

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

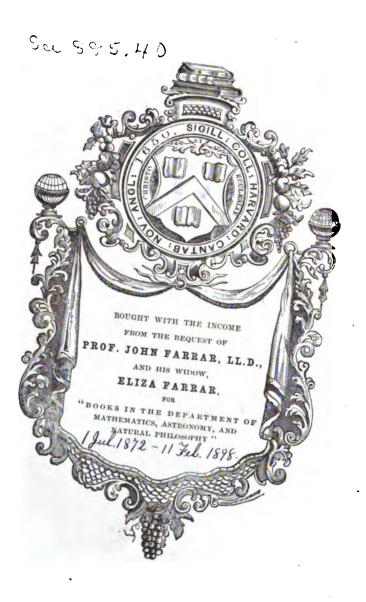
Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

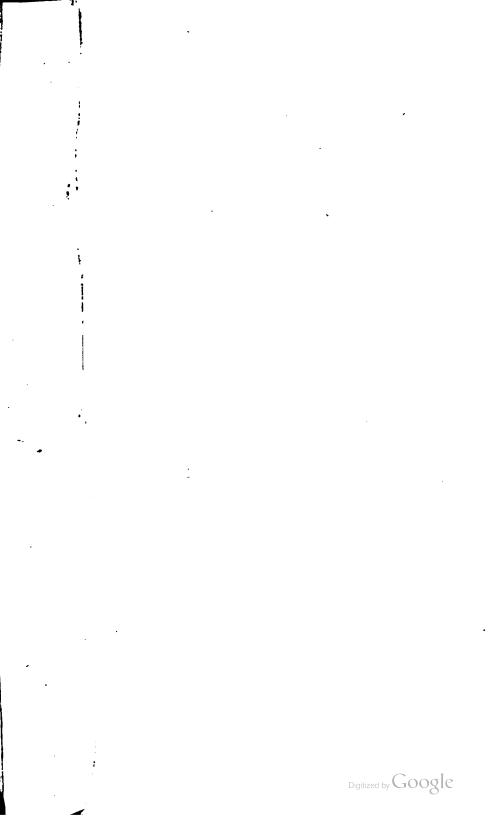
- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

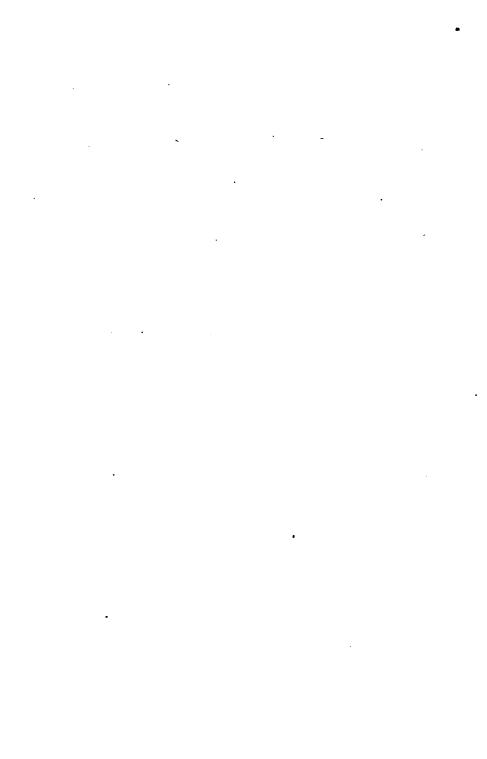
About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/



SCIENCE CENTER LIBRARY





.

٠ •

.

•

•

.

• • • •

.

.

•

•

.

Zeitschrift

für

Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

von

Dr. O. Schlömilch, Dr. E. Kahl

und

Dr. M. Cantor.

番

Dreischnter Jahrgang.

Mit 5 lithographirten Tafeln.

LEIPZIG, Verlag von B. G. Teubner.

1868.

135.8 Sci885.40

81/13

1872, Jul 1 - 1898, sel. 11. Farar Fund.

Inhalt.

- -----

-

Arithmotik und Analysis.	Seite
Zur Anwendung der Kettenbrüche. Von Prof. Jon. LIBBLEIN	63
Bemerkungen über einige bestimmte Integrale. Von Dr. A. ENNEPER	250
Ableitung der Partialbruch- und Productentwickelungen für die trigonome-	
trischen Functionen. Von Prof. Dr. Schnöten	254
Zwei Sätze aus der Theorie der binären gundratischen Formen. Von G. CANTOR	259
Auflösung einer Aufgabe von Boncompagni, die Summe von Cubikzahlen be-	
treffend, Von Dr. L. MATTHIESSEN	348
Note über die Integration der partiellen Differentialgleichung	
$d^n z = d^n z = d^n z$	
$\frac{d^n z}{dx^n} + P_1 \frac{d^n z}{dx^{n-1} dy} + \ldots + P_n \frac{d^n z}{dy^n} = Q.$	
Von Dr. Tychsen	441
Zur Theorie der Maximal- und Minimalwerthe. Von Prof. KLEINFELLER	515
Synthetische und analytische Geometrie.	
Ueber eine das Hyperboloid betreffende Aufgabe. Von Prof. Dr. Gordan	59
Lineare Construction eines Punktepaares, welches zu zwei gegebenen Punkte-	
paaren gleichzeitig harmonisch ist. Von Dr. GBELLE	148
Ueber das grösste einer Ellipsc einbeschriebene n-Eck. Von Dr. GRELLE .	153
Verallgemeinerung des Problems der kürzesten Linie. Von Dr. LÜROTH	156
Ueber den Obelisken und das Prismatoid. Von Dr. BAUEB	160
Ein geometrisches Paradoxon	162
Ueber die Bedingungen, dass vier Punkte auf einem Kreise und fünf Punkte	
auf einer Kugelfläche liegen. Von Dr. A. ENNEPER	261
Ueber eine gewisse Classe von Curven dritten Grades. Von F. ECKARDT	263
Die projectivischen Eigenschaften der gewöhnlichen und aus-	
gezeichneten Elemente ebener Curven. Von P. Scholz	267
Fortsetzung und Schluss dieser Abhandlung	355
Ueber die developpabele Fläche, welche zwei gegebenen Flächen umschrieben	
ist. Von Dr. Enneper	822
Ueber den Anfsatz von Grelle: "Lineare Construction eines Punktepaares,	
welches zu zwei gegebenen Punktepaaren gleichzeitig harmonisch ist".	
Von Dr. H. HEBTZER	352
Erklärung in Betreff der Abhandlung des Herrn v. Drach, über die cubischen	
Kegelschnitte. Von O. HESSE, A. CLEBSCH und C. NEUMANN	853
Ueber Polartetraeder und die Schnittcurve zweier Flächen	
zweiter Ordnung. Von Dr. Lüroth	403
Ueber Curvenbündel dritter Ordnung. Von Prof. Dr. REYE	521
Einfache lineare Construction der Flächen sweiter Ordnung aus neun und	
ihrer Durchdringungscurven aus acht Punkten. Von Prof. Dr. REYE	52 7
Gelegentliche Bemerkung über die Ellipse. Von O. Sontömitch ., GOOG.C	530

Inhalt.

Descriptive Geometrie und Gedoäsie,	Seite							
Studien über rationelle Vermessungen im Gebiete der höhe-								
ren Geodäsie. Von Dr. F. R. HELMERT	73							
Fortsetzung und Schluss dieser Abhandlung	163							
Ueber Isophoten (Linien gleicher Lichtintensität). Von Dr. L. BURMESTER								
Mechanik.								
Ueber die Formveränderungen prismatischer Stäbe durch								
Biegung. Von Prof. A. V. PESCEKA	38							
Mittheilung aus Thomson and Tait: treatise on natural philosophy. Von Dr.								
	347							
Zweite Mittheilung aus Thomson and Tait: treatise on natural philosophy. Von								
Dr. KRUMME	445							
Wärmelehre und Molecularphysik.								
Mathematische Studien über die Materie. (Zur Lehre der Áqui-								
valentvolumina.) Von L. Pudenz	187							
Beiträge zur Molecularphysik. Von Prof. WITTWEB	211							
Beitrag zur mechanischen Theorie der Wärme. Von Prof. Eißel.	491							
Ueber den Temperaturzustand eines von zwei nicht concen-								
trischen Kugelflächen eingeschlossenen Körpers. Von								
Dr. FROSCH	497							
Elektricität und Magnetismus.								
Beiträge zur Geschichte der Fortschritte in der elektrischen								
Telegraphie. Von Prof. Dr. Zerzsche	1							
Fortsetzung und Schluss dieser Abhandlung	451							
Die mathematische Bestimmung der Electricitätsvertheilung								
auf Conductoren. Von Dr. Kötteritzsch	121							
Zur Geschichte der Erfindung der elektrischen Telegraphie. Von Prof. Dr.								
	3 50							
Ueber die magnetische Fernwirkung elektrischer Ströme und								
Stromringe. Von E. WEYE	. 414							
Vermischtes.								

Neues Flintglas	•		•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	٠	72
Beiträge zur Kenntni	88	der	· St	leri	nscl	hnu	ıpp	en	•	•	•	•	•	•	•	•	•	•	•	•	161
Das Carpi-Prämium		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	352

I.

Beiträge zur Geschichte der Fortschritte in der elektrischen Telegraphie.

Von

Professor Dr. Eduard Zetzsche.

V. Die unterseeische Telegraphie.

(Zweite Abtheilung.)

(Hierzu Tafel I, Fig. 1-37.)

Nachdem wir in dem vorhergehenden Aufsatze einen Ueberblick über die Entstehung und Ausbreitung der unterseeischen Telegraphie zu geben versucht haben, lenken wir nun unsere Aufmerksamkeit auf

II. Die unterseeische Leitung selbst.

In Betreff der Unterseekabel oder Telegraphentaue, welche die Leitungen für die unterseeischen Telegraphen bilden, sind vorwiegend folgende Punkte näher zu erörtern: die Einrichtung und Herstellung der Unterseetaue, die Prüfung derselben, ihre Legung und nöthigenfalls ihre Wiederaufholung und Ausbesserung.

1. Die Einrichtung und Herstellung der Unterseetane.

An jedem unterseeischen Telegraphenseile lassen sich drei verschiedene Theile unterscheiden, nämlich der eigentliche Leiter, die Isolationsmittel und die Schutzmittel.

Das Material, welches den eigentlichen Leiter der Elektricität bilden soll, muss namentlich bei langen Unterseeleitungen ein möglichst guter Leiter sein und darf zugleich weder an sich selbst, noch durch das Isolationsmittel und durch die elektrischen Wirkungen des Stroms Veräuderungen ausgesetzt sein, welche das Leitungsvermögen vermindern oder gar den metallischen Zusammenhang des Leiters gefährden; ebenso wenig darf der Leiter eine nachtheilige Wirkung auf das Isolationsmittel aug-

Zeitschrift f. Mathematik u. Physik XIII, 1.

1

2 Beiträge zur Geschichte der Fortschritte in der elektrischen

üben. Diesen Anforderungen entspricht möglichst reines Kupfer ziemlich vollkommen, weshalb es fast allgemein für diesen Zweck Verwendung gefunden hat. Das Kupfer muss natürlich sehr sorgfältig ausgewählt und vor seiner Verwendung auf seine Leitungsfähigkeit untersucht werden, Zu noch grösserer Sicherheit jedoch schlug C. F. Varley vor, einen oder mehrere der Drähte, aus denen die Leitung hergestellt wird, ganz oder theilweise aus Platin zu machen, damit, falls ja das Kupfer weggefressen würde, das Platin den Strom noch leiten könne (Deutsche Industrie-Ztg. 1866, S. 338). Ausser dem Kupfer kam auch Eisen zur Anwendung; so legte T. P. Shaffner Eisendrähte Nr.10 im Mississippi und S. C. Bishop in New-York im Hudson (Shaffner, telegraph manual, S. 600 und 603). Baudouin endlich schlug vor, Alum inium zu verwenden. Anfänglich man einen einfachen Kupferdraht von entsprechendem benutzte Bei dem im Sommer 1856 im St. Lorenzbusen versenkten, Querschnitte. von Glass, Elliot & Co. verfertigten Tau war zum ersten Male der Leiter aus mehreren Kupferdrähten (nach Shaffner, tel. man. S. 617 aus vier, nach Zeitschr. d. Tel.-Ver. 3, S. 178 und Ztg. d. Vereins deutschen Eisenbahnverw. 1861, S. 334 aus sieben Drähten Nr. 22) zusammengedreht (Mechanics Magazine 64, S. 513). Schon am 21. Juni 1854 hatte Henry Vernon Physick in London ein Patent auf solche aus mehreren Drähten zusammengedrehte oder geflochtene Leiter erhalten, während Professor William Thompson und die Civilingenieure John Thompson und William John Macquorn Rankine, sämmtlich in Glasgow, unterm 4. December ein ganz ähnliches Patentgesuch eingereicht hatten (Mech. Mag. 62, S. 40 u. 620). Im September 1857 wurde ein Tau mit 4 aus je 4 Dräthen bestehenden Leitern zwischen Sardinien und Afrika gelegt, und seitdem werden die Leiter vorwiegend aus mehreren zusammengedrehten oder parallel neben einander liegenden Kupferdrähten hergestellt; sehr häufig wendet man 7 Dräthe an, von denen 6 spiralförmig um den siebenten herumgewunden werden. Dabei hat man, obwohl die Leitungsfähigkeit etwas geringer wird (nach Whitehouse etwa 8%; Delamarche, Elemente der unterseeischen Telegraphie S. 24), offenbar eine vermehrte Sicherheit gegen eine Beschädigung des kupfernen Leiters (Ader). Besteht nämlich die Ader aus blos 1 Drahte, so könnte sie bei einer etwa in diesem vorhandenen fehlerhaften oder schadhaften Stelle leicht reissen und der ganze Leiter wäre dann unbrauchbar. Bei einer aus mehreren Drähten oder Fäden gebildeten Ader dagegen können die einzelnen Drähte solche ursprünglich vorhandene oder später entstandene Fehlerstellen haben und sogar an solchen Stellen reissen, ohne dass dadurch die ganze Ader den Dienst versagt, weil es ganz unwahrscheinlich ist, dass in allen Drähten fehlerhafte Stellen neben einander zu liegen kommen. Ausserdem besitzt auch der zu mehrfädigen Adern verwendete feinere Draht an sich schon eine grössere Gleichartigkeit und solche aus mehreren Drähten zusammengedrehte

Adern vertragen eine grössere Dehnung. Freilich werden sich bei mehrfädigen Adern auch mehr Stellen finden, an denen die einzelnen Drähte behufs ihrer Verlängerung zusammengelöthet sind, und daher muss dieses Zusammenlöthen der einzelnen zur Ader zu verseilenden Drähte mit besonderer Sorgfalt ausgeführt werden, damit nicht durch unvollkommene Löthungen der Widerstand des Taues ohne Noth vermehrt werde. Wenn ferner ein Draht der Ader springt und zufällig die isolirende Hülle verletzt oder durchbohrt, so kann das eindringende Wasser das ganze Tau durchdringen und einen grösseren Stromverlust veranlassen; dem könnte man jedoch durch Zusammenlöthen der verschiedenen Drähte der Ader begenen (Du Moncel, traité de telegraphie electrique, S. 253).

Mit der Dicke des Leiters wächst zwar dessen Leitungsfähigkeit, allein auch die Schwierigkeiten bei der Herstellung, Verladung und Versenkung, weshalb man die Dicke nicht zu gross wählt. Bei langen Tauen hat der Leiter im Mittel etwa 2 Millimeter Durchmesser; bei kurzen Tauen kann man bis auf 1 Millimeter herabgehen. (Delamarche, Elemente S. 43.)

Die Zahl der Leiter in einem Taue wechselt zwischen 1 und 6. Die ersten Taue hatten in der Regel eine grössere Anzahl Leiter, während die in den letzten Jahren versenkten meist nur 1 Leiter enthalten. Mit der Zahl der Leiter wächst natürlich der Durchmesser des Taues, daher auch dessen Steifigkeit und Gewicht, sodass namentlich bei sehr grossen Tiefen dadurch zugleich die Legung schwieriger wird. Zu erwähnen ist hier noch ein am 15. September 1855 als Mittheilung patentirter Vorschlag von Gordon, unter Verzichtung der Benutzung der Erde als Rückleitung, zwei Drähte nahe an einander in dasselbe Tau zu legen und als einen Strömkreis zu benutzen, damit beide stets gleich stark, aber entgegengesetzt geladen, somit Rückströme und Inductionsströme in benachbarten Drahtpaaren unmöglich würden (*Mech. Mag.* 64 S. 424; Delamarche, Elemente der un terseeischen Telegraphie S. 19; vergl. auch Poggendorff's Annalen 102 S. 66). Ein ähnlicher Vorschlag von J. N. Hearder findet sich im *Civil Engineer and Architects Journal* 1859. S. 219.

Eine isolirende Hülle muss der Leitungsdraht erhalten, weil das Wasser die Elektricität leitet. Diese Hülle soll ausserdem undurchdringlich und im Wasser unveränderlich sein. Das jetzt vorwiegend zur Isolation verwendete Material ist Guttapercha. Getheertes Garn und Kautschuk sind zwar früher, als Guttapercha, aber nur vorübergehend angewandt worden. Die Guttapercha allein ist indess noch nicht ein so vollkommener Isolator, als man wünschen muss; daher benutzt man meist gleichzeitig noch irgend eine aus verschiedenen Stoffen zusammengesetzte Mischung. Die von L. Wray vorgeschlagene Mischung besteht aus 2 oder 2¹/₂ Theilen Kautschuk, ¹/₂ Theil Harz, 1. Theil gepulvertem Quarz oder Thonerde und etwa ¹/₉ Theil Guttapercha; sie isolirt sehr gut, ist schwer schmelzbar und ihr Widerstand wächst mit der Temperatur, allein sie kann nicht an der

3

1*

4 Beiträge zur Geschichte der Fortschritte in der elektrischen

Oberfläche der Taue angewendet werden, da sie leider vom Meerwasser zerstört wird. Die noch geheim gehaltene Mischung von Hughes ist eine anscheinend der Steinkohle entstammende, klebrige Substanz, welche zwischen die verschiedenen Lagen von Guttapercha gebracht wird, um die Poren und Risse derselben auszufüllen. Radcliffe vermischt Guttaperchamit Kohle, um ihre Dauer zu erhöhen; dabei erhöht sich aber das Isolationsvermögen nicht wesentlich und es wird auch geringer, wenn die Temperatur steigt. Ebenso ist es bei der Mischung von Godefroy, welche aus Guttapercha und gestossenen Kokusnussschalen besteht. Die so häufig angewandte, am 9. August 1858 patentirte Mischung von John Chatterton (und Willoughby Smith) enthält 3 Theile Guttapercha, 1 Theil Stockholmer oder Holztheer und 1 Theil Harz, ein Verhältniss, bei dem das Ganze entsprechend flüssig ist; sie erhärtet in der Kälte, wird aber bei etwas höherer Temperatur flüssig; sie wird warm zwischen die verschiedenen Lagen Guttapercha aufgetragen (Du Moncel, traite de tél. electr. S. 254; Polytechnisches Centralblatt 1860 S. 342; 1863 S. 899). Siemens und Halske geben dem Leiter zunächst eine dünne Schicht Chatterton's Compound; hierauf werden ohne Anwendung von Wärme schmale, lange Bänder von Kautschuk aufgewalzt, dann wieder Chatterton's Compound und eine Lage Guttapercha; darüber kommen 2 Lagen von besonders vorbereiteten Hanfschnüren in entgegengesetzten Windungen und zuletzt wird ein Band von (phosphorhaltigem) Kupferblech spiralförmig um das Tau gewunden, so dass das Tau nicht dicker als 3/16 Zoll und nicht theurer wird, als ein mit Eisendraht umhülltes (Deutsche Industrie-Zeitung 1864 S. 100; Du Moncel, trailé de 'tél. él. S. 262).

Das Kautschuk muss rein sein, wird in schmalen Streifen angewendet, die mit ihren frischgeschnittenen Rändern an einander kleben, und das Ganze wird durch heisses Wasser gezogen, mit vulkanisirtem Kautschuk eingehüllt und einer höhern Temperatur ausgesetzt, damit sich die Flächen gut vereinigen. Siemens und Halske wenden parallele Längstreifen an, Silver dagegen windet die Streifen spiralförmig um; Bilor et endlich wickelt Kautschukfäden um den Leitungsdraht (Du Moncel, traité de tél. él. S. 255-257).

Die Guttapercha muss ebenfalls möglichst rein sein und wird deshalb auf besonderen Maschinen gereinigt; sie wird in mehreren dünnen, von Blasen und Rissen freien, den Draht ringsum in gleicher Dicke umgebenden Lagen aufgebracht und äusserlich mit Stockholmer Theer umgeben, die umpressten Drähte dürfen der Luft und Wärme nicht ausgesetzt, sondern müssen an küblen Orten in Rollen mit nur schwach gekrümmten Windungen, womöglich unter Wasser aufbewahrt werden. Denn während die Guttapercha im Süss- und im Meerwasser sich viele Jahre hindurch ganz unverändert erhält und erst bei 70° C. weich und knetbar wird, fängt sie schon bei 30° C. an zu erweichen und dabei könnte der Draht die Lage

Digitized by GOOg

genau in der Mitte seiner Hülle verlassen; an der Luft und im Licht ferner wird die Guttapercha bröckelig und zerbrechlich, wechselnde Nässe und Trockenheit aber zerstören sie sehr bald, besonders im Sonnenlichte. Vulkanisirte d. h mit Schwefel versetzte Guttapercha bewährte sich nicht, da sich zunächst Schwefelkupfer bildete und dieses mit der Guttapercha zu einer dunkelbraunen, die Elektricität leitenden Masse verband. Bramley schlug vor, die Dauer der Guttapercha durch einen Zusatz von Creosot oder dgl. zu erhöhen (Polytechnisches Centralblatt 1960. S. 628).

Die Temperatur ist von Einfluss auf die isolirenden Stoffe, ebenso der Druck, dem sie ausgesetzt werden; letzterer verdichtet dieselben und vermehrt dadurch das Isolationsvermögen. Diese Stoffe nehmen an ihrer Oberfläche etwas Wasser auf, die Guttapercha jedoch vom Meerwasser nur eine unbedeutende Menge und nur in der äussersten Schicht; mehr dagegen nimmt Kautschuk auf. Die Wasseraufnahme ist um so grösser, je höher die Temperatur, je grösser die Dichte des Wassers und je kleiner die Dicke der isolirenden Schicht ist.

In Frankreich nimmt man allgemein an, das Kupfer der Drähte wirke reducirend auf das Kautschuk und bewirke dadurch dessen Zerfliessen, da ja das Weichwerden desselben von innen heraus beginne. Mit Gomme vierge de Para (amerikanisches Kautschuk) versetztes Kautschuk dagegen zeige dies nur an den der Luft ausgesetzten Drahtenden. Ausserdem könnte man dem entgegen arbeiten, wenn man zwischen Kupfer und Kautschuk eine Schicht von Guttapercha oder Chatterton's Mischung bringt.

Das Umpressen des Leitungsdrahtes mit Guttapercha erfolgt in einem grossen wagerecht liegenden Cylinder, welcher durch Dampf soweit erhitzt ist, dass die eingebrachte, in besonderen Kesseln bereits vorgewärmte und erweichte Guttapercha in ihm halbflüssig wird, infolge des mittelst eines in den Cylinder allmählich tiefer und tiefer eingeschraubten Kolbens auf sie ausgeübten starken Drucks aus einer nach oben mündenden Oeffnung austritt und sich dabei an den genau in der Mitte des Mundstücks durchgeführten Draht anlegt. Nach dem Austritt des Drahtes erkaltet der Guttaperchaüberzug, erstarrt und der umpresste Draht kann auf eine grosse Trommel aufgewunden werden. Ferrère entwarf eine ganz ähnlich eingerichtete Maschine, in der mehrere Drähte zugleich überzogen werden können (Dingler's polytechnisches Journal 139 S. 11). Vortheilhafter ist es, den Kolben durch eine im Cylinder angebrachte, in stetiger Umdrehung erhaltene Schraube ohne Ende (Schnecke) zu ersetzen und durch diese die Guttapercha durch ein am Ende des Cylinders befindliches Mundstück hindurchzupressen, so dass sie sich an den ebenfalls stetig durch das Mundstück geführten Draht anlegt; so braucht nämlich der Betrieb keine Unterbrechung zu erleiden. Damit zwischen dem Drahte und der Guttapercha keine Zwischenräume oder Luftbläschen bleiben, tränkt man den Draht meist erst mit Chatterton's Mischung und giebt ihm Digitized by

dann mehrere Lagen von Guttapercha, deren jede nicht unter 1-1,2 Millimeter dick sein darf, wenn für die Güte der Arbeit eingestanden werden soll. Man beschränkt sich in der Regel auf 3-5 Lagen, obwohl bei Probetauen bis 25 Lagen angewendet worden sind. Ueberzogen werden Kupferdrahtlängen von 3000-6000 Fuss; die Vereinigung dieser Längen erfolgt dann so, dass man die Drahtenden auf 5-6 Zoll blos legt, sorgfältigst zusammenlöthet, mit mehreren Lagen Guttaperchastreifen umwickelt, den Ueberzug mit der Spirituslampe erweicht und mit dem Finger an den Draht andrückt.

Eine eigenthümliche Herstellungsweise von Telegraphentauen liessen sich Southworth, Lorillard & Ferris in Neu-York für England patentiren: sie fertigen nämlich zunächst aus Guttapercha, Kautschuk oder einem andern Isolator einen Strang mit fortlaufenden Längsrippen, also mit kreuz- oder sternförmigen Querschnitten, legen darauf in einer besonderen Maschine je 1 Draht zwischen je 2 Rippen dieses Strangs und nöthigen nun den Strang durch eine sich umdrehende, trichterförmig ausgehöhlte Spindel zu gehen, wobei sich die Rippen um die Drähte herumlegen; der aus der Spindel austretende Strang wird sofort mit Draht oder Garn, welches von einer Spule kommt, umwickelt, um die Rippen in ihrer Lage fest zu halten; von 3 Spulen einer andern Spindel erhält dann das Ganze eine zweite Lage von Garn oder Draht, läuft durch ein Gefäss mit kaltem Wasser und wird endlich nochmals mit Garn oder Draht umwunden, welche von Spulen einer sich mit umdrehenden Scheibe ablaufen (Dingler's Journal 179 S. 52 aus London Journal, October 1865).

P. A. Balestrini (Patentgesuch vom 8. Septbr. 1855; Mech. Mag. 64 S. 402) sucht die Guttapercha ganz zu umgehen; er lässt die Drähte mit Hanf oder einem andern Faserstoff umspinnen, mit mehreren Schichten Kautschuklösung und einer Schicht Marineleim überziehen, eine gleiche Umspinnung in entgegengesetzter Richtung mit ebensolchem Ueberzug darüberlegen und das Ganze mit einer Hülle von mit wasserdichten Stoffen getränktem Hanf bedecken; sind mehrere so isolirte Drähte in ein Tau zu vereinigen, so werden sie vorher mit Draht umwickelt.

Capitän Rowett isolirt den kupfernen Leiter mit 7 Lagen Kautschuk, schliesst ihn in ein zolldickes Hanfseil und schützt das Tau mit seiner sich als wirksam erweisenden Schutzlösung, unter Ausschluss jeder Eisenhülle (*The Atlantic Telegraph*, S. 106).

Zum Schutz gegen die Luft wird die Guttaperchahülle mit einer oder 2 getheerten Hanflagen umgeben. Dies geschicht in einer einfachen Maschine, die zwischen 2 hölzernen Scheiben eine Anzahl von Spulen enthält, auf welche die Hanffäden oder Schnuren aufgewickelt sind und sich, wenn die Scheiben in Umdrehung versetzt werden, auf das langsam und gleichmässig durch die hohle Axe der beiden Scheiben laufende, zu umspinnende Tau aufwickeln, da jeder Faden durch ein Loch der hohlen Axe

nach dem Tau geführt ist. Werden mehrere Guttaperchadrähte in ein Tau vereinigt, so werden bei der Ueberspinnung die Zwischenräume zwischen ihnen durch parallel eingelegte Hanfschnüre (Trensen) ausgefüllt. — Capitän Roux umwickelt das Kabel, um es leichter zu machen, mit einer dicken Schicht von dem im südlichen Frankreich vielfach verwendeten Mattengeflecht (sparterie), welches auf dem Wasser schwimmt, nicht getheert zu werden braucht und im Wasser nur langsam fault (Comptes vendus 72, S. 284).

Die grösste Mannigfaltigkeit herrscht in Bezug auf die eigentliche Schutzhülle, welche das Tau bekommt. Zwar hat man, namentlich früher z. B. 1850 bei dem Tau zwischen Dover und Calais, wiederholt versucht, die Guttaperchadrähte ohne weitere Schutzhülle in das Wasser zu versenken; dies erscheint indess nur dann zulässig, wenn die Wassertiefe nicht so bedeutend ist, dass das Tau beim Versenken durch die Last des im Wasser schwebenden Stücks und durch die etwa hinzukommenden Zerrungen oder Stösse einer nachhaltigen Dehnung oder gar dem Zerreissen ausgesetzt ist, und wenn zugleich das gelegte Tau so ruhig und weich auf dem Boden liegt, dass ein Abscheuern der Guttaperchahülle ebensowenig, wie eine Beschädigung des Taues durch Schiffsanker oder Bohrmuscheln zu befürchten steht. Gewöhnlich ist eine besondere Schutzhülle ganz unerlässlich; durch dieselbe wird die absolute Festigkeit des Taues vergrössert und das versenkte Tau gegen äussere Beschädigungen geschützt, allein die Schutzhülle vermehrt zugleich auch das Gewicht des Taues und es ist natürlich wesentlich darauf zu achten, dass das Gewicht des Taues nicht etwa in stärkerem Masse wachse, als die Festigkeit gegen den Zug. Je schwächer man die Schutzhülle nehmen kann, desto billiger wird es und desto mehr kann man allen das Tau gefährdenden Unfällen beim Einladen, Verschiffen und beim Legen entgehen zu können hoffen*). Man hat deshalb in dieser Richtung sehr verschiedene Vorschläge gemacht; so schlug Allan vor, einen 4 Millimeter dicken Kupferdraht mit 24 Stahldrähten von der Dicke einer Nähnadel spiralförmig zu umwickeln und das Ganze mit 4 Lagen Guttapercha zu überziehen und mit einer doppelten Lage getheerten Bandes zu verschen (Du Moncel, trailé de tél. él. S. 262); ferner wollte Bauduoin als Leiter einen Eisendraht von der 6½ fachen Dicke eines aus-

7

^{*)} Vgl. auch Dingler's Journal 184 S. 278 aus Mech. Mag. März 1867, S. 199: Proben des Kabels, welches nach dem Verfahren der British and Americain Telegraph Company angefertigt und durch längere Zeit dem Versuche unterworfen waren, haben bei ihrer neuerlichen Untersuchung gezeigt, dass mit der Zeit, innerhalb welcher solche Kabel in der tiefen See versenkt bleiben, ihre Festigkeit und Isolationsfähigkeit zunimmt. Die Verringerung des Gewichts und des Volumens lässt erwarten, dass die Anwendung solcher Kabel mit geringeren Kosten und weniger Schwierigkeiten verbunden sein dürfte, als dies bei den schon ausgeführten 2 Unterseelinien der Fall war, um so mehr, als das Auslegverfahren für ein neues Kabel wesentliche Verbesserungen erfahren kann.

reichenden kupfernen Leiters verwenden, etwa 6 Eisendrähte von 2 Millimeter Dicke zusammendrehen und blos mit getheertem Hanf ohne Schutzdrähte bedecken, oder einen 2 Millimeter dicken Aluminiumdraht blos mit Guttapercha bis zu mindestens 5 Millimeter Dicke überziehen, oder auch den Leiter aus Kupfer, Alumin und Eisen zugleich herstellten (Glösener, traité des applications de l'électricité, Paris 1861, S. 275-282; Du Moncel, reque des applications de l'électricité pour 1857 et 1858, Paris 1859, S. 21, 88, 90). Das zwischen Varna und Balaclava gelegte Tau hatte blos an den Uferenden eine Schutzhülle. Dass übrigens bei ruhigem Wasser auf dem Meeresboden eine etwaige Beseitigung der Schutzhülle dem Tau selbst nicht gefährlich ist, haben die wiederaufgenommenen Taue dargethan, z. B. das erste Dover-Calais-Tau, das Tau zwischen Dover und Grisnez bei seiner. Ausbesserung im Jahre 1859 (Zeitschrift des deutsch-österreich. Telegraphen-Vereins, 8, S. 185), eines der Shoeburyness-Kabel (Mech. Mag. 13, S. 347) und das atlantische Kabel vom Jahr 1865 (Schellen, das atlantische Kabel, Braunschweig 1867, S. 117). Bei Tiefseetauen sind die Küstenenden weit mehr Beschädigungen durch Schiffsanker und den Wellenschlag ausgesetzt, als die Mittelstücke; daher pflegt man den Küstenenden eine weit stärkere Schutzhülle zu geben, als den Mittelstücken und kann dies unbedenklich, weil bei der an den Küsten vorhandenen geringeren Tiefe die Legung dadurch nicht gar zu sehr erschwert wird. Die Schutzhülle darf ferner nicht so eingerichtet sein, dass sie eine Ausbesserung des Taues, falls sein Leiter beschädigt werden sollte, unmöglich macht. In manchen Fällen ist die Schutzhülle zugleich dazu bestimmt, dem Tau überhaupt ein so grosses specifisches Gewicht zu verschaffen, dass es von selbst untersinkt, man also nicht nöthig hat, es, wie z. B. das von 1850 zwischen Dover und Calais gelegte Tau durch besondere Gewichte zu beschweren.

Eine in England zur Prüfung der Ursachen des Misslingens so vieler Unterseetaue und zu Untersuchungen über die zweckmässigste Einrichtung der Taue niedergesetzte Commission, welcher auch die Professoren Thomson und Wheatstone, Varley, Latimer Clark, Edwin Clark, William Fairbairn und Joseph Whitworth angehörten, äussert sich (Zeitschr. d. Tel.-Ver. 8, S. 182 und 11, S. 72; Du Moncel, trasté de tél. él. S. 258) dahin, dass kein Tiefseetau leicht sein dürfe, weil es sonst nicht wieder aufgenommen werden könne und weil sich beim Versenken das grössere Gewicht durch ein grösseres Volumen ausgleichen lasse, so dass die Spannung beim Legen trotzdem nicht grösser sei, als bei einem leichten Tau; dass fast kein leichtes Tau sich bewährt habe, schwere dagegen um so besser, je schwerer sie waren; daher sei eine blose Hanfhülle nicht ausreichend, vielmehr eine Metallhülle nöthig, zwischen ihr und dem Isolator aber müsse eine dicke Decke getheertes Garn oder Band befindlich sein, um während der Erzeugung und Legung des Taues als Polster zu dienen. Mit Rücksicht auf die Verhütung einer zu grossen

Dehnung des Taues, einer zu grossen Pressung der isolirenden Hülle und Verhütung von Schlingen beim Legen empfiehlt die Commission die Schutzdrähte in möglichst steilen Windungen umzulegen, also möglichst parallel zum Leiter*). Für Taue in seichtem Wasser sei das Gewicht nicht maassgebend, sondern der Schutz gegen von Aussen kommende Beschädigung. Um ein Anhängen der Meeresthiere zu verhüten, könne man dem Tau einen mit einem Gift versetzten Anstrich geben, wie es Jouvin für eiserne Schiffe vorgeschlagen hat, nämlich ein Gemisch aus preussischem Blau und Turpethum minerale (basisch schwefelsaures Quecksilberoxyd), woraus sich unter Wasser Quecksilbercyanid-Chlornatrium, ein sehr heftiges Gift, bildet.

Auch zur Schutzbülle sind sehr verschiedene Stoffe vorgeschlagen und verwendet worden: O'Shaughnessy benutzte 1839 gespaltenes in disches Rohr für ein Flusstau. Duncan liess sich in England das Ratan- oder Rotang-Rohr für diesen Zweck patentiren, welches im südlichen Bengalen und China in gleichmässig 50 Fuss langen Stücken massenhaft und billig zu haben ist und dessen kieselige Rinde weder vom Wasser noch von Insecten angegriffen wird; die Seele des Taues soll mit den Rohrstäben ähnlich wie mit Drähten umsponnen werden. (Deutsche Industrie-Zeitung 1862 S. 131; Du Moncel, traité S. 263). Auch spanisches Rohr wurde versucht (Deutsche Industrie-Zeitung 1863 S. 35). Ein Bleiüberzug wurde wiederholt, u. A. von Samuel C. Bishop in Neuvork (Shaffner, tel. man. S. 606) angewendet. Bishop baute besondere Maschinen zum Ueberziehen der isolirten Drähte mit Blei; auch John Chatterton in Birmingham liess sich am 12. Juni 1851 eine verbesserte Maschine zum Aufziehen von Bleiröhren auf die Drähte patentiren (Mech. Mag. 56 S. 132; Dingler's Journal 124 S. 265). Whishaw schlug vor, das Tau in bewegliche Eisenröhren zu legen, welche aus Stücken von 1-3 Fuss Länge und 1-24 Zoll Durchmesser hergestellt werden sollten, indem diese mittelst Kugelzapfen verbunden würden, wobei die Verbindungsstellen nicht wasserdicht zu schliessen brauchten (Civil Engineer and Architects Journal 1849 S. 304). Zinnröhren über dem Kabel und der Hanfumwickelung empfahl Lami de Nozan (Deutsche Industrie - Zeitung 1866 S. 208). Shepherd und Button liessen sich am 23. November 1850 zugleich mit der Umwickelung des Guttaperchadrahtes mittelst mit isolirenden Stoffen getränkten Flannell und darüber mittelst Metall oder Metalldraht ein Verfahren patentiren, nach welchem der Draht in den von den Gliedern einer Kette gebildeten Winkelraum gelegt und an der Kette mittelst Klampen

9

^{*)} Diese Ansicht theilen auch Allan und Delamarche, während Felten und Guilleaume bei festem Aneinanderschliessen der einzelnen Drähte oder Litzen eine schädliche Ausreckung des Seils nicht für möglich halten (Zeitschr. d. Tel.-Ver. 1, S. 171; 3, S. 191). — Bei Wheatstone's Tau von 1840 sollten die Schutzdrähte senkrecht zur Axe gewickelt werden (Delamarche, Elemente, S. 49). Digitized by

10 Beträge zur Geschichte der Fortschritte in der elektrischen

befestigt werden sollte (Mech. Mag. 54 S. 438). Einen Panzer aus Blechstreifen oder Stahldraht in mehreren Lagen mit je einer Zwischenlage von Guttapercha unter Vermeidung von Hanf liess sich J. de la Haie patentiren (Deutsche Industrie Zeitung 1866 S. 308 und 478). Kupferblechstreifen verwendeten Siemens und Halske 1865 beim Bona - Biserte - Tau. Das gewöhnlichste Material sind aber Eisen - oder Stahldrähte, welche theils in Litzen zusammengedreht (nach Felten und Guilleaume in Cöln; Zeitschrift des Telegraphen-Vereins 3 S. 178), theils einzeln umgelegt werden und im letztern Falle wieder entweder und zwar gewöhnlich in spiralen Windungen oder auch in parallelen Lagen und mit besonderen Bindedrähten oder Kupferblech (Siemens und Halske; vergl. Du Moncel, traité S. 262) umwickelt. Einfache Drähte umschliessen die Seele dichter und allseitiger; die Litzenumspinnung erhöht zwar die Kosten des Taues um 25%, hat aber den Vorzug, dass ein etwa springender Draht durch die andern Drähte derselben Litze verhindert wird, sich vom Tau loszutrennen. Felte'n und Guilleaume in Cöln geben die Kosten eines laufenden preussischen Fusses eines Seiles mit 4 Leitungsdrähten, mit doppelter Hanfumwickelung und mit Litzen von verzinktem Eisendrahte zu 22 Sgr. und bei unverzinktem Eisendrahte zu 18 Sgr. an, während ein nur mit einfachen dicken verzinkten oder unverzinkten Eisendrähten umsponnenes Seil beziehungsweise 13 oder 11 Sgr. kostet (Zeitschrift des Telegraphen-Vereins 1 S. 173). Der Eisendraht wird aus dem besten Holzkohleneisen hergestellt und soll eine Tragfähigkeit von 80000 Pfund auf 1 Quadratzoll besitzen*). Die Eisendrähte wurden mehrfach verzinkt, oder getheert oder noch mit einer verhältnissmässig dicken Lage getheerten Hanfs übersponnen, um dadurch das specifische Gewicht zu vermindern. Das Rosten und Zerfressenwerden der Eisendrähte wird durch diese Hanfdecke nicht aufgehalten, wohl aber die Festigkeit während des Legens vergrössert (Mech. Mag., neue Folge, 13 S. 347). Die Maschine zum Ueberspinnen des Seils mit den Eisendrähten oder Litzen ist der schon erwähnten Maschine, welche die Guttaperchahülle mit der Hanflage versieht, ähnlich, nur in allen Theilen stärker und grösser; durch grosse Seilscheiben wird das fertige Seil von der Maschine selbst herausgezogen; beide Maschinen werden durch Dampf getrieben. Die Herstellung der Taue in der Fabrik von Felten & Guilleaume in Cöln ist in der Zeitschrift des Telegraphen-Vereins (1 S. 169-173 und daraus in Dingler's Journal 134 S. 117) ausführlich beschrieben.

Wesentlich abweichende Einrichtungen der Telegraphentaue wurden

Digitized by Google

1

^{*)} Newall verlangt eine Tragfähigkeit von 60 Kilogramm auf 1 Quadratmillimeter; beim amerikanischen Tau riss das Eisen bei 70 Kilogramm, bei dem Tau zwischen Sardinien und Algier bei 41-42 Kilogramm (Delamarche, Elemente, S. 47.

von Thomas Allan in London und von S. Statham vorgeschlagen. Nach Allan (Patent vom 8. Februar 1853) soll das Tau einen gerade laufenden starken Eisendraht als Kern erhalten und um denselben die mit Guttapercha überzogenen Leiter abwechselnd mit starken Eisendrähten spiralförmig gewunden und allenfalls noch durch eine Lage dünner Eisendrähte gegen Beschädigung von aussen geschützt werden (Mech. Mag. 57 S. 366; 59 S. 137; 63 S. 414 und 613). Eine englisch amerikanische Gesellschaft beabsichtigte Falmouth und Halifax durch ein Allan'sches Kabel zu verbinden (Deutsche Industrie-Zeitung 1867 S. 309). Statham dagegen liess sich am 15. August 1855 ein Verfahren patentiren, nach welchem um eine isolirende Seele (mit oder ohne darin befindlichen Draht oder Schnur) einer oder mehrere Leitungsdrähte gewickelt werden und nach Befinden Drahtlagen mit isolirenden Lagen abwechseln sollten; nach einem Patent vom 26. Januar 1856 dagegen sollte als Leiter ein hohles Seil aus spiralförmig gewundenen Metalldrähten dienen mit oder ohne Seele aus Guttapercha, Kautschuk und dergl. (Mech. Mag. 64, S. 282; 65 S. 304; Dingler's Journal 146 8. 115).

Wird ein ans so verschiedenartigen Stoffen hergestelltes Seil in seiner Längsrichtung einem Zuge ausgesetzt, so dehnen sich alle Stoffe um gleichviel und es ist darauf zu achten, dass bei keinem die Elasticitätsgrenze überschritten wird. Die Guttapercha, deren absolute Festigkeit etwa 3700 Pfund für 1 Quadratzoll beträgt und deren specifisches Gewicht 0,98 ist, erreicht die Elasticitätsgrenze erst, wenn sie um 0,64 ihrer Länge gedehnt wird, das Kupfer dagegen schon bei einer Dehnung von 0,0013 (Schellen, d. atl. Kabel S. 14 und 22). Wird nun beim Kupfer die Elasticitätsgrenze überschritten, ohne dass sie bei der Guttapercha erreicht wird, so wird letztere sich nach dem Aufhören des Zugs wieder vollkommen auf ibre frühere Länge zusammenziehen, das Kupfer dagegen hat eine bleibende Dehnung erlitten, muss sich durchbiegen und die Guttaperchahülle durchbrechen. Die Hanfschnüre können sich um $\frac{1}{10}$ bis $\frac{1}{6}$ ihrer Länge ausdehnen und daher müssen hauptsächlich die Eisendrähte, deren Elasticitätsgrenze etwas unter der des Kupfers liegt, das Kupfer vor einer das Tau gefährdenden Ausdehnung schützen. Es ist daber die Dicke der Eisendrähte nach dem specifischen Gewichte des Taues und der Wassertiefe zu bestimmen. Baudouin hat mehrfache Versuche mit Tauen angestellt (Glösener, traité des appl. S. 277 flg. aus Du Moncel, Revue des appl. de l'éléctr. S. 88). Das 36 Millimeter dicke Tau von Spezzia mit 8 Millimeter dicken Schutzdrähten würde bei einer Belastung durch eine Länge von 9000 Metern des ruhig im Meer hängenden Taues reissen; das nur 15 Millimeter dicke atlantische Tau mit seiner 0,8 Millimeter dicken Eisenhülle hat eine neunfach geringere Festigkeit, würde aber doch erst bei 9500 Meter Länge reissen. Ein nach Baudouin's Vorschlag hergestelltes Tau mit eisernem Leiter, welcher allein 1140 Kilogramm tragen könnte, während

der Kupferdraht des atlantischen Taues bei 37 Kilogramm Belastung reissen würde, hätte bei der nämlichen Dicke, wie das atlantische Tau, im Wasser nicht 462, sondern nur 147 Gramm Gewicht und könnte eine Länge von 13945 Meter tragen, während das atlantische nur 9480 Meter zu tragen vermöchte. Ein Baudouin'sches Tau mit Aluminiumleiter endlich würde bei 270 Kilogramm reissen, in der Luft 26, im Wasser 7 Gramm wiegen und könnte eine Länge von $\frac{270000}{7}$ =38000 Meter tragen; 4000 Meter desselben würden nur 78 Kubikmeter einnehmen und 106 Tonnen wiegen gegen 696 Kubikmeter und 2548 Tonnen beim atlantischen Tau; im Meer hängend würden 4400 Meter nicht 2032, sondern nur 31 Kilogramm wiegen; allein sein Preis wäre doppelt so gross.

Die Firma Glass, Elliot & Co. hat in den 8 Jahren 1854 bis 1862 allein 6749 englische Meilen Leitungen ausgeführt (D. Ind.-Ztg. 1863, S. 68).

Als Beleg für die grosse Mannigfaltigkeit in der Ausführung der Untersectaue geben wir auf Tafel I eine Zusammenstellung von Abbildungen verschiedener ausgeführter Taue, und zwar:

Fig. 1: ein amerikanisches Flusskabel nach Shaffner, Wade und Sleeth, 1853; a ist ein Draht Nr. 10 aus schwedischem Eisen, der einen Zug von 1300 Pfund aushält, b sind 3 Lagen Guttapercha, c getheerte Leinewand, d Längsdrähte Nr. 10, c Bindedrähte Nr. 12.

Fig. 2: im Hudson gelegtes Tau von Samuel C. Bishop in New-York; a mit Guttapercha isolirte Kupferdrähte, b weite Guttaperchahtille, c Schützhülle aus getheertem Hanfgarn.

Fig. 3: ebenfalls von Bishop; mit 3 Drähten Nr. 10 aus schwedischem Eisen, getrennt durch einen Guttaperchastrang a und umschlossen von einer Guttaperchabtille b und einer Hanfgarnhülle c.

Fig. 4: von Charles T. und J. N. Chester in New-York; 5 Kupferdrähte in Guttapercha, in einer getheorten Hanfgarnhülle und 12 Eisendrähten Nr. 6.

Fig. 5 : ebenfalls von Chester und mit 12 Eisendrähten Nr. 6. Ganz ähnlich war das Mittelmeer-Tau von 1856, nur hatte es bles 10 ebense starke Schutzdrähte.

Fig. 6: auch von Chester, mit 12 Eisendrähten Nr. 16. Shaffner (telegr. man. S. 605) bildet noch 3 andere Taue mit 1 Leitungsdraht und ähnlicher, aber stärkerer Umhüllung aus 12 Eisendrähten Nr. 10 und 12 oder 9 Drähten Nr. 12 ab; ebenso 2 Taue mit je 6 Litzen aus je 7 Eisendrähten für reissende Flüsse, von denen dass stärkste einen Zug von 14 Tonnen aushalten kann.

Fig. 7: Dover-Calais-Tau vom Jahr 1851, von Newall; mit 4 Kupferdrähten Nr. 16, zwischen denen Hanflitzen liegen, mit einer Hülle aus Hanflitzen und 10 verzinkten Eisendrähten.

Fig. 8: Holyhead - Howth - Tau von 1852, von Newall; a Mittelstück, b Küstenende.

Fig. 9: Donaghadee-Port-Patrick-Tau, 1852, von Newall. Achnlich war das Dover-Ostende-Tau, nur dass es 12, aber etwas dünnere Schutzdrähte hatte.

Fig. 10: Donaghadee-Port-Patrick-Tau, 1853, von Newall; mit 6 Kupferdrähten Nr. 16 und 12 Eisendrähten Nr. 2. Ebenso war das Mittelmeertau von 1855.

Fig. 11: Küstenende des Taues zwischen Oxfordness und Haag, von Newall.

Fig. 12: Tau von Prinz Eduards-Insel nach Neubraunschweig, 1852, von Newall.

Fig. 13: Tau für den Balize-Telegraph bei New-Orleans, von Newall. Ein ähnliches von Newall wurde im Hudson bei New-York versenkt.

Fig. 14: a Mittelstück, b Küstenende des Mittelmeertaues von 1857, von Newall.

Fig. 15: *a* Mittelstück, *b* Küstenende des Taues zwischen Cagliari, Malta, Corfu, 1857, von Newall. Ganz ähnlich war das indische Tau (Suez-Aden-Karratschi), nur mit 2 Lagen Guttapercha.

Fig. 16: Tau im grossen Belt, 1853, von Newall.

Fig. 17: Tau zwischen Algier und Port-Vendres, 1860, mit einem 2 Millimeter dicken Strang von 7 Kupferdrähten, 4 Lagen von Guttapercha, abwechselnd mit 4 Lagen von Chatterton's Mischung, 1 Lage von getheertem Hanf und 10 Stahldrähten von 2 Millimeter Dicke in getheertem Hanf. Gesammtdicke 22 Millimeter; Gewicht eines Meters in der Luft 620, im Wasser. 308 Gramm.

Fig. 18: Malta-Alexandria-Tau, 1861; siebendrähtiger Kupferstrang von 4 Millimeter Dicke, 3 Lagen Guttapercha, Hanf- und Eisenhülle.

Fig. 19: Bona-Biserte-Tau von Siemens in London, 1865; dreidrähtiger Kupferstrang, mit einer dünnen Schicht von Chatterton's Mischung, darauf 2 Lagen Guttapercha und 2 Lagen getheerten Hanfs, endlich Kupferstreifen.

Fig. 20: Flusstau mit 3 Leitungen in der Elbe bei Pillnitz.

Fig. 21: a und b Mittelstück, c Küstenende des atlant. Taues von 1858.

Fig. 22: desgl. von 1865. Die Hanflitzen waren getheert, die Eisendrähte nicht galvanisirt.

Fig. 23: desgl. von 1866. Die 5 Manillahanflitzen um die galvanisirten Eisendrähte sind nicht getheert.

