINHARDT, KARL, Steuerungstabellen für Dampfmaschinen. Berlin, Springer.
geb. M. 6.
KLEIN, F. und Sommerfeld, A., Über die Theorie des Kreisels. 1. Heft.

Die kinemat. und kinet. Grundlagen der Theorie. Leipzig, B. G. Teubner. M. 5. 60.

Physik und Meteorologie.

Heinrich, Ergebnisse der meteorol. Beobachtungen, angestellt auf der landwirtschaftlichen Versuchsstation zu Rostock im Jahre 1896. Güstrow, Opitz & Co. M.—. 50.

ALBRECHT, Gust., Die Elektrizität. Heilbronn, Schröder & Co. geb. M. 2. WALLENSTEIN, IGN. G., Lehrbuch der Elektrizität und des Magnetismus. Mit besonderer Berücksichtigung der neueren Anschauungen über elektrische Energieverhältnisse und unter Darstellung der den Anwendungen in der Elektrotechnik zu Grunde liegenden Prinzipien. Stuttgart, Enke. M. 8.

PLANCK, MAX, Vorlesungen üb. Thermodynamik. Leipzig, Veit&Co. kart. M. 7. 50.
TYNDALL, JOHN, Der Schall. Nach der 6. engl. Auflage des Originals bearb. von
A.v. Helmholtzu. Cl. Wiedemanm. 3. Aufl. Braunschw., Vieweg & Sohn. M. 10.

Servus, Herm., Neue Grundlagen der Meteorologie. Berlin, Gärtner. M.1. Lüders, J., Über den Kreisprozess der Gasmaschine. II. Kritische Würdigung der Abhandlung: Beiträge z. Theorie d.Gasmaschine von Prof. Dr. A. Slaby. Aachen, Mayer.

EBERT, H., Magnetische Kraftfelder. Die Erscheinungen des Magnetismus, Elektromagnetismus und der Induktion, dargestellt auf Grund des Kraftlinienbegriffes. 2. Teil. Leipzig, Barth. M. 10.

Kerber, Arth., Beiträge zur Dioptrik. 3. Heft. Leipzig, Fock. M. — 50. Cohn, Emil, Elektrische Ströme. 10 Vorträge über die physikal. Grundlagen der Starkstromtechnik. Leipzig, Hirzel. M. 3. 60.

HARTL, HEINR., Meteorlog. u. magnet. Beobachtungen in Griechenland. 2. Bericht.

(Aus: "Mitteilungen des k. und k. militär-geograph. Instituts".) Wien,
Lechners Sortiment.

M.1.

FARADAY, MICH., Experimental-Untersuchungen über Elektrizität. (Aus den Philosoph. Transact.) Herausgeg. von A. J. v. Öttingen. III. bis V. Reihe. (1833). (Ostwalds Klassiker der exakten Wissenschaften Nr. 86). Leipzig, Engelmann. M. 1. 60.

—— Dasselbe, VI. bis VIII. Reihe (1834). (Ostw. Klass. Nr. 87.) Ebenda. M. 2. 60. Cellier, Léon, Leitungsvermögen der schwarzen Kohle für Wärme und Elektrizität (Dissertation). Zürich, Speidel. M. 3.

MÜLLER-POUILLETS, Lehrbuch d. Physik u. d. Meteorologie. 9. Aufl. von Prof. Dr. Leop. Pfaundler unt. Mitwirk. des Prof. Dr. Otto Lummer (in 3 Bdn.). 2. Bd. 1. Abt. 3. (Schluss-) Lieferg. Braunschweig, Vieweg & Sohn. M. 9. 50.

Weiler, W., Wörterbuch der Elektrizität und des Magnetismus (in ca. 16 Heften).

 Heft. Leipzig, Schäfer.
 Anleitung zur Messung und Aufzeichnung der Niederschläge. Herausg.vom königl preuss. meteorol. Institut. 3. Aufl. Berlin, Asher & Co.
 M – 60.

Januschke, Hans, Das Prinzip der Erhaltung der Energie und seine Anwendung in der Naturlehre. Ein Hilfsbuch für den höheren Unterricht. Leipzig, B. G. Teubner. geb. M. 12. Tafel III. 5000m 8010

Bemerkung zu Seite 113 dieses Heftes.

Durch Vermittelung des Herrn Dr. H. Schöne lässt mich Herr Geheimerat Dr. Diels darauf aufmerksam machen, dass die Stelle über Quadratwurzelausziehung bei den Griechen schon im 1. Hefte 1894 dieser Zeitschrift S. 13—15 unter dem Titel veröffentlicht ist: Un fragment des Métriques de Héron. Von Paul Tannery in Paris. Der dort aus einer anonymen Abhandlung im Manuscrit 2390 der Nationalbibliothek zu Paris edierte Text weicht nur in unwesentlichen Stücken von dem in diesem Hefte gegebenen ab. Seine Lesart ταὐτά statt ταῦτα am Schlusse des Passus dürfte aber jedenfalls den Vorzug verdienen. Die Kubikwurzelausziehung bleibt aber ein Novum.

Thorn, 17. September 1897.

M. CURTZE.

Historisch-litterarische Abteilung.

Die Quadratwurzelformel des Heron bei den Arabern und bei Regiomontan und damit Zusammenhängendes.

Von

MAXIMILIAN CURTZE in Thorn.

Der Codex Vindobonensis Palatinus No. 5203 (Phil. 387) dürfte eine höchst interessante Handschrift darstellen. Sie ist nämlich, wie mich eine Vergleichung mit den eigenhändigen Briefen des Regiomontan in der Stadtbibliothek zu Nürnberg unzweifelhaft gelehrt hat, von diesem Meister des XV. Jahrhunderts geschrieben worden. Randglossen, welche Schoners Handschrift zeigen, beweisen, dass sie einst von ihm, wenn nicht besessen, doch eingehend durchgearbeitet ist; und wenn nun in dieser Handschrift sowohl die "Theoricae planetarum" Peurbachs enthalten sind: "anno domini 1454° Wienne in Collegio Civium finite penultima mensis Augusti" genau mit der Regiomontanschen Ausgabe* bis auf die Figuren stimmend; wenn dann weiter darin die von Schoner** herausgegebenen Abhandlungen Regiomontans beziehungsweise Peurbachs "De tabula sinus et chordarum" und "Tractatus sinuum et chordarum", letztere, wie in der Ausgabe ohne die Tafel selbst, enthalten sind, ebenfalls bis auf die Figuren genau

^{*} Die Ausgabe Regiomontans ist ohne jede Seitenzahl und ohne jede andere Notiz. Sie umfasst 20 Blatt, welche in zwei Quinionen gedruckt sind. Anfang (Blatt 1², Z. 1—4): THEORICAE NOVAE PLANETARVM GEORGII PVRBACHII ASTRONOMI CELEBRATISSIMI | DE SOLE | Sol habet tref orbes a se inuicem omniquaq; diuisos | u. s. w. — Schluss (Blatt 20 v., Z. 36—39): Hunc motum sequū | tur omnes sphere inferiores in motibus suis ita ut respectu hui ecliptice mo | bilis sint auges deferentium & declinatones earum semp inuariabiles; | FINIS. — Die Seite hat 45 Zeilen.

^{**} Tractatus G. Peurbachii super propositiones Ptolemaei de sinibus et chordis. Item compositio tabularum sinuum per Joannem de Regiomonte Adiectae sunt et Tabulae sinuum duplices per eundem Regiomontanum. Omnia nunc primum in utilitatem Astronomie studiosorum impressa. Norimbergae apúd Joh. Petrejum 1541. Fol. — Wiederholt in der Santbechschen Ausgabe der Trigonometrie Regiomontans, Basileae s.a. (1561) S. 131—146.

übereinstimmend, wenn endlich der "Algorithmus demonstratus" des Jordanus darin sich findet, welchen Schoner gleichfalls, wie er selbst sagt, aus einer Wiener Handschrift, welche von Regiomontan geschrieben war, edierte*, so dürfen wir wohl in dem vorliegenden Manuskripte dieses Schonersche erblicken. Leider war es mir der Engherzigkeit der Verwaltung der Bibliothek des Königl. Gymnasiums zu Thorn halber unmöglich, die mir aus Wien und Krakau gesendeten Handschriften vollständig ausnutzen zu können. Es wurde mir nur gestattet, der ich diese Bibliothek 18 Jahre selbst verwaltet hatte, wöchentlich darin vier, sage vier Stunden zu arbeiten. Erst im letzten Augenblicke hat ein Machtwort des Herrn Kultusministers, an welchen ich mich beschwerdeführend gewendet hatte, darin Wandel geschaffen. und habe ich wenigstens die wichtigste Handschrift, den Kommentar des An-Nairîzî zu den zehn ersten Büchern des Eukleides in der Übersetzung Gerhards von Cremona, vollständig abschreiben können.** Folgende mit sehr flüchtiger Schrift gemachte Notizen unserer Handschrift aber haben Beziehung zu der in der Überschrift genannten Formel und den von mir gegebenen Erläuterungen, und möchte ich sie deshalb hier als eine nicht uninteressante Ergänzung ebenfalls bekannt geben.

1. (Blatt 168°): Radicem de 10 in integris non habes nisi 3. Si viciniorem velis, 3 in se duc, fiunt 9, deficit 1, quod divide per duplum radicis in integris, scilicet 6. Est ergo prima radix vicina $3\frac{1}{6}$. Si secundam viciniorem velis, duc hanc primam in se, fiunt $10\frac{1}{36}$. Id superhabundat in $\frac{1}{36}$. Nunc dupla primam radicem vicinam, scilicet $3\frac{1}{6}$, fiunt $6\frac{1}{3}$. Hoc multiplica per 36, fit 228, divisor. Hunc iterum multiplica per $\frac{1}{6}$, excunt 38; auffer 1, manent 37, numerator. Est ergo secunda vicina radix $3\frac{37}{228}$. Quam si in se ducis, excunt $10\frac{1}{51984}$. Si iterum viciniorem cupis, multiplica 51984 per duplum radicis secunde vicine, scilicet per $6\frac{74}{228}$, fiunt 328776. Quod iterum multiplica per fractionem aput radicem, scilicet $\frac{37}{228}$, fiunt 53354. Ab hoc 1 minue, et fit tercia radix vicina 3 et $\frac{53353}{328776}$. Hec si in se ducis, provenient $10\frac{1}{108093658176}$.

^{**} Das arabische Original der sechs ersten Bücher geben Besthorn und Heiberg arabisch und lateinisch heraus.

^{*} Seite 4 der Vorrede sagt Schoner: Incidi nuper in libellum . . . exaratum max. et doctiss. viri Regiomontani divina manu, quem in Vienensi quapiam bibliotheca audio asservari hoc titulo: Algorithmus demonstratus incerti autoris, unde suspicor hoc exemplum fuisse descriptum.

Sic de 12 integris radix vicinior est 3; in fractionibus prima vicinior est $3\frac{1}{2}$. Hec in se fit $12\frac{1}{4}$. Secunda vicinior est $3\frac{13}{28}$; hec in se fit $12\frac{1}{784}$. Tercia vicina est $3\frac{2521}{5482}$.

Dass wir es hier mit der Heronschen Formel zu thun haben, ergiebt sich aus folgenden Betrachtungen. Regiomontan findet zunächst:

$$\sqrt{a^2+b} \sim a + \frac{b}{2a};$$

das Quadrat davon ist:

$$a^2 + b + \frac{b^2}{4a^2}$$

In allen von ihm benutzten Beispielen ist b=1. Nun lässt er folgendes ausführen: Er multipliziert $2a+\frac{b}{a}$ mit $4a^2$ und erhält dadurch als Nenner seines neuen Bruches $8a^3+4ab$. Dies multipliziert er wieder mit $\frac{b}{2a}$ und subtrahiert von dem Produkte b^2 , bei ihm 1, und erhält so als Zähler seines neuen Bruches $4a^2b+b^2$. Der neue Wurzelwert ist also:

$$\sqrt{a^2+b} \sim a + \frac{4a^2b+b^2}{8a^3+4ab}$$

Heron lässt dagegen folgendes ausführen.* Mit seinem ersten Näherungswerte $a + \frac{b}{2a}$ dividiert er in die gegebene Zahl; so erhält er:

$$\frac{(a^2+b)2a}{2a^2+b}.$$

Dazu addiert er den gefundenen Näherungswert und nimmt von der Summe die Hälfte als zweiten Näherungswert, und erhält so:

$$\sqrt{a^2 + b} = a + \frac{b^2 + 4a^2b}{8a^3 + 4ab}$$

Das ist aber die Formel Regiomontans. Letzterer hat seine Kenntnis dieser Formel jedenfalls aus arabischer Quelle erhalten. Denn Alkasâdî giebt genau seine Anweisung.** Es ist daher gar nicht

^{*} Vergleiche meinen Aufsatz in Heft 4 dieses Jahrgangs, S. 113-120.

^{**} Günther, Die Quadratischen Irrationalitäten der Alten und ihre Entwickelungsmethoden. (Abhandl. zur Gesch. der Mathem. IV) S. 45.

nötig, wie Günther annimmt,* dass Alkasâdî seine Formel durch Aufwickelung des Kettenbruchs:

$$\sqrt{a^2+b} \sim a + \frac{b}{2a} + \frac{b}{2a} + \frac{b}{2a} = a + \frac{4a^2b+b^2}{8a^2+4ab}$$

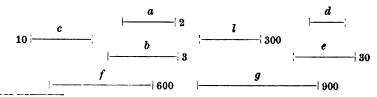
gefunden hat. Auch der Zweifel, welchen derselbe Gelehrte ausspricht, es hätten die Griechen gefundene Näherungswerte nicht wieder bei Wiederholung derselben Näherungsrechnung benutzt, ist hinfällig; Heron hat so gethan und, seinem Vorbilde folgend, Regiomontan. Von Interesse dürfte wohl die schulgemässe Anordnung der gefundenen Resultate sein, sowie bei $\sqrt{8}$ die beiden Formen $2\frac{1}{1}$ und $8\frac{1}{1}$ statt 3 und 9, welche es ermöglichen, auch in diesem Falle die befolgte Methode zur Anwendung zu bringen. An derselben Stelle hat aber Regiomontan auch die Formel aufgestellt und bewiesen, von welcher ich annahm, dass Archimedes bei seinen Quadratwurzeln Gebrauch gemacht habe.

$$\sqrt{\frac{a}{b}} = \frac{1}{bc} \sqrt{abc^2}$$
 und $\sqrt[3]{\frac{a}{b}} = \frac{1}{bc} \sqrt[3]{ab^2c^3}$.

Auch diese beiden Abschnitte erlaube ich mir mitzuteilen. Ohne den Beweis der Richtigkeit findet man sie in fast allen mittelalterlichen Anweisungen zum Rechnen.

2. (Blatt 167'): Radix minutie vulgaris quadrata propinqua, si ipsa minutia non sit quadrata, sic precipitur inveniri. Prepone numeri alium quemcumque, qui quanto maior erit, tanto precisiorem habebis radicem. Quem multiplica per denominatorem minutie date, et productum constitue denominatorem radicis inveniende. Postea numerum prepositum multiplica in se quadrate, et productum in denominatorem minutie proposite, et quod exit, duc in numeratorem eiusdem minutie. Tocius radicem quadratam viciniorem pone pro numeratore radicis.

Racio. Sit minutia proposita $a \cdot b$, numerus prepositus c. Ex c in b fiat e, quem ponemus denominatorem radicis. Ex e in se fiat g. Ex c in se et producto post hoc in b fiat l; ex a in l fiat f: dico primo minutiam $f \cdot g$ esse eandem cum minutia $a \cdot b$ data. Igitur, cum radix g fit e, extrahatur etiam radix de f, que sit e: habebitur radix e minor minutie e b date.



^{*} A. a. O., S. 58.

^{**} A. a. O., S. 83 am Schlusse der Anmerkung.

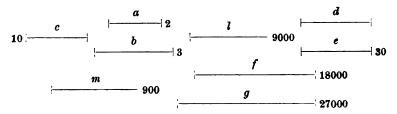
^{***} Vergleiche meinen oben erwähnten Aufsatz in Heft 4 1897.

Quod autem minutia $f \cdot g$ sit eadem cum minutia $a \cdot b$, sic declaratur. Ex a in l fit f ex ypothesi, sed ex b in l fit g, ut probabo: igitur $f \cdot g$ minutia est eadem cum minutia $a \cdot b$. Sed quod ex b in l fiat g, sic ostenditur. Nam ex c numero in b alium fit e, in quam e ducitur tercius, scilicet e, et fit g: igitur g est equale ei, quod producitur altero duorum c et b multiplicato in tociens multiplicem reliqui, quot sunt unitates in tercio, scilicet e, l autem est tociens multiplex ad c, quot sunt unitates in e, quia ex c in c et post in b fit l, quod tantum est, sicut c in b et productum iterum in c multiplicatum: habes igitur propositum.

Eadem racio foret, si numerum prepositum diviserimus in numeratorem, et productum constituerimus numeratorem radicis. Deinde numerum prepositum in se et postea in numeratorem numeri dati et deinde in denominatorem, et producti radicem constituemus denominatorem radicis. Sic extrahere poteris radices vicinas artificialiter quotcumque unitates in numeratore aut denominatore ad placitum constituendo.

- t) Vel. sic. Ex c in se et postea in b tantum est, sicut ex c in b et postea in c. Igitur, ex c in b quia fit e, ex c in e fiet l. Igitur l ad e sicut e ad b, ergo e in se tantum facit, siut b in l: igitur b in l producit g.
- 3. Radix minutie vulgaris cubica propinqua, si ipsa non sit cubica, sic precipitur inveniri. Prepone quodvis numerum, qui, quanto maior erit, tanto precisiorem habebis radicem. Quam multiplica per denominatorem date minutie, productum constituens denominatorem radicis. Deinde numerum prepositum duc in se cubice, et quod provenit, in denominatorem minutie, et quod provenit, iterum in denominatorem minutie, et ultimum productum in numeratorem, et tocius radix cubica propinqua constituatur numerator radicis.

Racio. Sit minutia proposita $a \cdot b$, numerus prepositus c. Ex c in b fiat e; ex e in se cubice fiat g; c autem in se cubice et post in b, et productum in b faciet l, in quod a ductum faciet f: dico, quod minutia $f \cdot g$ sit equalis vel eadem cum minutia $a \cdot b$. Ideo radix cubica de g sit c, sit et d radix cubica de f: erit $d \cdot e$ minutia radix cubica vicina minutie date Si probatur, $|168^r|$ quod ex b in l fiat g, habebitur intentum. e in se faciat m; quia igitur ex c in se cubice et deinde in b et iterum in b tantum fit, sicut ex c in b et deinde in c et postea in b et ultimo in c, ergo c in se cubice et deinde productum in b et iterum productum in b tantum facit sicut c in e et productum in b et ultimum productum in e. Sed c in e et productum in b tantum facit sicut e in id, quod fit ex c in b, hoc est tantum facit sicut e in se: ergo quod fit ex cubo ipsius c in quadratum ipsius b, est equale ei, quod fit ex c in quadratum ipsius e. Igitur ex c in m fit l; sed ex c in b fit e, ergo l ad m sicut e ad b. Igitur, quod fit ex b in l, est equale ei, quod fit ex e in m. Sed ex e in m fit g: igitur ex b in l fit g, quod fuit probandum.



Similis racio esset, si numerum prepositum diviserimus in numeratorem et productum constituemus numeratorem radicis. Deinde numerum prepositum in se cubice, et cubum in quadratum numeratoris fractionis date et productum in denominatorem, et provenientis radicem cubicam viciniorem poneres denominatorem. Sic poteris igitur radices artificialiter extrahere, quidque placet pro numeratore vel denominatore ponendo.

Ausser den oben erwähnten Formeln kennt also Regiomontan auch noch folgende anderen:

$$\sqrt{\frac{a}{b}} = \frac{ac}{\sqrt{abc^2}}$$
 und $\sqrt[3]{\frac{a}{b}} = \frac{ac}{\sqrt[3]{a^3bc^3}}$

Die $\sqrt{10}$ spielt bekanntlich bei den Indern als Näherungswert von π eine wichtige Rolle. Wir finden diesen Wert z.B. in der oben erwähnten Arbeit Peurbachs Tractatus sinuum et chordarum angeführt. Von anderen Beziehungen der Linien am Kreise wird sonst stets unter Angabe der indischen Quelle im Mittelalter die Seite des regulären Siebenecks im Kreise als Hälfte der Seite des regulären Dreiecks bezeichnet. Auch zu dieser Bemerkung findet sich in unserer Handschrift eine Notiz des Regiomontan, welche fast gleichlautend auch bei Jordanus sich erhalten hat. Da sie zugleich eine Näherungsrechnung für die Seiten aller regulärer Vielecke darzustellen behauptet, so lasse ich sie ebenfalls hier folgen, und gebe in Anmerkung die Stelle des Jordanus, welche ihr entspricht.*

4. (Blatt 128'): Philosophi Indorum artem communem et subtilem tradiderunt, qua potuerimus invenire, quantum sit cuiuslibet figure

^{* &}quot;Hec est questio Indorum dicens de inscriptione cuiusvis figurarum equalium laterum cadentis in circulo, et plurimum quidem positionis Indorum non est nisi credulitas sola absque demonstratione et in eo propinquitas, inter quam everitatem non est quantitas sensibilis, et hec est operatio, quam nunc dicam. Duc medietatem diametri in se semper, demum quod aggregatur duc in 18 semper et semper serva aggregatum. Deinde prohice ex numero laterum figure, cuius quantitatem vis extrahere, unum laterum eius semel semper, et accipe medietatem eius, quod remanet, et duc eam in numerum laterum figure et adiunge ad illul, quod aggregatum est, tria semper, et quod egredietur est quadratum lateris Quando ergo sic operatus fueris, super quod exigitur demonstratio, exibit ad hunc numerum. Et scias, quod ipsi ponunt latus eptagoni cadentis in circulo per equalitatem medietatis lateris trianguli cadentis in eo, et non est in manibaeorum super illud demonstratio plus quam inventio: intelligite ergo etc.

poligonie equilatere circulo inscripte latus, et inter artem illorum et Ptolomei non est differentia nisi in latere decagoni. Et est ingenium istorum istud. Multiplica quadratum dyametri circuli per 4 et dimidium, productum serva. Deinde auffer unum a numero laterum talis figure, et reliquum multiplica per medietatem numeri laterum quesite figure et adde 3, et per ipsum, quod provenit, divide servatum, et exeuntis radix erit latus talis figure poligonie equilatere. Ut posita dyametro 60 partium more Sarrazenorum erit quadratum eius 3600, quod multiplicatum per 4 cum dimidio est 16200; serva. Deinde si volo reperire latus trigoni, auffero 1 a lateribus, manent duo; que multiplico per $\frac{3}{2}$, erunt 3; quibus addo 3, sunt 6; per que divido servatum, et provenit 2700, quorum radix quadrata est latus trigoni posita dyametro 60 pedum. Item volo reperire latus eptagoni. A 7 demo 1, remanent 6; que multiplico per $\frac{7}{2}$, provenient 21; quibus addo 3, sunt 24; per que divido servatum, provenient 675, quorum latus est latus eptagoni, et sic de aliis.

Die sich hieraus ergebende Formel der Inder zur Auffindung einer beliebigen regulären Polygonseite ist also die folgende:

$$s_n = \sqrt{\frac{4\frac{1}{2}d^2}{(n-1)\frac{n}{2}+3}} = \frac{3d}{\sqrt{n(n-1)+6}} = \frac{6r}{\sqrt{n(n-1)+6}}.$$

Für n = 3; 4; 6 ergeben sich daraus die genau richtigen Formeln:

$$s_8 = r \cdot \sqrt{3}; \quad s_4 = r\sqrt{2}; \quad s_6 = r.$$

Für s_7 aber erhält man $\frac{r}{2}\sqrt{3}$, das heisst genau die Hälfte der Dreieckseite, und damit ist die Entstehung dieses Näherungswertes wohl klargelegt. Es ist ja auch $675 = \frac{2700}{4}$. Während sich zunächst die Frage aufdrängt, woher haben die Inder den Faktor $4\frac{1}{2}$ hergenommen, kommt die viel wichtigere hinzu, auf welchem Wege Regiomontan zur Kenntnis der obigen Formel gelangt sein wird. Dass er Jordanus de triangulis gekannt hat, ist möglich, jedoch ist die Darstellung bei diesen abweichend: es bleibt wohl die einfachste Antwort, er habe sie in Italien aus arabischer Überlieferung kennen gelernt, vielleicht gleichzeitig mit der Formel Heron-Alkasadî für die Quadratwurzelausziehung. Regiomontan kannte aber auch die falschen Inhaltsformeln für die regulären Polygone, welche eigentlich die Polygonalzahlen geben, die aber im ganzen Mittelalter von den Gromatikern an stets für die oder neben den wirklichen Werten gebraucht wurden. Er ist sich aber ihrer Unrichtigkeit bewusst und beweist dieselbe in einem konkreten Falle. Die betreffende Notiz lautet:

5. (Blatt 131'): Pentagoni equilateri aream reperire. Duc unum latus in se et productum in ternarium, et a summa unum latus aufferatur; residui medietas est area quesita.

Exagoni autem lateris unius quadratum ducatur quater et a summa latus unum bis aufferatur, et residui medietas est ipsa area. Eptagoni vero quadratum lateris unius ducatur quinquies, et a summa ipsum latus unum ter dematur, et remanentis medietas est, quod queritur; et sic in aliis secundum naturalem ordinem numerorum.

Adverte, quod hec rationes debiles sunt in geometria. Veritatem enim certitudinis eius habent tantum in arismetricis, ut dicit Boetius de trigono hisopleuro, quod unum latus per se multiplicatur, et producto quantitas unius lateris adiungatur, et summe medietas erit arca talis trigoni, quod tantum certitudinem habet in arismetricis de numero triangulari, nisi velles etiam capere pedes non quadratos superficiales, sed partes pedum pro integris. Patet, quod non sic, de exagono. Ponamus enim exagonum equilaterum circulo inscriptum. Hic resolubilis est in sex trigonos equilateros ductis lineis a centro circuli ad omnes angulos exagoni. Inveniemus igitur quantitatem unius trigoni talis. Pono, quod latus unum sit 4 pedum, tunc medietas unius erit duorum. Erit igitur kathetus talis trigoni radix de 12, que ducta per 2 erit radix de 48, et tanta est area unius sex triangulorum. Et erit area exagoni talis 41 fere. Secundum autem modum Boetii exagonus talis esset 28 pedum tantum.

Man sieht, Regiomontan führt hier genau die nämlichen Gründe für die Unrichtigkeit an, wie sie in dem bekannten Briefe Gerberts an Adelbold enthalten sind.*

Zum Schlusse noch die Bemerkung, dass die Behauptung Dr. Nagls, dass erst mit dem Anfange des XVI. Jahrhunderts die Form X für vier durch die jetzt gebräuchliche 4 verdrängt sei, nur für Deutschland, und auch für dieses nur teilweise, richtig ist. Regiomontan schreibt z. B. nie anders als 4, und habe ich in in Süddeutschland geschriebenen und auf italienische Beziehungen hinweisenden Handschriften sehr häufig die letztere Form und fast nie die erstere gefunden. Das bleibt freilich richtig: Der Gebrauch der Form X hört mit dem XVI. Jahrhundert absolut auf. Handschriften mit dieser Form müssen also spätestens im XV. Jahrhundert entstanden sein. Der umgekehrte Schluss aber ist unrichtig.

^{*} Vergleiche die Ausgabe in den Oeuvres de Gerbert ed Olleris p. 477-478.

** Dr. A. Nagl, Über eine Algorismusschrift des XII. Jahrhunderts (Zeitschrift für Mathematik, 34., Hist.-litt. Abt.) S. 134-135.

Thorn, 1. Juli 1897.

Rezensionen.

Magnetismus und Hypnotismus. (Elektrotechnische Bibliothek. Band 35. Zweite Auflage.) Eine Darstellung dieses Gebietes mit besonderer Berücksichtigung der Beziehungen zwischen dem mineralischen Magnetismus, dem sogenannten tierischen Magnetismus und dem Hypnotismus. Von G. W. Gessmann. Mit 53 Abbildungen und 19 Tafeln. Zweite revidierte und ergänzte Auflage. Wien, Pest, Leipzig 1895. A. Hartlebens Verlag. 205 Seiten. Preis Mk. 3.

Dem in drei Hauptstücke eingeteilten Buche geht eine orientierende Einleitung voraus, in welcher die Wandlung des Hypnotismus hervorgehoben wird, welche dieser seit dem Auftreten Hansens durchgemacht hat. dem ersten Hauptstück wird der Einfluss des mineralischen Magnetismus auf den menschlichen Körper besprochen, was den Anlass zu einem geschichtlichen Überblick giebt. In dem zweiten Hauptstück wird zunächst die Frage: "Wer ist hypnotisierbar?" gelöst, und sodann erläutert, weshalb die sogenannten Hypnoskope, d.h. diejenigen Instrumente, welche die leicht zu hypnotisierenden Individuen ermitteln lassen, nicht in allen Fällen mit Sicherheit zu gebrauchen sind. Nach Mitteilung der verschiedenen Methoden, um Hypnotismus zu erzeugen, wird eine Einteilung der Hypnose hinsichtlich der verschiedenartigen Erscheinungen aufgestellt. Das dritte Hauptstück kommt bei der Beobachtung der Bewegungserscheinungen zu dem Schluss, dass im wesentlichen drei verschiedene Zustände zu unterscheiden sind. Sodann werden die Beobachtungen erwähnt, die durch den hypnotischen Zustand an den fünf Sinnen wahrgenommen worden sind. Den Schluss bilden die äusserst rätselhaften Phänomene des Somnambulismus. - Das Buch hat das reiche Material der Beobachtungen auf diesem wunderbaren Gebiete des Hypnotismus systematisch geordnet, wobei namentlich die Wahrnehmungen solcher Personen eingehend angeführt sind, welche dem ärztlichen Berufe angehören. Auf diese Weise ist der Schein des Schwindelhaften ferngehalten. Das Buch mag jedem, der sich für den Hypnotismus interessiert, bestens empfohlen sein, zumal durch die Angabe der Litteratur das Quellenstudium erleichtert wird. B. NEBEL.

Nicola Teslas Untersuchungen über Mehrphasenströme und über Wechselströme hoher Spannung und Frequenz. Mit besonderer Berücksichtigung seiner Arbeiten auf den Gebieten der Mehrphasenstrommotoren und der Hochspannungsbeleuchtung, zusammengestellt von Thomas Commerford Martin. Autorisierte deutsche Ausgabe von

H. Maser. Mit 313 Abbildungen. Halle 1895. Verlag von Wilhelm Knapp. 508 Seiten.

Seitdem die ganz eigenartigen Licht- und sonstigen Erscheinungen Teslas, welche ihre Entstehung Wechselströmen von hoher Spannung und hoher Frequenz verdanken, in Deutschland bekannt und nachgemacht worden sind, ist auch von deutscher Seite aus den Arbeiten dieses genialen Mannes ein reges Interesse entgegengebracht worden. Seine Ideen bilden das Fundament, auf welchem eine wesentliche Vereinfachung der praktischen Elektrotechnik in Zukunft aufgebaut werden wird. Der Wechselstrom, welcher ursprünglich der Bogenlichtbeleuchtung den Eingang verschafft hat, später aber gänzlich vernachlässigt worden ist, ist nun wieder zur Herrschaft gelangt. - Jeder Elektrotechniker hat daher ein grosses Interesse, die gesamte Thätigkeit Teslas, wie sie in dem vorliegenden Buche geschildert ist, eingehend studieren zu können; denn diese Arbeiten bilden die Basis für die künftige Entwickelung der Elektrotechnik. Durch die eigentümliche Wahrnehmung, dass die Ströme hoher Frequenz dem menschlichen Körper keineswegs schädlich sind, während diejenigen niederer Frequenz direkt das Leben gefährden, wird auch das Interesse des Physikers, des Mediziners und insbesondere des Physiologen geweckt. Das Buch zerfällt in drei Abschnitte. Der erste behandelt in 24 Kapiteln die Mehrphasenströme und ihre Verwendung in der Elektrotechnik, wobei die Eigentümlichkeiten der einzelnen Motoren je nach ihrer Konstruktion erläutert werden. In dem zweiten Abschnitt werden die drei Vorträge mitgeteilt, welche Tesla über die von ihm entdeckten Erscheinungen bei Strömen von hoher Frequenz und hoher Spannung gehalten hat. Der dritte Abschnitt umfasst verschiedene sonstige Erfindungen und Schriften Teslas. Als Anhang ist der vierte Abschnitt zu betrachten, welcher Teslas erste Phasenmotoren und seinen mechanischen und elektrischen Oscillator zum Gegenstand hat. Das Buch sei namentlich denjenigen bestens empfohlen, welche auf diesem Gebiet forschend weiter zu arbeiten beabsichtigen. Dem Inhalt und Druck des Buches entsprechend möge der Verleger bei einer Neuauflage der Herstellung sorgfältigerer Figuren seine Aufmerksamkeit zuwenden; denn das jetzige Machwerk ist dieses Buches keineswegs würdig. B. NEBEL.

