

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

/Sci885.40 Bd. June, 1892.

Harbard College Library

FROM THE BEQUEST OF

HORACE APPLETON HAVEN, OF PORTSMOUTH, N. H.

(Class of 1842.)

2 Feb. 1891 - 12 March, 1892.

SCIENCE CENTER LIBRARY

Zeitschrift 591.67

für

Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

von

Dr. O. Schlömilch, Dr. E. Kahl

und

Dr. M. Cantor.

XXXVI. Jahrgang.

Mit in den Text gedruckten Figuren und zwölf lithographirten Tafeln.

Leipzig, Verlag von B. G. Teubner. 1891.

Sci885.40

135

1891, Februar 1892, March 12:

Inhalt.

Arithmetik und Analysis.	Seite
Zur Aufstellung arithmetischer Identitäten. Von G. Vivanti	1
Ueber die Darstellung der Lösungen eines Systems linearer	
Differentialgleichungen erster Ordnung in der Umgebung	
eines singulären Punktes. Von E. Grünfeld	21
Ueber eine algebraische Determinante mit eigenthümlichem	
Bildungsgesetz. Von K. Weihrauch	34
Ueber Thetafunctionen, deren Argumente einem System von Drittelperioden	
gleich sind. Von J. Thomae	41
Eine Verallgemeinerung des binomischen Satzes. Von L. Schendel	60
Kriterien der Theilbarkeit dekadischer Zahlen. Von Dietrichkeit	
Ueber gewisse goniometrische Determinanten und damit zu-	
sammenhängende Systeme von linearen Gleichungen. Von	
K. Weihrauch	71
Bemerkung zur Theorie der linearen Differentialgleichungssysteme. Von	••
G. Haeuser	116
Ueber elliptische Integrale dritter Gattung. Von J. Thomae	128
Praktische Methode zur Berechnung der reellen Wurzeln reeller	
algebraischer oder transcendenter Gleichungen mit einer	
Unbekannten. Von R. Mehmke	158
Versuch über die Gleichung $x^p + y^p = z^p$. Von A. Rieke	249
Kriterien der Theilbarkeit dekadischer Zahlen. Von Dietrichkeit	
Ueber einen Specialfall der hypergeometrischen Reihe dritter	
Ordnung. Von L. Saalschütz	
Schluss der Abhandlung	
Mathematische Miscellen. Von L. Schendel	309
Ueber Invarianten linearer Differentialgleichungen. Von Dietrichkeit	
Kriterien der Theilbarkeit dekadischer Zahlen. Von Dietrichkeit	
Bemerkung zur Transformation der Differentialgleichungen von Punkt- in	
Liniencoordinaten. Von W. Heymann	
Arithmetischer Satz. Von Bachmann	
Eine Methode zur numerischen Auflösung einer algebraischen Gleichung.	
Von Th. Lohnstein	
TOR EM. MORRESON	.,0.,
Synthetische und analytische Geometrie.	
Ort der Kegelschnittssehnen, die von einem gegebenen Punkte aus unter	
rechtem Winkel erscheinen. Von O. Richter	49
Einige Sätze über räumliche Collineation und Affinität, welche sich auf die	
Krümmung von Curven und Flächen beziehen. Von R. Mehmke	
Ueber absolute Elementensysteme auf ebenen Unicursalcurven	
vierter und dritter Ordnung. Von W. Binder	78
Ueber eine einfache planare Darstellung der Gestalten der	
ebenen Curven dritter Ordnung. Von M. Disteli	138
Ueber die Durchschnitte einer Geraden und einer Curve zweiter Ordnung. Von	
O. Schlömilch	
Ueber die bicircularen Curven vierter Ordnung. Von O. Richter	191_{T}
Digitized by GO	OQI

	eite
Ueber zwei, die Krümmung von Curven und das Gauss'sche	
Krümmungsmass von Flächen betreffende charakteristische	
Eigenschaften der linearen Punkttransformationen. Von	
R. Mehmke	206
Ueber eine allgemeine Classe von ein-zweideutigen Raumtrans-	
formationen. Von B. Wimmer	214
Beitrag zur Kenntniss der algebraischen Flächen mit Mittelpunkt. Von	
K. Stoltz	308
Ueber eine besondere Transformation algebraischer Curven	
und damit in Verbindung stehende Sätze Jacob Steiner's.	
Von B. Sporer	339
Ueber einen orthogonalen Reye'schen Complex. Von H. Thieme	849
Ueber die involutorischen Gebilde, welche eine ebene Cremona-	
Transformation, speciall die quadratische enthalten kann.	
Von K. Doehlemann	
Ueber den Begriff der Projection einer geraden Linie. Von G. Hauck	879
Kinematik und Mechanik.	
Ueber die Gestaltung der Koppelcurven für besondere Fälle des	
Kurbelgetriebes. Von R. Müller	11
Ueber die Doppelpunkte der Koppelcurve. Von R. Müller	65
Ueber die Krümmungsmittelpunkte der Bahncurven in ebenen	
ähnlich-veränderlichen Systemen. Von R. Müller	
Zur Lage des Schwerpunkts eines Rotationskörpers. Von F. Kosch	188
Ueber die Krümmung der Bahnevoluten bei starren ebenen	
Systemen. Von R. Müller	193
Die Wendepole der absoluten und der relativen Bewegung. Von	
F. Wittenbauer	231
Ueber die Anwendung der Methode des Imaginären auf Probleme des Gleich-	
gewichts und der Bewegung in einer Ebene. Von A. Gleichen	243
Construction der Krümmungsmittelpunkte der Hüllbahnevo-	
luten bei starren ebenen Systemen. Von R. Müller	257
Die Bestimmung der Kreispunktcurven eines ebenen Gelenk-	
vierseits. Von C. Rodenberg	267
Beitrag zur kinematischen Theorie der Gelenkmechanismen. Von	
J. Kleiber	296
Beitrag zur Theorie der übergeschlossenen Gelenkmechanismen.	
Von J. Kleiber	328
Physik.	
Licht und Elektricität. Von W. Zenger	44
Analytische Untersuchungen über die Constitution der in	
krummen Flächen gebrochenen a priori astigmatischen	
Strahlenbündel mit Anwendungen der neueren Geometrie.	•
Von A. Ahrendt	99
Preisaufgaben.	
Preisaufgabe der Fürstl. Jablonowski'schen Gesellschaft in Leipzig für das	
Jahr 1894	255
Lösung der Preisaufgabe der Physikalisch-Oekonomischen Gesellschaft zu	07.0
	25 6
Digitized by Google	

Zeitschrift

für

Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

VD4

Dr. O. Schlömilch, Dr. E. Kahl

and

Dr. M. Cantor.

36. Jahrgang. 1. Hoft.

Mit drei lithographirton Tafeln.

Leipzig, Verlag von B. G. Teubner. 1891. Im Verlage von B. G. Tenbner in Lelpzig ist soeben erschienen umt durch alle Buchhandlungen zu beziehen:

INHALT UND METHODE

DES

PLANIMETRISCHEN UNTERRICHTS.

EINE VERGLEICHENDE PLANIMETRIE

THE

DR. HEINRICH SCHOTTEN.

[IV u. 370 S.] gr. 8. geb. n. .# 6. —

Bei der großen Zahl von Lehrbüchern der Elementar-Mathematik, die für sich eine ganze Bibliothek ausmachen, glaubt der Verfasser den Wünschen des mathematischen Lehrerpublikums entgegenzukommen, wenn er eine Zusammenstellung der wichtigeren Arbeiten auf dem Gebiete des planimetrischen Unterrichts unternimmt. Es soll dieses Work dazu dienen, sich rasch und sicher über die gesamte einschlägige Litteratur zu orientieren und selbst nach den ausführlich gegebenen Zitaten über einen bestimmten Gegenstand ein Urteil sich bilden gu können. Es gewährt somit gewissermaßen einen Einblick in die Entstehung des vorliegenden subjektiv behandelten Teiles und setzt den Leser in den Stand, denselben selbst an der Hand des gebotenen Materials prüfen zu können. Ein sorgfaltiges Namen- und Sachregister wird die Branchbarkeit dieses Handbuches erhöhen und es zu einem Nachschlagebuch für alle Fragen auf dem Gebiete des planimetrischen Unterrichts geeignet machen. Als Einleitung schickt Verfasser eine Studie über die Reformbestrebungen auf dem Gebiete des planimetrischen Unterrichts voraus, die ebenfalls in zahlreichen Zitaten das zu berücksichtigende Material bietet; die am Schluß dieser Einleitung aufgestellten Thesen kennzeichnen die Ansichten des Verfassers gegenüber diesen Reformbestrebungen. Der erste Band wird die Grundbegriffe behandeln und also vorwiegend auf dem mathematisch-philosophischen Grenzgebiete sich bewegen.

Zur Aufstellung arithmetischer Identitäten.

Von G. VIVANTI.

- 1. Die Entwickelung einer von x=-1 bis x=1 gegebenen Function in eine nach Kugelfunctionen fortschreitende Reihe ist, wenn möglich, vollkommen bestimmt.* Wenn also für die Entwickelungscoefficienten mehrere verschiedene Ausdrücke vorliegen, so kann man behaupten, dass diese Ausdrücke sämmtlich unter einander identisch gleich sind. Man gelangt auf diese Weise zu zahlreichen arithmetischen Identitäten, von denen wir hier nur einige als Beispiel aufstellen wollen.
- 2. Es mögen einige auf Kugelfunctionen bezügliche, im Folgenden zu benutzende Formeln vorausgeschickt werden.
- a) Wird eine von x = -1 bis x = 1 gegebene Function f(x) nach Kugelfunctionen entwickelt:

so ist:**
$$f(x) = a_0 X^{(0)} + a_1 X^{(1)} + a_2 X^{(2)} + \cdots,$$

$$a_n = \frac{2n+1}{2} \int_{-1}^{4} f(x) X^{(n)} dx.$$

b) Setzt man $x = \cos \Theta$, $X^{(n)} = P^{(n)}(\cos \Theta)$, so hat man die Entwickelungen:

Iungen: We
$$P^{(n)}(\cos \Theta) = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots 2n}$$

$$\times \left\{ \cos n\Theta + \frac{1 \cdot n}{1 \cdot (2n-1)} \cos (n-2)\Theta + \frac{1 \cdot 3 \cdot n(n-1)}{1 \cdot 2 \cdot (2n-1)(2n-3)} \cos (n-4)\Theta + \dots \right\}$$

$$= \frac{1}{4^n} \sum_{i=0}^{n-1} {2n-2i \choose n-i} {2i \choose i} \cos (n-2i)\Theta,$$

$$P^{(n)} \cos \Theta = \frac{4}{\pi} \frac{2 \cdot 4 \cdot 6 \dots 2n}{3 \cdot 5 \cdot 7 \dots (2n+1)}$$

$$\times \left\{ \sin (n+1)\Theta + \frac{1 \cdot (n+1)}{1 \cdot (2n+3)} \sin (n+3)\Theta + \frac{1 \cdot 3 \cdot (n+1)(n+2)}{1 \cdot 2 \cdot (2n+3)(2n+5)} \sin (n+5)\Theta + \dots \right\}$$

$$= \frac{4^{n+1}}{\pi} \sum_{i=0}^{\infty} \frac{1}{2n+2i+1} \frac{{2i \choose i}}{{2n+2i+1}} \sin (n+2i+1)\Theta.$$

[•] Heine, Handbuch der Kugelfunctionen, 2. Aufl., Bd. I S. 70.

^{**} Ebenda S. 67.

^{***} Ebenda S. 17, 19.

c) Es gelten ferner die Formeln:*

$$x^{n} = \frac{n!}{1 \cdot 3 \cdot 5 \dots (2n+1)} \times \left\{ (2n+1) X^{(n)} + (2n-3) \frac{2n+1}{2} X^{(n-2)} + (2n-7) \frac{(2n+1)(2n-1)}{2 \cdot 4} X^{(n-4)} + \dots \right\}$$

$$= \sum_{i=0}^{E\left(\frac{n}{2}\right)} \frac{2n-4i+1}{2n-2i+1} 2^{n-2i} \frac{\binom{n}{i}}{\binom{2n-2i}{n-i}} X^{(n-2i)},$$

5)
$$nX^{(n)} = \frac{n+1}{2n+1}X^{(n+1)} + \frac{n}{2n+1}X^{(n-1)},$$

6)
$$\frac{dX^{(n)}}{dx} = (2n-1)X^{(n-1)} + (2n-5)X^{(n-3)} + (2n-9)X^{(n-5)} + \cdots$$

(d. i.:

6a)
$$\frac{dX^{(2m)}}{dx} = \sum_{i=0}^{m-1} (4i+3)X^{(2i+1)}, \quad \frac{dX^{2m+1}}{dx} = \sum_{i=0}^{m} (4i+1)X^{(2i)},$$
7)
$$\frac{dX^{(n+1)}}{dx} - \frac{dX^{(n-1)}}{dx} = (2n+1)X^{(n)}.$$

Aus 7) folgt durch Integration:

8)
$$\int_{0}^{x} X^{(n)} dx = \frac{1}{2n+1} (X^{(n+1)} - X^{(n-1)}) + const.;$$

die Constante ist = 0 für gerades n. — Die Formel gilt auch für n = 0, wenn man die mit negativem Index behafteten X als identisch Null ansieht.

3. Wir ergreifen diese Gelegenheit, um zwei, wie wir glauben, neue Formeln ohne Beweis mitzutheilen, welche an sich wichtig sind und auch zur Auffindung weiterer Identitäten dienen können. Sie ergeben die Entwickelung nach Kugelfunctionen der Producte $x^m X^{(n)}$, $X^{(m)} X^{(n)}$.

Setzen wir:

$$\frac{n+i}{2n+2i-1} = p_{n,i}, \quad \frac{n+i}{2n+2i+1} = q_{n,i}, \quad p_{n,i} q_{n,i} = r_{n,i},$$

so ist:

9)
$$x^{m} X^{(n)} = \sum_{l=0}^{m} [m, n, \lambda] X^{(m+n-2\lambda)},$$

we fur $\lambda < \frac{m}{2}$:

[•] Ebenda S. 72, 91, 93.

$$\begin{aligned} & [m, n, \lambda] = p_{n, m-2\lambda} p_{n, m-2\lambda-1} \dots p_{n, 2} p_{n, 1} \\ & \times \sum_{i(1)=1-\lambda}^{m-2\lambda+1} \binom{r_{n, i(1)}}{r_{n, i(1)}} \binom{r_{n, 1}(2)}{r_{n, i(2)}} \cdots \sum_{i(\lambda)=0}^{(\lambda-1)+1} r_{n, i(\lambda)} \binom{r_{n, i(\lambda)}}{r_{n, i(\lambda)}} \cdots \right) \\ & = p_{n, m-2\lambda} p_{n, m-2\lambda-1} p_{n, 2} p_{n, 1} \\ & \times \sum_{i(1)=0}^{m-\lambda} \binom{r_{n, i(1)}}{r_{n, i(1)}} \binom{r_{n, i(2)}}{r_{n, i(2)}} \cdots \sum_{i(\lambda)=i^{(\lambda)-1}-1}^{m-2\lambda+1} r_{n, i(\lambda)} \binom{r_{n, i(\lambda)}}{r_{n, i(\lambda)}} \cdots \right), \\ & \text{für } \lambda \geq \frac{m}{2} : \\ & [m, n, \lambda] = q_{m-2\lambda+1} q_{m-2\lambda+2} \cdots q_{-1} q_{0} \\ & \times \sum_{i(1)=1-\lambda}^{1} \binom{r_{n, i(1)}}{r_{i(2)}} \binom{r_{n, i(2)}}{r_{n, i(2)}} \cdots \sum_{i(m-\lambda)=m-2\lambda}^{1} r_{n, i(m-\lambda)} \binom{r_{n, i(m-\lambda)}}{r_{n, i(m-\lambda)}} \cdots \right) \\ & = q_{m-2\lambda+1} q_{m-2\lambda+2} q_{-1} q_{0} \\ & \times \sum_{i(1)=m-2\lambda}^{1} \binom{r_{n, i(1)}}{r_{n, i(1)}} \binom{r_{n, i(2)}}{r_{n, i(1)}} \cdots \binom{r_{n, i(m-\lambda)-1}}{r_{n, i(m-\lambda)}} \cdots \right). \end{aligned}$$

Die Coefficienten $[m, n, \lambda]$ gentigen der recurrirenden Gleichung: $[m+1, n, \lambda] = [m, n, \lambda] p_{n, m-2\lambda+1} + [m, n, \lambda-1] q_{n, m-2\lambda+2}$.

Die zweite Formel ist:

10)
$$X^{(m)}X^{(n)} = \sum_{l=0}^{K\left(\frac{m+n}{2}\right)} \{m, n, \lambda\} X^{(m+n-2\lambda)},$$

wo:

$$\{m, n, \lambda\} = \frac{1}{2^m} {2m-2 \choose m-\lambda} {2 \choose \lambda} \cdot \prod_{k=m-1}^{m-2\lambda+1} q_{n,k} \cdot \prod_{k=m-2}^{1-\lambda} p_{n,k}.$$

Es ist natürlich:

$$\{m, n, \lambda\} = \{n, m, \lambda\}.$$

Die Anwendung von 1) auf 9), 10) ergiebt:

$$\int_{-1}^{1} x^{m} X^{(n)} X^{(m+n-2\lambda-1)} dx = 0,$$

$$\int_{-1}^{1} x^{m} X^{(n)} X^{(m+n-2\lambda)} dx = \frac{2}{2m+2n-4\lambda+1} [m, n, \lambda];$$

$$\int_{-1}^{1} X^{(m)} X^{(n)} X^{(m+n-2\lambda-1)} dx = 0,$$

$$\int_{-1}^{1} X^{(m)} X^{(n)} X^{(m+n-2\lambda)} dx = \frac{2}{2m+2n-4\lambda+1} \{m, n, \lambda\}.$$

4. Wir entwickeln zunächst die Function $\frac{1}{\sqrt{1-x^2}}$ nach Kugelfunctionen.

Da die Entwickelung nur gerade Functionen enthalten darf, so wird sein:

11)
$$\frac{1}{\sqrt{1-x^2}} = \sum_{m=0}^{\infty} a_{2m} X^{(2m)},$$
wo:
$$a_{2m} = \frac{4m+1}{2} \int_{-1}^{1} X^{(2m)} \frac{dx}{\sqrt{1-x^2}} = \frac{4m+1}{2} \int_{0}^{\pi} P^{(2m)}(\cos\Theta) d\Theta.$$

Nun ist wegen [2):

$$\int_{0}^{\pi} P^{(2m)}(\cos\Theta) d\Theta = \frac{1}{4^{2m}} \sum_{i=0}^{2m} {4m-2i \choose 2m-i} {2i \choose i} \int_{0}^{\pi} \cos(2m-2i) \Theta d\Theta,$$

ferner:

$$\int_{0}^{\pi} \cos(2m-2i)\Theta d\Theta = \begin{cases} 0 & \text{für } i \geq m, \end{cases}$$

folglich:

$$\int_{0}^{\pi} P^{(2m)}(\cos\Theta) d\Theta = \frac{\pi}{4^{2m}} {2m \choose m}^{2}$$

und:

12)
$$a_{2m} = \frac{4m+1}{2^{4m+1}} {2m \choose m}^2 \pi = (4m+1) \frac{\pi}{2} \left(\frac{1 \cdot 3 \cdot 5 \dots (2m-1)}{2 \cdot 4 \cdot 6 \dots 2m} \right)^2 *$$

5. Zweitens berechnen wir die Entwickelung von arcsinx, welche die Form hat:

13)
$$arcsin x = \sum_{m=0}^{\infty} b_{1m+1} X^{(2m+1)}$$
.

Die Coefficienten b_{2m+1} können auf mehrere Weisen bestimmt werden.

a) Integriren wir 11)** mit Benutzung von 8), so ergiebt sich:

$$\arcsin x = \sum_{m=0}^{\infty} \frac{a_{2m}}{4m+1} (X^{(2m+1)} - X^{(2m-1)}) = \sum_{m=0}^{\infty} \left(\frac{a_{2m}}{4m+1} - \frac{a_{2m+2}}{4m+5}\right) X^{(2m+1)},$$
also:
$$a_{2m} = a_{2m+2} = \pi (1.3.5...(2m-1))^2 (1.2m+1)^2$$

also:
$$b_{2m+1} = \frac{a_{2m}}{4m+1} - \frac{a_{2m+2}}{4m+5} = \frac{\pi}{2} \left(\frac{1 \cdot 3 \cdot 5 \dots (2m-1)}{2 \cdot 4 \cdot 6 \dots 2m} \right)^2 \left(1 - \left(\frac{2m+1}{2m+2} \right)^2 \right),$$
d. i.:
$$14) b_{2m+1} = (4m+3) \cdot \frac{\pi}{8} \left(\frac{1 \cdot 3 \cdot 5 \dots (2m-1)}{4 \cdot 6 \cdot 8 \dots (2m+2)} \right)^2 = \frac{4m+3}{2^{4m+3} (m+1)^2} \left(\frac{2m}{m} \right)^2 \pi.$$

$$b_{2m+1} = \frac{4m+3}{2} \int_{-1}^{1} X^{(2m+1)} \arcsin x \, dx = \frac{4m+3}{2} \int_{0}^{\pi} P^{(2m+1)} (\cos \Theta) \left(\frac{\pi}{2} - \Theta\right) \sin \Theta \, d\Theta$$

$$=\frac{4m+3}{2^{4m}+3}\sum_{i=0}^{2m+1} {4m-2i+2 \choose 2m-i+1} {2i \choose i} \int_{0}^{\pi} {\pi \over 2} -\Theta \cos(2m-2i+1) \Theta \sin\Theta d\Theta,$$

Digitized by Google

^{*} Die Entwickelungen 11), 13), 15), 17) und 18) finden sich ohne Beweis in Heine, Bd, I S. 85.

^{**} Die Reihenintegration und -differentiation sind in den von uns behandelten Fällen immer erlaubt.

oder auch, wenn man die symmetrischen Glieder (welche einander gleich sind) zu je zwei vereinigt:

$$b_{2m+1} = \frac{4m+3}{4^{2m+1}} \sum_{i=0}^{m} {4m-2i+2 \choose 2m-i+1} {2i \choose i} \int_{0}^{\pi} {\pi \choose \frac{\pi}{2} - \Theta} \cos(2m-2i+1) \Theta d\Theta.$$

Nun ist für |2p+1| > 1:

ferner:

$$\int \cos(\pm\Theta)\sin\Theta \,d\Theta = -\frac{1}{4}\cos2\Theta,$$

$$\int \Theta\cos(\pm\Theta)\sin\Theta \,d\Theta = -\frac{\Theta}{4}\cos2\Theta + \frac{1}{8}\sin2\Theta,$$

folglich:

$$\int_{0}^{\pi} \cos(2p+1) \Theta \sin \Theta d\Theta = 0,$$

$$\int_{0}^{\pi} \Theta \cos(2p+1) \Theta \sin \Theta d\Theta = \begin{cases} \frac{\pi}{4p(p+1)} & |2p+1| > 1, \\ -\frac{\pi}{4} & |2p+1| = 1 \end{cases}$$

und:

$$b_{2m+1} = -\frac{4m+3}{4^{2m+i}} \left\{ \sum_{i=0}^{m-1} {4m-2i+2 \choose 2m-i+1} {2i \choose i} \frac{\pi}{4(m-i)(m-i+1)} - {2m+2 \choose m+1} {2m \choose m} \frac{\pi}{4} \right\}.$$

Vergleichen wir die beiden Ausdrücke von b_{2m+1} , so ergiebt sich:

$$\frac{4m+3}{2^{4m+3}(m+1)^2} {2m \choose m}^2 \pi = \frac{4m+3}{4^{2m+2}} {2m+2 \choose m+1} {2m \choose m} \pi - \frac{(4m+3)\pi}{4^{2m+2}} \sum_{i=0}^{m-1} {4m-2i+2 \choose 2m-i+1} {2i \choose i} \frac{1}{(m-i)(m-i+1)},$$

woraus folgt:

I)
$$\frac{2m(2m+3)}{(m+1)^2} {2m \choose m}^2 = \sum_{i=0}^{m-1} \frac{1}{(m-i)(m-i+1)} {4m-2i+2 \choose 2m-i+1} {2i \choose i}.$$
Digitized by

c) Wir benutzen 3) statt 2).

$$\begin{split} \int \sin 2p \Theta \sin \Theta \ d \ \Theta &= \frac{1}{2} \left(\frac{\sin (2p-1) \Theta}{2p-1} - \frac{\sin (2p+1) \Theta}{2p+1} \right) = \psi(\Theta), \\ \int \Theta \sin 2p \ \Theta \sin \Theta \ d \ \Theta &= \Theta \ \psi(\Theta) - \int \psi(\Theta) \ d \ \Theta \\ &= \frac{\Theta}{2} \left(\frac{\sin (2p-1) \Theta}{2p-1} - \frac{\sin (2p+1) \Theta}{2p+1} \right) + \frac{1}{2} \left(\frac{\cos (2p-1) \Theta}{(2p-1)^2} - \frac{\cos (2p+1) \Theta}{(2p+1)^2} \right), \\ \text{folglich:} \end{split}$$

$$\int_{0}^{\pi} \sin 2p \, \Theta \sin \Theta \, d\Theta = 0,$$

$$\int_{0}^{\pi} \Theta \sin 2p \, \Theta \sin \Theta \, d\Theta = -\frac{1}{(2p-1)^{2}} + \frac{1}{(2p+1)^{2}} = -\frac{8p}{(2p-1)^{2}(2p+1)^{2}},$$

$$b_{2m+1} = \frac{(4m+3) \, 4^{2m+3}}{\pi}$$

$$\times \sum_{i=0}^{\infty} \frac{m+i+1}{(4m+2i+3)(2m+2i+1)^{2}(2m+2i+3)^{2}} \frac{\binom{2i}{i}}{\binom{4m+2i+2}{2m+i+1}},$$

und durch Vergleichung mit 14):

II)
$$\frac{\pi^{2}}{2^{8m+9}(m+1)^{2}} {2m \choose m}^{2}$$

$$= \sum_{i=0}^{\infty} \frac{m+i+1}{(4m+2i+3)(2m+2i+1)^{2}(2m+2i+3)^{2}} \frac{{2i \choose i}}{(4m+2i+2)(2m+2i+1)^{2}(2m+2i+3)^{2}}$$

Bezeichnen wir das allgemeine Glied dieser Reihe durch λ_i , so ist:

$$\begin{split} \frac{\lambda_{i+1}}{\lambda_1} &= \frac{(i+m+2)(2\,i+4\,m+3)(2\,i+2\,m+1)^2(2\,i+2\,m+3)^2 \cdot 2 \cdot (2\,i+1) \cdot i+2\,m+2)}{(i+m+1)(2\,i+4\,m+5)(2\,i+2\,m+3)^2(2\,i+2\,m+5)^2(i+1) \cdot 2 \cdot (2\,i+4\,m+3)} \\ &= \frac{(i+m+2)(2\,i+2\,m+1)^2(2\,i+1)(i+2\,m+2)}{(i+m+1)(2\,i+4\,m+5)(2\,i+2\,m+5)^2(i+1)} = \frac{8\,i^5 + (40\,m+44)\,i^4 + \cdots}{8\,i^5 + (40\,m+76)\,i^4 + \cdots}, \\ &1 - \frac{\lambda_{i+1}}{\lambda_i} = \frac{32\,i^4 + \cdots}{8\,i^5 + \cdots}, \quad \lim_{i \to \infty} \left(1 - \frac{\lambda_{i+1}}{\lambda_i}\right) = 4, \end{split}$$

woraus nach dem Raabe'schen Kriterium* die Convergenz der Reihe folgt.

5. Man gelangt zu einer andern Identität, wenn man die Gleichung 13) differentiirt. Man erhält so wegen 6a):

$$\frac{1}{\sqrt{1-x^{i}}} = \sum_{m=0}^{\infty} b_{2m+1} \sum_{i=0}^{m} (4i+1) X^{(2i)},$$

oder durch Umkehrung der Folge der Summationen:

$$\frac{1}{\sqrt{1-x^2}} = \sum_{m=0}^{\infty} (4m+1) X^{(2m)} \sum_{i=m}^{\infty} b_{2i+1}.$$

^{*} Stolz, Vorlesangen über allgemeine Arithmetik, Bd. I \$ 263.

Vergleichen wir mit 11), so ergiebt sich:

$$a_{2m} = (4m+1)\sum_{m=0}^{\infty} b_{2i+1},$$

woraus mit Berücksichtigung von 12), 14):

$$\frac{(4m+1)\pi}{2^{4m+1}} {2m \choose m}^2 = (4m+1) \sum_{i=1}^{\infty} \frac{(4i+3)\pi}{2^{4i+3}(i+1)^2} {2i \choose i}^2,$$

d. i.:

III)
$$\frac{1}{4^{2m-1}} {2m \choose m}^2 = \sum_{i=m}^{\infty} \frac{4i+3}{16^i (i+1)^2} {2i \choose i}^2.$$

Man kann diese Identität auf eine andere Form bringen. Subtrahirt man beiderseits das erste Glied der Reihe, so wird die linke Seite:

$$=\frac{1}{16^m}\binom{2\,m}{m}^2\left\{4-\frac{4\,m+3}{(m+1)^2}\right\}=\frac{1}{16^m}\,\frac{(2\,m+1)^2}{(m+1)^2}\binom{2\,m}{m}^2=\frac{1}{16^m}\binom{2\,m+1}{m}^2,$$

und man hat:

III
$$\alpha$$
)
$$\frac{1}{16^m} {2m+1 \choose m}^2 = \sum_{i=m+1}^{\infty} \frac{4i+3}{16^i (i+1)^2} {2i \choose i}^2.$$

Ist, wie früher, λ_i das allgemeine Glied der Reihe, so findet man:

$$\frac{\lambda_{i+1}}{\lambda_i} = \frac{(4i+7)(i+1)^2 \cdot 4 \cdot (2i+1)^2}{16(4i+3)(i+2)^2(i+1)^2} = \frac{(4i+7)(2i+1)^2}{4(4i+3)(i+2)^2} = \frac{16i^3 + 44i^2 + \cdots}{16i^3 + 76i^2 + \cdots},$$

$$1 - \frac{\lambda_{i+1}}{\lambda_i} = \frac{32i^2 + \cdots}{16i^3 + \cdots}, \quad \lim_{i = \infty} \left(1 - \frac{\lambda_{i+1}}{\lambda_i}\right) = 2,$$

so dass die Reihe convergirt.

6. Eine dritte zu entwickelnde Function ist $\sqrt{1-x^2}$. Setzen wir

15)
$$\sqrt{1-x^2} = \sum_{i=0}^{\infty} c_{2m} X^{(2m)},$$

wo:

$$c_{2m} = \frac{4m+1}{2} \int_{-1}^{1} X^{(2m)} \sqrt{1-x^2} \, dx = \frac{4m+1}{2} \int_{0}^{\pi} P^{(2m)} (\cos \Theta) \sin^2 \Theta \, d\Theta.$$

Nun ist für |p| > 1:

$$\int \cos 2p \,\Theta \sin^2 \Theta \,d \,\Theta = \left\{ \frac{2p^2 - 1}{4p(p^2 - 1)} \sin^2 \Theta - \frac{1}{4p(p^2 - 1)} \cos^2 \Theta \right\} \sin 2p \,\Theta + \frac{1}{2(p^2 - 1)} \sin \Theta \cos \Theta \cos 2p \,\Theta,$$

ferner:

$$\int_{\cos(\pm 2\Theta)}^{\cos(\pm 2\Theta)} \sin^2\theta \, d\theta = \frac{1}{4} \sin\Theta \cos\Theta + 2 \sin^3\Theta \cos\Theta - \Theta),$$
$$\int_{\sin^2\Theta} d\theta = \frac{1}{2} (\Theta - \sin\Theta \cos\Theta),$$

folglich:

$$\int_{0}^{\pi} \cos 2p \, \theta \sin^2 \theta \, d\theta = \begin{cases} 0 & > 1 \\ -\frac{\pi}{4} & \text{für } |p| = 1. \\ \frac{\pi}{2} & = 0 \end{cases}$$

Setzen wir also statt $P^{(2m)}(\cos \Theta)$ den Ausdruck 2), so ergiebt sich:

$$c_{2m} = \frac{4m+1}{2 \cdot 4^{2m}} \left\{ -2 \binom{2m+2}{m+1} \binom{2m-2}{m-1} \frac{\pi}{4} + \binom{2m}{m}^2 \frac{\pi}{2} \right\},\,$$

d. i.:

$$c_{2m} = -\frac{(4m+1)\pi}{4^{2m+1}(m+1)(2m-1)} {2m \choose m}^2$$

$$= -\frac{\pi}{2} (4m+1) \frac{2m-1}{2m+2} \left(\frac{1 \cdot 3 \cdot 5 \dots (2m-3)}{2 \cdot 4 \cdot 6 \dots (2m-2) \cdot 2m} \right)^2.$$

Diese Formel gilt auch für m = 0, denn es ist:

$$c_0 = \frac{1}{2} \int_0^{\pi} \sin^2 \Theta \, d \, \Theta = \frac{\pi}{4} \cdot$$

Benutzen wir dagegen die Gleichung 3) und berücksichtigen, dass:

$$\int \sin(2p+1)\,\Theta\,\sin\Theta\,d\Theta = \frac{2\sin\Theta\,\cos\Theta\,\sin(2p+1)\,\Theta}{(2p-1)(2p+3)} \\ + \left\{ -\frac{4p^2+4p-1}{(2p-1)(2p+1)(2p+3)}\sin^2\Theta + \frac{2}{(2p-1)(2p+1)(2p+3)}\cos^2\Theta \right\}, \\ \text{also:} \qquad \int \sin(2p+1)\,\Theta\,\sin^2\Theta'd\Theta = -\frac{4}{(2p-1)(2p+1)(2p+3)},$$

so erhalten wir:

o erhalten wir:
$$c_{2m} = -\frac{4m+1}{2} \frac{4^{2m+1}}{\pi}$$

$$\times \sum_{i=0}^{\infty} \frac{4}{(4m+2i+1)(2m+2i-1)(2m+2i+1)(2m+2i+3)} \frac{\binom{2i}{i}}{\binom{4m+2i}{2m+i}}$$

und durch Vergleichung mit 16):

$$IV) \frac{\pi^{2}}{2^{m+5}(m+1)(2m-1)} {2m \choose m}^{2} = \sum_{i=0}^{\infty} \frac{1}{(4m+2i+1)(2m+2i-1)(2m+2i+1)(2m+2i+3)} \frac{{2i \choose i}}{(4m+2i) \choose 2m+i},$$

ist & das allgemeine Glied dieser Reihe, so findet man:

$$\lim_{i=\infty}i\left(1-\frac{\lambda_{i+1}}{\lambda_i}\right)=4\,,$$

so dass die Reihe convergirt,

Digitized by Google

7. Differentiiren wir die Gleichung 15), so erhalten wir wegen 6α):

$$\frac{x}{\sqrt{1-x^2}} = -\sum_{m=1}^{\infty} c_{2m} \frac{dX^{(2m)}}{dx} = -\sum_{m=1}^{\infty} c_{2m} \sum_{i=0}^{m-1} (4i+3) X^{2i+1},$$

und durch Umkehrung der Folge der Summationen:

$$\frac{x}{\sqrt{1-x^2}} = -\sum_{m=0}^{\infty} (4m+3) X^{(2m+1)} \sum_{i=m+1}^{\infty} c_{2i}.$$

Andererseits hat man wegen 11), 5):

$$\frac{x}{\sqrt{1-x^2}} = \sum_{m=0}^{\infty} a_{2m} x X^{(2m)} = \sum_{m=0}^{\infty} \frac{a_{2m}}{4m+1} \left((2m+1) X^{(2m+1)} + 2m X^{(2m-1)} \right)$$
$$= \sum_{m=0}^{\infty} \left\{ \frac{2m+1}{4m+1} a_{2m} + \frac{2(m+1)}{4m+5} a_{2m+2} \right\} X^{(2m+1)}.$$

Es folgt hieraus

$$\frac{2m+1}{4m+1}a_{2m} + \frac{2(m+1)}{4m+5}a_{2m+2} = -(4m+3)\sum_{i=m+1}^{\infty}c_{2i}.$$

Die linke Seite kann folgendermassen umgeformt werden

$$\begin{split} \frac{2m+1}{4m+1} a_{2m} + & \frac{2(m+1)}{4m+5} a_{2m+2} = \frac{2m+1}{2^{4m+1}} {2m \choose m}^2 \pi + \frac{2(m+1)}{2^{4m+5}} {2m+2 \choose m+1}^2 \pi \\ & = \frac{\pi}{2^{4m+4}} {2m \choose m}^2 \left\{ 8(2m+1) + (m+1) \frac{4(2m+1)^2}{(m+1)^2} \right\} \\ & = \frac{\pi}{4^{2m+1}} {2m \choose m}^2 \frac{(2m+1)(4m+3)}{m+1}; \end{split}$$

die rechte Seite ist

$$\frac{(4m+3)\pi}{4} \sum_{i=m+1}^{\infty} \frac{4i+1}{16^{i}(i+1)(2i-1)} {2i \choose i}^{2}.$$

Man erhält also die Identität:

$$V) \qquad \frac{2m+1}{16^{m}(m+1)} {2m \choose m}^{2} = \sum_{i=1}^{\infty} \frac{4i+1}{16^{i}(i+1)(2i-1)} {2i \choose i}^{2}.$$

Die Reihe auf der rechten Seite convergirt, denn es ist:

$$\lim_{i=\infty} i \left(1 - \frac{\lambda_{i+1}}{\lambda_i} \right) = 2.$$

8. Ordnet man die rechte Seite von 4) nach aufsteigenden Indices, so erhält man:

17)
$$x^{2m} = \sum_{n=0}^{m} \frac{4n+1}{2m+2n+1} 2^{2n} \frac{\binom{2m}{m-n}}{\binom{2m+2n}{m+n}} X^{(2n)},$$

(18)
$$x^{2m+1} = \sum_{n=0}^{m} \frac{4n+3}{2m+2n+3} 2^{2n+1} \frac{\binom{2m+1}{m-n}}{\binom{2m+2n+2}{m+n+1}} X^{(2n+1)}.$$

Wir schreiben diese Formeln abgekürzt so:

$$x^{2m} = \sum_{n=0}^{m} g_{m,n} X^{(2n)}, \quad x^{2m+1} = \sum_{n=0}^{m} u_{m,n} X^{(2n+1)}.$$

Durch Differentiation der letzten Formel und Vergleichung mit der ersten ergiebt sich mit Berücksichtigung von 6α):

$$(2m+1)\sum_{n=0}^{m}g_{m,n}X^{(2n)} = \sum_{n=0}^{m}u_{m,n}\sum_{i=0}^{n}(4i+1)X^{(2i)}$$

$$= \sum_{n=0}^{m}(4n+1)X^{(2n)}\sum_{i=n}^{m}u_{m,i},$$

und hieraus:

$$(2m+1)\,g_{m,n}=(4\,n+1)\sum_{i=n}^m u_{m,\,i}=(4\,n+1)\sum_{i=0}^{m-n} u_{m,\,n+i}\,,$$

d. i.:

$$2^{2n} \frac{(2m+1)(4n+1)}{2m+2n+1}$$

$$= (4n+1) \sum_{i=0}^{m-n} {}^{2^{2n+2i+1}} \frac{4n+4i+3}{2m+2n+2i+3} \frac{\binom{2m+1}{m-n-i}}{\binom{2m+2n+2i+2}{m+n+i+1}}.$$

Multiplicirt man den Zähler und Nenner der linken Seite mit $2(m+n+1)^2$, so nimmt dieselbe die Form:

$$2^{2n+1}(4n+1)\frac{\binom{2m+1}{m-n}}{\binom{2m+2n+2}{m+n+1}}$$

an, und man hat (mit der einzigen Beschränkung m > n)

VI)
$$\frac{\binom{2m+1}{m-n}}{\binom{2m+2n+2}{m+n+1}} = \sum_{i=0}^{m-n} 4^{i} \frac{4n+4i+3}{2m+2n+2i+3} \frac{\binom{2m+1}{m-n-i}}{\binom{2m+2n+2i+2}{m+n+i+1}}$$

oder, wenn man $m+n+1=\mu$, $m-n=\nu$ setzt:

VI
$$\alpha$$
)
$$\frac{\binom{\mu+\nu}{\nu}}{\binom{2\mu}{\mu}} = \sum_{i=0}^{\nu} 4^{i} \frac{2\mu+2\nu+4i+1}{2\mu+2i+1} \frac{\binom{\mu+\nu}{\nu-i}}{\binom{2\mu+2i}{\mu+i}}.$$

Mantua, den 8. Juli 1890.

Ueber die Gestaltung der Koppelcurven für besondere Fälle des Kurbelgetriebes.

Von

Prof. Dr. R. MÜLLER

Hierzu Taf. I.

1. In Fig. 1 wird durch das Viereck OO'BA ein Kurbelgetriebe mit dem festen Gliede OO' dargestellt, C bezeichnet einen beliebigen Punkt der mit der Koppel AB verbundenen bewegten Ebene. Derselbe beschreibt bekanntlich eine tricirculare Curve sechster Ordnung mit drei Doppelpunkten auf demjenigen Kreise i, der durch O, O' geht und dessen über OO' stehender Peripheriewinkel gleich dem Dreieckswinkel ACB ist.

Ertheilen wir dem Punkte C alle möglichen Lagen innerhalb der bewegten Ebene, so hängt die Gestaltung der zugehörigen Koppelcurve von der jeweiligen Beschaffenbeit ihrer drei Doppelpunkte ab: Einer derselben ist immer reell, die beiden anderen sind reell und verschieden, oder vereinigt, oder conjugirt imaginär; dabei kann jeder reelle Doppelpunkt entweder als Knotenpunkt, oder als Spitze, oder als isolirter Punkt auftreten. Nun ergiebt sich als Ort aller Systempunkte, welche Koppelcurven mit zwei zusammenfallenden Doppelpunkten erzeugen, eine vierfach circulare Curve zehnter Ordnung mit Doppelpunkten in A und B, die Uebergangscurve w der bewegten Ebene,* während alle Systempunkte, deren Koppelcurven eine Spitze enthalten, die Polcurve p erfüllen - eine bicirculare Curve achter Ordnung mit vierfachen Punkten in A und B. Ueberschreitet der Systempunkt C in der bewegten Ebene die Curve w, so gehen in der zugehörigen Koppelcurve zwei reelle Doppelpunkte in zwei conjugirt imaginäre über, oder umgekehrt, während dem Durchgange durch p die Verwandlung eines isolirten Punktes in einen Knotenpunkt entspricht; sind also die Curven w und p in der bewegten Ebene verzeichnet, so ist auch die Frage nach der Gestaltung aller Koppelcurven, die in dem betrachteten Kurbelgetriebe erzeugt werden können, vollkommen entschieden.

^{*} Ueber die Doppelpunkte der Koppelcurve, diese Zeitschrift 1889, S. 303 und S. 372.

Die Construction der Uebergangscurve ist für ein allgemeines Kurbelgetriebe überaus mühsam; diese Curve kann aber sehr einfache Formen annehmen, sobald wir über die Beschaffenheit des Kurbelgetriebes besondere Voraussetzungen machen. Solche Sonderfälle treten ein, wenn von den Gliedern des Gelenkvierecks OOBA einige oder alle unendlich gross werden.

2. Wir setzen $OO'=\gamma$, OA=r, O'B=s, AB=c, BC=a, AC=b, Lassen wir nun in Fig. 2 y und s unendlich gross werden, aber so, dass $\gamma - s = \mu = OM$ wird, so fallt O' mit dem unendlich fernen Punkte der Geraden OM zusammen, der Punkt B bewegt sich auf der Geraden b, die in M auf OM senkrecht steht, und das Kurbelgetriebe der Fig. 1 verwandelt sich in ein excentrisches Schubkurbelgetriebe (geschränkte Schubkurbel nach Reuleaux). Dann degenerirt die Bahncurve des beliebigen Systempunktes C in eine einfach circulare Curve vierter Ordnung,* mit O als Doppelbrennpunkt, mit zwei zu b parallelen Doppeltangenten im Abstande + a von b und mit zwei Doppelpunkten auf der durch O gehenden Geraden i, welche mit OM den Winkel iOM = Ceinschliesst. **

Befindet sich in Fig. 2 der Punkt C in einem Doppelpunkte seiner Bahncurve, und ziehen wir $CU \parallel OM$, so ist LOCU = C und folglick L OCA = L UCB. Für $OC = \varrho$ ergiebt sich

mithin
$$\cos O C A = \frac{b^2 + \varrho^2 - r^2}{2b \varrho}, \quad \cos U C B = \frac{\mu + \varrho \cos C}{a},$$

$$\frac{b^2 + \varrho^2 - r^2}{2b \varrho} = \frac{\mu + \varrho \cos C}{a},$$
oder
$$(a - 2b \cos C) \varrho^2 - 2b \mu \varrho + a(b^2 - r^2) = 0.$$

oder

Da endlich $2ab \cos C = a^2 + b^2 - c^2$, so erhalten wir zur Bestimmung der beiden Doppelpunkte in der Bahncurve des Punktes C die Gleichung

1)
$$(b^2 - c^2) \varrho^2 + 2ab\mu \varrho - a^2 (b^2 - r^2) = 0.$$

Die Discriminante derselben verschwindet für

2)
$$b^2 \mu^2 + (b^2 - r^2) (b^2 - c^2) = 0$$
, d. h. für

3)
$$b^2 = \frac{1}{2} \{ r^2 + c^2 - \mu^2 \pm \sqrt{(r^2 + c^2 - \mu^2) - 4r^2c^2} \},$$

und dann fallen die beiden Doppelpunkte zusammen, d. h. der Punkt C liegt auf der Uebergangscurve w. Die Uebergangscurve besteht also beim Schubkurbelgetriebe aus zwei Kreisen mit dem Mittelpunkte A.

Gleichung 3) liefert reelle und verschiedene Werthe von b, sobald $c > r + \mu$ oder $c < r - \mu$ ist. Im ersten Falle macht das Glied eine volle

^{*} Burmester, Kinematik I, S. 327.

^{**} Die beiden Doppelpunkte und die vier Berührungspunkte der Doppeltangenten liegen auf einem Kegelschnitte.

Umdrehung um O, während der Punkt B auf b eine Strecke oder die in Bezug auf M symmetrische Strecke hin- und hergehend durchschreitet (rotirendes Schubkurbelgetriebe), im zweiten vermag A nur einen Bogen des Kreises um O und den in Bezug auf OM symmetrischen Bogen zu durchlaufen (schwingendes Schubkurbelgetriebe); in beiden Fällen also besteht die Koppelcurve aus zwei getrennten Ovalen. $r+\mu>c>r-\mu$, so sind die beiden Werthe von b imaginär. Falle schwingt das Glied OA zwischen zwei Grenzlagen hin und her, während die Koppel alle möglichen Lagen annimmt, und wir erhalten diejenige Form des schwingenden Schubkurbelgetriebes, bei welcher alle Systempunkte eintheilige Koppelcurven erzeugen. Ist endlich $c = r + \mu$, so fallen die beiden Werthe von b zusammen. Dann durchschreiten A und B gleichzeitig die Gerade OM, und in dieser Durchschlagslage ergiebt sich für jede Koppelcurve ein dritter Doppelpunkt, der nicht auf der Geraden i liegt (durchschlagendes Schubkurbelgetriebe). Die beiden Uebergangskreise sind demnach immer reell, wenn das Kurbelgetriebe zweitheilige Koppelcurven erzeugt; sie fallen zusammen beim durchschlagenden Schubkurbelgetriebe, und sind imaginär bei demjenigen schwingenden Schubkurbelgetriebe, welches eintheilige Koppelcurven beschreibt. Sind die Uebergangskreise reell, so entsprechen allen Systempunkten innerhalb der von diesen Kreisen begrenzten ringförmigen Fläche Koppelcurven mit imaginären Doppelpunkten, allen Systempunkten in der Fläche des kleineren und in der Ergänzungsfläche des grösseren Uebergangskreises solche mit reellen Doppelpunkten; sind die Uebergangskreise imaginär, so werden überhaupt nur Koppelcurven mit reellen Doppelpunkten erzeugt.

3. Das soeben erhaltene Resultat ergiebt sich auch, wenn wir in der Gleichung der Uebergangscurve für ein allgemeines Kurbelgetriebe $\gamma = s = \infty$, $\gamma - s = \mu$ setzen. Dann geht dieselbe über in

$$b^2(b^2-c^2)^2 \{b^2\mu^2+(b^2-r^2)(b^2-c^2)\}=0$$

d. h. die Uebergangscurve zehnter Ordnung zerfällt in die beiden Geraden, die vom Punkte A nach den imaginären Kreispunkten gehen, in den doppelt zählenden Kreis b=c und in die beiden vorher erbaltenen Kreise, die wir als Uebergangskreise bezeichnet haben.

Für b=c folgt aus Gleichung 1) einmal $\varrho=\infty$. Nun besteht die vollständige Koppelcurve sechster Ordnung im Falle des Schubkurbelgetriebes aus der doppelt zählenden unendlich fernen Geraden und aus der bisher betrachteten Curve vierter Ordnung; liegt also der Systempunkt C auf dem Kreise b=c, so fällt von den beiden Doppelpunkten dieser Curve vierter Ordnung der eine auf die unendlich ferne Gerade, welche unendlich viele Doppelpunkte der vollständigen Koppelcurve enthält, und insofern kann der Kreis b=c auch als ein Bestandtheil der Uebergangscurve gelten.

4. Sind r, c, μ fest gegeben, so liefert Gleichung 1) für $\frac{\rho}{a}$ zwei Werthe, die nur von b abhängen. Beschreiben wir also in der bewegten Ebene (Fig. 3a) um A mit beliebigem Radius b den Kreis k, so wird jedem Punkte C von k in der festen Ebene (Fig. 3b) ein Paar von Doppelpunkten C_1 , C_2 in der Weise entsprechen, dass für alle diese C_1 , C_2 der Quotient $\frac{\rho}{a}$ zwei constante Werthe β_1 , β_2 besitzt. Wir construiren nun zu den Schnittpunkten S, T von k mit AB in Fig. 3b auf OM die zugeordneten Doppelpunkte S_1 , S_2 , T_1 , T_2 . Sind dann K_1 , K_2 bezüglich die Mittelpunkte von S_1 T_1 , S_2 T_2 , so ergiebt sich

 $OK_1 = \frac{1}{2}(OT_1 - OS_1) = \frac{\beta_1}{2}(BT - BS) = \beta_1 b,$

und da $OC_1 = \beta_1$. BC, so ist $\triangle K_1OC_1 \sim \triangle ACB$, folglich $C_1K_1 = \beta_1$. $BA = \beta_1c$, und analog $C_2K_2 = \beta_2c$. Für alle Systempunkte C auf dem Kreise k sind also C_1K_1 und C_2K_2 constant, d. h. die zugehörigen Doppelpunkte C_1 , C_2 erfüllen zwei Kreise k_1 , k_2 um K_1 , K_2 .*

Schneiden k_1 , k_2 die Gerade b bezüglich in \mathfrak{B}_1 , \mathfrak{B}_2 , so ist

$$M\mathfrak{B}_{1}^{2} = K_{1}\mathfrak{B}_{1}^{2} - K_{1}M^{2} = \beta_{1}^{2}c^{2} - (\beta_{1}b + \mu)^{2}$$

$$= -\{(b^{2} - c^{2})\beta_{1}^{2} + 2b\mu\beta_{1} + \mu^{2}\}.$$

Nun ist nach Gleichung 1)

und derselbe Ausdruck folgt für $M\mathfrak{B}_2$, d. h. der Kreis k_2 geht durch \mathfrak{B}_1 . Allen Systempunkten, die von \mathcal{A} gleichen Abstand haben, entsprechen also Paare von Doppelpunkten auf zwei Kreisen, die sich auf der Geraden \mathfrak{b} schneiden.

Somit ergiebt sich zu den Kreisen b=const. der bewegten Ebene ein System von Kreisen k_1 , k_2 in der festen Ebene. Wir erwähnen noch, dass durch jeden Punkt der festen Ebene drei solcher Kreise gehen. Es besteht daher zwischen den Systempunkten C und den Doppelpunkten C_1 , C_2 eine zwei-dreideutige Verwandtschaft.

5. Ziehen wir in Fig. $4 BP \perp b$ bis zum Schnittpunkte P mit OA, so ist P der Pol für die Koppellage AB. Betrachten wir nun AB als fest und den rechten Winkel OMb als beweglich, so dass der Schenkel b beständig durch B geht und der Punkt O einen Kreis um A beschreibt, so liefert die Wiederholung der vorigen Construction die Polcurve p in der Ebene der Koppel AB. Dann ist für BP = a und AP = b

$$cos P = \frac{a^2 + b^2 - c^2}{2ab} = \frac{a - \mu}{b + r},$$
also ergiebt sich
$$(a^2 + b^2 - c^2)(b + r) - 2ab(a - \mu) = 0.$$

^{*} In Fig. 3a ist C' symmetrisch zu C' in Bezug auf AB; C', C'' sind die zweiten Schnittpunkte von BC' und BC' mit k. Zu allen vier Systempunkten sind in Fig. 3b die zugehörigen Doppelpunkte angegeben.

Bringen wir aber das Glied $OM\mathfrak{b}$ in die Lagen $OM\mathfrak{b}', OM\mathfrak{b}'', OM\mathfrak{b}'', OM\mathfrak{b}'''$, so kommen zu der eben erhaltenen Gleichung die drei neuen hinzu

4)
$$\begin{cases} (a^2 + b^2 - c^2) (b - r) - 2ab(a - \mu) = 0, \\ (a^2 + b^2 - c^2) (b + r) - 2ab(a + \mu) = 0, \\ (a^2 + b^2 - c^2) (b - r) - 2ab(a + \mu) = 0, \end{cases}$$

und dann wird durch die vier Gleichungen 4) bei veränderlichen a, b die vollständige Polcurve p dargestellt. Dieselbe ist, wie im Falle des allgemeinen Kurbelgetriebes, eine bicirculare Curve achter Ordnung mit vierfachen Punkten in A und B. Die von A nach den imaginären Kreispunkten gehenden Geraden sind ihre einzigen Tangenten in diesen Punkten, und zwar hat jede solche Gerade im betreffenden Kreispunkte vier zusammenfallende Punkte mit der Curve gemein.

Ist in Fig. 4 $\mathfrak b \perp AB$, so berührt OA die Polcurve in A. Wir erhalten also die zu den vier Tangenten in A gehörigen Lagen des Punktes O auf zwei Normalen zu AB im Abstande $c + \mu$ von A. Ist $c + \mu < r$, so schneiden beide Normalen den Kreis um A mit dem Radius r; ist $c + \mu > r > c - \mu$, so liefert noch die eine Normale ein Paar reeller Schnittpunkte; ist endlich $r < c - \mu$, so werden alle vier Punkte O imaginär. Hieraus folgt: Beim rotirenden Schubkurbelgetriebe sind die vier Tangenten der Polcurve in A stets imaginär; beim schwingenden Schubkurbelgetriebe sind zwei derselben stets reell, die beiden anderen sind zugleich mit den Uebergangskreisen reell oder imaginär.

Fällt in Fig. 4 das Glied AO in die Verlängerung von AB, nach AO_0 , oder auf AB, nach AO^0 , so berührt die zugeordnete Gerade BP die Polcurve in B. Beschreiben wir also um O_0 und O^0 Kreise mit dem Radius μ , so sind die von B an dieselben gehenden Tangenten die Normalen der Polcurve in B. Nun liegt wegen $c+r>\mu$ der Punkt B stets ausserhalb des Kreises um O_0 ; soll B auch ausserhalb des zweiten Kreises liegen, so muss c-r oder r-c grösser sein als μ . D. h.: Von den vier Tangenten der Polcurve in B sind zwei stets reell, die beiden anderen sind zugleich mit den Uebergangskreisen reell oder imaginär.

Bilden endlich in Fig. 4 die Glieder AO und OM einen Winkel von 0° oder von 180° , so ergiebt sich als Pol ein unendlich ferner Punkt P_{∞} . Dann hat die Gerade BP_{∞} ausser B und P_{∞} nur noch zwei Punkte mit der Polcurve gemein, weil höchstens zwei zugehörige Lagen des Gliedes AO möglich sind, d. h. die Gerade BP_{∞} ist eine Asymptote der Polcurve. Beschreiben wir also um A zwei Kreise mit dem Radius $r \pm \mu$, so sind die Tangenten, die von B an dieselben gehen, senkrecht zu den Asymptoten der Polcurve, und wir erhalten demnach vier reelle Asymptoten, oder zwei reelle und zwei imaginäre, oder vier imaginäre, je nachdem $c > r + \mu$ ist, oder $r + \mu > c > r - \mu$, oder $c < r - \mu$. Hieraus ergiebt sich der Satz: Die Polcurve hat vier durch B gehende Asymptoten. Beim

Digitized by Google

rotirenden Schubkurbelgetriebe sind dieselben sämmtlich reell; beim schwingenden Schubkurbelgetriebe sind zwei Asymptoten stets imaginär, die beiden anderen sind reell oder imaginär, je nachdem die Uebergangskreise imaginär oder reell sind.*

6. Die Gleichungen 4) können auch geschrieben werden

5)
$$(b-r)a^2-2b\mu a-(b^2-c^2)(b+r)=0$$
 u. s. w.

Es ergeben sich also zu jedem Werthe von b im Ganzen vier Werthe von a, d. h. jeder Kreis b=const. schneidet die Polcurve, von den imaginären Kreispunkten abgesehen, in acht Punkten. Ist aber b eine Wurzel der Gleichung 2), so verschwindet die Discriminante jeder der vier Gleichungen 5), und jene acht Schnittpunkte gehen in vier Berührungspunkte über. Hieraus folgt: Die Polcurve wird von jedem der beiden Uebergangskreise viermal berührt. Die Berührungspunkte sind bestimmt durch

$$a=\frac{b\,\mu}{b+r},$$

wobei b den Radius des Uebergangskreises bezeichnet.

In Fig. 5 sind für das rotirende Schubkurbelgetriebe, auf welches auch die Figuren 2, 3, 4 sich beziehen, die Uebungskreise w, w' und die Polcurve p construirt worden. Der Kreis w' berührt p in vier imaginären Punkten. Die Punkte von w erzeugen Koppelcurven mit zwei vereinigten isolirten Punkten, die von w' solche mit Selbstberührungspunkt. Alle Systempunkte innerhalb w' und ausserhalb w beschreiben Bahncurven mit zwei reellen Doppelpunkten, und zwar ergeben sich für die Systempunkte innerhalb w' stets zwei Knotenpunkte, welche dadurch entstehen, dass die beiden Ovale der Koppelcurve sich schneiden (Fig. 2). Für die Systempunkte ausserhalb w bestehen die Koppelcurven aus zwei sich nicht schneidenden Ovalen; besitzt also eine solche Curve einen Knotenpunkt, so bildet das eine Oval eine Schleife. Lassen wir den Systempunkt C in der bewegten Ebene nach einander die Lagen $1, 2, \ldots, 9$ einnehmen, so ergeben sich folgende Gestalten der zugehörigen Koppelcurve:

- 1. zwei Ovale, zwei isolirte Punkte;
- 2. das erste Oval mit Spitze, ein isolirter Punkt;
- 3. das erste Oval mit Schleife, ein isolirter Punkt;
- 4. das erste Oval mit Spitze (nach der entgegengesetzten Seite wie im Falle 2), ein isolirter Punkt;

^{*} Die Polcurve in der festen Ebene OM6 (Polbahn) zerfällt beim Schubkurbelgetriebe in die Verbindungsgeraden des Punktes O mit den imaginären Kreispunkten und in eine circulare Curve sechster Ordnung mit Doppelpunkt und Doppelbrennpunkt in O und mit einem vierfachen Punkte in O'_{∞} . Der Punkt O ist ein Knotenpunkt oder isolirter Punkt, je nachdem die Uebergangskreise imaginär oder reell sind. Die Curve hat vier zu OM parallele Asymptoten im Abstande $\pm \sqrt{c^2 - (r \pm \mu)^2}$. Für die Realität derselben gelten also die gleichen Bedingungen wie bezüglich der Asymptoten der Polcurve p.

- 5. zwei Ovale, zwei isolirte Punkte;
- 7., 8. das zweite Oval bezüglich mit Spitze, Schleife, Spitze, ein isolirter Punkt;
- 9. zwei Ovale, zwei isolirte Punkte.
- 7. Das durchschlagende Schubkurbelgetriebe. Ist in Fig. 6 $AB = c = r \pm \mu$, so besitzt die Bahncurve eines jeden Systempunktes C zwei stets reelle Doppelpunkte C_1 , C_2 auf der Geraden i und überdies einen Sonderdoppelpunkt C_0 in der Durchschlagslage $A_0B_0C_0$. Die beiden Uebergangskreise fallen zusammen in einen Kreis w um A mit dem Radius $b = \sqrt{r(r \pm \mu)}$. Liegt nun in Fig. 6 C auf diesem Kreise, so ist

$$A_0 C_0^2 = A_0 B_0 A_0 O_0$$

also $\triangle A_0 B_0 C_0 \sim \triangle A_0 C_0 O$ und $\triangle A_0 O C_0 = \triangle C$. Der Sonderdoppelpunkt C_0 liegt demnach auf der Geraden i und fällt folglich mit den beiden anderen Doppelpunkten C_1 , C_2 zusammen. Beim durchschlagenden Schubkurbelgetriebe beschreiben also alle Punkte des Uebergangskreises Koppelcurven mit einem dreifachen Punkte. Die Gerade OC_0 ist eine Tangente der Koppelcurve im dreifachen Punkte C_0 .

Die Polcurve zerfällt im vorliegenden Falle in die doppelt zählende Gerade AB und in eine bicirculare Curve sechster Ordnung mit Doppelpunkten in A und B. Dieselbe wird vom Uebergangskreise in zwei auf AB liegenden Punkten berührt.

- 8. Im speciellen Falle des centrischen Schubkurbelgetriebes $(\mu=0)$ erhalten die bisherigen Ergebnisse eine besonders einfache Form. Dann haben alle Koppelcurven den Punkt O zum gemeinsamen Mittelpunkte. Für die Radien der Uebergangskreise ergeben sich die Werthe $b=r,\ b=c,$ und zwar entsprechen den Punkten des ersten Kreises Koppelcurven mit Selbstberührungspunkt in O, während die Punkte des zweiten Koppelcurven mit zwei zusammenfallenden unendlich fernen isolirten Punkten beschreiben. Die Polcurve achter Ordnung degenerirt in eine (doppelt zählende) circulare Curve vierter Ordnung mit Doppelpunkt in A und Selbstberührungspunkt in B u. s. w.
- 9. Machen wir in Fig. 2 die Glieder AB und OA unendlich gross, aber so, dass die Differenz c-r eine endliche Grösse ν behält, so ergiebt sich die in Fig. 7 dargestellte specielle Form des Schubkurbelgetriebes, die als Schleifschiebergetriebe oder als doppelt geschränkte Winkelschleifenkette bezeichnet wird: Ein rechter Winkel BNn, dessen einer Schenkel $NB = \nu$ ist, bewegt sich so, dass der Punkt B die Gerade b durchläuft, während der unbegrenzte Schenkel n beständig durch O geht.

Dann beschreibt jeder Punkt C der Ebene des Winkels BNn wiederum eine circulare Curve vierter Ordnung mit zwei zu b parallelen Doppeltangenten im Abstande $\pm a$ von b. Dieselbe besitzt gegenwärtig drei Doppelpunkte, nämlich die Punkte C_1 , C_2 auf der wie früher bestimmten

Geraden i und überdies den unendlich fernen Punkt der Geraden $\mathfrak{b}.^{\bullet}$ Zu demselben gehören als Asymptoten zwei Parallen zu \mathfrak{b} im Abstande $+ a \cos C$.

Setzen wir in Gleichung 1) $b = c = r = \infty$, $b - c = a \cos C$, $b - r = v + a \cos C$, so ergiebt sich

$$\varrho^2\cos C + \mu\varrho - a(\nu + a\cos C) = 0.$$

Nehmen wir in der bewegten Ebene B als Coordinatenanfangspunkt, BN als x-Axe, in der festen Ebene O als Anfangspunkt, OM als ξ -Axe und bezeichnen wir die rechtwinkligen Coordinaten der Punkte C, C_1 bezüglich mit xy, $\xi\eta$, so ist $a\cos C = -x$, $\varphi\cos C = -\xi$, und dann geht die vorige Gleichung über in

6)
$$\xi^2 - \mu \, \xi = x(x-v)$$
.

Hieraus folgt für jeden Systempunkt C eine einfache Construction der zugehörigen Doppelpunkte C_1 , C_2 .

Gleichung 6) definirt in Verbindung mit

$$\frac{\eta}{\xi} = \frac{y}{x}$$

eine zwei-zweideutige Verwandtschaft dritten Grades zwischen den Systempunkten C und den Doppelpunkten C_1 . Durchläuft C in der bewegten Ebene eine Gerade parallel zu n, so erzeugen C_1 , C_2 ähnliche Punktreihen in zwei Parallelen zu b. Insbesondere entspricht jedem Punkte C in der Geraden x=0 ein Punkt C_1 auf $\xi=0$ $\left(\eta_1=\frac{\nu}{\mu}y\right)$ und als C_2 der unendlich ferne Punkt von b, ferner jedem Punkte C auf n der Punkt O als C_1 und ein C_2 auf b $\left(\eta_2=\frac{\mu}{\nu}y\right)$.

Die beiden Doppelpunkte C_1 , C_2 fallen zusammen, sobald in 6)

ist, also für
$$x(x-\nu) + \mu^{2} = 0$$
8)
$$x = \frac{1}{2} (\nu + \sqrt{\nu^{2} - \mu^{2}}).$$

Ist daher $\nu > \mu$, so liefert Gleichung 8) in der bewegten Ebene zwei reelle Uebergangsgeraden, die zu n parallel sind.

Als Polcurve ergiebt sich die Curve vierter Ordnung

$$(y^2 + \nu x)^2 - \mu^2 (x^2 + y^2) = 0.$$

Dieselbe hat die Punkte B und A_{∞} zu Doppelpunkten und wird von der unendlich fernen Geraden in A_{∞} vierpunktig berührt. Die Uebergangsgeraden sind Doppeltangenten der Polcurve.

Ist $\mu = \nu$, so zerfällt die Koppelcurve in die Gerade $\xi = \mu - x$ und in eine circulare Curve dritter Ordnung mit einem Doppelpunkte C_1 . Für denselben ergiebt sich aus 6) $\xi_1 = x$. Dann sind also die Systeme der

Digitized by Google

^{*} Die vier Berührungspunkte der Doppeltangenten und die drei Doppelpunkte liegen auf einer Hyperbel, welche 5 und eine durch O gehende Normale zu i zu Asymptoten hat.

Punkte C und der Doppelpunkte C_1 congruent. Der zweite Doppelpunkt C_2 der vollständigen Koppelcurve vierter Ordnung ist der gemeinsame Schnittpunkt jener Curve dritter Ordnung und der Geraden $\xi = \mu - x$ und OC_1 . Die Polcurve verwandelt sich in eine Parabel mit dem Brennpunkte B und der Leitlinie n; die beiden Uebergangsgeraden fallen mit der Scheiteltangente derselben zusammen.

10. Betrachten wir in Fig. 2 das Glied AB als fest und das Glied OM b als beweglich, so erhalten wir ein Schleifkurbelgetriebe und dann beschreiben alle Punkte der Ebene OM b, wie im allgemeinen Falle (Fig. 1) tricirculare Curven sechster Ordnung mit drei Doppelpunkten. Die Uebergangscurve bleibt eine vierfach circulare Curve zehnter Ordnung mit Doppelpunkten in O und O_{∞}' , während die Polcurve sich in eine Curve sechster Ordnung verwandelt.*

Setzen wir noch $\mu=0$, c=r, so ergiebt sich ein gleichschenkliges Schleifkurbelgetriebe (gleichschenklige rotirende Kurbelschleife nach Reuleaux), bei welchem der Punkt O den Kreis π durchläuft (Fig. 8), während die Gerade $\mathfrak b$ beständig durch den auf π liegenden Punkt B geht. Beschreiben wir um O mit dem Radius 2r den Kreis p, so kann die Bewegung der Ebene $\mathfrak b$ OO_∞ bekanntlich auch hervorgebracht werden durch das Abrollen von p auf dem Kreise π .

Es sei nun Q ein beliebiger Systempunkt, OQ = l, $LQOO'_{\infty} = \varphi$. Während das Glied OA um A rotirt, geht OQ beständig durch den Punkt Q_1 auf π , und der Punkt Q beschreibt eine Pascal'sche Curve q mit dem Doppelpunkte Q_1 . Gelangt aber O nach B, so kann die bewegte Ebene sich um B drehen; der Punkt Q erzeugt also überdies noch einen Kreis q' um B mit dem Radius L. Die vollständige Koppelcurve des Punktes Q ist demnach wiederum von der sechsten Ordnung; sie besitzt fünf Doppelpunkte, nämlich den Doppelpunkt Q_1 von q und die vier Schnittpunkte Q_2 , Q_3 , Q_0 , Q^0 von q mit q'. Der Punkt Q gelangt nach Q_0 und Q^0 , wenn b den Kreis π berührt; es ist also Q_0Q^0 ein Durchmesser von q' und $LABQ^0 = \varphi$. Die drei Punkte Q_1 , Q_2 , Q_3 liegen auf dem Kreise i, der durch AB geht und mit AB den Winkel φ bildet; es ist also $LAQ_1B = \varphi$, und folglich geht auch die Gerade Q_0Q^0 durch Q_1 .

Der Punkt Q wird der Uebergangscurve angehören, wenn Q_1 mit Q_2 , oder wenn Q_2 mit Q_3 zusammenfällt. Im ersten Falle ist $BQ_1=l$, d. h. $l=2r\cos\varphi$, und dann liegt Q auf einem der beiden Kreise ω , ω' vom Radius r, welche die Gerade b in O berühren. Im zweiten Falle berührt q' den Kreis i; es ist also $l\sin\varphi=r$, und als Ort solcher Punkte Q erhalten wir zwei Parallelen ψ , ψ' zu OO'_{∞} im Abstande r. Hieraus folgt: Beim gleichschenkligen Schleifkurbelgetriebe zerfällt die Uebergangscurve in zwei Kreise ω , ω' vom Radius r, welche

^{*} Vergl. Anmerkung S. 16.

die Gerade b in O berühren, und in die gemeinschaftlichen Tangenten ψ , ψ' derselben. Jeder Systempunkt auf ω oder ω' beschreibt eine Pascal'sche Curve und einen Kreis, der durch den Doppelpunkt der Pascal'schen Curve geht, jeder Punkt von ψ oder ψ' eine Pascal'sche Curve und einen Kreis, der dieselbe berührt.

Bezeichnen wir mit x, y die rechtwinkligen Coordinaten von Q in Bezug auf O als Anfangspunkt, OO_{∞} als x-Axe, so verwandelt sich in der That die allgemeine Gleichung zehnten Grades der Uebergangscurve für den betrachteten Specialfall in

$$(x^2+y^2+2rx)^2(x^2+y^2-2rx)^2(y^2-r^2)=0.$$

Braunschweig, 24. October 1889.

Ueber die Darstellung der Lösungen eines Systems linearer Differentialgleichungen erster Ordnung in der Umgebung eines singulären Punktes.

> Von Dr. E. Grünfeld

> > 1.

in Wien.

Sind die Coefficienten des Gleichungssystemes:

1)
$$A\frac{du_i}{dx} = a_{i1}u_1 + a_{i2}u_2 + ... + a_{in}u_n, \qquad i = 1, ..., n$$

eindeutige Functionen der unabhängig Veränderlichen x, so sind bekanntlich, vom Punkte $x = \infty$ abgesehen, diejenigen Werthe von x, für welche die Lösungen dieses Gleichungssystems unendlich gross werden oder sich verzweigen, die Wurzeln der Gleichung:

$$A(x)=0.$$

Ist a einer dieser singulären Punkte, so giebt es ein Fundamentalsystem von Lösungen, dessen Elemente in der Umgebung desselben die Form haben:

$$(x-a)^r \{ \varphi_0 + \varphi_1 \log (x-a) + \cdots + \varphi_1 \log^1 (x-a) \},$$

wo φ_0 , ..., φ_1 eindeutige Functionen von x bedeuten, die nach ganzen positiven und negativen Potenzen von x-a entwickelbar sind. Eine derartige Entwickelung ist bisher nur für den Fall durchgeführt worden, in welchem das Gleichungssystem 1) die Form hat:

$$(x-a)\frac{du_i}{dx} = a_{i1}u_1 + \cdots + u_{in}u_n$$
 $i = 1, \ldots, n$

wo die Coefficienten a_{ik} in der Umgebung von x=a holomorph, also sämmtliche Lösungen desselben in dieser Umgebung regulär sind. (Vergl. Sauvage in den Annales de l'Ecole Normale Supérieure, t. III, 1886, pag. 391-404.)

Im Folgenden will ich zeigen, dass sich eine solche Entwickelung im allgemeinsten Falle des Gleichungssystems 1) mit eindeutigen Coefficienten bewerkstelligen lässt, indem ich von einer Methode Gebrauch mache, welche Herr Hamburger bei der linearen Differentialgleichung neter Ordnung an-

gewandt und auf die derselbe erst vor Kurzem wieder aufmerksam gemacht hat. (Crelle's Journal, Bd. 83 u. 103.)

Es sei:
$$A(x) = x(x-a_1)(x-a_2)\dots(x-a_{\mu}),$$

so lässt sich das Gleichungssystem 1) in der Form schreiben:

1')
$$a(x) \frac{d u_i}{d \log x} = a_{i1}(x) u_1 + \cdots + a_{in}(x) u_n,$$

wo das Polynom:

$$a(x) = (x-a_1)(x-a_2)\dots(x-a_{\mu})$$

für x = 0 nicht mehr verschwindet. Setzt man alsdann:

$$x = \varrho e^{i \varphi} = e^{\omega}, \quad a_1 = \varrho_1 e^{i \varphi_1}, \quad \ldots, \quad a_{\mu} = \varrho_{\mu} e^{i \varphi_{\mu}},$$

so verwandelt sich 1') in das Gleichungssystem:

2)
$$a(e^{w})\frac{du_{i}}{dw} = a_{i1}(e^{w})u_{1} + \cdots + a_{in}(e^{w})u_{n}, \quad i = 1, \ldots, n$$

dessen singuläre Punkte, abgesehen von $w = \infty$, die folgenden Punktsysteme sind:

3)
$$w = \sigma_1 + \varphi_1 i + 2 \lambda_1 \pi i, \ldots, w = \sigma_{\mu} + \varphi_{\mu} i + 2 \lambda_{\mu} \pi i,$$

wo σ_a den reellen Werth von $\log \varrho_a$ und $\lambda_1, \ldots, \lambda_{\mu}$ beliebige ganze Zahlen vorstellen.

Bezeichnet w_0 einen im Endlichen liegenden Punkt der w-Ebene, der mit keinem der singulären Punkte 3) zusammenfällt, so giebt es bekanntlich (vergl. Sauvage in den Annales de l'Ecole Normale, t. XI) n in der Umgebung von w_0 convergirende, nach ganzen positiven Potenzen von $w-w_0$ fortschreitende Reihen u_1, u_2, \ldots, u_n , die dem Gleichungssystem 2) identisch genügen und im Punkte $w=w_0$ selbst die beliebig gegebenen Werthe c_1 , c_2, \ldots, c_n annehmen, derart also, dass:

4)
$$u_1 = \sum_{0}^{\infty} \lambda \frac{(w - w_0)^{\lambda}}{\lambda!} \left(\frac{d^{\lambda} u_1}{d w^{\lambda}}\right)_{w_0}, \dots u_n = \sum_{0}^{\infty} \lambda \frac{(w - w_0)^{\lambda}}{\lambda!} \left(\frac{d^{\lambda} u_n}{d w^{\lambda}}\right)_{w_0}$$

 $(u_1)_{w_0} =$

$$(u_1)_{w_0} = c_1, \ldots, (u_n)_{w_0} = c_n$$

ist, wenn allgemein:

$$\left(\frac{d^{\lambda}u_{i}}{d\,u^{\lambda}}\right)_{n_{0}} \qquad \qquad i=1, \ldots, s$$

den Werth bedeutet, welchen $\frac{d^{\lambda}u_{i}}{dw^{\lambda}}$ im Punkte $w=w_{0}$ annimmt.

Die Coefficienten 5) der in diesen Reihen auftretenden Potenzen von $w - w_0$ können auf folgende Weise berechnet werden: Bezeichnet $y = f(x) = f(e^w)$ eine beliebige Function von x und sind x_0 , w_0 entsprechende Punkte in der x- und w-Ebene, so gilt die Formel:

der
$$x$$
- und w -Ebene, so gilt die Formel:
$$\left(\frac{d^{x}y}{dw^{n}}\right)_{w=w_{0}} = (\Delta x^{x})_{x=x_{0}} x_{0} \left(\frac{dy}{dx}\right)_{x_{0}} + (\Delta^{2}x^{x})_{x=x_{0}} \frac{x_{0}^{2} \left(\frac{d^{2}y}{dx^{2}}\right)_{x_{0}}}{1 \cdot 2} + \cdots$$

$$\dots + (\Delta^{n}x^{n})_{x=x_{0}} \frac{x_{0}^{n} \left(\frac{d^{n}y}{dx^{n}}\right)_{x_{0}}}{1 \cdot 2},$$
Digitized by

wo $\Delta x^{x} = (x+1)^{x} - x^{x}$ und $\Delta^{\lambda} x^{x}$ die λ^{te} Differenz von x^{x} mit dem Increment 1 bezeichnet. (Siehe Crelle's Journal, Bd. 83 S. 189.)

Aus dem Gleichungssystem 2) und den durch fortgesetzte Differentiation nach w aus diesem hervorgehenden Gleichungssystemen ergeben sich die Ableitungen beliebiger Ordnung $\frac{d^{\lambda}u_{i}}{dw_{\lambda}}$ als lineare homogene Functionen von u_{1}, \ldots, u_{n} in der Form:

7)
$$\frac{d^{\lambda}u_{i}}{dw^{\lambda}} = \varphi_{i1}^{\lambda}u_{1} + \varphi_{i2}^{\lambda}u_{2} + \cdots + \varphi_{in}^{\lambda}u_{n}, \qquad i = 1, \ldots, n$$

we die φ_{i1}^1 , ..., φ_{in}^1 aus den Coefficienten $a(e^w)$, $a_{i1}(e^w)$, ..., $a_{in}(e^w)$ und deren Ableitungen nach we durch Multiplication und Addition, sowie durch Division mit ganzzahligen Potenzen von $a(e^w)$ zusammengesetzt sind. Zufolge 4) ist daher:

(8)
$$\left(\frac{d^{\lambda}u_{i}}{dw^{\lambda}}\right)_{w} = (\varphi_{i1}^{\lambda})_{w_{0}}c_{1} + (\varphi_{i2}^{\lambda})_{w_{0}}c_{2} + \cdots + (\varphi_{in}^{\lambda})_{w_{0}}c_{n} \quad i = 1, \ldots, n.$$

Der Werth irgend einer der in φ_{i1}^{λ} , ..., φ_{in}^{λ} vorhandenen Ableitungen $\left(\frac{d^{\lambda}a_{ik}}{dw^{\lambda}}\right)_{w_0}$ drückt sich aber nach Formel 6) additiv und multiplicativ durch die Grössen:

9)
$$x_0 a'_{ik}(x_0), x_0^2 a''_{ik}(x_0), \dots, x_0^{\lambda} a^{\lambda}_{ik}(x_0),$$

$$a^{\lambda}_{ik}(x_0) = \left(\frac{d^{\lambda} a_{ik}(x_0)}{d x^{\lambda}}\right)_{x=x_0}$$

ist, aus. Die Grössen $(\varphi_{i_1}^{\lambda})_{w_0}$, $(\varphi_{i_n}^{\lambda})_{w_0}$ sind daher Quotienten, deren Zähler additiv und multiplicativ aus den Ausdrücken 9) zusammengesetzt sind und deren Nenner eine ganze positive Potenz von $a(x_0)$ ist. Bezeichnet man diese Quotienten durch $f_{i_1}^{\lambda}(x_0)$, ..., $f_{i_n}^{\lambda}(x_0)$, so lautet das Gleichungssystem 8):

10)
$$\left(\frac{d^{\lambda} u_{i}}{d w^{1}}\right)_{m_{0}} = f_{i1}^{\lambda}(x_{0}) c_{1} + f_{i2}^{\lambda}(x_{0}) c_{2} + \cdots + f_{in}^{\lambda}(x_{0}) c_{n}. \quad i = 1, \ldots, n$$

Mit diesen Werthen der Ableitungen, welche in den Beihen 4) auftreten, verwandeln sich diese letzteren in:

$$u_{i} = \sum_{i=0}^{\infty} \left\{ \frac{(w - w_{0})^{2}}{\lambda!} \left\{ f_{i1}^{\lambda}(x_{0}) c_{1} + f_{i2}^{\lambda}(x_{0}) c_{2} + \cdots + f_{in}^{\lambda}(x_{0}) c_{n} \right\} \right\} \quad i = 1, \ldots, n$$

oder auch:

$$u_{i} = c_{1} \sum_{0}^{\infty} \lambda \frac{f_{i1}^{\lambda}(x_{0})}{\lambda !} (w - w_{0})^{\lambda} + c_{2} \sum_{0}^{\infty} \lambda \frac{f_{i2}^{\lambda}(x_{0})}{\lambda !} (w - w_{0})^{\lambda} + \cdots + c_{n} \sum_{0}^{\infty} \lambda \frac{f_{in}^{\lambda}(x_{0})}{\lambda !} (w - w_{0})^{\lambda},$$

d, i.:

12)
$$u_i = c_1 u_{i1} + c_2 u_{i2} + \cdots + c_n u_{in}, \qquad i = 1, \ldots, s$$
 wenn gesetzt wird:

13)
$$u_{ik} = \sum_{0}^{\infty} \lambda \frac{f_{ik}^{\lambda}(x_0)}{\lambda 1} (w - w_0)^{\lambda}. \qquad i = 1, ..., n \\ k = 1, ..., n$$

Es erscheinen also die Elemente der Lösung u_1, u_2, \ldots, u_n linear homogen durch die Grössen 12) ausgedrückt, woraus folgt, dass diese selbst für jeden Werth von $k=1,\ldots,n$ eine Lösung des Gleichungssystems 2) bilden. Diese n Lösungen sind, wie leicht zu zeigen ist, linear unabhängig unter einander: denn da für $w=w_0$ die Elemente u_1, u_2, \ldots, u_n bezüglich die Werthe c_1, c_2, \ldots, c_n annehmen sollen, so muss zufolge 11):

14)
$$\begin{cases} f_{11}^{0}(x_{0}) = 1, & f_{12}^{0}(x_{0}) = 0, \dots, & f_{1n}^{0}(x_{0}) = 0; \\ f_{21}^{0}(x_{0}) = 0, & f_{22}^{0}(x_{0}) = 1, \dots, & f_{2n}^{0}(x_{0}) = 0; \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{n1}^{0}(x_{0}) = 0, & f_{n2}^{0}(x_{0}) = 0, \dots, & f_{nn}^{0}(x_{0}) = 1 \end{cases}$$

sein. Es sind aber, wie aus 13) hervorgeht, $f_{1k}^{0}(x_0)$, $f_{2k}^{0}(x_0)$, ..., $f_{nk}^{0}(x_0)$ die Werthe, welche die Elemente der Lösung u_{1k} , u_{2k} , ..., u_{nk} im Punkte $w = w_0$ beziehungsweise annehmen, und da die Determinante dieser Werthe, wie aus 14) unmittelbar ersichtlich ist, den Werth 1 hat, so folgt in der That, dass die Ausdrücke 13) ein Fundamentalsystem von n Lösungen des Gleichungssystems 2), als auch des ursprünglichen 1) vorstellen.

Aus dem Vorhergehenden ergiebt sich der Satz:

Das System von homogenen linearen Differentialgleichungen erster Ordnung mit eindeutigen Coefficienten
1) besitzt stets in der Umgebung eines nicht singulären
Punktes ein System von n linear unabhängigen Lösungen,
dessen Determinante in diesem Punkte den Werth 1 hat.
Jede andere Lösung, deren Elemente vorgeschriebene
Werthe in diesem Punkte annehmen sollen, drückt sich
linear homogen durch jene mit constanten Coefficienten
aus, welche gerade diese vorgeschriebenen Werthe sind.
Es werde nunmehr angenommen, dass die singulären Punkte:

$$a_1 = \varrho_1 e^{i \varphi_1}, \ldots, a_{\mu} = \varrho_{\mu} e^{i \varphi_{\mu}}$$

derart aufeinander folgen, dass, wenu $\alpha < \beta$ ist, $\varrho_{\alpha} \leq \varrho_{\beta}$, somit a_1 der dem Nullpunkte zunächst gelegene singuläre Punkt ist.

Wird nun der Punkt x_0 so gewählt, dass der absolute Betrag desselben innerhalb der Grenzen $0 < |x_0| < \varrho, e^{-2\pi}$

beschränkt ist, so convergiren die Reihen 13) jedenfalls auch noch für den Werth $w = w_0 + 2\pi i$. Dem Wege der Variabeln w von w_0 bis $w_0 + 2\pi i$ entspricht aber in der x-Ebene ein vom Punkte x_0 ausgehender geschlossener Umlauf um den Punkt x = 0. Substituirt man daher in den Ausdrücken 13) $w = w_0 + 2\pi i$, so ergeben sich die Werthe:

15)
$$[u_{ik}]'_0 = \sum_{i=0}^{\infty} \lambda_i \frac{(2\pi i)^i}{\lambda_i!} f_{ik}^{\lambda}(x_0) = \alpha_{ik}, \qquad i = 1, \ldots, n$$

$$k = 1, \ldots, n$$

welche dieselben nach dem erwähnten Umlaufe im Ausgangspunkte x_0 annehmen, während sie ursprünglich die Werthe 14) hatten.

Diese Grössen α_{ik} hängen also vom Punkte x_0 ab, was selbstverständlich ist; denn wenn man mit denselben Anfangswerthen 14) von zwei verschiedenen Punkten x_0 und x'_0 , die dem oben beschränkten Bereiche angehören, ausgehend, geschlossene Wege um den Nullpunkt beschreibt, so werden die Endwerthe α_{ik} und α'_{ik} , zu denen man in x_0 , beziehungsweise x'_0 gelangt, von einander verschieden sein und durch Beziehungen der Form:

$$\alpha'_{ik} = C_{k1}\alpha_{i1} + C_{k2}\alpha_{i2} + \dots + C_{kn}\alpha_{in},$$
 $i = 1, \dots, n$
 $k = 1, \dots, n$

wo C_{k1} , ..., C_{kn} Constante bezeichnen, deren Determinante von Null verschieden ist, miteinander zusammenhängen.

Was das Verhalten der Functionen u_1, u_2, \ldots, u_n bei dem erwähnten Umlaufe betrifft, so folgt aus 12), dass dieselben, welche bekanntlich im Punkte x_0 beziehungsweise die Anfangswerthe c_1, c_2, \ldots, c_n haben sollten, die Endwerthe erlangen:

$$[u_i]'_0 = c_i \alpha_{i1} + c_2 \alpha_{i2} + \cdots + c_n \alpha_{in}.$$
 $i = 1, ..., n$

Bezeichnet man mit ω diejenige Grösse, um welche sich diese letzteren von den ersteren unterscheiden, so ergiebt sich die Beziehung:

16)
$$c_1 \alpha_{i1} + c_2 \alpha_{i2} + \cdots + c_n \alpha_{in} = \omega \cdot c_i, \qquad i = 1, \dots, n$$
 aus welcher folgt, dass ω der Gleichung genügt:

17)
$$\begin{vmatrix} \alpha_{11} - \omega & \dots & \alpha_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} - \omega \end{vmatrix} = 0.$$

Lässt man die Variable x den geschlossenen Weg um den Nullpunkt von einem andern Punkte x'_0 des erwähnten Bereiches aus beschreiben, dem die Werthe α'_{ik} der Ausdrücke 15) entsprechen, die, wie bemerkt, von den α_{ik} verschieden sind, so gelangt man bei der Bestimmung der Grösse ∞ zu der Gleichung 17), in welcher jedoch die α_{ik} durch die α'_{ik} ersetzt sind. Vermöge der obigen zwischen den α_{ik} und α'_{ik} stattfindenden Relationen ergiebt sich, dass die Coefficienten sämmtlicher Potenzen von ∞ in Gleichung 17) ihren Werth nicht verändern, wenn die α'_{ik} an die Stelle der α_{ik} treten, dass somit ∞ für alle Punkte jenes Bereiches einen und denselben Werth besitzt. (Vergl. Sauvage in den Annales de l'Ecole Normale, t. XI und Mittag-Leffler in den Comptes rendus, 1889, pag. 637 – 639.)

Die Gleichung 17) — nach Herrn Fuchs die auf den Nullpunkt bezügliche Fundamentalgleichung — besitzt n Wurzeln ω_1 , ω_2 , ..., ω_n ; einer jeden derselben ω_k entspricht aus dem Gleichungssysteme 16) ein Werth c_{1k} , c_{2k} , ..., c_{nk} für die Constanten c_1 , c_2 , ..., c_n , durch dessen Substitution in 12) eine Lösung des Gleichungssystems 2) erhalten wird. Die auf diese Weise erlangten n Lösungen sind unter einander linear unabhängig.

Die Form dieser Lösungen in der Umgebung des Nullpunktes ist bekanntlich davon abhängig, ob die Wurzeln $\omega_1, \ldots, \omega_n$ von einander ver-

schieden sind oder nicht. Im Allgemeinen ist dieselbe die eingangs angegebene:

18)
$$x^{r_k} \{ \varphi_{ik}^0 + \varphi_{ik}^1 \log x + \dots + \varphi_{ik}^1 \log^2 x \},$$

wo die φ_{ik} eindeutig in der Umgebung des Nullpunktes sind und r_k einen der unendlich vielen Werthe von $\frac{1}{2\pi i}log \omega_k$ bezeichnet.

Sind $\omega_1, \ldots, \omega_n$ nicht sämmtlich von einander verschieden, so lässt sich das in Rede stehende Fundamentalsystem aus Gruppen von Lösungen zusammensetzen, die den verschiedenen Wurzeln entsprechen.

Sei ω, eine von den letzteren, so kann man, wie Herr Sauvage nach dem Vorgange des Herrn Hamburger gezeigt hat (siehe die Annales de l'Ecole Normale, t. XI und Crelle's Journal, Bd. 76), die dieser entsprechende Lösungsgruppe in Untergruppen zerlegen, in deren jeder sein wird:

19)
$$\begin{cases} U_{im} = x^r f_i(v), \\ U_{i,m-1} = x^r \omega_1 \Delta f_i(v), \\ U_{i,m-2} = x^r \omega_1^2 \Delta^2 f_i(v), \\ \vdots & \vdots & \ddots & \vdots \\ U_{i1} = x^r \omega_1^{m-1} \Delta^{m-1} f_i(v), \end{cases}$$
wo $v = \frac{1}{2\pi i} \log x$ gesetzt ist und
$$f_i(v) = A_{i0} + A_{i1} v + \dots + A_{i,m-1} v^{m-1}$$

$$f_i(v) = A_{i0} + A_{i1} v + \cdots + A_{i,m-1} v^{m-1}$$

eine ganze Function $m-1^{ten}$ Grades von v bezeichnet, deren Coefficienten $A_{i0}, A_{i1}, \ldots, A_{i,m-1}$ in Reihen nach ganzen positiven und negativen Potenzen von x entwickelbar sind. $\Delta f_i(v)$ bezeichnet die Differenz $f_i(v+1) - f_i(v)$ und $\Delta^{\kappa} f_i(v)$ die Differenz κ^{ter} Ordnung von $f_i(v)$ mit dem Zuwachse 1.

Die Elemente U_{im} , $U_{i,m-1}$, ..., U_1 einer solchen Gruppe 19) sind dem Früheren zufolge als lineare homogene Functionen der Elemente des Fundamentalsystems 13) mit constanten Coefficienten ausdrückbar. Zur Bestimmung dieser letzteren dienen im Allgemeinen die Gleichungen 16). In diesen ist mindestens eine Gleichung eine Folge der übrigen. Ist die Anzahl der Gleichungen, die eine Folge der anderen sind, ν , und $\nu < \mu$, wenn μ den Grad der Vielfachheit der Wurzel ω, bezeichnet, so treten zu den Gleichungen 16) noch die folgenden hinzu:

16')
$$\begin{cases} c'_{r+1}\alpha'_{r+1,r+1} + \dots + c'_{n}\alpha'_{n,r+1} = c'_{r+1}\alpha_{1}, \\ \dots & \dots & \dots \\ c'_{r+1}\alpha'_{r+1,n} + \dots + c'_{n}\alpha'_{n,n} = c'_{n}\alpha_{1}. \end{cases}$$

Sind in 16') ν' eine Folge der anderen und $\nu + \nu' < \mu$, so ergiebt sich zu 16) und 16') das weitere Gleichungssystem:

$$16'') \begin{cases} c''_{\nu+\nu'+1} \alpha''_{\nu+\nu'+1,\nu+\nu'+1} + \cdots + c''_{n} \alpha''_{n,\nu+\nu'+1} = c''_{\nu+\nu'+1} \omega_{1}, \\ \vdots \\ c''_{\nu+\nu'+1} \alpha''_{\nu+\nu'+1,n} + \cdots + c''_{n} \alpha''_{n,n} = c''_{n} \omega_{1} \end{cases}$$

u. s. w. Vermittelst der aus den Gleichungssystemen 16), 16'), 16'') u. s. w. ableitbaren Coefficientensysteme $c_1, \ldots, c_n; c'_{r+1}, \ldots, c'_n; c''_{r+r'+1}, \ldots, c''_n$ u. s. w. sind die erwähnten Relationen von der Form:

wo die yik die durch die Gleichung 13) gegebenen Werthe haben.

Aus den vorhergehenden Betrachtungen folgt, dass sich in jedem Falle die Elemente einer für die Umgebung des singulären Punktes x=0 geltenden Lösung des Gleichungssystems 1) als lineare homogene Functionen der Elemente des Fundamentalsystems 13), das für einen nicht singulären, dieser Umgebung angehörigen Punkt x_0 giltig ist, mit constanten Coefficienten ausdrücken lassen, deren Verhältnisse entweder durch das Gleichungssystem 16) allein, oder durch dieses und die analogen 16'), 16") u. s. w. bestimmbar sind. Gerade hierauf beruht die Möglichkeit, die eindeutigen Functionen φ_{ik}^0 , φ_{ik}^1 , ..., φ_{ik}^1 in 18), beziehungsweise die A_{i0} , A_{i1} , ..., $A_{i,m-1}$ in 20) in Reihen nach ganzen positiven und negativen Potenzen von x zu entwickeln.

Um diese Entwickelung an den Functionen der Gruppe 19) durchzuführen, sei bemerkt, dass $\Delta^{m-1} f_i(v)$ von der Form ist: $k A_{i,m-1}$, wo k eine numerische Constante, und daher:

$$U_{i1} = kx^r \omega^{m-1} A_{i,m-1}.$$

Dem Obigen zufolge ist:

$$U_{i1} = c'_1 u_{i1} + c'_2 u_{i2} + \cdots + c'_n u_{in}, \qquad i = 1, \ldots, n$$

wo u_{i1} , ..., u_{in} die Elemente des Fundamentalsystems 13) und c'_1 , ..., c'_n Constante sind, die als bekannt angesehen werden können. Es ist daher

21)
$$A_{i, m-1} = \frac{U_{i1}}{k_m^{m-1} x^r}$$

bekannt. Da $A_{i,m-1}$ eine eindeutige Function ist, so lässt sich dieselbe nach der Formel von Laurent durch eine Reihe von der Form ausdrücken:

$$A_{i, m-1} = \sum_{-\infty}^{+\infty} x^{i} C_{i}^{*} x^{*}, \qquad i = 1, ..., \pi$$

deren Coefficienten bestimmt werden durch (siehe Hamburger, Crelle's Journal, Bd. 83 S. 192):

$$C_i^{\mathbf{x}} = \sum_{i=1}^{\infty} \lambda \left\{ \frac{d^{\lambda} (A_{i, m-1} x^{-\mathbf{x}})}{(d \log x)^{\lambda}} \right\}_{x=x_0} \frac{(2 \pi i)^{\lambda}}{(\lambda+1)!}.$$

Ersetzt man in dieser letzteren Formel $A_{i,m-1}$ durch seinen Werth aus 21), so liefert die Gleichung 22) die verlangte Entwickelung von $A_{i,m-1}$ in der Ungebung des Nullpunktes nach positiven und negativen Potenzen von x.

Die Entwickelung von $\Delta_{i,m-2}$ geschieht jetzt auf folgende Weise: Das vorletzte Element der Gruppe 19):

$$U_{i2} = x^r \omega_1^{m-2} \Delta^{m-2} f_i(v)$$

lässt sich durch die Elemente u_{ik} des Fundamentalsystems 13) in der Form ausdrücken:

 $U_{i2} = c_1^2 u_{i1} + c_2^2 u_{i2} + \dots + c_n^2 u_{in}, \qquad i = 1, \dots, n$

wo die Constanten c_1^2, \ldots, c_n^2 als bekannt anzusehen sind. Nun ist

$$\Delta^{m-2} f_i(v) = k_1 A_{i, m-2} + (k_2 v + k_3) A_{i, m-1}, \quad v = \frac{1}{2\pi i} \log x$$

wo k_1 , k_2 , k_3 numerische Constanten. Daher ist:

$$A_{i,\,m-2} = \frac{1}{k_1} \left\{ \frac{U_{i\,2}}{\omega_1^{\,m-2}\,x'} - \left(\frac{k_3\,\log x}{2\,\pi\,i} + k_3 \right) A_{i,\,m-2} \right\},\,$$

somit bekannt, sobald U_{i2} durch seinen Werth aus 23) ersetzt wird. Die so bestimmte Function $A_{i, m-2}$ kann nunmehr, da dieselbe eindeutig ist, vermittelst der Laurent'schen Formel in eine Reihe nach ganzen positiven und negativen Potenzen von x entwickelt werden. Da

$$U_{i3} = x^r \omega_1^{m-3} \Delta^{m-3} f_i(v)$$

ist und in $\Delta^{m-3}f_i(v)$ nur $A_{i,m-1}$, $A_{i,m-2}$, $A_{i,m-3}$ vorkommen, so ist unmittelbar zu ersehen, in welcher Weise die Entwickelung nach ganzen positiven und negativen Potenzen von x der eindeutigen Function $A_{i,m-3}$, dann mit Hilfe dieser von $A_{i,m-4}$, ..., A_{i0} erfolgt.

2.

Die Coefficienten der nach Potenzen von o entwickelten Fundamentalgleichung 17) sind, wie in 1. bemerkt wurde, unabhängig von dem Punkte x_0 , was nur möglich ist, wenn in jedem derselben die mit Potenzen von x_0 behafteten Glieder sich gegenseitig aufheben. Daraus ergiebt sich eine leichte Berechnung dieser Coefficienten. Denn da der Punkt x_0 mit keinem der singulären Punkte a_1, \ldots, a_{μ} zusammenfällt, so ist $a(x_0)$ von Null verschieden, deshalb sind die Grössen $f_{ik}^{1}(x_0)$ und somit auch die durch 15) definirten α_{ik} für x_0 endlich und demgemäss nach ganzen positiven Potenzen von x_0 entwickelbar. Zur Berechnung der Coefficienten in Gleichung 17) wird man also von den α_{ik} , aus denen sie zusammengesetzt sind, und daher auch von den $f_{ik}^{A}(x_0)$ nur die von x_0 freien Glieder beibehalten. nach Formel 6) in allen nach $w = \log x$ genommenen Ableitungen der Coefficienten $a(e^w)$, $a_{i1}(e^w)$, ..., $a_{in}(e^w)$, die zur Bildung der $f_{ik}^2(x_0)$ beitragen, jedes Glied eine Potenz von x_0 enthält, so folgt, dass diese Ableitungen für die in Rede stehende Berechnung nicht in Betracht kommen und dass es genügt, zur Ermittelung der von x_0 freien Glieder in $f_{ik}^{l}(x_0)$, die mit $f_{ik}^{2}(0)$ bezeichnet seien, gemäss 10) die folgenden Gleichungssysteme aufzustellen:

fixustellen:
$$\begin{cases} \frac{d u_1}{d x} = \frac{a_{11}^0}{a^0} u_1 + \frac{a_{12}^0}{a^0} u_2 + \dots + \frac{a_{1n}^0}{a^0} u_n, \\ \dots \dots \dots \dots \dots \dots \dots \dots \dots \\ \frac{d u_n}{d w} = \frac{a_{n1}^0}{a^0} u_1 + \frac{a_{n2}^0}{a^0} u_2 + \dots + \frac{a_{nn}^0}{a^0} u_n; \end{cases}$$

wo der Kürze halber u_i für $(u_i)_{w_0}$, $\frac{d^2 u_i}{d w^2}$ für $\left(\frac{d^2 u_i}{d w^2}\right)_{w_0}$ geschrieben ist und a^0 , a^0_{ik} die Werthe von $a(x_0)$ beziehungsweise $a_{ik}(x_0)$ sind, wenn nur die von x_0 freien Glieder beibehalten werden.

Ist das Gleichungssystem 1) ein solches, dessen sämmtliche Lösungen in der Umgebung des Nullpunktes regulär sind, so genügt bekanntlich (s. Sauvage in den Annales de l'Ecole Normale 1886) der Exponent r von x^r in diesen Lösungen, unter denen stets eine von der Form

25) $u_i = x^r(c_i^0 + c_i^1 x + c_i^2 x^2 + \cdots)$ i = 1, ..., n ist, den Gleichungen:

woraus sich ergiebt:

27)
$$rc_i^0 = \frac{a_{i1}^0}{a^0}c_1^0 + \frac{a_{i2}^0}{a^0}c_2^0 + \dots + \frac{a_{in}^0}{a^0}c_n^0. \quad i = 1, 2, \dots, n$$

Durch die Gleichungen 26) werden demnach rc_1^0 , rc_2^0 , ..., rc_n^0 als lineare homogene Functionen von c_1^0 , c_2^0 , ..., c_n^0 in derselben Weise ausgedrückt, wie durch die Gleichungen 24) $\left(\frac{du_1}{dw}\right)_{w_0}$, ..., $\left(\frac{du_n}{dw}\right)_{w_0}$ als Functionen von $(u_1)_{w_0}$, ..., $(u_n)_{w_0}$.

Aus 27) folgt durch Multiplication mit r:

27')
$$r^{2}c_{i}^{0} = \frac{a_{i1}^{0}}{a^{0}} \cdot rc_{1}^{0} + \frac{a_{i2}^{0}}{a^{0}} \cdot rc_{2}^{0} + \dots + \frac{a_{in}^{0}}{a^{0}} \cdot rc_{n}^{0}. \quad i = 1, 2, \dots, n$$

Durch das Gleichungssystem 27) erscheinen die Grössen $r^3c_1^0$, $r^2c_2^0$, ..., $r^3c_n^0$ durch rc_1^0 , $r^3rc_2^0$, ..., rc_n^0 auf dieselbe Weise ausgedrückt, wie vermöge 24') $\left(\frac{d^2u_1}{dw^2}\right)_{w_0}$, ..., $\left(\frac{d^2u_n}{dw^2}\right)_{w_0}$ durch $\left(\frac{du_1}{dw}\right)_0$, ..., $\left(\frac{du_n}{dw}\right)_0$. Aus 27') ergiebt sich erner das Gleichungssystem:

 $27'') \qquad r^3c_i^0 = \frac{a_{,1}^0}{a^0} \cdot r^2c_i^0 + \frac{a_{i2}^0}{a^0} \cdot r^2c_i^0 + \dots + \frac{a_{in}^0}{a^0} \cdot r^2c_n^0, \quad i=1,2,\dots,n$ vermittelst dessen $r^3c_1^0,\dots,r^3c_n^0$ durch $r^2c_1^0,\dots,r^2c_n^0$ so ausgedrückt werden, wie vermittelst 24'') die $\left(\frac{d^3u_1}{dw^3}\right)_{w_0},\dots,\left(\frac{d^3u_n}{dw^3}\right)_{w_0}$ durch $\left(\frac{d^2u_1}{dw^2}\right)_{w_0},\dots,\left(\frac{d^3u_n^0}{dw^3}\right)_{w_0}$ durch $\left(\frac{d^2u_1}{dw^3}\right)_{w_0},\dots,\left(\frac{d^3u_n^0}{dw^3}\right)_{w_0}$ durch $\left(\frac{d^3u_1}{dw^3}\right)_{w_0},\dots,\left(\frac{d^3u_n^0}{dw^3}\right)_{w_0}$ ausdrücken lassen. Da nun, wenn blos die von x_0 freien Glieder in Betracht kommen, sich aus Gleichung 10) ergiebt:

$$\left(\frac{d^{\lambda} u_{i}}{d w^{\lambda}}\right)_{n_{0}} = f_{i1}^{\lambda}(0) c_{1} + f_{i2}^{\lambda}(0) c_{2} + \dots + f_{in}^{\lambda}(0) c_{n}, \quad i = 1, \dots, n$$

so ist also auch:

28)
$$r^{\lambda} c_i^{0} = f_{i1}^{\lambda}(0) c_1^{0} + f_{i2}^{\lambda}(0) c_2^{0} + \dots + f_{in}^{\lambda}(0) c_n^{0}.$$
 $i = 1, \dots, n$
Nach 15) ist ferner:

 $\sum_{0}^{\infty} i \frac{(2\pi i)^{\lambda}}{\lambda!} f_{ik}^{\lambda}(0) = \alpha_{ik}(0), \quad i = 1, ..., n; \ k = 1, ..., n$

daher:

$$= \sum_{0}^{\infty} \frac{\alpha_{i1}(0) c_{1}^{0} + \alpha_{i2}(0) c_{2}^{0} + \dots + \alpha_{in}(0) c_{n}^{0}}{\lambda 1} \left\{ f_{i1}^{1}(0) c_{1}^{0} + f_{i2}^{1}(0) c_{2}^{0} + \dots + f_{in}^{1}(0) c_{n}^{0} \right\}$$

oder zufolge 28):

$$= \sum_{0}^{\infty} \lambda \frac{(2\pi i)^{\lambda}}{\lambda !} \cdot r^{\lambda} c_{i}^{0} = c_{i}^{0} \cdot \sum_{0}^{\infty} \lambda \frac{(2r\pi i)^{\lambda}}{\lambda !} = c_{i}^{0} \cdot e^{2r\pi i}.$$

Es finden somit die Gleichungen statt:

aus welchen sich ergiebt:

29)
$$\begin{vmatrix} \alpha_{11}(0) - e^{2r\pi t} & \dots & \alpha_{1n}(0) \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \alpha_{n1}(0) & \dots & \alpha_{nn}(0) - e^{2r\pi t} \end{vmatrix} = 0.$$

Mit Rücksicht darauf, dass die Coefficienten der Potenzen von ω in Gleichung 17) von x_0 unabhängig sind, folgt daher aus dieser und der Gleichung 29) die Beziehung:

$$\omega = e^{2r\pi i}.$$

Wie bekannt (siehe die Denkschriften der Wiener Akademie, 54. Bd. S. 93—104), muss von den Elementen der Lösung 25) mindestens eines zum Exponenten r gehören, d. h. so beschaffen sein, dass es, mit x^{-r} multiplicirt, für x=0 nicht verschwindet, während die übrigen Elemente zu

Exponenten gehören können, die um völlig bestimmte ganze Zahlen grösser sind als r. Sind demnach $\omega_1, \ldots, \omega_n$ die Wurzeln der Fundamentalgleichung 17), die zum Punkte x=0 in dem Gleichungssystem mit ausschliesslich regulären Lösungen:

31)
$$x \frac{du_i}{dx} = a_{i1} u_1 + \cdots + a_{in} u_n, \qquad i = 1, \ldots, n$$

wo also die a_{tk} holomorph, gehört, so darf von den unendlich vielen, sich um ganze Zahlen unterscheidenden Werthen, die vermöge 30) jedem, einer bestimmten Wurzel ω_k entsprechenden, r_k zukommen, nur derjenige genommen werden, zu welchem mindestens ein Element der entsprechenden Lösung als Exponenten gehören muss, welcher also der aus 26) hervorgehenden Gleichung — der auf den Punkt x=0 bezüglichen determinirenden Fundamentalgleichung —:

$$\begin{vmatrix} \frac{a_{11}^0}{a^0} - r & \cdots & \frac{a_{1n}^0}{a^0} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{n1}^0}{a^0} & \cdots & \frac{a_{nn}^0}{a^0} - r \end{vmatrix} = 0$$

genügt.

3.

Das Gleichungssystem:

1)
$$x \frac{du_i}{dx} = \left(a_{i1} + \frac{b_{i1}}{x} + \frac{c_{i1}}{x^3} + \cdots\right) u_1 + \cdots + \left(a_{in} + \frac{b_{in}}{x} + \frac{c_{in}}{x^3} + \cdots\right) u_n,$$
 $i = 1, \dots, n$

in welchem die Reihen, welche die Coefficienten von u_1, u_2, \ldots, u_n bilden, in der Umgebung des Nullpunktes convergiren, weist in Bezug auf den Zusammenhang zwischen den Grössen r und ω dasselbe Verhalten auf, wie das Gleichungssystem 31) der vorigen Nummer. Setzt man nämlich daselbst $z = \frac{1}{t}$, so verwandelt sich dasselbe in das folgende:

2)
$$-t\frac{du_i}{dt} = (a_{i1} + b_{i1}t + c_{i1}t^2 + \cdots)u_1 + \cdots + (a_{in} + b_{in}t + c_{in}t^2 + \cdots)u_n,$$

$$i = 1, \ldots, n.$$

In diesem Gleichungssysteme sind die Coefficienten von u_1, u_2, \ldots, u_n in der Umgebung von t=0 holomorph, dasselbe gehört somit zur Classe der Gleichungssysteme 31), welche nur reguläre Lösungen in dieser Umgebung zulassen. Eine von diesen ist unter allen Umständen von der Form 25) der Nr. 2, nämlich:

3)
$$u_i = t^{\varrho}(c_i^0 + c_i^1 t + c_i^2 t^2 + \cdots), \qquad i = 1, \dots, n$$

wo e eine Wurzel der Gleichung

4)
$$\begin{vmatrix} a_{11} + \varrho & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} + \varrho \end{vmatrix} = 0$$

Bezeichnet ω' die Lösung der zum Punkte t=0 gehörigen Fundamentalgleichung, so ist also nach dem Ergebnisse von Nr. 2:

$$\omega' = e^2 e^{\pi i}.$$

Ersetzt man in der Lösung 3) t durch $\frac{1}{x}$, so wird dieselbe:

6)
$$u_{i} = x^{r} \left(c_{i}^{0} + \frac{c_{i}^{1}}{x} + \frac{c_{i}^{2}}{x^{2}} + \cdots \right), \qquad i = 1, ..., n$$
wo:
$$r = -\varrho$$

der Gleichung genügt:

$$\begin{vmatrix} a_{11}-r & \dots & a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn}-r \end{vmatrix} = 0.$$

Da aber, wenn die Variable t einen geschlossenen Weg um den Punkt t=0 im positiven Sinne der Drehung beschreibt, die Variable x den Punkt $x = \infty$ in demselben Sinne, somit den Punkt x = 0 in negativer Richtung umkreist, so folgt, dass, wenn ω die Wurzel der zum Punkte x=0 gehörigen Fundamentalgleichung bezeichnet,

$$\omega = \frac{1}{\omega'}$$

ist. Aus 5), 7), 8) folgt daher: $\omega = e^{2r\pi t}$,

$$\omega = e^{2r\pi i},$$

wo also r so beschaffen ist, dass von den Coefficienten c_i^0 $(i=1,\ldots,n)$ mindestens einer von Null verschieder ist.

Ein Fundamentalsystem von Lösungen des Gleichungssystems 2) setzt sich, wie bekannt (vergl. meinen Aufsatz in den Denkschriften der Wiener Akademie, 54. Bd.) entweder blos aus Elementen der Form 3) zusammen, oder aus Elementen dieser Form und solchen, welche die Gestalt haben:

$$u_i = t^{\varrho} \{ \varphi_i^0(t) + \varphi_i^{-1}(t) \log t + \dots + \varphi_i^{-1}(t) \log^2 t \}, \quad i = 1, \dots, n$$
 wo die Functionen $\varphi_i^k(t)$ in der Umgebung von $t = 0$ eindeutig, endlich und ferner so beschaffen sind, dass von den Functionen u_1, u_2, \dots, u_n mindestens eine zum Exponenten ϱ , der eine Wurzel der Gleichung 4) ist, gehört.

Hieraus ergiebt sich, indem $\frac{1}{x}$ für t substituirt wird, der folgende Satz:

Das Gleichungssystem 1):

$$x\frac{du_{i}}{dx} = \left(a_{i1} + \frac{b_{i1}}{x} + \frac{c_{i1}}{x^{2}} + \cdots\right)u_{1} + \cdots + \left(a_{in} + \frac{b_{in}}{x} + \frac{c_{in}}{x^{2}} + \cdots\right)u_{n},$$

$$i = 1, \dots, n,$$

welches im Endlichen nur den einen singulären Punkt x=0 besitzt und in welchem daher die Reihen, welche die Coefficienten von u, ..., un bilden, mit Auspahme von $oldsymbol{x} = 0$ in der ganzen $oldsymbol{x} \cdot \mathbf{E}$ bene convergiren, lässt ausschliesslich nur Lösungen zu, die in der Umgebung von x=∞ re-

Digitized by GOOGIC

gulär sind, die also entweder die Form 6) oder die folgende haben:

$$u_i = x^r \left\{ \varphi_i^0 \left(\frac{1}{x} \right) + \varphi_i^1 \left(\frac{1}{x} \right) \log \frac{1}{x} + \dots + \varphi_i^{\lambda} \left(\frac{1}{x} \right) \log^2 \frac{1}{x} \right\}, \quad i = 1, \dots, n$$

wo r eine Wurzel der Gleichung 4') ist und $\varphi_i^0, \ldots, \varphi_i^2$ eindeutige Functionen bezeichnen, die in der ganzen x-Ebene, den Punkt x=0 ausgeschlossen, endlich und überdies so beschaffen sind, dass von den Lösungselementen u_1, \ldots, u_n mindestens eines zum Exponenten r gehört.

Der vorstehende Satz hat selbstverständlich auch für den Fall Geltung, dass die Reihen:

$$a_{lk} + \frac{b_{lk}}{x} + \frac{c_{lk}}{x^2} + \cdots \qquad k = 1, \ldots, n$$

nur aus einer endlichen Anzahl von Gliedern bestehen. Ist insbesondere:

$$b_{ik}=c_{ik}=\cdots=0,$$

also das Gleichungssystem 1) von der Form:

$$x\frac{du_i}{dx}=a_{i1}u_1+\cdots+a_{in}u_n, \qquad i=1,\ldots,n$$

wo a_{i1} , ..., a_{in} Constante, so lässt sich dasselbe, wie ich in der zuletzt citirten Arbeit gezeigt habe, in geschlossener Form integriren.

Wien, am 9. Mai 1890.

Ueber eine algebraische Determinante mit eigenthümlichem Bildungsgesetz der Elemente.

Von

Dr. K. WEIHRAUCH,
o. Prof. d. physikal. Geogr. a, d. Univ. Dorpat.

1.

Bei der theoretischen Untersuchung einer gewissen meteorologischen Frage stiess ich auf Determinanten von eigenthümlicher Gestalt, welche, soweit mir die Literatur bekannt ist, bisher nicht behandelt worden sind. Im Folgenden soll nun Definition und Auswerthung dieser Determinanten in kurzer Weise gegeben werden, woran sich dann ein allgemeinerer Satz schliesst.

Man habe eine Determinante $G_{n,m}$ vom Grade n(m+1), welche aus n Systemen von je m+1 Zeilen bestehe. Die erste Zeile des k^{ten} Systems enthalte die Potenzen a_k^h von h=0 bis h=n(m+1)-1; die folgenden m Zeilen bestehen aus den Differentialquotienten der ersten Zeile nach a_k vom ersten bis zum m^{ten} . Ein solches System hat also das Aussehen:

$$m \begin{cases} 1, & a_k, & a_k^2, & a_k^3, & \dots, & a_k^{n(m+1)-1}, \\ 0, & 1, & 2a_k, & 3a_k^2, & \dots, & (n(m+1)-1)a_k^{n(m+1)-2}, \\ 0, & 0, & 2, & 6a_k, & \dots, & (n(m+1)-1)(n(m+1)-2)a_k^{n(m+1)-3}, \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \end{cases}$$

Man soll $G_{n,m}$ auswerthen. Zur Abkürzung führe ich die Bezeichnung ein

1)
$$(h, p) = h(h-1)(h-2) \dots (h-p+1),$$

woraus sehr leicht gefolgert wird, dass

2)
$$(h, p) - (h-1, p) = p \cdot (h-1, p-1).$$

Es werde ferner

$$(h,0)=1$$

gerechnet, und man hat

$$(h,h)=h!$$

$$(h, p) = 0 \text{ für } p > h.$$

Für den p^{ten} Differentialquotienten von a_k^h nach a_k hat man also

6)
$$\frac{d^{p}(a_{k}^{h})}{(da_{k})^{p}} = (h, p)a_{k}^{h-p},$$
 Digitized by Google

und die zu untersuchende Determinante kann in der Gestalt geschrieben werden

7)
$$G_{n,m} = \begin{vmatrix} (h, p) a_k^{h-p} \\ (h, p) a_k^{h-p} \end{vmatrix} \begin{array}{c} k = 1, 2, ..., n, \\ h = 0, 1, ..., (n(m+1)-1), \\ p = 0, 1, ..., m. \end{vmatrix}$$

Hierbei bezieht sich der Index k auf die Folge der Systeme, der Index p auf die einzelnen Zeilen der Systeme, der Index k auf die Colonnen der Determinante.

Unter einer Transformation nach a_1 soll nun folgender Process verstanden werden:

Jede Colonne, von der letzten bis zur zweiten, werde der Reihe nach vermindert um die mit a_1 multiplicirte vorhergehende Colonne; die Elemente der ersten Zeile werden dadurch gleich Null, mit Ausnahme des ersten, welches 1 bleibt. Die Determinante erniedrigt sich daher im Grade um eine Einheit, d. h. es beginnt nun h mit dem Werthe 1 statt des früheren Anfangswerthes Null, und mit Rücksicht auf 2) wird

8)
$$G_{n,m} = \begin{vmatrix} (q+1)(h-1,q)a_1^{h-1-q} & q=0,1,...,(m-1), \\ \vdots & \vdots & \ddots & \vdots \\ (h,p)a_k^{h-p}-(h-1,p)a_k^{h-p-1}a_1 \end{vmatrix} \begin{vmatrix} q=0,1,...,(m-1), \\ h=1,2,...,(n(m+1)-1), \\ k=2,3,...,n, \\ p=0,1,...,m. \end{vmatrix}$$

Die m Zeilen des ersten Systems haben der Reihe nach die Factoren 1, 2, ..., m. Die ersten Zeilen der n-1 übrigen Systeme haben allgemein das Element

9)
$$a_k^h - a_k^{h-1} a_1 = a_k^{h-1} (a_k - a_1).$$

Die Determinante besitzt also auch die Factoren

$$a_2-a_1$$
, a_3-a_1 , ..., a_n-a_1

Setzt man:

10)
$$F_{1} = \prod_{k=1}^{k=n} (a_{k} - a_{1}),$$

so kann statt 8) geschrieben werden

11)
$$G_{n, m} = m! F_{1}. \begin{vmatrix} (h-1, q) a_{1}^{h-1-q} \\ \dots \\ a_{k}^{h-1} \\ (h, p) a_{k}^{h-p} - (h-1, p) a_{k}^{h-p-1} a_{1} \end{vmatrix}$$

$$q = 0, 1, \dots, (m-1), h = 1, 2, \dots, (n(m+1)-1),$$

$$k = 2, 3, \dots, n, p = 1, 2, \dots, m.$$

Wird hier in jedem System vom zweiten an die erste Zeile von der zweiten subtrahirt, so lauten die Elemente der umgestalteten zweiten Zeilen, wenn der Factor 1 durch 1.(h-1,0) ersetzt wird,

$$((h, 1) - 1.(h - 1, 0)) a_k^{h-1} - (h - 1, 1) a_k^{h-2} a_1$$

$$= (h - 1, 1) a_k^{h-1} - (h - 1, 1) a_k^{h-2} a_1 = (h - 1, 1) a_k^{h-2} (a_k - a_1)$$

$$= (a_k - 1, 1) a_k^{h-1} - (a_k - 1, 1) a_k^{h-2} a_1 = (a_k - 1, 1) a_k^{h-2} (a_k - a_1)$$

$$= (a_k - 1, 1) a_k^{h-2} a_1 = (a_k - 1, 1) a_k^{h-2} a_1 = (a_k - 1, 1) a_k^{h-2} a_1$$

unter Berücksichtigung von 2) für p=1. Diese (n-1) zweiten Zeilen gestatten daher abermals die Heraushebung der n-1 Factoren des Productes F_1 , und man hat

13)
$$G_{n,m} = m! F_1^2 \begin{vmatrix} (h-1, q) a_1^{h-1-q} \\ \dots \\ a_k^{h-1} \\ (h-1, 1) a_k^{h-2} \\ (h, p) a_k^{h-p} - (h-1, p) a_k^{k-p-1} a_1 \end{vmatrix}$$

$$q = 0, 1, \dots, (m-1), h = 1, 2, \dots, (n(m+1)-1),$$

$$k = 2, 3, \dots, n, p = 2, 3, \dots, m.$$

Subtrahirt man hier die mit 2 multiplicirten zweiten Zeilen aller Systeme, vom zweiten an, von den bezüglichen dritten Zeilen, so erkennt man wegen

14)
$$(h, 2) - 2 \cdot (h-1, 1) = (h-1, 2),$$

dass abermals das Product F_1 herausgehoben werden kann. Dieser Process, den ich eine Reduction nennen will, lässt sich in entsprechender Weise mit den späteren Zeilen wiederholen, wobei die Factoren des Subtrahenden entsprechend 3, 4, ..., m werden müssen. Werden diese m Reductionen vollzogen, so entsteht

ollzogen, so entsteht

15)
$$G_{n,m} = m! F_1^{m+1} \begin{vmatrix} (h-1, q) a_1^{h-1-q} & q = 0, 1, ..., (m-1), \\ \vdots & \vdots & \ddots & \vdots \\ (h-1, p) a_k^{h-1-p} & k = 2, 3, ..., n, \\ p = 0, 1, ..., m. \end{vmatrix}$$

Unternimmt man hier wieder eine Transformation nach a_1 , so erniedrigt sich der Grad der Determinante wieder um eine Einheit, d. h. es beginnt h nun beim Werthe 2. Die m-1 Zeilen des ersten Systems gestatten die Factoren (m-1)! und die ersten Zeilen der übrigen Systeme das Product F_1 herauszuheben, während m aufeinander folgende Reductionen wieder F_1^m als neuen Factor der Determinante erscheinen lassen, so dass

16)
$$G_{n,m} = m! F_1^{m+1} \cdot (m-1)! F_1^{m+1} \begin{vmatrix} (h-2, y) a_1^{h-2-q} \\ \vdots & \vdots \\ (h-2, p) a_k^{h-2-p} \end{vmatrix}$$

$$q = 0, 1, ..., (m-2), h = 2, 3, ..., (n(m+1)-1),$$

$$k = 2, 3, ..., n, p = 0, 1, ..., m$$

wird. Hiermit kann man wieder in derselben Weise verfahren. Macht man daher, von Anfang an gerechnet, den Process der Transformationen nach a und der Reductionen (m+1)-mal, so geht a_1 ganz aus der Determinante heraus, da es nach jedem Process in einer Zeile weniger vorkommt als vorher, und man erhält schliesslich

17)
$$G_{n,m} = m! (m-1)! \dots 2! 1! 0! F_1^{(m+1)^2} | (h-m-1, p) a_k^{h-m-1-p} | k=2, 3, ..., n, h=m+1, m+2, ..., (n(m+1)-1), p=0, 1, ..., m$$
oder

18)
$$G_{n,m} = m! (m-1)! \dots 2! 1! 0! F_1^{(m+1)^2} | (h, p) a_k^{h-p} | k = 2, 3, \dots, n, h = 0, 1, \dots, ((n-1)(m+1)-1), p = 0, 1, \dots, m.$$
Digitized by

Genau so, wie $G_{n,m}$ aus den n Elementen a_1, a_2, \ldots, a_n aufgebaut ist, ist die in 18) stehende Determinante aus den n-1 Elementen a_2, a_3, \ldots, a_n gebildet, wie man beim Vergleich mit 7) sofort erkennt; bezeichnet man daher dieselbe durch $G_{n-1,m}$, so hat man

19)
$$G_{n, m} = m! (m-1)! \dots 2! 1! 0! F_1^{(m+1)^2} G_{n-1, m}$$

und entsprechend, wenn man als Definitionsgleichungen einführt

20)
$$\begin{cases} F_{2} = \prod_{k=3}^{k=n} (a_{k} - a_{2}), \\ \dots \dots \dots \dots , \\ F_{n-1} = \prod_{k=n}^{k=n} (a_{k} - a_{n-1}), \end{cases}$$

das System

21)
$$\begin{cases} G_{n-1, m} = m! \ (m-1)! \dots 2! \ 1! \ 0! \ F_2^{(m+1)^2} \cdot G_{n-2, m}, \\ \vdots & \vdots & \vdots \\ G_{2, m} = m! \ (m-1)! \dots 2! \ 1! \ 0! \ F_{n-1}^{(m+1)^2} \cdot G_{1, m}. \end{cases}$$

Nun ist, wie man sofort findet, $G_{1,m}$ eine Determinante, die sich auf das Hauptdiagonalglied reducirt, d. h.

$$G_{1,m} = m! (m-1)! \dots 2! 1! 0!$$

Berücksichtigt man noch, dass F_1 , F_2 , ..., F_{n-1} das Product aller aus der Reihe a_1 , a_2 , ..., a_n zu bildenden Differenzen $a_m - a_k$ ist, wenn immer m > k genommen wird, d. h. dass

23)
$$F_1.F_2...F_{n-1} = \Delta(a_1, a_2, ..., a_n) = |a_k^h|$$
 $k = 1, 2, ..., n, h = 0, 1, ..., (n-1), k = 0, 1,$

der bekannten Differenzendeterminante, ist, so erhält man aus 19), 21), 22) und 23) sogleich als Endergebniss

24)
$$G_{n,m} = |(h, p).a_k^{h-p}| = \left| \frac{d^p(a_k^n)}{(da_k)^p} \right|$$

$$= (m! (m-1)! \dots 2! 1! 0!)^n . (\Delta(a_1, a_2, \dots, a_n))^{(m+1)^2}$$

$$k = 1, 2, \dots, n, h = 0, 1, \dots, (n(m+1)-1), p = 0, 1, \dots, m.$$

Für m = 0 wird wieder, wie bekannt,

28)
$$G_{n,0} = |a_k^h| = \Delta(a_1, a_2, ..., a_n)$$
 $k = 1, 2, ..., n, h = 0, 1, ..., (n-1).$

Ich lasse einige einfache Beispiele folgen.

Für n=2, m=1 wird

$$G_{2,1} = \begin{vmatrix} 1, a_1, a_1^2, a_1^3 \\ 0, 1, 2a_1, 3a_1^2 \\ 1, a_2, a_2^2, a_2^3 \\ 0, 1, 2a_2, 3a_2^2 \end{vmatrix} = (a_2 - a_1)^4.$$

Für
$$n=3$$
, $m=1$ wird

$$G_{3,1} = \begin{vmatrix} 1, & a_1, & a_1^2, & a_1^3, & a_1^4, & a_1^5 \\ 0, & 1, & 2a_1, & 3a_1^2, & 4a_1^3, & 5a_1^4 \\ 1, & a_2, & a_2^3, & a_2^3, & a_2^4, & a_2^5 \\ 0, & 1, & 2a_2, & 3a_2^2, & 4a_2^3, & 5a_2^4 \\ 1, & a_3, & a_3^2, & a_3^3, & a_3^4, & a_3^5 \\ 0, & 1, & 2a_3, & 3a_3^2, & 4a_3^3, & 5a_3^4 \end{vmatrix} = ((a_2 - a_1)(a_3 - a_1)(a_3 - a_2))^4.$$

Für n=2, m=2 wird

$$G_{2,2} = \begin{vmatrix} 1, a_1, a_1^2, a_1^3, a_1^4, a_1^5 \\ 0, 1, 2a_1, 3a_1^2, 4a_1^3, 5a_1^4 \\ 0, 0, 2, 6a_1, 12a_1^2, 20a_1^3 \\ 1, a_2, a_2^2, a_2^3, a_2^4, a_2^5 \\ 0, 1, 2a_2, 3a_2^3, 4a_2^8, 5a_2^4 \\ 0, 0, 2, 6a_2, 12a_2^2, 20a_2^2 \end{vmatrix} = 4(a_2 - a_1)^9.$$

Auf $G_{n,m}$ lassen sich auch folgende goniometrische Determinanten zurückführen, welche mich zu der ganzen Untersuchung veranlasst haben.

Es sei

26)
$$A = \begin{vmatrix} 1, & \cos x_k, & \sin x_k, & \cos 2x_k, & \sin 2x_k, & ..., & \cos(\nu-1)x_k, & \sin(\nu-1)x_k, & \cos\nu x_k \\ 0, & -\sin x_k, & \cos x_k, & -2\sin 2x_k, & 2\cos 2x_k, & ..., & -(\nu-1)\sin(\nu-1)x_k, & (\nu-1)\cos(\nu-1)x_k, & -\nu\sin\nu x_k \end{vmatrix}$$

26)
$$A = \begin{vmatrix} 1, & \cos x_k, & \sin x_k, & \cos 2x_k, & \sin 2x_k, & \dots, & \cos(\nu-1)x_k, & \sin(\nu-1)x_k, & \cos\nu x_k \\ 0, & -\sin x_k, & \cos x_k, & -2\sin 2x_k, & 2\cos 2x_k, & \dots, & -(\nu-1)\sin(\nu-1)x_k, & (\nu-1)\cos(\nu-1)x_k, & -\nu\sin\nu x_k \\ 27) B = \begin{vmatrix} 1, & \cos x_k, & \sin x_k, & \cos 2x_k, & \sin 2x_k, & \dots, & \cos(\nu-1)x_k, & \sin(\nu-1)x_k, & \sin\nu x_k \\ 0, & -\sin x_k, & \cos x_k, & -2\sin 2x_k, & 2\cos 2x_k, & \dots, & -(\nu-1)\sin(\nu-1)x_k, & (\nu-1)\cos(\nu-1)x_k, & \nu\cos\nu x_k \\ & k = 1, 2, \dots, \nu, \end{vmatrix}$$

so dass also auf jede ungerade Zeile eine gerade folgt, deren Elemente die ersten Differentialquotienten der darüberstehenden Elemente sind. die gewöhnliche Behandlung, nämlich Bildung von A + Bi, Ersetzung der goniometrischen Functionen durch exponentielle, wobei noch

$$e^{ix_k} = a_k$$

gesetzt werden mag, und durch sich von selbst darbietende Umformungen der Determinante gelangt man sehr leicht zu dem Ergebniss

29)
$$A + Bi = \frac{(-1)^{\nu-1} \cdot i}{2^{\nu-1} \cdot e^{i(2\nu-3)\sigma}} \cdot \begin{vmatrix} 1, a_k, a_k^2, \dots, a_k^{2\nu-1} \\ 0, 1, 2a_k, \dots, (2\nu-1)a_k^{2\nu-2} \end{vmatrix}$$
, we ausserdem
$$k = 1, 2, \dots, \nu,$$

 $\sigma = x_1 + x_2 + \cdots + x_n$ **3**0)

gesetzt wird. Die in 29) auftretende Determinante ist nichts Anderes, als $G_{*,1}$, d. h. nach 24)

31)
$$A = Bi = \frac{(-1)^{\nu-1} \cdot i \cdot (\Delta(a_1, a_2, \dots, a_{\nu}))^4}{2^{\nu-1} \cdot e^{i(2\nu-3)\sigma}}.$$

Versteht man unter P, das Product des Sinus aller halben Differenzen, die sich an der Reihe $x_1, x_2, ..., x_r$ bilden lassen, wenn immer die Grösse

mit kleinerem Index als Subtrahend genommen wird, so kann man mit Hilfe von 28) in sehr einfacher Weise zeigen, dass

32)
$$\Delta(a_1, a_2, ..., a_n) = (2i)^{\frac{r(r-1)}{2}} \cdot P_r \cdot e^{\frac{i(r-1)\sigma}{2}}$$
. Dann folgt aus 31) $A = (-1)^r \cdot 2^{(2r-1)(r-1)} \cdot P_r^4 \cdot \sin \sigma$, 34) $B = (-1)^{r-1} \cdot 2^{(2r-1)(r-1)} \cdot P_r^4 \cdot \cos \sigma$.

2.

Auf die in 1. behandelte Determinante $G_{n,m}$ lässt sich auch noch eine andere Determinante von viel allgemeinerem Charakter zurückführen.

Es sei $v_k^{(h)}$ eine ganze algebraische Function h^{ten} Grades von s_k , also

$$v_k^{(h)} = \sum_{q=0}^{q=h} a_{h,q} \, z_k^{q}.$$

Der p^{to} Differentialquotient dieser Function nach s_k werde durch $v_{k,p}^{(h)}$ bezeichnet, also

36)
$$v_{k,p}^{(h)} = \frac{d^p(v_k^{(h)})}{(d_{\mathcal{Z}_k})^p}.$$

Dann ist

$$v_{k,p}^{(h)} = h! a_{h,h},$$

37)
$$v_{k,p}^{(h)} = h! \ a_{h,h},$$
38)
$$v_{k,p}^{(h)} = 0 \text{ for } p > h.$$

Es soll die Determinante

39)
$$V_{n,m} = \begin{vmatrix} v_{k,p}^{(h)} \\ v_{k,p} \end{vmatrix} \quad h = 0, 1, ..., (n(m+1)-1), \\ p = 0, 1, ..., m$$

berechnet werden. Die Anordnung ist wieder so zu verstehen, dass n Systeme von je (m+1) Zeilen vorhanden sind, für k=1, 2, ..., n, dass ferner im einzelnen System die Elemente einer folgenden Zeile die Differentialquotienten der Elemente der vorhergehenden Zeile sind und dass h der Index für die Colonnen ist. Denkt man sich in $V_{n,m}$ auch die nach 38) verschwindenden Differentialquotienten mit ihrem Werthe Null als Summanden hingeschrieben, so stehen in der qten Colonne überall q Summanden. Wenn man nun die untereinander stehenden Summanden jedesmal als zusammengehörig betrachtet, so lässt sich $V_{n,m}$ in (n(m+1))! neue Determinanten W zerspalten, die in jeder Colonne immer nur einen Theilsatz besitzen. Unter diesen Determinanten W ist eine einzige, $W_{n,m}$, in welcher sämmtliche Potenzen von z_k , von z_k^0 bis $z_k^{n(m+1)-1}$, auftreten. Bei allen anderen erscheinen mindestens zwei Colonnen, welche die nämlichen Potenzen, etwa s_k^q , enthalten; es seien dies die r^{te} und die s^{te} Colonne. Aus diesen Colonnen können dann die Factoren $a_{r-1,q}$ und $a_{s-1,q}$ vor die Determinante gesetzt werden, und man erkennt, dass die Determinante wegen der Identität zweier Colonnen verschwindet. Es wird deshalb

$$V_{n,m} = W_{n,m}.$$

Nach dem oben über $W_{n,m}$ Gesagten ergiebt sich sofort

41)
$$W_{n,m} = \left| \frac{d^{p}(a_{k,h} s_{k}^{h})}{(d s_{k})^{p}} \right| \begin{array}{c} k = 1, 2, ..., n, \\ h = 0, 1, ..., (n(m+1)-1), \\ p = 0, 1, ..., m \end{array}$$

oder

42)
$$V_{n,m} = a_{0,0} \cdot a_{1,1} \cdot ... \cdot a_{n(m+1)-1, n(m+1)-1} \cdot \left| \frac{d^p(s_k^h)}{(ds_k)^p} \right| \cdot$$

Die hier auftretende Determinante ist aber genau $G_{n,m}$ für $a_k = s_k$; man erhält also schliesslich nach 24)

43)
$$V_{n,m} = |v_{k,p}^{(h)}| = \begin{vmatrix} \frac{d^p}{(ds_k)^p} \sum_{q=0}^{q=k} a_{h,q} s_k^q \\ \frac{d^p}{(ds_k)^p} \sum_{q=0}^{q=k} a_{h,q} s_k^q \end{vmatrix} \begin{vmatrix} k = 1, 2, ..., n, \\ h = 0, 1, ..., (n(m+1)-1), \\ p = 0, 1, ..., m \end{vmatrix}$$

$$= a_{0,0} \cdot a_{1,1} \cdot ... \cdot a_{n(m+1)-1, n(m+1)-1} \\ \times (m!(m-1)! \cdot ... \cdot 2! \cdot 1! \cdot 0!)^n \left(d(s_1, s_2, ..., s_n) \right)^{(m+1)^n}.$$

Dorpat, 8. December 1889.

Kleinere Mittheilungen.

I. Ueber Thetafunctionen, deren Argumente einem System von Drittelperioden gleich sind.

Setzt man in eine Thetafunction für die Argumente ein System halber Periodicitätsmoduln mit ungerader Charakteristik ein, so verschwindet dieselbe. Soll aber eine Thetafunction verschwinden, wenn für die Argumente ein System von Drittelperioden gesetzt wird, so muss zwischen den Moduln eine Beziehung statthaben. Diese Beziehung mag hier für den Fall der Thetafunctionen zweier Veränderlichen aufgestellt werden.

Der zu diesen Functionen gehörende algebraische Bereich sei (s, s), wo s mit s durch die Gleichung

$$s^2 = z - k_1 \cdot s - k_2 \cdot s - k_3 \cdot s - k_4 \cdot s - k_5 \cdot z - k_6$$

verbunden ist. Ferner seien $u_1(s,z)$, $u_2(s,z)$ die überall endlichen Normalintegrale des Bereiches, τ_{11} , τ_{12} , τ_{22} die Moduln der Thetafunctionen, und zur Abkürzung werde

$$((u(s,s))) = ((u)) = (u_1(s,s), u_2(s,s)),$$

$$((w)) = (\frac{1}{3}h_1\tau_{11} + \frac{1}{3}h_1\tau_{12} + \frac{1}{3}g_1i\pi, \frac{1}{3}h_1\tau_{21} + \frac{1}{3}h_2\tau_{22} + \frac{1}{3}g_2i\pi),$$

$$((\pi')) = (\frac{1}{2}h'_1\tau_{11} + \frac{1}{2}h'_2\tau_{12} + \frac{1}{2}g'_1i\pi, \frac{1}{2}h'_1\tau_{21} + \frac{1}{2}h'_2\tau_{22} + \frac{1}{2}g'_2i\pi),$$

$$((\pi')) = (\frac{1}{2}h''_1\tau_{11} + \frac{1}{2}h''_2\tau_{12} + \frac{1}{2}g''_1i\pi, \frac{1}{2}h''_1\tau_{21} + \frac{1}{3}h''_2\tau_{22} + \frac{1}{2}g''_2i\pi),$$

$$((\pi'')) = (\frac{1}{2}h'''_1\tau_{11} + \frac{1}{2}h'''_2\tau_{12} + \frac{1}{2}g'''_1i\pi, \frac{1}{2}h'''_1\tau_{21} + \frac{1}{2}h'''_2\tau_{22} + \frac{1}{2}g'''_2i\pi),$$

$$((\pi'')) = (\frac{1}{2}h'''_1\tau_{11} + \frac{1}{2}h'''_2\tau_{12} + \frac{1}{2}g'''_1i\pi, \frac{1}{2}h'''_1\tau_{21} + \frac{1}{2}h'''_2\tau_{22} + \frac{1}{2}g'''_2i\pi)$$

gesetzt. Die Charakteristiken

$$\begin{bmatrix} h'_1 & h'_2 \\ g'_1 & g'_2 \end{bmatrix} = [\pi'], \quad \begin{bmatrix} h''_1 & h''_2 \\ g''_1 & g''_1 \end{bmatrix} = [\pi''], \quad \begin{bmatrix} h'''_1 & h'''_2 \\ g'''_1 & g'''_2 \end{bmatrix} = [\pi''']$$

seien ungerade und ihre Summe sei der Charakteristik

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = [0]$$

gleich. Alsdann ist die Function

$$f(s,s) = \vartheta\left((u-\omega-\pi')\right)e^{-\frac{\gamma_{3}}{3}h_{1}u_{1}-\frac{\gamma_{3}}{3}h_{2}u_{2}}:\vartheta\left((u-\pi')\right)$$

eine dreiwerthige Function von s und z, deren dritte Potenz im Bereich (s, s) einwerthig ist. Die Anfangswerthe der u seien so bestimmt, dass in jedem Verzweigungspunkte k_1, k_2, \ldots, k_s ((u)) einem System halber Periodicitatemoduln mit ungerader Charakteristik gleich ist, und zwar mag bez.

$$((u)) = ((\pi')) \quad ((u)) = ((\pi'')) \quad ((u)) = ((\pi'''))$$

$$z = k', \qquad z = k'', \qquad z = k'''$$
Digitized by

für

sein, und die drei übrigen Verzweigungspunkte mögen κ' , κ'' , κ''' sein. So wird f(s,s) in den Punkten k'', k''' unendlich gross erster Ordnung. Für s=k' aber wird die Function f unendlich klein erster Ordnung dann und nur dann, wenn sich $(s,s)=(\sigma,\zeta)$ so bestimmen lässt, dass

$$((u(\sigma,\zeta)))=((\omega))$$

wird. In diesem Falle ist f³ in der Form enthalten

$$f^{3}(s,z) = C(z-k') \frac{\sigma(z-k')(z-k'')(z-k''') - s(\zeta-k')(\zeta-k'')(\zeta-k''')}{(z-k'')^{3}(z-k''')^{3}},$$

und es muss dieser Ausdruck für $(s,s) = (\sigma,s)$ unendlich klein dritter Ordnung werden, was nicht bei jeder Lage der Verzweigungspunkte möglich ist. Hierzu ist vielmehr nöthig, dass

$$\sigma^2(s-k')^2(s-k'')^2(s-k'')^2-s^2(\zeta-k')^2(\zeta-k'')^2(\zeta-k''')^2$$

oder

$$\begin{array}{l} (\zeta - \mathbf{x}')(\zeta - \mathbf{x}'')(\zeta - \mathbf{x}'')(s - k')(s - k'')(s - k'') \\ - (\zeta - k')(\zeta - k'')(\zeta - k''')(s - \mathbf{x}')(s - \mathbf{x}'')(s - \mathbf{x}''') \end{array}$$

für $s = \zeta$ dreimal verschwinde. Bildet man die erste und zweite Ableitung dieses Ausdruckes, setzt $s = \zeta$, so erhält man zwei Bedingungen, die durch geeignete Combination in die Form gebracht werden können

I)
$$\zeta^{3}(\dot{\Gamma}_{2} - C_{2}) + \zeta^{2}(C_{2} \Gamma_{1} - C_{1} \Gamma_{2} + 3 C_{3} - 3 \Gamma_{3}) + 3 \zeta(C_{1} \Gamma_{2} - C_{3} \Gamma_{1}) + 2(C_{3} \Gamma_{2} - C_{2} \Gamma_{3}) = 0,$$

II)
$$2\zeta^{8}(C_{1}-\Gamma_{1})+3\zeta^{2}(\Gamma_{2}-C_{2})+\zeta(3C_{3}-3\Gamma_{8}+C_{2}\Gamma_{1}-C_{1}\Gamma_{2}) +C_{1}\Gamma_{2}-C_{3}\Gamma_{1}=0,$$

wenn zur Abkürzung

$$\begin{split} k' + k'' + k''' &= C_1 \,, \quad k' \, k'' + k'' \, k''' + k''' \, k' &= C_2 \,, \quad k' \, k'' \, k''' &= C_3 \,, \\ \kappa' + \kappa'' + \kappa'' &= \Gamma_1^{'} \,, \qquad \kappa' \kappa'' + \kappa'' \kappa''' + \kappa''' \, \kappa' &= \Gamma_3 \,, \qquad \kappa' \kappa'' \kappa''' &= \Gamma_3 \end{split}$$

gesetzt wird. Die Besultante dieser beiden in den einzelnen Verzweigungspunkten linearen Gleichungen, die wir mit

bezeichnen, ist eine ganze Function sechsten Grades in jedem Verzweigungspunkte und ist in k'k''k''' und in $\kappa'\kappa''\kappa'''$ symmetrisch, und ändert sich nicht, wenn man die k durchgehend mit den κ vertauscht. Hieraus folgt von selbst, dass es gleichgiltig ist, welche ungerade Charakteristik man für κ' nimmt. Ist R((0)) = 0, so ist ξ eindeutig bestimmt, für σ aber ergeben sich zwei Werthe; die Summe der Drittelsysteme $((\omega))$, die diesen beiden Werthen entsprechen, ist congruent ((0)).

Es ist demnach leicht, die Bedingung zu finden, unter welcher irgend ein Drittelperiodensystem eine Thetafunction zum Verschwinden bringt, wenn es für die Argumente derselben gesetzt wird; welches aber dieses System ist, das liegt verborgener. Es giebt 40 Paare solcher Drittelsysteme, wenn die Summe der Systeme eines Paares congruent ((0)) ist; sie gehören zu den 40 verschiedenen dreiblättrigen Flächen vom Geschlecht Eins, mit sechs

über $k_1, k_2, k_3, k_4, k_5, k_6$ liegenden einfachen Verzweigungspunkten, welche wie die Function $\mathbf{s} = f(s, s) + f(-s, s)$

verzweigt sind. Ist R((0)) = 0, so verschwindet \mathfrak{F} in dem Verzweigungspunkte k' dieser dreiblättrigen Fläche und auch noch in dem darüber liegenden Punkte.

Lässt sich ein System von Sechstelperioden in ein System von Drittelperioden und ein System von halben Perioden mit gerader Charakteristik zerlegen in $((\omega + \tilde{\omega}))$, wo $\tilde{\omega}$ das System halber Perioden ist, während wieder

$$((\omega)) = (\frac{1}{3}h_1\tau_{11} + \frac{1}{3}h_2\tau_{12} + \frac{1}{3}g_1i\pi, \frac{1}{3}h_1\tau_{21} + \frac{1}{3}h_2\tau_{23} + \frac{1}{3}g_2i\sigma)$$
 und
$$((\omega)) = ((\pi' + \pi'' + \pi'''))$$

ist, wo n', n'', n''' ungerade zu Verzweigungspunkten k', k'', k''' gehörende Charakteristiken sind, und bedeuten n', n'', n''' die übrigen Verzweigungspunkte, so ist die Bedingung dafür, dass eine Thetafunction $\vartheta((\omega + \tilde{\omega}))$ verschwindet, formell dieselbe, als die für das Verschwinden von $\vartheta((\omega))$; es bilden nur die Verzweigungspunkte k', k'', k''' und n', n'', n''' eine andere Gruppirung als dort. Man wird diese Bedingung passend mit $R((\tilde{\omega})) = 0$ bezeichnen.

Das Product $\Pi R((\hat{\omega}))$, in welchem die zehn Factoren den zehn geraden Charakteristiken entsprechen, ist eine symmetrische Function der Verzweigungspunkte k_1, k_2, \ldots, k_n .

Nimmt man an, dass die Function

$$\hat{\mathbf{g}} = f(s, s) + f(-s, s)$$

durch eine algebraische Gleichung

$$a_0 \delta^3 + 3 a_2 \delta + 2 a_3 = 0$$

gegeben sei, worin $a_0(s) = a_0 = (s - k'')(s - k''')$ und $a_2(s) = a_2$, $a_3(s) = a_3$ gauze Functionen von s vom zweiten Grade sind, mit der Eigenschaft, dass

$$a_0(a_3^2 a_0 + a_2^8) = 0$$

für $s = k_1, k_2, \ldots, k_6$ wird und ausserdem eine doppelte Wurzel besitzt, so gehört zu s gemäss der Definition dieser Function durch Thetafunctionen ein ganz bestimmtes System von Drittelmoduln $((\omega))$. Soll nun $\vartheta((\omega))$ verschwinden, so muss jeder Werth von s für s = k' Null werden, woraus folgt, dass a_s ein vollständiges Quadrat sein und für s = k' verschwinden muss, was zwei Bedingungen ergiebt.

Lassen wir nun von allgemeiner Lage her die k so variiren, dass $a_3(k') = 0$ wird, so muss auch $a_2(k') = 0$ sein, weil k' ein Verzweigungspunkt des Bereiches (\hat{s}, s) ist. Der Ausdruck

$$(a_0(s) \ a_{s}^{\ 2}(s) + a_{i}^{\ 3}(s)) : (s-k')^2(s-\kappa')(s-\kappa'')(s-\kappa''')$$

ist linear in s, und gleich Null gesetzt, muss er in einem Verzweigungspunkte verschwinden, und zwar nochmals in k', weil sonst die zu (3, s) gehörende Fläche vier einfache und zwei doppelte Windungspunkte erhielte,

und es muss deshalb $a_3(s)$ für s = k' unendlich klein zweiter Ordnung werden, so dass die eine Bedingung $a_3(k') = 0$ für das Verschwinden von $\Im((\omega))$ ausreicht, wenn man den Fall ausschliesst, dass Verzweigungspunkte zusammenfallen.

II. Licht und Elektricität.

(Hierzu Taf. II.)

Nachdem kurz vorher in einem Artikel der Kölnischen Zeitung die in jüngster Zeit vielbesprochenen Versuche des Prof. Hertz in Bonn als eine neue und grosse Errungenschaft und als ein schlagender Beweis dafür gefeiert worden war, dass "Licht und Elektricität identisch" seien, ist in der Bohemia vom 15. Januar d. J. darauf hingewiesen worden, dass Prof. K. W. Zenger in Prag dies bereits 1885 ausgesprochen und auch veröffentlicht habe, und es hat sich dann daselbst in Anlehnung an einen Aufsatz von K. E. Liesegang in der Centralzeitung für Optik der ungenannte Verfasser eingehend über den Satz verbreitet: "Das Auge ein elektrisches Organ." Hier möge auf die erstere Andeutung etwas näher eingegangen werden.

Allerdings habe ich in meinem Ende 1885 bei Hartleben in Wien erschienenen Werke: "Die Meteorologie der Sonne und ihres Systems" es bereits ausgesprochen und auch den Nachweis dafür erbracht, dass die Grundform der Energie die Elektricität sei, und dass aus ihr sich alle anderen Formen durch Abänderung der Art der Bewegung ableiten. Auf S. 231 dieses Werkes — das leider bisher viel zu wenig beachtet worden ist — habe ich ganz klar und bestimmt gesagt:

"Als Resumé alles Vorausgegangenen lässt sich kurz aussprechen, dass alle meteorologischen Erscheinungen, alle endogenen Störungen, sowie die Bewegungen im Sonnensysteme, die Erscheinungen der allgemeinen Attraction,* der elektrischen und magnetischen Kraftäusserung auf eine einzige Urkraft sich zurückführen lassen, die ebenso in der Sonne, wie im kleinsten Theilchen des ungeheuern Sonnensystems ihren Sitz hat, und deren Energie, nach denselben allgemeinen Grundgesetzen wirkend, ihre Wirkung nur in verschiedenen Formen äussert, als elektrische und magnetische Kraft, von der alle übrigen Formen derivirt werden können, seien es elastische, Schall-, Licht- oder Wärmewirkungen, oder Gravitationswirkungen."

^{*} Vergl. auch Comptes rendus vom 2. Sept. 1889, Bd. 109 S. 404; daraus in Beiblätter, 1889 Nr. 12, in La Lumière Électrique, Bd. 33 S. 543 u. s. w. — Es sei zugleich auf meine früheren Mittheilungen verwandten Inhalts in den Comptes rendus 1883, Bd. 96 S. 110; Bd. 102 S. 985; Bd. 103 S. 738; Bd. 104 S. 959, 1556 und 1638; Bd. 105 S. 439 hingewiesen, sowie auf die jüngste vom 27. Januar 1890, Bd. 110 S. 205.

In der That habe ich (auf S. 160 bis 168) an der gleichzeitigen Erscheinung und dem ganzen Verlaufe gewaltiger Protuberanzerscheinungen von ausserordentlicher Dauer den 6. und 7. September 1871 vom Tacchinischen Nordlichtstypus einerseits und auf der andern Seite eines der glänzendsten Nordlichter, welche je in Schweden beobachtet worden sind, eines Nordlichtes, das ebenfalls zwei Tage dauerte, gezeigt, dass alle Phasen der Sonnenvorgänge gleichsam en miniature in der irdischen Nordlichterscheinung wiedergegeben wurden, und dass sich, wie bei dieser, drei scharf geschiedene Phasen zeigten, aus deren nahezu gleichen Zeitintervallen für die Sonnenerscheinung und für die irdische Erscheinung (S. 160—165) die Fortpflanzungsgeschwindigkeit der elektrischen Sonnenradiation von mir zu 4683 Kilometer in der Secunde bestimmt wurde.

Die Comptes rendus vom 13. Januar 1890 (Bd. 110 S. 72) veröffentlichen genaue Wiederholungen und Erweiterungen der Hertz'schen Versuche von E. Sarasin und L. de la Rive, welche klarlegen, dass die elektrische Radistion nicht identisch sein könne mit der Lichtstrahlung, da beide für die Lichtstrahlung wichtige Merkmale fehlen, die Constanz sowohl der Wellenlänge, wie der Fortpflanzungsgeschwindigkeit; auch Cornu (ebenda S. 75; vergl. auch Lumière Électrique, Bd. 35 S. 337) schlieset sich der Anschauung an, dass die Ergebnisse der Versuche von Sarasin und de la Rive nicht vereinbar sind mit der von Hertz gemachten Annahme, dass die von ihm als periodisch angenommenen Erschütterungen — hervorgebracht durch den Funken des Unterbrechungsapparates der Inductorspule - auch im indicirten Leitungsdrahte periodische hervorrufen, welche von einer unveränderlichen, blos vom Unterbrechungsapparate abhängigen Periode sind. Sowohl die Wellenlänge 1, als auch die Schwingungsdauer T wurden von Sarasin und de la Rive als vom Resonator abhängig, also als veranderlich befunden; da eine veränderliche Fortpflanzungsgeschwindigkeit (V) der Induction in dem Drahte, welche Hertz nach der für die Wellenlänge des Lichtes giltigen Gleichung $\lambda = VT$ berechnet und welche der (unter Umständen mit der Fortpflanzungsgeschwindigkeit des Lichtes identischen) Fortpflanzungsgeschwindigkeit einer elektrischen Welle entspricht, nicht zugegeben werden kann, so ist auch die elektrische und die Lichtentwickelung nicht identisch.

Dass dem so sei, habe ich an einem merkwürdigen Blitzschlage in einen Spiegel gezeigt (vergl. Comptes rendus, Bd. 109 S. 295). Dieser Blitzschlag traf im Juli 1889 in der Wohnung des Directors der Fabrik chemischer Producte in Wolfsschlinge bei Aussig einen 5 mm dicken Spiegel, dessen Bückseite versilbert war. Der Spiegel wurde nicht blos zertrümmert, sondern auch vielfach durchlöchert und das Glas aus den conischen, unten bis 3 mm weiten Durchbohrungen in geschmolzenem Zustande weggeblasen, nicht ohne dass an der Wand derselben feine Fäden von geschmolzenem Glase hängen blieben, welche die Innenwand mit helikoidalen Windungen.

auskleideten. Die Photographie dieser Durchbohrungen zeigt dies deutlich. Es befand sich also das geschmolzene Glas in einer dergestaltigen Bewegung und diese Wirbelbewegung hat die schneckenförmige Spur hinterlassen. Ist nun die von Lodge mit raucherfüllter Luft gemachte Beobachtung durch diese vom Blitze hinterlassene Spur bestätigt, so muss man wohl annehmen, dass die elektrische Entladung nicht aus Wellenbewegungen besteht, sondern aus Wirbelbewegungen, bei denen dann von einer Periode, wie bei den Wellenbewegungen, keine Rede sein kann; wohl aber gilt für diese das Gesetz der geradlinigen Fortpflanzung der Wirbel im isotropen Medium und das Gesetz der Quadrate der Entfernungen, wie Weyher in seinem kürzlich erschienenen Werke: Les tourbillons, Paris 1889, Gauthier Villars, nachgewiesen hat. Trifft der Wirbel auf ein anderes Mittel, so wird er abgelenkt, kann reflectirt und gebrochen werden, ist aber trotzdem keine Wellenbewegung, sondern bleibt auch dann eine fortschreitende Wirbelbewegung.

Die Sonneninduction hat mich gleichfalls zu einer ganz andern, etwa der Fortpflanzungsgeschwindigkeit des elektrischen Stromes in Unterseekabeln gleichkommenden Fortpflanzung der elektrischen Sonnenradiation im Planetenraume geführt, und dies widerspricht der Identität der Lichtradiation und der elektrischen Radiation und schliesst die Identität von Licht und Elektricität aus. Wohl aber kann der Eintritt der Elektricitätsradiation in die Erdatmosphäre eine Modification durch das Dielektricum - die Luft zu Wege bringen, welche die elektrische Bewegungsform in die Wellenbewegung des Lichtes überführt, ein Gedanke, der schon 1874 von Maxwell in seiner magnetischen Lichttheorie gründlich ausgeführt worden ist. Die einzigen Geschwindigkeiten, welche sich der von mir für die elektrische Sonnenradiation gefundenen (4683 km in der Secunde) nähern, sind einerseits die 4000 km betragende Geschwindigkeit der Elektricität im unterseeischen Kabel, und andererseits die 11690 km - also etwa dreimal soviel - betragende Geschwindigkeit des galvanischen Stromes im Telegraphendrahte, während das Licht bekanntlich eine Fortpflanzungsgeschwindigkeit von 300000 km in der Seeunde zeigt.

Ausserdem habe ich ferner noch, unter Wiederholung der bereits berührten Versuche von Lodge, den experimentellen Beweis dafür erbracht, dass auch im luftverdünnten Raume durch elektrische Entladungen Wirbelbewegungen und Condensationen von Stäubchen und Dampfbläschen erzeugt werden, und ich habe hieraus die Art der Uebertragung der elektrischen Sonnenradiation durch den mit meteoritischen und kosmischen Theilen erfüllten Planetenraum klarzustellen versucht. Uebrigens beschäftigen sich u. A. schon zwei Artikel, welche Dr. E. Zetzsche in der Zeitschrift für Mathematik u. Physik (Jahrg. 3 S. 365 und Jahrg. 4 S. 131; Leipzig 1858 und 1859) unter dem Titel: "Die Eletricitätslehre vom Standpunkte der Undulationstheorie" veröffentlicht hat, mit dem Gedanken von dem allmäligen

Uebergange von der Wellenbewegung schwererer Flüssigkeiten zu jener des Lichtäthers, zu den Wärmeschwingungen, zu jenen Bewegungen, die wir Elektricität und Magnetismus nennen; auch enthalten diese beiden Artikel zahlreiche Hinweise auf ältere verwandte Versuche und Auffassungen, und auf S. 152 wird namentlich bereits ausgesprochen, dass die oft an Blitzableitern, bez. an vom Blitze getroffenen Telegraphenstangen beobachteten spiralförmigen Drehungen und Splitterungen auf die Beschaffenheit der elektrischen Schwingungen hindeuten müssten.

Was indessen von Prof. Hertz zweifellos geleistet worden ist, und was sein volles, ungeschmälertes Verdienst ist und bleiben wird, das ist der durch Laboratoriumsversuche erbrachte Beweis für die Existenz strahlender Elektricität, und dadurch ist der von mir aus kosmischen Erscheinungen — aus der Gleichzeitigkeit zweier grossartiger Naturerscheinungen und aus ihrem gleichartigen Verlaufe in gleichen Zeitintervallen — abgeleitete Causalnexus in ein neues klares Licht gesetzt worden, etwa so, wie die Bestimmungen der Fortpflanzungsgeschwindigkeit des Lichtes durch Römer und Bradley aus astronomischen Erscheinungen in den schönen Laboratoriumsexperimenten Fizeau's und später Foucault's und Cornu's ihre glänzende Bestätigung fanden.

Die Mängel der Versuchsmethode des Prof. Hertz liegen in der Natur der Sache. Es wird namentlich die Bestimmung der Fortpflanzung der elektrischen Radiation eines Inductoriums auf geringe Entfernungen hin mit denselben ungeheuren Schwierigkeiten zu kämpfen haben, auf welche jene der Lichtfortpflanzung gestossen ist, und es würde sich empfehlen, dass Meteorologen und Astronomen die Protuberanzerscheinungen vom Typus des Nordlichtes bei der nun neu beginnenden Activitätsperiode der Sonne, sowie die Nordlichterscheinungen systematisch zu dem Zwecke beobachten möchten, um — wie ich es früher gethan habe — ihre Gleichzeitigkeit, ihren analogen Verlauf und die Zeitintervalle ihrer unterschiedlichen Phasen zu bestimmen und um dann daraus genaue Werthe der Fortpflanzungsgeschwindigkeit der elektrischen Radiation* abzuleiten.

Es sei hier ferner noch erwähnt, dass es mir gelungen ist, durch die Bewegungen einer rotirenden Kugel, welche in einem magnetischen Felde unsymmetrisch zu den beiden Polen eines Elektromagnetes an einem elastischen, tordirten Faden aufgehängt war (vergl. Comptes rendus, Bd. 109 S. 402), alle Bewegungen eines Planeten in elliptischer Bahn nachzuahmen, die Constanz der grossen Axe und der Rotationsgeschwindigkeit der Planetenkugeln aus den elektrodynamischen Gesetzen abzuleiten** und durch

^{*} Es mag übrigens hier auf die Beobachtungen T. A. Fleming's über moleculare Radiation an Glühlampen hingewiesen werden; vergl. Philosophical Magazine, 1883, S. 48; Dingler's Journal, Bd. 250 S. 829.

es Ganz neuerdings hat Aehnliches auch Tisserand versucht, vergl. Comptes rendus vom 17. Februar 1890, Bd. 110 S. 313; sein Versuch, das Gravitationsgesetz

Hinzufügung eines dritten Elektromagnetes die Störungserscheinungen, die Gesetze der Einwirkung dreier Körper graphisch darzustellen, indem ich einen feinen elastischen Stiel am Ende der Kugel befestigte, welcher die Bahnbewegung auf einer berussten Glasplatte mit einer Feinheit aufschrieb, welche die Messung der Aenderungen des Radius vectors der Bahn unter dem Einflusse des dritten Magnetpoles ermöglichte.

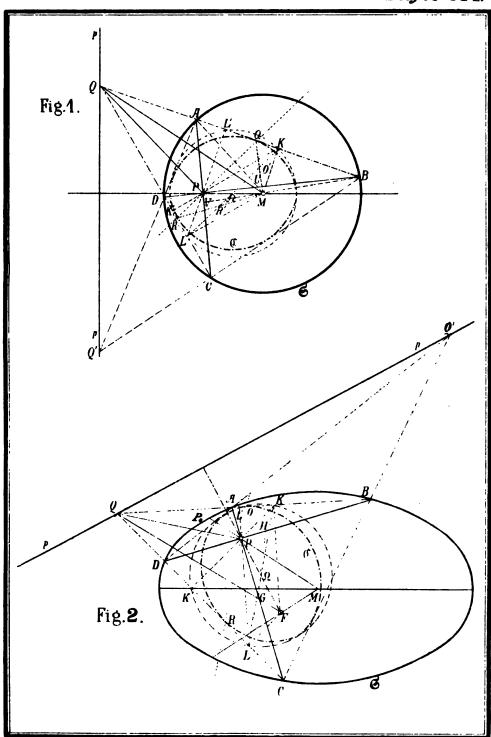
Da die Potentiale der drei Pole gemessen werden können und ihre Abstände ebenfalls, so sind alle Daten zum Vergleiche mit der Theorie gegeben.

Endlich habe ich auch die am Faden hängende Kugel aus Kupfer durch eine rasch rotirende Drehscheibe aus Bronze ersetzt, welche mit ihrer Axe auf die Oberfläche einer siebenzölligen Concavlinse von 35 Zoll Krümmungsradius gestellt wurde; die berusste Glasfläche zeigt dann nicht nur die elliptische Planetenbahn, sondern auch die unter den Namen Präcession und Nutation bekannten Störungen der Rotationsaxe (durch auf die Bahncurve aufgezeichnete elliptische Epicykloiden von grosser Feinheit) dargestellt. So gelang es, alle Bewegungen der Erdaxe im Raume, sowohl des Umlaufes, wie der Präcession und Nutation derselben graphisch darzustellen und nachzuahmen.

Fig. 1 zeigt den von mir benutzten Apparat. A, B ist ein Elektromagnet mit vollem Eisenkern, der auf einer Eisenschiene D steht. Von der Mitte der Schiene D geht normal zu derselben eine zweite Eisenschiene F aus, und in einem Schlitze dieser zweiten Schiene lässt sich der bewegliche stabförmige Elektromagnet C verschieben. Die Polenden der drei Rollen A, B, C bilden somit beständig ein gleichschenkliges, bez. gleichseitiges Dreieck. Der Betrag, um welchen eine Verschiebung von C gegen A und B möglich ist, und die gegenseitige Lage der Pole bei den beiden Grenzlagen von C ist aus Fig. 2 zu erkennen. Der Elektromagnet C besitzt als Kern ein Eisendrahtbündel, damit bei gleicher Drahtbewickelung durch denselben Strom ein höheres magnetisches Potential erzielt werde.

Die hohle Kupferkugel K ist in der Verlängerung der Rotationsaxe mit einer Borste versehen; durch die Torsion des Fadens H, woran sie hängt, wird ihr eine Drehbewegung ertheilt. Bei unipolarer Induction hängt die Kugel K über dem Elektromagnet C, nahe an der Axe desselben, jedoch nicht ganz in dieser; bei bipolarer und tripolarer Induction wird die Kugel K über den Pol A oder B gehängt, wiederum etwas seitwärts von der Axe. Will man eine bipolare Induction auf K ausüben, so sendet man den Strom blos durch A und B, für tripolare Induction dagegen durch alle drei Elek-

durch die Gesetze von Gauss und Weber zu ersetzen, erbringt eine Bestätigung meiner elektrodynamischen Theorie und würde dies noch vollständiger thun, wenn Tisserand die Rechnung etwas anders durchgeführt hätte und wenn er anstatt 300000'km den von mir gefundenen, hier bereits erwähnten Werth (4683 km) der Geschwindigkeit der elektrischen Sonnenradiation eingesetzt hätte.



Zeitschrift für Mathematik u. Physik XXXVI, 1.

tromagnete. Die unteren Pole der drei Elektromagnete sind durch die Schienen D und F aus weichem Eisen neutralisirt.

Mittels des Stromwenders W kann die Richtung des Stromes in der Spule des Elektromagnetes C umgekehrt werden. Während man so das Vorzeichen der Wirkung des dritten Poles wechseln kann, vermag man durch die Verschiebung des Elektromagnetes C auf der Schiene F die Potentiale der drei Pole gleich gross oder verschieden gross zu machen und zugleich die Entfernung der Pole von der Kugel K zu verändern.

Die berusste Platte endlich, worauf sich die Bewegungen der Kugel K aufzeichnen sollen, ist in Fig. 1 nicht mit gezeichnet.

Schliesslich füge ich einige der dabei erhaltenen Curven theils in $\frac{1}{6}$, theils in $\frac{1}{6}$ der ursprünglichen Grösse bei. Fig. 3 zeigt eine kreisförmige Bahn, welche die sich drehende Kugel bei unipolarer Induction durch einem Strom von 120 Volt und 10 Ampère beschrieben hat; diesen Strom lieferte eine Dynamomaschine. Bei Anwendung entsprechend stärkerer Ströme wird die Bahn schon etwas elliptisch, weil dann die Eisenschiene nicht ganz ausreicht, um den zweiten Pol zu neutralisiren.

Fig. 4 und Fig. 5 bieten unter bipolarer Induction von A, B entstandene Curven. Hier sieht man elliptische Spiralen, welche in eine einhüllende Ellipse übergehen. In Fig. 4 hatte der Strom 15 Ampère bei 120 Volt, und die Kugelaxe war etwas entfernter von der Axe des einen Elektromagnetschenkels eingestellt. In Fig. 5 wirkte ein Strom von 35 Ampère bei 120 Volt, und zugleich war die Kugelaxe sehr weit von dem einen Pole des fixen Elektromagnetes entfernt.

Tripolare Induction war in Fig. 6 und 7 vorhanden. In Fig. 6 waren die drei Pole vom Strome einer Accumulatorbatterie erregt, der 35 Ampère Stärke besass bei 20 Volt. A und B waren der Nordpol und der Südpol des fixen Elektromagnetes, der Nordpol C des beweglichen war ganz an den fixen herangeschoben. Diese Figur zeigt die Verschiebung der Knoten mit einer festliegend gedachten, die Spiralen durchschneidenden Ebene, wie im Weltall bei Mercur und bei der Mondbahn. Fig. 7 bietet dasselbe unter der Wirkung eines Dynamostromes von 25 Ampère und 120 Volt; die Curven sind hier keine regelmässig elliptischen Spiralen, sondern mehr oder minder ovale Spiralen, zeigen aber, wie in Fig. 6, die Verschiebung der Curvenaxe.

Prag, März 1890.

K. W. Zenger.

III. Ort der Kegelschnittssehnen, die von einem gegebenen Punkte aus unter rechtem Winkel erscheinen.

(Hierzu Taf. III.)

Gegeben sei ein Kegelschnitt Sund ein beliebiger fester Punkt P. Ein rechter Winkel APB, dessen Schenkel PA, PB Sin A, B treffen, drehe sich um seinen Scheitel P; so wird die Zeitschrift f. Mathematik u. Physik XXXVI, 1.

Sehne AB einen neuen Kegelschnitt & umbüllen, der P zum Brennpunkte und die Polare p von P mit Beziehung auf & als zugehörige Leitlinie hat. Der andere Brennpunkt F von & ist der Schnittpunkt des Lothes von P auf p mit dem Durchmesser von S, der dem durch P laufenden Durchmesser gleich (und demgemäss entgegengesetzt wie dieser gegen die Axe von S geneigt) ist. Bedeutet S den Schnittpunkt von S mit S wird das Loth in S auf S den Berührungspunkt von S mit S bestimmen.

Beweis für den Fall, dass & ein Kreis ist. (Fig. 1.)

Der Mittelpunkt von S sei M; dann fällt hier F mit M zusammen. Die anderen Schnittpunkte von AP, BP mit S seien C, D. CD läuft durch Q, ebenso wie sich AD, BC in einem Punkte Q' auf p treffen. Weiter seien K, L die Mitten der Sehnen AB, CD, so ist PK = KA = KBund PL = LC = LD. Aber nach einem bekannten Elementarsatze (weil $AC \perp BD$) hat man CL = DL = MK, AK = BK = ML. Hieraus folgt PK = ML, PL = MK, d. h.: PKML ist ein Parallelogramm. Hiernach ist $LP(||MK) \perp AB$, $KP(||ML) \perp CD$; in Worten: P ist der Höhenschnittpunkt des Dreieckes QKL, und folglich QP die dritte Höhe darin: $QP \perp KL$. Daraus folgt: LKLM = LLQP. Ferner ist KMLQein Kreisviereck, z. B. also LKLM = LKQM, dempach LKQM = LLQP. Es seien O, R die Schnittpunkte des Lothes in P auf QP mit AB, CD; dann wird $OR \parallel KL$ sein. Bedeuten weiter O', R', Ω die Schnittpunkte von OM, RM, PM mit KL, so folgt $P\Omega = \Omega M$, denn Ω ist der Mittelpunkt des Parallelogramms PKML; daher ist aber auch OO = OM und RR' = R'M. Da $LOKM = \frac{\pi}{2}$, $LRLM = \frac{\pi}{2}$ ist, so mussen hierarch OO'K und RR'L gleichschenklige Dreiecke sein. Daraus zieht man LQOP (= LQKO') = LKOO', ebenso LQRP = LLRR', oder in Worten: PO und MO (ebenso wie PR und MR) sind entgegengesetzt gleich gegen AB geneigt (I).

Von hier aus mögen zwei verschiedene, mit 1), 2) bezeichnete Wege eingeschlagen werden, um zum Ziele zu gelangen.

1. Es sei U der Schnittpunkt von AM mit BP, V der von BM mit AP. Dann ist PUMVAB ein vollständiges Vierseit. Nennt man seine Diagonalpunkte PM, UV; UV, AB; AB, PM der Reihe nach X, Y, Z, so sind einerseits OP, OM; OX, OZ harmonische Strahlen, von denen aber die ersten beiden entgegengesetzt gleich gegen den vierten geneigt sind, so dass dieser auf dem dritten senkrecht steht: $OX \perp AB$. Andererseits sind auch OV, OU; OX, OY harmonische Strahlen, von denen die letzten zwei (OX, OY oder OX, AB), wie eben gezeigt wurde, aufeinander senkrecht stehen, woraus folgt, dass die ersten beiden gleiche Winkel mit AB bilden: LAOV = LBOU. Werden daher die Lothe UU', VV' auf AB

gefällt, so sind die rechtwinkligen Dreiecke VV'O, UU'O einander ähnlich, es ist folglich UU':VV'=OU':OV'; es ist aber in den ebenfalls einander ähnlichen Dreiecken UU'A, VV'B auch UU':VV'=AU':BV'. Aus beiden Proportionen ergiebt sich OU':OV'=AU':BV', woraus weiter folgt

$$AO:BO=AU':BV'.$$

Nach Construction verhalten sich nun die Strecken AU', BV' zu einander wie die auf AB senkrechten Componenten derjenigen Geschwindigkeiten, womit sich augenblicklich die Punkte A, B auf $\mathfrak S$ bewegen würden, falls der Winkel APB sich um P drehte. Nennt man daher diese Geschwindigkeitscomponenten u', v', so hat man

$$u': v' = AO:BO$$

d. h.: O ist der augenblickliche Drehungspunkt der Sehne AB (II).

Aus (I), (II) zusammen folgt sofort der Beweis des aufgestellten Satzes, abgesehen von der Behauptung, die sich auf die zu P gehörende Leitlinie bezieht.

- 2. Hier mögen folgende drei bekannte Sätze vorangestellt werden:
- a) In jedem Parallelogramme PKML ist die Summe der Seitenquadrate gleich der Summe der Diagonalenquadrate.
- b) Sind AC, BD zwei aufeinander senkrechte Kreissehnen, so ist $\overline{AB^2} + \overline{CD^2} (= \overline{AD^2} + \overline{BC^2}) = 4 \overline{MA^2}$, wo M den Mittelpunkt des Kreises bedeutet.
- c) Bewegt sich eine gerade Linie so, dass das Rechteck aus ihren Abständen von zwei festen Punkten eine unveränderliche Grösse ist, so hüllt sie einen Kegelschnitt ein, der die beiden Punkte zu Brennpunkten hat.

Es seien K', L' die Schnittpunkte von KP, LP mit bez. CD, AB. Dann wird L'KLK' ein Kreisviereck sein, dessen Mittelpunkt Ω ist; denn fällt man die Lothe ΩK_0 , ΩL_0 auf AB, CD, so muss wegen $P\Omega = \Omega M$ auch $L'K_0 = K_0K$, und $K'L_0 = L_0L$ sein, mithin $\Omega L' = \Omega K$, $\Omega K' = \Omega L$, also wegen $\Omega K = \Omega L$: $\Omega K = \Omega L' = \Omega K' = \Omega L$. Nun ist nach α): $\overline{LK}^2 + \overline{MP}^2 = 2(\overline{MK}^2 + \overline{ML}^2) = \frac{1}{2}(\overline{AB}^2 + \overline{CD}^2)$ (wegen MK = LD = LC, ML = KA = KB), nach b) aber $\frac{1}{2}(\overline{AB}^2 + \overline{CD}^2) = 2.\overline{MA}^2$; hiernach $\overline{LK}^2 = 2.\overline{MA}^2 - \overline{MP}^2 = const.$, wenn sich das Viereck ABCD um P dreht. Der Kreis Ω durch K, L, K', L' ist also auch unveränderlich. Deshalb ist weiter PL.PL' = PK.PK' = const., oder

$$MK, PL' = ML, PK' = const.$$

Zufolge c) ist damit die Behauptung bewiesen; der Berührungspunkt O von AB bestimmt sich dann nach (I). Ebenso ist dann R der Berührungspunkt von CD.

Dass p die zu P gehörende Leitlinie von $\mathfrak E$ ist, ergiebt sich augenblicklich. Denn fällt man die Lothe OO'', RR'' auf p, und ist H der

Schnittpunkt von OR mit p, so sind HP, RO harmonische Punkte, weil p, QR, QP, QO im Vierseite ABCDQQ' harmonische Strahlen sind, und überdies ist $p \perp PM$.

Dass in Fig. 1, we $\mathfrak E$ eine Ellipse ist, PO + MO = PR + MR ist, sieht man sofort, wenn man die Spiegelbilder M_1 , M'_1 von M mit Beziehung auf AB, CD zeichnet und berücksichtigt, dass LKQM = LLQP ist.

Beweis des allgemeinen Satzes (Fig. 2).

Ich begnüge mich hier damit, die Richtigkeit des Satzes auf analytischem Wege zu bestätigen, indem ich folgende zwei Sätze als bekannt vorausschicke:

- a) Dreht sich ein rechter Winkel um seinen auf dem Rande eines Kegelschnittes liegenden festen Scheitel, so wird die Hypotenusensehne sich um einen Punkt auf der Normale im Scheitel drehen. Dieser Drehpunkt liegt auch auf dem Durchmesser des Kegelschnittes, der dem im Scheitel endigenden Durchmesser gleich (und also entgegengesetzt wie dieser gegen die Axe geneigt) ist.*
- b) Dreht sich eine Sehne eines Kegelschnittes um einen festen Punkt, so beschreibt ihre Mitte einen ähnlichen, ähnlich liegenden Kegelschnitt, der den Mittelpunkt des gegebenen Kegelschnittes und den Drehungspunkt zu Gegenpunkten (Endpunkten eines Durchmessers) hat.
- Sind G, H die Mitten der auf einander senkrechten Sehnen APC, BPD im gegebenen Kegelschnitte \mathfrak{S} , so werden bei der Drehung G, H nach \mathfrak{b}) einen ähnlichen, ähnlich liegenden Kegelschnitt \mathfrak{S}' beschreiben, in dem PM ein Durchmesser ist. Also wird nach \mathfrak{a}) die Gerade GH sich um einen Punkt Ω drehen. Da der Mittelpunkt M' von \mathfrak{S}' die Mitte von MP ist, so findet man Ω zufolge \mathfrak{a}) dadurch, dass man $M'\Omega$ entgegengesetzt wie M'P gegen die Axe von \mathfrak{S}' oder (was dasselbe ist) von \mathfrak{S} zieht und mit der Normale $P\Omega$ in P zum Schnitte bringt. Diese Normale von \mathfrak{S}' ist aber parallel der Normale von \mathfrak{S} in P_0 , wenn P_0 das Ende des Durchmessers MP in \mathfrak{S} bedeutet, mithin senkrecht auf der Polare P von P mit Beziehung auf \mathfrak{S} , denn P ist senkrecht zur Tangente an \mathfrak{S} in P_0 . Ist überdies P der Schnittpunkt von $P\Omega$ mit dem Durchmesser von \mathfrak{S} , der entgegengesetzt wie MP_0 gegen die Axe geneigt ist (oder also parallel $M'\Omega$ liegt), so wird Ω die Mitte von PF sein, weil M' die Mitte von MP ist. Hieraus folgt:
- c) Die Verbindungslinie GH der Mitten der Sehnen AC, BD dreht sich um einen Punkt Ω . Man erhält diesen, wenn man das Loth von P auf p mit dem Durchmesser zum Schnitte F

^{*} Steiner, Ges. W. Bd. II, S. 432. Vergl. einen Beweis dieses Satzes in der Zeitschrift f. Mathem. u. Physik, Bd. 33 S. 309. Daselbst ist fälschlich S. 332 statt 432 als die Stelle ungegeben, wo sich Steiner's Bemerkung findet.

bringt, der entgegengesetzt wie MP gegen die Axe geneigt ist, und alsdann PF halbirt. [Ist © eine Parabel, so tritt selbstverständlich an Stelle dieses Durchmessers das Spiegelbild des durch P gehenden Durchmessers mit Beziehung auf die Parabelaxe.]

P sei Coordinatenanfang, AC, BD seien die Coordinatenaxen x, y; die Gleichung von \mathfrak{S} sei

$$\alpha x^2 + \beta y^2 + 2\gamma xy + 2\delta x + 2\varepsilon y + 1 = 0.$$

Dann ist bekanntlich

$$\alpha + \beta$$

eine Invariante für die Drehung des Coordinatensystemes.

Die Punkte A, C (y = 0) haben die Abscissen:

$$x = \frac{1}{\alpha} \left(-\delta \pm \sqrt{\delta^2 - \alpha} \right),$$

die Punkte B, D (x = 0) die Ordinaten

$$y = \frac{1}{\beta} \left(-\varepsilon \pm \sqrt{\varepsilon^2 - \beta} \right),$$

und p hat die Gleichung

$$\delta x + \varepsilon y + 1 = 0.$$

Infolge dessen ist das Loth von P auf p:

$$\epsilon x - \delta y = 0.$$

Die Mitten von AC, BD sind:

G:
$$x' = -\frac{\delta}{\alpha}$$
, $y' = 0$; H: $x'' = 0$, $y'' = -\frac{\varepsilon}{\beta}$;

die Gerade GB hat die Gleichung:

(m)
$$\alpha \, \varepsilon \, x + \beta \, \delta \, y + \delta \, \varepsilon = 0.$$

Nach c) besitzt daher Ω als Schnittpunkt von (m) mit (l) die Coordinaten

$$(\Omega) x_0 = -\frac{\delta}{\alpha + \beta}, \quad y_0 = -\frac{\varepsilon}{\alpha + \beta};$$

und also der Punkt F [wiederum nach c)]:

(F)
$$x_1 = -\frac{2\delta}{\alpha + \beta}, \quad y_1 = -\frac{2\varepsilon}{\alpha + \beta}$$

Die Gleichung von \overline{AB} ist $\frac{x\alpha}{-\delta + \sqrt{\delta^2 - \alpha}} + \frac{y\beta}{-\varepsilon + \sqrt{\varepsilon^2 - \beta}} - 1 = 0$ oder

$$(AB) x\Delta + yE + l = 0,$$

ebenso die von CD:

$$(CD) x\Delta' + yE' + 1 = 0,$$

wenn zur Abkürzung $\delta \pm \sqrt{\delta^2 - \alpha} = \left\{ \frac{\Delta}{\Delta}, \text{ und } \epsilon \pm \sqrt{\epsilon^2 - \beta} = \left\{ \frac{E}{E}, \text{ gesetzt wird } \beta \right\} \right\}$

Nach den Gl. (F) und (AB) hat das Loth FK auf AB die Länge

$$k = \left| \frac{2\delta\Delta + 2\varepsilon E - (\alpha + \beta)}{(\alpha + \beta)\sqrt{\Delta^2 + E^2}} \right|$$
$$= \left| \frac{\sqrt{\Delta^2 + E^2}}{\alpha + \beta} \right|;$$

andererseits das Loth PL' auf AB zufolge der Gl. (AB)

$$l' = \frac{1}{\sqrt{\Delta^2 + E^2}}.$$

Hieraus aber ergiebt sich

$$k.l' = \frac{1}{|\alpha + \beta|} = const.$$

Das Loth FK von F auf AB hat die Gleichung

$$(FK) xE - y\Delta + \frac{2}{\alpha + \beta}(\delta E - \varepsilon \Delta) = 0,$$

das Loth PK' auf CD nach der Gl. (CD)

$$(PK') xE'-y\Delta'=0;$$

woraus man nachweist, dass die drei Geraden AB, FK, PK' sich in einem Punkte, nämlich K, schneiden; denn ihre Determinante

$$\begin{vmatrix} \Delta & E & 1 \\ E & -\Delta & \frac{2}{\alpha+\beta} (\delta E - \varepsilon \Delta) \\ E' & -\Delta' & 0 \end{vmatrix} = \Delta E' - E \Delta' + \frac{2}{\alpha+\beta} (\delta E - \varepsilon \Delta) (\Delta \Delta' + E E')$$

wird, da $\Delta E' - E\Delta' = -2(\delta E - \varepsilon \Delta)$ und $\Delta \Delta' + EE' = \alpha + \beta$ ist, gleich Null. Es ist also K'PK eine gerade Linie, ebenso L'PL, wenn $FL \perp CD$; oder es ist stets PKFL ein Parallelogramm, so dass KL durch Ω , die Mitte von PF, hindurchgeht und die Punkte K, L', K', L sich wegen der Unveränderlichkeit von k.l' = k'.l auf einem festen Kreise um Ω bewegen. [Dass dieser Kreis fest ist, lässt sich auch so zeigen: es ist

$$k = \left| \frac{\sqrt{\Delta^2 + \mathbb{E}^2}}{\alpha + \beta} \right|, \text{ ebenso } l = \left| \frac{\sqrt{\Delta'^2 + \mathbb{E}'^2}}{\alpha + \beta} \right|; \text{ mithin } k^2 + l^2 = \frac{2}{(\alpha + \beta)^2} |2(\delta^2 + \epsilon^2)|$$

 $-(\alpha + \beta) = const.$, da ausser $\alpha + \beta$ auch $\delta^2 + \epsilon^2$ invariant für die Drehung ist. Daraus folgt aber nach dem Hilfssatze a) S. 11 die Unveränderlichkeit von KL, da sich leicht direct nachweisen lässt, dass KL durch Ω geht]. — Die Gleichung kl' = const. zeigt [s. c) S. 11], dass AB (ebenso CD) einen Kegelschnitt $\mathfrak S$ umhüllt, dessen Brennpunkte P, F sind. Dass dann $OPR \perp PQ$ die Berührungspunkte von AB, CD bestimmt, folgt daraus, dass PKFL ein Parallelogramm ist, genau w. S. 10, 11, ebenso, dass P die zu P gehörende Leitlinie von $\mathfrak S$ ist (s. S. 12).

Die Berührungspunkte O_1 , R_1 von AD, BC findet man, indem man das Loth O_1PR_1 auf PQ' errichtet. Die Berührungssehnen OR, O_1R_1 liegen so, dass AC, BD ihre Winkelhalbirenden sind Denn dasselbe gilt von

PQ, PQ' selbst, da PQ, PQ'; AC, BD harmonische Strahlen sind, von denen die letzteren zwei auf einander senkrecht stehen.

Bezeichnet man den Ort der Punkte (Kreis bez. Gerade [Leitlinie bei der Parabel]), von denen aus zu einander rechtwinklige Tangenten an \mathfrak{S} gehen, mit \mathfrak{R} , so ist \mathfrak{C} eine Ellipse oder Hyperbel, je nachdem P innerhalb \mathfrak{S} oder zwischen \mathfrak{S} und \mathfrak{R} liegt. Nur wenn \mathfrak{S} eine stumpfwinklige Hyperbel ist, gilt das Umgekehrte. Befindet sich P auf dem Rande von \mathfrak{S} , so zerfällt \mathfrak{C} in P und F; liegt P auf \mathfrak{R} , so wird \mathfrak{C} zur Polare von P mit Beziehung auf \mathfrak{S} ; liegt P auf dem übrigen Gebiete der Ebene (innerhalb bez. ausserhalb \mathfrak{R} , je nachdem \mathfrak{S} eine Hyperbel oder Ellipse ist), so ist \mathfrak{C} imaginär. Ist \mathfrak{S} eine gleichseitige Hyperbel, so ist unter allen Umständen \mathfrak{C} eine Parabel.

Ist $\frac{x^2}{A} + \frac{y^2}{B} = 1$ die Gleichung von S auf die Axen bezogen, und sind ξ , η die Coordinaten von P, so sind die von F

$$x_1 = \xi \frac{A-B}{A+B}$$
, $y_1 = -\eta \frac{A-B}{A+B}$;

liegt dann P (und also auch F) auf der x-Axe, so hat man

$$\overline{PF} = MP - MF = 2\xi \frac{B}{A+B}$$

Ist z. B. \otimes eine Parabel, und wird dabei $A = a^2$ gesetzt, so ist $\overline{PF} = 2 \xi \cdot \frac{B}{A} = 2 \frac{\xi}{a} \cdot \frac{B}{a} = 2 \frac{B}{a} = 2 \gamma$ gleich dem Parameter von \otimes , welche Lage auch P auf der Axe habe.

Ist P der Mittelpunkt von \mathfrak{S} , so ist \mathfrak{S} ein Kreis, und die Geraden OPR, die die Berührungspunkte der Sehnen AB, CD bestimmen, sind senkrecht auf diesen; ist P ein Brennpunkt von \mathfrak{S} , so sind die Linien OPR die Winkelhalbirenden der Winkel APB.

Die Asymptoten von \mathbb{C} findet man, indem man den Kreis über $P\Omega$ als Durchmesser zieht; seine Schnittpunkte mit p hat man mit Ω zu verbinden. Die Schnittpunkte von \mathfrak{S} mit \mathfrak{C} erhält man, wenn man von P die Tangenten an \mathfrak{S} legt, die darauf senkrechten Secanten durch P zieht und deren Schnittpunkte mit \mathfrak{S} bestimmt.

Ist © ein zerfallender, d. h. aus zwei Geraden bestehender Kegelschnitt, so gelten selbstverständlich dieselben Sätze. Dann ist © ein Kegelschnitt, der jede der beiden Geraden berührt. Diese beiden Berührungspunkte liegen auf dem Lothe, das in P auf PM errichtet ist, wenn M den Schnittpunkt der beiden Geraden bezeichnet. © wird aber nach den oben gegebenen Sätzen in diesem Falle eine Ellipse oder Hyperbel sein, je nachdem P in einem spitzen oder stumpfen Winkelraume liegt, dagegen stets eine Parabel, wenn die beiden Geraden auf einander senkrecht stehen. Dieser Fall, dass © zerfällt, ist auch sehr einfach direct zu behandeln.

Dass die Sehnen AB einen Kegelschnitt mit P als Brennpunkt einhüllen, ist bekannt (s. z. B. Salmon-Fiedler, analyt. Geom. d. K., 5. Aufl., S. 743); doch wird durch die Angaben S. 10 der Kegelschnitt vollständig bestimmt.

Leipzig, 17. Mai 1890.

Dr. Otto RICHTER.

IV. Einige Sätze über die räumliche Collineation und Affinität, welche sich auf die Krümmung von Curven und Flächen beziehen.

1. Berühren sich zwei Flächen in einem Punkte, so ändert sich das Verhältniss ihrer (Gauss'schen) Krümmungsmasse in jenem Punkte nicht, wenn sie einer beliebigen projectiven Transformation unterworfen werden.

Nächst dem Satze von Gauss, wonach bei der Biegung einer Fläche das Krümmungsmaass in jedem einzelnen Punkte unverändert bleibt, ist vorstehender Satz vielleicht der einfachste, der über das Krümmungsmaass ausgesagt werden kann.

Für die Affinität hat man noch etwas allgemeiner:

- 1a. Berühren zwei Flächen eine und dieselbe Ebene in zwei verschiedenen Punkten, so ist allen affinen Transformationen gegenüber das Verbältniss ihrer Krümmungsmaasse in den Berührungspunkten unveränderlich.
- 2. Wenn zwei Curven einen Punkt und in demselben die Schmiegungsebene gemein haben, während ihre Tangenten in jenem Punkte verschieden gerichtet sein können, so wird bei keiner projectiven Transformation jener Curven das Verhältniss ihrer Torsionen im gemeinsamen Punkte geändert.
- 2a. Bei affiner Transformation genügt es, dass beide Curven eine und dieselbe Ebene, wenn auch in zwei verschiedenen Punkten, osculiren; das Verhältniss der Torsionen in jenen Punkten ändert sich nicht.
- 3. Osculiren sich zwei (räumliche) Curven in einem Punkte und bildet man für denselben das Verhältniss ihrer Krümmungen, so hat eine beliebige projective Transformation beider Curven auf den Werth jenes Verhältnisses keinen Einfluss.
- 3a. Wendet man affine Transformation an, so dürfen beide Curven auch eine und dieselbe Gerade in zwei verschiedenen Punkten berühren, vorausgesetzt, dass die zu jenen Punkten gehörigen Schmiegungsebenen zusammenfallen; das Verhältniss der Krümmungen in den Berührungspunkten bleibt ungeändert.
- 4. Da der zu einer Stelle einer Raumcurve gehörige Krümmungsmittelpunkt von drei unendlich nahen Curvenpunkten gleich weit absteht und in deren Verbindungsebene liegt, so kann, wenn man die Curve sowohl als die Bahn eines Punktes, wie auch als die Rückkehrcurve der Hüllbahn einer Ebene auffasst, als das dualistische Gegenstück zum Krümmungsmittelpunkte diejenige Ebene betrachtet werden, welche mit drei unendlich benachbarten Schmiegungsebenen gleiche Winkel einschliesst und durch ihren Schnittpunkt,

Digitized by GOOSIC

d. h. den betreffenden Curvenpunkt geht. Diese Ebene, welche auf der rectificirenden Geraden (der Axe des Schmiegungskegels) normal ist, könnte etwa die zur fraglichen Curvenstelle gehörige Krümmungsebene genannt werden. Ihr Winkel mit der Schmiegungsebene, welcher offenbar dem Krümmungshalbmesser dualistisch gegenüber steht, möge Krümmungswinkel heissen. Es gilt folgender Satz:

Haben zwei Curven in einem gemeinsamen Punkte dieselbe Tangente und dieselbe Schmiegungsebene und bezeichnen κ und κ' ihre Krümmungswinkel in jenem Punkte, so ändert sich das Verhältniss $tang \kappa: tang \kappa'$ bei beliebiger projectiver Transformation der Curven nicht.

- 4a. Bei affiner Transformation bleibt das Verhältniss tang x: tang x' auch dann ungeändert, wenn die Curven wohl eine gemeinsame Tangente und Schmiegungsebene, aber mit getrennten Berührungspunkten besitzen und x, x' ihre Krümmungswinkel in jenen Punkten sind.
- 5. Der Kürze wegen soll von nun an jeder metrische Ausdruck, welcher beim Uebergange von der ursprünglichen Figur zu einer beliebigen ihr projectiven Figur seinen Werth nicht ändert, projectiv unveränderlich genannt werden.

Berühren sich eine Curve und eine Fläche in einem Punkte und fallen überdies die Schmiegungsebene der Curve und die Tangentenebene der Fläche, die zu jenem Punkte gehören, zusammen, so ist das Product aus dem Krümmungsmaasse der Fläche und dem Quadrate der Torsion der Curve im fraglichen Punkte projectiv unveränderlich.

- 5a. Fällt irgend eine Schmiegungsebene einer Curve mit einer beliebigen Tangentenebene einer Fläche zusammen, so ist, auch wenn die beiden Berührungspunkte getrennt liegen, das Product aus dem Krümmungsmasse der Fläche und dem Quadrate der Torsion der Curve, für die betreffenden Berührungspunkte gebildet, bezüglich aller affinen Transformationen unveränderlich.
- 6. Auf einer Fläche (oder auf zwei verschiedenen Flächen) sind zwei beliebige Punkte gewählt. Bezeichnet man mit K und K' die Krümmungsmaasse der Fläche (oder Flächen) in jenen Punkten und mit h bezw. h' die Entfernung des ersten bezw. zweiten Punktes von der Tangentenebene im zweiten bezw. ersten, so ist

projectiv unveränderlich. $(K:K')(h:h')^4$

7. Auf einer Curve (oder auf zwei verschieden Curven) hat man zwei Punkte, deren zugehörige Schmiegungsebenen zusammenfallen. Sind k und k die Krümmungen in jenen Punkten und bezeichnet h bezw. h' die Entfernung des ersten bezw. zweiten Punktes von der Tangente im zweiten bezw. ersten, so ist $(k:k')(h:h')^3$

projectiv unveränderlich.

8. Haben zwei Curven einen gemeinsamen Punkt und nennt man κ , κ' ihre Krümmungswinkel in demselben (s. 4), φ bezw. φ' dagegen den Winkel

den die Schmiegungsebene der ersten bezw. zweiten Curve mit der Tangente der zweiten bezw. ersten Curve in jenem Punkte einschliesst, so ist

$$(tang \ \kappa : tang \ \kappa') \ (sin \ \varphi : sin \ \varphi')^8$$

projectiv unveränderlich.

9. Sind t und t' die Torsionen in zwei beliebigen Punkten einer Curve (oder auch zweier verschiedenen Curven) und bezeichnet man durch h bezw. h' die Entfernung des ersten bezw. zweiten Punktes von der Schmiegungsebene im zweiten bezw. ersten, so ist

projectiv unveränderlich. $(t:t')(h:h')^2$

Anmerkung zu 6, 7, 8, 9. Bei affiner Transformation bleiben die angeführten Ausdrücke auch dann unveränderlich, wenn man in 6 (7,9) h bezw. h' die Entfernung eines beliebigen Punktes statt des ersten bezw. zweiten Flächen-(Curven-) Punktes von der Tangentenebene (Tangente, Schmiegungsebene) im zweiten bezw. ersten bedeuten lässt, ferner wenn in 8 statt eines gemeinsamen Punktes zwei beliebige getrennte Punkte genommen werden.

Wir wollen im Folgenden Punkte mit kleinen lateinischen, Geraden mit grossen lateinischen, Ebenen mit kleinen griechischen Buchstaben bezeichnen. Ueberdies möge $(a\beta)$ die Entfernung des Punktes a von der Ebene β und mom(AB) das Moment der zu einander windschiefen Geraden A und B (das Product aus der kürzesten Entfernung und dem sin des Winkels derselben) bedeuten. Es gelten folgende Sätze:

10. Sind K und K' die Krümmungsmasse in zwei beliebigen Punkten a und a' einer Fläche (oder zweier verschiedenen Flächen), α und α' die Tangentenebenen der Fläche (oder Flächen) in jenen Punkten, x ein beliebiger Punkt und ξ eine beliebige Ebene, so ist

$$(K:K')\left(\frac{(a\,\xi)}{(x\,\alpha)}:\frac{(a'\,\xi)}{(x\,\alpha')}\right)^4$$

projectiv unveränderlich.

10a. Bei affiner Transformation ist, wenn x und x' zwei beliebig angenommene Punkte sind und die tibrigen Grössen dieselbe Bedeutung haben, wie in 10, der Werth des Ausdruckes

$$\frac{K:K'}{((x\alpha):(x'\alpha'))^4}$$

unveränderlich.

11. Nennt man k und k' die Krümmungen in zwei beliebigen Punkten a und a' einer Curve (oder zweier verschiedenen Curven), A und A' die Tangenten, α und α' die Schmiegungsebenen in jenen Punkten und sind ferner x ein beliebiger Punkt, ξ eine beliebige Ebene und X eine beliebige Gerade des Raumes, dann ist

$$(k:k')((x\alpha):(x\alpha'))\left(\frac{(a\xi)}{mom(AX)}:\frac{(a'\xi)}{mom(A'X)}\right)^{3}$$
Einderlich.

projectiv unveränderlich.

11a. Bei affiner Transformation bleibt auch

$$(k:k')\frac{(x\alpha):(x\alpha')}{(mom\ (A\ X):mom\ (A'\ X))^3}$$

ungeändert.

12. Bei denselben Bezeichnungen wie in 11 ist, wenn noch z und z' die Krümmungswinkel (s. 4) der Curve (oder Curven) in den Punkten a und a' genannt werden,

 $(tang \ x : tang \ x') ((a \ \xi) : (a' \ \xi)) \left(\frac{(x \ \alpha)}{mom (A \ X)} : \frac{(x \ \alpha')}{mom (A' \ X)}\right)^{3}$

projectiv unveränderlich.

12 a. Handelt es sich nur um affine Transformationen, so schon der Ausdruck

 $(tang \ n : tang \ n') \left(\frac{(x \alpha)}{mom (A \ X)} : \frac{(x \alpha')}{mom (A' \ X)}\right)^3$

seinen Werth bei.

13. Auf einer Curve (oder auf zwei verschiedenen Curven) wählt man zwei beliebige Punkte a und a. Heissen t und t' die Torsionen der Curve (oder Curven) in jenen Punkten, α und α' die Schmiegungsebenen in denselben, so ist, wenn x einen willkürlichen Punkt und & eine willkürliche Ebene vorstellt,

 $(t:t')\left(\frac{(a\,\xi)}{(x\,\alpha)}:\frac{(a'\,\xi)}{(x\,\alpha')}\right)^2$

projectiv unveränderlich.

13a. Von affinen Transformationen bleibt schon der Werth des Ausdruckes $\frac{t:t'}{((x\alpha):(x'\alpha'))^2}$

unberührt.

Anmerkung. Die Sätze 6, 7, 8, 9 sind in den Sätzen 10, 11, 12, 13 als besondere Fälle enthalten. Lässt man z. B. x mit a', ξ mit α' zusammenfallen, so geht der Ausdruck unter 10 in denjenigen unter 6 über. Auch können die zuletzt aufgestellten Sätze zum Theil in andere Form ge-Statt des Ausdruckes in 10 z. B. kann man bracht werden.

$$(K:K')\left(\frac{(ay):(a'y)}{\sin(\alpha\eta):\sin(\alpha'\eta)}\right)^4$$

schreiben, wo y einen willkürlichen Punkt auf der Verbindungslinie von a mit a', η eine willkürliche Ebene durch die Schnittlinie von α mit a' bedeutet.

Im Folgenden soll (abcd) den Rauminhalt des Tetraeders abcd, $sin(\alpha\beta\gamma\delta)$ diejenige durch das Vierflach $\alpha\beta\gamma\delta$ bestimmte Grösse bezeichnen, welche dem Rauminhalte (oder eigentlich dem sechsfachen Rauminhalte) eines Tetraeders (als Eckengebilde aufgefasst) reciprok ist, nämlich

$$sin(\alpha\beta\gamma\delta) = sin(\beta\gamma\delta).(a\alpha),$$

wo a die der Fläche α gegenüberliegende Ecke des Vierflachs $\alpha\beta\gamma\delta$ ist und $sin(\beta \gamma \delta)$ den "Sinus" des Dreiflachs $\beta \gamma \delta$, d. h. die Grösse

$$sin(\beta \gamma \delta) = sin(\beta \gamma).sin(D \delta),$$

mit D als der Schnittkante von β und γ , vorstellt.

Digitized by Google

14. Seien a, b, c, d vier beliebige, aber nicht ein einer und derselben Ebene enthaltene Punkte von vier Flächen (die nicht nothwendig verschieden zu sein brauchen), ferner α , β , γ , δ die Tangentenebenen und K, K', K''', K'''' die Krümmungsmasse der Flächen in jenen Punkten, dann ist

$$KK'K''K'''\left(\frac{(abcd)}{\sin(\alpha\beta\gamma\delta)}\right)^4$$

projectiv unveränderlich.

15. Bezeichnet man mit k, k', k'', k''' die Krümmungen von vier Curven (die auch zusammenfallen können) in vier beliebigen, jedoch nicht in einer und derselben Ebene befindlichen Punkten a, b, c, d; mit A, B, C, D die Tangenten und mit α , β , γ , δ die Schmiegungsebenen der Curven in jenen Punkten, so ist

 $k \, k' \, k'''$. $\sin (\alpha \, \beta \, \gamma \, \delta) \left(\frac{(a \, b \, c \, d)}{mom \, (A \, B) \cdot mom \, (CD)} \right)^3$

projectiv unveränderlich.

16. Nennt man, unter Beibehaltung der vorigen Bezeichnungen, n, n', n'' die Krümmungswinkel (s. 4) der Curven in den fraglichen Punkten, so ist

 $tang \times tang \times' tang \times'' tang \times''' . (a b c d) \left(\frac{sin (\alpha \beta \gamma \delta)}{mom (A B). mom (CD)}\right)^{8}$ projectiv unveränderlich.

17. Bezeichnet man noch die Torsion der Curven in den Punkten a, b, c, d mit t, t', t'', t''', so ist $tt't''t'''\left(\frac{\sin(\alpha\beta\gamma\delta)}{(abcd)}\right)^2$

projectiv unveränderlich.

Darmstadt.

Prof. Dr. R. MEHMKE.

V. Eine Verallgemeinerung des binomischen Satzes.

In einem mit dieser Ueberschrift versehenen Aufsatze ist von Herrn Schlömilch in dieser Zeitschrift, Bd. 30 S. 191, die Aufgabe, die ganzen algebraischen Functionen $f_0(n)$, $f_1(n)$, ... so zu bestimmen, dass der Summe

die Eigenschaft

$$f(n) = (r = 0, 1, ...) f_r(n) x^r$$

$$f(n_1) f(n_2) = f(n_1 + n_2)$$

zukommt, unter der Voraussetzung $f_0(n) = 1$ behandelt und darauf in derselben Zeitschrift, Bd. 32 S. 250, von Herrn Saalschütz in dem Aufsatze "Eine Erweiterung des Factoriellensatzes" auf Grund der in einer andern, weniger einfachen Form dargestellten Gleichung

$$\begin{split} \frac{n_1+n_2}{n_1+n_2+r\nu} \binom{n_1+n_2+r\nu}{r} \\ &= (r_1,\,r_2=0,\,\ldots,\,r) \frac{n_1}{n_1+r_1\nu} \binom{n_1+r_1\nu}{r_1} \cdot \frac{n_2}{n_2+r_2\nu} \binom{n_2+r_2\nu}{r_2}, \quad r_1+r_2=r \end{split}$$

eine partikuläre Lösung dieser Aufgabe durch die Bestimmung

$$f_r(n) = \frac{n}{n+r\nu} \binom{n+r\nu}{r}$$

gegeben worden.

Die allgemeine Lösung der Aufgabe ergiebt sich aus dem Lagrangeschen Theorem

$$f(s) = (r = 0, 1, ...) D_y^{r-1} f'(y) (\varphi(y))^r . x^r : r!, \quad s = x \varphi(s) + y,$$
wenn man $f(v) = (F(v))^n$ setzt, ersichtlich in der Form

$$(F(s))^{n} = (r = 0, 1, ...) n D_{y}^{(r-1)} (F(y))^{n-1} F'(y) (\varphi(y))^{r} x^{r} : r!, \quad s = x \varphi(s) + y.$$

Diese Function hat, da aus jenem Theorem dadurch, dass man die Gleichung nach y differenzirt und alsdann f'(v) durch f(v) ersetzt, die Formel

$$\frac{f(s)}{1-x\,\varphi'(s)} = (r=0,\,1,\,\ldots)\,D_y^r f(y)\,(\varphi(y))^r.\,x^r\colon r!\,,\quad s=x\,\varphi(s)+y$$

hervorgeht und hiernach

$$\frac{(F(s))^n}{1 - x \varphi'(s)} = (r = 0, 1, ...) D_y^r (F(y))^n (\varphi(y))^r . x^r : r!, \quad s = x \varphi(s) + y$$

ist, ausser der Potenzeigenschaft überdies die Eigenschaft, dass die sie darstellende Reihe dem Quotienten zweier Reihen gleich ist, von denen die eine sich in der Reihe der letzten Gleichung darstellt und die andere aus dieser für n=0 hervorgeht.

Insbesondere ist, wenn man $\varphi(v) = (F(v))^v$ setzt,

$$(F(s))^{n} = (r = 0, 1, ...) \frac{n}{n + r \nu} D_{y}^{r} (F(y))^{n + r \nu} . x^{r} : r!,$$

$$\frac{(F(s))^{n}}{1 - \nu x (F(s))^{\nu - 1} F'(s)} = (r = 0, 1, ...) D_{y}^{r} (F(y))^{n + r \nu} . x^{r} : r!,$$

$$s = x (F(s))^{\nu} + y$$

und darnach für F(v) = v

$$z = xz^y + y$$

and für $F(v) = e^v$ and y = 0

$$e^{nz} = (r = 0, 1, ...) n(n + r\nu)^{r-1} x^r : r!,$$

$$\frac{e^{nz}}{1 - \nu z} = (r = 0, 1, ...) (n + r\nu)^r x^r : r!,$$

Ersetzt man in der Formel

$$\frac{f(s)}{1-x\varphi'(s)} = (r=0,1,\ldots)D_y^r f(y)(\varphi(y))^r \cdot x^r : r!,$$

$$s = x\varphi(s) + y$$

die Function f(v) durch die Function $(1-x\varphi'(v))^{-m+1}f(v)$, so ergiebt sich ferner bei Berücksichtigung der Gleichung

 $(-1)^{x} {\binom{-m+1}{x}} = {\binom{m-2+x}{x}}, \quad x = 0, 1, ...$

die Formel

Digitized by Google

$$\begin{split} \frac{f(s)}{(1-x\,\varphi'(s))^m} \\ &= (r=0,1,..) \left((\kappa_1,\,\kappa_2=0,...,\,r) \binom{m-2+\kappa_1}{\kappa_1} D_y^{\kappa_2} f(y) (\varphi(y))^{\kappa_1} (\varphi'(y))^{\kappa_1} : \kappa_2! \right) x^r, \\ &\quad s = x\,\varphi(s) + y, \quad \kappa_1 + \kappa_2 = r, \end{split}$$

aus der für m=0 das Lagrange'sche Theorem und für m=1 die obige aus demselben abgeleitete Formel hervorgeht. Vergl. Herrn Hurwitz' Aufsatz "Ueber einige Verallgemeinerungen der Leibniz'schen Differentialformel und des polynomischen Lehrsatzes" in dieser Zeitschrift, Bd. 35 S. 56.

Nimmt man in ihr $f(v) = (F(v))^n$ und $\varphi(v) = (F(v))^n$ an, so geht sie in die Formel

$$\frac{(F(z))^{n}}{(1-\nu x (F(z))^{\nu-1} F'(z))^{m}}$$

$$=(r=0,1,..)\left((\kappa_{1},\kappa_{2}=0,...,r)\binom{m-2-\kappa_{1}}{\kappa_{1}}\nu^{\kappa_{1}}D_{y}^{\kappa_{2}}(F(y))^{n+r\nu-\kappa_{1}}(F'(y))^{\kappa_{1}}:\kappa_{2}!\right)x^{r},$$

$$z=x\varphi(z)+y, \quad \kappa_{1}+\kappa_{2}=r$$

tiber, und es ist insbesondere für F(v) = v

$$\frac{(1-\nu x z^{\nu-1})^m}{(1-\nu x z^{\nu-1})^m} = (r=0,1,..) \left((x_1, x_2=0,..,r) \binom{m-2+x_1}{x_1} \binom{n+r\nu-x_1}{x_2} \right)_1 x_1 \right) y^{n+r\nu-r} x^r,$$

$$s = x s^{\nu} + y, \quad x_1 + x_2 = r$$
und für $F(v) = e^v$ und $y = 0$

$$\frac{e^{nz}}{(1-\nu z)^m} = (r=0,1,..) \left((x_1, x_2=0,..,r) \binom{m-2+x_1}{x_1} (n+r\nu)^{x_2} \nu^{x_1} : x_2! \right) x^r,$$

Offenbar gehen die Grössen

$$(F(z))^{n_1} cdot (F(z))^{n_m}, (F(z))^{n_1} cdot (F(z))^{n_{m-1}} cdot \frac{(F(z))^{n_m}}{1 - x \varphi'(z)},$$

$$\frac{(F(z))^{n_1}}{1 - x \varphi'(z)} cdot \frac{(F(z))^{n_m}}{1 - x \varphi'(z)},$$

 $s = xe^{yz}$, $x_1 + x_2 =$

wenn in ihnen die Grössen n_1, \ldots, n_m durch die Grössen $0, \ldots, 0, n_1 + \cdots + n_m$ ersetzt werden, ohne eine Aenderung ihres Werthes in die Grössen

$$(F(z))^{n_1+\cdots+n_m}, \quad \frac{(F(z))^{n_1+\cdots+n_m}}{1-x\,\varphi'(z)}, \quad \frac{(F(z))^{n_1+\cdots+n_m}}{(1-x\,\varphi'(z))^m}$$

tiber. Ersetzt man daher in diesen Grössen, indem man unter der Voraussetzung $\varphi(v) = (F(v))^{\sigma}$ einmal (F(v)) = v und dann $F(v) = e^{v}$ und y = 0 annimmt, die einzelnen Functionen durch die bezüglichen Reihenentwickelungen und bestimmt alsdann die Coefficienten von x^{r} , so gelangt man zu den Gleichungen

The Gleichungen
$$\frac{n_1 + \dots + n_m}{n_1 + \dots + n_m + r\nu} \binom{n_1 + \dots + n_m + r\nu}{r}$$

$$= (r_1, \dots, r_m = 0, \dots, r) \frac{n_1}{n_1 + r_1 \nu} \binom{n_1 + r_1 \nu}{r_1} \dots \frac{n_m}{n_m' + r_m \nu} \binom{n_m + r_m \nu}{r_m},$$
Digitized by

Die drei letzten, von denen die zweite für m=2 von Abel herrührt, finden sich in dem erwähnten Hurwitz'schen Aufsatze, die allererste ist für m=2 die eingangs gegebene Saalschütz'sche Gleichung. Für $\nu=0$ gehen sie in die Gleichungen

$$\binom{n_1 + \cdots + n_m}{r} = (r_1, \dots, r_m = 0, \dots, r) \binom{n_1}{r_1} \cdots \binom{n_m}{r_m},$$

$$(n_1 + \cdots + n_m)^r = (r_1, \dots, r_m = 0, \dots, r) \frac{r!}{r_1! \dots r_m!} \cdots n_1^{r_1} \dots n_m^{r_m},$$

$$r_1 + \cdots + r_m = r$$

über. Endlich ist beispielsweise nach der dritten für $\nu=1$ die Grösse

$$(r_1, \ldots, r_m = 0, \ldots, r) \binom{n_1 + r_1}{r_1} \cdots \binom{n_m + r_m}{r_m}, \quad r_1 + \cdots + r_m = r$$
 gleich der Grösse

$$(\mathbf{x}_1, \mathbf{x}_2 = 0, ..., r) \binom{m-2+\mathbf{x}_1}{\mathbf{x}_1} \binom{n_1+\cdots+n_m+\mathbf{x}_2}{\mathbf{x}_2}, \quad \mathbf{x}_1+\mathbf{x}_2=r$$

oder, da diese Grösse als eine dem Falle m=2 entsprechende Grösse von derselben Form der Grösse

$$(\kappa = 0, \ldots, r)$$
 $\binom{n_1 + \cdots + n_m + m - 2 + \kappa}{\kappa}$

gleich ist und, unter der n^{ten} figurirten Zahl n^{ter} Ordnung die Grösse $\binom{n+x}{x}$ verstanden, die Summe der r+1 ersten figurirten Zahlen n^{ter} Ordnung für $n=0,\ldots,r$ sich in der Form $\binom{n+1+r}{r}$ darstellt, gleich der Grösse

eine Formel, die für m=2 von Herrn Baur in dem in dieser Zeitschrift, Bd. 32 S. 218, veröffentlichten Aufsatze "Einige Eigenschaften der Binomial-coefficienten, mit Anwendungen auf die Combinationslehre" gegeben ist.

Berlin, 21. November 1890.

LEOPOLD SCHENDEL.

VI. Kriterien der Theilbarkeit dekadischer Zahlen.

Um zu entscheiden, ob eine gegebene Zahl Z (z. B. 2688) durch 7 theilbar ist, verfährt man nach folgender Regel:

Man multiplicirt die letzte Ziffer von Z (d. i. in unserm Beispiele 8) mit 2 und subtrahirt das erhaltene Product (d. i. 16) von den vorhergehenden Ziffern (d. i. 268). Ist der Rest (d. i. 252) durch 7 theilbar, so ist das ein Kriterium dafür, dass Z durch 7 getheilt werden kann.

Diese bekannte Regel gestattet folgende Verallgemeinerung:

Um zu entscheiden, ob eine gegebene Zahl Z durch n getheilt werden kann, multiplicire man die letzte Ziffer von Z mit der für jedes n besonders zu bestimmenden Zahl x und subtrahire das erhaltene Product von den vorhergehenden Ziffern. Ist der gefundene Rest durch n theilbar, so ist es auch Z.

Die Zahl x bestimmt sich nach folgender Regel:

Man schreibe alle diejenigen Vielfachen von n auf, welche mit der Ziffer 1 endigen, und streiche diese Ziffer 1 weg; dann genügen die so erhaltenen Zahlen den für x angegebenen Bedingungen.

Nehmen wir z. B. n=7. Die Vielfachen von 7, welche mit der Ziffer 1 endigen, sind nun:

$$3.7 = 21$$
; $13.7 = 91$; $23.7 = 161$ etc.

Streicht man die Ziffer 1 weg, so erhält man die Zahlen 2, 9, 16 etc. Dass 2 den für x angegebenen Bedingungen genügt, ist bekannt; dasselbe gilt jedoch auch für die Zahlen 9, 16 etc., wie man sich durch Beispiele überzeugen kann.

Berlin.

DIETRICHKEIT, Cand. math.

Sachen erachienen im Verlage von B. G. Teubner in Lelprig und sind durch alle Bacubandlungen zu beziehen

Richter, Dr. phil. Otto, in Leipzig, uber die Systeme derjonigen Kegelschnitte, die eine biefrenlare Curve vierter Ordnung viermal berühren Mit in den Text gedruckten Figuren und vier lithographirten Tafeln. [IV u 111 S.] gr. 8. geh n. # 4.-..

Graefe, Dr. Pr., Professor, Auflösungen und Beweise der Aufgaben und Lehrsätze aus der analytischen Geometrie des Raumes inshesondere der Flüchen zweiten Grades. Für Studirende an Universitäten und technischen Hochschulen bearbeitet. [XVI n. 353 S.] gr. 8. geh. n. .# 8.—

Die Aufgaben und Lehrsätze aus der analytischen Geometrie des Ruumes, inebesondere der Flichen 2. Grades erschienen 1888.

Steinheil, Dr. Adolph, Inhaber der Firma C. A Steinheil Söhne und Mitglied der Akademie der Wissenschaften in Munchen, und Dr. Ernst Voit,
Professor un der technischen Hochschule zu München. Handbuch über
angewandten Optik. (In 3 Bänden.) I. Band. Voraussetzung für
die Berechnung optischer Systeme und Anwendung auf einfache und
achromatische Linsen. Mit in den Text gedruckten Figuren und 7 lithographierten Tateln: [VI u. 314 S.] gr. S. geh. u. # 12.—

Verlag von Louis Nebert in Halle a. S. Gratis und franco steht zur Verfügung:

Neuestes Verzeichnis meines mathematischen Verlags.

Verlag von Georg Reimer in Berlin zu beziehen durch alle Buchhandlungen.

Allgemeine Mechanik

der Punkte und starren Systeme.

Ein Lehrbuch für Hochschulen

E. Budde.

Erster Band.

Preis: 10 Mk.

Der II. Schluss-) Band wird noch im Laufe dieses Jahres auf Ausgabe gelangen.

J. B. Metzlerscher Verlag, Stuttgart.

Besprochen in dieser Zeitschr. 1890 H, 6 S. 208.

E. Hammer, Über die geographisch wichtigsten Kartenprojectionen, imsbesondere die zenitalen Entwürfe nebst Tafein zur Verwandlung von geographischen Koordinaten in Azimutale. Preis 5 .#.

Kurz zuvor erschien:

E. Hammer, Autorisierte deutsche mit einigen Zusätzen vermehrte Bearbeitung von Tissof's Buch: Die Netzentwürfe geographischer Karten nebst Aufgaben über Abbildung beliebiger Flächen aufeinander. Preis 5 .4.

Digitized by Google

INHALT.

I. Zur Aufstellung arithmetischer Identitäten. Von G. Vivasit II. Ueber die Gestaltung der Koppelcurven für besondere Fälle des Kurbelgetriebes. Von Prof. Dr. R. Müllen in Braunschweig (Tafel I) III. Ueber die Darstellung der Lösungen eines Systems linearer Differentialgleichungen erster Ordnung in der Umgebung eines singulären Punktes. Von Dr. E. Grüsenen in Wien IV. Ueber eine algebraische Determinante mit eigenthümlichem Bildungsgeseln der Elemente. Von Dr. K. Weinkauch in Dorpat	
Kleinere Mittheilungen.	
1. Ueber Thetafunctionen, deren Argumente einem System von Drittelperioden gleich sind. Von J. Thomas. 11. Licht und Elektrichtet. Von K. W. Zenden in Prag (Tufel II). 111. Ort der Kegelschnittssehnen, die von einem gegebenen Punkte aus unter rechtem Winkel erscheinen. Von Dr. Orto Richten in Leipzig (Tafel III). 11. Einige Sätze über die räumliche Collineation und Affinität, welche zich auf die Krümmung von Curven und Flächen beziehen. Von Prof. Dr. R. Mannes in Darmstadt. 12. V. Eine Verallgemeinerung des binomischen Satzes. Von Leonau Schnennin Berlin. 13. VI. Kriterien der Theilbarkeit dekadischer Zahlen. Von Durmschauer, Canal.	
math, in Berlin	X
Historisch-literarische Abtheilung (besonders paginirt). Commentar zu dem "Tractatus de Numeris Datis" des Jordanus Nemorarias, Von Maximusas Cuurze in Thorn	
Recensionen:	
Kiefer, Dr. A., Ueber die geraden Kegel und Cylinder, welche durch gegebene Punkte des Haumes gehen oder gegebene gerade Linien des Raumes berühren. Von C. Rodenberg Baue, Dr. Moritz, Synthetische Eintheilung der ebenen Linien III. Ordnung. Von C. Rodenberg. Schmöden, Dr. Heineng, Die Theorie der ebenen Curven dritter Ordnung. Von C. Rodenberg. Geraffe, Dr. Fr., Aufgaben und Lehrsätze aus der analytischen Geometrie des Raumes. Von C Rodenberg. Joachiesthal, F., Anwendung der Differential- und Integralrechnung auf die allgemeine Theorie der Flächen und der Linien doppelter Krümmung; bearbeitet von L. Natam. Von Carron Rudie, Prof. Dr. F., Das Problem von der Quadratur des Zirhels. Von Carron Rudie, Prof. Dr. F., Das Problem von der Quadratur des Zirhels. Von Carron Prof. Dr. F., Das enthüllte Geheimniss der Pythia. Von G. Ordnunges Berber, Dr. W. J. van, Lehrbuch der Meteorologie, Von P. Tarutzum Rosse, Ferdinard, Grundriss der ebenen Trigonometrie. Von Alex.	
Bibliographie vom 1. November bis 15. December 1890: Periodische Schriften — Philosophie und Geschichte der Mathematik und Physik — Reine Mathematik — Angewandte Mathematik — Physik und Mateorologie	

Zeitschrift

filr

Mathematik und Physik

herausgegeben

nuter der verantwortlichen Redaction

VOD

Dr. O. Schlömilch, Dr. E. Kahl

and

Dr. M. Cantor.

36. Jahrgang. 2. Heft.

Mit zwei lithographirten Tafeln.

B

Leipzig,

Verlag von B. G. Teubner.

1891.

Digitized by GOOSIG

VORLESUNGEN ÜBER GEOMETRIE

UNTER

BESONDERER BENUTZUNG DER VORTRÄGE

YOS

ALFRED CLEBSCH

BEARBEITET

VON

DR. FERDINAND LINDEMANN.

ORDENTL, PROFESSOR AN DER UNIVERSITÄT ZU KÖNIGSBERG IN PR.

ZWEITEN BANDES ERSTER THEIL.

DIE PLÄCHEN ERSTER UND ZWEITER ORDNUNG ODER BLASSE UND DER LINEARE COMPLEX.

MIT VIELEN FIGUREN IM TEXT.

[VIII u. 650 S.] gr. 8. geh. n. # 12. -

J. P. Metzlerscher Verlag, Stuttgart.

Besprochen in dieser Zeitschr. 1890 Heft 6 S. 208.

E. Hammer, Über die geographisch wichtigsten Kartenprojectionen, insbesondere die zenitalen Entwürfe nebst Tafeln zur Verwandlung von geographischen Koordinaten in azimutale. Preis 5 .#.

Kurz zuvor erschien:

E. Hammer, Autorisierte deutsche mit einigen Zusätzen vermehrte Bearbeitung von Tissot's Buch: Die Netzentwürfe geographischer Karten nebst Aufgaben über Abbildung beliebiger Flächen aufeinander. Preis 5 .4.

Soeben erschien im Verlage von Georg Reimer in Berlin, zu beziehen durch alle Buchhandlungen:

Allgemeine Mechanik

der Punkte und starren Systeme.

Ein Lehrbuch für Hochschulen

TOB

E. Budde.

Zweiter Band.

Preis: 13 Mark.

Mit diesem Bande ist das Werk, dessen erster Theil im November 1890 erschien, abgeschlossen.

Inhalt des I. Bandes: Mechanik der Punkte und Punktsysteme. Inhalt des II. Bandes: Mechanische Summen und starre Gebilde

Ueber die Doppelpunkte der Koppelcurve.*

 ∇ on

Prof. Dr. R. MÜLLER in Braunschweig.

1. In einem gewöhnlichen, also nicht durchschlagenden Kurbelgetriebe beschreibt jeder Punkt C der bewegten Ebene eine tricirculare Curve sechster Ordnung mit drei Doppelpunkten C_1 , C_2 , C_3 , von denen immer zwei imaginär sein können; zu einem reellen, aber isolirten Doppelpunkte gehören keine reellen Koppellagen. Umgekehrt entsprechen jedem Punkte C_1 der festen Ebene im Allgemeinen drei Systempunkte C, C', C'', deren Bahnen in C_1 einen Doppelpunkt haben, nämlich die Doppelpunkte derjenigen Koppelcurve, welche C_1 bei der umgekehrten Bewegung in der Ebene der Koppel erzeugt. Die Punkte der bewegten Ebene stehen also mit denen der festen Ebene in einer drei-dreideutigen Verwandtschaft — mit der Ausnahme, dass den Endpunkten der Koppel alle Punkte ihrer Bahnkreise als Doppelpunkte entsprechen, während den Endpunkten des Steges alle Punkte der Kreise, die sie bei der umgekehrten Bewegung beschreiben, als Systempunkte zugeordnet sind.

In Fig. 1 werde durch das Viereck 00'BA ein Kurbelgetriebe mit dem festen Gliede 00' in einer beliebigen Phase dargestellt. Beschreiben wir dann über AB und 00' beziehungsweise die Kreise h und i, welche mit diesen Strecken nach derselben Seite hin gleiche Winkel einschliessen, so erzeugt jeder Punkt von h bekanntlich eine Koppelcurve, deren drei Doppelpunkte auf i liegen. Die Schnitt-

Pig. 1.

punkte von h und i befinden sich, als Systempunkte betrachtet, augenblicklich in Knotenpunkten ihrer Bahnen. Wir erhalten demnach den Ort der Systempunkte, welche in der betrachteten Phase Knotenpunkte

^{*} Fortsetzung zu den Aufsätzen Bd. 34 S. 303 und 372, und Bd. 36 S. 11 dieser Zeitschrift.

durchschreiten, als Erzeugniss zweier projectiven Kreisbüschel, deren Chordalen AB und OO' einander entsprechen; der gesuchte Ort ist also die als Focalcurve bekannte Curve dritter Ordnung. Dieselbe geht durch A, B, O, O' und durch die Schnittpunkte $\mathfrak P$ und $\mathfrak Q$ von OA und O'B, bez. AB und OO', die augenblicklichen Pole der Systeme AB und OO', bez. OA und O'B. Wird für jede Phase in der Ebene der Koppel die zugehörige Focalcurve construirt, so gehen durch einen beliebigen Punkt der Ebene 6, 4, 2 oder keine dieser Curven, je nachdem seine Bahn 3, 2, 1 oder O Knotenpunkte enthält. Hieraus folgt, dass die Focalcurven einerseits die Polcurve, andererseits die Theile der Uebergangscurve berühren, denen Selbstberührungspunkte entsprechen.

Die Focalcurve hat einen Doppelpunkt, wenn dem Viereck OO'BA ein Kreis eingeschrieben werden kann,* wenn also die Summe von zwei Seiten gleich der Summe der beiden anderen ist. Daher sind die Focalcurven, die zu den sämmtlichen Phasen eines bestimmten Kurbelgetriebes gehören, entweder alle eintheilig, oder alle zweitheilig, oder alle doppelpunktig. Sie sind eintheilig oder zweitheilig, je nachdem die Summe der grössten und kleinsten Vierecksseite grösser oder kleiner ist, als die Summe der beiden anderen, also wenn die entsprechenden Koppelcurven beziehungsweise eintheilig oder zweitheilig sind, und sind doppelpunktig im Falle des durchschlagenden Kurbelgetriebes.

2. Wir nehmen jetzt an, OO'BA sei ein durchschlagendes Kurbelgetriebe, es sei etwa OO'+OA = AB + O'B.

Dann hat die Bahncurve eines jeden Systempunktes C vier Doppelpunkte, nämlich wie früher die drei Punkte C_1 , C_2 , C_3 auf einem durch O und O' gehenden Kreise i und überdies einen Sonderdoppelpunkt C_0 in der Durchschlagslage $A_0 B_0 C_0$. Wir wollen C_1 , C_2 , C_3 in Ermangelung einer andern Benennung als die gewöhnlichen Doppelpunkte der Koppelcurve bezeichnen.

Wir betrachten nun insbesondere solche Systempunkte C, die in der Durchschlagslage einen gewöhnlichen Doppelpunkt durchschreiten, bei denen also C_0 mit einem der übrigen Doppelpunkte zusammenfällt. Dieselben erfüllen nach dem Vorigen eine gewisse Focalcurve, aber diese besteht gegenwärtig, wie sogleich gezeigt werden soll, aus der Geraden AB und einem Kreise.

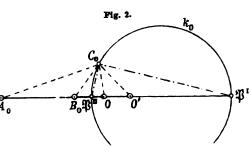
Dem Durchgange der Koppel durch die Phase $A_0 B_0$ entsprechen auf O O' die Pollagen $\mathfrak{P}^{\mathbf{I}}$, $\mathfrak{P}^{\mathbf{II}}$, die Doppelpunkte der durch die Paare $A_0 O'$, $B_0 O$ bestimmten Involution, und auf AB die Pole $P^{\mathbf{I}}$, $P^{\mathbf{II}}$.** Beschreiben wir

^{*} Durège, Mathematische Annalen, Bd. 5 S. 93.

^{**} Burmester, Kinematik I, S. 114. — Die Polcurve, die im allgemeinen Falle von der achten Ordnung ist, zerfällt beim durchschlagenden Kurbelgetriebe in die doppelt zählende Gerade AB und in eine bicirculare Curve sechster Ordnung mit Doppelpunkten in A und B.

nun in der bewegten Ebene über dem Durchmesser $P^{\mathrm{I}}P^{\mathrm{II}}$ einen Kreis k und bezeichnen einen Punkt desselben mit C, so bestimmen in der Durch-

schlagslage k_0 (Fig. 2) die Strahlenpaare C_0A_0 , C_0O' und C_0B_0 , C_0O eine symmetrische Involution, weil die Doppelstrahlen $C_0\mathfrak{P}^I$, $C_0\mathfrak{P}^{II}$ einen rechten Winkel einschliessen. Es ist also $LA_0C_0B_0=LOC_0O'$ A_0 und folglich C_0 ein gewöhnlicher Doppelpunkt der von C erzeugten Koppelcurve.



Setzen wir, wie früher, AB=c, AC=b, BC=a, $OO'=\gamma$, OA=r, O'B=s, wobei gegenwärtig

1) y+r=c+s

ist, so folgt aus der Gleichheit der Winkel $A_0 C_0 O$ und $B_0 C_0 O'$

$$\frac{\Delta A_0 C_0 O}{\Delta B_0 C_0 O'} = \frac{b \cdot O C_0}{a \cdot O' C_0} = \frac{r}{s},$$

$$\frac{O C_0}{O' C_0} = \frac{r a}{s b}.$$

also

Ebenso ist

$$\frac{\Delta O C_0 O'}{\Delta A_0 C_0 B_0} = \frac{O C_0 O' C_0}{ab} = \frac{\gamma}{c},$$

 $OC_0.O'C_0 = \frac{\gamma ab}{c}$

d. h.

und folglich

4)
$$OC_0^2 = \frac{\gamma r a^2}{cs}, \quad O'C_0^2 = \frac{\gamma s b^2}{cr}.$$

Es ist ferner $\cos A_0 C_0 B_0 = \cos O C_0 O'$, d. h.

$$\frac{a^2 + b^2 - c^2}{ab} = \frac{OC_0^3 + O'C_0^2 - \gamma^2}{OC_0 \cdot O'C_0},$$

und hieraus ergiebt sich nach 3) und 4) als Gleichung des Kreises k

5)
$$ra^2 - sb^2 + crs = 0.$$

Bezeichnet nun C_i einen gewöhnlichen Doppelpunkt der zum Punkte C gehörigen Koppelcurve, und setzen wir

$$\frac{0 C_i}{0'C_i} = u_i, \quad c^2 - \gamma^2 + r^2 + s^2 = 2(cr - cs + rs) = m^2,$$

so gilt für jeden Systempunkt C zur Bestimmung seiner drei gewöhnlichen Doppelpunkte die Gleichung*

6)
$$a b^{2} (a^{2} - s^{2}) u^{3} - b \{a^{4} + 2 a^{2} b^{2} - m^{2} a^{2} - s^{2} b^{2} + s^{2} c^{2} \} u^{2} + a \{2 a^{2} b^{2} + b^{4} - r^{3} a^{2} - m^{2} b^{2} + r^{2} c^{2} \} u - a^{2} b (b^{2} - r^{2}) = 0.$$

[•] Bd. 34 dieser Zeitschrift, S. 304. Je nachdem für u_i aus 6) ein positiver oder negativer Werth folgt, ist $\angle OC_iO'$ entweder = $\angle ACB$ oder = 180• $-\angle ACB$.

Liegt aber C auf dem Kreise k, so geht infolge 5) die vorige Gleichung über in $(ra)^2$ (s^2h

$$\left(bu - \frac{ra}{s}\right)^{2} \left\{a(a^{2} - s^{2})u - \frac{s^{2}b}{r^{2}}(b^{2} - r^{2})\right\} = 0,$$

und es ist also

7)
$$u_1 = u_2 = \frac{ra}{sb} = \frac{\partial C_0}{\partial C_0},$$

8)
$$u_3 = \frac{s^3 b (b^2 - r^2)}{r^3 a (a^2 - s^2)}.$$

Es fallen daher zwei gewöhnliche Doppelpunkte mit C_0 zusammen, d. h. C_0 ist ein dreifacher Punkt der Koppelcurve.*

Wenn im Gelenkviereck OO'BA nicht die Summen von je zwei aufeinanderfolgenden, sondern der gegenüberliegenden Seiten einander gleich sind $(c+\gamma=r+s)$, so gelten die vorigen Entwickelungen, nur sind für jeden Punkt C des Kreises k die Dreieckswinkel ACB und OC_0O' nicht einander gleich, sondern supplementär, und in den vorigen Formeln sind γ und s durch $-\gamma$ und -s zu ersetzen. Es gilt daher allgemein der Satz: In jedem durchschlagenden Kurbelgetriebe giebt es unendlich viele Systempunkte, welche Koppelcurven mit einem dreifachen Punkte beschreiben. Dieselben erfüllen den Kreis k, der die auf der Koppel liegenden Pole $P^{\rm I}$, $P^{\rm II}$ zu Gegenpunkten hat.

Soll auch $u_3 = \frac{O C_0}{O'C_0}$ sein, so folgt aus 7) und 8) die Bedingung $r^3 a^2 (a^2 - s^2) = s^3 b^2 (b^2 - r^2)$.

und dann ergeben sich mit Rücksicht auf 5) für a2 die Werthe

$$a^3 = \frac{cs + s\sqrt{c\gamma rs}}{r - s}$$

oder

$$a^2 = s \cdot B P^{I} = B_0 O' \cdot P_0 \mathfrak{P}^{I}$$
 und $a^2 = s \cdot B P^{II} = B_0 O' \cdot B_0 \mathfrak{P}^{II}$.

Auf dem Kreise k liegen also im Allgemeinen vier Systempunkte C, für welche alle vier Doppelpunkte im dreifachen Punkte C_0 zusammenfallen. C_0 ist dann zugleich ein Selbstberührungspunkt der Koppelcurve; dieselbe wird von dem Kreise $O C_0 O'$ in C_0 einmal osculirt.

Anmerkung. Setzen wir $OC_8 = \varrho$, $O'C_5 = \varrho'$, so ist nach 8)

$$\frac{\varrho}{\varrho'} = \frac{s^2 \, b \, (b^2 - r^2)}{r^2 \, a \, (a^2 - s^2)} \ \, \text{und} \ \, \frac{\varrho^2 + \varrho'^2 - \gamma^2}{\varrho \, \varrho'} = \frac{a^2 + b^2 - c^2}{a \, b},$$

und wir erhalten durch Elimination von a und b mit Rücksicht auf b die Gleichung

$$c\varrho^{2}\varrho^{(2)}(r\varrho^{2}-s\varrho^{(2)})-rs\{rs(\varrho^{4}+\varrho^{(4)})+(3c^{2}-2cr+2cs-r^{2}-s^{2})\varrho^{2}\varrho^{(2)}\}$$

$$+2r^{2}s^{2}\varrho^{(2)}(\varrho^{2}+\varrho^{(2)})-r^{2}s^{2}\varrho^{4}=0.$$

Digitized by Google

^{*} Liegt C statt auf k auf der Geraden AB, die den andern Theil der sur Durchschlagslage gehörigen Focalcurve bildet, so fällt nur ein gewöhnlicher Doppelpunkt mit C_0 zusammen.

Die Doppelpunkte C_s , die den Punkten C von k entsprechen, erfüllen demnach eine tricirculare Curve sechster Ordnung mit Doppelpunkten und Doppelbrennpunkten in O und O'. Der dritte Doppelbrennpunkt theilt die Strecke OO' aussen im Verhältniss $\frac{s}{r}$. Ist dagegen $c+\gamma=r+s$, so ergiebt sich für den dritten Doppelbrennpunkt in Bezug auf OO' das Theilungsverhältniss $-\frac{s}{r}$, und derselbe liegt innerhalb OO'.

3. Da für jeden Punkt des Kreises k zwei gewöhnliche Doppelpunkte zusammenfallen, so bildet k einen Theil der Uebergangscurve. Dieselbe ist beim allgemeinen Kurbelgetriebe eine vierfach eireulare Curve zehnter Ordnung. Im hier vorliegenden Sonderfalle führt die weitere Untersuchung der Curvengleichung, auf die wir nicht eingehen wollen, zu dem folgenden Ergebnisse: Die Uebergangscurve zerfällt beim durchschlagenden Kurbelgetriebe in den doppelt zählenden Kreis k und in eine bieireulare Curve sechster Ordnung mit Doppelpunkten in A und B. Dieselbe berührt den Kreis k in den vier vorhin bestimmten Punkten, denen je vier zusammenfallende Doppelpunkte entsprechen.

Bei den bekannten technisch wichtigen Specialformen des durchschlagenden Kurbelgetriebes* zerfällt auch jene Curve sechster Ordnung in einfachere Curven. Ist zunächst $c = \gamma$, r = s, so kann das betrachtete Getriebe als Parallel- und als Zwillingskurbelgetriebe bewegt werden, und dann beschreibt jeder Systempunkt C beziehungsweise einen Kreis c, oder die Fusspunktencurve c, eines gewissen Kegelschnittes. Die vollständige Koppelcurve hat also fünf Doppelpunkte, nämlich den Doppelpunkt der ce und die vier Schnittpunkte von c, und c2. Den beiden Durchschlagslagen entsprechen zwei Kreise k, k^* als Ort der Systempunkte, die in der betrachteten Phase einen dreifachen Punkt durchschreiten; aber jeder derselben zerfallt in die unendlich ferne Gerade u_∞ und eine zweite Gerade ν resp. ν*. Bezeichnen wir mit $O_0 O_0'$, $O_0^* O_0^{*'}$ die Punkte von AB, die beim Durchschlagen mit O, O' zusammenfallen, so sind ν , ν^* die Mittelsenkrechten von von AO'_0 , BO_0^* . Die doppelt zählenden Geraden u_∞ , ν , ν^* bilden den einen Theil der Uebergangscurve, und da dieselbe A und B zu Doppelpunkten, die imaginären Kreispunkte zu vierfachen Punkten haben muss, so besteht ihr Rest aus zwei Kreisen φ , ψ , von denen jeder durch A und Bgeht und die Geraden v, v* berührt. Diese Kreise sind imaginär, wenn r < c ist.** — Für alle Systempunkte C auf einer der Geraden ν , ν^* geht

Burmester, Kinematik I, S. 300.

^{**} Hierdurch wird eine Bemerkung in dem Aufsatze Bd. 34 dieser Zeitschrift, S. 373 berichtigt. — Die Geraden v, v^* sind Tangenten der Polcurve. Diese zerfällt in die doppelt zählende Gerade u_{∞} , in die vierfach zählende Gerade AB und in einen Kegelschnitt mit den Brennpunkten A, B und den Scheiteltangenten v, v^* v

der Kreis c_1 durch den Doppelpunkt der c_2 , der hierdurch zu einem dreifachen Punkte der vollständigen Koppelcurve wird. Liegt C auf φ oder ψ , so berührt der Kreis c_1 die c_2 .

Ist ferner r=c, $s=\gamma$, so ergiebt sich für $\gamma < c$ ein gleichschenkliges Doppelkurbelgetriebe, für $\gamma > c$ ein gleichschenkliges Schwingkurbelgetriebe. Beim Durchschlagen fällt B auf O und A zweimal in die Gerade 00'; wir erhalten also wiederum zwei Kreise k, k* als Ort der Systempunkte, die dreifache Punkte erzeugen. O'_0 , O_0^* diejenigen Punkte von AB, die in den beiden Durchschlagslagen mit O' zusammenfallen; dann gehen k, k^* durch B und theilen die Strecken AO_0' bez. $AO_0^{*'}$ harmonisch. Da k, k^* als Bestandtheile der Uebergangscurve doppelt zählen und diese in A einen Doppelpunkt haben muss, so folgt als Rest der Uebergangscurve das Paar der gemeinschaftlichen Tangenten aus A an k, k^* . Dieselben sind imaginär für $\gamma > c$. — Die Bahncurve eines beliebigen Systempunktes C besteht aus einem Kreise c, um O und, wie vorhin, aus der Fusspunktencurve c, eines Kegelschnittes. Liegt C auf k oder k^* , so geht c, durch den Doppelpunkt der c, die Punkte der beiden gemeinsamen Tangenten von k, k* beschreiben Kreise, welche die zugehörige Fusspunktencurve berühren.

Braunschweig, 9. März 1890.

VI.

Ueber gewisse goniometrische Determinanten und damit zusammenhängende Systeme von linearen Gleichungen.

Von

Dr. K. WEIHRAUCH, o. Prof. d. physikal. Geogr. a. d. Univ. Dorpat.

1.

In einer früheren Mittheilung* habe ich die Determinanten

1) $C_{2\nu} = [1, \cos x_m, \sin x_m, \cos 2x_m, \sin 2x_m, \dots, \cos(\nu-1)x_m, \sin(\nu-1)x_m, \cos\nu x_m]$

2)
$$S_{2\nu} = |1, \cos x_m, \sin x_m, \cos 2x_m, \sin 2x_m, ..., \cos(\nu-1)x_m, \sin(\nu-1)x_m, \sin\nu x_m|, m = 1, 2, ..., (2\nu)$$

Bezeichnet P_n das Product der Sinus der $\frac{n(n-1)}{2}$ halben Differenzen, die sich aus der Argumentenreihe $x_1, x_2, ..., x_n$ derart bilden lassen, dass immer die Grösse mit kleinerem Index als Subtrahend genommen wird, und versteht man unter o die Summe aller zur Verwendung kommenden Argumente, also

3)
$$\sigma = \sum_{m=1}^{m=n} x_m,$$

so ward a. a. O. gezeigt, dass

4)
$$C_{2\nu} = (-1)^{\nu} \cdot 2 \cdot 4^{\nu(\nu-1)} \cdot P_{2\nu} \cdot \sin \frac{1}{2} \sigma,$$

5) $S_{2\nu} = (-1)^{\nu-1} \cdot 2 \cdot 4^{\nu(\nu-1)} \cdot P_{2\nu} \cdot \cos \frac{1}{2} \sigma$

5)
$$S_{2y} = (-1)^{y-1} \cdot 2 \cdot 4^{y(y-1)} \cdot P_{2y} \cdot \cos \frac{1}{2} \sigma$$

ist.

In einer andern Schrift habe ich die Untersuchung auf verwandte Determinanten und deren erste Unterdeterminanten ausgedehnt und will die Ergebnisse hier ohne genaueres Eingehen auf die Beweise, die dort ausführlich gegeben wurden, zusammenstellen. Die Behandlungsweise ist derjenigen ganz entsprechend, welche bei obigen Determinanten zur Anwendung kam. Man ersetzt alle auf x_m bezüglichen goniometrischen Functionen durch Exponentialausdrücke, wobei die Abkürzung

$$e^{ix_m} = a_m$$

Diese Zeitschrift, Jahrg. 33, 1888, S. 126.

^{**} Neue Untersuchungen über die Bessel'sche Formel und deren Verwendung in der Meteorologie (Schriften, herausgegeben von der Naturforscher-Gesellschaft bei der Universität Dorpat, IV. Dorpat 1888). Digitized by Google

eingeführt werden mag, und kommt dann nach sehr einfachen, sich unmittelbar darbietenden Transformationen zu der bekannten Differenzendeterminante

7)
$$\Delta_n = |1, a_m, a_m^2, ..., a_m^{n-1}|, \\ m = 1, 2, ..., n,$$

dem Product der $\frac{n(n-1)}{2}$ Differenzen, die sich in der Elementenreihe a_1 , a_2 , ..., a_n derart bilden lassen, dass die Grösse mit kleinerem Index jedesmal als Subtrahend verwendet wird, — oder deren ersten Unterdeterminanten. Letztere sind leicht darstellbar. Sucht man beispielsweise die durch Unterdrückung der h^{ten} Zeile und der p^{ten} Colonne in Δ_n entstehende Unterdeterminante $a_{h,p}$, so ist dieselbe gleich $(-1)^{h+p}$ mal dem Factor von a_n^{p-1} in Δ_n . Nun hat man

8)
$$\Delta_n = \Delta_{n,h} \cdot (a_h - a_1) \cdot \dots \cdot (a_h - a_{h-1}) \cdot (a_{h+1} - a_h) \cdot \dots \cdot (a_n - a_h)$$

wenn $\Delta_{n,h}$ die Differenzendeterminante für die Reihe $a_1, a_2, \ldots, a_{h-1}, a_{h+1}, \ldots, a_n$ ist, so dass der zweite Index h die Ausstossung des Elementes a_h aus der ursprünglichen Reihe a_1, a_2, \ldots, a_n fordert. Die Gleichung 8) kann auch geschrieben werden

9)
$$\Delta_{n} = (-1)^{n-h} \Delta_{n,h} \cdot II(a_{h} - a_{m}),$$

$$m = 1, 2, ..., (h-1), (h+1), ..., n.$$

Bezeichnet man durch $\Sigma K_{q,h}$ die Summe aller als Producte aufgefassten Combinationen der Elemente $a_1, \ldots, a_{h-1}, a_{h+1}, \ldots, a_n$ zur q^{ten} Classe ohne Wiederholungen, dann geht 9) über in

10)
$$\Delta_n = (-1)^{n+h} \Delta_{n,h} \sum_{q=0}^{q=n-1} (-1)^q a_h^{n-q-1} \Sigma K_{q,h}.$$

Nach dem oben Gesagten ist dann

11)
$$\alpha_{h,p} = \Delta_{n,h} \cdot \Sigma K_{n-p,h}.$$

Man hat nun in 7) und 11) die Grössen a_m wieder durch e^{ix_m} zu ersetzen und nachher die Exponentialausdrücke in goniometrische zu verwandeln. Dabei ist

12)
$$a_m - a_q = 2 i \sin \frac{x_m - x_q}{2} \cdot e^{\frac{i(x_m + x_q)}{2}},$$

und $K_{q,h}$ geht über in $e^{i\gamma_{q,h}}$, wenn unter $\gamma_{q,h}$ eine als Summe ihrer Bestandtheile aufgefasste Combination der Argumente $x_1, x_2, \ldots, x_{h-1}, x_{h+1}, \ldots, x_n$ zur q^{ten} Classe ohne Wiederholung verstanden wird. Ein Summenzeichen davor bedeute immer, dass man alle möglichen Combinationen bilden soll. Ich führe noch

$$\sigma_h = \sigma - x_h$$

ein und will unter $P_{n,h}$ das der Grösse P_n entsprechend gebildete Product verstehen, wenn in der Reihe $x_1, x_2, ..., x_n$ das Element x_h unterdrückt worden ist. Auf dem hier angegebenen Wege wurden a. a. O. folgende Determinanten ausgewerthet:

14)
$$\begin{cases} D_{2\nu+1} = \begin{vmatrix} 1, \cos x_m, \sin x_m, \cos 2x_m, \sin 2x_m, \dots, \cos v x_m, \sin v x_m \\ m = 1, 2, \dots, (2\nu+1) \end{vmatrix} \\ = 4^{\nu_1} \cdot P_{2\nu+1}, \end{cases}$$

15)
$$\begin{cases} c_{0,h} = \begin{vmatrix} \cos x_m, & \sin x_m, & \cos 2x_m, & \sin 2x_m, & \dots, & \cos vx_m, & \sin vx_m \\ m = 1, 2, & \dots, & (h-1), & (h+1), & \dots, & (2v+1) \\ = 4^{v(v-1)} \cdot P_{2v+1,h} \cdot \Sigma \cos(\gamma_{v,h} - \frac{1}{2}\sigma_h), \end{cases}$$

$$\begin{cases} c_{k,h} = \begin{vmatrix} 1, \cos x_m, \sin x_m, \dots, \cos(k-1)x_m, \sin(k-1)x_m, \sin kx_m, \cos(k+1)x_m, \sin(k+1)x_m, \dots, \\ & \dots, \cos v x_m, \sin v x_m \end{vmatrix} \\ = (-1)^{k+1} \cdot 2 \cdot 4^{v(v-1)} \cdot P_{2v+1,h} \cdot \Sigma \cos(\gamma_{v+k,h} - \frac{1}{2}\sigma_h), \end{cases}$$

$$\begin{cases} 1, \cos x_m, \sin x_m, \dots, \cos(k-1)x_m, \sin(k-1)x_m, \cos kx_m, \cos(k+1)x_m, \sin(k+1)x_m, \dots, \\ s_{k,h} = & \dots, \cos v x_m, \sin v x_m \\ m = 1, 2, \dots, (h-1), (h+1), \dots, (2v+1) \\ = (-1)^k \cdot 2 \cdot 4^{v(v-1)} \cdot P_{2v+1, h} \cdot \sum \sin(\gamma_{v+k, h} - \frac{1}{2}\sigma_h). \end{cases}$$

Die Determinanten 15), 16), 17) sind offenbar die ersten Unterdeterminanten von 14); man kann daher $D_{2\nu+1}$ in bekannter Weise durch jene Determinanten ausdrücken, was merkwürdige Relationen ergiebt, auf die ich hier aber nicht weiter eingehen will.