Das Tau im Persischen Golfe (Karratschi-Buschier) hatte über dem Kupferdrahte 4 Lagen Guttapercha, 1 Lage getheerten Hanf, 16 Eisendrähte und darüber eine bandförmige Umwickelung mit Leinwand, welche in Pech getränkt war (Schellen, d. elektro-magn. Telegr. 4. Aufl. S. 228). — In der Elbe zwischen Hamburg und Harburg wurden 1855 und 1860 2 Kabel gelegt; das letztere ist ähnlich, wie Fig. 14 construirt, nur mit stärkeren Schutzdrähten (Zeitschr. d. Tel.-Ver. 8, 165—173).

~~~~~

Das für die Strasse von Kertsch bestimmte, bei Felten & Guilleaume in Cöln verfertigte Kabel von 12 Seemeilen Länge und 3000 Ctr. Gewicht hatte einen Leiter von 1 Linie Dicke aus 7 Kupferdrähten, 3 Guttaperchahüllen und 1 Schutzhülle aus 10 % Zoll dicken verzinkten Eisendrähten; Tragfähigkeit 1500 Ctr. (Dingler's Journal 181, S. 154).

#### 2. Die Prüfung der Untersectaue.

Von der grössten Wichtigkeit für das Gelingen ist die Prüfung der Taue, und zwar darf dieselbe nicht blos in einer Prüfung des fertigen Taues bestehen, sondern es müssen die zur Verfertigung des Taues zu verwendenden Stoffe schon vorher sorgfältig geprüft werden und ganz besonders muss bei der Versenkung des Taues dessen Zustand einer fortdauernden Untersuchung unterworfen werden, damit jede etwa eintretende Mangelhaftigkeit sofort erkannt und Anlass zur Beseitigung des entstandenen Fehlers gegeben werde. Natürlich muss das Tau ausser den physikalischen Proben auch einer Prüfung auf seine Festigkeit unterzogen werden, damit es nicht beim Versenken reisst. (Vergl. auch Delamarche, Elemente S. 38).

Von den Rohstoffen sind vor deren Verarbeitung sorgfältig zu prüfen: das Kupfer, die Guttapercha und das Eisen. Die im Handel vorkommenden Kupfersorten schwanken je nach ibrer Reinheit in Bezug auf ihre Leitungsfähigkeit in sehr weiten Grenzen (vergl. auch Du Moncel, traite S. 254; ferner Dingler's Journal 146, S. 113 aus Mech. Mag. 67, S. 30), bei sorgfältig ausgewählten Telegraphendrähten bis zu 20 %. In dem Malta-Alexandria Kabel z. B. kamen an verschiedenen Stellen Kupfersorten vor, deren Leitungsfähigkeit zwischen 90 und 74 wechselte, wenn die des reinen Kupfers = 100 gesetzt wurde. Daher muss zuerst jeder zu verwendende Kupferdraht auf sein Leitungsvermögen geprüft werden. Bei der Herstellung des atlantischen Kabels vom Jahr 1865 wurden alle Drähte, verworfen, deren Leitungsfähigkeit unter 85% von der des reinen Kupfers betrug. Ausführliche Versuche darüber und über die Metalllegierungen wurden von Dr. A. Matthiessen und M. Holzmann auf Veranlassung der englischen Regierung ausgeführt (Zeitschr. d. 'Tel.-Ver. 7, S. 261-269 und 8, S. 9-14 aus Poggendorff's Annalen 110, S. 222 und 190). Ebenso muss ferner die Leitungsfähigkeit des isolirenden Materials bestimmt werden; dieselbe ist bei constanter Temperatur hinlänglich gleichmässig; bei dem für die Strecke Rangoon-Singapore bestimmten Kabel nahm die Leitungsfähigkeit zwischen den Temperaturgrenzen von 5-27º C. nahe im Verhältniss von 1:7 zu, jedoch nicht constant. Dr. Werner Siemens und C. William Siemens führten daher ihre Prüfungen stets bei 24º C. aus, weil dieser Temperaturgrad nach der Legung des Kabels selten überschritten wird und dabei kleinere Fehler verhältnissmässig viel leichter wahrnehmbar sind; nachdem die zu untersuchenden Drahtringe

Digitized by GOOSIC

24 Stunden in einem Behälter mit Wasser von 24° gelegen hatten, wurden sie in den mit Wasser von 24° gefüllten, hermetisch verschliessbaren Versuchskasten gebracht und einem Druck von 600 Pfund auf 1 Quadratzoll ausgesetzt, damit das Wasser in die etwa vorhandenen Höhlungen oder Risse eindringe\*). Beobachtungen an Tauen während des Versenkens derselben haben bestätigt, dass unter hydrostatischem Druck die Leitungsfähigkeit der Guttapercha sich merklich vermindert, nach Aufhören des Druckes jedoch wieder etwas über den ursprünglichen Werth steigt. Bei Drahtringen mit geringen Fehlern dagegen erzeugt die Zunahme des äusseren Druckes keine Zunahme oder selbst eine Abnahme des Isolationsvermögens; dies bietet den Schlüssel zur Ermittelung von Mängeln, die sonst nicht wahrnehmbar sein würden (Zeitschr. d. Tel.-Ver. 7, S. 112). W. und C. W. Siemens wählten für die Prüfungen des Leitungsvermögens des Kupfers und der Guttapercha als Widerstandseinheit\*\*) den Widerstand einer Quecksilbersäule von 1 Meter Länge und von 1 Quadratmillimeter Querschnitt bei der Temperatur 0°, da sie die Jacobische Einheit nicht für zweckmässig erachteten (Zeitschr. d. Tel.-Ver. 7, S. 55-68 und 8, S. 76-85, aus Poggendorff's Annalen 110, S. 1 und 113, S. 91; mit Tabelle der Widerstände der anderen Metalle). Dr. Matthiessen schlägt eine Mischung von 2 Gewichtstheilen Gold und 1 Theil Silber vor (Poggendorff's Annalen 112, S. 353) und vertheidigt die von der British Association aufgestellte Einheit (Poggendorff's Annalen 129, 8 161). Ueber die verschiedenen Einheiten vergl. ferner Zeitschr. d. Tel.-Ver. 13, S. 1 und 12 aus Poggendorff's Annalen 126, S. 369 und 127, S. 327. Zur Bestimmung der Widerstände der zu verwendenden Drähte benutzten Gebrüder Siemens die Wheatstone'sche Brücke [während Du Moncel (traité S. 282) ein Differentialgalvanometer vorzieht] und Widerstandsrollen mit einem Widerstand von 1-10000 Einheiten. Zur Messung von Widerständen jenseits dieser Grenzen änderten sie die Brücke dahin ab, dass sie auch die festen Zweige a und b (Fig. 24) nicht einander gleich, sondern veränderlich machten, sodass jeder derselben die Werthe 10, 100 oder 1000 erhalten konnte, wodurch sie mit 1-10000 in c eingeschalteten Widerstandseinheiten einen Widerstand d zwischen 0,01 und 1000000 Ein-

15

L

<sup>\*)</sup> Vergl. auch die Versuche von Fleeming Jenkin mit verschiedenen Taustücken; Polytechnisches Centralblatt 1860, S. 444 aus Ctv. Eng., October 1859.

<sup>\*\*)</sup> Eine preussische Meile Eisendrahtleitung von 2½ Linien Durchmesser entspricht 64000 solcher Einheiten. Den Widerstand von 1 alten Seemeile ( $=_{10}^{10}$  Aequatorgrad) bei 4° C. fand Dr. Esselbach (Zeitschr. d. Tel.-Ver. 6, S. 109) beim Rothen Meer-Kabel zu 22816, beim Bona-Cagliari-Kabel zu 116232, beim Syra-Constantinopel-Kabel zu 41160, beim Hellas-Alexandria-Kabel zu 21816, beim atlantischen Kabel zu 60516 solcher Einheiten. — Die Widerstände von Guttapercha, Kautschuk etc. giebt Du Moncel, traité, S. 275.

heiten messen konnten. Zur Messung der isolirenden Schicht kürzerer oder besser isolirter Tauenden (von etwa 1 Knoten == ] geographische Meile Länge) benutzten sie eine sehr empfindliche Sinusbussole\*) oder ein Weber'sches Spiegelgalvanometer mit 40000 Umwindungen und magnetischem Spiegel; mit Hilfe eines regulirenden Magnets kann die Empfindlichkeit dieses Instruments von 1 auf 100 verändert werden. Um das Messinstrument auch für die mit der wachsenden Länge des Taues fortwährend abnehmenden Isolationswiderstände gleich empfindlich zu machen, legten sie über die Drahtwindungen der Sinusbussole noch eine zweite Lage von verhältnissmässig wenig Windungen (Zeitschr. d. Tel.-Ver. 7, S. 115), leiteten durch diese beständig den Strom einer kleinen constanten Batterie und zwar in entgegengesetzter Richtung, als der zur Prüfung der / Isolation dienende Strom in den inneren ursprünglichen Windungen läuft, und regulirten jenen Strom durch eingeschaltete Widerstände so, dass er die Wirkung des anderen auf die Magnetnadel gerade aufhebt, diese also in der Ruhelage bleibt. Wächst die Taulänge, so wird der Widerstand im Kreis der äusseren Umwindungen so weit vermindert, bis das Gleichgewicht an der Nadel wieder hergestellt ist, und den bekannten Werth dieser Widerstandsänderung braucht man nur mit dem festen Verhältniss zwischen den Einwirkungen beider Umwindungen auf die Nadel zu multipliciren. Ist in Fig. 25 W der Widerstand der inneren Windungen der Sinusbussole, W, der ihnen hinzugefügte Widerstand, w der Widerstand der äusseren Hilfswindungen, m, der in ihren Kreis eingeschaltete Widerstand, m und n endlich die Zahl der Batterieelemente in diesen beiden, Kreisen und k der constante Coefficient des Verhältnisses zwischen den Einwirkungen beider Umwindungen auf die Nadel, so hat man

$$\frac{n}{w+w_1}k = \frac{m}{W+W_1} \text{ oder } k = \frac{m}{n} \cdot \frac{w+w_1}{W+W_1};$$

setzt man nun anstatt  $W_1$  den unbekannten Widerstand x des Taues und muss man dabei  $w_1$  in  $w_2$  ändern, während die Zahlen der Elemente jetzt M und N sein mögen, so wird

$$\frac{N}{w+w_2} k = \frac{M}{W+x} \text{ oder } x = \frac{1}{k} \cdot \frac{M}{N} \cdot (w+w_2) - W$$
$$= \frac{M}{N} \cdot \frac{n}{m} \cdot \frac{W+W_1}{w+w_1} (w+w_2) - W.$$

Bei Messung des sehr grossen Isolationswiderstandes kurzer Tauenden

<sup>\*)</sup> Nach der aus  $A \sin \alpha = S = n E$ : W fliessenden Formel  $W = n \sin \alpha_1 : \sin \alpha_2$ , worin W der zu messende Isolationswiderstand,  $\alpha$  der abgelesene Nadelausschlag, n die Zahl der Elemente, S die Stromstärke, E die elektro-motorische Kraft eines Elementes, A eine Constante und  $\sin \alpha_1$  die (bei länger dauernden Messungen öfters zu bestimmende) Constante des Instruments. Die Widerstandseinheit giebt mit einem Element den Ausschlag  $\alpha_1$ .

kann man W und w vernachlässigen und  $x = \frac{M}{N} \cdot \frac{w_s}{k}$  setzen, wobei k von der Empfindlichkeit des Instruments nicht abhängt. Ueber den Isolationswiderstand kurzer Taue und Messungen des Widerstandes der Isolirschicht bei verschiedenen Temperaturen vergl. Zeitschr. d. Tel.-Ver. 7, S. 201 und 206.

Der Isolationswiderstand V isolirter Dräbte findet sich (Zeitschr. d. Tel.-Ver. 7, S. 202 u. *Du Moncel, traité*, S. 267) aus dem specifischen Leitungsvermögen der verwendeten Materialien folgendermassen: sind r und R die Halbmesser des Drahtes und der Guttapercha, l und  $\lambda$  die Länge und das specifische Leitungsvermögen des Drahtes, so ist der Widerstand des isolirenden Cylinderdifferentials von der Dicke dx, im Abstande x von der Längsaxe  $dV = -\frac{dx}{dx}$  folglich den menne Widerstand

 $dV = \frac{dx}{2\pi \lambda lx}$ , folglich der ganze Widerstand

$$V = \frac{1}{2\pi\lambda l_2} \int \frac{dx}{x} = \frac{\log nat \frac{R}{r}}{2\pi\lambda l}.$$

Unerlässlich muss das Leitungvermögen für jede einzelne Meile des isolirten Drahts gemessen werden, nicht nur, um mangelhaftes Material ausschliessen zu können, namentlich an Stellen, wo der metallische Zusammenhang des Kupferdrahts beim Umpressen gelitten hat, sondern auch um einen vollständigen Nachweis über die Leitungsfähigkeit jedes einzelnen Theiles des fertigen Taues zu gewinnen, ohne welchen sich später durch galvanische Versuche und Rechnung der Ort etwa vorgekommener Beschädigungen nicht genau bestimmen lässt.

Erfahrungsgemäss treten an den Stellen des isolirten Drahtes, wo die isolirende Schicht von Haus aus dünner war, als durchschnittlich, sei es infolge einer Verletzung, sei es infolge einer vom Wasser eingedrückten Blase oder einer excentrischen Lage des Drahtes elektrolytische Wirkungen des Telegraphirstroms auf und veranlassen Störungen im Betrieb. Daher muss der isolirte Draht auch sorgfältig auf derartige Fehler geprüft werden. Dazu kommt er in ein mit schwach angesäuertem Wasser gefülltes, hermetisch geschlossenes, gusseisernes Gefäss, worin ein Druck von etwa 140 Pf. auf 1 []Zoll herrscht\*); das eine Ende desselben wird mit einem empfindlichen Galvanometer und durch dieses mit dem einen Pol einer Batterie verbunden; wird nun der andere Batteriepol mit dem zweiten Drahtende vereinigt, so erkennt man am Galvanometer den Widerstand der Kupferader und seine Leitungsfähigkeit; isolirt man dagegen das zweite Drahtende und verbindet dafür den zweiten Pol mit dem gusseisernen Gefäss, so zeigt ein

<sup>\*)</sup> Will man etwa in der Guttaperchahülle eingeschlossene Luftbläschen zum Platzen veranlassen, so macht man das Gefäss vor dem Einfüllen des Wassers möglichst luftleer.

Ausschlag des Galvanometers das Vorhandensein von Fehlern, welche man durch langsames Herausziehen des Drahts bis zur Fehlerstelle experimentell finden kann. (Vergl. auch Zeitschr. d. Tel.-Ver. 1, S. 126 ff.)

Eine weitere Prüfung hat sich auf das Vertheilungsvermögen zu Die Versuche haben dargethan, dass das specifische Vertheierstrecken. lungsvermögen isolirender Körper weit beständiger ist, als ihr specifisches Leitungsvermögen. Das Vertheilungsvermögen ist überdies unsbhängig von örtlichen Fehlern der Isolirschicht und hängt wesentlich von der Gestalt des Isolators ab. Durch die Messung des Vertheilungsvermögens einer gegebenen Taulänge und die Vergleichung desselben mit dem mittlern Vertheilungsvermögen des verwendeten Materials lässt sich daher mit grosser Sicherheit entscheiden, ob die isolirende Schicht überall gleich dick ist, oder ob der Draht theilweise excentrisch in ihr liegt. Das Vertheilungsvermögen muss man überdies wissen, wenn man die Lage eines Bruches des Leitungsdrahtes, bei welchem das Bruchende isolirt bleibt, be-Da das Tau eine Leydener Flasche bildet, deren innere und stimmen will. äussere Belegung der Draht und das Wasser sind, so ist das Vertheilungsvermögen K das Product aus dem Leitungsvermögen und einem constanten

Factor C, also  $K = \frac{2 \pi x l}{lognat \frac{R}{r}}$ . C, worin x das specifische Vertheilungsvermögen

bedeutet (Zeitschr. d. Tel.-Ver. 7, S. 196 und Tabelle der K auf S. 203, desgl. Du Moncel, traité, S. 274); diese Formel nimmt aber bei Kabeln oder cylindrischen Flaschen die einfachere Gestalt  $K = \frac{\pi C}{lognat \frac{R}{r}}$  an. Ist die elek-

trische Spannung E einer mit dem Kabel verbundenen Batterie in der Zeit t auf y gesunken\*), so sinkt sie im folgenden dt durch den nach dem Ohm'schen Gesetze stattfindenden Entladungstrom  $\frac{y}{w}$  um dy und man hat, wenn w der Widerstand der isolirenden Schicht, K der Vertheilungscoefficient ist, zunächst  $-Kdy = \frac{y}{w} dt$  und daraus

$$\log nat \frac{E}{y} = \frac{t}{Kw} = t \cdot \frac{C \cdot \log nat \frac{R}{r}}{2 \ln x} \cdot \frac{2\pi l\lambda}{C \cdot \log nat \frac{R}{r}} = \frac{\lambda t}{x}$$

Beobachtet man nun mittelst eines Elektrometers in 2 verschiedenen Fällen die Zeiten  $t_i$  und  $t_2$ , in denen die ursprüngliche Spannung einer

<sup>\*)</sup> Ein befriedigend isolirtes Tau zeigt nach seiner Ladung stets einen deutlich wahrnehmbaren Rückschlag. — Ueber die Prüfung des Isolationszustandes mit dem Elektrometer von Peltier, vergl.auch Schellen, d. elektromagn. Telegraph, 4. Aufl. 8. 239 ff.

Batterie bis zu einer gegebenen Grösse herabsinkt, so erhält man für die specifischen Leitungsvermögen das Verhältniss  $\frac{\lambda_2}{\lambda_1} = \frac{t_1}{t_2}$ , mittelst dessen man leicht, wenn auch mit grösserem Zeitaufwande, den specifischen Widerstand des isolirenden Materials bestimmen und die Isolation zweier ähnlicher Kabel vergleichen kann, selbst wenn man kein Instrument zu einer genauen Messung zur Hand hat. Ueber das Verfahren dabei vergl. auch Du Moncel, traité S. 282; Schellen, d. elektromagn. Telegraph, 4. Aufl. S. 239 ff. Das Resultat ist davon nicht abhängig, ob der Draht vollkommen centrisch in dem Bei langen Kabeln könnten indessen kleine Fehler leicht Isolator liegt. der Beobachtung entgehen, da sie nur einen im Verhältniss zur ganzen Ladung kleinen Elektricitätsverlust veranlassen. Daher ziehen es Siemens vor, die Ladung a und nach Verlauf einer Minute die Entladung b mit dem Galvanometer zu messen, den Verlust  $D = 1 - \frac{b}{a}$  an Quantität oder Spannung in 1 Minute zu bestimmen und  $\frac{b}{a}$  anstatt  $\frac{y}{E}$  in obige Formel einzusetzen. - Ueber die Resultate der Messungen des specifischen Vertheilungscoefficienten verschiedener Isolatoren vergl. Zeitschr. d. Tel.-Ver. 7, S. 202-205.

Bei der Prüfung der Taue während des Legens wandten Siemens auf der Landstation ein Uhrwerk an, welches das Ende des Kabels abwechselnd kurze Zeit mit der Erde, dann mit dem Pole einer Batterie verband, dann einige Zeit isolirt hielt. Auf dem Schiffe ist beständig ein Widerstandsmessapparat mit der Linie verbunden. Durch Herstellung des Gleichgewichts an der Wheatstone'schen Brücke wird abwechselnd der Widerstand der Isolationsschicht und des Leitungsdrahtes am Land und auf dem Schiffe bestimmt und erstere nach dem Schiffe telegraphirt; weichen diese 4 Werthe erheblich von einander ab, so ist ein Fehler vorhanden und die Lage desselben kann aus den beobachteten Werthen berechnet werden. Dieses Verfahren ist zwar ermüdend, aber sehr zweckentsprechend.

Sind beide Tauenden zur Hand und ist der Fehler bei f in Fig. 26 um x und y von ihnen entfernt, während die Länge des ganzen Taus = l ist und werden die Widerstände  $w_1$  und  $w_2$  so regulirt, dass die Nadel des Galvanometers G in Ruhe bleibt, so ist  $x = \frac{lw_1}{w_1 + w_2}$ . Ist dagegen bei einer einfachen versenkten Leitung c der Widerstand des ganzen Taues x und y die Widerstände vom Fehler bis zu den beiden Enden hin, z der Widerstand des Fehlers selbst,  $a_1$  und  $b_1$  die Widerstände, welche an beiden Enden heiden Enden des entsprechenden Widerstände, wenn das andere Ende mit der Erde verbunden ist, so liefert das Ohm'sche Gesetz (Zeitschr. d. Tel.-Ver. 7, 8. 199):

 $c = x + y, \quad a_1 = x + z, \quad b_1 = y + z,$  $a = x + \frac{zy}{z + y}, \quad b = y + \frac{zx}{z + x}$ 

und hieraus

$$x = \frac{a_1 - b_1}{2} + \frac{c}{2} = a \frac{c - b}{a - b} \left\{ 1 - \sqrt{\frac{b}{a} \cdot \frac{c - a}{c - b}} \right\} = a - \sqrt{(a_1 - a)(c - a)}$$

$$\frac{x}{y} = \sqrt{\frac{a}{b} \cdot \frac{c - b}{c - a}}.$$

War das Kabel schon vor Auftreten eines entstehenden Fehlers nicht vollkommen gut isolirt, so bestimmt man den Widerstand  $\gamma$  der schon vorher vorhandenen Isolationsfehler annähernd aus den gemessenen a, b,  $a_i$  und  $b_i$  und entwickelt dann aus den nach Eintritt des neuen Fehlers an der am andern Ende isolirten Leitung gemessenen Widerständen  $a_i$  und  $b_g$  für den Ort des neuen Fehlers

$$x = a_1 - \gamma \sqrt[]{\frac{a_1 - a_2}{b_1 - b_2}} \text{ oder } y = b_1 - \gamma \sqrt[]{\frac{b_1 - b_2}{a_1 - a_2}}$$

je nachdem der neue Fehler zwischen dem alten und der Station A mit den Aufzeichnungen a,  $a_1$  und  $a_2$  oder der Station B mit den Aufzeichnungen b,  $b_1$  und  $b_2$  liegt\*).

Bei allen diesen Versuchen soll die Polarisation an der Fehlerstelle möglichst gleich sein; deshalb wird durch vorläufige Messungen der Ort des Fehlers erst angenähert bestimmt und dann für die eigentliche Messung die Zahl der Elemente so regulirt, dass der von der einen oder andern Seite her durch die Fehlerstelle gehende Strom stets nahe dieselbe Stärke hat; bei der Beobachtung selbst aber wartet man, bis die Polarisation ihr Maximum erreicht hat.

Beim Versenken des atlantischen Kabels im Jahre 1866 erfolgte die Prüfung nach einem von Willougby Smith, dem ersten Elektriker der Telegraph Construction and Maintenance Company, ausgearbeiteten Reglement in folgender Weise (Schellen, d. atlant. Kabel S. 99-106; Mech. Mag. XV, S. 211): Die 3 Kabeltheile waren auf dem Schiff hinter einander zu einem einzigen Stromkreise verbunden, dessen vorderes Ende a (Fig. 27) durch das irische Küstenkabel mit einem Marinegalvanometer  $G_2$ , unter Einschaltung eines Widerstandes w von derselben Grösse, wie 5 Meilen Guttaperchahülle\*\*) verbunden war, während der auf dem Lande befindliche Taster  $T_2$  für gewöhnlich isolirt war, aber durch Niederdrücken

\*) Im letzteren Falle wäre  $x = a_1 - 2\gamma + \gamma \sqrt{\frac{b_1 - b_2}{a_1 - a_2}}$ .

<sup>\*\*) 100</sup> Millionen Einheiten, da man den Widerstand von 1 Meile Guttaperchaschicht für die Temperatur des Meerwassers im Mittel = 500 Millionen Einheiten setzen kann.

von 1 auf 2 mit dem veränderlichen kleineren Wid erstande n' und der Erde in Verbindung gesetzt werden konnte. Das hintere Ende b des Kabels K war auf dem Schiffe durch das Reflexgalvanometer  $G_1$  und den geschlossenen Taster T, mit der Batterie B aus 100 Elementen einer sogenannten Sandoder Sägemehl-Batterie verbunden. Letztere war also für gewöhnlich geschlossen und sendete ihren Strom durch  $G_1$  und  $G_2$ . Ein zweiter, unter Umständen stärkerer Strom geht blos durch  $G_i$ , die Guttapercha und das Wasser; denn die Guttapercha isolirt nicht vollständig und ihr Widerstand würde bei 2000 Meilen Länge' nur  $\frac{500}{1000} = \frac{1}{4}$  Million Einheiten betragen, während w = 100 Millionen Meilen war. Vernachlässigt man den verhältnissmässig kleinen Widerstand der Batterie und der Galvanometer, so verhält sich der erstere (Kupfer-) Strom zu dem zweiten (Guttaperchastrom), wie 1: 100. So lange die Ablenkung beider Galvanometer sich nicht änderte, war Alles in gutem Zustande. Mittelst des Tasters  $T_1$  konnte bei Polwechsel oder Veränderung der Batteriestärke vom Schiff nach dem Lande, mittelst T2 vom Lande nach dem Schiff telegraphirt werden. Wurde nämlich  $T_s$  niedergedrückt, so ging der Haupttheil des Stromes durch  $T_s$ und n' zur Erde, hatte also den Widerstand n nicht zu überwinden, und deshalb musste der Ausschlag in Gi merklich grösser werden. Der Widerstand w sollte den Kupferstrom in G, nicht zu stark auftreten lassen. Die Zeitmomente, in denen von der Küste nach dem Schiffe gesprochen werden sollte, waren im Voraus genau festgestellt, damit keine Verwechselungen eintreten sollten; nämlich die ersten 30 Minuten jeder Stunde waren zur Prüfung der Isolation bestimmt, die folgenden 10 Minuten zur Prüfung des Widerstandes des Leiters und dann je 10 Min. zum Sprechen zwischen Schiff und Küste und umgekehrt. Trat z. B. bei c ein Isolationsfehler ein und ging hier ein Theil des Stromes ins Meer, so musste das Galvanometer auf dem Schiff einen stärkeren, das am Lande einen schwächeren Ausschlag zeigen. Eine geringere Aenderung im Ausschlag deutete auf einen kleinen Fehler, eine sehr starke auf einen grossen Fehler, auf "tödtende Erde" (dead Aber selbst dann konnte vom Schiff noch nach der Küste geearth). sprochen werden, wenn nur durch Niederdrücken von T<sub>2</sub> der Gesammtwiderstand der Leitung fast auf die Hälfte reducirt und  $G_2$  zwischen w' und der Erde eingeschaltet wurde. Bei einem Reissen des Kupferdrahtes ohne Verletzung der Guttapercha zeigt sich auf  $G_1$  noch ein schwacher Strom, da die Guttapercha nicht ein absoluter Isolator ist, und aus dem noch vorhandenen Widerstand der Guttaperchahülle lässt sich die Lage des Fehlers ermitteln, da derselbe der Länge dieser Hülle umgekehrt proportional ist. Ist der Leiter und die Guttaperchahülle gerissen, so wird der Widerstand plötzlich wesentlich kleiner und bleibt dann unveränderlich. Liegen nun einige Zoll des Kupferdrahtes im Wasser, so geht der Strom ins Wasser, dessen Widerstand man == 0 setzen kann, so dass man aus dem noch vorhandenen Widerstande des Kupferdrahtes die Entfernung der Rissstelle

Wird daher der Kupferdraht nur in einer kleinen berechnen kann. Fläche vom Wasser berührt, so zeigt sich ein sehr grosser, launenhaft abund zunehmender Widerstand, und man kann nur die dem beobachteten kleinsten Widerstande entsprechende Entfernung ermitteln, über welche binaus der Fehler nicht liegen kann. Tritt der Kupferdraht mit der Eisenhülle in Verbindung, so ist er noch inniger mit dem Meere verbunden, als wenn der Draht auf einige Zoll blos gelegt ist; der Widerstand ist dann noch weniger veränderlich und es fehlen die schwachen Ströme vollständig, welche von dem durch das Salzwasser getrennten Kupfer und Eisen des gerissenen Kabels herrühren; in beiden Fällen treten Erdströme aus dem Unterschiede der elektrischen Spannung zwischen der Küste und dem Meerwasser an der Fehlerstelle auf. Hat endlich die Guttaperchahülle eine Oeffnung, so tritt der Leiter mit dem Wasser unter grösserem oder kleinerem Widerstande in Verbindung, der gesammte Isolationswiderstand vermindert sich bedeutend und ein Theil des Stroms geht ins Meer, doch bleibt die Möglichkeit, dass die beiden Enden mit einander sprechen; bleibt der Widerstand des Fehlers constant, so kann man den Ort des Fehlers durch zwei Widerstandsmessungen bestimmen, wobei die andere Station das Ende des Taues einmal mit der Erde verbindet und einmal isolirt.

Interessant sind die Versuchsreihen, welche Charles Wheatstone mit dem Spezzia-Corsica-Sardinien-Kabel und E. O. Wildman Whitehouse mit dem Mittelmeer- und dem Neufundland-Kabel anstellten. Vergl. darüber Zeitschr. d. Tel.-Ver. 2, S. 152-157 und S. 274-278. Desgleichen die Versuche von Varley über die Induction der Kabel, vergl. *Civ. Eng. and Arch. J.* 1859, S. 149-157.

#### 8. Die Versenkung des Taues.

Während bei der Anfertigung und der Verschiffung des Taus jeder einzelne Theil gehörig beaufsichtigt und mit der erforderlichen Vorsicht und Muse behandelt werden kann, werden die ohnehin nicht geringen Schwierigkeiten bei der Versenkung des Taus dadurch noch wesentlich erhöht, dass man neben allen, die Schifffahrt erschwerenden Umständen auch noch einer Anzahl von besonderen Zufälligkeiten ausgesetzt ist und alle auftretenden Störungen mit ziemlicher Schnelligkeit ermittelt und beseitigt werden müssen, da ja das Tau mit nicht geringer Geschwindigkeit abläuft. In vielen Fällen missglückte die Versenkung durch zu heftigen oder überhaupt ungünstigen Wind. (Zeitschr. d. Tel.-Ver. 3, S. 18, 19 u. 272.) Man muss daher die erfahrungsmässig günstigste Zeit zur Versenkung auswählen.

Bevor zur Versenkung selbst geschritten werden kann, muss der mit dem Kabel bei der Versenkung ein zuschlagen de Weg festgestellt werden und hierzu wieder ist, abgesehen von politischen, Handels- und Betriebs-

Rücksichten, eine möglichst genaue Kenntniss der Tiefen und der Beschaffenheit und Gestalt des Meereshodens erforderlich. Ausserdem sind die Tiefenverhältnisse schon für die Anfertigung des Taues mit massgebend. Die zwischen den gegebenen Endpunkten vorhandene kürzeste Linie ist mit dem kürzesten, daher am leichtesten zu ladenden und zu versenkenden Tau zu belegen, und deshalb weicht.man von ihr nicht ohne Noth ab. Doch dürfen sich die Sondirungen nicht bloss auf diese Linie allein erstrecken, sondern sie müssen von ihr aus nach beiden Seiten bis zu einiger Entfernung ausgedehnt werden, damit man nicht nur die günstigsten Verhältnisste für das zu legende Tau ermitteln, sondern auch im Voraus feststellen kann, nach welcher Seite hin man im Falle der Noth von jener kürzesten Linie abzugehen hat. Zu grossen und besonders sehr unregelmässig und stark sich ändernden Tiefen geht man nach Möglichkeit aus dem Wege, um das Tau nicht zu grossen Spannungen auszusetzen und durch Störungen bei der Abwickelung zu gefährden. Die tiefen Meeresbecken zeigen meist eine auf grössere Entfernungen sich nur wenig und allmälig ändernde Tiefe; deshalb kann man in ihnen die Sondirungen in grösseren Abständen, etwa von 6 bis 12 Meilen, vornehmen, während man bei unregelmässigem Boden nur etwa in je 2 bis 3 Meilen Entfernung sondiren muss. Die Sondirungen werden um so schwieriger, je grösser die Tiefe ist. Delamarche, Ploix und de Bastard benutzten bei den Tiefenmessungen von etwa 3000 Metern, welche sie zwischen den Balearen und Algier anstellten\*), ein einfaches Senkblei von 15 Kilogramm Gewicht an einer aus 18 gezwirnten Fäden bestehenden Seidenschnur von 5500 bis 6000 Meter Länge, an der von 100 zu 100 Meter Marken angebracht waren; die sich von einer Rolle abwickelnde Schnur hielt von selbst an, wenn das Blei den Grund erreicht hatte und wurde dann von zwei Mann mittelst einer Kurbel wieder aufgewickelt. Zu einer Lothung von 3000 Meter Tiefe waren etwa 1¼ Stunde erforderlich. Mit Hanf überzogene Messingseile bewährten sich schlecht und rissen leicht durch Schleifenbildung. Die susgedehntesten und grossartigsten Tiefenmessungen wurden im Atlantischen Ocean ausgeführt und nach ihnen erschien die Legung eines Telegraphentaus quer durch diesen Ocean durchaus nicht unmöglich. Der Hydrograph und Director der Sternwarte zu Washington, Lieutenant F. M. Maury, berichtete unterm 22. Februar 1854 ausführlich über die im Sommer 1853 vom Lieutenant O. H. Berryman ausgeführten Messungen an den Marinesecretär der Vereinigten Staaten (Dingler's Journal 133, S. 74, aus Zeitschr. d. Telegr.-Ver. 1, S. 142); nach diesen Messungen war zwischen Neufundland und Irland ein regelmässiges

<sup>\*)</sup> Mit ähnlichen Senkbleien hatten Bérard und de Tessan schon 1831 zwischen Sardinien und den Balearen Tiefen von etwa 1500 Meter gemessen.

Plateau von 1500 bis 2000 Faden Tiefe. Die vom Meeresboden mit heraufgebrachten Bodenproben zeigten kalkige Schalen mikroskopischer Muscheln, woraus man auf die Abwesenheit merkbarer Strömungen am Boden dieser Meeresstellen schloss. (Shaffner, tel. man. S. 653.) Die bei diesen Sondirungen benutzte Tiefseesonde des Lieutenant J. M. Brooks Eine in ihrer Axe durchbohrte Kugel k ist mittels teiner zeigt Fig. 28. Schnur f und einer Schlinge g an 2 Haken zweier um die Axe x drehbarer Hebel aufgehängt und mit dieser Axe ist der Schaft s der Sonde fest verbunden. Während des Niedergehens hängen Schaft und Kugel an der straffen Lothleine h wie Fig. 28 a zeigt; sobald jedoch der Schaft auf den Boden aufstösst, wird die Leine h schlaff, die Hebel nehmen die in Fig. 28b gezeichnete Lage an, die Schnur f rutscht von den Haken ab und fällt sammt der Kugel zu Boden, worauf der Schafts allein wieder aufgezogen wird. Eine etwas einfachere Einrichtung des obern Theils ist in Fig. 28 d abgebildet. Das untere Ende des Schaftes ist hohl und entweder blos mit Unschlitt bestrichen, oder er enthält 3 Federkiele (Fig. 28c), damit in dieselben etwas von den Bestandtheilen des Bodens eindringen und mit emporgenommen werden kann. Weitere Messungen folgten im Herbst 1856; bei diesen beobachtete Berryman die gleichmässige Abnahme der Geschwindigkeit der niedergehenden Sonde, welche er auf die Reibung der Leine am Wasser schiebt; bei den tieferen Sondirungen dauerte das Sinken etwa 3 Stunden, das Aufheben besorgte eine kleine Dampfmaschine (Zeitschr. d. Tel.-Ver. 3, S. 232, mit Profil des Meeresbodens zwischen Irland und Neufundland, aus Petermann's geographischen Mittheilungen 1856, S. 175). Bei den 1857 von Capitän Dayman vorgenommenen Sondirungen zwischen Irland und Neufundland befand sich am Ende des Schaftes eine federnde Klappe, welche beim Sinken die Höhlung offen liess, beim Aufstossen aber durch die darüber weggleitende Kugel in das Innere des Stabes hineingeschoben wurde und so die in diesen eingedrungenen Bodenbestandtheile absperrte, worauf eine zweite, ursprünglich über der ersten sitzende Kugel mit engerer Bohrung auf der Feder sitzen blieb und deren Rückgang beim Aufziehen verhinderte. Das in Fig. 29 abgebildete Tiefenloth des Lieutenant Fitzgerald hat ein auf 2 Häkchenb der Eisenstange e sitzendes, 80 bis 90 Pfund schweres Eisenstück a; am Ende der Stange e befindet sich ein Kästchen d, welches durch die Klappe f verschlossen werden kann; die Lothleine h ist an einem Hebel g befestigt, welcher mit dem einen Ende k in den Eisenstab e eingesteckt ist, während das andere Ende i mittelst einer Schnurs an die Klappe f geknüpft ist, so dass diese beim Sinken das Kästchen d nicht verschliessen kann; stösst jedoch die Sonde mit dem Kästchen auf dem Boden auf, so hakt sich das Endek des Hebelsg aus dem Stabeb aus, dieser schlägt um, das Senkgewicht a hakt aus, das Kästchen d schaufelt etwas vom Meeresboden auf und wird vorangehend beim Aufziehen des Lothes von der Klappe / verschlossen. - Eingehendere Mittheilungen über die

Sondirungen des Meeresbodens und die Tiefenmessungen gab Schellen in Westermann's Monatsheften 1860, Bd. 8, S. 91.

Von grosser Wichtigkeit ist ferner die Wahl der Landungspunkte, welche wo möglich frei von Klippen sein sollen; heftige Bewegungen des Meeres an den Landungspunkten erschweren die Landung des Taus und setzen dasselbe einer Beschädigung durch Abscheuern aus. In der Nähe der Landungspunkte soll sich ferner den Schiffen kein passender Ankergrund bieten, damit das Tau beim Aufwinden der Anker nicht gefährdet ist. Endlich sollen die Landungspunkte nicht zu weit von den Uferstationen entfernt sein.

Die Schwierigkeiten bei der Niederlegung des Taus auf dem Meeresboden hat man auf verschiedene Weise zu umgehen versucht. J. J. Lak e schlug vor, das Tau an Korkstücken aufzuhängen und später am Grunde durch Anker oder Gewichte festzuhalten (Mech. Mag. 53, S. 274). H. B. Wright liess sich am 21. August 1866 die Benutzung von Bojen beim Legen und zum Schwebenderhalten des Taus patentiren. (Mech. Mag. 15. März 1867, S. 169). Armand in Bordeaux fertigte 1865 ein neues Tau, angeblich eine Erfindung des Kaisers Napoleon, welches in einer Tiefe von 30 bis 40 Meter, wo das Meer selbst bei heftigen Stürmen ruhig bleibt, schwimmend erhalten werden sollte (D. Ind.-Ztg. 1865, S. 269). W. Bauer sprach einen ähnlichen Gedanken aus: An den im Atlantischen Meere zwischen Europa und Amerika aufgefundenen Höhenzügen beträgt die Tiefe nicht viel über 500 Fuss; an diesen Punkten, in Entfernungen von je etwa 40 geogr. Meilen, sollten auf versenkbaren, mit Leuchtthürmen versehenen Schiffen Hauptstationen errichtet werden, zwischen denen das an regelmässig vertheilten Schwimmern hängende Tau in 200 Fuss Tiefe unter dem Spiegel hinziehen sollte; muss ein Stationsschiff wegen Sturm in die Tiefe gehen, so lässt es an der Oberfläche einen durch elektrisches Licht erleuchteten Schwimmer zur Bezeichnung seiner Stelle zurück; so wäre zugleich die Hauptschifffahrtsstrasse über den Ocean bleibend markirt und die Schiffe hätten die Möglichkeit eines fast ununterbrochenen telegraphischen Verkehrs mit dem Festland (D. Ind.-Ztg. 1864, S. 368.) Das grosse Gewicht des vom Schiff herabhängenden Taustücks wollte Patrick M'Grade dadurch vermindern, dass er das Tau durch Röhren gehen liess, welche an Hilfstauen so aufgehängt werden sollten, dass sie bremsend auf das Telegraphentau wirken könnten (Civ. Eng. 1859, S. 324). Die Geschwindigkeit des Ablaufens durch am Tau angebrachte Fallschirme zu mässigen, war nach einem Vorschlag von Balestrini schon bei der Legung des Bona-Kabels versucht worden, jedoch ohne Erfolg. (Delamarche, Elemente S. 67). Aehnlich beabsichtigte Pierre Dronier in Entfernungen von je 200 Metern einen Fallschirm (Preis 4 Ngr.) von 0,6 Metern Durchmesser anzubringen, damit das Tau höchstens mit 1 Meter Geschwindigkeit ablaufe; diese Schirme sollten aus Segeltuch passend zugeschnitten, durch am Um-Digitized by GOOGLE fange befestigte Stricke so an's Tau gebunden werden, dass sie sich beim Eintritt in's Wasser schirmartig aufblähten (D. Ind.-Ztg. 1866, S. 138). In England wurde vorgeschlagen, das Tau nach seinem Ablaufen vom Schiff anfangs durch Bojen aus Kautschuk oder einem andern wasserdichten Stoffe schwebend zu erhalten; die Bojen sollten 2 Oeffnungen bekommen, von denen die eine luftdicht verschliessbar sein und zum Einfüllen der Luft dienen sollte, während die andere mit einem Drahtnetze verschlossen wird, welches mit einer sich im Wasser allmälig lösenden Substanz, z. B. Gummi überzogen ist, so dass sich das Tau senkt, so wie sich diese Substanz löst und Luft entweicht (D. Ind.-Ztg. 1864, S. 59).

Die ersten Unterseetaue wurden von Segelschiffen versenkt, welche von einem oder mehreren Dampfern geschleppt wurden. Bald jedoch erkanute man, dass sich ein Dampfschiff besser eignen müsse, weil man dessen Bewegung besser überwachen und regeln kann; das Schiff muss aber ausreichende Stabilität, Grösse und Tragfähigkeit besitzen, seine kräftige Maschine muss einen leichten und sichern Gang haben und das Deck eine freie Bewegung gestatten. Wegen der am Tau befindlichen beträchtlichen, aber veränderlichen Eisenmasse kann das Kabelschiff den Compass nicht brauchen und deshalb ist bei grösseren Entfernungen ein besonderer Dampfer als Wegweiser erforderlich. Früher liess man das Tau vom Vordertheil, jetzt vom Hintertheil ablaufen. Im Schiff wird das Tau gewöhnlich in Rollen von möglichst grossem Durchmesser gelegt, obgleich hierbei das ablaufende Kabel eine die Festigkeit beeinträchtigende Drehung erfährt und leicht durch Schleifenbildung gefährdet wird. Um die Drehung zu umgehen, könnte man das Tau in Form einer 8 legen, allein man würde dann wesentlich mehr Raum für dasselbe Tau brauchen; oder man könnte das Tau, falls es nicht zu gross ist, auf Haspel wickeln. So schlug Capitän Labrousse vor, auf5 Haspeln von 13 Meter Länge und 2 Meter Trommel-Durchmesser mit Endscheiben von 4 Meter Durchmesser je 160000 Meter (114 Tonnen) eines zwischen Frankreich und Algier zu legenden Taus aufzuwickeln (Delamarche, Elemente d. unters. Tel., S. 62). Auch hat man beim Legen des Varna-Balaclava-Kabels versucht, durch eine besondere Maschine jene Drehung wieder zu beseitigen. Der Raum, in welchen das Tau geladen wird, muss ganz frei zugänglich sein und beim Ablaufen dürfen sich dem Tau keine unbeabsichtigten Hindernisse in den Weg stellen. Die Ladung muss natürlich gleichmässig über das Schiff vertheilt sein und dieses Gleichgewicht darf beim Ablaufen des Taus nicht gestört werden, was sich am leichtesten erreichen lässt, wenn als Ballast für das Schiff Wasser benutzt wird. Das geladene Tau muss sorgfältig vor zu grosser Erwärmung geschützt werden, um so mehr, als die getheerte Hanfhülle sich selbst zu erhitzen pflegt. C. William Siemens wies diese Selbsterhitzung mittelst eines Widerstandsthermometers nach, welches aus mehreren, auf einen 18 Zoll langen Metallstab aufgewickelten Lagen mit Seide besponne-

nen Kupferdrahtes bestand; wurde mittelst eines Differentialgalvanometers (oder einer Wheatstone'schen Brücke) der Widerstand dieser Drahtrolle gemessen, so konnte man aus der innerhalb der gewöhnlichen Temperaturgrenzen der temperatur proportionalen Widerstandsänderung die Temperatur bestimmen. Siemens wies mit solchen Instrumenten bei dem Rangoon-Singapore-Kabel nach dessen Verladung eine stetige tägliche Temperaturzunahme von 3° F. nach und zeigte damit zugleich, wie wichtig, ja nothwendig eine öftere Abkühlung der Taue sei (Zeitschr. d. Tel.-Ver. 7, S. 353).

Welche Linie das vom Schiff ins Meer herabhängende Tau bildet, hängt von der Geschwindigkeit des Schiffs, der Geschwindigkeit des Ablaufens und des Niedersinkens des Taus im Wasser ab, also auch von der Tiefe des Wassers und dem specifischen Gewicht des Taus. Im Zustande der Ruhe würde das Tau eine gemeine Kettenlinie bilden; da es aber im Wasser niedersinkt und sich auf den Boden legt, so kann es dabei auch eine andere Linie bilden. Abgesehen von den in der Nähe des Schiffs stattfindenden, bei Bestimmung der Festigkeit des Taus nicht ausser Acht su lassenden Schwankungen und dem Wellenschlage, nimmt Siemens an, das Tau falle senkrecht zu seiner Richtung mit constanter Geschwindigkeit und bilde daher bei constanter Geschwindigkeit des Schiffs eine Gerade\*), bei su- oder abnehmender Schiffsgeschwindigkeit eine nach oben oder unten gekrümmte krumme Linie (Delamarche, Elemente S. 31, 34 u. 55). Natürlich ist die Spannung des Taus ausser der Tiefe und dem specifischen

\*) Nach W. Thomson ist beim Gewicht W der Längeneinheit des Taues im Wasser, beim Neigungswinkel  $\alpha$  der Kabellinie gegen den Horizont, der Wassertiefe D und der Länge  $D:sin \alpha$  des eingetauchten Stücks der Druck senkrecht gegen die Richtung des letzteren  $WD\cos\alpha:sin\alpha$  und die in Richtung des Kabels infolge der Schwere wirkende Seitenkraft WD (also unabhängig von  $\alpha$ ). Ist nun P die transversale, Q die longitudinale Seitenkraft des (sogenannten) Reibungswiderstandes, den das Tau längs der im Wasser zu durchlaufenden Strecke (für jede Längeneinheit) erfährt, und T die Spannung des Taues, so ist

 $WD := T + Q \cdot D$ : sin  $\alpha$  und  $W \cos \alpha = P$ .

Entsprechen nun den Componenten P und Q die (hypothetischen) Beschleunigungen p und q, so ist p = v stna und q = u - v cos a, wenn v die Geschwindigkeit des Schiffes, u die Geschwindigkeit (Beschleunigung) ist, mit welcher das Kabel vom Schiff abläuft; der Widerstand, den das Kabel findet, ist eine Function der Geschwindigkeit und diese wird sich daher während des Versenkens ändern; hätte man nun in einem bestimmten Augenblicke  $p_1$  und  $q_1$ , so könnte man  $P = W p^{t}: p_1^{t}$ und  $Q = W q^{s}: q_1^{s}$  setzen und erhielte

 $p_1 = v \sin \alpha : \sqrt{\cos \alpha}$  und  $q_1 = (u - v \cos \alpha \sqrt{W D : (W D - T)} \sin \alpha$ , welche Ausdrücke anwendbar sind, wenn das Tau unter dem Wasser sich gleichförmig fortbewegt, vorsusgesetzt, dass sein unteres Ende keine Spannung erleidet. Eine Tabelle für  $v: p_1$  findet sich in Dingler's Journal 183, S. 493. — Vergl. ausserdem Civ. Eng. 1859, S. 317 und 412, S. 273 und S. 285.

Gewichte, dem Widerstande des Wassers und der Stärke der Bremsung von der Gestalt der Linie abhängig, die es im Wasser bildet. Auf alle Fälle aber muss bei wechselnder Wassertiefe und bei nicht ganz unveränderlicher Geschwindigkeit des Schiffs auch die Geschwindigkeit sich ändern, mit welcher das Tau vom Schiff abläuft, wäre es auch nur, damit das Tau auf dem Boden keine Schlingen bilde und keine unnöthige Spannung behalte \*). Daher sind stets Vorrichtungen zum Reguliren und Messen dieser Geschwindigkeit des Ablaufens nothwendig. Diese und die Vorrichtungen zur Führung des Taus auf seinem Wege aus dem Schiffsraume in das Meer mögen hier Erwähnung finden.

Bei der (missglückten) von Canning geleiteten Legung eines Taus im St. Lorenzbusen im August 1855 war das Tau auf dem Segelschiff Sarah L. ryant verladen, welches vom Dampfschiff James Adger unter Capitän Turner geschleppt wurde. Das Tau lag im Schiffsraume in 2 grossen Ringen, wie die Taue in den Dockmagazinen. Durch eine kleine Oeffnung im Deck lief das Tau über eine kleine Walze zu einer grossen eisernen Trommel von 12 Fuss Durchmesser, um die es 3 Mal geschlungen war, darauf ebenso viel Mal um eine zweite eben solche Trommel und dann über eine dicke Eisenstange am Stern des Schiffes in die See; die Trommeln waren mit mächtigen Bremsen versehen und ein Zählwerk an ihnen gab die Zahl der Umdrehungen und die Länge des ausgeschossenen Taus an. 32 Mann regelten beständig im Schiffsraum die Abwickelung der Ringe, verhüteten Schleifen und Klänken und bedienten die Bremsen auf dem Deck (Zeitschr. d. Tel.-Ver. 3, S. 19). Im Juli 1856 wurde im St. Lorenzbusen ein anderes Tau von dem Dampfer Propontis, Capitan Goodwin, unter Leitung von Samuel Canning ohne jeden Unfall gelegt. Das Tau war im Schiffsraum mit grosser Sorgfalt so untergebracht, dass jede Lage vom Centrum aus gegen den Umfang sich abrollte. Von der Rolle ging das Tau durch einen gusseisernen Trichter und über 2 gusseiserne Trommeln von 9 Fuss Durchmesser und je 14 Tonnen Gewicht, endlich über eine Rolle am Stern des Schiffs. Ein Zähler an der Trommel gab die ausgelaufene Länge an. Die Bremsen an den Trommeln regulirten das Ablaufen, so dass sich das Tau sanft auf den Meeresboden lagerte. An den tiefsten Stellen machte das Tau einen Winkel von 25.º mit dem Wasserspiegel, sein Gewicht war also gerade hinreichend, der fortschreitenden Bewegung des Schiffs das Gleichgewicht zu halten (Zeitschr. d. Tel.-Ver. 3, S. 175).

Die Ingenieure W. J. Macquorn Rankine und John Thomson

<sup>\*)</sup> Läuft das Tau mit einer der Schiffsgeschwindigkeit gleichen Geschwindigkeit aus, so legt es sich auf dem (ebenen) Meeresboden ohne Schleifen und ohne Spannung nieder. Wächst die Tiefe, so muss die Bremse schärfer angezogen werden, um der Beschleunigung im Ablaufen entgegen zu wirken; bei abnehmender Tiefe ist die Bremse zu lüften.

suchten durch folgende am 23. Februar 1855 für England patentirte Anordnung die grosse Reibung, Erhitzung und Abnutzung des Taus, der Eisenstange am Hackbord, der Bremsen und sonstigen Maschinerie zu vermindern und Schleifenbildung auf den Trommeln zu verhüten. Zunächst umgaben sie jede Trommel mit einem spiralförmig um die Trommel gelegten Band aus Stahl, so dass für jeden Ring des Taus ein besonderer Raum zwischen den Ringen des Bandes vorhanden war; das Band ist mit seinen Enden und nach Bedarf auch an Zwischenpunkten am Gestell der Maschinerie befestigt und bleibt feststehen, während sich die Trommel dreht. Ferner ersetzten sie eine oder mehrere Trommeln durch je ein paar grosse und starke Rollen, welche am Umfange mit kreisförmigen, durch Zwischenwände von einander getrennten, nach Erfordern mit Querriefen versehenen Kanälen mit einer zur Taudicke passenden Tiefe und Weite versehen waren; je 2 Rollen waren in derselben Verticalehene aufgestellt, so dass das Tau wechselsweise halb um die eine, halb um die andere geführt werden kann, und zwar so viel Mal, als Kanäle im Umfange vorhanden sind; dadurch war ein Durchgleiten des Taus und ein Uebereinanderlegen seiner einzelnen Ringe unmöglich gemacht; der Durchmesser der Rollen schwankt je nach der Dicke des Taus meist zwischen 6 und 10 Fuss. Ebenso liessen sie an Stelle der Eisenstange am Hackbord eine weit genug über den Stern des Schiffes hinausragende Trommel oder Rolle treten, von welcher das Tau frei ins Meer herablief. Zur Regulirung der Geschwindigkeit brachten sie mehrere doppeltwirkende Pumpen an, welche von den Rollen oder Trommeln aus in Bewegung gesetzt wurden und Wasser oder Luft durch eine verstellbare Oeffnung drängten; dabei wurde zugleich die Erhitzung in den Maschinentheilen vermindert und ausserdem konnte das gepumpte Wasser auch zur Abkühlung des Taus und der betreffenden Maschinentheile benutzt werden (Zeitschr. d. Tel.-Ver. 3, S. 12).

Robert Stirling Newall zu Gateshead liess sich am 14. Mai 1855 einen Apparat zur Versenkung von Unterseetauen patentiren. Das Tau wurde um einen aussen glatten, hölzernen oder eisernen, vom Boden bis zur Höhe des aufgerollten Taus reichenden Kegel gelegt, während es durch einen cylindrischeu Mantel, welcher aus im Boden und Deck befestigten und durch einen in der Mitte umgelegten Reifen zusammengehaltenen Stangen gebildet war, unverrückbar in seiner Lage erhalten wurde; über dem Kegel befand sich eine Rolle, deren eine Seite genau in der Achse des Kegels lag und nach welcher das Tau gelangte, indem es durch eine Anzahl eiserner Reifen hindurchging; diese an der Decke und den Seitenwänden aufgehängten Reifen umschlossen die Spitze des Kegels nach oben hin immer enger und engerund sollten das Auseinanderfliegen der Tauwindungen infolge der Centrifugalkraft und eine Verwickelung des Taus unmöglich machen. Die Windungen des Taus wurden von aussen nach dem Kegel zu gelegt, mussten sich also beim Versenken von innen nach aussen abwickeln. Zwi-

schen dem Kegel und dem Stern des Schiffs waren ein oder zwei Bremsräder von 8 bis 9 Fuss Durchmesser angebracht (Dingler's Journal 146, S. 114).

Aehnlich waren die Einrichtungen auf der Elba, welche im September 1857 für Newall das Tau von Bona nach Cap Spartivento legte. Das durch die Eisenringe aus dem Schiffsraum kommende Tau lief durch eine Knierinne und dann in eisernen Rinnen nach dem Hintertheil, wo eine eiserne Trommel von 8 Fuss Durchmesser auf einem Balkengerüste ruhte; in der einen Abtheilung dieser Trommel lag ein Bremsband, welches durch einen Hebel beliebig gespannt werden konnte; in der andern Abtheilung der Trommel war das Tau 4 bis 6 Mal herumgeschlungen und eine Vorrichtung unten an der Trommel schob das Tau nach seinem ersten Umgange zur Seite, um die Stelle des Auflaufens stets frei zu halten und ein Uebereinanderlegen der Windungen zu verhüten. Aus einem Kasten floss stets kaltes Wasser auf die Trommel herab. Nach Siemens' Vorschlag war zur Messung der Tauspannung und zur Milderung des Einflusses der Schwankungen des Schiffs noch ein langer, mit Gewichten beschwerter, einarmiger Hebel angebracht, welcher das unter einer an seinem Ende befindlichen Rolle weglaufende Tau durchbog; diese Rolle lag genau in der Mitte der Entfernunge der Trommel von dem Gleitstück, durch welches das Tau ablief; wurde bei der durchbiegenden Belastung Q das mit K gespannte Tau um den Winkela gegen die Horizontale oder um die Pfeilhöhe h durchgebogen, so war Q: 2 K = sin  $\alpha = h: \sqrt{0.25 e^2 + h^2}$  und hieraus:  $h = Qe: 2\sqrt{4} K^2 - Qe';$ mit Hilfe dieser Formel wurde eine Scala berechnet, so dass man mittelst eines an der Rolle befestigten, auf der Scala spielenden Zeigers jederzeit die Spannung K sofort ablesen konnte, während ein Zählwerk an der Trommel die Länge des abgelaufenen Taus angab (Delamarche, Elemente, S. 95).