A treatise on the measurement of electrical resistance by William Arthur Price. Oxford 1894. At the Clarendon press. 199 Seiten. Preis 14.

Wie die Gewichtsbestimmung in der Chemie, die Winkelbestimmung in der Geodäsie eine Hauptrolle spielt, so ist bei den elektrischen Messungen die Widerstandsbestimmung die wichtigste. Längeres Arbeiten auf diesem Gebiete veranlasste den Verfasser, eine systematische Zusammenstellung der gebräuchlichen Widerstandsmeßmethoden herauszugeben, wobei jedesmal angegeben wird, unter welchen Umständen der eine oder der andere Apparat vorzuziehen ist. Dabei ist auch darauf hingewiesen, wie sehr sich die

elektrische Widerstandsbestimmung der reinsten Metalle zu thermometrischen Zwecken eignet, da die Angaben bis zu dem absoluten Nullpunkt der Temperatur reichen. Bei einem solchen Spezialwerk wäre es doch wünschenswert gewesen, wenn der Verfasser die Litteratur vollständiger benützt hätte, insbesondere vermissen wir die Durchsicht der deutschen Litteratur, in welcher sich die Arbeiten von Frölich, Heinrich Weber, der Physikalischtechnischen Reichsanstalt u. s. w. befinden. Die wenigen deutschen Forschernamen verdankt der Verfasser zum Teil dem Umstand, dass die betreffenden Herren entweder in England Vorträge hielten, z. B. Lindeck über Manganin, oder in englischen Zeitschriften publizierten. Der internationale Charakter der Wissenschaft wird auf die oben angegebene Weise nicht gewahrt. In Deutschland wird sehr darauf gesehen, dass neben der einheimischen Litteratur auch die fremde gebührend berücksichtigt wird.

Magnetische Beobachtungen an der deutschen Bucht der Nordsee, angestellt im Jahre 1894 von A. Schück, Hamburg, und Elemente des Erdmagnetismus an festen Stationen Europas in den Jahren 1885, 1890 und 1893 von A. Schück. Hamburg 1895. Selbstverlag des Verfassers. 22 Seiten.

Die Beobachtungen an der deutschen Bucht der Nordsee hat Verfasser mit Unterstützung zahlreicher Hamburger Firmen ausgeführt. Den zweiten Teil bildet eine Zusammenstellung der sogenannten Elemente des Erdmagnetismus nach neueren Beobachtungen an festen Stationen Europas. Der Zweck dieser Beobachtungen hat wesentlich nautischen Charakter.

B. Nebel.

Die Lehre von der Elektrizität und deren praktische Verwendung. Von Th. Schwartze. Mit 153 in den Text gedruckten Abbildungen. Leipzig 1895. Verlag von J. J. Weber. 548 Seiten. Preis Mk. 10.

Durch die bahnbrechenden experimentellen Arbeiten von Hertz hat die elektro-magnetische Lichttheorie sich allenthalben Bahn gebrochen, weshalb ein jeder das Gefühl hat, dass künftighin die Darstellungsweise in der Physik eine wesentliche Änderung gegenüber der bisherigen erfahren müsse. Der Verfasser hat in dem vorliegenden Werk einen Versuch gemacht, die bisherigen Anschauungen in eine neue umzugestalten. Dieses Übergangswerk geht zunächst von den dem absoluten Maßsystem zu Grunde liegenden Grössen, der Masse, der Länge und der Zeit aus und zeigt, in welcher Form die physikalischen Grössen auftreten, wenn man nur eine Grösse, die Kraft, als Ausgangspunkt der daraus abzuleitenden physikalischen Maße aufstellt. Um über das Neue und Ungewohnte dieser Behandlungsweise leichter hinwegzukommen, behandelt der Verfasser zunächst die allgemeinen physikalischen Grundprinzipien und geht erst dann zu den elektrischen und magnetischen Vorgängen über. Die dritte Abteilung "Elektrotechnisches" umfaßt die elektrischen Meßmethoden nebst den dazu gehörigen Instrumenten. - Je mehr Mitarbeiter bei dieser Umwälzung

gewonnen werden, um so kürzer wird das immer unangenehme Übergangsstadium werden. Es ist daher der Verbreitung dieses Buches Vorschub zu leisten. — Namen sind nicht zu verdeutschen, auch kann man es nicht "offiziell" nennen, wenn jemand seine Liebhaberei, Amper statt Ampère zu setzen, entgegen einer internationalen Verständigung bei seinen Untergebenen einführt. Was würde denn der Verfasser sagen, wenn in englischen Werken "Om" statt "Ohm", in französischen "Wat" statt "Watt" stünde, d. h. wenn jeder sein Steckenpferd reiten wollte? Übrigens käme man mit der weiteren Verdeutschung auch auf recht zweideutige Ausdrücke, z. B. das verdeutschte, abgekürzte Coulomb. Im Interesse der Allgemeinheit hat sich jeder der international angenommenen Bezeichnungen zu bedienen und auf seine Lokalwünsche Verzicht zu leisten.

Elektrizität und Licht. Einführung in die messende Elektrizitätslehre und Photometrie. Von O. Lehmann. Mit 220 Holzstichen und 3 Tafeln. Braunschweig 1895. Verlag von Friedrich Vieweg & Sohn. 390 Seiten. Preis 7 M.

Der physikalische Unterricht wird erst fruchtbringend, wenn auch die quantitative Behandlung des Stoffes zu ihrem Recht kommt. Dies ist der Grund, weshalb von vielen die Experimentalphysik in wesentlich anderer Art, als dies früher der Fall war, vorgetragen wird. In der Mechanik war auch früher die quantitative Seite hervorgetreten, sobald aber die Lehre vom Magnetismus und der Elektrizität an die Reihe kam, trat sie nur noch rudimentär auf. Mit Einführung des absoluten Maßsystems war der erste Schritt zur Besserung angebahnt. Der Zweck dieses Buches ist, den Schüler schon frühzeitig mit den elektrischen und magnetischen Messungen vertraut zu machen, wobei alles Überstüssige hinweggelassen worden ist, und nur die praktische Nutzanwendung ausschlaggebend war. Das Buch verdankt seine Entstehung der Herausgabe der sechsten Auflage von Fricks physikalischer Technik durch den Verfasser, in welcher es auch teilweise zum Abdruck kam. Daß sich der Verfasser streng an die in der Praxis als bewährt gefundenen Apparate hält, giebt sich speziell in der Photometrie deutlich zu erkennen zum Unterschied gegenüber einigen neueren Lehrbüchern der Physik, in welchen die Verfasser sich von ihren Jugenderinnerungen nicht trennen können und dabei die heutige Photometrie, wie sie in der Praxis gehandhabt wird, ganz übergehen. Das Buch wird sich infolgedessen rasch einbürgern und kann nur bestens empfohlen werden. - Bei einer Neuauflage möchte die Verlagsbuchhandlung durch eine andere Wahl des Papieres das Durchschlagen des Drucks von der Rückseite vermeiden. B. NEBEL.

Dr. J. Fricks Physikalische Technik speziell Anleitung zur Ausführung physikalischer Demonstrationen und zur Herstellung von physikalischen Demonstrationsapparaten mit möglichst einfachen Mitteln. Sechste, umgearbeitete und vermehrte Auflage. Von Otto Lehmann.

In zwei Bänden. Zweiter Band. Mit 1016 eingedruckten Holzstichen und 3 Tafeln. Braunschweig 1895. Verlag von Friedrich Vieweg & Sohn. 1054 Seiten. Preis 20 M.

Mit diesem zweiten Band ist ein Werk zum Abschluss gekommen, welches für Lehrer und Schüler an Hoch- und Mittelschulen von ungeheurem Werte ist. Die Physik ist kein Unterhaltungsmittel mehr, sondern eine Wissenschaft, deren jüngstes Kind, die Elektrotechnik, den Nutzen in Mark und Pfennig auszurechnen gestattet. Will man die Physik richtig erfassen, so genügt es nicht, sich Experimente vormachen zu lassen, sondern selbst Hand anzulegen; erst dann lernt man, mit welchen Schwierigkeiten das Gelingen eines Experimentes verbunden ist, und von welchen Kleinigkeiten sein Zustandekommen abhängt. Die praktische Thätigkeit lehrt alle Einzelheiten, selbst die unscheinbarsten, zu berücksichtigen, schärft somit die Geistesarbeit in angeregter Weise, da Einseitigkeit vollkommen ausgeschlossen ist. Diese Neubearbeitung von Fricks Physikalischer Technik hätte von niemand besser durchgeführt werden können, als von dem in allen praktischen Arbeiten durchaus erfahrenen Verfasser. Es ist eine wahre Freude, nach diesem Buche zu arbeiten, weil es in seiner beratenden Weise alle Umstände sorgfältig berücksichtigt, damit der Experimentator Herr der Situation und unabhängig von dem Zufall wird. Alles, was sich nicht bewährt hat und was heute nicht mehr im Gebrauch ist, ist als überflüssiger Ballast ausgeschieden. - Der reiche Inhalt dieses zweiten Bandes umfasst die Elektrizität, den Magnetismus, die Optik und die Akustik. Das Buch empfiehlt sich von selbst und wird dies durch seine weite Verbreitung beweisen. Die Verlagsbuchhandlung möge bei einer Neuauflage berücksichtigen, dass das Durchschlagen des Druckes von der Rückseite vermieden wird, und dass ein Teil der Figuren auf ihre Reinheit geprüft wird.

B. NEBEL.

Wilhelm Olbers, sein Leben und seine Werke. Im Auftrage der Nachkommen herausgegeben von C. Schilling. Erster Band: Gesammelte Werke. Mit dem Bildnis Wilhelm Olbers'. Berlin 1894. Verlag von Julius Springer. 704 Seiten. Preis 16 M.

Es ist ein schöner Zug unserer auch in der Wissenschaft hastig dahineilenden Zeit, dass sie sich ihrer grossen Bahnbrecher mit Stolz erinnert und bestrebt ist, durch Herausgabe ihrer, zum Teil sehr zerstreuten Werke den heutigen Forschern das Quellenstudium zu erleichtern. Nach dem Erscheinen der Werke von Faraday, Gauss, Wilhelm Weber, Ohm ist es mit Freuden zu begrüßsen, dass die Nachkommen Olbers auch dessen Werke gesammelt der Nachwelt überliefern. Olbers' Verdienst auf dem Gebiete der Astronomie war namentlich für Bessel von bahnbrechender Natur. Gleichzeitig wird jeder Leser den Eindruck erhalten, dass Olbers eine ganz bedeutende Arbeitskraft besass, um sich neben seinem ärztlichen Beruf so erfolgreich dem gestirnten Himmel widmen zu können. — Der vorliegende erste Band des auf drei Bände berechneten Werkes enthält

Olbers' Thätigkeit als Astronom. Der zweite Band soll den Briefwechsel zwischen Gauss und Olbers bringen, soweit er zur Entwickelung der Wissenschaft beiträgt, während der dritte Band durch die Veröffentlichung zahlreicher Briefe zwischen Olbers und seinen Zeitgenossen ein getreues Bild von Olbers und seinem wissenschaftlichen, sowie privaten Leben geben soll. Sowohl Astronomen als auch Freunde der Astronomie werden sicherlich mit grossem Interesse der Herausgabe dieses Werkes folgen, da es in vieler Hinsicht von grossem Nutzen ist.

B. Nebell.

Astronomische Chronologie. Ein Hilfsbuch für Historiker, Archäologen und Astronomen. Von Walter F. Wislicenus. Leipzig 1895. Verlag von B. G. Teubner. 163 Seiten.

In erster Linie ist das vorliegende Buch für Historiker und Archäologen bestimmt, sodann soll es aber auch dem Astronomen als ein weiteres Hilfsmittel dienen. Um nun dem Nichtastronomen den Gebrauch desselben zu erleichtern, werden in dem ersten Teil die astronomischen Grundbegriffe erläutert, die zum Verständnis der in dem zweiten Teil enthaltenen Berechnungsmethoden erforderlich sind. Diese letzteren sind in übersichtlicher Weise zusammengestellt und deren Handhabung an praktischen Beispielen durchgeführt, wodurch die Benützung ungemein erleichtert wird. Alle, welche auf diesem Grenzgebiet der Astronomie, Geschichtsforschung und Altertumskunde arbeiten, werden dieses Hilfsbuch mit Freuden begrüssen, da es die oft zeitraubende Thätigkeit wesentlich abzukürzen vermag. Die äussere Ausstattung des Buches lässt nichts zu wünschen übrig.

B. NEBEL.

Mathematische Vorschule der Atronomie in Bezug auf die scheinbare Bewegung des Fixsternhimmels. Eine pädagogische Skizze. Mit 18 Figuren auf 3 Tafeln. Von Adalbert Breuer. Wien 1895. Im Selbstverlage des Verfassers. 24 Seiten. Preis 60 Kr. — 1 M.

Vorliegendes Büchelchen enthält eine Studie des Verfassers, wie er glaubt, dass die mathematische Astronomie in den Mittelschulen behandelt werden soll. Zunächst sagt er selbst, dass der Stoff dasjenige Unterrichtsmaß weit überschreite, welches daselbst innegehalten werden soll, indessen beabsichtige er zunächst, den Lehrer mit seiner Idee der Behandlung vertraut zu machen. Die Vorteile der von dem Verfasser angegebenen Methode sollen darin beruhen, dass sie von der sphärischen Trigonometrie vollständig unabhängig ist und doch dieselben mathematischen Formeln wie die letztere liefert. Ob diese Methode vorteilhaft ist, wird wohl vielfach bezweifelt werden, natürlich ist sie jedenfalls nicht.

B. Nebel.

Astronomische Beobachtungen und Resultate aus den Jahren 1893 und 1894. Neue Beiträge zur Begründung einer modernen Selenographie und Selenologie, gesammelt auf seiner Privatsternwarte zu

Kaiserslautern von Phil. Fauth. II. Mit einem Atlas, enthaltend 25 topographische Spezialkarten des Mondes in Lichtdruck. Leipzig 1895. Verlag von Johann Ambrosius Barth (Arthur Meiner). 66 Seiten 4°. Preis 15 M.

Die unter erschwerenden Umständen mit grossem Fleiss hergestellten Mondkarten sind in grösserem Maßstab durchgeführt, als dies zur Zeit der Fall ist. Verfasser war bestrebt, alle Einzelheiten, die er beobachten konnte, aufzunehmen, um den Wert der Karten hinsichtlich der Beurteilung etwaiger Veränderungen auf dem Mond zu erhöhen. Wenn auch zunächst ein scharfer Gegner die vermeintlichen Früchte einer emsigen Thätigkeit als wertlos bezeichnet, so wirkt das nicht gerade erhebend, gleichwohl wird der Erfolg nicht ausbleiben, sofern das Streben, das wirklich Beobachtete der Wahrheit gemäss festzuhalten, nicht erlahmt. Um das Unterlaufen von Irrtümern auszuschliessen, würde sich die Annäherung an vorurteilslose Männer der Astronomie empfehlen. Die Polemik macht erbittert und stört die Gemütsruhe, welche bei scharfen Beobachtungen unerlässlich ist. Schon die Gewinnung eines anerkannt tüchtigen Verlegers muss doch ermunternd wirken.

B. NEBEL.

Die tiefen Temperaturen, ihre künstliche Erzeugung, ihre Einwirkung auf Tiere, Pflanzen, Mikroorganismen, chemische Prozesse, physikalische Vorgänge etc., sowie ihre Anwendung in der Industrie. Nach den neuesten Untersuchungen bearbeitet für Chemiker, Physiker, Mediziner, Bakteriologen, Lehrer der Naturwissenschaften, sowie für sämtliche Interessenten der Kälteindustrie. Von Adolf Welter. Crefeld 1895. Verlag von J. Greven. 84 Seiten.

Die vorliegende, Professor Pictet gewidmete Brochüre verdankt ihre Entstehung zwei Vorträgen des Verfassers. Ausgehend von den Methoden und den Instrumenten zur Messung tiefer Temperaturen werden die drei Arten der künstlichen Erzeugung tiefer Temperaturen eingehend behandelt, nämlich durch Auflösen fester Körper, durch freiwillige Verdampfung von Flüssigkeiten und durch Expansion gasförmiger Körper. Ungemein interessant sind die Versuche, welche grösstenteils von Pictet und seinem Berliner Laboratorium herrühren. Bei - 125° hört z. B. jede chemische Reaktion auf; auch in physikalischer Hinsicht ist der Einfluss tiefer Temperaturen sehr bemerkenswert, so zeigen die Metalle wider Erwarten eine viel grössere Zähigkeit und Festigkeit. Den Schluss bilden die Untersuchungen bei Tieren und Pflanzen, die namentlich bei den kaltblütigen Tieren schon äusserlich sehr frappant sind, während bei den warmblütigen sogar Heilversuche festgestellt wurden. - Wegen der knappen, inhaltsreichen Darstellung wird diese Brochüre für jeden Freund der naturwissenschaftlichen Forschung, der die Litteratur nicht selbst verfolgen kann, ebenso wertvoll sein, wie für den auf diesem Gebiet arbeitenden Gelehrten wegen der zahlreichen Litteraturhinweise. B. NEBEL.

Maggi. Principii della teoria matematica del movimento dei corpi. Corso di meccanica razionale. Milano. Stoepli. 1896. XI u. 503. 8°.

Das vorliegende Lehrbuch der Mechanik ist besonders ausgezeichnet durch eine originelle und sehr sorgfältige Behandlung der Grundbegriffe der Mechanik, die Referent deshalb zunächst etwas ausführlicher darlegen möchte.

Statt wie gewöhnlich mit dem materiellen Punkt und den Kräften zwischen materiellen Punkten zu beginnen, stellt Maggi an die Spitze Hypothesen über die materiellen Figuren. Materielle Figuren sind begrenzte, mit Materie erfüllte Teile des Raums, die hypothetisch mit denjenigen Eigenschaften begabt sind, die wir den homogen mit Masse erfüllten Körpern zuschreiben. Um sie aufzuzählen, wollen wir als mittlere Beschleuni-

gung einer materiellen Figur den Vector $\frac{1}{\tau} \int \varrho d\tau$ definieren, wo τ das Volum der Figur, $d\tau$ ein Volumelement, ϱ die Beschleunigung in einem Punkte dieses Elements ist, und das Integral sich über die ganze Figur erstreckt. Es sollen dann folgende Gesetze gelten:

- 1) Sind F_1 und F_3 zwei materielle Figuren, ϱ_1 und ϱ_3 die mittleren Beschleunigungen, wenn die beiden Figuren miteinander isoliert sind, so ist für jede Zeit $\varrho_1 = -q_{13} \, \varrho_3$, wo q_{13} eine von der Zeit unabhängige positive Konstante sein soll, die nur von den beiden Figuren abhängt.
- 2) Hat man drei materielle Figuren, F_1 , F_2 , F_3 , liefern F_1 und F_3 isoliert die Konstante q_{13} , F_2 und F_3 isoliert die Konstante q_{23} , so liefern F_1 und F_2 isoliert die Konstante q_{15}/q_{23} . Diese Eigenschaft erlaubt jeder materiellen Figur eine bestimmte, mit der Zeit nicht veränderliche Masse beizulegen, und, wenn m_1 , m_3 die Massen von F_1 und F_3 sind, die Eigenschaft 1) zu schreiben $m_1 \varrho_1 = -m_3 \varrho_3$.
- 3) Hat eine materielle Figur F mit andern $F_1, F_2 \ldots$ der Reihe nach isoliert die mittleren Beschleunigungen $\varrho_1, \varrho_2, \ldots$ so hat sie die mittlere Beschleunigung $\varrho_1 + \varrho_2 + \cdots$, wenn sie mit allen isoliert ist.
- 4) Jeder Teil einer materiellen Figur ist wieder eine materielle Figur.

Aus diesen Annahmen folgt, dass die Masse dem Volumen einer materiellen Figur proportional ist, womit sich der Begriff der Dichte ergiebt. Die Begriffe der mittleren Beschleunigung und der Masse sind leicht auszudehnen auf Systeme von materiellen Figuren und dabei zeigt sich, dass die Eigenschaften 2) und 3) für solche Systeme ebenfalls gelten, selbst wenn deren Glieder verschiedene Dichten haben.

Nun wird die Annahme gemacht, dass die natürlichen Körper sich verhalten entweder wie ein System von materiellen Figuren, oder wie die Grenze, der sich ein solches System nähert, wenn die einzelnen Figuren unendlich klein werden. Nach dem früheren kann man dann von der mittleren Beschleunigung eines natürlichen Körpers sprechen, von seiner Masse, und von der Dichte in einem seiner Punkte. Das Parallelogrammgesetz wird ergänzt durch die Annahme, dass, wenn zwei miteinander isolierte natürliche Körper sich in ihrem natürlichen Zustande befinder.

oder mit mehreren physikalischen Agentien beladen sind (Schwere, Elektrizität u. s. w.), die mittlere Beschleunigung eines jeden Körpers sich berechnet als die Summe der mittleren Beschleunigungen, welche die natürlichen Zustände oder diese Agentien einzeln hervorbringen würden.

Ist nun in einem Punkte eines Körpers ϱ die Beschleunigung, k die Dichte, so heisst der Vektor $k\varrho$ in entgegengesetzter Richtung genommen, also — $k\varrho$, die spezifische Trägheitskraft im betreffenden Punkte und $\int \varrho k d\tau$ die bewegende Kraft des Körpers. Für die bewegenden Krafte von zwei isolierten Körpern ergiebt sich aus den Hypothesen und Theoremen das Gesetz, dass sie entgegengesetzt gleich sind; und bei einem Körper, der mit mehreren andern isoliert ist, folgt für die bewegende Kraft das Parallelogrammgesetz.

Sind zwei Körper, die sich im natürlichen oder einem bestimmten physikalischen Zustand befinden, isoliert, ist die bewegende Kraft des einen durch den Vektor r gegeben, und sind m, m' die beiden Massen, so nähert sich, wie als Postulat angenommen wird, $\frac{r}{mm'}$ einer bestimmten Grenze ϱ , wenn die beiden Körper sich auf ihre Schwerpunkte zusammenziehen. Lässt man diesen Punkten die beliebigen Massen μ , μ' entsprechen, so heisst $\mu\mu'\varrho$ die Elementarkraft, welche dem gegebenen physikalischen Agens zukommt und an einem der gegebenen Punkte wirkt. Die bewegende Kraft eines Körpers, der mit einem oder mehreren andern isoliert ist, drückt sich dann durch ein Integral von der Form $\int kRd\tau$ aus, das sich über den Körper erstreckt. Der Vektor R, der die beschleunigende Kraft in einem Punkte heisst, erscheint selbst als die Summe von zwei Integralen von Elementarkräften, von denen das eine sich auf den Körper selbst, das andere auf die übrigen Körper bezieht. Die Bewegungsgleichungen für einen einzelnen Punkt eines Körpers lassen sich dann aufstellen. Als zweites Postulat für die Elementarkraft wird angenommen, dass sie eine symmetrische Funktion der beiden Punkte ist, zwischen denen sie wirkt, und dass sie in die Richtung der Verbindungslinie fällt. Damit ergeben sich die sechs Bewegungsgleichungen, die aussagen, dass die Trägheitswiderstände den ausseren Kräften das Gleichgewicht halten würden, wenn der Körper starr wäre. Der Ausdruck materieller Punkt kommt nur hier und da als eine Abkürzung vor, die nirgend wesentlich ist.

Wenn man um einen Punkt eines Körpers herum ein unendlich kleines Stück herausschneidet, und dann die beschleunigende Kraft berechnet, die der übrige Körper auf jenen Punkt ausübt, bei Annahme einer bestimmten Elementarkraft, so ist die so berechnete Kraft die innere beschleunigende Grenzkraft, die jener Elementarkraft entspricht. Diese so definierte Kraft liefert bei jeder starren Bewegung des Körpers die Arbeit Null. Die im Innern eines Körpers herrschenden Drucke werden dann, genau wie in Kirchhoffs Mechanik, eingeführt durch die Bedingung, dass, für jeden

Teil des Körpers, die auf seine Oberfläche wirkenden Drucke, die inneren Grenzkräfte und die Trägheitskräfte sich das Gleichgewicht halten sollen, wenn der betrachtete Teil als starr angesehen wird.

Hiermit haben wir gezeigt, wie Maggi die Schwierigkeiten behandelt, die in den Grundbegriffen der Mechanik liegen. Die Strenge und Klarheit, die damit erreicht ist, hat freilich den pädagogischen Nachteil, dass man eine Reihe von trockenen Ausführungen durchmachen muss, bevor man im stande ist, einfache Aufgaben der Natur zu behandeln. Das Maggische Buch dürfte sich hiernach mehr für solche Studierende eignen, die einen weniger strengen Kursus der Mechanik schon absolviert haben.

Die Ausführungen der Theorie in Kinematik und Dynamik sind nicht wesentlich von denen anderer Lehrbücher, besonders von denen in Kirchhoffs Mechanik, verschieden. Nach einer kurzen mathematischen Einleitung wird auf etwa 100 Seiten die Kinematik mit den Unterabteilungen: Verrückungen (ohne Beziehung auf die Zeit), Bewegung (mit Rücksicht auf die Zeit), Geschwindigkeit, Beschleunigung behandelt. Die übrigen 340 Seiten sind der Dynamik gewidmet, deren erster Teil die Kapitel Masse und Kraft, allgemeine Eigenschaften der Bewegung, Schwere enthält, während der zweite die freien festen Körper, die Druckkräfte, die gefesselten festen Körper und die veränderlichen Körper betrachtet. Wie man sieht, bezieht sich der Hauptteil des Buches auf die festen Körper; doch sind die Grundgleichungen der Hydrodynamik und Elastizitätstheorie aufgestellt und auf eine Reihe von Aufgaben angewendet.

Die sehr sorgfältige und präzise Darstellung ist naturgemäss ziemlich ausführlich, und dementsprechend ist die Zahl der behandelten speziellen Aufgaben nicht so gross wie in anderen Lehrbüchern. Hervorzuheben ist noch die Aufmerksamkeit auf die Dimensionen der eingeführten Begriffe und dann vor allem eine Strenge der mathematischen Behandlung, wie ich sie bis jetzt in keinem Lehrbuche gefunden habe. Die Ausstattung des Buches nach Druck und Papier ist sehr gut.

J. Lüroth.

Naturphilosophie als exakte Wissenschaft. Mit besonderer Berücksichtigung der mathematischen Physik. Von O. Schmitz-Dumont. Mit vier Figurentafeln. Verlag von Duncker & Humblot. Leipzig 1895. Preis Mk. 12.

Wie schon aus dem Titel hervorgeht, behandelt dieses Werk nur zum Teil mathematische Gebiete. Seine Entstehung verdankt es allerdings geometrischen Betrachtungen, nämlich einer erkenntnistheoretischen Prüfung der Axiome. Was dasselbe von allen anderen Werken über diesen Gegenstand unterscheiden soll, ist die Behauptung, dass der Verfasser ohne jede Hypothesenbildung nicht nur in der Mathematik, sondern auch auf allen anderen Gebieten auskommen will, sodass z. B. der gewöhnlichen Mechanik eine logische Mechanik gegenübergestellt wird.

Der erste erkenntnistheoretische Abschnitt ist Topik der Begriffe benannt. "Darunter wird eine solche eindeutige Bestimmung aller im weiteren vorkommenden Begriffe verstanden, dass hinsichtlich der Bedeutung eines jeden einzelnen derselben ebensowenig eine Frage übrig bleibt, wie hinsichtlich aller Verhältnisse zwischen ihnen. Es wird hiermit für das allgemeine Begriffsgebiet die Aufgabe gestellt, welche beispielsweise für räumliche Gestaltungen durch die Grundbestimmungen der Geometrie als gelöst betrachtet werden kann. Sowie durch diese aus wenigen Bausteinen ein geschlossenes System aufgeführt wird, in welchem ein jedes räumliche Gebilde jedem anderen gegenüber bestimmt dasteht, so soll die Topik das Gleiche für das allgemeine Wissensgebiet leisten." Als Ausgangspunkt soll ein möglichst unbezweifelbarer Satz an die Spitze des Systems gestellt werden. Derselbe lautet: "Aussagen werden gemacht", oder "Es wird gesprochen". Hieraus wird geschlossen, dass allgemein eine formale Gliederung nach Subjekt und Objekt stattfinden muss. Diese Gliederung wird in den nächsten Abschnitten, in welchen einige Grundbegriffe der Erkenntnistheorie erklärt werden, durchzuführen versucht, so wird die Empfindung beispielsweise subjektiv als Gefühl, objektiv als Sinneseindruck bezeichnet. Das Denken ist die Thätigkeit, welche die Anordnung zwischen Subjekt und Objekt herstellt und die dem Empfinden eine Form giebt.

Auf dem logischen Gebiet ist das bestimmende Prinzip der Gegensatz. Das Setzen eines Begriffes erfordert gleichzeitig das Unterscheiden von allen übrigen. Es werden nun zwei Arten von Gegensatz unterschieden, der ausschliessende und der totale. Der ausschliessende tritt dann ein, wenn ein Begriff nur in zwei Unterbegriffe zerfällt: "Wenn die beiden Glieder des ausschliessenden Gegensatzes die weitere spezifische Bestimmung erhalten, dass sie durch Verbindung ihren beiderseitigen Inhalt aufheben, so wird ihr Verhältnis zu einander der aufhebende, volle, totale Gegensatz genannt." Dieser Begriff wird auch auf solche Fälle übertragen, in welcher der Gegensatz nicht ein rein logischer ist, sondern das gegenseitige Aufheben nur durch die Erfahrung gegeben wird. Nach ausschliessenden und totalen Gegensätzen soll die ganze Gliederung der Logik erfolgen. Das Mittel zur Erweiterung des Materials der Begriffe ist die logische Synthese, d.h. die Verbindung mehrerer Begriffe zu einem neuen und zwar werden hier zwei Formen unterschieden, die formale und die materiale Synthese. Die formale Synthese besteht in einer einfachen Aneinanderfügung der einzelnen Begriffe, wobei diese aber ihre Selbständigkeit behalten. Ein Beispiel hierfür bietet die Beschreibung eines Körpers durch Aufzählung seiner Eigenschaften. Die materiale Synthese ist die Verbindung zweier Begriffe zu einem vollständig neuen; auf welche Art eine solche Verbindung zu stande kommt und was für verschiedene Formen hierbei möglich sind, wird für ganz gleichgültig erklärt, weshalb auch eine Untersuchung über die verschiedenen Urteilsformen für überflüssig gehalten wird. Der Wert dieser Aufstellungen wird bei Besprechung des mathematischen Teiles zur Erscheinung kommen.

Die materiale Synthese wird durch die Formel $A=(a\cdot b)$, die formale durch A=(a+b) bezeichnet, wobei die Klammern zum Zeichen der Synthese dienen. Diese Zeichen sind deshalb gewählt, weil der formalen Synthese in der Mathematik die Addition, der materialen die Multiplikation entsprechen soll. Aus diesen Formeln sollen die elementaren Begriffe des Denkens abgeleitet werden und zwar ist das erste Paar, welches hieraus erhalten wird "Verschiedenheit — Dieselbigkeit." Der Synthese wird die Analyse oder Beziehungssetzung gegenübergestellt, und diese entweder durch die Form: $a=A-b \quad \text{oder} \quad a=\frac{A}{b}$

bezeichnet. Die abgeleiteten Kategorien, von denen je zwei unter einem Oberbegriff stehen, sind folgende:

Oberbegriffe:	1	Unterbegriffe:
1. Reiner Denkakt,		Setzung - Beziehung,
2. Vergleichung,		Gleiches - Ungleiches,
3. Zahl,		Einzelnes - Vieles,
4. Maß,		Teil - Ganzes,
5. Gegenstand.		Inhalt — Form.