Die sechs folgenden Determinanten erscheinen als erste Unterdeterminanten von C_{2} , und S_{2} , nämlich zuerst durch Unterdrückung der ersten Colonne und der hten Zeile:

18)
$$\begin{cases} C_{0,h}^{(c)} = \begin{vmatrix} \cos x_m, \sin x_m, \dots, \cos(\nu-1)x_m, \sin(\nu-1)x_m, \cos\nu x_m \\ m = 1, 2, \dots, (h-1), (h+1), \dots, 2\nu \\ = (-1)^{\nu-1} \cdot 4^{(\nu-1)^2} \cdot P_{2\nu,h} \cdot \Sigma \cos\gamma_{\nu,h}, \end{cases}$$

19)
$$\begin{cases} S_{0,h}^{(c)} = \begin{vmatrix} \cos x_m, \sin x_m, \dots, \cos (\nu - 1) x_m, \sin (\nu - 1) x_m, \sin \nu x_m \\ m = 1, 2, \dots, (h - 1), (h + 1), \dots, (2\nu) \\ = (-1)^{\nu - 1} \cdot A^{(\nu - 1)^2} \cdot P_{2\nu,h} \cdot \Sigma \sin \nu_{\nu,h}. \end{cases}$$

Unterdrückt man ferner in C_{2y} und S_{2y} die $(2k)^{to}$ Colonne und die h^{to} Zeile, so seien die entstehenden Unterdeterminanten $C_{k,h}^{(c)}$ und $S_{k,h}^{(c)}$. Werden dagegen die $(2k+1)^{te}$ Colonne und die h^{te} Zeile unterdrückt, so sollen die Unterdeterminanten $C_{k,h}^{(s)}$ und $S_{k,h}^{(s)}$ heissen. Man findet dann:

20)
$$C_{k,h}^{(o)} = (-1)^{y+k} \cdot 4^{(y-1)^2} \cdot P_{2y,h} \cdot (\Sigma \cos \gamma_{y-k,h} + \Sigma \cos \gamma_{y+k,h}),$$

21)
$$C_{k,h}^{(s)} = (-1)^{v+k} \cdot 4^{(v-1)^2} \cdot P_{2v,h} \cdot (\Sigma \sin \gamma_{v-k,h} - \Sigma \sin \gamma_{v+k,h})$$

22)
$$S_{k,h}^{(0)} = (-1)^{\nu+k} \cdot 4^{(\nu-1)^2} \cdot P_{2\nu,h} \cdot (\Sigma \sin \gamma_{\nu-k,h} + \Sigma \sin \gamma_{\nu+k,h})$$

21)
$$C_{k,k}^{(s)} = (-1)^{y+k} \cdot 4^{(y-1)^2} \cdot P_{2y,h} \cdot (\Sigma \sin \gamma_{y-k,h} - \Sigma \sin \gamma_{y+k,h}),$$

22) $S_{k,h}^{(s)} = (-1)^{y+k} \cdot 4^{(y-1)^2} \cdot P_{2y,h} \cdot (\Sigma \sin \gamma_{y-k,h} + \Sigma \sin \gamma_{y+k,h}),$
23) $S_{k,h}^{(s)} = (-1)^{y+k} \cdot 4^{(y-1)^2} \cdot P_{2y,h} \cdot (-\Sigma \cos \gamma_{y-k,h} + \Sigma \cos \gamma_{y+k,h}).$

Ich habe a. a. O. auch die entsprechenden Determinanten für die ungeraden Vielfachen der halben Winkel als Argumente in gleicher Weise behandelt und beschränke mich auch hierbei auf die Wiedergabe der Re-Es ist in Analogie mit $D_{2\nu+1}$ Digitized by Google

$$24) \begin{cases} E_{2\nu} = \begin{vmatrix} \cos\frac{x_m}{2}, & \sin\frac{x_m}{2}, & \cos\frac{3x_m}{2}, & \sin\frac{3x_m}{2}, & \cdots, & \cos\frac{(2\nu-1)x_m}{2}, & \sin\frac{(2\nu-1)x_m}{2} \\ & & m = 1, 2, \dots, (2\nu) \end{vmatrix} \\ = 4^{\nu(\nu-1)} \cdot P_{2\nu}.$$

Die aus E_{2n} durch Unterdrückung der $(2k-1)^{ten}$ Colonne und der h^{ten} Zeile entstehende Unterdeterminante heisse $d_{k,h}$, entsprechend die durch Unterdrückung der (2k)ten Colonne und der hien Zeile erzeugte Unterdeterminante $t_{k,h}$. Dann ist [man vergl. 16) und 17)]

25)
$$d_{k,h} = (-1)^{k-1} \cdot 4^{(\nu-1)^2} \cdot P_{2\nu,h} \cdot \Sigma \sin(\gamma_{\nu+k-1,h} - \frac{1}{2}\sigma_h),$$
26)
$$t_{k,h} = (-1)^{k-1} \cdot 4^{(\nu-1)^k} \cdot P_{2\nu,h} \cdot \Sigma \cos(\gamma_{\nu+k-1,h} - \frac{1}{2}\sigma_h).$$

26)
$$t_{k,h} = (-1)^{k-1} \cdot 4^{(y-1)^k} \cdot P_{2y,h} \cdot \Sigma \cos(\gamma_{y+k-1,h} - \frac{1}{2}\sigma_h)$$

Man hat ferner in Analogie mit C_{2} , und S_{2} ,

$$\begin{array}{ll}
27) \begin{cases}
C_{2\nu+1} = \begin{vmatrix} \cos\frac{x_m}{2}, & \sin\frac{x_m}{2}, & \cos\frac{3x_m}{2}, & \sin\frac{3x_m}{2}, & \cdots, & \cos\frac{(2\nu-1)x_m}{2}, & \sin\frac{(2\nu-1)x_m}{2}, & \cos\frac{(2\nu+1)x^m}{2} \\
& = (-1)^{\nu} \cdot 4^{\nu} \cdot P_{2\nu+1} \cdot \cos\frac{1}{2}\sigma, & & (2\nu-1)\sigma & (2\nu-1)\sigma
\end{array}$$

$$28) \begin{cases} S_{2\nu+1} = \begin{vmatrix} \cos \frac{x_m}{2}, & \sin \frac{x_m}{2}, & \cos \frac{3x_m}{2}, & \sin \frac{3x_m}{2}, & \cdots, & \cos \frac{(2\nu-1)x_m}{2}, & \sin \frac{(2\nu-1)x_m}{2}, & \sin \frac{(2\nu+1)x_m}{2} \\ & m = 1, 2, \dots, (2\nu+1) \end{cases} \\ = (-1)^{\nu}. 4^{\nu}. P_{2\nu+1}. \sin \frac{1}{2} \sigma.$$

Streicht man in $C_{2\nu+1}$ und $S_{2\nu+1}$ die $(2k-1)^{to}$ Colonne und die h^{to} Zeile, so seien die betreffenden Unterdeterminanten $D_{k,h}^{(c)}$ und $T_{k,h}^{(c)}$, und entsprechend bei Unterdrückung der (2k)ten Colonne und der hten Zeile $D_{k,h}^{(s)}$ und $T_{k,h}^{(s)}$. Dann ist

29)
$$D_{k,h}^{(s)} = (-1)^{y+k+1} \cdot 4^{y(y-1)} \cdot P_{2y+1,h} \cdot (\Sigma \cos \gamma_{y-k+1,h} - \Sigma \cos \gamma_{y+k,h}),$$

30)
$$D_{k,h}^{(s)} = (-1)^{\nu+k+1} \cdot 4^{\nu(\nu-1)} \cdot P_{2\nu+1,h} \cdot (\Sigma \sin \gamma_{\nu-k+1,h} + \Sigma \sin \gamma_{\nu+k,h}),$$

31)
$$T_{k,h}^{(o)} = (-1)^{y+k+1} \cdot 4^{y(y-1)} \cdot P_{2y+1,h} \cdot (\Sigma \sin \gamma_{y-k+1,h} - \Sigma \sin \gamma_{y+k,h})$$
,

32)
$$T_{k,h}^{(s)} = (-1)^{v+k+1} \cdot 4^{v(v-1)} \cdot P_{2v+1,h} \cdot (-\Sigma \cos \gamma_{v-k+1,h} - \Sigma \cos \gamma_{v+k,h}).$$

2.

Alle in 1. mitgetheilten Determinantenwerthe finden Verwendung bei der a. a. O. ebenfalls gegebenen Auflösung gewisser linearer Gleichungssysteme, welche als dem Gebiete der Interpolationsrechnung angehörig bezeichnet werden können. Da man öfters in die Lage kommen kann, dieser Auflösungen zu bedürfen, so sollen dieselben ohne weiteren Beweis hier mitgetheilt werden.

Die betreffenden Unbekannten mögen in den einzelnen Fällen durch un, p_m, q_m, u_p, u_{p+1} bezeichnet werden, während x_h, a_h zusammengehörende gegebene Grössen seien. Der Vereinfachung wegen seien noch die Grössen $R_h^{(n)}$ und $X_h^{(n)}$ eingeführt, welche durch die Gleichungen definirt werden

33)
$$R_h^{(n)} = \sin \frac{x_1 - x_h}{2} \cdot \sin \frac{x_2 - x_h}{2} \cdots \sin \frac{x_{h-1} - x_h}{2} \cdot \sin \frac{x_{h+1} - x_h}{2} \cdots \sin \frac{x_n - x_h}{2}$$

34)
$$X_h^{(n)} = \sin \frac{x_1 - x}{2} \cdot \sin \frac{x_2 - x}{2} \cdots \sin \frac{x_{h-1} - x}{2} \cdot \sin \frac{x_{h+1} - x}{2} \cdots \sin \frac{x_n - x}{2}$$

1, Es seien die Coefficienten der Gleichung

$$y = u_0 + \sum_{m=1}^{m=y} (p_m \cos mx + q_m \sin mx)$$

vermittelst des Systems

36)
$$a_h = u_0 + \sum_{m=1}^{m=\nu} (p_m \cos mx_h + q_m \sin mx_h),$$

$$h = 1, 2, ..., (2\nu + 1)$$

zu bestimmen. Mit Hilfe der in 1. ermittelten Determinanten erhält man

37)
$$\begin{cases} u_0 = \frac{1}{4^y} \sum_{h=1}^{h=2y+1} \frac{\alpha_h}{R_h^{(2y+1)}} \Sigma \cos(\gamma_{v,h} - \frac{1}{2}\sigma_h), \\ p_k = (-1)^k \cdot \frac{2}{4^y} \sum_{h=1}^{h=2y+1} \frac{\alpha_h}{R_h^{(2y+1)}} \Sigma \cos(\gamma_{v+k,h} - \frac{1}{2}\sigma_h), \\ q_k = (-1)^k \cdot \frac{2}{4^y} \sum_{h=1}^{h=2y+1} \frac{\alpha_h}{R_h^{(2y+1)}} \Sigma \sin(\gamma_{v+k,h} - \frac{1}{2}\sigma_h), \\ k = 1, 2, \dots, v. \end{cases}$$

Gauss gab in seiner berühmten Abhandlung: "Theoria interpolationis methodo nova tractata" folgenden Ausdruck für 35):

38)
$$y = \sum_{k=2\nu+1}^{k=2\nu+1} \frac{\alpha_k}{R_k^{(2\nu+1)}} X_k^{(2\nu+1)}.$$

Diese an die Interpolationsformel von Lagrange erinnernde Gleichung vermittelt die Berechnung des zu einem bestimmten x gehörenden y, ohne dass die Coefficienten u_0 , p_k , q_k bekannt zu sein brauchen; dieselbe kann, wie in meiner obenerwähnten Schrift gezeigt wurde, sehr leicht aus der Combination von 35) und 36) abgeleitet werden.

2. Man habe die Coefficienten der Gleichung

39)
$$y = u_0 + \sum_{m=1}^{m=\nu-1} (p_m \cos mx + q_m \sin mx) + u_{\nu} \sin(U_{\nu} + \nu x),$$

wo U_{ν} eine willkürliche Winkelgrösse ist, durch das System

40)
$$a_h = u_0 + \sum_{m=1}^{m=\nu-1} (p_m \cos mx_h + q_m \sin mx_h) + u_\nu \sin (U_\nu + \nu x_h),$$

 $h = 1, 2, ..., (2\nu)$

zu ermitteln.

^{*} C. F. Gauss' Werke, Bd. III S. 279 flg.

Es ergiebt sich:
$$\begin{cases} u_0 = \frac{2}{4^{\nu}cos(U_{\nu} + \frac{1}{2}\sigma)} \sum_{h=1}^{\lambda=2^{\nu}} \frac{\alpha_h}{R_h^{(2\nu)}} \sum_{sin(U_{\nu} + \gamma_{\nu,h})}, \\ p_k = \frac{(-1)^k \cdot 2}{4^{\nu}cos(U_{\nu} + \frac{1}{2}\sigma)} \sum_{h=1}^{\lambda=2^{\nu}} \frac{\alpha_h}{R_h^{(2\nu)}} (\sum_{sin(U_{\nu} + \gamma_{\nu-h,h})} + \sum_{sin(U_{\nu} + \gamma_{\nu+h,h})}, \\ q_k = \frac{(-1)^k \cdot 2}{4^{\nu}cos(U_{\nu} + \frac{1}{2}\sigma)} \sum_{h=1}^{\lambda=2^{\nu}} \frac{\alpha_h}{R_h^{(2\nu)}} (\sum_{sin(U_{\nu} + \gamma_{\nu-h,h})} - \sum_{cos(U_{\nu} + \gamma_{\nu+h,h})}, \\ u_{\nu} = \frac{(-1)^{\nu} \cdot 2}{4^{\nu}cos(U_{\nu} + \frac{1}{2}\sigma)} \sum_{h=1}^{\lambda=2^{\nu}} \frac{\alpha_h}{R_h^{(2\nu)}}, \\ k = 1, 2, \dots, (\nu-1). \end{cases}$$

Auch hierfür giebt Gauss a. a. O. eine der Gleichung 38) entsprechende Formel, die ich in dem Falle, dass nothwendigerweise $U_{\overline{\nu}}$ die einzuführende willkürliche Constante sei, in den Ausdruck umgestalten konnte:

42)
$$y = \frac{1}{\cos(U_{\nu} + \frac{1}{2}\sigma)} \sum_{h=1}^{h=2\nu} \frac{\alpha_h}{R_h^{(2\nu)}} X_h^{(2\nu)} \cos\left(U_{\nu} + \frac{\sigma - x_h + x}{2}\right)$$

A. a. O. habe ich ausserdem gezeigt, dass für die Anwendungen in der Meteorologie stets $U_{\bullet} = -\frac{1}{4}\sigma$

gesetzt werden muss, dass also die Willkürlichkeit dieser Constanten damit aufgehoben ist.

3. Wenn die Coefficienten der Gleichung

44)
$$y = \sum_{m=1}^{\infty} \left(p_m \cos \frac{(2m-1)x}{2} + q_m \sin \frac{(2m-1)x}{2} \right)$$

vermittelst des Systems

45)
$$\alpha_{h} = \sum_{m=1}^{m=1} \left(p_{m} \cos \frac{(2m-1)x_{h}}{2} + q_{m} \sin \frac{(2m-1)x_{h}}{2} \right),$$

$$h = 1, 2, \dots, (2\nu)$$

berechnet werden sollen, so hat man

46)
$$\begin{cases} p_{k} = \frac{(-1)^{k-1}}{4^{y-1}} \sum_{k=1}^{h=2^{y}} \frac{\alpha_{k}}{R_{k}^{(2y)}} \sum sin(\gamma_{y+k-1,k} - \frac{1}{2}\sigma_{k}), \\ q_{k} = \frac{(-1)^{k-1}}{4^{y-1}} \sum_{k=1}^{h=2^{y}} \frac{\alpha_{k}}{R_{k}^{(2y)}} \sum cos(\gamma_{y+k-1,k} - \frac{1}{2}\sigma_{k}), \\ k = 1, 2, \dots, y \end{cases}$$

oder in anderer Darstellung

$$|y = \sum_{k=1}^{k=2^{\gamma}} \frac{\alpha_k}{R_k^{(2\gamma)}} X_k^{(2\gamma)}.$$

Digitized by Google

4. Liegt endlich zur Bestimmung

$$48) \ y = \sum_{m=1}^{\infty} \left(p_m \cos \frac{(2m-1)x}{2} + q_m \sin \frac{(2m-1)x}{2} \right) + u_{\nu+1} \sin \left(U_{\nu+1} + \frac{(2\nu+1)x}{2} \right)$$

$$49) \ \alpha_h = \sum_{m=1}^{\infty} \left(p_m \cos \frac{(2m-1)x_h}{2} + q_m \sin \frac{(2m-1)x_h}{2} \right) + u_{\nu+1} \sin \left(U_{\nu+1} + \frac{(2\nu+1)x_h}{2} \right),$$

49)
$$\alpha_h = \sum_{m=1}^{m=1} \left(p_m \cos \frac{(2m-1)x_h}{2} + q_m \sin \frac{(2m-1)x_h}{2} \right) + u_{\nu+1} \sin \left(U_{\nu+1} + \frac{(2\nu+1)x_h}{2} \right),$$

$$h = 1, 2, \dots, (2\nu+1)$$

vor, wobei U_{r+1} eine willkürliche Constante ist, so findet man

oder in directer, von den Grössen p_k , q_k , $u_{\nu+1}$ freier Darstellung

51)
$$y = \frac{1}{\sin(U_{\nu+1} + \frac{1}{2}\sigma)} \sum_{k=1}^{k=2\nu+1} \frac{\alpha_k}{R_k^{(2\nu+1)}} X_k^{(2\nu+1)} \sin\left(U_{\nu+1} + \frac{\sigma - x_k + x}{2}\right)$$

Die Formeln 38), 42), 47), 51) eignen sich vorzüglich zur Berechnung der zu einer bestimmten Abscisse x gehörenden Ordinate y, sind aber zur Discussion der Curven 35), 39), 44) und 48) wohl kaum verwerthbar.

Dorpat, 3. December 1889.

VII.

Ueber absolute Elementensysteme auf ebenen Unicursalcurven vierter und dritter Ordnung.

Von

Prof. WILH. BINDER in Wiener-Neustadt.

Hierzu Taf. IV u. V.

- 1. Die unieursalen Plancurven bis einschliesslich vom vierten Grade bilden heute ein Gebiet der geometrischen Wissenschaft, das man nahem als abgeschlossen ansehen kann, soweit es sich um die wesentlichen Merkmale und Eigenschaften dieser Gebilde handelt. Steiner, Plücker, Cremons, Salmon u. A. haben auf synthetischem und auf analytischem Wege das Studium der bezeichneten Curvengattungen angebahnt, welches später von Durège, E. Weyr etc. weitergeführt wurde. Insbesondere dem zuletzt genannten Mathematiker verdankt die Wissenschaft der Plancurven dritter und vierter Ordnung nach der synthetischen Methode die bedeutendsten Erfolge.
- 2. Das Gesagte schliesst nicht aus, dass es verschiedene Wege geben kann, um bereits Bekanntes zu erreichen, welche ein wissenschaftliches Interesse hervorrufen. Als ein Beispiel hierfür erwähne ich meine Abhandlung in dieser Zeitschrift,* in welcher ich auf den Zusammenhang des Systems der Tangentialpunkte einer Curve vierter Ordnung mit drei Doppelpunkten und den Inflexionselementen hingewiesen habe, wodurch für gewisse Specialisirungen sich Linearconstructionen der Inflexionselemente ergeben, die bisher nicht bekannt waren.

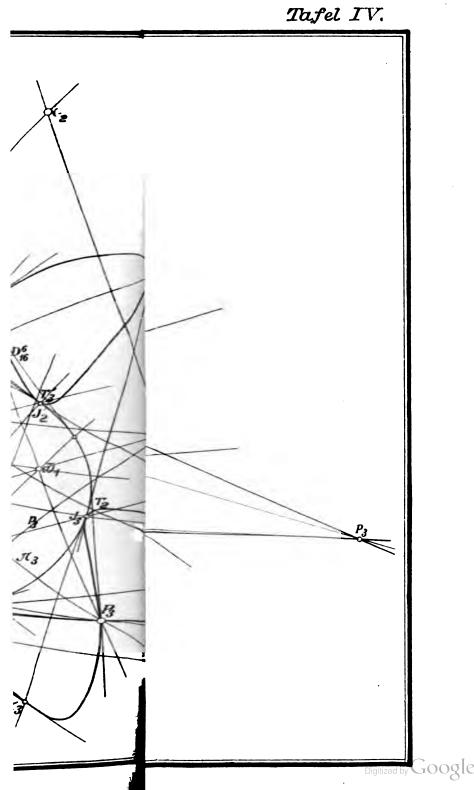
Auch der gegenwärtige Aufsatz bezweckt Analoges, indem ich auf Elementensysteme die Aufmerksamkeit lenke, die auf einer Unicursal-Plancurve vierten oder dritten Grades a priori vorhanden sind, weshalb ich sie als "absolute Systeme" bezeichne.

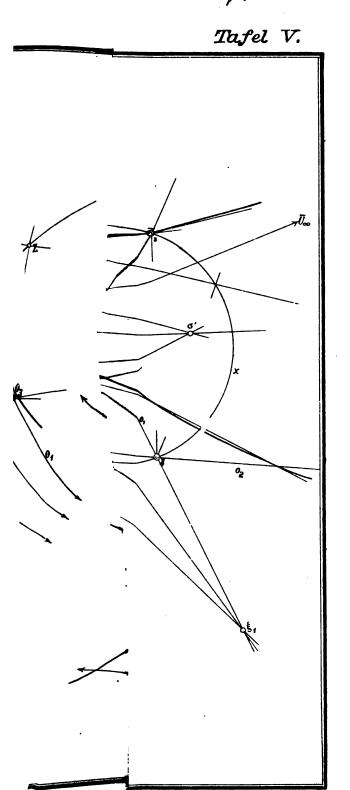
I.

Curven vierter Ordnung.

3. Alle Punkte einer unicursalen Plancurve C_6^4 bilden ein "System" für sich, in dem jedes Element von einem Paare Tangentialpunkte (die

^{*} Schlömilch's Zeitschr. f. Math. u. Phys., XXXIV. Bd. 5, Heft, 1889.





Schnitte der betreffenden Curventangente) begleitet ist, und welche Tangentialpunktenpaare für sich wieder ein zweites "System" auf der Plancurve formiren. Diese beiden Elementensysteme stehen zu einander in einer bemerkenswerthen Beziehung, welche wir am einfachsten auf einem "Kegelschnitt" k studiren können, der nach einer Steiner'schen Verwandtschaft als "Bild" der Plancurve C_6 gedacht ist, in welcher die Knotenpunkte O_1 , O_2 , \overline{O}_3 homolog den Hauptpunkten O_2 , O_1 , O_3 der quadratischen Beziehung sind, wie wir in unseren Abhandlungen (A) und (B) dieser Zeitschrift auseinandergesetzt haben. Wir haben dort das System der Plancurve C_6 mit $\overline{\Sigma}$ und jenes des Kegelschnittes k, den wir den Grundkegelschnitt nannten, mit Σ bezeichnet.

- 4. Der leichteren Uebersicht wegen wiederholen wir die Grundaufgabe, die bei unseren folgenden Betrachtungen von Wichtigkeit ist und die darin besteht: "Auf dem Bildkegelschnitte k für ein beliebiges Punktenelement X das "begleitende" Elementenpaar X'X'' zu ermitteln." [A (4).] Dabei haben wir uns den Punkt X als das Bild eines Punktes X und das Paar X'X'' als Bilder der beiden Tangentialpunkte X'X'', welche durch die in X ziehende Tangente auf der Plancurve C_6 ausgeschnitten werden, vorzustellen.
- (Fig. 1.) Wir projiciren aus X die Hauptpunkte O_1 , O_2 , O_3 nach X_1 , X_2 , X_3 auf den Grundkegelschnitt k und bestimmen die Schnitte:
- $(|X_2X_3|, |O_2O_3|) \equiv \xi_1, (|X_1X_3|, |O_1O_3|) \equiv \xi_2, (|X_1X_2|, |O_1O_2|) \equiv \xi_3.$ Die Verbindungslinie $|\xi_1\xi_2\xi_3| \equiv x$ trifft den Grundkegelschnitt in dem verlangten Punktenpaare X'X". (In Fig. 1 sind die Elemente X'X" imaginär.)
- 5. Die Punktenpaare X'X'', die auf diese Weise erhalten werden, formiren nach [A (2)] auf dem Grundkegelschnitte ein "symmetrisches System vierten Grades", dessen Eigenschaften wir a. c. O. eingehend untersucht haben. Verfolgen wir jedoch den sich von selbst aufdrängenden Zusammen hang dieses Systems mit demjenigen Systeme, mit welchem es nach (3) in einer begleitenden Beziehung auch auf dem Grundkegelschnitte steht, so wird sich aus den nachfolgenden synthetischen Untersuchungen zur Evidenz der Satz ergeben:

"Die beiden auf dem Grundkegelschnitte abgebildeten Elementensysteme X'X", X sind im Allgemeinen zwei-vierdeutig."

Man kann übrigens die Richtigkeit dieses Satzes durch folgende Betrachtung unmittelbar ableiten. Von jedem Punkte der zu Grunde liegenden Plancurve C_6 4 können höchstenfalls vier Tangenten an dieselbe gezogen

^{*} Ueber das System der Tangentialpunkte einer unicursalen Plancurve 4. Ordn., Bd. XXXIV S. 272.

^{**} Ueber die Realität d. Doppeltang. rationaler Plancurven 4. Ordn. etc., Bd. XXXV S. 3.

werden, wobei die in diesem Punkte vorkommende nicht mitgezählt ist. Die Berührungspunkte dieser Tangenten bilden ein Quadrupel, so dass in diesem Sinne den einzelnen Punktenelementen der Curve jene Quadrupel entsprechen, was offenbar eine "Vierdeutigkeit" ausdrückt. Jede einzelne Tangente enthält zwei Tangentialpunkte der Plancurve, welche man ihrem Berührungspunkte zuweisen kann, wodurch sich aber jetzt eine "Zweideutigkeit" ausspricht. Wir finden also, dass jedem Curvenpunkte einerseits vier Punktenelemente und andererseits zwei solche Elemente entsprechen, je nachdem man ihn dem einen oder dem andern dieser beiden Systeme zuzählt, weshalb deren Gesammtheit in die beiden zwei-vierdeutigen Systeme der Plancurve zerfällt.

Diese beiden auf k conlocalen zwei-vierdeutigen Systeme kann man auf verschiedene Art zu einander in Beziehung treten lassen. Wir wollen nachstehend einige hierher gehörige Fälle betrachten.

6. Wählt man auf dem Grundkegelschnitt k zwei beliebige Punkte S, S' als Centren von Strahlenbüscheln so, dass die Elemente von S durch jene des zweideutigen Systems X'X'' und die Elemente von S' durch diejenigen des vierdeutigen Systems X incident gehen, dann entstehen zwei Strahlenbüschel S, S' in zwei-vierdeutiger Beziehung.

Jeder Strahl des zweideutigen Büschels S verschneidet sich mit einem ihm entsprechenden Strahlenelemente des Büschels S' in einem Punkte, und der Ort dieser Schnitte ist eine Curve sechster Ordnung, in welcher der S-Punkt einen einfachen und der S'-Punkt einen Doppelknoten bilden. Diese Curve von der Ordnung 2+4=6 ist wegen der beiden vielfachen Punkte S, S' von der Classe 2.2.4=16, weshalb ihr im Allgemeinen das Symbol S_{16}^{6} zukommt.*

- 7. Die Curve S_{16}^{6} ist für den Grundkegelschnitt eine "Secantencurve", d. h. sie durchsetzt denselben bekanntlich in 2.6 = 12 Punkten. Von diesen zwölf Schnittpunkten sind aber höchstenfalls sechs reell. Eine einfache geometrische Ueberlegung zeigt, dass in einem derartigen Schnittpunkte J sich ein Element des zweideutigen Systems mit einem solchen des vierdeutigen Systems vereinigt, woraus wir schliessen, dass die J-Punkte die Abbildung der sechs Inflexionen \overline{J} , welche auf der zu Grunde liegenden Plancurve C_6^4 stattfinden, auf dem Grundkegelschnitte k bewerkstelligen.
- 8. Soll man von einem Inflexionspunkte \overline{J} , welcher mittels der Secantencurve S_{16}^6 auf dem Grundkegelschnitte k abgebildet wurde, den begleitenden Tangentialpunkt \overline{T} ermitteln, so brauchen wir nur das Bild J desselben der Construction in (4) zu unterwerfen, wobei man finden wird.

[•] E. Weyr, Beiträge zur Curvenlehre, S. 44, und Salmon-Fiedler, Analytische Geometrie d. höh. Plancurven etc., S. 34.

dass die betreffende x Gerade als Secante einerseits durch diesen J-Punkt, andererseits aber durch das Bild T des fraglichen Tangentialpunktes auf dem Grundkegelschnitte geht. Es ist selbstverständlich, dass mit imaginären Inflexionspunkten \overline{J} auch deren \overline{T} -Punkte imaginär ausfallen, mit anderen Worten, dass die betreffende x-Gerade für den Grundkegelschnitt k eine uneigentliche Secante darstellen müsste.

9. Eine Secantencurve anderer Art lässt sich dadurch erzeugen, wenn man auf dem Grundkegelschnitt einen beliebigen Punkt S als Centrum des vierdeutigen Systems annimmt und dessen Strahlenelemente mit den entsprechenden x-Geraden (4) zum Schnitte bringt. Die dadurch entstehende Ortscurve enthält das Centrum S als einen zweifachen Knotenpunkt und hat, wie in dem vorigen Falle, mit dem Grundkegelschnitte die J-Punkte der sechs Inflexionen \overline{J} der Plancurve C_6^4 als deren Bilder gemeinschaftlich. Für die Ermittelung eines Tangentialpunktes \overline{T} ist die Construction derjenigen in (8) eine analoge.

Secantencurven vorbezeichneter Gattung sind für die Darstellung der Inflexionselemente einer Plancurve C_6^4 , soweit es sich um graphische Genauigkeit und Präcision handeln wird, am vortheilhaftesten verwendbar, wobei bemerkt sei, dass man die betreffenden Curventheile nur dort, wo es sich um ihre Schnitte am Grundkegelschnitt handelt, hervorzurufen hat.

10. Die beiden conlocalen zwei-vierdeutigen Punktensysteme X'X'', X des Grundkegelschnittes in (5) lassen sich weiter in der Weise verbinden, dass man das mit ihnen perspectivisch zusammenhängende Tangentensystem des Grundkegelschnittes verfolgt. Wir erkennen leicht, dass jeder Tangente des vierdeutigen Systems vor Allem die beiden Tangenten des zweideutigen Systems entsprechend zugewiesen sind. Die Schnittpunkte solcher Art formiren einen geometrischen Ort, welcher die Directionscurve der beiden Tangentensysteme ist. Nach Emil Weyr* ist diese Curve $2+4=6^{tex}$ Ordnung, weshalb wir sie vor der Hand mit dem Symbole D^6 bezeichnen.

Um die charakteristischen Eigenschaften dieser Directionscurve kennen zu lernen, studiren wir die Construction der x-Geraden für Singularlagen der betreffenden X-Punkte am Grundkegelschnitte k.

11. (Fig. 2.) Die Tangenten aus einem der Hauptpunkte O_1 , O_2 , O_3 berühren den Grundkegelschnitt k in einem Paare Verzweigungselemente VV'. Sucht man für einen Punkt V nach der Construction (4) die entsprechende x-Secante, so findet man hierfür die dem betreffenden Hauptpunkte O gegenüberliegende Seite o des Hauptdreiecks [A (7)]. Es entsprechen demnach einer Verzweigungstangente des Grundkegelschnittes aus einem Hauptpunkte O die Tangenten in den Schnittpunkten A, A' der gegenüberliegenden Seite des Dreiecks $O_1O_2O_3$. Weil nun jedem Haupt-

Digitized by Google

^{*} Beiträge zur Curvenlehre, S. 6. Zeitschrift f. Mathematik u. Physik XXXVI, 2.

punkte o ein Paar Verzweigungselemente VV' des Grundkegelschnittes eigen sind, so ist zu schliessen, dass die Pole of der Seiten des Hauptdreiecks $O_1 O_2 O_3$ Knotenpunkte der Directionscurve De sind.

Auf diese Weise constatiren wir vorläufig drei Doppelpunkte $\tilde{\omega_1}$, $\tilde{\omega_2}$, $\tilde{\omega_3}$ von D^6 mit der Bemerkung, dass die in den Punktenpaaren AA' an den Grundkegelschnitt k ziehenden Tangentenelemente gleichzeitig Knotentangenten der Directionscurve vorstellen, und behalten im Auge, dass bekanntlich die Punktepaare AA' nichts Anderes sind, als die Bilder der unendlich nahe befindlichen Nachbarpunkte eines der drei Knotenpunkte der Unicursal curve C_6^4 .

12. Es ist bekannt, dass einer Doppeltangente einer Plancurve C_a^4 bildlich ein Kegelschnitt entspricht, welcher dem Hauptdreieck 0,0,0, umschrieben ist und den Grundkegelschnitt k in Punkten B, B' doppelt berührt. Solcher Doppeltangenten giebt es, wie man weiss, vier. Es kommen also auf dem Grundkegelschnitte vier Verbindungslinien $|BB'| \equiv p$ vor, welche auf bekannte Weise* gefunden werden können, und wir wollen nur wieder der Vollständigkeit wegen einerseits, andererseits aber der späteren Bezugnahme halber die diesbetreffende Construction** nachfolgend anmerken.

Wie schon in (11) gesagt wurde, treffen die Polaren der Hauptpunkte 0, 0, 0, (Fig. 2) den Grundkegelschnitt in den Verzweigungen V, V' paarweise, woraus man viererlei Projectivitäten bilden kann:

$$\begin{array}{ll} (|\vec{V}_1 \ \vec{V}_2|, \ |\vec{V}_1' \ \vec{V}_2'|) \equiv \xi_3, & (|\vec{V}_1 \ \vec{V}_2'|, \ |\vec{V}_1' \ \vec{V}_2|) \equiv \xi_3; \\ (|\vec{V}_1 \ \vec{V}_3|, \ |\vec{V}_1' \ \vec{V}_3'|) \equiv \xi_2, & (|\vec{V}_1 \ \vec{V}_3'|, \ |\vec{V}_1' \ \vec{V}_3|) \equiv \xi_2; \\ (|\vec{V}_2 \ \vec{V}_3|, \ |\vec{V}_2' \ \vec{V}_3'|) \equiv \xi_1, & (|\vec{V}_2 \ \vec{V}_3'|, \ |\vec{V}_2' \ \vec{V}_3'|) \equiv \xi_1'. \end{array}$$

Die drei Punktenpaare ζζ' liegen als conjugirte Pole auf den Seiten des Hauptdreiecks $O_1 O_2 O_3$ und bilden die sechs Ecken eines vollständigen Vierecks, dessen vier Verbindungslinien p die g-Punkte tripelweise enthalten:

$$|\zeta_3\zeta_1\zeta_2'|\equiv p_1, \quad |\zeta_3\zeta_2\xi_1'|\equiv p_2, \quad |\zeta_2\zeta_1\zeta_3'|\equiv p_3, \quad |\zeta_2\zeta_3\zeta_1'|\equiv p_4.$$

Jede p-Sehne trifft, wie oben bemerkt ist, den Grundkegelschnitt in einem Punktenpaare BB', dessen Elemente die Bilder der Bertihrungspunkte einer Doppeltangente auf der Plancurve C_{g}^{4} sind.

Für imaginäre V-Punkte verweisen wir auf [B (16)].

13. Nun haben wir [A (6)] gezeigt, dass einem jeden Endpunkte Beiner Berührungssehne p im Systeme der x-Geraden die Tangente im andern Endpunkte B' dieser p-Sehne entsprechend ist, und dass diese Eigenschaft involutorisch ist, wie ja leicht eingesehen wird. Hieraus ist für den vorliegenden Fall nothwendig zu folgern, dass die Pole P der vier Berührungssehnen p gleichfalls Knotenpunkte der Directions-

^{**} Vergl. unsere Abhandlung B, Art. (15).

[•] E. Weyr, Projective Geometrie, 2. Heft S. 122.

curve D^6 sein müssen und dass, vermöge der bezeichneten Involutorität, die in den Endpunkten B, B' einer solchen p-Sehne gezogenen Tangenten des Grundkegelschnittes jedesmal als Doppelpunkts-Tangenten in diesen P-Punkten erscheinen.

14. Die bis jetzt gegebenen Resultate unserer geometrischen Untersuchungen der absoluten zwei-vierdeutigen Tangentensysteme auf dem Grundkegelschnitte sind ausreichend, um die Classification der Directionscurve dieser beiden Systeme festzustellen. Die drei $\tilde{\omega}$ -Pole und die vier P-Pole geben zusammen für die Directionscurve sieben Doppel- oder Knotenpunkte; mit Rücksicht auf die bekannte Steiner'sche* Formel erhalten wir, da die Curve im Allgemeinen keine Spitzen hat und die Ordnung = 6 angenommen wurde:

$$6(6-1)-2.7=16$$

als Classenzahl und somit das vollständige Symbol D_{16}^{6} der Directionscurve.

Das Geschlecht unseres Erzeugnisses bestimmt sich nach der Cayléyschen Definition** folgend. Da die Curve sechster Ordnung ist, so kämen ihr $\frac{(6-1)(6-2)}{2}=10$ Doppelpunkte zu; weil aber unsere vorstehenden Untersuchungen die Maximalzahl = 7 feststellen, so ergiebt sich für das Geschlecht (Defect) die Zahl 10-7=3, d. h. dieselbe ist keine Unicursalcurve. Die Knotenanzahl = 7 finden wir aber auch nach der Weyr'schen Formel*** bestätigt, wenn wir bedenken, dass jedes Element der zwei Gruppen $\tilde{\omega}$, P ein involutorisches Elementenpaar bedeutet; denn in diesem Falle erhält man für m=2 und n=4:

$$\frac{2(2-1)}{2} + \frac{4(4-1)}{2} = 7.$$

Ebenso finden wir eine Bestätigung der Classe nach Weyr (Curvenlehre, S.7) durch die Formel 2.2.4 = 16 und des Geschlechts (4-1)(2-1) = 3.

15. Die Bestätigung der Ordnungszahl = 6 für die gefundene Directionscurve wird übrigens auch durch nachstehende Betrachtung erwiesen. Wir nehmen eine Tangente a_1 an, welche in einem A_1 -Punkte den Grundkegelschnitt berührt. Damit sei ein Schnittpunkt bezeichnet, den eine der Seiten o_1 des Hauptdreiecks $O_1 O_2 O_3$ auf dem Grundkegelschnitte k hervorbringt, der im Vereine mit dem zweiten möglichen Schnitte A'_1 bekanntlich jenes Punktenpaar $A_1 A'_1$ ist, welches die Bilder der unendlich nahen Nachbarpunkte des betreffenden homologen Doppelpunktes der Plancurve C_6^4 vorstellt.

^{*} Gesammelte Werke, II. Bd. S. 495.

^{**} Salmon-Fiedler, Analyt. Geometrie d. höheren Plancurven, S. 34.

^{***} Beiträge zur Curvenlehre, S. 6.

Diese Tangente a_1 ist, wie wir aus (11) wissen, eine Doppelpunktstangente im Knoten $\tilde{w_1}$ und vereinigt als solche bekanntlich daselbst drei Punktenelemente der Directionscurve D_{16}^{6} . Nun wissen wir aber ebenfalls aus (11), dass der Tangente a_1 die aus dem der Dreiecksseite a_1 gegenüberliegenden Hauptpunkte a_1 ziehenden Verzweigungsstrahlen a_1 , a_1 , a_2 entsprechend sind, welche auf der a_1 -Tangente zwei weitere Schnitte als Punktenelemente der Directionscurve a_1 erzeugen, was mit den drei Elementen im Doppelpunkte a_2 zusammen bereits fünf Punkte giebt.

Einen sechsten Punkt der a_1 -Geraden erhält man folgendermassen. Unterziehen wir den Berührungspunkt A_1 als Element des vierdeutigen Systems der Fundamentalconstruction (4), so wird man ohne Schwierigkeit erkennen, dass demselben als x-Gerade die Verbindungslinie $|O_1A_1|$ zukommt, und da diese letztere den Grundkegelschnitt nur noch in einem Punkte A_1 trifft, so sehen wir die Tangente a_1 dieses Punktes als ein Element des zweideutigen Systems, welche der a_1 -Geraden entspricht. Der Schnitt der zwei Tangenten a_1a_1 ist somit jenes sechste Punktenelement, welches die Directionscurve D_{16}^{6} mit der a_1 -Geraden enthält. Ausser den bezeichneten sechs Punkten besitzt diese Curve mit der a_1 -Geraden keinerlei Elemente gemeinschaftlich, welches Ergebniss die Ordnungszahl = 6, wie oben behauptet wurde, bestätigt.

16. Ein Kegelschnitt hat mit einer Plancurve sechster Ordnung, wie bekannt, höchstens 2.6 = 12 Punktenelemente gemeinschaftlich. In der That findet dieses Gesetz auch in unserem Falle zwischen dem Grundkegelschnitte k und der Erzeugnisscurve D_{16}^{6} seine Anwendung (Fig. 3), jedoch in der Art, dass sich diese zwöf Punktenelemente paaren, so dass k ein die Directionscurve D_{16}^{6} sechsmal berührender Kegelschnitt ist. Den sechs Berührungspunkten J des Grundkegelschnittes k kommen ebensoviele Verzweigungselemente zu, d. h.: die beiden Curven werden in den letteren von Tangenten gemeinschaftlich berührt, ohne dass etwa ein Contact der beiden Curven stattfindet. Wir finden vielmehr, dass die Tangente eines der sechs Contactpunkte J, von denen zuerst die Rede war, die Curve D_{16}^{6} in einem gewissen Punkte τ trifft, in welchem eine zwischen ihr und dem Grundkegelschnitte gemeinschaftliche Tangente stattfindet. Diese letztere berührt den Grundkegelschnitt in einem Punkte T, welcher sich als das dem J-Punkte zukommende (begleitende) Verzweigungselement darstellt.

17. Das zweideutige System enthält, wie wir gesehen haben, 2.4(2-1)=8 Tangenten als Doppelelemente, deren Berührungspunkte B (13) die Endpunkte der vier p-Sehnen sind, in welchen der Grundkegelschnitt von den vier möglichen Kegelschnitten doppelt berührt wird, die dem Dreiecke $O_1 O_2 O_3$ umschrieben sind. Es ist bekannt, dass diese vier doppelt berührenden Kegelschnitte Individuen eines Netzes vorstellen, dessen Grundpunkte

^{*} Vergl. Abhandlung B, Art. 12.

 0_1 , 0_2 , 0_3 sind. Alle Individuen dieses Netzes im Systeme Σ des Grundkegelschnittes sind die Bilder der Geraden im System $\bar{\Sigma}$ der Plancurve C_6^4 , so dass also den einfachen Tangenten der Curve C_6^4 in diesem Netze je ein Kegelschnitt entspricht, welcher den Grundkegelschnitt einfach berührt, und dass den vier Doppeltangenten der Curve jene vier doppelt berührenden Kegelschnitte bildlich entsprechen.

Das vierdeutige System besitzt 2.2(4-1)=12 Doppelelemente; diese sind die in (16) bezeichneten Coincidenzpaare J, in welchen zwischen dem Grundkegelschnitte k und der Directionscurve D_{16}^{6} ein Contact vorkommt. In ihnen osculirt je ein Individuum des besprochenen Kegelschnittnetzes den Grundkegelschnitt, welches somit im quadratischen Verwandtschaftssinne das Bild einer Inflexionstangente auf der Plancurve C_{6}^{4} formirt, deren es, wie bekannt, sechs giebt. Hingegen bilden jene in (16) angegebenen, die J-Punkte begleitenden Verzweigungselemente T des Grundkegelschnittes k im Systeme Σ jedesmal den Tangentialpunkt der betreffenden Inflexionstangente auf der Plancurve C_{6}^{4} ab. Man kann demnach den nachstehenden Satz zusammenfassen:

"Die sechs Doppelelemente J, in welchen der Grundkegelschnitt k von der Directionscurve D_{16}^6 berührt wird, sind die Bilder der Inflexionspunkte \overline{J} und die noch weiter zwischen diesen zwei Curven stattfindenden sechs gemeinsamen Tangenten berühren die erstere in den Bildern T der Tangentialpunkte \overline{T} jener Inflexionstangenten der Plancurve $C_6^{4.4}$

18. (Fig. 2.) Die sieben Doppelpunkte ωP der Directionscurve D_{16}^{6} gestatten eine bemerkenswerthe geometrische Figur. Sie liegen tripelweise auf sechs Geraden:

19. Dass die Directionscurve der beiden absoluten zwei-vierdeutigen Systeme des Grundkegelschnittes einer ebenen Curve C_6^4 je nach der Classen- anderung dieser letzteren ebenfalls einer Deformation unterworfen sein wird, liegt auf der Hand. In Bezug dessen erlauben unsere synthetischen Untersuchungen, den Satz auszusprechen:

"Je nachdem die Plancurve C_6^4 der Classe nach degenerirt in eine Curve mit 0, 1, 2, 3 Spitzen, vermindert sich die Ordnungszahl der Directionscurve D_{15}^6 um ebensoviele Einheiten." Wenn also z. B. die Plancurve vom Symbole C_3^4 ist, wobei bekanntlich der Grundkegelschnitt k dem Hauptdreieck eingeschrieben erscheint, erhält die Directionscurve des zwei-vierdeutigen Systems das Symbol D_4^3 .

Eine kurze Ueberlegung wird auch sofort zu dem Resultat führen, dass der Pol P_4 Doppelpunkt (eigentlicher oder isolirter) für die Curve D_4^3 ist, diese somit unicursal ist.

- 20. Schliesslich wollen wir nochmals auf die Fruchtbarkeit der auf dem Grundkegelschnitte k conlocalen absoluten zwei-vierdeutigen Systeme hinweisen, wenn wir dessen Beziehung von einem andern Standpunkte unserer Betrachtung unterwerfen. Wir wissen [A (5)], dass das zweideutige Punktensystem, welches bildlich durch die Tangentialpunktenpaare der Plancurve C_6^4 auf dem Grundkegelschnitte k hervorgerufen wird, ein symmetrisches System vierten Grades ist. Die Verbindungslinien x conjugirter Elemente dieses Systems bilden ein Tangentensystem vierter Classe. In gleicher Weise müssen die Tangenten des Grundkegelschnittes als ein Elementensystem sechster Classe* angesehen werden. Man kann nun die gegenseitige Beziehung der beiden zwei-vierdeutigen Tangentensysteme in der Art studiren, dass man die einander entsprechenden Elemente zum Durchschnitt bringt, wodurch wir (Fig. 4) eine Ortscurve erzeugen, die abermals $2+4=6^{tar}$ Ordnung ist, weshalb wir ihr vor der Hand das Symbol D^6 beilegen.
- 21. Wir sehen, dass die zwei bezeichneten Tangentensysteme nicht, wie in den früheren Fällen, conlocal sind. Dennoch wird es Doppelelemente geben, die wir vor Allem fixiren müssen, weil dadurch die Classification des Erzeugnisses bedingt wird. Wir erinnern zu diesem Zwecke an die Eigenschaft der Tangenten in den Endpunkten B, B' einer p-Sehne (12). Aus diesem Grunde müssen die vier P-Pole dieser Sehnen in Bezug auf den Grundkegelschnitt als Doppelpunkte der Curve D⁶ wie vorhin auftreten.

Jedes Element der nach (12) auf den Seiten des Hauptdreiecks $0_1 0_2 0_3$ befindlichen conjugirten $\xi \xi'$ -Pole, in welchem sich ein Paar p-Sehnen

^{*} Weyr, Beitrage zur Curvenlehre, S. 23.

treffen, ruft auf dem Grundkegelschnitte eine quadratische Strahleninvolution hervor. Sucht man für eine Asymptote dieser Involution, als Element des Tangentensystems am Grundkegelschnitte, mit Hilfe der Grundconstruction (4) die entsprechende x-Gerade, als Element des Tangentensystems vierten Grades in (20), so erhält man hierfür abermals einen Strahl der Involution, so dass nach der obigen Beziehung der betreffende ζ -Pol als Punktenelement der Erzeugnisseurve D^6 angehört. Da aber diese Eigenschaft auch für die zweite Asymptote jener Involution stattfinden muss, so erkennen wir die sechs ζ -Pole ebenfalls als Doppelpunkte der Curve D^6 .

22. Die zuletzt gemachten Untersuchungen ergeben, dass die Erzeugnisscurve D^6 im Ganzen zehn Doppelpunkte besitzt, und dass sie also nach (14) in Uebereinstimmung der dort angegebenen Cayleyschen Formel eine Unicursalcurve ist. Nunmehr sind wir im Stande, die Classe 6(6-1)-2.10=10

festzusetzen, weil auch diese Curve keine Spitzen besitzt, weshalb sie definitiv mit dem Symbole D_{10}^6 zu bezeichnen ist.

23. Gemeinschaftliche Elemente enthält die Curve D_{10}^{6} mit dem Grundkegelschnitte k, sowie in dem früheren Falle einer Directionscurve D_{16}^{6} , 2.6 = 12, die sich wieder paaren in sechs Berührungselementen J, weshalb auch diesmal k ein das Erzeugniss D_{10}^{6} sechsmal berührender Kegelschnitt ist.

Die sechs Contactpunkte J sind identisch denjenigen, welche die vorangehenden Beziehungen als Bilder im Sinne der quadratischen Verwandtschaft der Inflexionen auf der zu Grunde liegenden Plancurve vierter Ordnung bezeichneten, weshalb das früher darüber Gesagte über die Bestimmung ihrer Tangentialpunkte etc. auch hier seine Anwendung findet.

- 24. Endlich möge auch noch die Bemerkung am Platze sein, dass die Doppelpunkte einer jeden der erzeugten Curven $D_{16}^{}$, $D_{10}^{}$ ganz oder theilweise eigentliche (Knoten) oder isolirte (Einsiedler) Elemente sein können, und dass auch die Realität der damit zusammenhängenden J-Punkte sich entsprechend gestaltet. Sind die J-Punkte sämmtlich reell vorhanden, dann zeigt ihre Verbindung die folgende Figur:
- (Fig. 3.) Das vollständige Vierseit der p-Sehnen, dessen drei Paare Gegenecken die Punktenpaare $\zeta\zeta'$ sind, zerfällt in vier Dreiecke, deren Ecken einzeln auf den Seiten des Hauptdreiecks $O_1O_2O_3$ liegen. Jedem Dreieck entspricht in Bezug auf den Grundkegelschnitt ein polares Dreieck. Bekanntlich sind solche Figurenpaare perspectivisch, d. h. es liegen die polar gegenüberliegenden Eckenpaare auf je einer Geraden π , welche drei Geraden sich in dem Doppelpunkte P_4 schneiden. Wir finden folgenden geometrischen Zusammenhang:

"Die J-Bilder sind die Ecken eines dem Grundkegelschnitte k eingeschriebenen Sechsecks, dessen drei Diagonalen sich in Paaren wechselweise auf den Geraden π in drei Punkten μ schneiden".

Das vorstehende Gesetz gestattet: "bei Bekanntgabe von drei diagonal gegenüberliegenden J-Punkten die restlichen drei J-Elemente linear zu construiren."

П.

Curven dritter Ordnung.

25. Die Unicursal-Plancurven vorstehender Art sind vielfach studirt worden. Unsere Aufgabe soll sich dahin beschränken, an diesen Curven die Fruchtbarkeit der absoluten Elementensysteme, welche mit ihnen durch ihr Tangentensystem verbunden sind, zu zeigen, indem wir daraus, analog wie im ersten Abschnitte für die Curven vierter Ordnung, Beziehungen für die Construction der Inflexionselemente einer Plancurve dritter Ordnung fixiren.

Bekanntlich hat man vorstehende Curven zu unterscheiden in solche mit einem Doppelpunkte oder mit einem Rückkehrpunkte, weshalb im Folgenden dieselbe Classification eingehalten ist. Ob der Doppelpunkt ein Knoten oder ein isolirter Punkt ist, wird für unsere Untersuchungen insofern auseinander zu halten sein, als bekanntlich davon die Realität der Inflexionen einer Curve C_4 abhängt.

A. Curven vom Symbole C_4 .

- 26. Wenn wir, conform den in (3) ausgesprochenen Beziehungen, eine Plancurve $C_4^{\,3}$ auf einem Kegelschnitte k abbilden wollen, so muss dieser Kegelschnitt den Hauptpunkt O_1 , welcher dem Doppelpunkte O_2 der Curve homolog ist, incident enthalten. Die quadratische Verwandtschaftsbeziehung im Sinne unserer Abhandlung (B) eit. in (3) erreichen wir demnach dadurch, wenn wir (Fig. 5) ein Dreieck $O_1\,O_2\,O_3$ mit einem durch einen Eckpunkt O_1 ziehenden Grundkegelschnitte k annehmen. Die durch den Hauptpunkt O_3 zur Geraden $|O_1\,O_2\,|$ Parallele trifft den Hauptkreis, welcher dem Dreiecke $O_1\,O_2\,O_3$ umschrieben* ist, in dem Punkte $\overline{O_3}$. Das Bild des Grundkegelschnittes k ist nach den Steiner'schen Principien eine Plancurve $O_4^{\,3}$, welche den O_2 -Punkt als Doppelpunkt, die Punkte $O_1\,\overline{O_3}$ aber als einfache Punktenelemente besitzt. Die punktenweise Bestimmung dieser Curve erläutert unsere Abhandlung (B).
- 27. Die Gesammtheit der Tangenten auf der Plancurve C_4^3 formirt ein "System", in welchem jedes Element einen Berührungspunkt \overline{X} und einen Tangentialpunkt \overline{T} , wie bekannt ist, besitzt. Dieses Tangentensystem be-

^{*} Man denke sich die Figur diesbezüglich ergänzt.

greift sonach zwei Punktensysteme in sich, welche absolut auf der Curve vorhanden sind. Nun weiss man aber, dass sich von jedem Punkte der Plancurve im Allgemeinen ein Paar Tangenten an dieselbe ziehen lässt, so dass also irgend einem beliebigen Curvenpunkte immer zwei Punkte, die Berührungselemente des betreffenden Tangentenpaares, conjugirt sind. Diese Thatsache berechtigt den Satz:

"Auf einer ebenen Curve C_4 " sind die einzelnen Curvenpunkte und ihre conjugirten Punktenpaare, für welche sie gemeinschaftliche Tangentialpunkte bilden, zwei ein-zweideutige Punktensysteme."

28. Um die Eigenschaften vorbedachter Elementensysteme studiren zu können, bilden wir sie auf dem Grundkegelschnitte k ab. Wir verwenden hierzu die Construction in (4) mit der durch die vorliegende Specificirung bedingten Abänderung in der Construction. (Fig. 5.)

Ist ein beliebiger Punkt X des Grundkegelschnittes k gedacht, so projicire man ihn aus den beiden Hauptpunkten O_3O_8 nach X_2X_8 auf diesen Kegelschnitt. Die Verbindungslinie $|X_2X_8|$ trifft die Dreiecksseite $|O_3O_8|\equiv o_1$ in einem Punkte ξ_1 und der Strahl $|O_1\xi_1|$ schneidet auf k einen Punkt X_1 aus, der offenbar nichts Anderes ist, als das Bild jenes Punktes \overline{X}_1 , welcher der Tangentialpunkt der einen in dem Bildpunkte \overline{X} an die Plancurve gehenden Tangente vorstellt.

Aus dem Punkte \overline{X}_1 zieht nach oben noch eine zweite Tangente an die Curve C_4^3 mit dem Berührungspunkte \overline{X}' . Die Paare $\overline{X}\,\overline{X}'$ enthalten bekanntlich conjugirte Elemente einer quadratischen Involution, welche Eigenschaft durch die Steiner'sche Abbildung auf dem Grundkegelschnitte nicht alterirt wird. Aus diesem Grunde findet man auf letzterem das zu dem Punkte X conjugirte Element X', wenn man X mit dem Centrum Z der dort abgebildeten Involution, d. i. der Pol der Dreiecksseite $o_1 \equiv |o_2 o_3|$, verbindet und diese Verbindungslinie mit dem Grundkegelschnitte k in X' verschneidet.

29. Nach (27) sind die Elementensysteme X_1 , XX' des Grundkegelschnittes k in ein-zweideutiger Beziehung. Betrachten wir zunächst diese beiden Systeme, wie in (6), als Scheine zweier Strahlenbüschel S, S', wovon der Einfachheit wegen das Centrum S' des zweideutigen in Fig. 6 als der Hauptpunkt O_1 , das Centrum des eindeutigen aber als der sonst beliebige Punkt S des Grundkegelschnittes angenommen wurde, so ist deren Erzeugniss bekanntlich* eine Curve dritter Ordnung, welche den Scheitel O_1 des zweideutigen Büschels zum Doppelpunkte und denjenigen S des eindeutigen zu einem einfachen Punkte hat.

Das gedachte Erzeugniss ist also eine Unicursalcurve vom Symbol $S_4^{\ 3}$ wegen des Doppelpunktes O_1 und zählt zu jener Gattung, welche wir in (7)

^{*} E. Weyr, Beiträge zur Curvenlehre, S. 54.

als "Secantencurven" bezeichneten. Mit dem Grundkegelschnitte k hat sie 2.3=6 gemeinsame Schnittpunkte, von welchen der Doppelpunkt O_1 zwei und das Centrum S ein Element consumiren. Die drei übrig bleibenden Schnittpunkte J_1 , J_2 , J_3 sind die Bilder der auf der Plancurve C_4 3 vorkommenden Inflexionen.

30. Wenn man die beiden in (27) erwähnten absoluten ein-zweideutigen Punktensysteme, welche auf dem Grundkegelschnitte conlocal sind, in eine solche Beziehung bringt, dass man jeden Punkt X_1 des eindeutigen Systems mit jedem Punkte X, X' des zweideutigen Systems durch Strahlen verbindet, so ist nach Weyr* die Enveloppe dieses Strahlensystems eine Directionscurve vom Symbol D_8^4 mit drei Spitzen und einer Doppeltangente. (Fig. 7.)

Der Grundkegelschnitt k wird von der Directionscurve D_5^4 in den Bildern J_1 , J_2 , J_3 der drei Inflexionspunkte der Basiscurve C_4^3 einfach berührt, so dass man die erstere bezüglich des Grundkegelschnittes k eine Contactcurve, im Gegensatz zu der oben bezeichneten Secantencurve, nennen kann.

Wir geben ferner das nachstehende ausgezeichnete Gesetz:

"Die drei Spitzentangenten p der Directionscurve D_3^4 treffen sich in dem Z-Pole (28) gemeinschaftlich* und jede von ihnen schneidet auf dem Grundkegelschnitte k ein Bild J eines der drei Inflexionspunkte $\overline{J_1}$, $\overline{J_2}$, $\overline{J_3}$ der Plancurve C_4^3 aus."

31. Die Behauptung in (30), dass die Directionscurve D_3^4 für den Grundkegelschnitt k ausschliesslich Contactcurve sei, ist nur für den allgemeinsten Fall mit drei reellen Rückkehrpunkten giltig, wo dann auch bekanntlich die Doppeltangente eine ideelle ist und die drei J-Punkte reell sind.

Wenn aber die Doppeltangente eine eigentliche Gerade dieser Art ist, so kann, wie man sich leicht überzeugen wird, dieselbe nur als die Seite $|O_2O_3|\equiv o_1$ vorkommen, was dann möglich ist, wenn diese Seite des Hauptdreiecks $O_1O_2O_3$, wie die beiden anderen, den Grundkegelschnitt als eigentliche Secante trifft. In diesem Falle durchsetzt die Directionscurve D_3^4 in den zwei Secantenpunkten A_1 , A'_1 (Fig. 8) diesen Kegelschnitt, welche beiden Punkte zugleich die Berührungselemente der Doppeltangente o_1 sind. Selbstverständlich werden bei dieser Annahme zwei J-Punkte imaginär und der dritte liegt, dem Gesetze in (30) gemäss, auf der einzigen Spitzentangente p, welche reell durch den Z-Pol der Dreiecksseite o_1 bezugs des Grundkegelschnittes zieht. In diesem letzteren J-Punkte berührt der andere Bestandtheil der Directionscurve den Grundkegelschnitt k. Diese Untersuchung giebt den Satz:

^{*} Beiträge zur Curvenlehre, S. 6.

^{**} Eine bekannte Eigenschaft.

"Die Seite $o_1 \equiv |O_2 O_3|$ des Hauptdreiecks $O_1 O_2 O_3$ ist die einzige reelle Doppeltangente der Directionscurve D_3^4 ; sie ist eine ideelle, wenn sie den Grundkegelschnitt nicht reell schneidet, und eine eigentliche, wenn das Gegentheil stattfindet."

Die vorstehenden Ergebnisse bestätigen schliesslich auch die Ordnung der Directionscurve. Denn die zwei Secantenpunkte A_1 , A'_1 der Dreiecksseite o_1 , von welchen zuletzt die Rede war, sowie die drei J-Punkte als Contactelemente der Directionscurve repräsentiren zusammen für diese letztere und den Grundkegelschnitt k acht Punkte in Gemeinschaft, was nur möglich ist, wenn die Directionscurve vierter Ordnung ist.

- 32. Die polar-reciproke Curve der Directionscurve D_3^4 ist offenbar eine Unicursalcurve dritter Ordnung vom Symbol D_4^3 . Eine solche conformirt sich mit den Beziehungen in (10). Wir haben zu diesem Behufe das in (27) bezeichnete ein-zweideutige Punktensystem, welches auf dem Grundkegelschnitte k conlocal ist, perspectivisch mit dem auf diesem Kegelschnitte befindlichen Tangentensystem zu verbinden, wodurch zwei ein-zweideutige Tangentensysteme hervorgehen, deren Directionscurve die polar-reciproke D_4^3 ist. Diese Curve ist also ein geometrischer Ort, dessen einzelne Punktenelemente aus dem Schnitte entsprechender Elemente der erzeugenden Tangentensysteme gebildet erscheinen. Nach den vorausgegangenen Erläuterungen unterliegt die betreffende Construction keiner Schwierigkeit, indem wir eben nur jede Tangente des eindeutigen mit dem Tangentenpaare des zweideutigen Systems zum Schnitte bringen. (Fig. 9.)
- 33. Durch Polarisation der Curve D_8^4 erfährt man weiter, dass die Directionscurve D_4^3 den Pol Z der Seite o_1 des Hauptdreiecks $O_1 O_2 O_3$ zum einzigen Doppelpunkt besitzt und dass gleichzeitig die in den Secantenpunkten dieser Geraden (d. s. die Bilder A_1 , A'_1 der Nachbarpunkte des Doppelpunktes O_2 der Plancurve C_4^3) an den Grundkegelschnitt gehenden Tangenten die Doppelpunkt stangenten der Directionscurve D_4^3 sind. Dieser Doppelpunkt Z ist ein "Knoten", wenn die o_1 -Gerade für den Grundkegelschnitt eine eigentliche Secante ist, und er ist "Einsiedler" (Fig. 9), sobald sie ihn in imaginären Punkten trifft.

Die Directionscurve D_4^3 kann für den Grundkegelschnitt k nur Contactcurve sein, und zwar höchstenfalls in drei und mindestens in einem reellen J-Punkte, was mit der Ordnungszahl derselben übereinstimmt. Die drei J-Punkte sind wieder Bilder der Inflexionen auf der Basiscurve C_4^3 .

34. (Fig. 9.) Die beiden ein-zweideutigen Tangentensysteme des Grundkegelschnittes k werden von der Dreiecksseite o_1 perspectivisch in zwei ein-zweideutigen Punktensystemen geschnitten, die also auf dieser Digitized by

"Die Hauptdreiecksseite o_1 wird von der Directionscurve D_4^3 in drei P-Punkten durchsetzt, deren p-Polaren bezüglich des Grundkegelschnittes, diesen in J-Punkten einerseits, und andererseits in dem, einem solchen conjugirten Punkte T der Involution Z treffen." Welche Rolle diese Punkte als Bilder dieser Plancurve C_4^3 spielen, geht aus dem Vorigen hervor.

Man ersieht auch die bekannte Figur,** dass die Verbindungslinien von je zweien der drei J-Punkte auf o_1 Punkte ausschneiden, welche mit unseren P_r -Punkten identisch sind, und ferner erkennt man die bekannte Eigenschaft, dass von einem P-Punkte jedesmal eine der Kegelschnittstangenten diesen in einem J-Punkte berührt.

35. Die Resultate, welche mit Hilfe der Directionscurve D_4^3 erzielt wurden, kann man schliesslich auf eine einfache Kegelschnittsaufgabe reduciren. Der dabei zu beobachtende Vorgang sei nachstehend angedeutet. Die Directionscurve D_4^3 kann nach oben durch die nothwendige Anzahl von Bestimmungsstücken, deren bekanntlich neun erforderlich sind, festgesetzt werden. Verbindet man diese Curve durch eine Steiner'sche Verwandtschaft mit einem Kegelschnitte, was am einfachsten nach den Principien unserer Abhandlung (B) erreicht wird, so entspricht der Geraden o_1 ebenfalls ein Kegelschnitt im Sinne der quadratischen Beziehung, und die vier gemeinschaftlichen Elemente dieser beiden Kegelschnitte begreifen, ausser dem Bildpunkte des Doppelpunktes Z der Directionscurve, das Punktentripel, welches die drei P-Elemente abbildet. Auf solche Weise gelangen wir somit ohne eigentliche Curvenconstruction zur Kenntniss der verlangten Inflexionselemente einer Plancurve C_4^3 .

36. Weit einfacher wird dasselbe Resultat auf folgendem Wege, welchen E. Weyr angegeben hat,*** erreicht. Von den beiden eindeutigen Punktensystemen (27) bildet das zweideutige eine quadratische Involution. Die Verbindungslinien conjugirter Elemente derselben sind Elemente einer

^{*} E. Weyr, Theorie der mehrdeutigen Elementargebilde etc., S. 10.

^{**} E. Weyr, Ueber die Abbildung einer rationalen ebenen Curve dritter Ordnung etc., Sitzungsber. d. kaiserl. Akad. d. Wiss., LXXIX. Bd. S. 439.

^{***} Ebenda S. 438.

Strahleninvolutiou des Centrums Z. Verbindet man aber jedes Punktelement des eindeutigen Systems, d. i. ein gemeinschaftlicher Tangentialpunkt zweier conjugirten Punkte des zweideutigen Systems, mit einem beliebigen Punkte S des Grundkegelschnittes k, so erhält man ein Strahlenbüschel. Die zwei Strahlenbüschel Z, S sind projectivisch und erzeugen einen Kegelschnitt, welcher mit dem Grundkegelschnitte ausser dem Centrum S noch die drei J-Punkte, von denen selbstverständlich zwei imaginär sein können, gemeinschaftlich hat.

37. Die merkwürdige Linearbeziehung der J-Punkte und der Hauptdreiecksseite o_1 , welcher in (34) gedacht worden ist und die am einfachsten dadurch ausgedrückt wird, dass man sagt: "Die J-Punkte bilden ein Dreieck, dessen Seiten sich mit den in seine Ecken gehenden Grundkegelschnittstangenten paarweise in den drei P-Punkten von o_1 schneiden", gestattet es, dass man bei Angabe eines J-Punktes die beiden übrigen linear finden kann, was Drasch* gezeigt hat. Wir geben in Fig. 9 noch einen andern Weg der Construction. Ist nämlich ein Punkt J_1 bekannt, so trifft seine Tangente des Grundkegelschnittes die o_1 -Gerade in dem Punkte P_1 ; die Polare p_1 von P_1 schneidet die o_1 -Gerade in S und den Grundkegelschnitt in T. Der auf p_1 liegende Pol Z bildet mit dem Punkteupaare TS ein Tripel einer Harmonität, in welcher ein vierter Punkt Q zu Z conjugirt ist, so dass die Relation besteht:

$$(TS, ZQ) = -1.$$

Die Polare von Q in Bezug auf den Grundkegelschnitt k schneidet diesen in den zwei Punkten J_2 , J_3 , welche Gerade selbstverständlich durch den P_1 -Punkt zieht. Der Beweis für die Richtigkeit dieser Construction ergiebt sich aus den harmonischen Beziehungen des Dreiecks $J_1J_2J_3$ und des Poles Z zur o_1 -Geraden.

B. Curven vom Symbol C_8 .

38. Diese Curven besitzen bekanntlich einen Rückkehrpunkt (Spitze) und nur ein einziges Inflexionselement. Bei der Abbildung einer solchen Curve auf einem Kegelschnitte im Sinne unserer Voraussetzung einer Steinerschen Verwandtschaft wird das Hauptdreieck $O_1 O_2 O_3$ gegen den Grundkegelschnitt k derart in Position kommen, dass in der Annahme (26) die Dreiecksseite $o_1 \equiv |O_2 O_3|$ (Fig. 10) eine Tangente dieses Kegelschnittes ist.

Um die Punktensysteme einer Plancurve C_8^8 in ihren Eigenschaften zu erfahren, betrachten wir dieselben, wie bisher, auf dem Grundkegelschnitte k. Man weiss tibrigens, dass im vorliegenden Falle jedem Curvenpunkte ein Tangentialpunkt zugehörig ist und dass von einem Curvenpunkte nur eine einzige Tangente an die Curve gezogen werden kann. Auf diese Weise

^{*} Beitrag zur synthet. Theorie d. ebenen Curven 3. Ordn. etc., LXXXV. Bd. d. Sitzungsber. d. kaiserl. Akad. d. Wissensch. II, S. 546.

zerfallen die gesammten Curvenpunkte in zwei Systeme, welche in projectivischer (ein-eindeutiger) Beziehung stehen und deren Bilder auf dem Grundkegelschnitte k conlocal von derselben Eigenschaft sind. Es ist ebenso bekannt, dass die Directionscurve projectivischer Systeme im Allgemeinen immer ein Kegelschnitt C^2 ist, der den Grundkegelschnitt doppelt berührt. Ebenso weiss man, dass von den zwei gemeinschaftlichen Berührungspunkten der eine jener Punkt A_1 ist, in welchem die o_1 -Gerade den Grundkegelschnitt tangirt, während der andere den einzigen J-Punkt vorstellt.

Diese zuletzt erwähnten Beziehungen lassen einsehen, dass die Construction des einzigen J-Punktes linear ausführbar ist, wie auch Weyr* gezeigt hat. Wir werden unten mehrere lineare Constructionen nach unserer Methode angeben, die ebenfalls einfach und unmittelbar zum Ziele führen. Vorerst wollen wir in Consequenz unserer Methode eine kurze Betrachtung der durch den vorliegenden Specialfall bedingten Modificationen jener absoluten Elementensysteme und ihrer Erzeugnisse anstellen, von denen oben die Rede war, indem wir dieselben in Einklang mit dem allgemeinen Falle einer Curve $C_{\rm A}^{\,8}$ setzen.

39. Anlangend zunächst die Construction, so findet man genau so, wie in (28) angegeben worden ist, zu jedem X-Punkte den zugehörigen X_1 -Punkt als das auf dem Grundkegelschnitte k (Fig. 5) abgebildete Element des Tangentialpunktes \overline{X}_1 der betreffenden in dem Punkte \overline{X} ziehenden Tangente der Plancurve C_3 : Wir projiciren nämlich X aus den Hauptpunkten O_2 , O_3 auf den Grundkegelschnitt nach X_3 , suchen den Schnitt

$$(|X_3X_3|, |O_2O_3|) \equiv \xi_1,$$

so trifft der Strahl $|O_1\xi_1|$ diesen Kegelschnitt in X_1 .

Als Centra für die zwei (krummlinigen) Reihen X, X_1 in der Beziehung (29) wählen wir am einfachsten die Punkte O_1 , A_1 (Fig. 10), wodurch also zwei projectivische Strahlenbüschel entstehen, deren Erzeugniss ein Kegelschnitt K^2 ist. Nachdem die in (28) bezeichnete Involution der Paare X, X' alle X'-Elemente in dem vorliegenden Specialfalle im A_1 -Punkte vereinigt (parabolischer Fall), so ist einzusehen, dass der Kegelschnitt K^2 in dem letzteren Falle den Grundkegelschnitt k einfach berührt und dass die Dreiecksseite o_1 die gemeinschaftliche Tangente ist. Ferner weiss man, dass auch der Büschelscheitel O_1 ein Punktenelement von K^2 sein muss; es bleibt also nur noch ein einziger Punkt J übrig, welcher diesen beiden Kegelschnitten gemeinschaftlich ist. Dieser J-Punkt ist das Bild des besagten Inflexionspunktes auf C_3^3 .

Unsere Construction lässt mit Leichtigkeit fünf beliebige Bestimmungsstücke des Kegelschnittes K^2 feststellen, von denen der Annahme gemäss

Ueber die Abbildung einer rationalen ebenen Curve etc., Sitzungeber. d. kaiserl. Akad. d. Wissensch., LXXIX. Bd. II. Abth. S. 489.

a priori durch die Punkte O_1 , A_1 und die Tangente o_1 drei bekannt sind. Hieraus folgt eine lineare Ermittelung des J-Punktes, wie oben bemerkt wurde.

40. Geht man nach der Methode in (30) zu Werke, so bilden die gesammten $|O_1X_1|$ -Strahlen ein Tangentensystem, dessen Enveloppe abermals ein Kegelschnitt K^2 ist, welcher jedoch den Grundkegelschnitt doppelt berührt. Die Berührung erfolgt, wie ohne Schwierigkeit erkannt wird, in dem Punktenpaare A_1J .

Die Polarisation der vorstehenden Beziehung muss selbstverständlich auch wieder einen Kegelschnitt (K^2) resultiren, der die gleiche Eigenschaft der in dem Punktenpaare A_1J stattfindenden doppelten Berührung mit dem Grundkegelschnitte k nachweist. Insofern ist der zuletzt erhaltene Kegelschnitt (K^2) als die Directionscurve der projectivischen Systeme X, X_1 nach der Anschauung in (32) aufzufassen.

Jeder der beiden letzteren Kegelschnitte K^2 , (K^2) kann immerhin mittels der Grundconstruction durch fünf beliebige Bestimmungsstücke fixirt werden, was ausspricht, dass die Construction des gesuchten J-Punktes auch diesfalls linear durchgeführt werden kann. Wir wollen jedoch unmittelbar folgend einige höchst einfache Linearbeziehungen anzeigen.

41. Die Verbindungslinie $|A_1J| \equiv p$ ist eine gemeinschaftliche Secante zwischen dem Grundkegelschnitte k und jedem der Kegelschnitte K^2 , (K^3) . Man kann nun ausser dem gegebenen A_1 -Punkte noch einen zweiten Punkt dieser Secante auf Grund nachstehender Betrachtung erhalten.

Die Polare des Hauptpunktes O_2 trifft den Grundkegelschnitt k, ausser in A_1 , noch in einem zweiten Punkte V_2 ; analog erhält man einen Punkt V_3 bezüglich des Hauptpunktes O_3 . Bekanntlich ist der Punkt V_2 das Bild eines Punktes $\overline{V_2}$ der Plancurve C_3^{-3} , in welchem eine Tangente an diese Curve zieht, deren Tangentialpunkt offenbar durch den zu O_2 homologen Hauptpunkt O_1 , welcher für die Curve ein einfaches Element ist, repräsentirt wird. In der That ergiebt auch unsere Grundconstruction, wenn dieselbe für den V_2 -Punkt durchgeführt wird, als den entsprechenden jenen Punkt A_1 des Grundkegelschnittes, der ausser dem Hauptpunkte O_1 auf der Dreiecksseite $O_2 = |O_1 O_3|$ liegt, wie man sich leicht überzeugen wird. Ganz ähnlich verhält es sich mit dem Punkte V_3 , für den man als entsprechendes Element den zweiten Schnittpunkt A_3 auf der Geraden $O_3 \equiv |O_1 O_2|$ erhält-In gewissem Sinne sind die Punkte V_2 , V_3 für den Grundkegelschnitt k und deren Bilder $\overline{V_2}$, $\overline{V_3}$ auf der Plancurve C_3^{-3} sozusagen "Verzweigungselemente" der Hauptpunkte O_2 , O_3 resp. O_1 , $\overline{O_3}$.

42. Die gemeinschaftliche Secante $|A_1J|\equiv p$ kann als Verbindungslinie des gegebenen A_1 -Punktes mit dem Schnitte:

a)
$$(|V_2A_3|, |V_3A_2|) \equiv \sigma$$
 bestimmt werden.

Projiciren wir die Punkte A_2 , A_3 aus den Hauptpunkten O_2 , O_3 nach A''_2 , A'''_3 auf den Grundkegelschnitt k, so findet man ein zweites Punktenelement der gemeinschaftlichen Secante $|A_1J| \equiv p$ mittels der Construction:

$$(|A_2A'''_3|, |A_3A''_2|) \equiv \sigma'.$$

Endlich erhält man einen dritten Bestimmungspunkt der Secante $|A_1J| \equiv p$ aus der folgenden Linearbeziehung:

c)
$$(|V_2A'''_3|, |V_3A''_2|) \equiv \sigma'',$$

wobei noch zu bemerken ist, dass der Punkt σ'' gleichzeitig auf der Verbindungslinie $|A_2A_3|$ zu liegen kommt, was gewiss zur Vereinfachung der Construction wesentlich beiträgt.

Anhang.

- 43. In den Figuren, welche unseren Untersuchungen zur Grundlage dienen, haben wir die Plancurve, von der wir ausgehen, nicht eingezeichnet, um das Bild der betreffenden Constructionen, die wir auf dem Grundkegelschnitte zeigen, nicht zu beeinträchtigen. Eine Ausnahme hiervon macht nur die letzte Fig. 10 unserer Taf. V, welche die bezügliche Basiscurve C₃ angiebt. Es unterliegt keiner Schwierigkeit, die Basiscurven in den vorausgegangenen Fällen graphisch hervorzurufen, wenn nach den Grundsätzen, die wir für die Erzeugung einer Plancurve in unserer citirten Abhandlung (B)* angeführt haben, verfahren wird. In diesem Sinne sei wenigstens für den einen Fall der Fig. 10 nachstehend die Construction angedeutet.
- 44. Der vorausgesetzten Specialisirung einer Plancurve C_8^8 gemäss wissen wir, dass das Hauptdreieck $O_1 O_2 O_3$ in der Weise situirt ist, dass der eine Hauptpunkt O_1 auf dem Grundkegelschnitte liegt, während die ihm gegenüberliegende Dreiecksseite $o_1 \equiv |O_2 O_3|$ ihn in einem Punkte A_1 berührt, der das Bild des Rückkehrpunktes O_2 der Plancurve C_3^8 vorstellt.

Die quadratische Verwandtschaftsbeziehung verlangt den Hauptkreis z. welcher dem Dreieck $O_1 O_2 O_3$ umschrieben ist. Zieht man die Gerade $|O_3 \overline{O_3}| \parallel |O_1 O_2|$, so trifft diese den Kreis z in jenem dem Hauptpunkte O_3 homologen Hauptpunkte $\overline{O_3}$. Die Punkte O_1 , $\overline{O_3}$ sind für C_3 einfache Elemente, während O_3 , wie schon gesagt wurde, jener Punkt ist, in welchem die Curve eine Spitze formirt. Die Spitzentangente s erhält man, wenn man den O_3 -Punkt mit demjenigen Hauptkreisschnitte verbindet, der aus dem Centrum O_3 durch die zu $|O_1 A_1|$ gleichlaufende Gerade erzeugt wird.

45. Ein beliebiger Punkt X des Grundkegelschnittes wird durch Strahlen der Centra O_1 , O_2 , O_3 fixirt. Die homologen Strahlen der Centra O_2 , O_1 , \overline{O}_3 treffen sich in einem Punkte \overline{X} der Curve C_3 ³. Z. B.: Die Gerade, welche dem Strahle $|O_1X|$ parallel geht und durch das Perspectivitätscentrum O_3

^{*} Zeitschrift f. Math. u. Phys. XXXV, S. 25: Ueber die Realität der Doppeltangenten etc.

zieht, schneidet den Hauptkreis in einem Punkte, dessen Verbindung mit O_2 den zu $|O_1X|$ homologen Strahl giebt. Für den Strahl $|O_3X|$ findet man unmittelbar den homologen als Verbindungslinie des Centrums $\overline{O_3}$ mit jenem Hauptkreisschnitte, welchen $|O_3X|$ hervorbringt.

Insbesondere sind auch die Tangenten in den einfachen Punkten O_1 , \overline{O}_3 der Plancurve C_3 zu erwähnen. Die Tangente in \overline{O}_3 wird sofort erhalten, wenn man \overline{O}_3 mit demjenigen Kreisschnitte verbindet, der durch die Gerade $|O_3A_3|$ entsteht. Für die Tangente in O_1 bedenke man die Grundconstruction, wonach leicht eingesehen wird, dass, wenn durch O_3 ein zur Geraden $|O_2A_2|$ gleichgerichteter Strahl gezogen wird, dieser den Hauptkreis n in einem Punkte trifft, der mit O_1 verbunden, die fragliche Tangente bildet.

46. Eine Plancurve C_3^3 besitzt bekanntlich höchstens drei Asymptoten, das sind Tangenten, welche die Curve in den unendlich fernen Punkten berühren. Drei reelle Asymptoten können nur dann vorkommen, wenn der Grundkegelschnitt k Hyperbel ist; jedenfalls werden zwei dieser Elemente imaginär, sobald der Grundkegelschnitt eine im Endlichen verlaufende Curve (Ellipse, Kreis) ist. In unserer Fig. 10 ist der letztere Fall zutreffend.

Das Bild eines Asymptotenpunktes ist offenbar einer der drei, ausser dem O_1 -Punkte, gemeinschaftlichen Schnitte U, welche zwischen dem Grundkegelschnitte k und dem Hauptkreise κ stattfinden. In dem vorliegenden Falle giebt es nur einen U-Punkt und demzufolge für die Plancurve C_3 nur eine einzige Asymptote u. Auf Grund des Vorausgegangenen drückt die Verbindungslinie $|U\overline{O}_3|$ unmittelbar die Asymptotenrichtung aus. Die Lage der Asymptote u wird deshalb fixirt sein, wenn ihr Tangentialpunkt T gegeben ist; diesen finden wir aber, wenn der U-Punkt der Construction in (39) unterworfen wird.

47. Schliesslich erübrigt die Construction der beiden Inflexionselemente der Plancurve C_3 , nämlich des Wendepunktes \overline{J} und der Wendetangente \overline{i} .

Den J-Punkt erhalten wir sofort, wenn der nach einer der drei Methoden in (42) linear gefundene J-Punkt des Grundkegelschnittes k dem Verfahren in (45) unterzogen wird. Eine Complication stellt sich aber für die Construction der Wendetangente i heraus, die jedoch am Ende ebenfalls eine lineare ist, wie wir gleich zeigen werden.

Die Wendetangente i kann man auf zweifache Weise fixiren:

a) Bekanntlich stellt sie das Bild eines Kegelschnittes K_i vor, welcher den Grundkegelschnitt k in dem J-Punkte osculirt und dem Hauptdreieck $O_1O_2O_3$ umschrieben ist, so dass er also in dem Hauptpunkte O_1 den Grundkegelschnitt k zum zweiten Male schneidet. Durch das Punktenquadrupel $O_1O_2O_3J$ und die in J gehende Grundkegelschnittstangente i ist der Kegelschnitt K_i ausreichend bestimmt und man kann nach bekannten Constructionen \bullet

^{*} Staudigl, Neuere Geometrie, S. 213. Zeitschrift f. Mathematik u. Physik XXXVI, 2.

immerhin einen beliebigen Punkt dieses Kegelschnittes linear ermitteln, dessen Bild im System der Plancurve C_8^8 , ausser dem \bar{J} -Punkte, einen zweiten Bestimmungspunkt der gesuchten Inflexionstangente \bar{i} anzeigt.

b) Zieht man in dem J-Punkte an den Grundkegelschnitt k die Tangente i, so entspricht derselben nach den erörterten Principien bildlich ein Kegelschnitt \overline{K}_{i} , welcher dem Hauptdreieck $O_{1}O_{2}\overline{O}_{3}$ umschrieben ist und die Plancurve C_{3}^{3} im \overline{J} -Punkte einfach berührt. Von diesem Kegelschnitte sind also a priori vier Bestimmungselemente bekannt, und wir sind im Stande, in jedem Moment ein beliebiges fünftes mittels der Construction (45) zu erhalten, wenn man statt des dort vorausgesetzten Grundkegelschnittes k die Gerade i substituirt.

Mit Hilfe der bezeichneten fünf Bestimmungspunkte kann man durch eine einfache Elementarconstruction* die in dem \bar{J} -Punkte gehende Wendetangente \bar{i} ebenfalls linear feststellen.

^{*} Staudigl, Neuere Geometrie, S. 117.

VIII.

Analytische Untersuchungen über die Constitution der in krummen Flächen gebrochenen a priori astigmatischen Strahlenbündel mit Anwendungen der neueren Geometrie.

Von

Dr. A. AHRENDT

Die allgemeine Theorie unendlich dünner geradliniger Strahlenbündel ist von Kummer¹) im Jahre 1859 aufgestellt. Kummer findet, dass alle Strahlen durch zwei unendlich kleine gerade Linien (Brennlinien) gehen, die zu dem mittleren Strahl (Hauptstrahl) senkrecht stehen. Die Ebenen durch den Hauptstrahl und die Brennlinien, Brennebenen genannt, stehen im Allgemeinen nicht aufeinander senkrecht, wohl aber in dem Falle, wo das Strahlenbündel ein System von Orthogonalflächen zulässt. Solche Bündel heissen regulär und haben für die Optik die grösste Wichtigkeit. Aus dem Malus'schen Satze folgt nämlich, dass ein reguläres Bündel nach der Brechung in beliebig vielen isotropen Medien wieder in ein reguläres Bündel übergeht. Die nächste Aufgabe der Dioptrik ist daher, die Constitution eines gebrochenen Strahlenbündels zu finden, falls die des einfallenden gegeben ist.

Diese Aufgabe ist u. A. von Carl Neumann³) gelöst. Der Einfallspunkt des Strahlenbundels sei der Coordinatenanfang und die brechende Fläche berühre die XY-Ebene im Coordinatenanfang, habe also die Z-Axe zur Normale, dann ist ihre Gleichung:

I)
$$Mx^2 + 20xy + Ny^2 - 2s = 0.$$

Es seien ferner ϱ_1 und ϱ_2 die beiden Hauptkrümmungsradien im Coordinatenanfang und ε das Azimuth des ersten Hauptnormalschnittes gegen die XZ-Ebene, so ist

II)
$$M = \frac{\cos^2 \varepsilon}{\varrho_1} + \frac{\sin^2 \varepsilon}{\varrho_2}$$
, $N = \frac{\sin^2 \varepsilon}{\varrho_1} + \frac{\cos^2 \varepsilon}{\varrho_2}$, $O = \left(\frac{1}{\varrho_2} - \frac{1}{\varrho_1}\right) \sin \varepsilon \cdot \cos \varepsilon$.

¹⁾ Crelle's Journal, Bd. 57.

²⁾ Berichte der K. Sächs. Gesellschaft d. Wissensch., 1880. Vergl. Schoen, Beiträge zur Dioptrik des Auges, § 13. Leipzig 1884.

Der Hauptstrahl Σ des einfallenden astigmatischen regulären Bündels liege in der XZ-Ebene (Einfallsebene), sein Einfallswinkel sei e_2 . Alsdann liegt auch der Hauptstrahl Σ_1 des gebrochenen Bündels in der XZ-Ebene und es ist, falls e_1 den Brechungswinkel bezeichnet,

$$sin e_2 = n \cdot sin e_1$$

für n als Brechungsindex der brechenden Fläche. Man versteht nun unter einem Brennpunkte des astigmatischen Bündels den Schnittpunkt einer Brennlinie mit dem Hauptstrahle. Ein astigmatisches Bündel hat demnach zwei Brennpunkte. Unter Brennweite versteht man den Abstand eines Brennpunktes vom Einfallspunkte. Im Folgenden sollen die Brennweiten des einfallenden Bündels mit ξ_0 und x_0 , die des gebrochenen mit x_1 und x_2 bezeichnet werden, und zwar sollen alle vier Strecken in der Richtung des durchgehenden Lichtes gemessen werden. Durch die Lage der Brennpunkte eines astigmatischen Bündels ist die Constitution desselben noch nicht bestimmt; vielmehr muss noch die Lage der Brennebenen gegeben sein. Da im Folgenden nur reguläre Bündel betrachtet werden, so genügt es, die Lage einer Brennebene anzugeben; die zweite steht dann senkrecht zur ersten. Es seien die zu den Brennweiten

gehörigen Brennlinien
$$\begin{array}{c} \xi_0, x_0, x_1, x_2 \\ b_1, b_2, a_1, a_2; \end{array}$$

alsdann bezeichne man das Azimuth der Ebenen (Σb_1) und $(\Sigma_1 a_1)$ gegen die Einfallsebene mit ϑ_1 und ϑ_2 , so sind die Azimuthe von (Σb_2) und $(\Sigma_1 a_2)$ bezüglich $90^0 + \vartheta_1$ und $90^0 + \vartheta_2$. Neumann bestimmt nun x_1, x_2, ϑ_2 als Functionen von $x_0, \xi_0, \vartheta_1, \varrho_1, \varrho_2, n, \varrho_2, \varepsilon$. Setzt man zur Abkürzung

$$P = \frac{\cos^2\theta_1}{x_0} + \frac{\sin^2\theta_1}{\xi_0}, \qquad P_1 = \frac{P \cdot \cos^2e_2 + M \cdot \frac{\sin(e_2 - e_1)}{\sin e_1}}{n \cdot \cos^2e_1},$$

$$III) \ Q = \frac{\sin^2\theta_1}{x_0} + \frac{\cos^2\theta_1}{\xi_0}, \qquad IV) \ Q_1 = \frac{Q + N \cdot \frac{\sin(e_2 - e_1)}{\sin e_1}}{n},$$

$$R = \left(\frac{1}{x_0} - \frac{1}{\xi_0}\right) \sin\theta_1 \cdot \cos\theta_1; \qquad R_1 = \frac{R \cdot \cos e_2 + O \cdot \frac{\sin(e_2 - e_1)}{\sin e_1}}{n \cdot \cos e_1},$$

$$R_1 = \frac{R \cdot \cos e_2 + O \cdot \frac{\sin(e_2 - e_1)}{\sin e_1}}{n \cdot \cos e_1},$$

$$R_2 = \frac{R \cdot \cos e_2 + O \cdot \frac{\sin(e_2 - e_1)}{\sin e_1}}{n \cdot \cos e_1},$$

$$R_3 = \frac{R \cdot \cos e_2 + O \cdot \frac{\sin(e_3 - e_1)}{\sin e_1}}{n \cdot \cos e_1},$$

so sind P_1 , Q_1 , R_1 gegebene Grössen. Dann sind x_1 und x_2 Wurzeln der quadratischen Gleichung

V)
$$\left(\frac{1}{x} - P_1\right) \left(\frac{1}{x} - Q_1\right) = R_1^2,$$
und es ist
VI)
$$tg 2 \theta_2 = \frac{2R_1}{P_1 - Q_1}.$$

Die Constitution des gebrochenen Bündels ist also bestimmt.

Wir haben bisher angenommen, dass die Brennlinien eines unendlich dünnen Strahlenbündels zum Hauptstrahl senkrecht stehen. Dieses Theorem,

Digitized by GOOSIC

zuerst von Sturm,1) dem Begründer der Theorie des Astigmatismus, aufgestellt, ist durch die Kummer'schen Untersuchungen und die Quinckeschen Versuche²) bestätigt worden. Allein schon Reusch³) zeigte, dass die zweite Brennlinie des in einer Kugelfläche gebrochenen homocentrischen Bündels in der Centrale des leuchtenden Punktes liege, also nicht zum Hauptstrahl senkrecht steht, und wie später Matthiessen) durch analytische Betrachtungen gezeigt hat, stehen im allgemeinen Falle der Brechung eines a priori astigmatischen Bündels die Brennlinien schief zum Haupt-Dieser scheinbare Widerspruch gegen die Kummer'sche Theorie strahl. erklärt sich durch die Art, wie Kummer die Brennlinien definirt. Indem er nämlich alle senkrecht zum Hauptstrahl geführten Querschnitte des Bündels (Wellenflächenelemente) miteinander vergleicht, findet er, dass diese Querschnitte in den Brennpunkten den Werth Null haben, d. h. Flächenstücke sind, die mindestens von der dritten Ordnung unendlich klein werden und in eine unendlich kleine Linie degeneriren. Neuerdings hat nun Weingarten⁵) gezeigt, dass alle Querschnitte in den Brennpunkten dieselbe Eigenschaft haben; es können also alle Geraden, die durch einen Brennpunkt gehen und in der zugehörigen Focalebene liegen, als Brennlinien des Bündels aufgefasst werden. Die Frage ist nun, welcher von diesen unendlich vielen Brennlinien der Name Brennlinie im physikalischen Sinne am meisten zukommt. Man darf wohl behaupten, dass es diejenige sein wird, welcher der relativ kleinste Querschnitt als Flächenelement dritter Ordnung entspricht; mit anderen Worten: es wird dies der geometrische Ort der Brennpunkte der in derselben Focalebene unendlich nahe gelegenen aufeinander folgenden Strahlenfächer sein, also im Allgemeinen schief gegen die Strahlen liegen. Bezeichnet man das in der Focalebene liegende Bogenelement der Wellenfläche mit ds, den Zuwachs des Krümmungsradius im Normalschnitte mit $\partial \rho$ und die Brennlinie mit ∂a , so ist die Neigung δ derselben bestimmt durch

$$\cos \delta = \frac{\partial \varrho}{\partial a} = \frac{\frac{\partial \varrho}{\partial s}}{\frac{\partial a}{\partial s}}.$$

In diesem Sinne hat Matthiessen⁶) die Neumann'sche Theorie ausgebaut. Die Lagen der Brennpunkte und Brennebenen werden durch die

¹⁾ Compt. rend. 1845; übersetzt in Poggend. Ann. Bd. 65 (1845).

²⁾ Poggend. Ann. Bd. 117 (1862).

⁸⁾ Poggend. Ann. Bd. 130 (1867).

⁴⁾ Acta mathematica, Bd. 4, 2 (1884). Sitzungsberichte der K. bayerischen Akademie, mathem. Cl. 1888, Heft 1. Zeitschrift f. vergleichende Augenheilkunde, VI, 1889.

⁵⁾ Journal f. reine u. angewandte Mathem., Bd. 98 (1885).

⁶⁾ Schlömilch's Zeitschrift, Bd. 33 (1888).

neuen Betrachtungen nicht modificirt, ein Umstand, auf den bereits Zech¹) hinwies. Matthiessen bezeichnet die Inclinationen der Brennlinieu

und findet folgende Differentialbeziehungen:

$$\begin{split} \partial x_0 &= -\sin e_1 \cdot \partial x + \cot \delta_1 \cdot \frac{x_0 - \xi_0}{\xi_0} \left\{ \cos e_2 \cdot \sin \theta_1 \cdot \partial x - \cos \theta_1 \cdot \partial y \right\}, \\ \partial \xi_0 &= -\sin e_2 \cdot \partial x + \cot \delta' \cdot \frac{x_0 - \xi_0}{x_0} \left\{ \cos e_2 \cdot \cos \theta_1 \cdot \partial x + \sin \theta_1 \cdot \partial y \right\}, \\ \text{VII)} \\ \partial x_2 &= -\sin e_1 \cdot \partial x + \cot \delta_2 \cdot \frac{x_2 - x_1}{x_1} \left\{ \cos e_1 \cdot \sin \theta_2 \cdot \partial x - \cos \theta_2 \cdot \partial y \right\}, \\ \partial x_1 &= -\sin e_1 \cdot \partial x + \cot \delta'' \cdot \frac{x_2 - x_1}{x_0} \left\{ \cos e_1 \cdot \cos \theta_2 \cdot \partial x + \sin \theta_2 \cdot \partial y \right\}. \end{split}$$

Der Einfallspunkt und der benachbarte Punkt $(\partial x, \partial y)$ bestimmen einen windschiefen Strahlenfächer; nach der Brechung hat eine Drehung des Strahlenfächers stattgefunden, so dass nunmehr $(\partial x', \partial y')$ der Grenzpunkt ist. Legt man durch die Strahlenfächer im Einfallspunkte die Querschnitte ∂q und ∂q_1 , und sind χ und χ_1 die entsprechenden Azimuthe, so gelten die Relationen

VIII)
$$\cos \chi \cdot \partial y = \sin \chi \cdot \cos e_1 \cdot \partial x$$
, $\cos \chi_1 \cdot \partial y' = \sin \chi_1 \cdot \cos e_1 \cdot \partial x'$.

In der nachstehenden Arbeit wird nun versucht, für bestimmte brechende Flächen aus den angeführten Formeln geometrische Beziehungen herzuleiten, die die Abhängigkeit des gebrochenen Bündels vom einfallenden zu zeigen geeignet erscheinen. Besonders wird auch Rücksicht genommen auf die Veränderungen, die im gebrochenen Bündel vor sich gehen, falls im einfallenden Verschiebung der Brennpunkte, Drehung der Brennebenen, sowie Drehung der Brennlinien eintritt; bei diesen Untersuchungen können die Resultate der elementaren synthetischen Geometrie mit Erfolg angewendet werden. Es wird der Reihe nach die Brechung in einer ebenen, abwickelbaren und beliebigen Fläche untersucht. Die Brechung in Kugelflächen hat keine besondere Berücksichtigung gefunden, da dieselbe von Lippich²) und Anderen⁵) in schöner und erschöpfender Weise behandelt ist.

§ 1.

Untersuchung des Falles $\varrho_1 = \varrho_2 = \infty$.

Wir nehmen an, dass im Einfallspunkte beide Hauptkrümmungen der brechenden Fläche den Werth Null haben, eine Annahme, die beispielsweise

¹⁾ Schlömilch's Zeitschrift, Bd. 24 (1879).

²⁾ Denkschriften der k. k. Akad. zu Wien, math. Classe, Bd. 38 (1877).

³⁾ Vergl. die angeführten Arbeiten von Neumann und Matthiessen.

in allen Punkten einer Ebene erfüllt ist. Das Charakteristische solcher Einfallspunkte ist, dass

$$\mathbf{M} = \mathbf{N} = \mathbf{0} = 0$$

Mithin ist: ist.

$$P_1 = \frac{P \cdot \cos^2 e_2}{n \cdot \cos^2 e_1}, \quad Q_1 = Q : n, \quad R_1 = \frac{R \cdot \cos e_2}{n \cdot \cos e_1}.$$

Betrachten wir zunächst den Fall der senkrechten Incidenz $c_1 = c_1 = 0^{\circ}$, so wird

$$P_1 = P: n, \quad Q_1 = Q: n, \quad R_1 = R: n,$$

und die quadratische Gleichung V) lautet

$$\frac{n^2}{x^3} - \frac{n}{x} \left(\frac{1}{x_0} + \frac{1}{\xi_0} \right) + \frac{1}{x_0 \xi_0} = 0;$$

daraus folgt:

I)

$$x_1=n\,\xi_0\,,\quad x_2=n\,x_0\,.$$

Weiter ergiebt sich nach VI):

$$\theta_2 = \theta_1$$

Aus 1) und 2) folgt:

Die neuen Brennweiten sind den alten proportional, und eine Drehung der Brennebenen findet nicht statt. Bei einer Drehung des einfallenden Bundels um Z findet eine Drehung des gebrochenen Bündels um Σ_1 statt, dagegen keine Aenderung der Constitution. Das gebrochene Bündel ist nur dann homocentrisch, falls es das einfallende ist.

Wir betrachten jetzt die Neigung der Reusch'schen Brennlinien gegen die Hauptstrahlen für den Strahlenfächer in der Ebene Σb_1 . $\chi = \vartheta_1 = 90^{\circ}$, und es ist nach VIII):

mithin nach VII):

$$\partial x = \partial x' = 0, \quad \partial y = \partial y',$$

$$\partial \xi_0 = \cot \delta' \cdot \frac{x_0 - \xi_0}{x_0} \cdot \partial y, \quad \partial x_1 = \cot \delta'' \cdot \frac{x_0 - \xi_0}{\xi_0} \cdot \partial y;$$

durch Division der beiden Gleichungen ergiebt sich bei Beachtung von 1):

 $\cot \delta'' = n \cdot \cot \delta'$ 3a)

Analog ergiebt sich für die Brennlinien in der zweiten Brennebene:

$$\cot \delta_{\mathbf{a}} = \mathbf{n} \cdot \cot \delta_{\mathbf{1}}.$$

Aus 1), 2) und 3) folgt:

Dreht man im einfallenden Bündel eine Brennlinie um ihren Brennpunkt derart, dass sie immer in der Brennebene bleibt, so beschreibt im gebrochenen Bündel die entsprechende Brennlinie ein perspectivisches Strahlenbüschel um ihren Brennpunkt, während alle anderen Elemente ungeändert bleiben. Die perspectivische Axe der beiden Strahlenbundel ist die Schnittlinie der zugehörigen Brennebene mit der brechenden Fläche.

Es ist hiernach leicht, die Reusch'sche Brennlinie im gebrochenen Bundel zu construiren, falls die im einfallenden Bundel gegeben ist. Wir gehen zur Betrachtung der schiefen Incidenz über und untersuchen zunächst die Drehung der Brennebenen bei der Brechung. Es ist

$$4) \ tg \ 2\vartheta_2 = \frac{2R_1}{P_1 - Q_1} = \frac{2\left(x_0 - \xi_0\right) \cos e_1 \cdot \cos e_2 \cdot \sin 2\vartheta_1}{\left(x_0 + \xi_0\right) \left(\cos^2 e_1 - \cos^2 e_2\right) + \cos 2\vartheta_1 \cdot \left(x_0 - \xi_0\right) \left(\cos^2 e_1 + \cos^2 e_2\right)}$$

Im Allgemeinen findet somit eine Drehung der Brennebenen statt; auch ist es möglich, das neue Azimuth θ_2 geometrisch nach 4) zu construiren. Eine Drehung findet nicht statt für $\theta_1 = 0^\circ$ oder $\theta_1 = 90^\circ$, und ferner ist $\theta_2 = \theta_1$ für

$$\cos 2\vartheta_1 = \frac{\xi_0 + x_0}{\xi_0 - x_0} \cdot \frac{\cos e_1 - \cos e_2}{\cos e_1 + \cos e_2}$$

Dreht man das einfallende Bündel um seinen Hauptstrahl, so dreht sich auch das gebrochene um seinen Hauptstrahl; die Schnittlinie entsprechender Brennebenen beschreibt dabei einen Kegel dritten Grades, dessen Spitze im Einfallspunkte liegt. Jedoch sind die Eigenschaften dieses Kegels keine einfachen mehr.

Die Brennweiten des gebrochenen Bündels sind die Wurzeln der Gleichung

5)
$$\frac{1}{x^3} - \frac{1}{x} \frac{P\cos^2 e_2 + Q\cos^2 e_1}{n\cos^2 e_1} + \frac{PQ - R^2}{n^2\cos^2 e_1} = 0.$$

Im Allgemeinen ist das gebrochene Bündel astigmatisch. Es ist homocentrisch, falls nur reelle Elemente in Betracht gezogen werden, für

$$P\cos^2 e_2 = Q\cos^2 e_1$$
, $R\cos e_2 = 0$;

man kann diese Bedingungen auch so schreiben:

$$\begin{array}{c} (\xi_0\cos^2\vartheta_1+x_0\sin^2\vartheta_1)\cos^2e_2=(\xi_0\sin^2\vartheta_1+x_0\cos^2\vartheta_1)\cos^2e_1,\\ (\xi_0-x_0)\sin\vartheta_1.\cos\vartheta_1.\cos e_2=0; \end{array}$$

hiernach ist das gebrochene Bündel homocentrisch für

1.
$$\vartheta_1 = 0^0$$
, $\xi_0 \cos^2 e_2 = x_0 \cos^2 e_1$;

2.
$$\theta_1 = 90^{\circ}$$
, $\xi_0 \cos^2 e_1 = x_0 \cos^2 e_2$;

3.
$$x_0 = \xi_0$$
, $\cos^2 e_1 = \cos^2 e_2$ (senkr. Incidenz).

In allen übrigen Fällen ist das gebrochene Bündel astigmatisch. Die Gleichung 5) lehrt dann, dass der Quotient

$$\frac{x_1 x_2}{x_0 \xi_0} = n^2 \frac{\cos^2 e_1}{\cos^2 e_2}$$

unabhängig ist von ϑ_1 . Hieraus folgt, und dies gilt für die Brechung in jedem Nabelpunkte:

Legt man durch die vier Brennpunkte der beiden Strahlenbündel eine Parabel und dreht man das einfallende Bündel um den Hauptstrahl, so bewegen sich im gebrochenen Bündel die Brennpunkte so, dass die genannte Parabel stets durch denselben unendlich fernen Punkt geht.

Aus Gleichung 5) folgt weiter

$$x_1 + x_2 = n \frac{x_0 + \xi_0}{2} \frac{\cos^2 e_1 + \cos^2 e_2}{\cos^2 e_2} + \cos^2 \theta_1 \cdot n \frac{x_0 - \xi_0}{2} \frac{\cos^2 e_1 - \cos^2 e_2}{\cos^2 e_2}$$
$$= r + p \cdot \cos 2\theta_1.$$

Es ändert sich also bei der Drehung der Strahlenbundel um ihre Hauptstrahlen die Summe der neuen Brennweiten, wie der Radius vector der Fusspunktcurve eines Kreises vom Radius r, falls p der Abstand des Poles P vom Kreiscentrum C ist und $2\vartheta_i$ den Polarwinkel gegen die Axe PC bedeutet.

Betrachten wir jetzt die Veränderungen, die im gebrochenen Bündel vor sich gehen, falls im einfallenden die Lage der Brennpunkte sich ändert, während die Brennebenen dieselben bleiben, so folgt aus 5):

$$x = -\frac{P_1 + Q_1 + \sqrt{(P_1 - Q_1)^2 + 4R_1^2}}{2(R_1^2 - P_1 Q_1)}.$$

Da im vorliegenden Falle P_1 , Q_1 , R_1 homogene Functionen von x_0 und ξ_0 sind, so folgt, dass, wenn x_0 und ξ_0 sich so ändern, dass ihr Verhältniss immer dasselbe bleibt, dann sich auch x_1 und x_2 so ändern, dass ihr Verhältniss constant bleibt. Wir erhalten somit zwei perspectivisch ähnliche Punktreihen. Auch die Lage der neuen Brennebenen wird wegen der Relation 4) bei der angenommenen Verschiebung nicht geändert.

Es moge nun die eine Brennlinie, etwa b_1 , senkrecht zur Einfallsebene liegen, also b_2 in der Einfallsebene, dann ist $\theta_1 = 90^{\circ}$ und die erste Brennebene Σb_1 steht senkrecht zur Einfallsebene. In diesem Falle findet keine Drehung der Brennebenen statt, und es ist

6)
$$x_1 = \xi_0 n \frac{\cos^2 e_1}{\cos^2 e_2}, \quad x_2 = x_0 n.$$

Die zu x_0 und x_2 gehörigen Brennpunkte B_2 und A_2 liegen also auf einer Geraden, die parallel ist zum Einfallsloth. Für den Strahlenfächer in der Brennebene Σb_1 ist nun $\chi = \vartheta_1 = 90^{\circ}$. Demnach ist nach VIII):

$$\partial x = \partial x' = 0, \quad \partial y = \partial y',$$

und nach VII):

$$\partial \xi_0 = \cot \delta' \frac{x_0 - \xi_0}{x_0} \partial y, \quad \partial x_1 = \cot \delta'' \frac{x_2 - x_1}{x_2} \partial y.$$

Daraus folgt bei Beachtung von 6):

7 a)
$$\cot \delta'' = \cot \delta' \cdot n \cdot \frac{\cos^2 e_1 (x_0 - \xi_0)}{x_0 \cos^2 e_2 - \xi_0 \cos^2 e_1}.$$

Wir bemerken, dass diese Formel für $e_2 = e_1$ in 3a) übergeht. — Für den Strahlenfächer in der zweiten Brennebene Σb_2 finden wir analog für $\chi = 90^{\circ} + \vartheta_1$

$$\partial y'' = \partial y''' = 0$$
, $\partial x'' = \partial x''' = \partial x$;

mithin ist nach VII):

$$\begin{split} \partial x_0 &= -\sin e_1 \cdot \partial x + \cot \delta_1 \cdot \frac{x_0 - \xi_0}{\xi_0} \cos e_2 \cdot \partial x, \\ \partial x_2 &= -\sin e_1 \cdot \partial x + \cot \delta_2 \cdot \frac{x_2 - x_1}{x_1} \cos e_1 \cdot \partial x, \end{split}$$

und mit Beachtung von 6) folgt:

7 b)
$$\cot \delta_2 = \frac{\xi_0 \cos e_1}{x_0 \cos^2 e_2 - \xi_0 \cos^2 e_1} \left\{ \sin e_1 - n \sin e_2 + n \cos e_2 \frac{x_0 - \xi_0}{\xi_0} \cot \delta_1 \right\}$$

Für den Fall $e_2 = e_1 = 0^{\circ}$ geht diese Formel in 3b) über.

Die Formeln 7) geben die Neigungen der Reusch'schen Brennlinien für das gebrochene Bündel. Aus 7a) folgt, dass für $\delta' = 90^{\circ}$ oder im Falle des homocentrisch einfallenden Bündels $\delta'' = 90^{\circ}$ ist; für $\delta' = 0^{\circ}$ ist auch $\delta'' = 0^{\circ}$. Ebenso ist nach 7b) für $\delta_1 = 0^{\circ}$ auch $\delta_2 = 0^{\circ}$. Die Neigung der Brennlinien im gebrochenen Bündel bleibt dieselbe, falls im einfallenden die Brennlinien parallel sich selbst derart verschoben werden, dass das Verhältniss $x_0: \xi_0$ einen constanten Werth behält.

Eine andere Frage ist die, welche Veränderungen im gebrochenen Bündel vor sich gehen, falls im einfallenden nur eine Brennlinie parallel sich selbst verschoben wird. Aus den Formeln 6) und 7) folgt, dass, falls ξ_0 sich ändert, dann x_1 , δ'' , δ_2 sich auch ändern, während x_2 constant ist. Bei der Aenderung von x_0 ändern sich x_2 , δ' , δ'' ; dagegen bleibt x_1 constant. Aus der Form der citirten Gleichungen erkennen wir unmittelbar folgende Sätze:

Verschiebt man in einem a priori astigmatischen Strahlenbündel, dessen eine Brennebene mit der Einfallsebene coincidirt, die in der Einfallsebene liegende Reusch'sche Brennlinie parallel sich selbst, während alle anderen Elemente ungeändert bleiben, so dreht sich in dem in einer Ebene gebrochenen Bündel die eine Brennlinie um einen festen Punkt und beschreibt ein projectivisches Strahlenbüschel in der Ebene senkrecht zur Einfallsebene; die in der Einfallsebene liegende Brennlinie des gebrochenen Bündels umhüllt einen festen Kegelschnitt. Verschiebt man aber im einfallenden Bündel die andere Brennlinie parallel sich selbst, so tritt im gebrochenen Bündel das Umgekehrte ein: die vorhin sich drehende Brennlinie umhüllt einen Kegelschnitt und die vorher umhüllende dreht sich jetzt um den festen Brennpunkt.

Aus Gleichung 7) folgt ferner, dass, falls man im einfallenden Bündel eine Brennlinie um ihren Brennpunkt dreht, dann die entsprechende Brennlinie im gebrochenen Bündel um ihren Brennpunkt ein projectivisches Strahlenbüschel beschreibt.

§ 2.

Untersuchung des Falles $\varrho_1 = \infty$.

Dieser Fall umfasst alle diejenigen Flächen, deren Gauss'sches Krümmungsmass den Werth Null hat, also vornehmlich die abwickelbaren Flächen; specielle Fälle bilden die Cylinder- und Kegelflächen.

Wir untersuchen zunächst den Fall der senkrechten Incidenz und bezeichnen das mittlere Krümmungsmaass im Einfallspunkte mit $k=\frac{1}{e_2}$. Wegen der senkrechten Incidenz sind wir berechtigt, $\varepsilon=0$ zu setzen; dann ist

$$M=0$$
, $N=k$, $0=0$;

hieraus folgt, da für $e_2 = e_1 = 0^\circ$

$$\frac{\sin(e_3-e_1)}{\sin e_1}=n\cos e_1-\cos e_2=n-1$$

ist:

$$P_1 = P: n, \quad Q_1 = \{Q + k(n-1)\}: n, \quad R_1 = R: n.$$

P, Q, R sind die in Formel III) definirten Grössen. Jedoch ist zu bemerken, dass θ_1 der Neigungswinkel von Σb_1 gegen die Ebene des ersten Hauptnormalschnittes ist, da wir gemäss obiger Annahme $\varepsilon = 0$ diese Ebene als Einfallsebene angesehen haben.

Für die Neigung der Brennebene $\Sigma_1 a_1$ gegen die Ebene des ersten Hauptnormalschnittes gilt die Beziehung

8)
$$tg \, 2 \, \vartheta_2 = \frac{(\xi_0 - x_0) \sin 2 \, \vartheta_1}{(\xi_0 - x_0) \cos 2 \, \vartheta_1 - k \, x_0 \, \xi_0 \, (n - 1)}.$$

Im Allgemeinen findet also auch schon bei senkrechter Incidenz eine Drehung der Brennebenen bei der Brechung statt. Da die Formel 8) auch in der Form

$$\sin 2\,\vartheta_2 : \sin 2\,(\vartheta_2 - \vartheta_1) = \xi_0 - x_0 : k\,x_0\,\xi_0$$

geschrieben werden kann, so folgt, dass bei der Drehung der Strahlenbündel um die Hauptstrahlen die Winkel $2\vartheta_2$ und $2(\vartheta_2-\vartheta_1)$ sich verhalten wie zwei Winkel eines Dreiecks, deren Gegenseiten von constanter Länge sind, während die Länge der dritten Seite variirt. — Nach 8) coincidiren entsprechende Brennebenen für $\vartheta_1=0^0$ oder $\vartheta_1=90^0$, sowie für x=0 oder $\xi=0$.

Das gebrochene Bündel ist im Allgemeinen astigmatisch; nur in den Fällen $P_1 = Q_1$, $R_1 = 0$ ist es homocentrisch, also für

$$(\xi_0 - x_0) \sin 2\vartheta_1 = 0 \,, \quad (\xi_0 - x_0) \cos 2\vartheta_1 = k(n-1)x_0\,\xi_0 \,.$$

Diesen beiden Bedingungen wird genügt in den Fällen

- 1. $x_0 = \xi_0$, k = 0, homocentr. Brechung in der Ebene;
- 2. $\theta_1 = 0$, $k = (\xi_0 x_0) : (n-1)x_0 \xi_0$;
- 3. $\theta_1 = 90$, $k = (x_0 \xi_0) : (n-1)x_0\xi_0$.

Bei einer eigentlichen abwickelbaren Fläche kann eine homocentrische Brechung also nur dann stattfinden, wenn die Brennebenen des einfallenden Bündels mit den Hauptebenen coincidiren.

Die Brennpunkte des gebrochenen Bündels wandern auf Σ_1 , falls das einfallende Bündel um Σ gedreht wird. Sie bewegen sich so, dass sie stets zum Einfallspunkte und einem zweiten festen Punkte harmonisch liegen. In der That liegt der genannte vierte harmonische Punkt in einem Abstande

 $h = \frac{2x_1x_2}{x_1 + x_2} \text{ vom Einfallspunkte. Nach Früherem ist aber}$

$$\frac{1}{x_1} + \frac{1}{x_2} = P_1 + Q_1 = \frac{1}{n} \left\{ \frac{1}{x_0} + \frac{1}{\xi_0} + k (n - 1) \right\}$$

unabhängig von ϑ_1 ; somit ist auch h unabhängig von ϑ_1 .

Dieser feste Punkt ist der Brennpunkt des homocentrisch gebrochenen Bündels, falls überhaupt eine homocentrische Brechung möglich ist. Geometrisch ist dieser Satz evident, da zwei Punkte, die sich so bewegen, dass sie zu zwei festen Punkten stets harmonisch liegen, zusammenfallen, falls einer von ihnen mit einem der festen Punkte zusammenfällt. Analytisch lässt sich der Satz so beweisen: Es sei eine homocentrische Brechung möglich, es sei etwa nach 9)

 $\vartheta_1 = 0^\circ, \quad k = \frac{-1}{n-1} \cdot \frac{x_0 - \xi_0}{x_0 \xi_0};$

der neue Brennpunkt hat dann die Abseisse

$$x = nx_0$$

Andererseits liegt der vierte harmonische Punkt im Abstande

$$h = 2n : \left\{ \frac{1}{x_0} + \frac{1}{\xi_0} + k(n-1) \right\}$$

vom Einfallspunkte, und für den citirten Werth von k folgt $h = nx_0$, was zu beweisen war.

Nehmen wir das einfallende Bündel wieder von beliebiger Constitution an, setzen aber voraus, dass die zweite Brennebene mit der Einfallsebene coincidire, also $\vartheta_1 = 90^{\circ}$, so liefert die quadratische Gleichung der Brennweiten die Wurzeln

10)
$$x_1 = n\xi_0, \quad x_2 = \frac{nx_0\varrho_2}{\varrho_2 + x_0(n-1)}$$

Da x_1 unabhängig ist von ϱ_2 , die Punktreihe x_2 aber projectivisch ist zur Punktreihe ϱ_2 , so folgt:

Wird ein astigmatisches Bündel in einer Ebene gebrochen, so ist es wieder astigmatisch. Biegt man nun, senkrechte Incidenz vorausgesetzt, die brechende Fläche so, dass eine abwickelbare Fläche entsteht, deren Erzeugende in einer Brennebene liegt, so bleibt bei dieser Biegung die Lage des einen Brennpunktes im gebrochenen Bündel ungeändert; der andere Brennpunkt beschreibt auf der Flächennormalen eine Punktreihe, die projectivisch ist zur Reihe der Krümmungscentra. Die zum erstgenannten Brennpunkte

gitized by GOOGI

gehörige Brennebene steht senkrecht zum ersten Hauptschnitte $(\varrho = \infty)$; die zum zweiten gehörige Brennebene liegt im ersten Hauptschnitte.

Wir gehen nunmehr dazu über, das Verhalten der Reusch'schen Brennlinien bei der Biegung der brechenden Fläche zu untersuchen. betrachten zunächst den Strahlenfächer in der Ebene Σb_i und haben:

$$\partial \xi_0 = \cot \delta' \cdot \frac{x_0 - \xi_0}{x_0} \cdot \partial y$$
, $\partial x_0 = \cot \delta'' \cdot \frac{x_2 - x_1}{x_2} \cdot \partial y$,

woraus folgt:

oraus folgt:
11 a)
$$\cot \delta'' = \cot \delta' \cdot \frac{n \, \varrho_2(x_0 - \xi_0)}{\varrho_2(x_0 - \xi_0) - x_0 \, \xi_0(n-1)}$$

Nähert sich die Fläche einer Ebene, so wird

$$\cot \delta'' = n \cdot \cot \delta'$$
.

Wird die Fläche immer mehr gekrümmt, so nähert sich a_1 der senkrechten Stellung gegen den Hauptstrahl \mathcal{Z}_1 . Aus 11a) folgt:

> Die Brennlinie a, dreht sich bei der Biegung der Fläche um den Punkt $x_1 = n \xi_0$ und beschreibt ein Strahlenbüschel, das projectivisch ist der Reihe der Krümmungscentra.

Für den Strahlenfächer im ersten Hauptschnitte folgt in analoger Weise

11b)
$$\cot \delta_3 = n \cdot \cot \delta_1 \frac{(x_0 - \xi_0) \cdot \varrho_3^2}{\{\varrho_1(x_0 - \xi_0) - x_0 \xi_0(n-1)\}\{\varrho_2 + x_0(n-1)\}}$$

Für $e_2 = \infty$ wird $\cot \delta_2 = n \cdot \cot \delta_1$; für $e_2 = 0$ wird $\delta_2 = 90^{\circ}$. Je mehr also die brechende Fläche gekrümmt wird, desto mehr sucht die Brennlinie a. eine senkrechte Stellung gegen Σ_1 einzunehmen.

Einfache Gesetze für die Aenderung der Reusch'schen Brennlinien ergeben sich auch, falls wir im einfallenden Bündel die Brennlinien parallel sich selbst verschieben. Aus 10) und 11) folgt:

> Verschieben wir b_1 parallel sich selbst, so umbüllt a_1 einen Kegelschnitt und a, beschreibt um den festen Brennpunkt A, ein projectivisches Strahlenbüschel. Bei der Parallelverschiebung von be beschreibt a, um einen festen Brennpunkt ein projectivisches Strahlenbüschel, dagegen ist die Bewegung von a. keine einfache mehr.

Wir verlassen den Fall der senkrechten Incidenz und gehen zur schiefen Incidenz über. Dann ist nach II):

12)
$$M = k \cdot \sin^2 \epsilon$$
, $N = k \cdot \cos^2 \epsilon$, $O = k \cdot \sin \epsilon \cdot \cos \epsilon$, und nach IV):

$$\begin{split} P_1 &= \left[\left(\frac{\cos^2 \vartheta_1}{x_0} + \frac{\sin^2 \vartheta_1}{\xi_0} \right) \cos^2 e_2 + k \sin^2 \varepsilon \cdot \frac{\sin (e_3 - e_1)}{\sin e_1} \right] : n \cdot \cos^2 e_1, \\ 13) \ \ Q_1 &= \left[\left(\frac{\sin^2 \vartheta_1}{x_0} + \frac{\cos^2 \vartheta_1}{\xi_0} \right) \right. \\ \left. + k \cos^2 \varepsilon \cdot \frac{\sin (e_2 - e_1)}{\sin e_1} \right] : n, \\ R_1 &= \left[\left(\frac{1}{x_0} - \frac{1}{\xi_0} \right) \sin \vartheta_1 \cdot \cos \vartheta_1 \cdot \cos e_2 + k \sin \varepsilon \cdot \cos \varepsilon \cdot \frac{\sin (e_2 - e_1)}{\sin e_1} \right] : n \cdot \cos e_1. \end{split}$$

Die Bedingungen der homocentrischen Brechung sind wieder $P_1 = Q_1$ und $R_1 = 0$. Ist das einfallende Bündel homocentrisch, so ist mithin das gebrochene homocentrisch in den Fällen:

1.
$$s = 0^{\circ}$$
, $x_0 \cdot \sin(e_2 - e_1) = \varrho \cdot \sin^3 e_1 \cdot (n^2 - 1)$,
2. $s = 90^{\circ}$, $x_0 \cdot \cos^2 e_1 \cdot \sin(e_2 - e_1) = \varrho \cdot \sin^3 e_1 \cdot (1 - n^2)$.

Es muss also das einfallende Bündel in einem der Hauptschnitte verlaufen.

Es sei das einfallende Bündel jetzt astigmatisch, verlaufe aber in einem der Hauptschnitte, dann ist das gebrochene Bündel homocentrisch in folgenden vier Fällen:

nden vier Fällen:
1.
$$\varepsilon = 0^{\circ}$$
, $\vartheta_1 = 0^{\circ}$, $\frac{\cos^2 e_3}{x_0} = \frac{\cos^2 e_1}{\xi_0} + k \cos^2 e_1 \frac{\sin(e_2 - e_1)}{\sin e_1}$;
2. $\varepsilon = 0^{\circ}$, $\vartheta_1 = 90^{\circ}$, $\frac{\cos^2 e_2}{\xi_0} = \frac{\cos^2 e_1}{x_0} + k \cos^2 e_1 \frac{\sin(e_3 - e_1)}{\sin e_1}$;
3. $\varepsilon = 90^{\circ}$, $\vartheta_1 = 0^{\circ}$, $\frac{\cos^2 e_1}{\xi_0} = \frac{\cos^2 e_2}{x_0} + k \frac{\sin(e_2 - e_1)}{\sin e_1}$;
4. $\varepsilon = 90^{\circ}$, $\vartheta_1 = 90^{\circ}$, $\frac{\cos^2 e_1}{x_0} = \frac{\cos^2 e_2}{\xi_0} + k \frac{\sin(e_2 - e_1)}{\sin e_1}$.

Aus diesen Gleichungen ersehen wir, dass, falls ein Hauptnormalschnitt Einfallsebene ist und eine Brennebene mit der Einfallsebene coincidirt, die Brennweiten des einfallenden Bündels stets so gefunden werden können, dass das gebrochene Bündel homocentrisch ist. Die in der dritten Columne stehenden Gleichungen stellen vier Hyperbeln dar, die paarweise identisch sind.

Wir untersuchen zunächst den Fall $\varepsilon=0^{\circ}$ näher, auch für den Fall der astigmatischen Brechung. Im Allgemeinen haben die neuen Brennebenen andere Inclinationen gegen die Einfallsebene, als die alten; nur für $\theta_1=0^{\circ}$ und $\theta_1=90^{\circ}$ bleiben die Inclinationen dieselben. Im Folgenden soll der Fall $\varepsilon=0^{\circ}$, $\theta_1=0^{\circ}$ untersucht werden; der Fall $\varepsilon=0^{\circ}$, $\theta_1=90^{\circ}$ bringt dann nichts Neues. Nach 13) ist

$$P_{1} = \cos^{2} e_{2} : n x_{0} \cos^{2} e_{1}, \quad Q_{1} = \left\{ \frac{1}{\xi_{0}} + k \frac{\sin(e_{2} - e_{1})}{\sin e_{1}} \right\} : n, \quad R_{1} = 0,$$
mithin
$$14) \qquad x_{1} = n : \left\{ \frac{1}{\xi_{0}} + k \frac{\sin(e_{2} - e_{1})}{\sin e_{1}} \right\}, \quad x_{2} = n x_{0} \cos^{2} e_{1} : \cos^{2} e_{2}.$$

Aus der zweiten Gleichung ersieht man, dass, falls der Brennpunkt B_2 auf Σ verschoben wird, der Brennpunkt A_2 auf Σ_1 eine perspectivisch ähnliche Punktreihe beschreibt. Demnach ist die geometrische Construction von A_2 für eine gegebene Lage von B_2 einfach.

Noch einfacher gestaltet sich die geometrische Construction von A_1 als entsprechenden Punkt von B_1 . Denn nach der ersten Gleichung 14) ist die Reihe der Punkte A_1 perspectivisch ähnlich der Reihe der Punkte B_1 . Das Perspectivitätscentrum ist aber das Krümmungscentrum der brechenden Fläche. Denn nehmen wir die Flächennormale zur Axe der y, die Gerade, in der die Einfallsebene die brechende Fläche schneidet, zur Axe der x, so sind die Coordinaten von B_1 und A_1

$$x' = \xi_0 \cos e_2, \quad y' = \xi_0 \sin e_2;$$

 $x'' = x_1 \cos e_1, \quad y'' = x_1 \sin e_1,$

und die Gleichung der Geraden A_1B_1 ist

 $\xi_0 \sin(e_2 - e_1) \cdot (\cos e_2 x - \sin e_2 y + n \varrho \sin e_1) + x \varrho \sin e_1 (\cos e_2 - n \cos e_1) = 0.$

Diese Gerade geht für jeden Werth von & durch den Punkt

$$x=0$$
, $x\cos e_2 - y\sin e_2 + n\varrho\sin e_1 = 0$,

oder durch den Punkt

$$x=0, y=\varrho,$$

d. h. durch das Krümmungscentrum C. Ist B_1 gegeben, so ist demnach A_1 der Schnittpunkt von CB_1 mit Σ_1 .

Wir betrachten jetzt den Fall, in welchem die Einfallsebene mit dem sweiten Hauptnormalschnitte zusammenfällt, wo also $s = 90^{\circ}$ ist. Im Allgemeinen findet auch hier bei der Brechung eine Drehung der Brennebenen statt, nur nicht in den Fällen $\theta_1 = 0^{\circ}$ und $\theta_1 = 90^{\circ}$. Wir betrachten wieder nur den Fall $\theta_1 = 0^{\circ}$, da der andere dann nichts Neues bringt. Für diese Beschränkungen ist

$$P_1 = \left(\frac{\cos^2 e_2}{x_0} + k \frac{\sin(e_2 - e_1)}{\sin e_1}\right) : n \cos^2 e_1, \quad Q_1 = 1 : n \xi_0, \quad R_1 = 0,$$

und mithin sind die Brennweiten des gebrochenen Bündels

15)
$$x_1 = n\xi_0, \quad x_2 = \frac{x_0 \sin e_2 \cdot \cos^2 e_1}{\sin e_1 \cos^2 e_2 + k x_0 \sin (e_2 - e_1)}$$

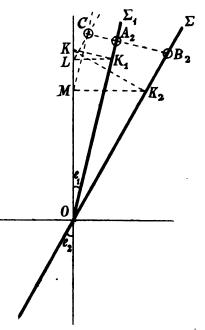
Aus der ersten Gleichung folgt, wie bei Formel 6), dass die Brennpunkte B_1 und A_1 gleichen Abstand von der Flächennormale haben; die Construction von A_1 ist somit einfach. Die zugehörigen Brennebenen liegen im zweiten Hauptnormalschnitte. — Die zweite Gleichung lehrt, dass die Punktreihe A_2 perspectivisch liegt zur Punktreihe B_2 . Die Construction des Centrums C der Perspectivität ergiebt sich aus der Correspondens der Werthepaare

$$x_0 = \infty, \quad x_2 = \varrho \frac{\sin e_2 \cdot \cos^2 e_1}{\sin (e_2 - e_1)};$$

$$x_2 = \infty$$
, $x_0 = e^{\frac{\sin e_1 \cdot \cos^2 e_2}{\sin (e_1 - e_2)}}$.

Legt man also durch das gesuchte Centrum C Parallelen su Σ und Σ_1 , so schneiden diese auf der Flächennormale Strecken von den Längen

$$OL = \varrho . cos^2 e_1, \quad OM = \varrho . cos^2 e_2$$



ab. Die Construction von C ist daher die folgende: Man projicire das Krümmungscentrum K nach K_1 auf Σ_1 , und K_1 nach L auf OK; andererseits projicire man K nach K_2 auf Σ , und K_2 nach M auf OK. Zieht man dann $LC//\Sigma$ und $MC//\Sigma_1$, so ist der Schnittpunkt der beiden Geraden der gesuchte Fixpunkt C. Hat man C construirt, so findet man zu jedem Brennpunkte E0 leicht den entsprechenden Brennpunkt E1, da beide Brennpunkte mit E2 in einer Geraden liegen. (S. umst. Figur.)

Sehr einfach gestalten sich nun im gebrochenen Bündel die Veränderungen, die ihren Ursprung in der Biegung der brechenden Fläche haben. Wir denken uns den Vorgang so, dass die Constitution des einfallenden Bündels ungeändert bleibt, dass aber die Einfallsebene eine Hauptebene sei und dass eine Brennebene mit der Einfallsebene coincidire. Dann denken wir uns die brechende Fläche gebogen, und zwar so, dass die Normale dieselbe bleibt, und ebenso die Lage der Hauptschnitte. Unter diesen Voraussetzungen ändern sich die Brennweiten im gebrochenen Bündel, dagegen nicht die Lagen der Brennebenen.

Wir untersuchen zunächst den zuletzt betrachteten Fall $\varepsilon = 90^{\circ}$ und $\theta_1 = 0^{\circ}$. Es war nach 15):

$$x_1 = n \, \xi_0, \quad x_2 = \frac{x_0 \, \varrho \, \cos^2 e_1 \, \sin e_2}{\varrho \, \cos^2 e_2 \, \sin e_1 + x_0 \, . \sin (e_2 - e_1)}$$

Wir sehen hieraus, dass bei der Biegung der brechenden Fläche sich x_1 nicht ändert, dass also der Brennpunkt A_1 an seiner Stelle bleibt. Dagegen ändert sich x_2 ; A_2 bewegt sich auf Σ_1 und zwar so, dass A_2K , d. h. die Verbindungslinie des Brennpunktes mit dem Krümmungscentrum sich um einen Fixpunkt C_1 dreht.

In der ersten Hauptebene sind die Verhältnisse ganz analog. Für s=0, $\vartheta_1=0$ war nämlich gefunden

$$x_1 = \frac{\varrho \, \xi_0 \, \sin e_2}{\varrho \, \sin e_1 + \xi_0 \, \sin (e_2 - e_1)} \, , \quad x_2 = n \, x_0 \, \frac{\cos^2 e_1}{\cos^2 e_2} \, .$$

Bei der Biegung der brechenden Fläche ändert sich also x_1 , dagegen x_2 nicht. Wie ersichtlich, ändert sich x_1 so, dass A_1K stets durch einem festen Punkt geht. Aus früheren Untersuchungen folgt, dass dies der Punkt B_1 sein muss, der ja bei der Biegung fest bleibt. Wir sind somit im Stande, für jede Krümmung der Fläche den Brennpunkt A_1 zu construiren.

§ 3.

Untersuchung der Brechung in einer beliebigen Fläche.

Bei der folgenden Betrachtung, die also die früheren als Specialfälle umfasst, soll die senkrechte Incidenz näher untersucht werden; von der schiefen Incidenz werden nur einige specielle Fälle betrachtet; insbesondere wird gezeigt, dass sich auch hier geometrische Constructionen, ähnlich den früheren, ausführen lassen.

Da bei der senkrechten Incidenz der Hauptstrahl Σ mit der Flächennormale identisch ist, so kann man, ohne dass dies eine weitere Specialisirung des Problems ist, die Einfallsebene als im ersten Hauptschnitte gelegen annehmen; dann ist

und daher wird
$$M = 1: \varrho_1, \quad N = 1: \varrho_2, \quad O = 0,$$

$$nP_1 = \frac{\cos^2 \vartheta_1}{x_0} + \frac{\sin^2 \vartheta_1}{\xi_0} + \frac{n-1}{\varrho_1},$$

$$nQ_1 = \frac{\sin^2 \vartheta_1}{x_0} + \frac{\cos^2 \vartheta_1}{\xi_0} + \frac{n-1}{\varrho_2},$$

$$nR_1 = \left(\frac{1}{x_0} - \frac{1}{\xi_0}\right) \sin \vartheta_1 \cdot \cos \vartheta_1.$$

Nach der allgemeinen Formel für die Neigung 🗣 der ersten Brennebene des gebrochenen Bündels gegen die Einfallsebene ist

$$tg \, 2 \, \vartheta_3 = \frac{\sin 2 \, \vartheta_1}{\varDelta + \cos 2 \, \vartheta_1}, \quad \varDelta = (n-1) \frac{\varrho_3 - \varrho_1}{\varrho_3 \, \varrho_1} \cdot \frac{\xi_0 \, x_0}{\xi_0 - x_0}.$$

Diese für die Brennebenen charakteristische Grösse A hat eine interessante Eigenschaft. Betrachtet man nämlich das einfallende Bündel in seinen beiden Hauptlagen $\theta_1 = 0$ und $\theta_1 = 90^{\circ}$, so gehören zu diesen beiden Hauptlagen zwei Paar Brennpunkte im gebrochenen Bündel. Es lässt sich nun zeigen, dass das Doppelverhältniss dieser vier Brennpunkte gleich Δ^2 ist. $\vartheta_1 = 0^{\circ}$ ergiebt sich nämlich nach 16) und V):

17)
$$x'_1 = \frac{n\xi_0 \varrho_2}{\varrho_2 + (n-1)\xi_0}$$
, $x'_2 = \frac{nx_0 \varrho_1}{\varrho_1 + (n-1)x_0}$, and für $\vartheta_1 = 90^\circ$:

18)
$$x''_{1} = \frac{n\xi_{0}\varrho_{1}}{\varrho_{1} + (n-1)\xi_{0}}, \quad x''_{2} = \frac{nx_{0}\varrho_{3}}{\varrho_{2} + (n-1)x_{0}}$$

Bilden wir aus 17) und 18):

$$\frac{x''_1-x'_1}{x''_2-x'_1}:\frac{x''_1-x'_2}{x''_2-x'_2},$$

so folgt für dieses Doppelverhältniss der Werth 1, und dies war zu beweisen.

Im Allgemeinen findet bei der Brechung eine Drehung der Brennebenen statt; ausgenommen sind die Fälle $\Delta = 0$, sowie $\vartheta_1 = 0^\circ$ und $\vartheta_1 = 90^\circ$. Der Gleichung $\Delta = 0$ wird genügt durch

- 1. n=1, keine Brechung;
- 2. $\varrho_1 = \varrho_2$, Brechung in einem Nabelpunkte;
- 3. $x_0 = 0$ oder $\xi_0 = 0$.

Die Brennweiten des gebrochenen Bündels sind im Allgemeinen nicht rational darstellbar; sie sind Wurzeln der quadratischen Gleichung V). Jedoch gilt der Satz, dass, wenn wir uns das einfallende Bündel um Σ gedreht denken, dann die Brennpunkte um Z, sich so verschieben, dass sie stets zum Einfallspunkte und einem andern festen Punkte harmonisch liegen. Denn der vierte harmonische Punkt zum Einfallspunkte und zu den Brenn-Punkten liegt im Abstande

$$h=2:\left(\frac{1}{x_1}+\frac{1}{x_2}\right)$$

vom Einfallspunkte. Nun ist

$$\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{n} \left\{ \frac{1}{x_0} + \frac{1}{\xi_0} + (n-1) \left(\frac{1}{\varrho_1} + \frac{1}{\varrho_2} \right) \right\}$$

unabhängig von 3,, also auch h.

Wir untersuchen die Bedingungen für die Homocentricität des ge-Dieselben sind $P_1 = Q_1$, R = 0, also brochenen Bündels.

 $(\xi_0-x_0)\varrho_1\varrho_2.\cos 2\vartheta_1=(n-1)(\varrho_1-\varrho_2)x_0\xi_0, \quad (x_0-\xi_0)\sin\vartheta_1.\cos\vartheta_1=0.$ Diesen Bedingungen wird genügt durch

1.
$$\theta_1 = 0^0$$
, $(\xi_0 - x_0) \varrho_1 \varrho_2 = (n-1)(\varrho_1 - \varrho_2) x_0 \xi_0$;
2. $\theta_1 = 90^0$, $(x_0 - \xi_0) \varrho_1 \varrho_2 = (n-1)(\varrho_1 - \varrho_2) x_0 \xi_0$;

2.
$$\theta_1 = 90^\circ$$
, $(x_0 - \xi_0) \varrho_1 \varrho_2 = (n-1)(\varrho_1 - \varrho_2) x_0 \xi_0$

$$3. \quad x_0 = \xi_0, \qquad \qquad \varrho_1 = \varrho_2.$$

Eine homocentrische Brechung kann also stattfinden in einem Nabelpunkte, falls das einfallende Bündel auch homocentrisch ist; bei einer beliebigen Fläche aber nur dann, falls die Brennebenen mit den Hauptebenen coincidiren und die ursprünglichen Brennweiten sich wie die Ordinaten und Abscissen gewisser Hyperbeln verhalten.

Zum Schlusse untersuchen wir noch kurz das astigmatische Bündel, das durch Brechung eines homocentrischen entsteht. Die Brennebenen desselben coincidiren mit den Hauptebenen; denn es ist für $x_0 = \xi_0$ nach 16):

$$nP_1 = \frac{1}{x_0} + \frac{n-1}{\varrho_1}, \quad nQ_1 = \frac{1}{x_0} + \frac{n-1}{\varrho_2}, \quad nR_1 = 0,$$

und daher wird

$$tg \ 2 \ \vartheta_2 = 0, \quad x_1 = \frac{n x_0 \varrho_1}{\varrho_1 + (n-1) x_0}, \quad x_2 = \frac{n x_0 \varrho_2}{\varrho_2 + (n-1) x_0}$$

Die Brechung ist homocentrisch für $x_0 = 0$ oder $e_1 = e_2$. Wird der Objectpunkt des einfallenden Bündels verschoben, so verschieben sich die Brenzpunkte auf Σ_i derart, dass sie projectivische Punktreihen beschreiben; rückt das Object in unendliche Ferne, so ist

$$x_1 = \frac{n}{n-1} \varrho_1, \quad x_2 = \frac{n}{n-1} \varrho_2.$$

Bei der schiefen Incidenz beschränken wir uns auf die Untersuchung des Falles, wo eine der Hauptebenen Einfallsebene ist und wo eine der Brennebenen mit der Einfallsebene coincidirt. Unter diesen Voraussetzungen findet eine Drehung der Brennebenen nicht statt.

Es sei zunächst $\varepsilon = 0^{\circ}$ und $\vartheta_1 = 0^{\circ}$; die erste Hauptebene sei also die Einfallsebene und die erste Brennebene möge mit ihr coincidiren. Dann ist

$$M = 1 : \varrho_1, \quad N = 1 : \varrho_2, \quad O = 0,$$

also:

$$\begin{split} n\cos^2 e_1 \; P_1 &= \frac{\cos^2 e_2}{x_0} + \frac{1}{\varrho_1} \; \frac{\sin \left(e_2 - e_1\right)}{\sin e_1} \,, \\ n \; \varrho_1 &= \; \frac{1}{\xi_0} \; + \frac{1}{\varrho_2} \; \frac{\sin \left(e_2 - e_1\right)}{\sin e_1} \,, \\ R_1 &= 0. \end{split}$$

Die Brennweiten im gebrochenen Bündel werden hiernach

19) *
$$x_1 = \frac{\xi_0 \varrho_2 \sin e_2}{\varrho_2 \sin e_1 + \xi_0 \sin (e_2 - e_1)}$$
, $x_2 = \frac{x_0 \varrho_1 \cos^2 e_1 \sin e_2}{\varrho_1 \cos^2 e_2 \sin e_1 + x_0 \sin (e_2 - e_1)}$

Wir ersehen aus den Gleichungen 19), dass sich in diesem Falle die früheren Constructionen wieder anwenden lassen. Die erste Gleichung ist dieselbe, wie 14), die zweite dieselbe, wie 15); die bei den genannten Gleichungen gegebenen Constructionen gelten also auch hier. — Für die übrigen Specialfälle lauten die Gleichungen:

$$\begin{array}{l} \varepsilon = 0^{\circ}, \ \ \vartheta_{1} = 90^{\circ}; \\ 20) \ \ x_{1} = \frac{\xi_{0} \varrho_{1} \cos^{3} e_{1} \sin e_{2}}{\varrho_{1} \cos^{3} e_{2} \sin e_{1} + \xi_{0} \sin(e_{3} - e_{1})}, \ \ ^{*}x_{2} = \frac{x_{2} \varrho_{2} \sin e_{2}}{\varrho_{2} \sin e_{1} + x_{0} \sin(e_{2} - e_{1})}; \\ \varepsilon = 90^{\circ}, \ \ \vartheta_{1} = 0^{\circ}; \\ 21) \ \ ^{*}x_{1} = \frac{\xi_{0} \varrho_{1} \sin e_{2}}{\varrho_{1} \sin e_{1} + \xi_{0} \sin(e_{2} - e_{1})}, \ \ x_{2} = \frac{x_{0} \varrho_{2} \cos^{3} e_{1} \sin e_{2}}{\varrho_{2} \cos^{3} e_{2} \sin e_{1} + x_{0} \sin(e_{2} - e_{1})}; \\ \varepsilon = 90^{\circ}, \ \ \vartheta_{1} = 90^{\circ}; \\ 22) \ \ x_{1} = \frac{\xi_{0} \varrho_{2} \cos^{3} e_{1} \sin e_{2}}{\varrho_{2} \cos^{3} e_{2} \sin e_{1} + \xi_{0} \sin(e_{2} - e_{1})}, \ \ ^{*}x_{2} = \frac{x_{0} \varrho_{1} \sin e_{2}}{\varrho_{1} \sin e_{1} + x_{0} \sin(e_{2} - e_{1})}. \end{array}$$

Die acht Formeln 19) bis 22) lassen sich in zwei Gruppen theilen; den mit einem Sternchen versehenen entspricht eine Construction, wie sie bei Gleichung 14) angegeben wurde; der Fixpunkt ist ein Krümmungscentrum der brechenden Fläche. Den übrigen Gleichungen entspricht eine Construction, wie sie bei Gleichung 15) angegeben wurde; der Fixpunkt C liegt nicht mehr im Krümmungsmittelpunkte. Es finden also die bei abwickelbaren Flächen gegebenen Constructionen mutatis mutandis auch bei beliebigen Flächen Anwendung.

Rostock, im Mai 1890.

Kleinere Mittheilungen.

VII. Bemerkung zur Theorie der linearen Differentialgleichungssysteme.

1. Die folgende Bemerkung erstreckt sich nur auf lineare Systeme (nicht homogene) mit constanten Coefficienten. Für das allgemeine derartige System werde die Form gewählt:

Die $A_{1\mu}$ sind constant, die $f_1(x)$ beliebige Functionen von x. Setzt man, wie es in Forsyth's "A Teatise on Differential Equations", Chapter III geschieht, $\frac{d}{dx} = D$, $\frac{d^2}{dx^2} = D^2$, $\frac{d^2y_1}{dx^\nu} + p \cdot y_1 = (D^p + p)y_1$, so nimmt 1) die Form an:

$$(D+A_{11})y_1 + A_{12}y_2 + \cdots + A_{1n}y_n = f_1(x),$$

$$A_{21}y_1 + (D+A_{22})y_2 + \cdots + A_{2n}y_n = f_2(x),$$

$$A_{n1}y_1 + A_{n2}y_2 + \cdots + (D+A_{nn})y_n = f_n(x).$$

Werde ferner gesetzt:

3)
$$\begin{vmatrix} D+A_{11}, & A_{12}, & \dots, & A_{1n} \\ A_{21}, & D+A_{22}, & \dots, & A_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ A_{n1}, & A_{n2}, & \dots, & D+A_{nn} \end{vmatrix} = \Delta = \alpha_0 + \alpha_1 D + \alpha_2 D^2 + \dots + D^2.$$

Dann werden

die Unterdeterminanten der Glieder A_{12} , A_{22} , ..., A_{n2} des Δ sein und alle Coefficienten der D-Potenzen in Δ , Δ_{12} , ..., Δ_{n2} sind bekannte Constanten.

Unterwirft man die Gleichungen 2) der Reihe nach den durch Δ_{12} , $\Delta_{2\lambda}, \ldots, \Delta_{n\lambda}$ angedeuteten Operationen, so hat man durch Addition aller Gleichungen:

$$\begin{cases} (D + A_{11}) \Delta_{12} + A_{21} \Delta_{22} + \cdots + A_{n1} \Delta_{n2} \rbrace y_1 \\ + \rbrace A_{12} \Delta_{12} + (D + A_{22}) \Delta_{22} + \cdots + A_{n2} \Delta_{n2} \rbrace y_2 \\ + \rbrace A_{12} \Delta_{12} + A_{22} \Delta_{22} + \cdots + A_{n2} \Delta_{n2} \rbrace y_2 \\ + \rbrace A_{13} \Delta_{12} + A_{22} \Delta_{22} + \cdots + (D + A_{nn}) \Delta_{n2} \rbrace y_1 \\ + \rbrace A_{1n} \Delta_{12} + A_{2n} \Delta_{22} + \cdots + (D + A_{nn}) \Delta_{n2} \rbrace y_n \\ = \Delta_{12} f_1(x) + \Delta_{22} f_2(x) + \cdots + \Delta_{n2} f_n(x).$$

Das vor y_1 stehende Symbol ist aber

$$\begin{pmatrix} (D+A_{11}), & A_{12}, & \dots, & A_{1\lambda-1}, & (D+A_{11}), & A_{1\lambda+1}, & \dots, & A_{1n} \\ A_{21}), & (D+A_{22}), & \dots, & A_{2\lambda-1}, & A_{21}, & A_{22+1}, & \dots, & A_{2n} \\ & & & & & & & & & & & \\ A_{n1}, & A_{n2}, & \dots, & A_{n\lambda-1}, & A_{n1}, & A_{n\lambda+1}, & \dots, & (D+A_{nn}) \end{pmatrix}$$

setzt sich also additiv zusammen aus Gliedern von der Form $(\nu D^{\mu} - \nu D^{\mu})$ und da $(\nu D^{\mu} - \nu D^{\mu}) y = 0$, so macht es die Function y_1 zu Null. Das Gleiche gilt für $y_1 ... y_{\lambda-1}, y_{\lambda+1}, ..., y_n$, so dass man erhält:

Wenn nun entwickelt wird:

$$\frac{1}{\alpha_0 + \alpha_1 D + \alpha_2 D^2 + \dots + D^n} = \varrho_0 + \varrho_1 D + \varrho_2 D^2 + \varrho_3 D^3 + \dots$$

und

$$(\varrho_{0} + \varrho_{1}D + \cdots)(\alpha_{0}y + \alpha_{1}y' + \alpha_{2}y'' + \cdots + y^{(n)}) = y$$

$$(\alpha_{0} + \alpha_{1}D + \alpha_{0}D^{2} + \cdots + D^{n})(\varrho_{0}y + \varrho_{1}y' + \varrho_{0}y'' + \cdots) = y,$$

d. h. Δ und $\frac{1}{\Delta}$ sind inverse Symbole und es ist $\Delta\left(\frac{1}{\Delta}y\right) = \frac{1}{\Delta}(\Delta y) = y$.

Also hat man

5)
$$y_1 = \frac{1}{\Delta} \{ \Delta_{11} f_1(x) + \Delta_{21} f_2(x) + \cdots + \Delta_{n1} f_n(x) \}$$

oder anders geschrieben:
$$= \frac{1}{D + A_{11}, \quad A_{12}, \dots, \quad A_{1n}} \begin{vmatrix}
D + A_{11}, & A_{12}, \dots, & A_{12-1}, f_1(x), \dots, & A_{1n} \\
A_{21}, & D + A_{22}, \dots, & A_{2n} \\
A_{21}, & D + A_{22}, \dots, & A_{2n}
\end{vmatrix}$$

$$A_{n1}, \quad A_{n2}, \dots, \quad A_{n-1}, f_n(x), \dots, \quad D + A_{nn}$$

Man kann also y₁ in Form 6) aus 2) ableiten, wenn man die Gleichungen 2) als gewöhnliche lineare auflöst, und durch Auswerthung der Determinanten in 6) ergiebt sich dann y_1 in Form 5).

Seien nun in 5) für $\Delta_{1\lambda}$, ..., $\Delta_{n\lambda}$ deren Entwickelungen nach D-Potenzen eingesetzt, so hat man: Digitized by Google

7)
$$y_{\lambda} = \beta_{0} \cdot \frac{1}{\Delta} f_{1}(x) + \beta_{1} \frac{1}{\Delta} f'_{1}(x) + \dots + \beta_{n-2} \frac{1}{\Delta} f_{1}^{(n-2)}(x)$$

 $+ \gamma_{0} \cdot \frac{1}{\Delta} f_{2}(x) + \gamma_{1} \frac{1}{\Delta} f'_{2}(x) + \dots + \gamma_{n-2} \frac{1}{\Delta} f_{2}^{(n-2)}(x)$
 $+ \lambda_{0} \cdot \frac{1}{\Delta} f_{\lambda}(x) + \lambda_{1} \frac{1}{\Delta} f'_{\lambda}(x) + \dots + \lambda_{n-2} \frac{1}{\Delta} f_{\lambda}^{(n-2)}(x) + \frac{1}{\Delta} f_{\lambda}^{(n-1)}(x)$
 $+ \lambda_{0} \cdot \frac{1}{\Delta} f_{n}(x) + \lambda_{1} \frac{1}{\Delta} f'_{n}(x) + \dots + \lambda_{n-2} \frac{1}{\Delta} f_{n}^{(n-2)}(x).$

 y_{λ} ist also additiv aus Ausdrücken von der Form $\frac{1}{d}$ f(x) zusammengesetzt. Die Auswerthung von $\frac{1}{d}$ f(x) ist in obengenanntem Werke von Forsyth, Chapter III angegeben und ist immer leicht durchführbar, wenn f(x) eine beliebige aggregative und multiplicative Zusammensetzung von ganzen Functionen, von Functionen e^{ax} , sinnx, cosnx ist. $y = \frac{1}{d} f(x)$ ist aber partikuläres Integral der Differentialgleichung dy = f(x), so dass also y_{λ} in 7) auf diesem Wege als partikuläres Integral des Systems 1) gewonnen wird.

Es lässt sich jetzt aussprechen:

Ein partikuläres Integralsystem eines nicht homogenen linearen Differentialgleichungssystems mit constanten Coefficienten wird gefunden, wenn man das System symbolisch auf die Form gewöhnlicher linearer Gleichungen mit n Unbekantten bringt, diese auflöst und von der symbolischen Form befreit. Diese Methode führt immer zum Ziele, wenn im gegebenen Systeme die von den Unbekannten freien Glieder aggregativ und multiplicativ zusammengesetzt sind aus ganzen Functionen, ear, sinnx, cosnx.

$$\begin{aligned} \frac{dy_1}{dx} &= -y_1 + 2y_2 + \frac{4}{7}y_3 + x^2 - x, \\ \frac{dy_2}{dx} &= -3y_1 - y_2 + \frac{25}{14}y_3 + e^{3x}, \\ \frac{dy_3}{dx} &= -2y_1 + 4y_2 + y_3 + \cos x - \sin x. \end{aligned}$$

Man schreibt dafür:

Jetzt hat man sofort:

$$\begin{aligned} y_1 &= \frac{1}{\begin{vmatrix} D+1, & -2, & -\frac{1}{7} \\ 3, & D+1, & -\frac{25}{14} \\ 2, & -4, & D-1 \end{vmatrix}} \begin{vmatrix} x^3-x, & -2, & -\frac{4}{7} \\ e^2s, & D+1, & -\frac{25}{14} \\ \cos x - \sin x, & -4, & D-1 \end{vmatrix} = \frac{1}{d} \, dy_1, \\ y_2 &= \frac{1}{\begin{vmatrix} D+1, & -2, & -\frac{1}{7} \\ 3, & D+1, & -\frac{25}{14} \\ 2, & -4, & D-1 \end{vmatrix}} \begin{vmatrix} D+1, & x^3-x, & -\frac{1}{7} \\ 3, & e^{2s}, & -\frac{25}{14} \\ 2, & \cos x - \sin x, & D-1 \end{vmatrix} = \frac{1}{d} \, dy_2, \\ y_3 &= \frac{1}{\begin{vmatrix} D+1, & -2, & x^2-x \\ 3, & D+1, & e^{2s} \\ 2, & -4, & \cos x - \sin x \end{vmatrix}} = \frac{1}{d} \, dy_3. \end{aligned}$$

Nun rechnet man nach gewöhnlicher Regel aus:

$$\Delta = \begin{vmatrix} D+1, & -2, & -\frac{1}{7} \\ 3, & D+1, & -\frac{25}{14} \\ 2, & -4, & D-1 \end{vmatrix} = 1 - D + D^2 + D^3, \\
\Delta y_1 = \begin{vmatrix} x^2 - x, & -2, & -\frac{4}{7} \\ e^2 x, & D+1, & -\frac{25}{14} \\ \cos x - \sin x, & -4, & D-1 \end{vmatrix} = (D^3 - \frac{57}{7})(x^2 - x) + (2D + \frac{2}{7})e^{2x} \\
+ (\frac{4}{7}D + \frac{39}{7})(\cos x - \sin x) = \frac{30}{7}e^{2x} + \frac{25}{7}\cos x - \frac{33}{7}\sin x + 2 + \frac{57}{7}x \\
-\frac{57}{7}x^3, \\
\Delta y_2 = \begin{vmatrix} D+1, & x^2 - x, & -\frac{4}{7} \\ 3, & e^{2x}, & -\frac{25}{14} \\ 2, & \cos x - \sin x, & D-1 \end{vmatrix} = -(3D + \frac{4}{7})(x^2 - x) \\
+ (\frac{25}{4}D + \frac{1}{14})(\cos x - \sin x) + (D^2 + \frac{1}{7})e^{2x} \\
= \frac{29}{7}e^{2x} - \frac{12}{7}\cos x - \frac{13}{7}\sin x + 3 - \frac{38}{7}x - \frac{4}{7}x^3, \\
\Delta y_3 = \begin{vmatrix} D+1, & -2, & x^2 - x \\ 3, & D+1, & e^{2x} \\ 2, & -4, & \cos x - \sin x \end{vmatrix} = -(2D + 14)(x^2 - x) + 4De^{2x} \\
+ (D^3 + 2D + 7)(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \sin x) = 8e^{2x} + 4\cos x - 8\sin x + 2 + 10x \\
-14x^2 + 2D + 7(\cos x - \cos x) + 12x^2 + 1$$

 y_1 , y_2 , y_3 sind nun ermittelt, sobald die Symbole berechnet sind:

$$\frac{1}{\Delta}e^{2x}$$
, $\frac{1}{\Delta}\cos x$, $\frac{1}{\Delta}\sin x$ and $\frac{1}{\Delta}\{\alpha+\beta x+\gamma x^2\}$,

wo α , β , γ bekannte Constanten sind. Sei $\Delta = F(D)$ gesetzt, so gilt nach Forsyth der Satz:

$$\begin{aligned} \frac{1}{F(D)} \{e^{ax} \cdot \varphi(x)\} &= e^{ax} \frac{1}{F(D+a)} \varphi(x), \\ \frac{1}{d} e^{3x} &= \frac{1}{F(D)} e^{2x} = e^{2x} \frac{1}{F(D+2)} \cdot 1 = e^{2x} \frac{1}{1 - (D+2) + (D+2)^2 + (D+2)^3} \cdot 1 \\ &= e^{2x} \frac{1}{11 + a_1 D + a_2 D^2 + a_3 D^3} \cdot 1 = e^{2x} (\frac{1}{11} + b_1 D + b_2 D^2 + \cdots) 1 = \frac{e^{2x}}{11 - a_1 D^2} \cdot 1 \end{aligned}$$

Ferner:

$$\begin{split} \frac{1}{d} \left\{ \cos x + i \sin x \right\} &= \frac{1}{F(D)} e^{ix} = e^{ix} \frac{1}{1 - (D+i) + (D+i)^2 + (D+i)^3} \cdot 1 \\ &= e^{ix} \left(\frac{1}{-2i} + c_1 D + c_2 D^2 + \cdots \right) 1 = -\frac{e^{ix}}{2i} = -\frac{\sin x}{2} + i \frac{\cos x}{2} \cdot \end{split}$$

Endlich ist:

$$\frac{1}{\Delta} \{ \alpha + \beta x + \gamma x^2 \} = \frac{1}{1 - D + D^2 + D^3} \{ \alpha + \beta x + \gamma x^2 \}$$

$$= (1 + D + 2D^3 + \dots)(\alpha + \beta x + \gamma x^2) = (\alpha + \beta) + (\beta + 2\gamma)x + \gamma x^2.$$

Es ist also:

$$\frac{1}{d}e^{2x} = \frac{1}{11}e^{2x}, \quad \frac{1}{d}\cos x = -\frac{1}{2}\sin x, \quad \frac{1}{d}\sin x = \frac{1}{2}\cos x,$$
$$\frac{1}{d}\left\{\alpha + \beta x + \gamma x^{2}\right\} = (\alpha + \beta) + (\beta + 2\gamma)x + \gamma x^{2}.$$

Mit Benützung dieser Gleichungen erhält man:

$$y_1 = \frac{37}{17}e^{2x} - \frac{25}{14}\sin x - \frac{34}{14}\cos x + \frac{71}{7} - \frac{57}{7}x - \frac{57}{7}x^2,$$

$$y_2 = \frac{29}{17}e^{2x} + \frac{9}{17}\sin x - \frac{18}{14}\cos x - \frac{17}{7} - \frac{46}{7}x - \frac{4}{7}x^2,$$

$$y_3 = \frac{8}{11}e^{2x} - 2\sin x - 4\cos x + 12 - 18x - 14x^2.$$

Durch Einsetzen ins gegebene System überzeugt man sich leicht, dass ein richtiges partikuläres Integralsystem gefunden und damit auch das allgemeine Integralsystem leicht herstellbar ist.

2. Die im vorigen Abschnitte allgemein entwickelte Methode erlaubt nun, auf einfache Art die Form des allgemeinen Integralsystems eines nicht homogenen linearen Differentialgleichungssystems mit constanten Coefficienten für den Fall zu untersuchen, dass die von den abhängig Veränderlichen freien Glieder lauter ganze Functionen von x sind.

In
$$\frac{dy_1}{dx} = -A_{11}y_1 - A_{12}y_2 - \dots - A_{1n}y_n + f_1(x),$$
8)
$$\frac{dy_2}{dx} = -A_{21}y_1 - A_{22}y_2 - \dots - A_{2n}y_n + f_2(x),$$

$$\frac{dy_n}{dx} = -A_{n1}y_1 - A_{n2}y_2 - \dots - A_{nn}y_n + f_n(x)$$

seien also die $f_1(x)$, ..., $f_n(x)$ alles ganze Functionen und x^p sei die höchste vorkommende x-Potenz, dann ist

9)
$$y_{\lambda} = \frac{1}{\Delta} \left\{ \Delta_{1\lambda} f_{1}(x) + \Delta_{2\lambda} f_{2}(x) + \dots + \Delta_{n\lambda} f_{n}(x) \right\}$$

(wo
$$\lambda=1,\,2,\,3,\,\ldots,\,n$$
) ein partikuläres Integralsystem. Wenn gesetzt wird A_{11} A_{12} \ldots A_{1n}

$$\begin{vmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{vmatrix} = d,$$
Digitized by Google

so wird $d_{11, 22, ..., \mu\mu}$ aus d entstehen, wenn in d Reihe und Colonne der Glieder $A_{11}, A_{22}, ..., A_{\mu\mu}$ unterdrückt wird und $\Sigma d_{11, 22, ..., \mu\mu}$ wird die Summe aller $d_{11, ..., \mu\mu}$ sein, wenn unter 11, 22, ..., nn alle Combinationen 11, 22, ..., $\mu\mu$ gebildet werden. Zur Determinante $d_{\varepsilon l, 11, 22, ..., \mu\mu}$ wird man durch Unterdrückung der Reihen und Colonnen der Glieder $A_{\varepsilon l}, A_{11}, A_{22}, ..., A_{\mu\mu}$ gelangen, wobei aber $A_{\varepsilon \varepsilon}$ und $A_{l, l}$ auszulassen ist. Die Bedeutung von $\Sigma d_{\varepsilon l, 11, ..., \mu\mu}$ ist dann ersichtlich. Es ist z. B.

 $\Sigma d_{12,11} = d_{12,22} + d_{12,33} + \cdots + d_{12,2-1} + d_{12,2+12+1} + \cdots + d_{12,nn}.$ Nun ist offenbar:

wo die Grössen a_0, a_1, \ldots, a_p sich aus den Gleichungen bestimmen:

10)
$$d.a_0 = 1, d.a_1 + \Sigma d_{11}.a_0 = 0, d.a_2 + \Sigma d_{11}.a_1 + \Sigma d_{11,22}.a_0 = 0,$$

Jetzt ergiebt sich aus 9) mit Einsetzung der für $\frac{1}{\Delta}$, Δ_{12} , Δ_{22} , ..., Δ_{n2} gefundenen Werthe:

Das System 8) hat, wenn aus 10) die Werthe $a_0, a_1, ..., a_p$ berechnet werden, ein partikuläres Integralsystem:

$$= a_0 d_{12} f_1(x) + \cdots + a_0 d_{n2} f_n(x) + \cdots + (a_0 \sum d_{12,11} + a_1 d_{12}) f'_1(x) + \cdots + (a_0 \sum d_{n2,11} + a_1 d_{n2}) f'_n(x) + \cdots + (a_0 \sum d_{n2,11,22} + a_1 \sum d_{n2,11} + a_2 d_{n2}) f''_1(x) + \cdots + (a_0 \sum d_{n2,11,22} + a_1 \sum d_{n2,11} + a_2 d_{n2}) f''_n(x) + \cdots + (a_0 \sum d_{n2,11,22} + a_1 \sum d_{n2,11} + a_2 d_{n2}) f_n^{(p)}(x) + \cdots + (a_0 \sum d_{n2,11,22} + a_1 \sum d_{n2,11} + a_2 d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, p_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11,22}, p_p + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, p_p + \dots + a_p d_{n2}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11,22}, p_p + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, p_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11,22}, p_p + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, p_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11,22}, p_p + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, p_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11,22}, p_p + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, p_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11,22}, p_1 + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, a_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11,22}, p_1 + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, a_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11}, \dots, a_p + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, a_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11}, \dots, a_p + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, a_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + (a_0 \sum d_{n2,11}, \dots, a_p + \dots + a_p d_{n2}) f_n^{(p)}(x),$$

$$= (a_0 \sum d_{12,11}, \dots, a_p + \dots + a_p d_{12}) f_1^{(p)}(x) + \dots + a_p d_{12}) f_1^{(p)}(x)$$

Da sich das allgemeine Integralsystem des zu 8) gehörigen reducirten Systems in allgemeiner Darstellung angeben lässt, so ist hiermit auch eine Darstellung des allgemeinen Integralsystems des Differentialgleichungssystems 8) in allgemeiner Form gewonnen.

Sei insbesondere das System vorgelegt:

$$\frac{dy_1}{dx} = -A_1 y_1 - A_2 y_2 - \dots - A_n y_n + f(x),$$

$$\frac{dy_2}{dx} = y_1,$$

$$\frac{dy_3}{dx} = y_2,$$

$$\vdots \cdot \cdot \cdot \cdot,$$

$$\frac{dy_n}{dx} = y_{n-1},$$

wo f(x) eine ganze Function p^{ten} Grades.

Es ist für diesen Fall:

$$d = \begin{vmatrix} A_1, & A_2, & \dots, & A_{n-1}, & A_n \\ -1, & 0, & \dots, & 0, & 0 \\ 0, & -1, & \dots, & 0, & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0, & 0, & \dots, & -1, & 0 \end{vmatrix}; \quad d = \begin{vmatrix} D+A_1, & A_2, & \dots, & A_{n-1}, & A_n \\ -1, & D+0, & \dots, & 0, & 0 \\ 0, & -1, & \dots, & 0, & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0, & 0, & \dots, & -1, & D+0 \end{vmatrix}$$

$$d = A_n$$
, $\Sigma d_{11} = A_{n-1}$, $\Sigma d_{11,22} = A_{n-2}$, ..., $d_{1n} = 1$,

ferner:

$$\Sigma d_{1n,11} = 0$$
, $\Sigma d_{1n,11,22} = 0$, $\Sigma d_{1n,11,22,33} = 0$, ...

endlich:

$$f_1(x) = f(x), f_2(x) = f_3(x) = \cdots = f_n(x) = 0.$$

Die Gleichungen 10) nehmen die Form an:

12)
$$A_{n}.a_{0} = 1,$$

$$A_{n}.a_{1} + A_{n-1}.a_{0} = 0,$$

$$A_{n}.a_{2} + A_{n-1}.a_{1} + A_{n-2}.a_{0} = 0,$$

und es ergiebt sich als partikuläres Integralelement von 11):

13)
$$y_n = a_0 f(x) + a_1 f'(x) + a_2 f''(x) + \cdots + a_n f^{(p)}(x).$$

Für das System 11) lässt sich aber die Differentialgleichung setzen:

14)
$$\frac{d^n y_n}{dx^n} + A_1 \frac{d^{n-1} y_n}{dx_{n-1}} + \cdots + A^n y_n = f(x).$$

Es hat sich also aus dem oben entwickelten allgemeinen Satze als ganz specieller Fall der bekannte Hermite'sche Satz ergeben:

Wenn die Grössen a_0 , a_1 , ..., a_p aus 12) bestimmt werden, so ist 13) partikuläres Integral der Differentialgleichung 14), wenn f(x) eine ganze Function p^{ten} Grades ist.

Offenbar ist die Darstellung eines partikulären Integralsystems zu 8 in der oben gegebenen Form nur giltig, wenn $d \neq 0$.

Sei nun d=0. Dann ist

$$\frac{1}{\Delta} = \frac{1}{\sum d_{11} D + \sum d_{11,22} D^2 + \cdots} = \frac{1}{D} \cdot \frac{1}{\sum d_{11} + \sum d_{11,22} D + \cdots}$$

$$= \frac{1}{D} \left\{ b_0 + b_1 D + b_2 D^2 + \cdots \right\} = b_0 D^{-1} + b_1 + b_2 D + b_3 D^2;$$
Digitized by

 $\frac{1}{D} = D^{-1}$ ist aber das inverse Symbol zu D, bedeutet also eine Quadratur. Es treten also in das, auch für diesen Fall leicht herstellbare Integralsystem zu 8) Quadraturen der Functionen $f_1(x) \dots f_n(x)$ ein.

Sei endlich d = 0, $\Sigma d_{11} = 0$, $\Sigma d_{11,22} = 0$, ..., $\Sigma d_{11,...,\mu\mu} = 0$, so ist: $\frac{1}{d} = \frac{1}{\Sigma d_{11,...,\mu+1,\mu+1} D^{\mu+1} + \Sigma d_{11,...,\mu+2,\mu+2} D^{\mu+2} + \cdots}{1 + (c_0 + c_1 D + c_2 D^2 + \cdots)} = c_0 D^{-(\mu+1)} + c_1 D^{-\mu} + \cdots + c_{\mu} D^{-1} + c_{\mu+1} + c_{\mu+2} D + \cdots}$

Es treten also hier ins Integralsystem die Quadraturen der Functionen $f_1(x), \ldots, f_n(x)$ bis zur $(\mu+1)$ -fach iterirten ein.

Nennt man nun eine aus d entstehende Determinante, wenn die $(n-\nu)$ ersten Diagonalglieder mit ihren Reihen und Colonnen unterdrückt werden, der Kürze halber Determinante ν^{ten} Grades, so sieht man leicht, dass

$$d=0$$
, $\Sigma d_{11}=0$, $\Sigma d_{11,22}=0$, ..., $\Sigma d_{11,22,...,\mu\mu}=0$

dann und nur dann erfüllt sind, wenn im Schema der constanten Coefficienten in 8) alle Determinanten vom n^{ten} bis zum $(n-\mu)^{\text{ten}}$ Grade einschliesslich verschwinden.

Die gewonnenen Ergebnisse lassen sich nun so zusammenfassen:

Für ein nicht homogenes, lineares Differentialgleichungssystem mit constanten Coefficienten, dessen von den abhängig Veränderlichen freien Glieder lauter ganze Functionen von x sind, setzt sich das allgemeine Integralsystem, das stets in allgemeiner Form herstellbar ist, additiv zusammen aus dem allgemeinen Integralsysteme des reducirten Systems, jenen Functionen von x und lediglich deren Ableitungen, wofern nicht die Determinante der constanten Coefficienten verschwindet. Zu diesen Functionen von x und ihren Ableitungen treten aber noch die Quadraturen derselben hinzu bis zur $(\mu+1)$ -fach iterirten, wenn im Schema der constanten Coefficienten die Determinanten bis zum $(x-\mu)^{ten}$ Grade sämmtlich verschwinden.

Heidelberg, 18. November 1890. GEORG HAEUSER, Stud. math.

VIII. Ueber elliptische Integrale dritter Gattung.

Obgleich schon Legendre Methoden angegeben hat, ein elliptisches Integral mit einem complexen Parameter und reellem Modul durch andere mit reellen Parametern auszudrücken, und obschon man in der Lehre von der Integration der Functionen des Geschlechtes Null mit gewissenhafter Ausführlichkeit die Fälle auseinander zu halten pflegt, in denen entweder

nur reelle, oder aber auch conjugirt imaginäre Pole vorkommen, so ist doch meines Wissens in der Lehre von den elliptischen Integralen die Zurückführung der Integration eines Ausdruckes von der Form

Const.

$$\frac{(\xi^2-2\alpha\xi+\beta^2)\sqrt{\xi(1-\xi)(1-\kappa\xi)}}{(\xi^2-2\alpha\xi+\beta^2)\sqrt{\xi(1-\xi)(1-\kappa\xi)}}$$

auf Integrale dritter Gattung mit reellen Parametern noch nirgend gegeben. Diese Lücke soll unter Voraussetzung eines reellen z in den folgenden Zeilen ausgefüllt werden.

Das Vorzeichen der Quadratwurzel

$$\sigma = \sqrt{\xi(1-\xi)(1-\kappa\xi)} = e^{\frac{1}{2}\log\xi} + \frac{1}{2}\log(1-\xi) + \frac{1}{2}\log(1-\kappa\xi)$$

wird dadurch bestimmt, dass für kleine positive ξ die Logarithmen ihren Hauptwerth, dessen imaginärer Theil zwischen $+i\pi$ und $-i\pi$ liegt, annehmen sollen. Geht σ für $\xi = \xi_{\mu}$ in σ_{μ} über, so nehmen wir hier das Normalintegral dritter Gattung in der Form an:

$$\int_{0}^{\sigma, \xi} \frac{\frac{1}{4} \sigma \mu \, d\xi}{(\xi - \xi \mu) \sigma}.$$

Ist der Integrationsweg gegeben, so ist das Integral vollständig bestimmt, ohne diesen nur bis auf ein ganzzahliges System der drei Periodicitätsmoduln, von denen einer $i\pi$ ist.

Die Summe oder Differenz zweier solcher Normalintegrale lässt sich mittels des sogenannten Additionstheorems in ein einziges, vermehrt um ein Integral erster Gattung und einen Logarithmus, zusammenziehen, wozu die Formeln dienen:

1)
$$\frac{\sigma_{1} d\xi}{(\xi - \xi_{1}) \sigma} + \frac{\sigma_{2} d\xi}{(\xi - \xi_{2}) \sigma} - \frac{\sigma_{3} d\xi}{(\xi - \xi_{3}) \sigma} - \frac{\varkappa(\sigma_{1} \xi_{2} + \sigma_{2} \xi_{1})}{(1 - \varkappa \xi_{1} \xi_{2}) \sigma} d\xi$$

$$= d \lg \frac{\sigma \xi_{1} \xi_{2} (\xi_{2} - \xi_{1}) + \sigma_{1} \xi_{2} \xi (\xi - \xi_{2}) + \sigma_{2} \xi \xi_{1} (\xi_{1} - \xi)}{\sigma \xi_{1} \xi_{2} (\xi_{2} - \xi_{1}) + \sigma_{1} \xi_{2} \xi (\xi_{2} - \xi_{2}) + \sigma_{2} \xi \xi_{1} (\xi - \xi_{1})},$$

$$\xi_{3} = \frac{(\sigma_{1} \xi_{2} + \sigma_{2} \xi_{1})^{2}}{\xi_{1} \xi_{2} (1 - \varkappa \xi_{1} \xi_{2})^{3}} = \frac{\xi_{1} \xi_{2} (\xi_{2} - \xi_{1})^{2}}{(\sigma_{1} \xi_{2} - \sigma_{2} \xi_{1})^{2}},$$

$$\sigma_{3} = \frac{\sigma_{1} \xi_{2} \xi_{3} (\xi_{3} - \xi_{2}) - \sigma_{2} \xi_{1} \xi_{3} (\xi_{3} - \xi_{1})}{\xi_{1} \xi_{2} (\xi_{2} - \xi_{1})} = \xi_{3} \frac{\sigma_{1} (1 - \varkappa \xi_{2}^{2}) - \sigma_{3} (1 - \varkappa \xi_{1}^{2})}{(1 - \varkappa \xi_{1} \xi_{2}) (\xi_{1} - \xi_{2})};$$

$$2) \frac{\sigma_{1} d\xi}{(\xi - \xi_{1}) \sigma} - \frac{\sigma_{2} d\xi}{(\xi - \xi_{2}) \sigma} - \frac{\sigma'_{3} d\xi}{(\xi - \xi'_{3}) \sigma} - \frac{\varkappa(\sigma_{1} \xi_{2} - \sigma_{2} \xi_{1}) d\xi}{(1 - \varkappa \xi_{1} \xi_{2}) \sigma};$$

$$= d \lg \frac{\sigma \xi_{1} \xi_{2} (\xi_{2} - \xi_{1}) + \sigma_{1} \xi_{2} \xi (\xi - \xi_{2}) + \sigma_{3} \xi \xi_{1} (\xi - \xi_{1})}{(1 - \varkappa \xi_{1} \xi_{2}) \sigma};$$

$$\xi'_{3} = \frac{(\sigma_{1} \xi_{2} - \sigma_{3} \xi_{1})^{2}}{\xi_{1} \xi_{2} (1 - \varkappa \xi_{1} \xi_{2})^{2}} = \frac{\xi_{1} \xi_{2} (\xi_{2} - \xi_{1})^{2}}{(\sigma_{1} \xi_{2} + \sigma_{2} \xi_{1})^{2}};$$

$$\sigma'_{3} = \frac{\sigma_{1} \xi_{2} \xi'_{3} (\xi'_{3} - \xi_{2}) + \sigma_{2} \xi_{1} \xi'_{3} (\xi'_{3} - \xi_{1})}{\xi_{1} \xi_{2} (\xi_{2} - \xi_{1})} = \xi'_{3} \frac{\sigma_{1} (1 - \varkappa \xi_{2}^{2}) + \sigma_{3} \xi \xi_{1} (\xi - \varkappa \xi_{1})}{(\xi_{1} - \xi_{2})(1 - \varkappa \xi_{1} \xi_{2})}.$$

Diese Formeln bedürfen der Modification, wenn $\xi_1 \xi_2 = 1:\pi$, etwa

$$\xi_1 = \frac{\lambda}{1/\pi}, \quad \xi_2 = \frac{1}{\lambda \sqrt{\pi}}, \quad \sigma_1 = \frac{1}{\sqrt{\pi}} \sqrt{\lambda} (\sqrt{\pi} - \lambda) (1 - \sqrt{\pi} \lambda), \quad \sigma_2 = \frac{\sigma_1}{\lambda^2}, \quad \sigma_2 \xi_1 = \sigma_1 \xi_2$$

ist. Die Formel 2) allerdings kann unmittelbar angewandt werden, nur muss für ξ_3 die zweite der obigen Darstellungen genommen werden, weil die erste in unbestimmter Form erscheint. Hingegen wird ξ_3 unendlich gross, und es werden in 1) zwei Posten unendlich gross, sie müssen zusammengezogen werden. Zu dem Ende schreiben wir zunächst

$$\frac{\sigma_3}{\xi - \xi_3} + \frac{\varkappa(\sigma_1 \xi_2 + \sigma_2 \xi_1)}{1 - \varkappa \xi_1 \xi_2} = \frac{-\sigma_3}{\xi_3} + \frac{\varkappa(\sigma_1 \xi_2 + \sigma_2 \xi_1)}{1 - \varkappa \xi_1 \xi_2} + \frac{\xi \sigma_3}{\xi_3 (\xi - \xi_3)},$$

und beachten, dass für wachsende ξ_3 das letzte Glied gegen Null convergirt und mithin hier fortgelassen werden kann. Die beiden ersten Glieder ergeben

$$\frac{\varkappa(\sigma_{1}\xi_{2}+\sigma_{2}\xi_{1})}{1-\varkappa\xi_{1}\xi_{2}} - \frac{\sigma_{3}}{\xi_{3}} = \frac{\varkappa(\sigma_{1}\xi_{2}+\sigma_{2}\xi_{1})(\xi_{1}-\xi_{2})-\sigma_{1}(1-\varkappa\xi_{2}^{2})+\sigma_{2}(1-\varkappa\xi_{1}^{3})}{(\xi_{1}-\xi_{2})(1-\varkappa\xi_{1}\xi_{2})} = \frac{\sigma_{2}-\sigma_{1}}{\xi_{1}-\xi_{2}} = \frac{\sigma_{1}\xi_{2}-\sigma_{1}\xi_{1}}{\xi_{1}(\xi_{1}-\xi_{2})} = \frac{\sigma_{1}\xi_{2}}{\varkappa}.$$

For den Fall $\xi_1 \xi_2 = x$ geht deshalb Formel 1) über in

1 a)
$$\frac{\sigma_1 d\xi}{(\xi - \xi_1)\sigma} + \frac{\sigma_2 d\xi}{(\xi - \xi_2)\sigma} + \frac{\sigma_1 d\xi}{\xi_1 \sigma} = d \lg \frac{\sigma \xi_1 - \sigma_1 \xi}{\sigma \xi_1 + \sigma_1 \xi}.$$

Die Aufgabe des sphärischen Pendels führt auf zwei Integrale dritter Gattung, die zuerst von Herrn Schleiermacher in seiner Inauguraldissertation in eins zusammengezogen worden sind. Die Möglichkeit dieser Vereinigung beruht hier auf dem eigenthümlichen Umstande, dass σ dieselben Werthe annimmt, wenn für ξ der Parameter des einen oder des andern Integrales gesetzt wird. Ist nämlich

$$x^2 + y^2 + (s - \cos \alpha)^2 = 1$$

die Gleichung der Kugel, auf der sich der Punkt bewegt, und findet die Bewegung zwischen den horizontalen Ebenen

$$s=0$$
, $s=n=\cos\alpha-\cos\alpha'$

statt, und ist t die Zeit,

$$m = (1 + 2 \cos \alpha \cos \alpha' + \cos^2 \alpha) : (\cos \alpha + \cos \alpha'),$$

q die geographische Länge des bewegten Punktes, bezogen auf die Kugel, so wird die Erhebung s des bewegten Punktes über der horizontalen xy-Ebene durch die Gleichungen

$$dt = \frac{ds}{\sqrt{2g} \sqrt{s(s-n)(s-m)}}, \quad s = n\xi = nsa^2(\sqrt{\frac{1}{2}mg}t)$$

bestimmt, wennn der Modul der elliptischen Functionen

$$k^{2} = \kappa = \frac{\cos^{2}\alpha - \cos^{2}\alpha'}{1 + 2\cos\alpha\cos\alpha' + \cos^{2}\alpha}, \quad k'^{2} = \kappa' = \frac{1 + 2\cos\alpha\cos\alpha' + \cos^{2}\alpha'}{1 + 2\cos\alpha\cos\alpha' + \cos^{2}\alpha}$$

ist. Wird noch gesetzt

 $\xi_1 = (\cos \alpha - 1) : n$, $\xi_2 = (\cos \alpha + 1) : n$, $\sigma = \sqrt{\xi(1 - \xi)(1 - \kappa \xi)}$, so ist die Differentialgleichung der Trajectorie

$$d\varphi = \frac{\sin \alpha \sin \alpha'}{\sqrt{\cos \alpha + \cos \alpha'}} \cdot \frac{dz}{(1 - (z - \cos \alpha)^2)\sqrt{z(s - n)(s - m)}}$$

$$= \frac{\sin \alpha \sin \alpha'}{\sqrt{m}\sqrt{\cos \alpha + \cos \alpha'}} \cdot \frac{d\xi}{(1 - (n\xi - \cos \alpha)^2)\sigma}$$

$$= \frac{\sin \alpha \sin \alpha'}{n^2\sqrt{1 + 2\cos \alpha \cos \alpha' + \cos^2 \alpha}} \cdot \frac{d\xi}{(\xi - \xi_1)(\xi - \xi_2)\sigma}.$$

Für $\xi = \xi_1$ und $\xi = \xi_2$ nimmt σ denselben Werth, nämlich den Werth

$$\sigma_1 = \sigma_2 = i \sin \alpha \sin \alpha' : n \sqrt{1 + 2 \cos \alpha \cos \alpha' + \cos^2 \alpha} = i \tau$$

an. Mit Einführung dieser Bezeichnung kann man schreiben

$$d\varphi = \frac{-i\sigma_1 d\xi}{n(\xi - \xi_1)(\xi - \xi_2)\sigma} = i\left(\frac{\frac{1}{2}\sigma_1 d\xi}{(\xi - \xi_1)\sigma} - \frac{\frac{1}{2}\sigma_2 d\xi}{(\xi - \xi_2)\sigma}\right),$$

und wenn man hierauf die Formel 2) anwendet,

$$\frac{1}{2i} \lg \frac{\sigma \xi_1 \xi_2 (\xi_2 - \xi_1) + i\tau \xi (\xi (\xi_1 + \xi_2) - \xi_1^2 - \xi_2^2)}{\sigma \xi_1 \xi_2 (\xi_2 - \xi_1) - i\tau \xi (\xi (\xi_1 + \xi_2) - \xi_1^2 - \xi_2^2)} = arctg \frac{\tau \xi (\xi (\xi_1 + \xi_2) - \xi_1^2 - \xi_2^2)}{\sigma \xi_1 \xi_2 (\xi_2 - \xi_1)}$$
 setzend, so findet man

$$d\varphi = d \arctan \frac{\sigma \, \xi_1 \, \xi_2 \, (\xi_2 - \xi_1)}{\tau \, \xi \, (\xi_1 + \xi_2) - \xi_1^2 - \xi_2^2)} + \frac{\kappa \, \tau \, (\xi_2 - \xi_1) \, \frac{1}{2} \, d\xi}{(1 - \kappa \, \xi_1 \, \xi_2) \, \sigma} - \frac{i \, \frac{1}{2} \, \sigma'_3 \, d\xi}{\xi - \xi'_3}.$$

Hierin ist

$$\xi'_{3} = \frac{\sigma_{1}^{2}(\xi_{2} - \xi_{1})^{2}}{\xi_{1}\xi_{2}(1 - \kappa \xi_{1}\xi_{2})^{2}} = \frac{1 + 2\cos\alpha\cos\alpha' + \cos^{2}\alpha}{\cos^{2}\alpha\sin^{2}\alpha'} = \frac{\cos^{2}\alpha - \cos^{2}\alpha'}{\kappa\cos^{2}\alpha\sin^{2}\alpha'},$$

$$1 - \xi'_{3} = -\frac{(1 + \cos\alpha\cos\alpha')^{2}}{\cos^{2}\alpha\sin^{2}\alpha'}, \quad 1 - \kappa \xi'_{3} = \frac{\sin^{2}\alpha\cos^{2}\alpha'}{\cos^{2}\alpha\sin^{2}\alpha'} = \frac{tg^{2}\alpha}{tg^{2}\alpha'},$$

$$\sigma'_{3} = \frac{itg\alpha(1 + \cos\alpha\cos\alpha')\sqrt{1 + 2\cos\alpha\cos\alpha' + \cos^{2}\alpha'}}{tg\alpha'\cos^{2}\alpha\sin^{2}\alpha'},$$

worin das Wurzelzeichen wie oben in σ_1 zu nehmen ist. — Ist α gegeben, so lässt sich α' auf unendlich viele Arten so bestimmen, dass die Gleichung $\xi'_3 = s\alpha^2 v$ durch einen Werth von v gelöst wird, der in der Form $\lambda K + \lambda' i K'$ darstellbar ist, während λ und λ' rationale Zahlen sind, und es lässt sich in diesen Fällen das Integral dritter Gattung vollständig durch ein Integral erster Gattung und einen Logarithmus einer rationalen Function von σ und ξ darstellen. Dies tritt, wenn $\alpha' = \frac{1}{2}\pi$ ist, wie Herr Schleiermacher bemerkt hat, für jedes α ein; es ist dann nämlich

$$\xi'_{8} = \frac{1 + \cos^{2}\alpha}{\cos^{2}\alpha} = \frac{1}{\kappa} = \sin^{2}(K + iK'), \quad \sigma'_{8} = 0.$$

Um nun zur Darstellung einer Summe von Integralen dritter Gattung mit conjugirt imaginären Parametern durch solche mit reellen Parametern zu gelangen, betrachten wir das Differential

$$dF = \frac{d\xi}{\sigma} \left(\frac{c_1}{\xi - \xi_1} + \frac{c_2}{\xi - \xi_2} \right) = A \left(\frac{\frac{1}{2}\sigma_1 d\xi}{(\xi - \xi_1)\sigma} + \frac{\frac{1}{2}\sigma_2 d\xi}{(\xi - \xi_2)\sigma} \right) + B \left(\frac{\frac{1}{2}\sigma_1 d\xi}{(\xi - \xi_1)\sigma} - \frac{\frac{1}{2}\sigma_2 d\xi}{(\xi - \xi_2)\sigma} \right).$$

$$A = \frac{c_1}{\sigma_1} + \frac{c_2}{\sigma_2}, \quad B = \frac{c_1}{\sigma_1} - \frac{c_2}{\sigma_2},$$

und gelangen durch Anwendung der Formeln 1) und 2) zu der neuen Darstellung derselben

3)
$$dF = \frac{d\xi}{\sigma} \left(\frac{c_1}{\xi - \xi_1} + \frac{c_3}{\xi - \xi_2} \right) = \frac{d\xi}{\sigma} \frac{\xi (c_1 + c_3) - c_1 \xi_1 - c_2 \xi_2}{(\xi - \xi_1)(\xi - \xi_2)}$$

$$= \frac{1}{2} A d l g \frac{\sigma \xi_1 \xi_2 (\xi_2 - \xi_1) + \sigma_1 \xi \xi_2 (\xi - \xi_2) + \sigma_2 \xi_1 \xi (\xi_1 - \xi)}{\sigma \xi_1 \xi_2 (\xi_2 - \xi_1) + \sigma_1 \xi \xi_2 (\xi_2 - \xi) + \sigma_2 \xi_1 \xi (\xi - \xi_1)}$$

$$+ \frac{1}{2} B d l g \frac{\sigma \xi_1 \xi_2 (\xi_2 - \xi_1) + \sigma_1 \xi \xi_2 (\xi_2 - \xi) + \sigma_2 \xi_1 \xi (\xi - \xi_1)}{\sigma \xi_1 \xi_2 (\xi_2 - \xi_1) + \sigma_1 \xi \xi_2 (\xi_2 - \xi) + \sigma_2 \xi_1 \xi (\xi_1 - \xi)}$$

$$+ \kappa \frac{A (\sigma_1 \xi_2 + \sigma_2 \xi_1) + B (\sigma_1 \xi_2 - \sigma_2 \xi_1)}{(1 - \kappa \xi_1 \xi_2) \sigma} \frac{1}{2} d\xi + A \frac{\frac{1}{2} \sigma_3 d\xi}{(\xi - \xi_3) \sigma} + B \frac{\frac{1}{2} \sigma_3' d\xi}{(\xi - \xi'_3) \sigma}$$

In dem speciellen Falle,* in welchem das Differential vorliegt

$$dF = \frac{d\xi}{(\xi^2 - 2\alpha\xi + \beta^2)\sigma} = \frac{d\xi}{(\xi_1 - \xi_2)\sigma} \left(\frac{1}{\xi - \xi_1} - \frac{1}{\xi - \xi_2}\right)$$

ist $c_2 = -c_1 = 1 : (\xi_1 - \xi_2)$. Wird

 $\xi_1 = \alpha + \alpha' i, \quad \xi_2 = \alpha - \alpha' i, \quad \sigma_1 = \gamma + \gamma' i, \quad \sigma_2 = \gamma - \gamma' i, \quad \xi_1 \, \xi_2 = \beta^2, \quad \sigma_1 \, \sigma_2 = \delta^2$

gesetzt, so ergiebt sich

$$A = \frac{1}{2\alpha'i} \left(\frac{1}{\gamma + \gamma'i} - \frac{1}{\gamma - \gamma'i} \right) = \frac{-\gamma'}{\alpha'\delta^2}, \quad B = \frac{\gamma}{i\alpha\delta^2},$$

$$\sigma_1 \xi_2 + \sigma_2 \xi_1 = 2(\alpha\gamma + \alpha'\gamma'), \quad \sigma_1 \xi_2 - \sigma_2 \xi_1 = 2i(\alpha\gamma' - \alpha'\gamma),$$

 $\sigma_1 \xi_2 + \sigma_2 \xi_1 = 2(\alpha \gamma + \alpha \gamma), \quad \sigma_1 \xi_2 - \sigma_2 \xi_1 = 2i(\alpha \gamma - \alpha \gamma),$ $\sigma_1 \xi_2^2 + \sigma_2 \xi_1^2 = 4\alpha \alpha' \gamma' + 2\gamma \alpha^2 - 2\gamma \alpha'^2, \quad \sigma_2 \xi_1^2 - \sigma_2 \xi_1^2 = 2i\gamma'(\alpha^2 - \alpha'^2) - 4i\alpha \alpha' \gamma,$

und man gewinnt nun aus 3) die Formel, die zu liefern die Absicht war:

$$f(s) = \frac{A_{-n}}{(s-a)_n} + \frac{A_{-n+1}}{(s-a)^{n-1}} + \dots + \frac{A_{-1}}{s-a} + A_0 + A_1(s-a) + \dots,$$

so ist es üblich, die Grösse A_{-1} das Residuum der Function f(s) im Pole a zu nennen. In der dritten Auflage meiner Theorie der Thetafunctionen einer Veranderlichen habe ich diese Grösse das erste, A_{-2} das zweite, ... A_{-n} das n^{to} Residuum genannt, und man wird hierzu analog die obigen Grössen $\frac{1}{2}A$, $\frac{1}{4}B$ die logarithmischen Residuen des Integrales im Punkte a nennen können. Soll dieser erweiterte Begriff des ersten, zweiten, dritten, ... Residuums auch auf einen unendlich fernen Pol ausgedehnt werden, wie dies in § 9 meiner Thetafunctionen geschehen ist, so werden die Residuen, wenn man die absteigende Entwickelung

$$A_{-n}(s-a)^n + A_{-n+1}(s-a)^{n-1} + \cdots + A_{-1}(s-a) + A_0 + A_1(s-a)^{-1} + \cdots$$

zu Grunde legt, abgesehen vom letzten A., von der Wahl des Werthes a abhängig. Zur vollständigen Bestimmung dieses Begriffes im Falle eines unendlich fernen Poles muss man daher auf einen bestimmten Werth von a, etwa auf den Werth a=0, übereinkommen.

[•] Besitzt die Function f(z) an der Stelle a einen Pol und ist in dessen Umgebung regulär, ist sie also in der Form darstellbar

$$\begin{split} 4) \, \frac{d\,\xi}{(\xi^2-2\,\alpha\,\xi+\beta^2)\,\sigma} &= \frac{-\,\gamma'}{2\,\alpha'\delta^3} \, d\,lg \, \frac{\xi^2(\alpha\,\gamma'-\alpha'\gamma) + (2\,\alpha\,\alpha'\gamma + \gamma'(\alpha'^2-\alpha^2))\,\xi - \alpha'\beta^2\,\sigma}{\xi^2(\alpha\,\gamma'-\alpha'\gamma) + (2\,\alpha\,\alpha'\gamma + \gamma'(\alpha'^2-\alpha^2))\,\xi + \alpha'\beta^2\,\sigma} \\ &- \frac{\gamma}{\alpha'\,\delta^3} \, d\,arctg \, \frac{\alpha'\beta^2\,\sigma}{\xi^2(\alpha\,\gamma + \alpha'\gamma') - \xi(2\,\alpha\,\alpha'\gamma' + \gamma(\alpha^2-\alpha'^2))} \\ &+ \frac{2\,\kappa}{1-\kappa\beta^2} \, \frac{\frac{1}{2}\,d\,\xi}{\sigma} - \frac{\gamma'}{\alpha'\,\delta^3} \, \frac{\frac{1}{2}\,\sigma_3\,d\,\xi}{\xi - \xi_8} + \frac{\gamma}{i\,\alpha'\,\delta^2} \, \frac{\frac{1}{2}\,\sigma_3\,d\,\xi}{\xi - \xi'_3}, \\ \xi_8 &= \frac{4\,(\alpha\,\gamma + \alpha'\gamma')^2}{\beta^2(1-\kappa\beta^2)^2}, \quad \xi'_8 = \frac{-4\,(\alpha\,\gamma'-\alpha'\gamma)^2}{\beta^2(1-\kappa\beta^2)^2}. \end{split}$$

Um ein einfaches Beispiel zu haben, nehmen wir

 $\alpha = -1$, $\alpha = 0$, $\alpha' = \beta$, $\sigma_1 = e^{i \lambda i \pi} \delta = (1+i) \sqrt{\frac{1}{2}} \delta$, $\gamma = \gamma' = \sqrt{\frac{1}{2}} \delta$ an, so ist

$$\begin{split} \frac{d\xi}{(\xi^2+\beta^2)\sigma} &= -\frac{1}{2\sqrt{2}\beta\delta} d^3 g \frac{\delta\xi(\beta-\xi)-\sqrt{2}\beta^2\sigma}{\delta\xi(\beta-\xi)+\sqrt{2}\beta^2\sigma} - \frac{1}{\sqrt{2}\beta\sigma} d^3 \arctan g \frac{\sqrt{2}\beta^2\sigma}{\delta\xi(\beta+\xi)} \\ &\quad + \frac{2}{1+\beta^2} \frac{\frac{1}{2}d\xi}{\sigma} - \frac{1}{\sqrt{2}\beta\delta} \frac{\frac{1}{2}\sigma_3 d\xi}{\xi-\xi_3} + \frac{1}{i\sqrt{2}\beta\delta} \frac{\frac{1}{2}\sigma_3' d\xi}{\xi-\xi_3}, \\ &\quad \xi_3 &= \frac{2\beta}{1+\beta^2}, \quad \xi_3' &= -\frac{2\beta}{1+\beta^2}, \\ \sigma_3 &= \frac{2\beta}{1+\beta^2} \frac{\sqrt{2}(1-\beta^2)\delta}{2\beta(1+\beta^2)} = \frac{\sqrt{2}\delta(1-\beta^2)}{(1+\beta^2)^2}, \quad \sigma_3' &= \frac{i\sqrt{2}\delta(1-\beta^2)}{(1+\beta^2)^2}. \end{split}$$

Für den noch specielleren Fall $\beta=1,\ \delta=\sqrt{2}$ sind σ_3 und σ_8' gleich Null, und es ergiebt sich

$$\frac{d\xi}{(1+\xi^2)\,\sigma} = -\frac{1}{4}\,d\,lg\,\frac{\xi(1-\xi)-\sigma}{\xi(1-\xi)+\sigma} - \frac{1}{2}\,d\,arctg\,\frac{\sigma}{\xi(1+\xi)} + \frac{\frac{1}{2}\,d\,\xi}{\sigma},$$

was leicht direct zu verificiren ist.

Zur Darstellung der Differentiale dritter Gattung mit conjugirt imaginären Parametern

$$\frac{\xi d\xi}{(\xi^2-2\alpha\xi+\beta^2)\sigma}$$

durch solche mit reellen Parametern gebe man denselben die Form

$$\frac{\frac{1}{2} d\xi}{\sigma} \left(\frac{1}{\xi - \xi_1} + \frac{1}{\xi - \xi_2} \right) + \frac{\frac{1}{2} (\xi_1 + \xi_2) d\xi}{(\xi^2 - 2 a \xi + \beta^2) \sigma}$$

Hierin ist der zweite Theil eben erledigt; die Darstellung des ersten Theiles aber ergiebt sich aus 3), wenn dort

gesetzt wird.
$$c_1 = c_2 = \frac{1}{2}$$
, $A = \gamma : \delta^2$, $B = -i\gamma' : \delta^2$

Nachträglich habe ich bemerkt, dass sich Herr Scheibner im XII. Bande der Abhandlungen der mathem.-physikal. Classe der Königl. sächs. Gesellsch. d. Wissensch. Nr. 11, Art. 58 mit demselben Gegenstande beschäftigt hat.

Jena. J. Thomae.

Verlag von Modellen für den höheren

math. Unterricht.

Bei L. Brill in Darmstadt ist soeben erschienen:

18. Serie.

Fadenmodelle

der Regelflächen dritten Grades

augef. von stud. techn. C. Tesch unter Leitung von Prof. Dr. Wiener in Karlsruhe,

Vier Modelle, entspr. den Fällen, dass eine Leitgerade die Ebene des Leitkegelschnitts 1. innerhalb, II. ausserhalb trifft; III. der Kegelschnitt unendlich fern liegt; IV. Cayley'sche Fläche (die 2 Leitgeraden treffen den Kegelschnitt). Preis der ganzen Serie 90 Mark, eines einzelnen Modells 25 Mark, excl. Emballage und Versendungskosten.

Verlag von Friedrich Vieweg & Sohn in Braunschweig. (Zu beziehen durch jede Buchhandlung.)

Soeben erschien:

Elliptische Functionen und algebraische Zahlen.

Akademische Vorlesungen

H. Weber.

Professor der Mathematik au der Universität Marburg.

gr. 8. geh. Preis 13 Mark

Im Verlage von Georg Reimer in Berlin ist soeben erschienen und zurh alle Buchhandlungen zu beziehen:

Fertschritte der Physik im Jahre 1884. Dargestellt von der physikalischen Gesellschaft zu Berlin, KL Jahrgang, Redigirt von Dr. E. Budde und Prof. Dr. B. Schwalbe. II. Abthl. enthaltend Physik des Aethers, M. 21. —. III. Abthl. enthaltend Physik der Erde, M. 18. —

Jehrbuch fiber die Fortschritte der Mathematik, begründet von Carl Ohrtmann. Im Verein mit anderen Mathematikern und unter besonderer Mitsirkung der Herren Felix Müller und Albert Wangerin, herausgegeben von Emil Lampe.

Band XX. Jahrgang 1888. [In 3 Heften.] Heft 1. M. 13. -

Um die Weitläufigkeiten zu vermeiden, welche dadurch den, dass viele tielträge zur Zeitschr. f. Math. n. Phys. nach Leipzig (1. ... an den Verleger their met die Redaution) gezendet werden, ergeht an die Herren Mitarbeiter, Einsender von masioneren plaren etc. die Bitte, sich nur folgender Adressen bedienen zu wollen:

für Beiträge auf ersten Abthellung: nu Dr. O. Schlömlich, Geheimrath n. D. in Dresden-A., Porticusstr. 5.

für neitrage zur zwolten Abthellung: neitrage Beldelberg, Galebergstr. ab.

INHALT.

V. Ueber die Doppelpunkte der Koppelcurve. Von Prof. Dr. B. Mexaes in
Praunschweig
hängende Systeme von linearen Gleichungen. Von Dr. K. WERMBAUCH
in Dorpat
VII. Ueber absolute Elementensysteme auf ebenen Unicursalcurven vierter und dritter Ordnung, Von Prof. Wum Binosa in Wiener-Neustadt (Tafel IV und V)
VIII. Analytische Untersuchungen über die Constitution der in krummen
Flächen gebrochenen a priori astigmatischen Strahlenbündel mit An- wendungen der neueren Geometrie. Von Dr. A. Annesor in Rostock
Kleinere Mittheilungen.
VII Bemerkung zur Theorie der linearen Differentialgleichungssysteme.
Von Georg Harder, Stud. math. in Heidelberg
VIII. Ueber elliptische Integrale dritter Gattung. Von J. Tnomar in Jena
Historisch-literarische Abtheilung (besonders paginirt).
Commentar zu dem "Tractatus de Numeris Datis" des Jordanus Nemorarius.
Von Maximilian Curtze in Thorn. (Fortsetzung)
Recensionen:
Nerzmannza, Prof. R., Lehrbuch der ebenen und sphärischen Tri-
gonometrie. Von Alex, Wermone
Connage, Oberlehrer Dr. F., Lehrbuch der abenen Trigonometrie:
Von Acex. Wensicke
Gestier, Prof. Dr. S., Handbuch der mathematischen Geographie, herausgegeben von Prof. Dr. Fr. Ratzen., Von L. Neumann
Schwarz, H. A., Gesammelte Mathematische Abhandlungen. Von
M. Noethen
Windmann, Prof. E., Ueber die Naturwissenschaften bei den
Arabern, herausgegeben von Vinchow und Warrannetm.
Von P. Theotean
Fine, Prof. Dr. Kant, Kurzer Abriss einer Geschichte der Elementar-
Mathematik. Von Carron
Konsserre, Hans, Der Astronom, Mathematiker und Geograph Eudoxos von Knidos, Von Canton
Bibliographie vom 16. December 1890 bis 28. Februar 1891:
Periodische Schriften - Geschichte der Mathematik und Physik -
Reine Mathematik - Angewandte Mathematik - Physik
und Meteorologie

JUL 2 1891

Zeitschrift

für

Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

VOD

Dr. O. Schlömilch, Dr. E. Kahl

und

Dr. M. Cantor.

36. Jahrgang. 8. Heft.

Mit zwei lithographirten Tafeln.

Verlag von B. G. Teubner. 1891. Im Vorlage von B G. Teubner in Leipzig ist soeben erschienen und durch alle Buchhandlungen zu beziehen:

INHALT UND METHODE

DISS

PLANIMETRISCHEN UNTERRICHTS.

EINE VERGLEICHENDE PLANIMETRIE

TON

DR HEINRICH SCHOTTEN.

[IV und 370 S.] gr. 8. geh. n. # 6.-

Biel der großen Zahl von Lehrbachern der Elementar-Mathematik, die für sich eine gaze-Bibliothek ausmachen, glaubt der Verfasser den Wünschen des mathematischen Lehrerpublikums entgegenzukommen, wann er eine Zusammensteilung der wichtigeren Arbeiten auf dem Gebiete des planimetrischen Unterriehts unternimmt. Es soll dieses Werk darn dienen, sich rasch und sicher über die gesamte einschlägige Litteratur zu orientieren und seibst nach den ausführlich gegebenan Zitaten über einen bestimmten Gegenstand ein Urieil sich bilden zu können. Es gewährt somit gewissermaßen einen Einblick in die Entstehung des vorliegenden subjektiv behandelten Teiles und seust den Leser in den Stand, denselben seibst au der Hand des gebotanen Materials pröfen zu können. Ein sorgfältiges Namen- und Sachregister wird die Brauchbarkeit dieses Handbuchsenhöhen und es zu einem Nachschlagebuch für alle Fragen auf dem Gebiete des planimetrischen Unterrichts voraus, die ebenfalls in enbireichen Litterrichts geeignet machen. Als Einleitung schickt Verfasser eine Studie über die Beformbestrebungen auf dem Gebiete des planimetrischen Unterrichts voraus, die ebenfalls in enbireichen Zitaten das en berücksichtigende Material bietet; die am Schluß dieser Einleitung aufgestellan Thosen konnzeichnen die Anschen des Verfassers gegenüber diesem Reformbestrebungen. Der erste Band wird die Grundbegriffe behandeln und also vorwiegend auf dem mathematisch-philosophischen Grenzgebiete sieh bewegen.

Ferner:

Nach Aufstellung des allgemeinen Größenbegriffs wird in knappen Zugen dargelagt, wie se zu den Erweiterungen des Zahlbegriffs in den drei Stufen; irrationale und negative Zahl, gemeinbomplexe Zahl, Quaternion gekommen ist. Aus diesem historischen Überblick traten insbessudere die Namen: "Cartesius, Gauß, Hamilton" hervor.

- Bieler, Rector Dr. A., Leitfaden und Repetitorium der Analytischen Mechanik. Für Studierende an Universitäten und technischen Hochschulen.
 - I. Teil: Analytische Statik der festen Körper, mit 18 Holzschnitten. M. 1.80.
 - II. " Analytische Dynamik der festen Körper, mit 15 Helzschnitten. M. 1.80.

Joder Teil ist auch einseln verkäuflich.

Verlag von Wilhelm Violet in Leipzig.

J. B. Metzlerscher Verlag, Stuttgart.

Besprochen in dieser Ztschr. 1890 II. 6. S. 208.

E. Hammer, Über die geographisch wichtigsten Kartenprojectionen insbesondere die zenitalen Entwürfe nebst Tafeln zur Verwandlung von Geograph-Koordinaten in Azimutale. Preis 5 .4.

Kurz zuvor erschien:

E. Hammer, Autorisierte deutsche, mit einigen Zusätzen vermehrte Bearbeitung von Tisset's Buch: Die Netzentwürfe geogr. Karten, nebst Aufgaben über Abbildung beliebiger Flächen aufeinander Dreis 10.000

IX:

Ueber die Krümmungsmittelpunkte der Bahneurven in ebenen ähnlich-veränderlichen Systemen.

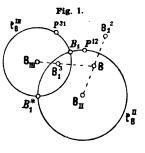
Von

Prof. Dr. R. MÜLLER in Braunschweig.

Herr Geisenheimer hat gezeigt, wie zu jedem Systempunkte eines ebenen ähnlich-veränderlichen Systems der Krümmungsmittelpunkt der zugehörigen Bahncurve construirt werden kann, wenn diese Krümmungsmittelpunkte für drei beliebige Systempunkte in der betrachteten Phase bekannt sind.* In dem vorliegenden Aufsatze sollen die Beziehungen zwischen den Systempunkten der bewegten Ebene und den entsprechenden Krümmungsmittelpunkten in der festen Ebene näher untersucht werden. Zu dem Zwecke wird zunächst eine neue Bestimmung des Krümmungsmittelpunktes der Bahncurve abgeleitet und zugleich die umgekehrte Aufgabe gelöst, zu einem gegebenen Krümmungsmittelpunkte die zugehörigen Systempunkte zu ermitteln.

1. Seien S_1 , S_2 , S_3 drei beliebige Phasen eines ähnlich-veränderlichen Systems S; A_1 , A_2 , A_3 die zugeordneten Lagen eines Systempunktes A, A der Mittelpunkt des durch $A_1A_2A_3$ gehenden Kreises, P^{hi} der reelle selbstentsprechende Punkt von S_h und S_i , P_k^{hi} der in S_k entsprechende Punkt; das System der Kreismittelpunkte A werde mit Σ bezeichnet.

Jedem Punkte B von Σ entsprechen in S_1 im Allgemeinen zwei reelle oder imaginäre Punkte B_1 , B_1 . Bestimmt man nämlich (Fig. 1) die Punkte B_1^2 und B_1^3 , die in S_1 dem Punkte B entsprechen, wenn dieser bez. den Systemen S_2 und S_3 zugewiesen wird, und beschreibt durch P^{12} und P^{31} die Kreise \overline{t}_1^{11} und \overline{t}_1^{111} , welche die Strecken BB_1^2 und BB_1^3 rechtwinklig barmonisch theilen, so schneiden sich dieselben in B_1 , B_1^* . Denn es ist



^{*} Geisenheimer, Untersuchung der Bewegung ähnlich-veränderlicher Systeme, diese Zeitschrift Bd. XXIV S. 129.

$$\frac{B_1 B_1}{B_1 B_1^2} = \frac{P^{12} B_1}{P^{12} B_1^2},$$

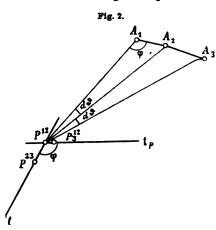
und da B_2B , $B_1B_1^2$ entsprechende Strecken von S_2 und S_1 sind, so folgt

$$\frac{B_2 B}{B_1 B_1^2} = \frac{P^{12} B}{P^{12} B_1^2},$$

also $B_1 B = B_2 B$ u. s. w.

Die Mittelpunkte B_{II} , B_{III} der Kreise \mathfrak{t}_{1}^{II} , \mathfrak{t}_{3}^{III} bilden zwei zu Σ ähnliche Systeme Σ_{II} , Σ_{III} , die mit Σ bez. die Punkte P^{12} , P^{31} entsprechend gemein haben. Dem Punkte P^{23} des Systems Σ sind in Σ_{II} , Σ_{III} zwei Punkte der Geraden $P^{12}P_{1}^{23}$ zugeordnet; beschreibt man daher in Σ durch P^{12} , P^{23} , P^{31} den Kreis ψ , so schneiden sich die Kreise ψ , ψ_{II} , ψ_{III} in einem Punkte der Geraden $P^{23}P_{1}^{23}$ und werden aus demselben perspectiv aufeinander bezogen. Dann ist aber der zweite Schnittpunkt Z_{IIIII} von ψ_{II} und ψ_{III} der selbstentsprechende Punkt von Σ_{II} und Σ_{III} ; dem in Σ zugeordneten Punkte Z entsprechen in S_1 die imaginären Kreispunkte Z_1 , Z_1 als die Schnittpunkte der concentrischen Kreise \mathfrak{t}_1^{II} , \mathfrak{t}_1^{III} . Derjenige Punkt Z von Σ , dem in S_1 die imaginären Kreispunkte entsprechen, liegt also auf dem durch P^{12} , P^{23} , P^{31} gehenden Kreise ψ . Werden unter S_1 , S_2 , S_3 drei unendlich benachbarte Phasen verstanden, so ist ψ der zur Phase S_1 gehörende Rückkehrkreis.

2. Sind jetzt S_1 , S_2 , S_3 drei unendlich benachbarte Systemphasen, so ist A der Krümmungsmittelpunkt der vom Punkte A beschriebenen Bahn-



curve an der Stelle A_1 : die Gerade $P^{12}P_3^{12}$ die Bahntangente t_P desjenigen Systempunktes P, der in den Phasen S_1 und S_2 mit dem Pole P^{12} zusammenfällt, die Gerade $P^{12}P^{23}$ die Polbahntangente t, $LP^{12}A_1A_2=Ltt_P$ der augenblickliche Geschwindigkeitswinkel φ (Fig. 2). Wir nehmen an, das System S gelange aus der Phase S_1 in S_2 durch eine Drehung um P^{12} um den unendlich kleinen Winkel $d\vartheta$ und durch eine unendlich kleine Längenänderung im Verhältniss $1:1+d\lambda$; dann kann der

Uebergang aus S_2 in S_3 bewirkt werden durch eine abermalige Drehung um P^{12} um den Winkel $d\vartheta$, durch eine Längenänderung im Verhältniss $1:1+d\lambda+d^2\lambda$ und durch eine Parallelverschiebung um die Strecke $P^{12}P_3^{12}=d^2p$. Hierbei sind $d^2\lambda$ und d^2p unendlich kleine Grössen zweiter Ordnung, und es ergiebt sich

 $\tan \varphi = -\frac{d\vartheta}{d\lambda}.$

Seien feruer x_1y_1 , x_2y_2 , x_3y_3 , $\xi\eta$ die rechtwinkligen Coordinaten der Punkte A_1 , A_2 , A_3 , A für P^{12} als Anfangspunkt, t_P als x-Axe; dann ist

1)
$$\begin{cases} x_2 = (1+d\lambda)(x_1 \cos d\vartheta + y_1 \sin d\vartheta), \\ y_2 = (1+d\lambda)(-x_1 \sin d\vartheta + y_1 \cos d\vartheta), \end{cases}$$

$$\begin{cases} x_3 = (1+d\lambda)(1+d\lambda+d^2\lambda)(x_1\cos 2d\vartheta + y_1\sin 2d\vartheta) + d^2p, \\ y_3 = (1+d\lambda)(1+d\lambda+d^2\lambda)(-x_1\sin 2d\vartheta + y_1\cos 2d\vartheta). \end{cases}$$

Bildet man nun mit den unbestimmten Factoren m und n die Gleichung

$$m.\overline{A}\overline{A_2}^2 + n.\overline{A}\overline{A_3}^2 - (m+n).\overline{A}\overline{A_1}^2 = 0$$

oder

3)
$$2\{(m+n)x_1 - mx_2 - nx_3\} \xi + 2\{(m+n)y_1 - my_2 - ny_3\} \eta + m(x_2^2 + y_2^2) + n(x_3^2 + y_3^2) - (m+n)(x_1^2 + y_1^2) = 0,$$

so wird durch dieselbe bei veränderlichem ξ , η jede durch A gehende Gerade dargestellt. Dabei ist nach 1) und 2)

$$m(x_3^2 + y_2^2) + n(x_3^2 + y_3^2) - (m+n)(x_1^2 + y_1^2)$$

$$= \{m(1+d\lambda)^2 + n(1+d\lambda)^2(1+d\lambda+d^2\lambda)^2 - (m+n)\}(x_1^2 + y_1^2) + \cdots,$$
folglich verschwindet in 3) das Glied mit $x_1^2 + y_1^2$ für

$$m = (1 + d\lambda)^2 (1 + d\lambda + d^2\lambda)^2 - 1, \quad n = 1 - (1 + d\lambda)^2.$$

Schreibt man noch xy statt x_1y_1 , also auch S, A, P statt S_1 , A_1 , P^{12} , and vernachlässigt unendlich kleine Grössen dritter Ordnung, so geht 3) über in

Durch Gleichung 4) wird jedem Systempunkte A(xy) der augenblicklich betrachteten Phase S eine bestimmte durch den entsprechenden Krümmungsmittelpunkt A gehende Gerade g_A zugeordnet, und umgekehrt jedem Punkte $B(\xi\eta)$ eine Gerade g_B , nämlich die Verbindungslinie der beiden Systempunkte B, B^* , deren Bahncurven den Punkt B zum Krümmungsmittelpunkt haben. Diese reciproke Beziehung zwischen den Ebenen S und Σ soll zunächst weiter untersucht werden.

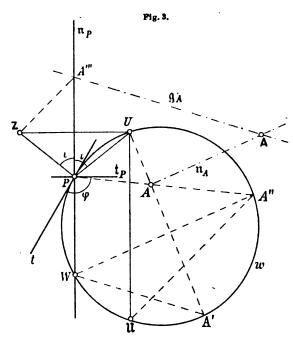
Setzt man in 4) $x = \xi$, $y = \eta$, so ergiebt sich als Ort der Punkte, die auf ihren entsprechenden Geraden liegen, das Geradenpaar

$$x^2 + y^2 = 0.$$

Dem Pole P entspricht, gleichgiltig ob er dem System S oder Σ zugewiesen wird, die Gerade x = 0, d. h. die Normale n_P der vom Systempunkte P durchlaufenen Bahncurve.

Seien ferner U und Z bez. diejenigen Punkte von S und Σ , die der unendlich fernen Geraden zugeordnet sind, so gehört zu U ein unendlich ferner Krümmungsmittelpunkt. während dem Krümmungsmittelpunkte Z nach § 1 in S die imaginären Kreispunkte Z, Z^* entsprechen. Dann liegt U auf dem Wendekreise w, Z auf dem Rückkehrkreise ψ , und für die Coordinaten von U und Z folgt aus A

$$\left\{ \begin{array}{l} d\lambda \left(d\vartheta^2 + d\lambda^2 \right) x_U + d\vartheta \ d^2\lambda \ y_U - d\lambda \ d^2p = 0 \,, \\ - d\vartheta \ d^2\lambda \ x_U + d\lambda \left(d\vartheta^2 + d\lambda^2 \right) y_U = 0 \,; \\ d\lambda \left(d\vartheta^2 + d\lambda^2 \right) \xi_1 - d\vartheta \ d^2\lambda \ \eta_1 + d\lambda \ d^2p = 0 \,, \\ d\vartheta \ d^2\lambda \ \xi_1 + d\lambda \left(d\vartheta^2 + d\lambda^2 \right) \eta_1 = 0 \,; \end{array} \right.$$



die Punkte U und Z liegen also symmetrisch in Bezug auf die Bahnnormale np des Punktes P (Fig. 3).

Jedem unendlich fernen Punkte A entspricht eine durch Z gehende Gerade ga, und da jedem der imaginären Kreispunkte seine Verbindungslinie mit Z zugeordnet ist, so bildet die Richtung nach A mit der entsprechenden Geraden qa einen constanten Winkel .. Nun entspricht dem unendlich fernen Punkte von np die Gerade PZ, folglich ist $\iota = L \, n_P \, P \, Z = Das$

Analoge gilt von den unendlich fernen Punkten des Systems Σ .

Auf Grund dieser Beziehungen kann zu jedem Punkte von S oder Σ die entsprechende Gerade g leicht construirt werden.

3. Construction des Krümmungsmittelpunktes zu einem gegebenen Systempunkte, und umgekehrt. In Fig. 3 sind der Pol P, die Normale nP der von P beschriebenen Bahncurve, der Wendekreis w und auf demselben der Punkt U willkürlich gegeben und hierdurch drei unendlich nahe Systemphasen definirt.* Der Wendekreis schneide nP in W, eine durch U zu nP gezogene Parallele in U. Um dann zum Systempunkte A den entsprechenden Krümmungsmittelpunkt A zu ermitteln, ziehe man die Geraden UA und PA, welche w bez. in A', A'' schneiden, und durch A

^{*} Sind die drei unendlich nahen Phasen ganz allgemein durch Angabe dreier Systempunkte und der zugehörigen Krümmungsmittelpunkte festgelegt, so kann nach Geisenheimer (a. a. O. S. 145) der Pol P, der Punkt U und der Wendekreis w in einfacher Weise bestimmt werden. Der von uns mit U bezeichnete Punkt ist nämlich, wie man leicht erkennt, identisch mit dem Punkte H des Geisenheimer'schen Aufsatzes.

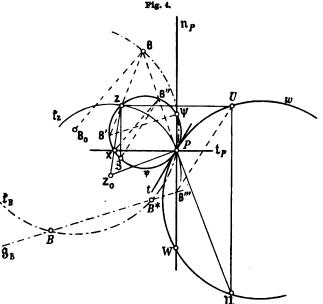
zu WA'' die Parallele \mathfrak{n}_A , so ist $LPA''W=LtPW=\varphi-90^\circ$, also \mathfrak{n}_A die Bahnnormale von A. Man bestimme ferner zu A die reciprok zugeordnete Gerade \mathfrak{g}_A : Dem unendlich fernen Punkte von PA entspricht als reciproke Gerade \mathfrak{g} die Parallele ZA''' zu $\mathfrak{U}A''$, weil $LPA''\mathfrak{U}=\iota$, mithin der Geraden PA der Schnittpunkt A''' von ZA''' und \mathfrak{n}_P . Der Geraden UA ist der unendlich ferne Punkt von WA' reciprok zugeordnet, weil $LUA'W=\iota$, folglich geht \mathfrak{g}_A durch A''' parallel zu WA'. Durch \mathfrak{n}_A und \mathfrak{g}_A ist A bestimmt.

Liegt A auf w, z. B. in A'', so ist A der unendlich ferne Punkt von WA''.

Dem unendlich fernen Punkte von PA entspricht ein unendlich ferner Krümmungsmittelpunkt in der Richtung UA''.

Sollen umgekehrt zum gegebenen Krümmungsmittelpunkte B die entsprechenden Systempunkte B, B^* construirt werden (Fig. 4), so bestimme

man zunächst den Rückkehrkreis w und seine Schnittpunkte Ψ, X und 3 mit np, tp und der durch Z zu np gezogenen Paral lelen. Zieht man dann die Geraden ZB und PB, die den Rückkehrkreis bez. in B', B" treffen, und durch $U \stackrel{\mathfrak{T}}{\searrow} I$ zu 3B" die Parallele UB''' bis n_P , so geht die zu B gR reciprok conjugirte Gerade durch B" und ist



parallel zu $\Psi B'$. In der That, es ist $L \Im B''P = \iota$, also entspricht bei der reciproken Beziehung zwischen den Ebenen Σ und S dem unendlich fernen Punkte von PB die Gerade UB''', und da dem Punkte P die Gerade n_P zugeordnet ist, so sind B''' und PB einander conjugirt. Der Geraden ZB entspricht aber der unendlich ferne Punkt von $\Psi B'$, da $L \Psi B'Z = \iota$.

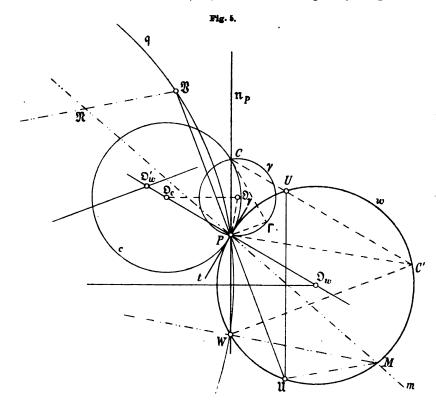
Man ziehe ferner BB₀ parallel zu XB"; dann ist L B₀B $P=180^{\circ}-\varphi$ also BB₀ die Bahntangente von B, wenn B als Systempunkt aufgefasst wird. Beschreibt man noch durch P und B den Kreis \mathfrak{t}_1 , dessen Mittelpunkt B₀ auf BB₀ liegt, so geht derselbe nach § 1 durch die gesuchten Punkte B, B^* .

Einem unendlich fernen Krümmungsmittelpunkte B entspricht in S einerseits der unendlich ferne Punkt von $\mathfrak{Z}B''$, andererseits der Schnittpunkt des Wendekreises mit der Geraden WB_{∞} .

Liegt B auf dem Rückkehrkreise, z. B. in B", so ist g_1 parallel zu Ψ B", d. h. senkrecht zu BB_0 , folglich $BB = BB^*$. Jedem Punkte B des Rückkehrkreises entsprechen also zwei Systempunkte, deren Bahncurven gleichen Krümmungsradius besitzen.

Zum Punkte Z, dem in S die imaginären Kreispunkte zugeordnet sind, ergiebt sich ein Kreis t_1 , dessen Mittelpunkt Z_0 auf ZX liegt. Nun ist $LZPZ_0 = LZ_0ZP = LXPt$, also $LZPX = LZ_0Pt$. Da ferner $Ln_PPZ = LtPu$, so folgt $LZPX + Ln_PFZ = LZ_0Pt + LtPu$ oder $LZ_0Pu = 90^\circ$, d. h. der Kreis t_1 berührt die Gerade Pu.

4. Verwandtschaft zwischen den Systemen S und Σ . Construirt man zu den Punkten A, B, ... einer beliebigen Systemgeraden m



die Krümmungsmittelpunkte A, B, ..., so gehen die Geraden g_A , g_B , ... durch denjenigen Punkt \mathfrak{M} , welcher bei der reciproken Beziehung der Ebenen S und Σ der Geraden m zugeordnet ist. Die Normalen \mathfrak{n}_A , \mathfrak{n}_B , ...

Digitized by GOOGIC

umhüllen eine Parabel; der Geraden m entspricht also in Σ im Allgemeinen eine Curve dritter Ordnung μ mit \mathfrak{M} als Doppelpunkt. Allen Strahlen aus dem Punkte A sind in Σ Curven dritter Ordnung conjugirt, die sich in einen Punkte A schneiden und deren Doppelpunkte auf der durch A gehenden Geraden \mathfrak{g}_A liegen.

Geht aber die Gerade m durch P (Fig. 5), so sind die Normalen n_A , n_B , ... parallel zu WM, wobei M den zweiten Schnittpunkt von m mit dem Wendekreise bezeichnet, und dann ergiebt sich als entsprechende Curve μ eine Hyperbel, die m in P berthrt und die Gerade WM zur Asymptote hat. Die zweite Asymptote wird gefunden, indem man auf m $\Re P = PM$ macht und $\Re \Re$ parallel zu MU zieht; dieselbe schneidet PU in dem festen Punkte \Re , wobei $\Re P = P$ U ist. Der Asymptotenwinkel ist für alle durch P gehenden Geraden m gleich LWPU. Daraus folgt: Die Mittelpunkte aller Hyperbeln, die in Σ den Strahlen des Büschels P entsprechen, liegen auf dem durch P, W und \Re gehenden Kreise q.

Berührt endlich die Gerade m in P den Wendekreis, so fallen die Asymptoten der Hyperbel μ mit P W und P $\mathfrak B$ zusammen. Der Polbahntangente t entspricht also in Σ die Gerade P $\mathfrak U$.

Sei ferner $\Delta E \ldots$ eine Punktreihe auf der Geraden ν von Σ ; dann bilden die zugehörigen Kreise \mathfrak{k}_{Δ} , \mathfrak{k}_{1} , \ldots ein Büschel, dessen einer Grundpunkt der Pol P ist, und dieses erzeugt mit dem zu ihm projectiven Strahlenbüschel \mathfrak{g}_{Δ} , \mathfrak{g}_{1} , \ldots eine durch P gehende circulare Curve dritter Ordnung n. Dem unendlich fernen Punkte von ν entspricht in S einerseits ein Punkt auf w, und da der Wendekreis mit der Curve n überdies nur noch die imaginären Kreispunkte und den Pol P gemein hat, so zählt P für drei zusammenfallende Schnittpunkte.

Der Geraden $\nu' = \Delta Z$ ist in S eine Curve dritter Ordnung n' zugeordnet, die vom Kreise l_1 in den imaginären Kreispunkten Z, Z^* berührt wird. Nun haben die Curven n und n' ausser den Punkten P, Z, Z^* , D, D^* keinen Punkt miteinander gemein, sie berühren sich also in Z und Z^* . Daraus folgt: Den Geraden von Σ entsprechen im Allgemeinen circulare Curven dritter Ordnung, die vom Wendekreise in P osculirt werden und den Punkt Z zum gemeinsamen Centrum haben.

Geht die Gerade ν durch P, so fallen die Grundpunkte des Kreisbüschels $t_{\triangle}t_{1}$... in P zusammen und dann hat die entsprechende Curve n in P einen Doppelpunkt. Wird die Gerade ν dem System S zugewiesen, so entspricht ihr in Σ eine Hyperbel, welche ν in P berührt; folglich ist ν die eine Tangente der Curve n im Doppelpunkte P. Als zweite Tangente ergiebt sich die Gerade t, da der Wendekreis in P drei zusammenfallende Punkte mit n gemein hat.

Der Geraden $P\mathfrak{U}$ ist nach dem Vorigen in S einerseits die Polbahntangente t zugeordnet, also andererseits der Kreis \mathfrak{k}_1 , von dem bereits bewiesen wurde, dass er $P\mathfrak{U}$ in P berührt.

5. Aus den bisherigen Darlegungen folgt der Satz: In jeder Phase eines ähnlich-veränderlichen Systems stehen die Systempunkte und die Krümmungsmittelpunkte ihrer Bahncurven in einer ein-zweideutigen Verwandtschaft dritten Grades.

Versteht man, wie in § 1, unter S_1 , S_2 , S_3 drei discrete Systemlagen, so entspricht dem Punkte P^{12} in Σ jeder Punkt der Mittelsenkrechten der Strecke $P^{13}P_3^{13}$, und das Analoge gilt von den Punkten P^{31} und P_1^{23} . Beim Grenzübergang verwandelt sich jene Mittelsenkrechte in die Gerade n_P , während $P^{12}P^{31}P_1^{23}$ drei unendlich benachbarte Punkte des Wendekreises darstellen. Geht demnach im System S eine Curve m^{ter} Ordnung durch den Pol P, so zerfällt die in Σ entsprechende Curve $3m^{ter}$ Ordnung in n_P und eine durch P gehende Curve $3m-1^{ter}$ Ordnung. Jeder Systemcurve m^{ter} Ordnung, die in P die Polbahntangente berührt, entspricht in Σ eine Curve von der Ordnung 3m-2, und wird die Systemcurve in P vom Wendekreise osculirt, so ist die Ordnung der entsprechenden Curve gleich 3m-3.

Dem Kreispunkte Z ist als g_Z die Gerade ZZ reciprok zugeordnet, und da die zugehörige Normale n_Z unbestimmt wird, so entspricht dem Punkte Z in Σ jeder Punkt der Geraden ZZ. Daraus ergiebt sich, dass jeder Durchgang der Systemourve durch die imaginären Kreispunkte die Ordnung der entsprechenden Curve um zwei vermindert.

Jedem Kreise c, der in P die Polbahntangente berührt, entspricht demnach in Σ ein durch P gehender Kreis γ^* (Fig. 5). Die Bahnnormalen aller Punkte von c gehen durch den Schnittpunkt C von c mit n_P , folglich geht γ selbst durch C und beide Kreise sind aus C perspectiv aufeinander bezogen. Um zu C den entsprechenden Punkt Γ zu bestimmen, zieht man nach § 3 UC bis C' auf w, $P\Gamma$ parallel zu WC' und $C\Gamma$ als Tangente an c. Dann ist $LC\Gamma P = LWPC'$, d. h. PC' die Tangente in P an γ . Sind also \mathfrak{D}_c , \mathfrak{D}_γ die Mittelpunkte von c und γ , so erhält man \mathfrak{D}_γ , indem man $P\mathfrak{D}_\gamma \perp PC'$ und $\mathfrak{D}_c\mathfrak{D}_\gamma \perp n_P$ zieht, und wiederholt man diese Construction für alle anderen Kreise d, e, ..., welche t in P berühren, so ergiebt sich

$$P(\mathfrak{D}_{\boldsymbol{\gamma}}\mathfrak{D}_{\boldsymbol{\delta}}\ldots) \wedge P(C'D'\ldots) \wedge U(C'D'\ldots) \wedge (CD\ldots)$$

$$\wedge (\mathfrak{D}_{\boldsymbol{c}}\mathfrak{D}_{\boldsymbol{d}}\ldots) \wedge (\mathfrak{D}_{\boldsymbol{c}}\mathfrak{D}_{\boldsymbol{\gamma}}, \mathfrak{D}_{\boldsymbol{d}}\mathfrak{D}_{\boldsymbol{\delta}}\ldots).$$

Die Kreismittelpunkte \mathfrak{D}_{γ} , \mathfrak{D}_{δ} , ... liegen also auf einer Hyperbel \mathfrak{h} . Dem durch P gehenden Strahle des Parallelstrahlenbüschels $\mathfrak{D}_{c}\mathfrak{D}_{\gamma}$, $\mathfrak{D}_{d}\mathfrak{D}_{\delta}$, ... entspricht im Büschel $P\left(\mathfrak{D}_{\gamma}\mathfrak{D}_{\delta}...\right)$ die Normale zu t; die Hyperbel \mathfrak{h} berührt also in P die Normale der Polbahn. Fällt \mathfrak{D}_{c} mit dem Mittelpunkte \mathfrak{D}_{w} des Wendekreises zusammen, so ist \mathfrak{D}_{γ} unendlich fern, mithin ist die Normale aus \mathfrak{D}_{w} auf \mathfrak{n}_{P} die eine Asymptote von \mathfrak{h} . Die zweite Asymptote geht durch den Punkt \mathfrak{D}'_{w} , der zu \mathfrak{D}_{w} in Bezug auf t

^{*} Geisenheimer a. a. O.

symmetrisch liegt, und ist senkrecht zu $P\mathfrak{U}$; denn wird der Radius von c unendlich gross, so fällt C' mit \mathfrak{U} zusammen und dann ist $P\mathfrak{D}_{\gamma} \perp P\mathfrak{U}$. Die Asymptoten von \mathfrak{h} sind demnach die Mittelsenkrechten der Strecken PW und $P\mathfrak{B}$, d. h. die Hyperbel \mathfrak{h} ist concentrisch mit dem Kreise \mathfrak{q} (§ 4).

🛎 6. Durch jeden Punkt B der Ebene gehen im Allgemeinen zwei der eben erhaltenen Kreise y, d, ...; die Mittelpunkte derselben sind die Schnittpunkte der Mittelsenkrechten von PB mit der Hyperbel b. Berührt aber die Mittelsenkrechte die Hyyperbel, so fallen jene Kreise zusammen, also auch die entsprechenden Kreise im Büschel c, d, \ldots, v nd dann entsprechen dem Krümmungsmittelpunkte B in S zwei zusammenfallende Systempunkte BB^* . Man erhält demnach alle Punkte von Σ , denen in S zwei vereinigte Systempunkte zugeordnet sind, indem man zu P in Bezug auf die Tangenten von b die symmetrischen Punkte construirt. Bezeichnet man die so entstehende Curve σ als die Uebergangscurve der Ebene Σ, so folgt der Satz: Die Krümmungsmittelpunkte aller Bahncurven eines ähnlich-veränderlichen Systems erfüllen in jeder Phase denjenigen Theil der Ebene Σ, der von der Uebergangscurve σ ausgeschlossen wird. Die Uebergangscurve ist homothetisch ähnlich im Verhältniss 2:1 zur Fusspunktcurve der Hyperbel 6 für P als Lothpunkt und Aehnlichkeitspunkt. Sie ist also eine bicirculare Curve vierter Ordnung, hat in P eine Spitze mit der Tangente t und berührt die Geraden n_P und $P\mathfrak{U}$ bez. in W und \mathfrak{U} .

Mit Rücksicht auf die letzten Ergebnisse kann der erste Satz in § 4 auch folgendermassen ausgesprochen werden: Den Geraden von S entspricht in Σ die Gesammtheit der Unicursaleurven dritter Ordnung, welche die Uebergangscurve sechsmal berühren.

Die Curve dritter Ordnung, die der unendlich fernen Geraden von S zugeordnet ist, zerfällt in die unendlich ferne Gerade und die beiden Geraden, welche den Punkt Z mit den imaginären Kreispunkten Z, Z^* verbinden. Die Geraden ZZ und ZZ^* sind also Tangenten von σ , oder der Punkt Z ist der Brennpunkt der Uebergangscurve.

Der Curve σ entspricht in S eine tricirculare Curve sechster Ordnung s; dieselbe hat in P einen dreifachen Punkt, dessen drei Tangenten mit der Geraden t zusammenfallen, und wird in P vom Wendekreise sechspunktig berührt.

Ueber eine einfache planare Darstellungsweise der Gestalten der ebenen Curven dritter Ordnung.

Von

Dr. MARTIN DISTELI

Hierzu Taf. VI u. VII.

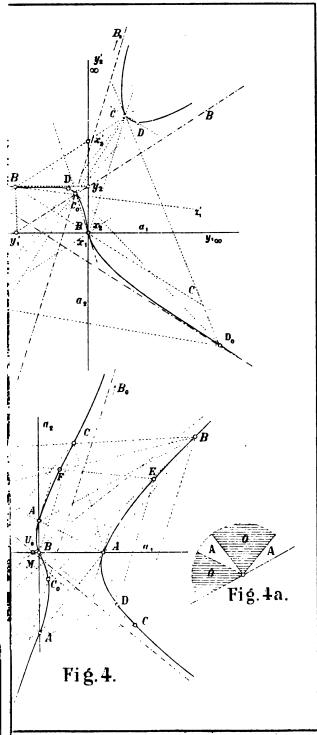
Die folgenden Zeilen versuchen mit Hilfe einiger bekannter Eigenschaften der ebenen Curven dritter Ordnung eine einfache und umfassende Darstellungsweise der Gestalten dieser Curven in der Ebene* und nach einheitlichem Gesichtspunkt. Die graphische Behandlung dient dabei in erster Linie der Klärung und Uebersicht der zu untersuchenden Gebilde durch ihre zeichnerische Darstellung. Sie tritt damit als wirksames Unterstützungsmittel der reinen Geometrie in ihre Rechte, wennschon es keinem Zweifel unterliegt, dass diese und die construirende Geometrie sich nicht überall genau in denselben Interessen zu begegnen brauchen, weil die mathematisch einfachste Lösung eines Problems nicht immer auch die constructiv bequemste sein wird.

Wenn durch geeignete Wahl der bestimmenden Elemente eine Vereinfachung in der Lösung herbeigeführt werden kann, wird man sich dieselbe natürlich nicht versagen. Insofern also, wie üblich, bei der Eintheilung unserer Curven das Verhalten zur unendlich fernen Geraden in Betracht gezogen wird, sind für den Zeichner strenge Kriterien, welche dieses Verhalten erläutern, Erforderniss. Der stets reelle Punkt der Curve im Unendlichen ist daher überall gegeben; die beiden anderen Richtungen werden mit dem Zirkel bestimmt; im Uebrigen sind alle Constructionen mit dem Lineal durchführbar. Nebst den Asymptoten müssen aber von der Construction auch die Tangenten der im Endlichen gefundenen Punkte verlangt werden, da sie den Verlauf der Curve besonders deutlich veranschaulichen.

Was aber auch im Weitern die leitenden Gesichtspunkte sein mögen, vor Allem muss im Hinblick auf die eleganten und einfachen Constructionen

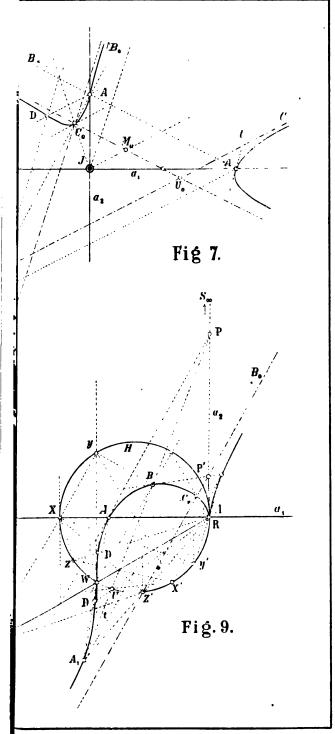
^{*} Bekanntlich können alle allgemeinen und speciellen Formen der ebenen Curven dritter und vierter Ordnung vom Geschlecht Null und Eins als Centralprojectionen der Raumcurve vierter Ordnung erster Art hergestellt werden.

Taf. VI



B.

Ti



der Kegelschnitte mit Hilfe ihrer Involutionseigenschaften eine Darstellungsmethode der Curven dritter Ordnung wünschbar erscheinen, welche sich einem ersten Studium dieser geometrischen Gebilde als Fortsetzung der constructiven Lehre von den Curven zweiter Ordnung darbietet: also eine Darstellung der Curven dritter Ordnung als Involutionsgestalten.

Die dahin gerichteten Bestrebungen und Veröffentlichungen, die man unter Anderen insbesondere den Herren Schröter* und Durège ** verdankt, haben entweder direct diesen Ausgang oder rechtfertigen sonst diesen Standpunkt: denn sie führen sehr bald auf den Begriff des Quadrupels, der den Kern jeder zeichnerischen Darstellung bildet, weil man in der Gesammtheit der Quadrupel nicht nur die einfachste Steiner'sche Involution auf der Curve dritter Ordnung hat, welche sich ungemein einfach über dieselbe weiterbilden lässt, sondern damit zugleich die denkbar einfachste Tangentenconstruction für die gefundenen Punkte verbunden ist.

Wenn eine zeichnerische Darlegung der fraglichen Curvenformen trotzdem selten versucht zu sein scheint, so liegt dieses vielleicht an dem Umstande, dass man durch schematisches Auflösen der Doppelpunkte einer in eine Gerade und einen Kegelschnitt degenerirten Curve näherungsweise zum Ziele gelangt. Die folgenden Constructionen können als Versuch gelten, unter Beibehaltung dieses Gedankens strenge Formen der Curven dritter Ordnung zu geben, die man ebenfalls beliebig nahe an die vorgedachte Gestalt eines degenerirten Vorbildes bringen kann.

Ausgehend von der bekannten Steiner'schen Verwandtschaft *** zwischen den Punktepaaren einer Ebene, findet man die Darstellung aller Curven dritter Ordnung durch Verallgemeinerung der Constructionen, welche für die Kegelschnitte aus dieser Verwandtschaft fliessen. Der Zusammenhang mit anderen bekannten Erzeugungen ist unmittelbar und namentlich für die Gruppe der eintheiligen Curven von Nutzen, wo infolge des Auftretens imaginarer Elemente die vorhergehende Construction etwas schwerfälliger wird, und doch der Einfachheit in erster Linie Rechnung getragen werden soll.

I. Die Steiner'sche Verwandtschaft.

1. Ist in der Ebene der Zeichnung ein vollständiges Viereck gegeben, so begegnen seine drei Gegenseitenpaare a, a, a, a, a, jeder Geraden der Ebene in drei Punktepaaren einer Involution, deren Doppelelemente

^{*} Schröter, Math. Annalen Bd. V S. 422 figg. und Teubner, Leipzig, 1888: "Die Theorie der ebenen Curven dritter Ordnung."

^{*} Durège, Borchardt's Journal f. Math. Bd. 75 S. 153 flgg.

^{***} Steiner, "Systematische Entwickelungen", Berlin 1832, S. 254 flgg., und Schröter, "Steiner's Vorlesungen", Leipzig 1867, S. 816 flgg. Digitized by Google

jedes Mal ein Paar entsprechender Punkte P_0Q_0 bilden in der von Steiner aufgestellten quadratischen und involutorischen Verwandtschaft der Ebene. Bezeichnet man jeden der Punkte des gegebenen Vierecks mit A, ihre Gesammtheit als Quadrupel A, die drei Diagonalpunkte des Vierecks als Punkte B, so ist nach der Definition jeder Punkt P_0 von seinem entsprechenden Q_0 durch jedes Gegenseitenpaar $a_i a_k$ harmonisch getrennt; oder die Strahlenpaare aus den Punkten B nach den Paaren entsprechender Punkte werden durch die Seiten des Vierecks harmonisch getrennt. Diese Eigenschaft drückt zugleich die Construction entsprechender Punkte aus.

Die drei Punkte B bilden das Ausnahme- oder Fundamentaldreieck der Zuordnung; einer Ecke desselben entpricht jeder Punkt der Gegenseite. Ebenso entspricht jeder Punkt des Quadrupels A, somit auch eîne Linie a sich selbst, zwar nicht Punkt für Punkt, aber in Paaren einer Involution mit dem Punktepaare A als Doppelelementenpaar. Jeder andern Geraden g entspricht ein Kegelschnitt K_g durch die Fundamentalpunkte, der unendlich fernen Geraden speciell ein Kegelschnitt Ku durch die Mitten der sechs begrenzten Seiten des Quadrupels A. Er ist eine Ellipse, Parabel oder Hyperbel, je nachdem das Viereck der Punkte A ein concaves ist (d. h. mit einer Ecke im Innern des Dreiecks der drei andern), oder eine unendlich ferne Ecke besitzt, oder endlich ein convexes ist. Man kann die Zuordnung auch erklären als diejenige doppelt conjugirter Punkte bezüglich des Kegelschnittbüschels mit den Grundpunkten A und das Fundamentaldreieck als gemeinsames Tripel harmonischer Pole und Polaren. Der Kegelschnitt K_g ist zudem der Ort der Pole von g bezüglich der Kegelschnitte und das sich entsprechende Punktepaar auf g das Paar der Berührungspunkte von g mit zwei Individuen des Büschels. Der Uebergang von der Geraden g zum entsprechenden Kegelschnitte und umgekehrt wird am einfachsten mittels der Tangenten des Kegelschnittes in den Fundamentalpunkten vollzogen.

Wählen wir jetzt in der Ebene irgend einen Punkt B_0 , der mit den drei Punkten B das Quadrupel B bilden soll, so wird auf jedem Strahl durch B_0 ein Punktepaar der Zuordnung liegen, deren Gesammtheit bei einer vollen Umdrehung des Strahles einen gewissen Ort erfüllen. Kommt der Strahl in die Lage nach dem entsprechenden Punkte C_0 zu B_0 , so wird der Scheitel B_0 selbet ein Punkt des Ortes und der Strahl B_0 C_0 seine Tangente. Es giebt also zunächst eine einfache Mannigfaltigkeit von Geraden, welche dem Orte in drei Punkten begegnen; wir erkennen diesen also als eine Curve dritter Ordnung und werden es später auch bestätigt finden, dass jede Gerade der Ebene drei Punkte mit ihr gemein hat.

Offenbar sind die durch die vier Punkte A gehenden Strahlen die Tangenten des Gebildes in jenen Punkten. Desgleichen gehören die drei Punkte B zur Curve, und da ihre entsprechenden Punkte C auf der Gegenseite des Fundamentaldreiecks und dem Strahl B_0 liegen, so kann man

kurz sagen: Die Ecken und Diagonalpunkte des Quadrupels B gehören ebenfalls zum Ort, so dass wir von diesem bereits zwölf Punkte und die Tangenten in fünfen kennen.

Weil die Curve durch die Fundamentalpunkte B geht, entspricht ihr als Originalcurve nach der Steiner'schen Verwandtschaft eine aus den Seiten des Fundamentaldreiecks und einer Curve dritter Ordnung bestehende Bildeurve, welche alle entsprechenden zu den Elementen der Originalcurve, d. h. eben diese Elemente selbst enthält. Bild- und Originalcurve sind also identisch, oder die Curve dritter Ordnung ist eine in der Verwandtschaft sich selbst entsprechende Curve.

Da jeder Punkt B_0 eine solche Curve eindeutig bestimmt, so bildet die Gesammtheit derselben ein specielles Curvennetz mit sieben gemeinschaftlichen Basispunkten. Es ist uns aber in erster Linie um die gestaltliche Form der betrachteten Gebilde zu thun, also um Kenntniss ihrer unendlich fernen Elemente. Zur Umgehung des darin liegenden Problems dritten Grades verlegen wir in der Folge den Punkt B_0 stets auf die unendlich ferne Gerade, wodurch auch die stets reelle Asymptote gegeben ist. Die beiden anderen Richtungen sind die Doppelelemente der Involution der drei Gegenseitenpaare des Quadrupels A auf der unendlich fernen Geraden: wir haben daher in der Lagenbeziehung der vier Punkte A ein Mittel, über die Natur der unendlich fernen Punkte der Curve im Voraus entscheiden zu können.

2. Durch die specielle Lage von B_0 treten zu den vorhandenen sieben noch zwei weitere gemeinschaftliche Basispunkte hinzu, und die Gesammtheit der jetzt noch in Betracht kommenden Curven dritter Ordnung bildet daher ein Büschel. Den Lagen von B_0 auf den Seiten a entsprechen die sechs degenerirten Curven des Büschels, bestehend aus einer Linie a und einem Kegelschnitt durch die sechs weiteren Basispunkte. Die Methode zur Erzeugung der allgemeinen, wie degenerirten Curve ist also dieselbe und man kann somit durch die allgemeinere Lage von B_0 die Doppelpunkte des degenerirten Gebildes geometrisch auflösen, ohne dass die Construction für beide Fälle wesentlich verschieden wird.

Nebst der gegenseitigen Lage der vier zunächst reellen Punkte des Quadrupels A ist aber auch die Realität desselben auf die gestaltliche Form der Curve von wesentlichem Einfluss. Wir werden demnach zu unterscheiden haben, ob alle Punkte A reell, oder zwei reell und zwei conjugirt imaginär, oder ob endlich alle vier imaginär sind. Da jedoch im letzteren Falle das Quadrupel B dann vollständig reell sein muss, so wird dieses an Stelle des Quadrupels A gesetzt werden können, so dass wir also eigentlich blos zwei Fälle zu unterscheiden haben. An diese beiden Hauptgruppen schliesst sich die Gruppe der Curven dritter Ordnung mit Singu-

laritäten, oder der rationalen Curven, welche aus den Fällen hervorgehen, wo das Quadrupel A selbst singulär wird durch Zusammenfallen von zwei oder drei seiner Ecken in eine einzige.

II. Darstellung der Curven dritter Ordnung.

Die auf den Figurentafeln VI und VII durchgeführten Constructionen zeigen die Haupttypen der Gestalten der Curven dritter Ordnung. Die noch fehlenden Formen sind durch leichte Uebergänge aus den vorhandenen Dispositionen herzuleiten; auf das specielle Verhalten der Wendepunkte und singulären Elemente zum Unendlichen wurde dabei nicht eingegangen.

A. Die zweitheiligen Curven.

- 3. Wir setzen zunächst ein ganz reelles, nachher ein ganz imaginäres Quadrupel A voraus und werden bald erkennen, dass alle Curven dieser Gruppe aus zwei vollständig getrennten Theilen bestehen oder sogenannte zweithe ilige Curven sind. Es entfällt somit eine weitere Unterscheidung nur noch auf die Realität der unendlich fernen Elemente, welche sofort durch die gegenseitige Lage der vier Punkte A entschieden wird. Um diese Lagenverschiedenheit zu übersehen und in gegenseitigen Zusammenhang zu bringen, wollen wir ohne Beschränkung der Allgemeinheit der Untersuchung die Linie a_1 als horizontal und die Gerade a_2 als normal dazu denken. Dann sind offenbar folgende vier Configurationen der Punkte A möglich:
 - 1. die Gerade a_2 verläuft zwischen dem Punktepaare A auf a_1 und zwar liegen ihre beiden Punkte A auf derselben Seite von a_1 oder
 - 2. auf entgegengesetzten Seiten;
 - 3. die Gerade a_2 verläuft ausserhalb des Paares A auf a_1 und wieder liegen ihre beiden Punkte A auf derselben oder
 - 4. auf den entgegengesetzten Seiten von a_1 .