Das atlantische Kabel vom Jahre 1857 wurde zur Hälfte auf dem englischen Dampfer Agamemnon von 92 Kanonen, zur Hälfte auf der amerikanischen Fregatte Niagara von 5200 Tonnen eingeschifft; auf dem Agamemnon bildete es einen einzigen Stapel von etwa 15 Meter Durchmesser und 4,5 Meter Höhe und die Einschiffung erfolgte in Greenwich, wobei in 24 Stunden etwa 50 Meilen eingeschifft wurden und etwa 30 Mann die Aufwickelung hei Gasbeleuchtung besorgten; die andere Hälfte wurde zu Birkenhead erst in grosse Barken geladen und bildete auf dem Niagara 5 Stapel von 13 Meter Durchmesser, bei deren Anordnung man jedoch ziemlich sorglos verfahren sein, namentlich für ausreichenden Schutz gegen die Schiffsmaschinenwärme nicht gesorgt haben soll; die Einlegung des Taus begann stets vom Rand des Stapels aus nach dem in der Mitte befindlichen Kegel von 3 Meter Durchmesser hin. Die Maschinerie zum Legen nennt Delamarche (Elemente S. 81) plump und complicirt; sie bestand hauptsächlich aus 4 Rollen R (Fig. 30) von 1,6 Meter Durchmesser und 0,13 Meter Breite, auf welche sich das Tau in Form einer doppelten 8 aufwickelte; jede Rolle war mit einem Zahnrade von denselben Dimensionen und einer Bremsscheibe verbunden; über eine am Hintertheile befestigte fünfte Rolle fiel das Tau ins Wasser. Ausserdem waren noch 2 grosse Rollen mit 5 Rinnen, von 2 Meter Durchmesser und 0,3 Meter Breite, in Verbindung mit Zahnrädern und Bremsscheiben vorhanden, zur etwa nöthigen Wiederaufnahme des Taus. Alles... zusammen wog 15 Tonnen und köstete 50000 Franken.

Der norwegische Telegraphendirector C. Nielsen beschreibt das Verfahren bei der Legung von 24 Kabeln an der norwegischen Küste in der Zeitschrift d. Telegraphen-Vereins (6, S. 1) folgendermassen: Das Tau lag in concentrischen Ringen und jede Schicht war zur Verhütung von Verwirrungen beim Ablaufen an 8 bis 12 Stellen mit der darunter liegenden mittelst Kabelgarn verknüpft. Da der Kegel nicht in der Mitte der Ringe, sondern gerade unter der Luke stand, so waren von den entfernteren Punkten des freien kreisförmigen Raumes schräge Streben nach dem Kegel gelegt, um das Tau zu führen. Oberhalb des Decks lief das Tau zunächst über den eisernen Kopf eines Bockes zum Auslegapparat und zwar zuerst unter einer Walze weg, dann zwischen verticalen gusseisernen Führungsplatten, darauf zwischen den mit starken Eisenplatten belegten Backen einer Druckbremse hindurch, einige Mal um die Haupttrommel, über eine Walze und zwischen verticalen Frictionswalzen hindurch nach dem über dem Heck des Schiffes befestigten Rade, von dem es ins Wasser hinabschiesst. Die Haupttrommel hatte 6Fuss im Durchmesser; in ihrem Kranze befanden sich 2 vertiefte Rinnen, die eine für einen Bremsriemen, der durch einen mit Gewichten zu belastenden Druckhebel gespannt wurde, die andere, ebenfalls einfache, aber breitere für das Tau; unter der Trommel lief das Tau über eine Rolle und an einem seitlich beweglichen Abweiser vorbei, welcher verhütete, dass sich seine Windungen auf der Trommel über einander legten. Die verticalen Frictionswalzen dienten zum Hemmen des Taus, falls es bei heftigen Seitenbewegungen des Schiffs aus der Rinne des Rades am Heck geworfen wurde. Die ganze Maschine mit Gestell, aber ohne Kegel, wog 12800 Pfund. Bei Tiefen bis 600 Fuss ist es ausreichend, wenn die Spannung des Taus von einem Manne mit dem Fusse geprüft wird. Bei schroffem Abhang des Mecresbodens an der Küste wurde das Tau am Land sicher befestigt und vom Befestigungspunkte bis zur Wasserlinie in hölzerne Rinnen gelegt; zur Befestigung dienten Deckelbolzen von 2 bis 3 Zoll Länge und 11/2 bis 2 Zoll Dicke, welche mit einem Gemisch aus Schwefel und Sand in grossen Felsblöcken eingegossen wurden; das mit Blei umwickelte Tau wurde in die Nuth dieser Bolzen eingelegt und dann der Deckel fest aufgeschraubt. Wo das Tau heftigem Seegange ausgesetzt war, wurde es auf kleinen eisernen Kreuzen befestigt und durch diese, so weit die Brandung reichte, ausser Berührung mit dem Meeresboden erhalten.

Die Auslegmaschine für das atlantische Tau vom Jahre 1858 war von Everett construirt. Das aus dem Schiffsraume kommende Tau lief über

#### 32 Beiträge zur Geschichte der Fortschritte in der elektrischen

mehrere Leitrollen zuerst durch ein Führungsrohr über eine Scheibe mit tiefer Furche oder Rille im Umfange, dann auf 2 grosse Räder (V-Räder) mit 4 tiefen Rillen und zwar abwechselnd von dem einen Rad zum andern, indem es bei der ersten obern Rolle des ersten Rades eintrat, oben nach dem zweiten Rad, ging, unten nach dem ersten zurück u. s. f., bis es bei der vierten obern Rille des zweiten Rades austrat; von da ging das Tau über eine Leitrolle nach dem Dynamometer über eine zweite gleiche, in gleicher Höhe und in gleicher Entfernung vom Dynamometer befindliche Leitrolle und über eine letzte Rolle ins Meer. Auf den verlängerten Axen der beiden grossen V-Räder sassen je 2, mit ihrer untern Hälfte in Kühlwasser eintauchende Bremsscheiben, gegen welche man durch 4 Stangen die 4 Bremsringe anpressen konnte; diese 4 Stangen aber wurden mittelst Winkelhebeln von einem an einem Steuerrade S (Fig. 31) beim Dynamometer stehenden Arbeiter bewegt, da sie mittelst einer über 2 Rollen P, u. P. gelegten Kette K mit dem Steuerrade verbunden waren und so von diesem aus in dem einen Sinne, beim Nachlassen des Steuerrades aber durch an ihnen angebrachte Gewichte im entgegengesetzten Sinne bewegt werden konnten. **Jenseits** der Bremsscheiben sassen auf der Axe der beiden grossen V-Räder noch Zahnräder, welche durch ein in sie eingreifendes, gemeinsames Getriebe verbunden waren und von denen das eine durch eine für diesen Zweck vorhandene besondere Dampfmaschine in der Richtung in Umdrehung versetzt werden konnte, dass das bereits versenkte Tau wieder aufgenommen wurde, die Auslegmaschine also als Aufwindemaschine diente. Das Dynamometer zeigt Fig. 31; das Tau T läuft unter der Rolle G hinweg, deren Axe in dem starken, metallenen, zwischen 2 gegenüberliegenden Stahlbacken (Coulissen) auf und nieder steigenden, durch das angehängte Gewicht W beschwerten Gleitstück 0 eingelagert ist. Je geringer nun die Spannung des Taus T ist, desto tiefer muss die Rolle G sinken, und demnach kann man aus dem Stande des an der Rolle G befindlichen Zeigers auf der an der Coulisse aufgetragenen Scala (1858 von 1200 bis 3600 Pfund) stets die Spannung des Taus unmittelbar ablesen, wenn man nur durch Anhängung bekannter Gewichte vorher die zu den verschiedenen Spannungen gehörigen Standhöhen der Rolle G ermittelt hat. Die Stange, woran das Gewicht W sitzt, trägt unterhalb in einem mit Wasser gefüllten Cylinder U einen Kolben, damit der Widerstand, den das Wasser der Bewegung des Kolbens enigegensetzt, etwaige Stösse des Taus bei plötzlichen Spannungsänderungen infolge starker Schwankungen des Schiffs u. dgl. unschädlich mache. Eine ähnliche Einrichtung verhütet zu grelle Bewegungen der Bremsen. - Das Tau lag 1858 auf dem Niagara in 6 Ringen; die Schiffsschraube war mit einem starken Eisengitter umgeben, damit sich das Tau nicht in sie verwickeln konnte; das Vordertheil war auch mit einer Rolle versehen, um nöthigenfalls das Tau am Vordertheil aufwinden zu können.

Im Jahre 1865 wurde das ganze Tau auf dem Great Eastern von über Digitized by GOOGLE

20000 Tonnen Gehalt) verschifft und lag in drei 201 Fuss tiefen cylindridrischen Räumen (Tendern), von denen der vordere von 511 Fuss Durchmesser 693, der mittlere von 584 Fuss Durchmesser 899 und der hintere von 58 Fuss Durchmesser 898 Meilen Tau aufnehmen konnte. Die Auslegmaschine war von Canning & Clifford mit besonderer Sorgfalt so gebaut, dass das Tan leicht festgehalten, seine Geschwindigkeit leicht regulirt werden konnte und möglichst wenig Torsion zu erleiden hatte. Dazu waren 6 V-Räder R (in Fig. 32) mit einer tiefen Rinne auf ihrem Umfange hinter einander aufgestellt, und auf dem Umfange eines jeden lag eine Reitrolle r, deren Axe durch Hebel und Gewichte niedergehalten wurde, so dass sich die Rolle auf den Umfang des V-Rades auflegte. ' Auf den Axen der V-Räder sassen Bremsscheiben, deren Bremsringe nach Bedarf angezogen wurden. Das Tau ging aus dem Schiffsraume erst über eine Leitrolle, dann zwischen den Umfängen der 6 V-Räder und der darüberliegenden Reitrollen in gerader Linie (also nicht in Form einer 8, wie früher) nach einer kleinen Leitrolle, welche ihm die Richtung nach einer grossen Trommel von 6 Fuss Durchmesser und 1 Fuss Breite gab, auf deren Axe 2 Appoldsche Bremsscheiben sassen; nachdem es in 4 Windungen über den Umfang dieser Trommel gelaufen war, wurde ihm durch eine V-Rolle die Richtung nach dem Dynamometer angewiesen, und es lief dann über eine in gleicher Entfernung stehende V-Rolle über die letzte, starke und gegen das Abgleiten gut verwahrte Rolle am Hintertheil des Schiffes. Trommel und Bremse waren doppelt vorhanden, und falls die eine den Dienst versagte, konnte die andere durch eine einfache Hebelvorrichtung an ihre Stelle gesetzt werden. Die Bremsscheiben standen mit ihren unteren Theilen im Wasser und die Reitrollen wurden durch beständigen Wasserzufluss von oben abgekühlt. Die Bremsen wurden wieder durch ein beim Dynamometer befindliches Steuerrad geöffnet und geschlossen; sank die Rolle G des Dynamometers zu tief, so lief in der Regel das Tau zu schnell ab und die Bremsen mussten angezogen werden. Die Maschine arbeitete vorzüglich und mit so wenig Reibung, dass bei offenen Bremsen das Tau schon durch 200 Pfund durch sie hindurchgezogen wurde. Falls das Tau auf dem Schiff reissen oder bei ungünstigem Wetter gekappt werden sollte, hatte man ausser anderen Drahtseilen, Bojen, Enterhaken u. s. w. ein 5 Meilen langes, sehr starkes Drahtseil an Bord, mit Marken in je 100 Faden Entfernung; das eine Ende dieses Seils konnte sofort am Tau befestigt werden, während das andere Ende an einer grossen und starken Boje hing; bei einem eintretenden Unfall konnte man also mittelst der Boje den Ort, und mittelst der Marken am Seil die Tiefe erkennen, in der das Tau am Meeresboden lag. Die Aufwindemaschine war von der Auslegemaschine ganz unabhängig und hatte ihre besondere Dampfmaschine (Schellen, d. atlant. Kabel S. 71; Atlantic Telegraph S. 40).

Bei der Legung des atlantischen Taues von 1866 waren die Auslege-Zeitschrift f. Mathematik u. Physik. XIII, 1.

und Aufwindemaschine mit 2 Dampfmaschinen von 70 Pferdekräften versehen, und erstere liess sich auch zum Aufwinden benutzen, so dass dieses ebensowohl vom Hintertheil, als vom Vordertheil bewirkt werden konnte. Ein 340 Centner schweres Eisengitter hielt das Tau von der Schiffsschraube fern. Der zum Auffischen des Taues von 1865 bestimmte Apparat war von Penn & Clifford neu construirt. Das Enterhakentau von 1865 hatte nur 10, das von 1866 aber 291 Tonnen Tragfähigkeit, und nicht allein der Great Eastern, sondern auch seine Begleitschiffe Medway und Albany hatten ganz gleiche Ausrüstung zum Aufwinden. Das dazu in 20 Meilen Länge (je 74 für den Great Eastern und Medway, 5 für den Albany) angefertigte Drahtseil (Fig. 33) hatte 61, Zoll Umfang und bestand aus denselben mit Manilahanf umsponnenen Eisendrähten Nr. 13 (0,006 englische Zoll), wie die Umhüllung des Tiefseetaues; von seinen 7 Litzen umgaben 6 die 7. spiralförmig; ebenso die 7 Drähte jeder Litze. Hierzu kamen 5 Meilen Drahtseil für die Bojen, deren grösste mit 200 Centner Zugkraft nach oben an das bis auf eine gewisse Höhe gehobene Tau gelegt werden sollte, während die mittleren zur Befestigung des Tauendes bei etwaigem Reissen oder Kappen bestimmt waren und die kleinsten als Markzeichen dienen sollten. Im Ganzen wurden 14 Bojen gelegt und 12 davon wieder aufgenommen. Ausser den gewöhnlichen Enterhaken hatte man eine in Fig. 34 abgebildete Sorte, deren 10-12 Zoll hohe Klauen von je 10 Tonnen Tragfähigkeit mit starken Sperrfedern verschen waren, damit sie das einmal gefasste Tau beim Weiterschleifen auf dem Meeresboden zwischen Feder und Klaue festhalten könnten, und eine andere Sorte, deren Klauen auf der Innenseite mit stählernen Messern besetzt waren, an denen das gefasste Tau beim in die Höhe ziehen durch sein eigenes Gewicht sich durchschneiden sollte. Die Schaufelräder des Great Eastern wurden von einander getrennt, damit sie nach Bedarf beide zugleich oder jedes einzeln arbeiten könnten. Zwei Dampfkessel wurden ausser Dienst gestellt, weil sie den vorderen Kabeltendern so nahe lagen, dass die von ihnen ausgestrahlte Wärme die Guttapercha hätte erweichen können. Im vorderen Tender lagen 670 Meilen Tiefsee- und 3 Meilen Küstentau, im mittleren 865 und im hinteren 839 Meilen Tiefseetau; der Dampfer Medway von 1900 Tonnen trug 400 Meilen Reservetau (Schellen, das atlant. Kabel, S. 95; the Atlantic Telegraph, S. 89).

Der Versenkung der Taue schenkt auch Civil Engineer and Architects Journal (z. B. 1859, S. 29, 273, 285) wiederholt eingehende Beachtung.

### 4. Das Wiederaufnehmen und die Wiederherstellung schadhafter Unterseetaue.

Ist eine Unterseeleitung beschädigt worden, so wird zuerst die Lage der schadhaften Stelle auf einer Seekarte, in welche die Lage des Taues genau eingetragen ist, durch Widerstandsbestimmungen ermittelt\*), darauf

<sup>\*)</sup> Es geschieht dies ähnlich, wie bei unterirdischen Linien; vergl. Dub, die

sucht man an der betreffenden Stelle das Tau mit einem Anker zu fassen, hebt es behutsam, legt es in die Rinne einer Rolle an der Seite des Schiffs, welches darauf dem Tau entlang der schadhaften Stelle entgegen fährt. Ist das Tau zerrissen, so schiesst es schnell von der Rolle hinab, wenn man sich der Bruchstelle nähert; man zieht dann beide Enden an Bord, prüft sie auf ihre Isolation, setzt ein neues Stück Tau ein und lässt es behutsam wieder hinab, damit sich keine Schlingen oder Knoten bilden. Ist das Tau nicht zerrissen, sondern blos beschädigt, so wird es je nach Erfordern blos ausgebessert oder das schadhafte Stück durch ein neues ersetzt. --- Bei der genauen Bestimmung und endlichen Austrennung der Fehlerstelle sind Proben, bei welchen die Leitungsdrähte im Tau durchgeschnitten werden müssen, nicht zu umgehen (vergl. auch Zeitschr. d. Tel.-Ver. 6, S. 51). Der dänische Telegraphen-Inspector Lorenzen hat hierzu eine einfache Vorrichtung construirt, welche gestattet, die Leitungen des Taues zu trennen, ohne die Schutzdrähte zu durchschneiden. Zu beiden Seiten der Stelle, wo man die Leitungen trennen will, werden in etwa 24 Fuss Entfernung von einander 2 Klemmen (wie Fig. 35) auf das Tau geschraubt, in entgegengesetzter Richtung umgedreht, bis die sich in die Riefelung fest einlegenden Schutzdrähte gerade gerichtet sind; darauf werden 2 Zugschrauben über die Handgriffe der Klammern gelegt und die Schrauben angezogen, wodurch die Schutzdrähte sich so weit auseinander begeben, dass man bequem zur Seele gelangen, die Hanfumwickelung lösen und die Guttaperchadrähte durchschneiden kann. Nach beendeter Untersuchung entblösst man den Kupferdraht an beiden Enden etwa 1 Zoll lang, stösst die Enden stumpf an einander, legt ein 11/2 bis 2 Zoll langes Stück Kupferdraht seitwärts daneben, umwickelt mit feinem Kupferdraht und verlöthet gut, umgiebt den Draht mit Chatterton 's Compound und Guttapercha, wickelt den Hanf um, entfernt die Zugschrauben und dreht mittelst der Klemmen die Schutzdrähte wieder in ihre ursprüngliche Lage (Zeitschr. d. Tel.-Ver. 12, S. 72). - C. Lair erleichtert die Löthung dadurch, dass er die beiden Tauenden durch die Oeffnungen eines Rahmens einführt (Fig. 36), die zurückgeschlagenen Eisendrähte um einen schwach conischen Ring stülpt und so einen die Enden festhaltenden Knopf bildet, worauf die blos gelegten Kupferdrähte zusammengedreht, gelöthet und wieder mit Gutta percha überzogen werden (Du Moncel, traité, S. 289). - Fig. 37 veranschaulicht die von Latimer Clark vorgeschlagene Art und Weise der Verbindung zweier Kabelstücke (Dingler's Journal 183, S. 454). In eigenthümlicher Weise stellte der technische Inspector der Schweizer Telegraphen, M. Hipp, im December 1856 das einige Monate zuvor im Vierwaldstädter See von Bauen nach Flüelen (18000 Schweizer Fuss Entfernung,

Anwendung des Elektro-Magnetismus, Berlin 1863, S. 171; Schellen, d. elektromagnetische Telegraph, 4. Aufl. S. 273-286. \_ Digliged by Google

grösste Tiefe 700 Fuss) gelegte Tau wieder her. Der Leitungsdraht dieses Taus war mit Guttapercha isolirt, durch ein mit Theer getränktes Hanfband geschützt und mit 2 Eisenbändern der Art umwunden, dass das zweite die vom ersten gelassenen Lücken überdeckte. Gewicht 60 Centner, Werth 10000 Francs. Die Voruntersuchung deutete auf einen Fehler in 2000 Fuss Entfernung vom Ufer bei Flüelen; das Tau, welches sich in den Schlamm versenkt hatte, wurde an dieser Stelle aus 300 Fuss Tiefe empor gehoben, zeigte an der für verdächtig gehaltenen Verbindungsstelle keinen erheblichen Fehler, vielmehr waren beide Theile, der aufgehobene kürzere und der längere, fehlerhaft, weil, wie sich später ergab, die Guttapercha spröd und rissig geworden war; das kürzere Stück wurde durch ein neues ersetzt, das längere aufzuheben war misslich, weil die Eisenbänder den Draht zu wenig vor dem Reissen schützten. Einen so starken Strom durch das Tau zu senden, dass die Erwärmung des Drahts zum Erweichen der Guttapercha ausreichte, war kostspielig und konnte misslingen. Hipp ging daher darauf aus, durch die Einwirkung einer starken Batterie, deren positiver Pol mit der Leitung verbunden wurde, den Kupferdraht zu oxydiren und mit seinem Oxyd die Risse der Guttapercha auszufüllen. Er beauftragte demgemäss das Telegraphenbureau Luzern, diese Operation mit einem constanten Strom von 72 Elementen vorzunehmen und zwar im Bureau Luzern selbst, welches 9 Stunden von der Stelle des Vierwaldstädter Sees entfernt ist, wo das Tau eingesenkt ist; der Strom musste also durch diese Leitung gehen. Der Stromverlust betrug, wenn die Leitung jenseits des Vierwaldstädter Sees unterbrochen wurde, 32 bis 36 ° eines Galvanometers mit 32 Umwindungen, an dem die Stärke des gewöhnlichen Telegraphirstroms 30 ° betrug. Den 5. December Morgens begann die Operatiou und am 8. betrug die Ableitung auf der unterseeischen Leitung von Luzern nach Altdorf nur 3°, von Altdorf nach Luzern nur 2°; am ersten Tage war die Ableitung gleich stark geblieben, am zweiten Tage auf 20º und am dritten auf 8º herabgegangen; erst nach 3 Wochen, während welcher Zeit die Batterie immer in gutem Stande erhalten wurde, war der Verlust nur noch 1º. Ein Versuch im Kleinen weist nach, dass nicht nur eine Spalte in der Guttapercha unter Wasser mit Oxyd ausgefüllt werden kann, sondern dass sich auch dieses Oxyd unter fortdauernder Einwirkung des Stroms auftrocknen lässt (Zeitschr. d. Tel.-Ver. 4, S. 73).

Gestützt auf die im Jahre 1866 gemachten Erfahrungen führte Latimer Clark einen neuen pneumatischen Regulator und einen ankerartigen Enterhaken aus, welche beide bereits patentirt sind (Dingler's Journal 183, S. 450, aus Mech. Mag. XVI, S. 40). Bei dem Regulator ist die Scheibe, welche von dem über 2 entsprechende Führungsrollen zu- und abgeführten Tau getragen wird, an einem Kolben in einem hohen, 5 bis 6 Fuss weiten Cylinder befestigt; der Raum unter dem Kolben steht aber durch ein mit einer Klappe versehenes Rohr mit einem Behälter in Verbindung, in wel-

Digitized by GOOGLE

chem die Luft durch Pumpen entsprechend verdünnt wird; bei sich ändernder Spannung in dem ablaufenden oder aufzuwindenden Tau steigt der Kolben in seinem Cylinder auf oder nieder. Soll dieser pneumatische Regulator beim Auslegen eines Taus benutzt werden, so muss die Bremsvorrichtung mittelst eines ähnlichen Luftcylinders mit dem eben erwähnten so verbunden werden, dass bei jeder Zunahme der Spannung im ablaufenden Tau das Bremswerk so weit gelüftet wird, dass eine das Tau gefährdende Spannung oder gar ein Reissen des Taus verhütet wird. — Den Enterhaken hat Clark so eingerichtet, dass er beim Zusammentreffen mit dem Kabel an seiner Vorder- oder Rückseite dasselbe zwischen 2 Platten einklemmt und beim Aufwärtsziehen zerschneidet, den eingeklemmten Theil zu Tage bringt, das abgeschnittene oder abgerissene Ende aber auf den Boden zurückfallen lässt.

### II.

# Ueber die Formveränderungen prismatischer Stäbe durch Biegung.

Von

## GUSTAV AD. V. PESCHKA, Professor am k. k. technischen Institute in Brünn.

Die Formveränderungen, welche feste, elastische Körper unter dem Einflusse äusserer Kräfte erfahren, sind bereits vielfach Gegenstand eingehender Studien gewesen. Die wissenschaftlichen Untersuchungen stützten sich auf Grundgleichungen, die auf einer Hypothese beruhten, welche aller Wahrscheinlichkeit nach als richtig angesehen werden muss. Die Lösung obgenannter Gleichungen bestimmt die Raumveränderung einzelner Molekule, ausgedrückt durch die sie beeinflussenden Kräfte und durch die Coordinaten ihrer Anfangslagen.

Da jedoch jene Gleichungen partielle Differentialgleichungen zweiter Ordnung sind, so blieb man auch von der strengen Bestimmung dieser Raumveränderungen weit entfernt. Nur einige wenige Gesetze, wie z. B. jenes der Aenderung der Ausdehnung (Dilatation) nach verschiedenen Richtungen von einem Punkte aus, gestatteten eine einfache und elegante Ausdrucksform; aber selbst hierfür gestalten sich die Näherungsformeln für die inneren Spannungen so complicirt, dass sie eine praktische Anwendung nicht wohl zulassen.

Man machte deshalb in speciellen Fällen specielle, auf Wahrscheinlichkeit beruhende Annahmen, wodurch die Schwierigkeiten der Integration grossentheils umgangen wurden. Eine der ältesten Voraussetzungen ist die, "dass der Widerstand, den ein dünner prismatischer Stab dem Biegen durch äussere Kräfte an irgend einer Stelle seiner Länge entgegensetzt, dem Krümmungshalbmesser seiner Axe in eben demselben Punkte umgekehrt proportional sei"; eine Hypothese, von welcher schon Bernoulli unter Annahme einer elastischen Linie, d. i. eines Stabes von unendlich kleinem Querschnitte, Gebrauch machte.

In der That ist diese Annahme, wenn sie auf Stäbe, deren Querschnitte nicht sehr klein sind, angewendet wird, diejenige, welche für die Praxis äusserst nützliche Resultate liefert, und welche, wie bekannt, die Grundlage einer Theorie wurde, die durch Navier, Poncelet, Morin und Andere ausgebildet und durch Erfahrungen bereichert und gefestigt, allgemeine Verbreitung fand.

In dem Folgenden wollen wir es versuchen, die Formveränderung prismatischer Stäbe durch Biegung unter consequentem Festhalten an einer gegenwärtig allgemein üblichen Hypothese durchzuführen. Die sich ergebenden Resultate sind der Hauptsache nach keineswegs neu; daher das Vorliegende eigentlich als eine Studie anzusehen sein wird, bei welcher vielleicht wenigstens die Darstellung einige Beachtung verdienen dürfte.

Voraussetzungen. Zum Behufe einer befriedigenden Lösung der uns gestellten Aufgabe werden sowohl bezüglich des Körpers während der Beeinflussung durch äussere Kräfte, als auch betreffs der mit der Formveränderung desselben im Zusammenhange stehenden Vorgänge im Innern des Stabes, gewisse Voraussetzungen gemacht werden müssen. Selbstverständlich müssen diese Annahmen von der Art sein, dass deren Zulässigkeit entweder schon an und für sich in der Natur der Sache begründet erscheint, oder doch wenigstens insofern als naturgemäss bezeichnet werden können, als man unter Voraussetzung ihrer Richtigkeit, ohne auf Widersprüche zu stossen, zu Resultaten gelangt, die sich erfahrungsgemäss als richtig bewahrheiten.

. a. Eine lineare Aufeinanderfolge der Molekule eines Körpers wollen wir eine Faser nennen und voraussetzen, dass die Richtung der Fasern immer parallel sei mit der Richtung der Molekularkräfte. Letztere widersetzen sich der Formveränderung und leisten somit den äusseren, die Festigkeit des Körpers beanspruchenden Kräften Widerstand.

Ein homogener stabförmiger Körper von congruentem Normalquerschnitt wird daher als ein Bündel ganz gleicher Fasern anzusehen sein, oder der gerade Stab sowohl, als auch der gekrümmte besteht aus unendlich vielen unter einander parallel laufenden Fasern, die, als mathematische Linien betrachtet, in parallelen Ebenen liegen.

b. Alle Atome, welche ursprünglich in einem ebenen Querschnitte lagen, sollen auch im gebogenen Zustande in einer Ebene liegen, die an den betreffenden Stellen der Faser auf dem Faserelemente senkrecht steht.

Unter Querschnitt des Stabes, welchen wir durchgehends, d. i. in der ganzen Länge des Stabes als sich gleichbleibend annehmen wollen, verstehen wir jene Figur, die erhalten wird, wenn sämmtliche Fasern durch eine Ebene normal geschnitten werden.

Die Verbindungslinie der Schwerpunkte aller aufeinanderfolgenden

40 Ueber die Formveränderungen prismatischer Stäbe durch Biegung.

Querschnitte, welche wir uns als eine Curve denken, heisse die Axe oder die Axenfaser des Stabes.

c. Durch die Axe und den Querschnitt des Stabes ist die Gestalt desselben vollkommen bestimmt.

Die Ebene der Axe des stabförmigen Körpers heisse dessen Biegungsoder auch Hauptbiegungsebene. In dieser Ebene denken wir uns alle den Stab angreifenden Kräfte wirkend.

d. Die Atome eines und desselben Querschnittes behalten ihre relative Gegeneinanderlagerung bei; es ändert sich also durch die Biegung weder die Form, noch die Grösse des Querschnittes.

e. Nach der Biegung bleiben die Fasern, wie zuvor, unter einander parallel, treten aus ihren Ebenen nicht heraus und bilden alle ursprünglich geradlinigen Fasern im gebogenen Zustande des Stabes zur äussersten Faser äquidistante Linien.

f. Die Biegung des Stabes sei von der Art, dass die für die Ausdehnung und Zusammendrückung von Stäben innerhalb der Elasticitätsgrenze geltenden Gesetze ihre volle Giltigkeit behalten.

Obwohl diesen Voraussetzungen ein eingespannter und belasteter Stab niemals mathematisch genau entsprechen wird, so mussten denn doch diese Annahmen vorausgeschickt werden, weil bei starken Belastungen und bei einem leicht zusammendrückbaren Materiale so complicirte Molekularverschiebungen und Formveränderungen eintreten, dass es ganz unmöglich ist, diese durch Rechnung zu bestimmen. Die gemachten Annahmen haben aber zugleich eine wichtige praktische Bedeutung; denn sie sprechen die Bedingungen aus, denen jeder auf Biegungsfestigkeit beanspruchte Bestandtheil genügen muss, um als solides Glied irgend einer Construction betrachtet werden zu können.

A. Wir werden zuerst einen Stab betrachten, der an dem einen Ende festgehalten und an dem anderen Ende belastet erscheint.

Obwohl dieser Fall in der Wirklichkeit verhältnissmässig selten vorkommt, so wollen wir denn doch von demselben ausgehen, weil sich auf ihn alle anderweitigen Biegungsfälle zurückführen lassen.

Gleichgewichtsbedingungen. Soll in einem Stabstücke, das zwischen einem beliebigen Querschnitte  $F_1$  und dem Stabende liegt, Gleichgewicht stattfinden, so müssen selbstverständlich die in diesem Querschnitte durch die Belastung und durch die hiermit im Zusammenhange stehende Formveränderung (Biegung) wachgerufenen Kräfte, welche theils in der Ebene des Querschnittes, theils senkrecht auf dieselbe, jedoch parallel zur Biegungsebene, wirken, mit den äusseren Kräften im Gleichgewichte sein.

Die Bedingungen, die zu erfüllen sein werden, damit der Gleichgewichtszustand eintrete, lassen sich kurz folgend zusammenfassen.

Denken wir uns nämlich jede einzelne Kraft in zwei beliebige Kräfte zerlegt, deren Richtungen zweckmässigerweise so gewählt werden können, dass sie mit den Coordinatenaxen OX und OY (der Ursprung derselben werde mit Q bezeichnet) zusammenfallen oder zu denselben parallel sind und in der Biegungsebene liegen, so muss:

a) die Summe der Componenten aller Kräfte geschätzt nach zwei beliebigen Richtungen gleich Null sein, und

b) die algebraische Summe ihrer statischen Momente in Bezug auf eine durch den betreffenden Punkt der Axenfaser gehende, auf der Ebene der Figur senkrecht stehende Axe gleich Null sein.

Die Momente der Kräfte werden als positiv oder negativ betrachtet, je nachdem die Drehung im Sinne von der positiven Abscissenaxe zur positiven Ordinatenaxe, oder umgekehrt geschieht.

Um einen ersten Ausdruck für jene inneren Kräfte zu erhalten, wird die Betrachtung eines zweiten, dem ersten unendlich nahen Querschnittes  $F_{g}$ und die der Aenderung ihrer gegenseitigen Lage nach der Biegung nöthig sein.

Der ursprüngliche Zustand des Stabes heisse der erste, jener nach der Biegung der neue oder zweite.

Im ersten Zustande schneiden sich die Querschnitte  $F_1$  und  $F_2$  in einer Geraden, welche auf der Hauptbiegungsebene senkrecht steht und letztere im Punkte  $A_1$  trifft. Versteht man unter  $F_1$  und  $F_2$  zugleich die Schwerpunkte der zwei vorerwähnten Querschnitte, so ist offenbar  $A_1$  der Krümmungsmittelpunkt der Axenfaser für das Intervall  $F_1F_2$  und  $A_1F_1$  und  $A_1F_2$ als die Durchschnittslinien der Querschnittsebenen mit der Biegungsebene, deren Krümmungshalbmesser, welche den unendlich kleinen Winkel  $\alpha_1$ einschliessen und die wir mit  $q_1$  bezeichnen werden.

Im zweiten Zustande wollen wir die correspondirenden Grössen mit  $\mathfrak{F}_1$   $\mathfrak{F}_2$ ,  $\mathcal{A}$ ,  $\alpha$  und  $\varrho$  benennen.

Was von der Schwerpunktsfaser gilt, hat selbstverständlich auch bezüglich aller übrigen Fasern seine Richtigkeit. Die Krümmungsmittelpunkte derselben werden sämmtlich auf der in  $A_i$  zur Hauptbiegungsebene errichteten Normalen liegen und wieder als die Durchschnittspunkte jener Geraden mit den respectiven Biegungsebenen erscheinen.

Denken wir uns durch  $F_1$  eine auf die Biegungsebene senkrechte Gerade gezogen (in der Folge werden wir diese Gerade kurz mit  $F_1$  benennen) und betrachten wir ein unendlich kleines Faserstück zwischen den beiden vorgenannten Profilen von der Länge  $\lambda_1$  und dem sehr kleinen Querschnitte  $\partial f$ , so wird, wenn wir dessen Entfernung von der erwähnten Geraden u heissen:

$$\lambda_1 = (\varrho_1 \mp u) \alpha_1.$$

Das negative oder positive Vorzeichen wird zu wählen sein, je nachdem die Faser auf derselben oder auf der entgegengesetzten Seite mit dem 42 Ueber die Formveränderungen prismatischer Stäbe durch Biegung.

Krümmungsmittelpunkte liegt. Da sich zufolge der getroffenen Annahme das u nach der Biegung nicht ändert, wird auch

$$\lambda = (\varrho_1 \mp u) \alpha,$$

wobei  $\lambda$  für den sweiten Zustand dieselbe Bedeutung, wie  $\lambda_i$  für den ersten hat. Die Faser hat also eine Längenänderung

$$\lambda - \lambda_1 = (\varrho \mp u) \alpha - (\varrho_1 \mp u) \alpha_1$$

erlitten. Hiernach wird die Kraft  $\partial p$ , mit welcher die Faser dieser Aenderung widersteht, durch den Ausdruck

$$\partial p = \partial f \frac{(\lambda - \lambda_1) E}{\lambda_1} = E \partial f \left( \frac{\alpha}{\alpha_1} \cdot \frac{\varrho + u}{\varrho_1 + u} - 1 \right)$$

dargestellt, wo u schon das Zeichen in sich schliesst und E den Elasticitätsmodul für das Material des Stabes bezeichnet.

Dieser Ausdruck lässt sich unter der Voraussetzung, dass u gegen  $\varrho$ und  $\varrho_i$  sehr klein ist, in einen für die Folge bequemeren verwandeln; es ist nämlich:

$$\frac{\varrho+u}{\varrho_1+u} = \frac{\varrho\left(1+\frac{u}{\varrho}\right)}{\varrho_1\left(1+\frac{u}{\varrho_1}\right)} = \frac{\varrho}{\varrho_1}\left(1+\frac{u}{\varrho}\right)\left(1+\frac{u}{\varrho_1}\right)^{-1}$$

Vernachlässigt man die zweiten und höheren Potenzen von u, so erhält man:

$$\frac{\varrho+u}{\varrho_1+u}=\frac{\varrho}{\varrho_1}\Big(1+\frac{u}{\varrho}-\frac{u}{\varrho_1}\Big),$$

und daher

$$\partial p := E \partial f \left[ \frac{\alpha \varrho}{\alpha_1 \varrho_1} \left( 1 + \frac{u}{\varrho} - \frac{u}{\varrho_1} \right) - 1 \right].$$

Nun sind aber  $\alpha_{\varrho}$  und  $\alpha_{i} \varrho_{i}$  nichts Anderes, als die Längen  $\partial s$  und  $\partial s_{i}$  des betrachteten Elementes der Axe zwischen den Punkten  $F_{i}$  und  $F_{g}$  in beiden Zuständen des Stabes, daher wird

1) 
$$\partial p = E \partial f \cdot \frac{ds}{ds_1} \left( \frac{1}{\varrho} - \frac{1}{\varrho_1} \right) u + E \partial f \cdot \left( \frac{\partial s}{\partial s_1} - 1 \right),$$

welcher Ausdruck die in einem Flächenelemente des Querschnittes senkrecht auf dessen Ebene wirkende Kraft repräsentirt.

Die zweite in der Ebene des Flächenelementes (gegen das Abscheren oder Abschieben) wirkende Kraft, deren Zahlwerth wir einstweilen nicht näher bestimmen, heisse  $\partial g$ .

Bezeichnet  $\varphi$  den Winkel, den die Richtung von  $\partial p$  mit der positiven Abscissenaxe einschliesst, und  $\psi$  den Winkel mit  $\partial q$ , und sind XY,  $X_1Y_1$  etc. die Componenten der äusseren Kräfte, so hat man für das Gleichgewicht die Bedingungsgleichungen:

2) 
$$\Sigma \partial p. \cos \varphi + \Sigma \partial q. \cos \psi + \Sigma X = 0,$$

3)  $\Sigma \partial p \, \sin \varphi + \Sigma \partial q \, \sin \psi + \Sigma Y = 0,$ 

wo sich die Summenzeichen beiderseits auf alle Kräfte erstrecken.

Um  $\partial q$  zu eliminiren, multiplicire man die Gleichung 2) mit  $\cos \varphi$ , die Gleichung 3) mit  $\sin \varphi$  und addire dieselben, so wird :

$$\Sigma \partial p (\cos^2 \varphi + \sin^2 \varphi) + \Sigma \partial q (\cos \varphi \cos \psi + \sin \varphi + \sin \psi) + \cos \varphi \Sigma X + \sin \varphi \Sigma Y = 0;$$

oder, da

 $\cos\varphi \cos\psi + \sin\varphi \sin\psi = 0$ 

ist, wird 4)

 $\Sigma \partial p + \cos \varphi \Sigma X + \sin \varphi \Sigma Y = 0.$ 

Obwohl, um die Gleichung für die statischen Momente der den Körper beeinflussenden Kräfte aufzustellen, die Drehungsaxe beliebig gewählt werden könnte, so dürfte es denn doch zweckdienlich erscheinen, um die bisher nicht ermittelten Abschiebungskräfte  $\partial q$  hierauf ausser Einfluss zu bringen, die Drehungsaxe als im Querschnitte  $\mathcal{F}_1$  liegend und senkrecht auf die Biegungsebene anzunehmen. Es stellt sich diesfalls von selbst als das Einfachste dar, sie durch den Schwerpunkt zu führen, weil dann nur die Coordinaten der Axe, deren Veränderungen wir eigentlich zu bestimmen haben, in die Rechnung eintreten.

Diesem Umstande zufolge denken wir uns auch die Angriffspunkte sämmtlicher Kräfte in die Stabaxe verlegt.

Seien die Coordinaten der Letzteren allgemein  $\xi$  und  $\eta$ , die Coordinaten von  $\mathcal{F}_i x$  und y, so ist die Momentengleichung:

5)  $\Sigma \partial p.u + \Sigma Y (\xi - x) - \Sigma x (\eta - y) = 0,$ 

wobei das Vorzeichen des ersten Gliedes noch zu bestimmen ist.

Setzt man in die Gleichungen 4) und 5) für  $\partial p$  den gefundenen Werth, ersetzt man ferner die Summenzeichen durch Integrale und bedenkt man, dass, wenn der Bogen der Axenfaser von dem betrachteten Querschnitte an gegen das Ende zu wächst,

 $\cos \varphi$  und  $\sin \varphi$  beziehungsweise in  $\frac{1}{2} \frac{\partial x}{\partial s}$  und  $\frac{\partial y}{\partial s}$ 

übergeht, und dass endlich die Drehungsaxe, auf welche sich die Abstände u beziehen, eine Schweraxe des Querschnittes sei und folglich in Bezug auf dieselbe das Integral

ist, so ergiebt sich:

6) 
$$\int E \,\partial f\left(\frac{\partial s}{\partial s_1} - 1\right) - \frac{\partial x}{\partial s} \Sigma X - \frac{\partial y}{\partial s} \Sigma Y = 0,$$
  
7) 
$$\int E \,\partial f\left(\frac{\partial s}{\partial s_1} - 1\right) x^2 + \Sigma Y(t - t) = 0,$$

7) 
$$\int E \partial f \frac{\partial s}{\partial s_1} \left( \frac{1}{\varrho} - \frac{1}{\varrho_1} \right) u^2 + \Sigma Y (\xi - x)' - \Sigma X (\eta - y) = 0,$$

oder, da  $\int \partial f$  die Fläche f des Querschnittes, und  $\int u^2 \partial f$  das Trägheitsmoment  $\mathfrak{L}$  desselben in Bezug auf die Schweraxe bedeutet,

6a) 
$$Ef\left(\frac{\partial s}{\partial s_{1}}-1\right)-\frac{\partial x}{\partial s}\Sigma X-\frac{\partial y}{\partial s}\Sigma Y=0$$

7*a*) 
$$\pm E \cdot \mathfrak{T} \frac{\partial s}{\partial s_1} \left( \frac{1}{\varrho} - \frac{1}{\varrho_1} \right) + \Sigma Y(\xi - x) - \Sigma X(\eta - y) = 0.$$

Die Krümmungshalbmesser  $\rho$  und  $\rho_1$  sind hier absolut genommen; ersetzt man dieselben durch

$$\frac{\partial s}{\partial \alpha}$$
 und  $\frac{\partial s_1}{\partial \alpha_1}$ 

oder auch, da  $\alpha$  und  $\alpha_i$  die Contingenzwinkel in beiden Zuständen sind, durch

$$\frac{\partial s}{\partial \varphi}$$
 und  $\frac{\partial s_1}{\partial \varphi_1}$ ,

so übergehen die Gleichungen in:

8) 
$$\frac{\partial s}{\partial s_1} - 1 = \frac{1}{Ef} \left( \frac{\partial x}{\partial s} \Sigma X + \frac{\partial x}{\partial s} \Sigma Y \right),$$

$$\theta) \pm \frac{\partial s}{\partial s_1} \left( \frac{1}{\varrho} - \frac{1}{\varrho_1} \right) = \frac{\partial s}{\partial s_1} \left( \frac{\partial \varphi}{\partial s} - \frac{\partial \varphi'}{\partial s_1} \right) = \frac{1}{E.\mathfrak{X}} \left[ \Sigma Y(\xi - x) - \Sigma X(\eta - y) \right].$$

Weil die Drehungsrichtung der positiven Momente mit der positiven Zunahme des Neigungswinkels (d. i. mit  $\partial \varphi - \partial \varphi_i$ ) übereinstimmt, so ergiebt sich durch einfache Betrachtungen mit Leichtigkeit, dass in der Gleichung 9) das positive Vorzeichen beizubehalten sei.

Um zur endlichen Gleichung der Axenfaser zu gelangen, müssten zuerst, damit die vollständige Integration vorliegender Differentialgleichungen nicht zu grosse Schwierigkeiten darbiete, die Coordinaten, welche sich auf den ursprünglichen Zustand des stabförmigen Körpers beziehen, durch Elimination entfernt werden. Begnügt man sich jedoch mit zulässigen Annäherungen, so sind die durch die Biegung herbeigeführten Aenderungen der Coordinaten mit Rücksicht darauf, dass die Formveränderung überhaupt als sehr klein vorausgesetzt wird, leicht zu erhalten.

Die zweiten Glieder der Gleichungen sind sodann sehr geringfügige Grössen derselben Ordnung als die Coordinatenänderungen.

Setzt man in obige Gleichungen statt der neuen Coordinaten die ursprünglichen, welche sich von ersteren nur sehr wenig unterscheiden, so begeht man allerdings einen Fehler, doch ist dieser Fehler, als durch Vernachlässigung sehr kleiner Ausdrücke zweiter und höherer Ordnung entstanden, ein bei einer ersten Annäherung erlaubter, und man erreicht dadurch den Vortheil, dass die rechtsstehenden Theile obiger Gleichungen 8) und 9) durchgehend bekannte Grössen enthalten.

Setzt man also:

$$\frac{1}{Ef}\left[\frac{\partial x}{\partial s}\Sigma X + \frac{\partial y}{\partial s}\Sigma Y\right] = a,$$

und

$$\frac{1}{E\mathfrak{T}}\left[\Sigma Y(\xi - x) - \Sigma X(\eta - y)\right] = b,$$

so übergehen die Gleichungen 8) und 9) in:

 $\partial s - \partial s = a \partial s$ 

11)

$$\partial \varphi - \partial \varphi_1 = a \partial \varphi_1 + b \partial s_1$$

Die einzelnen Bogenelemente der Axe und die zugehörigen Contingenzwinkel erfahren also Aenderungen, welche durch die rechtsstehenden Glieder der Gleichungen 10) und 11) ausgedrückt werden; es handelt sich somit nur darum, aus diesen unendlich kleinen Aenderungen jene der entsprechenden endlichen Grössen herzuleiten.

Die Gleichungen 10) und 11) lassen sich unmittelbar getrennt integriren, wodurch man die endlichen Ausdrücke für  $s - s_i$  und  $\varphi - \varphi_i$  erhält. Diese Grössen sind aber für die Anwendung nicht so bequem, wie  $x - x_i$ und  $y - y_i$ , wenn sich auch letztere auf verschiedene Weise aus ersteren entwickeln lassen. Der in Folgendem eingeschlagene Weg scheint daher den Vorzug auch schon deswegen zu verdienen, weil hier auch die Bedeutung der in den Resultaten vorkommenden doppelten Integrale, sowie die Grenzen, zwischen welchen sie zu nehmen sind, mit grösserer Klarheit erkannt werden kann.

Die letztangeführten Gleichungen drücken aus, dass die Längen der unendlich kleinen Bogen  $\partial s_1$  und  $\partial s - \partial s_1$  verändert, und die Winkel  $\partial \varphi_1$ , welche zwei solche aufeinanderfolgende Elemente einschliessen, um  $\partial \varphi - \partial \varphi_1$  vergrössert oder vermindert werden.

Denkt man sich nun statt der continuirlich gekrümmten Axe des Stabes zwischen n+1 Punkten

0, 1, 2, 3..., n-1, n,

deren Coordinaten

 $x_0, y_0; x_1, y_1; x_2, y_2 \dots x_{n-1}, y_{n-1}; x_n, y_n$ sein mögen, ein Polygon von *n* endlichen Seiten

 $s_1, \ s_2, \ s_3, \ldots, s_{m-1}, \ s_m,$ welche mit der Abscissenaxe die Winkel

 $\varphi_1, \varphi_2, \varphi_3, \dots, \varphi_{n-1}, \varphi_n$ und unter einander (jede vorhergehende mit der nachfolgenden) die Winkel  $\Delta \varphi_1, \Delta \varphi_2, \Delta \varphi_3, \dots, \Delta \varphi_{n-1}$ 

einschliessen (letztere so genommen, dass eine Seite um den ihr zugehörigen  $\langle \mathcal{L} \varphi_r$  im Sinne von der positiven O X zur positiven O Y gedreht werden muss, um mit der Verlängerung der vorhergehenden zusammenzufallen), und durch irgend eine Ursache die Gestalt des Polygons so verändert, dass die bezeichneten Polygonseiten in:

 $s_1+\delta s_1, s_2+\delta s_2, s_3+\delta s_8....s_n+\delta s_n,$ 

die Winkel in

 $\varphi_1 + \delta \varphi_1, \quad \varphi_2 + \delta \varphi_2, \quad \varphi_3 + \delta \varphi_3 \dots \varphi_n + \delta \varphi_n,$ und die Contingenzwinkel in

 $\Delta \varphi_1 + \delta \Delta \varphi_1, \quad \Delta \varphi_2^{e} + \delta \Delta \varphi_2, \quad \Delta \varphi_3 + \delta \Delta \varphi_3 \dots \Delta \varphi_n + \delta \Delta \varphi_n$ übergehen, so besteht die Aufgabe einfach darin, aus der bekannten neuen

46 Ueber die Formveränderungen prismatischer Stäbe durch Biegung.

Lage  $(x_0 + \delta x_0, y_0 + \delta y_0)$  des Punktes 0 und der gegebenen Grössen die Lage  $(x_n + \delta x_n, y_n + \delta y_n)$  des Endpunktes *n* zu finden.

Man hat bekanntlich die Gleichung:

 $x_n - x_0 = s_1 \cos \varphi_1 + s_2 \cos \varphi_2 + \ldots + s_n \cos \varphi_n,$ 

und eine ähnliche Gleichung für den zweiten Zustand.

Werden diese beiden Gleichungen von einander abgezogen, so ist:

12)  $\delta x_n - \delta x_0 = \Sigma_i^n [(s_r + \delta s_r) \cos(\varphi_r + \delta \varphi_r) - s_r \cos \varphi_r]$ und analog

13)  $\delta y_n - \delta y_0 = \Sigma_1^n [(s_r + \delta s_r) \sin(\varphi_r + \delta \varphi_r) - s_r \sin \varphi_r]$ Ebenso wird

 $\varphi_r = \varphi_1 + (\varphi_2 - \varphi_1) + (\varphi_3 - \varphi_2) + \dots + (\varphi_{r-1} - \varphi_{r-2}) + (\varphi_r - \varphi_{r-1}) = \\ = \varphi_1 + \Delta \varphi_1 + \Delta \varphi_2 + \dots + \Delta \varphi_{r-2} + \Delta \varphi_{r-1}$ 

und die Differenzen genommen:

14)  $\delta \varphi_r = \delta \varphi_1 + \delta \varDelta \varphi_1 + \delta \varDelta \varphi_2 + \dots + \delta \varDelta \varphi_{r-1} = \delta \varphi_1 + \Sigma_1^{n-1} \delta \varDelta \varphi_r$ 

Werden  $\delta \varphi_r$  und  $\delta s_r$  als sehr kleine Grössen erster Ordnung angesehen und ihre Potenzen sowie deren Producte vernachlässigt, so gestalten sich die Ausdrücke wie folgt:

12 a)  $\delta x_n = \delta x_0 + \Sigma_1^n (\delta s_r \cos \varphi_r - s_r \sin \varphi_r \cdot \delta \varphi_r),$ 

13b)  $\delta y_n = \delta y_0 + \Sigma_i^n (\delta s_r \sin \varphi_r + s_r \cos \varphi_r \delta \varphi_r).$ 

Substituirt man statt  $\delta \varphi_r$  aus 14) den Werth, so ist :

15)  $\delta x_n = \delta x_0 + \Sigma_1^n (-s_r \sin \varphi_r \delta \varphi_1 + \delta s_r \cos \varphi_r - s_r \sin \varphi_r \Sigma_1^{r-1} \delta \Delta \varphi_s)$ ,

16)  $\delta y_n = \delta y_0 + \Sigma_1^n (s_r \cos \varphi_r \, \delta \varphi_1 + \delta s_r \sin \varphi_r + s_r \cos \varphi_r \, \Sigma_1^{r-1} \, \delta \varDelta \varphi_s).$ 

Wie ersichtlich, drücken in diesen beiden Gleichungen die ersten Glieder den Einfluss der Verrückung des ersten Punktes im Polygone, die zweiten Glieder (innerhalb der Summen) hingegen jenen aus, welcher von der Drehung des ganzen Polygons um den Winkel  $\delta \varphi_1$  herrührt; die dritten Glieder bestimmen den Einfluss, der aus der Veränderung der einzelnen Seitenlängen entspringt, und die letzten Glieder endlich bezeichnen die Coordinatenveränderungen des Endpunktes, die aus den kleinen Drehungen der einzelnen Seiten um die zugehörigen Polygonecke entstehen.

Um auf unser Problem zurückzukommen, denke man sich innerhalb des in Betrachtung stehenden Axenstückes einen Punkt (x, y), dessen Coordinatenveränderung man erfahren will;  $(x_0, y_0)$  sei der Punkt, dessen Lage bekannt ist.

Ersetzt man die Summe durch Integrale, und

$$s_{r}, \quad 0 \ s,$$

$$\cos \varphi_{r} \quad s_{s} \quad \frac{\partial x_{1}}{\partial s_{1}}$$

$$\sin \varphi_{r}, \quad \frac{\partial y_{1}}{\partial s_{1}}$$

$$\delta \varphi_{1}, \quad \delta \varphi_{0}$$

$$\delta s_{r}, \quad \partial s - \partial s_{1}$$

$$\delta \Delta \varphi_{s}, \quad \partial \varphi - \partial \varphi_{1},$$

so ist

17) 
$$\delta x = \delta x_0 - (y - y_0) \,\delta \varphi_0 + \int_{x_0}^{x} \left[ a \,\partial x - \partial y \int_{x_0}^{x} \left[ a \,\partial \varphi + b \,\partial s \right] \right],$$

18) 
$$\delta y = \delta y_0 + (x - x_0) \delta \varphi_0 + \int_a^{s} (a \partial y + \partial x \int [a \partial \varphi + b \partial s])$$

19) 
$$\delta \varphi = \delta \varphi_0 + \int_a^b (a \,\partial \varphi + b \,\partial s).$$

Die Grössen in den zweiten Theilen vorstehender Gleichungen beziehen sich auf den ursprünglichen Zustand.

War der Stab anfänglich gerade, so ist  $\partial \varphi = 0$ , daher unter dieser Voraussetzung die Gleichungen übergehen in:

20) 
$$\delta x = \delta x_0 - (y - y_0) \, \delta \varphi_0 + \int_{x_0}^{x} \left( a \, \partial x - \partial y \int_{x_0}^{s} b \, ds \right),$$

21) 
$$\delta y = \delta y_0 + (x - x_0) \delta \varphi_0 + \int_{x_0}^x (a \,\partial y + \partial x \int_{x_0}^x b \,\partial s)$$

22) 
$$\delta \varphi = \delta \varphi_0 + \int_x^x b \, \partial s$$

Diese Gleichungen sind dieselben, welche auch bereits, mit Ausnahme der Glieder in *a*, anderwärts gefunden wurden. Letztere können übrigens im Allgemeinen, da sie gegen die vorhergehenden sehr klein sind, oft vernachlässigt werden.

Die auf diese Weise erhaltenen neuen Coordinaten der Axe könnten in a und b substituirt, diese Functionen sodann in die Integrale gesetzt und dieses Verfahren öfters wiederholt werden, wodurch man immer mehr und mehr genäherte Werthe von  $\delta y$  und  $\delta x$  erhielte, die in Beziehung auf den früher begangenen Fehler sich von den wahren Werthen stets weniger und weniger unterscheiden würden. Letzteres ist jedoch nur bis zu einem gewissen Grade erreichbar, indem in der Entwickelung die Cosinus kleiner Winkel der Einheit, und die Sinus derselben den Winkeln selbst gleichgesetzt wurden, welcher Fehler durch jenes Näherungsverfahren nicht behoben wird.