Auf diesen logischen Prinzipien soll nunmehr die gesamte Mathematik gegründet werden. Zunächst wird die mathematische Analysis behandelt. Ihren Ausgangspunkt bildet der Grössenbegriff. Die Grösse wird definiert als ein Ganzes von vielen gleichen Teilen. Es stecken in diesem Begriff die Kategorien: "Dieselbigkeit, Teilheit, Ganzheit, Vielheit." "Wird bei der Grösse von der qualitativen Bestimmung (Dieselbigkeit der gleichen Teile) abstrahiert, so ist jeder Teil ganz abstrakt als Einzelheit gesetzt (Einheit der Arithmetiker) und eine Vielheit solcher Einzelnen bildet die natürliche oder ganze Zahl." Die Sicherheit der Rechnungsoperationen beruht darauf. dass in denselben die logische Thätigkeit — die Bildung formaler und materialer Synthese — mit dem Zahl- resp. Grössenbegriff verbunden wird. "Die Vorzeichen sind Symbole für die Bildungsart der Synthese - Analyse. ob vorwärts oder rückwärts +, - für die formale, X, : für die materiale Synthese." Dementsprechend will der Verfasser auch nichts von negativen und irrationalen Grössen wissen. Es handelt sich nur um Operationszeichen, welche eine Anweisung geben, gewisse Thätigkeiten an den Grössendingen auszuüben. Überhaupt soll der Grössenbegriff nicht zur einzigen Grundlage der Mathematik genommen werden, um den logischen Schwierigkeiten, welche sich z.B. bei der Betrachtung imaginärer Potenzen ergeben, zu entgehen.

Neben der quantitativen auf Grössenbegriffen beruhenden soll eine qualitative Analyse eingeführt werden, welche auf der materialen Synthese beruht. Die Wahl des Grössenbegriffes als Grundlage ergiebt sich, wie der Verfasser selbst zugiebt, aus der Bestimmtheit der dadurch erhaltenen Definitionen; es wird also darauf ankommen, ob es gelingen wird, für die qualitative Betrachtungsweise dieselbe Bestimmtheit zu erlangen. Hierzu

soll der Verhältnisbegriff dienen, und eine Zahl als Verhältnis zu der Einheit definiert werden. Um auf diese Weise die Multiplikation unabhängig von der Addition abzuleiten, sagt er: x = 3.5 heisst: eine x genannte Bestimmung soll gefunden werden, welche in sich die Eigenschaften der 3 und der 5 vereinigt." Eine solche Zahl zu finden ist aber in Wirklichkeit nicht möglich, denn was ist mit dem unbestimmten Worte die Eigenschaften der 3 gesagt. Es giebt ausser 3 keine Zahl, welche alle Eigenschaften der 3 in sich vereinigt. Was der Verfasser meint, ist ja leicht zu verstehen, die Zahl soll durch 3 und durch 5 und eben nur durch diese beiden teilbar sein. Diese Teilbarkeit soll durch den Verhältnisbegriff definiert werden, wobei aber der allgemein-logische Begriff Verhältnis = Beziehung mit dem mathematischen Verhältnis = Quotient verwechselt wird. Die Vieldeutigkeit eines Wortes hat also hier zu einem Irrtum Veranlassung gegeben. ist dies um so wunderbarer, als der Verfasser selbst oft vor solchen Fehlern warnt, die durch den Gebrauch von vieldeutigen Worten entstehen. Als Berechtigung für diese Betrachtungsweise wird auch darauf hingewiesen, dass ohne dieselbe physikalische Formeln, in denen verschiedenartige Grössen sich in einer Gleichung befinden, nicht verständlich wären; in Wirklichkeit handelt es sich auch hier nur um Vergleichungen von Zahlengrössen. Auf diese qualitative Analyse und das derselben zu Grunde liegende Schema soll auch die Potenzierung und deren Umkehrung zurückgeführt werden. Die Allgemeinform $A = (a \cdot b)$ geht in die Spezialform $A = a^b$ über und liefert als solche die drei Bestimmungen $A = a^b$ als Potenzausdruck, $a = \sqrt[b]{A}$ als Wurzel, $b = \log A$ als Logarithmus. Weil in dem logischen Schema nur zwei Operationen vorhanden sind, darum soll die Potenzierung nur eine eigentliche Umkehrung die Radizierung besitzen. Das Logarithmieren ist keine Rechenoperation, sondern der Logarithmus ist nur eine Stellziffer. Dieser Irrtum rührt von der gewählten Symbolik her. Es wird durch diese eine Verwechslung der logischen Analyse und der Umkehrung einer mathematischen Rechnungsart herbeigeführt. Die logische Analyse zerlegt ein Zusammengesetztes in seine einzelnen Bestandteile, die umgekehrte Rechnungsart ist dagegen eine neue Synthese; es soll eben zwischen den Ausdrücken A und b eine Verbindung hergestellt werden, die bestimmten Anforderungen entspricht, und es liegt gar kein Grund vor, die eine der beiden möglichen Verbindungen zu bevorzugen.

Für die imaginäre Grösse will der Verfasser eine neue Ableitungsweise geben, weil, wie er sagt, die Grössenlehre den Ausdruck $\sqrt{-1}$ in keiner Weise verständlich machen kann. Die logische Berechtigung der Einführung der imaginären Grösse kann hier ununtersucht bleiben, es kommt nur darauf an, ob der Verfasser an Stelle des von ihm Verworfenen etwas Besseres zu bieten vermag. Er geht von dem Begriff des Gegensatzes aus und zwar soll dieser Begriff mit dem anderen Begriff Gradreihe verbunden werden. Es soll eine Abstufung zwischen dem totalen Gegensatz:

$$\left(\frac{+1}{-1}\right)^1$$
 und $\left(\frac{+1}{-1}\right)^0$

der Aufhebung jenes Gegensatzes gebildet werden und als Gesetz der Abstufung dieses Gegensatzes wird die natürliche Zahlenreihe gewählt, sodass die eingeschobenen Glieder die Form:

$$\left(\frac{+1}{-1}\right)^{\frac{1}{n}}, \quad \left(\frac{+1}{-1}\right)^{\frac{2}{n}}\cdots$$

erhalten. Man kann unmöglich behaupten, dass auf diese Weise eine klare und brauchbare Definition der imaginären Grösse gegeben ist. quem macht sich der Verfasser das Problem der Gleichungen. Er erklärt es einfach für sinnlos, von Gleichungen ohne Wurzeln zu reden, und darin liegt der logische Beweis, dass jede Gleichung eine Wurzel hat. wenn man sich auf diesen Standpunkt stellt, bleibt es doch ein berechtigtes Verlangen des Mathematikers, zu wissen, ob eine Gleichung, die in einem bestimmten Problem auftritt, zu den sogenannten sinnlosen oder vernünftigen gehört, und weil man dieses aus dem logischen Beweise nicht ersehen kann, so macht derselbe die mathematischen Wurzelbeweise keineswegs überflüssig. Eingehender werden die Gleichungen von der Form $x^m = B$ behandelt. Zur Kennzeichnung des Verfahrens wollen wir den Beweis, dass diese Gleichung m Wurzeln hat, etwas ausführlicher angeben. "Das x muss eine Bedeutung der Form a + bi haben, wenn jenes eine Gleichung sein soll; also x = a + bi, kürzer $x \pm \alpha = 0$, ist das elementare Glied, aus dem jedwede andere x enthaltende Gleichung hervorgehen muss. Sodann muss das x^m aus x durch irgend welche Operationen entstanden gedacht werden können, anderenfalls würde dem x^m jede mögliche Bedeutsamkeit abgesprochen werden müssen. Es giebt nun keine andere Möglichkeit, das x^m aus x zu erzeugen, als durch m-fache Multiplikation des x mit sich selbst. Demnach besteht jede Gleichung der Form $x^m = B$ oder $x^m - B = 0$ aus m Faktoren der Form $x \pm \alpha$, in welchen x überall dieselbe Bedeutung hat, während der Wert von α in jedem Faktor ein anderer sein kann; denn diese Verschiedenheit der Werte von a verhindert ja nicht, dass schliesslich ein x'" zu stande kommt."

Ebenso wird von diesem Standpunkte aus die Entwickelbarkeit jeder Funktion leicht bewiesen, denn andere Funktionen werden einfach für sinnlos erklärt. Bei der Ableitung der Differentialrechnung soll die Einführung von unendlich kleinen Grössen vermieden werden. Dieselbe soll vielmehr aus einem allgemeinen Prinzip hergeleitet werden. "Eine jede algebraische Form, sei sie nun entstanden durch Verbindung sogenannter Grössen mit Vorzeichen oder trete sie auf in weiteren Kombinationen als Summe, Differenz, Produkt, Quotient, Potenz oder sonstiges funktionales Verhältnis, giebt ausser ihrem möglichen quantitativen Werte als Zahl oder benannte Grösse auch eine spezifische Eigenschaft dieser Form an. Die systematische Auffindung und Klassifizierung dieser qualitativen Verschiedenheiten ist die eigentliche Aufgabe der Rechnung mit veränderlichen

Grössen, die von der Infinitesimalmethode unbewusst verfolgt wird." "Es handelt sich also darum, die gegenseitig bedingte Veränderung von y und x in den gewohnten Symbolen der Analysis so darzustellen, dass ihr Verhältnis zu einander als eine spezifische Eigenschaft, Charakter des Gebildes A, erscheine, und zwar in einer Form, die dem Algorithmus angepasst werden kann, sodass jene Eigenschaften zu benannten Grössen, Anzahlen von Einheiten bestimmter Qualität werden, als welche sie auch der quantitativen Vergleichung zugänglich sind." Die Ableitung wird nun nicht allgemein gegeben, sondern die Form $y=x^m$ zu Grunde gelegt und zur Verdeutlichung die entsprechende Kurve zu Hilfe genommen. Diese Gleichung soll nicht wie gewöhnlich die Kurve darstellen, sondern das von der Kurve und den Koordinaten begrenzte Flächenstück.

Bei dem Versuche, den Differentialquotienten abzuleiten, kommt der Verfasser auf die schon besprochene qualitative Analyse zurück. Wie schon gesagt, ist es ihm nicht gelungen, den Begriff des Quotienten unabhängig von dem Grössenbegriff zu definieren. Dasselbe trifft auch in Bezug auf den Differentialquotienten zu. Zur Erklärung dieser qualitativen Betrachtungsweise werden Eigenschaften der Kurve herangezogen, ohne dass aber eine strenge Ableitung derselben, unabhängig von Grössenbegriffen, gegeben wird. In der Integralrechnung soll die Auffassung des Integrals als eine Summe von unendlich vielen Gliedern vermieden werden. Es wird hervorgehoben, dass die Gleichung y = f(x) selbst ein Flächenstück darstellt, daraus geht aber noch nicht hervor, weshalb $\int f(x) dx$ den Inhalt der Kurve y = f(x) darstellt.

"In der Geometrie soll gezeigt werden, dass der Raumbegriff und die Grundbegriffe für Konstruktionen im Raume nicht nominal, sondern sachlich (den Inhalt der Begriffe darlegend) definiert werden können, sodass. die wesentlichen Bestimmungen der Geometrie ebensogut wie die der Analysis aus dem einen allem Denken zu Grunde liegenden Satze ableitbar werden." Zunächst wird eine logische Definition des Begriffs Richtung gegeben. Als Gegensatz zu dem Begriff "diskret" wird der des "stetigen" aufgestellt, welcher aus der Empfindung besonders aus dem zeitlichen Verlauf der Vorstellungen abgeleitet wird. "Eine beliebige Anzahl in diskursiver Reihe zusammengestellter Setzungen (a, b, c, d...) heisst Punktreihe, wenn sie diskret, Linienreihe, wenn sie stetig gedacht werden soll," wobei es fraglich ist, wie man mit dem Vorhergehenden eine kontinuierliche Reihe vereinbaren kann. "Sind die Beziehungen zwischen allen aufeinander folgenden Elementen einander gleich, a:b=b:c=c:d...dann sind auch die Beziehungen a:b=a:c=a:d, denn die Grösse des Intervalls hat keinen Einfluss auf die Art der Beziehung, weil Grösse und Beziehung qualitativ verschiedene Begriffe sind. Diesen Fall, dass ein und dieselbe Beziehungsart alle Elemente der Reihe verbindet, benennt man gerade Reihe resp. gerade Linie." Die anfangs aufgestellte Behauptung ist insofern unklar, weil keine Definition der Beziehung gegeben wird, die unabhängig von der Grösse des Intervalls sein soll, was doch nicht bei

jeder Beziehung der Fall ist, und ausserdem ist dieselbe nicht im stande, eine Vorstellung der geraden Linie zu geben. Es werden nunmehr die von einem Punkt ausgehenden Richtungen untersucht, welche mit einer gegebenen den gleichen Richtungsunterschied haben. Es soll hierbei von der Raumanschauung ganz abgesehen werden und die Eigenschaften rein logisch aus dem Begriff einer Vielheit von Reihen mit gemeinsamen Ausgangspunkt entwickelt werden. Die Raumanschauung soll nur zur Verdeutlichung zu Hilfe genommen werden; das ist aber immerhin gefährlich, wenn eben geometrische Sätze unabhängig von derselben abgeleitet werden sollen. Der Richtungsunterschied, welchen die verschiedenen Linien zu der gegebenen haben, wird entsprechend der neuen Definition der imaginären

Grösse mit $(-1)^{\frac{1}{n}}$ bezeichnet. Der Verfasser beweist nun, dass der Unterschied zweier solcher Richtungen nicht grösser als $(-1)^{\frac{2}{n}}$ sein kann und zwar auf folgende Weise: " $A\alpha:A\beta$ kann nie grösser werden als $(-1)^{\frac{2}{n}}$, denn dies Verhältnis muss der Bedingung:

$$A\alpha:A\alpha=A\alpha:A\beta=(-1)^{\frac{1}{n}}$$

genügen, d. h. in Bezug auf Aa die Summe $(-1)^{\frac{1}{n}}$ geben", und hieraus wird geschlossen, "dass zu jedem Richtungsunterschiede eine unbegrenzte Anzahl von verschiedenen Richtungen denkbar ist, die geometrisch dargestellt Kegelflächen bilden, deren gemeinsame Spitze in A liegt; dass demnach alle denkmöglichen Richtungen von einem gemeinsamen Ausgangspunkte bestimmt werden durch Linien, welche die Punkte einer Kugelfläche mit deren Zentrum verbinden." Man sieht, welch' hervorragenden Anteil die Anschauung bei dieser Beweisführung hat. Es sollen nunmehr eine Reihe von geometrischen Axiomen aus den Definitionen abgeleitet werden

- 1. "Die gerade Linie, die Bezeichnung einer Vielheit von Setzungen, deren Beziehungsart konstant bleibt, weshalb es die kürzeste sein soll." Welcher logische Zusammenhang besteht zwischen konstanter Beziehung und kürzester Strecke?
- 2. "Die Ebene, d. h. das Gebilde, bestimmt durch den unmittelbaren Übergang einer Richtung in die andere, sodass drei beliebige Richtungen $A\alpha$, $A\beta$, $A\gamma$ stets der Bedingung genügen $\frac{A\alpha}{A\beta} + \frac{A\beta}{A\gamma} = \frac{A\alpha}{A\gamma}$."
- 3. "Die geschlossene Figur, d. h. vollständige Begrenzung eines Bereiches von Setzungen durch Linien. Eine solche Begrenzung ist nur möglich, wenn die begrenzenden Linien alle in der Ebene vorhandenen Richtungsunterschiede durchlaufen; deshalb besteht eine Figur mindestens aus drei geraden Linien, mit einer inneren Winkelsumme gleich dem Richtungsunterschiede des Totalgegensatzes. Dies ist der Beweis von der Summe der Dreieckswinkel = 2R, der nicht einmal des Parallelenbegriffs bedarf." Selbst wenn man diesen Argumentationen heistimmen würde, so

würde doch höchstens daraus folgen, dass die Winkelsumme mindestens 2R ist; es wäre aber nicht ausgeschlossen, dass sie 4R oder ein anderes beliebiges Vielfaches von 2R sei.

4. "Der Raum, d. h. die allseitige unbeschränkte Ausgedehntheit." Dieser Raum ist nicht eine beliebige ausgedehnte Mannigfaltigkeit, sondern "durch die Einführung des Totalgegensatzes sind die Richtungsreihen als eine spezifisch gestaltete Art solcher Mannigfaltigkeiten bestimmt. Diese spezifische Art der Beziehungen zwischen den Einzelsetzungen unserer Mannigfaltigkeit hat zur Folge, dass in ihr nur drei Richtungen zu einander

den Richtungsunterschied $(-1)^{\frac{1}{2}}$ haben können, der Raum also in einem Punkte nur drei zu einander senkrechte Linien zulässt."

Sehr charakteristisch für die Ableitung geometrischer Sätze aus den logischen Grundprinzipien ist der Beweis von der Ausdrückbarkeit eines Flächeninhalts durch das Produkt zweier Längen. "Da das Gebilde F ein einheitliches sein muss, nicht aus verschiedenartigen Teilen zusammengesetzt ist — in welchem Falle es der Bildungsweise $(a \cdot b)$ widersprechend eine formale Synthese wäre — so muss an jeder Stelle von F sowohl die Bestimmung a wie die von b anzutreffen sein; an jeder von einem Punkte des a bestimmten F muss das ganze b, und an jedem von einem Punkte des b bestimmten F das ganze a vorhanden sein. F ist demnach ein Flächenintegral."

Die Absicht des Verfassers besteht darin, "den Raum, nicht wie bisher, als ein Gegebenes hinzunehmen, etwa wie ein Ding der Erfahrung, sondern als eindeutigen Begriff allseitiger Ausdehnung festzustellen," und hieraus seine Eigenschaften abzuleiten. Das Vorstehende wird wohl zur Genüge die Vergeblichkeit dieses Versuches gezeigt haben. Übrigens versteht es sich bei dieser Anschauungsweise von selbst, dass für metamathematische Spekulationen kein Raum ist.

Dasselbe Prinzip wie in der Geometrie wird auch in der Mechanik verfolgt, auch sie soll auf rein logischer Grundlage aufgebaut werden ohne Zuhilfenahme von Hypothesen. Deshalb kann sich der Verfasser nicht mit der Annahme verschiedener aus der Erfahrung entstandener Kräfte einverstanden erklären, noch weniger damit, dass man Axiome über dieselben aufstellt, wie z. B. das Kräfteparallelogramm. Sätze wie das Trägheitsgesetz und derjenige von der Erhaltung der Kraft sollen nicht aus der Erfahrung stammen, sondern werden als Denknotwendigkeit hingestellt. Der Kraftbegriff selbst wird aus der unmittelbar im Bewusstsein gegebenen Willenskraft abgeleitet und zunächst die Berechtigung bestritten, diesen Begriff auf tote Körper zu übertragen. Um die Mechanik zu einer ebenso rein deduktiven Disziplin wie die Geometrie zu gestalten, dürfen keine Elemente eingeführt werden, die nicht ebenso eindeutig bestimmt werden können wie die der Geometrie. Nicht Stoffe und Kräfte, sondern Zeit und Masse sind dafür am geeignetsten. Zur Erreichung einer vollständigen mathematischen Bestimmtheit ist die Zugrundelegung eines Systems von Punkten erforderlich.

Die Aufgabe der logischen Mechanik besteht darin, jeden Punkt des Systems mit jedem anderen in funktionale Verbindung zu setzen. Wenn überhaupt ein Kausalzusammenhang stattfinden soll, so muss die Anzahl der Punkte konstant sein, woraus dann allerdings ohne hinreichenden Grund geschlossen wird, dass auch die Summe aller auftretenden Veränderungen konstant sein muss.

"Alles was im Punktsystem geschehen kann, sind Veränderungen der Bewegungszustände und der Lage seiner Punkte." Zur Ableitung der Gesetze wird von einem System von zwei Punkten ausgegangen. rein logisch eine Beziehung zwischen der Geschwindigkeit und der Entfernung abgeleitet werden. Dafür, dass man die Leistung der Geschwindigkeit = v^2 setzt, wird folgendes angegeben: "Die doppelte Geschwindigkeit durchmisst die doppelte Raumstrecke in der gleichen Zeit der einfachen Geschwindigkeit, leistet das Doppelte in Bezug auf Ortsveränderung. schwindigkeiten sind aber nicht allein zu vergleichen nach dem, was sie thun, sondern wie sie es thun. Dasselbe Pensum in der halben Zeit vollendet ist eine doppelte Leistung. Die doppelte Strecke mit der doppelten Geschwindigkeit zurückgelegt ist demnach die vierfache Leistung." Die zweite Leistung der Geschwindigkeit folgt logisch aus der ersten; es ist deshalb kein Grund vorhanden, dieselbe bei der Aufstellung eines Maßes besonders zu berücksichtigen. Auch die Begründung dafür, dass 1 als Maß der Gestaltsveränderung angenommen wird, ist nicht unbedingt überzeugend. "Bei der arithmetischen Auswertung der Gestalt, Bestimmung der Bedeutung einer Gestalt im mechanischen System nach einer Raumstreckeneinheit, hat man zu beachten, dass eine solche feste Streckeneinheit in jedem System eine andere Bedeutung hat, wenn die Gestalt sich um diese konstante Grösse ändert. In dem System (a, b, 10) bewirkt die Veränderung 1 eine Veränderung der Gestalt um ein Zehntel, im System (a, b, 5) die gleich grosse Streckeneinheit eine solche um ein Fünftel." Gemäss der vorerwähnten Behauptung, dass die Summe aller Veränderungen konstant ist, wird nun hieraus die Formel abgeleitet:

$$K=\frac{1}{r}+v^2,$$

die nach dem vorher Gesagten nicht als bewiesen betrachtet werden kann. Die Einführung von Kräften kann der Verfasser nicht entbehren. Aus der Formel $K=\frac{1}{r}+v^2$ wird geschlossen, dass, wenn die Geschwindigkeit grösser wird, auch die Entfernung sich vergrössert, also die Kräfte abstossend wirken. Am schärfsten kommt die Ansicht des Verfassers in folgendem Ausspruch zur Erscheinung. "Die Aufstellung der Bewegungsgleichungen ist eine Konstruktion des Denkens, und zwar die einzig mögliche zur Herstellung einer allgemeinen Norm, die tauglich ist, Bewegungserscheinungen zu vergleichen, zu messen, allgemein zu beurteilen. Wir haben keine Furcht, dass je einmal eine Erfahrung gemacht werde, welche nicht dieser logischen Norm sich anbequemt."

Auf der hier entwickelten Grundlage soll nun eine Theorie der gesamten Physik aufgebaut werden. Wenn dieselbe, wie aus dem Vorhergehenden folgt, nicht den Anspruch der absoluten Gewissheit erheben darf, sondern sich mit dem Titel der von dem Verfasser so sehr verabscheuten Hypothese begnügen muss, so würde sie ja darum noch nichts von ihrem Werte verlieren. Näher auf dieselbe einzugehen unterlassen wir deshalb, weil es an einer genügend mathematischen Beweisführung fehlt. Wenn sich nach dem Wunsche des Verfassers noch Generationen von Mathematikern mit der Ausarbeitung der Einzelheiten beschäftigen sollen, so müssen zunächst die Grundlagen unzweifelhaft festgelegt werden.

Der übrige Teil des Buches ist der Erörterung rein philosophischer Fragen gewidmet und fällt deshalb nicht in den Rahmen dieser Zeitschrift.

MAX MEYER.

Was ist Raum, Zeit, Bewegung, Masse? Was ist die Erscheinungswelt? Von Julius von Olivier. Verlag von Louis Finsterlin. München 1895.

Die Einleitung der Arbeit bildet eine Bemerkung über die richtige Auslegung von Gleichungen, in welcher mit Recht hervorgehoben wird, dass bei allen Gleichungen zwischen ungleichartigen Grössen es sich nur um die Vergleichung von Zahlengrössen handelt. Hierauf folgt eine Darstellung einiger Sätze der Mechanik, welche die Wirkung der Anziehungskraft zur Grundlage nimmt. Den Ausgang bildet die Anziehung zweier Atome, welche als Anziehungselement bezeichnet wird. Wenn auch diese Abhandlung populär gehalten sein soll, und man daher an die Strenge der Beweise nicht zu grosse Anforderungen stellen darf, so hätten doch fehlerhafte und direkt irreführende Ausdrucksweisen vermieden werden können. So bemerkt der Verfasser: "Die Geschwindigkeit steht zur lebendigen Kraft in einem ähnlichen Verhältnisse wie eine Linie zu einem Körper." Es folgen Betrachtungen über die Bewegung der Planeten, Weltentstehung und Weltuntergang, bei denen der Phantasie grosser Spielraum gegeben ist. Nach einigen Bemerkungen über die Wirkung des Äthers und über das Prinzip von der Erhaltung der Kraft wird nun versucht, von den im Titel angegebenen Begriffen Erklärungen zu geben. In erster Linie steht der Begriff der Bewegung, seine Erklärung lautet: "Jede Veränderung der Kraft, in welcher Form sie auch auftreten mag, heisst Bewegung." Als eine wirkliche Definition kann man das wohl kaum bezeichnen, denn eine solche ist ohne Zuhilfenahme der Raumvorstellungen nicht zu geben. Hiermit hängt auch die von dem Verfasser gegebene Umformung des Beharrungsgesetzes zusammen. "Stehen die Kräfte, welche auf einen Körper wirken, fortlaufend im Gleichgewicht, so verharrt er in dem Zustande, in welchem er sich befindet; ist er in Ruhe, bleibt er in Ruhe, ist er in fortschreitender Bewegung, so ist diese geradlinig gleichförmig." "Das Wort Zeit vertritt die Stelle des unhandlichen Ausdrucks "das Fortschreiten der Bewegungen." Die Raumvorstellung wird in richtiger Weise in ihre zwei Grundelemente

zerlegt, in Entfernung und Richtung. Von der Entfernung wird aber im Grunde genommen weiter nichts gesagt, als dass sie eine Teilvorstellung der Kraft ist. Ebenso wird der Richtungsunterschied als Form der Wirkung mehrerer Kräfte definiert. Der Begriff der freien Kraft wird als Grundbegriff hingestellt. "Sie ist ununterbrochen bestrebt, sich selbst zu verkleinern, die Intensität der Kraft auf Kosten der Wegstrecke zu steigern und die steigende Intensität dieser Veränderung auf die beiden Atome zu übertragen." Ebenso wird die Masse als Quantität der Anziehungskraft erklärt. Das Atom ist ein Kraftzentrum, also jedenfalls als Punkt aufzufassen, trotzdem wird gelegentlich gesagt, dass das Körperatom grösser ist als das Ätheratom. Man sieht also, dass die Definitionen nicht zu streng aufgestellt sind.

Nachdem bis hier versucht wurde, alle Erscheinungen auf die Kraft zurückzuführen, wird sodann darauf hingewiesen, dass Realität nur dem Weltganzen zukomme und dass die vorhin betrachteten Begriffe als Teilvorstellungen keine selbständige Existenz besitzen. Im letzten Abschnitt wird auseinandergesetzt, dass die menschliche Erkenntnis nur auf die Erscheinungswelt beschränkt ist. Der Verfasser verwirft jede Art von Metaphysik und hebt hervor, welches Unheil derartige metaphysische Vorstellungen in Form von religiösen Dogmen angestiftet haben. Mit einer Aufforderung, die Moral einzig auf das Wohl der Menschheit zu begründen, schließt die kleine Schrift.

A Geometrical Treatment of Curves which are Isogonal Conjugate To A Straight Line With Respect To A Triangle. In Two Parts. Part First. By I. J. Schwatt, Ph. D. University of Pennsylvania. Leach, Shewell And Sauborn. Boston, New-York, Chicago.

Zieht man von dem Eckpunkt eines Dreiecks zwei Linien, welche mit der von demselben ausgehenden Winkelhalbierungslinie gleiche Winkel bilden. so werden diese als isogonal konjugiert bezeichnet. Verbindet man einen Punkt mit den Eckpunkten des Dreiecks und construiert die zu diesen Linien konjugierten Strahlen, so schneiden dieselben sich in dem zu ersterem konjugierten Punkte. Die zu einer geraden Linie konjugierten Punkte bilden, da sie die Durchschnitte zweier projektivischer Strahlenbüschel sind. einen Kegelschnitt. Die den umschriebenen Kreisen entsprechenden Punkte liegen im Unendlichen und daraus ergiebt sich, dass die der geraden Linie entsprechende Kurve eine Hyperbel, Parabel oder Ellipse sein muss, je nachdem die Linie den Kreis schneidet, ihn berührt oder mit ihm keinen Punkt gemeinsam hat. Alle diejenigen Hyperbeln, die einem Durchmesser konjugiert sind, sind gleichseitig. Unter den gleichseitigen Hyperbeln unterwirft der Verfasser diejenige einer besonderen Betrachtung, deren konjugierte Linie durch den Punkt geht, dessen Abstände von den Seiten sich wie die Seiten selbst verhalten, und zwar geht diese Untersuchung darauf aus. Punkte aufzufinden, die auf der Hyperbel liegen. Zunächst geht diese

Hyperbel, wie jede einer Geraden konjugierte Kurve, durch die Eckpunkte des Dreiecks; von den ferner auf derselben bestimmten Punkten mögen hier noch der Schwerpunkt und der Durchschnittspunkt der Höhen erwähnt werden. Der Mittelpunkt der Hyperbel liegt auf dem Feuerbachschen Kreise und die Asymptoten sind die Linien, welche die Fusspunkte der Lote von den Endpunkten des zugehörigen Durchmessers auf die Dreiecksseiten verbinden.

Unter den Ellipsen betrachtet der Verfasser diejenigen, die der Polare desjenigen Punktes in Bezug auf den umschriebenen Kreis konjugiert ist, dessen Abstände von den Seiten sich wie diese selbst verhalten. Wenn man die Schwerpunktstransversalen über die Mittelpunkte der Seiten verlängert und auf dieser Verlängerung die Stücke bis zum Schwerpunkte abträgt, so erhält man drei Punkte, die auf der Ellipse liegen. Hieraus folgt, dass der Schwerpunkt des Dreiecks der Mittelpunkt der Ellipse ist. Auch in Bezug auf den vierten Punkt, den die Ellipse mit dem Kreise gemeinschaftlich hat, werden einige Eigenschaften abgeleitet. Die Axen der Ellipse sind parallel den Asymptoten der im ersten Abschnitt behandelten Hyperbel. Den Rest des Buches nehmen Betrachtungen über die Eigenschaften des Dreiecks ein, die im nächsten Hefte zur Ableitung weiterer Eigenschaften der Ellipse benutzt werden sollen. Dieses soll ausserdem die Parabel und einige Kurven höherer Ordnung behandeln.

Exercices Methodiques de Calcul Intégral. Par M. Ed. Brahy. Docteur en Sciences Physiques et Mathématiques, Conducteur Honoraire des Mines, Ancien Professeur d'Athénée. Paris. Gauthier-Villars et fils. 1895.

Der Zweck dieses Buches ist, dem Schüler methodisch geordnete Übungen in der Integralrechnung darzubieten. Es schliesst sich an desselben Verfassers Werk über die Differentialrechnung an. In diesem Fall ist die Erreichung des Zweckes indessen schwieriger, weil die Integralrechnung nicht viel allgemeine Methoden besitzt. Im Anfang jedes Kapitels werden zunächst die für dasselbe notwendigen Lehrsätze kurz zusammengestellt, daran schliessen sich einige ausführlich durchgerechnete Exempel, auf welche sodann die eigentlichen Übungen folgen. Diesen sind überall die Resultate beigefügt und bei schwierigeren Aufgaben auch Andeutungen zu ihrer Lösung gegeben. Im ersten Kapitel werden zunächst die einfachsten Beispiele von Integrationen durch Umkehrung aus der Differentialrechnung bekannter Ausdrücke gegeben; darauf folgen Integrationen durch einfache Transformationen. Das dritte Kapitel bringt die partielle Integration, Kapitel 4 die Integration rationaler Funktionen. Hierbei ist vom methodischen Gesichtspunkt auffällig, dass der Verfasser die Zerlegung der Partialbrüche schon bei der Differentialrechnung behandelt hat, wo sie doch eigentlich keine rechte Verwendung findet. Die nächsten Kapitel bringen die bestimmten Integrale, die Inhaltsberechnung von Kurven und

Flächen. Auch aus dem Gebiet der Differentialgleichungen werden einzelne leicht verständliche Fälle behandelt. Den Schluss des Ganzen bildet die Integration durch Reihen.