In den Fällen (1) und (4) ist das Viereck A ein concaves, alle Curven des Büschels haben nur einen reellen unendlich fernen Punkt; in den Fällen (2) und (3) ist es ein convexes, alle Curven des Büschels haben drei reelle unendlich ferne Punkte.

a) Elliptische Serpentine mit elliptischem Oval. (Circulare Curve.)

4. Enthält die Curve als imaginäres Punktepaar auf der unendlich fernen Geraden das Kreispunktepaar, so giebt ein sanfter Wechsel in der Krümmung der Gestalt der Curve besondere Schönheit. Das Viereck der Punkte A ist in diesem Falle ein orthogonales; jede Ecke ist Höhenpunkt des Dreiecks der drei anderen. Ist also in Taf. VI Fig. 1 das Quadrupel A gegeben, so sind damit auch die neun Basispunkte des Curvenbüschels bekannt. Mit dem Punkte B_0 sind auch die Tangenten einer bestimmten Curve in den Punkten A gegeben, sowie der entsprechende Punkt

Digitized by GOOSIC

 C_0 zu B_0 und damit die reelle Asymptote angebbar. Im Punkte C_0 begegnen sich aber auch die Tangenten der Punkte B; denn da Original- und Bildcurve identisch sind, so entspricht jedem der drei Punkte C der Curve auf einer Seite des Fundamentaldreiecks ein der Gegenecke B unendlich benachbarter Punkt. Die Verbindungslinie dieser Nachbarn, d. h. die Tangente der Curve in B, ist aber gerade die Linie $B_0 C_0$. Somit hat auch das Quadrupel B die Eigenschaft, dass die Curventangenten seiner Ecken sich in einem Punkte der Curve begegnen.

Setzten wir das Quadrupel B jetzt an Stelle des Quadrupels A, den Punkt C_0 an Stelle von B_0 , so haben wir dadurch eine neue Steiner'sche Verwandtschaft mit dem Fundamentaldreieck C definirt, und aus dem Punkte C_0 entspringt eine sich selbst entsprechende Curve dritter Ordnung, welche mit der bis jetzt betrachteten die vier Punkte B nebst Tangenten, sowie die vier Punkte C gemein hat, also mit ihr identisch ist. Die vier Punkte C bilden demnach ebenfalls ein Quadrupel C; es gehören also auch die drei Diagonalpunkte D dieses Quadrupels unserer Curve an und der entsprechende Punkt D_0 zum Punkte C_0 bezüglich des Fundamentaldreiecks C ist wieder gemeinsamer Schnittpunkt der Tangenten des Quadrupels C.

Auf diese Weise eröffnet sich die Möglichkeit, beliebig viele solcher Quadrupel A, B, C, ... von Punkten und Tangenten der Curve mit dem Lineal anzugeben. Man bemerkt, dass die gemeinschaftlichen Schnittpunkte der Tangenten dieser Quadrupel eine Folge von Punkten B_0 , C_0 , D_0 , ... auf der Curve bilden, von denen jeder Tangentialpunkt des vorhergehenden ist.

Um die Gestalt des dargestellten Gebildes zu übersehen, denken wir uns einen Strahl parallel zur Richtung B_0 verschoben. Dann bestimmen die drei Gegenseitenpaare a; ak für jede seiner Lagen die Involution seines Schnittpunktepaares mit der Curve. Beim Durchgang durch einen Punkt A wird die Involution parabolisch, wechselt also nothwendig ihren Charakter. Es scheiden demnach die vier parallelen Tangenten der Curve die ganze Ebene in vier Streifen, von denen zwei nothwendig getrennte die ganze Curve enthalten müssen. Diese besteht also aus zwei vollständig getrennten Theilen: aus einem sich mit einem reellen Punkte B_0 ins Unendliche erstreckenden und in sich geschlossenen Aste, oder einer Serpentine, und aus einem ganz im Endlichen liegenden, in sich geschlossenen Oval. Jede reelle Gerade der Ebene begegnet dem Aste in wenigstens einem reellen Punkte, dem Oval in zwei reellen getrennten oder zusammenfallenden oder conjugirt imaginären Punkten. Nach Fig. 1 liegen alle Tangentialpunkte B_0 , C_0 , D_{a} , ... auf dem Aste, so dass aus jedem Punkte desselben vier reelle und aus jedem Punkte des Ovals vier imaginäre Tangenten an die Curve gehen.

5. Wir wollen dieses zunächst aus der Anschauung fliessende Resultat noch strenger begründen. Die vier Tangenten aus dem Punkte B_0 können dreimal als Paare je einer quadratischen Strahleninvolution aufgefasst werden;

die Verbindungslinien ihrer Berührungspunkte als Doppelelemente je einer solchen an einem der drei anderen Punkte B. Bringt man eine dieser drei letzteren mit der entsprechenden der drei Involutionen am Punkte B_0 in projectivische Verbindung, indem man als entsprechendes drittes Paar dasjenige hinzufügt, welches aus der Verbindungslinie BB_0 beider Scheitel hervorgeht, so entsteht als Erzeugniss eine Curve dritter Ordnung, welche mit der vorliegenden die Scheitel B_0 und B, sowie das Quadrupel A nebst Tangenten gemein hat, also diese Curve selbst ist. Daraus folgt auf's Neue, dass die Tangenten in den Punkten eines Quadrupels sich im nämlichen Punkte der Curve begegnen, und dass diese Punkte selbst sich dreimal in zwei Paare conjugirter Punkte zerlegen, von denen je zwei zu Scheiteln projectivischer Involutionen in halbperspectivischer Lage gewählt werden können oder Fundamentalpunkte für eine unendliche Folge Stein erscher Vierseite sind.

Da die Doppelelemente der erzeugenden Strahleninvolutionen gegenseitig zu den Berührungspunkten der Tangenten aus den Scheiteln führen, so folgt, dass aus dem Punkte B des Ovals vier in Paaren conjugirt imaginäre Tangenten an die Curve gehen, weil die Doppelelemente der Involution am Punkte B_0 nothwendig in denjenigen Schichten der Ebene verlaufen müssen, in denen keine reellen Punkte der Curve liegen. Weil es also keine Grenzlagen giebt, muss jeder Strahl durch den Punkt B auf dem Oval, der Curve in zwei stets reellen und getrennten Punkten begegnen, von denen der eine dem Oval, der andere dem Aste angehört, da sie am Punkte B_0 ein Paar der Involution bestimmen. Daher begegnet auch das reelle Doppelstrahlenpaar des Scheitels B der Curve in vier reellen Punkten A, deren Tangenten in B_0 convergiren, wie wir umgekehrt festgesetzt haben.

Damit steht zunächst fest, dass aus einem Punkte des Ovals vier nicht reelle, aus einem Punkte des Astes vier reelle Tangenten an die Curve möglich sind. Würde aber auf dem Oval ein Punkt existiren mit reellen Tangenten, so müsste bei continuirlichem Uebergang von B nach jenem Punkte eine Stelle auftreten, wo der Durchgang vom Imaginären zum Reellen sich mit einer reellen Doppeltangente vollziehen müsste, was bei Curven dritter Ordnung nicht eintreten kann. Aus analogen Gründen kann bei Durchlaufen des Astes kein Wechsel in der Realität der vier Tangenten eintreten, so dass wir schliessen dürfen, dass aus jedem Punkte des Ovals vier imaginäre und aus jedem Punkte der Serpentine vier reelle Tangenten an die Curve gelegt werden können.

6. Um ferner über das Wesen der erzeugenden Involutionen mehr Klarheit zu erhalten, betrachten wir, ausgehend von einem bekannten Curvenpunkte, irgend zwei Paare entsprechender Strahlen an den Scheiteln B_0 und B, wobei wir als Punkt B zunächst den Schnittpunkt von a_1 und a_2 wählen. Die beiden Strahlenpaare begegnen sich dann in einem Paare X und einem Paare Y von Curvenpunkten. Verbindet man jetzt das auf dem

Digitized by GOOSIG

Oval liegende Punktepaar XY mit dem Schnittpunkte B von a_3 und a_4 , so schneiden diese Geraden die Curve in einem zweiten Paare von Punkten X_1Y_1 auf dem entsprechenden Strahl zu XY in der zweiten Involution an B_0 . Desgleichen treffen die Geraden aus dem dritten Punkte B nach dem Punktepaare XY des Astes die Curve noch in einem Paare X_1Y_1 auf dem entsprechenden Strahl zu Y in der dritten Involution des Punktes B_0 .

Die drei Involutionen am Punkte B_0 sind aber aus denselben vier Tangenten in den Ecken des Quadrupels A durch ihre Zusammenfassung in Paare entstanden, also nicht unabhängig von einander. Nach einem bekannten Satze der projectivischen Geometrie sind daher die Strahlen $X_1 Y_1$ und $X'_1 Y'_1$, also auch die gleichnamigen Punktepaare identisch. Daraus geht hervor, dass das Punktepaar X, sowie das Paar Y Fundamentalpunktepaar ist für drei, also auch für unendlich viele geschlossene Steiner'sche Vierseite. Entsprechende Strahlenpaare der erzeugenden Involutionen begegnen sich somit in conjugirten Punktepaaren der Curve.

Aus der Betrachtung der drei hervorgehobenen geschlossenen Vierseite folgt aber, dass die beiden Geraden $X_1 Y_1$ ein Paar der ersten Involution des Punktes B_0 bilden und somit auch für den ersten Scheitel B perspectivisch liegen. Die beiden Punkte X_1 , sowie Y_1 bilden somit ebenfalls je ein Paar conjugirter Punkte. Es folgt daraus:

Jeder Punkt der Curve lässt sich mit den drei anderen Punkten seines Quadrupels als Fundamentalpunkt projectivischer Involutionen combiniren. Diese entstehen durch Verbindung der Fundamentalpunkte mit allen Quadrupeln der Curve, oder mit anderen Worten: Durch Verbindung eines festen Quadrupels mit einem beliebigen Punkte der Curve entsteht ein neues Quadrupel; durchläuft jener Punkt die ganze Curve, so erhält man sämmtliche Quadrupel oder die ganze Punktinvolution.

Nun entstehen aber die Paare X und X_1 durch Projection des Quadrupels B aus einem Punkte Y, und die Paare Y und Y_1 durch Projection desselben Quadrupels aus einem Punkte X, bilden also selbst ein Quadrupel X resp. Y. Der vorige Satz ergiebt sich somit als Specialfall des folgenden:

Die 16 Verbindungslinien der Ecken zweier willkürlicher Quadrupel begegnen sich zu vieren in den Ecken eines dritten Quadrupels der Curve. Und speciell: Die Verbindungsgeraden der Punkte eines Quadrupels unter sich treffen die Curve wieder in Punkten eines Quadrupels, wodurch die charakteristische Lage von vier solchen Punkten besonders deutlich ausgedrückt wird.

7. Aus dem Obigen fliesst nun ein neues Hilfsmittel zur Construction weiterer Punkte und Tangenten der Curve, welches man namentlich dann in Anwendung bringen wird, wenn einer der Punkte mit dem Index Null einem Wendepunkte zu nahe kommt. Die drei anderen Punkte seines

Quadrupels liegen dann zu nahe an einer Geraden, um noch sichere Constructionen an sie zu knüpfen. Man gehe dann durch Verbindung zweier construirten Quadrupel zu einem dritten über, aus welchem nach dem bekannten Verfahren eine neue Folge von Punkten und Tangenten zu vier abgeleitet werden kann. Ferner ist zu beachten, dass die Tangente auch als entsprechender Strahl zur Verbindungsgeraden der Scheitel in der quadratischen erzeugenden Involution jenes Punktes erhalten werden kann.

Eine rasche und umfassende Construction wäre also auch die folgende: Man gehe aus von einem gegebenen Quadrupel A, bestimme, wie in Fig. 1, die Involutionen an zwei Punkten A, etwa denjenigen auf der Geraden a_1 , durch Festsetzung von B_0 und führe ihre projectivische Abhängigkeit auf zwei perspectivische Strahlbüschel zurück vermittelst eines geeigneten Hilfskegelschnittes. (In Fig. 1 eignet sich dazu der über dem genannten Punktepaare A als Durchmesser stehende Kreis durch die beiden Punkte B.) Jedes Paar entsprechender Strahlen führt dann auf zwei Punkte eines Quadrupels B und eines Quadrupels C. Man ergänze diese Quadrupel durch die Verbindung dieser Paare mit dem Quadrupel A. Die Diagonalpunkte dieser neuen Quadrupel gehören zu zwei weiteren Quadrupeln D und E, welche man mit Hilfe der Involutionen am Punktepaare A durch je einen Punkt D_0 und E_0 vervollständigt. Diese Punkte sind die Tangentialpunkte der Quadrupel B und C u. s. f.

Zwei weitere Erzeugungsarten von allerdings weniger praktischem Werthe lassen sich aus dem Vorhergehendeu anschliessen: Jeder Geraden g durch B_0 entspricht in der Steiner'schen Verwandtschaft des Quadrupels A ein Kegelschnitt K_g eines Büschels mit den Punkten B und C_0 als Grundpunkten. Die Curve ist somit auch unendlich oft das Erzeugniss aus einem Kegelschnittbüschel und einem dazu projectivischen Strahlbüschel. Es ereignet sich viermal, dass die Gerade g den Kegelschnitt K_g berührt, nämlich jedesmal, wenn sie eine Ecke A passirt.

Die Curve dritter Ordnung ist aber auch der Ort der Berührungspunkte der Tangentenpaare aus dem Punkte B_0 an alle Kegelschnitte des Büschels mit den Grundpunkten A. Die Gesammtheit aller Berührungssehnen ist das Strahlbüschel am Punkte C_0 , wodurch wir wieder auf die vorige Erzeugung kommen. Der durch B_0 gehende Kegelschnitt ist der Polarkegelschnitt der Curve dritter Ordnung bezüglich des Punktes B_0 . Auch diese Erzeugung wiederholt sich für jedes Quadrupel der Curve, also unendlich oft.

8. Wählt man des Weiteren in Fig. 1 den Punkt B_0 auf der Seite a_2 , so degenerirt die Curve dritter Ordnung in einen Kreis K_2 und die Gerade a_2 , oder die Curve besitzt zwei Doppelpunkte D_1 und D_2 . Von jedem Quadrupel liegen zwei Punkte auf dem Kreise in Strahlen eines Büschels durch den Pol A_2 der Geraden a_2 bezüglich des Kreises, und zwei Punkte auf der Geraden a_2 , wo sie die Polinvolution des Kreises formiren.

Die Erzeugung einer Folge von Quadrupeln geht über in die Darstellung des Kreises aus Pol, Polare, Involution und einem Paare entsprechender Punkte. Sie erfolgt aber auch aus jedem Punktepaare des Kreises durch Verbindung zweier projectivischer Strahleninvolutionen, in welchen sich die Doppelelemente entsprechen und für welche die Gerade a_2 als Perspectivaxe figurirt, oder aus der Verbindung zweier projectivischer Involutionen aus jedem Paare der Polinvolution auf der Geraden a_2 , in welchen diese Gerade gemeinsames und entsprechendes Doppelelement ist. Die Fig. 1a illustrirt den besprochenen Fall.

Die allgemeine Curve in Fig. 1 kann aber auch entstanden gedacht werden durch Drehung des Strahles nach B_0 im entgegengesetzten Sinne wie vorhin, von der Lage der Geraden a_3 aus. Für B_0 auf a_3 besteht die Curve nebst dieser Geraden aus einem sie nicht reell schneidenden Kreise K_3 , entsprechend der Configuration der vier Punkte A nach Lage (4). Während im ersten Falle ein Stück der Geraden mit einem Stück des Kreises zusammenschmolz, geht hier der Kreis für sich in das Oval und die Gerade für sich in die Serpentine über, so dass also die Realität der Doppelpunkte der degenerirten Curve nach dem Process der Auflösung für den allgemeinen Fall ohne sichtbare Wirkung bleibt.

9. Wir schließen an das ganz reelle sogleich den Fall des ganz imaginären Quadrupels. Es ist sofort evident, dass als Bild der Curve ein vom vorigen verschiedenes zum Vorschein kommen wird; denn die beiden conjugirt imaginären Strahlenpaare $a_i a_k$ haben jetzt ein nothwendig reelles gemeinsames Paar, d. h. die Curve geht mit drei reellen Richtungen ins Unendliche, von denen eine der Serpentine und zwei dem Oval angehören müssen, weil diesem der Punkt B_0 mit vier imaginären Tangenten angehört.

Wir geben also in Taf. VI Fig. 2 auf den reellen Geraden a_1 und a_2 zwei elliptische Involutionen $X_1X'_1$, $Y_1Y'_1$ und $X_2X'_2$, $Y_2Y'_2$, welche für einen im Endlichen und einen im Unendlichen gelegenen Punkt B perspectivisch liegen, je durch eine harmonische Gruppe. Wird jetzt der Punkt B_0 gegeben, so ist das Quadrupel B vollständig; von seinen drei Diagonalpunkten C ist wieder einer unendlich fern; die Richtungen der unendlichen Aeste sind also bekannt.

Der Strahl aus B_0 nach dem im Endlichen liegenden Perspectivcentrum B begegnet der Geraden a_1 in einem Punkte Z_1 , nach dessen entsprechendem Z_1' die Tangente der Curve in B geht. Die symmetrische Gerade zur Richtung B_0 bezüglich der Geraden a_2 durch den auf ihr gelegenen Punkt B ist die Tangente der Curve in diesem Punkte; sie begegnet der vorigen im Punkte C_0 , welcher somit Schnittpunkt der Asymptoten in den beiden Punkten B und B_0 ist. Dadurch ist das Quadrupel C vervollständigt; ausser seinen drei Diagonalpunkten D construirt man analog wie bis anhin den vierten Punkt D_0 des Quadrupels D und damit also die dritte reelle Asymptote u. s. w.

Damit ist erwiesen, dass dieser Fall mit dem vorhergehenden eine Curve derselben Gruppe umfasst; wir kommen übrigens noch von anderer Seite auf die Gestalt der Curve zurück, wo die Asymptotenconstruction gezeigt werden soll auch für den Fall, wo sich keine zwei derselben auf der Curve begegnen.

b) Elliptische Serpentine mit parabolischem Oval.

10. Der Uebergang von einer der Lagen in (1) oder (4) zu einer der Lagen (2) oder (3) kann dadurch vollzogen gedacht werden, dass eine Ecke A, sagen wir, diejenige auf a_1 , ins Unendliche rückt. Nach Disposition von Taf. VI Fig. 3 haben wir daher eine zweitheilige Curve zu erwarten, die im Punkte B_0 den einzigen reellen Punkt des unpaaren Astes besitzt und deren Oval die unendlich ferne Gerade in der Richtung von a_1 berührt. Die Construction der Punkte und Tangenten erleidet keinerlei Ausnahmen vor dem Falle der Fig. 1. Alle Curven des Büschels sind zweitheilig, weil für alle ein reelles Quadrupel A besteht; dagegen ist nicht nothwendig das Oval stets der parabolische Theil, es kann auch der Ast die unendlich ferne Gerade berühren und das Oval ganz im Endlichen liegen. In diesem Falle besteht die Curve also

c) aus einer parabolischen Serpentine mit elliptischem Oval.

11. Lässt man den Punkt B_0 die unendlich ferne Gerade durchlaufen, so erhält man alle Curven dritter Ordnung des Büschels; aus der Lage des Punktes B_0 ist aber sofort zu entscheiden, welche zwei von den Punkten A dem Aste und welche dem Oval angehören werden. Zunächst ist klar, dass, so lange die Curve aus zwei getrennten Theilen besteht, die Tangenten in zwei derartig zusammengehörenden Punkten des Astes durch diejenigen des Ovals nicht getrennt werden können, weil man sonst durch continuirlichen Uebergang vom Oval zum Ast gelangen könnte. Um zu unterscheiden, ob der unendlich ferne Punkt A_∞ zum Aste oder zum Oval gehöre, combinire man ihn mit jedem der drei Punkte A im Endlichen. Ist dann für eine bestimmte Lage von B_0 eine einzige von diesen drei Involutionen hyperbolisch, so gehört die Richtung A zum Oval; sind alle drei hyperbolisch, so gehört sie zum Aste.

Diese Involutionen sind aber jedesmal bestimmt durch die Verbindungslinien mit den beiden anderen Punkten A im Endlichen als dem einen, und den Geraden nach A_{∞} und B_0 als dem andern Paare. Ein Wechsel kann nur beim Eintreten von B_0 auf eine Gerade a stattfinden. Die schematische Fig. 3a zeigt auf der unendlich fernen Geraden zwei mit A bezeichnete Zonen für den Punkt B_0 und für einen parabolischen Ast, und eine mit O bezeichnete Zone, in welcher der Punkt B_0 ein parabolisches Oval erzeugt.

Zum Büschel gehören im Weiteren drei Parabeln je in Verbindung mit den Seiten der drei Punkte A im Endlichen, ferner drei Curven, welche alle durch die drei parallelen Seiten des Quadrupels A repräsentirt werden. Die Tafel enthält die Figur der parabolischen Serpentine nicht; man braucht jedoch in Fig. 3 den Punkt B_0 blos symmetrisch zur Geraden a_2 festzusetzen, um sofort die gewünschte Curvenform zu erhalten. Die Entstehung derselben aus der Geraden a_2 und einer sie reell schneidenden Parabel ist evident: Das endliche Stück der Geraden vereinigt sich mit dem endlichen Parabelsegment zum Oval, das unendliche Geradenstück mit dem nach dem Unendlichen gehenden Theile der Parabel zum parabolischen Aste.

d) Elliptische Serpentine mit hyperbolischem Oval.

12. Die Lagenbeziehung der vier Punkte A nach (3) ist in Taf. VI Fig. 4 zur Anschauung gebracht. Alle Curven des Büschels gehen mit drei reellen Punkten ins Unendliche. Ist der Punkt B_0 wie in der Construction festgesetzt, so erkennt man aus der Bildung der Involutionen an den Punkten A sofort, dass die beiden auf a_1 gelegenen Punkte A zum Oval, die beiden auf a_2 liegenden zum Aste gehören, und dass wir daher auf den schon aus Fig. 2 bekannten Fall kommen. Die Quadrupel A, B, C, D der Curve Curve nebst Tangenten sind eingetragen, die Asymptote der Serpentine ebenfalls; es erübrigt zunächst die Construction der beiden anderen Asymptoten.

Der unendlich fernen Geraden u entspricht nach Abschnitt I ein Kegelschnitt K_u , welcher nebst den drei Punkten B die sechs Mitten der begrenzten Seiten des Quadrupels A oder die Mittelpunkte der sechs Hyperbeln enthält, die als Bestandtheile der degenerirten Curven dritter Ordnung auftreten. Andererseits werden die Asymptoten sämmtlicher Curven dritter Ordnung in den beiden fraglichen Richtungen durch die Curven selbst in projectivische Verbindung gebracht, aus welcher ein Kegelschnitt resultirt, der nebst den beiden unendlich fernen Punkten mit K_u die obigen sechs Mitten enthält, also mit ihm identisch ist.

Bezeichnet man den Schnittpunkt beider Asymptoten mit U_0 , so bilden offenbar die Punkte U_0 mit den Punkten C_0 auf K_u eine quadratische Involution, für welche der Mittelpunkt M_u des Kegelschnittes K_u der Pol ist. Sind also mit Hilfe des Zirkels aus dem Viereck A die beiden unendlich fernen Punkte der Curve bestimmt, so gehört zu jedem Punkte B_0 ein Punkt C_0 und ein zu diesem symmetrischer Punkt U_0 bezüglich des Schnittpunktes M_u der Verbindungslinien der Gegenseitenmitten. Der Punkt U_0 ist der Schnittpunkt der verlangten Asymptoten. In Fig. 1 ist er also der Diametralpunkt von C_0 bezüglich des dem Dreieck der drei Punkte B umschriebenen Kreises. Er bleibt also reell und angebbar, selbst wenn die Asymptoten imaginär werden sollten.

Das Entstehen der vorliegenden Curve aus der Geraden a_3 und einer zu a_1 orthogonal symmetrischen Hyperbel von den nämlichen Asymptotenrichtungen ist augenscheinlich. Alle Curven des Büschels sind zweitheilig; doch hat man es durch Wahl des Punktes B_0 in der Hand, entweder das

Digitized by GÖOGLE

Oval, oder die Serpentine mit drei reellen Punkten nach dem Unendlichen gehen zu lassen. Das Schema Fig. 4a, welches auf bekannte Weise ermittelt ist, zeigt auf der unendlich fernen Geraden zwei Zonen O für den Punkt B_0 und zwei unendlich ferne reelle Punkte des Ovals, ebenso zwei Zonen A für B_0 mit drei unendlich fernen reellen Punkten der Serpentine.

Wir behandeln jedoch diesen Fall getrennt, um die Figur nicht zu überladen. Man erkennt aber auch die Möglichkeit, die unter c) behandelte Form hier auf's Neue zu wiederholen, sobald man als Richtung von B_0 einen der beiden unendlich fernen Grundpunkte des Büschels wählt.

e) Hyperbolische Serpentine mit elliptischem Oval.

13. Taf. VI Fig. 5 enthält die vier Punkte A nach der Lagenbeziehung (3); nur sind, um die Construction noch einfacher zu gestalten, zwei Seiten a_i , a_k parallel angenommen, so dass nebst B_0 noch ein zweiter Punkt B seines Quadrupels im Unendlichen liegt. Dies hat zur Folge, dass ein Diagonalpunkt C des Quadrupels B die dritte Asymptotenrichtung ist. Die Asymptoten der beiden Punkte B begegnen sich im Punkte C_0 der Curve, welcher so gelegen ist, dass die Asymptote in B in der Mitte des parallelen Seitenpaares $a_i a_k$ verläuft. Die Mitte dieser Seite ist der Punkt $M_{\mathbf{z}}$; somit ist auch der Punkt U_0 und damit die dritte Asymptote gegeben. Der Verlauf der Curve ist nebst den Quadrupeln A, B und C durch Verbindung dieser unter einander, C0, C1, durch die Paare C2, und C3, C4, ass die beiden Susseren Punkte C4 zum C5, ist sofort erkennbar, dass die beiden Susseren Punkte C6, ass also dieser mit reellen Punkten sich ins Unendliche erstrecken muss.

Die Entstehung der Curve aus der Geraden a₂ und einer diese Gerade reell schneidenden Hyperbel ist ersichtlich. Das begrenzte Segment der Geraden vereinigt sich mit dem endlichen Bogen der Hyperbel zum Oval; das unendlich grosse Stück bildet nach seiner Vereinigung mit dem geschnittenen Zweige der Hyperbel den hyperbolischen Ast der Curve.

Auch dieses Büschel enthält die Formen der Curve in Fig. 4. Lässt man also in der Wahl von B_0 unbeschränkte Freiheit, so können alle fünf Hauptformen der zweitheiligen Curven aus zwei einzigen Configurationen der vier Punkte A, dem überschlagenen und dem convexen Viereck abgeleitet werden.

B. Eintheilige Curven.

14. Die Curven dieser Gruppe wollten wir nach dem gemeinsamen Gesichtspunkte zusammenfassen, dass für sie das Quadrupel A aus zwei reellen Punkten auf der Geraden a, und zwei conjugirt imaginären Punkten auf a, besteht. Diese Curven haben alle die Eigenschaft, dass das Oval der zweitheiligen Curven keine reellen Punkte mehr enthält, so dass diese Curven aus einem einzigen Zuge, der Serpentine oder dem Aste bestehen,

Digitized by GOOGLE

also eintheilig oder einzügig sind. Die Zahl der möglichen Configurationen in der Lage der Punkte A reducirt sich auf zwei, je nachdem nämlich der Punkt B auf a_1 innerhalb oder ausserhalb des Punktepaares A liegt; rechnet man dazu noch den Zwischenfall, wo der eine Punkt A ins Unendliche rückt, so werden wir im Ganzen drei Fälle zu unterscheiden haben, welche sich auch nach dem Verhalten zum Unendlichen herleiten lassen, nämlich eine reelle und zwei zusammenfallende reelle, endlich drei reelle getrennte Asymptotenrichtungen.

Denkt man sich die nicht reellen Seitenpaare $a_i a_k$ oder die sie vertretenden Involutionen an den reellen Punkten A nach demselben Punkte eines Hilfskreises verschoben, so begegnen sie diesem in nicht reellen Punktepaaren auf reellen Geraden p_1 und p_2 . Von den Perspectivcentren P_1 und P_2 dieser Involutionen liegt nothwendig eines im Innern, das andere ausserhalb des Hilfskreises, je nach dem entgegengesetzten oder gleichen Sinne beider Involutionen.

Dieser Sinn hängt aber davon ab, ob a_2 innerhalb oder ausserhalb des Paares A verläuft. Im ersten Falle liegt P_1 im Innern und die Involution auf dem Hilfskreise ist elliptisch, die Curve besitzt nur eine reelle Asymptote; im zweiten Falle ist P_2 ausserhalb; die Involution ist hyperbolisch, die Curve geht nach drei reellen Richtungen durch's Unendliche.

Da die Formen der Curve im Wesentlichen schon in der vorhergehenden enthalten sind, so betrachten wir nur den ersten Fall etwas näher.

a) Circulare Serpentine.

Wir machen in Taf. VII Fig. 6 das Kreispunktepaar zum unendlich fernen Punktepaare der Curve, wenn wir die elliptische Involution auf a_2 so wählen, dass ein Kreis im Büschel existirt, der in Verbindung mit a_2 als Curve dritter Ordnung aufgefasst werden kann. Es genügt zu diesem Zwecke, die Schnittpunkte des Kreises über dem reellen Punktepaare A als Durchmesser mit a_2 als Paar XX', dazu das Paar YY' etwa wie in der Figur anzunehmen, so lässt sich sofort die Verbindungslinie b der nicht reellen Punkte B der Curve angeben.

15. Wir haben vorerst noch zu zeigen, wie in diesem Falle die Construction entsprechender Punkte nach der Steiner'schen Verwandtschaft praktisch am bequemsten ausgeführt wird. Jedem Punkte einer Geraden durch den reellen Punkt B entspricht ein Punkt auf der symmetrischen Geraden zu dieser bezüglich der Geraden a_2 . Entsprechende Punkte beschreiben auf dieser Geraden projectivische Punktreihen, für welche die Gerade b die Perspectivaxe t'' ist. Kennt man also jedesmal noch ein Paar entsprechender Punkte, so ist die Projectivität bestimmt. In unserem Falle nun entspricht der unendlich fernen Geraden U der durch die drei Punkte B gehende reelle Kreis K_{a} , der sofort angegeben werden kann-Dem unendlich fernen Punkte der einen Geraden entspricht somit der zweite

Schnittpunkt der andern mit diesem Kreise; dieses Paar vervollständigt jeweilen die Projectivität,

Ist also der Punkt B_0 auf der unendlich fernen Geraden festgesetzt, so erhält man sofort den Punkt C_0 , somit die reelle Asymptote. Ausser diesem Punkte existirt noch ein weiterer reeller Diagonalpunkt C des Quadrupels B, sowie zwei nicht reelle Punkte C auf der reellen Geraden c, welche durch die Paare XX', YY' der Involution auf dieser Geraden vertreten sind; aus diesen Punkten ergiebt sich das Quadrupel D u. s. f. Die Construction verläuft wie bei Taf. VI Fig. 1, sie erleidet blos eine einfache Erweiterung durch die Bestimmung der reellen Verbindungslinie der nicht reellen Punkte jedes Quadrupels.

Durch die beiden parallelen Tangenten wird die Ebene jetzt in zwei Schichten getheilt; jeder Strahl durch B_0 in der einen Schicht begegnet der Curve in zwei reellen, in der andern Schicht in zwei nicht reellen Punkten, so dass die Curve aus einem einzigen zusammenhängenden, in sich geschlossenen Zuge besteht. Jedes Quadrupel A, B, C, ... besteht aus zwei reellen und zwei conjugirt imaginären Punkten auf einer reellen Geraden, was sowohl aus der Bildung der Involutionen an den Punkten B und B_0 , als auch aus dem Satze über die Verbindung irgend zweier Quadrupel hervorgeht. Aus jedem Punkte der Curve gehen demnach auch zwei reelle und zwei conjugirt imaginäre Tangenten an diese.

Mit Hilfe des erwähnten Satzes sind auch rasch beliebig viele weitere Punktepaare der Curve zu finden. Wir wollen anmerken, dass bei der Construction der Tangente in den Punkten mit dem Index Null (C_0 in Fig. 6) diese als entsprechender Strahl zur Verbindungsgeraden mit dem zweiten reellen Punkte seines Quadrupels bequem erhalten wird.

Fällt B_0 mit der Richtung von a_2 zusammen, so besteht die Curve aus dieser Geraden und einem sie reell schneidenden Kreise; fällt B_0 dagegen mit der Richtung von a_1 zusammen, so wird der ergänzende Kreis rein imaginär. In diesem Falle kann also die Curve aus der Verschmelzung einer reellen Geraden mit Partien eines reellen, wie eines imaginären Kreises entstanden gedacht werden.

b) Parabolische Serpentine.

Diese entsteht aus der vorhergehenden Disposition dadurch, dass der eine Punkt A ins Unendliche rückt; die Construction zeigt keinerlei wesentliche Aenderung.

c) Hyperbolische Serpentine.

Die Disposition für diese Curve entspricht der Lagenbeziehung (2) der vier Punkte A; die Verbindungslinie a_1 verläuft ausserhalb des reellen Paares A auf a_1 . Die Curve kann auch dadurch entstanden gedacht werden, dass man das Oval in Taf. VI Fig. 5 verschwinden lässt.

Bevor jedoch das Oval von endlicher und reeller Ausdehnung imaginär wird, zieht es sich auf einen Punkt zusammen, den wir als singulären Punkt der Curve zu bezeichnen haben. Die Curve wird in diesem Falle eine rationale Curve, welche als Uebergangsformen der zwei- und eintheiligen Curven aufgefasst werden können und aus den Degenerationsformen des Quadrupels A hervorgehen.

C. Rationale Curven.

16. Die Formen dieser Curven unterscheiden sich erstens nach der Art ihrer Singularität in Formen mit isolirtem Doppelpunkte, Spitze und Knoten, je nach der Realität der Tangenten im singulären Punkte; zweitens nach der Natur der unendlich fernen Punkte und drittens nach der Beziehung des singulären Punktes zum Unendlichfernen, falls dieser selbst dorthin verlegt wird. Die Zahl der möglichen Fälle wird dadurch erheblich gesteigert, ohne dass dabei eine bestimmte Anzahl von solchen Modificationen als massgebend angesehen wird. Wir construiren blos die drei Haupttypen dieser Curven; in Verbindung mit dem Vorausgegangenen hat es keine Schwierigkeit, weitere Gestalten abzuleiten, so lange die Wendepunkte nicht ausgezeichnet werden sollen, auf welche wir hier im Allgemeinen keine Rücksicht nehmen.

a) Der isolirte Doppelpunkt.

Wir schliessen die Construction an den Fall von Taf. VI Fig. 5 mit drei reellen unendlich fernen Punkten. Seien also in Taf. VII Fig. 7 die beiden getrennten Punkte A und zwei in einen Punkt J zusammengefallene Punkte A gegeben, so enthält dieser Punkt auch zugleich zwei Punkte B, indessen der dritte Punkt B auf der Geraden a_1 willkürlich, wir wollen sagen, im Unendlichen festgelegt wird. Wenn auch die beiden Punkte B in J zusammenfallen, so ist doch ihre Verbindungslinie eine wohlbestimmte Gerade, welche in Fig. 7 nach der Mitte des Punktepaares A gehen muss, da sie durch das Paar A harmonisch von B getrennt wird. Setzen wir jetzt, analog wie in Fig. 5, den Punkt B_0 fest, so ist BB_0 die unendlich ferne Gerade und begegnet der vorhin genannten Verbindungsgeraden des zusammenfallenden Paares B im dritten reellen unendlich fernen Punkte C der Curve. Man bemerkt, dass von den vier Tangenten aus B_0 zwei durch den singulären Punkt gehen, so dass nur noch zwei eigentliche Tangenten an die Curve übrig bleiben.

Verbindet man im Weitern den Punkt B_0 mit J, so enthält der vierte harmonische zu diesem Strahl bezüglich der beiden Linien a den Punkt C_0 ; ebenso ist die vierte harmonische Gerade zur unendlich fernen bezüglich der beiden parallelen Seiten a durch den Punkt B im Unendlichen eine Gerade durch C_0 und zugleich Tangente in B, oder die eine Asymptote. Die andere ist die Linie B_0 C_0 , die dritte geht durch den Punkt U_0 nach C_0 . Die

beiden anderen Punkte C des Quadrupels sind als Diagonalpunkte des Quadrupels B wieder in J vereinigt, aber mit einer ganz bestimmten Verbindungslinie, der vierten harmonischen Geraden zur Richtung C bezüglich der beiden Seiten des Quadrupels B am Punkte J. Durch Fortsetzung des Verfahrens ist das Paar D_0D der Figur und durch Verbindung der Quadrupel das Paar E angegeben.

17. Demnach bleibt die Construction im Wesentlichen bestehen. Der singuläre Punkt absorbirt von jedem Quadrupel zwei Punkte und zwei Tangenten, so dass jede durch ihn gehende Gerade der Curve ihm in zwei zusammenfallenden Punkten begegnet. Er ist also ein von der Curve losgelöster oder isolirter Doppelpunkt. Da von jedem Paare erzeugender Involutionen der eine Strahl stets durch den singulären Punkt geht und andererseits jeder Punkt mit dem Doppelpunkte Fundamentalpunkt sein kann, so folgt der Satz:

Die Curve entsteht unendlich oft als Erzeugniss aus einer quadratischen Strahleninvolution am Doppelpunkte mit einem dazu projectivischen Strahlbüschel.

Das allen Involutionen gemeinsame Paar ist das Paar der Tangenten der Curve im Doppelpunkte oder das Doppelelementenpaar der Involution nach allen Punktepaaren A, B, C, ... In der That bilden die dem Punkte J benachbarten Punkte der Curve zusammen ein Punktepaar. Die Involution in Fig. 7 ist elliptisch, der Doppelpunkt besitzt keine reellen Nachbarpunkte.

Alle Curven des Büschels haben in J vier gemeinsame Basispunkte, gehen durch die beiden Punkte A, durch den Punkt C und haben nach B eine gemeinschaftliche Asymptote. Die Cnrve entsteht als Verallgemeinerung der Form aus einer Hyperbel nebst Tangente in A; der Berührungspunkt bleibt Doppelpunkt; Gerade und Hyperbel fliessen zum hyperbolischen Aste zusammen.

Aber nicht alle Curven des Büschels zeigen diese Form der Singularität; sobald nämlich die Lage von B_0 so gewählt wird, dass das Paar BB_0 durch das Paar A von J aus gesehen nicht mehr getrennt wird, sind die Tangenten im Doppelpunkte reell; der singuläre Punkt wird ein eigentlicher Doppelpunkt der Curve oder ein Knotenpunkt, durch den die Curve in ihrem Verlaufe wirklich zweimal hindurchgeht.

Wir können diese Gestalt der Curve aber auch ausgehend von Taf. VI Fig. 1 erreichen, indem wir dort die beiden Punkte A auf der Linie a, zusammenfallen lassen.

b) Der Knotenpunkt.

18. Wir verlegen also in Taf. VII Fig. 8 den Doppelpunkt K auf den über dem Paare A als Durchmesser beschriebenen Kreis, den Punkt B in den Fusspunkt des Perpendikels von diesem auf a_1 , also die Verbindungs-

linie des zusammenfallenden Paares B als vierten harmonischen zu diesem Perpendikel bezüglich des rechten Winkels der Seiten a. Die Involution auf der unendlich fernen Geraden ist rechtwinklig; die Curve ist circular, entsteht aus einem Kreise nebst vertikaler Tangente als Grundform und zeigt unter genau denselben Constructionsbedingungen wie im vorigen Falle eine Strahleninvolution am singulären Punkte D nach den Paaren conjugirter Punkte AA_0 , BB_0 , CC_0 , ..., die hyperbolisch ist, also mit reellen Tangenten im Doppelpunkte. Von jedem Punktepaare liegt ein Punkt auf dem Aste und einer auf der Schleife; von Punkten des Astes aus gehen zwei stets reelle, von Punkten der Schleife aus zwei stets imaginäre Tangenten an die Curve, ganz in Analogie mit dem allgemeinen Falle der Fig. 1, aus dem diese specielle entstanden.

In diesem, wie im vorigen Falle bildet der singuläre Punkt das Paar vereinigter Doppelelemente der Involution conjugirter Punktepaare auf der Curve.

c) Der Rückkehrpunkt.

19. Fällt endlich in den singulären Punkt ein dritter Punkt A, so ist das bis jetzt angewandte Verfahren nicht mehr möglich, weil die nothwendigen Bestimmungselemente unbestimmt werden. Wir gelangen aber zu dieser neuen Gestalt der Curve, wenn wir im Anschluss an die beiden vorigen Fälle die entsprechende Modification für die Involution am singulären Punkte und das erzeugende Strahlbüschel eintreten lassen. Wenn drei Punkte jedes Quadrupels nach dem singulären Punkte fallen, so ist die Involution nach conjugirten Punktepaaren eine parabolische, die Tangenten im Doppelpunkte vereinigen sich, die Schleife wird unendlich klein und wir haben die Erscheinung einer Spitze oder eines Rückkehrpunktes. Diese Singularität tritt ein, wenn man dem gemeinsamen Strahl vom Büschel und der Involution am singulären Punkte ein Doppelelement der Involution entsprechen lässt.

In Taf. VII Fig. 9 ist ein Durchmesser des Hilfskreises H als Linie a_1 , und der eine Schnittpunkt mit dem Kreise als singulärer Punkt R gewählt. Die vertikale Tangente des Kreises in R wird Rückkehrtangente und die Curve zugleich eireular, wenn der Pol P der quadratischen Strahleninvolution auf dieser Tangente unendlich fern und zugleich der Punkt B_0 als Scheitel des projectivischen Strahlbüschels gewählt wird. In Fig. 9 wurde speciell die Richtung RB_0 als um 60° gegen a_1 gedreht festgesetzt. Die Strahlbüschel am Pole P und am Punkte B_0 sind zufolge der Anordnung perspectivisch, mit einer durch den Punkt R gehenden Perspectivaxe p, die wir unter 30° gegen a_1 geneigt annehmen wollen.

Durch diese Festsetzung sind wir im Stande, auf dem durch B_0 gehenden Strahl sofort die beiden Schnittpunkte mit der Curve, insbesondere den

Punkt A auf a_1 und die reelle Asymptote der Curve anzugeben. Da R drei Punkte jedes Quadrupels absorbirt, so geht aus jedem Punkte X_0 der Curve nur noch eine Tangente an diese. Ist X der Berührungspunkt, so bestimmt jedes Paar XX_0 , aus R auf den Hilfskreis projicirt, ein Paar entsprechender Punkte einer Projectivität, für welche R das eine Doppelelement sein wird. Die drei Punkte A, B_0 , C_0 der Figur liefern zwei weitere Paare dieser Projectivität mit einer Perspectivaxe p'', die nothwendig mit p identisch wird.

Dem Schnittpunkte der Perspectivaxe mit dem Hilfskreise entspricht das zweite Doppelelement, und da dieser Punkt zugleich ein Punkt der Curve, so ist er der einzige stets reelle Wendepunkt W der Curve.

Mit Hilfe der Projectivität construirt man in jedem Punkte X der Curve durch Construction des Tangentialpunktes X_0 die Tangente, und aus jedem Punkte X_0 durch Construction des entsprechenden Punktes X die von ihm ausgehende Tangente. Aus der Construction entsprechender Punkte mit Hilfe des Paares XX' auf dem Hilfskreise und der Axe p'' ist ersichtlich, dass, wenn zu einem Punkte fortlaufend der entsprechende bestimmt wird, diese Punkte abwechselnd zu beiden Seiten des Wendepunktes W und des Rückkehrpunktes R liegen.

Ein Polygon der Curve, dessen Ecken somit eine Folge von Tangentialpunkten bilden, schliesst sich niemals, vielmehr nähert sich bei Vorwärtsconstruction der Berührungspunkt unbegrenzt dem Wendepunkte, bei Rückwärtsconstruction der Tangentialpunkt unbegrenzt dem Rückkehrpunkte.

- 20. Die vorliegende Curve dritter Ordnung ist zugleich dritter Classe und es entspringt somit eine zweite Construction derselben als Tangentengebilde, welche der vorigen in allen Punkten dual gegenübersteht. Bringt man nämlich die Involution am Rückkehrpunkte speciell mit dem Strahlenbüschel am Wendepunkte in Verbindung, so begegnen sich die Tangenteu in je zwei Punkten AA_1 , BB_1 , ... auf einem solchen Strahl in einem Punkte der Rückkehrtangente, denn diese ist die harmonische Polare des Wendepunktes. Wendepunkt und Rückkehrtangente, Rückkehrpunkt und Wendetangente stehen sich dual gegenüber; als Classengebilde entsteht die Curve somit aus der projectivischen Verbindung einer Punktreihe auf der Rückkehrtangente mit einer Punktinvolution auf der Wendetangente, derart, dass dem gemeinsamen Punkte beider Träger ein Doppelelement, der Wendepunkt, entspricht.
- 22. Aber auch noch in anderer Weise ist eine bequeme Tangentenconstruction in den gefundenen Punkten möglich. Jeder Strahl durch den Wendepunkt begegnet der harmonischen Polaren in einem Punkte P, die Tangenten in seinen Schnittpunkten dieser Geraden in einem Punkte P';

entsprechende Paare PP' bilden auf dieser Geraden eine Projectivität, für welche der Rückkehrpunkt R das eine, der Schnitt S mit der Wendetangente das andere Doppelelement ist. Dieser Schnittpunkt S ist unendlich fern, so dass stets die Relation $\frac{P'R}{PR} = const.$ besteht.

Alle diese dualen Eigenschaften werden in einfacher Weise erklärt und ausgesprochen durch den Satz, den wir an den Schluss unserer Betrachtung stellen wollen: Die Curve dritter Ordnung mit Rückkehrpunkt ist eine sich selbst entsprechende in jedem Polarsystem, welches das Dreieck RWS als Tripel harmonischer Pole, und einen Punkt der Curve nebst einer Tangente als Paar entsprechender Elemente besitzt.

Zürich, August 1890.

Praktische Methode zur Berechnung der reellen Wurzeln reeller algebraischer oder transcendenter numerischer Gleichungen mit einer Unbekannten.

Von

Dr. R. MEHMKE,
Professor a. d. techn. Hochschule su Darmstadt.

Im Grunde genommen kann die hier mitgetheilte Methode sowohl der Regula falsi, als auch der sogenannten Newton'schen Näherungsmethode untergeordnet werden; sie bildet davon gewissermassen eine besondere, durch das Vorhandensein der Logarithmentafeln und anderer numerischer Tafeln ermöglichte Ausführungsform. Theoretikern wird dieselbe kaum etwas Bemerkenswerthes darbieten; wer aber nicht in der glücklichen Lage ist, sich mit dem Aufgelöst den ken numerischer Gleichungen begnügen zu können, wird meine Mittheilungen zu schätzen wissen. Um Diejenigen, welche von der fraglichen Methode Gebrauch machen wollen, nicht unnöthig aufzuhalten, habe ich die geschichtlichen Nachweise auf den Schluss aufgespart. Wie in einem späteren Aufsatze gezeigt werden wird, kann das Verfahren mit Leichtigkeit auf mehrere Gleichungen mit mehreren Unbekannten ausgedehnt werden.

§ 1. Grundgedanken.

Es werde angenommen, dass die reellen Wurzeln der vorgelegten Gleichung bereits auf irgend eine Art, am besten durch graphische Auflösung,* näherungsweise bestimmt worden seien, dass man auch im Falle mehrfacher Wurzeln Gleichungen aufgestellt habe, von denen sie nur noch einfache Wurzeln sind. Die gegebene Gleichung oder auch eine durch irgendwelche Transformation daraus abgeleitete sei F(x) = 0, wobei x entweder die ursprüngliche Unbekannte, oder auch irgend eine Function der

^{*} Als besonders praktisch ist die logarithmisch-graphische Methode zu empfehlen. S. Civilingenieur 1889, Bd. XXXV S. 617.

selben, z. B. ihren gewöhnlichen Logarithmus, bezeichnen kann. Berechnet man die linke Seite obiger Gleichung für einen Näherungswerth $x_{\scriptscriptstyle 0}$ derjenigen Wurzel, die man genauer zu bestimmen wünscht, so wird das Ergebniss eine im Allgemeinen von Null verschiedene Grösse $F(x_0) = R$ sein. Es bildet eine für das Folgende wesentliche Voraussetzung, dass bei dieser Berechnung geeignete numerische Tafeln in Anwendung gebracht werden. Nun haben unsere Tafeln mit einem Eingange, d. h. zur Darstellung von Functionen einer Veränderlichen, eine solche Einrichtung, dass zwischen zwei benachbarten Tafelwerthen der Zuwachs der Function dem Zuwachse des Argumentes proportional gesetzt werden kann. Nimmt man also an, es wachse x_0 um einen kleinen Betrag δ , so kann man durch Anwendung der üblichen Interpolationsmethode Schritt für Schritt die Aenderungen berechnen, welche infolge dessen jedes einzelne Glied von F und damit such $F(x_0)$ erfährt, und zwar werden alle diese Aenderungen δ propor-Es bildet das eine meist unbedeutende Nebenrechnung, die zweckmässig mit der Berechnung von $F(x_0)$ unmittelbar verbunden wird. Bezeichnet S. δ die in Rede stehende Aenderung von $F(x_0) = R$, so muss $(R+S.\delta)$ verschwinden, wenn $(x_0+\delta)$ eine Wurzel von F(x)=0 sein soll. Folglich ist

 $\delta = -\frac{R}{S}$

eine Verbesserung von x_0 . Wiederholt man das ganze Verfahren, indem man statt x_0 den verbesserten Werth $(x_0 + \delta)$ einführt, so erhält man einen noch genaueren Werth. In der Regel braucht bei dieser Wiederholung der Rechnung und den etwa noch folgenden der Coefficient von δ nicht von Neuem bestimmt zu werden. Es würde sich nämlich derselbe gleich S oder als nicht wesentlich davon verschieden herausstellen, denn je näher x_0 schon dem wahren Wurzelwerthe x kommt, um so weniger unterscheidet sich offenbar S von F'(x). Darin liegt ein besonderer Vortheil der Methode; man hat so fast nur die Hälfte der Arbeit zu verrichten, die erforderlich wäre, wenn man die Regula falsi in der üblichen Form anwendete. Der sogenannten Newton'schen Methode gegenüber besteht insofern ein Unterschied, als die Berechnung der Ableitung F'(x) nicht nach den Regeln der Differentialrechnung, sondern empirisch unter Benützung der numerischen Tafeln erfolgt.

§ 2. Vorläufiges Beispiel.

$$x^{s} = 100.$$

(S. Heis, Sammlung von Beispielen und Aufgaben aus der allgemeinen Arithmetik und Algebra, VH, § 106, 1α.)

Zeichnet man die Curve zur Gleichung

bei einer Längeneinheit von etwa 2 mm, und schneidet sie durch die Gerade y=100, so findet sich ein Schnittpunkt mit der Abscisse 3,6. Demnach besitzt obige Gleichung eine einzige positive reelle Wurzel vom ungefähren Betrage 3,6.

Man bringe die gegebene Gleichung durch zweimaliges Logarithmiren auf die Form:

oder log x + log log x = log 2log x + log log x + c = 0,wo c = 9,6989700 - 10.

Da auf zwei Stellen genau $\log 3.6 = 0.56$ ist, so wird man mit diesem angenäherten Werthe von $\log x$ die Rechnung beginnen. Es empfiehlt sich, beim ersten Gange mit drei Stellen, beim zweiten mit fünf und schliesslich, wenn noch grössere Genauigkeit gefordert ist, mit sieben Stellen zu rechnen. Selbstverständlich wird hierbei die Constante c jedesmal auf die betreffende Anzahl von Stellen abgerundet. Bei der Berechnung des Coefficienten S kann man sich δ als Anzahl von Einheiten der letzten Stelle denken. Um S möglichst genau zu erhalten, thut man gut, schon beim ersten Gange eine siebenstellige Logarithmentafel zu benützen.

Ausrechnung.

	1. Gang		2. Gang	3. Gang
log x =	0,56	18	0,556	0,55598
log log x =	9,748 – 10	0,788	9,74507 10	9,7450592 - 10
c=	9,699 — 10		9,69897 – 10	9,6989700 - 10
R =	0,007	1,788	0,00004	0,0000092
S =		1,78		
δ=	$-\frac{0,007}{1,78}$		$-\frac{0,00004}{1,78}$	$-\frac{0,0000092}{1,78}$
	=-0,004		=-0,00002	=-0,00000517

Ergebniss: log x = 0,55597483, x = 3,597285.

Es ist zwar, wie nicht anders erwartet werden kann, die achte Decimale von $\log x$ nicht mehr richtig, denn wenn man mit elfstelligen Logarithmen* die Rechnung weiterführt, ergiebt sich $\log x = 0.55597484962$. Trotzdem wäre es ungerechtfertigt, dieselbe ganz zu verwerfen, da sie den Zahlenwerth von x genauer finden lässt, als es beim Abrunden von $\log x$ auf sieben Decimalen möglich wäre. Für $\log x = 0.5559748$ würde man

^{*} Anton Steinhauser, Hilfstafeln zur Berechnung elfstelliger Logarithmen. Wien, 1867.

nämlich x = 3.597284 erhalten, während der genaue, auf zehn Ziffern abgerundete Werth 3,597285024 ist.

§ 3. Berechnung von F(x).

Ein besonders wichtiger Punkt, dem der Rechner die grösste Aufmerksamkeit widmen wird, ist die Berechnungsweise der Function F(x). Man muss diese so vortheilhaft als möglich einzurichten suchen, indem man von allen sich darbietenden Hilfsmitteln, namentlich von gewöhnlichen Logarithmen und den sogenannten Gauss'schen oder Additionslogarithmen, ausgedehnten Gebrauch macht. Das in § 2 gebrachte Beispiel und die später noch vorzuführenden können in dieser Beziehung manchen Anhaltspunkt Es sind oft zahlreiche Wege möglich, auch lässt sich nicht immer mit Bestimmtheit sagen, welches der zweckmässigste sei, denn es spielt hierbei die Gewohnheit des Rechners eine Rolle und es kann durch eine Verbesserung in der Einrichtung einer Tafel oder durch das Erscheinen einer neuen die Sachlage geändert werden.

In den meisten Fällen wird es sich empfehlen, beim Einsetzen der Näherungswerthe in F(x) die einzelnen Glieder logarithmisch zu berechnen. Die Addition bez. Subtraction der Glieder kann alsdann entweder auf gewöhnliche Weise, oder aber mit Hilfe der Gauss'schen Logarithmen geschehen, Letzteres etwa in der Art, wie es in § 4 gezeigt werden wird.

Handelt es sich um eine negative Wurzel, so wird man zweckmässig an Stelle der ursprünglichen Gleichung diejenige setzen, welche durch Verwandlung von x in -x aus ihr hervorgeht, und nun wie bei einer positiven Wurzel verfahren.

§ 4. Die logarithmische Methode bei Anwendung der Additionslogarithmen.

Man trenne in der gegebenen Gleichung die positiven und negativen Glieder von einander, so dass die Form

$$f(x) = \bar{f}(x)$$

hergestellt wird, wo beide Seiten nur aus positiven Gliedern bestehen. Hierauf nehme man den Logarithmus und bringe wieder auf Null:

Sei
$$f(x) = P + P_1 + \dots + P_k.$$

Es besteht die Voraussetzung, dass für die einzelnen Glieder die logarithmische Berechnung gewählt worden sei. Da log f(x) verlangt wird, so ist folgende Hilfsaufgabe zu lösen: Gegeben log P, $log P_1, \ldots, log P_k$, gesucht $log(P+P_1+\cdots+P_k)$. Die Lösung mittels Gauss'scher Logarithmen erfolgt, indem in der allbekannten Weise zuerst $log(P+P_1)$, dann auf dieselbe Art $log((P+P_1)+P_2)$ u. s. w. berechnet wird. Digitized by Google

Zeitschrift f. Mathematik u. Physik XXXVI, 3.

Es kommt darauf an, die Berechnung möglichst übersichtlich zu gestalten. Setzt man zur Abkürzung

$$s_{1} = P + P_{1},$$

$$s_{2} = P + P_{1} + P_{2},$$

$$\vdots$$

$$s_{k} = P + P_{1} + P_{2} + \dots + P_{k},$$

$$s_{2} = s_{1} + P_{2},$$

$$s_{3} = s_{2} + P_{3},$$

$$\vdots$$

so ist

Nun besteht bei den Additionslogarithmen in der heute üblichen Anordnung zwischen dem Argumente A und der Function B bekanntlich die Beziehung, dass B = log(s+1) ist, wenn A = log s gesetzt wird. Man hat aber

 $f(x) = s_k = s_{k-1} + P_k.$

 $log s_1 = log (P + P_1) = log \left(\frac{P}{P_1} + 1\right) P_1 = log \left(\frac{P}{P_2} + 1\right) + log P_1,$

also

$$\log s_1 = B + \log P_1, \ \text{ für } \ \varDelta = \log \frac{P}{\overline{P_1}} = \log P - \log P_1.$$

Ebenso wird

 $log s_2 = B_1 + log P_2$, für $A_1 = log s_1 - log P_2 = B + log P_1 - log P_2$

u. s. w. Demnach dient folgende Kette von Gleichungen zur Lösung der obengenannten Hilfsaufgabe:

3)
$$\begin{cases} A = \log P - \log P_1, \\ A_1 = B + \log P_1 - \log P_2, \\ A_2 = B_1 + \log P_2 - \log P_3, \\ \vdots \\ A_{k-1} = B_{k-2} + \log P_{k-1} - \log P_k, \end{cases}$$

und das Ergebniss ist:

4) Inn Banashnana =

$$\log f(x) = B_{k-1} + \log P_k.$$

Zur Berechnung von 2)

$$\bar{f}(x) = \bar{P} + \bar{P}_1 + \dots + \bar{P}_l$$

hat man ähnlicherweise:

at man annienerweise:
$$\begin{cases} \overline{A} &= \log \overline{P} - \log \overline{P}_1, \\ \overline{A}_1 &= \overline{B} + \log \overline{P}_1 - \log \overline{P}_2, \\ \overline{A}_2 &= \overline{B}_1 + \log \overline{P}_2 - \log \overline{P}_3, \\ \vdots \\ \overline{A}_{l-1} &= \overline{B}_{l-2} + \log \overline{P}_{l-1} - \log \overline{P}_l, \end{cases}$$

$$\log \overline{f}(x) = \overline{B}_{l-1} + \log \overline{P}_l.$$

Setzt man endlich für log f(x) und $log \bar{f}(x)$ ihre Werthe aus 4) und 4') in Gleichung 1) ein, so ergiebt sich die Schlussgleichung:

$$B_{k-1} - \overline{B}_{l-1} + \log P_k - \log \overline{P}_l = 0.$$

Bemerkung. Der Nutzen der Additionslogarithmen ist bei der vorliegenden Aufgabe kein so entschiedener, dass ihr Gebrauch unter allen Umständen anzurathen wäre. Geht man von der gleichen Voraussetzung aus, nämlich dass log P, $log P_1, \ldots, log P_k$; $log \overline{P}, log \overline{P}_1, \ldots, log \overline{P}_l$ bestimmt worden seien, sucht aber einfach zu diesen Logarithmen die Zahlen, um dann die Summen $(P+P_1+\cdots+P_k)$ und $(\overline{P}+\overline{P_1}+\cdots+\overline{P_l})$ auf gewöhnliche Weise zu bilden, so ist ein (k+l+2)-maliges Eingehen in die Logarithmentafel nöthig. Bei Anwendung des obigen Verfahrens hat man die Tafel nur (k+l)-mal, also zweimal weniger oft zu benützen, ein Gewinn, der um so weniger ins Gewicht fällt, je grösser die Zahl der Glieder der gegebenen Gleichung ist. Weiter sind im ersten Falle ausser einer Subtraction nur zwei Additionen auszuführen, aber die Zahl der Summanden beträgt (k+1) bez. (l+1), während im zweiten Falle, nachdem man in der üblichen Weise durch Einführung der dekadischen Ergänzungen die Subtractionen in Additionen verwandelt hat, ausser einer Summe mit vier Summanden nur solche mit drei Summanden, aber in grösserer Anzahl vor-Als für die zweite Methode (Anwendung der Additionslogarithmen) sprechend mag noch angeführt werden, dass bei ihr die Rechnung gleichmässig und bequem fortschreitet, weil alle vorkommenden Zahlen Logarithmen sind, also die gleiche Anzahl von Ziffern und das Komma an derselben Stelle haben, und ferner auch die Correctionsrechnung in der Regel am bequemsten ausfällt. Man vergl. auch § 11.

§ 5. Anwendung auf algebraische Gleichungen.

Die linke Seite der gegebenen, auf Null gebrachten Gleichung sei als ganze, aber nicht nothwendig rationale Function von x gedacht. Falls nicht etwa ausnahmsweise die Coefficienten einfache ganze Zahlen sind und ausreichende Potenz- bez. Wurzeltafeln zur Verfügung stehen (vergl. das Beispiel in § 12), wird man selbstverständlich Logarithmen benützen. Wie die Berechnung sich gestaltet, wenn hierbei von den Additionslogarithmen kein Gebrauch gemacht wird, ist aus §§ 9 und 10 zu ersehen. Will man dagegen Additionslogarithmen verwenden, so kann man sich der im letzten Paragraphen entwickelten Formeln bedienen, welche dem vorliegenden Falle jetzt angepasst werden sollen.

Sei
$$f(x) = \underline{a} x^{n} + \underline{a}_{1} x^{n} + \dots + \underline{a}_{k} x^{n}_{k},$$

$$f(x) = \overline{a} x^{n} + \overline{a}_{1} x^{n} + \dots + \overline{a}_{l} x^{n}_{l},$$
und
$$n > n_{1} > \dots > n_{k}, \quad \overline{n} > \overline{n}_{1} > \dots > \overline{n}_{l}.$$

Mit den Bezeichnungen des § 4 ist:

$$P_i = a_i x^{n_i}, \quad \overline{P}_i = \overline{a_i} x^{\overline{n_i}},$$

$$\log \underline{P_i} = \underline{n_i} \log x + \log \underline{a_i},$$
$$\log \underline{P_i} = \underline{n_i} \log x + \log \underline{a_i}.$$

Setzt man vorstehende Werthe in die Gleichungen 3), 3') und 5) ein, so ergeben sich bei Benützung der Abkürzungen

7)
$$\begin{cases} c = \log a - \log a_{1}, \ c = \log \overline{a} - \log \overline{a}_{1}, \\ c_{1} = \log a_{1} - \log a_{2}, \ \overline{c}_{1} = \log \overline{a}_{1} - \log \overline{a}_{2}, \\ \vdots \\ c_{k-1} = \log a_{k-1} - \log a_{k}, \ \overline{c}_{l-1} = \log \overline{a}_{l-1} - \log \overline{a}_{l}, \\ \overline{c} = \log a_{k} - \log \overline{a}_{l} \end{cases}$$

die folgenden Systeme von Gleichungen:

8)
$$\begin{cases}
A = (n - n_1) \log x + c, \\
A_1 = B + (n_1 - n_2) \log x + c_1, \\
A_2 = B_1 + (n_2 - n_3) \log x + c_2, \\
\vdots \\
A_{k-1} = B_{k-2} + (n_{k-1} - n_k) \log x + c_{k-1}; \\
\frac{\overline{A}}{A_1} = \overline{B} + (\overline{n_1} - \overline{n_2}) \log x + \overline{c}, \\
\overline{A}_2 = \overline{B}_1 + (\overline{n_2} - \overline{n_3}) \log x + \overline{c}_1, \\
\overline{A}_2 = \overline{B}_1 + (\overline{n_2} - \overline{n_3}) \log x + \overline{c}_2, \\
\vdots \\
\overline{A}_{l-1} = \overline{B}_{l-2} + (\overline{n}_{l-1} - \overline{n}_l) \log x + \overline{c}_{l-1}; \\
B_{k-1} + \overline{E}_{B_{l-1}} + (n_k - \overline{n}_l) \log x + \overline{c} = 0.
\end{cases}$$

In der Schlussgleichung bedeutet $\mathsf{E}\,\overline{B}_{l-1}$ die dekadische Ergänzung von B_{l-1} . Weil der Voraussetzung nach in f(x) und $\bar{f}(x)$ die Exponenten je eine abnehmende Zahlenreihe bilden, so sind die Differenzen $(n-n_1)$, $(n_1-n_2), \ldots, (n-n_1), (n-n_2), \ldots$ sämmtlich positiv, also bei der Berechnung der Gleichungen 8) und 8') nur Additionen auszuführen. Um auch die Schlussgleichung 9) sofort in gebrauchsfertiger Gestalt zu erhalten, wird man die Bezeichnungen so wählen, dass $n_k > n_l$ ist.

§ 6. Beispiel 1.

$$21x^{13} - 53x^7 + 65x^5 + 312x^3 - 74 = 0.$$

Die Trennung der positiven und negativen Glieder ergiebt: $21x^{13} + 65x^5 + 312x^2 = 53x^7 + 74$

$$log 21 = 1,32222$$

 $log 65 = 1,81291$ $c = 9,50931 - 10$
 $c = 9,31876 - 10$

$$log 65 = 1,81291 c_1 = 3,50331 = 10$$

$$log 312 = 2.49415 c_1 = 9,31876 - 10$$

$$log 53 = 1,72428 c = 9,85505 - 10$$

$$log 74 = 1,86923 c = 9,85505 - 10$$

$$(log 312 - log 74 =) c = 0,62492.$$
Digitized by GOOS

$$log 74 = 1,86923$$
 $c = 9,85905 - 1$

Aufstellung der Gleichungen zur linken und rechten Seite, sowie der Schlussgleichung [s. 8), 8') und 9) in § 5]:

$$A = \begin{cases} 8 \log x + 9,50931 \\ A_1 = B + 3 \log x + 9,31876 \end{cases} \overline{A} = 7 \log x + 9,85505$$

$$B_1 + E \overline{B} + 2 \log x + 0,62492 = 0.$$

Durch logarithmisch-graphische Auflösung (s. die Anmerkung auf S. 183) findet man, dass obige Gleichung eine einzige positive reelle Wurzel hat, deren Logarithmus näherungsweise gleich 9.68-10 ist. Die Rechnung soll zuerst mit diesem Werthe dreistellig, mit dem ersten verbesserten Werthe fünfstellig und zuletzt zur Probe mit dem zweiten verbesserten Werthe noch einmal fünfstellig durchgeführt werden. Bei der Berechnung von S denke man sich den Zuwachs δ wieder als Anzahl von Einheiten der letzten Stelle. Der Einfachheit wegen soll bei negativen Logarithmen das anzuhängende -10 fortgelassen werden.

Ausrechnung.

	1. G	ang	2. Gang	Probe
log x =	9,68	18	9,6834	9,68346
$8 \log x =$	7,44	88	7,4672	7,46768
c =	9,509		9,50931	9,50931
A =	6,949	88	6,97651	6,97699
B =	0,000		0,00041	0,00041
$3 \log x =$	9,04	38	9,0502	9,05038
$c_1 =$	9,319		9,31876	9,31876
$A_1 =$	8,359	38	8,36937	8,36955
$7 \log x =$	7,76	7δ	7,7848	7,78422
$\tilde{c} =$	9,855		9,85505	9,85505
$\bar{A} =$	7,615	78	7,63985	7,63927
$B_1 =$	0,010	0,06 8	0,01005	0,01005
$\mathbf{E}\bar{\mathbf{B}} = \mathbf{I}$	9,998		9,99811	9,99811
$2 \log x =$	9,36	2δ	9,3668	9,36692
$\dot{c} =$	0,625		0,62492	0,62492
R =	9,993	2,06 δ	9,99988	0,00000
<i>S</i> =		2,06		
ð =	10 - 9,	993	10 - 9,99988	
•	2,06		2,06	
	= 0.00	34	= 0,00006	
		,		

$$log x = 9,68346 - 10, \quad x = 0,48246.$$

Man vergleiche auch § 9.

§ 7. Beispiel 2.

Nicht selten erscheint in der angewandten Mathematik die Gleichung, welche zur Bestimmung irgend einer unbekannten Grösse dient, ursprünglich in mehr oder weniger verwickelter Form. Das folgende Beispiel hat den Zweck, zu zeigen, dass in derartigen Fällen belangreiche Umformungen, wie z. B. das Rationalmachen einer irrationalen Gleichung, über flüssig sind, wenn man die vorgetragene Methode anwendet. Das ist ein nicht zu unterschätzender Vortheil, denn solche Umformungen sind oft schwierig, erfordern immer Zeit und bilden eine Quelle unliebsamer Rechenfehler.

In der Hydrodynamik bestimmt man die Höhe x, um welche ein Wasserlauf mit rechteckigem Querschnitte durch die Pfeiler einer Brücke gestaut wird, mittels folgender Gleichung:

$$Q = \mu b \sqrt[p]{2g} \left\{ \frac{2}{3} \left[\left(x + \frac{v^3}{2g} \right)^{\frac{1}{2}} - \left(\frac{v^2}{2g} \right)^{\frac{1}{2}} \right] + t \left(x + \frac{v^2}{2g} \right)^{\frac{1}{2}} \right\}.$$

In derselben bedeutet Q die secundliche Wassermenge in Cubikmetern, μ den "Ausflusscoefficienten", b die gesammte lichte Weite zwischen den Brückenpfeilern, g die Beschleunigung der Schwere, v die Wassergeschwindigkeit in Metern für die Secunde und endlich t die Tiefe des ungestauten Wassers Es ist v noch von x abhängig, nämlich

$$v = \frac{Q}{b'(x+t)},$$

wenn b' die Breite des Flusses in Metern ausgedrückt bezeichnet. Abkürzung

wird
$$\frac{Q}{b'\sqrt{2g}} = \alpha, \quad \frac{Q}{\mu b \sqrt[3]{2g}} = \beta$$

$$\frac{v^2}{2g} = \frac{\alpha^2}{(x+t)^2}$$

und es geht nach Einsetzung dieses Werthes und Trennung der positiven und negativen Glieder die obige Gleichung über in

$$t\left(x+\frac{\alpha^2}{(x+t)^2}\right)^{\frac{1}{2}}+\frac{2}{3}\left(x+\frac{\alpha^2}{(x+t)^2}\right)^{\frac{2}{2}}=\beta+\frac{2}{3}\frac{\alpha^3}{(x+t)^3}$$

Man kann noch mit $(x+t)^3$ multipliciren:

11) $t(x+t)^2[x(x+t)^2+\alpha^2]^{1/2}+\frac{2}{3}[x(x+t)^2+\alpha^2]^{3/2}=\beta(x+t)^3+\frac{2}{3}\alpha^3$; weitere Umformungen wären jedoch zwecklos. Es müssen jetzt beide Seiten dieser Gleichung logarithmisch berechnet werden.

oder

12)
$$A = \log x + c, \quad c = -\log t,$$
 so wird
$$\log(x+t) = B + \log t.$$
 Ferner sei
$$A_1 = \log x + 2\log(x+t) - \log \alpha^2$$
 oder
$$13) \qquad A_1 = \log x + 2B + c_1, \quad c_1 = 2\log t - 2\log \alpha,$$
 dann ist
$$\log[x(x+t)^2 + \alpha^2] = B_1 + 2\log \alpha.$$
 Die Anwendung der Gleichungen 3), 3') und 5), § 4, liefert weiter:
$$A_2 = \log t + 2\log(x+t) + \frac{1}{2}\log[x(x+t)^2 + \alpha^2] - \log^2 \frac{2}{3} - \frac{2}{2}\log[x(x+t)^2 + \alpha^2]$$
 oder
$$\begin{cases} A_2 = 2B - B_1 + c_2, \\ c_2 = 3\log t - 2\log \alpha - \log^2 \frac{2}{3} \\ = c_1 + \log t + \log^2 \frac{2}{3}; \end{cases}$$

oder

15)
$$\begin{cases} \overline{A} = 3B + \overline{c}, \\ \overline{c} = 3 \log t + \log \beta - 3 \log \alpha - \log \frac{2}{3} \\ = c_{2} + \log \beta - \log \alpha, \end{cases}$$

und endlich die Schlussgleichung

$$0 = B_3 - \overline{B} + \log_3^2 + \frac{3}{4} \log [x(x+t)^2 + \alpha^2] - \log_3^2 \alpha^3$$

$$= B_3 - \overline{B} + \frac{3}{4} B_1 + \log_3^2 + 3 \log \alpha - \log_3^2 - 3 \log \alpha$$

$$B_3 + \mathbf{E} \overline{B} + \frac{3}{4} B_1 = 0.$$

oder

$$B_2 + EB + \frac{3}{2}B_1 = 0.$$

Zahlenbeispiel (s. Handb. d. Ingenieurwissenschaften, Bd. III S. 551). Q = 3000, b' = 220, b = 200, $\mu = 0.9$, $\mu b = 180$, t = 4.

Berechnung der Constanten.

$$\begin{array}{c} \log Q = 3,47712 & \log t = 0,60206 \\ \log \sqrt{2g} = 0,64635 & c = 9,39794 \\ \log Q : \sqrt{2g} = 2,83077 & \log t = 0,60206 \\ \log b' = 2,34242 & \log \alpha = 0,48835 \\ \log \mu b = 2,25527 & \log t = 0,11371 \\ \log \alpha = 0,48835 & c_1 = 0,22742 \\ \log \beta = 0,57550 & \log t = 0,60206 \\ \log \frac{\pi}{2} = 0,17609 \\ c_2 = 1,00557 \\ \log \beta - \log \alpha = 0,08715 \\ \hline c = 1,09272 \\ \end{array}$$

Wiederholung der vorbereitenden Gleichungen und der Schlussgleichung.

$$A = log x + 9,39794,$$

 $A_1 = 2B + log x + 0,22742,$
 $A_2 = EB_1 + 2B + 1,00557,$
 $\overline{A} = 3B + 1,09272,$
 $\frac{3}{2}B_1 + B_2 + E\overline{B} = 0.$

Anstatt vorauszusetzen, dass die gegebene Gleichung zuerst graphisch aufgelöst werde, wollen wir versuchsweise eine Stauhöhe von x=0,1 m, $\log x=9,0-10$ annehmen und mit diesem Werthe die Rechnung zweistellig durchführen. Der Werth von S stellt sich als ausserordentlich klein heraus, weshalb es rathsam erscheint, die Stellen bei jedem neuen Gange nur um eine zu vermehren. Dem praktischen Bedürfnisse wäre durch zwei oder drei Decimalen genügt; um jedoch den Fortgang der Rechnung zu zeigen, wollen wir dieselbe erst mit fünf Stellen abschliessen. Freilich wird, eben wegen der ungewöhnlichen Kleinheit von S, die letzte Stelle um mehrere Einheiten unsicher (vergl. § 13). Man erzielt eine Ersparniss an Raum und Schreibarbeit, wenn man die Constanten c, c_1 , c_2 , c auf den unteren Rand eines Papierstreifens neben einander schreibt und letzteren jedesmal mit der betreffenden Constanten über die Zahlen hält, zu welchen sie addirt werden muss.

Papierstreifen.							
c 9,39794	0,22742	c ₃ 1,00557	1,09272				

Hierbei hat man in Gedanken die Constanten auf soviel Stellen abzurunden, als bei dem betreffenden Gange beibehalten werden. Der Einfachheit wegen soll von jetzt an bei der Ausrechnung des Coefficienten S der Factor δ überall fortgelassen werden.

	1.	Gang	2.	Gang	3. G	ang	4. Gang
log x =	9,00	1	9,4	1	9,42	1	9,424
A =	8,40	1	8,798	1	8,8179	1	8,82194
B =	0,01	0,02	0,026	0,06	0,0276	0,06	0,02790
2B =	0,02	0,04	0,052	0,12	0,0552	0,12	0,05580
log x = 1	9,	1	9,4	1	9,42	1	9,424
$A_1 =$	9,25	1,04	9,679	1,12	9,7026	1,12	9,70722
$EB_1 =$	9,93	-0,16	9,830	-0,36	9,8227	-0.38	9,82114
2B =	0,02	0,04	0,052	0,12	0,0552	0,12	0,05580
$A_2 =$	0,96	-0,12	0,888	- 0,24	0,8835	-0,26	0,88251
3B =	0,03	0,06	0,078	0,18	0,0828	0,18	0,08370
$\bar{A} =$	1,12	0,06	1,171	0,18	1,1755	0,18	1,17642
$B_1 =$	0,07	0,16	0,170	0,36	0,1773	0,38	0,17886
$\frac{1}{2}B_{1}=$	0,04	0,08	0,085	0,18	0,0887	0,19	0,08943
$\frac{3}{4}B_1 =$	0,11	0,24	0,255	0,54	0,2660	0,57	0,26829
$B_z =$	1,01	-0,11	0,941	-0,21	0,9369	-0,23	0,93600
$E\overline{B} =$	8,85	-0,06	8,801	<u> </u>	8,7964	-0,17	8,79557
R =	9,97		9,997		9,9993		9,99986
<i>S</i> =		0,07		0,16		0,17	
δ=		- 9,97		9,997		,9993	10 - 9,99986
V	0	,07	0	,16	0,017		0,17
	_	= 0,4	=	0,02	=0	,004	=0,00082
	l		ı				l

Ausrechnung.

Das Ergebniss ist also $\log x = 9,42482 - 10$. Die letzte Ziffer ist jedoch nicht mehr richtig, denn der auf fünf Stellen abgerundete Werth, den man durch Weiterführung der Rechnung mit siebenstelligen Logarithmen erhält, ist $\log x = 9,42486 - 10$. Durch logarithmisch-graphische Auflösung findet man bei Anwendung einer Längeneinheit von 2 cm $\log x = 9,42 - 10$.

Durch Rationalmachen von 11) ergiebt sich eine Gleichung sechsten Grades mit sieben Gliedern.* Ganz abgesehen davon, dass man die nicht unbeträchtliche Arbeit des Umformens und Berechnens der Coefficienten in der umgeformten Gleichung erspart, gestaltet sich bei obiger Behandlung die Ausrechnung mindestens ebenso einfach, als wenn man die rational gemachte Gleichung zu Grunde legt.

S. Civilingenieur 1889, Bd. XXXV S. 624, 625, 626.

§ 8. Anwendung der logarithmischen Methode auf transcendente Gleichungen.

An einem einfachen Beispiele soll noch die Anwendung der in § 4 entwickelten Methode auf transcendente Gleichungen gezeigt werden. Die auf zulösende Gleichung sei:

$$(4-3x^2)\sin x = 4x\cos x.$$

(S. Heis, Sammlung von Beispielen und Aufgaben, VII, § 106, 16.)

Wie die Zerlegung der Gleichung in

17)
$$y = \cot x, \quad y = \frac{4 - 3x^3}{4x}$$

zeigt, können ihre Wurzeln graphisch dadurch gefunden werden, dass man die Cotangentencurve mit der Hyperbel

$$4xy = 4 - 3x^2$$

schneidet. Letztere hat offenbar den Ursprung zum Mittelpunkt und die Y-Axe nebst der Geraden 4y+3x=0 zu Asymptoten. Führt man die Zeichnung aus, indem man als Längeneinheit etwa 1 cm wählt, so finden sich unendlich viele Schnittpunkte, die paarweise zum Coordinatenanfang symmetrisch liegen. Der am nächsten beim Ursprung liegende Schnittpunkt z. B. hat die Abscisse 2,56, welcher Werth also näherungsweise die kleinste positive Wurzel der gegebenen Gleichung vorstellt. Diese Wurzel möge genauer berechnet werden. Da 2,56 zwischen $\frac{\pi}{2}$ und π liegt, so ist es zweckmässig, $\cos\left(x-\frac{\pi}{2}\right)$ und $-\sin\left(x-\frac{\pi}{2}\right)$ an Stelle von $\sin x$ und $\cos x$ einzuführen. Hierdurch nimmt nach Trennung der positiven und negativen Glieder die Gleichung die Form an

$$3x^{2}\cos\left(x-\frac{\pi}{2}\right)=4x\sin\left(x-\frac{\pi}{2}\right)+4\cos\left(x-\frac{\pi}{2}\right)$$

Der Logarithmus der linken Seite ist gleich

$$2\log x + \log \cos \left(x - \frac{\pi}{2}\right) + \log 3,$$

derjenige der rechten Seite gleich

$$B + \log \cos \left(x - \frac{\pi}{2}\right) + \log 4,$$

wenn

$$\mathbf{A} = \log x + \log \sin \left(x - \frac{\pi}{2} \right) - \log \cos \left(x - \frac{\pi}{2} \right)$$

gesetzt wird. Man erhält somit als vorbereitende und als Schlussgleichung:

18)
$$A = \log t g\left(x - \frac{\pi}{2}\right) + \log x,$$

$$E B + 2 \log x + c = 0,$$

$$c = \log \frac{\pi}{4}.$$

In der ersten der vorhergehenden Gleichungen tritt die Function log ig auf. Da bei den betreffenden Tafeln das Argument stets in Graden aus-

Digitized by GOOGLE

gedrückt wird, so ist an fraglicher Stelle $x^0 = \varrho^0 x$ statt x zu schreiben, wo ϱ^0 die Anzahl von Graden bezeichnet, welche zu einem dem Halbmesser gleichen Bogen gehört. Der bequemeren Rechnung wegen ist eine Tafel für Decimaltheilung des Quadranten* unbedingt vorzuziehen und auch bei der unten folgenden Ausrechnung zu Grunde gelegt. Es ist für neue Theilung $\varrho^{\infty} = 63,662^{\infty}$, $\log \varrho^{\infty} = 1,80388$.

Bei dem graphisch gefundenen Näherungswerthe x=2,56 ($\log x=0,40824$) darf auch die letzte Ziffer als ziemlich sicher gelten, weil die beiden zu 17) gehörigen Curven an der betreffenden Stelle sich unter günstigem Winkel schneiden, und es kann deshalb die Rechnung sogleich mit fünfstelligen Logarithmen begonnen werden.

nung.

	1. G	ang	2. Gang
log x =	0,40824	1	0,40883
$\log \varrho^2 = 1$	1,80388	_	1,80388
$log \varrho^{\circ} x =$	2,21212	1	2,21271
ρ ° $x = x$ ° =	162,974	0,37	163,196
$\log tg (x^{\circ} - 100^{\circ}) =$	0,18213	5 ,6	0,18543
$\log x =$	0,40824	1	0,40883
A =	0,59037	6,6	0,59426
E B =	9,31036	-5,2	9,30726
$2 \log x =$	0,81648	2	0,81766
c ==	9,87506	_	9,87506
R =	0,00190		9,99998
8=	-3,2 0,00190		
3			10-9,99998
δ=		3,2	-3,2
	= 0.0	0059	=-0,000006
	l		•

Ergebniss (auf fünf Ziffern abgerundet). log x = 0.40882, x = 2.5634.

^{*} Es können empfohlen werden: F. G. Gauss, Fünfstellige logarithmischtrigonometrische Tafeln für Decimaltheilung des Quadranten, Berlin 1873; — H. Gravelius, Fünfstellige logarithmisch-trigonometrische Tafeln für die Decimaltheilung des Quadranten, Berlin 1886. Herr Gravelius benützt für den hundertsten, zehntausendsten, millionsten Theil des Quadranten bez. die Namen Centigrad, Centiminute, Centisecunde und die Zeichen , —.

§ 9. Gestaltung der logarithmischen Methode, wenn von den Additionslogarithmen kein Gebrauch gemacht wird.

Es möge das in § 6 behandelte Beispiel:

$$21x^{18} - 53x^7 + 65x^5 + 312x^2 - 74 = 0$$

noch einmal aufgenommen und die positive reelle Wurzel, welche diese Gleichung hat, jetzt ohne Gauss'sche Logarithmen berechnet werden.

Die frühere Trennung der positiven und negativen Glieder ist hier nicht erforderlich, wenn für jedes negative Glied seine Ergänzung zu einer, dem absoluten Werthe nach grösseren Potenz von 10 gesetzt wird, wodurch die betreffende Subtraction sich in eine Addition verwandelt. zungen bildet man im Kopfe, indem man, von links nach rechts gehend, statt jeder Ziffer der (meist nicht niedergeschriebenen, sondern blos in Gedanken festgehaltenen) Zahl, deren Ergänzung gesucht ist, ihre Ergänzung zu 9, statt der letzten Ziffer aber die Ergänzung zu 10 nimmt. Unter Umständen sind vor der ersten Ziffer links noch einige Nullen zu denken, für welche in der Ergänzung ebenso viele Neuner einzutreten haben.

Die absoluten Werthe der einzelnen Glieder sollen der Reihe nach durch I, II, III, ... bezeichnet werden. Auf den unteren Rand eines Papierstreifens schreibe man neben einander die wiederholt zu addirenden Logarithmen der Coefficienten. Der Logarithmus des Absolutgliedes kommt nicht zur Verwendung und braucht deshalb auch nicht aufgeschlagen zu werden. Weil aber das Absolutglied selbst zu den Zahlenwerthen der berechneten Glieder zu addiren (bez. davon zu subtrahiren) ist, so kann man es (bez. seine dekadische Ergänzung) ebenfalls auf den Papierstreifen setzen.

Papierstreifen.								
log 21 = 1,32222	log 53 $= 1,72428$	log 65 $= 1,81291$	log 312 $= 2,49415$	$ \begin{vmatrix} -74 \\ = 26 - 100 \end{vmatrix} $				

Wir gehen wieder von dem graphisch ermittelten Näherungswerthe log x = 9,68-10 aus und rechnen beim ersten Gange mit drei, beim zweiten mit fünf Stellen.

A	u	8	r	e	c	h	n	u	n	g.
---	---	---	---	---	---	---	---	---	---	----

•	1. Gang	3	2. Gang
$\log x =$	9,68	1	9,6835
$13 \log x =$	5,84	13	5,8855
log I =	7,162	13	7,20772
$7 \log x =$	7,76	7	7,7845
log II =	9,484	7	9,50878
$5 \log x =$	8,40	5	8,4175
log III =	0,213	5	0,23041
$2 \log x =$	9,36	2	9,3670
log IV =	1,854	2	1,86115
I =	0,0	0	0,002
EII =	99,7 — 100	-5	99,677 — 100
III =	1,6	19	1,700
IV =	71,5	333	72,635
R =	99,8 - 100		0,014
s =		347	
$\delta =$	$\frac{100 - 98,8}{347}$		$-\frac{0.014}{347}$
	=0,0035		=-0,00004

Ergebniss. log x = 9.68346 - 10:

Zu der obigen Ausrechnung möge noch Folgendes bemerkt werden. Da von einer Zahl, deren Logarithmus auf n Stellen bekannt ist, in der Regel auch nur n Ziffern mit Sicherheit angegeben werden können, so wird man dasjenige Glied aufsuchen, dessen Logarithmus die grösste Kennziffer hat — es ist hier log IV mit der Kennziffer 1 —, vom Zahlenwerthe dieses Gliedes beim ersten Gange drei, beim zweiten fünf Ziffern anschreiben und bei allen übrigen Gliedern an der entsprechenden Stelle abbrechen, natürlich unter Beachtung der bekannten Regeln des Abrundens.

Es wird endlich noch eine Erläuterung der Berechnung von S erwünscht sein. Ich setze voraus, dass man schon beim ersten Gange eine fünfstellige Logarithmentafel benützt. Wenn log x um eine Einheit der fünften Decimale wächst, so nimmt 13 log x und ebenso log I um 13, log II um $7, \ldots, log IV$ um 2 Einheiten der fünften Decimale zu. Das grösste Glied, nämlich IV, wird auch den Zuwachs mit den meisten Stellen ergeben. Nun ist

(beim ersten Gange) von den in der Logarithmentafel enthaltenen Mantissen 85400 die am nächsten unter der Mantisse von $log\,IV$ liegende. Die Differenz zwischen dieser und der folgenden Mantisse der Tafel beträgt 6 und entspricht einer Zunahme des Numerus um zehn Einheiten in der fünften Ziffer. Daher bewirkt ein Wachsen des $log\,IV$ um zwei Einheiten ein solches der Zahl IV selbst um $\frac{2}{6}\cdot 10 = 3,333\ldots$ Einheiten. Weil aber (vermöge der Kennziffer 1 des $log\,IV$) von der Zahl IV zwei Ziffern vor dem Komma sich befinden, so muss der Zuwachs $3,333\ldots$ um ebensoviel Stellen nach links (bez. das Komma nach rechts) gerückt werden, d. h. die wirkliche Zunahme des Gliedes IV beim Wachsen von $log\,x$ um eine Einheit der fünften Decimalen beträgt $333,3\ldots$ Einheiten der fünften Decimalen. Da drei Ziffern mehr als ausreichend sind, so wird man diesen Zuwachs und den aller übrigen Glieder auf Ganze abrunden. Der Zuwachs des Gliedes III z. B. findet sich zu $\frac{5.10}{26}\cdot 10 = 19$ Einheiten der fünften Decimalen.

Bei solchen kleinen Nebenrechnungen leistet hier, wie überall, der logarithmische Rechenstab* gute Dienste.

§ 10. Zweites Beispiel für die logarithmische Berechnung ohne Additionslogarithmen.

Die im vorhergehenden Paragraphen auseinandergesetzte Methode ist vielleicht die anspruchsloseste, am wenigsten theoretisches Beiwerk erfordernde von allen wirklich brauchbaren Methoden, die bisher aufgestellt worden sind. Dass dieselbe trotzdem auch mit berühmten Methoden keinen Vergleich zu scheuen braucht, wird folgende Gegenüberstellung zeigen. Wir wollen das Beispiel

 $x_{\bullet}^{7} + 28 x^{4} - 480 = 0$

welches Gauss zur Veranschaulichung seiner Methode der Auflösung trinomischer Gleichungen benützt,** nach obiger Methode behandeln und die von Gauss selbst gegebene Lösung, mit Hersetzung der von ihm unterdrückten Nebenrechnungen, dagegen halten.

Dem Satze von Descartes zufolge kann vorstehende Gleichung nur eine positive reelle Wurzel haben; durch Probiren findet man mit Leichtigkeit, dass dieselbe zwischen 1 und 2, und zwar bedeutend näher bei 1, als bei 2 liegen muss. Wir wollen deshalb auf die graphische Auflösung

[•] Dieses überaus nützliche, noch viel zu wenig geschätzte Werkzeug sollte in der Hand keines Rechners fehlen. Die besten Rechenstäbe, mit sorgfältig ausgeführter Theilung in schwarzen Strichen auf weissem Zellhorn, liefert die Firma Dennert & Pape in Altona.

^{**} S. Gauss' Werke, Bd. 3 S. 93. Aus der Gauss'schen Methode zur Auflösung trinomischer Gleichungen ist übrigens die Methode in § 4 hervorgegangen. Vergl. § 14.

verzichten* und als ersten Näherungswerth log x = 0.3 annehmen. Die Rechnung soll in drei Gängen, nämlich mit drei, fünf und sieben Stellen ausgeführt werden. Man wird zweckmässig beim ersten Gange schon eine fünfstellige, beim zweiten eine siebenstellige, oder bei allen drei Gängen eine siebenstellige Logarithmentafel benützen.

Vorbereitung.

Papierstreifen.						
log 28	 48 0					
= 1,4471580	=520-1000					

Ausrechnung.

	1. Gang		2. Gan	g	3. Gang	
log x =	0,3	1	0,285		0,28396	1
$7 \log x = \log I =$	2,1	7	1,995		1,98772	
$4 \log x =$	1,2	4	1,140		1,13584	
log II =	2,647	4	2,58716		2,5829980	
I =	126	2000	98,86	1590	97,2120	1590
lI =	444	4000	386,51	3570	382,8230	3510
R =	90		5,37	}	0,035	
8=		6000		516 0		5100
$\delta =$	$-\frac{90}{6000}$		$-\frac{5,3}{51}$		$-\frac{0,035}{5100}$	
	=-0.015		=-0,00	104	=-0,0000069	

Ergebniss. log x = 0.2839531.

Eine, wenn auch unbedeutende Verzögerung bewirkt hier der Umstand, dass der Coefficient S sich zu schnell ändert, um als constant angesehen werden zu dürfen, also bei jedem Gange von Neuem berechnet werden muss.

Es folgt nun die Auflösung nach Gauss. Die Gleichung gehört nach der von Gauss gegebenen Eintheilung zum zweiten Falle der ersten Form, nämlich zu dem Falle

^{*} Wenn man sich einer Schiefertafel bedient, auf welcher ein logarithmisches Linieunets eingeritzt ist, so genügt eine in einer halben Minute ausführbare Skisze, um zu erkennen, dass die positive Wurzel obiger Gleichung sich weuig von 2 unterscheidet.

$$x^{m+n} + ex^m - f = 0, \quad \lambda < 2^n,$$

$$\lambda = \frac{f^n}{e^{m+n}}.$$

Die zur Berechnung dienenden Formeln sind

$$mA - nB = log \frac{1}{\lambda}$$
, $log x = \frac{1}{m+n} (log f - C)$,

wobei jedoch B nicht die jetzt übliche Bedeutung hat, sondern bei Befolgung der heutigen, von Wittstein herrührenden Schreibweise (B-A) an Stelle von B und B an Stelle von C zu setzen wäre. Es soll jedoch im Folgenden ausnahmsweise die Gauss'sche Bezeichnung beibehalten werden.

Vorbereitung.

$$\log 28 = 1,4471580$$

$$\log 480 = 2,6812412$$

$$7 \log 28 = 10,1301060$$

$$3 \log 480 = 8,0437236$$

$$\log \frac{1}{1} = 2,0863824$$

Formeln.

$$4A - 3B = 2,0863824,$$

 $\log x = \frac{1}{2}(2,6812412 - C).$

Ausrechnung.

A=	0.5	0,6	0,595	0,596	0,5953	0,5952
B =	0,119	0,097	0,09833	0,09813	0,0982705	0,0982907
4A=	2,0	2,4	2,380	2,384	2,3812	2,3808
3B =	0,357	0,291	0,29499	0.29439	0.2948115	0,2948721
4A-3B=	1,643	2,109	2,08501	2,08961	2,0863115	0,0859279
Fehler =	-0,433	0,023	-0,00137	0,00323	0,0000061	-0,0004545
Verbess. Werth	0,6 - = 0,		0,595 + 0,5		0,5953 -	- 0,0061 4606

^{*} Herr Hofrath Nell hat die Gauss'schen Formeln der heutigen Schreitweise angepasst. Siehe A. M. Nell, Die Auflösung dreigliedriger Gleichungen nach Gauss, Hoppe's Archiv für Mathematik und Physik 1884, 2. Reihe Bd. I S. 311.

Zu
$$A = 0,5953 - \frac{0,0061}{4606}$$
 gehört: $C = 0,6935695$

$$\frac{7 \log x = 1,9876717}{\log x = 0,2839531}$$

Ich denke, man wird zugeben müssen, dass der Vergleich nicht zu Gunsten der Gauss'schen Methode ausgefallen ist. Bei der andern Methode beschränkt sich die ganze Vorbereitung auf das Aufschlagen eines einzigen Logarithmen, man hat nicht nach unmöglich auswendig zu behaltenden Formeln zu rechnen, sondern das Rechenschema ergiebt sich ganz von selbst und es ist auch die gesammte Rechenarbeit geringer, als bei Anwendung der Gauss'schen Methode. Natürlich vermindert sich die Arbeit bedeutend, wenn man wohl nach den Gauss'schen Formeln rechnet, aber nicht die Regula falsi, sondern das in dieser Abhandlung dargelegte Correctionsverfahren anwendet;* aber selbst dann bleibt es noch zweifelhaft, ob die Gauss'sche Methode einen Vortheil gewährt.

§ 11. Vergleich zwischen der logarithmischen Berechnung mit und derjenigen ohne Additionslogarithmen.

In der Bemerkung zu § 4 wurde bereits darauf hingewiesen, dass beim Zusammenfassen der logarithmisch berechneten Glieder eines vielgliedrigen Ausdrucks mit der Anwendung der Additionslogarithmen kein sehr bedeutender Vortheil verknüpft ist. Bei der Auflösung algebraischer Gleichungen, und zwar solcher, bei denen der mit Null vergliehene Ausdruck eine rationale ganze Function der Unbekannten ist, wird man vielleicht sogar besser vom Gebrauche der Additionslogarithmen ganz absehen und lieber das in § 9 erklärte Verfahren anwenden. Zur Begründung dieser Ansicht werde ich die im einen und andern Falle nöthigen Arbeiten aufzählen und miteinander vergleichen.

Wenn die gegebene Gleichung p Glieder hat, so sind bei der logarithmischen Berechnung mit, resp. ohne Additionslogarithmen auszuführen:

- a) bei der Vorbereitung:
 - 1. Bestimmungen des log zu gegebener Zahl

$$p$$
 resp. $(p-1)$,

2. Subtractionen

$$(p-1)$$
 resp. 0 oder 1;

- b) bei jedem Gange:
 - 1. Bestimmungen des log zu gegebener Zahl oder des B zu gegebenem A

(p-2) resp. (p-1),

^{*} Es unterscheidet sich alsdann das Verfahren von der Anwendung des in § 5 erklärten auf eine dreigliedrige Gleichung nur dadurch, dass Gauss logx aus der vorbereitenden und der Schlussgleichung eliminirt. Vergl. § 14.

- 2. Multiplicationen mit einer ganzen Zahl
- (p-1) resp. (p-1), 3. Additionen (p-1) resp.

Ferner ist die Anzahl der zu schreibenden Zahlen

- a) bei der Vorbereitung
- b) bei jedem Gange (2p-1) resp. p, (3p-3) resp. 3p.

Man erkennt hieraus, dass in dem vorliegenden Falle der Nutzen, den die Additionslogarithmen gewähren, in der That ein bescheidener, und um so geringer ist, je mehr Glieder die Gleichung hat. Derselbe wird noch dadurch vermindert und vielleicht völlig aufgehoben, dass man erst Formeln aufstellen muss und längerer Vorbereitungen bedarf, ehe man die Rechnung beginnen kann. Bei transcendenten Gleichungen und bei algebraischen Gleichungen von verwickelter, vielleicht irrationaler Form können die Verhältnisse wesentlich andere sein.

§ 12. Beispiel für die Berechnung ohne Logarithmen.

$$x + \sqrt{x} + \sqrt[3]{x} + \sqrt[3]{x} = 5.$$

(Siehe H. Scheffler, Auflösung der algebraischen und transcendenten Gleichungen. Braunschweig 1859, S. 121.)

Ist man im Besitze einer zweckmässig eingerichteten Tafel der Quadratund Cubikwurzeln, oder auch der Quadrat- und Cubikzahlen, so bedarf man zur Auflösung der obigen Gleichung keiner Logarithmen. Es leuchtet ein, dass eine einzige positive Wurzel vorhanden ist, und ein kleiner Versuch zeigt, dass dieselbe sich zwischen 1 und 2 befindet. Wir beginnen deshalb die Rechnung mit dem Näherungswerthe 1. Bei der nachstehenden Ausrechnung ist die Tafel der Quadratzahlen und diejenige der Cubikzahlen in der vierstelligen Tafelsammlung von Rex* benützt worden. Selbetverständlich erhält man die vierte Wurzel durch zweimaliges Ausziehen der Quadratwurzel.

Ausrechnung.

	1. Gang		2. Gang		3. Gang
x =	1	1	1,5	1	1,51
$\sqrt{x} = $	1	0,5	1,23	0,42	1,2288
\sqrt{x}	1	0,33	1,14	0,26	1,1472
$\sqrt[p]{x} =$	1	0.25	1,11	0,19	1,1085
Summe	4		4,98		4,9945
R =	-1		-0.02		- 0,0055
s =		2,08	i	1,87	
δ=	$\frac{1}{2,08} = 0.5$		$\frac{0.02}{1.87} = 0.01$		$\left \frac{0,0055}{1,87} = 0,0029 \right $

^{*} Fr. W. Rex, Vierstellige Logarithmen - Tafeln, J. B. Metzler, Stuttgart (ohne Jahreszahl).

Ergebniss. x = 1.5129.

§ 13. Beurtheilung der Genauigkeit der berechneten Wurzeln.

Es sei ein Werth x von der Beschaffenheit gefunden worden, dass Null erhalten wird, wenn man x in F(x) einsetzt und hierbei x-stellige Tafeln benützt, überhaupt die Rechnung durchgehends n-stellig ausführt. Dann ist nicht zu erwarten, dass $oldsymbol{x}$ nun wirklich eine bis zur letzten Ziffer genaue Warzel von F(x) = 0 vorstelle. Man kann aber stets durch leichte Ueberlegungen finden, wie gross im allerungfinstigsten Falle die Unsicherheit ist, welche z anhaftet. Die Fehler der Functionswerthe, die von gut eingerichteten s-stelligen Tafeln zu gegebenen Argumenten geliefert werden, sind dem absoluten Betrage nach nicht grösser, als eine halbe Einheit der nten Stelle. Führt man die Berechnung von F(x) in Gedanken aus und macht man die Annahme, dass bei einer jeden Benützung der Tafel jener grösste Fehler von einer halben Einheit der nten Stelle thatsächlich begangen werde und ferner diese Fehler das Resultat alle in gleichem Sinne beeinflussen, dann wird man für F(x) nicht Null, sondern irgend einen Werth +R'erhalten, der nur schätzungsweise bestimmt zu werden braucht. Bezeichnet also $(x+\delta)$ den genauen Werth der Wurzel, so ist

 $\pm R + 8.\delta = 0$ oder $\delta = \mp \frac{R}{S}$,

wo S die frühere Bedeutung hat. Jedenfalls besteht daher unter sonst gleichen Umständen eine um so grössere Unsicherheit, je kleiner S ist. Allerdings wird man auf diese Weise eine übertriebene Vorstellung von der Ungenauigkeit der berechneten Wurzel x erhalten, da die Wahrscheinlichkeit gering ist, dass die denkbar ungunstigsten Umstände gleichzeitig eintreten. Eine Berechnung des wahrscheinlichen Fehlers nach den Grundsätzen der Ausgleichungsrechnung würde vermuthlich die aufzuwendende Mühe nicht lohnen. Um einen schnellen Ueberblick zu gewinnen, kann man sich auch die Frage vorlegen: Um wieviel darf x geändert werden, ehe diese Aenderung einen Einfluss auf die letzte Stelle in F(x) hat? Nehmen wir als Beispiel die in § 6 gelöste Gleichung, für welche eine Wurzel mit $\log x = 9.68346$, S = 2.06 gefunden worden ist. Hier wächst R, welches einen Logarithmus vorstellt, um 2,06 Einheiten irgend einer Decimalen, wenn x um eine Einheit derselben Decimalen zunimmt. Es würde also $\frac{0,000005}{2,06} = 0,0000024$ sich in der schon eine Aenderung von log x um fünften Decimalen von R bemerklich machen. Daher ist der Werth log x =9,68346 unbedingt bis auf die letzte Stelle sicher. Wäre S kleiner als Eins, so müsste mit mehr als π Stellen gerechnet werden, wenn man $\log x$ Digitized by Google auf mindestens a Stellen genau erhalten wollte.

§ 14. Geschichtliche Bemerkungen.

Das in dieser Abhandlung in mannigfachen Anwendungen gezeigte Verfahren, die Wurzeln algebraischer oder transcendenter Gleichungen mit Hilfe numerischer Tafeln unter Benützung der bei denselben üblichen Interpolationsmethode in stufenweiser Annäherung zu berechnen, kenne ich seit 1885. Es scheint so nahe zu liegen, dass man leicht an seiner Neuheit zweifeln kann. Jedoch habe ich weder in Lehrbüchern, noch in den Jahrbüchern über die Fortschritte der Mathematik etwas darauf Bezügliches finden können.

Die folgenden Bemerkungen beziehen sich ausschliesslich auf die Geschichte des Gebrauchs der Additionslogarithmen bei der Berechnung der reellen Wurzeln numerischer Gleichungen. In der 1840 erschienenen Sammlung mathematischer Tafeln von Vega und Hülsse hat Gauss die Auflösung quadratischer Gleichungen und ferner in einem an Schumacher gerichteten, in Schumachers Astronomischen Nachrichten abgedruckten Briefe vom 1. April 1843 diejenige der cubischen Gleichung, welche bei der parabolischen Bewegung zur Bestimmung der wahren Anomalie dient, mit Hilfe der Additionslogarithmen gezeigt (s. Gauss' Werke, Bd. 3 S. 255, sowie Bd. 6 S. 191). An letzterem Orte wird bereits darauf hingewiesen, dass die Additionslogarithmen "auf ganz ähnliche Weise zu einer sehr bequemen Auffindung aller reellen Wurzeln jeder algebraischen Gleichung, die nicht mehr als drei effective Glieder hat", benützt werden können. Ausführung hat Gauss erst in dem zweiten Theile seiner in der Sitzung der Königl. Gesellschaft der Wissenschaften am 16. Juli 1849 vorgelesenen und in Bd. IV der Abhandlungen dieser Gesellschaft erschienenen "Beiträge zur Theorie der algebraischen Gleichungen" gegeben (s. Gauss' Werke, Bd, 3 S. 85). In den Jahren 1884 und 1885 hat Herr Prof. Dr. Gundelfinger die Ausdehnung der Gauss'schen Methode auf Gleichungen mit vier Gliedern vorgenommen.*

Ohne Herrn Gundelfinger's eigenen Veröffentlichungen irgendwie vorgreifen zu wollen, theile ich Folgendes mit. Behufs Aufstellung der zur Berechnung dienenden Formeln benützte Herr Gundelfinger anfangs diejenigen, zwei Hilfswinkel enthaltenden Relationen, welche aus den Gleichungen der Mittelpunkteflächen zweiten Grades ebenso hervorgehen, wie die Relation $\cos \Theta^2 + \sin \Theta^2 = 1$ aus der Gleichung des Kreises, später aber die Identität $10^B = 1 + 10^A$. Der Schwerpunkt der Arbeit des Herrn Gundel-

Digitized by GOOGLO

^{*} Eine entsprechende Preisaufgabe ist im Mai 1884 von der mathematischnaturwissenschaftlichen Abtheilung der hiesigen technischen Hochschule gestellt worden, und zwar auf Antrag des Herrn Gundelfinger. Letzteren Umstand hervorzuheben, ist in der Anmerkung auf S. 618 des "Civilingenieur" von 1889, Bd. XXXV, versäumt worden. Es versteht sich von selbst, dass Herr Gundelfinger die Lösung der Aufgabe in der Hauptsache schon vorher besessen hat, wenn auch seine Untersuchungen ihren Abschluss erst viel später erreicht haben.

_ (

finger liegt in der Aufstellung von Kennzeichen für die Anzahl der reellen Wurzeln viergliedriger Gleichungen und von Regeln zur schnellen Ermittelung erster Annäherungen an diese Wurzeln. Es wäre um so mehr erwünscht, dass Herr Gundelfinger seine werthvollen Untersuchungen bald veröffentlichte, als neuerdings die erste der vorgenannten Aufgaben auch von anderer Seite behandelt worden ist.* Als ich Ende 1885 anfing, mich ebenfalls mit der Erweiterung der Gauss'schen Methode zu beschäftigen, sah ich von vornherein davon ab, nach Kriterien für die Anzahl der Wurzeln und Regeln zur Trennung derselben zu suchen, weil mir bei allgemeinen Gleichungen mit mehr als vier Gliedern solche Bemühungen keine Aussicht auf Erfolg zu haben schienen. Es gentigte mir die Verallgemeinerung der Gauss'schen Berechnungsweise an sich. Dieses Ziel war auf folgendem Wege leicht zu erreichen. Ich schaffte in der auf Null gebrachten aufzulösenden Gleichung die negativen Glieder auf die rechte Seite und berechnete die Logarithmen beider Seiten, indem ich auf die allbekannte Art mit Hilfe der Additionslogarithmen zunächst zwei Glieder zusammenfasste, zur Summe das folgende Glied hinzufügte u. s. w. Durch Gleichsetzen der auf solche Weise durch eine Kette von Gleichungen gefundenen Logarithmen der beiden Seiten ergab sich die Schlussgleichung. in §§ 4 und 5 dieser Abhandlung beschriebene Verfahren entstanden, das ich nebst dem vorgeführten Correctionsverfahren seit 1886 alljährlich in meinen Vorlesungen mitgetheilt habe. Ein ähnlicher Gedankengang hat mich auch (im Januar 1886) zur Entdeckung der logarithmisch-graphischen Auflösungsmethode geführt.** Um Formeln zu erhalten, die den von Gauss bei dreigliedrigen und von Herrn Gundelfinger bei viergliedrigen Gleichungen benützten genau entsprechen, müsste man aus den obenerwähnten Gleichungen logx eliminiren. Diese Elimination von logx lässt sich aber nur bei dreigliedrigen Gleichungen rechtfertigen, während sie bei Gleichungen mit mehr als drei Gliedern keinen Nutzen bringt, sondern im Gegentheil nur die Formeln verwickelter macht und die ganze Rechen- und Schreibarbeit bedeutend vermehrt. Bei transcendenten Gleichungen, welche meine Vorgänger noch nicht in Betracht gezogen hatten, ist dieselbe ohnehin un-Den Hauptvorzug des von mir eingeschlagenen Weges erblicke ich darin, dass, wenn man ihm folgt, man keine verschiedenen Fälle zu unterscheiden braucht - bei Gauss'scher Behandlungsweise würde deren

^{*} Carl Färber, Herleitung von Kriterien für die Anzahl reeller Wurzeln von Gleichungen (speciell der allgemeinen viergliedrigen und der Gleichungen vom fünften Grade) aus der Beschaffenheit ihrer Discriminanten Mannigfaltigkeit. Inaugural-Dissertation, Berlin 1889.

^{**} S. die Anmerkung auf S. 188. Ich halte es für nöthig, zu betonen, dass bei der logarithmisch-graphischen Auflösung die von mir eingeführte Additionscurve, das Gegenstück zu den Additionslogarithmen, kein wesentliches Erforderniss bildet, anfangs auch gar nicht von mir benützt worden ist.

Zahl bald eine bedenkliche Höhe erreichen —, sondern immer, welches auch die Zahl der Glieder und die sonstige Beschaffenheit der aufzulösenden Gleichung sein mögen, durch ein und dasselbe, dem Gedächtnisse leicht einzuprägende Verfahren die gewünschten Formeln erhält.

Dass übrigens, namentlich bei algebraischen Gleichungen gewöhnlicher Form, die Anwendung der Additionslogarithmen nicht unbedingt anderen Methoden vorzuziehen ist, dieser Ueberzeugung habe ich schon mehrmals Ausdruck verliehen.

Anhang.

Fall mehrerer nahezu gleicher Wurzeln.

\S 15. Genaue Berechnung des Coefficienten S.

Wenn in grosser Nähe der Wurzel, die man zu berechnen sich vorgenommen hat, noch andere Wurzeln liegen, so kann mittels der in vorstehender Abhandlung gelehrten, auf der Anwendung des gewöhnlichen Interpolationsverfahrens beruhenden Berechnungsweise der Coefficient S nicht immer mit genügender Schärfe bestimmt werden. Es erscheint alsdann ein engerer Anschluss an die sogenannte Newton'sche Methode geboten. Bei algebraischen Gleichungen gewöhnlicher Form, welche hier allein berücksichtigt werden sollen, gestaltet sich die Berechnung besonders einfach, sobald log x zur Unbekannten genommen, überhaupt (abgesehen von der Berechnung von S) das in § 9 beschriebene logarithmische Verfahren in Anwendung gebracht wird. Additionslogarithmen zu benützen ist hier aus mehreren Gründen weniger zweckmässig.

Man hat $\frac{d(ax^n)}{d(\log x)} = \frac{n}{M} ax^n = 2,3025851.nax^n.$

D. h., wenn log x um einen kleinen Betrag δ wächst, so erhält irgend ein Glied $P = ax^n$ der Gleichung den Zuwachs 2,3025851. $nP\delta$. Ist also

$$P+P_1+P_2+\cdots$$

die linke Seite der gegebenen Gleichung, so wird

(19)
$$S = 2,3025851 (nP + n_1P_1 + n_2P_2 + \cdots).$$

Um nur eine Addition ausführen zu müssen, ersetzt man, wie in § 9, alle negativen Glieder der Gleichung durch ihre dekadischen Ergänzungen. Nachdem der Ausdruck in der Klammer berechnet worden ist, kann man die Multiplication mit 2,3025851 dadurch bewerkstelligen, dass man die in allen Logarithmentafeln angegebenen Vielfachen jener Zahl benützt. Oft genügt auch die Multiplication mit 2,30.

Beispiel. Bei der in § 10 behandelten Gleichung

$$x^7 + 28x^4 - 480 = 0$$

og x = 0.28396 gefunden worden:

Digitized by Google

 $P = x^7 = I = 97,2120, P_1 = 28x^4 = II = 382,8230,$

folglich hat man

8 = 2,3025851(7.97,2120 + 4.382,8230) = 5092,8025.

Der dort durch gewöhnliche Interpolation gefundene Werth 5100 ist somit um etwa sieben Einheiten der vierten Stelle zu gross.

§ 16. Trennung der Wurzeln.

Die grosse wissenschaftliche Bedeutung des Sturm'schen Satzes und ähnlicher Hilfsmittel zur Trennung der reellen Wurzeln numerischer Gleichungen wird niemand in Zweifel ziehen wollen. Für die wirkliche Auflösung numerischer Gleichungen sind dieselben jedoch gerade in schwierigen Fällen wegen der überaus grossen Mühe, die ihre Anwendung verursacht, recht wenig geeignet, glücklicherweise aber auch vollkommen entbehrlich. Das Ziel ist ebenso sicher, aber ungleich bequemer auf dem folgenden Wege zu Man löst die Gleichung zuerst mittels der logarithmisch-graphischen Methode auf.* Auch bei Benützung des von mir empfohlenen kleinen Maassstabes - Längeneinheit gleich 2 cm - werden hierdurch in gewöhnlichen Fällen die Wurzeln deutlich getrennt und angenäherte Werthe für ihre Logarithmen gefunden, so dass man ohne Weiteres zur Anwendung der in dieser Abhandlung vorgeschlagenen oder irgendwelcher anderen Näherungsmethoden schreiten kann. Besitzt aber die Gleichung einige wenig von einander verschiedene Wurzeln, so werden die zur Auflösung dienenden Curven an der betreffenden Stelle sich zu berühren oder auf eine längere Strecke zusammenzufallen scheinen. Dasselbe wird der Fall sein, wenn die Gleichung einige complexe Wurzeln mit sehr kleinen rein imaginären Theilen und gleichen oder nahezu gleichen reellen Theilen hat. Dann sollte jene Stelle in grösserem Maassstabe gezeichnet und mit der Vergrösserung des Maassstabes so lange fortgefahren werden, bis jeder Zweifel über den wahren Sachverhalt schwindet. Weil aber die Rechnung doch nicht länger mehr zu entbehren ist, so kann man auch die graphische Darstellung ändern, um sie der Rechnung soviel wie möglich anzupassen. Handelt es sich z. B.

^{*} Siehe Civilingenieur 1889, Bd. XXXV S. 617. Das Wesen der logarithmischgraphischen Methode besteht darin, dass die aufzulösende Gleichung F(x)=0 in zwei Gleichungen y=f(x), y=g(x) zerlegt wird, was am einfachsten durch Trennung der positiven und negativen Glieder in der ursprünglichen Gleichung geschieht, und nun die letzteren beiden Gleichungen in der Weise durch Curven dargestellt werden, dass man logx und logy zu rechtwinkligen Cartesischen Coordinaten eines Punktes nimmt. Die Logarithmen der gesuchten Wurzeln ergeben sich dann als die Abscissen der Schnittpunkte jener beiden Curven. Im Falle einer algebraischen Gleichung gewöhnlicher Form werden die einzelnen Glieder für sich durch Geraden vorgestellt; die Geraden zu den Gliedern mit höchstem bez. niedrigstem Exponenten sind Asymptoten der betreffenden Curven. Letztere sind frei von Wendepunkten und nach oben gekrümmt, wenn die vorhin erwähnte Zerlegungsweise angewendet worden ist.

um eine algebraische Gleichung gewöhnlicher Form F(x) = 0, und hat man sich entschlossen, die zu bestimmten Werthen von x gehörigen Werthe der linken Seite auf logarithmischem Wege zu berechnen, so ist es offenbar am bequemeten, log x zur Abscisse, y = F(x) zur Ordinate eines veränderlichen Curvenpunktes zu nehmen und von der so definirten Curve das in Frage Die Schnittpunkte dieser Curve mit der kommende Stück zu zeichnen. Abscissenaxe werden die Logarithmen der gesuchten Wurzeln sein. In dem hier besprochenen Falle wird aber jene Curve an der Stelle, wo sie die Abscissenaxe erreicht bez. durchsetzt, gewissermassen mikroskopisch kleine Schwankungen zeigen, welche durch Anwendung einer genügend starken Vergrösserung dem blossen Auge sichtbar gemacht werden müssen. Es ist von grösstem Werthe, nicht blos einzelne Punkte der fraglichen Curve durch Berechnung ihrer Ordinaten zu bestimmen, sondern auch in jedem gefundenen Punkte die Tangente zu construiren. Dazu ist noch die Berechnung von $S = \frac{d F(x)}{d \ln a x}$ nöthig. Je näher die gesuchten Wurzeln bei einander liegen, eine um so grössere Anzahl genauer Stellen der Werthe F(x) ist man schliesslich zu ermitteln gezwungen. Natürlich können Beispiele von solcher Schwierigkeit construirt werden, dass die vorhandenen Logarithmentafeln* nicht mehr ausreichen, um bis zur Trennung der Wurzeln vorzudringen. Abgesehen davon, dass in der angewandten Mathematik solche Fälle wohl niemals vorkommen werden, bleibt alsdann immer noch die Möglichkeit, die Grössen F(x) zuletzt auf rein arithmetischem Wege, etwa mit Hilfe des bekannten Horner'schen Schemas, zu bestimmen.

$$F(x) = x^{11} + x^7 - x^3 + 0.694x - 0.232 = 0.$$

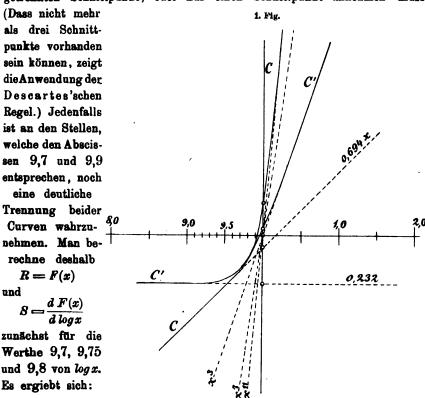
Wendet man auf diese Gleichung das logarithmisch-graphische Verfahren an, indem man dieselbe in

$$y = x^{11} + x^7 + 0.694x$$
 und $y = x^3 + 0.232$

zerlegt, so erhält man die in Fig. 1 gezeichneten, durch die beigesetzten Buchstaben C und C' unterschiedenen Curven. Man sieht, dass letztere sich links von der Ordinatenaxe durchschneiden, sich aber auch zugleich zu berühren scheinen. Bei der Kleinheit des Maassstabes ist es unmöglich, zu erkennen, ob die Curven thatsächlich eine dreipunktige Berührung besitzen, was einer dreifachen Wurzel entspräche, oder ob man etwa drei getrennte

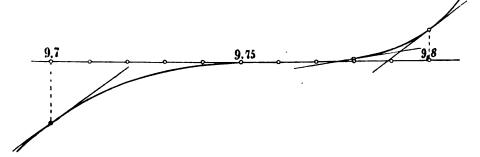
^{*} Ausser den schon angeführten elfstelligen Tafeln von Steinhauser sind noch zu erwähnen: A. Steinhauser, Kurze Hilfstafeln zur bequemen Berechnung 16 stelliger Logarithmen, Wien 1865; A. Steinhauser, Hilfstafeln zur präcisen Berechnung 20 stelliger Logarithmen, Wien 1880.

Schnittpunkte oder einen gewöhnlichen Berührungspunkt nebst einem davon getrennten Schnittpunkt, oder nur einen Schnittpunkt annehmen muss.



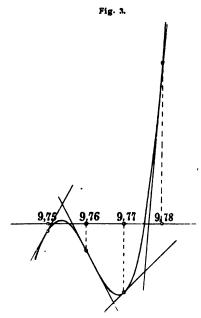
für
$$log x = 9.7$$
: $R = -0.001624$, $S = 0.0720$;
 $log x = 9.75$: $R = -0.0000019$, $S = 0.00189$;
 $log x = 9.8$: $R = 0.000816$, $S = 0.0746$.

Fig. 2.



Trägt man die vorstehenden Werthe von log x und R als Abscissen und Ordinaten auf, und zwar in einem solchen Maassstabe, dass eine Einheit der Digitized by

zweiten Decimalen von $\log x$ gleich 1 cm und eine Einheit der vierten Decimalen von R gleich 1 mm wird, und construirt man ferner mit Hilfe der obigen Werthe von S in den erhaltenen Punkten die Tangenten, so ist man



in der Lage, den Verlauf der Curve wie in Fig. 2 festzustellen. Der grösseren Sicherheit wegen kann nachträglich noch der Punkt zu log x = 9.78 berechnet werden, für welchen man findet: R = 0.0000424, S = 0.01278. Trennung der Schnittpunkte der Curve mit der Abscissenaxe ist zwar noch nicht gelungen; man sieht aber, dass dieselben zwischen 9,75 und 9,78 zu suchen sind. Stellt man den fraglichen Theil der Curve noch einmal dar, indem man die Abscissen beibehält, die Ordinaten dagegen im hundertfachen Maassstabe der Fig. 2 aufträgt und die Punkte zu den Abscissen 9,76 und 9,77 nebst den Tangentenrichtungen in denselben neu berechnet, so entsteht Fig. 3. Es ist nämlich

für
$$log x = 9.76$$
: $R = -0.0000069$, $S = -0.00192$; $log x = 9.77$: $R = -0.0000180$, $S = 0.000988$.

Man ist jetzt am Ziele, denn die Curve zeigt auf's Deutlichste drei getrennte Schnittpunkte mit der Abscissenaxe. Sollte man je noch im Zweifel darüber sein, ob die Curve in dem Zwischenraume von 9,75 bis 9,76 sich wirklich über die Abscissenaxe erhebt, so genügte die Berechnung eines Zwischenpunktes, um jede Unsicherheit zu beseitigen. Misst man die Abscissen der gefundenen Schnittpunkte mit einem Transversalmaassstabe bis auf Zehntelmillimeter, so ergeben sich die Logarithmen der Wurzeln mit vier Decimalen, wobei natürlich die vierte Decimale nicht mehr zuverlässig ist. Man findet

$$\log x_1 = 9.7514$$
, $\log x_2 = 9.7554$, $\log x_3 = 9.7754$.

Durch Rechnung lässt sich nun in bereits bekannter Weise die Genauigkeit erhöhen. Es reichen aber bei den ersten beiden Wurzeln siebenstellige Logarithmen schon nicht mehr aus, um nur die Richtigkeit der vierten Decimalen sicher zu stellen, viel weniger, noch weitere Decimalen zu bestimmen. Bei der dritten Wurzel liegen die Verhältnisse deshalb etwas günstiger, weil zu ihr ein grösserer Werth von S, d. h. eine grössere Horizontalneigung der Curventangente im betreffenden Punkte gehört. Es möge zum Schlusse die betreffende Rechnung für die dritte Wurzel hergesetzt

werden; sie kann als Beispiel für alle bisher auszuführenden Rechnungen dienen.

$$log 0,694 = 9,841 3595$$

$$log x = 9,775 4$$

$$11 log x = 7,529 4$$

$$7 log x = 8,427 8$$

$$3 log x = 9,326 2$$

$$log IV = 9,616 7595$$

$$I = 0,003 3838$$

$$II = 0,026 7793$$

$$EIII = 9,788 0663 - 10$$

$$IV = 0,413 7705$$

$$EV = 9,768$$

$$R = 9,999 9999 - 10$$

$$R = 9,999 9999 - 10$$

$$S = 0,000 0933$$

$$\delta = \frac{0,0000001}{0,0060933} = 0,00001...$$

Also ist die letzte Ziffer in log x = 0,7754 jedenfalls noch richtig. Weitere genaue Ziffern könnten nur durch Rechnung mit mehr als sieben Stellen gefunden werden.

Darmstadt, Mai 1890.

Kleinere Mittheilungen.

IX. Zur Lage des Schwerpunktes eines Rotationskörpers.

Es sei eine geschlossene ebene Figur F gegeben, deren Schwerpunkt S sei. Bestimmt man für irgend eine durch S gehende, in der Ebene der Figur liegende Axe das Trägheitsmoment Fk^2 der Figur und zieht im Abstande des Trägheiteradius k zu dieser Axe die Parallele, so berührt diese bekanntlich die Centralellipse, deren Gleichung in Liniencoordinaten

 $a^2u^2+b^2v^2-1=0$ gegeben sein mag.

Sind nun u_1 , v_1 die Coordinaten irgend einer Geraden r, welche in der Ebene liegt, die Figur jedoch nicht schneidet, so ist die Gleichung ihres Gegenpoles R bezüglich der Centralellipse

$$a^{2}u, u + bv, v + 1 = 0.$$

Bezeichnet man ferner mit ξ_1 , η_1 die Punktcoordinaten von R, so hat man auch $\xi_1 = a^2 u_1, \quad \eta_1 = b^2 v_1.$

Fallt man von S auf die Gerade r das Loth SO = p und nennt λ und μ die Cosinus der Winkel, welche p mit der ξ - bezw. η -Axe bildet, so hat man

$$u_1=-\frac{\lambda}{p}, \quad v_1=-\frac{\mu}{p},$$

daher auch

$$\xi_1 = -\frac{a^2}{p} \lambda$$
 und $\eta_1 = -\frac{b^2}{p} \mu$.

Nimmt man ferner O als den Anfangspunkt eines neuen Coordinatensystems an, dessen x-Axe die Gerade OS, dessen y-Axe die Gerade r ist, so erhält man die Transformationsgleichungen

1)
$$x = p - \lambda \xi - \mu \eta,$$

$$y = \mu \xi - \lambda \eta.$$

Daher hat man auch, wenn y, die Ordinate des Gegenpoles im neuen Coordinatensystem bedeutet,

 $y_1 = -\frac{\lambda \mu}{m} (a^2 - b^2).$ 2)

Lässt man jetzt die Figur F um die Gerade r sich drehen, so erzeugt sie einen Rotationskörper, dessen Schwerpunkt die Ordinate yn haben möge-Alsdann ergiebt sich, wenn x und y die Coordinaten von dF sind,

$$y_0 = \frac{\int 2 \pi x \, dF \cdot y}{\int 2 \pi x \, dF} = \frac{\int xy \, dF}{F \cdot p}.$$

Mit Berücksichtigung der Gleichungen 1) findet man:

with derick scritiguing der Gielenungen 1) findet man:
$$y_0 = \frac{\mu}{F} \int \xi \, dF - \frac{\lambda}{F} \int \eta \, dF + \frac{\lambda^2 - \mu^2}{Fp} \int \xi \eta \, dF - \frac{\lambda \mu}{Fp} \left[\int \xi^2 dF - \int \eta^2 dF \right]$$
Digitized by Google

Die ξ - und η -Axen sind die Axen der Centralellipse, somit ist:

$$\int \xi \, dF = 0, \quad \int \eta \, dF = 0, \quad \int \xi \eta \, dF = 0$$

$$\int \xi^2 \, dF = F a^2, \quad \int \eta^2 \, dF = F b^2.$$

$$y_0 = -\frac{\lambda \mu}{p} (a^2 - b^2),$$

Man erhält demnach

und

$$y_0 = -\frac{\lambda \mu}{p} (a^2 - b^2),$$

daher nach Gl. 2) auch

$$\underline{y_0} = \underline{y_1},$$

d. h. der Schwerpunkt des Rotationskörpers und der Gegenpol K haben dieselbe Ordinate.

Es sei gestattet, noch auf eine andere Bedeutung der Gleichung

$$y_0 = \frac{\int 2 \pi x \, dF. \, y}{\int 2 \pi x \, dF} = \frac{\int xy \, dF}{\int x \, dF}$$

Erweitert man den Bruch nämlich mit ω², wo ω die Winkelgeschwindigkeit sein möge, mit der die Figur F sich dreht, und denkt man sich F als eine materielle, unendlich dünne Scheibe, deren Masse F ist, so stellt $x \omega^2 dF$

die Centrifugalkraft dar, welche auf das Massentheilchen dF wirkt, und $x \omega^2 dF.y$

das Moment dieser Centrifugalkraft in Bezug auf die durch S gehende, zur Rotationsaxe senkrechte Ebene. Mithin hat man in

$$y_0 = y_1 = \frac{\int x \, \omega^2 \, dF. \, y}{\int x \, \omega^2 \, dF}$$

auch die Ordinate des Angriffspunktes der Centrifugalkraft, welche auf die Fläche F wirkt.

Dies giebt den Satz:

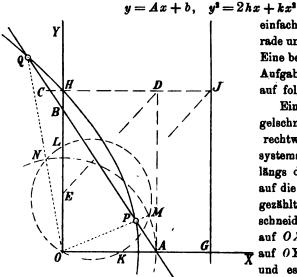
Dreht sich eine schwere, ebene Figur um eine in ihrer Ebene liegende Axe, welche die Figur nicht schneidet, und bestimmt man den Gegenpol der Rotationsaxe in Bezug auf die Centralellipse der Figur, so beschreibt dieser Gegenpol bei der Rotation einen Kreis, dessen Mittelpunkt der Schwerpunkt des erzeugten Rotationskörpers ist, und die auf die Figur wirkende Centrifugalkraft geht stets durch den Gegenpol und den Schwerpunkt des Rotationskörpers.

Man kann diesen Satz noch kürzer ableiten, wenn man von den schönen Untersuchungen des Herrn Reye über Trägheitsmomente im 10. Bande dieser Zeitschrift und im 19. Bande der Zeitschrift des Vereins deutscher Ingenieure Gebrauch macht. Herr Reye hat bewiesen, dass man jede materielle Figur durch drei Massenpunkte ersetzen kann, von denen der eine immer auf der Gegenpolare des andern in Bezug auf die Centralellipse liegt. Wendet man diesen Satz auf vorliegendes Problem an und ersetzt die Figur $oldsymbol{F}$ durch die drei Massenpunkte F_1 , F_2 , F_3 , von denen F_1 und F_2 auf der Rotationsaxe r liegen, so muss F_3 mit dem Gegenpol R zusammenfallen. Wegen der Lage der Punkte F_1 und F_2 auf r ist aber die auf sie wirkende Centrifugalkraft Null, und es bleibt allein die auf F_3 wirkende Kraft übrig, welche die Centrifugalkraft der ganzen Fläche F ersetzt und ihren Angriffspunkt in dem Gegenpole R hat. Aus diesen Betrachtungen folgt aber leicht alles Uebrige.

Ingenieur u. ord, Lehrer a. d. Königl, Oberrealschule zu Breelau.

X. Ueber die Durchschnitte einer Geraden und einer Curve zweiter Ordnung.

In allen Lehrbüchern der analytischen Geometrie wird zwar angegeben, dass die Schnitte einer Geraden mit einer Linie zweiter Ordnung durch quadratische Gleichungen bestimmt sind; eine wirkliche Construction dieser Punkte pflegt aber zu fehlen, und in der That dürfte es beispielsweise nicht leicht sein, x und y aus den Gleichungen



einfach und elegant durch Gerade und Kreise zu construiren. Eine befriedigende Lösung der Aufgabe ergiebt sich dagegen auf folgendem Wege.

Ein Brennpunkt O des Kegelschnitts sei der Anfang eines rechtwinkligen Coordinatensystems, dessen positive x längs der Senkrechten von O auf die nächste Directrix (GJ) gezählt werden mögen; ferner schneide die gegebene Gerade auf OX die Strecke OA = a, auf OY die Strecke OB ab, und es sei $LOAB = \beta$; die

Gleichung der Geraden lautet dann

$$x + y \cot \beta = a$$

oder, wenn man durch $x = r\cos\omega$ und $y = r\sin\omega$ Polarcoordinaten einführt, $\cos\omega + \cot\beta\sin\omega = \frac{a}{r}.$

Bezeichnet andererseits OH = h den Halbparameter und $\frac{OH}{HJ}$ die Charakteristik des Kegelschnitts, für welche die Tangente von $LOJH = \gamma$ gesetzt werden kann, so ist die Polargleichung der Curve

$$r = \frac{h}{1 + \tan \gamma \cos \omega}.$$

Die Substitution von r in die vorige Gleichung giebt

$$(h - a \tan \gamma) \cos \omega + h \cot \beta \sin \omega = a$$
,

und dies stimmt formell überein mit der Polargleichung eines Kreises, welcher durch den Coordinatenanfang geht und von OX, OY gegebene Strecken abschneidet. Dem entspricht folgende Construction: auf OX nehme man

auf
$$OY$$

$$OK = OE = h - a \tan \gamma,$$
$$OL = CD = h \cot \beta$$

und construire den Kreis durch O, K, L; wird nun letzterer von dem aus O mit dem Radius a beschriebenen Kreise in den Punkten M und N geschnitten, so gehen die Strahlen OM und ON durch dieselben Punkte P und O der Geraden AB, wie die gegebene Curve.

XI. Ueber die bicircularen Curven vierter Ordnung.

Im Anschlusse an meine Abhandlung "Ueber die Systeme derjenigen Kegelschnitte, die eine bicirculare Curve vierter Ordnung viermal berühren"* seien mir wenige kurze Bemerkungen gestattet über dasjenige System von viermal berührenden Kegelschnitten, das alle vier Doppeltangentenpaare (und dazu die Verbindungslinie der beiden Doppelpunkte, d. h. die unendlich ferne Gerade) der Curve als zerfallende Kegelschnitte enthält. Die ausführliche Darstellung wird gelegentlich veröffentlicht werden. Das System heisse Γ , seine einzelnen Kegelschnitte \mathfrak{G} .

- 1. Die Mittelpunkte aller \mathfrak{G} liegen auf derjenigen gleichseitigen Hyperbel \mathfrak{H}_0 , die durch die Mittelpunkte der vier Inversionskreise der bicircularen Curve vierter Ordnung \mathfrak{C} geht und deren Asymptoten den "Curvenaxen" von \mathfrak{C}^{**} parallel sind.
- 2. Unter den \mathfrak{G} befindet sich ein Kreis und eine gleichseitige Hyperbel \mathfrak{R} . Jener ist unendlich gross und hat (in der Grenze) den Mittelpunkt K des von den vier Doppelbrennpunkten von \mathfrak{G} gebildeten Vierecks zum Centrum; der Mittelpunkt von \mathfrak{R} aber ist der Gegenpunkt von K in \mathfrak{H}_0 . Ferner befinden sich in Γ zwei Parabeln \mathfrak{P}_r , \mathfrak{P}_0 , deren Mittelpunkte die unendlich fernen Punkte von \mathfrak{H}_0 sind.
- 3. Je zwei Kegelschnitte \mathfrak{G} sind einander ähnlich, liegen aber nicht ähnlich (vielmehr bedarf es der Drehung des einen um 90° , damit sie in ähnliche Lage kommen). Die Mittelpunkte von solchen ähnlichen Kegelschnitten befinden sich auf einer Geraden, die der Tangente an \mathfrak{H}_0 in K parallel ist.

^{*} Leipzig, Verlag von Teubner.

^{**} L c. S. 87.

- 4. Alle Kegelschnitte & sind parallelaxig, und zwar sind ihre Axen den Curvenaxen parallel.
- 5. Alle Kegelschnitte \mathfrak{G} , deren Mittelpunkte mit K auf demselben Aste von So liegen, sind Ellipsen, die übrigen (deren Mittelpunkte auf dem andern Aste liegen) Hyperbeln.
- 6. Die Kreisvierecke, die von den Schnittpunkten je zweier ähnlicher Kegelschnitte gebildet werden, liegen alle auf einem und dem selben Kreise, dessen Mittelpunkt K ist.
- 7. Ueberhaupt aber schneiden sich nicht nur irgend zwei beliebige Systemkegelschnitte, sondern auch die Asymptotensysteme von irgend zwei Systemkegelschnitten in vier Punkten, deren Umkreis K zum Mittelpunkte hat. Insbesondere liegen die vier Berührungspunkte irgend eines Systemkegelschnittes & mit & auf einem Kreise, dessen Mittelpunkt K ist, ebenso der Mittelpunkt und die Berührungspunkte der Asymptoten irgend eines & mit der von allen Asymptoten eingehüllten Curve I (der Cayley'schen Curve des Systemes).
- 8. Alle Sehnen, die von den Kegelschnitten 🛭 auf einer beliebigen Tangente von I bestimmt werden, haben eine gemeinsame Mitte; und dieser Mittelpunkt liegt auf So.
- 9. Die Brennpunkte der Kegelschnitte & bilden zwei confocale circulare Curven dritter Ordnung.
- 10. Die Normalen eines beliebigen & in den Schnittpunkten mit \mathfrak{H}_0 gehen alle vier durch K.
- 11. Unter den 🟵 giebt es acht, die 🧯 hyperosculiren; die Hyperosculationsstellen sind die Schnittpunkte von So mit C.
 - 12. Analytisch lässt sich Γ in der Form

$$w^{2}[-y^{2}-2x\alpha+2y\beta+\alpha^{2}-\beta^{2}+\mathfrak{X}] +w [r^{2}-y^{2}-4x\alpha+4y\beta+2\alpha^{2}-2\beta^{2}-\mathfrak{W}] + [r^{2}-2x\alpha+2y\beta+\alpha^{2}-\beta^{2}-\mathfrak{Y}]$$

darstellen, wo der Parameter w, sowie die Constanten α, β, W, X, Y) einfache geometrische Bedeutungen haben, und unter (r, h) das Normalcoordinatensystem verstanden wird.*

13. Schreibt man die Gleichung von & in der Normalform folgendermassen: $(r^2 + y^2)^2 + \alpha r^2 + b y^2 + 2b r + 2ey + f = 0$,

so ist
$$\alpha = -\frac{b}{a-b}, \quad \beta = \frac{e}{a-b},$$

$$\mathfrak{X} = \frac{(4\mathfrak{f} - a^2)(a-b) - 4(b^2 - e^2)}{4(a-b)^2}, \quad \mathfrak{Y} = -\frac{(4\mathfrak{f} - b^2)(a-b) - 4(b^2 - e^2)}{4(a-b)^2},$$

$$\mathfrak{W} = -\frac{(4\mathfrak{f} - ab)(a-b) - 4(b^2 - e^2)}{2(a-b)^2}.$$
U. s. w. u. s. w.

^{* 1.} c. S. 14.

Verlag von Friedrich Vieweg & Sohn in Braunschweig. (Zu beziehen durch jede Buchhandlung.)

Soeben erschien vollständig:

Die mechanische Wärmetheorie.

Von R. Clausius.

Dritter Band. Entwickelung der besonderen Vorstellungen von der Natur der Wärme als einer Art der Bewegung. Zweite umgearbeitete und vervollständigte Auflage. Herausgegeben von Prof. Dr. Max Planck und Dr. Carl Pulfrich. gr. 8. geh. Preis 8 Mark.

Im Verlag von Georg Reimer in Berlin ist soeben erschienen und durch alle Buchhandlungen zu beziehen:

Brocardschen Gebilde

ihre Beziehungen zu den verwandten merkwürdigen Punkten und Kreisen des Dreiecks.

Dr. A. Emmerich,

Gymnasiallehrer zu Mühlheim a. d. Ruhr,

Mit 50 Figuren im Text und einer lithographischen Tafel. Preis: 5 Mark.

C. G. J. Jacobi's

gesammelte Werke.

Herausgegeben auf Veranlassung der Königlich Preussischen Akademie der Wissenschaften.

Sechster Band.

Hernusgegeben von

K. Weierstrass.

Preis: 14 Mk.

Verlag von Friedrich Vieweg & Sohn in Braunschweig. (Zu beziehen durch jede Buchhandlung.)

Soeben erschien:

Einleitung

in dia

theoretische Physik.

Von Viktor von Lang,

Professor der Physik an der Universität Wien.

Zweite umgestaltete und vermehrte Auflage. Mit 126 Holzstichen. gr. 8. geh. Preis 20 Mark.

INHALT.

IX. Unber die Krönnungsmittdpunkte der Bahngurven in elsenen übnliche	
verfinderlichen Systemen. Von Prof. Dr. E. Montee in Braumerhweig X. Beleir eine einfache planare Darstellungsweise der Ossiellen der Genon-	310
Curren dritter Ordnung. Von Dr. Manny Derma (Tatel VI u. VII)	111
XI Praktische Methode zur Berechnung der reellen Wurzele reeller algelen-	
ischer oder transcendenter nomerischer Gleichungen mit einer Untrikaamten	
Von Dr. R. Musser, Professor a. d. techn. Hochschule au Darmetadt	3.07
Secretary of the Control of the Cont	
Klainere Mittheilungen,	
IX. Zur Lugo des Schwerpunktes eines Rotationsborpers. Van U. Konn.	
Ingenitur a. ord. Labrer a. d. Königl. Obermalechale su firesiau .	Chi
X. Ueber die Durchschnitte einer Goraden und einer Eurve zweiter Ordanie.	
Von Sentament	(10
XI, Ueber die bicircularen Curven vierter Ordnung. Von Dr. Ovno Rooman	
in Leipzig +	ESS.
Historisch-literarische Abtheilung (westeller pagener)	
Commentar an dem "Tractatos de Numeris Datis" des Joulanne Nemerarios	
Von Manomias Commi in Thorn (Fortsetzing)	- 11
Bananatanai.	
Recentionen:	
Masterna, Dr. Kana, Des Geminos Isagogo. Von Camus	
Westungs, G., Die Arithmetik und die Schrift über Polygonal mahles	
des Diophentus von Alexandria. Von Carron	- 1
Scherrer, Dr. Harraren, Infailt and Methode des planimetrisanen	
Unterrichts. Von Caston	
tion der Differential- und Differentsengleichungen. Von	
BANGCHUTE	300
Worse, W., Vollständiges Sachregister zu "Die Physik auf Grund-	
lage der Erfahrung" von Moussey. Von B. Nama.	3116
Gimenot, A., Die Haupterscheinungen der Breibung und Reflecton	
des Linhtas, Von B. Nenze	10
Bremers, J., Ueber das Genid. Von B. Namar	100
Bussa, W., Das graphische Hückwartssinschneiden (StoMonteren)	
als praktische Messtischoperation. Von B. Nesen	100
VIVE TO STATE OF THE STATE OF T	
Bibliographie vum 1. Mars bis 80. April 1891:	
Periodische Schriften - Geschichte der Mathematik und Physik -	
Buine Mathematik — Angewandte Mathamatik — Physit	
and Meteorologie	100
Mathematicanes Abhandlungsregister, 1890, Ente Ralfte: 1 Januar	
108 30. Juni	1.00

Zeitschrift

sile

Mathematik und P

berausgegeben

unter der verschwertlichen Redaction

AUE

Dr. O. Schlomiich, Dr. E. Kal

and

Dr. M. Cantor.

D6. Jahrgang, 4. Hoft.

Mit siner lithugraphirten Tate).

B

Leipzig, Verlag von B. G. Teubnar. 1891.

Verlag von Modellen für den höheren mathematischen Unterricht. Bei L. Brill in Darmstadt sind erschienen:

Ansichten, Netze und Modelle aus Cartonpapier

Projektions-Modellen des vier-dimensionalen regulären Seehshundertzell und Hundertzwanzigzell,

Von Dr. V. Schlegel in Hagen i. W.

(Welterer Nachtrag zur Fünfzehnten Serie.)

Sowohl als Ergänzung der früher publicirten Drahtkörper (Nr. 5 n. 6 der 15. Serie), wie auch ohne dieselben, als Elemente, aus denen sie alch zusammensetzen, für das Studium der vier-dimensionalen regelmässigen Körper von Hedeutung.

Preise, 2 Hefte mit lithogr. Ansichten u. Netzen je 2 M. — (Zu Nr. 5. Sechshundertzell): 5 Carton-Mod. 20 M. 5 Netze (behufs Ausschneiden u. Zusammenskleben) 1.50 M. — (Zu Nr. 6, Hundertzwanzigzell): 3 Carton-Mod. 20 M. 3 Netze 2, 50 .#.

Neunzehnte Serie.

10 Modelle zur Darstellung von regulären Gebietstheilungen des Raumes.

Von Dr. A. Schoenflies,

Privatelocent an der Universität Göttingen.

Eine regulüre Raum-theilung ist eine solche Zer-legung des Raumes in lauter gleiche Bereiche, bei welcher jeder Bereich auf analoge Art von den Nachbarbereichen umgeben ist. Eine regelmässige Anord-nung von Würfeln bildet den einfachsten Fall der-

selben. Die Zahl derurtiger Raumtheilungen ist unbegrenzt gross. - Die Modelle sollen an Beispielen verunschaulichen, wie sich die Raumtheilung aus den einzelnen Bereichen aufbaut. - Aus jedem der 10 Typen ist ein grösserer Block bergestellt. Um diesen Block vergrössern zu können, werden von jedem Typus noch einige Einzelbereiche geliefert.

Die Serie besitzt ein Interesse auch für Physik und Mineralogie, insofern

Zwanzigste Serie.

Modelle der abwickelbaren, der verschlungenen und der geschweiften Regelschraubenfläche.

Nach den an der Grossh, badischen technischen Hochschule zu Karlsruhe unter Leitung von Geh. Hofrath Prof. Dr. Wiener hergestellten Originalen

entworfen von C. Tesch,

Assistent an der Grosch, badischen technischen Hochschule zu Karlarube.

Ist für eine offene Regelschraubenfläche o der Steigungswinkel der Kehlschraubenlinie, s der Neigungswinkel der Erzeugenden gegen eine zur Schraubenaxe normale Ebene, so sind drei Fälle zu unterscheiden:

I. Die abwickelbare Schraubenfläche ($\varepsilon = \sigma$). II. Die verschlungene Regelschraubenfläche (\$<\sigma). III. Die geschweifte Regelschraubenfläche (\$<\sigma). —
Der abwickelbaren Schraubenfläche ist noch die Abwicklung beigegeben.
Eine Abhandlung ist beigefügt. — Preis der ganzen Serie 100 Mk., e.c.l.
Emballage und Versendungskosten, für erstere kommen 2 Mk. in Anrechnung;
bei Einzelbezug kostet jedes Modell 35 Mk.

Alle Modelle können im In- u. Anslande direct von der Verlagshandlung besogen werden.

Ueber die Krümmung der Bahnevoluten bei starren ebenen Systemen.

Von

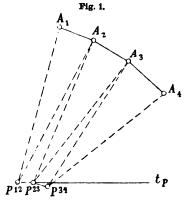
Prof. Dr. R. MÜLLER in Braunschweig.

Die Betrachtung von drei unendlich nahen Phasen eines starren ebenen Systems führt zu den Krümmungsmittelpunkten der von den Systempunkten durchlaufenen Bahnen; mit der Bobillier'schen Construction und der bekannten quadratischen Verwandtschaft ist dieser Gegenstand vollkommen Im vorliegenden Aufsatze soll die Bewegung des Systems durch vier unendlich benachbarte Phasen verfolgt werden. Dann wird jedem Systempunkte der Krümmungsmittelpunkt der Evolute seiner Bahncurve zugeordnet, und es ergiebt sich die Aufgabe, wenn vier solcher Phasen in irgend einer Weise festgelegt sind, zu jedem Systempunkte den Krümmungsmittelpunkt der Bahnevolute zu construiren und die Verwandtschaft zu bestimmen, die zwischen der Gesammtheit dieser Krümmungsmittelpunkte und den Punkten des bewegten Systems besteht.

§ 1. Der Krümmungsradius der Bahnevolute.

Wir bezeichnen mit S_1 , S_2 , S_3 , S_4 vier unendlich benachbarte Phasen eines starren ebenen Systems S, mit A_1 , A_2 , A_3 , A_4 die zugehörigen Lagen

eines Systempunktes A, mit n_{12} , n_{23} , n_{84} die Mittelsenkrechten der Strecken A, A, A_2A_3 , A_3A_4 , mit ν_{123} , ν_{234} die Halbirungslinien der von n12 und n28, sowie von n₂₈ und n₃₄ gebildeten stumpfen Winkel, mit A den Schnittpunkt von ν_{193} und 📭 , d. h. den Krümmungsmittelpunkt der Bahnevolute des Punktes A für die Phase S_1 . Nehmen wir an, das System S gelange aus der Lage S_1 nach S_2 , S_3 , S_4 durch aufeinander folgende unendlich kleine Drehungen um die Pole P12, P23, P^{34} , bez. um die Winkel $d\vartheta$, $d\vartheta + d^2\vartheta$, $d\theta + 2d^2\theta$ und setzen dabei $P^{12}P^{23} = P^{23}P^{34} = du$, $\angle P^{12}P^{23}P^{34} = 180^\circ$.



so ist hierdurch die Bewegung des Systems durch vier unendlich benachbarte Phasen im allgemeinsten Sinne definirt.* (Fig. 1.) Seien ferner $x_1 y_1$, $x_2 y_2$, $x_3 y_3$, $x_4 y_4$ die rechtwinkligen Coordinaten von A_1 , A_2 , A_3 , A_4 für P^{12} als Anfangspunkt und die Polbahntangente P^{12} P^{23} als x-Axe, dann ist

$$x_2 = x_1 \cos d\vartheta + y_1 \sin d\vartheta,$$

$$y_2 = -x_1 \sin d\vartheta + y_1 \cos d\vartheta;$$

$$x_3 - du = (x_2 - du) \cos(d\vartheta + d^2\vartheta) + y_2 \sin(d\vartheta + d^2\vartheta),$$

$$y_3 = -(x_2 - du) \sin(d\vartheta + d^2\vartheta) + y_2 \cos(d\vartheta + d^2\vartheta);$$

$$x_4 - du(1 + \cos d\tau)$$

$$= \{x_3 - du(1 + \cos d\tau)\} \cos(d\vartheta + 2d^2\vartheta) + (y_3 + du \sin d\tau) \sin(d\vartheta + 2d^2\vartheta),$$

$$y_4 + du \sin d\tau$$

$$= -\{x_3 - du(1 + \cos d\tau)\} \sin(d\vartheta + 2d^2\vartheta) + (y_3 + du \sin d\tau) \cos(d\vartheta + 2d^2\vartheta)$$
oder bis auf unendlich kleine Grössen dritter Ordnung
$$x_2 = x_1 (1 - \frac{1}{2}d\vartheta^2) + y_1 (d\vartheta - \frac{1}{2}d\vartheta^3),$$

$$x_{2} = x_{1}(1 - \frac{1}{2}d\vartheta^{2}) + y_{1}(d\vartheta - \frac{1}{6}d\vartheta^{3}),$$

$$y_{2} = -x_{1}(d\vartheta - \frac{1}{6}d\vartheta^{3}) + y_{1}(1 - \frac{1}{2}d\vartheta^{2});$$

$$x_{3} = x_{1}(1 - 2d\vartheta^{2} - 2d\vartheta d^{2}\vartheta) + y_{1}(2d\vartheta + d^{2}\vartheta - \frac{1}{3}d\vartheta^{3}) + \frac{1}{2}du d\vartheta^{2},$$

$$y_{3} = -x_{1}(2d\vartheta + d^{2}\vartheta - \frac{1}{3}d\vartheta^{3}) + y_{1}(1 - 2d\vartheta^{2} - 2d\vartheta d^{2}\vartheta) + du(d\vartheta + d^{2}\vartheta);$$

$$x_{4} = x_{1}(1 - \frac{9}{2}d\vartheta^{2} - 9d\vartheta d^{2}\vartheta) + y_{1}(3d\vartheta + 3d^{2}\vartheta - \frac{9}{2}d\vartheta^{3}) + du(\frac{5}{2}d\vartheta^{2} + d\vartheta d\tau),$$

$$y_{4} = -x_{1}(3d\vartheta + 3d^{2}\vartheta - \frac{9}{2}d\vartheta^{3}) + y_{1}(1 - \frac{9}{2}d\vartheta^{2} - 9d\vartheta d^{2}\vartheta) + du(3d\vartheta + 5d^{2}\vartheta).$$

Hieraus folgt, für xy als laufende Coordinaten und immer unter Vernachlässigung von unendlich kleinen Grössen vierter Ordnung, als Gleichung von n_{12}

$$\{ \frac{1}{2} x_1 d\vartheta^2 - y_1 (d\vartheta - \frac{1}{6} d\vartheta^3) \} r + \{ x_1 (d\vartheta - \frac{1}{6} d\vartheta^3) + \frac{1}{2} y_1 d\vartheta^2 \} \psi = 0 ,$$
 ferner für n_{23}

und für na

$$\{x_1(\frac{5}{3}d\theta^2 + 7d\theta d^2\theta) - y_1(d\theta + 2d^2\theta - \frac{19}{6}d\theta^3) - du d\theta(2d\theta + d\tau)\} \tau + \{x_1(d\theta + 2d^2\theta - \frac{19}{6}d\theta^3) + y_1(\frac{5}{2}d\theta^2 + 7d\theta d^2\theta) - 2du(d\theta + 2d^2\theta)\} \tau - x_1du(5d\theta^2 - d\theta d\tau) + 2y_1du(d\theta + 2d^2\theta) = 0.$$

Sind nun

$$\alpha r + \beta y + \gamma = 0$$
, $\alpha' r + \beta' y + \gamma' = 0$

die Gleichungen zweier unendlich benachbarten Geraden, in denen α , β , γ . α' , β' , γ' unendlich kleine Grössen bis zur zweiten Ordnung enthalten mögen,

Digitized by GOOGLE

^{*} Ausnahmefälle, wie sie Herr Mehmke in seiner Arbeit "Ueber die Bewegung eines starren ebenen Systems in seiner Ebene" (diese Zeitschrift, Bd. 35 S. 1 u. 65) behaudelt hat, bleiben von den folgenden Betrachtungen ausgeschlossen.

so lautet die Gleichung der Halbirungslinie des von ihnen gebildeten stumpfen Winkels

$$(\alpha \sqrt{\alpha'^2 + \beta'^2} - \alpha' \sqrt{\alpha^2 + \beta^2}) r + (\beta \sqrt{\alpha'^2 + \beta'^2} - \beta' \sqrt{\alpha^2 + \beta^2}) \eta + \gamma \sqrt{\alpha'^2 + \beta'^2} - \gamma' \sqrt{\alpha^2 + \beta^2} = 0.$$

For $\alpha' = \alpha + \delta \alpha$, $\beta' = \beta + \delta \beta$, $\gamma' = \gamma + \delta \gamma$ ist

$$= \sqrt{\alpha^2 + \beta^2} \left\{ \gamma \sqrt{\frac{\alpha^2 + \beta'^2}{1 + \frac{2(\alpha \delta \alpha + \beta \delta \beta) + \delta \alpha^2 + \delta \beta^2}{\alpha^2 + \beta^2}}} - \gamma - \delta \gamma \right\},$$

und wird in der geschweiften Klammer die Quadratwurzel bis auf Glieder zweiter Ordnung entwickelt, so folgt

$$\gamma \sqrt{\alpha'^2 + \beta'^2} - \gamma' \sqrt{\alpha^2 + \beta^2}$$

$$= \frac{1}{2} (\alpha^2 + \beta^2)^{-\frac{3}{2}} \{ \gamma \left[2 (\alpha^2 + \beta^2) (\alpha \delta \alpha + \beta \delta \beta) + (\alpha \delta \beta - \beta \delta \alpha)^2 \right] - 2 (\alpha^2 + \beta^2)^2 \delta \gamma \},$$
mithin
$$\alpha \sqrt{\alpha'^2 + \beta'^2} - \alpha' \sqrt{\alpha^2 + \beta^2}$$

$$=\frac{1}{2}(\alpha^2+\beta^2)^{-\frac{3}{2}}(\alpha\delta\beta-\beta\delta\alpha)\left\{2\beta(\alpha^2+\beta^2)+\alpha(\alpha\delta\beta-\beta\delta\alpha)\right\},$$
$$\beta\sqrt{\alpha'^2+\beta'^2}-\beta\sqrt{\alpha^2+\beta^2}$$

$$= \frac{1}{2}(\alpha^2 + \beta^2)^{-\frac{\delta}{2}}(\alpha \delta \beta - \beta \delta \alpha) \{-2\alpha(\alpha^2 + \beta^2) + \beta(\alpha \delta \beta - \beta \delta \alpha)\}.$$

Demnach geht die obige Gleichung der Winkelhalbirungslinie über in

$$\begin{split} &(\alpha \delta \beta - \beta \delta \alpha) \{ 2 \beta (\alpha^2 + \beta^2) + \alpha (\alpha \delta \beta - \beta \delta \alpha) \} r \\ &+ (\alpha \delta \beta - \beta \delta \alpha) \} - 2 \alpha (\alpha^2 + \beta^2) + \beta (\alpha \delta \beta - \beta \delta \alpha) \} y \\ &+ \gamma \{ 2 (\alpha^2 + \beta^2) (\alpha \delta \alpha + \beta \delta \beta) + (\alpha \delta \beta - \beta \delta \alpha)^2 \} - 2 (\alpha^2 + \beta^2)^2 \delta \gamma = 0. \end{split}$$

Mit Rücksicht hierauf ergiebt sich als Gleichung der Geraden ν_{123} , wenn noch unendlich kleine Grössen vierter Ordnung beibehalten werden,

1)
$$\begin{aligned} & [-2(x_1^2+y_1^2)^2 \{x_1(d\vartheta^3+\frac{3}{2}d\vartheta^2d^2\vartheta)+y_1d\vartheta^4\} \\ & + (x_1^2+y_1^2)dud\vartheta\{2x_1y_1(d\vartheta+d^2\vartheta)+3y_1^2d\vartheta^3\}-y_1^3du^2d\vartheta^2]x \\ & + [2(x_1^2+y_1^2)^2 \{x_1d\vartheta^4-y_1(d\vartheta^3+\frac{3}{2}d\vartheta^2d^2\vartheta)\} \\ & + (x_1^2+y_1^2)dud\vartheta\{-3x_1y_1d\vartheta^2+2y_1^2(d\vartheta+d^2\vartheta)\}+x_1y_1^2du^2d\vartheta^2]y \\ & + (x_1^2+y_1^2)^2dud\vartheta\{3x_1d\vartheta^2-2y_1(d\vartheta+d^2\vartheta)\} = 0, \end{aligned}$$

und als Gleichung von ν_{284}

2)
$$\begin{aligned} & [-2\left(x_{1}^{2}+y_{1}^{2}\right)^{2}\left\{x_{1}\left(d\vartheta^{3}+\frac{1}{2}d\vartheta^{2}d^{2}\vartheta\right)+2y_{1}d\vartheta^{4}\right\} \\ & +\left(x_{1}^{2}+y_{1}^{2}\right)du\,d\vartheta\left\{2x_{1}^{2}\left(4d\vartheta^{2}+d\vartheta\,d\tau\right)+2x_{1}y_{1}\left(d\vartheta+6d^{2}\vartheta\right)+7y_{1}^{2}d\vartheta^{2}\right\} \\ & -3y_{1}\left(2x_{1}^{2}+y_{1}^{2}\right)du^{2}d\vartheta^{2}\right]\tau \\ & +\left[2\left(x_{1}^{2}+y_{1}^{2}\right)^{2}\left\{2x_{1}d\vartheta^{4}-y_{1}\left(d\vartheta^{3}+\frac{1}{2}d\vartheta^{2}d^{2}\vartheta\right)\right\} \\ & +\left(x_{1}^{2}+y_{1}^{2}\right)du\,d\vartheta\left\{x_{1}y_{1}\left(d\vartheta^{2}+2d\vartheta\,d\tau\right)+2y_{1}^{2}\left(d\vartheta+6d^{2}\vartheta\right)\right\} \\ & -3x_{1}y_{1}^{2}du^{2}d\vartheta^{2}\right]\vartheta \\ & +\left(x_{1}^{2}+y_{1}^{2}\right)du\,d\vartheta\left\{x_{1}\left(x_{1}^{2}+y_{1}^{2}\right)\left(7d\vartheta^{2}-2d\vartheta\,d\tau\right) \\ & -2y_{1}\left(x_{1}^{2}+y_{1}^{2}\right)\left(d\vartheta+6d^{2}\vartheta\right)+6x_{1}y_{1}du\,d\vartheta\right\}=0. \end{aligned}$$

Wir ersetzen jetzt die bisher gebrauchten Bezeichnungen S_1 , P^{12} , A_1 , z_1 , y_1 durch S, P, A, x, y und verstehen unter A den Krümmungsmittelpunkt der Bahncurve des Punktes A in der Phase S, unter ν_A die Normale

13 gitized by GOOGLE

der Bahnevolute in A. Dann erhalten wir für va aus 1) oder 2) unter Vernachlässigung der unendlich kleinen Grössen vierter Ordnung die Gleichung

3)
$$\{(x^2+y^2) d\theta - y du\} (xx+yy) + y(x^2+y^2) du = 0,$$

und bilden wir den Ausdruck (2) — (1) + (3) $\{10(x^2 + y^2) d\vartheta d^2\vartheta - 4x du d\vartheta^2\}$, so folgt nach Division durch $2(x^2+y^2) d \theta^2$

4)
$$\{(x^2+y^2)(x\,d^2\vartheta+y\,d\vartheta^2)-x^2\,du\,(2\,d\vartheta+d\tau)-2\,y^2\,du\,d\vartheta+y\,du^2\}\tau + \{(x^2+y^2)(-x\,d\vartheta^2+y\,d^2\vartheta)-xy\,du\,d\tau\}\vartheta - x(x^2+y^2)\,du\,(2\,d\vartheta-d\tau)-xy\,du^2=0.$$

Durch 3) und 4) sind r und h bestimmt; setzen wir noch zur Abkürzung $(x^2+y^2)\,d\vartheta-y\,du=W,$

so ergiebt sich

6)
$$W^{3} y = -(x^{2} + y^{2})^{2} \{x^{2} d\vartheta (2d\vartheta - dz) + xy d^{2}\vartheta + y^{2} d\vartheta^{2}\} du + y(x^{2} + y^{2})(3x^{2} + 2y^{2}) du^{2} d\vartheta - y^{4} du^{3}.$$

Seien ferner ξ , η die Coordinaten von A; dann ist $\frac{\eta}{\xi} = \frac{y}{x}$, und wir erhalten aus 3)

Bezeichnen wir endlich PA mit r, den Krümmungsradius AM der Bahnevolute mit r und setzen

$$(x^2+y^2)\{x\,d\vartheta(2\,d\vartheta-d\tau)+y\,d^2\vartheta\}-3xy\,du\,d\vartheta=F,$$
folgt

so folgt

$$W3(r-\xi) = yr2 F du,$$

$$W3(y-\eta) = -xr2 F du,$$

mithin

$$\tau = \frac{r^3 F du}{W^3}.$$

§ 2. Construction des Krümmungsmittelpunktes A.

In der für r erhaltenen Formel bedeutet W die linke Seite der auf Null reducirten Gleichung des Wendekreises w; für den Durchmesser de desselben ergiebt sich der Werth

$$\mathfrak{d}_{w} = \frac{du}{d\vartheta}.$$

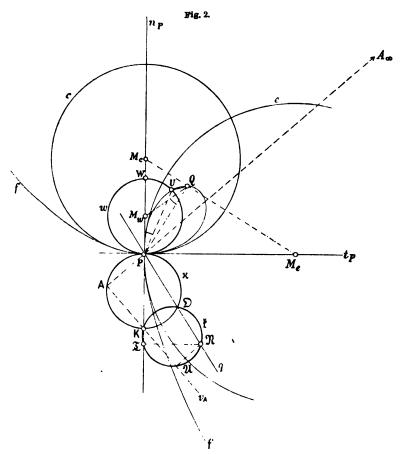
Gentigen ferner die Coordinaten des Punktes A der Gleichung F = 0, so fällt ${\mathfrak A}$ mit A zusammen und ${\mathcal A}$ liegt in vier unendlich benachbarten Phasen auf einem Kreise um A; durch F = 0 wird also die Kreispunkteurve fdes Systems für die Phase S dargestellt, d. h. der Ort aller Systempunkte, die augenblicklich Bahnelemente mit stationärem Krümmungskreis durchschreiten. Dieselbe ist eine Focalcurve dritter Ordnung; sie hat im Pole P einen Doppelpunkt und berührt in ihm die Polbahntangente te und die Polbahnnormale n_P (Fig. 2). Wir bezeichnen ihre Krümmungskreise in P

Digitized by GOOSIC

mit c und e, die Mittelpunkte und Durchmesser derselben bez. mit M_c , b_c und M_e , b_e ; dabei sei c der Kreis, welcher t_P berührt. Dann ergiebt sich leicht

 $b_o = \frac{3 du}{2 d\vartheta - d\tau}, \quad b_e = \frac{3 du d\vartheta}{d^2\vartheta};$

liefert eine dieser Formeln einen negativen Werth, so befindet sich der zugehörige Kreis auf der negativen Seite der betreffenden Coordinatenaxe.

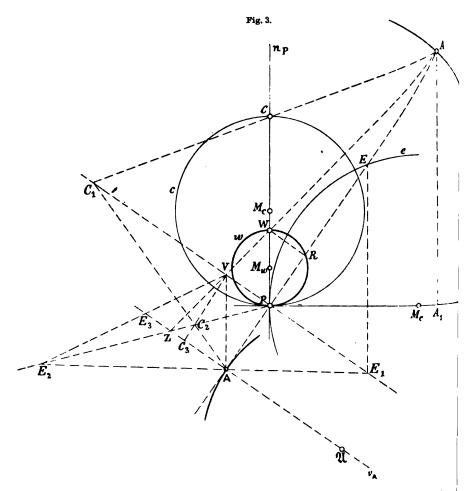


Aus den Kreisen c und e kann die Curve f in folgender Weise construirt werden: Wir fällen von P auf M_c M_e ein Loth, welches diese Gerade in Q schneidet, und ziehen q symmetrisch zu PQ in Bezug auf t_P . Dann ist Q das Centrum der Focalcurve f; beschreiben wir also durch P einen Kreis, dessen Mittelpunkt auf q liegt, so sind die Endpunkte des durch Q gehenden Durchmessers zwei Punkte der f.

Durch Angabe von b_w , b_c , b_s sind auch die Verhältnisse $\frac{du}{d\vartheta}$, $\frac{dv}{d\vartheta}$, $\frac{d^2\vartheta}{d\vartheta^2}$ bestimmt; der Wendekreis und die beiden Krümmungskreise der 0

Kreispunktcurve in P bilden also ein Aequivalent für vier unendlich nahe Systemlagen.

Wir betrachten daher vorläufig die Kreise w, c, e als bekannt. Um unter dieser Voraussetzung zu einer Construction für den Krümmungsmittelpunkt A zu gelangen, beginnen wir mit einer Umformung der Gleichung 7). Aus derselben folgt zunächst



Wir bezeichnen nun in Fig. 3 mit W den Wendepol, mit R den Schnittpunkt von PA mit w, mit A_1 den Fusspunkt der von A auf t_P gefällten Senkrechten, mit t_w die Länge der Tangente aus A an w. Ziehen wir $PV \perp PA$ und durch den Schnittpunkt V von PV mit AW zu s_P eine Parallele, so bestimmt dieselbe auf PA den Punkt A Dann ist

$$PV = r \cdot \frac{WR}{AR} = r \cdot \frac{WR \cdot r}{t^2_w},$$

oder wegen $\triangle PAW = \triangle PA_1W$

$$PV = r \cdot \frac{x \, b_w}{t^2 \, a}.$$

Weiter folgt aus den ähnlichen Dreiecken PVA und PA, A

$$AV = PV \cdot \frac{r}{x} = \frac{r^2 b_w}{t^2 w}$$

Errichten wir in A zu AP die Normale ν_A , welche AW in Z schneidet, so ist $\triangle AVZ \sim \triangle PWV$, also

$$AZ = AV \cdot \frac{PV}{t_w} = \frac{r^3x b_w}{t_w^4}$$

Nun ist

$$W = t^2_{\omega} \cdot d \vartheta$$

also geht 8) über in

10)
$$\tau = \frac{r^3 x \, b_w}{t^4 w} \cdot \frac{r^2 (2 d\vartheta - d\tau) - 3y \, du}{t^2 w} + \frac{r^5 y \, du \, d^2 \vartheta}{t^6 w} d\vartheta^3$$

Bezeichnen wir ferner mit t_c die Tangente aus A an c, mit C und C_1 bez. die Schnittpunkte von c mit n_P und von AC mit PV, so wird

$$r^{2}(2d\vartheta-d\tau)-3y\,du=t^{2}c(2d\vartheta-d\tau),$$

also

$$\frac{r^3x\,b_w}{t^4_w}\cdot\frac{r^3(2\,d\,\vartheta-d\,\tau)-3\,y\,d\,u}{t^2_w\,d\,\vartheta}=\mathsf{A}Z\cdot\frac{t^2_c}{t^2_w}\cdot\frac{2\,d\,\vartheta-d\,\tau}{d\,\vartheta}=3\,.\,AZ\cdot\frac{t^2_c}{t^3_w}\cdot\frac{b_w}{b_c},$$

oder mit Rücksicht auf 9)

$$=3.AZ \cdot \frac{PV}{PC}$$

Das zweite Glied in 10) kann in folgender Weise umgeformt werden:

$$\frac{r^5y\ du\ d^2\vartheta}{t^6_{\ m}\ d\vartheta^3} = \frac{r^3x\ b_{\ m}}{t^4_{\ m}} \cdot \frac{rx\ b_{\ m}}{t^2_{\ m}} \cdot \frac{ry\ d^2\vartheta}{x^2\ du\ d\vartheta} = 3.\ AZ.\ PV \cdot \frac{ry}{x^2b_e}.$$

Ziehen wir nun durch den Schnittpunkt E von PA mit e zu n_P eine Parallele, die PV in E_1 trifft, so ist

$$PE_1 = \frac{x^3 b_s}{ru},$$

folglich erhalten wir für r den Werth

11)
$$\tau = 3\left(AZ \cdot \frac{PV}{PC_1} + AZ \cdot \frac{PV}{PE_1}\right)$$

Um daher zu einem Systempunkte A den Krümmungsmittelpunkt $\mathfrak A$ seiner Bahnevolute zu construiren, bestimmen wir in der eben angegebenen Weise die Punkte V, A, Z, C_1 , E_1 , projiciren C_1 und E_1 aus A auf PZ und die so gefundenen Punkte C_2 , E_2 aus V auf ν_A . Ergeben sich hierdurch die Punkte C_3 , E_3 , so ist

12)
$$A \mathfrak{A} = r = 3. C_3 E_3.$$

Liegt A auf der Polbahntangente, so fällt A mit P, V und Z mit W, C_1 mit C zusammen, die Strecke PE_1 wird unendlich gross, und wir erhalten

$$\begin{array}{c} {\rm r}=3\cdot\frac{PW^2}{PC}=3\cdot\frac{\mathfrak{b}^3_w}{\mathfrak{b}_c}\,,\\ \\ {\rm Zugleich\ folgt\ aus\ 6)} \\ \mathfrak{y}=-3\frac{\mathfrak{b}^2_w}{\mathfrak{b}_c}, \end{array}$$

d. h. allen Punkten A von t_P entspricht ein gemeinsamer Krümmungsmittelpunkt $\mathfrak A$ auf der negativen Seite der Polbahnnormale. Wir schliessen hieraus, dass im allgemeinen Falle bei der Construction des Punktes $\mathfrak A$ die Strecke $3.C_3E_3$ immer dann entgegengesetzt zur Richtung AZ aufzutragen ist, wenn Gleichung 11) für $\mathfrak r$ einen positiven Werth liefert. Rechnen wir nun die Strecken PV, PC_1 , PE_1 alle in demselben Sinne positiv, schreiben also

$$r=3.AZ.PV\left(\frac{1}{PC_1}-\frac{1}{PE_1}\right),$$

so ist der in der Klammer stehende Ausdruck positiv, wenn beim Durchlaufen der Geraden PV in der Richtung von P nach V der Punkt E_1 nicht zwischen P und C_1 liegt, und hieraus folgt die einfache Regel: Die Strecke $3.C_1E_1$ ist von A aus immer dann nach der Seite des Punktes Z aufzutragen, wenn E_1 sich innerhalb der in der Richtung von P nach V durchlaufenen (endlich oder unendlich grossen) Strecke PC_1 befindet.

Das eben entwickelte Verfahren wird unbrauchbar, sobald A auf der Polbahnnormale liegt. Dann ist aber nach § 1 $\mathfrak{h} = \eta$ und für \mathfrak{r} ergiebt sich der leicht zu construirende Ausdruck

$$\mathbf{r} = -\frac{\eta^3 d^2 \theta}{du^2} = -\frac{3\eta^3}{b_m b_e}.$$

Wir haben bisher die Kreise w, c, e als gegeben betrachtet; vier unendlich benachbarte Systemlagen können aber auch ganz allgemein dadurch festgelegt werden, dass wir für zwei beliebige Systempunkte A und B die Krümmungsmittelpunkte A, B ihrer Bahneurven und die Krümmungspunkte A, B ihrer Bahnevoluten willkürlich vorschreiben. Dann bestimmen zunächst die Punkte A, B, A, B in bekannter Weise den Wendekreis w; bringen wir ferner Gleichung T) in die Form

$$\begin{split} \mathbf{r} &= \frac{r^3}{\mathbf{W}^3} \, du^2 \, d\vartheta \left\{ r^2 \left(x \frac{2 \, d\vartheta - d\tau}{du} + y \frac{d^2\vartheta}{du \, d\vartheta} \right) - 3 x y \right\} \\ &= 3 \cdot \frac{r^4}{\mathbf{W}^3} \, du^2 \, d\vartheta \left(\frac{r \, x}{\mathsf{b}_c} + \frac{r \, y}{\mathsf{b}_c} - \frac{x \, y}{r} \right), \end{split}$$

so folgt

$$\begin{split} \frac{rx}{b_c} + \frac{ry}{b_e} &= \frac{rW^8}{3r^4 du^2 d\vartheta} + \frac{xy}{r} = \frac{rt^6_w}{3r^4 b^2_w} + \frac{xy}{r} \\ &= \frac{r}{3} \cdot \frac{1}{AZ} \cdot \frac{xt^2_w}{rb_w} + \frac{xy}{r} = \frac{r \cdot x \cdot AR}{3b_w \cdot AZ} + \frac{xy}{r} \cdot \end{split}$$

Digitized by Google

Hier ist die rechte Seite eine bequem zu ermittelnde Strecke. Eine analoge Beziehung gilt für den Punkt B. Auf Grund beider Gleichungen können aber die Kreisdurchmesser b_c , b_e , wie sofort ersichtlich, in einfacher Weise construirt werden, und dann ergiebt sich zu jedem dritten Systempunkte der Krümmungsmittelpunkt der Bahnevolute nach dem vorher abgeleiteten Verfahren.

Specielle Fälle. Bezeichnen wir bez. mit π und p die Krümmungskreise der (festen) Polbahn und der (beweglichen) Polcurve in P, mit ϱ_{π} und ϱ_{p} die entsprechenden Radien, so ist nach Fig. 1

$$\varrho_n = -\frac{du}{d\tau},$$

also

$$\varrho_p = \frac{du}{d\vartheta - d\tau}.$$

Nehmen wir nun an, es sei $d^2\vartheta=0$, so kann die Bewegung des Systems S in drei aufeinander folgenden Zeitelementen ersetzt werden durch das Abrollen des Kreises p auf dem Kreise π . Dann ist aber $b_c=\infty$; die Kreispunkteurve f zerfällt in den Kreis c und die Gerade n_P , und wir erhalten aus 11) das einfachere Resultat

$$\mathfrak{r} = 3.\,\mathsf{A}\,Z \cdot \frac{P\,V}{P\,C_1} \cdot$$

Ist zugleich $d\tau = -d_i\theta$, so rollt der Kreis p in einem doppelt so grossen Kreise (elliptische Bewegung); der Kreis c und der Wendekreis ω fallen mit p zusammen und wir finden die von Maclaurin angegebene Beziehung*

$$r = 3$$
. AZ.

Dagegen entspricht der Annahme $d\tau = 2 d\vartheta$ die Umkehrung der vorigen Bewegung (cardioidische Bewegung). Hier zerfällt f in die Geraden t_P , n_P und die unendlich ferne Gerade; es ist also immer $AC_1 \parallel n_P$.

Ist $d^2\theta = 0$ und $d\tau = 0$, so rollt der Kreis p auf der Geraden t_P , und für $d^2\theta = 0$, $d\tau = d\theta$ kann die Bewegung des Systems ersetzt werden durch das Abrollen der Tangente t_P auf dem Kreise π .

Bemerkenswerth ist endlich der Fall $d^2\vartheta = d\vartheta (2d\vartheta - d\tau)$; ihm entspricht eine symmetrische Kreisfusspunkteurve.

§ 3. Die Verwandtschaft der Systeme S und \mathfrak{S} .

Denken wir uns zu jedem Systempunkte A den Krümmungsmittelpunkt A seiner Bahnevolute construirt, so entsteht ein System S, dessen Verwandtschaft zum System S durch die Gleichungen 5) und 6) oder 3) und 4) definirt ist. Wir wollen die wichtigsten Beziehungen dieser Verwandtschaft noch in Kürze ableiten.

^{*} Vergl. Mannheim, Cours de géométrie descriptive, deuxième édition, p. 202.

Allen Punkten der Polbahntangente tp entspricht in Sein und derselbe Punkt Tauf np, und zwar ist nach § 2

$$P\mathfrak{T} = -\frac{du\left(2d\vartheta - d\tau\right)}{d\vartheta^2} = -3\frac{\mathfrak{d}^2_w}{\mathfrak{d}_c}.$$

Jeder Punkt der beiden Geraden, die den Pol mit den imaginären Kreispunkten verbinden, entspricht sich selbst; denn für r=0 folgt aus 5) und 6) r=x, y=y.

Liegt A auf dem Wendekreise w, so ist \mathfrak{A} der unendlich ferne Punkt der Normalen zu PA. Aber für den Schnittpunkt U von w mit der Kreispunktcurve f ergiebt sich aus 7) der Werth von \mathfrak{r} in der Form \mathfrak{F} ; dem Punkte U entspricht also jeder Punkt der unendlich fernen Geraden. — U ist derjenige Punkt der bewegten Ebene, der sich augenblicklich in einem Undulationspunkte seiner Bahn befindet; bezeichnen wir in Fig. 2 mit M_w den Mittelpunkt des Wendekreises, so erhalten wir auf w den Punkt U, indem wir $LWPU = LM_wQP$ machen. Dann ist nämlich $PQUM_w$ ein Kreisviereck, also $LPUQ = LPM_wQ = 180^\circ - LM_wQP - (90^\circ - LQPt_P) = 90^\circ - LWPU + LQPt_P = LQPU$, d. h. U liegt auf f.

Sei ferner A_{∞} ein unendlich ferner Punkt und $Lt_PPA_{\infty}=\alpha$ (Fig. 2). Construiren wir dann, wie in Fig. 3, den Punkt I, so liegt A auf dem Rückkehrkreise κ , die Normale ν_A geht durch den Rückkehrpol K, und es

ist
$$AZ = PV = b_w \cos \alpha$$
, $\frac{PV}{PC_1} = \frac{b_w}{b_c}$, $PE_1 = b_e \frac{\cos^2 \alpha}{\sin \alpha}$, also
$$\tau = 3 \cdot \frac{b^2_w}{b_c} \cos \alpha + 3 \cdot \frac{b^2_w}{b_e} \sin \alpha$$
.

Ziehen wir daher in Fig. 2 $\mathfrak{T}\mathfrak{N} \| t_P$ und $= 3 \frac{b^2 w}{b_e}$, so ist \mathfrak{A} der Fusspunkt des von \mathfrak{R} auf ν_A gefällten Lothes. Daraus folgt: Den unendlich fernen Punkten des Systems S entsprechen in \mathfrak{S} die Punkte eines Kreises \mathfrak{k} , der K \mathfrak{R} zum Durchmesser hat und überdies durch \mathfrak{L} geht. Der Punkt \mathfrak{R} liegt auf q; auf derselben Geraden befindet sich also auch der zweite Schnittpunkt \mathfrak{D} der Kreise \mathfrak{k} und \mathfrak{k} . — Der Kreis \mathfrak{k} hat für die Verwandtschaft (A, \mathfrak{A}) dieselbe Bedeutung, wie der Rückkehrkreis \mathfrak{k} für die quadratische Verwandtschaft (A, A). Dabei sind \mathfrak{k} und \mathfrak{k} aus dem Rückkehrpol \mathfrak{K} perspectiv aufeinander bezogen.

Um zu der Geraden PA_{∞} die zugeordnete Curve in $\mathfrak S$ zu erhalten, setzen wir in 3) und 4) $y = x \tan \alpha$ und finden durch Elimination von z

$$(r + y \tan \alpha)^3 \{d\vartheta(d\vartheta + d\tau) - d^2\vartheta \cdot \tan \alpha\} + 3(r + y \tan \alpha)^2 du d\vartheta \tan \alpha + (y - r \tan \alpha) du^2 \tan^3 \alpha = 0.$$

D. h.: Jeder durch den Pol gehenden Geraden entspricht in Seine cubische Parabel, welche die gegebene Gerade im Pole berührt.

Für $\alpha = 0$ geht die vorige Gleichung über in $r^3 = 0$, und da jedem Punkte der Polbahntangente der Punkt \mathfrak{T} zugeordnet ist, so entspricht allein dem Punkte P die dreifach zählende Gerade n_P .

Setzen wir ferner $\tan \alpha = \sqrt{-1}$, so verwandelt sich die Gleichung der cubischen Parabel in

$$(r+i\mathfrak{p})[(r+i\mathfrak{p})^2!d\vartheta(d\vartheta+d\tau)-id^2\vartheta)!+3i(r+i\mathfrak{p})dud\vartheta-du^2]=0,$$
 und da jeder endliche Punkt der Geraden $r+i\mathfrak{p}=0$, von P abgesehen, nur sich selbst entspricht, so kann dem durch die Gleichung

$$(r+i\mathfrak{h})^2 \{d\vartheta(d\vartheta+dz)-id^2\vartheta\}+3i(r+i\mathfrak{h})dud\vartheta-du^2=0$$

dargestellten Geradenpaare nur der unendlich ferne Punkt der betrachteten Geraden zugeordnet sein. Jedem der imaginären Kreispunkte I, Jentsprechen also in Szwei durch ihn gehende imaginäre Geraden i, i' bez. j, j'. Dabei haben i, j und ebenso i', j' einen reellen Punkt gemein.

Dann besteht aber die Curve, die der unendlich fernen Geraden von S in S conjugirt ist, ausser dem Kreise t noch aus den vier Geraden i, i, i, i, and somit dürfen wir schliessen: Jeder Geraden g von S entspricht in S im Allgemeinen eine Curve sechster Ordnung g. Dieselbe geht durch T und hat die unendlich ferne Gerade zweimal zur stationären Tangente, weil nur den beiden Schnittpunkten von g mit w unendlich ferne Punkte zugeordnet sind.

Bezeichnen wir demnach mit a eine Curve n^{ter} Ordnung von S, so ist die conjugirte Curve a im Allgemeinen von der Ordnung 6n. Aber jeder Durchgang der Curve a durch P vermindert die Ordnung von a um drei, die gleichzeitige Berührung mit t_P um sechs, jeder Durchgang durch einen Kreispunkt um zwei, durch Uum eins.

Hiernach müsste der Kreispunkteurve f in $\mathfrak S$ eine circulare Curve von der Ordnung 18-6-3-4-1=4 entsprechen. Bekanntlich ist ihr aber wieder eine Focalcurve dritter Ordnung $\mathfrak f$ zugeordnet,* und da die $\mathfrak f$, von $P,\,I,\,J,\,U$ abgesehen, keinen Punkt enthält, dem in $\mathfrak S$ statt eines Punktes eine Linie entspräche, so kann nur durch die Art ihres Durchgangs durch U die Ordnung der entsprechenden Curve um eine weitere Einheit erniedrigt werden. Bezeichnen wir daher mit t_U die Tangente der f in U, so folgt: Jeder Durchgang durch U in der Richtung t_U vermindert die Ordnung der entsprechenden Curve um zwei.

Aus unseren letzten Darlegungen folgt unter Anderem noch der Satz: Jedem Kreise, der in P die Polbahntangente berührt, entspricht in S wieder ein Kreis, nämlich eine circulare Curve von der Ordnung 12-6-4. Die Mittelpunkte aller so entstehenden Kreise erfüllen, wie

^{*} Die Gleichung von f lautet: $(x^2 + y^2) \{ x d\theta (d\theta + d\tau) - y d^2\theta \} + 3xy du d\theta = 0._{\text{Digitized by}}$

wir nur beiläufig erwähnen, eine Curve dritter Ordnung. Dem Kreise c (Fig. 2) ist insbesondere ein durch P gehender Kreis zugeordnet.

Soll umgekehrt zu einem beliebigen Punkte $\mathfrak B$ von $\mathfrak S$ der entsprechende Punkt B in S bestimmt werden, so sind in 3) und 4) die Coordinaten $\mathfrak K$, gegeben, und dann wird durch Gleichung 3) eine circulare Curve dritter Ordnung dargestellt, die in P einen Doppelpunkt hat und in P vom Wendekreise osculirt wird, durch 4) eine circulare Curve dritter Ordnung mit $\mathfrak k_P$ als Tangente im einfachen Punkte P. Beide Curven haben also, von P und den Kreispunkten abgesehen, noch 9-3-2=4 Punkte miteinander gemein, $\mathfrak k$. $\mathfrak k$ jedem Punkte von $\mathfrak k$ sind im Allgemeinen in $\mathfrak k$ vier verschiedene Punkte zugeordnet. Nur wenn $\mathfrak k \mathfrak k = -d\mathfrak k$ ist, wird auch die Curve $\mathfrak k$) in $\mathfrak k$ von $\mathfrak k$ 0 osculirt, und dann entsprechen jedem Punkte $\mathfrak k$ 3 nur drei Punkte $\mathfrak k$ 6. Dieser Fall tritt also ein, wenn der Krümmungskreis der Polcurve in $\mathfrak k$ 2 durch den Krümmungsmittelpunkt der Polbahn geht.

Liegt $\mathfrak B$ unendlich fern, so fällt einer der vier conjugirten Punkte mit U zusammen; die drei übrigen sind in demjenigen Punkte B des Wendekreises vereinigt, für welchen $PB \perp P\mathfrak B_{\infty}$ ist.

Einer beliebigen Geraden \mathfrak{h} von \mathfrak{S} entspricht zufolge der Gleichungen \mathfrak{h} . Dieselbe geht zweimal durch die imaginären Kreispunkte, entsprechend den Schnittpunkten von \mathfrak{h} mit den früher definirten Geraden \mathfrak{i} , \mathfrak{i}' , \mathfrak{j} , \mathfrak{j}' . Sie kann ferner mit t_P nur den Punkt P, und diesen also sechsfach zählend, gemein haben, \mathfrak{d} . \mathfrak{h} . sie besitt in P einen dreifachen Punkt mit drei in t_P zusammenfallenden Tangenten,

Ist b' eine zweite Gerade von \mathfrak{S} , welche b in \mathfrak{B} schneidet, so treffen sich die Curven h und h' nur in P, U, I, J und in den vier Punkten B. Dabei zählt P für 18 Schnittpunkte, die beiden Curven haben daher in U, I, J 34-18-4=14 Punkte miteinander gemein, d. h. zwei Punkte in U, je sechs in I und J. Wir bezeichnen ihre gemeinsamen Asymptoten in I, J bez. mit t_I , t'_I , t_J , t'_J , den (reellen) Schnittpunkt von t_I , t_J und t'_I , t'_J bez. mit Φ , Φ' .

Der Curve h entspricht umgekehrt in \mathfrak{S} eine Curve 36. Ordnung, welche in die Geraden n_P , i, i', j, j', die unendlich ferne und die vierfach zählende Gerade \mathfrak{h} zerfällt. Nun bewirkt der dreimalige Durchgang durch P unter gleichzeitiger Berthrung von t_P eine Verminderung der Ordnungzahl der conjugirten Curve um 18; in jener ausgearteten Curve 36. Ordnung muss also jede der Geraden \mathfrak{t} , i', j, j' dreifach, die unendlich ferne doppelt zählen, d. h. die Curve h berthrt in U die Gerade t_U . Hieraus folgt: Den Geraden von $\mathfrak S$ entsprechen in S im Allgemeinen bicirculare Curven sechster Ordnung mit gemeinschaftlichen Doppelbrennpunkten $\mathfrak P$, $\mathfrak P'$. Dieselben berthren in U die Gerade t_U und haben in P einen dreifachen Punkt mit der dreifach zählenden Tangente t_P . Und ferner: Geht im System S die

Curve a durch einen der imaginären Kreispunkte in der Richtung t_I oder t'_I , bez. t_J oder t'_J , so wird hierdurch die Ordnung der entsprechenden Curve a um drei vermindert. Es wird also die Curve a so zerfallen, dass z. B. bei einem Durchgange der a durch I in der Richtung t_I die Gerade i zweimal, i' einmal, dagegen bei einem Durchgange in der Richtung t'_I die Gerade i einmal, i' zweimal als Bestandtheil der a erscheint.

Die Punkte Φ , Φ' und ebenso die Schnittpunkte der Geradenpaare ij, i'j' sind mit Hilfe der Kreise w, c, e leicht zu ermitteln; doch wollen wir auf diese Constructionen hier nicht eingehen. — Als Hauptergebniss unserer Darlegungen folgt der Satz: Die Systeme S und $\mathfrak S$ stehen in einer 1-4-deutigen Verwandtschaft sechsten Grades.

Diese Verwandtschaft vereinfacht sich naturgemäss in den am Schlusse des vorigen Paragraphen behandelten Sonderfällen. So gelten im Falle der elliptischen Bewegung ($dz = -d\vartheta$, $d^2\vartheta = 0$) die folgenden Beziehungen: Die Verwandschaft (S, \mathfrak{S}) ist eine 1-3-deutige vom vierten Grade. Jedem Punkte B von S entsprechen in 8 drei Punkte auf dem Kreise mit dem Durchmesser PB. Vier Punkten von S sind in S gerade Linien zugeordnet, nämlich dem Pole P die doppelt zählende Gerade n_P , dem Wendepol W die unendlich ferne Gerade, jedem der Kreispunkte seine Verbindungslinie mit dem auf n_P liegenden Punkte 3, für welchen $P3 = -\frac{b_w}{2}$ ist. Dem Punkte 3 entspricht in S ein Kreis s, der durch den Mittelpunkt des Rückkehrkreises geht und t_P in P berthrt, und der Mittelpunkt von s ist der gemeinsame Doppelbrennpunkt aller der circularen Curven vierter Ordnung, die in S den Geraden von S conjugirt sind. Alle diese Curven gehen durch den Wendepol und haben in P einen Selbstberührungspunkt mit der Tangente t_P . Zu jeder Geraden g ergiebt sich in S eine Curve vierter Ordnung, welche die unendlich ferne Gerade doppelt berührt. Geht aber g durch P, so verwandelt sich die conjugirte Curve in eine Parabel, und die Brennpunkte aller solcher Parabeln erfüllen eine Cissoide. Allen Kreisen, welche t_P in P berühren, entsprechen in S wiederum Kreise, deren Mittelpunkte auf np liegen.

Braunschweig, 17. December 1890.

XIII.

Ueber zwei, die Krümmung von Curven und das Gauss'sche Krümmungsmaass von Flächen betreffende charakteristische Eigenschaften der linearen Punkt-Transformationen.

 ∇ on

Dr. R. MEHMKE,
Professor a. d. techn. Hochschule su Darmstadt.

In einer Mittheilung über Krümmungseigenschaften der räumlichen Collineation und Affinität* habe ich u. A. die Sätze aufgestellt:

Wenn zwei Curven sich in einem Punkte berühren und in diesem Punkte gemeinsame Schmiegungsebenen besitzen, oder wenn zwei Flächen sich in einem Punkte berühren, so ändert sich das Verhältniss ihrer zur Berührungsstelle gehörigen Krümmungen, bezw. Gauss'schen Krümmungsmasse nicht, falls beide zusammen irgend einer linearen Punkttransformation des Raumes unterworfen werden.

Es entsteht die Frage, ob man es hier mit Eigenschaften zu thun hat, welche allein den linearen und nicht etwa noch irgendwelchen anderen Punkttransformationen allgemein zukommen. Diese Frage ist, wie sich zeigen wird, zu bejahen.

Weil es nur wenig Mehrarbeit erfordert, werde ich die Untersuchung statt für den gewöhnlichen Raum sogleich für einen solchen mit beliebig vielen Dimensionen durchführen und ferner an Stelle gewöhnlicher Flächen l-dimensionale Gebilde in einem ebenen Raume von (l+1) Dimensionen, an Stelle des Gauss'schen Krümmungsmaasses die Kronecker'sche Verallgemeinerung dieses Begriffes in Betracht ziehen.

L. Fall zweier sich berührenden Curven.

Bei den folgenden Entwickelungen werde ich mich der Rechnung mit Strecken (geraden Linien von bestimmter Länge und Richtung) bedienen.

Sei x der Träger eines beliebigen Raumpunktes — der ebenfalls mit x bezeichnet werden soll —, d. h. die Strecke von einem willkürlichen festen

^{* &}quot;Einige Sätze über die räumliche Collineation und Affinität, welche sich auf die Krümmung von Curven und Flächen beziehen", diese Zeitschrift, S. 56-60 des laufenden Jahrganges.

Punkte nach jenem Punkte hin. Eine von dem Punkte x beschriebene Curve kann durch eine Gleichung $x = \varphi(t)$

dargestellt werden, worin t eine unabhängige Zahlveränderliche bedeutet. Dann ist, unter s die Bogenlänge von einem willkürlichen, aber festen Punkte der Curve bis zum Punkte x, sowie unter k die Krümmung der Curve in jenem Punkte verstanden, $\frac{dx}{dt}$ eine Strecke von der Länge $\frac{ds}{dt}$ parallel zur Tangente der Curve in x und ferner $\frac{d^2x}{dt^2}$ eine zur Schmiegungsebene der Curve in x parallele Strecke, deren Projection auf die zu diesem Punkte gehörige Hauptnormale der Curve die Länge $k\left(\frac{ds}{dt}\right)^2$ hat und, wenn man ihren Anfangspunkt in den betreffenden Curvenpunkt verlegt, nach dem zugehörigen Krümmungsmittelpunkte hin gerichtet ist. Insbesondere stellt (für t=s) $\frac{dx}{ds}$ eine Strecke von der Länge Eins parallel zur Curventangente, $\frac{d^2x}{ds^2}$ aber eine Strecke von k Längeneinheiten vor, die, wenn ihr Anfangspunkt im Curvenpunkte selbst angenommen wird, in die Hauptnormale der Curve fällt und nach dem Krümmungsmittelpunkte hin gerichtet ist. Mit H. Grassmann jun, werde ich letztere Strecke die zum Punkte x

Sei nun \overline{x} der Punkt, in welchen x bei einer beliebigen, durch die Streckengleichung $\overline{x} = f(x)$

gehörige Krümmungsstrecke der Curve nennen.*

definirten Punkttransformation des Raumes übergeführt wird. Wir wollen x als Function der Bogenlänge s betrachten, also s an Stelle von t setzen; dann wird auch \overline{x} eine Function von s. Durch zweimalige Ableitung der vorhergehenden Gleichung nach s erhält man:

$$\frac{d^2\overline{x}}{ds^2} = \frac{df}{dx}\frac{d^2x}{ds^2} + \frac{d^2f}{dx^2}\left(\frac{dx}{ds}\right)^2.$$

Liegen mehrere sich im Punkte x berührende Curven vor, so ist für dieselben $\frac{df}{dx}$, wie auch $\frac{d^2f}{dx^2}$ and $\frac{dx}{ds}$ gemeinsam, es erscheint also die (von Curve zu Curve sich ändernde) Strecke $\frac{d^2\overline{x}}{ds^2}$ als lineare Streckenfunction von $\frac{d^2x}{ds^2}$. Wenn man daher die Strecken $\frac{d^2\overline{x}}{ds^2}$ alle vom Punkte \overline{x} aus

^{*} H. Grassmann, Anwendung der Ausdehnungslehre auf die allgemeine Theorie der Raumcurven und krummen Flächen, I. Theil: Raumcurven, Beilage zum Programm der lateinischen Hauptschule in Halle a. S., Ostern 1886.

^{**} $\frac{df}{dx}$ und $\frac{d^2f}{dx^2}$ sind "Lückenausdrücke" mit einer, bezw. mit zwei Lücken, welche nach Ausfüllung der Lücken in Strecken übergehen; s. Grassmann, Lineale Ausdehnungslehre von 1862, Nr. 435 und 450.

abträgt, ebenso die Strecken $\frac{d^2x}{ds^2}$ vom Punkte x aus, so bilden die Endpunkte der erstgenannten Strecken ein zu den Endpunkten der letzteren affines System. Ohne diese Beziehung aufzuheben, kann man offenbar, unter \bar{s} die Bogenlänge bei den transformirten Curven verstanden, die Strecken $\frac{d^2\bar{x}}{ds^2}$ durch $\left(\frac{d\bar{s}}{ds}\right)^2$ — welche Grösse für alle transformirten Curven denselben Werth hat — dividiren und alsdann auf das zu \bar{x} gehörige gemeinsame Normalgebiet der transformirten Curven senkrecht projiciren, wodurch jene Strecken in die zum Punkte \bar{x} gehörigen Krümmungsstrecken der transformirten Curven übergehen. Wir sind so zu folgendem Satze gelangt, der für Räume von beliebig vielen Dimensionen gilt, da beim Beweise über die Anzahl der Dimensionen des Raumes, welchem die betrachteten Curven angehören, keinerlei beschränkende Voraussetzung gemacht worden ist:

Es berühren sich mehrere Curven in einem und demselben Punkte und man trägt von diesem Punkte aus in der zugeordneten Hauptnormalen einer jeden der Curven eine Strecke ab — sie möge die Krümmungsstrecke der Curve zum fraglichen Punkte heissen —, deren Längenzahl gleich der Krümmung der Curve in jenem Punkte ist. Werden die gegebenen Curven einer beliebigen Punkttransformation des Raumes unterworfen und construirt man auch für die transformirten Curven die Krümmungsstrecken in ihrem gemeinschaftlichen Berührungspunkte, so bilden die Endpunkte der Krümmungsstrecken der ursprünglichen und der transformirten Curven zwei affine Punktsysteme.*

Haben die gegebenen Curven in ihrem Berthrungspunkte x eine und dieselbe Schmiegungsebene, so bilden die Endpunkte der zu x gehörigen Krümmungsstrecken dieser Curven eine gerade Punktreihe a, b, ... (in der gemeinsamen Hauptnormalen der Curven), also müssen dem eben bewissenen Satze zufolge bei den transformirten Curven die Endpunkte \bar{a} , \bar{b} , ... der entsprechenden Krümmungsstrecken eine gerade Punktreihe zusammensetzen, welche der ersteren ähnlich ist (und in dem zu \bar{x} gehörigen gemeinsamen Normalgebiet der transformirten Curven liegt, aber den Punkt \bar{x} für gewöhnlich nicht enthält). Sei x_0 derjenige Punkt der letzten Punktreihe, welcher x, als Punkt der ersten Reihe aufgefasst, entspricht. Dann ist

$$\frac{xa}{xb} = \frac{x_0\bar{a}}{x_0\bar{b}}$$

Soll das Verhältniss der Krümmungen irgend zweier der gegebenen Curven im Punkte x durch die Transformation keine Aenderung erleiden, so muss auch

^{*} Ohne Beweis habe ich diesen Satz bereits in Böklen's Mathematischnaturwissenschaftlichen Mittheilungen, S. 38, 1891, angeführt

$$\frac{xa}{xb} = \frac{\bar{x}\,\bar{a}}{\bar{x}\,\bar{b}},$$

also

$$\frac{x_0 \, \bar{a}}{x_0 \, \bar{b}} = \frac{\bar{x} \, \bar{a}}{\bar{x} \, \bar{b}}$$

sein, wie immer die Punkte \bar{a} und \bar{b} liegen mögen. Folglich muss x_0 mit \bar{x} zusammenfallen, d. h. wenn eine der gegebenen Curven in x die Krümmung Null hat, so muss die Krümmung ihrer Transformirten in \bar{x} ebenfalls verschwinden (denn dieselbe ist ja proportional $\bar{x}x_0$). Damit dies allgemein, für jede Lage von x stattfinde, müssen gerade Linien sich wieder in solche verwandeln, oder die Transformation muss eine lineare sein, w. z. b. w.

Die vorhergehende Untersuchung hat überdies den Satz ergeben:

Wenn bei irgend einer Punkttransformation des Raumes die Transformirte einer Curve C, deren Krümmung in einem beliebigen ihrer Punkte x verschwindet, im entsprechenden Punkte \bar{x} ebenfalls die Krümmung Null hat, so wird bei dieser Transformation das Verhältniss der zur Stelle x gehörigen Krümmungen irgend zweier Curven, welche C in x berühren und hier gemeinsame Schmiegungsebene besitzen, nicht geändert.

II. Fall sweier sich berührenden Flächen, bezw. l-dimensionalen Gebilde in einem ebenen Raume von (l+1) Dimensionen.

Jedes Punktgebilde G von l Dimensionen lässt sich durch eine Streckengleichung

$$x = \varphi(u_1, u_2, \ldots, u_l),$$

mit u_1, u_2, \ldots, u_l als unabhängigen Zahlveränderlichen, darstellen. Setzt man die Grössen u gleich beliebigen Functionen einer neuen Zahlveränderlichen t, so erhält man die Gleichung einer jenem Gebilde angehörigen Curve C. Wir wollen die Krümmung k derselben im Punkte x berechnen.

Durch zweimalige Ableitung von x nach t ergeben sich bei Benützung der Abkürzungen $\frac{\partial x}{\partial u_i} = x_i, \quad \frac{\partial^2 x}{\partial u_b \partial u_i} = x_{hi}, \qquad (h, i = 1, 2, ..., l)$

folgende beiden Gleichungen:

3)
$$\frac{dx}{dt} = \sum_{i=1}^{l} x_i \frac{du_i}{dt},$$
4)
$$\frac{d^2x}{dt^2} = \sum_{i=1}^{l} \sum_{k=1}^{l} x_{ki} \frac{du_k}{dt} \frac{du_i}{dt} + \sum_{i=1}^{l} x_i \frac{d^2u_i}{dt^2}.$$

Die (als linear unabhängig vorausgesetzten) Strecken x_1, x_2, \ldots, x_l bebestimmen das l-dimensionale ebene Tangentialgebiet τ , welches G im Punkte x besitzt. Wir wollen τ als äusseres Streckenproduct l^{ter} Stufe betrachten; der Masswerth von τ möge gleich Eins, der Sinn übereinstimmend mit demjenigen des äusseren Streckenproductes $[x_1x_2\ldots x_l]$ genommen werden.

Bezeichnet α den Winkel zwischen τ und der Schmiegungsebene (oder auch der Hauptnormalen) der Curve C im Punkte x, dann ist

$$\left[\tau \frac{d^2x}{dt^2}\right] = k \left(\frac{ds}{dt}\right)^2 \sin \alpha$$
,

also

$$k \sin \alpha = \frac{\left[\tau \frac{d^3 x}{dt^2}\right]}{\left(\frac{ds}{dt}\right)^2}.$$

In Anlehnung an bekannte Gauss'sche Bezeichnungen setze man

$$[x_1x_2\ldots x_lx_{hi}]=D_{hi},$$

$$x_h \mid x_i = E_{hi}.$$

Sei ferner Δ der Maasswerth des äusseren Streckenproductes $[x_1 \, x_2 \, \dots \, x_l]$, also

8)
$$\tau = \frac{[x_1 x_2 \dots x_l]}{\Lambda},$$

dann ist

9)
$$\left[\tau \frac{d^2x}{dt^2}\right] = \frac{1}{\Delta} \cdot \left[x_1 x_2 \dots x_l \frac{d^2x}{dt^2}\right] = \frac{1}{\Delta} \sum \sum D_{hl} \frac{du_h}{dt} \frac{du_i}{dt} \cdot (h, i = 1, 2, \dots, l).$$

Die Grösse Δ kann durch die E_{hi} ausgedrückt werden, denn es ist*

$$\Delta^{2} = [x_{1} x_{2} \dots x_{l}]^{2} = \begin{vmatrix} x_{1} | x_{1} & x_{1} | x_{2} & \dots & x_{1} | x_{l} \\ x_{2} | x_{1} & x_{2} | x_{2} & \dots & x_{2} | x_{l} \\ & & & & & \\ x_{l} | x_{1} & x_{l} | x_{2} & \dots & x_{l} | x_{l} \end{vmatrix}$$

oder wegen 7)
$$\Delta^2 = |E_{hi}|, \qquad (h, i = 1, 2, ..., l)$$

wo die Kronecker'sche Bezeichnungsweise für Determinanten in Anwendung gebracht worden ist. Ueberdies erhält man aus 3) und 7):

11)
$$\left(\frac{ds}{dt}\right)^2 = \frac{dx^2}{dt} = \sum \sum E_{hi} \frac{du_h}{dt} \frac{du_i}{dt} \cdot (h, i = 1, 2, ..., l)$$

Setzt man für den Zähler und Nenner auf der rechten Seite von 5) die Werthe aus 9) und 11) ein, so ergiebt sich

12)
$$k \sin \alpha = \frac{1}{\Delta} \frac{\sum \sum D_{hi} \frac{du_h}{dt} \frac{du_i}{dt}}{\sum \sum E_{hi} \frac{du_h}{dt} \frac{du_i}{dt}} \cdot (h, i = 1, 2, \dots)$$

Für einen "Normalschnitt" ist $sin \alpha = 1.*$

^{*} S. Grassmann's Ausdehnungslehre von 1862, Nr. 175.

^{**} Es bedarf kaum der Erwähnung, dass aus dem Fehlen der zweiten Ableitungen der Grössen unach t auf der rechten Seite von 12) die Verallgemeinerung des Meusnier'schen Satzes folgt.

Man findet leicht, dass die l "Hauptkrümmungen" aus der Gleichung l^{ten} Grades

13)
$$|D_{ki} - \Delta E_{ki} \cdot k| = 0, \quad (h, i = 1, 2, ..., l)$$

zu bestimmen sind und folglich das Product K der Hauptkrümmungen, die Kronecker'sche Verallgemeinerung des Gauss'schen Krümmungsmaasses,* den Werth hat:

14)
$$K = \frac{|D_{hi}|}{\Lambda^{l+2}} \cdot {}^{**} \qquad (h, i = 1, 2, ..., l)$$

Es werde nun das Gebilde G mit dem ebenen Raume von (l+1) Dimensionen, in welchem es der Annahme nach sich befindet, einer beliebigen durch die Streckengleichung

$$\overline{x} = f(x)$$

gegebenen Punkttransformation unterworfen. Alle auf das transformirte Gebilde \overline{G} bezüglichen Grössen sollen dieselben, zur Unterscheidung noch mit einem waagerechten Striche versehenen Bezeichnungen, wie die entsprechenden, auf G bezüglichen Grössen erhalten. Vermöge 1) ist \overline{x} ebenso wie x eine Function der Grössen $u_1, u_2, ..., u_l$. Durch partielle Ableitung nach diesen Grössen erhält man aus 15) (vergl. 2):

$$\overline{x}_i = \frac{df}{dx} x_i \qquad (i = 1, 2, ..., l)$$

und

17)
$$\overline{x}_{hi} = \frac{df}{dx} x_{hi} + \frac{d^2f}{dx^2} x_h x_i. \qquad (h, i = 1, 2, ..., l)$$

Die 1 Gleichungen 16) ergeben, durch äussere Multiplication miteinander verbunden:

 $\left[\widetilde{x}_1\,\overline{x}_2\,\ldots\,\overline{x}_l\right] = \left[\left(\frac{df}{dx}\right)^l\cdot x_1\,x_2\,\ldots\,x_l\right]$

oder wegen 8):

18)
$$\overline{\Delta}.\,\overline{\tau} = \Delta \cdot \left[\left(\frac{df}{dx} \right)^l,\,\tau \right].$$

Bildet man ferner das äussere Product der vorletzten Gleichung mit 17), so kommt, bei Anwendung der Abkürzungen

$$\left[\frac{df}{dx}\right]^{l+1} = \kappa^{***}$$

und

$$\left[\frac{df}{dx} x_1 \cdot \frac{df}{dx} x_2 \cdots \frac{df}{dx} x_l \cdots \frac{d^2f}{dx^2} x_h x_l \right] = \lambda_{hi},$$

$$\bar{D}_{hi} = \kappa D_{hi} + \lambda_{hi}.$$

^{*} S. Monateberichte der Berliner Akademie, S. 688, 1869.

^{**} Vgl. Beez, Ueber das Krümmungsmaass von Mannichfaltigkeiten höherer Ordnung, Mathem. Annalen, Bd. VII S. 395 Formel (40).

^{****} $\left[\frac{df}{dx}\right]^{l+1}$ ist der "Potenzwerth" des "Bruches" $\frac{df}{dx}$; s. Grassmann's Ausdehnungslehre von 1862, Nr. 383 und 441. Wenn man von Coordinaten Gebrauch macht, so wird * zur "Functionaldeterminante" des die Transformation vermittelnden Functionensystems.

Wenn man mit Hilfe dieser Gleichung die Determinante der Grössen \overline{D}_{hi} bildet und rechts nach Potenzen von π entwickelt, so wird offenbar der Coefficient von π^l gleich der aus den D_{hi} zusammengesetzten Determinante, d. h. man kann schreiben:

$$|\overline{D}_{hi}| = n^{l} \cdot |D_{hi}| + R. \qquad (h, i = 1, 2, ..., l)$$

Um einen Ausdruck für $\overline{\Delta}$ zu gewinnen, erhebe man 18) ins innere Quadrat. Weil einer früheren Annahme gemäss das innere Quadrat von $\overline{\tau}$ den Werth Eins hat, so ergiebt sich:

$$\overline{\Delta}^2 = \Delta^2 \left[\left(\frac{df}{dx} \right)^l \cdot \tau \right]^2$$

oder, wenn man die Abkürzung

23)
$$\mu = \sqrt{\left[\left(\frac{df}{dx}\right)^l \cdot \tau\right]^2}$$

einführt:

Für das Kronecker'sche Krümmungsmaass des transformirten Gebildes \bar{G} im Punkte \bar{x} findet man daher:

$$\overline{K} = \frac{\kappa^l}{\mu^{l+2}} \cdot K + \frac{R}{(\mu \Delta)^{l+2}}$$

Man betrachte nun beliebig viele sich in einem Punkte x berührende Gebilde G. Ihre Gleichungen können so gewählt werden, dass die Grösse Δ für alle denselben Werth erhält; κ , τ und μ sind ohnehin gemeinsam. Wenn das Verhältniss der Kronecker'schen Krümmungsmaasse je zweier beliebigen unter diesen Gebilden im Punkte x von der Transformation unberührt bleiben soll, dann muss, wie Gleichung 25) zeigt, R stets gleich Null sein. Man überzeugt sich leicht, dass dies nur möglich ist, wenn die Grössen λ_{hi} alle verschwinden. Dann müssen vermöge 21) die Grössen D_{hi} gleichzeitig mit den D_{ki} verschwinden. Wir können diese Thatsache folgendermassen in Worte fassen: Hat eines der betrachteten Gebilde in x einen "ebenen" Punkt, so muss das transformirte Gebilde in \bar{x} gleichfalls einen ebenen Punkt besitzen. Die Benennung "ebener" Punkt wird ohne Weiteres verständlich sein: es ist ein Punkt von der Beschaffenheit gemeint, dass jede hindurchgelegte Ebene das Gebilde in einer Curve schneidet, deren Krümmung in jenem Punkte verschwindet. Soll die fragliche Eigenschaft allgemein bestehen, welches auch die Lage von x und r sein mag, so muss jede Ebene durch die Transformation wieder in eine Ebene verwandelt werden, mit anderen Worten, die Transformation muss eine lineare sein.

Indem man die Reihenfolge der obigen Schlüsse umkehrt, erhält man einen Satz, der für l=2 ausgesprochen lautet: Digitized by GOOGIC

Wenn bei irgend einer Punkttransformation des Raumes die Transformirte einer Fläche F, die einen "ebenen" Punkt x hat, im entsprechenden Punkte \overline{x} auch einen "ebenen" Punkt besitzt, so wird bei dieser Transformation das Verhältniss der zur Stelle x gehörigen Gauss'schen Krümmungsmaasse irgend zweier Flächen, die F in x berühren, nicht geändert.

Im Vorstehenden sind einige der Ergebnisse von Untersuchungen über Krümmungseigenschaften beliebiger Punkttransformationen und gewisser anderer Transformationen enthalten, welche ich der Hauptsache nach bereits im Frühjahr 1885 angestellt habe und demnächst in einer Reihe von Mittheilungen zu veröffentlichen gedenke.

Darmstadt, April 1891.

XIV.

Ueber eine allgemeine Classe von ein-zweideutigen Raumtransformationen.

Von
Dr. B. WIMMER
in Nürnberg.

Vorbemerkung.

Die vorliegende Arbeit behandelt eine allgemeine Classe von ein-zweideutigen Transformationen im Raume. Von zwei Seiten her wurde der Theorie der ein-zweideutigen Raumtransformationen vorgearbeitet. Erstens durch die Untersuchung der ein-eindeutigen Raumtransformationen, die wir hauptsächlich den Herren Nöther, Cremona und Cayley verdanken; zweitens durch die Abbildung einer Doppelebene auf eine einfache Ebene, also eine ein-zweideutige Ebenentransformation, von welcher Clebsch zuerst einige Fälle ausführte, und von welcher Herr Professor Nöther alle möglichen Fälle aufstellte.

Ein-zweideutige Raumtransformationen sind bis jetzt nur einige wenige betrachtet worden; so untersuchte Aschieri (Rendiconti del r. Istituto lombardo, Serie II Bd. XIV und XV) diejenige ein-zweideutige Raumtransformation, bei welcher den Ebenen eines Raumes im andern Raume Flächen zweiter Ordnung mit einem festen Kegelschnitte und zwei variablen Schnittpunkten entsprechen, und Reye (Geometrie der Lage, II. Theil) diejenige, bei welcher den Ebenen des einen (Doppel-) Raumes im andern Raume Flächen zweiter Ordnung mit sechs festen und zwei variablen Schnittpunkten entsprechen. Die in dieser letzteren Transformation enthaltene ein-eindeutige involutorische Raumtransformation wurde in einer Inauguraldissertation der Universität Breslau ("Ueber eine räumliche involutorische Verwandtschaft siebenten Grades und ihre Kernfläche IV. Ordnung, von Viktor Eberhard", Breslau 1885) und früher bereits von Geiser (Crelle's Journal Bd. 69) nach den verschiedensten Richtungen untersucht.

Allerdings hat nun Riccardo de Paolis in mehreren Abhandlungen (Accademia dei Lincei 1877 und 1885) die allgemeinen Beziehungen, die bei den ein-zweideutigen Ebenen- und auch Raumtransformationen stattfinden müssen, klargelegt; doch hat derselbe keine eigentliche Transformation angegeben.

Auf Anregung des Herrn Professor Nöther beschäftigte ich mich daher mit einer bestimmten ein-zweideutigen Raumtransformation, welche bisher nicht aufgestellt war und welche durch Specialisirung eine ganze Classe von ein-zweideutigen Raumtransformationen giebt, die bedeutend allgemeiner als die bisher betrachteten sind. Doch habe ich hier zunächst nur den allgemeinsten Fall behandelt und behalte ich mir die Bearbeitung der speciellen Transformationen vor.

Die Methode, die ich hierbei anwendete, ist algebraisch-geometrisch und lehnt sich die vorliegende Arbeit an die von Herrn Professor Nöther über ein-eindeutige Raumtransformationen, vermittelt durch drei bilineare Gleichungen, veröffentlichte Abhandlung an (Mathem. Annalen Bd. 3).

Der Inhalt der vorliegenden Arbeit ist kurz folgender.

Nachdem im § 1 einige allgemeine Beziehungen der ein-zweideutigen Transformationen erörtert sind, giebt § 2 die Definition der zu untersuchenden Transformation durch drei Gleichungen. § 3 behandelt sodann diejenigen Flächen (vierter Ordnung mit fester Curve elfter Ordnung), welche den Ebenen des doppelten Raumes entsprechen, und ausserdem die den Geraden des doppelten Raumes entsprechenden Curven (fünfter Ordnung vom Geschlechte 2).

- In § 4 wird die Gleichung derjenigen Flächen (fünfter Ordnung mit beweglicher Doppelcurve dritter Ordnung) aufgestellt, welche den Ebenen des einfachen Raumes entsprechen, während § 5 die Gleichung der sogen Uebergangsfläche Ω enthält. Die Curven (vierter Ordnung zweiter Species') welche den Geraden des einfachen Raumes entsprechen, werden in § 6 untersucht.
- Der § 7 behandelt ferner die im einfachen Raume befindliche Doppelfläche (zwölfter Ordnung mit dreifacher Curve elfter Ordnung).
- In § 8 musste ein Theil der Betrachtungen über die involutorische Transformation im einfachen Raume vorgenommen werden, um in § 9 die weiteren Hauptelemente - ein Theil war bereits in § 4 festgelegt worden - des Doppelraumes bestimmen zu können.
- § 10 wendet sich wieder zur involutorischen Transformation, speciell zu den Hauptelementen derselben, welche aus einer Curve elfter Ordnung, vier Kegelschnitten und 35 Geraden bestehen. Die involutorische Verwandtschaft wird als von der 19. Ordnung gefunden.

Schliesslich blieb noch der durch die involutorische Verwandtschaft im einfachen Raume bestimmte Strahlencomplex zu untersuchen übrig. Derselbe ist kein anderer, als der Reye'sche Tetraedercomplex (zweiten Grades).

Für die vielfachen Anregungen und Unterstützungen, die mir bei der Ausführung meines Themas von Herrn Professor Dr. M. Nöther zu Theil wurden, erlaube ich mir an dieser Stelle meinen herzlichsten Dank auszusprechen.

Nach Fertigstellung dieser Arbeit kam mir eine Abhandlung des Herrn Montesano, "Su la trasformazione involutoria dello spezio che determina un complesso tetraedrale" (Rendiconti della R. Accademia dei Lincei 1889) zu Gesicht, welche vom Tetraedercomplex ausgehend die auch in dieser Arbeit behandelte involutorische Transformation auf synthetisch-geometrischem Wege entwickelt, ohne übrigens auf die zugehörige ein-zweideutige Transformation einzugehen.

§ 1. Allgemeines.

Ehe ich in die Behandlung meines eigentlichen Themas eintrete, möchte ich kurz einige allgemeine Bemerkungen vorausschicken.

Denken wir uns nämlich irgend eine ein-zweideutige Transformation zwischen einem Raume, dessen Punktcoordinaten x_1 , x_2 , x_3 , x_4 , und einem Raume, dessen Punktcoordinaten y_1 , y_2 , y_3 , y_4 seien, so entsprechen jedem Punkte des einen (etwa y-) Raumes im Allgemeinen zwei Punkte des andern (etwa x-) Raumes, jedem Punkte des x-Raumes aber im Allgemeinen nur ein Punkt des y-Raumes.

Den y-Raum nennt man gewöhnlich den doppelt überdeckten und den x-Raum den einfach überdeckten Raum.

Nun entsteht zunächst die Frage, für welche Punkte y die zwei entsprechenden Punkte x zusammenfallen.

Man findet, dass diese Punkte y eine Fläche erfüllen, welche als "Uebergangsfläche" bezeichnet wird. Sie stellt gleichsam die Contur des auf den Doppelraum abgebildeten einfachen Raumes dar. Die diesen Punkten y entsprechenden Punkte x erfüllen eine Fläche, welche der Uebergangsfläche eindeutig entspricht und als "Doppelfläche" bezeichnet wird.

Die Punktepaare des x-Raumes, die den Punkten des y-Raumes entsprechen, bestimmen im x-Raume selbst wieder eine ein-eindeutige und zwar involutorische Transformation.

Im Vorstehenden sind diejenigen hauptsächlichsten Besonderheiten augegeben, welche die ein-zweideutigen Transformationen von den ein-eindeutigen Transformationen im Wesentlichen unterscheiden.

Eingehend erörtert sind diese allgemeinen Beziehungen bei Riccardo de Paolis l.c.

§ 2.

Bestimmung einer allgemeinen Classe von ein-zweideutigen Transformationen durch drei Gleichungen.

Wir wollen im Nachfolgenden diejenige ein-zweideutige Transformation zwischen zwei Räumen betrachten, die bestimmt ist durch die folgenden drei Gleichungen zwischen den Coordinaten der beiden Räume:

I)
$$\begin{array}{c} \Sigma A_i y_i = 0 \\ \Sigma B_i y_i = 0 \\ \Sigma \Gamma_i y_i = 0 \end{array}$$
 $i = 1, 2, 3, 4.$

wobei die A_i und B_i lineare und die Γ_i quadratische Functionen der Coordinaten x_1 , x_2 , x_3 , x_4 sind.

Durch diese drei Gleichungen ist im Allgemeinen jedem Punkte x—bestimmte Hauptelemente ausgenommen — ein und nur ein Punkt y zugeordnet, während jedem Punkte y durch Vermittelung eben dieser drei Gleichungen im Allgemeinen zwei Punkte x entsprechen.

Die obigen drei Gleichungen lassen sich auch noch in folgender Form schreiben:

in the iden:
$$\begin{array}{ccc} \Sigma A_i x_i &= 0 \\ \Sigma B_i x_i &= 0 \\ \Sigma C_{ik} x_i x_k = 0 \end{array} , \qquad \qquad i=1,2,3,4$$

wobei die A_i , B_i und C_{ik} lineare Functionen der y_i sind. Wie die Coefficienten der y_i in den A_i , B_i und C_{ik} mit den entsprechenden in A_i , B_i und Γ_i zusammenhängen, ist leicht zu übersehen.

Aus den drei Gleichungen I) ergeben sich sofort die Werthe der y, ausgedrückt durch die x.

Es ist nämlich

$$y_1: y_2: y_3: y_4 = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \\ B_1 & B_2 & B_3 & B_4 \\ \Gamma_1 & \Gamma_2 & \Gamma_3 & \Gamma_4 \end{bmatrix}.$$

Durch Specialisirung der Coefficienten in den drei Gleichungen erhält man eine bedeutende Anzahl von verschiedenen ein-zweideutigen Transformationen. Wir wollen jedoch hier nur den allgemeinen Fall betrachten.

§ 3.

Ueber die den Ebenen des y- (Doppel-) Raumes entsprechenden Flächen vierter Ordnung im einfachen (x-) Raume.

Um diejenigen Flächen des x-Raumes zu finden, welche den Ebenen des y-Raumes entsprechen, nimmt zu den drei Gleichungen I) noch die Gleichung einer Ebene des y-Raumes

$$\sum u_i y_i = 0$$

und eliminirt aus diesen vier Gleichungen die y. Man erhält sodann als Gleichung der entsprechenden Fläche die gleich 0 gesetzte Determinante:

$$\begin{vmatrix} u_1 & u_2 & u_3 & u_4 \\ A_1 & A_2 & A_3 & A_4 \\ B_1 & B_2 & B_3 & B_4 \\ \Gamma_1 & \Gamma_3 & \Gamma_3 & \Gamma_4 \end{vmatrix} = 0.$$

Dieselbe ist in den x vom vierten Grade, also die durch sie dargestellte Fläche von der vierten Ordnung.

Den sämmtlichen Ebenen des y-Raumes entsprechen die sämmtlichen Flächen vierter Ordnung, die man erhält, wenn man den u alle möglichen Werthe beilegt.

Da je drei dieser Flächen nur zwei veränderliche Punkte gemein haben dürfen, so ist klar, dass 62 Schnittpunkte oder deren Aequivalente fest sein müssen für alle Flächen dieses Systems.

Um diese gemeinsamen Elemente zu finden, benützt man dieselbe Methode, die Herr Professor Nöther bei den ein-eindeutigen Transformationen angewendet hat. (S. Mathem. Annalen, Bd. 3 S. 553.)

Bezeichnen wir nämlich in der obigen Gleichung der Fläche vierter Ordnung die Unterdeterminanten der u_i mit φ_i , so ist durch

$$\Sigma u_i \varphi_i = 0$$

eine beliebige Fläche des Systems dargestellt. Hierzu gehören auch $\varphi_1 = 0$, $\varphi_2 = 0$, $\varphi_3 = 0$, $\varphi_4 = 0$. Diejenigen Elemente, welche diese vier Flächen gemeinsam haben, müssen nun in jeder Fläche des Systems enthalten sein

Es ist aber

$$\begin{aligned} &\mathsf{A}_1\,\varphi_1 + \mathsf{A}_2\,\varphi_2 + \mathsf{A}_3\,\varphi_3 + \mathsf{A}_4\,\varphi_4 \equiv 0,\\ &\mathsf{B}_1\,\varphi_1 + \mathsf{B}_2\,\varphi_3 + \mathsf{B}_3\,\varphi_3 + \mathsf{B}_4\,\varphi_4 \equiv 0,\\ &\mathsf{\Gamma}_1\,\varphi_1 + \mathsf{\Gamma}_2\,\varphi_2 + \mathsf{\Gamma}_3\,\varphi_3 + \mathsf{\Gamma}_4\,\varphi_4 \equiv 0. \end{aligned}$$

Für den Schnitt von $\varphi_1 = 0$ und $\varphi_2 = 0$ ist also

$$A_3 \varphi_3 + A_4 \varphi_4 = 0,$$

 $B_3 \varphi_3 + B_4 \varphi_4 = 0$
 $\Gamma_8 \varphi_9 + \Gamma_4 \varphi_4 = 0.$

und

Für die Coordinaten dieses Schnittes ist also entweder auch $\varphi_3 = 0$ und $\varphi_4 = 0$, d. h. auch $\varphi_3 = \varphi_4 = 0$ muss durch diesen Theil des Schnittes von $\varphi_1 = \varphi_2 = 0$ hindurchgehen, oder es ist

$$A_3 - \lambda A_4 = 0$$
, $B_3 - \lambda B_4 = 0$, $\Gamma_3 - \lambda \Gamma_4 = 0$.

Diese drei Gleichungen stellen aber drei projectivische Flächenbüschel von der ersten, resp. ersten und zweiten Ordnung dar und erzeugen eine Curve fünfter Ordnung als Schnitt einer Fläche zweiter Ordnung $\begin{vmatrix} A_3 & A_4 \\ B_3 & B_4 \end{vmatrix} = 0$ und einer Fläche dritter Ordnung $\begin{vmatrix} A_3 & A_4 \\ B_3 & C_4 \end{vmatrix} = 0$, welche eine Gerade $A_3 = A_4 = 0$ gemeinsam haben.

Diese Curve fünfter Ordnung stellt den beweglichen Theil des Schnittes von $\varphi_1 = \varphi_2 = 0$ dar; für den übrigen Theil des Schnittes, welcher eine Curve elfter Ordnung ist, muss auch $\varphi_3 = \varphi_4 = 0$ sein. Diese Curve elfter Ordnung ist also fest für alle Flächen des Systems $\Sigma u_i \varphi_i = 0$.

Das Geschlecht der Curve fünfter Ordnung ist =2, denn die Zahl der scheinbaren Doppelpunkte ist =4.

Die Zahl der scheinbaren Doppelpunkte der Curve elfter Ordnung ist = 31, also ihr Geschlecht = 14.

Diese Resultate ergeben sich durch Anwendung der Formel des Artikels 108 in Salmon's Raumgeometrie, II. Theil.

Aus der Formel des Artikels 109 folgt die Zahl der Durchschnittspunkte der beiden Curven elfter und fünfter Ordnung.

Dieselbe ist = 18.

Die bewegliche Curve fünfter Ordnung P'_5 entspricht derjenigen Geraden P des y-Raumes, in welcher sich die zwei Ebenen schneiden, die zwei Flächen des Systems $\Sigma u_i \varphi_i = 0$ entsprechen, und zwar entspricht jedem Pankte auf P ein Punktepaar auf P'_5 .

Je drei Flächen des Systems $\sum u_i \varphi_i = 0$ schneiden sich ausser der festen Curve elfter Ordnung noch in zwei veränderlichen Punkten, denn die den beweglichen Theil des Schnittes zweier von diesen Flächen darstellende Curve P_5' kann die dritte ausser der Curve elfter Ordnung nur mehr in 4.5-18=2 Punkten treffen. Man ersieht daraus, dass die Curve elfter Ordnung das Aequivalent für die 62 Schnittpunkte der Flächen des Systems ist, welche nach der Natur der Transformation fest sein müssen, und dass also weitere feste Punkte nicht mehr existiren können.

Während nun im Allgemeinen jedem Punkte des x- (einfachen) Raumes nur ein Punkt des y- (Doppel-) Raumes entspricht, entspricht jedem Punkte der festen Curve elfter Ordnung nach der allgemeinen Theorie eine Gerade. Diese Geraden erfüllen eine Fläche, welche von einer beliebigen Geraden P des y-Raumes in soviel Punkten getroffen wird, als die der Geraden entsprechende Curve P'_5 des x-Raumes die Curve elfter Ordnung trifft, nämlich in 18 Punkten. Die betreffende Fläche ist also von der 18. Ordnung.

§ 4.

Ueber die den Ebenen des einfachen (x-) Raumes entsprechenden Flächen fünfter Ordnung des y- (Doppel-) Raumes.

Wir wollen nunmehr diejenigen Flächen des y-Raumes aufsuchen, welche den Ebenen des x-Raumes entsprechen.

Dieselben ergeben sich durch Elimination der x_i aus den Gleichungen II) in § 2 und der Ebenengleichung

$$\sum u_i x_i = 0$$

und zwar in folgender Form:

$$F(u, u) \equiv \begin{vmatrix} C_{11} & C_{12} & C_{13} & C_{14} & u_1 & A_1 & B_1 \\ C_{31} & C_{32} & C_{33} & C_{24} & u_2 & A_2 & B_2 \\ C_{31} & C_{32} & C_{33} & C_{34} & u_3 & A_3 & B_3 \\ C_{41} & C_{42} & C_{43} & C_{44} & u_4 & A_4 & B_4 \\ u_1 & u_2 & u_3 & u_4 & 0 & 0 & 0 \\ A_1 & A_2 & A_3 & A_4 & 0 & 0 & 0 \\ B_1 & B_2 & B_3 & B_4 & 0 & 0 & 0 \end{vmatrix} = 0.$$

Hierbei sind $C_{ik} = C_{ki}$, A_i und B_i linear in y_i .

220

Die durch diese Gleichung dargestellte Fläche ist daher von der fünften Ordnung, was auch mit der Thatsache übereinstimmt, dass den Geraden des y-Raumes Curven fünfter Ordnung im x-Raume entsprechen.

Die Betrachtung der durch die Matrix

$$\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \\ A_1 & A_2 & A_3 & A_4 \\ B_1 & B_2 & B_3 & B_4 \end{bmatrix}$$

dargestellten Determinanten ergiebt nun, dass dieselben für die Coordinaten y einer und derselben Curve dritter Ordnung sämmtlich verschwinden.

Diese Curve dritter Ordnung muss also für die Fläche fünfter Ordnung F(u, u) = 0 Doppelcurve sein, wie man aus der Form von F(u, u) = 0 ersieht. Ferner werden die Determinanten des Systems

$$A_1 \ A_2 \ A_3 \ A_4 \ B_1 \ B_2 \ B_3 \ B_4$$

durch die Coordinaten (y) von vier Punkten e_1 , e_2 , e_3 , e_4 sämmtlich zum Verschwinden gebracht.

Diese vier Punkte müssen daher ebenfalls als Doppelpunkte auf F(u, u) = 0 liegen und zwar bleiben sie fest für alle Flächen des dreifschunendlichen Systems F(u, u) = 0, während die Doppelcurve dritter Ordnung sich mit den u_i ändert.

Man sieht, dass auch die sämmtlichen Doppelcurven dritter Ordnung durch die vier festen Doppelpunkte gehen müssen.

Doch sind es diese vier Punkte nicht allein, welche die Allgemeinheit der Lage der Doppelcurven beschränken. In welcher Weise eine solche Beschränkung noch weiterhin stattfindet, werden wir später sehen. (S. § 11.)

§ 5.

Ueber die Uebergangsfläche $\Omega = 0$ des y- (Doppel-) Raumes und ihre Lage zu den Flächen F(u, u) = 0.

Bezeichnet man, wie im vorigen Paragraphen, die der Ebene $\sum u_i x_i = 0$ entsprechende Fläche fünfter Ordnung im y-Raume mit F(u, u) = 0 und in gleicher Weise die der Ebene $\sum v_i x_i = 0$ entsprechende Fläche mit F(v, v) = 0, so lässt sich das Product $F(u, u) \cdot F(v, v)$ in folgender Form schreiben:

Schreiden:
III)
Hier ist:
$$F(u, v) = F(u, v)^{2} - (ABuv)^{2}\Omega.$$

$$F(u, v) = \begin{vmatrix} C_{11} & C_{12} & C_{13} & C_{14} & A_{1} & B_{1} & u_{1} \\ C_{21} & C_{22} & C_{23} & C_{24} & A_{2} & B_{2} & u_{2} \\ C_{31} & C_{32} & C_{33} & C_{34} & A_{3} & B_{3} & u_{3} \\ C_{41} & C_{42} & C_{43} & C_{44} & A_{4} & B_{4} & u_{4} \\ A_{1} & A_{2} & A_{3} & A_{4} & 0 & 0 & 0 \\ B_{1} & B_{2} & B_{3} & B_{4} & 0 & 0 & 0 \\ v_{1} & v_{2} & v_{3} & v_{4} & 0 & 0 & 0 \end{vmatrix},$$

Um zu diesem Resultat zu gelangen, wendet man den Determinantensatz von Hesse auf die unterstrichenen Glieder der nachfolgenden Determinante an:

$$\begin{vmatrix} C_{11} & C_{12} & C_{13} & C_{14} & A_1 & B_1 & u_1 & v_1 \\ C_{21} & C_{22} & C_{23} & C_{24} & A_2 & B_2 & u_2 & v_2 \\ C_{31} & C_{32} & C_{33} & C_{34} & A_3 & B_3 & u_3 & v_3 \\ C_{41} & C_{42} & C_{43} & C_{44} & A_4 & B_4 & u_4 & v_4 \\ A_1 & A_2 & A_3 & A_4 & 0 & 0 & 0 & 0 \\ B_1 & B_2 & B_3 & B_4 & 0 & 0 & 0 & 0 \\ u_1 & u_2 & u_3 & u_4 & 0 & 0 & 0 & 0 \\ v_1 & v_2 & v_3 & v_4 & 0 & 0 & 0 & 0 \end{vmatrix} .$$

F(u, v) = 0 stellt eine Fläche fünfter Ordnung im y-Raume dar, welche die Doppelcurve von F(u, u) = 0 und auch diejenige von F(v, v) = 0, aber beide einfach enthält.

Ebenso enthält F(u, v) = 0 die vier Punkte e_1, e_2, e_3, e_4 doppelt.

(ABuv) = 0 stellt eine Fläche zweiter Ordnung im y-Raume dar, welche die erwähnten Doppelcurven ebenfalls einfach und auch die vier Punkte e_1 , e_2 , e_3 , e_4 einfach enthält.

 $\Omega = 0$ ist die Gleichung einer Fläche sechster Ordnung, welche die Doppelcurven nicht, die vier Punkte e_1 , e_2 , e_3 , e_4 dagegen doppelt enthält. Sie ist von u unabhängig.

Die Identität III) sagt uns nun, dass die Fläche F(u, u) = 0 sowohl, als auch F(v, v) = 0 die Fläche $\Omega = 0$ in je einer Curve 15. Ordnung berühren, welch' letztere Curven den Schnitt von F(u, v) = 0 und $\Omega = 0$ ausmachen müssen.

Ebenso können wir uns aus dieser Identität wiederum überzeugen, dass sowohl die von den u_i abhängige Curve dritter Ordnung für F(u, u) = 0, als auch die von den v_i abhängige Curve dritter Ordnung Doppelcurve für F(v, v) = 0 sein muss.

Aus der Identität III) folgt ferner, dass die Gleichung der Fläche F(u, u) = 0 bis auf einen von den u_i unabhängigen Factor F(v, v) in der Form

$$F(u, v)^2 - (ABuv)^2\Omega = 0$$

geschrieben werden kann, oder auch in der Form

$$(F(u,v)+(ABuv)\sqrt{\Omega})(F(u,v)-(ABuv)\sqrt{\Omega})=0.$$

Da aber sowohl F(u, v), als auch (ABuv) linear von den u_i abhängig sind, so kann diese Gleichung auch, wie folgt, geschrieben werden:

$$[\Sigma u_i(M_i + N_i \sqrt{\Omega})] \cdot [\Sigma u_i(M_i - N_i \sqrt{\Omega})] = 0,$$

wo die M_i und N_i von den u_i unabhängig sind, und zwar

$$M_i \equiv \frac{\partial F(u, v)}{\partial u_i}$$
 und $N_i = \frac{\partial (ABuv)}{\partial u_i}$

Da die eben geschriebene Gleichung der Gleichung $\sum u_i x_i = 0$ für beliebige u_i entsprechen muss, so muss man $\sum u_i x_i$ einem der beiden Factoren proportional setzen; wir setzen nun

$$\varrho x_i = M_i + N_i \sqrt{\Omega}.$$

Dann entspricht einem Punkte x, für welchen $\sum u_i x_i = 0$ ist, ein Punkt y von F(u, u) = 0, und zwar wird dafür $\sqrt{\Omega} = -\frac{\sum u_i M_i}{\sum u_i N_i}$, also eine rationale Function der y, d. h. man hat längs F(u, u) = 0 ein ganz bestimmtes Blatt, welches $\sum u_i x_i$ eindeutig entspricht. Ein zweites, von dem ersten völlig getrenntes Blatt erhält man dadurch, dass man längs F(u, u) = 0 $\sqrt{\Omega}$ den entgegengesetzten rationalen Werth giebt. Die zugehörige Fläche des x-Raumes würde man erhalten durch $\varrho x_i = M_i + N_i \cdot \frac{\sum u_i M_i}{\sum u_i N_i}$; von dieser Fläche wird später gehandelt werden.

Man kann also sagen, dass der ganze y-Raum doppelt überdeckt ist und dass sich die beiden Blätter durch das Vorzeichen von $\sqrt{\Omega}$ unterscheiden.

Geht man von einem Punkte y aus und setzt die beiden Werthe von $\sqrt{\Omega}$ ein, so erhält man aus den Gleichungen a) zwei zugehörige Werthe von x, d. h. ein Punktepaar des x-Raumes.

Für diejenigen Punkte y_i , für welche $\Omega = 0$ ist, fallen die beiden Werthe von x_i zusammen und $\Omega = 0$ ist somit die Uebergangsfläche des Doppelraumes.

§ 6.

Ueber die den Geraden des x- (einfachen) Raumes entsprechenden Curven vierter Ordnung des y-Raumes.

Daraus, dass den Ebenen des y-Raumes Flächen vierter Ordnung im x-Raume entsprechen (§ 3), kann man schon schliessen, dass den Geraden des x-Raumes Curven vierter Ordnung im y-Raume entsprechen werden. Um diese näher zu bestimmen, verfährt man auf folgende Weise:

Die Gerade des x-Raumes sei gegeben durch

$$\sum u_i x_i = 0$$
 and $\sum u_i' x_i = 0$.

Ihre entsprechende Curve muss daher sowohl auf

$$F(u, v) - (ABuv) \sqrt{\Omega} = 0,$$

als auch auf

$$F(u', v) - (ABu'v)\sqrt{\Omega} = 0$$

liegen und somit auf

$$F(u,v).(ABu',v)-F(u'v).(ABuv)=0.$$

Die letztere Gleichung lässt sich aber wieder auf die Form bringen:

$$(ABuu').F(v,v)=0$$

und zwar durch Anwendung des Hesse'schen Determinantensatzes auf die unterstrichenen Glieder der folgenden Determinante:

Da nun F(v, v) = 0 von den u_i und u'_i vollkommen unabhängig ist, so muss die der Geraden (uu') entsprechende Curve auf (ABuu') = 0 liegen, d. h. auf einer Fläche zweiter Ordnung, deren Gleichung von der obigen Form (ABuv) = 0 ist und welche somit mit F(u, u) = 0 und F(u', u') = 0 die Doppelcurven dritter Ordnung gemeinsam hat. Sie hat daher mit F(u, u) = 0 noch eine Curve vierter Ordnung gemein, welche auch auf F(u', u') = 0 liegen und der Geraden (uu') Punkt für Punkt entsprechen muss.*

Mit Zuhilfenahme einer bekannten Formel (Salmon, l. c. Art. 118) findet man, dass unsere Curve vierter Ordnung — wir wollen sie P_4 nennen — mit der Doppelcurve dritter Ordnung der Fläche F(u, u) = 0 sieben Punkte gemein hat.

Hieraus lässt sich wiederum folgern, dass P_4 in keiner andern Fläche zweiter Ordnung mehr liegen kann, da dieselbe sonst auch die Doppelcurve dritter Ordnung enthalten müsste, also mit (ABuu') = 0 eine Curve siebenter Ordnung gemein haben müsste, was nicht möglich ist. Die Curve P_4 ist daher von der zweiten Art.

Sie berührt die Fläche $\Omega = 0$ in zwölf Punkten. Diese zwölf Punkte sind zugleich Berührungspunkte von F(u, u) = 0 mit F(u', u') = 0.

^{* (}ABuu') ist nur von den Coordinaten der Geraden (uu') abhängig, also der Geraden zugeordnet.

Ausser der Curve P_4 schneiden sich zwei Flächen fünfter Ordnung F(u, u) = 0 und F(u', u') = 0 noch in einer Curve 21. Ordnung. Dieselbe entspricht denjenigen Punktepaaren im x-Raume, von denen der eine Punkt auf der Ebene (u), der andere conjugirte auf der Ebene (u') liegt.

In jeder Ebene bilden diese Punkte eine Curve von der 19. Ordnung, wie wir später sehen werden. (§ 8.)

Diese Curve 21. Ordnung schneidet die Curve P_4 erstens in den 2.7=14 Punkten, in welchen P_4 von den beiden Doppelcurven von F(u,u)=0 und F(u',u')=0 (welche Punkte natürlich nicht zusammenfallen können) getroffen wird, zweitens in den zwölf Punkten, in denen $\Omega=0$ von P_4 getroffen, resp. berührt wird. Das giebt im Ganzen 26 Schnittpunkte — ein Resultat, das sich durch Anwendung einer bekannten Formel über die Durchschnittspunkte zweier Curven, welche den vollständigen Schnitt zweier Flächen ausmachen, verificiren lässt. (Salmon, l.c. Art. 109.)

§ 7.

Ueber die Doppelfläche Ω' des einfachen (x-) Raumes.

Der Uebergangsfische Ω des y-Raumes entspricht im x-Raume eine Fläche zwölfter Ordnung Ω' eindeutig. Die Gerade P' des x-Raumes trifft nämlich Ω' in soviel Punkten, als die der Geraden entsprechende Curve vierter Ordnung P_4 die Fläche Ω trifft, also in zwölf Punkten.

Eigentlich sollte einer Fläche sechster Ordnung des y-Raumes Q eine Fläche 24. Ordnung entsprechen; da jedoch immer zwei der entsprechenden Punkte zusammenfallen, so ist die Fläche eine doppelt zu zählende Fläche zwölfter Ordnung. (S. auch § 9, Ende.)

Diese Fläche Ω' ist die Jacobiana der Flächen vierter Ordnung, welche den Ebenen des y-Raumes entsprechen, und wird Doppelfläche genannt. Sie geht dreimal durch die Hauptcurve elfter Ordnung des x-Raumes. Jede Ebene (u) des x-Raumes schneidet Ω' längs einer Curve zwölfter Ordnung, welcher im y-Raume die Berührungscurve 15. Ordnung zwischen $\Omega=0$ und F(u,u)=0 entspricht.

Da jeder Punkt der Hauptcurve elfter Ordnung für Ω' dreifach ist, so folgt daraus, dass die dem Punkte entsprechende Gerade des y-Raumes mit Ω nur drei Punkte gemeinsam haben kann, also Ω in diesen drei Punkten berühren muss. Somit wird Ω auch von der Fläche 18. Ordnung berührt, welche diese Geraden enthält.

Die den Geraden des y-Raumes entsprechenden Curven fünfter Ordnung treffen Ω' ausser der Hauptcurve noch in je sechs Punkten, welche den sechs Punkten entsprechen, in denen Ω von der entsprechenden Geraden getroffen wird. Die den Ebenen des y-Raumes entsprechenden Flächen vierter Ordnung schneiden Ω' noch in einer Curve 15. Ordnung u. s. w.

§ 8.

Ueber die involutorische Transformation im einfachen (x-) Raume.

Da jedem Punkte des y-Raumes zwei Punkte des x-Raumes entsprechen, so kann man sagen: Die Punkte x entsprechen sich involutorisch,
d. h. jedem Punkte x entspricht ein zweiter Punkt x' und diesem wieder
der erste.

Einer Ebene $\sum u_i x_i = 0$ des x-Raumes entspricht im y-Raume eine Fläche fünfter Ordnung; dieser muss nun im x-Raume wieder eine Fläche 20. Ordnung entsprechen, welche jedoch in die Ebene $\sum u_i x_i = 0$ und eine Fläche 19. Ordnung zerfällt.

Diejenigen Punkte also, welche den Punkten einer Ebene (u) des x-Raumes involutorisch entsprechen oder ihnen conjugirt sind, erfüllen eine Fläche 19. Ordnung $F_{19}^{'(u)}$. Dieselbe geht fünfmal durch die Hauptcurve elfter Ordnung und auch durch die Curve zwölfter Ordnung, in welcher Ω' von der Ebene (u) geschnitten wird. Die Fläche $F_{19}^{'(u)}$ schneidet daher die Ebene u noch in einer Curve siebenter Ordnung, welche die elf Schnittpunkte der Ebene (u) mit der Hauptcurve elfter Ordnung als Doppelpunkte enthält und von den conjugirten Punktepaaren gebildet wird, welche in der Ebene (u) liegen. Diese Curve siebenter Ordnung entspricht der Doppelcurve von F(u,u)=0 und ist vom Geschlechte 4.

Aus dem Obigen folgt unmittelbar, dass den Punkten einer Geraden P' des x-Raumes die Punkte einer Raumeurve 19. Ordnung P'_{19} involutorisch entsprechen. Dieselbe hat mit der Geraden P' die zwölf Punkte gemein, in denen Ω' von P' getroffen wird.

Suchen wir nunmehr diejenigen Punkte einer Ebene (u), welche ihre involutorisch entsprechenden auf einer andern Ebene (u) haben, so findet man, dass diese Punkte von der Ebene (u) aus der Fläche $F_{19}^{'(u')}$ ausgeschnitten werden, ebenso, wie ihre entsprechenden Punkte in (u) von einer Fläche $F_{19}^{'(u')}$. Die gesuchten Punkte bilden daher eine Curve 19. Ordnung, ebenso ihre entsprechenden in (u).

Diese beiden Curven haben die zwölf Punkte gemeinsam, in denen die Schnittlinie ihrer Ebenen Ω' schneidet. Jede derselben hat ferner die elf Punkte zu fünffachen Punkten, die von der Hauptcurve elfter Ordnung in (u) und bez. (u') ausgeschnitten werden. Beiden Curven entspricht im y-Raume die Curve 21. Ordnung, welche F(u, u) = 0 und F(u', u') = 0 ausser P_4 noch gemeinsam haben. (S. § 6.)

Suchen wir ferner diejenigen Punkte einer Ebene (u), deren involutorisch entsprechende in einer gegebenen Geraden P' liegen, so finden wir, dass es 19 solcher Punkte giebt. Dieselben werden auf (u) von der der Geraden P' involutorisch entsprechenden Curve P'_{19} ausgeschnitten, ebenso ihre entsprechenden auf P' von der Fläche $F'_{19}^{(u)}$.

Diese 2.19 Punkte entsprechen mit Hinzurechnung des Schnittpunktes von (u') und P' und seines conjugirten den 20 Schnittpunkten der Curve P_4 im y-Raume (welche P' entspricht) mit F(u, u) = 0.

Nehmen wir nunmehr drei Ebenen im x-Raume (u), (u'), (u') und bezeichnen ihre resp. Schnitte mit (uu'), (u'u'), (uu''), so giebt es auf der Geraden (uu') 19 Punkte, deren involutorisch entsprechende auf u' liegen, ebenso auf (uu'') 19 Punkte, deren involutorisch entsprechende auf u' liegen, und schliesslich gilt dasselbe von (u'u'') und u. (S. Riccardo de Paolis, Le trasf. doppie dello spazio, R. Acc. dei Lincei 1885, S. 14.)

Einem jeden dieser sich im x-Raume involutorisch entsprechenden Punktepaare entspricht nun im y-Raume ein und nur ein Punkt y, welcher daher den drei Flächen des y-Raumes F(u, u) = 0, F(u', u') = 0 und F(u'', u'') = 0 gemeinsam sein muss.

Das ergiebt 57 gemeinsame Punkte der erwähnten Flächen.

§ 9.

Ueber weitere Hauptpunkte im y- (Doppel-) Raume.

Die eben abgeleiteten Beziehungen setzen uns in den Stand, die Hauptelemente des y-Raumes des Weiteren festzulegen.

Wir haben bereits gefunden (§ 4), dass die sämmtlichen den Ebenen des x-Raumes entsprechenden Flächen fünfter Ordnung vier Doppelpunkte e_1 , e_2 , e_3 , e_4 gemeinsam haben.

Für jeden dieser vier Punkte wird aber die erste der Gleichungen II) identisch mit der zweiten bis auf einen constanten Factor. Die dem Punkte e_1 z. B. entsprechenden Punkte des x-Raumes liegen daher auf dem durch die zweite und dritte Gleichung von II) bestimmten Kegelschnitte E'_1 . Ebenso entsprechen dem Punkte e_2 die Punkte vom Kegelschnitte E'_2 , e_3 die von E'_3 und e_4 die von E'_4 .

Jeder von diesen Kegelschnitten geht achtmal durch die Hauptcurve elfter ()rdnung — da ihm sonst kein Punkt entsprechen könnte — und liegt doppelt auf den sämmtlichen Flächen 19. Ordnung F'_{19} und einfach auf Ω' .

Drei Flächen fünfter Ordnung haben im Ganzen 125 Schnittpunkte. 32 derselben werden durch die Doppelpunkte, 57 nach § 8 absorbirt, während ein Punkt dem Schnittpunkte der drei entsprechenden Ebenen des x-Raumes entspricht.

Die drei Flächen müssen also ausserdem noch 35 Punkte gemeinsam haben, welche allen Flächen fünfter Ordnung F(u, u) = 0 einfach angehören. Diesen 35 Punkten müssen sodann im x-Raume die sämmtlichen Punkte je einer Geraden entsprechen, und zwar müssen diese Geraden vierpunktige Sehnen der Haupteurve elfter Ordnung sein, da ihnen sonst im y-Raume keine Punkte entsprechen könnten.

Dieses letztere Resultat lässt sich verificiren mit Zuhilfenahme einer Formel von Zeuthen (Annali di mat. S. II—III, S. 189), nach welcher unsere Hauptcurve elfter Ordnung 35 vierpunktige Sehnen haben muss.

Diese 35 Geraden liegen einfach auf den Flächen F'_{19} und Ω' .

Dass diese 35 Geraden auch auf Ω' liegen, folgt daraus, dass auch die entsprechenden 35 Hauptpunkte des y-Raumes auf Ω liegen, was wir sofort darthun werden.