Was die Anwendung der gefundenen Formeln betrifft, sei noch bemerkt, dass die Functionen a und b nicht immer continuirlich sind. Wirken nämlich mehrere endliche Kräfte an verschiedenen Stellen auf den stabförmigen Körper, so werden besagte Functionen für jedes Intervall zwischen zwei aufeinander folgenden Angriffspunkten durch andere Formeln ausgedrückt, und die Gestalt der Axenfaser wird an diesen Stellen eine Unterbrechung der Continuität erleiden, weshalb man sich veranlasst sehen wird, jedes von diesen Curvenintervallen für sich abgesondert zu betrachten. 48 Ueber die Formveränderungen prismatischer Stäbe durch Biegung.

Werden diese Angriffspunkte der Reihe nach mit

 $1, 2, 3 \dots r, r+1, \dots n,$ 

und ihre respectiven Coordinaten mit

 $(x_1, y_1), (x_2, y_2), (x_3, y_3) \dots (x_0, y_r) \dots (x_n, y_n)$ 

bezeichnet, so bestimme man nach der Formel mit den bekannten Anfangswerthen  $x_0, y_0, \delta \varphi_0$  zuerst  $\delta x_1, \delta y_1, \delta \varphi_1$ , betrachte sodann diese Grössen als Anfangswerthe für die Bestimmung von  $\delta x_2, \delta y_2, \delta \varphi_2$ , verfahre mit letzteren auf ähnliche Weise und setze dieses Verfahren so lange fort, bis man endlich die Ausdrücke  $\delta x_r, \delta y_r, \delta \varphi_r$  für einen Angriffspunkt (r) gefunden hat. Letztere Werthe werden sodann zur Berechnung der Lage des erwählten Punktes, welcher hier in dem Intervalle (r) und (r+1) liegend gedacht wird, dienen.

Die Ausführung des Gesagten wird unmitelbar das Gesuchte liefern, wenn man die Kräfte in der Reihenfolge ihrer Angriffspunkte successive wirken lässt, und wenn man die durch den Einfluss der Kräfte hervorgebrachten Coordinatenveränderungen des bezogenen Punktes einzeln, ohne Rücksicht auf die übrigen Kräfte, in Rechnung zieht, was wegen der linearen Form der Resultate gestattet erscheint.

Beziehen sich also die Functionen

 $a_1$  und  $b_1$  nur auf die im Punkte (1) wirkenden Kräfte,

| $a_2$ und $b_2$<br>$a_3$ und $b_3$ |      |         |         |       |       | •     | •                     | ))<br>)) |
|------------------------------------|------|---------|---------|-------|-------|-------|-----------------------|----------|
| ••••                               | •••• | • • • • | ••••    | ••••• | ••••  | ••••• | •••••                 | ••••••   |
| •••••                              | •••• | ••••    | •••     | ••••• | ••••• | ••••• | • • • • • • • • • • • | •••••    |
|                                    |      | • • • • | • • • • |       |       |       |                       |          |

 $a_r$  und  $b_r$  nur auf die im Punkte (r) wirkenden Kräfte und

a und b auf alle vom Punkte (r+1) an wirkenden, sowie auf alle jenen Kräfte, für welche diese Functionen nach der ganzen Stablänge continuirlich sind, so erhält man:

$$\delta y = \delta y_0 + (x - x_0) \, \delta \varphi_0 +$$

$$+ \int_{x_0}^{x_1} \left( a_1 \partial y + \partial x \int_{x_0}^{x_1} (a_1 \partial \varphi + b_1 \partial s) \right) + (x - x_1) \int_{x_0}^{x_1} (a_1 \partial \varphi + b_1 \partial s) +$$

$$+ \int_{x_0}^{x_1} \left( a_2 \partial y + \partial x \int_{x_0}^{x_1} (a_2 \partial \varphi + b_2 \partial s) \right) + (x - x_2) \int_{x_0}^{x_2} (a_2 \partial \varphi + b_2 \partial s) +$$

$$+ \int_{x_0}^{x_1} (a_r \partial y + \partial x \int_{x_0}^{x_1} (a_r \partial \varphi + b_r \partial s) \right) + (x - x_r) \int_{x_0}^{x_r} (a_r \partial \varphi + b_r \partial s) +$$

$$+ \int_{x_0}^{x_0} (a \partial y + \partial x \int_{x_0}^{x_1} [a_2 \partial \varphi + b_r \partial s] \right).$$

und ebenso für  $\partial x$  und  $\partial \varphi$  analoge Ausdrücke.

Mitunter enthalten a und b noch unbekannte Grössen, welche erst gesucht werden müssen.

Wären z. -B. die Formänderungen eines wie immer gestalteten geschlossenen Ringes zu bestimmen, der an einer Stelle eingeklemmt ist, so kann man die feste Stelle des Stabes als den Anfangspunkt, dessen Coordinaten  $x_0$  und  $y_0$  sich nicht ändern, ansehen, die Integration über dessen ganze Länge erstrecken und als Endpunkt wieder  $(x_0, y_0)$  wählen, auf welchen noch die Kräfte  $\Sigma \partial p$  und  $\Sigma \partial q$ , sowie das Drehungsmoment  $\Sigma u \partial p$ (einem Kräftepaare äquivalent) wirkend gedacht werden. Durch Vollziehung der Integrationen erhält man Ausdrücke für  $\delta x$ ,  $\delta y$ ,  $\delta \varphi$  des Endpunktes, die jenen für den Anfangspunkt gleich, also Null sind. Aus diesen so erhaltenen Gleichungen findet man die gesuchten Werthe für  $\Sigma \partial p$ ,  $\Sigma \partial q$  und  $\Sigma u \partial p$ , welche in die Integralformel von Neuem eingeführt die Berechnung der Aenderungen für jeden beliebigen Punkt des Stabes möglich machen.

Durch ein ähnliches, jedoch entsprechend modificirtes Verfahren werden sich alle Aufgaben dieser Art lösen lassen.

Einige Beispiele werden den Gebrauch der aufgestellten Gleichungen und Formeln erleichtern helfen.

Beispiel 1. Es ist ein gerader Stab von der Länge *l* an einem Ende festgeklemmt und am freien Ende dem Einflusse einer Kraft, deren Componenten X und Y sind, ausgesetzt.

Die positive Abscissenaxe falle mit dessen Axenfaser, der Ursprung mit dem festen Punkte zusammen. Hiernach ist:

$$\partial y = 0, \quad \partial s = \partial x, \quad \delta x_0 = 0, \quad \delta y_0 = 0, \quad \delta \varphi_0 = 0.$$
  
 $a = \frac{1}{E \cdot f} X, \quad b = \frac{1}{E \cdot \mathfrak{T}} Y(l - x),$ 

und

$$\delta x = \int_{0}^{s} \frac{1}{Ef} X \partial x = \frac{1}{Ef} \cdot X \cdot x,$$
  
$$\delta y = \int_{0}^{s} \partial x \int_{0}^{s} \frac{1}{E \cdot \mathfrak{X}} Y(l-x) \partial x = \frac{Y x^{s}}{2E \cdot \mathfrak{X}} \left( l - \frac{x}{3} \right).$$

Die neuen Coordinaten sind somit:

$$\boldsymbol{x}' = \boldsymbol{x} \left( 1 + \frac{\boldsymbol{X}}{\boldsymbol{E}\boldsymbol{f}} \right),$$

und

$$y' = \frac{Y}{2E.\mathfrak{X}} \left( lx^3 - \frac{x^3}{3} \right).$$

Eliminirt man hieraus x, so ergiebt sich die Gleichung der gegebenen Axenfaser.

Zeitschrift f. Mathematik u. Physik XIII, 1.

Die grösste Ausbiegung findet an der Einmauerungsstelle, d. i. für x = l statt, und ist ihrem Zahlwerthe nach  $c = \frac{Yl^2}{3E.\mathfrak{X}}$ .

Beispiel 2. Unter Beibehaltung derselben Voraussetzungen, wie im vorhergehenden Beispiele, sei noch die Annahme beigefügt, dass der vorgegebene stabförmige Körper noch an einer Stelle in der Entfernung e vom Ursprung durch einen horizontalen Schraubenbolzen, welcher durch seine Axe geht, befestigt sei.

An letztbezeichneter Stelle können sich also nicht die Coordinaten, wohl aber kann sich die Neigung der Stabaxe ändern.

Die Schraube wird gegen den Stab einen Druck äussern, dessen Grösse und Richtung vorläufig unbekannt sind. Die Componenten des Letzteren mögen durch  $X_1$ ,  $Y_1$  repräsentirt erscheinen.

Hiernach hat man für das Stabstück von 0 bis e:

$$a = \frac{1}{Ef} (X + X_{1}), \quad b = \frac{1}{E \cdot \mathfrak{X}} [Y(l - x) + Y_{1}(e - x)],$$
  
$$\delta x = \frac{X + X_{1}}{Ef} x, \quad \delta y = \frac{Y}{E \cdot \mathfrak{X}} \left(\frac{lx^{2}}{2} - \frac{x^{3}}{6}\right) + \frac{Y_{1}}{E \cdot \mathfrak{X}} \left(\frac{ex^{2}}{2} - \frac{x^{3}}{6}\right)$$
  
$$\delta \varphi = \frac{Y}{E \mathfrak{X}} \left(lx - \frac{x^{2}}{2}\right) + \frac{Y_{1}}{E \cdot \mathfrak{X}} \left(ex - \frac{x^{2}}{2}\right).$$

Für die Stelle x=e ist  $\delta x=0$  und  $\delta y=0$ , hiernach also:

$$X_1 = -X, \quad Y_1 = \frac{-Y}{2e}(3l-e),$$

und

$$\delta \varphi_e = \frac{Ye}{4E.\mathfrak{X}} (l-e).$$

Endlich ergiebt sich für das Stabstück e bis l:

$$a = \frac{1}{Ef}$$
. X, and  $b = \frac{Y}{E.\mathfrak{X}}(l-x);$ 

ferner

$$\delta y = (x - e) \frac{Ye}{4E \cdot \mathfrak{X}} (l - e) + \frac{Y}{E \cdot \mathfrak{X}} \int_{0}^{s} \partial x' \int_{0}^{s} (l - x) \partial x'$$
$$= \frac{Y}{E \cdot \mathfrak{X}} \left[ \frac{-x^{3}}{6} + \frac{lx^{2}}{2} - \frac{ex}{4} (3l - e) + \frac{e^{s}l}{4} \right] - \frac{e^{s}}{12},$$

und

$$\delta x = \frac{X}{Ef}(x-e).$$

Für x == l ist der Pfeil

$$c_{2} = \frac{Y}{E \cdot \mathfrak{T}} \left( \frac{l^{2}}{3} - \frac{3 e \, l^{2}}{4} + \frac{e^{2} \, l}{2} - \frac{e^{3}}{12} \right)$$

und für  $e = \frac{l}{2}$  ist:

$$c_2 = \frac{7}{96} \cdot \frac{Y l^2}{E.\mathfrak{T}}$$

d. i. im Vergleiche zu dem im vorhergehenden Beispiele gefundenen Resultate der 3gste Theil.

Der Pfeil für das Stabstück 0 bis e lässt sich ebenso einfach finden. Es ist nämlich:

$$\delta y = \frac{Y}{E.\mathfrak{X}} \left( \frac{lx^2}{2} - \frac{x^3}{6} \right) - \frac{Y(3l-e)}{2e \cdot E.\mathfrak{X}} \left( \frac{ex^2}{2} - \frac{x^3}{6} \right),$$

oder

$$\delta y = \frac{-Y}{4e \cdot E \cdot \mathfrak{X}} (l - e) \cdot (ex^2 - x^3);$$

daher wie bekannt

$$\frac{\partial \,\delta y}{\partial x} = 0 = 2 \,e \, x - 3 \, x^2,$$

woraus

$$x = \{e,$$

Demzufolge ist:

$$c'_{2} = \frac{-Y(l-e)e^{2}}{27 E.\mathfrak{T}}.$$

Hieraus folgt für  $e = \frac{l}{2}$  oder  $x = \frac{l}{3}$ 

$$c'_{*} = \frac{-YP}{216 E.\mathfrak{T}}.$$

Beispiel 3. Es ruhe ein Stab von der Länge l auf zwei Stützen horizontal auf, über welchen eine Last als gleichförmig vertheilt vorausgesetzt wird, die per Längeneinheit mit Einschluss des eigenen Gewichts g sei. Den Ursprung des Coordinatensystems wollen wir mit dem einen Unterstützungspunkte zusammenfallend, und die positive Ordinatenaxe mit der Richtung der Schwere übereinstimmend annehmen.

Es wird diesfalls:

a=0, und b=
$$\frac{1}{E\mathfrak{X}}\left[\int_{x}^{l}g\,\partial x'(x'-x)-\frac{gl}{2}(l-x)\right]$$

Der Druck auf jeden der beiden Stützpunkte beträgt  $\frac{gl}{a}$ .

Es wird also

$$b = \frac{g}{2E.\mathfrak{T}}(x^2 - lx).$$

 $\delta x = 0,$ 

Ferner ist:

und

$$\delta y = x \, \delta \varphi_0 + \frac{g}{2E \cdot \mathfrak{X}} \int_0^x \partial x \int_0^x x^* - l x) \partial x = x \, \delta \varphi_0 - \frac{g x^*}{24 E \mathfrak{X}} (2l - x).$$

51

Für x == l ist  $\delta y == 0$ , daher auch

$$l\,\delta\,\varphi_0 - \frac{g\,l^3}{24\,E.\,\mathfrak{T}}\cdot l = 0,$$

und

$$\delta \varphi_0 = \frac{g l^2}{24 E. \mathfrak{T}}.$$

Hiernach ist allgemein:

$$\delta y = \frac{g}{24 E \mathfrak{T}} \left( x^4 - 2 x^3 l + x l^3 \right).$$

Die grösste Einbiegung lässt sich auf bekannte Weise leicht ermitteln. Wir finden nämlich:

woraus folgt, dass:

$$l^3 - 6\,l\,x^2 + 4\,x^3 = 0,$$

$$x=\frac{l}{2}$$

oder dass die grösste Senkung in der Mitte stattfinde.

Hiernach ergiebt sich der Pfeil

$$r_3 = \frac{5}{384} \frac{gl.l^8}{E.\mathfrak{T}}.$$

Auch kann man sich sehr leicht die Ueberzeugung verschaffen, dass  $\delta y$  für  $x = \frac{l}{2} - \alpha$  und  $x = \frac{l}{2} + \alpha$  dasselbe bleibt, und folglich die Gestalt der Axe gegen eine durch die Mitte des Balkens gezogene Vertikale symmetrisch ist, was übrigens unter den gemachten Voraussetzungen schon an und für sich einleuchtend ist.

Beispiel 4. Ein geradliniger horizontaler Stab von der Länge l ist an beiden Enden eingemauert und in einer Entfernung e vom linksseitigen Ende mit einem Gewichte — P belastet. Der Ursprung des Coordinatensystems stimme mit jener Stelle überein, von welcher aus die Entfernung egemessen wird, die positive Abscissenaxe falle mit der Axenfaser des Stabes zusammen und die positive Ordinatenaxe sei der Richtung der Schwere direct entgegengesetzt.

Zum Behufe der Lösung vorstehender Aufgabe denken wir uns am rechtsseitigen Stabende eine Kraft, deren Componenten  $X_1$  und  $Y_1$  sind, und ein Kräftepaar, dessen Moment M heissen möge, wirkend.

Wir haben sonach für einen Punkt, dessen x > e ist

$$\delta y = -\frac{P}{E.\mathfrak{T}} \int_{0}^{t} \partial x \int_{0}^{t} (e-x) \partial x - \frac{(x-e) P}{E.\mathfrak{T}} \int_{0}^{t} (e-x) \partial x$$
$$+ \frac{1}{E\mathfrak{T}} \int_{0}^{t} \partial x \int_{0}^{t} M + Y_{1}(l-x) \{ \partial x$$
$$= Y_{1} \left( \frac{lx^{2}}{2} - \frac{x^{3}}{6} \right) + \frac{Mx^{2}}{2} + P \left( \frac{e^{3}}{6} - \frac{e^{2}x}{2} \right),$$

und

$$\delta \varphi = \frac{-P}{E \cdot \mathfrak{X}} \int_{0}^{t} (e - x) \partial x + \frac{1}{E \mathfrak{X}} \int_{0}^{s} [M + Y_{1} (l - x)] \partial x$$
$$= Y_{1} \left( lx - \frac{x^{2}}{2} \right) + Mx - \frac{Pe^{2}}{2}.$$

Für den Endpunkt ergiebt sich hiernach:

$$\delta \varphi_{\sigma} = 0 = M l + \frac{Y_1 l^2}{2} - \frac{P c^2}{2},$$

und

$$\delta y_{\sigma} = 0 = \frac{Ml^{2}}{2} + \frac{Y_{1}l^{3}}{3} + P\left(\frac{e^{3}}{6} - \frac{e^{2}l}{2}\right),$$

woraus

$$Y_1 = \frac{Pe^2}{l^2} \left( 3l - 2e \right)$$

und

$$M = -\frac{Pe^{*}}{l^{*}}(l-e).$$

Der Zahlwerth von  $x_1$  ist offenbar gleich Null.

Durch Substitution findet man:

$$\delta y = \frac{P}{E\mathfrak{T}} \left[ \frac{-e^2 (3l-2e) x^3}{6l^4} + \frac{e^2 (2l-e) x^2}{2l^2} - \frac{e^3 x}{2} + \frac{e^3}{6} \right].$$

Der Pfeil ist für

$$\frac{\partial \,\delta y}{\partial x} = 0 = \frac{(3\,l-2\,e)x^2}{3\,l^2} - \frac{(2\,l-e)x}{l^2} + \frac{1}{2};$$

daher

$$x = \frac{(2l-e) \mp \sqrt{l^2(2l-e)^2 - l^2(3l-2e)}}{(3l-2e)},$$

und da das obere Zeichen zu wählen ist, wird:

$$c = \frac{l^2}{3l - 2e}.$$

۵

Für  $e = \frac{l}{2}$  wird  $x = \frac{l}{2}$  und

$$c_4 = \frac{-1}{192} \cdot \frac{Pl^2}{E.\mathfrak{L}}.$$

Beispiel 5. Ein kreisförmiger Ring vom Halbmesser r werde um seinen vertikalen Durchmesser als Axe gedreht.

Die positive Ordinatenaxe gehe von dem Endpunkte der Drehungsare aus, stimme mit deren Richtung überein und die Abscissenaxe tangire den Ring an eben dieser Stelle.

Durch die Einwirkung der Centrifugalkraft wird er abgeplattet. Offenbar wird der Ring gegen die Vertikale eine symmetrische Gestalt anuehmen, weshalb wir nur dessen eine Hälfte zu betrachten brauchen,

54 Ueber die Formveränderungen prismatischer Stäbe durch Biegung.

Die in jedem Punkte thätige Fliehkraft wird dargestellt durch die Gleichung  $f\mu . \partial s. v^{t}.x$ , worin  $\mu$  die Masse der Volumeinheit und v die Rotationsgeschwindigkeit bedeutet. Im obersten Punkte des Ringes werden wir uns aus leicht begreiflichen Gründen eine horizontale Kraft  $X_{1}$  und ein Moment M wirkend annehmen.

Nachdem den Ring keine vertikalen Kräfte beeinflussen, so erscheint es überflüssig, sich im letztbezeichneten Punkte eine Kraft  $\Sigma \partial q$  angebracht zu denken.

Um die Rechnung zu vereinfachen, nehmen wir die von  $\alpha$  abhängigen Glieder als so unbedeutend an, dass sie, als das Resultat nicht beeinträchtigend, vernachlässigt werden können, wie es beispielsweise bei einem Metallringe der Fall sein wird, und führen als unabhängige Variable den Winkel ein, welchen der irgend einem Punkte entsprechende Radius im Kreise mit jenem Radius bildet, der dem tiefsten Punkte entspricht. Dieser Winkel heisse allgemein  $\alpha$ .

Es wird hiernach:

$$x = r \sin \alpha, \quad \partial x = r \cdot \cos \alpha \cdot \partial \alpha$$
$$\bar{\partial} s = r \cdot \partial \alpha,$$
$$y = r (1 - \cos \alpha), \quad \partial y = r \cdot \sin \alpha \cdot \partial \alpha$$

und

$$b = \frac{1}{E \cdot \mathfrak{T}} \left[ -\Sigma X(y'-y) - X'(2r-y) \right] + M$$
  
=  $\frac{1}{E \cdot \mathfrak{T}} \left[ M - X_1 (2r-y) - \mu f v^2 r^2 \int_{\alpha}^{\pi} \sin \alpha (r - r \cos \alpha - y) \partial \alpha \right];$ 

ferner

$$\frac{\delta \varphi}{E \cdot \mathfrak{T}} = \int_{0}^{\alpha} \int \frac{b}{E \mathfrak{T}} \partial s = Mr \int_{0}^{\alpha} \partial \alpha - r^{2} X_{1} \int_{0}^{\alpha} (1 + \cos \alpha) \partial \alpha$$
$$- \mu f v^{2} r^{4} \int_{0}^{\alpha} (1 + \cos \alpha - \frac{\sin^{2} \alpha}{2}) \partial \alpha$$
$$= Mr \alpha - r^{2} X_{1} (\alpha + \sin \alpha) - \mu f v^{2} r^{4} \left( \frac{3\alpha}{4} + \sin \alpha + \frac{\sin \alpha \cos \alpha}{4} \right)$$

und

$$\frac{\delta x}{E \cdot \mathfrak{T}} = \frac{-1}{E \cdot \mathfrak{T}} \int_{0}^{\mathfrak{Y}} \partial y \, \delta \varphi = \frac{-r}{E \cdot \mathfrak{T}} \int_{0}^{\mathfrak{A}} \sin \alpha \cdot \delta \varphi \cdot \partial \alpha$$

$$= -Mr^{2}(-\alpha \cos \alpha + \sin \alpha) + r^{3} X_{1} \left(-\alpha \cos \alpha + \sin \alpha + \frac{\alpha}{2} - \frac{\sin \alpha \cos \alpha}{2}\right)$$

$$+ \mu f v^{2} r^{5} \left(\frac{-3}{4} \alpha \cos \alpha + \frac{3}{4} \sin \alpha + \frac{\alpha}{2} - \frac{\sin \alpha \cos \alpha}{2} + \frac{\sin^{3} \alpha}{12}\right).$$
Für  $\alpha = \pi$  ist  $\delta \varphi = 0$  und  $\delta x = 0$ ; daher:  

$$\delta \varphi_{\pi} = 0 = Mr \pi - r^{2} X_{1} \pi - \frac{3}{4} \mu f v^{2} r^{4} \pi$$
Displaced by  $0 = 0$ 

und ebenso

die

$$\delta x_{\pi} = 0 = -Mr^{2}\pi + r^{3}X_{1}\left(\pi + \frac{\pi}{2}\right) + \mu f v^{2}r^{5}\pi \left(\frac{3}{4}\pi + \frac{\pi}{2}\right).$$

Als die Centrifugalkraft eines Ringquadranten ergiebt sich:  $X_1 = -\mu f v^2 r^2$ 

and für *M* findet man

$$M=-\frac{\mu f v^2 r^3}{4}.$$

Substituirt man die gefundenen Zahlwerthe, so ist:

$$\delta \varphi = \frac{-\mu \int v^2 r^4}{4E\chi} \cdot \sin \alpha \cdot \cos \alpha,$$
  

$$\delta x = r \int_{0}^{\alpha} \sin \alpha \cdot \delta \varphi \cdot \partial \alpha = \frac{\mu \int v^2 r^5}{12E \cdot \chi} \sin^2 \alpha,$$
  

$$\partial y = r \int_{0}^{\alpha} \cos \alpha \cdot \delta \varphi \cdot \partial \alpha = -\frac{\mu \int v^2 r^5}{12E \cdot \chi} (1 - \cos^2 \alpha);$$

folglich die neuen Coordinaten:

$$x = r \sin \alpha + \frac{\mu f v^2 r^5}{12 E \mathfrak{T}} \sin^3 \alpha$$
$$y = r - r \cos \alpha + \frac{\mu f v^2 r^5}{12 E \mathfrak{T}} (\cos^3 \alpha - 1).$$

Wie leicht ersichtlich, ist die Verkürzung der kleinen Axe gleich der Verlängerung der grossen und zwar beträgt die Abplattung

$$\frac{\mu f v^2 r^5}{6 E. \mathfrak{T}}.$$

Beispiel 6. Ein gerader Stab, welcher auf n Stützen frei aufruht, wird einer über seine Länge gleichförmig vertheilten Belastung ausgesetzt und ausserdem dem Einflusse von Kräften unterworfen, deren Angriffspunkte zwischen je zwei Stücken liegen.

Die Stabaxe im ungebogenen Zustande sei zugleich Abscissenaxe, und

$$P_1, P_2, P_3 \dots P_{m-2}, P_{m-1}$$
  
vertikal nach abwärts wirkenden Kräfte, während

 $Q_0, Q_1, Q_{02}, \dots, Q_{n-1}$ 

die nahezu vertikalen Drücke auf die Stützen, oder richtiger, die aus den Pressungen gegen die Stützpunkte entspringenden vertikalen Componenten sind; ferner seien

$$0, \beta_1, \beta_2....\beta_{n-2}, \beta_{n-1}$$

die Entfernungen der Stützen vom Ursprung, und g die veränderliche Belastung pro Längeneinheit.

$$\begin{aligned} & \text{Man hat sodann für den } r^{\text{ten Stützpunkt:}} \\ & 0 = \int_{0}^{\beta_{r}} \int_{0}^{x} \int_{0}^{\beta_{r}} \partial x \left[ P_{r+1} \left( \alpha_{r+1} - x \right) + P_{r+2} \left( \alpha_{r+2} - x \right) + \dots \right] \\ & \dots + P_{n-1} \left( \alpha_{n-1} - x \right) + \int_{x}^{\beta_{n-1}} g \left( x' \cdot x \right) \partial x' \right] + Q_{r+1} \left( \beta_{r+1} - x \right) + Q_{r+1} \left( \beta_{r+2} - x \right) + \dots \\ & \dots + Q_{n-1} \left( \beta_{n-1} - x \right) + \int_{0}^{\alpha_{r}} \partial x \int_{0}^{x} P_{r} \left( \alpha_{r} - x \right) \partial x + \left( \beta_{r} - \alpha_{r} \right) \int_{0}^{\alpha_{r}} P_{r} \left( \alpha_{r} - x \right) \partial x \\ & + \int_{0}^{\beta_{r}} \partial x \int_{0}^{x} Q_{r} \left( \beta_{r} - x \right) \partial x + \left( \beta_{r} - \beta_{r} \right) \int_{0}^{\beta_{r}} Q_{r} \left( \beta_{r} - x \right) \partial x \\ & + \int_{0}^{\beta_{r-1}} \partial x \int_{0}^{\alpha_{r-1} - 1} x \partial x + \left( \beta_{r} - \beta_{r-1} \right) \int_{0}^{\beta_{r-1} - 1} \left( \alpha_{r-1} - x \right) \partial x \\ & + \int_{0}^{\beta_{r-1} - 1} \alpha \\ & + \int_{0}^{\beta_{r-1} - 1} \alpha \\ & + \int_{0}^{\beta_{r-1} - 1} \alpha \int_{0}^{\alpha_{r-1} - 1} \left( \beta_{r-1} - x \right) \partial x + \left( \beta_{r} - \beta_{r-1} \right) \int_{0}^{\beta_{r-1} - 1} \left( \beta_{r-1} - x \right) \partial x + \dots \\ & \dots + \beta_{r} \cdot \partial \varphi_{0} \cdot E \cdot \mathfrak{T} \end{aligned}$$

oder, wenn man die Integrationen theilweise ausführt, die Ausdrücke zusammenzieht und vom Summenzeichen Gebrauch macht:

$$0 = \int_{0}^{\beta_{r}} \partial x \int_{0}^{x} \partial x \int_{x}^{\beta_{r-1}} g(x'-x) \partial x' + \frac{\beta_{r}^{2}}{2} \sum_{r+1}^{n-1} \left\{ \left( P_{s} \alpha_{s} - \frac{\beta_{r}}{3} \right) + Q_{s} \left( \beta_{s} - \frac{\beta_{r}}{3} \right) \right\}$$
$$+ \frac{1}{3} \sum_{1}^{r} \left\{ P_{s} \alpha^{2} \left( \beta_{r} - \frac{\alpha_{s}}{3} \right) + Q_{s} \beta_{s}^{2} \left( \beta_{r} - \frac{\beta_{s}}{3} \right) \right\} + \beta_{r} \cdot \delta \varphi_{0} \cdot E \cdot \mathfrak{T}.$$

Substituirt man in diese Gleichung für r alle Werthe von 1 bis (n-1), und beachtet hierbei, dass nothwendigerweise

$$\mathcal{E}_{1}^{n-1} P_{r} + \mathcal{E}_{1}^{n-1} Q_{r} + \int_{0}^{\beta_{n-1}} g \partial x = 0$$

und

$$\Sigma_{1}^{n-1} P_{r} \alpha_{r} + \Sigma_{0}^{n-1} Q_{r} \beta_{r} + \int_{0}^{\beta_{n-1}} g x \partial x = 0$$

sein muss, so können durch Auflösung diescrn+1 Gleichungen, welche in Bezug auf die Unbekannten  $Q_0$  bis  $Q_{n-1}$  linear sind, letztere auf allgemeine Art gefunden werden.

Ist jedoch

$$P_1 = P_2 = P_3 = \dots P_{n-1} = 0,$$

und

$$\beta_{n-1}-\beta_{n-2}=\beta_{n-2}-\beta_{n-3}=\ldots\beta_1-0=$$

und g constant, so werden jene Gleichungen allgemein in folgende übergehen:

$$g_{0}^{r\rho} \partial x \int \partial x \int (x'-x) \partial x' + \frac{r^{2}\beta^{3}}{2} \Sigma_{r+1}^{s-1} Q_{s} \left(s-\frac{r}{3}\right) + \frac{\beta^{3}}{2} \Sigma_{r}^{r} Q_{s} \cdot s \left(r-\frac{s}{3}\right) + \beta_{r} \delta \varphi_{0} \cdot E \cdot \mathfrak{T} = 0,$$

Digitized by GOOGIC

oder:  

$$\Sigma_{1}^{n-1} \left\{ 2\beta g \left[ \frac{r^{2} (n-1)^{2}}{4} - \frac{r^{3} (n-1)}{6} + \frac{r^{4}}{24} \right] + Q_{1} \left( r - \frac{1}{3} \right) + Q_{2} \left( r - \frac{2}{3} \right) 2^{3} + Q_{3} \left( r - \frac{3}{3} \right) 3^{2} + \dots + Q_{r} \left( r - \frac{r}{3} \right) r^{4} + Q_{r+1} \left( r + 1 - \frac{r}{3} \right) r^{2} + Q_{r+3} \left( r + 2 - \frac{r}{3} \right) r^{4} + \dots + Q_{n-1} \left( n - 1 - \frac{r}{3} \right) r^{4} + \frac{2r \cdot \delta \varphi_{0} \cdot E \cdot \mathfrak{T}}{\beta^{4}} \right\} = 0$$
and

 $(n-1)\beta g + \Sigma_1^{n-1} Q_s = 0,$ 

ferner ebenso:

\*\*\*\*\*

$$\frac{(n-1)^{\mathfrak{r}}\beta^{\mathfrak{r}}g}{2}+\Sigma_{1}^{n+1}Q,\,\beta_{\mathfrak{s}}=0.$$

Ruht beispielsweise der gleichförmig belastete Balken auf 3 Stützen suf, so ergeben sich hierfür nachstehende Gleichungen:

$$\frac{2}{3} Q_1 + \frac{5}{3} Q_2 + \frac{17g}{12} + 2\delta \varphi_0 \cdot E \cdot \mathfrak{T} = 0,$$
  
$$\frac{5}{3} Q_1 + \frac{16}{3} Q_2 + \frac{12g}{3} + 4\delta \varphi_0 \cdot E \cdot \mathfrak{T} = 0,$$
  
$$Q_1 + 2Q_2 + 2g = 0,$$
  
$$Q_0 + Q_1 + Q_2 + 2g = 0,$$

woraus folgt, dass

$$Q_0 = Q_2 = -\frac{3}{8}g; \quad Q_1 = -\frac{10}{8}g.$$

Wäre hingegen

$$g=0 \quad \text{und} \quad P_1 = P_2 = \dots = P_{n-1} = P$$
$$-1 - \alpha_{n-2} = \alpha_{n-2} - \alpha_{n-3} = \dots = \alpha_2 - \alpha_1 = \alpha = \beta,$$

so erhält man:

α<sub>n</sub>.

$$r^{s} \Sigma_{r+1}^{n-1} \left\{ P\left(s - \frac{1}{2} - \frac{r}{3}\right) + Q_{s}\left(s - \frac{r}{3}\right) \right\} + \Sigma_{1}^{r} \left\{ P\left(s - \frac{1}{2}\right)^{2} \left(r - \frac{s - \frac{1}{2}}{3}\right) + Q_{s} s^{s} \left(r - \frac{s}{3}\right) \right\} + \frac{2r \, \delta \varphi_{0} \cdot E \cdot \mathfrak{X}}{\beta^{2}} = 0,$$

oder:

$$P\left\{\left(\frac{1}{2}\right)^{2}\left(r-\frac{1}{6}\right)+\left(\frac{3}{2}\right)^{2}\left(r-\frac{3}{6}\right)+\ldots+\left(\frac{2r-1}{2}\right)^{2}\left(r-\frac{2r-1}{6}\right)+\ldots\right.\\ \left.\ldots+r^{2}\left(\frac{2r+1}{2}-\frac{r}{3}\right)+r^{2}\left(\frac{2r+3}{2}-\frac{r}{3}\right)+\ldots+r^{2}\left(\frac{2n-3}{2}-\frac{r}{3}\right)\right\}\\ \left.+\varrho_{1}\iota^{2}\left(r-\frac{1}{3}\right)+\varrho_{2}\iota^{2}\left(r-\frac{2}{3}\right)+\ldots+\varrho_{r}r^{2}\left(r-\frac{r}{3}\right)+\varrho_{r+1}r^{2}\left(r+1-\frac{r}{3}\right)\\ \left.+\varrho_{r+2}r^{2}\left(r+2-\frac{r}{3}\right)+\ldots+\varrho_{n-1}r^{4}\left(n-1-\frac{r}{3}\right)+\frac{2r\cdot\delta\varphi_{0}\cdot E\cdot\mathfrak{X}}{\beta^{2}}=0.$$

Bemerkung. Die Spannungen in den einzelnen Punkten eines Querschnittes sind selbstverständlich verschieden. Es wird jedoch im Allgemeinen auch solche Punkte geben, wo die Spannungen gleich Null

.

58 Ueber d. Formveränderungen prismat. Stäbe etc. Von G. PESCHKA.

werden. Diese ergeben sich sehr einfach; denn wir hatten gefunden, dass, wenn die Krümmungsradien absolut genommen werden

$$\frac{\partial p}{\partial f} = E \frac{\partial s}{\partial s_1} \left( \frac{1}{\varrho} - \frac{1}{\varrho_1} \right) u + E \left( \frac{\partial s}{\partial s_1} - 1 \right).$$
$$\frac{\partial s}{\partial s_1} \left( \frac{1}{\varrho} - \frac{1}{\varrho_1} \right) = \pm b,$$

und

Es ist aber auch

$$\frac{\partial s}{\partial s_i} - 1 = a,$$

daher:

$$\frac{\partial p}{E \partial f} = \pm b \cdot u + a.$$

Die besagten Punkte befinden sich also in einer Entfernung von der Axe, die ausgedrückt wird durch

$$u = \mp \frac{a}{b}.$$

Hierbei ist das obere oder das untere Zeichen zu wählen, je nachdem der Neigungswinkel  $\varphi$  von dem betrachteten Querschnitte gegen das Ende zu- oder abnimmt.

Für jeden Querschnitt wird es somit eine zu seiner Biegungsschweraxe parallele Gerade geben, welcher besagte Eigenschaft zukömmt.

Alle derartigen Geraden im Stabe bilden eine Cylinderfläche, welcher man den Namen neutrale Schichte beilegt. Wie ersichtlich, wird diese nur in einzelnen Fällen und zwar dort, wo  $\alpha = 0$  ist oder wo alle Kräfte senkrecht auf die Richtung der Tangente in diesem Punkte wirken, durch den Schwerpunkt des Querschnittes gehen.

# Kleinere Mittheilungen.

L Ueber eine das Hyperboloid betreffende Aufgabe. In seiner Abhandlung "On a new geometry of space" (Transactions of the Royal Society, 2 Febr. 1865) löst Herr Plücker die Aufgabe, aus den Gleichungen dieser Complexe die Gleichung des Hyperboloids zu finden, welches aus den ihnen gemeinsamen Geraden gebildet wird. Ich gebe im Folgenden eine Lösung dieser und der umgekehrten Aufgabe, welche in symmetrischer Form erscheint, indem ich mich homogener (Tetraeder-) Coordinaten bediene, wie solche schon Herr Lüroth (Crelle's Journal, Bd. 67) in die Plücker'sche Theorie der Raumgeraden eingeführt hat.

Sind  $x_1 x_2 x_3 x_4$  und  $y_1 y_2 y y_4$  die Coordinaten zweier Punkte im Raume (x, y) und setzt man

$$p_{ik} = x_i y_k - y_i x_k, \quad (p_{ik} = -p_{ki}),$$

so kann man die sechs Grössen  $p_{ik}$  als die homogenen Coordinaten der Geraden x, y bezeichnen. Zwischen denselben besteht die Gleichung:

I)

 $P = p_{12}p_{34} + p_{13}p_{42} + p_{14}p_{23}.$ 

Man erhält aus dem ersten Gliede dieser Gleichung die übrigen, indem man den ersten Index festhält und die übrigen cyclisch permutirt (vergl. Jacobi, Crelle's Journal Bd. 2, p. 355). Wegen der Gleichung 1) repräsentiren die Verhältnisse der *p* nur vier von einander unabhängige Grössen, die Bestimmungsstücke der Geraden.

Fasst man statt dieser die Gerade als Schnitt zweier Ebenen u, v auf, deren Coordinaten  $u_1 u_2 u_3 u_4$  und  $v_1 v_2 v_3 v_4$  sind, so |erhält man ebenso als Coordinaten der Geraden u, v die sechs Grössen:

 $q_{ik} = u_i v_k - v_i u_k, \qquad (q_{ik} = -q_{ki}),$ zwischen denen die Relation besteht:

$$Q = q_{12}q_{34} + q_{13}q_{42} + q_{14}q_{23}.$$

Und zwar sind diese sechs Coordinaten q den sechs Coordinaten p einzeln proportional, in der Weise, dass:

2) 
$$\mu p_{ik} = \frac{\partial Q}{\partial q_{ik}} = q_{i'k'} \qquad \nu q_{ik} = \frac{\partial P}{\partial p_{ik}} = p_{i'k'},$$

wobei  $\mu$ ,  $\nu$  unbestimmte Factoren bedeuten, und die Indices *i' k'* mit den Indices *ik* in der durch die Formeln ausgedrückten Beziehung stehen.

Entsprechend den Definitionen des Herrn Plücker bilden nun alle Geraden, zwischen deren Coordinaten p eine Gleichung  $n^{ter}$  Ordnung besteht:

 $\varphi(p) = 0$ 

einen Complex n<sup>ter</sup> Ordnung; diejenigen, zwischen deren Coordinaten zwei Gleichungen bestehen:

$$\psi(p)=0, \quad \psi(p)=0$$

bilden eine Congruenz. Endlich bilden eine windschiefe Fläche alle Geraden, zwischen deren Coordinaten drei Gleichungen

$$\varphi(p) = 0, \quad \psi(p) = 0, \quad \chi(p) = 0$$

stattfinden. Man kann dies auch so ausdrücken, dass die zwei Complexen gemeinschaftlicher Geraden eine Congruenz, die dreien gemeinschaftlichen eine Fläche bilden.

Den linearen Complex

3)  $a_{34}p_{12} + a_{12}p_{34} + a_{42}p_{13} + a_{13}p_{42} + a_{23}p_{14} + a_{14}p_{23} = 0$ will ich einen speciellen nennen, wenn zwischen den  $a(a_{ik} = -a_{ki})$  die Gleichung besteht:

 $a_{12}a_{34} + a_{13}a_{42} + a_{14}a_{23} = 0.$ 

Die a sind dann Coordinaten einer Geraden, und die Gleichung 3) umfasst die Gesammtheit aller Geraden, welche die Gerade a schneiden. Zwei lineare Complexe kann man nach Plücker immer auf zwei Arten so combiniren, dass sie in specielle übergehen; so dass also die durch zwei lineare Complexe gegebene Congruenz aus allen Geraden besteht, die zwei gegebene Gerade schneiden.

Endlich also müssen alle drei linearen Complexen gleichzeitig angehörende Gerade drei feste Gerade schneiden, und also eine Schaar von Erzeugenden eines Hyperboloides sein.

Hieran anknüpfend will ich im Folgenden die beiden Aufgaben behandeln.

I. Wenn eine Fläche 2<sup>ten</sup> Ordnung f=0 gegeben ist, Complexe zu finden, auf denen die erste, und solche, auf denen die zweite Schaar ihrer Erzeugenden liegt.

II. Wenn drei lineare Complexe gegeben sind, die Gleichung des Hyperboloids zu finden, dessen eine Schaar von Erzeugenden diesen Complexen gemeinsam ist. I.

Die Gleichung  $f = \sum a_{ik} x_i x_k = 0$  möge symbolisch geschrieben werden  $a_x^2 = 0$ ,  $(a_x = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4)$ 

wobei die Producte  $a_i a_k$  die Coefficienten  $a_{ik}$  vertreten; ebenso mögen die Buchstaben b, c, d etc. statt a gesetzt werden können. Sind dann x und y

irgend zwei Punkte einer Erzeugenden L, deren Coordinaten durch  $p_{ik}$  bezeichnet werden mögen, so ist:

$$p_{ik} = x_i y_k - y_i x_k.$$

Sind x die laufenden Coordinaten, so haben die Tangentenebenen der Punkte xy die Gleichungen:

$$\Sigma_{\frac{1}{2}}^{\frac{1}{2}} \frac{\partial f(x)}{\partial x_i} X_i = a_x a_X = 0, \quad \Sigma_{\frac{1}{2}}^{\frac{1}{2}} \frac{\partial f(y)}{\partial y_i} X_i = a_y a_X = 0.$$

Nun kann man leicht einsehen, dass diese Tangentenebenen sich in der Erzeugenden (xy) schneiden, mithin ist:

$$q_{ik} = a_x b_y (a_i b_k - b_i a_k) = \frac{1}{4} \left\{ \frac{\partial f(x)}{\partial x_i} \frac{\partial f(y)}{\partial y_k} - \frac{\partial f(x)}{\partial x_k} \frac{\partial f(y)}{\partial y_i} \right\}$$

und man hat nach Gleichung 2)

5)

6)

4)  $a_{x}b_{y}(a_{i}b_{k}-b_{i}a_{k}) = \mu(x_{i'}y_{k'}-y_{i'}x_{k'})$ 

als die Gleichungen von linearen Complexen, auf denen L liegt.

Der Proportionalitätsfactor  $\mu$  ist hier nicht unbestimmt, man kann ihn auf folgende Weise finden.

Ist M irgend eine Erzeugende derselben Schaar, wie L, und sind zwei ihrer Punkte  $\xi$ ,  $\eta$ , so liegt M auf den Complexen:

 $a_{\xi} b_{\eta}(a_i b_k - b_i a_k) = \mu_M(\xi_i \eta_k - \eta_i \xi_k).$ 

Den Proportionalitätsfactor, durch den sich höchstens die Complexe, denen die Geraden L und M angehören, unterscheiden können, habe ich in der zweiten Relation  $\mu_M$  genannt und will ihn in der ersten mit  $\mu_L$  bezeichnen.

Um diese Grössen in Beziehung zu einander zu setzen, bilde ich die Identität:

$$\begin{vmatrix} a_{x}a_{1} & a_{x}a_{2} & a_{x}a_{3} & a_{x}a_{4} \\ b_{y}b_{1} & b_{y}b_{2} & b_{y}b_{3} & b_{y}b_{4} \\ c_{\xi}c_{1} & c_{\xi}c_{2} & c_{\xi}c_{3} & c_{\xi}c_{4} \\ d^{7}d_{1} & d_{7}d_{2} & d_{7}d_{3} & d_{7}d_{4} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} \begin{vmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{5} & z_{5} & z_{5} & z_{5} \\ a_{11} & a_{12} & a_{13} & a_{14} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4} \\ z_{5} & z_{5} & z_{5} & z_{5} \\ y_{1} & y_{1} & y_{2} & y_{3} & y_{4} \end{vmatrix}$$

Die linke Seite dieser Gleichung geht aber, wenn man die Determinante als Summe von Producten von Unterdeterminanten darstellt, die aus den ersten beiden und den letzten beiden Horizontalreihen gebildet werden, und wenn man alsdann die Werthe der ersten aus 4, die der letzten aus 5 entnimmt, in folgenden Ausdruck über:

$$\mu_L \mu_M \Sigma(x_i y_k - y_i x_k) (\xi_i \eta_k - \eta_i \xi_k) = \mu_L \mu_M \Sigma + x_1 y_9 \xi_3 \eta_4.$$

Indem man also in der obigen Gleichung die Determinante der  $x, y, \xi, \eta$  forthebt, bleibt

$$\mu_L \mu_M = \Delta$$

wohei ⊿ die Determinante der Fläche ist und den Werth hat:

$$\varDelta = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{45} & a_{44} \end{vmatrix}$$

Schreibt man die Gleichung 6) in der Form  $\mu_M = \frac{\Delta}{\mu_L}$ , so sieht man, dass für jede Gerade derselben Schaar  $\mu_M$  denselben Werth hat und dass also auch  $\mu_L = \mu_M$  sein muss, so dass

$$\mu_L = \sqrt{\Delta}.$$

Die Erzeugenden des Hyperboloides f=0 liegen also auf den Complexen:

$$a_{x}b \quad (a_{i}b_{k} - b_{i}a_{k}) = \sqrt{\Delta} (x_{i} \cdot y_{k} - y_{i} \cdot x_{k})$$
$$= \frac{1}{4} \left\{ \frac{\partial f(x)}{\partial x_{i}} \frac{\partial f(y)}{\partial y_{k}} - \frac{\partial f(x)}{\partial x_{k}} \frac{\partial f(y)}{\partial y_{i}} \right\}$$

und zwar entsprechen den Zeichen der Quadratwurzel die beiden Schaaren der Erzeugenden. Je drei der sechs in dieser Formel enthaltenen Gleichungen bilden eine Lösung der gestellten Aufgabe.

An die Form der Gleichung 7) kann man folgende Bemerkung knüpfen. Gehört die Gerade L ausser der Oberfläche f=0 noch einer zweiten Oberfläche  $\varphi=0$  an, so liegt sie auf allen Flächen der Schaar:

$$f + \lambda \varphi = 0$$

und für zwei Punkte x, y derselben besteht nach 7), und zwar unabhängig von  $\lambda$ , die Gleichung:

Da hier die linke Seite für  $\lambda$  rational ist, muss es auch die rechte sein. In diesem Falle aber, wo  $f, \varphi$  eine Gerade gemein haben, zerfällt die Schnittcurve von f und  $\varphi$  in diese und in eine Raumcurve dritter Ordnung.

Man hat also den bekannten Satz vor sich, dass in diesem Falle die Determinante  $\varDelta$  in das vollständige Quadrat eines Ausdruckes zweiten Grades in  $\lambda$  übergehen muss, und zugleich giebt die obige Gleichung für die Wurzel dieses Quadrats einen rationalen Ausdruck.

#### П.

Es seien nun die drei linearen Complexe

8)  $A = \sum a_{ik} q_{ik} = 0$ ,  $B = \sum b_{ik} q_{ik} = 0$ ,  $C = \sum c_{ik} q_{ik} = 0$ gegeben. Man sucht die Gleichung der Fläche zweiter Ordnung, welche die ibnen gemeinschaftlichen Geraden enthält.

Sind nun x und y irgend zwei Punkte einer dieser Geraden L, dann wird nach 2):

$$q_{ik} = \mu [x_{i'}y_{k'} - y_{i'}x_{k'}],$$

$$A = \sum a_{ik} (x_{i'}y_{k'} - y_{i'}x_{k'}) = 0, \quad B = \sum b_{ik} (x_{i'}y_{k'} - y_{i'}x_{k'}) = 0,$$
wo die Indices i'k' die nämliche Bedeutung haben, wie in Formel 2).

Digitized by Google

62

Diese beiden Gleichungen gelten, wenn man den Punkt x irgendwie auf L fixirt hat, noch für jeden veränderlichen Punkt y der Geraden L; sie erscheinen, falls wir die y als laufende Coordinate ansehen, als die Gleichungen zweier Ebenen, die sich in L schneiden und die Coordinaten haben:

| ð A                         | ð A                         | ð A  | ð A                       |
|-----------------------------|-----------------------------|------|---------------------------|
| $\overline{\partial y_1}$   | ðy,                         | dy,' | $\overline{\partial y_4}$ |
| ) B                         | ∂ B                         | ∂ B  | ∂ <i>B</i>                |
| $\overline{\partial y_1}$ ' | $\overline{\partial y_2}$ ' | dy,' | ðy.                       |

Hieraus folgt, dass:

$$v q_{ik} = \frac{\partial A}{\partial y_i} \frac{\partial B}{\partial y_k} - \frac{\partial B}{\partial y_i} \frac{\partial A}{\partial y_k}$$

and wenn wir diese Werthe in die Gleichung C = 0 eintragen:

9) 
$$\Sigma c_{ik} \left\{ \frac{\partial A}{\partial y_i} \frac{\partial B}{\partial y_k} - \frac{\partial B}{\partial y_k} \frac{\partial A}{\partial y_k} \right\} = 0.$$

Dies ist die Gleichung der gesuchten Fläche.

Die beiden Theile des auf der linken Seite dieser Gleichung stehenden Ausdruckes, nämlich:

$$\Sigma c_{ik} \frac{\partial A}{\partial y_i} \frac{\partial B}{\partial y_k}$$
 und  $-\Sigma c_{ik} \frac{\partial A}{\partial y_k} \frac{\partial B}{\partial y_i}$ 

stimmen mit einander überein, da sie durch Vertauschung der Indices in einander übergehen, man kann also statt der Summe beider Glieder eines derselben setzen, und daher der Gleichung die kürzere Form geben:

$$\Sigma c_{ik} \frac{\partial A}{\partial y_i} \frac{\partial B}{\partial y_k} = 0.$$

Diese Gleichung ist nur scheinbar unsymmetrisch; denn man kann leicht nachweisen, dass sie durch andere Anordnung der Glieder auf der linken Seite die Form annehmen kann:

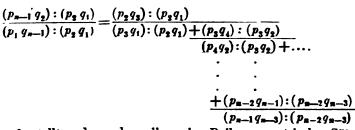
$$\Sigma a_{ik} \frac{\partial B}{\partial y_i} \frac{\partial C}{\partial y_i} = 0; \quad \Sigma b_{ik} \frac{\partial C}{\partial y_i} \frac{\partial A}{\partial y_k} = 0,$$

welche sich von der ersten Form nur durch Vertauschung der Buchstaben a, b, c unterscheiden.

Giessen.

Prof. Dr. GORDAN.

II. Zur Anwendung der Kettenbrüche. Von JOHANN LIEBLEIN, a. o. Professor am Polytechnikum zu Prag. In einem früheren Aufsatze ("Geometrische Deutung der Kettenbrüche", XII. Jahrg. 3. Heft dieser• Zeitschrift) habe ich den Kettenbruch



aufgestellt und aus demselben eine Reihe geometrischer Sätze abgeleitet. Dieser Kettenbruch gestattet eine bemerkenswerthe Verallgemeinerung. Wenn man nämlich statt der p und q neue Grössen x einführt durch die Substitution

$$p_{r} = \frac{x_{r+1,1}}{x_{r+1,3}} - \frac{x_{1,1}}{x_{1,3}}, \quad q_{r} = \frac{x_{r+1,2}}{x_{r+1,3}} - \frac{x_{1,2}}{x_{1,3}}$$

und sodann successive

$$x_{r+1, f} = \frac{x'_{r+2, f}}{x'_{r+2, 4}} - \frac{x'_{1, f}}{x_{1, 4}},$$

$$x'_{r+2, g} = \frac{x''_{r+3, g}}{x''_{r+3, 5}} - \frac{x''_{1, g}}{x'_{1, 5}},$$

$$\vdots$$

$$x_{r+m-3, h}^{(m-3)} = \frac{x_{r+m-2, h}^{(m-3)}}{x_{r+m-2, m}^{(m-3)}} - \frac{x_{1, h}^{(m-3)}}{x_{r+m-2, m}^{(m-3)}},$$

setzt, so findet man nach leichter Rechnung einen Kettenbruch, in welchem sämmtliche Glieder Quotienten von Determinanten m<sup>ten</sup> Grades sind. Diese Determinanten sind in der Form

$$\Sigma \pm x_{1,1}^{(m-3)} x_{2,2}^{(m-3)} \dots x_{m-2,m-2}^{(m-3)} x_{r,m-1}^{(m-3)} x_{e,m}^{(m-3)}$$

enthalten, die ohne Abbruch der Deutlichkeit kurz durch  $(1 \ 2 \ 3 \dots m - 2 \ r \ s)$ bezeichnet werden kann, da in der Folge die Reihe der zweiten Stellenzeiger ungestört bleibt. Wenn man überdies nur die ersten n - m Glieder des Kettenbruches beibehält, so lautet die neue Relation:

1) 
$$\frac{(1...m-2 n m):(1...m-2 m-1 m)}{(1...m-2 m-1 n):(1...m-2 m-1 m)} = \frac{(1...m-2 m m+1)}{(1...m-2 m+1 m-1)} + \frac{(1...m-2 m+1 m+2)}{(1...m-2 m+1 m)} + \frac{(1...m-2 m+1 m+2)}{(1...m-2 m+1 m)} + \frac{(1...m-2 m+1 m)}{(1...m-2 m+1 m)} + \frac{(1...m-2 m+1 m)}{(1...m-2 m+1 m)} + \frac{(1...m-2 m+1 m)}{(1...m-2 m+1 m)} + \frac{(1...m-2 m-1 n)}{(1...m-2 m-1 n-2)} + \frac{(1...m-2 m-1 n-2)}{(1...m-2 m-1 n-2)},$$

in welcher die Stellenzeiger auf irgend eine Art unter einander vertauscht werden können.

Die Elemente der Determinanten bilden ein System von n Reihen zu je m Gliedern (n > m), aus welchem sich demnach im Ganzen  $(n)_m$  von einander verschiedene Determinanten mien Grades bilden lassen, wenn man hierzu je m Reihen so oft als möglich benutzt. Durch die obige Relation ist eine nicht uninteressante Eigenschaft dieser Determinanten bewiesen; diese nämlich, dass sich aus je 2(n-m)+1 von einander unabhängigen Determinanten, deren Elementensysteme in m-2 Reihen übereinstimmen, ein Kettenbruch bilden lasse, derart, dass seine Näherungsbrüche Quotienten von Determinanten derselben Art sind. Auch ersieht man, dass durch 2(n-m)+1 von einander unabhängige Determinanten der eben angegebenen Art alle übrigen bestimmt sind. Denn aus 1) erhält man, successive n = m + 2, m + 3.... n setzend, zunächst 2(n - m) - 3 weitere, und sodann die noch übrigen durch eine zweckmässige Vertauschung der Stellenzeiger. Für die wirkliche Berechnung empfiehlt sich die indirecte Bestimmung der Zähler und Nenner der Partialbrüche. Schreibt man die Gleichung:

$$\frac{(1\dots m-2\ m+r\ m)}{(1\dots m-2\ m-1\ m)} = \frac{(1\dots m-2\ m+r\ m+r-2)}{(1\dots m-2\ m+r-1\ m+r-2)} \cdot \frac{(1\dots m-1\ m+r-1\ m)}{(1\dots m-2\ m-1\ m)} + \frac{(1\dots m-2\ m+r-1\ m+r)}{(1\dots m-2\ m+r-1\ m+r-2)} \cdot \frac{(1\dots m-2\ m+r-2\ m)}{(1\dots m-2\ m+r-2\ m)},$$

welche den Zusammenhang von drei aufeinanderfolgenden Zählern ausdrückt, in der Form

$$(1....m-2mm+r-1)(1....m-2m+r-2m+r) = (1....m-2mm+r-2)(1....m-2m+r-1m+r) + (1....m-2m+r-2m+r-1)(1....m-2mm+r).$$

so erhält man eine Beziehung zwischen sechs Determinanten  $m^{\text{ten}}$  Grades, welche aus m + 2 Elementenreihen des obigen Systems gebildet werden können, wenn m-2 dieser Reihen allen Determinanten gemeinschaftlich sein sollen, und die Gleichung 2) lehrt, aus fünf solchen Determinanten die sechste zufinden. Dasselbe Ergebnisswürde die Berechnung des Nenners irgend eines Partialbruches liefern, und man ist daher berechtigt, folgenden Satz auszusprechen:

> "Wenn man aus einem Systeme von *n* Elementenreihen mit je *m* Gliedern (n > m) alle möglichen Determinanten  $m^{\text{ten}}$  Grades bildet, deren Systeme dieselben m-2 Reihen gemeinschaftlich haben, so lassen sich aus den Werthen von 2(n-m)+1 von einander unabhängigen Determinanten die Werthe aller übrigen durch wiederholte Anwendung der Gleichung 2) finden."

Dieser Satz lässt sich verallgemeinern. Man denke sich nämlich aus den obigen Elementarreihen sämmtliche Determinanten gebildet und Zeitschrift f. Muthematik u. Physik. XIII, 1. nehme von diesen vorläufig alle jene als bekannt an, deren Systeme k+1 bestimmte, übrigens willkürlich ausgewählte Reihen gemeinschaftlich haben.

Diese Determinanten sind demnach in der Form

$$(a_1 a_2 \dots a_{k+1} x y \dots u v w)$$

enthalten, und es giebt n - (m-1) solche unter ihnen, in welchen  $xy \dots uv$ bestimmte Werthe  $bc \dots fg$  besitzen, die immer so gewählt werden können, dass sämmtliche n - (m-1) Determinanten von einander unabhängig sind. Nimmt man also n - m von einauder unabhängige Determinanten neu an, deren Systeme die  $a_1.a_2...a_k.b.c...g^{te}$  Reihe enthalten, so hat man 2(n-m)+1 Determinanten, welche in m-2 Reihen übereinstimmen und aus welchen alle in der Form

enthaltenen berechnet werden können. Nun sind aher auch alle Determinanten von der allgemeinen Form

 $(a_1 a_2 \ldots a_k x y \ldots v w)$ 

bestimmt; denn zu ihrer Kenntniss gelangt man durch wiederholte Anwendung der Gleichung 2) auf bereits bekannte Determinanten. So z. B. würde man aus

$$\begin{array}{l} a_1 a_2 \dots a_k b c \dots f u a_{k+1} g), \quad (a_1 a_2 \dots a_k b c \dots f u a_{k+1} v), \\ (a_1 a_2 \dots a_k b c f u a_{k+1} v), \quad (a_1 a_2 \dots a_k b c \dots f u g v) \end{array}$$

und

 $(a_1 a_2 \dots a_k b e \dots f u g w)$   $(a_1 a_2 \dots a_k b e \dots f u v w)$ 

zunächst

und aus

$$(a_1 a_2 \dots a_k b c \dots et u a_{k+1} f), \quad (a_1 a_2 \dots a_k et u a_{k+1} v),$$
  
$$(a_1 a_2 \dots a_k b c \dots et u a_{k+1} n), \quad (a_1 a_2 \dots a_k b c \dots et u f v)$$

und

$$(a_1 a_2 \dots a_k etuf w)$$

ferner

 $(a_1 a_2 \ldots a_k b c \ldots e t u v w),$ 

d. h. eine beliebige von jenen Determinanten finden, in deren Systemen an die Stelle zweier bestimmter zwei beliebige Reihen getreten sind u. s. f. Also sind die Werthe aller in der Form

$$(a_1 a_2 \dots a_k x y \dots v w)$$

enthaltenen Determinanten durch die Werthe von

$$(a_1 a_2 \dots a_k a_{k+1} y \dots v n)$$
 und  $n - m$ 

schicklich gewählten neuen Determinanten und folglich auch durch die Determinanten

 $(a_1 a_2 \dots a_{m-2} v w)$  und (m-k-2)(n-m)

zweckmässig gewählte andere vollständig bestimmt. Da nun zur Bestimmung der Determinanten

$$(a_1 a_2 \ldots a_{m+2} v w)$$

wie oben gezeigt wurde, 2(n-m)+1 von einander unabhängige hinreichen, so hat man den allgemeinen Satz:

> "Wenn man aus einem Systeme von *n* Elementenreihen zu je *m* Gliedern (n > m) alle Determinanten  $m^{\text{ten}}$  Grades ableitet, deren Systeme dieselben *k* Reihen besitzen, so sind durch die Werthe von (m-k)(n-m)+1 von einander unabhängigen Determinanten die Werthe aller übrigen vollständig bestimmt."

Ist k=0, d. h. hat man sämmtliche Determinanten ohne Einschränkung gebildet, so sind demnach m(n-m)+1 Determinanten zur Bestimmung der übrigen erforderlich.

Dieses letztere Resultat hat schon Stern gefunden und vor Kurzem in der Abhandlung "Ueber die Bestimmung der Constanten in der Variationsrechnung" bekannt gemacht.

Der vorstehende Satz ist nicht der 'einzige, welchen die Relation 1) liefert; man kann vielmehr noch mehrere geometrische Sätze aus derselben ableiten, wenn man m den besonderen Werth 3 annehmen lässt. Für diesen Werth nämlich und wenn man überdiess n-1 an die Stelle von ntreten lässt, übergeht 1) in

$$3) \ \frac{(1n-13):(123)}{(12n-1):(123)} = \frac{(134):(132)}{(142):(132)+(145):(143)} - \frac{(132)}{(153):(148)+}$$

 $+\frac{(1 n-2 n-1):(1 n-2 n-3)}{(1 n-1 n-3):(1 n-2 n-3)}$ 

und die hier vorkommenden Determinanten bedeuten bekanntlich "doppelte Rauminhalte von dreiseitigen Pyramiden, wenn man die Elemente rechtwinklige Coordinaten von Punkten des Raumes darstellen lässt. Ist also 0 der Anfangspunkt des Coordinatensystems und bezeichnet  $M_r$  den Punkt  $\binom{m(m-3)}{m(m-3)} m^{(m-3)}$ 

$$\begin{pmatrix} x_{r1}^{(m-3)}, x_{r2}^{(m-3)}, x_{r3}^{(m-3)} \end{pmatrix}$$

so lässt sich 3) auch schreiben:

4) 
$$\frac{OM_{1}M_{n-1}M_{3}:OM_{1}M_{2}M_{3}}{OM_{1}M_{2}M_{2}M_{1}:OM_{1}M_{2}M_{3}} = \frac{OM_{1}M_{3}M_{4}:OM_{1}M_{3}M_{2}}{OM_{1}M_{4}M_{2}:OM_{1}M_{3}M_{2} + OM_{1}M_{4}M_{5}:OM_{1}M_{4}M_{3}} - \frac{OM_{1}M_{2}M_{3}}{OM_{1}M_{5}M_{2}:OM_{1}M_{4}M_{5}:OM_{1}M_{4}M_{5}} + \frac{OM_{1}M_{2}M_{3}}{OM_{1}M_{5}M_{5}:OM_{1}M_{4}M_{5}} + \frac{OM_{1}M_{2}M_{3}}{OM_{1}M_{5}M_{5}:OM_{1}M_{4}M_{5}} + \frac{OM_{1}M_{3}M_{5}}{OM_{1}M_{5}M_{5}:OM_{1}M_{4}M_{5}} + \frac{OM_{1}M_{5}M_{5}}{OM_{1}M_{5}M_{5}:OM_{1}M_{4}M_{5}} + \frac{OM_{1}M_{5}M_{5}}{OM_{1}M_{5}M_{5}:OM_{1}M_{4}M_{5}} + \frac{OM_{1}M_{5}M_{5}}{OM_{1}M_{5}M_{5}:OM_{1}M_{4}M_{5}} + \frac{OM_{1}M_{5}M_{5}}{OM_{1}M_{5}M_{5}:OM_{1}M_{5}M_{5}} + \frac{OM_{1}M_{5}M_{5}}{OM_{1}M_{5}M_{5}:OM_{1}M_{5}M_{5}} + \frac{OM_{1}M_{5}M_{5}}{OM_{1}M_{5}M_{5}} + \frac{OM_{1}M_{5}M_{5}}{OM_{1}M_{5}} + \frac{OM_{1}M_{5}M_{5}}{OM_{1}M_{5}} + \frac{OM_{1}M_{5}}{OM_{1}M_{5}} + \frac{OM_{1}M_{5}}{OM_{1$$

$$+ \frac{O M_1 M_{n-2} M_{n-1} : O M_1 M_{n-2} M_{n-3}}{O M_1 M_{n-1} M_{n-3} : O M_1 M_{n-2} M_{n-3}}$$

Die der Relation 2) entsprechende Gleichung lautet jetzt:

$$\begin{array}{c} 0 \ M_1 \ M_3 \ M_{r+2} \ . \ 0 \ M_1 \ M_{r+1} \ M_{r+1} \ M_{r+3} = 0 \ M_1 \ M_3 \ M_{r+1} \ . \ 0 \ M_1 \ M_{r+2} \ M_{r+3} \\ + \ 0 \ M_1 \ M_{r+2} \ . \ 0 \ M_1 \ M_2 \ M_2 \ M_3 \ M_{r+3} \end{array}$$

und liefert einen bekannten geometrischen Satz, welcher bereits von Möbius

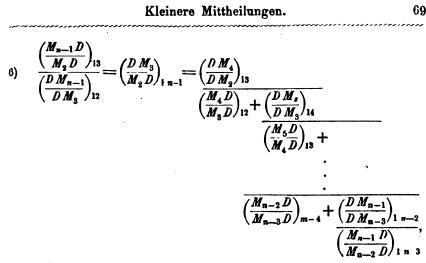