MAX MEYER.

Ableitung der verschiedenen Formen der Kurven dritter Ordnung durch Projektion und Klassifikation derselben. II. (Die Kurven vom Geschlechte Null) von Professor Dr. FRIEDRICH KÖLMEL. Beilage zum Programm des Realprogymnasiums Mosbach für das Schuljahr 1894/95. Druck von C. Wagner, Mosbach.

Die dieser Abhandlung zu Grunde liegende Methode haben wir schon bei Besprechung des ersten Heftes auseinandergesetzt. In dem vorliegenden Hefte wird ganz in derselben Weise verfahren. Auch hier muss sich der Leser mit einer Aufzählung von Resultaten begnügen, ohne eine Ableitung derselben zu finden.

MAX MEYER.

H. Bork, Mathematische Hauptsätze für Gymnasien. Zweiter Teil. Pensum des Obergymnasiums (bis zur Reifeprüfung). Leipzig 1896. Dürr. 235 S. Mk. 2.40.

Dem vor Jahresfrist erschienenen ersten Teile dieses Buches, welcher das mathematische Pensum des Untergymnasiums umfasst, folgt dieser abschliessende zweite Teil mit dem Pensum des Obergymnasiums, welcher auch für Realgymnasien als geeigneter Leitfaden hingestellt wird.

Das Buch behandelt in fünf Abschnitten Planimetrie, Arithmetik, die Trigonometrie, die Stereometrie und schliesst mit einer Einleitung in die analytische Geometrie der Ebene.

Die Planimetrie enthält Hauptsätze aus der sogenannten neueren Geometrie, wie sie sich schon in den bekannteren Lehrbüchern vorfinden.

In dem einleitenden Kapitel der Arithmetik scheint dem Referenten nicht genügend scharf hervorgehoben, was Definition und was Gegenstand des Beweises ist. So spricht der Verfasser von einem Lehrsatze $a^0=1$. Der zweite Abschnitt bringt den Moivreschen Satz, den binomischen Lehrsatz für gebrochene Exponenten und Gleichungen von höherem als dem zweiten Grade. Dagegen vermisst Referent ein Kapitel über die — beim praktischen Rechnen doch vornehmlich zur Anwendung kommende — numerische Auflösung von Gleichungen.

Der trigononometrische Abschnitt schliesst mit der Pothenotschen Aufgabe. Was die Additionstheoreme angeht, so werden sie in bekannter Weise unter Benutzung des Ptolemäischen Lehrsatzes hergeleitet. Referent hat schon mehrfach Veranlassung genommen, diesen schwerfälligen Weg, der den identischen Charakter jener Formeln verdeckt, als ungeeignet zu kennzeichnen.

Der vierte Abschnitt muss als wohlgelungen bezeichnet werden. Das Prinzip des Cavaleri wird da, wo es benutzt wird, auch bewiesen. Hervor-

gehoben zu werden verdient: ferner die Betrachtung über Vielflache sowie die Korrektheit der stereometrischen Figuren.

Das Buch soll als einziges Schulbuch für den mathematischen Unterricht den Schülern in die Hände gegeben werden. Nach der Ansicht des Verfassers ist eine gedruckte Aufgabensammlung entbehrlich. Demgemäss sind nur die "Fundamental-Aufgaben" in das Lehrbuch aufgenommen.

E. JAHNKE.

H. HARTL, Übungsbuch für den Unterricht in der allgemeinen Arithmetik und Algebra an Werkmeisterschulen, Baugewerkenschulen und verwandten Lehranstalten. Ausgabe für Deutschland. Leipzig und Wien 1896. F. Deuticke. 160 S.

Diese Aufgabensammlung, welche dem lehrplanmässigen Umfange des Algebraunterrichts an Werkmeister- und Baugewerkenschulen entsprechen soll, unterscheidet sich von den bekannten Sammlungen nur durch den geringeren äusseren Umfang. Von den praktischen Beispielen, auf welche besonderes Gewicht gelegt wird, sind wenige neu.

Ein Anhang enthält die Resultate zu den Aufgaben. E. JAHNKE.

TH. SPIEKER, Lehrbuch der ebenen und sphärischen Trigonometrie mit Übungsaufgaben und einer kurzen Einleitung in die sphärische Astronomie für höhere Lehranstalten. Dritte verbesserte Auflage. Potsdam 1895. A. Stein. 156 S.

Die dritte Auflage dieses vortrefflichen Lehrbuches unterscheidet sich von der vorhergehenden einmal dadurch, dass das an sich schon reichliche Übungsmaterial um einiges vermehrt worden ist, zweitens durch einen Anhang, wo die wichtigsten Begriffe und Ausdrücke der sphärischen Astronomie erklärt werden.

E. Jahnke.

R. Schurig, Katechismus der Algebra. 4. Auflage. Leipzig 1895. J. Weber. 236 S. Mk. 3.

Der Herausgeber der neuen Auflage hat die rein katechetische Form der früheren Auflagen fallen lassen und in der vorliegenden eine recht brauchbare Darstellung des algebraischen Pensums, das bis zur Gleichung dritten Grades bezw. bis zur Zinseszinsrechnung reicht, geliefert. Ganz besonders dürfte sich der Katechismus zum Selbststudium eignen.

E. JAHNKE.

H. Feukner, Arithmetische Aufgaben. Unter besonderer Berücksichtigung von Anwendungen aus dem Gebiete der Geometrie, Physik und Chemie. Pensum der Obersekunda der neunstufigen Anstalten. 2. Auflage. Braunschweig 1895. O. Salle. Mk. 1.

Es ist ein auf Grund der preussischen Lehrpläne vom Januar 1892 etwas umgearbeiteter Auszug aus der 1. Auflage, welche an dieser Stelle schon ihre Besprechung gefunden hat.

E. Jahnke.

G. Mahler, Leitfaden für den Anfangsunterricht in der Planimetrie an Gymnasien, Lyceen, Lateinschulen und verwandten Anstalten. Stuttgart 1895. P. Neff. 73 S.

"Der Leitfaden besteht aus zwei Kursen; der erste (Lehre von den Winkeln und Parallelen) enthält das Pensum der fünften, der zweite (Kongruenz der Dreiecke. Lehre vom Viereck) das Pensum der sechsten Klasse eines württembergischen Gymnasiums. Der Umfang eines jeden Kursus ist so bemessen, dass er in etwa 33 Stunden (33 Wochen zu einer Stunde) durchgearbeitet werden kann."

H. Köstler, Leitfaden der ebenen Geometrie für höhere Lehranstalten.
1. Heft. Kongruenz. 4. Auflage Halle 1895. L. Nebert. 66 S. Mk. 1.25.

Der vorliegende erste Teil des aus drei Heften bestehenden Leitfadens der Geometrie enthält den Lehr- und Übungsstoff für die Quarta und Untertertia an Gymnasium und Realgymnasium, bietet aber weder in Form noch in Anordnung bemerkenswert Neues.

E. Jahnke.

Th. Spieker, Lehrbuch der Stereometrie mit Übungsaufgaben für höhere Lehranstalten. Potsdam 1895. A. Stein. 108 S.

Die vorliegende Bearbeitung des stereometrischen Pensums bietet reichen Stoff in knapper Form.

So handelt der fünfte Abschnitt ausser von dem Volumen der Kugel und ihrer Teile von den Figuren auf der Kugelfläche. Ein sechster Abschnitt bringt das Wichtigste über die Wechselschnitte des Cylinders und Kegels. In Abschnitt VII werden die Polyeder berechnet, wobei sich der Verfasser auf ein rechtwinkliges Axenkreuz stützt. Der Anhang giebt eine kurze Anleitung für die Auffindung der Maxima und Minima, erläutert an einigen stereometrischen Beispielen.

Für die Übungen der Schüler sind ferner ausser den üblichen arithmetisch-geometrischen Berechnungsaufgaben von Körpern und Oberflächen stereometrische Konstruktions- und Beweisaufgaben herangezogen. Für beide dieser Übungsfelder ist in den Anhängen ausreichendes Material beigegeben.

Bei der Vergleichung der Volumina der einfachen Körper giebt der Verfasser der Cavalierischen Methode den Vorzug.

Was den Beweis anbetrifft, welchen der Verfasser für den Eulerschen Polyedersatz vorträgt, so würde Referent jenem anderen, weit kürzeren den Vorzug geben, welcher von der Betrachtung ausgeht, dass sich jedes Polyeder aus lauter Tetraedern zusammensetzen lässt.

Zum Schluss sei noch die Richtigkeit und Anschaulichkeit der Figuren hervorgehoben.

E. JAHNKE.

A. Schülke, Vierstellige Logarithmentafeln nebst mathematischen, physikalischen und astronomischen Tabellen. Leipzig 1895. B. G. Teubner. 18 Seiten.

Die vorliegende Tafel soll hauptsächlich den Bedürfnissen des Unterrichts Rechnung tragen. Demgemäss "sind die Logarithmen auf 4 Stellen angegeben; der Grad ist dezimal geteilt; die Proportionalteile und Differenzen sind überall fortgelassen, weil die Angabe derselben leicht zu mechanischem Rechnen führt. Die trigonometrischen Funktionen sind auf 3 bis 5 Stellen angegeben." Den Anforderungen der Hygiene hat der Verfasser besondere Aufmerksamkeit zugewendet. So sind die am meisten gebrauchten Werte— die Zinsfaktoren, die Logarithmen der Zahlen und der trigonometrischen Funktionen — nacheinander auf sechs Seiten streng systematisch geordnet.

G. Holzmüller, Methodisches Lehrbuch der Elementarmathematik.
Gymnasialausgabe. Erster Teil, im Anschluss an die preussischen
Lehrpläne von 1892 nach Jahrgängen geordnet und bis zur Abschlussprüfung der Untersekunda reichend. Leipzig 1896. B.G. Teubner.
228 Seiten.

Es ist eine besondere, für Gymnasien berechnete Ausgabe des methodischen Lehrbuches der Elementarmathematik, worüber an dieser Stelle bereits referiert worden ist.

E. Jahnke.

Oeuvres de Fermat, publiées par les soins de MM. Paul Tannery et Charles Henry. Tome III. Paris 1896. Gauthier-Villars et fils.

Im dritten Bande, dem umfangreichsten von allen, giebt uns Paul Tannery zunächst (S. 1--274) eine französische Übersetzung der lateinisch geschriebenen Abhandlungen Fermats und der Observationes in Diophantum. Daran schliesst sich (S. 277-321) die Übersetzung derjenigen Briefe und Bruchstücke von Briefen aus Fermats Briefwechsel (Bd. II der neuen Ausgabe), die in einer anderen als der französischen Sprache abgefasst sind.

Diese Übersetzung war mit erheblichen Schwierigkeiten verbunden, da es darauf ankam, sich dem Text möglichst genau anzuschliessen, ohne doch durch allzu sklavisches Festhalten der alten Symbole und Ausdrücke das Verständnis zu erschweren und diejenigen, welche wegen ungenügender Kenntnis des Lateinischen zur Übersetzung greifen, abzuschrecken. Wie Tannery in der Vorrede darlegt, würde er persönlich es vorgezogen haben, die Übersetzung neben den Text zu stellen, aber die mit der Ausgabe betraute Kommission hat beschlossen, die Übersetzung gesondert zu geben, und dadurch ist das Studium der Korrespondenz Fermats den auf die Übersetzung Angewiesenen recht unbequem gemacht; sie müssen nicht selten, um einen Brief zu lesen, den zweiten und den dritten Band benutzen.

Das grösste Verdienst hat sich Tannery jedenfalls durch die Übersetzung der unter dem Titel "Doctrinae analyticae inventum novum" in der 1670 von Samuel Fermat besorgten Diophant-Ausgabe abgedruckten

Arteit des Jesuitenpaters Jacobus de Billy erworben. In dieser Arbeit entwickelt Billy die Theorie der sogenannten doppelten und dreifachen Gleichungen, und zwar auf Grund von brieflichen Mitteilungen Fermats. Von diesen Briefen ist leider nur ein einziger (No. CII, Bd. II, S. 436) erhalten, den Billy Bd III, S. 352 benutzt. Da nur die Grundgedanken des Inventum novum von Fermat gegeben sind, das Werk selbst aber in der Fassung, wie es vorliegt, von einem weit weniger bedeutenden Mathematiker herrührt, so war eine durchaus freie, nur den Inhalt klar wiedergebende Übersetzung am Platze, die Arbeit des Übersetzens also eine weit leichtere. Dafür waren aber eine ganze Reihe dem Billy, nicht Fermat zur Last fallende Fehler zu berichtigen, 1esp. anzugeben, und dieser Mühe hat sich Tannery mit solchem Erfolge unterzogen, dass auch diejenigen, denen die Originalarbeit sprachlich keine Schwierigkeit bereiten würde, besser thun werden, sich an Tannerys Übersetzung (S. 323-398) zu halten.

Der Schluss des Bandes (S. 399-602) enthält die französische Übersetzung der englisch und der lateinisch geschriebenen Briefe des Commercium epistolicum von John Wallis; in betreff der französisch abgesasten wird wieder auf den zweiten Band verwiesen. Dieser Briefwechsel war durch die bekannten von Fermat im Jahre 1657 an die fremden, besonders die englischen Mathematiker gerichteten wissenschaftlichen Herausforderungen veranlasst. An dem Streit, der auch einen nationalen Hintergrund batte, waren ausser Fermat und de Frenicle auf der einen, Lord Brouncker und John Wallis auf der anderen Seite auch Franziscus Schooten und Th. White beteiligt. Die Parteien korrespondierten nicht direkt miteinander, sondern sandten ihre Briefe zur Mitteilung an die Gegner dem in Paris wohnenden englischen Edelmann Kenelm Digby. Es sind im ganzen 47 Briefe von teilweise sehr grossem Umfang. Dieselben wurden 1658 von Wallis veröffentlicht; einen zweiten Abdruck enthält der zweite Band der Werke von Wallis (1693). In dem Briefe XLIV (an Digby) hatte Wallis gewissermaßen das Fazit der Korrespondenz gezogen und dabei vielleicht allzu selbstbewusst sich als Sieger hingestellt. Druckes erhielt er ein anerkennendes Schreiben Fermats, und nun rühmt er seinerseits die Bedeutung des Gegners. So scheint alles unter gegenseitigen freundlichen Verbeugungen der Kämpfer zu enden; aber eine wahrscheinlich von de Frenicle verfasste, jedenfalls von demselben angeregte anonyme Entgegnung auf das Commercium, die sehr selten ist, und die Tannery im Original und in Übersetzung giebt, lässt erkennen, dass doch noch ein Stachel zurückgeblieben ist, dass die höflichen, anerkennenden Worte einfach Phrasen sind. In dieser Entgegnung wird zunächst auf das Unstatthafte einer Veröffentlichung von Briefen ohne Erlaubnis, ja sogar ohne Wissen der Schreiber hingewiesen. Nur die Liebe zum Vaterland und der Wunsch, den Ruhm desselben zu verbreiten, entschuldige ein solches Vorgehen. Übrigens sei, so wird dann im einzelnen dargelegt, dieser Zweck nur unvollkommen erreicht und der Sieg der Engländer recht zweifelhaft. Frolow, Michael, Démonstration de l'axiome XI d'Euclide. Paris 1896. Gauthier-Villars et fils. 22 S. und 1 Tafel.

Da der Verfasser ausdrücklich erklärt, dass er nur für Leser schreibt, "die nicht von den nicht-euklidischen Ideen angesteckt sind", so will ich mich einmal auf seinen Standpunkt stellen und fragen, ob denn wirklich "die Ordnung der Theoreme", die er vorschlägt, "die Grundlagen, auf denen die elementare Geometrie beruht, unangreifbar macht."

Frolows Beweis lässt sich so darstellen. Man konstruiere über einer beliebigen Grundlinie AC ein Dreieck ABC mit den Winkeln:

$$BAC = \varphi < 90^{\circ}$$
 and $ACB = 90^{\circ} - \varphi$

und nach der anderen Seite von AC ein Dreieck ADC mit den Winkeln:

$$ACD = \varphi$$
 and $CAD = 90^{\circ} - \varphi$.

In dem Viereck ABCD sind dann die Gegenseiten gleich, und die Winkel bei A und C sind Rechte. Könnte man beweisen, dass auch einer der beiden einander gleichen Winkel bei B und D ein Rechter ist, so wäre die Existenz eines Rechteckes und damit bekanntlich auch das elfte Euklidische Axiom dargethan. Diesen Nachweis versucht Frolow apagogisch zu führen, indem er zeigt, dass die Annahmen, der Winkel bei B sei spitz oder stumpf, beide auf einen Widerspruch führen. Es wird genügen, den Beweis für einen spitzen Winkel bei B zu analysieren.

Man verlängere BC beliebig bis S, AD beliebig bis T und mache in der Figur SBAT folgende Konstruktion. Von A fälle man auf BS das Lot AB_1 , von B_1 auf AT das Lot B_1A_1 , von A_1 auf BS das Lot A_1B_2 u. s.w. Es ergeben sich so auf AT der Reihe nach die Punkte:

$$A_1, A_2, A_3, \ldots A_n$$

Liegt nun der Punkt D zwischen den Punkten A_n und A_{n+1} , so lässt sich in aller Strenge beweisen, dass der Winkel ADC notwendig stumpf ist, während doch die Winkel bei B und D einander gleich sein müssen. Die Annahme, der Winkel bei B sei spitz, führt mithin auf einen Widerspruch.

Es ist leicht zu erkennen, welches "implicite Postulat" in dieser Deduktion enthalten ist. Der Punkt D soll notwendig zwischen den Punkten A, und A_{i+1} liegen oder, mit anderen Worten, jene Konstruktion von Loten soll schliesslich über jeden Punkt D auf AT hinausführen, der vor dem etwa vorhandenen Schnittpunkte von AT und BS liegt. Dass diese Behauptung keineswegs selbstverständlich ist und im Gegenteil eines Beweises bedarf, zeigt folgende einfache Betrachtung. Man nehme zwei sich nicht schneidende Gerade im Raume und führe bei ihnen die entsprechende Konstruktion aus, fälle also von einem Punkte A der ersten Geraden das Lot AB_1 auf die zweite Gerade, von B_1 das Lot B_1A_1 auf die erste u.s.w.

Man beweist dann ohne Mühe, dass die Lote $A_n B_{n+1}$ bei fortgesetzter Konstruktion dem gemeinschaftlichen Lote PQ der beiden Geraden beliebig nahe kommen, und hieraus folgt, dass in diesem Falle die Punkte $A_1, A_2, \ldots A_n, \ldots$ sämtlich auf der endlichen Strecke AP liegen. Man kommt also niemals über den Punkt P hinaus.

Warum ist es in der Ebene anders? Wer darauf antwortet: Weil es sich um zwei gerade Linien in der Ebene handelt, der hat die Verpflichtung zu zeigen, dass diese Eigenschaft der Ebene eine logische Folge der Definition der Ebene ist. Dass ein solcher Nachweis unmöglich ist, das bewiesen zu haben ist ein Verdienst der von dem Verfasser als Skeptiker und Sophisten bezeichneten Nichteuklider, deren Schriften ihm zu gründlicherem Studium empfohlen seien.

Historisch möge noch bemerkt werden, dass jene Behauptung in betreff des Punktes D bereits von Malezieu (Élémen. de Géométrie. Paris 1715) und von Karsten (Mathesis theoretica elementaris atque sublimior, Rostock und Greifswald 1760) zum Beweise für das elfte Axiom benutzt worden ist, und dass schon Klügel (Conatuum praecipuorum theorema parallelarum demonstrandi recensio. Dissertation. Göttingen 1763, § VII und § VIII) die Unzulässigkeit dieses Verfahrens in durchaus zutreffender Weise dargethan hat.

CRIVETZ, THÉODORE, Essai sur le postulat d'Euclide. Bukarest 1895. 8°. 40 S.

Während die Überzeugung von der Unmöglichkeit der algebraischen Quadratur des Zirkels bereits in weitere Kreise gedrungen zu sein scheint, vergeht kein Jahr, ohne dass das Parallelenaxiom neue Opfer erfordert; es wäre dringend zu wünschen, dass der oft nicht geringe Fleiss und Scharfsinn, den diese der Natur der Sache nach vergeblichen Versuche zeigen, nützlicheren Gegenständen zugewandt würde.

Um zu beweisen, dass die Annahme: die Summe der Winkel des Dreiecks sei kleiner als zwei Rechte auf einen Widerspruch führe, entwickelt der geometrisch nicht unbegabte Verfasser eine Reihe von Folgerungen, ungefähr in der Art, wie das Saccheri (1733) und Lambert (1766) gethan haben; von der umfangreichen Litteratur über den Gegenstand scheint er übrigens nur das Lehrbuch von Rouché et Comberousse zu kennen. Seine Beweise sind zwar umständlich, aber richtig, — bis auf den Beweis des letzten, entscheidenden Theorems. Hier wird ohne jede Begründung behauptet: Zieht man durch einen Punkt F ausserhalb einer Geraden AB irgend eine Gerade FL_2 , so lässt sie sich stets als Tangente an eine der zu AB äquidistanten Linien auffassen. Damit ist man freilich auf einen Widerspruch gekommen, aber jene Annahme über die Winkelsumme ist daran unschuldig.

H. Demartres. Cours d'Analyse. Redigé par M. E. Lemaire. Troisième Partie. Equations différentielles et aux Dérivées Partielles. Paris, A. Hermann. 156 p.

Über die beiden vorangegangenen Hefte des Lehrbuches von Demartres ist in dieser Zeitschrift Bd. 40 p. 93 berichtet worden. Das vorliegende dritte und letzte Heft enthält eine Einleitung in die Theorie der gewöhnlichen und partiellen Differentialgleichungen, sowie der Variationsrechnung.

Gemäss der praktischen Tendenz des ganzen Werkes legt der Verfasser die einzelnen Integrationstheorien dar, wie sie die ältere Schule entwickelt hat, wenn er auch hier und da neuere Fortschritte (Transformationsgruppen u. a.) streift. Die französischen Autoren treten stark in den Vordergrund.

Von allgemeinen Existenzbeweisen findet man wenig; umsomehr ist auf geometrische Anwendungen und Illustrationen Bedacht genommen worden. Der Anhang über Variationsrechnung geht über die ersten Elemente nicht hinaus. Im ganzen erfüllt das Werk seinen Zweck, als Leitfaden für Vorlesungen zu dienen.

W. Fr. Meyer.

Bibliographie

vom 19. August bis 14. Oktober 1897.

Periodische Schriften.

Fortschritte, die, der Physik im Jahre 1891. Dargestellt von der physi-
kalischen Gesellschaft zu Berlin. 47. Jahrgang. 2. Abteilung. Physik
des Äthers. Redigiert von Richard Börnstein. Braunschweig.
Vieweg & Sohn. M. 30.
Dasselbe im Jahre 1836. 52 Jahrgang 1. Abteilung. Physik der
Materie. Redigiert von Richard Börnstein. Ebenda. M.20.
· · · · · · · · · · · · · · · · · · ·
Jahrbuch, deutsches meteorologisches, für 1896. Ergebnisse der meteoro-
logischen Beobachtungen an der Station I. Ordnung Aachen und
deren Nebenstationen im Jahre 1896. Herausgegeben von Dir P. Polis.
II. Jahrgang. Karlsruhe, Braun.
Publikationen des astrophysikalischen Observatoriums zu Potsdam. Nr. 36.
XI. Bds. 3. Stück. Wilsing, J., Untersuchungen über die Parallelaze
und die Eigenbewegung von 61 Cygni nach photographischen Auf-
nahmen. Leipzig, Engelmann.
Vierteljahrsschrift der astronomischen Gesellschaft. 32. Jahrgang 1. und
2. Heft. Leipzig, Engelmann. à M.2.
Veröffentlichungen des königlich preussischen meteorologischen Instituts
Herausgegeben durch Dir. WILH. VON BEZOLD. Ergebnisse der Beobach-
tungen an den Stationen zweiter und dritter Ordnung im Jahre 1893,
Zugleich deutsches meteorologisches Jahrbuch für 1893. Beobachtungs-
system des Königreichs Preussen und benachbarter Staaten Berlin,
Asher & Co. M. 9.
- Dasselbe. Ergebnisse der Gewitterbeobacht ingen in den Jahren 1892,
1893, 1894. Ebenda. M.3.
1000, 1004. Puchua. M. J.

Geschichte der Mathematik und Physik.

POGGENDORFFS Handwörterbuch zur Geschichte der exakten Wissenschaften.

3. Band. 10. und 11. Lieferung. Leipzig, Barth à M. 3.

HAENTSCHEL, C., Über die verschiedenen Grundlegungen in der Trigonometrie. Eine historisch-kritische Studie. Leipzig, Dürr. M.—. 40

Reine Mathematik.

- Opus palatinum. Sinus- und Cosinus-Tafeln von 10" zu 10". Herausgegeben von Professor Dr. W. JORDAN. Hannover, Hahn. M. 7.
- MOLKE, ROMAN, Über diejenigen Sätze Jacob Steiners, welche sich auf die durch einen Punkt gehenden Transversalen einer Kurve n'er Ordnung beziehen. Dissertation. Breslau, Schletter.

 M. 1.
- PYRKOSCH, RHOLD, Über Ponceletsche I reiecke, besonders solche, welche konfokalen Kegelschnitten ein- und umgeschrieben sind. Dissertation. Freslau, Schletter. M.—. 80.
- ROTHE, Rud., Untersuchungen über die Theorie der isothermen Flächen. Dissertation. Berlin, Mayer & Müller. M. 2.
- KLEIN, F., Ausgewählte Kapitel der Zahlentheorie. I. und II. Vorlesung. I. Gehalten im Wintersemester 1895/96. Ausgearbeitet von A. Sommerfeld. II. Gehalten im Sommersemester 1896. Ausgearbeitet von A. Sommerfeld und Th. Furtwängler. Göttingen. (Leipzig, B. G. Teubner.)

 M. 14.50.
- DIRICHLETS, G. LEJEUNE, Werke. Herausgegeben auf Veranlassung der königlich preussischen Akademie der Wissenschaften von L. KRONECKER. Fortgesetzt von L. Fuchs. 2. (Schluss-) Band. Berlin, Reimer. M. 18. Scheffler, Herm., Vermischte mathematische Schriften; enthaltend:
 - 1. Zusätze zur Theorie der Gleichungen.
 - 2. Die quadratische Zerfällung der Zahlen.
 - 3. Die Phönixzahlen.

Braunschweig, Wagner.

M. 2.

SACHS, J., Lehrbuch der ebenen Elementargeometrie (Planimetrie). 8. Teil:
Die Anwendung der Ähnlichkeit auf die Lehre vom Kreis. Bearbeitet
nach System KLEYER. Stuttgart, Maier. M. 5.

Angewandte Mathematik.

- Landestriangulation, die königlich preussische. Hauptdreiecke. 9. Teil.
 - A) Die rheinisch-hessische Dreieckskette.
 - B) Das Basisnetz bei Bonn.
 - C) Das niederrheinische Dreiecksnetz.

Gemessen und bearbeitet von der trigonometrischen Abteilung der Landesaufnahme. Berlin, Mittler & Sohn. Kart. M. 15.

- Schreiber, O., Die konforme Doppelprojektion der trigonometrischen Abteilung der königlich preussischen Landesaufnahme. Formeln und Tafeln. Herausgegeben von der trigonometrischen Abteilung der Landesaufnahme. Berlin, Mittler & Sohn. Kart. M. 3.
- WILCZYNSKI, E. J., Hydrodynamische Untersuchungen mit Anwendungen auf die Theorie der Sonnenrotation. Dissertation. Berlin, Mayer & Müller.
- GUMBEL, L., Das Stabilitätsproblem des Schiffsbaues. Berlin, Siemens.

M. 2.40. Digitized by GOOgle

- Dreiecksnetz, das schweizerische (der internationalen Erdmessung). Herausgegeben von der schweizerischen geodätischen Kommission. 7. Band.

 MESSERSCHMITT, J. B., Relative Schwerebestimmungen. 1. Teil. Zürich,
 Fäsi & Beer.

 M. 10.
- Veröffentlichung des königlich preussischen geodätischen Institutes. Kühnen, Fr.,
 Die Neumessung der Grundlinien bei Strehlen, Berlin und Bonn,
 ausgeführt durch das geodätische Institut. Unter Mitwirkung von
 R. Schumann bearbeitet. Berlin, Stankiewicz. M.9.
- BOLTZMANN, LUDW., Vorlesungen über die Prinzipe der Mechanik. (In drei Teilen.) I. Teil enthält die Prinzipe, bei denen nicht Ausdrücke nach der Zeit integriert werden, welche Variationen der Koordinaten oder ihrer Ableitungen nach der Zeit enthalten. Leipzig, Barth. M.6.

Physik und Meteorologie.

- MEYN, RICH., Die absoluten mechanischen, kalorischen, magnetischen, elektrodynamischen und Licht-Maßeinheiten, nebst deren Ableitungen, wichtigsten Beziehungen und Meßmethoden, mit einem Anhang nichtmetrischer Maße. Braunschweig, Vieweg & Sohn.
- THOMSON, J. J., Elemente der mathematischen Theorie der Elektrizität und des Magnetismus. Deutsche Ausgabe von Professor Gust. Wertheim.

 Braunschweig, Vieweg & Sohn.

 M.8.
- MILLER, ANDR., Das magnetische Kraftfeld eines bipolaren Stabes. Programm. München, Kellerer.
- DRUDE, P., Über Fernewirkungen (Referat). [Beilage zu den Annalen der Physik und Chemie, neue Folge, 62. Band.] Leipzig, Barth. M.1.
- WARBURG, EMIL, Lehrbuch der Experimentalphysik für Studierende. 3. Auflage. Freiburg i. B., Mohr. M. 7, geb. M. 8.

Historisch-litterarische Abteilung.

Rezensionen.

Hermann Grassmanns Gesammelte mathematische und physikalische Werke. Auf Veranlassung der mathematisch-physikalischen Klasse der königl. sächsischen Gesellschaft der Wissenschaften und unter Mitwirkung der Herren: Jacob Lüroth, Eduard Study, Justus Grassmann, Hermann Grassmann der Jüngere, Georg Scheffers herausgegeben von Friedrich Engel. I. Band. II. Teil. Die Ausdehnungslehre von 1862. Leipzig 1896, B. G. Teubner. VIII und 512 S. 8°. Mk. 16.

Der erste Halbband der Gesamtausgabe von Grassmanns mathematischen und physikalischen Werken ist gelegentlich einer historischen Studie über diese Werke im zweiten Hefte des 41. Bandes dieser Zeitschrift besprochen worden. Der vorliegende zweite Halbband, der programmmässig die "Ausdehnungslehre von 1862" bringt, ist ein Jahr später erschienen, als in der Vorrede zum ersten in Aussicht genommen war. zögerung wird jeder begreifen, der die Schwierigkeiten kennt, welche gerade dieses Werk Grassmanns schon dem Verständnis bereitet, geschweige der kritischen Durcharbeitung, wie sie beim Neuerscheinen eines in der Originalausgabe nur in engen Kreisen bekannt gewordenen Werkes* am Platze war. Man kann aber die Verzögerung auch nicht bedauern, wenn man sieht, welche Fülle gewissenhaftester und exaktester Arbeit an diesem Werke von den Herausgebern geleistet worden ist, und wie diese Arbeit den Erfolg gehabt hat, dasselbe auch vom Standpunkte modernster Kritik aus inhaltlich als das bewundernswerte Kunstwerk anzuerkennen, als welches es bisher den Wenigen galt, denen die Originalausgabe näher bekannt war. — Beteiligt haben sich hierbei die Herren Engel und H. Grassmann der Jüngere zunächst durch allseitige Revision des Textes und, wo es nötig schien, durch kleine redaktionelle Änderungen, die, wie im ersten Halbbande, überall als solche erkennbar gemacht und in einem besonderen Verzeichnis den ursprünglichen Lesarten gegenübergestellt sind. Dasselbe gilt von einigen, die Umstellung von Paragraphen, Hinzufügung erklärender Zusätze und Fortlassung einer nicht verständlichen Anmerkung betreffenden

Nagitized by Google

^{*} Dasselbe war nur in 300 Exemplaren, beiläufig auf Grassmanns eigne Kosten, gedruckt worden.