Die 35 Punkte liegen auf sämmtlichen Flächen F(u, u) = 0 ohne Rücksicht auf die Werthe von u. Daher liegen sie auch auf den Flächen

$$\frac{\partial F}{\partial u_1} = 0$$
, $\frac{\partial F}{\partial u_2} = 0$, $\frac{\partial F}{\partial u_3} = 0$, $\frac{\partial F}{\partial u_4} = 0$

und somit auch auf

$$\mathbf{v}_1 \frac{\partial F}{\partial \mathbf{u}_1} + \mathbf{v}_1 \frac{\partial F}{\partial \mathbf{u}_2} + \mathbf{v}_2 \frac{\partial F}{\partial \mathbf{u}_3} + \mathbf{v}_4 \frac{\partial F}{\partial \mathbf{u}_4} = 0$$

oder auf

$$F(u, v) = 0.$$

Da diese Punkte nun auch auf F(u, v) = 0 liegen, so müssen sie nach der Identität III) auf $\Omega = 0$ doppelt liegen.

Jede Ebene (u) des x-Raumes wird von ihrer involutorisch entsprechenden $F_{19}^{'(u)}$ längs einer Curve zwölfter und siebenter Ordnung geschnitten. Diese beiden Curven treffen sich ausser in den elf Schnittpunkten mit der Hauptcurve elfter Ordnung und den acht Schnittpunkten mit E'_1 , E'_2 , E'_3 , E'_4 (in den ersteren je sechs- und in den letzteren je einmal) noch in zehn Punkten. Diese entsprechen den zehn Schnittpunkten der Doppelcurve von F(u, u) = 0 mit $\Omega = 0$ ausser e_1 , e_2 , e_3 , e_4 und sind für F(u, u) = 0 Cuspidalpunkte.

Noch ist zu erwähnen, dass die vier Punkte e_1 ; e_2 , e_3 , e_4 für die der Hauptcurve elfter Ordnung des x-Raumes entsprechende Fläche 18. Ordnung achtfach sein müssen, während die übrigen 35 festen Punkte des y-Raumes für dieselbe Fläche vierfach sind.

Bezüglich der Geometrie auf den Flächen fünfter Ordnung mit Doppelcurve dritter Ordnung vergleiche man Clebsch (Ueber die Abbildung algebraischer Flächen, Mathem. Annalen, Bd. I S. 284).

Anmerkung. Dass E'_1 , ... für $F'_{19}^{(u)}$ doppelt ist, ergiebt sich daraus, dass jede Ebene (u) die Kegelschnitte E'_1 , ... in je zwei Punkten schneidet, während jede der 35 Geraden von (u) nur in einem Punkte getroffen wird.

Dass die E'_1 , ... und die 35 Geraden für Ω' nur einfach sind, ergiebt sich am einfachsten aus der Bemerkung, dass Ω' selbst doppelt zu zählen ist.

§ 10.

Ueber die Hauptelemente der involutorischen Transformation im einfachen $(x \cdot)$ Raume.

Wir wissen bereits, dass die einer Ebene (u) involutorisch entsprechende Fläche $F_{19}^{'(u)}$ die Haupteurve elfter Ordnung fünfmal, die vier Kegelschnitte E'_1 , E'_2 , E'_3 , E'_4 doppelt und die 35 vierfachen Sehnen der Haupteurve elfter Ordnung einfach enthält. Zwei Flächen $F_{19}^{'(u)}$ und $F_{19}^{'(u)}$ schneiden sich daher in einer variablen Curve 19. Ordnung P'_{19} , welche der Geraden (uu') entspricht. Dieselbe trifft die Haupteurve elfter Ordnung 72 mal, eine weitere Fläche $F_{19}^{'(u'')}$ also noch in einem variablen Punkte, wie es auch sein muss.

Unsere involutorische Transformation hat daher folgende Hauptelemente:

- 1. die Haupteurve elfter Ordnung, durch welche $F_{19}^{(e)}$ fünfmal und P_{19}' 72 mal geht;
- 2. die vier Kegelschnitte E'_1 , E'_2 , E'_3 , E'_4 , durch welche $F_{19}^{(u)}$ je zweimal und P'_{19} gar nicht geht;
- 3. die 35 vierpunktigen Sehnen, durch welche $F_{19}^{(a)}$ je einmal und P_{19}' gar nicht geht.

Jedem Punkte p' der Hauptcurve elfter Ordnung entspricht eine Curve fünfter Ordnung, welche die Hauptcurve elfter Ordnung 19 mal und zwar dreimal in p' trifft. Diese Curven erfüllen eine Fläche 72. Ordnung. Dieselbe geht 18 mal durch die Hauptcurven elfter Ordnung, je achtmal durch E'_1 , E'_2 , E'_3 , E'_4 und je viermal durch die 35 vierfachen Sehnen der Hauptcurve elfter Ordnung.

Einem Punkte e' von E'_1 , E'_2 , ... entspricht wieder resp. E'_1 , E'_2 , E'_3 , E'_4 . Einem Punkte der 35 vierpunktigen Sehnen entspricht wieder seine zugehörige vierpunktige Sehne.

§ 11.

Ueber den durch die involutorische Transformation des x-Raumes bestimmten Strahlencomplex.

Jedem Punkte des y-Raumes entsprechen zwei Punkte des x-Raumes. Die Verbindungslinien dieser zwei Punkte bilden je einen Strahl des Complexes, dessen einzelne Strahlen den Punkten des y-Raumes entsprechen. Derselbe ist bestimmt durch die beiden Gleichungen:

$$\left.\begin{array}{l}
\sum A_{i} x_{i} = 0 \\
\sum B_{i} x_{i} = 0
\end{array}\right\}, \qquad i = 1, 2, 3, 4$$

wo A_i und B_i die bekannten in § 2 definirten Functionen sind.

Vermöge dieser beiden Gleichungen sind die Ebenen des x-Raumes collinear auf sich selbst bezogen, denn für jeden Werth von y_1 , y_2 , y_3 , y_4 erhalten wir zwei Ebenen im x-Raume, die einander somit collinear zu-

geordnet sind, da auch die y in die Gleichungen linear eingehen. Die Schnitte solcher zwei Ebenen bilden den Reye'schen Tetraedercomplex-(Reye, Geometrie der Lage, II. Theil, 2. Aufl., S. 135 flgg.)

Wenn ich hier auf einem andern Wege die Haupteigenschaften desselben nochmals ableite, so geschieht es wegen der engen Beziehungen, in denen die hierbei auftretenden Elemente zu unserer Transformation stehen.

Die Coordinaten der einzelnen Geraden des Complexes sind

$$\pi_{i\,k} = \varrho \cdot \begin{vmatrix} A_i & B_i \\ A_k & B_k \end{vmatrix}.$$

Ehe wir diesen Complex weiter betrachten, erinnern wir uns zunächst, dass, wie wir in § 6 gesehen, einer jeden Geraden (uu') des x-Raumes eine Fläche zweiter Ordnung

$$(\mathbf{A}\mathbf{B}\mathbf{u}\mathbf{u}') = 0$$

zugeordnet ist. Wir fragen nun: Welcher Art wird die Fläche, die einer Complexgeraden zugeordnet ist? Nehmen wir zu diesem Zwecke irgend einen Punkt y' des y-Raumes, so ist die ihm zugehörige Complexgerade bestimmt durch

$$\sum A'_i x_i = 0$$
 und $\sum B'_i x_i = 0$,

wo in A_i und B_i statt y_i y'_i gesetzt wurde.

Die Gleichung der dieser Geraden entsprechenden Fläche wird daher:

$$\begin{vmatrix} A_1 & B_1 & A'_1 & B'_1 \\ A_2 & B_2 & A'_3 & B'_2 \\ A_8 & B_3 & A'_3 & B'_3 \\ A_4 & B_4 & A'_4 & B'_4 \end{vmatrix} = 0.$$

Es ist das offenbar die Gleichung eines Kegels mit der Spitze in y'_1 , y'_2 , y'_3 , y'_4 . D. h.: Einer Geraden des Complexes ist ein Kegel zweiten Grades zugeordnet, der seine Spitze in dem der Geraden entsprechenden Punkte hat.

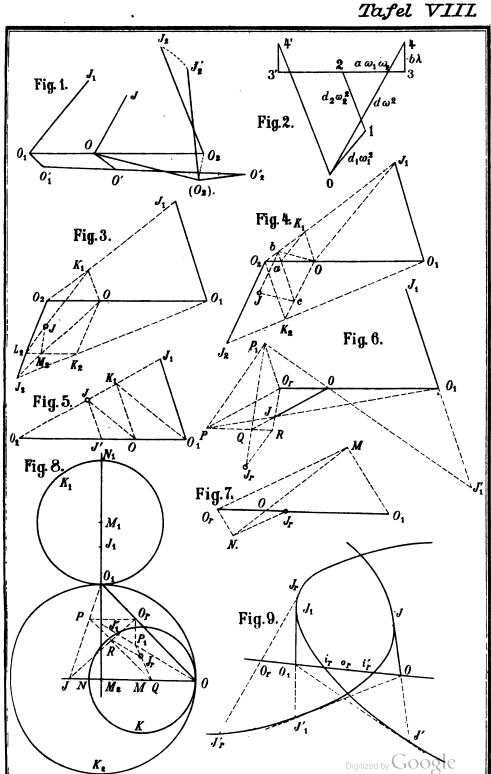
Nehmen wir nun im x-Raume irgend eine Ebene (u) und in derselben einen Punkt b' und fragen, wieviele Complexgerade in der Ebene (u) liegen und durch den Punkt b' hindurchgehen. Einer jeden Geraden des Strahlbüschels durch b' in (u) entspricht im y-Raume eine Fläche zweiter Ordnung, welche durch die Doppelcurve von F(u, u) = 0 und durch den b' entsprechenden Punkt b geht. Wird nun die Gerade durch b' Complexgerade, so wird die Fläche zweiter Ordnung ein Kegel. Es fragt sich nun, wieviele Kegel zweiter Ordnung durch die Doppelcurve dritter Ordnung und b hindurchgehen, so dass ihre Spitze auf der Doppelcurve liegt. Wir erhalten diese Kegel, wenn wir durch b die Sehne an die Doppelcurve dritter Ordnung ziehen und von den beiden Schnittpunkten aus die Curve projeciren.

Es giebt daher zwei solcher Kegel, denen zwei Complexgerade durch b entsprechen. Der Complex ist also von der zweiten Ordnung.

Anmerkung 1. Die Curve vierter Ordnung, welche einer Complexgeraden Punkt für Punkt entspricht, hat in dem die Complexgerade bestimmenden Punkte y einen Doppelpunkt.

Anmerkung 2. Nunmehr erkennt man auch, dass durch zwei beliebig gewählte Punkte im Allgemeinen keine Doppelcurve dritter Ordnung einer F(u, u) = 0 des y-Raumes hindurchgeben wird, da die durch einen Punkt ausser e_1 , e_2 , e_3 , e_4 gehenden Doppelcurven dritter Ordnung auf dem Kegel liegen müssen, der durch diesen Punkt, resp. seine entsprechende Complexgerade bestimmt ist. (S. § 4.)

Man erkennt sofort, dass den vier Hauptpunkten e_1 , e_2 , e_3 , e_4 des y-Raumes, für deren Coordinaten $\sum A_i x_i = 0$ und $\sum B_i x_i = 0$ zusammenfallen, die sämmtlichen Geraden dieser Ebene $\sum A_i x_i = 0$ oder $\sum B_i x_i = 0$ entsprechen, dass also die sämmtlichen Geraden, welche in der Ebene je eines der Kegelschnitte E'_1 , E'_2 , E'_3 und E'_4 liegen, zum Complex gehören.



231

Zeitschrift für Mathematik u. Physik XXXVI, 4.

XV.

Die Wendepole der absoluten und der relativen Bewegung.

Von

Prof. FERDINAND WITTENBAUER in Graz.

Hierzu Taf. VIII.

In einer früheren Abhandlung* hat Verfasser die Gleichzeitigkeit allgemeiner ebenen Bewegungen eines ebenen Systems behandelt und u. A. die Construction des resultirenden Wendepoles gelehrt, wobei auf die besondere Eignung des barycentrischen Calculs für derartige Untersuchungen hingewiesen wurde.

Gegenwärtige Arbeit hat den Zweck, einen Schritt weiter zu gehen und zunächst die Construction des Wendepoles der absoluten Bewegung eines ebenen Systems zu lehren, welches eine Eigenbewegung besitzt und überdies von einem oder mehreren anderen bewegten Systemen geführt wird; hauptsächlich aber die Umkehrung dieser Aufgabe vorzunehmen und die Construction des Wendepoles der relativen Bewegung eines ebenen Systems mit Bezug auf das führende System zu zeigen; endlich einen Fingerzeig zu geben für die Construction des Beschleunigungspoles der absoluten Bewegung in dem einen, der relativen Bewegung im andern Falle.

Eines besonderen Hinweises auf die bekannte Wichtigkeit des Wendepoles für die Untersuchung der Krümmungsverhältnisse der Bahnen der Systempunkte bedarf es hier wohl nicht.

Auch in vorliegenden Ausführungen wurde an der Benützung des barycentrischen Calculs mit Vortheil festgehalten.

1. Der Bewegungszustand eines ebenen Systems Σ_2 in zwei aufeinander folgenden Zeitelementen sei durch Angabe des augenblicklichen Drehpunktes O_2 , des Wendepoles J_2 , der Winkelgeschwindigkeit ω_2 und der Winkelbeschleunigung $\lambda_2 = \frac{\partial \omega_2}{\partial t}$ vollständig bekannt.

^{*} Ueber gleichzeitige Bewegungen eines ebenen Systems. Zeitschrift f. Math. u. Physik, XXXIII. Digitized by Google

Dieses System werde jedoch gleichzeitig genöthigt, die Bewegung eines andern in seiner Ebene gelegenen Systems mitzumachen; letztere Bewegung sei durch die entsprechenden Angaben von O_1 , J_1 , ω_1 und $\lambda_1 = \frac{\partial \omega_1}{\partial t}$ ebenfalls vollständig bekannt. Es möge im Folgenden diese letztere Bewegung als führende, jene erstgenannte als geführte Bewegung bezeichnet werden.

Zunächst soll gezeigt werden, welcher Art die resultirende Bewegung des Systems Σ_2 in Bezug auf die ruhende Ebene, also die absolute Bewegung jenes Systems ist.

Diese Bewegung wird in zwei aufeinander folgenden Zeitelementen durch die entsprechenden Angaben von O, J, ω und $\lambda = \frac{\partial \omega}{\partial t}$ vollkommen bestimmt sein, wobei aus den Elementen der Mechanik bekannt ist, dass

$$\omega = \omega_1 + \omega_2, \quad \lambda = \lambda_1 + \lambda_2$$

und der resultirende Drehpunkt O den barycentrischen Ausdruck besitzt $\omega O = \omega_1 O_1 + \omega_2 O_2$.

Es erübrigt also nur, den resultirenden WendepolJ der absoluten Bewegung zu ermitteln.

Im ersten Zeitelemente ∂t ist die resultirende Bewegung des Systems eine Drehung um O. Durch dieselbe gelange O_2 nach (O_2) (Fig. 1). Nun tritt ein Wechsel der Drehpunkte ein; die führende Bewegung erhält den neuen Drehpunkt O'_1 , die geführte den neuen Drehpunkt O'_2 , wobei

$$\begin{aligned} O_1 O_1' &= d_1 \omega_1 . \partial t, & (O_3) O_3' &= d_2 \omega_2 . \partial t, \\ L J_1 O_1 O_1' &= J_2' (O_2) O_2' &= 90^{\circ}. \end{aligned}$$

Hierin bezeichnen

$$d_1 = 0, J_1, d_2 = 0, J_2$$

die Durchmesser der Wendekreise der führenden und der geführten Bewegung, kurz gesagt die Wendedurchmesser.

Gleichzeitig sind die Winkelgeschwindigkeiten ω_1 und ω_2 übergegangen in $\omega_1 + \partial \omega_1$ und $\omega_2 + \partial \omega_2$.

Im zweiten Zeitelemente ∂t ist die absolute Bewegung des geführten Systems eine Drehung mit der Winkelgeschwindigkeit

$$\omega + \partial \omega = \omega_1 + \omega_2 + \partial \omega_1 + \partial \omega_2$$

um den augenblicklichen Drehpunkt O', der den barycentrischen Ausdruck ha:

$$(\omega + \partial \omega) \cdot O' = (\omega_1 + \partial \omega_1) \cdot O'_1 + (\omega_2 + \partial \omega_2) \cdot O'_2.$$

Die Winkelgeschwindigkeit $\omega_1 + \partial \omega_1$ um O'_1 kann nun durch folgende Geschwindigkeiten ersetzt werden:

- a) die Winkelgeschwindigkeit o, um O,;
- b) die elementare Winkelgeschwindigkeit $\partial \omega_1$ um O_1 ;
- c) die elementare Translationsgeschwindigkeit $(\omega_1 + \partial \omega_1) \cdot \partial_1 \partial_1$ in der Richtung $\partial_1 J_1$.

Ebenso kann die Winkelgeschwindigkeit $\omega_2 + \partial \omega_2$ um O'_2 ersetzt werden durch:

- d) die Winkelgeschwindigkeit ω, um 0,;
- e) die elementare Winkelgeschwindigkeit $\partial \omega_2$ um O_2 ;
- f) die elementare Translationsgeschwindigkeit $(\omega_2 + \partial \omega_2) \cdot O'_2(O_2)$ in der Richtung $O_2 J_2$;
- g) die elementare Translationsgeschwindigkeit $(\omega_2 + \partial \omega_2) \cdot (O_2) O_2$ in der Richtung $O O_2$.

Endlich kann die resultirende Winkelgeschwindigkeit $\omega + \partial \omega$ um O' ersetzt werden durch:

- h) die Winkelgeschwindigkeit ω um 0;
- i) die elementare Winkelgeschwindigkeit $\partial \omega$ um einen Punkt B, welcher durch den barycentrischen Ausdruck

1)
$$\partial \omega . B = \partial \omega_1 . O_1 + \partial \omega_2 . O_2$$
 gegeben ist;

- k) die elementare Translationsgeschwindigkeit $(\omega + \partial \omega)$. O'O in der Richtung OJ;
- 1) die elementare Translationsgeschwindigkeit $\partial \omega$. OB, deren Richtung aus jener von OB durch eine Drehung um 90° im Sinne von $\partial \omega$ entsteht.

Die unter a) bis g) angeführten Bewegungen sind den unter h) bis l) genannten äquivalent; nun sind aber die Bewegungen a) und d) mit h), b) und e) mit i) ohnedies äquivalent; es herrscht also auch Aequivalenz zwischen den Bewegungen c), f), g) einerseits und h), l) andererseits oder die geometrische Summe der Translationsgeschwindigkeiten c), f), g) ist identisch mit jener von h) und l).

Bezeichnet man

$$O_1 O_2 = a$$
, $OB = b$, $OJ = d$

und bemerkt, dass

$$OO = d\omega . \partial t$$
, $(O_2)O = a\omega_1 . \partial t$,

so kann gesetzt werden:

Translationsgeschwindigkeit
$$c) = d_1 \omega_1 (\omega_1 + \partial \omega_1) \cdot \partial t$$
,
 $f) = d_2 \omega_2 (\omega_2 + \partial \omega_2) \cdot \partial t$,
 $g) = a \omega_1 (\omega_2 + \partial \omega_2) \cdot \partial t$,
 $h) = d \omega (\omega + \partial \omega) \cdot \partial t$,
 $h) = b \lambda \cdot \partial t$.

Mit Vernachlässigung der unendlich kleinen Glieder höherer Ordnung ergiebt sich somit folgendes Resultat:

2)
$$d\omega^2 = \bar{d}_1 \omega_1^2 + \bar{d}_2 \omega_2^2 + \bar{a} \omega_1 \omega_2 - \bar{b} \lambda,$$

wobei die Striche die geometrische Summirung andeuten sollen.

Bezeichnet man das Product eines Wendedurchmessers in das Quadrat der zugehörigen Winkelgeschwindigkeit als reducirten Wendedurchmesser, so kann nach obiger Gleichung und mit Hinweis auf Fig. 2 gesagt werden:

Der reducirte Wendedurchmesser der resultirenden aus der geführten und der führenden Bewegung ist die geometrische Summe der reducirten Wendedurchmesser der genantten Bewegungen und zweier zusätziger Strecken, von denen die eine $s_1 = a \omega_1 \omega_2$ die Richtung $O_1 O_2$ vom führenden zum geführten Drehpunkte hat, während die Richtung der zweiten $s_2 = -b\lambda$ aus jener von OB durch Drehung um 90° entgegen dem Sinne der resultirenden Winkelbeschleunigung hervorgeht.

Vertauschen die führende und die geführte Bewegung ihre Rollen, so ändert nur die Strecke s_1 ihren Sinn; es ist dann (Fig. 2) O4' der resultirende reducirte Wendedurchmesser.

2. Zunächst soll hier der specielle Fall weiter verfolgt werden, dass die Intensitäten der Winkelgeschwindigkeiten ω_1 , ω_2 sich im zweiten Zeitelemente nicht ändern würden. Dann verschwinden λ_1 , λ_2 , λ , also auch z_2 , und es geht Gleichung 2) über in

3)
$$d\omega^2 = \overline{d_1} \omega_1^2 + \overline{d_2} \omega_2^2 + \overline{a} \omega_1 \omega_2.$$

Dieser Gleichung lässt sich mit Hilfe des barycentrischen Calculs ein bemerkenswerther Ausdruck verleihen. Nennt man nämlich

von einer beliebigen Geraden der Ebene, so ist

$$p \omega = p(\omega_1 + \omega_2) = p_1 \omega_1 + p_2 \omega_2$$
,

ferner mit Benützung der Gleichung 3)

$$(q-p)\,\omega^2 = (q_1-p_1)\,\omega_1^2 + (q_2-p_2)\,\omega_2^2 + (p_2-p_1)\,\omega_1\,\omega_2.$$

Die Vergleichung beider Relationen giebt

$$q \, \omega^2 = q_1 \, \omega_1^2 + q_2 \, \omega_2^2 + 2 \, p_2 \, \omega_1 \, \omega_2.$$

Diese Beziehung kann als barycentrischer Ausdruck angesetzt werden:

4)
$$\omega^2 J = \omega_1^2 J_1 + \omega_2^2 J_2 + 2 \omega_1 \omega_2 . O_2.$$

Hieraus folgt der Satz:

Der Wendepol der resultirenden aus der geführten und der führenden Bewegung ist der Schwerpunkt der Wendepole dieser beiden Bewegungen und des Drehpunktes der ersteren, wenn in jenen die Quadrate der zugehörigen Winkelgeschwindigkeiten, in letzterem das doppelte Product dieser Winkelgeschwindigkeiten als Gewichte angebracht werden.

3. Dieser Satz gestattet die Ausführung einer linearen Construction behufs Gewinnung des resultirenden Wendepoles J aus den Punkten O_1 , J_1 der führenden, O_2 , J_2 der geführten Bewegung und dem resultirenden Drehpunkte O.

Zeichnet man nämlich (Fig. 3) die Linien O_1J_2 , O_2J_1 und OJ_3 , ferner

$$OK_1 || O_1 J_1, OK_2 || O_2 J_2, K_2 L_2 || O_1 O_2, M_2 J || K_1 K_2,$$

so giebt der Schnitt der Geraden K_1L_2 und M_2J den gesuchten Wendepol. Beachtet man nämlich den barycentrischen Ausdruck

$$\boldsymbol{\omega} \, \boldsymbol{\theta} = \boldsymbol{\omega}_1 \, \boldsymbol{\theta}_1 + \boldsymbol{\omega}_2 \, \boldsymbol{\theta}_2,$$

so folgt aus der angegebenen Construction

$$\omega K_1 = \omega_1 J_1 + \omega_2 O_2$$
, $\omega L_2 = \omega_2 J_2 + \omega_1 O_2$

endlich

$$\omega J = \omega_1 K_1 + \omega_2 L_2$$

d. i.

$$\omega^2 J = \omega_1^2 J_1 + \omega_2^2 J_2 + 2 \omega_1 \omega_2 O_2$$

Ph. Gilbert hat die Construction des Wendepoles J unter Voraussetzung jener Beschränkung, welche zu Beginn des vorhergehenden Artikels hervorgehoben wurde, in anderer Weise gelehrt.*

Zum Vergleiche sei dessen Construction hier ohne Beweisführung mitgetheilt. (Fig. 4.) Gilbert zieht zunächst ebenfalls die Linien O_1J_2 , O_2J_1 , $OK_1 \parallel O_1J_1$, $OK_2 \parallel O_2J_2$, ferner

endlich

$$K_1 a \| OJ_1, \quad ab \| O_1 J_1, \quad bJ \| O_2 J_2$$
 $ac \| O_2 K_2, \quad cJ \| Ob$

und findet im Schnitte der Linien bJ und cJ den gesuchten Wendepol.

Ist eine der beiden gegebenen Bewegungen eine dauernde Rotation, d. h. wechselt ihr Drehpunkt durch zwei Zeitelemente hindurch seine Lage nicht, so wird sich die Construction des resultirenden Wendepoles noch vereinfachen. Ist z. B. die geführte Bewegung eine dauernde Rotation, so fällt J_2 mit O_2 zusammen und der Ausdruck 4) geht über in

$$\omega^2 J = \omega_1^2 J_1 + \omega_2 (2 \omega_1 + \omega_2) \cdot O_2,$$

welcher auch geschrieben werden kann

$$\omega J = \omega_1 K_1 + \omega_2 O_2,$$

wobei nach früher

$$\omega K_1 = \omega_1 J_1 + \omega_2 O_2.$$

Demnach ziehe man (Fig. 5) die Linien O_2J_1 , $OK_1 || O_1J_1$, $OJ || O_1K_1$, dann ist der Schnitt der Geraden OJ mit O_2J_1 der gesuchte Wendepol.

Sind beide Bewegungen, die führende, sowie die geführte, dauernde Rotationen, so fällt auch J_1 mit O_1 zusammen. Dann wird der Ausdruck für den resultirenden Wendepol J'

oder

$$\omega^2 J' = \omega_1^2 O_1 + \omega_2 (2 \omega_1 + \omega_2) O_2$$

 $\omega J' = \omega_1 O + \omega_2 O_2.$

In diesem Falle nehme man behufs Construction des Punktes J' einem Punkt K_1 ausserhalb der Geraden O_1O_2 beliebig an (Fig. 5), ziehe $OJ \parallel O_1K_1$,

^{*} Sur l'extension aux Mouvements plans relatifs de la méthode des normales et des centres de courbure. Soc. scient. de Bruxelles, 1878.

 $JJ' \parallel K_1 O$, dann ist der Schnitt der Geraden JJ' und $O_1 O_3$ der gesuchte Wendepol.

4. Bezeichnen wir vorübergehend den resultirenden Wendepol mit J_{12} , wenn $O_1J_1\omega_1$ die führende, $O_2J_2\omega_2$ die geführte Bewegung charakterisiren; es ist dann nach 4)

 $\omega^2 J_{12} = \omega_1^2 J_1 + \omega_2^2 J_2 + 2 \omega_1 \omega_2 O_2.$

Bei einer Umkehrung der Bewegung wird die führende zur geführten, die geführte zur führenden, und der resultirende Wendepol J_{21} erhält den Ausdruck $\omega^2 J_{21} = \omega_2^2 J_2 + \omega_1^2 J_1 + 2 \omega_2 \omega_1 O_1.$

Die Addition der beiden letzten Ausdrücke liefert

$$\omega^2(J_{12}+J_{21})=2(\omega_1^2J_1+\omega_2^2J_2+\omega_1\omega_2O_1+\omega_1\omega_2O_2).$$

Nun wurde in der bereits eingangs erwähnten Abhandlung gezeigt (Art. 7), dass der resultirende Wendepol J zweier gleichzeitig stattfindenden Bewegungen eines ebenen Systems den Ausdruck besitze

$$\omega^2 J = \omega_1^2 J_1 + \omega_2^2 J_2 + \omega_1 \omega_2 O_1 + \omega_1 \omega_2 O_2.$$

Es folgt also durch Vergleichung

$$J_{12} + J_{21} = 2J$$

- d. h. der resultirende Wendepol zweier gleichzeitig stattfindenden Bewegungen eines ebenen Systems halbirt die Verbindungslinie der Wendepole jener Bewegungen, welche entstehen, wenn man die eine der gegebenen Bewegungen als führende, die andere als geführte betrachtet und umgekehrt.
- 5. Giebt es im System Σ_2 ein drittes System Σ_3 , welches die Bewegungen von Σ_2 mitmacht und überdies eine durch die Angabe von O_3 , J_3 , o_2 gekennzeichnete Eigenbewegung besitzt, so ist Σ_2 das führende, Σ_3 das geführte System und es besteht der Ausdruck

$$(\omega_2 + \omega_3)^2$$
. $J_{23} = \omega_2^2$. $J_2 + \omega_3^2$. $J_3 + 2\omega_2^2\omega_3$. O_3 .

Macht überdies Σ_2 als geführtes System die Bewegung eines Systems Σ_1 mit, so ist der Ausdruck für den Wendepol der absoluten Bewegung des Systems Σ_2

$$(\omega_1 + \omega_2 + \omega_3)^2 \cdot J_{123} = \omega_1^2 \cdot J_1 + (\omega_2 + \omega_3)^2 \cdot J_{23} + 2(\omega_2 + \omega_3) \omega_1 \cdot \theta_{23}$$
 und da
$$(\omega_2 + \omega_3) \cdot \theta_{23} = \omega_2 \cdot \theta_3 + \omega_3 \cdot \theta_3,$$

so wird

$$(\omega_1 + \omega_2 + \omega_3)^2 \cdot J_{123}$$

$$= \omega_1^2 \cdot J_1 + \omega_2^2 \cdot J_2 + \omega_3^2 \cdot J_3 + 2\omega_1\omega_2 \cdot O_2 + 2(\omega_1 + \omega_2)\omega_3 \cdot O_3 \cdot$$

Führt das System Σ_3 noch ein viertes System Σ_4 , welches die durch Angabe von O_4 , J_4 , ω_4 gekennzeichnete Eigenbewegung besitzt, so gewinnt man für den Wendepol der absoluten Bewegung des Systems Σ_4 den Ausdruck

$$\begin{array}{ll} (\omega_{1} + \omega_{2} + \omega_{3} + \omega_{4})^{2} \cdot J_{1234} \\ = \omega_{1}^{2} \cdot J_{1} + \omega_{2}^{2} \cdot J_{2} + \omega_{5}^{2} \cdot J_{3} + \omega_{4}^{2} \cdot J_{4} + 2 \omega_{1} \omega_{2} \cdot O_{2} + 2 (\omega_{1} + \omega_{2}) \omega_{3} \cdot O_{3} \\ + 2 (\omega_{1} + \omega_{2} + \omega_{3}) \omega_{4} \cdot O_{4} \cdot & \text{Digitized by} \end{array}$$

Hieraus ist auch das Bildungsgesetz für den Ausdruck des resultirenden Wendepoles von beliebig vielen, einander führenden Bewegungen zu entnehmen.

6. Nun möge wieder zum allgemeinen, im Art. 1 behandelten Falle beschleunigter Bewegungen zurückgekehrt werden. Schreiben wir Gleichung 2) in der Form

$$d = \bar{d}_1 \left(\frac{\omega_1}{\omega}\right)^2 + \bar{d}_2 \left(\frac{\omega_2}{\omega}\right)^2 + \bar{a} \frac{\omega_1 \omega_2}{\omega^2} - \bar{b} \frac{\lambda}{\omega^2}.$$

$$\delta = \bar{d}_1 \left(\frac{\omega_1}{\omega}\right)^2 + \bar{d}_2 \left(\frac{\omega_2}{\omega}\right)^2 + \bar{a} \frac{\omega_1 \omega_2}{\omega^2}$$

Dann ist

der Durchmesser des resultirenden Wendekreises in dem, in Art. 2—5 be-

handelten speciellen Falle, dass eine Beschleunigung der Bewegungen nicht eintritt; es ist also allgemein

$$d=\bar{\delta}-\bar{\beta},$$

wenn $\beta = b \cdot \frac{\lambda}{\omega^2}$ eine von der Grösse der Winkelbeschleunigungen λ_1 , λ_2 abhängige Strecke bedeutet.

Hieraus ergiebt sich folgende Regel für die Auffindung des resultirenden Wendepoles zweier allgemeinen Bewegungen, von denen die eine die führende, die andere die geführte ist:

Man construire zunächst nach Art. 3 den resultirenden Wendepol ohne Rücksicht auf die Winkelbeschleunigung der Bewegungen; zu dem so erhaltenen Wendedurchmesser $OJ = \delta$ addire man in J die Strecke $\beta = b \cdot \frac{\lambda}{\omega^2}$ geometrisch derart hinzu, dass ihre Richtung aus jener von OB = b durch Drehung um 90° entgegen dem Sinne der resultirenden Winkelbeschleunigung λ hervorgeht. Der Endpunkt der zugefügten Strecke β ist der resultirende Wendepol.

7. Die bisher gefundenen Resultate gestatten eine einfache Anwendung auf die Untersuchung der relativen Bewegung eines ebenen Systems Σ_2 in Bezug auf ein in derselben Ebene bewegtes System Σ_1 . Denn die Aufgabe, den Wendepol J_2 der relativen oder geführten Bewegung eines ebenen Systems aus den Angaben O, J, ω , λ der absoluten Bewegung und jenen O_1 , J_1 , ω_1 , λ_1 der führenden Systembewegung zu construiren, ist nur eine Umkehrung der bisherigen Untersuchung.

Um diese Aufgabe als eine die relative Bewegung betreffende besonders zu kennzeichnen, mögen von nun an die bisherigen Bezeichnungen O_2 , J_2 , ω_2 , λ_2 durch die neuen O_τ , J_τ , ω_τ , λ_τ ersetzt und gleichzeitig bemerkt werden, dass

$$\omega_r = \omega - \omega_1, \quad \lambda_r = \lambda - \lambda_1, \\ \omega_r \cdot \partial_r = \omega \cdot \partial - \omega_1 \cdot \partial_1.$$

8. Zunächst möge wieder von der vereinfachenden Voraussetzung Gebrauch gemacht werden, dass keine Winkelbeschleunigungen vorhanden sind.

Für diesen Fall gilt der Ausdruck 4), welcher nunmehr in der Form geschrieben werden kann:

5)
$$\omega_r^2 . J_r = \omega^2 . J - \omega_1^2 . J_1 - 2 \omega_1 \omega_r . O_r$$
oder
$$\omega_r^2 . J_r = \omega^2 . J - \omega_1^2 . J_1 - 2 \omega \omega_1 . O + 2 \omega_1^2 . O_1.$$

Construirt man einen Punkt J_1 auf der Verlängerung des Wendedurchmessers O_1J_1 über O_1 hinaus derart, dass $J_1O_1=O_1J_1$, so kenzeichnen O_1 , J_1 , ω_1 bekanntlich eine Bewegung des ebenen Systems, welche die führende, durch O_1 , J_1 , ω_1 gegebene durch zwei aufeinander folgende Zeitelemente vollkommen tilgt. Man kann demnach jene Bewegung als die Umkehrung der letzteren bezeichnen. Nun ist

also
$$J'_1 = 2 \cdot O_1 - J_1,$$

$$\omega_r^2 \cdot J_r = \omega^2 \cdot J + \omega_1^2 \cdot J'_1 - 2 \omega \omega_1 \cdot O.$$

Hieraus folgt der Satz:

Der Wendepol der relativen Bewegung eines ebenen Systems in Bezug auf ein führendes System ist der Schwerpunkt der Wendepole der absoluten und der Umkehrung der führenden Bewegung, sowie des Drehpunktes der ersteren, wenn in jenen Wendepolen die Quadrate der zugehörigen Winkelgeschwindigkeiten, im letzteren das negative doppelte Product dieser Winkelgeschwindigkeiten als Gewichte angebracht werden.

Hiernach gestaltet sich die Construction des Wendepoles J_r der relativen Bewegung aus den Wendepolen J und J_1 der absoluten und der führenden Bewegung, sowie aus den zugehörigen Drehpunkten O_τ , O, O_1 in folgender Weise (Fig. 6):

Construirt man zunächst den Wendepol J'_1 der Umkehrung der führeden Bewegung, indem man $J'_1 O_1 = O_1 J_1$ macht, zieht die Linien $J'_1 O_1$, JO_1 , JO_r , ferner $O_r P \parallel OJ$, $O_r P_1 \parallel O_1 J_1$, $PR \parallel O_r O_1$, $RJ_r \parallel P_1 P$, so ist der Schnitt der Geraden $P_1 Q$ und RJ_r der gesuchte Wendepol J_r der relativen Bewegung. Denn nach dieser Construction ist

$$\begin{aligned} \boldsymbol{\omega}_r.P_1 &= \boldsymbol{\omega}.\boldsymbol{0} - \boldsymbol{\omega}_1.\boldsymbol{J'}_1, \quad \boldsymbol{\omega}_r.\boldsymbol{Q} &= \boldsymbol{\omega}.\boldsymbol{J} - \boldsymbol{\omega}_1.\boldsymbol{0}, \\ \boldsymbol{\omega}_r.\boldsymbol{J}_r &= \boldsymbol{\omega}.\boldsymbol{Q} - \boldsymbol{\omega}_1.\boldsymbol{P}_1, \end{aligned}$$

also

$$\omega_r^2 \cdot J_r = \omega \omega_r \cdot Q - \omega_1 \omega_r \cdot P_1 = \omega^2 \cdot J + \omega_1^2 \cdot J_1' - 2 \omega \omega_1 \cdot Q$$

Sollte diese Construction ungenaue Schnitte geben, so könnte J_r auch suf folgende Weise gefunden werden (vergl. Fig. 3 u. 4):

Man ziehe $OK_1 \parallel O_1J_1$, $Ob \parallel O_1K_1$, $O_2L_2 \parallel bJ$, dann ist L_2 der Schnitt von O_2L_2 und K_1J ; ferner $L_2K_2 \parallel O_2O_1$, $OK_2 \parallel O_2L_2$, dann ist $J_2=J_r$ der Schnitt der Linien O_2L_2 und O_1K_2 .

Sind sowohl die absolute, als auch die führende Bewegung dauernde Rotationen, so geht der Ausdruck 6) über in

oder

$$\omega_r^2 \cdot J_r = \omega^2 \cdot O + \omega_1^2 \cdot O_1 - 2 \omega \omega_1 \cdot O$$

 $\omega_r \cdot J_r = \omega \cdot O - \omega_1 \cdot O_r \cdot O_r$

Behufs Construction von J_r nimmt man in diesem Falle ausserhalb der Geraden O_rO_1 einen beliebigen Punkt M an (Fig. 7), verbindet ihn mit O, O_1 und O_r , zieht $O_rN \parallel MO_1$, $NJ_r \parallel O_rM$,

so schneiden sich die Geraden NJ_r und O_rO_1 im gesuchten Wendepole J_r .

9. Folgendes Beispiel möge die Anwendung der im vorigen Artikel gelehrten Construction zeigen.

In, bezw. auf einem ruhenden Kreise K_2 (Fig. 8) rollen zwei Kreise K und K_1 ; die Winkelgeschwindigkeit des letzteren sei doppelt so gross, wie die des ersteren, und derselben entgegengesetzt gerichtet. Man suche den Wendepol der relativen Bewegung des Kreises K in Bezug auf den Kreis K_1 .

Zunächst construire man die Wendepole J und J_1 der Bewegungen der beiden Kreise in Bezug auf den ruhenden Kreis K_2 ; hierzu dient die Bemerkung, dass die Punkte $N_1J_1O_1M_2$, sowie $NJOM_2$ harmonisch liegen. Hierauf bestimme man O_r aus $O_1O_r=2.O_rO$

und führe nun mit den Punkten J, J_1 , O_1 , O und O_r die im vorigen Artikel gezeigte Construction durch.

10. Bezeichnen O, J, ω , wie bisher, die absolute Bewegung des Systemes Σ_2 , hingegen O_1 , J_1 , ω_1 die führende Bewegung des Systems Σ_1 , so ist der Wendepol der relativen Bewegung nach 5) durch den Ausdruck gegeben

 $\omega_r^2 \cdot J_r = \omega^2 \cdot J - \omega_1^2 \cdot J_1 - 2 \omega_1 \omega_r \cdot O_r$

worin

$$\omega_r = \omega - \omega_1$$
.

Kehrt man jetzt die Betrachtung um, so dass O, J, ω die führende, O_1 , J_1 , ω_1 die absolute Bewegung kennzeichnen, d. h. sucht man die relative Bewegung des Systems \mathcal{L}_1 mit Bezug auf \mathcal{L}_2 , so wird der Ausdruck für den Wendepol der relativen Bewegung

 $\omega'_r.J'_r = \omega_1^2.J_1 - \omega^2.J - 2\omega\omega'_r.O'_r,$

worin $\omega'_r = \omega_1 - \omega$.

Addirt man beide Ausdrücke, so wird, da O_r und O'_r identische Punkte sind, $J_r + J'_r = 2.0_r$,

d. h. O_r halbirt die Strecke $J_rJ'_r$. Dieses Resultat sagt die bekannte Thatsache aus, dass durch die Vertauschung der Rollen der Systeme \mathcal{E}_1 und \mathcal{E}_2 die relative Bewegung in ihre entgegengesetzte verwandelt wird; der Wendedurchmesser O_rJ_r wird in den ihm gleichen und entgegengesetzt gerichteten $O_rJ'_r$ verwandelt.

Bezeichnet man das Verhältniss

$$\omega:\omega_1=x$$
,

so kann der Ausdruck 6) in der Form geschrieben werden

$$J_r \equiv x^2.J + J'_1 - 2x.0$$

und ebenso wird nach Umkehrung der relativen Bewegung

$$J'_r \equiv J_1 + x^2 \cdot J' - 2x \cdot O_1$$
.

Diese beiden Ausdrücke gehören zwei Parabeln an, von denen die erste die Linien OJ und OJ'_1 in den Punkten J und J'_1 , die zweite die Linien O_1J_1 und O_1J' in den Punkten J_1 und J' berührt. Auf der ersten Parabel liegen die Wendepole der relativen Bewegungen für alle Werthe des Verhältnisses $\omega:\omega_1$, auf der zweiten Parabel liegen die Wendepole der umgekehrten relativen Bewegungen (Fig. 9).

Die Verbindungslinie je zweier demselben Werthe von $\omega : \omega_1$ entsprechenden Punkte J_r und J'_r dieser Parabeln wird durch die Gerade O_1 0 in O_r halbirt.

Jede der beiden Parabeln schneidet die Linie $O_1 O_2$ in zwei Punkten. Nach den Ausführungen des Art. 9 der eingangs angezogenen Abhandlung werden diesen Schnittpunkten Werthe von $\omega:\omega_1$ entsprechen, die sich nur durch das Vorzeichen unterscheiden. Es giebt also im Allgemeinen zwei nur durch das Vorzeichen unterschiedene Werthe von $\omega:\omega_1$, für welche der Wendedurchmesser der relativen Bewegung in die Linie $O_1 O_2$ fällt. Eine dieser Lagen ist in Fig. 9 durch die Bezeichnungen i_r , o_r , i_r ersichtlich gemacht.

Die relativen Drehpunkte O_r , welche diesen beiden ausgezeichneten Wendedurchmessern angehören, theilen die Strecke $O_1\,O_2$ harmonisch.

11. In den Artikeln 7—10, welche die Construction des Wendepoles der relativen Bewegung behandelten, wurde die Annahme gemacht, dass weder die absolute Bewegung des Systems \mathcal{E}_2 , noch die führende des Systems \mathcal{E}_1 Winkelbeschleunigung besitzen würden. Jedoch auch wenn solche Winkelbeschleunigungen λ , bezw. λ_1 vorhanden sind, wenn also die relative Bewegung eine Winkelbeschleunigung $\lambda_r = \lambda - \lambda_1$ besitzt, lässt sich die Construction von J_r ausführen.

Man hat zu diesem Zwecke nur die Zusatzstrecke $\beta = b \cdot \frac{\lambda}{\omega^2}$ (Art. 6) zu berechnen oder zu construiren und dieselbe vom Wendepole der absoluten Bewegung aus in einer Richtung aufzutragen, welche aus jener von OB durch eine Drehung um 90° im Sinne der Winkelbeschleunigung λ hervorgeht. Der Endpunkt dieser Strecke β ist der Punkt J, mit dessen Hilfe die in Art. 8 gelehrte Construction von J_r auszuführen ist.

Bezüglich der Zusatzstrecke möge noch bemerkt werden, dass ihr mit Benützung des Ausdruckes 1) die Form gegeben werden kann

$$\beta = \frac{a}{m^3} (\lambda \omega_1 - \omega \lambda_1),$$

wodurch ihre Abhängigkeit von beiden Bewegungen, der absoluten und der führenden, gekennzeichnet erscheint.

Noch auf eine andere Weise könnte J_r gefunden werden. Schreibt man nämlich Gleichung 2) in der Form

$$\begin{split} d_r &= \bar{d} \left(\frac{\omega}{\omega_r} \right)^2 - \bar{d}_1 \left(\frac{\omega_1}{\omega_r} \right)^2 - \bar{a} \left(\frac{\omega_1}{\omega_r} \right) + \bar{b} \frac{\lambda}{\omega_r^2}, \\ \delta_r &= \bar{d} \left(\frac{\omega}{\omega_r} \right)^2 - \bar{d}_1 \left(\frac{\omega_1}{\omega_r} \right)^2 - \bar{a} \left(\frac{\omega_1}{\omega_r} \right) \end{split}$$

der Durchmesser des Wendekreises der relativen Bewegung für den Fall, dass keine Winkelbeschleunigungen vorhanden sind. Construirt man ferner einen Punkt B_r derart, dass sein Ausdruck

ist, so wird

 $\lambda_r.B_r = \lambda.0 - \lambda_1.0_1$ $b_r = 0_rB_r = \frac{a}{\omega \lambda_r} (\omega \lambda_1 - \lambda \omega_1)$

und

so ist

 $\beta_r = b \cdot \frac{\lambda}{\omega_r^2} = b_r \cdot \frac{\lambda_r}{\omega_r^2},$ $d_r = \bar{\delta_r} + \bar{\beta_r}.$

also

Hieraus ergiebt sich folgende Regel für die Auffindung des Wendepoles der relativen Bewegung im allgemeinsten Falle:

Man construire zunächst nach Art. 8 den relativen Wendepol ohne Rücksicht auf die Winkelbeschleunigungen der Bewegungen; zu dem so erhaltenen Wendedurchmesser $O_r J_r = \delta_r$ addire man in J_r die Strecke $\beta_r = b_r \cdot \frac{\lambda_r}{\omega_r^2}$ geometrisch derart hinzu, dass ihre Richtung aus jener von $O_r B_r$ durch Drehung um 90° im Sinne der relativen Winkelbeschleunigung λ_r hervorgeht. Der Endpunkt der zugefügten Strecke β_r ist der gesuchte relative Wendepol.

- 12. Es ist von Wichtigkeit, darauf hinzuweisen, dass vorliegende Entwickelungen geeignet sind, zwei fundamentale Aufgaben der Bewegungstheorie eines ebenen Systems zu lösen, nämlich:
- a) Aus den Beschleunigungsmittelpunkten einer geführten und einer führenden Bewegung den Beschleunigungsmittelpunkt der resultirenden Bewegung des geführten Systems und
- b) aus den Beschleunigungsmittelpunkten der Bewegungen zweier ebenen Systeme den Beschleunigungsmittelpunkt ihrer relativen Bewegung zu construiren.

Es ist nämlich bekannt, dass die Angabe von O, J und $\frac{\lambda}{\omega^2}$ hinreicht, um für die augenblickliche Bewegung eines ebenen Systems deren Beschleunigungsmittelpunkt G zu construiren; denn dieser ist der andere Schnitt einer durch O gehenden Geraden mit dem Wendekreise, deren Winkel φ gegen den Wendedurchmesser durch die Beziehung gegeben ist

$$tang\,\varphi=\frac{\lambda}{\omega^2}\cdot$$

Sind also im Falle a) die Punkte O_1 , J_1 , G_1 ; O_2 , J_2 , G_2 , sowie der resultirende Drehpunkt O gegeben, so construire man zunächst nach Art. 3 und 6 den Wendepol J, wobei behufs Construction der Zusatzstrecke β die leicht zu entwickelnden Beziehungen zu benützen sind:

$$\begin{split} \beta &= b \cdot tang \, \varphi \,, \\ b &= a_1 \left(\frac{a_1 \, tang \, \varphi_2}{a \, tang \, \varphi} - 1 \right) , \\ tang \, \varphi &= \left(\frac{a_2}{a} \right)^2 \, tang \, \varphi_1 + \left(\frac{a_1}{a} \right)^2 \, tang \, \varphi_2 \,; \\ a_1 &= 0, 0, \quad a_2 = 0 \, 0_3, \quad \varphi_1 = L \, J, \, 0, \, G_1, \quad \varphi_2 = L \, J_3 \, 0_2 \, G_2 \,. \end{split}$$

Hierauf zeichne man über OJ als Durchmesser den Wendekreis und lege die Gerade OG unter dem Winkel φ gegen OJ; der Schnitt beider ist der gesuchte Beschleunigungsmittelpunkt G.

In ähnlicher Weise gestaltet sich die Lösung von b).

Die betreffenden Constructionen lassen sich in eleganter Weise durchführen, doch wurde ihre Mittheilung, sowie ihre Anwendung auf Beispiele aus der Praxis der Kinematik mit Rücksicht auf den Rahmen dieser Zeitschrift unterdrückt.

Kleinere Mittheilungen.

XII. Ueber die Anwendung der Methode des Imaginären auf Probleme des Gleichgewichts und der Bewegung in einer Ebene.

Bildet eine Strecke r mit der positiven Bichtung der x-Axe einen Winkel α , so wollen wir die Grösse $re^{i\alpha}$ als das "imaginäre Moment" der Strecke bezeichnen.

Aus dieser Definition folgen dann durch Analogie leicht die nachstehenden:

Das imaginäre Moment eines Curvenelementes ds ist dargestellt durch $ds e^{i\alpha}$, wenn α der Winkel ist, den die Tangente in dem betrachteten Punkte mit der x-Axe bildet.

Das imaginäre Moment einer Kraft P, die mit der positiven x-Axe den Winkel α bildet, ist gleich $Pe^{i\alpha}$.

Das imaginäre Geschwindigkeitsmoment eines bewegten Punktes zur Zeit t ist gleich $\frac{ds\ e^{is}}{dt}$.

Das imaginäre Beschleunigungsmoment eines bewegten Punktes ist dar-

gestellt durch $\frac{d\frac{ds\ e^{i\alpha}}{dt}}{dt}$ oder durch $\frac{d(v\ e^{i\alpha})}{dt}$, wo v die Geschwindigkeit zur Zeit t ist.

Wir wollen zunächst einige Sätze über das imaginäre Moment ableiten, die wir in den nachfolgenden Entwickelungen benutzen werden.

In der analytischen Mechanik bringt man eine Kraft als positiv in Rechnung, wenn sie die positive Abscisse zu vergrössern strebt.

Man kann diese Bezeichnungsweise auf die Geometrie übertragen, wenn man jeder Strecke eine Richtung beilegt, in der sie durchlaufen werden soll. Diese Richtung entspricht dann der Richtung der Kraft, welche durch diese Strecke dargestellt werden kann. Wenn ich also eine Strecke durchlaufe, so dass ich bei der Bewegung von kleineren zu grösseren Abscissen übergehe, so werde ich diese Strecke positiv, im entgegengesetzten Falle negativ in Rechnung ziehen.

Denken wir uns jetzt ein ebenes, in sich geschlossenes Polygon, dessen Seiten $r_1, r_2, r_3, \ldots, r_n$ mit der positiven Richtung der x-Axe entsprechend

die Winkel α_1 , α_2 , α_3 , ..., α_n bilden. Wenn wir von einem beliebigen Eckpunkte aus in einer bestimmten Richtung das Polygon durchlaufen und den einzelnen Seiten r das positive oder negative Vorzeichen geben, entsprechend dem oben angedeuteten Sinne der Zählung, so erhält man:

$$r_1 \cos \alpha_1 = x_2 - x_1,$$

$$r_2 \cos \alpha_2 = x_3 - x_2,$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot,$$

$$r_{n-1} \cos \alpha_{n-1} = x_n - x_{n-1},$$

$$r_n \cos \alpha_n = x_1 - x_n.$$

Hier bedeutet allgemein x_k die Abscisse des Schnittpunktes der Strecken r_k und r_{k-1} .

Aus den vorstehenden Gleichungen folgt:

$$r_1\cos\alpha_1+r_2\cos\alpha_2+\cdots+r_n\cos\alpha_n=0.$$

Analog ergiebt sich:

$$r_1 \sin \alpha_1 + r_2 \sin \alpha_2 + \cdots + r_n \sin \alpha_n = 0.$$

Multiplicirt man die letzte Gleichung mit i und addirt sie zur ersteren, so wird wegen

$$\cos \alpha + i \sin \alpha = e^{i\alpha}$$
:

I)
$$r_1 e^{i\alpha_1} + r_2 e^{i\alpha_2} + r_3 e^{i\alpha_3} + \cdots + r_n e^{i\alpha_n} = 0.$$

Wir haben demnach den Satz:

Durchläuft man ein ebenes Polygon in einer bestimmten Richtung, so ist die algebraische Summe der imaginären Momente der Seiten der Null gleich.

Die Endpunkte einer Strecke r mögen die Coordinaten x, y und x_1 . y_1 haben. Dann ist, wenn φ den Winkel bezeichnet, den diese Strecke mit der positiven Seite der x-Axe bildet:

$$r\cos\varphi=x-x_1,\quad r\sin\varphi=y-y_1,$$

woraus folgt:

$$re^{i\varphi}=x+iy-(x_1+iy_1).$$

Verändere ich die Lage und Länge dieser Strecke um unendlich wenig, so werden die Endpunkte derselben Curvenelemente ds und ds_1 beschreiben. Die Richtungen dieser Elemente, welche mit den Richtungen der Tangenten in diesen Punkten zusammenfallen, mögen mit der x-Axe die Winkel x und x bilden. Durch Differentiation der obigen Gleichung entsteht:

$$d(re^{i\varphi}) = dx + i dy - (dx_1 + i dy_1).$$

Nun ist aber:

$$dx + i dy = ds e^{i\alpha}, dx_1 + i dy_1 = ds_1 e^{i\alpha_1},$$

also wird:

$$\mathbf{\Pi}) \qquad \qquad d(re^{i\varphi}) = ds \, e^{i\alpha} - ds_1 \, e^{i\alpha_1}.$$

Das Differential des imaginären Momentes einer Strecke ist demnach gleich der Differenz der imaginären Momente der beiden Curvenelemente, welche durch die Endpunkte der Strecke beschrieben werden, wenn diese eine unendlich kleine Verschiebung erleidet.

Wir wollen jetzt das Princip der virtuellen Geschwindigkeiten und das d'Alembert'sche Princip mit Hilfe der oben aufgestellten Definitionen umformen.

Das Princip der virtuellen Geschwindigkeiten kann man in der Form schreiben:

$$X_n + \lambda \frac{dL}{dx_n} + \mu \frac{dM}{dx_n} + \nu \frac{dN}{dx_n} + \dots = 0,$$

$$Y_n + \lambda \frac{dL}{dy_n} + \mu \frac{dM}{dy_n} + \nu \frac{dN}{dy_n} + \dots = 0,$$

wo X_n und Y_n die Componenten der wirkenden Kräfte, L=0, M=0, N=0, ... die zwischen den Coordinaten der Punkte herrschenden Bedingungen, λ , μ , ν zu eliminirende unbekannte Coefficienten darstellen. Für jeden Punkt gilt ein derartiges Gleichungssystem, wie wir es hier für den Punkt mit den Coordinaten x_n und y_n aufgestellt haben.

Multiplicirt man die zweite Gleichung mit i und addirt sie zur ersten, so wird, wenn P die ganze auf den betrachteten Punkt wirkende Kraft ist und diese mit der Bichtung der x-Axe einen Winkel φ bildet:

$$Pe^{i\varphi} + \lambda \left(\frac{dL}{dx_n} + i\frac{dL}{dy_n}\right) + \mu \left(\frac{dM}{dx_n} + i\frac{dM}{dy_n}\right) + \dots = 0.$$

Man weiss nun, dass die Kräfte, welche die Verbindungen ersetzen, sich ausd cken durch:

$$P_1 = \lambda \sqrt{\frac{dL^2}{dx_n} + \frac{dL^2}{dy_n}} = \lambda V_1,$$

$$P_2 = \mu \sqrt{\frac{dM^2}{dx_n} + \frac{dM^2}{dy_n}} = \mu V_2,$$

Ferner ist:

$$Pe \, \varphi + \lambda \, V_1 \left(\frac{dL}{dx_n} \cdot \frac{1}{V_1} + i \frac{dL}{dy_n} \cdot \frac{1}{V_1} \right) + \mu \, V_2 \left(\frac{dM}{dx_n} \cdot \frac{1}{V_2} + i \frac{dM}{dy_n} \cdot \frac{1}{V_2} \right) + \dots = 0.$$

Sind nun die Winkel, welche die Kräfte P_1 , P_2 u. s. w. mit der x-Axe bilden, entsprechend φ_1 , φ_2 u. s. w., so hat man:

$$\begin{split} \cos\varphi_1 &= \frac{dL}{dx_n} \cdot \frac{1}{V_1}, \quad \cos\varphi_2 = \frac{dM}{dx_n} \cdot \frac{1}{V_2}; \\ \sin\varphi_1 &= \frac{dL}{dy_n} \cdot \frac{1}{V_1}, \quad \sin\varphi_2 = \frac{dM}{dy_n} \cdot \frac{1}{V_2}. \end{split}$$

Demnach wird die letzte Gleichung:

III)
$$Pe^{i\varphi} + P_1e^{i\varphi_1} + P_2e^{i\varphi_2} + \dots = 0.$$

Ein System von Punkten, welches beliebigen Bedingungen unterworfen ist, befindet sich im Gleichgewicht, wenn für jeden Punkt die Summe der imaginären Momente aller auf diesen Punkt wirkenden Kräfte incl. der Verbindungskräfte der Null gleich ist.

Nach dem Princip von d'Alembert gilt für jeden Punkt des Systems das Gleichungspaar:

$$m \frac{d^3 x_n}{dt^3} = X_n + \lambda \frac{dL}{dx_n} + \mu \frac{dM}{dx_n} + \cdots,$$

$$m \frac{d^3 y_n}{dt^3} = Y_n + \lambda \frac{dL}{dy_n} + \mu \frac{dM}{dy_n} + \cdots$$

Bildet die Tangente der Bahncurve des betrachteten Punktes zur Zeit t mit der x-Axe den Winkel α , so erhält man analog unter Berücksichtigung von

$$\frac{dx_n + i dy_n}{dt} = \frac{ds}{dt} e^{i\alpha} = v e^{i\alpha};$$

$$\frac{d(v e^{i\alpha})}{dt} = P e^{i\varphi} + \mathring{P}_1 e^{i\varphi_1} + \cdots$$

Für jeden Punkt des Systems ist also das imaginäre Beschleunigungsmoment gleich der Summe der imaginären Momente der auf den Punkt wirkenden Kräfte incl. der Verbindungskräfte.

Als Beispiel für die oben aufgestellten Sätze wollen wir die Aufgabe aus der Statik lösen: Die Gleichgewichtscurve eines unendlich dünnen Fadens aufzustellen unter dem Einflusse von Centralkräften. Die Dichtigkeit des Fadens wird hier constant und gleich der Einheit angenommen.

Die Bedingung für das Gleichgewicht ist, dass sich an jedem Curvenelement folgende Kräfte das Gleichgewicht halten:

- 1. die Spannung T, deren imaginäres Moment ist Te^{ia} ;
- 2. die Spannung am andern Ende des betrachteten Elementes ds, deren Moment ist $-(T+dT)(e^{ia}+de^{ia})$;
- 8. die auf das Curvenelement wirkende Kraft -ds f(r), deren Moment ist $-ds f(r)e^{i\varphi}$, wenn die Kraftrichtung mit der x-Axe den Winkel φ bildet.

Das Princip der virtuellen Geschwindigkeiten giebt dann:

$$Te^{i\alpha} - (T+dT)(e^{i\alpha}+de^{i\alpha}) - ds f(r)e^{i\varphi} = 0.$$

Dieser Gleichung kann man leicht die folgende Form geben:

$$d(Te^{i\alpha}) = ds f(r) e^{i\varphi}.$$

Ausserdem hat man hier noch die Gleichung II), in der jedoch $ds_1 = 0$ zu setzen ist, weil die Kraft nach einem festen Centrum gerichtet ist. Also hat man:

 $d(re^{i\varphi}) = ds e^{i\varphi}.$ Digitized by Google

Führt man die angedeuteten Differentiationen aus und zerspaltet die Gleichung, so erhält man:

$$dT = ds f(r) \cos(\varphi - \alpha),$$

4)
$$T d \alpha = ds f(r) \sin(\varphi - \alpha),$$

$$dr = ds \cos(\varphi - \alpha),$$

6)
$$r d\varphi = -ds \sin(\varphi - \alpha).$$

Aus 3) und 5) folgt sofort:

$$dT = f(r) dr,$$

wodurch T als Function von r bestimmt ist.

Aus 3) und 4) ergiebt sich:

$$\frac{dT}{T} = d\alpha \cdot cotg(\varphi - \alpha)$$

und analog sus 5) und 6)
$$\frac{dr}{r} = -d\varphi \cot g(\varphi - \alpha).$$

Aus den beiden letzten Gleichungen zieht man:

$$\frac{dT}{T} + \frac{dr}{r} + \frac{d\sin(\varphi - \alpha)}{\sin(\varphi - \alpha)} = 0.$$

Das Integral dieser Differentialgleichung ist:

8)
$$Tr \sin(\varphi - \alpha) = c,$$

wo c eine willkürliche Constante bedeutet.

Man kann sich leicht überzeugen, dass die Grösse $r \sin(\varphi - \alpha)$ das mit umgekehrtem Vorzeichen genommene Loth ist, welches man von dem anziehenden Centrum auf die Tangente des Punktes der Curve fällen kann, welchem als Radiusvector die Strecke r zugehört - die Spannung ist also diesem Lothe umgekehrt proportional.

Die Gleichung 7) entspricht dem Satze von der lebendigen Kraft, die Gleichung 8) dem Flächensatze bei der Centralbewegung.

Aus Gleichung 8) ergiebt sich leicht:

$$cotg\left(\varphi-\alpha\right)=\sqrt{\frac{T^{2}r^{2}}{c^{2}}-1}$$

und demnach folgt aus der Gleichung

9)
$$\frac{dr}{r} = -d\varphi \cot g (\varphi - \alpha):$$

$$\varphi = -\int_{r}^{\infty} \frac{dr}{r^{2}} \frac{T^{2}r^{2}}{r^{2}} - 1$$

als Gleichung der Fadencurve in Polarcoordinaten, indem der Werth für T als Function von r aus Gleichung 7) zu entnehmen ist.

Als Beispiel aus der Dynamik wollen wir das bekannte Problem der Centralbewegung behandeln.

Wenn wieder r der Radius vector, φ und α die Winkel sind, welche Radius vector und Tangente mit der x-Axe bilden, so ist nach dem Princip von d'Alembert zunächst:

$$\frac{d \cdot v e^{i\alpha}}{dt} + f(r) e^{i\varphi} = 0.$$

Ausserdem hat man als Bedingung dafür, dass die Kraftrichtung stets durch einen festen Punkt geht: $d(re^{i\varphi}) = ds e^{i\alpha}.$

Aus diesen beiden Gleichungen folgt unmittelbar:

$$\frac{d^2(re^{i\varphi})}{dt^2} + f(r)e^{i\varphi} = 0.$$

Führt man die angedeutete Differentiation aus und zerspaltet die Gleichung, so wird:

11)
$$r\frac{d^2\varphi}{dt^2} + 2\frac{d\varphi}{dt} \cdot \frac{dr}{dt} = 0$$

und

12)
$$\frac{d^2r}{dt^2} - r\left(\frac{d\varphi}{dt}\right)^2 + f(r) = 0.$$

Setzt man $\frac{d\varphi}{dt} = p$, so wird die erste Gleichung:

$$r\,dp+2p\,dr=0,$$

deren Integral ist:

$$p=\frac{c}{r^2},$$

wo c eine Constante bedeutet.

Gleichung 12) wird dann:

$$\frac{d^3r}{dt^3} - \frac{c^3}{r^3} + f(r) = 0.$$

Multiplicirt man mit dr und integrirt, so wird:

$$\frac{dr}{dt} = \sqrt{2\int \frac{c^2 dr}{r^3} - f(r) dr} = F(r).$$

Wegen $\frac{d\varphi}{dt} = \frac{c}{r^2}$ hat man dann:

$$\varphi = \int \frac{c \, dr}{r^2 \, F(r)}$$

als Gleichung der Bahn in Polarcoordinaten. Eine so directe Integration des Problems, wie nach der obigen Methode, wird man auf einem andern Wege kaum erreichen können.

Zum Schlusse wollen wir noch eine Anwendung auf die Beschleunigungen höherer Ordnung machen.

Aus $ds e^{ia} = dx + dy$ folgt:

$$ve^{i\alpha} = \frac{dx}{dt} + i\frac{dy}{dt}.$$

Wenn man diesen Ausdruck n-mal differenzirt und bedenkt, dass man $\frac{d^n v e^{i\alpha}}{dt^n}$ auf die Form

$$e^{i\alpha}$$
. $(M+iN)$

bringen kann, wo M und N sich nur aus den Ableitungen von v und α zusammensetzen, so wird:

$$e^{i\alpha}$$
. $(M+iN) = \frac{d^{n+1}x}{dt^{n+1}} + i\frac{d^{n+1}y}{dt^{n+1}}$

Durch Zerspaltung entsteht:

$$M\cos\alpha - N\sin\alpha = \frac{d^{n+1}x}{dt^{n+1}}, \quad N\cos\alpha + M\sin\alpha = \frac{d^{n+1}y}{dt^{n+1}}.$$

Hieraus erkennt man, dass M und N Tangential- und Normalcomponente der Beschleunigung n^{tor} Ordnung sind, da ja die letzten Gleichungen besagen, dass die Componenten von M und N in Richtung der Axen durch $\frac{d^{n+1}x}{dt^{n+1}}$ und $\frac{d^{n+1}y}{dt^{n+1}}$ dargestellt sind.

Man hat also den Satz:

Differentiirt man das imaginäre Geschwindigkeitsmoment ve^{ia} n-mal und dividirt das Resultat durch e^{ia} , so stellt der reelle Theil des erhaltenen Ausdrucks die Tangentialbeschleunigung n^{ter} Ordnung, der Coefficient von i die Normalbeschleunigung n^{ter} Ordnung vor.

Will man die Beschleunigungen höherer Ordnung durch v und den Krümmungsradius ϱ , sowie deren Ableitungen darstellen, so muss man setzen:

$$\alpha = \int \frac{v}{\varrho} \, dt.$$

Das zu differentiirende Moment ist dann:

$$ve^{ia} = ve^{i\int \frac{v}{\theta} dt}$$

Berlin, im Juli 1890.

Dr. A. GLEICHEN.

XIII. Versuch über die Gleichung $x^p + y^p = s^p$.

In der Gleichung

$$x^p + y^p = z^p$$

bedeute p eine Primzahl > 2, während x, y, z positive ganze Zahlen vorstellen, die, wie wir ohne Weiteres annehmen dürfen, prim gegen einander sind.

Hier sind zwei Fälle denkbar:

- 1. keine der Zahlen x, y, s enthält den Factor p;
- 2. eine von ihnen, sagen wir x, ist $\equiv 0 \pmod{p}$.

Im ersten Falle (s. meinen im Jahre 1889 in dieser Zeitschrift unter Nr. IX der "Kleineren Mittheilungen" abgedruckten Aufsatz) sind x + y, s - x, s - y p^{to} Potenzen, so dass wir

$$x+y=a^p$$
, $s-x=b^p$, $s-y=c^p$

setzen können, während im zweiten Falle

$$x + y = a^p$$
, $s - x = b^p$, $s - y = p^{p-1} \cdot c^p$

sein muss. In beiden Fällen ist

$$\frac{y^p}{b^p} = \frac{s^p - x^p}{s - x} = s^{p-1} + s^{p-2} \cdot x + s^{p-3} \cdot x^2 + \dots + x^{p-1}$$

$$> \frac{s^p}{a^p} = \frac{x^p + y^p}{x + y} = x^{p-1} - x^{p-2} \cdot y + x^{p-3} \cdot y^2 - \dots + y^{p-1},$$

also auch

$$\frac{y}{b} > \frac{s}{a}$$

Da x + y, s - x, s - y ebenso wie x, y und s prim gegen einander sind, und $s^p = x^p + y^p, \quad y^p = s^p - x^p, \quad x^p = s^p - y^p$

resp. die Factoren x + y, s - x, s - y haben, so muss

$$(x+y-s)^p = [(x+y)-s]^p = [y-(s-x)]^p = [x-(s-y)]^p$$

den Factor (x+y)(s-x)(s-y) oder vielmehr, da z. B.

$$[(x+y)-s]^{p} = x^{p} + y^{p} + \sum_{q=1}^{q-1} (-1)^{q-1} \frac{p}{q} (p-q-1)_{q-1} (x+y)^{p-2q} . x^{q} . y^{q} - (p)_{1} (x+y)^{p-1} s + (p)_{2} (x+y)^{p-2} . z^{2} - \cdots + (p)_{p-1} (x+y) s^{p-1} - s^{p} = p . \sum_{q=1}^{q-1} (-1)^{q-1} \frac{1}{q} (p-q-1)_{q-1} (x+y)^{p-2q} . x^{q} . y^{q} - p \int (x+y)^{p-1} s - \frac{p-1}{2} (x+y)^{p-2} s^{2} + \cdots - (x+y) s^{p-1}$$

ist, den Factor p(x+y)(s-x)(s-y) enthalten, so dass wir

$$(x+y-s)^p = p(x+y)(s-x)(s-y)F$$

setzen können, wo F im Allgemeinen eine Function von x, y, s bedeutet.

[NB. Für p=3 haben wir

$$\begin{aligned}
& (x+y-s)^3 = (x+y)^3 - s^3 - 3(x+y)^2 s + 3(x+y) s^2 \\
& = 3(x+y)xy - 3(x+y)^2 s + 3(x+y) s^2 \\
& = 3(x+y)[s^2 - (x+y)s + xy] \\
& = 3(x+y)(s-x)(s-y),
\end{aligned}$$

also F = 1. Zugleich erkennen wir, dass eine der Zahlen x, y, $s \equiv 0 \pmod{3}$ sein muss.

Nach Obigem muss entweder pF, oder F eine p^{to} Potenz, d. h. entweder $vF = v^p$, f^p , oder $F = f^p$

sein, so dass in beiden Fällen

$$x+y-s=pabcf$$

wird. Hieraus folgt

$$\frac{y}{b} = b^{p-1} + pacf, \quad \frac{z}{a} = a^{p-1} - pbcf,$$

also

$$\frac{y}{b} = \frac{s}{a} - (a^{p-1} - b^{p-1}) + p(a+b) cf$$

oder, da p-1 gerade ist, mithin $a^{p-1}-b^{p-1}$ den Theiler a+b hat,

$$\frac{y}{b} = \frac{z}{a} + (a+b)\left(p\,cf - \frac{a^{p-1} - b^{p-1}}{a+b}\right),$$

wofter wir, da $a^{p-1} \equiv 1 \equiv b^{p-1} \pmod{p}$ ist,

$$\frac{y}{b} = \frac{s}{a} + pg$$

setzen können, wog eine positive ganze Zahl bedeutet.

Ferner erhalten wir, wenn wir pbcf = A setzen,

$$(x+y)^p = (s+aA)^p$$

oder

$$x^{p} + y^{p} + \sum_{q=1}^{q-1} (-1)^{q-1} \frac{p}{q} (p-q-1)_{q-1} (x+y)^{p-2q} \cdot x^{q} \cdot y^{q}$$

$$= s^{p} + (p)_{1} s^{p-1} \cdot aA + (p)_{2} s^{p-2} \cdot a^{2} \cdot A^{2} + \dots + (p)_{p-1} s \cdot a^{p-1} A^{p-1} + a^{p} \cdot A^{p};$$

$$s = \frac{p-1}{2}$$

folglich, da
$$x^p + y^p = s^p$$
 ist, und
$$\sum_{q=1}^{q=\frac{p-1}{2}} (-1)^{q-1} \frac{p}{q} (p-q-1)_{q-1} (x+y)^{p-2q}$$

 $\times x^q \cdot y^q$ den Factor p(x+y)xy enthält, mithin

$$= p(x+y) xy \varphi(x,y)$$

gesetzt werden darf,

$$(p_1) s^{p-1} \cdot a A + (p)_2 s^{p-2} \cdot a^2 A^2 + \dots + (p)_{p-1} s \cdot a^{p-1} A^{p-1} + a^p A^p$$

$$= p(x+y) xy \varphi(x,y)$$

oder, wenn wir durch

$$pa^p \cdot A = p^2(x+y)bcf$$

dividiren,

$$\left(\frac{s}{a}\right)^{p-1} + \frac{(p-1)_{l}}{2} \left(\frac{s}{a}\right)^{p-2} A + \frac{(p-1)_{2}}{3} \left(\frac{s}{a}\right)^{p-3} A^{2} + \dots + \left(\frac{s}{a}\right) A^{p-2} + \frac{A^{p-1}}{p}$$

$$= \frac{xy \ \varphi(x,y)}{p \ b \ c \ f} \cdot$$

In dieser Gleichung haben $\frac{s}{a}$ und A keinen gemeinschaftlichen Theiler, und $\frac{y}{b}$ muss ein Factor des Ausdrucks auf der linken Seite derselben sein. Setzen wir nun den Quotienten dieses Ausdrucks und des Factors

$$\frac{y}{b} \operatorname{oder} \frac{s}{a} + pg$$

$$= \left(\frac{s}{a}\right)^{p-2} + k_1 \left(\frac{s}{a}\right)^{p-3} + k_2 \left(\frac{s}{a}\right)^{p-4} + \dots + k_{p-3} \left(\frac{s}{a}\right) + k_{p-2},$$

so erhalten wir für die Coefficienten k folgende Gleichungen:

$$k_1 + pg = \frac{(p-1)_1}{2}A,$$

$$k_{2} + pg k_{1} = \frac{(p-1)_{2}}{3} A^{2},$$

$$k_{3} + pg k_{2} = \frac{(p-1)_{3}}{4} A^{3},$$

$$k_{p-3} + pg k_{p-4} = \frac{(p-1)_{p-3}}{p-2} A^{p-3},$$

$$k_{p-2} + pg k_{p-3} = A^{p-2},$$

$$pg k_{p-2} = \frac{A^{p-1}}{p}.$$

Aus der ersten dieser Gleichungen sehen wir, dass, da pg und $\frac{(p-1)_1}{2}A$ ganze Zahlen sind, und A=pbcf ist, k_1 eine ganze Zahl sein und den Factor p haben muss. Weiter folgt dann aus der zweiten, dass k_2 eine ganze Zahl ist und den Factor p^2 hat u. s. w. Ueberhaupt sind alle k ganze Zahlen, und k_q muss $\equiv 0 \pmod{p^q}$ sein.

Setzen wir demnach $k_q = p^q \cdot l_q$, A = p B, so wird

$$\begin{array}{ll} l_1 & +g & = \frac{(p-1)_1}{2} B, \\ l_2 & +gl_1 & = \frac{(p-1)_2}{3} B^2, \\ l_3 & +gl_2 & = \frac{(p-1)_3}{4} B^3, \\ \dots & \dots & \dots & \dots & \dots \\ l_{p-3} +gl_{p-4} = \frac{(p-1)_{p-3}}{p-2} B^{p-3}, \\ l_{p-2} +gl_{p-3} = B^{p-2}, \\ g \, l_{p-2} = \frac{B^{p-1}}{p}. \end{array}$$

Aus der letzten Gleichung geht hervor, dass

sein muss. $B \equiv 0 \pmod{p}$, also $gl_{p-2} \equiv 0 \pmod{p^{p-2}}$

Nehmen wir nun $g \equiv 0 \pmod{p}$ an, so folgt aus den vorhergehenden Gleichungen, dass auch alle $l \equiv 0 \pmod{p}$ sein müssen; und nehmen wir $l_{p-2} \equiv 0 \pmod{p}$ an, so ergiebt sich aus der vorletzten Gleichung, dass jedenfalls entweder, wie wir soeben voraussetzten, g, oder $l_{p-3} \equiv 0 \pmod{p}$ sein muss. Bei der letzteren Annahme werden ebenfalls alle l und wegen der ersten Gleichung auch $g \equiv 0 \pmod{p}$. Kurz, es muss

$$g = ph$$

und, wie leicht zu erkennen,

$$l_q = p^q \cdot m_q$$

sein, wo h und m, ebenso wie g und l, ganze Zahlen vorstellen. Setzen wir nun noch

B = p C,

Diese Gleichungen haben genau dieselbe Form, wie die obigen für l, müssen also auch zu denselben Resultaten führen; wir würden daher bei Fortsetzung unseres Verfahrens ähnliche Gleichungen mit immer kleiner werdenden. Zahlen finden, während zugleich x+y-s einer immer höheren Poten von p congruent würde, und das *in infinitum*.

Wir schliessen hieraus, dass die Gleichung

$$x^p + y^p = s^p,$$

wenn p > 2 ist, nicht in positiven ganzen Zahlen gelöst werden kann.

Anmerkung. Für p=3 haben wir

$$\left(\frac{z}{a}\right)^2 + A\left(\frac{z}{a}\right) + \frac{A^2}{3} = \left(\frac{z}{a} + k_1\right)\left(\frac{z}{a} + 3g\right),$$

also

$$3g + k_1 = A$$
, $3gk_1 = \frac{A^2}{3}$;

es musste mithin

$$9gk_1 = A^2 = (3g + k_1)^2$$
 oder $(3g)^2 + k_1^2 = 3gk_1$

sein, was nicht möglich ist, da $(3g)^2 + (k_1)^2 = (3g - k_1)^2 + 6gk_1 > 6gk_1$ sein muss.

Wir könnten auch so schliessen:

$$3g$$
 ist hier $=(a+b)(3c-a+b)$; es musste also, da $3gk_1=\frac{A^2}{3}=3b^2c^3$ ist, $a+b$ ein Theiler von $3b^2c^3$ sein.

Nun sind aber $x+y=a^3$ und $s-x=b^3$, also auch a und b, sowie a+b und b prim gegen einander; und ginge a+b in $3c^2$ auf, so hätten $9c^3=s-y$ und $a^3+b^3=s+y$ den gemeinschaftlichen Theiler a+b, während sie doch höchstens den Factor 2 gemein haben können, und a+b unmöglich =2 sein kann.

Allgemein muss nach Obigem
$$\frac{y}{b} = \frac{s}{a} + (a+b)\left(p\,cf - \frac{a^{p-1} - b^{p-1}}{a+b}\right)$$
 ein Factor von $\left(\frac{s}{a}\right)^{p-1} + \frac{(p-1)_1}{2}\left(\frac{s}{a}\right)^{p-2}A + \cdots + \left(\frac{s}{a}\right)A^{p-2} + \frac{A^{p-1}}{p}$, also $a+b$ ein solcher von $\frac{A^{p-1}}{p} = p^{p-2} \cdot b^{p-1} \cdot c^{p-1} \cdot f^{p-1}$ sein; es würde

daher genügen, zu beweisen, dass a+b und f keine gemeinschaftlichen Theiler haben können, wenn wir die Unmöglichkeit der Gleichung $x^p + y^p = x^p$, wo p eine Primzahl > 2 ist, für positive ganze Zahlen darthun wollen.

Höxter a. d. Weser.

Aug. Ribke.

XIV. Kriterien der Theilbarkeit dekadischer Zahlen.

Die von mir im ersten Hefte angeführte diesbezügliche Regel gestattet folgende Verallgemeinerungen:

Um zu entscheiden, ob eine gegebene Zahl Z durch n theilbar ist, multiplicire man die zwei letzten Ziffern von Z mit der für jedes n besonders zu bestimmenden Zahl y und subtrahire das erhaltene Product von den vorhergehenden Ziffern. Ist der gefundene Rest durch n theilbar, so ist das ein Criterium dafür, dass Z durch n getheilt werden kann.

Die Zahl y bestimmt sich nach folgender Regel:

Man schreibe diejenigen Vielfachen von n auf, welche mit den Ziffern O1 endigen, und streiche diese beiden Ziffern fort. Die so erhaltenen Zahlen genügen den für y angeführten Bedingungen.

Beispiel: n=7. Die Vielfachen von 7, welche mit den Ziffern 01 endigen, sind: 7.43=301, 7.143=1001 etc.

Streicht man hier die Ziffern 01 fort, so erhält man die Zahlen

3, 10 etc.

Um also zu entscheiden, ob die Zahl 47341 durch 7 theilbar ist, multitiplicire man die zwei letzten Ziffern (41) mit 3 und subtrahire das erhaltene Product (123) von den vorhergehenden Ziffern (473). Der gefundene Rest (350) ist durch 7 theilbar; folglich ist es auch 47341.

Oder ganz allgemein: Man multiplicire die p letzten Ziffern von Z mit der für jedes n besonders zu bestimmenden Zahl v und subtrahire das erhaltene Product von den vorhergehenden Ziffern. Ist der gefundene Rest durch n theilbar, so ist es auch Z.

Die Zahl v ergiebt sich nach folgender Regel:

Man schreibe diejenigen Vielfachen von n auf, welche mit der Ziffer l und p-1 vorherstehenden Nullen endigen. Streicht man diese Endungen ... 0001 fort, dann genügen die so erhaltenen Zahlen den für v angegebenen Bedingungen.

Bemerkung. Wörtlich dieselben Regeln gelten für alle Zahlensysteme, welche dem dekadischen System analog gebildet sind.

Bilden wir z. B. ein solches Zahlensystem aus den vier Zeichen 0, 1, 2, 3 und bezeichnen

die	dekadische	Zahl	0	mit	0,
n	n	n	0	77	1,
n	n	n	0	n	2,
77	n	77	3	n	3,
77	n	n	4	n	10,
n	n	n	5	••	11,
77	77	n	6	n	12,
n	77	77	7	77	13,
27	n	77	8	77	20 etc.,

so gelten für die Zahlen dieses Systems wörtlich dieselben Regeln, welche oben für das dekadische System angegeben sind.

Berlin.

DIETRICHKEIT, Cand. math.

Preisaufgabe

der

Fürstlich Jablonowski'schen Gesellschaft in Leipzig.

Für das Jahr 1894.

Die von Leverrier ausgeführte Bestimmung der säcularen Störungen der Bahnen, namentlich der inneren Planeten, hat bekanntlich unbefriedigende Resultate ergeben, insofern die Glieder der zweiten Näherung, welche nur ungenau und unter Umständen selbst grösser als die Glieder der ersten Näherung gefunden wurden, sich für die Berechnung der Störungen als unbrauchbar erwiesen haben. Dieses unbefriedigende Ergebniss, das in seinen weiteren Folgen mit gewissen Anomalien in der Bewegung des Mercur, beziehungsweise seines Perihels zusammenzuhängen scheint, ist Leverrier* geneigt, der bisher befolgten Behandlungsweise zuzuschreiben, bei welcher in erster Näherung die Differentialgleichungen des Problems als linear betrachtet werden. Die Gesellschaft wünscht demgemäss

eine neue Bestimmung der säcularen Störungen wenigstens der Bahnen von Mercur, Venus, Erde und Mars unter Berücksichtigung der Glieder höherer Ordnung mittels einer einwurfsfreien Methode, bei welcher die von Leverrier angetroffene Schwierigkeit, welche gegen die Brauchbarkeit der erhaltenen Resultate sprechen würde, als beseitigt betrachtet werden kann. — Preis 1000 Mark.

^{*} Recherches astronomiques, Chap. IX, art. 16 und Additions III, S. 51.

Die anonym einzureichenden Bewerbungsschriften sind, wo nicht die Gesellschaft im besondern Falle ausdrücklich den Gebrauch einer andern Sprache gestattet, in deutscher, lateinischer oder französischer Sprache zu verfassen, müssen deutlich geschrieben und paginirt, ferner mit einem Motto versehen und von einem versiegelten Umschlag begleitet sein, welcher auf der Aussenseite das Motto der Arbeit trägt, inwendig den Namen und Wohnort des Verfassers angiebt. Jede Bewerbungsschrift muss auf dem Titelblatte die Angabe einer Adresse enthalten, an welche die Arbeit für den Fall, dass sie nicht preiswürdig befunden würde, zurückzusenden ist. Die Zeit der Einsendung endet mit dem 30. November des angegebenen Jahres, und die Zusendung ist an den Secretär der Gesellschaft (für das Jahr 1891 Geh. Rath Professor Dr. W. Hankel, Hohe Strasse 15) zu richten. Die Resultate der Prüfung der eingegangenen Schriften werden durch die Leipziger Zeitung im März oder April des folgenden Jahres bekannt gemacht. Die gekrönten Bewerbungsschriften werden Eigenthum der Gesellschaft.

R. Leuckart. W. Hankel. A. Leskien. W. Roscher, Präses.
H. Lipsius. F. Zirkel. G. Voigt. F. Zarneke. W. Scheibner.

Lösung der Preisaufgabe der Physikalisch-ökonomischen Gesellschaft zu Königsberg.

Im Jahrgang XXXV S. 128 dieser Zeitschrift hatte obige Gesellschaft eine Preisaufgabe gestellt, welche eine möglichst umfassende theoretische Verwerthung der Königsberger Bodentemperatur-Beobachtungen für die Erkenntniss der Wärmebewegungen in der Erde und ihrer Ursachen forderte.

Der ausgesetzte Preis von 300 Mk. ist Herrn Dr. Adolf Schmidt, Gymnasiallehrer in Gotha, verliehen, welcher die Aufgabe in mathematischphysikalischem Sinne bearbeitet und besonders die Theorie mit den Beobachtungen erfolgreich verglichen hat. Ausserdem wurde eine Belohnung von 150 Mk. Herrn Dr. Ernst Leyst, Verweser des magnetisch-meteorologischen Observatoriums zu Pawlowsk, verliehen, welcher in seiner numerisch-statistischen Arbeit besonders die Temperaturbewegung im Erdinnern zu beschreiben sucht.

Die beiden so gekrönten Preisarbeiten und das ausführliche Urtheil der Preisrichter werden in den Schriften der Physikalisch-ökonomischen Gesellschaft, Jahrgang XXXII für 1891, gedruckt.

Dr. J. Franz.

Secretär der Phys. - ökon. Ges.

Verlag von Louis Nebert in Halle a/S.

Enocper, Prof. Dr. A., Elliptische Funktionen. Theorie und Geschichte. Akademische Vorträge. Zweite Auflage. Neu bearb. u. herausg, von Prof. Dr. Pelix Müller. Lex. 8. geh. 22 Mark 50 Pf.
Thomae, Hofrat, Prof. Dr. J., Abriss e. Theorie d. Funktionen e. complexen Veränderlichen u. der Thetafunktionen. Dritte, erheblich vermehrte Auflage. gr. 4. geh. 10 Mark.
Thomae, Hofrat, Prof. Dr. J., Elementare Theorie der analyt. Funktionen einer complexen Veränderlichen. gr. 4. geh. 7 Mark 50 Pf.
Thomae, Prof. Dr. J., Einleitung in die Theorie der bestimmten Integrale. gr. 4. geh. 2 Mark 80 Pf.
Thomae, Prof. Dr. J., Ebene geometrische Gebilde I. u. II, Ordn. vom Standpunkte der Geometrie der Lage betrachtet. gr. 4. geh. 2 Mark 25 Pf.

punkte der Geometrie der Lage betrachtet, gr. 4, geh. 2 Mark 25 Pf.

Thomac, Prof. Dr. J., Sammlung von Formeln, welche bei Anwendung der elliptischen und Rosenhain'schen Funktionen gebraucht werden. gr. 4. geh. 3 Mark,

Thomac, Prof. Dr. J., Ueber eine specielle Klasse Abel'scher Funktionen.

2 Hefte, gr. 4. geh. 9 Mark.

Thomae, Prof Dr. J., Ueber eine Funktion, welche einer linearen Differentialu. Differenzen-Gleichung IV. Ordn. Genüge leistet, gr. 4. geh. 1 Mark 50 Pf. Repetitorium der analytischen Geometrie, gr. 8. geh. 1 Mark 20 Pf.

Hofmann, Dr. F. Methodik der stetigen Deformation von zweiblättrigen Riemann'schen Flächen. Ein Uebungsbuch f. d. geometr. Teil d. Funktionen-

tlieorie. gr. 8. geh. 2 Mark.

Rulf, Prof. W., Elemente der projektivischen Geometrie. Auf Grund neuer vom Prof. Karl Küpper herrühr. Definitionen u. Beweise leichtfasslich zusammengestellt. gr. 8. geh. 2 Mark 50 Pf.

Beau. Dr. O., Analytische Untersuchungen im Gebiete der trigonometrischen

Reihen und der Fourier'schen Integrale. Zweite verb. u. verm. Auflage.

gr. 4. geh. 5 Mark 50 Pf.

Odstrčil, Prof. Dr. J., Kurze Anleitung zum Rechnen mit den (Hamiltonschen) Quaternionen. gr. 8. geh. 2 Mark 25 Pf.

Hochheim, Prof. Dr. A., Käfi fil Hisäb (Genägendes über Arithmetik) des Abu
Bekr Muhammed Ben Alhusein Alkarkhi. 3 Hafte. gr. 4. geh. 3 Mark 90 Pf. stochheim, Dr. A., Ueber die Differentialeurven der Kegelschnitte, gr. 8. geh. 3 Mark.

Mochheim, Dr. A., Ueber Pole und Polaren der parabolischen Curven dritter Ordnung. gr. 4. geh. 1 Mark.

Langer, Dr. P., Die Grundprobleme der Mechanik, Eine kosmologische Skizze. gr. 8. geh. 1 Mark 80 Pf.

Frege, Dr. G., Begriffsschrift. Eine der arithmetischen nachgebildeten Formelprache des reinen Denkens, gr. 8, geh. 3 Mark.

et adicke, A., Die Recursionsformein für die Berechnung der Bernoulli'schen

und Euler'schen Zahlen, gr. 8. geb. 1 Mark 20 Pf.
Schobloch, Dr. J. A., Ueber Beta- und Gammafunktionen, gr. 4 geb. 50 Pf. Bronke, Dr. A., Einleitung in die höhere Algebra. gr. 8. geh. 4 Mark 50 Pf. Ginther. Prof. Dr., Studien zur Geschichte der mathematischen und physikalischen Geographie. gr. 8. geh. 12 Mark.
Günther, Prof. Dr., Die Lehre von den gewöhnlichen und verallgemeinerten Hyperbelfunktionen. gr. 8. geh. 12 Mark.

In die in Vorbereitung befindliche Fortsetzung meines systematischen Verzeichnissez der Abhandlungen, welche in den Schulschriften der am Programmtanache teilnehmenden Lehranstalten von 1886—1890 einschliefslich erschienen sind, gedenke ich abweichend von dem bisher geübten Brauche auch diejenigen Schriften der beim Tauschverkehr beteiligten Anstalten aufzunehmen, welche aus irgend einem Anlass dem Tauschverkehr nicht übergeben worden sind. Ich erlaube mir daher die geehrten Direktionen der höheren Schulanstalten, welche in dem genannten Zeitraum Schriften dieser Art ausgegeben haben, ergebenst um deren Übersendung zu bitten. Dieselben werden auf Wunsch nach Benutzung den Absendern postfrei wieder zugestellt werden.

Gern (Beufs).

Dr. Budell Kinssmann.

INHALT

XII Ueber die Brammung der Bahnevoluten bei starren ehenen Systeman.	
Von Fret. Dr. R. Meines Mill. Ueber zwei, die Krämmung von Corven und die teiner sche Krämmungs- nuere von Phishen betreffende charakteristische Riggmentation der	
linearen Punkt-Transformationen, Von Prof. Dr. R. Manone. XIV. Unber eine allgameine Classe von ein-zweidentigen Raumtvamformattunen.	71
Von De B. Winson. XV. Die Wendepole der absoluten und der relativen Howegong. Vom Pent.	
Francisco Wittensavine (Tafel VIII)	
Kleinera Mittheilungun	
XII, Usber die Ausendung der Methode des Imaginaren auf Probleme des Gleichgewichts und der Hewegung in einer Rhens Von Dr. & Granden XIII, Versuch über die Gleichung er+pr-pr. Von Aus. Illies	
Alv. Arterion der Theilbarkeit deladischer Zahlen Von Daren muse	
Preisaufgabe d. Fürstl. Jahlonowski'schen Gesellschaft in Laipzig für d. 7 1201- Lösung der Preisaufgabe der Physik, ökonom. Gesellschaft zu Känigeberg	
Historisch-literarische Abtheilung (besondere paginist).	
Commentae an dem "Tractatus de Nomeris Datis" des Javilantes Tramprarius Von Marianias Cuerm in Thorn (Schluse)	32
Reconstonen:	
Russo, F., Unber die Convergenz einer von Vieta herrahrenden niemthämlichen Productentwickeleng	2.0
eigenthümlichen Productentwickelung Emman, G. Tin., Elémente der Psychophysik. Von B. Kissu.	m
Kamerar, R., Lehrbuch der allgemeinen Physik. Von B. Nasc. Kamerar, R., Lahrbuch der Dynamik fester Korpar. Von B. Nyas-	R
Transact, D., La cinematica applicate alle macchine. Von B. Nese.	H
Increaser, C., Unber die Fernkraft und das durch Pant du Hole-	
Reymond aufgestellte dritte Ignorahimus. Von B. News- Laurences, Gono, Wetter, Erdbeben and Erdenringe. Von B. News	
Paca, A treatise on infinitesimal calculus. Von B. Nasas. Guanno, Theoretische Maschinenishre. Von B. Nasas.	
Bross, W., Zwei Materien mit drei l'undamental Gesetzen, Von B. Wess	ľ
Waste, Hamon, Elektrodynamik, Von B. Nasar,	H
Home, Berechnung einktrischer Messungen. Von B. Russ. Transcon, J. J., Anwend, d. Dynamik auf Physiku, Chemis. Von B. Nesm.	B
Fananav, M., Experiment Untersuchungen üb. Elektricität, Von B. Norma	2
Euroscan, Der Befrieb u. d. Schaltungen il. elaktr. Telegr. Von B. Kassi- Bascon, Die Speutralanalyse, Von B. Nasso.	В
Wann, W., Netze z. Anfertig, zerlegh, Krystallmodelle. Von B. Noon. Vonet, W., Ueber die innern Beibang der fasten Korper, in	1
Vouces, C. A., Good. Unbungen I. Londmenter u. Ingenieura Von B. No	
Form, A., Leitinden und Aufgebensammlung für der Unterricht in	10
Moses, A. F., Hauptsatze der Astronomie. Von B. Nass.	
Recomment, Fa., Die einfache Erdauit. Von B. Nesen	
Kuns, F., Weitere Ausbild, d. Luplace'schen Nebularbypoth, Von B. Rese. Sucos. Dr. Max. Die Elemente der Geometrie mit Edeksicht auf	15
die absolute Geometrie. Von Th, Rene	
Punnass, Prof. Dr. A., Natureissmachaftliche Anwandisunen der	1
Integralrechnung: Von Comon.	10
LEGGER, RAME, Bustache Vermeberungsrechnungen. Von Garron	10
But, W. W. Bosse, Elementary Algebra. Von Carnon Geometry in Religion. Von Carnon	h
Bibliographie vom 1. Mai bis 31. Juli 1891: Period. Schriften - Reme	

Zeitschrift

für

Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

yon

Dr. O. Schlömilch, Dr. E. Kahl

und

Dr. M. Cantor.

36. Jahrgang. 5. Heft.

Mit zwei lithographirten Tafelm

Leipzig, Verlag von B. G. Teubner. 1891. Soeben erschien im Verlage von B. G. Tenbner in Leipzig und ist durch alle Buchhandlungen zu beziehen:

VORLESUNGEN

TERR

ELECTRICITÄT UND MAGNETISMUS

YON

GUSTAV KIRCHHOFF.

HERAUSGEGEBEN VON

DR. MAX PLANCK,
PROTESSOR DER THEORETISCHEN PHYSIK AN DER UNIVERSITÄT SEHLIN.

MIT IN DEN TEXT GEDRUCKTEN FIGUREN.

[X u. 228 S.] gr. 8. geh. n. .# 8.-.

A. u. d. T.: Vorlesungen über mathematische Physik von Gustav. Kirchnorg. Dritter Band.

Der L Band der Vorlesungen, die Mechanik enthaltend, erschien 1883 in 3. Auflage, während der II. Band, Optik, im Juni 1891 ausgegeben wurde.

Die Vorlesungen über Elektricität und Magnetismus bilden den Inhalt der Vortrüge, welche Kirchhoff in Zwischenräumen von zwei oder drei Jahren, sum letztenmal im Wintersemester 1885/86, an der Berliner Universität gehalten hab Da das sehr sorgfältig ausgearbeitete Kollegienheft durch fortwährende Ergänzungen von dem Verfasser stets im Stand erhalten wurde, so konnte sich der Herausgeber im allgemeinen die wörtliche Wiedergabe desselben zum Ziele setzen. Nur wu der Zusammenhung einzelner Gedankeureihen etwas dunkel oder lückenhaft, oder die Ausdrucksweise gar zu knapp erschien, wurden kurze Erläuterungen himzgefügt und jedesmal als solche kenntlich gemacht. - Den weitaus breitesten Raum nehmen die Untersuchungen aus der Elektrostatik ein, insbesondere die Gesetze der Verteilung der Elektricität auf Leitern, wobei die Theorie der Kugelfunktionen, die Methode der elektrischen Bilder, sowie die der konformen Albildung ausführlich dargestellt wird. Es folgen die Gesetze der stationaren elektrischen Ströme, des Magnetismus, des Elektromagnetismus und der Elektrodynamik, - alle behandelt vom Standpunkt der actio in distans. Am Schlosse wird auf die neuere, von Maxwell begründete Theorie, als auf einen Spezialfall, etwas naber eingegangen.

XVI.

Construction der Krümmungsmittelpunkte der Hüllbahnevoluten bei starren ebenen Systemen.

Von

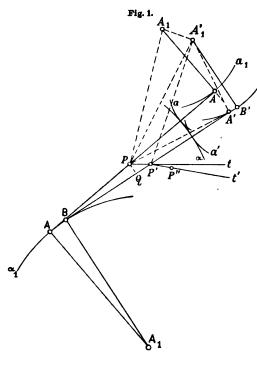
Prof. Dr. R. MÜLLER in Braunschweig.

Ist die Bewegung eines starren ebenen Systems aus einer Phase S in zwei unendlich benachbarte Phasen S', S" in irgend einer Weise festgelegt, so kennt man von allen Systempunkten A und allen Systemcurven b die Krümmungsmittelpunkte A bez. B für die augenblicklich erzeugten Elemente der zugehörigen Bahncurven α und Hüllbahncurven β. Die Hinzufügung einer vierten unendlich benachbarten Systemlage S'" bestimmt dann die Krümmung der Evoluten von α und β in A und B. In einem früheren Aufsatze* behandelte ich die Krümmung der Bahnevoluten, die den Punkten des Systems entsprechen; der betreffende Krümmungsradius konnte in sehr einfacher Weise construirt werden, wenn für die betrachtete Phase der Wendekreis und die Kreispunktcurve bekannt waren. Im Folgenden wird die umfassendere Aufgabe gelöst, den Krümmungsmittelpunkt der Hüllbahnevolute für eine beliebige Curve des Systems zu bestimmen, wobei die vier aufeinander folgenden Systemlagen ganz allgemein dadurch definirt sein können, dass für irgend zwei Systemcurven die Krümmungsmittelpunkte ihrer Hüllbahnen und der Evoluten derselben vorgeschrieben sind. werden die früheren Ergebnisse gelegentlich Verwendung finden; die Ableitung der erforderlichen Formeln erfolgt aber unabhängig von der vorigen Arbeit und nicht, wie damals, auf analytisch-geometrischem Wege.

1. Angenommen, ein System gelange aus der Anfangslage S in die unendlich benachbarten Lagen S', S'', S''' durch aufeinander folgende Drehungen um die Pole P, P', P'', bez. um die Winkel $d\vartheta$, $d\vartheta + d^2\vartheta$, $d\vartheta + 2d^2\vartheta$. Wir bezeichnen die Polbahntangenten PP' und P'P'' bez. mit t und t', den Winkel tt' mit $d\tau$, und setzen ohne Beschränkung der Allgemeinheit unserer Darlegungen die Strecke P'P'' = PP' = du (Fig. 1).

[•] Ueber die Krümmung der Bahnevoluten bei starren ebenen Systemen, diese Zeitschr. Bd. 36 S. 193.

Sei ferner a eine beliebige Systemcurve in der Phase S, A der Krümmungsmittelpunkt des Punktes von a, in welchem a augenblicklich die Höll-



bahncurve a berührt, A auf PA der zugehörige Krümmungsmittelpunkt von a, a, die Evolute von a und A1 der Krümmungsmittela punkt derselben im Punkte A. Kommen a, a_1 , A, A_1 in der Phase S' in die Lagen a', a'₁, A', A'₁, so bestimmt die aus P' an a', gebende Tangente auf a' den Berührungspunkt mit α und auf a', den zugehörigen KrümmungsmittelpunktB; demselben entspreche für a der Krümmungsmittelpunkt B. Dann sind A, B zwei unendlich benachbarte Punkte der Hüllbahnevolute α,; die Normalen in A und B bez zu PA und P'B schneiden sich imKrummungsmittelpunkte A_1 von α_1 an der Stelle A.

Wir setzen nun PA = r, $LAPt = \varphi$, $AA_1 = s$, $PA = \varrho$, P'B' = r + dr, $\angle B'P't' = \varphi + d\varphi$, $P'B = \varrho + d\varrho$, $AA_1 = \sigma$; dann ergiebt sich

$$\sigma = \frac{AB}{d\tau - d\varphi}$$

Ziehen wir noch $PQ \perp P'B$, so ist, von unendlich kleinen Grössen zweiter Ordnung abgesehen,

AB =
$$PA - QB$$

= $e - (e + de) + du \cos(\varphi + d\varphi - d\tau)$
= $du \cos \varphi - de$,
also

$$\sigma = \frac{du \cos \varphi - de}{d\tau - d\varphi}$$
.

Sei ferner b, der Durchmesser des Wendekreises für die Phase S, so ist bekanntlich

$$\left(\frac{1}{r} + \frac{1}{\varrho}\right) \sin \varphi = \frac{1}{b_w} \text{ und } b_w = \frac{du}{d\vartheta},$$

demnach $\varrho = \frac{r \, du \sin \varphi}{r \, d\vartheta - du \sin \varpi}.$ 2)

Durch Anwendung derselben Formel auf die Phase S' folgt

$$\varrho + d\varrho = \frac{(r+dr) du \sin(\varphi + d\varphi)}{(r+dr)(d\vartheta + d^2\vartheta) - du \sin(\varphi + d\varphi)}$$

oder bis auf Grössen erster Ordnung

$$\varrho + d\varrho = \frac{r \, du \, \sin\varphi + du \, (r \cos\varphi \, d\varphi + dr \, \sin\varphi)}{(r \, d\vartheta - du \, \sin\varphi) + (r \, d^2\vartheta + dr \, d\vartheta - du \, d\varphi \, \cos\varphi)}$$

$$= \frac{r \, du \, \sin\varphi}{r \, d\vartheta - du \, \sin\varphi} + \frac{r^2(d\vartheta \, d\varphi \cdot \cos\varphi - d^2\vartheta \, \sin\varphi) - dr \, du \, \sin^2\varphi}{(r \, d\vartheta - du \, \sin\varphi)^2} \, du,$$

also

3)
$$d\varrho = \frac{r^3(d\vartheta d\varphi \cos\varphi - d^2\vartheta \sin\varphi) - dr du \sin^2\varphi}{(r d\vartheta - du \sin\varphi)^2} du.$$

Die hierin enthaltenen unbekannten Grössen dr, $d\varphi$ sind leicht zu ermitteln.

Es ist nämlich

$$P'B'^{2} = P'A'_{1}^{2} - A'_{1}B'^{2}$$
$$= P'A'_{1}^{2} - s^{2}$$

und

$$P'A_1^2 = PA_1^2 + du^2 - 2PA_1 \cdot du \cos A_1 Pt$$

oder bis auf Grössen erster Ordnung

=
$$PA_1^2 - 2 du \cdot PA_1 \cos A_1 Pt$$

= $r^2 + s^2 - 2 du (r \cos \varphi - s \sin \varphi)$,

folglich

4)

$$P'B' = r + dr = \sqrt{r^2 - 2 du(r \cos \varphi - s \sin \varphi)}$$
$$= r - \frac{du}{r} (r \cos \varphi - s \sin \varphi)$$

und demnach

$$dr = -\frac{du}{r} (r \cos \varphi - s \sin \varphi).$$

Es ist ferner, von Grössen zweiter Ordnung abgesehen,

$$L A'P'P = L B'P'P$$

also

$$sin A'P'P = sin(\varphi + d\varphi - d\tau)$$

$$= sin \varphi + (d\varphi - d\tau) cos \varphi.$$

Andererseits folgt aus $\triangle PP'A'$

$$\sin A'P'P = \frac{PA'}{D'A'}\sin A'PP'.$$

Nun geht P'B' für s=0 in P'A' über, also ist nach 4)

$$P'A' = r - du \cos \varphi$$

und daher

$$\begin{split} \sin A'P'P &= \frac{r}{r - du \cos \varphi} \sin(\varphi - d\vartheta) \\ &= \left(1 + \frac{du}{r} \cos \varphi\right) (\sin \varphi - d\vartheta \cos \varphi) \\ &= \sin \varphi - \frac{r d\vartheta - du \sin \varphi}{r} \cos \varphi. \end{split}$$

Durch Vergleichung mit 6) folgt

7)
$$d\varphi - d\tau = -\frac{r d\vartheta - du \sin\varphi}{r}.$$

Dann ergiebt sich mit Rücksicht auf 3), 5), 7)

$$du \cos \phi - d\rho$$

$$=\frac{r^3 du \{d\vartheta (2d\vartheta - d\tau)\cos\varphi + d^2\vartheta\sin\varphi\} - 3r^2 du^2 d\vartheta\sin\varphi\cos\varphi + s du^3\sin^3\varphi}{r(r d\vartheta - du\sin\varphi)^2}$$

und wir erhalten schliesslich aus 1) für den Krümmungsradius der Hüllbahnevolute den Werth

8)
$$\sigma = \frac{r^3 du \left\{ d\vartheta \left(2d\vartheta - d\tau \right) \cos\varphi + d^3\vartheta \sin\varphi \right\} - 3r^2 du^3 d\vartheta \sin\varphi \cos\varphi + s du^5 \sin^3\varphi}{\left(r d\vartheta - du \sin\varphi \right)^3}$$

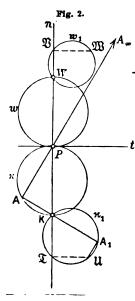
Dabei sind r und du wesentlich positive Grössen. Die Winkel $d\vartheta = APA'$, $d\tau = tt'$, $\varphi = APt$ sind positiv, wenn der zuerst geschriebene Schenkel bei einer Drehung im Sinne des Uhrzeigers den Winkel durchläuft; s wird positiv gerechnet, wenn der Winkel A_1PA in dem eben angegebenen Sinne positiv ist; die positive Richtung von σ ist derjenigen von s entgegengesetzt.

Für s=0 verwandelt sich Gleichung 8) in die früher abgeleitete Formel für den Krümmungsradius der Bahnevolute des Systempunktes A.* Bezeichnen wir denselben wieder mit r, so geht 8) über in

9)
$$\sigma = r + s \left(\frac{\varrho}{r}\right)^3,$$

wobei ϱ mit positivem Vorzeichen zu nehmen ist, so lange A und A auf entgegengesetztem Seiten von P liegen.

Betrachten wir in 9) s als veränderlich, so wird jedem Punkte A_1 der Geraden AA_1 ein Punkt A_1 auf AA_1 zugeordnet, und dann sind die entstehenden Punktreihen einander ähnlich.



a. a. O.

2. Nehmen wir an, der augenblickliche Berthrungspunkt der Curven a und a sei ein Undulationspunkt von a, so ist in Gleichung 8) $r = \infty$, s = 0, und wir erhalten

10)
$$\sigma = \frac{du(2d\vartheta - d\tau)}{d\vartheta^2}\cos\varphi + \frac{dud^2\vartheta}{d\vartheta^3}\sin\varphi$$
.

Dann liegt der Punkt A auf dem Rückkehrkreise x und die Gerade AA, geht durch den Rückkehrpol K; machen wir daher in Fig. 2 auf der Polbahnnormale n

$$P\mathfrak{T} = \frac{du(2d\vartheta - d\tau)}{d\vartheta^2}$$

und auf einer Parallelen zu t

12)
$$\mathfrak{T}\mathfrak{U} = \frac{du d^2\vartheta}{d\vartheta^3},$$

so ist A₁ der Fusspunkt der von $\mathfrak U$ auf AK gefällten Senkrechten, d. h. A₁ liegt auf einem Kreise x₁, der K und $\mathfrak U$ zu Gegenpunkten hat. Daher der Satz:

Die Krümmungsmittelpunkte der Evoluten aller Hüllbahncurven, welche die zugehörigen Systemcurven momentan in Undulationspunkten derselben berühren, liegen auf einem Kreise x, der durch den Rückkehrpol geht.

Aus Gleichung 8) folgt ferner durch Auflösung nach s, wenn zugleich

$$r = \frac{\varrho \, du \sin \varphi}{\varrho \, d\vartheta - du \sin \varphi}$$

$$s = \frac{\varrho^3 \, du \, d\vartheta \, (d\vartheta + d\tau) \cos \varphi - d^2\vartheta \sin \varphi \, (-3\varrho^2 \, du^2 \, d\vartheta \sin \varphi \cos \varphi + \sigma \, du^3 \sin^3 \varphi}{(\varrho \, d\vartheta - du \sin \varphi)^3}$$

Hierdurch wird jedem Punktepaare B, B, des festen Systems ein Punktepaar B, B, des beweglichen Systems zugeordnet. Insbesondere ergiebt sich für $\varrho = \infty, \ \sigma = 0$

$$s = \frac{du (d\vartheta + d\tau)}{d\vartheta^2} \cos \varphi - \frac{du d^2\vartheta}{d\vartheta^3} \sin \varphi,$$

und dann befindet sich B auf dem Wendekreise w und B_i auf einem Kreise w_i , der Wund B zu Gegenpunkten hat, wenn in Fig. 2 W den Wendepol bezeichnet und $P\mathfrak{B} = \frac{du(d\vartheta + d\tau)}{d\vartheta^2}$ auf n

sowie auf einer Parallelen zu t $\mathfrak{V} \mathfrak{W} = \frac{du \, d^2 \vartheta}{d \, \vartheta^3}$

gemacht ist. D. h.: Die Krümmungsmittelpunkte der Evoluten aller Systemcurven, welche die zugehörigen Hüllbahncurven momentan in Undulationspunkten derselben berühren, liegen auf einem Kreise w1, der durch den Wendepol geht.

3. Wir denken uns nunmehr vier unendlich nahe Systemphasen in allgemeinster Weise dadurch festgelegt, dass für irgend zwei Systemcurven l, m in der Phase S die Punkte $LL_1 \wedge \Lambda_1$, $MM_1 \wedge M_1$ gegeben sind dabei bedeutet also L den Krümmungsmittelpunkt desjenigen Punktes der Curve 1, in welchem sie augenblicklich ihre Hüllbahn 1 berührt, A den entsprechenden Krümmungsmittelpunkt von λ , L_1 und Λ_1 die zugehörigen Krümmungsmittelpunkte der Evoluten von l und λ , and es ist $L\Lambda$ senkrecht zu LL_1 und $\Lambda\Lambda_1$. Dann soll für irgend eine andere Systemcurve a der Krümmungsmittelpunkt A, der Hüllbahnevolute construirt werden, wenn die entsprechenden Krümmungsmittelpunkte A, A, bekannt sind.

Zu diesem Zwecke bezeichnen wir mit A*, A₁* die Krümmungsmittelpunkte, die an Stelle von Λ , Λ , treten würden, wenn der augenblickliche Berührungspunkt der Curven l, λ ein Undulationspunkt von l wäre — oder mit anderen Worten die Krümmungsmittelpunkte der Hüllbahn bez. der Hüllbahnevolute der Systemgeraden LL_1 ; es seien ferner M*, M_1 * die enteprechenden Punkte für die Systemgerade MM_1 . Alsdann finden wir aus L, Λ , M, M die Punkte Λ*, M*, sowie den Rückkehrpol K und den Wendepol W mit Hilfe der Bobillier'schen Construction. Setzen wir nun PL = r, $P\Lambda = \varrho$, $LL_1 = s$, $\Lambda \Lambda_i = \sigma$, $LLPt = \varphi$, $PW = PK = \mathfrak{d}_w$, so ist nach Gleichung 10)

$$\Lambda^* \Lambda_1^* = \frac{du \{d\vartheta (2 d\vartheta - d\tau) \cos \varphi + d^2\vartheta \sin \varphi\}}{d\vartheta^3};$$

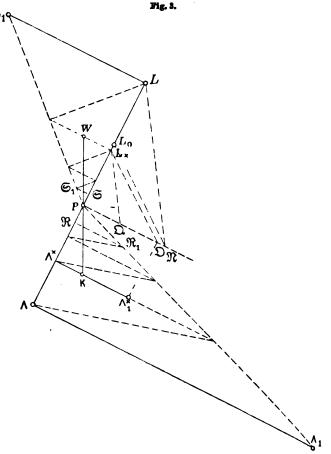
aus Gleichung 8) folgt aber

$$du \{d\vartheta (2 d\vartheta - d\tau) \cos \varphi + d^2\vartheta \sin \varphi\} = \sigma \left(\frac{r d\vartheta - du \sin \varphi}{r}\right)^3 - s \left(\frac{du \sin \varphi}{r}\right)^3 + \frac{3 du^2 d\vartheta \sin \varphi \cos \varphi}{r},$$

also erhalten wir mit Rücksicht auf 2)

$$\Lambda^* \Lambda_1^* = \sigma \left(\frac{b_w \sin \varphi}{a} \right)^8 - s \left(\frac{b_w \sin \varphi}{r} \right)^8 + \frac{3 b_w^2 \sin \varphi \cos \varphi}{r}$$

oder, wenn L_* den Fusspunkt des von W auf PL gefällten Lothes bezeichnet,



Hieraus ergiebt sich für die Strecke $\Lambda^*\Lambda_1^*$ eine einfache Construction. Bezüglich der Ausführung verweisen wir auf Fig. 3; in derselben ist

$$\Re \, \Re_{\mathbf{1}} = \Lambda \, \Lambda_{\mathbf{1}} \left(\frac{P \, \Lambda^*}{P \, \Lambda} \right)^{\! 3}, \quad \mathfrak{S} \, \mathfrak{S}_{\mathbf{1}} = L \, L_{\mathbf{1}} \left(\frac{P \, L_*}{P \, L} \right)^{\! 3},$$

 $P\Re$ senkrecht zu PL und gleich 3. WL_* , $L_*\mathfrak{Q}$ parallel zu $L\Re$, also $\Lambda \Lambda_i^* = \Re \Re_1 - \mathfrak{SS}_1 + P\mathfrak{Q}$.

In ganz derselben Weise finden wir den Punkt M_1^* , und dann ist durch Λ_1^* , M_1^* und den Rückkehrpol K der Kreis s_1 bestimmt.

Nach diesen Vorbereitungen ist der gesuchte Krümmungsmittelpunkt A_1 leicht zu ermitteln. Sind nämlich A_* und A^* bez. die Fusspunkte der von W und K auf PA gefällten Lothe und trifft die Gerade KA^* den Kreis x_1 in A_1^* , so ist nach Gleichung 13)

$$A^*A_1^* = AA_1 \left(\frac{PA^*}{FA}\right)^3 - AA_1 \left(\frac{PA_*}{PA}\right)^3 + 3 \cdot \frac{PA_* \cdot WA_*}{PA}$$

folglich haben wir die Strecke AA, zu construiren nach der Formel

$$\mathsf{A}\,\mathsf{A}_1 = \left(\mathsf{A}^*\,\mathsf{A}_1^{\,*} - 3 \cdot \frac{PA_*\,.\,WA_*}{PA}\right) \cdot \left(\frac{P\,\mathsf{A}}{P\,\mathsf{A}^*}\right)^3 + AA_1 \cdot \left(\frac{P\,\mathsf{A}}{PA}\right)^3 \cdot$$

4. Aus diesen Darlegungen folgt zugleich eine Lösung der Aufgabe, die Krümmungsradien ϱ_{π} , ϱ_{p} der Polbahn bez. der Polcurve zu construiren, wenn vier aufeinander folgende Systemlagen durch die Punkte $L \wedge L_{1} \wedge_{1}$, $M \wedge M_{1} \wedge_{1}$ gegeben sind. Ertheilen wir nämlich der Strecke ϱ_{π} das positive Vorzeichen, wenn der betreffende Krümmungskreis unterhalb der Polbahntangente liegt, und rechnen ϱ_{p} in entgegengesetztem Sinne positiv, so ergiebt sich aus Fig. 1

 $\varrho_{n} = \frac{du}{dt},$ $\frac{1}{\varrho_{p}} + \frac{1}{\varrho_{n}} = \frac{1}{\vartheta_{w}} = \frac{d\vartheta}{du},$ $\varrho_{p} = \frac{du}{d\vartheta - d\tau}.$

und es ist

also

Haben wir nun den Kreis \varkappa_1 in der vorhin angegebenen Weise ermittelt und schneidet derselbe die Polbahnnormale in \mathfrak{T} (Fig. 2), so erhalten wir mit Rücksicht auf Gleichung 11) die leicht zu construirenden Ausdrücke*

$$\varrho_{\pi} = \frac{\mathfrak{d}_{w}^{2}}{\mathfrak{d}_{w} - \mathsf{K}\mathfrak{T}} = \frac{\mathfrak{d}_{w}^{2}}{W\mathfrak{D}}, \quad \varrho_{p} = \frac{\mathsf{d}_{w}^{2}}{\mathsf{K}\mathfrak{T}}.$$

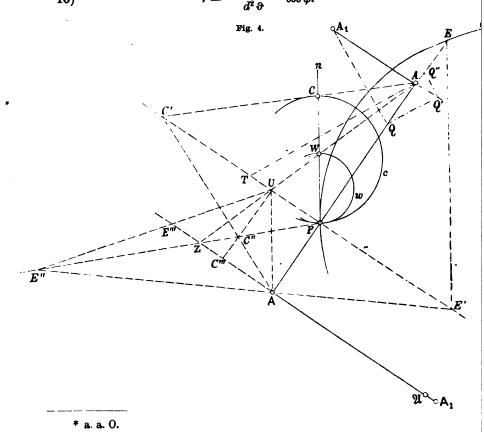
5. Wir entwickeln im Folgenden noch eine zweite Construction für den Krümmungsmittelpunkt der Hüllbahnevolute. Durch Gleichung 9) ist die Bestimmung des Punktes A zurückgeführt auf die Ermittelung des

^{*} Vergl. auch Grübler, Die Krümmung der Polbahnen, diese Zeitschrift, Bd. 34 S. 305. Bilden wir die Gleichung 8) sowohl für L, als für M, so finden wir durch Elimination von $d^2\theta$ nach kurzer Rechnung die von Herrn Grübler abgeleiteten Formeln für $\frac{1}{\ell_n}$ und $\frac{1}{\ell_n}$.

Setzen wir in Gleichung 8) $s = \sigma = 0$, so folgt

14) $r \{d\vartheta(2d\vartheta - d\tau)\cos\varphi + d^2\vartheta\sin\varphi\} - 3dud\vartheta\sin\varphi\cos\varphi = 0$ als Polargleichung der Kreispunkteurve des Systems in der Phase S, d. h. des Ortes derjenigen Systempunkte, die augenblicklich Bahnelemente mit stationärem Krümmungskreise durchschreiten. Die Kreispunkteurve hat in P einen Doppelpunkt mit den Tangenten t und n; für die zugehörigen Krümmungskreise c und e erhalten wir aus 14) bez. die Gleichungen

15)
$$r = \frac{3 du}{2 d\vartheta - d\tau} \sin \varphi$$
und
$$r = \frac{3 du d\vartheta}{d^2 \vartheta} \cos \varphi.$$



Sind nun die Kreise c und e, sowie der Wendekreis w gegeben, so ist hierdurch die Bewegung des Systems aus der Phase S in die drei unmittelbar folgenden Phasen bestimmt, und dann ergiebt sich, wie früher abgeleitet wurde, zu irgend einem Systempunkte A der Krümmungsmittelpunkt A seiner Bahnevolute in folgender Weise. (Fig. 4.) Wir verbinden A mit dem Wendepol W, errichten in P zu PA ein Loth, welches die Polbahnnormale n in U schneidet, ziehen UA parallel zu n bis A auf PA und durch A eine Parallele zu PU; dieselbe trifft AW in Z. Sind ferner C und E bez. die Schnittpunkte von c mit n und von e mit PA, und trifft PU die Gerade AC in C', eine durch E gehende Parallele zu n in E', so projiciren wir die Punkte C', E' aus A auf AZ und die so gefundenen Punkte AZ auf AZ und AZ. Erhalten wir hierdurch die Punkte AZ is ist AZ auf AZ aufzutragen haben, weil in unserer Figur der Punkt E' ausserhalb der in der Richtung von P nach U durchlaufenen Strecke PC' liegt.

Durch dieselbe Construction finden wir aber auch den Krümmungsmittelpunkt A_1 der Hüllbahnevolute einer Systemcurve a, wenn A den Krümmungsmittelpunkt von a bezeichnet und wenn überdies der zugehörige Krümmungsmittelpunkt A_1 der Evolute von a gegeben ist. Es ist nämlich nach 9)

$$AA_{i} = AX + AA_{i} \left(\frac{PA}{PA}\right)^{3};$$

machen wir daher auf PU die Strecke PT = PA und ziehen A_1Q senkrecht zu AT bis PA, QQ' parallel zu AT bis AA_1 , Q'Q'' parallel zu A_1Q bis PA, so erhalten wir den Punkt A_1 , indem wir die Strecke AQ'' von \mathfrak{A} aus entgegengesetzt zu AA_1 auf $A\mathfrak{A}$ abtragen.

6. Sind nun vier unendlich benachbarte Systemlagen wie unter 3 definirt durch Angabe der Punkte $L \wedge L_1 \wedge_1$, $M \wedge M_1 \wedge_1$, und soll zu irgend einem Punktepaare A, A_1 der Punkt A_1 nach dem zuletzt entwickelten Verfahren construirt werden, so müssen wir zuvor die Kreise c, e aus den Daten der Aufgabe bestimmen. Bezeichnen wir die Durchmesser von c, e bez. mit b_c , b_e , so ist nach 15) und 16)

bez. mit
$$b_c$$
, b_e , so ist nach 15) und 16)
$$b_c = \frac{3 du}{2 d\vartheta - d\tau},$$

18)
$$\mathfrak{d}_e = \frac{3 du d\vartheta}{d^2\vartheta},$$

oder mit Rücksicht auf die Gleichungen 11) und 12) (Fig. 2)

$$b_{\sigma} = \frac{3 b_{w}^{2}}{P \mathfrak{T}}, \quad b_{\sigma} = \frac{3 b_{w}^{2}}{\mathfrak{T} \mathfrak{U}},$$

und hiernach können wir b_c , b_c leicht construiren, sobald wir den Kreis z_1 in der vorher angegebenen Weise bestimmt haben.

Einfacher gestaltet sich aber die Construction von b_c , b_e , wenn wir zunächst die Punkte L_0 , M_0 ermitteln, in denen bez. die Geraden PL, PM die Kreispunkteurve schneiden.

Setzen wir $PL_0 = r_0$ und wie oben $LLPt = \varphi$, so folgt aus Gleichung 14)

 $r_0 = \frac{3 du d\vartheta \sin \varphi \cos \varphi}{d\vartheta (2 d\vartheta - dz) \cos \varphi + d^2\vartheta \sin \varphi}$

Nun ist aber in Fig. 3 $\Lambda^* \Lambda^*_{1} = \frac{du \{d\vartheta (2 d\vartheta - d\tau) \cos \varphi + d^2\vartheta \sin \varphi\}}{d\vartheta^3},$

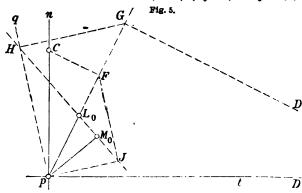
mithin wird

$$r_0 = \frac{3 \, \mathrm{b_w}^2 \sin \varphi \, \cos \varphi}{\Lambda^* \, \Lambda_1^{\, *}} = \frac{P \, L_* \, . \, P \, \Re}{\Lambda^* \, \Lambda_1^{\, *}} \, \cdot \,$$

Machen wir daher in Fig. 3 $\mathfrak{Q}\mathfrak{D}=\mathfrak{R}\mathfrak{R}_1-\mathfrak{S}\mathfrak{S}_1$, so erhalten wir den Punk $L_{\scriptscriptstyle 0}$, indem wir durch ${\mathfrak N}$ zu ${\mathfrak D} L_{\scriptstyle *}$ eine Parallele ziehen.

Wir denken uns in derselben Weise den Punkt Mo bestimmt und b zeichnen PM_0 mit r'_0 , LMPt mit φ' . Bilden wir dann die Gleichung d Kreispunktcurve sowohl für den Punkt L_0 , als für M_0 und eliminiren m schen beiden Gleichungen $d^2\vartheta$ bez. $2d\vartheta-d\tau$, so ergiebt sich nach und 18)

 $b_c = \frac{r_0 r'_0 \sin(\varphi - \varphi')}{\sin\varphi \sin\varphi'(r_0 \cos\varphi' - r'_0 \cos\varphi)},$ $b_e = \frac{r_0 r'_0 \sin(\varphi - \varphi')}{\cos\varphi \cos\varphi'(r'_0 \sin\varphi - r_c \sin\varphi')}$



Sei nun in F q die Verbindul linie des Poles mit dem Schm punkte der nie gezeichneten Ger $\operatorname{den} LM$ and Λ so ist bekanntlit $L q PL_0 = \varphi'$. Simi former H and J be die Schnittpunkt der Geraden L.

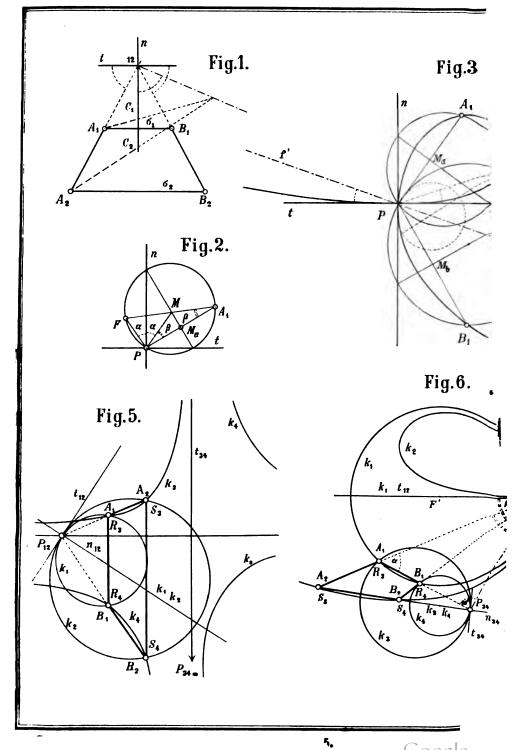
mit q und mit einer Normalen in P zu q und bezeichnen wir LL_0HP mit ψ , die Entfernung des Punktes P von $L_0 M_0$ mit h, so erhalten wir

$$\begin{split} \frac{r_0 \, r'_0 \, sin(\varphi - \varphi')}{r_0 \, cos \, \varphi' - r'_0 \, cos \, \varphi} &= \frac{L_0 \, M_0 \, . \, h}{L_0 \, M_0 \, . \, cos \, \psi} = PJ, \\ \frac{r_0 \, r'_0 \, sin(\varphi - \varphi')}{r'_0 \, sin \, \varphi - r_0 \, sin \, \varphi'} &= \frac{L_0 \, M_0 \, . \, h}{L_0 \, M_0 \, . \, sin \, \psi} = PH, \\ b_c &= \frac{PJ}{sin \, \varphi \, sin \, \varphi'}, \quad b_c &= \frac{PH}{cos \, \varphi \, cos \, \varphi'}. \end{split}$$

folglich wird

Hieraus ergiebt sich aber die folgende einfache Construction. Wir riehen durch J und H bez. Parallelen zu PH, PJ, bestimmen die Schnittpunkte F, G derselben mit PL_0 und errichten in F und G zu PL_0 die Lothe FCund GD. Schneidet FC die Polbahnnormale in C, GD die Polbahntangente in D, so sind C und D die Gegenpunkte von P bez. in den Kreisen c und A

Braunschweig, 10. Mai 1891. Digitized by Google



XVII.

Die Bestimmung der Kreispunkteurven eines ebenen Gelenkvierseits.

Von

Prof. Dr. C. RODENBERG in Hannover.

Hierzu Taf, IX,

Für die Relativbewegung zweier starrer Systeme σ_1 und σ_2 ist durch die bekannten Bobillier'schen Constructionen die quadratische Verwandtschaft der Krümmungsmittelpunkte gegeben, sobald zu zwei Punkten A_1 , B_1 von σ_1 die ihnen bez. entsprechenden A_2 , B_2 gegeben sind. Mit der nächstfolgenden Aufgabe, der Construction des Ortes derjenigen Punkte des einen Systems, welche in Bezug auf das andere Bahnen mit stationären Krümmungskreisen beschreiben, beschäftigt sich dieser Aufsatz und löst die Aufgabe unter der Voraussetzung, dass die Bobillier'schen Bestimmungselemente die hervorgehobene ausgezeichnete Eigenschaft besitzen, also den gesuchten Orten k_1 und k_2 , den "Kreispunktcurven" angehören. Diese Voraussetzung trifft zu bei den Gegenseiten A_1B_1 und A_2B_2 eines Gelenkvierseits (Fig. 1), weil hier die Bahnen der Gelenkpunkte A_1 , B_1 im System σ_2 Kreise sind, und natürlich auch umgekehrt A_2 , A_3 in a_4 Kreise beschreiben.

Nun hat Herr Burmester* den Satz bewiesen: Sind vier Relativlagen zweier Systeme σ_1 und σ_2 gegeben, so erfüllen diejenigen Punkte des einen Systems, deren vier Lagen im andern System sich auf einem und demselben Kreise befinden, eine Focalcurve dritter Ordnung. Für vier consecutive Lagen bei continuirlicher Bewegung gehen jene Curven natürlich in die von uns gesuchten k_1 und k_2 über, aber es ist, wie es scheint, nicht möglich, die von Herrn Burmester gegebenen Constructionen auf den vorliegenden Fall zu übertragen.

Behufs einer ersten Orientirung über das Verhalten dieser Curven k_1 und k_2 betrachten wir den speciellen Fall eines gleichschenkligen Gelenktrapezes. Sei in Fig. 1 dementsprechend $A_1A_2=B_1B_2$, $A_1B_1\|A_2B_2$. Dann

^{*} Vergl. "Lehrbuch der Kinematik", Bd. I Abschn. 9.

ist, wie die in der Figur angedeutete Bobillier'sche Construction* ergiebt, die Rollcurventangente t der Glieder σ_1 , σ_2 parallel $A_1 B_1$ und die Normale n eine Symmetrielinie der Figur. Auf dieser Geraden sei $C_1 C_2$ ein Paar sich entsprechender Krümmungsmittelpunkte. Der bemerkten Symmetrie wegen müssen aber die Krümmungskreise aller Bahnen von solchen Punkten eine gerade Anzahl von Punkten im Berührungspunkte mit der Bahneurve gemein haben, d. h. mindestens vier; und irgend ein Funkt C_1 liegt daher auf k_1 , C_2 auf k_2 . Jede der Curven k_1 und k_2 zerfällt demnach in die Rollcurvennormale n und in einen Kreis. Da diese Kreise sich in der quadratischen Verwandtschaft entsprechen, so berührt jeder von ihnen die Rollcurventangente im Pole 12. Für die vier in Betracht kommenden consecutiven Lagen kann die Bewegung auch durch das Vierseit $A_1 C_1 C_2 A_2$ bewirkt werden, und da man von diesem ausgehend auch umgekehrt wieder das ursprüngliche Trapez construiren kann, so folgt:

 Enthält eine Kreispunkteurve einen einzigen Punkt der Rolleurvennormale, welcher nicht dem Pole unendlich nahe liegt, so zerfällt die Curve in jene Normale und in einen Kreis, welcher die Rolleurventangente im Pole berührt. Genau so verhält sich die Kreispunkteurve des zweiten Systems.

Insbesondere gehören dann auch die Krümmungsmittelpunkte der Rollcurven den Kreispunktcurven an, und umgekehrt:

 Besitzen in einem Augenblicke der Bewegung die Rollcurven im Pole stationäre Krümmungskreise, so zerfällt jede Kreispunktcurve so, wie im Satz 1 angegeben.

Für das Gelenkvierseit folgt aus 1. insbesondere:

1a) Liegen bei einem Gelenkvierseit zwei entsprechende Gelenkpunkte zweier Gegenseiten auf der Rollcurvennormalen, so besteht die Kreispunkteurve jedes dieser Glieder aus der Normalen und einem Kreise, welcher die Rollcurventangente im Pole berührt und daher durch den zweiten Gelenkpunkt eines jeden der betreffenden Glieder bestimmt ist.

Eine nicht zerfallende Kreispunktcurve kann daher von der Rollcurvennormalen nur in drei dem Pole unendlich nahe liegenden Punkten getroffen werden und es ergiebt sich leicht, dass eine solche Curve sich in Bezug auf die Rollcurventangente ebenso verhält. Denn einem Punkte X_1 der Tangente entspricht in der quadratischen Verwandtschaft als X_2 stets der Pol; der vollständigen Reciprocität von k_1 und k_2 wegen ist also ein Punktepaar, welches nicht dem Pol unendlich nahe liegt, im Allgemeinen unmöglich.

^{*} Vergl. Burmester, "Lehrbuch der Kinematik", Bd. I S. 97 fig.

Daraus folgt:

3. Bei continuirlicher Bewegung hat jede Kreispunktcurve den Pol zum Doppelpunkt,* dessen ausgezeichnete Tangenten die Rollcurventangente und -Normale sind.

Eine solche Curve wird bekanntlich erzeugt durch die Schnittpunkte entsprechender Curven eines Kreisbüschels mit vereinigten Basispunkten und eines ihm projectiven Strahlenbüschels, dessen Strahlen durch die Mittelpunkte der ihnen zugeordneten Kreise gehen. Der geradlinige Ort der Mittelpunkte heisst die Focalaxe, das Centrum des Strahlenbüschels das Focalcentrum der Focalcurve. Die Focalaxe geht durch den Doppelpunkt und dessen Tangenten halbiren die beiden Winkel, welche von der Verbindungslinie des Focalcentrums mit dem Doppelpunkte und der Focalaxe eingeschlossen werden.

Da nun nach der Bobillier'schen Construction die Tangenten des Doppelpunktes als bestimmt angesehen werden können, so erscheint die anfangs gestellte Aufgabe nunmehr in der Form: Aus zwei Punkten A_1 , B_1 (Fig. 3) einer Focalcurve mit dem Doppelpunkte P und dessen Tangenten Pt und Pn das Focalcentrum F und die Focalaxe f zu construiren.

Denken wir zunächst in Fig. 2 ausser Pt und Pn nur einen Punkt, etwa A_1 gegeben und suchen den geometrischen Ort der F aller dann noch möglichen Focalcurven. Der Ort der Mittelpunkte aller durch A_1 und P gehenden Kreise ist die zu A_1P in ihrer Mitte M_{α} errichtete Senkrechte. Ist M der Mittelpunkt eines solchen Kreises und macht man $LMPn = LnPF = \alpha$, so ist offenbar der Schnittpunkt F der Geraden PF mit A_1M ein Focalcentrum, PM die zugehörige Focalaxe einer Curve der möglichen Schaar. Nun ist aber $LMPA_1 = LMA_1P = \beta$ und daher $LPFA_1 = 180^{\circ} - 2(\alpha + \beta)$, d. h. constant. Der gesuchte Ort der Punkte F ist daher ein Kreis, dessen Durchmesser die von den Tangenten des Doppelpunktes auf MM_{α} abgeschnittene Strecke ist.

Für B_1 erhält man in gleicher Weise einen solchen Kreis und daher die Vorschrift:

Um zu zwei einander gegenüberliegenden Seiten eines Gelenkvierseits A_1B_1 , A_2B_2 die Kreispunkteurven k_1 und k_2 zu construiren, verbinde man zur Bestimmung von k_1 (Fig. 3) A_1 und B_1 mit dem Pole P, errichte in den Mitten M_a und M_b dieser Geraden Senkrechte, schneide sie mit der Rolleurventangente Pt und -Normalen Pn, und beschreibe über die hierdurch auf jenen Senkrechten abgeschnittenen Strecken als Durchmesser zwei Kreise, welche sich ausser im Pole im gesuchten Focal-

^{*} Dass ein Doppelpunkt auftreten müsse, theilte mir Herr A. Schönflies brieflich mit.

centrum F' treffen. Die Focalaxe f' ergiebt sieh dann orthogonal symmetrisch zu PF' in Bezug auf Pt oder Pn. Aus A_2B_2 erhält man in derselben Weise F'', wenn man nicht vorzieht, k_2 aus der quadratischen Verwandtschaft zu construiren.

Hervorgehoben sei, dass sich weder die Focalcentra, noch die Focalaxen in der quadratischen Verwandtschaft entsprechen.

Die Focalaxe trifft ihre Curve in dem einzigen reellen unendlich fernen Punkte, welchen sie besitzt, und dieser ist Krümmungsmittelpunkt der Bahn des Schnittpunktes jenes Strahles mit der andern Focalcurve, d. h. dieser Punkt beschreibt einen Undulationspunkt; wir nennen ihn mit Hrn. Mehmke den Ball'schen Punkt; er gehört natürlich auch dem Wendekreise des letzten Systems an. In Fig. 4 sind k_1 und k_2 gezeichnet. Der Wendekreis von ϵ_1 ist $\epsilon v'$, der Ball'sche Punkt U_1 ; für σ_2 sind $\epsilon v'' V_2$ die analogen Gebilde. Wir fassen noch einmal zusammen:

4. Die Focalaxe einer Kreispunktcurve trifft den Wendekreis des andern Systems ausser im Pole noch in dem Ball'schen Punkte, welcher insbesondere einen Undulationspunkt beschreibt.

Die Kreispunkteurven k_1 und k_2 können sich, ausser im Pole und in den imaginären Kreispunkten auf der unendlich fernen Geraden, nirgends schneiden, da ein solcher Schnittpunkt sich in der quadratischen Verwandtschaft selbst entsprechen müsste, eine Eigenschaft, welche nur den erwährten Punkten zukommt. Im Pole liegen daher 3.3-2=7 Schnittpunkte vereinigt, und da deren auf jeder Doppelpunktstangente mindestens drei liegen, so haben wir auf der einen drei, auf der andern vier. der Ausartung jeder dieser Curven in einen Kreis und der Rollcurvennormalen haben wir auf dieser Geraden unendlich viele Schnittpunkte von k, und k2, auf der Rollcurventangente nur drei, denen auch nie ein vierter beitreten kann, da ausserhalb des Poles kein Schnittpunkt reell vorhanden Der Schluss, dass im Allgemeinen die Zweige von k, und k, sich an der Rollcurvennormalen osculiren, an der Rollcurventangente einfach berühren, wird durch Anschauung der Figur 4 bestätigt-Doch möge diese Thatsache durch die folgende analytische Behandlung noch einmal erwiesen werden.

Bezogen auf ein rechtwinkliges Coordinatensystem der Doppelpunktstangenten, ergiebt sich aus der oben angegebenen projectiven Erzeugungsweise leicht als Gleichung einer Kreispunktcurve:

mit der Geraden
$$(x^3 + y^2)(ax + by) - xy = 0$$
$$ax + by = 0$$

als Focalaxe und dem Punkte, dessen Coordinaten

$$\alpha = \frac{b}{2(a^2+b^2)}, \quad \beta = \frac{a}{2(a^2+b^2)}$$

sind, als Focalcentrum.

Für unsere Entwickelung ist es zweckmässiger, Polarcoordinaten r, φ durch die Gleichungen

 $r = x \cdot \cos \varphi, \quad y = r \cdot \sin \varphi$

einzuführen, wodurch die Curvengleichung übergeht in:

$$\frac{1}{r} = \frac{a}{\sin \varphi} + \frac{b}{\cos \varphi};$$

die Coordinaten c, & des Focalcentrums in der Form

$$c = \frac{1}{2\sqrt{a^2 + b^2}}, \quad tg \vartheta = \frac{a}{b}$$

erscheinen, und der Winkel ϑ^* , den die Focalaxe mit der Abscissenaxe einschließt, bestimmt ist durch $tg \, \vartheta^* = -\frac{a}{b}$.

Sei nun die Rollcurvennormale die Axe $\varphi = 0$, und haben die gegebenen Punktepaare $A_1 A_2$, $B_1 B_3$ die Coordinaten der Klammern in der Schreibweise: $A_1(l_1 \psi), A_2(l_2 \psi); B_1(m_1 \chi), B_2(m_2 \chi),$

we aus Zweckmässigkeitsgründen die Argumente ψ und χ nur Werthe zwischen 0° und 180° , die Radien vectoren aber negative Werthe annehmen sollen, wenn bei sonst üblicher Zählung das Argument zwischen 180° und 360° liegt.

Dann bestehen infolge der quadratischen Verwandtschaft die Beziehungen

$$\cos\psi\left(\frac{1}{l_1}-\frac{1}{l_2}\right)=\cos\chi\left(\frac{1}{m_1}-\frac{1}{m_2}\right)=\frac{1}{d},$$

wo d der Durchmesser des Wendekreises ist. Hierbei ist jedoch zu bemerken, dass in einer Klammer statt der Differenz die Summe zu nehmen ist, sobald A_1 und A_2 (oder B_1 und B_2) auf verschiedenen Seiten des Strahles vom Pole aus liegen, da die Argumente von A_1 und A_2 als gleichwerthig und nicht als um 180° verschieden aufgefasst werden.

Setzt man nun als Gleichungen von k_1 und k_2 bezw.

$$\frac{1}{r} = \frac{a_1}{\sin \omega} + \frac{b_1}{\cos \omega}, \quad \frac{1}{r} = \frac{a_2}{\sin \omega} + \frac{b_3}{\cos \omega},$$

so muss sein:

$$\begin{split} \frac{1}{l_{1}} &= \frac{a_{1}}{\sin \psi} + \frac{b_{1}}{\cos \psi}, \quad \frac{1}{m_{1}} &= \frac{a_{1}}{\sin \chi} + \frac{b_{1}}{\cos \chi}, \\ \frac{1}{l_{2}} &= \frac{a_{2}}{\sin \psi} + \frac{b_{2}}{\cos \psi}, \quad \frac{1}{m_{2}} &= \frac{a_{2}}{\sin \chi} + \frac{b_{2}}{\cos \chi}, \end{split}$$

woraus folgt

$$\begin{split} &\frac{1}{l_1} - \frac{1}{l_2} = \frac{1}{\sin\psi} \left(a_1 - a_2 \right) + \frac{1}{\cos\psi} \left(b_1 - b_2 \right), \\ &\frac{1}{m_1} - \frac{1}{m_2} = \frac{1}{\sin\chi} \left(a_1 - a_2 \right) + \frac{1}{\cos\chi} \left(b_1 - b_2 \right) \end{split}$$

and durch Elimination von $b_1 - b_2$

$$\cos\psi\left(\frac{1}{l_1}-\frac{1}{l_2}\right)-\cos\chi\left(\frac{1}{m_1}-\frac{1}{m_2}\right)=(a_1-a_2)\left(\cot\psi-\cot\chi\right).$$

Der Ausdruck linker Hand muss aber nach der obigen Verwandtschaftsgleichung verschwinden, d. h. es ist entweder

$$a_1 = a_2$$
 oder $\psi = \chi$.

Im letzteren Falle hätten wir ein durchschlagendes Kurbelgetriebe in einer Verzweigungslage, die Punktepaare würden den Pol nicht mehr eindeutig bestimmen und die Kreispunktcurven ausarten. Schliessen wir diesen Fall aus, so bleibt im Allgemeinen nur

D. h.:
$$a_1 = a_2$$
.

5. Nimmt man die Bolleurvennormale zur Axe $\varphi = 0$ eines Polarcoordinatensystems $r\varphi$, so sind die Gleichungen der Kreispunkteurven k_1 und k_2 bezw.

$$\frac{1}{r} = \frac{a}{\sin \varphi} + \frac{b_1}{\cos \varphi}, \quad \frac{1}{r} = \frac{a}{\sin \varphi} + \frac{b_2}{\cos \varphi}$$

Um das bereits bemerkte Verhalten der Curven im Ursprung nachzuweisen, nehmen wir zunächst die Coefficienten von $\frac{1}{\sin \varphi}$ als verschieden an und lassen sie dann einander gleich werden. Durch Subtraction beider Gleichungen, unter Annahme desselben Werthes von r in beiden, erhalten wir

$$0 = \frac{1}{\sin \varphi} (a_1 - a_2) + \frac{1}{\cos \varphi} (b_1 - b_2)$$

und daher als Argument des einzigen ausserhalb des Poles im Endlichen liegenden Schnittpunktes

 $tg\,\varphi=-\frac{a_1-a_2}{b_1-b_2}$

Werden nun durch stetige Aenderung a_1 und a_2 einander gleich, so wird $\varphi = 0$, d. h. der Punkt rückt auf dem Zweige, welcher die Rollcurvennormale berührt, in den Pol, wie oben ausgesprochen wurde.

Nach Erledigung des allgemeinen Falles mögen noch einige Sonderlagen des Gelenkvierseits betrachtet werden, in denen die eine oder beide Kreispunkteurven ausarten, wie wir es bei den einleitenden Beispielen schon beobachten konnten. Dabei wird sich die folgende Bemerkung als nützlich erweisen. Wenn ein Zweig einer Focalcurve mit Doppelpunkt in diesem von einem Kreise berührt wird, so haben beide Curven dort (mindestens) drei unendlich nahe Punkte miteinander gemein, und können sich daher ausser in den imaginären Kreispunkten nur noch in einem weiteren Punkte schneiden, oder sofern noch zwei Schnittpunkte nachgewiesen werden können, enthält die Focalcurve den Kreis als einen Theil. Daraus folgt für eine Kreispunkteurve: Berührt der durch zwei Gelenkpunkte eines und desselben Gliedes eines Gelenkvierseits und den Pol in Bezug auf das gegenüberliegende Glied gelegte Kreis die Rollcurventangente oder - Normale, so zerfällt die Kreispunkteurve des ersten Gliedes in jenen Kreis und seinen durch den Pol gehenden Durchmesser. In beiden, wesentlich voneinander ver-

schiedenen Fällen besitzen auch die Kreispunkteurven k_3 , k_4 des andern Paares von Gegenseiten, deren Systeme durch σ_3 , σ_4 bezeichnet seien, bemerkenswerthe Eigenschaften, weshalb deren Betrachtung gleich nebenher mit erledigt werden soll.

Wird (Fig. 5) die Rolleurventangente t_{12} im Pole P_{12} vom Kreise durch A_1B_1 berührt, so ist die Aronhold'sche Collineationsaxe des Normalstrahlenpaares $P_{12}A_1$, $P_{12}B_1$ parallel A_1B_1 , daher auch $A_1B_1 \parallel A_2B_2$, und auch der durch A_2B_2 und P_{12} gelegte Kreis berührt t_{12} . In diesem Falle ist also der Pol P_{34} des andern Paares von Gegenseiten $\sigma_3 \sigma_4$ unendlich fern. Die Rollcurventangente t_{34} ist gegeben durch die Beziehung: Abstand P_{12} von $A_1B_1 = Abstand$ der Geraden A_2B_2 und t_{34} . Die Rolleurvennormale ist die unendlich ferne Gerade $n_{34\,\infty}$ und diese hat mit jeder der Kreispunktcurven k, und k, fünf, und folglich unendlich viele Punkte gemein, d. h. jede Curve zerfallt in die unendlich ferne Gerade und eine Hyperbel, deren eine Asymptote t_{34} ist. Wie sich durch Grenzübergang aus der allgemeinen Construction des Focalcentrums ergiebt, rückt dieses in den unendlich fernen Pol P_{34} und die Focalaxe fällt mit t_{34} zusammen. Das die Focalcurve erzeugende Strahlenbüschel ist also ein Parallelstrahlenbüschel zu $t_{
m s4}$ und die Kreise des Kreisbüschels zerfallen in die Normalen zu $t_{\rm 84}$ und die unendlich Nur die Normalen kommen bei der Erzeugung einer der ferne Gerade. Hyperbeln in Betracht, diese ist daher gegenseitig. Von den beiden erzeugenden Strahlenbüscheln sind durch die gegebenen Curvenpunkte drei Strahlenpaare gegeben, nämlich für ${k_3 \brace k_4}$ die Paare t_{84} , $n_{84} \infty$; $\overline{R_8 R_4}$, die Normale von $\{R_3\}$ zu t_{34} ; $\overline{S_3S_4}$, die Normale von $\{S_3\}$ zu t_{34} . Man findet hieraus das Perspectiveentrum der beiden Büschel, für k_3 sowohl als für k_4 , im Fusspunkt der vom Pole P_{12} auf t_{34} gefällten Senkrechten gelegen; letztere Senkrechte ist daher die gemeinschaftliche zweite Asymptote. Da die Wendekreise der Systeme in die Rollcurventangente und in die unendlich ferne Gerade zerfallen, so giebt es keinen einzigen Punkt, welcher einen Undulationspunkt beschreibt. Ganz anders gestaltet sich die Sache bei der besondern Annahme, dass eine der nicht parallelen Seiten des Gelenktrapezes, etwa R_3S_3 , senkrecht zu t_{34} steht; denn dann wird die zugehörige Hyperbel zum Geradenpaar der früheren Asymptoten und es beschreibt plötzlich je der Punkt von t_{34} einen Undulationspunkt. Wir fassen das Gesammtergebniss in dem folgenden Satze zusammen:

6. Sind o1, o2 zwei einander gegenüberliegende Systeme eines Gelenkvierseits und berührt der durch zwei Gelenkpunkte eines dieser beiden Systeme und den Polgelegte Kreis die Rollcurventangente, so trifft dasselbe für das zweite System zu, und die Kreispunkteurven zerfallen in diese Kreise und die Rollcurvenment male. Der Wendepol ist in jedem System der Britze hie

Punkt. Die Verbindungslinie der Gelenkpunkte eines dieser Systeme ist in diesem Falle parallel der Verbindungslinie der Gelenkpunkte des andern, und daherist der Pol der beiden übrigen einander gegenüberliegenden Systme og, og unendlich fern. Die Kreispunkteurven ks, k4 zerfallen in die unendlich ferne Gerade und in je eine gleichseitige Hyperbel, deren gemeinschaftliche Asymptoten die Rollcurventangente tsa und die vom Pole der Systeme σ_1 , σ_2 auf t_{84} gefällte Normale sind. Da t₈₄ auch den im Endlichen verlaufenden Theil jedes der Wendekreise von og, og darstellt, so beschreibt kein Punkt eines dieser Systeme im andern einen Undulstionspunkt. Nur in dem besondern Falle, dass eine der nicht parallelen Seiten des nachgewiesenen Gelenktrapezes senkrecht zu den parallelen steht, zerfällt die dem System jener Seite angehörige Hyperbel in die früheren Asymptoten und mithin beschreibt dann jeder Punkt von ts4, als diesem System angehörig betrachtet, im System der Gegenseite einen Undulationspunkt.*

Die weitere Specialisirung des am Schlusse des letzten Satzes hervorgehobenen Falles durch Annahme eines Gelenkrechtecks würde keine Kreispunkt curven mehr ergeben, denn schon bei einem Gelenkparallelogramm beschreibt jeder Punkt des Systems einer Seite in Bezug auf das System seiner Gegenseite einen Kreis.

Wir wenden uns nun zur Betrachtung der zweiten als möglich erkannten Art des Zerfallens der Focalcurve in einen die Rollcurvennormale berührenden Kreis und in die Rollcurventangente. Berühre demnach (Fig. 6) der Kreis durch A_1B_1 und P_{12} in diesem Punkte die Normale n_{12} . Ist der Winkel $P_{12}A_1B_1=\alpha$, so ist auch der Winkel $n_{12}P_{12}B_1=\alpha$, und ist ferner der Winkel $t_{19}P_{12}B_1=\beta$, so ist nach der Bobillier'schen Construction auch der Winkel $A_1 P_{12} P_{34} = \beta$. Nun ist aber $L n_{12} P_{12} B_1 + L t_{12} P_{12} B_1$ $= \alpha + \beta = 90^{\circ}$, folglich auch $L P_{12} A_1 P_{31} + L A_1 P_{12} P_{84} = \alpha + \beta = 90^{\circ}$ und demnach der dritte Winkel $A_1 P_{34} P_{12}$ im gleichnamigen Dreieck $= 90^{\circ}$; d. h.: die Collineationsaxe des Normalstrahlenpaares P. d., $P_{12}B_1$ steht senkrecht zur Verbindungslinie A_1B_1 der Gelenk-

^{*} Das Auftreten von unendlich vielen Undulationspunkten kann auch bei einem im Endlichen gelegenen Pole stattfinden. Man vergl, deswegen Mehmke's eingehende Arbeit: "Ueber die Bewegung eines starren ebenen Systemes in seiner Ebene", diese Zeitschrift Bd. 35 S. 1-24 und S. 65-81, insbesondere den Satz auf S. 76 unten, von dem der bekannte Satz, dass bei der elliptischen Hypocykloidenbewegung jeder Punkt der Polcurve eine Gerade beschreibt, einen gans speciellen Fall darstellt.

punkte von o. Man überzeugt sich leicht von der Richtigkeit der Umkehrung dieses Resultats, wenn man, von dem letzten rechten Winkel ausgehend, alle Winkelgleichungen in umgekehrter Reihenfolge hinschreibt. Dem nachgewiesenen Kreise von k_1 entspricht aber als k_2 eine eigentliche Focalcurve dritter Ordnung; denn die Fundamentalpunkte der quadratischen Verwandtschaft liegen auf der Rollcurventangente, und unser Kreis, als diese Gerade nicht im Pole berührend, enthält demnach nur einen Fundamentalpunkt; die k_2 ist demnach von der Ordnung 2.2-1=3. Andererseits entspricht jedem Punkte der Rollcurventangente, als Theil von k, gerechnet, in og immer der Pol, so dass hierdurch der ke kein weiterer Zweig beitritt, was auch nach der allgemeinen Theorie nicht geschehen darf. Für og og ist A_2B_2 oder, wie jetzt besser gesagt wird, S_3S_4 die Rollcurvennormale n_{34} . Die momentane Bewegung von σ_8 und σ_4 ist also genau so, wie die von σ, und σ, des vorigen Satzes, nur dass die Gelenkpunkte eines der Systeme nicht, wie hier, beide auf dem Kreise liegen, sondern der eine Punkt sich auf der Normalen befindet.* Folglich:

7. Sind σ_1 , σ_2 zwei einander gegenüberliegende Systeme eines Gelenkvierseits, und berührt der durch den Polund zwei Gelenkpunkte A1, B1 von o1 gelegte Kreis die Rollcurvennormale im Pole P18, so besteht die Kreispunktcurve k, von o, aus jenem Kreise und der Rollcurventangente, während ka eine eigentliche Curve dritter Ordnung ist, deren die Rollcurvennormale berührender Zweig den Kreis von k, zum Krümmungskreise hat. Die nothwendige und hinreichende Bedingung für dieses Verhalten ist, dass die Aronhold'sche Collineationsaxe des Strahlenpaares A_1A_2 , B_1B_2 senkrecht zur Geraden A_1B_1 steht. Für die beiden anderen Systeme og, og zerfällt jede der Curven k_3 , k_4 in einen die Tangente t_{84} berührenden Kreis und die Normale n₃₄ (genau wie für die Systeme σ₁, σ₂ des Satzes 6), aber (entgegen dem dortigen Verhalten) nur die beiden Gelenkpunkte A, B, jetzt als R, R, aufgefasst, liegen bez. auf den zu k_sk₄ gehörenden Kreisen, während die beiden anderen Gelenkpunkte sich auf n₃₄ befinden.

Besondere Eigenthümlichkeiten werden zu erwarten sein, wenn man den Charakter der Bewegung von σ_1 gegen σ_2 im letzten Satze ungeändert lässt, aber einen Gelenkpunkt A_1 von dem Kreise auf die Rollcurventan-

^{*} Es ist klar, dass, wenn es sich nur um vier consecutive Lagen zweier Systeme σ_1 , σ_2 gegen einander handelt, man nach Construction von $k_1 k_2$ irgend zwei Punktepaare $X_1 X_2$, $Y_1 Y_2$ dieser Curven als Ecken eines Gelenkvierseits betrachten kann, welches die momentane Bewegung soweit vollständig wiedergiebt.

gente t_{12} verlegt, wodurch dann A_2 in den Pol rückt. Da der Strahl B_1B_2 den Pol enthält, so liegen dann $A_2B_1B_2$ in einer Geraden und wir haben (Fig. 7) ein Gelenkvierseit in einer Todtlage. Während einer unendlich kleinen Relativbewegung verhalten sich σ_1 und σ_3 wie ein einziges starres System; wir wollen diese Systeme das todte Paar nennen.*

Nach der Bobillier'schen Construction findet man, wie es sein muss, als Rolleurventangente t_{12} die Gerade A_2A_1 . Von den beiden Kreisen, welche bei der allgemein giltigen Bestimmung des Focalcentrums F' von k_1 benutzt werden, ist der eine, durch B, gehende noch ein eigentlicher Kreis, während der andere, durch A_i gehende zur Geraden t_{ij} geworden ist. Folglich wird F' schon durch das in der Mitte M von- $P_{12}B_1$ auf dieser Geraden errichtete Perpendikel ausgeschnitten und jener Hilfskreis durch B, braucht gar nicht gezogen zu werden. Wir finden also in der That wieder als k_1 die t_{12} und den um F' mit dem Halbmesser $F'P_{12}$ beschriebenen Kreis. Hinsichtlich k, gestaltet sich die Sachlage insofern wesentlich anders, als diese Curve nicht mehr aus A_2 und B_2 bestimmbar ist, da A_2 im Doppelpunkte derselben liegt und daher kein Bestimmungselement abgiebt. Deshalb bleibt nur übrig, die quadratische Verwandtschaft heranzuziehen und k_2 als die dem Kreise k_1 entsprechende Curve zu construiren, wobei es allerdings ausreicht, zu einem Punkte C_i den entsprechenden C_2 zu ermitteln und dann aus $B_2 C_2$ Focalcentrum F'' und Axe f'' herzuleiten, was in der Figur jedoch nicht weiter angedeutet ist. — Der Charakter der Bewegung von σ₈ gegen σ₄ ist offenbar ganz übereinstimmend mit dem von σ_1 gegen σ_2 , da die Configuration der Gelenkpunkte A_1 , B_1 , A_2 , B_2 gegenüber der Auffassung als R_3 , S_4 , R_4 , S_4 nichts im Wesen Verschiedenes zeigt. Das nämliche Perpendikel in M giebt uns auf t_{ss} das Centrum F''als Mittelpunkt des Kreises k_3 u. s. w. Die Focalcurven k_2 , k_4 treffen sich in demselben Punkte B_2 (oder S_4), berühren sich aber dort nur bei einer leicht zu bestimmenden Lage dieses Punktes. Nur wenn der Winkel $P_{12}A_1P_{34}$ ein rechter ist, berühren sich die Curven stets, wie man auch B_2 wählen mag. Dies sei nebensächlich bemerkt, weil keine kinematische Eigenthümlichkeit damit verbunden zu sein scheint. Das Wesentliche fassen wir zusammen in dem Satze:

8. Befindet sich ein Gelenkvierseit in einer Todtlage mit eindeutig bestimmter Polconfiguration, so besteht die Kreispunkteurve eines jeden Systems des todten Paares in Bezug auf das System der Gegenseite aus einem die Rolleurvennormale im Pole berührenden Kreise und der Rolleurventangente, während die andere Kreis-

Vergl. über eine rein geometrische Definition von Todt- und Verzweigungslagen die "Verhandlungen der Gesellschaft deutscher Naturforscher und Aerste".
 63. Versammlung zu Bremen 1890, II. Theil, Abtheil. f. Mathematik u. Astronomie.

punktcurve eine eigentliche Focalcurve dritter Ordnung ist.

Andere Ausartungen, als die hier untersuchten, können bei den Kreispunkteurven, so lange die Poleonfiguration eindeutig bestimmt ist, nicht vorkommen; doch werden natürlich auch den Kreispunkteurven der speciellen Gelenkvierseite, wie sie etwa dem Zwillingskurbelgetriebe oder dem gleichschenkligen Kurbelgetriebe zu Grunde liegen, besondere Eigenthümlichkeiten zukommen. Zur Beantwortung aller darauf bezüglichen Fragen ist durch das Vorstehende der Weg gewiesen. Insbesondere sind auch die Curven, deren Punkte im Laufe der Bewegung einmal einen Undulationspunkt beschreiben, punktweise construirbar und dadurch der Untersuchung zugänglich gemacht.

Hannover, den 4. November 1890.

XVIII.

Ueber einen Specialfall der hypergeometrischen Reihe dritter Ordnung.

Von

Prof. Dr. Louis Saalschütz in Königsberg.

Die nachfolgende Arbeit knüpft an eine von mir für eine gewisse endliche Reihe aufgestellte Summenformel* an und hat besonders den Zweck, die Fälle aufzusuchen, in denen die erwähnte Reihe, ohne selbst noch eine endliche Anzahl von Gliedern zu besitzen, sich durch eine endliche Reihe und Gammafunctionen ausdrücken lässt. Voran geht ein neuer Beweis der genannten Formel, wobei ich mir gestatte, die Gelegenheit wahrzunehmen, um die Anwendungsfähigkeit der von mir entwickelten Integralausdrücke für die B- und Γ-Functionen mit negativen Argumenten zu zeigen. — Schliesslich beschäftige ich mich mit der Reihe:

$$1 + \frac{\alpha\beta}{\gamma\delta} + \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1)\delta(\delta+1)} + \cdots$$

um die Fälle aufzufinden, in denen sie sich durch geschlossene Ausdrücke, wenn ich die \(\Gamma\)-Functionen auch zu diesen zählen darf, summiren oder mindestens in andere Reihen von einfacherem Bau umsetzen lässt.

§ 1.

Die in der Einleitung genannte Summenformel erhält durch beiderseitige Multiplication mit

$$\frac{x(x+1)\ldots(x+n-1)}{(x+v)\ldots(x+v+n-1)}$$

^{*} Diese Zeitschrift, 35. Jahrg. (1890), S. 186. — Die Anregung zu vorliegendem Aufsatze verdanke ich Herrn W. Heymann. Derselbe hatte nach Kenntnissnahme meiner Summenformel die Freundlichkeit, mir mitzutheilen, dass er durch Zerlegung eines Doppelintegrales in zwei Euler'sche zu einer im Wesentlichen mit meiner übereinstimmenden Formel gelangt sei, und veranlasste mich, die Untersuchung auf ein beliebiges nauszudehnen. Auch schlug er mir die engere Anlehnung der Formel an die hypergeometrische Reihe dritter Ordnung vor, die sich in der That als zweckmässig herausgestellt hat.

die Form (wobei n zunächst eine positive ganze Zahl ist, und L und R Bezeichnungen für die linke und die rechte Seite sein sollen):

$$L = 1 - (n)_1 \frac{x(y+v+n'-1)}{y(x+v)} + (n)_2 \frac{x(x+1)(y+v+n-1)(y+v+n)}{y(y+1)(x+v)(x+v+1)} + \cdots$$

$$= \frac{\Gamma(y) \Gamma(y-x+n)}{\Gamma(y-x) \Gamma(y+n)} \cdot \frac{\Gamma(x+v) \Gamma(v+n)}{\Gamma(v) \Gamma(x+v+n)} = R$$

oder auch:

2)
$$F(-n, x, y+v+n-1; y, x+v; 1) = R$$

und ich will nun zuerst diese Formel nochmals beweisen, bez. die Grenzen ihrer Giltigkeit feststellen. Ich gehe dabei von der bekannten Gleichung aus:

3)
$$1-(n)_1\frac{x}{x+v}+(n)_2\frac{x(x+1)}{(x+v)(x+v+1)}+\cdots=\frac{\Gamma(v+n)\Gamma(x+v)}{\Gamma(v)\Gamma(x+v+n)}=V_0$$

welche richtig ist, so lange die linke Seite convergirt. Ferner gelten die aus dem Factoriellensatze leicht ableitbaren Gleichungen:

$$1 = 1,$$

$$\frac{y+v+n-1}{y} = 1 + \frac{v+n-1}{y},$$

$$\frac{(y+v+n-1)(y+v+n)}{y(y+1)} = 1 + 2\frac{v+n-1}{y} + \frac{(v+n-1)(v+n-2)}{y(y+1)},$$

$$\frac{(y+v+n-1)\dots(y+v+n+1)}{y(y+1)(y+2)}$$

$$= 1 + (3)_1 \frac{v+n-1}{y} + (3)_2 \frac{(v+n-1)(v+n-2)}{y(y+1)} + \frac{(v+n-1)\dots(v+n-3)}{y(y+1)(y+2)}$$
etc. etc.

Multiplicire ich dieselben bezüglich mit den einzelnen Gliedern der linken Seite von 3), so entsteht links als Summe L, rechts aber ist der Coefficient C_0 von $1:=V_0$ und allgemein Coefficient C_k von

$$\frac{(v+n-1)(v+n-2)\dots(v+n-k)}{y(y+1)\dots(y+k-1)}:$$

$$C_k = \frac{x(x+1)\dots(x+k-1)}{(x+v)\dots(x+v+k-1)} \left\{ (n)_k - (k+1)_1 (n)_{k+1} \frac{x+k}{x+v+k} + (k+2)_2 (n)_{k+2} \frac{(x+k)(x+k+1)}{(x+v+k)(x+v+k+1)} + \cdots \right\}$$

oder, da:

$$(k+r)_r (n)_{k+r} = (n)_k (n-k)_r$$

$$C_{k} = \frac{x(x+1)\dots(x+k-1)}{(x+v)\dots(x+v+k-1)} (n)_{k} \left\{ 1 - (n-k)_{1} \frac{x+k}{x+v+k} + (n-k)_{2} \frac{(x+k)(x+k+1)}{(x+v+k)(x+v+k+1)} + \cdots \right\}.$$

Unter der Voraussetzung der Convergenz lässt sich die Klammer $\{\}$, sie sei V_k , summiren, nämlich:

$$V_k = \frac{\Gamma(x+v+k)\Gamma(v+n-k)}{\Gamma(v)\Gamma(x+v+n)} = \frac{(x+v)\dots(x+v+k-1)}{(v+n-1)\dots(v+n-k)}V_0$$

und hiermit wird

5)
$$L = V_0 \left(1 - (n)_1 \left(\frac{x}{y}\right) + (n)_3 \frac{x(x+1)}{y(y+1)} + \cdots \right) = V_0 \frac{\Gamma(y) \Gamma(y-x+n)}{\Gamma(y+n) \Gamma(y-x)}$$
, d. i. $= R$.

Für die Giltigkeit des Beweises ist es erforderlich, dass die Reihe in 4) convergirt; dies ist immer der Fall, wenn sie abbricht, also wenn * eine positive oder wenn x eine negative ganze Zahl ist, so dass für diese beiden Fälle die Richtigkeit der Gleichung 1) erwiesen ist. Sonst ware zur Convergenz erforderlich, dass v+n>k ist, und diese Bedingung wird von einem gewissen k an sicher unerfüllt bleiben. Wie einfache Ueberlegungen zeigen, erscheint dann statt der rechten Seite von 5) die unbestimmte Grösse ∞ - ∞, und doch giebt es zwei Fälle, wenn nämlich y+v+n-1 eine negative ganze Zahl und gleichzeitig n oder x eine ganze (positive oder negative) Zahl ist, in denen die Gleichung 1) unverandert bestehen bleibt. Dies wird später ersichtlich, wenn die Fälle, in denen L sich in geschlossener Form darstellen lässt, zusammengefasst [Siehe den Passus nach Gleichung 23b).]

Null wird.

Wenn, wie oben:
a)
$$V_k = \sum_{r=0}^{\infty} (-1)^r (n-k)_r \frac{(x+k)(x+k+1)\dots(x+k+r-1)}{(x+v+k)\dots(x+v+k+r-1)},$$
so wird dem Texte sufolge:

b)
$$L = \sum_{k=0}^{\infty} (-1)^k (n)_k \frac{(v+n-1) \dots (v+n-k)}{y(y+1) \dots (y+k-1)} \frac{x(x+1) \dots (x+k-1)}{(x+v) \dots (x+v+k-1)} V_k.$$

Sei nun n eine negative ganze Zahl, g eine positive ganze Zahl und:

c)
$$y+v+n-1=-g$$
; liege ferner bis auf Weiteres v zwischen 0 und -1 , x zwischen $1-g$ und $-g$, wobei aber der Fall $x+v=$ ganzer Zahl auszuschliesen ist; dann ist:

1-x-v-g>0. V_k ist schon von k=0 an $\pm \infty$ und von einem gewissen k an (wofür x+v+k>0 ist) $+\infty$, der Coefficient von $(-1)^k V_k$ in L [Gleich. b)] ändert von einem gewissen (andern) k an nicht mehr sein Zeichen, folglich besteht die rechte Seite von b) aus unendlichen Gliedern, die von den grösseren der beiden bezeichneten k an abwechselnde Vorzeichen haben. Ich will nun die unendlich grossen Theile von V_s , wenn ich mich so ausdrücken darf, absondern und zeigen, dass die Summe

Multiplicire ich V_k in b) mit s^{k-n} und die einzelnen Glieder in V_k [Gleich. 3)] bez. mit 1, z, s^2 , s^3 , ..., so entsteht aus letzterem, so lange z positiv und <1 ist, die convergirende hypergeometrische Reihe F(k-n, x+k, x+v+k; s). Ferner ist:

derselben, nachdem sie mit den betreffenden Factoren multiplicirt worden, gleich

^{*} Es scheint, ich möchte sagen in instructiver Hinsicht, nicht ohne Interesse, einen der genannten Fälle mit den obigen Betrachtungen in directen Zusammenhang zu bringen, wobei ich Gelegenheit finde, die Anwendbarkeit der Integralausdrücke für die I- und B-Functionen mit negativen Argumenten (diese Zeitschr., Jahrg. 82 [1887], S. 246 und besonders Jahrg. 33 [1888], S. 362) darzuthun, was man dem Autor zu Gute halten möge.

§ 2.

Zur Auffindung anderweitiger Resultate untersuchen wir, was aus L wird, wenn einzelne Argumente um ganze Zahlen vermehrt oder vermindert

e)
$$(-1)^{h} \frac{(v+n-1)\dots(v+n-k)}{y(y+1)\dots(y+k-1)} = \frac{(g+y)(g+y+1)\dots(g+|y+k-1)}{y(y+1)\dots(y+k-1)}$$

$$= 1 + (g)_{1} \frac{k}{y} + (g)_{2} \frac{k(k-1)}{y(y+1)} + \dots + (g)_{h} \frac{k(k-1)\dots 2 \cdot 1}{y(y+1)\dots(y+k-1)},$$

worin, sowie k > g wird, die letzten Glieder fortfallen, die Anzahl der Glieder also nicht grösser als g+1 wird. Hiermit wird:

f)
$$L = \left[\sum_{k=0}^{\infty} \sum_{r=0}^{g} (n)_k (g)_r \frac{k(k-1) \dots (k-r+1)}{y(y+1) \dots (y+r-1)} \frac{x(x+1) \dots (x+k-1)}{(x+v) \dots (x+v+k-1)} s^{k-n} \times F(k-n, x+k, x+v+k; s)\right]_{s=1}$$

Nunmehr stelle ich eine Reihe identischer Gleichungen zwischen den Grössen α , β , $\gamma = \alpha + \beta$, α , ω und z unter der Annahme auf, dass α zwischen den ganzen negativen Zahlen -h und -(h+1), β zwischen 0 und -1 liegt und dass α eine positive Zahl ist, wobei ich die abkürzenden Bezeichnungen:

g)
$$\begin{cases} 1 - (\gamma)_1 \frac{u}{1-u} + (\gamma+1)_2 \left(\frac{u}{1-u}\right)^2 \mp \cdots + (-1)^h (\gamma+h-1)_h \left(\frac{u}{1-u}\right)^h = \varphi_h(\gamma, u), \\ 1 - (\gamma)_1 \frac{1-u}{u} + (\gamma+1)_2 \left(\frac{1-u}{u}\right)^2 \mp \cdots + (-1)^h (\gamma+h-1)_h \left(\frac{1-u}{u}\right)^h = \psi_h(\gamma, u) \end{cases}$$

benutze, mit der Massgabe jedoch, dass die Functionen verschwinden, wenn der Index negativ wird, und zur Einheit werden, wenn derselbe Null ist; nämlich:

$$\begin{aligned} u^{\alpha-1} & (1-u)^{\beta-1} \left\{ 1 - \frac{1}{u\gamma} - \frac{\varphi_h(y,u)}{(1-u)\gamma} \right\} \\ &= u^{\alpha-1} (1-u)^{\beta-1} - u^{-\beta-1} (1-u)^{\beta-1} - u^{\alpha-1} (1-u)^{-\alpha-1} \varphi_h(y,u), \\ u^{\alpha} & (1-u)^{\beta-1} \left\{ 1 - \frac{1}{u\gamma+1} - \frac{\varphi_{h-1}(\gamma+1,u)}{(1-u)\gamma+1} \right\} as \\ &= u^{\alpha-1} (1-u)^{\beta-1} aus - u^{-\beta-1} (1-u)^{\beta-1} as - u^{\alpha} (1-u)^{-\alpha-2} \\ &\times \varphi_{h-1} (y+1,u) as, \\ \text{allgemein:} \\ u^{\alpha-1} + r (1-u)^{\beta-1} \left\{ 1 - \frac{1}{u\gamma+r} - \frac{\varphi_{h-r}(\gamma+r,u)}{(1-u)\gamma+r} \right\} \frac{a(a+1) \dots (a+r-1)}{1 \cdot 2 \dots r} sr \\ &= u^{\alpha-1} (1-u)^{\beta-1} \frac{a \dots (a+r-1)}{1 \cdot 2 \dots r} (us)^{\gamma} - u^{-\beta-1} (1-u)^{\beta-1} \frac{a \dots (a+r-1)}{1 \cdot 2 \dots r} sr \\ &- u^{\alpha-1} + r (1-u)^{-\alpha-1-r} \varphi_{h-r}(\gamma+r,u) \left\{ \frac{as(as+1) \dots (as+r-1)}{1 \cdot 2 \dots r} - as(1-s) f_{r-2}(s) \right\} \end{aligned}$$

worin $f_{r-2}(s)$ eine leicht zu ermittelnde ganze Function $r-2^{\text{ten}}$ Grades von s ist, die jedoch für einen negativen Index verschwindet, und worin für r > h das ganze letzte Glied der rechten Seite fortfällt. Bei der Addition sämmtlicher Gleichungen h) lässt sich die Summe der letzten [in $\varphi_{h-1}(\gamma+\cdot, u)$ multiplicirten] Glieder auf der rechten Seite in der Form:

i)
$$u^{\alpha-1}(1-u)^{-\alpha-1}\left\{A_0-A_1\frac{u}{1-u}+A_2\left(\frac{u}{1-u}\right)^2+\cdots+(-1)^hA_h\left(\frac{u}{1-u}\right)^h\right\}$$

darstellen, wobei die Grössen A von & unabhängig sind und folgende Werthe haben:

werden. Oder vielmehr: wir lassen uns unter Voraussetzung eines ganzen positiven n durch R induciren, mit welcher Grösse wir L zu multipliciren

$$A_0 = 1, \quad A_1 = \gamma - as,$$

$$A_{\tau} = (\gamma + \tau - 1)_{\tau - 1} - (\gamma + \tau - 1)_{\tau - 1} - as + (\gamma + \tau - 1)_{\tau - 2} - \frac{as(as + 1)}{1 \cdot 2} + \dots + (-1)^{\tau} - \frac{as \dots (as + \tau - 1)}{1 \cdot 2 \dots \tau} - as(1 - s) \{ (\gamma + \tau - 1)_{\tau - 2} - f_0(s) - (\gamma + \tau - 1)_{\tau - 3} - f_1(s) + \dots + (-1)^{\tau} f_{\tau - 2}(s) \}$$

$$= (\gamma + \tau - 1 - as)_{\tau} - as(1 - s) \{ (\gamma + \nu - 1)_{\tau - 2} - f_1(s) + \dots \},$$

$$\tau = 0, 1, \dots, h.$$

Somit wird die Summe i) mit Rücksicht auf g):

$$= u^{\alpha-1}(1-u)^{-\alpha-1}\varphi_h(y-as,u) - as(1-s)\varphi_{h-2}(s,u) \cdot u^{\alpha-1}(1-u)^{-\alpha-1},$$

wenn ich mit $\Phi_{h-2}(s,u)$ eine ganze Function von s und $\frac{u}{1-u}$ vom $h-2^{\text{ten}}$ Grade bezeichne, die wiederum bei negativem Index verschwindet. Multiplicire ich nun die Gleichungen h) mit du, integrire links von 0 bis 1 und summire dann für r von 0 bis ∞ , summire dagegen rechts zuerst und integrire dann, so erhalte ich nach der Gleichung 8) am zweiten angeführten Orte (worin die obere Grenze des Integrals als 1 statt ∞ zu Tesen ist):

$$k) = \int_{0}^{1} \frac{u^{\alpha-1} (1-u)^{\beta-1}}{(1-uz)^{\alpha}} du - \int_{0}^{1} \frac{u^{\alpha-1} (1-u)^{\beta-1}}{(1-z)^{\alpha}} du - \int_{0}^{1} \frac{u^{\alpha-1} (1-u)^{\alpha-1}}{(1-z)^{\alpha}} du - \int_{0}^{1} \frac{u^{\alpha-1} (1-u)^{-\alpha-1}}{(1-z)^{\alpha}} du - \int_{0}^{1} \frac{u^{\alpha-1} (1-u)^{-\alpha-1}}{(1-u)^{-\alpha-1}} du$$

Man kann sich davon überzeugen, dass diese Gleichung nicht nur auf der linken Seite, welche in $\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\gamma)}F(\alpha,\alpha,\alpha+\beta;s)$ übergeht, sondern auch auf der rechten einen endlichen Werth hat, so lange s<1 ist; beide Seiten werden für s=1 uncendlich. Wir multipliciren k) mit s^s , verstehen unter α eine positive ganze Zahl und formen die Gleichung in folgender Art um:

1)
$$\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\gamma)}F(a,\alpha,\alpha+\beta;s).s^{a} = J_{0} + J + J' + as(1-s)J'',$$

$$J_{0} = \int_{0}^{2} u^{a}-1(1-u)\beta-1\left(\frac{1-us}{s}\right)^{-a}\left\{1-\frac{\varphi_{h}(\gamma-a,u)}{(1-us)\gamma-a}-\frac{\psi_{a}(\gamma-a,us)}{u\gamma-a}\right\}du,$$

$$J = \int_{0}^{1} u+\beta-1(1-u)\beta-1\left\{\left(\frac{1-us}{us}\right)^{-a}\psi_{a}(\gamma-a,us)-\frac{s^{a}}{1-s^{a}}\right\}du,$$

$$J' = s^{a}\int_{0}^{1} u^{a-1}(1-u)\beta-1\left\{(1-us)-\alpha-\beta\varphi_{h}(\gamma-a,u)-(1-u)-\alpha-\beta\varphi_{h}(\gamma-as,u)\right\}du,$$

$$J'' = s^{a}\int_{0}^{1} u^{a}-1(1-u)-\alpha-1\varphi_{h-2}(s,u)du.$$

In diese Gleichungen setze ich nun:

$$\alpha = x + k$$
, $\beta = v$, $\gamma = x + k + v$, $\alpha = k - n$,

multiplicire dann 1) mit

$$\frac{\Gamma(x+v)}{\Gamma(x)\Gamma(v)}(n)_k(g)_r\frac{k(k-1)\ldots(k-r+1)}{y(y+1)\ldots(y+r-1)}$$

haben, um dasselbe Resultat, wie durch Vermehrung des betreffenden Arguments um 1 zu erreichen, und multipliciren nun L hiermit, indem wir

und summire nach r von 0 bis g, nach k von 0 bis ∞ ; dabei führe ich für J_0 , J', J'' die Summation nach r zuerst und zwar mittels der Gleichung e) aus; auf diese Weise erhalte ich:

$$\begin{array}{l} \sum\limits_{k=0}^{\infty}\sum\limits_{r=0}^{g} (n)_k(g)_r \frac{k(k-1)\dots(k-r+1)}{y(y+1)\dots(y+r-1)} \frac{x(x+1)\dots(x+k-1)}{(x+v)\dots(x+v+k-1)} z^{k-n} F(k-n,x+k,x+k+v,s) \\ m) = \frac{\Gamma(x+v)}{\Gamma(x)} \left[\sum\limits_{k=0}^{\infty} (-1)^k (n)_k \frac{(v+n-1)\dots(v+n-k)}{y(y+1)\dots(y+k-1)} (J_0+J'+(k+n)s(1-s)J'') \right. \\ + \sum\limits_{r=0}^{g}\sum\limits_{k=0}^{\infty} (g)_r (n)_k \frac{k(k-1)\dots(k-r+1)}{y(y+1)\dots(y+r-1)} J \right]. \end{array}$$

Nun liegt x zwischen 1-g und -g, also α zwischen 1-g+k und -g+k; da aber α zwischen -h und -(h+1) liegen sollte, ist

$$h=q-1-k.$$

h nimmt also mit wachsendem k ab, daher ist die Anzahl der Glieder, die durch Summation von J' und J'' entstehen, eine endliche; jedes J' verschwindet aber für s=1, und (1-z)J'' ebenfalls. Setzen wir nun in m) z=1, so gehen diese beiden Glieder der Summe fort; weiter wird

$$J_{0} = \int_{0}^{1} u^{\alpha-1} (1-u)\beta^{-\alpha-1} \left\{ 1 - \frac{\varphi_{h}(\alpha+\beta-\alpha,u)}{(1-u)\alpha+\beta-\alpha} - \frac{\psi_{\alpha}(\alpha+\beta-\alpha,u)}{u^{\alpha}+\beta-\alpha} \right\} du,$$

$$-h > \alpha > -(h+1), \quad \alpha > \beta-\alpha > -(\alpha+1),$$

daher wiederum nach Gleichung 8) a. a. O.:

$$[J_0]_{z=1} = \frac{\Gamma(\alpha)\Gamma(\beta-\alpha)}{\Gamma(\alpha+\beta-\alpha)} = \frac{x(x+1)\dots(x+k-1)}{(v+n-1)\dots(v+n-k)} \frac{\Gamma(x)\Gamma(v+n)}{\Gamma(x+v+n)}$$

also wird, da y-x+n=1-g-x-v positiv ist [siehe d)], der von J_0 abhängige Theil der Summe, wie in Gleichung 5), =R, die linke Seite von m) wird aber nach f)=L, und es ist daher:

$$L = R + \left[\sum_{r=0}^{g} (g)_r \int_{0}^{1} u^{-\beta - 1} (1 - u)^{\beta - 1} \sum_{k=0}^{\infty} (n)_k \frac{k \dots (k - r + 1)}{y \dots (y + r - 1)} \left\{ \psi_{k-n} (x + v + n, us) \left(\frac{1 - us}{us} \right)^{-(k - n)} - \frac{z^{k-n}}{(1 - s)^{k-n}} \right\} du \right]_{s = -1}.$$

Der Coefficient von $\frac{1}{y^0}$ ist, abgesehen von dem bezüglich k constanten Factor $u^{-\beta-1}(1-u)^{\beta-1}$:

$$Y_0 = \sum_{k=0}^{\infty} (n)_k \left\{ \psi_{k-n} (x+v+n, uz) \left(\frac{1-uz}{uz} \right)^{(-k-n)} \frac{z^{k-n}}{(1-z)^{k-n}} \right\}.$$

Entwickeln wir die Summe

$$\sum_{k=0}^{\infty} (n)_k \frac{s^k}{(1-s)^{k-n}} = \sum_{k=0}^{\infty} (n)_k s^k \left(1 + \frac{k-n}{1} s + \frac{(k-n)(k-n+1)}{1 \cdot 2} s^k + \cdots \right)$$

in eine nach aufsteigenden Potenzen von z fortschreitende Reihe, so ist der Coefficient von z^0 : 1, von einer andern, etwa der p^{ten} Potenz aber:

$$= (-1)^{p} \{(n)_{p} - (n)_{1}(n-1)_{p-1} + (n)_{2}(n-2)_{p-2} + \cdots + (-1)^{p}(n)_{p} \},$$

= $(-1)^{p} \{n\}_{p} \{1 - (p)_{1} + (p)_{2} + \cdots + (-1)^{p}(p)_{p} \} = 0.$

Der Werth der Summe ist also Eins, und zwar für jedes s, da es eben eine Potenzenreihe ist, die für jeden Werth von s convergirt. [Bezeichnen wir übrigens die Summe mit $\Theta(s, n)$, so ist:

$$\frac{d\Theta(z,n)}{dz}=n(\Theta(z,n-1)-\Theta(z,n-1))=0,$$

alle beschränkenden Voraussetzungen über seine Argumente fallen lassen. Wir bezeichnen nun L als Function seiner Argumente in folgender Art:

$$= 1 - (n)_1 \frac{x(y+v+n-1)}{y(x+v)} + (n)_2 \frac{x(x+1)(y+v+n-1)(y+v+n)}{y(y+1)(x+v)(x+v+1)} + \cdots$$

Für ganze positive n ist dies gleich R. Setze ich nun in R [Gleichung 1)] x+1 statt x, so geht es tiber in

$$\frac{(y-x-1)(x+v)}{(y-x+n-1)(x+v+n)}R = X.R,$$

wobei X als Abkürzung dient. Ich multiplicire nun $f_n(x, y, v)$ gliedweise mit X, wobei ich zur Abkürzung die einzelnen Glieder von $f_n(x, y, v)$ (ohne das Vorzeichen mit einzubegreifen) mit $u_0 = 1$, u_1 , u_2 etc., und durch um, um Ausdrücke bezeichne, die aus um durch Erhöhung des Argumentes bez. v um 1 hervorgehen. Es ist:

$$1.X = \frac{(y-x-1)(x+v)}{(y-x+n-1)(x+v+n)} = 1 - \frac{n(y+v+n-1)}{(y-x+n-1)(x+v+n)} = 1-C_1;$$
dazu $-u_1X$:

also $\Theta(s,n)$ constant.] Ferner ist der Coefficient B_p einer beliebigen, etwa der $-p^{ten}$ Potens von $\frac{1-uz}{uz}$, wenn n=-n' gesetzt wird:

$$\begin{split} B_{\mathfrak{p}} &= (-1)^{\mathfrak{n}'-\mathfrak{p}} \sum_{k=0}^{\infty} (-1)^k \, (-n')_k \, (x+v+k-p-1)_{k-\mathfrak{p}+\mathfrak{n}'}, \\ &= (-1)^{\mathfrak{n}'-\mathfrak{p}} \frac{(x+v-\mathfrak{n}') \ldots (x+v-p-1)}{1 \cdot 2 \ldots (n'-p)} \cdot \frac{\Gamma(n'-p+1) \, \Gamma(1-x-v)}{\Gamma(1-p) \, \Gamma(n'+1-x-v)}, \end{split}$$

vorausgesetzt, dass p < n' ist, d. i. $B_p = 1$ für p = 0, und = 0 für p > 0. Ist $p \ge n'$, etwa p = n' + q, so ist der Coefficient

$$B_{p} = (-1)^{q} \sum_{k=-a}^{\infty} (-n')_{k} (x+v+k-n'-q-1)_{k-q},$$

 $B_p = (-1)^q \sum_{k=q}^{\infty} (-n')_k (x+v+k-n'-q-1)_{k-q},$ d. i. nach leichten Reductionen und da n' mindestens = 1 und 1-x-v positiv ist:

$$B_{p} = (-1)^{q} \cdot \frac{1}{(1-x-v)\dots(n'-x-v)} \cdot \frac{n'\dots(n'+q-1)}{(n'+1-x-v)\dots(n'+q-1+1-x-v)} \cdot \frac{1}{\Gamma(1-n')} = 0.$$
Folglich ist:
$$Y_{n} = 1 - s^{-n}$$

und für z=1:

$$[Y_0]_{z=1}=0.$$

Der Coefficient Y_r von $\{y(y+1)...(y+r-1)^{-1}$ wird erhalten, wenn

$$(g)_r k(k-1) \dots (k-r+1)(n)_k = (g)_r n(n-1) \dots (n-r+1) \cdot (n-r)_{k-r}$$

statt (n), gesetzt wird; dabei kann die Summation von k=r beginnen und die weitere Behandlung führt mit Rücksicht auf d) zu dem Resultat, dass ebenfalls $Y_r = 0$ und somit nach n):

Um den Beweis zu vervollständigen, ist noch zu zeigen, dass die eben bestätigte Gleichung, falls sie für ein v zwischen 0 und -1, und für ein z zwischen 1-g und -g gilt, auch dann richtig bleibt, wenn man diese beiden Variabelen um beliebige ganze Zahlen vermehrt oder vermindert; dies ergiebt sich aber ans den weiteren Entwickelungen im Texte. Digitized by Google

$$-C_1-u_1X=-\frac{n(y+v+n-1)}{y(y-x+n-1)(x+v+n)}(y-x)(x+1)_1,$$

wie leicht zu finden; den Factor (x+1) ziehe ich zum voranstehenden Bruche; statt des Factors (y-x) schreibe ich (y-x+n-1)-(n-1), den Minuendus multiplicire ich mit $\frac{1}{x+v+n}$ in der Form $\frac{1}{x+v+1}\Big(1-\frac{n-1}{x+v+n}\Big)$, den Subtrahendus mit derselben Grösse in der Form $\frac{1}{x+v+1}\cdot\frac{x+v+1}{x+v+n}$; die Zusammenziehung der Glieder, die den Factor $\frac{n-1}{x+v+n}$ haben, giebt dann:

$$-C_1 - u_1 X = -(n)_1 \frac{(x+1)(y+v+n-1)}{y(x+v+1)} + \frac{n(n-1)(y+v+n-1)(y+v+n)}{y(y-x+n-1)(x+v+1)(x+v+n)} = -u_1 + C_2.$$

Dazu kommt u_2X ; in der Summe $C_2 + u_2X$ tritt nach leichter Umformung das Product (y-x+1)(x+2) auf, dessen zweiten Factor ich zum vorangehenden Bruche ziehe, während ich y-x+1 in (y-x+n-1)-(n-2) umforme; ersteres multiplicire ich mit 1:x+v+n in der Form $\frac{1}{x+v+2}\left(1-\frac{n-2}{x+v+n}\right), \text{ letzteres mit derselben Grösse in der Form}$ $\frac{1}{x+v+2}\cdot\frac{x+v+2}{x+v+n}; \text{ durch Zusammenziehung der Glieder, die den Factor}$ $\frac{n-2}{x+v+n} \text{ besitzen, entsteht die Gleichung:}$

$$C_2 + u_2 X = \frac{x}{u_2} - C_3,$$

$$C_3 = 3 (n)_3 \frac{(x+1)(x+2)(y+v+n-1)(y+v+n)(y+v+n+1)}{y(y+1)(x+v+1)(x+v+2)(y-x+n-1)(x+v+n)}.$$

Die Fortsetzung dieser Operationen und der Beweis ihrer allgemeinen Giltigkeit (durch den Schluss von n auf n+1) macht keine Schwierigkeit, und wir gelangen so zu den Gleichungen:

7)
$$X(1-u_{1}+u_{2} \mp \cdots + (-1)^{k}u_{k}) = 1-\frac{x}{u_{1}}+\frac{x}{u_{2}} \mp \cdots + (-1)^{k}\frac{x}{u_{k}} + (-1)^{k+1}C_{k+1},$$

$$C_{k+1} = \frac{n(n-1)\dots(n-k)}{1\cdot 2\cdot 3\cdot \dots k} \frac{(x+1)\dots(x+k)(y+v+n-1)\dots(y+v+n+k-1)}{y\dots(y+k-1)(x+v+1)\dots(x+v+k)(y-x+n-1)(x+v+n)} = \frac{(k+1)(y+k)(x+v)}{x(y-x+n-1)(x+v+n)} \cdot u_{k+1}.$$

Mit u_{k+1} verschwindet gleichzeitig C_{k+1} (z. B. wenn n=k ist), und in diesem Falle ist, wie vorherzusehen:

9)
$$X f_n(x, y, v) = f_n(x+1, y, v).$$

Im andern Falle wird, wenn wir k ins Unendliche wachsen lassen:

10)
$$Xf_n(x, y, v) = f_n(x+1, y, v) + \lim ((-1)^{k+1} C_{k+1})_{k=\infty}$$
.
Der Quotient $-C_{k+1}$: C_k nähert sich der Eins, also strebt $(-1)^{k+1} C_{k+1}$ einem bestimmten Werthe zu. Um ihn zu erhalten, beginnen wir $(-1)^{k+1} C_{k+1}$

mit dem Factor
$$\frac{(-n)(1-n)\dots(k-n)}{1\cdot 2\dots k}$$
 und multipliciren Zähler und Nenner mit $\frac{\Gamma(-n)\Gamma(x+1)\Gamma(y+v+n-1)}{\Gamma(y)\Gamma(x+v+1)}$; dadurch wird:
$$\frac{\Gamma(y)\Gamma(x+v+1)}{(x+v+n)(y-x+n-1)\Gamma(-n)\Gamma(x+1)\Gamma(y+v+n-1)} \times \frac{\Gamma(k+1-n)\Gamma(k+x+1)\Gamma(k+y+v+n)}{\Gamma(k+1)\Gamma(k+x+v+1)\Gamma(k+y)}.$$

Mittels der bekannten, für sehr grosse Werthe von µ geltenden Formel:

$$\Gamma(\mu) = \sqrt{\frac{2\pi}{\mu}} \left(\frac{\mu}{e}\right)^{\mu}$$

lässt sich aber leicht der Satz beweisen:

11) für $k = \infty$ Eins, und es folgt aus 10):

Wenn

so ist

$$\alpha_1 + \alpha_2 + \dots + \alpha_m = \beta_1 + \beta_2 + \dots + \beta_m,$$

$$\Gamma(k + \alpha_1) \Gamma(k + \alpha_2) \dots \Gamma(k + \alpha_m)$$

Demgemäss ist der zweite Factor auf der rechten Seite der Gleichung

 $\lim \left[\frac{\Gamma(k+\alpha_1)\Gamma(k+\alpha_2)\dots\Gamma(k+\alpha_m)}{\Gamma(k+\beta_1)\Gamma(k+\beta_2)\dots\Gamma(k+\beta_m)}\right]_{k=\infty}=1.$

$$\begin{aligned} Xf_n(x, y, v) &= f_n(x+1, y, v) + \frac{\Gamma(y) \Gamma(x+v+1)}{(x+v+n)(y-x+n-1) \Gamma(-n) \Gamma(x+1) \Gamma(y+v+n-1)} \\ \text{oder} & f_n(x, y, v) = \frac{(y-x+n-1)(x+v+n)}{(y-x-1)(x+v)} f_n(x+1, y, v) \\ &+ \frac{\Gamma(y) \Gamma(x+v)}{(y-x-1) \Gamma(-n) \Gamma(x+1) \Gamma(y+v+n-1)} \end{aligned}$$

Diese Gleichung entwickeln wir weiter durch Erhöhung von x um je eine Einheit. Zuerst wird:

$$f_{n}(x+1, y, v) = \frac{(y-x+n-2)(x+v+n+1)}{(y-x-2)(x+v+1)} f_{n}(x+2, y, v) + \frac{(x+v)\Gamma(y)\Gamma(x+v)}{(y-x-2)(x+1)\Gamma(-n)\Gamma(x+1)\Gamma(y+v+n-1)};$$

fahren wir in dieser Art fort und eliminiren aus den entstehenden Gleichungen die Functionen $f_n(x+1, y, v)$, $f_n(x+2, y, v)$ etc., so bleibt zuletzt rechts $f_n(\infty, y, v)$ stehen, und wir müssen sehen, was das ist und wie es sich mit der Convergenz verhält. Wenn wir die Fälle, in denen y oder x+v Null oder eine negative ganze Zahl ist, wodurch $f_n(x, y, v)$ unendlich wird,* ein- für allemal ausschließen, convergirt $f_n(x, y, v)$ für alle endlichen Werthe der Argumente, denn es ist, wobei zu berücksichtigen, dass die Glieder bei genügend grosser Gliedzahl gleiche Vorzeichen erhalten:

^{*} und zwar, wenn nicht etwa ein anderes Argument Null ist, nicht unbestimmt, sondern wirklich ∞ , wie aus dem einfachen Falle n-1 zu ersehen ist.

13)
$$-\frac{u_k}{u_{k-1}} = \frac{(k-n-1)(x+k-1)(y+v+n+k-2)}{k(y+k-1)(x+v+k-1)}$$

$$= \frac{k^3 + (x+y+v-4)k^2 + \cdots}{k^5 + (x+y+v-2)k^2 + \cdots},$$

so dass die Differenz des Coefficienten von k^2 in Nenner und in Zähler 2 und somit das Gauss'sche Kriterium der Convergenz erfüllt ist. Anders aber, wenn x unendlich wird; dann giebt Gleichung 6):

$$f_{n}(x, y, v) = 1 - (n)_{1} \frac{y + v + n - 1}{y} + (n)_{2} \frac{(y + v + n - 1)(y + v + n)}{y(y + 1)} + \cdots$$

$$= \frac{\Gamma(y) \Gamma(1 - v)}{\Gamma(y + n) \Gamma(1 - v - n)}$$

und hier gehört zur Convergenz der Reihe, dass 1-v positiv ist [wie auch aus 13) für $x=\infty$, wenn man den Coefficienten von k bildet, zu erschliessen]. — Bei Ausführung der beabsichtigten Elimination erhalten wir:

$$f_{n}(x, y, v) = \frac{\Gamma(1+x-y) \Gamma(x+v) \Gamma(y) \Gamma(1-v)}{\Gamma(1+x-n-y) \Gamma(x+v+n) \Gamma(y+n) \Gamma(1-v-n)} - \frac{1}{x+1-y} \cdot \frac{\Gamma(y) \Gamma(x+v)}{\Gamma(-n) \Gamma(x+1) \Gamma(y+v+n-1)} \times \left\{ 1 + \frac{(x+1-n-y)(x+v+n)}{(x+1)(x+2-y)} + \frac{(x+1-n-y)(x+2-n-y)(x+v+n)(x+v+n+1)}{(x+1)(x+2)(x+2-y)(x+3-y)} + \cdots \right\},$$

Die Bedingung 1-v>0 ist zugleich die Convergenzbedingung für die in den Klammern $\{\}$ eingeschlossene Reihe.

Will man ferner von $f_n(x, y, v)$ zu $f_n(x, y, v+1)$ gelangen, so muss man Ersteres mit

$$\frac{(x+v)(v+n)}{v(x+v+n)} = V$$

multipliciren, doch unterdrücke ich die Rechnung, die im Wesentlichen der früheren ähnlich ist, um nicht zu umständlich zu werden, und schreibe nur die Hauptgleichung hin, zu der wir im Laufe derselben gelangen würden:

$$V(1-u_1+u_2 + \dots + (-1)^k u_k) = 1-\frac{v}{u_1} + \frac{v}{u_2} + \dots + (-1)^k \frac{v}{u_k} + (-1)^k D_{k+1},$$

$$14) D_{k+1} = \frac{n(n-1) \dots (n-k)}{1 \cdot 2 \dots k} \frac{x(x+1) \dots (x+k)(y+v+n) \dots (y+v+n+k-1)}{y \dots (y+k-1)(x+v+1) \dots (x+v+k) v(x+v+n)}$$

$$= \frac{(k+1)(y+k)(x+v)}{(y+v+n-1)v(x+v+n)} \cdot u_{k+1},$$

so dass wiederum D_{k+1} verschwindet, wenn dies bei u_{k+1} der Fall ist; dann wird:

15)
$$Vf_n(x, y, v) = f_n(x, y, v+1).$$

Mittels Ueberganges zur Grenze $k = \infty$ (wenn eben u_{k+1} mit endlichem Index nicht verschwindet) erhalten wir jetzt:

16)
$$f_n(x, y, v) = \frac{v(x+v+n)}{(x+v)(v+n)} f_n(x, y, v+1) - \frac{1}{v+n} \frac{\Gamma(x+v)\Gamma(y)}{\Gamma(-n)\Gamma(x)\Gamma(y+v+n)}$$

Setzen wir hierin v+1 statt v und verhalten uns überhaupt so, wie beim vorigen Falle, so gelangen wir schliesslich zu der Gleichung:

$$f_{n}(x, y, v) = \frac{\Gamma(x+v)\Gamma(v+n)\Gamma(y)\Gamma(y+n-x)}{\Gamma(v)\Gamma(x+v+n)\Gamma(y-x)\Gamma(y+n)} - \frac{1}{v+n} \frac{\Gamma(y)\Gamma(x+v)}{\Gamma(-n)\Gamma(x)\Gamma(y+v+n)}$$
II)
$$\times \left\{ 1 + \frac{v(x+v+n)}{(v+n+1)(y+v+n)} + \frac{v(v+1)(x+v+n)(x+v+n+1)}{(v+n+1)(v+n+2)(y+v+n)(y+v+n+1)} + \cdots \right\},$$

$$y+n-x>0.$$

wo bei y + n - x > 0 gleichzeitig die Bedingung der Convergenz von $f_n(x, y, \infty)$ und für die in den $\{\}$ eingeschlossene Reihe ist.

Zu späterem Gebrauch füge ich noch die den Gleichungen 12) und 16) entsprechenden für y und n hier an:*

17)
$$f_{n}(x, y, v) = \frac{(y-x)(y+n)}{y(y-x+n)} f_{n}(x, y+1, v) - \frac{1}{y(y-x+n)} \frac{\Gamma(y+1)\Gamma(x+v)}{\Gamma(-n)\Gamma(x)\Gamma(y+v+n)}$$

und:

18)
$$f_{n}(x, y, v) = \frac{(y+n)(x+v+n)}{(y-x+n)(v+n)} f_{n+1}(x, y, v) - \frac{y+v+2n}{(y-x+n)(v+n)} \frac{\Gamma(y)\Gamma(x+v)}{\Gamma(-n)\Gamma(x)\Gamma(y+v+n)}.$$

Den nächstliegenden Zweck erreichen wir ohne deren Benutzung leicht in folgender Art.

Schreibt man $f_n(x, y, v)$ in der Form:

19)
$$f_n(x, y, v) = 1 + \frac{abb'}{1.cc'} + \frac{a(a+1)b(b+1)b'(b'+1)}{1.2c(c+1)c'(c'+1)} + \cdots$$

so sieht man, dass es im Zähler sechs Anordnungen und dazu im Nenner je zwei, also im Ganzen zwölf Anordnungen giebt, welche die Reihe ungeändert lassen; die ersten sechs, in x, y, v, n ausgedrückt, sind:

Argument x ist zu ersetzen:

a) durch
$$x$$
, b) durch $y+v+n-1$, c) durch $y+v+n-1$,
d) durch $-n$, e) durch $-n$, f) durch x ;

Argument y ist zu ersetzen:

a) durch
$$y$$
, b) durch y , c) durch $x+v$, d) durch $x+v$,
e) durch y , f) durch $x+v$;

^{*} Vergl. besüglich des Beweises die Anmerkung zu Gleichung 26), 7

Argument v ist zu ersetzen:

a) durch v, b) durch 1+x-y-n, c) durch 1-v-n, d) durch y+n, e) durch x+v+n, f) durch y-x;

Argument n ist zu ersetzen:

a) durch 1-y-v-n, b) durch n, c) durch n, d) durch -x, e) durch -x, f) durch 1-y-v-n.

Die anderen sechs, nämlich:

x zu ersetzen: a') durch x, b') durch y+v+n-1, c') durch y+v+n-1, a') durch -n, a') durch -n, a') durch a';

y zu ersetzen: a') durch y, b') durch y, c') durch x+v, d') durch x+v, e') durch y, f') durch x+v;

v zu ersetzen: a') durch v, b') durch 1+x-y-n, c') durch 1-v-n, a') durch y+n, e') durch x+v+n, f') durch y-x;

n zu ersetzen: a') durch n, b) durch -x, c') durch -x, d') durch 1-y-v-n, e') durch 1-y-v-n, f') durch n,

sind den ersteren bez. äquivalent und bedürfen daher keiner weiteren Berücksichtigung.

Wenden wir diese Vertauschungen auf die Gleichung I) an, so geht sie durch a) in sich selbst zurück, durch b) in II) über; die anderen Vertauschungen c), d), e) und f) geben bez. folgende Gleichungen III), IV), V) und VI):

$$f_{n}(x, y, v) = \frac{\Gamma(y) \Gamma(y - x + n) \Gamma(x + v) \Gamma(v + n)}{\Gamma(x + n) \Gamma(y - x) \Gamma(v) \Gamma(x + v + n)}$$

$$-\frac{1}{y - x + n} \frac{\Gamma(y) \Gamma(x + v)}{\Gamma(-n) \Gamma(x) \Gamma(y + v + n)}$$

$$\times \left\{ 1 + \frac{(y + n)(y - x)}{(y - x + n + 1)(y + v + n)} + \frac{(y + n)(y + n + 1)}{(y - x + n + 2)(y + v + n)(y + v + n + 1)} + \cdots \right\},$$

$$v + n > 0;$$

$$f_{n}(x, y, v) = \frac{\Gamma(1-x-v-n)\Gamma(y)\Gamma(x+v)\Gamma(1-y-n)}{\Gamma(1-n-v)\Gamma(y-x)\Gamma(v)\Gamma(1+x-y-n)} - \frac{1}{1-x-v-n}\frac{\Gamma(y)\Gamma(x+v)}{\Gamma(1-n)\Gamma(x)\Gamma(y+v+n-1)} \times \left\{1 + \frac{(1-n-v)(y-x)}{(1-n)(2-x-v-n)} + \frac{(1-n-v)(2-n-v)(y-x)(y-x+1)}{(1-n)(2-n)(2-x-v-n)(3-x-v-n)} + \cdots\right\},$$

1-n-y>0:

$$f_{n}(x, y, v) = \frac{\Gamma(x+v)\Gamma(1-n-y)\Gamma(y)\Gamma(1-n-x-v)}{\Gamma(v)\Gamma(1+x-n-y)\Gamma(y-x)\Gamma(1-n-v)}$$

$$-\frac{1}{1-n-y}\frac{\Gamma(y)\Gamma(x+v)}{\Gamma(1-n)\Gamma(x)\Gamma(y+v+n-1)}$$

$$\times \left\{1 + \frac{v(1+x-n-y)}{(2-n-y)(1-n)} + \frac{v(v+1)(1+x-n-y)(2+x-n-y)}{(2-n-y)(3-n-y)(1-n)(2-n)} + \cdots\right\},$$

$$1 - n - x - v > 0;$$

$$f_{n}(x, y, v) = \frac{\Gamma(y)\Gamma(1-v)\Gamma(x+v)\Gamma(1-y+x)}{\Gamma(y+n)\Gamma(1-v-n)\Gamma(x+v+n)\Gamma(1-y+x-n)}$$

$$-\frac{1}{1-v}\frac{\Gamma(y)\Gamma(x+v)}{\Gamma(-n)\Gamma(1+x)\Gamma(y+v+n-1)}$$

$$\times \left\{1 + \frac{(y+n)(1-n-v)}{(2-v)(1+x)} + \frac{(y+n)(y+n+1)(1-n-v)(2-n-v)}{(2-v)(3-v)(1+x)(2+x)} + \cdots\right\},$$

$$1 - y + x \wedge 0.$$

Die ersten Summanden auf der rechten Seite dieser Gleichungen bezeichne ich in I) und VI) mit R_0 , in II) und III) (wie bisher) mit R, in IV) und V) mit R', und die in den Klammern eingeschlossenen Reihen bez. mit S_1 , S_2 , S_3 , S_4 , S_5 , S_6 . Zwischen R^0 , R, R' ergeben sich mittels Anwendung des Satzes:

$$\Gamma(\mu) \Gamma(1-\mu) = \frac{\pi}{\sin(\mu \pi)}$$

folgende Beziehungen:

$$R_0 = \frac{\sin(n+y-x)\pi \sin(n+v)\pi}{\sin(y-x)\pi \sin v\pi} R = \frac{\cos(y-x-v)\pi - \cos(2n+y-x+v)\pi}{\cos(y-x-v)\pi - \cos(y-x+v)\pi} R,$$
also

20) $R_0 = R$, wenn n, oder wenn y - x + v eine ganze Zahl ist;

$$R = \frac{\sin(v + n)\pi \cdot \sin(y - x + n)\pi}{\sin(v + n + x)\pi \cdot \sin(y + n)\pi} R = \frac{\cos(x + v - y)\pi - \cos(2n + y - x + v)\pi}{\cos(x + v - y)\pi - \cos(2n + y + x + v)\pi} R,$$

21) R'=R, wenn x, oder wenn v+y+2n eine ganze Zahl ist;

$$R_0 = \frac{\sin{(x+v+n)\pi} \cdot \sin{(y+n)\pi}}{\sin{(y-x)\pi} \cdot \sin{v\pi}} R' = \frac{\cos{(x+v-y)\pi} - \cos{(2n+y+x+v)\pi}}{\cos{(x+v-y)\pi} - \cos{(x-v-y)\pi}} R',$$

22) $R_0 = R'$, wenn y + v + n, oder wenn x + n eine ganze Zahl ist.

Wir wollen nun die Gleichungen I) bis VI) in zweifacher Art zur Anwendung bringen. Erstens zeigen sie, in welchen Fällen sich $f_n(x, y, v)$ in geschlossenem Ausdrucke darstellen lässt.

1. n = ganzer positiver Zahl.

In I) geht der zweite Summand, des Nenners $\Gamma(-n)$ wegen, fort, wenn S_1 convergirt, also wenn 1-v>0 ist; ist dies nicht der Fall, also

v > 1, so giebt die Gleichung I) kein sicheres Resultat; dann ist aber in III) v + n > 0, also entweder $f_n(x, y, v) = R_0$ oder = R, d. i. aber wegen 20):

 $f_n(x, y, v) = R_0 = R$

[womit die Gleichung 1) neu bewiesen ist]. Gleiches Resultat liefern auch die Gleichungen II) und VI).

- x = negativer ganzer Zahl (abgekürzt: n. g. Z.), wobei ich die Null in diesem Zusammenhange auch immer im Folgenden zu den negativen ganzen Zahlen rechnen werde.
- In II) geht der zweite Summand fort, wenn y+n-x>0; ist aber y+n < x, also negativ, so ist in IV) 1-n-y>0, also mit Rücksicht auf 21):

$$f_n(x, y, v) = R = R'.$$

Gleiches Resultat liefern auch die Gleichungen III) und V).

3.
$$y+v+n-1=n, g, Z$$
.

In I) geht der zweite Summand fort, wenn 1-v>0; ist aber v>1, so muss y+n negativ sein, also ist 1-n-y in IV) positiv, also mit Rücksicht auf 22):

23b)
$$f_n(x, y, v) = R_0 = R'$$
.

Gleiches Resultat liefern auch die Gleichungen V) und VI). Ist ausserdem noch n oder x eine ganze Zahl, so ist nach 20) oder 21) $R_0 = R' = R$, so dass also in diesen Fällen auch die Gleichung 1) bestehen bleibt.

4.
$$x+v+n=n$$
. g. Z.

Die Reihe $f_n(x, y, v)$ lässt sich durch eine endliche Reihe von 1-x-v-n Gliedern, multiplicirt in einen aus Gammafunctionen zusammengesetzten Ausdruck, summiren, nämlich vermöge I), wenn 1+x-y keine n. g. Z., und vermöge II), wenn v+n keine n. g. Z. ist. Im ersten ausgeschlossenen Falle wäre die Differenz x+v+n-(1+x-y), d. i. y+v+n-1 eine ganze Zahl, im zweiten wäre x eine ganze Zahl; ist die betreffende ganze Zahl negativ, so ist die Summe sehr leicht nach 3., bez. 2. auszuführen. Andernfalls, zumal wenn 1+x-y und v+n gleichzeitig negative ganze Zahlen sind, bietet sich eine andere Methode dar, die aber auch überhaupt den vorliegenden Fall (x+v+n=n,g,Z) vollkommen erledigt.

Sei also x+v+n gleich der negativen ganzen Zahl -g, so ist -n=x+v+g und daher:

$$\begin{split} f_{\mathbf{z}}(x, y, v) &= 1 + \frac{(x + v + g)x(y + v + n - 1)}{1 \cdot y(x + v)} \\ &+ \frac{(x + v + g)(x + v + g + 1)x(x + 1)(y + v + n - 1)(y + v + n)}{1 \cdot 2 \cdot y(y + 1)(x + v)(x + v + 1)} + \cdots \end{split}$$

Nun zerlege ich, wie schon öfter ähnlich geschehen, folgendermassen:

$$\frac{(x+v+h)\dots(x+v+g+h-1)}{(x+v)\dots(x+v+g-1)}$$

$$=1+(g)_1\frac{h}{x+v}+(g)_2\frac{h(h-1)}{(x+v)(x+v+1)}+\dots+\frac{h(h-1)\dots(h-g+1)}{(x+v)\dots(x+v+g-1)},$$

$$h=1,2,\dots,\infty,$$
und sammle die Coefficienten von
$$\frac{(g)_r}{(x+v)\dots(x+v+r-1)} (r=0,1,\dots,g),$$
so ist deren Summe:
$$x(x+1)\dots(x+r-1)\frac{(y+v+n-1)\dots(y+v+n+r-2)}{y(y+1)\dots(y+r-1)}\frac{\Gamma(y+r)\Gamma(g+1-r)}{\Gamma(y-x)\Gamma(1-v-n)}.$$
Demnach ist:
$$24) \qquad f_n(x,y,v)=\frac{\Gamma(y)\Gamma(g+1)}{\Gamma(y-x)\Gamma(1-v-n)}$$

$$\times\left\{1+\frac{x(y+v+n-1)}{1\cdot(x+v)}+\dots+\frac{x\dots(x+g-1)(y+v+n-1)\dots(y+v+n+g-2)}{1\cdot2\dots g(x+v)\dots(x+v+g-1)}\right\},$$

$$x+v+n=-g.$$

Dies ist die angekündigte Formel. Für y = x + k wird sie:

$$f_{n}(x, y, v) = \frac{(1+g+x)(2+g+x)\dots(k-1+x)}{(1+g)(2+g)\dots(k-1)}$$

$$\times \left\{ 1 + \frac{(k-g-1)x}{1 \cdot (x+v)} + \frac{(k-g-1)(k-g)x(x+1)}{1 \cdot 2 \cdot (x+v)(x+v+1)} + \dots + \frac{(k-g-1)\dots(k-2)x(x+1)\dots(x+g-1)}{1 \cdot 2 \cdot \dots g(x+v)(x+v+1)\dots(x+v+g-1)} \right\},$$

$$x+v+n+g=0, \quad y-x-k=0, \quad k-g-1 > 0.$$

Ware k-g-1 < 0, so liesse sich der Ausdruck für $f_n(x, y, v)$ in ein Product von Gammafunctionen zusammenziehen, wie bereits vorher gesagt. Aus diesem Ausdrucke ist n ganz eliminirt, der Werth von v+n ist also auf denselben ohne Einfluss.

Ich halte mich nicht weiter bei den anderen Fällen 5. bis 9. auf, in denen nämlich v, oder 1+x-y-n, oder y+n, oder y-x, oder endlich 1-v-n eine n. g. Z. ist, da sie sich alle in ähnlicher Art erledigen lassen, wie dies besonders in der Bezeichnungsart der Gleichung 19) ersichtlich ist. Mit Benutzung derselben können wir nämlich sagen:

L oder $f_n(x, y, v)$ lässt sich durch eine endliche Anzahl von Gliedern und Γ -Functionen ausdrücken:

1.—3. wenn eine der Grössen a, b, b', 4.—9. , , , , c'-a, c'-b, c'-b', c-a, c-b, c-b eine negative ganze Zahl ist.

Ferner lässt sich die unendliche Reihe $f_n(x, y, v)$, von gewissen Ausnahmefällen abgesehen, in eine endliche umwandeln, wenn a, oder b, oder b' eine positive g. Z., d. h. n eine n. g. Z., oder x oder y + v + n - 1 eine

positive g. Z. ist. Zu dem Zwecke gehen wir zur Gleichung 12) zurück, setzen darin x-1 statt x und drücken $f_n(x, y, v)$ durch $f_n(x-1, y, v)$ aus:

$$f_{n}(x, y, v) = \frac{1}{(x+v+n-1)(y-x+n)} \times \left\{ (x+v-1)(y-x) f_{n}(x-1, y, v) - \frac{\Gamma(y) \Gamma(x+v)}{\Gamma(-n) \Gamma(x) \Gamma(y+v+n-1)} \right\}.$$

Mittels dieser Gleichung* ist $f_n(1, y, v)$ durch Γ -Functionen ausgedrückt, da $f_n(0, y, v) = 1$ ist. Ist aber x eine ganze positive Zahl > 1, so lassen wir durch Verminderung von x folgende Gleichungen entstehen:

wir durch Verminderung von
$$x$$
 folgende Gleichungen entstehen:
$$\begin{cases}
f_n(x-1, y, v) = \frac{1}{(x+v+n-2)(y-x+n+1)} \\
\times \left\{ (x+v-2)(y-x+1) f_n(x-2, y, v) - \frac{(x-1)!}{(x+v-1) \Gamma(-n) \Gamma(x) \Gamma(y+v+n-1)} \right\} \\
\text{etc. etc.,} \\
f_n(1, y, v) = \frac{1}{(v+n)(y+n-1)} \\
\times \left\{ v(y-1) - \frac{1 \cdot 2 \dots (x-1)}{(1+v) \dots (x+v-1) \Gamma(-n) \Gamma(x) \Gamma(y+v+n-1)} \right\}.
\end{cases}$$

Hierbei muss vorausgesetzt werden, dass keiner der Nenner vor den Klammern $\{\}$ verschwindet, dass also entweder (x+v+n-1) und (y-x+n) keine ganzen Zahlen sind, oder dass in diesem Falle:

27)
$$(x+v+n-1)(v+n) > 0$$
 und $(y-x+n)(y+n-1) > 0$ sind. Dann folgt $f_n(x, y, v)$ durch Elimination von $f_n(x-1, y, v)$, $f_n(x-2, y, v)$..., $f_n(1, y, v)$ aus 26) und 26a). Ist einer der genannten Ausdrücke Null, so ist daraus nicht zu schliessen, dass die rechte Seite der betreffenden Gleichung den Werth ∞ hat, sondern sie erscheint unter der unbestimmten Form $\{ \}$; die Klammer nimmt dann nämlich auch den Werth Null an, was man z. B. in 26) für den Werth $x=y+n$ leicht mittels I) oder V), wenn darin $x-1$ statt x gesetzt wird, erkennt.

Die Auswerthung selbst führt auf einfache bestimmte Integrale. Ist z. B. x = 1 und v = -n, so ist:

$$f_n(1, y, -n) = \left[\frac{1}{(v+n)(y+n-1)} \left\{ v(y-1) - \frac{\Gamma(y)\Gamma(1+v)}{\Gamma(-n)\Gamma(y+v+n-1)} \right\} \right]_{v=-n} = \frac{9}{6}.$$

Nun ist aber bekanntlich für ein positives μ :

^{*} Wenden wir auf diese Gleichung die Substitution d) an, so bleibt darin $f_n(x, y, v)$ ungeändert, $f_n(x-1, y, v)$ geht aber, wie leicht zu übersehen, in $f_{n+1}(x, y-1, v)$ über; ist nun die Gleichung 17) in ähnlicher Art, wie die Gleichungen 12) und 16) abgeleitet, und setzt man darin n+1 statt n, und y-1 statt y, so drückt sie $f_{n+1}(x, y-1, v)$ durch $f_{n+1}(x, y, v)$ aus, und dann kann man mittels der durch die Substitution d) transformirten Gleichung 26) $f_n(x, y, v)$ mit $f_{n+1}(x, y, v)$ in Zusammenhang bringen. Auf diese Art entsteht die Gleichung 18).

$$\Gamma'(\mu) = \Gamma(\mu) \left\{ \int_{0}^{1} \frac{1 - t^{\mu - 1}}{1 - t} dt - C \right\},$$

worin C eine gewisse von μ unabhängige Constante ist, also:

28)
$$\frac{d}{d\mu} \left(\frac{\Gamma(\mu+p)}{\Gamma(\mu+q)} \right) = \frac{\Gamma(\mu+p)}{\Gamma(\mu+q)} \int_{0}^{1} \frac{t^{\mu+q-1} - t^{\mu+p-1}}{1-t} dt,$$

$$\mu+p > 0, \ \mu+q > 0$$

und somit:

29)
$$f_n(1, y, -n) = \frac{y-1}{y+n-1} \left\{ 1 + n \int_{-1}^{2} \frac{ty^{-2} - t^{-n}}{1-t} dt \right\},$$
woraus:
$$y-1 > 0, 1-n > 0,$$

$$\frac{1}{1-t} + \frac{1}{1-t} + \frac{1}{1-t} + \dots$$

oraus:

$$\frac{1}{-n(y-1)} + \frac{1}{(1-n)y} + \frac{1}{(2-n)(y+1)} + \cdots$$

$$= \frac{1}{-n(y+n-1)} \left\{ 1 + n \int_{0}^{1} \frac{t^{y-2} - t^{-n}}{1-t} dt \right\},$$

$$y - 1 > 0, 1 - n > 0,$$

welche Gleichung sich nachträglich unschwer beweisen lässt und für y = 1 - n zu der ebenfalls richtigen Gleichung:

31)
$$\frac{1}{n^2} + \frac{1}{(1-n)^2} + \frac{1}{(2-n)^2} + \frac{1}{(3-n)^2} + \dots = \int_0^\infty \frac{e^{(n+1)u} u \, du}{e^u - 1} \quad n < 0$$
 fuhrt.

Sind $\mu + p$ und $\mu + q$ oder eine dieser Grössen negativ, so sei k eine derartige ganze positive Zahl, dass $\mu + p + k$ und $\mu + q + k$ positiv sind (dabei braucht k nicht nothwendig die kleinste derartige Zahl zu sein); dann folgt durch Differentiation der Gleichung

diese:
$$\frac{\Gamma(\mu+p)}{\Gamma(\mu+q)} = \frac{(\mu+q)\dots(\mu+q+k-1)}{(\mu+p)\dots(\mu+p+k-1)} \frac{\Gamma(\mu+p+k)}{\Gamma(\mu+q+k)}$$
$$\frac{d}{d\mu} \left(\frac{\Gamma(\mu+p)}{\Gamma(\mu+q)}\right) = \frac{\Gamma(\mu+p)}{\Gamma(\mu+q)}$$
$$32) \times \left\{ (p-q) \left(\frac{1}{(\mu+p)(\mu+q)} + \dots + \frac{1}{(\mu+p+k-1)(\mu+q+k-1)}\right) + \int_{0}^{1} \frac{t^{\mu+q+k-1} - t^{\mu+p+k-1}}{1-t} dt \right\},$$

welche also an die Stelle von 28) zu setzen ist.* Gleicher Art sind dann auch die Gleichungen 29)-31) zu modificiren; z. B. wird, wenn n zwischen 0 und 1 liegt, statt 31):

^{*} Soll $\mu+q$ nach der Differentiation der n. g. Z. -g gleich gesetzt werden, so ergiebt sich aus 32): $\left[\frac{d}{d\mu}\binom{\Gamma(\mu+p)}{\Gamma(\mu+q)}\right]_{\mu+q=-g} = (-1)^g g!. \Gamma(p-q-g).$ Digitized by

$$\frac{1}{n^2} + \frac{1}{(1-n)^2} + \frac{1}{(2-n)^2} + \dots = \frac{1}{n^2} + \int_0^{\infty} \frac{e^{nu}u \, du}{e^u - 1} \qquad n < 1$$

(wobei der obigen Bemerkung über k zufolge eine untere Grenze für n anzugeben nicht nöthig ist).

Ist y = 1 - n, and v + n nicht Null, so ist analog 29):

33)
$$f_n(1, 1-n, v) = \frac{v}{v+n} \left\{ 1 + n \int_0^1 \frac{t^{v-1} - t^{-n}}{1-t} dt \right\} \quad v > 0, \ n < 1;$$

diese Gleichung bedarf aber einer aus dem Obigen ableitbaren Modification, wenn die Bedingungen v > 0, n < 1 nicht erfüllt sind.

Ist in 26) x=2 und v+n+1=0, so ist nach derselben Methode:

$$\frac{f_n(2, y, -n-1)}{= -\frac{(y-1)(y-2)}{(y+n-1)(y+n-2)} \left\{ n^2 + n(y-3) - 1 - n(n+1) \int_0^1 \frac{ty-3-t^{-n}}{1-t} dt \right\}.$$

Die Behandlung des analogen Falles x=2, y=n-2, sowie die eventuelle Modification der Gleichung 34) möge nicht weiter ausgeführt werden. Erwähnt aber werde noch einmal, dass der allgemeine Fall, in welchem in 26) x eine positive ganze Zahl und x+v+n-1=0 oder y-x+n=0, sich auch durchführen lässt, wenn man die mit x gleichzeitig wachsende Unbequemlichkeit der Rechnung nicht scheut; und sodann, dass mittels 29) [bez. 33)] und der Gleichungen 26) und 26 a) sich $f_n(x, y, v)$ finden lässt, wenn v+n (bez. y-1+n) = 0 ist, und dass mittels 34), 26) und 26 a) $f_n(x, y, v)$ sich auch bestimmen lässt, wenn v+n+1=0 ist.

(Schluss folgt.)

XIX.

I. Beitrag zur kinematischen Theorie der Gelenkmechanismen.

Von

JOHANN KLEIBER,
Assistent a, d. Kgl. Techn, Hochschule in Münehen.

Hierzu Taf. X.

Auf Veranlassung des Herrn Professor Dr. L. Burmester theile ich aus meinen Studien, betr. die "übergeschlossenen Mechanismen" folgende besonders auf die Roberts'sche simultan dreifache Erzeugung der Koppelcurve (three bar-motion) bezüglichen Resultate mit, welche geeignet sind, den der letzteren zu Grunde liegenden Gelenkmechanismus in genetischem Zusammenhang mit anderen kinematischen Gebilden erscheinen zu lassen.

I.

Das invariable Dreinck.

Denken wir uns die Basis AB eines beliebigen Dreiecks ABC in n willkürliche Theile durch die Punkte

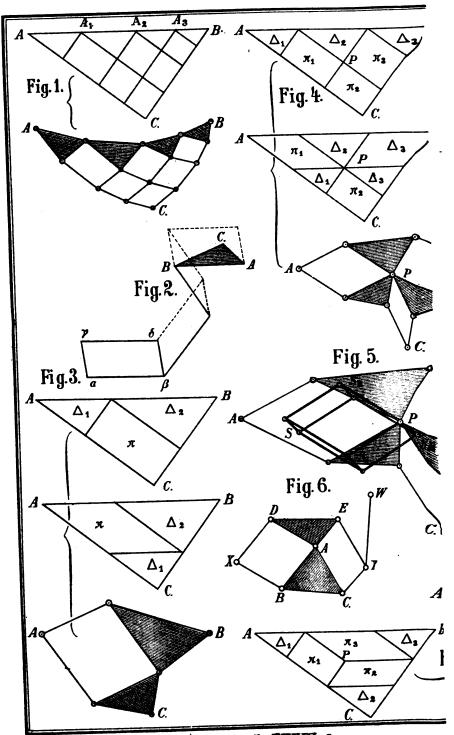
$$A_1, A_2, ..., A_{n-1}$$

zerlegt und durch diese Punkte je die Parallelen zu den übrigen Dreiecksseiten gezogen (Fig. 1), so wird die Fläche des Dreiecks in $\frac{n.n-1}{2}$ Parallelogramme und n unter sich und dem Ausgangsdreieck ABC ähnliche Dreiecke, welche als Kette an die Basis AB angeheftet erscheinen, abgetheilt.

Fassen wir nun diese Dreiecke und Parallelogramme als selbständige Gebilde auf, d. h. die Dreiecke und Parallelogrammseiten als starr und untereinander gelenkig verbunden, so gewinnen wir hiermit den Typus eines ebenen Mechanismus, von welchem folgender Satz gilt:

"Wie man auch diesen Mechanismus verzerren mag, die Gestalt des Dreiecks der drei Eckpunkte A, B, C bleibt invariabel."

Dieser Satz ist direct als wahr zu erkennen, wenn man beachtet, dass in allen Verzerrungen die "polygonalen" Seiten AB, AC, BC ähnliche Linienzüge vorstellen.



Zeitschrift für Mathematik u. Physik XXXVI. 5.

Ħ.

Der Sylvester'sche Pantograph.*

Austausch der Dreiecke und Parallelogramme in einem Mechanismus. — Sei ABC irgend ein Dreieck in einem Mechanismus M, $\alpha\beta\gamma\delta$ irgend ein Parallelogramm desselben, das in irgend einer Art mit dem Dreieck ABC in Verbindung steht, so kann man es immer durch Zufügung von Parallelogrammen (wie Fig. 2 angedeutet) erreichen, dass das Dreieck ABC einem Parallelogramm benachbart wird.

Von zwei solchergestalt benachbarten Figuren erkennt man leicht die Eigenschaft:

"Jeder Eckpunkt des Dreiecks kann durch Verschiebung des Dreiecks als ein Eckpunkt eines Parallelogramms dargestellt werden." Es liegt eben dieser Satz in der Vertauschbarkeit der Summanden bei der "Streckenaddition" begründet.

Wir wollen nunmehr dieses Resultat auf den von uns unter I gewonnenen Mechanismus in Anwendung bringen, indem wir der Zahl n successive verschiedene Werthe beilegen.

Sei zunächst n=2, so erhalten wir, wie Fig. 3 zeigt, den Pantographen Sylvester's. Denn es ist klar, dass bei festgehaltenem Eckpunkt A des Parallelogramms n_1 die beweglichen Ecken B und C der beiden Dreiecke Δ_1 , Δ_2 mit A, vermöge unseres Satzes I, das Dreieck von invariabler Gestalt bilden. — Es ist hier noch anzumerken, dass ein Austausch von Dreiecken und Parallelogrammen, z. B. von Δ_1 und n_1 , wie er gestattet wäre, zu keinem neuen Typus Veranlassung giebt.

III.

Roberts'sche simultan dreifache Erzeugung der Koppelcurve.

Für n=3 geht der unter I entwickelte Mechanismus in Fig. 4 über. Der simultane Austausch von Dreieck Δ_1 und Parallelogramm π_1 , von Dreieck Δ_3 und Parallelogramm π_3 liefert den bekannten Mechanismus der Dreistabbewegung, was man wohl ohne Weiteres erkennt.

Beim Festhalten der Eckpunkte A, B bleibt vermöge unseres mehrfach erwähnten Satzes auch C fest, trotz aller Beweglichkeit der drei Dreiecke, welche im Punkte P zusammengekoppelt erscheinen.

Hiermit dürfte wohl ein Beweis für die simultan dreifache Erzeugung der von dem Koppelpunkte P beschriebenen sogenannten "Koppelcurve" gegeben sein, der an Einfachheit kaum zu wünschen übrig lässt.

[•] Man vergl. hier und im Folgenden: Dr. L. Burmester, Lehrbuch der Kinematik, Leipzig 1888, wo die einschlägige Literatur ausführlich bezeichnet ist.

Bevor wir von dem so erhaltenen Typus zu anderen übergehen, wollen wir noch einige wichtige sich hieran anknüpfende Betrachtungen einschieben, welche uns zu einer neuen Erzeugung derselben Koppelcurve hinleiten werden.

IV.

Nachweis der Existenz von ∞^2 Ruhepunkten im bewegten Mechanismus der Koppelcurve. (Fig. 5.)

Seien S_1 , S_2 , S_3 drei entsprechend gelegene Punkte in den drei unter sich ähnlichen Dreiecken Δ_1 , Δ_2 , Δ_3 ,

P der letzteren Koppelpunkt, so gilt der Satz:

 $\overline{PS_2}$, $\overline{PS_3}$ zu construirenden (ebenen) Parallelepipede ist ein "Rubepunkt", wie sich auch P auf der Koppelcurve bewegen mag."

"Der Punkt S hat übrigens zum festen Dreieck ABC dieselbe Lage, wie irgend einer der Punkte S_i in einem beweglichen Dreiecke Δ_i ."

Der Beweis kann entweder mit Hilfe der unter I und II entwickelten Sätze geführt werden und ist hiernach auf rein geometrische Basis gestellt, oder auch mit der Methode der "Coordinatenaddition", welche wir an dieser Stelle folgen lassen.

Seien zu dem Ende die Coordinaten von entsprechenden Eckpunkten in den vier Dreiecken:

(wobei, wie ersichtlich, x, y die Coordinaten des Koppelpunktes P sind). Hiernach ergeben sich die Coordinaten der oben näher bezeichneten Punkte S_1 , S_2 , S_3 zu:

$$S_{1}: \quad \xi_{1} = \lambda x + \mu x_{2}^{1} + \nu x_{3}^{1} \quad \eta_{1} = \lambda y + \mu y_{2}^{1} + \nu y_{3}^{1}$$

$$S_{2}: \quad \xi_{2} = \lambda x_{1}^{2} + \mu x + \nu x_{3}^{2} \quad \eta_{3} = \lambda y_{1}^{2} + \mu y + \nu y_{3}^{2}$$

$$S_{3}: \quad \xi_{3} = \lambda x_{1}^{3} + \mu x_{2}^{3} + \nu x \quad \eta_{3} = \lambda y_{1}^{3} + \mu y_{2}^{3} + \nu y,$$

$$\lambda + \mu + \nu = 1.$$

wobei:

Da sich nun bekanntermassen die Coordinaten des Gegenpunktes S von P in einem Parallelepipede als

$$|S| = |S_1| + |S_2| + |S_3| - 2|P|$$

(die Parenthese deutet an, dass es sich um die x- oder y-Coordinaten des eingeschlossenen Punktes handelt) ergeben, so folgt:

$$\xi' = \lambda \left(x + x_1^2 + x_1^3 - 2x \right) + \mu \left(x_2^1 + x + x_3^2 - 2x \right) + \nu \left(x_3^1 + x_3^2 + x - 2x \right).$$
Digitized by Google

Wegen der Parallelogramme π_1 , π_2 , π_3 reducirt sich dies auf:

 $\xi = \lambda x_1 + \mu x_2 + \nu x_3$

und analog

 $\eta = \lambda y_1 + \mu y_2 + \nu y_3,$

womit unsere Behauptung erwiesen ist.

V.

Verallgemeinerung der Erzeugung der Koppelcurve.

Construiren wir uns drei der unendlich vielen Ruhepunkte der Art S, welche nicht in einer Geraden liegen, so können die solchergestalt gewählten Punkte S', S'', S'''

die Rolle der festen Punkte A, B, C vertreten. D. h.: Wir können in diesem Falle die Dreiecke Δ_1 , Δ_2 , Δ_3

von A, B, C loslösen, ohne die Erzeugung der Koppelcurve durch P zu beeinträchtigen. Hieraus entspringt aber eine neue verallgemeinerte Erzeugung der letzteren, welche sich wie folgt aussprechen lässt:

"Werden in drei im Punkte P zusammengekoppelten ebenen Parallelepipeden \mathfrak{P}_1 , \mathfrak{P}_2 , \mathfrak{P}_3 die drei Gegenecken zu P festgehalten, die auf den durch P laufenden Kanten liegenden Eckpunkte

 k_1, k_2, k_3 von $\mathfrak{P}_1, l_1, l_2, l_3$ von $\mathfrak{P}_2, m_1, m_2, m_3$ von \mathfrak{P}_3 in die drei Tripel $(k, l_1 m_1), (k_2 l_2 m_2), (k_3 l_3 m_3)$

geordnet und als die entsprechenden Eckpunkte von starren unter sich ähnlichen Dreiecken betrachtet, so beschreibt P die Koppelcurve in simultaner dreifacher Erzeugung."

"Wenn sämmtliche drei Parallelepipede \mathfrak{P}_1 , \mathfrak{P}_2 , \mathfrak{P}_3 (welche gemäss der zuletzt vorgeschriebenen Bedingung der Aehnlichkeit der drei Tripeldreiecke nicht völlig unabhängig voneinander sind) in Parallelogramme degeneriren, so erhalten wir den ausgezeichneten Specialfall der gewöhnlichen simultanen dreifachen Erzeugung der Koppelcurve."

Zwischen diesen zwei Typen von Mechanismen liegen noch jene, welche aus dem allgemeinen Falle oben dadurch hervorgehen, dass entweder ein oder zwei Parallelepipede in Parallelegramme ausarten.

Da uns nichts hindert, die Zahl der gewählten Punkte S', S", ... beliebig zu vermehren, so kann man jederzeit und zwar in grosser Varietät Mechanismen angeben, die nicht blos eine "dreifache", sondern "beliebig vielfache" simultane Erzeugung derselben Koppelcurve repräsentiren.

Neben diesen "mehrfachen" Erzeugungen, denen übergeschlossene Mechanismen zu Grunde liegen, kann man auch noch die "einfachen" betrachten. Man hat zu dem Ende dann nur zwei ebene Parallelepipede (bez. Parallelogramme) entsprechend zwei Fixpunkten in Betracht zu ziehen.

Es ergiebt sich dann hierbei insbesondere der Satz:
"Koppelt man zwei willkürliche Dreiecke:

$$A \stackrel{B}{C}$$
, $A \stackrel{D}{E}$

, in A zusammen, ergänzt die von A auslaufenden Seitenpaare zu den Parallelogrammen

$$\left\{A \stackrel{B}{D} x\right\}, \left\{A \stackrel{C}{E} y\right\}$$

und lässt von den Punkten x, A, y der Reihe nach den ersten fest sein, den zweiten auf einem Kreise laufen, so beschreibt der dritte eine Koppelcurve."

Hierbei mag bemerkt werden, dass x, A, y diesen drei Operationen gegenüber beliebig unter sich vertauscht werden dürfen. (Fig. 6.)

VI.

Eine weitere Form simultan dreifacher Erzeugung der Koppeleurve ergiebt sich, wenn man in der Leitfigur von Fig. 4a das Dreieck Δ_2 mit dem Parallelogramm π_2 vertauscht. Der entstehende Mechanismus ist in Fig. 7 angegeben und zeichnet sich ebenfalls durch allseitige Symmetrie (im erweiterten Sinne) aus. Während beim gewöhnlichen Mechanismus der Koppelpunkt P drei Dreiecke verbindet, stossen nun hier drei Parallelogramme in ihm zusammen.

Für die Fälle n > 3 finden wir einige ausgezeichnete Mechanismen skizzirt, so für n = 4 in Fig. 8, für n = 6 in Fig. 9, welche man noch beliebig weiter vermehren kann.* Ein Mechanismus, welcher der Zahl n entspricht, hat, abgesehen von den drei Eckpunkten A, B, C, von denen der dritte fest bleibt, wenn die beiden anderen festgelegt sind — was wir annehmen wollen —, noch eine (n-2)-fache Beweglichkeit. Soll diese zu einer einfachen werden, so haben wir es noch in der Hand, irgendwelche n-3 einfache Bedingungen (Laufen auf Curven von bestimmten Punkten, sofern solches mit dem Charakter der letzteren verträglich erscheint) dem Mechanismus aufzuerlegen. In diesem Falle hat dann jeder von Bedingungen nicht getroffene Punkt eine zwangläufige Bewegung auszuführen.

^{*} Trotz erhöhter Beweglichkeit des Mechanismus kann man auch hier die Existenz von ∞^2 Ruhepunkten, analog dem Falle IV, nachweisen. Zur besseren Charakterisirung dieser Art von Ruhepunkten möge die Bemerkung dienen, dass dieselben selbst dann ihre Eigenschaft nicht verlieren, wenn man — bei festgehaltenen Eckpunkten A, B, C des Mechanismus — letzteren von der Beschränkung blos "ebener" Beweglichkeit befreit. In dem zuletzt angezogenen Falle kann auch die Bedingung der Aehnlichkeit der auftretenden Dreiecke aufgegeben werden. Was die Beweisführung anlangt, so wird diese im Allgemeinen, wie unter IV, auf Coordinatenaddition gestützt; gleichzeitig geometrische Beweise aber, wie dort, sind nicht zu erbringen.

Zum Schlusse sei es gestattet, noch auf einen Specialfall unseres Satzes unter I hinzuweisen, der auch auf Polygone des Raumes angewendet werden kann.

Beachtet man, dass die schraffirten Dreiecke in Fig. 1 zu Basen die Seiten eines Polygonzuges haben und unter einander ähnlich sind, so erkennt man, wenigstens für den Fall der Ebene, dass, wenn die Höhen der besagten ähnlichen Dreiecke gleichzeitig Null werden, was durchweg einer Theilung sämmtlicher Polygonseiten nach demselben Verhältnisse gleichkommt, auch der dritte Eckpunkt C unseres Mechanismus 1.) fest bleiben, 2.) die Strecke AB im selben Verhältnisse theilen muss. (Fig. 10.)

Führt man das ebene Polygon unter Festlassung der Eckpunkte A, B in ein räumliches über und betrachtet die orthogonalen Projectionen des kinematischen Gebildes auf drei zu einander senkrechte Ebenen, so beweist man leicht für jede einzelne Projection, dass der Projectionspunkt von C bei aller Beweglichkeit der Polygonseiten fest bleibt und zwar die Verbindungslinien der Projectionen von A, B im selben Verhältnisse theilt. Hiernach ist klar, dass der Punkt C selbst auf AB fest bleiben und diese Strecke im erwähnten Verhältnisse theilen muss, genau so, wie es auch bei Betrachtung des ebenen Polygonzuges der Fall war.

Wenn in unserer Fig. 1 die Zahl der Theile n auf der Basis der endlichen Strecke AB sehr bedeutend wächst, so geben die auftretenden Polygonzüge in Curvenstücke über, welche in ihrer Gesammtheit ein Netz mit "rein" parallelogrammatischen Maschen repräsentiren (Fig. 11). Natürlich bleibt auch für dieses "Netz" unser unter I abgeleiteter Satz von dem freiwilligen Festbleiben des Eckpunktes C bestehen. Das Gleiche gilt auch, wenn wir die Ebene unserer Figur einer Verbiegung ohne Dehnung unterwerfen, wodurch wir eine Fläche vom Krümmungsmaasse (G) = 0 erhalten. Auf eine solche kann man sowohl die Fig. 1, wie das daraus abgeleitete Netz übertragen, indem man sich letztere etwa als Fadenfiguren vorstellt, wo die einzelnen Fadenstücke (-Elemente) geodätische Linien der Fläche repräsentiren. Wir können also den unter I gefundenen Satz auch für Flächen vom Gauss'schen Krümmungsmaasse 0 als bewiesen erachten.

München, Juli 1890.

Kleinere Mittheilungen.

XV. Mathematische Miscellen.

Unter dieser Ueberschrift beabsichtige ich an dieser Stelle aus einem Werke, das ich demnächst unter dem Titel "Die Division in der Theorie der ganzen Functionen einer Variabelen. Bekanntes und Neues in neuer Form" zu veröffentlichen gedenke, Mittheilungen in der gewöhnlichen Darstellungsweise zu machen.

Vorbemerkung. Wir sehen die Grösse a_r , wenn sie in einer ganzen Function nten Grades von x den Coefficienten von x^r darstellt, für einen jeden Werth von r, der kleiner als 0 oder grösser als n ist, als eine von Null nicht verschiedene Grösse an und bezeichnen ferner beispielsweise den Quotienten der Determinanten

I. Independente Darstellung der bei der Division zweier ganzen Functionen auftretenden Quotienten und Reste durch deren Coefficienten.

Es stellt bei der Division der Function

$$f(x) = a_n x^n + \dots + a_0 x^0$$

in die Function

$$\varphi(x) = \alpha_m x^m + \dots + \alpha_0 x^0$$

nach fallenden Potenzen von x der Determinantenquotient

und nach steigenden Potenzen von x der Determinantenquotient

wenn die ins Unendliche gehende Anzahl der Horizontal- und Vertikalreihen, die erste Horizontal- und Vertikalreihe nicht mit eingerechnet, auf s eingeschränkt wird, den nach s Theildivisionen bleibenden Best und, sobald in der ersten Vertikalreihe das erste Element durch O ersetzt und aus den folgenden Elementen die Function f(x) entfernt wird, mit dem entgegengesetzten Zeichen den nach s Theildivisionen auftretenden Quotienten dar.

Den Coefficienten von x^r im Quotienten oder den Divisionscoefficienten der Grösse x^r erhält man, wenn man in der den Dividendus bildenden Determinante die Horizontalreihe, welche das Element $f(x)x^r$ enthält, mit der ersten Horizontalreihe vertauscht, alsdann die erste Horizontal- und Vertikalreihe entfernt und nun in ihr sowohl, wie in der den Divisor bildenden Determinante die Anzahl der Horizontal- und Vertikalreihen bei der Division nach fallenden auf m-n+1-r und bei der Division nach steigenden Potenzen von x auf r+1 einschränkt. Er ist mit dem entgegengesetzten Zeichen der Coefficient der Grösse $f(x)x^r$.

Zur Bestimmung des nach s Theildivisionen auftretenden Quotienten bedarf es aber der Berechnung des Divisionscoefficienten der Grösse x^r für r=m-n, ..., m-n-s+1 bei der Division nach fallenden und für $r=0,\ldots,s-1$ bei der Division nach steigenden Potenzen von x, und der nach s Theildivisionen bleibende Rest ergiebt sich, dem gewöhnlichen Divisionsverfahren entsprechend, wenn man in der ersten Vertikalreihe die denselben Werthen von r entsprechenden Functionen f(x) x^r mit den bezüglichen Divisionscoefficienten multiplicirt und von der Function $\varphi(x)$ subtrahirt.

So hat beispielsweise bei der Division der Function

$$2x^2 + 3x + 1$$

in die Function

$$10x^4 + 19x^3 - 3x^2 + 5x + 9$$

nach fallenden Potenzen von x der nach drei Theildivisionen bleibende Rest die Form

$$\begin{vmatrix} 10x^{4} + 19x^{3} - 3x^{2} + 5x + 9 & 10 & 19 & -3 \\ 2x^{4} + 3x^{3} + x^{2} & 2x^{3} + 3x^{2} + x & 0 & 2 & 3 \\ 2x^{3} + 3x^{2} + x & 0 & 0 & 2 \end{vmatrix}$$

und der nach drei Theildivisionen auftretende Quotient die Form

$$\begin{vmatrix}
0 & 10 & 19 & -3 \\
x^2 & 2 & 3 & 1 & 0 \\
x & 0 & 2 & 3 & 0 \\
- & 1 & 0 & 0 & 0 & 2
\end{vmatrix}$$

Die Divisionscoefficienten der Grössen x^2 , x^1 , x^0 stellen sich in der Form

$$\begin{vmatrix} 10 \end{vmatrix} : 2^{1}, \quad \begin{vmatrix} 2 & 3 \\ 10 & 19 \end{vmatrix} : 2^{2}, \quad \begin{vmatrix} 2 & 3 & 1 \\ 0 & 2 & 3 \\ 10 & 19 & -3 \end{vmatrix} : 2^{3}$$

dar und haben die Werthe 5, 2, -7. Der Quotient ist also $5x^2 + 2x - 7$

und der Rest

$$10x^{4} + 19x^{3} - 3x^{3} + 5x + 9 - 5(2x^{4} + 3x^{3} + x^{3})$$
$$-2(2x^{3} + 3x^{3} + x) + 7(2x^{2} + 3x + 1)$$
$$= 24x + 16.$$

Independente Bestimmung der Partialz\u00e4hler bei der Zerlegung einer gebrochenen Function in Partialbr\u00fcche.

Die aus den ganzen Functionen

$$\varphi(x) = a_m x^m + \dots + a_0 x^0 \text{ und } f(x) = a_n x^n + \dots + a_0 x^0$$

gebildete gebrochene Function $\varphi(x):f(x)$ lässt sich, wenn von den n Wurzeln der Gleichung f(x)=0 ν_1,\ldots,ν_μ Wurzeln den ungleichen Grössen $x_{\nu_1},\ldots,x_{\nu_\mu}$ gleich sind und unter der Voraussetzung $a_n=1$

$$f(x) = (x - x_{\nu_{\mu}})^{\nu_{\mu}} \dots (x - x_{\nu_{\mu}})^{\nu_{\mu}}, \quad \nu_{1} + \dots + \nu_{\mu} = n$$

ist, in einen ganzen Theil und in μ aus Partialbrüchen zusammengesetzte Aggregate von der Form

$$\frac{A_{v,0}}{(x-x_v)^v} + \cdots + \frac{A_{v,v-1}}{(x-x_v)^1}$$

für $\nu = \nu_1, ..., \nu_{\mu}$ zerlegen.

Der ganze Theil, der im Falle m < n Null ist, ist der ganze Quotient, der aus der Division der Function f(x) in die Function $\varphi(x)$ nach fallenden Potenzen von x entspringt, und stellt sich in der Form

dar, in der der Coefficient von x^r sich dadurch bestimmt, dass man in der Determinante die Horizontalreihe, welche das Element x^r enthält, mit der ersten Horizontalreihe vertauscht und alsdann die erste und die r letzten Horizontal- und Vertikalreihen entfernt.