gefunden wurde (siehe dessen baryc. Calcul pag. 225). Der rechte Theil der Gleichung 4) enthält 2n - 7 von einander unabhängige Rauminhalte von jenen dreiseitigen Pyramiden, welche durch ein System von n Punkten des Raumes bestimmt sind. Diese Volumina als gegeben angenommen findet man, n nach und nach = 6, 7.... - n setzend, zunächst 2n - 11 weitere, und sodann durch zweckmässige Vertauschung der Stellenzeiger 2,3...n-1 die Inhalte aller noch übrigen Pyramiden, welche mit den bereits vorhandenen, die Kante OM, gemeinschaftlich haben. Vertauscht man dagegen die Stellenzeiger 1 und 2 mit einander, so erhält man aus 4) eine Relation zur Berechnung der Inhalte jener Pyramiden, welche die Kante  $OM_{e}$  gemeinschaftlich haben aus 2n-7 gegebenen dieser Art. Man bemerke nun, dass aus den bereits bekannten Werthen der Inhalt einer jeden noch unbekannten, die Spitze O enthaltenden Pyramide mit Hilfe der Gleichung 5) berechnet werden kann. So würde man z. B. OM, M, M, aus  $OM_rM_1M_9$ ,  $OM_rM_9M_9$ ,  $OM_rM_1M_t$ ,  $OM_rM_1M_8$  und  $OM_rM_9M_6$  finden. Erwägt man ferner, dass unter den Pyramiden mit der Kante OM, sich bereits n-3 vorfinden, welche die Kante  $OM_2$  gemeinschaftlich haben und ihrem Inhalte nach von einander unabhängig sind, und dass das Volumen einer jeden den Scheitel O nicht besitzenden Pyramide durch die Inhalte von Pyramiden mit diesem Scheitel ausgedrückt werden kann, so hat man den Satz:

> "Wenn von den dreiseitigen Pyramiden, welche durch ein System von n Punkten des Raumes bestimmt sind, irgend 3n-11(=2n-7+n-4) von einander unabhängige ihrem Inhalte nach gegeben sind, so kann man daraus die Inhalte aller übrigen berechnen."

Durch eine ebenso einfache Betrachtung könnte man sich überzeugen, dass 3n-12 von einander unabhängige Verhältnisse zwischen den Inhalten dieser Pyramiden ausreichen zur Berechnung aller übrigen Verhältnisse dieser Art.

Je zwei der Pyramiden, deren Verhältnisse in der Gleichung 4) auftreten, besitzen eine gemeinschaftliche Basis; daher ist das Verhältniss ihrer Inhalte jenem Verhältnisse gleich, nach welchem die gemeinschaftliche Basis die Gerade theilt, welche die Scheitel der beiden Pyramiden verbindet.

Bezeichnet also D den Durchschnittspunkt der gemeinschaftlichen Basis mit der Verbindungslinie der Schenkel, und  $\begin{pmatrix} M_3 D \\ D M_t \end{pmatrix}_{1r}^{}$  das Verhältniss, welches den Quotienten  $\frac{O M_1 M_r M_s}{O M_1 M_t M_r}$  ersetzt, so nimmt die Gleichung 4) folgende Gestalt an:



und an die Stelle von 5) tritt

7) 
$$\left(\frac{M_{r+3}D}{M_{2}D}\right)_{13} = \left(\frac{M_{r+3}D}{M_{r+2}D}\right)_{1r+1} \cdot \left(\frac{M_{r+2}D}{M_{2}D}\right)_{13} + \left(\frac{M_{r+3}D}{M_{r+1}D}\right)_{1r+2} \cdot \left(\frac{M_{r+1}D}{M_{2}D}\right)_{13}$$

Man denke sich durch je drei Eckpunkte eines vollständigen n-Eckes im Raume Ebenen gelegt. Von den Verhältnissen, in denen die Seiten durch diese Ebenen getheilt werden, kommen im rechten Theile der Gleichung 6) 2n-8 von einander unabhängige vor, für welche die getheilten Seiten weder den Punkt 0, noch den Punkt M1, die theilenden Ebenen dagegen eben diese beiden Punkte enthalten, und man überzeugt sich leicht, dass aus diesen 2n-8 Verhältnissen alle übrigen derselben Art gefunden werden können. Auf gleiche Weise sind also durch 2n-8 von einander unabhängige Verhältnisse, für welche die getheilten Seiten weder O noch  $M_k$ , die Theilungsebenen dagegen  $OM_k$  enthalten, alle übrigen Verhältnisse dieser Art bestimmt. Aber die in den Formen

$$\left(\frac{M_r D}{M_s D}\right)_{1 t}$$
 and  $\left(\frac{M_r D}{M_s D}\right)_{k t}$ 

enthaltenen Verhältnisse sind ausreichend zur Berechnung der noch übrigen unbekannten. So würde man aus

$$\left(\frac{M_r D}{M_l D}\right)_{l1}$$
,  $\left(\frac{M_r D}{M_u D}\right)_{lk}$ ,  $\left(\frac{M_u D}{M_l D}\right)_{l1}$  and  $\left(\frac{M_k D}{M_l D}\right)_{l1}$ 

mit Hilfe der Gleichung 7) das Verhältniss  $\left(\frac{M_r D}{M_k D}\right)_{tu}$ , und aus der Gleichung

$$\left(\frac{M_r D}{D M_k}\right)_{tu} \cdot \left(\frac{M_k D}{D M_s}\right)_{tu} \cdot \left(\frac{M_s D}{D M_r}\right)_{tu} = -1,$$

welche eine bekannte Eigenschaft des ebenen Dreiecks ausdrückt und aus 6) gefolgert werden kann, ferner  $\left(\frac{M_s D}{M_s D}\right)_{in}$  finden. Die Berechnung der noch übrigen Verhältnisse geschieht nun auf die bekannte Weise, und es Digitized by Google mag deshalb nur bemerkt werden, dass man die betreffenden Gleichungen aus der Relation

 $M_r M_s M_t M_u + M_s M_t M_u 0 + M_t M_u 0 M_r + M_u 0 M_r M_s + 0 M_r M_s M_t = 0$ abzuleiten hat. Erwägt man nun, dass unter dem in der Form

$$\left(\frac{M_r D}{M_e D}\right)_{1t}$$

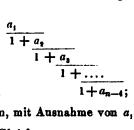
enthaltenen Verhältniss bereits n-4 von einander unabhängige vorkommen, welche gleichzeitig der Form

$$\left(\frac{M_r D}{M_s D}\right)_{kl}$$

angehören, so ist man berechtigt, folgenden Satz auszusprechen:

"Wenn bei einem Systeme von *n* Punkten im Raume je drei Punkte durch Ebenen verbunden werden und es sind von den Verhältnissen, in welchen die Durchschnittslinien je zweier Ebenen von den jeweilig übrigen Ebenen geschnitten werden, irgend 3n-12 (=2n-8+n-4) von einander unabhängige gegeben, so kann daraus jedes Verhältniss dieser Art gefunden werden."

Die Gleichung 4) lässt sich noch auf eine andere Weise umgestalten, die wieder zu einem Satze führt. Man bringe nämlich den Kettenbruck auf die Form



die Grössen *a* sind sodann, mit Ausnahme von  $a_1 = \frac{O M_1 M_2 M_4}{O M_1 M_4 M_2}$ , Doppelverhältnisse und durch die Gleichung

$$a_{r} = \frac{O M_{1} M_{r+2} M_{r+3}}{O M_{1} M_{r+3} M_{r+1}} : \frac{O M_{1} M_{r+2} M_{r}}{O M_{1} M_{r+1} M_{r}} = -\left(\frac{M_{r+2} D}{D M_{r+1}}\right)_{1, r+3} : \left(\frac{M_{r+2} D}{D M_{r+1}}\right)_{1, r+3}$$

bestimmt. Verbindet man nun a, mit dem linken Theile der Gleichung, wodurch dieselbe in

$$\frac{1}{\left(\frac{M_{3}D}{DM_{3}}\right)_{1 n \rightarrow 1} : \left(\frac{M_{3}D}{DM_{3}}\right)_{14}}$$

übergeht, und bezeichnet man ein Doppelverhältniss, in welchem die Strecke  $M_r M_s$  durch die Ebenen  $M_i M_k M_l$  und  $M_i M_k M_m$  getheilt wird, kurz durch  $(rslm)_{ik}$ ; so erhält man aus 4) die neue Relation

7) 
$$(23n-14)_{01} = 1 - (4352)_{01}$$
  
 $1 - (5463)_{01}$   
 $1 - (6574)_{01}$   
 $1 - ...$   
 $...$   
 $1 - (n-2n-3n-1n-4)_{01}$   
Digitized by  $(-0) = 16$ 

Durch dieselbe ist die Aufgabe gelöst, aus n - 5 von einander unabhängigen Doppelverhältnissen alle übrigen zu finden, in welchen die durch irgend eine Gerade (bier  $OM_1$ ) des Systems der n Punkte hindurchgehenden Ebenen die nicht in ihnen liegenden Geraden theilen.

Man nehme nun 3n-15 von einander unabhängige Doppelverhältnisse als gegeben an, von welchen in jeder der drei Formen (rstu)at,  $(rstu)_{al}$ ,  $(rstu)_{bm}$  n-5 enthalten sind; so sind hierdurch nicht nur, alle übrigen Doppelverhältnisse dieser Art, sondern überhaupt alle Doppelverhältnisse bestimmt, nach welchen irgend eine Gerade von irgend welchen Ebenen des Systems geschnitten wird. Denn aus (rsln)ak und (rskw)al findet man durch Elimination des dritten gemeinschaftlichen Elementes  $(rsw_{ak}w_{al}) = (rskl)_{aw}$  und leitet hieraus durch zweckmässig gewählte r und s n - 5 von einander unabhängige Doppelverhältnisse ab zur Berechnung aller übrigen in der Form (r stu)an enthaltenen. Auf gleiche Weise gelangt man von den Formen  $(rsmu)_{ab}$  und  $(rsa_{bm}u)_{bm}$  zu den Doppelverhältnissen (rstv)bu, und sodann von (rsav)bu und (rsbv)au zu (rstw)ev, d. h. zu jedem Doppelverhältniss, für welches die schneidenden Ebenen durch eine beliebige Gerade  $(M_u M_v)$  des Systems hindurchgehen. Da nun alle noch übrigen Doppelverhältnisse aus bereits vor handenen durch Elimination gemeinschaftlicher Elemente abgeleitet werden können, so ist die obige Behauptung gerechtfertigt, und hiermit der folgende Satz bewiesen:

> "Wenn bei einem Systeme von Ebenen, welches entsteht, indem man je drei von n Punkten des Raumes durch Ebenen verbindet, von den Doppelverhältnissen, welche in den Durchschnitten je zweier Ebenen durch die Schnitte mit den jeweilig übrigen Ebenen entstehen, irgend 3n-15 von einander unabhängige gegeben sind, so lassen sich hieraus alle übrigen finden."

Die vorstehenden geometrischen Sätze hat bereits Möbius gefunden (Der barycentrische Calcul pag. 211, 222 und 260).

Schliesslich erlaube ich mir noch, die beiden Identitäten

8) 
$$\frac{OM_{1}M_{4}M_{n-1}}{OM_{1}M_{3}M_{n-1} \cdot OM_{1}M_{3}M_{4}} = \frac{OM_{1}M_{4}M_{5}}{OM_{1}M_{2}M_{4} \cdot OM_{1}M_{2}M_{5}} + \frac{OM_{1}M_{5}M_{6}}{OM_{1}M_{3}M_{5} \cdot OM_{1}M_{2}M_{6}} + \dots + \frac{OM_{1}M_{n-2}M_{n-1}}{OM_{1}M_{2}M_{n-2} \cdot OM_{1}M_{2}M_{n-1}} \quad \text{und}$$
9) 
$$\frac{(1....m-2m+1n)}{(1....m-2m-1n)(1....m-2m-1m+1)} = \frac{(1...m-2m+1m+2)}{(1....m-2m-1m+1)(1....m-2m-1m+2)} + \frac{(1....m-2m+2m+1m+2)}{(1....m-2m-1m+2)(1....m-2m-1m+3)} + \frac{(1....m-2m-1m+2)(1....m-2m-1m+3)}{(1....m-2m-1n-1)(1....m-2m-1n)}$$
By Coogle

anzuführen, von welchen die erstere ein specieller Fall der letzteren ist. Man erhält dieselben durch Verwandlung der Kettenbrüche 3) und 1) in Reihen nach einfacher Reduction. Setzt man die Punkte  $M_1, M_2...M_{n-1}$ als in derselben Ebene liegend voraus, so erhalten sämmtliche Glieder in 8) einen gemeinschaftlichen Factor — die Höhe der Pyramiden —, und man gelangt durch dessen Entfernung zu der in meinem früheren Aufsatze angeführten Flächenrelation von Oscar Werner.

III. Neues Flintglas. In der Sitzung vom 6. Juni d. J. legte Prof. SCHRÖTTER der Wiener Akademie Proben eines neuen von Herrn Prof. Lamy in Paris dargestellten Flintglases vor, das in vieler Hinsicht die Aufmerksamkeit der Physiker und Chemiker verdient und die er der Güte des Letzteren verdankt. Dieses neue Flintglas ist so zusammengesetzt, wie das gewöhnliche, nur enthält es statt Kalium die äquivalente Menge Thallium, und bildet so einen neuen Beleg für die Richtigkeit der zuerst von Lamy ausgesprochenen Ansicht, dass das Thallium seinem chemischen Charakter nach den Alkalimetallen an die Seite zu stellen ist.

Das Thalliumflintglas ist härter und schwerer, als das gewöhnliche. Seine Dichte beträgt 4.18 und diese kann bis zu 5.6 steigen, wenn die Menge des Thalliums vermehrt wird; in dem Maasse, als diese steigt, nimmt das specifische Gewicht und das Brechungsvermögen zu, die Härte hingegen, sowie auch die Unveränderlichkeit an der Luft ab.

Nach Lamy beträgt das Brechungsvermögen des Thalliumflintglases von der Dichte 4.18

für die rothen Strahlen (B) 1.661,

| ,, | "  | geiven    | ,,  | (D) 1.0/3, |
|----|----|-----------|-----|------------|
| ,, | ,, | violetten | "   | (H) 1.710. |
|    | "  |           | .,, | (-)        |

Die Dispersion  $N_A - N_b$  beträgt also 0 049, während diese bei einem stark brechenden Flintglas von Fraunhofer nur = 0 037 ist. Dieses bedeutende Farbenzerstreuungsvermögen liess sich auch an dem von Lamy in Paris ausgestellten Prisma und den nach Art der Schmucksteine facettirten Stücken durch das lebhafte Farbenspiel sogleich erkennen.

Die vorgelegten Proben zeigen eine schwach gelbe, etwas ins Grünliche spielende Farbe, welche Lamy dem Umstande zuschreibt, dass er sich des kohlensauren Thalliumoxyds zur Bereitung bediente, bei dessen Zerlegung sich etwas Peroxyd bildet, welches die schwache Färbung bedingt. In der That erhielt er bei Anwendung des schwefelsauren Salzes statt des kohlensauren ein farbloses Glas.

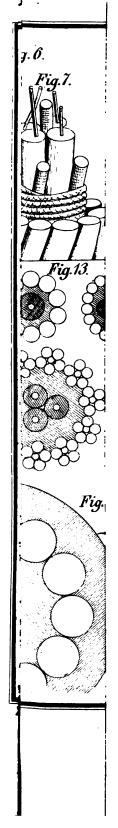
Der Vortragende legt auch noch unter Wasser aufbewahrtes Thallium von schönem Metallglanz und krystallinischer Textur, sowie ein etwa einen Centimeter hohes vollkommen ausgebildetes Octaëder des von Lamy zuerst dargestellten Thalliumalauns vor, in welchem ebenfalls das Kalium durch Thallium vertreten ist. (Wiener Akad.)

Berichtigung: S. 22 Z. 1 v. o. ist zu lesen: "dagegen" anstatt "daher".

72

j. (





Digitized by Google

۰.



.

•

•

•

## III.

# Studien über rationelle Vermessungen im Gebiete der höhern Geodäsie.

Von

FRIEDRICH ROBERT HELMERT, Geodät zu Dresden.

## Einleitung.

Gegenwärtig giebt es wohl kaum einen modernen Culturstaat, in welchem nicht geodätische Triangulationen zum Zwecke einer genauen Landesvermessung oder als Theil einer Gradmessung ausgeführt werden oder schon beendet sind. Trotzdem ist, soviel ich weiss, nur Weniges über solche Grundsätze bekannt worden, durch deren Befolgung man in den Stand gesetzt ist, die Vermessung möglichst rationell auszuführen, d. h. einen nothwendigen Genauigkeitsgrad derselben mit möglichst wenig Zeit und Geld zu erreichen. Nun erheischt freilich das Terrain in jedem einzelnen Falle besondere Maassregeln; doch lässt sich aber auch nicht verkennen, dass stets eine gewisse Freiheit bei der Wahl derselben stattfinden wird und es ist die Aufgabe des Geodäten, diese auf's vortheil-Abstrahirt man zunächst von den besondern theilhafteste auszunutzen. Terrainverhältnissen, bildet sich somit ein allen Anforderungen genügendes ideales Terrain, so kann es nicht schwer fallen, zu einigen Sätzen zu gelangen, die gewiss auch in manchen praktisch vorkommenden Fällen Anwendung finden können. Hieran wird sich eine Untersuchung über die Abnahme des Genauigkeitsgrades schliessen müssen, welche die Triangulation erleidet, wenn das Terrain Abweichungen von den Bedingungen der günstigsten Triangulation fordert, und es wird sich weiterhin damit ein Urtheil darüber bilden, wieweit man erhöhten Zeit- und Geldaufwand an einzelnen Stellen anzubringen habe, um sich jenen Bedingungen möglichst zu nähern und doch im Ganzen zu gewinnen.

Verschiedene interessante Bemerkungen meines verehrten Lehrers, des Herrn Professor Nagel am hiessigen Polytechnicum, erregten in mir den Vorsatz, dem eben entwickelten Gedanken gemäss, Studien über die Einschaltung der Punkte niederster Ordnung einer Landestriangulation

Zeitschrift f. Mathematik u. Physik XIII, 2.

# Digitized by GOOGLC

anzustellen, um zugleich zur Entscheidung der Frage, ob die allgemeinere Anwendung der Pothenotschen Aufgabe hierbei wirklich so vortheilhaft sei, wie es nach den Resultaten der von Herrn Prof. Nagel im erzgebirgschen Kohlenbassin ausgeführten Arbeiten erschien, einen Beitrag zu liefern. Im zweiten der folgenden Hauptabschnitte befindet sich das Endresultat dieser Studien, während der erste mehr vorbereitende Bedeutung hat. Der dritte Hauptabschnitt ist den Basisnetzen gewidmet und der vierte enthält einige Bemerkungen zu den günstigsten Formen grosser Dreiecksnetze.

## I. Allgemeine Bemerkungen über die Genauigkeit eines Punktes.

1.

Die Lage eines Punktes wird bekannt, sobald zwei sich schneidende geometrische Oerter desselben gefunden werden. Meistens begnügt man sich nicht, nur zweien solchen die Bestimmung zu überlassen und ermittelt daher noch mehrere. Insofern nun jeder derselben etwas fehlerhaft sein wird, werden paarweise Combinationen verschiedener geometrischer Oerter verschiedene Punktlagen ergeben, die sämmtlich von der wahren Lage abweichen, sodass es einer Ausgleichungsrechnung überlassen bleiben muss, aus der Vergleichung aller Bestimmungen wenigstens eine wahrscheinlichste Lage zu ermitteln. Die Grösse der einzelnen Abweichungen giebt dabei ein Mittel an die Hand, die Genauigkeit der wahrscheinlichsten Lage, ihre Abweichung von der Wahrheit zu schätzen. Hat man nur zwei geometrische Oerter, so ist ihr Durchschnitt schon die wahrscheinlichste Lage des Punktes und es kann von weiterer Ausgleichung nicht die Rede sein; es wäre also auch ein Schluss auf die Genauigkeit dieser Bestimmung nicht möglich, wenn nicht in den meisten Fällen die wahrscheinlichen Fehler der geometrischen Oerter selbst durch die Art und Weise ihrer Auffindung bekannt würden. Aus diesen Angaben die Genauigkeit der Bestimmung zu folgern, ist sonach eine erste Aufgabe, an welche als nächste sich diejenige anschliesst: die Lösung für die Bestimmung aus mehreren geometrischen Oertern zu verallgemeinern. Werden hierbei dieselben als unabhängig von einander bestimmt angenommen, so ist es endlich noch nothwendig, auch den allgemeinsten Fall gegenseitig bedingter geometrischer Oerter in's Auge zu fassen.

Man bezeichnet nun stets die Lage eines Punktes durch zwei Coordinaten und giebt die wahrscheinlichen Fehler derselben an, sodass sich die gestellten Aufgaben zum Theil darauf reduciren, aus jenen auf die Genauigkeit der Bestimmung überhaupt zu schliessen.

Für die hier anzustellenden Untersuchungen wird es genügen, die geometrischen Oerter als Gerade zu betrachten, die sich bei eintretenden

Fehlern parallel verschieben. Durch Einführung hinreichend scharfer Näherungswerthe für die Coordinaten reducirt sich nämlich die Gleichung jedes beliebig gestalteten geometrischen Ortes in Bezug auf die kleinen noch anzubringenden Verbesserungen der Coordinaten auf den ersten Grad, da man deren höhere Potenzen vernachlässigen darf. Ebenso ist es ferner auch zulässig, den wahrscheinlichen Fehler des geometrischen Ortes an der Stelle der genähert richtigen Lage des Punktes für die ganze unendliche Länge der substituirten Geraden beizubehalten, da wirklich eintretende Fehler sehr klein sind und für geringe Verschiebungen des Punktes auf dem geometrischen Orte sich dessen wahrscheinlicher Fehler nur wenig ändert. Die genauere Ausführung hiervon kann wohl unterbleiben und nur darauf sei noch hingewiesen, dass im Folgenden an den Stellen, wo durch die soeben gemachten Voraussetzungen die allgemeine Gültigkeit eines Resultats einer wesentlichen Beschränkung bedarf, dieses auch besonders erwähnt worden ist.

## Bestimmung der Genauigkeit der Lage eines Punktes aus den von einander unabhängigen wahrscheinlichen Abweichungen sweier Geraden.

2.

Ist der Punkt durch die beiden Geraden AA' und BB' (Fig. 1) bestimmt, welche sich unter dem Winkel  $\varphi$  in O schneiden, so ist O seine wahrscheinlichste Lage. Sind

 $0M = -0M' = r_1, \quad 0N = -0N' = r_2$ 

die wahrscheinlichsten Abweichungen des Punktes von AA' und BB' zunächst an der Stelle O selbst, so kann man nach dem Vorigen  $r_1$  und  $r_2$ auch die wahrscheinlichen parallelen Verschiebungen der Geraden nennen, und wären gerade diese Fehler begangen worden, so würde der Punkt in eine der vier Ecken des aus den Parallelenpaaren zu AA' und BB' durch M und M', N und N' gebildeten Parallelogramms zu liegen kommen\*). Hingegen entsteht die beliebige Lage P in der Entfernung  $\Delta$  von O durch das gleichzeitige Eintreffen von Fehler PC = u senkrecht zu AA' und PD = v senkrecht zu BB'.

Sind  $w_1$  und  $w_2$  die Wahrscheinlichkeiten des Eintreffens von u = 0resp. v = 0, h und k beziehendlich die Maasse der Genauigkeit, so ist die Wahrscheinlichkeit des Vorkommens von u resp. v

 $w_u = w_1 \cdot e^{-h^2 u^2}, \quad w_v = w_2 \cdot e^{-k^2 u^2},$ 

daher die Wahrscheinlichkeit der besonderen Lage P bei gleichzeitigem Eintreffen von u und v

<sup>\*)</sup> Dies Parallelogramm ist in Fig. 1 mit angegeben.

<sup>\*\*)</sup> Hierüber, sowie über die Formeln in Abschn. 11. vergleiche man: "Encke, Berliner astronomisches Jahrbuch 1834" oder "Navier, Differentialrechnung etc. übersetzt von Wittstein," Anhang zum II. Bande von Wittstein.

$$-(h^2u^2+k^2v^2)$$

1)  $w_A = w_u \cdot w_v = w_1 \cdot w_2 \cdot e$ , wobei zwischen *h* und  $r_1$ , *k* und  $r_2$  die bekannte Relation stattfindet: 2)  $r_1 h = r_2 k = \varrho = 0.47694$ .

 $w_A$  bleibt nach Gleichung 1) constant, so lange *P* sich auf dem Umfange einer Ellipse bewegt, für welche *AA* und *BB* die Richtungen conjugirter Durchmesser sind, weil dabei für *u* und *v* die Gleichung besteht: 3)  $h^2u^2 + k^2v^2 = c^2$ , worin *c* eine Constante bezeichnet. Oder um auf übliche Coordinaten überzugehen, betrachte man *AA* und *BB* als Achsen eines schiefwinkligen Systems der  $\xi$  und  $\eta$  (Fig.1) und hat alsdann

$$4) \begin{cases} v = \xi \sin \varphi \quad u = \eta \sin \varphi, \\ \xi^2 (k \sin \varphi)^2 + \eta^2 (h \sin \varphi)^2 = c^2, \text{ oder} \\ \left(\frac{\xi}{a}\right)^2 + \left(\frac{\eta}{b}\right)^2 = 1, a = \frac{c}{k \sin \varphi}, b = \frac{c}{h \sin \varphi}, \end{cases}$$

worin a und b die halben Längen der conjugirten Durchmesser AA' und BB' bedeuten. P fällt in die Endpunkte der letzteren, wenn resp.

$$\eta = 0, \ \xi = \pm a, \ \text{also} \ u = 0, \ v = v_o = \pm \frac{c}{k}, \ \text{oder}$$
$$\xi = 0, \ \eta = \pm b, \ \text{also} \ v = 0, \ u = u_o = \pm \frac{c}{k} \ \text{wird}.$$

Man sieht hieraus, dass immer

5)  $u_0 \cdot h = v_0 \cdot k = c$ ,

und dass die zu verschiedenen  $w_A$  gehörigen Ellipsen alle ähnlich sind und um ihren Mittelpunkt O herum auch ähnlich liegen, wobei für die conjugirten Durchmesser in Richtung AA' und BB' die Proportion gilt:

$$2a: 2b = a: b = r_2: r_1.$$

Den vier Punkten  $M_1$ ,  $M_1'$ ,  $N_1$ ,  $N_1'$  insbesondere, in welchen die Parallelen zu den bestimmenden Geraden im Abstande  $\pm r_1$  resp.  $\pm r_2$ dieselben schneiden, kommt die Wahrscheinlichkeit

$$w = w_1 \cdot w_2 \cdot e^{-\varphi^2}$$

zu und sie liegen daher auf dem Umfange Einer Ellipse, welche die Hauptellipse genannt werden soll und in ihren Durchschnitten  $M_1, M_1, N_1, N_1$ mit AA' und BB' von obigen 4 Parallelen tangirt wird.

3.

Denkt man sich die Wahrscheinlichkeit  $w_A$  des Eintretens der Lage Psenkrecht zur Papierebene in Paufgetragen und bewegt sich P auf der etwa horizontal liegenden Papierebene, so beschreibt gleichzeitig der Endpunkt der Senkrechten eine Oberfläche mit der Gleichnng

6)  $w_{\mathcal{A}} = w_1 \cdot w_2 \cdot e^{-(h^2 u^2 + k^2 v^2)} \operatorname{oder} w_{\mathcal{A}} = \xi = e^{-(\xi^2 k^2 + \eta^2 h^2) \sin^2 \varphi}$ .  $\xi$  ist in O ein Maximum und nimmt von hier aus nach allen Seiten stetig ab bei

asymptotischer Annäherung der Oberfläche an die Papierebene. Alle horizontalen Querschnitte der Fläche sind Ellipsen, alle verticalen Querschnitte durch O unter der Neigung  $\nu$  gegen AA' von der Form der bekannten Wahrscheinlichkeitscurve nach der Gleichung

$$\zeta = w_1 \cdot w_2 \cdot e^{-\Delta^2 \cdot (h^2 \sin^2 \nu + k^2 \sin^2 (\varphi - \nu))},$$

und da, wie bekannt, alle diese Querschnitte einen Wendepunkt haben, so hat die Oberfläche eine Wendelinie mit den Gleichungen

7) 
$$1 = 2 \Delta^2 (h^2 \sin^2 \nu + k^2 \sin^2 (\varphi - \nu)), \quad \zeta = w_1 \cdot w_2 \cdot e^{-\frac{1}{2}}$$

Die Wendelinie ist hiernach eine ebene Curve und es liegt dieselbe parallel der Papierebene. Die erste der Gleichungen 7), die Projection der Wendelinie auf die Papierebene bezeichnend, geht durch Transformation über in

8) 
$$\begin{cases} 1 = 2 (h^2 u'^2 + k^2 v'^2) & \text{oder } 1 = \left(\frac{\xi}{a'}\right)^2 + \left(\frac{\eta}{b'}\right)^2, \\ a' = 1 : (k \sin \varphi \ \sqrt{2}); \ b' = 1 : (h \sin \varphi \ \sqrt{2}). \end{cases}$$

4.

Um nun die Wahrscheinlichkeit des Vorkommens von P auf einer Ellipsenfläche um O überhaupt zu ermitteln, ist es nöthig, zunächst eine endliche Anzahl Lagen von P zu betrachten, die in der Art gleichmässig über die Papierebene vertheilt sind, dass sowohl der einer Lage entsprechende Fehler OP als auch die Wahrscheinlichkeit seines Eintretens innerhalb einer sehr kleinen, mit den andern gleichräumigen Fläche als constant angesehen werden dürfen. Offenbar verhalten sich dann die Wahrscheinlichkeiten des Vorkommens von P innerhalb zweier solcher Flächen wie die betreffenden  $w_A$  um so genauer, je kleiner die Räume der Flächen genommen werden. Die Zerlegung der Papierebene geschehe wie folgt:

Man theile MOM und NON in eine gleiche Anzahl sehr kleiner Theile (Fig. 2):

9)  $MOM' = 2r_1 = 2n\delta; NON' = 2r_2 = 2n\delta',$ 

trage diese Theile noch über die Punkte M, M', N und N' hinaus beliebig oft auf und ziehe durch die Theilpunkte Parallelen zu AA' resp. BB'. So entstehen zwei Systeme von äquidistanten Parallelen, deren sämmtliche Durchschnitte das Vorkommen von Fehlern bezeichnen, für welches der Abstand  $\zeta$  die Wahrscheinlichkeit ist. Denkt man sich  $\zeta$  körperlich etwa vom Querschnitte eines Elementarparallelogrammes  $\left(\text{gleich} - \frac{\delta\delta'}{\sin\varphi}\right)$ , so hat man damit ein Bild der Häufigkeit des Vorkommens der Fehler, zwar nicht von absolutem, aber doch relativem Werthe; denn es leuchtet ein, dass die Wahrscheinlichkeiten für das Vorkommen innerhalb zweier beliebigen Stücke der Papierebene sich wie die darüber befindlichen cubischen Räume verhalten, wenn man nur (Gleichung 9) n unendlich anwachsen lässt. Sind  $W_1$  und  $W_2$  die Wahrscheinlichkeiten, dass P auf den Ellipsenflächen mit den Abschnitten  $a_1$  und  $b_1$ ,  $a_2$  und  $b_2$  liegt, so ist also streng

$$\frac{W_1}{W_2} = \frac{w_1 \cdot w_2 \cdot \int_0^{a_1} \int_0^{\eta_2} e^{-(\xi^2 k^2 + \eta^2 h^2) \sin^2 \varphi} d\xi \cdot d\eta \sin \varphi}{w_1 \cdot w_2 \cdot \int_0^{a_2} \int_0^{\eta_2} e^{-(\xi^2 k^2 + \eta^2 h^2) \sin^2 \varphi} d\xi \cdot d\eta \sin \varphi}$$

worin für  $\frac{\delta\delta'}{\sin\varphi}$  noch  $d\xi. d\eta. \sin\varphi$  gesetzt wurde. Die Grenzen beziehen sich auf den Umfang von Ellipsen, deren Gleichungen aus Gleichung 4) durch Anbringen der Indices 1 resp. 2 an *a* und *b* hervorgehen.

Das Doppelintegral im Zähler und Nenner wird leicht durch Einführung anderer Grenzen gefunden. Doch möge die Transformation des Zusammenhanges wegen nicht nach dem üblichen Verfahren, sondern wie folgt geschehen:

Man denke sich (wie in Fig. 3) durch entsprechende Theilpunkte von  $\mathcal{AA}$  und  $\mathcal{BB}'$  die ähnlichen Ellipsen gezogen und die Papierebene also in schmale elliptische Ringe getheilt. Geht man von einer beliebigen Ellipse zu einer benachbarten, so ändert sich c (Gl. 5) um gleichviel, welche der Ellipsen man auch als Ausgang annimmt. Für jeden der Ringe kann man die zu integrirende Function, ursprünglich  $\zeta$ , als constant ansehen und zwar um so mehr, je dichter das System Ellipsen gezogen wird. Bedeutet  $d\varepsilon$  den Inhalt eines elementaren Ringes innerhalb des Winkelraumes  $\mathcal{AOB}$ , so ist nun jedes der Doppelintegrale auf die Form gebracht

$$\int_{0}^{\varepsilon} e^{-c^2} \cdot d\varepsilon \, .$$

 $\varepsilon$ , der elliptisch begrenzte Winkelraum AOB, beträgt

$$\varepsilon = rac{\pi}{4}$$
. ab sin  $\varphi$ ,

also ist

$$d\varepsilon = \frac{\pi}{4} (a.db + b.da) \sin \varphi,$$

und sofern

$$da = \frac{\delta}{\sin \varphi}, \ db = \frac{\delta}{\sin \varphi}, \ a\delta = b\delta',$$

auch

$$d\epsilon = \frac{\pi}{2} \cdot a\delta = \frac{\pi}{2} \cdot b\delta' = \frac{\pi}{2} \cdot b\sin\varphi \, da$$
,

d. i. nach Gleichung 4)

$$d\varepsilon = \frac{\pi}{4} \cdot \frac{d(c^2)}{hk \sin \varphi}.$$

Damit wird das Integral gleich

$$\frac{\pi}{4}\cdot\frac{1}{hk\sin\varphi}\cdot\int_{0}^{s}e^{-c^{2}}\cdot d(c^{2})=\frac{\pi}{4}\cdot\frac{1-e^{-c^{2}}}{hk\sin\varphi},$$

und wenn man der Ellipse 2. unendliche Ausdehnung giebt,  $W_2 = 1$  setzt, wird

10) 
$$W_1 = W_2 \cdot (1 - e^{-c_1^2}) = 1 - e^{-c_1^2} \cdot )$$

5.

 $W_1$  wird  $\frac{1}{2}$  für  $c_1 = C = 0.83254$ ,  $\log C = 0.92040 - 1$ .

Die halben Längen der conjugirten Durchmesser der zugehörigen Ellipse, welche die wahrscheinlichste heissen mag, sind

11)  $A = \frac{V}{\sin \varphi}$ ,  $B = \frac{U}{\sin \varphi}$ , worin  $V = r_2 \cdot \frac{C}{\varrho}$ ,  $U = r_1 \cdot \frac{C}{\varrho}$ ,  $\frac{C}{\varrho} = 1,7456$ zu setzen sind.

6.

Die Wahrscheinlichkeit, dass P innerhalb eines Parallelogrammes um O, nämlich gleichzeitig zwischen zwei Parallelenpaaren in den Entfernungen  $\pm u$  von AA',  $\pm v$  von BB' liegt, ist gleich

$${}^{u}W_{-u} \cdot {}^{v}W_{-v} = \left\{\frac{2h}{\sqrt{\pi}} \cdot \int_{0}^{u} e^{-h^{2}u^{2}} du\right\} \cdot \left\{\frac{2k}{\sqrt{\pi}} \cdot \int_{0}^{v} e^{-k^{2}v^{2}} dv\right\},$$

wohei jeder Factor einzeln die Wahrscheinlichkeit der Lage von P innerhalb eines der Parallelenpaare bezeichnet.

Nimmt man u und v gleich  $r_1$  resp.  $r_2$ , so wird die Wahrscheinlichkeit für Pinnerhalb des die Hauptellipse in ihren Schnittpunkten mit AA und BB' tangirenden Parallelogramms (vergl. Abschnitt 2)

$$r_1 W_{-r_1} \cdot r_2 W_{-r_2} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

nimmt man aber u und v nur proportional  $r_1$  und  $r_2$  und ausserdem so gross, dass obiges Product gleich  $\frac{1}{2}$  wird, so müssen folgende Beziehungen bestehen:

\*) Unter Bezugnahme auf Abschnitt 1 sei hier bemerkt: Sind AA' und BB'nur substituirte Gerade, so ist Gleichung 10) nicht streng, da zwar  $W'_2 = 1$  wird, aber nicht proportional dem Doppelintegrale im Nenner bleibt. Nimmt man jedoch für die 2. Ellipse  $c_2$  nicht unendlich, sondern nur  $\geq 8\varrho$ , so ist es auch erlaubt  $W_1 = W_2 \cdot \frac{1-e^{-c_1^2}}{1-e^{-c_2^2}} = W_2 \cdot \left(1-e^{-c_1^2}\right)$ , auf 7 Decimalen genau, zu setzen und man folgert leicht weiter, dass  $W_2$  selbst auf 7 Decimalen genau gleich 1 ist,

$${}^{u}W_{-u} = {}^{v}W_{-v} = 1: V_{2} = 0,707; \frac{hu}{\varrho} = \frac{kv}{\varrho} = \frac{u}{r_{1}} = \frac{v}{r_{2}} = 1,560. *)$$

Wie zu erwarten war, ist dieser Werth etwas kleiner, als  $\frac{C}{a}$  in Gleichung 11).

7.

Die Wahrscheinlichkeit, dass P zwischen zwei Ellipsen 1. und 2. liegt, ist

$$W_1 - W_2 = e^{-c_2^2} - e^{-c_1^2}$$

wenn die erste Ellipse die zweite umschliesst. Wählt man die zweite Ellipse der ersten unendlich benachbart, so ist auch

$$W_1 - W_2 = 2e^{-c_1^2} \cdot c_1 \cdot dc_1 = W_1'$$

Für zwei andere benachbarte Ellipsen 3. und 4. ist in gleicher Weise

$$W_3 - W_4 = 2e^{-c_3^*} \cdot c_3 \cdot dc_3 = W_3'$$

und da nach Gleichung 5)  $dc_1 = dc_3$  ist, wenn man das Ellipsensystem nur wie in Fig. 2 und 3 (Abschn. 4.) gezogen denkt, gilt die Proportion:

12) 
$$W_1': W_3' = c_1 \cdot e^{-c_1^2}: c_2 \cdot e^{-c_2^2}$$

und zwar um so genauer, je dichter das Ellipsensystem angenommen wird. Lässt man endlich n (Gleichung 9) unendlich anwachsen, so geht der Flächenstreifen zwischen 2 benachbarten Ellipen in einen Contour von verschwindender Dicke über, die jedoch an jeder Stelle eine andere und proportional der Entfernung von O ist \*\*). Die Gleichung 12) sagt daher auch aus, wie sich die Wahrscheinlichkeiten des Vorkommens von P auf den Peripherien der Ellipsen 1. und 3. verhalten, sobald man diese Peripherien als Contouren im obigen Sinne betrachtet.

Unter dieser Annahme mag auch die Wahrscheinlichkeit des Vorkommens von *P* auf einem Ellipsenbogen *RS* (Fig. 2) berechnet werden, sodass derselbe als Theil eines derartigen Contours betrachtet wird.

8.

Das zwischen den Ordinaten von R und S befindliche Stück der Ellipsenfläche ist, wenn  $R = (\xi_1, \eta_1), S = (\xi_2, \eta_2)$ , bekanntlich

$$\epsilon' = \frac{b}{a} \sin \varphi \left\{ \frac{\xi_2}{2} \sqrt{a^2 - \xi_2^2} - \frac{\xi_1}{2} \sqrt{a^2 - \xi_1^2} + \frac{a^2}{2} \left( \arcsin \frac{\xi_2}{a} - \arcsin \frac{\xi_1}{a} \right) \right\}.$$

\*) Zur Berechnung dieses Werthes diente eine der bekannten Tafeln für das betreffende Integral.

\*\*) Bedürfte man der Wahrscheinlichkeit in Bezug auf eine mathematische Linie, so würde als Maass dafür der Flächenraum anzuschen sein, welchen  $\xi$  beschreibt, wenn *P* sich auf jener Linie bewegt. Hier können derartige Betrachtungen ausgeschlossen werden, da sie das Verständniss der Vertheilung der Fehler nicht fördern. Durch Differentiation nach b und a, wobei aber  $\frac{b}{a}$ ,  $\xi_1$  und  $\xi_2$  constant bleiben, erhält man den elementaren Flächenstreifen, welcher an RS angrenzt (in Fig. 2 schraffirt):

$$d\varepsilon' = b\sin\varphi\left(\arcsin\frac{\xi_2}{a} - \arcsin\frac{\xi_1}{a}\right) da$$
.

Derselbe Werth von  $d\epsilon'$  würde sich ergeben haben, wenn man anstatt der  $\xi$  die  $\eta$  oder auch die Richtung der Radien *OR* und *OS* als constant angesehen hätte, denn es ist auch

$$d\varepsilon' = b \sin \varphi \left( \operatorname{arc sin} \ \frac{\eta_1}{b} - \operatorname{arc sin} \ \frac{\eta_2}{b} \right) da, \text{ sowie}$$
$$d\varepsilon' = b \sin \varphi \quad \operatorname{arc sin} \ \left( \frac{\operatorname{Dreieck} \ ROS}{\operatorname{Dreieck} \ AOB} \right) \quad da, \text{ etc.}$$

Hiermit ergiebt sich nun die Wahrscheinlichkeit, dass P auf dem an RS angrenzenden Flächenstückchen  $d\epsilon'$  liegt, im Verhältniss zu derjenigen, dass P überhaupt auf dem schmalen elliptischen Ringe liegt, von dem  $d\epsilon'$  ein Theil ist,

$$\begin{array}{l} 13) \quad \frac{W(RS)}{W(AB)} = \frac{d\epsilon'}{d\epsilon} = \frac{2}{\pi} \left( \arccos \sin \frac{\xi_2}{a} - \arccos \sin \frac{\xi_1}{a} \right) \\ &= \frac{2}{\pi} \left( \arccos \sin \frac{\eta_1}{b} - \arcsin \frac{\eta_2}{b} \right) \\ &= \frac{2}{\pi} \arccos \sin \left( \frac{\operatorname{Dreieck} ROS}{\operatorname{Dreieck} AOB} \right). \end{array}$$

Hierbei ist stillschweigend RS als Theil von dem innerhalb des Winkelraumes AOB gelegenen Ellipsencontour betrachtet worden. Auch bedarf es keiner weiteren Erörterung für andere Fälle.

Die Construction solcher Bögen RS derselben Ellipse, welche gleiche Wahrscheinlichkeit ergeben, ist mit Hilfe von Kreisen um O mit den Radien a und b sehr leicht. Von derselben wird in Abschnitt 10. Gebrauch gemacht werden.

Nach dem letzten der Ausdrücke für das Wahrscheinlichkeitsverhältniss in Gleichung 13 bleibt dieses auch constant für Bogen *RS* verschiedener Ellipsen, wenn sie zwischen denselben Radien von *O* aus liegen. Vergleicht man daher zwei solche Bögen mit einander, so gilt für sie Gleichung 12) wie für die ganzen resp. Peripherien.

9.

Für kleine Bögen RS darf man Dreieck ROS mit dem Sector ROS vertauschen. Construirt man nun wie in Fig. 3 zu der mehrfach erwähnten Ellipsenschaar Radien derartig, dass je zwei benachbarte gleiche Sectorenflächen einschliessen, so erlangt man mit Hilfe der Figur einen Ueberblick über die Vertheilung der Fehler um 0. Denn die Wahrscheinlichkeit des Vorkommens von P ist dieselbe 1) für alle elementaren Flächenstückchen zwischen denselben Ellipsen und beliebigen benachbarten Radien (z. B. für 1, 2, 3... oder für 1', 2', 3'...) und 2) für alle Sectoren zwischen benachbarten Radien und derselben Ellipse, woraus man durch Combination noch verschiedene andere Sätze ableiten kann. Zieht man überdiess die Peripherien von verschiedener Stärke an verschiedenen Stellen, entsprechend dem Abstande von 0, so ist auch die Wahrscheinlichkeit dieselbe für alle Bogenstücke desselben Ellipsencontours.

Endlich besteht für die Wahrscheinlichkeiten des Vorkommens von Pauf zwei Bogenstücken verschiedener Contoure oder innerhalb der angrenzenden Flächenstückchen die Gleichung 12). Z. B. in Bezug auf Theile der Ellipsencontoure AB und  $A_1 B_1$  in Fig. 3 oder in Bezug auf die angrenzenden Flächenstückchen ist das Verhältniss der Wahrscheinlichkeiten

$$c, e^{-c^2}: c_1 \cdot e^{-c_1^2},$$

## 10.

Als wahrscheinlichen Fehler in der Bestimmung von O wird man, ebenso wie bei Betrachtung der Fehler u und v allein, <sup>^</sup>denjenigen bezeichnen, welcher ebenso oft überschritten, als nicht erreicht wird, und als mittlern Fehler denjenigen, dessen Quadrat das arithmetische Mittel aller Fehlerquadrate ist. Es wird sich zeigen, dass zwischen beiden Grössen eine constante Beziehung stattfindet.

Der wahrscheinliche Fehler ist nach verschiedenen Richtungen von O aus verschieden, denn verschiedene Punkte der wahrscheinlichsten Ellipse haben von O verschiedenen Abstand. Will man nun nicht diese Ellipse, nämlich ihre grosse und kleine Halbachse als grössten und kleinsten Werth des wahrscheinlichen Fehlers, angeben, so muss ein mittlerer Werth des letztern abgeleitet werden. Es findet sich dieser zu

14) 
$$R = \sqrt[7]{\frac{A^2 + B^2}{2}} = \sqrt[7]{\left(\frac{U^2 + V^2}{2}\right)} : \sin \varphi$$
,

wo A, B, U und V dieselben Werthe wie in Gleichung 11) haben.

Geht man nämlich wieder von einer grossen Zahl endlicher Fehler aus, so ist, wenn AB in Fig. 3 die wahrscheinlichste Ellipse bedeutet, der cubische Raum über dem an AB angrenzenden elliptischen Ringe der Ausdruck für die Wahrscheinlichkeit des Eintretens des wahrscheinlichen Fehlers überhaupt, und es ist erlaubt, für jedes der Flächenstückchen 1, 2, 3, etc. den Fehler von der Länge des Radius von O aus nach einem beliebigen Punkte der Fläche, etwa dem rechten äussern Eckpunkte (von O aus gesehen) zu nehmen. Für je drei benachbarte dieser Punkte ist nach Gleichung 13)

$$\arcsin \frac{\xi_2}{A} - \arcsin \frac{\xi_1}{A} = \arcsin \frac{\xi_3}{A} - \arcsin \frac{\xi_2}{A},$$

Bezeichnet man diese Differenzen mit  $d\psi$  und ist AB in n Theile zerlegt worden, so erkennt man leicht die Richtigkeit der Gleichungen:

Digitized by GOOSIC

$$n.d\psi = \frac{\pi}{2}, \quad arc \ sin \ \frac{\xi_p}{A} = p.d\psi = \psi,$$

wubei  $\psi$  von  $1, d\psi$  bis  $n, d\psi$  oder von 0 bis  $\frac{\pi}{2}$  bei unendlich wachsendem n geht.

Es wird ferner 
$$\xi_p = A \sin \psi$$
,  $\eta_p = B \cos \psi$   
 $\Delta^2_p = A^2 \sin^2 \psi + B^2 \cos^2 \psi + 2AB \cos \varphi \cos \psi \sin \psi$   
 $\sum_{p} \Delta^2_p$ 

 $R^2 = \frac{1}{2n}$ , worin der Zähler die Summe der Fehlerund daher quadrate für die halbe Ellipse über AOA', der Nenner die Anzahl dieser Quadrate bezeichnet. Für unendlich wachsendes n und bei gleichzeitigem Uebergange von dem elliptischen Streifen zum Ellipsencontour selbst wird

$$R^{2} = \frac{1}{\pi} \cdot \int_{0}^{\pi} \mathcal{A}_{p}^{2} \cdot d\psi = \frac{\mathcal{A}^{2} + B^{2}}{2}, \text{ oder nach Gleichung 11) auch}$$
  
15) 
$$R^{2} = \frac{C^{2}}{2\varrho^{2}} \cdot \frac{r_{1}^{2} + r_{2}^{2}}{\sin^{2}\varphi} = 1,5236 \cdot \frac{r_{1}^{2} + r_{2}^{2}}{\sin^{2}\varphi}.$$

11.

Nimmt man u und v allein in Betracht, so bestimmt sich bekanntlich das mittlere Fehlerquadrat für u oder v nach den Formeln

16) 
$$\begin{cases} m_1 \cdot \int_{0}^{\infty} u^2 \cdot e^{-h^2 u^2} du \\ m_1^2 = \frac{m_1 \cdot \int_{0}^{0} e^{-h^2 u^2} du \\ m_1 \cdot \int_{0}^{0} e^{-h^2 u^2} du \\ m_2^2 = \frac{1}{2k^2} = \frac{r_2^2}{2y^2}. \end{cases}$$

 $\eta_0 = \frac{m_1}{\sin \varphi}$  und  $\xi_0 = \frac{m_2}{\sin \varphi}$  sind dabei bekanntlich die Abscissen der Inflexionspunkte der Wahrscheinlichkeitscurven über BB' und AA' (Abschn. 3.). Im Falle gleichzeitigen Vorkommens von u und v gestaltet sich die Rechnung sehr ähnlich, wenn man nur vorher die gleichwahrscheinlichen Fehlerquadrate je zweier Punkte mit den Coordinaten  $\xi,~\eta$ and  $(-\xi)$ ,  $\eta$  vereinigt zu

$$2(\xi^2 + \eta^2)$$
.

Dieser Summe entspricht die Wahrscheinlichkeit  $w_{\Delta}$  und es ist daher für die halbe Papierebene über AA

'  $2 \Sigma \{ w_{\Delta} (\xi^2 + \eta^2) \}$  die Summe der Fehlerquadrate, wenn

 $2 \Sigma w_{\mathcal{A}}$  als deren Anzahl angenommen wird.

Hiermit ist das mittlere Fehlerquadrat

$$M^{2} = \int_{0}^{\infty} \int_{0}^{\infty} w_{\mathcal{A}} \left(\xi^{2} + \eta^{2}\right) d\xi \cdot d\eta$$
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} w_{\mathcal{A}} \cdot d\xi \cdot d\eta$$

oder unter Benutzung der bekannten Formeln

$$\int_{0}^{\infty} e^{-t^{2}\mu^{2}} dt = \frac{\sqrt{\pi}}{2\mu} \text{ und } \int_{0}^{\infty} t^{2} \cdot e^{-t^{2}\mu^{2}} dt = \frac{1}{2\mu^{2}} \cdot \frac{\sqrt{\pi}}{2\mu}$$

auch

$$M^{2} = \frac{\pi}{4hk\sin^{4}\varphi} \left(\frac{1}{2h^{2}} + \frac{1}{2k^{2}}\right) : \frac{\pi}{4hk\sin^{2}\varphi} = \frac{1}{2h^{2}} + \frac{1}{2k^{2}}$$

oder endlich

17) 
$$\begin{cases} M^2 = \frac{m_1^2 + m_2^2}{\sin^2 \varphi} = \frac{r_1^2 + r_2^2}{2\varrho^2 \cdot \sin^2 \varphi}, \text{ daher} \\ M^2 = R^2 : C^2; R^2 = 0,69312M^2; R = 0,83254M.* \end{cases}$$

Dagegen ist bekanntlich allgemein

r = 0,67449 m.

#### 12.

Gab die wahrscheinlichste Ellipse in Verbindung mit Fig. 3 über die Vertheilung der Fehler Aufschluss, so ist jetzt in R oder M ein Maass für die Genauigkeit der Bestimmung von O gefunden. Es fragt sich nun aber noch, ob man durch die in der Praxis üblichen Genauigkeitsangaben (den mittlern Fehlern der Coordinaten von O) immer M ableiten kann. Jedenfalls wäre dies möglich, wenn O auf ein den Geraden AA'und BB' paralleles Coordinatensystem bezogen würde. Es sei daher in Fig. 4 MOB ein solches System; die Coordinaten des Punktes O, welcher hier mit P bezeichnet ist, mögen abweichend vom gewöhnlichen Gebrauche als senkrechte Abstände von den Achsen angenommen werden, damit für sie  $m_1$  und  $m_2$  die resp. mittleren Fehler sind. Für eine andere Achse  $OM_1$ unter der Neigung  $\psi$  zu OM wird

$$x' \stackrel{!}{=} \frac{x \sin (\varphi - \psi) - y \sin \psi}{\sin \varphi},$$

daher ist auch

18) 
$$\mathfrak{m}_1^2 = \frac{m_1^2 \sin^2(\varphi - \psi) + m_2^2 \sin^2 \psi}{\sin^2 \varphi}$$

wenn  $\mathfrak{m}_1$  den mittlern Fehler in x' bezeichnet. Für eine zweite zu  $\mathfrak{OA}_1$ senkrechte Achse  $\mathfrak{OB}_1$  ist

<sup>•)</sup> In Bezug auf die Berechnung von *M* lässt sich eine ähnliche Bemerkung machen, wie bei Abschnitt 4. geschehen ist.

$$m_2^2 = \frac{m_1^2 \cos^2(\varphi - \psi) + m_2^2 \cos^2\psi}{\sin^2 \varphi}$$

daher

$$m_1^2 + m_2^2 = \frac{m_1^2 + m_2^2}{\sin^2 \varphi} = M^2;$$

d. h. "ein rechtwinkliges Coordinatensystem gestattet immer die Berechnung des mittlern Fehlers M."

13.

Wählt man  $\mathfrak{OA}_1$  und  $\mathfrak{OB}_1$  so, dass sie einem beliebigen Paare conjugirter Durchmesser der Ellipsen parallel werden, so kann M ebenfalls wie oben aus den mittlern Fehlern der Coordinaten berechnet werden. Dem Achsenpaare  $\mathfrak{OA}_1\mathfrak{B}_1$  mögen in Fig. 5 die conjugirten Durchmesser  $\mathcal{OA}_1$  und  $\mathcal{OB}_1$  entsprechen, die Ellipse daselbst aber die Hauptellipse vorstellen. Dann beträgt die Wahrscheinlichkeit, dass P auf dem unendlich langen Streifen zwischen den beiden zu  $\mathcal{OB}_1$  parallelen Ellipsentangenten durch  $\mathcal{A}_1$  und  $\mathcal{A}'_1$  liegt

$$W=\frac{4hk\sin\varphi}{\pi}\cdot\int_{0}^{\infty}\int_{\eta_1}^{\eta_2}e^{-(\xi^2k^2+\eta^2h^2)\sin^2\varphi}\,d\xi\,d\eta\,\sin\varphi\,,$$

worin  $\eta_1$  und  $\eta_2$  die Ordinaten der demselben  $\xi$  entsprechenden beiden Parallelenpunkte sind. Betrachtet man  $A_1 A_1'$  und  $B_1 B_1'$  als Achsen der  $\xi'$  und  $\eta'$ , so ergeben sich nach und nach folgende Formeln:

$$(\xi^{2}, k^{2} + \eta^{2}, h^{2}) \sin^{2} \varphi = (\xi^{\prime 2}, k^{\prime 2} + \eta^{\prime 2}, h^{\prime 2}) \sin^{2} \varphi'$$
  
$$d\xi \cdot d\eta \cdot \sin \varphi = d\xi' \cdot d\eta' \sin \varphi',$$
  
$$W = \frac{4hk \sin \varphi}{\pi} \cdot \int_{0}^{\infty} \int_{-k^{\prime}}^{+k^{\prime}} e^{-(\xi^{\prime 2} k^{\prime 2} + \eta^{\prime 2} h^{\prime 2}) \sin^{2} \varphi'} d\xi' d\eta' \sin \varphi'$$

oder

$$W = \frac{2hk \sin \varphi}{k' \cdot \sqrt[p]{\pi}} \cdot \int_{-b'}^{+b'} e^{-\eta'^2 h'^2 \sin^2 \varphi'} d\eta' .$$

Hierin bedeuten a' und b' die Abschnitte der conjugirten Durchmesser  $A_1 A_1'$ und  $B_1 B_1'$ ,  $\varphi'$  den Conjugationswinkel derselhen; ferner ist für h' und k'

$$a' = \frac{c}{k' \sin \varphi'}; \ b' = \frac{c}{h' \sin \varphi'}, \ c = \varrho.$$

Man hat weiter

$$\int_{-h}^{+\infty} e^{-\eta^2 h^2 \sin^2 \varphi} d\eta = \frac{\sqrt{\pi}}{4h \sin \varphi}, \text{ wenn } bh \sin \varphi = \varrho,$$

und zufolge der vorhergehenden Gleichungen für a' und b', h' und k' wird auch

$$\int_{-b'}^{+b'} e^{-\eta'^2 h'^2 \sin^2 \varphi'} d\eta' = \frac{\sqrt{\pi}}{4h' \sin \varphi'}, \quad \mathrm{da} \ b'h' \sin \varphi' = \varrho.$$

Dies giebt zusammen

$$W=\frac{1}{2}.$$

Denselben Betrag würde man erhalten haben, wenn ursprünglich als bestimmende Gerade die conjugirten Durchmesser  $A_1A_1'$  und  $B_1B_1'$  mit den wahrscheinlichen Abweichungen  $\pm r_1' = \pm b' \sin \varphi'$  und  $\pm r_2' = \pm a' \sin \varphi'$ oder den Präcisionen h' und k' gegeben gewesen wären. Ueberhaupt erhellt, dass sich die Geraden AA' und BB' immer durch beliebige Paare von Geraden ersetzen lassen, wenn dieselben und ihre wahrscheinlichen Abweichungen so gewählt werden, wie  $A_1A_1'$  und  $B_1B_1'$ mit  $\pm r_1'$  und  $\pm r_2'$ . Denn zunächst geben dieselben auch dieselbe Hauptellipse wie die ursprünglichen bestimmenden Geraden und daher geben sie auch dieselbe Vertheilung der Fehler und dieselben Werthe M und R. Zugleich ist soviel ersichtlich, dass zwei bestimmende Gerade sich immer nur auf eine Weise durch zwei andere, senkrecht zu einander befindliche Gerade ersetzen lassen. Um z. B. zu zeigen, dass man den Werth M auch durch Anwendung von  $A_1A_1'$  und  $B_1B_1'$ erhält, hat man folgende Rechnung.

Aus den Werthen der wahrscheinlichen Fehler senkrecht  $A_i A_i'$  und  $B_1 B_i'$ , nämlich

$$r_1' = b' \sin \varphi', \quad r_2' = a' \sin \varphi',$$
  
und dem entsprechenden mittlern Fehler

$$m_{1}' = rac{r_{1}'}{arphi \sqrt{2}}, \quad m_{2}' = rac{r_{2}'}{arphi \sqrt{2}}$$

folgt mit Hilfe der bekannten Relation

$$\frac{a^2 + b^2 = a'^2 + b'^2}{sin^2 \varphi} = \frac{r_1'^2 + r_2'^2}{sin^2 \varphi'}; \quad \frac{m_1^2 + m_2^2}{sin^2 \varphi} = \frac{m_1'^2 + m_2'^2}{sin^2 \varphi'} = M^2.$$

 $m_1'$  und  $m_2'$  genügen selbstverständlich auch der Gleichung 18), wenn man die Achse der x' resp. mit  $OA_1$  oder  $OB_1$  parallel nimmt. Im erstern Falle ergiebt sich z. B. successive:

$$m_1'^2 = \frac{r_1'^2}{2\varrho^2}; \quad r_1' = b' \sin \varphi' \text{ und da } a'b' \sin \varphi' = ab \sin \varphi, \text{ auch}$$
$$r_1' = \frac{ab \sin \varphi}{a'}, \quad m_1'^2 = \frac{(ab \sin \varphi)^2}{2\varrho^2} \cdot \frac{1}{a'^2}.$$

Die Ellipsengleichung liefert ferner für den letzten Factor

$$\frac{1}{a'^2} = \frac{\sin^2(\varphi - \psi)}{a^2 \sin^2 \varphi} + \frac{\sin^2 \psi}{b^2 \sin^2 \varphi}, \text{ daher ist}$$
$$m_1'^2 = \frac{(b^2 \sin^2(\varphi - \psi) + a^2 \sin^2 \psi) \sin^2 \varphi}{2\varrho^2 \cdot \sin^2 \varphi} = \frac{m_1^2 \sin^2(\varphi - \psi) + m_2^2 \sin^2 \psi}{\sin^2 \varphi} = m_1^2.$$

14.

Lässt man den Endpunkt Q des zu  $m_1$  gehörigen wahrscheinlichen Fehlers  $OQ = r_1'$ , der allgemein mit r bezeichnet werden mag, alle Lagen um O durchlaufen, so beschreibt er für die Hauptellipse die bekannte Fusspunktcurve (Fig. 5) mit der Gleichung

$$\mathfrak{r}^{2} = \frac{r_{1}^{2} \cdot \sin^{2}(\varphi - \psi) + r_{2}^{2} \sin^{2} \psi}{\sin^{2} \varphi},$$

worin r und  $\psi$  variabel sind und r die wahrscheinliche parallele Verschiebung von  $A_1 A_1'$  unter der Neigung  $\psi$  gegen AA' bedeutet. An den Endpunkten der Hauptachsen tangiren sich beide Curven, r wird dabei ein Minimum resp. Maximum. Der spitze Winkel  $\psi$  aus der Gleichung

19) 
$$r_1^2$$
. sin  $2(\varphi - \psi) = r_2^2 \sin 2\psi$ 

entspricht der Lage der grossen Achse, falls  $\varphi$  selbst spitz ist.

Im Allgemeinen lässt sich für Q noch die leicht beweisliche Proportion angeben (Fig. 5):

 $QQ': QO: Q'O = Q_1Q_1': Q_1O: Q_1'O,$ wobei OQ senkrecht  $QQ_1$ .

15.

Wie schon bemerkt, lässt sich die specielle Vertheilung der Fehler mit Hilfe von Coordinatenachsen parallel irgend welchen conjugirten Ellipsendurchmessern stets angeben. In der Praxis ist man jedoch auf rechtwinklige Coordinatenachsen angewiesen und diese gestatten nur die Berechnung von M, da man kein Mittel hat, die Ellipse aus zwei beliebigen zu einander senkrechten Radien ihrer Fusspunktcurve zu finden. Wollte man dennoch z. B. aus OQ und  $OQ_1$  die Fehlervertheilung ableiten, also damit verfahren wie in Fig. 2 mit OM und ON, so würde man um so grössere Abweichungen von der Wirklichkeit erhalten, je weiter sich  $QOQ_1$  von den Ellipsenachsen entfernt.

Liegt z. B.  $QOQ_1$  in den Halbirungslinien der Winkel zwischen den Hauptachsen, so werden  $OQ = OQ_1 = r$ ,  $OQ' = OQ_1'$ ,

$$\tau^{2} = \frac{r_{1}^{2} \sin^{2} \varphi (\varphi - \psi) + r_{2}^{2} \sin^{2} \psi}{\sin^{2} \varphi} = \frac{r_{1}^{2} \cos^{2} (\varphi - \psi) + r_{2}^{2} \cos^{2} \psi}{\sin^{2} \varphi}$$
  
$$\tau^{2} = \frac{r_{1}^{2} + r_{2}^{2}}{2 \sin^{2} \varphi}, \quad m^{2} = \frac{1}{2} M^{2}.$$