Änderungen. Zu dieser Arbeit lieferte eine Reihe von Bemerkungen des Herrn Study einen wertvollen Beitrag. Während so durch Gestaltung des Textes für das unmittelbare Verständnis jede zweckmässig scheinende Hilfe geleistet ist, haben die Herren Herausgeber, in tieferer Erfassung ihrer Aufgabe, dem Werke einen nicht weniger als 100 Seiten umfassenden Anhang hinzugefügt, der in der Form von Anmerkungen kritischer und erklärender Natur sich mit der in dem Werke niedergelegten Theorie selbst beschäftigt, Dunkelheiten des Textes aufklärt, Andeutungen ausführt, kleine Lücken ausfüllt, naheliegende wichtige Folgerungen zieht, kleine Versehen richtig stellt, Mängel in Beweisen beseitigt, auch hier und da den Zusammenhang oder die Identität Grassmannscher Sätze mit später anderweitig gefundenen Resultaten feststellt. Diese Anmerkungen liefern nicht nur einen überaus wertvollen und willkommenen Beitrag zum Verständnis des ganzen Werkes und seiner Einzelheiten, sondern geben auch implizite Aufschlüsse über die hervorragende Kraft und Bedeutung der spezifisch Grassmannschen Methoden, indem sie vielfach, wenn auch unabsichtlich, an dem Maßstabe dieser Methoden und der durch sie erzielten Resultate die herkömmlichen Schulmethoden messen. - Verschiedentlich erfährt das Grassmannsche System durch diese Anmerkungen eine inhaltliche Bereicherung, an anderen Stellen ergeben sich von selbst Anregungen zur weiteren Ausgestaltung desselben. In dieser Hinsicht mögen einige wichtigere Ergebnisse im folgenden besonders hervorgehoben werden.

Die Frage, unter welcher Bedingung in einem Hauptgebiete nter Stufe eine Grösse A von m^{ter} Stufe (1 < m < n-1) einfach ist, hat Grassmann in der A, nicht beantwortet. Hier nun wird das Kriterium gegeben, dass A mit jeder einfachen Grösse $(n-m+2)^{ter}$ Stufe multipliziert eine einfache Grösse zweiter Stufe liefern muss. — Der Begriff der Zurückleitung, für den die geometrischen Anwendungen in der A. fehlen (und den infolgedessen Hagen in seiner "Synopsis der höheren Mathematik" als dunkel bezeichnet), wird in geometrischem Gewande ausführlich diskutiert, wobei sich unter Beziehung der kombinatorischen Multiplikation auf den Raum als Gebiet vierter Stufe acht Fälle der Zurückleitung ergeben. -Auch den beiden Grassmannschen Auflösungsmethoden von n linearen Gleichungen werden für den Fall n=3 geometrische Deutungen gegeben. — Der Begriff "allseitig normal" wird erläutert und in seiner Bedeutung klar gestellt durch Hinzufügung einiger Sätze, von denen der wichtigste aussagt, dass, wenn zwei Gebiete allseitig zu einander normal sind, jede Grösse des einen Gebiets zu jeder Grösse des andern normal ist. - Bei den Sätzen, welche Grössen erster Stufe im Hauptgebiete nter Stufe betreffen, wird bemerkt, dass eine Reihe derselben noch richtig bleibt, wenn man sie durch Grössen $(n-1)^{\text{ter}}$ Stufe ersetzt. Dies kommt für n=4 auf die Vertauschung von Punkt- mit Ebenen-Koordinaten hinaus. - Einen grösseren Raum beansprucht die Anwendung und spezielle Durchführung der allgemeinen Theorie der geometrischen Verwandtschaften auf die Kollineation des Raumes. Es ergeben sich dabei je nach dem Auftreten einfacher oder

mehrfacher Hauptzahlen und der Stufenzahl der zugehörigen Hauptgebiete äusserst einfach dieselben 13 Fälle, zu welchen v. Staudt von einem anderen Prinzip aus in seinen "Beiträgen zur Geometrie der Lage" gelangt ist. - Als ein Mangel der A, wird bezeichnet, dass Grassmann Zahlbeziehungen zwischen den Einheitsprodukten und den ursprünglichen Einheiten von der Betrachtung ausschliesst, und dadurch auch gewisse Systeme höherer komplexer Zahlen, deren zuerst von Hamilton aufgestellte Theorie neuerdings weiter entwickelt worden ist. Nach dieser Richtung würde also ein weiterer Ausbau des Systems angezeigt erscheinen, falls jenen komplexen Zahlen eine hinlängliche Wichtigkeit und Anwendungsfähigkeit beizulegen Denn man sollte bei solchen Verallgemeinerungen immer bedenken, dass die Möglichkeit von Anwendungen auf Geometrie und Mechanik für rein analytische Forschungen ein nicht zu unterschätzendes Kriterium des Wertes bildet, dessen Beachtung die Forschung davor bewahren wird, sich mit ihren Theorien und Resultaten ins Uferlose und schliesslich Abstruse zu verlieren. So wäre es denn immerhin möglich, dass sich hier in der Beschränkung der Meister gezeigt hätte. Auch darf man nicht vergessen, dass Grassmann bei aller Allgemeinheit seiner Begriffe und Methoden doch in erster Linie ein Forschungswerkzeug für Geometrie und Mechanik schaffen wollte. - Auf eine Erweiterung des Systems weist ferner der Umstand hin, dass Grassmann nur lineale Produktbildungen aus zwei, nicht solche aus drei Faktoren untersucht. Nach dieser Richtung sind (S. 400) interessante Andeutungen gegeben. Derartige Erweiterungen werden besonders wertvoll sein, wenn sie Anwendungen auf solche Gebiete zulassen, die sich etwa den Originalmethoden Grassmanns als unzugänglich erweisen sollten.

Hinsichtlich der Tragweite und Anwendungsfähigkeit jedes einzelnen Begriffs der Ausdehnungslehre über das im Text gegebene hinaus finden sich in Grassmanns eignen Anmerkungen mehrfache Andeutungen. Die genauere Prüfung derselben zeigt in ihren Resultaten recht deutlich, wie sehr es der Ausdehnungslehre zum Vorteil gereicht hat, dass Grassmann bei der Durchbildung ihrer Methoden der natürlichen Führung folgte, welche die geometrischen Gesichtspunkte ihm darboten, dass er aber keine seiner allgemeinen, an sich betrachtet analytischen Methoden auf solche spezielle Gegenstände anwandte, die ihrer Natur nach dieser Methode fern lagen, und dass er es unterliess, im Interesse solcher Anwendungen sich mit seinen Methoden durch Anpassung derselben an ungeeignete Gegenstände in Künsteleien zu verlieren, wie das in besonders lehrreicher Weise auf S. 436 zu erkennen ist (Anmerkung zu Nr. 337).

Unter denjenigen Bemerkungen, welche den Zusammenhang der A_2 mit neueren Forschungen betreffen, sind die folgenden von besonderem Interesse. Die einfache lineale Änderung ist gleichbedeutend mit einer linearen homogenen Transformation von der Determinante 1, die ∞^1 homogenen Transformationen dieser Form bilden eine eingliedrige Gruppe im Lieschen Sinne. Die zirkuläre Änderung ist, wie die lineale, mit einer

linearen homogenen Substitution von besonderer Form gleichbedeutend, dieselbe ist orthogonal und hat die Determinante ± 1, je nachdem die zirkuläre Änderung positiv oder negativ ist. Im ersten Falle bildet der Inbegriff aller ∞^1 Transformationen eine eingliedrige Gruppe im Lieschen Sinne, im zweiten Falle bildet er keine Gruppe, wohl aber bilden beide Transformationen zusammen eine nicht-kontinuierliche Gruppe. - Der Übergang von den Grössen eines Hauptgebietes zu den Ergänzungen gehört vom Standpunkte der projektiven Geometrie zu den dualistischen Transformationen, und zwar zu den speziellen Reziprozitäten, die man als Polarsystem bezeichnet. - Dass der Übergang von einem Normalsystem zu einem anderen numerisch gleichen einer reellen orthogonalen Substitution entspricht, wurde schon in des Referenten "Raumlehre" II, Nr. 63 hervorgehoben, ebenso (l. c. S. 129-134), dass die Ausdehnungslehre für verschiedene Beweise des Multiplikationstheorems der Determinanten die kürzeste Form liefert. Auch ist an derselben Stelle (S. 5-12 und 250-256) bereits ausführlich dargelegt, wie sehr die Theorie der Cayleyschen Maßbestimmung an Einfachheit gewinnt, wenn man sie mit Hilfe der in der A. Nr. 151-215 eingeführten Begriffe entwickelt. - Dass dieser Abschnitt gleichzeitig die von Riemann entdeckte nichteuklidische Geometrie in sich schliesst, hat Lie gezeigt, während Study ihn als Beitrag zur Invariantentheorie der Gruppe aller Drehungen um einen Punkt auffasst. Dagegen scheint die ebenfalls in den "Anmerkungen" hervorgehobene Übereinstimmung des Grassmannschen (vom Referenten auf n Dimensionen ausgedehnten) Eckensinus mit dem gleichnamigen von v. Staudt aufgestellten Begriffe bisher noch nicht beachtet worden zu sein. - Eine ausführliche Analyse knüpft sich an den Satz 391 der A2, betreffend das Verschwinden des Ausdrucks [Qc, c] (durch Einsetzen von n Grössen erster Stufe $c_1 \dots c_n$, während Q eine spezielle Form des Quotienten darstellt), dessen weitere Bedeutung von Grassmann zwar erkannt, aber nur in einer Anmerkung durch einige Hinweise angedeutet wurde. In diesem Satze liegt die Lösung der Aufgaben, die quadratische Form $\Sigma \alpha_{xx} x_x x_x$ durch eine reelle lineare homogene Substitution von der Determinante 1 auf eine Summe von n Quadraten zurückzuführen, ferner eine quadratische Form $\sum \alpha_{xj} x_x x_j$ durch eine reelle Substitution, bei der die Form Σx_{ν}^2 invariant bleibt, auf eine Summe von Quadraten zurückzuführen, sodann die Hauptaxen der co Mannigfaltigkeiten zweiten Grades $\Sigma \alpha_{x_i} x_x x_i = \text{const. des } R_n$ zu bestimmen. Er schliesst in sich das Sylvestersche Trägheitsgesetz der quadratischen Formen und führt dadurch direkt zu dem Sturmschen Satze über die Wurzeln algebraischer Gleichungen. Hier, wie in so vielen anderen Fällen, zeigt sich recht deutlich, wie die Ausdehnungslehre berufen ist, das durch geflissentliche Verschmähung geometrischer Hilfsmittel seitens der modernen Analysis und analytischer Hilfsmittel seitens der synthetischen Geometrie zum Schaden beider Zweige der Mathematik gelöste Band wieder zu knüpfen, und zwar nicht künstlich. wie durch die ältere analytische Geometrie, sondern in einfachster, naturgemässer Form.

Bis hierher bewegen sich die Studien der Herausgeber auf solchen Gebieten der A., die schon früher vielfache Beachtung, Anwendung und Würdigung gefunden hatten. Dagegen harrten die Schlusskapitel des Werkes über Differentialrechnung,* unendliche Reihen und Integralrechnung noch der Durchforschung, und es war darüber im allgemeinen nur bekannt, was Lie (irren wir nicht, noch im Anschluss an direkten Meinungsaustausch mit Grassmann) in dem von den Math. Annalen (Bd. 14) gegebenen Nekrologe Grassmanns (und anderweitig) über die Bedeutung dieses Teiles der A. für das Pfaffsche Problem ausgesprochen hatte. Die eingehende Untersuchung, welche auch dieser Teil der A, samt seiner Bedeutung für das ebengenannte Problem jetzt erfahren hat, führt zu folgender Charakterisierung der letzteren: Grassmanns Verdienst besteht zunächst darin, dass er die Invariantentheorie einer beliebigen Pfaffschen Gleichung bis zu einem gewissen Grade vollständig entwickelt hat ... Er hat die Kriterien angegeben, an denen man erkennen kann, auf welche der beiden möglichen Normalformen eine vorgelegte Pfaffsche Gleichung gebracht werden kann. Auch die Frage, unter welcher Bedingung die Normalform, auf die der Pfaffsche Ausdruck $\Sigma H_{\mu} dx_{\mu}$ gebracht werden konnte, auf einen Ausdruck mit n Differentialen, aber nur 2n-1 Veränderlichen zurückführbar ist, wird von Grassmann beantwortet, und es fehlt nur noch die Ausführung einer letzten, erst von Clebsch erkannten Vereinfachung. Aber auch ohne diese "bleibt das, was Grassmann für die Invariantentheorie eines Pfaffschen Ausdrucks geleistet hat, höchst beachtenswert und gerade in Bezug auf die Richtigkeit und Vollständigkeit der (oben erwähnten) Kriterien steht Clebsch wesentlich hinter Grassmann zurück." Dagegen hat Grassmann hinsichtlich der Aufstellung der Normalform einer vorgelegten Pfaffschen Gleichung nur gezeigt, dass sie durch Integration einer Reihe gewöhnlicher Differentialgleichungen geleistet werden kann, nicht aber untersucht, ob sich die Ordnung der erforderlichen Integrationen reduzieren lässt, eine von Clebsch und Natani aufgenommene, aber erst später zum Abschluss gebrachte Frage. Nebenbei wird rühmend hervorgehoben, was Grassmann hierbei für die Theorie gewisser mit dem Pfaffschen Problem zusammenhängender Gleichungssysteme geleistet hat. Endlich wird auch am Schlusse des ganzen Anhanges der "Symbolik" Grassmanns gedacht, die ihn ja auch zu diesen "eine seiner schönsten Leistungen" bildenden analytischen Resultaten geführt hat. Es wird anerkannt, dass dieselbe "der Jacobi-Cayleyschen vollständig ebenbürtig, ja sogar insofern überlegen ist, als die Grassmannschen Symbole immer unmittelbar an den Pfaffschen Ausdruck erinnern, aus dem sie gebildet sind, während das Symbol $(1, 2, \ldots 2n)$ als solches gar keine Beziehung zum Pfaffschen Problem erkennen lässt. Deshalb ist auch die Grassmannsche Symbolik ohne weiteres auf Systeme von Pfaffschen Gleichungen

^{*} abgesehen von der Anwendung auf Funktional-, Hessesche Determinanten und weitere Bildungen der neueren Algebra in des Referenten "Raumlehre" II, S. 145 fig.

anwendbar, was bei der Jacobi-Cayleyschen nicht der Fall ist."— Vorzüge dieser Art sind es gerade, welche überhaupt die vom Referenten von Anfang an betonte Überlegenheit der Grassmannschen Operationen über jede andere konkurrierende Symbolik begründen. Dass auch in diesem Abschnitt der A₂ einige Einschränkungen sowie Verbesserungen nötig geworden sind, welche letztere zum Teil die heute geforderte Strenge der Begründung betreffen, wird in den "Vorbemerkungen" mit Recht als ein auf den allgemeinen Standpunkt der damaligen mathematischen Forschung zurückzuführender, den Wert des Ganzen aber nicht im mindesten verringernder Umstand bezeichnet. Nicht unerwähnt darf bleiben, dass der ganze das Pfaffsche Problem betreffende Abschnitt noch eine besondere Darstellung in der Sprache der gewöhnlichen Analysis erfahren hat, wodurch die Bedeutung dieser Leistung Grassmanns auch solchen Mathematikern verständlich gemacht wird, die sich von seiner Symbolik fernhalten wollen.

Mit dem vorliegenden Halbbande ist das Gebäude der Ausdehnungslehre, wie Grassmann es schuf, im wesentlichen vollendet. In den folgenden Bänden wird es sich nur noch um Erweiterungen und Anwendungen dieses Systemes handeln. Was den Zusammenhang desselben mit der anderweitigen mathematischen Litteratur betrifft, so geben, wie schon oben bemerkt, die "Anmerkungen" mehrfache Auskunft über Punkte, in denen die Grassmannsche Forschung sich mit neueren, unabhängig von ihr entwickelten Theorien und Resultaten, namentlich der Transformationstheorie, Diese Bemerkungen können natürlich nur als Proben des an dieser Stelle vom Referenten bereits dargelegten viel grösseren Reichtums derartiger Beziehungen angesehen werden, dessen vollständige Berücksichtigung allerdings den Rahmen der ganzen Publikation überschritten hätte. Ebenso ist, abgesehen von zwei oder drei Zitaten, nichts erwähnt, woraus auf eine Beeinflussung der späteren mathematischen Forschung durch die Ausdehnungslehre geschlossen werden kann. Auch derartige Zusätze in nur annähernder Vollständigkeit zu verlangen, wäre unbillig, und wir erwähnen diesen Umstand nur, weil bei dem bisher streng retrospektiven Charakter des historischen Beiwerks dieser Publikation gerade jene vereinzelten Zitate, verbunden mit der S. VII ausgesprochenen Hoffnung, dass die A, in Zukunft mehr wirken werde als bisher, bei dem nicht orientierten Leser vorläufig eine unrichtige Meinung von der bisherigen Wirkung des Werkes erwecken können. — Auch wir schliessen uns der obigen Hoffnung an, nachdem in der vorliegenden Ausgabe der A. alles Wünschenswerte geschehen ist, ihr Studium zu erleichtern. Freilich, wer die Mühe scheut, sich Übung in der Handhabung der Grassmannschen Rechnungsoperationen anzueignen, und gewissermassen rechnerisch "umzulernen", für den wird es bequemer sein, in den gewohnten Geleisen mit Umwegen weiter zu arbeiten. Dass aber derartige Schwierigkeiten bei gutem Willen überwunden werden können, beweisen die Erfolge der viel unbequemer zu handhabenden Quaternionen im Auslande, beweist die auch in Deutschland beständig wachsende Zahl jüngerer Mathematiker, die mit Grassmannschen Methoden arbeiten

Das Gesamturteil, welches der Herausgeber Herr Engel in den "Vorbemerkungen" über die A. auf Grund seines eingehenden Studiums derselben unter den Gesichtspunkten der neuesten mathematischen Forschung fällt, lantet: "Gegenüber der ersten Ausdehnungslehre (von 1844) bezeichnet die zweite einen sehr wesentlichen Fortschritt, der sich nicht nur in der grösseren Mannigfaltigkeit des Inhalts bemerklich macht, sondern namentlich auch in dem ganzen Aufbau. Die Ausdehnungslehre von 1844, so geistreich sie auch ist, steht doch auf keiner ganz sicheren Grundlage; die Grundbegriffe, von denen Grassmann darin ausgeht, sind so allgemein und daher so inhaltlos, dass sie zum Aufbau eines wirklichen Systems nicht genügen, und Grassmann muss, um zu einem solchen zu gelangen, später stillschweigend in seine Grundbegriffe viel mehr hineinlegen, als die ursprünglich von ihm aufgestellten Erklärungen besagen. Ganz anders in der zweiten Ausdehnungslehre. Hier verzichtet Grassmann von vornherein darauf, sein System unabhängig von der Analysis zu entwickeln. Indem er aus der Elementarmathematik das Rechnen mit unbenannten und benannten Zahlen voraussetzt, stellt er den Begriff der extensiven Grösse auf und entwickelt sein ganzes System aus diesem Begriffe auf Grund einer Reihe von Definitionen über die Verknüpfung der extensiven Grössen mit den Zahlgrössen und untereinander. Auf diese Weise begründet er die Sätze der ersten Ausdehnungslehre ganz von neuem und völlig einwandfrei und erweitert zugleich das Gebiet für die Anwendbarkeit seines Kalküls ganz ausserordentlich. - Man kann über die Zweckmässigkeit und über die Vorteile des Rechnens mit extensiven Grössen verschiedener Meinung sein; niemand aber wird leugnen können, dass die Wissenschaft der extensiven Grösse, wie sie Grassmann in seiner zweiten Ausdehnungslehre entwickelt hat, ein kunstvoll und folgerichtig aufgeführtes Gebäude bildet, das keine Lücken zeigt . . . Unrichtigkeiten und Versehen finden sich eine ganze Reihe. aber sie sind alle von untergeordneter Bedeutung und betreffen niemals den Kern des Ganzen: sie alle sind zur Genüge dadurch erklärt, dass Grassmann bei der anstrengenden Thätigkeit seines Berufes nicht die Zeit fand, jede kleine Einzelheit, jede Verweisung auf frühere Sätze und dergleichen noch einmal genau nachzuprüfen. In Kleinigkeiten konnte er irren, das Ganze übersah und beherrschte er vollständig. Man kann in dieser Hinsicht auch auf Grassmann die Worte anwenden, die Lessing in seinem Laokoon über Winkelmann sagt: Es ist kein geringes Lob, nur solche Fehler begangen zu haben, die ein jeder hätte vermeiden können." - Dieses Urteil ehrt in gleichem Maße, wie den Schöpfer des Werkes, auch den Herausgeber, der die bei seinem heterogenen Studienkreise doppelt anzuerkennende Mühe nicht scheute, durch alle Schwierigkeiten bis zu derjenigen geistigen Bewältigung des Werkes durchzudringen, als deren Frucht wir obiges Urteil anzusehen haben.

Nachträge zur Besprechung des ersten Teils.

1. Nach einer gefälligen Mitteilung des Herrn Killing sind in den Weierstraßschen Vorlesungen (nach 1867) die Hinweisungen auf die Ausdehnungslehre, speziell auf den Gebrauch des äusseren und des inneren Produktes in der Theorie der Bewegung eines starren Körpers und in der Kreislehre, umfangreicher gewesen, als die Darstellung des Textes vermuten lässt. Auch hatten die Bemerkungen des Herrn Weierstraß hinsichtlich des Verhältnisses der algebraischen Analysis zur Theorie der mehrfachen Einheiten nicht sowohl den Zweck, die Berechtigung der letzteren anzufechten, als die Möglichkeit eines von diesen Einheiten völlig unabhängigen Aufbaues der ersteren darzuthun, während im übrigen die Vorteile der letzteren gelegentlich ausdrücklich hervorgehoben wurden.

- 2. Die Herren Molenbroek (Haag) und Kimura (New-Haven) haben im Jahre 1895 die Gründung einer internationalen Gesellschaft zur Förderung der Vektorentheorie (Quaternionen und Ausdehnungslehre) angeregt. Im Auslande ist dieser Plan beifällig begrüsst worden, z. B. von Peano in der "Riv. Mat." V, 169 (1895) und von Macfarlane in der "Science" III, 99 (1896). Die in Lübeck abgehaltene Jahresversammlung der "Deutschen Mathematiker-Vereinigung" sprach demgegenüber ihre Bedenken gegen die Stiftung eines derartigen Vereins aus, "der lediglich den Zweck habe, einen sehr eng begrenzten Teil des mathematischen Wissens zu fördern."
- 3. Eine Sammlung von Vorlesungen, welche in erster Linie bestimmt sind, Studierende an technischen Hochschulen in weniger zugängliche wichtige Kapitel der höheren Mathematik einzuführen, und neben der Theorie auch Anwendungen auf Physik und Technik bieten, ist unter dem Titel "Higher Mathematics, A text-book for classical and engineering Colleges, ed. by Merriman (Lehigh University) and Woodward (Columbia College)" 1896 bei John Wiley & Sons, New-York und Chapman & Hall, London erschienen. In dieser Sammlung ist "Grassmanns Space Analysis" durch eine Arbeit von E. W. Hyde, "Vector Analysis and Quaternions" durch eine solche von A. Macfarlane vertreten.
- 4. Vorlesungen über die Ausdehnungslehre hielt Dr. K. Zindler im Sommer 1893 an der Universität in Graz, Winter 1894/95 desgleichen in Wien.

 V. Schlegel.

Goldscheider, Franz, Über die Gausssche Osterformel. Programm. Berlin 1896.

Der Verfasser, der sich bereits durch eine Programmabhandlung über das Reziprozitätsgesetz der achten Potenzreste (Berlin, 1889) vorteilhaft bekannt gemacht hat, giebt in der vorliegenden Arbeit mehr als der Titel verspricht. Er beginnt mit einer sehr klar geschriebenen Übersicht über die geschichtliche Entwickelung der Bestimmungen über das Osterfest, wie sie in solcher Vollständigkeit noch nicht gegeben worden ist. Diese Bestimmungen waren anfangs sehr umständlich und in den verschiedenen Ländern sehr verschieden, bis zur Zeit Karls des Grossen die alexandrinische Osterberechnung durchdrang, die noch gegenwärtig in der griechischen Kirche in unveränderter Geltung ist. Ihr liegen die beiden nur angenähert

richtigen Annahmen zu Grunde, dass das Jahr 3651/4 Tage hat und dass 235 Mondmonate gleich 19 Sonnenjahren sind. Im Laufe der Zeit zeigte sich. dass das so berechnete Osterfest sowohl vom wirklichen Frühlingsanfange als vom Vollmonde sich entfernte, und das war ein Hauptgrund für die Kalenderverbesserung, die Papst Gregor XIII im Jahre 1582 zu stande In kunstvoller Weise versuchte eine Kommission von Gelehrten, unter denen in erster Linie der bekannte Mathematiker Clavius S. J. zu nennen ist, diesem Übelstande abzuhelfen, ohne jedoch einen vollkommenen Ausgleich zu finden. Die Einführung des neuen Kalenders stiess bekanntlich auf grosse Schwierigkeiten, und zwar war es gerade die neue Berechnung des Osterfestes, die vielfach Anstoss erregte. Die evangelischen Staaten Deutschlands nahmen zwar, wesentlich auf Veranlassung von Leibniz, im Jahre 1700 den neuen Kalender an, machten jedoch den Vorbehalt, dass die Berechnung des Osterfestes nicht nach der zyklischen Rechnung, sondern astronomisch erfolgen sollte, wobei sie sich sonderbarer Weise auf die Bestimmungen des Concils von Nicaea beriefen. Friedrich dem Grossen gelang es im Jahre 1775, die volle Annahme des Gregorianischen Kalenders für das ganze Deutschland durchzusetzen.

Die Berechnung des Osterfestes war eine sehr umständliche Operation, sie erforderte die Kenntnisse einer Reihe von Tabellen, welche die Sonntagsbuchstaben, den Sonnenzirkel, die goldenen Zahlen, die Epakten u. s. w. enthielten. Es war deshalb ein wesentlicher Fortschritt, als Gauss im Jahre 1800 eine einfache Formel angab, die es gestattete, direkt aus der Jahreszahl für die Zeit von 1700 bis 1899 das Datum des Ostersonntages zu berechnen. Gauss gab ferner eine allgemein gültige Formel, in der zwei Hilfszahlen, M und N auftreten, die für jedes Jahrhundert besonders zu berechnen sind, ebenfalls nach einer einfachen Formel. Alle diese Formeln werden von Goldscheider sorgfältig bewiesen.

Jene Hilfsformel hatte Gauss, durch ein fehlerhaftes chronologisches Buch veranlasst, nicht richtig angesetzt, in ihr ist die Zahl p nicht als [k:3], sondern als [(8 k + 13):25] zu definieren, was freilich bis zum Jahre 4200 keinen Unterschied macht. Eine Berichtigung seiner Formel hat Gauss selbst 1816 veröffentlicht (Zeitschrift für Astronomie und verwandte Wissenschaften, herausgegeben von B. v. Lindenau und J. G. F. Bohnenberger. Bd. I. S. 158). "Diese Berichtigung ist dem Herausgeber von Gauss' Werken entgangen; man liest daher im Bd. VI im Text die Zahl p definiert als [k:3], dazu aber die Anmerkung, dass bei Gauss sich die handschriftliche Bemerkung findet: p wird bestimmt als Quotient bei der Division von 8k + 13 durch 25, ohne dass in den Bemerkungen des Herren Schering irgend eine Andeutung über den hiernach recht unklaren Sachverhalt zu finden ist." Auffallend ist auch, dass Bd.VI S. 79 bei der Ausnahme I die Jahre 1609, 1989, S. 85 dagegen die Jahre 1609, 1981 angegeben sind; Gauss ist an diesem Irrtum unschuldig.

Dem vorliegenden interessanten Programm soll noch ein zweites folgen, in dem der Verfasser eine Reihe von Fragen als Anwendung der Gaussschen Formel behandelt. "Die verwickelte Gestalt unseres Kalenders", sagt er, "giebt in der That Veranlassung zu einer fast unübersehbaren Menge von Aufgaben; das ist freilich auch der einzige Lichtpunkt darin." Ferner soll über das Schicksal der Gaussschen Formel berichtet werden, die anfangs keineswegs die gebührende Beachtung fand; mussten doch im Jahre 1805 die in Berlin gedruckten Kalender wieder eingezogen werden, weil die Verfertiger, darunter der Astronom Bode, das Osterfest falsch angesetzt hatten. Wir sehen diesem zweiten Teile mit Spannung entgegen.

STÄCKEL.

Euclidis Data cum commentario Marini et scholiis antiquis edidit Henricus Menge. Leipzig 1896. B. G. Teubner. LXII, 336 p. [Euclidis Opera omnia Vol. VI.]

Gestützt auf Handschriften, deren älteste im zehnten Jahrhundert entstand, und auf mehrfache Ausgaben und Übersetzungen hat nunmehr Herr Menge die Daten Euklids dessen von Herrn Heiberg veröffentlichten Elementen und optischen Schriften nachfolgen lassen. Wie die Elemente in zwei Lesarten vorhanden sind, einer von Theon von Alexandria herrührenden und einer vortheonischen, so ist es auch den Daten ergangen, und es gehörte zu der Aufgabe des Herausgebers, den euklidischen Text von den theonischen Veränderungen, die bereits in einer bologneser Handschrift des elften Jahrhunderts sich kenntlich machen, zu unterscheiden. Wie weit dieser texkritischen Aufgabe genügt ist, müssen Philologen entscheiden, mathematische Gründe H. Menges Auswahl anzuzweifeln haben wir nicht. Theon hat, wie Herr Menge zeigt, bei seiner Ausgabe ganz andere Zwecke verfolgt, als sie gegenwärtig als selbstverständlich gelten. Es war ihm viel weniger daran gelegen, mit Hilfe der besten Handschriften, die zu beschaffen waren, den echten Wortlaut Euklids herzustellen, als alexandrinischen Zeitgenossen, welche für Mathematik sich interessierten, den Inhalt der Daten wie vorher der Elemente zu übermitteln, bei den Elementen erläuternd und erweiternd, bei den Daten äusserste Kürze anstrebend. Pappus hatte sich ein Jahrhundert vor Theon eingehend mit den Daten beschäftigt. Von einer Beschäftigung mit den Daten nach Theon wissen wir durch Proklus, durch dessen Schüler Marinus, der eine gleichfalls von Herrn Menge herausgegebene Einleitung in die Daten (denn das ist seine Abhandlung weit eher als ein Kommentar zu den Daten) verfasste, durch Eutokius, durch Olympiodor. Wir wissen auch, dass die Daten im zehnten Jahrhunderte zu den Arabern gelangten und einen Abschnitt ihrer mittleren Bücher bildeten. Herr Menge erzählt dann in seiner Einleitung weiter von den Ausgaben und Übersetzungen der Daten seit Georg Valla. Alle diese Vorarbeiten wurden zur Herstellung der neuen Ausgabe dienstbar gemacht, wie wir schon oben gesagt haben.

Das Delische Problem von Prof. Ambros Sturm (Fortsetzung). Linz 1896. Verlag des k. k. Gymnasiums Seitenstetten. S. 57-97.