Für die Partialbrüche aber gilt folgende Regel:

Um für ein gegebenes ν_i und einen der Zahlenreihe $0, ..., \nu_i-1$ angehörigen Werth von r den zum Partialnenner

$$(x-x_{\nu_{\epsilon}})^{\nu_{\epsilon}-r}$$

gehörigen Partialzähler zu bestimmen, hat man die Elemente eines aus π Horizontal- und ν Vertikalreihen bestehenden Gebildes von der Form

oder von der Form

$$\begin{pmatrix} n-1 \\ \nu-1 \end{pmatrix} x_{\nu}^{n-\nu} & \cdot & \cdot & \begin{pmatrix} n+\nu-2 \\ \nu-1 \end{pmatrix} x_{\nu}^{n-1} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \begin{pmatrix} 0 \\ \nu-1 \end{pmatrix} x_{\nu}^{1-\nu} & \cdot & \cdot & \begin{pmatrix} \nu-1 \\ \nu-1 \end{pmatrix} x_{\nu}^{0}$$

in beliebiger Wahl für $n=\nu_1,\ldots,\nu_n$ zu berechnen und die diesen Werthen entsprechenden Gebilde zu einer Determinante zusammenzustellen, den Werth D dieser Determinante zu berechnen, alsdann aus ihr die erste Horizontalreihe und von den dem gegebenen ν_t entsprechenden Vertikalreihen der Reihe nach die erste, die zweite u. s. f., schliesslich, je nachdem für das ν_t die erste oder die zweite Form des Gebildes gewählt worden ist, die (r+1)te oder die letzte, ν_t te Vertikalreihe zu entfernen, die dadurch entstehenden Determinanten abwechselnd, je nachdem jenen Vertikalreihen eine gerade oder ungerade Anzahl Vertikalreihen vorangeht, mit dem Plus- und dem Minuszeichen oder dem Minus- und dem Pluszeichen zu versehen und ihre Werthe u_0,\ldots,u_r oder v_0,\ldots,v_{r_k-1} zu bestimmen, ferner die Function

$$D^{\sigma} \varphi(x) : \sigma!$$

für $\sigma = 0, ..., r$ oder die Function

$$D^r \varphi(x) x^Q : r!$$

für $\varrho = 0, ..., \nu_t - 1$ darzustellen und ihre Werthe $\sigma_0, ..., \sigma_r$ oder $\varrho_0, ..., \varrho_{\nu_t - 1}$ für $x = x_{\nu_t}$ zu berechnen und endlich den Ausdruck

$$(\sigma_r u_0 + \cdots + \sigma_0 u_r) : D \quad \text{oder} \quad (\varrho_0 v_0 + \cdots + \varrho_{v_t-1} v_{v_t-1}) : D$$
 zu bilden.

Soll hiernach beispielsweise die aus den Functionen

$$\varphi(x) = 2x^5 + 3x^4 - 22x^3 + 23x^2 - 11x + 15$$

und

$$f(x) = x^6 - 6x^5 + 12x^4 - 6x^3 - 9x^2 + 12x - 4$$

gebildete gebrochene Function $\varphi(x):f(x)$ in Partialbrüche zerlegt werden, so ist auf Grund der Gleichung

$$f(x) = (x-1)^3 (x-2)^2 (x+1)^1$$

ersichtlich

$$v_1 = 3$$
, $v_2 = 2$, $v_3 = 1$, $n = 6$

and

$$x_{\nu_1} = 1, x_{\nu_2} = 2, x_{\nu_2} = -1$$

zu setzen und zunächst am einfachsten die Determinante Zeitschrift f. Mathematik u. Physik XXXVI, 5.

$$\begin{vmatrix} \binom{5}{2} 1^{5} & . & . & \binom{5}{0} 1^{5} & \binom{5}{1} 2^{4} & \binom{5}{0} 2^{5} & \binom{5}{0} (-1)^{5} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \binom{0}{2} 1^{-2} & . & . & \binom{0}{0} 1^{0} & \binom{0}{1} 2^{-1} & \binom{0}{0} 2^{0} & \binom{0}{0} (-1)^{0} \end{vmatrix}$$

in die Form

zu bringen und zu berechnen; aus dieser Determinante sind dann die erste Horizontalreihe und der Reihe nach die erste, die zweite u. s. f., schliesslich die sechste Vertikalreihe zu entfernen und die dadurch entstehenden Determinanten abwechselnd mit dem Plus- und dem Minuszeichen zu versehen und ihrem Werthe nach zu bestimmen, und endlich ist die Function

$$D^{\sigma}\varphi(x):\sigma!$$

mit Rücksicht darauf, dass der grösste Werth von v 3 ist, für

$$\sigma = 0, 1, 2$$

in der Form

$$2x^5 + 3x^4 - 22x^3 + 23x^2 - 11x + 15$$
,
 $10x^4 + 12x^3 - 66x^3 + 46x - 11$,
 $20x^3 + 18x^2 - 66x + 23$

darzustellen und für die Werthe

$$x=1$$
, $\sigma=0$, 1, 2; $x=2$, $\sigma=0$, 1; $x=-1$, $\sigma=0$

zu berechnen. Die bezüglichen Werthe sind

und

72; 36, 54, 81; 24,
$$-80$$
; -1 10, -9 , -5 ; 21, 73; 72.

Aus diesen Werthen sind nun die Aggregate

10.36,
$$-9.36 + 10.54$$
, $-5.36 + -9.54 + 10.81$;
21.24, $73.24 + 21. -80$; $72. -1$

zu bilden und durch 72 zu dividiren. Die daraus entspringenden Zahlen

5, 3, 2; 7, 1; -1

sind alsdann die den Nennern

$$(x-1)^8$$
, $(x-1)^2$, $(x-1)^1$; $(x-2)^2$, $(x-2)^1$; $(x+1)^1$

entsprechenden Zähler der Partialbrüche.

Ferner gilt für die Partialbrüche folgender Satz:

Berechnet man die Functionen

$$D^{\sigma} \varphi(x) : \sigma!, \quad D^{\tau} f(x) : \tau!$$

für die Werthe

$$\sigma = 0, ..., \nu - 1; \tau = \nu, ..., 2\nu - 1$$

und den Werth $x = x_{\nu}$ — die den Werthen $\tau = 0, ..., \nu - 1$ entsprechenden Functionen verschwinden für diesen Werth —, und bildet aus den ermittelten Werthen $\alpha_{\nu,\nu-1}, ..., \alpha_{\nu,0}$ und $\alpha_{\nu,\nu-1}, ..., \alpha_{\nu,0}$ die Functionen

 $\varphi_{\nu}(x) = \alpha_{\nu,\nu-1} x^{\nu-1} + \cdots + \alpha_{\nu,0} x^{0}$

$$f_{\nu}(x) = a_{\nu,\nu-1} x^{\nu-1} + \cdots + a_{\nu,0} x^{0},$$

so sind die ν ersten Divisionscoefficienten, welche bei der Division der Function $f_{\nu}(x)$ in die Function $\varphi_{\nu}(x)$ nach fallenden Potenzen von x auftreten, die den Indices $r=0,\ldots,\nu-1$ entsprechenden Werthe des zum Partialnenner $(x-x_{\nu})^{\nu-r}$ gehörigen Partialzählers.

Um hiernach in einer einfacheren Weise für die Functionen

$$\varphi(x) = 2x^5 + 3x^4 - 22x^3 + 23x^2 - 11x + 15$$

und

und

$$f(x) = x^6 - 6x^5 + 12x^4 - 6x^3 - 9x^2 + 12x - 4$$

für welche die Grössen x, und v die Werthe

$$1, 2, -1; 3, 2, 1$$

haben, die Partialzähler zu bestimmen, hat man die Functionen

$$D^{\sigma} \varphi(x) : \sigma!, \quad D^{\tau} f(x) : \tau!$$

mit Rücksicht darauf, dass der grösste Werth von ν 3 und der kleinste 1 ist, für $\sigma = 0, 1, 2; \quad \tau = 1, 2, 3, 4, 5$

in der Form

$$2x^{5} + 3x^{4} - 22x^{3} + 23x^{2} - 11x + 15,$$

$$10x^{4} + 12x^{3} - 66x^{2} + 46x - 11,$$

$$20x^{3} + 18x^{2} - 66x + 23;$$

$$6x^{5} - 30x^{4} + 48x^{3} - 18x^{2} - 18x + 12,$$

$$15x^{4} - 60x^{3} + 72x^{2} - 18x - 9,$$

$$20x^{3} - 60x^{2} + 48x - 6,$$

$$15x^{2} - 30x + 12,$$

$$6x - 6$$

darzustellen und für die Werthe

$$x=1,$$
 $\sigma=0, 1, 2,$ $\tau=3, 4, 5;$
 $x=2,$ $\sigma=0, 1,$ $\tau=2, 3;$
 $x=-1,$ $\sigma=0,$ $\tau=1$

zu berechnen, und erhält alsdann aus den in der folgenden Tafel:

verzeichneten Werthen die zur Bestimmung der Partialbrüche dienenden Functionen in der Form

 $10x^2-9x-5$, $2x^2-3x$; 21x+73, 3x+10; 72, -72 und für die den Wurzeln 1, 2, -1 entsprechenden Partialzähler selbst die Werthe 5, 3, 2; 7, 1; -1

nach folgendem Schema:

Stellt man endlich das Aggregat der auf die Wurzel x_{φ} bezüglichen Partialbrüche als eine gebrochene Function mit dem Nenner $(x-x_{\varphi})^{\varphi}$ dar, so ist der Zähler, die auf die Wurzel x_{φ} bezügliche Partialzählerfunction, der Quotient, der sich bei der Division der Function $f_{\varphi}(y)$ in die Function $\phi_{\varphi}(y)$ nach fallenden Potenzen von $y=(x-x_{\varphi})^{-1}$ nach φ Theildivisionen ergiebt, und somit von der Form

und der zum Partialnenner $(x-x_v)^{v-r}$ gehörige Partialzähler ergiebt sich aus ihr dadurch, dass man in der den Dividendus bildenden Determinante die Horizontalreihe, welche das Element $(x-x_v)^r$ enthält, mit der ersten Horizontalreihe vertauscht und alsdann die erste Horizontal- und Vertikalreihe und darauf, wie auch in der den Divisor bildenden Determinante, die letzten v-r-1 Horizontal und Vertikalreihen entfernt.

So erhält man in dem obigen Beispiele für die Wurzel 1, zu der die Functionen $10x^2-9x-5$, $2x^2-3x$

gehören, die Partialzählerfunction in der Form

und aus ihr die Partialzähler 5, 3, 2 in der Form

$$\begin{vmatrix} 10 \mid : 2^{1}, & \begin{vmatrix} 2 & -3 \\ 10 & -9 \end{vmatrix} : 2^{2}, & \begin{vmatrix} 2 & -3 & 0 \\ 0 & 2 & -3 \\ 10 & -9 & -5 \end{vmatrix} : 2^{3}.$$

Berlin, 11. Januar 1891.

LEOPOLD SCHENDEL.

XVI. Beitrag zur Kenntniss der algebraischen Flächen mit Mittelpunkt.

Wenn eine algebraische Fläche n^{ter} Ordnung einen Mittelpunkt besitzt, so vertritt derselbe, je nachdem n gerade (= 2μ) oder ungerade (= $2\nu-1$) ist, bekanntlich*

^{*} Vergl. Salmon-Fiedler, Analyt. Geom. des Raumes II, S. 583, 3. Auf.

$$\frac{\mu(\mu+1)(4\mu+5)}{6} \text{ oder } \frac{\nu(\nu+1)(4\nu-1)}{6}$$

ihrer bestimmenden Punkte.

Ist der Mittelpunkt gegeben, so sind, wie sich leicht ergiebt, zur vollständigen Bestimmung der Fläche im Allgemeinen

$$\frac{(\mu+1)(\mu+2)(4\mu+3)}{6}-1 \quad \text{oder} \quad \frac{\nu(\nu+1)(4\nu+5)}{6}-1$$

Punkte nothig.

Wenn der Mittelpunkt jedoch nicht gegeben ist und man vermehrt die Anzahl der Punkte, die ausser dem Mittelpunkte zur völligen Bestimmung der Fläche im Allgemeinen nothwendig sind, um einen weiteren, durch den die Fläche ebenfalls gehen soll, so kann der Mittelpunkt nicht mehr beliebig liegen, sondern muss sich auf eine Ortsfläche beschränken. Die Bestimmung der allgemeinen Ordnungszahl dieser Fläche ist der Zweck der folgenden Zeilen.

a) n sei gerade (=
$$2\mu$$
).

In diesem Falle handelt es sich um die Beantwortung der Frage:

"Von welcher Ordnung ist die Ortsfläche der Mittelpunkte der Flächen $2\mu^{\text{ter}}$ Ordnung, die durch $\frac{(\mu+1)(\mu+2)(4\mu+3)}{6}$ gegebene Punkte gehen?"

Verstehen wir unter $\phi^{(j)}$ quaternäre Formen vom Grade 2μ und sind 1μ Parameter, so ist die Gleichung einer Fläche $2\mu^{\text{ter}}$ Ordnung, welche durch die obige Anzahl von Punkten geht, von der Form:

$$f = \Sigma \lambda_i \varphi^{(0)} = 0$$
 for $i = 1, 2, 3, ..., \frac{\mu(\mu + 1)(4\mu + 5)}{6}$

Diese Fläche hat nun den Punkt $\xi |\eta| \xi$ zum Mittelpunkt, wenn folgendes System von $\frac{\mu(\mu+1)(4\mu+5)}{6}$ Bedingungsgleichungen besteht:

1)
$$\frac{\partial^k f}{\partial \xi \theta \partial \eta^{\sigma} \partial \xi^{\sigma}} = 0$$
, wobei $\varrho + \sigma + \tau = k$ und $k = 1, 3, 5, ..., 2\mu - 1$.

Nach Euler's Theorem von den homogenen Functionen ist aber:

$$\begin{split} (2\,\mu-k)\,(2\,\mu-k-1)\,\frac{\partial^k f}{\partial\,\xi^\varrho\,\partial\,\eta^\sigma\,\partial\,\zeta^\varepsilon} &= \Big(\xi\,\frac{\partial}{\partial\,\xi} + \eta\,\frac{\partial}{\partial\eta} + \xi\,\frac{\partial}{\partial\,\xi} + \vartheta\,\frac{\partial}{\partial\,\vartheta}\Big)^3\,\frac{\partial^k f}{\partial\,\xi^\varrho\,\partial\,\eta^\sigma\,\partial\,\zeta^\varepsilon} \\ &= 2\,\xi\,\vartheta\,\frac{\partial^{k+2}\,f}{\partial\,\xi^\varrho+1\,\partial\,\eta^\sigma\,\partial\,\zeta^\sigma\,\partial\,\vartheta} + 2\,\eta\,\vartheta\,\frac{\partial^{k+2}\,f}{\partial\,\xi^\varrho\,\partial\,\eta^\sigma+1\,\partial\,\zeta^\sigma\,\partial\,\vartheta} \\ &\quad + 2\,\xi\,\vartheta\,\frac{\partial^{k+2}\,f}{\partial\,\xi^\varrho\,\partial\,\eta^\sigma\,\partial\,\zeta^\sigma+1\,\partial\,\vartheta} + \vartheta^2\,\frac{\partial^{k+2}\,f}{\partial\,\xi^\varrho\,\partial\,\eta^\sigma\,\partial\,\zeta^\sigma\,\partial\,\vartheta^2} \end{split}$$

infolge von 1).

In dem System 1) hat man somit jede Gleichung

$$\frac{\partial^k f}{\partial \xi^{\varrho} \partial \eta^{\sigma} \partial \zeta^{\varepsilon}} = 0$$

mit Ausnahme derjenigen, für welche $k=2\mu-1$, durch die entsprechende

Gleichung

$$2\xi\vartheta\frac{\partial^{k+2}f}{\partial\xi^{e+1}\partial\eta^{\sigma}\partial\xi^{\sigma}\partial\vartheta} + 2\eta\vartheta\frac{\partial^{k+2}f}{\partial\xi^{e}\partial\eta^{\sigma+1}\partial\xi^{\sigma}\partial\vartheta} + 2\xi\vartheta\frac{\partial^{k+2}f}{\partial\xi^{e}\partial\eta^{\sigma}\partial\xi^{\sigma+1}\partial\vartheta} + 2\xi\vartheta\frac{\partial^{k+2}f}{\partial\xi^{e}\partial\eta^{\sigma}\partial\xi^{\sigma}\partial\vartheta^{\sigma}} = 0$$

zu ersetzen.

Führt man nun nach dieser Substitution $\sum \lambda_i \varphi^{(i)}$ in das System der Bedingungsgleichungen ein und eliminirt die Parameter λ , so repräsentirt die gleich Null gesetzte Resultante die Gleichung der Ortsfläche des Mittelpunktes. Wie man leicht sieht, ist diese Resultante in Bezug auf ξ , η , ζ vom Grade:

$$3(2\mu-2)+10(2\mu-4)+21(2\mu-6)+\cdots+\mu(2\mu+1).1$$

=\frac{1}{8}\mu\left(\((\mu^2+5)(\mu+1)-3\right)

und folglich können wir sagen:

"Die Ortsfläche der Mittelpunkte sämmtlicher Flächen von gerader Ordnung, welche durch $\frac{(\mu+1)(\mu+2)(4\mu+3)}{6}$ gegebene Punkte gehen, ist im Allgemeinen eine Fläche von der Ordnung:

$$\frac{1}{8}\mu((\mu^2+5)(\mu+1)-3) = \frac{1}{48}n((n^2+20)(n+2)-24).$$

Auf dieser Oberfläche liegen auch die Mitten der Verbindungslinien der gegebenen Punkte.

b) n sei ungerade
$$(=2\nu-1)$$
.

Hierbei lautet die Frage:

"Welcher Ortsfläche gehören die Mittelpunkte der Flächen $2\nu - 1^{\text{ter}}$ Ordnung an, die durch $\frac{\nu(\nu+1)(4\nu+5)}{6}$ gegebene Punkte gehen?"

Bezeichnen wir wiederum mit $\varphi^{(i)}$ quaternäre Formen und zwar vom Grade $2\nu-1$ und durch λ_i Parameter, so lautet die Gleichung einer Fläche $2\nu-1^{\text{ter}}$ Ordnung durch die obige Anzahl von Punkten:

$$f = \sum \lambda_i \varphi^{(i)} = 0$$
 für $i = 1, 2, 3, ..., \frac{\nu(\nu+1)(4\nu-1)}{6}$.

Der Punkt $\xi |\eta| \xi$ ist nun Mittelpunkt dieser Fläche, wenn

2)
$$\frac{\partial^k f}{\partial \xi^{\varrho} \partial \eta^{\sigma} \partial \xi^{\varepsilon}} = 0$$
 für $\varrho + \sigma + \tau = k$ und $k = 0, 2, 4, 6, ..., 2\nu - 2$.

Nach Euler's Theorem hat man aber:

$$(2\nu - k - 1)(2\nu - k - 2)\frac{\partial^{k} f}{\partial \xi^{e} \partial \eta^{\sigma} \partial \xi^{e}} = \left(\xi \frac{\partial}{\partial \xi} + \eta \frac{\partial}{\partial \eta} + \xi \frac{\partial}{\partial \xi} + \vartheta \frac{\partial}{\partial \theta}\right)^{2} \frac{\partial^{k} f}{\partial \xi^{e} \partial \eta^{\sigma} \partial \xi^{e}}$$

$$= 2\xi \vartheta \frac{\partial^{k+2} f}{\partial \xi^{e+1} \partial \eta^{\sigma} \partial \xi^{e} \partial \vartheta} + 2\eta \vartheta \frac{\partial^{k+2} f}{\partial \xi^{e} \partial \eta^{\sigma+1} \partial \xi^{e} \partial \vartheta}$$

$$+ 2\xi \vartheta \frac{\partial^{k+2} f}{\partial \xi^{e} \partial \eta^{\sigma} \partial \xi^{e+1} \partial \vartheta} + \vartheta^{2} \frac{\partial^{k+2} f}{\partial \xi^{e} \partial \eta^{\sigma} \partial \xi^{e} \partial \vartheta^{2}}$$

infolge von 2).

Digitized by Google

In dem Gleichungssystem 2) hat man folglich jede Gleichung

$$\frac{\partial^k f}{\partial \xi^{\varrho} \partial \eta^{\sigma} \partial \xi^{\varepsilon}} = 0,$$

mit Ausnahme derjenigen, für welche $k = 2\nu - 2$, durch die entsprechende Gleichung:

$$2\xi\vartheta\frac{\partial^{k+2}f}{\partial\xi^{\varrho+1}\partial\eta^{\sigma}\partial\xi^{\varepsilon}\partial\vartheta}+2\eta\vartheta\frac{\partial^{k+2}f}{\partial\xi^{\varrho}\partial\eta^{\sigma+1}\partial\xi^{\varepsilon}\partial\vartheta}+2\xi\vartheta\frac{\partial^{k+2}f}{\partial\xi^{\varrho}\partial\eta^{\sigma}\partial\xi^{\varepsilon}\partial\vartheta}+2\xi\vartheta\frac{\partial^{k+2}f}{\partial\xi^{\varrho}\partial\eta^{\sigma}\partial\xi^{\varepsilon}\partial\vartheta}=0$$

zu ersetzen.

Wenn man nun nach dieser Substitution $\Sigma \lambda_t \varphi^{(t)}$ in das System der $\frac{\nu(\nu+1)\,(4\,\nu-1)}{6}$ Bedingungsgleichungen für den Mittelpunkt einführt und die Parameter λ eliminirt, so stellt die gleich Null gesetzte Resultante die Gleichung der Ortsfläche des Mittelpunktes dar. Diese Resultante ist in Bezug auf ξ , η , ζ vom Grade:

$$1(2\nu-2)+6(2\nu-4)+15(2\nu-6)+\cdots+\nu(2\nu-1).1$$
und demnach hat man:
$$=\frac{1}{3}\nu((\nu^3+5)(\nu-1)+3)$$

"Die Ortsfläche der Mittelpunkte aller Flächen von ungerader Ordnung, welche durch $\frac{\nu(\nu+1)(4\nu+5)}{6}$ gegebene Punkte gehen, ist im Allgemeinen eine Fläche von der Ordnung:

$$\frac{1}{8}\nu\left((\nu^2+5)(\nu-1)+3\right) = \frac{1}{48}(n+1)\left[((n+1)^2+20)(n-1)+24\right].$$
 Diese Fläche geht

1. durch die gegebenen Punkte selbst,

2. durch die Mitten der Verbindungslinien der gegebenen Punkte.

Mainz. Dr. Karl Stoltz.

XVII. Ueber Invarianten der linearen Differentialgleichungen.

A. Transformirt man die lineare Differentialgleichung

1)
$$p_0 \frac{d^n y}{dx^n} + p_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + p_n y = 0$$

durch die Substitution

2)
$$y = Y \varphi(x), \quad \frac{dy}{dx} = \frac{dY}{dx} \varphi(x) + Y \varphi'(x), \dots,$$

$$\begin{split} \frac{d^{n}\,y}{d\,x^{n}} &= \varphi\,(x) \frac{d^{n}\,Y}{d\,x^{n}} + n\,\,\varphi'(x)\,\frac{d^{n-1}\,Y}{d\,x^{n-1}} + \frac{n\,(n-1)}{2}\,\,\varphi''(x)\,\frac{d^{n-2}\,Y}{d\,x^{n-2}} + \cdots \\ &\quad + n\,\,\varphi^{(n-1)}(x)\,\frac{d\,Y}{d\,x} + \varphi^{(n)}\,(x)\,Y, \end{split}$$

so ergiebt sich, abgekürzt geschrieben:

3)
$$P_0 \frac{d^n Y}{dx^n} + P_1 \frac{d^{n-1} Y}{dx^{n-1}} + \dots + P_n Y = 0,$$

4)
$$\begin{cases} P_0 = p_0 \varphi(x), \\ P_1 = n p_0 \varphi'(x) + p_1 \varphi(x), \\ P_2 = \frac{n(n-1)}{2} \varphi''(x) + (n-1) p_1 \varphi'(x) + p_2 \varphi(x), \\ \vdots \\ P_n = p_0 \varphi^{(n)}(x) + p_1 \varphi^{(n-1)}(x) + \dots + p_n \varphi(x). \end{cases}$$

Ferner folgt aus 1) durch die Substitution

$$5) y = s \psi(x)$$

die weitere, abgekürzt geschriebene Gleichung

6)
$$n_0 \frac{d^n s}{dx^n} + n_1 \frac{d^{n-1} s}{dx^{n-1}} + \dots + x_n s = 0.$$

Diese Gleichung 6) kann man aus 3) durch die Substitution

$$Y = s \frac{\psi(x)}{\varphi(x)}$$

ableiten. Setzt man nämlich in 3) für $P_0 \dots P_n$ die unter 4) angegebenen Werthe und transformirt alsdann durch die Substitution

$$Y = y \frac{1}{\varphi(x)},$$

so erhält man die Gleichung 1) wieder, weil 3) durch 2) aus 1) erhalten worden ist; durch die Substitution 5) folgt dann weiter die Gleichung 6). Also folgt 6) direct aus 3), wenn man in 8) für y seinen Werth aus 5) setzt, d. h. also durch die Substitution 7). Es ergiebt sich somit folgender

Satz: Die Gleichungen 1) und 3) — wenn man in letzterer für $P_0 \dots P_n$ die unter 4) angegebenen Werthe setzt — werden durch die Substitutionen

9) a)
$$\begin{cases} y = s \psi(x) \text{ beziehungsweise} \\ Y = s \frac{\psi(x)}{\varphi(x)} \end{cases}$$

auf dieselbe Mittelform 6) gebracht.

B. Transformirt man die Gleichung 3) — ohne vorläufig für $P_0 \dots P_n$ die in 4) angegebenen Werthe zu setzen — durch eine aus ihren Coefficienten gebildete Substitution

$$Y = s F(P_0 \dots P_n),$$

so ergiebt sich, abgekürzt geschrieben:

11)
$$f_0(P_0 \dots P_n) \frac{d^n s}{dx^n} + f_1(P_0 \dots P_n) \frac{d^{n-1} s}{dx^{n-1}} + \dots + f_n(P_0 \dots P_n) s = 0.$$

Durch die nämliche, aus ihren entsprechenden Coefficienten gebildete Substitution

$$12) y = s F(p_0 \dots p_n)$$

geht die Gleichung 1) der Symmetrie wegen über in:

13)
$$f_0(p_0 \dots p_n) \frac{d^n s}{dx^n} + f_1(p_0 \dots p_n) \frac{d^{n-1} s}{dx^{n-1}} + \dots + f_n(p_0 \dots p_n) s = 0$$

wo fa in 11) and 13) dieselbe Function — hier von $p_0 ldots p_n$, dort von $p_0 ldots p_n$ — bedeutet.

Setzt man in 10) für $P_0 \dots P_n$ die unter 4) angegebenen Werthe, so erhält man die entsprechende Transformirte, indem man in 11) für $P_0 \dots P_n$ ihre Werthe aus 4) substituirt.

C. Wählt man nun die Function F [Gl. 10) und 12)] derartig, dass mit Rücksicht auf 4) die identische Beziehung besteht:

$$F(P_0 \dots P_n) = \frac{1}{\varphi(x)} F(p_0 \dots p_n),$$

so lauten auf Grund von 14) die Substitutionen 10) und 12):

15)
$$\begin{cases} y = s F(p_0 \dots p_n), \\ Y = s \frac{F(p_0 \dots p_n)}{\varphi(s)}. \end{cases}$$

Diese Substitutionen genügen aber der Bedingung 9). Daher werden die Gleichungen 1) und 3) durch die Substitutionen 15), bezw. 10) und 12) auf dieselbe Mittelform gebracht. Die Gleichungen 13) und 11), welche diesen Substitutionen entsprechen, müssen also — wenn man in 11) für $P_0 \dots P_n$ ihre Werthe aus 4) substituirt — vollständig identisch sein. Es muss also mit Rücksicht auf 4) die identische Beziehung bestehen:

16)
$$fa(P_0 \dots P_n) = fa(p_0 \dots p_n).$$

Das heisst aber: $fa(p_0 ldots p_n)$ ist eine Invariante. Es ergiebt sich also folgender

Satz: Transformirt man die Gleichung 1) durch eine aus ihren Coefficienten gebildete Substitution

$$y = s F(p_0 \dots p_n),$$

wo F der Bedingung 14) genügt, so sind die Coefficienten der so erhaltenen Transformirten Invarianten. Diese Coefficienten erhält man, indem man — der speciellen Substitution 17) entsprechend — in 4) für $\varphi(x)$ den speciellen Werth $F(p_0 \dots p_n)$ substituirt.

So gentigt z. B. der Ausdruck $\frac{1}{p_0}$ der Bedingung 14); denn auf Grund von 4) ist:

$$\frac{1}{P_0} = \frac{1}{p_0} \cdot \frac{1}{\varphi(x)}.$$

Transformirt man daher die Gleichung 1) durch die Substitution $y = \frac{s}{p_0}$, so sind die Coefficienten der erhaltenen Transformirten Invarianten.

D. Derartige Functionen F, welche der Bedingung 14) gentigen, ergeben sich nach folgender

Regel: Man bilde aus den Coefficienten der Gleichung 3) einen beliebigen Ausdruck $f(P_0 \dots P_n)$ und setze denselben gleich einer Constanten. Substituirt man alsdann in diesem Ausdrucke für $P_0 \dots P_n$ ihre Werthe aus 4) und berechnet $\varphi(x)$ aus der so erhaltenen Gleichung

$$f(P_0 \dots P_n) = c,$$

so gentigt der für $\varphi(x)$ gefundene Werth

$$\varphi(x) = F(p_0 \dots p_n, c)$$

der Bedingung 14). Derartige Ausdrücke sind z. B.:

$$P_{0} = p_{0} \varphi(x), \quad P_{1} - n \frac{dP_{0}}{dx} = \varphi(x) \left\{ p_{1} - n \frac{dp_{0}}{dx} \right\},$$

$$P_{1} = n p_{0} \varphi'(x) + p_{1} \varphi(x),$$

$$P_{2} - \frac{n-1}{2} \frac{dP_{1}}{dx} = \varphi'(x) \left\{ \frac{n-1}{2} p_{1} - \frac{n(n-1)}{2} \frac{dp_{0}}{dx} \right\} + \varphi(x) \left\{ p_{2} - \frac{n-1}{2} \frac{dp_{1}}{dx} \right\},$$

$$P_{2} - \frac{n(n-1)}{2} \frac{d^{2}P_{0}}{dx^{2}} = \varphi'(x) \left\{ (n-1)p_{1} - \frac{n(n-1)}{2} \frac{dp_{0}}{dx} \right\} + \varphi(x) \left\{ p_{2} - \frac{n(n-1)}{2} \frac{d^{2}p_{0}}{dx^{2}} \right\} \text{ etc.}$$

Setzt man die rechten Seiten dieser Gleichungen gleich Null, gleich 1 oder gleich einer sonstigen Constanten, und berechnet $\varphi(x)$ aus den so erhaltenen Gleichungen, so genügen die gefundenen Werthe der Bedingung 14).

Beweis: Transformirt man die Gleichung 3) — ohne für $P_0 \dots P_n$ ihre Werthe aus 4) zu setzen — durch die Substitution:

$$Y = s \omega(x)$$

und bildet aus den Coefficienten

der erhaltenen Transformirten

24)
$$\Pi_0 \frac{d^n s}{dx^n} + \Pi_1 \frac{d^{n-1} s}{dx^{n-1}} + \dots + \Pi_n s = 0$$

die zu 19) analoge Gleichung

$$f(\Pi_0 \dots \Pi_n) = c,$$

setzt für $\Pi_0 \dots \Pi_n$ die in 23) angegebenen Werthe und berechnet $\omega(x)$ aus der erhaltenen Gleichung, so ergiebt sich wegen der Analogie von 4) und 23), 19) und 25):

$$\omega(x) = F(P_0 \dots P_n, c),$$

wo F dieselbe Function bedeutet wie in 20).

Die Gleichung 24) kann man nun aber aus 1) durch die Substitution

$$(27) y = s \varphi(x) \omega(x)$$

ableiten; denn durch die Substitution $y = Y \varphi(x)$ folgt aus 1) die Gleichung 3), und durch die weitere Substitution $Y = s \omega(x)$ ergiebt sich Gleichung 24). Daher hat man auch:

28) Daher hat man such:
$$\begin{cases}
\Pi_0 = p_0 [\varphi(x) \omega(x)], \\
\Pi_1 = n p_0 [\varphi(x) \omega(x)]' + p_1 [\varphi(x) \omega(x)], \\
\vdots & \vdots & \vdots \\
\text{Digitized by}
\end{cases}$$

Diese Ausdrücke unterscheiden sich von 4) nur dadurch, dass dort $\varphi(x)$ und hier $[\varphi(x) \omega(x)]$ steht. Setzt man daher diese Werthe 28) in 25) ein, so unterscheidet sich die erhaltene Gleichung von 19) nur dadurch, dass dort $\varphi(x)$ und hier $[\varphi(x) \omega(x)]$ steht. Aus diesem Grunde folgt daher aus der letzteren Gleichung 25)

29)
$$\varphi(x) \omega(x) = F(p_0 \dots p_n, c), \quad \omega(x) = \frac{1}{\varphi(x)} F(p_0 \dots p_n, c).$$

Dieser letztere Werth von $\omega(x)$ ist nur eine andere Form des unter 26) gefundenen Werthes und kann aus 26) dadurch erhalten werden, dass man dort für $P_0 \dots P_n$ die in 4) angegebenen Werthe setzt. Aus 26) und 29) folgt also die identische Beziehung:

30)
$$F(P_0 \dots P_n, c) = \frac{1}{\varphi(x)} F(p_0 \dots p_n, c), \text{ q. e. d.}$$

Ist $J(p_0 ldots p_n)$ eine Invariante, und genügt $F(p_0 ldots p_n)$ der Bedingung 14) bezw. 30), so genügt auch J.F dieser Bedingung. Ebenso genügt $\sqrt{F_a.F_b}$, $\frac{F_a^2}{F_b}$ etc. der Bedingung 14), wenn F_a und F_b jener Bedingung genügen. Auf diese Weise ergiebt sich eine unendliche Menge von Ausdrücken F, welche der Bedingung 14) genügen und zur Erzeugung von Invarianten verwendet werden können.

E. Durch die Substitutionen $y = s F(p_0 \dots p_n)$ bezw. $Y = s F(P_0 \dots P_n)$ werden die beiden Gleichungen 1) und 3) auf dieselbe Mittelform M gebracht. Bezeichnet man also sämmtliche Gleichungen, welche durch eine Substitution $y = s \varphi(x)$ aus einander abgeleitet werden können, als eine Gruppe und denkt sich dann die Gesammtheit aller möglichen Differentialgleichungen n^{ter} Ordnung durch die nämliche, aus ihren entsprechenden Coefficienten gebildete Substitution $y = s F(p_0 \dots p_n)$ transformirt, so werden alle Gleichungen, welche zu derselben Gruppe gehören, auf dieselbe Mittelform gebracht. Die Coefficienten dieser Mittelform sind Invarianten.

Ferner kann die Gleichung 3) durch die Substitution

31)
$$y = Y \frac{F(p_0 \dots p_n)}{F(p_0 \dots p_n)}$$

aus der Gleichung 1) abgeleitet werden. Durch die Substitution $y = s F(p_0 \dots p_n)$ geht nämlich die Gleichung 1) in M über, und aus M folgt durch die Substitution $s = Y/F(P_0 \dots P_n)$ die Gleichung 3), weil M aus 3) durch die Substitution $Y = s F(P_0 \dots P_n)$ erhalten werden kann.

Können also zwei Gleichungen überhaupt durch eine Substitution $y = Y\varphi(x)$ auseinander abgeleitet werden, so werden sie auch durch die Substitution 31) in einander übergeführt.

Berlin.

DIETRICHKEIT, Cand. math.

XVIII. Kriterien der Theilbarkeit dekadischer Zahlen.

Ob eine Zahl durch 3 getheilt werden kann, ist aus der sogenannten Quersumme ersichtlich. Analoge Regeln lassen sich für jeden Theiler saufstellen.

Um z. B. zu entscheiden, ob eine gegebene Zahl Z durch 7 theilbar ist, denke man sich die Ziffern

zu einem Cyklus geordnet, multiplicire die Einer mit 6, die Zehner mit 4, die Hunderter mit 5 etc., die Millioner wieder mit 6 etc., und addire diese Producte. Ist die erhaltene Summe durch 7 theilbar, so ist das ein Kriterium, dass Z durch 7 getheilt werden kann.

Man darf übrigens die Multiplication mit einem beliebigen Gliede des obigen Cyklus beginnen, also z. B. die Einer mit 3, die Zehner mit 2, die Hunderter mit 6 etc. multipliciren.

$$Z = 40061$$

und beginnen die Multiplication mit der Ziffer 5, so ergiebt sich

$$5+6+0+0+24=35;$$

beginnen wir mit 6, so:

$$6+24+0+0+12=42.$$

Ein ähnlicher Zifferncyklus lässt sich nun auch für viele andere Theiler n nach folgender Regel aufstellen: Man verwandle den Bruch 1/n in einen Decimalbruch. Die Reste, welche sich bei der Division ergeben, bezeichne man der Reihe nach mit r_1, r_2, r_3, \ldots Dann ist der gesuchte Zifferncyklus

$$n-r_1$$
, $n-r_2$, $n-r_8$, ...

Nehmen wir z. B. n=7 und n=13. Die Brüche 1/7 und 1/13 werden nun durch folgende Divisionen in Decimalbrüche verwandelt:

Die bei diesen Divisionen sich ergebenden — fett gedruckten — Reste sind also für n=7

$$r_1 = 1$$
, $r_2 = 3$, $r_3 = 2$, $r_4 = 6$, $r_5 = 4$, $r_6 = 5$, and for $n = 13$:

$$r_1 = 1$$
, $r_2 = 10$, $r_3 = 9$, $r_4 = 12$, $r_5 = 3$, $r_6 = 4$.

Daher ist der gesuchte Zifferncyklus für n=7:

Ein solcher Cyklus ergiebt sich immer, wenn der Bruch 1/n einen rein periodischen Decimalbruch liefert. Nehmen wir dagegen z. B. n=2, so liefert die Division:

In diesem Falle ist also $r_1 = 1$, $r_2 = 0$, $r_3 = 0$, ... Obige Regel ergiebt daher die Ziffernreihe:

1, 2, 2, 2, 2, ... in infinitum.

Es ist dies kein geschlossener Cyklus, und man hat daher die Einer mit 1, die Zehner mit 2, die Hunderter mit 2 etc. zu multipliciren.

Wörtlich dieselben Regeln gelten für ein jedes Zahlensystem, welches dem dekadischen analog gebildet ist; nur der Ausdruck "Decimalbruch" müsste eine andere Benennung erhalten.

Berlin. Dietrichkeit, Cand. math.

XIX. Bemerkung zur Transformation der Differentialgleichungen von Punkt- in Liniencoordinaten.

Diese Transformation kommt bekanntlich darauf hinaus, dass man in eine Differentialgleichung die gleichzeitig bestehenden Substitutionen

$$x = \frac{dv}{du}$$
, $y = u \frac{dv}{du} - v$, $\frac{dy}{dx} = u$

einführt, und sie gewährt Nutzen, wenn sich die transformirte Gleichung als integrabel erweist. Auf solchem Wege habe ich bereits im XXIV. Jahrgang dieser Zeitschrift die Differentialgleichung*

über; mittels anderer Methoden dürfte ihr übrigens kaum beizukommen sein.

^{*} Diese Gleichung geht durch die erwähnten Substitutionen in die Bernoulli'sche $\frac{dv}{du} = \frac{v \ \psi(u) - v^m \ \chi(u)}{\varphi(u) + u \ \psi(u)}$

$$x \varphi(y') + y \psi(y') + (xy' - y)^m \cdot \chi(y') = 0 \qquad \left(y' = \frac{dy}{dx} \right)$$

integrirt und bei dieser Gelegenheit ein specielles Beispiel angeführt, welches mich später zu einer Berichtigung veranlasst hat. Vergl. diese Zeitschrift, Jahrg. XXXI.

Nach dieser Berichtigung kann es scheinen, als ob in meiner ersten Note ein falsches Integral aufgestellt worden wäre, und so hat es auch der geschätzte Herr Referent in dem "Jahrbuch über die Fortschritte der Mathematik", Bd. XX, Jahrg. 1888 aufgefasst. — Der in Frage kommende Integralausdruck ist jedoch keineswegs falsch, wohl aber ist er vieldeutig, und er enthält ausser der gesuchten Lösung noch andere fremdartige, welche der Differentialgleichung nicht genügen und nachträglich auszuscheiden sind. Die erwähnte Berichtigung sollte deshalb den Weg zeigen, wie man direct auf die zulässige Lösung kommen und die fremdartigen von vornherein vermeiden kann.

Damit nun jeder Zweifel über den Vorgang beseitigt und auch das fragliche Integral rehabilitirt wird, möchte ich nochmals auf die Angelegenheit kurz eingehen.

Die betreffende Differentialgleichung lautete

1)
$$x + y - (xy' - y)^m = 0$$
oder auch
1a)
$$\frac{dy}{dx} = \frac{y + \sqrt{x+y}}{x},$$

und, indem wir davon absehen, dass selbige auch leicht auf andere Weise, z. B. durch die Substitution y = xt integrirt werden könnte, führen wir die anfangs erwähnten Substitutionen (u, v) ein. Es entsteht

$$\frac{dv}{du} = \frac{v + v^m}{1 + u},$$

und dieser Gleichung gentigt

3)
$$v = (1+u)\{C - (1+u)^{m-1}\}^{\frac{1}{1-m}},$$

wobei C die Integrationsconstante bedeutet. Hieraus ergiebt sich weiter

4)
$$\frac{dv}{du} = C.\{C - (1+u)^{m-1}\}^{\frac{m}{1-m}},$$

und weil nun $\frac{dv}{du} = x$, während $u = \frac{dy}{dx}$ den unter 1a) aufgeschriebenen Werth besitzt, so geht 4) über in

$$5) x = C \cdot \left\{ C - \left(\frac{y + \sqrt[m]{x + y}}{x} \right)^{m-1} \right\}^{\frac{m}{1 - m}}.$$

Das ist der Ausdruck, welchen ich in meiner ersten Note im XXIV. Jahrgang dieser Zeitschrift mitgetheilt habe, und welcher neben gewissen fremdartigen Lösungen das richtige Integral der Differentialgleichung 1) enthält. Bevor wir letzteres aus 5) herausschälen, wollen wir es uns

direct verschaffen; wir werden dabei zugleich die Stelle auffinden, an welcher eine unnöthige Complication eingetreten ist. Die betreffende Stelle liegt bei Gleichung 4); denn vermeidet man diese und benutzt statt derselben Gleichung 3), so ergiebt die Auflösung nach der Constanten

3a)
$$(1+v^{1-m})(1+u)^{m-1} = C$$
oder, wenn
$$u = \frac{y+\sqrt[m]{x+y}}{x}, \quad v = \sqrt[m]{x+y}$$

restituirt wird,

6)
$$x^{1-m} \left\{ 1 + (x+y)^{\frac{m-1}{m}} \right\}^m = C^*$$

oder

(6a)
$$x^{\frac{1-m}{m}}\left\{1+(x+y)^{\frac{m-1}{m}}\right\} = B,$$

wobei $B = C^{\overline{m}}$ eine willkürliche Constante vorstellt.

Dieses ist der von fremdartigen Lösungen freie Integralausdruck, wie ich selbigen in der erwähnten Berichtigung angegeben habe, und man kann sich durch directes Differenziren leicht davon überzeugen, dass er der Differentialgleichung wirklich gentigt.

Um schliesslich noch den Beweis zu erbringen, dass die Lösung 6) resp. 6a) in 5) enthalten ist, substituire man in 5)

7)
$$C = x^{1-m} s^m, \quad x+y = (w-1)^{\frac{m}{m-1}}$$

dann erhält man nach einfacher Umformung

$$s^m - s^{m-1} = w^m - w^{m-1},$$

und dieser Gleichung kommt unter anderen die Wurzel z = w zu, also ist mit Bücksicht auf 7) $C^{\frac{1}{m}} = x^{\frac{1-m}{m}} \left\{ 1 + (x+y)^{\frac{m-1}{m}} \right\}.$

Die Wurzel s = w hat demnach auf das Integral 6a) geführt; alle anderen Wurzeln sind als fremdartig zu verwerfen.

Aus unserer speciellen Untersuchung geht nun Folgendes hervor: Wenn man eine Differentialgleichung erster Ordnung

$$\Phi\left(x, y, \frac{dy}{dx}\right) = 0$$

mittels der Substitutionen

$$x = \frac{dv}{du}$$
, $y = u\frac{dv}{du} - v$, $\frac{dy}{dx} = u$

in eine andere

$$F\left(u, v, \frac{dv}{du}\right) = 0$$

transformirt und für letztere das Integral

Wer Geschmack an algebraischen Spitzfindigkeiten hat, den dürfte vielleicht dieser Ausdruck für C, der sich noch nach y auflösen liesse, interessiren; denn man wird für den ersten Augenblick nicht übersehen, dass die Gleichung 5) eine, wenn auch nur particuläre Auflösung nach C, bez. y in geschlossener Form erlaubt, wie sie im Ausdruck 6) thatsächlich vorliegt. Digitized by Google

$$F_1(u, v, c) = 0$$

gefunden hat, so ergiebt sich das Integral der Gleichung α) durch Elimination von $\frac{dy}{dx}$ aus den beiden Gleichungen

$$\Phi\left(x, y, \frac{dy}{dx}\right) = 0$$
 und $F_1\left(\frac{dy}{dx}, x\frac{dy}{dx} - y, c\right) = 0$

oder, was auf dasselbe hinauskommt, durch Elimination von u aus den beiden Gleichungen

$$F(u, ux-y, x) = 0$$
 und $F_1(u, ux-y, c) = 0$.

Hält man diese Ordnung bei der Elimination nicht ein, so kann man zu unnöthig verwickelten Integralformen gelangen und ist dann am Ende gezwungen, die richtige Lösung aus den fremdartigen auszuscheiden.

Plauen i. V.

W. HEYMANN.

Verlag von Johann Ambrosius Barth in Leipzig.

Soeben erschien:

Gesammelte Abhandlungen

TOR

G. Kirchhoff.

Nachtrag

harausgegeben von

Dr. Ludwig Boltzmann,

Professor der theoretischen Physik an der Universität München.

 VIII, 137 Seiten mit einer lithogr. Tafel. Preis M. 3.60.

J. B. Metzlerscher Verlag, Stuttgart.

Besprochen in dieser Ztschr. 1890 II. 6. S. 208.

E. Hammer, Über die geographisch wichtigsten Kartenprojectionen insbesondere die zenitalen Entwürfe nebst Tafeln zur Verwandlung von Geograph. Koordinaten in Azimutale. Preis 5 .#

Kurz zuvor erschien:

E. Hammer, Autorisierte deutsche, mit einigen Zusätzen vermehrte Bearbeitung von Tissot's Buch: Die Netzentwürfe geogr. Karten, nebst Aufgaben über Abbildung beliebiger Flächen aufeinander. Preis 5 .#.

Herder'sche Verlagshandlung, Freiburg im Breisgau.

Soeben ist erschiegen und durch alle Buchhandlungen zu besiehen:

Schwering, Dr. K., 100 Aufgaben aus der niederen Geometrie nebst vollständigen Lösungen. Mit 194 Abbildungen. gr. 8°. (XII n. 154 S.) M. 2; geb. in Halbleder mit Goldtitel M 2.35.

In dam Verlage von Fr. Foerster, Querstrasse 19, Leipzig ist vor Kurzem erschienen:

Die Hydraulik

auf neuen Grundlagen

Dr. Hermann Scheffler.

IV. 225 Seiten mit 3 Tafeln. M. 5 .-.

Die "Schefflersche Hydraulik" entwickelt die Gesetze der Bewegung der Flüssigkeiten unter neuen Gesichtspunkten, insbesondere unter gänzlichem Verlassen der Hypothese der parallelen Querschnitte und unter Beseitigung aller Stosswirkungen bei plötzlichen Querschnittsveränderungen. Ausserdem enthält das Buch eine wissenschaftliche Begründung der Wellenbewegung und unter dem Namen des Prinzipes des grössten Gewinnes an lebendiger Kraft ein neues mechanisches Grundgesetz.

INHALT.

XVI. Construction der Krümmungsmittelpunkte der Höllbahmersbilen bei starren ebenen Systemen. Von Prof. Dr. R. Manaen. XVII. Die Bestimmung der Krümpunkburgen eines stessen Gefankyierselle Von Prof. Dr. C. Rossessen (Tafel IX). XVIII. Deber einen Spesialfall der hypergesenstelle im Reike striker und ning. Von Prof. Dr. Leon Santener. XIX. I. Beitrag zur kinsmatischen Theorie der Gebenkungskaufengen. Von Jonaan Kannen (Tafel X).
Kleinere Mittheilungen-
XV. Mathematische Miscellen. Von Lossesco Schwarz. XVI. Beitrag ein Kenntnies der algebraischen Flächen mit Mittarjamet. Von Dr. Kan. Stortz. XVII. Ueber Invarianten der binsaren Differentialelan hangen. Von Horgen man XVIII. Briterien der Theilharkeit dekudischer Zahlen. Von Horgensert. XIX. Bemerkung zur Transformation der Differentialelaienungen von Umaal in Liniencoordinaten. Von W. Hersass.
Historisch-literarische Abtheilung (besondere paginota.
Schoole, Dr. Erser, Vorleinigen über alle Alphare der Loud (Ernete Logik). Erster Band. Von 1. Leiber. Schoole, Dr. Erser, Gebar das Zeichen Von Germe. Leon., Dr. Empere., Gebar das Zeichen Von Germe. Leon., Dr. Empere., Der Geschmick in der neueron Mathematik. Von Castan. Von Dr. H. Stantres. Schoole, M., Die Rarmorie in der Baubund. Von Gesche. Rannen, Dr. A., Die nantischen Instrumente. Von Castan. Der man, Dr. A., Die nantischen Instrumente. Von Gesche. Vorbindung mit der Geomatiche Geomatich in organischer Verbindung mit der Geomatiche Geomatich in organischer Verbindung mit der Geomatiche Schliesenmangrohlenne mach darstellend geomaticher Matheda. Von G. Housensen Harte., Metrische bestehungen an Tangentenfiguren der Geomatiche Von G. Housensen Betransnes, Dr., Ein mit der Theorie Agebrahenber Flichen ausummanhäugenden planimetrisches Praillem. Von G. Rousensen Korne, Kon., Elemente der projektivischen Geomatich Poore, C. Rousensen. Schoole, Hannan, Grundstige einer rein geometrischen Thoope der Raumeurze vierter Ordnung erster Species. Von
Enser Korres 2. Grades, weighe durch gegebens Funkts gehen For Enser Korres Dursen, Commune, Leitfaden der darstellenden Granstra Von Kaser Korres Ein Cyldoulen-Apparet. Van Dieserses Fossyn, Asses e Reseate, Theory of Differential Squations
When Dr. E., Cobungabuch and Arithmetic and Apple Dr. E. Jansen Schutzerung, Dr. J., Zur Theorie der elgebraischen eilweisen
Sadelmin, Dr. J., Zur Theoris der algebratischen Albertame au.
Von Dr. E. Janen Period Schriften . Batte Mr. Bibliographic vom 1. bis M. August 1891; Period Schriften . Batte Mr.

SIERARY.

Title

Zeitschrift

Mr

Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

YEST

Dr. O. Schlömilch, Dr. E. Kahl

nmid

Dr. M. Cantor.

36. Jahrgang. 6. Heft.

Mit awei lithographirten Tafeln.

Leipzig, Verlag von B. G. Teubner 1891,

Neuester Verlag von B. G. Teubner in Leipzig.

Soeben erschien:

VORLESUNGEN

ÜBER

GESCHICHTE DER MATHEMATIK

VON

MORITZ CANTOR.

ZWEITER BAND. von 1200 - 1668.

ERSTER THEIL.

[499 S.] gr. 8. 1892. geh. n. # 14.—

Der zweite an 20 Bogen umfassende (Schlufs-) Theil des zweiten Bandes nebst Titel und vollständigem Inhaltsverzeichnisse erscheint, noch vor Ostern 1892.

Die Anzeige dieses II. Bandes, der später, als es ursprünglich in der Absicht des Verfassers lag, dem 1880 erschienenen I. Bande nachfolgt, kann sich in wenige Worte fassen. Plan und Anlage sind die gleichen geblieben wie beim I. Bande. Der Verfasser hat versucht, die zahlreichen zerstreuten Vorarbeiten zu sammeln und zu sichten und so viel als möglich eine wirkliche Entwickelungsgeschichte der Mathematik von Leonardo von Pisa und Jordanus Nemorarius an bis zu dem Erscheinen von Leibnizens Doktordissertation zu geben. Manche Lücken wurden aufgedeckt und der Einzelforschung empfohlen. Die einzelnen Abschnitte sind anfangs ganzen, später halben Jahrhunderten gewidmet, um so eine gewisse Gliederung des Bandes zu erhalten.

Soeben erschien:

DIE GRUNDZÜGE

DES

GEOMETRISCHEN CALCULS

von G. PEANO,

PROFESSOR AN DER K. UNIVERSITÄT ZU TURIN.

DEUTSCH VON ADOLF SCHEPP ZU WIESBADEN.

[IV u. 38 S.] gr. 8. 1891. geh. n. 4 1.20.

Der geometrische Calcul behandelt die geometrischen Fragen, indem er die analytischen Operationen direct mit den geometrischen Dingen vornimmt, ohne es nöthig zu haben, sie immer mittelst der Coordinaten zu bestimmen. Dieser Calcul, der von Leibniz vorausgesehen wurde, ist in diesem Jahrhundert unter verschiedenen Formen hauptsächlich durch Möbius (1827), Bellavitis (1832), Grassmann (1844) und Hamilton (1853) entwickelt worden. Seine Grundgedanken werden schon in vielen Lehrbüchern der Mechanik, der mathematischen Physik und der Infinitesimalrechnung benutzt.

Die vorliegende Schrift enthält in den Nummern 1-47 die Grundzüge des geometrischen Calculs. Mit ihrer Hülfe kommt man bereits zu einer grossen Anzahl von Resultaten; beiläufig werden die wichtigsten Formeln der analytischen Geometrie bewiesen; ihre Lectüre setzt nur elementare Kenntnisse in der Geometrie voraus.

In den folgenden Nummern wird auf einige Fragen der Infinitesimalgeometrie eingegangen, welche auf Grund der vorhergehenden Theorien eine einfachere Form annehmen.

XX.

Ueber einen Specialfall der hypergeometrischen Reihe dritter Ordnung.

Von

Prof. Dr. Louis Saalschütz
in Königsberg.

(Schluss.)

§ 3.

Eine andere Art, die Gleichungen I) bis VI) anzuwenden, besteht darin, die Reihen auf der rechten Seite derselben miteinander zu vergleichen; und dabei kommen wir, uns auf Beziehungen wesentlich verschiedener Art beschränkend, mit einer geringen Anzahl von Vergleichungen aus.

Wir setzen dabei voraus, dass S_1 selbst einen endlichen bestimmten Werth habe und nicht mit der gewöhnlichen hypergeometrischen Reihe zusammenfalle. Dies giebt die Bedingungen:

35)
$$1-v > 0$$
, x and $1+x-y$ keine n. g. Z.

Weitere Bedingungen sind bei den einzelnen Fällen hinzuzufügen.

1. Wir vergleichen I) mit II) und erhalten dabei zunächst eine Gleichung von der Form:

36)
$$\frac{S_1}{y-x-1} = -\frac{xS_2}{(v+n)(y+v+n-1)} + P - Q,$$
 worin:
$$P = \frac{\Gamma(1+x)\Gamma(-n)\Gamma(y+v+n-1)\Gamma(v+n)\Gamma(y+n-x)}{\Gamma(v)\Gamma(x+v+n)\Gamma(y-x)\Gamma(y+n)},$$

$$Q = \frac{\Gamma(1+x)\Gamma(-n)\Gamma(y+v+n-1)\Gamma(1+x-y)\Gamma(1-v)}{\Gamma(x+v+n)\Gamma(1+x-n-y)\Gamma(1-v-n)\Gamma(y+n)}.$$

Jetzt nehme ich an, dass v eine n. g. Z. sei, dann bricht S_2 , wie Gleichung II) zeigt, ab, und verschwindet P wegen des Factors $\Gamma(v)$ im Nenner, falls nicht v+n oder y+v+n-1 eine n. g. Z. ist, so dass auch nicht n=0 sein darf; bei Nichterfüllung dieser Bedingungen erschiene die rechte Seite von 36) in der unbestimmten Form $\infty-\infty$. Bei Erfüllung derselben können wir aber noch in Q ausser $\Gamma(1-v)$ auch die Quotienten

$$\Gamma(-n):\Gamma(1-n-v)$$
 und $\Gamma(y+v+n-1):\Gamma(y+n)$

Zeitschrift 1. Mathematik u. Physik XXXVI, 6.

in geschlossener Form darstellen. Es erscheint jetzt aber zweckmässig, statt der voneinander unabhängigen Grössen x, y, v, n die ebenso unabhängigen α , β , γ , δ durch die Gleichungen:

37)
$$\begin{vmatrix} x+v+n=\alpha \\ 1+x-n-y=\beta \\ 1+x=\gamma \\ 2+x-y=\delta \end{vmatrix}$$
 mit den Auflösungen:
$$\begin{cases} x=\gamma-1, \\ y=1+\gamma-\delta, \\ v=\alpha+\beta+2-\gamma-\delta, \\ n=\delta-\beta-1 \end{cases}$$

einzuführen. Dadurch werden die Bedingungen 35):

38)
$$\gamma + \delta - \alpha - \beta - 1 > 0$$
, γ und δ keine n. g. Z.,

und die in Rede stehende Gleichung lautet nun:

$$S_{1} \equiv 1 + \frac{\alpha\beta}{\gamma\delta} + \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1)\delta(\delta+1)} + \dots = \frac{(\gamma-1)(\delta-1)}{(\alpha-\gamma+1)(\alpha-\delta+1)}$$

$$39) \times \left\{ 1 + \frac{\alpha(\alpha+\beta+2-\gamma-\delta)}{(\alpha-\gamma+2)(\alpha-\delta+2)} + \frac{\alpha(\alpha+1)(\alpha+\beta+2-\gamma-\delta)(\alpha+\beta+3-\gamma-\delta)}{(\alpha-\gamma+2)(\alpha-\gamma+3)(\alpha-\delta+2)(\alpha-\delta+3)} + \dots \right\}$$

$$+ (-1)^{\gamma+\delta-\alpha-\beta-1} \frac{1 \cdot 2 \cdot 3 \cdot \dots (\gamma+\delta-\alpha-\beta-2)}{(\alpha-\gamma+1)(\alpha-\gamma+2) \cdot \dots (\delta-\beta-1)(\alpha-\delta+1)(\alpha-\delta+2) \cdot \dots (\gamma-\beta-1)}$$

$$\times \frac{\Gamma(\gamma)\Gamma(\delta)}{\Gamma(\alpha)\Gamma(\beta)}$$

mit den Bedingungen:

40)
$$\begin{cases} \text{weder } \alpha - \gamma + 1, \text{ noch } \alpha - \delta + 1 \text{ eine n. g. Z.}, \\ \alpha + \beta + 2 - \gamma - \delta \text{ eine n. g. Z.} \end{cases}$$

Nun könnte noch der Einwand erhoben werden, bei Vergleichung der rechten Seiten der Gleichungen I) und II) sei u. A. mit $\Gamma(-n)$ multiplicirt worden, man müsse also, um das Resultat nicht illusorisch zu machen, die Bedingung hinzufügen, dass n oder $\delta-\beta-1$ keine positive ganze Zahl sei. Dieser Einwand kann jedoch durch Continuitätsbetrachtungen, bezogen auf beide Seiten der Gleichungen 39), entkräftet werden. — Wir erhalten aus 39) und 40) eine andere Gleichung mit den zugehörigen Bedingungen, wenn wir α mit β vertauschen.

2. Der Vergleich von I) mit III) giebt in den neuen Bezeichnungen die Gleichung:

worin:
$$\frac{S_1}{1-\delta} = \frac{(1-\gamma)S_8}{(1-\beta)(\alpha-\delta+1)} + P_1 - Q_1,$$

$$\begin{split} P_1 &= \frac{\Gamma(1-\beta)\,\Gamma(\alpha-\gamma+1)\,\Gamma(\gamma)\,\Gamma(1+\beta-\delta)\,\Gamma(\alpha-\delta+1)}{\Gamma(\gamma-\beta)\,\Gamma(2-\delta)\,\Gamma(\alpha)\,\Gamma(\alpha+\beta+2-\gamma-\delta)},\\ Q_1 &= \frac{\Gamma(\gamma)\,\Gamma(1+\alpha-\delta)\,\Gamma(1+\beta-\delta)\,\Gamma(\delta-1)\,\Gamma(\gamma+\delta-\alpha-\beta-1)}{\Gamma(\alpha)\,\Gamma(\beta)\,\Gamma(\gamma-\alpha)\,\Gamma(\gamma-\beta)}. \end{split}$$

Nehmen wir jetzt an, dass $2-\delta$ eine n.g. Z. sei, so müssen wir ausser 38) noch die Bedingungen stellen, dass $\alpha-\delta+1$ keine n.g. Z. und dass β keine positive g. Z. sein soll, damit nicht (gleichzeitig) $S_3:(1-\beta)(\alpha-\delta+1)$ und Q_1 unendlich werde. Bei Erfüllung dieser Bedingung wird $P_1=0$ und wir erhalten:

$$\begin{split} S_1 &= \frac{(\gamma - 1)(\delta - 1)}{(1 - \beta)(\alpha - \delta + 1)} \\ &\times \left\{ 1 + \frac{(\gamma - \beta)(2 - \delta)}{(2 - \beta)(\alpha - \delta + 2)} + \frac{(\gamma - \beta)(\gamma - \beta + 1)(2 - \delta)(3 - \delta)}{(2 - \beta)(3 - \beta)(\alpha - \delta + 2)(\alpha - \delta + 3)} + \cdots \right\} \\ &+ \frac{1 \cdot 2 \cdot 3 \cdot \ldots (\delta - 1)}{(1 + \alpha - \delta)(2 + \alpha - \delta) \cdot \ldots (\alpha - 1) \cdot (1 + \beta - \delta)(2 + \beta - \delta) \cdot \ldots (\beta - 1)} \\ &\times \frac{\Gamma(\gamma + \delta - \alpha - \beta - 1)\Gamma(\gamma)}{\Gamma(\gamma - \alpha)\Gamma(\gamma - \beta)} \end{split}$$

mit den Bedingungen:

43)
$$\begin{cases} 2-\delta \text{ n. g. Z., weder } \alpha-\delta+1, \text{ noch } 1-\beta \text{ n. g. Z.;} \\ \gamma+\delta-\alpha-\beta-1>0. \end{cases}$$

Wir erhalten hieraus drei andere Gleichungen durch Vertauschung von a mit β und von y mit δ.

3. Vergleichen wir endlich I) mit VI), so erhalten wir:

$$S_{1} = \frac{\delta - 1}{\gamma + \delta - \alpha - \beta - 1} \times \left\{ 1 + \frac{(\gamma - \alpha)(\gamma - \beta)}{\gamma(\gamma + \delta - \alpha - \beta)} + \frac{(\gamma - \alpha)(\gamma - \alpha + 1)(\gamma - \beta)(\gamma - \beta + 1)}{\gamma(\gamma + 1)(\gamma + \delta - \alpha - \beta)(\gamma + \delta - \alpha - \beta + 1)} + \cdots \right\}$$

mit den Bedingungen:

45)
$$\gamma + \delta - \alpha - \beta - 1 > 0, \quad \delta - 1 > 0.$$

Diese Gleichung ist besonders verwendbar, wenn $\gamma - \alpha$ oder $\gamma - \beta$ eine n. g. Z. ist, in welchem Falle die Bedingung $\delta-1>0$ fortgelassen werden kann. — Durch Vertauschung von y mit & entsteht aus 44) noch eine andere Gleichung.

Alle anderen Vergleichungen ergeben nichts wesentlich Neues.

4. Seien α und γ (oder β und δ etc.) positive ganze Zahlen und zwar $\gamma > \alpha$, also gewissermassen Fall 2. ohne beschränkende Bedingungen. Wir behandeln zuerst den Fall $\alpha = 1$, $\gamma = 2$ und führen dann die anderen successive auf diesen zurück. Aus I) folgt direct:

$$S_{1} = \frac{\Gamma(\alpha+1-\delta)\Gamma(\beta+1-\delta)\Gamma(\gamma)\Gamma(\delta)\Gamma(\gamma+\delta-\alpha-\beta-1)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(\gamma-\alpha)\Gamma(\gamma-\beta)}$$

$$-\frac{\Gamma(\alpha+1-\delta)\Gamma(\beta+1-\delta)\Gamma(\gamma)}{\Gamma(\alpha+\beta+1-\delta)\Gamma(\gamma+1-\delta)} \times (\delta-1)f_{\delta-\beta-1}(\gamma-1, 1+\gamma-\delta, \alpha+\beta+2-\gamma-\delta);$$

$$\gamma+\delta-\alpha-\beta-1>0,$$
also ist für $\alpha=1, \gamma=2$:

$$\begin{split} S_1 &= \frac{\Gamma(2-\delta) \, \Gamma(\beta+1-\delta) \, \Gamma(\delta) \, \Gamma(\delta-\beta)}{\Gamma(\beta) \, \Gamma(2-\beta)} \\ &- (\delta-1) \frac{\Gamma(2-\delta) \, \Gamma(\beta+1-\delta)}{\Gamma(2+\beta-\delta) \, \Gamma(3-\delta)} \, f_{\delta-\beta-1}(1,3-\delta,1+\beta-\delta); \quad \delta-\beta > 0. \end{split}$$

Wie man sieht, ist hier (in der früheren Bezeichnung) v = -n, x = 1, also kommt 29) zur Anwendung und somit wird:

47)
$$S_{1} = \frac{1-\delta}{1-\beta} \left\{ \frac{\pi \sin \beta \pi}{\sin \delta \pi \sin (\delta - \beta) \pi} + \frac{1}{\beta + 1 - \delta} - \int_{0}^{1} \frac{t^{1-\delta} - t^{1+\beta-\delta}}{1 - t} dt \right\},$$
$$2 - \delta > 0, \ 2 + \beta - \delta > 0, \ \delta - \beta > 0$$

oder, wenn man für f(...) direct die Reihe setzt:

$$S_1 \equiv 1 + \frac{1}{2} \frac{\beta}{\delta} + \frac{1}{3} \frac{\beta(\beta+1)}{\delta(\delta+1)} + \dots = \frac{\delta-1}{\beta-1} \frac{\pi \sin \beta \pi}{\sin \delta \pi \sin (\delta-\beta) \pi} - (\delta-1) \left\{ \frac{1}{(\beta+1-\delta)(2-\delta)} + \frac{1}{(\beta+2-\delta)(3-\delta)} + \frac{1}{(\beta+3-\delta)(4-\delta)} + \dots \right\},$$

$$\delta - \beta > 0.$$

Sind die ersten beiden Bedingungen in 47) nicht erfüllt, so lässt sich die Reihe { } in 48) nach Absonderung der Anfangsglieder, soweit es nöthig ist, mittels Gleichung 30) durch ein Integral ähnlicher Form wie in 47) aus-Erscheint die rechte Seite von 48) in der Form $\infty - \infty$, so ist sie deshalb nicht minder richtig; für $\beta = 1$, $\delta = 3$ z. B. erhält man eine bekannte Identität; für $\beta - \delta + 1 = 0$ und $\delta = 1$ entsteht durch Vereinigung je eines Gliedes der links stehenden mit einem Gliede der rechts stehenden Reihe:

 $\frac{1}{56}(\frac{4}{7}+\pi)=\frac{1}{(1.4)^2-7^2}+\frac{1}{(2.4)^2-7^2}+\frac{1}{(3.4)^2-7^2}+\cdots$

Wir wollen nun sehen, was aus S_1 wird, wenn entweder γ , oder wenn α , oder wenn zugleich y und a um eine Einheit erhöht wird. Im ersten Falle entstehe S_1 aus S_1 , im zweiten S_1 , im dritten Falle S_1 .

Setze ich in 46) $\gamma + 1$ statt γ , so geht $f_{\delta-\beta-1}(\gamma-1, 1+\gamma-\delta, \alpha+\beta)$ $+2-\gamma-\delta$) in $f_{\delta-\beta-1}(\gamma,2+\gamma-\delta,\alpha+\beta+1-\gamma-\delta)$ oder $f_{\pi}(x,y,z)$ in $f_n(1+x, y+1, v-1)$ tiber. Setzen wir nun in 16) x+1, y+1, v-1statt bez. x, y, v, ferner in 17) x+1 statt x und nehmen noch Gleichung 12) hinzu, so können wir aus diesen drei Gleichungen $f_{\mathbf{z}}(x+1,y+1,v)$ und $f_n(x+1, y, v)$ eliminiren und somit $f_n(x+1, y+1, v-1)$ durch $f_n(x, y, v)$ ausdrücken; die Aenderung der anderen Grössen in 46) bietet keine Schwierigkeit und wir gelangen so zu der einfachen Gleichung:

49)
$$S_1 = \frac{\gamma(\gamma + \delta - \alpha - \beta - 1)}{(\gamma - \alpha)(\gamma - \beta)} S_1 - \frac{\gamma(\delta - 1)}{(\gamma - \alpha)(\gamma - \beta)}$$

Noch leichter geschieht die Erhöhung von a um 1, da, wie die Gleichungen 37) zeigen, a nur in v vorkommt, und führt zu der Gleichung:

50)
$$S_1 = \frac{(\alpha + 1 - \delta)(\alpha + 1 - \gamma)}{\alpha(\alpha + \beta + 2 - \gamma - \delta)} S_1 - \frac{(\gamma - 1)(\delta - 1)}{\alpha(\alpha + \beta + 2 - \gamma - \delta)}$$

Setzen wir in 50) $\gamma + 1$ statt γ und eliminiren S_1 mittels 49), so entsteht:

51)
$$S_1 = \frac{\gamma(\alpha + 1 - \delta)}{\alpha(\gamma - \beta)} S_1 + \frac{\gamma(\delta - 1)}{\alpha(\gamma - \beta)}$$

und hieraus, wenn S_1 die Reihe bezeichnet, die aus S_1 durch Erniedrigung von γ und α um je 1 entsteht:

52)
$$S_1 = \frac{\overline{\gamma, \alpha}}{(\gamma - 1)(\alpha - \delta)} S_1 - \frac{\delta - 1}{\alpha - \delta}.$$

Ist nun S_1 mit beliebigen positiven ganzen α und $\gamma > \alpha$ zu bestimmen vorgelegt, so kann man von 47) oder 48) ($\alpha = 1$, $\gamma = 2$) ausgehen und dann zuerst α und γ mittels 51) um gleichviel Einheiten erhöhen, bis das richtige α erreicht ist, und sodann γ allein (wenn $\gamma > \alpha + 1$ ist) mittels 49) bis zum richtigen Werth desselben vergrössern.

Für $\alpha = 1$, $\gamma = 3$ erhalten wir in dieser Art

$$\begin{split} S_1 = & \frac{2\left(1-\delta\right)\left(\delta-\beta\right)}{\left(1-\beta\right)\left(2-\beta\right)} \frac{\pi \sin\beta\pi}{\sin\delta\pi \sin(\delta-\beta)\pi} - \frac{2\left(\delta-1\right)}{2-\beta} - \frac{2\left(\delta-\beta\right)\left(\delta-1\right)}{2-\beta} \\ & \times \left\{ \frac{1}{(\beta+1-\delta)(2-\delta)} + \frac{1}{(\beta+2-\delta)(3-\delta)} + \cdots \right\}, \qquad 1+\delta-\beta > 0 \end{split}$$

und hieraus noch specieller für $\beta = 1$, $\delta = \frac{1}{4}$:*

$$2\left(\frac{1}{1.2} + \frac{1}{2.3} \cdot \frac{2}{1} + \frac{1}{3.4} \cdot \frac{2.4}{1.3} + \frac{1}{4.5} \cdot \frac{2.4.6}{1.3.5} + \cdots\right) = 3 + \frac{\pi^2}{4}.$$

5. Sei von den Bedingungen 40) nur die letzte erfüllt, sei also $\alpha+\beta+2-\gamma-\delta$ eine n. g. Z., aber auch z. B. $\alpha-\gamma+1$ eine n. g. Z.; dann ist $\beta-\delta$ eine ganze Zahl; ist sie positiv, also $\delta-\beta$ eine n. g. Z., so ist die Summation durch 44) (nach Vertauschung von γ mit δ) ausführbar; ist aber $\beta-\delta$ negativ, also $\delta-\beta$ eine positive g. Z., so ist zuerst, vorausgesetzt, dass $\delta>1$ ist, S_1 durch die rechte Seite von 44) zu ersetzen sei nun $\gamma-\alpha=\alpha_1$, $\gamma-\beta=\beta_1$, $\gamma+\delta-\alpha-\beta=\gamma_1$, $\gamma=\delta_1$, so sind α_1 und γ_1 positive ganze Zahlen und zwar $\gamma_1>\alpha_1$, also die Summation nach dem vorigen Falle auszuführen. Ist jedoch $\delta<1$ ($\delta=$ n. g. Z., wie überhaupt, ausgeschlossen), so ist zunächst δ um diejenige ganze positive Zahl k zu vermehren, welche $\delta+k=\delta'>1$ macht, dann S_1 mit δ' statt δ so wie angegeben zu berechnen und schliesslich durch öftere (k-fache) Anwendung der Gleichung 49), nach Vertauschung von γ mit δ , das vorgelegte S_1 aus dem durch Erhöhung von δ entstandenen abzuleiten.

Fassen wir noch die Fälle 1) bis 5) zusammen, so lässt sich S_1 durch geschlossene Ausdrücke oder endliche Reihen mit Adjunction von Γ -Functionen und des bestimmten Integrals in 47) summiren, wenn entweder γ

$$\frac{8}{2x^2} - \frac{3\sqrt{1-x^2} \arcsin x}{x^3} + \frac{(3-2x^2)(\arcsin x)^2}{2x^4}$$

$$= \frac{1}{2} + \frac{1}{2 \cdot 3} \cdot \frac{2}{1} x^2 + \frac{1}{3 \cdot 4} \cdot \frac{2 \cdot 4}{1 \cdot 3} x^4 + \frac{1}{4 \cdot 5} \cdot \frac{2 \cdot 4 \cdot 6}{1 \cdot 3 \cdot 5} x^6 + \cdots,$$

welche ihrerseits entsteht, indem man $x(arcsin x)^2$ integrirt, das Resultat durch x^3 dividirt und den Quotienten nach x differentiirt.

^{*} Das Resultat bestätigt sich durch die Gleichung:

(oder δ) eine ganze positive Zahl, oder $\gamma - \alpha$ (oder etc.) eine n. g. Z., oder endlich $\alpha + \beta + 2 - \gamma - \delta$ eine n. g. Z. (einschliesslich der Null) ist.

§ 4.

Ich gehe noch einmal zur Gleichung 25) zurück und vergleiche sie mit dem aus I) für den Fall x+v+n=-g, y=x+k, k>g+1 zu erzielenden Resultat. Dasselbe erscheint zuerst in der Form $\infty-\infty$, führt sber schliesslich [unter Benutzung von 32)] zu folgender Gleichung:

$$f_{n}(x, y, v) = \frac{(x+g+1)(x+g+2)\dots(x+k-1)}{(g+1)\dots(k-1)(x+v)\dots(x+v+g-1)} \times \{(k-2)_{g}(1+x)\dots(g+x)+(k-3)_{g-1}(2+x)\dots(g+x)(x+v+1+g-k)+\dots + (k-2-g)_{0}(x+v+1+g-k)(x+v+2+g-k)\dots(x+v+2g-k)\},$$

$$x+v+n+g=0, y=k+x, k-g-1>0.$$

Vergleicht man diesen Ausdruck mit der rechten Seite von 25) und lässt den hier in 53) vorhandenen, dort leicht herzustellenden Factor

$$(x+g+1)\dots(x+k-1):(g+1)\dots(k-1)(x+v)\dots(x+v+g-1)$$

beiderseits fort, so gelangt man zu folgender Umwandlung einer endlichen Reihe in eine andere, wobei k-2=m gesetzt ist:

$$\begin{array}{l} (m)_g x(x+1) \ldots (x+g-1) + (m-1)_{g-1} x(x+1) \ldots (x+g-2)(x+v+g-1) \\ + (m-2)_{g-2} x \ldots (x+g-3)(x+v+g-1)(x+v+g-2) + \cdots \\ 54) + (m-g)_0 (x+v+g-1)(x+v+g-2) \ldots (x+v) \\ = (m)_g (x+1) \ldots (x+g) + (m-1)_{g-1} (x+2) \ldots (x+g)(x+v+g-m-1) \end{array}$$

$$= (m)_{g}(x+1) \dots (x+g) + (m-1)_{g-1}(x+2) \dots (x+g)(x+v+g-m-1) + (m-2)_{g-2}(x+3) \dots (x+g)(x+v+g-m-1)(x+v+g-m) + \dots + (m-g)_{0}(x+v+g-m-1)(x+v+g-m) \dots (x+v+2g-m-2).$$

Diese Gleichung will ich nun unabhängig von der Art ihrer Gewinnung, und zwar für ein beliebiges m, beweisen. Bezeichne ich ihre linke Seite mit U_l , ihre rechte Seite mit U_r , so ist:

$$\begin{split} &U_l = (m)_g x(x+1) \dots (x+g-1) \, W_l \,, \\ &W_l = 1 + \frac{g}{m} \, \frac{x+v+g-1}{x+g-1} + \cdots \\ &+ \frac{g(g-1) \dots 1}{m(m-1) \dots (m-g+1)} \, \frac{(x+v+g-1)(x+v+g-2) \dots (x+v)}{(x+g-1)(x+g-2) \dots x} \,; \\ &U_r = (m)_g (x+1) \dots (x+g) \, W_r \,, \\ &W_r = 1 + \frac{g}{m} \, \frac{x+v-m+g-1}{x+1} + \cdots \\ &+ \frac{g(g-1) \dots 1}{m(m-1) \dots (m-g+1)} \, \frac{(x+v-m+g-1) \dots (x+v-m+2g-2)}{(x+1)(x+2) \dots (x+g)} \,. \end{split}$$

Dabei mag der Fall eines positiven ganzen m vorläufig ausgeschlossen bleiben. In den Ausdruck W_l geht $S_1 = 1 + \frac{\alpha \beta}{\gamma \delta} + \cdots$ über, wenn

$$\alpha = 1 - x - v - g$$
, $\beta = -g$, $\gamma = 1 - \frac{\gamma}{x} - g$, $\delta = -m$
Digitized by

gesetzt wird. Will ich nun in W_l x um 1 erhöhen, so geschieht dies, indem ich in S_1 α und γ um je 1 verringere, also wird nach 52):

$$\widetilde{W}_{l} = \frac{x(x+v+g)}{(x+g)(x+v-m+g-1)} W_{l} - \frac{m+1}{x+v-m+g-1}$$

und somit:

$$\overset{x}{U_{l}} = \frac{x+v+g}{x+v-m+g-1} U_{l} - (m+1)(m)_{g} \frac{(x+1)\dots(x+g)}{x+v-m+g-1}.$$

Setzt man hingegen:

$$\alpha = x + v - m + g - 1$$
, $\beta = -g$, $\gamma = x + 1$, $\delta = -m$,

so geht S_1 in W_r tiber; um hierin x um 1 zu erhöhen, muss dasselbe mit α und γ geschehen und daher 51) angewandt werden. Dadurch erhalten wir:

Ist also für irgend ein $x U_l = U_r$, so bleibt die Gleichung bestehen, wenn x um 1 oder eine andere ganze Zahl vergrössert wird; jetzt ist aber für x = 0 nach dem Factoriellensatze $U_l = U_r$, also auch für jedes positive ganzzahlige x, und da U_l wie U_r ganze Functionen von x von endlichem Grade sind, so sind sie überhaupt einander gleich.

Die Formel 54) bleibt nun endlich auch für ein positives ganzes m richtig, was entweder aus Continuitätsbetrachtungen hervorgeht, oder aus dem Umstande, dass U_l und U_r auch als ganze Functionen von m sich auffassen lassen, geschlossen werden kann.

XXI.

Beitrag zur Theorie der übergeschlossenen Gelenkmechanismen.

II. Artikel.

 ∇ on

JOHANN KLEIBER,
Assistent a. d. Kgl. Techn, Hochschule in München.

Hierzu Taf. XI.

In der hier folgenden Mittheilung soll versucht werden, die hohe Bedeutung des im vorigen Aufsatze entwickelten Elementarmechanismus, der bei der Erzeugung der Koppelcurve (three bar motion) so sinngemässe Verwerthung gefunden hat, auch in Bezug auf das bekannte Problem der Geradführung nachzuweisen. Bei Verfolgung dieses Gedankenganges, welcher sich vorzüglich an die "Umkehr des Elementarmechanismus" knüpfen wird, ergiebt sich dann nicht nur der "Grundtypus aller Kempe'schen auf Geradführung bezüglichen Mechanismen", sondern wir werden selbst Gelegenheit haben, eine wirklich "neue Lösung des Geradführungsproblems" zu erkennen.

Bei diesen Betrachtungen werden wir bereits genöthigt sein, unser Augenmerk auch dem "irregulären Elementarmchanismus" zuzuwenden, von welchem im ersten Aufsatze noch nicht die Bede war und der sich vom regulären dadurch unterscheidet, dass an Stelle einer Kette ähnlicher und ähnlich gelegener Dreiecke eine solche von willkürlichen Elementen tritt. Die hier gewonnenen Besultate werden von uns zunächst blos in ihrer Negation beschtet werden, d. h. sie sollen uns blos dazu dienen, zu verhüten, Bedingungen einzuführen, welche in Wirklichkeit unmöglich oder überflüssig sind.

In einem Schlussparagraphen ist dann ohne ursächlichen Zusammenhang mit dem Vorangehenden eine Ellipsenerzeugung und hiermit verbundene Geradführung angegeben, welche zwölf Stäbe aufweist, während die Kempe'sche acht, die von uns in früheren Paragraphen zu entwickelnde 26 Stäbe hat.

§ 1.

Fixirung des Umkehrungsproblems für den regulären Elementarmechanismus.

Durch eine Kette von ähnlichen und ähnlich aneinander gehefteten Dreiecken und das sich daranschliessende Netz von Parallelogrammen erhielten wir einen "Resultantenpunkt", der mit den Endpunkten der Kette ein Dreieck (veränderlich gross) bildete, das den Dreieckselementen der Kette selbst ähnlich ist, aber, als schliessendes Glied der Kette betrachtet, invers geheftet erscheint. Werden die "Endpunkte der Kette" festgehalten, so bleibt natürlich - obiger Eigenschaft gemäss - auch der "Resultantenpunkt" fest, und zwar "freiwillig", d. h. trotzdem eine eventuell vorgenommene Abzählung seiner Beweglichkeit eine beliebig hohe Zahl ergeben kann.

Wir wollen nun, zum bessern Verständniss des Folgenden, die die Kette constituirenden Dreiecke durch ihre Eckpunkte, wie folgt, bezeichnen:

so dass also z. B. $\overline{01}$ die Grundlinie, $\hat{1}$ die Spitze eine Dreiecks ist und die polygonale Figur 0123 ... n die Kette bildet.

der Kette ist 0, Anfangspunkt

Endpunkt

Endpunkt " " ", ", ".

Resultantenpunkt " "
$$R = (\hat{1} + \hat{2} + \dots + \hat{n}) - (1 + 2 + \dots + (n-1)).$$

Diese Festsetzung gelte auch für "irreguläre" Ketten, bez. Elementarmechanismen. Dabei denken wir uns die Dreiecke durch drei gelenkig verbundene Stäbe (Seiten vorstellend) und nicht als massives Feld vorgegeben. (So wären also 01, 11, 10 die drei Stäbe des ersten Dreiecks, 0, 1, î zugehörige Gelenke u. s. w.)

Die Aehnlichkeit der Dreiecke, welche den "regulären" Elementarmechanismus charakterisirt, erfordert dann noch die Proportionalität der oben angeführten Stäbe.

Um nun das Umkehrproblem für den regulären Elementarmechanismus einzuführen, setzen wir hiermit fest, dass die Stäbe

$$\overline{01}$$
 $\overline{12}$ $\overline{23}$... $(\overline{n-1})\overline{n}$,

welche die Kette formiren, weggenommen seien. Die Folge für unsern Apparat ist eine Erhöhung seiner Beweglichkeit um die Zahl n, aber auch die, dass der bisher reguläre Mechanismus in den "speciell" irregulären übergeht, da ja Achnlichkeit der die (nunmehr ideelle) Kette formirenden Dreiecke nicht erhalten werden wird, aber die Erhaltung der Proportionalität der verbliebenen Seiten (der ursprünglich ähnlichen Dreiecke) die Definition "speciell irregulär" rechtfertigen mag. Digitized by Google

Auch der Resultantenpunkt des ursprünglich regulären Apparates wird nicht mehr fest bleiben, sondern, ebenso wie im allgemeinen irregulären Falle, eben die Beweglichkeit besitzen, welche ihm eine Abzählung zuweist (allerdings wird ein Ueberschuss über die Zahl 2, weil der Punkt die Ebene nicht verlassen soll, nicht geäussert). Halten wir ihn nun in irgend einer Lage fest (die Endpunkte o und n der Kette sollen dies immer sein, wenn etwas Gegentheiliges nicht ausdrücklich bemerkt wird), so beschränkt diese Bedingung, im Falle n eine grosse Zahl (n > 2) ist, die Beweglichkeit des Mechanismus nur unbedeutend; noch weniger aber genügt dieses Festhalten des Resultantenpunktes, um den irregulären Apparat in einen regulären umzuwandeln, was wohl eines weiteren Beweises nicht bedarf. Es tritt also an uns die Aufgabe heran:

"Mittel ausfindig zu machen, um die angedeutete Verwandlung des "speciell" irregulären in einen regulären Elementarmechanismus zu bewirken, und zwar unter Festhalten des Resultantenpunktes."

Dies das Umkehrproblem.

Es wird sich zeigen, dass die Hilfsmittel, welche Sylvester und Kempe bisher zur Erzeugung der Geradführung im Princip benutzten, auch hier das Problem lösen, dass sie sich aber als heterogene Nebenlösungen neben eine Hauptlösung stellen, welche durchweg auf dem Boden der von uns beschriebenen Elementarmechanismen erfolgt.

§ 2.

Mechanismen von Sylvester und Kempe zur Lösung.

A. Im regulären Elementarmechanismus stossen die zur Kette verbundenen Dreiecke mit nicht homologen Ecken aneinander, es werden also auch im Allgemeinen die zugehörigen Winkel an einer solchen Stelle von verschiedener Grösse sein. Wenn wir aber die Dreiecke zu Parallelogrammen ergänzen und zwar so, dass die Dreiecksseite, welche zugleich Kettenseite ist, zur Diagonale wird (Fig. 1) (was auch bei irregulären Ketten möglich ist), so werden wenigstens die Parallelogramme gleichwinklig aneinanderstossen. Um den "speciell" irregulären Mechanismus, dem wir, wie eben beschrieben, Parallelogramme ergänzt haben, in einen regulären zu verwandeln, haben wir also nur dafür zu sorgen, dass die in einer Ecke zusammenstossenden Parallelogrammwinkel einander gleich bleiben bei veränderlicher Grösse. Bekanntermassen gelingt dies durch Einschiebung des Sylvester'schen Winkelverdoppelungs-Apparates (Fig. 2).

Dass diese Lösung eine dem Problem aufgezwungene, fremdartige ist, braucht wohl nicht weiter betont zu werden, fliesst sie ja doch nicht aus speciellen Eigenschaften des irregulären Mechanismus, wie es eigentlich wünschenswerth erschiene.

Corollar. Setzen wir statt der Parallelogramme Rhomben, die einander im regulär gemachten Mechanismus ähnlich werden, und setzen in jeden derselben — proportional zu dessen Seiten — ein gleichschenkliges Knie, dessen Schenkel gelenkig verbunden sind, ein, so beschreibt der Resultantenpunkt der "Kniepunkte" die Verbindungslinie der Kettenendpunkte. Man erkennt dies daraus, dass die Kniepunkte in den Kettenseiten affin entsprechende Punkte, aber von veränderlichem Theilungsverhältnisse sind.

Bei Festhalten der Kettenendpunkte erhalten wir hier also eine Geradführung. Doch ist sie als solche nicht principiell wichtig: haben wir doch Sylvester's Winkelverdoppelungs-Apparat benutzt, sondern um deswillen, weil die Art, wie diese Curve zu Stande kommt, interessant ist.

Wie wir nämlich bisher gewisse Punkte kennen gelernt haben (unsere Resultantenpunkte), welche innerhalb eines Mechanismus von grosser Beweglichkeit "freiwillig fest" bleiben, trotzdem ihnen nach gewöhnlichen Abzählungen eine Beweglichkeit zuzukommen hätte, erkennen wir im letzterwähnten Falle das Beispiel einer Curve, welche "freiwillig zwangläufig" von einem Punkte beschrieben wird, dem eigentlich eine diesbezügliche Abzählung eine grössere Beweglichkeit zuerkennen müsste.

Sehr verschieden hiervon ist der Fall, den wir bei Betrachtung der Koppelcurve (Dreistabbewegung) im Roberts'schen Mechanismus vor uns haben. Hier weist der "Koppelpunkt" eine grössere Beweglichkeit auf, als ihm eine vorgängige Abzählung hätte zumuthen können. Die von ihm beschriebene Curve ist also gleichsam eine, welche vom Mechanismus "frei" gegeben wird, und wir könnten sie als eine "Freicurve" bezeichnen; im Gegensatz hierzu wäre eine Curve erster Art eine "Festcurve", eine von einem beliebigen Punkte von uneingeschränkter Fähigkeit, seine Beweglichkeit zu äussern, eine "Zwangscurve" zu nennen.

B. Wir wollen uns nun auf den allereinfachsten Fall, wo n=2 ist (der im ersten Aufsatze mit dem Storchschnabel in Verbindung gebracht wurde), in den weiteren Betrachtungen beschränken. Das Umkehrproblem reducirt sich hier auf die Frage: Wie muss der Zusammenstosspunkt 1 der beiden Kettendreiecke von

0 1 2 1 2

geführt werden, dass die letzteren selbst ähnlich bleiben? Seien zu dem Ende die Seiten $0\hat{1}$ und $\hat{1}1$ des ersten Dreiecks a und b, die homologen Seiten des zweiten $1\hat{2}$ und $\hat{2}2$ bez. ϱa und ϱb , dann wird Aehnlichkeit statthaben, sobald die dritten Seiten der beiden Dreiecke auch im Verhältniss $1:\varrho$ stehen. Dieses erfordert aber, dass der Punkt 1 auf einem Kreise läuft, der auf der Verbindungslinie der Kettenendpunkte $\overline{12}$ senkrecht steht und deren Entfernung innerlich und äusserlich im Verhältniss $1:\varrho$ theilt.

Bei constant gehaltener Entfernung $\overline{12}$ kann ein diesbezüglicher Mechanismus (Fig. 3) leicht hergestellt werden, nicht aber, wenn $\overline{12}$ veränderlich wird.

Hiermit ist die Lösung des Umkehrproblems auch für den angegebenen singulären Fall erledigt. — Wenn aber, wie eben vorauszusetzen, die Punkte 1 und 2 in unveränderlicher Entfernung voneinander sind, so kann natürlich — einen regulären Mechanismus vorausgesetzt — der Resultantenpunkt keine willkürliche Lage haben. Wir können auch die diesbezügliche Frage nach seinem Orte leicht lösen, wissen wir doch, dass das Dreieck $1\hat{R}2$ sich zwar verändert, aber immer den Kettendreiecken $0\hat{1}1$, $1\hat{2}2$ ähnlich bleibt. Hieraus folgt, dass

ist, d. h. \hat{R} beschreibt einen auf der Verbindungslinie $\overline{12}$ senkrechten Kreis, der die Entfernung der Punkte 1, 2 innerlich und äusserlich im Verhältniss a:b theilt.

Corollar. Wenn a:b=1, d. h. wenn die Kettendreiecke gleichschenklig (über der Kettenseite) sind, dann beschreibt der Resultantenpunkt eine Gerade; dies ist aber im Princip die Kempe'sche Methode der Geradführung, wie sich leicht ergiebt, wenn man dieses Resultat mit dem im ersten Aufsatze ausgesprochenen Gedanken der Vertauschbarkeit von Dreiecken und an sie stossenden Parallelogrammen entsprechend ausnützt.

§ 3.

Invarianzeigenschaften des allgemein irregulären Elementarmechanismus.

Bevor wir zur Lösung des allgemeinen Falles und insbesondere des Falles n=3 schreiten, wollen wir uns zunächst mit den Eigenschaften vertraut machen, welche auch dem irregulären Mechanismus in Bezug auf den Resultantenpunkt erhalten bleiben.

Eine erste Eigenschaft ist in folgendem Satze enthalten:

"Bezieht man die Dreiecke der Kette affin so aufeinander, dass die Affinität in Aehnlichkeit übergeht, wenn die Kette zur Kette ähnlicher und ähnlich aneinander gehefteter Dreiecke würde, so liefert der Resultantenpunkt für die "Dreieckskette mit selber Basis, aber affinen Punkten als Spitzen über der Kettenseite" den affin entsprechenden Punkt im "Resultantendreieck $1\hat{R}n^{\mu}$, d. h. dem Dreieck aus den Endpunkten und dem Resultantenpunkt der Kette."

Der Beweis ergiebt sich wie folgt:

Die affinen Punkte in den einzelnen Dreiecken der Ketten (als Spitzen der neuen Dreiecke) sind

$$\hat{1}' = x0 + \lambda 1 + \mu \hat{1},
\hat{2}' = x1 + \lambda 2 + \mu \hat{2},
\hat{n} = x(n-1) + \lambda n + \mu \hat{n};$$

$$x + \lambda + \mu = 1$$

Der neue Resultantenpunkt R' heisst also

$$R' = (\hat{1}' + \hat{2}' + \dots + \hat{n}') - (1 + 2 + \dots + (n-1))
= \mu(\hat{1} + \hat{2} + \dots + \hat{n}) + \kappa 0 + \lambda n + (\kappa + \lambda - 1)(1 + 2 + \dots + (n-1))
= \kappa 0 + \lambda n + \mu(\hat{1} + \hat{2} + \dots + \hat{n}) - \mu(1 + 2 \dots (n-1))
= \kappa 0 + \lambda n + \mu R,$$

womit die Richtigkeit der Behauptung gezeigt ist.

Was die Construction "affiner Punkte" anbetrifft, so wird sie durch das Parallelogramm geleistet. Theilen wir z. B. im ersten Kettendreieck (allgemein irregulär) die Seiten $0\hat{1}=a$ und $\hat{1}2=b$ nach beliebigen Verhältnissen (\varkappa,λ') bez. (ν',μ) , so wird der Gegenpunkt zu $\hat{1}$ in einem Parallelogramm von 1 nach den Theilungspunkten der Punkt

$$\hat{1}' = \pi 0 + \lambda \hat{1} + \mu 2.$$

Diese Construction auf die übrigen Dreiecke übertragen, liefert dann die affin homologen Punkte in diesen.

Einen ähnlichen Satz wie oben können wir ferner wie folgt gewinnen. Wir wollen nämlich an die ursprüngliche Kette noch eine zweite Reihe irregulärer Dreiecke anheften, denen der neue Resultantenpunkt R' entsprechen möge. Ueber jedem Kettengliede liegt nunmehr je ein allgemeines Viereck als componirt aus zwei Dreiecken mit den entsprechenden "Spitzen"

$$\hat{1} \quad \hat{2} \quad \hat{3} \quad \dots \quad \hat{n}, \\
\hat{1}'' \quad \hat{2}'' \quad \hat{3}'' \quad \dots \quad \hat{n}''.$$

Wie diese Bezeichnung andeutet, wollen wir die neuen Dreiecksspitzen als "nicht affine" Punkte der alten Dreiecke angesehen wissen. Dann ist doch zunächst klar, dass, selbst bei festgehaltenem Dreieck $1 \hat{R} n$, der Punkt \hat{R}'' nicht freiwillig fest bleibt, sondern seine volle Beweglichkeit uneingeschränkt besitzt. Für das von $1 \hat{R} n \hat{R}''$ gebildete Viereck gilt dann die Bemerkung:

"Affine Punkte in den Kettenvierecken liefern einen Besultantenpunkt R'', der der im Viereck $1\hat{R}n\hat{R}$ affin entsprechende ist."

Beweis wie oben.

Wenn wir nun den Punkt \hat{R}'' auch festhalten, so dass das Viereck $1 \hat{R} n \hat{R}''$ festgelegt ist, so können wir fragen: bleibt nun auch der in ihr zu eonstruirende Punkt

 $R''' = x1 + \lambda 2 + \mu \hat{R} + \nu \hat{R}'' \qquad x + \lambda + \mu + \nu = 1$

fest? Zunächst ist klar, dass dies bei vorgegebenem κ , λ , μ , ν offenbar der Fall ist. Ferner ist aber klar, dass dem im ersten Viereck gewählten

Digitized by GOOGIE

Dem Resultantenpunkte von $\hat{1}'''$, $\hat{2}'''$, ... kommt dann auch ein lineares Werthgebiet zu, er müsste also variiren, wenn nämlich das Viereck $1 \hat{R} \hat{R}''$ s als allgemein vorausgesetzt werden dürfte. Dieses ist aber nicht der Fall. Nach dem zuerst entwickelten Satze verliert nämlich auch der Resultantenpunkt R'' seine Willkürlichkeit, er entspricht homolog affin im Dreieck $1 \hat{R} n$ den Punkten $\hat{1}'$, $\hat{2}'$, ... Hiermit ist bewiesen, dass der Punkt \hat{R}''' in jedem Falle fest bleibt, sobald die Punkte $1 \hat{R} \hat{R}'' n$ festgehalten werden.

Den vorstehenden Erörterungen ist noch anzufügen:
"Setzen wir in dem angeführten Satze statt "affine Punkte" den

Wortlaut: "nicht affine Punkte", d. h. beliebige Punkte, so erhält der zugehörige Resultantenpunkt \hat{R} " seine volle Beweglichkeit wieder."

§ 4.

Hauptlösung der Umkehrproblems.

Da wir es hier mit dem "speciell irregulären" Mechanismus zu thun haben, so wollen wir die im vorigen Paragraphen entwickelten Sätze blos in ihrer Wirkung auf denjenigen Mechanismus verfolgen, der entsteht, wenn man über der Kette eines "speciell" irregulären Apparates A einen weiteren "speciell" irregulären Apparat B anbringt. Dementsprechend erscheint über jedem Gliede der (zu denkenden) Kette ein allgemeines Viereck, von dem

Digitized by GOOGIC

wir voraussetzen, dass es kein Parallelogramm sei.* Dann wird, wie oben erläutert, auch das Resultantenviereck $1R_AR_Bn$ ein völlig beliebiges sein, dessen Beweglichkeit nicht beschränkt ist.

Wir setzen überdies voraus, dass, wenn die Kettendreiecke des Apparates A zueinander ähnlich werden, auch die des Apparates B ähnlich werden sollen. Die Folge davon ist, dass in dem Momente auch die sämmtlichen Kettenvierecke unter sich und dem Resultantenviereck ähnlich werden.

"Wenn wir also die Ecken des Resultantenvierecks, das zunächst beliebig sich ergiebt, durch Stäbe so verbinden, dass es im Falle regulärer Mechanismen der angegebenen Aehnlichkeit genügen kann, so haben wir die Beweglichkeit des speciell irregulären Mechanismus zu Gunsten des regulären beschränkt."

Durch Anfügung weiterer "speciell" irregulärer Mechanismen C, D, \ldots über der ideellen Kettenlinie des ersten, und durch Verbinden der ihnen entsprechenden Resultantenpunkte mit den Endpunkten der Kette durch Stäbe in bestimmten Verhältnissen, wie sie oben für den Apparat B beschrieben wurden, können wir diese erste Beschränkung der Beweglichkeit zu Gunsten des geforderten regulären Mechanismus noch beliebig erhöhen, bis wir eben das gewünschte Resultat der Umkehr des Elementarmechanismus erhalten haben; dann aber würde eine auf diesem Wege versuchte noch weitere Beschränkung aus bekannten Gründen illusorisch.

Wir sprechen dies in dem Satze aus:

"Anhängen beliebig vieler "speciell" irregulärer Mechanismen obigen Charakters an die Kettenlinie des ersten und entsprechendes Verbinden zugehöriger Resultantenpunkte mit den Endpunkten der Kette verwandelt die speciell irregulären Mechanismen in reguläre." Hiermit ist das Umkehrproblem gelöst.

Es mag nur bemerkt werden, dass die geringste Zahl von anzuhängenden "speciell" irregulären Mechanismen von der Zahl der Kettenglieder um 2 übertroffen wird. Der durch diese Thatsache als einfachst charakterisirte Fall ist der für n=3, also der Mechanismus, der uns auch im ersten Aufsatze vorzüglich interessirte. Derselbe ist in Fig. 4 gegeben. Bei dem Apparate wird natürlich jetzt nicht mehr vorausgesetzt, dass die Kettenendpunkte festgehalten werden müssen, obwohl man dies kann.

§ 5.

Geradenerzeugung durch den Elementarmechanismus.

Wir beschränken uns hier zunächst auf den zuletzt bezeichneten Mechanismus der Fig. 4. Da ist dann zunächst klar, dass, wenn wir von drei consecutiven Punkten der ideellen Kette den ersten und letzten festhalten,

^{*} Um Affinitäten zu vermeiden.

der mittlere auf einem Kreise zu laufen hat. Man erkennt dies daraus, dass die in ihm zusammenstossenden Vierecke fortwährend ähnlich bleiben müssen, woraus zu entnehmen ist, dass die in ihm zusammenstossenden Seiten der Kette in Proportion bleiben. (Vergl. auch § 2B.)

Haben wir aber die beweglichen Seiten der beiden Vierecke so eingerichtet, dass letztere congruent und nicht nur ähnlich sind, so ist klar, dass der vom gemeinsamen Punkte beider Vierecke beschriebene Kreis in Gerade übergeht.

Zugleich haben wir (blos ähnliche Kettenvierecke vorausgesetzt) auch für das Sylvester'sche Problem der Winkelverschiebung (was der Verdoppelung äquivalent ist) eine neue Lösung. Wir brauchen jedes (oder eines) der Vierecke nur "umzulegen", so dass die Endpunkte im Kettengliede vertauscht erscheinen, um unserer Forderung entsprechend "gleiche veränderliche Winkel von beliebig veränderlicher Lage" in einem der Eckpunkte der Kette zusammenstossen zu lassen. (Vergl. Corollar zu § 2A.)

Aber nicht allein an ein und demselben Punkte können wir die Gleichheit veränderlicher Winkel erreichen, sondern — der Umkehr der Vierecke an verschiedenen Punkten der Kette entsprechend - an verschiedenen beliebig vorzugebenden Punkten.

Weiterhin gestattet unser Apparat auch das Beschreiben eines Kreises von variablem Radius. Legen wir zu dem Ende in das Centrum des Kreises einen Ketteneckpunkt, in dem zwei congruente Vierecke zusammenstossen, und stellen von den zwei benachbarten Kettenpunkten den einen auf einen Kreispunkt ein, so ist aus unseren Entwickelungen ohne Weiteres klar, dass der zweite den Kreis in voller Ausdehnung beschreibt.

Wir brechen diese Entwickelungen hier ab, um auf eine Geradenerzeugung zu sprechen zu kommen, welche deswegen interessiren dürfte. weil dieselbe auf vorgängig selbständiger Ellipsenerzeugung beruht.

§ 6. Ellipsenerzeugung.

Das Rollen zweier congruenter Ellipsen aufeinander giebt zur Betrachtung eines Gelenkvierecks Anlass, das aus dem gewöhnlichen Parallelogramme durch Ueberkreuzung eines Paares Gegenseiten entsteht. man von den nicht direct überkreuzten Seiten dieses Vierecks (Fig. 5) die

^{*} Man sehe die Erzeugung der Lemniskate von A. W. Phillip's Americ, J. of M., Vol. I. Digitized by Google

eine, z. B. AB, fest, so beschreibt der Kreuzungspunkt der andern bekanntermassen die Ellipse, während die Gegenseite zur festgehaltenen die Verbindungslinie der Brennpunkte der abrollenden Ellipse darstellt. Wir untersuchen nun den Ort, welchen der bezüglich des Mittelpunktes der festgehaltenen Ellipse der "reciproke" Punkt des Mittelpunktes der andern beschreibt. Wie wir sehen werden, ist dies eine Ellipse, coaxial mit der festgehaltenen. Während man aber die letztere durch einen Apparat nicht erzeugen kann, ist dies mit der ersten sehr wohl möglich.

Zum Beweise sei die Gleichung der festen Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$, der Kreuzungspunkt E der Stäbe $x_0 y_0$, die Tangente in diesem $X \frac{x_0}{a^2} + Y \frac{y_0}{b^2} - 1 = 0$, dann ist die Entfernung der Mittelpunkte der festen und abrollenden Ellipse $= R = \frac{2}{\sqrt{\frac{x_0^2}{a^4} + \frac{y_0^2}{b^4}}} = \frac{m^2}{e}$.

Die Richtung φ der Verbindungslinie der angezogenen Mittelpunkte aber ist gegeben durch

$$\cos\varphi = \frac{\frac{x_0}{a^2}}{\sqrt{\frac{{x_0}^2}{a^4} + \frac{{y_0}^2}{b^4}}} = \frac{x_0}{a^2} \cdot \frac{m^2}{\varrho}, \quad \sin\varphi = \frac{\frac{y_0}{b^2}}{\sqrt{\frac{{x_0}^2}{a^4} + \frac{{y_0}^2}{b^4}}} = \frac{y_0}{b^2} \cdot \frac{m^2}{\varrho}.$$

Da aber $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} - 1 = 0$ ist, so folgt

 $a^2 e^2 \cos^2 \varphi + b^2 e^2 \sin^2 \varphi - m^4 = 0$

oder

$$\frac{X^2}{A^2} + \frac{Y^2}{B^2} - 1 = 0,$$

wobei die Axen $A = \frac{m^2}{a}$, $B = \frac{m^2}{b}$, also, abgesehen vom Inversionsfactor, die reciproken Werthe der ursprünglichen sind.

Die Inversion wird nun durch den bekannten Rhombus mit eingesetztem Gelenkknie ausgeführt und zwar sind dessen Dimensionen so zu wählen, dass die Differenz der Quadrate der Rhombus- und Knieseiten $= m^2$ wird (Fig. 6).

In Fig. 7 beschreibt sohin Punkt P eine Ellipse mit den angegebenen Axen.

An die Ellipsenerzeugung gründet sich, wie bekannt, die Erzeugung von zwei senkrechten Geraden (ihren Axengeraden). Zu dem Behufe ergiebt eine Betrachtung der Fig. 8, wo zwei concentrische Kreise von Grösse der Halbaxen gezeichnet sind, dass, wenn P ein Ellipsenpunkt ist, PQR eine

Strecke von unveränderlichem Maassverhältniss darstellt, worin Q und R die Axen beschreiben. Dabei ist

$$QR = A - B,$$

 $PQ = B,$
 $OS = \frac{1}{2}QR = \frac{1}{2}(A - B),$
 $PS = \frac{1}{4}(A + B);$

S ist hierbei Mittelpunkt von QR.

Wenn wir also im Apparat der Ellipsenerzeugung zwischen dem Ellipsenmittelpunkte O und dem Ellipsenpunkte P ein Kniegelenk einschieben, so dass der an O stossende Stab die Länge $\frac{1}{4}(A-B)$, der an P stossende die Länge $\frac{1}{4}(A+B)$ hat, so kann man auf dem letzteren leicht die Punkte R und Q markiren, welche die Axen beschreiben. (Fig. 8.)

München, Januar 1891.

XXII.

Ueber eine besondere Transformation algebraischer Curven und damit in Verbindung stehende Sätze Jacob Steiner's.

 ∇ on

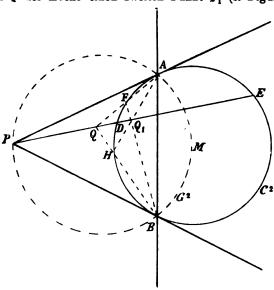
BENEDIKT SPORER.

§ 1. Einleitung.

Ist irgend ein Leitkegelschnitt C^2 und ein Pol P gegeben, so können wir irgend einem Punkte Q der Ebene einen zweiten Punkt Q_1 (s. Figur)

so zuordnen, dass QQ_1 durch den festen Pol P geht und Q von Q_1 durch den Kegelschnitt C^2 harmonisch getrennt sind, dass also, wenn QQ_1 den Kegelschnitt in D und E trifft, Q, D, Q_1 , E vier harmonische Punkte sind; oder auch, dass Q auf der Polare von Q_1 , und ebenso Q_1 auf der Polare von Q gelegen ist.*

Aus dieser Festsetzung ergeben sich nun sofort die fundamentalen Sätze dieser Transformation, nämlich:



1. Die Punkte Q und Q_1 können gegenseitig vertauscht werden, so dass also dem Punkte Q auch der Punkt Q_1 entspricht.

^{*} Diese Transformation, welche nur eine Verallgemeinerung der Methode reciproker Radien ist, wurde bereits früher von Herrn A. Jacobi in Crelle's Journal, wenn wir nicht irren Bd. 31, gegeben und zwar unter dem Titel: Auflösungen von einer Reihe von Lehrsätzen und Aufgaben der ebenen Geometrie.

- 2. Ist AB die Polare von P in Bezug auf den Leitkegelschnitt C^2 , so entspricht jedem Punkte von AB der PolP und umgekehrt dem PoleP jeder Punkt von AB.
 - 3. Jeder Punkt von C^2 ist sich selbst zugeordnet.
- 4. Einem Punkte der Tangente PA von P an C^2 entspricht der Berührungspunkt A und umgekehrt dem Punkte A jeder Punkt von PA. Ebenso ist dies bei der Tangente PB der Fall.
- 5. Jedem Punkte der unendlich fernen Geraden entspricht ein Punkt eines Kegelschnittes G^2 , der durch P, A, B, den Mittelpunkt von C^2 und die unendlich fernen Punkte von C^3 geht.
- 6. Ist insbesondere der Pol P ausserhalb des Kegelschnittes C^2 gelegen, sind also die Berührungspunkte A und B der Tangenten von P an C^2 reell, so sind für Strahlen PQ, welche den Kegelschnitt in reellen Punkten D und E schneiden, die Punkte Q und Q_1 ferner so beschaffen, dass die Geraden AQ_1 die Geraden BQ in einem Punkte H auf C^2 und ebenso, dass auch AQ auf BQ_1 sich in einem Punkte F auf C^2 treffen.*

§ 2. Abbildung algebraischer Curven.

- 1. Bewegt sich der Punkt Q auf einer Curve C^n , so wird das Bild von Q, d. h. der Punkt Q_1 , ebenfalls eine Curve C^x beschreiben, und zwar folgt aus dem Obigen sofort, dass diese Curve C^x , da sie die Geraden AB, PA und PB je n-mal schneidet, im Allgemeinen auch die Punkte P, A, B zu n-fachen Punkten hat. Ueberdies wird sie den Kegelschnitt C^2 noch in denselben Punkten treffen, die C^2 mit C^n gemeinsam hat; und weiter sind die unendlich fernen Punkte der Curve C^x gegeben durch die Schnittpunkte von C^n mit dem Kegelschnitt G^3 . Die Curve C^x wird also im Allgemeinen mit C^2 An und mit der unendlich fernen Geraden 2n Punkte gemein haben. Schon hieraus könnten wir schliessen, dass der Grad der Curve C^x im Allgemeinen gleich 2n ist. Stillschweigend haben wir jedoch dabei vorausgesetzt, dass C^2 durch keinen der Punkte A, B oder P geht. Zur weiteren Untersuchung des Bildes von C^n dient folgende Betrachtung.
 - 2. Ist die Curve zunächst eine Gerade, so erhalten wir sofort die Sätze:
- a) Den Punkten Q einer Geraden durch P sind Punkte Q_1 derselben Geraden conjugirt, und zwar bestimmen Q und Q_1 auf der Geraden eine involutorische Punktreihe.
- b) Jeder durch A gehenden Geraden L ist eine Gerade L_1 durch B zugeordnet, und ebenso ist das Bild jeder durch B gehenden Geraden eine solche durch A.

$$X:Y:Z=\left(-x\cdot\frac{\partial C^2}{\partial z}\right):\left(-y\cdot\frac{\partial C^2}{\partial z}\right):\left(x\frac{\partial C^2}{\partial x}+y\frac{\partial C^2}{\partial y}\right).$$

^{*} Analytisch findet diese Transformation ihren Ausdruck durch die Gleichung:

- c) Dreht sich L um A, so beschreibt die ihr zugeordnete Gerade L_1 ein zum Büschel der L projectivisches mit dem Mittelpunkte B.
- d) Das Bild irgend einer Geraden C', die durch keinen der Punkte P, A oder B geht, ist ein Kegelschnitt K^2 , der durch P, A und B geht. [Folgt aus c).]
- e) Jedem Kegelschnitte K^2 durch A, B, P entspricht ebenso eine Gerade C', die durch keinen der Punkte P, A oder B geht.*
- 3. Ist ferner eine Curve n^{ten} Grades C^n gegeben und hat dieselbe die Punkte P, A, B zu π -, α und β -fachen Punkten, so folgt ferner aus dem Umstande, dass ein Kegelschnitt durch P, A, B mit C^n noch $(2n-\pi-\alpha-\beta)$ Punkte gemein hat, dass auch eine Gerade, die nicht durch P, A oder B geht, mit dem Bilde von C^n je $(2n-\pi-\alpha-\beta)$ Punkte gemein hat, oder dass die Abbildung vom Grade $(2n-\pi-\alpha-\beta)$ ist. Hieraus und aus den weiteren Punkten von C^n , die auf PA, PB und AB, ausserhalb P, A und B gelegen sind, folgt jedoch:

Ist der Ort des Punktes Q eine Curve n^{ten} Grades mit P, A und B als π -, α - und β -fachen Punkten, so ist der Ort des Punktes Q_1 eine Curve vom Grade $(2n-\pi-\alpha-\beta)$, $C^{2n-\pi-\alpha-\beta}$, mit P, A, B als $(n-\alpha-\beta)$ -, $(n-\alpha-\pi)$ - und $(n-\beta-\pi)$ - fachen Punkten.

- 4. Heissen wir die eine Curve die Inverse der andern, so ergiebt sich daraus noch insbesondere:
- a) Die Inverse eines Kegelschnittes durch zwei der Punkte P, A oder B ist wieder ein Kegelschnitt durch zwei dieser Punkte.
- b) Die Inverse eines Kegelschnittes durch einen der Punkte F, A, B ist eine Curve dritten Grades, welche in einem der drei genannten Punkte einen Doppelpunkt hat.
- c) Die Inverse eines Kegelschnittes durch keinen der drei Punkte A, B, P ist eine Curve vierten Grades, die A, B und P zu Doppelpunkten hat.
- d) Die Inverse einer Curve dritten Grades durch P, A und B ist wieder eine Curve dritten Grades durch diese drei Punkte.

U. s. w.

§ 3. Sätze über Ortscurven.

Die in Obigem erörterte Abbildung lässt sich manchmal mit Nutzen auf Fragen nach dem Grade des Ortes gewisser Punkte verwenden. Wir werden uns jedoch nur auf zwei Beispiele beschränken. Hierbei werden wir kurz die drei Punkte A, B und P als Grundpunkte der Abbildung bezeichnen.

^{*} Nicht ohne Interesse ist es, die Beziehungen zu untersuchen, die zwischen einer Geraden und ihrem Bilde herrschen. So geht z. B. die Abbildung K^2 von C' auch durch den Pol von C' in Bezug auf C^2 , und führt dies auf verschiedene Sätze der Kegelschnittlehre.

1. Durch sieben Punkte p gehen unendlich viele Curven dritten Grades, welche nebstdem noch einen Doppelpunkt haben. Setzen wir nun voraus, der Ort dieses Doppelpunktes sei eine Curve vom Grade x, mit den Punkten p als y-fachen Punkten, so können wir drei der sieben Punkte p als Grundpunkte P, A, B beliebig wählen und hierzu einen Kegelschnitt C² entsprechend annehmen. Denken wir uns nun von dem gesammten System von Curven dritten Grades mit Doppelpunkt, welche durch die sieben Punkte p gehen, auch das System Inversen, so sind letztere nach § 2, 4d nothwendig auch Curven dritten Grades, welche einen Doppelpunkt haben und die durch sieben gemeinsame Punkte gehen, nämlich durch die drei Grundpunkte und vier Punkte p, die den weiteren nicht mit P, A und B zusammenfallenden vier Punkten p als Bild entsprechen. Durch die vorgenommene Transformation ändert sich also die Aufgabe, die den Ort des Doppelpunktes bestimmen soll, nicht, oder mit anderen Worten, durch die vorgenommene Transformation ist der Grad der Ortscurve des Doppelpunktes ungeändert geblieben. Dies giebt uns die Gleichung:

$$2x = x + 3y, \quad x = 3y.$$

Legen wir ferner durch die Punkte P, A und B und zwei weitere Punkte p einen Kegelschnitt, so kann dieser Kegelschnitt nun ausser den fünf Punkten p mit der Ortscurve nur noch zwei weitere Punkte gemein haben, nämlich die Punkte, in welchen er von der Verbindungslinie der beiden letzten Punkte p geschnitten wird. Er hat also im Ganzen mit der Ortscurve gemein 5y+2 Punkte, d. h. wir erhalten weiter

$$2x = 5y + 2$$
, also $x = 6$, $y = 2$.

Dies giebt nun den Satz:

Soll eine Curve dritten Grades durch sieben Punkte p gehen und einen Doppelpunkt haben, so ist der Ort dieses Doppelpunktes eine Curve sechsten Grades mit den Punkten p als Doppelpunkten. (Steiner, Ges. W., Bd. 2 S. 499 u. 526.)

2. Wenn ebenso eine Curve C^3 durch sechs Punkte p gehen und einen Rückkehrpunkt haben soll, so erleidet auch diese Frage bei der obigen Abbildung mit drei Punkten p als Grundpunkte keine Aenderung. Sei auch hier der Ort wieder vom Grade x mit den Punkten p als y-fachen Punkten, so haben wir auch jetzt:

$$2x = 3y + x \text{ oder } x = 3y.$$

Legen wir ebenso durch fünf Punkte p einen Kegelschnitt k^2 , so hat derselbe mit der Ortscurve ausser den fünf Punkten p je y-fach zählend nur noch die beiden Punkte gemein, in welchen die Tangenter vom sechsten Punkte p an K^2 , K^2 berühren. Dies giebt wieder:

Daraus folgt:
$$2x=5y+2$$
, also $x=6$, $y=2$.

Soll eine Curve C³ durch sechs Punkte p gehen und einen Rückkehrpunkt haben, so ist der Ort des Rückkehrpunktes

eine Curve sechsten Grades mit den sechs Punkten p als Doppelpunkten. (Steiner, Ges. W., Bd. 2 S. 499 u. 526.)

Betreffs dieser Ortscurve ist ferner zu bemerken, dass 42 weitere Punkte ausser den Doppelpunkten p leicht construirbar sind, nämlich die:

30 Punkte α, in welchen ein Kegelschnitt durch vier Punkte p die Verbindungslinie der letzten zwei Punkte p berührt, und die:

12 Punkte β , in welchen die Tangenten von je einem Punkte p an den Kegelschnitt durch die übrigen fünf diesen berühren.

Anmerk. Bevor wir diese Sätze verlassen, wollen wir noch auf eine Reihe weiterer Eigenschaften der Curven dritten Grades, die Steiner gabaufmerksam machen. Es sind dies die Sätze, die er unter den Titeln gab:

Geometrische Lehreätze. Ges. W., Bd. 2 S. 369-374, und Sätze über Curven zweiten und dritten Grades. Ebenda S. 375-380.

Da dieselben nur auf Verallgemeinerungen Bezug nehmen, die sich auf die Wendepunkte beziehen, resp. sich aus den Kegelschnitten leicht mittels der gegebenen Abbildung ableiten lassen, so wollen wir dieselben hier nicht weiter erörtern. (Vergl. hierzu ferner: Clebsch, Journ. f. Math., Bd. 63 S. 94—121.)

Sätze über Berührung algebraischer Curven.

§ 4. Osculirende Kegelschnitte.

1. Die in § 1 gegebene Transformation giebt uns noch die Mittel in die Hand, andere Fragen einfach zu erledigen. Sind z. B. irgend drei Punkte A, B und C gegeben, so können wir die Frage aufwerfen: Wieviele Kegelschnitte gehen durch diese drei Punkte A, B und C und osculiren nebstdem noch irgend eine Curve? Um diese Frage zu erledigen, wählen wir die drei Punkte zu Grundpunkten und bilden in Bezug auf diese die Inverse der gegebenen Curve n^{ten} Grades C^n . Jeder Kegelschnitt, der die verlangte Bedingung erfüllt, wird in der Inverse von C^n Wendetangente. Unsere Aufgabe ist also auf die zurückgeführt, die Anzahl der Wendetangenten gewisser Curven zu bestimmen. Da die Inverse im Allgemeinen vom Grade 2n ist und die Grundpunkte A, B, C zu n-fachen Punkten hat, und letztere von gleichem Einflusse wie $\frac{3}{2}n(n-1)$ Doppelpunkte sind, so folgt aus der Plücker'schen Gleichung

 $w = 3g(g-1) = 6\delta$

(w Wendepunkte, g Grad, δ Doppelpunkte einer Basis C^g), wenn wir für g und δ die Werthe 2n und 3n(n-1) einsetzen:

Dies giebt uns den Satz: w-3n(n-1).

Soll ein Kegelschnitt beschrieben werden, der durch drei Punkte geht und eine Curve n^{ten} Grades Cⁿ osculirt, so giebt es im Allgemeinen

$$3n(n-1)$$

Lösungen. (Steiner, Ges. W., Bd. 2 S. 615, 1, und betreffs des analytischen Beweises Bischoff, Journal f. Math., Bd. 56 S. 175.)

2. Ist einer der Punkte, etwa $C \ (= P)$ auf der Curve selbst gelegen, so ist die Inverse vom Grade (2n-1) und hat einen n-fachen und zwei (n-1)-fache Punkte. Bestimmen wir für diese die Anzahl entsprechender Doppelpunkte, so erhalten wir für die Anzahl der zugehörigen Wendepunkte 3n(n-1)-3. Hierbei ist jedoch derjenige Kegelschnitt nicht mitgerechnet, der durch die drei Punkte A, B, C geht und C^n mit osculirt. Zählen wir diesen mit, so ist die Anzahl der Lösungen gleich 3n(n-1)-2. Tritt ein zweiter Punkt B in die Curve, so finden wir ebenso, dass die Anzahl der Wendepunkte sich um weitere drei, die Anzahl der Lösungen um weitere zwei vermindert. Dasselbe ist der Fall, wenn auch der dritte Punkt A in nie Curve C^n tritt. Dies giebt:

Kommen die gegebenen Punkte insbesondere in die Curve sebst zu liegen, so ist die Anzahl der Lösungen geringer, und zwar vermindert sich dieselbe für jeden Punkt, der in die Curve tritt, um zwei, so dass also, wenn alle drei Punkte in derselben liegen, die Anzahl Lösungen nur ist:

$$3n(n-1)-6=3(n+1)(n-2).$$

(Steiner, Bd. 2 S. 615.)

§ 5. Doppelt berthrende Kegelschnitte.

1. Soll ebenso ein Kegelschnitt beschrieben werden, der durch drei Punkte geht und eine gegebene Curve C^n in irgend zwei Punkten berührt, so können wir auf analoge Weise verfahren. Wir erhalten als Inverse eine Curve $2n^{\text{ten}}$ Grades mit drei n-fachen Punkten. In der Inverse treten nun diese doppelt berührenden Kegelschnitte als Doppeltangenten auf. Ist die Anzahl der letzteren gleich c, so erhalten wir, wenn wir in der Plückerschen Gleichung $2c = g(g-2)(g^2-g) - 4(g^2-g-s-\delta)$

für g und δ die Werthe 2n und $\frac{3}{2}n(n-1)$ setzen:

$$2c = n^4 + 2n^3 - gn^2 + 6n.$$

Dies giebt jedoch den Satz:

Soll ein Kegelschnitt beschrieben werden, der durch drei Punkte geht und eine gegebene Curve nien Grades in irgend zwei Punkten berührt, so giebt es im Allgemeinen

$$\frac{1}{2}(n^4 + 2n^3 - qn^2 + 6n) = \frac{1}{2}n(n-1)(n^2 + 3n - 6) = s$$
Lösungen. (Steiner, Bd. 2 S. 615, 3, und Bischoff, Journ. f. Math. Bd. 56 S. 174.)

2. Liegt wieder einer der Punkte, etwa A, auf der Basis C^n selbst, so ist die Inverse vom $(2n-1)^{ten}$ Grade und hat einen propertiese vom $(2n-1)^{ten$

(n-1)-fache Punkte. Setzen wir nun in der Gleichung für c für g und δ die zugehörigen Werthe (2n-1) und $\frac{1}{2}(3n^2-7n+4)$ ein, so erhalten wir:

$$c = \frac{1}{2}(n^4 + 2n^3 - 13n^2 + 2n + 16)$$

= $s - 2(n^2 + n - 4) = s_1$.

Hierbei ist jedoch die Zahl der Kegelschnitte nicht mitgerechnet, welche die Curve Cn in A selbst berühren. Fällt der Punkt A nämlich auf die Curve selbst, so fallen von den s Kegelschnitten eine gewisse Anzahl mit solchen zusammen, von denen ein Berührungspunkt mit A vereinigt ist. Jeder solcher Kegelschnitt zählt für den allgemeinen Fall zweifach; die Anzahl dieser Kegelschnitte ist also $(n^2 + n - 4)$. Rechnen wir also die Lösungen mit dem Berührungspunkte A dazu, so haben wir die Zahl der Lösungen im allgemeinen Falle um (n^2+n-4) zu vermindern, um die Zahl der verschiedenen Lösungen zu finden, falls A auf C* gelegen ist; rechnen wir dagegen nur die Lösungen als solche, für welche kein Berührungspunkt mit A zusammenfällt, so haben wir die Zahl s um $2(n^2+n-4)$ zu verkleinern.

3. In ganz gleicher Weise finden wir, dass wir auch die Zahl z_1 um (n^2+n-6) resp. $2(n^2+n-6)$ zu vermindern haben, wenn ein zweiter der drei Punkte auf die Curve fällt. Tritt der letzte ebenfalls in die Curve, so ist die Anzahl noch weiter um (n^2+n-8) resp. $2(n^2+n-8)$ zu verkleinern. Setzen wir also voraus, dass keiner der Berührungspunkte in A oder B oder C fallt, so erhalten wir:

Sind in einer Curve n^{ten} Grades C^n drei Punkte A, B, Cangenommen, so gehen durch diese Punkte im Allgemeinen stets

 $\frac{1}{4}(n^4 + 2n^3 - 21n^2 - 6n + 72) = \frac{1}{4}(n+2)(n-3)(n^2 + 3n - 12)$ solche Kegelschnitte, welche die Curve C^n in irgend zwei mit keinem der drei Punkte A, B, C zusammenfallenden Punkten berühren. (Steiner, Bd. 2 S. 616).

4. Ein specieller Fall des Hauptsatzes in 1. lautet:

Durch drei Punkte gehen vier Kegelschnitte, die einen gegebenen Kegelschnitt doppelt, oder die zwei Gerade berühren.

§ 6. Specielle Fälle.

Sind alle drei Punkte A, B, C in einem auf C^n gelegenen Punkte vereinigt, so erhalten wir aus § 5:

Soll ein Kegelschnitt eine Curve C^n in einem auf ihr gelegenen Punkte osculiren und nebstdem noch in zwei anderen Punkten berühren, so finden im Allgemeinen

$$\frac{1}{2}(n^4 + 2n^3 - 21n^2 - 6n + 72)$$

Lösungen statt. (Steiner, Bd. 2 S. 617.) Und: Digitized by GOOGLE

Soll der Kegelschnitt die gegebene Curve vierpunktig im Punkte A und nebstdem noch in einem andern Punkte berühren, so giebt es im Allgemeinen

 (n^2+n-8)

Lösungen, (Steiner, Bd. 2 8. 617.)

Ebenso erhalten wir aus § 4, wenn wir von der Gesammtzahl der Lösungen diejenigen drei abziehen, für welche der Osculationspunkt mit einem der Punkte A, B oder P zusammenfällt:

Soll ein Kegelschnitt eine gegebene Curve nten Grades in einem festen Punkte A und nebstdem noch in einem zweiten Punkte B osculiren, so giebt es im Allgemeinen

$$3n(n-1)-9=3(n^2-n-3)$$

Lösungen. (Steiner, Bd. 2 S. 617.)

§ 7. Weitere Sätze über osculirende und doppelt berührende Kegelschnitte.

Schon das Bisherige zeigt uns, dass es keine Schwierigkeiten bietet, mittels der Plücker'schen Analogien die Zahl der Lösungen festzustellen, falls die Aufgaben gegeben sind:

Ein Kegelschnitt soll durch drei Punkte A, B, P gehen und:

- a) eine Curve osculiren,
- b) eine Curve doppelt berühren,

wenn die Basis zudem noch irgendwelche Singularitäten besitzt. Von den vielen hierher gehörigen Fällen wollen wir jedoch nur diejenigen auswählen, die Steiner selbst behandelte. Es sind dies folgende:

1. Sind auf einer Curve $2n^{\text{ten}}$ Grades drei n-fache Punkte gelegen, so können wir diese zu Grundpunkten A, B, C, P wählen und erhalten als Inverse eine Curve n^{ten} Grades mit 3n(n-2) Wendetangenten und $\frac{1}{2}n(n-2)$ (n^2-g) Doppeltangenten. Daraus folgt:

Hat eine Curve $2n^{ten}$ Grades drei n-fache Punkte, aber ausserdem keine anderen vielfachen Punkte, und soll durch jene drei Punkte ein Kegelschnitt gehen und zudem die Curve C^{2n} entweder

- a) in irgend einem Punkte osculiren, so ist die Zahl der Lösungen = 3n(n-2), oder:
- b) in irgend zwei anderen Punkten noch berühren, so ist die Zahl der Lösungen = $\frac{n}{2}(n-2)(n^2-9)$. (Steiner, Bd. 2 S. 617.)
- 2. Die Inverse einer Curve $2n^{\text{ten}}$ Grades mit zwei n-fachen und einem (n-1)-fachen Punkte ist eine Curve $(n+1)^{\text{ten}}$ Grades, wenn wir die drei vielfachen Punkte zu Grundpunkten wählen. Besitzt die Curve keinen weiteren vielfachen Punkt, so folgt daraus:

Hat eine Curve $2n^{ten}$ Grades zwei n-fache und einen (n-1)-fachen Punkt, sonst aber keine vielfachen Punkte, und soll ein Kegelschnitt durch diese drei Punkte gehen und zudem die Curve entweder:

- a) in einem Punkte osculiren, so giebt es im Allgemeinen $3(n+1)(n-1) = 3(n^2-1)$ Lösungen; oder
- b) in zwei Punkten berühren, so giebt es $\frac{1}{2}(n+1)(n-1)$ (n-2)(n+4) Lösungen. (Steiner, Bd. 2 S. 617.)
- 3. Sind die Punkte A, B, C, P je (n-1)-fache Punkte einer Curve $(2n-1)^{\text{ten}}$ Grades, welche sonst keinen vielfachen Punkt enthält, so ist auch hier die Inverse vom Grade (n+1) und wir erhalten aus der Zahl der Wende- und Doppeltangenten der Inverse:

Hat eine Curve $(2n-1)^{ten}$ Grades drei (n-1)-fache Punkte und sonst keine weiteren vielfachen Punkte, und soll ein Kegelschnitt durch diese drei Punkte gehen und zudem noch:

- a) entweder die Curve in einem Punkte osculiren, so giebt es 3(n+1)(n-1) Lösungen, oder:
- b) die Curve in zwei Punkten berühren, so ist die Zahl der Lösungen = $\frac{1}{2}(n+1)(n-1)(n-2)(n+4)$. (Steiner, Bd. 2 S. 618.)
- 4. Ebenso finden wir aus der Zahl der Wende- und Doppeltangenten der Inverse einer Curve $(2n-1)^{\text{ten}}$ Grades mit zwei (n-1)-fachen und einem n-fachen Punkte in den Punkten A, B, C, P:

Hat eine Curve $(2n-1)^{\text{ton}}$ Grades mit zwei (n-1)-fachen und einem n-fachen Punkte aber ausserdem keinen vielfachen Punkt, und soll ein durch diese Punkte gehender Kegelschnitt die Curve entweder:

- a) in irgend einem Punkte osculiren, so ist die Zahl der Lösungen = 3n(n-2), oder:
- b) in irgend zwei anderen Punkten berühren, so giebt es $\frac{1}{4}n(n-2)(n-3)(n+3)$ Lösungen. (Steiner, Bd. 2 S. 618.)
 - § 8. Osculirende und doppelt berührende Kreise.

Als specielle Fälle erhalten wir aus Obigem, wenn wir die Punkte A, B mit den unendlich fernen Kreispunkten zusammenfallen lassen:

Durch jeden Punkt gehen im Allgemeinen je 3n(n-1) Krümmungskreise einer Curve n^{ten} Grades. Liegt der Punkt auf der Curve selbst, so ist der ihm zugehörige Krümmungskreis dreifach zählend und die Zahl der durch ihn gehenden Krümmungskreise ist um 2 kleiner. (Steiner, Bd. 2 S. 442, 8.)

Ebenso folgt noch:

Soll ein Kreis durch einen gegebenen Punkt gehen und eine Curve nten Grades in zwei Punkten berühren, so ist die og e

Zahl der Lösungen im Allgemeinen = $\frac{1}{2}n(n-1)\{(n+1)(n-2)-8\}$. (Steiner, Bd. 2 S. 442, 9.)

Liegt insbesondere der Punkt in der Curve selbst, so wird die Curve in ihm von (n(n+1)-4)/lösenden Kreise berührt und dann ist jeder dieser Kreise doppelt zählend oder die Zahl der Lösungen wird um ebensoviel verringert.

- § 9. Kegelschnitte durch vier Punkte, welche eine Curve berühren.
- 1. Sind ferner vier Punkte gegeben und soll durch diese eine Curve C^2 gehen, welche eine gegebene Curve n^{ten} Grades berührt, so können wir drei dieser Punkte als Grundpunkte A, B, P wählen. Die gesuchten Kegelschnitte werden jetzt Tangenten der Inverse durch das Bild des vierten Punktes. Da die Inverse vom Grade 2n ist und drei n-fache Punkte hat, so ist sie von der Classe 2n(2n-1)-3n(n-1)=n(n+1). Wir erhalten also:

Soll ein Kegelschnitt durch vier Punkte gehen und eine Curve n^{ten} Grades nebstdem noch in einem Punkte berühren, so giebt es im Allgemeinen n(n+1) Lösungen.

Und als speciellen Fall:

Soll ein Kreis durch zwei Punkte gehen uud eine Curve n^{ten} Grades berühren, so giebt es n(n+1) Lösungen. (Steiner, Bd. 2 S. 443.)

2. Fallen ferner die vier Punkte paarweise in die unendlich fernen Punkte, so ist die Verbindungslinie derselben n-fach als Lösung anzusehen und wir erhalten:

Soll ein Kegelschnitt zwei Gerade in gegebenen Punkten und nebstdem noch eine Curve n^{ten} Grades berühren, so ist die Anzahl der Lösungen im Allgemeinen $= n^2$. Und als speciellen Fall:

Soll ein Kreis einen gegebenen Mittelpunkt haben und eine Curve nten Grades berühren, so giebt es n² Lösungen. Oder:

Von einem Punkte gehen nº Normalen auf eine Curve nten Grades.

Weingarten, im September 1890.

XXIII.

Ueber einen orthogonalen Reye'schen Complex.

Von

Dr. H. THIEME

Die geraden Linien einer Ebene, welche von zwei Punkten dieser Ebene gleich weit entfernt sind, bilden bekanntlich zwei Strahlenbüschel; die Mittelpunkte dieser Büschel sind die Mitte und der unendlich ferne Punkt der Verbindungslinie der beiden Punkte.

Die Geraden des Raumes, die von zwei gegebenen Punkten gleiche Entfernung haben, bilden einen Reye'schen Complex, der durch einige Eigenschaften ausgezeichnet ist. Das Folgende enthält eine elementare Ableitung dieser Eigenschaften.

I. Die beiden gegebenen Punkte seien A_1 und A_2 , die Mitte von A_1A_2 sei A_0 , der unendlich ferne Punkt dieser Geraden A_{∞} , die Ebene, welche in A_0 auf A_1A_2 senkrecht steht, sei E_0 , die unendlich ferne Ebene E_{∞} .

Zunächst ist wie in der Ebene jede Gerade, welche zu $A_1 A_2$ parallel ist, also durch A_{∞} geht, von A_1 und A_2 gleich weit entfernt, ebenso jede Gerade, welche durch A_0 geht. Als gleich anzusehen sind auch die Entfernungen der Punkte A_1 und A_2 von jeder Geraden in E_{∞} , von jeder unendlich fernen Geraden.

Ferner lässt sich ohne Schwierigkeit zeigen, dass auch jede Gerade in E_0 von A_1 und A_2 gleich weit entfernt ist. Ist nämlich x eine beliebige (A_1A_2) nicht schneidende) Gerade in E_0 , und fällt man von A_1 auf diese das Loth A_1P , so steht* x auf den Geraden A_1A_2 und A_1P senkrecht, also auch auf der Ebene A_1A_2P und damit auf A_2P ; d. h. A_2P ist der Abstand des Punktes A_2 von x. Da nun PA_0 auf A_1A_2 senkrecht steht, so ist $A_1P=A_2P$, also A_1 und A_2 von x gleich weit entfernt.

Die weder E_{∞} , noch E_0 angehörigen Geraden, welche von A_1 und A_2 gleichweit entfernt sind, zeichnen sich durch eine einfache Eigenschaft aus, wie aus der folgenden Betrachtung ersichtlich ist.

[•] Senkrecht zueinander heissen zwei Gerade, wenn sie miteinander einen rechten Winkel bilden, sie mögen sich schneiden oder nicht.

Bezeichnet x eine derartige Gerade, und $A_1 P_1$ und $A_2 P_2$ die Lothe von A_1 und A_2 auf x, also $A_1 P_2 = A_2 P_2$, so fälle man noch von A_0 das Loth $A_0 P_0$ auf x. Da $A_1 P_1$, $A_0 P_0$, $A_2 P_2$ auf x senkrecht sind, so liegen sie in drei zu x senkrechten, also einander parallelen Ebenen, und da $A_1 A_0 = A_2 A_0$ ist, so ist auch $P_1 P_0 = P_2 P_0$. Mithin ist $\triangle A_1 P_1 P_0 = A_2 P_0$, infolge dessen $A_1 P_0 = A_2 P_0$, ferner $\triangle A_1 A_0 P_0 \cong A_2 A_0 P_0$, also $P_0 A_0 \perp A_1 A_2$. D. h.:

Jede Gerade, welche von A_1 und A_2 gleich weit entfernt ist, steht auf einer Geraden, die durch A_0 geht und in E_0 liegt, senkrecht.

Ist umgekehrt x eine beliebige Gerade, welche E_0 in P_0 trifft und suf $P_0 A_0$ senkrecht steht, sind ferner $A_1 P_1$ und $A_2 P_2$ die Lothe von A_1 und A_2 auf x, so lässt sich zeigen, dass $A_1 P_1 = A_2 P_2$ ist.

Zieht man nämlich durch P_0 die Parallele zu $A_1 A_2$ und fällt auch auf diese von A_1 und A_2 die Lothe $A_1 Q_1$ und $A_2 Q_2$, so ist $A_0 P_0$ senkrecht auf $P_1 P_2$ und $Q_1 Q_2$, also auf der Ebene der beiden Geraden, ebenso auch $A_1 Q_1$ und $A_2 Q_2$, da diese zu $A_0 P_0$ parallel sind. $P_1 P_2$ ist damit senkrecht auf $A_1 Q_1$ und $A_1 P_1$, also auf der Ebene $A_1 P_1 Q_1$ und auf $Q_1 P_1$; ebenso ist $P_1 P_2$ senkrecht auf $Q_2 P_2$. Daraus folgt dann die Congruenz der Dreiecke $Q_1 P_1 P_0$ und $Q_2 P_2 P_0$ und dann der bei Q_1 und Q_2 rechtwinkligen Dreiecke $A_1 Q_1 P_1$ und $A_2 Q_2 P_2$ und daraus die Behauptung $A_1 P_1 = A_2 P_2$. Also:

Die Gesammtheit der Geraden, welche von zwei Punkten A_1 und A_2 gleich weit entfernt sind, wird gebildet von den Geraden, welche auf den Strahlen des Strahlenbüschels mit dem Scheitel A_0 , der Mitte von $A_1 A_2$, und der Ebene E_0 , der mittelsenkrechten Ebene von $A_1 A_2$, senkrecht stehen.

II. Auf Grund der entwickelten Eigenschaften lässt sich leicht die Anordnung der Geraden im Raume verfolgen.

Die Gesammtheit der Geraden, welche durch einen Punkt P_0 von E_0 gehen und von A_1 und A_2 gleich weit entfernt sind, besteht aus zwei Strahlenbüscheln.

Denn einmal haben alle Geraden, welche durch P_0 gehen und in E_0 liegen, die verlangte Eigenschaft und dann alle Geraden, die in P_0 auf A_0P_0 senkrecht stehen.

Die Gesammtheit der Geraden, welche einer gegebenen Geraden l des Raumes parallel sind und von A_1 und A_2 gleiche Entfernung haben, bildet ein paralleles Strahlenbüschel.

Man erhält dieses Büschel, wenn man in E_0 durch A_0 die Gerade zieht, welche auf l senkrecht steht, und dann durch die Punkte dieser Senkrechten die Parallelen zu l zieht. Selbstverständlich bilden diese Geraden eine Ebene, welche zu l parallel ist und durch A_0 geht.

Die Geraden, welche durch einen beliebigen Punkt X des Raumes gehen und von A_1 und A_2 gleich weit entfernt sind, bilden einen orthogonalen Kegel zweiten Grades.

Diese Geraden erhält man, wenn man in E_0 durch A_0 Strahlen zieht und von X aus auf diese die Lothe fällt. Die Fusspunkte dieser Lothe bilden bekanntlich einen Kreis. Ist X_0 die Projection von X auf E_0 , so ist A_0X_0 der Durchmesser des Kreises. Da eine Gerade des Kegels — XX_0 — auf der einen Kreisschnittebene senkrecht steht, so ist der Kegel ein orthogonaler. Die andere Reihe der Kreisschnitte steht auf XA_0 senkrecht.

Somit bilden die Geraden der verlangten Eigenschaft, die durch einen beliebigen Punkt des Raumes gehen, einen Kegel zweiten Grades, also haben wir das Resultat:

Die Geraden, welche von zwei gegebenen Punkten gleich weit entfernt sind, bilden einen Complex zweiten Grades.

Diesen Complex werden wir zweckmässig einen orthogonalen nennen, da die sämmtlichen Complexkegel orthogonal sind.

III. Wie wir gesehen haben, enthält E_0 von jedem Complexkegel einen Kreisschnitt. Die sämmtlichen in E_0 liegenden Kreisschnitte bilden das Bündel der Kreise, welche durch den Punkt A_0 gehen. Ist umgekehrt in E_0 ein durch A_0 gehender Kreis gegeben, so erhalten wir unendlich viele Complexkegel, die durch diesen Kreis hindurchgehen. Die Scheitel dieser Kegel erhält man, wenn man A_0 mit dem Mittelpunkte des Kreises verbindet und in dem zweiten Schnittpunkte X_0 von Kreis und Verbindungslinie auf E_0 das Loth errichtet. Alle diese Kegel haben die Ebene, welche durch dies Loth und die Tangente des Kreises in X_0 bestimmt wird, zur gemeinschaftlichen Tangentialebene, haben also ausser den Punkten dieses Lothes und des Grundkreises keine gemeinsamen Punkte.

Ein beliebiger Kreis, dessen Ebene zu E_0 parallel ist, liegt auf zwei Complexkegeln. Trifft nämlich das Loth vom Mittelpunkte dieses Kreises nach $A_1 A_2$ den Umfang in X_1 und X_2 , so erhält man den einen Scheitel als den Schnittpunkt des Lothes von X_1 auf E_0 mit der Geraden $X_2 A_0$, den andern als den Schnittpunkt des Lothes von X_2 auf E_0 mit $X_1 A_0$.

Zwei Complexkegel, deren Scheitel mit A_0 in einer Geraden liegen, sind einander ähnlich; denn die Lothe, die man von den Scheiteln der Kegel auf denselben Strahl des Büschels mit dem Scheitel A_0 und der Ebene E_0 fällen kann, sind einander parallel. Alle Complexkegel, deren Scheitel auf einer durch A_0 gehenden Geraden liegen, gehen demnach durch denselben Kegelschnitt in E_{∞} ; sie berühren sieh ausserdem sämmtlich längs jener Geraden.

Ueber die Kegelschnitte in E_0 lässt sich noch eine Eigenschaft angeben. Da das Loth vom Scheitel des Complexkegels auf E_0 stets auf dem Kegel liegt, so gehen alle Complexkegel durch A_{∞} , und da alle Complexkegel

in E_0 einen Kreisschnitt haben, so erzeugen sie sämmtlich auf der Schnittlinie von E_0 und E_∞ dasselbe Punktsystem, gehen sie sämmtlich noch durch zwei imaginäre Punkte des in E_∞ liegenden Kugelkreises. Also:

Die Kegelschnitte, in denen E_{∞} von den Complexkegeln geschnitten wird, bilden eine zweifache Mannigfaltigkeit; sie gehen sämmtlich durch A_{∞} und die Schnittpunkte von E_0 mit dem imaginären Kugelkreise in E_{∞} .

Die Complexkegel verbinden diese Kegelschnitte mit den in E_0 liegenden und durch A_0 gehenden Kreisen; aber nicht jeder Kegel, der durch ein Paar dieser krummen Linien geht, ist ein Complexkegel, wie eine leichte Betrachtung zeigt.

IV. Nunmehr fragen wir nach den Geraden, die in einer Ebene E liegen und von A_1 und A_2 gleich weit entfernt sind.

In einer Ebene E, welche durch A_1A_2 geht, haben die verlangte Eigenschaft zwei Büschel: 1. die Geraden, welche durch A_0 gehen, 2. die Geraden, welche durch A_∞ gehen, also zu A_1A_2 parallel sind.

Ebenso enthält eine Ebene E, welche durch A_0 geht, zwei Büschel von Geraden des Complexes: 1. die Geraden durch A_0 in E und 2. das Büschel paralleler Geraden, welche auf der Schnittlinie von E_0 und E senkrecht stehen.

Das Gleiche gilt auch von einer Ebene E, die auf E_0 senkrecht steht. Fällt man nämlich von A_0 auf die Schnittlinie von E_0 und E das Loth A_0X_0 , so hat jede Gerade in E durch X_0 die verlangte Eigenschaft, da sie auf A_0X_0 senkrecht, ausserdem noch alle Geraden in E, welche zu A_1A_2 parallel sind (E ist zu A_1A_2 parallel).

Eine Ebene, welche zu E_0 parallel ist, enthält ausser ihrer unendlich fernen Geraden keine Gerade von der verlangten Eigenschaft.

Die Geraden des Complexes, die in einer beliebigen Ebene E des Raumes liegen, umhüllen eine Parabel.

Ist nämlich l der Schnitt von E_0 und E, so erhält man die gesuchten Geraden der Ebene E, wenn man A_0 mit den Punkten von l verbindet und in diesen Punkten auf den Verbindungslinien senkrechte Ebenen errichtet; diese senkrechten Ebenen schneiden E in den gesuchten Geraden. Aus bekannten elementaren Eigenschaften der Parabel folgt zunächst, dass diese Ebenen einen parabolischen Cylinder umhüllen, welcher A_1A_2 zur Brennlinie und die Ebene, welche längs l auf E_0 senkrecht steht, zur Scheiteltangentialebene hat. Dieser parabolische Cylinder wird auch von E in einer Parabel geschnitten.

Es lässt sich dies auch direct nachweisen. Dabei ergiebt sich, dass für diese Parabel l die Scheiteltangente und der Fusspunkt des Lothes von A_0 auf E der Brennpunkt ist.

Bezeichnet nämlich X einen beliebigen Punkt von l, s die Schnittlinie von E mit der Ebene, welche in X auf A_0X senkrecht steht, und F den Fusspunkt des Lothes von A_0 auf E, so ist s senkrecht auf A_0X und A_0F , also auch auf der Ebene A_0FX , mithin auch auf FX, woraus sich nach den bekannten Eigenschaften der Parabel das Weitere ergiebt.

Jeder Punkt des Raumes ist, wie aus der Construction von F hervorgeht, der Brennpunkt einer Complexcurve.

V. Der behandelte Complex ist in der Ueberschrift ein Reye'scher genannt worden. Dass er ein solcher ist, zeigt die folgende Betrachtung.

Bekanntlich erhält man einen Reye'schen Complex als die Gesammtheit der Geraden, welche die entsprechenden Geraden zweier projectiven, beliebig im Raume liegenden Strahlenbüschel treffen. Die Scheitel der beiden Büschel sind zwei ausgezeichnete Punkte, die Ebenen der Büschel zwei ausgezeichnete Ebenen des Complexes. Die beiden Büschel bestimmen auf der Schnittlinie ihrer Ebenen zwei projective Punktreihen. Die zusammenfallenden Elemente dieser Punktreihen bilden zwei weitere ausgezeichnete Punkte, die Verbindungsebenen der sich treffenden entsprechenden Strahlen zwei weitere ausgezeichnete Ebenen.

Auch der Complex der Geraden, die von A_1 und A_2 gleich weit entfernt sind, ist das Erzeugniss zweier solchen Büschel. Das eine Büschel hat A_0 zum Scheitel und E_0 zur Ebene, das andere hat A_∞ zum Scheitel und E_∞ zur Ebene; entsprechende sind die Strahlen der Büschel, die zueinander senkrecht, also für den imaginären Kugelkreis im Unendlichen zueinander conjugirt sind. A_0 und A_∞ sind zwei ausgezeichnete Punkte, E_0 und E_∞ zwei ausgezeichnete Ebenen des Complexes; die übrigen ausgezeichneten Elemente (die Schnittpunkte von E_0 mit dem imaginären Kreise in E_∞ und die Verbindungslinien dieser Punkte mit A_1A_2) sind imaginäre.

VI. Man kann nun weiter die Frage stellen nach der Gesammtheit der Geraden, welche von drei gegebenen Punkten gleich weit entfernt sind.

Die drei gegebenen Punkte seien A_1 , A_2 , A_3 , die Mitten von A_1A_2 , A_1A_3 , A_2A_3 seien M_3 , M_2 , M_1 , die mittelsenkrechten Ebenen entsprechend E_3 , E_2 , E_1 .

Eine Gerade l, welche von A_1 , A_2 und A_3 gleich weit entfernt sein soll, muss die drei Ebenen E_3 , E_2 , E_1 in drei Punkten P_3 , P_2 , P_1 so schneiden, dass sie auf P_3M_3 , P_2M_2 , P_1M_1 senkrecht steht. Zieht man umgekehrt in E_3 und E_2 durch E_3 und E_3 und E_3 und E_4 und E_5 durch E_5 und E_7 und E_8 und E_8 und E_8 die von E_8 und E_8 gleich weit entfernt ist; da sie auf der Geraden durch E_8 in E_8 senkrecht steht, ist sie von E_8 und E_8 senkrecht steht, ist sie von E_8 und E_8 gleich weit entfernt, und da sie auf der Geraden durch E_8 in E_8 senkrecht steht, ist sie von E_8 und E_8 gleich weit entfernt. Man erhält die sämmtlichen Geraden,

die von A_1 , A_2 , A_3 gleich weit entfernt sind, wenn man in E_3 alle Strahlen durch M_3 und in E_2 alle Strahlen durch M_2 zieht und zu je einem Paare dieser Strahlen in E_3 und in E_2 die Gerade construirt, die beide senkrecht trifft.

Die Zahl von Geraden der verlangten Eigenschaft, die durch einen Punkt P gehen, ist höchstens vier; denn die Geraden durch P, die von A_1 und A_2 gleich weit entfernt sind, bilden einen Kegel zweiten Grades; ebenso die Geraden, die von A_1 und A_3 gleich weit entfernt sind, und zwei Kegel zweiten Grades mit gemeinsamem Scheitel schneiden sich in höchstens vier Geraden.

Die Zahl der Geraden, die in einer Ebene E liegen, ist höchstens drei. Die Geraden in E, die von A_1 und A_2 gleich weit entfernt sind, umhüllen eine Parabel, ebenso die Geraden, die von A_1 und A_3 gleich weit entfernt sind, und zwei Parabeln haben ausser der unendlich fernen Geraden höchstens drei gemeinsame Tangenten. Also:

Die Geraden, welche von drei gegebenen Punkten A_1 , A_2 und A_3 gleich weit entfernt sind, bilden eine Congruenz vierter Ordnung und dritter Classe.

Durch die Mitte einer Seite des Dreiecks $A_1 A_2 A_3$ geben nicht vier Strahlen der Congruenz, sondern ein ganzer Kegel, z. B. durch M_3 der Kegel der Geraden, die von A_1 und A_3 gleich weit entfernt sind; von A_1 und A_2 haben sie von selbst gleiche Entfernung. Diese drei Kegel schneiden sich in den drei Kreisen, welche die Höhen des Dreiecks $M_1 M_2 M_3$ zu Durchmessern haben, während ihre Ebenen auf der Ebene $A_1 A_2 A_3$ senkrecht stehen.

Durch einen beliebigen Punkt im Unendlichen geht nur eine Gerade von der verlangten Eigenschaft. Nach II bilden nämlich die Geraden, die einer gegebenen Geraden parallel sind und von A_1 und A_2 gleich weit entfernt sind, ein paralleles Strahlenbüschel, ebenso die Strahlen, die von A_1 und A_3 gleich weit entfernt sind; die beiden Büschel haben nur einen gemeinsamen Strahl.

Eine Ausnahme bilden wieder die unendlich fernen Punkte der Geraden M_1M_2 , M_1M_3 , M_2M_3 ; durch jeden dieser Punkte geht ein ganzes Büschel paralleler Geraden. Die Ebenen dieser Büschel stehen auf der Ebene $A_1A_2A_3$ längs der Geraden M_1M_2 , M_1M_3 und M_2M_3 senkrecht. Ausserdem ist eine jede dieser Ebenen eine gemeinsame Tangentialebene zweier der drei zur Congruenz gehörigen Kegel zweiten Grades; die Berührungskante ist die Gerade, längs welcher die Ebene auf $A_1A_2A_3$ senkrecht steht.

Während in einer beliebigen Ebene nur drei Strahlen der Congruenz liegen, um hüllen die Geraden, die in einer der Ebenen E_1 , E_2 , E_3 liegen, je eine Parabel; z. B. sind die Geraden der Ebene E_1 an und für sich von A_2 und A_3 gleich weit entfernt; die Geraden von E_1 , die auch von A_1 und A_2 gleiche Entfernung haben, umhüllen nach IV eine Parabel. Diese drei Parabeln haben in dem Schnittpunkte der Höhen des Dreiecks

 $M_1 M_2 M_3$ den Scheitel gemeinsam; das Loth in diesem Punkte auf der Ebene $A_1 A_2 A_3$ ist die gemeinsame Scheiteltangente, die Fusspunkte der Höhen des Dreiecks $M_1 M_2 M_3$ sind die Brennpunkte der drei Parabeln.

Durch den Schnittpunkt der Höhen des Dreiecks $M_1 M_2 M_3$, also den Mittelpunkt des Umkreises von $A_1 A_2 A_3$, geht nur eine Gerade der verlangten Eigenschaft, nämlich das Loth in diesem Punkte auf $A_1 A_2 A_3$. Auch eine Ebene, welche durch dies Loth hindurchgeht, enthält keine weitere Gerade; die drei zu einer derartigen Ebene gehörigen Complexparabeln berühren sich in jenem Punkte und im Unendlichen.

Die Geraden, welche von vier Punkten des Raumes A_1 , A_2 , A_3 , A_4 gleich weit entfernt sind, bilden eine geradlinige Fläche. Durch die Mitte jeder Kante des Tetraeders $A_1A_2A_3A_4$ gehen vier Geraden der Fläche. Ferner schneiden sich von den zwölf Ebenen, welche auf den Tetraederflächen längs der Verbindungslinien der Kantenmitten senkrecht stehen, immer die zwei Ebenen, die einer Kante parallel sind, in einer Geraden der Fläche.

Maciejewo, im Juli 1891.

XXIV.

Ueber die involutorischen Gebilde, welche eine ebene Cremona-Transformation, speciell die quadratische enthalten kann.

Von
Dr. KARL DOEHLEMANN
in München.

Hierzu Taf. XII.

Erster Abschnitt.

Allgemeine Sätze über involutorische Gebilde einer Transformation.

§ 1. Die aus einer Transformation "abgeleitete" Transformation.

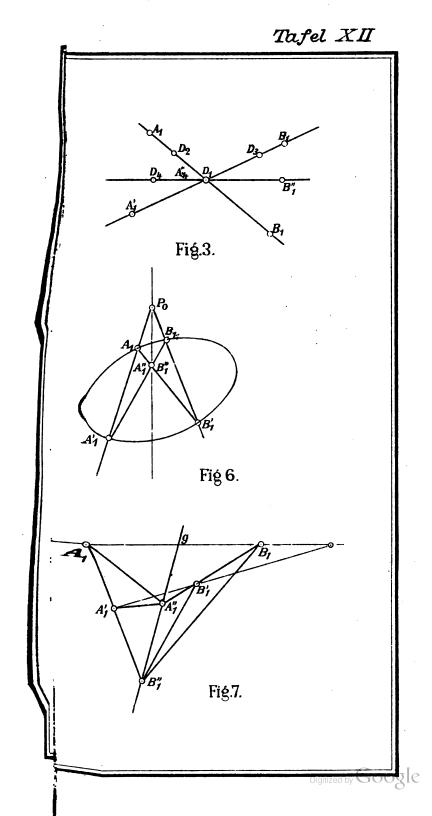
1. Hat man eine Ebene, die durch eine Cremona-Transformation n^{ter} Ordnung auf sich selbst bezogen ist, und bezeichnen wir sie insofern als E_x und als E_y , so kann man irgend einen Punkt dieser Ebene als in der E_x oder E_y befindlich auffassen und demnach mit Q_x oder R_y bezeichnen. Je nachdem entspricht ihm dann ein Punkt Q_y bezw. R_x . Diese neuen Punktepaare liefern eine neue Beziehung der Ebene auf sich selbst, die wir als die nabgeleitete" Transformation bezeichnen wollen.

War die ursprüngliche Beziehung nicht involutorisch, so wird es auch die abgeleitete nicht sein. Wäre die gegebene Beziehung involutorisch gewesen, so würde die abgeleitete eine Identität.

Wir wollen den allgemeinen Fall nehmen in der Lage der Fundamentalpunkte beider Ebenen, der darin besteht, dass von den Fundamentalpunkten der E_x (deren Ordnungen bezw. $r_1 \ge r_2 \dots \ge r_h$) keiner mit einem Fundamentalpunkte der E_y zusammenfällt. Die Fundamentalpunkte der E_y mögen die Ordnungen $s_1 \ge s_2 \dots \ge s_h$ besitzen.

Verfolgt man dann, welche Curve einer Geraden in der abgeleiteten Transformation entspricht, so ergiebt sich:

"Die abgeleitete Transformation ist, wenn s der Grad der gegebenen Transformation und die Lage der beiden Ebenen eine allgemeine ist, von dem Grade n^2 ." Ferner:



"Enthält die gegebene Transformation ein Punktepaar, das sich involutorisch entspricht, so stellt dies für die abgeleitete Transformation zwei Coincidenzpunkte vor."

- 2. Um die Fundamentalpunkte der abgeleiteten Transformation zu bestimmen, bemerken wir: ein Fundamentalpunkt der neuen Transformation ergiebt sich doch in folgenden zwei Fällen:
- a) Ist A_{r_i} ein Fundamentalpunkt der E_x von der Ordnung r_i , so entspricht ihm eine Fundamentalcurve von der Ordnung r_i und dieser entspricht, wenn sie als in der E_x befindlich angenommen wird, in der E_y eine Curve von der Ordnung (nr_i) . Also ist A_{r_i} ein Fundamentalpunkt von der Ordnung (nr_i) für die abgeleitete Transformation. Dabei könnte allerdings diese Fundamentalcurve zerfallen, wenn nämlich die Fundamentalcurven der einen Ebene durch Fundamentalpunkte der andern Ebene hindurchgingen.
- b) Nimmt man einen Fundamentalpunkt A_{r_i} der E_x als einen Punkt der E_y , so entspricht ihm ein bestimmter Punkt der E_x . Diesef Punkt ist offenbar ein r_i -facher Fundamentalpunkt der abgeleiteten Transformation.

Man erkennt also:

"Die abgeleitete Transformation hat bei allgemeiner Lage der beiden Ebenen in jeder Ebene Fundamentalpunkte von den Ordnungen:

$$r_1, r_2, \ldots, r_h,$$
 $s_1, s_2, \ldots, s_h,$ $nr_1, nr_2, \ldots, nr_h,$ $ns_1, ns_2, \ldots, ns_h,$

und zwar sind die letzteren die Fundamentalpunkte der gegebenen Transformation, die ersteren sind die Punkte, welche den Fundamentalpunkten entsprechen, wenn man sie als Punkte der andern Ebene betrachtet."

Da man die abgeleitete Transformation immer bilden kann, so folgt auch:

"Hat man eine Cremona-Transformation n^{ten} Grades mit Fundamentalpunkten von der Ordnung r_1, r_2, \ldots, r_h , bezw. s_1, s_2, \ldots, s_h , so sind

$$r_1, r_2, \ldots, r_h, nr_1, nr_2, \ldots, nr_h$$
 und $s_1, s_2, \ldots, s_h, ns_1, ns_2, \ldots, ns_h$

die Ordnungen der Fundamentalpunkte für eine neue Transformation vom Grade n^{2, u}

Die Cremona-Transformation vierter Ordnung mit drei Doppelpunkten und drei einfachen Punkten kann als ein Beispiel einer aus der quadratischen Transformation "abgeleiteten" Transformation dienen.

Dass die genannten, neuen Systeme von Fundamentalpunkten den nothwendigen Gleichungen genügen, ergiebt sich unmittelbar; dass sie aber auch geometrisch existirende Systeme vermitteln, zeigt erst die obige Betrachtung.

Würden die gegebenen Systeme von Fundamentalpunkten so liegen, dass ein Fundamentalpunkt von der Ordnung r_i zusammenfiele mit einem von der Ordnung s_k , so wäre die abgeleitete Transformation von der Ordnung $n^2 - r_i s_k$.

§ 2. Involutorische Punktepaare. Involutorische Curve.

1. Wir haben schon gesehen, dass jedes involutorisch sich entsprechende Punktepaar der gegebenen Transformation zwei Coincidenzpunkte der abgeleiteten liefert.

Nun hat die abgeleitete Transformation im Allgemeinen n^2+2 , die gegebene Transformation im Allgemeinen n+2 Coincidenzpunkte. Die Coincidenzpunkte der gegebenen Transformation sind natürlich auch solche Punkte für die abgeleitete. Dann ergiebt sich aber, dass die gegebene Transformation

$$n^2 + 2 - (n+2) = n^2 - n = n(n-1)$$

sich involutorisch entsprechende Punkte hat. Also:

"Eine allgemeine Transformation vom Grade n enthält $\frac{n(n-1)}{2}$ involutorische Punktepaare."

Sind P_1 und P_2 zwei solche einander involutorisch entsprechende Punkte und ist keiner der beiden ein Fundamentalpunkt, so entspricht einer Curve durch P_1 , wenn man sie als in der einen oder andern Ebene gelegen betrachtet, je eine Curve in der andern Ebene, die aber immer durch P_2 geht. Ordnen wir die Tangenten an entsprechende Curven einander zu, so ergiebt sich:

"Hat man ein involutorisches Punktepaar $P_1 P_2$, so giebt es im Allgemeinen durch jeden Punkt zwei und nur zwei Richtungen, so dass diese Richtungen einander involutorisch entsprechen."

Ein solches Punktepaar soll ein involutorisches Punktepaar der ersten Art heissen. Es kann aber auch sein, dass ein involutorisches Punktepaar die Eigenschaft hat, dass jeder Bichtung durch den einen Punkt involutorisch eine Richtung durch den andern Punkt entspricht; ein solches Punktepaar soll dann ein involutorisches Punktepaar von der zweiten Art heissen.

2. Die $\frac{n(n-1)}{2}$ Paare involutorischer Punkte einer Transformation wurden zuerst von S. Kantor* auf folgende Weise bestimmt: Nimmt man irgend einen Punkt und den Strahlenbüschel durch ihn, so werden dem Punkte, wenn man ihn als P_x und zugleich als R_y nimmt, zwei Punkte P_y und R_x entsprechen. Jeder Geraden des Büschels werden ebenso zwei Curven n^{ter} Ordnung zugewiesen sein. Wenn die Gerade den Strahlbüschel beschreibt, so durchlaufen diese Curven, von denen die eine immer durch R_x , die andere immer durch P_y geht, projective Büschel. Diese erzeugen

^{*} Kantor, Annali di Matematica, X, 2.

in ihren Schnittpunkten eine Curve $(2n)^{\text{ter}}$ Ordnung, welche durch sämmtliche Fundamentalpunkte der beiden Ebenen hindurchgeht, und zwar durch jeden so oft, als seine Ordnung angiebt; ausserdem geht die Curve noch durch R_x und P_y .

Nimmt man nun noch einen beliebigen andern Punkt $V_x \equiv W_y$, so erhält man durch Vermittelung des zu ihm gehörigen Strahlenbüschels eine zweite Curve $(2n)^{\text{ter}}$ Ordnung. Diese beiden Curven schneiden sich

- a) in den Fundamentalpunkten der beiden Ebenen,
- b) in den n+2 Coincidenzpunkten.

Also schneiden sie sich ausserdem noch in $4n^2-2\sum_i r_i^2-n-2=2n^2-n$ Punkten. Dem Verbindungsstrahl der beiden Büschelmittelpunkte entspricht ein Curvenpaar, das sich in beiden Büscheln findet, und die n^2 Schnittpunkte dieser beiden Curven gehören den beiden Curven $(2n)^{\text{ter}}$ Ordnung an. Diesen n^2 Punkten entsprechen die n^2 Punktepaare der abgeleiteten Transformation, die auf der Verbindungslinie der Büschelmittelpunkte gelegen sind. Die übrigen Schnittpunkte der beiden Curven $(2n)^{\text{ter}}$ Ordnung, deren Anzahl demnach $2n^2-n-n^2=n(n-1)$ ist, müssen die Eigenschaft haben, dass das zu ihnen gehörige Punktepaar der abgeleiteten Transformation sowohl auf einer Geraden durch den ersten, als auch auf einer Geraden durch den zweiten Büschelmittelpunkt gelegen ist. Dies ist aber nur dann möglich, wenn dieses Punktepaar sich vereinigt. Also sind die n(n-1) Schnittpunkte der beiden Curven $(2n)^{\text{ter}}$ Ordnung die involutorischen Punktepaare der Transformation.

3. Wir wollen uns nun die Frage vorlegen, ob eine Transformation nicht nur einzelne involutorische Punktepaare, sondern auch eine ganze Curve enthalten kann, die involutorisch auf sich selbst bezogen ist, oder auch zwei Curven, die einander involutorisch entsprechen, während trotzdem die Transformation im Ganzen noch nicht involutorisch ist. Diese Transformationen, die ich nirgends erwähnt fand, stehen dann so zu sagen in der Mitte zwischen den Transformationen mit einzelnen involutorischen Punktepaaren und denen, die ganz involutorisch sind. Diese Transformationen mit involutorischen Curven sind dann auch die Verallgemeinerung der Transformationen mit festen Curven, d. h. mit Curven, die sich Punkt für Punkt selbst entsprechen. Die Relationen, die ich anderweitig* für diese letzteren Transformationen abgeleitet, gelten auch für die Transformationen mit involutorischen Curven.

Die Möglichkeit solcher Transformationen ist leicht einzusehen. Wir dürfen nur annehmen, dass bei der vorhin besprochenen Construction der involutorischen Punktepaare die beiden Curvenbüschel n^{ter} Ordnung eine Curve (2n)^{ter} Ordnung erzeugen, von der ein Theil fest ist, d. h.

^{*} Doehlemann, Mathematische Annalen, Jahrg. 39, 1891. Ich citire diese Arbeit mit "D.". Dort finden sich auch weitere Literaturangaben.

der nämliche bleibt, wie sich auch die beiden erzeugenden Curvenbüschel ändern. Diese feste Curve kann dann auch aus zwei Theilen bestehen, immer aber ist diese Curve dann involutorisch auf sich selbst bezogen. Damit ist zunächst allerdings blos die Möglichkeit von Transformationen mit einer einfach unendlichen Reihe von involutorischen Elementen dargethan, die wirkliche Existenz ist noch zu zeigen. Wir stellen uns aber im Anschluss an die obigen Betrachtungen zunächst die Frage:

"Wenn eine Transformation vom Grade "nicht im Ganzen involutorisch ist, wie hoch kann die Ordnung einer Curve steigen, die sich in dieser Transformation involutorisch entspricht?"

Die Antwort ergiebt sich aus der obigen Erzeugung. Da die Büschel von Curven n^{ter} Ordnung höchstens eine Curve $(2n)^{\text{ter}}$ Ordnung erzeugen können, so kann der Grad der involutorischen Curve diese Grenze jedenfalls nicht überschreiten. Auf der erzeugten Curve müssen aber auch die Punkte P_y und R_x gelegen sein, von denen einer noch ganz willkürlich gewählt werden kann; also kann die involutorische Curve höchstens von der Ordnung 2n-1 sein, so dass wir sagen können:

"Eine Transformation vom Grade n kann höchstens eine Curve von der Ordnung 2n-1 als involutorisches Gebilde enthalten."

Wir können aber weiter die Transformationen dieser Art, die also involutorische Gebilde von möglichst hoher Ordnung enthalten, noch näher specificiren. Soll eine involutorische Curve von der Ordnung 2n-1 vorhanden sein, so muss die Curve $(2n)^{\text{ter}}$ Ordnung, die sich als Erzeugniss der beiden Büschel n^{ter} Ordnung ergiebt, immer bestehen aus dieser festen Curve $(2n-1)^{\text{ter}}$ Ordnung und noch aus einer Geraden. Diese Gerade muss dann aber die Verbindungslinie $\overline{P_y}\overline{R_x}$ sein, da die erzeugte Curve auch durch diese zwei Punkte gehen muss. Zu einem andern Punkte (V_xW_y) gehört dann eine Verbindungslinie $\overline{V_y}\overline{W_x}$. Diese beiden Linien schneiden sich in einem Punkte S. Es sind nun zwei Fälle möglich:

a) Der Punkt S ist kein ausgezeichneter oder fester. Dann kann jeder Punkt der Ebene als ein solcher Punkt genommen werden. Dem Punkte S entspricht dann, wenn er als ein Punkt der einen und andern Ebene genommen wird, ein Punktepaar der abgeleiteten Transformation, das auf der Verbindungslinie $\overline{(P_xR_y)(V_xW_y)}$ gelegen, und es kann kein weiteres solches Punktepaar geben, weil sonst die beiden Geraden sich noch in mehr als einem Punkte schneiden würden. Nun sei N der Grad der abgeleiteten Transformation. Jedes involutorische Gebilde der gegebenen Transformation ist natürlich ein "festes" Gebilde für die abgeleitete. In unserem Falle kann die gegebene Transformation kein festes Gebilde mehr enthalten, da dies ja auch zu dem Erzeugniss der beiden Curvenbüschel n^{ter} Ordnung gehört. Die gegebene Transformation kann auch kein weiteres involutorisches Curvensystem enthalten, also enthält die abgeleitete Transformation blos die Curve von der Ordnung 2n-1 als "festes" Ge-

bilde. Da nun aber auf einer beliebigen Geraden nach dem Obigen blos ein einziges Punktepaar dieser Transformation liegen kann, so ist sie demnach von der Classe I, also höchstens von der vierten Ordnung. (Vergl. D., § 5.)

Es ist also
$$N \leq 4$$
und demnach $2n-1=3$ oder $2n-1=2$ oder $2n-1=1$, also

Sieht man also von der Collineation und den unter b) zu besprechenden Transformationen ab, so ergiebt sich, da später noch die Existenz dieser Transformation nachgewiesen werden soll:

n=2 oder n=1.

"Die quadratische Transformation ist die einzige, welche eine involutorische Curve von höchstmöglicher Ordnung enthalten kann. Sie ist auch die einzige Transformation dieser Art, bei der die beiden Ebenen in allgemeiner Lage, d. h. in solcher Lage, dass sich keine Fundamentalpunkte decken."

b) Es ist aber auch der Fall möglich, dass der Schnittpunkt S der zwei Geraden, die sich als Ergänzung der Curve von der Ordnung 2n-1 ergeben, ein fester Punkt ist. Die abgeleitete Transformation zeigt dann die Eigenschaft, dass die Verbindungslinien je zwei entsprechender Punkte immer durch einen Punkt (8) laufen, sie muss also eine Jonquières-Transformation sein und zwar eine "perspective". Da die feste Curve dieser Transformation vom Grade 2n-1, so ist dies auch der Grad der abgeleiteten Trans-Die feste Curve muss also einen 2n-1-2=(2n-3)-fachen Punkt in S haben. Da nun die bewegliche Restgerade auch immer noch durch S geht, so hat die Gesammteurve einen (2n-2)-fachen Punkt in S. Dies ist aber nur dadurch möglich, dass in S zwei (n-1)-fache Fundamentalpunkte der erzeugenden Büschel sich decken, d. h. die ursprüngliche Transformation ist eine Jonquières-Transformation mit in S zusammenfallenden (n-1)-fachen Punkten. Die projectiven Büschel S müssen natürlich dann involutorisch gelegen sein, da sonst nicht die abgeleitete Transformation perspectiv sein könnte.

Da die Lage der beiden Ebenen gegen einander nicht mehr eine allgemeine, so lassen wir die Frage, ob diese Transformationen allgemein existiren, zunächst offen; ein Beispiel für dieselben wird sich bei der quadratischen Transformation ergeben.

4. Sind P, und P, zwei nicht mit Fundamentalpunkten zusammenfallende, einander involutorisch entsprechende Punkte der involutorischen Curro, so sind die Tangenten in P, und P, involutorisch entsprechende Richtungen. Dann giebt es durch P_1 und P_2 noch je eine Richtung, so dass auch diese beiden Richtungen einander involutorisch entsprechen. Diese letzteren Richtungen werden eine Umhüllungscurve bilden. Geht man zur abgeleiteten

Transformation über, so wird die involutorische Curve für diese eine "feste" und die eben erwähnte Umhüllungscurve wird die Umhüllungscurve H (siebe D. § 4) für die abgeleitete Transformation, woraus sich ihre Classe bestimmen lässt.

Wir wenden uns jetzt zur Betrachtung der involutorischen Gebilde einer quadratischen Transformation, die also insofern besondere Beachtung verdient, als sie die einzige ist, die bei allgemeiner Lage der beiden Ebenen eine involutorische Curve von möglichst hoher Ordnung enthalten kann.

Zweiter Abschnitt.

Die involutorischen Gebilde der quadratischen Transformationen.

§ 3. Veber Involutionen auf einer Curve dritter Ordnung.

Wir wenden uns jetzt zur Betrachtung der involutorischen Gebilde die in einer quadratischen Transformation vorkommen können. Die Transformation ist ja insofern ausgezeichnet, als sie die einzige ist, die bei allgemeiner Lage der beiden Ebenen eine involutorische Curve von möglichst hoher Ordnung enthalten kann.

1. Betrachten wir eine allgemeine Curve dritter Ordnung C^3 , so ist bekannt,* dass dieselbe zwei Arten von eindeutigen Transformationen in sich selbst zulässt. Von diesen entsteht die eine dadurch, dass man durch einen Punkt der C^3 Strahlen zieht; jeder Strahl schneidet zwei entsprechende Punkte aus. Diese Beziehung ist also gleichzeitig involutorisch, sie liefert die "centrale Punktinvolution".

Die zweite, eindeutige Beziehung auf der allgemeinen C^3 ist im Allgemeinen nicht involutorisch, kann es jedoch in drei speciellen Fällen werden.** Diese drei, nicht centralen Punktinvolutionen sind die drei Systeme von "correspondirenden" Punkten, die es auf der C^3 giebt, wobei unter correspondirenden Punkten solche verstanden werden, deren Tangenten sich auf der C^3 schneiden.

Die letztgenannte, nicht centrale eindeutige Beziehung besitzt keine Coincidenzpunkte, die centrale Involution im Allgemeinen vier in den Berührungspunkten der vom Centrum der Involution aus an die C^3 gehenden Tangenten.

2. Betrachten wir jetzt eine rationale C^3 , so sind auf ihr ebenfalls zweierlei Involutionen zu unterscheiden. Wie nämlich auch die Involution auf der C^3 beschaffen sein mag, jedenfalls müssen ihre Punktepaare vom Doppelpunkt aus durch involutorische Strahlbüschel projicirt werden und

^{*} Salmon, Geometrie der höheren ebenen Curven. — Harnack, Mathematische Annalen, Bd. IX.

^{**} Weyr, Sitzungsberichte der Wiener Akademie, Bd. 87, 1888.

wir erhalten die möglichen Fälle, wenn wir untersuchen, welche Lage involutorische Strahlbüschel aus dem Doppelpunkte zu der C^3 einnehmen können. Dabei sind folgende Fälle möglich:

- a) Die Doppelpunktstangenten entsprechen einander in der involutorischen Beziehung der Strahlbüschel nicht. Dann entspricht also dem Doppelpunkt ein anderer Punkt, je nachdem man sich ihm auf dem einen oder andern Aste der Curve nähert. Die Schnittpunkte der beiden Doppelstrahlen der involutorischen Büschel mit der C^3 sind die einzigen Coincidenzpunkte dieser Involution auf der C^3 .
- b) Die Doppelpunktstangenten sind einander entsprechende Strahlen der Strahleninvolution. Dann fällt in den Doppelpunkt eine weitere (dritte) Coincidenz. Sind aber dann X und X_1 die Schnittpunkte von irgend zwei entsprechenden Strahlen der involutorischen Büschel mit der C^3 und ist J der letzte Schnittpunkt der Geraden $\overline{XX_1}$ mit der C^3 , so kann man mit J als Centrum eine centrale Involution auf der C^3 herstellen, deren Punktepaare vom Doppelpunkt aus projicirt wieder eine Strahleninvolution liefern. Diese muss aber mit der ursprünglichen identisch sein, da sie zwei Strahlenpaare mit ihr gemein hat, nämlich das Strahlenpaar durch X, X_1 und das Paar der Doppelpunktstangenten. Also müssen die Verbindungslinien aller entsprechenden Punkte der Involution auf C^3 durch J laufen, d. h. die Involution ist eine centrale, während die unter a) genannte keine centrale war. Wir können auch sagen:

"Wenn eine Involution auf der rationalen C^3 im Doppelpunkt eine Coincidenz besitzt, so ist sie eine centrale. Dabei muss die Coincidenz im Doppelpunkt aber die Eigenschaft haben, dass der Doppelpunkt sich selbst entspricht, mag man sich ihm auf dem einen oder andern Curvenaste nähern."

3. Ueber die centrale und nicht centrale eindeutige Beziehung auf der allgemeinen C^3 gelten nun folgende Sätze (Weyr, l.c.):

Beliebig viele nicht centrale Beziehungen können in ihrer Aufeinanderfolge durch eine nicht centrale Beziehung ersetzt werden.

Beliebig viele aufeinanderfolgende centrale Beziehungen können durch eine centrale oder nicht centrale ersetzt werden, je nachdem ihre Anzahl ungerade oder gerade.

Beliebig viele Beziehungen (beiderlei Art) können durch eine centrale oder nicht centrale Beziehung ersetzt werden, je nachdem die Anzahl der im Ganzen auftretenden centralen Beziehungen eine ungerade oder gerade.

Daraus ergiebt sich dann leicht folgender Satz:

"Hat man auf einer allgemeinen C^3 eine centrale Punktinvolution oder auch eine der drei (festen) nicht centralen Involutionen, und wählt man auf der C^3 einen Punkt A_1 ganz beliebig, so schneidet jeder Strahl durch A_1 die C^3 noch in zwei Punkten. Nimmt

man die diesen Punkten in der Involution entsprechenden Punkte, so geht die Verbindungslinie derselben stets durch einen bestimmten Punkt B_1 der C^3 ."

Dieser Satz, dessen Beweis auch leicht direct gelingt, gilt auch für die rationale C^3 , sofern die auf ihr gegebene Involution eine centrale. Denn die Punktepaare, die den Punktepaaren auf Strahlen durch A_1 entsprechen, bilden offenbar wieder eine Involution, die im Doppelpunkte eine Coincidenz der beschriebenen Art hat, also eine centrale sein muss.

Hätte man dagegen auf der rationalen C^3 eine nicht centrale Involution, so ist der Doppelpunkt nicht nothwendig eine Coincidenz der neuen Involution. Es giebt vielmehr nur eine Lage des Punktes A_1 , in welcher der Satz wieder gilt. Schneiden nämlich die Strahlen, welche den Doppelpunktstangenten in der Strahleninvolution entsprechen, die C^3 noch in R und S, so liefert \overline{RS} im letzten Schnittpunkte mit der C^3 eine Lage des Punktes, für welche der obige Satz gilt.

4. Jedem Punkte A_1 entspricht nach diesem Satze involutorisch ein und nur ein Punkt B_1 . Es bilden also die Punktepaare A_1B_1 , $A'_1B'_1$, $A''_1B''_1$ u. s. f., die wir als "zugeordnete" Punkte bezeichnen wollen, eine Involution, und da diese nur eine centrale sein kann, so folgt:

Ist die Involution auf der C^3 eine centrale mit dem Centrum M, so kann man durch A_1 auch den Strahl $\overline{A_1M}$ ziehen, welcher Strahl noch in einem dritten Punkte die C^3 trifft, der mit (A_1) bezeichnet werden mag. Ist dann M_1 der Schnittpunkt der Tangente in M mit der C^3 , also der sogenannte "Tangentialpunkt" von M, so entspricht M_1 in der Involution dem Punkte M. Da ferner dem Punkte (A_1) der Punkt A_1 entspricht, so folgt:

,, Hat man and der C^3 eine centrale Involution mit dem Centrum M, so gehen die Verbindungslinien zugeordneter Punkte $\overline{A_1B_1}$, $\overline{A_1'B_1'}$ u. s. f. durch den Tangentialpunkt M_1 von M."

§ 4. Die allgemeine quadratische Transformation mit einem sich involutorisch selbst entsprechenden Curvensystem dritter Ordnung.

1. Die Transformation enthält eine Curve dritter Ordnung.

Wir nehmen an, wir hätten eine allgemeine oder rationale C^3 und auf ihr eine centrale Involution mit M als Centrum. Wir wollen untersuchen, ob eine quadratische Transformation, ohne ganz involutorisch zu sein, diese C^3 als involutorisches Gebilde enthalten kann.

Wir werden in einfacher Weise eine solche Beziehung direct herstellen. Wählen wir zwei Punkte A_1 und A'_1 auf der C^3 beliebig, so sind dann zwei zugeordnete Punkte B_1 und B'_1 bestimmt. Die Strahlbüschel A_1 und B_1 , sowie A'_1 und B'_1 sind nun projectiv und zwar schneiden entsprechende Strahlen entsprechende Punkte der Involution auf C^3 aus. Den Punkt nun,

der einem Punkte Q der C^3 in der Involution entspricht, also den dritten Schnittpunkt von \overline{MQ} mit der C^3 , wollen wir kurz mit (Q) bezeichnen. Die Gerade $\overline{A_1 A'_1}$ möge nun der C^3 noch begegnen in einem Punkte, den wir einstweilen mit (B''_1) bezeichnen wollen, während $\overline{M(B''_1)}$ den Punkt B''_1 ausschneidet. (Fig. 1.)

Nehmen wir jetzt $\overline{A_1A_1}$ als Strahl des Büschels A_1 , so entspricht ihm ein Strahl durch (A_1') und durch B_1'' . Nimmt man den Strahl $\overline{A_1A_1'}$ dagegen als Strahl des Büschels A_1' , so entspricht ihm ein Strahl, der (A_1) , B_1'' und B_1' enthält. Also ist B_1'' der Schnittpunkt der Strahlen $\overline{B_1(A_1')}$ und $\overline{B_1'(A_1)}$ und liegt auch auf der C^3 . Ebenso erhalten wir dann einen Punkt A_1'' der C^3 im Schnittpunkte der Strahlen $\overline{(B_1)A_1'}$ und $\overline{(B_1')A_1}$.

Vermittelst der Büschel A_1 , A'_1 , B_1 , B'_1 können wir jetzt aber jedem Punkte P_x der A-Ebene einen Punkt P_y der B-Ebene zuordnen. Wir ziehen nämlich von P_x nach A_1 und A'_1 die Verbindungsstrahlen, diesen entsprechen bestimmte Strahlen in den Büscheln B_1 und B'_1 und diese schneiden sich in dem entsprechenden Punkte P_y .

Hätte man auf der allgemeinen C^3 statt der centralen eine nicht centrale Involution, so liesse sich die punktweise Beziehung der Ebene dennoch in ganz gleicher Weise durchführen, da ja die Eigenschaft der Büschel A_1 , B_1 und A'_1 , B'_1 auch für diesen Fall erhalten bleibt.

Es ist nun leicht einzusehen, dass unter diesen Voraussetzungen P_y einen Kegelschnitt durch B_1 , B'_1 , B''_1 beschreibt, wenn P_x eine Gerade durchläuft, und dass man überhaupt damit eine quadratische Transformation bestimmt hat, für welche A_1 , A'_1 , A''_1 , bezw. B_1 , B'_1 , B''_1 die Fundamentalpunkte sind.

Die Punkte der C³ entsprechen sich dabei involutorisch.

Natürlich sind auch A'_1 und B''_1 zugeordnete Punkte und die Strahlbüschel aus diesen Punkten ebenfalls projectiv. Da die drei Fundamentalpunkte in jeder Ebene auf der C^3 gelegen sind, so kann die C^3 in der That sich selbst entsprechen. Es folgt also:

"Eine quadratische Transformation kann eine allgemeine C^3 mit centraler oder nicht centraler Involution oder eine rationale C^3 mit centraler Involution als involutorisches Gebilde enthalten. Die Verbindungslinien $\overline{A_1B_1}$, $\overline{A'_1B'_1}$, $\overline{A''_1B''_1}$ zugeordneter Fundamentalpunkte gehen dann durch einen Punkt der C^3 . — Ist die Involution eine centrale und M ihr Centrum, so ist dieser Punkt der Tangentialpunkt M_1 von M; ferner liefern die von M aus an die C^3 gehenden Tangenten in den Berührungspunkten D_1 , D_2 , D_3 , D_4 die vier (reellen oder imaginären) Doppelpunkte der Transformation. Hat die C^3 einen Doppelpunkt, so fallen in ihn zwei dieser Doppelpunkte. Die C^3 ist ferner die isologe Curve des Punktes M.

Ist die Involution auf der allgemeinen C^3 nicht central, so kann die Transformation keine Doppelpunkte enthalten."

Ferner ergiebt sich noch:

"Ein weiteres involutorisches Punktepaar kann die Transformation in keinem Falle mehr enthalten."

Die abgeleitete Transformation ist von der vierten Ordnung und hat die involutorische Curve dritter Ordnung als "feste" Curve. Sie gehört also zu den Transformationen der ersten Classe. Die Fundamentalpunkte der einen Ebene sind natürlich A_1 , A'_1 , A''_1 , (A_1) , (A'_1) , (A''_1) und in der andern Ebene B_1 , B'_1 , B''_1 , (B_1) , (B'_1) , (B''_1) . Bezeichnen wir diese mit r_1 , r_2 , r_3 , r_5 , r_4 , r_6 und s_1 , s_2 , s_3 , s_5 , s_4 , s_6 , wobei r_1 , r_2 , r_3 , s_1 , s_2 , s_3 die Doppelpunkte, während die übrigen Punkte einfache Fundamentalpunkte sind, so entspricht

Aehnlich ist es für die Fundamentalpunkte der andern Ebene. Jede Fundamentalcurve geht einfach durch den Fundamentalpunkt hindurch, dem sie entspricht. Die Transformation hat übrigens die specielle Eigenschaft, dass $\overline{r_1} \, \overline{s_1}$, $\overline{r_2} \, \overline{s_2}$, $\overline{r_3} \, \overline{s_3}$ sich in einem Punkte M_1 der festen Curve schneiden.

Specieller Fall. Wir haben schon gesehen, dass die vier Coincidenzpunkte D_1 , D_2 , D_3 , D_4 der Transformation zweiten Grades ein Viereck bilden, dessen Schnittpunkte der Gegenseiten auch auf der C^3 gelegen sind. Ferner gehen die Tangenten in diesen Schnittpunkten durch M_1 .

Wählen wir nun A_1 wieder beliebig auf der C^3 , A'_1 dagegen in einem der Schnittpunkte der Gegenseiten dieses Vierecks, so fällt B'_1 mit A'_1 zu sammen. Im Uebrigen ergiebt sich die Transformation genau in der gleichen Weise. Die Büschel A'_1 und B'_1 aber sind jetzt concentrisch und natürlich in involutorischer Lage. Da eine quadratische Transformation auch als Jonquières-Transformation aufgefasst werden kann, so ist dies der in § 2b erwähnte Fall. Die abgeleitete Transformation ist in diesem Falle von der dritten Ordnung und zwar eine perspective Jonquières-Transformation mit A'_1 als Mittelpunkt.

Verschiedene Annahmen des Involutionscentrums M auf der C^3 liefern keine wesentlich neuen Fälle. Würde man M in einen Wendepunkt der C^3 verlegen, so erhielte man überhaupt keine quadratische Transformation mehr.

II. Die Transformation enthält eine zerfallene Curve dritter Ordnung.

A. Die zerfallene Curve besteht aus einem Kegelschnitt und einer Geraden.

Nehmen wir (Fig. 2) einen Kegelschnitt K und ausserhalb einen Punkt M. Durch den Strahlbüschel in M wird dann der Kegelschnitt involutorisch auf

sich selbst bezogen, und dies ist überhaupt die einzige Möglichkeit, auf einem Kegelschnitte eine Involution herzustellen. Wir wollen nun wieder sehen, ob es eine quadratische Transformation giebt, die, ohne im Ganzen involutorisch zu sein, diesen involutorischen Kegelschnitt enthält. Wir wählen wieder A_1 , A'_1 , B_1 , B'_1 beliebig auf dem Kegelschnitte; ferner seien (A_1) , (A'_1) , (B_1) , (B'_1) die Punkte, welche in der Involution auf K den Punkten A_1 , A'_1 , B_1 , B'_1 entsprechen. Dann kann der Kegelschnitt K wieder dazu dienen, die Büschel A_1 und B_1 , sowie A'_1 und B'_1 projectiv aufeinander zu beziehen.

Jeder Strahl durch A_1 z. B. schneidet K in einem weiteren Punkte, diesem entspricht in der Involution ein gewisser anderer Punkt von K und durch diesen, sowie durch B_1 geht der entsprechende Strahl. Einem Punkt P_x , dem Schnittpunkte zweier Strahlen aus den Büscheln A_1 und A_1 , entspricht dann der Schnittpunkt P_y der entsprechenden Strahlen in B_1 und B_1 . Man erhält dadurch wieder eine quadratische Transformation und zwar sind die fehlenden Fundamentalpunkte

sowie $A''_1 \text{ der Schnitt von } \overline{A_1(B'_1)} \text{ und } \overline{A'_1(B_1)},$ $B''_1, \dots, \dots, \overline{B_1(A'_1)}, \dots, \overline{B'_1(A_1)}.$

 B''_1 , , , , $\overline{B_1(A_1)}$, $\overline{B_1(A_1)}$.

Diese liegen nicht auf K. — Ist nun aber M_1 der Schnittpunkt der Strahlen $\overline{A_1 B_1}$ und $\overline{A'_1 B'_1}$, so erkennt man leicht, dass dem Punkte M in der Transformation der Punkt M_1 involutorisch entspricht.

Betrachten wir nun die isologen Curven des Punktes M. Diese müssen jedenfalls in den Kegelschnitt K zerfallen und in eine Gerade, die in der einen Ebene durch M, M_1 , A''_1 geht, in der andern Ebene durch M, M_1 , B''_1 , also folgt:

 M, M_1, A''_1, B''_1 liegen auf einer Geraden, die sich involutorisch selbst entspricht."

Es gehen auch hier wieder $\overline{A_1B_1}$, $\overline{A'_1B'_1}$, $\overline{A''_1B''_1}$ durch einen Punkt M_1 . Man bemerkt auch noch: Die Büschel A_1B_1 , sowie $A'_1B'_1$ und $A''_1B''_1$ erzeugen bei jeder quadratischen Transformation je einen Kegelschnitt und diese drei Kegelschnitte schneiden sich in den vier Coincidenzpunkten D_1 , D_2 , D_3 , D_4 . In unserem Falle liegen zwei von diesen vier Coincidenzpunkten auf dem Kegelschnitte K (es sind die reellen oder imaginären Doppelpunkte der Involution), die anderen beiden liegen auf $\overline{MM_1}$ (als die Doppelpunkte dieser Involution).

Die abgeleitete Transformation ist wieder von der vierten Ordnung und enthält den Kegelschnitt K und die Gerade MM_1 als feste Curven.

B. Die zerfallene Curve besteht aus drei Geraden.

Zunächst ist zu untersuchen, ob eine quadratische Transformation zwei Gerade enthalten kann, von denen jede sich selbst involutorisch entspricht. Damit dies möglich, muss jede Gerade zwei einander zugeordnete Fundamentalpunkte enthalten, also etwa die eine A_1 und B_1 , die andere A'_1 , B'_1 . Dann ist aber der Schnittpunkt von $\overline{A_1 B_1}$ und $\overline{A'_1 B'_1}$ nothwendig ein Co-

incidenzpunkt, etwa D_1 (Fig. 3). Auf $\overline{A_1 B_1}$ wird dann noch ein Coincidenzpunkt D_2 , auf $\overline{A_1' B_1'}$ ein Coincidenzpunkt D_3 gelegen sein.

Hat man nun die beiden Geraden $\overline{A_1B_1}$ und $\overline{A_1B_1}$ willkürlich angenommen, deren Schnittpunkt D_1 ist, und sind A_1 , B_1 , A'_1 , B'_1 , D_2 , D_3 beliebig gewählt, so ist dann A''_1 und B''_1 durch folgende Ueberlegung bestimmt: Dem Strahl $\overline{A_1A''_1}$ entspricht im Büschel B_1 der Strahl $\overline{B_1B'_1}$ und diese beiden Strahlen müssen auf $\overline{A'_1B'_1}$ ein Punktepaar der Involution ausschneiden. Also muss $\overline{A_1A''_1}$ durch den vierten harmonischen zu B'_1 bezüglich D_1 , D_3 gehen. Ebenso muss $\overline{A'_1A''_1}$ durch den vierten harmonischen zu B_1 bezüglich D_1 , D_2 gehen. Dadurch erhält man A''_1 und ganz in ähnlicher Weise B''_1 .

Nehmen wir jetzt den Strahl $\overline{A''_1 B''_1}$, so könnte dieser in P und Q die beiden involutorischen Geraden schneiden, welchen Punkten die Punkte P_1 und Q_1 entsprechen würden. Da dann aber dem Strahl $A''_1 PQ$ der Strahl $B''_1 P_1 Q_1$ und dem Strahl $B''_1 PQ$ der Strahl $A''_1 P_1 Q_1$ entsprechen muss, so müssen P_1 und Q_1 mit A''_1 und B''_1 auf einer Geraden liegen, also muss $\overline{A''_1 B''_1}$ eine sich selbst entsprechende Gerade sein.

Betrachtet man nun aber die isologe Curve des Punktes D_1 , so muss diese offenbar zerfallen in die beiden involutorischen Geraden und in die sich selbst entsprechende Gerade $\overline{A''_1B''_1}$. Ginge nun $\overline{A''_1B''_1}$ nicht durch das Centrum D_1 der Isologie, so müsste sie dann nothwendig eine "feste" Gerade sein. Dann wäre die Transformation eine sogenannte Steiner'sche, von der wir im § 6, 2 sehen werden, dass sie keine zwei involutorische Gerade enthalten kann. Also muss $\overline{A''_1B''_1}$ auch durch D_1 hindurchgehen und noch einen Coincidenzpunkt D_4 enthalten.

Wendet man jetzt wieder die Construction an, welche uns die involutorischen Punktepaare einer Transformation liefert (§ 2), so muss im vorliegenden Falle die Curve vierter Ordnung, wie sie sich als Erzeugniss der zwei Kegelschnittbüschel ergiebt, zerfallen in die zwei Geraden $\overline{A_1 B_1}$ und $\overline{A'_1 B'_1}$, der übrig bleibende Theil muss durch $\overline{A''_1}$, $\overline{B''_1}$ und $\overline{D_4}$ gehen; also muss auch $\overline{A''_1 B''_1}$ sich involutorisch entsprechen. Wir haben demnach:

"Enthält eine quadratische Transformation mit nicht zusammenfallenden Fundamentalpunkten zwei in sich selbst involutorische Gerade, so enthält sie immer noch eine dritte involutorische Gerade, die durch den Schnittpunkt der ersten beiden hindurchgeht. Dieser Schnittpunkt ist ein Coincidenzpunkt zweiter Art, in ihm schneiden sich $\overline{A_1B_1}$, $\overline{A'_1B'_1}$, $\overline{A''_1B'_1}$."

Die abgeleitete Transformation ist von der vierten Ordnung und ersten Classe und enthält die drei durch einen Punkt gehenden Geraden als feste Curven. D_1 ist auch für die abgeleitete Transformation ein Coincidenspunkt zweiter Art. Von Interesse ist das symmetrische System der Fundamentalpunkte (Fig. 4).

§ 5. Die allgemeine quadratische Transformation mit einem Gebilde dritter Ordnung, dessen Theile einander involutorisch entsprechen.

Im Folgenden sollen die quadratischen Transformationen erledigt werden, die zwei involutorisch aufeinander bezogene Gebilde enthalten. Da der Gesammtgrad des involutorischen Gebildes 3 nicht tiberschreiten kann, so können dies zwei Gerade oder eine Gerade und ein Kegelschnitt sein. Es sind also folgende Fragen zu untersuchen:

- 1. Kann eine quadratische Transformation zwei Gerade als involutorisch einander entsprechende enthalten, wenn dieselben in allgemeinster Weise projectiv aufeinander bezogen?
- 2. Kann eine quadratische Transformation einen Kegelschnitt und eine Gerade als einander involutorisch entsprechende Curven enthalten, wenn diese in allgemeinster Weise projectiv aufeinander bezogen?
- ad 1. Soll die eine Gerade der andern in der Transformation entsprechen, so müssen nothwendig auf jeder Geraden zwei Fundamentalpunkte, einer der einen und einer der andern Ebene, gelegen sein. Es sei $\overline{A_1B_1}$ die eine, $\overline{A_1B_1}$ die andere Gerade; bei der allgemeinen projectiven Beziehung derselben aufeinander entspricht dem Schnittpunkte derselben ein Punkt S_1 oder R, je nachdem man ihn als S oder R_1 nimmt. Sind nun P und P_1 irgend zwei entsprechende Punkte der Punktreihen (wobei P auf $\overline{A_1B_1}$, P_1 auf $\overline{A_1B_1}$ gelegen), so entspricht dem Strahl $\overline{A_1P}$ der Strahl $\overline{B_1P_1}$. Ebenso müsste dann aber auch dem Strahl $\overline{A_1R_1}$ der Strahl $\overline{B_1R_1}$ entsprechen, was unserer Voraussetzung widerspricht, also muss R mit R_1 zusammenfallen und ebenso S mit S_1 und es folgt:

"Soll eine quadratische Transformation zwei Punktreihen auf zwei verschiedenen Trägern als einander involutorisch entsprechende Gebilde enthalten, so müssen die Punktreihen perspectiv liegen."

Construction der Transformation. Die wirkliche Durchführung der Transformation gestaltet sich nun genau so, wie in § 4, II, A, nur dass an Stelle des Kegelschnittes das Geradenpaar tritt. Ist also (Fig. 5) M das Perspectivitätscentrum, so wählen wir A_1 , A'_1 , B_1 , B'_1 auf den beiden Geraden willkürlich. Dann sind wieder die Büschel A_1 und B_1 , sowie A'_1 und B'_1 projectiv. Die Punkte A''_1 und B''_1 finden sich wie dort und es schneiden sich wieder $\overline{A_1} B_1$ und $\overline{A'_1} B'_1$ in einem Punkte M_1 , der M involutorisch entspricht. Auf $\overline{M} \overline{M}_1$ liegen auch A''_1 und $\overline{B''_1}$. Die drei Verbindungslinien zugeordneter Fundamentalpunkte, $\overline{A_1} B_1$, $\overline{A'_1} B'_1$, $\overline{A''_1} B''_1$, schneiden sich wieder in M_1 . Der Schnittpunkt D_1 der involutorischen Geraden ist ein Coincidenzpunkt und wir können bemerken, dass die Büschel entsprechender Richtungen in ihm involutorisch sind. Ferner entspricht sich auch $\overline{M} \overline{M}_1$ wieder involutorisch, so dass wir wieder ein involutorisches Gebilde dritter Ordnung haben. Halten wir dies zusammen mit den beiden letzten Fällen, so ergiebt sich demnach der Satz:

"Wenn eine quadratische Transformation mit nicht zusammenfallenden Fundamentalpunkten ein involutorisches Gebilde zweiter Ordnung enthält, so enthält sie immer noch eine involutorische Gerade, wodurch der Grad des involutorischen Systems zu dem höchstmöglichen ergänzt wird."

Ein Unterschied zwischen dieser Transformation und der in § 4, II, A besprochenen ist weiter durch die Lage der Coincidenzpunkte gegeben. Die Kegelschnitte nämlich, welche die projectiven Büschel $A_1 B_1$, $A'_1 B'_1$, $A''_1 B''_1$ erzeugen, berühren sich in diesem Falle in D_1 .

In der That, bestimmt man mittels des Pascal'schen Satzes an den Kegelschnitt durch A_1 , B_1 und D_1 , sowie an den Kegelschnitt durch A_1 , B_1' und D_1 die Tangenten in D_1 , so zeigt sich, dass dies immer die Gerade ist, welche zu den beiden involutorischen Geraden bezüglich MD_1 harmonisch liegt. Es sind also in dieser Richtung zwei Coincidenzpunkte zusammengerückt, während die anderen beiden auf $\overline{MM_1}$ liegen.

Die Schnittpunkte K und L der Geraden $\overline{MM_1}$ mit den involutorischen Geraden bilden ein involutorisches Punktepaar der zweiten Art (§ 2, 1).

Bemerken wir, um dies einzusehen, zunächst, dass nicht jedes beliebige Paar entsprechender Punkte der beiden involutorischen Geraden ein solches involutorisches Punktepaar der zweiten Art sein kann. dies der Fall ware, so hatte die abgeleitete Transformation, die von der vierten Ordnung, das doppelt zu zählende involutorische Geradenpaar und die dritte involutorische Gerade als feste Curven aufzuweisen, also ein Gebilde fünfter Ordnung, was nicht möglich. Zieht man nun durch L z. B. irgend eine Gerade LX, so entspricht derselben, mag man sie als in der einen oder andern Ebene befindlich annehmen, je ein Kegelschnitt, der aber immer durch K hindurchgeht und durch den Punkt, der dem Schnittpunkt von LX mit A_1B_1' entspricht. Da ferner auf \overline{LX} blos ein Punktepaar der abgeleiteten Transformation gelegen sein kann, so können sich diese beiden Kegelschnitte blos noch in einem, mit keinem der ausgezeichneten Punkte zusammenfallenden Punkte schneiden. Ihr vierter Schnittpunkt muss nach K rücken, womit die Eigenschaft der involutorischen Punktepaare zweiter Art nachgewiesen ist.

Die abgeleitete Transformation ist von der vierten Ordnung und enthält die drei Geraden als feste Curven. Die drei Schnittpunkte derselben, D_1 , K, L, sind Coincidenzpunkte der zweiten Art.

Bemerkung. Eine quadratische Transformation kann natürlich auch blos eine in sich selbst involutorische Gerade enthalten, indem man ja immer zwei einander entsprechende Gerade involutorisch zur Deckung bringen kann. Die Transformation wird dann im Allgemeinen keine weitere involutorische Gerade mehr enthalten. Würde die Transformation aber noch eine zweite involutorische Gerade besitzen, so wäre immer auch noch eine dritte involutorische Gerade vorhanden.

ad 2. Wenn eine Gerade g und ein Kegelschnitt k projectiv aufeinander bezogen sind, so entsprechen im Allgemeinen den Schnittpunkten von g mit k andere Punkte, je nachdem man einen solchen Punkt als auf g oder k befindlich annimmt. Soll nun in einer quadratischen Transformation der Geraden g der Kegelschnitt k involutorisch entsprechen, so müssen offenbar die Fundamentalpunkte A_1 , A'_1 , A'_1 , B'_1 , B'_1 , B''_1 auf k gelegen sein. Die projectiven Büschel A_1 und B_1 erzeugen einen Kegelschnitt durch diese Punkte; ist K einer der weiteren Schnittpunkte dieses Kegelschnittes mit k, so würden ihm zwei verschiedene Punkte auf g entsprechen; also muss K in einen der Schnittpunkte von g mit k fallen; dann muss aber K ein Coincidenzpunkt sein. Demnach folgt:

, Wenn eine quadratische Transformation einen Kegelschnitt und eine Gerade als einander involutorisch entsprechende Gebilde enthalten soll, so müssen die Schnittpunkte der Geraden und des Kegelschnittes Coincidenzpunkte sein, und die involutorische Beziehung zwischen beiden Gebilden wird durch einen Strahlbüschel erzeugt, der einen Mittelpunkt auf dem Kegelschnitte hat."

Denn wenn die Schnittpunkte D_1 und D_2 von g und k Coincidenzpunkte sind, so sondern sich von dem Strahlbüschel dritter Classe, den g und k erzeugen, zwei Strahlbüschel gewöhnlicher Art ab, so dass noch ein Strahlbüschel erster Classe übrig bleibt, der dann seinen Mittelpunkt M auf k haben muss.

Dann folgt aber ganz ebenso wie früher, dass auch für dieses zerfallene System dritter Ordnung der Satz von den zugeordneten Punkten A_1 , B_1 u. s. f. gilt (§ 3). Somit lässt sich die Möglichkeit dieser Transformation genau in derselben Weise darthun, wie für die allgemeine involutorische Curve.

Von den Coincidenzpunkten der Transformation haben sich in D_1 und D_2 je zwei vereinigt und zwar in den Richtungen von MD_1 und MD_2 . Die Verbindungslinien zugeordneter Fundamentalpunkte A_1B_1 , A_1B_1 ,

Lässt man A_1 in einen der Berührungspunkte der von M_1 aus an den Kegelschnitt gehenden Tangenten fallen, so vereinigt sich B_1 mit A_1 und diese Büschel liegen dann involutorisch.

§ 6. Specielle quadratische Transformationen.

1. Die quadratische Transformation mit einem festen Kegelschnitte.

Der Vollständigkeit wegen soll auch untersucht werden, was für involutorische Gebilde bei den speciellen Fällen der quadratischen Verwandtschaft auftreten können.

Die quadratische Verwandtschaft kann bekanntlich einen Kegelschnitt als feste Curve enthalten, der durch A_1 , A'_1 , B_1 , B'_1 geht (Fig. 6). Die Transformation ist dann eine perspective und zwar ist der Schnittpunkt von $\overline{A_1B'_1}$ und $\overline{B_1A'_1}$, der als A''_1 und gleichzeitig als B''_1 zu bezeichnen, der Mittelpunkt. Schneiden sich dann $\overline{A_1A'_1}$ und $\overline{B_1B'_1}$ in P_0 , so entspricht sich das Punktepaar $P_0A''_1$ offenbar involutorisch, also gilt das Gleiche von der Geraden $\overline{A''_1P_0}$ überhaupt. Also folgt:

"Die perspective quadratische Transformation enthält immer eine und nur eine involutorische Gerade durch den Mittelpunkt $\overline{A''}_1 P_0$."

Von den übrigen selbstentsprechenden Geraden des Büschels A''₁ kann keine weitere involutorisch sein. Es ist ja auch die abgeleitete Transformation von der dritten Ordnung und kann also höchstens eine Curve dritter Ordnung als festes Gebilde enthalten. Diese Transformation dritter Ordnung ist übrigens insofern specieller Natur, als von den vier Fundamentalpunkten erster Ordnung in jeder Ebene je zwei in der Richtung der Tangente an den festen Kegelschnitt zusammengerückt sind.

2. Die Steiner'sche Verwandtschaft.

Steiner hat durch ein Strahlensystem erster Ordnung und erster Classe zwei Ebenen des Raumes quadratisch aufeinander bezogen. Lässt man nachher diese Ebenen zusammenfallen, so erhalten wir eine quadratische Beziehung der Ebene auf sich selbst, die aber insofern specieller Natur, als sie eine "feste" Gerade enthält. Wählt man A_1 , A'_1 , B_1 , B'_1 , sowie die feste Gerade g beliebig, so ergiebt sich im Schnittpunkte von g mit $\overline{B_1B'_1}$ der Fundamentalpunkt A''_1 und im Schnittpunkte von $\overline{A_1A'_1}$ mit g der Fundamentalpunkt B''_1 (Fig. 7). Dann folgt aus der Betrachtung der projectiven Büschel A_1 , B_1 , sowie A'_1 , B'_1 für diese Beziehung, die die Steiner'sche heisst:

"Die Steiner'sche Verwandtschaft ist die einzig mögliche Transformation zweiter Ordnung mit einer festen Geraden."

 $\overline{A_1B_1}$ und $\overline{A_1B_1}$ entsprechen sich selbst, aber im Allgemeinen wird keine von diesen beiden Geraden involutorisch sein. Der Schnittpunkt derselben ist der einzige isolirte Coincidenzpunkt der Transformation. Eine der beiden selbstentsprechenden Geraden kann involutorisch werden, die

zweite dagegen nicht. Ebenso wenig kann die Transformation einen involutorischen Kegelschnitt (Geradenpaar) enthalten, da in diesem Falle immer noch eine weitere involutorische Gerade auftreten müsste.

3. Quadratische Trausformationen mit zwei zusammenfallenden, zugeordneten Punkten.

Wir haben schon in § 4, I einen speciellen Fall erwähnt, wo in der quadratischen Transformation zugeordnete Fundamentalpunkte $(A'_1 \text{ und } B'_1)$ zusammenfielen und die zugehörigen Büschel involutorisch lagen. Die Doppelstrahlen des Büschels waren dann selbstentsprechende (nicht involutorische) Gerade.

Es fragt sich nun, wenn die zugeordneten Fundamentalpunkte A''_1 und B''_1 zusammenfallen, die Büschel A''_1 und B''_1 aber in allgemeiner (nicht involutorischer) Lage, ob einer der Doppelstrahlen involutorisch werden kann und ob dies bei den eintreten kann?

Giebt man sieh $A''_1 - B''_1$, den einen Doppelstrahl δ_1 durch diesen Punkt und die Involution auf ihm, ferner A_1 und B_1 beliebig, sowie die projective Beziehung der Büschel A''_1 und B'_1 , so ist dadurch die quadratische Beziehung vollständig bestimmt. Denn durch die Involution auf δ_1 werden die Büschel A_1 und B_1 projectiv aufeinander bezogen und ausserdem müssen entsprechende Punkte durch entsprechende Strahlen der Büschel A''_1 und B''_1 projicirt werden.

Man sieht dann, dass A_1A_1' und B_1B_1' sich auf δ_1 in dem Punkte schneiden müssen, der A_1' in der Involution entspricht.

Geht man zur abgeleiteten Transformation über, so ist diese eine (nicht perspective) Jonquières-Transformation vom dritten Grade mit einer festen Geraden. Da diese (vergl. D., § 7) keine anderen festen Gebilde enthalten kann, so folgt:

"Liegen in einer quadratischen Transformation mit zusammenfallenden zugeordneten Fundamentalpunkten A''_1 , B''_1 die Büschel A''_1 , B'_1 allgemein (also nicht involutorisch), so kann die Transformation höchstens einen der Doppelstrahlen der Büschel A''_1 , B''_1 als involutorische Gerade enthalten. Auf diesem schneiden sich dann $\overline{A_1 B_1}$ und $\overline{A'_1 B'_1}$."

Nehmen wir dagegen an, dass die Büschel A"₁, B"₁ involutorisch gelegen sind, so kann man die Transformation in der gleichen Weise construiren. Die abgeleitete Transformation ist dann aber eine "perspective" Jonquières-Transformation und muss als solche eine feste Curve dritter Ordnung enthalten. Also muss in der quadratischen Beziehung noch ein involutorisch auf sich bezogener Kegelschnitt auftreten, so dass sich ergiebt:

"Liegen in einer quadratischen Transformation mit zusammenfallenden zugeordneten Fundamentalpunkten A''_1 , B''_1 die Büschel A''_1 , B''_1 involutorisch, und ist einer der Doppelstrahlen derselben A''_1

eine involutorische Gerade, so enthält die Transformation stets noch einen involutorischen Kegelschnitt, der durch die übrigen Fundamentalpunkte geht, sowie durch die Coincidenzpunkte auf dem zweiten, selbstentsprechenden Doppelstrahle. Das Centrum M der Involution auf dem Kegelschnitte liegt auf dem involutorischen Doppelstrahle und die Verbindungslinien zugeordneter Fundamentalpunkte A_1B_1 , $A'_1B'_1$ gehen durch den Punkt M_1 , der in der Involution auf dem Doppelstrahl dem Punkte M entspricht."

Man kann diesen Fall auch aus § 4, II A ableiten, wenn man dort A''_1 mit B''_1 zum Zusammenfallen bringt.

Endlich können noch $\overline{A_1 B_1}$ und $\overline{A_1 B_1}$ sich selbst involutorisch entsprechen. Wählen wir nämlich die Fundamentalpunkte A_1 und B_1 so, dass $\overline{A_1 B_1}$ durch einen (D_1) der Doppelpunkte der Involution auf dem einen Doppelstrahl hindurchgeht (während natürlich die Büschel A_1 und B_1 in involutorischer Lage sind), so entspricht sich dann $\overline{A_1 B_1}$ involutorisch. Dann muss, wie aus der Betrachtung der abgeleiteten Transformation hervorgeht, auch $\overline{A_1 B_1}$ eine involutorische Gerade sein. Betrachtet man ferner die isologe Curve des Coincidenzpunktes D_1 , so ergiebt sich, dass wiederum, wie in § 4, IIB, auch $\overline{A_1 B_1}$ durch D_1 hindurchgehen muss. Die Transformation enthält also drei je in sich involutorische Gerade, die durch einen Punkt D_1 hindurchgehen.

§ 7. Ein Satz über die nicht centrale Involution auf der rationalen C^3 .

Wir haben bisher immer nur die centrale Involution auf einer rationalen C^3 betrachtet, sofern sie in einer quadratischen Transformation enthalten sein kann. Nun soll auch die nicht centrale Involution auf einer rationalen C^3 Berücksichtigung finden. Da bei dieser Involution der Satz von den zugeordneten Punkten (§ 3) nur für ein Punktepaar gilt, so ist blos noch der Fall zu erledigen, wo die C^3 in einem Fundamentalpunkte A_1 , der mit dem zugeordneten B_1 sich deckt, einen Doppelpunkt hat. Ausserdem muss die Curve noch durch zwei weitere zugeordnete Fundamentalpunkte A_1' und B_1'' gehen. Dem Doppelpunkte entsprechen nun der Involution zufolge zwei Punkte E und E_1 auf der C^3 und durch diese müssen $\overline{B_1'}\overline{B_1''}$ und $\overline{A_1}\overline{A_1'}$ hindurchgehen.

Nun entsprechen andererseits den Tangenten im Doppelpunkte in der projectiven Beziehung der Büschel A_1 und B_1 die Linien, welche die Schnittpunkte der Fundamentalgeraden mit der Curve C^3 verbinden mit dem Büschelmittelpunkte. Es müssen also $\overline{A_1 A_1'}$ und $\overline{B_1' B_1'}$ nothwendig der Richtung nach sich decken und der letzte Schnittpunkt dieser Geraden $\overline{E}E_1$ mit der C^3 muss sowohl A_1'' als B_1'' sein, d. h. diese Punkte müssen zusammenfallen. Da ferner dem Strahl $\overline{A_1 A_1'}$ der Strahl $\overline{B_1 B_1'}$ und dem Strahl $\overline{B_1 B_1'}$ der Strahl $\overline{A_1 A_1'}$ entsprechen muss, die C^3 aber involutorisch, so folgt,

dass auch A'_1 und B'_1 sich decken müssen, d. h.: die Transformation ist im Ganzen involutorisch, weil alle zugeordneten Fundamentalpunkte sich decken.

Es könnte noch, abgesehen von dem Falle der Spitze, sich ereignen, dass von den drei Punkten E, E_1 , A'_1 zwei zusammenfielen. Würde $\overline{EE_1}$ die C_3 in E berühren, so muss A''_1 nach E_1 fallen. Denn wäre A''_1 in E gelegen, so hätte man eine C^3 mit Spitze, was gleich besprochen werden soll. Aus dem gleichen Grunde muss auch B''_1 (oder B'_1) in E_1 gelegen sein, so dass wieder die Fundamentaldreiecke zusammenfallen.

Es ist auch leicht, in einer involutorischen Transformation die Gleichung einer Curve dritter Ordnung mit einem Doppelpunkte im Punkte $x_1 = 0$, $x_2 = 0$ anzuschreiben, die sich selbst entspricht. Dieselbe wird nämlich:

$$(a_4x_1^2 + a_3x_1x_2 + a_2x_2^2)x_3 + a_3x_1^2x_2 + a_3x_1x_2^2 + a_4x_2^3 = 0.$$

Dieselbe muss durch zwei Coincidenzpunkte hindurchgehen.

Curve mit Spitze. Hat die C^3 in A_1 eine Spitze, so entspricht diesem Punkte blos ein Punkt auf der Curve C^5 . B_1 fällt dann wieder mit A_1 zusammen und es muss C^3 sowohl $\overline{A_1A'_1}$ als $\overline{B'_1B''_1}$ berühren. Der Rückkehrtangente entspricht aber in dem involutorischen Büschel, das die involutorische Beziehung auf der Curve herstellt, ein einziger Strahl, der die C^3 noch in einem Punkte trifft. Die Tangente in diesem Punkte giebt die Richtung von $\overline{A'_1A''_1}$ und $\overline{B'_1B''_1}$. Es sind dann folgende Fälle möglich:

- 1. A_1 fällt in den letzten, dritten Schnittpunkt dieser Tangente mit der C^3 . Dann würde der Strahl, der dem Strahl $\overline{A_1}\overline{A'_1}$ entspricht, auch Tangente der entsprechenden Curve C^3 sein, also hätte diese einen Doppelpunkt und keine Spitze.
- 2. A'_1 fällt in den Berthrungspunkt. Dann würde man auch wieder als entsprechende Curve eine C^3 mit Doppelpunkt erhalten.
- 3. Der Punkt, in welchem der der Rückkehrtangente entsprechende Strahl die C^3 trifft, ist ein Wendepunkt. Fällt dann \mathcal{A}_1 in diesen, so ist \mathcal{A}''_1 der Schnittpunkt der Rückkehrtangente mit der Wendetangente. Dann müssen aber wieder die Fundamentaldreiecke sich decken, so dass die ganze Transformation involutorisch wird.

Die Gleichung der Curve dritter Ordnung mit einem Wendepunkte in $x_3 = 0$, $x_3 = 0$, die in einer involutorischen quadratischen Transformation sich selbst entspricht, ist (wenn $x_3 = 0$ die Wendetangente):

$$x_1^2 x_3 + x_2^3 = 0.$$

Aus dem Allen folgt endlich:

"Eine rationale Curve dritter Ordnung mit einer nicht centralen Involution kann blos in einer vollständig involutorischen quadratischen Transformation enthalten sein."

Bemerken wir noch, dass solche Transformationen von Anfang an ausgeschlossen waren, für welche gewisse Fundamentalpunkte in Gruppen zusammengerückt sind oder für welche Fundamentalcurven zerfallen.

Dritter Abschnitt.

Einige Transformationen allgemeiner Natur mit involutorischen Curven.

§ 8. Transformationen von der Ordnung 2^k .

Aus den behandelten quadratischen Transformationen lassen sich andere mit involutorischen Curven auch höherer Ordnung ableiten. Wir wollen nur die eine Möglichkeit betrachten, wo die involutorische Curve immer die ursprüngliche Curve dritter Ordnung ist.

Hat man eine quadratische Transformation mit einer involutorischen C^3 und sind die Fundamentalpunkte der einen Ebene A_1 , A_1' , A_1'' , die der andern Ebene B_1 , B_1' , B_1' , so kann man, indem man die Involution auf der C^3 beibehält, die B-Ebene als eine C-Ebene nehmen und diese wiederum quadratisch auf eine D-Ebene beziehen. Von den Tripeln C_1 , C_1'' , C_1'' , D_1' , D_1''

- 1. Ist k gerade, so entspricht die C^3 sich Punkt für Punkt selbst, ist also eine "feste" Curve der Transformation. Dies sind also Transformationen von den Ordnungen 4, 16 u. s. w.
- 2. Ist k ungerade, so entspricht die C^3 sich involutorisch. Die Ordnung der Transformation beträgt 2, 8, 32 u.s. w.

Das System der Fundamentalpunkte besteht in beiden Fällen aus:

- $3 \ldots 2^{k-1}$ -fachen Fundamentalpunkten,
- $3 \ldots 2^{k-2}$ -faohen
- 3 ... einfachen Fundamentalpunkten,

die sämmtlich auf der C^3 gelegen sind. Für k=2 erhält man z. B. die (einzige) Transformation vierter Ordnung und erster Classe (vergl. D., § 8 mit einer festen Curve C^3 von der dritten Ordnung.

§ 9. Jonquières - Transformationen.

1. Zunächst schicken wir folgenden Satz voraus:

"Jede "perspective" Jonquières-Transformation von einer Ordnung $n \ge 3$ kann eine "feste" Curve enthalten, die aus einer durch den Mittelpunkt der Transformation einfach hindurchgehenden Curve dritter Ordnung und aus n-3 durch den Mittelpunkt gehenden Geraden besteht."

Der Beweis ergiebt sich, indem man diese Transformation wie folgt herstellen kann. Ist M der auf der C^3 gelegene Mittelpunkt der Transformation, so wählen wir eine Curve $A^{n'}$ von der Ordnung n' willkürlich so

dass sie in M einen (n'-1)-fachen Punkt hat und die C^3 mit einem Aste in M berührt. Ziehen wir jetzt irgend einen Strahl durch M, so schneidet dieser die C^3 noch in D_1 und D_2 , ferner $A^{n'}$ in A. Bezeichnen wir M einen Moment mit B, so ist auf diesem Strahle eine einzige projective Beziehung bestimmt, für welche D_1 und D_2 die Doppelpunkte und A und B entsprechende Punkte sind. Zu jedem Punkte auf diesem Strahle ist dann immer ein und nur ein Punkt bestimmt, je nachdem man den Punkt als zur Reihe A oder B gehörig auffasst.

Die 2n' Gerade, welche die Schnittpunkte der $A^{n'}$ mit der C^8 mit M verbinden, machen hierbei eine Ausnahme. Sie werden, wie man leicht sieht, Fundamentalgerade. Ferner müssen die n'-2 Tangenten der $A^{n'}$ in M, die nicht die C^8 berühren, "feste" Gerade der Transformation werden, da auf jeder derselben drei Doppelpunkte der projectiven Beziehung sich ergeben. Man erhält dann eine "perspective" Jonquières-Transformation von der Ordnung n=n'+1.

Bemerken wir noch, dass sich die beiden Fundamentalcurven von der Ordnung n-1 ausser in den Fundamentalpunkten noch in (n-1) Punkten schneiden (da sie sich in M auf jedem Aste berühren), so folgt noch allgemein:

"Jede "perspective", nicht involutorische Jonquières-Transformation n^{ter} Ordnung enthält n-1 und nicht mehr involutorische Gerade durch den Mittelpunkt."

2. Nehmen wir jetzt die vorhin abgeleitete Jonquières-Transformation mit der C^8 als fester Theilcurve zu Hilfe, so kann man deren Ebene wiederum quadratisch abbilden, so dass die C^3 in der quadratischen Transformation involutorisch wird. Verlegen wir einen Fundamentalpunkt (etwa C_1) nach dem Mittelpunkte der Jonquières-Transformation, so erhält man als Resultat der Verbindung der beiden Transformationen eine Jonquières-Transformation von der Ordnung n+1 mit nicht zusammenfallenden n-fachen Fundamentalpunkten, welche die C^3 involutorisch enthält. Die dadurch abzuleitende Transformation ist aber mindestens von der vierten Ordnung.

Aber auch schon die Transformation dritter Ordnung kann eine involutorische C^3 enthalten, wovon wir uns direct überzeugen: Auf der vorgegebenen C^3 wählen wir das Centrum M der Involution beliebig. A_2 und B_2 seien zwei sich daraus ergebende "zugeordnete" Punkte. Dann entspricht jedem Strahl durch A_2 ein bestimmter durch B_2 und die Schnittpunkte mit der C^3 sind zwei Paare entsprechender Punkte. Ist nun (A_2) der Punkt, der dem Punkte A_2 in der Involution auf der C^3 entspricht, so wählen wir einen Kegelschnitt K, der durch K_2 und K_3 geht, und wollen die Verfügung treffen, dass auf jedem Strahlenpaare der Bündel K_3 und K_4 dem Punkte K_4 der zweite Schnittpunkt des entsprechenden Strahles durch K_4 mit K_5 entsprechen soll. Da man dann ferner noch die Schnittpunkte mit der K_5 als entsprechende Punkte hat, so ist die projective Beziehung auf

dem Strahlenpaare festgelegt und jedem Punkte des einen Strahles einer des andern zugeordnet. Wie man leicht findet, liefert diese Betrachtung dann die Jonquières-Transformation dritter Ordnung mit einer involutorischen C^3 und es ist jetzt allgemein bewiesen:

"Jede allgemeine Jonquières-Transformation kann eine Curve dritter Ordnung mit einer centralen Involution als involutorisches Gebilde enthalten. Die Curve dritter Ordnung geht einfach durch sämmtliche Fundamentalpunkte einer jeden Ebene. Ist M der Mittelpunkt der Involution, M. der dritte Schnittpunkt der Tangente in M mit der C^3 , so geht die Verbindungslinie $A_{n-1}B_{n-1}$ der beiden (n-1)-fachen Fundamentalpunkte durch M_1 . Sind A_k und B_k swei "zugeordnete" Fundamentalpunkte erster Ordnung und schneidet $\overline{A_{n-1}A_k}$ noch in A die C^3 , $\overline{B_{n-1}B_k}$ noch in B, so ist $B_k \equiv (A)$ und $A_k \equiv (B)$, d. h. es liegen A_k und B, sowie B_k und A in Geraden durch M.

Ferner geht die Fundamentalcurve $(n-1)^{ter}$ Ordnung der B-Ebene durch (A_{n-1}) , die der A-Ebene durch (B_{n-1}) .

Die Trausformation enthält die vier Coincidenzen der C³ selbst als Coincidenzpunkte."

München, Juli 1891.

Kleinere Mittheilungen.

XX. Ueber den Begriff der Projection einer geraden Linie.

Der Begriff der Projection (Central- oder Parallelprojection) einer geraden Linie wird gewöhnlich auf doppelte Weise definirt, nämlich:

I. Die Projection einer Geraden ist die Gesammtheit der Projectionen aller ihrer Punkte.

II. Die Projection einer Geraden ist die Schnittlinie der durch die Gerade gelegten projicirenden Ebene mit der Projectionsebene.

Bei allgemeiner Lage der Geraden stimmen beide Definitionen überein; denn die projicirende Ebene enthält die Gesammtheit der projicirenden Strahlen der Punkte der Geraden. Die Uebereinstimmung hört jedoch auf, wenn die Gerade durch das Projectionscentrum geht (bezw. der Projectionsrichtung parallel ist). In diesem Falle ist die Projection gemäss der I. Definition ein blosser Punkt, nämlich der Spurpunkt der Geraden. Bei der II. Definition wird die projicirende Ebene unbestimmt, daher ist die Projection eine durch den Spurpunkt gehende unbestimmte Gerade.

Welche dieser zwei verschiedenen Auffassungen verdient nun den Vorzug? — Eine Erörterung dieser Frage scheint mir nicht überflüssig zu sein.

Man möchte zunächst geneigt sein, im Anschluss an die hervorragendsten älteren und neueren Lehrbücher sich für die erste Auffassung zu entscheiden. Dennoch dürfte der zweiten Auffassung der Vorzug zu geben sein.

Der hier zu Tage tretende Zwiespalt ist bedingt durch die Doppelnatur der geraden Linie — einerseits als Trägerin der auf ihr liegenden Punkte, andererseits als Trägerin der durch sie gehenden Ebenen. In der I. Definition wird die gerade Linie stillschweigend mit der auf ihr liegenden Punktreihe identificirt. So ist denn auch die Behauptung, dass die Projection einer durch das Projectionscentrum gehenden Geraden ein blosser Punkt sei, nur in der folgenden Fassung völlig einwandsfrei: "Eine Punktreihe, deren Träger durch das Projectionscentrum geht, projicirt sich als Punkt." Bei der II. Definition kommen die durch die Gerade gehenden Ebenen ins Spiel, und man hat den analogen Satz: "Ein Ebenenbüschel, dessen Träger durch das Projectionscentrum geht, projicirt sich als Strahlenbüschel."

Es fragt sich nun, welche Auffassung zu gelten hat, wenn die gerade Linie als eigenartiges Raumelement ohne jede Rücksicht auf die in ihr enthaltenen andersartigen Raumelemente in Betracht kommt.

Der Umstand, dass in der praktischen Anwendung der darstellenden Geometrie die Gerade fast ausschliesslich als Punktgebilde auftritt, hat wohl dazu geführt, dass seither die erstgenannte Auffassung auch in der reinen Theorie allgemein in Geltung war. Indessen ist zu beachten, dass diese Auffassung die beschränktere ist. Auch hier dürfte an dem Grundsatz festzuhalten sein, dass von zwei Definitionen stets die allgemeinere den Vorzug verdient. Dies ist aber unstreitig die zweite, derzufolge die Projection einer Centrumsgeraden eine durch den Spurpunkt gehende willkürliche Gerade ist; denn sie schliesst die erste Auffassung, welche den Spurpunkt allein als Projection annimmt, in sieh.

Die Beschränktheit der ersten Auffassung ist in der That ein Uebelstand, der sich seither durch die ganze Projectionslehre höchst unangenehm fühlbar machte. Gleich zu Anfang des Lehrganges wird der Satz ausgesprochen (wir wollen ihn als Satz A bezeichnen): "Die Projection einer Raumgeraden ist im Allgemeinen wieder eine Gerade, mit Ausnahme des Falles, dass die Raumgerade durch das Projectionscentrum geht (bezw. der Projectionsrichtung parallel ist), wo die Projection ein Punkt ist." Dieser Ausnahmefall heftet sich dann der ganzen weiteren Entwickelung hemmend an die Ferse. Bei jeder Aufgabe, in der überhaupt eine Gerade vorkommt, versagt die allgemeine Lösung ihre Anwendbarkeit auf den Ausnahmefall; derselbe erfordert stets eine gesonderte Behandlung. Dazu sei noch an abzählende Operationen erinnert, wo es, wenn das betrachtete Raumgebilde eine gerade Linie als Bestandtheil enthält, unter Umständen vorkommen kann, dass diese in der Projection einfach verloren geht.

Diese Missstände kommen nun bei der andern Auffassung gänzlich in Wegfall. An Stelle des Satzes A tritt dann der folgende (Satz B): "Die Projection einer Raumgeraden ist immer wieder eine Gerade, welche im Allgemeinen bestimmt ist, jedoch in dem Falle, dass die Raumgerade durch das Projectionscentrum geht, unbestimmt wird." Letzteres ist jetzt kein Ausnahmefall mehr, sondern ein Specialfall. Die allgemeinen Lösungen behalten für denselben ihre volle Giltigkeit. Um sich hiervon an einem einfachen Beispiel aus der elementaren darstellenden Geometrie zu überzeugen, nehme man etwa die Lösung der Aufgabe in Grund- und Aufriss: "Den Schnittpunkt einer Geraden mit einer durch drei Punkte gegebenen Ebene zu bestimmen." Die Anwendbarkeit der allgemeinen Lösung bleibt ohne Weiteres erhalten, auch wenn die gegebene Gerade senkrecht zu einer Projectionsebene steht, sobald man als ihre Projection auf die letztere eine beliebige durch den Spurpunkt gehende Gerade anerkennt. -Wenn man ferner die allgemeine Lösung der Aufgabe: "Die Schnittlinie zweier durch ihre Spuren gegebenen Ebenen zu bestimmen", auf den Specialfall anwendet, wo beide Ebenen senkrecht zu einer Projectionsebene, z. B. zur Horizontalebene, stehen, so ergiebt sich als Horizontalprojection der Schnittlinie direct eine unbestimmte Gerade durch den Schnittpunkt der Horizontalspuren der Ebenen. Das Gleiche gilt betreffs der Lösung der entsprechenden Aufgabe in Centralprojection.

Ein weiteres Licht fällt auf unsere Frage, wenn man die dualistische Betrachtung bezüglich der Spur einer Geraden anstellt. Als reciprokes Analogon zu dem obigen Satze A würde sich der Satz ergeben: "Die Spur einer Raumgeraden ist im Allgemeinen ein Punkt, mit Ausnahme des Falles, dass sie in der Projectionsebene liegt, wo die Spur eine Gerade ist (nämlich die Raumgerade selbst)." Dem Satze B würde der folgende Satz entsprechen: "Die Spur einer Raumgeraden ist immer ein Punkt, welcher im Allgemeinen bestimmt ist, jedoch in dem Falle, dass die Raumgerade in der Projectionsebene liegt, unbestimmt wird." Wenn hier der Ausschlag zu Gunsten des zweiten Satzes erfolgt, so muss man sich consequenterweise auch auf dem Gebiet der Projection für den Satz B entscheiden.

Dies sind die Gründe, die es mir richtiger erscheinen lassen, als Projection einer durch das Projectionscentrum gehenden (bezw. der Projectionsrichtung parallelen) Geraden statt des blossen Spurpunktes eine durch den Spurpunkt gehende willkürliche Gerade anzusehen. Da ferner diese Anschauung sich als nothwendige Folge aus der Definition des Begriffes "Projection einer Geraden" als Schnittlinie der projicirenden Ebene ergiebt, so scheint mir diese Definition vor der andern (als Gesammtheit der Projectionen der Punkte der Geraden) den Vorzug zu verdienen. Nur bei jener Definition gewinnen die Constructionen der Projectionslehre die nothwendige theoretische Allgemeinheit und Consequenz, die sie seither bei Zugrundelegung der andern Definition vermissen liessen.

Berlin, Juli 1891.

G. HAUCK.

XXI. Arithmetischer Satz.

Herr Prof. R. Sturm theilte mir einst folgende Bemerkung mit, die er einer französischen Zeitschrift entnommen hatte:

"Die Zahl 99999 ist durch 7 theilbar und diejenigen Zahlen, welche das 1-, 2-, 3-, 4-, 5-, 6 fache Siebentel davon sind, nämlich

bestehen aus genau denselben Ziffern in cyklischer Vertauschung. Ich erkannte den Grund dieser interessanten Erscheinung in dem Umstande, dass

$$9999999 = 10^6 - 1$$

und 10 primitive Wurzel (mod. 7) ist, und konnte infolge davon einen allgemeinen Satz herleiten, welcher diese Thatsache als besonders prägnanten Fall in sich schliesst. Dieser Satz lautet folgendermassen:

Ist p eine ungerade Primzahl und q primitive Wurzel (mod. p), so dass, wenn

1)
$$q^{p-1} - 1 = p \cdot Q$$

gesetzt wird, Q eine positive ganze Zahl ist, welche offenbar kleiner als q^{p-1} ist, und man entwickelt nun — gleichwie in einem Ziffernsystem, dessen Basis q ist — in bekannter Weise Q nach Potenzen von q:

2)
$$Q = c_{p-2} \cdot q^{p-2} + c_{p-3} \cdot q^{p-3} + \dots + c_1 \cdot q + c_0,$$

wo die Coefficienten Null oder positive ganze Zahlen kleiner als q sind und wobei man darauf achten muss, diejenigen Potenzen, welche in der Darstellung fehlen, bis zur $(p-2)^{\text{ten}}$ hin ausdrücklich mit dem Coefficienten hinzuschreiben, so giebt die wiederholte cyklische Vertauschung der Coefficienten in der Formel 2) die sämmtlichen Vielfachen

$$1Q, 2Q, ..., kQ, ..., (p-1)Q$$

in gewisser Reihenfolge, und zwar muss man, um kQ zu erhalten, die cyklische Vertauschung h-mal wiederholen, wenn h = ind.k ist.

Beweis. Aus 1) und 2) folgt die Gleichung:

$$q^{p-1} = p(c_{p-2} q^{p-2} + \dots + c_1 q + c_0) + 1$$

also

$$q^{p-2} = p(c_{p-2}q^{p-3} + \cdots + c_2q + c_1) + \frac{pc_0+1}{q}$$

Hier muss $\frac{pc_0+1}{q}$ eine positive ganze Zahl r_1 sein, und zwar, da c_0 höchstens q-1 sein kann, $r_1 < p$; die vorige Gleichung lautet also:

$$q^{p-2} = p(c_{p-2}q^{p-3} + \cdots + c_{2}q + c_{1}) + r_{1}.$$

Aus ihr folgt

$$q^{p-3} = p(c_{p-2} q^{p-4} + \cdots + c_2) + \frac{p c_1 + r_1}{q},$$

worin $\frac{p c_1 + r_1}{q}$ eine positive ganze Zahl $r_2 < p$ sein muss, da c_1 höchstens q-1 und r_1 höchstens p-1 sein kann; so nimmt die vorige Gleichung die Gestalt an: $q^{p-3} = p(c_{p-2}q^{p-4} + \cdots + c_2) + r_2;$

man findet gleicherweise allgemein

$$q^{p-i} = p(c_{p-2}q^{p-i-1} + \cdots + c_{i-1}) + r_{i-1},$$

worin r_{i-1} eine positive ganze Zahl $\langle p |$ ist. Zuletzt wird ebenso

$$q^2 = p(c_{p-2}q + c_{p-3}) + r_{p-3}, \quad q^1 = p \cdot c_{p-2} + r_{p-2}$$

gesetzt werden können, und die Zahlen

$$1, r_1, r_2, \ldots, r_{p-3}, r_{p-2}$$

müssen die sämmtlichen Reste (mod. p) sein.

Handelt es sich nun z. B. um das Vielfache kQ, und ist ind. k=h, so muss wegen der dann stattfindenden Congruenz $q^{h}=k \pmod{p}$ die Zahl k identisch sein mit r_{p-1-h} , so dass

$$q^{h} = p(c_{p-2}q^{h-1} + c_{p-3}q^{h-2} + \cdots + c_{p-1-h}) + k$$

gesetzt werden kann. Hieraus findet man durch Multiplication mit Q und wenn dann für Q sein Werth 2) und für pQ sein Werth 1) eingesetzt wird, ohne Weiteres:

$$kQ = c_{p-2} q^{h+p-2} + c_{p-3} q^{h+p-3} + \dots + c_1 q^{h+1} + c_0 q^h - c_{p-2} q^{h+p-2} - c_{p-3} q^{h+p-3} - \dots - c_{p-1-h} q^{p-1} + c_{p-2} q^{h-1} + c_{p-3} q^{h-2} + \dots + c_{p-1-h},$$

also nach Aufhebung der gleichen Glieder entgegengesetzten Vorzeichens:

$$kQ = c_{p-h-2}q^{p-2} + c_{p-h-3}q^{p-3} + \dots + c_0q^h + c_{p-2}q^{h-1} + c_{p-3}q^{h-2} + \dots + c_{p-h-1},$$

d. h. kQ entsteht, wenn man in dem Ausdrucke 2) für Q die Coefficienten um h Stellen cyklisch vertauscht.

Ist z. B. p=7, so kann q=5 gewählt werden und nach der Gleichheit $q^6-1=7.2232$ wird Q=2232. Die Darstellung 2) würde in diesem Falle: $Q=0.5^5+3.5^4+2.5^3+4.5^2+1.5^1+2$

und man findet beispielsweise

$$6Q = 4.5^5 + 1.5^4 + 2.5^3 + 0.5^2 + 3.5^1 + 2$$

also durch dreimalige Wiederholung der cyklischen Coefficientenvertauschung; und in der That ist

 $6 \equiv 5^{3} \pmod{7}$.

also 3 = ind. 6.

also

Zoppot, 1891.

BACHMANN.

XXII. Eine Methode zur numerischen Auflösung einer algebraischen Gleichung.

Es sei die Gleichung f(x) = 0 auf die Form gebracht, in welcher der Coefficient der höchsten Potenz von x gleich 1 ist. Ferner wird vorausgesetzt, dass alle Coefficienten von f(x) reell seien und dass die grösste reelle Wurzel ξ positiv sei. Ist dann ξ_0 eine obere Grenze der reellen Wurzeln, also $> \xi$, die man ja auf verschiedene Weisen leicht erhalten kann; zerlegt man ferner f(x) in P(x) - Q(x), wo P(x) die Glieder mit positiven Coefficienten enthält, so ist

$$f(\xi_0) - f(\xi) = f(\xi_0) = \int_{\xi}^{\xi_0} f'(x) \, dx < \int_{\xi}^{\xi_0} P'(x) \, dx < (\xi_0 - \xi) \, P'(\xi_0),$$

$$\xi < \xi_0 - \frac{f(\xi_0)}{P'(\xi_0)}.$$

Da $f(\xi_0)$ und $P'(\xi_0)$ bei den gemachten Voraussetzungen positiv sind, so ist $\xi_1 = \xi_0 - \frac{f(\xi_0)}{P'(\xi_0)} < \xi_0$, andererseits ist aber nach dem Vorhergehenden $\xi_1 > \xi$, also wieder eine obere Grenze der Gleichung. Hieraus ist zu schließen, dass, wenn man

 $\xi_2 = \xi_1 - \frac{f(\xi_1)}{P'(\xi_1)}, \quad \xi_3 = \xi_2 - \frac{f(\xi_2)}{P'(\xi_2)}, \quad \cdots$

bildet, man sich von Seiten der grösseren x beständig der Wurzel ξ nähert, die sich als Grenze dieses Algorithmus darstellt.

Im Vorstehenden ist vorausgesetzt, dass die grösste reelle Wurzel unserer Gleichung positiv ist. Ist r eine obere Grenze derselben, so braucht man nur x=r-y zu setzen, um eine Gleichung zu erhalten, wo diese Bedingung für alle reellen Wurzeln erfüllt ist. Wenn man darauf verzichtet, die Zahl der letzteren a priori zu bestimmen, so kann man also bei der Berechnung derselben die Anwendung des Sturm'schen Satzes umgehen; sobald nämlich das nach Beseitigung der bereits ermittelten Linearfactoren übrig bleibende Polynom keine reelle Wurzel mehr enthält, muss unser Algorithmus für einen endlichen Werth von k einen negativen Werth ξ_k ergeben, und dies ist daz Zeichen, dass alle reellen Wurzeln bereits berechnet sind. Wie man alsdann die complexen Wurzeln findet, braucht wohl nicht näher auseinandergesetzt zu werden.

Berlin.

Dr. TH. LOHNSTEIN.

STUDIEN

ÜBER DIE

TRANSFORMATION UND INTEGRATION

DER

DIFFERENTIAL- UND DIFFERENZENGLEICHUNGEN

NEBST EINEM ANHANG

VERWANDTER AUFGABEN

VON

WOLDEMAR HEYMANN.

| X u. 436 S.| gr. 8. 1891. geh. n. .# 12.—

dahin, daß es weder ein geordnetes Lehrbuch, noch eine vollständige Aufgabensammlung, vielmehr, indem es eine Reihe von nicht immer zusammenhängenden Einzeluntersuchungen (aus den letzten zehn Jahren und größtenteils schon veröffentlicht) enthalte, ein Supplement zu den vorhandenen Lehrbüchern darstellen soll. Diesen Zweck erfüllt das Buch in der That und zwar ist es besonders zu weitergehenden Übungen in der elementaren Theorie der Differentialgleichungen sehr brauchbar; denn es bringt eine große Reihe von Detailforschungen unter eingehender Diskussion auch der Spezialfälle allgemeiner Theorien, und außerdem eine Menge zugehöriger geschickt gewählter Aufgaben. Daß die höheren funktionentheoretischen Gesichtspunkte oder die neueren Forschungen über das Wesen der Singularitäten, welche die Transformationen und Integrationen bedingen, vom Verf., obwohl ihm dieselben nicht fremd scheinen, nicht herbeigezogen werden, ist nach dem bezeichneten Zwecke nicht als Nachteil zu betrachten; eine Entschädigung wird dem Leser dadurch, daß ihm die Resultate auswärtiger Litteraturen, insbesondere der englischen, nutzbar gemacht werden."

Literarisches Centralblatt 1891. Nr. 42.

INHALT.

XX Ueber einen Specialfall der hypergeometrischen Reihe dritter Oranung. Von Prof. Dr. Louis Saatschütz in Königsberg (Schluse)	121
XXI Beitrag zur Theorie der übergeschlossenen Gelenkmechanismen	128
XXII Ueber eine besoudere Transformation algebraischer Curven und dame	227
XXIII. Ueber einen orthogonalen Reye'schen Complex. Von Dr. H. Tanssein Posen XXIV. Ueber die involutorischen Gebilde, welche eine abene Cremons- Transformation, speciell die quadratische enthalten kann. Von Dr. Kass-	539
Dominaram in München (Tufel XII)	300
Kleinere Mittheilungen.	
XX, Ueber den Begriff der Projection einer geraden Linie. Von G. Haus-	17.9
SVI Auithmatischer Sutz Von Bachmann in Zoppou-	751
XXII. Eine Methode zur numerischen Auflösung einer algebratschen Gleichung- Von Dr. Tu. Loussrus in Berlin	368
Historisch-literarische Abtheilung (besonders paginirt)	
Recensionen:	
Kraus, Feax, Vorlesungen über die Theorie der elliptischen Modul- fonctionen. Von Schonsavann	201
TANKERY, PACE, of HESOY, CHARLES, ORIUVIES de Format, Von G WERTONS	212
Haass und Kattaus, Rechenbuch für Gymnasian, Realgymnasian etc. Von Dr. E. Janske	200
Kallius, Prof. Dr., Die vier Species in gauzen Zahlen und das Münr- Mass- und Gewichtssystem im Rechenuntstrücht. Von Dr. E. Jansez	210
BARDEY, Dr. E., Arithmetische Aufgaben nehst Lehrbuch der Arith- metik. Von Dr. E. Janse	917
Rucaus, Prof. Dr. O., Die Grundlagen der Arithmetik unter Kin- führung formaler Zahlbegriffe. Von Dr. E. January	,218
Murn, P., Ueber ternire Formen mit linearen Transformationen ma sich selbst. Von Dr. E. Jansac	
Bexon, P., Ueber Differentialgleichungen, welche durch doppelt- periodische Functionen zweiter Gattung erfullt werden Von Dr. E. Januar	223
Hovestant, Dr., Lehrbuch der angewandten Potentialtheorie: Von	
Sentrage, W. Fr., Ueber den Satz von der Winkelaumine im Dreiteck Von Dr. H. Smorres	100
Bibliographie vom 1. September bis 31. December 1891; Periodisch Schriften — Geschichte der Mathematik und Physik — Rein Mathematik — Angewandte Mathematik — Physik und Metsorologie	a 256
Mathematisches Abhandlungsregister. 1890. Zweita Halfte: L. Jul- bia 31. December	-

Meine Offizin war vom Buchdruckerausstande so hart betrolles dass ein früheres Erscheinen des vorliegenden Heftes leider nicht möglich war.

Leipzig, Februar 1892.

Historisch-literarische Abtheilung

der

Zeitschrift für Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

VOD

Dr. O. Schlömilch, Dr. E. Kahl

und

Dr. M. Cantor.

XXXVI. Jahrgang.

Leipzig, Verlag von B. G. Teubner. 1891.

Inhalt.

I. Abhandlungen.
Commentar zu dem "Tractatus de numeris datis" des Jordanus Nemorarius. Von Maximilian Curtze
II. Recensionen.
Philosophie und Pädagogik.
Schotten, Inhalt und Methode des planimetrischen Unterrichts. Von M. Cantor
Geschichte der Mathematik.
Loria, Il periodo aureo della geometria greca. Von M. Cantor
Arithmetik, Algebra, Analysis. Mohr, Das enthüllte Geheimniss der Pythia. Von G. Oehmichen

Seite
Blater, Erleichterungstafel zur Ausführung von Multiplicationen und Divi-
sionen. Von M. Cantor
Fuhrmann, Naturwissenschaftliche Anwendungen der Integralrechnung.
Von M. Cantor
Lemboke, Einfache Versicherungsrechnungen. Von M. Cantor 156
Ball, Elementary Algebra. Von M. Cantor
Forsyth, Theory of differential equations. Von W. Heymann 190
Wrobel, Uebungsbuch zur Arithmetik und Algebra. Von E. Jahnke 196
Schumacher, Zur Theorie der algebraischen Gleichungen. Von E. Jahnke 197
Klein-Fricke, Vorlesungen über die Theorie der elliptischen Modulfunc-
tionen, I. Von L. Schlesinger
Harms u. Kallius, Rechenbuch. Von E. Jahnke
Kallius, Die vier Species in ganzen Zahlen und Das Münz-, Mass- und
Gewichtssystem im Rechenunterricht. Von E. Jahnke 216
Bardey, Arithmetische Aufgaben nebst Lehrbuch der Arithmetik. Von
E. Jahnke
Reichel, Die Grundlagen der Arithmetik unter Einführung formaler Zahl-
begriffe. Von E. Jahnke
Muth, Ueber ternäre Formen mit linearen Transformationen in sich selbst.
Von E. Jahnke
Functionen zweiter Gattung erfüllt werden. Von E. Jahnke 221
runctionen zweiter Gattung ermit werden. Von E. Jamike 221
Synthetische, analytische, descriptive, praktische Geometrie. Geographie-
Kieper, Ueber die geraden Kegel und Cylinder, welche durch gegebene
Punkte des Raumes gehen oder gegebene gerade Linien des Raumes
berühren. Von C. Rodenberg
berühren. Von C. Rodenberg

	Seite
Handel, Metrische Beziehungen an Tangentenfiguren der Kegelschnitte.	
Von C. Rodenberg	181
Bützberger, Ein mit der Theorie algebraischer Flächen zusammenhängendes	
planimetrisches Problem. Von C. Rodenberg	182
Küpper, Elemente der projectivischen Geometrie. Von C. Rodenberg .	182
Schröter, Grundzüge einer reingeometrischen Theorie der Raumcurven	
IV. Ordnung 1. Species. Von E. Kötter	183
Eck, Ueber die Vertheilung der Axen der Rotationsflächen 2. Grades.	
welche durch gegebene Punkte gehen. Von E. Kötter	186
Lietsch, Leitfaden der darstellenden Geometrie. Von E. Kötter	189
Spott, Ein Cykloiden-Apparat. Von Decknether	190
Schüler, Ueber den Satz von der Winkelsumme im Dreieck. Von H. Schotten	222
Washanib Dhwaib Wataanalania	
Mechanik, Physik, Meteorologie.	
Van Bebber, Lehrbuch der Meteorologie. Von P. Treutlein	34
Wolff, Sachregister zu Mousson's Physik auf Grundlage der Erfahrung.	
Von B. Nebel	104
Gleichen, Die Haupterscheinungen der Brechung und Reflexion des Lichtes.	
Von B. Nebel	105
Klimpert, Lehrbuch der allgemeinen Physik. Von B. Nebel	
Klimpert, Lehrbuch der Dynamik fester Körper. Von B. Nebel	
Tessari, La cinematica applicata alle macchine. Von B. Nebel	
Isenkrahe, Ueber die Fernkraft und das durch Paul Du Bois-Reymond auf-	
gestellte dritte Ignorabimus. Von B. Nebel	
Lamprecht, Wetter, Erdbeben und Erdenringe. Von B. Nebel	
Grashof, Theoretische Maschinenlehre (Schluss). Von B. Nebel	
Bühler, Zwei Materien mit drei Fundamentalgesetzen. Von B. Nebel	
Weber, Elektrodynamik. Von B. Nebel	
Hobbs, Berechnung elektrischer Messungen. Von B. Nebel	
Thomson, Anwendung der Dynamik auf Physik und Chemie. Von B. Nebel	
Faraday (Kalischer), Experimentaluntersuchungen über Elektricität, II.	140
Von B. Nebel	147
Zetzsche, Der Betrieb und die Schaltungen der elektrischen Telegraphen.	
Von R Nebel	48
Von B. Nebel	148
Voigt, Ueber die innere Reibung der festen Körper, insbesondere der	
Krystalle Von B. Nebel	149
Föppl, Leitfaden und Aufgabensammlung für den Unterricht in der ange-	
wandten Mechanik. Von B. Nebel	150
Möbius, Hauptsätze der Astronomie. Von B. Nebel	151
Buchholts, Die einfache Erdzeit. Von B. Nebel	51
Kerz, Weitere Ausbildung der Laplace'schen Nebularhypothese. Von B. Nebel	151
Hovestadt, Lehrbuch der angewandten Potentialtheorie. Von E. Jahnke	221
Bibliographie Seite 39, 78, 107, 158, 199, 2	224
Mathematisches Abhandlungsregister: 1. Januar bis 80. Juni 1890 1	10
1. Juli his 31. December 1890 2	

Historisch-literarische Abtheilung.