0Q und  $0Q_1$ , in der angegebenen Weise benutzt, würden für gleichwahrscheinliche Lagen von P Kreise um O anstatt Ellipsen ergeben

Bedarf man daher einer genauen Einsicht in die Gruppirung gleichwahrscheinlicher Lagen von P um O, so muss auch für eine Coordinate von P in Bezug auf eine dritte Achse der mittlere oder wahrscheinliche Fehler berechnet werden, was, wie sich später zeigen wird, nicht viel Mühe macht. Ist die Neigung einer der drei Coordinatenachsen gegen die Hauptachse der Ellipse gleich  $\psi$ , so ist für die betreffende Coordinate das Quadrat des mittlern Fehlers

0) 
$$\mathfrak{m}^2 = m_1^2 \cdot \cos^2 \psi' + m_2^2 \cdot \sin^2 \psi'$$

9

wenn  $m_1$  und  $m_2$  die den Hauptachsen entsprechenden mittlern Fehler bedeuten.

Setzt man nun für drei Coordinatenachsen resp.  $\psi' = \psi, \psi' = \psi + 45^{\circ}$ und  $\psi' = \psi + 90^{\circ}$ , so hat man zur Besimmung von  $m, m_2$  und  $\psi$ 

$$\begin{cases} m_1^2 = m_1^2 \cos^2 \psi + m_2^2 \sin^2 \psi = \frac{m_1^2 + m_2^2}{2} + \frac{m_1^2 - m_2^2}{2} \cdot \cos 2\psi, \\ m_2^2 = \frac{m_1^2 + m_2^2}{2} - \frac{m_1^2 - m_2^2}{2} \sin 2\psi, \\ m_3^2 = \frac{m_1^2 + m_2^2}{2} - \frac{m_1^2 - m_2^2}{2} \cos 2\psi. \end{cases}$$

Führt man abkürzungsweise noch m<sub>4</sub> für  $\psi' = \psi + 135^{\circ}$  ein, wo

$$\mathfrak{m}_4^2 = \mathfrak{m}_1^2 + \mathfrak{m}_3^2 - \mathfrak{m}_2^2 = \frac{\mathfrak{m}_1^2 + \mathfrak{m}_2^2}{2} + \frac{\mathfrak{m}_1^2 - \mathfrak{m}_2^2}{2} \sin 2\psi,$$

so wird

$$\begin{cases} (m_1^2 - m_2^2)^2 = (m_1^2 - m_3^2)^2 + (m_2^2 - m_4^2)^2 \\ (m_1^2 + m_2^2) = (m_1^2 + m_3^2) = (m_2^2 + m_4^2) \end{cases}$$

zur Berechnung von  $m_1$  und  $m_2$ . Damit besimmt sich auch  $\psi$  aus einer der obigen Gleichungen. Die zu  $m_1$  und  $m_2$  gehörigen r sind die Hauptachsen der Ellipse.

16.

Nur selten kommen in der Praxis schiefwinklige Coordinatensysteme vor. Die wahrscheinlichen Fehler der Coordinaten gestatteten hier auch die Berechnung von M nicht und liefern nur zwei Paare gegenüberliegender Punkte der Fusspunktcurve, wenn die Achsen nicht zufällig parallel conjugirten Durchmessern liegen, was man indess nicht wissen kann.

Polarcoordinaten, überhanpt alle solche Coordinatensysteme, welche am Punkte zwei zu einander senkrechte Richtungen markiren, ersetzen in jeder Beziehung rechtwinklige Coordinaten.

#### Bestimmung der Genauigkeit eines Punktes aus der Angabe mehrerer von einander unabhängiger Geraden.

## 17.

Benutzt man zunächst ein schiefwinkliges Coordinatensystem mit dem Neigungswinkel  $\varphi$ , so sind die Gleichungen der Geraden im Anschluss an Fig. 6, wenn p und q die Abschnitte der Geraden auf den zu den x und ysenkrechten Achsen bezeichnen:

Geodäsie. Von FRIEDR. ROB. HELMERT.

21) 
$$\frac{x_1}{q_1} + \frac{y_1}{p_1} = \sin \varphi, \ldots, \frac{x_n}{q_n} + \frac{y_n}{p_n} = \sin \varphi.$$

Ferner mögen  $\varepsilon_1 \ldots \varepsilon_n$  die *n* Abstände eines Punktes *P* mit den Coordinaten *x*, *y* von den Geraden sein, und  $m_1 \ldots m_n$  die mittlern Fehler,  $h_1 \ldots h_n$  die Maasse der Genauigkeit — in Zukunft kurz Präcisionen genannt — der einzelnen Geraden bedeuten. Dann ist zunächst irgend ein Abstand  $\varepsilon$  (Fig. 6)

22) 
$$\begin{cases} \varepsilon = \left(\frac{y}{\sin \varphi} - p\right) \sin \gamma + \frac{x}{\sin \varphi} \cdot \sin (\gamma - \varphi) \\ \varepsilon = x \cdot \frac{p}{l} + y \cdot \frac{q}{l} - \frac{pq \sin \varphi}{l} , \end{cases}$$

oder auch

23) 
$$\varepsilon = -\lambda + x \cdot \frac{n}{l} + y \cdot \frac{q}{l}$$
,

worin der Abstand  $\lambda$  der Geraden vom Coordinaten-Anfange als Beobachtungsgrösse, zu der *m* als mittlerer Fehler gehört, erscheint, *l* aber die Länge der Geraden zwischen den Achsen bezeichnet. Bekanntlich werden *x* und *y* so bestimmt, dass die Wahrscheinlichkeit des Zusammentreffens aller Fehler, nämlich der Abstände  $\varepsilon$ , ein Maximum wird; also, wenn  $w_1 \dots w_n$ die Wahrscheinlichkeiten der Fehler Null senkrecht zu den verschiedenen Geraden bezeichnen, und *e* Basis der natürlichen Logarithmen ist,

$$(w_1 \cdot w_2 \cdot \ldots \cdot w_n) = e^{-(h_1^2 \varepsilon_1^2 + h_2^2 \varepsilon_2^2 + \ldots + h_n^2 \varepsilon_n^2)} = Max$$

Dies ist gleichbedeutend mit  $\sum_{1}^{n} (h^2 \epsilon^2) = Min.$ 

Darans finden sich für die wahrscheinlichsten Coordinaten x und y die Gleichungen

$$\frac{\partial \Sigma}{\partial x} = 0, \quad \frac{\partial \Sigma}{\partial y} = 0, \quad \text{oder ausgeführt}$$

$$\overset{24)}{\begin{cases}} x \cdot \Sigma \left( \frac{p \ p}{l \ l} \cdot h^2 \right) + y \cdot \Sigma \left( \frac{p \ q}{l \ l} \cdot h^2 \right) - \Sigma \left( \frac{\lambda p}{l \ l} \cdot h^2 \right) = 0, \\ x \cdot \Sigma \left( \frac{p \ q}{l \ l} \cdot h^2 \right) + y \cdot \Sigma \left( \frac{q \ q}{l \ l} \cdot h^2 \right) - \Sigma \left( \frac{\lambda q}{l \ l} \cdot h^2 \right) = 0.$$

Für andere Lagen des Punktes P, dessen Coordinaten mit x + u, y + v bezeichnet werden mögen, ist die Wahrscheinlichkeit des Eintretens

$$W_{u,v} = Max \cdot e^{n \over 1} (h^2 \cdot \varDelta \varepsilon^2)$$

wenn Max. den Werth der Wahrscheinlichkeit für die wahrscheinlichste Lage (x, y) des Punktes P bezeichnet und

$$\Delta \varepsilon^2 = \left\{ (x+u) \frac{p}{l} + (y+v) \frac{q}{l} - \lambda \right\}^2 - \left\{ x \frac{p}{l} + y \frac{q}{l} - \lambda \right\}^2$$

ist, woraus mit Hilfe von 24) hervorgeht

Zeitschrift f. Mathematik u. Physik XIII, 2.

90 Studien über rationelle Vermessungen im Gebiete der höhern 

25) 
$$\begin{cases} W_{u,v} = Max \cdot e^{-\sum_{l=1}^{n} \left(u \cdot \frac{p}{l} + v \cdot \frac{q}{l}\right)^2 h^2} \\ = Max \cdot e^{-\sum_{l=1}^{n} \left(e^{l^2}h^2\right)} . \end{cases}$$

Die  $\epsilon$  sind hierbei die Abstände des Punktes (x + u, y + v), oder kurz (u, v), von Parallelen zu den bestimmenden Geraden, gezogen durch die wahrscheinlichste Lage (x, y).

Für das Max. selbst ergiebt sich noch

26) 
$$Max_{.} = (w_{1}, w_{2}, \ldots, w_{n}) \cdot e^{-\sum_{i} (-\lambda \epsilon h^{2})}$$

worin e die der wahrscheinlichsten Lage entsprechenden Abstände von den Geraden bedeuten.

Man sicht leicht ein, dass diese Resultate unabhängig von der besonderen Lage der Coordinatenachsen sind und ist daher zu dem Satze berechtigt:

> Ist ein Punkt durch mehrere Gerade bestimmt, so liegen (nach Gleichung 25) um den wahrscheinlichsten Ort desselben alle Lagen gleicher Wahrscheinlichkeit auf concentrischen, ähnlichen und ähnlich liegenden Ellipsen.

Damit ist in der Hauptsache der allgemeinere Fall auf den besonderen zweier Geraden zurückgeführt.

18.

Für die weitere Ausführung möge zu rechtwinkligen Coordinatenachsen übergegangen werden, da schiefwinklige sich nach Abschnitt 16. weniger empfehlen. Indem  $\varphi = 90^{\circ}$  wird, gehen die Gleichungen 21), 23), 24), 25) über in

27)  $0 = -\lambda - x \cos y + y \sin y$ , (allgemeine Form der Gleichung einer Geraden),

28)  $\varepsilon = -\lambda - x \cos \gamma + y \sin \gamma$ , (Fehlergleichung), und

29)  $\begin{cases} x \cdot \Sigma (h^2 \cos^2 \gamma) - y \cdot \Sigma (h^2 \cos \gamma \sin \gamma) + \Sigma (h^2 \lambda \cos \gamma) = 0, \\ -x \cdot \Sigma (h^2 \cos \gamma \sin \gamma) + y \cdot \Sigma (h^2 \sin^2 \gamma) - \Sigma (h^2 \lambda \sin \gamma) = 0, \end{cases}$ 

worin y den Neigungswinkel der Geraden gegen die zu den Coordinaten x senkrechte x-Achse bezeichnet.

Hieraus folgen

$$30) \begin{cases} x = N \cdot \Sigma \left[ h^2_{\alpha} h^2_{\beta} (\lambda_{\alpha} \sin \gamma_{\beta} - \lambda_{\beta} \sin \gamma_{\alpha}) \sin(\gamma_{\alpha} - \gamma_{\beta}) \right], \\ y = N \cdot \Sigma \left[ h^2_{\alpha} h^2_{\beta} (\lambda_{\alpha} \cos \gamma_{\beta} - \lambda_{\beta} \cos \gamma_{\alpha}) \sin(\gamma_{\alpha} - \gamma_{\beta}) \right], \\ N = 1 : \Sigma \left[ h^2_{\alpha} h^2_{\beta} \sin^2 (\gamma_{\alpha} - \gamma_{\beta}) \right], \end{cases}$$

 $\Sigma$  in Bezug auf alle paarweisen Combinationen der Zahlen 1.... n (ohne Wiederholung).

Ferner ist

31) 
$$W_{u,v} = Max \cdot e^{-\sum \left[h^2 \cdot (-u \cos \gamma + v \sin \gamma)^2\right]}$$
, und  
Digitized by GOOGLE

für das Maximum von Woder für das Minimum der Fehlerquadrate nach Gleichung 26)

$$\begin{split} \Sigma(-\lambda\varepsilon h^2) &= -N.\frac{1}{2}. \Sigma \left\{ \begin{array}{l} h_{\alpha}{}^{2}h_{\beta}{}^{2}h_{\gamma}{}^{2}\lambda_{\gamma}\sin(\gamma_{\alpha}-\gamma_{\beta}) \left[\lambda_{\alpha}\sin(\gamma_{\gamma}-\gamma_{\beta})+\lambda_{\beta}\sin(\gamma_{\alpha}-\gamma_{\gamma})\right] \\ +\lambda_{\gamma}\sin(\gamma_{\beta}-\gamma_{\alpha}) \right] \right\}, \\ \text{wobei die Indices } \alpha \beta \gamma \text{ unter den Zahlen 1 bis } n \text{ alle Combinationen zu} \\ \text{drei mit Wiederholung bilden. (Index } \gamma \text{ und Winkel } \gamma \text{ können nicht wohl} \\ \text{verwechselt werden, sodass die Bezeichnungsweise auch nicht zu Irrthümern} \\ \text{Veranlassung giebt.) Zieht man zusammen, so wird für Combinationen \\ ohne Wiederholung in der Summe rechts \end{split}$$

$$\Sigma(-\lambda \varepsilon h^2) = N \cdot \Sigma \left\{ \begin{pmatrix} (h_{\alpha}^2 h_{\beta}^2 h_{\gamma}^2) \cdot [\lambda_{\alpha} \sin(\gamma_{\beta} - \gamma_{\gamma}) + \lambda_{\beta} \sin(\gamma_{\gamma} - \gamma_{\alpha}) \\ + \lambda_{\gamma} \sin(\gamma_{\alpha} - \gamma_{\beta}) ]^2 \right\}.$$

Speciell für 3 Gerade sind die wahrscheinlichsten drei Abstände  $\varepsilon$   $\varepsilon_1 = N.h_2^2.h_3^2 sin(\gamma_3 - \gamma_2). \{\lambda_1.sin(\gamma_2 - \gamma_3) + \lambda_2 sin(\gamma_3 - \gamma_1) + \lambda_3 sin(\gamma_1 - \gamma_2)\},$   $\varepsilon_2 = N.h_1^2.h_3^2.sin(\gamma_1 - \gamma_3). \{ \rightarrow \qquad \rightarrow \qquad \rightarrow \qquad >,$   $\varepsilon_3 = N.h_1^2.h_2^2.sin(\gamma_2 - \gamma_1). \{ \rightarrow \qquad \rightarrow \qquad \rightarrow >,$ warms die Proposition Folgt, mann man and die obseluten Worthe der

woraus die Proportion folgt, wenn man nur die absoluten Werthe der e berücksichtigt,

$$\epsilon_1 h_1^2 : \epsilon_2 h_2^2 : \epsilon_3 h_3^2 = s_1 : s_2 : s_3$$

wo  $s_1$ ,  $s_2$ ,  $s_3$  die 3 Seiten des fehlerzeigenden Dreiecks gegenüber den Winkeln  $\gamma_3 - \gamma_2$ ,  $\gamma_1 - \gamma_3$  und  $\gamma_2 - \gamma_1$  (ohne Rücksicht auf den Quadranten) bezeichnen. Die wahrscheinlichste Lage des Punktes lässt sich hiernach leicht construiren. \*)

#### 19.

Um die Lage der Ellipsenhauptachsen zu erhalten, werde das nach der wahrscheinlichsten Punktlage verschobene Coordinatensystem um den Winkel  $\psi$  gedreht; es ist dann zu setzen für die ursprünglichen u und vausgedrückt in den neuen Coordinaten u' und v'

 $u = u' \cos \psi + v' \sin \psi; \quad v = -u' \sin \psi + v' \cos \psi.$ 

Wählt man nun  $\psi$  so, dass der Exponent von  $W_{u,v}$  rein quadratisch wird, so bezeichnet das neue Coordinatensystem auch die Lage der Hauptachsen. Aus Gleichung 31) folgt

32)  $\begin{cases} \tan 2\psi = \Sigma (h^2 \sin 2\gamma) : \Sigma (h^2 \cos 2\gamma) \text{ und der Exponent wird gleich} \\ c^2 = u^{\prime 2} \cdot \Sigma [h^2 \cos^2 (\psi - \gamma)] + v^{\prime 2} \cdot \Sigma [h^2 \sin^2 (\psi - \gamma)]. \end{cases}$ 

Die Coefficienten von  $u'^2$  und  $v'^2$  sind die Präcisionen in der Bestimmung der Lagen der Achsen der u' und v', oder der

<sup>\*)</sup> Dasselbe ist bei *n* Geraden immer dadurch zu ermöglichen, dass man mit Hilfe der Hauptellipse für zunächst zwei Gerade 1 und 2 zwei andere substituirt, deren eine parallel einer dritten geht, mit der sie sodann zu einer einzigen bestimmenden Geraden vereinigt wird. Man bemerkt leicht, wie dieses Verfahren zum gewünschten Ziele zu führen im Stande ist.

92 Studien über rationelle Vermessungen im Gebiete der höhern

Hauptachsen selbst, und die diesen Präcisionen entsprechenden wahrscheinlichen Fehler gehören als Hauptachsen zu der Hauptellipse. Führt man den Werth von  $\psi$  ein, so ergiebt sich die Präcision für die Achse der u', d. i. auch die Präcision in der Bestimmung der Coordinate u' senkrecht zu dieser Achse, gleich

33) 
$$\frac{1}{2} \left\{ \Sigma h^2 + \sqrt{[\Sigma (h^2 \sin 2\gamma))^2 + (\Sigma (h^2 \cos 2\gamma)]^2} \right\};$$

für die Präcision in der Lage der Achse der v' ist die Wurzel des letzten Ausdrucks negativ zu nehmen.

Lage und Grösse der Ellipse sind unabhängig von der Wahl des Coordinatensystemes; für die Grösse der Hauptachsen ist dies unmittelbar klar. Die erste der Gleichungen 32) zeigt ferner, dass ( $\psi - \gamma$ ) für Drehungen des rechtwinkligen Systemes constant bleibt, daher gilt der Satz in der That auch für die Lage der Ellipse.

#### 20.

Zur Berechnung der Präcision in der Bestimmung einer der ursprünglichen Coordinaten, etwa des x, suche man zuerst die zur Richtung der x-Achse (oder Achse der u) conjugirte Richtung, indem man die y-Achse (oder Achse der v) um  $\psi - 90^{\circ}$  dreht und  $\psi$  so wählt, dass  $c^2$ , der Exponent von e in dem mit *Max*. bezeichneten Ausdrucke rein quadratisch wird. Es ergiebt sich nach und nach

$$u = u', \quad v = u' \cot \psi + v' \csc \psi,$$
  
$$c^{2} = \Sigma \left\{ h^{2} \cdot \left( \frac{-u' \sin (\psi - \gamma) + v' \sin \gamma}{\sin \psi} \right)^{2} \right\}$$

und für '

34) 
$$\begin{cases} c^2 = u^{\prime 2} \cdot \Sigma \left( \frac{h^2 \sin^2 (\psi - \gamma)}{\sin^2 \psi} \right) + v^{\prime 2} \cdot \Sigma \left( \frac{h^2 \sin^2 \gamma}{\sin^2 \psi} \right) \\ \text{wird} \\ \tan \psi = \Sigma \left( h^2 \sin^2 \gamma \right) : \Sigma \left( h^2 \cos \gamma \sin \gamma \right). \end{cases}$$

Der Factor von  $u'^2$  ist das Quadrat der Präcision in der Bestimmung von x und werde mit  $H_1^2$  bezeichnet.  $H_1'$  sei die Präcision in v' und  $H_2$ diejenige in der Bestimmung von y, welche Grösse  $H_2$  aus  $H_1$  durch Vertauschung von y mit 90° + y hervorgeht. Indem nun

 $\sin^2 \psi = \left[ \Sigma \left( h^2 \sin^2 \gamma \right) \right]^2 : \left\{ \left[ \Sigma \left( h^2 \sin^2 \gamma \right) \right]^2 + \left[ \Sigma \left( h^2 \cos \gamma \sin \gamma \right) \right]^2 \right\},$ giebt eine leichte Zwischenrechnung

35) 
$$\begin{cases} H_1^2 = \left\{ \Sigma \left( h^2 \cos^2 \gamma \right) . \ \Sigma \left( h^2 \sin^2 \gamma \right) - \Sigma \left( h^2 \cos \gamma \sin \gamma \right) \right\} : \Sigma \left( h^2 \sin^2 \gamma \right) \\ \text{oder} \quad H_1^2 = 1 : N . \ \Sigma \left( h^2 \sin^2 \gamma \right) \end{cases}$$

und damit ist

36) 
$$H_2^2 = 1 : N \cdot \Sigma (h^2 \cos^2 \gamma)$$
, N wie in Gleichung 30).  
Digitized by GOOGLE

Ferner findet man

 $H_1'^2 = \left\{ \left[ \Sigma \left( h^2 \sin^2 \gamma \right) \right]^2 + \left[ \Sigma \left( h^2 \cos \gamma \sin \gamma \right) \right]^2 \right\} : \Sigma \left( h^2 \sin^2 \gamma \right).$ Nun ist

$$M^{2} = \frac{1}{2H_{1}^{2}} + \frac{1}{2H_{2}^{2}} + \frac{\Sigma h^{2}}{2\Sigma [h_{\alpha}^{2}h_{\beta}^{2}} \frac{\Sigma h^{2}}{\sin^{2}(\gamma_{\alpha} - \gamma_{\beta})]}$$
  
und somit auch  $M^{2} = \frac{1}{2} \cdot N \cdot \Sigma h^{2}$  37). \*)

Dieser Werth muss sich auch aus den Präcisionen senkrecht zu den Ellipsenhauptachsen ergeben (vergl. Gleichung 33), und in der That ist

$$M^{2} = \left(\frac{1}{\Sigma h^{2} + \sqrt{--}} + \frac{1}{\Sigma h^{2} - \sqrt{--}}\right) = \frac{1}{2} \cdot N \cdot \Sigma h^{2},$$

wobei

$$\sqrt{\div} = \sqrt{\left[\Sigma \left(h^2 \sin 2\gamma\right)^2\right] + \left[\Sigma \left(h^2 \cos 2\gamma\right)\right]^2}.$$

Ueberdiess genügen auch  $H_1$  und  $H_1'$  der Gleichung

$$M^2 = \left(\frac{1}{2H_1^2} + \frac{1}{2H_1^{\prime 2}}\right)$$
:  $sin^2 \psi$ , wie leicht zu zeigen ist.

 $H_1$  und  $H_2$  werden auf bekannte Weise auch aus Gleichung 29) gefunden. Setzt man erstens daselbst  $\Sigma(h^2 \lambda \cos \gamma) = (-1)$  und  $-\Sigma(h^2 \lambda \sin \gamma) = 0$ , so geht x in  $(1 : H_1^2)$  über; wird zweitens der erste dieser Werthe Null, der zweite gleich (-1) gesetzt, so geht y in  $(1 : H_2^2)$  über. Bedarf man nun H noch für eine andere Richtung (vergl. Abschn. 15.), so nehme man diese als Achse der x', transformire die Gleichungen 28 und 29) und verfahre pun wie oben bezüglich der Terme der Gleichungen, welche x' und y' nicht enthalten.

#### 21.

Hiermit ist denn der allgemeinere Fall mehrerer Geraden auf den besonderen nur zweier Geraden zurückgeführt und es bedarf nur noch der Bemerkung, dass die neugewonnenen Formeln mit den entsprechenden früheren identisch werden, sobald alle Gerade bis auf zwei in Wegfall kommen. Aus Gleichung 37) ergiebt sich alsdann

$$M^{2} = \frac{h_{1}^{2} + h_{2}^{2}}{2h_{1}^{2} h_{2}^{2} \sin^{2} \varphi} = \frac{r_{1}^{2} + r_{2}^{2}}{2\varrho^{2} \sin^{2} \varphi}, \text{ wie in Gleichung 17}.$$

Für die Lage der Hauptachsen geht Gleichung 32) über in  $lan 2\psi = \frac{h_2^2 \sin 2\gamma_2}{h_2^2 \cos 2\gamma_2 + h_1^2}$ , wobei die *x*-Achse in Richtung der ersten Geraden angenommen wurde; dagegen giebt Gleichung 19)

<sup>\*)</sup>  $H^2$  und  $M^2$  enthalten nur Quadrate der Sinus, daher werden im Folgenden die Winkel, soweit sie nur zur Berechnung von  $H^2$  und  $M^2$  dienen, ohne Rücksicht auf den Quadranten bestimmt werden.

 $\tan 2\psi = \frac{r_1^2 \sin 2\varphi}{r_1^2 \cos 2\psi + r_2^2}$  und weil  $\varphi = \gamma_2$  ist, geht dieser Werth in den vorigen über.

Für die Länge der Hauptachsen lässt sich durch ähnliche Rechnung ein Gleiches nachweisen, was hier weiter nicht ausgeführt zu werden braucht.

22.

Bei den vorigen Rechnungen wurden die Präcisionen h als bekannt vorausgesetzt. Sehr oft jedoch kennt man nur sogenannte Gewichte g. die sich wie die  $h^2$  verhalten, und benutzt die Ausgleichungsresultate, die wahrscheinlichsten Werthe der h kennen zu lernen. Die Theorie lehrt, dass bei n Geraden der mittlere Fehler der Gewichtseinheit gleich ist

$$\mu = \sqrt{\frac{\Sigma\left(\varepsilon^2 g\right)}{n-2}}$$

worin  $\varepsilon$  wieder die wahrscheinlichsten Abstände bezeichnet. Die Präcision der Gewichtseinheit wird daher gleich 1 :  $\sqrt{2\mu^2}$ , oder es ist für das Gewicht g

$$h_g^2 = (g: 2\mu^2).$$

Ist nun  $h^2$  von vornherein genau bekannt und  $g = h^2$ . *i* gesetzt worden, so muss sich jetzt  $i = 2\mu^2$  ergeben.

Aus der Uebereinstimmung oder Nichtübereinstimmung beider Werthe kann man einen Schluss auf die Zulässigkeit der bei Abschätzung der hdienenden Principien machen. Jeder geometrische Ort stützt sich auf Winkelmessungen und feste Punkte. Soweit h von ersteren abhängt, wird man es ziemlich genau angeben können; die festen Punkte betrachtet man meist als fehlerfrei. Es muss daher im Allgemeinen der Ueberschuss von  $2\mu^2$  über *i* den mittleren Fehler der festen Punkte charakterisiren, oder zur Entdeckung unberücksichtigter Fehlerquellen führen.

### 23.

Die Präcisionen h der Geraden, und wenn es möglich ist, nuch die Lage der Geraden wird man so wählen, dass M sich möglichst klein ergiebt. Doch ist es auch sehr wünschenswerth, dass H für alle Richtungen durch die wahrscheinlichste Lage des Punktes gleich werde, d. h. dass die Ellipsen gleichwahrscheinlicher Lagen in Kreise übergehen.

Nach Gleichung 33) tritt Letzteres ein für

38) 
$$\begin{cases} 0 = \Sigma (h^2 \cos 2\gamma) = \Sigma (h^2 \sin 2\gamma) \\ H^2 = 1 : M^2 = \frac{1}{2} \cdot \Sigma h^2. \end{cases}$$

Diese Bedingung gilt für jede Lage der x-Achse, auf welche sich die y beziehen. Schreibt man daher die erste der vorigen Gleichungen noch in der Form

$$39) \quad \Sigma (h^2 \cos^2 \gamma) = \Sigma (h^2 \sin^2 \gamma) ,$$

so hat man für Gleichheit der H die Bedingung \*): Es müssen sich die  $h^2$  unter den doppelten Neigungswinkeln ihrer zugehörigen Geraden zu einem vollständigen Polygone zusammenstossen lassen (nach Gleichung 38), oder es muss die Summe der Quadrate der Projectionen der h zu zwei zu einander senkrechten Richtungen gleich sein. In der letztern Ausdrucksweise ist aber noch eine Ungenauigkeit, denn liegen die zwei Projectionsachsen gerade in den Halbirungslinien der Winkel zwischen den Hauptachsen, so ist Gleichung 39) erfüllt, auch wenn nicht alle H gleich sind. Obgleich nun nicht zu vermuthen ist, dass dieser Ausnahmefall eintritt, ist es doch nothwendig, die Summe der Quadrate der Projectionen noch für eine dritte Achse zu bilden.

Sind Gleichung 38) und 39) erfüllt, so wird  $M^2$  ein Minimum unter der Bedingung von  $\Sigma h^2 = Const.$  und bei unveränderlichen Neigungen der Geraden zu einander. Man hat aus

$$M^2 = Min. ext{ auch } \frac{1}{N} = Max. ext{ oder } \mathcal{E}\left(h_a^2 h_\beta^2 sin^2(\gamma_a - \gamma_\beta)\right) = Max.$$

Es muss daher für beliebige Systeme von dh die Gleichung bestehen:

$$\frac{\partial \Sigma}{\partial h_1} \cdot dh_1 + \frac{\partial \Sigma}{\partial h_2} \cdot dh_2 + \ldots + \frac{\partial \Sigma}{\partial h_n} dh_n = K(2h_1 dh_1 + 2h_2 dh_2 + \ldots + 2h_n dh_n),$$

worin K eine noch zu bestimmende Grösse ist. Die Ausführung der Rechnung giebt zur Bestimmung der n + 1 Unbekannten  $h_1 \ldots h_n$ , K die n + 1 Gleichungen

 $\begin{array}{c} 0 = -C + h_1^2 + h_2^2 + \ldots + h_{n-1}^2 + h_n^2 \\ 0 = -K + h_2^2 \sin^2(\gamma_1 - \gamma_2) + \ldots + h_{n-1}^2 \sin^2(\gamma_1 - \gamma_{n-1}) + h_n^2 \sin^2(\gamma_1 - \gamma_n) \\ 0 = -K + h_1^2 \sin^2(\gamma_n - \gamma_1) + h_2^2 \sin^2(\gamma_n - \gamma_2) + \ldots + h_{n-1}^2 \sin^2(\gamma_n - \gamma_{n-1}). \end{array}$ 

Die zweite bis (n+1)te Gleichung sagen ans, dass  $H_1, H_2, \ldots H_n$ , das sind die Präcisionen der Geraden nach der Ausgleichung, einander gleich werden sollen, und da die Gleichheit dreier dieser H diejenige der sämmtlichen H nach sich zieht, so sind (n-3) der h für ein Minimum von M im obigen Sinne beliebig. Trotzdem kann der Fall eintreten, dass ein Minimum nicht möglich ist, sobald sich nämlich einzelne  $h^2$  negativ ergeben \*\*). Die Unmöglichkeit eines Min. tritt stets da ein,

<sup>\*)</sup> Man vergleiche hierüber, sowie über die im Gleichungssystem 40) nach Weglassung der ersten Gleichung vorkommende Determinante: Baltzer, Determinanten 2. Aufl. § 17. (1. 2 etc.) und § 3 (16. 17).

<sup>\*)</sup> Ein negatives  $h^2$  bedentet, man soll die Gerade um 90<sup>o</sup> drehen und ihr die Präcision gleich dem absoluten Werthe des berechneten h beilegen.

wo sich die  $h^2$  zu keinem Polygone zusammenstossen lassen (nach Gleichung 38), d. h. wenu sich alle Geraden in einem spitzen Winkelraume schneiden. Im andern Falle lassen sich mit Hilfe einer Figur nach Gleichung 39) die h leicht ausprobiren, indem es ja auch meist auf strenge Gleichheit der h nicht ankommt. Doch sind stets die  $h^2$  in Grenzen eingeschlossen, und man erhält diese, indem man zunächst drei der  $h^2$  durch C und die andern  $h^2$  ausdrückt und diese sodann

variirt, u. s. w. Der Werth K findet sich nach Gleichung 38) zu  $\frac{C}{2}$ 

Es mag noch erwähnt werden, dass die Unbestimmtheit des Maximalsystems der h den Vortheil gewährt, gleichzeitig noch andere Bedingungen erfüllen zu können, wozu namentlich diejenige als von Wichtigkeit zu rechnen ist, bei constantem  $M^2$  die aufgewandte Mühe möglichst klein zu machen. Die weitere Ausführung muss indess besonderen Fällen vorbehalten bleiben (vergl. Abschnitt 34).

### 24.

Vorstehende Betrachtungen liefern ausser Erreichungen des Hauptzweckes noch nebenbei die geometrische Deutung der Ausgleichung der beobachteten Werthe einer Function zweier Veränderlichen mit zwei zu bestimmenden Constanten, hier den Coordinaten x und y. Zugleich sieht man deutlich, was es heisst: den mittlern Fehler einer Function der Constanten x, y anzugeben.

Z. B. die Function nten Grades von x, y

$$z^n = f(x, y)$$

wird man zunächst linear machen durch Einführung scharfer Näherungswerthe. Entspricht  $z_0$  den Näherungswerthen  $x_0$  und  $y_0$ , so ist für die Verbesserungen von  $x_0$  und  $y_0$ , die  $\Delta x$  und  $\Delta y$  heissen mögen,

$$\frac{1}{n} \cdot z_0^{n-1} \Delta z = \frac{\partial f}{\partial x} \cdot \Delta x + \frac{\partial f}{\partial y} \cdot \Delta y, \quad \text{oder}$$
$$\Delta x \cdot \left(\frac{\partial f}{\partial x} \cdot \frac{n}{z_0^{n-1}}\right) + \Delta y \cdot \left(\frac{\partial f}{\partial y} \cdot \frac{n}{z_0^{n-1}}\right) - \Delta z = 0,$$

und in dieser Form hat man die Gleichung einer substituirten Geraden, nämlich einer Parallelen zu derjenigen Tangente der Curve, welcher  $(x_0, y_0)$ am nächsten liegt.  $\Delta z$  bezeichnet den Abstand dieser Parallelen von  $(x_0, y_0)$ . Derselben entspricht diejenige Präcision *H*, welche zu einer Geraden unter der Neigung  $\gamma$  gegen die Achse der x gehört, wo

$$lan \ \gamma = - \left\{ \begin{array}{c} \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial x} \end{array} \right\}.$$
Digitized by Google

Ist hierdurch die Präcision für  $\Delta z$ , also auch für z gefunden, so ist es nicht mehr schwierig, auch für f(x, y) selbst sie anzugeben.

Beispiel. Der Abstand des Punktes (x, y) vom festen Punkte  $(x_1, y_1)$  ist

$$x^2 = (x - x_1)^2 + (y - y_1)^2.$$

Sind  $x_0$  und  $y_0$  Näherungswerthe von  $\varepsilon$  und entspricht ihnen ein  $\varepsilon_0$ , so wird

$$\Delta \varepsilon = \Delta x \cdot \frac{x_0 - x_1}{\varepsilon_0} + \Delta y \cdot \frac{y_0 - y_1}{\varepsilon_0}; \ \tan \gamma = -\frac{y_0 - y_1}{x_0 - x_1}.$$

Hat man nun das H und damit den mittleren Fehler m für  $\Delta \varepsilon$  ermittelt, so wird  $\pm 2 \varepsilon_0$  m der mittlere Fehler in  $\varepsilon^2$  selbst sein, wenn hierin für x und y die wahrscheinlichsten Coordinaten gesetzt wurden.

m selbst ist von der Entfernung beider Punkte unabhängig, und sucht man einen mittlern Werth des mittlern Fehlers im Abstande von beliebigen andern Punkten  $(x_1, y_1)$ , so ist es nur nöthig, diese für eine Kreisperipherie um (x, y) zu betrachten. Ohne weitere Bemerkung leuchtet ein, dass das mittlere Quadrat aller m wird im Anschluss an Gleichung 20):

41) 
$$\mathfrak{M}^{2} = \frac{\sum_{0}^{\pi} \mathfrak{m}^{2}}{\frac{\pi}{d\psi'}} = \frac{1}{\pi} \int_{0}^{\pi} (m_{1}^{2} \cos^{2} \psi' + m_{2}^{2} \sin^{2} \psi') d\psi' = \frac{m_{1}^{2} + m_{2}^{2}}{2} = \frac{1}{2} M^{2}.$$

25.

Bisher war angenommen worden, dass die bestimmenden Geraden von einander un ab hängig bestimmt seien; anhangsweise möge jetzt der Fall erörtert werden, wo diess nicht mehr so ist. Einem Paare scharfer Näherungswerthe der Coordinaten entspreche ein gewisses System von Werthen der Beobachtungsgrössen;  $\alpha_1, \alpha_2 \dots \alpha_p$  sollen nun die Ergänzungen dieser Werthe zu den wirklichen Beobachtungsgrössen,  $\alpha_1', \alpha_2' \dots \alpha_p'$  aber die Ergänzungen zu den wahrscheinlichsten Werthen der Beobachtungsgrössen bezeichnen. Versteht man noch unter x und y die wahrscheinlichsten Ergänzungen der Näherungswerthe der Coordinaten, so ist

$$0 = ax + by + c\alpha_1' + d\alpha_2' + \ldots + q\alpha_p'$$

die Form der *n* Gleichungen zur Bestimmung von *x* und *y*, worin die Coefficienten Functionen der Näherungswerthe aller Grössen bedeuten. Da ferner  $p \ge n$  ist, kann man *n* der  $\alpha'$  durch *x*, *y* und die (p-n) andern  $\alpha$  ausdrücken und letztere als zu bestimmende Constanten, wie *x* und *y*, betrachten. Bezeichnet man sie daher noch mit  $z_1, z_2$ , etc., so nimmt das Gleichungssystem die Form an

$$\begin{cases} \alpha_1' = A_1 x + B_1 y + C_1 z_1 + \dots + D_1 z_{p-n} \\ \alpha_2' = A_2 x + B_2 y + C_2 z_1 + \dots + D_2 z_{p-n} \\ \vdots & \vdots & \vdots \\ \alpha_n' = A_n x + B_n y + C_n z_1 + \dots + D_n z_{p-n} \\ \left\{ \alpha_{n+1}' = \vdots & \vdots + z_1 \\ \vdots & \vdots & \vdots \\ \alpha_p' = \vdots & \vdots & \vdots + z_{p-n} \end{array} \right\}$$

Setzt man hierin links für  $\alpha' \alpha + \Delta \alpha$ , so bestimmt man bekanntlich x, y, z etc. derartig, dass  $\Sigma(h^2, \Delta^2 \alpha)$  ein Min. wird.

Der Ausdruck für die Wahrscheinlichkeit eines andern Constantensystems  $x + \Delta x$ ,  $y + \Delta y$ ,  $z + \Delta z$  u. s. f. lässt sich immer auf die Form bringen \*):

$$W_1 = x_1 \cdot e^{-\sum_{i=1}^{n} (A_i \Delta x + B_i \Delta y + \ldots + D_i \Delta z_{p-n})^2 \cdot h_i^2},$$

worin  $z_1$  in Bezug auf die  $\Delta$  constant,  $h_i$  die Präcision in  $\alpha_i$  ist. Bildet man weiter die Summe aller  $W_1$  für alle möglichen  $\Delta z_1, \ \Delta z_2, \ \dots \ \Delta z_{p-n}$ , so erhält man einen Ausdruck von der Form

$$W_2 = \mathbf{x}_2 \cdot e^{-(P \cdot \Delta^{\mathbf{t}} x + Q \cdot \Delta x \cdot \Delta y \cdot + R \cdot \Delta^{\mathbf{t}} y)},$$

worin wieder  $x_2$ , P, Q, R von  $\Delta x$  und  $\Delta y$  unabhängig sind.

Dieser Ausdruck sagt aber aus, dass immer sich gleichwahrscheinliche Lagen des zu bestimmenden Punktes um die wahrscheinlichste Lage herum in Ellipsen gruppiren, womit daher der allgemeinste Fall auf den einfachsten "zweier unabhängigen Geraden" zurückgeführt worden ist. (Vergl. Abschnitt 39.).

# II. Ueber das Einschalten von Netzpunkten in ein grösseres "bekanntes" trigonometrisches Netz.

#### 26.

Ist eine Landestriangulation bis zu Dreiecken von 0,5 bis 2 Meilen Seitenlänge herabgekommen, so wird es sich darum handeln, eine grosse Anzahl weiterer Punkte nach den gegebenen behufs Detailaufnahme einzumessen, sodass deren durchschnittliche Entfernung 0,1 bis 0,3 Meilen beträgt. Der grösste Theil dieser neubestimmten Punkte muss zugänglich sein, da sie zum Ausgange weiterer Messungen dienen sollen. Man wird

<sup>\*)</sup> Ein Beweis hierzu findet sich in den Seite 75 unter Anmerkung \*\*) citirten Werken. Digitized by GOOGLE

daher im Allgemeinen zu ihrer Bestimmung einen dreifachen Weg einschlagen können:

- 1) Man beobachtet von den Hauptpunkten die Richtungen nach den Nebenpunkten;
- 2) man beobachtet umgekehrt auf den Nebenpunkten die Richtungen nach den Hauptpunkten;
- 3) man beobachtet Beides, combinirt also Methode 1) und 2).

Wegen der ungeheuren Complicirung des Rechnungswerkes sowohl, als auch wegen des geringeren Genauigkeitsgrades bei gleicher Mühe der Winkelmessungen ist dasjenige Verfahren, zwischen den Nebenpunkten selbst ein Netz zu bilden und dieses in das Hauptnetz einzuhängen, nicht in Gebrauch. Nur für benachbarte Nebenpunkte erhält man zwar auf diese Weise eine grössere Sicherheit in der Bestimmung der Verhältnisse ihrer Entfernungen (also der Figur zwischen diesen Punkten); jedoch genügen auch hierzu die Angaben jener drei Methoden, welche jeden Nebenpunkt direct auf die Hauptpunkte stützen und so seine Lage gegen diese weit schärfer zu berechnen gestatten.

Berücksichtigt man gleichviele Hauptpunkte, wie dies jedenfalls für die beiden ersten Methoden geschehen muss, auch bei der dritten derselben, so kann von einem Vergleiche mit jenen beiden nicht die Rede sein. Ein solcher hat erst dann Sinn, wenn im dritten Falle weniger Hauptpunkte zur Bestimmung eines Nebenpunktes zugezogen werden, und er soll hier überhaupt nur anhangsweise dem Vergleiche der 1. und 2. Methode folgen, insofern dieses völlig genügen wird.

27.

"In theoretischer Beziehung ist nun im Allgemeinen die zweite Methode, bei nur drei Hauptpunkten 'Pothenot'sche Aufgabe' genannt, die vorzüglichste; aber auch in praktischer Hinsicht bietet sie manche Vortheile vor der ersten."

Zur Begründung dieses Satzes möge vorerst der letztere Gesichtspunkt angenommen werden. Dabei sind zu berücksichtigen 1) die Situation der Nebenpunkte und 2) die Menge der Arbeit mit dem Theodoliten und die der Ausgleichungsrechnung.

Die Nebenpunkte liegen meistens tiefer als die Hauptpunkte, diese lassen sich daher leicht und gut von jenen visiren, während umgekehrt die Aufsuchung und das Anvisiren der schwachen Signalstangen, durch welche man die Nebenpunkte sichtbar zu machen hätte, der grössern Entfernung und des schlechten Hintergrundes wegen oft sehr misslich werden wird. Es ist dieser Umstand der schnellen Ausführung der Arbeit nach der ersten Methode entschieden bedeutend hinderlicher, als der bei der zweiten

Studien über rationelle Vermessungen im Gebiete der höhern 100

Methode nöthige häufige, doch leicht zu bewirkende Umzug nach nahen, benachbarten Nebenpunkten. Die Situation der Nebenpunkte spricht mithin zu Gunsten der zweiten Methode.

28.

Hinsichtlich der Menge der Arbeit mit dem Theodoliten und derjenigen der Ausgleichungsrechnung lässt sich Folgendes anführen:

1) Bei Winkelbeobachtungen entsprechen den gRichtungen von den qHauptpunkten nach einem Nebenpunkte qWinkelmessungen; ebensoviele lassen sich auf dem Nebenpunkte zwischen den q Hauptpunkten vornehmen und man hat hierbei noch den Vortheil der Auswahl unter den  $\frac{q(q-1)}{2}$  möglichen Winkeln zu günstigst wirkenden Schnitten. Jeder Winkel, hier wie dort, liefert eine Gleichung zur Bestimmung der Coordinaten des Nebenpunktes und wenn nur für letztere durch eine Uebersichtsmenselaufnahme der Nebenpunkte erst vorläufige, durch darauf sich stützende Berechnung aus zwei guten Schnitten scharfe Näherungswerthe bekannt worden sind, macht die Aufstellung und Auflösung der Gleichungen in beiden Fällen nahezu dieselbe Mühe. Ueber die wirklich erlangte Genauigkeit wird die theoretische Vergleichung später das Nöthigste angeben.

2) a. Bei Richtungsbeobachtungen von den Hauptpunkten aus müssen die Nebenpunkte wegen ihrer grossen Anzahl gruppenweise vereinigt werden, womöglich so, dass für verschiedene Hauptpunkte dieselben Nebenpunkte zu einerlei Gruppe gehören.

Man bekommt dadurch in die Rechnung eine Beziehung benachbarter Nebenpunkte, da eine Gruppe am besten auch nur solche enthalten wird, und durch diese Beziehung bestimmt sich die gegenseitige Lage dieser Nebenpunkte etwas schärfer, als der mittlere Fehler M jedes einzelnen derselben erwarten lässt. Leider verwickelt sich aber die Rechnung durch diese Beziehung ungemein, denn sie bringt sämmtliche Bestimmungsgleichungen der Coordinaten aller Punkte einer Gruppe in Zusammenhang und strenggenommen müssen alle diese Gleichungen zusammen ausgeglichen werden:

Ist o der Beobachtungsfehler in dem Winkel a zwischen der Nullrichtung - es sei diese die Richtung nach einem andern Hauptpunkte und der Richtung nach einem Nebenpunkte, so schreibt man bekanntlich die Gleichung zwischen  $\alpha$ ,  $\omega$  und den Coordinaten x und y des Nebenpunktes als Fehlergleichung

 $-\omega \cdot x = x \cdot f(x, y),$ 

wenn  $x^2$  das Gewicht des Winkels  $\alpha$  und f(x, y) eine lineare Function der Verbesserungen der Näherungswerthe von x und y ist. (Die Coefficienten derselben sind von a und den Coordinaten des Hauptpunktes abhängig; vergl. Abschnitt 30.).

 $\omega$  besteht aus zwei Theilen, nämlich den Beobachtungsfehlern der beiden Richtungen; bezeichnen  $O_q$  und  $p_q$  resp. den Fehler der Nullrichtung und den Fehler der Richtung nach dem *p*ten Nebenpunkte auf dem *q*ten Hauptpunkte, so ist

$$-\omega = (0_q - p_q).$$

Ist n Anzahl der Nebenpunkte der betr. Gruppe, q Anzahl der Hauptpunkte, von welchen dieselbe beobachtet wurde und berücksichtigt man, dass  $\pi$  constant wird für alle Winkel von einem Hauptpunkte aus, so nimmt das System der zusammen zur Ausgleichung gelangenden Gleichungen die folgende Gestalt an:

- 1 ther Nebenpunkt, 2 ter Nebenpunkt, nter Nebenpunkt. 1. Hauptpunkt:  $\mathbf{x}_1(0_1-1_1)=f_1'(x_1,y_1); \quad \mathbf{x}_1(0_1-2_1)=f_2'(x_2,y_2); \dots \ \mathbf{x}_1(0_1-n_1)=f_n'(x_n,y_n);$
- 2. Hauptpunkt:  $\varkappa_2(0_2-1_2) = f_1''(x_1, y_1); \ \varkappa_2(0_1-2_1) = f_2''(x_2, y_2); \dots \ \varkappa_2(0_2-n_2) = f_n''(x_n, y_n);$
- $\begin{array}{l} q. \text{Haupt-} \\ \text{punkt:} & \texttt{x}_q(0_q-1_q) = f_1(q)(x_1, y_1); \ \texttt{x}_q(0_q-2_q) = f_2(q)(x_2, y_2); ... \texttt{x}_q(0_q-n_q) = f_n(q)(x_n, y_n). \end{array}$

Die Anzahl aller Gleichungen hierin beträgt n.q. Die 2n Coordinaten bestimmt man so, dass  $\Sigma\left(\frac{\kappa^2}{2} \cdot v^2\right) = Min.$ , wenn v den Beobachtungsfehler einer Richtung und  $\frac{\kappa^2}{2}$  sein Gewicht bezeichnen. Man erhält damit 2n Gleichungen für die Coordinaten, und macht schon die Entwickelung der Coefficienten der Unbekannten für diese Gleichungen aus den obigen n.q Gleichungen viele Mühe, so noch viel mehr die Auflösung nach den Unbekannten.

Noch schwieriger wird die Rechnung, wenn die Gruppeneintheilung im obigen Sinne nicht hat innegehalten werden können. Man wird wohl sehr häufig am besten thun, den übrigens nicht wesentlichen Vortheil des Zusammenhanges der Gleichungen für verschiedene Nebenpunkte fallen zu lassen und jeden derselben für sich zu berechnen.

Was die Grösse der Arbeit gegenüber Winkelbeobachtungen betrifft, so stellt sich diese jetzt etwa halb so gross als bei letzteren heraus; denn es beträgt die Anzahl der Einstellungen des Instrumentes für die *n*Nebenpunkte und die Nullrichtung (n+1), während bei Winkelbeobachtungen 2n Einstellungen zur Ermittlung der *n* Richtungsunterschiede mit den Nebenpunkten nothwendig werden.

2) b. Vereinigt man auf einem Nebenpunkte alle sichtbaren Hauptpunkte in einen einzigen "Satz" und bezeichnen (1), (2),  $\ldots$  (q)die Beobachtungsfehler der Richtungen, so ergeben sich (q-1) Gleichungen für die Coordinaten des Nebenpunktes. Durch Einführung scharfer Näherungswerthe erhalten diese Gleichungen die Form 102 Studien über rationelle Vermessungen im Gebiete der höhern

42) 
$$\begin{cases} (1) - (2) = A_2 + B_2 \cdot x + C_2 \cdot y, \\ (1) - (3) = A_3 + B_3 \cdot x + C_3 \cdot y, \\ \cdot & \cdot & \cdot & \cdot \\ (1) - (q) = A_q + B_q \cdot x + C_q \cdot y, \text{ wobei} \\ \{(1)^2 + (2)^2 + \dots + (q)^2\} = Min. \text{ zu machem} \end{cases}$$

x und y sind hierbei die Verbesserungen der Coordinatennäherungswerthe, unter A, B, C gewisse Functionen der letzteren und der Coordinaten der Hauptpunkte zu verstehen. Durch Differentiation der Gleichungen 42) und Multiplication derselben mit gewissen, noch unbekannten Grössen  $Z_2, Z_3, \ldots Z_q$  ergiebt sich zunächst

$$Z_{2} d(1) - Z_{2} d(2) - (B_{2} dx + C_{2} dy) Z_{2} = 0$$
  

$$Z_{3} d(1) - Z_{3} d(3) - (B_{3} dx + C_{3} dy) Z_{3} = 0$$
  
u. s. f.

Addirt man diese Gleichungen, so muss ihre Summe mit dem totalen Differential des *Min*. identisch werden, also

$$\sum Z d(1) - Z_2 \cdot d(2) - \dots - Z_q \cdot d(q) - \sum (BZ) \cdot dx - \sum (CZ) \cdot dy = (1) d(1) + (2) d(2) + \dots + (q) d(q)$$

für beliebige Werthe der Differentiale. Dazu gehört, dass

$$\begin{array}{c} \hat{\Sigma} Z = (1) \\ 2 \\ -Z_2 = (2) \\ . \\ -Z_q = (q) \end{array} \right\}, \begin{array}{c} q \\ \tilde{\Sigma} (BZ) = 0 \\ \frac{q}{2} \\ (CZ) = 0 \end{array} \right\}, \quad \text{also } \{(1) + (2) + .. + (q)\} = 0.$$

Die weitere Rechnung giebt nach und nach:

$$(1) \cdot q - \{(1) + (2) + \dots + (q)\} = \sum_{2}^{q} A + \sum_{2}^{q} B \cdot x + \sum_{2}^{q} C \cdot y,$$

oder

$$(1) = \frac{1}{q} \left( \sum_{2}^{q} A + \sum_{2}^{q} B \cdot x + \sum_{2}^{q} C \cdot y \right).$$
  
Former ist  $-(2) = Z_{2} = -(1) + A_{2} + B_{2} \cdot x + C_{2} \cdot y$   
 $-(3) = Z_{3} = -(1) + A_{3} + B_{3} \cdot x + C_{3} \cdot y$   
 $-(q) = Z_{q} = -(1) + A_{q} + B_{q} \cdot x + C_{q} \cdot y$ , and  
 $-(q) = Z_{q} = -(1) + A_{q} + B_{q} \cdot x + C_{q} \cdot y$ ,  $Z_{2} = -(1) + A_{q} + B_{q} \cdot x + C_{q} \cdot y$ ,  $Z_{3} = -(1) + A_{2} + B_{3} \cdot x + C_{3} \cdot y$ ,  $Z_{43} = \sum_{i=1}^{2} (BZ) = 0 = [\Sigma(AB) + \Sigma(BB) \cdot x + \Sigma(BC) \cdot y] - \frac{\Sigma B \cdot \{\Sigma A + \Sigma B \cdot x + \Sigma C \cdot y\}}{q}$   
 $\Sigma(CZ) = 0 = [\Sigma(AC) + \Sigma(BC) \cdot x + \Sigma(CC) \cdot y] - \frac{\Sigma C \cdot \{\Sigma A + \Sigma B \cdot x + \Sigma C \cdot y\}}{q}$ 

Diese Gleichungen haben die Form von Gleichung 29), wenn man sich die Glieder mit x, sowie die mit y zusammengezogen denkt. Durch Analogie erhält man daher die Quadrate der Präcisionen in der Bestimmung von x und y zu

Digitized by Google

ist. Unter

$$\begin{cases} H^{2}_{x} = 1 : N \cdot \left\{ \Sigma(CC) - \frac{1}{q} (\Sigma C)^{2} \right\} \\ H^{2}_{y} = 1 : N \cdot \left\{ \Sigma(BB) - \frac{1}{q} (\Sigma B)^{2} \right\} \\ (1:N) = \left\{ \left( \Sigma(BB) - \frac{1}{q} (\Sigma B)^{2} \right) \left( \Sigma(CC) - \frac{1}{q} (\Sigma C)^{2} \right) - \left( \Sigma(BC) - \frac{\Sigma B \cdot \Sigma C}{q} \right)^{2} \right\}, \\ M^{2} = \frac{1}{2} \cdot N \cdot \left\{ \left( \Sigma(BB) + \Sigma(CC) \right) - \frac{1}{q} \left( (\Sigma B)^{2} + (\Sigma C)^{2} \right) \right\}. \end{cases}$$

Die Präcision in der Beobachtung der Richtungen, für alle von gleicher Grösse, ist dabei zu 1 vorausgesetzt. Ist ihr Werth h, so hat man  $H_x^2$ ,  $H_y^2$  mit  $h^2$  zu multipliciren,  $M^2$  mit  $h^2$  zu dividiren.

Wären die (q-1) Winkel  $(1, 2), (1, 3), \ldots (1, q)$  einzeln gemessen worden, jede Richtung mit der Präcision 1, also die Winkel mit der Präcision  $\sqrt[n]{\frac{1}{2}}$ , so würden  $H^2$  und  $M^2$  Werthe annehmen, die aus den soeben aufgestellten hervorgehen, wenn die  $H^2$  mit 2 dividirt,  $M^2$  mit 2 multiplicirt und  $\Sigma B = 0$ , sowie  $\Sigma C = 0$  gesetzt werden. Man erhält dafür:

44<sup>b</sup>) 
$$\begin{cases} H_{x'}{}^{2} = 1 : 2N' \cdot \Sigma(CC); \quad H_{y'}{}^{2} = 1 : 2N' \cdot \Sigma(BB) \\ (1 : N') = \Sigma(BB) \cdot \Sigma(CC) - (\Sigma BC)^{2} \\ M'^{2} = N' \cdot (\Sigma(BB) + \Sigma(CC)). \end{cases}$$

In  $\Sigma B$  und  $\Sigma C$  kommen theils positive, theils negative Glieder vor, um so mehr, je gleichmässiger die Hauptpunkte vertheilt sind. Indess auch ohne diese Voraussetzung werden

$$\frac{(\Sigma B)^2}{q}$$
,  $\frac{(\Sigma C)^2}{q}$  gegen  $\Sigma(BB)$  und  $\Sigma(CC)$ 

immer klein sein und daher kann man ihre Quadrate näherungsweise vernachlässigen. Geschicht diess, so wird mit Hilfe einer leichten Zwischenrechnung :

$$M^{2} = \frac{1}{2} M^{\prime 2} \cdot \left\{ 1 + \frac{M^{\prime 2}}{q} \left( \left\{ \frac{\Sigma B. \Sigma(CC) - \Sigma C. \Sigma(BC)}{\Sigma(BB) + \Sigma(CC)} \right\}^{2} + \left\{ \frac{\Sigma B. \Sigma(BC) - \Sigma C. \Sigma(BB)}{\Sigma(BB) + \Sigma(CC)} \right\}^{2} \right) \right\}$$
  
d. h. es hat  $M^{2}$  einen nur wenig grösseren Werth als  $\frac{1}{2} M^{\prime 2}$ .

Dabei beträgt die Anzahl der Einstellungen für M' 2(q-1), für Mnur q, woraus man erkennt, dass auch auf dem Nebenpunkte Richtungsbeobachtungen viel vortheilhafter sind, als Winkelbeobachtungen. Es wird sich allerdings zeigen, dass es nicht rathsam ist, die Winkel alle von einem Hauptpunkte aus zu nehmen, man verbindet besser diametral liegende Hauptpunkte. Jedenfalls ändert im Allgemeinen dieser Umstand das Resultat obiger Vergleichung nicht dahin ab, dass Richtungsbeobachtungen sich ungünstiger als Winkelbeobachtungen herausstellen würden — immer unter der Voraussetzung, dass die Hauptpunkte im Umkreise um den Neben-

punkt nicht sehr ungleich vertheilt sind. Der Beweis hierzu kann umsomehr wegbleiben, weil sich andrerseits auch zeigen wird, dass "reine Richtungsbeobachtungen", d. h. solche, die alle sichtbaren Punkte in Einen Satz vereinigen, nicht räthlich sind, sondern wenigstens mit Winkelbeobachtungen combinirt werden müssen, sollen die Nebenpunkte nach allen Richtungen gleiche Präcision *H* erhalten. Es gilt Dieses ebenso für die Beobachtungen auf den Hauptpunkten, wie auf den Nebenpunkten.

Man kann daher sagen: "Werden gleichviele Einstellungen gemacht, um Nebenpunkte nach der ersten oder zweiten Methode zu bestimmen, so ist bei gleicher Beobachtungsweise die Ausgleichungsarbeit für beide dieselbe. Für beide Methoden sind ferner Richtungsbeobachtungen etwa gleichviel günstiger, als Winkelbeobachtungen." (Vergleiche Abschnitt 39.).

#### 29.

Die wirklich erreichte Genauigkeit kam bei diesen Untersuchungen noch nicht in Frage. Die theoretische Vergleichung beider Methoden soll nun zeigen, dass im Falle von Winkelbeobachtungen bei gleicher Mühe die zweite Methode in der Regel bessere Resultate als die erste Methode giebt, und dass, wie schon erwähnt, reine Richtungsbeobachtungen im Allgemeinen nicht vorkommen werden, da einzelne Richtungen ein grösseres Gewicht als die andern erhalten müssen, soll die Triangulation ein günstiges Resultat geben.

Es würde dann zu folgern sein, dass im Allgemeinen die zweite Methode die günstigere ist.

## 30.

Im Anschluss an Fig. 7 seien *A* und *B* zwei Hauptpunkte, *P* ein Nebenpunkt und dabei  $\not\subset A = \alpha$ ,  $\not\subset B = \beta$ ,  $\not\subset P = \varphi$ , AB = 2c, AP = a, BP = b. Die Visur von *A* nach *P* giebt dann für die rechtwinkligen Coordinaten *x* und *y* von *P* die Gleichung

 $0 = -x \cdot \cos \alpha + (c + y) \sin \alpha$ ,

wenn der Coordinatenanfang Q in die Mitte von AB gelegt wird und QB die positive Achse der x wieder in dem Sinne ist, dass die Coordinate x von P senkrecht zur x-Achse zu nehmen ist.

Sind (x) und (y) scharfe Näherungswerthe, (x) +  $\Delta x = x$ , (y) +  $\Delta y = y$ , so wird für die Verbesserungen  $\Delta x$  und  $\Delta y$  der Näherungswerthe: 45) 0 =  $-\lambda - \Delta x \cdot \cos \alpha + \Delta y \cdot \sin \alpha$ ;  $\lambda = (x) \cos \alpha - (c + (y)) \sin \alpha$ .

Der absolute Werth  $\lambda$  ist der Abstand des Punktes ((x), (y)) von der Visur *AP*.

Die Gleichung 45) hat die Form der Gleichung 27);  $\lambda$  erscheint daher als Beobachtungsgrösse mit dem mittlern Fehler  $\pm a \cdot \omega$ , wenn  $\omega$  den

Digitized by GOOGLE

mittlern Fehler in  $\alpha$  bezeichnet. Für die numerische Rechnung nimmt man das zu (x) und (y) gehörige  $(\alpha)$  aus der Gleichung  $tan (\alpha) = \frac{(x)}{c + (y)}$ , setzt den Beobachtungswerth  $\alpha = (\alpha) + \Delta \alpha$  und erhält einfacher  $46) 0 = \Delta \alpha - \Delta x \cdot \frac{\cos(\alpha)}{(\alpha)} + \Delta y \cdot \frac{\sin(\alpha)}{(\alpha)}; (\alpha) = (x) \sin(\alpha) + (c + (y)) \cos(\alpha).$ 

Setzt man hierin links anstatt Null  $d\alpha$  als wahrscheinliche Verbesserung des Beobachtungswerthes, so ist es üblich, die entstehende Fehlergleichung noch mit der Wurzel des Gewichtes (proportional  $\frac{1}{\omega}$ ) zu multipliciren. Geschieht ein Gleiches für die zu Gleichung 45) gehörige Fehlergleichung, so nimmt diese selbstverständlich dieselbe Form an wie jene.

Wird P von B aus visirt, so erhält bei gleicher Anzahl Einstellungen wie vorher das entsprechende  $\lambda$  die mittlere Abweichung  $\pm b$ .  $\omega$ .

31.

Die Winkelmessung in  $P, \varphi = \measuredangle APB$ , giebt für diesen Punkt einen kreisförmigen geometrischen Ort (Fig. 7.) mit dem Mittelpunkte M und der Gleichung

$$y^{2} + (x - c \cdot \cot \varphi)^{2} - \left(\frac{c}{\sin \varphi}\right)^{2} = 0, \text{ oder}: y^{2} + x^{2} - 2cx \cdot \cot \varphi - c^{2} = 0.$$

Zu den Näherungswerthen (x), (y) gehört ein genäherter Werth  $(\varphi)$  nach der Gleichung

$$\cot(\varphi) = \frac{(x)^2 + (y)^2 - c^2}{2c(x)}$$

und man erhält damit analog den Gleichungen 45) und 46) für die Verbesserungen  $\Delta y$ ,  $\Delta x$  und  $\Delta \varphi$ 

$$47) 0 = [(y)^{2} + (x)^{2} - 2c.(x) \cot \varphi - c^{2}] + 2(y) \cdot \Delta y + 2[(x) - c. \cot(\varphi)] \cdot \Delta x,$$
  

$$48) 0 = \Delta \varphi + \Delta x \cdot \frac{(x) - c. \cot(\varphi)}{c(x)} \sin^{2}(\varphi) + \Delta y \cdot \frac{(y) \sin^{2}(\varphi)}{c(x)}.$$

Bedeutet (P) die genäherte Lage von P, so ist die erste Parenthese in Gleichung 47) soviel wie  $(M(P))^2 - Rad.^2$ ,  $Radius = \frac{c}{\sin \varphi}$ .

Ist nun  $\lambda = -M(P) + Rad.$ , also der Abstand des Punktes (P) von dem Kreise, der dem Winkel  $\varphi$  entspricht, so geht Gleichung 47) über in

49) 