Wir haben Bd. 41 Histor, litter. Abtlg, S. 76 - 77 über die erste Abteilung dieser Arbeit berichtet. Es ist uns eine angenehme Pflicht, unsere Leser heute mit der zweiten Abteilung bekannt zu machen, welche das Delische Problem in der Alexandrischen Periode behandelt. Wir werden allerdings so wenig wie bei der ersten Abteilung des ganzen im allgemeinen bekannten Inhaltes gedenken, sondern wie damals uns auf Einzelheiten beschränken. Herr Sturm bespricht die Frage nach der sprachlichen Echtheit des Briefes und des Epigramms des Eratosthenes und bejaht sie. tont dabei, dass schon in jenem Briefe von der Notwendigkeit bei Herstellung von Kriegsmaschinen die Würfelverdoppelung leisten zu können die Rede sei, sodass das praktische Bedürfnis und nicht die theoretische Schönheit der Aufgabe in den Vordergrund tritt. Noch wichtiger ist die Bemerkung, dass diejenigen Lösungen des Delischen Problems, welche man Heron und Philo zuzuschreiben pflegt, ursprünglich von Apollonius herrühren, der durch einen Kreis und eine Hyperbel das Gleiche erzielt haben dürfte, was spätere durch Bewegungsgeometrie sich verschafften. Die gleiche Ansicht hat Montucla ausgesprochen, Reimer 1798 (De cubi duplicatione pag. 128-129) nicht ganz verworfen. Wir geben zu, dass Eutokios und Philoponos gewichtige Gewährsmänner dafür sind, dass man die bewegungsgeometrische Lösung Herons bis auf Apollonius hinauf datiere; wahr ist auch, dass Pappus von einer Analyse der Aufgabe durch Apollonius mittels Kegelschnitte gesprochen hat. Die Restitution dieser Analyse unter Anwendung einer Hyperbel, wie Montucla und Herr Sturm sie für wahrscheinlich halten, beruht dagegen auf keinerlei alten Angabe und hat nur den Wert einer Vermutung. Beiläufig bemerken wir, dass sich hier bei Herrn Sturm S. 73, Zeile 1 ein Druckfehler eingeschlichen hat. Die dortige Proportion muss heissen: a: y = x: b. Herr Sturm widmet einen ganzen Paragraphen der von Pappus überlieferten und am Anfange seines dritten Buches getadelten näherungsweisen Würfelverdoppelung. Mit Herrn S. Günther nimmt er an, jenes an sich unrichtige Verfahren habe in wiederholter Anwendung zu brauchbaren Werten geführt. Ohne solches in Abrede zu stellen, bemerken wir nur, dass von einer Wiederholung des Verfahrens nirgend die Rede ist. Dass wir aber mit dem Verfasser des diesjährigen Programmes nicht immer übereinstimmen, thut dem Werte der Abhandlung als solcher keinen Abbruch, und wir können sie gleich der vorhergehenden unseren Fachgenossen nur dringend empfehlen.

Die Arithmetik des Elia Misrachi. Ein Beitrag zur Geschichte der Mathematik von Gustav Wertheim, Professor an der Realschule der israelitischen Gemeinde zu Frankfurt a. M. Zweite verbesserte Ausgabe. Braunschweig 1896. Friedrich Vieweg und Sohn. 68 S.

Aus der Programmabhandlung von 1893, welche wir Bd. 39 Histor. litter. Abtlg. S. 16-17 unseren Lesern empfehlen durften, ist ein Bändchen

geworden, welches mit gutem Rechte sich als verbesserte Ausgabe bezeichnet. Herr Wertheim hat noch mehr, als es in jenem Programme stattfand, die 1534 erstmalig gedruckte Schrift mit zu Lebzeiten ihres Verfassers Vorhandenem verglichen. Er hat Paciuolo, Chuquet, Widmann von Eger, Christoff Rudolff durchstöbert, um Ähnlichkeiten mit Misrachi zu entdecken, und er hat so sicher zu stellen gewusst, dass um 1500 gewisse Kenntnisse, gewisse Aufgaben in ganz Europa vom äussersten Osten zum äussersten Westen bekannt gewesen sind, die überall vorkommen und in dieser Allgemeinheit der Verbreitung nicht als Beweis dienen können, dass ein später lebender A einen Vorgänger B gekannt haben muss, weil er sein Wissen ebensogut einem C, D u. s. w. entlehnt haben kann. Wertheim hat ferner die Induktionen, deren Misrachi sich bediente, um gewisse Reihen zu summieren, auf ihre Richtigkeit geprüft und dadurch eine Anzahl von interessanten Sätzen gewonnen, welche künftig der Mittelschule als willkommene Beispiele dienen können. Neu sind endlich manche Anmerkungen, unter denen wir die auf S. 16 hervorheben, dass im Talmud (Aboda Sara 9b) die Teilbarkeitsregel für 7 sich finde, nach welcher der Rest einer Zahl für den Divisor 7 ermittelt werde, wenn man vor der Division jedes Hundert durch 2 ersetze. Cantor.

Intorno alla vita ed ai lavori di Tito Livio Buratini, fisico Agordino del secolo XVII. Studi e ricerche di Antonio Favaro. Venezia 1896. Estratto dalle Memorie del R. Instituto Veneto di scienze, lettere ed arti. Volume XXV, Nr. 8, 140 p.

Die Frage, wer Tito Livio Buratini von Agorda sei, und wodurch er sich einer ihm gewidmeten Sonderuntersuchung würdig gemacht habe, ist eine vollberechtigte. Hat doch erst Herr Favaro diesen Gelehrten wieder entdeckt, dessen Verdienste durchaus in Vergessenheit geraten waren. Buratini ist zwischen 1610 und 1620 geboren, 1682 gestorben. Er hat 1639 einen mehrjährigen Aufenthalt in Egypten genommen, lebte später in Polen, wo er eine Stellung einnahm, welche man etwa die eines Münzdirektors nennen kann, und der er das polnische Bürgerrecht, den Adelstand, den Reichtum verdankte, die ihm aber auch Anklagen und Feindschaften zuzog. Buratini hat wahrscheinlich unabhängig von ähnlichen Gedanken, welche by Huyghens und in England zu Tag traten, seit 1645 und besonders in seiner Misura universale von 1675 die Länge des Sekundenpendels als allgemeine Maßeinheit, als metro cutolico, empfohlen. Er hat eine Flugmaschine erfunden. Er hat vor dem 4. Juli 1665 die Venusstecken beobachtet, deren Entdeckung ihm angehört. Er hat mit hydraulischen wie mit mikrometrischen Arbeiten sich erfolgreich beschäftigt. Man darf daher durchaus damit einverstanden sein, dass Buratini der ihm gebührende Platz in der Geschichte der Wissenschaften wieder eingeräumt

werde, kein Platz unter den Grössen ersten Ranges, aber immerhin unter den Männern, die sich nach mehr als nur einer Richtung hin verdient gemacht haben.

Cantor.

Hoene Wroński. Jego życie i prace napisal S. Dickstein. Z portretem wrońskiego i podobniza jego pisma. W Krakowie nakladem Akademii umiejetności. 1896.

Herr Dickstein hat seit 1892 zahlreiche sich aneinander anschliessende Aufsätze veröffentlicht, in welchen er die Leser mit den Leistungen Wrońskis bekannt machte. Der erste dieser in französischer Sprache in Eneströms Bibliotheca mathematica erschienenen Aufsätze begann mit der Erklärung, Herr Dickstein wolle keine Biographie Wrońskis schreiben. Der Verfasser scheint inzwischen anderer Meinung geworden zu sein, denn der 368 Seiten starke Band, welcher uns vorliegt, dürfte eine Lebensgeschichte und Würdigung Wrońskis enthalten. Wir drücken uns so vorsichtig aus, weil uns die polnische Sprache, in welcher der Band abgefasst ist, durchaus fremd ist. Da uns indessen kein Mitarbeiter unserer Zeitschrift bekannt ist, der jene Sprache beherrschte, so sahen wir uns lieber zu einer einfachen Anzeige, dass ein solches Werk vorhanden sei, veranlasst, als dass wir ganz darüber geschwiegen hätten.

Festschrift der Naturforschenden Gesellschaft in Zürich 1746—1896. Den Teilnehmern der in Zürich vom 2. bis 5. August 1896 tagenden 79. Jahresversammlung der Schweizerischen Naturforschenden Gesellschaft gewidmet. In zwei Teilen. I. mit 6 Tafeln, 274 S. II. mit 14 Tafeln, 598 S. Zürich 1896. Druck von Zürcher und Furrer.

Die in Zürich wohnenden Mathematiker und Naturforscher hatten in kurzem Zwischenraume zwei Gedenktage zu begehen, welchen sie je eine Festschrift widmeten. Im Jahre 1894 [vergl. diese Zeitschrift Bd. 40, Histor. litter. Abtlg. S. 139-140] feierte die Gesellschaft ehemaliger Studierender der Eidgenössischen polytechnischen Schule ihr 25 jähriges Bestehen, im Jahre 1896 durfte die naturforschende Gesellschaft in Zürich auf ein 150 jähriges Bestehen zurückblicken. Zwei Bände stattlichen Umfangs haben dieser Feier ihr Dasein zu verdanken, ein erster geschichtlicher Band, ein zweiter mit Abhandlungen des verschiedensten Inhaltes aus der Feder gegenwärtiger und ehemaliger Mitglieder. Wir nennen die Überschriften der in dem zweiten Bande enthaltenen acht mathematischen Beiträge: Elwin Bruno Christoffel, Die Konvergenz der Jacobischen &-Reihe mit den Moduln Riemanns. Jérôme Franel, Sur la fonction & (t) de Riemann et son application à l'arithmétique. Georg Frobenius, Zur Theorie der Schaaren bilinearer Formen. Carl Friedrich Geiser, Das räumliche Sechseck und die Kummersche Fläche. Adolf Hurwitz, Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden. Theodor Reye, Beweis

einiger Sätze von Chasles über konfokale Kegelschnitte. Ferdinand Rudio, Zur Theorie der Strahlensysteme, deren Brennflächen sich aus Flächen zweiten Grades zusammensetzen. Heinrich Weber, Darstellung der Fresnelschen Wellenfläche durch elliptische Funktionen. Als Verfasser des ersten Bandes, der die Geschichte der naturforschenden Gesellschaft erzählt, nennt sich eine dreiköpfige Druckschriftenkommission, gebildet aus den Herren Albert Heim, Arnold Lang, Ferdinand Rudio; wir glauben kaum irre zu gehen, wenn wir dem zuletztgenannten den Löwenanteil an der schönen Arbeit zuschreiben, welche in dem engen Rahmen der Geschichte einer einzelnen Gesellschaft Wissenswürdiges über Unterrichtsverhältnisse und über die Entwickelung der Wissenschaften in und auch ausserhalb der Schweiz seit anderthalb Jahrhunderten mitteilt. Die Ausstattung beider Bände ist eine vorzügliche. Man merkt ihr deutlich an, dass ausserordentliche Mittel zur Herstellung der Festschrift in reicher Weise zur Verfügung standen.

Lehrbuch der Elementargeometrie von J. Henrici, Professor am Gymnasium zu Heidelberg, und P. Treutlein, Direktor des Realgymnasiums zu Karlsruhe. II. Teil. Abbildung in verändertem Maße. Berechnung der Grössen der ebenen Geometrie. 2. Auflage mit 188 Figuren in Holzschnitt und einem Kärtchen. Leipzig 1897. B. G. Teubber. 1X. 248 S.

Der 1882 erschienenen, Bd. 28 dieser Zeitschrift Histor. litter. Abtlg. S. 68-69 angezeigten ersten Ausgabe ist nun die zweite gefolgt, nachdem schon 1891 eine zweite Auflage des ersten Bandes nötig geworden. Der Gang hat sich nicht geändert, wie es bei einem Schulbuche mehr als bei irgend einem anderen Werke sich als unerlässlich erweist. Im einzelnen mögen da und dort kleine Feilstriche dem Benutzer des Buches bemerkbar werden. Neu und solchen Lehrern, welche das Bändchen ihrem Unterrichte zu Grunde legen wollen, gewiss willkommen ist eine in dem Vorwort gegebene Gebrauchsanweisung, welche der Meinung entgegentritt, als dächten sich die Verfasser, man müsse das Buch genau in der beim Druck eingehaltenen Reihenfolge durchnehmen, und welche entsprechende Vorschläge macht, wie man es in dieser Beziehung beim erstmaligen und beim wiederholten Durchnehmen zu halten habe.

Arithmetik und Algebra von Dr. Hermann Schubert, Professor an der Gelehrtenschule des Johanneums in Hamburg. Beispielsammlung zur Arithmetik und Algebra. Leipzig 1896. G. J. Göschen. 171 S. und 134 S.

Das bekannte und in dieser Zeitschrift erstmalig im 28. und 29. Bande besprochene Elementarwerk Schuberts ist nunmehr in neu stilisierter Fassung in die Sammlung Göschen übergegangen. Alles, was wir früher zum Lobe des Buches sagten, bleibt noch heute bestehen.

Die Grundlage der modernen Wertlehre: Daniel Bernoulli, Versuch einer neuen Theorie der Wertbestimmung von Glücksfällen (Specimen Theorie novae de Mensura Sortis) aus dem Lateinischen übersetzt und mit Erläuterungen versehen von Prof. Dr. Alfred Pringsheim, mit einer Einleitung von Dr. Ludwig Fick. Leipzig 1896 bei Duncker & Humblot. 60 Seiten. [Brentano und Leser, Sammlung älterer und neuerer staatswissenschaftlicher Schriften des Inund Auslandes Nr. 9.]

Das sogenannte Petersburger Problem, welches seinen Namen daher entnahm, dass die massgebende Arbeit Daniel Bernoullis in den Veröffentlichungen der Petersburger Akademie erschien, ist jedem Mathematiker, der nur einiges Interesse für Wahrscheinlichkeitsrechnung besitzt, zur Genüge bekannt. Weniger bekannt dürfte Bernoullis Abhandlung selbst sein, und eine mit Anmerkungen versehene Übersetzung von Herrn Pringsheim füllt hier eine Lücke in glücklicher Weise aus. Keiner unserer Leser würde sich wundern, wenn der Abdruck in Ostwalds Klassikern der exakten Wissenschaften erfolgt wäre. Zufällig, möchten wir sagen, ist das nicht geschehen. Die Herausgeber einer staatswissenschaftlichen Sammlung haben sich der Abhandlung früher erinnert, in welcher die valeur morale die erste Berücksichtigung fand, und diesem Umstande ist es zuzuschreiben, dass Herr Fick eine nationalökonomische Einleitung vorausschickte, welche dem Mathematiker erst recht erwünscht ist, da sie ihm die Möglichkeit gewährt, sich rasch und leicht einen Einblick in die moderne Wertlehre zu verschaffen. CANTOR.

C. G. J. JACOBI, Über die Bildung und die Eigenschaften der Determinanten (De formatione et proprietatibus Determinantium) und über die Funktionaldeterminanten (De determinantibus functionalibus). 1841. Herausgegeben von P. STÄCKEL. 73 und 72 S. Leipzig 1896. Wilhelm Engelmann. [Ostwalds Klassiker der exakten Wissenschaften Nr. 77 und 78.]

Ausser den beiden in der Überschrift genannten Abhandlungen hat Jacobi noch eine dritte: De functionibus alternantibus earumque divisione per productum e differentiis elementorum conflatum verfasst. Alle drei fanden ihren Abdruck 1841 im 22. Bande von Crelles Journal, alle drei sind von Herrn Stäckel jetzt übersetzt. Wir sagen alle drei, denn auch die Abhandlung von den alternierenden Funktionen ist neben der über die Bildung und die Eigenschaften der Determinanten in Heft 77 des Sammelwerkes aufgenommen, Man kann diese Aufsätze als die der Zeit nach älteste zusammenhängende Darstellung der Determinantenlehre bezeichnen, wenn auch einzelnen Sätzen derselben ein weit höheres Alter zukommt. Man kann im Einverständnisse mit dem Herausgeber auch heute neben und vielleicht vor zahlreichen Lehrbüchern der Determinantenlehre Jacobis lichtvolle Darstellung besonders solchen Mathematikern zum Lesen anempfehlen, die mit dem Gebrauche der Determinanteu schon vertrauter sind. Cantoe.

Grundzüge der Differential- und Integralrechnung von Dr. Orro Stolz, ord. Professor an der Universität zu Innsbruck. Zweiter Teil: Complexe Veränderliche und Funktionen. Mit 33 Figuren im Text. Druck und Verlag von B. G. Teubner, Leipzig 1896.

Das vorliegende Buch wird durch dieselben Vorzüge charakterisiert, die wir schon bei der Besprechung des ersten Teiles hervorgehoben haben, weshalb wir uns auf eine Inhaltsangabe beschränken können. Die beiden ersten Abschnitte behandeln die Differentialrechnung und zwar nach den Methoden von Lagrange und Cauchy. Im dritten Abschnitt folgt die Integration der einfachsten analytischen Funktionen. Besonders eingehend ist die Behandlung der rationalen Funktionen von x und der Quadratwurzel einer Funktion zweiten Grades von x mit Hilfe der Methode von Weierstraß. Der vierte Abschnitt bringt die Theorie der bestimmten Integrale, der letzte den Cauchyschen Integralsatz und einige Anwendungen desselben. Ein Anhang erörtert die Rektifikation der ebenen Kurven.

MAX MEYER.

Die geometrische Teilung des Winkels von Max Koenig, Regierungsbaumeister. Zweites Heft. Mit 11 Abbildungen auf einer lithographischen Tafel. Verlag von Georg Siemens, Berlin 1896.

Im Anfang bemerkt der Verfasser, dass die im ersten Hefte auseinandergesetzte Methode nur ein Näherungsverfahren sein soll. Es wäre jedenfalls praktischer gewesen, wenn er dies von vornherein betont hätte: nach seiner Darstellung musste man aber annehmen, dass er einen strengen Beweis liefern wollte. Im vorliegenden Hefte soll nun die mathematisch genaue Teilung eines Winkels in drei Teile mit Hilfe von Kreisen und geraden Linien gegeben werden; in Wirklichkeit handelt es sich auch hier nur um eine Annäherungsmethode. Der Verfasser bringt zwar einen sehr umständlichen Beweis, der nur den einen Fehler hat, dass der letzte entscheidende Punkt nicht bewiesen wird. Bis der Verfasser dieses nachgeholt hat, können wir wohl auf eine Darstellung des Verfahrens verzichten.

MAX MRYER.

Index operum Leonardi Euleri confectus a Johanne G. Hagen S. J.,
Director speculae astronomicae Collegii Georgiopolitani Washington
D. C. Berolini 1896. Felix Dames. VIII und 80 S. gr. 8°.
Mk. 2.—

Vor fast fünfzig Jahren dachte die Petersburger Akademie ernstlich daran, eine Gesamtausgabe der Werke Eulers zu veranstalten; leider schreckte sie aber schliesslich doch vor den Kosten zurück und begnügte sich daher mit der Herausgabe der "Commentationes arithmeticae collectae" und der "Opera postuma" in je zwei Bänden (1849 und 1862). Das Scheitern des ursprünglichen Planes kann man nur aufrichtig beklagen, denn eine solche Gesamtausgabe würde geradezu ein vollständiges Archiv

der Mathematik vom Anfange des achtzehnten Jahrhunderts bis zu Eulers Tode sein; was die Mathematiker dieser acht Jahrzehnte wussten und konnten, das findet sich ja nahezu alles bei Euler, und noch heutzutage lassen sich die Spuren der modernsten mathematischen Theorien meistens bis auf Euler zurückverfolgen, was in vielen Fällen nicht einmal bekannt ist. Mit Freuden muss man daher das Erscheinen eines Schriftchens begrüssen, das den ausgesprochenen Zweck hat, einer zukünftigen Gesamtausgabe vorzuarbeiten, und wenn man auch als Deutscher wünschen muss, dass das etwaige Zustandekommen einer solchen Ausgabe einem deutschen Mäcen zu danken sein möge und nicht einem amerikanischen, wie der Verfasser hofft, so wird man ihm doch für die Anregung dankbar sein, die er durch sein Schriftchen gegeben hat, und wird schliesslich froh sein, wenn sie Erfolg hat, wo es auch sei.

Wenn im Einzelnen an dem Hagenschen Index Manches auszusetzen ist, so darf man sich darüber nicht wundern, denn eine Gesamtausgabe der Werke Eulers ist ein so riesenhaftes Unternehmen, dass selbst der Plan dazu — und ein solcher Plan soll der Index sein — nicht gleich auf den ersten Anlauf vollkommen ausfallen kann. Die Ausstellungen, die ich im Folgenden machen werde, entspringen nur meinem Wunsche, im Sinne der Anregung zu wirken, die Hagen gegeben hat.

Bei der überaus grossen Zahl der Eulerschen Schriften und bei dem gewaltigen Umfange, den eine Gesamtausgabe haben wird — Fuß hat seinerzeit schätzungsweise 25 Quartbände von je 640 Seiten angenommen — ist eine geschickte und übersichtliche Anordnung geradezu eine Lebensfrage. An den so schön ausgestatteten Sammlungen der Werke Cayleys und namentlich Cauchys sieht man nur zu deutlich, wie ungemein die Anordnung nach der Zeitfolge der einzelnen Schriften die Benutzbarkeit einer solchen Ausgabe beeinträchtigt und den Wert der Sammlung verringert. Hagen hat die Eulerschen Schriften sachlich geordnet — die einzige brauchbare Anordnung, die auch von Fuß in seiner bekannten "Correspondance de quelques célèbres géomètres du XVIIIème siècle" (Petersburg 1843) gewählt worden war. Er unterscheidet vier Serien: Opera mathematica, Opera physica, Opera astronomica und Opera varii argumenti, von denen jede in eine ganze Anzahl von Abteilungen zerfällt, innerhalb deren die Abhandlungen chronologisch geordnet sind.

Die Abteilungen jeder Serie hätten für sich numeriert werden sollen. Ferner enthalten einzelne dieser Abteilungen je 34, 37, 40, 41, 42, 44, ja sogar 52 Abhandlungen, die Abteilungen hätten also kleiner gemacht werden sollen. Überhaupt scheint mir auch die Einteilung, die Fuß in der Correspondance befolgt, in mancher Beziehung vor der von Hagen angenommenen den Vorzug zu verdienen und es wäre vielleicht besser gewesen, wenn Hagen die Fußsche Einteilung im Wesentlichen beibehalten und nur die Einteilung noch weiter getrieben hätte. Die Überschriften der einzelnen Abteilungen sind bei Hagen öfters nicht bezeichnend genug. Was sind das für farblose Überschriften: Series in genere, Series

in specie, Series particulares, Calculus integralis in genere und in specie u. s. w.! Warum sind die Abhandlungen über Wahrscheinlichkeit unter die Opera varii argumenti verwiesen? Der Verfasser legt selbst ein Hauptgewicht auf die leichte Auffindbarkeit jeder Abhandlung und doch habe ich mehrere schneller in dem Fußschen Verzeichnisse gefunden, als in dem Hagenschen Index. Eine, die Nr. 789 "Solutio problematis ad geometriam situs pertinentis", habe ich überhaupt erst gefunden, als ich die von Hagen mitgeteilte Vergleichung seiner Numerierung mit der der "Correspondance" zu Hilfe nahm; unter den Tractatus philosophici hätte ich sie nimmer gesucht.

Es hätte die Brauchbarkeit des Index sehr erhöht, wenn bei jedem selbständigen Werke die Anzahl der Seiten angegeben worden wäre, die es enthält, und bei jeder Abhandlung nicht bloss die erste, sondern auch die letzte Seite des Bandes, in dem sie steht. Auch die Anzahl der zugehörigen Figuren hätte angegeben werden sollen. Bei mehrbändigen Werken vermisst man eine Angabe über die Jahre des Erscheinens der einzelnen Bände. Bei den drei Bänden der ersten Ausgabe des "Calculus integralis" (Nr. 7 bei Hagen) steht 1768—70 und sie sind allerdings 1768, 1769, 1770 erschienen; die drei Bände der "Lettres à une princesse" (Nr. 773) stammen aus den Jahren 1768, 1768 und 1772, es erweckt daher eine ganz falsche Vorstellung, wenn da steht: 1768—72.

Zweckmässig wäre es auch gewesen, wenn die "Opuscula varii argumenti" und die "Opuscula analytica" unter den "Opera separata" mit aufgeführt worden wären, unter Angabe der Nummern der darin enthaltenen Abhandlungen. Ich habe mir diese Nummern aufgeschrieben; bei den Op. var. arg. sind es folgende:

Bd. I enthält: Nr. 472, 711, 628, 731, 790, 791;

Bd. II , : Nr. 616, 24, 193, 324;

Bd. III , : Nr. 679, 250, 503;

bei den Op. anal. dagegen:

Bd. I: Nr. 168, 127, 37, 181, 38, 105, 69, 39, 16, 70, 40, 128, 129 und

Bd. II: Nr. 17, 377, 378, 379, 95, 71, 183, 184, 341, 185, 130, 131, 41, 783, 784.

Übrigens wäre ich mehr dafür, die "Opera separata" in die einzelnen Abteilungen einzuordnen, statt sie, wie Hagen gethan hat, an die Spitze jeder Serie zu stellen.

Erwünscht wäre auch eine Zusammenstellung der Nummern des Hagenschen Index, die in den "Commentationes arithmeticae collectae" und in den "Opera postuma" enthalten sind.

Schade ist es, dass bei den einzelnen Bänden der Akademieschriften stets nur der laufende Jahrgang angegeben ist, nicht aber das Erscheinungsjahr. Das giebt häufig zu Missverständnissen Anlass. Zum Beispiel sind die beiden Abhandlungen, in denen Euler seinen berühmten Satz über die Polyeder aufstellt und beweist, in den Novi Commentarii Petro-

politani tomus IV, ad annum 1752 et 1753 enthalten, dieser Band ist aber erst 1758 erschienen.

Von den 796 Titeln, die der Index enthält, habe ich 150 mit den Originalen verglichen und dabei Folgendes zu bemerken gefunden:

Der Titel von Nr. 1 lautet: "... bey der Kayserlichen Academie der Wissenschafften". Nr. 2 ist nicht 1771 erschienen, sondern 1770. Bei Nr. 5 sollte es heissen: "Impensis Academiae Imperialis Scientiarum Petropolitanae 1755", denn Berlin ist bloss der Druckort und steht nicht auf dem Titelblatt. Ähnliches gilt von Nr. 684. Bei Nr. 155 steht im Originale "quarumdam" nicht "quarundam" und bei Nr. 156 "des puissances" nicht "de". Bei Nr. 209 und 210 muss es heissen: "des plus grands et plus petits" und bei Nr. 210 überdies: "Elémens de la trigonométrie sphéro'idque"; bei Nr. 247 "constituant" nicht "constituunt". Nr. 297 steht nicht in den "N. C. Petr.", sondern in den "C. Petr.". Der Titel von Nr. 399 lautet: "Nova methodus innumerabiles . . . reducendi ad aequationes differentiales primi gradus". Bei Nr. 421 hätte unterm Text bemerkt werden sollen, dass die "Editio nova" von 1790 durch Hinzufügung der Abhandlungen Nr. 447, 448, 523, 524, 526, 527 vermehrt ist. Bei Nr. 472 und 711 hätte bemerkt werden sollen, dass diese Abhandlungen auf dem Titelblatte des ersten Bandes der Opuscula varii argumenti unter etwas anderem Titel erscheinen: "Solutio Problematis Mechanici de Motu Corporum Tubis Mobilibus Inclusorum" und "Nova(e) Tabulae Astronomicae Motuum Solis ac Lunae". Der Titel von Nr. 540 lautet: "Inquisitio physica in causam fluxus ac refluxus maris". Bei Nr. 591 fehlt "utcunque" vor "elastica" und das Komma gehört vor "quam". Die Bemerkung zu Nr. 686 unterm Texte gehört in den Text. Nr. 748 scheint auch separat erschienen zu sein, wenigstens besitze ich davon ein Exemplar, das noch einen besonderen Titel hat: "Recherches sur les inégalités de Jupiter et de Saturne. Par M. Leonard Euler etc. A Paris, Chez Pancoucke 1769". Der Titel von Nr. 769 lautet: "... über den Unterscheid des Wiederstandes der Luft in schnellen und langsamen Bewegungen". Bei Nr. 771 muss es "complette" heissen. Bei Nr. 784 ist die Seitenzahl 330 falsch, die Abhandlung steht in den Opusc. anal. Bd. II, S. 331-346; die falsche Jahreszahl stammt wahrscheinlich von einem Druckfehler in dem Inhaltsverzeichnisse der Opuscula analytica, denn da steht 230 statt 331.

FRIEDRICH ENGEL.

J. Plücker. Gesammelte Wissenschaftliche Abhandlungen. Im Auftrag der königl. Gesellschaft der Wissenschaften zu Göttingen herausgegeben von A. Schoenflies und Fr. Pockels. Zweiter Band. Physikalische Abhandlungen. Herausgegeben von Fr. Pockels. Leipzig, B. G. Teubner. 834 Seiten.

Dem ersten Bande der Plückerschen Abhandlungen (vergl. diese Zeitschrift Bd. 42) ist rasch der zweite (und letzte) gefolgt, der sämtliche Schriften physikalischen Inhalts (mit Ausnahme weniger, die jetzt kein Interesse mehr darbieten) enthält. Der Herausgeber hat diese Arbeiten in drei Gruppen zusammengefasst; die erste bezieht sich auf das magnetische Verhalten der Krystalle, der Flüssigkeiten und Gase, die zweite auf die Lichterscheinungen in den Geisslerschen Röhren, während die Abhandlungen der letzten (und kleinsten) Gruppe sehr verschiedenen Gegenständen angehören. Die vielfachen Ungenauigkeiten des Originaldrucks sind mit grösster Sorgfalt verbessert worden. Wo dagegen sachliche Bedenken vorlagen, hat der Herausgeber aufklärende Anmerkungen in Form eines Anhanges hinzugefügt, der ca. 20 Seiten einnimmt. Da die physikalischen Leistungen Plückers in der Biographie von Clebsch nur kurz berührt worden sind, hat sich Herr Riecke der Mühe unterzogen, eine eingehendere Würdigung Plückers in dieser Richtung zu geben, die als Einleitung den vorliegenden Band eröffnet.

Erst 1847 — nach längerer mathematischer Thätigkeit — erschien die erste physikalische Arbeit Plückers, die letzte 1865. Seine Leistungen werden treffend charakterisiert mit den Worten: "Sobald aber Plücker dem neuen Gebiete sich zuwendet, erweist er sich auf ihm nicht minder fruchtbar, als auf dem der Mathematik; er ist unermüdlich neue Versuche zu ersinnen, neue Stoffe dem Versuche zu unterwerfen, er entdeckt eine Reihe merkwürdiger und wichtiger Thatsachen und eröffnet der physikalischen Forschung neue Wege." Indessen wird zugleich betont, dass seine Maßbestimmungen der erforderlichen Genauigkeit und daher oft der Vergleichbarkeit und allgemeinen Giltigkeit entbehren.

Von besonderem Interesse ist es zu sehen, wie Plücker verschiedentlich über seine Versuche hinaus zu weiten Spekulationen veranlasst wird, wie er aber stets, wenn er sich von deren Unhaltbarkeit überzeugt hat, dies offen anerkennt.

Während Plücker bei seinen Arbeiten über den Magnetismus mit anderen Physikern (Faraday, W. Thomson, W. Weber) vielfach zusammentrifft, hat er, ohne von anderen beeinflusst und gestört zu werden, das Gebiet der elektrischen Entladungen in verdünnten Gasen neuerschlossen. "Die hierher gehörenden Arbeiten Plückers dürfen umsomehr hervorgehoben werden, als sie nicht immer die ihnen gebührende Anerkennung gefunden haben". Er hat die "Geisslerschen Röhren" zuerst eingeführt und mit grossem Erfolge (Einwirkung eines Magnetes, Spektralanalyse) verwendet; er ist sogar bis zu der durch Kathodenstrahlen erregten Fluorescenz vorgedrungen, und hat dadurch die späteren Entdeckungen von Hittorf, Crookes u. a. vorbereitet, während ihm die Existenz der Kathodenstrahlen selbst verborgen blieb.

Die Fachgenossen sind der königl. Gesellschaft der Wissenschaften zu Göttingen für diese schöne und korrekte Ausgabe der Plückerschen Abhandlungen zu besonderem Danke verpflichtet.

W. FR. MEYER.

E. B. Elliott. An Introduction to the Algebra of Quanties. Oxford. Clarendon Press. 1895. XIII. 423 Seiten.

Die vierte Auflage des bekannten Salmonschen Werkes "Modern Higher Algebra" erschien 1885; der wesentlichste Bestandteil davon, die projective Invariantentheorie, hat seitdem solche eingreifende Umänderungen und Bereicherungen erfahren, dass Herr Elliott sicher einem allgemeinen Bedürfniss englischer Studenten der Mathematik entgegengekommen ist, wenn er über den fraglichen Gegenstand ein selbständiges Werk herausgegeben hat. Mehrjährige Vorlesungen über Formentheorie veranlassten ihn vor allem der pädagogischen Seite der Sache näher zu treten, und so will denn das Buch in erster Linie ein praktischer Wegweiser sein; es will in angemessener Ausführlichkeit und unter Darlegung vollständiger Beweise die Grundlagen der Theorie zu einem abgerundeten Ganzen gestalten.