Commentar zu dem "Tractatus de Numeris Datis" des Jordanus Nemorarius.*

Vor

Maximilian Curtze

in Thorn.

Einleitung.

Die Schrift des Jordanus, zu welcher wir hier einen Commentar liefern wollen, ist erstmalig gedruckt in dem Supplementhefte des XXIV. Jahrganges dieser Zeitschrift** durch Prof. P. Treutlein in Karlsruhe. Da dieser Abdruck nur nach einer Handschrift gefertigt ist, auch mehrfache Lesefehler und falsche Auflösungen des Textes untergelaufen sind, welche das Verständniss sehr oft erschweren,*** so gebe ich hier den gereinigten Text nebst dessen Uebertragung in die heutige Zeichensprache, indem ich mich dabei, so weit als möglich, an die Worte des Verfassers anlehne. Welchen Einfluss Jordanus auf das spätere Mittelalter und den Anfang der neueren Zeit gehabt hat, ist in der Schrift Treutlein's genügend klargelegt, so dass ich mich darauf nicht weiter einzulassen brauche. Einige andere allgemeine Bemerkungen muss ich aber vorausschicken.

Jordanus leidet, wie alle mittelalterlichen Schriftsteller der Algebra, an dem Mangel einer allgemeinen mathematischen Zeichensprache; er hat aber einen Schritt über alle seine Vorgänger hinausgethan, er hat den Begriff einer allgemeinen Zahl nicht nur gefasst, er hat auch für denselben den Ausdruck gefunden, welchen wir heute noch benutzen: die Buchstaben. Während noch lange nach ihm jede Operation mit allgemeinen Zahlen nur an dem Substrate der geraden Linien geführt wurde, macht er sich von diesem Nothbehelf frei und operirt mit seinen allgemeinen Zahlen genau so,

Hist,-lit. Abthlg. d. Zeitschr. f. Math. u. Phys. XXXVI, 1.

^{*} Der Commentar zum ersten Buche dieses Tractates ist schon als Abhandlung zum Osterprogramme 1890 des Königl. Gymnasiums mit Realgymnasium zu Thorn erschienen.

Supplement zur hist.-lit. Abth. des XXIV. Jahrganges. Leipzig 1879, S. 125-166.

^{***} Man sehe meine Recension: Die Ausgabe von Jordanus': "De numeris datis" durch Prof. P. Treutlein in Karlsruhe. (Leopoldina, Amtliches Organ der Kaiserl. Leop.-Carol. Akad., Heft XVI, 1879.)

wie wir es jetzt zu thun pflegen. Freilich kennt er von Operationszeichen nur eines, das auch Leonardo von Pisa anwendet: Die unmittelbare Nebeneinandersetzung von zwei Zahlen als Zeichen der Addition — so heisst bei ihm z. B. abc nichts Anderes als a+b+c —, alle übrigen Operationszeichen entbehrt er und muss sich daher dadurch helfen, dass er z. B. für die Differenz zweier Zahlen einen neuen Buchstaben einführt, für das Product ebenso einen neuen und ähnlich weiter. Alle diese neuen Zeichen sind dabei ebenso allgemein aufgefasst, als die ursprünglichen Zahlenbezeichnungen durch Buchstaben selbst. Setzen wir aber unsere Operationszeichen an Stelle seiner neu eingeführten Symbole, so ist der Gang seiner Lösungen meistens nur in unwesentlichen Punkten von dem noch jetzt zu dem nämlichen Zwecke benutzten Gange verschieden. Dass er dabei, eben seiner mangelhaften Bezeichnung halber, kleine Umwege machen muss, ist nicht zu verwundern.

Eigenthümlich ist es, dass noch Niemandem aufgefallen ist, dass genan dieselbe Klarheit des Zahlbegriffes sich auch in desselben Verfassers "Arithmetica decem libris demonstrata "* findet. Man hat, weil auf den Rändern der Ausgaben und Handschriften dieses Werkes scheinbar ähnliche Figuren vorhanden sind, wie sie in den Euklidischen arithmetischen Büchern und sonst existiren, auch einfach geglaubt, es handle sich um ähnliche Beweismittel. Während aber bei Euklides und den Uebrigen der Beweis eines arithmetischen Satzes an einer geometrischen Figur geführt wird, indem man für die Zahlen Linien einführt, ist in Jordanus' Arithmetik die Figur in ähnlicher Weise gebraucht, wie in dem Liber Abbaci des Leonardo von Pisa: Die Linien dienen nur dazu, zu zeigen, in welcher Weise die gewählten Zahlen zu verknüpfen sind, es sind nicht Substrate der Zahlen selbst. Die Beweise nehmen absolut auf die Figuren keine Rücksicht; diese könnten ebensogut wegbleiben, ohne dass das Verständniss der Beweise auch nur im Mindesten erschwert würde, - sie sind hinzugefügt, weil dergleichen einmal hergebracht war, brauchen aber noch nicht einmal von Jordanus selbst herzurühren. Wer einen Satz nebst Beweis aus der Arithmetik, z. B. den folgenden (Lib. I, Satz 17), liest:

17. Si numerus in duo dividatur, quod fit ex toto in se, aequum est ei, quod fit ex ductu unius partis in aliud quater, cum eo, quod fit ex differentia in se.

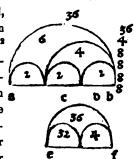
Sit ab numerus in duo a et b diuisus, sitque b maius, diuidaturque iterum b in duo, scilicet in d aequale a et c, differentiam b ad a: dico, quod fit ex ab in se, aequum esse ei, quod fit ex ab in se, aequum est ei, quod fit ex ab in se, aequum est ei, quod fit ex ab in se, aequum est ei, quod fit ex ab in b et ab in se et b in se. At per praecedentem, quod

^{*} Mehrfach durch Faber Stapulensis (Jean Fabre d'Étaples) zu Paris herausgegeben. Sie findet sich auch häufiger in Handschritten, ein Beweis ihrer grossen Verbreitung.

fit ex b in se cum a in se, aequali d uni partium b, aequale ei, quod fit ex b bis in a et c in se; quare alternatim per octavam ei, quod fit ex a bis in b et c in se. Igitur ab in se tantus est, quantus a quater in b cum differentia a in se, quod intenditur,

muss ohne Weiteres die absolute Uebereinstimmung der Beweisart mit derjenigen der numeri dati anerkennen und einsehen, dass die hinzugefügte Figur eher dem Verständniss hinderlich ist, als dasselbe fördert. Es ist das nämlich nicht etwa die Figur, wie sie im Euklides sich finden müsste, sondern sie sieht im Facsimile nach der Ausgabe von 1513 so aus:

Sie giebt also nichts weiter als ein Beispiel, bei welchem a+b=6, a=2, b=4 ist; von dem allgemeinen Beweise des Jordanus, dass $(a+b)^2=4ab+(a-b)^2$, ist aber keine Spur darin enthalten: Sie ist also vollständig überflüssig, in gewisser Weise für das Verständniss des allgemeinen Beweises sogar schädlich. Man vergleiche damit die eigenthümliche Beweisfigur der Inder für den Pythagoreischen Lehrsatz bei Cantor,* so wird der Unterschied zwischen einem Beweise arithmetischer



Wahrheiten durch geometrische Betrachtungen und der hier beliebten figürlichen Darstellung eines Specialfalles recht augenfällig einleuchten.

Von der dritten arithmetischen Schrift des Jordanus, dem "Algorithmus demonstratus", ist die Eigenthümlichkeit der Zahlenauffassung und Bezeichnung als mit der der numeri dati identisch schon seit langer Zeit von Chasles erkannt worden, wenn auch letzterer diesen Algorithmus einer viel späteren Zeit, nämlich Regiomontan, zuschreibt. Es ist wohl jetzt allseitig anerkannt, dass Jordanus der Verfasser ist, während die Handschrift, aus welcher Schoner denselben herausgab, von Regiomontan's Hand geschrieben zu sein scheint und vielleicht in Wien noch erhalten ist.**

Das vorliegende Werk des Jordanus zerfällt, wie seine Geometrie, in vier Bücher, für welche sich der Commentar hier anschliesst. Nehmen wir den zweiten Paragraph aus, so handelt es sich im ersten Buche immer um die Theilung einer Zahl in zwei andere, so dass diese noch einer Bedingung Genüge leisten. Nur im zweiten Abschnitt ist, wie gesagt, die Anzahl der Theile der gegebenen Zahl beliebig. Dieser Abschnitt ist sehr nahe verwandt mit dem sogenannten Epanthem des Tymaridas,*** wie man bei Ver-

[•] Cantor, Vorlesungen über Geschichte der Mathematik. Erster Band. Leipzig 1880. S. 557.

^{**} Die Basler Handschrift (F. II. 33) sowohl, als die Dresdner (Db. 86) stammen aus dem Anfange des 14. Jahrhunderts, können also sicher nicht Regiomontan zum Verfasser haben. Die Wiener Handschrift (Nr. 5203²⁸) befindet sich in einer Sammlung von Abhandlungen Peurbach's.

^{***} M.s. Cantor, a. a. O. S. 371.

gleichung ohne Weiteres sieht. Nur bei den Indern war es bis jetzt möglich, ausser bei Tymaridas, eine ähnliche Betrachtung nachzuweisen. Um unserer jetzigen Auffassung solcher Aufgaben gerecht zu werden, habe ich nie von der Theilung einer Zahl in verschiedene andere, sondern von der Summe mehrerer Zahlen gesprochen, welche dann noch weiteren Bedingungen genügen. Aufgabe 7 behandelt eigentlich eine Gleichung nur mit einer Unbekannten, welche Jordanus jedoch durch einen leichten Kunstgriff auf eine solche mit deren zweien zurückführt. Es handelt sich um die Gleichung $x^2 + ax = b$ oder x(x + a) = b. Da nämlich (x + a) - x = a ist, so kennt man Summe und Product der Zahlen x + a, x. Jordanus sucht dann das Quadrat der Summe von x + a und x, also $(2x + a)^2$, multiplicirt also $x^2 + ax = b$ mit 4 und addirt a^2 , um so $(2x + a)^2 = a^2 + 4b$ zu erhalten. Das ist ganz das Verfahren der Araber, welche auch, wenn a keine gerade Zahl war, auf diesem Wege den Bruch vermieden. Jordanus benutzt denselben aber immer, so dass also auch bei geradem a mit 4 multiplicirt wird. Auf diese Aufgabe führt er ungemein viele seiner weiteren Abschnitte zurück. In Aufgabe XVI benutzt er dieselben Schlüsse auch zur Lösung einer Gleichung von der Form $x^2 - ax = b$, welche er genan ebenso behandelt, wie $x^2 + ax = b$. In diesem Abschnitte ist es auch, wo zum ersten Male der Fall eintritt, dass eine Gleichung zweiten Grades wei positive Wurzeln besitzt. Hier lässt Jordanus beide Lösungen zu, sagt aber, man könne nicht entscheiden, welche von beiden die richtige sei; in dem Beispiele zeigt er, dass beide Lösungen der gegebenen Aufgabe entsprechen. Zwei Lösungen, welche irrational werden würden, zieht er einfach nicht in Betracht, obwohl gerade der letzte Paragraph des ersten Buches eine solche Irrationalität bringt. Er kommt hier auf 1/500, welche er zu 221/, bestimmt, ad proximum, wie er sagt, jedenfalls ein Werth, der mir bis jetzt nicht aufgestossen ist.

Beim Durchlesen dieses Buches wird der Leser besonders über das Geschick staunen, mit welchem am Anfange des 13. Jahrhunderts Umformungen von Ausdrücken quadratischer Natur in andere, entweder durch Addition oder Subtraction, öfter auch durch Multiplication vorgenommen, und so complicirte Aufgaben auf früher behandelte leichtere zurückgeführt werden. Fast alle diese Umformungen finden sich im ersten Buche der Arithmetica Jordani bewiesen, und an zwei Stellen beruft sich der Verfasser auch auf dieses zweite eigene Werk. Ich habe an den betreffenden Stellen den Wortlaut des angezogenen Lehrsatzes nach der ersten Ausgabe der Arithmetik von 1496 angegeben. Der oben mit seinem Beweise mitgetheilte Satz 17 ist eines dieser beiden Theoreme.

Wie die bei dem ersten Buche benutzten Sätze im ersten Buche der Arithmetik des Jordanus sich finden, sind die im zweiten und dritten Buche gebrauchten in dem zweiten Buche der letzteren enthalten. Wie dieses zweite Buch von Sätzen über Verhältnisse handelt, so verwerthen das zweite

und dritte Buch der *numeri dati* die dort bewiesenen Theoreme für die Lösung von solchen Aufgaben, bei denen Verhältnisse allein oder mit anderen Beziehungen gegeben sind.

Im zweiten Buche sind manche Sätze ganz allgemein ausgesprochen, jedoch von Jordanus nur für drei oder vier Unbekannte bewiesen worden. Ich habe jederzeit, seinen Spuren folgend, die Lösung für eine beliebige Anzahl von Unbekannten durchgeführt. Von besonderem Interesse sind die beiden letzten Paragraphen über den falschen Satz der Araber. Die Bemerkung Treutlein's, dass hier auch arabische Zahlzeichen auftreten, ist hinfällig, da der letzte Theil des letzten Paragraphen nicht von Jordanus herrührt, sondern ein Einschiebsel ist. Er findet sich nur in der Baseler Handschrift, welche jünger ist, als die Dresdner.

Das vierte Buch bringt endlich quadratische Gleichungen mit einer Unbekannten. Hier habe ich auch die in dem Treutlein'schen Abdrucke nicht vorhandenen Nummern 97—113 aus der Handschrift Cod. Dresd. C. 80 mit aufgenommen, so dass dadurch eine vollständige Ausgabe der interessanten Schrift vorliegt. Leider hat diese Handschrift den werthvollsten Theil des Werkes, die Beweise in allgemeinen Zahlzeichen, weggelassen und liefert nur zu jedem Satze die in unserer Ausgabe mit Verbi gratia eingeleiteten Beispiele. Jedenfalls hat man aber doch einen Ueberblick über den Gesammtumfang des Werkes, das selbst einige Gleichungen des dritten Grades einschliesst.

Was nun die folgenden Seiten betrifft, so habe ich mir erlaubt, nach heutiger Schreibweise quae, aequalis u. dergl. statt que, equalis etc. drucken zu lassen; ich habe auch additio u. A. und nicht, wie die Handschriften, addicio u. s. w. mir zu setzen erlaubt; ich glaubte so dem Verständniss des so wie so nicht gerade leicht lesbaren Textes zu Hilfe zu kommen. Die Interpunktion habe ich nach neueren Grundsätzen gehandhabt und lieber einmal ein Komma zuviel gesetzt, als durch Auslassung eines solchen Zweideutigkeit zu erregen. Die Uebersetzung in das Mathematische ist derart bewirkt, dass die Sätze in solcher Fassung gegeben sind, wie man dieselben heute aussprechen würde. Die Bedingungen sind dann in Gleichungen gefasst, und diese nach den von Jordanus vorgeschriebenen Operationen aufgelöst worden, was nicht überall gerade leicht war, besonders da, wo die fehlende Interpunktion zu Zweifeln Anlass gab. Ich glaube überall den Sinn des Autors richtig aufgefasst zu haben. An einigen Stellen ergab das Nachrechnen auch augenfällige Emendationen des überlieferten Textes. Diese anzudeuten habe ich unterlassen. Die jedem Paragraphen beigegebenen Beispiele sind nicht in extenso durchgerechnet, sondern nur angegeben worden, welche Werthe für die allgemeinen Zahlen einzusetzen sind, um der Reihe nach die dem Beispiele entsprechenden Zahlen zu erhalten.

Thorn, 21. Januar 1890.

Iordani Nemorarii de Numeris Datis Liber I.

Numerus datus est, cuius quantitas nota est.

Numerus ad alium datus est, cum ipsius ad alium est proportio data. Data est autem proportio, cum ipsius denominatio est cognita.

Proportio ist hier das, was später ratio, Verhältniss heisst; unser Begriff Proportion wird im Mittelalter durch Proportionalitas gegeben.

Denominatio = Exponent des Verhältnisses.

I. Si numerus datus in duo dividatur, quorum differentia data, erit utrumque eorum datum.

Quia enim minor portio et differentia faciunt maiorem, tunc minor portio cum sibi aequali et cum differentia facit totum. Sublata ergo differentia de toto remanebit duplum minoris datum; quo diuiso erit minor portio data, sicut et maior.

Verbi gratia X dividatur in duo, quorum differentia duo; quae si auferantur de X, relinquentur octo, cuius medietas est quatuor, et ipse est minor portio, altera sex.

I. Aus der Summe und Differenz zweier Zahlen lassen sich die Zahlen selbst bestimmen.

Gegebene Gleichungen:

$$x+y=s$$
, $x-y=d$

Aus dem Begriff der Differenz folgt y+d=x, also ist 2y+d=x+y=s, daher 2y=s-d, $y=\frac{1}{2}(s-d)$, x=s-y. Man beachte die Eigenthümlichkeit, dass J. fast ausnahmslos die kleinere Zahl zuerst sucht.

Beispiel: s=10, d=2; 2y=8, y=4, x=6.

II. Si numerus datus dividatur per quotlibet, quorum continuae differentiae datae fuerint, quodlibet eorum datum erit

Datus numerus sit a, qui dividatur in b, c, d, e, sitque e minimus. Et quia eorum continuae sunt differentiae datae, singulorum ad e datae erunt differentiae. Sit igitur f differentiae b ad e, et g, h differentiae c ad e et d ad e; et quia e cum singulis illorum facit singula istorum, manifestum est, quod triplum e cum fgh facit illos tres. Quadruplum ergo e cum fgh facit a. Hiis ergo demptis de a remanebit quadruplum e datum, quare e datum erit, et per additionem differentiarum erunt reliqua data.

Hoc opus est. Verbi gratia dividatur XL per quatuor quorum per ordinem differentiae IIII, III, duo. Differentia ergo primi ad ultimum IX, et secundi ad illum V, et tertii ad eum duo, quae simul faciunt XVI. Quibus demptis de XL remanebunt XXIIII, quorum quarta est VI, et hoc erit minimus quatuor. Additis autem IX, V et duobus prouenient caeteri tres VIII, XI, XV.

II. Kennt man die Summe einer beliebigen Menge von Zahlen und die Differenzen je zweier aufeinander folgenden, so kann man sämmtliche Zahlen einzeln bestimmen.

Die von Jordanus für vier Zahlen gegebene Lösung lässt sich leicht, wie folgt, verallgemeinern.

Gegebene Gleichungen:

$$x_1 + x_2 + x_3 + \cdots + x_n = a$$
,
 $x_1 - x_2 = d_1$,
 $x_2 - x_3 = d_2$,
 $x_2 - x_3 = d_{n-1}$.

Man erhält leicht:

$$x_{n-1} - x_n = d_{n-1} = \delta_{n-1},$$

$$x_{n-2} - x_n = \delta_{n-1} + d_{n-2} = \delta_{n-2},$$

$$x_{n-3} - x_n = \delta_{n-2} + d_{n-3} = \delta_{n-3},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_2 - x_n = \delta_2 + d_2 = \delta_2,$$

$$x_1 - x_n = \delta_2 + d_1 = \delta_1.$$

Also durch Addition dieser Gleichungen:

$$x_1 + x_2 + \cdots + x_{n-1} - (n-1) x_n = \delta_1 + \delta_2 + \cdots + \delta_{n-1}$$

Folglich ist auch, wenn $x_n - x_n = 0$ addirt wird:

und daher

$$a - n x_n = \delta_1 + \delta_2 + \cdots + \delta_{n-1}$$

$$x_n = \frac{a - (\delta_1 + \delta_2 + \delta_3 + \cdots + \delta_{n-1})}{n}.$$

Also sind durch Addition von δ_1 , δ_2 , ..., δ_{n-1} auch die übrigen Zahlen gegeben.

Beispiel: n=4, a=40, $d_1=4$, $d_2=3$, $d_3=2$. Es ist dann der Reihe nach $\delta_1 = 9$, $\delta_2 = 5$, $\delta_3 = 2$, also $x_4 = \frac{40 - 16}{4} = 6$; $x_3 = 6 + 2 = 8$, $x_2 = 6 + 5 = 11$, $x_1 = 6 + 9 = 15.$

III. Dato numero per duo diuiso si, quod ex ductu unius in alterum producitur, datum fuerit, et utrumque eorum datum esse necesse est.

Sit numerus datus abc divisus in ab et c, atque ex ab in c fiat ddatus, itemque ex abc in se fiat e. Sumatur itaque quadruplum d, qui fit f, quo dempto de e remaneat g, et ipse erit quadratum differentiae abad c. Extrahatur ergo radix ex g, et sit h, eritque h differentia ab ad c, cumque sic h datum, erit et c et ab datum.

Huius operatio facile constabit hoc modo. Verbi gratia sit X diuisus in numeros duos, atque ex ductu unius eorum in alium fiat XXI; cuius quadruplum, et ipsum est LXXXIIII, tollatur de quadrato X, hoc est C, et remanent XVI, cuius radix extrahatur, quae erit quatuor, et ipse est differentia. Ipsa tollatur de X et reliquum, quod est VI, dimidietur, eritque medietas III, et ipse est minor portio et maior VII.

III. Aus Summe und Product zweier Zahlen lassen sich beide Zahlen bestimmen.

Gegebene Gleichungen:

$$x+y=s$$
, $xy=d$.

J. findet der Reihe nach $(x+y)^2 = s^7 = e$; 4xy = 4d = f; $e - f = g = (x-y)^2$. x-y=Vg=h: also nach 1 2y=s-h u. s. w.

Beispiel: s = 10, d = 21. Man erhält g = 100 - 84 = 16, also h = 4; y = 3, x = 7, y = 3

IV. Si numerus datus fuerit in duo diuisus, quorum quadrata pariter accepta sint data, erit utrumque datum modo praemisso.

Si enim g, scilicet quadrata coniuncta, fuerit notus, erit et e notus, qui est duplum unius in alterum, subtrahendo quadrata partium coniuncta de quadrato totius numeri; subtractoque e de g remanebit h, quadratum differentiae, cuius radix extracta l sic nota; erunt omnia data.

Opus idem. Diuisus quippe sit X in duo, quorum quadrata sint LVIII; quo de C remanebunt XLII, quibus demptis de LVIII remanebunt XVI, radix cuius est IIII, et ipsa est differentia portionum, quae fient VII et III, ut prius.

IV. Desgleichen aus der Summe der Zahlen und der Summe ihrer Quadrate.

Gegebene Gleichungen:

$$x+y=s, \quad x^2+y^2=g.$$

J. führt die Aufgabe auf die vorige zurück. Es ist nämlich

und daher

$$(x+y)^2 - (x^2+y^2) = s^2 - g = 2xy = e$$

 $(x-y)^2 = 2g - s^2 = h; \quad x-y = \sqrt[3]{h} = l,$

und also nach I Alles bekannt.

Beispiel: s=10, g=58; also e=42, h=16, l=4; die Zahlen daher wieder 7 und 8.

V. Si numerus in duo diuidatur, quorum differentis data, atque qui ex ductu unius in reliquum prouenerit numerus datus, numerum quoque diuisum datum esse conueniet.

Maneat superior dispositio, et l, differentia portionum, sit datus, et similiter d, qui est productus ex eis, cuius duplum est e. Sed et e duplicato addatur h, qui est quadratum differentiae, et compositus sit f, qui erit ex decima septima Arismeticae Jordani quadratus abc et datus, quare et abc datus est.

Verbi gratia differentia portionum sit VI, et ex ipsis proueniat XVI, cuius duplum XXXII, illius quoque duplum LXIIII. Huic addatur XXXVI, scilicet quadratum VI, et fient C, cuius radix extracta erit X, numerus diuisus in VIII et duo.

V. Aus der Differenz zweier Zahlen und ihrem Producte kann man die Summe derselben und die Zahlen einzeln finden.

Gegebene Gleichungen: x-y=l, xy=d.

Der Reihe nach werden gefunden 2xy=2d=e, $(x-y)^2=l^2=h$ und darau $(x+y)^2=h+2e=f$, $x+y=V\bar{f}$. Da so die Summe bekannt ist, kennt man nach lauch die Zahlen einzeln.

Beispiel: l=6, d=16; also 4d=2e=64; h=36, f=100; x+y=10, x=8, y=2.

Die aus der Arithmetik des Jordanus (Buch I) angezogene Stelle lautet: Si numerus in duo dividatur, quod fit ex toto in se, aequum est ei, quod fit ex ductu unius partis in aliud quater, cum eo, quod fit ex differentia in se

VI. Si vero differentia data fuerit et quadrata eorum coniunctim data, numerus etiam totus datus erit.

Quadrata eorum coniuncta erant g, qui sit datus; de quo tollatur h, quadratus differentiae, similiter datus, et remanebit e datus, qui est duplus unius in alterum, additoque e ad g fiet f, quadratus totius; extracta ergo radice f erit totus abc datus.

Verbi gratia LXVIII sint duo quadrata, a quibus tollantur XXXVI, qui est quadratus differentiae, et remanebunt XXXII, qui est duplum unius in alterum. Coniunctis itaque LXVIII et XXXII prouenient C. Huius radix est X, et ipse erat diuisus in VIII et duo.

VI. Desgleichen aus der Differenz der Zahlen und der Summe ihrer Quadrate.

Gegebene Gleichungen:

$$x-y=l, x^2+y^2=g.$$

J. bildet folgeweise: $(x-y)^3 = l^2 = h$; 2xy = g - h = e; $(x+y)^2 = e + g = f$; $x+y=V\bar{f}$, also auch nach 1 x und y gegeben.

Beispiel: g = 68, l = 6; h = 36, e = 32, f = 100, also x + y = 10; x = 8, y = 2.

VII. Si dividatur numerus in duo, quorum alterum tantum datum, ex non dato autem in se et in datum prouenerit numerus datus, erit et numerus, qui divisus fuerat, datus.

Sit numerus diuisus in a et in b, sitque b datus atque ex a in se et in b, hoc est in totum ab, proueniat d, qui sit datus. Addatur autem c ad ab, et ipse sit aequalis a, ut sit totus abc diuisus in ab et c. Quia igitur ex ab in c fit d datus, atque differentia ab ad c, scilicet b, est datus, erit ab et c datus, similiter et a et ab.

Huius operatio est. Verbi gratia sit VI unum diuidentium, et ex reliquo in se et in VI fiant XL, quorum duplum, id est LXXX, duplicetur, et erunt CLX, quibus addatur quadratum VI, hoc est XXXVI, et fient CXCVI, cuius radix est XIIII, de quo sublatis VI et reliquo mediato fient IIII, qui est reliquum, eritque totus diuisus X, coniunctis IIII et VI.

VII. Addirt man zu einer unbekannten Zahl eine bekannte und multiplicirt dann die Summe mit der unbekannten Zahl, so ist die letztere bestimmbar, wenn der Werth des Productes bekannt ist.

Gegebene Gleichung:

$$(x+b)\ x=d.$$

J. bildet noch die Gleichung:

$$(x+b)-x=b,$$

er kennt also jetzt die Differenz der beiden Factoren und ihr Product, und hat daher nur ∇ anzuwenden, um x+b und x zu bestimmen.

Beispiel: b = 6, d = 40. J. erhält also x(x+6) = 40; $4x^2 + 24x = 160$, $4x^2 + 24x + 36 = (2x+6)^2 = 196$; 2x+6=14, 2x=8, x=4, x+6=10.

Die Dresdner Handschrift Db. 86 hat hier zu dem Lehrsatze folgende Bandbemerkung: Unde patet, quod, si id, quod fit ex numero in se et in numerum datum, fuerit totum datum, erit et ille numerus datus.

VIII. Si numerus datus in duo diuidatur, et ex ductu totius in differentiam et minoris diuidentium in se prouenerit numerus datus, erit et utrumque illorum datum.

Illa enim coniuncta sunt tamquam quadratum maioris numeri ex decima octava Arismeticae; extracta igitur radice illius habebis maius diuidentium et ita reliquum.

Verbi gratia diuidatur X in duo, et ex ductu ipsius in differentiam et minoris portionis in se fiant LXIIII; radix cuius est VIII, qui erit maior portio, et duo minor.

VIII. Wenn ausser der Summe das Product derselben in die Differenz der Zahlen plus dem Quadrate der kleinern Zahl gegeben ist, so kennt man beide Zahlen.

Gegebene Gleichungen:

$$x + y = s$$
, $(x + y) \cdot (x - y) + y^2 = b$.

Die zweite Gleichung ist identisch mit der folgenden: $x^2 = b$, also ist $x = \sqrt{b}$, und daher auch y bekannt.

Beispiel: s=10, b=64. Man findet also ohne Weiteres x=8, y=2. Der aus der Arithmetik des Jordanus angezogene Satz lautet dort: Quod fit ex minore dividentium in se cum eo, quod fit ex toto in eorum differentiam, tantum est, quantum quod fit ex maiore eorundem per se multiplicato.

IX. Si vero ex ductu totius in differentiam et maioris dividentium in se fiat numerus datus, utrumque etiam datum erit.*

Esto ab divisus in a et in b, quorum differentia c, atque ex ab in c fiat d, et ex a, qui est maior, in se fiat e, eritque totus de datus; sed et ab in se faciat f, quare totus de et f datus est. Sed quia abc duplus est a, erit df, quod fit ex ab in duplum a. Erit ergo df, quod fit ex duplo ab in a, sic igitur def erit, quod provenit ex a in se et in duplum ab, cumque def datum sit et duplum ab, erit et a datus ** et ideo b.

Verbi gratia X in differentiam portionum et maior portio in se faciant LVI, quibus iungantur C, et erunt CLVI, quorum duplum, hoc est CCCXII, duplicetur et fient DCXXIIII; quibus addatur quadratum XX, qui est duplum X, et fient M et XXIIII; huius radix XXXII, de quo tollatur XX. et remanebunt XII, cuius dimidium est VI, et ipse est maior portionum X, et reliqua est IIII.

^{*} Hier hat die Handschrift Db. 86 folgende Randbemerkung: Ex nona secundi Euclidis in numeris patet, quod si numerus in se et in alium ducatur, ut a in se et in b, quadratum totius producti cum quadrato b est numerus quadratus, cuius radix est b et duplum a. Item patet ex nona et decima septima primi Arismeticu Iordani, et per hoc verificatur huius operis executio et veritas, et multarum sequentium.

^{**} Hier schiebt die Dresdner Handschrift die Glosse ein: ex corrollario septimae. Siehe oben S. 9 Z. 1-4 v. u.

IX. Beide Zahlen sind auch bekannt, wenn ausser der Summe das Product aus Summe und Differenz plus dem Quadrate der grösseren Zahl gegeben ist.

Gegebene Gleichungen:

$$x + y = s$$
, $(x + y)(x - y) + x^2 = g$.

J. geht so vor: Es ist $(x+y)^2 = s^2 = f$; $f+g=x^2+2(x+y)x=x^2+2sx=x(x+2s)$, also ist nach VII x bekannt, folglich auch y.

Beispiel: s = 10, g = 56; f + g = 156, also die zu lösende Gleichung

$$x(x+20)=156.$$

Nach VII erhält man dann $4x^2 + 80x = 624$; $4x^2 + 80x + 400 = 1024$; 2x + 20 = 32; 2x = 12, also x = 6, y = 4.

X. Quod si quadrata dividentium ambo cum eo, quod ex toto in differentiam, fecerint numerum datum, quamlibet eorum datum esse necesse est.

Omnia enim haec sunt tamquam duplum quadrati maioris diuidentis. Dimidietur itaque et dimidii extrahatur radix, et habebitur maior portio.

Verbi gratia diuiso X quadrata portionum et quod fit ex X in eorum differentiam omnia sint XCVIII, cuius medietas est XLIX, cuius radix est VII, et ipse est maius diuidens, minor vero est III.

X. Desgleichen, wenn ausser der Summe die Summe der Quadrate plus dem Producte aus Summe und Differenz gegeben ist.

Gegebene Gleichungen:

$$x+y=s$$
, $x^2+y^2+(x+y)(x-y)=d$.

Die zweite Gleichung ist identisch mit $2x^2 = d$; es ist also $x^2 = \frac{1}{2}d$, $x = \sqrt[3]{\frac{1}{2}d}$, y = s - x.

Beispiel: s=10, d=98; also d=49, and folglich x=7, y=3.

XI. Si item quod fit ex toto in differentiam cum eo, quod ex uno diuidentium in reliquum producitur, fuerit datum, erunt singula eorum data.

Cum sit autem totum ex differentia et duplo minoris diuidentium compositum, tantum erit totum in se, quantum semel in differentiam et minor portio hiis in duplum; sed minor portio in totum tantum est, quantum in maiorem et in se: si ergo, quod fit ex toto in differentiam cum eo, quod ex minore diuidentium in reliquum, tollantur de quadrato totius, remanebit, quod fit ex minore in se et in totum datum. Sic ergo ex praemissis et ipsum datum erit et reliquum.

Operis executio. Verbi gratia, quod fit ex X in differentiam, cum eo, quod ex uno dividentium in alterum, faciat LXXXIX; quo sublato de C remanent XI, cuius duplum dupletur, et fient XLIIII, quae cum C sunt C et XLIIII, quorum radix est XII. Huius ad X differentia est duo, quorum medietas est unum, et ipse minus dividens et maius IX.

XI. Desgleichen, wenn neben der Summe das Product aus Summe und Differenz plus dem Producte beider Zahlen gegeben ist.

Gegebene Gleichungen:

Es ist $s^2-d=(x+y)^2-(x+y)(x-y)-xy=y^2+y(x+y)=y^2+sy$, folglich hat man für y die Gleichung zu lösen:

$$y(y+s)=s^2-d.$$

Es ist also nach VII y bekannt, daher auch x.

Beispiel: s = 10, d = 89; $s^2 - d = 11$. Also ist y(y + 10) = 11. Darans folgt nach VII y = 1, x = 9.

XII. Si numero dato per duo diuiso quadrata ipsorum cum quadrato differentiae fuerint datae, utrumque eorum datum erit.

Detractis siquidem omnibus hiis de quadrato totius remanebit minus duplo unius in alterum, quantum est quadratum differentiae, quare minus duobus quadratis dividentium duplum eiusdem quadrati; minus ergo toto detracto eius triplum. Cum ergo ipsum residuum de detracto sublatum fuerit, reliqui sumatur tertia, cuius radix erit differentia et data; omnia ergo data.

Verbi gratia diuiso X in duo sint quadrata eorum cum quadrato differentiae LVI, qui tollatur de C, et remanebunt XLIIII, et hic auferatur de LVI, et relinquuntur XII, quorum tertia est IIII. Huius radix est duo, et ipse est differentia portionum. Maior itaque erit VI et minor IIII.

XII. Ebenso, wenn ausser der Summe die Summe der Quadrate der Zahlen plus dem Quadrate ihrer Differenz gegeben ist.

Gegebene Gleichungen:

$$x+y=s$$
, $x^2+y^2+(x-y)^2=d$.

 $s^2 - d = (x+y)^2 - x^2 - y^2 - (x-y)^2 = 2xy - (x-y)^2$

und daher $2d - s^2 = (x - y)^2 + (x - y)^2 + (x^2 - 2xy + y^2) = 3(x - y)^2.$ Folglich ist

 $(x-y)^2 = \frac{1}{2}(2d-s^2), \quad x-y = \sqrt[3]{\frac{1}{2}(2d-s^2)},$ also x und y bekannt.

Man hat

Beispid: s = 10, d = 56; $s^2 - d = 44$, $2d - s^2 = 12$, daher $(x - y)^2 = 4$, x - y = 2, also x = 6, y = 4.

XIII. Si vero qui fit ex ductu alterius in alterum cum quadrato differentiae fuerit datum, datum erit et utrumque ipsorum.

Totum duplicetur, et fient tamquam duo quadrata et quadratum differentiae, quae quoniam data sunt, data sunt etiam, quae proponimus.

Verbi gratia ductum unius in alterum cum quadrato differentiae sint XXVIII, quae duplata faciunt LVI, quae sunt quadrata, ut supra, et caetera eodem modo.

XIII. Desgleichen, wenn die Summe und das Product der Zahlen plus dem Quadrate der Differenz gegeben ist.

Gegebene Gleichungen:

$$x + y = s$$
, $xy + (x - y)^2 = d$.

Man findet $2d = 2xy + 2x^2 - 4xy + 2y^2 = x^2 + y^2 + (x-y)^2$, und damit hat man die vorige Aufgabe.

Das Beispiel ist ebenfalls dasselbe. Es ist s=10, d=28, und wiederum x=6, y=4.

XIV. Si numerus datus in duo diuidatur, et quadrato minoris de quadrato maioris detracto reliquum datum fuerit, erunt et ipsa data.

Illo enim noto detracto de quadrato totius relinquitur quadratum minoris bis et quod fit ex ipso in reliquum bis. Si ipsum igitur dimidietur, proueniet medietas: quadratum minoris semel et quod fit ex ipso in maius, et hoc tantum est, quantum si ducatur totum in minorem portionem. Diudatur ergo per totum, et exibit minus diuidentium.

Modus operationis. Verbi gratia diuisus sit X in duo, et quadrato minoris detracto de quadrato maioris relinquatur LXXX, quod minuit XX de C, cuius medietas est X; quo diuiso per X exit unum, et ipsum est minus diuidentium et maius IX.

XIV. Ebenso, wenn ausser der Summe die Differenz der Quadrate gegeben ist.

Gegebene Gleichungen:

$$x + y = s$$
, $x^2 - y^2 = d$.

J. geht so vor: Es ist $s^2 - d = 2y^2 + 2xy$, also $\frac{s^2 - d}{2} = y(x+y) = sy$. Daher ist $y = \frac{s^2 - d}{2s}$ and x = s - y.

Beispiel: s = 10, d = 80, also $s^2 - d = 20$, daher y = 1, x = 9.

XV. Numero dato per duo diuiso quadratis eorumdem differentia addita si numerum datum fecerint, singula eorum data erunt.

Hoc de quadrata totius si detractum fuerit, manifestum est relinqui minus detracto, quantum est differentia bis cum quadrato ipsius; quibus demptis de numero relinquitur quadratum differentiae cum duplo ipsius, hoc est, quod fit ex ipso in se et in binarium, qui est datus, quare et differentia data erit.

Verbi gratia diuisus sit iterum X per duo, quorum quadrata addita differentia fiant LXII. Ista tollantur de C, remanebunt XXXVIII. Haec si auferantur de LXII, relinquuntur XXIIII, qui fit ex ductu differentiae in se et in binarium. Huius ergo dupletur duplum et fient XCVI, quibus addantur IIII, quod est quadratum binarii, et fiunt C. Huius radix est X, de quo subtractis duobus reliqui dimidium, hoc est IIII, erit differentia; sunt ergo diuidentia VII et III.

XV. Desgleichen, wenn ausser der Summe die Summe der Quadrate plus der Differenz beider Zahlen gegeben ist.

Gegebene Gleichungen:

$$x+y=s$$
, $x^2+y^2+x-y=d$. Man findet leicht:

$$s^2-d=x^2+2\,xy+y^2-x^2-y^2-(x-y)=2\,xy-(x-y)\,,$$
 und folglich

 $2d-s^2=(x-y)^2+2(x-y)=(x-y)(x-y+2).$ Für (x-y) als Unbekannte ist also wieder Satz VII ansuwenden.

Beispiel: s = 10, d = 62; also $s^2 - d = 38$, $2d - s^2 = 24$. Die Gleichung für x - y heisst also: $(x - y)^2 + 2(x - y) = 24$. Aus ihr folgt nach J.: $4(x - y)^2 + 8(x - y) + 4 = 100$, 2(x - y) + 2 = 10, 2(x - y) = 8, x - y = 4, x = 7, y = 3.

XVI. Quod si addita eodem differentia ei, quod fit ex uno in reliquum, fuerit datum, datum erit singulum eorum.

Sit ab numerus diuisus, et quod fit ex a in b addita differentia sit c, et ipsum duplicatum sit d, quadratum autem totius sit e, de quo detracto d remaneat f. Qui si fuerit minor d, videatur quanto, quia si minor quatuor, differentia erit duo, si tribus, differentia erit tria vel unum, sed hoc determinari non potest; non vero, praeter si aequales fuerint d et f, differentia erit quatuor. Si vero f excedit d, videatur quanto, sitque g, eritque g, quod fit ex ductu illius, quo differentia excedit duplum binarii, in se et in illud duplum, quare et ipsum datum erit, et tota differentia a ad b data.

Huius operatio es huiusmodi. Verbi gratia diuidatur IX in duo, et ex ductu unius in alterum addita differentia fiant XXI, cuius duplum, quod est XLII, tollatur de LXXXI, et remanebunt XXXIX, quae minuunt III de XLII. Potest ergo esse differentia unum et III, et utrumque contingit. Unum erit, si diuisus fuerit IX in V et IIII, et V in IIII addito uno faciunt XXI; tria erunt diuiso IX in VI et III, et similiter III in VI additis tribus faciunt XXI. In hoc ergo error incidit. — Item diuiso aliter IX proueniant XIX, cuius duplum XXXVIII. Hoc si auferatur de LXXXI, reliquentur XLIII, qui illum excedit V. Huius duplum dupletur, et fiunt XX; huic quadratum additur IIII, qui est duplum duorum, et erunt XXXVI, cuius radix VI, de quo detracto IIII reliqui dimidium erit unum, et hoc cum IIII facit V, et ipse est differentia portionum, quae sunt VII et duo.

XVI. Ebenso, wenn die Summe zweier Zahlen und ihr Product vermehrt um ihre Differenz gegeben sind.

 $d-f=4(x-y)-(x-y)^2$.

Gegebene Gleichungen:

$$x+y=s$$
, $xy+x-y=c$.
J. setzt: $(x+y)^2=s^2=e$, $2c=d$, $e-d=f$; dann ist also
und daher $f=x^2+y^2-2(x-y)$

^{*} Hier ist in Db. 86 folgende Randbemerkung gemacht: Si enim fuerint due numeri inaequales, quadratum maioris maius est multiplice ciusdem a minori de nominatione, quantum est, quod fit ex corundem differentia in se ipsum et in minorem ducta. Sit ub maior numerus, aquo subtrahatur minor, scilicet a, et relinquatur b pro differentia, et quadratum totius ab sit de; a quo subtrahatur multiplex ab denominatum ab a, quod sit d, et relinquatur e. Inde ex ductu ab in se fit de, et ex ductu ab in a fit d, ergo, quae est proportio ab ad a, ea est de ad d per septimam secundi Arismeticae. Ergo permutatim, quae est ab ad de, es est a ad d, ergo et eadem est b ad e per quintam secundi Arismeticae. Sed ab est pars de denominata ab ipsa ab, ergo b est pars e denominata ab eadem, Ergo et ductu b in ab fit a, ergo e fit ex ductu b in se et in a per decimam quartam secundi Arismeticae, et hoc est propositum.

^{••} Hier setzt Db. 86 ein: ex corollario septimae.

Hier ist zu unterscheiden, ob $d-f \leq 0$ ist.

- 1. d-f=0; dann wäre entweder x-y=0 oder x-y=4. Den ersten Werth beachtet J. nicht.
- 2. d-f>0; dann kann offenbar diese Differenz, damit x-y reell und ganzsahlig bleibt, nur die Werthe 3, 4 annehmen, denn für d-f=1 ist x-y=2 $\pm \sqrt{3}$; für d-f=2: $x-y=2\pm \sqrt{2}$ und für nicht ganze Werthe von d-f wird x-y ebenfalls irrational, für d-f>4 aber imaginär. Diese Fälle lässt J. ausser Betrachtung, doch wohl, weil sie irrationale Werthe ergeben.

Für d-f=3 ist x-y=2+1, also entweder 3 oder 1.

Für d-f=4 ist x-y=2, da dann die Gleichung für x-y sich auf $(x-y)^2+4(x-y)+4=0$ reducirt.

3. d-f < 0. Jetzt heisst die Gleichung für x-y:

$$(x-y)^2-4(x-y)=f-d$$
,

worans sich in gewohnter Weise nach VII x-y ergiebt.

Bei d-f=3 fügt J. hinzu; sed hoc determinari non potest, das soll jedentalls heissen: es ist nicht zu entscheiden, welchen der beiden Werthe von x-y, 3 oder 1, man wählen muss; sie sind beide zulässig.

Beispiel für $d \neq 0$: s=9, c=21; es ist d-f=3, also x-y=1 oder x - y = 8.

Für den ersten Fall ist x = 5, y = 4, und es ist 5.4 + 1 = 21. Für den zweiten Fall ist x=6, y=3, and es ist 6.3+8=21.

Beispiel für d-f < 0: s=9, c=19; dann ist f-d=5, die zu lösende Gleichung also $(x-y)^2-4(x-y)=5.$

Aus ihr folgt nach VII x-y=5, also x=7, y=2, und es ist 7.2+5=19.

XVII. Dato numero in duo diuiso si, quod fit ex uno in reliquum, per differentiam dividatur, et quod exierit, fuerit datum, erit et utrumque diuidentium datum.

Quia enim, quod fit ex uno in reliquum, quater continetur in quadrato totius minus quadrato differentiae, erit, ut differentia ducta in se et in quadruplum dati numeri - non totius, sed secundarii - qui exeat, faciat quadratum numeri divisi, data ergo erit differentia.*

Verbi gratia diuidatur X in duo, et quod fit ex uno in reliquum, diuiso per differentiam exeat XII. Huius quadruplum est XLVIII; dupli igitur C sumatur duplum, huic addatur quadratum XLVIII, quod est II. CCC et IIII, et fiant II.DCC et IIII, cuius radix est LII, de quo subtracto XLVIII reliqui medietas est duo, et ipse est differentia portionum.

XVII. Die einzelnen Zahlen sind auch bekannt, wenn ausser der Summe derselben der Quotient aus dem Producte der Zahlen durch ihre Differenz gegeben ist.

Gegebene Gleichungen:

$$x+y=s$$
, $\frac{xy}{x-y}=c$.

Es ist $(x-y)^2 + 4xy = (x+y)^2$ und folglich

$$(x-y)(x-y+4c)=(x+y)^2=s^2;$$

also ist x - y nach VII gegeben, folglich auch x und y.

Hier in Db. 86 die Randbemerkung: per corollarium septimae.

Beispiel: s = 10, c = 12; die Gleichung für x - y ist also: $(x - y)^2 + 48(x - y) = 100.$

Nach VII hat man daher:

 $4(x-y)^2+192(x-y)+2304=2704; \quad 2(x-y)+48=52, \quad x-y=2,$ also $x=6, \ y=4.$

XVIII. Si vero quadrata eorumdem coniuncta per differentiam diuidantur, et quod exierit fuerit datum, et eorum quodlibet datum erit.

Sit datus numerus ab divisus in a et in b, quorum quadrata sint c, et differentia eorum d, cuius quadratum e, et quadratum totius f. Diviso ergo c per d exeat g, cuius duplum fit hl, qui erit datus. Et quia quadrata e et f sunt duplum c, erit, ut d in hl faciat ef. Sic autem l aequale d, et quia l in se facit e, tunc l in h faciat f, qui est notus; et quia hl est notus, erit et l per tertiam huius et h datus, sicque d et omnia.

Verbi gratia diuisus sit X in duo, quorum quadrata diuisa per differentiam reddant XXVI. Cuius duplum est LII: huius quadratum $\overline{\Pi}$. DCC et IIII. Ab hoc tollatur C quater, et remanebunt $\overline{\Pi}$. CCCIIII, cuius radix est XLVIII; hic detrahatur a LII, et reliqui medietas, quae est duo, est differentia portionum.

XVIII. Ebenso, wenn statt des vorigen Quotienten die Summe der Quadrate dividirt durch die Differenz gegeben ist.

Gegebene Gleichungen:

$$x+y=s, \quad \frac{x^2+y^2}{x-y}=g.$$

Es sei $x^2 + y^2 = c$, x - y = d, $(x - y)^2 = e$, $(x + y)^2 = f$, also $g = \frac{c}{d}$. Es ist aber e + f = 2c und auch 2dg = 2c. Setzt man nun $\frac{f}{d} = h$ und $\frac{e}{d} = l$, so ist 2g = h + l, also auch d(h + l) = 2c. Nun ist aber $\frac{e}{d} = \frac{(x - y)^2}{x - y} = d$, d. h. l = d; also ist auch l(h + l) = 2c und daher $l \cdot h = f$, denn $l \cdot l = e$. Man kennt aber l + h = 2g, also ist nach HI l und h einzeln gegeben, und daher auch x und y.

Beispiel: s = 10, g = 26; man findet l.h = 100, l + h = 52, daher l = 2, x = 6, y = 4.

XIX. Si numerus datus in duo dividatur, unoque corum per reliquum diviso exicrit numerus datus, et ipsa data esse ostendetur.

Dividatur a per b, et exeat c datum, cui addito uno fist d; et quis b in c facit a, et c in d faciat ab. Dividatur ergo ab per d, et exibit b.

Verbi gratia dividatur X in duo, et uno diviso per reliquum fiat IIII, cui addito uno fient V, per quem divisus X faciat duo, qui est una portio.

XIX. Desgleichen, wenn ausser der Summe der Quotient beider Zahlen gegeben ist.

Gegebene Gleichungen:

$$x+y=s$$
, $\frac{x}{y}=c$.

Daitized by Google

Man addire zu Gleichung 2 beiderseitig 1, so erhält man

$$\frac{x+y}{y}=c+1=d, \text{ folglich } y=\frac{s}{d}.$$

Beispiel: s = 10, c = 4; es ist d = 5, also y = 10:5 = 2, x = 8.

XX. Quod si utrumque per reliquum diuidatur, et quae exierint coniunctim datum quid fecerint, erunt et ipsa similiter data.

Dividatur a per b et exeat c, et b per a et prodeat d, singulae etiam unitates addantur c et d et fiant e et f, atque ex a in b fiat g. Quia igitur ex a in f fit ab, atque b in e facit ab, erit e ad f sicut a ad b, quare ef ad f sicut ab ad b, et permutatim ab ad ef sicut b ad f. Et quia a in b et in f facit g et ab, erit g ad ab sicut b ad f, quare g ad ab sicut ab ad ef. Quadratum igitur ab dividatur per ef, quod est datum, et exibit g datum. Erit ergo et a et b datum.

Opus ergo breue. Verbi gratia diuidatur ergo X in duo, quorum utrumque per reliquum diuidatur, et quod exeat totum sit duo et sexta; quibus addatur duo, et fient IIII et sexta, per quod dividatur C, et exibunt XXIIII, et ipsum fit ex una portione in reliquam. Quater ergo, ut solet, detrahatur de C, et remanebunt IIII, cuius radix est duo, et ipse est differentia diuidentium, quae sunt VI et IIII.

XX. Desgleichen, wenn die Summe zweier Zahlen und die Summe aus ihrem Quotienten und dessen reciprokem Werthe gegeben ist. Gegebene Gleichungen:

$$x+y=s$$
, $\frac{x}{y}+\frac{y}{x}=c+ds$

$$x+y=s, \quad \frac{x}{y}+\frac{y}{x}=c+d.$$
 Gleichung 2 kann man schreiben
$$\frac{x}{y}+1+\frac{y}{x}+1=c+1+d+1=e+f \text{ oder } \frac{x+y}{y}+\frac{x+y}{x}=e+f,$$

d. h.

$$xy: s = s: (e+f)$$
.

also ist xy bekannt, und folglich nach III x und y.

Beispiel:
$$s = 10$$
, $c + d = 2\frac{1}{6}$; also ist $xy = \frac{100}{41} = 24$, folglich $x = 6$, $y = 4$.

XXI. Dato numero in duo diuiso si secundum utrumque eorum quilibet numerus datus dividatur, et quae exicrint fecerint numerum datum, corum quodlibet datum erit.

Cum c numerus datus per a et b dividatur, et exeat coniunctim de datum, iterumque c per ab divisus reddat f; et quia, quod fit ex f in quadratum ab, quod sit g, est quantum, quod fit ex de in productum ex a in b, quod sit h - prouenit enim utrobique multiplex numerus, scilicet denominatus ab ab, si quis subtiliter inspiciat — itemque quod fit ex f in g est quantum, quod est ex ab in c: ideo ducatur ab in c, et productum dividatur per de, et exibit h datum, quare et a et b datum erit.

Verbi gratia diviso X in duo per utrumque dividatur XL, et exeat XXV. Ducatur autem X in XL, et productum dividatur per XXV, et exibit XVI, et ipse fiet ex uno diuidentium in reliquum, ut ex II in VIII. XXI. Desgleichen, wenn ausser der Summe die Summe der Quotienten gegeben ist, welche durch Division einer gegebenen Zahl durch jede der beiden Unbekannten entstehen.

Gegebene Gleichungen:

$$x+y=s$$
, $\frac{c}{x}+\frac{c}{y}=d+e$.

J. setzt $\frac{c}{x+y} = f$, $(x+y)^2 = g$, xy = h, dann ist einmal fg = (d+e)h und Beides = cs, also ist $h = \frac{cs}{d+e}$; da also xy bekannt ist, hat man nach III weiter zu entwickeln.

Beispiel: s = 10, c = 40, d + e = 25; man findet s.c = 400, also $xy = \frac{400}{25} = 16$, und folglich x = 8, y = 2.

XXII. Si vero ex ductu unius exeuntium in reliquum prouenerit aliquod datum, utrumque eorum datum esse conueniet.

Fiat epim f ex d in e, atque ex a in b fiat h. Quia igitur a in b et d fiunt h et c, epit c ad h sicut d ad b; itemque quia ex e in b et d fiunt c et f, epit f ad c sicut d ad b et sicut c ad h. Si ergo, quod fit ex c in se, dividator per f, exibit h.

Verbi gratia diuiso XL per portiones X, et uno in aliud ducto fiant C. per quod si diuidatur, quod fit ex XL in se, exibit XVI, ut prius.

XXII. Desgleichen, wenn jene Quotienten nicht addirt, sondern miteinander multiplicirt eine gegebene Grösse bilden.

Gegebene Gleichungen:

$$x+y=s$$
, $\frac{c}{x}\cdot\frac{c}{y}=f$.

Ist xy = h und $\frac{c}{x} = d$, also dx = c, so muss c: h = d: y sein; ist $\frac{c}{y} = c$, also ey = c und de = f, so ist f: c = d: y, also such = c: h; folglich ist $h = xy = \frac{c}{f}$, daher wieder nach III zu rechnen.

Hier ist so recht klar zu sehen, welche Umwege J. machen muss, um zu einem Resultate zu kommen, das wir ohne Weiteres hinschreiben können, nur weilihm unsere Operationszeichen fehlen.

Beispiel: s = 10, c = 40, f = 100; wie in Nr. XXI ist $xy = \frac{40^2}{100} = 16$, also x = 8, y = 2.

XXIII. Quod si unum eorum per reliquum diuidatur, et quod prouenerit, datum fuerit, singulum eorum datum erit.

Esto, ut prius, quod c diuidatur per a et b, et proueniant d et c, atque d diuidatur per e, et exeat f datum; et quia, quod fit ex a in d est quantum quod ex b in e, scilicet c, erit a ad b sicut e ad d. Diuiso ergo d per e tantum erit, quantum si b diuidatur per a, quod cum datum sit, palam, quod omnia data esse constat.

Verbi gratia diuiso X in duo per utrumque diuidatur XL, et eorum, quae exierint, uno diuiso per alterum exeat quarta, erunt ergo portiones X duo et VIII.

XXIII. Desgleichen, wenn nicht das Product der Quotienten. sondern der Quotient derselben gegeben ist.

 $\mathsf{Digitized}\,\mathsf{by}\,Google$

Gegebene Gleichungen:

$$x+y=s$$
, $\frac{c}{x}:\frac{c}{y}=f$.

Unter Beibehaltung der früheren Bezeichnung ist dx = c und ey = c und folglich x:y=e:d, also ist $f=\frac{y}{x}$ und daher nach XIX x und y bekannt.

Beispiel: s = 10, c = 40, $f = \frac{1}{2}$; alo x = 8, y = 2.

XXIV. Numero dato per duo diuiso si alterum per alterum diuidatur et illius, quod exierit, quotalibet pars diuiso addatur, ut totum datum sit, utrumque eorum datum erit.

Dividator a per b, et quod exierit sit c, cuius medietas, quae sit d, addatur a, ut fiat ad datum. Perpende igitur, utrum sit maius ab an ad, sitque, ut ab; et maiori superaddatur tota pars unius, quota pars c additur a, ut abe, sitque e dimidium unius. Quia igitur d in b bis facit a, et in e bis facit se ipsum, erit, ut in ab bis ductum faciat totum ad. Posito ergo, quod g sit differentia abe super ad, itaque d bis in se et in g facit ad, semel ergo ductum in se et in g faciet dimidium ad, quod cum sit datum, etiam g datum erit et d et a datum. Quod si ad maius fuerit, et tunc b in se et in g faciet dimidium ab, et ita similiter differentia erit nota. Si vero ad et ab sunt aequalia, erit, ut b in se et in dimidium unius, quod est e, faciat dimidium ad, et sic eadem ratio erit. Sciendum, etiam hoc opus triplex contingere.

Verbi gratia diuiso X in duo ponatur alterum per alterum diuidi, et medietas eius, quod prodierit, addatur diuiso, ut sit totum IIII et tertia, cuius ad X et dimidium unius differentia est VI et sexta. Itaque IIII et tertia dimidietur, et dimidium, ut solet, quadruplicetur, cui addatur, quod fit ex VI et sexta in se, et erunt XLVI et duae tertiae et trigesima sexta; cuius radix est VI et duae tertiae et sexta. Ab hoc tollantur VI et sexta, et relinquuntur duae tertiae, cuius dimidium tertia est, qua sublata de IIII et tertia remanebunt IIII, et ipse est altera portionum.

XXIV. Kennt man ausser der Summe zweier Zahlen noch die Summe aus der einen und einem aliquoten Theile des Quotienten beider Zahlen, so sind beide Zahlen bekannt.

Gegebene Gleichungen:

$$x+y=s, \quad x+\frac{1}{n}\cdot\frac{x}{y}=h.$$

J. setzt n=2; wir werden, seinen Fussspuren folgend, die allgemeine Lösung geben.

I. Fall. s > h. Es sei $\frac{x}{nu} = d$, dann ist $ny \cdot d = x$ und $\frac{1}{n} \cdot nd = d$, also $\left(y+\frac{1}{n}\right)nd=x+d$. Es sei ferner $s+\frac{1}{n}-h=g$, so ist $g=y+\frac{1}{n}-d$, also $g+d=y+\frac{1}{n}$, daher (g+d)nd=x+d=h. Folglich ist auch

$$d(d+g)=\frac{h}{n}.$$

Da g bekannt ist, kennt man d nach $V\Pi$.

II. Fall. s < h. Setzt man jetzt $h - s + \frac{1}{n} = g$, so erhält man $g = d + \frac{1}{n} - y$, $g+y=d+rac{1}{n}$, and folglich $y(g+y)=rac{n\,d\,y+y}{n}=rac{1}{n}\,(x+y).$

Für y gilt daher die Gleichung $y(y+g) = \frac{s}{m}$, wir haben also wieder Satz VII.

III. Fall. s = h. Dann hat man, wenn man beiderseits x weglässt, $y = \frac{1}{x} \cdot \frac{x}{y}$. also such $y + \frac{1}{n} = \frac{1}{n} \cdot \frac{x}{y} + \frac{1}{n}$. Multiplicirt man mit y, so erhält man $y\left(y + \frac{1}{n}\right)$ $=\frac{x+y}{z}=\frac{s}{z}$, hat also wieder nach VII zu rechnen.

Beispiel ist nur zum I. Fall vorhanden: s = 10, n = 2, $h = 4\frac{1}{2}$. Man findet g=61. Die Gleichung für d ist also

$$d^2+61d=21.$$

Sie giebt $d = \frac{1}{4}$, also x = 4, y = 6.

XXV. Dato numero in duo diuiso et altero diuidentium per datum numerum multiplicato, producto quoque per alterum diuiso si eius, quod exierit, quotacumque pars producto addita totum fecerit datum, singula data esse necesse est.

Ut si a per c, datum numerum, multiplicetur et proueniat d, qui dividatur per b, et exeat e, cuius pars quotalibet sit f, quae addatur d, ut fiat df numerus datus, qui totus dividatur per c, et prodeat gh, fitque gaequalis a, eritque h, qui multiplicatus per c faciat f; et quia c ad b sicut e ad a, et quia c in h facit f, erit, ut b in h faciat totam partem a, qui sit i, quota pars f est e, et quia totum gh datum, erit et ah, et ob hoc a et b datum.

Verbi gratia diuidatur X in duo, quorum alterum per V multiplicetur et producto per reliquum diuiso medietas eius, quod exierit, eidem producto addatur, ut sit totum L; quod diuidatur per V, et exibunt X, restatque nunc opus praemissae, ubi incidit aequalitas. Medietas igitur X quadruplicetur, et fient XX, cui addatur quadratum dimidii, hoc est quarta, et erunt XX et quarta, cuius radix est IIII et medietas unius, de quo sublato dimidio et reliquo dimidiato exibunt duo, et ipse est unum dividentium.

XXV. Derselbe Satz wie XXIV, nur dass die linke Seite von Gleichung 2 mit einer beliebigen Zahl multiplicirt ist.

Gegebene Gleichungen:

$$x+y=s$$
, $cx+\frac{cx}{ny}=d+f$.

J. dividirt Gleichung 2 durch c und erhält dadurch

$$x+\frac{x}{ny}=g+h,$$

ist also damit auf XXIV zurückgekommen.

Beispiel: s = 10, c = 5, n = 2, d + f = 50; hier ist $\frac{d + f}{c} = 10$. Von XXIV ist also der 3. Fall vorliegend; die Gleichung für y wird hier

$$y^2 + \frac{1}{4}y = 5$$
, d en ist daher $y = 2$, $x = 8$

und es ist daher y=2, x=8.

XXVI. Si numerus datus in duo dividatur, quae per singulos datos numeros dividantur, et quae provenerint coniuncta datum numerum constituunt, quem libet eorum datum esse conveniet.

Dividatur a per c et b per d datos numeros, et exeant e et f, sitque ef datum, maior autem numerorum c et d sit c, cuius ad d differentia sit g; ducatur itaque d in ef et fiet nm, ut m sit aequalis b, sed quo nm minus est ab sit l. Dividaturque l per g et exibit e datum, quia, quota pars e est a, tota pars g est l, sed hoc est secundum e — quod autem sit sic, ut dixi, patet intuenti —, quare et a et b data.*

Verbi gratia, ut solet, X in duo secetur, quorum alterum dividatur per III et alterum per duo, et exeant quatuor, in quae ducantur duo, et fient octo, et reliqua duo de X dividantur per unum, quod est differentia trium ad duo, et exeant duo, in quae ducantur tria, et fient VI, quae est una portio.

XXVI. Ist die Summe zweier Zahlen und die Summe zweier aliquoter Theile derselben gegeben, so sind beide Zahlen bekannt.

Gegebene Gleichungen:

$$x+y=s$$
, $\frac{x}{c}+\frac{y}{d}=e+f$.

Es ist $\frac{dx}{c} + y = n + m$, we natürlich n = ed, m = fd = y gesetzt ist; dies von 1. subtrahirt, giebt $\frac{c - d}{c} \cdot x = s - (n + m) = l,$

und es ist daher $x = \frac{l \cdot c}{c - d}$, also auch y bekannt.

Beispiel: s=10, c=8, d=2, e+f=4; man erhält l=2, und also $x=\frac{2.8}{1}=6$, y=4.

XXVII. Si vero alterum in alterum ducatur, fueritque productum datum, omnia data esse demonstrabitur.

Ducatur e in f, et fiat g datum, ducaturque c in g et fiat h, quod tantum erit, quantum si f ducatur in productum ex c in e, hoc est in a. Ducatur item d in h et producatur l, quod etiam tantum erit, quantum si a ducatur in productum ex d in f, hoc est in b; quod cum datum, erit et a et b datum.

Verbi gratia diuiso ergo X in duo unumque per IIII, alterum per duo partiatur, et quae exierint unum ductum in alterum faciat duo, quae duo multiplicentur per IIII et productum per duo, et exibunt XVI, et ipse erit, qui fit ex ductu unius diuidentium in reliquum, quae ex hoc constabit esse VIII et duo.

^{*} Hier die Randbemerkung in Db. 86: Nota et corrollarium pulcrum, scülicet quod, cum sit proportio primi ad secundum sicut tertia ad quartum, erit, quae primi ad tertium, ea differentiae inter primum et secundum ad differentiam, quae est inter tertium et quartum.

XXVII. Ebenso, wenn nicht die Summe, sondern das Product der Quotienten gegeben ist.

Gegebene Gleichungen:

$$x+y=s$$
, $\frac{x}{c}\cdot\frac{y}{d}=g$.

J. muss folgenden Umweg machen. Es ist, wenn man Gleichung 2 mit c multiplicirt, $\frac{xy}{d} = e \cdot g = h$; multiplicirt man wieder mit d, so hat man endlich $xy = d \cdot h = l$, daher kennt man y nach III.

Beispiel: s = 10, c = 4, d = 2, g = 2; es ist xy = 16, also x = 8, y = 2.

XXVIII. Dinidatur alterum per alterum, tunc si exierit quodcumque datum, omnia data esse consequetur.

Dividatur e per f et exeat h datum, dividatur item h per d et prodeat k, et k multiplicetur per c, et fiet l; quia igitur f in h facit e, etiam b in k faciet e, et sic b in l producat a. Si ergo a dividatur per b, exibit l, quod cum sit datum, erit a et b datum.

Verbi gratia X dividatur in duo, et quarta unius dividatur per dimidium alterius, et exeat tertia, cuius dimidium quadruplicetur, exibuntque duae tertiae. Dividatur ergo, ut solet, X per unum et duas tertias, et prouenient VI, et ipse est una portio X.

XXVIII. Desgleichen, wenn nicht das Product, sondern der Quotient der aliquoten Theile gegeben ist.

Gegebene Gleichungen:

$$x+y=s$$
, $\frac{x}{c}:\frac{y}{d}=h$.

Es ist $\frac{x}{y} = \frac{hc}{d}$, also ist x und y nach XIX bekannt.

Beispiel: s=10, c=4, d=2, $h=\frac{1}{4}$; dann ist $\frac{hc}{d}=\frac{3}{4}$, also x=4, y=6.

XXIX. Si numerus datus in duo diuidatur atque, quod fiz ex toto in alterum, aequale sit quadrato alterius, erit utrumque datum ad proximum.

Sit, ut ex ab in b sit quantum ex a in se; et quia, quod ex ab in se, est quantum, quod ex ab in a et in b, erit etiam, quantum quod ex a in se et in ab, cumque sit ab datum, et a et b datum.

Verbi gratia X diuidatur in duo ita, quod X in alterum fit, quantum reliquum in se. Atque X in se facit C, cuius dupli duplum sumatur, et erunt CCCC; huic addatur, ut solet, quadratum X, et erunt D, cuius extrahatur radix ad proximum, et erit XXII et tertia, de quo tollatur X. et reliqui medietas erit VI et sexta, et ipsum erit maior porcionum, quae ducenda est in se.

XXIX. Ebenso näherungsweise, sobald ausser der Summe der Zahlen bekannt ist, dass diese mit der einen Zahl multiplicirt gleich dem Quadrate der zweiten ist.

Gegebene Gleichungen:

$$x+y=s$$
, $y(x+y)=x_{\text{sitized by}}^{*}GOOg[e]$

Es ist
$$(x+y)^2 = x(x+y) + y(x+y)$$
. also $s^2 = sx + x^2$. Daher erhält man
$$x = -\frac{s}{2} + \frac{s}{2} \sqrt[3]{5},$$

und da $V\bar{5}$ sich nur näherungsweise bestimmen lässt, so ist auch der Werth von x nur näherungsweise zu finden möglich.

Beispiel: s=10; dann ist $x=\frac{-10+\sqrt{500}}{2}$. Diese $\sqrt{500}$ bestimmt J. in ziemlich roher Annäherung zu $22\frac{1}{2}$,* wodurch er näherungsweise $x=6\frac{1}{6}$ findet, also $y=3\frac{1}{6}$. Nun ist $10.3\frac{1}{6}=38\frac{1}{4}$ und $(6\frac{1}{6})^2=38\frac{1}{46}$, d. h. um $\frac{1}{16}$ zu klein Dass übrigens die Aufgabe nichts Anderes ist, als die Theilung einer Linie nach dem goldenen Schnitte, ist unmittelbar einleuchtend.

(Fortsetzung folgt.)

^{*} $\sqrt{500} = 22\frac{1}{3}$ dürfte folgendermassen bestimmt sein. Nach der schon den Griechen bekannten Formel $\sqrt{a^2+b} \sim a+\frac{b}{2a+1}$ hat Jordanus erhalten: $\sqrt{500} = \sqrt{484+16} \sim 22\frac{1}{4}\frac{6}{5}$. Nun ist statt $\frac{1}{4}\frac{6}{3}$ gesetzt $\frac{1}{4}\frac{5}{2} = \frac{1}{4}$, also $\sqrt{500} \sim 22\frac{1}{3}$. — Einer Zuschrift des Herrn Director Dr. Heilermann in Essen entnehme ich die Bemerkung, dass $\sqrt{500} = 22\frac{1}{3}$ gerade die beiden ersten Glieder umfasst, welche man erhält, wenn man dieselbe in Sexagesimalbrüchen entwickelt.

Recensionen.

Ueber die geraden Kegel und Cylinder, welche durch gegebene Punkte des Raumes gehen oder gegebene gerade Linien des Raumes berühren. Beilage zum Programm der thurgauischen Cantonsschule pro 1887/88, von Dr. A. Kiefer, Conrector. Frauenfeld, Huber.

Gegenstand der Schrift ist die Steiner'sche Aufgabe: "Welches ist der Ort des Mittelpunktes der geraden Kegelfläche, a) welche durch irgend vier oder fünf gegebene Punkte im Raume geht, oder b) welche irgend vier oder fünf gegebene Gerade im Raume berührt?"

Für a) gegebene "vier Punkte" wird als Ort eine Fläche der 14. Ordnung, für "fünf Punkte" eine Curve 144. Ordnung gefunden, und durch sechs Punkte lassen sich noch 1888 gerade Kegel legen. Diese Resultate ergeben sich infolge rein geometrischer Betrachtungen, welche durch Eleganz und Einfachheit ausgezeichnet sind. Besonderes Interesse verdienen die möglichen geraden Kreiscylinder. Zu ihrer Bestimmung führt der Ort ihrer unendlich fernen Spitzen, nämlich die Schnittcurve obiger F^{14} mit der unendlich fernen Ebene. Diese Curve zerfällt in die zweifach zählenden Seiten des Vierseits, welches die Ebenen des durch die gegebenen vier Punkte bestimmten Tetraeders ausschneiden, in die einfach zählenden Diagonalen jenes Vierseits und in eine eigentliche Curve dritter Ordnung, welche die sechs Ecken des Vierseits enthält. Nur die Punkte dieser Curve liefern nicht zerfallende Kreiscylinder, so dass man sagen kann: Die Axen der geraden Kreiscylinder, welche durch vier gegebene Punkte gehen, sind zu den Erzeugenden eines Kegels der dritten Ordnung parallel. Ferner giebt es sechs Cylinder, welche durch fünf gegebene Punkte gehen, und deren Axen sind sechs Erzeugenden eines Kegels zweiter Ordnung parallel.

Für b) "vier, fünf, sechs Gerade wird bez. eine Fläche zwölfter Ordnung, eine Curve 96. Ordnung und eine Gruppe von 576 Punkten als Ort der Kegelspitzen gefunden. Die Schnittcurve der Fläche mit der unendlich fernen Ebene zerfällt nicht und daher findet auch keine Reduction der Zahlen für die Rotationscylinder statt.

Des Weiteren wird noch die unter a) gefundene Curve dritter Ordnung untersucht. Die Resultate lassen sich jedoch nicht in Kürze wiedergeben.

Hannover.

Digitized by C. RODENBERG.

Synthetische Einteilung der ebenen Linien III. Ordnung von Dr. Moritz Baur, Professor am Realgymnasium zu Stuttgart. Mit 24 Figuren im Text und 6 lith. Tafeln. Stuttgart, Metzler. 1888.

Newton hat ohne Beweis den Satz ausgesprochen, dass sämmtliche Linien III. Ordnung als Centralprojectionen von fünf derselben, den sogenannten divergirenden Parabeln, angesehen werden können. Der Verfasser führt auf Grund rein geometrischer Betrachtungen diesen Beweis, setzt dabei aber die Sätze über das Auftreten der Wendepunkte und der singulären Punkte als bekannt voraus. Durch Projiciren der Wendetangente eines stets vorhandenen reellen Wendepunktes in die unendlich ferne Gerade kann jede der Linien III. Ordnung in eine divergirende Parabel übergeleitet werden, und es fragt sich darnach nur, auf wieviele Formen dieser speciellen Curven man durch das angegebene Verfahren geführt wird. Dieser Frage wird, nach Möbius' Vorgang, durch Untersuchung der sphärischen Linien III. Ordnung, d. s. die Projectionen der ebenen Curven dieser Art auf die Kugelfläche vom Mittelpunkte der Kugel aus, näher getreten. Es ergeben sich fünf wesentlich voneinander verschiedene Formen, jeder entspricht eine Form der divergirenden Parabel oder, wenn man will, ein Typus der ebenen Curve III. Ordnung. Auf den beigegebenen Tafeln sind alle verschiedenen Gestalten der Linien III. Ordnung, welche man nach ihrem Verhalten zur unendlich fernen Geraden und den möglichen Singularitäten unterscheidet, in 96 Figuren dargestellt.

Hannover.

C. RODENBERG.

Die Theorie der ebenen Curven dritter Ordnung. Auf synthetisch-geometrischem Wege abgeleitet von Dr. Heinrich Schröter, Professor der Mathematik an der Universität zu Brealau. Leipzig, B. G. Teubner. 1888.

Der Gedanke zur Herausgabe des vorliegenden Werkes, welches ganz im Sinne von Steiner-Schröter's "Kegelschnitte" abgefasst ist, wurde bei dem Verfasser durch den Umstand wachgerufen, dass in allen Lehrbüchern die Curven dritter Ordnung wesentlich auf analytischer Grundlage behandelt werden. Nur Cremona's Werk über höhere Curven bildet hiervon eine Ausnahme, aber die Curve dritter Ordnung erscheint mehr als Beispiel der Anwendung einer allgemeinen Theorie, während im vorliegenden nur Curven dritter Ordnung behandelt und keine Ausblicke auf eine Verallgemeinerung abgeleiteter Sätze geboten werden. Hierdurch mag die gegenseitige Stellung dieser beiden wichtigen Werke charakterisirt sein.

Der Verfasser beginnt mit der folgenden Ueberlegung. Aehnlich, wie zwei perspective Strahlenbüschel zu einer speciellen Curve zweiter Ordnung, dem Geradenpaare, führen und wie man durch Aufhebung der Perspectivität zu einer allgemeinen Curve gelangt, mag es möglich sein, durch

Ausgang von einer zerfallenden Curve dritter Ordnung zur allgemeinen zu gelangen. Sei dementsprechend das System "Kegelschnitt und Gerade" gegeben, so sind zwei Punkte der Geraden conjugirt in Bezug auf den Kegelschnitt, wenn jeder auf der Polare des andern liegt. Werden aber weiter zwei Punkte des Kegelschnittes als conjugirt bezeichnet, wenn sie mit dem Pole der Geraden auf einem Strahle liegen, so ist jedem Punkte der complexen Curve ein ganz bestimmter anderer Curvenpunkt conjugirt. Die Curve selbst erscheint als Ort solcher Punkte der Ebene, von denen aus drei Paare conjugirter Punkte durch sechs Strahlen in Involution projicit Durch Aufsuchung dieses Ortes (der allgemeinen Curve dritter Ordnung) für drei beliebig gegebene Punktepaare wird man dann sofort zur einfachen Construction beliebig vieler neuer Paare geführt, welche vom Verfasser im 5. Bande der Mathem. Annalen, S. 50, gegeben wurde. Daran anschliessend wird die Erzeugung der Curve durch zwei projective Strahleninvolutionen in halbperspectiver Lage gegeben, wodurch eine bessere Uebersicht des Verlaufs der Curve, als durch die erstere discontinuirliche Construction gewonnen wird. Auch ergiebt sich, dass die Curve von jeder beliebigen Geraden in drei Punkten getroffen wird; was früher nur für die Verbindungslinie eines Paares einleuchtete.

Ein Paar conjugirter Punkte kann als zerfallende Curve zweiter Classe aufgefasst werden. Durch den Nachweis, dass jedes der drei die Curve dritter Ordnung bestimmenden Paare durch eine allgemeine Curve zweiter Classe ersetzt werden kann, erscheint jene als Ort aller Punkte, deren drei Tangentenpaare nach drei Kegelschnitten eine Involution bilden. Es folgt naturgemäss die Betrachtung des durch die drei Kegelschnitte bestimmten Gewebes und dessen Beziehung zur Curve dritter Ordnung.

Die Erkenntniss, dass durch die Verbindungslinien conjugirter Paare eine Curve dritter Classe umhüllt wird, vermittelt den Uebergang zum dualen Gebiete. Genannte Curve wird denn auch durch ein Kegelschnittnetz erzeugt. Mit der Behandlung der Curven dritter Ordnung und dritter Classe als Tripelcurven wird nach dieser Bichtung ein gewisser Abschluss erzielt.

Die jetzt folgende Chasles'sche Erzeugung der Curven dritter Ordnung durch ein Strahlenbüschel und ein ihm projectives Kegelschnittbüschel giebt Veranlassung zu zahlreichen neuen Constructionen, führt namentlich auch zum Begriffe der conischen Polare eines Curvenpunktes und zum Nachweise der Constanz des Doppelverhältnisses des von ihm an die Curve gehenden Tangentenquadrupels. Ferner wird die Bestimmung der Curve durch neun gegebene Punkte und die Bestimmung einer Gruppe von neun associirten Punkten, durch welche unendlich viele Curven hindurchgehen, erledigt. Bekanntlich wurden für die erstere Aufgabe von Chasles zwei Lösungen gegeben, welche beide aufgenommen sind; einmal werden vier beliebige der gegebenen Punkte als Basispunkte des Kegelschnittbüschels

gewählt und darauf das "ihnen gegenüberliegende" Centrum des Strahlenbüschels bestimmt, — das andere Mal wird umgekehrt verfahren. Die letzte Methode gab Chasles ohne Beweis, der vorliegende des Verfassers ist neu.

Eine umfassende Untersuchung der Tangentenquadrupel führt zur Hesseschen Configuration (4, 3). Die vier Berührungspunkte eines Quadrupels lassen sich auf drei verschiedene Weisen zu Paaren ordnen und die Punkte eines jeden Paares sind conjugirt in dem anfänglich gebrauchten Sinne. Diese Bemerkung führt auf die drei verschiedenen Systeme conjugirter Punktpaare, welche es auf der Curve giebt, und zur Eintheilung dieser Curven in solche elliptischen, hyperbolischen oder dualen Charakters — nach der Art der Involutionen, durch welche die Curve aus conjugirten Punkten projicirt wird.

Nun werden gestaltliche Untersuchungen, allerdings nur für Curven dritter Ordnung, erledigt. Die Beigabe der dualen Untersuchungen, welche wohl schwieriger und mit Rücksicht auf die von Klein aus den Classencurven abgeleiteten Riemann'schen Flächen sehr wichtig sind, wäre bei einer späteren Auflage deshalb wünschenswerth. Der Charakter der Involution, welcher jeder der verschiedenen Formen zukommt, wird angegeben.

Die Polareigenschaften werden, ihrer Bedeutung entsprechend, sehr eingehend behandelt; als Ort der Doppelpunkte der ersten Polaren wird die Hesse'sche Curve gefunden und damit die Theorie der Wendepunkte angebahnt. Erst später wird diese Theorie, namentlich was die Angabe der Wendepunktsdreiecke anlangt, zum Abschlusse gebracht. Eine Aufstellung der metrischen Specialfälle der bisherigen Sätze und Constructionen bildet eine erfreuliche Beigabe.

Die Cayley'sche Curve dritter Classe war schon früher als Ort der Verbindungslinien conjugirter Pole der Hesse'schen gefunden worden. Jetzt wird der Zusammenhang beider Curven mit der Grundcurve näher untersucht.

Den Schluss des Werkes bilden die von Küpper und Schoute gegebenen Beweise des Steiner'schen Schliessungssatzes. Auf die Behandlung, welche der Gegenstand inzwischen durch Fiedler im 3. Bande seiner "Darstellenden Geometrie", § 56, und zwar zugleich für die Raumcurven vierter Ordnung erster Art, als deren Projectionen die allgemeinen ebenen Curven dritter Ordnung und die Curven vierter Ordnung mit zwei Doppelpunkten sich ergeben, erfahren haben, sei schon an dieser Stelle hingewiesen.

Hannover.

C. Rodenberg.

Aufgaben und Lehrsätze aus der analytischen Geometrie des Raumes, insbesondere der Flächen zweiten Grades. Für Studirende an Universitäten und technischen Hochschulen bearbeitet von Dr. Fr. Graefe, Professor. Leipzig, Teubner.

Diese Sammlung reiht sich der früheren von Aufgaben aus der ebenen Geometrie an und bildet ebenfalls ein werthvolles Hilfsmittel zum Studium des Gegenstandes, denn allen Gebieten sind Aufgaben entnommen.

Zunächst werden Aufgaben über die elementaren Beziehungen von Punkten, Geraden und Ebenen gegeben, und zwar unter Benutzung von trimetrischen Punkt- und Ebenencoordinaten. Die Behandlung in Liniencoordinaten wäre bei einer späteren Auflage doch wohl einzuflechten. Bei der Einführung von Tetraedercoordinaten gelangen auch die Gleichungen der Collinearität und Reciprocität mit ihren metrischen Specialfällen zur Verwerthung.

Im Ganzen ist der Gang der Entwickelung bei den Flächen zweiten Grades so, wie in den Werken von Hesse und Salmon. Es werden zunächst Aufgaben gegeben, welche sich auf die Transformation der Fläche auf specielle Coordinaten beziehen; dann folgen solche über Büschel und Bündel von Flächen, sowie über andere wichtige Mannigfaltigkeiten, insbesondere ähnliche und ähnlich gelegene Flächen.

Besonders reich an interessanten Aufgaben ist die sich auf Focaleigenschaften beziehende Gruppe. Einige Aufgaben betreffen die Krümmung der Flächen. Die geometrische Deutung der In- und Covarianten von einer und mehreren Flächen liefert ausgedehnten Stoff. Von nun an werden die früher nachgewiesenen speciellen Gleichungsformen der Flächen zu Grunde gelegt, und die Aufgaben beziehen sich demgemäss auf besondere Gattungen von Flächen. Der Kugel, dem Kegel und den sphärischen Kegelschnitten ist ein besonderes Capitel gewidmet.

Unter den "vermischten Aufgaben" finden sich hauptsächlich solche, welche Flächen höherer Ordnung, die sich aus Flächen zweiten Grades ableiten lassen, betreffen.

Man darf nach dem reichen Inhalte erwarten, dass das Werk die verdiente Verbreitung finde, zumal wenn der Wunsch um baldiges Erscheinen der Lösungen in Erfüllung geht.*

Hannover.

C. RODENBERG.

Anwendung der Differential- und Integralrechnung auf die allgemeine Theorie der Flächen und der Linien doppelter Krümmung von F. JOACHIMSTHAL. III. vermehrte Auflage, bearbeitet von L. NATANI. Leipzig 1890, bei B. G. Teubner. X, 308 S.

Eine Seitenzahl von 174, 242, 308 Seiten ist das äussere Kennzeichen der Vermehrung, welche das allbekannte Buch von der I. zur II. und von dieser zur III. Auflage erfahren hat. Der Name des Herausgebers bürgt dafür, dass die Vermehrungen auch Verbesserungen waren. Diese wenigen Worte könnten genügen, auf das erneute Erscheinen aufmerksam zu machen,

^{*} Diese Lösungen sind, wie ich bei der Correctur hier bemerke, soeben in einem starken Bande von 353 S. erschienen.

wenn wir nicht es für Pflicht hielten, wenigstens einige der neu hinzugetretenen Dinge kurz anzudeuten. Eine ganze Anzahl von Zusätzen bezieht sich auf Ausnahmefälle. "Wenn man, um die Anwendung eines Satzes an einem Beispiele zu zeigen, während der Vorlesung irgend eine Gleichung aus dem Kopfe hinschreibt, so trifft man gewöhnlich auf einen Ausnahmefall, bei dem die Sache nicht geht." So sagte uns einmal einer unserer ersten deutschen Mathematiker, und er setzte mit nicht geringem Rechte hinzu, diese Ausnahmen seien gerade am interessantesten. Herr Natani hat nun solche Beispiele mehrfach eingeschaltet. So behandelt er den Fall, in welchem eine Oberfläche zweiter Ordnung durch eine Ebene in einem Linienpaare geschnitten wird, den Uebergang der Tangentenebene in einen Tangentenkegel, den Ausnahmefall, in welchem zwar der Meusnier'sche, aber nicht mehr der Euler'sche Satz Geltung hat, den Uebergang von Krümmungslinien des Ellipsoids in dessen Nabelpunkte u. s. w. Andere Zusätze gelten mechanischen und optischen Untersuchungen, wodurch z. B. die Wellenfläche dem Leser bekannt wird. Weit ausführlicher als in der II. Auflage ist die Lehre von der Evolution behandelt, die an den verschiedensten Stellen wiederkehrt. Endlich führen wir aus dem Anhange, der gleichfalls neben den Zusätzen im fortlaufenden Texte beibehalten geblieben ist, eine ganz neue Abhandlung an über die Aufgabe, den Punkt zu finden, dessen Summe der Entfernungen von n gegebenen Raumpunkten ein Minimum sei. Wir haben damit keineswegs alle neu hinzugetretenen Dinge erschöpft; der Leser wird bei genauer Vergleichung vielmehr finden, dass auch in solchen Paragraphen, welche ihren Inhalt beibehalten habendurch kleine Aenderungen Neues eingefügt ist, kurzum dass, wie wir am Anfange es andeuteten, Verleger und Herausgeber sich nicht zu scheuen gehabt hätten, wenn sie statt "vermehrte" Auflage auf das Titelblatt gesetzt hatten "vermehrte und verbesserte Auflage". CANTOR.

Il periodo aureo della geometria greca. Saggio storico di Gino Loria, Prof. di Geometria superiore nell' Università di Genova. Torino 1890, Carlo Clausen. 79 pag. Estratto dalle Memorie della Reale Accademia delle Scienze di Torino Serie II, Tom. XL.

Referent hat 1867 unter dem Titel "Euclid und sein Jahrhundert" eine Studie veröffentlicht, in welcher die Leistungen der vier grossen griechischen Geometer: Euclid, Archimed, Eratosthenes, Apollonius geschildert waren. Ungefähr den gleichen Inhalt besitzt die heute vorliegende Abhandlung, und um so interessanter ist, wenigstens für den Referenten, der Vergleich gewesen, wieviele und welche Arbeiten in den Anmerkungen angeführt werden konnten, welche zwischen 1867 und 1890 an die Oeffentlichkeit traten, und ferner welche Veränderungen in den geschichtlichen Anschauungen diese Arbeiten hervorbrachten. Wir glauben es aussprechen

zu dürfen, dass die Veröffentlichungen weit zahlreicher waren, als die durch dieselben nothwendig gewordenen Aenderungen, und da auch unsere eigene Studie wesentlich Neues nur in geringer Menge enthielt, so zeigt sich, dass das Wissen von dem Standpunkte der Mathematik zur grossen griechischen Zeit vor etwa 30 Jahren schon ebenso gesichert war, wie heute. damit gesagt sein, es sei gar kein Fortschritt vorhanden, und Herrn Loria's Schrift eine überflüssige? Gewiss nicht. Der Fortschritt seit 1867, ja seit 1880, wenn wir die Jahreszahl des Erscheinens unseres I. Bandes der Vorlesungen über Geschichte der Mathematik betonen dürfen, ist unverkennbar, aber für die von Herrn Loria behandelte Zeit nur mittelbar von Bedeutung. Neues ist entdeckt worden aus der Zeit vor, aus der Zeit nach dem grossen Jahrhundert und hat die Auffassung mancher seiner Erscheinungen ändern müssen. Herr Loria hat von allen diesen Arbeiten Kenntniss genommen und sie in seiner Abhandlung zur Kenntniss gebracht. - Die am weitesten von der früheren Meinung sich entfernende Auffassung ist die von Herrn Zeuthen in seinem Werke von 1886: "Die Lehre von den Kegelschnitten im Altertum" vertretene. Referent schätzt dieses Werk als das eines glänzenden Geometers, welcher gezeigt hat, dass mit dem Handwerkszeuge der Griechen Kunstwerke der heutigen Industrie sich herstellen lassen. Der Beweis, dass die Griechen selbst diese Kunstwerke hervorbrachten, hat uns nicht überzeugen können. Wir waren um so gespannter darauf, wie Herr Loria sich zu den betreffenden Fragen etellt, aber eine Entscheidung in dem einen oder dem andern Sinne fanden wir nicht, eher ein Non liquet, und wir sind berechtigt, anzunehmen, solches sei in der That für's Erste Herrn Loria's Standpunkt. Wir sind aber auch weiter berechtigt, anzunehmen, Herr Loria werde seine Forschungen über griechische Geometrie fortsetzen, und wir freuen uns zum Voraus auf seine weiteren Arbeiten auf diesem Gebiete. CANTOR.

Das Problem von der Quadratur des Zirkels von Prof. Dr. F. Rudio. Zürich 1890. 51 S.

Wir haben in Bd. XXXIV dieser Zeitschrift, hist.-lit. Abth. S. 152, eine Abhandlung des Herrn Schubert besprochen, mit welcher die des Herrn Rudio manche Aehnlichkeit besitzt. Herr Rudio stellt dieses so wenig in Abrede, dass er seinen Vorgänger wiederholt anführt. Es wäre aber sehr ungerecht, wollte man nur die Verwandtschaft zwischen beiden kleinen Schriften hervorheben. Wir sagten im XXXIV. Bande, man brauche nicht Mathematiker zu sein, um die Schubert'sche Studie zu verstehen. Wir werden uns wohl hüten, das Gleiche von der Rudio'schen Abhandlung zu behaupten, selbst auf die Gefahr hin, zu dem Herrn Verfasser in eine Art von Widerspruch zu gerathen, da dieser in der Anmerkung auf S. 1 nur solche Leser beansprucht, welche, ohne gerade Mathematiker zu

sein, doch mit der mathematischen Sprache vertraut sind. Da traut er, meinen wir, doch einem allzugrossen Kreise Kenntnisse zu, welche diese Verbreitung nicht besitzen. Mathematiker aber werden mit wahrem Genusse die verhältnissmässig leicht geschriebene Darstellung der verschiedenen Methoden lesen, welche man im Laufe der Jahrhunderte anwandte, die Aufgabe von der Quadratur des Zirkels zu lösen, beziehungsweise die Unmöglichkeit der Lösung nachzuweisen. Vielleicht wäre bei Erörterung der Vieta'schen Formel es angezeigt gewesen, eine Untersuchung über die Convergenz des eigenthümlich gebauten Ausdruckes einzuschalten, eine Untersuchung, die unseres Wissens noch niemals veröffentlicht worden ist, so nothwendig sie erscheint. Unter den Versuchen, die Transcendenz der Zahl zu beweisen, steht der von Lambert obenan. Herr Rudio hat mit Recht ausführlicher über ihn berichtet, als es sonst Uebung ist. Wir vermissen dagegen die Erwähnung von Eisenstein's Abhandlung in den Monatsberichten der Berliner Akademie 1852, S. 441-443. Eine Neuaufnahme des Versuches, die dort ausgesprochenen Sätze über Transcendenz von Functionen, die in Reihen von einer gewissen Form sich entwickeln, zu beweisen, scheint um so wünschenswerther, nachdem die Hermite-Lindemann'schen Ergebnisse einem besondern Falle Wahrheit gesichert haben. CANTOR.

F. Mohr, Vermessungsrevisor a. D., Das enthüllte Geheimniss der Pythia oder die Kunst, ohne Kenntniss der lateinischen Sprache auf mathematischem Wege lateinische Hexameter zu machen, die zugleich weissagend auf eine vorgelegte Frage Antwort geben. Mit einem Vorwort von Dr. A. Amthor. Hannover, Schmorl & v. Seefeld Nachf. 1890. 15 S.

Die Verse, welche diesem Orakel zur Verfügung stehen, habe ich zu sammenzustellen vermocht. Es sind neun Hexameter, von denen jeder aus sechs Worten, bez. Wortgruppen besteht. Die Hexameter bezeichne ich mit arabischen und die Wortgruppen mit römischen Ziffern.

	I	п	ш	ΙV	V	VΙ
1.	Dico	etenim	fausto	rumpet tibi	foedera	fatum.
2.	Ista.	petis	cupido	complebit	talia	casus.
8.	Ecce	scias	licite	non indet	prospera	numen.
4.	Tanta	nimis	dubie	solvet tibi	commoda	sydus.
5.	Forte	lubens	votis	promittit	gaudia	hic annus.
6.	Jure	satis	certo	praedicit	jubila	thema.
7.	Mille	magis	dominans	vovet tibi	soecula	carmen.
8.	Nonne	optas	vitae	non reddet	proemia	tempus.
9.	Credo	quidem	merito	donabit	debita	coelum.

Diese Verse sind so gebaut, dass jede Wortgruppe eines Hexameters mit der entsprechenden Wortgruppe jedes andern Hexameters vertauscht

werden kann, ohne dass der Satz auf hört, einen orakelhaften Sinn zu haben. Die Anzahl aller möglichen Hexameter ist nach Dr. Amthor's Berechnung 531441. Zu einem solchen Kunststücke ist die lateinische Sprache wegen der prosodischen Gestalt ihrer Worte und noch mehr wegen der Freiheit ihrer Wortstellung wie keine andere geeignet. Die sechste Stelle jedes Verses nimmt das Subject, bezw. Hauptsubject des Satzes ein. verwendet wurde Das, was etwas zu gewähren vermag (Gottheit, Gestirn, Zeit, Jahr, Spruch u. A.). In der fünften Stelle erscheint das Object, d. h. Das, was dem Rathfragenden gewährt wird (Vortheile, Freuden, Belohnungen u. A.). In der vierten Stelle findet sich das Zeitwort mit oder ohne tibi (Dir, d. h. dem Rathfragenden). Das Zeitwort drückt immer ein Gewähren aus oder das Gegentheil (rumpet, non). Es ist bezeichnend, dass unser Orakel unter je neun Antworten je sechs gunstige und nur je drei ungünstige ertheilt. Die Worte in den drei ersten Stellen dienen zur Nüancirung der Antwort oder sind blosses Füllwerk. Ein paar Mal sind Adjectiva da, die zum Subject in der sechsten Stelle gehören (lubens, dominans); auch finden sich Adjecta, die sich auf den Rathfragenden (tibi) beziehen (fausto, cupido; cf. votis, vitae). Mit dem Object stehen gleichfalls einige Worte unmittelbar oder mittelbar in Verbindung (ista, tanta, mille). Die Nüancirung des Ausspruches ist besonders durch Adverbia vorgenommen (licite, dubie, certo, merito). Alle übrigen Worte sind mehr oder weniger Füllworte; nur einzelne von ihnen geben bei gewissen Vertauschungen eine weitere Nüance des Gedankens (besonders nimis, satis, magis).

Auf jede nicht zu eingehende Frage von mindestens sechs Worten (eine Bedingung, die in unserem Büchlein nicht erwähnt wird) giebt das Orakel eine allgemein gehaltene Antwort, zuweilen in Gestalt einer zu bejahenden Frage (nonne). Man hat nichts weiter nöthig, als die Buchstaben der letzten sechs Worte der Frage zu zählen. Die Buchstabensumme jedes Wortes oder, wenn sie über neun hinausgeht, ihre Differenz von neun bezeichnet die Nummer des Hexameters und das letzte Wort der Frage die erste Wortgruppe (I) des betreffenden Hexameters, das vorletzte die zweite (II) und so fort. Ein Beispiel sei die Frage: "Wird der Himmel zugeben, dass meine Feinde über mich siegen?" Die Buchstabensummen der letzten sechs Worte sind: 3, 5, 6, 4, 4, 6. Nehmen wir aus dem sechsten Hexsmeter (6) das erste Wort (I), aus dem vierten (4) das zweite (II), ferner 4 III, 6 IV, 5 V, 3 VI, so erhalten wir die Antwort: Jure nimis dubie praedicit gaudia numen. Etwas günstiger lautet in unserem Falle die Antwort, wenn wir die betreffenden Worte oder Wortgruppen in umgekehrter Ordnung aufsuchen (3 I, 5 II, 6 III, 4 IV, 4 V, 6 VI): Ecce, lubens certo solvet tibi commoda fatum.

Damit ist das Räderwerk dieser Orakelmaschine klargelegt. Der Verfasser unserer Schrift hat über das Ganze einen mystischen Schleier zu werfen gesucht, indem er, statt die Hexameter einfach mitzutheilen, für die

Buchstaben bestimmte Zahlen einsetzte, um den Rathsuchenden erst nach einigen Umwegen die betreffenden Buchstaben und dann die Antwort finden Er hätte für die Buchstaben des lateinischen Alphabets der Reihe nach die Zahlen 1 bis 23 (u und v als gleichbedeutend genommen) verwenden können; er hat es aber nicht gethan, offenbar um einerseits durch Vorführung grösserer Zahlen das Geheimniss besser zu wahren und um andererseits allzu verwickelte Vorschriften zu vermeiden. Er zerlegte vielmehr jedes Wort, bezw. jede Wortgruppe in höchstens sechs Buchstaben oder Buchstabenpaare, und zwar derart, dass jedes Buchstabenpaar mit einem Vocal schloss. Hierauf legte er eine Tabelle (Nr. IV) mit sieben senkrechten Spalten an. In der ersten Spalte wurden den Buchstaben a bis s die Zahlen l bis 23 gleichgesetzt. Dieselben Buchstaben wurden in die folgenden Spalten eingetragen, nur jeder einzelne vermehrt in der zweiten Spalte um a. in der dritten um e, darauf um i, o, u, y. Den Buchstabenpaaren aa bis za wurden dann die Zahlen 24 bis 46 beigeschrieben und so fort, so dass die letzte Spalte die Buchstabenpaare ay bis sy und die Zahlen 139 bis 161 enthielt. Jetzt konnten die Buchstaben und Buchstabenpaare, in welche die Worte, bezw. Wortgruppen zerlegt waren, durch die entsprechenden Zahlen der Tabelle ersetzt, sämmtliche Hexameter also in Zahlen aufgelöst werden. Aus einem rein praktischen Grunde war es hierbei wünschenswerth, für jedes Wort, bezw. jede Wortgruppe sechs Zahlen zu gewinnen; dies geschah durch beliebig eingestreute Nullen. So wurde beispielsweise der erste Hexameter wiedergegeben durch die Zahlen: 4, 9, 0, 3, 0, 14 (Wort, bezw. Wortgruppe I); 5, 65, 13, 0, 9, 12 (II); 6, 1, 20, 18, 19 14 (III); 132, 12, 61, 19, 88, 71 (IV); 0, 6, 60, 0, 50, 40 (V); 6, 1, 19, 0, 20, 12 (VI). Die Wiedergabe der Worte durch Zahlen findet sich in Tabelle III unseres Büchleins. Die Zahlen werden aber in dieser Tabelle nicht in der Reihe aufgeführt, in welcher die Buchstaben oder Buchstabenpaare in jeder Wortgruppe aufeinander folgen, sondern, ohne Zweifel wiederum zur bessern Wahrung des Geheimnisses, nach einem bestimmten Plane umgestellt. Bezeichnen wir die sechs Zahlen, durch welche jede Wortgruppe ersetzt war, der Reihe nach mit $\alpha \beta \gamma \delta \varepsilon \zeta$, so folgen sie sich in der Tabelle im ersten, vierten und siebenten Hexameter wie $\alpha \gamma \epsilon \zeta \delta \beta$, im zweiten, fünften und achten wie $\beta \alpha \gamma \delta \epsilon \zeta$ und im dritten, sechsten und neunten wie ζεδγβα. Selbstverständlich musste eine solche Umstellung ausgeglichen werden. Hierzu dienen die Tabellen II und I, deren Einrichtung und Bedeutung zu besprechen überflüssig sein dürfte.

Wer die Absicht haben sollte, unser Orakel nach den Vorschriften des Büchleins zu befragen, wird gut thun, zuvor einige Druckfehler in Tabelle III zu berichtigen. Es ist zu lesen: 4 statt 8 in α II, 9 statt 5 in β I2, 57 statt 51 in δIV2, 4 statt 14 in δV4, 20 statt 70 in εVI2, 5 statt 18 in ζIII8. Zugleich sei darauf hingewiesen, dass die Orthographie eine veraltete ist (coelum, proemia, soecula, sydus) und dass die Hexameter metrisch nicht ohne Fehler sind, da in zwei Worten (rovet, thema) der erste kurze Vocal als Länge dienen muss.

Das Obige war in allem Wesentlichen niedergeschrieben, als ich von Freund Amthor in Hannover ein Büchlein zugesandt erhielt, das sich im Besitz des Herrn Militäroberpfarrers Knoche befindet. Es ist in Cöllen im Jahre 1766 bei Johan Jacob Horst in lateinischer Sprache mit gegenüberstehender Uebersetzung erschienen; abgefasst ist es aber nach der Vorrede bereits im Jahre 1745. Der Titel lautet: Vaticinium caballisticum hexametro - arithmeticum, aptissimas et futura contingentia in se continentes responsiones, ad omnes datas quaestiones exhibens = Caballistische durch die Rechenkunst in Versen gefundene Weissagung, welche u. s. w. Dies Büchlein enthält ganz dieselbe Lehre wie das unsrige, nur sind einerseits die Vorschriften etwas künstlicher und sind andererseits Druckfehler vermieden. Der letztere Umstand ermöglichte eine fehlerfreie Feststellung der zu Grunde liegenden Hexameter. Die Abhängigkeit des Verfassers unsere Büchleins von jenem älteren ist in die Augen springend. Man braucht nur die Tabellen zu vergleichen, um dies einzusehen. Tabelle IV stimmt bis auf's Tüpfelchen mit der entsprechenden Tabelle der älteren Schrift, und die einzige Abweichung in Tabelle III beruht auf einer andern Zerlegung des Wortes commoda in 4V. In der älteren Schrift nämlich ist das Wort ersetzt durch die Zahlen: 3(c), 14(o), 12(m), 12(m), 14(o), 27(da). Unser Verfasser hat statt der vierten und sechsten Zahl 104(mo) und 1(a) eingesetzt, dabei aber wahrscheinlich unterlassen, die fünfte entsprechend abzuändern, d. h. 4(d) statt 14(o) zu schreiben. Verfasser und Herausgeber unserer Schrift sind übrigens nicht ein und dasselbe. In der Vorrede heisst es, dass Herr Mohr in einem Tagebuche vom Jahre 1797 seines Vaters, des Gymnasiallehrers M., Andeutungen gefunden habe, die er selbst zum Abschluss gebracht hat. Das mag sein. Aber der Herausgeber bat nicht ebenso wie der Urheber jenes ältere Büchlein eingesehen, denn sonst würde er vermieden haben, den ersten Hexameter ganz falsch mit hic o statt mit dico anfangen zu lassen.

München, 15. Juni 1890.

G. OEHMICHEN.

Lehrbuch der Meteorologie für Studirende und zum Gebrauche in der Praxis von Dr. W. J. van Bebber. Mit 120 Holzschnitten und 5 Tafeln. Stuttgart, Verlag von Ferd. Enke. 1890. 8°. XII, 391 S.

Der Verfasser, bekannt als Abtheilungsvorstand der deutschen Seewarte, steht mitten inne in der tagtäglichen Praxis der austibenden Witterungskunde, ist aber gleichsehr auch zugewandt den theoretischen Studien, welche die Erfahrungswissenschaft vom Wetter mehr und mehr rationell aufhellen und erklären. Ein Mann von solcher Stellung und Erfahrung muss in erster

Reihe geeignet erscheinen, ein Lehrbuch der Meteorologie zu verfassen; er fühlt und weiss, wo und wie Wesentliches von Unwesentlichem zu scheiden, wo willkürliche Hypothesen aufzugeben oder doch zurückzudrängen sind gegenüber richtiger gewählten Grundlagen mathematisch-physikalischer Natur, wo Thatsachen der Natur und wo theoretische Speculation mitzutheilen und wie beide am besten zu verknüpfen sind, einander gegenseitig zu stützen, wohl auch zu controliren. Gerade durch solche wie eben gekennzeichneten Vorzüge nun zeichnet sich das vorliegende Buch aus. Nicht so sehr die geschichtliche Entwickelung der Wetterkunde will es aufzeigen, sondern es will im Wesentlichen den heutigen Standpunkt der meteorologischen Wissenschaft übersichtlich darstellen, und es will diese seine Absicht verwirklichen und es verwirklicht sie in der That in erster Linie mit Hinblick auf Studirende, sowie zum Vortheile von Lehrern der Naturkunde; aber auch der Fachmann wird darin rasch die Hauptergebnisse der neueren meteorologischen Forschung nachschlagen können.

In den acht ersten Abschnitten behandelt das Buch der Reihe nach die Erdatmosphäre, die Temperatur, den Luftdruck, den Wasserdampf in der Atmosphäre, die Bewegung der Luft, die Niederschläge, die elektrischen und dann die optischen Erscheinungen in der Atmosphäre. Es werden hier jeweils die für die betreffenden Abschnitte bedeutungsvollen Grundlagen der Physik kurz angegeben und alsbald für das vorliegende Thema verwerthet, es werden dann, oft in mehrfacher, praktischer Auswahl und durch eine reichlich genügende Anzahl von guten Abbildungen erläutert, die Methoden und Instrumente beschrieben, nach und mit welchen man heute die bezüglichen Witterungselemente einzeln bestimmt, und hierauf werden die so gewonnenen Thatsachen der Natur den Augen und dem Geiste des Lesers vorgeführt.

Und gerade wie dies Letztere geschieht, verleiht dem vorliegenden Buche sein besonderes Gepräge. Zunächst werden die an den verschiedensten Theilen der Erde gewonnenen und aus der ganzen Literatur zusammengesuchten Beobachtungsergebnisse zahlenmässig in überaus reichem und doch wieder sich nicht zu sehr vordrängendem Tabellenwerke vorgelegt; es werden dabei stets die Abänderungen der Elementengrössen in Raum und Zeit, ihr Wechsel bei waage - und bei senkrechter Ortsänderung, ihr oft periodisches Ab - und Zunehmen im Verlaufe des Tages, des Jahres und der Jahrzehnte ausführlich genug und doch nicht zu breit dargelegt. Der Verfasser hat vollauf Recht mit seiner Meinung, dass einerseits physikalische Thatsachen der Natur genau nur durch Zahlen angegeben werden können, andererseits aber - und das kennzeichnet den Standpunkt des Lehrbuches - gewinnt der Leser so den Vortheil, Zahlentabellen lesen zu lernen, d. h. sie rasch übersehen, das in ihnen erkennbare Gesetzmässige wirklich erkennen und das Schwankende, das Unsichere darin auch dem Grade nach beurtheilen zu lernen. Die vorgeführten Zahlenwerthe versinnlicht der Verfasser aber auch

reichlich durch Diagramme und durch Karten, und er prägt so das Typische leicht genug ein.

Nachdem in den genannten acht ersten Abschnitten die einzelnen Elemente der Witterung mehr oder minder unabhängig von einander betrachtet sind, geht der neunte Abschnitt dazu über, der Art und dem Grade nach die "Wechselwirkung der meteorologischen Elemente" darzulegen, um dann die Entstehung der verschiedenen Witterungszustände und ihren Wechsel kennen zu lehren: dieser Abschnitt ist besonders anregend und verdienstlich wegen der hübschen Verschmelzung von theoretisch interessanten und von praktisch wichtigen Dingen und weil er den meisten Einblick gewinnen lässt in das Getriebe der Wetterfabrik; hier besonders finden auch die vielfachen und mühsam gewonnenen eigenen Studienergebnisse des Verfassers ihre Ver-Besondere Beachtung verdient in diesem Abschnitte die den werthung. neuesten Stand unserer Kenntniss darstellende wörtliche und bildliche Darstellung der Zugstrassen der barometrischen Mindestwerthe und der an die letzteren sich anlehnenden sogenannten "Wettertypen" für Westeuropa, d. h. der durchschnittlichen Verhältnisse der Witterungsvorgänge in schematischer Uebersicht.

Ein Abschnitt über "Stürme" und über "praktische Meteorologie", d. h. über Feststellung und Vorherverkündung der Witterung, letztere hauptsächlich, wie sie seiten der deutschen Seewarte geübt wird, beschliessen das Buch.

Ehe wir uns von diesem verabschieden, seien schliesslich noch einige Bemerkungen und Wünsche geäussert, die man uns im Interesse der doch wohl bald zu erwartenden zweiten Auflage des Buches verstatten möge.

Zunächst betreffs der Figuren und Kärtchen. Rühmenswerth an diesen ist ihre gleichmässige und meist recht deutliche Ausführung. Aber manche von ihnen erklären sich nicht genügend deutlich durch die unmittelbar beigegebenen oder im Texte enthaltenen Erläuterungen. So dürfte z. B. in Fig. 6 die Bedeutung der Zahlen durch Beischrift angegeben sein, in Fig. 33 sind die Zahlen und Klammern am linken Rande nicht von selbst verständlich, bei den Figuren S. 325 figg. sollte betreffs der Zeichenbedeutung hingewiesen sein auf S. 339 oder 368, in Fig. 118 oben links ist doch wohl ein Versehen klar.

Bezüglich des Textes sei hier geschieden zwischen Inhalt und Form.

Gewiss hat sich der Verfasser Mühe gegeben, recht deutlich zu sein. Aber die S. 127 figg. gewählte Art der Einführung des Buys-Ballot'schen Gesetzes (nach Sprung) ist doch wohl zu unvermittelt mathematisch, insbesondere dürfte die Erwähnung der Trägheitscurve, des Kreises nicht klar genug sein. Die Lehre von den Cyklonen ist an verschiedenen Stellen des Buches zerstreut gegeben; sollte nicht ein strafferes Zusammenfassen und Abmachen an einer Stelle deutlicher wirken? Zur Begründung sei darauf hingewiesen, dass die ganze Tabelle S. 275 und die einleitende Erklärung

dazu an diesem Orte vorerst noch wenig verständlich ist. Auf S. 22 flg. sind die thatsächlichen Angaben ganz gut, aber die Wirkungen auf das Klima sollten doch wenigstens angedeutet sein; auf S. 20 sind die von den Sonnenstrahlen durchlaufenen Wege 35,5 u. s. w. bedeutungslos ohne Angabe des Verhältnisses von Atmosphären-, besser Lufthüllendicke zum Erdradius In die Tabelle S. 31 müsste doch wohl ein in einer "Sandwüste" (S. 29!) gelegener Ort aufgenommen, dafür lieber ein anderer weggelassen werden, etwa um die 180 - muss doch wohl 380 heissen?! - grösster Amplitude zu versinnlichen. Ausser den S. 237 angegebenen hypothetischen Quellen der Luftelektricität waren doch wohl auch noch einige andere anzudeuten. Endlich, wo bleibt die genügende Berücksichtigung der Meeresströmungen? Zweimal wird die Abhängigkeit der Lufttemperatur von ihnen gestreift, nicht genügend ausgeführt.

Betreffs der Textgestaltung sei hier hingewiesen auf manche Unebenheiten des Ausdrucks, die leicht auszugleichen sind. Die Temperaturangaben für W. auf S. 37, 59 und 76 stimmen nicht zusammen; Grössenangaben wie _18 cm breit und 100 mm lang" (S. 15) sind nicht schön; "kalte" und gar "kälteste" Temperaturen (S. 60) giebt es doch nicht; auch Geschwindigkeiten von "Geschützen" im Werthe von 60 m dürften kaum vorkommen; der verfehlte Gebrauch von "welches" an Stelle von "was" ist gewiss störend (S. 13 z. B.); such das Hineinstecken eines Thermometers in Schnee bis über den Gefrierpunkt (S. 14) dürfte schwer zu bewerkstelligen sein; völlig unnöthige Fremdwörter, wie Area u. a., sind auszumerzen; das freilich vielgebrauchte, aber darum nicht minder falsche Wort "Fortpflanzung" statt "Wanderung" oder "Ausbreitung" und ebenso "Fortpflanzungsrichtung" sollte getilgt werden. Der Werth des Buches als "Lehrbuch" dürfte nur gewinnen, wenn grössere Abschnitte desselben in deutlich erkennbare Unterabtheilungen gegliedert würden oder diese Gliederung wenigstens durch gesperrt gedruckte Stichwörter hervorgehoben würde, wenn der Hinweis auf bereits Erklärtes meist nicht blos mit dem Wörtchen "oben" abgemacht, sondern wenn die betreffende Seitenangabe beigefügt wäre, wenn wenigstens in manchen Tabellen und im Texte die annähernde geographische Lage der aufgenommenen Orte, sei's zahlenmässig, sei's sonstwie, angegeben Denn wieviele Lernende und Gelehrte selbst - Fachmeteorologen ausgenommen - dürften wissen, brauchen zu wissen, wo Nukuss (S. 30 und 76), oder Barnaul (S. 31), oder Zikawei (S. 159), oder Ochtertyrhe (S. 280) liegt, oder wo die Chassiahills (S. 206) sich finden? Da ist Mohn doch rücksichtsvoller (z. B. dessen 3. Aufl. S. 27)! Müssen denn Espy's Worte (S. 164) in englischer Sprache angeführt werden? Würde man die selten gehörte und zudem nichtssagende Ortsungabe der "Rossbreiten" nicht lieber vermeiden?

Die vorstehenden Bemerkungen sollen nur unser Interesse an dem vorliegenden werthvollen Buche bekunden; wir möchten es gern vollkommen in

jeder Beziehung sehen. Jeder fühlt ja, welche Schwierigkeiten bei Abfassung eines Lehrbuches der Meteorologie zu überwinden sind: einerseits die ungeheuer reiche Fülle von Thatsachen, die darzulegen sind und deren innere Verknüpfung und gegenseitige Bedingtheit aufgeklärt werden soll - andererseits die in so manchen Capiteln noch fehlende oder erst halb gewonnene rationelle Erklärung. Man muss gestehen, der Verfasser hat jene Schwierigkeiten überwunden oder soweit möglich zu überwinden gestrebt; manchmal möchte man gründlichere Aufklärung wünschen. Gleichwohl ist der Verfasser zu loben, dass er da und dort der Versuchung widerstand, überkommene mehr schablonenhafte, aber im Grunde doch nur scheinbar genügende Erklärungen zu geben. Auch die Mängel der Wissenschaft am rechten Orte zu gestehen und zu ihrer Abstellung anzuregen, gehört zur Darstellung der Wissenschaft. Dank drum dem Verfasser des Buches, nicht minder auch der strebsamen und arbeitsfreudigen Verlagshandlung, welche seit Jahren mit Erfolg zur werthvollen Bereicherung unserer wissenschaftlichen Literatur beiträgt.

Karlsruhe.

P. TREUTLEIN.

Grundriss der ebenen Trigonometrie von Ferdinand Roese, Oberlehrer in Wismar, 1889, Hinstorff'sche Hofbuchhandlung. 61 S.

Das kleine Werkchen ist "für die Bedürfnisse solcher Schulen geschrieben, welche ihre Zöglinge so zeitig als möglich an das praktische Leben abgeben sollen". Innerhalb der hiermit bezeichneten Grenzen ist der Stoff geschickt behandelt und zwar wird mehr geboten, als die Seitenzahl vermuthen lässt. Das einleitende Capitel, welches den Uebergang von der Planimetrie zur Trigonometrie vermittelt, ist auch in theoretischer Hinsicht recht gelungen. Der Beweis für die weitergehende Giltigkeit der Formeln des ersten Quadranten ist absichtlich nicht gegeben, weil derselbe unverhältnissmässig viel Platz in Anspruch nehmen würde; vielleicht entschliesst sich der Verf. bei einer neuen Auflage, diese Lücke nach der Methode auszufüllen, welche ich in meiner Goniometrie etc. (Braunschweig, 1888) entwickelt habe.

Zahlreiche Uebungsbeispiele erläutern die Theorie in sachgemässer Weise.

Braunschweig.

ALEX. WERNICKE.

Bibliographie

vom 1. November bis 15. December 1890.

Periodische Schriften.

Sitzungsberichte der mathemphysikal. Classe der königl. bayer. Akademie d. Wissensch. 1890, 3. Heft. München, Franz. 1 Mk. 20 Pf.						
Sitzungsberichte der königl. sächs. Gesellschaft d. Wissensch. Mathemphy-						
sikal. Classe. 1890, II. Leipzig, Hirzel. 1 Mk.						
Sitzungsberichte der kaiserl. Akademie d. Wissensch. in Wien. Mathem						
naturwissensch. Classe, Abth. II a. 99. Bd. 4.—6. Heft. Wien, Tempsky.						
7 Mk. 40 Pf.						
Astronomische Nachrichten, 125. u. 126. Bd., herausgeg. von A. Krueger.						
Hamburg, Mauke Söhne. 30 Mk.						
Sternkatalog der astronomischen Gesellschaft. 1. Abth. 4. u. 14. St. Leipzig, Engelmann. 45 Mk.						
Ueberseeische meteorologische Beobachtungen, gesammelt von der deutschen						
Seewarte. 2. Heft. Hamburg, Friedrichsen & Co. 6 Mk. 75 Pf.						
Meteorologisches Jahrbuch für 1890, herausgeg. vom königl. preuss. meteorolog. Institut durch W. v. Bezold. Berlin, Asher & Comp. 3 Mk.						
Meteorologisches Jahrbuch des Königr. Sachsen. 1888, 2. Hälfte. Heraus-						
gegeben von P. Schreiber. Chemnitz, Bülz.						

Philosophie und Geschichte der Mathematik und Physik.

- DU Bois-Reymond, P., Ueber die Grundlagen der Erkenntniss in den exacten
 Wissenschaften. Nach einer hinterlassenen Handschrift. Tübingen,
 Laupp. 3 Mk. 60 Pf.
- Wissenschaftliche Briefe zwischen G. Fechner, W. Preyer und K. v. Vierordt, herausgeg. v. W. Preyer. Hamburg, Voss. 7 Mk.
- DIOPHANTUS VON ALEXANDRIA, Arithmetik und die Schrift über Polygonalzahlen. Uebersetzt von G. Wertheim. Leipzig, Teubner. 8 Mk.

Reine Mathematik.

KLEIN, F., Vorlesungen über die Theorie der elliptischen Modulfunctionen, ausgearb. v. R. FRIOKE. I. Bd. Leipzig, Teubner. 24 Mk.

LOHNSTEIN, R., Ueber lineare homogene Differentialgleichungen II. Ordn. und die Umkehrungen ihrer Integrale. (Inaug.-Dissert.) Berlin, Mayer & Müller.

- SCHUMACHER, J., Zur Theorie der algebraischen Gleichungen. Erlangen, Deichert. 3 Mk. 50 Pf.
- VORSTEHER, E., Darstellung des Potentials des Ellipsoids durch Lamé'sche Functionen. (Inaug.-Dissert.) Berlin, Mayer & Müller. 1 Mr. 20 Pf.
- SCHÜLER, F., Ueber das Axiom von der Winkelsumme im Dreieck. Leipzig, Fock.

 1 Mk. 20 Pf.
- GRAEFE, FR., Auflösungen und Beweise der Aufgaben und Lehrsätze aus der analytischen Geometrie des Raumes. Leipzig, Teubner. 8 Mk.
- Servus, H., Ausführliches Lehrbuch der Stereometrie und sphärischen Trigonometrie. 1. Theil. Ebendas. 80 Pf.

Angewandte Mathematik.

- BUDDE, E., Allgemeine Mechanik der Punkte und starren Systeme. 1Bd.
 Berlin, G. Reimer.
- Jellet, J., Die Theorie der Reibung. Deutsch v. J. Lüroth u. A. Schepp. Leipzig, Teubner. 6 Mk.
- Pulprice, C., Das Totalreflectometer und das Refractometer. Leipzig, Engelmann. 5 Mk.
- BAUSCHINGER, J., Ableitung der Eigenbewegung von 90 teleskop. Sternen.

 München, Franz.

 2 Mk. 70 Pf.

Physik und Meteorologie.

- LIEBISCH, TH., Physikalische Krystallographie. Leipzig, Veit & Co. 25 Mk. HOPKINS, M., Der praktische Experimentalphysiker; deutsch v. M. KRIEG.
 - 1. Lief. Magdeburg, Faber'sche Buchdr. 75 Pf.
- WIEDEMANN, E. u. H., Physikalisches Praktikum mit Rücksicht auf physikalisch-chemische Methoden. Braunschweig, Vieweg. 9 Mk.
- CZERMAK, P., Reductionstabellen zur Gauss-Poggendorff'schen Spiegelablesung. Berlin, Springer. 12 Mk.
- STEINHEIL, A. u. E. Voit, Handbuch der angewandten Optik. 1. Bd. Leipzig.
 Teubner. 12 Mk.
- SCHEINER, J., Die Spectralanalyse der Gestirne. Mit Vorw. v. H. C. Vogel. Leipzig, Engelmann. 16 Mk.
- Pfeil, L. v., Temperaturveränderungen auf der Erdoberfläche, Erdmagnetismus, Polarlicht u. A. Leipzig, E. H. Mayer. 1 Mk.

Historisch-literarische Abtheilung.

Commentar zu dem "Tractatus de Numeris Datis" des Jordanus Nemorarius.

Von

MAXIMILIAN CURTZE

in Thorn.

(Fortsetzung.)

Iordani Nemorarii de Numeris Datis Liber II.

I. Si fuerint quatuor numeri proportionales, et tres eorum dati fuerint, et quartus datus erit.

Facta enim alterna multiplicatione idem numerus producitur. Sumptis ergo alternatim, quoniam duo sunt dati, alter in alterum ducatur, et productus per unum reliquorum, qui datus est, dividatur, et exibit reliquus, qui fuerat prius non datus.

Verbi gratia sint XX ad aliquot sicut V ad IIII. Quia igitur ducendus est antecedens datus in consequentem alterius datum, ducatur XX in IIII, et fient LXXX, qui diuidatur per V, et exibunt XVI, qui erit consequens XX prius non datus.

I. Kennt man in einer Proportion drei Glieder, so ist auch das vierte gegeben.

Gegeben ist

a: x = b: c

Hieraus folgt die Productengleichung a.c = b.x, und es ist also $x = \frac{a.c}{b}$.

Beispiel: 20: x = 5:4; es wird 5x = 80, also x = 16.

II. Si dati numeri ad aliquem fuerit proportio data, et illum datum esse consequitur.

In multiplici proportione ubilibet facile, in aliis autem facile quidem, si consequens datur, quoniam referentur ad partes, quas datas esse haut absurdum. Ipsum ergo multiplicabitur, si necesse fuerit, et partes, quas debet adiungantur, et habebitur antecedens; si vero antecedens datur idem dividetur per denominationem, et exibit consequens. Vel aliter: Sumetur numerus, qui huius partes habet, ponaturque consequens, et inuenietur antecedens in illa proportione, et sic praemissa operatio.

Verbi gratia sit numerus, qui cum tanto et iterum tanto atque dimidio et dimidii dimidio faciat C. Diuidatur ergo C per tria et dimidium et quartam, et exibunt XXVI et duae tertiae, et hoc est consequens. Item est numerus, cuius quarta et sexagesima sit XXVI et duae tertiae. Sumatur numerus, qui habet quartam et sexagesimam, et ipse est LX, cuius quarta et sexagesima est XVI. Ducatur ergo LX in XXVI et duae tertias, et fient MDC. Hic diuidatur per XVI, et exibit C, qui est consequens.

II. Kennt man das Verhältniss zweier Zahlen, von denen die eine gegeben ist, so ist auch die andere bekannt.

J. unterscheidet zwischen proportio multiplex, wenn der Exponent des Verhältnisses eine ganze Zahl, und proportio in partibus, wenn er ein Bruch oder gemischte Zahl ist. Im ersten Falle ist die zu lösende Gleichung, falls die gesuchte Zahl der Antecedent ist, x:a=b, also x=ab; ist sie aber der Consequent so heisst die Gleichung a:x=b, also ist $x=\frac{a}{b}$. Bei der proportio in partibus ist das Verfahren, welches an erster Stelle abgehandelt wird, genau dasselbe, wie im ersten Falle. Ist z. B. das zu bestimmende Verhältniss $x:a=m+\frac{p}{q}$, so ist $x=ma+\frac{p}{q}a$, und ist $a:x=m+\frac{p}{q}$, so ist $x=\frac{a}{m+\frac{p}{q}}=\frac{aq}{mq+p}$. An sweiter

Stelle lehrt J. aber für den letzten Fall noch eine Methode, welche in der Geschichte der Mathematik gewöhnlich Regula falsae positionis, Regel vom falschen Ansatz, genannt wird. Zunächst sucht man eine Zahl s, die durch q aufgeht, deren $q^{\rm ten}$ Theil man also bestimmen kann, setzt diese Zahl als Consequent und bestimmt nach dem gegebenen Verhältnisse dazu den zugehörigen Antecedent t. Dann hat man die Proportion t: s = a: x, und folglich nach I $x = \frac{as}{t}$.

Beispiele: 1. $100: x = 3\frac{1}{4} + \frac{1}{4} = 3\frac{2}{4}$; dann ist $x = 100: 3\frac{3}{4} = 26\frac{2}{4}$. 2. $26\frac{1}{3}: x = \frac{1}{4} + \frac{1}{10}$; 60 ist eine Zahl, welche sowohl durch 4, wie durch 60 aufgeht. Ihr Viertel und Sechszigstel ist zusammen gleich 16. Wir haben daher die richtige Proportion $26\frac{3}{4}: x = 16:60$, daher nach I $x = \frac{26\frac{2}{3}\cdot60}{16} = 100$.

III. Si primi ad secundum fuerit proportio data, et secundi ad primum proportio data erit.

Diuidatur enim unum per denominationem proportionis primi ad secundum, et quod exierit, erit denominatio secundi ad primum.

Verbi gratia primum continet secundum bis et eius duas tertias. Per duo ergo et duas tertias dividatur unum, et exibunt tres octause: erit ergo secundus tres octause primi.

III. Kennt man das Verhältniss einer Zahl zu einer zweiten, soist auch das Verhältniss der zweiten Zahl zur ersten gegeben.

Ist
$$a:b=p$$
, so ist $b:a=\frac{1}{p}$.

Beispiel:
$$a:b=2\frac{2}{3}$$
, dann ist $b:a=\frac{1}{2\frac{2}{4}}=\frac{3}{8}$.

IV. Si totius ad detractum proportio data, et residui ad detractum proportio data; quod si residui ad detractum data fuerit proportio, et totius ad detractum similiter data erit.

Hoc facile est. Si enim a proportione totius ad detractum tollatur unum, remanebit proportio residui ad detractum; si item proportioni, quae est residui ad detractum, addatur unum, fiet proportio totius ad detractum.

Verbi gratia X continet tria ter et eorum tertiam, itaque VII continet tria bis et corum tertiam. Conuerso modo VII continet tria bis et eius tertiam, ergo X continet tria ter et insuper tertiam.

IV. Kennt man das Verhältniss einer Summe zu einem Summanden, so ist auch das Verhältniss des andern Summanden zum ersten gegeben, und umgekehrt.

Gegeben:

$$(x+y): x = a, d. h. \frac{x+y}{x} = a.$$

Subtrahirt man beiderseits 1, so erhält man

$$\frac{x+y}{x} - 1 = \frac{y}{x} = a - 1$$
, also $y : x = a - 1$.

Ist umgekehrt gegeben y: x = a, so ist auch $\frac{y}{x} = a$, also auch

$$\frac{y}{x} + 1 = \frac{x+y}{x} = a+1$$
, also $(x+y): x = a+1$.

Beispiel: $10:7=3\frac{1}{3}$, folglich $7:8=2\frac{1}{3}$; und umgekehrt $7:3=2\frac{1}{3}$, also $10:8=3\frac{1}{3}$

V. Si totius ad detractum fuerit proportio data, et totius ad residuum erit proportio data.

Si enim totius ad detractum proportio fuerit data, et residui ad detractum erit data, quare detracti ad residuum, ergo et totius ad residuum.

Verbi gratia X continet VI et eius duas tertias, ergo IIII est duae tertiae. Dividatur ergo unum per duas tertias et exibit unum et medietas, quare VI continet IIII semel et dimidium, ergo X bis et dimidium.

V. Ist das Verhältniss einer Summe zu einem Summanden gegeben, so kennt man auch das Verhältniss der Summe zu dem andern Summanden.

Gegeben ist

$$(x+y): x=a.$$

Man findet der Reihe nach gemäss den früheren Sätzen:

$$\frac{y}{x} = a - 1, \quad \frac{x}{y} = \frac{1}{a - 1}, \quad \frac{x + y}{y} = 1 + \frac{1}{a - 1}, \quad \text{also} \quad (x + y) : y = 1 + \frac{1}{a - 1}.$$
Beispiel: $10:6 = 1\frac{3}{4}, \quad 4:6 = \frac{3}{4}, \quad 6:4 = 1\frac{1}{4}, \quad 10:4 = 2\frac{1}{4}.$

VI. Si numerus datus diuidatur in duo, quorum proportio fuerit data, utrumque eorum datum erit.

Si enim proportio unius ad reliquum data fuerit, et totius ad idem data erit proportio. Cum ergo totum sit datum, erit et illud datum et ob id reliquum.

Verbi gratia diuidatur X in duo, quorum unum quadruplum alteri. Itaque X erit ei quintuplum, et ipsum est duo.

VI. Aus der Summe zweier Zahlen und ihrem Verhältnisse lassen sich beide Zahlen finden. Digitized by Google Gegebene Gleichungen: x+y=s, x:y=p.

Aus 2 folgt nach IV: (x+y): y=p+1, d. h. s: y=p+1, also ist nach II $y=\frac{s}{p+1}$.

Beispiel: s=10, p=4; folglich $y=\frac{10}{5}=2$, x=8. Man vergleiche Lib. I Nr. XIX.

VII. Si primum ad secundum datum, et ad quod secundum habet proportionem erit datum; quod si ad illud fuerit datum, et ad secundum datum erit.

Denominatio enim proportionis primi ad secundum in denominationem proportionis secundi ad tertium ducatur, ed fiet proportio primi ad tertium. Item proportio secundi ad tertium dividatur per proportionem primi ad tertium, et exibit proportio primi ad secundum.

Verbi gratia primum continet secundum et eius tres septimas, et secundus tertium et eius duas quintas. Ducatur ergo unum et tres septimae in unum et duas quintas, et prouenient duo, quare primum est duplum tertie. Item duo diuidantur per unum et duas quintas, et exibunt unum et tres septimae. Itaque aliter positis primum continebit secundum et eius tres septimas.

VII. Kennt man von drei Zahlen das Verhältniss der ersten zur zweiten und das der zweiten zur dritten, so ist auch das Verhältniss der ersten zur dritten gegeben; und umgekehrt.

Gegeben:

$$a:b=p, b:q=r.$$

Durch Multiplication folgt dann unmittelbar a: q = p.r. Ist aber gegeben a: q = p, b: q = r,

so folgt ebenso durch Division $a:b=\frac{p}{r}$.

Beispiel: $a:b=1\frac{3}{7}$, $b:q=1\frac{3}{6}$; also $a:q=1\frac{3}{7}$, $1\frac{3}{6}=2$. Ist aber a:q=2, $b:q=1\frac{3}{6}$, so ist $a:b=\frac{2}{1\frac{3}{7}}=1\frac{3}{7}$.

VIII. Si quilibet numeri ad unum proportionem habuerint datam, et totum eorum ad eundem proportionem habebit datam.

Denominationes proportionum omnium ad illum coniungantur, et compositum erit denominatio totius ad idem.

Verbi gratia primum continet quartus semel et tertiam, secundum bis et quartam, tertium bis et dimidium, quae faciunt VI et duodecimam, quare primum, secundum et tertium continebunt quartum sexies et duodecimam.

VIII. Wenn die Verhältnisse einer beliebigen Anzahl von Grössen zu derselben andern gegeben sind, so kennt man auch das Verhältniss der Summe aller beliebigen Grössen zu der andern.

Gegeben ist:

Daraus folgt $x_1: n = a_1, x_2: n = a_2, x_3: n = a_3, \ldots, x_p: n = a_p.$ $\frac{x_1}{n} = a, \frac{x_2}{n} = a_2, \frac{x_3}{n} = \frac{a}{3}, \ldots, \frac{x_p}{n} = a_p.$

und hieraus durch Addition

$$\frac{x_1 + x_2 + x_3 + \cdots + x_p}{n} = a_1 + a_2 + a_3 + \cdots + a_p,$$

also auch

$$(x_1 + x_2 + x_3 + \dots + x_p) : n = a_1 + a_2 + a_3 + \dots + a_p$$
Digitized by

Beispiel: $a_1 = 1\frac{1}{3}$, $a_2 = 2\frac{1}{4}$, $a_3 = 2\frac{1}{2}$; es folgt also $(x_1 + x_2 + x_3)$: $n = 1\frac{1}{3} + 2\frac{1}{4} + 2\frac{1}{4} = 6\frac{1}{19}$.

IX. Si unus numerus ad quotlibet proportionem habuerit datam, et ad ex illis compositum proportionem habebit datam.

Si enim ille ad illos, etiam ipsi ad eum proportionem habebunt datam, quare et compositus eorum ad eundem, et ipse ad compositum.

Verbi gratia sit, ut unum contineat et eius duas tertias, et alium et eius dimidium. Diuidatur itaque unum per unum et duas tertias, et exibunt tres quintae; et iterum per unum et dimidium, et exibunt duae tertiae. Coniunctim erunt unum et quinta et quintadecima. Per hoc diuidatur unum, et exibunt quindecim undeuigesimae; itaque illud erit quindecim undeuigesimae illorum coniunctorum.

IX. Hat eine Zahl einzeln zu beliebigen anderen Zahlen gegebene Verhältnisse, so hat sie auch zur Summe derselben ein gegebenes Verhältniss.

Gegeben ist:

$$n: x_1 = a_1, \quad n: x_2 = a_2, \quad n: x_3 = a_3, \quad \ldots, \quad n: x_p = a_p.$$

Nach III ist dann:

$$x_1: n = \frac{1}{a_1}, \quad x_2: n = \frac{1}{a_2}, \quad x_3: n = \frac{1}{a_3}, \quad \dots, \quad x_p: n = \frac{1}{a_p},$$

also nach VIII:

$$(x_1 + x_2 + x_3 + \dots + x_p) : n = \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_p},$$

und daher nach III):

$$n:(x_1+x_2+x_3+\cdots+x_p)=\frac{1}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\cdots+\frac{1}{a_p}}.$$

Beispiel: $a_1 = 1\frac{2}{3}$, $a_2 = 1\frac{1}{2}$; also $\frac{1}{a_1} + \frac{1}{a_2} = \frac{2}{5} + \frac{2}{3} = \frac{10}{15}$, und daher $n: (x_1 + x_2) = \frac{15}{15}$.

X. Si a duobus numeris datis duo numeri detrahantur, fueritque detractorum et residuorum proportio data, non autem sit eadem, quae totius ad totum, erit etiam quodlibet eorum datum.

Sint numeri dati ab, cd, detracta a, c; et quia a ad c non sicut totum ad totum, non erit a ad c sicut b ad d; sit igitur a ad e sicut b ad d. Erit ergo ab ad ed sicut b ad d, et quia ab datum, similiter et ed, quare et differentia c ad e, quae sit g, et sic igitur proportione a ad c et ad e data erit et ad g; subtracta enim minore proportione a maiore remanebit proportio a ad g, qui est differentia. Sed g est datum, quare et a, singula ergo data.

Verbi gratia sint dati numeri XX et XII, et detractum XX sit duplum detracto XII, et residuum XX sesquialterum residui XII. Sit autem XX duplum ad quiddam, et ipsum est X, cuius differentia ad XII est duo; et quia, siquidem est sesqualterum ad totum et duplum ad duo, est sescuplum ad reliquum, erit residuum XX sescuplum ad duo, erit ergo XII, et detractum VIII; detractum vero XII erit IIII, et residuum ipsius erit VIII.

X. Zieht man von zwei gegebenen Zahlen zwei andere Zahlen ab, und ist sowohl das Verhältniss der subtrahirten Zahlen, als dasjenige der Reste gegeben, so ist jede von den Zahlen bekannt, wenn das Verhältniss nicht mit dem der gegebenen Zahlen übereinstimmt.

Gegeben ist:
$$x+y=s, \quad z+v=s_1, \\ x:z=p, \quad y:v=q.$$

Es ist aber nicht x:z=(x+y):(s+v), sonst wäre nämlich x:z=y:v, also p=q, und es müsste also $s_1=\frac{s}{p}$ sein; es verhält sich also auch nicht x:z=y:v. Nun verhalte sich x:t=y:v, dann verhält sich auch (x+y):(t+v)=y:v, d. h. es ist s:(t+v)=q, also $t+v=\frac{s}{q}$; es ist aber $z+v=s_1$, also ist $z-t=s_1-\frac{s}{q}=g$. Nun ist aber $\frac{z}{x}=\frac{1}{p}$ und $\frac{t}{x}=\frac{1}{q}$, also $\frac{z-t}{x}=\frac{1}{p}-\frac{1}{q}$, foglich ist $x:g=\frac{pq}{q-p}$, dadurch hat man aber y=s-x, $z=\frac{x}{p}$, $v=s_1-z$.

Beispiel: s = 20, $s_1 = 12$, p = 2, $q = 1\frac{1}{2}$; dann ist t + v = 10, also t - s = 2 = g und $p - q = \frac{1}{2}$, und daher $x = \frac{2 \cdot 1\frac{1}{2} \cdot 2}{\frac{1}{4}} = 12$. Folglich y = 8, v = 4, s = 8.

XI. Si duo numeri fuerint ad inuicem dati, numeroque dato ab altero detracto alterique addito si postmodum proportionem habuerint datam, et prius sumpta data erunt.

Sint ad inuicem dati numeri ab et c, et ab ab detrahatur a datus numerus, et c addatur d datus numerus, ut sit etiam b ad cd proportio data; sit item e ad a sicut cd ad b, quare cde ad ab erit proportio data. Sed c ad ab proportio data, ergo et de ad ab proportio data erit, atque de est datus, ergo et ab atque c dati erunt.

Verbi gratia sit maior minori sesquitertius; maiori detracto VII et alii addito VI sit totum minoris duplum residuo alterius. Sit igitur numerus duplus VII, et ipse est XIIII, qui addatur toti minoris, et compositus fiet duplus maiori additque super minorem XX, et quia minor est tres quartae maioris, auferantur tres quartae de duobus, et remanebunt quinque quartae: itaque XX continet maiorem semel et quartam, et ipse est XVI, minoritaque erit XII.

XI. Vermindert man das Vorderglied eines gegebenen Verhältnisses um eine gegebene Zahl und vermehrt das Hinterglied um eine andere gegebene Zahl, und man kennt das Verhältniss jener Differenz zu dieser Summe, so sind die beiden Glieder des ersten Verhältnisses einzeln bekannt.

Gegebene Gleichungen:

$$(a+x): y=p, \quad x: (y+d)=q.$$
J. geht so vor: Es sei $e: a=(y+d): x=\frac{1}{q}$, dann ist auch $(y+d+e): (a+x)=\frac{1}{q}$.
Es ist aber $y: (a+x)=\frac{1}{p}$, folglich

 $(d+e):(a+x)=\frac{1}{q}-\frac{1}{p}.$

Da aber d und e, also auch d+e bekannt sind, so ist a+x gegeben, also auch y.

Beispiel: $p=1\frac{1}{3}$, a=7, d=6, $q=\frac{1}{3}$. Man findet der Reihe nach e=14, d+e=20, $\frac{1}{q}-\frac{1}{p}=\frac{1}{4}$, a-x=20. $\frac{1}{3}=16$, y=12.

XII. Si duobus pumeris dati numeri alternatim addantur et detrahantur, et post mutuam additionem et detractionem sint semper ad inuicem dati, uterque erit datus.

Sint numeri ab et de, et dati sint a et d, itemque dati c et f. Si ergo abc fuerit datus ad e, etiam def ad b, erunt ab et de dati. Quia enim abc est datus ad e, detractoque ab eo dato numero ac et alteri dato addito, qui est df, fit def ad b datus per praemissam operationem.

Verbi gratia minori detrahatur IIII, et alii additis duobus sit totum maioris duplum residuo alterius; atque minori additis tribus et maiori demptis IIII sit totum residuo sesquitertium. Per operationem ergo praemissae totum minoris erit XVI, et maioris residuum XII; maius ergo XVI, et minus XII non aequales.

XII. Addirt man zu einer Zahl eine gegebene zweite und subtrahirt von einer dritten Zahl eine gegebene vierte, subtrahirt dann von der erten eine gegebene Zahl und addirt zu der dritten eine ebenfalls gegebene, und es ist beidemale das Verhältniss der Summe zur Differenz bekannt, so sind auch die nicht gegebenen Zahlen bekannt.

Gegebene Gleichungen:

$$(a+x+c): y = b, (d+y+f): x = q.$$

Die Aufgabe ist mit der vorigen identisch, wenn man a+c an Stelle von a und d+f an Stelle von d setzt.

Beispiel: a=4, c=2, d=4, f=3, p=2, $q=\frac{4}{3}$. Man findet nach XI x+a=16, y+d=12.

XIII. Si a duobus numeris datis duo numeri ad inuicem dati detrahantur, ut residuorum sit differentia data, singula eorum data esse necesse est.

Sint dati numeri ab et cd, atque a ad c datus, et differentia b ad d data, quae sit e, sitque f differentia, quam addit ab super cd, et differentia a et c sit g. Si igitur b maius d atque e maior f siue minor, semper erit, quae eorum differentia, ea, quae et a et c. Quod si b minus d, tunc a et f facient g, quare semper g datum, ergo et a et c, sicque b et d.

Verbi gratia dati sint XV et IX; detractum antem a XV sit triplum ad detractum de IX, et differentia residui IX ad residuum XV sit duo, quae addantur super differentiam XV ad IX, et fient VIII, qui est differentia detractorum, ideoque erunt XII et IIII, residua III et V.

XIII. Wenn man von zwei gegebenen Zahlen zwei andere, deren Verhältniss bekannt ist, subtrahirt, und die Differenz der beiden Reste ist gegeben, so kennt man alle vier Zahlen.

Gegebene Gleichungen:

$$a+b=s_1$$
, $c+d=s_2$;
 $a:c=p$, $b-d=e$.

Es ist entweder

^{*} Hier in Db. 86 die Randbemerkung: Si enim fuerit aliquorum tam proportio quam differentia data, ipsa sunt data, scito, quid est maius et quid minus.

oder $s_1 - s_2 = (a-c) + (b-d)$, d. h. f = g + e, also g = f - e, wenn b > d, $s_1 - s_2 = (a-c) - (d-b)$, d. h. f = g - e, also g = e + f, wenn b < d. Man kennt also immer g = a - c und a : c, also a und c einzeln, folglich auch b und d.

Beispiel: $s_1 = 15$, $s_2 = 9$, p = 3, d - b = e = 2. Es liegt also der zweite Fall vor. Man findet g = 6 + 2 = 8, hat also a - c = 8, a : c = 3, und folglich a = 12, c = 4 und daher b = 3, d = 5.

XIV. Si a duobus numeris datis numeri demantur, quisint ad se dati, et ex reliquo in reliquum datus numerus proueniet, quilibet eorum datus erit.

Sint dati numeri ab, de et a ad d datus, et quod fit ex b in e sit datum, quod sit f; sit autem sicut a ad d ita abc ad de, quare bc ad e datum est. Ergo quod fit ex b in bc sic datum ad f, et differentia bc ad b, que est c, sic data: erit et b et bc datum, et sic omnia.

Verbi gratia sint dati XII et X, demptumque a XII ad demptum ex X sit sesqualterum, at ex reliquo in reliquum fiant XXXVI. Est autem XV ad X sesqualterum et LIIII ad XXXVI sesqualterum, qui cum contineatur sub duobus numeris, quorum differentia III, que est XV ad XII, erit unus IX et alter VI, qui est una portio XII, et alia VI; portionesque X erunt IIII et VI.

XIV. Nimmt man von zwei gegebenen Zahlen zwei andere weg, welche ein gegebenes Verhältniss besitzen, und man kennt das Product der beiden Differenzen, so kennt man die subtrahirten Zahlen einzeln.

Gegebene Gleichungen:

$$a+b=s$$
, $d+e=s_2$;
 $a:d=p$, $b.e=f$.

Es sei (a+b+c): (d+e) = a: d=p, folglich c bekannt, dann ist (b+c): c = a: d=p, also auch b(b+c): be=p, d. h. b(b+c): f=p. Man kennt also b(b+c) und (b+c)-b=c, also nach lib. I, V b+c und b einzeln, also auch a, folglich a und daher auch a.

Beispiel: $s_1 = 12$, $s_2 = 10$, $p = \frac{3}{6}$, f = 36; J. findet c = 3, b(b+c) = 54 and folglich b+c=9, b=6. Es ist also such a=6 and daher d=4, folglich e=6.

XV. Si numerus in quotlibet diuidatur, quorum unum datum, et totum ad reliquorum singula proportionem habuerit datam, erit totus numerus datus.

Si enim ad singula eorum proportionem habuerit datam, et ad compositum ex eis, quare et ad residuum, et quia illud est datum, erit ipsum totum datum.

Verbi gratia diuidatur totum in quatuor, quorum unum est tertia, alterum quarta, alterum quinta, et relinquentur VI et dimidium. Sed tertia, quarta et quinta sunt quadraginta septem sexagesimae, erunt ergo VI et dimidium tredecim sexagesimae, unde est numerus XXX. Ergo XXX diuisus est, cuius portiones X, VII et dimidium, VI, et remanebunt VI et dimidium.

XV. Ist von den Theilen einer Zahl einer und das Verhältniss der ganzen Zahl zu den einzelnen übrigen Theilen bekannt, so ist auch die ganze Zahl bestimmbar, sowie die einzelnen Theile.

Gegebene Gleichungen:

$$x = x_1 + x_2 + x_3 + \cdots + a;$$

 $x: x_1 = p_1; \quad x: x_2 = p_2, \quad x: x_3 = p_3, \quad \cdots$

Nach IX ist $x: (x_1 + x_2 + x_3 + \cdots)$ bekannt, folglich nach IV auch x: a, also x und daher auch x_1, x_2, x_3, \ldots gegeben.

Beispiel: $a = 6\frac{1}{4}$, $p_1 = 3$, $p_2 = 4$, $p_3 = 5$. Es folgt $x: (x_1 + x_2 + x_3) = \frac{6}{4}$, also ist $x: 6\frac{1}{4} = \frac{1}{63}$, d. h. x = 30, folglich $x_1 = 10$, $x_2 = 7\frac{1}{4}$, $x_3 = 6$, und es ist wirklich $10 + 7\frac{1}{4} + 6 + 6\frac{1}{4} = 30$.

XVI. Numero in quotlibet diuiso si unum eorum cum dato numero fecerit numerum, qui ad totum sit datus, reliquis ad ipsum totum datas habentibus proportiones, ipse numerus diuisus datus erit.

Cum enim singula eorum ad diuisum proportiones habeant datas, et compositus ex omnibus ad eum proportionem habebit datam, quare et residuum, quod est datus numerus, habebit ad eum proportionem datam, quare et ipse datus erit.

Verbi gratia diuidatur numerus in tria, quorum unum sit tertia; aliud quarta, reliquum cum ternario sit eius duo tertiae; quare omnia cum ternario continebunt eum et eius quartam, ternarius ergo eius quarta, et ipse erit XII.

XVI. Ist von den Theilen einer Zahl das Verhältniss jedes einzelnen zu der getheilten Zahl und das Verhältniss des letzten Theiles plus einer gegebenen Zahl zu der ganzen Zahl bekannt, so ist auch die letztere bekannt.

Gegebene Gleichungen:

$$x = x_1 + x_2 + x_3 + \dots + x_n;$$

$$x_1 : x = p_1, \quad x_2 : x = p_2, \quad \dots, \quad (x_n + a) : x = p_n.$$
Es ist
$$(x_1 + x_2 + x_3 + \dots + x_n + a) : x = p_1 + p_2 + \dots + p_n = (x + a) : x,$$
also
$$\frac{a}{x} = p_1 + p_2 + \dots + p_n - 1, \text{ daher } x \text{ bekannt.}$$

$$Beispiel: a = 3, \quad p_1 = \frac{1}{3}, \quad p_2 = \frac{1}{4}, \quad p_3 = \frac{2}{3}. \quad \text{Es folgt } (x + 3) : x = 1\frac{1}{4}, \quad \frac{3}{x} = \frac{1}{4}, \quad x = 12.$$

XVII. Numero in quotlibet diuiso si eorum aliquod cum numero ad totum dato fecerit numerum datum, et reliqua ad totum proportiones datas habuerint, ipsum numerum diuisum datum esse conueniet.

Cum enim ad singula reliquorum proportionem datam habeat, et ad coniuncta habebit, et sic ad prius sumptum et ei additum; quare et ad compositum habebit proportionem datam, quod cum datum sit, et ipsum datum erit.

Verbi gratia dividatur, ut prius, in tria, et unum sit medietas, et unum tertia, et tertium cum eius quarta faciat V. Et quia dimidium et tertia sunt quinque sextae, erit reliquum sexta, quae, quoniam cum quarta

facit V, erit V eius quarta et sexta, hoc est quinque duodecimae, quare ipse est XII.

XVII. Die getheilte Zahl ist auch bekannt, wenn ein Theil plus einer Zahl, welche zu der getheilten Zahl ein gegebenes Verhältniss hat, bekannt ist, und die übrigen Theile zu der getheilten Zahl bekannte Verhältnisse besitzen.

Gegebene Gleichungen:

$$x = x_1 + x_2 + \dots + x_n;$$

 $x_1 : x = p_1, \quad x_2 : x = p_2, \quad \dots, \quad x_{n-1} : x = p_{n-1};$
 $x_n + \frac{x}{m} = a.$

Es ist

 $x_1 + x_2 + x_3 + \dots + x_{n-1} = (p_1 + p_2 + \dots + p_{n-1})x, \quad x_n = (1 - p_1 - p_2 - \dots - p_{n-1})x$ und folglich $a = \left(1 - p_1 - p_2 - \dots - p_{n-1} + \frac{1}{m}\right)x,$

also x bekannt.

Beispiel: $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{3}$, m = 4, a = 5. Es folgt $5 = \frac{1}{4}x$, also x = 12.

XVIII. Si numerus datus in quotlibet diuidatur, quae continue proportionem habuerint datam, erit quodlibet eorum datum.

Quia enim primum ad secundum datum et secundum ad tertium, erit primum ad tertium datum, quare similiter ad secundum et tertium, et ob hoc totum ad ipsum datum, et cum totum datum sit, erit etiam primum, et ideo secundum atque tertium.

Verbi gratia diuidatur LX in tria, quorum maius duplum secundo, secundus triplum tertio, quare primum sescuplum tertio, quare secundum et tertium duae tertiae primi. Totum ergo continet primum et eius duas tertias, erit ergo illud XXXVI, secundum XVIII, tertium VI, quae simul faciunt LX.

XVIII. Steht von den Theilen einer gegebenen Zahl jeder zu dem nächstfolgenden in einem gegebenen Verhältnisse, so sind die Theile einzeln bekannt.

Gegebene Gleichungen:

$$x_1 + x_2 + \dots + x_n = a;$$

$$x_1 : x_2 = p_1, \quad x_2 : x_3 = p_2, \quad \dots, \quad x_{n-1} : x_n = p_{n-1}.$$
Es ist
$$x_1 : x_3 = p_1 p_2, \quad x_1 : x_4 = p_1 \cdot p_2 p_3, \quad \dots;$$

$$x_1 : x_n = p_1 p_2 p_3 \cdot \dots \cdot p_{n-1},$$
also
$$(x_2 + x_3 + \dots + x_n) : x_1 = \frac{1}{p_1} + \frac{1}{p_1 p_2} + \frac{1}{p_1 p_2 p_3} + \dots + \frac{1}{p_1 p_2 \dots p_{n-1}},$$
folglich
$$a : x_1 = 1 + \frac{1}{p_1} + \frac{1}{p_1 p_2} + \dots + \frac{1}{p_1 p_2 \dots p_{n-1}}.$$

Man kennt also x_1 und daher auch $x_2, ..., x_n$. J. führt den Beweis nur für drei Theile, wir haben seinen Gedankengang verallgemeinert.

Beispiel: a = 60, $p_1 = 2$, $p_2 = 3$. Es folgt: $x_1 : x_3 = 6$, $(x_3 + x_3) : x_1 = \frac{3}{3}$, folglich $60 : x_1 = 1\frac{3}{3}$, $x_1 = 36$, $x_2 = 18$, $x_3 = 6$.

XIX. Numero dato per quotlibet diuiso si singulis eorum dati numeri addantur, ut compositorum sit continue proportio

Digitized by GOOGIC

data, erit prius sumptorum diuidentium proportio similiter data, et ipsa data.

Numeri dati pariter additi dato numero diviso addantur, et fiet numerus totus datus, quam constat divisum esse in numeros ad se continue datos, qui constant ex dividentibus primi numeri et numeris datis, quare compositos illos datos esse constat. Ex quibus si dati numeri auferantur, relinquentur portiones propositi numeri dati.

Verbi gratia XX diuidatur in tria, quorum uni addantur IIII, alii unum, alii V, ut sit primum secundo sesqualterum, secundum tertio duplum. Itaque IIII, V, unum addantur XX, et fient XXX. Quod si diuisum fuerit secundum illas portiones, exibunt XV, X et V. Auferantur ab illis dati numeri, a XV IIII, et a X V, et a V unum, et remanebunt XI, V, IIII, in quae constat divisum esse XX.

XIX. Derselbe Satz wie XVIII, nur dass jedem Theile, ehe das Verhältniss bestimmt wird, eine gegebene Zahl addirt wird.

Gegebene Gleichungen:

$$x_1+x_2+\cdots+x_n=a;$$

 $(x_1+b_1):(x_2+b_2)=p_1, (x_2+b_2):(x_3+b_3)=p_2, \ldots, (x_{n-1}+b_{n-1}):(x_n+b_n)=p_{n-1}.$ Addirt man zu Gleichung 1 beiderseits $b_1 + b_2 + \cdots + b_n$, so hat man für die Grössen $x_1 + b_1$, $x_2 + b_2$, $x_3 + b_3$, ..., $x_n + b_n$

die Entwickelung des vorigen Satzes; diese Grössen sind also gegeben, folglich auch: $x_1, x_2, ..., x_n$.

Beispiel: a = 20; $b_1 = 4$, $b_2 = 1$, $b_3 = 5$; $p_1 = \frac{3}{2}$, $p_2 = 2$. Man findet, dass $a+b_1+b_2+b_3=80$ in die Theile $x_1+4=15$, $x_2+5=10$, $x_3+1=5$ getheilt ist, erhält also $x_1 = 11$, $x_2 = 5$, $x_3 = 4$.

XX. Si sumantur quotlibet numeri, quorum praecedentes cum datis numeris ad sequentes habuerint proportiones datas ita, ut et ultimus adiuncto dato numero habeat proportionem datam ad primum, singulos eorum datos esse demonstrabitur.

Sint tres numeri a, b, c, et dati numeri totidem d, e, f, sintque ad ad b, et be ad c, et cf ad a dati. Sicut igitur ad ad b ita sit g ad e, ut sit totus gda ad bc sicut ad ad b, et hoc datus. Cum ergo sit be ad c datus, gda etiam datus ad c; sit item h ad f sicut gda ad c, eritque hgda ad fc datus. Sed fc ad a datus, ergo hgda ad a datus est, quare et hgd ad a datus; sed hgd datus, ergo et a datus, similiter b et c.

Verbi gratia sint numeri tres, sitque primus cum VI continens secundum et eius duas tertias; secundus cum IIII continens tertium bis; tertius cum duobus sit quinque septimae primi. Et quia VI et duae tertiae continent IIII et eius duas tertias, addantur primo, ut sint ipse et XII et duae tertiae continentes secundum cum IIII et eorum duas tertias. Contibunt ergo tertium ter et eius tertiam. Sed et VI et duae tertiae continent duo ter et eius tertiam, itaque primus cum XIX et tertia continet tertium cum duobus ter et eius tertiam. Sed tertius cum duobus cum sit quinque septimae primi, primus et XIX et tertia continebunt primum bis et eius duas

Digitized by GOOGLE

septimas et duas vigesimas primas; quare XIX et tertia continebunt eun semel et eius duas septimas et duas vigesimas primas, et primus eritergo XIIII, et secundus XII, tertius autem VIII.

XX. Hat von n gesuchten Zahlen die Summe aus je der pten gesuch ten und einer gegebenen Zahl zu der $(p+1)^{ten}$ gesuchten Zahl ein gegebenes Verhältniss, so dass für p=n p+1=1 wird, so kennt man sämmtliche gesuchte Zahlen.

Gegebene Gleichungen:

 $x_1 + a_1 = \lambda_1 x_2; \quad x_2 + a_2 = \lambda_2 x_3, \quad \dots, \quad x_p + a_p = \lambda_p x_{p+1}, \quad \dots, \quad x_n + a_n = \lambda_n x_1.$ Man suche zunächst b, aus der Proportion

$$(x_1+a_1): x_2=b_1: a_2=\lambda_1,$$

so dass also b_i bekannt ist, dann hat man auch

$$\frac{x_1 + a_1 + b_1}{x_2 + a_2} = \lambda_1; \text{ es ist aber } \frac{x_2 + a_2}{x_3} = \lambda_2,$$

folglich $x_1 + a_1 + b_1 = \lambda_1 \lambda_2 x_3$; dann bestimme man b_2 durch die Proportion

$$\frac{x_1+a_1+b_1}{x_3}=\frac{b_9}{a_8}=\lambda_1\lambda_2,$$

so ist auch

$$\frac{x_1 + a_1 + b_1 + b_2}{x_3 + a_2} = \lambda_1 \lambda_2,$$

und folglich wieder

$$x_1 + a_1 + b_1 + b_2 = \lambda_1 \lambda_2 \lambda_3 x_4$$

wo $\frac{x_3 + a_3}{a_1} = \lambda_3$ benutzt ist. Fährt man so fort, so erhält man schliesslich:

$$x_1 + a_1 + b_1 + b_2 + \dots + b_{n-1} = b_1 b_2 b_3 \dots b_n x_1,$$

$$b_n + \dots + b_{n-1}$$

 $x_1 + a_1 + b_1 + b_2 + \dots + b_{n-1} = \lambda_1 \lambda_2 \lambda_3 \dots \lambda_n x_1,$ also $x_1 = \frac{a_1 + b_1 + b_2 + \dots + b_{n-1}}{\lambda_1 \lambda_2 \lambda_3 \dots \lambda_{n-1}}.$ Daher kennt man auch x_2, x_3, \dots, x_n .

Beispiel: Jordanus nimmt n=3 und setzt $a_1=6$, $a_2=4$, $a_3=2$; $a_1=1$. $\lambda_2 = 2$, $\lambda_3 = \frac{\pi}{4}$ und findet $b_1 = 6\frac{\pi}{3}$, $b_2 = 6\frac{\pi}{3}$; $a_1 + b_1 + b_2 = 19\frac{\pi}{3}$; $\lambda_1 \lambda_2 \lambda_3 = 2\frac{\pi}{4}\frac{\pi}{3}$, folgict $x_1 = 19\frac{1}{3}: 1\frac{8}{31} = 14, \ x_2 = 12, \ x_3 = 8.$

XXI. Si numerus datus in duo diuidatur, quorum alterum. vel numerus ad ipsum datus, cum numero dato ad reliquum fecerit numerum datum, utrumque datum erit.

Dividatur ab in a et b, et sit c datum ad b, atque ac sit numers Cuius differentia ad ab sit e data, et ipsa est differentia c et b; et quia c ad b datum, erit e ad b datum, cumque sit e datus, erit et b et a datus.

Verbi gratia XII diuidatur in duo, quorum unum cum tertia reliqui faciat VI, cuius ad XII differentia est VI, qui etiam est differentia tertise ad totum suum: quare VI duae tertiae, et totum IX, residuum III. quoi cum tertia IX, hoc est cum tribus, facit VI.

XXI. Kennt man die Summe zweier Zahlen und ausserdem die Summe der einen (oder einer ihr proportionirten Zahl) und einer zi der andern proportionirten Zahl, so sind beide Zahlen bekannt

Gegebene Gleichungen:

A)
$$x + y = s_1, x + ny = s_2;$$
 B) $x + y = s_1, mx + ny = s_2.$

Man findet

folglich

$$y - ny = s_1 - s_2 = e;$$
 $my - ny = ms_1 - s_2 = e,$
 e e

 $y=\frac{e}{1-n};\quad y=\frac{e}{m-n},$

also auch x bekannt. J. betrachtet nur den links stehenden Fall seines Lehrsatzes. Beispiel: $s_1 = 12$, $s_2 = 6$; n = 3. Es ist also $y = 6: \frac{2}{3} = 9$, x = 3, and es ist $3 + \frac{9}{3} = 6$.

XXII. Numero dato in duo diuiso si alterum, vel numerus ad ipsum datus, cum numero dato fecerit numerum ad reliquum datum, utrumque eorum datum erit.

Ut prius ab parciatur in a et in b, atque a cum c dato faciat ac numerum ad b datum. Addatur ergo c ad ab, ut sit totus abc, qui divisus est in b et ac, quorum proportio data, utrumque ergo datum.

Verbi gratia XII diuidatur in duo, quorum alterum cum duobus faciat tres quartas reliqui. Duo iungantur XII et fient XIIII, qui diuisus est secundum illam proportionem, quare alterum erit VIII, alterum VI, a quo subtractis duobus remanent IIII.

XXII. Ebenso, wenn ausser der Summe der Zahlen das Verhältniss der ersten Zahl (oder einer zu ihr proportionirten) plus einer gegebenen Zahl zu der zweiten gegeben ist.

Gegebene Gleichungen:

A)
$$x+y=s_1,$$
 B) $x+y=s,$ $mx+c=py.$

Man hat bezüglich

$$(x+c)+y=s+c;$$
 $(mx+c)+my=ms+c,$ $x+c=py;$ $(mx+c)=\frac{p}{m}\cdot my,$

kennt also jedesmal die Summe und das Verhältniss zweier Zahlen, also nach II, VJ beide einzeln.

Beispiel: s=12, c=2, $p=\frac{3}{4}$. Man findet y=8, x+2=6, x=4.

XXIII. Si numerus datus in quotlibet diuidatur, quorum quodlibet sumptum praecedens semper ad compositum ex duobus reliquis proportionem habeat datam, quodlibet eorum datum erit.

Dividatur datus numerus in a, b, c, d, atque a ad bc, et b ad cd, et c ad da proportionem habeat datam. Dividatur ergo a in e et f, sitque b ad e et c ad f sicut bc ad a. Item quia b ad cd habet proportionem datam atque b ad e, erit e ad cd datum, quod dividatur in g et h secundum proportionem c ad d. Cum igitur fg ad c sit datum, atque c ad ad, erit fg ad da datum. Resolvatur g in k, l secundum proportionem dad a, eritque a tamquam hkl, cumque sit l ad a datum, erit similiter et hk. Sed hk ad d datum, quare d ad a, atque h ad ab et ad a, quare a et b et similiter ac, omnia ergo ad se et ad totum, quare singula data. Quod si quinque fuerint, ut a, b, c, d, e, resoluetur modo dicto a in de, atque eadem ratione e in dc et d in cb et c in ba, eritque a ad b datum, et sic de caeteris.

Verbi gratia, ut sit exemplum in quatuor, dividatur siquidem XXXII in quatuor, quorum primum sit septima secundi et tertii; secundum quinta tertii et quarti; tertium medietas quarti et primi. Ducatur itaque septima in quintam et erit trigesima quinta; et septima in dimidium, et fiet decima quarta; et trigesima quinta in dimidium, et fiet septuagesima; fietque primum tamquam sua septuagesima et decimaquarta, hoc est sex septuagesima. et septuagesima et trigesima quinta et quatuordecima quarti, hoc est octo septuagesimae. Itaque sexaginta quatuor septuagesimae primi sunt octo septuagesimae quarti, et quia octo octava sexaginta quatuor, erit primus octava quarti. Sed et primus septima secundi et tertii, quare quartus continet secundum et tertium et eorum septimam; sed secundus est quinta tertii et quarti, et quinta quarti tamquam quinta et trigesima quinta secundi et quinta et trigesima tertii, quare secundus est tamquam quinta et trigesima quinta sui, hoc et octo trigesimae quintae, et duae quintae et trigesima quinta tertii, hoc est eius quindecim trigesimae quintae. Itaquae eius viginti septem trigesime septimae sunt quindecim trigesimae septimae tertii; secundus ergo ad tertium sicut XV ad XXVII. Sed secundus ad tertium et quartum sicut VI ad XLVIII, quare primus ad secundum ut VI ad XV, et quia VI, XV, XXVII, XLVIII faciunt XCVI, qui est triplus XXXII, erit XXXII dinisus in duo, quinque, IX, XVI secundum sumptas habitudines.

XXIII. Gegeben ist die Summe von n Grössen und das Verhältniss einer jeden zu der Summe der beiden folgenden — wobei die auf die nte Grösse folgende die erste ist —; dann sind sämmtliche Grössen bekannt.

```
Gegebene Gleichungen:
```

Man findet leicht:

 $p_1 p_2 p_3 \dots p_{n-3} x_{n-2} = p_1 p_2 \dots p_{n-2} x_{n-1} + p_1 p_2 \dots p_{n-2} x_n$, $p_1 p_2 p_3 \dots p_{n-2} x_{n-1} = p_1 p_2 \dots p_{n-1} x_n + p_1 p_2 \dots p_{n-1} x_1$.

Addirt man, so ergicbt sich

 $x_1 = p_1 x_3 + p_1 p_2 x_4 + p_1 p_2 p_3 x_5 + \dots + p_1 p_2 \dots p_{n-2} x_n + p_1 p_2 \dots p_{n-1} x_1 + p_1 p_2 \dots p_{n-1} x_1.$ Entwickelt man jetzt ebenso $+ p_1 p_2 \dots p_{n-1} x_1.$

 $p_1x_8, p_1p_2x_4, p_1p_2p_8x_5, \ldots, p_1p_2p_3\ldots p_{n-2}x_{n-1}$

und so fort, so erhält man schliesslich eine Gleichung, welche nur noch x_n und x_n enthält; dann findet sich aber aus $x_{n-1} = p_{n-1}(x_n + x_1)$ u. s. w., $x_{n-1}, x_{n-2}, \dots, x_n$ durch x_1 ausgedrückt, so dass endlich Gleichung 1 den Werth von x_1 und damit alle Werthe der n Unbekannten liefert. Für n=4 würde die Rechnung so x_n : führen sein: Es ist

$$x_1 = p_1 x_2 + p_1 x_3,$$

$$p_1 x_2 = p_1 p_2 x_3 + p_1 p_2 x_4,$$

$$p_1 p_2 x_3 = p_1 p_2 p_3 x_4 + p_1 p_2 p_3 x_1,$$

$$p_1 x_3 = p_1 p_3 x_4 + p_1 p_2 x_1,$$

also durch Addition x_i : und folglich

$$x_1 = (p_1 p_2 p_3 + p_1 p_2 + p_1 p_3) x_4 + (p_1 p_2 p_3 + p_1 p_2) x_1$$

$$x_4 = \frac{1 - p_1 p_2 - p_1 p_2 p_3}{p_1 p_2 + p_1 p_3 + p_1 p_2 p_3} \cdot x_1.$$

Beispiel für vier Grössen: s = 32; $p_1 = \frac{1}{7}$, $p_2 = \frac{1}{5}$, $p_3 = \frac{1}{2}$. Es ist also

$$x_1 = \frac{\frac{1}{70} + \frac{1}{35} + \frac{1}{14}}{1 - \frac{1}{70} - \frac{1}{35}} x_4 = \frac{1}{8} x_4, \text{ also } x_3 = 1\frac{1}{8} \cdot \frac{1}{2} x_4 = \frac{9}{16} x_4;$$

$$x_2 = 1\frac{9}{16} \cdot \frac{1}{8} x_4 = \frac{5}{16} x_4, \text{ und daher } 32 = (\frac{1}{8} + \frac{9}{16} + \frac{5}{15} + 1) x_4 = 2x_4,$$
somit ist $x_4 = 16, x_5 = 9, x_2 = 5, x_1 = 2.$

XXIV. Si sumantur quotlibet numeri, quorum quilibet, cum numero dato habuerit proportionem datam ad compositum ex reliquis omnibus, singuli eorum datos esse necesse est.

Sint numeri quatuor a, b, c, d; datus numerus sit e, et quia ae est datus ad bcd, esto ae divisus in fgh, ut sit f ad b, et g ad c, et h ad d datus sicut ab ad bcd. Sit item k ad e sicut f ad b, et quia be est ad cda datus atque fk ad be, erit fk ad cda datus. Dividatur ergo secundum proportionem eorum in l, m, n, sitque item c ad a sicut g ad c, quare ke ad c erit ut cnlg ad h; sed eb ad acd est datum, atque acd ad n ut cnlg ad h, cui est aequalis ke ad c, quare eb ad keac datum erit. Sed keac ad ae est datum, atque acd est datum, quare eb ad ea datum, similiter ea ad ec atque ed. Itaque ea ad triplum e et bcd datum; sed ea ad bc datum, quare triplum e ad bcd datum, ipsum ergo datum et a datum, et sic de omnibus divisim.

Verbi gratia datus numerus VI, sintque quatuor numeri, quorum primus et IV sit nona reliquorum, secundus et VI sit tertia reliquorum; tertius et VI sit tres quintae residuorum, quartus vero et VI sit reliquis coniunctis aequalis. Ducatur itaque tertia in nonam, et fiet vigesima septima; itemque tertia ducatur in unum et nonam, et fiet tertia et vigesimaseptima, quae diuidantur per nonam et vigesimam septimam, et exibunt duo et dimidium. Itemque nona ducatur in tres quintas, et exibit quintadecima; atque tres quintae in unum et nonam, et erunt tres quintae et quintadecima, quae diuidantur per nonam et quintadecimam, et exibunt tres et tres quartae, quare tertius et VI continent primum et VI ter et tres quartas. Quia iterum quartus et VI sunt ut residua semel, ducenda erit nona in unum, et fiet nona, quod si etiam unum ducatur in unum et nonam, fiet unum et nona, quae dividentur per duas nonas, et exibunt V, quare quartum et VI est quintuplum primo cum VI. Itaque secundum, tertium, quartum et ter VI continent primum et sex undecies et quartam. Sed illa tria continent ea nouies, quare ter VI, hoc est XVIII, continet primum et sex bis et quartam, sunt ergo VIII; demptisque VI remanent duo, quod Digitized by GOOGLE est primum. Sed et secundum et VI erit XX, quare secundum est XIIII; tertium cum VI XXX, atque ipsum XXIIII; quartum cum VI XL, quia quintuplum VIII, ipsum ergo XXXIIII.

XXIV. Add irt man eine gegebene Zahl einzeln zu gesuchten Zahlen, und die so erhaltenen Zahlen haben zu den jeweiligen Summen aus den übrigen gesuchten Zahlen gegebene Verhältnisse, so kann man sämmtliche Zahlen finden.

Gegebene Gleichungen (J. benutzt nur vier Unbekannte):

Durch ähnliche Schlüsse, wie in der vorigen Nummer, will J. das Verhältniss jeder Unbekannten zu der gegebenen Zahl bestimmen. Wir werden hier es vorziehen, den Gedankengang des Jordanus an dem von ihm gewählten Beispiele von vier Unbekannten darzulegen. Es ist also gegeben:

$$x_1 + a = m_1(x_2 + x_3 + x_4),$$

 $x_2 + a = m_2(x_3 + x_4 + x_1),$
 $x_3 + a = m_3(x_4 + x_1 + x_2),$
 $x_4 + a = m_4(x_1 + x_2 + x_3).$

Der Text des Jordanus, wie er vorliegt, ist in seinen späteren Theilen absolut unverständlich. Der Anfang aber hat folgende Umformungen zu bewerkstelligen: Er verwandelt die beiden ersten Gleichungen in

$$\begin{aligned} x_1 + a &= m_1 \, x_2 + m_1 \, x_3 + m_1 \, x_4, \\ m_1 \, x_2 + m_1 \, a &= m_1 \, m_2 \, x_3 + m_1 \, m_2 \, x_4 + m_1 \, m_2 \, x_1 \, . \end{aligned}$$

Alles Uebrige ist jedenfalls so verdorben, dass der weitere Sinn nicht zu enträthseln ist.

Auch das Beispiel, dessen Gleichungen

$$x_1 + 6 = \frac{1}{3}(x_2 + x_3 + x_4),$$

$$x_2 + 6 = \frac{1}{3}(x_3 + x_4 + x_1),$$

$$x_3 + 6 = \frac{3}{3}(x_4 + x_1 + x_2),$$

$$x_4 + 6 = x_1 + x_2 + x_3.$$

sind, giebt für die Art der Lösung nicht genügende Fingerzeige. Seine richtige Lösung ist: $x_1 = 2$, $x_2 = 14$, $x_3 = 24$, $x_4 = 34$.

XXV. Si proponantur in ordine quotlibet numeri, quorum singuli cum numero ad proximum sequentem dato datum numerum constituant, quilibet eorum datus erit.

Sit datus numerus e et quatuor numeri a, b, c, d, atque f datus ad a, et g ad b, et h ad c, et k ad d; atque a cum g et b cum h, et c cum k et d cum f faciat e. Sicut autem g ad b ita sit l ad h, et sicut l ad c, ita m ad k, et sicut m ad d ita m ad f; itaque gl et lm et mn dati erunt. Et quia, quae est differentia ag ad gh, ea est a ad l, erit differentia a ad l data. Similiter differentia l ad m, quare et differentia a ad m data. Sed cum sit a ad m datus, erit et a et m ad differentiam datus, uterque

ergo datus, cumque sit a datus, si detrahatur ab e, relinquetur g datus, quare et b datus erit, et reliqui similiter. Quod si quinque fuerint positi a, g, l, m, n, c, cum sit differentia a ad l data atque l ad n, erit et a ad n differentia data. Cum nc datum sit, si fit a minus n et dato minus, ipso detracto de nc dato remanebit ca datus, quare utrumque datum; si vero maius, quia dato maius, ipso addito ad nc fiet ac similiter datum, et utrumque datum.

Verbi gratia datus numerus sit CXIX, sintque alii quatuor numeri, quorum primus cum dimidio secundi faciat CXIX, secundus cum tertia tertii, tertius autem cum quarta quarti, quartus cum quinta primi constituant ipsum. Ducatur itaque medietas in tertiam, et erit sexta; et sexta in quartam, et fiet vigesima quarta; et vigesima quarta in quintam, et proueniet centesima vigesima. Quia ergo primus et medietas secundi sunt CXIX, et medietas secundi et sexta tertii sunt LIX et dimidium, primus excedit sextam tertii LIX et dimidio; et quia sexta tertii et vigesima quarta quarti sunt X et IX et quinque sextae, et vigesima quarta quarti et centesima vigesima primi sunt IIII et viginti tres vigesimae quartae, differentia sextae tertii et centesimae vigesimae primi erit XIIII et vigintiuna vigesimae quartae. Differentia ergo primi ad centesimam vigesimam sui est LXXIIII et novem vigesimae quartae, quod si multiplicetur per CXX, fiet VIII milia DCCCC et XXV. Quia primus ad illud sicut CXX ad CXIX, si productus diuidatur per CXIX, exibit LXXV, et ipse est primus. Quo detracto de CXIX remanebunt XLIIII, quo duplicato fiet secundus LXXXVIII. Hoc tunc dempto de CXIX relinquentur XXXI, quo triplicato fiet tertius XCIII, et isto sublato de CXIX residuus erit XXVI, quo quater sumpto fiet quartus CIIII, sed et si iste auferatur de CXIX, remanebunt XV, qui est quinta LXXV, qui est primus.

XXV. Hat von einer beliebigen Anzahl von Grössen jede einzelne mit einer zu der nächstfolgenden gegebenen Zahl ein und dieselbe gegebene Zahl zur Summe, so sind alle Grössen bekannt.

```
Gegebene Gleichungen: x_1 + m_1 x_2 = e,
                                      x_2+m_2\,x_3=e,
                                      x_3+m_3x_4=e,
                                      . . . . . . .
                                     x_n + m_n x_1 = e.
Es ist
                                      x_1+m_1\,x_2=e,
                               m_1 x_2 + m_1 m_2 x_3 = m_1 e
folglich
                                  x_1 - m_1 m_2 x_3 = (1 - m_1) e;
aber
                         m_1 m_2 x_3 + m_1 m_2 x_3 x_4 = m_1 m_2 e_1
also
                               x_1 + m_1 m_2 m_3 x_4 = (1 - m_1 + m_1 m_2) e.
Ferner ist
                  m_1 m_2 m_3 x_4 + m_1 m_2 m_3 m_4 x_5 = m_1 m_2 m_3 e
also wieder
                            x_1 - m_1 m_2 m_3 m_4 x_5 = (1 - m_1 + m_1 m_2 - m_1 m_2 m_3) e.
```

Wie man bier fortfahren kann, ist ohne Weiteres klar. Man erhält schliesslich Digitized by GOOGLE Hist.-lit. Abthlg. d. Zeitschr. f. Math. u. Phys. XXXVI, 2.

 $x_1 + (-1)^{n-1} m_1 m_2 m_3 \dots m_n x_1 = (1 - m_1 + m_1 m_2 - m_1 m_2 m_3 + \dots + (-1)^{n-1} m_1 m_2 - m_{2-1})\epsilon$; damit kennt man x_1 , und folglich ergeben sich aus den ursprünglichen Gleichungen leicht die übrigen Grössen.

Beispiel: Für n=4; e=119; $m_1=\frac{1}{6}$, $m_2=\frac{1}{3}$, $m_3=\frac{1}{4}$, $m_4=\frac{1}{6}$. Dann erhält man $m_1m_2m_3m_4=\frac{1}{120}$, $1-m_1+m_1m_2-m_1m_2m_3=1-\frac{1}{3}+\frac{1}{6}-\frac{1}{24}=\frac{1}{6}\frac{5}{4}$, es ist also $(1-\frac{1}{120})x_1=\frac{1}{2}\frac{5}{4}$. 119, $x_1=120.\frac{1}{2}\frac{5}{6}=75$, also $\frac{1}{2}x_2=119-75=44$, $x_2=88$; $\frac{1}{3}x_3=119-88=31$, $x_3=93$; $\frac{1}{4}x_4=119-98=26$, $x_4=104$; als Probe ist endlich $\frac{1}{6}x_1=119-104=15$, $x_1=75$, wie vorher.

XXVI. Positis quotlibet numeris, si quilibet eorum cum numero ad compositum ex reliquis dato fecerit numerum datum, singuli eorum dati erunt.

Sit datus numerus v, et numeri propositi a, b, c, d sitque efg datus ad abc, qui cum d faciat v, atque hkl datus ad bcd, qui cum a faciat v sed et mno datus ad cda, et ipse cum b faciat v, atque pqr datus ad dab, qui cum c faciat v; sitque hkl ad bcd minor proportio quam mno ad cda, et istorum minor quam pqr ad dab, et horum minor quam efg ad abc. Quia igitur k, l minores sunt quam n, o, tollantur ab eis, et remanent s et t; eruntque ah maius mb, sed si h est maius b, erit a minor m, quoniam maior est proportio m ad a quam h ad b; ablatis ergo a de m et b de h remaneant x, v, eritque v tamquam xst. Et quia mo minus pr et b minor h, erit c minor n, et quia pq minus ef et c minor g, quia minor n, erit d minor r. Sic ergo, quia v resolvitur in xst, quae sunt data ad acd, similiter et b resolvetur in tria data ad acd, atque quodlibet datum c in tria ad abc, sed et quodlibet datum d in tria data ad abc, et sic tantum a non resolvitur. Atqui si h esset minus b, fieretque a maior m, et tunc abc resoluetur in reliqua usque ad d. Si ergo a non resolvitur, quodlibet reducetur in datam ad a et datum ad unum reliquorum (est enim v tamquam xst, sed sunt tamquam ley data ad abc). Dempto ergo y de v remanet fe, eritque fe ut xz et ti, similiter ti erit ut ne, pc data ad ab; dempto ergo vi de fe relinquatur ve, eritque ve tamquam pte. Sed cum sit b ad ne et pte datum ad a, erit b datum ad a et ita quodlibet corum datum ad a crit; ergo a datum ad hkl, quare et ad z compositum, singula igitur eorum data.

Verbi gratia sit datus numerus XXVIII, et sint quatuor numeri, quorum primus cum triplo reliquorum faciat XXVIII, secundus autem cum triplo reliquorum et quarta, tertius cum triplo residuorum et quatuor septimis, quartus cum quadruplo reliquorum XXVIII constituat. Ablatis ergo primo de triplo et quarta sui atque triplo tertii et triplo quarti de triplis et quartis eorum, secundo autem de triplo ipsius, remanebit duplum secundi quantum duplum primi et quarta atque quarta tertii et quarti. Eadem ratione duplum tertii et quarta erit ut duplum secundi et quatuor septimae et nouem vigesimae octauae primi et quarti. Et quia duo et quarta continent quartam nouies, si diuidatur per nouem duo et quatuor septimae et nouem vigesimae octauae, fiet quarta tertii ut duae septimae secundi et

1

una vigesima octava primi et quarti. Demptis quoque duobus septimis de duobus, fient unum et quinque septimae secundi tamquam duplum primi et quarta et vigesima octaua itemque quarta et vigesima octaua quarti. Verum quia duplum quarti et quatuor septimae quarti sunt ut triplum tertii et tres septimae primi et secundi, et quia duo et quatuor septimae continent quartam et vigesimam octauam nouies, erit quarta et vigesima octaua quarti quantum tertia tertii et vigesima prima primi et secundi; et quia duplum tertii et quarta continet tertiam sexies et eius tres quartas, erit tertia tertii ut octo vigesimae primae secundi et una vigesima prima primi et quarti. Sublata igitur vigesima prima quarti de quarta et vigesima octava, remanebunt viginti quatuor octuagesimae quartae quarti ut nouem vigesimae primae secundi et duae vigesimae primae primi. Sed viginti quatuor octuagesimae quartae continent octo vigesimas octauas: quinque sextae erunt ergo octo vigesimae quarti, tres septimae et tres trigesimae quintae secundi et duae vigesimae primae primi et duae centesimae quintae eiusdem. Quia igitur secundum semel et quinque septimae sunt tamquam duplum et quarta et vigesima octana primi atque quarta et vigesima octana quarti, sublatis tribus septimis et tribus trigesimis quintis de uno et quinque septimis, remanebit unum et septima et duae trigesimae quintae secundi tamquam duplum primi et quarta et vigesima octava et duae vigesimae primae et duae centesimae quintae eiusdem, hoc est quingenti quatuor quadringentesimae vigesimae secundi ut mille octo quadringentesimae vigesimae primi; et quia MVIII continent DIIII bis, erit secundus duplus primi, et quia secundus semel et quinque septimae, si tollatur primum bis et quarta et vigesima octaua, remanebit primum semel et septima, hoc est triginta duo vigesimae octauae, quantum quarta et vigesima octava quarti, hoc est octo vigesimae octavae; et quia XXXII est quadruplus VIII, erit quartus quadruplus primo, et quia duplum secundi et quatuor septimae atque nouem vigesimae octauae primi et quarti sunt ut primum sexies et tres quartae, erit duplum tertii et quarta tantumdem. Et quia VI et tres quartae est triplum duobus et quarta, erit tertium triplum primo. Triplum igitur secundi, tertii et quarti est ut XXVII et unum, quae cum faciant XXVIII, erit primum unum, et ob hoc secundum duo, tertium tria, quartum quatuor.

XXVI. Ebenso, wenn die Summe einer jeden Grösse plus einer zu der Summe aller übrigen Grössen gegebenen Zahl eine constante gegebene Grösse ist.

Gegebene Gleichungen:

Die Aufgabe unterscheidet sich nicht wesentlich von Nr. XXIV. Auch hier ist der Gedankengang an den von Jordanus benutzten vier Gleichungen (also n=4) vollständig klar zu legen. Ich begnüge mich also auch hier mit dieser specielleren Aufgabe. Es sind also folgende Gleichungen gegeben;

$$x_1 + m_1 (x_2 + x_3 + x_4) = a,$$

$$x_2 + m_2 (x_3 + x_4 + x_1) = a,$$

$$x_3 + m_3 (x_4 + x_1 + x_2) = a,$$

$$x_4 + m_4 (x_1 + x_2 + x_3) = a.$$

J. setzt voraus $m_1 < m_2 < m_3 < m_4$. Subtrahirt er jetzt 2 von 1, 3 von 2, 4 von 3, so erhält er nach einiger Umformung folgende Gleichungen:

$$\begin{array}{ll} (m_1-1)\,x_2=(m_2-1) & x_1+(m_2-m_1)\,x_3+(m_2-m_1)\,x_4\,,\\ (m_2-1)\,x_3=(m_3-m_2)\,x_1+(m_3-1) & x_2+(m_3-m_2)\,x_4\,,\\ (m_3-1)\,x_4=(m_4-m_3)\,x_1+(m_4-m_2)\,x_2+(m_4-1) & x_3\,. \end{array}$$

Er eliminirt jetzt aus der ersten und zweiten dieser Gleichungen x_3 und erhält so eine Gleichung von der Form

$$p_2 x_2 = p_1 x_1 + p_4 x_4.$$

Ebenso bestimmt er aus der zweiten und dritten Gleichung durch Elimination von x_3 eine Gleichung $q_4x_4=q_1x_1+q_2x_2.$

Nun erhält er durch Elimination von x_4 resp. x_*

$$x_2 = r_2 x_1, \quad x_4 = r_4 x_1.$$

In abnlicher Weise bestimmt er $x_8 = r_3 x_1$.

Jetzt hat er also aus Gleichung 1:

$$x_1 + m_1(r_2 + r_3 + r_4)x_1 = a,$$

und damit ist die Aufgabe gelöst.

Beispiel: Man hat hier die gegebenen Gleichungen:

$$x_1 + 8$$
 $(x_2 + x_3 + x_4) = 28$,
 $x_2 + 3\frac{1}{4}(x_3 + x_4 + x_1) = 28$,
 $x_3 + 3\frac{1}{7}(x_4 + x_1 + x_2) = 28$,
 $x_4 + 4$ $(x_1 + x_2 + x_3) = 28$.

Man erhält zunächst

$$2x_2 = 2\frac{1}{4}x_1 + \frac{1}{4}x_3 + \frac{1}{4}x_4, \ 2\frac{1}{4}x_3 = 2\frac{4}{7}x_2 + \frac{9}{28}x_4 + \frac{9}{28}x_1$$

oder

$$\frac{1}{4}x_8 = \frac{2}{7}x_2 + \frac{1}{28}x_4 + \frac{1}{28}x_1.$$

Dies zu der vorhergehenden Gleichung addirt, liefert:

$$1\frac{5}{7}x_2 = 2\frac{1}{4}\frac{1}{28}x_1 + \frac{1}{4}\frac{1}{28}x_4 = 2\frac{2}{7}x_1 + \frac{2}{7}x_4.$$

Durch Subtraction der vierten Gleichung von der dritten erhält man weiter

$$2\frac{1}{7}x_4 = 3x_3 + \frac{3}{7}x_1 + \frac{3}{7}x_2,$$

also auch

$$\frac{2}{7}x_4 = \frac{1}{8}x_8 + \frac{1}{81}x_1 + \frac{1}{81}x_2.$$

Es ist aber

$$\frac{1}{3}x_3 = \frac{8}{21}x_2 + \frac{1}{21}x_1 + \frac{1}{21}x_4,$$

folglich durch Addition

$$\frac{5}{7}x_4 = \frac{9}{21}x_2 + \frac{9}{21}x_1.$$

Es ist also auch

$$\frac{2}{3}x_4 = \frac{1}{3}\frac{8}{5}x_2 + \frac{1}{35}x_1$$

Wenn man dies zu der Gleichung

$$1 \frac{1}{2} x_2 = 2 \frac{2}{4} x_1 + \frac{2}{4} x_4$$

addirt, so entsteht

$$\frac{4}{5}x_2 = \frac{8}{3}\frac{1}{5}x_1$$
 (bei J. ist jeder Bruch mit 12 erweitert),

also ist

$$x_2=2x_1.$$

Nun findet man leicht:

$$x_4 = 4x_1, \quad x_3 = 3x_1;$$

folglich ist aus Gleichung 1

$$x_1 + 27x_1 = 28$$
; $x_1 = 1$, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$.

XXVII. Opus autem Arabum in partibus tantum consistit, estque huiusmodi.

Exempli causa sumendi sunt quatuor numeri, quorum primus cum medietate reliquorum faciat XXXVII, secundus cum tertia, tertius cum quarta, quartus cum quinta omnium reliquorum faciat XXXVII. Ponatur igitur numerus plures ex his partibus habens, ut est XII, cuius medietas est VI, tollaturque de XII numerus, qui cum tertia reliqui faciat VI, et ipse est III; item alius, qui cum quarta residui constituat VI, et hic est IIII; tertius quoque, qui cum quinta reliqui faciat ipsum VI, qui erit IIII et dimidium, coniunganturque III, IIII, IIII et dimidium et fient XI et dimidium, quod ipsi nominarunt ad XII in positione esse falsi. Reliquum igitur ad XII, hoc est dimidium, parciatur per tria, et eueniet sexta, et habebimus loco primi sextam, loco secundi tria et sextam, loco tertii IIII et sextam, loco quarti IIII dimidium et sextam. Cumque sex, qui est dimidium XII, cum sexta continet sextam trigesies septies, de quaesitis numeris primus erit unum, secundus XIX, tertius XXV, quartus XXVIII.

Demonstratio. Sint quatuor numeri a, b, c, d, sitque inter partes maioris denominationis e, quae cum a facit datum numerum; sitque f ut bcd: erit igitur a minimum. Esto enim g pars acd, quae cum b coniungetur, et quia pars cd, quota est e, est maior quam pars eorum quota est g, erit e pars a, quota est g, maius quam a cum parte b, quota est e. Dempto igitur illis partibus de a et b erit residuum b maius residuo a, quare et parti simili g detracto a b, quia minus est residuum, quoque maius erit residuo a. Itaque b maior a, et alii simili modo. Auferantur ergo a singulis aequalia a, et sint h, k, l, reliqua m, n, o. Quia igitur b cum parte acd facit ae, et m cum tota parte eorumdem faciet e, quia b sequale m, et ideo m cum tota parte b et cd, hoc est cum tota parte residui sui ad f, faciet e. Simili modo enim cum parte, quae adjuncta c faciat ae, faciet e, hoc est cum parte kdb, quod est reliquum ad f, atque c cum parte, quae cum d facit ae, faciet d, hoc est cum parte lbc, quod est residuum ad f; detractisque m, n, o de f remanebunt h, k, l, quod si diuidantur per numerum bcd, fient hkl aequalia a. Habebimus ergo a, et adjunctis h, k, l cum m, n, o fient b, c, d, secundum quod in opere factum est.

XXVII. Der "Falsche Satz" der Araber.

Er behandelt ähnliche Aufgaben, als die in den vorigen Nummern enthaltenen. J. kennt also nur den einfachsten Fall der regula falsae positionis, mit einer falschen Annahme, wie ihn schon Ahmes im Papyrus Rhind benutzt. (Cantor a. a. O., S. 86.)

Das erste in diesem Paragraphen abgehandelte Beispiel ist in folgenden Gleichungen ausgesprochen:

 $x_1 + \frac{1}{4}(x_2 + x_3 + x_4) = 37,$ $x_2 + \frac{1}{3}(x_2 + x_4 + x_1) = 37,$ $x_3 + \frac{1}{4}(x_4 + x_1 + x_2) = 37,$

 $x_4 + \frac{1}{5}(x_1 + x_2 + x_3) = 37.$

Statt 37 setzt er die Zahl 12, weil diese mehrere Theile von der in der Gleichung gegebenen hat, nämlich Drittel, Halbe und Viertel, und setzt

$$x'_1 = 6$$
 und $\frac{1}{2}(x'_2 + x'_3 + x'_4) = 6$.

Er sagt nun, ich kann die Gleichungen aufstellen

$$x'_{2} + \frac{1}{2}(x'_{3} + x'_{4} + x'_{1}) = 3 + 9,$$

$$x'_{3} + \frac{1}{4}(x'_{3} + x'_{4} + x'_{1}) = 4 + 8,$$

$$x'_{4} + \frac{1}{2}(x'_{1} + x'_{2} + x'_{3}) = 4\frac{1}{2} + 7\frac{1}{2}.$$

Das giebt in Somma

$$x'_{2} + x'_{3} + x'_{4} + \frac{1}{3}(\ldots) + \frac{1}{4}(\ldots) + \frac{1}{5}(\ldots) = 11\frac{1}{2} + 24\frac{1}{2},$$

also ist $x'_2 + x'_3 + x'_4$, welches nach der ersten Annahme 12 sein müsste, um $\frac{1}{4}$ zu klein, also jedes einzelne um $\frac{1}{6}$, so dass also, damit auch die Gleichung 1, nämlich

$$x'_1 + \frac{1}{2}(x'_2 + x'_3 + x'_4) = 12$$
,

richtig ist, gesetzt werden muss

$$x''_1 = \frac{1}{6}, \ x''_2 = 3\frac{1}{6}, \ x''_3 = 4\frac{1}{6}, \ x''_4 = 4\frac{1}{2}\frac{1}{6};$$

 x'_1 aber muss $6\frac{1}{8}$ sein, and da $\frac{1}{8}$ in $6\frac{1}{8}$ 37 mal enthalten ist, so wird der Aufgabe entsprochen, sobald für $\frac{1}{8}$ in den Werthen x''_1 , x''_2 , x''_3 , x''_4 je die Einheit gesetzt wird; es ist also $x_1 = 1$, $x_2 = 19$, $x_3 = 25$, $x_4 = 28$.

XXVIII. Non dissimili modo potest opus procedere in qualibet proportione adiunctorum hoc praeostenso, quod adiuncta omnia vel simul erunt minora vel simul maiora hiis ad quae addita sunt.

Si enim est aliter, possibile ponatur, sintque quatuor numeri, ut supra, a, b, c, d, atque a cum efg dato ad bcd fiat ϵ ; atque b cum hkl dato ad cda faciat eundem; sitque efg maior bcd, et hkl minor cda. Maior est igitur e quam b, addatque m. Itaque a cum mfg facit hkl, et quia a maior h, erit kl maior mfg. Sed fg maior cd, et cd maior kl, quare fg maior mfg, quod est impossibile.

Reducamus igitur suprapositum exemplum (XXVI), in quo primus cum triplo reliquorum trium facit datum numerum. Sumamus itaque LXXXIIII loco XII superius posito, sitque semper primum, quod cum illo additur, quod ad reliqua minorem habet proportionem, si fuerit maius, ut hic tri-Sit igitur triplum viginti octo octuaginta quatuor et minuamus numerum a LXXXVIII, qui cum triplo et quarta residui faciet LXXXIIII, et ipse est tres et nona; itemque alium, qui cum triplo et quatuor septimis residui faciat LXXXIIII, et hic est VI et duae nonae; tertium etiam, qui cum quadruplo residui faciat LXXXIIII, et ipse est IX et tres nonse. Quae simul iunctae faciunt XVIII et sex nonas, super quae XXVIII addit IX et tres nonas, cuius tertia est tres et nona, et hic erit pro primo-Ipsum etiam addatur singulis aliorum, et fiet loco secundi VI et duae nonse, loco tertii IX et tres nonae, loco quarti XII et quatuor nonae, inter quae est proportio superius inventa. [In ista autem operatione vero erit LXXXIIII quasi numerus datus et quod aggregatur ex ipso et primo inuento, scilicet LXXXIIII et una nona, sicut patet per operationem et per rationem. Et istius aggregati ad primum propositum inuentum considerabitur proportio,

scilicet LXXVII et una nona ad III et unam nonam, et est vigecupla octupla, et talis erit XXVIII ad primum suorum, scilicet ad unitatem. Et hoc manifeste docetur in opere partium, quo utuntur Arabes. Comparat enim sex et sextam ad sextam, quod est loco primi, et sic inueniat proportionem XXXVII ad unum.]

XXVIII. Anderes Beispiel für den "Falschen Satz der Araber". Hier sind die gegebenen Gleichungen wieder

$$x_1 + 3$$
 $(x_2 + x_3 + x_4) = 28$,
 $x_2 + 3\frac{1}{4}(x_3 + x_4 + x_1) = 28$,
 $x_3 + 3\frac{1}{4}(x_1 + x_1 + x_2) = 28$,
 $x_4 + 4$ $(x_1 + x_2 + x_3) = 28$.

Jordanus setzt versuchsweise

$$3(x_2' + x_3' + x_4') = 84$$
 (also $x_1' = 0$),

und es sollen ihm ausserdem die Gleichungen richtig werden:

$$x'_2 + 8\frac{1}{4}(x_3 + x_4 + x_1) = 3\frac{1}{6} + 80\frac{8}{6} = 84$$
,
 $x'_3 + 8\frac{1}{6}(x_4 + x_1 + x_2) = 6\frac{1}{6} + 77\frac{1}{6} = 84$,
 $x'_4 + 4(x_1 + x_2 + x_3) = 9\frac{1}{6} + 74\frac{1}{6} = 84$.

Durch Addition folgt alsdann

also ist

$$x'_{2} + x'_{3} + x'_{4} + 8\frac{1}{4}(...) + 3\frac{1}{4}(...) + 4(...) = 18\frac{6}{9} + 238\frac{3}{9} = 252,$$

 $x'_{2} + x'_{3} + x'_{4} = 18\frac{6}{9}.$

Es soll aber diese Summe gleich 28 sein; es ist also zu wenig um 93, d. h. für jedes um 31. Er hat so erhalten

$$x''_1 = 3\frac{1}{9}, \ x''_2 = 6\frac{3}{9}, \ x''_3 = 18\frac{5}{9}, \ x''_4 = 12\frac{4}{9}.$$

Mit diesen Werthen giebt die Gleichung 1 aber 87 $\frac{1}{4}$; sie darf aber nur 28 ergeben, also muss jede Zahl mit $\frac{28}{87\frac{1}{4}} = \frac{9}{28}$ multiplicirt werden, um die gesuchten Zahlen zu erhalten. Man bekommt so, wie oben,

$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$.

(Fortsetzung folgt.)

Recensionen.

Lehrbuch der ebenen und sphärischen Trigonometrie nebst einer Sammlung von Uebungsaufgaben zum Gebrauche an Gymnasien. Von Professor R. Netzhammer in Einsiedeln (Schweiz). Paderborn 1889, Ferdinand Schöningh. VI, 211 S.

Das vorliegende Werk ist eine gute Darstellung der Trigonometrie innerhalb der Ebene und innerhalb der Kugelfläche. Im Einzelnen ist Manches zu bemerken. So ist z. B. die Formel $\frac{\infty}{\infty.tng\,\alpha} = \frac{1}{tng\,\alpha}$ auf S. 45 durchaus unzulässig. So scheint uns ferner die weitergehende Giltigkeit der Formeln des ersten Quadranten mit allzuviel Aufwand von Platz bewiesen zu sein; zudem sind die beiden dazu verwendeten "Methoden" gerade nicht "methodisch" geschieden. So dürfte ferner der Fall α , b, α oder β auf S. 84 und 85 eine eingehendere Discussion beanspruchen, zumal die entsprechenden Aufgaben der Sphärik genauer behandelt sind u. s. w.

Braunschweig.

ALEX. WERNICKE.

Lehrbuch der ebenen Trigonometrie in stufenmässiger Anordnung für den Schulgebrauch, nebst einer sich eng an dasselbe anschliessenden Sammlung von Uebungsaufgaben. Von Oberlehrer Dr. F. CONBADT in Belgard. Leipzig 1889, B. G. Teubner. VIII, 176 S.

Der Schwerpunkt des sorgfältig gearbeiteten Werkes liegt in der gut angelegten und reichhaltigen Sammlung von Uebungsaufgaben. Die Goniometrie von der Trigonometrie in der Darstellung eines Lehrbuches schaff zu trennen, halten wir im Gegensatz zu dem Verf. für methodisch durchaus erforderlich, während der Lehrer allerdings bei der ersten Einführung in das Gebiet diese Trennung nur soweit aufrecht erhalten darf, als es das Interesse der Schüler verträgt. Den Winkel von vornherein zu Gunsten des Bogens zurücktreten zu lassen, scheint uns bedenklich, da der Kreis in den Elementen erst mit Hilfe der Dreieckscongruenzen einer Behandlung fähig wird. Warum auf S. 18 statt des zweiten Schemas nicht die Sinuscurve u. s. w. gegeben wurde, ist uns unerfindlich, zumal die Einführung der Parallelcoordinaten bereits im ersten Paragraphen erfolgt ist. Bei der Behandlung der Gleichung $x^n = \pm 1$, deren Aufnahme wir durchaus billigen,

vermissen wir den Hinweis auf die Theorie der symmetrischen Gleichungen u. s. w.

Ueberhaupt hätte der Verfasser unserer Ansicht nach an verschiedenen Stellen tiefer schneiden müssen; so ist z. B. die Beziehung der arithmetisch gegebenen Function (§ 6) zur empirischen Formel der Physik (Spannung des Wasserdampfes etc.) nicht klar genug bestimmt, so ist ferner der Moivre'sche Satz für gebrochene Exponenten und für beliebige reelle Exponenten nicht ausreichend dargestellt (k. Deutigkeit der Wurzel etc.), so ist endlich die Eindeutigkeit von sinx bei gegebenem x und die Vieldeutigkeit von x bei gegebenem sinx nicht scharf genug gefasst.

Braunschweig.

ALEX. WERNICKE.

GÜNTHER, Prof. Dr. S., Handbuch der mathematischen Geographie. XIV, 793 S., mit 155 Abbildungen. (Bibliothek geographischer Handbücher, herausgegeben von Prof. Dr. Fr. RATZEL.) Stuttgart, Engelhorn. 1890. Preis 16 Mk.

Ratzel's hochverdienstliche und werthvolle Bibliothek geographischer Handbücher, in welcher Sammlung bis jetzt die Anthropogeographie vom Herausgeber, die Klimatologie von Hann, die Oceanographie von Boguslawski-Krümmel, die Gletscherkunde von Heim und die allgemeine Geologie von v. Fritsch erschienen sind, hat durch Günther's mathematische Geographie eine neue Bereicherung erfahren. Dieses jüngste Werk des Verfassers, der sich um die mathematischen Wissenschaften, und innerhalb derselben um die geschichtliche Forschung so vielfache Verdienste erworben hat, ist für den Geographen und für den Mathematiker in gleicher Weise von Bedeutung. Für den Ersteren hat Referent dasselbe im Julihefte von Petermann's Mittheilungen (1890) angezeigt; hier soll es soweit zur Besprechung gelangen, als es für den Mathematiker von Interesse ist.

Das Vorwort unseres Buches giebt über den Standpunkt, den der Verfasser zu seinem Gegenstande einnimmt, genauen Aufschluss und ist darum für die Beurtheilung des Ganzen überaus wichtig. "Eine Verständigung über den Inhalt der mathematischen Geographie, wie nicht minder über die Art der Darstellung ist von vornherein dringend geboten; der Leser muss durch die Vorrede bereits in den Stand gesetzt werden, sich ein Bild von dem zu machen, was das Buch ihm bieten werde, damit er auf der einen Seite nicht zuviel erwarte, aber auf der andern auch nicht durch die eingehendere Erörterung solcher Fragen, welche man bisher nicht als im Vordergrund stehend zu betrachten gewohnt war, sich enttäuscht fühle." Bezüglich der Art der Darstellung ist des Verfassers Auffassung von dem Wesen eines "Handbuches" massgebend und bestimmend, welche dahin geht, dass ein solches, wenn irgend angängig, auf jede vom Leser zu stellende

Anfrage eine Antwort bereit haben muss, keine erschöpfende zwar, aber doch eine, die ausreicht, um den Fragesteller tiber gewisse Punkte aufzuklären und ihm mittels sorgfältiger Literaturnachweise die Möglichkeit gründlicher Belehrung zu verschaffen.

Was den Inhalt der mathematischen Geographie betrifft, so gelangt der Verfasser durch eine geschichtliche und methodologische Untersuchung (S. 1-39), in welcher auch auf die Frage nach dem Wesen und den Grenzen der Geographie kurz eingegangen wird, zu dem Schlusse, dass der mathematischen Geographie das allgemeinste Ortsbestimmungs-oder Orientirungsproblem zur vollständigen Auflösung zuzuweisen sei. Es wird also, und zwar mit vollstem Rechte, aber auch im wohlerwogenen Gegensatz zu zahlreichen Lehrbüchern und Leitfäden der mathematischen Geographie, vom Lehrbegriffe der Astronomie grundsätzlich Alles ausgeschlossen, was nicht zwingend mit der Aufgabe der Ortsbestimmung auf der Erde zusammenhängt. Diese letztere lässt sich in drei Einzelprobleme zerlegen, welche sich der Reihe nach befassen mit der Bestimmung der Gestalt und Grösse des Erdkörpers, mit der Bestimmung der Lage je des Punktes auf der Erde durch ein auf dieser eindeutig gegebenes Coordinatensystem, endlich mit der Bestimmung des momentanen Ortes der Erde im Weltraum gegenüber einem als stabil bekannten Gebilde, falls ein solches existirt.

Sind hiernach Inhalt und Umfang unserer Disciplin festgelegt und gegenüber der Astronomie soweit abgegrenzt, als dies bei sich so vielfach berührenden, ja selbst durchdringenden Nachbarwissenschaften möglich ist, so wird weiterhin auf die unumgängliche Voraussetzung tüchtiger Kenntnisse in der praktischen Geometrie hingewiesen, mit welchen der Geograph, insbesondere der wissenschaftliche Forschungsreisende vertraut sein muss, wenn er seiner Aufgabe gewachsen sein will. Geodätisches Wissen und Können und, damit unzertrennbar verbunden, Instrumentenkunde, das sind Dinge, die das vorliegende Werk in sein Programm durchaus richtig aufgenommen hat, da deren Bedeutung für das Studium und die Ausübung der mathematischen Geographie nicht hoch genug angeschlagen werden kann.

Auf die literarischen Quellen und gleichzeitig auf den geschichtlichen Gang der Entwickelung unserer einschlägigen Kenntnisse hat der Verfasser, entsprechend seiner bereits mitgetheilten Auffassung vom Wesen eines Handbuches, aber auch in Uebereinstimmung mit seinen persönlichen Neigungen grosses Gewicht gelegt, so dass unser Handbuch in ähnlicher Weise, wie des Autors Geophysik und die meisten seiner Arbeiten als Nachschlagewerk immer von Werth sein wird. Bezüglich des mathematischen Apparates vertritt Günther den Standpunkt, dass in dem vorliegenden Werke seiner ganzen Natur und Anlage nach die Mathematik nicht Selbstzweck sein dürfe; elementare Hilfsmittel sind demnach tiberall denjenigen schwierigerer Theorien vorzuziehen und vorgezogen; allein auf die Mittel der letzteren darf

Digitized by GOOGLE

nirgends verzichtet werden, wo ohne sie an einer wichtigeren Frage vorübergegangen werden müsste.

Eine kurze Inhaltsangabe mag zunächst eine Vorstellung von der Reichhaltigkeit des mitgetheilten Stoffes geben. Auf die methodologisch-bibliographische Einleitung folgt S. 40—456 der erste Hauptabschnitt: Gestalt und Grösse der Erde. Ausgehend von den ältesten Anschauungen über die Gestalt des Erdkörpers, werden gemäss dem unmittelbaren Sinneseindrucke Himmelskörper, Horizont, scheinbare Umdrehung der Himmelskugel, Eintheilung des Horizontes, Bewegungen von Sonne, Mond, Planeten besprochen. Daran reiht sich ein Abschnitt über die Principien und die geschichtliche Entwickelung der astronomischen Beobachtungskunde nebst einer Darstellung älterer und neuerer astronomischer Apparate. Es folgen die sphärischen Coordinatensysteme und ihre Transformation, einzelne Aufgaben, wie die Berechnung der Sichtbarkeits- und Unsichtbarkeitsbogen, des Dämmerungsbogens, der kürzesten Dämmerung, der Höhe und des Azimutes, die ein Stern nach bestimmter Zeit erreicht hat, endlich der Zeitdauer des Auf- und Unterganges von Sonne und Mond.

Die Besprechung der Grundlagen von Zeiteintheilung und Zeitmessung beschliesst den ersten Theil unseres ersten Hauptabschnittes. Jetzt erst wird zu den Thatsachen übergegangen, welche sich bei Aenderung des Beobachtungsstandpunktes auf der Erde ergeben; wir gelangen zu der Vorstellung, dass diese eine frei schwebende Kugel ist, und es werden nunmehr die Versuche und Methoden vorgetragen, welche zur Grössenbestimmung der Erde geführt haben. Die nächstliegenden Consequenzen aus der Kugelgestalt, nämlich das geographische Coordinatensystem, Datumsgrenze, Zoneneintheilung, kürzeste Entfernungen auf der Erde, Sichtbarkeitsgrenzen, sowie eine Besprechung der wichtigsten Lehrmittel der mathematischen Geographie, Globus, Astrolabium, Tellurium u. s. w., reihen sich an.

Zweifel an der Kugelgestalt (S. 278), Pendel- und Gradmessungen, deren Geschichte ausführlich zur Mittheilung gelangt, lehren, an Stelle der Kugel das abgeplattete Ellipsoid oder Sphäroid zu setzen, für welches die geographische Breite im Gegensatz zur geocentrischen neu definirt werden muss; die Ergebnisse der Gradmessungen des 19. Jahrhunderts lassen sich mit den neueren Pendel- bez. Schweremessungen nicht in volle Uebereinstimmung bringen; die Potentialtheorie zwingt endlich zu dem Verzicht auf die Möglichkeit, die Erdgestalt als geometrischen Körper durch drei Coordinaten zu bestimmen, und es tritt an seine Stelle die nur physikalisch zu definirende Niveaufläche, welche stets auf der durch die Centrifugalkraft alterirten Lothrichtung senkrecht steht. Jede Geoidfläche, d. h. irgend eine der unendlich vielen Niveauflächen, welche wir als im Innern unserer Erdrinde verlaufend anzunehmen haben, ist für uns der wahre Repräsentant der Erdgestalt und hat die Eigenschaft, dass ein gleiches Maass von Arbeit aufgewendet werden muss, um einen schweren Punkt

vom Mittelpunkte der Erde aus bis zu einem beliebigen Punkte jener Fläche heranzubringen. Ist nun auch das Geoid der Methode der analytischen Geometrie unzugänglich, so lassen sich doch Potentialausdrücke ableiten, welche den Breitelinien und Meridianen der Fläche entsprechen. Dieselben führen zur Gleichung einer geschlossenen, sphäroidisch gekrümmten Fläche, welche mit dem Geoid möglichst genau übereinstimmt und Niveausphäroid genannt wird. Diese Fläche hat in der Aequatorebene eine Symmetrieebene und in der Botationsaxe eine Symmetrieaxe und weicht von einem Rotationsellipsoid gleicher Abplattung so wenig ab, dass es gerechtfertigt erscheint, das Geoid, bezw. seinen geometrischen Repräsentanten, das Niveausphäroid, abgesehen von gewissen Abweichungen localen und continentalen Charakters, mit einem zweiaxigen abgeplatteten Ellipsoid, dem Referenzellipsoid, wo nicht zu identificiren, so doch in engste Beziehung zu setzen.

Nunmehr ist diejenige Grundlage geschaffen, auf welche sich die Ortsbestimmungen zu beziehen haben, und damit sind wir zum zweiten Hauptabschnitte des Günther'schen Werkes gelangt (S. 457—595). Nach Erledigung der Frage, inwieweit für die Ortsbestimmung die Abweichung der Erde von der Kugelgestalt in Betracht komme, werden die Fehlerquellen der Coordinatenbestimmung, besonders aber die Strahlenbrechung behandelt, und dann kommen Höhen-, Breiten-, Zeit- bezw. Längenmessung zu ausführlicher Darlegung. Es werden behandelt das einfache und das Präcisionsnivellement, die trigonometrische, barometrische und thermometrische Höhenmessung; weiterhin etwa ein Dutzend Methoden zur Breitenbestimmung, Längenbestimmungen auf geodätischem Wege, mittels der Magnetnadel, durch Messung einer Höhe, durch correspondirende Höhen, durch Signale, durch Verfinsterungen, durch Monddistanzen, Chronometer und durch den elektrischen Telegraphen.

Der tiberaus umfangreiche Wissensstoff, der bis zum Schlusse des zweiten Capitels behandelt werden konnte, war zu gewinnen auf Grund der alten geocentrischen Weltanschauungen, die erst im 16. Jahrhundert dem Kopernikanischen System zu weichen anfangen mussten.

Mit der Erde als bewegtem Körper im Raume und mit der Bestimmung ihrer momentanen Lage in demselben befasst sich der dritte Hauptabschnitt des Werkes (S. 596 bis zum Schlusse). Ausgehend von der Aufgabe der astronomischen Fernenbestimmung gelangen wir mit dem Verfasser zu der Erkenntniss, dass nicht alle Himmelskörper, insbesondere zunächst nicht diejenigen unseres Sonnensystems gleichweit von der Erde entfernt sind, womit der Begriff der Himmelskugel hinfällig wird. Es kommen nun die Erklärungsversuche der astronomischen Erscheinungen seit den ältesten Zeiten bis Kopernikus, die Weltsysteme des Alterthums, des Mittelalters und der beginnenden Neuzeit zur Sprache, denen sich endlich das heliocentrische, jetzt allgemein angenommene System angeiht. Auf Grund

Digitized by GOOGIC

desselben finden nunmehr alle astronomischen Erscheinungen ungezwungen und naturgemäss ihre Erklärung, die bekannten Beweise für die Rotation und Revolution werden ausführlich mitgetheilt; es folgen die Darlegungen der Kepler'schen Gesetze und der Newton'schen Gravitationslehre, das Störungsproblem, Präcession und Nutation und endlich die Frage nach der Fortbewegung des Sonnensystems im Raume. Damit erscheint, entsprechend der zu Anfang gegebenen Begrenzung der Aufgabe, das Ortsbestimmungsproblem vollständig gelöst.

Suchen wir zu dem Inhalt des vorliegenden Werkes, wie er hier nur in den allgemeinsten Zügen angedeutet werden konnte, sowie zu der Art, wie er behandelt ist, einen Standpunkt zu gewinnen, so bietet sich uns in der oben schon mitgetheilten Auffassung Günther's vom Wesen eines Handbuches die richtige Würdigung. Der gelehrte Verfasser wollte auf jede zu stellende Frage eine Antwort geben, wenn auch keine erschöpfende; er wollte weiterhin durch möglichst viele Literaturnachweise zum Studium der Originalquellen anregen, und dieses Ziel der denkbar grössten Vielseitigkeit in Stoff und Literatur ist wohl als erreicht anzusehen. Allein, ist dieses Ziel wirklich dasjenige eines Handbuches? Andere haben es anders aufgefasst; sagt doch - um nur eine einzige abweichende Ansicht zum Wort kommen zu lassen - Heim im Vorwort zu seiner Gletscherkunde, die ja derselben Sammlung angehört, wie das vorliegende Werk: "Ich habe nicht blos neben einander gestellt, was über Gletscher bisher beobachtet worden In manchen Capiteln ist die Grundauffassung mein Product. ... Das Hauptgewicht musste ich auf die Darstellung der allgemeinen Erscheinungen und Gesetze des Phänomens legen. Ich konnte nicht jede interessante Einzelthatsache anführen; das liegt in der Natur der Sache und im Plane der Handbücher. Es mag mir auch manche in der Literatur niedergelegte Beobachtung entgangen sein . . . " Dem Referenten scheint diese Heim'sche Auffassung vom Wesen des Handbuches vor der Günther'schen durchaus den Vorzug zu verdienen. Sie will zwar weniger geben, aber das vollständig; sie will nicht andeuten, sondern die Frage soweit als möglich abschliessen. In unserem Werke, dessen Literaturnachweise dasselbe, wie schon bemerkt, zu einem unentbehrlichen Nachschlagewerke werden lassen, macht sich dieses "Andeuten" vielfach bei der mathematischen Behandlung des Stoffes geltend. Gewiss sehr viele Mathematiker von Beruf, noch mehr aber die Mathematiker unter den Geographen, seien es Lehrer wie Lernende, für die ja das Buch in erster Reihe bestimmt ist, sind nicht immer in der Lage, den grossen literarischen Apparat, um den es sich handelt, zur Verfügung zu haben, und da wäre es vielen mehr nur theoretisch oder historisch interessanten Dingen gegenüber sicher werthvoller, wenn grössere, principielle Entwickelungen vollständig durchgeführt, wenn sie von tabellarischen Zusammenstellungen und Rechnungsbeispielen begleitet wären. Unvollständige mathematische Entwickelungen haben immer etwas Missliches,

entweder machen sie den Leser oberflächlich, oder sie schrecken, weil der Zusammenhang nicht ohne Weiteres klar ist, ab. Wären also z. B. die mathematischen Deductionen, welche die Fortschritte unserer Kenntnisse von der Erdgestalt vermitteln, vollständig durchgeführt, so wäre das ein grosser Vorzug, weil dann zum ersten Male in grösserem Zusammenhange die neueren Anschauungen von den einschlägigen Fragen weiteren Kreisen zugänglich würden, für welche Helmert's herrliches Werk in seiner Bedeutung vielleicht noch nicht ganz erkannt ist. Auch das vollständige Durchrechnen einer oder der andern Orts- oder Zeitbestimmungsaufgabe, etwa im Anschluss an Jordan, wäre sehr zu wünschen; daran hat der Leser. besonders der Studirende, mehr als von der Kenntniss so und so vieler, ihm zumeist unerreichbarer Quellennachweise von nicht in erster Reibe wesentlichen Einzelheiten. Während auf der einen Seite schwierige mathematische Partien vielfach recht kurz gefasst sind, sind anderwärts elementare Dinge oft überflüssig breit behandelt und mit Citaten belastet. Bei den allgemeinen Voraussetzungen des Buches erscheint z. B. der Hinweis auf Baltzer (S. 204) gelegentlich des Satzes, dass die Krümmung des Radius umgekehrt proportional dem Radius ist, recht unnöthig, ebenso der auf Wüllner (S. 214) wegen der Spiegelungsgesetze, oder auf Euklid (S. 217) wegen des Secantensatzes, u. a. m.

An Lücken, die dem Referenten aufgefallen sind, sollen nur zwei kurze Erwähnung finden. Die eine betrifft im Capitel von der Erdgestalt die Orometrie als die Lehre von den Raumverhältnissen des Erdoberflächenreliefs, die nach den Buche gesteckten Grenzen, beziehungsweise nach dem, was als Aufgabe der mathematischen Geographie und ihres ersten Hauptheiles festgestellt worden ist, füglich hätte Aufnahme finden können; als zweite erscheint das Fehlen jeden Hinweises auf die neuerdings für die Ortsbestimmung überhaupt und als Ersatz für complicirte Längenbestimmungsmethoden (Monddistanzen) im Besondern so wichtig gewordene Construction von Reiserouten. Der systematische Entwurf eines Itinerarc, wie ihn z. B. Jordan in der zweiten Auflage von Neumayer's Anleitung zu wissenschaftlichen Beobachtungen auf Reisen behandelt, sollte heutzutage in einer mathematischen "Geographie" nicht fehlen.

Unrichtigkeiten und Ungenauigkeiten, wie sie z. B. beim Spiegelsextanten, bei der Zeitrechnung der Astronomen, bei der Refraction, beim Kochthermometer, sowie bei einem oder dem andern Citat mit untergelaufen sind. können auf den ersten Blick verwirren und sind um so bedauerlicher, als sie alle leicht hätten vermieden werden können. Es soll ihnen aber hier nicht soviel Gewicht beigelegt werden, um sie einzeln zu besprechen, da sie dem kundigen Leser ohne Weiteres von selbst auffallen.

Wichtiger als sie und auch wesentlicher als die obenerwähnten Lückendie Referent gerne ausgefüllt gesehen hätte, ist diesem der principielle Gesichtspunht, dass die grosse Arbeit, welche die Zusammenfassung der in

Digitized by GOOGIC

dem vorliegenden Werke niedergelegten weitverzweigten Forschungsergebnisse repräsentirt, verdienstlicher und nutzbringender hätte verwendet werden können, wenn, wie schon durch den Gegensatz gegen Heim hervorgehoben worden ist, weniger auf die Beantwortung aller etwa zu stellenden Fragen Rücksicht genommen worden wäre, als darauf, in den gesteckten Grenzen sozusagen den eisernen Bestand des Lehrgebäudes zu geben, diesen aber so eingehend und auch mathematisch so ausführlich, dass jeder genügend geschulte Leser durch das Buch in den Stand gesetzt würde, den gebotenen Stoff gründlich beherrschen zu lernen und die Methode seiner Aneignung jederzeit wieder zu reproduciren.

Freiburg i. B.

L. NEUMANN.

Gesammelte Mathematische Abhandlungen. Von H. A. Schwarz. 2 Bände. gr. 8°. Berlin, Julius Springer. 1890. I. Bd. mit 64 Textfiguren und 4 Figurentafeln, XI und 338 S.; II. Bd. mit 62 Textfiguren, VIII u. 370 S.

Diese Ausgabe stellt eine Neuerung dar; liegt doch bisher von keinem andern der lebenden Mathematiker eine vollständige Sammlung seiner Arbeiten vor. Da der Verfasser und Herausgeber keinen Grund für die Neuerung anführt, ist man dafür lediglich auf Vermuthungen angewiesen; hoffentlich aber ist die am nächsten liegende Vermuthung, dass derselbe jetzt schon mit seiner mathematischen Thätigkeit abgeschlossen habe, unbegründet. So müssen wir uns auf eine Abwägung des Bedürfnisses nach dieser Sammlung beschränken. Haben die einzelnen Abhandlungen derselben in ihrer isolirten, durch längere Zeiträume getrennten Veröffentlichung bisher kein richtiges Bild ihres Zusammenhangs und ihrer Bedeutung auf kommen lassen? Oder waren sie durch ihre Zerstreuung bisher zu schwer zugänglich?

Die erste Frage ist unbedingt zu verneinen: die Bedeutung der Aufsätze des Verf. für eine Reihe von grundlegenden Fragen und Problemen ist vollständig anerkannt. Die auf Minimalflächen bezüglichen Entwickelungen, die Existenzuntersuchungen von Functionen, die Arbeit über die hypergeometrische Reihe sind in den festen Bestand der Literatur übergegangen, wie etwa für das erstere Gebiet der erste Band des Darbouxschen Werkes "Leçons sur la théorie générale des Surfaces" beweist. Die Beantwortung der zweiten Frage ist zweifelhafter; jedenfalls ist für Viele die Zugänglichkeit zu mancher der Arbeiten jetzt erst ermöglicht, wie zu der in den Acta der finnländischen Gesellschaft (1885) publicirten: "Ueber ein die Flächen kleinsten Flächeninhalts betreffendes Problem der Variationsrechnung."

Wie dem auch sei: sicher ist, dass die Abhandlungen von H. A. Schwarz sich zu einer Sammlung besonders eignen, weil sie im Wesent-

lichen in mehrere Gruppen von unter sich eng zusammenhängenden und sich ergänzenden Arbeiten sich ordnen, die je einen grösseren Plan verfolgen und ohne gleichzeitiges eingehendes Studium fremder Arbeiten - so sehr sie auch an Weierstrass anschliessen - verständlich sind. zunächst von dem ganzen ersten Bande, der ausschliesslich eine erste Gruppe von Arbeiten, über Minimalflächen, enthält, von 1865-1887 hin. Man lernt hier nicht nur die allgemeinen Ideen und Entwickelungen, insbesondere die subtileren Fragen der Variationsrechnung, die Existensfragen der Lösungen wichtiger partieller Differentialgleichungen unter vorgeschriebenen Bedingungen etc., kennen; man erhält auch eine Zahl interessanter Einzeluntersuchungen, die analytischen Formulirungen unterstützt durch geometrische Betrachtungen, die um so förderlicher sind, als sie an die Anschauung ziemliche Ansprüche stellen. Vortreffliche Zeichnungen erleichtern aber die Auffassung. Ein sehr zweckmässiges Vorstudium für die Arbeiten dieses Bandes bietet übrigens der erste Band des oben genannten Darboux'schen Buches, in welchem auch die Beziehungen zur übrigen Literatur noch eingehender, als in dem Anhang zu dieser Sammlung dargelegt sind.

Die Arbeiten des zweiten Bandes, welche chronologisch geordnet sind und von 1863—1884 laufen, will ich in folgende Gruppen theilen:

Zweite Gruppe: Arbeiten über conforme Abbildung; Nr. 4, 5, 6, 24. Deren Werth beruht nicht nur darauf, dass sie zuerst für einfachere Abbildungsaufgaben wirkliche Functionsbestimmungen angaben, und dass sie auch zu den ersten Untersuchungen des ersten Bandes über Minimalflächen die Veranlassung wurden, sondern besonders darin, dass in ihnen (ungefähr gleichzeitig mit Christoffel) vom Dirichlet'schen Princip zum Beweis der Existenz der Abbildungsfunction abgesehen und eine directe Constantenbestimmung wenigstens versucht wurde. Dieser letztere Umstand führte zur

Dritten Gruppe: Existenzbeweise von Functionen, die gewisse Bedingungen erfüllen, vor allem solcher, welche der Gleichung $\Delta u = 0$ unter vorgeschriebenen Grenz- und Unstetigkeitsbedingungen genügen; Nr. 7, 8, 9, 10, 12, 20. Von den vom Verf. entwickelten Methoden, von denen die erstere auf der Darstellung einer Function durch den bekannten Poisson'schen Integralausdruck, die zweite auf einem "Grenzübergang durch alternirendes Verfahren" beruht — wesentlich ein Schluss von auf zwei Gebiete bezüglichen Functionen auf ein aus den beiden combinirtes Gebiet —, hat die zweite Methode ihrer Aufgabe, eine Grundlage für allgemeine Untersuchungen, wie die Riemann'sche über Abel'sche Functionen, zu werden, in hohem Grade, wenn auch noch nicht für alle Fälle der Begrenzung des Gebietes, entsprochen.

Vierte Gruppe: Principielle Fragen der Analysis, in Bezug auf Existenz von Differentialquotienten, Definition des Flächeninhalts einer gekrümmten Fläche etc.; Nr. 15, 16, 19, 22, 26.

Fünftens: Die Arbeit "Ueber die Fälle, in welchen die hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt" (Nr. 11, 13; Cr. J. Bd. 75, 1872) hat ein besonderes Interesse: Nicht nur, dass sie, wie die erste Gruppe, aus der zweiten Gruppe erwachsen ist, sondern wegen ihres Zusammenhanges mit der Theorie der regulären Polyeder, und infolge dessen mit der Entstehung der ganzen modernen Theorie der Functionen mit linearen Transformationen in sich. Zu den betreffenden Arbeiten von Klein und Poincaré giebt es keinen lehrreicheren Zugang, als durch die Schwarz'sche Abhandlung hindurch, an welche Jene anknüpften.

Sechste Gruppe: Algebraisch-geometrische Arbeiten, anknüpfend an den Riemann'schen Geschlechtsbegriff; Nr. 2, 3, 17, 18. Der wesentliche Inhalt der Aufsätze über abwickelbare und Regelflächen ist übrigens in Salmon's Raumgeometrie übergegangen.

Einige weitere Arbeiten, meistens Einzelausführungen, machen das Bild eines erfolgreichen Schaffens, welches dieses Werk bietet, noch lebendiger. Die Aufsätze konnten fast vollständig in der ursprünglichen Form herausgegeben werden - ein Zeugniss für die Schärfe, mit der der Verf. arbeitet. Am Schlusse jedes Bandes sind Anmerkungen zugefügt, die nicht nur einzelne Stellen weiter ausführen, sondern vor Allem den Zusammenhang mit der früheren und späteren Literatur andeuten. Dass die Ausstattung des Werkes vorzüglich ist, braucht kaum gesagt zu werden.

Erlangen, 3. August 1890.

M. NOETHER.

Ueber die Naturwissenschaften bei den Arabern. Vortrag von Professor E. WIEDEMANN in Erlangen. Sammlung gemeinverständlicher wissenschaftlicher Vorträge, herausgegeben von VIRCHOW und WATTENBACH. Neue Folge, fünfte Serie, Heft 97. Hamburg, Verlagsanstalt A. G. (vormals J. F. Richter). 1890. 8°. 32 S.

Schon auf der Schule hat der Verfasser des Vortrages, wie der Berichterstatter als dessen früherer Lehrer sich wohl erinnert, das Studium des Arabischen als stille Nebenbeschäftigung gewählt und ist so heute einer der wenigen Vertreter exacter Naturwissenschaft, welche zu den bezüglichen Quellen altarabischer Literatur selbst hinaufsteigen können. In dankenswerther Weise hat derselbe denn auch seit Jahren, meist in seines Vaters Annalen der Physik und Chemie, Einzelergebnisse seiner Quellenstudien zur Geschichte der Naturkunde veröffentlicht: so erst neulich wieder im 39. Bande jener Annalen. Hier* zeigt er, dass ein arabischer Forscher schon um 1300 n. Chr. die Art der Brechung von Lichtstrahlen bei ihrem Durchgange durch eine Wasserkugel theoretisch erörtert und experimentell geprüft hat

^{*} Wiedemann's Annalen, Bd. 39 (1890) S. 565 - 576: "Ueber das Sehen durch eine Kugel bei den Arabern." Digitized by Google

und dass er darauf die heute tibliche Erklärung des Haupt- und des Nebenregenbogens gründet; er weist ferner nach,* dass Al Khazini im 12. Jahrhundert schon einen Satz ausspricht und beweist, den man und dessen Beweis man bis jetzt Roger Bacon zugeschrieben hat; er stellt ferner fest,** dass nicht, wie in den Geschichten der Physik zu lesen, erst im 11. Jahrhundert Ibn al Haitam, sondern schon 100 Jahre vor ihm andere Araber die aristotelische Auffassung zu Ehren brachten, dass die Gegenstände Lichtstrahlen aussenden, im Gegensatz zu Plato, der von den Augen fühlfädenartige Strahlen ausgehen und durch sie die Gegenstände gewissermassen betasten liess; endlich hat auch Wiedemann in letzter Zeit** die Uebersetzung einer Abhandlung des Ibn al Haitham († 1038) veröffentlicht, wo dieser die Frage untersucht, ob Planeten und Fixsterne Selbstleuchter sind oder nicht.

Nach solchen Quellenstudien ist der Verfasser des in der Ueberschrift genannten Vortrages gewiss berechtigt, über sein Thema zu sprechen, und man darf wohl erwarten, dass er auch Neues zu bringen weiss.

Im einleitenden Theile seines Vortrages schildert er in kurzen Zügen die allgemeinen Verhältnisse politischer, religiöser, ethnologischer, literarischer Natur, welche für die Entwickelung der Wissenschaften bei den Arabern in Betracht kommen, um dann zur Besprechung ihrer Thätigkeit auf naturkundlichem Gebiete überzugehen. Hier werden zuerst ihre Leistungen in Astronomie und Mathematik vorgeführt, dann die in Mechanik, in der Optik, insbesondere bezüglich ihres Wissens von Hohlspiegeln, von Linsen und von der Lehre vom Sehen, hierauf ihre theoretischen Auffassungen und praktischen Leistungen in der Chemie bezw. Alchemie, besonders ihre Vervollkommnung der chemischen Arbeitsmethoden, endlich wird noch ihr Verdienst um die beschreibenden Naturwissenschaften als Thatsache angeführt. Der knappe Raum eines Vortrags gestattete natürlich bei all diesen Dingen nur ein flüchtiges Berühren, um so mehr, als auch noch die Wege, auf denen die arabische Wissenschaft sich ins Abendland verbreitete, und die Gründe für den Verfall jener Wissenschaft und selbst die traurigen jetzigen Ueberreste derselben noch eine Erwähnung finden mussten. Ueber Einiges liesse sich mit dem Vortragenden streiten: so über die Einführung der "besseren" Zahlenschreibweise, über die Bedeutung des Wortes Algebra, über das Nullzeichen der Alexandriner, über die Nothwendigkeit des Einschiebens einer Schilderung von Rhazas' Lebensgang. Aber dies sind Nebensachen. Die Hauptsache, wieder einmal die Ehrenrettung eines lange Verkannten vorgenommen, mit begründetem Urtheil den Blick hierauf gelenkt zu haben, verdient allen Dank. P. TREUTLEIN.

[•] a. a. O.: "Inhalt eines Gefässes in verschiedenen Abständen vom Erdmittelpunkte nach Al Khâzinî und Roger Baco."

^{**} Ebenda, Bd. 89 (1890), S. 470—474: "Zur Geschichte der Lehre vom Sehen"

*** Wochenschrift für Astronomie, Meteorologie und Geographie, Jahrg. 1890,
Nr. 17: "Ueber das Licht der Sterne nach Ibn al Haitham:

Kurzer Abriss einer Geschichte der Elementar-Mathematik mit Hinweisen auf die sich anschliessenden höheren Gebiete. Von Dr. KARL FINK, Professor an der Realschule zu Tübingen. Tübingen 1890. Verlag der H. Laupp'schen Buchhandlung. X, 269 S.

Der Gedanke des Verfassers, die Forschungen über Geschichte der Mathematik, welche das seit Montucla's Werk vergangene Jahrhundert gezeitigt hat, in übersichtlicher Kürze zusammenzufassen, und so dem Lehrer an Mittelschulen einen Leitfaden zur Belebung des mathematischen Unterrichts durch geschichtliche Einstreuungen in die Hand zu geben, ist an sich ein glücklicher. Es wird auch bei der Nothwendigkeit, den mathematischen Unterricht nach Fächern zu trennen, richtig sein, dem geschichtlichen Leitfaden die gleiche Form zu geben, also nicht das Bild eines einzelnen Zeitalters, sondern das einer einzelnen Disciplin, Rechenkunst, Algebra, Geometrie, Trigonometrie u. s. w. als einzeln betrachteten Abschnitt zu unterscheiden. Wir sind also im Ganzen mit Plan und Einrichtung des uns vorliegenden Buches einverstanden. Leider können wir nicht zu dem gleichen Urtheile über den Inhalt uns verstehen. Herr Fink hat sich, scheint es uns, die Arbeit doch etwas gar zu leicht gemacht. Zu den Quellen scheint er so gut wie niemals aufgestiegen zu sein, und die Geschichtskundigen, auf welche er sich statt dessen verliess, hat er auch nicht immer sorgfältig benutzt. Er hat endlich während des Druckes viele Irrthümer stehen lassen, die geradezu sinnentstellend wirken. Die demotische Hieroglyphenschrift (S. 7 Z. 13), die ganz verkehrte Rechnung bei der Erklärung befreundeter Zahlen (S. 27 Z. 8-9), die Verwechslung des Sohnes von Albanna mit Albanna selbst (S. 58 Z. 6 v. u.), πληδος (S. 59), Bézont (S. 109) hätten doch verbessert werden sollen. Neben diese offenbaren Druckfehler stellen wir einige Flüchtigkeitsfehler. Wir trauen Herrn Fink zu, dass er die griechische Bezeichnung der Zahlen durch Buchstaben $\alpha = 1, \beta = 2, \ldots$ x = 10, x = 20, ..., z = 300 u. s. w. so gut kennt, wie Jeder, der ein Gymnasium besucht hat, und nun schreibt er S. 8, diese Buchstaben seien in anscheinend beliebiger, aber ein- für allemal fest gewählter Ordnung für die Zahlen 1 bis 24 in den Text eingestellt worden! S. 36 wird der erste Gebrauch des Wortes Million Rudolff oder Stifel oder Pacioli zugeschrieben; wir meinen, der erste Gebrauch kann doch bei drei Bewerbern nur von dem Aeltesten gemacht worden sein. S. 154 ist aus dem Problem der Kreisquadratur ein Theorem gemacht. S. 162 soll Apollonius einen besonderen mechanischen Apparat zur Lösung der Delischen Aufgabe construirt haben, offenbar eine Verwechslung mit Eratosthenes. S. 164 verwendet "Hippias die vielleicht von Dinostratus erfundene Quadratrix", und doch lebte Hippias mehr als ein halbes Jahrhundert vor Dinostratus. S. 168 kommt $\pi = 3\frac{1}{8}$ im Arcerianus vor, soll heissen bei Vitruvius, dem Architekten. S. 228 steht buchstäblich: "Die Ende des 15. oder Anfang des 16. Jahrhunderts eingeführte Verkürzung Cosinus für

complementi sinus rührt von dem Engländer Gunter († 1626) her. S. 186 ist angegeben, Pascal's Geometrie der Kegelschnitte sei 1779 veröffentlicht worden, während sie verloren ging und niemals im Drucke erschien. S. 226 gilt als Verdienst Vieta's, neue Fälle des sphärischen Dreiecks behandelt zu haben, z. B. denjenigen, der einen Winkel in den drei Seiten auszudrücken gestattet, als ob diese Aufgabe nicht schon durch Al Battant erledigt worden wäre. S. 156 heisst es: Von Her on stammt ein Buch über Geometrie (nach Tannery ein Commentar zu Euklid's Elementen). In dem Eingeklammerten wird das Wörtchen auch fehlen, denn wenn Herr Fink Heron auch nur aus Auszügen kennt, das wird er doch gewiss nicht glauben, dass dessen feldmesserisches Werk ein Commentar zu Euklid gewesen sei. S. 118 ist der leider landläufige Irrthum ausgesprochen: Die Zeit der Entdeckung wirksamer Convergenz- und Divergenzkriterien beginnt mit Cauchy (1821), und doch weiss es Herr Fink besser, denn nur eine Seite früher ist von der hohen Bedeutung der 10 Jahre älteren Gauss'schen Abhandlung über die hypergeometrische Reihe die Rede. Bei einigen anderen Dingen sind wir zweifelhaft, ob wir noch von Flüchtigkeit reden dürfen. Hier müsste ein stärker tadelndes Wort gebraucht werden. Wir führen wieder Beispiele an, die aber keineswegs den Anspruch auf Vollständigkeit erheben. S. 31 wird behauptet, Fibonacci habe Duplation und Mediation als besondere Operationen. Das Gegentheil ist wahr und von einer hervorragenden Wichtigkeit, da gerade darin ein Merkmal der Zugehörigkeit zur Schule des Fibonacci oder zu der des Jordanus besteht, von welcher letzteren, wie von ihrem Begründer Herr Fink kein Wörtchen sagt. — Was denkt sich ferner Herr Fink unter Zeichenregel? S. 119 nennt er dieselbe einen Satz, "welcher das Bildungsgesetz der Coefficienten einer algebraischen Gleichung aus ihren Wurzeln enthält", und 8.73 soll gar 1484 bei Chuquet die Regel auftreten. Der letztere Irrthum gehört bereits Herrn Marre, dem Herausgeber Chuquet's, an, aber die erstere Unklarheit ist Herrn Fink's unbestrittenes Eigenthum. S. 137 wird als wichtig die Aufstellung der Gleichung $\frac{d^2v}{dx^2} + \frac{d^2v}{dx^2} + \frac{d^2v}{dz^2} = 0$ bervorgehoben, auf welche Dirichlet bei seinen Arbeiten über das Potential gestossen war. Ganz richtig, aber Dirichlet hat, wie alle anderen Mathematiker, die Gleichung als die von Laplace bezeichnet, welcher schon 1789 sie aufgestellt hat. S. 80 gilt nach Stifel 5 als die Diametralzahl zu 3 und 4, weil $3^2 + 4^2 = 5^2$. Schade, dass es nicht wahr ist. Stifel nennt 12 die Diametralzahl zu 3 und 4 und allgemein ab zu a und b, wenn $a^2 + b^2 = c^2$ ganzzahlig erfüllt ist. Richtig ist, was Herr Fink S. 173 aus Stifel's Ausgabe von Rudolff's Coss abdruckt, falsch, was er darin findet. Unrichtig ist auch, dass der Ausdruck Richtungscoefficient von Hankel herrühre. Hankel's Doctordissertation ist von 1861, früher hat er überhaupt Nichts drucken lassen, Richtungscoefficient wird aber schon

1855, wenn nicht früher, gebraucht. Das Verhältniss der beiden Erfindungen von Bürgi und Neper ist S. 230 in ganz schiefer Beleuchtung dargestellt. Wir wollen damit unser Sündenregister schliessen. Es ist bedauerlich, dass so zahlreiche Mängel, welche zum guten Theil leicht hätten vermieden werden können, die Brauchbarkeit des hübsch geschriebenen Buches wesentlich einschränken. Auch manche Lücken wären ohne Schwierigkeit auszufüllen gewesen. Wir wollen nur zwei solche nennen. In einer Geschichte der Elementarmathematik darf die Erfindung der Methode der unbestimmten Coefficienten durch Descartes, die des Schlusses von n auf n+1 durch Pascal nicht fehlen.

Der Astronom, Mathematiker und Geograph Eudoxos von Knidos. II. Theil:
Mathematik, von Hans Künssberg, königl. Reallehrer. Programm
zum Jahresbericht der viercursigen königl. Realschule Dinkelsbühl pro
1890. 61 S., 1 Figurentafel.

Wir haben heute die angenehme Pflicht, unsere Leser auf das Erscheinen des mathematischen Theiles der Untersuchungen über Eudoxos aufmerksam zu machen, als dessen Vorläufer wir Bd. XXXIV, hist.-lit. Abth. S. 74-75 ein Programm des gleichen Verfassers für das Jahr 1888 angezeigt haben. Wiederum hat Herr Künssberg seine Aufgabe darin gefunden, die ziemlich zahlreichen Vorarbeiten anderer Gelehrten zu sammeln, zu vereinigen, zu ergänzen, und künftig wird man sich um so eher mit dem Hinweis auf seine Studie begnügen hönnen, als er alle Beweisstellen im griechischen Wortlaute vollständig abdruckt. Die mathematischen Verdienste des Eudoxos gliedern sich von selbst in verschiedene Abtheilungen. Zuerst werden die Leistungen in der Proportionenlehre besprochen; eine zweite Abtheilung führt die Ueberschrift: Exhaustion. Stereometrie. Sphärik; auf diese folgt: die analytische Methode und der goldene Schnitt; den Schluss bildet: die Würfelverdoppelung und die Bogenlinien. Als Anhang ist noch ein kurzer Abschnitt Physik beigefügt. Das bekannte Scholion des Proklos, welches das ganze fünfte Buch der euklidischen Elemente als Eigenthum des Eudoxos in Anspruch nimmt, ist auch für Herrn Künssberg, wie für den Unterzeichneten von unbestreitbarer Beweiskraft; er sichert somit Eudoxos das Erfinderrecht auf eine wissenschaftlich geordnete und ausgebildete Proportionenlehre. Dass die Exhaustionsmethode Eudoxos angehört, sagt kein Geringerer, als Archimed, der zweifellos hervorragendste Anwender dieses Verfahrens. Herr Künssberg sieht, auf Archimed's Angaben gestützt, in den bei Euklid XII, 2 und 10 erhaltenen Beweisen dafür, dass Kreise sich wie die Quadrate ihrer Durchmesser verhalten, und dass Cylinder und Kegel von gleicher Grundfläche und Höhe im Verhältnisse von 3:1 stehen, und nicht minder in XII, 7 und 18 wörtliche Fragmente des Eudoxos, eine

Auffassung, die uns sehr anmuthet. Auch der Nokk'schen Ueberzeugung schliessen wir mit Herrn Künssberg uns an, dass Eudoxos das alteste Lehrbuch der Sphärik verfasste. Der Frage, was die καμπύλαι γραμμαί des Eudoxos waren, durch welche die Würfelverdoppelung gelang, ist Herr Künssberg gleichfalls näher getreten. Da Eudoxos Schüler des Archytas war, so wird zuerst die Archytas'sche stereometrische Würfelverdoppelung besprochen. Der richtigen Bemerkung, dass Archytas sich des Durchschnittes eines Cylinders, eines Kegels und eines Wulstes bediente, hätte hinzugefügt werden dürfen, dieses sei das erste Vorkommen der Spire, welche Perseus später schneiden lehrte. Herr Künssberg geht nun einen Schritt weiter und sieht mit Herrn Paul Tannery die καμπύλη γραμμή in der senkrechten Projection der Schnittcurve von Kegel und Wulst auf den Grundkreis des Cylinders, d. h. in der Curve von der Gleichung $a^2x^4=b^4(x^2+y^2)$. Dieser Schritt scheint uns allzu kühn. Bevor wir ihn mitwagen, müsste uns irgendwo in so alter Zeit eine Projection nachgewiesen werden. Nichtsdestoweniger können wir es nur billigen, dass auch diese Hypothese mitgetheilt wurde; die Vollständigkeit der Darstellung verlangte es geradezu. CANTOR.

Bibliographie

vom 16. December 1890 bis 28. Februar 1891.

Periodische Schriften.

Abhandlungen der königl. Gesellsch. d. Wissensch. zu Göttingen. 36. Bd.
(1889 u. 1890). Göttingen, Dieterich. 54 Mr.
Jahrbuch über die Fortschritte der Mathematik, herausgeg. v. E. LAMPE.
20. Bd. Jahrg. 1888, 1. Heft. Berlin, G. Reimer. 13 Mk.
Fortschritte der Physik, dargestellt von d. physikal. Gesellschaft in Berlin.
40. Jahrg. 1884. Ebendas. 50 Mk.
Poggendorff's Annalen der Physik und Chemie, herausgeg. v. G. Wiede-
MANN. Jahrg. 1891, 1. Heft. Leipzig, Barth. compl. 36 Mk.
, Beiblätter hierzu. 15. Bd. 1. Heft. Ebendas. compl. 20 Mk.
Zeitschrift für Instrumentenkunde, herausgeg. v. A. Westphal. 11. Jahrg.
1891. 1. Heft. Berlin, Springer. compl. 18 Mk.
Abhandlungen des königl. preuss. meteorolog. Instituts. 1. Bd. Nr. 3.
Berlin, Asher & Comp. 1 Mk. 20 Pf.
Meteorologisches Jahrbuch für 1889. (Beobachtungen in Württemberg.)
Stuttgart, Metzler. 3 Mk.
Digitized by GOOGIC

Repertorium für Meteorologie, herausgeg. von der Petersburger Akademie, redigirt von H. Wild. 13. Bd. Petersburg und Leipzig, Voss.

29 Mk. 25 Pf.

Mélanges physiques et chimiques, tirés du Bulletin de l'académ. de Pétersb.

Tome XIII. Ebendas. 2 Mk. 50 Pf.

Geschichte der Mathematik und Physik.

GRAF, H., Geschichte der Mathematik u. Naturwissenschaften in bernischen Landen. 3. Heft. Bern, Wyss. 2 Mk. 40 Pf.

Reine Mathematik.

- JACOBI, C. G. J., Gesammelte Werke. 5. Bd., herausgegeben v. WEIER-STRASS. Berlin, G. Reimer. 16 Mk. (1.—5. Bd. nebst Supplem. 99 Mk.)
- Horn, J., Ueber Systeme linearer Differentialgleichungen mit mehreren Veränderlichen zur Erweiterung der Fuchs'schen Theorie. Berlin, Mayer & Müller.

 3 Mk. 60 Pf.
- Weber, H., Elliptische Functionen und algebraische Zahlen. Vorlesungen. Braunschweig, Vieweg. 13 Mk.
- MÜLLER, H., Die Elemente der Arithmetik und Algebra. Metz. Scriba.

 1 Mk. 20 Pf.
- HANNER, A., Analytische Geometrie des Punktes der Geraden und der Kegelschnitte, nach neueren Methoden dargest. Prag, Dominicus. 10 Mk.
- Bravais, A., Abhandlungen tiber symmetrische Polyeder, herausgeg. v.
 Groth u. Blasius. (Aus Ostwald's Klassiker der exakt. Wissensch.)
 Leipzig, Engelmann. 1 Mk.
- Fulst, O., Bestimmung des Flächeninhalts des Mantels eines schiefen Kegels mit elliptischer Grundfläche. (Dissert.) Göttingen, Vandenhoeck & Ruprecht.
- Kommerell, V., Beitrag zur Gauss'schen Flächentheorie. (Dissert.) Tübingen, Fues. 80 Pf.
- Engel, F., Der Geschmack in der neueren Mathematik. Antrittsvorlesung. Leipzig, A. Lorentz.

Angewandte Mathematik.

- HELMERT, R., Das königl. preuss. geodät. Institut. Berlin, Mayer & Müller. 2 Mk.
- Dreiecksnetz der Schweiz, herausgeg. v. d. geodätischen Commission. V. Bd. Zürich, Höhr.
- HELMERT, R., Die Schwerkraft im Hochgebirge, geodätisch u. geologisch.

 (Aus d. Veröffentl. d. königl. preuss. geodät. Instituts.) Berlin, Stankewicz.