$$0 = -\lambda + \Delta x \cdot \frac{(x) - c \cdot \cot(\varphi)}{c} \sin(\varphi) + \Delta y \cdot \frac{(y)}{c} \sin(\varphi),$$

wie immer unter Vernachlässigung der Glieder ⊿<sup>2</sup>. Für diese Gleichung kann man noch setzen

 $0 = -\lambda - \Delta x \cdot \cos \gamma + \Delta y \cdot \sin \gamma,$ um auf die Form 27 zu kommen.  $\gamma$  ist hierin der Neigungswinkel der-Zeitschrift f. Mathematik u. Physik XIII, 2. 106 Studien über rationelle Vermessungen im Gebiete der höhern

jenigen Kreistangente TT gegen AB (Fig. 7.), welcher der Punkt (P) am nächsten liegt.

Zu der Beobachtungsgrösse & gehört der mittlere Fehler

$$\pm \frac{(x)}{\sin(\varphi)} \cdot \omega = \pm \left(\frac{ab}{2c}\right) \cdot \omega_{\pm}$$

wie die Differentiation des ersten Klammerausdruckes in Gleichung 47) lehrt.

Die Gleichungen 45) bis 49) lassen sich leicht für jedes beliebige Coordinatensystem transformiren und ebenso die Formeln für ( $\alpha$ ), ( $\varphi$ ) u. s. f. zu leichter Berechnung der Coefficienten von  $\Delta x$  und  $\Delta y$  umändern. Dieses bedarf hier keiner Ausführung weiter und es kann daher zur Vergleichung der Methoden 1. und 2. zurückgekehrt werden.

32.

Die mittlern parallelen Verschiebungen der den Visuren AP von A und B aus, sowie der Winkelmessung in P entsprechenden substituirten Geraden haben sich ergeben zu

50) 
$$m_1 = \pm a\omega$$
,  $m_2 = \pm b\omega$ ,  $m_3 = \pm \frac{ab}{2c} \cdot \omega$ .

Solange daher P innerhalb des von den Punkten A und B aus als Mittelpunkten beschriebenen krummlinigen Rhombus  $AC_1C_2B$  (Fig. 7.) liegt, ist  $m_3^2 < m_1^2$  und auch  $m_3^2 < m_2^2$ . Rückt P der Seite AB näher, sodass AP, BP und TT ziemlich gleiche Richtung annehmen, so wird für beide Visuren AP und BP zusammengenommen das mittlere Fehlerquadrat

$$m_{3}^{\prime 2} = 1 : \left(\frac{1}{m_{1}^{2}} + \frac{1}{m_{2}^{2}}\right) = \frac{a^{2}b^{2}}{a^{2} + b^{2}} \cdot \omega^{2},$$

dagegen wird

$$m_3^2 = \frac{a^2 b^2}{(a+b)^2} \cdot \omega^2$$
, also  $m_3'^2 = m_3^2 \cdot \frac{a^2+b^2+2ab}{a^2+b^2}$ 

Daher ist in diesem Falle sogar  $m_3'^2$  immer grösser als  $m_3^2$  und zwar ist der Unterschied beider am grössten für a = b, wo  $m_3'^2 = 2m_3^2$  wird.

a = 1, b = 3 giebt  $m_3'^2 = 1, 6 \cdot m_3^2$  und a = 0 giebt  $m_3'^2 = m_3^2$ .

Bedenkt man noch, dass  $m_3'$  aus 2 Winkelmessungen,  $m_3$  aus nur einer solchen hervorgegangen ist, so kann man sagen:

"Weicht der Winkel  $\varphi$  mit dem Scheitel *P* nicht sehr von zwei Rechten ab, so ist die Winkelmessung in *P* zweibis viermal so günstig, als eine Winkelmessung in *A* oder *B*." Und hieraus folgt weiter :

"Liegt ein Nebenpunkt in der Nähe des Diagonalendurchschnitts eines von Hauptpunkten  $A, B, \ldots$  gebildeten Vierecks, so bestimmt er sich 'bei gleicher Mühe' etwa dreibis viermal so genau durch Winkelmessung in P als durch solche von den Hauptpunkten (A, B, ...) aus, wenn man nur gegenüberliegende Hauptpunkte zusammen verbindet."

In den meisten praktisch vorkommenden Fällen ist es wohl möglich, mehr als drei Hauptpunkte im Umkreise um P herum zu sehen; liegt aber P überhaupt im Innern eines Viereckes (Polygones), so lassen sich immer 4 (n Winkel) an P so auswählen und messen, dass ihre substituirten Geraden TT den Punkt P ebenso gut bestimmen, als n Visuren von den Ecken aus. Beobachtet man aber nur die vortheilhaftesten Winkel (also namentlich solche zwischen gegenüberliegenden Hauptpunkten), so ist im Allgemeinen — für gleiche Mühe — sogar die Genauigkeit eine zwei- bis vierfache von derjenigen, welche durch Eckvisuren erreicht werden kann.

Bewegt sich P in eine Polygonseite, d. h. kommen die Hauptpunkte scheinbar im Halbkreise um P herum zu liegen, so nimmt die Güte der Bestimmung nach der zweiten Methode ab; doch erst, wenn P aus dem Polygone heraustritt, kann sie unter diejenige der ersten Methode herabsinken und die Methode selbst unbrauchbar werden. Dieser Ausnahmefall tritt gewiss nicht ein, wenn — wie in Fig.8. — P von den Ecken  $H_1$  und  $H_n$ , deren Distanz  $H_1$   $H_n$  von P aus unter dem grössten Gesichtswinkel erscheint, mindestens ebenso weit entfernt ist, als von den andern Ecken  $H_2$ ,  $\dots$   $H_{n-1}$  und gleichzeitig deren Abstände von P sehr verschieden sind.

Befindet sich P in sehr grosser Entfernung vom Polygone, so sind zwar alle Geraden TT, durch Winkelmessung in P bestimmt, viel ungenauer, als die Anschnitte von den Ecken aus, aber während diese nahezu dieselbe Richtung haben, schneiden sich die TT im Allgemeinen unter günstigen Winkeln. Daher kommt hier die zweite Methode in Vortheil.

Vorstehende Sätze, nicht gut anders als durch Induction zu beweisen, hier völlig zu begründen, kann nicht meine Aufgabe sein. Ich werde nur einige Beispiele, wo dréi Hauptpunkte disponibel sind, specieller durchnehmen. Es ist dieses gerade derjenige Fall, wo die zweite Methode am unzuverlässigsten wird; doch tritt er in der Praxis nur äusserst selten ein. (So hat Herr Professor Nagel unter einem Complex von etwa 40 Nebenpunkten bei Zwickau — vergl. die Einleitung — nur einen einzigen derselben auf nur drei Hauptpunkte stützen können; sonst waren immer mindestens vier Hauptpunkte zu sehen.)

#### 33.

Da einer guten Triangulation der Nebenpunkte immer eine Aufnahme derselben im Kleinen vorauszugehen hat, und man somit die Lage der Nebenpunkte gegen die sichtbaren Hauptpunkte kennt, kann der Fall, schliesslich für irgend einen der ersteren eine ungentigende Bestimmung Digig \* by durchgeführt zu haben, nicht eintreten. Schon vor Beginn der Messungen wird man zu überlegen haben, welche Winkel für jeden Nebenpunkt zu messen sind, damit nach der Ausgleichung die Präcisionen *H* für alle beliebigen Richtungen durch einen Punkt möglichst gleich werden, damit aber auch der mittlere Fehler *M*. welcher die gegen die Hauptpunkte relative Gesammtgenauigkeit bezeichnet, für alle Nebenpunkte die gleiche Grösse erhält.

Diese Ueberlegung macht nicht sehr viele Mühe, da die strenge Erfüllung der soeben gestellten Forderungen nicht nöthig ist. In Abschnitt 23. ist auch gezeigt worden, welche Regeln man bei der Wahl der Schnitte selbst, sowie ihrer Präcisionen h zu befolgen hat, um die Forderungen zu erfüllen. Durch Uebung gelangt man bald dazu, in jedem Falle sofort aus der Anschauung der Figur die besten Schnitte zu erkennen und alsdann führt eine leichte Rechnung, unterstützt durch Constructionen, schnell zu den günstigsten Präcisionen derselben.

Soll nun  $M^2$  für alle Nebenpunkte einen constanten Werth  $(M^2)$  erhalten, und entspricht den so gefundenen Präcisionen h vorerst ein Werth  $M^2$ , so hat man alsdann diese h noch im Verhältniss (M): M zu verändern, indem die Relation besteht

$$M:(M) = (h):h.$$

Mittelst der (h) berechnet sich die Anzahl der Winkelmessungen. Für einen Schnitt von einem Hauptpunkte aus, z. B. für AP (Fig. 7.) fand sich  $m_1^2 = a^2 \cdot \omega^2$ , wo  $\omega$  der mittlere Fehler der Winkelmessung — man nehme jetzt an: Einer Winkelmessung — ist.

Durch  $n_1$  malige Messung geht  $m_1^2$  über in

$$m_1^2 = a^2 \cdot \frac{\omega^2}{n_1}$$

und sofern  $(h_1)^2 = \frac{1}{2m_1^2}$  ist, wird  $n_1 = 2 (h_1)^2 \cdot a^2 \omega^2$ .

In gleicher Weise ist für die Winkelmessung in P $m_3^2 = \left(\frac{ab}{2c}\right)^2$ .  $\omega^2$  bei einmaliger Messung,  $m_3^2 = \left(\frac{ab}{2c}\right)^2$ .  $\frac{\omega^2}{n_3}$  bei  $n_3$ maliger Messung, daher  $(ab)^2$ 

$$n_3 = 2(h_3)^2 \cdot \left(\frac{ab}{2c}\right)^2 \cdot \omega^2.$$

Werden auch Richtungsbeobachtungen gemacht, so complicirt sich wenigstens für die zweite Methode die Schätzung der (h) etwas. Man verfährt bei derselben etwa so: Mit Hilfe der Formeln in Abschnitt 28. 2<sup>h</sup>\*) berechnet man zuerst *H* für drei verschiedene Richtungen unter Annahme reiner Richtungsbeobachtungen. Hierzu nimmt man noch solche Winkel-

\*) Man vergl. auch Abschn. 39. Anmerkung.

beobachtungen, dass dadurch alle H gleich werden, oder dieses doch möglichst erreicht wird. Das Verfahren hierbei ist genau wie oben, wo nur Winkelmessungen vorausgesetzt wurden, wenn man nämlich mit Hilfe der drei berechneten H die Lage der Ellipse um P, welche ihren wahrscheinlichen Fehlern entspricht, ermittelt. Nach Abschnitt 13. ist es alsdann erlaubt, für die Richtungsbeobachtungen zwei Gerade zu substituiren, die in die Ellipsenachsen fallen und deren wahrscheinliche parallele Verschiebungen der halben Länge dieser Achsen gleich sind.

34.

In Verfolgung der zu Ende von Abschnitt 23. gemachten Bemerkung mögen nun noch die Bedingungen für  $M^2 = Min.$  "bei gleicher Mühe der Winkelmessung" aufgesucht werden. Ist p ein von h und n unabhängiger Coefficient, so existirt zwischen h und n, der Anzahl der Messungen, die Beziehung  $h_{\alpha}^2 = \frac{n_{\alpha}}{p_{\alpha}^2}$ . Der mittlere Fehler  $\omega$  der einzelnen Messung ist dabei als constant angenommen. Hiermit reducirt sich die gestellte Aufgabe auf diejenige,

 $M^{2} = \frac{\Sigma(h^{2})}{2\Sigma(h_{\alpha}^{2}h_{\beta}^{2}\sin^{2}(\gamma_{\alpha}-\gamma_{\beta}))} = Min. \text{ zu machen, bei } \Sigma n = \Sigma h^{2}p^{2} = Const.$ 

Eine ähnliche Rechnung wie in Abschnitt 23. giebt q Bedingungen von der Form

 $K \cdot p_i^2 \Longrightarrow \Sigma[h_{\alpha}^2 h_{\beta}^2 \sin^2(\gamma_{\alpha} - \gamma_{\beta})] - \Sigma(h^2) \cdot \Sigma[h_{\alpha}^2 \sin^2(\gamma_i - \gamma_{\alpha})],$ wenn q die Anzahl der Geraden und K eine zu bestimmende Grösse ist.

Nennt man nun  $H_i$  die Präcision an der Stelle von  $h_i$  nach der Ausgleichung und hat N die frühere Bedeutung, so lässt sich auch sagen: "Es müssen für ein Min. im obigen Sinne die Werthe  $K \cdot N = \frac{1}{p_i^2} \left\{ 1 - \frac{\Sigma(h^2)}{H_i^2} \right\}$ für alle *i* gleich werden." Da nun die  $p_i$  im Allgemeinen nicht gleich sind, so werden es auch die  $H_i$  nicht, und es ist dieses Grund genug, von der Erreichung eines solchen Min. abzusehen.

35.

Wird in einem Dreieck ABC, Fig. 9., der Punkt P nach der ersten Methode bestimmt, so sind die Quadrate der Präcisionen bei P für die drei Eckvisuren:

für 
$$AP.h_1^2 = \frac{n_1}{2a_1^2 \omega^2}$$
, für  $BP.h_2^2 = \frac{n_2}{2a_2^2 \omega^2}$ , für  $CP.h_3^2 = \frac{n_3}{2a_3^2 \omega^2}$ ,

wenn  $n_1$ ,  $n_2$ ,  $n_3$  die Anzahl der Messungen der Winkel in P,  $a_1$   $a_2$   $a_3$  resp. gleich AP, BP und CP sind, endlich  $\omega$  den mittlern Fehler einer einzigen Winkelmessung darstellt.

Die Zwischenwinkel sind für  
(1.2) = 
$$\varphi_3 = 4PB$$
; (1.3) =  $\varphi_2 = 4PC$ ; (2.3) =  $\varphi_1 = 4PC$ .  
Daher ist  
51) 
$$\begin{cases}
M_1^2 = \frac{1}{4\omega^2} \cdot \left(\frac{n_1}{a_1^2} + \frac{n_2}{a_2^2} + \frac{n_3}{a_3^2}\right) N_1, \text{ wobei} \\
N_1 = 4\omega^4 : \left\{\frac{n_1 n_2}{a_1^2 a_2^2} \sin^2 \varphi_3 + \frac{n_1 n_3}{a_1^2 a_3^2} \sin^2 \varphi_2 + \frac{n_2 n_3}{a_2^2 a_3^2} \sin^2 \varphi_1\right\}.\\
\text{Nach der Ausgleichung treten an die Stelle der  $h_1 h_2 h_3$  die Werthe  

$$\begin{cases}
H_1^2 = 2\omega^2 : N_1 \cdot \left(\frac{n_2}{a_2^2} \sin^2 \varphi_3 + \frac{n_3}{a_3^2} \sin^2 \varphi_2\right) \\
H_2^2 = 2\omega^2 : N_1 \cdot \left(\frac{n_1}{a_1^2} \sin^2 \varphi_3 + \frac{n_3}{a_3^2} \sin^2 \varphi_1\right) \\
H_3^2 = 2\omega^2 : N_1 \cdot \left(\frac{n_1}{a_1^2} \sin^2 \varphi_2 + \frac{n_2}{a_2^2} \sin^2 \varphi_1\right).\\
\text{Beiläufig sei bemerkt: Die  $H$  werden unter Annahme von  $n_1 = n_2$$$$$

Beiläufig sei bemerkt: Die H werden unter Annahme von  $n_1 = n_2$ =  $n_3$  in demjenigen Punkte gleich, für welchen ist (Fig. 10.)

$$\frac{\sin^2 \varphi_3}{a_2^2} + \frac{\sin^2 \varphi_2}{a_3^2} = \frac{\sin^2 \varphi_3}{a_1^2} + \frac{\sin^2 \varphi_1}{a_3^2} = \frac{\sin^2 \varphi_2}{a_1^2} + \frac{\sin^2 \varphi_1}{a_2^2}, \quad d. h.$$
$$\frac{1}{(PB'')^2} + \frac{1}{(PC')^2} = \frac{1}{(PC'')^2} + \frac{1}{(PA')^2} = \frac{1}{(PA'')^2} + \frac{1}{(PB')^2},$$

wenn A'AA'' parallel B''PC' und senkrecht AP ist, ebenso B'BB'' parallel A'PC'' und senkrecht BP, sowie C'CC'' parallel B'PA'' und senkrecht CP sind.

Die Messung der Winkel  $\varphi$  in P (2. Methode) giebt zur Bestimmung von  $P_3$  kreisförmige geometrische Oerter, für welche die Geraden I., II., III. (Fig. 9.) substituirt werden können. Die Präcisionen derselben sind resp.

$$h_{1}^{\prime 2} = \frac{2c_{1}^{2}}{a_{2}^{\prime 2}a_{3}^{2}} \cdot \frac{n_{1}^{\prime}}{\omega^{2}}; \ h_{2}^{\prime 2} = \frac{2c_{2}^{2}}{a_{1}^{2}a_{3}^{2}} \cdot \frac{n_{2}^{\prime}}{\omega^{2}}; \ h_{3}^{\prime 2} = \frac{2c_{3}^{2}}{a_{1}^{2}a_{2}^{2}} \cdot \frac{n_{3}^{\prime}}{\omega^{2}};$$

ferner hat man für ihre Zwischenwinkel zu setzen (ohne Rücksicht auf den Quadranten)

 $\begin{array}{ll} (I . II) &= \alpha_2 + \beta_1 = \varphi_3 - C, \\ (I . III) &= \alpha_1 + \beta_3 = \varphi_2 - B, \\ (II. III) &= \alpha_3 + \beta_2 = \varphi_1 - A, \end{array} \} \begin{array}{l} \text{worin } A, B, C \text{ die drei Dreieckswin-}\\ \text{kel bezeichnen und die } \alpha \text{ und } \beta \text{ die-}\\ \text{selbe Bedeutung wie in Fig. 9. haben.} \end{array}$ 

Damit ergiebt sich weiter für die Präcisionen H und den mittlern Fehler M nach der Ausgleichung :

$$M_{2}^{2} = \frac{N_{2}}{(\omega \cdot a_{1} a_{2} a_{3})^{2}} \cdot (a_{1}^{2} c_{1}^{2} n_{1}' + \alpha_{2}^{2} c_{2}^{2} n_{2}' + a_{3}^{2} c_{3}^{2} n_{3}')$$

$$S_{2} = \frac{(\omega \cdot a_{1} a_{2} a_{3})^{2} \cdot \omega^{2}}{4n_{1}' n_{2}' n_{3}'} \cdot \left(\frac{c_{1}^{2} c_{2}^{2}}{a_{3}^{2} n_{3}'} \cdot sin^{2}(\varphi_{3} - C) + \frac{c_{1}^{2} c_{3}^{2}}{a_{2}^{2} n_{2}'} sin^{2}(\varphi_{2} - B) + \frac{c_{2}^{2} c_{3}^{2}}{a_{1}^{2} n_{1}'} sin^{2}(\varphi_{1} - A)\right).$$

$$Digitized by Google$$

54) 
$$\begin{cases} H_1'^2 = 1: 2L_2. \left( a_2^2 c_2^2 n_2' \sin^2(\varphi_3 - C) + a_3^2 c_3^2 n_3' \sin^2(\varphi^2 - B) \right) \\ H_2'^2 = 1: 2L_2. \left( a_1^2 c_1^2 n_1' \sin^2(\varphi_3 - C) + a_3^2 c_3^2 n_3' \sin^2(\varphi_1 - A) \right) \\ H_3'^2 = 1: 2L_2. \left( a_1^2 c_1^2 n_1' \sin^2(\varphi_2 - B) + a_2^2 c_2^2 n_2' \sin^2(\varphi_1 - A) \right), \text{ wobei} \\ L_2 = N_2: (\boldsymbol{\omega} \cdot a_1 a_2 a_3)^2 \text{ ist *}). \end{cases}$$

#### 36.

#### Das gleichseitige Dreieck.

1) Im Mittelpunkt desselben ist

$$a_1^2 = a_2^2 = a_3^2 = \frac{4}{3} c^2; \quad \varphi_3 = \varphi_2 = \varphi_1 = 120^0.$$

Indem man nun alle n einander gleich nimmt, werden

$$M_1^2 = \frac{\Sigma n}{4\omega^2 a^2}$$
.  $N_1$ ;  $N_1 = \frac{16}{9}$ .  $\frac{\omega^4 a^4}{n^2} = \frac{16\omega^4 a^4}{(\Sigma n)^2}$  also auch  $M_1^2 = \frac{16}{3}$ .  $\frac{\omega^2 c^2}{\Sigma n}$ ,  
wobei  $\Sigma n = 3n$  ist. Ferner worden für alle Richtungen die  $H$  gleich,  
 $H^2 = 1 : M_1^2$ .

\*) Diese Formeln gestatten indess noch eine weitere Zusammenziehung. Mit Hilfe der Figur sieht man nämlich ein, dass  $\frac{4c_1c_2}{a_3} \sin (\varphi_3 - C) = \frac{4c_1c_2}{a_3} \sin (\alpha_2 + \beta_1) = \frac{2c_1\sin\alpha_2 2c_2\cos\beta_1 + 2c_1\cos\alpha_2 2c_2\sin\beta}{a_3}$   $= \sin \varphi_1 (a_1 - a_3\cos\varphi_2) + \sin \varphi_2 (a_2 - a_3\cos\varphi_1)$   $= a_1\sin\varphi_1 + a_2\sin\varphi_2 + a_3\sin\varphi_3 = \Sigma (a\sin\varphi).$ 

Daher ist

$$\binom{c_1 c_2}{a_3}^2 \sin^2(\varphi_3 - C) = \left(\frac{c_1 c_3}{a_2}\right)^2 \sin^2(\varphi_2 - B) = \left(\frac{c_2 c_3}{a_1}\right)^2 \sin^2(\varphi_1 - A) = \frac{1}{16} \Sigma^2(a \sin \varphi)$$
  
und hiermit werden

53\*) 
$$N_2 = \frac{4\omega^2 \cdot (\omega \cdot a_1 a_2 a_3)^2}{\Sigma^2 (a \sin \varphi)} : (n_1' n_2' + n_1' n_3' + n_2' n_3'),$$

Die H' werden unter Annahme gleicher Beobachtungszahlen n in demjenigen Punkte alle gleich, wo  $a_1c_1 = a_2c_2 = a_3c_3$  oder  $a_1:a_2:a_3 = \frac{1}{c_1}:\frac{1}{c_2}:\frac{1}{c_3}$ , so dass sich nach den Proportionen

$$a_1: a_2 = c_2: c_1, \quad a_1: a_3 = c_3: c_1, \quad a_2: a_3 = c_3: c_2$$
  
die Lage des Punktes leicht ermitteln lässt. Halbirt man nämlich im Dreieck ABC  
jeden der 3 Winkel, so theilen die Halbirungslinien derselben die Seiten in dem-  
selben Verhältnisse, in welchem die Längen der resp. anliegenden Seiten stehen.  
Durch je einen Theilpunkt und die der betreffenden Seite gegenüberliegende Ecke  
lässt sich nun ein Kreis legen, dessen Mittelpunkt auf dieser Seite liegt. Der  
gemeinschaftliche Durchschnitt der drei Kreise ist sodann der gesuchte Punkt (in  
Fig. 14. 15. und 17. mit  $P_0$  bezeichnet).

#### Weiter hat man

$$M_{2}^{2} = \frac{c^{2} \cdot \Sigma n'}{\omega^{2} a^{4}} \cdot N_{2}; \quad N_{2} = \frac{\omega^{4} a^{8}}{c^{4} \cdot (\Sigma n')^{2}}, \text{ also } M_{2}^{2} = \frac{16}{9} \cdot \frac{\omega^{2} c^{2}}{\Sigma n'}, \quad \Sigma n' = 3n' = \Sigma n.$$
  
Ebenso wie alle *H* werden auch sämmtliche *H'* gleich,  $H'^{2} = 1 : M_{2}^{2}$ .  
2) In der Mitte einer Seite, etwa *BC*, ist  
 $a_{1}^{2} = 3c^{2}, \quad a_{2} = a_{3} = c,$   
 $\varphi_{1} = 180^{0}, \quad \varphi_{2} = \varphi_{3} = 90^{0}$   
 $\varphi_{3} - C = \varphi_{2} - B = 30^{0}; \quad \varphi_{1} - A = 120^{0}.$   
Auch eicht men dass  $n = n, \quad n' = n'$  su nohmen eind. Damit mind:

$$M_{1}^{2} = \frac{n_{1} + 6n_{2}}{12\omega^{2}c^{2}} \cdot N_{1}; \quad N_{1} = \frac{6\omega^{4}c^{4}}{n_{1}n_{2}}; \quad H_{1}^{2} = \frac{n_{1}}{6\omega^{2}c^{2}}; \quad H_{2}^{2} = H_{3}^{2} = \frac{n_{2}}{\omega^{2}c^{2}}$$
$$M_{2}^{2} = \frac{3n_{1}^{'} + 2n_{2}^{'}}{3\omega^{2}c^{2}} \cdot N_{2}; \quad N_{2} = \frac{3\omega^{4}c^{4}}{(2n_{1}^{'} + n_{2}^{'})n_{2}^{'}}; \quad H_{1}^{'2} = \frac{3\omega^{2}c^{2}}{n_{2}^{'} \cdot N_{2}};$$
$$H_{2}^{'2} = H_{3}^{'2} = \frac{2\omega^{2}c^{2}}{(n_{1}^{'} + n_{2}^{'})n_{2}^{'}}; \quad H_{1}^{'2} = \frac{3\omega^{2}c^{2}}{n_{2}^{'} \cdot N_{2}};$$
Nimmt man noch  $n_{1} = n_{2} = n_{3}; \quad n_{1}^{'} = n_{3}^{'} = n_{3}^{'}, \quad \Sigma n = \Sigma n', \quad 80$ 

wird abgekürzt  $M_1^2 = 10.5 \cdot \frac{\omega^2 c^2}{\Sigma n}; M_2^2 = 5.0 \cdot \frac{\omega^2 c^2}{\Sigma n'};$  die *H* sind dabei wie auch die *H'* sehr ungleich.

Damit  $M_1^2$  so klein wie für den Mittelpunkt des Dreiecks werde, hat man etwa doppelt soviel zu messen, wie dort; für  $M_2^2$  würde man etwa dreimal soviel Messungen zu machen haben.

Nimmt man  $\underline{n_1 = 6n_2 = 6n_3}$ , so werden alle *H* gleich, nämlich:  $\Sigma n = 8n_2$ ;  $\underline{M_1^2 = \frac{1}{H^2} = \frac{8\omega^2 c^2}{\Sigma n}}$ , also  $\underline{M_1^2}$  bei gleicher Mühe etwas kleiner wie vorher.

Möglichste Gleichheit der H' erreicht man durch Annahme von  $n_1'=0$ ; nämlich :

$$H_{1}^{'2} = \frac{3\omega^{2}c^{2}}{n_{2}^{'}.N_{2}}; \quad H_{2}^{'2} = H_{3}^{'2} = \frac{2\omega^{2}c^{2}}{n_{2}^{'}.N_{2}}, \quad N_{2} = \frac{3\omega^{4}c^{4}}{n_{2}^{'}n_{2}^{'}}; \quad \text{ferner wird}$$
  
$$\Sigma n' = 2n_{2}^{'}; \quad \text{also} \quad M_{2}^{'2} = \frac{4c^{2}\omega^{2}}{\Sigma n'} \quad \text{d. i. nur halb so gross, wie} \quad M_{1}^{'2}.$$

"Die zweite Methode ist also für Punkte in der Mitte der Seiten günstiger als die erste,  $M_2^2 = \frac{M_1^2}{2}$ . Macht man die *H* resp. *H'* möglichst gleich, so erlangt man die gleiche Genauigkeit mit weniger Mühe, als wenn ohne Rücksicht darauf alle *n* einfach gleich genommen werden."

3) Rückt P einer Ecke, etwa A. in einer Seite, etwa AB, immer näher, so ist es erlaubt, bei kleinen  $a_1$  näherungsweise zu setzen: (Fig. 11.)

$$a_{2} = a_{3} = 2c; \ \varphi_{1} = 60^{0}, \ \varphi_{2} = 120^{0}, \ \varphi_{3} = 180^{0};$$
  
$$\varphi_{3} - C = 120^{0}; \ \varphi_{2} - B = 60^{0}; \ \varphi_{1} - A \text{ wird sehr klein, } sin^{2} = \frac{3}{16} \cdot \frac{a_{1}^{2}}{c^{2}}.$$

Digitized by GOOGLE

Die Werthe  $\varphi_1$ ,  $\varphi_2$ ,  $\varphi_2 - B$  sind zwar wenig anders als hier angegeben, aber da keiner der Sinus dieser Winkel der Null nahe ist, verschwindet der Einfluss der kleinen Aenderungen.

Es wird damit

$$\begin{split} \mathbf{M}_{1}^{2} &= \frac{1}{4\omega^{2}} \cdot \left(\frac{n_{1}}{a_{1}^{2}} + \frac{n_{2} + n_{3}}{4c^{2}}\right) \, N_{1}; \, N_{1} = \frac{256\omega^{4} \, c^{4} \, a_{1}^{2}}{3n_{3} \, (4n_{1} \, c^{2} + n_{2} \, a_{1}^{2})} \\ H_{1}^{2} \, \text{oder} \, H_{2}^{2} &= \frac{32\omega^{2} \, c^{2}}{3n_{3} \, N_{1}}; \quad H_{3}^{2} = \frac{32\omega^{2} \, c^{2} \, a_{1}^{2}}{3(4n_{1} \, c^{2} + n_{2} \, a_{1}^{2})} \, N_{1} \, . \end{split}$$

Gleichheit aller *H* ist nicht möglich, da alle drei Visuren in einem spitzen Winkelraum liegen; sie wird möglichst erreicht mit  $n_2 = 0$  und  $n_3 = n_1 \cdot \frac{4c^2}{a^2}$ , das giebt

$$\frac{u_1^{-1}}{H_1^2 \text{ oder } H_2^2} = H_3^2 = \frac{32\omega^2 c^2}{3n_3 N_1}, N_1 = \frac{256\omega^4 c^4}{3n_3 n_3}; M_1^2 = \frac{32\omega^2 c^2}{3n_3} \text{ oder, da}$$

$$\Sigma n = n_1 + n_1 \cdot \frac{4c^2}{a_1^2} \text{ d. i. } \underline{\text{nahezu } \Sigma n = n_3}, \text{ auch } M_1^2 = \frac{32\omega^2 c^2}{3\Sigma n} \cdot \underline{Sn}$$
Bei Gleichheit aller  $n = n_1 = n_2 = n_3$  ist dagegen  $M_1^2 = \frac{16\omega^2 c^2}{\Sigma n}$ 

mit Vernachlässigung der kleinen Glieder.

Es ist sonach räthlich, die n wie vorher zu nehmen; gegen die Lage von P im Dreiecksmittelpunkt hat man sodann immer noch doppelte Arbeit, um ein gleich grosses M zu erhalten.

Weiter findet sich (Fig. 11.)

$$\begin{split} M_2^2 &= L_2 \left( a_1^2 c^2 n_1' + 4 c^4 \left( n_2' + n_3' \right) \right); \quad L_2 = \frac{4 \omega^2}{3 c^2} : \left( n_1' n_2' + n_1' n_3' + n_2' n_3' \right) \\ H_1'^2 &= 1 : 6 L_2 c^4 \left( n_2' + n_3' \right); \quad H_2'^2 = 1 : \frac{3}{2} L_2 c^2 a_1^2 \left( n_1' + n_3' \right) \\ \text{und} \quad H_3'^2 = 1 : \frac{3}{2} L_2 c^2 a_1^2 \left( n_1' + n_2' \right). \end{split}$$

Gleichheit der H' ist nicht erreichbar \*); möglichst angestrebt wird sie durch Annahme von  $n_2' = n_3'$  und  $n_1' = n_2'$ .  $\frac{8c^2 - a_1^2}{a_1^2}$ , womit  $\Sigma n$ nahezu =  $n_1'$  und

$$\underline{M_2^2} = \frac{4}{3} \cdot \frac{\omega^2 a_1^2}{n_2'} = \frac{32\omega^2 c^2}{3\Sigma n}$$
.  
Dagegen wird bei  $n_1' = n_2' = n_3'$   $\underline{M_2^2} = \frac{32\omega^2 c^2}{3\Sigma n}$  d. i. so wie vor-  
her, nur sind die *H'* noch verschiedener als vorher, da nicht einmal  $H_1'$   
und  $H_2'$  (oder  $H_3'$ ) gleich werden.

Auch für die jetzt behandelte Lage von P ist somit  $M_1^2 \ge M_2^2$ .

<sup>\*)</sup> Da die Rechnung nur näherungsweise richtig ist, kann es nicht befremden, dass trotz Gleichheit dreier H' doch nicht dieselbe aller beliebigen H' stattfindet:  $H'_2$  und  $H'_3$  sind Präcisionen für nahezu dieselbe Richtung.

# 114 Studien über rationelle Vermessungen im Gebiete der höhern

4) Rückt P der Ecke A auf der Winkelhalbirungslinie näher, und wird daher a, wieder sehr klein, so gilt folgende Näherungsrechnung: (Fig. 12.)  $a_2 = a_3 = 2c; \ \varphi_1 = 60^0; \ \varphi_2 = \varphi_3 = 150^0$  $\varphi_3 - C = 90^0 = \varphi_2 - B; \quad \varphi_1 - A \text{ sehr klein}, \quad \sin^2 = \frac{a_1^2}{Ac^2}.$ Für  $n_2 = n_3$  gehen über  $M_1^2$ ,  $N_1$  u. s. w. in  $M_{1}^{2} = \frac{4n_{1}c^{2} + 2n_{2}a_{1}^{2}}{16\omega^{2}a_{1}^{2}c^{2}} \cdot N_{1}; N_{1} = \frac{256}{n_{2}} \cdot \frac{c^{4}a_{1}^{2}\omega^{2}}{8n_{1}c^{2} + 3n_{2}a_{1}^{2}},$  $H_{1}^{2} = \frac{16\omega^{2}c^{2}}{n_{2}}; H_{2}^{2} = H_{3}^{2} = \frac{32a_{1}^{2}c^{2}\omega^{2}}{(4c^{2}n_{1} + 3n_{2}a_{1}^{2})N_{1}}.$ Möglichst gleiche H giebt  $n_1 = 0$  und wird dabei, weil  $\Sigma n = n_2 + n_3$ ,  $M_1^2 = \frac{64\omega^2 c^2}{3\Sigma n}$ Dagegen ist für  $n_1 = n_2 = n_3$   $\Sigma n = 3n$ und mit Vernachlässigung kleiner Glieder  $M_1^2 = \frac{24\omega^2 c^2}{\Sigma n}$ , also wenig anders. Weiter findet sich bei  $n_2' = n_3'$ 
$$\begin{split} M_2^2 &= L_2 \left( a_1^2 c^2 n_1' + \hat{s} c^4 n_2' \right); \ L_2 &= \omega^2 : c^2 \left( 2n_1' + n_2' \right) n_2', \\ H_1'^2 &= 1 : 16 L_2 c^4 n_2'; \ H_2'^2 &= H_3'^2 = 1 : 2L_2 a_1^2 c^2 \left( n_1' + n_2' \right). \end{split}$$
Gleichheit aller H' verlangt  $n_1' = n_2'$ .  $\frac{8c^2 - a_1^2}{a_1^2}$ , womit nahe  $\Sigma n = n_1'$ Dagegen ist bei  $\underline{n_1 = n_2 = n_3}$   $M_2^2 = \frac{8\omega^2 c^2}{\Sigma n}$ ,  $\overline{d. i. nicht ungün-}$ 

stiger als vorher; nur sind hier die H sehr ungleich.

Stellt man zusammen, was in 1) bis 4) gefunden wurde, so hat man: "Bei gleicher Mühe ( $\Sigma n = Const.$ ) werden die Coefficienten von  $\frac{\omega^2 c^2}{\lambda n}$ , entsprechend den  $M_1^2$  und  $M_2^2$ :

| $M_1^2$                     | M22                                   |                                                                                                                     | <i>M</i> <sub>1</sub> <sup>2</sup>                                                                                                                           | M22                                                                                                                                                                   |                                                                                                                                                                                                                  |
|-----------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bei Gleich-<br>heit aller n |                                       |                                                                                                                     | bei unglei-<br>chen n                                                                                                                                        |                                                                                                                                                                       |                                                                                                                                                                                                                  |
| 5,3                         | 1,8                                   | $\begin{cases} Alle H gleich. \\ Alle H' gleich. \end{cases}$                                                       | 5,3                                                                                                                                                          | 1,8                                                                                                                                                                   | $\begin{cases} Alle \ H \ und \ alle \ H' \\ gleich. \end{cases}$                                                                                                                                                |
| 10,5                        | 5,0                                   |                                                                                                                     | 8.                                                                                                                                                           | 4.                                                                                                                                                                    | Gleiche H; mög-<br>lichstgleicheH.                                                                                                                                                                               |
| 16.                         | 10,7                                  | Ungleiche H;                                                                                                        | 10,7                                                                                                                                                         | 10,7                                                                                                                                                                  | Möglichst gleiche<br>H; ebenso H'.                                                                                                                                                                               |
| 24.                         | 8.                                    | Ungleiche <i>H</i> '.                                                                                               | 21,3                                                                                                                                                         | 8.                                                                                                                                                                    | Mögl. gleiche H;<br>gleiche H'.                                                                                                                                                                                  |
|                             | bei G<br>heit a<br>5,3<br>10,5<br>16. | bei         Gleich-<br>heit aller n           5,3         1,8           10,5         5,0           16.         10,7 | bei Gleich-<br>heit aller n<br>5,3 1,8 {Alle <i>H</i> gleich.<br>Alle <i>H</i> gleich.<br>10,5 5,0<br>16. 10,7 {Ungleiche <i>H</i> ;<br>Ungleiche <i>H</i> . | bei Gleich-<br>heit aller nbei u<br>che $5,3$ $1,8$ $AlleHgleich.$<br>AlleH'gleich. $5,3$ $10,5$ $5,0$<br>UngleicheH; $8.$ $16.$ $10,7$ $UngleicheH;$<br>UngleicheH'. | bei Gleich-<br>heit aller nAlle H gleich.<br>Alle H' gleich.bei unglei-<br>chen n $5,3$ $1,8$ $\{Alle H gleich. Alle H' gleich. \}$ $5,3$ $1,8$ $10,5$ $5,0$ $8.$ $4.$ $16.$ $10,7$ $Ungleiche H;$ $10,7$ $10,7$ |

Diese Tabelle zeigt 1) den besondern Vortheil, den die zweite Methode innerhalb des Dreiecks gewährt, 2) wie ausserordentlich verschiedene Mman durch gleiche Mühe bei verschiedenen Punktlagen erhält.

5) Liegt P ausserhalb des Dreiecks im rückwärtsverlängerten Winkelraum (etwa für  $\neq BAC$ ), so gelten bei grösserer Nähe an A die Verhältnisse wie unter 3) und 4).

Geht man in grössere Entfernung von A, so werden  $M_1$  und  $M_2$  nach und nach immer mehr einander gleich; während sich nun bei Anwendung der zweiten Methode alle H' gleich machen lassen, ist dieses für die H nach der ersten Methode ganz unmöglich.

Wird die Entfernung AP = e sehr gross, so entstehen Schnittfiguren, wie für  $P_2$  in Fig. 11. und 12.

Eine leichte Rechnung giebt näherungsweise unter Annahme eines sehr grossen e

zu Fig. 11. 
$$\begin{cases} M_1^2 = \frac{4\omega^2 \cdot e^4}{3c^2 \cdot \Sigma n}, \text{ wenn } \Sigma n = n_1 + n_2 + n_3, n_1 = n_2 \text{ und } n_3 = 2n_1, \\ M_2^2 = \frac{\omega^2 \cdot e^4}{c^2 \cdot \Sigma n'}, \text{ wenn } \Sigma n = n_1 + n_2 + n_3, n_1' = n_2' = n_3' \text{ ange-} \end{cases}$$

nommen werden.

Ferner ist

zu Fig. 12. 
$$\begin{cases} M_1^2 = \frac{\omega^2 \cdot e^4}{c^2 \cdot \Sigma n}, \ \Sigma n = n_2 + n_3, \ n_1 = 0, \ n_2 = n_3; \\ M_2^2 = \frac{\omega^2 \cdot e^4}{c^2 \cdot \Sigma n'}, \ \Sigma n = n_1 + n_2 + n_3, \ n_1' = n_2' = n_3' \text{ gesetzt.} \end{cases}$$

Während die Gleichheit der *M* für beide Methoden für grosse Entfernungen des Punktes *P* vom Dreieck hiermit bewiesen ist, zeigt die Figur unmittelbar, dass die erste Methode sehr ungleiche, die zweite Methode aber gleiche *H* ergiebt.

6) Liegt P im offenen Winkelraum BAC, Fig. 13., so ist die zweite Methode unbrauchbar und nur bei grösserer Entfernung des Punktes vom Dreiecke kann sie der ersten Methode gleichgestellt werden. Für sehr grosse Entfernungen erhält man Resultate, wie soeben unter 5) gefunden wurden. Am ungünstigsten sind die Lagen  $P_2$  in der Winkelhalbirungslinie. Je seitlicher bei gleichem Abstande von  $CB P_1$  rückt, um so besser bestimmt es sich nach der zweiten Methode.

Für  $P_2$ , wo Dreieck *ABC* congruent Dreieck  $P_2BC$  ist, hat man  $a_2^2 = a_3^2 = 4c^2$ ;  $a_1^2 = 12c^2$ ,  $\varphi_2 = \varphi_3 = 30^0$ ,  $\varphi_1 = 300^0$ ;  $\varphi_3 - C = \varphi_3 - B = 30^0$   $\varphi_1 - A = 240^0$ .  $M_1^2 = \frac{16\omega^2 c^2 (n_1 + 6n_2)}{2n_1 n_2 + 9n_2 n_2}$  für  $n_2 = n_3$ ;  $\Sigma n = n_1 + 2n_2$ ;  $M_2^2 = \frac{16\omega^2 c^2 (3n_1' + 2n_2')}{2n_1' n_2' + n_2' n_2'}$  bei  $n_2' = n_3'$ ;  $\Sigma n = n_1' + 2n_2'$ . Digitized by Google Möglichste Gleichheit der Präcisionen H resp. H' verlangt  $n_1 = 0$ ,  $n_1'=0$ . In jedem Falle aber ist bei gleicher Mühe  $M_2^2$  etwa 3.  $M_1^2$ .

Damit ist erwiesen, dass Lagen P ausserhalb des Dreiecks sich im Allgemeinen nach der ersten Methode besser als nach der zweiten Methode bestimmen. In der Praxis kommen indess solche Lagen kaum vor, da von einem Punkt ausserhalb des Dreiecks *ABC* and ere nahe Hauptpunkte D, E,F etc. sichtbar werden.

#### 37.

Was im Vorhergehenden für das gleichseitige Dreieck gefunden wurde, gilt auch für das ungleichseitige, so lange dieses nicht sehr spitze oder stumpfe Winkel enthält. Der günstige Raum für die zweite Methode verschiebt sich dann, wie es die schraffirten Flächen in Fig. 14. und 15. ungefähr andeuten. Sehr stumpfe Dreiecke sind am ungünstigsten; daher möge der Fall dreier Punkte in einer Geraden (Fig. 16. und 17.) bei Gleichheit der Längen BA und AC = 2c besondere Beachtung finden. Im Anschluss an Fig. 16. hat man:

1. Lage von P in D. 
$$a_2^2 = a_3^2 = 8c^2$$
;  $a_1^2 = 4c^2$ ;  $n_2 = n_3$   
 $c_1^2 = 4c^2$ ;  $c_2 = c_3 = c$ ;  $n_2' = n_3'$   
 $\varphi_3 = \varphi_3 - C = \varphi_2 = \varphi_2 - B = 45^0$ ;  $\varphi_1 = \varphi_1 - A = 90^0$   
 $M_1^2 = \frac{16\omega^2 c^2 (n_1 + n_2)}{2n_1 n_2 + n_2 n_2}$  und  $M_2^2 = \frac{16\omega^2 c^2 (n_1' + n_2')}{2n_1 n_2' + n_2' n_2'}$ .

Beide Werthe werden gleich für  $n_1 = n_1'$ ,  $n_2 = n_2'$ ,  $n_3 = n_3'$ . Gleichheit der *H* resp. *H'* verlangt  $\underline{n_1 = 0 = n_1'}$ ,  $\underline{n_2 = n_3}$ ;  $\underline{n_2' = n_3'}$ ; damit wird

$$\underline{M_1^2 = M_2^2} = \frac{1}{H^2} = \frac{1}{H'^2} = 32 \cdot \frac{\omega^2 c^2}{\Sigma n}, \ \Sigma n = 2n = 2n'.$$

Bei Gleicheit aller n = n' ist der Betrag für  $M_1^2$  und  $M_2^2$  derselbe.

2. Lage P in  $D_1$ , wo  $D_1$  sehr nahe an A in der Linie DA liegt. Man erhält näherungsweise:

$$a_{1} \operatorname{sehr} \operatorname{klein}, \ a_{2}^{2} = a_{3}^{2} = 4c^{2}; \ n_{2} = n_{3}; \ n_{2}^{'} = n_{3}^{'}$$

$$\varphi_{3} = \varphi_{3} - C = \varphi_{2} = \varphi_{2} - B = 90^{0}; \ \sin^{2}\varphi_{1} = \sin^{2}(\varphi_{1} - A) = \frac{a_{1}^{2}}{c^{2}}$$

$$M_{1}^{2} = \frac{8\omega^{2}c^{4}(2c^{2}n_{1} + n_{2}a_{1}^{2})}{8n_{1}n_{2}c^{4} + n_{2}n_{2} \cdot a_{1}^{4}}; \ M_{2}^{2} = \frac{\omega^{2}(2c^{2}n_{2}^{'} + a_{1}^{2}n_{1}^{'})}{2n_{2}^{'}n_{1}^{'} + n_{2}^{'}n_{2}^{'}}.$$

$$a_{1} = n_{2} = n_{3}; \ n_{1}^{'} = n_{2}^{'} = n_{3}^{'} \operatorname{geben} (\operatorname{mit} \operatorname{Vernachlässigung \ kleiner \ Glieder})$$

$$\frac{n_1 = n_2 = n_3}{M_1^2 = \frac{6\omega^2 c^2}{\Sigma n}}; \quad \frac{M_2^2}{\Sigma n} = \frac{2\omega^2 c^2}{\Sigma n}.$$

Die Präcisionen sind aber dabei sehr ungleich nach verschiedenen Richtungen. Die *H* und resp. die *H'* werden gleich, wie auch der Anblick der Figur lehrt, für

 $2c^2n_1 = n_2a_1^2, \quad 2c^2n_2' = n_1'a_1^2,$ 

also nahezu

$$\Sigma n = 2n_2 \qquad \Sigma n' = n_1', \qquad \text{und das giebs}$$
$$M_1^2 = \frac{8\omega^2 c^2}{\Sigma n}; \qquad M_2^2 = \frac{2\omega^2 c^2}{\Sigma n'}.$$

3. Lage P in  $D_2$  nahe an B, wobei jedoch  $D_2B$  senkrecht CB sein mag. (Fig. 16.)  $a_1^2 = 4c^2$ ,  $a_2^2 = 16c^2$ ;  $a_2$  sehr klein

$$\varphi_3 = \varphi_3 - C = \varphi_1 = \varphi_1 - A = 90^\circ; \ \sin^2 \varphi_2 = \sin^2 (\varphi_2 - A) = \frac{a_2^2}{16c^2}$$

$$M_{1}^{2} = \frac{64\omega^{2}c^{4} \cdot (16c^{2}n_{2} + 4a_{2}^{2}n_{1} + a_{2}^{2}n_{3})}{256n_{1}n_{2}c^{4} + n_{1}n_{3}a_{2}^{4} + 64n_{2}n_{3}c^{4}}$$
 hierbei sind die *H* resp. *H*  

$$M_{2}^{2} = \frac{\omega^{2}c^{2} \cdot (16c^{2}n_{1}^{'} + a_{2}^{2}n_{2}^{'} + 16c^{2}n_{3}^{'})}{n_{1}^{'}n_{2}^{'} + n_{1}^{'}n_{3}^{'} + n_{2}^{'}n_{3}^{'}}$$
 hierbei sind die *H* resp. *H*  
ungleich, wenn man alle *n*  
gleich gross nimmt.  

$$M_{2}^{2} = \frac{\omega^{2}c^{2} \cdot (16c^{2}n_{1}^{'} + a_{2}^{2}n_{2}^{'} + 16c^{2}n_{3}^{'})}{n_{1}^{'}n_{2}^{'} + n_{1}^{'}n_{3}^{'} + n_{2}^{'}n_{3}^{'}}$$

Man erhält im letztern Falle 
$$M_1^2 = \frac{48\omega^2}{5\Sigma n}$$
,  $M_2^2 = \frac{32\omega^2}{\Sigma n}$ ;  $\Sigma n = 3n = 3n'$ .

Giebt man den Visuren von A und C aus gleichen Einfluss, setzt  $n_3 = 4n_1$ , so wird  $M_1^2 = \frac{128\omega^2 c^4 (2c^2 n_2 + n_1 a_2^2)}{128n_1 n_2 c^4 + n_1^2 a_2^4}$ . Gleichheit der H verlangt  $2c^2 n_2 = n_1 a_2^2$  und damit geht  $\underline{M_1^2}$  über in

Gleichheit der *H* verlangt  $2c^2 n_2 = n_1 a_2^{-2}$  und damit geht  $\underline{M_1^2}$  über in  $\frac{20\omega^2 c^2}{\Sigma n}$ , wenn man setzt

$$\Sigma n = n_1 + \frac{n_1 a_2}{2c^2} + 4n_1 = 5n_1$$
 nahezu.

Daher ist es nicht rationell, den beiden erwähnten Visuren gleichen Einfluss zu geben. Besser ist es,  $n_3 = 0$ , sowie wegen Gleichheit der H $4c^2 n_2 = n_1 a_2^2$  zu nehmen:

 $\underline{M_1^2} = \frac{8c^2 \omega^2}{n_1} = \frac{8c^2 \omega^2}{\Sigma n_1}, \text{ da } \Sigma n = n_1 + n_1 \cdot \frac{a_2^2}{4c^2 n_2} \text{ also nahezu gleich } n_1 \text{ ist.}$ 

Nimmt man ferner  $n_1' = n_3'$ , wodurch I. und III. gleichen Einfluss erlangen, so wird

$$M_2^2 = \frac{\omega^2 c^2 \cdot (32c^2 n_1' + a_2^2 n_2')}{2n_2' n_1' + n_1' n_1'}$$

Gleichheit der H' tritt ein bei  $32c^2 n_1' = a_2^2 n_2'$ ; dafür geht  $\Sigma n$  über in nahezu  $n_2'$ , und also  $M_2^2$  in  $M_2^2 = \frac{32\omega^2 c^2}{\Sigma n'}$ .

Mit Hilfe der jetzt gewonnenen Formeln und der Figur 16. lässt sich der Satz aussprechen: "Solange *P* innerhalb des schraffirten Raumes in Figur 17. liegt, ist die zweite Methode ebenso gut und etwas besser als die erste Methode; in jedem andern Falle ist sie weniger genau als diese."

88.

Man wird schon im Vorhergehenden die Bemerkung gemacht haben, dass eine Combination beider Methoden, also die Anwendung der dritten 118 Studien über rationelle Vermessungen im Gebiete der höhern

Methode, zuweilen vortheilhaft sein muss. Es fragt sich nur, ob dieses häufig vorkommen kann.

Hat man nur zwei Hauptpunkte A und B (Fig. 18.), so ist die dritte Methode so lange vorzüglich, als P ausserhalb des Halbkreises über ABliegt und dabei wenigstens einer der Aussenwinkel des Dreiecks ABPbei A oder B nicht viel kleiner als 90<sup>0</sup> ist. Im gleichseitigen Dreieck ABP werden alle Präcisionen H für P gleich, sobald man jeden Winkel gleich oft beobachtet.

Die Winkelmessung bei P wird wegzulassen sein, wenn P innerhalb des Halbkreises über AB zu liegen kommt. Entfernt sich P vom Halbkreise und rückt AB näher, so wird die Bestimmung unzureichend. (Vergl.  $P_1$  in Fig. 18.)

Man erkennt nun leicht, dass für eine Einschaltungstriangulirung die dritte Methode, sofern sie nur zwei Hauptpunkte als Ausgang nimmt, nicht so günstig ist wie die beiden ersten Methoden; denn alle Lagen von *P*, welche der dritten Methode günstig sind, werden die Benutzung noch eines dritten Punktes, ja meistens noch mehrerer Punkte gestatten, wodurch man bei gleicher Mühe der Winkelmessung, ohne die sämmtlichen in Abschnitt 27. angegebenen Uebelstände überwinden zu müssen — sowohl die der ersten als die der zweiten Methode — mindestens dieselbe Genauigkeit erhalten kann.

Auch darf man nicht vergessen, dass die beiden ersten Methoden ein von den zufälligen Fehlern der Hauptpunkte freieres Resultat geben, als die dritte Methode, die offenbar den ganzen Fehler der zwei Hauptpunkte in den Nebenpunkt überträgt.

Denkt man sich die dritte Methode als reine Combination der beiden andern und vergleicht die Resultate "gleicher Mühe", so ist wohl immer die zweite Methode vorzuziehen, nicht nur in praktischer, sondern auch in theoretischer Hinsicht; wie daraus hervorgeht, dass die erste Methode in den praktisch vorkommenden Fällen von Einschaltungen ungünstiger als die zweite ist. Diejenige Arbeit bei Auwendung der dritten Methode, welche der ersten Methode entspricht, drückt die Genauigkeit offenbar herab gegenüber der zweiten Methode, welche die ganze Arbeit am günstigsten verwendet.

39.

Die theoretische Vergleichung wurde unter der Annahme von Winkelbeobachtungen geführt. Es ist nun schon früher gefunden worden, dass die erste Methode ebenso wie die zweite sich etwas günstiger zeigt für reine Richtungsbeobachtungen, dass zu diesen aber, um eine gleichmässige Genauigkeit für jeden einzelnen Punkt *P* sowohl als auch vergleichsweise für verschiedene Punkte *P* zu erhalten, immer Winkelbeobachtungen zur Ergänzung zugezogen werden müssen.

Es ist nun von Interesse zu sehen, wie bei 3 Hauptpunkten sich die H unter Annahme reiner Richtungsbeobachtungen gestalten.

Die Formeln aus Abschnitt 28. 2b geben, sofern das System 42) sich reducirt auf

$$(1) - (2) = A_2 + B_2 x + C_2 y$$
  
$$(1) - (3) = A_3 + B_3 x + C_3 y$$

und man einen Hilfswerth (2)-(3) =  $(A_3 - A_2) + (B_3 - B_2)x + (C_3 - C_2)y$ =  $A_1 + B_1x + C_1y$ 

einfüh**rt** :

$$\begin{cases} H_y^2 = 1: N \cdot \frac{B_1^2 + B_2^2}{3} + \frac{B_3^2}{3}; H_x^2 \doteq 1: N \cdot \frac{C_1^2 + C_2^2 + C_3^2}{3}, \\ (1:N) = \left\{ \frac{B_1^2 + B_2^2 + B_3^2}{3} \cdot \frac{C_1^2 + C_2^2 + C_3^2}{3} - \left(\frac{B_1C_1 + B_2C_2 + B_3C_3}{3}\right)^2 \right\} \\ N^2 = \frac{1}{2} \cdot N \cdot \left\{ \frac{B_1^2 + B_2^2 + B_3^2}{3} + \frac{C_1^2 + C_2^2 + C_3^2}{3} \right\}; h = 1 \text{ gesetzt.} \end{cases}$$

Dieselben Werthe würde man erhalten durch  $\frac{2}{3}$  malige Messung jedes der drei Winkel an  $P^*$ ), wenn einer Einstellung die Präcision  $\hbar = 1$  ebenso wie oben zukommt. Die Fehlergleichungen werden nämlich

$$\begin{pmatrix} (1 \cdot 2) \sqrt{\frac{1}{3}} = A_2 \cdot \sqrt{\frac{1}{3}} + B_2 \cdot \sqrt{\frac{1}{3}} \cdot x + C_2 \cdot \sqrt{\frac{1}{3}} \cdot y \\ (1 \cdot 3) \sqrt{\frac{1}{3}} = A_3 \cdot \sqrt{\frac{1}{3}} + B_3 \cdot \sqrt{\frac{1}{3}} \cdot x + C_3 \cdot \sqrt{\frac{1}{3}} \cdot y \\ (2 \cdot 3) \sqrt{\frac{1}{3}} = A_1 \cdot \sqrt{\frac{1}{3}} + B_1 \cdot \sqrt{\frac{1}{3}} \cdot x + C_1 \cdot \sqrt{\frac{1}{3}} \cdot y$$

und daraus folgt z. B.

$$H_{y^{2}} = 1: N' \cdot \frac{1}{3} \sum_{1}^{3} (BB), \ N = \left(\frac{1}{3}\right)^{2} \left\{ \Sigma(BB) \cdot \Sigma(CC) - (\Sigma BC)^{2} \right\};$$
  
d.i. wie oben.

Hiernach giebt die Anzahl von 6.  $\frac{2}{3}$  Einstellungen bei Winkelbeobachtungen genau so viel Genauigkeit als 3 Einstellungen bei Richtungsbeobachtungen. Dieses etwas befremdende Resultat kann etwas strenger auch wie folgt abgeleitet werden im Anschluss an Abschnitt 25.

\*) Ebenso leicht findet man, dass ein Satz reiner Richtungsbeobachtungen zwischen q Hauptpunkten H und M ebenso ergiebt wie die  $\frac{2}{q}$  malige Messung aller der  $\frac{q(q-1)}{2}$  möglichen Winkel zwischen diesen q Hauptpunkten, dass daher bei dieser Art Winkelmessungen 2(q-1) Einstellungen Dasselbe leisten als q Einstellungen bei Richtungsbeobachtungen. Diese Beziehung gilt überdies ganz allgemein für Winkel- und Richtungsbeobachtungen von einem Punkte aus.

Studien über rationelle Vermessungen etc. von F.R. HELMERT. 120

Aus den Gleichungen  $\left\{ \begin{array}{l} (1) - (2) = A_2 + B_2 \, x + C_2 \, y \\ (1) - (3) = A_3 + B_3 \, x + C_3 \, y \end{array} \right\}$  erhält man die wahrscheinlichsten Werthe x, y für (1) = (2) = (3) = 0 und es ist überhaupt von einer Ausgleichung nicht die Rede (wesshalb die Ableitung der H und M aus den allgemeinen Formeln vorhin nicht streng richtig war). Dem Fehlersystem u und v für x und y mögen Richtungsfehler (1), (2) und (3) entsprechen, wo

$$(1) - (2) = B_2 u + C_2 v \quad (1) - (3) = B_3 u + C_3 v.$$

Die Wahrscheinlichkeit ist dabei

 $W_{1} = x_{1} \cdot e^{-[(1)^{2} + (2)^{2} + (3)^{2}]}$ =  $x_{1} \cdot e^{-[3(1)^{2} - 2(1)(B_{2}u + B_{3}u + C_{2}v + C_{3}v) + (B_{2}u + C_{2}v)^{2} + (B_{3}u + C_{3}v)^{2}]}$ der für (2) (0) -Oder für  $(2) - (3) = B_1 u + C_1 v$  $W_{1} = x_{1.e} - \left\{ \Im \left[ (1) - \frac{B_{2}u + B_{3}u + C_{2}v + C_{3}v}{3} \right]^{2} + \right.$ 

$$+ \frac{(B_1u+C_1v)^2 + (B_2u+C_2v)^2 + (B_3u+C_3v)^2}{3}$$
set man nun (1) für ein constantes System  $u, v$  alle möglichen

Lä Werthe durchlaufen, so wird

$$W_1 = W_{u,v} = \varkappa_2 \cdot e^{-\frac{1}{3} \left( (B_1 u + C_1 v)^2 + (B_2 u + C_2 v)^2 + (B_3 u + C_3 v)^2 \right)}$$

Construirt man hierzu die Ellipsen wie früher, so erhalten diese gleiche Lage und Grösse mit den entsprechenden Ellipsen, welche sich durch  $\frac{2}{2}$  malige Messung der drei Winkel ergeben würden.



mathematische Bestimmung der Vertheilung Die der Elektricität auf Conductoren im Allgemeinen und speciell auf gewisse Systeme von Conductoren, die von Rotationsflächen mit gemeinschaftlicher Rotationsaxe

begrenzt sind.

von

TH. KÖTTERITZSCH.

#### § 1.

## Bekannte Sätze der Potentialtheorie.

1) Ist eine gewisse Elektricitätsmenge\*) über ein beliebiges System von Conductoren vertheilt, so nimmt dieselbe, für den Zustand des Gleichgewichtes, eine solche Anordnung an, dass ihr Potential für alle Punkte im Innern und auf der Oberfläche eines und desselben Conductors einen constanten Werth hat.

Die Dichtheit\*\*) der Elektricität in Punkten, die zur innern Masse eines Conductors gehören, ist stets gleich Null; oder die Elektricität verbreitet sich nur auf den Oberflächen der Conductoren.

2) Werden die einzelnen Conductoren eines in beliebiger, aber unveränderter, relativer Lage gegeneinander verharrenden Conductorensystems mit beliebigen Elektricitätsmengen geladen, so giebt es nur eine, aber auch stets eine Art, nach der die Anordnung der Elektricität stattfindet. Zugleich befindet sich dann die Elektricität im Zustande des stabilen Gleichgewichtes.

\*) Gemessen nach absolutem Maasse.

\*\*) Der Ausdruck "Dichtheit der Elektricität an einem Punkte" definirt sich am einfachsten durch den Specialfall, dass, wenn auf einer Kugel vom Radius = 1, die Elektricitätsmenge Q sich befindet, die Dichtheit der gleichförmig über die Kngel verbreiteten Elektricität an jedem Punkte =  $\frac{y}{4\pi}$  ist. Digitized by Google

Zeitschrift f. Mathematik u. Physik XIII, 2.

3) Die Dichtheit der Elektricität an einer bestimmten Stelle der Oberfläche eines Conductors und das Potential der gesammten nach dem Gesetze 1) vertheilten Elektricität auf den Punct, um dessen elektrische Dichtigkeit es sich handelt, hängen zusammen durch die Relation:

$$\varrho = -\frac{h}{4\pi} \frac{\dot{c} V}{\partial r},$$

wobei

 $V_{V}$  das Aenderungsgesetz von V, dem Potential der gesammten vorhan-

denen Elektricität auf den genannten Punkt, bedeutet, wenn dieser Punkt um die unendlich kleine Strecke  $\partial w$  in der Richtung der Normale nach aussen fortrückt;

- g ist die Dichtheit der Elektricität in unserem betreffenden Punkte;
- h bedeutet eine nur von den, den einzelnen Conductoren mitgetheilten Elektricitätsmengen abhängige Constante und
- $\pi$  das Verhältniss des Kreisumfanges zum zugehörigen Durchmesser.
  - 4) V hat folgende Fundamentaleigenschaften:
    - α, V ist für alle Punkte p ausserhalb der Conductoren endlich und ändert sich stetig, wenn p seinen Ort stetig ändert.
    - $\beta$ , V geht in Null über, wenn der Punkt p, auf den es sich bezieht. in unendliche Entfernung von den Conductoren rückt.
    - $\gamma$ , Für jeden Punkt p ausserhalb des von einem Conductor erfüllten Raumes genügt V der Gleichung:

$$\Delta V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0.$$

wenn x, y, z die rechtwinkligen räumlichen Coordinaten des Punktes p sind, auf den sich V bezieht.