So hat sich der Verfasser, vielleicht öfters gegen seinen Willen, zu einer wesentlichen Beschränkung des Stoffes verstanden, und da ist es nicht zu verwundern, wenn er sich von englischen Rücksichten leiten liess, und die Leistungen englischer Mathematiker — Boole, Cayley, Sylvester, Hammond, Mac-Mahon — fast ausschliesslich berücksichtigte. Es erscheint fast als seltsame Ausnahme, wenn der Hilbertsche Beweis für die Endlichkeit eines (binären) Formensystems vorgetragen wird.

Dagegen ist die durch Aronhold, Clebsch, Gordan zu so hoher Blüte gelangte deutsche Symbolik prinzipiell ausgeschlossen worden — der Verfasser behauptet, eine kürzere Darstellung ihrer Prinzipien in etwa zwei bis drei Kapiteln würde doch ihren Zweck verfehlt haben —; die fundamentale Auffassung der Invarianten und Seminvarianten als Invarianten projektiver Gruppen, sowie der invarianten Differentiationsprozesse als zugehöriger Differentialinvarianten ist nicht einmal erwähnt (der Name Lie's kommt überhaupt nicht vor); die wichtige Theorie der Combinanten ist nur stiefmütterlich behandelt worden.

Aber auch in solchen Gebieten, die mit einer gewissen Vorliebe gepflegt werden, wie z.B. in denen der Seminvarianten und Perpeteranten, wird man manches zu den Grundlagen gehörige vermissen.

Auf der anderen Seite hat das Buch unleugbar grosse Vorzüge. Es wird immer von den einfachsten Fällen ausgegangen und diese werden durch eine ansehnliche Reihe sorgfältig ausgewählter Beispiele illustriert, sodass dem Leser die Elemente der Theorie in Fleisch und Blut übergehen, ehe er sich an Verallgemeinerungen wagt; auf eine klare und korrekte Beweisführung ist grosser Fleiss verwendet worden. Trotzdem die Namen der Autoren bei allen wichtigen Sätzen erwähnt werden, erhebt der Verfasser hierin durchaus nicht den Anspruch auf Unfehlbarkeit, und weiterstrebende Leser, die die historische Entwickelung des Gegenstandes namentlich in den letzten Jahrzehnten eingehender kennen zu lernen wünschen, werden mit Recht auf den Bericht des Referenten hingewiesen.

Um nunmehr in Kürze auf den Inhalt des Werkes zu kommen, der sich auf 16 Kapitel verteilt, so werden sogleich in den ersten drei Kapiteln-die

wesentlichsten Grundeigenschaften der binären In- und Kovarianten entwickelt. Sodann werden, im Anschluss an Boole, die Begriffe der Kogredienz und Kontragredienz und die Cayleysche Hyperdeterminanten-Symbolik eingeführt. Als Gegenstück dient die reale Darstellung der binär-invarianten Bildungen als Funktionen der Wurzeln, und von hier aus werden die charakteristischen partiellen linearen Differentialgleichungen ("Annihilatoren") gebildet, von denen ein Teil genügt, um die Seminvarianten festzulegen. Die Seminvarianten werden nach Sylvester einer genaueren Untersuchung unterzogen, insbesondere die zugehörigen charakteristischen Anzahlen (z. B. der linear unabhängigen unter ihnen von vorgegebenen Gradzahlen u. s. w.). Die tiefergreifenden Forschungen von Capelli und Deruyts hätten hier wohl Erwähnung verdient. Die Darstellung der Eigenschaften der "Erzeugenden Funktionen" (für Seminvarianten, Invarianten u. s. w.) ist dankenswert.

Der "Endlichkeitsbeweis" ist schon oben erwähnt.

Die Mac-Mahon-Cayleysche Behandlung der Seminvarianten, welche sie den symmetrischen Funktionen (unter Voraussetzung einer Binärform von unbegrenzt hoher Ordnung) unterordnet, wird ausführlich genug verarbeitet.

Wesentlich nach älterem Muster wird die Theorie der kanonischen Formen beschrieben, sie leistet gute Dienste bei der Aufstellung der vollen Systeme einer binären Form fünfter (und, kürzer, auch sechster) Ordnung, sowie einiger Simultansysteme. Für die Berücksichtigung der hierbei herrschenden identischen Relationen (Syzygien) sind neuere Beiträge von Hammond benutzt worden.

Den Schluss bildet eine Einleitung in die Theorie der ternären Formen, die vermöge Entwickelung nach Potenzen je einer Variabeln binären Mitteln zugänglich gemacht werden, wie es neuerdings von verschiedenen Seiten her geschehen ist.

Die geometrischen Anwendungen sind nur in ihren Grundzügen berücksichtigt.

Alles in allem bietet das Werk auch für einen nicht-englischen Leser eine Fülle des Anregenden, und ist als willkommene Ergänzung zu den sonstigen Lehrbücher anzusehen.

W. Fr. Meyer.

J. H. Graf. Der Briefwechsel zwischen Jacob Steiner und Ludwig Schläfli. Festgabe der Bernischen Naturforschenden Gesellschaft an die Zürcherische Naturforschende Gesellschaft anlässlich der Feier des 150-jährigen Bestehens der Letzteren. Bern 1896. J. Wyss. 264 S.

Diejenigen, welche sich für die Entwickelung der neueren Geometrie interessieren, werden Herrn Graf Dank wissen, dass er den im Nachlasse Steiners vorgefundenen "Briefwechsel" herausgegeben hat. Treten auch bei der Lektüre dieser merkwürdigen Briefe manche Charaktereigentümlich-

keiten der beiden grossen Forscher zu Tage, die einen persönlichen Anhänger derselben enttäuschen mögen — die Geschichte der Wissenschaft kann dabei doch nur gewinnen. Wenn sich beispielsweise nunmehr herausstellt, dass Steiner, als er die berühmte Abhandlung über Flächen dritter Ordnung veröffentlichte, die vorgängigen Entdeckungen der Engländer (über das "Pentaeder" u s. w.) im wesentlichen sehr wohl gekannt hat — ohne doch ihrer irgendwie Erwähnung zu thun —, so kann das nur zu gerechterer Abwägung der gegenseitigen Prioritätsansprüche dienen, ohne dass den Leistungen Steiners dadurch nennenswerter Abbruch geschieht.

Der Briefwechsel zwischen Steiner und Schläfli erstreckt sich trotz seines ungemein reichen Inhalts nur über etwa sieben Jahre (1850-1856); er wird veranlasst (abgesehen von der weiter zurückreichenden persönlichen Bekanntschaft) durch einen Brief Steiner's an den gemeinschaftlichen Freund Ris in Bern im Jahre 1848. Steiner lässt hierin Schläfli, der damals noch in bedrängten Umständen in Thun lebte, einige schwierige Aufgaben über die Configuration der Doppeltangenten der Kurven vierten Grades, sowie über Polaren von (algebraischen) Kurven vorlegen.

Die Antwort Schläflis, mit der der nähere Verkehr zwischen beiden Geometern erst beginnt, erfolgt erst über zwei Jahre später (Dez. 1850). Schläfli löst die ihm gestellten Aufgaben nicht, wie denn überhaupt im Anfange die Briefe einen einseitigen Charakter tragen, vielmehr berichtet er über seine eigenen umfassenden Untersuchungen (insbesondere über Elimination und über die Theorie der Räume von n Dimensionen) und will hierüber das Urteil Steiners einholen, der seinerseits wiederum eine direkte Antwort mit dem Hinweise umgeht, er verstände von den fraglichen Dingen zu wenig.

Allmählich aber, und dies hängt eng damit zusammen, dass die Stellung Schläflis in Bern sich hebt — wozu Steiner sein redliches Teil beiträgt — erwärmt sich Schläfli für die Steinerschen Gedankengänge und es währt nicht lange, so wird er geradezu ein unentbehrlicher Mitarbeiter des alternden Meisters, indem er mit seinen überlegenen, systematischen, algebraischen Methoden immer da eingreift, wo die geometrische Anschauung und Divination des anderen den Problemen nicht mehr gewachsen ist. Referent kann sich nicht versagen, eine diesbezügliche Stelle anzuführen, die zugleich von dem urwüchsigen Humor Steiners Zeugnis ablegt. Als Steiner bei der Untersuchung einer gewissen Raumkurve zwölfter Ordnung nicht recht vorwärts kommen kann, schreibt er an den Freund (Seite 61), Liege ich auch wie ein Halbtodter im Schneegestöber — so fasse ich meinen treuen, starken Bernhardiner beim Schwanz und er wird mich aus der dustern Kluft herausreissen".

Die Fragen, die zwischen beiden Forschern diskutiert werden, stellen einen wesentlichen Teil der allgemeinen Theorie der algebraischen Kurven und Flächen dar; sie greifen so tief ein, dass sie auch heute noch nicht sämtlich gelöst sind. Wenn trotzdem diese Theorie seither einen solchen Aufschwung genommen hat, so liegt der Grund darin, dass sich die Geometrie

Begriffe und Sätze aus der algebraischen Funktionentheorie (z. B. den sogenannten Restsatz) zu eigen gemacht hat, die es ihr ermöglichen, grosse Klassen von Erscheinungen unter einem Gesichtspunkt zusammenzufassen, die damals an jeder Kurve und Fläche einzeln studiert werden mussten. Insofern ist Steiner eigentlich eine tragische Figur; er ist der letzte grosse Träger einer Epoche, in der individuelle geometrische Beanlagung noch souverän fremde Methoden verachten konnte.

Der Verkehr zwischen Steiner und Schläfli geriet, wie fast vorauszusehen war, ins Stocken aus Anlass einer Prioritätsfrage bezüglich der Eigenschaften einer speziellen Hypocycloide.

W. Fr. MEYER.

Bibliographie

vom 14. Oktober bis 25. November 1897.

Periodische Schriften.

- Abhandlungen der königlich sächsischen Gesellschaft der Wissenschaften.

 Mathematisch-physikalische Klasse. 24. Bd. Nr. I. Leipzig, Hirzel.

 M 3
- Fortschritte der Physik. Herausgegeben von der physikalischen Gesellschaft zu Berlin. Namenregister nebst einem Sach-Ergänzungsregister zu Bd. XXI (1865) bis XLIII (1887), bearbeitet von B. Schwalbe. 1. Hälfte. Berlin, Reimer. M. 30.
- Fortschritte, die, der Physik im Jahr 1896. Dargestellt von der physikalischen Gesellschaft zu Berlin. 52. Jahrgang. 3. Abt. Kosmische Physik. Redigiert von RICHARD ASSMANN. Braunschweig, Vieweg & Sohn. M. 21.
- Jahrbuch über die Fortschritte der Mathematik. Begründet von CARL OHRT-MANN, herausgegeben von EMIL LAMPE. 26. Bd. Jahrgang 1895. 2. Heft. Berlin, Reimer. M. 6. 40.

Reine Mathematik.

- FRICKE, ROB., und KLEIN, FEL., Vorlesungen über die Theorie der automorphen Funktionen. 1. Bd. Die gruppentheoretischen Grundlagen. Leipzig, B. G. Teubner. M. 22.
- MÜLLER, CARL ADF., Multiplikationstabellen, auch für Divisonen anwendbar. Karlsruhe, Braun. geb. M. 3.
- Bravais, A., Abhandlung über die Systeme von regelmässig auf einer Ebene oder im Raum verteilten Punkten (1848). Übersetzt und herausgegeben von C. und E. Blasius (Ostwalds Klassiker Nr. 90). Leipzig, Engelmann. M. 2.
- Dirichlet, G. Lejeune, Untersuchungen über verschiedene Anwendungen der Infinitesimalanalysis auf die Zahlentheorie (1839—1840). Deutsch herausgegeben von R. Haussner (Ostwalds Klassiker Nr. 91). Ebenda.

 M. 2.
- Schultz, E., Vierstellige mathematische Tabellen (Ausgabe A) für gewerbliche Lehranstalten. 2. Auflage. Essen, Bädeker. geb. M. 1. 20.

Angewandte Mathematik.

- FECHNER, GUST. THDR., Kollektivmaßlehre. Im Auftrag der königlich sächsischen Gesellschaft der Wissenschaften herausgegeben von Gottl.
 FRIEDR. Lipps. Leipzig, Engelmann.

 M. 14.
- JORDAN, W., Handbuch der Vermessungskunde. 2. Bd., Feld- und Landmessung. 5. Auflage. 2. Lieferung. Stuttgart, Metzler. M. 8. 20.
- Krauss, Fritz, Graphische Kalorimetrie der Dampfmaschinen. Berlin.
 Springer. M. 2.
- Schwartze, Thdr., Neue Elementar-Mechanik für technische Lehranstalten und zum Selbstunterricht. Braunschweig, Vieweg & Sohn. M. 4. 80.
- GIRNDT, MART., Raumlehre für Baugewerkschulen und verwandte gewerbliche Lehranstalten. 1. Teil. Lehre von den ebenen Figuren. Mit 227 der Baupraxis entlehnten Aufgaben. Leipzig, B. G. Teubner. kart. M. 2. 40.
- KLEIBER, MAX, Das projektive Zeichnen. 50 (zum Teil farbige) Vorlageblätter mit begleitendem Text. 2. Auflage. Stuttgart, Effenberger. In Mappe M. 12.
- Schlotke, J., Lehrbuch der darstellenden Geometrie. 1. Teil. Spezielle darstellende Geometrie. 3. Auflage. Dresden, Kühtmann. M. 3. 60.
- Sinram, A., Fragmente II zum kosmischen Bewegungsgesetz (Incitations-Theorie) und zur Mechanik des Himmels. Hamburg, Gräfe & Sillem. M. —, 40.
- STICHTENOTH, ALB., Untersuchung über die Bahn des Kometen 1822 IV. Leipzig, Engelmann. M.4.
- GROSSMANN, LUDW., Die Mathematik im Dienste der Nationalökonomie unter Rücksichtnahme auf die praktische Handhabung der Disziplinen der Finanzwissenschaft und Versicherungstechnik. 9. Lieferung. Wien. Selbstverlag. M. 5.
- Moshammer, Karl, Hydromechanik. Wien, Deuticke.
- Person, Benj., Tabellen zur Bestimmung der Trägheitsmomente symmetrischer und unsymmetrischer beliebig zusammengesetzer Querschnitte. Zürich, Speidel. M. 2.
- Huber, Ph., Katechismus der Mechanik (Webers illustrierte Katechismen Nr. 70). 6. Auflage. Neu bearbeitet von Walth. Lange. Leipzig, Weber. geb. M. 3. 50.
- LANGE, WALTH., Katechismus der Statik mit gesonderter Berücksichtigung der zeichnerischen und rechnerischen Methoden (Webers illustrierte Kathechismen Nr. 165). Ebenda.

 M. 4.
- Соня, Велтн., Über die Gausssche Methode, aus den Beobachtungen dreier gleichen Sternhöhen die Höhe, Zeit und Polhöhe zu finden und praktische Hilfsmittel zu ihrer Anwendung. Dissertation. Strassburg. Singer.

 $\mathsf{Digitized}\,\mathsf{by}\,Google$

M. 2.

Physik und Meteorologie.

- Engelmann, Th. W., Tafeln und Tabellen zur Darstellung der Ergebnisse spektroskopischer und spektrophotometrischer Beobachtungen. Leipzig, Engelmann. M. 1. 80.
- Homén, Thdr., Der tägliche Wärmeumsatz im Boden und die Wärmestrahlung zwischen Himmel und Erde. (Aus: Acta societatis scientiarum fennicae). Leipzig, Engelmann. M. 10.
- JÄGER, GUST., Die Lösung der Mondfrage. Stuttgart, Kohlhammer. M. 2. VIOLLE, J., Lehrbuch der Physik. Deutsch von E. Gumlich, W. JÄGER, St. Lindeck. 2. Teil. Akustik und Optik. 2. Bd. Geometrische Optik. Berlin, Springer. M. 8.
- WÜLLNER, ADPH., Lehrbuch der Experimentalphysik. 5. Auflage. 3. Bd.
 Die Lehre vom Magnetismus und von der Elektrizität mit einer Einleitung der Grundzüge der Lehre vom Potential. Leipzig, B. G. Teubner.
 M 18
- Ernecke, Erich, Über elektrische Wellen und ihre Anwendung zur Demonstration der Telegraphie ohne Draht nach Marconi. Experimentalvortrag. Berlin, Gärtner. M.—. 80.
- LOMMEL, E. v., Lehrbuch der Experimentalphysik. Leipzig, Barth. M. 6. 40. Ernst, Chr., Eine Theorie des elektrischen Stromes auf Grund des Energieprinzipes. München, Lüneburg. M. 2.
- LOUGUININE, W., Beschreibung der Hauptmethoden, welche bei der Bestimmung der Verbrennungswärme üblich sind. Berlin, Friedländer und Sohn.

 M. 10.
- Schollmeyer, G., Was muss der Gebildete von der Elektrizität wissen? Gemeinverständliche Belehrung über die Kraft der Zukunft. 6. Auflage. Neuwied, Heuser. M. 1. 50.
- THOMPSON, SILVANUS P., Elementare Vorlesungen über Elektrizität und Magnetismus. Deutsch auf Grund der neuesten Auflage des Originals von A. Himstedt. 2. Auflage. Tübingen, Laupp. M. 7.
- GRÄTZ, L., Kurzer Abriss der Elektrizität. Stuttgart, Engelhorn, geb. M. 3.

Mathematisches Abhandlungsregister.

1896.

Zweite Hälfte: 1. Juli bis 31. Dezember.

Abbildung.

440. Konforme Abbildung der inneren Fläche eines Kreises in die innere Fläche eines regulären Vielecks. Ulr. Bigler. Grun Archiv 2. R. XIV, 360.

441. Sur la représentation de la surface cubique générale sur un plan. F. Du-

mont. N. ann. math. Sér. 8, XV, 318.

442. Über diejenige punktweise eindeutige Beziehung zweier Flächenstücke aufeinander, bei welcher jeder geodätischen Linie des einen eine Linie konstanter geodätischer Krümmung des anderen entspricht. F. Busse. Berl. Akad. Ber. 18961, 651.

443. Sur la construction des cartes géographiques. D. A. Gravé. Journ. Math. Sér. 5, II, 317.

Abelsche Transcendenten.

444. Remarques diverses sur les fonctions abéliennes. H. Poincaré. Math. Sér. 5, I, 219.

445. Sur une surface du sixième ordre liée aux fonctions abéliennes de genre 3. G. Humbert. Journ. Math. Sér. 5, II, 263.

Absolute Geometrie.

446. Zwei Sätze der nicht-euklidischen Geometrie. Max Simon. Math. Annal. XLVIII, 607.

Analytische Geometrie der Ebene.

- 447. Étude analytique sur la symétrie. S. Mangeot. N. ann. math. Sér. 3, XV, 408.
- 448. Théorèmes sur les podaires. Duporcq. N. ann. math. Sér. 3, XV, 341.
- 449. Sur les développées successives. G. Tzītzéica. N. ann. math. Sér. 3, XV, 247. 450. Sur les courbes de direction. P. Appell. N. ann. math. Sér. 3, XV, 491.
- 451. Propriété de deux caustiques réciproques par rapport à une courbe donnée. Duporcq. N. ann. math. Sér. 3, XV, 339.
- 452. Über das eigentliche Oval. Arm. Wittstein, Grun. Archiv 2. R. XIV, 109, 441.
- 453. Cartesian ovals. A. C. Dixon. Quart. Journ. math. XXVIII, 375.
- 454. Propriété de la lemniscate. Ern. Foucart. N. ann. math. Sér. 3, XV, 98.
 455. Cercle tangent à une lemniscate et ayant son centre sur une hyperbole équilatère. Ern. Foucart. N. ann. math. Sér. 3, XV, 148.
- 456. Lieu des points milieux des cordes d'un limaçon de Pascal qui sont vues du point double réel sous un angle droit. E. N. Barisien. N. ann. math. Sér. 3, XV, 294.
- 457. Propriétés des cardioïdes. Ern. Foucart. N. ann math. Sér. 3, XV, 145. 458. Über die Kurven, deren Bogen der Tangente des Leitstrahlwinkels proportional ist, und die damit verwandten Kurvenscharen. Aug. Velde. Grun. Archiv 2. R. XIV. 200.

Vergl. Ellipse. Geometrie (höhere). Hyperbel. Kegelschnitte. Kreis. Parabel

Analytische Geometrie des Raumes.

459. Sur les courbes algébriques à torsion constante. Eug. Fabry. Compt. Rend CXXIII, 865.

- 460. A geometrical locus. G. B. Mathews. Quart. Journ. math. XXVIII, 190.
- 461. Quelques propriétés des biquartiques gauches. E. Duporcq. N. ann. math. Sér. 3, XV, 266.
- 462. Sur un cas remarquable de la projection gauche. G. Fontené. N. ann. math. Sér. 3, XV, 369.
 - Vergl. Geometrie (höhere). Hyperbel. Oberflächen. Oberflächen zweiter Ordnung.

Astronomie.

- 463. Sur les expression approchées des termes d'ordre élevé dans le développement de la fonction perturbatrice. N. Coculesco. Journ. Math. Sér. 5, I, 359.
- 464. Sur le développement approché de la fonction perturbatrice dans le cas des inégalités d'ordre élevé. M. Hamy. Journ. Math. Sér. 5, II, 381.
- 465. Sur la désagrégation des comètes. O. Callandreau. Compt. Rend. CXXIII, 663. 466. Sur l'extension que l'on peut donner au théorème de Poisson, relatif à l'invariabilité des grands axes. H. Andoyer. Compt. Rend. CXXIII, 790.

Ausdehnungslehre.

467. Über das gemischte Produkt. Em. Müller. Math. Annal. XLVIII, 589.

R.

Bestimmte Integrale.

- 468. Sur la définition de l'intégrale définie. M Fouché. N. ann. math. Ser. 3, XV, 207. C. Burali-Forti ibid. 495.
- 469. Une lecon sur la méthode de quadrature de Gauss. L. Raffy. N. ann. math. Sér. 3, XV, 249.
- 470. Sur un théorème de Kronecker. G. Koenigs. Journ. Math. Sér. 5, II, 41.
- 471. Uber eine Art von simultaner Darstellung bestimmter Integrale. G. Kowalewski. Crelle, CXVII, 267.
- 472. Über ein discontinuierliches Integral. E. Gabler. Math. Annal. XLVIII, 37.
- 473. Sur les intégrales de Fresnel. V. Jamet. N. ann. math. 3, XV, 372. Eug. Fabry ibid. 504.
- 474. Sur l'égalité $zi\pi[f(x)-f(o)]=\int f'(z)\log z\,dz$, f(z) désignant un polynôme entier en z et l'intégrale étant prise dans le sens positif le long d'un contour fermé simple entourant l'origine. Au dibert. N. ann. math Sér. 3, XV, 343.
 - Vergl. Quadratur.

C.

Combinatorik.

475. Sur les permutations quasi-alternées. Dés. André. Journ. Math. Sér. 5, I, 315.

D.

Differentialgleichungen.

- 476. Sur les équations différentielles ordinaires du premier ordre. A. Korkine. Compt. Rend. CXXIII, 38, 139. P. Painlevé ibid. 88 (vergl. Nr. 51).
- 477. Sur les équations différentielles ordinaires du premier ordre. A. Korkine. Math. Annal. XLVIII, 317.
- 478. Sur l'extension des idées de Galois à la théorie des équations différentielles. Em. Picard. Math. Annal. XLVII, 155. [Vergl. Bd. XLI, Nr. 305.]
- 479. Sur une application de la théorie des groupes continus à l'étude des points singuliers des équations différentielles linéaires. F. Marotte. Compt. Rend. CXXIII. 867, 933.
- 480. Zur Theorie der adjungierten Differentialgleichung. P. Günther. Crelle, LXVII, 168.
- 481. Über die Beschaffenheit der Differentialgleichungen der n Adjungierten, die zu einer linearen Differentialgleichung nter Ordnung gehören. E. Grünfeld. Crelle, CXVII, 273.
- 482. Neue Beweise für die Konvergenz der Reihen, welche bei der Integration linearer Differentialgleichungen in der Umgebung der einfachsten singulären Stellen auftreten. Ad. Kneser. Math. Annal. XLVII, 408.

LVII, 408. Digitized by Google 483. Untersuchung und asymptotische Darstellung gewisser linearer Differentialgleichungen bei grossen reellen Werten des Arguments. Ad. Kneser. Crelle,

CXVII, 72 (vergl. Nr. 46).
484. Uber eine Klasse linearer homogener Differentialgleichungen. L. Fuchs.

Berl. Akad. Ber. 18963, 753.

Theorie der Eulerschen Transformierten einer homogenen linearen Differentialgleichung der Fuchsschen Klasse. L. Schlesinger. Crelle, CXVII, 148 (vergl. Nr. 65).

486. Uber die Reihenentwickelung der Integrale eines Systems von Differentialgleichungen in der Umgebung gewisser singulärer Stellen. J. Horn.

Crelle CXVII, 104, 254 (vergl. Nr. 75).

487. Sur une série relative à la théorie des équations différentielles linéaires à coefficients périodiques. A. Liapounoff. Compt. Rend. CXXIII, 1248.

488. Sur les résidus des fonctions définies par les équations differentielles. M. Petrovitch. Math. Annal. XLVIII, 75.

489. Uber eine Anwendung d. Theorie d. linearen Differentialgleichungen auf lineare Differentialgleichungen zweiter Ordnung. L.W. Thomé. Crelle, CXVII, 185.

490. Sur l'équation de Lamé. Andr. Markoff. Math. Annal. XLVII, 598.

491. Intégration de $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + n^2x^2y = 0$. Maillard. N. ann. math. Sér. 3. XV, 141.

492. On singular solutions of differential equations of the first order. Miss Maddison. Quart. Journ. math. XXVIII, 311.

493. Sur la théorie des équations aux dérivées partielles du second ordre. E. Goursat. Compt. Rend. CXXIII, 680.

494. Sur les équations linéaires aux dérivées partielles du second ordre à deux variables. E. Cotton. Compt. Rend. CXXIII, 936.

495. Sur une équation linéaire aux dérinées partielles du second ordre. J. Le Roux.

Compt. Rend. CXXIII, 1052. 496. Sulle equazioni a derivate partiali del second' ordine a tre variabili indi-pendenti. G. Vivanti. Math. Annal. XLVIII, 474.

497. Die Charakteristiken der partiellen Differentialgleichungen in drei Variabeln

E. v. Weber. Math. Annal. XLVII, 229.

498. Sur l'intégration des équations aux dérivées partielles simultanées. E.v.Weber. Compt. Rend. CXXIII, 292.

Compt. Rend. CXXIII, 292.
499. Integration der Differentialgleichung $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = k^2 f$ für elliptische und parabolische Koordinaten. J. H. Hartenstein. Grun. Archiv 2. R. XIV, 170.

500. Sur les systèmes algébriques et leurs relations avec certains systèmes d'équations aux dérivées partielles. Et. Delassus. Compt. Rend. CXXIII. 546 (vergl. Nr. 74).

501. Sur les transformations des systèmes différentiels. Et. Delassus. Compt.

Rend. CXXIII, 1246.

502. Sur la détermination des intégrales d'une équation aux dérivées partiellepar ses valeurs sur un contour fermé. Em. Picard. Journ. Math. Sér. 5. II, 295.

503. Sur une suite d'équations linéaires aux dérivées partielles provenant de la théorie des surfaces. T. Craig. Compt. Rend. CXXIII, 634.

504. Sur les surfaces à lignes de courbure isométriques. T. Craig. Compt. Rend CXXIII, 794.

Vergl. Geschichte der Mathematik 578. Mechanik. Oberflächen.

Differential quotient.

505. Sur une différentielle exacte. L. Autonne. N. ann. math. Sér. 3, XV, 232 506. Sur la dérivée des fonctions interpolées. E. M. Lémeray. N. ann. math Sér. 3, XV, 325.

E.

Elastizität.

- 507. Sur l'équilibre d'élasticité d'un corps tournant. L. Lecornu. Compt. Rend CXXIII, 96.
- 508. Sur le problème des membranes vibrantes. Le Roy. Compt. Rend. CXXIII, 1258

Digitized by GOOGLE

Elektrizität.

- 509. Remarques sur une expérience de M. Birkeland. H. Poincaré. Compt. Rend. CXXIII, 530.
- 510. Sur la tension longitudinale des rayons cathodiques. Colard. Compt. Rend. CXXIII, 1057.
- 511. Sur quelques erreurs admises comme vérités en électromagnétisme. Vaschy. Compt. Rend. CXXIII, 1059.
- 512. Méthodes de calcul en électromagnétisme. Vaschy. Compt. Rend. CXXIII, 1261.

Ellipse.

- 513. Sur les ellipses concentriques. E. Duporcq. N. ann. math. Sér. 3, XV, 566.
 514. Ellipse lieu du centré du cercle des neuf points d'un triangle variable. H. Brocard. N. ann. math. Sér. 3, XV, 390.
- 515. Ellipse lieu des positions successives des centres de courbure d'une épicycloide roulant sur une droite. A. Mannheim. N. ann. math. Sér. 3, XV, 245.
- 516. Hypocycloide a quatre rebroussements enveloppe des cordes d'une ellipse sous l'angle d'anormalie excentrique relatif à leurs points de départ. Au dibert. N. ann. math. Sér. 3, XV, 576.

Elliptische Transcendenten.

- 517. Vier Briefe von Arthur Cayley über elliptische Modulfunktionen. Math. Annal. XLVII, 1.
- 518. Bemerkungen zu Cayleys Briefen, H. Weber. Math. Annal, XLVII, 6.
- 519. Sur une formale fondamentale de Kronecker. J. Franel. Math. Annal. XLVIII, 595.
- 520. Expression des composantes de l'attraction d'un ellipsoïde homogène sur un point extérieur au moyen des fonctions @ et g. E. Mathy. Journ. Math. Sér. 5, II, 305.
- 521. Das Additionstheorem der Funktion p(u). P. Stäckel. Math. Annal. XLVII, 404.
- 522. Über die Transformation der elliptischen Funktionen. Fr. Beer. Grun Archiv 2. R. XIV, 113.
- 523. Sur une application des fonctions elliptiques. X, Stouff. N. ann. math. Sér. 3, XV, 262.

Vergl. Funktionen 533. Thetafunktionen.

F.

Formen.

- 524. Über die cogredienten Transformationen der bilinearen Formen. G. Frobenius. Berl. Akad. Ber. 1896¹, 7.
- 525. Über vertauschbare Matrizen. G. Frobenius. Berl. Akad. Ber. 1896, 601.
- 526. Zur Theorie der adjungierten Substitutionen. Gust. Rados. Math. Annal. XLVIII, 417.
- 527. Sur la division algébrique appliquée aux polynomes homogènes. H. Andoyer. Journ. Math. Sér. 5, I, 61.
- 528. Sur les formes quadratiques définies à indéterminées conjuguées de M. Hermite.
- Alfr. Loewy. Compt. Rend. CXXIII, 168. L. Fuchs ibid. 289. 529. Zur Theorie der linearen Substitutionen. Alfr. Loewy. Math. Annal. XLVIII, 97.
- 5:30. Réduction simultanée de deux formes quadratiques de trois variables à des formes canoniques. Application à l'étude d'un système de deux coniques. H. Vogt. N. ann. math. Sér. 3, XV, 441.

Vergl. Substitutionen.

Funktionen.

- 5:31. Sur l'extension aux fonctions entières d'une propriété importante des ploynomes. Em. Borel. Compt. Rend. CXXIII, 556.
- 532. Über Riemannsche Flächen mit beschränkt veränderlichen Verzweigungspunkten. P. Hoyer. Math. Annal. XLVII, 47.
- 533. Uber die Parameterbestimmung von Punkten auf Kurven zweiter und dritter Ordnung. Eine geometrische Einleitung in die Theorien der logarithmischen und elliptischen Funktionen. C. Juel. Math. Annal. XLVII, 72.
- 534. Über Riemannsche Formenscharen auf einem beliebigen algebraischen Gebilde. E. Ritter. Math. Annal. XLVII, 157.