 4 Mk. 50 Pf.
- Die Anziehung homogener Ellipsoide. Abhandlungen von Laplace, Ivory, Gauss, Chasles und Dirichlet, herausgeg. v. A. Wangerin. (Aus Ostwald's Klassiker d. exakt. Wissensch.) Leipzig, Engelmann.

Bauernfeind, M. v., Ergebnisse aus Beobachtungen der terrestrischen Refraction. Nachtrag zur 2. u. 3. Mittheil. München, Franz.

FUHRMANN, A., Anwendungen der Infinitesimalrechnung in den Naturwissenschaften, im Hochbau und der Technik. 2. Theil. Berlin, Ernst & Korn. 1. u. 2. Theil 8 Mk. 50 Pf.

Physik und Meteorologie.

WINKELMANN, A., Handbuch der Physik. 1. Bd. Breslau, Trewendt. 24 Mk. HEERWAGEN, F., Ueber die Schwingungsgesetze der Stimmgabel und die elektromagnet. Anregung. (Inaug.-Dissert.) Dorpat, Karow. 2 Mt.

Bezold, W. v., Das königl. preuss. meteorolog. Institut in Berlin und dessen Observatorium bei Potsdam. Berlin, Mayer & Müller. Das königl. preuss. astrophysikalische Observatorium bei Potsdam. Ebendas. 2 Mk. 50 Pf.

Huyghens, C., Abhandlung über das Licht, herausgeg. v. E. Lommel. (Aus Ostwald's Klassiker d. exakt. Wissensch.) Leipzig, Engelmann. 2 Mk. 40 Pf.

Berichtigungen.

In meinem Aufsatze "Zur Aufstellung arithmetischer Identitäten" sind folgende Verbesserungen vorzunehmen:

```
S. 2 Z. 5 v. o. statt nX^{(n)} lies xX^{(n)};
```

$$,, 3,, 2,, ,, r_{n,1}(2), ,, r_{n,i}(2);$$

$$, 6, 14, , , \lambda_1, \lambda_2, \lambda_i;$$

$$, 7, 2, \dots, \sum_{m=0}^{\infty}, \sum_{i=m}^{\infty};$$

,, 8 ,, 11 ,, fehlt der Factor $cos(2p+1)\Theta$ ausserhalb der geschweiften Klammern;

, 10 , 10 v. o. fehlt der Factor
$$\frac{\binom{2m}{m-n}}{\binom{2m+2n}{m+n}}$$
; , 10 ,, 2 v. u. statt +2v lies -2v.

", 10 ", 2 v. u. statt
$$+2\nu$$
 lies -2ν .

G. VIVANTI.

Historisch-literarische Abtheilung.

Commentar zu dem "Tractatus de Numeris Datis" des Jordanus Nemorarius.

Von

MAXIMILIAN CURTZE

in Thorn.

(Fortsetzung.)

Iordani Nemorarii de Numeris Datis Liber III.

I. Trium numerorum continue proportionalium si duo extremi dati fuerint, et medius datus erit.

Extremus in extremum ducatur, et tantum erit, quantum medius in se ductus. Illius ergo radix extrahatur, et habebitur medius.

Verbi gratia IX et IIII extremi sint, ducaturque unus in alium et fient XXXVI, cuius radix est VI, et ipse est medius in continua proportionalitate inter IX et IIII.

 Kennt man in einer stetigen Proportion die beiden Aussenglieder, so ist auch das Mittelglied bekannt.

Gegebene Gleichung:

a: x = x: b.

Man hat

 $x^2 = ab$, also $x = \sqrt[p]{ab}$.

Beispiel: 9: x = x: 4, $x^2 = 36$, x = 6.

II. Si trium numerorum continuae proportionalitatis medius cum altero extremorum datus fuerit, et reliquus datus erit.

Si enim medius in se-ducatur, et productum per alterum extremorum datum dividatur, exibit reliquus.

Verbi gratia sit IIII alter extremorum et VI medius. Ducatur ergo VI in se, et fient XXXVI, qui diuidantur per IIII, et exibunt IX, et ipse est tertius in continua proportionalitate post IIII et VI.

II. Ebenso ist das dritte Glied bekannt, wenn das erste und das Mittelglied gegeben ist.

Hist,-lit. Abthlg. d. Zeitschr. f. Math. u. Phys. XXXVI, 3.

Gegebene Gleichung:

a:b=b:x.

Man hat wieder die Productengleichung

 $ax = b^2$ und folglich $x = b^2 : a$.

Beispiel: 4:6=6:x, dann ist x=36:4=9.

III. Si trium numerorum continue proportionalium primi ad secundum fuerit proportio data, et primi ad tertium data erit.

Proportio siquidem primi ad secundum in proportionem secundi ad tertium facit proportionem primi ad tertium, in se ergo ducta facit eandem. Cum ergo ipsa nota sit, in se ducta facie extremorum proportionem datam.

Verbi gratia proportio primi ad secundum sit sesquitertia. Ducatur ergo unum et tertia in se, et fient unum et duae tertiae et nona: primum ergo continebit tertium et duas tertias et nonam ipsius.

III. Kennt man von drei Zahlen in stetiger Proportion das Verhältniss der ersten zur zweiten, so ist auch das Verhältniss der ersten zur dritten bekannt.

Gegebene Gleichungen:

a:b=b:c,a:b=m.

Aus 1 und 2 folgt b:c=m. Multiplicirt man also diese Gleichung mit Gleichung 2, so entsteht $a:c=m^2$.

Beispiel: $m = 1\frac{1}{4}$, dann ist $a: c = 1\frac{3}{4} = 1\frac{7}{4}$.

IV. Trium numerorum continuae proportionalitatis si primi ad tertium fuerit proportio data, et primi ad secundum proportio erit data.

Quia enim proportio primi ad secundum in se ducta facit proportionem primi ad tertium, si proportionis primi ad tertium radix extrahatur, habebitur proportio primi ad secundam data.

Verbi gratia primus contineat tertium bis et eius quartam, hoc est novem quartas, cuius radix est tres medietates, quare primus continet secundum semel et medietatem.

IV. Kennt man ebenso von drei Zahlen in stetiger Proportiondss Verhältniss der ersten zur dritten, so ist auch das der ersten sur zweiten gegeben.

Gegebene Gleichungen:

a:b=b:c,a:c=m.

Aus der vorigen Nummer folgt augenblicklich, dass

sein muss.

 $a:b=\sqrt{m}$

Beispiel: $m = 2\frac{1}{4}$, dann ist $a: b = \sqrt{2\frac{1}{4}} = 1\frac{1}{4}$.

V. Si trium numerorum continue proportionalium medius datus fuerit, et compositus ex reliquis, singuli eorum dati erunt.

Sit a ad b sicut b ad c, sitque b datus et ac datus; et quia, quod fit ex b in se, tantum est, quantum quod ex a in c, erit, quod ex a in c producitur, datum, quare et utrumque datum.

Verbi gratia sit XII medius, et compositus ex extremis sit XXVI, qui in se ductus faciet DCLXXVI. Unus autem in alium faciat CXLIIII, quo quater detracto de DCLXXVI remanebit C, cuius radix est X, et ipse est differentia extremorum. Erunt ergo VIII et XVIII.

V. Ist in einer stetigen Proportion das Mittelglied und die Summe der beiden äusseren Glieder gegeben, so kennt man auch beide äussere Glieder einzeln.

Gegebene Gleichungen: x:b=b:y, x+y=s.

Aus 1 folgt $xy = b^2$; man kennt also die Summe und das Product der beiden äusseren Glieder, dieselben sind mithin nach Buch I, III gegeben.

Beispiel: b=12, s=26. Man findet in gewohnter Weise x-y=10, und also x=18, y=8.

VI. Trium numerorum [continue] proportionalium si compositus ex primo et tertio datus fuerit ad medium, uterque ad illum datus erit.

Sit ac ad b datus, et quia ipsius ad b est proportio composita ex proportione a ad b et proportione c ad b, cum sit proportio a ad b ad unum sicut unum ad proportionem, quae est c ad b, cumque sit unum, quod est medium, datum, et compositum ex illis proportionibus datum, erunt utraque data.

Verbi gratia compositum ex extremis contineat medium bis et eius duodecimam. Itaque duo et duodecima ducantur in se et fient IIII et quadraginta novem centesimae quadragesimae quartae. Dempto ergo, quod fit ex
uno in se quater, hoc est IIII, remanebunt quadraginta novem centesimae
quadragesimae quartae, cuius radix est septem duodecimae. Ipsum si tollatur de duobus et duodecima, relinquentur unum et duae quartae, cuius
medietas est tres quartae, quare minor erit tres quartae medii, et medius
similiter majoris.

VI. Kennt man in einer stetigen Proportion das Verhältniss der Summe der beiden Aussenglieder zum Mittelgliede, so ist auch das Verhältniss jedes einzelnen zum Mittelgliede gegeben.

Gegebene Gleichungen:

$$x:b=b:y, (x+y):b=m.$$

Es ist $\frac{x}{b} = \frac{1}{\frac{y}{1}}$, also besteht die Proportion

$$\frac{x}{h}:1=1:\frac{y}{h}$$

und dadurch ist in Verbindung mit Gleichung 2 die Aufgabe auf die vorige zurückgeführt.

Beispiel: $m = 2\frac{1}{18}$. Man findet der Reihe nach $\left(\frac{x}{b} + \frac{y}{b}\right)^3 = 4\frac{49}{144}$, also $\left(\frac{x}{b} - \frac{y}{b}\right)^2 = \frac{49}{144}$, $\left(\frac{x}{b} - \frac{y}{b}\right) = \frac{7}{18}$ und daher $\frac{y}{b} = \frac{3}{4}$, $\frac{x}{b} = 1\frac{1}{4}$.

VII. Tribus numeris [continue] proportionalibus si alter extremorum fuerit datus, reliquusque cum medio fecerit numerum datum, quilibet eorum datus erit.

Sint proportionales a, b, c, sitque a datus, et bc faciat numerum datum; ducaturque a in bc et fiat de, ut sit d ex ductu a in b, et e ex ductu a in c, itemque et ipse e fiet ex b in se, quare quod fit ex b in se et in e, qui datus est, erit datum: ipse ergo datus.

Verbi gratia alter extremorum sit VIIII et compositus ex reliquis XXVIII. Ducatur itaque VIIII in XXVIII, et fient CCLII, quod quater sumptum facit MVIII; quibus addatur quadratum VIIII, et fient MLXXVIIII, cuius radix est XXXIII. Sublato VIIII remanent XXIIII, cuius dimidium est XII, et ipse est medius trium, tertiusque erit XVI.

VII. Kennt man in einer stetigen Proportion das erste Glied und die Summe aus dem zweiten und dritten, so sind alle Glieder einzeln bekannt.

Gegebene Gleichungen:

$$a: x = x: y,$$
$$x + y = s.$$

Es ist ax + ay = as, aber $ay = x^2$ nach 1, folglich ist die Gleichung $x^2 + ax = as$

nach Buch I, VII zu behandeln. Dadurch erhält man x, also auch y. Beispiel: a=9, s=28. Die zu lösende Gleichung wird hier

 $x^2 + 9x = 252.$

Aus ihr folgt x = 12, also y = 16.

VIII. Si alterum extremorum cum medio ad reliquum extremorum datum fuerit, utrumque ad medium datum erit.

Ut sit ab ad c proportio data, atque ipsa constat ex proportione a ad c et b ad c. Sed proportio a ad c ad proportionem b ad c, sicut proportio b ad c ad unum: per praemissam ergo utraque earum data erit.

Verbi gratia sit alterum extremorum cum medio sescuplum ad tertium; itaque sex quater sumptum facit XXIIII, cui addito uno fient XXV, cuius radix V, de quo dematur unum, et reliqui dimidium erunt duo, quare medium minori et maius medio duplum erit.

VIII. Kennt man in einer stetigen Proportion das Verhältnissder Summe des ersten und zweiten Gliedes zum dritten, so sind die Verhältnisse der beiden äusseren Glieder zum mittleren einzeln gegeben

Gegebene Gleichungen:

$$x: y = y: c,$$

$$(x+y): c = m.$$

Nach Früherem ist $x: c = (y:c)^2$, also besteht die Proportion

$$1: \frac{y}{c} = \frac{y}{c}: \frac{x}{c},$$

und da nach Gleichung 2 $\frac{y}{c} + \frac{x}{c} = m$ bekannt ist, so ist man auf die vorige Aufgabe zurückgekommen.

Beispiel: m = 6. Hier heisst die zu lösende Gleichung

$$\left(\frac{y}{c}\right)^2 + \frac{y}{c} = 6.$$

Folglich ist $\frac{y}{c} = 2$ und also x : y = 2.

IX. Si duplus medii cum uno [extremorum] datum numerum fecerit reliquo extremorum existente dato, singuli ipsorum dati erunt.

Ut si a cum duplo b fecerit numerum datum, atque c datus fuerit. Ducatur ergo c in se, et fiat d, et in a, et fiet e, et in b bis, et fiant f, g, eritque totus defg datus. Sed et quia e, quantum quod ex b in se, erit defg, quod fit ex bc in se. Extracta ergo radice habebimus bc datum, et quia c datus, et b atque a.

Verbi gratia alter extremorum sit duo, duplumque medii cum reliquo faciat XVI. Ducatur ergo duo in se et XVI, et fient XXXVI, cuius radix est VI, demptoque binario remanent IIII, et ipse medius, tertius VIII.

IX. Kennt man die Summe aus dem doppelten Mittelgliede und einem Aussengliede, sowie das zweite Aussenglied, so sind die Glieder einzeln bekannt.

Gegebene Gleichungen:

$$x: y = y: c,$$

$$x + 2y = s.$$

Es ist $c^2 + cx + 2cy = c^2 + 2cy + y^2 = (c+y)^2 = c^2 + cs$. Folglich kennt man $c+y = \sqrt{c^2 + cs}$, daher auch y, und somit auch x.

Beispiel: c=2, s=16; es ist $c^2+cs=36$, folglich c+y=6, y=4, also x=8.

X. Tribus numeris [continue] proportionaliter sumptis si compositus ex omnibus datus fuerit, extremorum que proportio data, quilibet eorum datus erit.

Si enim extremorum proportio fuerit data, et extremi ad medium et medii ad tertium erit proportio data. Compositus ergo secundum hoc proportionabiliter diuidatur, et habebimus illos tres.

Verbi gratia compositus ex tribus sit XIX, et extremorum alter alterum contineat bis et quartam. Duorum ergo et quarta extrahatur radix, et erit unum et dimidium. Diuidatur igitur XIX per tria, ut primus secundo sit sesqualterum et secundus tertio, et fient IIII, VI, VIIII.

X. Kennt man in einer stetigen Proportion die Summe der drei Glieder und das Verhältniss der beiden Aussenglieder, so sind alle drei Glieder einzeln gegeben.

Gegebene Gleichungen:

$$x: y = y: z,$$

$$x + y + z = s,$$

$$x: z = m^{2}.$$

Nach Früherem muss x:y=m sein, ebenso y:s=m; man hat also s nur nach dem Verhältnisse von x:y:s zu theilen, um die Aufgabe zu lösen.

Beispiel: s = 19, $m^2 = 2\frac{1}{4}$, dann ist $m = 1\frac{1}{4}$, und es verhält sich $x:y:s = 2\frac{1}{4}:1$, also ist x = 9, y = 6, s = 4.

XI. Si compositus ex tribus numeris [continue] proportionalibus fuerit datus, atque extremorum differentia data, ipsi etiam dati erunt.

Data autem differentia aufferatur et item addatur composito et prouenient data: duplum minoris trium cum medio, itemque duplum maioris cum medio. Unumque in alterum ducatur, et quia, quod ex duplo minoris in duplum maioris ducitur, est, quantum quod ex medio in se quater, erit, quod producitur, quantum quod ex medio in se ter et in compositum bis datum, quare quod fit ex medio in se et in duas tertias compositi datum erit, cumque tertia sic data erit, medium datum, et sic extrema.

Verbi gratia compositus ex tribus sit XXXVIII, differentia extremorum X; quo detracto de XXXVIII et tunc addito fient XXVIII et XLVIII, unoque in alterum ducto fient MCCCXLIIII, cuius tertia CCCCXLVIII. Hie quadruplicetur, et erunt MDCCCXCII, cui addatur quadratum duarum tertiarum XXXVIII, hoc est XXV et tertia, et fient IICCCCXXXIII et duae tertiae et nona, cuius radix est XLIX et tertia; de quo ablatis XXV et tertia reliqui medietas est XII, et ipse est medius, compositusque ex reliquis XXVI, quare unus VIII et alter XVIII.

XI. Ebenso, wenn statt des Verhältnisses der beiden Aussenglieder die Differenz derselben gegeben ist.

Gegebene Gleichungen:

$$x: y = y: s,$$

$$x + y + s = s,$$

$$x - s = d.$$

Man findet 2s + y = s - d; 2x + y = s + d, und folglich

$$4xs + 2(x + s)y + y^2 = s^2 - d^2.$$

Es ist aber $4xs = 4y^2$, also ist auch $3y^2 + 2y(x + y + s) = s^2 - d^2$, folglich hat man folgende Gleichung zu lösen:

 $y^2 + \frac{2}{3}sy = \frac{s^2 - d^2}{3};$

aus ihr folgt y, und dann aus den beiden Gleichungen

die beiden anderen Glieder.

$$xs=y^3, \ x-s=d$$

Beispiel: s = 38, d = 10. Die Gleichung heisst hier

$$y^2 + 25\frac{1}{8}y = 448.$$

Aus ihr folgt y = 12, und x und z müssen daher aus den Gleichungen

$$x-s=10, x.s=144$$

gefunden werden, welche schon oben gelöst sind. Es ist dann x = 18, s = 8.

XII. Tribus numeris [continue] proportionaliter sumptis si compositus ex duobus extremis, itemque compositus ex minimo extremorum et medio dati fuerint, omnes eos datos esse conueniet.

Sint tres numeri proportionales a, b, c, maximus a, sintque dati ac et bc, medietasque differentiae a ad c sit d. Manifestumque, quod cd est medietas ac, quadratum itemque cd est velut quadratum b et quadratum d.

quia quadratum cd est velut quadratum d et quod fit ex d in c et cd in c. Sed cd cum d facit a, atque a in c velut b in se. Et quia bc notum est, et cd datum, erit differentia eorum data, quae est differentia d ad b, quare, cum quadrata eorum data, compositus ex eis et uterque datus erit, cumque sic b datus, et ac erit et a et c datus.

Verbi gratia compositus ex maximo et minimo sit XXXIIII, et ex medio et minimo sit XXIIII, atque medietas XXXIIII et XVII, cuius quadratum est CC et LXXXIX, et ipsum constat ex quadratis medii et dimidiae differentiae extremorum, quorum etiam differentia est VII. Quadrato igitur VII, hoc est XLIX, sublato de CCLXXXIX remanebunt CCXL, qui cum aliis iuncti facient DXXIX, cuius radix XXIII, de quo ablato VII reliquoque dimidiato fient VIII, et residuum de XXIII erit XV, qui est medius, et sic duo extremi prouenient VIIII et XXV.

XII. Desgleichen, wenn die Summe der beiden Eusseren Glieder und die des Mittelgliedes und des dritten gegeben sind.

Gegebene Gleichungen:

$$x: y = y: z,$$

 $x + s = s_1,$
 $y + z = s_2.$

Es ist, wenn x-s=2t gesetzt wird, $s+t=\frac{1}{4}s_1$; es ist ferner

$$(s+t)^2 = s^2 + s(x-s) + \frac{1}{4}(x-s)^2 = (x-s+s)s + t^2 = xs + t^2 = y^2 + t^2.$$

Es ist ferner $y-t=s_1-\frac{1}{4}s_1$, und man kann also y und t, also auch x-s finden, und folglich auch x und s einzeln.

Beispiel: $s_1 = 84$, $s_3 = 24$; man findet also

$$y^2 + t^2 = 289$$
, $y - t = 7$ und hieraus $t = 8$, $y = 15$,

und aus den beiden Gleichungen x+s=84, x-s=16 folgt endlich x=25, s=9.

XIII. Si uero compositus ex duobus extremis itemque ex maximo et medio dati fuerint, terminos proportionales dupliciter assignari contingit.

Ut si ac et ab sint dati, possibile erit dupliciter sumi a, b, c. Esto enim quod d sit medietas differentiae portionum a, c, quae sit e maior et f minor, semper enim ac maior duplo b: dico ergo quod d proportionalis erit inter c et f, atque cd quantum fb. Quia enim fb est medietas ac, erit quadratum eius quantum quadratum b et d; remanet ergo quadratum d, quantum quod fit ex b in f bis et f in f, et quia fb et item eb sunt ut c, erit quadratum d, quod fit ex c in f, quare d inter c et f. Sed et cd constat ex dimidio ac et b et d, et ab simili modo aequalia, ergo sint data, cum erunt d, et b. Cum enim ab datum atque dimidium datum, erit db; sed quadrata eorum data, utrumque ergo datum, ob hoc etiam et e et f atque a et c data erunt.

Verbi gratia compositum ex maximo et medio sit XXVIII et ex maximo et minimo XXV. Dimidium autem XXV est XII et dimidium, cuius quadratum est CLVI et quarta. Eiusdem differentia ad XXVIII est XV et dimidium; huius quadratum est CCXL et quarta, de quo tollatur CLVI et quarta

et relinquentur LXXXIIII, cuius ad CLVI et quartam differentia est LXXII et quarta, cuius radix VIII et dimidium; quo dempto de XV et dimidio et reliquo mediato exibunt tria et dimidium, quod cum XII facit ipsum: igitur tam XII, quam tria et dimidium potest esse medium. Et si fuerit XII, erunt extrema XVI et VIIII; si tria et dimidium, erunt extrema XXIIII et dimidium maius et dimidium tantum erit minimum.

XIII. Desgleichen in doppelter Weise, wenn die Summe der beiden Aussenglieder und die des grösseren Aussengliedes und des Mittelgliedes bekannt sind.

Gegebene Gleichungen: x:y=y:s, $x+s=s_1$, $x+s=s_2$.

Setzt man, wie vorher, x-s=2t, so ist $s+t=\frac{1}{2}s_1$ und $y^2+t^2=\frac{1}{4}s_1^2$; diesmal ist aber $s_2-\frac{1}{4}s_1=x+y-s-t=x-s+y-t=2t+y-t=y+t$.

Es ist also $y^2 + t^2 = \frac{1}{4}s_1^2$ und $y + t = s_2 - \frac{1}{4}s_1$ bekannt, also wieder y und t einzeln, also such x - s und daher auch x und s.

Beispiel: $s_1 = 25$, $s_2 = 28$; es ist $\frac{1}{4}s_1^2 = 156\frac{1}{4}$, $s_2 - \frac{1}{4}s_1 = 15\frac{1}{4}$, folglich $2yt = (15\frac{1}{4})^2 - 156\frac{1}{4} = 84$ und folglich $(y-t)^2 = 72\frac{1}{4}$, also $y-t=\pm 8\frac{1}{4}$. y ist daher entweder 12 oder $3\frac{1}{4}$ und entsprechend $t=3\frac{1}{2}$ oder 12, also x-s entweder 7 oder 24, also x entweder 16 oder $24\frac{1}{4}$, und x entweder 9 oder $\frac{1}{4}$. Die Proportion ist also entweder 16: 12 = 12: 9, oder $24\frac{1}{4}: 3\frac{1}{4} = 3\frac{1}{5}: \frac{1}{4}$.

XIV. Si fuerint quatuor numeri proportionales, fuerintque primus et quartus dati atque compositus ex secundo ettertio, omnes quoque dati erunt.

Quia enim primus et quartus dati, et quod fit ex primo in quartum, quantum quod ex tertio in secundum, erit, quod ex tertio in secundum producitur, datum, et cum compositus ex ipsis datus sit, utrumque eorum datus erit.

Verbi gratia primus XV, quartus VI, compositus ex secundo et tertio XIX. Ducatur ergo XV in VI, et erunt XC. Sed et quadratum XIX est CCCLXI, de quo tollatur quater XC, et remanebit unum, cuius radix est unum, et ipsum est differentia tertii et secundi, quare ipsi erunt X et VIIII, sed non est distinctio, quod sit tertium, quod secundum.

XIV. Kennt man in einer Proportion die beiden ausseren Glieder und die Summe der beiden inneren, so sind beide auch einzelngegeben.

Gegebene Gleichungen: a: x = y: d, x + y = s.

Aus 1 folgt xy = ad, man kennt also Summe und Product der beiden inneren Glieder, daher nach Buch I, III beide einzeln.

Beispiel: a=15, d=6, s=19; es ist xy=90 und folglich $(x-y)^2=19^2-4.90=1$, $x-y=\pm 1$, also ist x=10 oder 9 und y=9 oder 10, also auch hier eine doppelte Lösung.

XV. Primo autem et quarto dato si differentia secundi et tertii data fuerit, uterque eorum datus erit.

Eadem enim de causa, qua et prius, quod fit ex secundo in tertium datum erit, cum ergo sit eorum differentia data, consequitur eos datos esse-

Verbi gratia primus XII, quartus III, differentia secundi et tertii quinque. Itaque ex ductu XII in tria fiunt XXXVI, quod quater sumptum cum quadrato V faciet CLXIX, cuius radix est XIII, de quo dempto V reliqui medietas erit IIII, qui est unus, et reliquus IX, sed erit indistinctio, quis tertius, quis secundus.

XV. Desgleichen, sobald nicht die Summe, sondern die Differenz der Innenglieder gegeben ist.

Gegebene Gleichungen:

$$a: x = y: d,$$
$$x - y = p.$$

Hier kennt man xy = ad und x - y = p, also nach Buch I, IV x und y einzeln. Beispiel: a = 12, d = 3, p = 5; man findet leicht x = 9, y = 4.

XVI. Si item primus et quartus dati fuerint, et proportio secundi ad tertium data, quilibet eorum datus erit.

Si enim dati sunt primus et quartus, erit eorum proportio data, quae constat ex proportione primi ad tertium et tertii ad secundum et secundi Sed cum proportio tertii ad secundum data sit diuisa per ipsum proportionem primi ad quartum, data erit et composita ex proportione primi ad tertium et secundi ad quartum. Totius ergo radix extrahatur et habebitur proportio primi ad tertium, quare tertium datum; sed et proportio secundi ad quartum, et ab hoc secundum datum.

Verbi gratia primum sit XVIII, quartum duo, secundum quadruplum tertio. Sed XVIII continet duo nouies, itaque nouem dividantur per quartam et exibunt XXXVI, cuius radix extrahatur, et erit VI. Primum ergo continebit sexies tertium, erit ergo tertius tres, et secundus sexies duo, et ipse secundum hoc erit XII.

XVI. Ebenso, wenn das Verhältniss der beiden Innenglieder bekannt ist.

Gegebene Gleichungen:

$$a: x = y: d,$$
$$x: y = p.$$

Es ist

$$\frac{a}{d} = \frac{a}{v} \cdot \frac{y}{x} \cdot \frac{x}{d}$$

oder, da
$$\frac{x}{d} = \frac{a}{y}$$
,

$$\left(\frac{a}{y}\right)^2 = \left(\frac{x}{d}\right)^2 = \frac{a}{d} \cdot \frac{x}{y} = \frac{a}{d} \cdot p$$

also ist $\frac{a}{x} = \frac{x}{d}$ bekannt, und folglich x und y.

Beispiel: a = 18, d = 2, p = 4; dann ist $\left(\frac{a}{y}\right)^2 = 9.4 = 36$, also $\frac{18}{y} = 6$, $\frac{x}{2} = 6$, **d. h.** x = 12, y = 3.

XVII. Si fuerint quatuor numeri proportionales, primusque et quartus dati, fueritque compositus ex primo et secundo ad tertium datus, singulos eorum datos esse conueniet. Digitized by Google Sint proportionales numeri a, b, c, d, datique sint a et d, et ab ad c datus. Et quia proportio ab ad c constat ex proportione ab ad a et a ad c, sed proportio ab ad a est ut proportio b ad a et unum, erit, ut proportio a ad c dueta in proportionem b ad a et unum faciat proportionem ab ad c. Sed proportio a ad c dueta in proportionem c ad d facit proportionem ab ad ab; sicut igitur proportio ab ad ab proportionem ab ad ab its proportio ab ad ab proportionem ab ad ab unum. Sed quia proportio ab ad ab unum sicut unum ad proportionem ab ad ab, utrumque ad medium datum esse consequitur, quare utraque data, et sic ab et ab data erunt.

Verbi gratia primum sit XVI, quartum tria, atque primus et secundus quadruplum sit tertio. Cumque sit XVI continens III quinquies et eius tertiam, V et tertia continebunt IIII et eorum quartam et duodecimam. Itaque tres quartae quater sunt tria, quibus addatur unum, et fient IIII, cuius radix est duo, de quo subtracto uno et reliquo mediato prouenist medietas unius. Secundus ergo medietas XVI, et est VIII, tertius duplus tribus, et est VI. Aliter sumatur quarta XVI, quae est IIII, sicut tertius est primi et secundi, et ducatur III in IIII, et fient XII, cuius quadruplum addito quadrato IIII faciet LXIIII, cuius radix VIII; de quo demptis IIII et reliquo mediato fient duo, quae cum IIII facient VI, et ipse est tertius, secundus VIII.

XVII. Desgleichen, wenn ausser den beiden Aussenglieders das Verhältniss der Summe des ersten und zweiten Gliedes zum dritten gegeben ist.

Gegebene Gleichungen:

$$a: x = y: d_1$$

 $(a+x): y = m$.

Es ist

$$\frac{a+x}{y} = \frac{a+x}{a} \cdot \frac{a}{y} = \left(\frac{x}{a} + 1\right) \cdot \frac{a}{y} = m;$$

ferner ist

$$\frac{a}{d} = \frac{a}{y} \cdot \frac{y}{d}$$
 und $\frac{a}{y} \cdot \frac{y}{d} : \frac{a}{y} \left(\frac{x}{a} + 1\right) = \frac{y}{d} : \left(\frac{x}{a} + 1\right)$,

das heisst

$$\frac{a}{d}: m = \frac{y}{d}: \left(\frac{x}{a}+1\right).$$

Es ist aber auch

$$\frac{x}{a} \cdot \frac{y}{d} = 1$$
,

man kennt also aus den beiden letzten Gleichungen sowohl $\frac{x}{a}$ als $\frac{y}{d}$, und daher auch x und y.

Beispiel: a = 16, d = 8, m = 4; dann hat man also

$$\frac{y}{d}$$
: $\left(\frac{x}{a} + 1\right) = 5\frac{1}{3}$: $4 = 1\frac{1}{4}\frac{1}{12} = 1\frac{1}{3}$ und $\frac{y}{d} = 1$: $\frac{x}{a}$.

Man erhält also für $\frac{x}{a}$ die Gleichung

$$\left(\frac{x}{a}\right)^2 + \frac{x}{a} = \frac{3}{4} \operatorname{oder} \left(2\frac{x}{a}\right)^2 + 2\left(2\frac{x}{a}\right) = 3,$$

also ist $\frac{x}{a} = \frac{1}{4}$, $\frac{y}{d} = 2$ und folglich x = 8, y = 6.

Oder man erhält für $\frac{y}{d}$ die Gleichung:

$$3\left(\frac{y}{d}\right)^2 - 4\left(\frac{y}{d}\right) = 4 \text{ oder } \left(\frac{3y}{d}\right)^2 - 4\left(\frac{3y}{d}\right) = 12;$$

daraus folgt dann

$$\frac{3y}{d} = 6$$
, $\frac{y}{d} = 2$, $y = 6$, $x = 8$.

XVIII. Quatuor numeris proportionalibus si compositus ex primo et secundo, itemque ex tertio et quarto dati fuerint, primusque ad quartam datus, singulos eorum datos esse necesse est.

Cum enim compositi dati sunt et proportio eorum data; sed quae proportio compositi ex primo et secundo ad compositum ex tertio et quarto, ea primi ad tertium, ergo haec data. Cumque primi ad quartum data, erit primi ad compositum ex tertio et quarto data. Datum ergo primum, sicque tertium, sicque secundum et quartum.

Verbi gratia compositum ex primo et secundo XXV et ex tertio et quarto X, sed et quartus sit quatuor quintaedecimae primi; cumque sit X duae quintae XXV, erunt quartus et tertius decem vigesimae quintae primi, cumque tertius et quartus sit X, erit primus XV, secundus X, tertius VI, quartus IIII.

XVIII. Kennt man ebenso in einer Proportion die Summe der Vorderglieder, die der Hinterglieder und das Verhältniss der beiden Aussenglieder, so sind sämmtliche Glieder gegeben.

Gegebene Gleichungen:

$$x: y = s: v,$$

$$x+y=s_1, \quad z+v=s_2,$$

$$x-t=s_1$$

Es verhält sich

$$(x+y):(s+v)=x:s$$
, d. h. $s_1:s_2=x:s$,

also ist

$$\frac{s}{x} = \frac{s_1}{s_1} \text{ und } \frac{v}{x} = \frac{1}{t},$$

daher auch

$$\frac{z+v}{x} = \frac{s_2}{s_1} + \frac{1}{t} = \frac{s_2}{x}.$$

Hieraus ist x gegeben, also auch y, s und v.

Beispiel: $s_1 = 25$, $s_2 = 10$, $t = \frac{15}{4}$; dann ist $\frac{s_2}{s_1} = \frac{10}{5}$, $\frac{1}{t} = \frac{4}{15}$, also $\frac{10}{x} = \frac{10}{5}$, d. h. x = 15, und folglich y = 10, v = 4, z = 6.

XIX. Si vero compositus ex primo et quarto atque ex secundo et tertio dati fuerint, et proportio primi ad tertium data, quilibet ecrum datus erit.

Ut sit ad atque bc dati, itemque proportio a ad c data. Erit ergo proportio ab ad cd data, cumque totus abcd datus, erunt ab et cd dati. Differentia ergo b ad d data atque differentia a ad c. Sed quae proportio differentiae a ad c ad differentiam b ad d, ea est proportio ac ad db, toto ergo abcd dato, dati erunt ac et bd, cumque differentiae a ad c et b ad d data sint, eos omnes datos esse consequitur.

Verbi gratia sit primus cum quarto XVI, secundus cum tertio XIII, atque primus sesquialter tertio. Iuncto igitur uno cum uno et dimidio erit compositus ex omnibus, hoc est XXX, ad compositum ex tertio et quarto duplus sesquialter, ipse ergo erit XII. Sed quartus cum primo erat XVI, ergo primus superat tertium IIII, ergo quartum est dimidium tertii, ipse ergo erit VIII, et primus XII, secundus VI, quartus IIII.

XIX. Desgleichen, wenn die Summen der Aussen- und der Innenglieder, sowie das Verhältniss des ersten Gliedes zum dritten bekannt sind.

Gegebene Gleichungen:

$$x: y = z: v,$$

$$x+v = s_1, \quad y+z = s_2,$$

$$x-tz$$

Es verhält sich wieder (x+y):(z+v)=x:s, also hat man die Gleichung $x+y+z+v=s_1+s_2$, $\frac{x+y}{z+v}=t$. Daraus kann man x+y=1, $z+v=\mu$ bestimmen. Also ist auch

$$y-v=\lambda-s_1=s_2-\mu, \quad x-s=s_1-\mu=\lambda-s_2.$$

Es ist aber

$$(x-z):(y-v)=(x+z):(y+v),$$

also kennt man, da wieder $x+y+s+v=s_1+s_2$ ist,

$$x+z=\lambda_1$$
, $y+v=\mu_1$,

hat also jetzt alle Grössen einzeln.

Beispiel: $s_1 = 16$, $s_2 = 14$, $t = \frac{3}{4}$; man findet leicht x = 12, y = 6, z = 8, v = 4.

XX. Si fuerint quatuor numeri proportionales, totoque ex omnibus composito dato fuerint differentiae primi ad secundum et tertii ad quartum datae, omnes eos datos esse demonstrabitur.

Si enim differentiae primi ad secundum et tertii ad quartum datae fuerint, erit differentia primi et tertii ad secundum et quartum data, quare cum compositus ex omnibus datus sit, uterque eorum datus erit. Sed unius ad alium proportio ea primi ad secundum et tertii ad quartum, primus ergo ad secundum et tertius ad quartum est datus. Primus igitur et tertius ad differentias suas ad illos dati erunt, cumque sint differentiae datae et ipsae, erunt dati et reliqui.

Verbi gratia compositus ex omnibus sit XXXV, et differentia primi ad secundum V et tertii ad quartum duo. Primi ergo et tertii differentia ad secundum et quartum erit VII, quo subtracto de XXXV residui medietas erit XIII, qui componitur ex secundo et quarto; compositusque ex primo et tertio XXI, qui cum sit triplus ad VII, quae est differentia ipsius ad XIIII, erit primus triplus ad V et tertius ad duo, quae sunt differentiae ipsorum ad secundum et quartum: primus ergo XV, secundus X, tertius VI, quartus IIII.

XX. Desgleichen, wenn die Summe aller vier Glieder und die Differenzen des ersten und zweiten und des dritten und vierten Gliedes gegeben sind.

Gegebene Gleichungen:

$$x: y = s: v,$$

 $x + y + s + v = s,$
 $x - y = d_1, \quad z - v = d_2.$
 $(x + s) - (y + v) = d_1 + d_2,$

Man hat

kennt also aus dieser Gleichung und der gegebenen zweiten x+z und y+zeinzeln. Nun ist aber

$$x:y=(x+s):(y+v)=s:v,$$

folglich kennt man auch (x-y):x und (x-v):x, also, da die Differenzen gegeben sind, x und z, folglich auch y und v.

Beispiel:
$$s = 35$$
, $d_1 = 5$, $d_2 = 2$; man hat also $(x+s) - (y+v) = 7$ und daher $x+s = 21$, $y+v = 14$.

Es verhält sich also

$$x: y = 21: 14 = 3: 2,$$

folglich auch

$$x:(x-y)=3:1$$
 und ebenso $z:(z-v)=3:1$.

Man erhält so x = 15, s = 6, und daher y = 10, v = 4.

XXI. Quatuor numeris proportionaliter dispositis et composito ex omnibus dato si differentiae primi ad quartum et secundi ad tertium datae fuerint, singulos eorum datos esse consequitur.

Composito ex a, b, c, d dato sit e differentia a ad d, et h differentia b ad c data, posito quod sit a maximus et b maior c. Quia igitur differentia a ad b et b ad c et c ad d, si de e tollatur h, remanebit differentia aad b cum differentia c ad d faciens quiddam datum, quod erit differentia ac ad bd data, cumque totus abcd sit datus, erunt ac et bd dati. Quia igitur differentia a ad c constat ex differentia a ad b et h, itemque differentia b ad d ex h et differentia c ad d (sed haec quatuor differentiae sunt ut e et h), erit e cum h differentia ab ad cd data, quare et ab et cd Sed quae proportio ab ad cd, ea est a ad c et b ad d, quare haec data, cumque sint ac et bd dati, erunt a et c, similiter b et d dati.

Verbi gratia sit compositus ex omnibus XLV, differentiaque primi ad quartum VII et secundi ad tertium duo. Demptis ergo duobus de VII remanent V, quibus detractis de XLV reliqui medietas erit XX, et ipse componitur ex secundo et quarto, primusque et tertius erunt XXV. Item iuncto VII cum duobus faciunt IX, quibus demptis de XLV residui dimidium erit XVIII, qui constat ex tertio et quarto, et XXVII ex primo et secundo. Et quia XXV addit super XX eius quartam, primus continebit secundum et eius quartam. Itaque XXVII continet secundum bis et eius quartam, ipse ergo erit XII, et primus XV, sicque tertius X, et quartus VIII.

XXI. Desgleichen, wenn ausser der Summe aller vier Glieder die Differenz des ersten und vierten und die des zweiten und dritten gegeben sind. Digitized by Google Gegebene Gleichungen:

$$x: y = s: v,$$

$$x + y + z + v = s,$$

$$x - v = e, y - s = h.$$

J. setzt voraus, dass x>y>z>v ist. Zunächst ist e-h=(x-y)+(s-v)=(x+z)-(y+v), also folgt aus Gleichung 2, dass x+s und y+v gegeben sind. Ebenso ist e+h=(x+y)-(z+v), also wiederum auch x+y und s+v gegeben, aber x:z=y:v=(x+y):(z+v), also ist, da x+z und y+v schon gefunden sind, x und z, sowie y und v gefunden.

Beispiel: s = 45, e = 7, h = 2; da e - h = 5 ist, so erhålt man y + v = 20, x + s = 25. Da ferner e + f = 9, so erhålt man s + v = 18, x + y = 27. Nun verhålt sich (x + s) : (y + v) = 5 : 4, also ist x = 1} y = 27, also x + y = 2} y = 27; das heisst y = 12, x = 15, z = 10, v = 8.

XXII. Si tres numeri [continue] proportionales tribus aliis continue proportionalibus comparantur, primique ad primum, atque tertii ad tertium fuerit proportio data, medius quoque ad medium datus erit.

Ut si a ad b sicut b ad c, itemque d ad e sicut e ad f, sitque proportio a ad d et c ad f data: erit et b ad e proportio data. Continuentur enim proportio a ad d et proportio c ad f, et composito extrahatur radix, et ipsa erit proportio b ad e.

Verbi gratia primus contineat primum et eius octauam, tertius sit duplus tertio. Ducantur ergo duo in unum et octauam, et fient duo et duo octauae, quod erit denominatio proportionis compositae, si continuentur. Eius extrahatur radix et prouenient duodecim octauae, hoc est unum et dimidium. Itaque medium continet medium semel et eius medietatem. Proportio enim ex proportionibus extremorum continuata est tamquam proportio mediorum duplicata.

XXII. Kennt man in zwei stetigen Proportionen das Verhältniss des ersten Gliedes zum ersten und das des letzten zum letzten, so ist auch das Verhältniss der beiden Mittelglieder gegeben.

Gegebene Gleichungen:
$$a:b=b:c,$$

$$d:e=e:f,$$

$$a:d=m_1, c:f=m_2.$$
 Man findet $m_1m_2=\frac{a\,c}{df}=\frac{b^2}{e^2}, \text{ also } b:e=\sqrt[4]{m_1m_2}.$ Beispiel: $m_1=1\frac{1}{8}, m_2=2; \text{ man findet}$
$$m_1m_2=2\frac{1}{4}, \text{ also } b:e=1\frac{1}{8}.$$

XXIII. Si quotlibet numeri continue proportionales totidem aliis continue proportionalibus comparantur, fuerintque primi ad primum, secundi ad secundum proportiones datae, reliquorum ad reliquos per ordinem proportiones datas esse conueniet

Quae enim differentia proportionis primi ad primum ad proportionem secundi ad secundum, ea erit proportionis primi ad secundum ad proportionem primi ad secundum, ea etiam proportionis secundi ad tertium ad

proportionem secundi ad tertium, et ita per ordinem. Sed quae differentia proportionis secundi ad tertium ad proportionem secundi ad tertium, ea proportionis secundi ad secundum ad proportionem tertii ad tertium, quare continue, quae differentia proportionis primi ad primum ad proportionem secundi ad secundum, ea proportionis secundi ad secundum ad proportionem tertii ad tertium similiter in addendo et diminuendo et ista ad extremos. Illa ergo differentia continue dempta relinquetur reliquorum ad inuicem proportio.

Verbi gratia quatuor comparantur ad quatuor. Primum continet primum et eius tertiam, secundus est secundo aequalis. Itaque per unum, a quo denominatur aequalitas, dividatur unum et tertia, et exibunt unum et tertia, et per unum et tertiam diuidatur unum, et exibunt tres quartae. Tertius ergo tertii erit tres quartae; atque tres quartae dividantur per unum et tertiam, et exibunt novem sextae decimae, quartus ergo quarti erit novem sextaedecimae.

XXIII. Wenn eine beliebige Anzahl stetig proportionirter Zahleu mit einer ebensolchen Anzahl anderer stetig proportionirter Zahlen verglichen werden, und man kennt das Verhältniss der ersten zur ersten und der zweiten Zahl zur zweiten, so ist das Verhältniss je zweier entsprechender Zahlen gegeben.

Gegebene Gleichungen:

$$a:b=b:c=c:d=d:e=\cdots,$$
 $a_1:b_1=b_1:c_1=c_1:d_1=d_1:e_1=\cdots,$
 $\frac{a}{a_1}=p_1, \quad \frac{b}{b_1}=p_2.$

Es ist der Reihe nach

$$\frac{a}{a_1}: \frac{b}{b_1} = \frac{a}{b}: \frac{a_1}{b_1} = \frac{b}{c}: \frac{b}{c_1} = \frac{b}{b_1}: \frac{c}{c_1} \text{ and } \frac{b}{c}: \frac{b_1}{c_1} = \frac{c}{d}: \frac{c_1}{d_1} = \frac{c}{c_1}: \frac{d}{d_1} \text{ u. s. w.,}$$

also die Aufgabe gelöst. Hierbei muss man sich erinnern, dass proportionem a proportioni subtrahere im Mittelalter bedeutet das erste Verhältniss durch das zweite dividiren, während proportiorem proportioni addere die Multiplication der Verhältnisse andeutet. Man sehe den Algorismus proportionum des Nicole Oresme.

Beispiel für vier Grössen: $p_1 = 1\frac{1}{3}$, $p_2 = 1$; dann ist $p_1 : p_2 = 1\frac{1}{3}$ und also $\frac{c}{c_1} = p_2 : 1\frac{1}{2} = \frac{3}{4}$, former $\frac{d}{d_1} = \frac{3}{4} : 1\frac{1}{2} = \frac{9}{16}$.

(Schluss folgt.)

Recensionen.

Des Geminos Isagoge nach Inhalt und Darstellung kritisch beleuchtet von Dr. Karl Manitius. Sonderabdruck aus den Commentationes Fleckeisenianae. Leipzig 1890, bei B. G. Teubner. 25 S.

Zu den mannigfachen Fragen, welche in der Geschichte der alten Mathematik und Astronomie noch ungelöst oder doch wenigstens nicht mit allgemein anerkannter Lösung dastehen, gesellt sich durch die Bemühungen der Herren F. Blass, Max C. P. Schmidt, Manitius auch eine Geminus-Frage. Hat es nur einen Geminus gegeben, der ebensowohl die eloaγωγή είς τα φαινόμενα, als auch ein geometrisches Werk gewoia των μαθημάτων schrieb, von welchem letzteren ein Abschnitt den besonderen Titel τάξις τῶν μαθημάτων führte, und wenn es nur Einen gab, wann bat er gelebt? Eine kurze Besprechung ist nicht der Platz, an welchem das gesammte Streitmaterial vorgeführt werden kann. Wer für dasselbe sich interessirt, wird an den Stellen nachlesen müssen, welche Herr Manitius Er selbst behauptet: Erstens sei der in der Isagoge angenau angiebt. geführte Boethius ein Studiengenosse Strabon's, der früheste Zeitpunkt, in welchem jenes Buch verfasst sein könnte, falle demnach etwa auf 30 vor Christi Geburt; zweitens seien in der Isagoge Fehler, die er des Näheren nachweist, welche eines bedeutenden Mathematikers unwürdig seien; folglich sei drittens der Verfasser der Isagoge, wenn er überhaupt Geminus hiess, von dem Mathematiker Geminus zu unterscheiden. Auf die Frage nach der Lebenszeit des Letzteren wird gar nicht eingegangen und eine Beantwortung nicht einmal versucht. Dem Referenten liegt, der ganzen Richtung seiner eigenen Forschungen gemäss, gerade am meisten an dieser letzterwähnten Frage, und er möchte nicht gern auf die Isagoge zur Lösung Sollte aber dieses wirklich nothwendig sein? Wir derselben verzichten. wollen Herrn Manitius zugeben, die Isagoge leide an Fehlern, welche mehr sind als Abschreibestinden. Wir wollen ihm zugeben, die Isagoge sei, wie sie heute vorliegt, das schriftstellerische Werk eines Fabrikanten, der etwa im ersten nachchristlichen Jahrhunderte aus verschiedenen an sich tadellosen Einzelheiten recht unverständig ein Ganzes zusammenstellte. Aber zwingt uns das Citat bei Alexander von Aphrodisius nicht, einen Bestandtheil doch einem Geminus zuzuschreiben? Ist dieser Geminus von dem Mathematiker verschieden? Wir glauben es nicht. Die beider-

seitigen Beziehungen zu Polybius, die Thatsache, dass Proklus nur von Geminus schlechtweg redet, ohne ein unterscheidendes Beiwort, ja die Umwandlung einiger Capitel der Isagoge zur Sphaera Procli in Vereinigung mit der vielfachen Benutzung des Mathematikers Geminus durch Proklus, das scheinen uns gewichtige Gründe, an jener Einheit festzuhalten.

CANTOR.

Die Arithmetik und die Schrift über Polygonalzahlen des Diophantus von Alexandria, übersetzt und mit Anmerkungen begleitet von G. WERTHEIM, Oberlehrer an der Realschule der israel, Gemeinde zu Frankfurt am Main. Leipzig 1890, bei B. G. Teubner. IX, 346 S.

Die Schulz'sche Diophant-Uebersetzung, die letzte, welche in eine neuere Sprache versucht wurde, ist 68 Jahre alt und nachgerade zu einer buchhändlerischen Seltenheit geworden. Die Bearbeitung von Herrn Heath (Cambridge 1885), soviel Schätzbares in ihr enthalten ist, ist keine Uebersetzung. Wir begrüssen daher den neuen deutschen Diophant des Herrn Wertheim mit Freuden, und wir hegen die Zuversicht, er werde unter den Lehrern an unseren Mittelschulen diejenige Benutzung finden, welche er heute noch verdient. Mögen anderthalb Jahrtausende vergangen sein, seit Diophant schrieb, mag die griechische Algebra der modernen in ganz anderem Maasse untergeordnet sein, als dieses bei der griechischen Geometrie der Fall ist: die Kunstgriffe, mittels deren Diophant schwierige Aufgaben zu lösen wusste, seine Fertigkeit in der Wahl der zweckmässigsten Unbekannten sind heute noch unübertroffen, sind heute noch wie für den Schulunterricht geschaffen, bei welchem es gerade um so mehr auf ähnliche Dinge in der Gleichungslehre ankommt, je weniger eine allgemeine Theorie der Algebra mit Mittelschülern durchgenommen werden kann. Herr Wertheim hat sich aber nicht mit einer einfachen Uebersetzung begnügt, er hat zahlreiche Erläuterungen hinzugefügt. Dieselben sind zweifacher Natur. Erstens hat Herr Wertheim alle diejenigen Anmerkungen übernommen, beziehungsweise übersetzt, welche seinerzeit Peter Fermat verfasste und welche mit der Diophant-Ausgabe von 1670, in welcher sie zum Abdrucke kamen, kaum mehr aufzutreiben sind. Er hat überdies diesen Fermat'schen Anmerkungen Erläuterungen beigegeben, welche sie kaum Zweitens hat Herr Wertheim auch eigene Anmerentbehren können. kungen zum Texte des Diophant hinzugefügt. Sie sind meistens elementarer Art, aber gerade dadurch nur um so geeigneter, im Unterrichte Ver-Insbesondere ist der Grund gewisser Bedingungen, werthung zu finden. die an die Lösung geknüpft sind, scharf hervorgehoben und ist häufig gezeigt, wie eine Verallgemeinerung der Aufgabe möglich ist. Eine Gattung von Anmerkungen findet sich nicht: solche von geschichtlicher Natur. Herr Wertheim hat sie nicht etwa vergessen, sondern in vollbewusster Absicht

weggelassen, wie er im Vorworte erörtert. Er meint, die Ergebnisse der seither angestellten Forschungen seien nicht so gesicherter Natur, dass man sie als geschichtliche Wahrheiten aususprechen vermöge, welche von dem Leser einfach anzuerkennen seien, auch ohne dass er in den Gang der Untersuchungen, welche zu jenen Ergebnissen führten, eingeweiht werde, und darin hat er unbedingt Recht. Er meint ferner, die Auseinandersetzung der widerstreitenden Ansichten und der dafür und dagegen geltend gemachten Umstände würde zu weit geführt haben. Das ist eine persönliche Meinung, zu der jeder Schriftsteller berechtigt ist. Er hat es mit sich auszumachen, wie weit er gehen will. Jedenfalls hat aber Herr Wertheim seinen Lesen nicht vorenthalten, was sie nicht bei ihm suchen dürfen, und er hat mehr gethan: er hat sie an den betreffenden Stellen, wo geschichtliche Fragen sich aufdrängen müssen, auf Werke verwiesen, wo dieselben, wenn nicht immer Erledigung, doch ausführliche Erörterung fanden. So sind auch diese Lücken, wenn man sie als solche empfindet, nicht unausfüllbar, und die Werke, wo man Weiteres zu suchen hat, sind nicht unauffindbar. Die Uebersetzung selbst liest sich leicht und angenehm. Sie ist dem griechischen Geiste so treu als möglich geblieben und hat nur eine Neuerung sich gestattet, welche wir durchaus billigen müssen: das diophantische Zeichen der unbekannten Grösse ist fortwährend durch x ersetzt. CANTOR.

Inhalt und Methode des planimetrischen Unterrichts. Eine vergleichende Planimetrie von Dr. Heinbich Schotten. Leipzig 1890, bei B. G. Teubner. IV, 370 S.

Der erste, aus fünf Capiteln bestehende Band liegt uns heute vor. Die Ueberschriften der Capitel lauten: Der Raum. Geometrie. Raumgebilde. Die Ebene. Die Gerade. Ihnen voraus geht eine einleitende Abhandlung: Ueber die Reformbestrebungen auf dem Gebiete des planimetrischen Unterrichts. Die Anordnung ist folgende. Der Verfasser spricht Ansichten über die in Frage stehenden Dinge aus. Er vertheidigt diese Ansichten mittels einer Vertheidigungsweise, welche längst auf allen Gebieten als die zweckmässigste sich bewährt hat: durch Angriff auf ihnen entgegenstehende Ansichten. Er stellt zum Schlusse jedes Abschnittes in genauen Citaten fest, dass er den einzelnen Schriftstellern gerecht geworden ist. Er begleitet diese Citate selbst mit fortwährenden Anmerkungen. Die Eigenartigkeit dieser Anordnung leuchtet ein; Referent hat wenigstens kein ähnliches Werk in Erinnerung. Wenn wir eine kleine Ausstellung an der Anordnung 20 machen haben, so bezieht sich dieselbe auf die Reihenfolge der Citate. Wir hätten gewünscht, sie der Zeitfolge genau angepasst zu sehen. Es wäre sehr interessant gewesen, zu erkennen, wie diese oder jene Schrift gewirkt oder nicht gewirkt hat, Anklang oder Widerlegung fand, sofort oder erst

Digitized by GOOGLE

nach längerer Zwischenzeit ihren Einfluss ausübte, und zu dieser auch vom Verfasser gewünschten Einsicht führt keine andere Ordnung, als die chronologische. Vielleicht entschliesst sich Herr Schotten für den II. Band, dem wir mit Begierde entgegensehen, unserem Wunsche zu entsprechen.

In diesem Wunsche liegt zugleich die Anerkennung, welche wir aber noch besonders aussprechen wollen, dass wir die Untersuchungen des Verfassers für höchst fruchtbare halten, und dass sie geeignet sind, geschichtlichen und pädagogischen Forschungen als nahezu unentbehrliche Grundlage zu dienen, jedenfalls das Material für solche vorzubereiten. Eine von dieser Anerkennung durchaus unberührte Frage ist die, ob wir Herrn Schotten's Ansichten theilen oder nicht. Referent hat niemals an einer Mittelschule unterrichtet. Was er für dort erreichbar hält, beruht also nicht auf Erfahrung an der Schule, sondern nur auf der an einzelnen Schülern, die ihm näher standen; ausserdem hat Referent, wie vermuthlich jeder denkende Gelehrte, seine eigenen halbphilosophischen Ansichten über Dieses und Jenes, und aus diesen beiden ungleichen Bestandtheilen hat sich sein Glaubensbekenntniss mathematischen Schulunterrichts gebildet.

Herr Schotten will, der mathematische Unterricht solle mit Geometrie beginnen. Erst in Secunda solle Arithmetik hinzutreten. Vielleicht bandelt es sich bei unserer hier schnurstracks entgegengesetzten Meinung um einen geringeren Unterschied, als man zunächst glauben sollte. Herr Schotten, wollen seine zahlreichen Gesinnungsgenossen den Rechenunterricht sofort aufhören lassen, sobald der mathematische Unterricht beginnt? Soll dann in Secunda unvermittelt die allgemeine Arithmetik auftreten? Wenn das die Meinung sein sollte, dann würde freilich eine unüberbrückbare Kluft uns trennen. Das Gymnasium, und zwar auch das humanistische Gymnasium, zu dessen Freunden wir mit Stolz uns zählen, hat freilich nicht die Aufgabe, lauter Zacharias Dase zu bilden, aber das kann man verlangen, dass der Gymnasiast immerhin rechnen lernt, und dazu reichen Sexta und Quinta nicht aus. Quarta muss zum Rechnenlernen noch mithelfen. Dann aber halten wir es für geboten, das Rechnen in Quarta mit Zahlen und Buchstaben zu treiben, die allgemeine Arithmetik hier schon zu beginnen. Freilich setzt dieses Eines voraus: dass der Unterricht im Rechnen von Sexta an durch einen wirklichen Mathematiker ertheilt werde, damit der Quartaner nicht als erste Aufgabe vor sich sehe, vergessen zu müssen, was er zwei Classen hindurch gelehrt wurde.

Nun zur Geometrie und ihren Grundbegriffen. Wie kommen dieselben zu Stande? Herr Schotten lässt sie aprioristisch bilden. Wir gehören zu Denen, welche in der Geometrie eine Erfahrungswissenschaft sehen, d. h. die Grundbegriffe sind für uns aus den Anschauungen abstrahirt. Dieser Gegensatz ist ein wirklicher und nimmt uns die Berechtigung, den vom Verfasser versochtenen Sätzen unsern eigenen Maassstab anzulegen. Nur eine Bemerkung, welche S. 255 Note 2 niedergelegt ist, giebt uns Ver-

Digi**8**Zed by Google

anlassung, einen Satz auszusprechen, welchen, soweit unsere Kenntniss reicht, auch die Erfahrungsmathematiker noch nicht geäussert haben.

"Etwas Anderes wie Körper finden wir im Leben nicht." So heisst die angeführte Note. Wir behaupten umgekehrt: Körper finden wir nie, sondern nur Oberflächen; dass hinter der Oberfläche ein Körper steckt, das ist erst secundäre Folgerung, aber nicht Anschauungsergebniss. Der erste geometrische Begriff ist deshalb für uns der der Oberfläche oder kürzer gesagt der Fläche. An ihr und mit ihr sind die Grenzen, also Linie und Punkt gegeben. Der zuletzt auftretende Begriff ist uns der des Körpers.

Ausser diesen wenigen Bemerkungen zu mehr als über Herrn Schotten's Buch möchten wir noch auf zwei mathematisch interessante Dinge hinweisen, welche als sein Eigenthum betrachtet werden dürften. und ebenso S. 272-273 sind die Definitionen von Kugel, Ebene und Gerade in einen hübschen Zusammenhang gebracht. Geometrischer Ort der constanten Entfernung von einem Punkte ist die Kugel, der gleichen Entfernung von zwei Punkten die Ebene, der gleichen Entfernung von drei Punkten die Gerade. Das Andere finden wir auf S. 127, wo Herr Schotten das an Stelle des Parallelenaxioms vorgeschlagene Axiom von der Summe der Dreieckswinkel in die Worte kleidet: Die Winkelsumme in [ebenen] Polygonen ist constant. Aus diesem Axiome, welchem wir nur das bei Herrn Schotten weggelassene Wort "ebenen" eingefügt haben, folgt sofort (S. 130) die wirkliche Winkelsumme jener Polygone. Sei z die Winkelsumme des Dreiecks ABC. Aus einem inneren Punkte O zerlegt man es durch OA, OB, OC in drei Dreiecke, deren Winkel die des ursprünglichen Dreiecks nebst den Winkeln um O sind; also x+x+x=x+4Rand x=2R. Beim Viereck ABCD findet wieder von einem inneren Punkte O aus die Zerlegung in vier Vierecke statt durch Hilfslinien von O nach Punkten der vier Seiten, die zwischen deren Endpunkten liegen. Heisst die constante Winkelsumme wieder x, und überlegt man, dass die Winkel der vier kleinen Vierecke aus den Winkeln von O, aus vier Paar Nebenwinkeln und den Winkeln des ursprünglichen Vierecks bestehen, so ist 4x = x + 4R + 4.2R, also x = 4R u. s. w. CANTOR.

WOLDEMAR HEYMANN, Studien über die Transformation und Integration der Differential- und Differenzengleichungen nebst einem Anhang verwandter Aufgaben. Leipzig, B. G. Teubner. 1891. X u. 436 S.

In dem vorliegender Werke hat der Verfasser seine Abhandlungen aus dem Gebiete der Differentialgleichungen, die in verschiedenen Zeitschriften veröffentlicht waren, unter einheitlichem Gesichtspunkte zusammengefasst und durch neue Studien vervollständigt und bereichert — ein tüchtiges Stück Arbeit, das einen stattlichen Band füllt und das Gebäude der Mathe-

Digitized by GOOGLE

matik nach verschiedenen Richtungen hin weiter ausbaut. Um in dieser Beziehung Einiges sogleich hervorzuheben, erscheinen dem Ref. die Transformationen gewisser hyperelliptischer Integrale, welche sich unter Umständen auf elliptische reduciren lassen, die Untersuchungen über Differenzengleichungen und besonders die Auflösung der algebraischen Gleichung n^{ten} Grades mittels Differentialgleichungen von besonderer Bedeutung.

Gehen wir nunmehr auf den gesammten Inhalt des Buches näher ein. Das erste Capitel enthält die Transformation und Integration verschiedenartiger Differentialgleichungen und beginnt (Studie I) mit der Transformation der Differentialgleichungen von Punkt- in Liniencoordinaten. Dies ist der geometrische Ausdruck für die Substitution von und van Stelle von und van Gleichungen

$$x = \frac{dv}{du}$$
, $y = u\frac{dv}{du} - v$, $\frac{dy}{dx} = u$, $x\frac{dy}{dx} - y = v$.

Dieselbe wird auf Differentialgleichungen erster und zweiter Ordnung angewandt und führt meist zu bequemerer Integration, wie z. B. bei der Gleichung

 $y'' = \frac{a_2 + b_2 y' + c_2 y'^2}{\alpha x + \beta y + \gamma x y'},$

welche auf eine integrirbare lineare Differentialgleichung zweiter Ordnung zurückgeführt wird. Nach Einführung und Besprechung homogener Coordinaten (welche u. A. die Integration der Gleichung

$$-(a_0u+b_0v+c_0)\left(\frac{dv}{du}\right)^2+(a_1u+b_1v+c_1)\frac{dv}{du}+(a_2u+b_2v+c_2)=0$$

auf eine nach bekannter Methode integrirbare der ersten Ordnung zurückführt) folgen Beiträge zur Integration der Gleichung Mdy + Ndx = 0, worin M und N ganze rationale Functionen zweiten Grades in x und y sind. In dem Falle, dass M eine Function zweiten Grades für x allein ist, wird die Gleichung integrirt, d. h. auf integrirbare Gleichungen zweiter Ordnung, und zwar im allgemeinen Falle auf die Gleichung der hypergeometrischen Reihe, reducirt und dann untersucht, unter welchen Umständen sich die allgemeine Gleichung auf diese speciellere zurückführen lässt.

Andere Fälle der allgemeinen Gleichung werden mittels quadratischer Substitution behandelt resp. integrirt.

Die folgende Studie zeigt, wie im Allgemeinen eine Gleichung von der Form: $\varphi^{2} \cdot f_{0} \cdot v'' + \varphi \cdot f_{1} \cdot v' + f_{2} \cdot v = 0$,

worin φ und f_0 , f_1 , f_2 ganze Functionen von x sind, transformirt werden kann, so dass sie den Factor φ ausscheiden lässt, und lehrt im Besondern die Integration der Gleichung:

$$(a + bx + cx^2)^2 \frac{d^2v}{dx^2} + (a + bx + cx^2)(a_1 + b_1x) \frac{du}{dx} + (a_0 + b_0x + c_0x^2)v = 0$$
Digitized by Digit

und die nächste bespricht ausführlich die Differentialgleichungen zweiter und erster Ordnung, denen durch hypergeometrische Functionen höherer Ordnung genügt werden kann. Daran schliessen sich Untersuchungen über simultane Differentialgleichungen, welche durch hypergeometrische Functionen integrirt werden können, und die Ableitung zweier Sätze über die Determinante der Integrale simultaner Differentialgleichungen, welche sich ihrer Natur nach an den Satz:

$$y'_{1}y_{2} - y'_{2}y_{1} = Const. \times e^{-\int \frac{f_{1}(x)}{f_{2}(x)} dx},$$

in welchem y_1 und y_2 die particulären Integrale der linearen Differentialgleichung: $f_2(x)y'' + f_1(x)y' + f_0(x) = 0$

bedeuten, anschliessen. Dieser Abschnitt, der von Differentialgleichungen verschiedener Art handelte, wird durch zwei Studien beschlossen, deren erste die Differentialgleichung

$$\mathbf{M}\,dx + N\,dy + P(x\,dy - y\,dx) = 0,$$

Jacobi's Untersuchungen erweiternd, in dem Falle, dass M und N homogene Functionen vom n^{ten} , P die Summe dreier homogener Functionen vom bez. $n-1^{\text{ten}}$, $n-1+a^{\text{ten}}$, $n-1-a^{\text{ten}}$ Grade sind, auf eine Riccati'sche Gleichung reducirt und z. B. für n=2, a=1 (nach Auflösung einer cubischen Gleichung) durch hypergeometrische Functionen integrirt, während die andere Studie einige hübsche Beispiele für die Anwendung integrirender Factoren bei Differentialgleichungen zweiter Ordnung liefert.

Die beiden folgenden Studien beschäftigen sich mit der Auflösung gewisser algebraischer Gleichungen (und hiermit im Zusammenhange mit der Auswerthung gewisser irrationaler Integrale) mittels Differentialgleichungen und bereiten dadurch auf ein späteres bereits erwähntes Capitel vor.

Und nun folgen in Studie XIII Beiträge zur Transformation hyperelliptischer Integrale. Der Verfasser beginnt mit einem Satze über die Discriminante Δx der Gleichung:

$$v^n + A_{n-1}v^{n-1} + \cdots + A_1v + A_0 - x = 0$$
,

worin die A_i Constanten sind und Δ bis auf einen constanten Factor die Form hat: $\Delta(x) = x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_1 x + a_n.$

Setzt man hierin für x seinen Werth $x = v^n + \cdots + A_0 = \varphi(v)$ ein, so lässt sich aus $\Delta \varphi(v)$ der Factor $(\varphi'v)^2$ ausscheiden, wobei der Quotient $\psi(v):\pi^2$ vom $(n-1)(n-2)^{\text{ten}}$ Grade ausfällt. Dieser Satz wird in der Art sur Transformation angewandt, wie folgendes Beispiel zeigt. Sei $\varphi(v) = v^4 + 6Bv^2 + 4Cv + D$, so folgt $\Delta(x) = x^3 + 3px^2 + 3qx + r$, wobei p, q, r in bestimmter rationaler Art von B, C, D abhängen. Ist nun das Differential:

$$dV = \frac{dx}{\sqrt{x^3 + 3px^2 + 3qx + r}}$$

gegeben, so ist, wegen $dx = \varphi'v dv$:

$$dV = \frac{4 dv}{V \psi(v)} = \frac{4 dv}{V^{v^6 + 12 B v^4 + 10 C v^3 + 45 B^2 v^3 + 54 B C v + 54 B^3 + 27 C^2}}$$

und es kann nun umgekehrt das letztere specielle hyperelliptische Differential, wenn man die Gleichung $\varphi(v) = x$ nach v auflöst, in ein elliptisches umgeformt werden. Verf. führt dies Verfahren für eine Reihe Annahmen über $\varphi(v)$ durch und verallgemeinert es noch, indem x, statt zu A_0 , zu einem andern A subtractiv hinzutritt, wodurch die Transformationsformel eine gebrochene wird. Sodann wird noch eine andere Transformation vorgetragen, durch die ein Differential von der Form $v^p dv: \sqrt[p]{\psi(v)}$, wobei $\psi(v)$ eine reciproke Function (im Sinne wie bei den reciproken Gleichungen) $2n^{\text{ten}}$ Grades und p von n abhängig ist, in die Summe zweier Differentiale, bei denen je eine Function $n+1^{\text{ten}}$ Grades oder eine Function des n^{ten} und eine des $n+2^{\text{ten}}$ Grades im Nenner unter der Wurzel steht, zerlegt wird. Dabei zeigt sich z. B., dass die Integrale

$$\int_{\sqrt{v(v^2-2\,\alpha v+1)}}^{\bullet} \left(v-\frac{1}{v}\right) dv \frac{\left(v-\frac{1}{v}\right) dv}{\sqrt{(v^2-2\,\alpha_1\,v+1)(v^2-2\,\alpha_2\,v+1)}}$$

pseudoelliptisch sind, also elementar ausgewerthet werden können. Der Raum verbietet es, den Inhalt dieser besonders interessanten Studie zu erschöpfen, und aus gleichem Grunde sind wir gezwungen, über den weiteren (etwa noch zwei Drittel des Buches füllenden) Inhalt uns erheblich kürzer zu fassen. Dies ist auch um so eher möglich, als das Material, das in den folgenden Capiteln verarbeitet wird, durch die Ueberschrift derselben vollständig charakterisirt wird, was bei dem besprochenen ersten Capitel nicht in dem Maasse der Fall ist.

Das zweite Capitel behandelt die Integration linearer, nicht homogener Differentialgleichungen durch Supplementarintegrale. Der Verfasser versteht unter diesem Ausdrucke nach dem Vorgange anderer von ihm genannter Mathematiker (zu denen noch Boole hätte hinzugefügt werden können) ein articuläres Integral der nicht reducirten Gleichung, welches zu dem vollste. 'igen Integral der reducirten hinzugefügt, das vollständige Integral der ersteren ergiebt. Der Verfasser lehrt dieselben unter gewissen Voraussetzungen für die rechte Seite der Gleichung methodisch finden und discutirt sie; und die gewonnenen Resultate erscheinen dem Ref. besonders darum wichtig, weil in vielen Fällen die Variation der Constanten wegen der Form des Integrals der reducirten Gleichung (z. B. als bestimmtes Integral) in prazi undurchführbar wird; der Verf. kommt dabei öfters durch Annahme einer ähnlichen Form des Supplementar- oder des vollständigen Integrals wie bei den reducirten Gleichungen zum Ziele, wobei die Auflösung gewisser mit dem Integralzeichen behafteter Functionalgleichungen sich nothwendig erweist und geleistet wird. Auch Systeme simultaner nicht reducirter Differentialgleichungen sind in Betracht gezogen worden.

Das dritte Capitel ist der transcendenten Auflösung der algebraischen Gleichungen und der Theorie der Differentialresolventen gewidmet. Nach einer Einleitung, in der u. A. auch auf die vorhandenen Arbeiten auf diesem Gebiete (von denen übrigens unabhängig die ersten Untersuchungen des Herrn Verfassers ausgeführt wurden) hingewiesen wird, wendet sich der Verf. der trinomischen Gleichung $z^n - az - b = 0$ zu, sucht die Differentialgleichung auf, welcher die Wurzeln der genannten algebraischen Gleichung oder eigentlich zweier aus ihr abgeleiteter genügen, und entwickelt deren Integral in Reihen, so dass sämmtliche Wurzeln der gegebenen Gleichung durch convergente Reihen dargestellt werden können. Dasselbe geschieht nun auch für die allgemeine algebraische Gleichung nten Grades, von deren sämmtlichen Wurzeln beliebige Potenzen durch bestimmte Integrale oder convergente Reihen ausgedrückt werden. Capitel erscheint dem Ref. höchst beachtenswerth, sowohl des Princips und der allgemeinen Gesichtspunkte wegen, wie auch wegen der glücklichen Ausführung im Einzelnen.

Das vierte Capitel endlich, betitelt: "Transformation und Integration der linearen Differenzengleichungen", bringt diese mit den linearen Differentialgleichungen in Zusammenhang und lehrt sie auf diese Art zu integriren, wobei eine Anzahl von Analogien zwischen den Differenzen- und den Differentialgleichungen aufgefunden wird.*

Wie die mehr oder weniger ausführliche Inhaltsangabe zeigt, bietet Herrn Heymann's Werk vielfach wissenschaftlich werthvolle Resultate und mannigfache Anregung, die noch durch den Anhang, welcher 130 theils vollständig, theils andeutungsweise gelöste Aufgaben enthält, reichliche Nahrung findet. — Wo der Herr Verf. bei seinen Untersuchungen Anschluss gefunden hatte, wird der Leser durch genaue Literaturangaben orientirt, und durch ein ausführliches Inhaltsverzeichniss wird ihm die Uebersicht erleichtert. Wir empfehlen das gediegene Buch dem Studium der Mathematiker.

W. Wolff: Vollständiges Sachregister zu: Die Physik auf Grundlage der Erfahrung von Mousson. 3 Bände. III. umgearbeitete und vermehrte Auflage. Zürich, Verlag von Fr. Schulthess. 1890. 78 S. Preis 2 Mk.

Mousson glaubte, mit Rücksicht auf die übersichtliche Anordnung seines Werkes, auf ein alphabetisches Inhaltsverzeichniss verzichten zu dürfen.

[•] Bef. möchte dabei in formaler Beziehung bemerken, dass es zweckmässig erschienen wäre, die zu Beginn der Untersuchung aus der Differentialgleichung abgeleitete Gleichung in die leicht zu erzielende Form einer wirklichen Differenzengleichung umzusetzen, während sie jetzt eigentlich als Functionalgleichung bezeichnet werden müsste.

Indessen giebt es eine Reihe von physikalischen Erscheinungen, die bald da, bald dort untergebracht werden; in diesen Fällen wird ein ausführliches Sachregister ungemein förderlich sein, zumal wenn es sich um ein rasches Nachschlagen handelt. Durch die nachträgliche Herausgabe dieses Registers haben sich sowohl Verfasser, als auch Verleger volle Anerkennung erworben.

B. NEBEL.

A. GLEICHEN, Die Haupterscheinungen der Brechung und Reflexion des Lichtes, dargestellt nach neuen Methoden. Mit Figuren im Text. Leipzig, Verlag von B. G. Teubner. 1889. 47 S.

Der Inhalt zerfällt in vier Capitel, die sich mit den Grundvorstellungen über das Wesen der Lichtwirkungen, der Reflexion des Lichtes, der Brechung an ebenen Flächen und der Brechung durch Kugelflächen beschäftigen. Dabei geht der Verf. nicht von einzelnen Lichtstrahlen aus, sondern legt seinen Betrachtungen immer einen Strahlenkegel zu Grunde, dessen Spitze dem betreffenden leuchtenden Punkte angehört und dessen Basis mit der Pupille unseres Auges zusammenfällt. Zunächst wird das Entstehen zweier Bildpunkte bei der Brechung an einer sphärischen Fläche nachgewiesen und hierauf die diesbezüglichen Formeln abgeleitet. Diese bilden die Grundlage für das Folgende, indem sie einer Reihe von speciellen Fällen als Ausgangspunkt dienen. Bei der Reflexion am Concavspiegel wäre es wohl einfacher gewesen, den Sinn für den Kugelradius anzugeben, wie dies zuvor auch für die anderen Strecken geschehen ist, statt den leuchtenden Punkt und den Bildpunkt mit einander vertauscht zu denken, was schliesslich zu dem gleichen Resultat führt.

Sehr anregend und lehrreich sind die vorliegenden Entwickelungen für solche Schüler, welche mit der Grundlage der Physik schon bekannt sind; indessen sind wir nicht damit einverstanden, dass die Reflexion und Brechung des Lichtes in dieser doch etwas schwierigen Weise dem Schüler zum ersten Male mitgetheilt werden soll. Ausserdem glauben wir, nach unseren Schulverhältnissen zu schliessen, dass, wenn auch die übrigen Theile der Physik in der gleichen Ausführlichkeit behandelt werden sollen, die hierfür ausgesetzte Zeit nicht ausreichen wird.

B. Nebell.

J. Bischoff, **Ueber das Geoid**, mit einer Figurentafel. Inaugural-Dissertation. München 1889, F. Straub's Buchdruckerei. 32 S.

Der erste Theil dieser Schrift enthält einige Sätze in Bezug auf das Geoid, die, mit Hilfe des Dreikantes hergeleitet, höchst einfache Beziehungen zwischen Punkten des Geoids zum Ausdruck bringen. Der zweite Theil sucht aus Mondbeobachtungen die Gestalt der Erde zu ergründen und zwar

in einer neuen Weise, die von den bisher angegebenen, welche auf die Ermittelung des Radius vectors hinauslaufen, völlig abweicht. Der Verf. weist hier nach, dass, wenn die Beobachtungen des Mondes in einer beliebigen Azimutalebene dieselbe Sicherheit, wie jene im Meridian haben, Anomalien der Erdgestalt aufgedeckt werden, welche diese letztere bei Erhöhung der Präcision genauer bestimmen lassen. Das Problem ist bis jetzt rein theoretischer Natur, indem solche Mondbeobachtungen, wie sie für den vorliegenden Fall nöthig sind, zur Zeit noch nicht vorliegen und vielleicht auch in absehbarer Zeit nicht erreicht werden können. Verf. unterlässt es nicht, auf die Schwierigkeit solcher correspondirender Beobachtungen hinzuweisen.

B. NEBEL.

W. BINDER, Das graphische Rückwärtseinschneiden (Stationieren) als praktische Messtischoperation. 24. Jahresbericht der niederösterreichischen Landes - Oberrealschule und der Fachschule für Maschinenwesen in Wiener-Neustadt 1889. Selbstverlag der Lehranstalt 19 (51) S.

Verf. weist zunächst darauf hin, dass der Messtischapparat in jeder Beziehung in Oesterreich eine grosse Ausbildung und Verbesserung erfahren hat, weil daselbst nach gesetzlicher Bestimmung die Detailaufnahme stets mit dem Messtische zu erfolgen hat. Nach einer kurzen geschichtlichen Notiz wird das Pothenot'sche Problem, um dessen Lösung es sich hier handelt, erläutert und die Construction von Tobias Mayer mitgetheilt. Zu den directen Methoden, von denen die Bohnenberger-Bessel'sche, sowie die Grunert'sche auseinandergesetzt werden, gehört auch die von Verf. angegebene, welche auf die Anwendung der Punkt- resp. Strahleninvolutionen der neueren Geometrie basirt. Dieselbe Methode wurde in ihren Grundzügen schon im 83. Bd. der Sitz.-Ber. der Wiener Akad. d. Wissensch. Jahrg. 1881, S. 659 veröffentlicht. Soll jedoch diese Methode nicht rein mechanisch ausgeführt werden, so müssen die Geometer auch mit der synthetischen Geometrie vertraut sein, was nicht überall der Fall sein wird. In dem zweiten Theile werden die indirecten Methoden behandelt, wobei namentlich den praktischen Arbeiten Rechnung getragen wird.

B. NEBEL

Bibliographie

vom 1. Marz bis 30. April 1891.

Periodische Schriften.

Sitzungsberichte der königl. preuss. Akademie der Wissenschaften. Jahrg.
1891, Nr. 1 u. II. X. Berlin, G. Reimer. 12 Mk.
Mathematische und naturwissenschaftliche Mittheilungen aus den Sitzungs-
berichten der königl. preuss. Akad. d. Wissensch. Jahrg. 1891, 1. Heft.
Ebendas. compl. 8 Mk.
Sitzungsberichte der königl. bayer. Akademie d. Wisssenschaften. 1890, IV.
München, Franz. 1 Mk. 20 Pf.
Sitzungsberichte der kaiserl österreich. Akademie d. Wissenschaften. Mathe-
matisch-naturwissenschaftl. Classe IIa. 99. Bd. 7.—10. Heft. Wien,
Tempsky. 7 Mk. 40 Pf.
Denkschriften der kaiserl. Akademie der Wissenschaften. Mathematisch-
naturwissenschaftl. Cl. 57. Bd. 1890. Ebendas. 88 Mk.
Sitzungsberichte der königl. böhm. Gesellschaft der Wissenschaften. Mathe-
matisch-naturwissenschaftl. Cl. Jahrg. 1890. 1. Bd. Prag, Rivnac.
7 Mk. 20 Pf.
Mémoires de l'académie des sc. de St. Petersbourg. T. XXXVIII, No. 1 et 2.
Leipzig, Voss. 9 Mk.
Die veränderlichen Tafeln des astronom. u. chronolog. Theils des königl.
preuss. Normalkalenders f. 1892. Berlin, statist. Bureau. 5 Mk.
Beobachtungen aus dem kaiserl. magnet. Observatorium in Wilhelmshaven.
2. Thl. 1884 u. 1885. Berlin, Mittler & S. 2 Mk. 50 Pf.
Berliner astronomisches Jahrbuch f. 1893, herausgeg. v. F. Tietjen. Berlin,
Dümmler. 12 Mk.
Jahrbuch der Astronomie und Geophysik, herausgeg. v. H. Klein. 1. Jahrg.
1890. Leipzig, E. H. Mayer. 7 Mk.
Mittheilungen der mathematischen Gesellschaft in Hamburg. 3. Bd. 1. Heft.
Redig. v. Bubendey, Hoppe u. Busche. Leipzig, Teubner. 1 Mk.
Fortschritte der Physik, 41. Jahrg. 1. Abth. (Physik der Materie, redig. v.
E. Budda. 1885.) Berlin, G. Reimer. 11 Mk.
Verhandlungen der physikalischen Gesellschaft zu Berlin. 9. Jahrg., heraus-
gegeben v. A. König. Ebendas. · 2 Mk.
Deutsches meteorologisches Jahrbuch für 1889. Beobachtungen im König-
reich Sachsen. Chemnitz, Bülz.
Annalen des kaiserl. russ. Centralobservatoriums. Jahrg. 1889, II. Peters-
burg und Leipzig, Voss. 15 Mk. 40 Pf.
Digitized by GOOGLE

Mathematische Annalen, herausgeg. v. F. Klein, W. Dyck u. A. Mayer.
38. u. 39. Bd. Leipzig, Teubner.

à Bd. 20 Mk.

Journal für reine und angewandte Mathematik, begr. v. Crelle, fortges. v.

L. Kronecker. 108. u. 109. Bd. Berlin, G. Reimer. à Bd. 12 Mk.

Archiv der Mathematik und Physik, begr. v. Grunert, fortges. v. R. Hoppe.

II. Reihe, 10. Theil. Leipzig, Koch.

10 Mk. 50 Pf.

Monatshefte für Mathematik und Physik, herausgeg. v. G. v. ESCHERICH u.

E. Weyer. II. Jahrg. 1. Heft, Wien, Manz. compl. 14 Mk.

Geschichte der Mathematik und Physik.

FRISCHAUF, J., Beiträge zur Geschichte und Construction von Kartenprojectionen. Graz, Leuschner & Lubensky. 80 Pf.

ROBEL, E., Die Sirenen. Ein Beitrag zur Entwickelungsgesch. d. Akustik.

1. Theil. Berlin, Gärtner.

1 Mk.

Reine Mathematik.

HEYMANN, W., Studien über die Transformation und Integration von Differential- und Differenzengleichungen, nebst einem Anhang verwandter Aufgaben. Leipzig, Teubner.

12 Mk.

Benoit, P., Ueber Differentialgleichungen, welche durch doppeltperiodische Functionen zweiter Gattung erfüllt werden. Berlin, Gärtner. 1 Mk. Rosenow, H., Ueber die Anzahl v. Classen bilinearer Formen. Ebendas. 1 Mk.

Fischer, E., Systematischer Grundriss der Elementarmathematik. 1. Abth.

Algebra und Grundbegriffe der Differentialrechnung. Berlin, C. Duncker.

GUNDELFINGER, S. u. M. NELL, Tafeln zur Berechnung neunstelliger Logarithmen mittels einer neuen Interpolationsmethode. Darmstadt, Bergsträsser. 2 Mk.

CLEBSCH, A., Vorlesungen über Geometrie, herausgeg. v. F. LINDEMANN.

2. Bd. I. Theil. Leipzig. Teubner.

12 Mk.

2. Bd. 1. Theil. Leipzig, Teubner. 12 Mk. Rudio, F., Elemente der analytischen Geometrie des Raumes. Ebendas.

2 Mk. 40 Pf. Kühl, H., Grundriss der Geometrie. II. (Stereom.) und III. (Trigonom.). Dresden Kühlmann

Dresden, Kühtmann.

3 Mk. 80 Pf.

Walter, Th., Schultrigonometrie. Halle a. S., Buchhandl. d. Waisenh. 1 Mk.

JENTZEN, Die Elemente der Trigonometrie. Dresden, Kühtmann. 1 Mk.
SERVUS H. Ausführliches Lehrhuch der Stereometrie und enhärischen Tri-

Servus, H., Ausführliches Lehrbuch der Stereometrie und sphärischen Trigonometrie. 2. Theil. Leipzig, Teubner. 2 Mt.

FOCKE, M. u. M. KRASS, Lehrbuch der Geometrie. 2. Theil. Münster, Coppenrath. 1 Mk. 20 Pf.

Gusserow, C., Stereometrische Untersuchungen. Berlin, Gärtner. 1 Mr. Sack P., Ueber Kreisbündel II. Ordnung. (Dissert). Jens, Neuenhahn.

Digitized by Google

80 Pf.

Angewandte Mathematik.

- Wislionnus, F., Handbuch der geographischen Ortsbestimmungen auf Reisen. Leipzig, Engelmann. 8 Mk.
- Das Berliner Basisnetz. 1885—1887. (Veröffentl. d. königl. preuss. geodät. Instit.) Berlin, Stankiewicz. 6 Mk.
- Astronomische Arbeiten des k. k. Gradmessungsbureaus, ausgeführt unter Leitung von Th. Oppolzer, herausgeg. v. E. Weiss u. R. Schram. 2. Bd.: Längenbestimmungen. Wien, Tempsky. 16 Mk.
- Katalog der astronomischen Gesellschaft. 1. Abth. 3. Stück. Katalog von 3949 Sternen zwischen 64°40' und 70°10' nördl. Declin. Nach Beob.
 - v. Fearnley u. Geelmuyden in Christiania. Leipzig, Engelmann. 7 Mk.
- Wolf, R., Handbuch der Astronomie. 2. Halbband. Zürich, Schulthess. 8 Mk.
- Budde, E., Allgemeine Mechanik der Punkte und starren Systeme. Ein Lehrbuch für Hochschulen. 2. Bd. Berlin, G. Reimer. 13 Mk.
- WEBER, L., Ueber das Galilei'sche Princip. Kiel, Häseler. 2 Mk.
- SCHEFFLER, H., Die Hydraulik auf neuen Grundlagen. Leipzig, Fr. Förster.

 5 Mk.
- RYCHLICKI, S., Physikalische Aufgaben aus d. Mechanik f. d. Gymn.-Prima.
 Wongrowitz, Lewandowski.

 1 Mk.
- MAYER, E., Handbuch der Astrologie, Berlin, v. Decker. 1 Mk. 20 Pf.

Physik und Meteorologie.

- KIRCHHOFF, G., Gesammelte Abhandlungen. Nachtrag, herausgeg. v. L. Boltzmann. Leipzig, Barth. 3 Mk. 60 Pf.
- FOCK, A., Die physikalischen Eigenschaften der Elemente und ihre anschauliche Erklärung. Vortrag. Berlin, Mayer & Müller. 1 Mk.
- Knoblauch, H., Die Polarisation der Wärme durch totale Reflexion. (Nova acta Leopold.) Halle und Leipzig, Engelmann. 3 Mk.
- KOPP, R., Zur Theorie der Elektrostriction kugelförmiger Condensatoren.
 (Dissert.) Leipzig, Fock.

 80 Pf.
- MACH, E. u. G. JAUMANN, Leitfaden der Physik für Studirende. Prag, Tempsky (Leipzig, Freytag). 4 Mk. 40 Pf.
- Bebber, J. v., Die Wettervorhersage. Eine praktische Anleitung, im Auftrage der deutschen Seewarte bearb. Stuttgart, Enke. 4 Mk.

Mathematisches Abhandlungsregister.

1890.

Erste Hälfte: 1. Januar bis 30. Juni.

Abel'sche Transcendenten.

1. Zur Theorie der Abel'schen Functionen. F. Klein. Mathem. Annal. XXXVI, 1. 2. Ueber zwei Covarianten aus der Theorie der Abel'schen Integrale auf vollständigen, singularitätenfreien Schnittcurven zweier Flächen. H. S. White. Mathem. Annal. XXXVI, 597.

3. Ueber die charakteristischen Gleichungen symmetrischer ebener Flächen und die zugehörigen Abel'schen Functionen. F. Schottky. Crelle CVI, 199.

4. Sur les intégrales de fonctions à multiplicateur et leur application au développement des fonctions abéliennes en séries trigonometriques. P. Appell. Acta math. XIII. — C. Hermite ibid.

Analytische Geometrie der Ebene.

5. Sur l'emploi des coordonnées barycentriques. E. Cesáro. Mathesis X, 177. 6. Construction simple du point qui avec 3 points donnés, dont 2 sont imaginaires conjugués, forme un groupe équianharmonique. Mathesis X, 233. — Cl. Servais ibid. 234. Klompers.

7. Verallgemeinerung des Entstehungsgesetzes der Fusspunktcurven E. Janisch.

Grun. Archiv 2. R. VIII, 171.

8. Potentielle d'un triangle dont les côtés sont en progression géométrique.

Déprez. Mathesis X, 68. 9. Ueber Parabeln höherer Ordnung. Himstedt. Grun. Archiv 2. R. VIII, 210.

10. Sur une courbe du 3º ordre. Déprez. Mathesis X, 172.

11. Étude géométrique sur la cissoïde et la strophoïde. Cl. Servais. Mathesis X, 9. 12. Sur la courbe $(xy-1/2+yx-1/2)(x^2/2+y^2/2)=1$. H. Brocard. Mathesis X, 165.

 Enveloppe des tangentes d'une courbe soumises à un certain mouvement de rotation. J. Neuberg. Mathesis X, 142.
 Lieu du centre d'une surface de révolution roulant sur deux tiges qui se trouvent dans un plan horizontal. Anderson. Mathesis X, 87.
 Propriété de la chainette d'égale résistance. E Cesáro. Mathesis X, 237. Vergl. Ellipse. Functionen 74. Hyperbel. Kegelschnitte. Kreis. Lemniscate. Trajectorie.

Analytische Geometrie des Raumes.

16. Sur quelques questions de signes en géométrie analytique. Ed. Lucas. Mathesis X, 5.

Zur Bestimmung der Curven durch die Relation zwischen Krümmungs- und Torsionswinkel. R. Hoppe. Grun. Archiv 2. R. VIII, 335.
 Ueber rationale Curven und Regelflächen. A. Brill. Mathem. Annal. XXXVI, 230.
 Zur sphärischen Schleifenlinie. E. Janisch. Grun. Archiv 2. R. VIII, 184, 334. [Vergl. Bd. XXXIII, Nr. 20.]

20. Sur une surface réglée du 8º ordre. Mosnat. Mathesis X, 121. Vergl. Cubatur. Oberflächen. Oberflächen zweiter Ordnung. Rectification.

Astronomie.

 Ueber eine Verallgemeinerung des dritten Kepler'schen Gesetzes. P. Bohl
Zeitschr. Math. Phys. XXXV, 188.
 Zur Theorie der astronomischen Strahlenbrechung. E. Oekinghaus. Grun.
Archiv 2. R. VIII, 92. [Vergl. Bd. XXXV, Nr. 25.]
 Vergl. Geschichte der Methemetik 08 20 Vergl. Geschichte der Mathematik 98, 99. Digitized by Google

Bestimmte Integrale.

28. Summirung der Gauss'schen Reihen $\sum_{k=n-1}^{\infty} \frac{2h^2\pi i}{e^{-n}}$. L. Kronecker. C**V**, 267.

24. Egalités impossibles entre deux intégrales définies. P. Mansion. Mathesis X, 40. Vergl. Abel'sche Transcendenten 4. Reihen 189.

Combinatorik.

- 25. Ein Satz über Binomialcoefficienten. J. Hermes. Grun. Archiv 2. R. VIII, 269.
- 26. Démontrer 1 C²_{2n,1} + C²_{2n,2} C²_{2n,3} + ··· + 1 = (-1)ⁿ C_{2n,n}. J. Beyens. Mathesis X, 63. Déprez ibid. 64.
 27. Zahl der Combinationen, die n Steine auf dem Damenbrette von 100 Feldern bilden können. C. Boecklen. Grun. Archiv 2. R. VIII, 326.
 28. Bemerskung zum Königinnenproblem. R. Hoppe. Grun. Archiv 2. R. VIII, 333.
- Vergl. Reihen 200. Wahrscheinlichkeitsrechnung.

Cubatur.

- 29. Zur Inhaltsrechnung der Körper. Ligowski. Grun. Archiv 2. R. VIII, 319.
- 30. Berechnung der krummen Oberfläche und des körperlichen Inhalts eines Kugel-Ausschnittes zwischen zwei beliebigen, die Kugel und einander schneidenden Ebenen. E. Czuber. Crelle CV, 180.
- 31. Surface et volume du tore. E. Gelin. Mathesis X, 190.

D.

Determinanten.

32. Valeur d'un déterminant dont les éléments sont $sin(a + \delta)$, $sin(a + 2\delta)$, ..., $sin(a + (n-1)\delta)$. J. Neuberg. Mathesis X, 117. Vergl. Differentialgleichungen 33.

Differentialgleichungen.

- Ueber eine Determinantenbeziehung in der Theorie der Differentialgleichungen.
 L. Königsberger. Crelle CV, 170.
- 34. Ueber lineare Differentialgleichungen, deren Integrale nur einen singulären Punkt im Endlichen besitzen und im Unendlichen sich regulär verhalten. P. Günther. Crelle CV, 1.
- 35. Ueber eine Methode, die zu einem singulären Punkte einer linearen homogenen Differentialgleichung gehörige Fundamentalgleichung zu bestimmen. P. Günther. Crelle CVI, 830.
- 36. Zur Theorie der Differentialgleichungen mit rationalen Coefficienten. P. Schafheitlin. Crelle CVI, 285.
- Ueber Recursionsformeln der Integrale linearer homogener Differentialgleichungen. L. Heffter. Crelle CVI, 269. L. Fuchs ibid. 283.
 Ueber die algebraischen Integrale algebraischer Differentialgleichungen. E. Jahnke. Zeitschr. Math. Phys. XXXV, 148.
- Ueber gewisse homogene quadratische Relationen unter den Integralen einer linearen homogenen Differentialgleichung sechster Ordnung. M. Rosen-kranz. Zeitschr. Math. Phys. XXXV, 82, 129.
- 40. Beitrag zum Studium der algebraischen Differentialgleichungen erster Ordnung, deren Integrale feste Verzweigungspunkte besitzen, insbesondere der jenigen, welche die Ableitung bis zum 3. Grade enthalten. G. Wallenberg. Zeitschr. Math. Phys. XXXV, 193, 257, 321.

 41. Ueber die lineare Differentialgleichung zweiter Ordnung mit linearen Coefficienten. L. Pochhammer. Mathem. Annal. XXXVI, 84.

 42. Zur Integration der binomischen Differentialgleichung dritter Ordnung. E. Jahnke. Zeitschr. Math. Phys. XXXV, 376.

- 43. Integrer $ax^4 \frac{\partial s}{\partial x} + (x^4s + ax^3y ax^2y^2) \frac{\partial s}{\partial y} = 2ax^2ys 2a^2y^3$. H. Brocard.

Mathesis X, 60. Vergl. Invariantentheorie 129. Mechanik 162.

Differentialquotient.

Ueber einige Verallgemeinerungen der Leibniz'schen Differentiationsformel und des polynomischen Lehrsatzes. A. Hurwitz. Ztschr. Math. Phys. XXXV, 56.
 Sur l'interversion des dérivations partielles. G. Peano. Mathesis X, 153.

46. Ueber algebraische Relationen zwischen den Entwickelungscoefficienten höherer Differentiale. Fr. Meyer. Mathem. Annal. XXXVI, 453. Vergl. Functionen 73.

Dreiecksgeometrie.

 Ueber den Brocard'schen Kreis als geometrischen Ort und die demselben verwandten Kegelschnittschaaren. A. Müller. Grun. Archiv 2. B. VIII, 337.

48. Der Feuerbach'sche Satz vom ebenen Dreieck. R. Slawyk. Zeitschr. Math. Phys. XXXV, 36.

49. Sur un nouveau cercle associé à un triangle. W. Fuhrmann. Mathesis X, 105.

Complément de théorie des polygones harmoniques. J. Casey. Mathezis X, 96.
 Théorèmes de la géométrie récente du triangle. Verniory, Beyens, Déprez. Mathesis X, 166.

52. Sur quelques séries de points remarquables dans le triangle. A. Poulain. Mathesis X, 246.
Vergl. Geschichte der Mathematik 111, 112.

E.

Elektricität.

53. Methode zur Bestimmung des specifischen Leitungsvermögens des Erdbodens R. Ulbricht. Zeitschr. Math. Phys. XXXV, 121. [Vergl. Bd. XXXIV, Nr. 224.]

 Allgemeine Sätze über die elektromotorische Induction. G. Adler. Zeitschr. Math. Phys. XXXV, 123.

Ellipse.

55. Propriété des points de rencontre des normales à une ellipse avec le cercle circonscrit au rectangle des axes (cercle de Monge). V. Jamet. Mathesis X, 207. — Kluyver ibid. 209.

56. Propriété des points dans lesquels les rayons menés des deux foyers à un point de l'ellipse rencontrent l'ellipse une seconde fois. Déprez. Mathesis X, 261.

57. Propriété d'une ellipse tournant autour d'un de ses foyers. Stuyvaert, Déprez. Mathesis X, 148.

58. La sécante MM' étant tirée par un point donné P de l'axe focal d'une ellipse, dont un foyer se trouve en F, il existe une constante r donnant au produit (FM+r)(FM'+r) une valeur constante. Choisis etc. Mathesis X, 46. — Déprez ibid. 253.

Vergl. Maxima und Minima 160. Rectification 188.

F.

Factorenfolge.

 Identité entre un produit et une série de fonctions trigonométriques. Mosnat, Falisse, De Bōzóky. Mathesis X, 125.

60. Expression de e en produit infini. Mathesis X, 156.

Formen.

61. Ueber die Theorie der algebraischen Formen. D. Hilbert. Mathem. Annal. XXXVI, 478.

62. Ueber die Bedingungen, unter welchen zwei quadratische Formen mit rationalen Coefficienten in einander rational transformirt werden können. H. Minkowski. Crelle CVI, 5.

63. Theorie der biquadratischen Formen. G. Frobenius. Crelle CVI, 125.

64. Bemerkungen zu v. Gall's Untersuchungen über die Grundsyzyganten zweier simultanen biquadratischen binären Formen. E. Strob. Mathem. Annal XXXVI, 154.

65. Ueber die symbolische Darstellung der Grundsyzyganten einer binären Form sechster Ordnung und eine Erweiterung der Symbolik von Clebsch. E. Stroh. Mathem. Annal. XXXVI, 262.

Functionen.

66. Ueber einen Ausnahmefall bei der Bestimmung des Radius des Grenzkreises.

L. Fuchs. Crelle CVI, 1.

67. Allgemeine Parameterdarstellung von Substitutionen involutorischen Charakters, welche eine rationale Function in sich selbst überführen. Fr. Hofmann. Grun. Archiv 2. R. VIII, 225.

68. Zur Theorie der Fuchs'schen Functionen. L. Schlesinger. Crelle CV, 181. 69. Ueber bedingt periodische Functionen eines beschränkt veränderlichen Argumentes und Anwendung derselben auf Mechanik. O. Staude. Crelle CV, 298.

70. Zur Theorie der eindeutigen Functionen. P. Stäckel. Crelle CVI, 189.

71. Ueber die Jacobi'schen Functionen dreier Variabeln. G. Frobenius. Crelle CV, 35.

72. Ueber den gemeinsamen Theiler zweier ganzer Functionen einer Veränder-lichen. E. Netto. Crelle CVI, 81. [Vergl. Bd. XXXV, Nr. 152.]

73. Ueber Theilbarkeitseigenschaften ganzer Functionen höherer Differentialquotienten. Fr. Meyer. Mathem. Annal. XXXVI, 435.
74. Sur une courbe qui remplit toute une aire plane. G. Peano. Mathem. Annal.

XXXVI, 157. Vergl. Abel'sche Transcendenten. Bestimmte Integrale. Determinanten. Differentialgleichungen. Differentialquotient. Factorenfolge. Formen. Hyperelliptische Transcendenten. Integration (unbestimmte). Invariantentheorie. Kettenbrüche. Logarithmen. Mittelgrössen. Reihen. Thetafunctionen. Transformationsgruppen. Zahlentheorie 229, 238, 234.

G.

Geometrie (descriptive).

75. Ueber die Fundamentalaufgabe der Axonometrie. A. Beck. Crelle CVI, 121.

Geometrie (höhere).

- Sur la transformation par rayons vecteurs réciproques. Lais ant. Mathesis X, 224.
 Sur la réversibilité de la transformation linéaire. Cl. Servais. Mathesis X, 182.
- 78. Ueber algebraische Correspondenzen. Specialgruppen von Punkten einer algebraischen Curve. A. Brill. Mathem. Annal. XXXVI, 321.
 79. Ueber Schnittpunktfiguren ebener algebraischer Curven. E. Study. Mathem.

Annal. XXXVI, 216.

80. Ueber die Anzahl der Lösungen gewisser Aufgaben und allgemeine Eigenschaften algebraischer Curven. B. Sporer. Zeitschr. Math. Phys. XXXV. 237, 298,

81. Ueber das sphärische Polarsystem und seine Anwendung auf das Tetraeder. Th. Meyer. Grun. Archiv 2. R. VIII, 363.

 Ueber lineare Mannigfaltigkeiten projectiver Ebenenbüschel und collinearer Bündel oder Räume. Th. Reye. Crelle CVI, 30, 315. [Vergl. Bd. XXXV, Nr. 95,]

83. Eine Classification der allgemeinen Ebenensysteme. V. Eberhard. Crelle CVI, 89. 84. Ueber eine merkwürdige Configuration gerader Linien im Raume. H. Maschke.

Mathem. Annal. XXXVI, 190. 85. Eine Construction für das Chasles'sche Problem der Projectivität. H. Schroe-

ter. Zeitschr. Math. Phys. XXXV, 59. 86. Ueber einen Satz aus der projectivischen Geometrie. Th. Meyer. Zeitschr. Math. Phys. XXXV, 881.

87. Propriété de deux triangles homologiques. J. Neuberg. Mathesis X, 230. 88. Sur le quadrilatère inscriptible. Mannheim. Mathesis X, 155.

Ueber die Configuration, welche durch die Aehnlichkeitspunkte und Aehnlichkeitsgeraden von n Kreisen der Ebene gebildet wird. Jan de Vries. Zeitschr. Math. Phys. XXXV, 61.
 Ueber die Polarfiguren der ebenen Curven dritter Ordnung. F. London. Mathem. Annal. XXXVI, 535.

Ueber ein System lineärer Gleichungen, welches in Verbindung mit einer ebenen Curve dritter Ordnung auftritt. J. Rosanes. Mathem. Annal. XXXVI, 316.

92. Lineare Constructionen des neunten Schnittpunktes zweier Curven dritter Ordnung. F. London. Mathem. Annal. XXXVI, 585. Vergl. Oberflächen. Singularitäten.

Geschichte der Mathematik.

98. Sur les bibliographies des sciences mathématiques. G. Eneström. Biblioth. math. 1890, 37.

94. Programme d'un cours universitaire d'histoire des mathématiques. G. Eneström. Biblioth. math. 1890, 1.

95. Sur le procédé employé dans le papyrus de Rhind pour réduire les fractions en quantièmes.
96. Geminus.
M. Steinschneider.
Biblioth. math. 1890, 107.

97. Beiträge zur Geschichte der Mathematik im Mittelalter. Zeitschr. Math. Phys. XXXV, hist.-lit. Abth. 41, 81. J. L. Heiberg.

Die erste Anwendung des Jakobsstabes zur geographischen Ortsbestimmung.
 Günther. Biblioth. math. 1890, 73 — M. Steinschneider ibid. 107.

 Intorno ad un trattato anonimo sull'Astrolabio riconosciuto opera di Producimo de' Beldomandi. A. Favaro. Biblioth. math. 1890, 81. – P. Riccardi ibid. 118.

Ueber die mathematischen Handschriften der amplonianischen Sammlung.
 M. Steinschneider. Biblioth. math. 1890, 65.

101. Ueber eine lateinische Bearbeitung von Zarkali's Saphea. M. Steinschneider. Biblioth. math. 1890, 11.

102. Ueber die ersten Kegelschnittzirkel. A. v. Braunmühl. Zeitschr. Math. Phys. XXXV, hist.-lit. Abth. 161.

103. La formule d'Ozanau est due à W. Snell. Le Paige. Mathesis X, 34.

104. Sur quelques écrits mathématiques publiés en Espagne aux XVI et XVII. siècles. G. Vicuña. Biblioth, math. 1890, 82.

105. Ueber Marcus Marci de Kronland. W. Laska. Zeitschr. Math. Phys. XXXV, hist.-lit. Abth. 1.

106. Écrit posthume de Descartes intitulé "De solidarum elementis". E. de Jonquières. Biblioth. math. 1890, 43.

107. Note_historique sur la somme des valeurs inverses des nombres carrés. G.

Eneström. Biblioth. math. 1890, 22. 108. Bibliographische Notiz über die mathematisch-historischen Studien in der Schweiz. H. Suter. Biblioth. math. 1890, 97.

109. Bibliographie espagnole de l'histoire des mathématiques. G. Vicuña. Bibl. math. 1890, 13.

110. Sur les écrits d'histoire des mathématiques publiés en Portugal. F. Gomes

Teixeira, Biblioth math. 1890, 91.

111. Crelle ou Brocard? P. Mansion. Mathesis X, 28.

112. Esquisse historique sur la marche du développement de la géométrie du triangle. E. Vigarié. Mathesis X, Supplément.

113. De propositione novae Bibliothecae mathematicae italicae seculi XIX. P. Biccardi. Biblioth. math. 1890, 56. Vergl. Logikkalkül.

Gleichungen.

114. Ein neuer Beweis der Unmöglichkeit, allgemeine Gleichungen höheren Grades algebraisch aufzulösen. A. Kneser. Crelle CVI, 48.

115. Résolution graphique des équations numériques du 3° et du 4° degré. Reuschle. Mathesis X, 55.

116. Posant $X_{n-1} = xX_n - X_{n-2}$ et $X_1 = 1$, $X_2 = x - 1$ ou bien $X_1 = 1$, $X_2 = x + 1$ on cherche les racines de $X_2 = 0$. J. G. Darboux. Mathesis X, 91. 117. Résoudre l'équation $(x^3 - 3qx + y^3 - 3pq)^2 - 4(px + q)^3 = 0$. J. G. Darboux.

Mathesis X, 150. — E. Catalan ibid. 155.

118. Résoudre l'équation

Vabx(x-a-b) + Vbcx(x-b-c) + Vcax(x-a-c) = Vabc(a+b+c)De Strékalof. Mathesis X, 259.

119. Neues Verfahren zur Bestimmung der reellen Wurzeln zweier numerischer algebraischer Gleichungen mit zwei Unbekannten. R. Mehmke. Zeitschr. Math. Phys. XXXV, 174.

120. Résoudre le système $x^2(y-z) = a$, $y^2(z-x) = b$, $z^2(x-y) = c$. Denys, Verniory etc. Mathesis X, 44.

121. Condition nécessaire et suffisante pour la compatibilité des équations $y^2 + z^2 - 2ays = z^2 + x^2 - 2bsx = x^2 + y^2 - 2cxy = 0$. Broudsa. Mathesis X, 22. Vergl. Functionen 72.

H.

Hyperbel.

122. Construction des Schnittes einer Geraden mit einer Hyperbel. F. Ruth. Grun. Archiv 2. R. VIII, 815.

Hyperelliptische Transcendenten.

123. Untersuchungen aus dem Gebiete der hyperelliptischen Modulfunctionen. H. Burkhardt. Mathem. Annal. XXXVI, 371.

I.

Integration (unbestimmte).

124. Trouver la valeur de l'intégrale $\int \frac{2x^2+x-1}{x^2-x+2} \frac{dx}{\sqrt{x^4-1}}$. W. Mantel. Matherin Y 28 thesis X, 38,

125. Valeur de l'integrale $\int_{-\infty}^{\infty} \frac{x^n \cdot dx}{\sqrt[n]{(P_n x^n + P_{n-1} x^{n-1} + \dots + P_1 x + 1)^{m-1}}}$ ou l'on a posé $P_k = \frac{(k+1)(k+2)\dots(k+m-1)}{1.2.3\dots(m-1)}$. Ruex. Mathesis X, 276.

Invariantentheorie.

Eine besondere Art von Covarianten bildender Operation. E. Wiltheiss.
 Mathem. Annal. XXXVI, 184. [Vergl. Bd. XXXV, Nr. 568.]
 Ueber die Hesse'sche Covariante einer ganzen rationalen Function von ternären Formen. E. Wölffing. Mathem. Annal. XXXVI, 97.
 A simple proof of the existence of irreducible invariants of degrees 20 and 30 for the binary seventhic. J. Hammond. Mathem. Annal. XXXVI, 255.

129. Ueber eine Invariante der linearen Differentialgleichung zweiter Ordnung. Dietrichkeit. Zeitschr. Math. Phys. XXXV, 52.

K.

Kegelschnitte.

- 130. Foyers, directrices, axes de coniques d'après la conception de Plücker. V. Lac de Bosredon. Mathesis X, 265.
- 131. Zur Construction der Kegelschnittslinien. Fr. Schiffner. Grun. Archiv 2. R. VIII, 317.
- 132. Ueber die Systeme derjenigen Kegelschnitte, die eine bicirculare Curve vierter Ordnung viermal berühren. O. Richter. Zeitschr. Math. Phys. XXXV, Supplement.
- 138. Sur les coniques osculatrices. Ed. Dewulf. Mathesis X, 55.
- 134. Les coniques passant par un point donné et osculant en un autre point donné
- une même ligne ont leurs centres sur une conique de centre donné. Servais. Mathesis X, 18. Keelhoff ibid. 19. Meurice ibid. 20.

 135. Die Curven, welche von Punkten von Kegelschnitten, die sich ohne zu gleiten längs anderer Curven wälzen, beschrieben werden. H. Ekama. Grun. Archiv 2. R. VIII, 388.
- 136. Coniques inscrites dans un quadrilatère donné. Déprez et Decamps. Ma-
- thesis X, 235. Baudran ibid. 236.

 137. Valeur du rapport anharmonique de quatre points d'une conique. Anderson, Cl. Servais. Mathesis X, 258.
- 138. Conique lieu du point de rencontre de deux circonférences dont les centres se trouvent à distance constante sur la même droite. De Bōzoky etc. Mathesis X, 18.
- 139. Beiträge zur Theorie der Kegelschnitte und des geraden Kreiskegels. F. Ruth. Grun. Archiv 2. R. VIII, 1.
- Zur Theorie der Kegelschnittslinien. E. Czuber. Grun. Archiv 2. R. VIII, 108. Sur une propriété des coniques. Mdme. Prim. Mathesis X, 252. Ueber zwei Kegelschnittsätze. O. Richter. Zeitschr. Math. Phys. XXXV, 125. 140.
- Die merkwürdigen Punkte derjenigen Tangentendreiecke einer Curve zweiter Ordnung, welche von zwei festen Tangenten und einer beweglichen ge-bildet werden. Th. Meyer. Grun. Archiv 2. B. VIII, 307.

144. Sur quelques coniques se trouvant en rapport avec le mouvement dans un cercle donné d'une corde de longueur constante. Verniery. Matheis X, 255. — Cl. Servais ibid. 257. Vergl. Dreicksgeometrie. Ellipse. Geschichte der Mathematik 102. Hyperbel.

Kreis. Parabel.

Kettenbrüche.

145. Extraction de la racine carrée en fraction continue périodique. Carrara. Mathesis X, 15. — Catalan ibid. 17.

Kinematik.

146. Ueber die Bewegung eines starren ebenen Systems in seiner Ebene. R. Mehmke. Zeitschr. Math. Phys. XXXV, 1, 65.

147. Die momentane Bewegung dreier starrer Geraden mit einem gemeinschaftlichen Punkte in einer Ebene. M. Grübler. Zeitschr. Math. Phys. XXXV, 247. Kreis.

148. Six points des côtés d'un triangle situés sur une même circonférence. Denys. Mathesis X, 262.

149. Sur deux cercles qui touchent deux côtés d'un triangle et qui ont, le premier un contact intérieur, le second un contact extérieur avec le cércle circonscrit au triangle. Déprez. Mathesis X, 67. — J. Neuberg ibid. 68.

150. Propriété des quatre cercles tangents aux côtés d'un triangle. Déprez. Mathesis X, 88.

151. Triangle des trois tangentes communes à trois circonférences prises deux à deux. Déprez. Mathesis X, 211.

152. Condition suffisante pour qu'un hexagone soit inscriptible à une circonférence. François etc. Mathesis X, 94.

153. Hexagones dont les sommets sont situés deux à deux sur trois circonférences ayant une corde commune. P. H. Schoute. Mathesis X, 42. Vergl. Dreiecksgeometrie.

L

Lemniskate.

154. Die Lemniskate. E. Oekinghaus. Grun. Archiv 2. R. VIII, 24. [Vergl. Bd. XXXV, Nr. 207.]

155. Engendrement de l'ovale de Cassini. Déprez. Mathesis X, 64. — Genese ibid. 66.

Logarithmen.

156. L'expression symbolique $\frac{(H\alpha)^n-(H+\alpha-1)^n}{n}$ dans laquelle H_p représente la αn somme des p premiers termes de la série harmonique, tend vers logs, lorsque n croît indéfiniment. E. Cesaro. Mathesis X, 85.

Logikkalkül,

157. Eine Berichtigung zum I. Bande meiner Algebra der Logik. E. Schröder. Mathem. Annal. XXXVI, 602.

Maxima und Minima.

158. Maxima géométriques trouvés sans employer le calcul différentiel. J. Neuberg. Mathesis X, 170.

159. Ueber eine Maximalaufgabe zur angeblichen Dreitheilung eines Winkels von Averdieck. E. Lampe. Crelle CV, 355.

160. Triangle équilatéral maximum ou minimum circonscrit à une ellipse donnée. H. Brocard. Mathesis X, 144. — A. Thiré ibid. 146.

161. Valeurs de la fonction $\frac{x^2-2ax+3b}{a}$ Sohie, Denys, Decamps, Mathesis X, 149.

Mechanik.

162. Sur le problème des trois corps et les équations de la dynamique. H. Poincaré. Acta math. XIII.

163. Ueber die analytische Verwendung des Energieprincips in der Mechanik. G. Helm. Zeitschr. Math. Phys. XXXV, 307.

- Beiträge zur Theorie ebener Kräftesysteme. F. Kosch. Zeitschr. Math. Phys. XXXV, 155.
 Ueber Gleichgewichtspunkte der Anziehung von Linien. R. Hoppe. Grun.
- Archiv 2. R. VIII, 94.
- 166. Inkreiscentrum als Gleichgewichtspunkt. R. Hoppe. Grun. Archiv 2. R. VIII, 112.
- 167. Aehnlichkeitspunkt als Gleichgewichtspunkt der Anziehung ebener Flächenstücke. Grun. Archiv 2. R. VIII, 221.
- 168. Gleichgewicht der Anziehung einer ringförmigen Ebene. R. Hoppe. Grun. Archiv 2. R. VIII, 223.
- 169. Ueber die Bewegung freier Ketten in rotirenden Linien. F. August. Zeitschr. Math. Phys. XXXV, 97. [Vergl. Bd. XXXIV, Nr. 185.]
 170. Courbes décrites pendant le déplacement d'un plan mobile sur un plan fixe. Meurice. Mathesis X, 203.
- 171. Problème sur le billard circulaire. A. del Re. Mathesis X, 217.
 172. Courbes décrites par les sommets d'un cadre rectangulaire suspendu sur un clou, la corde de suspension, dont les extrémités sont attachées à deux sommets du cadre, venant à glisser. H. Brocard. Mathesis X, 201.
 Vergl. Astronomie. Elektricität. Functionen 69. Kinematik. Schwerpunkt.

Mittelgrössen.

173. La moyenne arithmétique de plusieurs nombres positifs est supérieure à leur moyenne géométrique. E. Bernès. Mathesis X, 118.

Oberfiachen.

- 174. Rein geometrische Untersuchungen über algebraische Minimalflächen. Sturm. Crelle CV, 101.
- 175. Ueber die durch ein lineares Flächensystem nier Ordnung definirten mehrdeutigen involutorischen Raumverwandtschaften. Ch. Steinmetz. Zeitschr. Math. Phys. XXXV, 219, 272, 354.
- 176. Paradoxe survenant dans l'évaluation de l'aire d'une surface courbe. P. Mansion. Mathesis X, 222.
 - Vergl. Abel'sche Transcendenten. Analytische Geometrie des Raumes 18, 20. Gleichungen 119.

Oberfischen sweiter Ordnung.

177. Théorèmes sur des quadriques. V. Jamet. Mathesis X, 158.

P.

Parabel.

- 178. Theorèmes sur la parabole. C. Bergmans. Mathesis X, 116. [Vergl. Bd. XXXIV, Nr. 206.]
- 179. Mouvement d'une parabole donnée pendant qu'elle reste tangente à une droite donnée en un point donné. Pisani. Mathesis X, 205.
- 180. Sur un groupe de trois paraboles. H. Mandart. Mathesis X, 30.

Planimetrio.

- 181. Sur un porisme d'Euclide. A. C. Mathesis X, 115.
- 182. Trois droites dans un triangle équilatéral qui se coupent en un même point,
 Laurens, Jerábek. Mathesis X, 20. Emmerich ibid. 20. Decamps ibid. 21. De Bōzóky etc. ibid. 21.
- 183. Relation entre les côtés d'un triangle. Anderson. Mathesis X, 213. J. Neuberg ibid. 214. De Tilly ibid. 214.
- 184. Triangle non-équilatéral dans lequel une hauteur, une bissectrice, une médiane partant chacune d'un autre sommet sont égales. Le moine, De Rocquigny. Mathesis X, 119. — Rochetti, Déprez, Gob ibid. 120.
- 185. Sur trois triangles semblables dans un même plan. Mdlle. Bouwmeester etc. Mathesis X, 69.
- 186. Sur l'ennéagone régulier. A. Denys. Mathesis X, 162. Vergl. Dreiecksgeometrie. Kreis. Schwerpunkt.

R.

Rectification.

187. Ueber die Rectification der Krümmungslinien auf Röhrenflächen. A. Ahrendt. Grun. Archiv 2. R. VIII, 442.

188. Anwendung des Taylor'schen Satzes zur Rectification der Ellipse und sur Complanation des Ellipsoids. C. Benz. Grun. Archiv 2. R. VIII, 378.

189. Bemerkungen über die Darstellung von Reihen durch Integrale. L. Kronecker. Crelle CV, 157, 345.

190. Sur le développement des fonctions en séries. Bruno de Cabedo. Mathesis X, 114.

191. Die harmonische Reihe. H. Simon. Grun. Archiv 2. R. VIII, 113.

192. Ueber harmonische Reihen ungerader Ordnung. F. Rogel. Grun. Archiv 2. R. VIII, 320.

193. Ein allgemeines Theorem aus der Theorie der recurrirenden Reihen. W. Laska. Grun. Archiv 2. R. VIII, 222.
194. Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen. B. Lipschitz. Crelle CV, 127; CVI, 27.
195. Independente Darstellungen der Tangenten- und Secanten-Coefficienten. F. Rogel. Grun. Archiv 2. R. VIII, 295.
196. Supportion Germann aus der Theorie der recurrirenden Reihen. W. Darstellungen der Tangenten- und Secanten-Coefficienten. F. Rogel. Grun. Archiv 2. R. VIII, 295.

196. Summation einer gewissen endlichen Reihe. A. Brill. Mathem. Annal. XXXVI, 361.

197. Sommation de $\Sigma (\sinh \alpha)^{2p}$ depuis h=1 jusqu'à h=n pourvu que $\alpha = \frac{\pi}{2a}$ et p<2n. De Bōzóky, Molenbrock, Déprez. Mathesis X, 62.

198. Sur une question de limites. E. Cesáro. Mathesis X, 25. [Vergl. Bd. XXXV,

Nr. 296.]

199. Soit $p_r = (1-x)(1-x^2)\dots(1-x^r)$ on a $\frac{1}{p_r} - \frac{x}{p_1 p_{r-1}} + \frac{x^3}{p_2 p_{r-2}} - \dots + \frac{x^{k_r(r+1)}}{p_r} = 1$. Klompers, Déprez. Mathesis X, 86.

200. Démontrer que $\frac{1}{1 \cdot 2 \cdot 4} \cdot C_{2,1} + \frac{1}{3 \cdot 4 \cdot 4^2} \cdot C_{4,2} + \frac{1}{5 \cdot 6 \cdot 4^3} \cdot C_{6,8} + \dots = \frac{1}{8} - \frac{1}{8} + \frac{1}{4} - \dots$ W.

Mantel. Mathesis X, 200.

201. Eine Summationsformel. L. Saalschütz. Zeitschr. Math. Phys. XXXV, 186. Vergl. Abel'sche Transcendenten 4. Bestimmte Integrale 23. Differentialquotient 44. Factorenfolge 59. Zahlentheorie 233.

Schwerpunkt,

202. Deux triangles ayant même centre de gravité. P. H. Schoute, Mathesis X, 41. Singularitäten.

203. Ueber Raumcurven-Singularitäten. C. F. E. Björling. Grun. Archiv 2. B. VIII, 88.

204. Eintheilung der Strahlencongruenzen zweiter Ordnung mit Brenn- oder singulären Linien. R. Sturm. Mathem. Annal. XXXVI, 467.
205. Propriété des courbes algébriques d'ordre m qui ont un point multiple d'ordre (m-1). H. Balitrand. Mathesis X, 251.
206. Ueber die Realität der Doppeltangenten rationaler Plancurven vierter Ordnung vom Geschlechte Null. W. Binder Zeitschr. Math. Phys. XXXV, 25.

Stereometrie.

207. Sur le tétraèdre orthocentrique. G. de Longchamps. Mathesis X, 49, 77. 208. Sur deux tétraèdres dont l'un est triple de l'autre. Mosnat. Mathesis X, 253. Vergl. Geschichte der Mathematik 106.

T.

Thetafunctionen.

209. Ueber die Beziehungen zwischen den 16 Thetafunctionen von zwei Variabeln

F. Schottky. Crelle CV, 238. 210. Eine algebraische Untersuchung über Thetafunctionen von drei Argumenten. F. Schottky. Crelle CV, 269.

Topologie.

V. Eberhard. Mathem. Annal. XXXVI, 121. 211. Ein Satz aus der Topologie.

Trajectorie.

212. Trajectoires orthogonales des courbes $y^2 + 3x^2 - ax = 0$. Aire de la boucle formée par une de ces trajectoires. H. Brocard. Mathesis X, 61.

213. Toute développante de chaînette rencontre sous un angle constant une infinité de circonférences égales ayant leurs centres sur une droite. E. Cesáro. Mathesis X, 138.

Transformationsgruppen.

214. Die Zusammensetzung der stetigen endlichen Transformationsgruppen. W. Killing. Mathem. Annal. XXXVI, 161. [Vergl. Bd. XXXV, Nr. 706.]

Bestimmung der grössten Untergruppen von endlichen Transformationsgruppen.
 W. Killing. Mathem. Annal. XXXVI, 239.

Trigonometrie.

216. Démonstration des formules sin(a+b) et cos(a+b). Thiry. Mathesis X, 54. — B. J. Clasen ibid. 112.

217. Consequences tirees de l'équation $sin(\alpha + \beta) + sin(\beta + \gamma) + sin(\gamma + \alpha) = 0$. Beyens. Mathesis X, 122.

218. Démonstration élémentaire de l'inégalité x - sinx < kx². Desmons, Gelin. Mathesis X, 58. — E. Bernès ibid. 112. — J. Smeets ibid. 157.
 219. Das Problem der Winkelhalbirenden. W. Heymann. Zeitschr. Math. Phys.

XXXV, 254.

220. Résolution de l'équation cosx + a.sinx = b. Goudin. Mathesis X, 54.

221. Trouver les valeurs des coefficients dans l'identité $A_1 \sin x + A_2 \sin 8x + \cdots + A_m \sin mx = (\cos x)^{m-1} \sin x$. Klompers etc. Mathesis X, 90.

222. Limite d'une expression se rapportant à la partition d'un arc de cercle en m

parties égales. Servais etc. Mathesis X, 149.

223. Dans un triangle rectiligne on a toujours $4R = b (tang \frac{1}{4}A + tang \frac{1}{4}B) + c (tang \frac{1}{4}A + tang \frac{1}{4}C)$. Mme. Prime etc. Mathesis X, 239.

224. Vielecke, deren Höhenlothe sich in einem Punkte schneiden. R. Hoppe. Grun. Archiv 2. R. VIII, 447.

225. Dans un heptagone régulier ABCDEFG on a $\frac{1}{AB} = \frac{1}{AC} + \frac{1}{AD}$. Emmerich, Russo, Foulon, Brocard etc. Mathesis X, 47.

Vergl. Factorenfolge 59. Geschichte der Mathematik 103. Maxima und Minima 159.

Wahrscheinlichkeiterechnung.

226. Probabilité d'une certaine relation arithmétique entre 3 nombres tirés au hazard parmi les n premiers nombres. Bellens, Denys, Meurice. Mathesis X, 43.

227. Ueber eine Formel für empirische Zahlenreihen, insbesondere zum Ersatz der Sterbe- und Invaliditäts-Tafeln. E. Selling. Crelle CVI, 193.

Z.

Zahlentheorie.

228. Sur quelques théorèmes de Dirichlet. F. Tano. Crelle CV, 160.

229. Ueber Gattungen, welche durch Composition von zwei anderen Gattungen entstehen. X. Hensel. Crelle CV, 325.

230. Zur Bestimmung der Anzahl Primzahlen unter gegebenen Grenzen. F. Rogel. Mathem. Annal. XXXVI, 304.

231. Sur les nombres parfaits. Ed. Lucas. Mathesis X, 74.

232. Beweis eines Liouville'schen Satzes, M. A. Stern. Crelle CV, 250.

 $x = \frac{q-1}{2}$ $\sum_{x=1}^{2} \left[\frac{px}{q} \right]$ E. Busche. Crelle CVI, 65. 233. Ueber die Function

- 284. Zur Theorie der Function E(x). M. A. Stern. Crelle CVI, 337. L. Kronecker ibid. 846.
- 235. Bemerkung über eine zahlentheoretische Formel. C. Hossfeld. Zeitschr.
 Math. Phys. XXXV, 382.
- 236. Criterium pour la formule de Paoli. Ed. Lucas. Mathesis X, 129. E. Catalan ibid. 197.
- 237. Sur l'analyse indéterminée du premier degré. E. Catalan. Mathesis X, 220,
- 241, 275.
 238. Divisibilité par 13 de $(13p-4^nr)$ $10^{8m+n}+r$. Anderson etc. Matheei X, 151.
- 239. Lorsque n est impair $C_{2n,n}+10C_{2n-2,n-1}$ est divisible par n+2. Emmerich. Mathesis X, 257.
- 240. Mettre $24(1^5+2^5+8^5+\cdots+n^5)+1$ sous la forme u^2+v^2 . E. Lucas. Mathesis X, 253.
- 241. Résoudre en nombres entiers les équations $4x+5=u^2$, $5x+4=v^2$. Emmerich. Mathesis X, 174. — Déprez ibid. 175. Vergl. Reihen 194.

Historisch-literarische Abtheilung.

Commentar zu dem "Tractatus de Numeris Datis" des Jordanus Nemorarius.

Von

MAXIMILIAN CURTZE

in Thorn.

(Schluss.)

Iordani Nemorarii de Numeris Datis Liber IV.

I. Si duo numeri per alios duos dividantur, et istorum et illorum fuerint proportiones datae, dividentia quoque proportionem ad invicem habebunt datam.

Ut si a et b per c et d dividantur, et exeant e et f, fueritque a ad b et c datum ad d. Dividatur proportio a ad b per proportionem c ad d, et exibit proportio e ad f, quoniam proportio a ad b continuatur ex proportione c ad d et proportione e ad f.

Verbi gratia diuisoris ad diuisorem sit proportio dupla et inter diuisos sit tripla proportio. Diuidantur ergo tria per duo, et exibunt unum et dimidium, quare inter diuidentia erit proportio sesquialtera. [Nota quod diuisor uocator hic numerus, per quem fit diuisio, numerus diuidens uocatur numerus quotiens.]

I. Kennt man von zwei Brüchen das Verhältniss der Zähler und das der Nenner, so kennt man auch das Verhältniss der Brüche selbst. Gegebene Gleichungen:

 $x:y=m, \quad s:v=n.$ Gesucht ist $\frac{x}{s}:\frac{y}{s}$. Man hat direct $\frac{x}{s}:\frac{y}{s}=\frac{m}{s}$.

Beispiel: m = 3, n = 2; dann ist also $\frac{x}{z} : \frac{y}{v} = \frac{3}{2}$.

II. Quod si inter diuisores et diuidentia fuerint datae proportiones, et numeri diuisi erunt ad inuicem dati.

Ducatur siquidem altera in alteram et producetur illorum proportio simili de causa.

Diaozed by Google

Verbi gratia diuidens diuidenti sit sesquialterum et diuisor diuisori sesquitertius. Itaque unum et dimidium in unum et tertiam ducantur, et fient duo, quare numerus diuisus alii duplus erit.

II. Kennt man ebenso das Verhältniss der Nenner und das der Brüche, so kennt man auch das Verhältniss der Zähler.

Gegebene Gleichungen:

$$s:v=m, \\ \frac{x}{x}:\frac{y}{n}=n.$$

Gesucht wird x:y. Man findet umgekehrt wie vorher sofort x:y=m.n. Beispiel: $n=1\frac{1}{2}$, $m=1\frac{1}{2}$; also ist x:y=2.

III. Si numerus datus per duos numeros diuidatur, quorum differentia atque diuidentium differentia datae fuerint, ipsi etiam datae erunt.

Sit numerus datus a, qui diuidatur per b et c, quorum differentia d data, et exeant e et f, quorum differentia g data, sitque sicut b ad d ita b ad c; sed sicut b ad d ita f ad g, quare f ad g sicut h ad c. Sed f in c facit a, ergo et h in g facit a. Item b in c faciat l; igitur et d in k faciet l. Itaque a ad l sicut g ad d, quare a ducatur in a et productum diuidatur per g, et exibit l datum, quare, cum differentia b ad c sit data, erit b et c data et ob hoc e et f.

Verbi gratia XXIIII diuidatur per duos numeros, quorum differentia sit unum, et exeant duo numeri, quorum differentia duo. Ducatur ergo unum in XXIIII, et erunt XXIIII, qui diuidantur per duo, et fient XII, quorum quadruplo addatur quadratum unius, fientque XLIX, cuius radix VII; de quo sublato uno et reliquo mediato prouenient tria, et ipse erit minor diuisorum et maior IIII, diuidentia VIII et VI.

III. Theilt man eine gegebene Zahl durch zwei andere, deren Differenz man kennt, und ist zugleich die Differenz der beiden Quotienten bekannt, so sind auch die beiden unbekannten Zahlen gegeben.

Gegebene Gleichungen:

$$\frac{x-y=d}{\frac{a}{y}-\frac{a}{x}}=g.$$

Jordanus setzt $\frac{a}{x} = e$, $\frac{a}{y} = f$ und x: d = h: y. Es ist aber $\frac{a}{y}: \left(\frac{a}{y} - \frac{a}{x}\right)$ $= \frac{x}{x-y} = \frac{x}{d}$, folglich ist f: g = x: d und daher auch f: g = h: y. Da aber f. y = sist, so ist auch g.h = a. Ist nun xy = l, so ist auch $dh = l = \frac{d \cdot a}{g}$, also kennt man xy, und da x-y gegeben ist, so ist nach Buch I, III auch x und y einzeln bekannt.

Beispiel: a=24, d=1, g=2; hier ist $\frac{a.d}{g}=12$, also ist x-y=1, xy=12, woraus in gewohnter Weise x=4, y=3 folgt. Die beiden Quotienten aber sind 6 und 8.

IV. Si vero diuidentium differentia data fuerit, compositusque ex diuisoribus datus, quilibet eorum datus erit.

Dispositio superior remaneat, praeter quod bc datus est et non d; sed etiam proportio a ad g, quae l ad d. Si igitur l per d dividatur proueniet

quiddam datum, cumque d sit differentia c et b, qui faciunt unum datum, et l fiat ex c in b, erit c et b datum, et sic e et f data erunt.

Verbi gratia XX diuidantur per duos numeros, ex quibus componitur VII, et proueniant duo numeri, quorum differentia est VI. Diuidatur ergo XX per VI, et exibunt tria et tertia, cuius quadruplum est XIII et tertia, cuius quadratum si addatur quadruplo quadrati VII, fient CCCLXXIII et septem nonae, cuius radix est XIX et tertia. De quo subtracto XIII et tertia reliqui medietas est III, quo subtracto de VII reliqui dimidium est duo, qui est unum divisorum, reliquus V, dividentia quoque X et IIII.

IV. Ebenso, wenn statt der Differenz der Divisoren ihre Summe gegeben ist, sonst aber die Aufgabe unverändert bleibt.

Gegebene Gleichungen:

$$\frac{x+y=s,}{\frac{a}{y}-\frac{a}{x}=g.$$

Genau wie vorher kann man ableiten

$$a:g=xy:(x-y).$$

Man hat also die beiden Gleichungen zu lösen

$$\frac{x+y=s}{x-y}=\frac{a}{g},$$

was Buch I, Nr. XVII gezeigt ist.

Beispiel: a=20, s=7, g=6; es ist a:g=3 und nach I, XVII erhält man also für x-y die Gleichung:

 $(x-y)(x-y+13\frac{1}{3})=49.$

Aus ihr folgt in gewohnter Weise x-y=3, also ist y=2, x=5, also die Quotienten 10 und 4.

V. Si duo numeri fuerint ad inuicem dati, et unus in alium ductus fecerit numerum datum, uterque eorum datus erit.

Ut si a ad b datus, et unus in alium fecerit c datum. Esto ergo aliquis ad c sicut a ad b, qui fit d et datus, atque ipse fiet ex a in se; extracta ergo radice illius habebitur a datus, et sic b datus erit.

Verbi gratia unus alteri sit sesquitertius, unusque in alterum faciat XLVIII. Addatur ergo XLVIII sua tertia, et fient LXIIII, cuiús radix est VIII, et ipse est ille unus, et reliquus erit VI.

V. Kennt man das Verhältniss und das Product zweier Zahlen, so sind beide gegeben.

Gegebene Gleichungen:

$$x: y = m, x \cdot y = c.$$

Aus x:y=t:xy folgt $t=x^2=mc$, es ist also x und daher auch y gegeben. Beispiel: $m = 1\frac{1}{3}$, c = 48; es ist mc = 64, also $x^2 = 64$, x = 8, y = 6.

VI. Duobus numeris ad se datis si quadrata eorum coni uncta fecerint numerum datum, ipsi etiam dati erunt.

Ut si a ad b datus, et ex a in se fiat c, et ex b in se fiat d, sitque datus. Est autem c ad d proportio a ad b duplicata, quare et data; sic ergo et c et d datum erit.

Digital by Google

Verbi gratia alter alteri duplus erit, et quadrata eorum coniuncta faciunt D. Quia ergo unum uni quadruplum erit, erit D eidem quintuplum, et ipsum erit C, cuius radix est X, et ipse est minor, maior autem erit XX.

VI. Kennt man von zwei Zahlen das Verhältniss und die Summe ihrer Quadrate, so sind beide Zahlen bekannt.

Gegebene Gleichungen:

$$x:y=m, x^2+y^2=s.$$

Man hat

$$x^2:y^2=m^2$$

und also für x^2 und y^2 als Unbekannte nach I, XIX zu lösen.

Beispiel: m = 2, s = 500; man findet $x^2 = 4y^2$, also $5y^2 = 500$, $y^2 = 100$, y = 10, x = 20.

VII. Datis numeris duobus ad inuicem si, quod fit excomposito ex ipsis in eorum differentiam, datum erit, uterque eorum erit datus.

Quod enim fit ex composito in eorum differentiam, est, quod addit quadratum maioris super quadratum minoris, cumque quadrati ad quadratum sit proportio data, et illius ad ipsum data erit, quare quadratum datum, ob hoc latus eius et similiter reliquum.

Verbi gratia alterum alteri triplum sit, et compositum ex ipsis in eorum differentiam faciet XXXII. Cum ergo quadratum quadrato sit nonuplum, et ipsum erit eidem octuplum, quare quadratum minoris erit IIII, et ipse erit duo, et reliquus VI.

VII. Ebenso, wenn ausser dem Verhältniss das Product aus der Summe und der Differenz zweier Zahlen gegeben ist.

Gegebene Gleichungen:

$$x: y = m,$$

$$(x+y)(x-y) = d.$$

Man hat sofort die Gleichungen

$$x^2: y^2 = m^2,$$

 $x^2 - y^2 = d,$

also
$$(m^2-1)y^2=d$$
, $y=\sqrt{\frac{d}{m^2-1}}$.

Beispiel: m = 3, d = 32; es ist $m^2 - 1 = 8$, also $y^2 = 4$, y = 2 und daher x = 6.

VIII. Si quadratus cum additione radicis suae per datum numerum multiplicatae datum numerum fecerit, ipse etiam datus erit.

Sit quadratus a, radix eius b multiplicata per cd, ut et c et d sit eius medietas, atque ex b in cd fiat e, sitque ae datus. Quia igitur bcd secundum b multiplicatus facit ae, quadrato d adiuncto ad ae fiat aef, eritque aef, quod fit ex bc in se, cumque sit aef datus, erit et bc datus. Subtracto igitur c remanebit b datus, et sic a datus erit.

Verbi gratia sit quadratus, cuius radix si multiplicatur per V et productum ei addatur, fient XXXVI. Cui addatur quadratum duorum et dimidii, quae sunt dimidium V, et fient XLII et quarta, cuius radix est sex

et dimidium, de quo ablatis duobus et dimidio remanent IIII, qui est radix, et quadratus est XVI.

VIII. Addirt man zu einem Quadrate das Product aus der Wurzel und einer gegebenen Zahl, so kann man Wurzel und Quadrat bestimmen, wenn jene Summe bekannt ist.

Gegebene Gleichung:

$$x^2 + px = q.$$

Jord. setzt p = c + d, wo $c = d = \frac{p}{2}$ ist; dann hat er

$$x^2 + 2 c x = q;$$

addirt er daher $c^2 = d^2$ hinzu, so entsteht

$$(x+c)^2=d^2+q;$$

also erhält er

$$x+c=\sqrt{d^2+q},$$

$$x=\sqrt{d^2+q}-c=\sqrt{q+\frac{p^2}{4}-\frac{p}{2}}.$$

Beispiel: p = 5, q = 86; dann ist $c = d = 2\frac{1}{4}$, $d^2 = 6\frac{1}{4}$, $q + d^2 = 42\frac{1}{4}$, $\sqrt{q + d^2} = 6\frac{1}{4}$, also x = 4, $x^2 = 16$.

Man vergleiche hiermit die Auflösung I, VII.

IX. Quadratum, qui cum additione dati numeri facit numerum, quem radix ipsius per datum numerum multiplicata producit, contingit dupliciter assignari.

Sit enim idem quadratus a, radix b, numerus datus additus c, atque de datus, in quem b ductus facit ac, cuius medietas d, et ipsius quadratum f, atque differentia b ad d sit g. Quia igitur b in d bis facit ac, addunt a et f super ac quadratum g. Itaque a utrobique dempto addit fsuper c quadratum g. Dempto ergo g de d potest remanere b, et addito g ad d potest fieri b, quare duplicitur assignabitur a.

Verbi gratia sit quadratus, qui cum additione VIII faciat numerum, quem radix sua per VI multiplicata producit. Medietas ergo VI, quae est III, in se ducta facit IX, qui addit unum super VIII, cuius radix unitas. quae erit differentia radicis praedicti et ternarii. Hac igitur differentia dempta et addita ternario habebimus duo et IIII, quorum quadrata IIII et XVI. Utrique igitur addantur VIII, et fient XII et XXIIII, quae fiunt ex ductu senarii in duo et quatuor, secundum quod propositum fuerat.

IX. Wenn ein Quadrat plus einer gegebenen Zahl gleich dem Producte aus seiner Wurzel in eine andere gegebene Zahl ist, so lässt sich dasselbe auf doppelte Weise bestimmen.

Gegebene Gleichung:

$$x^2+c=px.$$

Auch hier setzt Jord. $\frac{p}{2} = d = e$; er setzt ferner $d^2 = f$ und x - d = g. Er findet $x^{2}+f=2dx+(x-d)^{2}=x^{2}+c+(x-d)^{2},$

folglich ist $(x-d)^2 = f - c$. Nun kann in der Differenz x-d sowohl x als d die grössere Zahl sein, folglich kann sowohl x-d=Vf-c sein, wie d-x=Vf-calso ist x entweder $d - \sqrt{f-c}$ oder $d + \sqrt{f-c}$.

Beispiel: c=8, p=6; es ist $\sqrt{f-c}=\sqrt{9-8}=1$ und daher x entweder 2 oder 4, also x^2 entweder 4 oder 16, und es ist sowohl 4+8=6.2, als auch 16+8=6.4.

X. Si ex multiplicatione radicis suae per datum numerum addito dato numero fiat quadratus, ipse etiam datus erit.

Sit, ut prius, a quadratus et b radix, et cd datus numerus multiplicans et e additus. Differentia igitur b ad cd sit g, ut sit gcd tamquam b, et quia b in se facit a, quam etiam producit in cd addito e, constat e fieri ex b in g; et quia gc in se est, quantum b in g et d in se, erit etiam quantum d in se cum e, quae cum data sint, erit et gc datum, quare et g datum atque gcd, qui est b, sicque a.

Verbi gratia sit quadratus, qui fit ex additione XII super multiplicationem radicis per IIII. Itaque quadrato dimidii IIII, quod est IIII, superaddatur XII, et fient XVI, cuius radix est IIII, de quo dimidio IIII dempto remanebunt duo, quae addito similiter IIII faciunt VI, et ipse est radix, quadratusque XXXVI.

X. Multiplicirt man eine Zahl mit einer gegebenen Zahl und entsteht durch Addition einer andern gegebenen Zahl zu dem Producte das Quadrat der ersten Zahl, so kann man diese bestimmen.

Gegebene Gleichung:

$$(c+d)x+e=x^2 \quad (c=d).$$

Let x-(c+d)=g, also x=g+c+d, so ist (d+c)x+gx=(c+d)x+e, d. h. gx=e.

Es ist aber g+c=x-d, also $(g+c)^2=x^2-2dx+d^2=xg+d^2=d^2+e$, folglich g+c bekannt, daher auch g+c+d=x, also auch x^2 .

Beispiel: c+d=4, e=12; dann ist $d^2+e=16$, also g+c=4, x=6, $x^2=36$.

XI. Si numerus ad quadratum datus cum additione numeri ad radicem ipsius dati fecerit numerum datum, et radicem et quadratum datos esse consequitur.

Sit a radix et b quadratus, et c datus ad a, et d datus ad b, ut sit cd datus; esto autem sicut b ad d ita g ad c, itaque gb ad cd sicut b ad d, quare bg datus. Est autem et g ad a datus, ipsiusque ad illum proportio sit e, quare a in e datum facit g, qui cum b quadrato facit numerum datum; erit igitur et a et b datus.

Verbi gratia tertia radicis et quarta quadrati facient XI, igitur quadratus cum radice et tertia eius faciet XLIIII. Huic itaque addatur quadratum duarum tertiarum, quae sunt dimidium unius et tertiae, et fient XLIIII et quatuor nonae, cuius radix est viginti tertiae, hoc est VI et duae tertiae. Ablatis igitur duobus tertiis remanent VI, et ipse est radix, quadratus vero XXXVI.

XI. Haben zwei Zahlen, von denen die eine zu einer Zahl, die andere zu deren Wurzel in einem gegebenen Verhältnisse steht, eine gegebene Summe, so ist sowohl die Zahl, als die Wurzel gegeben.

Gegebene Gleichung:

$$m x^2 + n x = s.$$

Man findet leicht

$$x^2+\frac{n}{m}\,x=\frac{s}{m},$$

was nach VIII aufzulösen ist.

Beispiel: $m = \frac{1}{4}$, $n = \frac{1}{3}$, s = 11; dann heisst die zu lösende Gleichung $x^2 + \frac{4}{3}x = 44.$

Aus ihr folgt $(x+\frac{2}{3})^2=44\frac{4}{3}$, also $x+\frac{3}{3}=6\frac{2}{3}$, x=6, $x^2=36$.

XII. Si numerus ad quadratum datus cum numero dato fecerit numerum datum ad radicem, et radix et quadratus datus erit.

Sit, ut prius, a radix et b quadratus, et d datus ad b, qui cum c dato numero faciet cd datum ad a. Sicut igitur d ad b, ita sit e ad c, quare e datus, atque be erit numerus datus ad a; erit ergo similiter et a et b datus.

Verbi gratia vicesima pars quadrati cum XXV faciat triplum radicis. Itaque quadratum cum quingentis faciet sexagintuplum radicis. Medietas igitur LX in se faciet DCCCC, qui addit CCCC super D, cuius radix XX, et ipse est differentia radicis quadrati et XXX. Addita ergo hac differentia et ea dempta a XXX habebitur radix et X et L, quorum quadrata C et IID. Utriusquae vicesima sumatur, quae sunt V et CXXV, utrique additis XXV fient hinc XXX, triplum X, illinc CL triplum L, ut propositum fuerat.

XII. Ist die Summe aus einer gegebenen Zahl und einem aliquoten Theile eines Quadrates gleich einem aliquoten Theile der Wurzel desselben, so sind Wurzel und Quadrat gegeben.

Gegebene Gleichung:

$$mx^2+c=nx.$$

Man hat ähnlich wie vorher

$$x^2 + \frac{c}{m} = \frac{n}{m} x,$$

also ist nach IX die Rechnung leicht durchzuführen.

Beispiel: $m = \frac{1}{26}$, n = 8, c = 25; die zu lösende Gleichung ist dann $x^2 + 500 = 60x$.

Daraus folgt x = 50 oder 10, also $x^2 = 2500$ oder 100, und es ist sowohl 125 + 25 = 3.50, als 5 + 25 = 3.10, wie verlangt wurde.

XIII. Si numero ad radicem dato addatur numerus datus, ut proueniat numerus ad quadratum datus, uterque similiter datus erit.

Dispositio eadem sit, praeter quod d sit datus ad a, et cd totus datus Eadem autem mode sicut b ad cd its sit e ad c et f ad d, quare e datus, et f ad a datus, atque ef aequalis b. Itaque ex hoc et a et b datus.

Verbi gratia triplum radicis cum XII facit sesquialterum quadrato, ergo duplum radicis et VIII facit quadratum. Secundum operationem ergo decimae praesentis proueniant radix IIII, et quadratus XVI.

XIII. Desgleichen, wenn ein aliquoter Theil einer Wurzel, vermehrt um eine gegebene Zahl, gleich einem aliquoten Theile des Quadrates ist.

Gegebene Gleichung:

$$mx + c = nx^2.$$

Die zu lösende Gleichung lautet diesmal:

$$\frac{m}{n}x+\frac{c}{n}=x^2.$$

Es ist also nach X die Lösung gegeben.

Beispiel: m=3, $n=1\frac{1}{4}$, c=12; die zu lösende Gleichung wird: $2x+8=x^2$.

Daraus folgt also x=4, $x^2=16$.

XIV. Si compositus ex duobus numeris fuerit ad tertium datus, quique ex illis producitur ad quadratum ipsius datus, uterque ipsorum ad eundem datus erit.

Ut si ad a sit bc datus, atque ex a in se fiat d, et ex b in c fiat e datus ad d. Sit autem proportio bc ad a fg, composita ex proportione b ad a et c ad a; proportio autem e ad d sit h, et ipsa producitur ex f in g. Cum ergo fg datum, et ex f in g fiat datum, erit et f et g datum. itaque et b et c ad a datum.

Verbi gratia sit compositus ex duobus ad tertium quintuplus, et quod ex uno in alterum fit, sit quadrato eius sextuplum. Igitur VI tollatur quater de quadrato V, et remanebit unum, cuius radix unum, quod tollatur de V, et reliqui medietas erit duo. Unum ergo illi duplum, et reliquim erit triplum.

XIV. Wenn die Summe zweier Zahlen zu einer dritten ein gegebenes Verhältniss hat, das Product aber zu dem Quadrate derselben, so kennt man das Verhältniss jeder einzelnen zu der dritten Zahl

Gegebene Gleichungen:

$$x+y=mz,$$

$$cg=nz^2.$$

Setzt man $\frac{x}{g} = f$ und $\frac{y}{g} = g$, so hat man die beiden Gleichungen:

$$e+f=m,$$

 $ef=n;$

aus ihnen findet man e und f, was verlangt ist.

Beispiel: m=5, n=6; die zu lösenden Gleichungen sind

$$e+f=5, ef=6,$$

also e=2, f=8, so dass x=2s, y=3s ist, oder umgekehrt.

XV. Si vero compositus ad tertium datus, et quadrata eorum simul ad quadratum illius data, illa quoque ad ipsum data erunt.

Dispositio superior remaneat, praeter quod quadrata b et c sint f et g atque ex f in se fiat h, et ex g in se fiat l. Eritque h proportio e ad d et l proportio e ad d, sicque hl datum erit, cumque fg datum, erit f et g datum, itaque et b et e erit datum ad a.

Verbi gratia compositum sit triplum illi, et compositum ex quadratis additis sit simili modo quintuplum quadrati eius.

XV. Desgleichen, wenn nicht das Verhältniss des Productes, sondern das der Summe der Quadrate der gesuchten Zahlen zu dem Quadrate des dritten gegeben ist.

Gegebene Gleichungen:

$$x + y = ms,$$

$$x^2 + y^2 = ns^2.$$

Auf dieselbe Art wie vorher gehen die Gleichungen über in:

$$e+f=m,$$

$$e^2+f^2=n,$$

so dass also e und f nach Früherem bekannt ist, was verlangt wurde.

Beispiel: m=3, n=5; die Gleichungen sind dann e+f=3, $e^2+f^2=5$, also e=2, f=1 oder umgekehrt, also ist e=2z, f=z oder umgekehrt.

Hier brechen die bis jetzt zur Herausgabe benutzten Handschriften beide mit demselben Worte ab. Da mir bekannt wurde, dass in Dresden in der Handschrift "C.80" sich ein vollständiges Exemplar befände, so erbat ich mir dieses Manuscript von der Königl. öffentl. Bibliothek zu Dresden, und wurde mir dasselbe bereitwilligst zur Benutzung überlassen, wofür ich hier auch öffentlich meinen ergebensten Dank zu sagen nicht unterlassen kann. Leider ist, obwohl die Lehrsätze vollständig sind, der sonstige Text darin gänzlich abgeändert. Es sind nur die in Jordanus mit "Verbi gratia" eingeleiteten Abschnitte und auch diese mit veränderten Zahlen und verändertem Texte hinzugefügt, so dass man aus "Msc. C. 80" nur ersehen kann, welche weitere Probleme Jordanus noch behandelt hat. Eine Bitte an die Kais. Königl. Hofbibliothek zu Wien um Ueberlassung eines vollständigen Exemplares des Jordan'schen Werkes aus dem 14. Jahrhundert ist absolut unbeantwortet geblieben, so dass ich mich genöthigt sehe im Folgenden den unvollständigen und veränderten Text des "Codex Dresd. C.80" hier folgen zu lassen, um so wenigstens ein abschliessendes Urtheil über das von Jordanus Behandelte gewinnen zu lassen. einen Vergleich der Texte zu ermöglichen, werde ich mit dem eben behandelten Lehrsatz XV die aus diesem Manuscript zu entnehmenden Abschnitte nochmals beginnen.*

XV. Si vero compositus ad illum datus, et quadrata eorum similiter ad quadratum illius, illa quoque divisim ad ipsum data erunt.

Exemplum. Compositus ex a et b est triplus ad c, et quadrata a et b simul continent quadratum c 4 et $\frac{5}{6}$, quaeritur, quae sit proportio eorum

[•] Die fragliche Handschrift C. 80 ist von Wappler in seinem Zwickauer Programm von 1887: Zur Geschichte der deutschen Algebra im 15. Jahrhundert, eingehend beschrieben und gewürdigt worden. Auf einige Stücke, welche aber weder er, noch der Verfasser des Dresdner Handschriftenkataloges erkannt hat, möchte ich jedoch noch hinweisen. Blatt 201—207° enthält den Algorismus Proportionum des Nicolaus Oresme ohne Figuren und nicht in Allem mit der von mir besorgten Angabe (Berlin 1868) übereinstimmend. Ebenso enthält Blatt 234 bis 241 die andere Abhandlung des Oresme über Proportionen. Beginnt: "Incipit liber Proportionum. Omnis rationalis opinio de velocitate motuum ponit eam sequi aliquam proportionem." Am Schlusse dieser Abhandlung steht ein Pfeil und der griechische Buchstabe φ , was Beides auf Blatt 201 am Anfang des Algorismus proportionum wiederholt ist. Der Schreiber oder Adnotator kannte also den Zusammenhang beider Abhandlungen und die Identität des Verfassers.

quadratorum divisim ad quadratum c. 4 $\frac{1}{2}$ duplentur et fient $9\frac{1}{2}$, de quibus tollatur quadratum 3, scilicet 9, et remanet $\frac{1}{2}$, cuius radice subtracta de 3 et reliquo mediato proveniunt $\frac{1}{2}$. Alterum ergo duorum a vel b ent sesquitertium ad c et alterum superpartiens $\frac{2}{3}$; c ergo 3, a 4, quare b 5, ut a b sit triplum ad c.

XV. Gegebene Gleichungen: x+y=ms, $x^2+y^2=ns^2$.

Beispiel: m=8, $n=4\frac{5}{5}$.

Es ist $\left(\frac{x}{s}+\frac{y}{s}\right)^2=9$, $2\left(\frac{x}{s}\right)^2+\left(\frac{y}{s}\right)^2=9\frac{1}{5}$, also durch Subtraction $\left(\frac{x}{s}-\frac{y}{s}\right)^2=\frac{1}{5}$,

folglich $\frac{x}{s} = \frac{4}{3}$, $\frac{y}{s} = \frac{5}{3}$; setzt man s = 3, so erhält man also x = 4, y = 5.

XVI. Item si differentia eorum fuerit ad ipsum data, quique ex uno in alterum producitur ad quadratum datus, uterque ad eum datus erit.

Exemplum. Differentia a ad b sit dupla ad c, et quod fit ex a in b sit octuplum ad quadratum c. 8 quadruplentur, et fiunt 32, quibus addatur quadratum 2 et fiunt 36, a quorum radice subtrahatur 2, et reliquo mediato remanent 2. Unus ergo erit duplus ad c et alter quadruplus, quare de 8, a 6, b 12, c 3.

XVI. Wie XIV, nur dass statt der Summe die Differenz der Zahlen ein gegebenes Verhältniss zu einer dritten hat.

Gegebene Gleichungen: x-y=mz, $xy=nz^2$.

Man hat wieder, wie früher,

e-f=m, ef=n,

woraus leicht e und f zu finden.

Beispiel: m=2, n=8; man hat $m^2+4n=(e+f)^2$, also e+f=6, e-f=3, so dass e=4, f=2 und, wenn s=3 gesetzt wird, x=12, y=6 wird.

XVII. Cumque sit differentia ad eum data, si quadrata simul ad quadratum eius data fuerint, ipsa etiam ad illud data erunt.

Exemplum. Differentia inter a et b sit dupla ad c, quadrata vero a et b simul contineant quadratum c vigesies. Duplum 20 est 40, de quo sublato quadrato 2 relinquuntur 36, de quorum radice demptis 2 residui medietas erit 2, quare unum duplum et reliquum quadruplum. Proportio quadratorum semper dupletur et ab eo subtrahatur quadratum proportionis ab ad c, et a radice residui proportio ab ad c, et tunc relicti medietas erit propositum.

XVII. Wie XV, nur das auch hier an Stelle der Summe der Zahlen ihre Differenz tritt.

Gegebene Gleichungen:

$$x-y=mz,$$

$$x^2+y^2=nz^2.$$

Hier heissen die Gleichungen e-f=m, $e^2+f^2=n$. Es ist $2n-m^2=(e+f)^2$, also Alles gegeben. Unser Manuscript giebt eine allgemeine Regel, wobei man freilich ab nicht a+b, sondern a-b lesen muss.

Beispiel: n = 20, m = 2; es ist $2n - m^2 = 26$, also e + f = 6, e - f = 2, d. h. e=4, f=2, wie vorher.

XVIII. Si duo numeri ad tertium fuerint dati, atque et ipsis prouenerit ad eundem datus, omnes eos esse datos conaeniet.

Exemplum. Sit a sesqualterum et b sesquitertium ad c, et productus ex a in b contineat c octogesies quater. Ducatur proportio a ad c in propartionem b ad c et prouenient 2, per quem dividatur 84, et proueniet 42, quae erit c.

XVIII. Kennt man das Verhältniss zweier Zahlen und ihres Productes zu einer dritten Zahl, so sind alle drei Zahlen gegeben.

Gegebene Gleichungen:

$$a = mc$$
, $b = nc$, $ab = pc$.

Aus 1 und 2 folgt $ab = mnc^2 = pc$, also $c = \frac{p}{mn}$.

Beispiel: $m = \frac{3}{4}$, $n = \frac{4}{4}$, p = 84; man findet mn = 2, also c = 84:2 = 42 und daher a = 68, b = 56.

XIX. Si quod fit ex latere in latus datum fuerit, et coniunctus ex quadratis datus, quilibet eorum datus erit.

Exemplum. a in b sit 35, et quadrata eorum simul 74, cuius quadratum 5476, de quo sublato quadrato 35, scilicet 1225, quater, remanent 576, quorum radix subtracta de 74 reliqui dimidium est 25, qui erit quadratus minoris, quadratus maioris 49.

XIX. Gegeben das Product zweier Zahlen und die Summe ihrer Quadrate, dann sind die Quadrate einzeln gegeben.

Gegebene Gleichungen:

$$xy = p,$$

$$x^2 + y^2 = s.$$

Es ist $(x^2 + y^2)^2 = s^2$, $4x^2y^2 = 4p^2$, also $(x^2 - y^2)^2 = s^2 - 4p^2$, daher ist $x^2 - y^2$ gegeben, also auch x^2 und y^2 einzeln.

Beispiel: p = 35, s = 74; es ist $s^2 = 5476$, $4p^2 = 4900$, also $(x^2 - y^2)^2 = 576$, $x^2-y^2=24$, also $x^2=25$, $y^2=49$.

XX. Si producto ex lateribus dato fuerit quadratorum differentia data, singuli eorum dati erunt.

Exemplum. a in b fiet 15, et differentia quadratorum 16. Itaque unum quadratum in aliud fit 225, quo quater sumpto addatur quadratum 16, et fiunt 1156, cuius radix 34. De hac subtractis 16 reliquoque mediato fiunt 9, minor quadratus, alter 25. Digitized by Google XX. Desgleichen, wenn nicht die Summe der Quadrate, sondern ihre Differenz gegeben ist.

Gegebene Gleichungen:

$$xy = p,$$
$$x^2 - y^2 = d.$$

Hier ist $(x^2 + y^2)^2 = d^2 + 4p^2$, und folglich wieder alles bekannt.

Beispiel: p = 15, d = 16; es ist $d^2 = 256$, $4p^2 = 900$, folglich $(x^2 + y^2)^2 = 1156$, also $x^2 + y^2 = 34$, $y^2 = 9$, $x^2 = 25$.

XXI. Si coniunctus ex lateribus et productus ex quadratis dati fuerint, singulus eos datos esse consequitur.

Exemplum. Coniunctus ex lateribus 8, productus ex quadratis 225, cuius radix 15, et ipse erit productus ex lateribus, cumque sit datus ex illis coniunctus, erunt secundum praemissam 3 et 5. Melius secundum primam et tertiam primi huius a quadrato 8 subtrahatur 15 quater, et radix residui est differentia ab, per primum ergo primi huius habentur numeri qui prius.

XXI. Kennt man die Summe zweier Zahlen und das Productihrer Quadrate, so kennt man auch die Zahlen selbst.

Gegebene Gleichungen:

$$x+y=s,$$
$$x^2y^2=p^2.$$

Man hat xy = p, kann also nach Buch I, III und I ohne Weiteres x und y bestimmen.

Beispiel: s=8, $p^2=225$, also p=15. Dann ist nach Buch I, III x-y=2, also x=5, y=8.

XXII. Item si differentia laterum atque productus ex praedictis dati fuerint, singula data erunt.

Exemplum. Productus ex quadratis est 100, differentia laterum est 3. Quadratus differentiae addatur quadruplo radicis 100, et fiunt 49. Huius radix 7 componitur ex lateribus, modo per primam primi huius erunt latera 2, 5.

XXII. Desgleichen, wenn die Differenz der Zahlen und das Product ihrer Quadrate bekannt ist.

Gegebene Gleichungen:

$$x-y=d,$$
$$x^2y^2=p^2.$$

Es ist xy = p, und also nach dem ersten Buche leicht x + y, daher auch x und y einzeln zu finden.

Beispiel: d=3, $p^2=100$; es ist xy=10, x+y=7, x=5, y=3.

XXIII. Item si differentia laterum et differentia quadratorum datae fuerint, et haec et illa data necesse est.

Differentiae radicum 3, quadratorum 51. Dividatur differentia quadratorum per differentiam laterum, et proveniet coniunctus ex lateribus, scilicet 17. Modo per primam primi huius exibunt 7 et 10.

XXII. Desgleichen, wenn ausser der Differenz der Zahlen die Differenz ihrer Quadrate gegeben ist.

Gegebene Gleichungen:

$$x-y=d,$$

$$x^2-y^2=p^2.$$

Es ist $\frac{x^2-y^2}{x-y}=x+y=\frac{p^2}{d}$, also wieder nach Buch I, I zu rechnen.

Beispiel: d = 3, $p^2 = 51$; es ist x + y = 17 und daher x = 10, y = 7.

XXIV. Si fuerint duo numeri, quorum quilibet ad quadratum alterius sit datus, uterque eorum datus erit.

Exemplum. Quadratum a continet b quinquies et $\frac{1}{8}$, et quadratum b continet a decies octies. Ducatur ergo 18 in quadratum $5\frac{1}{8}$, qui erit $28\frac{4}{9}$, et fiunt 712, cuius latus cubicum est 8, et ipse est minor siue a. Si uero ducatur $5\frac{1}{8}$ in quadratum 18, proueniet 1728, cuius latus cubicum est 12, et ipse est maior siue 6.

XXIV. Ist von zwei Zahlen das Verhältniss einer jeden zu dem Quadrate der andern bekannt, so sind beide gegeben.

Gegebene Gleichungen:

$$y^2 = m x,$$
$$x^2 = n y.$$

Es ist $y^4 = m^2 x^2$, also $y^4 = m^2 n y$, $y^5 = m^2 n$, $y = \sqrt[3]{m^2 n}$, und ebenso $x^4 = n^2 y^2$, $x^4 = n^2 m x$, $x^3 = n^2 m$, $x = \sqrt[3]{n^2 m}$.

Beispiel: $m = 5\frac{1}{3}$, n = 18; $m^2 n = 712$, also y = 8; $n^2 m = 1728$, also x = 12.

XXV. Si numerus ex duobus coniunctus fuerit datus, atque ex illis productus ad eius coniunctum datus, caetera esse data conueniet.

Exemplum. Quod fit ex a in b duplum est ad conjunctum ab, sitque ab 103. Ducatur 8 in ab et prouenient 851, quae dividantur per 4, et prouenient 211, quod fit ex a in b. Ulterius per tertiam primi huius operando erit a 21, b 8.

XXV. Wenn die Summe zweier Zahlen und das Verhältniss ihres Productes zur Summe gegeben ist, so sind beide Zahlen gegeben.

Gegebene Gleichungen:

$$x+y=3,$$

$$\frac{xy}{x+y}=p.$$

Man hat xy = ps, also ist nach Buch I, III x und y bekannt.

Beispiel: $s = 10\frac{3}{2}$, p = 2. Der Verf. multiplicirt erst p mit 4, dann mit s und dividirt dann wieder durch 4, um $xy = 21\frac{1}{2}$ zu erhalten. Er findet so x = 8, $y = 2\frac{3}{4}$.

XXVI. Si fuerint duo numeri, quorum quadrata pariter accepta fuerint ad compositum ex ipsis data, atque qui ex eisdem numeris producitur fuerit ad concunctum datus, uterque eorum datus erit.

Exemplum. Sint a et b, quorum quadrata coniuncti ab 34, et productus ex a in b continent coniunctum ab 14. Productus ergo bis et duo

Digitized by GOOgle

quadrata contineat ab septies iuxta quartam secundi Euclidis, quare ab datus, et quia productus datus, et a et b datus.

XXVI. Kennt man das Verhältniss der Summe der Quadrate zweier Zahlen zur Summe derselben und ebenso dasjenige des Productes zur Summe, so sind beide Zahlen gegeben.

Gegebene Gleichungen:

$$\frac{x^2+y^2}{x+y}=m, \ \frac{xy}{x+y}=n.$$

Es ist $m+2n=\frac{(x+y)^2}{x+y}=x+y$, folglich xy=n (m+2n) und somit x und y nach 1, III gegeben.

Beispiel: m = 34, n = 14; es ist m + 2n = 7, also x + y = 7, $x \cdot y = 12$, and daher x = 4, y = 3.

Hier ist der Text der Handschrift unvollständig.

XXVII. Si ad unum numerum duobus numeris datis utrique eorum datus numerus adiiciatur, ut ex toto in totum prouenist numerus datus, illum quoque datum esse ostendetur.

Exemplum. 2 et 1 radicis addantur tria, et ex toto in totum fiat 66. 4 autem radicis 14 facit 34 quadrati. Ducantur ergo numeratores in se, et fiunt 2, qui subtrahatur a 66, et residuum, scilicet 64, diuidatur per 12, et proueniunt 5 integra et 4. Numerus integrorum, scilicet 5, superponatur divisori sine denominatori, scilicet 12, et erunt 5 attribuendae quadrato, et residuum, scilicet 1/2, siue 1/3, parti ad radicem. Ergo 1/4 quadrati cum 🛔 radicis valent 64, quare quadratus cum 🛊 radicis valent 153}. Medietur & radicis et medietas ducatur in se et proueniunt 4, quae addantur ad $153\frac{3}{5}$ et flunt $\frac{3844}{25}$, cuius radix $\frac{62}{5}$, de quo demptis $\frac{2}{5}$ reliquuntur 60 siue 12, qui est radix quadrati siue numerus quaesitus. Iterum aliter stantibus positionibus loco numeratorum ducatur numerus datus addendus, scilicet 3, in se, et fiunt 9, quae tollantur de 66, et de residuo fiat ut prius, et prouenient 1 quadrati et 1 radicis, quae valent 57. debent per quadratum dividi, scilicet per 1, et proveniunt 2 radicis et 171, radix medietur et fient $\frac{9}{8}$, medietas in se ducatur, et fiunt $\frac{1}{84}$, quae addantur 171 et exeunt $\frac{11025}{64}$. Horum radix $\frac{195}{8}$, a qua sublatis $\frac{2}{8}$ remanent 12.

XXVII. Addirt man zu zwei Vielfachen einer Zahl dieselbe gegebene Zahl, so dass das Product beider Summen gegeben ist, so ist die vervielfachte Zahl bekannt.

Hier ist die Rechnung nur an dem Beispiele und so durchgeführt, dass der Gedankengang sich nicht klarlegen lässt.

Die gegebene Gleichung ist:

$$(\frac{1}{2}x+3)(\frac{1}{4}x+3)=66.$$

Der Verfasser der Bearbeitung formt dieselbe einmal um in:

 $\frac{5}{19}x^2 + \frac{1}{2}x = 64$, also $x^2 + \frac{4}{5}x = 153\frac{2}{5}$,

aus welcher x = 12 folgt, ein anderes Mal in

 $\frac{1}{3}x^2 + \frac{9}{12}x = 57$, also $x^2 + \frac{9}{4}x = 171$,

wodurch & wieder gleich 12 gefunden wird.

Da die gegebene Gleichung nur auf

$$x^2 + \frac{33}{9}x = 342$$

reducirbar ist, so ist augenscheinlich der Gedankengang ein sehr eigenthümlicher. Jordanus dürfte kaum so gerechnet haben.

XXVIII. Item si alteri addatur datus, ut totus in reliquum ductus faciat numerum datum, et idem datus est.

Exemplum. Dimidium radicis addito 1 in quartam facit 10. Sed dimidium in quartam facit octavam quadrati, et 1 in quartam facit quartam radicis, quare 10 iuxta praemissam tertiam ut quarta radicis et octava quadrati, et 8 exit radix.

XXVIII. Ebenso, wenn dem einen eine Zahl hinzugefügt und die Summe mit dem andern multiplicirt wird.

Gegebene Gleichung:

$$(mx+n) px = q.$$

Es ist einfach

$$mpx^2 + npx = q,$$

welche Gleichung schon früher gelöst ist.

Beispiel: $m = \frac{1}{2}$, n = 1, $p = \frac{1}{4}$, q = 10. Die Gleichung heisst daher: $\frac{1}{4}x^2 + \frac{1}{4}x = 10$ oder $x^2 + 2x = 80$, also x = 8.

XXIX. Si a duobus numeris ad unum datis duo numeri dati suferantur, ut ex ductu reliqui in reliquum prouenist datus, et ille unus numerus datus erit.

Exemplum. Unus numerus radicis duplus, alter triplus. A triplo tollatur 6 a duplo 4, et residuum in residuum faciant 150. Sed duplus in triplum facit sextuplum quadrati et 6 in 4 24. Iterum triplum in 4 facit duodecuplum radicis et duplus in 6 similiter duodecuplum radicis, ergo sextuplum quadrati et 24 sunt in radice vigesies quater et 150. Demptis ergo 24 de 150 remanebunt 126 et radicis vigesies quater ut quadratum sexies, quare quadratum similiter est ut radix quater et 21. Quadratum ergo dimidii 4, quod est 4, addatur ad 21, et erit 25, cuius radix 5; cui addatur dimidium 4, et fiunt 7, et ipse est radix.

XXIX. Zieht man zwei Vielfachen einer Zahl zwei gegebene Zahlen ab, und das Product der beiden Differenzen ist bekannt, so ist auch jene Zahl gegeben.

Gegebene Gleichungen:

$$(mx-p)(nx-q)=r.$$

J. findet

$$mx^2 + pq = (mq + np)x + r$$

oder

$$x^2 = \frac{mq + np}{m}x + \frac{r - pq}{m},$$

welche er nach der in diesem Buche X auseinandergesetzten Methode löst.

Beispiel: m=3, p=6, n=2, q=4, r=150; hier wird die Gleichung $x^3 = 4x + 21$,

aus welcher x = 7 folgt.

XXX. Si vero ab altero detrahatur numerus datus ut ex residuo in reliquum fiet numerus datus, ille quoque datus erit.

Digitized by GOOGLE

Exemplum. Esto b duplum ad a, et c 2 ipsius a, et de b 4 ablatis et residuo ducto in c fient 12. Si autem totum b ducatur in c fiunt $\frac{4}{5}$ quadrati, et 4 ductus in c facit $\frac{4}{5}$ radicis; ergo $\frac{4}{5}$ quadrati sunt ut $\frac{4}{5}$ radicis et 12. Secundum operationem ergo praemissarum erit radix 5, quadratum 25, b 10, c 2.

XXX. Ebenso, wenn man von dem einen eine gegebene Zahl subtrahirt, und ihre Differenz mit dem andern multiplicirt.

Gegebene Gleichung:

$$(mx-p)nx=r.$$

J. erhält wieder die Gleichung

$$mnx^2 = npx + r,$$

was genau wie vorher zu lösen ist.

Beispiel: m=2, $n=\frac{2}{7}$, p=4, r=12; die Gleichung wird hier $\frac{4}{7}x^2=\frac{2}{7}x+12$, d. h. $x^2=2x+15$ und hieraus x=5.

XXXI. Si fuerint duo numeriad unum dati, alterique datus numerus addatur, et ab altero detracto dato numero si productus modo ex se datum numerum faciant, numerum illum datum esse conueniet.

Exemplum. Esto $a \ \frac{3}{4}c$ et $b \ \frac{1}{4}c$, ab a tollatur 1, et b addatur 3, et sie ex eis fiet 25. Sed a in b et 3 facit $\frac{3}{4}$ quadrati et quadruplum cum $\frac{1}{4}$ radicis, et 1 in b et 3 manebit $\frac{1}{4}$ radicis et 3, quare $\frac{3}{4}$ quadrati et $\frac{4}{4}$ radicis minus $\frac{1}{4}$ radicis et 3 valent 25, quare ulterius $\frac{3}{4}$ quadrati cum 4 radicibus valent 28. Itaque iuxta praemissas operationes patet radix, scilicet 4.

XXXI. Desgleichen, wenn man zu dem einen Vielfachen eine gegebene Zahl addirt, von dem andern aber subtrahirt, und wiederdas Product der Summe und Differenz gegeben ist.

Gegebene Gleichung:

$$(mx+p)(nx-q)=r.$$

J. findet zunächst

$$mnx^2 + pnx - qnx - pq = r,$$

und daraus

$$mnx^2 + (pn - qn)x = r + pq,$$

was wieder unter Nr. VIII fällt.

Beispiel: $m=\frac{1}{4}$, p=3, $n=\frac{3}{4}$, q=1, r=25. Die Gleichung wird hier $\frac{3}{4}x^2+4x=28$. Aus ihr folgt x=4.

XXXII. Si vero iisdem numeris dati numeri addantur vel detrahantur, ut post hoc proueniat numerus vel ad quadratum, vel ad radicem datus, et radix et quadratus datus est.

XXXII. Ebenso, wenn den beiden Vielfachen gegebene Zahlen hinzugefügt oder weggenommen werden und das daraus gebildete Product ein Vielfaches der gesuchten Zahl oder von dessen Quadrate ist.

Von den vier möglichen Fällen dieses Satzes:

$$(mx+p)(nx+q)=rx$$
, $(mx-p)(nx-q)=rx$, $(mx+p)(nx+q)=rx^2$, $(mx-p)(nx-q)=rx^2$,

behandelt das Beispiel der vorliegenden Bearbeitung nur den dritten. Da dem Wesen nach nichts geändert wird bei den übrigen Fällen, hat der Bearbeiter dies wohl für genügend gehalten.

Die beiden ersten Gleichungen liefern die Form

$$mnx^2 \pm (pn + mq \mp r)x + pq = 0.$$

Die beiden anderen

$$(r-mn)x^2 \mp (pn+mq)x = pq$$

wodurch die Lösung sich von selbst nach Früherem ergiebt.

Beispiel: $m = \frac{4}{3}$, n = 2, p = +2, q = +3, r = 6.

Die gegebene Gleichung ist also

$$(\frac{4}{3}x+2)(2x+3)=6x^2.$$

Die umgeformte Gleichung liefert also die Form:

$$8\frac{1}{2}x^2 = 8x + 6$$
, so dass also $x = 8$, $x^2 = 9$ folgt.

XXXII. Item, si alteri datus numerus addatur vel detrahatur, deinde in reliquum ductus produxerit numerus ad quadratum vel radicem datus, radix cum quadrato data erunt.

Exemplum. Esto $a \nmid c$ et $b \nmid c$, addatur 2 ad a, ut productum ex coniuncto in b & quadrati. Sed 1 radicis in 4 eiusdem facit 4 quadrati et 1 radicis in 2 facit 🛊 radicis, quae valent 🛊 quadrati, quare radix erit 🛊 quadrati, ergo radix, sive c, erit 3, a 4, b 1.

XXXIII. Desgleichen, wenn man dem einen eine gegebene Zahl addirt oder subtrahirt, mit dem andern multiplicirt, und das Product einem Vielfachen der Zahl oder ihres Quadrates gleich ist.

Gegebene Gleichung:

$$(mx \pm p) mx = rx \text{ oder } = rx^2.$$

Es ist also

$$mnx^2 \pm npx = rx$$
 oder rx^2 ,

d. h. entweder

$$mnx^2 = (r + np)x, \quad x = \frac{r \pm np}{mn}$$

oder

$$(r-mn) x^2 = \pm npx, x = \pm \frac{np}{r-mn}$$

Beispiel: $m = \frac{1}{3}$, $n = \frac{1}{3}$, p = 2, $r = \frac{2}{3}$; die Gleichung wird $(\frac{1}{3}x + 2) \cdot \frac{1}{3}x = \frac{2}{3}x^2$, also $\frac{2}{3}x^2 = \frac{3}{3}x$, x = 3.

XXXIV. Si vero dato numero uni addito et ab altero ablato postmodo fecerint numerum ad quadratum vel ad radicem datum, quadratus cum radice datus erit.

Exemplum. Sit a duplus ad c et b triplus ad c et 4 addatur ad a et 6 tollatur de b, et productum per coniunctum contineat quadratum 34. Quia autem ex a in b et 6, et ex 4 in b et 6 prouenerint 6 quadrata iuxta 24, quae valent 10 quadrati, 24 valent 8 quadrati, quare quadratum valet 9, et radix 3; a ergo erit 6, et b 9, quod fuit propositum.

XXXIV. Desgleichen, wenn dem Einen eine Zahl addirt, vom Andern subtrahirt wird und das Product ein Vielfaches der Zahl oder des Quadrates wird.

Gegebene Gleichungen:

$$(mx+p)(nx+q)=rx$$
 oder rx^2 .

Es ist

$$mnx^2 + (pn - mq)x - pq = rx; rx^2,$$

also entweder

$$mnx^2 + (pn - mq - r)x = pq$$

oder

$$(mn-r) x^2 + (pn-mq) x = pq,$$

wodurch beide Male die Lösung gegeben ist.

Beispiel: m=2, n=3, p=4, q=6, $r=3\frac{1}{3}$. Die gegebene Gleichung ist also $(2x+4)(3x-6)=3\frac{1}{3}x^2$.

Da sich hier die Glieder mit x heben, so entsteht $6x^2-24=3\frac{1}{2}x^2$, also $\frac{5}{2}x^2=24$, folglich $x^2=9$, x=3.

XXXV. Si numerus ad quadratum datus in se fecerit nume. rum ad radicem datum, radix eiusdem data erit.

Exemplum. ½ quadrati in se faciat numerum qui continet 54 radices. In se facit ‡ quadrati et quater 54 faciunt 216, cuius latus cubicum, scilicet 6, est radix.

Et sic est finis huius.

XXXV. Wenn das Quadrat eines Vielfachen des Quadrates einer Zahl ein Vielfaches der Zahl selbst giebt, so ist die Zahl gegeben. Gegebene Gleichung:

 $(m x^2)^2 = p x.$

Man hat also $m^2 x^4 = p x$, $x^3 = \frac{p}{m^2}$, $x = \sqrt[3]{\frac{p}{m^2}}$.

Beispiel: $m = \frac{1}{4}$, p = 54; es ist $\frac{p}{m^2} = 216$, also $x = \sqrt[3]{216} = 6$.

Und so hat das Werk ein Ende.

Recensionen.

Ueber die Convergenz einer von Vieta herrührenden eigenthümlichen Productentwickelung. Von F. Rudio. (Aus einem Schreiben an Herrn Prof. Dr. M. Cantor.)

In Ihrer Besprechung meiner Abhandlung: "Das Problem von der Quadratur des Zirkels" (Vierteljahrsschrift der naturforschenden Gesellschaft in Zürich, Bd. 35 S. 1) haben Sie einen Beweis für die Convergenz der eigenthümlichen, von Vieta* herrührenden Formel:

1)
$$\frac{\pi}{2} = \frac{1}{\sqrt{\frac{1}{2} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}} \cdot \cdots \text{ in inf.}}}$$

als wünschenswerth bezeichnet. Gestatten Sie mir, dass ich Ihnen nachträglich einen solchen vorlege.

Ich habe in der genannten Arbeit (Seite 17, Anmerkung) auf die Verallgemeinerung aufmerksam gemacht, welche die Vieta'sche Formel später durch Euler erfahren hat. In der Abhandlung: "Variae observationes circa angulos in progressione geometrica progredientes" (Opuscula analytica I, pag. 346) giebt Euler für den Kreisbogen s die Formel:

2)
$$s = \frac{\sin s}{\cos \frac{s}{2} \cdot \cos \frac{s}{4} \cdot \cos \frac{s}{16} \cdot \cdots} \cdot (s < \pi)$$

Da diese für $s=\frac{\pi}{2}$ mit der Vieta'schen Formel identisch wird (es ist in der That $\cos\frac{\pi}{4}=\sqrt{\frac{1}{2}}$, $\cos\frac{\pi}{8}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}}}$, $\cos\frac{\pi}{16}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}}}}$ etc.), so handelt es sich nur um den Nachweis der Convergenz des unendlichen Productes:

3)
$$P = \cos\frac{s}{2} \cdot \cos\frac{s}{4} \cdot \cos\frac{s}{8} \cdot \cos\frac{s}{16} \cdots = \prod_{r=1}^{\infty} \cos\frac{s}{2^r} \cdot \cos\frac$$

Mit Rücksicht auf die Formel $\cos u = 1 - 2 \sin^2 \frac{u}{2}$ kann man aber schreiben:

$$P = \prod_{s=1}^{\infty} \left(1 - \sin^2 \frac{s}{2^{s+1}}\right).$$

^{*} Francisci Vietae Opera mathematica (Ausgabe besorgt von Schooten, Lugduni Batavorum 1646), pag. 398 400.

Man nennt nun bekanntlich ein unendliches Product $\prod_{\nu=1}^{\infty} (1+u_{\nu})$ absolut convergent, wenn $\prod_{\nu=1}^{\infty} (1+|u_{\nu}|)$ convergirt (unter $|u_{\nu}|$ den absoluten Betrag von u_{ν} verstanden) und unbedingt convergent, wenn es unabhängig von der Anordnung der Factoren convergirt. Dann gilt der von Dini (Annali di Mat. 2, ser. II pag. 35. Siehe auch: Stolz, Vorlesungen über allgem. Arithmetik, Bd. 2 S. 238) vervollständigte Weierstrass'sche Satz:

Die nothwendige und hinreichende Bedingung für die absolute Convergenz des unendlichen Productes $\prod_{\nu=1}^{\infty} (1+u_{\nu})$ besteht in der absoluten Convergenz der unendlichen Reihe $\sum_{\nu=1}^{\infty} u_{\nu}$. Das absolut convergente Product convergirt auch stets unbedingt (Pringsheim, Mathem. Annal., Bd. 33 S. 134. Es sei übrigens bemerkt, dass ein elementarer Beweis des in Rede stehenden vollständigen Satzes schon im Sommersemester 1878 von Herrn Weierstrass vorgetragen wurde).

Es bleibt also nur übrig, die Convergenz der unendlichen, aus positiven Gliedern bestehenden Reihe:

$$S = \sum_{n=1}^{\infty} 2 \sin^2 \frac{s}{2^{n+1}}$$

nachzuweisen. Der Quotient zweier aufeinander folgender, zu den Indices ν und $\nu+1$ gehörender Glieder nähert sich aber wegen:

$$\left(\frac{\sin\frac{s}{2^{\nu+1}}}{\sin\frac{s}{2^{\nu}}}\right)^2 = \frac{1}{4} \left(\frac{\sin\frac{s}{2^{\nu+1}}}{\frac{s}{2^{\nu+1}}} : \frac{\sin\frac{s}{2^{\nu}}}{\frac{s}{2^{\nu}}}\right)^2$$

der Grenze $g=\frac{1}{4}$, womit die Convergenz von S und folglich auch die unbedingte Convergenz von P bewiesen ist. Es convergirt daher auch das in der Vieta'schen Formel vorkommende Product und zwar unabhängig von der Anordnung der Factoren.

Zürich, 25. März 1891.

G. TH. FECHNER, Elemente der Psychophysik. Zweite unveränderte Auflage mit Hinweisen auf des Verfassers spätere Arbeiten und einem chronologisch geordneten Verzeichniss seiner sämmtlichen Schriften. 2 Bände. Leipzig 1889, Verlag von Breitkopf & Härtel.

Da Fechner sich nicht entschliessen konnte, eine Neubearbeitung seines Hauptwerkes vorzunehmen oder auch nur eine unveränderte Neuausgabe desselben zu veranlassen, so unternahm es nach seinem Tode

W. Wundt, das- sich längst fühlbar gemachte Bedürfniss nach einem Neudruck zu befriedigen. Die neue Auflage wurde dahin erweitert, dass der Herausgeber die späteren psychophysischen Arbeiten Fechner's an den betreffenden Stellen mittels Noten hier hereingezogen hat. Fechner's bahnbrechende Arbeiten, namentlich auf dem Gebiete der Psychophysik, sind so bekannt, dass es überflüssig ist, noch näher darauf hinzuweisen. Der Anhang mit dem chronologischen Verzeichnisse der Werke und Abhandlungen G. Th. Fechner's muss als eine äusserst wünschenswerthe Zuthat bezeichnet werden. Diese Neuausgabe der Psychophysik wird überall mit Freuden begrüsst werden.

B. Nebell.

R. KLIMPERT, Lehrbuch der allgemeinen Physik (Die Grundbegriffe und Grundsätze der Physik), mit 549 Erklärungen, 84 in den Text gedruckten Figuren und einem Formelnverzeichniss nebst einer Sammlung von 120 gelösten und ungelösten analogen Aufgaben, mit den Resultaten der ungelösten Aufgaben. Für das Selbststudium und zum Gebrauche an Lehranstalten bearbeitet nach System Kleyer. (Kleyer's Encyklopädie der gesammten mathem., techn. u. exacten Naturwissenschaften.) Stuttgart 1889, Verlag von Julius Maier. 372 S. Preis 8 Mk.

Das Kleyer'sche System hat den Charakter einer wissenschaftlichen Frage- und Antwortübung, auf dem linken Theile der Seiten stehen die Fragen, auf dem rechten die Antworten. Da die letzteren stets mehr Raum in Anspruch nehmen, als die ersteren, so entstehen dadurch grosse Lücken, die aber in den meisten Fällen durch sogenannte Erklärungen ausgefüllt sind. Ausserdem macht sich hier und da das Bedürfniss geltend, einzelne Dinge namentlich geschichtlicher Natur doch im Zusammenhang zu betrachten; hierfür sind nun grössere Anmerkungen vorgesehen. Schliesslich finden sich noch eingestreut Figuren, Tabellen, gelöste und ungelöste Aufgaben, Hilfsrechnungen; Alles ist sorgfältig mit der laufenden Nummer versehen, so dass man beim Umwenden einiger Blätter lesen kann: Frage 182, Figur 24, Erklärung 167, Anmerkung 2, Tabelle, Aufgabe 41, Hilfsrechnung 3; ein Zustand, der bei einem Statistiker ein ungemein wohlthuendes Gefühl erregen muss.

Sehen wir von der äusseren Form ab und wenden wir uns dem Inhalt zu, so finden wir die Anschauungen bis auf die neueste Zeit verfolgt, was sich insbesondere in den geschichtlichen Theilen zu erkennen giebt; auch das absolute Maasssystem kommt zu seiner Geltung. Der Inhalt erstreckt sich auf die physikalischen Grundbegriffe: Raum, Zeit, Ruhe, Bewegung, Materie, Kraft, sodann auf die allgemeinen Eigenschaften der Körper und schliesslich auf die allgemeinen Kräfte: allgemeine Anziehung, Schwere, Cohäsion, Adhäsion, Affinität.

B. NEBEL OOGLE

R. KLIMPERT, Lehrbuch der Dynamik fester Körper (Geodynamik), mit 694 Erklärungen, 400 in den Text gedruckten Figuren und einem ausführlichen Formelnverzeichniss nebst einer Sammlung von 500 gelösten und ungelösten analogen Aufgaben, mit den Resultaten der ungelösten Aufgaben. Für das Selbststudium und zum Gebrauch an Lehranstalten, sowie zum Nachschlagen für Fachleute bearbeitet nach System Kleyer. (Kleyer's Encyklopädie der gesammten mathemat, techn. u. exacten Naturwissenschaften.) Stuttgart 1889, Verlag von Julius Maier. 704 S. Preis 13 Mk. 50 Pf.

Bezüglich des Systems Kleyer sei auf das Vorhergehende verwiesen. Zuerst wird die rein mathematische Bewegungslehre in dem Capitel "Phoronomie" behandelt, daran schliessen sich an die Dynamik des materiellen Punktes und diejenige fester Körper. Die Lehre vom Stoss fester Körper bildet den Schluss. Das hier behandelte Material ist ausserordentlich reichhaltig, die zahlreichen Aufgaben sind, wo immer es möglich war, dem praktischen Leben entnommen, und die Figuren ergänzen den Text durch schematische und bildliche Darstellung.

Das vorliegende Werk mit seiner grossen Zahl Aufgaben kann Jedem, der sich in die Dynamik gründlich einarbeiten will, nur bestens empfohlen werden.

B. Nebel.

Domenico Tessari, La cinematica applicata alle macchine ad uso delle scuole d'applicazione per gli ingegneri degli ingegneri, e costruttori meccanici. Torino 1890, Ermanno Loescher. 133 P.

Die ersten Capitel behandeln die Bewegung eines Punktes und deren graphische Darstellung, daran reiht sich die Bewegung eines starren Körpers im Allgemeinen und diejenige eines unveränderlichen Systems, welche parallel zu einer festen Ebene erfolgt. Dieses führt zu der Trajectorie und der näheren Betrachtung ihrer Curve. Die beiden letzten Capitel sind den Cykloiden und den Umhüllungscurven gewidmet. Sechs Tafeln mit 145 Figuren, welche sehr fein und schön ausgeführt sind, bilden den Anhangauf welchen an den betreffenden Stellen des Textes verwiesen wird.

B. NEBEL.

C. ISENKRAHE, Ueber die Fernkraft und das durch Paul du Bois-Reymond aufgestellte dritte Ignorabimus. Leipzig 1889, Verlag von B. G. Teubner. 64 S.

Das Vorliegende ist eine streng durchgeführte Zurückweisung der von Paul du Bois-Reymond gemachten Einwände gegen die mechanischen Erklärungen der Gravitation, insbesondere gegen die vom Verf. vertretene Aetherstosstheorie. Gleichzeitig wird die Unhaltbarkeit des von Paul du

Bois-Reymond gegebenen Beweises: "die Erklärung der Fernkraft gehöre in die Theorie der unlösbaren Probleme" nachgewiesen, so dass demnach das dritte Ignorabimus als verfrüht bezeichnet werden muss. Den Schluss bildet eine kritische Untersuchung der von Paul du Bois-Reymond als Ersatz für die mechanische Construction der Gravitationserscheinungen dargebotenen Anschauung. Dabei ergiebt sich, dass diese letztere nicht neu ist und schon mehrfach angegriffen wurde. Verglichen wird dieselbe mit den Anschauungen Zöllner's und der letzten von Newton.

B. Nebel.

Guido Lamprecht, Wetter, Erdbeben und Erdenringe. Beiträge zur astronomischen und physikalischen Begründung der Wetterkunde. Zittau 1890, Verlag der Pahl'schen Buchhandlung (A. Haase). 40 S.

Nach Feststellung der Aufgabe der Meteorologie wird die Dauer der Sonnenrotation auf der v. Bezold'schen Periodicität der Gewittererscheinungen und mit den Periodenlängen für die verschiedenen Bethätigungen des Erdmagnetismus verglichen. Um nun aus dem ungeheuren Zahlenmaterial der Wetterberichte einen periodischen Charakter feststellen zu können, bedarf es vor der wirklichen Berechnung der Perioden mathematischer Kennzeichen, deren der Verf. vier angiebt. Im Folgenden werden einige Wetterperioden wirklich bestimmt, und zwar wurden bearbeitet die Meldungen grössten monatlichen Niederschlags im Königreich Sachsen, Beobachtungen des Thierkreislichtes, Tage mit Sonnenhöfen und schliesslich Erdbebentage. Das Ergebniss dieser Berechnungen veranlasst den Verf. zu einer astronomischen Erklärung der Wetterperioden, auf welche hier nur hingewiesen werden kann, da Derartiges besser im Zusammenhange gelesen wird. Das Letztere gilt auch bezüglich der Hypothesen über die Schwingungen, welche der Wärme und Elektricität zu Grunde gelegt werden. Aus einer Reihe von elektrischen Erscheinungen glaubt Verf. die + Elektricität auf Längsschwingungen, die - Elektricität auf Querschwingungen zurückführen zu müssen. Die physikalische Erklärung der Wettervorgänge betrachtet die Wärmeunterschiede, die elektrischen Spannungsunterschiede und die Bewegung der elektrischen Kraftflächen als die Ursachen, aus welchen sich sämmtliche in der Witterungskunde bekannten Wirkungen ableiten Auf Grund der mitgetheilten Perioden stellt Verf. eine angenäherte Vorausberechnung des Wetters an, die indessen noch sehr allgemein gehalten ist. Im Schlusscapitel macht der Verf. noch einige Vorschläge, die darauf abzielen, geeignetes Beobachtungsmaterial für das Auffinden von Wetterperioden zu sammeln. B. NEBEL.

PRICE, A treatise on infinitesimal calculus; containing differential and integral calculus, calculus of variations, applications to algebra and

geometry and analytical mechanics. Vol. IV. Dynamics of material systems. Second edition. Oxford 1889. At the Clarendon Press. 689 pag.

Der vorliegende Band umfasst die Bewegung eines schweren Systems. Als Einleitung dienen geometrische Untersuchungen, darauf folgt die Kinematik eines starren Körpers. Das grosse Capitel der auf ein schweres System angewandten Dynamik zerfällt in eine Reihe von Abschnitten. Dasselbe gilt für das nächste Capitel, in welchem die Bewegungsgleichungen für einen starren Körper mit Hilfe von Winkelgeschwindigkeiten und deren Differentialen aufgestellt werden; in engem Zusammenhang damit stehen die Hauptaxen und das Trägheitsmoment. Die weiteren Capitel betrachten die Rotation eines Körpers um eine feste Axe, die Rotation eines Körpers, bezw. unveränderlichen Systems um einen festen Punkt, die Bewegung eines starren Körpers oder eines unveränderlichen schweren Systems, welches keinerlei Zwang unterliegt, die relative Bewegung eines schweren Systems und die Bewegung gewisser elastischer Körper. Das Schlusscapitel ist theoretischen Betrachtungen über Dynamik gewidmet. - Diese zweite Auflage wurde nur in einzelnen Theilen erweitert, das ganze Werk indessen einer vollständigen Revision unterworfen. - Der exacte, übersichtliche Druck der Formeln, sowie die sorgfältig hergestellten Figuren verdienen besondere Erwähnung. B. NEBEL.

GRASHOF, Theoretische Maschinenlehre. 3. Band: Theorie der Kraftmaschinen. 5. Lieferung (Schluss des Werkes). Hamburg u. Leipzig 1890, Verlag von Leopold Voss. Preis 8 Mk.

Mit dieser 5. Lieferung ist nun das Grashof'sche Werk zum Abschluss gekommen. Dasselbe sollte ursprünglich auf vier Bände ausgedehnt werden, deren vierter eine theoretische Untersuchung von Arbeitsmaschinen enthalten sollte. Diese letzteren sind aber in der Zwischenzeit von anderer Seite behandelt worden, so dass das Werk mit drei Bänden abgeschlossen wurde.

— Die letzte Lieferung besteht aus einer Fortsetzung der Dampfmaschinen und dem zweiten Theil der Wärmemotoren, d. i. den Luftmotoren. Im Uebrigen muss auf die Besprechung der früheren Lieferungen verwiesen werden.

B. Nebel.

W. BÜHLBE, Zwei Materien mit drei Fundamental-Gesetzen nebst einer Theorie der Atome. Erklärungen der verschiedenen Zustände der Materien, nämlich der Atome, Aggregatformen und chemischen Verbindungen, sowie der Wärme, Elektricität und des Magnetismus nebst einigen Anwendungen der Atomtheorie auf die Himmelskörper. Stuttgart 1890, Verlag von Kohlhammer. 62 S.

Verfasser, ein Gegner der kinetischen Gastheorie, legt seinen Untersuchungen drei Gesetze zu Grunde, nämlich die Anziehung der ponderablen Materie oder das Gravitationsgesetz, die Abstossung der Aethertheilchen oder das Aethergesetz, und die Anziehung zwischen ponderabler Materie und Aether oder das Cohäsionsgesetz. Dabei treten Constanten auf, über deren Grösse der Verf. Annahmen macht, während der Leser nichts von deren "reiflicher Erwägung" erfährt und somit auf das Glauben resp. Nichtglauben verwiesen ist. Dasselbe gilt auch bezüglich späterer Annahmen, bei welchen jede Begründung fehlt; so ist z. B. der feste Aether, also auch die Wärme wägbar. Das Capitel über Elektricität und Magnetismus beginnt: "Elektricität ist einfach Schrauben- oder Korkzieherbewegung des Aethers." Verf. hätte dem früher ihm gegebenen Rathe Folge leisten sollen, nämlich seine Ideen wissenschaftlich durchzuführen, statt Unfertiges dem Druck zu übergeben in der Hoffnung, dass Andere auf diesem Fundament weiterbauen sollen. Derartiges passt nicht in die heutigen exacten Naturwissenschaften.

B. NEBEL.

HEINRICH WEBER, Elektrodynamik mit Berücksichtigung der Thermoelektricität, der Elektrolyse und der Thermochemie. Braunschweig 1889, Verlag von Friedrich Vieweg & Sohn. 177 S. Preis 6 Mk.

In dem Vorwort führt der Verf. den Grund an, weshalb als Titel des Buches statt Grundlagen der Elektrodynamik kurzweg Elektrodynamik gewählt worden ist. Als Basis dient diesem Werke die Anschauung Wilhelm Weber's über das Wesen galvanischer Ströme, womit die wichtigsten Gesetze aus dem grossen Gebiete der Elektrodynamik einheitlich abgeleitet werden. In dem Abschnitte über den galvanischen Strom wird nach allgemeinen Betrachtungen über denselben das Ohm'sche Gesetz hergeleitet und die Sätze über die Stromverzweigungen aufgestellt; daran reiht sich die Einführung neuer Maasseinheiten. Das Gesetz von der Erhaltung der Energie wird einer eingehenden Behandlung unterzogen, und sodann die Energiegleichung für den galvanischen Strom entwickelt. In der Thermoelektricität werden zuerst die experimentellen Thatsachen mitgetheilt, an die sich sodann theoretische Betrachtungen anschliessen. Bei der Elektrolyse wird von stöchiometrischen Betrachtungen ausgegangen und sodann Faraday's elektrolytische Gesetze erläutert. Dies führt zu den secundären Processen, den galvanischen Elementen und der elektrolytischen Stromintensitätsmessung. Nach den thermochemischen Betrachtungen wird der Stromkreis mit Elektrolyth untersucht. Das grosse Schlusscapitel umfasst die Wechselwirkung linearer galvanischer Ströme. Darin wird zuerst das Gesetz von der Erhaltung der Energie auf zwei Stromkreise angewendet, sodann die Arbeitsgrössen bestimmt und die Wirkung des einen Stromkreises auf den andern ermittelt; das Letztere bildet den Uebergang zu dem Grundgesetz von Wilhelm Weber. Nachdem die elektromotorischen Krifte näher bestimmt sind, werden die Coefficienten der gegenseitigen Induction und der Selbstinduction abgeleitet. Den Anhang bildet die Zusammenstellung einiger Formeln aus der Elektrodynamik. — Es ist wohl sicher anzunehmen, dass sich dieses Buch überall einer warmen Aufnahme zu erfreuen hat, und dass es mit grossem Nutzen bei einem allgemeinen Colleg über mathematische Physik zu Grunde gelegt werden kann.

B. Nebell.

Hobbs, Berechnung elektrischer Messungen, dargestellt an zahlreichen Beispielen. Aus dem Englischen übersetzt von O. Kitzer. Halle a.S. 1890, Verlag von W. Knapp. 97 S. Preis 2 Mk.

Der Zweck dieser Aufgabensammlung ist, junge Studenten der Elektricität mit dem Ohm'schen Gesetz völlig vertraut zu machen. In 13 Abschnitten kommt die vielseitige Anwendung des genannten Gesetzes zur Geltung. Aufgaben, wie Nr. 24 und 28 auf S. 11, können unmöglich auf Messungen beruhen, so dass der Titel nicht ganz correct ist. In Deutschland kennt man keine Galvanometer, die bei 12000 Volt Spannungsdifferenz und 6000 Ohm Widerstand eine Stromstärke von 2 Ampère zulassen. Derartige Aufgaben sind lediglich Rechenexempel und tragen keineswegs dazu bei, die jungen Leute auf die elektrischen Verhältnisse aufmerksam zu machen. - Hoffentlich findet die Unterscheidung in der Bezeichnung nach echten und unechten Brüchen keine weitere Nachahmung, so dass wir auch künftig Ampère, Volt, Ohm schreiben und nicht, wie dies hier der Fall ist, für die letzteren Ampères, Volts, Ohms. - Der Uebersetzer hätte das Ohm'sche Gesetz in der bei uns tiblichen Weise J = E/W schreiben und nicht die englische C = E/R beibehalten sollen. Wenn der Engländer seinen Schülern das Lernen des Gesetzes durch die Anfangsbuchstaben der englischen Worte zu erleichtern sucht, so sehen wir nicht ein, warum dies nicht auch im Deutschen der Fall sein soll. In der Vorrede des Uebersetzers wird darauf hingewiesen, dass die englischen Maasse auf die deutschen umgerechnet seien, nichtsdestoweniger finden wir noch Yard in den Aufgaben. Wünschenswerth wäre es gewesen, wenn der Uebersetzer die Zweckmässigkeit der Beibehaltung der englischen Schreibweise · 5 anstatt 0,5 näher begründet hätte; wir sind mit der in Deutschland vollständig fremden Schreibweise durchaus nicht einverstanden, zumal sie eher Nachtheil als Vortheil bringt. B. NEBEL.

J. J. Thomson, Anwendungen der Dynamik auf Physik und Chemie.

Autorisirte Uebersetzung. Leipzig 1890, Verlag von Gustav Engel.

372 S. Preis 6 Mk.

Das vorliegende Buch behandelt den Hauptinhalt einer Reihe von Vorlesungen, die der Verf. im Herbst 1886 am Cavendish Laboratorium zu Cambridge gehalten hat. Obwohl einige der Resultate schon in den Philosophical Transactions of the Royal Society für 1886 und 1887 erschienen sind, so hielt es der Verf. doch für angezeigt, dem Studirenden die Erscheinungen, welche an der Grenze zweier Gebiete der Physik liegen, in etwas vollständigerer Form eigen zu machen. Verf. geht nicht von den Gesetzen der Thermodynamik aus, sondern von den rein dynamischen Principien, und untersucht, welche Resultate sich auf diese Weise erzielen lassen. Diese dynamische Methode, welche sich nur auf ein Princip stützt, hat einen viel fundamentaleren Charakter, als das zweite Gesetz der Thermodynamik, und ist auf Fragen anwendbar, in denen keine Umwandlungen anderer Energieformen aus oder in Wärme vorkommen. Andererseits hat aber diese dynamische Methode den Nachtheil, dass die Resultate derselben lediglich dynamische Grössen sind, weshalb noch die Kenntniss anderer Beziehungen erforderlich ist, wenn physikalische Grössen, wie Temperatur, Stromstärke u. s. w., aus jenen Resultaten abzuleiten sind. Verf. ist sich vollständig bewusst, dass die dynamische Methode nicht in allen Fällen direct zum Ziele führt, weist aber darauf hin, dass deren Anwendung insofern von Interesse ist, als sich dabei zu erkennen giebt, welcher Theil der Probleme gelöst werden kann mit Hilfe der Dynamik, und welcher nur durch Betrachtungen, die aus der Erfahrung abgeleitet sind. Im zweiten Capitel werden die von Hamilton und Lagrange eingeführten Methoden mitgetheilt und diejenigen dynamischen Gleichungen zusammengestellt, die im Folgenden am meisten zur Anwendung kommen. Darauf folgt die Anwendung dieser Principien auf die Physik. Es würde zu weit führen, wollten wir auf die zahlreichen Capitel dieses höchst interessanten Buches näher eingehen, dessen Studium unsere Kenntnisse nur zu bereichern vermag. -Leider ist die Zahl der Druckfehler so gross, dass mit deren Anführung vier Seiten angefüllt sind. B. NEBEL.

MICHAEL FARADAY, Experimental - Untersuchungen über Elektricität.

Deutsche Uebersetzung von S. Kalischer. II. Band. Berlin 1890,
Verlag von J. Springer. 303 S. Preis 8 Mk.

Dieser zweite Band entspricht dem im Jahre 1844 erschienenen zweiten Bande der Experimental Researches; indessen hat der Uebersetzer noch drei weitere Stücke aufgenommen, die dem Inhalt und der Zeit nach in den Rahmen dieses Bandes gehören. Es sind: 1. Ein Brief Faraday's an den Herausgeber des London and Edinburgh Philosophical Magazine über die Passivität des Eisens, 2. Faraday's erste Arbeit über Elektricität und Magnetismus, und 3. eine kurze Notiz, Contact in voltaic Electricity. —

Im Uebrigen sei auf die Besprechung des ersten Bandes in dieser Zeitschrift hingewiesen. Möge der dritte Band dieses klassischen Werkes bald erscheinen!

B. Nebel.

ZETZSCHE, Der Betrieb und die Schaltungen der elektrischen Telegraphen, bearbeitet unter Mitwirkung von mehreren Fachmännern.

Zugleich als II. Hälfte des III. Bandes des Handbuchs der elektrischen Telegraphie. Heft 1, mit 117 in den Text gedruckten Abbildungen. Halle a. S. 1890, Verlag von W. Knapp. 196 S.

Das vorliegende Heft mit zwei weiteren, welche noch vor Ende 1890 erscheinen sollen, bildet ein für sich abgeschlossenes Werk, das zugleich auch betrachtet werden kann als zweites des dritten Bandes des Handbuchs der elektrischen Telegraphie. Welchen Werth die Herausgabe eines solchen Werkes für die Telegraphie besitzt, darauf hinzuweisen ist völlig überflüssig, zumal dieselbe von einem Manne berrührt, der früher selbst im Reichsdienste praktisch thätig war und mit der Literatur auf's Innigste Seitdem die Telegraphie in den Lehrplan der technischen Hochschulen aufgenommen worden ist, war deren wissenschaftliche Behandlung besiegelt; denn das Telegraphenwesen ist heutzutage derartig angewachsen, dass ein rein praktisches Erlernen nicht mehr ausreicht. - Die erste Abtheilung dieses Heftes behandelt die telegraphischen Betriebs- und Schaltungsweisen im Allgemeinen, während die zweite die Schaltungen für die einfache Telegraphie betrachtet. Die letztere zerfällt wieder in solche für Leitungen ohne Ladung und in solche für Leitungen mit Ladung. Wer in derartigen Dingen sich Raths zu erholen hat, findet ihn am besten in diesem Werke, weshalb es wünschenswerth ist, dass auch die beiden anderen Hefte möglichst bald erscheinen. B. NEBEL.

Roscoe, Die Spectralanalyse in einer Reihe von sechs Vorlesungen mit wissenschaftlichen Nachträgen. III. Auflage, neu bearbeitet vom Verfasser und Arthur Schuster. Mit 123 Holzstichen, Chromolithographien, Spectraltafeln etc. Braunschweig 1890, Verlag von Friedrich Vieweg & Sohn. 466 S. Preis 16 Mk.

Die vorliegende deutsche Ausgabe schliesst sich eng an die vierte englische an und enthält die Errungenschaften bis in die neueste Zeit; nur solche Fragen wurden ausgeschlossen, welche von den Fachgelehrten als noch nicht genügend abgeschlossen betrachtet werden können. Schon die äussere Form, die gesammte Spectralanalyse in sechs Vorlesungen wiederzugeben, deutet darauf hin, dass dieses Werk zunächst für ein grösseres Publicum berechnet ist; dafür spricht auch die allgemein verständliche Er-

Digitized by GOOGLE

läuterung der Erscheinungen. Gleichzeitig bemerkt man das Bestreben, auch dem Fachgenossen eine vollständige Zusammenstellung zu liefern; dies giebt sich namentlich in den zahlreichen Anhängen, sowie in dem ausführlichen Literaturverzeichniss deutlich zu erkennen. Auf den reichen Inhalt des Buches näher einzugehen, würde zu weit führen. Dem Laien sowohl, als auch dem Fachgelehrten kann es nur wärmstens empfohlen werden.

B. NEBEL.

W. Wäge, Netze zum Anfertigen zerlegbarer Krystallmodelle. Für höhere Lehranstalten und zum Selbstunterrichte herausgegeben und erläutert. 13 Tafeln und Text. 2. vermehrte und verbesserte Auflage. Berlin 1890, L. Gärtner's Verlagsbuchhandlung (H. Heyfelder). Preis 3 Mk.

Gegenüber der ersten Auflage ist die vorliegende bedeutend erweitert, so dass sich jetzt über 60 verschiedene, zerlegbare und unzerlegbare Krystallmodelle anfertigen lassen. Derartige Modelle, von den Schülern selbst hergestellt, sind in jeder Beziehung nützlich; einmal wird das Interesse des Lernenden wesentlich gesteigert, wenn er genöthigt ist, selbst Hand anzulegen, sodann bleiben diese Gegenstände in seinem Besitze, wodurch spätere Recapitulationen ungemein erleichtert werden; schliesslich ruht die Gehirnthätigkeit während der Anfertigung mehr oder weniger aus, worauf bei dem heutigen Unterricht sehr geachtet wird, während die stereometrische Auffassung sich gleichsam spielend befestigt. Wenn irgend die Zeit es gestattet, sollten derartige Uebungen nicht versäumt werden.

B. NEBEL.

W. Voigt, Ueber die innere Reibung der festen Körper, insbesondere der Krystalle. Göttingen 1890, Verlag von Dieterich. 47 S.

Mit der vorliegenden Arbeit eröffnet der Verf. eine Reihe von Untersuchungen, deren Zweck ist, die Erscheinungen der inneren Reibung auf fundamentale Constanten zurückzuführen. Während die erste Mittheilung ausschliesslich theoretische Grundlagen enthält, so sollen die folgenden die Bestimmungen der Reibungsconstanten für eine Reihe isotroper und anisotroper fester Körper bringen.

B. Nebel.

CH. Aug. Vogler, Geodätische Uebungen für Landmesser und Ingenieure. Mit 36 eingedruckten Abbildungen. Berlin 1890, Verlag von Paul Parey. 216 S. Preis 7 Mk.

Die grosse Zuhörerzahl des Verf. war die Ursache zur Herausgabe dieses Uebungsbuches; denn es ist in diesem Falle unmöglich, jeden Einzelnen bei seinen praktischen Uebungen zu unterweisen. Daher ist es zum

Bedürfniss geworden, eine Reihe von Aufgaben zu lösen, welche als Vorbild bei den weiteren Uebungen dienen sollen. Dabei wurde hauptsächlich darauf Werth gelegt, nicht zuviel Aufgaben zu geben, sondern die einzelnen gründlich durchzuführen. Die Aufgaben behandeln die Flächentheilung und Grenzregelung, das Abstecken von Geraden und Kreisen, die Polygon- und Kleinpunkte, die Triangulation, die Punkteinschaltung, das Nivelliren, die trigonometrische und barometrische Höhenmessung, die Tachymetrie, die Instrumentenkunde und die Ausgleichungsrechnung. — Da ein derartiges Buch bisher fehlte, so wird es gewiss auch an anderen Hochschulen vielfach Verwendung finden.

B. Nebel.

A. FÖPPL, Leitfaden und Aufgabensammlung für den Unterricht in der angewandten Mechanik. 1. u. 2. Heft. Leipzig 1890, Verlag von B. G. Teubner. 140 u. 180 S.

Dieser Leitfaden ist dem Unterricht an einer Gewerbeschule entsprungen; indessen glaubt der Verf., dass auch die Lehrer der Physik an Gymnasien und Realschulen Nutzen daraus ziehen werden. Mit dem Inhalt des ersten Heftes, welcher die Elementarmechanik behandelt und diese auf die einfachen Maschinen anwendet, können wir uns ganz einverstanden erklären. Dasselbe gilt auch für die beiden ersten Abschnitte des zweiten Heftes-Was aber den 3. und 4. Abschnitt des letzteren über die Wärme und die Elektromechanik betrifft, so scheint der Inhalt für die genannten Schulkreise denn doch zu hoch angelegt zu sein. Dabei zeigt sich, dass der Verf. eigentlich Physiker ist und die genannten Disciplinen zu sehr in die Mechanik hereinzuziehen sucht, während das Meiste in der Physik behandelt werden sollte. Verf. weicht vielfach von dem herkömmlichen Wege ab, was derselbe auch in dem Vorwort hervorhebt, was ja anerkannt werden muss, wenn nur das Verständniss nicht Noth leidet. Der Uebergang von dem elektrostatischen zu dem elektromagnetischen Maasssystem scheint für einen homo novus denn doch zu schwierig, da wäre der althergebrachte Weg wohl besser gewesen. Mit §§ 195 und 196 des zweiten Heftes und den entsprechenden Figuren sind wir nicht ganz einverstanden. Wäre als Einheit der Abscisse die Widerstandseinheit, als diejenige der Ordinate die Potentialeinheit gewählt worden, so hätte sich aus der Neigung der Gefälllinie die Stromstärke ergeben, die natürlich für alle Theile des Stromkreises die gleiche sein muss. Die Diction ist durchweg kurz, die nicht gerade zahlreichen Aufgaben sind präcis und knapp ausgedrückt, ohne Mittheilung bezw. Andeutung der Lösungen. Daraus folgt, dass es sich nur mit Hilfe des Lehrers verwenden lässt, dass es aber in diesem Falle gute Dienste leisten wird. B. NEBEL.

A. F. Möbius, Hauptsätze der Astronomie. 7. Auflage, umgearbeitet und erweitert von H. Cranz. Mit 29 Figuren und einer Tabelle. (11. Bd. Sammlung Göschen.) Stuttgart 1890, Verlag von G. J. Göschen. 111 S. Preis geb. 80 Pf.

Das kleine Buch enthält eine Menge Wissenswerthes aus der Astronomie und wird daher von Allen, welche sich für die Astronomie interessiren, sich aber nicht näher damit beschäftigen können, mit Freuden begrüsst werden. Von grossem Werthe ist die beigefügte Tabelle. Für eine nächste Auflage möchten wir der Verlagsbuchhandlung empfehlen, statt der Zusammenstellung der Namen der vorzüglicheren bei uns sichtbaren Sternbilder ein kleines einfaches Kärtchen beizufügen, in welchem die zu einem Sternbilde gehörigen Sterne durch Linien vereinigt sind, wodurch es dem Laien ermöglicht wäre, sich selbst am Himmelsgewölbe zu orientiren. Dass hierdurch das Büchelchen wesentlich an Werth gewinnen würde, wird Jedem einleuchten. — Die ganze Ausstattung verdient volle Anerkennung.

B. NEBEL.

FR. BUCHHOLTZ, Die einfache Erdzeit mit Stundenzonen und festem Weltmeridian als Zifferblatt ohne Störung der Tageszeiten für alle Länder und Völker der Erde. Berlin 1890, C. F. Conrad's Buchhandl. 31 S.

Verf. ist auch für die Einführung der Stundenzonen, glaubt aber, dass wir Menschen nicht berechtigt seien, von dem Greenwicher resp. Pariser Meridian auszugehen, sondern dass wir einen sogenannten Weltmeridian zu Grunde legen müssen, der nur durch die Behringsstrasse gehen könnte. Verf., ein pensionirter Prediger, kommt dabei vom Hundertsten ins Tausendste und beschäftigt sich mit Dingen, die keineswegs Beweisgründe für diesen Weltmeridian liefern.

B. Nebel.

F. Kerz, Weitere Ausbildung der Laplace'schen Nebularhypothese. Erster und zweiter Nachtrag. Leipzig und Berlin 1888 und 1890, Verlag von Otto Spamer. 127 und 66 S. Preis 3 Mk. und 1 Mk. 60 Pf.

Der erste Nachtrag ist eine rechnerische Umgestaltung seiner früheren Arbeit, in welcher einige Hauptfehler untergelaufen sind. Der zweite Nachtrag behandelt die ganze Nebularhypothese in populärer Form, wobei die im ersten Nachtrag gewonnenen Rechnungsresultate nur mitgetheilt werden.

B. NEBEL.

Die Elemente der Geometrie mit Rücksicht auf die absolute Geometrie. Von Dr. Max Simon, Oberlehrer am Lyceum zu Strassburg. Strassburger Druckerei und Verlagsanstalt, 1890. 8°.

Eine gehaltvolle und anregende Druckschrift von IV und 72 Seiten. Der Verfasser veröffentlicht in derselben seinen Lehrgang in den Elementen der Geometrie und führt sodann durch eine Reihe von Anmerkungen den Leser ein in die Elemente der nicht-Euklidischen oder absoluten Geometrie.

Nach den Definitionen und Axiomen der Einleitung folgt als erstes Capitel die Lehre von der "Congruenz". Ausgehend von dem fruchtbaren Begriffe der Gegenpunkte bezüglich einer Axe begründet der Verfasser u.A. die Sätze von den Normalen zu einer gegebenen Geraden, von den Schnittpunkten zweier Kreise oder eines Kreises und einer Geraden, von den gleichschenkligen Dreiecken, sowie die Congruenzsätze. Alle diese Sätze gelten unabhängig von dem Parallelenaxiom. Da zwei Gerade einer Ebene sich nicht schneiden, wenn sie zu derselben dritten normal sind, so tritt uns im zweiten Capitel vom "Parallelismus" alsbald die Frage entgegen: Giebt es in der Ebene Nichtsichschneidende, welche nicht auf denselben Geraden senkrecht stehen? Das Parallelenaxiom Euklid's verneint diese Frage, indem es in der Ebene zu einer Geraden durch einen Punkt nur eine Nichtschneidende, die Parallele, zulässt. Dieses von Mathematikern und Philosophen so vielfach discutirte Axiom ist, wie der Verfasser näher ausführt, identisch mit jedem der folgenden Sätze: Durch drei Punkte, die nicht in einer Geraden liegen, ist stets ein Kreis möglich; eine Gerade der Ebene, welche auf der einen von zwei Parallelen senkrecht steht, ist auch zu der andern normal; es giebt in der Ebene ein Rechteck; es giebt ein (endliches) Dreieck, dessen Winkelsumme zwei Rechte ist (Lobatschewsky); durch jeden Punkt innerhalb eines Winkels lässt sich eine Gerade ziehen, welche beide Schenkel schneidet (Legendre); zwei Gerade einer Ebene sind parallel, wenn sie von irgend einer dritten unter gleichen Wechseloder Gegenwinkeln geschnitten werden. - Das dritte Capitel handelt .vom Kreise", seinen Sehnen, Tangenten, Peripheriewinkeln etc., und beiläufig von den merkwürdigen Punkten des Dreiecks. Das vierte und letzte Capitel ist überschrieben "Streifensysteme" und erörtert die Satzgruppe des Pythagoras, dann die Theilung und Messung, endlich die Aehnlichkeit. Die Systeme congruenter Streifen, welche in der Ebene von äquidistanten Parallelen begrenzt werden, bilden die gemeinsame Grundlage dieser Erörterungen.

Ein besonderes Interesse bieten die Anmerkungen über die "Elemente der absoluten Geometrie" auf den letzten 32 Seiten der Druckschrift. Zu dieser einwurfsfreien nicht-Euklidischen Geometrie gelangt man bekanntlich, wenn man von dem Parallelenaxiom absieht und zugiebt, dass in der Ebene zu einer Geraden verschiedene Nichtschneidende durch einen Punkt möglich oder denkbar sind; zu einer Geraden gehen dann zwei Parallele durch jeden

Punkt und unendlich viele Nichtschneidende, welche in zwei von den Parallelen gebildeten Scheitelwinkeln liegen. Gauss hat schon 1792 mit der nicht-Enklidischen Geometrie sich beschäftigt; doch kennen wir von seinen Ergebnissen nur die wenigen bedeutenden Sätze, welche in seinem 1860 bis 1865 veröffentlichten Briefwechsel mit Schumacher (II, S. 268 u. 431; V, S. 246) enthalten sind. Lobatschewsky und J. Bolyai sind seit 1829 bezw. 1832 die Begründer der absoluten Geometrie geworden, und R. Baltzer hat das Verdienst, zuerst in einem Lehrbuche, seinen "Elementen der Mathematik" (1874, 4. Aufl.), dieselbe berücksichtigt zu haben. Während aber Baltzer sich auf wenige oben angeführte Sätze beschränkt, dringt die vorliegende Druckschrift Dr. Simon's weit tiefer ein in die absolute Geometrie.

Da in weiteren mathematischen Kreisen die absolute Geometrie noch wenig bekannt ist, so dürfte die folgende Uebersicht der wichtigeren, in der Druckschrift noch enthaltenen Sätze von allgemeinerem Interesse sein. Die Lothe aus den Punkten einer Geraden g auf einer zu g parallelen Geraden g, nehmen in der absoluten Geometrie ab nach der Seite des gemeinsamen unendlich fernen Punktes hin; zugleich werden die "Parallelwinkel", welche die Lothe mit g nach dieser Seite hin bilden, immer grösser. Die Punkte, welche in der Ebene von einer Geraden einen gegebenen Abstand haben, liegen nämlich nicht in zwei parallelen Geraden, sondern in zwei "Abstandslinien", die mit keiner Geraden mehr als zwei Punkte gemein haben. Zu jedem Abstande zwischen zwei Parallelen (d. h. eines Punktes der einen von der andern) gehört ein bestimmter Parallelwinkel, und umgekehrt; zwei beliebige Streifen zwischen je zwei Parallelen sind folglich congruent. Zu zwei sich nicht schneidenden Geraden der Ebene giebt es nur eine gemeinsame Normale; die Abstände der Punkte der einen Geraden von der andern nehmen zu mit ihren Abständen von dieser Normale,* und der kleinste Abstand fällt auf die Normale.

In der absoluten Geometrie geht ein veränderlicher Kreis, wenn sein Mittelpunkt von einem gegebenen Kreispunkte unendlich sich entfernt, nicht in eine Gerade über, sondern in eine Curve, den "Grenzkreis". Jede Tangente des Grenzkreises ist zu dem Radius ihres Berührungspunktes normal, jede Sehne desselben bildet mit den Radien ihrer Endpunkte ein gleich-

^{*} Zum Beweise dieses Satzes führt Dr. Simon an, dass, wenn die letzteren Abstände zunehmen, die ersteren entweder fortwährend wachsen, oder fortwährend abnehmen, und dass im Falle der Abnahme die beiden Geraden zwei Punkte, sei es im Endlichen oder im Unendlichen, gemein haben würden. Dieser Beweis genügt nicht; denn die Abstände könnten trotz ihrer Abnahme einer endlichen unteren Grenze sich nähern, und die eine Gerade könnte von einer Abstandslinie der andern eine Asymptote sein. Diese Lücke in der Beweisführung wird um so empfindlicher, als gleich hernach aus jenem Satze gefolgert wird, dass in der absoluten Geometrie die Winkelsumme jedes Dreiecks kleiner als zwei Rechte ist.

schenkliges Dreieck, dessen dritter Eckpunkt unendlich fern liegt. Drei Punkte eines Grenzkreises und ebenso einer Abstandslinie können weder durch eine Gerade, noch durch einen gewöhnlichen Kreis verbunden werden. Der Grenzkreis ist, wie die Gerade, der Kreis und die Abstandslinie in sich ohne Biegung verschiebbar, also überall gleichförmig. Je zwei Grenzkreise sind congruent und lassen sich zur Deckung bringen. Concentrische Grenzkreise werden durch ihre parallelen Radien Punkt für Punkt aufeinander bezogen; ihre homologen Bögen stehen zu einander in constantem Verhältniss, welches nur von dem Abstande k ihrer homologen Punkte abhängt. Der Abstand k, für welchen das Verhältniss concentrischer homologer Grenzkreisbögen gleich der Zahl e bezw. $\frac{1}{e}$ ist, bildet das (absolute) Längenmass. Die Eigenschaften der Geraden in der Euklidischen Geometrie vertheilen sich in der absoluten Geometrie auf die Gerade als kürzeste Linie, den Grenzkreis und die Abstandslinie.

In der Ebene begrenzen die beiden Abstandslinien, deren Punkte von einer Geraden einen gegebenen Abstand haben, einen "Abstandsstreifen". welcher dem Streifen der Euklidischen Geometrie analog ist. Mit Hilfe solcher Abstandsstreifen lässt sich ein Dreieck in ein flächengleiches mit gegebener Grundlinie verwandeln; Dreiecke von gleicher Fläche aber haben, wie hierbei sich ergiebt, gleiche Winkelsummen. Von zwei Dreiecken bat dasjenige die grössere Fläche, welches die kleinere Winkelsumme hat, und umgekehrt; und es giebt ein absolut grösstes Dreieck, dessen Winkelsumme Null ist und dessen Eckpunkte unendlich fern liegen. Schon Gauss betont a. a. O.: "In der Euklidischen Geometrie giebt es nichts absolut Grosses, wohl aber in der nicht-Euklidischen; dies ist gerade ihr wesentlicher Charakter." Die Flächen zweier Dreiecke verhalten sich wie ihre ebenen Excesse, wenn die Differenz zwischen 180° und der Winkelsumme eines Dreiecks als dessen ebener Excess bezeichnet wird. Das absolut grösste Dreieck hat demnach eine endliche Fläche.

Die "Anmerkungen", welche diese bemerkenswerthen Sätze enthalten und begründen, sind nicht gerade leicht zu lesen. Die Form der Darstellung ist nicht selten gar zu knapp, auch fehlen öfters die Figuren und sind wegen störender Druckfehler des Textes manchmal schwer herzustellen. Möchte in nicht zu ferner Zeit eine neue Auflage die angeführten Mängel der inhaltsreichen Schrift beseitigen!

Strassburg i. E., 25. Januar 1891.

TH. REYE.

Erleichterungstafel für Jedermann zur Erzielung fehlerfreier und zugleich rascherer und bequemerer Ausführungen von Multiplicationen und Divisionen. Nach Angaben A. Steinhauser's, k. k. Regierungsraths in Wien, herausgegeben von Joseph Blater. Wien 1889, Verlag von Alfred Hölder, k. k. Hof- und Universitätsbuchhändler.

Digitized by GOOGIC

Unter den vielerlei Multiplicationsmethoden, deren die Inder sich bedienten, und welche wahrscheinlich durch arabische Vermittelung nach Italien drangen, von wo sie sich weiter über ganz Europa verbreiteten, sind es besonders zwei gewesen, welche, als Gegensätze aufzufassen, unsere Aufmerksamkeit auch heute noch auf sich zu ziehen vermögen: die kreuzweise und die netzartige Multiplication. Jene schreibt gar kein Zwischenproduct, sondern gleich das endgiltige Ergebniss nieder; diese schreibt Alles, was nur überhaupt geschrieben werden kann, und verschmäht es nicht, das etwa zweiziffrige Product einer Multiplicatorstelle in eine solche des Multiplicanden ganz hinzuschreiben, anstatt die Zehnerziffer im Kopfe zu behalten. Wer der Meinung ist, die meisten Rechenirrthumer beruhen auf Schreibfehlern, der wird auch heute noch die kreuzweise Multiplication üben, welchen Herr Giesing neuen Eingang zu verschaffen gesucht hat [vergl. Bd. XXX dieser Zeitschrift, hist.-lit. Abth. S. 113-114]; wer dem Gedächtniss misstraut, wird der netzartigen Multiplication das Wort reden, wird sie noch durch zum Voraus netzartig hergestellte Producte aller einziffrigen Zahlen untereinander zu erleichtern suchen. Das beabsichtigte Neper im XVII. Jahrhundert durch seine Stäbchen (Neper's bones), das hat Herr Blater durch eine ganz ähnliche Vorrichtung neuester Zeit ge-Für diese Einrichtung mag als Empfehlung dienen, dass ein so bekannter und allgemein hochgeschätzter Rechner wie Herr Steinhauser in Wien sie als zweckmässig erachtet. Referent steht auf dem andern der beiden genannten Standpunkte und multiplicirt niemals anders, als nach dem kreuzweisen Verfahren. CANTOR.

Naturwissenschaftliche Anwendungen der Integralrechnung. Lehrbuch und Aufgabensammlung, verfasst von Dr. Arwed Fuhrmann, ordentl. Professor an der Königl. Technischen Hochschule zu Dresden. Mit 73 Holzschnitten. 268 S. Berlin 1890, Ernst & Korn (Wilhelm Ernst).

Das I. Heft der Fuhrmann'schen Aufgabensammlung ist Bd. XXXIV, S. 195—196 der hist.-lit. Abth. besprochen. Wie dort die Formeln der Differentialrechnung an naturwissenschaftlichen Aufgaben geübt wurden, so ist es gegenwärtig auf nahezu doppeltem Raume mit den Formeln der Integralrechnung der Fall. Wie die betreffenden Aufgaben zu den bei ihnen in Anwendung kommenden Formeln in Beziehung treten, ist nicht erörtert, und es könnte die Frage aufgeworfen werden, ob darin nicht ein Widerspruch sich offenbare? Wird nicht, wer die Ableitung der Formel kennt, die Integration vollziehen können? Wird nicht Dem, welcher an den Integrationen strauchelt, die Ableitung der Formel unverständlich sein? Ein solches Dilemma könnte, sagen wir, erzeugt werden, aber doch wohl mit Unrecht. Man darf den Unterschied zwischen Wissen und Können nicht

ausser Augen lassen. Er allein begründet die Berechtigung auch rein mathematischer Aufgabensammlungen, und es ist nicht abzusehen, weshalb die angewandte Mathematik in dieser Beziehung übler fahren sollte. Nicht als ob ein aus Formelableitung und Formelanwendung vereinigt hergestelltes Buch -- ein Seitenstück zu Dölp's vielgebrauchten Aufgaben zur Differential- und Integralrechnung - undenkbar wäre, aber bei der grossen Mannigfaltigkeit der naturwissenschaftlichen Anwendungen würde es zu einem Umfange anwachsen und einen Preis nothwendig machen, bei denen die Benutzbarkeit thatsächlich aufhören müsste. Man lese nur in den von dem Verfasser den beiden bisherigen Heften angehängten Literaturverzeichnissen die Titel der kleineren, aber auch der grösseren Schriften nach, auf welche Herr Fuhrmann sich als Quellen beruft, um eine Ahnung von dem dienstbar gemachten Material zu erhalten. In der Vorrede ist der Wunsch ausgesprochen, die Studirenden der Chemie möchten bei der Richtung, welche diese Wissenschaft in dem letzten Jahrzehnt etwa eingeschlagen hat, verharren und sich zu diesem Zwecke mit der nöthigen mathematischen Ausrüstung versehen. Der Lehrer der Mathematik an Universität und Polytechnikum wird sich gewiss damit einverstanden erklären, aber wird der Lehrer der Chemie seinen Schülern die Zeit dazu übrig lassen? Dorthin scheint uns in erster Linie die Anforderung gerichtet werden zu müssen, welcher man nicht mit der wohlfeilen Entschuldigung ausweichen kann, die Mittelschule solle die jungen Leute besser vorbereitet entlassen. Der Infinitesimalcalcul gehört nicht auf die Mittelschule, deren Zöglinge ihrem Alter nach dafür noch nicht reif sind. Will man auf der Hochschule den Infinitesimalcalcul anwenden, so muss man es ermöglichen, dass er dort von Denen, die ihn anwenden sollen, zuvor erlernt werde. CANTOR.

Einfache Versicherungsrechnungen von Karl Lembore, Seminarlehrer.

I. Versicherungen auf den Todesfall mit Berücksichtigung der Rechnungsgrundlagen des Lebensversicherungs-Vereins für mecklenburgische Lehrer; II. Versicherungen auf den Lebensfall mit Berücksichtigung der Rechnungsgrundlagen der Kaiser Wilhelms-Spende elementar entwickelt und dargestellt. 77 u. 49 S. Parchim i. M. 1890, bei H. Wehdemann.

Der unmittelbare Zweck des Verfassers ist der, seine heimatblichen Berufsgenossen mehr und mehr dem Lebensversicherungsvereine für mecklenburgische Lehrer und der Kaiser Wilhelms-Spende zuzuführen, dem ersteren Vereine für Versicherungen auf den Todesfall, dem zweiten für solche auf den Lebensfall. Er sucht diesen Zweck dadurch zu erfüllen, dass er mit grosser Klarheit die Regeln auseinandersetzt, welche die jedesmal erforderten Einnahmen der Versicherungsgesellschaft berechnen lassen,

und dass er zeigt, wie die beiden von ihm empfohlenen Vereine in ihren Satzungen jene Regeln befolgen. Herrn Lembcke's Auseinandersetzungen zeichnen sich vor manchen ähnlichen auch dadurch aus, dass von der Bildung der Sterblichkeitslisten gehandelt ist, während dieselben sonst einfach als vorhanden vorausgesetzt zu werden pflegen, und durch ein, wenn auch nur kurzes Verweilen bei dem Vertheilungsverhältnisse der Jahresüberschüsse in Gestalt von Dividenden. Einer wichtigen Bemerkung sind wir allerdings bei Herrn Lemboke nicht begegnet, der nämlich, dass bei sonst gleichen Satzungen diejenige Versicherungsgesellschaft die grösste Sicherheit gegen die Gefahren einer Uebersterblichkeit bietet, welche ihre Mitglieder über den grössten Flächenraum vertheilt besitzt, weil nur dadurch strichweise auftretende Krankheiten ihren schädigenden Einfluss einbüssen. spricht diese Thatsache gegen jede eng localisirte Versicherungsgemeinschaft, und so auch gegen jene der mecklenburger Lehrer, so vortrefflich sie geordnet und verwaltet sein mag. Auch im Versicherungswesen gilt das Wort vom grossen Ganzen, dem man mit Vortheil sich anzugliedern bestrebt sein müsse, und wir würden den mecklenburger Lehrern viel eher, als den Rath zum Eintritt in ihren Sonderverein, den entgegengesetzten Rath ans Herz legen: mit ihrem ganzen Vereine einer der bestehenden grossen deutschen Gegenseitigkeitsgesellschaften beizutreten, die in Gotha, Karlsruhe, Leipzig, Stuttgart ihren Sitz haben. Die Kaiser Wilhelms-Spende dagegen ist über ganz Deutschland ausgedehnt und kann deshalb für Versicherungen auf den Lebensfall um so unbedenklicher empfohlen werden, als jene genannten Gegenseitigkeitsgesellschaften dieser Gattung von Versicherungen sehr kühl gegenüberstehen, wenn sie überhaupt sich darauf einlassen. CANTOR.

Elementary Algebra edited for the Syndics of the University press by W. W. Rouse Ball, fellow and mathematical lecturer of Trinity College, Cambridge; author of a history of mathematics, a history of the study of mathematics at Cambridge, etc. Cambridge 1890 at the University press. XV, 486 pag.

Das uns zur Anzeige vorliegende Buch ist eine durchaus auf die Anfangsgründe sich beschränkende Buchstabenrechnung. Irgendwelche Ansprüche auf wissenschaftliche Strenge oder auf neue Entwickelungen zu erheben, wäre dem ausgesprochenen Zwecke des Buches gegenüber ungerecht. Unter den Lehrbüchern niederster Ordnung wird es vermöge der zahlreich aufgenommenen Beispiele und der hübschen Ausstattung eine immerhin ehrenvolle Stellung einnehmen.

Geometry in Religion and the exact dates in biblical history after the monuments or the fundamental principles of christianity, the precessional year etc. as based on the teaching of the ancients by the cube, square, circle, pyramid etc. London, A. Breusinger. Leipzig, A. Twietmeyer. VII, 96 S.

Referent glaubt, der Verfasser beabsichtige zu zeigen, dass kein einziges Wort und keine einzige Zahl in den Schriften des alten und des neuen Testaments so zu verstehen seien, wie der Wortlaut besage. Ueberall sind dem Verfasser symbolische Bedeutungen klar, zu welchen er den Schlüssel meistens aus Aegypten sich verschafft. Indessen scheint auch rabbinische Kabalistik des Buches Yezirah und englisch-amerikanische Freimaurermystik ihr Scherflein beigetragen zu haben. Gern würde Referent die Hauptpunkte hervorheben, wenn es ihm gelungen wäre, das Büchlein zu verstehen; allein es wurde ihm dabei so dumm, als ging' ihm ein Mühlrad im Kopfe herum.

Bibliographie

vom 1. Mai bis 31. Juli 1891.

Periodische Schriften.

Physikalische Abhandlungen der königl. Akademie der Wissenschaften zu
Berlin; aus dem Jahre 1890. Berlin, G. Reimer. 7 Mk. 50 Pf.
Sitzungsberichte der königl. sächs. Gesellschaft der Wissenschaften. Mathematisch-naturwissenschaftl. Cl. 1891, I u. II. Leipzig, Hirzel. 2 Mk.
Sitzungsberichte der kaiserl. österr. Akademie der Wissenschaften. Mathematisch-naturwissenschaftl. Cl. IIa. 99. Bd. 10. Heft. Wien, Tempsky.

3 Mk. 80 Pf.

Mémoires de l'académie des sciences de St. Pétersbourg. VII. série, tome XXXVIII, No. 3. Leipzig, Voss. 3 Mk. 40 Pf.

Verhandlungen der vom 15.—21. Sept. 1890 zu Freiburg i. B. abgehaltenen Conferenz der permanenten Commission d. internationalen Erdmessung; red. v. A. Hirsch. Berlin, G. Reimer. 8 Mk.

Astronomische Nachrichten, herausgeg. v. A. KRUEGER. Generalregister der Bände 81—120, Nr. 1921—2880. Hamburg, W. Mauke Söhne. 25 Mk. —, 127, u. 128. Bd. Ebendas. 30 Mk.

Vierteljahrsschrift d. astronom. Gesellschaft. 25. Jahrg., red. v. F. Schoenfeld u. H. Seeliger. 3. u. 4. Heft. Leipzig, Engelmann. 4 Mk.

Deutsches meteorologisches Jahrbuch für 1890, herausgeg. v. königl. preuss. meteorolog. Inst. durch W. v. Bezold. 2. Heft. Berlin, Asher & Co. 3 Mk. Mittheilungen des mathem.-naturwissenschaftl. Vereins in Württemberg, herausgeg. v. O. Böklen. 4. Bd. 1. Heft. Stuttgart, Metzler. 3 Mk. Mathematische und naturwissenschaftliche Berichte aus Ungarn, redigirt v. J. Fröhlig. 8. Bd. Berlin, Friedländer & S.

Reine Mathematik.

- JACOBI'S Gesammelte Werke. 6. Bd., herausgeg. von K. Weierstrass. Berlin, G. Reimer. 14 Mk.
- LEHMANN, E., De la Hire und seine sectiones conicae. 2. Theil. Leipzig, Hinrichs. 1 Mk. 20 Pf.
- POCKELS, F., Ueber die partielle Differentialgleichung $\Delta u + k^2 u = 0$ und deren Auftreten in der mathematischen Physik. Mit Vorwort von F. KLEIN. Leipzig, Teubner. 8 Mk.
- JUNKER, J., Die Verallgemeinerung der Hermite'schen Transformation im Zusammenhang mit der invariantentheoretischen Reduction der Gleichungen. Crefeld, J. Greven.
- PECHE, M., Analytische Bestimmung aller Minimalflächen, welche eine Schaar reeller Parabeln enthalten. (Dissert.) Göttingen, Vandenhoeck & Ruprecht.
- VENSKE, O., Einige Aufgaben der Variationsrechnung betr. Raumeurven mit constanter erster Krümmung. (Dissert.) Ebendas. 1 Mk. 20 Pf. Stolz, O., Grössen und Zahlen. Rede. Leipzig, Teubner. 80 Pf.
- Scheffler, H., Beiträge zur Theorie der Gleichungen. Leipzig, Förster.

 3 Mk. 50 Pf.
- PIETZKER, F., Die Gestaltung des Raumes. Kritische Untersuchungen über die Grundlagen der Geometrie. Braunschweig, Salle. 2 Mk.
- Schwering, K., Hundert Aufgaben aus der niederen Geometrie nebst vollständigen Lösungen. Freiburg i. B., Herder. 2 Mk.
- Schmidt, E. v., Euklid's 11. Axiom, durch eine neue Definition der Geraden bewiesen. Moskau, Deubner. 80 Pf.

Angewandte Mathematik.

- Galileo Galilei, Unterredungen über die Mechanik (Fallgesetz etc.).

 Uebersetzt von A. v. Oettingen. (Aus Ostwald's Klassiker der exakten Wissensch.) Leipzig, Engelmann. 2 Mk.
- KIRCHHOFF, G., Vorlesungen über mathemat. Physik. 2. Bd.: Mathemat. Optik, herausgeg. v. K. Hensel. Leipzig, Teubner. 10 Mk.
- HÖCKNER, W., Einschaltung von Punkten in ein durch Coordinaten gegebenes trigonometrisches Netz. (Dissert.) Leipzig, Fock. 2 Mk.
- Noellner, A., Das krystallographische Zeichnen auf der Schule. Ebendas.

 1 Mk. 80 Pf.

Physik und Meteorologie.

WINKELMANN, A., Handbuch der Physik. 8. Lief. Bres!	lau, Trewendt.
	3 Mk. 60 Pf.
VIOLLE, J., Lehrbuch der Physik. Deutsch v. E. Gumlich,	L. HOLBORN u. A.
1. Thl.: Mechanik. 1. Band (Mechanik der festen	Körper) 1. Lief.
Berlin, Springer.	2 Mk.
BOLTZMANN, L., Vorlesungen über Maxwell's Theorie de	r Elektricität und
des Lichts. 1. Theil. Leipzig, Barth.	5 Mk.
CLAUSIUS, R., M. PLANCK u. C. PULFRICH, Die kinetische	Theorie der Gase.
2. Lief. Braunschweig, Vieweg.	6 Mk. 80 Pf.
KRIEG, M., Der praktische Experimentalphysiker, nach	HOPKIN'S Experi-
mental science. 2.—8. Lief. Magdeburg, Faber.	à 75 Pf.

Bergholz, P., Ergebnisse der meteorolog. Beobachtungen in Bremen von

1803 bis 1890. I. H. Bremen, Nössler.

3 Mk.

Historisch-literarische Abtheilung.

Recensionen.

Dr. Ernst Schröder, Vorlesungen über die Algebra der Logik (Exacte Logik). Erster Band. Leipzig, Teubner. 1890. 8°. XII u. 717 S.

Schröder hat in seinem "Operationskreis des Logikkalkuls" (1877) eine kurze Uebersicht der von Boole schon 1847—1854 geschaffenen rechnenden Behandlungsweise der Logik in einer Darstellung gegeben, die vor dem Original eine consequentere Behandlung, die systematische Einführung der Negation und die Vermeidung aller aus der Arithmetik herüber genommenen Symbole voraus hatte. In der Zwischenzeit, die zwischen dem Erscheinen des genannten Schriftchens und dem des hier anzuzeigenden Buches liegt, hat der Verf. mit unermüdlichem Fleisse die Fortschritte verfolgt, welche wir den Engländern und Amerikanern, vor Allen Charles S. Peirce, in dem Gebiete des Logikcalculs verdanken, und giebt uns nun in dem oben genannten Werke eine ausführliche, systematische, mit einer grossen Zahl von werthvollen eigenen Untersuchungen durchwebte Darstellung der ganzen Theorie, wie sie heute vorliegt.

Selbstverständlich liess sich an manchen Stellen eine Erörterung und kritische Würdigung der Ansichten der Philosophen über Streitfragen aus dem Gebiete der Logik nicht vermeiden. Ueber diese Theile des Buches hier ein kritisches Urtheil abgeben zu wollen, kann mir als Mathematiker nicht beifallen. Ich kann nur erklären, dass ich mit den vom Verf. aufgestellten Ansichten übereinstimme und muss mich im Uebrigen auf den mehr rechnenden Theil und dessen Behandlung beschränken.

Dies ist sofort der Einleitung gegenüber am Platze, wo zunschst die schwierige Frage erörtert wird, wie ein folgerichtiges Denken möglich ist, dessen Gesetze die Logik geben soll, wie die Bedenken und Zirkel zu vermeiden sind, die sich im Begriffe des Widerspruches finden. Schröder entscheidet sich für die Sigwart'sche Ansicht, derzufolge das Denken "logisch" zu nennen ist, wenn eine Denknothwendigkeit uns zwingt, dasselbe zu vollziehen mit der Ueberzeugung absoluter Gewissheit und der Verbindlichkeit für alle Intelligenzen. Dieses logische Denken hat die Form der Deduction aus identischen Urtheilen. Und die Aufgabe des Logikcalculs in seinem ersten Theile ist es nun, eine Technik zu entwickeln, welche zu Dig 18ed by GOOGLE

Hist,-lit. Abthlg. d. Zeitschr. f. Math. u. Phys. XXXVI, 5.

gegebenen Prämissen oder Annahmen unfehlbar alle Folgerungen liefert oder etwaige Widersprüche aufzeigt. Eine philosophische Abschweifung über den Ursprung des logischen Denkens, die auch die Ansichten, welche Verf. nicht theilt, in umsichtiger Weise beachtet, leitet dann über zu einem Abschnitte über Zeichen und Namen, der sich hauptsächlich an Trendelenburg anschliesst. Es wird gezeigt, wie sich allmälig in einer deductiven Wissenschaft das Studium der Dinge durch das Denken mit den Zeichen ersetzt, und erörtert, welche Bedingungen die Zeichen erfüllen müssen, wie sie besonders einsinnig sein müssen. Passende Beispiele und Hindeutungen auf interessante psychologische Fragen beleben die Dar-Der Beweis, dass neben den Eigennamen noch Gemeinnamen nothwendig sind, leitet über zu dem Begriffe, in dem eine bestimmte, von anderen unterschiedene Gruppe von Merkmalen zusammengefasst wird. Je nachdem man nun den Inhalt des Begriffs, d. h. die Gesammtheit der in ihm vereinigten Merkmale betrachtet, oder den Umfang, nämlich die "Classe" der unter den Begriff fallenden Individuen, kann man eine Logik des Inhalts oder eine des Umfangs bilden. Die alte Logik hatte das erstere Ziel. Für die Logik des Umfangs kämpft Schröder, besonders gegen Lotze, und sie ist es, die der exakten Logik zu Grunde liegt. Begriffen, oder vielmehr den durch sie bezeichneten Classen, setzt sich das Urtheil zusammen, das aussagt, dass die Subjectclasse ganz in der Classe des Prädicats enthalten ist. Die Wortsprache ist häufig nicht sehr geeignet, dies Verhältniss mit der nöthigen Genauigkeit darzustellen, während die Zeichensprache der exakten Logik dies mit grösster Kürze und Präcision zu thun vermag. Während die alte Logik unfruchtbar war, indem sie neue Probleme nicht aufzeigte, hat die rechnende Logik, ähnlich wie die ganze Mathematik, den Charakter, dass sie stets neue Aufgaben stellt.

tion, das in der Formel $a \neq b$ aussagt: die Classe a sei in der b enthalten oder mit ihr identisch, und das gewöhnlich mit "ist" übersetzt werden kann. Wie in Worten ausgedrückte kategorische Urtheile in die Zeichensprache der Subsumtion zu übersetzen sind, welche Vorsichtsmassregeln bezüglich der Einsinnigkeit der Worte, besonders bei solchen wie "Einige" u. dergl., zu treffen sind, wird ausführlich erörtert. Dann wird, zunächst in rein formaler Weise, ein Calcul aufgestellt, den Verf. als zidentischen Calcul" bezeichnet. Es wird angenommen, es sei definirt, was das Zeichen ≠ bei irgend einer Mannigfaltigkeit von Dingen bedeute. Diese Definition sei derart, dass der "Satz der Identität" $a \neq a$ gelte und dass aus $a \neq b$, $b \neq c$ folge $a \neq c$. Ans diesen Annahmen wird dann durch strenge Schlüsse bewiesen, dass a=a, dass aus $a \neq b$ und $b \neq c$ $a \neq c$ folge. Durch die Subsumtionen $0 \neq a$, $a \neq 1$, die für jedes a gelten sollen, werden nun zwei Gebiete 0 und 1 adjungirt, von welchen besonders die Null äusserst wichtig ist, indem nur bei ihrer Einführung alle Operationen ausführbar werden. Digitized by GOOSIG

Es folgt, dass $a \neq 0$ die Gleichung a = 0, und $1 \neq a$ a = 1 nach sich zieht. Nach Peirce werden nun, wieder rein formal, ab und a+b definirt durch die Subsumtionen: wenn $c \neq a$ und $\neq b$ ist, so soll gesetzt werden $c \neq ab$ und wenn $a \neq c$ und $b \neq c$ ist, so soll gesetzt werden $a + b \neq c$ und jeweils umgekehrt. Diese Definitionen haben die Folge, dass $ab \neq a$ und $\neq b$, dass a und $b \neq a+b$ sind, dass 0.a=0, 1.a=a, 0+a=a, 1+a=1 ist. Während durch die gegebenen Definitionen ab nur als Prädicat und a+b nur als Subject definirt ist, ergiebt sich aus ihnen, vermöge der früheren Definitionen und Prämissen, auch wie ab als Subject und a+b als Prädicat zu definiren ist, indem nämlich $ab \neq c$ ist, wenn ans den Subsumtionen $x \neq a$ und $x \neq b$ stets auch $x \neq c$ folgt, bezw. $c \leftarrow a + b$ ist, wenn aus $a \leftarrow x$ und $b \leftarrow x$ $c \leftarrow x$ folgt.

Im weiteren Fortgang werden das Commutations- und das Associationsgesetz für Addition und Multiplication, die beiden "Tautologiegesetze" aa = a, a + a = a, und die Rechengesetze bewiesen, dass aus $a \neq b$ folgt $ac \neq bc$, $a+c \neq b+c$, als specielle Fälle der Combination der Subsumtionen $a \neq b$, $a' \neq b'$ zu $aa' \neq bb'$ und $a + a' \neq b + b'$. Mit Hilfe der Multiplication and Addition kann man die Subsumtion $a \neq b$ auch in Form der Gleichung a = ab oder in der a + b = b schreiben. Endlich folgen noch die Gleichungen a(a+b) = a, a+ab=a, die eine der wichtigsten Rechnungeregeln giebt, $ab + ac \neq a(b+c)$, $a+bc \neq (a+b)(a+c)$, die einen Theil des Distributionsgesetzes ausdrücken, und wird gezeigt, dass ans 1 = ab state a = 1, b = 1, and a + b = 0 jeweils a = 0, b = 0 folgt.

So weit, aber nicht weiter geht die strenge formale Deduction aus den an die Spitze gestellten Prämissen und Definitionen.

Freilich wird sie im Buche nicht in der ununterbrochenen Reihe vorgetragen, in der wir hier die wichtigsten Resultate angeführt haben, sondern sie wird unterbrochen durch eine Vorlesung über die Deutung der Operationen, bei welcher deren materiale Seite ihr Recht erhält. Insbesondere ist dabei hervorzuheben, dass ab zu deuten ist als die Classe, welche den gemeinsamen Theil der Classen a und b umfasst, bezw. als Nullclasse, wenn sie keinen gemeinsamen Theil besitzen, und a+b als die Individuen umfassend, welche entweder zu a, oder zu b, oder zu beiden gehören. Die Eigenschaften der O hat dabei die Nullclasse, die gar nichts ent-In ausführlicher Weise wird die Uebersetzung aus der Wortsprache in die Zeichensprache behandelt, und bei der Summe a+b die Bedentung von "oder" genau studirt, welches ja "nämlich" (sive), "oder aber" (aut) und "oder auch" (vel) bezeichnen kann. Die Zulassung der Nullclasse bedingt die von Sätzen wie "Alle gleichseitigen, rechtwinkligen Dreiecke sind gleichseitig", die freilich unsinnig erscheinen. Schröder hebt zu ihrer Vertheidigung mit Recht hervor, dass häufig in der Wissenschaft solche Sätze an die Spitze von Deductionen gestellt werden, um zu beweisen, dass gewisse Dinge nicht existiren. Aber die Adjunction der Nullclasse hat noch Digitized by 🔽

die Folge, dass eine Subsumtion $a \leftarrow b$ nur dann etwas aussagt, wenn a nicht gleich Null ist.

Eine äusserst wichtige Untersuchung bezieht sich auf den Sinn, der der Classe 1 beigelegt werden kann und darf. Boole glaubte darunter die Gesammtmasse alles Denkbaren verstehen zu dürfen. Schröder zeigt, dass dies nicht angeht, indem er Widersprüche nachweist, die sich sonst bei den Subsumtionen ergeben. Ja man darf nicht einmal als Gebiet der Subsumtionen ansehen eine Menge von Individuen zugleich mit Classen, die aus diesen gebildet sind, wenn man den Sinn des Zeichens

für beide Arten von Individuen festhalten will.

Obwohl gegen die Strenge der ganzen Deduction sich nichts erinnern lässt, und es interessant ist, zu sehen, wie weit man in den Folgerungen aus den Annahmen kommen kann, ohne den formalen Standpunkt zu verlassen, glaube ich doch, dass durch diese Darstellung die ganze Theorie einen recht abstracten Charakter erlangt hat. Besonders die Definitionen von ab und a+b haben diesen in hohem Maasse an sich und sie müssten durch einige Beispiele erläutert werden. Die Adjunctionen der Null und der Eins dürften rein formal genommen ebenfalls einem nicht mathematischen Leser Schwierigkeiten bereiten. Ich glaube, dass Verfasser besser gethan und vielen seiner Leser einen Dienst erwiesen hätte, wenn er die materiale Definition in den Vordergrund gestellt hätte, wie er es 1877 that, und die formale Deduction hätte folgen lassen.

Bei der Deutung der Zeichen ergiebt sich auch noch das Distributionsgesetz a(b+c)=ab+ac, während aus den früher erwähnten Prämissen nur $ab+ac \neq a(b+c)$ geschlossen werden kann. Dass es auf dem formalen Standpunkte in der That nicht möglich ist zu beweisen, dass in der letzten Subsumtion das Zeichen \neq durch das Gleichheitszeichen ersetzt werden darf, wird von Schröder in eigenthümlicher, sehr scharfsinniger Weise dargethan, indem er auf die Individuen eines bestimmten Gebietes die Subsumtionen anwendet. Das Gesammtgebiet besteht hier aus den 990 Gleichungen, welche sich unter gewissen Einschränkungen aus einer Function von zwei Variabeln und ihren beiden Umkehrungen bilden lassen. Zu Classen oder, wie Verfasser sagt, Algorithmen sollen diejenigen dieser Gleichungen zusammengefasst sein, welche von einander bedingt werden, aber keine anderen, der Classe nicht angehörigen Gleichungen nach sich ziehen.

Dass die 990 Gleichungen verträglich sind, ist vom Verfasser früher [Hoppe's Archiv 1887 (2), 5, 225-278] bewiesen und wird auch hier durch ein Beispiel dargethan. Die sämmtlichen 990 Gleichungen bilden so einen Algorithmus U_0 . Ein Algorithmus A sei \Leftarrow einem andern B, wenn alle Gleichungen von A auch zu B gehören. Unter AB sei das den beiden Algorithmen gemeinsame System von Gleichungen verstanden, das entweder Null ist, wenn keine gemeinsamen Gleichungen existiren, oder selbst ein

Digitized by GOOSIC

Algorithmus sein muss. Unter A + B ist dagegen der Algorithmus verstanden, der die Gleichungen von $m{A}$ und $m{B}$ und alle, die aus deren Zusammenbestehen folgen, enthält. Die Begriffe von AB und A+Bgenügen den früheren Definitionen. Unter den Algorithmen werden nun hervorgehoben einer A_i von 16 Gleichungen, C_0 von 30 Gleichungen, $O_1 = A_1 + C_1$ von 150 Gleichungen, C_{00} von 18 Gleichungen und $E_1 = O_1 \cdot C_{00}$ von 2 Gleichungen, die alle durch Functionaltafeln erläutert werden. Da zeigt sich nun, dass $A_1 \cdot C_{00} = 0$, $C_1 \cdot C_{00} = 0$, $(A_1 + C_1)C_{00} = O_1 \cdot C_{00} = E_1$ ist, so dass $(A_1 + C_1) C_{00}$ nicht $= A_1 \cdot C_{00} + C_1 \cdot C_{00}$ sein kann. Nachdem ich erkannt hatte, dass die Ungiltigkeit des Distributionsgesetzes bei diesem Beispiel dadurch bedingt ist, dass a+b nicht nur die Individuen der beiden Classen a oder b enthält, sondern auch noch andere, war es mir leicht, noch einfachere Beispiele zu construiren. Ich will ein solches anführen. Es seien auf dem Gebiete der positiven ganzen Zahlen mit Einschluss der Null Classen definirt als die Gesammtheit der Zahlen, welche durch eine bestimmte Linearform $\alpha p + \beta q + \cdots + \lambda s$ dargestellt werden können, wo α , β , ... bestimmte ganze Zahlen, die positiv oder auch Null sind, vorstellen sollen, p, q, r, \ldots dagegen ganze Zahlen, die nur positiv oder Null sein sollen, aber sonst beliebig sind. Man kann diese Classe durch $(\alpha, \beta, \gamma, ...)$ darstellen. $a \neq b$ bezeichne, dass die Zahlen der Classe a auch alle zur Classe b gehören. Dann folgt aus $a \neq b$ und $b \neq c$ auch $a \neq c$ und die Classe (0) ist \neq jeder Classe a und jede Classe ist \neq der Classe (1), so dass diese Classen (0) und (1) hier an die Stelle der früheren Symbole 0 und 1 treten.

ab sei die Classe der Zahlen, welche gleichzeitig die durch a und b verlangte Form haben; a+b dagegen enthalte alle Zahlen, die durch Addition einer Zahl der Form a zu einer der Form b entstehen. Dass die zu a+b gehörigen Zahlen eine Classe in dem hier definirten Sinne bilden, ist leicht zu sehen; der Beweis, dass auch die zu ab gehörigen Zahlen eine Classe bilden, der nicht so einfach ist, sei der Kürze wegen fortgelassen. Ist dann $c \neq a$ und $\neq b$, so ist es auch $\neq ab$, und umgekehrt. Und ist $a \neq c$, d. h. sind alle Zahlen der Classe a auch in der c enthalten und $b \neq c$, so ist such, weil die Formen linear sind, $a + b \neq c$, so dass die Definitionen der Summe und des Products erfüllt sind. Sei nun a die Classe der Zahlen von der Form 3p, b die der Zahlen von der Form 2q, c die der Form 7r, so ist a+b die Classe der Zahlen der Form 3p+2q, (a+b)c wird durch diejenigen Zahlen gebildet, welche zugleich von der Form 3p+2q und der 5r sind, was bei allen der letzten Form zutrifft. Dagegen sind die Zahlen ac gegeben durch 15t, die bc durch 10u und die ab+bc durch 15t+10u. Die Zahlen der letzteren Form kann man aber schreiben 5(3t+2u), sie sind also $\neq (a+b)c$. Dagegen ist das Umgekehrte nicht der Fall, indem zu 5r die Zahl 5 gehört, die nicht von der Form 15t + 10u ist, da ja die t und u nur positive Werthe haben

dürfen. Es ist also sicher ac+bc nicht = (a+b)c. — Es muss somit zu den früheren Prämissen noch eine weitere hinzukommen. Als solche wählt Schröder die, dass a(b+c) = ab+ac gelte, wenn bc=0 ist. Dann ist b+c eine sogenannte "reducirte" Summe. Um nun von da aus das Distributionsgesetz zu beweisen, benutzt Schröder die Negation.

Die Negation der Classe a wird mit a, bezeichnet und formal definirt durch $aa_1 \neq 0$, den Satz des Widerspruchs, und $1 \neq a + a_1$, den Satz des ausgeschlossenen Dritten, aus welchen Subsumtionen auch noch die Eindeutigkeit folgt, wenn die Existenz bewiesen ist. Es wird dann $(a_1)_1 = a_1$ $a+b=a+a_1b$. Die Frage, wie Urtheile, die Verneinungen enthalten, in Worte zu übersetzen seien, macht eine genauere Untersuchung der Bedeutung des Urtheils "A ist nicht B" nöthig. Schröder schliesst sich, gegen Sigwart und Lotze, der älteren, aristotelischen, Ansicht an, indem er dieses Urtheil mit Wundt als ein negativ prädicirendes auffasst, das mit $A
eq B_1$ zu übersetzen sei. — Von der Negation gelten die wichtigen Sätze $(ab)_1 = a_1 + b_1$, $(a+b)_1 = a_1b_1$; and $a \neq b$ folgt $b_1 \neq a_1$, and die Subsumtion $a \neq b$ kann entweder durch $ab_1 = 0$ oder durch $a_1 + b = 1$ ersetzt werden. Wenn $ab \neq c$, so ist $a \neq b$, +c. Ferner kann a = b durch $ab_1 + a_1b = 0$ auf Null oder durch $ab + a_1b_1 = 1$ auf Eins gebracht werden. Nach diesen und einigen früheren Sätzen kann man nun jedes System von gleichzeitigen Subsumtionen und Gleichungen in eine Gleichung vereinigen, die auf der einen Seite Null und auf der andern (mathematisch gesprochen) eine lineare homogene Function jedes Buchstabens und seiner Verneinung hat, so dass man im Logikcalcul überhaupt nur mit einer linearen Gleichung zu thun hat. Eine Reihe von gut gewählten Beispielen dient zur Erläuterung und Uebung der gewonnenen Regeln, wobei insbesondere die Entwickelung einer Function in eine Summe oder in ein Product ausführlich erörtert wird. Die Gleichungen sind nun entweder analytische - identische -, oder synthetische, d. h. Gleichungen, die nicht identisch gelten. Bei den letzten ist eine Auflösung anzugeben. Aus der Gleichung $ax + bx_1 = 0$ folgt nun $b \neq x \neq a_1$, womit zugleich in $b \neq a_1$ oder ab=0 die Bedingung der Möglichkeit, d. h. die Resultante gegeben ist Man kann aber auch sagen, dass $x = bu_1 + a_1u$ der Gleichung genügt, wobei u eine unbestimmte Classe vorstellt. Dass diese letzte Form in der That alle x enthält, welche die Doppelsubsumtion oben erfüllen, war schon vorher dargethan, so dass die fragliche Form die allgemeine Lösung der Gleichung darstellt.

Wie einfach gestaltet sich also hier im Logikcalcul Auflösung und Elimination gegenüber den entsprechenden Aufgaben der Zahlenlehre! Und dies gilt auch für mehrere Unbekannte, bei welchen im Princip nichts Neues zur Anwendung kommt, wo nur hinsichtlich der Form des Resultats mannigfache Abänderungen möglich sind. Die einzige Bemerkung von grosser Wichtigkeit, die sich aber ergiebt, ist, dass man, um aus mehreren

Digitized by GOOGIC

Gleichungen durch Elimination die umfassendste Resultante zu erhalten, erst die Gleichungen zu einer vereinigen und dann erst eliminiren muss.

Wenn man nach den gegebenen Regeln x einmal aus x+b=a, das andere Mal aus xb=a bestimmt, kommt man auf Formen, die der logischen Subtraction bez. Division entsprechen. Die Rechnungsregeln für diese Operationen werden von Schröder entwickelt, gezeigt, wie weitläufig und wenig angenehm sie werden, und nachgewiesen, dass sie der Negation gegenüber gar nicht gebraucht werden, indem diese Operation viel bequemer Alles leistet, was jenen zugemuthet wurde.

Obgleich die Bestimmung der Unbekannten aus einem Gleichungssystem principiell keine Schwierigkeiten darbietet, so ist es doch oft nicht leicht, ja manchmal sogar unmöglich, die Lösungen in einer bestimmten Form zu erhalten. Wenn z. B. die gegebenen Gleichungen durchaus symmetrisch sind, so gelingt es nicht immer, auch symmetrisch gebaute Lösungen zu finden, die nicht zu viele und nicht zu wenig willkürliche Gebiete auf-In einfacheren Fällen ist es Schröder durch eine besondere Methode gelungen. So wird z. B. die Gleichung xy=0 in allgemeinster und symmetrischer Weise durch $x = \alpha \beta_1$, $y = \alpha, \beta$ erfüllt, wo α, β ganz beliebige Gebiete bezeichnen. Die Methode aber führt manchmal zu den zu lösenden Gleichungen zurück und folglich nicht zum Ziele. Wenn aber solche besondere Bedingungen, wie die erwähnten, nicht gestellt sind, so führt die allgemeine Betrachtung rasch und zuverlässig zum Resultate, wie an einer Reihe von speciellen Aufgaben gezeigt wird, wobei auch der Unterschied der Boole'schen Lösung von der vom Verfasser angegebenen, oben angeführten Modification derselben an einigen Beispielen erörtert wird. Wir wollen nur eine Aufgabe, vielleicht die älteste der rechnenden Logik, da sie schon von Lambert 1781 mit Zeichensprache behandelt wurde, herausgreifen: Wenn die x ohne die a einerlei sind mit den b, und die a ohne die x zusammenfallen mit den c, wie drückt sich x durch a, b und c aus? In Zeichen heisst dies $a_1x = b$, $ax_1 = c$ und daraus folgt zuerst die Resultante $ab + a_1c = 0$ und die Lösung $x = (a+b)c_1$ (was Lambert durch a+b-c darstellte).

Freilich kann man die Lösung eines Gleichungssystems auch noch in anderer Weise erreichen. Je vons z. B. theilt das Gebiet 1 mit Hilfe der n in der Aufgabe vorkommenden Gebietssymbole und ihrer Negationen in 2^n sich ausschliessende Theile. Durch Vergleichung mit den Prämissen ergiebt sich, dass x in einzelnen dieser Theile nicht liegen kann; die übrig bleibenden liefern dann die zu ziehenden Schlüsse, die nach Schröder passend durch Rechnung gefunden werden. Venn modificirt das Verfahren, indem er die Je vons sche Tafel durch Diagramme ersetzt, deren einzelne Felder, je einem Theile entsprechend, nach Vorschrift der Prämissen freigelassen oder schattirt werden. Eine andere Methode rührt von Peirce her und ist in der Aenderung, die Schröder an ihr anbringt, wie es scheint, sehr praktisch.

Bei ihr werden alle Prämissen in Subsumtionen dargestellt und diese nach der Unbekannten links in Summen-, rechts in Productform entwickelt, so dass jede Prämisse die Form erhält:

$$ax + bx_1 \neq (\alpha + x_1)(\beta + x).$$

Durch Zerlegung, nach den Definitionen von Product und Summe, und Umformung entsteht hieraus $x = \alpha + a_1$, $b \beta_1 = x$, so dass $b \beta = x = \alpha + a_1$ folgt. Durch Combination der bei den einzelnen Prämissen gefundenen Resultate erhält man dann den Werth von x und gleichzeitig die Gesammtresultante. Eine andere, von Mc Coll herrührende Art der Behandlung erweist sich als von der modificirten Boole'schen Methode nicht allzu verschieden und übertrifft weder sie, noch die Peirce'sche.

Damit ist eigentlich der Inhalt des Bandes erschöpft. Es erübrigt noch die Anhänge zu erwähnen. Ein erster giebt einige Erörterungen über die Addition und Multiplication, der zweite ist ein Excurs über Klammern, der für den Mathematiker wenig Neues bietet; im dritten Anhange wird die Unabhängigkeit des Productes bezw. der Summe von mehr als drei Factoren von der Anordnung des Processes bewiesen, wesentlich nach Hermann Grassmann mit der von Stolz herrührenden Vereinfachung, wie sie von Zahlen ohne Weiteres auf die Gebiete übertragen werden kann. Die Anhänge 4 und 5 sind ihrem Inhalte nach schon oben bei den Bemerkungen über das Distributionsgesetz skizzirt. Im Anhang 6 endlich wird zuerst bewiesen, dass die "Gruppe" aller Ausdrücke, die man aus # Symbolen durch Addition, Multiplication und Negation herstellen kann, wenn sie vollständig ist, d. h. so beschaffen ist, dass die Anwendung der drei Species auf Ausdrücke der Gruppe wieder einen schon in der Gruppe enthaltenen Ausdruck liefert, 22 Ausdrücke enthält, wobei jeweils 0 und 1 mitgerechnet sind. Die Ausdrücke einer Gruppe kann man in Typen zusammenfassen, indem man immer die vereinigt, welche auseinander durch Buchstabenvertauschung hervorgehen. Zwei complementäre Typen, von welchen nämlich der eine die Negation des andern ist, bilden zusammen einen Haupttypus. Die Aufsuchung der Typen kann, wie Schröder zeigt, darauf reducirt werden, von den 2ª Ecken eines Würfels in einem Raume von * Dimensionen auf alle möglichen Arten 1, 2, 3 u. s. w. herauszuwählen. Alle Gruppen von m Ecken liefern dabei denselben Typus, die durch Deckbewegungen des Würfels ineinander übergeführt werden können. Für n=2 ergeben sich so sechs Typen und vier Haupttypen, für n=3findet Schröder die schon von Miss Ladd gegebenen 22 Typen wieder, die in 14 Haupttypen zerfallen; für n=4 giebt es nach Clifford 398 Typen mit 238 Haupttypen.

Die Resultate, welche sich für n = 3 darbieten, benutzt Schröder, um noch einen Beweis für die Nichtbeweisbarkeit des Distributionsgesetzes zu liefern, dessen Grundgedanke mit dem des früheren Beweises übereinstimmt, dann aber hauptsächlich, um zu zeigen, dass eine symmetrische

allgemeine Auflösung der Gleichung $xys + x_1y_1s_1 = 0$ mit drei unbestimmten Symbolen nicht angeht. Der Beweis wird auf zwei Arten geliefert. Bei der einen wird zu den drei Gleichungen $x = \varphi(abc)$, $y = \psi(abc)$, $s = \chi(abc)$ die durch Elimination von abc entsprechende Resultante ganz allgemein berechnet und gezeigt, dass sie, wenn $\psi(abc) = \varphi(bca)$, $\chi(abc) = \varphi(cab)$ ist, nicht mit jener Gleichung identificirt werden kann, ohne dass Widersprüche entstehen. Bei der zweiten Art werden diejenigen Gruppen von drei Symbolen x, y, s aufgestellt, die symmetrisch sind; deren sind es 14. Indem nun weiter für die 44 möglichen Formen der Function $\varphi(abc)$, die wesentlich Verschiedenes geben, die Resultanten wirklich berechnet werden, zeigt sich, dass im Ganzen 5 Formen von den 14 nicht vorkommen, unter welchen die oben angeführte ist.

Den Schluss des Buches bildet ein ausführliches Literaturverzeichniss über die gewöhnliche und die rechnende Logik, in dem etwa 130 Autoren verzeichnet sind.

Die vorstehende Inhaltsangabe, in der ich versucht habe, wenigstens die Hauptsätze der exacten Logik anzuführen, erschöpft bei Weitem nicht den reichen Inhalt des Werkes; sie zeigt nur das äussere Gerippe, dessen Füllung manchmal lange Untersuchungen oder Rechnungen bilden. Die Darstellung ist durchweg äusserst klar und auch für den nicht mathematisch gebildeten Leser wohl leicht verständlich; auch die Bechnungen, die durch den Reichthum an Umformungen eines Ausdrucks oft überraschen, sind mit der nöthigen Ausführlichkeit gegeben.

Den zweiten Band, der den Aussagencalcul und die schwierige Lehre von den particularen Urtheilen bringen wird, werden wohl alle Leser dieses ersten mit Spannung erwarten.

J. Lüroth.

Ueber das Zeichen. Festrede bei dem feierlichen Acte des Directorats-Wechsels an der Grossh. badischen Technischen Hochschule zu Karlsruhe am 22. November 1890, gehalten von dem Director des Jahres 1890/91 Dr. Ernst Schröder, ord. Professor der Mathematik. Karlsruhe 1890, Druck der G. Braun'schen Hofbuchdruckerei. 24 S.

Lieblingsneignigen verleugnen sich nicht und sollen sich auch nicht verleugnen. Sie bilden einen wesentlichen geistigen Zug des Menschen und gestatten dem Leser eines Buches, in dem Inhalt ausser dem, was an Thatsächlichem darin enthalten ist, gewissermassen ein Bildniss des Verfassers zu erkennen. Was Herr Schröder auch geschrieben hat, man erkennt überall mit Leichtigkeit den Schriftsteller, welcher der Algebra der Logik sein Denken gewidmet hat, und so verhält es sich auch mit der Directoratsrede von 1890. Dieses Titelkupfer dient ihr keineswegs zur Unzierde. Directoratsreden sollen dem grossen Zuhörerkreise verständlich sein, dem kleinen Kreise von anwesenden Fachgenossen nicht Allbekanntes

Digitized by GOOgle

bieten, und da ist, wie wiederholt gesagt worden ist, Niemand übler daran, als ein mathematischer Directoratsredner. Geschichte der Mathematik und Wahrscheinlichkeitsrechnung, das sind die Gebiete, aus welchen meistens die Stoffe gewählt wurden. Dem Grenzgebiete zwischen Algebra und Logik ihn entnehmen zu können, sind nur Wenige in der Lage, weil sie eben jenes Grenzgebiet, wenn überhaupt, doch nur nothdürftig kennen. Herr Schröder geht vom Zeichen in der allgemeinsten Bedeutung des Wortes aus. Schriftzeichen leiten ihn hinüber zu mathematischen Zeichen. Von ihnen gelangt er zur allgemeinen Zeichenschrift, welche, ohne Worte zu schreiben, die Begriffe darzustellen sich als Aufgabe setzt und dadurch hervorbringt, dass ein und dasselbe Wort, beispielsweise das Wort "ist", bald durch ein Zeichen, bald durch ein anderes Versinnlichung findet, je nach dem Sinne, den es gerade hat. Dass diese Gemeinsprache dem Volapük überlegen sei, bezweifeln wir so wenig als Herr Schröder. Ob sie aber eine solche Zukunft habe, wie Herr Schröder es erhofft, möchten wir nicht unterschreiben. Noch weniger können wir den Zukunftsphantasien zwischenplanetarischen Zeichenverkehrs eine ernste Seite abgewinnen. Indessen - es sind schon unglaublichere Dinge zur Wahrheit geworden!

CANTOR.

Der Geschmack in der neueren Mathematik. Antrittsvorlesung, gehalten am 24. October 1890 in der Aula der Universität Leipzig von Dr. FRIEDRICH ENGEL, a. o. Professor. In Commission bei Alfred Lorentz in Leipzig, 1890. 19 S.

Auch die Wissenschaft ist der Mode unterworfen. Referent war vielleicht der Erste, welcher auf diesen Erfahrungssatz hinwies, welcher zur Erklärung mancher sonst schwer verständlichen geschichtlichen Thatsachen vortreffliche Dienste leistet. Der Satz hat aber nicht allein von Wissenschaft zu Wissenschaft Geltung, so dass die hervorragenden Geister einer Zeit sich mit Vorliebe dieser oder jener Geistesbeschäftigung widmen, auch in der einzelnen Wissenschaft kommt die Mode zur Geltung, und es ist eine vielfach unbewusste, aber um so tiefere Wahrheit, welche man ausspricht, wenn man der Wortverbindungen "moderne Algebra", "moderne Geometrie" u. s. w. sich bedient. Herr Engel hat nun in seiner Antrittsvorlesung versucht, dem Modernen in der Mathematik auf den Grund zu gehen und zu zeigen, dass die heutige Mode es verlangt, dass die Hilfsmittel, welche ein Gebiet mathematischer Forschung zu Gebote stellt, voll und ganz ausgebeutet werden, und dass kein Mittel Anwendung finde, das der Aufgabe nicht naturgemäss sei; dann, aber auch nur dann sei eine Untersuchung schön, d. h. für den Geschmack befriedigend. Es ist zweifellos, dass diese Bestimmung des mathematischen Schönheitsbegriffes ausreichend ist, um manche Untersuchungen neuester Zeit als schön erkennen zu lassen, und

Herr Engel hat offenbar gerade dieses beabsichtigt. Ob aber nur dann Schönheit mathematischer Forschung zu rühmen ist, wenn kein fremdartiges Forschungsmittel in Anwendung kam, das möchten wir bezweifeln, trotzdem schon Aristoteles das Uebergreifen auf ein anderes Gebiet verdammte. Schön nannte man beispielsweise schon oft und, wie wir glauben, mit vollem Rechte solche Untersuchungen, welche zeigen, wie vorher unsichtbare Brücken von einer mathematischen Disciplin zur andern hinüberführen, und welche so den Jacobi'schen Ausspruch rechtfertigen, es sei nothwendig, die ganze Mathematik zu kennen, um einen beliebigen einzelnen Abschnitt derselben zu verstehen. Dieser unser Widerspruch beabsichtigt keineswegs, Herrn Engel in seiner Grundanschauung, welche er in anziehender Sprache auseinanderzusetzen weiss, zu widerlegen. Wir wollten nur zeigen, dass auch über den mathematischen Geschmack verschiedene Geschmäcker möglich sind.

Erkenntnisstheoretische Einleitung in die Geometrie von Max Raschig, Oberlehrer. Wissenschaftliche Beilage zum Jahresbericht des Königl. Gymnasiums zu Schneeberg (1890. Progr.-Nr. 537). 38 S. 4°.

Der Verfasser schickt der eigentlichen Behandlung der geometrischen Grundbegriffe zwei Abschnitte voraus; in dem ersten präcisirt er seinen Standpunkt zur Frage nach der Erkenntniss einer realen Aussenwelt dahin, dass er das empirische Element auf Kosten des apriorischen erweitert, ohne letzteres zu beseitigen, indem er die Hypothese aufstellt von der Existenz einer realen in uns sich spiegelnden Aussenwelt; im zweiten wird "Erfahrung und Abstraction in der Mathematik" besprochen und im Zusammen. hang mit Abschnitt 1 behandelt. Durch das "Vermögen der Abstraction" wird aus der Erfahrung Erkenntniss gewonnen, durch das Hinzuthun der "durchgehenden Gesetzmässigkeit" wird das Abstrakte von dem Empirischen streng geschieden. Verfasser glaubt auf diese Weise dem Empirismus einerseits, dem Apriorismus andererseits gerecht zu werden. Der dritte Abschnitt, "Classenformen geometrischer Gebilde", entwickelt ausgehend vom Körper, den wir durch Abstraction erhalten, vermittelst des Grenzbegriffes Fläche, Linie, Punkt, die als Begriffe "Postulate" genannt werden; die Erzeugung der Gebilde durch Bewegung schliesst sich an. Ursprung der Raumvorstellung" definirt nach einer Besprechung der neueren Raumhypothesen den Raum als einen "Begriff", abgezogen aus der Vorstellung des Raumes als eines dreifach und stetig, aber ohne Grenzen Ausgedehnten.

In dem folgenden Abschnitte, "Gesetzmässige Bewegung, ihre Erkenntniss und Wiederholung der geometrischen Construction", findet sich folgender bemerkenswerthe Satz: "Dass nun die Natur durch die in ihr obwaltende Tendenz der Bildung gewisser gesetzmässiger Körper unsere Raum-

phantasie anregt und leitet bei Bildung unserer geometrischen Formen, darin beruht das empirische Moment derselben; darin aber, dass Vernunft, jene Tendenź erkennend, die annähernde Identität vollendet postulirt und für die denkende Betrachtung, für geometrische Schlüsse und Beweise von den Anomalien der Wirklichkeit frei erhält, darin beruht das apriorische Moment und damit die von Erfahrung unabhängige Gewissheit der Geometrie."

Die folgenden Capitel behandeln "die Gerade", "die Ebene", "das elfte Axiom Euklid's". In dem Capitel "die Gerade" ist Lehrsatz (5) wichtig. die Entwickelung des Begriffes der normalen Lage aus demjenigen der Hauptlinie des gleichschenkligen Dreiecks neu und schön. Im letzten Capitel betont Verfasser noch einmal seinen Standpunkt, die Geometrie auf Phoronomie zu gründen; der Günther'schen Fassung des elften Axioms wird vor derjenigen von Petersen der Vorzug gegeben.

Die sehr lesenswerthe, gediegene Abhandlung, die der vorhandenen Literatur überall gerecht wird, sei den Herren Fachgenossen zu eingehendem Studium angelegentlichst empfohlen. Persönlich giebt Referent gern seiner Freude Ausdruck, in fast allen Punkten mit dem Verfasser übereinzustimmen.

Schmalkalden, December 1890.

Dr. H. SCHOTTEN.

Die Harmonie in der Baukunst. Nachweisung der Proportionalität in den Bauwerken des griechischen Alterthums von W. Schultz. Erster Theil: Mathematische Grundlagen des angewendeten Proportionirungssystems. Mit 60 Holzschnitten. Hannover-Linden 1891, Verlagsanstalt von Carl Manz. VIII, 124 S.

Was ist schön? Dasjenige, was die Sinne angenehm berührt. Was berührt aber die Sinne angenehm? Die Antwort auf diese Frage kann nur erfahrungsmässig gesucht werden, weil von den beiden in Wechselbeziehung tretenden Grössen das durch die Sinne zu Erfassende zwar als allenfalls bekannt, die Umsetzung der sinnlichen Erfassung in das Gefühl des Angenehmen oder Unangenehmen dagegen als noch durchaus räthselhaft erachtet werden muss. Erfahrungsthatsache ist es, dass der Zusammenklang von Tönen dem Ohre angenehm ist, wenn deren Schwingungszahlen in Verhältnissen stehen, welche durch kleine ganze Zahlen sich ausdrücken lassen, und so hat man auch den angenehmen Eindruck auf das Auge mit Verhältnissen der Abmessungen der angeschauten Dinge in Zusammenhang zu bringen gesucht. Vor Allem übt der goldene Schnitt auf das Auge eine befriedigende Wirkung, d. h. das Verhältniss einer kleineren Strecke (Minor) k zu einer grösseren Strecke (Major) g, welches durch die Gleichung $\frac{k}{g} = \frac{g}{k+g}$ ausgedrückt ist, die wiederum zu $\frac{g:2}{k} = \frac{1}{4} \left(\sqrt{5+1} \right)$ sich umformen lässt,

ist dem Auge angenehm. Soviel wusste man schon seit Jahrhunderten. Herr Schultz hat die Schönheit für das Auge in der Baukunst weiter verfolgt. Er hat zu diesem Zwecke Abmessungen von thatsächlich schönen Bauwerken des griechischen Alterthums, welche mit glaubwürdiger Genauigkeit bekannt sind, durcheinander dividirt, beziehungsweise durch verschiedene Rechnungsverfahren miteinander in Verbindung gesetzt; er hat die so hervortretenden Zahlen daraufhin geprüft, ob sie stets dem Verhältnisse eines Minor zu seinem Major mit genügender Annäherung entsprechen. Er erhielt ein erstes unter allen Umständen anzuerkennendes Ergebniss: bei einigen wirklich schönen Bauwerken stellen gewisse Abmessungen einen Minor und einen Major dar; bei anderen nicht minder schönen Bauwerken sind es andere Abmessungen, die das gleiche Ergebniss liefern; bei noch anderen Bauwerken treten Verhältnisszahlen auf, welche dem goldenen Schnitte nicht entstammen und welche gleichwohl das Schönheitsgefühl durchaus befriedigen. Damit war bestätigt, was man geneigt sein musste, von vornherein anzunehmen, dass nämlich nicht nur ein Schönheitsmodell in der Baukunst vorhanden ist, so wenig die Tonkunst auf eine einzige wohlklingende Folge von Tönen angewiesen ist. Herr Schultz fühlte sich weiter versucht, an die Frage heranzutreten, ob jene schönen Bauwerke von Denen, welche dieselben errichteten, wir möchten sagen instinktiv, oder in dem Bewusstsein hergestellt wurden, jene bei ihnen auftretenden Verhältnisszahlen seien die Grundbedingungen optischer Harmonie. Schriften über diesen Gegenstand aus dem griechischen Alterthum giebt es heute nicht mehr. Auch der Römer Vitruvius spricht nur von einer vorhandenen Verhältnissmässigkeit, nicht davon, wie sie zu erzielen sei. Wieder konnte also nur eine Art von Wahrscheinlichkeitsrechnung angestellt werden. Schultz sagt so: Bei den Bauwerken, welche der Rechnung in dem früher erwähnten Sinne unterworfen wurden, kamen Zahlen heraus, welche sehr annähernd mit jenen Irrationalwerthen sich deckten, die dem goldenen Schnitte und trigonometrischen Functionen des Winkels des regelmässigen Fünfecks und Siebenecks entsprachen. Es wäre ein wunderbarer Zufall, wenn wirklich nur Zufall dieses Zusammentreffen bewirkte, also haben die griechischen Baumeister des perikleischen und schon die des vorperikleischen Zeitalters gewusst, dass sie mit jenen geometrisch definirten Zahlen es zu thun hatten, oder, anders ausgesprochen, die Herstellung des regelmässigen Fünfecks und des regelmässigen Siebenecks, wenigstens durch angenähert richtige Construction, war ihnen bekannt, und die Anwendung jener obengenannten Winkelfunctionen bei Tempelbauten ist es, welche Philolaos, welche Plutarch im Sinne hatten, wo sie von der Beziehung einzelner Winkel, einzelner Zahlen zu dieser und jener Gottheit sprachen. Herr Schultz fühlt, wie unmöglich es ist, so weitgehende geometrische Kenntnisse griechischen Baumeistern in einer Zeit zuzusprechen, in welcher die Geometrie eben erst sich einzubürgern begann, und er löst die damit

auftretende Schwierigkeit, indem er jene Kenntnisse zu dem eisernen Bestande des aus Aegypten Eingeführten rechnet. Der Böschungswinkel der ägyptischen Pyramiden, d. h. der Winkel, welchen die Seitenfläche der Pyramide mit ihrer Grundfläche bildet, und dessen Cotangente gefunden wird, indem man die halbe Seite des Grundquadrates durch die senkrechte Höhe der Pyramide dividirt, ist bei den wirklich gemessenen Pyramiden, sowie bei denen, von welchen in dem bekannten Rechenbuche des Ahmes die Rede ist, zwischen den Grenzen 51° und 534° eingeschlossen. Gewöhnlich nimmt man an, die Mittelgrösse von etwa 52° sei beabsichtigt gewesen, und die so weit zurückliegende Zeit der Erbauung habe schon das Mögliche geleistet, indem sie keine grösseren Abweichungen, als solche von nicht ganz 20 hervorbrachte. Herr Schultz dagegen rechnet von Fall zu Er findet einmal jene Cotangente nahezu = $0.809017 = \frac{1}{2}(1/5+1)$ = $cotg \, 51^{\circ} \, 1' \, 5'', 27$; ein anderes Mal findet er sie = $0.786151 = 1 \, \sqrt{1 \, (V \, \bar{5} - 1)}$ = cotg 51° 49' 38",3, und er sieht nun in beiden Fällen einen goldenen Schnitt beabsichtigt und erzielt, wenn man nur andere Abmessungen an der Pyramide in beiden Fällen als den Minor und den Major zulässt.

Haben wir soweit uns einfach berichtend verhalten, so glauben wir nicht umhin zu können, nunmehr unsere vielfach widersprechende Meinung - denn pur um Meinungen kann es sich handeln - zu äussern. Wir geben zu, dass in perikleischer Zeit der goldene Schnitt und was geometrisch damit zusammenhing, bewusstes Eigenthum der Baumeister war. Die Bauhütte des Mittelalters wahrte das alte Erbe, vielleicht unter Abschwächung der geometrischen Einsicht. Auch vorperikleische Baukunst mag als schön bekannte Bauverhältnisse angewandt haben, in welchen man später goldenen Schnitt u. s. w. erkennen durfte, aber ihren Kunstlern und gar den Aegyptern, als deren Lehrmeistern, dies geometrische Wissen zuzuschreiben, welches unseres Dafürhaltens erst bei den Pythagoräern und in der Akademie vorkommt, das erscheint uns durchaus unzulässig. Einen, wie es scheint, schlagenden Gegengrund liefert das einzige bisher bekannt gewordene schriftliche Zeugniss des ägyptischen Alterthums, das Rechenbuch des Ahmes. Dort ist ein Quotient "Seqt" berechnet, welcher in den vier Beispielen von Pyramiden mit 514° und 534° Böschungswinkel gewonnen wird, indem man mit der Kante der Pyramide in die halbe Diagonale ihres Grundquadrates dividirt. Das sind also die Abmessungen, von welchen wir ausdrücklich wissen, dass die Aegypter sie in ein Verhältniss zu einander zu setzen pflegten, und nur von diesen Abmessungen wird man zunächst ausgehen dürfen. Es erscheint nach den Messungen an vorhaudenen Pyramiden und nach den Beispielen des Ahmes nicht ganz ausgeschlossen, dass der Segt die Grösse 4 haben sollte. Will Herr Schults mit diesem durch sehr kleine Verhältnisszahlen sich empfehlenden Bruche weitere Versuche machen, so könnten vielleicht Ergebnisse erscheinen, für

welche wir uns zu erwärmen vermöchten. An einen goldenen Schnitt, an ein regelmässiges Fünfeck bei den Aegyptern zu glauben, dazu sind wir nicht im Stande, und noch viel weniger vermag ein so altes regelmässiges Siebeneck uns Vertrauen einzuflössen.

Die nautischen Instrumente bis zur Erfindung des Spiegelsextanten. Von Dr. A. Breusing, Director der Seefahrtschule in Bremen. Bremen 1890, bei H. W. Silomon. 46 S.

Ursprünglich ein Vortrag, gehalten 1883 auf dem Geographentage in Frankfurt a. M., kam die kleine Abhandlung als Begrüssungsschrift der Naturforscher-Versammlung bei deren Tagung in Bremen zum Drucke. Der verdiente Beifall, den sie bei dieser Gelegenheit erntete, veranlasste den Verleger, sie auch weiteren Kreisen noch zugänglich zu machen, und wir können diesen Entschluss nur billigen. Wer noch nicht wüsste, dass Herr Breusing auf dem Gebiete der geschichtlichen Instrumentenkunde allererste Autorität ist, würde aus der anmuthig geschriebenen Abhandlung die Ueberzeugung davon gewinnen, und mit dem beruhigten Gefühle, nur Ergebnisse zuverlässigster Forschung vor sich zu haben, den reichen Inhalt in sich aufnehmen. Nur als Beispiel heben wir hervor, dass (S. 16-17) die Cardano'sche Aufhängung auf ihren Ursprung untersucht ist, während wir in den Geschichtswerken über Physik höchstens den Namen derselben Auch die Unterscheidung des Baculus geometricus von dem Baculus astronomicus (S. 36 flgg.) ist gehörig betont und damit auf die Quelle von Ungenauigkeiten hingewiesen, welche in manchen Werken vorkommen, deren Verfasser beide durchaus verschiedene Vorrichtungen miteinander vermengten. CANTOR.

Christoph Scheiner als Mathematiker, Physiker und Astronom, von Anton von Braunmühl (XXIV. Band der Bayerischen Bibliothek, begründet und herausgegeben von Karl von Reinhardstoettner und Karl Trautmann). Bamberg 1891, Buchner'sche Verlagsbuchhandlung. 928.

In der allgemeinen deutschen Biographie hat Herr S. Günther (Bd. XXX S. 718-720) Christoph Scheiner auf zwei Druckseiten behandelt. Die uns vorliegende umfangreiche Lebensgeschichte des gleichen Mannes liefert uns gewissermassen die Ausführung des dort Entworfenen, liefert uns aber allerdings auch nicht unwesentlich mehr, da insbesondere die Verdienste Scheiner's um die Beobachtung der Sonnenflecken wohl nirgend so gründlich gewürdigt worden sind. Wir erfahren, dass Scheiner einige Entdeckungen machte und veröffentlichte, welche unbeachtet blieben, bis sie in neuester Zeit zum zweiten Male genauen Beobachtern sich enthüllten. Dazu

gehört namentlich die Thatsache, dass die Bahn der Sonnenflecken mit der Ekliptik nicht zusammenfällt, sondern einen Neigungswinkel zu ihr besitzt den Scheiner aus seinen zahllosen Beobachtungen auf 74 Grad bestimmte, während man heute seine Grösse mit 71 Grad ansetzt. Von Scheiner rührt Entdeckung und Name der sogenannten Penumbra her, des Halbschattens, welcher die Sonnenflecken umgiebt. Scheiner erkannte die trichterartige Vertiefung der Fleckenkerne, welche er sogar der Messung unterwarf, wenn auch hier seine Messungsergebnisse mehr als in anderen Fällen von den heutigen Annahmen abweichen. Nicht minder, als bei Beobachtung der Sonnenflecken hat auch auf anderen Gebieten der Astronomie Scheiner Wichtiges entdeckt und zum Theil richtiger, als sein grosser Gegner Galilei erklärt. Dazu gehört insbesondere die elliptische Gestalt der Sonnenscheibe am Horizonte als Folge des Brechungsvermögens unserer Atmosphäre. Wir haben Galilei und Scheiner als Gegner bezeichnet. Allgemein bekannt sind die zwischen Beiden gewechselten Streitschriften, aber ein vollkommen richtiges Bild von jenen Feindseligkeiten gewinnt man selten, weil Schilderungen derselben ausschliesslich bei Schriftstellern vorkommen, die sich vorzugsweise mit Galilei beschäftigten und dadurch begreiflicherweise die Neigung gewannen, auf seine Seite zu treten. Herr v. Braunmühl wird dem "Audiatur altera pars" gerechter. Man dürfte mit ihm zur Annahme gelangen, dass Galilei in ziemlich unbegründeter Streitlust den Kampf eröffnete, während der Verdacht allerdings an Scheiner haften bleiben dürfte, den Kampf nicht immer offen geführt zu haben. Streng bewiesen freilich ist es nicht, dass Scheiner zu den geheimen Hetzern gehörte, welche Urban VIII., Galilei's früheren Gönner, gegen denselben aufbrachten, aber sehr wahrscheinlich gemacht ist es. Auch für die genauere Schilderung dieser Beziehungen ist Herrn v. Braunmühl Dank zu wissen. Einen Irrthum, der ihm unterlief, hat er inzwischen bemerkt und den Referenten brieflich am 19. März 1891 darauf hingewiesen. Scheiner hat nämlich noch am 16. Juli 1633 von Rom aus an Gassendi geschrieben, war also während der ganzen Dauer von Galilei's Process in Rom an-Nach Ablauf desselben verliess er Rom. Wenigstens ist seine Anwesenheit in Wien 1634 festgestellt. CANTOR.

Die darstellende Geometrie in organischer Verbindung mit der Geometrie der Lage. Von Dr. Wilhelm Fiedler. Dritte erweiterte Auflage. III. Theil: Die construirende und analytische Geometrie der Lage.

Beide Werke stehen im engen Zusammenhange miteinander, durch welchen Umstand ihre gemeinschaftliche Anzeige am Platze erscheint.

Die Steiner'schen Schliessungsprobleme nach darstellend geometrischer Methode. Von Dr. Martin Distell, Assistent am Eidgenössischen Polytechnikum in Zürich. Mit 10 lithogr. Tafeln. Leipzig, Teubner. 1888.

Wie nach der ausdrücklichen Betonung der analytischen Geometrie im Titel des Fiedler'schen Werkes zu erwarten steht, hat der vorliegende Band in der gekennzeichneten Richtung gegenüber dem entsprechenden Theile der zweiten Auflage wesentliche Erweiterungen erfahren. Der Band besitzt einen ganz selbständigen Charakter, der schon bei der von Voraussetzungen der Elementargeometrie unabhängigen strengen Begründung der Projectivität nach Staudt-Darboux'scher Methode, mit welcher die Entwickelung beginnt, hervortritt.

Die Gruppirung des Inhalts in drei Abschnitte:

- A. Die Grundlagen der Geometrie, die imaginären Elemente, die Coordinaten und Parameter;
- B. Die Parameter und die Projectivität Erzeugnisse der projectivischen Gebilde erster Stufe;
- C. Die projectivischen Gebilde, speciell die Elementargebilde zweiter und dritter Stufe,

ist beibehalten.

A. Nach der oben bereits hervorgehobenen Begründung der Projectivität ist besonders hervorzuheben die Darstellung eines imaginären Punktes durch das symmetrisch zum Mittelpunkte M einer elliptischen Involution gelegene Paar NN' sich entsprechender Punkte. Nimmt man noch auf dem Träger einen Anfangspunkt O an, setzt die Entfernung OM = m, ferner NN'=2n, so sind die Punkte der Ebene, aus welchen die Involution durch Circularinvolution projicirt werden (nämlich die Endpunkte des zu NN' senkrecht stehenden Durchmessers eines Kreises, welcher durch NN' geht und M zum Mittelpunkte hat), die im Gauss'schen Sinne gegebenen geometrischen Darstellungen der Punkte m + ni. In ähnlicher Weise werden dann auch die übrigen imaginären Elemente: die imaginäre Gerade erster Art, die imaginäre Ebene, die imaginäre Gerade zweiter Art, bez. durch einen Winkel zweier Linien, einen Winkel zweier Ebenen und durch einen von zwei Erzeugenden eines hyperbolischen Paraboloids eingeschlossenen Streifen, dargestellt. Auf dieser Grundlage werden dann später Constructionen mit Elementen, welche durch imaginäre Coordinaten definirt sind, durchgeführt.

Die Einführung der projectiven Coordinaten als Doppelschnittverhältnisse geschieht, wie früher, unter Annahme der Fundamentalpunkte und des Einheitspunktes, dessen sämmtliche Coordinaten der Einheit gleich gesetzt werden. Bemerkenswerth sind jedoch gewisse, als Permutationsgruppen bezeichnete Gruppen von Punkten, deren Coordinaten entweder dieselben absoluten Werthe haben und sich nur durch die Vorzeichen unterscheiden, oder andererseits überhaupt dieselben Werthe haben, aber diese in Bezug auf die Fundamentalelemente des Coordinatensystems vertauscht zeigen. Curven und Flächen, welche durch eine Anzahl solcher Punkte bestimmt sind, enthalten dann vielfach auch die übrigen der Gruppe. Ein Beispiel

hierfür ist, dass der Kegelschnitt, der durch fünf der sechs Punkte mit den Coordinaten abc, acb etc. in allen Vertauschungen geht, auch den sechsten enthält.

Eine wesentliche Erweiterung hat die Theorie der speciellen Coordinatensysteme erfahren, welche durch Annahme unendlich ferner Fundamentalelemente hervorgehen. So treten in der Ebene die Streifencoordinaten mit einem unendlich fernen Punkte den cartesischen mit unendlich ferner Geraden als duales Gegenstück bei, und ebenso kommen im Raume die prismatischen Coordinaten, aber dann weiter die Keilcoordinaten mit einer unendlich fernen Fundamentalgeraden hinzu. Anderer Natur sind die Deutungen der Parameter in linearen Mannigfaltigkeiten als Coordinaten. Die neuerdings vielfach verwandten Potenzcoordinaten der linearen Kugelsysteme finden als specielle Fälle jenes allgemeinen Begriffes in verschiedenen Beispielen Aufnahme.

Nach dieser Kennzeichnung des Inhaltes vom Abschnitt A sei es gestattet, noch einmal zurückgreifend einen Punkt in der Wiedergabe des Darboux'schen Beweises für den "Fundamentalsatz" zu berühren. Die Schwierigkeit liegt bekanntlich in dem Nachweise, dass es zu zwei Punktepaaren AB, CD, welche sich nicht trennen, jedenfalls ein Punktepaar giebt, welches sowohl AB, als CD harmonisch trennt. Der Verfasser behauptet (S. 21), es sei evident, dass auch nur ein einziges Paar existire, und das erscheint mir nicht allein nicht evident, sondern sogar unmöglich auf Grund der Darboux'schen Ueberlegungen zu beweisen. Denn man weiss nur, dass einer von zwei Punkten eine gewisse Strecke, ein anderer einen Theil jener Strecke durchläuft, und kann nur erkennen, dass innerhalb der letzteren die Punkte irgendwo einmal zusammenfallen müssen, ohne ein Urtheil darüber zu haben, wie oft das geschieht.

B. Dieser Abschnitt hat wohl die wesentlichsten und wichtigsten Erweiterungen erfahren. Wir nennen die Plücker'sche Parameterdarstellung der Curven auf dem Hyperboloid und insbesondere der involutorischen Regelschaaren in projectiver Zuordnung und ihrer Erzeugnisse. Vorbereitend für spätere Untersuchungen ist die Erzeugung der ebenen Curven vierter Ordnung mit zwei Doppelpunkten aus zwei projectivischen Kegelschnittbüschela, welche durch Projection der Grundcurve eines Flächenbüschels zweiter Ordnung gewonnen wird, sofern das Centrum kein Punkt der Raumeurve ist. Rückt dieses auf die Curve, so folgt die Erzeugung der jetzigen Projectionscurve dritter Ordnung aus einem Strablenbüschel erster Ordnung mit ihrem projectivischen Kegelschnittbüschel. Aber auch die Erzeugung der allgemeinen Curve dritter Ordnung aus projectiven Strahleninvolutionen in halbperspectivischer Lage entspringt der nämlichen Quelle, wenn man die Basiscurve des Flächenbüschels als Durchdringung von zwei Kegeln des Quadrupels construirt. Durch die anzuwendenden Hilfsebenen werden die Erzeugenden des einen, wie des andern Kegels in einfach unendlich viele

einander entsprechende Paare geordnet. Die Paare auf jedem Kegel bilden demnach eine Involution zweiten Grades, und da das Gesagte in gleicher Weise für irgend zwei Kegel des Quadrupels gilt, so bildet dieses eine Gruppe von vier Flächen, deren Erzeugende durch die Basiscurve in projectivischen Involutionen geordnet werden. Besonders folgenreich wird die Bemerkung, dass an Stelle jener vier Kegel unendlich viele Gruppen von nicht singulären Flächen zweiter Ordnung des Büschels treten können.

Aus Bd. II, namentlich S. 173-179, ist bekannt, dass jede Bisecante der Grundcurve, insbesondere jede Tangente derselben mit ihr ein einfaches Hyperboloid bestimmt, für welches ihre zweiten Bisecanten aus den Punkten der gegebenen (oder die Verbindungsgeraden unter den Punktpaaren der Curve in den Ebenen des Büschels der gegebenen Bisecante) die Erzeugenden der andern Schaar sind. In jeder der beiden Regelschaaren des Hyperboloids giebt es vier Tangenten der Grundcurve: acht Gerade einer Gruppe in der aus einer beliebigen unter ihnen die übrigen als entsprechende in den involutorischen Centralcollineationen der Durchdringungsfigur mit sich selbst, hervorgehen und die sich in zwei Gruppen von gleichem Doppelverhältniss theilen. Nach solchen Vierergruppen von Tangenten treten nun, wie des Weiteren ausgeführt wird, zu jedem Hyperboloid des Büschels drei andere Hyperboloide, und es kommt daher 3+3=6-mal vor, dass unter solchen vier Flächen einer Gruppe zwei zusammenfallende auftreten. Jede solche Doppelfläche ist also dadurch insbesondere ausgezeichnet, dass ihre beiden Regelschaaren durch die Grundcurve in projectivische Involutionen geordnet werden und die Projection der Curve aus irgend einem Punkte der Fläche liefert die Erzeugung der ebenen Curve vierter Ordnung mit zwei Doppelpunkten durch projectivische Involutionen von Strahlen aus diesen Doppelpunkten oder dieselbe Erzeugung der Curve dritter Ordnung aus zweien ihrer Punkte, je nachdem das Centrum nicht auf der Curve oder auf der Curve liegt, und damit den Nachweis der Steiner'schen Schliessungssätze für n=2 aus derselben Quelle für beide Arten von Curven. Zur einfachsten Construction jener sechs Flächen führt aber die Betrachtung der 16 Scheitel der Grundcurve oder der Berührungspunkte der stationären Schmiegungsebenen, da die $\frac{1}{4}16.15 - 4.6 = 96$ Verbindungslinien dieser Punkte, welche nicht Mantellinien der Kegel sind, sich auf die sechs Flächen zu je 16 vertheilen und zwar acht auf die eine, acht auf die andere Schaar.

An dieser Stelle setzt nun Disteli's Schrift ein durch Ableitung der Steiner'schen Sätze für alle Werthe von n > 2; zunächst für alle Werthe von der Form $n = 2^k$, sodann für $n = 3^{k_1}$ und $n = 2^k \cdot 3^{k_1}$; $n = 5^{k_2}$, $n = 2^k \cdot 3^{k_1} \cdot 5^{k_2}$ und schliesslich für die allgemeine Zahl n. Auch die von Steiner am Schlusse seiner ersten Mittheilung gegebene Bemerkung, dass die geradlinigen Seiten der Polygone durch Kegelschnitte ersetzt werden können, erhält ihre Bestätigung. Die Wiedergabe der Methode ohne Anlehnung an die äusserst verwickelten, allerdings mustergiltig gezeichneten

Digitized by GOOSIC

Figurentafeln, von denen die eine auch dem Fiedler'schen Werke beigefügt ist, will mir nicht gelingen.

Es folgt jetzt (bei Fiedler) die Projectivität der Flächenbüschel zweiten Grades unter sich (vermittelt durch die Projectivität der Polarbüschel in Bezug auf einen beliebigen Punkt), womit dann die Erzeugung von Gebilden vierter, bez. dritter Ordnung von zwei Dimensionen durch je zwei jener Gebilde und der Raumcurven durch drei derselben gegeben ist. In analytischer Darstellung schliesst sich hieran die Theorie der Polarflächen auf Grund der Cremona'schen harmonischen Mittelpunkte, sowie eine rein geometrische Ableitung der Polaren nach einer Angabe des Berichterstatters und damit die Begründung der Plücker'schen Formeln für ebene Curven. Auch andere geometrische Ableitungen dieser Formeln von Beck und Hemming sind angereiht. Die Uebertragung auf Raumcurven ist dann durch die Entwickelungen des zweiten Bandes § 22 gegeben. Mit der Bestimmung der Doppelpunkte von Polaren und der dadurch definirten Kernflächen schliesst dieser Abschnitt.

C. Der Ausgangspunkt bildet die Transformation der homogenen Coordinaten unter besonderer Berücksichtigung der Coefficientenrelationen für metrisch specielle Fälle. Die Untersuchung dringt in dieser Richtung bis zu den Invarianten und Covarianten der Curven und Flächen zweiter Ordnung und ihrer Büschel vor. Die Clifford-Reye'sche Erweiterung des Polarenbegriffs, in dem statt des Poles eine Curve auftritt, und die Apolaritätstheorie werden noch gestreift.

Bei den Projectivitäten der Elementargebilde zweiter und dritter Stufe ist gelegentlich der Construction der Hauptelemente collinearer Ebenen bei vereinigter Lage, sowie später der collinearen Räume die eingehende Rücksicht auf die Formen der Affinität, Aehnlichkeit und Congruenz zu bemerken, Alles unter steter Rücksichtnahme auf die Unterschiede nach Gleichheit und Ungleichheit des Sinnes dieser Gebilde. Die Berticksichtigung der kinematischen Betrachtungsweisen, welche nach Ausicht aller urtheilsfähigen Kreise in den Rahmen der darstellenden Geometrie hineingehören und in Frankreich namentlich durch Mannheim's Werk längst Eingang gefunden haben, ist überall zu spüren; es sei hier nur auf die Construction der Schraubenaxe zweier congruenter starrer Systeme, welche eine vollständige Durchführung gefunden hat, bingewiesen. Aber auch in den Erzeugnissen der Elementargebilde sind vielfach Erweiterungen nach dieser Richtung gegenüber der früheren Auflage bemerkbar. Ueberall werden diejenigen Erzeugnisse besonders betrachtet, welche man durch metrische Specialfälle der allgemein projectivischen erhält, z. B. der tetraedrale Complex von zwei congruenten starren Punkt- oder Ebenenräumen. Die letzten Paragraphen eröffnen Ausblicke auf die Erzeugnisse von mehreren collinearen räumlichen Systemen und enthalten die Anfänge von Untersuchungen, wie sie seit Digitized by GOOSIC

einiger Zeit Gegenstand einer noch nicht abgeschlossenen Gruppe hochbedeutender Arbeiten von Reye im Kronecker'schen Journal sind.*

Der Gesammtinhalt des Werkes ist ein ungeheurer. Konnten schon in früheren Auflagen manche, selbst wichtige Dinge nur in Form von Beispielen dem Texte angereiht werden, so ist jetzt noch umfassender in dieser Bichtung verfahren worden und an die Zähigkeit des Lesers werden bisweilen dadurch hohe Anforderungen gestellt, dass im Text auf solche Beispiele zurückverwiesen wird, die ihrerseits nur skizzenhaft behandelt sind. Doch sehen wir lieber darüber hinweg und freuen uns, in der deutschen Literatur durch das vorliegende ein Werk zu besitzen, welches bei geometrischen Untersuchungen unter allen Umständen mit Erfolg zu Rathe gezogen werden kann.

Hannover.

C. RODENBERG.

Metrische Beziehungen an Tangentenfiguren der Kegelschnitte. Von Oberlehrer Handel. Abhandlungen zum Osterprogramm der König Wilhelmsschule zu Reichenbach in Schlesien. 1889. Progr.-Nr. 209. 20 S. Text und 2 Figurentafeln.

Zwei Kreiseigenschaften sind es vorzugsweise, um deren Verallgemeinerung für Kegelschnitte es sich handelt: 1. die algebraischen Beziehungen, welche zwischen den Seiten eines Dreiecks und den durch seine vier Berührungsseiten gebildeten Seitenabschnitten bestehen, und 2. die von Steiner umfassend klargelegten Eigenschaften des von vier Kreistangenten begrenzten einfachen Vierecks.

Zur Erzielung einer bequemen Ausdrucksweise bezeichnet der Verfasser als "Projection" einer Tangentenstrecke ihre orthogonale Projection auf eine Gerade, welche zu dem einen oder dem andern, nach dem Berührungspunkte der Tangente gehenden Brennstrahlen senkrecht steht. Wie leicht ersichtlich, ist die Länge der Projection von der Wahl des Brennstrahls unabhängig. Dann gipfelt das Resultat der Arbeit in dem Satze: In jedem einfachen (convexen, concaven oder überschlagenen) Viereck, dessen Seiten einen Kegelschnitt berühren, ist die algebraische Summe der Projectionen zweier Gegenseiten gleich der algebraischen Summe der Projectionen der beiden anderen. Dabei sind die Seiten, in Bezug auf welche der berührende Theil des Kegelschnittes entgegengesetzte Lage hat, mit entgegengesetzten Vorzeichen zu versehen.

Hannover.

C. RODENBERG.

^{*} Dieselbe ist jetzt vollendet, wie ich bei der Correctur hinzufäge.

Ein mit der Theorie algebraischer Flächen zusammenhängendes planimetrisches Problem von Dr. Bützberger, Lehrer der Mathematik in Langenthal. Bern, in Commission von Jent & Reinert. 1889.

' 31 S. 8°.

Das planimetrische Problem fordert die Bestimmung eines Dreiecks aus den gegebenen Längen der Winkelhalbirenden. Vorbereitend wird eine Aufgabe gelöst, in der an Stelle der ganzen Längen der Winkelhalbirenden nur die Strecken von den Ecken des Dreiecks bis zum Mittelpunkte des eingeschriebenen Kreises treten und welche drei Lösungen zulässt, von denen zwei auf reelle Dreiecke führen. Die schwierigere ursprüngliche Aufgabe erfordert die Auflösung der drei Gleichungen

$$xy(x+y+s)(-x+y+s) = \alpha^2(y+s)^2$$
 etc.,

in der x, y, s die gesuchten Seitenlängen des Dreiecks, α , β , γ die gegebenen Strecken sind. Behufs Feststellung der Anzahl der Lösungen werden x, y, z als rechtwinklige Coordinaten aufgefasst. Jene Anzahl ist dann durch die Zahl der Durchschnittspunkte der drei durch obige Gleichungen dargestellten Flächen gegeben. Nach Abzug der durch die gemeinschaftliche Durchschnitts curve jener Flächen absorbirten Punkte bleiben von den 43 Schnittpunkten noch 12, welche eigentlichen Lösungen angehören, und auch diese ordnen sich zu Paaren centrisch-symmetrisch in Bezug auf den Ursprung. Eine Aufstellung der Gleichung sechsten oder, wie der Verfasser vermuthet, vielleicht nur dritten Grades, auf welche das Problem hiernach führen müsste, wird zwar nicht gegeben, aber bei den zur Erreichung dieses Zieles gemachten Versuchen sind doch manche bemerkenswerthe Eigenschaften jeder der auftretenden Flächen erkannt worden. Z. B.: Die Reciprokalfläche ist mit der gegebenen von derselben Art. - Die Fläche ist der Ort eines Punktes, dessen Abstände von zwei sich unter rechtem Winkel schneidenden Geraden constante algebraische Summe "a" haben. an Stelle der beiden Geraden zwei beliebige windschiefe, so ist der Ort der Punkte noch immer eine Fläche vierter Ordnung und diese ist insbesondere die Steiner'sche (Römer-) Fläche, wenn a der senkrechte Abstand der Leitgeraden ist.

Hannover. C. Rodenberg.

Elemente der projektivischen Geometrie. Auf Grund neuer, vom Professor Karl Küpper herrührender Definitionen und Beweise leicht fasslich zusammengestellt von Wilhelm Rulf, Professor an der K.K. deutschen Staatsgewerbeschule in Pilsen. Mit vielen in den Text eingedruckten Holzschnitten. Halle a. S., Nebert. 1889. VI u. 96 S. 8°.

Im Vergleiche mit dem geringen Umfange ist der Inhalt der Schrift ein ausserordentlich reicher. Als wesentlichste und sehr bemerkenswerthe

Eigenthümlichkeit mag hier gleich die Art der Begründung der Projectivität bezeichnet und etwas eingehend dargelegt werden.

Die Definition der Grundgebilde ist die übliche. Zwei Punktreihen heissen dann weiter perspectivisch, wenn sie Schnitte eines und desselben Strahlenbüschels sind. Aber nun wird, was charakteristisch für die Schrift ist, unter Anwendung von Proportionen, nicht von Doppelverhältnissen, bewiesen: Zwei perspectivische Punktreihen können dadurch in eine neue perspectivische Lage gebracht werden, dass man zwei homologe Punkte derselben zur Deckung bringt. Hieran schliesst sich dann die Definition der Projectivität: Werden zwei Punktreihen derart aufeinander bezogen, dass einem Punkte der einen nur ein Punkt der andern entspricht, und lassen sie sich durch Deckung von zwei homologen Punkten in perspectivische Lage bringen, so nennt man sie projectivisch. Die ausdrückliche Forderung, dass einem Punkte nur ein Punkt entspreche, erscheint bei dieser Auffassung der Projectivität überflüssig, da die Möglichkeit der perspectivischen Lage ein solches Entsprechen schon bedingt. Die letzte Definition lässt dann sofort schliessen, dass zwei projectivische Punktreihen durch drei Paare homologer Elemente bestimmt sind, und eine kurze Betrachtung von ähnlichen und congruenten Reihen führt auf den Fundamentalsatz: Stimmen zwei projectivische Punktreihen in drei Elementen überein, so sind sie congruent.

Von nun an geht die Entwickelung in gewohnten Bahnen weiter und dringt vor bis zum Kegelschnittbüschel und der Steiner'schen Verwandt-Räumliche Erzeugnisse projectiver Gebilde werden nicht betrachtet. Hervorgehoben zu werden verdient noch die eingehende Behandlung der Construction eines Kegelschnittes aus theilweise imaginären Elementen.

In einer späteren Auflage möchte die Aufgabe ersten Grades des § 18 doch auch linear und nicht mit Hilfe eines Kreises gelöst werden. Die dort auftretenden projectiven Reihen baB und b'a'C sind, wie nicht bemerkt zu sein scheint, perspectiv ähnlich und damit liegt eine lineare Lösung auf der Hand. Diese Kleinigkeit thut natürlich der sonstigen Vortrefflichkeit des Buches keinen Abbruch.

Hannover. C. RODENBERG.

HEINRICH SCHRÖTER, Grundzüge einer rein-geometrischen Theorie der Raumeurve vierter Ordnung erster Species. Leipzig, B. G. Teubner. 1890. VI u. 100 S.

In seiner bekannten durchsichtigen Darstellungsweise und im engen Anschluss an seine vorhergegangene Publication über ebene Curven dritter Ordnung giebt Herr Schr. hier eine Uebersicht über die interessanten Eigenschaften der Raumcurven C_4 . Mit besonderer Vorliebe verweilt er

bei gewissen Configurationen, zu denen ausser den stationären Punkten auch die sogenannten "Tripel" und "Quadrupel" der Curve Veranlassung geben.

Nachdem in drei einleitenden Paragraphen Sätze über das zu C_4 gehörige Flächenbüschel und ihre Bestimmung durch acht Punkte gegeben sind, beschäftigt sich Herr Schr. in den §§ 4-6 mit den Tripeln von Punkten, welche den letzten Schnittpunkt der sie verbindenden Ebene zum Mit ihren drei Tangenten begemeinsamen Schmiegungspunkte haben. stimmt er die Schmiegungsebenen der Punkte. Da die Betrachtung auf Tripel reeller Punkte eingeschränkt wird, so folgt aus dem Satze, dass eine allgemeine ebene Curve dritter Ordnung drei in einer Geraden liegende reelle Wendepunkte besitzt, dass ein Punkt von C_4 einem Tripel angehört und ein Schmiegungspunkt ein Tripel bestimmt. Herr Schr. geht nun von dem Harnack'schen Satze aus, nach welchem der Ort der Punkte, von denen aus zwei Dreiecke durch dreifach perspectivische körperliche Ecken projicirt werden, eine C_4 ist, welche die sechs Punkte, \mathfrak{A}_1 , \mathfrak{A}_2 , \mathfrak{A}_3 ; \mathfrak{B}_1 , \mathfrak{B}_2 , \mathfrak{B}_3 , selbst enthält. Drei Hyperboloide, welche eine solche Curve miteinander gemein haben, werden, wie Herr Schr. sehr einfach zeigt, durch Geradentripel festgelegt, deren jedes A, A, A, und ein aus B, B, B, durch cyklische Verschiebung der Indices entstehendes Tripel ausschneidet. Mit A. M. M. bestimmt ein anderes Tripel $\mathfrak{D}_1\mathfrak{D}_2\mathfrak{D}_3$ von Punkten der C_4 in entsprechender Weise die anderen Geradentripel der Hyperboloide, die von A.A.A. ausgehen. In derselben Beziehung zu B, B, B, steht ein Tripel C, C, C. Die neuen sechs Punkte können aus den ersten linear mit Hilfe der Ebenen gefunden werden, die zwei Punkte A und einen Punkt B, bez. einen Punkt A und zwei Punkte ${\mathfrak B}$ enthalten. Sechs neue C_4 enthaltende Hyperboloide werden nun mit Hilfe der Geradentripel bestimmt, die einerseite das Tripel B, B, B, bez. A, A, A, ausschneiden, andererseits aber ein aus D, D, D, bez. & & durch cyklische Vertauschung entstehendes Tripel. Jedes der ersteren drei enthält in seiner andern Geradenschaar die Tangente in einem der drei Punkte A1, A2, A3 und die Verbindungslinie der beiden anderen. Da nun eine Tangente der C_4 ein sie enthaltendes Hyperboloid bestimmt, von dem auch die zweite vom Berührungspunkte ausgehende Gerade der Schmiegungsebene desselben angehört, so müssen nothwendig M., M., M. den lezten Schnittpunkt ihrer Ebene zum gemeinsamen Schmiegungspunkte haben. Da diese charakteristische Eigenschaft auch den Tripeln B, B, B, C1 C2 C3, D1 D2 D3 zukommt, so ist hiermit die Möglichkeit gegeben, unendlich viele Punkte der C, aufzufinden.

Ein vorliegendes Tripel bestimmt mit vier gewöhnlichen Punkten eine Curve C_4 eindeutig und vertritt daher vier gewöhnliche Punkte. Aus den obigen Beziehungen kann gefolgert werden, dass ein Tripel von einer beliebigen Secante aus in ein anderes projicirt wird. Auch schneiden die Ebenen, welche von einem Punkte der Curve aus die Seiten eines Tripel-

dreiecks oder die Tangenten in seinen Punkten projiciren, die Punkte eines neuen Tripels aus.

Drei beliebige Tripel $\mathfrak{A}_1\mathfrak{A}_2\mathfrak{A}_3$, $\mathfrak{B}_1\mathfrak{B}_2\mathfrak{B}_3$, $\mathfrak{C}_1\mathfrak{C}_2\mathfrak{C}_3$ einer Curve C_4 ergeben 27 Ebenen, deren jede einen Punkt aus jedem Tripel enthält. Zu je neun gehen diese Ebenen durch die drei Punkte eines vierten Tripels $\mathfrak{D}_1\mathfrak{D}_2\mathfrak{D}_3$. Eine Tabelle dieser Ebenen lässt sich aufstellen, wenn die Reihenfolge der Punkte \mathfrak{B}_1 , \mathfrak{B}_2 , \mathfrak{B}_3 so gewählt ist, dass sie in der oben angegebenen Art mit \mathfrak{A}_1 , \mathfrak{A}_2 , \mathfrak{A}_3 drei C_4 enthaltende Hyperboloide bestimmen und Entsprechendes von \mathfrak{C}_1 , \mathfrak{C}_2 , \mathfrak{C}_3 gilt. Verschiebt man an vier Punkten, die auf einer Ebene liegen, die Indices zweimal hintereinander cyklisch, so erhält man die Ecken zweier Tetraeder, deren Seiten paarweise die Punkte der bestimmten der 27 Ebenen ausschneiden. Zwei so zusammengehörige Tetraeder sind noch ausserdem einander anbeschrieben, d. h. es wird jede Kante des einen von einer solchen des andern getroffen.

Nachdem er in § 7 die Reye'schen Entwickelungen über Gruppen associirter Punkte gegeben hat, wendet sich Herr Schr. in den §§ 8, 9 zu den Quadrupeln der Punkte der C_{4} ; es sind dies solche Punktgruppen, deren Tangenten hyperboloidische Lage haben, d. h. derselben Geradenschaar eines C_{\star} enthaltenden Hyperboloids angehören. Zusammengehörig heissen solche Quadrupel, die man aus den beiden Regelschaaren desselben Hyperboloids erhält. Dass alle Quadrupel projectivische Tangentengruppen ergeben, kann aus dem bekannten Salmon'schen Satze über ebene Curven dritter Ordnung geschlossen werden. Aus dem bekannten Satze über Vierecke von Punkten solcher Curven, die den Tangentialpunkt gemein haben, kann gefolgert werden, dass von irgend zwei Punkten eines Quadrupels zwei Ebenen ausgehen, auf denen die des zugehörigen Quadrupels zu zweien vertheilt liegen. Hieraus folgt, dass zwei zusammengehörige Quadrupel von vier Raumpunkten O_1 , O_2 , O_3 , O_4 aus incinander projicirt werden, und zwar entsprechen jedesmal die zugehörigen Tangentengruppen einander projectivisch. Diese Punkte sind die Spitzen der C_4 enthaltenden Kegel, und es leuchtet nach der Art ihrer Auffindung augenblicklich ein, dass sie das allen Flächen des Büschels (C_{4}) gemeinsame Polartetraeder bilden.

Ein Quadrupel wird von jeder Secante der C_4 aus in ein Quadrupel projicirt. Die drei Punkte, welche einen gegebenen zu einem Quadrupel ergänzen, bestimmen mit ihm Secanten, deren jede zwei gegenüberliegende Kanten des Polartetraeders trifft. Legt man von den Punkten eines Quadrupels aus die Geraden, welche zwei gegenüberliegende Kanten eines andern Quadrupeltetraeders treffen, so schneiden dieselben alle die Curve noch einmal und zwar in den Punkten eines dritten Quadrupels. Vertauscht man die beiden gegebenen Quadrupel, so gesellt sich zu ihnen noch ein viertes. Unter den so entstan lenen 16 Punkten bestehen interessante Beziehungen, insbesondere ergeben sich 24 Paare Möbius'scher Tetraeder, von denen jedes dem andern eingeschrieben ist.

§ 10 beschäftigt sich mit den von den Herren Voss, Ameseder und Westphal betrachteten Hyperboloiden. Die 16 Geraden, welche die Punkte eines Quadrupels mit denen eines andern verbinden, liegen zu je vier in hyperboloidischer Lage. Wenn das zweite Quadrupel eines von drei bestimmten zu dem ersten gehörigen ist, so liegen die vier so bestimmten Regelschaaren paarweise auf zwei Hyperboloiden. Die so entstehenden sechs Hyperboloide enthalten C_4 . Sie sind die einzigen, welche zunächst ein und hernach unendlich viele der C_4 eingeschriebene Vierecke vollständig enthalten. Wie man auch das erste Quadrupel wählen mag, man erhält stets dieselben drei Paare von Hyperboloiden. Die drei zugehörigen Quadrupel werden von Hyperboloiden ausgeschnitten, deren jedes ausser dem ersten Quadrupel zwei Paare gegenüberliegender Kanten des Polartetraeders enthält.

Nach den vorangegangenen Entwickelungen sind die Schnittpunkte der C_4 mit den Ebenen des Polartetraeders leicht als Wendeberührungspunkte zu erkennen (§ 11). Es gelingt, die Gesammtzahl der vier Wendeberührungspunkte enthaltenden Ebenen auf 116 festzustellen und eine Tabelle dieser Ebenen zu entwerfen. Mit ihrer Hilfe werden in § 12 die Tetraeder betrachtet, deren Ebenen sämmtliche 16 Wendeberührungspunkte enthalten. Die Zahl dieser Tetraeder wird gleich 745 gefunden, was mit früheren analytischen Erörterungen der Frage in Einklang steht.

Berlin, im Februar 1891.

ERNST KÖTTER.

J. B. Eck, Ueber die Vertheilung der Axen der Rotationsflächen 2. Grades, welche durch gegebene Punkte gehen. Inaugural-Dissertation (Münster). Bonn, Carl Georgi. 1890. 145 S.

Die umfangreiche Abhandlung zerfällt in einen einleitenden Abschnitt und in drei Hauptcapitel, in denen nacheinander die Mannigfaltigkeiten der Rotationsflächen zweiten Grades überhaupt, der Rotationscylinder und der Rotationskegel abgehandelt werden. Die Einleitung wird nöthig, um den parabolischen Cylindern ihre Rolle zuzuweisen. Da als Rotationsfläche jede Fläche zweiten Grades gilt, die den unendlich fernen Kugelkreis \mathfrak{L}^2 in zwei Punkten berührt, so treten auch sie unter den betrachteten Flächen auf. Da die Axe einer Rotationsfläche einmal hinsichtlich \mathfrak{L}^2 zur Berührungssehne polarreciprok sein muss und andererseits die Mittelpunkte der Flächenkreise enthält, so betrachtet Herr Eck als Axe des parabolischen Cylinders die unendlich ferne Gerade der Ebenen, welche zu den Geraden des Cylinders senkrecht stehen, als Mittelpunkt den Schnittpunkt der Axe mit der Berührungskante. Als Axe eines Paares paralleler Ebenen kann jede zu ihnen senkrechte unendlich ferne Gerade gelten.

Vorzüglich kommen die entwickelten Resultate durch die Combination dreier Stammcomplexe zu Stande. Der erste, R_4 , besteht aus den Axen der A_1 , A_2 , A_3 , A_4 enthaltenden Rotationsflächen, der zweite, Z_2 , aus den

Digitized by GOÖGIC

Axen der Botationscylinder, die A_1 , A_2 enthalten, und der dritte, K_3 , aus den Axen der Botationskegel, die drei Punkte A_1 , A_2 , A_3 enthalten. R_4 , bereits von Laguerre untersucht, ist vom dritten Grade; von seinen acht Strahlenbündeln hat eines den Mittelpunkt C der $A_1A_2A_3A_4$ umschriebenen Kugel zum Centrum, die anderen Centren liegen unendlich fern auf den Lothen c_{ikl} , die von C aus auf die Ebenen des Tetraeders $A_1A_2A_3A_4$ sich fällen lassen, und auf den Geraden $d_{ik,lm}$, die von C ausgehen und die Paare gegenüberliegender Kanten desselben treffen. Der Complexkegel eines beliebigen Punktes P enthält ausser PC die Parallelen zu den c_{ikl} und den $d_{ik,lm}$, längs der ersteren berührt er die Ebenen Pc_{ikl} ; er verschiebt sich also zu sich selbst parallel, wenn P von C aus auf einer Geraden fortschreitet. Die Complexcurve in irgend einer Ebene π berührt die unendlich ferne Ebene zweifach, die Ebenen γ_{ik} , die in den Mitten der Kanten A_iA_k senkrecht stehen, einfach, so dass das erstere Strahlenfeld zwei-, die letzteren einfach zum Complex gehören. (§§ 17—54.)

Eine Gerade gehört dem Complex Z_2 an, wenn die zu ihr und zu A_1A_2 senkrechte Gerade in dem Halbirungspunkte B_{12} der Strecke A_1A_2 trifft. Da demnach der Complexkegel eines Punktes P den Kreis projicirt, welchen auf γ_{12} die Kugel über PB_{12} ausschneidet, so ist Z_2 ein Reye'scher Complex, dessen Tetraeder ausser B_{12} den unendlich fernen Punkt \mathfrak{A}_{12} der Geraden A_1A_2 und die Kreispunkte von γ_{12} zu Ecken hat. (§§ 74—85.)

Am meisten Schwierigkeiten macht der Complex K_3 . Um die Axen der Rotationskegel durch A_1 , A_2 , A_3 zu erhalten, die von einem Punkte P ausgehen und in einer Ebene π liegen, benutzt Herr Eck, dass, wenn eine Gerade p in π um P sich dreht, die Spitzen der beiden Rotationskegel mit der Axe p und den Punkten A_1 , A_2 auf einer Curve k_{12} vierter Ordnung mit dem Doppelpunkte P fortschreiten. Auch der zweite Schnittpunkt der Kugeln über PA_1 und PA_2 mit π ist ein Doppelpunkt der Curve. Sie enthält die Kreispunkte von π . Die Berührungspunkte der von P an k_{12} gehenden Tangenten liegen auf den erwähnten Kugeln und werden von den Kegeln ausgeschnitten, die von A_1 , bez. A_2 aus \Re^2 projiciren. Wird A_3 für A_2 eingeführt, so entsteht eine analoge Curve k_{13} . Von den zwölf Schnittpunkten ausserhalb P zwischen k_{12} und k_{13} führen aber nur sechs auf Geraden der gesuchten Art, die beiden Berührungs- und Schnittpunkte, welche auf der Kugel über A_1P liegen, hingegen auf Geraden, die der Aufgabe fremd sind. K_3 ist somit vom sechsten Grade.

In α ($\equiv A_1 A_2 A_3$) liegen als Complexcurven drei Parabeln, von denen jede eine Ecke des Dreiecks $A_1 A_2 A_3$ zum Brennpunkt, die gegenüberliegende Seite aber zur Directrix hat. In jeder zu α senkrechten Ebene μ ist eine Complexcurve der eine Focalkegelschnitt der Curve zweiten Grades, die ($\mu \alpha$) zum einen Durchmesser hat und A_1 , A_2 , A_3 enthält. Ein vierfaches Strahlenbündel des Complexes geht von dem senkrecht über α im Unendlichen liegenden Punkte $\mathfrak C$ aus, einfache senden die Schnittpunkte

Digitized by GOOGLE

der Ebenen γ_{ik} mit \Re^2 und die beiden Punkte aus, von denen aus \Re^3 in den $A_1 A_2 A_3$ umschriebenen Kreis projicirt wird. Einfache Strahlenebenen sind γ_{23} , γ_{31} , γ_{12} ; mit Hilfe von etwas subtilen Betrachtungen stellt Herr Eck den Satz auf, dass die unendlich ferne Ebene dreifach zum Complex gehört, vierfach aber ausser den unendlich fernen Strahlen von $\mathbb C$ die Tangenten von $\mathbb R^2$ zählen. Der erste Theil der Behauptung hätte sich auf andere Weise sehr einfach erledigen lassen. (§§ 102—131.)

Zwei Complexe R_4 , deren jeder zu vier von fünf Punkten $A_1, A_2, ..., A_5$ gehört, haben ein Strahlensystem R_5 siebenter Ordnung und zweiter Classe (7, 2) gemein, dessen Strahlen Axen von Rotationsflächen sind, welche die fünf Punkte enthalten. Die Congruenz erweist sieh, Herrn Kummer's Entwickelungen entsprechend, als frei von singulären Punkten: Die zehn Curven dritter und die eine Curve sechster Classe, welche die allgemeine Theorie fordert, lassen sieh in den Ebenen γ_{ik} (i, k=1, 2, ..., 5) und der unendlich fernen Ebene nachweisen. (\$\$55-66.)

Das zu A_1, \ldots, A_5 gehörige Strahlensystem R_5 und der zu A_1, A_2, A_3, A_5 gehörige Complex R_4 haben die Axen der Rotationsflächen miteinander gemein, die alle sechs Punkte enthalten. Ihre Regelfläche ist zunächst nach der Halphen'schen Formel von der 27. Ordnung, aber es lösen sich als fremde Bestandtheile die unendlich fernen Geraden von R_5 zweifach und die in $\gamma_{23}, \gamma_{31}, \gamma_{12}$ liegenden einfach ab, so dass eine Regelfläche sechster Ordnung übrig bleibt. Sie hat mit jeder Ebene γ_{lk} drei, mit der unendlich fernen Ebene vier Erzeugende und einen Kegelschnitt gemein. Diese Ergebnisse bestätigen in verschiedenen Arten, dass vier Rotationsflächen durch sieben Punkte sich legen lassen. (§§ 68-73.)

Nebenher geht im ersten Haupttheile die Untersuchung der Rotationsparaboloide. Je nachdem drei, vier oder fünf Punkte vorliegen, erhält man
für die Axen einen Complex dritten Grades (§ 40), ein Strahlensystem
siebenter Ordnung und zweiter Classe (§ 43) oder eine Regelfläche sechsten
Grades (§ 67). Bemerkenswerth ist der Kegelschnitt, den die letztere Fläche
ausser vier Erzeugenden im Unendlichen hat. Seine Punkte senden sich harmonisch trennende Tangentenpaare an \Re^2 und den Kegelschnitt, welchen die
Berührungskanten der parabolischen Cylinder des linearen Systems umhüllen.

Die beiden zu A_1 , A_2 und A_1 , A_3 gehörenden Complexe Z_3 haben ein Strahlensystem Z_3 vierter Ordnung und dritter Classe gemein, welches die Axen der A_1 , A_2 , A_3 enthaltenden Rotationscylinder aufweist. Singuläre Punkte des Systems sind B_{23} , B_{31} , B_{12} und \mathfrak{A}_{23} , \mathfrak{A}_{31} , \mathfrak{A}_{12} , ferner die Schnittpunkte von \mathfrak{R}^2 mit den Ebenen γ_{23} , γ_{31} , γ_{12} . Ausser den Ebenen γ_{12} , deren jede die Tangenten einer Parabel zum System beiträgt, wäre nach Herrn Eck's Entwickelungen noch die unendlich ferne Ebene singulär und zwar enthielte sie das Strahlbüschel, dessen Centrum senkrecht über a liegt, und die Tangenten von \mathfrak{R}^2 . Ein eigenthümliches Verhalten zeigt die Gerade c, die im Mittelpunkte des A_1 , A_2 , A_3 umschriebenen Kreises zu α senkrecht steht;

ohne eine Doppelgerade des Systems zu sein, ist sie doch zweifach in jeder enthaltenden Ebene enthalten. (§§ 85—96.)

Sind von den Rotationscylindern vier Punkte A_1 , A_2 , A_3 , A_4 gegeben, so hat der zu A_1 , A_2 , A_3 , A_4 gehörige Complex R_4 mit dem zu A_1 , A_2 , A_3 gehörigen System Z_3 ausser den in γ_{23} , γ_{31} , γ_{12} liegenden Geraden von Z_3 und den zweifach zählenden unendlich fernen Geraden noch eine Regelfläche neunter Ordnung gemein, der die gesuchten Axen angehören. Die Fläche hat je drei Gerade in den Ebenen γ_{ik} und sechs im Unendlichen. Ebenso muss die Regelfläche aber entstehen, wenn man das zu A_1 , A_2 , A_3 gehörige System Z_3 mit dem A_1 , A_4 zugehörigen Complex Z_2 schneidet. Hierbei würde sich nach Ablösung der unendlich fernen Bestandtheile von Z_3 eine Regelfläche elfter Ordnung ergeben. Zur Lösung dieses Widerspruchs nimmt Herr Eck an, dass Z_2 und Z_3 die Tangenten von \mathfrak{R}^2 zweifach miteinander gemein haben. Die Zahl der Rotationscylinder durch fünf Punkte findet Herr Eck im Einklang mit einer von Herrn Kiefer herrührenden und verwandte Probleme behandelnden Schrift gleich 6. (§§ 97—101.)

Die Rotationskegel durch A_1 , A_2 , A_3 , A_4 haben ihre Axen zugleich in dem zugehörigen Complex R_4 und in dem A_1 , A_2 , A_3 entsprechenden Complex K_3 . Das System derselben ist von der 14. Ordnung und der sechsten Classe. Singulär sind die unendlich ferne Ebene und die Ebenen γ_{ik} , in denen Curven elfter, bez. sechster Classe sich vorfinden (§§ 132-140). Den Complex K_3 mit einem zu A_1 , ..., A_5 gehörigen Strahlensystem R_5 schneidend, kommt man zu einer Regelfläche 18. Ordnung für die Axen der diese Punkte enthaltenden Rotationskegel (§§ 141—142). Die Zahl der Rotationskegel durch sechs Punkte ergiebt sich auf verschiedene Weise gleich 12 (§ 143). In manchen Einzelheiten kommt Herr Eck zu anderen Resultaten als Herr Kiefer.

Berlin, im Februar 1891.

ERNST KÖTTER.

Christoph Dietsch, Leitfaden der darstellenden Geometrie. 2. Auflage. Erlangen und Leipzig, Andr. Deichert Nachf. 1889. IV u. 136 S.

Die erste, 1886 erschienene Auflage dieser Schrift hat nach einem beiliegenden Circular eine recht wohlwollende Aufnahme gefunden. Referent, dem nur die neue Auflage zugänglich ist, kann nur bestätigen, dass das Buch eine sehr eindringlich geschriebene und leicht fassliche Entwickelung der Elemente der darstellenden Geometrie bietet und einen ganz besondern Werth durch die Hinzufügung zahlreicher gut gewählter Aufgaben und Zahlenbeispiele erhält. Störend wirkt bei einem Schulbuche die nicht unbeträchtliche Zahl von Berichtigungen, die sogar auf eine der Figuren sich erstrecken.

Berlin, im Februar 1891.

Ein Cykloiden-Apparat.

Herr Max Spott, k. Reallehrer für Zeichnen in Neustadt a. d. Haardt, hat zum Schulgebrauche einen sehr einfachen und zweckentsprechenden Cykloidenapparat construirt, welcher an jeder Schultafel befestigt werden kann. Es lässt sich hiermit an derselben mit Kreide in gehöriger Grösse die Erzeugung der Cykloide, Epicykloide und Hypocykloide zeigen. Der Apparat ist zusammenlegbar und kann in einem Kästchen verpackt zum Preise von 25 Mk. von Herrn Carl Faulhaber in Neustadt a. H. bezogen werden.

Neustadt a. d. H.

DICKNETHER.

Theory of Differential Equations. Part I. Exact Equations and Pfaff's Problem. By Andrew Russell Forsyth, Sc. D., F. R. S., Fellow of Trinity College, Cambridge. — University Press. 1890. — XIII u. 340 S. gr. 8°.

Der Herr Verfasser sprach im Vorwort seines früher erschienenen Lehrbuches der Differentialgleichungen (Uebersetzung von Maser), durch welches er in Deutschland ziemlich bekannt geworden sein dürfte, die Absicht aus, einen zweiten Band zu bearbeiten, in welchem neuere und neueste Untersuchungen aus der Theorie der Differentialgleichungen Berücksichtigung finden sollten. — Mit der oben bezeichneten, uns vorliegenden Schrift, welche den ersten Theil des Werkes bildet und die exacten Differentialgleichungen, sowie das Pfaff'sche Problem behandelt, hat er begonnen, sein Versprechen einzulösen.

Den ersten beiden Capiteln des Buches entnehmen wir ungefähr Folgendes:

Schon Euler hatte totale Differentialausdrücke wie

$$P\,dx + Q\,dy + R\,ds + \cdots = 0,$$

in denen P, Q, R, ... Functionen von x, y, s, ... bedeuten, zum Gegenstand seiner Untersuchungen gemacht. Er hielt aber streng daran fest, dass solche Differentiale aus einer einzigen Integralgleichung

$$\Phi(x, y, s, \ldots) = a \qquad (a = const.)$$

hervorgegangen sein mussten, wodurch den Coefficienten des Differentiales bei Anwesenheit von p Veränderlichen bekanntlich $\frac{1}{6}p(p-1)(p-2)$ Bedingungsgleichungen auferlegt werden, die aber nicht völlig unabhängig voneinander sind und sich schliesslich auf $\frac{1}{4}(p-1)(p-2)$ Gleichungen reduciren. Solche Differentiale, welche die eben bemerkte Eigenschaft haben, beziehentlich nach Multiplication mit einem integrirenden Factor erlangen, nannte er "reell", alle anderen "absurd". Man vergl. Inst. Calc. Int. Vol. III, P. 1 § 1 c. 1.

Für die reellen oder — um den gewöhnlichen Ausdruck zu gebrauchen — exacten Differentialgleichungen hat Euler eine bereits ausreichende

Digitized by GOOGIC

Integrationsmethode aufgestellt, die, wie bekannt, darin besteht, dass nur zwei Grössen, etwa x und y, als veränderlich gedacht werden, und demgemäss zuerst nur die Gleichung

$$P dx + Q dy = 0$$

in Frage kommt. Das Integral der letzteren, welches eine willkürliche Function der übrigen Veränderlichen s, u, v, ... mit sich führt, wird total differenzirt und in Uebereinstimmung mit dem mehrgliedrigen Differential gebracht, wodurch sich die willkürliche Function bis auf eine absolute Constante ergiebt.

Die Bestimmungsgleichung für den integrirenden Factor μ findet man leicht aus der Forderung, dass das mit μ multiplicirte Differential exact sein soll; bei derselben Gelegenheit ergeben sich auch die Bedingungen, welche zwischen den Coefficienten P, Q, ... stattfinden müssen.

Eine elegantere Methode hat Bertrand entwickelt. Vergl. Comptes Rendus, t. LXXXIII (1876), pag. 1191—1195. Er führt die Integration einer exacten Differentialgleichung zwischen drei Veränderlichen mittels Herbeiziehung eines Systems von zwei simultanen Gleichungen auf eine Gleichung zwischen zwei Veränderlichen

$$\mathbf{M} d\alpha + \mathbf{N} d\beta = 0$$

zurück. Letztere enthält aber nicht, wie bei Euler, die ursprünglichen Veränderlichen x, y, s, sondern zwei Parameter α , β von der Beschaffenheit, dass $\alpha = \varphi_1(x, y, s), \quad \beta = \varphi_2(x, y, s).$

Die Methode Bertrand's hat Forsyth auf den Fall von n Veränderlichen ausgedehnt.

Auch Natani hat in seiner Abhandlung "Ueber totale und partielle Differentialgleichungen", Crelle's Journal, Bd. 58 S. 301 figg., § 2 (1860), den Fall einer exacten Differentialgleichung behandelt. Er zerfällt die vorgelegte Gleichung ebenfalls in solche, bei welchen nur zwei Grössen als veränderlich betrachtet werden; den übrigen Variabelen werden behufs Bildung von "Hauptintegralen" ganz bestimmte constante Werthe ertheilt.

Eine Methode, die sich durch geometrische Einkleidung und besonders auch dadurch von den vorigen unterscheidet, dass sie sich auf eine totale Gleichung X dx + Y dy + Z ds = 0

erstreckt, in welcher zwischen den Coefficienten zunächst keine beschränkende Bedingung angenommen wird, hat Du Bois-Reymond im 70. Bande von Crelle's Journal, S. 219—313 (1869) unter dem Titel "Ueber die Integration lineärer totaler Differentialgleichungen, denen durch ein Integral Genüge geschieht" veröffentlicht. Es wird hier die vorgelegte Differentialgleichung nach und nach mit zwei völlig willkürlichen Flächengleichungen

$$a=\chi(x, y, s), \quad b=\chi_1(x, y, s)$$

in Verbindung gesetzt, so dass zwei gewöhnliche Differentialgleichungen zwischen zwei Veränderlichen entstehen, welche zu integriren sind. Nach Elimination der Integrationsconstanten, resp. willkürlichen Coordinaten ergiebt sich schliesslich eine Gleichung der Form

$$\Phi(x, y, s, x_0, y_0, s_0) = 0,$$

wobei x_0, y_0, s_0 irgend ein Punkt der Fläche $\chi = a$ ist.

War die vorgelegte Gleichung eine exacte, so lässt die letzte Gleichung stets eine Auflösung zu, wie folgt:

$$\phi(x, y, z) = \phi(x_0, y_0, s_0),$$
d. h.

 $\varphi(x, y, s) = const.$

Analytisch ist die Methode von Du Bois-Reymond mit der von Natani verwandt. Bei letztgenannter ist nämlich speciell

$$\chi = s = a, \quad \chi_1 = y = 0.$$

Handelt es sich um ein System von exacten Differentialgleichungen, also um Gleichungen, welche durch totale Differentiation des nachstehenden Systemes: $\Phi_r(u_1, u_2, ..., u_n, x_1, ..., x_m) = a_r \quad (r = 1, 2, ..., n)$

entstanden sind, so treten zwei Fragen auf: erstens die, wie man für ein beliebig vorgelegtes System von n Gleichungen die integrirenden Factoren bestimmt, und zweitens, wieviele voneinander unabhängige Bedingungen alsdann noch nothwendig sind, damit das System aus nur exacten Gleichungen bestehe. Die Anzahl dieser Bedingungsgleichungen ist $\frac{1}{2}nm(m-1)$, und selbige lassen sich in mannigfacher Form anschreiben, wie namentlich Frobenius in seiner Abhandlung "Ueber das Pfaff'sche Problem", Crelle's Journal Bd. 82, S. 276 figg. (1876) gezeigt hat.

Falls alle Bedingungen erfüllt sind, ergiebt sich schon auf Grund der Entstehung des Differentialgleichungssystemes eine Integrationsmethode, welche daher als eine Verallgemeinerung des Euler'schen Verfahrens anzusehen ist. — Ebenso hat Natani in seiner bereits erwähnten Abhandlung die daselbst benutzte Methode auf ein System von Gleichungen ausgedehnt (Crelle Bd. 58, S. 303). Mittels seines Processes kommt man zuletzt auf m verschiedene Systeme von n gewöhnlichen Differentialgleichungen erster Ordnung.

Eine wesentliche Vereinfachung hat A. Mayer herbeigeführt, indem er zeigte, dass man durch eine gewisse Transformation die Integration auf nur eines der genannten m Systeme beschränken kann. Diese Transformation ist mit jener verwandt, welche von Du Bois-Reymond a. a. 0. gebraucht worden ist. Vergl. A. Mayer, "Ueber simultane, totale und partielle Differentialgleichungen", Mathem. Annalen Bd. V, S. 448—470 (1872). Die Mayer'sche Methode ist um so wichtiger, als durch selbige das Integrationsproblem der nicht linearen partiellen Differentialgleichungen erster Ordnung erheblich vereinfacht wird.

Der Zusammenhang, welcher zwischen simultanen partiellen Differentialgleichungen und den exacten Systemen besteht, kann auch umgekehrt benutzt werden, um für die letzteren eine Integrationsmethode zu begründen, und das ist von Boole geschehen. Vergl. Phil. Trans. 1862, pag. 437—454,

Die vorerwähnten Methoden in ausführlicher Darstellung bilden den Inhalt der ersten beiden Capitel des Forsyth'schen Buches. — Ein zweiter und umfänglicherer Abschnitt des Werkes handelt von dem Pfaff'schen Problem und umfasst elf Capitel.

Es kann nicht die Aufgabe eines Referates sein, die mannigfaltigen Methoden, welche zur Lösung dieses vielgenannten Problems ausfindig gemacht worden sind, nur einigermassen eingehend vorzuführen, sehon deswegen, weil hierzu ein sehr grosser analytischer Apparat nothwendig werden würde. Selbst ein kritischer Vergleich der in den Originalabhandlungen niedergelegten und von Forsyth reproducirten Resultate dürfte recht umfangreich werden. Wir begnügen uns daher mit folgenden Angaben.

Euler hatte, wie schon bemerkt, die Integration einer totalen Differentialgleichung, sobald sie nicht exact war, für widersinnig und unmöglich erklärt.

Monge war der Erste, der gegen Euler's einseitige Auffassung Einspruch erhob. Man vergl. Mém. de l'Acad. Royale des Sciences (1784) pag. 535. Er wies darauf hin, dass in einer Gleichung von der Form

$$X\,dx + Y\,dy + Z\,dz = 0$$

an sich kein Widerspruch liegt, wohl aber in der Forderung, dass die Gleichung bedingungslos durch ein Integral befriedigt werden soll.

Indem er die vorgelegte Differéntialgleichung mit der Gleichung einer willkürlichen Oberfläche $\varphi(x, y, z) = 0$

zusammenstellte und auf diese Weise eine Differentialgleichung zwischen nur zwei Veränderlichen herleitete, welche integrirt eine zweite Oberfläche

$$\psi(x, y, z) = const.$$

darstellt, konnte er das Resultat aussprechen: Jede totale, nicht exacte Differentialgleichung erster Ordnung zwischen drei Veränderlichen stellt auf einer willkürlichen Oberfläche eine einfach unendliche Schaar von Curven dar. — Monge hat seine Untersuchung auch auf Gleichungen mit n Veränderlichen ausgedehnt, ohne indessen das eigentliche Integrationsproblem irgendwie zu fördern.

Erst im Jahre 1815 fand die Aufgabe eine tiefer gehende Lösung durch Pfaff, welcher der Berliner Akademie die berühmt gewordene Abhandlung "Methodus generalis aequationes differentiarum partialium nec non aequationes differentiales vulgares, utrasque primi ordinis, inter quotcunque variabiles complete integrandi" vorlegte. Vergl. Abhandl. d. k. pr. Akad. d. Wiss. zu Berlin, S. 76—136.

Das Hauptresultat der Pfaff'schen Untersuchung besteht darin, dass totale Differentialgleichungen von der Gestalt

$$\sum_{i=1}^{2n} X_i dx_i = 0, \text{ resp. } \sum_{i=1}^{2n-1} X_i dx_i = 0,$$

in denen die X_i beliebige, voneinander unabhängige Functionen der Veränderlichen x_i bedeuten, auf Gleichungen derselben Form mit höchstens π Veränderlichen, nämlich auf

$$\sum_{k=1}^{n} U_k du_k, \text{ resp. } U_0 du_0 + \sum_{k=1}^{n-1} U_k du_k = 0$$

reducirt werden können, wobei die U_k , U_0 und u_k ebenfalls Functionen der x_i sind, u_0 aber eine willkürliche Function der Veränderlichen vorstellt. Die Integrale der ursprünglichen Gleichung sind sodann

$$u_k = const., k = 1, 2, ..., n, resp. k = 0, 1, ..., n-1.$$

Die Bedeutung, welche das Pfaff'sche Problem für die partiellen Differentialgleichungen erster Ordnung besitzt, insbesondere für diejenigen, welche in der Mechanik auftreten, hat Jacobi sehr frühe erkannt; sie hat ihn dazu geführt, das Pfaff'sche Verfahren zu vereinfachen. Er zeigte in der Abhandlung "Ueber die Reduction der Integration der partiellen Differentialgleichungen erster Ordnung zwischen irgend einer Zahl Variabeln auf die Integration eines einzigen Systems gewöhnlicher Differentialgleichungen", Crelle's Journal Bd. 17, S. 97—162, § 12 (1837), dass die n Systeme simultaner Differentialgleichungen, welche der Pfaff'sche Process mit sich bringt, völlig unabhängig voneinander integrirt werden können.

Diese und weitere Vereinfachungen, welche z.B. in dem gleichzeitigen Bekanntsein zweier oder mehrerer Integrale bestehen (Poisson-Jacobisches Theorem), wurden für Natani die Veranlassung, das Pfaff'sche Problem einer neuen Bearbeitung zu unterziehen, wodurch eine besondere und vollständige Theorie der totalen und partiellen Differentialgleichungen erster Ordnung entstanden ist.

Auch Clebsch hat in zwei grösseren Abhandlungen, Crelle's Journal Bd. 60, S. 193—251 (1860) und Bd. 61, S. 146—179 (1861) das Integrationsproblem der Pfaff'schen Gleichung aufgenommen, und sein Hauptbestreben geht dahin, die Anzahl der Integrationen möglichst herabzudrücken. Er schliesst sich demgemäss direct Jacobi an und überträgt dessen Integrationsmethode für partielle Differentialgleichungen vollkommen auf die Pfaff'sche Gleichung, so nämlich, dass die Integration schliesslich nur von einem einzigen System simultaner Gleichungen abhängt. — Im Allgemeinen unterscheidet sich aber Clebsch von Natani mehr in der Art der Darstellung, durch canonische Formen und durch die Beweisführung, weniger in den Resultaten.

Anknüpfend an Natani und Clebsch, hat dann endlich Frobenius in einer umfangreichen Arbeit, vergl. Crelle's Journal Bd. 82, S. 230 bis

315 (1876) nochmals das Pfaff'sche Problem in Angriff genommen. Seine Darstellung trägt, indem er sich bemüht, die Invariantentheorie zur Geltung zu bringen, den algebraischen Charakter, und es gelingt ihm, etliche Schwierigkeiten hinwegzuräumen, die bei seinen Vorgängern verblieben waren. So berichtigt er gewisse Punkte in der Clebsch'schen Unterscheidung des "determinirten und indeterminirten Falles"; er untersucht den von Clebsch unerledigt gelassenen Fall, in welchem die Determinante der Elemente

 $a_{st} = \frac{\partial X_s}{\partial x_t} - \frac{\partial X_t}{\partial x_s}$

verschwindet.

Verwandt mit den Untersuchungen von Frobenius sind die Darboux'schen, entstanden 1877, veröffentlicht in Comptes Rendus t. XCIV, pag. 835 und Darb. Bull., 2^{me} Sér. t. VI, pag. 14 et 49 (1882). Auch Darboux legt mehr Gewicht auf die formentheoretische Seite der Aufgabe, als auf die eigentliche Integration.

Ausser den bisher genannten Autoren haben noch Grassmann und Lie ihre charakteristischen Methoden auf die Pfaff'sche Gleichung angewendet. Diese Mathematiker behandeln das Problem zunächst weniger um seiner selbst willen, als vielmehr um die Tragweite ihrer Methoden zu kennzeichnen. Man vergl. "Die Ausdehnungslehre, vollständig und in strenger Form bearbeitet" von Hermann Grassmann; Berlin, 1862.—S. Lie und Engel, "Theorie der Transformationsgruppen", 2. Abschnitt; Leipzig, 1890.

Hiermit ist etwa der Stoff angedeutet, den der Herr Verfasser im zweiten Abschnitte seines Buches frei bearbeitet hat. Im letzten Capitel kommt er noch auf simultane Systeme von Pfaff'schen Gleichungen zu sprechen, also auf Systeme der Form

$$\Omega_k = -dx_{m+k} + A_{k1} dx_1 + A_{k2} dx_2 + \dots + A_{km} dx_m = 0$$

$$(k = 1, 2, \dots, n),$$

welche bei der Integration der linearen partiellen Differentialgleichungen zweiter Ordnung, überhaupt bei den dynamischen Differentialgleichungen eine wichtige Rolle spielen.

Solche Pfaff'sche Systeme werden nach Methoden behandelt, die als Erweiterung jenes Verfahrens anzusehen sind, welches schon bei einer Gleichung zum Ziele führt, wie z. B. das Natani'sche und das von Clebsch. Indessen treten hier auch Fälle auf, in denen jene Methoden versagen. Forsyth unterscheidet deren drei und spricht von vollständig-, unvollständig- und nicht integrabelen Systemen. Erwähnt, resp. benutzt werden in diesem Capitel entsprechende Abhandlungen von Boole, Biermann, Engel, Voss u. A.

Durch diese etwas allgemein gehaltenen Angaben, die uns nicht überflüssig erschienen, haben wir aber noch keineswegs den gesammten Inhalt des Forsyth'schen Werkes gekennzeichnet. Es sind vor Allem die zahl-

reichen Uebungsbeispiele zu erwähnen, durch welche der Verfasser die vorgetragene Theorie in ein helles Licht zu setzen versteht.

Wenn schon Jacobi und Cayley es nicht als überstüssig erachtet haben, gewisse Unvollkommenheiten der Pfaff'schen Integrationsmethode an dem speciellen Falle einer viergliedrigen Gleichung ausführlich zu besprechen — man vergl. Crelle's Journal Bd. 29, S. 253 und Bd. 57, S. 273 —, so wird man bei einem ersten Studium jener schwierigen Partien wohl auch an vielen anderen Stellen ein instructives Beispiel zu sehen wünschen. Dass der Herr Verfasser hierauf Rücksicht genommen hat, erhöht den Werth des Buches ungemein.

Jene Uebungsbeispiele sind theils den einschlägigen Arbeiten entnommen und rühren von Jacobi, Kronecker, Tanner, Voss, Frobenius, Darboux, Engel u. A. her; die meisten jedoch hat Forsyth selbst hinzugefügt.

Ein anderer Vorzug des Werkes, der nicht genug gewürdigt werden kann, ist der, dass der Verfasser grosses Gewicht auf literarhistorische Notizen und genaueste Quellenangaben legt. So enthält das dritte Capitel einen geschichtlichen Ueberblick zum Pfaff'schen Problem; dem 13. Capitel, welches von Systemen Pfaff'scher Gleichungen handelt, ist das betreffende Autorenverzeichniss mit ausführlichstem Quellennachweis vorgesetzt. Am Schlusse des Buches findet man ein Verzeichniss, welches noch einmal alle Autoren nennt und ausserdem eine Uebersicht der technischen Ausdrücke, der verschiedenen Methoden u. dergl. giebt.

Das Forsyth'sche Buch in seiner freien und kritischen Bearbeitung eines hervorragenden Problems wird sich zweifellos nicht nur in England, sondern auch bei uns viele Freunde erwerben. Und wir erwarten mit Spannung den zweiten Theil des Werkes, welcher andere und neueste Forschungen im Gebiete der Differentialgleichungen bringen soll.

W. HEYMANN.

Uebungsbuch zur Arithmetik und Algebra, enthaltend die Formeln, Lehrsätze und Auflösungsmethoden in systematischer Anordnung und eine grosse Anzahl von Fragen und Aufgaben. Von Dr. E. WROBEL. Rostock, 1890. Theil I Mk. 2,60, Theil II Mk. 1,40.

Wir besitzen gegenwärtig für die Gebiete der Arithmetik und Algebra Sammlungen und Uebungsbücher, die sich seit einer Reihe von Jahren als brauchbar erwiesen haben; es sei nur an Martus, Bardey, Heis u. A. erinnert. Gleichwohl erscheinen noch alljährlich neue Uebungsbücher und Sammlungen, die aus dem angegebenen Grunde einer scharfen Kritik nothwendig begegnen, und in der That erfüllt nur ein Theil die Forderung, nicht blos neue Aufgaben zu bieten, sondern in didaktischer Hinsicht einen Fortschritt zu versuchen. Zu diesen wenigen gehören u. A. Fenkner's

"Arithmetische Aufgaben", denen Referent vor Kurzem an dieser Stelle eine Besprechung gewidmet hat, und zu ihnen gehört ohne Frage auch die vorliegende zu gleicher Zeit erschienene Sammlung, welche in der Anlage mit Beide Verfasser haben die Theorie mit der ersteren Manches gemein hat. den Aufgaben in passende Verbindung gebracht, indem sie den Aufgabengruppen die zugehörigen Formeln, Lehrsätze und praktische Regeln vorangestellt haben. Die Angabe der Beweise der Lehrsätze und die Entwickelung der Formeln ist - und wohl mit Recht - unterblieben. Was nun das Wrobel'sche Uebungsbuch auch vor dem Fenkner'schen voraus hat, das ist einmal der grössere Reichthum an Aufgaben, sodann die grössere Zahl von praktischen Winken und endlich die Fülle von Fragen, welche der Schüler fast durchweg selbst beantworten kann und welche gleichfalls die Auflösung der sich anschliessenden Aufgaben vorbereiten. In der Algebra sind viele Aufgaben mit Berücksichtigung möglich verschiedenartigster Gebiete, namentlich der Geographie, Meteorologie und Statistik neu erfunden. Auch sogenannte Vexiraufgaben sind mit Geschick aufgenommen. dauern ist, dass auch in diesem Uebungsbuche auf die Determinantenmethode Verzicht geleistet ist, und bleibt zu wünschen, dass der Verfasser sich der Mühe unterziehen möchte, sein Buch nach dieser Richtung hin zu vervollständigen. Die Schule wird natürlich die Determinante nur als abgekürzten Ausdruck zur Erleichterung der Operation einführen dürfen und sich auf diesen einfachsten Begriff zu beschränken haben. Dies Wenige genügt aber, um dem Schüler das bei Anwendung der Determinanten auftretende Eliminationsverfahren vorzuführen, ihn auf die durch sie ermöglichte Eleganz und Durchsichtigkeit der Eliminationsresultate hinzuweisen. (Vergl. Anwendung der Determinanten und Elemente der neueren Algebra auf dem Gebiete der niedern Mathematik, von Prof. Dr. Diekmann.)

Das vorliegende Buch gelangt in zwei Theilen zur Ausgabe. Der erste schliesst mit den Gleichungen ersten Grades mit mehreren Unbekannten und umfasst somit den Cursus, der auf den meisten Gymnasien und Realgymnasien bis U. II. incl. zu absolviren ist. Besonderes Gewicht ist auch auf die abgekürzten Rechnungen mit Decimalbrüchen gelegt; ferner sind einige Sätze zur Bestimmung der Periodenzahl beigefügt. Der zweite Theil enthält die quadratischen Gleichungen mit einer und mehreren Unbekannten, die Reihen, die Zinseszinsrechnung, die Kettenbrüche, die diophantischen Gleichungen, die Combinationslehre mit Anwendung der Wahrscheinlichkeitsrechnung und den binomischen Lehrsatz für ganze positive Exponenten.

Referent kann das Uebungsbuch den Fachgenossen empfehlen.

Dr. E. JAHNKE.

Zur Theorie der algebraischen Gleichungen, von Dr. J. Schumacher.
Erlangen und Leipzig, 1890.

Die vorliegenden Untersuchungen schliessen sich an die Arbeiten der Herren Klein (Vorlesungen über das Ikosaeder), Kronecker (Festschrift) und Netto (Substitutionstheorie und ihre Anwendung auf die Algebra) an. Sie geben eine kurze, übersichtliche Darstellung der Gattungstheorie der algebraischen Gleichungen, wobei einzelne Punkte durch Vorführung expliciter Darstellungen weiter ausgeführt werden.

Der Verfasser geht von einem Gattungsbereich aus, der durch eine algebraische Gleichung definirt wird. Er legt ausführlich dar, wie man Wurzelfunctionen bilden kann, die für die Substitutionen einer Gruppe G unverändert bleiben. Wird jede symmetrische Function des Fundamentalsystems in solche Gattungsfunctionen zerlegt, so spielen die gewonnenen Functionen in Bezug auf ihre Gattung G eine ähnliche Rolle, wie die Functionen des Fundamentalsystems in Bezug auf die Gattung der symmetrischen Functionen und heissen deshalb Gattungselemente. Um sodann die Function V einer Gattung G durch die Gattungselemente darzustellen, wird das Leitglied derselben so in zwei Factoren zerlegt, dass jeder von ihnen als das Leitglied einer bereits dargestellten Gattungsfunction angesehen Das Product der beiden letztgenannten Functionen muss werden kann. jener darzustellenden Function V, vermehrt um andere Functionen V, V, ..., die im Allgemeinen derselben Gattung angehören, gleich sein. Sind nun V₁, V₂, ... bereits als Functionen der Gattungselemente ausgedrückt, so wird auch V aus dieser Relation berechnet werden können; wenn nicht, wird man mit ihrem Leitgliede ebenso wie mit dem von V verfahren und diesen Process so lange fortsetzen, bis die Darstellung von V durch die Gattungselemente erfolgt ist. Nach dieser Methode werden sämmtliche Gattungselemente der Gleichungen zweiten, dritten und vierten Grades explicite aufgestellt. Bei den Gleichungen fünften Grades werden vornehmlich die Gattungselemente der metacyklischen oder Diedergruppe aufgesucht. Der Verfasser kommt zu dem Ergebniss, dass alle ganzen und rationalen metacyklischen Wurzelfunctionen einer Gleichung fünften Grades ganze und rationale Functionen von

$$w_1 = \sum_{20} x_0^3 x_1 x_2, \qquad w_2 = \sum_{20} x_0^2 x_1^2 x_2,$$

$$w_3 = \sum_{20} x_0^3 x_1^2 x_2 x_3, \qquad w_4 = \sum_{20} x_0^3 x_1^2 x_2^2$$

sind.

Im zweiten Abschnitte wird der Begriff der Gattungselemente dahin erweitert, dass eine lineare Darstellung der Gattungsfunctionen verlangt wird. Der Verfasser giebt einen Beweis des Kronecker'schen Satzes, wonach für jede ϱ -werthige Functionsgattung stets $\varrho-1$ linear voneinander unabhängige Functionen w_i existiren von der Eigenschaft, dass alle der Gattung angehörigen ganzen Functionen durch sie und die Coefficienten der zu Grunde gelegten Gleichung ganz, rational und linear ausdrückbar sind, und im Anschluss hieran eine Methode zur Bestimmung der w-Functionen unter der Voraussetzung, dass diejenigen von ihnen, durch welche eine blos

rationale Darstellung möglich ist, nach dem im ersten Abschnitte erörterten Verfahren gefunden seien. Hierzu wird die Bildung der Productgleichungen für w_1^2 , w_1w_2 , ..., $w_1w_{\ell-1}$ erfordert. Diese durch ihren ausgesprochenen Invariantencharakter ausgezeichneten Gleichungen werden für die einzelnen Functionsgattungen der Gleichungen zweiten, dritten, vierten und fünften Grades aufgestellt. Darnach wird gezeigt, auf welche Weise aus diesen Productgleichungen die Gattungsresolventen abgeleitet werden können, und auch hier folgt eine explicite Aufstellung der Gattungsresolventen der kubischen und der biquadratischen Gleichung. Für die Gleichung fünften Grades wird eine metacyklische Resolvente sechsten Grades entwickelt, wobei die Gleichung fünften Grades in einer Form angesetzt wird, wie sie Herr Hermite zum Ausgangspunkte seiner Untersuchungen genommen hat.

Ein weiteres Capitel ist der Transformation der Functionsgattungen gewidmet. Es werden die wichtigsten Transformationsgleichungen der Gattungen für eine Gleichung zweiten, dritten, vierten und fünften Grades aufgestellt.

Die Abhandlung liest sich gut; sie wird nicht blos Demjenigen, der den Gegenstand völlig beherrscht, ein willkommener Beitrag zur Gleichungstheorie sein, sondern sie möchte auch Denen, welche in dieses Gebiet erst eindringen wollen, zum Studium zu empfehlen sein.

Dr. E. JAHNKE.

Bibliographie

vom 1. bis 31. August 1891.

Periodische Schriften.

Sitzungsberichte der mathematisch-physikalischen Classe der königl. bayer.
Akademie der Wissenschaften. 1891, 1. Heft. München, Franz.

1 Mk. 20 Pf.

Beobachtungsergebnisse der königl. Sternwarte in Berlin. 5. Heft. Berlin, Dümmler. 4 Mk.

Mittheilungen der Vereinigung von Freunden der Astronomie und kosmischen Physik, redig. v. W. Förster. 1. Jahrg. Ebendas. 3 Mk.

Deutsches meteorologisches Jahrbuch. Abth. Bayern. 13. Jahrg. 1. Heft. München, Ackermann. 18 Mk.

Deutsches meteorologisches Jahrbuch. Abth. Sachsen. Jahr 1889. Chemnitz, Brunner. 10 Mk.

Jahresbericht des Centralbureaus für Meteorologie und Hydrographie im Grossherzogthum Baden. F. d. Jahr 1890. Karlsruhe, Braun. 6 Mk.

Digitized by GOOGIC

- Monatsberichte der deutschen Seewarte. 16. Jahrg. Hamburg, Friedrichsen. 50 Mk.
- ---, Beiheft I. Die stürmischen Winde an der deutschen Küste im Januar 1891. Von E. HEREMANN. Ebendas. 50 Pf.
- Magnetische Beobachtungen des Tifliser Observatoriums; Jahrg. 1888 89.
 Petersburg, Eggers. 4 Mk.
- Jahrbuch über die Fortschritte der Mathematik, begr. v. Ohrtmann, fortges. v. Lampe. 20. Bd. Jahr 1888, Heft & Berlin, G. Reimer. 14 Mk.

Reine Mathematik.

- Lie, S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Bearb. v. G. Scheffers. Leipzig, Teubner. 16 Mk.
- ADLER, A., Die graphische Auflösung der Gleichungen. Klagenfurt, Kleinmayr.

 1 Mk.
- Schüller, W., Arithmetik und Algebra in engster Verknüpfung mit der Geometrie. Leipzig, Teubner. 4 Mk.
- GRASSMANN, R., Die Ausdehnungslehre. Stettin, Grassmann. 2 Mk. 25 Pf.
 ISELIN, J., Die Grundlagen der Geometrie nebst einer vollständigen Darstellung der reinen Sphärik. Bern, Wyss. 6 Mk.
- Wolff, Chr., Das Princip der reciproken Radien. Erlangen, Bläsing. 1 Mk.

Angewandte Mathematik.

- Schröder, E., Vorlesungen über die Algebra der Logik. 2. Bd. 1. Abth. Leipzig, Teubner. 12 Mk.
- KLEINSTÜCK, O., Zeitgleichungs-Zifferblatt. (Auf Pappe mit 2 Zeigern.)

 Jena, Mauke.

 1 Mk. 60 Pf.
- Breuer, A., Uębersichtliche Darstellung der mathematischen Theorien über die Dispersion des Lichts. 2. Thl. Anomale Dispersion. Erfurt, Bacmeister.

 1 Mk. 50 Pf.

Physik und Meteorologie.

HORNBERGER, R., Grundriss der Meteorologie und Klimatologie. Berlin, Parey. 6 Mk.

Historisch-literarische Abtheilung.

Recensionen.

Felix Klein, Vorlesungen über die Theorie der elliptischen Modulfunctionen, ausgearbeitet und vervollständigt von Dr. Robert Fricke. Erster Band: Grundlegung der Theorie. Leipzig 1890, 8°.

Die an Methoden und Resultaten so überreiche Theorie der elliptischen Functionen, welche ja den Ausgangspunkt für die ganze Entwickelung der Analysis in unserem Jahrhundert gebildet hat, erweckte sehr bald nach ihrer erfolgten Begründung das Verlangen nach Weiterführung resp. Verallgemeinerung. Schon dem Scharfblick Abel's blieb es nicht verborgen, dass, sofern man bei Functionen einer Variabeln stehen blieb, eine solche Weiterführung nicht in der Weise geschehen könne, dass an Stelle zweier Perioden deren mehrere treten; als jedoch Jacobi, auf dem Abel'schen Theorem fussend, durch sein Umkehrproblem die Möglichkeit mehrfach periodischer Functionen von mehreren Veränderlichen dargethan hatte und die Weiterentwickelung der Theorie der Abel'schen Functionen in denselben eine genuine Verallgemeinerung der elliptischen Transcendenten erkennen liess: schien keine weitere Veranlassung vorhanden, nach einer andern, im Bereiche einer Variabeln verharrenden Generalisirung zu suchen. - Und doch barg schon die Theorie der elliptischen Functionen selbst den Keim zu einer solchen Generalisirung in sich. — Die von Herrn Hermite in die Analysis eingeführte Modulfunction, welche den Modul k^2 des elliptischen Integrals erster Gattung in seiner Abhängigkeit vom Periodenquotienten darstellt, bietet das erste merkwürdige Beispiel einer eindeutigen Function, die bei gewissen linearen Transformationen des Arguments ihren Werth nicht verändert, zeigt sich also mit einer Eigenschaft behaftet, als deren besonderer Fall die Periodicität aufgefasst werden kann.

Aber dieses längst bekannte erste Glied der Kette von Transcendenten, die Herr Poincaré als Fuchs'sche und Klein'sche Functionen bezeichnet, war nicht im Stande, den Geometern die Existenz dieser ganzen Kette zu offenbaren, erst die von Herrn Fuchs begründete Theorie der linearen Differentialgleichungen führte allmälig zur Erkenntniss dieser Existenz.

In einem Briefe an Herrn Hermite (Borchardt's Journal, Bd. 83) hatte Herr Fuchs, ausgehend von den linearen Differentialgleichungen zweiter Ordnung, welchen die Periodicitätsmoduln der elliptischen Integrale Dig 16ed by GOOGLE

Hist,-lit. Abthlg. d. Zeitschr. f. Math. u. Phys. XXXVI, 6.

erster und zweiter Gattung genügen, die Ursachen dargelegt, zufolge deren die unabhängige Variable dieser Differentialgleichungen, d. i. der Modul k, als eindeutige Function des Quotienten der Perioden eines Integrales erster Gattung, nicht aber als ebensolche des Quotienten der Perioden eines Integrales zweiter Gattung erscheint, und einige Jahre später, bei Gelegenheit der Formulirung seiner Verallgemeinerung des Jacobi'schen Umkehrproblems, allgemein die Frage aufgeworfen und in Angriff genommen, wann in einer linearen homogenen Differentialgleichung zweiter Ordnung die unabhängige Variabele, aufgefasst als Function des Integralquotienten, eindeutig ist.

Diese Art der Fragestellung, welche erst die wahren Quellen für eine Classe von Functionen aufdeckte, von der einzelne besondere Fälle (ausser der Modulfunction) schon früher, wie z. B. in den Arbeiten der Herren Schwarz und Schottky, aufgetreten waren, veranlasste Herrn Poincaré zu seinen Arbeiten über diese Functionen. Nebst der allgemeinsten Erledigung der von Herrn Fuchs aufgeworfenen Eindeutigkeitsfrage enthielten diese Arbeiten auch zum ersten Male den Nachweis, dass äbnlich wie sich ein elliptisches Integral zweiter Gattung eindeutig darstellt durch Einführung des eindeutig inversiblen Integrals erster Gattung als neuer unabhängiger Veränderlichen, auch die Lösungen jeder linearen homogenen Differentialgleichung mit algebraischen Coefficienten eindeutige Functionen werden des Integralquotienten einer gewissen linearen Differentialgleichung zweiter Ordnung, in welcher die unabhängige Variable selbst eindeutig von diesem Quotienten abhängt. Und damit war nunmehr die Generalisirung der elliptischen Transcendenten im Gebiete der Functionen einer Variabeln vollzogen; das elliptische Integral erster Gattung erscheint bei derselben nicht in seiner Natur als besonderer Fall des Integrals einer allgemeinen algebraischen Function, sondern als besonderer Fall eines eindeutig inversiblen Integralquotienten einer linearen homogenen Differentialgleichung zweiter Ordnung mit algebraischen Coefficienten.

Nach dem Erscheinen der Poincaré'schen und der auf den gleichen Gegenstand bezüglichen Arbeiten des Herrn F. Klein wandte sich das Interesse in erhöhtem Maasse jenem längst bekannten, sozusagen einfachsten Falle der neueren Functionsclasse, der elliptischen Modulfunction zu, deren Theorie durch die Arbeiten der Herren Dedekind, Fuchs, Hermite, Klein, Schwarz und — last not least — Riemann's schon in verhältnissmässig hohem Grade entwickelt war.

Die Modulfunction bot jetzt nebst dem ihr eigenthümlichen Reize und der Fülle der ihr anhaftenden interessanten Eigenschaften die Aussicht dar, dass sich einzelne dieser Eigenschaften auf die neuen allgemeineren Functionen würden übertragen lassen, eine Aussicht, die sich z. B. in Bezug auf die Transformationstheorie (d. h. die Theorie der Untergruppen) zum Theil schon erfüllt hat, in Bezug auf algebraische Anwendungen der mathematischen Forschung noch ein weites Feld der Untersuchung offen lässt.

Digitized by GOOGIC

Es erschien daher in erster Reihe wünschenswerth, die in verschiedenen Abhandlungen zerstreut vorliegende Theorie der Modulfunctionen zu sammeln und in einheitlicher, systematischer Form darzustellen; diesem Wunsche Rechnung zu tragen, ist das umfangreiche Werk bestimmt, welches Herr Klein nach seinen Vorlesungen durch Herrn Dr. Fricke ausarbeiten lässt und dessen erster Band uns gegenwärtig vorliegt.

Wie die Vorrede hervorhebt, soll dasselbe als "erweiterte Fortsetzung" der die Theorie der endlichen Gruppen linearer Substitutionen behandelnden "Vorlesungen über das Ikosaeder" erscheinen und eventuell durch eine "Darstellung der allgemeinen Untersuchungen über eindeutige Functionen mit linearen Substitutionen in sich" gefolgt werden.

Der hier zu besprechende erste Band enthält die Definition der Modulfunction mit Hilfe der Legendre 'schen linearen Differentialgleichung zweiter Ordnung und eine breit angelegte Behandlung der Gruppe ganzzahliger linearer Substitutionen der Determinante 1, einschließlich der Theorie ihrer Untergruppen und der zu denselben gehörigen algebraischen Functionen der Modulfunction; die zu den Entwickelungen erforderlichen Hilfsmittel der Theorie der elliptischen Functionen, der linearen Differentialgleichungen, der allgemeinen Gruppenlehre und der Lehre von den algebraischen Functionen einer complexen Variabeln werden theils nur flüchtig skizzirt, theils in besonderen Abschnitten eingehender dargelegt und schliesslich als Beispiele die besonderen, den Transformationen fünfter und siebenter Ordnung der elliptischen Functionen entsprechenden Fälle vorgeführt. - Auf den Zusammenhang der dargestellten Untersuchungen mit der Transformationstheorie der elliptischen Functionen wird jedoch weder bei diesen Beispielen, noch bei den vorangehenden allgemeinen Darlegungen Bezug genommen, dagegen werden allenthalben geometrische Hilfsmittel nicht nur zur Illustration der analytischen Verhältnisse benutzt, sondern auch methodisch bei den Deductionen in Anspruch genommen. - Sowohl in Bezug auf die Resultate, als auch in Hinsicht der zur Herleitung derselben angewandten Methoden bleibt das Buch im Wesentlichen im Rahmen des bereits anderweitig bekannten Materials, wenn dieses manchmal auch in etwas fremdartigem Gewande, wie z. B. die Affecteigenschaften der Modulargleichungen in Gestalt der Eigenschaften der "Hauptcongruenzgruppen", erscheint.

Das Buch zerfällt in drei Abschnitte. Der erste behandelt in seinem ersten Capitel in vollkommenster Ausführlichkeit die Invariantentheorie der binären biquadratischen Form und ihre Anwendung auf die Reduction des elliptischen Integrals erster Gattung auf die verschiedenen in der Literatur auftretenden canonischen Formen, als da sind die Legendre-Jacobi'sche, die Hermite-Weierstrass'sche und die von Herrn Fuchs in seinen Arbeiten in den Bänden 71 und 83 des Borchardt'schen Journals eingeführte, welche als "Riemann'sche Normalform" bezeichnet wird. Im zweiten Capitel werden die Perioden des elliptischen Integrals erster Gattung definirt ihre ples

Eigenschaft als transcendente Invarianten der unter dem Integralzeichen vorkommenden biquadratischen Form hervorgehoben und für die "Weierstrass'sche Normalform" die Legendre'sche Differentialgleichung zweiter Ordnung aufgestellt, welcher dieselben als Functionen der rationalen absoluten Invariante J genügen. Diese Differentialgleichung bildet den Ausgangspunkt für die Theorie der Perioden. Nach den Fuchs'schen Principien werden die Entwickelungen der Integrale in der Umgebung der singulären Punkte, sowie die Coefficienten der zu diesen Punkten gehörigen Fundamentalsubstitutionen hergeleitet, dann der Periodenquotient w und die durch denselben befriedigte Differentialgleichung dritter Ordnung eingeführt, eine Differentialgleichung, welche mit der für den Integralquotienten einer algebraisch integrablen hypergeometrischen Differentialgleichung giltigen, als Specialfall einer allgemeinern, in den "Vorlesungen über das Ikosaeder" Als Quellen für die in diesem Capitel exponirten behandelten erscheint. Theorien werden nebst der Abhandlung von Herrn Fuchs in Bd. 66 des Borch, Journals auch beiläufig die Arbeit desselben Autors in Bd. 71 und für die letzterwähnten Resultate die von Herrn Schwarz in Bd. 75 citirt, dagegen wird des Fuchs'schen Briefes an Herrn Hermite (Bd. 83), an welchen sich die gegebenen Entwickelungen sowohl in Bezug auf die angewandten Methoden, als auch in Bezug auf die Form der Resultate auf's Engste anschliessen, keine Erwähnung gethan. - Das dritte Capitel behandelt die durch Umkehrung einer eindeutigen Function bestimmte Gebietseintheilung insbesondere für die rationalen Functionen, welche die absolute Invariante J als Functionen des Doppelverhältnisses x, resp. der Quadratwurzel aus dem Legendre'schen Modul darstellen, sowie für ebendieses J ale Function des Periodenquotienten w. Die hierbei entstehende Eintheilung der Ebene in Kreisbogendreiecke, ebenso wie die in Betracht kommenden Verhältnisse der Kreisverwandtschaft, Symmetrie und Beziehungen zu linearen Substitutionen werden im Anschluss an die Schwarz'sche Arbeit in Bd. 75, Borch. J., ausführlich erörtert und die Projection auf die Kugelfläche vorgenommen. Allgemein schliesst sich hieran das Studium der einer "regulären Dreieckstheilung der Ebene" entsprechenden Functionen, speciell der eindeutig umkehrbaren, für welche die Differentialgleichung aufgestellt und eine Sonderung in solche mit realem Orthogonalkreis, mit Häufungspunkt (elliptische Functionen) und endlich mit imaginärem Orthogonalkreis (algebraische) vorgenommen wird. - Von den ersteren, zu welchen die eigentlichen Modulfunctionen $\omega(J)$ und $\omega(\lambda)$, d. h. der Periodenquotient als Function der absoluten Invariante und des Doppelverhältnisses gehören. wird gezeigt, dass sie nur innerhalb des Orthogonalkreises existiren; wir müssen jedoch gestehen, dass wir für die Erhärtung dieser fundamentalen Thatsache noch einen andern, als diesen sich nur auf geometrische Betrachtungen stützenden Beweis gewünscht hätten. Dass die beiden wesentlichen Eigenschaften der Modulfunction, Eindeutigkeit und Existenz in beschränk-

tem Bereiche einerseits, Invarianz bei den ganzzahligen linearen Substitutionen der Determinante 1 andererseits, nicht aus derselben Quelle fliessen, indem nämlich die erstere aus der Dreieckstheilung, die letztere aus der Differentialgleichung erwiesen wird, scheint uns methodisch auch nicht ganz einwurfsfrei, zumal die Eindeutigkeit durch die Dreieckstheilung eigentlich nur anschaulich gemacht wird (ähnlich im Capitel V für die elliptischen Functionen); scharfe analytische Beweise für die letztere Eigenschaft dünken uns nur der aus der Differentialgleichung fliessende Fuchs'sche (Borch. J., Bd. 83) und der Poincaré'sche mit Hilfe der "fonctions theta fuchsiennes".

Im IV. Capitel wird nach Herleitung der Legendre'schen Relation durch einen Differentiationsprocess [der im Wesentlichen derselbe ist, wie jener schon bei Riemann (Ges. Werke, S. 298 u. 301) vorkommende, welcher vom Integralquotienten einer homogenen linearen Differentialgleichung zweiter Ordnung zu den Integralen selbst führt] der Charakter der Invarianten g, g, und der Discriminante d der biquadratischen Form als homogener Functionen der Perioden, die bei den linearen ganzzahligen Substitutionen der Determinante 1 ungeändert bleiben, erörtert und hieran eine sehr interessant durchgeführte Analogie zwischen diesen "Modulformen" und den entsprechenden Ikosaederformen geknüpft. — Die Weiterführung dieser Analogie auf Modulgleichung J(w) - J = 0 und Ikosaedergleichung führt entsprechend der Theorie der Resolventen der Ikosaedergleichung, zur Formulirung des Transformationsproblems der Modulfunction, welches sich in das gruppentheoretische Grundproblem, d. i. die Aufsuchung der in der "Modulgruppe" enthaltenen Untergruppen, und das functionentheoretische Grundproblem, d. i. die Bestimmung der bei den Substitutionen einer Untergruppe invarianten eindeutigen Functionen von ω (Modulfunctionen im allgemeinsten Sinne) spaltet. — Das nun folgende V. Capitel bringt eine Skizze der aus der Theorie der elliptischen Functionen erforderlichen Sätze, wobei die von Herrn Weierstrass in seinen Vorlesungen eingeführten Functionen und Bezeichnungen benutzt werden; es enthält insbesondere die bekannten analytischen Ausdrücke der Modulformen g_2 , g_3 , Δ durch die Perioden ω_1 , ω_2 , von welchen hervorgehoben wird, dass Herr Hurwitz dieselben zum Ausgangspunkte seiner independenten Theorie der Modulfunctionen genommen habe. — Es scheint uns ein entschiedener Vorzug des zu besprechenden Buches, dass in demselben weder jene Reihen, noch die Dreieckstheilung oder, was dasselbe ist, die Gruppe, sondern die einzig naturgemässe Grundlage, nämlich die Legendre'sche Differentialgleichung, den Ausgangspunkt bilden; nur hätten wir, wie schon bei der Eindeutigkeitsfrage hervorgehoben, gewünscht, dass dieser Ausgangspunkt auch nach jeder Seite hin consequent festgehalten werde, dass also auch jene der Theorie der elliptischen Functionen entnommenen Darstellungen direct aus der Legendre'schen Differentialgleichung hergeleitet werden, wozu sich z. B. Andeutungen in der

von uns mehrfach erwähnten Fuchs'schen Abhandlung finden. Auch wäre es recht interessant und nützlich gewesen, die klassischen Darstellungen der Modulfunctionen mit den Poincaré'schen durch die fonctions theta fuchsiennes zu vergleichen, überhaupt einmal diese letztere Darstellung für die Modulfunctionen durchzuführen, eine Aufgabe, die Herr Fuchs in seiner Sommervorlesung 1890 behandelt hat.

Der zweite Abschnitt beschäftigt sich mit dem gruppentheoretischen Grundproblem. Nachdem im ersten Capitel die linearen Substitutionen allgemein behandelt, der Fundamentalbereich für eine Gruppe solcher Substitutionen definirt und für die "cyklischen Gruppen" (d. h. solche, welche nur aus einer Substitution und deren Potenzen bestehen) aufgestellt worden, werden neben den Substitutionen die Spiegelungen eingeführt und die Möglichkeit der Erweiterung einer Gruppe linearer Substitutionen durch eine Spiegelung (Symmetrie des Fundamentalbereichs in Bezug auf einen Kreis) erörtert. Sodann wird im zweiten Capitel das im ersten Abschnitte eingeführte Ausgangsdreieck und dessen Spiegelung über eine seiner Seiten als Fundamentalbereich der Modulgruppe erkannt und die Entstehung dieser letzteren aus zwei Fundamentalsubstitutionen hervorgehoben, wobei sich auch der Unterschied zwischen den rationalen und nicht rationalen Punkten der realen Axe ergiebt. Das Ausgangsdreieck selbst kann, als Fundamentalbereich der durch eine Spiegelung erweiterten Modulgruppe aufgefasst und diese aus drei Fundamentalspiegelungen erzeugt werden. Diese Betrachtungen werden im dritten Capitel auf die Theorie der linearen quadratischen Formen angewandt, indem zunächst jeder solchen Form mit negativer Determinante ihr in einer bestimmten, z. B. der positiven Halbebene (d. h. wo der Coefficient von i positiv ist) gelegene "Wurzelpunkt" zugeordnet Reducirten Formen entsprechen Punkte des Fundamentalbereichs, (eigentlich) äquivalenten Formen Punkte, die durch eine Substitution der Modulgruppe auseinander entstehen. Formen mit positiver Determinante werden durch ihre beiden realen Wurzelpunkte, die als Doppelpunkte einer "hyperbolischen" Substitution aufgefasst werden können, dargestellt; jeder Potenz dieser Substitution, d. h. jeder Substitution der durch dieselbe bestimmten cyklischen Gruppe, entspricht eine Lösung der Pell'schen Gleichung und ein Bogenstück auf dem durch die Wurzelpunkte zur realen Axe orthogonal gelegten Halbkreise. Die Anzahl der diesen unendlich vielen Bogenstücken innerhalb des Fundamentalbereiches der Modulgruppe entsprechenden verschiedenen Bogen ist eine endliche und gleich der Ansahl der äquivalenten reducirten Formen. - Eine kurze Auseinandersetzung über "gleichberechtigte" Substitutionen, d. h. solche, welche durch Transformation mit einer andern Substitution der Gruppe hervorgehen, schliesst dieses Capitel ab und leitet zum nächstfolgenden über, welches dem Studium der zur gewöhnlichen, älteren Modulfunction (dem Legendre'schen Modul als Function der Periodenquotienten) gehörigen Gruppe gewidmet ist. Digitized by GOOSIC

eine Untergruppe, und zwar eine "ausgezeichnete", der Modulgruppe, besteht aus denjenigen Substitutionen, durch welche eine quadratische Form in die ihr, nach Herrn Kronecker's Ausdrucksweise vollständig äquivalenten übergeführt wird; ihr Fundamentalbereich entsteht durch Vereinigung von sechs benachbarten Fundamentalbereichen der Modulgruppe und wird von vier sich berührenden Kreisen resp. geraden Linien begrenzt. Diese Anzahl 6 heisst der Index der betrachteten Untergruppe, eine Bezeichnung, die ebenso wie die der "gleichberechtigten" Untergruppen, d. h. solcher, die durch Transformation mit einer Substitution der Modulgruppe auseinander hervorgehen, auch für beliebige Untergruppen fixirt wird. Als ausgezeichnete Untergruppe ist die betrachtete Gruppe nur sich selbst gleichberechtigt.

Bei diesen Betrachtungen und in noch höherem Grade bei den ganz allgemeinen der noch folgenden Capitel dieses Abschnittes macht sich die stricte Sonderung der "gruppentheoretischen" von den "functionentheoretischen" Theorien in einer die Lecture erschwerenden Weise bemerkbar. Viele Anschauungen, welche für die bei den Gruppen invarianten Functionen höchst einfach und naturgemäss erscheinen, machen sich in der abstracten gruppentheoretischen Fassung äusserst schwerfällig und gekünstelt, und selbst die geometrische Interpretation ist in der Regel nicht im Stande, eine so klare Vorstellung von den vorzuführenden Verhältnissen zu geben, wie sie bei sofortigem Eingehen auf die functionentheoretische Bedeutung entstehen würde.

Schon der Begriff des "Repräsentantensystems" einer Untergruppe mit endlichem Index kann durch nichts so klar gemacht werden, wie durch die verschiedenen Wurzeln der algebraischen Gleichung, welche zwischen den beiden der Untergruppe und der ursprünglichen Gruppe entsprechenden eindeutigen Functionen besteht. Die zu diesen verschiedenen Wurzeln gehörigen Untergruppen sind gleichberechtigt; ist die gedachte Gleichung eine Galois'sche (d. h. jede Wurzel eine rationale Function jeder andern mit rationalen Coefficienten), so sind die betreffenden gleichberechtigten Untergruppen identisch, die Untergruppe ausgezeichnet, ihr Fundamentalbereich wird durch die Substitutionen eines Repräsentantensystems in sich selbst transformirt, ist also regulär. Ist die Gleichung keine Galois'sche, die einer Wurzel entsprechende Untergruppe also nicht ausgezeichnet, so ist die der Galois'schen Resolvente dieser Gleichung entsprechende Untergruppe ausgezeichnet und ihr Index gleich der Ordnung der Monodromiegruppe. Diese letztere ist holoedrisch isomorph den Transformationen des Fundamentalbereichs jener ausgezeichneten Untergruppe in sich selbst; dies giebt eine klare Vorstellung von der zu einer ausgezeichneten Untergruppe von endlichem Index "gehörigen" endlichen Gruppe.

Diese und ähnliche Begriffe werden im fünften Capitel für die Modulgruppen erörtert, die betreffenden analytischen Deutungen aber erst in dem

dem "functionentheoretischen Grundproblem" gewidmeten dritten Abschnitte gegeben. Bringt man nämlich durch Biegung des Fundamentalbereiches einer Untergruppe mit endlichem Index μ je zwei correspondirende Seiten zur Deckung, so entsteht eine geschlossene Fläche, durch deren Zusammenhang das Geschlecht der Untergruppe bestimmt wird. Die Abbildung dieser Fläche auf die J-Ebene führt dann im dritten Abschnitte zu einer μ -blättrigen Riemann'schen Fläche, für welche auf Grund des Dirichlet'schen Princips, beziehungsweise der Riemann'schen Existenztheoreme (deren Beweise sich nach Schwarz und Neumann in den später zu besprechenden ersten Capiteln des dritten Abschnittes skizzirt finden) die zugehörigen algebraischen Functionen construirt werden; dieses sind die eindeutigen Functionen von ω , welche bei den Substitutionen der Untergruppe ungeändert bleiben und die das analytische Substrat der abstracten Ausführungen des zweiten Abschnittes bilden.

Zur Auffindung der Untergruppen mit endlichem Index dient der im sechaten Capitel dieses Abschnittes gegebene "Verzweigungssatz", demzufolge durch eine geschlossene Fläche, auf welcher eine gewissen Bedingungen genügende Dreieckstheilung vorhanden ist, stets eine Untergruppe mit den ihr gleichberechtigten definirt wird. - Die Untergruppen, bei denen die Integral quotienten $\left[s\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{n}, J\right)\right]$ in der Bezeichnung von Hrn. Schwarz einer hypergeometrischen Differentialgleichung, deren unabhängige VariableJeine eindeutige Function von s ist, ungeändert bleiben, sind ausgezeichnete Untergruppen vom Geschlechte 0, die aber nur für n=2, 3, 4, 5, wo s algebraisch wird, von endlichem Index sind. — Mit Hilfe der für n > 6entstehenden Untergruppen (dem n=6 entsprechen die elliptischen Functionen) $\Gamma_{\{n\}}$ wird eine "Classeneintheilung" der Untergruppen mit endlichem Index vorgenommen, welche zur Aufstellung zweier ausgezeichneter Untergruppen Γ_{79} und Γ_{168} (die angehängten Zahlen bedeuten die Indices), sowie deren Fundamentalbereiche und Fundamentalsubstitutionen benutzt wird. — Eine weitere Kategorie von Untergruppen wird im siebenten Capitel als "Hauptcongruenzgruppen" bezeichnet und die "Hauptcongruenzgruppe nier Stufe" definirt als die Gesammtheit jener Modulsubstitutionen

$$\frac{\alpha s + \beta}{\gamma z + \delta},$$

für welche $\alpha \equiv \delta \equiv \pm 1$, $\beta \equiv \gamma \equiv 0 \pmod{n}$. Dieselbe ist von n^{ter} Classe, in der durch eine Spiegelung erweiterten Modulgruppe ausgezeichnet enthalten, und ihr Index $\mu(n)$ durch die Anzahl incongruenter Lösungen der Congruenz

$$\alpha \delta - \beta \gamma \equiv 1 \pmod{n}$$

bestimmt. Das Geschlecht ergiebt sich durch die Riemann'sche Formel w-2n=2p-2 und es werden die Gruppen Γ_{72} und Γ_{168} des vorigen Capitels als Hauptcongruenzgruppen sechster resp. siebenter Stufe agnoscirt

Interessant ist die Bemerkung, dass die die Substitutionen der Hauptcongruenzgruppe n^{ter} Stufe $\Gamma_{\mu(n)}$ definirenden Bedingungen die einzigen arithmetischen Charakteristica sind, die den Substitutionen der zu $s\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, J\right)$ gehörigen Gruppe $\Gamma_{\{n\}}$ (welche ja eine Untergruppe von $\Gamma_{\mu(n)}$ ist) zukommen; alle übrigen besonderen Eigenschaften dieser Substitutionen lassen sich nicht durch Congruenzen angeben. Die zu der Hauptcongruenzgruppe $\Gamma_{\mu (n)}$ gehörige endliche Gruppe (vergl. S. 207) $G_{\mu(n)}$ ist, wie wir der Orientirung wegen bemerken wollen, im Wesentlichen nichts Anderes, als die Gruppe der Galois'schen Resolvente der zur Transformation nter Ordnung der elliptischen Functionen mit der absoluten Invariante J gehörigen Modulargleichung; die den Wurzeln dieser Gleichung und denen ihrer verschiedenen Resolventen (Multiplicatorgleichung etc.), also den verschiedenen Untergruppen der endlichen Gruppe $G_{\mu(n)}$ entsprechenden Untergruppen der Modulgruppe werden als Congruenzgruppen schlechthin eingeführt. Diese Bedeutung der betrachteten Gruppen wird in dem vorliegenden ersten Bande nicht erwähnt; wir hätten aber doch wenigstens einen kurzen Hinweis auf diesen Zusammenhang gewünscht, theils um den mit der Materie vertrauten Leser aufmerksam zu machen, dass ihm in den folgenden Auseinandersetzungen zumeist nur längst bekannte Resultate in etwas ungewohnter Form geboten werden, theils auch, um dem Lernenden den historischen Ursprung der vorzutragenden Theorien zu Bewusstsein zu bringen. - Im achten und neunten Capitel werden für den Fall einer Primzahlstufe q die Untergruppen der endlichen Gruppe $G_{\mu(q)}$ aufgestellt; es ergeben sich nebst cyklischen Unter-

gruppen insbesondere (q+1) gleichberechtigte halbmetacyklische Untergruppen von der Ordnung $\frac{q(q-1)}{2}$ (entsprechend den q+1 Wurzeln der Modulargleichung), und es wird gezeigt, dass die diesen letzteren entsprechenden (q+1) gleichberechtigten Congruenzgruppen vom Index q+1im allgemeinen Falle die Congruenzgruppen von niedrigstem Index dieser Stufe sind, welche in der Modulgruppe vorkommen. Nur für q = 5, 7, 11giebt es noch, für q=5 ein, für q=7, 11 zwei Systeme von q gleichberechtigten Congruenzgruppen des Index q, was der Galois'sche Satz von der Erniedrigung der zu den Transformationen 5., 7., 11. Ordnung der elliptischen Functionen gehörigen Modulargleichungen ist.

Wie schon erwähnt, ist der dritte Abschnitt dem "functionentheoretischen Grundproblem" gewidmet und beginnt mit einer zwar zum Theil nur skizzenhaften, aber doch klaren und übersichtlichen Darstellung der wichtigsten Ergebnisse der Riemann'schen Theorie algebraischer Functionen einer complexen Variabeln. — An die im ersten Capitel exponirten Existenztheoreme schliesst sich im zweiten Capitel das eingehendere Studium der algebraischen Gebilde vom Range 0 und 1 und für die Gebilde höheren Ranges der Riemann'sche Satz mit der Brill-Nöther'schen Erweiterung

und der Nachweis für die Invarianz der aus den Integranden erster Gat-

tung gebildeten Quotienten bei rationalen Transformationen. Ein System von v linear unabhängigen Functionen, die nur an m vorgeschriebenen Stellen der Riemann'schen Fläche unendlich erster Ordnung werden, lassen sich als Coordinaten eines Punktes in einer v-fachen ebenen Mannigfaltigkeit (v-dimensionaler Raum) auffassen, in welcher also die "äquivalenten oder coresidualen" Punktsysteme (Niveaupunkte nach Herrn C. Neumann) auf einer Curve mter Ordnung liegen. Wenn die Stufe der Mannigfaltigkeit die möglich grösste ist (also $v = m - p + \tau$, τ die Anzahl der für ein Punktsystem verschwindenden $\varphi's$), so heisst die Curve eine Normalcurve. — Nachdem an der einem System von Integranden erster Gattung entsprechenden Normalcurve die Scheidung der hyperelliptischen von allen anderen algebraischen Gebilden klargelegt worden, bringt das dritte Capitel die von uns bereits erwähnte Construction der zu einer Untergruppe von endlichem Index der Modulgruppe gehörigen eindeutigen Functionen von ω , welche sich, wie gezeigt wird, stets durch J und eine algebraische Function z von J rational darstellen lassen. Ist die Untergruppe vom Geschlecht 0, so ist J selbst rational in diesem s, welches dann als Hauptmodul bezeichnet wird; im Falle eines beliebigen Geschlechtes werden im Allgemeinen die p linear unabhängigen Integranden erster Gattung, für ein hyperelliptisches Gebilde das System einer an nur 2 und einer an 2p+2 Stellen unendlich werdenden Function als "vollständiges Modulsystem" zu Grunde gelegt. Ist der Fundamentalbereich der Untergruppe in Bezug auf einen Kreis symmetrisch, so kann s stets so gewählt werden, dass die Coefficienten der zwischen z und J bestehenden algebraischen Gleichung real sind. Bei Erörterung der Thatsache, dass die zu den algebraischen Functionen s von J gehörigen Integrale, ebenso wie die Function $s\left(\frac{1}{2}, \frac{1}{3}, n, J\right)$ eindeutig in ω werden, vermissen wir die nachdrückliche Betonung des Umstandes, dass überhaupt jede mehrdeutige Function des Doppelverhältnisses A, die nur die Punkte O, 1, o zu Verzweigungspunkten hat, eine eindeutige Function von ω sei, ein Umstand, der uns, abgesehen von seiner weiterreichenden Bedeutung, auch darum besonders erwähnenswerth scheint, weil dadurch erst der Umfang des Problems, alle Untergruppen der Modulgruppe aufzustellen, übersehen werden kann, indem er z. B. erkennen lässt, dass jede algebraische Function von A, die sich nur in den Punkten 0, 1, ∞ verzweigt, zu einer Untergruppe mit endlichem Index Veranlassung giebt.

Die nachfolgenden Untersuchungen werden auf ausgezeichnete Untergruppen, d. h., Galois'sche Moduln", beschränkt, da diese in Verbindung mit der Zerlegung der zugehörigen endlichen Gruppen den Weg zu allen, auch nicht ausgezeichneten Untergruppen bahnen. Für p=0 giebt es nur vier Galois'sche Hauptmoduln, nämlich die Integralquotienten der algebraisch integrirbaren hypergeometrischen Differentialgleichungen, für den

Digitized by GOOGIC

hyperelliptischen Fall bei p=1 unendlich viele, während für p>1 nur zwei ausgezeichnete Untergruppen mit den Indices 48 (p=2, vollständiges Modulsystem μ , $\sqrt{\mu(1-\mu^4)}$ und 120 $(p=5, \text{ vollstandiges Modulsystem } \zeta$, $\sqrt{\zeta(\zeta^{10}+11\zeta^5+1)}$ gefunden werden. — Die eingehende Discussion der auf p=0 bezüglichen Probleme (Darstellung der unabhängigen Variabelen J und des Integralquotienten s als eindeutige Functionen von ω, beim "Ikosaeder" wird das Gleiche auch für die Wurzeln der Resolventen fünften und sechsten Grades geleistet) füllt das vierte, die der beiden hyperelliptischen Fälle das fünfte Capitel. Im letzteren werden überdies noch die zu $\sqrt[n]{\lambda}$, $\sqrt[n]{1-\lambda}$ gehörigen Untergruppen aufgestellt, welche aber nur für n = 1, 2, 4, 8"Congruenzgruppen" sind, und für $\sqrt[p]{\lambda}$, der Hermite'schen Modulfunction, die das Verhalten dieser Function bei Anwendung einer beliebigen Modulsubstitution darstellenden Hermite'schen Transformationsformeln ent-Eine Stelle ist in diesen Ausführungen dadurch bemerkenswerth, dass es die einzige des ganzen Buches ist, an welcher auf die von uns mehrfach angeführte Fuchs'sche Abhandlung im 83. Bande von Borch. J. Bezug genommen wird, indem nämlich einer Bemerkung von Herrn Hermite Erwähnung geschieht, die Herr Fuchs in einer Fussnote zu seiner Arbeit reproducirt.

Den zum allgemeinen (nicht byperelliptischen) Falle p > 2 gehörigen ausgezeichneten Untergruppen sind im dritten Capitel einige allgemeine Auseinandersetzungen und einem hierher gehörigen wichtigen und interessanten Beispiele die beiden letzten Capitel des Buches gewidmet. Allgemein wird gezeigt, dass das aus einem System von Integranden erster Gattung formirte vollständige Modulsystem bei Anwendung der Substitutionen der Modulgruppe homogene lineare Substitutionen erleidet und dass die aus diesen gebildete Gruppe holoedrisch isomorph sei, mit der zu der betrachteten ausgezeichneten Untergruppe gehörigen endlichen Gruppe. wähnte Beispiel ist das der Hauptcongruenzgruppe siebenter Stufe Γ_{168} , welcher eine nicht hyperelliptisch algebraische Function vom Range p=3entspricht. Die das vollständige Modulsystem darstellenden drei Integranden erster Gattung y1, y2, y4 erfahren bei Anwendung der Substitutionen der Modulgruppe 168 lineare homogene Substitutionen der Determinante 1, welche die linke Seite der zwischen y_1 , y_2 , y_4 bestehenden homogenen Relation

$$f(y_1, y_2, y_4) = y_1^3 y_4 + y_4^3 y_2 + y_2^3 y_1 = 0$$

in sich selbst transformiren. Folglich genügen die y_1 , y_2 , y_4 einer algebraisch integrirbaren homogenen linearen Differentialgleichung dritter Ordnung mit in J rationalen Coefficienten, welche auch den Gegenstand von interessanten Untersuchungen der Herren Halphen, Hurwitz und Poincaré gebildet hat. Diese Untersuchungen werden nicht vorgeführt; im Anschlusse an dieselben sei jedoch die Bemerkung gestattet, dass in jener

Differentialgleichung die unabhängige Variabele J eine rationale Function der durch die algebraische Gleichung

$$f\left(1, \frac{y_2}{y_1}, \frac{y_4}{y_1}\right) = 0$$

verknüpften Integralquotienten ist, eine Erscheinung, welche Interesse gewinnt, wenn man die allgemeinen Untersuchungen von Herrn Fuchs (Acta Mathem., Bd. I) über lineare Differentialgleichungen dritter Ordnung, zwischen deren Integralen eine nicht lineare homogene Relation besteht, auf den vorliegenden besonderen Fall anwendet. In diesen Gedankenkreis gehört auch das im Buche hergeleitete Resultat, dass die Covarianten von f, Modulfunctionen erster Stufe, d. h. rationale Functionen von J sind. Dagegen beziehen sich die weiteren Betrachtungen insgesammt auf die Zerlegung der zu Γ_{168} gehörigen endlichen Gruppe in ihre Untergruppen und die Aufstellung der entsprechenden Resolventen. - Wenn wir uns der üblichen Terminologie bedienen, so wird in erster Linie die zur Transformation siebenter Ordnung der elliptischen Functionen gehörige Multiplicatorgleichung achten Grades aufgestellt und die Darstellung ihrer Wurzeln, resp. der Quadratwurzeln aus denselben durch die vier Jacobi'schen A angegeben, welch' letztere als homogene Coordinaten eines Punktes im Raume interpretirt durch die von ihnen erfüllten vier homogenen cubischen Relationen eine Raumcurve sechster Ordnung bestimmen, welche als "Kegelspitzencurve" eines Bündels von Flächen zweiter Ordnung erkannt wird. - Dann werden die zufolge des Galois'schen Satzes existirenden Resolventen siebenten Grades aufgestellt, also Gleichungen siebenten Grades mit einer Gruppe von 168 Permutationen, wie sie den Gegenstand der bekannten Arbeiten der Herren Kronecker, Hermite u. A. gebildet haben.

Ein Ausblick auf die Theorie der eindeutigen Functionen, welche durch lineare Transformationen ungeändert bleiben, für welche auch wieder eine neue Bezeichnungsart vorgeschlagen wird, beschliesst das Buch.

Der folgende zweite Band soll die Transformationstheorie der elliptischen Functionen nebst zahlentheoretischen Anwendungen behandeln und dürfte sonach eine willkommene Ergänzung des im ersten Bande gebotenen reichhaltigen Materials darbieten.

Berlin, März 1891.

SCHLESINGER.

Oeuvres de Fermat, publiées par les soins de MM. PAUL TANNERY et CHARLES HENRY. Tome I. Paris, Gauthier-Villars et fils, 1891.

Im 16. und 17. Jahrhundert haben sich um die Mathematik und die Naturwissenschaften eine Reihe von Männern verdient gemacht, deren Berufsthätigkeit von diesen Wissenschaften ganz abseits lag, welche denselben also nur ihre Mussezeit widmen konnten.

Zu diesen Männern gehört Petrus de Fermat (1595—1665), Rathsherr am Parlamente seiner Vaterstadt Toulouse, wo er für einen der tüchtigsten Rechtskundigen und einen der gewissenhaftesten Beamten angesehen wurde. Seine freie Zeit widmete er dem Studium der klassischen Sprachen und der Mathematik, und obwohl bei seinen Lebzeiten nur eine kleine Schrift von ihm (De linearum curvarum cum lineis rectis comparatione) und noch dazu anonym (als Anhang einer Arbeit des Jesuiten Lalouvère über die Cykloide) im Druck erschienen war, hielt man ihn doch während der letzten Jahre seines Lebens allgemein für den ersten Mathematiker in ganz Europa. Er hatte in allen Theilen der Mathematik mit Erfolg gearbeitet und seine Resultate mündlich und brieflich mitgetheilt; er hatte mit anderen Gelehrten, so mit Cartesius, wichtige Controversen gehabt und, nach der Sitte der Zeit, die Mathematiker anderer Völker, besonders die Engländer, durch Stellung schwieriger Aufgaben herausgefordert.

Fünf Jahre nach Fermat's Tode (1670) veranstaltete sein Sohn Samuel Fermat eine neue Ausgabe des Diophant. Dieser von seinen Landsleuten nicht verstandene grosse Mathematiker, der Erfinder der Algebra, ist im Grunde genommen erst von Fermat fortgesetzt worden. Zwar hatten ihn schon die Araber eifrig studirt; es war ihnen auch gelungen, ein wenig über Diophant hinauszugehen; aber dieser Fortschritt war ein sehr geringfügiger, und die Schriften der Araber geriethen, wie Diophant selbst, bald in Vergessenheit, in der sie einige Jahrhunderte hindurch blieben. Erst gegen Ende des 16. Jahrhunderts fing man wieder an, sich mit Diophant zu beschäftigen. Bombelli, Xylander, Vieta, Stevin, Billy, Bachet u. A. studirten ihn eifrig. Auf den Rand eines - leider nicht mehr vorhandenen - Exemplars der Bachet'schen Ausgabe hatte nun Fermat kurze Anmerkungen geschrieben, welche theils Verallgemeinerungen oder andere Lösungen der Aufgaben Diophant's, theils neue schwierigere Aufgaben enthalten, theils auch Sätze der Zahlentheorie aussprechen, welche - ohne Beweis gegeben - die Mathematiker bis in dieses Jahrhundert hinein beschäftigt haben und zum Theil noch nicht ganz erledigt sind. Diese Anmerkungen verleihen der Fermat'schen Ausgabe des Diophant einen besonderen Werth; was Correctheit des Textes betrifft, so ist bekanntlich die Bachet'sche Ausgabe bei Weitem die bessere.

Zweitens gab Samuel Fermat 1679 unter dem Titel "Varia opera mathematica" die mathematischen Arbeiten und diejenigen Briefe seines Vaters heraus, von denen er sich treue Copien verschaffen konnte. Von diesem Buche haben R. Friedländer u. Sohn in Berlin 1861 durch Heliotypie einen Neudruck hergestellt.

Beide Bücher sind nun im Laufe der Zeit recht selten geworden. Es ist aber Pflicht eines Volkes, dafür zu sorgen, dass die Werke seiner hervorragenden Geister nicht verschwinden oder durch ihre Seltenheit sehr theuer und somit für die Träger der Wissenschaft unzugänglich werden.

Von dieser Erwägung ausgehend, hatten schon 1843 die französischen Kammern auf Antrag der Regierung beschlossen, eine neue, vollständige Ausgabe der Werke Fermat's zu veranstalten. Mit der Ausführung dieses Beschlusses war 1844 G. Libri beauftragt worden. Die unliebsamen Vorgänge, die mit dem Namen Libri verknupft sind, vereitelten die Sache, die erst 1879 durch Charles Henry wieder in Fluss gebracht wurde. 1881 stellte der Fürst Baldassare Boncompagni in Rom, dem wir auch die schöne Ausgabe der Schriften des Leonardo Pisano verdanken, zwei in seinen Besitz übergegangene Manuscripte Fermat's zur Verfügung, die zu den von Libri erworbenen gehört hatten. Die Ordnung des Materials konnte aber nicht abgeschlossen werden, so lange man hoffen durfte, unter den von Libri nach England gebrachten Büchern weitere Ausbeute zu finden. Diese Hoffnung hat sich nicht erfüllt, und so stand der Vollendung der neuen Ausgabe Nichts mehr im Wege. Um einen möglichst correcten Text zu geben (ich habe nur einen Fehler bemerkt, der aus der alten in die neue Ausgabe übergegangen ist: S. 325 Z. 3 muss $\frac{5}{4}N+1-\frac{25}{6}Q$ gelesen werden), ist das gesammte gedruckte und handschriftliche Material auf das Sorgfältigste geprüft worden. Der Sammlung und Ordnung der Documente hat sich Herr Charles Henry gewidmet; die Revision des Textes und die Abfassung der - auf besonderen Wunsch der Commission - möglichst kurzen Noten ist Herrn Paul Tannery übertragen worden, welcher über dieser neuen Arbeit hoffentlich die versprochene Textausgabe des Diophant nicht vergessen wird.

Das Werk, von welchem jetzt der erste Band in schöner Ausstattung vorliegt, wird aus drei Bänden bestehen. Der zweite Band soll die gesammte Correspondenz Fermat's in chronologischer Reihenfolge geben, sowohl die Briefe, welche Fermat geschrieben, als auch diejenigen, welche er erhalten hat. Der dritte Band wird mehr ein Ergänzungsband sein. Er soll u. A. eine französische Uebersetzung der lateinisch geschriebenen Arbeiten Fermat's, des Commercium epistolicum von Wallis und der in der Fermat'schen Diophant-Ausgabe abgedruckten Arbeit von Jacob de Billy enthalten, in welcher dieser eine Zusammenstellung alles Dessen giebt, was Fermat ihm brieflich über die doppelten und dreifschen Gleichungen mitgetheilt hat.

Der erste Band enthält ausser den in den Varia Opera abgedruckten noch einige Arbeiten Fermat's, die theils jetzt zum ersten Male veröffentlicht werden, theils aus Pascal's Werken, in die sie unter Angabe des Ursprungs aufgenommen waren, herrühren. Die Herausgeber haben die Reihenfolge, in welcher die Arbeiten in den Varia Opera stehen, nicht beibehalten, sondern dieselben nach folgenden Gesichtspunkten geordnet:

Den Anfang machen Fermat's Arbeiten über Geometrie, behandelt im Sinne der Alten. Es folgt dann die wichtige Schrift: Ad locos planos et solidos isagoge, welche die Elemente der neueren analytischen Geometrie

und besonders eine Discussion der allgemeinen Gleichung zweiten Grades mit zwei Unbekannten giebt, und welche, wie wir durch eine Anmerkung der Herausgeber erfahren, vor dem Erscheinen der Geometrie von Cartesius abgefasst und mitgetheilt worden ist. Hieran schliesst sich die jetzt zum ersten Male veröffentlichte Schrift: Isagoge ad locos ad superficiem, welche den ersten bekannten Versuch über die allgemeine Theorie der Oberflächen zweiten Grades enthält. Weiter giebt der erste Band die auf die Theorie der Maxima und Minima und der Tangenten bezüglichen Arbeiten, auf Grund welcher Fermat von Laplace, Lagrange u. A. für den eigentlichen Erfinder der Differentialrechnung gehalten wird. In diesem Abschnitte finden wir auch Fermat's Erörterungen über die Brechung des Lichtes, die auf dem Gedanken beruhen, die Natur befolge bei dem Fortpflanzen der Bewegung eine Art Gesetz der Minima, wodurch Fermat zum Urheber desjenigen Princips geworden ist, welches man gewöhnlich als das der geringsten Wirkung bezeichnet. Darauf folgen die auf die Theorie der Gleichungen, speciell auf die Elimination bezüglichen Arbeiten, dann diejenigen, welche die Quadratur von Curven zum Gegenstande haben und die Keime der Integralrechnung enthalten. Den Schluss bilden die schon besprochenen Anmerkungen zu Diophant, denen das zum Verständniss Allernothwendigste beigefügt ist. Von besonderem Interesse dürfte darin eine Note des Herrn Tannery sein, welche eine bisher allgemein nicht verstandene Bemerkung Fermat's verständlich macht. Darnach hat Fermat den Begriff "Säule einer Polygonalzahl" gebildet. Er versteht darunter das Product aus n in die nte Polygonalzahl, so dass die Säulen der Viereckzahlen mit den Cubikzahlen identisch sind. Wie nun aus der Reihe der ungeraden Zahlen durch Additionen sich die Cubikzahlen bilden lassen: $3+5=2^3$, 7+9+11=38 u. s. w., so geht aus der arithmetischen Reihe

1,
$$a-1$$
, $2a-3$, $3a-5$, ...

die Reihe der Säulen der a-Eckzahlen

1,
$$a$$
, $3a-3$, $6a-8$, ...

hervor. Es ist nämlich, wenn allgemein P_k die k^{te} a-Eckzahl und A_k die k^{te} Dreieckzahl bezeichnet,

$$(a-1) + (2a-3) - (a-4) \Delta_1 = 2P_2, (3a-5) + (4a-7) + (5a-9) - (a-4) \Delta_2 = 3P_3,$$

Von den Beigaben, welche der erste Band bringt, seien nur zwei hervorgehoben: ein schönes Portrait Fermat's, welches nach dem der Originalausgabe der Varia Opera beigefügten gestochen und auch in vergrössertem Maassstabe erhältlich ist, und zweitens ein Facsimile der Handschrift Fermat's, welches, wie die Herausgeber hoffen, zur Auffindung von Büchern aus Fermat's Bibliothek, der seine Notizen immer nur auf den Rand seiner Bücher schrieb, führen wird. Möge diese Hoffnung in reichem Maasse sich erfüllen.

Frankfurt a. M., 22. April 1891.

G. WERTHEMOSIC

Rechenbuch für Gymnasien, Realgymnasien, Ober-Realschulen, Bealschulen, höhere Bürgerschulen, Seminare etc. Von Prof. Harms und Prof. Dr. Kallius. 15. Auflage. Oldenburg 1890. Preis Mk. 2,25.

Es liegt uns die 15. Auflage des bekannten Rechenbuches vor, auf dessen vortreffliche Eigenschaften an dieser Stelle noch einmal hingewiesen werden mag. Als ein entschiedener Vorzug des Buches ist zu betonen, dass es nur Aufgaben enthält, deren Lösung auf jeder neuen Stufe durch wenige bestimmte Fragen angedeutet wird; es soll also nicht gleichzeitig Lehrbuch sein, und andererseits macht es ein solches durchaus überflüssig.

Ebenso kann Referent es nur billigen, wenn die Verfasser den Rechenunterricht als eine Vorstufe der Arithmetik auffassen, wenn der Schüler daher schon beim Anfangsunterricht z.B. in das Verständniss der Klammern eingeführt und ihm schon an dieser Stelle der Begriff der Potenz klar gemacht wird, und wenn des Weiteren schon in der Quarta das Denken in Gleichungen zur Geltung gebracht wird, ein Verfahren, wozu ja auch der geometrische Unterricht hindrängt, welcher der Arithmetik vielfach bedarf. Herr Prof. Kallius hat die Grundgedanken, welche bei Abfassung des Buches leitend gewesen sind, wenigstens soweit sie den Unterricht bis zur Sexta betreffen, in einer besonderen beachtenswerthen Schrift "Die vier Species in ganzen Zahlen u. s. w." ausführlich dargelegt.

Die 15. Auflage unterscheidet sich, wie die beiden vorigen, nur darin von der zwölften, dass in einem Anhange die Neunerprobe Aufnahme gefunden hat.

Dr. E. Jahnke.

Die vier Species in ganzen Zahlen (2. Aufl.) und das Münz-, Mass- und Gewichtssystem im Rechenunterricht (4. Aufl.), von Prof. Dr. Kallius. Oldenburg 1889. Preis Mk. 1,20.

Der Verfasser setzt hier die Ergebnisse einer längeren Erfahrung des Näheren auseinander, welche dem von ihm im Verein mit Herrn Prof. Harms herausgegebenen, jetzt in der 15. Auflage erschienenen bekannten Rechenbuche zu Grunde gelegt worden sind, soweit der Unterricht bis zur Sexta in Betracht kommt. Nur einige von den Vorschlägen seien hier hervorgehoben. Bei der schriftlichen Subtraction wird das Aufwärtszählen angewendet, weil dadurch Fehler im Subtrahiren eher vermieden werden und sich daraus auch sonst manche Kechenvortheile ergeben, wie derjenige, dass bei der Division die Theilproducte nicht hingeschrieben zu werden brauchen. Bei der Multiplication wird — im Hinblick auf die abgektirzte Multiplication — von Anfang an mit der höchsten Ziffer des Multiplicators begonnen und jede Ziffer in die ihrer Stellennummer entsprechende Stelle eingerückt, eine Darstellung, die geeignet ist, das Rechnen mit decimalen Zahlen vorzubereiten. Was die Verwendung des Münz-, Maass- und Gewichtssytems im Rechenunterricht anbelangt, so verlangt der Verfasser mit Recht, dass

Digitized by GOOGLE

man dem Schüler nicht mehr Bezeichnungen vorführen solle, als solche im praktischen Leben auftreten. Wenn Referent etwas hinzufügen dürfte, so wäre es der Wunsch, dass auf Grund der Kallius'schen Vorschläge in den beim elementaren Rechenunterrichte anzuwendenden Verfahrungsweisen endlich einmal eine gewisse Uebereinstimmung erzielt werden möchte.

Dr. E. JAHNKE.

Arithmetische Aufgaben nebst Lehrbuch der Arithmetik für höhere Bürgerschulen, Realschulen, Progemnasien und Realprogymnasien, von Dr. E. BARDEY. 6. Auflage. Leipzig 1890, Preis M. 2.

"Arithmetische Aufgaben" und nicht "Aufgaben-Sammlung" lautet im Gegensatz zu der grösseren, für Gymnasien, Realgymnasien und Oberrealschulen bestimmten Aufgaben-Sammlung der Titel dieses Buches, womit der Verfasser andeuten will, dass die hier aufgestellten Aufgaben mit wenigen, selbstverständlichen Ausnahmen von ihm herrühren. Ein weiterer wesentlicher Unterschied zwischen den beiden Büchern liegt darin, dass in dem vorliegenden den Aufgaben eines jeden Abschnittes eine Theorie vorangeschickt ist. "Die Theorie bildet, soweit die Aufgaben reichen, ein vollständiges Lehrbuch der Arithmetik und soll ein besonderes Lehrbuch überflüssig machen." Es muss anerkannt werden, dass die theoretische Behandlung manches Gelungene bietet. Der Verfasser hat sich bemüht, die Anfangsgründe der allgemeinen Arithmetik in anregender Weise darzustellen: der Gang der Theorie ist einmal so eingerichtet, dass der Schüler schon nach wenigen Stunden Gelegenheit zu geeigneter Selbstthätigkeit findet; andererseits wird der Schüler angeleitet, seine im Rechnen mit gewöhnlichen Zahlen erworbenen Kenntnisse bei der allgemeinen Arithmetik zur Anwendung zu bringen. Vielleicht dürfte es sich empfehlen, diesen zweiten Gesichtspunkt, das Numerische bei der Begründung der allgemeinen Arithmetik heranzuziehen und ein allzustarkes Buchstabenanhäufen zu vermeiden, noch stärker zu betonen. Indessen leiden die theoretischen Erörterungen (vergl. besonders die Abschnitte über die negativen, die gebrochenen und die imaginären Zahlen), wie der Verfasser selbst schon bemerkt hat, an einem Mangel. Bei der Einführung in die Arithmetik muss das Postulat an die Spitze gestellt werden, dass eine Erweiterung des bekannten Zahlengebietes nur dann statthaft ist, falls die neuen Gebilde gleichwie Zahlen gebraucht werden können, d. h. falls sie den nämlichen oder wenigstens den Hauptregeln unterworfen sind, die für den natürlichen Zahlenbereich Giltigkeit haben. Zur Begründung dieser Forderung genügt es, zwei Gesichtspunkte anzufthren: einmal werden dadurch die grundlegenden Operationen zu allgemeingiltigen erhoben, und zweitens bilden die neuen Gebilde nur dann eine fruchtbare Erweiterung des Zahlenbereiches, falls das Postulat Dieser Forderung ist jedoch der Verfasser nicht gerecht erfüllt ist. Dig Zed by GOOGLE

Hist.-lit. Abthlg. d. Zeitschr. f. Math. u. Phys. XXXVI, 6.

geworden. Was seine Stellung zu den irrationalen Grössen anbetrifft, so wird deren Existenz derselben zugelassen, ohne dass eine hinreichende Begründung des Irrationalen versucht würde. Soweit die Aufgabensammlung in Betracht kommt, ist die Trefflichkeit des Buches bekannt; es bietet eine Fülle von Aufgaben aus den verschiedenen Zweigen des Unterrichts; auch sind die Aufgaben dieser Sammlung, von wenigen abgesehen, der grösseren Sammlung nicht entlehnt, was manchem der Herren Fachgenossen willkommen sein dürfte, weshalb noch einmal darauf hingewiesen sein soll.

Die Grundlagen der Arithmetik unter Einführung formaler Zahlbegriffe, von Prof. Dr. O. Reichel, Berlin. Theil I: Natürliche, algebraische, gebrochene Zahlen. 1886. Theil II: Die irrationalen Zahlen. 1890.

In seinen Vorlesungen zur Einführung in die Theorie der analytischen Functionen pflegte Herr Weierstrass eine arithmetische Einleitung zu geben, wo er sich für die Definition der in den indirecten Operationen wurzelnden Zahlen auf den formalen Standpunkt stellte, so dass bei der Einführung der negativen, der gebrochenen, der irrationalen und der imaginären Zahlformen die Begriffe des Gleichseins, des Addirens u. s. w. besonders festgesetzt werden mussten. Bei dieser Erweiterung des bekannten Zahlgebietes wurde die Forderung erhoben, dass die neuen Zahlgebilde den selben Hauptgesetzen unterlägen, welche für den patürlichen Zahlbereich Giltigkeit haben. Erst nachdem sich herausgestellt hatte, dass die fundamentalen Rechnungsvorschriften auch für sie noch bestehen bleiben, wurde die Bezeichnung "Zahl" auch auf sie ausgedehnt. Hiermit ist auch die Auffassung gekennzeichnet, welche diesem "Hülfsbuch für den Unterricht" zu Grunde liegt. Wie der Verfasser diesen Grundgedanken im Einzelnen weiter ausgeführt hat, wollen wir an dem Beispiel der negativen Zahlen erläutern. Aufgestellt sei eine Zahlverbindung von der Form 5-7, welche dem Begriffe des Subtrahirens zufolge keine Zahl im bisherigen Sinne darstellt; sie sagt nur noch aus, "eine gewisse, wenn auch unlösbare Aufgabe habe doch gestellt werden dürfen", wie die Ausdrucksweise des Verfassers lautet. Wenn man gleichwohl, fährt der Verfasser fort, Differenzzeichen wie das genannte beibehalten hat, so reicht deren Bedeutung als blosse Zeichenvereinigungen für die Arithmetik völlig aus, falls der Gebrauch, welcher von denselben gemacht werden soll, durch besondere Festsetzungen erst erklärt wird. Und in der That ist es zur Begründung der negativen Zahlformen vom rein wissenschaftlichen Standpunkte aus nicht nöthig, zu Begriffen wie Schulden und Vermögen, Vorwärts- und Rückwärtsbewegung und ähnlichen seine Zuflucht zu nehmen. Andererseits scheint es dem Referenten keinem Zweifel zu unterliegen, dass der Pädagoge der letzteren Auffassung den Vorzug geben wird, wohingegen die

erstere, die eigentlich wissenschaftliche erst einem Schüler zugemuthet werden dürfte, der die Grundlagen der Arithmetik schon kennen gelernt hat. Eher am Platze scheint dem Referenten dagegen die entsprechend lautende wissenschaftliche Erklärung für die gebrochenen Zahlen, welche der Zögling aus zahlreichen Beispielen des alltäglichen Lebens schon in früheren Classen kennen gelernt hat. Was des Verfassers Begründung des Irrationalen anbetrifft, so lassen sich dagegen, wie dem Referenten scheint, dieselben Bedenken erheben, wie sie von Herrn Illigens (im 33. Bande der Mathematischen Annalen) gegen die bezüglichen Weierstrass-Cantor'schen Untersuchungen geltend gemacht worden sind. Vielleicht dürfte es sich auch für die Pädagogen empfehlen, nach dem Vorgange von Herrn Kronecker irrationale Zahlen, welche ja nie, weil immer nur näherungsweise gegeben sind, überhaupt nicht einzuführen; im Grunde genommen ersetzt man doch stets die sogenannten irrationalen Zahlen, sobald sie angegeben werden sollen, durch rationale Werthe. - Was die Bezeichnungsweise anbelangt, so benutzt der Verfasser die Bezeichnungen "Grenze" und "Function", welche er in den Unterricht eingeführt wissen will. Ueber die Benutzung des Buches hat sich der Verfasser dahin ausgesprochen, dass der Lehrer beim ersten Unterricht nicht etwa die einzelnen Paragraphen Zeile für Zeile mit den Schülern durchgehen dürfe, vielmehr möglichst von Beispielen, wie sie sich zahlreich eingestreut finden, ausgehen und an diesen das Durchzunehmende erklären oder durch Fragen von den Schülern selbst entwickeln lassen musse, wobei es nicht etwa als erforderlich oder auch nur als rathsam hingestellt wird, mit der Classe die sämmtlichen Beweise durchzugehen.

Das in zwei Theilen erschienene Buch behandelt seinen Stoff in knapper Form auf wenigen Bogen und zeugt von einem grossen Fleisse des Verfassers. Wenn sich auch Referent in mancher Hinsicht mit demselben nicht einverstanden erklären kann, so möchte er es doch den Fachgenossen wenigstens als Hülfsbuch für den Unterricht zur Beachtung empfohlen haben.

Ein dritter Theil, die complexen Zahlen behandelnd, soll binnen Kurzem nachfolgen.

Dr. E. Jahnke.

Ueber ternäre Formen mit linearen Transformationen in sich selbst. Inaugural-Dissertation von P. Muth. Giessen 1890.

Es ist bekannt, dass eine Curve dritter Ordnung im Allgemeinen 18 lineare Transformationen in sich selbst besitzt. Diese Zahl kann sich in einzelnen Fällen noch erhöhen. Unter diesem Gesichtspunkte betrachtet der Verfasser den besondern Fall einer äquianharmonischen und einer harmonischen Curve dritter Ordnung und sucht von hier aus theils schon bekannte Sätze aus der Theorie der Curven dritter Ordnung zu verificiren, theils neue Wahrheiten zu gewinnen. Bei der erstgenannten Curve ergiebt sich die Anzahl der in Rede stehenden Transformationen gleich 54. Für das

Dignad by GOOgle

weitere Studium derselben bedient sich der Verfasser der Parameterdarstellung, er kann dann die sämmtlichen Transformationen in drei Gruppen zusammenfassen, die sich bei weiterer Untersuchung theils als involutorisch, theils als cyklisch dritten oder sechsten Grades herausstellen. Ein von Herrn Lindemann gegebener Satz wird zu folgendem erweitert: Jede der vier äquianharmonischen Curven des syzygetischen Büschels wird von der zugehörigen Combinante in sechs Dreiecken geschnitten, welche sowohl der betreffenden Curve, als auch der Combinante ein- und zugleich umgeschrieben Die 18 Schnittpunkte liegen zu je drei auf 18 Geraden, welche zu je sechs durch die drei Eckpunkte des Dreiecks gehen, in welches die Hesse'sche Curve der betreffenden äquianharmonischen Curve zerfällt. Ebenso untersucht der Verfasser die harmonische Curve dritter Ordnung und findet auf demselben Wege 36 lineare Transformationen, welche sie in sich überführen; 18 von diesen sind cyklisch vierten Grades. Es ergiebt sich hierbei eine correctere Form für einen in Clebsch-Lindemann's Vorlesungen tiber Geometrie angegebenen Satz, die so lautet: Die Combinante des syzygetischen Büschels berührt jede der sechs harmonischen Curven in neun Punkten, deren jeder einen Wendepunkt zum Tangentialpunkt hat. Während bisher nur die einzelne äquianharmonische oder harmonische Curve in Betracht gezogen wurde, unterwirft der Verfasser nunmehr das Verhalten der Curven des syzygetischen Büschels, d. h. der Gruppe der vier äquianharmonischen und der Gruppe der sechs harmonischen Curven gegenüber den Transformationen der oben genannten Gruppen einer besonderen Betrachtung. Es gelingt ihm auf diesem Wege ohne Rechnung die Zahl der linearen Transformationen der Combinanten des syzygetischen Büschels in sich zu bestimmen; dieselbe ergiebt sich gleich 216. Als Anwendung dieser Untersuchungen wird gezeigt, wie die genaue Kenntniss der linearen Transformationen einer Curve in sich auf höchst einfachem Wege eine geometrische Untersuchung derselben gestattet. Der Verfasser wählt als Beispiel die schon mehrfach genannte Combinante und leitet für sie das Resultat ab: Ihre 108 Doppeltangenten schneiden sich zu je zwölf in den neun Wendepunkten und ihre 72 Tripeltangenten gehen zu je sechs durch die zwölf Ecken der vier Wendepunktsdreiecke der Curve dritter Ordnung, von welcher die Combinante abhängt. Anknüpfend an die trilineare Collineation, welche bei der Untersuchung der äquianharmonischen Curve aufgetreten ist, geht der Verfasser auf dieselbe näher ein und entwickelt sodann die hierbei gewonnenen Resultate auch auf algebraischem Wege.

Die Arbeit, aus welcher man einen Auszug in den Mathematischen Annalen, 1889, Bd. 33 abgedruckt findet, ist als ein schätzenswerther Beitrag zur Theorie der Curven dritter Ordnung anzusehen.

Dr. E. JAHNEE.

Ueber Differentialgleichungen, welche durch doppeltperiodische Functionen zweiter Gattung erfüllt werden. Von P. Benoit. Programmabhandlung des Dorotheenstädtischen Realgymnasiums zu Berlin, 1891.

Herr Picard hat bewiesen, dass eine lineare Differentialgleichung mter Ordnung, deren Coefficienten doppeltperiodische Functionen erster Art und deren Integrale eindeutig sind, stets doppeltperiodische Functionen zweiter Art zu Integralen hat. Die explicite Darstellung der Integralfunctionen war schon von den Herren Hermite und Fuchs für gewisse Fälle, speciell für den Fall m=2 bei einer Differentialgleichung geleistet worden, auf die Lamé zuerst kam, ohne sie für allgemeine Werthe der Constanten integriren zu können. Von dieser Differentialgleichung geht der Verfasser aus. Wird nach Halphen's Vorgang die Jacobi'sche Bezeichnungsweise durch die Weierstrass'sche ersetzt, so tritt auf der rechten Seite eine lineare Function der p-Function als Factor auf. Der Verfasser betrachtet nun eine etwas allgemeinere Differentialgleichung: sie unterscheidet sich von der Lamé'schen dadurch, dass jener Factor der rechten Seite eine allgemeinere doppeltperiodische Function erster Art darstellt, eine solche nämlich, die zwar auch nur eine wesentlich singuläre Stelle im Unendlichen besitzt, die aber durch σ-Quotienten, pu, p'u und p''u darstellbar ist. Für die Integration dieser Differentialgleichung geht der Verfasser nach Einführung der Hermite'schen Substitution von der Darstellung einer doppeltperiodischen Function erster Art aus, welche der Zerlegung der rationalen Functionen in Partialbrüche entspricht, und gewinnt vermittelst des Additionstheorems behufs Bestimmung der Unbekannten eine lineare Differentialgleichung vierter Ordnung, von der bekannt ist, dass ihr eine ganze rationale Function genügt, ein Verfahren, das von dem verschieden ist, welches Herr Hermite in seinen Applications angewendet hat. Als ein Integral ergiebt sich die von Herrn Hermite a. a. O. p. 7 F (x) genannte Function. Die hier behandelte Differentialgleichung ist ein besonderer Fall der von Herrn Fuchs untersuchten.

Die Fälle, wo die p-Function in die Exponentialfunction und in die trigonometrische Function übergeht, finden ihre besondere Erledigung.

Dr. E. JAHNKE.

Lehrbuch der angewandten Potentialtheorie, bearbeitet nach System Kleyer von Dr. Hovestadt. Kleyer's Encyklopädie der gesammten mathem., techn. u. exacten Naturwissenschaften. Stuttgart 1890. Preis M. 7.

Ueber die Potentialtheorie besitzen wir eine Reihe ausgezeichneter Bearbeitungen, welche nicht nur die Bedeutung des Potentialbegriffes für die Mathematik, auf deren Boden derselbe entstanden ist, darlegen, sondern sich auch mit den verschiedenen Anwendungen beschäftigen, die derselbe

in der theoretischen Physik, besonders in dem Abschnitte der elektrischen Erscheinungen gefunden hat. Es lassen sich eben die fundamentalen Sätze, welche die Mathematik über das Potential aufgestellt hat, in die Sprache der physikalischen Mechanik übersetzen. Es ist nun sehr wohl denkbar, eine Darstellung der angewandten Potentialtheorie zu geben, welche von den abstracten Begriffen der Mathematik absieht, um die in Rede stehenden Anwendungen auch dem verständlich zu machen, welchem eine Kenntniss der höheren Mathematik abgeht. Diesen Versuch hat der Verfasser unternommen nach einer Methode, die ihren Stoff in Form von Erklärungen, Frage und Antwort vorführt; jedem Abschnitte sind erläuternde Beispiele, sowie Uebungsaufgaben angehängt. Die Elektrostatik wird besonders eingehend behandelt. Nachdem die Begriffe des Kraftfeldes und Potentials an der Gravitation der Erde erläutert worden sind, werden die verschiedenen Maasse aufgestellt, mit denen man Elektricitätsmengen misst, und sodann jene Begriffe für 1, 2 und schliesslich n elektrische Punkte, weiter für eine isolirte, leitende, mit Elektricität geladene Kugel (mit Anwendung auf den Erdkörper) und auch für ein ebensolches Ellipsoid erklärt. Es folgen Abschnitte über die Anordnung der Elektricität auf einem isolirten leitenden Ellipsoid, desgleichen auf leitenden Körpern, deren Form sich aus den Rotationsellipsoiden ableiten lässt. Auch die Wirkung isolirter Elektricitätsmengen, die sich in einem Hohlraume innerhalb eines leitenden Körpers befinden, wird eingehend dargestellt, ebenso die Wirkung zwischen zwei leitenden Kugeln, von denen sich jede im Kraftfelde der andern befindet. Weitere Abschnitte sind den Condensatoren und der Bestimmung von Potentialwerthen durch Elektrometer und durch die Schlagweite des elektrischen Funkens gewidmet. Den Schluss bilden Abschnitte über Berührungselektricität, den elektrischen Strom und das elektromagnetische Kraftfeld. Der Anhang A, wo alle mitgetheilten Formeln zusammengestellt sind, ist recht brauchbar. Die eigentliche Darstellung ist durchaus elementar gehalten, hätte aber strengere Entwicklungen geben können.

Das Buch ist besonders denen zu empfehlen, welche sich auf möglichst elementarem Wege mit den Ergebnissen der Potentialtheorie rasch bekannt machen wollen.

Dr. E. Jahnes.

Ueber den Satz von der Winkelsumme im Dreieck. Von W. Fr. Schüler, Kgl. Reallehrer. — Programm zu dem Jahresberichte der Kgl. Realschule in Ansbach pro 1889/90. Ansbach 1891, Druck und Verlag von C. Brügel u. Sohn. IV, 50 S.

Verfasser will das elfte Axiom Euklid's beweisen und stützt sich dabei angeblich nur auf die beiden Axiome, dass es überhaupt gleiche Strecken giebt und dass man eine Strecke durch eine Zahl wiedergeben kann.

Digitized by GOOGLO

Die Arbeit zerfällt in vier Theile: A. Der arithmetische und algebraische Theil; B. Die geometrischen Grundgebilde und Grundoperationen; C. Die Transversalen der unbegrenzten Ebene; D. Der Satz von der Winkelsumme im Dreieck.

A. behandelt nach einer Definition der lineären mathematischen Grösse die lineare Gleichung mit zwei Unbekannten; B. betrachtet die Gerade, das Messen von Strecken und deren Verhältnisse, die Darstellung von Punkten durch Zahlen, das Feld, die ebene Fläche, Winkel und Ebene; die Abschnitte C. und D. sollen durch Rechnung die Schwierigkeit überwinden, die in dem Uebergang vom Unbegrenzten zum Unendlichen liegt.

Die Abhandlung, die an verschiedenen Stellen stylistische Bedenken erregt, zeichnet sich weder durch Klarheit, noch durch gute Anordnung aus und bietet im Einzelnen viele zweifelhafte Punkte. Ihre Beweisführung hat uns nicht überzeugen können, noch weniger das eigenthümliche Schlusswort.

Schmalkalden, den 11. Mai 1891.

Dr. H. SCHOTTEN.

Bibliographie

vom 1. September bis 31. December 1891.

Periodische Schriften.

I dilumbur Duritmen.
Sitzungsberichte d. kais. Akademie d. Wissensch. Mathnaturw. Cl. II, a.
100. Bd., 1.—5. Heft. Wien, Tempsky. 15 Mk. 10 Pf.
Almanach d. kais. Akademie d. Wissensch. 41. Jahrg. 1891. Ebendas.
4 Mk. 40 Pf.
Mémoires de l'Académie imp. des sc. de Pétersbourg. VII. Série, tome XXXVIII,
Nr. 5 et 6. Leipzig, Voss. 9 Mk. 30 Pf.
Mélanges mathématiques et astronomiques tirés du bulletin de l'Académie
de Pétersbourg. Tome VII, livr. 1. Ebendas. 3 Mk. 65 Pf.
Publicationen d. astrophysikalischen Observatoriums zu Potsdam. Nr. 27
8. Bds. 1. Stück. Leipzig, Engelmann. 6 Mk
Annalen d. königl. bayer. Sternwarte b. München. Neue Folge, 2. Bd.
Herausgeg. v. H. Seeliger. München, Franz. 25 Mk.
Preisschriften d. Jablonowski'schen Gesellschaft zu Leipzig. XXIX. Die
opt. Anomalieen d. Krystalle v. R. Brauns. Leipzig, Hirzel. 12 Mk
Landestriangulation d. Königr. Preussen. Hauptdreiecke, die Elbkette
2. Abtheilung. Berlin, Mittler. 7 Mk
Deutsches meteorologisches Jahrbuch f. 1888. Herausgeg. v. W. v. Bezold
Berlin, Ascher. 24 Mk
—— für 1891. 1. Heft. Ebendas. 3 Mk
Meteorologisches Jahrbuch f. 1890. Königr. Sachsen. Chemnitz, Bülz
meteororogisenes samrouen i. 1650. Konigi. Sacusen. Oneminia, Bull
Annalen d. physik. Centralobservatoriums in Petersburg. Jahrg. 1890
Herausgeg. v. H. Wild. Leipzig, Voss. 10 Mk. 20 Pf
Acta mathematica. Herausgeg. v. MITTAG-LEFFLER. 15. Bd. 1. u. 2. Heft
Berlin, Mayer & Müller.

Geschichte der Mathematik und Physik.

Cantor, M., Vorlesungen über die Geschichte d. Mathematik. 2. Bd.,
1. Theil. (Von 1200 bis 1668). Leipzig, Teubner.

Digitized by Cooperation.

STERNER, M., Principielle Darstellung d. Rechenunterrichts auf historischer Grundlage. 1. Theil. Geschichte der Rechenkunst. München, Oldenbourg. 6 Mk.

RENTWIG, H., Die Physik an d. Univers. Helmstedt. Aus den Akten d. Archivs zu Wolfenbüttel und bisher ungedruckten Briefen Leibnizens dargestellt. Wolfenbüttel, Zwissler. 2 Mk.

Reine Mathematik.

Jacobi's Gesammelte Werke. 7. Bd. Herausgeg. v. K. Weierstrass. Berlin, G. Reimer. 14 Mk.

Mansion, P., Theorie d. partiellen Differentialgleichungen I. O. Uebers. v. H. Maser. Berlin, Springer. 12 Mk.

BÖCHER, M., Ueber die Reihenentwickelungen der Potentialtheorie. Gekr. Preisschrift. Göttingen, Vandenhoeck & Ruprecht. 2 Mk. 80 Pf.

SOMMERFELD, A., Die willkürlichen Functionen in der mathem. Physik. (Dissert.) Königsberg i. Pr., Koch. 1 M. 20 Pf.

HAGEN, S., Synopsis d. höheren Mathematik. 1. Bd. Arithmet. u. algebr. Analyse. Berlin, Dames. 30 Mk.

MOLENBROEK, P., Theorie d. Quaternionen. Leiden, Brill. 7 Mk.

Scheffler, H., Beiträge zur Zahlentheorie insbes. zur Kreistheilung etc. Leipzig, Förster. 6 Mk.

GRAVELIUS, H., Vierstellige Logarithmentafeln. Berlin, Dümmler 50 Pf.

— Vierstellige logarithmisch-trigonometrische Tafeln für die Decimaltheilung d. Quadranten. Ebendas.

1 Mk. 50 Pf.

Grassmann, R., Die Formenlehre oder Mathematik in strenger Formelentwickelung. 1. Zweig, Arithmetik. Stettin, Grassmann. 4 Mk.

Simon, M., Zu den Grundlagen der nicht-euklidischen Geometrie. Strassburg i. E. Strassburger Verlagsanst. 2 Mk.

WEYER, E., Einführung in die neuere construirende Geometrie. Leipzig, Teubner. 1 Mk. 20 Pf.

Peano, G., Die Grundzüge des geometrischen Calcüls, übers. v. A. Schepp. Leipzig, Teubner. 1 Mk. 20 Pf.

HAEBLER, Th., Die Ableitung d. ebenen Trigonometrie aus drei Grundgleichungen. Grimma, Gensel. 50 Pf.

Schlotke, J., Analytische Geometrie d. Ebene. Sammlung v. Lehrsätzen u. Aufgaben. Dresden, Kühtmann. 6 Mk. 80 Pf.

FISCHER, W., Netze zur Herstellung geometrischer Körper f. d. project.

Zeichnen. Dresden, Köhler.

10 Mk.

Heller, J., Aufgaben u. Beispiele aus d. darstellenden Geometrie. 1. Theil. Wien, Hölder. 1 Mk. 80 Pf.

Angewandte Mathematik.

CZUBER, E., Theorie d. Beobachtungsfehler. Leipzig, Teubner. 8 Mk. Hammer, E., Zur Abbildung d. Erdellipsoids. Stuttgart, Wittwer. 1 Mk.

SEIBT, W., Präcisionsnivellement d. Weichsel. Berlin, Stankiewicz. 6 Mk.
POLLACK, V., Die photographische Terrainaufnahme (Lichtbildmesskunst.)
Wien, Lechner. 80 Pf.

Jansen, W., Die Kreiselbewegung. Untersuchung d. Rotation v. Körpern.
Berlin, Luckhardt. 1 Mk. 80 Pf.

SCHMIDT, A., Die Strahlenbrechung auf d. Sonne. Stuttgart, Metzler. 1 Mk.
Förster, W. u. P. Lehmann, Die unveränderlichen Zahlen des königl.

preuss. Normalkalenders. Berlin, stat. Bureau.

Physik und Meteorologie. Kirchhoff, G., Vorlesungen über mathem. Physik. 3. Bd., Elektricität u. Magnetismus. Herausgeg. v. M. Planck. Leipzig, Teubner. HAFNER, R., Die Anziehungs- und Abstossungskräfte, ihr Entstehungsgesetz etc. Glarus, Bäschlin. 2 Mk. 60 Pf. GEF, W., Die Wellen d. Schwerkraft u. ihre Wirkung auf d. Wellen d. Elektricität, d. Lichts etc. Heidelberg, Siebert. 1 Mk. Geigel, R., Gedanken über Molecularattraction. Würzburg, Stahel. GROSS, Th., Ueber den Beweis d. Princips von d. Erhaltung d. Energie. Berlin, Mayer & Müller. 1 Mk. 20 Pf. FARADAY, M., Experimentaluntersuchungen über Elektricität, übers. von L. KALISCHER. 3. Bd. (Schluss.) Berlin, Springer. 16 Mk. KUNDT, Die neuere Entwickelung der Elektricitätslehre. Rede. Berlin. Hirschwald. 80 Pf. Poincaré, H., Vorlesungen über Optik u. Elektricität, übers. v. W. Janger u. E. Gumlich. 1. Bd. Die Theorieen v. Maxwell u. die elektromagnet. Lichttheorie. Berlin, Springer. 8 Mk. HUBER, G., Forschungen auf d. Gebiete d. Spectralanalyse. 80 Pf. Schönflies, A., Krystallsysteme und Krystallstructur. Leipzig, Teubner. 12 Mk. WALTER, B., Ueber die lichtverzögernde Kraft gelöster Salzmolecule und

ein Verfahren zur genaueren Bestimmung d. Brechungsexponenten.

(Dissert.) Rudolstadt, Dabis.

4 Mk.

80 Pf.

Mathematisches Abhandlungsregister.

1890.

Zweite Hälfte: 1. Juli bis 31. December.

Abel'sche Functionen.

242. Sulle funzioni σ abeliane. Ern. Pascal. Annali mat. Ser. 2, XVII, 81, 197, 257; XVIII, 1, 131, 277.

Akustik.

243. Sur la propagation anomale des ondes sonores. Gouy. Compt. rend. CXI, 910. [Vergl. Nr. 507.] 244. On bells. Rayleigh, Phil. Mag. Ser. 5, XXIX, 1.

Analytische Geometrie der Ebene.

- 245. Addition a une note sur une application des coordonnées parallèles.

 M. d'Ocagne. N. ann. math. Ser. 3, IX, 471. [Vergl. Bd. XXXV Nr. 352.]
- 246. Quelques propriétés générales des courbes algébriques obtenues au moyen des coordonnées parallèles. M. d'Ocagne. N. ann. math. Ser. 3, IX, 445.
 247. Recherches de quelques courbes planes par l'intermédiaire de leurs développées.
- V. Jamet. N. ann. math. Ser. 3, IX, 496. 248. Ueber einige specielle Curven höherer Ordnung. Archiv 2. R. IX, 420. Jos. Wesely. Grun.
- 249. Sur des théorèmes de Mrs. Humbert et Fouret sur deux courbes algébriques. Em. Borel. N. ann. math. Ser. 3, IX, 123.
 250. Ueber Transversalenschnittpunkte, Transversalentheilwinkel und Transversalentheilstrecken im ebenen Dreieck und Tetraeder. H. Seipp. Grun. Archiv 2, R. IX, 375.
- 251. Sur les trajectoires de points et les enveloppes de droites dans le plan.
 M. d'Ocagne. N. ann. math. Ser. 3, IX, 289.
 Vergl. Ellipse. Hyperbel. Imaginäres. Kegelschnitte. Krümmung.
 Quadratur. Rectification.

Analytische Geometrie des Raumes.

- 252. Zur Goursat'schen Reduction des Problems der Bestimmung der Curven durch die Relation zwischen Krümmungs- und Torsionswinkel. R. Hoppe. Grun.
- Archiv 2 R. IX, 43.
 253. Sur les trajectoires orthogonales d'une ligne mobile. G. Pirondini.
- N. ann. math. Ser. 3, IX, 297. 254. Démonstration des formules de Frenet. J. B. Pomey. N. ann. math. Ser. 3, IX, 559.
 - Vergl. Analytische Geometrie der Ebene 250. Complanati Hyperboloid. Oberflächen. Oberflächen zweiter Ordnung. Complanation.

Astronomie.

- 255. Sur la théorie du système optique formé par une lunette et un miroir plan mobile autour d'une axe. Loewy et Puiseux. Compt. rend. CX, 761.
 256. Théorie et emploi d'un double miroir plan. Loewy et Puiseux. Compt. rend. CX, 818, 1097.
 257. Sur la réduction à la forme canonique des équations différentielles pour la
- variation des arbitraires dans la théorie des mouvements de rotation. O. Callandreau. Compt. rend. CXI, 593.
- 258. Rapport sur un mémoire de Mr. Cellérier, intitulé "Sur les variations des excentricités et des inclinaisons". H. Poincaré. Compt. rend. CX, 942

Digitized by GOOGLE

259. Ueber das Problem der Säcularstörungen. H. Bruns. Berl. Akad.-Ber. 1890, 543.

260. Sur la nutation de l'axe du monde. Folie. Compt. rend. CX, 1058.

261. Sur les mouvements des planêtes, en supposont l'attraction représentée par l'une des lois électrodynamiques de Gauss ou de Weber. F. Tisserand. Compt. rend. CX, 313.
262. Sur l'application des lois électrodynamiques au mouvement des planétes.

M. Levy. Compt. rend. CX, 545.

263. Integration der Gleichung für die Störung der mittleren täglichen siderischen
Bewegung periodischer Kometen von geringer Neigung (Biela'scher
Komet) durch die Planeten Erde, Venus und Merkur. J. v. Hepperger. Wien. Akad.-Ber. XCVIII, 1094.
264. Sur la Théorie de la capture des comètes périodiques. O. Callandreau.
Compt. rend. CX, 625.

265. Études sur la théorie des comètes périodiques. O. Callandreau. Compt. rend. CXI, 30. Vergl. Hydrodynamik 385. 386. 387. 388.

Bestimmte Integrale.

266. Auswerthung einiger bestimmten Integrale durch Anwendung des freien In-

tegrationsweges. U. Bigler. Grun. Archiv. 2 R IX, 60.
267. Ueber eine Anwendung der Taylor'schen Reihe und einige bestimmte Integrale. Reinh. Mildner. Grun. Archiv. 2 R IX, 285.

268. Sur l'intégrale -u²du. Stieltjes. N. ann. math. Ser. IX, 479.

Vergl. Functionen 839. Gammafunctionen.

Binomial coefficienten.

269. Ein Discontinuitätsfactor. Fr. Rogel. Grun. Archiv. 2 R IX, 334. 270. Quelques théorèmes sur les coefficients binomiaux. J. Tano. N. ann. math. Ser. 3, IX, 564.

C.

Cartographie.

271. Atlas facsimile pour servir à l'histoire de la première période de la cartographie. A. E. Nordenskiöld. Compt. rend. CX, 446.
272. Sur la construction des plans, d'après les vues du terrain obtenues de stations aériennes. A. Laussedat. Compt. rend. CXI, 729.

Complanation.

273. Sur quelques propriétés des aires sphériques. G. Humbert. Journ. Mathem. Ser. 4, 1V, 313.
274. Ueber die von Humbert untersuchten Kugelflächenstücke. R. Hoppe. Grun.

Archiv. 2 R IX, 58.

Cubatur.

275. Sur la détermination générale du volume engendré par un contour fermé gauche ou plan dans un mouvement quelconque. G. Koenigs. Journ. math. Serie 4, V, 321. Vergl. Quadratur 526.

D.

Differentialgleichungen.

276. Zur Theorie der linearen Differentialgleichungen. L. Fuchs. Berl. Akad.-Ber. 1890, 21. Vergl. Bd. XXXV Nr. 394. Digitized by Google

- 277. Ueber algebraisch integrirbare lineare Differentialgleichungen. L. Fuchs.
- Berl. Akad. Ber. 1890, 469. 278. Zur Theorie der homogenen linearen Differentialgleichungen mit algebraischen Relationen zwischen den Fundamenlalintegralen. Wien. Akad.-Ber. XCVIII, 66. W. Wirtinger.
- 279. Sur les équations différentielles linéaires ordinaires. Cels. Compt. rend. CXI, 98, 879.
- 280. Sur les développements ensérie des intégrales de certaines équations différentielles. A. Liouville. Compt. rend. CXI, 597.
- 281. Sur une classe d'équations différentielles dont l'intégrale générale est uniforme. Em. Picard. Compt. rend. CX, 877.
- 282. Sur une transformation des équations différentielles du premier ordre. P. Painlevé. Compt. rend. CX, 840.
- 283. Sur les intégrales rationelles des équations du premier ordre. P. Painle vé. Compt. CX, 84.
- 284. Sur les intégrales algébriques des équations différentielles du premier ordre. P. Painlevé. Compt. rend. CX, 945
- 285. Sur un cas particulier de l'équation de Lamé. V. Jamet. Compt. rend.
- CX1, 638.

 286. Sur les invariants d'une classe d'équations du premier ordre. Z. Elliot.

 Compt. rend. CX, 629.
- 287. Sur les invariants de quelques équations différentielles. P. Appell. Journmathem. Ser. 4, V, 361.
 288. Sulla trasformazione delle equazioni lineari, omogenee, a derivate parziali,
- con coefficienti costanti. C. Somigliana. Annali mat. Ser. 2, XVIII, 265.
- 289. Sur les équations linéaires aux dérivées partielles. A. Petot. Compt. rend. CX1, 522.
- 290. Sur l'emploi des approximations successives dans l'étude de certaines équations aux dérivées partielles. Em. Picard. Compt. rend. CX, 61.
- 291. Sur la théorie des équations aux dérivées partielles et la méthode des approximations successives. Em. Picard. Journ. math. Ser. 4, VI, 145, 231.
- 292. Sur l'intégration d'une équation aux dérivées partielles. Zaremba. Compt. rend. CX, 127.
- 293. Sur la détermination des intégrales des certaines équations aux dérivées par-
- tielles du second ordre. Em. Picard. Compt. rend. CXI, 487. 294. Sur un théorème de Mr. Picard se rapportant à une équation linéaire du deuxième ordre aux dérivées partielles. Gust. Kobb. Compt. rend. CXI, 726.
- 295. Sopra un equazione a derivate parziali del quarto ordine. C. Somigliano. Annali mat. Ser. 2, XVIII, 59.
- 296. Sur quelques équations différentielles partielles d'ordre supérieur. Aug. Gutzmer. Journ. mathem. Ser. 4, VI, 405. Vergl. Analytische Geometrie des Raumes 252.

Differential quotienten.

297. Sur les formes différentielles associées. G. Halphen. Journ. mathem. Ser. 4, VI, 211.

E.

Elasticität.

- 298. Sulle equazioni della elasticità. C. Somigliano. Annali mat. Ser. 2. XVII, 37.
- 299. Twisted strips. J. Parry. Phil. Mag. Ser. 5, XXIX, 244. 300. On the deformation of twisted strips. G. H. Bryan. Phil. Mag. Ser. 5, XXX, 476.
- 301. On the distribution of flow in a strained elastic solid. Ch. A. Carus-Wilson. Phil. Mag. Ser. 5, XXIX, 503.
- 302. Sur l'équilibre d'élasticité d'une enveloppe sphèrique. E. Fontaneau. N. ann. math. Ser. 3, IX, 455. Vergl. Graphische Statik.

Elektricität.

303. On the dynamical theory of electromagnetic action. A. Gray. Phil. Mag. Ser. 5, XXX, 441.

304. Sur les diverses théorie de l'électricité. M. Lévy. Compt. rend. CX, 741.

305. Sur la loi électrodynamique de Weber. H. Poincaré. Compt. rend. CX, 825

306. Contribution à la théorie des expériences de Mr. Hertz. H. Poincaré. Compt rend. CXI, 322.

307. Sur un théorème d'électrodynamique. P. Duhem. Journ. mathem. Ser. 4, IV. 369. V, 58.

308. The general solution of Maxwell's Electromagnetic Equations in a Homogenous Isotropic Medium, especially in regard to the Derivation of special Solutions, and the Formulae for Plane Waves. Ol. Heaviside. Phil. Mag. Ser. 5, XXVII, 29.

809. On the electromagnetic effects due to the motion of electrification through a dielectric. O. Heaviside. Phil. Mag. Ser. 5, XXVII, 324. J.J. Thomson ibid. XXVIII, 1.

310. Allgemeine Sätze über die elektrostatische Induction. G. Adler. Wien Akad. Ber. XCVIII, 779.

311. On an electrostatic field produced by varying magnetic induction. O. Lodge. Phil. Mag. Ser. 5, XXVII, 469.

132. On the electrostatic force between conductors conveying steady or transient currents. O. Lodge. Phil. Mag. Ser. 5, XXX, 230.

133. On the calculation of the coefficient of mutual induction of a circle and a coaxal helix. J. V. Jones. Phil. Mag. Ser. 5, XXVII, 56.

134. On the time-integral of a transient electromagnetically induced current.

W. Thomson. Phil. Mag. Ser. 5, XXIX, 276.

135. Some experiments on the velocity of transmission of electric disturbances and their application to the theory of the stricted discharge through gases.

their application to the theory of the striated discharge through gases.

J. J. Thomson. Phil. Mag. Ser. 5, XXX, 129.

316. The disruptive discharge of electricity through gases. Arth. Schuster.
Phil. Mag. Ser. 5, XXIX, 182.

317. On thermoelectric phenomena. J. Parker. Phil. Mag. Ser. 5, XXVII, 72

318. On the acceleration of secondary electromagnetic waves. F. T. Trouton. Phil. Mag. Ser. 5, XXIX, 268. Vergl. Astronomie 261, 262. Optik 505, 506. Wärmelehre 555.

Ellipse.

319. Sur l'équation générale des coniques osculatrices à une ellipse donnée en un point donné. Barisien. N. ann. math. Ser. 3, IX, 200. Vergl. Normalen 468, 469.

Elliptische Transcendenten.

320. Zur Theorie der elliptischen Functionen. L. Kronecker. Berl. Akad. Ber. 1890, 99, 123, 219, 307, 1025. [Vergl. Bd. XXXV, Nr. 453.]
321. Sur les fonctions elliptiques. P. Appell. Compt. rend. CX, 32.
322. Sur la multiplication complexe dans les fonctions elliptiques et, en particulier.

sur la multiplication par $\sqrt{-23}$. G. H. Halphen. Journ. math. Ser. 4, V, 5. 323. Sur quelques transformations. F. Caspary. Journ. math. Ser. 4, V, 73. 324. Ueber Raumcurven 4. Ordnung 1. Art und die zugehörigen elliptischen Functionen. G. Pick. Wien. Akad. Ber. XCVIII, 536. Vergl. Mechanik 450. Zahlentheorie 578.

F.

Faktorenfolge.

Vergl. Functionen 837. Gammafunctionen. Reihen 539.

Formen

825. Algebraische Reduction der Schaaren bilinearer Formen. L. Kronecker Berl. Akad.-Ber. 1890, 1225.

326. Algebraische Reduction der Schaaren quadratischer Formen. L. Kronecker Berl. Akad.-Ber. 1890, 1875.

327. Sur les transformations d'une forme quadratique en elle-même. C. Jordan. Journ. math. Ser. 4, IV, 349.

- 328. Beiträge zu der Theorie der gleichzeitigen Transformation von zwei quadratischen oder bilinearen Formen. R. Lipschitz. Berl. Akad.-Ber. 1890, 485.

- 329. Ueber orthogonale Systeme. L. Kronecker. Berl. Akad.-Ber. 1890, 525, 601, 691, 878, 1068.
 330. Sur la théorie des formes binaires biquadratiques et ternaires cubiques. D. Hilbert. Journ. math. Ser. 4, IV, 249.
 331. Ueber die Composition der Systeme von n' Grössen mit sich selbst. L. Kronecker. Berl. Akad.-Ber. 1890, 1081. Vergl. Invariantentheorie. Zahlentheorie 575.

Functionen.

- 332. Die vierte Rechenstufe. Em. Schulze. Grun. Archiv 2. R. IX, 320. [Vergl. Bd. XXXI, Nr. 899.
- 333. Sur quelques perfectionnements dont serait susceptible l'exposition de la théorie des quantités négatives. Méray & Riquier. N. Annal. math. Ser. 8, IX, 50.
- 334. Sur une classe nouvelle de transcendantes uniformes. H. Poincaré. Journ. math. Ser. 4, VI, 813.
- 335. Sur une transcendante remarquable découverte par M. Fredholm. Mittag-Leffler. Compt. rend. CX, 627.
 336. Sur la fonction exponentielle. Stieltjes. Compt. rend. CX, 267.
- 337. Die Entwickelung der Exponentiellen in eine unendliche Factorenfolge. Fr.
- Rogel. Grun. Archiv 2. R. IX, 206.

 338. Sur le développement des fonctions implicites. F. Gomes Teixeira.

 Journ. math. Ser. 4, V, 67.
- 839. Zur Theorie der Doppelintegrale expliciter irrationaler Functionen. O. Biermann. Wien. Akad. Ber. XCVIII, 840.
 340. Sur la théorie des fonctions algébriques de deux variables. Em. Picard.
- Journ. math. Ser. 4, V, 135.
- 341. Sur les fonctions de deux variables à plusieurs paires de périodes. P. Appell. Compt rend. CX, 181.
- 342. Sur les fonctions périodiques de deux variables. P. Appell. Compt rend. CXI, 636. Vergl. Abel'sche Functionen. Bestimmte Integrale. Binamialcoefficienten, Differentialgleichungen. Differentialquotient. Elliptische Transcendenten. Gammafunctionen. Hyperelliptische Functionen Integration Invariantentheorie. Kettenbrüche. Kugelfunctionen. (unbestimmte). Maxima und Minima. Mannigfaltigkeiten. Quaternionen. Substitutionen. Thetafunctionen.

Q.

Gammafunctionen.

343. Sur le développement de log $\Gamma(a)$. P. J. Stieltjes, Journ. math. Ser. 4, ∇ , 425. 344. Sur la formule de Stirling pour le produit 1. 2. 3. .. n. E. Rouché. Compt. rend. CX, 513.

Geodasie.

- 345. Sur la détermination d'un point. Hatt. Compt. rend. CX, 1027.
- 346. Remarque relative à une cause de variation des latitudes. R. Radau. Compt. rend. CXI, 558.
- 347. Sur le zéro international des altitudes. Ch. Lallemand. Compt. rend. CX, 1828.
- 348. Sur le nivellement général de la France. M. Lévy. Compt. rend. CX, 1233. Vergl. Cartographie.

Geometrie (descriptive).

349. Note de géométrie descriptive. H. P. du Motel. N. ann. math. Ser. 8, IX, 46.

Geometrie (höhere).

- 350. Considerazioni comparative intorno a ricerche geometriche recenti. Fel. Klein. Annali mat. Ser. 2, XVII, 307.
- 351. Sur les figures planes directement semblables. P. H. Schoute. Compt. rend. CX, 499.
- 352. Massima dimensione dei sistemi lineari di curve piane di dato genere. G. Castelnuovo. Annali mat. Ser. 2, XVIII, 119. G. Jung ibid. 128.

- 358. Sur le théorème d'Abel et quelques unes de ses applications à la Géométrie. G. Humbert. Journ. math. Ser. 4, V, 81; VI, 283. [Vergl. Bd. XXXIV, Nr. 86.]
- 354. Tangentenconstruction für Fusspunktcurven. Ed. Janisch. Grun. Archiv 2.
- R. IX, 196. 355. Ueber die Steiner'schen Mittelpunktscurven, K. Bobek. Wien. Akad.-Ber. XCVIII, 5, 394, 526.

- 356. Ueber Dreischaarcurven. K. Bobek. Wien. Akad.-Ber. XCVIII, 141.
 357. Theorie der cyklischen Projectivitäten. Ad. Ameseder. Wien. Akad.-Ber. XCVIII, 290.
 358. Ueber die Doppelpunkte bei der projectivischen ebenen Correspondenz. Torsten Brodén. Grun. Archiv 2. R. IX, 225.
 359. Theorie der Elemententripel einstufiger Elementargebilde. B. Klein. Annal.
- mat. Ser. 2, XVIII, 213.
 360. Zur Theorie der Netze und Configurationen. K. Zindler. Wien. Akad. Ber. XCVIII, 499.
- 361. Ueber gewisse, der allgemeinen cubischen Curve eingeschriebene Configurationen. J. de Vries. Wien. Akad.-Ber. XCVIII, 446.
 362. Ueber gewisse Configurationen auf ebenen cubischen Curven. J. de Vries.
- Wien. Akad. Ber. XCVIII, 1290.
- 363. Sur une classe de courbes planes, et sur une surface remarquable du quatrième ordre. G. Humbert, Journ. math. Ser. 4, Vl. 423.

 864. Die Quintupellage collinearer Räume. Ad. Ameseder. Wien. Akad.-Ber. XCVIII, 588.
 - Vergl. Elliptische Transcendenten 324. Gleichungen 881. Invarianten-Kinematik. Krümmung. Mehrdimensionale Geometrie. theorie 406. Oberflächen. Oberflächen zweiter Ordnung. Topologie.

Geschichte der Mathematik.

- 365. Sur l'histoire de la balance hydrostatique et de quelques autres appareils et procédés scientifiques. Berthelot. Compt rend. CXI, 935.
 366. Sur un mémoire de Descartes longtemps inédit. De Jonquières. Compt. rend. CX, 261, 315, 677. [Vergl. Nr. 106 und 540.]
 367. The history of the doctrine of radiant energy. Rayleigh. Phil. Mag. Ser. 5, XXVII, 266.
 368. Notice sur Ed Phillips. H. Léauté. Compt rend. CXI, 703.
 369. Georges Henri Halphen 30. X. 1844 23. V. 1889. Em. Picard. Compt.

- rend. CX, 489.
- 370. Georges Halphen. C. Jordan. Journ. math. Ser. 4, V, 345. 371. Gust. Ad. Hirn 21. VIII. 1815—14. I. 1890. Mascart. Compt. rend. CX, 115. 372. Felice Casorati † 11. IX. 1890. F. Brioschi. Annal. math. Ser. 2, XVIII, 264.

Gleichungen.

- 373. Théorème de d'Alembert. E. Amigues. N. ann. math. Ser. 3, IX, 116.
- 374. Sur les racines d'une équation algébrique. A. Cayley. Compt. rend. CX, 174, 215.

- 375. Formule de Waring. Auric, N. ann. math. Ser. 3, IX, 561.
 376. Sur les équations binomes. Ch. Biehler. N. ann. math. Ser. 3, IX, 472.
 377. Nouvelle méthode de discussion de l'équation en S. Ch. Brisse. N. ann. math. Ser. 3, IX, 367.
 378. Sur le théorème de Sturm. B. Niewenglowski. N. ann. math. Ser. 3, IX, 181.
 379. Sur la méthode d'approximation de Newton. G. Fouret. N. ann. math.
- Ser. 3, IX, 567.
- 380. Sur l'équation modulaire pour la transformation de l'ordre 11. A. Cayley. Compt. rend. CXI, 447.
- 381. Démonstration et applications d'un théorème de Liouville sur l'élimination. G. Fouret. N. ann. math. Ser. 3, IX, 258.
- 382, Résolution électromagnétique des équations, F. Lucas. Compt. rend. CXI, 965. 383. Sur la résolution automatique et l'intégration des équations. H. Parenty. Compt. rend. CX, 1055.
 - Vergl. Hyperelliptische Functionen.

Graphische Statik.

384. Sur la statique graphique des arcs élastiques. Bertrand de Toutviolant. Compt. rend. CX, 697.

H.

Hydrodynamik.

- 386. On the oscillations of a rotating liquid Spheroid and the genesis of the Moon.

 A. E. H. Love, Phil. Mag. Ser. 5, XXVII, 254.

 386. Sur la théorie des figures des planètes. M. Hamy. Compt. rend. CX, 124.

 387. Sur la théorie générale de la figure des planètes. M. Hamy. Journ. math.

 Ser. 4, VI, 69.

 388. Ecart entre la surface de la Terre supposée fluide et celle d'un ellipsoïde de
- révolution ayant mêmes axes. O. Callandreau. Compt. rend. CX, 993.
 389. Die Energie der Wogen und des Windes. H. v. Helmholtz. Berl. Akad.-Ber. 1890, 853. [Vergl. Bd. XXXV, Nr. 554.]
- 390. Mémoire sur la propagation du mouvement dans un fluide indéfini. H. Hu-
- goniot. Journ. math. Ser. 4, IV, 153. [Vergl. Bd. XXXIV, Nr. 133.]
 391. Théorie du régime permanent graduellement varié qui se produit près de
 l'entrée évaseé d'un tube fin. J. Boussinesq. Compt. rend. CX, 1160, 1238, 1292.
- 392. Sur la distribution des pressions et des vitesses dans l'intérieur des nap_i es liquides issues de déversoirs sans contraction latérale. Bazin. Compt. rend CX, 321.
- 393. On the vibrations of an atmosphere. Rayleigh. Phil. Mag. Ser. 5, XXIX, 173. 394. On two pulsating spheres in a liquid. A. L. Selby. Phil. Mag. Ser. 5, XXIX, 113.
- 395. Ueber die Oberflächenspannung einer Flüssigkeit mit kugelförmiger Oberfläche. K. Fuchs. Wien. Akad.-Ber. XCVIII, 740.
- 396. Directe Ableitung einiger Capillaritätsfunctionen. K. Fuchs. Wien. Akad.-Ber. XCVIII, 1362.
- 397. On the theory of surface forces. Rayleigh. Phil. Mag. Ser. 5, XXX, 285, 456.
- Hyperbel. 398. Ueber den Schnitt einer Hyperbel mit einer Geraden. F. Ruth. Grun.
 Archiv, 2 R., IX, 216. [Vergl. Nr. 122.]

Vergl. Krümmung 429. Hyperpoloid.

- 399. Bemerkungen, betreffend eine Classe von Curven auf dem einschaligen Ro-
- tations-Hyperboloide. Ed. Janisch. Grun. Archiv 2. R. IX, 219.
 400. Ueber einige Formen von Deusimetern, bei welchen gleichen Dichtenintervallen gleiche Theilstrichdistanzen entsprechen. Ed. Janisch. Grun. Archiv 2. R. IX, 332.

Hyperelliptische Functionen.

401. Sur la résolution, par les fonctions hyperelliptiques, de l'équation du 27° degré, de laquelle dépend la détermination des 27 droites d'une surface cubique. F. Klein. Journ. math. Ser. 4, IV, 169.

I.

Imagināres.

402. Réalisation et usage des formes imaginaires en géométrie. Max. Marie. N. ann. math. Ser. 3, IX, 60, 161, 375, 435, 508. Vergl. Quaternionen.

Integration (unbestimmte).

403. Sur les intégrales pseudoelliptiques d'Abel. J. Dolbnia. Journ. math. Ser. 4, VI, 293.

Invariantentheorie.

- 404. Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binaren Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. F. Mertens. Wien. Akad.-Ber. XCVIII, 73. 405. Ueber invariante Gebilde quaternärer Formen. F. Mertens. Wien. Akad.-
- Ber. XCVIII, 691.
- 406. Zur Invariantentheorie der Liniengeometrie. Em. Waelsch. Wien. Akad.-Ber. XCVIII, 1528.

Vergl. Differentialgleichungen 286, 287.

Hist.-lit. Abth. d. Ztschr. f. Math. u. Phys. XXXVI, 6.

K.

Kegelschnitte.

- 407. Ueber das allgemeine circuläre Polarsystem. Theod. Meyer. Grun. Archiv 2, R. IX, 18.
- 408. Étude géométrique des propriétés des coniques d'après leurs définition. L. Maleyx. N. ann. math. Ser. 3, IX, 210, 318, 424, 481, 596.
- 409. Remarques au sujet du théorème de Carnot. C. A. Laisant. N. ann. math. Ser. 3, IX, 5.
- 410. Démonstration des théorèmes de Pascal et de Brianchon sur les hexagones inscrits et circonscrits. P. Soulier. N. ann. math. Ser. 3, IX, 529.
 411. Ueber Kegelschnitte, die zu dem verallgemeinerten Brocard'schen Dreiecke in Beziehung stehen. Andr. Müller. Grun. Archiv 2. R. IX, 113.
 412. Ueber die einem Kegelschnitte umgeschriebenen Kreisvierecke. E. Czuber. Grun. Archiv 2. R. IX, 101.
 413. Sur les corigines inserties dans le generalistation formé de la language de la condecidation formé.

- 413. Sur les coniques inscrites dans le quadrilatère formé par les tangentes communes à un cercle et une parabole. Papelier. N. ann. math. Ser. 3, IX, 35. — G. Leinekugel. Ebenda 41. [Vergl. Bd. XXXV, Nr. 577]
- 414. Propriétés focales des coniques et des quadriques. Ravier. N. ann. math. Ser. 3, 1X, 233.
- 415. Sur 8 coniques qui en définissent une quatrième. L. Bosi. N. ann. math. Ser. 3, IX, 556.
- 416. Sul sistema di due coniche. Franc. Gerbaldi. Ann. mat. Ser. 2, XVII, 161.
- 417. Coniques passant par les points d'intersection d'une ellipse donnée avec deux droites parallèles aux bissectrices des angles des axes et provenant d'un
- point donné. Ch. Brisse. N. ann. math. Ser. 3, IX, 410.
 418. Sur un faisceau de coniques. Ch. Brisse. N. ann. math. Ser. 3, IX, 403.
 Vergl. Ellipse. Hyperbel. Krümmung. Normalen. Oberflächen zweiter Ordnung 493.

Kettenbrüche.

419. Zur Theorie der Kettenbrüche. L. Gegenbauer. Wien. Akad.-Ber. XCVIII,673. 420. Eine Eigenschaft der Entwickelung einer ganzen Function nach den Näherungswerthen von gewissen regulären Kettenbrüchen. L. Gegenbauer. Wien. Akad. Ber. XCVIII, 867.

Kinematik.

- 421. Théorème de géométrie cinématique. Ser. 3, IX, 227. A. Mannheim. N. ann. math.
- 422. Sur un mode de transformation en géométrie cinématique. A Mannheim. Compt. rend. CX, 220, 270.
- 423. Transformations en géométrie cinématique. A. Mannheim. Compt. rend. CX, 391.
- 424. Étude du mouvement d'un double cône paraissant remouter, quoique descendant, sur un plan incliné. H. Resal. Compt. rend. CXI, 547. A. Mannheim ibid, 634, 817.

Krümmung.

- 425. Remarques sur l'osculation. E. Cesaro. N. ann. math. Ser. 3, IX, 143.
- 426. Ueber Ermittelung von Krümmungshalbmessern von Kegelschnitten auf synthetischem Wege. Rud. Skutsch. Grun. Archiv 2. R. IX, 95.
- 427. Construction du rayon de courbure des courbes triangulaires symmétriques, des courbes planes enharmoniques et des lignes asymptotiques de la surface de Steiner.
- 428. Elementare Bestimmung des Krümmungsmittelpunktes der Parabel. W. Rulf. Grun. Archiv z. R. IX, 212.
- 429. Construction du rayon de courbure de certaines classes de courbes, notamment des courbes de Lamé et des paraboles et hyperboles de divers ordres. G. Fowat. Compt. rend. CX, 843.
- 430. Sur la courbure d'une podaire. Husquin de Rhéville. N. ann. math. Ser. 3, IX, 140.
- 431. Sur l'aberration de courbure. Husquin de Rhéville. N. ann. math. Ser. 3, 1X, 138.

432. Sul problema di terovare la curva di cui è noto il luogo de' suoi centri di curvatura. Gem. Pirondini. Annal. mat. Ser. 2, XVII, 65. Vergl. Ellipse.

Kugelfunctionen.

- 433. Quelques remarques un sujet des fonctions sphèriques. E. Beltrami. Compt. rend. CX, 934.
- 434. Sur la valeur asymptotique des polynômes de Legendre. Stieltjes. Compt. rend. CX, 1026.

M.

Magnetismus.

- 435. Ueber die Bestimmung von magnetischen Momenten, Horizontalintensitäten und Stromstärken nach absolutem Maasse. F. Lippich Wien. Akad. Ber. XCVIII, 189.
- 436. Extension des théorèmes relatifs à la conservation des flux de force et d'induction magnétiques. Paul Janet. Compt. rend. CX, 836.
 437. Molecular theory of induced magnetism. J. A. Ewing. Phil. Mag. Ser. 5,
- XXX, 205.
- 438. Sur l'aimantation transversale des conducteurs magnétiques. P. Janet. Compt. rend. CX, 453.

Mannigfaltigkeiten.

439. Fondamenti della teoria dei tipi ordinati. G. Vivanti. Annalimat. Ser. 3, XVII, 4. 440. Sulle corrispondenze $[m_1, m_2, \dots m_n]$ continue che si possono stabilire tra i punti di n gruppi. R. de Paolis. Annali mat. Ser. 2, XVIII, 93.

Maxima und Minima.

441. Méthode élémentaire pour étudier les variations des fonctions continues.

Maximums et minimums. L. Maleyx. N. ann. math. Ser. 8, IX, 502. Vergl. Oberflächen 482. Quadratur 524.

Mechanik.

- 442. Principes généraux sur le choix des unités. Jos. Bertrand. N. ann. math. Ser. 3, 1X, 21.
- 448. On some facts connected with the systems of scientific unit of measurement.

 T. H. Blakesley. Phil. Mag. Ser. 5, XXVII, 178.

 444. On the suppressed dimensions of physical quantities. A. W. Rücker. Phil.

 Mag. Ser. 5, XXVII, 104.
- 445. On the definition of the terms "Energy" and "Work". S. Newcomb. Phil. Mag. Ser. 5, XXVII, 115.
- 446. Sur une transformation de mouvement. Dautheville. Compt. rend. CXI, 877. 417. Mouvement d'un point assujetti à rester sur une surface S. rendant le mouvement rotatoire de cette surface. De Saint-Germain. N. ann. math. Ser. 3, IX, 118.
- 418. Sur les composantes des accélérations d'ordre quelconque siuvant trois directions rectangulaires variables. Ph. Gilbert. Journ. mathém. Ser. 4, IV, 465.
- 449. Sur un cas particulier de mouvement d'un point dans un milieu résistant.
 A. De Saint-Germain. Compt. rend. CX, 1184.
 450. Sur le mouvement d'un solide dans un liquide. G. H. Halphen. Journ. math.
 Ser. 4, IV, 5.
- 451. Sur le mouvement d'un prisme, reposant sur deux appuis, soumis à l'action d'une force normale variable suivant une loi particulière, appliquée en un point déterminé de la fibre moyenne. H. Resal. Compt. rend. CX, 1157.
 452 Sur l'ell'psoïde d'inertie. De Saint-Germain. N. ann. math. Ser. 3, IX, 546.
- 453. Sur le mouvement du pendule de Foucault. De Sparre. Compt. rend CX, 496.
- 454. Sur la théorie et le mode d'emploi des appareils seismographiques. G. Lippmann. Compt. rend. CX, 440.
- 455. Diagrammomètre, auxiliaire mécanique pour les études des courbes. Kozloff. Compt. rend, CXI, 166.
- 456. Sur un dynamomètre de transmission à lecture directe et enregistrement photographique. Mascart. Compt. rend. CX, 605.

457. La locomotion aquatique étudiée par la Photochronographie. Marey. Compt. rend. CXI, 218.

458. Appareil photochronographique applicable à l'analyse de toutes sortes de

mouvements. Marey. Compt. rend. CXI, 626.
459. On photographs of rapidly moving objects and on the oscillating electric spark. C. V. Boys. Phil. Mag. Ser. 5, XXX, 248. — N. Khamontoff ibid. 506.

Vergl. Akustik. Astronomie. Elasticität. Elektricität. Gleichungen 381, Magnetismus, Molecularphysik. Optik. Po-382, 383. Hydrodynamik. tential. Quaternionen 527. Wärmelehre.

Mehrdimensionale Geometrie.

460. Le omografie in une spazio ad un numero qualunque di dimensioni. P. Pre-

della. Annali mat. Ser. 2, XVII, 113.
461. Ueber Congruenz und Symmetrie der Gebilde von beliebig vielen Dimensionen.

R. Hoppe. Grun. Archiv 2 R. IX, 108.
462. Erweiterung der Sätze über das Tetraeder, dessen Höhen sich in einem Punkte schneiden, auf mehrere Dimensionen. R. Hoppe. Grun. Arch. 2. R. IX, 327.

Molecularphysik.

463. On the law of molecular force. W. Sutherland. Phil. Mag. Scr. 5, XXVII, 305. [Vergl. Bd. XXXV, Nr. 626.]

N.

Normalen.

464. Zum Normalenproblem der Kegelschnitte. F. Mertens. Wien, Akad.-Ber. XCVIII, 431.

465. Zum Normalenproblem der Kegelschnitte. P. H. Schoute. Wien. Akad-Ber. XCVIII, 1519.

466. Relations entre la distance d'un point P duplan d'une conique aufoyer et les rayons vecteurs des pieds des normales abaissées du point P sur la courbe. Kallenberg van den Bosch. N. ann. math. Ser. 3, IX, 395.

467. Sur les 3 normales menées à une parabole donnée d'un point donné. Kallenberg van den Bosch. N. ann. math. Ser. 3, IX, 159. E. Pellegrin. Ebenda 373.

468. Zum Normalenproblem der Ellipse. C. Lauermann. Wien. Akad.-Ber. XCVIII, 818.

469. Propriété des 4 normales d'un point donné à une ellipse. Kallenberg van den Bosch. N. ann. math. Ser. 3, IX, 198. — Audibert. Ebenda 374. 470. Sur les normales aux quadriques. G. Humbert. Compt. rend. CXI, 963.

o.

Oberflächen.

- 471. Sur l'étude intrinsèque des surfaces gauches. E. Cesaro. N. ann. math. Ser. 3, IX, 294.
- 472. Untersuchungen zur Theorie der Charaktere der Krümmungslinien auf Röhrenflächen. A. Ahrendt. Grun. Archiv 2 R. IX, 31. 478. Équation des surfaces moulures. P. de Sanctis. N. ann. math. Ser. 3,
- IX, 552.
- 474. Détermination des surfaces harmoniques réglées. L. Raffy. Compt. rend. CX, 228.
- 475. Sur les surfaces réglées qui passent par une courbe donnée. Ch. Bioche. Compt. rend. CX, 515.
- 476. Sur les surfaces réglées dont l'élément linéaire est réductible à la forme de
- Liouville. Demartres. Compt. rend. CX, 329.

 477. Sur les surfaces dont l'élément linéaire est réductible à la forme ds'
 = F(U+V)(du²+dv²). A. Petot. Compt. rend. CX, 380.

 478. Sur les surfaces qui possédent un réseau de géodesiques conjuguées. C. Guichard. Compt. rend. CX, 996.
- 479. Sur certaines classes de surfaces. Lelieuvre. Compt. rend. CXI, 568.

- 480. Sopra alcune nuove classi di superficie e di sistemi tripli ortogonali. L. Bianchi. Annali mat. Ser. 2, XVIII, 301.
- 481. Sulla teoria delle superficie di rivoluzione. Gem. Pirondini. Annali mat,

CASSOCIAL CONTRACTOR

- Ser. 2, XVIII, 165.

 482. Sur les surfaces minima. A. Cayley. Compt. rend. CXI, 958.

 483. Trouver l'équation générale des surfaces qui satisfont à deux équations simultanées aux dérivées partielles. G. Maupin. N. ann. math. Ser. 3, IX, 422.
- XVII, 225.
- 485. Ueber Faltenpunkte. J. Korteweg. Wien. Akad.-Ber. XCVIII, 1154.
- 486. Théorie des systèmes triples de pseudo-surfaces. Jssaly. N. ann. math. Ser. 3, IX, 204.
- 487. Détermination des congruences, telles que les lignes asymptotiques se correspondent sur les deux nappes de la surface focale. C. Guichard. Compt. rend. CX, 126.
- 488. Trouver l'équation différentielle de certaines courbes tracées sur une surface donnée. G. Maupin. N. ann. math. Ser. 3, IX, 420.
- 489. Sur les transformations simplement rationelles des surfaces algébriques.
- P. Painlevé. Compt. rend. CX, 184. 490. Le théorème de Dupuis et la cyclide de Dupin. E. Marchand. N. ann.
- math. Ser. 3, IX, 98, 183.

 491. Sur une propriété du cylindre droit ayant pour directrice une spirale logarithmique. Ch. Robert. N. ann. math. Ser. 3, IX, 392. Vergl. Hyperelliptische Functionen.

Oberfischen zweiter Ordnung.

- 492. Classification der Flächen zweiter Ordnung. J. Valyi. Grun. Archiv 2. R. IX, 223.
- 493. Sur un problème se rapportant à une conique dans l'espace. S. Ravier. N. ann. math. Ser. 3, 1X, 614.
- 494. Ueber die Spitzenörter aller orthogonalen gleichseitigen oder dazu dualen Kegel, welche an eine Fläche 2. Ordnung tangential gehen. A. Koch. Grun. Archiv 2. R. IX, 250.
- 495. Sur un cône du second degré et une quadrique variable inscrite dans le cône. Gambey. N. ann. math. Ser. 3, IX, 129.
- 496. Contact de deux quadriques. E. Carvallo. N. ann. math. Ser. 3, IX, 586. Vergl. Hyperboloid. Kegelschnitte 414. Normalen 470.

Optik.

- 497. Ueber die Theorie des Winkelspiegels. H. Maurer. Grun. Archiv 2. R., IX, 1.
- 498. Notes on geometrical optics. XXVIII, 232. Silv. P. Thompson. Phil. Mag. Ser. 5,
- 499. On elementary nomenclature in geometrical optics. M. Maclean. Mag. Ser. 5, XXVIII, 400. Phil.
- 500. Application des coordonnées intrinsèques Caustiques par réflexion. Bailtrand. N. ann. math. Ser. 3, IX, 476.
- 501. Ueber die Reflexion und Brechung des Lichtes an der Grenze unkrystallinischer
- Medien. Fr. Herm. Wehner. Grun. Archiv 2 R. IX, 337. 502. On the reflexion and refraction of light at the surface of a crystal on the quasi-labile aether theory. R. T. Glazebrook. Phil. Mag. Ser. 5, XXVIII, 110.
- 503. Beiträge zur Dioptrik. M. Thiesen. Berl. Akad.-Ber. 1890, 799.
- 504. Ueber eine Consequenz des Fresnel-Huygens'schen Principes. K. Exner. Wien. Akad. Ber. XCVIII, 51.
- 505. A comparison of the electric theory of light and Sir William Thomson's theory of a quasi-labile aether. J. W. Gibbs. Phil. Mag. Ser. 5, XXVII, 238.
- 506. An electromagnetic theory of quartz. A. B. Basset. Phil. Mag. Ser. 5, XXX, 152.
- 507. Sur la propagation anomale des ondes. Gouy. Compt. rend. CXI, 33.
 508. Sur les équations lesplus générales de la double réfraction compatibles avec la surface de l'onde du Fresnel. M. Lévy. Journ. math. Ser. 4, lV, 257.

Digitized by GOOGIC

- 509. On the upper limit of refraction in Selenium and Bromine. T. P. Dale. Phil. Mag. Ser. 5, XXVII, 50; XXVIII, 268. A. W. Rücker ibid. XXVIII, 271. [Vergl. Bd. XXXV, Nr. 661.]
 510. Molecular refraction. W. Sutherland. Phil. Mag. Ser. 5, XXVII, 141.
 511. Sur la courbe représentative des phénomènes de diffraction. E. Cesaro.
- Compt. rend. CX, 1119.
- 512. On diffraction-colours with special reference to coronae and iridescent clouds.

 J. C. M'Connel. Phil. Mag. Ser. 5, XXVIII, 272.
- 518. The concave grating in theory and practice. J. S. Ames. Phil. Mag. Ser. 5, XXVII, 369.
- 514. The form of Newton's rings. A. W. Flux. Phil. Mag. Ser. 5, XXIX, 217. A. Wangerin ibid. XXX, 489.
- 515. On the limit to interference when light is radiated from moving molecules.
 Rayleigh. Phil. Mag. Ser. 6, XXVII, 298.
- 516. On the achromatism of interferences. Mascart. Phil. Mag. Ser. 5, XXVII, 519. [Vergl. Bd. XXXV, Nr. 668.]
- 517. On achromatic interference-bonds. Rayleigh. Phil. Mag. Ser. 5, XXVIII, 77, 189.

- 518. On the application of interference methods to astronomical measurements.
 A. A. Michelson. Phil. Mag. Ser. 5, XXX, 1.
 519. Théorie générale de la visibilité des franges d'interference. J. Macè de Lépinay et Ch. Fabry. Compt. rend. CX, 895, 997.
 520. Visibilité périodique des phénomènes d'interférence, lorsque la source éclairante est limitée. Ch. Fabry. Compt. rend. CXI, 600.
 521. The rotation of the plane of polarisation of light by the discharge of a Leyden jar O. Lodge. Phil. Mag. Ser. 5, XXVII, 839. A. Lodge ibid. 348.
 Vergl. Astronomie 255. 256. Vergl. Astronomie 255, 256.

P.

Parabel.

Vergl. Krümmung 428, 429. Normalen 467.

Potential.

- 522. Sur le développement de l'expression $\{R^2-2 Rr [\cos u \cdot \cos u^1 \cdot \cos (x-x^1) + \sin u\}$ $sin u' \cdot cos(y-y') + r^2 \cdot 1$. T. J. Stieltjes. Journ. math. Ser. 4, V, 55.
- 523. Sur une propriété des systèmes de forces qui admettent un potentiel. A. Lecornu. Compt. rend. CXI, 395.

Quadratur.

- 524. Eine Minimaleigenschaft der archimedischen Spirale. Ed. Janisch. Grun. Archiv 2. R , 1X , 445.
- 525. Verwandlung einer Kreisfläche in ein annähernd gleich grosses Quadrat. E. Lakenmacher. Grun. Archiv 2. R., IX, 214.
- 526. Zur Inhaltberechnung der Flächen und Körper. Ligowski. Grun. Archiv 2. R., IX, 111.

Quaternionen.

- 527. On the importance of quaternions in physics. Tait. Phil. Mag. Ser. 5. XX1X, 84.
- 528. Anwendungen von Dühring's Begriffe der Werthigkeit. K. Wessely. Grun. Archiv 2. R., 1X, 393.

R.

Rectification.

- 529. Sur les courbes cycliques de direction. G. Humbert. Journ. math. Ser. 4, lV, 129. [Verg]. Bd. XXXIV, Nr. 86.]
- 530. Sur les courbes algébriques planes rectifiables. G. Humbert. Journ. math. Ser. 4, IV, 133.

Digitized by Google

- 581. Rectification approximative d'un arc de courbe. A. E. Pellet. Compt. rend CX, 778
- 532. Sur le rapport de la circontérence au diamètre. Sylvester. Compt. rend. CXI, 778, 866. Vergl. Oberflächen 476, 477.

Reihen.

- 533. Nouvelles remarques sur quelques articles concernant la théorie des séries. E. Cesaro. N. ann. math. Ser. 3, lX, 353.
- 534. Sur le cas douteux relatif à certains caractères de convergence des séries. G. Fouret. N. ann. math. Ser. 3, IX, 222.
- 535. Généralisation d'un théorème d'Abel sur les séries. Alb. La Maestra. Compt. rend. CXI, 782.
- 536. Sur les séries récurrentes. M. d'Ocagne. N. ann. math. Ser. 3, IX, 93.
- 537. Zahlentheoretische Eigenthümlichkeiten gewisser Reihen. Fr. Rogel. Grun. Archiv 2. R. IX, 210.
- 538. Sur la somme des puissances semblables des premiers nombres. Ern. Du-
- porcq. N. ann. math. Ser. 8, IX, 594.

 539. Darstellung der harmonischen Reihen durch Factorenfolgen. Fr. Rogel.

 Grun. Archiv 2. R. IX, 297. Vergl. Bestimmte Integrale 267. Differentialgleichungen 280. Functionen 338. Potential 522.

S.

Stereometrie.

- 540. Sur un point fondamental de la théorie des polyèdres. De Jonquières. Compt. rend. CX, 110, 169. [Vergl. Nr. 366.]
 541. Sur une généralisation du théorème d'Euler relatif aux polyèdres. R. Perrin.
- Compt. rend. CX, 273.

Substitutionen.

542. Recherches sur les groupes d'ordre fini contenus dans le groupe quadratique crémonien. L. Autonne. Journ. math. Ser. 4, IV, 177, 407. [Vergl. Bd. XXXIV, Nr. 242.]

Т.

Tetraeder.

543. Höhenschnitt-Tetraeder mit irrationalen Kanten. R. Hoppe. Grun. Archiv 2. R., IX, 434. Vergl. Analytische Geometrie der Ebene 250. Mehrdimensionale Geometrie 462.

Thetafunctionen.

- 544. Sur une nouvelle méthode d'exposition de la théorie des fonctions thêta.
- F. Caspary. Compt. rend. CXI, 225.
 545. Théorie élémentaire des fonctions theta et sigma d'un seul argument.
 F. Caspary. Ser. 4, VI, 367.

Topologie.

546. Ueber einen neuen topologischen Process und die Entstehungsbedingungen einfacher Verbindungen und Knoten in gewissen geschlossenen Flächen. Fr. Dingeldey. Wien. Akad.-Ber. XCVIII, 79.

Trigonometrie.

547. Trigonometrische Formeln zur annähernden Bestimmung der Sinuswerthe. Lakenmacher. Grun. Archiv 2. R., IX, 215.

Variationsrechnung.

548. Zur Theorie der zweiten Variation. G. v. Escherich. Wien. Akad.-Ber. XCVIII, 1463. [Vergl. Bd. XXXV, Nr. 712.]

Digitized by Google

w.

Wärmelehre.

549. Sur la théorie de la chaleur. Appell. Compt. rend. CX. 1061.
550. On Boltzmann's kinetic theory of gases and on Sir W. Thomson's address to section A, British Association 1884. E. P. Culverwell. Phil. Mag. Ser. 5, XXX, 95.

551. On some problems in the kinetic theory of gases. S. H. Burbury. Phil. Mag. Ser. 5, XXX, 298.

552. Ueber einige Bewegungen eines Gases bei Annahme eines Geschwindigkeitspotentials. P. Molenbroek. Grun. Achiv 2. R., IX, 157.

553. On the kinetic theory of the phenomena of dissociation in gases. Lad. Natanson. Phil. Mag. Ser. 5, XXIX, 18.

554. On the character of the complete radiation at a given temperature. Rayleigh. Phil. Mag. Ser. 5, XXVII, 460.
 555. On diamagnetism and the concentration of energy. J. Parker. Phil. Mag.

Ser. 5, XXVI, 408.

556. Ueber einige Probleme der Theorie der Wärmeleitung, J. Stefan. Wien.

Akad. Ber. XCVIII, 473.

557. Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. J. Stefan. Wien. Akad. Ber. XCVIII, 965.

558. Ueber die Verdampfung und die Auflösung als Vorgänge der Diffusion. J. Stefan. Wien. Akad. Ber. XCVIII, 1418.

559. Ueber die specifische Wärme und die inneren Kräfte der Flüssigkeiten. C. Puschl. Wien. Akad. Ber. XCVIII, 178.

560. Ueber die Wärmeausdehnung der Gase. C. Puschl. Wien. Akad. Ber. XCVIII, 178.

XCVIII, 757, 1337.

561. On the law of cooling and its bearing on certain equations in the analytical theory of heat. Ch. H. Lees. Phil. Mag. Ser. 5, XXVIII, 429.

562. Calcul des températures successives d'un milieu homogène et athermane indéfini, que sillonne une source de chaleur. J. Boussinesq. Compt. rend. CX, 1242.

Wahrscheinlichkeitsrechnung.

563. On a physical basis for the theory of errors. Ch. V. Burton. Phil. Mag. Ser. 5, XXVIII, 480.

564. Problems in probabilities. F. Y. Edgeworth. Phil. Mag. Ser. 5, XXX, 171. 565. Ueber die wahrscheinlichsten Werthe beobachteter Grössen. E. Czuber. Grun. Archiv 2. R., IX, 97.

Grun. Archiv 2. K., IX, 97.

566. Sur les erreurs d'observation. J. E. Estienne. Compt. rend. CX, 512.

567. Sur la combinaison des observations. R. Lipschitz. Compt. rend. CXI, 163.

568. Sur le problème de St. Pétersbourg. Seydler. Compt. rend. CX, 326.

569. Essai d'une théorie concernant une classe nombreuse d'annuités viagères sur plusieurs têtes et exposition d'une méthode propre à les formuler rapidement. A. Quiquet. Compt. rend. CXI, 337.

570. La relation générale de l'état et du mouvement de la population. Em. Le-

vasseur. Compt. rend. CXI, 899.

571. Wahrscheinlichkeiten im Gebiete der aus den 4. Einheitswurzeln gebildeten complexen Zahlen. L. Gegenbauer. Wien. Akad.-Ber. XCVIII, 635.

z.

Zahlentheorie.

572. Zur Theorie der Congruenzen. L. Gegenbauer. Wien. Akad. Ber. XCVIII, 652-573. Ueber diejenigen Theiler einer ganzen Zahl, welche eine vorgeschriebene Grenze überschreiten. L. Gegenbauer. Wien. Akad. Ber. XCVIII, 28. 574. Ueber complexe Primzahlen. L. Gegenbauer. Wien. Akad. Ber. XCVIII, 1036. 575. Sur quelques formes quadratiques quaternaires. Pépin. Journ. math. Ser. 4, VI, 5.

576. Sur quelques formules d'Analyse utiles dans la Théorie des nombres. Pépin.
Journ. math. Ser. 4, IV, 83.

577. Sur la représentation approchée d'une fonction par des fractions rationelles. H. Padé. Compt. rend. CXI, 674.

578. Ueber die Lemniscatentheilung. Em. Kohl. Wien. Akad. Ber. XCVIII, 364. Vergl. Optik 497. Reihen 537. Wahrscheinlichkeitsrechnung 571.

Digitized by Google

DUF APR 12:39

Digitized by GOOSIC

DUF APR 12:39

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM

JUF APR 12:29