Digitized by GOOGLE

535. Beitrag zur Theorie der rationalen Funktionen. Eman. Beke. Math. Annal XLVII, 441.

536. Über die Mittelwerte der Funktionen einer reellen Variabeln. L. Maurer. Math. Annal. XLVII, 263.

537. Über eine besondere Klasse von Funktionen einer reellen Veränderlichen. E. Study. Math. Annal. XLVII, 298.

538. Uber die Reduction algebraischer Systeme auf die kanonische Form. K. Hensel. ('relle, CXVII, 129.

539 Über die Fundamentalteiler algebraischer Gattungsbereiche. K. Hensel Crelle, CXVII, 333.

540. Über die Elementarteiler zweier Gattungen, von denen die einen unter der

anderen enthalten ist. K. Hensel. Crelle, CXVII, 346.
541. Über die Darstellung der Integrale erster Gattung durch ein Fundamental-

system. K. Hensel. Crelle CXVII, 29 (vergl. Nr. 129).
542. Uber kanonische Systeme algebraischer Funktionen einer Veränderlichen. die einem Gattungsbereich dritter oder vierter Ordnung angehören K. Fischer. Crelle, CXVII, 1 (vergl. Nr. 129).

543. Sur une classe de fonctions transcendentes. Em. Picard. Compt. Rend CXXIII, 1035.

544. Concerning transcendentally transcendental functions.

Math. Annal. XLVIII, 49. El. Hast. Moore

545. Intorno ad alcune osservazioni sui segmenti infiniti e infinitesimi attuali.
G. Veronese. Math. Annal. XLVII, 423 (vergl. Bd. XLI Nr. 479).

546. Uber transfinite Zahlen. W. Killing. Math. Annal. XLVIII, 425.

547. Sur quelques propriétés des ensembles d'ensembles et leurs applications à la limite d'un ensemble variable. C. Burali-Forti. Math. Annal. XLVII, 20

548. Über die hypergeometrische Funktion mit einem Nebenpunkt. E. Ritter Math. Annal. XLVIII, 1.

549. Sur la fonction $\zeta(s)$. Hadamard. Compt. Rend. CXXIII, 93 (vergl. Nr. 138 550. Uber die Isotimen und Isophasen der Funktion f(x) = (x+1)(x-1)(x-2)Ulr. Bigler. Grun. Archiv 2. R. XIV, 387.

551. Sur le nombre des périodes d'une fonction uniforme. A. Astor. N. ann. math Sér. 8, XV, 227.

552. Sur la convergence des substitutions uniformes. E. M. Lémeray. Compt Rend. CXXIII, 793.

553. Über Funktionen zweier reeller Variabeln. O. Biermann. Math. Anna. XLVIII, 393.

554. Uber Fuchssche Funktionen zweier Variabeln. S. Kempinski. Math. Annal. XLVII. 573.

555. Über die Wertschwankungen der harmonischen Funktionen zweier reellen Veränderlichen und der Funktionen eines komplexen Argumente-F. Schottky. Crelle, CXVII, 225.

556. Partialbruchzerlegung rationaler Funktionen eines algebraischen Gebildes zweier Veränderlichen. P. Hoyer. Math. Annal. XLVII, 113.

Vergl. Abelsche Transcendenten. Ausdehnungslehre. Bestimmte Integral-Combinatorik. Differentialgleichungen. Differentialquotienten. Ellijtische Transcendenten. Formen. Gleichungen. Kettenbrüche. Maxims und Minima. Potential. Reihen. Substitutionen. Thetafunktioner Zahlentheorien.

Geodäsie.

557. Sur une nouvelle méthode de M. Jäderin pour les mesures de base. Bassot Compt. Rend. CXXIII, 155.

558. Sur l'erreur de réfraction dans le nivellement géométrique. Ch. Lalleman: Compt. Rend. CXXIII, 222, 297.

559. Sur la stabilité des piquets employés comme repères provisoires dans à nivellements de précision. Ch. Lallemand. Compt. Rend. CXXIII, 457.

Geometrie (descriptive).

560. Über den Polkeschen Satz. Fr. Schur. Crelle, CXVII, 24.

Digitized by GOOGLE

Geometrie (höhere).

- 561. Sur une géométrie de l'espace réglé. R. de Saussure. Compt. Rend. CXXIII 784 (vergl. Nr. 634).
- 562. Zur projektiven Geometrie. M. Pasch. Math. Annal. XLVIII, 111.
- 563. Sur une double série récurrente de points toujours homocycliques et de cercles toujours en collinéation attachés aux polygones d'ordre 3, 4, 5... résultant de v droites indépendantes, employées successivement dans un ordre donné. P. Serret. Compt. Rend. CXXIII, 396.
- 564. Sur une classe de propositions analogues au théorème Miquel-Clifford, et sur les propriétés qui en résultent pour les polygones de 5, 6, 7, 11, 12 côtés, circonscrits à l'hypocycloïde de module $\frac{1}{3}$. P. Serret. Compt. Rend. CXXIII, 415.
- 565. Sur l'emploi d'un cercle fixe, dérivé d'un groupe quelconque de 7 tangantes d'une conique, pour définir, a priori, le cercle dérivé de 7 droites quelconques. P. Serret. Compt. Rend. CXXIII, 442.
- 566. Détermination des points d'inflexion dans le développement de la section plane d'un cone. F. Balitrand. N. ann. math. Sér. 3, XV, 65 [vergl. Bd. XL, Nr. 459].
- 567. Uber eine merkwürdige Kreisfigur. W. Godt. Math. Annal. XLVII, 564.
- 568. Sur la transformation homographique des propriétés métriques des figures planes. G. Brocard. N. ann. math. Sér. 3, XV, 426.
 569. Note on adjoint curves. Miss C. A. Scott. Quart. Journ. math. XXVIII, 877.
- 570. Projektive Erzeugung der Kurven mter Ordnung Cm. C. Küpper. Math. Annal. XLVIII, 401.
- 571. Die Konfiguration (12, 16, und die zugehörigen Gruppen von 2304 Kollineationen und Correlationen. Jul. Fedor. Math Annal XLVII, 375.
- 572. Über eine einfache Gruppe von 360 ebenen Kollineationen. A. Wiman. Math. Annal. XLVII, 531.
- 573. Über die Diskontinuität gewisser Kollineationsgruppen. Rob. Fricke. Math. Annal. XLVII, 557.
- 574. Sur le théorème de Salmon. E. Goursat. N ann. math. Sér. 3, XV, 20. 575. Sur une quartique unicursale. A. Droz-Farny. N. ann. math. Sér. 3, XV, 485. Vergl. Kegélschnitte. Kinematik.

Geschichte der Mathematik.

- 576. Altbabylonische Maße und Gewichte. G. Reisner. Berl, Akad. Ber. 1896, 417. 577. Die geometrische Konstruktion als Existenzbeweis in der antiken Geometric.
- H. G. Zeuthen. Math. Annal. XLVII, 222. 578. L'oeuvre géométrique de Sophus Lie. Fel. Klein. N. ann. math. Sér. 3, XV, 1.
- 579. Gustav Ferdinand Mehler (13 XII. 1885-13. VII. 1896). Mart. Krause. Math.
- Annal. XLVIII, 608. 580. Henry Resal (27.I.1828-22.VIII.1896). C. Jordan. Journ. Math. Ser. 5, II, 453. -- M. Levy ibid. 455. Compt. Rend. CXXIII, 435.
- 581. H. L. Fizeau (24. IX. 1819—18. IX. 1896). A. Cornu. Compt. Rend. CXXIII, 471. 582. Felix Tisserand (1845—20. X. 1896). A. Cornu. Compt. Rend. CXXIII, 623. 583. Hugo Gyldèn (29. V. 1841—9. XI. 1896). O. Callendreau. Compt. kend
- CXXIII, 771.
- 584. Karl Weierstraß (31. X. 1815-19. II. 1897). L. Fuchs. Crelle CXVII, 357.

Gleichungen.

- 585. Über die Irreduktibilität ganzzahliger ganzer Funktionen. E. Netto. Math. Annal. XLVIII, 81.
- 586. Sur les fonctions entières. H. Laurent. N. ann. math. Sér. 3, XV, 23.
- 587. Sur les conditions sous les quelles une équation n'admet que des racines à partie réelle négative. A. Hurwitz. N. ann. math. Sér. 3, XV, 108 [vergl. Bd. XLI, Nr. 420]. 588. Zur Theorie der Resultanten. E. Netto. Crelle CXVII, 57 (vergl. Nr. 199).
- 589. Bezirke der drei Wurzelformen der Gleichung vierten Grades. R. Hoppe. Grun. Archiv 2. R. XIV, 398.
- 590. Sur l'équation Jacobienne du sixième degré. Brioschi. Quart. Journ. math. XXVIII, 382.

591. Sur les racines de l'équation x = ax. E. M. Lémeray. N. ann. math. Sér. 3. XV, 548.

592. Sur les équations représentables par trois systèmes linéaires de points cotés. M. d'Ocagne. Compt. Rend. CXXIII, 988.

593. Sur l'emploi des systèmes réguliers de points cotés dans la représentation des équations. M. d'Ocagne. Compt. Rend. CXXIII, 1254.
Vergl. Differentialgleichungen 500.

H.

Hydrodynamik.

594. Lois générales du régime uniforme dans les lits à grande section. J. Boussinesq. Compt. Rend. CXXIII, 7 (vergl. Nr. 207).

595. Du régime uniforme dans les canaux rectangulaires larges et dans les tuyaux ou canaux à section circulaire ou demi-circulaire. J. Boussinesq. Compt. Rend. CXXIII, 77.

596. Lois de deuxième approximation du régime uniforme, dans les tuyaux circulaires et dans les canaux démi-circulaires. J. Boussinesq. Compt. Road CXXIII 141

Rend. CXXIII, 141. 597. Sur l'équilibre et les mouvements des mers. H. Poincaré. Journ. Math. Sér. 5, II, 57, 217.

598. Sur le mouvement d'un solide dans un liquide indéfini. R. Liouville. Compt. Rend. CXXIII, 874.

599. Sur le mouvement d'un solide dans un liquide indéfini. W. Stekloff. Compt. Rend CXXIII, 1252.

600. On the stability of a frictionless liquid. Theory of critical planes. A. B. Basset. Math. Annal. XLVIII, 89.

601. Note on the form of the energy integral in the motion of an incompressible fluid. J. Brill. Quart. Journ. math. XXVIII, 185.

Vergl. Nautik.

Hyperbel.

602. Elementare Bestimmung der Lage der gleichseitigen Hyperbel im Kegel. G. D. E. Weyer. Grun. Archiv 2. R. XIV, 139.

603. Deux triangles orthocentriques inscrits à une hyperbole équilatère. E. N. Barisien. N. ann. math. Sér. 3, XV, 295.

604. Propriété d'un triangle quelconque inscrit dans une hyperbole équilatère. H. Brocard. N. ann. math. Sér. 3, XV, 388.

605. Points dans lesquels une hyperbole équilatère est coupée par un cercle ayant pour centre un point de l'hyperbole. Ern. Foucart. N. ann math. Sér. 3, XV, 146.

606. Propriété de 3 points dans lesquels une hyperbole est coupée par une circonférence ayant pour centre un point de l'hyperbole et passant par le symetrique de ce point. A. Mannheim. N. ann. math. Sér. 3, XV. 290. — Cl. Servais ibid. 879.

Vergl. Analytische Geometrie der Ebene 455.

K.

Kegelschnitte.

607. Zur Theorie des Kegelschnittbüschels. A. Wimann. Grun. Archiv 2. R XIV, 149.

608. Propriété d'un faisceau de coniques. A. Droz-Farny. N. ann. math. Sér. 3. XV. 486.

609. Propriété des coniques passant par deux points fixes et tangentes à une droite donnée en un point donné. A. Droz-Farny. N. ann. math. Sér. 3. XV, 489.

610. Zum Pythagoräischen Lehrsatz. K. Zaradnik. Grun. Archiv 2. R. XIV, 105. 611. Sur la perspective des arcades. A. Boulanger. N. ann. math. Sér 3, XV, 376.

611. Sur la perspective des arcades. A. Boulanger. N. ann. math. Ser 3, XV, 376. 612. Sur les segments de coniques limités à une normale. M. d'Ocagne. N. ann. math. Sér. 3, XV, 215, 281.

613. Propriété du triangle formé par les tangentes menées d'un point à une conique et par la polaire de ce point. A. Droz-Farny. N. ann. math. Sér. 3, XV, 150

614. On considère tous les cercles tangents en un même point à une conique donnée. Lieu du pôle de la seconde corde d'intersection du cercle et de la conique par rapport à la conique. A. Mannheim. E. N. Barisien. N. ann. math. Sér. 3, XV, 292.

Vergl. Ellipse. Formen 530. Hyperbel. Kreis. Parabel.

Kettenbrüche.

615. Nouvelles applications des fractions continues. Andr. Markoff. Math. Annal. XLVII, 579.

616. Sur une représentation géométrique du développement en fraction continue ordinaire. Fel. Klein. N. ann. math. Sér. 3, XV, 327.

Kinematik.

617. Sur un déplacement remarquable. R. Bricard. Compt. Rend. CXXIII, 989.

618. Un plan se déplace en restant tangent à une surface; pour une quelconque de ses positions sa caractéristique passe par le point où il touche cette surface. Raym. Sée. N. ann. math. Sér. 8, XV, 173.

Kreis.

619. Dreizehn Auflösungen des Malfattischen Problems. C. Davids. Grun. Archiv

2. R. XIV, 276 [vergl. Bd. XLI, Nr. 176].

620. Si 3 cercles sont inscrits à un triangle, les quatrièmes tangentes communes qu'ils admettent, pris deux à deux, forment un triangle homologique du premier. A. Droz-Farny. N. ann. math. Sér. 3, XV, 150.

621. Droite engendrée au moyen d'une circonférence fixe et d'une circonférence variable. A. Droz-Farny. N. ann. math. Sér. 3, XV, 434.

622. Enveloppe de l'axe radical d'un cercle fixe et d'un cercle variable tangent à deux cercles donnés. E. N. Barisien. N. ann. math. Sér. 3, XV, 577 --X. Antomari ibid. 582.

Vergl. Abbildung 440. Ellipse 514.

Krümmung.

623. Sur des centres de courbure successifs. La Géocine. N. ann. math. Sér. 3,

624. Sur le rayon du cercle osculatun d'une courbe quelconque comme limite d'un certain quotient. G. Tzitzéica. N. ann. math. Sér. 3, XV, 198.

625. Le théorème de Gauss sur la courbure. A. Colinon. N. ann. math. Sér. 3, XV, 63.

626. Die Amslerschen Flächensätze im Gebiete affin veränderlicher Systeme und auf den Flächen konstanter Gaussscher Krümmung. Joh. Kleiber. Grun. Archiv 2. R. XIV, 405.

627. Biegung mit Erhaltung der Hauptkrümmungsradien. J. Hazzidakis. Crelle CXVII, 42.

Vergl. Analytische Geometrie des Raumes 459. Ellipse 515. Parabel 681.

Maxima und Minima.

628. Si x, y, z sont trois nombres positifs et x+y+z=1 il s'en suit $(1-x)(1-y)(1-y) \le 8xyz$. Gallucci. N. ann. math. Sér. 3, XV, 96.

Mechanik.

629. Über die Prinzipien der Mechanik. L. Königsberger. Berl. Akad. Ber. 1896. 899, 1173.

630. Uber das Prinzip der kleinsten Aktion und das Hamiltonsche Prinzip.
Mor. Rethy. Math. Annal. XLVIII, 514.

631. Sur les solutions périodiques et le principe de moindre action. H. Poincaré. Compt. Rend. CXXIII, 915.

632. Beiträge zu Riemanns Integrationsmethode für hyperbolische Differentialgleichungen und deren Anwendung auf Schwingungsprobleme. W. Wirtinger. Math. Annal. XLVIII. 865.

633. Sur les intégrales quadratiques des équations de la dynamique. G. de Pirro. Compt. Rend. CXXIII, 1054. — Appell ibid. 1057.
634. Sur une mécanique réglée. R. de Saussure. Compt. Rend. CXXIII, 796

[vergl. Nr. 561].

- 635. Sur les transformations des équations de la dynamique. P. Painlevé. Compt. Rend. CXXIII, 392.
- 636. Sur les singularités des équations de la dynamique. P. Painlevé. Compt. Rend. CXXIII, 636.
- 637. Sur les singularités des équations de la dynamique et sur le problème des trois corps. P. Painlevé. Compt. Rend. CXXIII, 871.
- 638. Sur une forme nouvelle des équations du problème des trois corps. H. Poincaré. Compt. Rend. CXXIII, 1031.

639. Sur la méthode de Bruns (problème des trois corps). H. Poincaré. Compt.

- Rend. CXXIII, 1224. 640. Sur le problème des trois corps. D. Gravé. N. ann. math. Sér. 3, XV, 537.
- 641. Remarque sur les problèmes de forces centrales. Em. Borel. N. ann. math. Sér. 3, XV, 236.
- 642. Recherches analytiques sur un cas de rotation d'un solide pesant autour d'un point fixe. P. A. Nekrassoff. Math. Annal. XLVII, 445.
 643. Sur le déplacement de l'axe de rotation d'un corps solide dont une partie
- est rendue momentanément mobile par rapport au reste de la masse. Edm. & M. Fouché. Compt. Rend. CXXIII, 93.
- 644. Sur l'emploi des équations de Lagrange dans la théorie du choc et des percussions. P. Appell. Journ. Math. Sér. 5, II, 5.
 645. Sur une proposition de mécanique. F. Siacci. Compt. Rend. CXXIII, 395.
- 646. Sur une question de mécanique. Astor. N. ann. math. Sér. 3, XV, 33, 377. 647. Sur le mouvement d'un corps grave de révolution suspendu par un point de son axe (der Kreisel). Fel. Klein. N. ann. math. Sér. 3, XV, 218.
 648. On a dynamical top. G. P. Walker. Quart. Journ. math. XXVIII, 175.
- 649. Équations du mouvement d'un point matériel sur une surface quand on tient compte du frottement. W. de Tannenberg. N. ann. math. Sér. 3, XV, 201.
- 650. Uber ebene einfache Fachwerke. Friedr. Schur. Math. Annal. XLVIII, 142.
- 651. Sur la résistance des ponts sous le passage de convois périodiques, notamment de ceux qui ont été prévus par le règlement du 29 Aout 1891. Marc. Duplaix. Compt. Rend. CXXIII, 740.
- 652. Sur la photographie des bruits du coeur. A. de Holowinski. Compt. Rend. CXXIII, 162.
 - Vergl. Astronomie. Elastizität. Elektrizität. Elliptische Transcendenten 520. Hydrodynamik. Molekularphysik. Optik. Potential. Wärmelehre.

Molekularphysik.

653. Sur quelques particularités des courbes de solubilité. H. Le Chatelier. Compt. Rend. CXXIII, 593.

654. Sur l'entropie moléculaire. G. Darzens. Compt. Rend. CXXIII, 940.

655. Sur le répartition des déformations dans les métaux soumis à des efforts. G. Charpy. Compt. Rend. CXXIII, 225, 488, 876. — L. Hartmann ibid. 444, 639. Vergl. Wärmelehre.

N.

Nautik.

656. Sur la stabilité de l'équilibre des corps flottants. P. Duhem. Journ. Math. Sér. 5, I, 91.

657. Sur la stabilité d'un navire qui porte du lest liquide. P. Déhem. Journ. Math. Sér. 5, II, 23.

658. Sur la stabilité de l'équilibre des corps flottants. E. Guyon, Journ, Math. Sér. 5, II, 21.

659. Étude théorique sur la plongée des sous-marins. Leflaine. Compt. Rend. CXXIII, 860.

0.

Oberflächen.

- 660. Sur la déformation des surfaces. Guichard. Journ. Math. Sér. 5, II, 123.
- 661. Sur la déformation des surfaces. P. Stückel. Compt. Rend. CXXIII, 677.
- 662. Sur quelques récents résultats dans la théorie des surfaces algébriques. G. Castelnuovo et F. Enriques. Math. Annal. XLVIII, 241. 663. Über quadratische Transformationen und rationale Flächen mit Kegelschnitt-
- scharen. Th. Reye. Math. Annal. XLVIII, 118.
- 664. Sur une classe de surfaces isothermiques dépendant de deux fonctions arbitraires. A. Thybaut. Compt. Rend. CXXIII, 295 (vergl. Nr. 49).
 665. Uber Differentialgleichungen von Rotations- und Regelflächen. Ed. Dolezal.
- Grun. Archiv 2. R. XIV, 1.
- 666. Abwickelbare Schraubenfläche. R. Hoppe. Grun. Archiv 2. R. XIV, 332. 667. Zur Theorie der Spiralflächen. Ebner. Grun. Archiv. 2. R. XIV, 241.
- 668. Sur le paraboloïde des 8 droites et les nappes de développées de surfaces. A. Mannheim. Compt. Rend. CXXIII, 983.
- 669. Détermination d'une surface du troisième ordre générale par sa hessienne. F. Dumont. N. ann. math. Sér. 3, XV, 312.
- 670. Sur un cône circulaire et un conoïde du quatrième ordre. Pier. Delix. N. ann. math. Sér. 3, XV, 556.
 - Vergl. Abbildung. Abelsche Transcendenten. Differentialgleichungen 503. 504. Funktionen. Krümmung 625. 626. 627.

Oberflächen zweiter Ordnung.

- 671. Ein Beitrag zur Theorie der Flächen zweiten Grades. St. Glaser. Grun. Archiv 2. R. XIV, 156 [vergl. Bd. XLI, Nr. 155].
 672. Sur la détermination, en un point d'une surface du second ordre, des axes
- de l'indicatrice et des centres de courbure principaux. A. Mannheim. Journ. Math. Sér. 5, II, 51.
- 673. (fleichseitig hyperbolischer Schnitt der Flüche zweiten Grades. R. Hoppe. Grun. Archiv 2 R. XIV, 436.
- 674. Sur l'intersection de deux quadriques. H. Andoyer. N. ann. math. Sér. 3, XV, 153.

Optik.

- 675. Mathematische Theorie der Diffraction. A. Sommerfeld. Mathem. Annal. XLVII, 317.
- 676. Theorie der Reflexion und Brechung transversaler Kugelwellen mit Anwendung auf die Reflexion und Brechung des Lichtes. P. Jaerisch. Crelle, CXVII, 291.

P.

Parabel.

- 677. Relation entre les angles sous lesquels une normale à une parabole coupe l'axe de cette parabole et la parabole même dans son second point de rencontre avec celle-ci. Ern. Foucart. N. ann. math. Sér. 3, XV, 147.
- 678. Cercle passant par le sommet d'une parabole et par les deux points dans lesquels elle est coupée par une corde focale. A. Droz-Farny. N. ann. math. Sér. 3, XV, 196.
- 679. Propriété du cercle décrit sur une corde focale comme diamètre. A. Droz-Farny. N. ann. math. Sér. 3, XV, 197, 438.
- 680. Sur les cordes normales de la parabole. M. d'Ocagne. N. ann. math. Sér. 3, XV, 274. — Cl. Servais ibid. 378. — M. ibid. 432.
- 681. Propriété du cercle osculateur de la parabole. M. d'Ocagne. N. ann. math. Sér. 3, XV, 380.

Planimetrie.

682. Construction du polygone régulier de 17 côtés au moyen du seul compas. L. Gérard. Math. Annal. XLVIII, 390.

Potential.

683. Sur le problème de Dirichlet et les fonctions harmoniques fondamentales attachées à une surface fermée. Le Roy. Compt. Rend. CXXIII, 986.

Digitized by GOOGIC

Quadratur.

684. De l'aire plane balayée par un vecteur variable. Ern. Duporcq. Journ. Math. Sér. 5, I, 443.

R.

Reihen.

685. Fondements de la théorie des séries divergentes sommables. Em. Borel.

Journ. Math. Sér. 5, II, 103 [vergl. Nr. 345, 346, 347].

686. Sur la région de sommabilité d'un développement de Taylor. Em. Borel. Compt. Rend. CXXIII, 548.

687. Sur les séries de Taylor. Em. Borel. Compt. Rend. CXXIII, 1051.

688. Sur les séries de Taylor admettant leur cercle de convergence comme coupure. Em. Borel. Journ. Math. Sér. 5, II, 441.

689. Uber Vereinfachungen in der elementaren Theorie der analytischen Funktionen. Alfr. Pringsheim. Math. Annal. XLVII, 121.

690. Uber Multiplikation und Nichtverschwinden Dirichletscher Reihen. F. Mertens.

Crelle, CXVII, 169. 691. Sur la formule sommatoire d'Euler. J. Franel. Math. Annal. XLVII, 433.

692. Quelques exemples de séries doublement périodiques. P. Appell. N. ann. math. Sér. 3, XV, 126.

693. Über die Gaussischen Summen. Fr. Mertens. Berl. Akad. Ber. 1896¹, 217.

694. Sur les sommes de Gauss. P. de Séguier. Compt. Rend. CXXIII, 166.

695. Products and series involving prime numbers only. J. W. L. Gleisher. Quart. Journ. math. XXVIII, 1 (vergl. Nr. 354).

696. Sur le dévelloppement de x en série ordonnée suivant les puissances du sinus de la variable. F. Gomes Teixeira. N. ann. math. Sér. 3, XV, 270. 697. Un problème sur les series. M. Petrovitch. N. ann. math. Sér. 3, XV, 58.

Vergl. Astronomie 464. Differentialgleichungen 482. 486. 487. Funktionen 531.

Rektifikation.

698. Quelques propriétés des arcs des courbes algébriques planes ou gauches.

G. Humbert. Journ. Math. Sér. 5, I, 181.

699. Einige durch den Ausdruck des Bogens bestimmte Kurven. R. Hoppe. Grun. Archiv 2. R. XIV, 328.

Sphärik.

700. Sur l'aire du quadrilatère sphérique inscrit. H. Brocard. N. ann. math. Sér. 3, XV, 284.

Stereometrie.

701. Sur une question de géométrie relative aux polyèdres. H. Bricard. N. ann. math. Sér. 3, XV, 331.

Substitutionen.

702. Exposé d'une théorie nouvelle des substitutions linéaires. E. Laurent. N. ann. math. Sér. 3, XV, 345.
703. Sur les isomorphes holoédriques et transitifs des groupes symmétriques ou

alternés. Ed. Maillet. Journ. Math. Sér. 5, I, 5.
704. Nouvelles recherches sur la limite de transitivité des groupes qui ne con-tiennent pas le groupe alterné. C. Jordan. Journ. Math. Sér. 5, I, 35.

705. The regular substitution groups, whose order is less than 48. G. A. Miller. Quart. Journ. math. XXVIII, 82.

706. List of transitive substitution groups of degree twelve. G. A. Miller. Quart. Journ. math. XXVIII, 193.

707. Sur les groupes de substitution. G. A. Miller. Compt. Rend. CXXIII, 91, 204.

708. Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene. A. Wiman. Math. Annal. XLVIII, 195. Vergl. Formen. Funktionen 552.

T.

Thetafunktionen.

709. Rémarque sur la formule théta de Jacobi. A. Gutzmer. N. ann. math. Sér. 3, XV, 365.

710. Über ein allgemeines aus Thetafunktionen von zwei Argumenten gebildetes Orthogonalsystem und seine Verwendung in der Mechanik. E. Jahnke. Berl. Akad. Ber. 18962, 1023.

V.

Variationsrechnung.

711. Begründung der Lagrangeschen Multiplikatorenmethode in der Variationsrechnung durch Vergleich derselben mit einer neuen Methode, welche zu den nämlichen Lösungen führt. B. Turksma. Math. Annal. XLVII, 33.

W.

Wärmelehre.

- 712. Recherches sur la dépendance entre le rayonnement d'un corps et la nature du milieu environant. Smoluchowski de Smolan. Compt. Rend. CXXIII, 230.
- 713. Influence de la pression dans les changements d'état d'un corps A. Ponsot. Compt. Rend. CXXIII, 595.
- 714. Tension de vapeur d'un corps comprimé par un gaz qu'il dissout. Tension de vapeur d'une solution en général. A. Ponsot. Compt. Rend. CXXIII, 648.
- 715. Sur une loi relative à la vapeur d'eau. Rateau. Compt. Rend. CXXIII, 808. 716. Sur une machine thermique. Delsol. Compt. Rend. CXXIII, 1256.

Z.

Zahlentheorie.

- 717. Ausgewählte Kapitel der Zahlenlehre (autographiertes Vorlesungsheft).
- Fel. Klein. Math. Annal. XLVIII, 562.

 718. Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe. G. Frobenius. Berl. Akad. Ber. 1896¹, 689.
- 719. Über Gruppencharakter. G. Frobenius. Berl. Akad. Ber. 1896², 985. 720. Über die Primfaktoran der Gruppendeterminante. G. Frobenius. Akad. Ber. 18962, 1343.
- 721. Über Zahlengruppen in algebraischen Körpern. H. Weber. Math. Annal. XLVIII, 433.
- 722. Uber Gruppen, deren sämtliche Teiler Normalteiler sind. R. Dedekind. Math. Annal. XLVIII, 548.
- 723. Über das Fundamentalsystem und die Discriminante der Gattungen algebraischer Zahlen, welche aus Wurzelgrössen gebildet sind. G. Landsberg. Crelle, CXVII, 140.
- 724. Sur les propriétés des nombres entiers qui sont dérivées de l'intuition de l'espace. H. Minkowski. N. ann. math. Sér. 3, XV, 393 [vergl. Bd. XLI Nr. 567 |.
- 725. Au sujet d'une précédente communication, relative à quelques propriétés des racines primitives et des racines secondaires des nombres premiers. De Jonquières. Compt. Rend. CXXIII, 374 [vergl. Nr. 417, 418].
- 726. Au sujet des nombres premiers dont un nombre quelconque donné ne pent être racine primitive. De Jonquièrs. Compt Rend. CXXIII, 405.
- 727. Sur les fractions décimales périodiques. C. E. Bickmore. N. ann. math. Sér. 3, XV, 222.
- 728. Anzahl der Zerlegungen einer ganzen rationalen Zahl in Summanden.
 J. Hermes. Math. Annal. XLVII, 281 [vergl. Bd. XLI, Nr. 579].
 729. Factorisation of numbers. F. W. Lawrence. Quart. Journ. math. XXVIII, 285.
- 730. Über die Faktoren der Zahlen. (f. Speckmann (frun. Archiv 2. R. XIV, 441.
- 731. Sur les nombres parfaits. C. Bouret. N. ann. math. Sér. 3, XV, 297.
 732. Sur les lois de réciprocité. X. Stouff. Compt. Rend. CXXIII, 486.

Digitized by GOOGLE

733. Généralisation de formule de Wilson. Lognon. N. ann. math. Sér. 3, XV, 503.
734. Quelques extensions de théorème de Fermat sur les nombres polygones.
Ed. Maillet. Journ. Math. Sér. 5, II, 363.
735. Potenzkongruenzen. G. Speckmann. Grun. Archiv 2. R. XIV, 112 [vergl. D.] VI. Ne. 2007.

Bd. XLI, Nr. 267].

736. Über die Auflösung der Kongruenz x² = a(mod p). G. Speckmann. Grun. Archiv 2. R. XIV, 445.

737. Formes linéaires des diviseurs de $x^2 \pm A$. P. Pepin. Compt. Rend. CXXIII, 683, 737.

738. Solution de l'équation $X^4 + 35Y^4 = Z^2$. P. Pepin. Journ. Math. Sér. 5. I, 851.

739. Über unbestimmte Gleichungen zeen Grades. G. Speckmann. Grun. Archiv 2. R. XIV, 443.

740. Nombres triangulaires dont les carrés sont de même triangulaires. H. Bro-

card. N. ann. math. Sér. 3, XV, 93.
741. Groupes de cinq impairs consécutifs dont quatre sont des nombres premiers. H. Brocard. N. ann. math. Sér. 3, XV, 889.

742. Trouver 3 nombres en progression géométrique tels que chacun d'eux, augmenté d'une unité donne un carré. H. Brocard. N. ann. math. Sér. 3, XV, 288.
743. Über die Schubertsche Lösung eines Bachetschen Problems. E. Busche.

Math. Annal. XLVII, 105. Vergl. Formen. Reihen 695.

-MAR 11 1930

-NA MAR 11 1930

-MAR 11 1930

-MAR 11 1930