- $\delta$ , V ist constant für alle Punkte p, die auf der Oberfläche desselben Conductors liegen; oder diese Conductoroberfläche ist eine Niveaufläche für V.
- $\epsilon$ , Kommt die Function V her von elektrischen Massen, die stetig über die Oberflächen eines Systems von Conductoren verbreitet sind, so hat V für alle Punkte des inneren Raumes eines und desselben Conductors denselben constanten Werth, den es für alle Punkte der Oberfläche desselben hat.
- $\xi$ , Kommt V nur her von elektrischen Massen, die stetig über die Oberflächen eines Systems von Conductoren verbreitet sind, so giebt es nur eine einzige Function V, die den von  $\alpha$  bis  $\varepsilon$  aufgezählten Eigenschaften genügt, es giebt aber auch stets eine solche Function.

5) Den Fundamentaleigenschaften für V von  $\alpha$  bis  $\delta$  genügt das Potential zweckmässig gewählter elektrischer Massen im Innern eines jeden einzelnen Conductors.

6) Diese elektrischen Massen im Innern eines jeden Conductors haben hierzu nur der Bedingung zu genügen, dass ihr Gesammtpotential für alle Punkte auf der Oberfläche eines und desselben Conductors einen constanten Werth habe, der aber für die einzelnen Conductoren ein verschiedener sein kann.

7) Genügt die im Innern eines einzelnen, von allem fremden elektrischen Einfluss befreiten, Conductors angenommene Vertheilung elektrischer Massen den beiden Bedingungen: 1, dass ihr Potential für alle Punkte der Conductoroberfläche constant ist, 2, dass die algebraische Summe derselben, addirt zur algebraischen Summe der wirklich auf der Oberfläche des Conductors vorhandenen elektrischen Masse, Null ergiebt, so ist der Werth des Gesammtpotentiales beider elektrischer Massensysteme für alle Punkte ausserhalb und auf der Conductoroberfläche gleich Null.

8) Sind diese beiden Bedingungen für jeden einzelnen Conductor eines ganzen Systemes von Conductoren erfüllt\*), so muss auch nothwendig das Gesammtpotential aller vorhandenen elektrischen Massen für alle Punkte auf oder ausserhalb der Conductoren Null sein.

9) Ist V das Potential aller elektrischen Massen, die sich auf der Oberfläche der Conductoren eines ganzen Conductorensystems befinden, für irgend einen Punkt einer Conductorfläche oder des von dem Conductorensysteme ausgeschlossenen Raumes, ist ferner U das Potential der nach den beiden unter 8) genannten Bedingungen angenommenen elektrischen Massenvertheilung für denselben Punkt, auf den sich V bezieht, so ist nach 8)

V + U = 0,folglich, da nach 2) pag. 121  $\varrho = -\frac{h}{4\pi} \frac{\partial U}{\partial w}$  auch  $\varrho = \frac{h}{4\pi} \frac{\partial U}{\partial w}.$ 

#### Literatur:

Poisson: Mém. 1 et 2 sur la distribution de l'électricité à la surface des corps conducteurs. Mém. de la classe des sc. mathem. et phys. de l'inst. Année 1811. Green: An essay on the application of mathematical analysis to the theories of electricity and magnetism. Crelle's Journal, Bd. 39. 44. u. 47.

Gauss: Untersuchungen über die im verkehrten Verhältnisse des Quadrates der Entfernung wirkenden Anziehungs- und Abstossungskräfte. 1840. Namentlich § 24, § 25, § 26, § 27, § 36 und § 37.

\*) Nämlich so, wie es Nr. 6 und Nr. 1 dieses § verlangt.

# § 2.

# Präcisirung der gestellten Aufgabe.

Ist die in 9, § 1 definirte Function U bekannt, so folgt nach dem an derselben Stelle genannten Satze die gesuchte elektrische Dichtheit einfach durch Differentiation, wenn man noch bemerkt, dass die Constante h sich ergiebt aus der Relation

$$\lim_{R \to \infty} \frac{Q}{R} = h V_{\infty} = -h U_{\infty},$$

worin bedeutet

- Q die algebraische Summe aller dem Conductorensysteme ursprünglich mitgetheilten Elektricitätsmenge (nicht durch Vertheilungswirkung).
- $V_{\infty} = -U_{\infty}$  den Werth von V resp. U im Bezug auf einen Punkt p', dessen Entfernung R von dem Conductorensysteme unendlich gross ist.

Die zu lösende Aufgabe kommt daher darauf hinaus, die Function Uzu beschaffen.

Die Potentialfunction U im Bezug auf irgend einen Punkt p kann aber als bekannt angesehen werden, sobald die analytische Bestimmung der Massen erfolgt ist, welche U bewirken.

Die zu bestimmende Massenvertheilung hat nun folgende Bedingungen zu erfüllen:

1. Nach 5, § 1 müssen die geometrischen Oerter für die einzelnen anzunehmenden Massen innerhalb der gegebenen Conductoren liegen.

2. Nach 6, § 1 müssen die anzunehmenden Massen die einzelnen Conductoroberflächen zu Niveauflächen ihres Potentiales haben und

da durch Vertheilung auf jedem einzelnen Conductor stets gleich grosse Mengen entgegengesetzter Elektricitäten erregt werden, die algebraische Summe der auf demselben wirklich vorhandenen Elektricitätsmengen also dadurch nicht geändert wird, sondern immer der den Conductoren ursprünglich mitgetheilten Elektricitätsmenge gleich bleibt und da die Wirkung der auf jedem einzelnen Conductor haftenden Elektricitätsmenge auf jeden Punkt ausserhalb oder auf dem Conductor ersetzt werden soll durch die hypothetischen elektrischen Massen im Innern des Conductors, so ist nach 7 und 8, § 1 auch

3. die algebraische Summe der im Innern eines jeden einzelnen Conductors anzunehmenden Elektricitätsmenge gegeben. Sie ist nämlich entgegengesetzt gleich der dem betreffenden Conductor ursprünglich mitgetheilten algebraisch addirten Elektricitätsmenge\*).

<sup>\*)</sup> Bei Abstraction von directem Uebergang der Elektricität zwischen den Conductoren.

Hiernach lässt sich die im Allgemeinen zu lösende Aufgabe in folgende Worte fassen: "Innerhalb gegebener geschlossener Flächen sind elektrische Massen, deren algebraische Summe für jede einzelne Fläche ebenfalls gegeben ist, so zu bestimmen, dass ihr Gesammtpotential diese Flächen zu Niveauflächen hat."

Diese Aufgabe ist bekanntlich unbestimmt.

Hat man elektrische Massen symmetrisch vertheilt zu einer Ebene, so sind auch die Niveauflächen ihres Potentiales symmetrisch zu dieser Ebene gelegen. Umgekehrt muss man daher auch, wenn die Conductoren selbst sowohl, als auch die den einzelnen Conductoren ursprünglich mitgetheilten algebraischen Summen von Elektricität symmetrisch zu einer Ebene geordnet sind, der Aufgabe genügen können durch eine symmetrisch zu dieser Ebene angeordnete Vertheilung der anzunehmenden elektrischen Massen.

Der vorige Satz gilt auch noch, wenn man statt Ebene Gerade setzt.

Sind endlich die Conductoren begrenzt von Rotationsflächen, die sämmtlich ein und dieselbe Gerade zur Rotationsaxe besitzen, so wird man der gestellten Aufgabe genügen können durch eine Vertheilung elektrischer Massen der Art, dass Dichtheit und Vorzeichen derselben für alle Punkte, die auf der Peripherie eines Kreises liegen, der seinen Mittelpunkt in der Rotationsaxe und seine Ebene senkrecht zu derselben hat, constant ist.

Ist nun in diesem Falle keiner der einzelnen Conductoren von einem anderen umschlossen, so kann man erwarten, dass man der Aufgabe auch gentigen könne allein durch eine angenommene Vertheilung elektrischer Massen auf der Rotationsaxe selbst.

Dieser Fall ist es nun, den wir in der Folge specieller betrachten werden in einer Weise, dass die Methode der Rechnung auch auf jedes beliebige Conductorensystem, das ursprünglich mit beliebigen elektrischen Massen beladen worden ist, ausgedehnt werden kann.

Wir stellen uns also die Aufgabe: "Wie sind elektrische Massen auf der Axe eines Systems von, von Rotationsflächen mit gemeinschaftlicher Axe umschlossenen und einander nicht einschliessenden, Conductoren auzuordnen, wenn dieselben zur Ermittelung der elektrischen Dichtheit auf den Conductoren benützt werden sollen?"

Nach 5, § 1 ist dazu erforderlich, dass ein endliches Stück der Rotationsaxe von jedem einzelnen Conductor selbst umschlossen ist, derselbe also keine ringförmige Gestalt hat; und es lässt sich erwarten, dass auch die innerhalb der Conductoren liegenden Stücke der Rotationsaxe nicht zu klein gegen die übrigen Dimensionen des Conductors sein dürfen.

## § 3.

# Reduction gewisser specieller Fälle auf den allgemeinen Fall.

Wir sagten oben, dass die algebraische Summe der in Wirklichkeit auf einem jeden Conductor befindlichen Elektricitätsmengen bekannt sei. Dies scheint nicht der Fall zu sein, wenn einer oder mehrere Conductoren zur Erde abgeleitet sind oder kurze Zeit abgeleitet gewesen sind.

Im erstern Falle muss man aber bei strenger Rechnung sowohl die Ableitungsvorrichtung, als auch die ganze Erde mit als Conductor betrachten und wird so auf den allgemeinen Fall pag. 125 zurückgeführt. Für nur angenäherte Rechnung unter Voraussetzung eines sehr dünnen Ableitungsdrahtes kann man, nach Green's Vorgange, das Potential der auf den Conductoren befindlichen elektrischen Massen, bezogen auf jeden Punkt der abgeleiteten Conductoren, gleich Null setzen und erhält damit eine Bedingungsgleichung zur Berechnung der auf den abgeleiteten Conductoren befindlichen Elektricitätsmengen.

Wenn im zweiten Falle, der wieder aufgehobenen Ableitung, die Berechnung der elektrischen Dichtheit stattgefunden hat für noch bestehende Ableitung, so kann durch Ermittelung des Integrales  $\int \varrho ds$ , wo  $\varrho$  die elektrische Dichtheit im Oberflächenelemente ds des abgeleiteten Conductors bedeutet, und wenn die Integration über die ganze Oberfläche des Conductors ausgedehnt wird, die algebraische Summe der auf dem abgeleiteten Conductor befindlichen Elektricitätsmengen gefunden werden. Ist aber diese bekannt, so ist man dann auch nach wieder aufgehobener Ableitung wieder auf die allgemeinen Fälle pag. 125 zurückgekommen.

Der Natur der Sache nach sind die Begrenzungsflächen der von uns speciell nach pag. 125 zu behandelnden Conductoren sämmtlich geschlossene Flächen. Diese Flächen sind aber, namentlich in den praktisch wichtigen Fällen, meist solche, dass sie nicht ohne weiteres durch eine einzige Gleichung analytisch festgelegt werden können, z. B. bei dem häufig vorkommenden Apparat, wo ein cylindrisches Drahtstück centrisch an eine Kugel angesetzt ist, u. s. w. Um auch die Meridiancurven solcher Flächen, wie es uns erwünscht ist, durch eine einzige Gleichung von der Form y = f(x)oder  $\varphi(x, y) = 0$  für rechtwinklige Coordinaten [oder  $r = f_1(\theta)$  oder  $\varphi_1(r, \theta) = 0$  für Polarcoordinaten] andeuten zu können, erinnern wir an die (Dirichlet'sche) Formel:

Genügt y innerhalb des Intervalles für x von a bis  $a_1$  der Form  $y = f_1(x)$ , innerhalb des Intervalles  $a_1$  bis  $a_2$  der Form  $y = f_2(x)$ , innerhalb des Intervalles  $a_2$  bis  $a_3$  der Form  $y = f_3(x), \ldots,$  innerhalb des Intervalles  $a_{n-1}$  bis b der Form  $y = f_n(x)$ , so ist der Werth des y für ein x, das der Bedingung genügt,  $b \ge x \ge a$ :

$$y = \sum_{-\infty}^{+\infty} e^{m \frac{2\pi}{b-a}} \left\{ \int_{a}^{a_{1}} f_{1}(t) e^{-m \frac{2\pi}{b-a}i} dt + \int_{a}^{a_{2}} f_{2}(t) e^{-m \frac{2\pi}{b-a}i} dt + \int_{a}^{a_{2}} f_{3}(t) e^{-m \frac{2\pi}{b-a}i} dt + \int_{a}^{a} f_{3}(t) e^{-m \frac{2\pi}{b-a}i}$$

Ist diese Gleichung die in ebenen rechtwinkligen Coordinaten ausgedrückte Gleichung des auf der einen Seite der Rotationsaxe gelegenen Stückes der Meridiancurve eines der gegebenen Conductoren, so ist ersichtlich, dass

keine der mit f bezeichneten Functionen innerhalb der zugehörigen Integrationsgrenzen unendlich wird,

dass y sich mit Ausnahme eines Falles mit x stetig ändert,

dass für x = a oder x = b y = 0

und dass, da wir einander umschliessende Conductoren von unserer Betrachtung ausgeschaltet haben, ein hohler Conductor aber im Bezug auf die Vertheilung von Elektricität ebenso wirkt, wie ein massiver, die obige Gleichung nur einen zusammenhängenden Curvenzweig bedeuten wird.

Der eben erwähnte Ausnahmefall ist der, wenn der Conductor ein senkrecht auf der Rotationsaxe stehendes ebenes Begrenzungsstück enthält. Umgeht man die Schwierigkeit dieses Falles durch zu Grunde-Legung eines anderen Coordinatensystemes, so können wir sagen: Durch eine Gleichung von der vorstehenden Form ist irgend ein Punkt des auf der einen Seite der Rotationsaxe liegenden Stückes der Meridiancurve eindeutig bestimmt.

Sind weiter die Derivirten der mit f bezeichneten Functionen innerhalb der entsprechenden Integrationsintervalle stetig, so ist auch eine sofortige Differentiation der obigen Gleichung erlaubt, wobei freilich an den Integrationsgrenzen  $a_1, a_2, a_3 \ldots a_{n-1}$  statt der wirklichen zwei im Allgemeinen verschiedenen Werthe von y' das arithmetische Mittel dieser beiden Werthe zum Vorschein kommt.

## **§ 4**.

# Analytische Fixirung der gestellten Aufgabe.

Seien eine Anzahl, etwa q, Conductoren von der Art gegeben, wie sie pag. 125 vorschreibt. Die Gleichungen der Meridiancurven derselben seien, bezogen auf ein ebenes rechtwinkliges Coordinatensystem mit der Rotationsaxe als Axe der x:

 $y = \varphi_1(x); \ y = \varphi_2(x); \ y = \varphi_3(x); \ \dots \ y = \varphi_q(x).$ Die mit elektrischen Massen zu belegenden Stücke der Rotationsaxe (vollständig innerhalb der Conductoren gelegen) mögen reichen, resp.

von  $a_1$  bis  $b_1$ ; von  $a_2$  bis  $b_2$ ; von  $a_3$  bis  $b_3$ ; .... von  $a_q$  bis  $b_q$ . Der den Anforderungen pag. 124 gentigende Modus der Vertheilung elektrischer Massen sei dargestellt durch resp.

 $f_1(\varrho); f_2(\varrho); f_3(\varrho); \ldots, f_q(\varrho).$ 

Dann ist das Gesammtpotential aller angenommenen elektrischen Massen bezogen auf einen Punkt, dessen rechtwinklige räumliche Coordinaten<sup>\*</sup>) sind x,  $\eta$ ,  $\zeta$ :

$$U = \int_{a_1}^{b_1} \frac{f_1(\varrho)}{r} d\varrho + \int_{a_2}^{b_2} \frac{f_2(\varrho)}{r} d\varrho + \int_{a_3}^{b_2} \frac{f_3(\varrho)}{r} d\varrho + \dots + \int_{a_q}^{b_q} \frac{f_q(\varrho)}{r} d\varrho$$
$$= \sum_{1}^{q} \int_{a_p}^{a_p} \frac{f_p(\varrho)}{r} d\varrho,$$

wenn  $r = \sqrt{(x-q)^2 + \eta^2 + \xi^2}$ .

Ist nun der Punkt  $x \eta \zeta$  irgend ein Punkt der Oberfläche des s'en Conductors, also  $\eta^2 + \zeta^2 = y^2 = [\varphi_s(x)]^2$ , so ist nach pag. 124, 2.:

1, 
$$U_s = \sum_{1}^{q} \int_{a_p}^{b_p} \frac{f_p(\varrho) \, d\varrho}{\sqrt{(x-\varrho)^2 + y^2}} = C_s = Const.$$

welche Lage auch der Punkt  $x \eta \zeta$  auf der Oberfläche des s'en Conductors einnehmen mag.

Bedeutet also  $d\sigma$  ein auf der Oberfläche dieses Conductors gelegenes Bogenelement, so ist

I, 
$$\frac{\partial U_s}{\partial x} \frac{\partial x}{\partial \sigma} + \frac{\partial U_s}{\partial y} \frac{\partial y}{\partial \sigma} = \frac{\partial U_s}{\partial x} + \frac{\partial U_s}{\partial y} \varphi_s'(x) \equiv 0$$

eine identische Gleichung, sobald der Werth von  $y = \varphi_s(x)$  als Function von x in dieselbe eingesetzt wird.

<sup>\*)</sup> Bezogen auf ein Coordinatensystem, das möglichst mit dem obigen ebenen zusammenfällt.



Die Identität I repräsentirt q Identitäten, da in ihr s alle Werthe von 1 bis q annehmen kann.

Weiter ist nach 3. pag. 124

II, 
$$\int_{a_s}^{b_s} f_s(\varrho) \, d\varrho = A_s \, ,$$

wenn —  $A_s$  die algebraische Summe der dem  $s^{ten}$  Conductor direct mitgetheilten Elektricitätsmengen bedeutet.

Die Gleichung II repäsentirt, aus demselben Grunde wie die Gleichung I, q Gleichungen.

Vermittelst der Gleichungensysteme I und II sollen nun die Functionen  $f(\varrho)$  und die Längen und Lagen der mit elektrischer Masse zu belegenden Axenstücke, d. i. die Integrationsgrenzen *a* und *b* bestimmt werden. Ausgeschlossen bleiben dabei im Allgemeinen Lösungen von der Form:  $f_s(\varrho) \equiv 0$ , und  $b_s = a_s$ .

Indem wir hier für die Bestimmung der a und b nur an das pag. 125 über Symmetrieverhältnisse Gesagte erinnern, gehen wir namentlich darauf aus, die Functionen f zu berechnen.

Jedenfalls können wir über diese Functionen die Voraussetzung machen, dass sie an den und innerhalb der Integrationsgrenzen nirgends unendlich werden, womit dann auch ihre Entwickelung innerhaßb dieser Grenzen in Fouriersche Reihen gestattet ist.

Um diese Entwickelung in möglichst einfacher Form verwenden zu können, denken wir uns den Coordinatenanfang bei der Berechnung des Potentialwerthes der in einem bestimmten etwa dem  $p^{ten}$  Conductor augenommenen Elektricität immer in die Mitte der mit elektrischer Masse belegten Axenstrecke gelegt; eine Operation, die offenbar auf das Potential jedes einzelnen Conductors sowohl, wie auf das Gesammtpotential ohne Einfluss ist. Setzen wir dem entsprechend weiter

$$b_p - a_p = 2h_p; \ f_p(\varrho) = \sum_{-\infty}^{+\infty} a_n^p e^{-n} \frac{\pi}{h_p} \varrho^{i},$$

so erhalten wir statt der Gleichung 1, jetzt

2, 
$$U_s = \sum_{1}^{q} \sum_{n=\infty}^{+\infty} a_n^p \int_{-h_p}^{+\infty} \frac{n \frac{\pi}{h_p} \varrho i}{\sqrt[p]{(x-\varrho)^2 + y^2}} d\varrho$$
,

wobei jetzt, gemäss der angenommenen Beweglichkeit unseres Coordinatensystems, dem x für jeden einzelnen Conductor ein besonderer Werth beigelegt werden muss.

Es ist nun unsere Aufgabe, der Gleichung 2, oder dem Us eine Form

130 Die mathematische Bestimmung der Vertheilung der Elektricität

a course a

zu geben, dass dessen Berechnung für jeden Werth, den x und y gemäss der Bedingung, dass der Punkt xy auf der Meridiancurve des  $s^{cn}$  Conductors liegt, erlangen kann, leicht ist, und namentlich auch die Art der Abhängigkeit des  $U_s$  von x und y, wenn xy irgend einen Punkt der Meridianebene bezeichnet, hervortritt. Hierauf hat dann, unter Anwendung der Gleichungen I und II die Bestimmung der Coefficienten  $a_n^p$  und endlich die der Functionen f, selbst zu erfolgen.

Hierbei ist noch besonders der Umstand hervorzuheben, dass, weil eine Function sich nur in einer einzigen Weise in eine Fouriersche Reihe entwickeln lässt, sich auch alle Unbestimmtheit der Aufgabe in der Art der Bedingungsgleichungen zeigen muss, von denen die Integrationsgrenzen  $h_p$  und die Coefficienten  $a_p^p$  abhängen.

## § 5.

# **Transformation von** $U_s$ und $\frac{d}{dx}U_s$ .

Seien die beiden Theile des Integrales

$$I_n = \int_{-h}^{+h} \frac{e^n \frac{\pi}{h} \varrho_i}{\sqrt{(x-\varrho)^2 + y^2}} d\varrho$$

$$I_c = \int_{-h}^{+h} \frac{\cos\left(n\frac{\pi}{h}\varrho\right)}{\sqrt[n]{(x-\varrho)^2 + y^2}} d\varrho \text{ und } I_s = i \int_{-h}^{+h} \frac{\sin\left(n\frac{\pi}{h}\varrho\right)}{\sqrt[n]{(x-\varrho)^2 + y^2}} d\varrho.$$

Nun ist bekanntlich

$$A, \frac{1}{\pi} \int_{0}^{\infty} \cos u \varrho \, du \int_{-h}^{+h} \cos \left(n \frac{\pi}{h} t\right) \cos u t \, dt = \begin{cases} 0 \ f \ddot{u} r \ \varrho^{2} > h^{2} \\ \frac{1}{2} \cos \left(n \frac{\pi}{h} \varrho\right) f \ddot{u} r \ \varrho^{2} = h^{2} \\ \cos \left(n \frac{\pi}{h} \varrho\right) f \ddot{u} r \ \varrho^{2} = h^{2} \\ \cos \left(n \frac{\pi}{h} \varrho\right) f \ddot{u} r \ \varrho^{2} < h^{2} \end{cases}$$
$$B, \frac{1}{\pi} \int_{0}^{\infty} \sin u \varrho \, du \int_{-h}^{+h} \sin \left(n \frac{\pi}{h} t\right) \sin u t \, dt = \begin{cases} 0 \ f \ddot{u} r \ \varrho^{2} > h^{2} \\ \frac{1}{2} \sin \left(n \frac{\pi}{h} \varrho\right) f \ddot{u} r \ \varrho^{2} = h^{2} \\ \sin \left(n \frac{\pi}{h} \varrho\right) f \ddot{u} r \ \varrho^{2} = h^{2} \\ \sin \left(n \frac{\pi}{h} \varrho\right) f \ddot{u} r \ \varrho^{2} = h^{2} \end{cases}$$

Mit Hülfe von A, und B, nehmen  $I_c$  und  $I_s$  folgende Gestalten an:

$$I_{c} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{d\varrho}{l'(x-\varrho)^{2}+y^{2}} \int_{0}^{\infty} \cos(u\varrho) \, du \int_{-h}^{+h} \cos(n\frac{\pi}{h}t) \cos(ut) \, dt.$$
$$I_{s} = \frac{1.i}{\pi} \int_{-\infty}^{+\infty} \frac{d\varrho}{l'(x-\varrho)^{2}+y^{2}} \int_{0}^{\infty} \sin(u\varrho) \, du \int_{-h}^{+h} \sin(n\frac{\pi}{h}t) \sin(ut) \, dt.$$

Aus der bekannten Formel

$$\int_{0}^{\infty} e^{g z i} z^{x-1} dz = \frac{\prod (x-1)}{g^{x}} e^{x \frac{\pi}{2} i}$$

folgen weiter die für uns wichtigen Formeln, wenn man setzt in derselben

$$g = (x-\varrho)^2 + y^2; \quad z = \psi, \quad x = \frac{1}{2}; \text{ da } \Pi \left(-\frac{1}{2}\right) = \sqrt[4]{\pi}.$$

$$C, \quad \frac{1}{\sqrt{(x-\varrho)^2 + y^2}} = \frac{1}{\sqrt{\pi} e^{\frac{\pi}{4}i}} \int_{0}^{\infty} e^{\left\{(x-\varrho)^2 + y^2\right\}\psi i} \psi^{-\frac{1}{2}} d\psi$$

und wenn man setzt  $x = \frac{1}{2}$  und für  $z \ z^2$  schreibt

$$2\int_{0}^{\infty} e^{gz^{2}i} dz = \int_{-\infty}^{+\infty} e^{gz^{2}i} dz = \sqrt{\frac{\pi}{g}} e^{\frac{\pi}{4}i}$$

oder, wenn man im letzten Integrale noch setzt

$$z = u + l.$$

$$b, \int_{-\infty}^{+\infty} \{g \, u^2 + 2 g \, ul\}^i \, du = \sqrt{\frac{\pi}{g}} e^{\frac{\pi}{4}} i e^{-gl^2 i}$$

Mit Hülfe der Formel C, nimmt nun  $I_c$ , wenn man noch setzt cos  $u\varrho$ =  $p.r. e^{u\varrho i}$  oder cos  $u\varrho = p.r. \frac{1}{2} (e^{u\varrho i} + c^{-u\varrho i})$  die Formen an:

$$I_{e} = p.r. - \frac{1}{\pi \sqrt[p]{\pi} e^{\frac{\pi}{4}i}} \int_{0}^{\infty} \frac{e^{(x^{2}+y^{2})\psi i}}{\sqrt[p]{\psi}} d\psi \int_{0}^{\infty} du \int_{-A}^{\frac{1}{4}h} \cos(n\frac{\pi}{h}t) \cos(ut) dt$$
$$\int_{0}^{+\infty} \frac{e^{(x^{2}+y^{2})\psi i}}{\sqrt[p]{\psi}} d\psi \int_{0}^{\frac{1}{4}h} \frac{e^{(x^{2}+y^{2})\psi i}}{\sqrt[p]{\psi}} d$$

Die mathematische Bestimmung der Vertheilung der Elektricität 132 

.

. ...

Oder

~---

$$I_{c} = p.r. \frac{1}{2\pi \sqrt{\pi}} \frac{1}{e^{\frac{\pi}{4}i}} \left\{ \int_{0}^{\infty} \frac{e^{(x^{2} + y^{2})\psi i}}{\sqrt{\psi}} d\psi \int_{0}^{\infty} \frac{d\psi}{du} \int_{-k}^{+k} \cos(n\frac{\pi}{h}t) \cos(ut) dt \\ \int_{-\infty}^{+\infty} \frac{e^{\pi}}{e^{\frac{\pi}{4}i}} \left\{ e^{2\psi} \pm 2e\psi \left( \frac{u}{2\psi} \mp x \right) \right\} i de \right\},$$

wobei in Hinsicht des auf e bezüglichen Integrales der letzten Darstellung von  $I_c$  die Integration sowohl im Bezug auf die oberen, als auch auf die unteren Vorzeichen auszuführen ist.

Ganz entsprechende Form erhält auch Is, wenn man setzt, das eine Mal sin  $u\varrho = p$ . i.  $e^{u\varrho i}$ , das andere Mal sin  $u\varrho = p$ . i.  $\frac{1}{2} (e^{u\varrho i} - e^{-u\varrho i})$ , nur müssen dann die beiden Integrationsergebnisse von einander abgezogen werden, während sie im vorigen Fall zu addiren waren.

Führt man die auf  $\rho$  bezüglichen Integrationen aus nach Formel D, pag. 131, so erhält man

$$I_{e} = p.r. \frac{1}{\pi} \int_{0}^{\infty} \frac{e^{y^{2}\psi i}}{\psi} d\psi \int_{0}^{\infty} e^{\left\{-\frac{u^{2}}{4\psi}+ux\right\} i} du \int_{-k}^{\frac{1}{4}} \cos\left(n\frac{\pi}{h}t\right) \cos\left(ut\right) dt.$$
  
Oder

$$I_{e} = p.r.\frac{1}{2\pi} \left\{ \int_{0}^{\infty} \frac{\psi^{2}\psi^{i}}{\psi} d\psi \int_{0}^{\infty} e^{\frac{1}{2}\left\{-\frac{u^{2}}{4\psi}+ux\right\}} i du \int_{-k}^{\frac{1}{2}} \cos\left(n\frac{\pi}{h}t\right) \cos\left(ut\right) dt + \int_{0}^{\infty} \frac{\psi^{2}\psi^{i}}{\psi} d\psi \int_{0}^{\infty} e^{\frac{1}{2}\left\{-\frac{u^{2}}{4\psi}-ux\right\}} i du \int_{-k}^{\frac{1}{2}} \cos\left(n\frac{\pi}{h}t\right) \cos\left(ut\right) dt \right\}$$

$$I_s = \frac{i}{\pi} p. i. \int_{0}^{\infty} \frac{\psi^2 \psi i}{\psi} d\psi \int_{0}^{\infty} e^{i t} \left\{ -\frac{u^2}{4\psi} + ux \right\} i du \int_{-k}^{\frac{1}{k}} \sin\left(n\frac{\pi}{h}t\right) \sin\left(ut\right) dt$$

Oder

$$I_{s} = \frac{i}{2\pi} p. i. \left\{ \int_{0}^{\infty} \frac{e^{y^{2}\psi i}}{\psi} d\psi \int_{0}^{\infty} e^{\left\{-\frac{u^{2}}{4\psi}+ux\right\}} i du \int_{-h}^{\frac{1}{2}h} (n\frac{\pi}{h}t) \sin(ut) dt - \int_{0}^{\infty} \frac{e^{y^{2}\psi i}}{\psi} d\psi \int_{0}^{\infty} e^{\left\{-\frac{u^{2}}{4\psi}-ux\right\}} i du \int_{-h}^{\frac{1}{2}h} (n\frac{\pi}{h}t) \sin(ut) dt \right\}.$$

Setzt man nun  $\psi = \frac{u}{v}$  also  $\frac{d\psi}{\psi} = -\frac{dv}{v}$ , so wird Digitized by Google

$$p.r.\frac{1}{\pi}\int_{0}^{\infty}\frac{e^{y^{2}\psi i}}{\psi}d\psi\int_{0}^{\infty}\left\{-\frac{u^{2}}{4\psi}+ux\right\}i\,du\int_{-h}^{+h}\cos\left(n\frac{\pi}{h}t\right)\cos\left(ut\right)dt$$
$$=\int_{0}^{\infty}\frac{dv}{v}\cdot\frac{1}{\pi}\int_{0}^{\infty}\cos\left[u\left(\frac{y^{2}}{v}+x-\frac{v}{4}\right)\right]du\int_{-h}^{+h}\cos\left(n\frac{\pi}{h}t\right)\cos\left(ut\right)dt.$$

Nun ist aber nach Formel A, pag. 130

$$\int_{0}^{1} \int_{0}^{\infty} \cos\left[u\left(\frac{y^{2}}{v}+x-\frac{v}{4}\right)\right] du \int_{-h}^{+h} \cos(n\frac{\pi}{h}t) \cos(ut) dt = \begin{cases} 0 \\ \frac{1}{2} \cos n\frac{\pi}{h}\left(\frac{y^{2}}{v}+x-\frac{v}{4}\right) \\ \cos n\frac{\pi}{h}\left(\frac{y^{2}}{v}+x-\frac{v}{4}\right) \end{cases}$$

je nachdem  $\left(\frac{y^2}{v} + x - \frac{v}{4}\right)^2 \stackrel{>}{=} h^2.$ 

Der Ausdruck  $\frac{y^2}{v} + x - \frac{v}{4}$  nimmt bei wachsendem v stetig ab, und ist für  $v = 0, +\infty$ , für  $v = +\infty, -\infty$ ; da nun nach den Integrationsgrenzen der auf v bezüglichen Integration v nur positive Werthe zu durchlaufen hat, so haben nur diejenigen Elemente für die nach v auszuführende Integration einen von 0 verschiedenen Werth, für welche v einen solchen positiven Werth hat, dass

$$-h \leq \frac{y^2}{v} + x - \frac{v}{4} \leq +h$$

d. h. wir haben als Grenzen der Integration im Bezug auf v zu nehmen die positiven Wurzeln der beiden in v quadratischen Gleichungen:

$$\frac{y^2}{v} + x - \frac{v}{4} = +h$$
 und  $\frac{y^2}{v} + x - \frac{v}{4} = -h$ .

Die Integrationsgrenzen sind demnach:

$$v_1 = 2 [x - h + \sqrt{y^2 + (x - h)^2}]; v_2 = 2 [x + h + \sqrt{y^2 + (x + h)^2}].$$

Mit Beachtung des auf der vorigen und auf dieser Seite Gefundenen erhalten wir nun:

1, 
$$I_c = \int_{2}^{2} \left[ x + h + \sqrt{y^2 + (x+h)^2} \right] \frac{dv}{v} + x - \frac{v}{4} \right] \frac{dv}{v}.$$

Verfährt man analog mit dem zweiten dreifachen Integrale der zweiten Darstellung von I<sub>c</sub> pag. 132, so erhält man

134 Die mathematische Bestimmung der Vertheilung der Elektricität

2, 
$$I_{c} = \frac{1}{2} \int_{2}^{2} \left[ x + h + Vy^{2} + (x + h)^{2} \right]$$
  
 $2 = \frac{1}{2} \int_{2}^{2} \left[ x - h + Vy^{2} + (x - h)^{2} \right]$   
 $2 \left[ x - h + Vy^{2} + (x - h)^{2} \right]$   
 $2 \left[ -x + h + Vy^{2} + (x - h)^{2} \right]$   
 $+ \int_{2}^{2} \left[ -x - h + Vy^{2} + (x - h)^{2} \right]$   
 $2 \left[ -x - h + Vy^{2} + (x + h)^{2} \right]$ 

Endlich erhält man noch auf analogem Wege und unter Benutzung der Formel B, pag. 130, für Is die beiden Darstellungen:

3, 
$$I_s = i \int_{2[x-h+Vy^2+(x+h)^2]}^{2[x+h+Vy^2+(x+h)^2]} \int_{2[x-h+Vy^2+(x-h)^2]}^{2[x+h+Vy^2+(x+h)^2]} dv$$

und

4, 
$$I_{s} = \frac{i}{2} \int_{2}^{2} \left[ x + h + \sqrt{y^{2} + (x + h)^{2}} \right] dv$$
  
 $2 \left[ x - h + \sqrt{y^{2} + (x - h)^{2}} \right]$   
 $+ \frac{i}{2} \int_{2}^{2} \left[ x - h + \sqrt{y^{2} + (x - h)^{2}} \right] + \frac{i}{2} \int_{2}^{2} \left[ -x + h + \sqrt{y^{2} + (x - h)^{2}} \right] dv$   
 $2 \left[ -x - h + \sqrt{y^{2} + (x - h)^{2}} \right]$ 

Setzen wir ferner v = 2uy;  $I_c + I_s = I_n$ , so findet sich

$$I_{u} = \int_{e}^{x + h + \sqrt{y^{2} + (x + h)^{2}}} \frac{y}{y} \left(\frac{u}{1} - \frac{1}{u}\right) i \, du$$

$$\frac{x - h + \sqrt{y^{2} + (x - h)^{2}}}{y}$$

Oder

5, 
$$l_n = e^{n \frac{\pi}{h} xi} \int_{x-h+Vy^2+(x-h)^2}^{y} \frac{(u-1)}{(u-1)} i \frac{du}{u}$$
  
 $x-h+Vy^2+(x-h)^2$ 

-----

Oder:

6, 
$$I_n = \frac{1}{2}e^{n\frac{\pi}{h}xi}\int_{x}^{x}\frac{y}{e^{-n\frac{\pi}{h}\frac{y}{2}\left(\frac{u}{1}-\frac{1}{u}\right)i}du}{\frac{x-h+\sqrt{y^2+(x-h)^2}}{y}}$$
  
 $+\frac{1}{2}e^{n\frac{\pi}{h}xi}\int_{x}^{x}\frac{-x+h+\sqrt{y^2+(x-h)^2}}{e^{n\frac{\pi}{h}\left(\frac{u}{1}-\frac{1}{u}\right)\frac{y}{2}i}du}{\frac{u}{u}}$ 

Durch Vergleichung der Relationen 5, und 6, erhält man noch die Formel:

$$7, \int_{u}^{x+h+Vy^{2}+(x+h)^{2}} e^{-n\frac{\pi}{h}\cdot\frac{y}{2}\left(\frac{u}{1}-\frac{1}{u}\right)i} \frac{du}{u} = \int_{u}^{x+h+Vy^{2}+(x-h)^{2}} e^{\frac{x+h+Vy^{2}+(x-h)^{2}}{h}\frac{y}{2}\left(\frac{u}{1}-\frac{1}{u}\right)i} \frac{du}{u}}{\frac{u}{u}}$$

Nach pag. 129, 2 und nach pag. 130 ist nun die gesuchte Transformation von  $U_s$ , die wir auch in der Folge zu Grunde legen werden,

$$U_s = \sum_{1}^{q} \sum_{-\infty}^{+\infty} a_n^p I_n^p.$$

wo  $I_{\mu}^{p}$  durch 5, oder 6, pag. 134 und 135 und 2, pag. 129 definirt ist.

Es könnte scheinen, als ob die Anwendung der bekannten Formel

$$F(x) = \frac{1}{2\pi} \int_{-\infty}^{\frac{1}{2}} e^{\frac{1}{uxi}} du \int_{-h}^{\frac{1}{4}} F(t) e^{-uti} dt; \quad -h < x < +h$$

statt der Formel A, und B, pag. 130 auf kürzerem Wege zum Ziele führte, allein die Bestimmung der Integrationsgrenzen für v bei der spätern Substitution  $\psi = \frac{u}{v}$  (pag. 132) dürfte Schwierigkeiten verursachen; zugleich führte uns unser Weg auch auf die Formel 2, pag. 134, die dann wichtig wird, wenn eine zur Rotationsaxe senkrechte Symmetrieebene vorhanden ist (vergl. pag. 125), indem dann für 136 Die mathematische Bestimmung der Vertheilung der Elektricität

$$f_p(\varrho) = \sum_{-\infty}^{+\infty} a_n^p e^{n\frac{\pi}{h}\varrho i}$$

gesetzt werden kann

$$f_p(\varrho) = \sum_{0}^{\infty} A_n^p \cos n \, \frac{\pi}{h} \, \varrho.$$

Von den vielen Transformationen, die man noch aus 5, 6, und 7, für  $I_n$  ableiten kann, erwähnen wir nur noch kurz ihrer leichten geometrischen Interpretation wegen die folgende:

Setzt man  $u = \frac{1 + \sin \alpha}{\cos \alpha}$ , so erhält man:  $I_n = \int e^{n \frac{\pi}{h} (x - y \ln \alpha) i} \frac{d\alpha}{\cos \alpha} = \int e^{n \frac{\pi}{h} (x + y \ln \alpha) i} \frac{d\alpha}{\cos \alpha},$ arc  $tng \frac{x - h}{y}$ arc  $tng \frac{x - h}{y}$ 

welche beiden Integrale auch aus dem ursprünglichen Integral

$$\int_{-h}^{\frac{1}{h}} \frac{e^{n\frac{\pi}{h}}\varphi^{i}}{\sqrt{(x-\varrho)^{2}+y^{2}}} d\varrho$$

direct abgeleitet werden können, indem man das eine Mal substituirt y tng  $\alpha = x - \varrho$ , das andere Mal y tng  $\alpha = \varrho - x$ .

Es dürfte aber auch hier umständlich sein, mit Strenge die Integrationsgrenzen zu bestimmen, wenn man von den obigen beiden Integralen die Transformationen 5, und 6, pag. 134 und 135 herleiten wollte.

Bezieht man nun  $U_s$  auf ein und dasselbe rechtwinklige Coordinatensystem mit der Rotationsaxe als Axe der x, im Bezug auf welches die Mittelpunkte der mit elektrischer Masse belegten Axenstücke die Entfernung von der Axe der y haben, resp.

$$-b_1, -b_2, -b_3, \ldots -b_q,$$

so kann sich an dem bereits gefundenen Ausdruck für  $U_s$  nichts weiter ändern, als dass an die Stelle von x jetzt  $x + b_p$  tritt, so dass wir erhalten:

8. 
$$U_{s} = \sum_{1}^{q} \sum_{n=\infty}^{+\infty} a_{n}^{p} \int_{arc \ tng}^{arc \ tng} \frac{x + b_{p} + h_{p}}{y} \frac{d\alpha}{cos\alpha}$$

$$= \sum_{1}^{q} \sum_{-\infty}^{+\infty} a_{n}^{p} \int_{e}^{n \frac{\pi}{h_{p}}(x+b_{p}+y \ln g\alpha) i} \frac{d\alpha}{\cos \alpha}$$

$$= \sum_{1}^{q} \sum_{-\infty}^{+\infty} a_{n}^{p} \int_{e}^{n \frac{\pi}{h_{p}}(x+b_{p}+y \ln g\alpha) i} \frac{d\alpha}{\cos \alpha}$$

$$= \sum_{1}^{q} \sum_{-\infty}^{+\infty} a_{n}^{p} \int_{e}^{\frac{\pi}{h_{p}}(x+b_{p}-\frac{b_{p}}{2} \left[\frac{u}{1}-\frac{1}{u}\right]) i} \frac{du}{u}$$

$$= \sum_{1}^{q} \sum_{-\infty}^{+\infty} a_{n}^{p} \int_{e}^{\frac{\pi}{h_{p}}(x+b_{p}-\frac{y}{2} \left[\frac{u}{1}-\frac{1}{u}\right]) i} \frac{du}{u}$$

$$= \sum_{1}^{q} \sum_{-\infty}^{+\infty} \frac{a_{n}^{p}}{2} \left\{ \int_{e}^{\frac{x+b_{p}+h_{p}+\frac{y}{y^{2}+(x+b_{p}-h_{p})^{2}}}{y} \frac{x+b_{p}-h_{p}+\frac{y}{y^{2}+(x+b_{p}-h_{p})^{2}}{y} + \int_{e}^{\frac{\pi}{h_{p}} \left\{x+b_{p}-\frac{y}{2} \left(\frac{u}{1}-\frac{1}{u}\right)\right\} i} \frac{du}{u}$$

$$= \int_{e}^{\frac{\pi}{h_{p}}} \left\{x+b_{p}+\frac{y}{2} \left(\frac{u}{1}-\frac{1}{u}\right)\right\} i} \frac{du}{u}$$

Nach der dritten oder vierten dieser Transformationen von  $U_s$  ist nun dessen Berechnung für jedes beliebige x und y leicht durch einfache Reihenentwickelung der Exponentialgrösse.

Analog wie  $U_s$  lässt sich auch  $\frac{d}{dx} U_s = \frac{\partial U_s}{\partial x} + y' \frac{\partial U_s}{\partial y}$  umgestalten. Für unsern Zweck wird die folgende Transformation genügen.

Aus 1, pag. 128 folgt:

$$\frac{\partial U_s}{\partial x} + y' \frac{\partial U_s}{\partial y} = \sum_{1}^{q} \int_{-k_p}^{+k_p} \frac{\int_{-k_p}^{+k_p} (\varrho) \left[x - \varrho + y y'\right] d\varrho}{\sqrt{(x - \varrho)^2 + y^2}}$$

Setzt man  $\frac{x-\varrho}{y} = tng \alpha$ , so folgt Zeitschrift f. Mathematik u. Physik XIII, 2.

Diglo by Google

$$\frac{\partial U_{i}}{\partial x} + y' \frac{\partial U_{i}}{\partial y} = \sum_{1}^{q} \frac{1}{\frac{1}{y}} \int_{f_{p}}^{gre} \log \frac{x + h_{p}}{q} [\sin \alpha + y' \cos \alpha] d\alpha.$$
Also such, dx  $f_{p}(q) = \sum_{-\infty}^{+\infty} a_{n}^{p} e^{\frac{\pi - h_{p}}{y}}$ 

$$\frac{dU_{i}}{\partial x} + y' \frac{\partial U_{i}}{\partial y} = \sum_{1}^{q} \sum_{-\infty}^{+\infty} \frac{a_{n}^{p}}{y} \int_{e^{-\pi \frac{\pi}{h_{p}}}}^{gre} \log \frac{x + h_{p}}{y} [\sin \alpha + y' \cos \alpha] d\alpha.$$

$$\frac{are \ ing \ \frac{x + h_{p}}{y}}{are \ ing \ \frac{x - h_{p}}{y}} [\sin \alpha + y' \cos \alpha] d\alpha.$$

Endlich beim Uebergang auf das pag. 136 angenommene feste Coordinatensystem :

$$y, \frac{\partial U_{s}}{\partial x} + y' \frac{\partial U_{s}}{\partial y} = \sum_{1}^{q} \sum_{-\infty}^{+\infty} \frac{a^{p}}{y} \int_{arc \ lag}^{arc \ lag} \frac{\frac{x+b_{p}+h_{p}}{y}}{e^{x} \frac{h_{p}}{h_{p}} (x+b_{p}-y \ln g\alpha)i} [sin \alpha+y' \cos \alpha] d\alpha.$$

Wir schreiben hierfür kurz:

$$10, \quad \frac{dU_s}{\partial x} + y' \frac{\partial U_s}{\partial y} = \sum_{1}^{q} \sum_{-\infty}^{+\infty} \frac{a_n^p}{y} (Z_1 + Z_2)$$

indem

$$11, \quad Z_{1} = \int_{arc \ ing}^{arc \ ing} \frac{x+b_{y}}{y} [sin a + y' cos \alpha] d\alpha$$

$$11, \quad Z_{1} = \int_{arc \ ing}^{arc \ ing} \frac{x+b_{p}-h_{p}}{y} [sin a + y' cos \alpha] d\alpha$$

$$12, \quad Z_{2} = \int_{arc \ ing}^{arc \ ing} \frac{x+b_{p}-h_{p}}{y} [sin \alpha + y' cos \alpha] d\alpha$$

---- -

. . .. .....

## § 6.

# Bestimmung der Coefficienten $a_{-}^{p}$ .

Bei der Bestimmung der Coefficienten  $a_s^p$  haben wir folgende Relationen zu erfüllen.

Nach Seite 129 und 128 II, und I,

1, 
$$\int_{-h_s}^{T} \int_{-h_s}^{T} (\varrho) \, d\varrho = A_s$$
2, 
$$\frac{\partial U_s}{\partial x} + \varphi_s'(x) \frac{\partial U_s}{\partial y} = \sum_{1}^{q} \sum_{-\infty}^{+\infty} \frac{a_n^p}{y} (Z_1 + Z_2) \equiv 0$$

eine identische Gleichung, sobald in ihr der Werth von y als Function von x mittelst der Gleichung

3,  $y = \varphi_s(x)$ substituirt wird.

Ferner nach pag. 129:

4, 
$$f_p(\varrho) = \sum_{-\infty}^{+\infty} a_n^p e^{-n \frac{\pi}{h_p} \varrho i}$$

endlich die Werthe von  $Z_1$  und  $Z_2$  nach pag. 138.

Jede dieser 4 Gleichungen repräsentirt deren q, indem p oder s alle ganzzahligen Werthe von 1 bis q annehmen kann.

Nach der Gleichung 4 genügen die  $a_n^p$  bekanntlich auch folgenden Relationen :

$$a_n^p = \frac{1}{2h_p} \int_{-h_p}^{+h_p} f_p(t) e^{-n\frac{\pi}{h_p}ti} dt = \alpha_n^p + i\beta_n^p$$

wenn

$$\alpha_{n}^{p} = \frac{1}{2h_{p}} \int_{-h_{p}}^{+h_{p}} f_{p}(t) \cos\left(n \frac{\pi}{h_{p}} t\right) dt; \quad \beta_{n}^{p} = -\frac{1}{2h_{p}} \int_{-h_{p}}^{+h_{p}} f_{p}(t) \sin\left(n \frac{\pi}{h_{p}} t\right) dt.$$

Seiner Bedeutung nach (pag. 128) kann aber  $f_p(\varrho)$  nur reell sein, daraus folgt weiter, dass der reelle Theil von  $a_n^p$  eine gerade, der imaginäre eine ungerade Function von *n* sei, oder dass

5,  $\alpha_s^p = \alpha_{-s}^p$  und  $\beta_s^p = -\beta_{-s}^p$ . Mit Beachtung der Gleichungen 5, überzeugt man sich leicht, dass  $U_s$  nach 8, pag. 136 nur reelle Werthe enthält.

Setzt man den Werth von  $f_s(\varrho)$  nach Gleichung 4, in die Gleichung 1, ein, so erhält man

Di10\*d by Google

$$2 a_o^s h_s = A_s$$

oder

$$7, \quad a_o^s = \frac{1}{2} \quad \frac{A_s}{h_s},$$

eine Gleichung, die deren wiederum nach der Bedeutung von sq repräsentiren kann.

Zur Bestimmung der übrigen Coefficienten  $a_n^p$  bleibt nun allein nur noch die Gleichung

2, 
$$\sum_{1}^{q} \sum_{-\infty}^{+\infty} \frac{a_{n}^{p}}{y} (Z_{1} + Z_{2}) = 0$$

übrig. Wir denken uns zunächst y mit Hülfe der Gleichung 3, aus  $\frac{Z_1}{y}$  und  $\frac{Z_2}{y}$  eliminirt, wodurch die Gleichung 2, übergehen mag in die Identität:

8, 
$$\sum_{1}^{q} \sum_{-\infty}^{+\infty} a_{n}^{p} \{\psi_{1}(n,x) + \psi_{2}(n,x)\} = 0.$$

 $\psi_1$  (n, x) und  $\psi_2$  (n, x) sind dann eindeutige und stetige Functionen von nund x; zugleich sind ihre reellen Theile gerade, ihre imaginären, ungerade Functionen von n. Setzen wir nun n gleich einer beliebigen complexen Zahl, etwa

$$n=\mu+i\nu,$$

so ist ersichtlich, dass, weil der Factor von n in  $Z_1$ , nämlich  $\frac{\pi}{h_p}$   $(x + b_p)$ —  $y \ tng \ \alpha$ ) *i* nur positive, dagegen in  $Z_2$  nur negative. Werthe annehmen kann,

 $Z_1$ , also such  $\psi_1(n, x)$ , endlich und stetig bleibt, wenn

 $\mu$  den Weg von  $-\infty$  bis  $+\infty$  und

 $\nu$  den Weg von 0 bis  $+\infty$  durchläuft;

 $Z_2$ , also auch  $\psi_2$  (n, x) endlich und stetig bleibt, wenn

 $\mu$  den Weg von —  $\infty$  bis +  $\infty$  und

 $\nu$  den Weg von 0 bis —  $\infty$  durchläuft.

Es ist also  $\psi_1$  (n, x) eine synectische Function von n für alle Punkte auf der positiven Seite der Axe der  $\mu$  und  $\psi_2$  (n, x) dasselbe für alle Punkte auf der negativen Seite der Axe der  $\mu$ .

Ferner ist ersichtlich, dass, wenn  $n = R e^{i\theta}$ 

$$\lim_{R \to \infty} \psi_1(n, x) = 0,$$

wend  $n = Re^{-i\theta}$ 

$$\lim_{R \to \infty} \psi_2(n, x) = 0,$$

vorausgesetzt, dass

$$0 < \theta < \pi$$
.

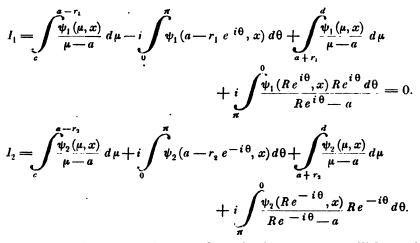
Bilden wir nun

$$I_1 = \int \frac{\psi_1(n, x)}{n - a} \, dn$$

ausgedehnt über einen Integrationsweg, wie ihn Figur 1 darstellt, und

$$I_2 = \int \frac{\psi_2(n, x)}{n - a} \, dn$$

ausgedehnt über einen Integrationsweg nach Figur 2, so ist  $I_1 = I_2 = 0$  und wir erbalten die Relationen



Lassen wir nun  $r_1$  und  $r_2$  unendlich ab-, dagegen R unendlich zunehmen, so verschwinden die letzten, R enthaltenden, Integrale und wir erhalten die beiden Gleichungen:

9, 
$$\int_{-\infty}^{+\infty} \frac{\psi_{1}(\mu, x)}{\mu - a} d\mu = i \pi \psi_{1}(a, x)$$
  
10, 
$$\int_{-\infty}^{+\infty} \frac{\psi_{2}(\mu, x)}{\mu - a} d\mu = -i \pi \psi_{2}(a, x)$$

aus welchen folgt:

11, 
$$\psi_1(a,x) + \psi_2(a,x) = \frac{1}{i\pi} \int_{-\infty}^{+\infty} \frac{\psi_1(\mu, x) - \psi_2(\mu, x)}{\mu - a} d\mu$$
  
Digitized by Google

Fig. 1.

Fig. 2.

#### Ist weiter zur Abkürzung

12,  $\psi_1(\mu, x) - \psi_2(\mu, x) = X_p^s(\mu, x) = X_p^s$ 

so ist ersichtlich, dass X, dieselben Eigenschaften besitzt, die wir pag. 140 als dem  $\psi_1(n, x)$  und  $\psi_2(n, x)$  zukommend anführten.

Legen wir nun dem a der Gleichung 11, alle ganzzahligen Werthe von  $-\infty$  bis  $+\infty$  bei, so ist

13, 
$$\sum_{-\infty}^{+\infty} a_n^p \left\{ \psi_1(n, x) + \psi_2(n, x) \right\}$$
$$= \frac{1}{i\pi} \int_{-\infty}^{+\infty} X_p^*(\mu, x) \left\{ \frac{a_0^p}{\mu} + \frac{a_1^p}{\mu - 1} + \frac{a_{-1}^p}{\mu + 1} + \frac{a_2^p}{\mu - 2} + \frac{a_{-2}^p}{\mu + 2} + \ldots \right\} d\mu.$$

Setzt man weiter

14, 
$$\frac{1}{i\pi}\left\{\frac{a_0^p}{\mu} + \frac{a_1^p}{\mu-1} + \frac{a_{-1}^p}{\mu+1} + \frac{a_{-2}^p}{\mu-2} + \frac{a_{-2}^p}{\mu+2} + \ldots\right\} = X_p$$

so nimmt die Gleichung 8, pag. 140 folgende Form an:

15, 
$$\int_{-\infty}^{+\infty} \{X_1^s X_1 + X_2^s X_2 + X_3^s X_3 + \dots + X_q^s X_q\} d\mu = 0$$

eine Gleichung, die deren q repräsentirt, indem s alle ganzzahligen Werthe von 1 bis q zu durchlaufen hat.

Mit Beachtung von 5, pag. 139 ist ferner leicht ersichtlich, dass auch in X<sub>p</sub> die reellen Theile gerade, die imaginären ungerade Functionen von µ sind.

Die sich aus 15, ergebenden q Gleichungen sind nun auch die einzigen weiteren Gleichungen, die sich zur Berechnung der a<sup>p</sup> ergeben.

Setzen wir die zu integrirende Function

16,  $X_1' X_1 + X_2' X_2 + \ldots + X_a' X_a = c_s W_s$ 

wo c, eine reelle Constante bedeuten möge, so hat W, folgende wesentliche Eigenschaften :

- 1, W, ist eine Function von  $\mu$  und x.
- 2,  $W_s$  wird unendlich für jeden reellen ganzzahligen Werth von  $\mu$ .
- 3, W, wird Null für  $\mu = +\infty$ .
- 4, Ws ist endlich und stetig für Werthe von μ die nicht unter den Fall 2, gehören, auch wenn  $\mu$  eine endliche complexe Grösse ist.
- 5, Der reelle Theil von W, ist eine gerade, der imaginäre Theil cinc ungerade Function von  $\mu$ .
- 6, Ws wird unendlich, sobald  $\mu = \pm i \infty + l$ , wenn l eine reelle Grösse bedeutet.
- 7, W, verschwindet für  $x = \pm \infty$ ;  $\mu$  endlich. Digitized by Google

$$8, \int_{-\infty}^{+\infty} W_s \, d\mu \equiv 0.$$

Sind nun  $W_1$ ,  $W_2$ ,  $W_3$ ....  $W_q$  Functionen von  $\mu$  und x, denen die eben genannten Eigenschaften zukommen, so folgt aus der Gleichung 16, das für die  $X_p$  lineare System von Gleichungen:

$$\begin{aligned} X_{1}^{1} X_{1} + X_{2}^{1} X_{2} + X_{3}^{1} X_{3} + \dots + X_{q}^{1} X_{q} &= c_{1} W_{1} \\ X_{1}^{3} X_{1} + X_{2}^{3} X_{2} + X_{3}^{3} X_{3} + \dots + X_{q}^{3} X_{q} &= c_{2} W_{2} \\ X_{1}^{3} X_{1} + X_{2}^{3} X_{2} + X_{3}^{3} X_{3} + \dots + X_{q}^{3} X_{q} &= c_{3} W_{3} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ X_{1}^{q} X_{1} + X_{2}^{q} X_{2} + X_{3}^{q} X_{3} + \dots + X_{q}^{q} X_{q} &= c_{q} W_{q} \end{aligned}$$

Ist R die Determinante dieser Gleichungen, so ist:

17, 
$$RX_p = c_1 W_1 \frac{\partial R}{\partial X_p^1} + c_2 W_2 \frac{\partial R}{\partial X_p^2} + c_3 W_3 \frac{\partial R}{\partial X_p^3} + \dots + c_q W_q \frac{\partial R}{\partial X_p^q} = Y_p.$$

Nimmt man nun

$$\int X_p \, d\mu = \int \frac{Y_p}{R} \, d\mu$$

 $\mu$  als complexe Variable gedacht und das Integral ausgedehnt über einen Kreis, dessen Radius kleiner als Eins ist und dessen Mittelpunkt der auf der reellen Axe gelegene Punkt  $\mu = n$  ist, so ist

$$\int_{X_p} d\mu = \frac{a_n^p}{i\pi} \int \frac{d\mu}{\mu - n} = 2 a_n^p,$$

Folglich ergeben sich bei zweckmässig gewähltem Integrationsweg alle Coefficienten  $a_x^p$  in der Form:

18, 
$$a_n^p = \frac{1}{2} \int X_p \, d\mu = \frac{1}{2} \int \frac{Y_p}{R} \, d\mu$$

Oder bei Ausführung der Integration:

19, 
$$a_n^p = i\pi$$
.  $\lim_{\mu = n} \left\{ (\mu - n) \frac{Y_p}{R} \right\}$ .

Die Constanten  $c_1, c_2, c_3 \ldots c_q$  können auf folgende Weise bestimmt werden: Dividirt man die Gleichung 17, durch R und integrirt dann die so entstandene und noch mit  $d\mu$  multiplicirte Gleichung, indem man als Integrationsweg einen um den Nullpunkt mit einem Radius kleiner als Eins beschriebenen Kreis wählt, so ist mit Rücksicht auf No. 18 und 7, wenn noch abkürzungsweise

$$N_{d}^{e} = \frac{1}{2} \int \frac{W_{e} \frac{\partial R}{\partial \mathbf{X}_{d}^{e}}}{R} d\mu$$

gesetzt wird, das System Gleichungen gültig:

Hiermit sind die constanten Factoren  $c_p$  vollständig bestimmt. Von der Gleichung pag. 129

20, 
$$f_p(\varrho) = \sum_{-\infty}^{+\infty} a_n^p e^{n \frac{\pi}{h_p} \varrho i}$$
  
=  $C_0 + C_1 \cos \frac{\pi}{h_p} \varrho + C_2 \cos 2 \frac{\pi}{h_p} \varrho + C_3 \cos 3 \frac{\pi}{h_p} \varrho + ...$   
+  $D_1 \sin \frac{\pi}{h_p} \varrho + D_2 \sin 2 \frac{\pi}{h_p} \varrho + D_3 \sin 3 \frac{\pi}{h_p} \varrho + ...$ 

ist also nun die rechte Seite als in allen ihren Theilen bekannt anzusehen.

Soll die Gleichung 20, aber für uns brauchbare Resultate enthalten, so muss sie noch die beiden Bedingungen erfüllen:

1, ihre rechte Seite muss convergent sein,

2, die Constanten C und D müssen von x unabhängig sein.

Die erstere Bedingung verlangt, dass die Reihen der absoluten Werthe der C und der D abnehmen.

Die zweite Bedingung verlangt, dass der aus 17, folgende Werth von  $X_p$  von x unabhängig sei, d. h. dass man die  $h_p$  und  $b_p$  so wähle, dass sie neben der Bedingung, dass die angenommenen elektrischen Massen vollständig innerhalb der gegebenen Conductoren liegen, auch noch die Differentialgleichung

21, 
$$R \frac{\partial Y_p}{\partial x} = Y_p \frac{\partial R}{\partial x}$$

erfüllen.

Die Realisirbarkeit der letzten beiden Bedingungen ist zugleich das Kriterium dafür, ob überhaupt die gestellte Aufgabe lösbar sei oder nicht.

#### § 7.

# Bestimmung der Function $f_p(\varrho)$ selbst.

Nachdem wir durch die Gleichung 20, pag. 144 die Entwickelung von  $f_p(\varrho)$  in eine Fouriersche Reihe kennen gelernt haben, handelt es sich noch darum, diese Function  $f_p(\varrho)$  selbst zu bestimmen.

Ich erinnere hier an eine Abhandlung\*) meines hochverehrten Lehrers, des H. Hofrath Schlömilch, in welcher folgende Theoreme bewiesen werden:

Ist  $f'(z) = \frac{d}{dz}f(z) = f'(u + it)$  zwischen den Grenzen für u, 0 und  $\infty$ , für  $t, -\infty$  und  $+\infty$ , nirgends unendlich, so ist

$$1, \frac{1}{2}f(0) + f(1)\cos x + f(2)\cos 2x + f(3)\cos 3x + \dots$$

$$= \int_{0}^{\infty} \frac{e^{(\pi - x)t} + e^{-(\pi - x)t}}{e^{\pi t} - e^{-\pi t}} \cdot \frac{f(-it) - f(+it)_{s}}{2i} dt$$

$$\pi \ge x \ge 0.$$

$$2, f(1)\sin x + f(2)\sin 2x + f(3)\sin 3x + \dots$$

$$= \int_{0}^{\infty} \frac{e^{(\pi - x)t} - e^{-(\pi - x)t}}{e^{\pi t} - e^{-\pi t}} \cdot \frac{1}{2} [f(-it) + f(+it)] dt$$

$$\pi > x > 0.$$

Schreibt man in diesen beiden Formeln für  $x \frac{\pi}{h_p} \varphi$  und addirt dann beide, so erhält man unter der Bedingung

 $h_{\rho} > \varrho > 0$ , wenn man noch die f durch angehängte Indices sondert, die Gleichung:

$$\frac{1}{2}f_{1}(0) + f_{1}(1)\cos\frac{\pi}{h_{p}}\varrho + f_{1}(2)\cos2\frac{\pi}{h_{p}}\varrho + f_{1}(3)\cos3\frac{\pi}{h_{p}}\varrho + \dots + f_{2}(1)\sin\frac{\pi}{h_{p}}\varrho + f_{2}(2)\sin2\frac{\pi}{h_{p}}\varrho + f_{2}(3)\sin3\frac{\pi}{h_{p}}\varrho + \dots = \int_{0}^{\infty} \frac{e^{(h_{p}-\varrho)\frac{\pi}{h_{p}}t} + e^{-(h_{p}-\varrho)\frac{\pi}{h_{p}}t}}{e^{\pi t} - e^{-\pi t}} \cdot \frac{f_{1}(-it) - f_{1}(+it)}{2i}dt + \int_{0}^{\infty} \frac{e^{(h_{p}-\varrho)\frac{\pi}{h_{p}}t} - e^{-(h_{p}-\varrho)\frac{\pi}{h_{p}}t}}{e^{\pi t} - e^{-\pi t}} \cdot \frac{f_{2}(-it) + f_{2}(+it)}{2}dt.$$

\*) Développement de deux formules summatoires. Journal von Crelle Bd. 42. pag. 125. Setzen wir in der Gleichung 20, pag. 144

$$C_0 = \frac{1}{2} \varphi_1(0); \ C_n = \varphi_1(n); \ D_n = \varphi_2(n)$$

und zur Abkürzung wenn  $h_p > \varrho > 0$ 

$$\int_{0}^{\infty} \frac{e^{(h_{p}-\varrho)\frac{\pi}{h_{p}}t} + e^{-(h_{p}-\varrho)\frac{\pi}{h_{p}}t}}{e^{\pi t} - e^{-\pi t}} \cdot \frac{\varphi_{1}(-it)}{2i} - \frac{\varphi_{1}(+it)}{2i} dt = V_{1}$$

$$\int_{0}^{\infty} \frac{e^{(h_{p}-\varrho)\frac{\pi}{h_{p}}t} - e^{-(h_{p}-\varrho)\frac{\pi}{h_{p}}t}}{e^{\pi t} - e^{-\pi t}} \cdot \frac{\varphi_{2}(-it) + \varphi_{2}(+it)}{2} dt = V_{2}$$

so können wir, so lange

$$h_p > \varrho > 0$$

die Gleichung 20, pag. 144 auch schreiben:

$$f_p(\varrho) = V_1 + V_2$$

Ist dagegen

 $-h_p < \varrho < 0$ 

so ist, wie leicht ersichtlich

$$f_p(\varrho) = V_1 - V_2.$$

Deuten wir den Werth von  $f_p(\varrho)$  für ein positives  $\varrho$  durch  $f_p(+\varrho)$ , für ein negatives  $\varrho$  durch  $f_p(-\varrho)$  an, so ist auch der Werth von  $f_p(\varrho)$ , soweit er uns überhaupt interessiren kann, bestimmt durch die Gleichungen:

4, 
$$f_{p}(+\varrho) + f_{p}(-\varrho) = 2 V_{1}$$
.  
5,  $f_{p}(+\varrho) - f_{p}(-\varrho) = 2 V_{2}$ .  
6,  $f_{p}(0) = \int_{0}^{\infty} \frac{e^{\pi t} + e^{-\pi t}}{e^{\pi t} - e^{-\pi t}} \cdot \frac{\varphi_{1}(-it) - \varphi_{1}(+it)}{2i} dt$ 

Hiermit ist  $f_p(\varrho)$  bestimmt, so lange  $\varphi_1'(z) = \varphi_1'(u + it)$  und  $\varphi_2'(z) = \varphi_2'(u + it)$  nicht unendlich werden für einen Werth von u zwischen 0 und  $+\infty$ , von t, zwischen  $-\infty$  und  $+\infty$ .

Die speciellen Fälle, wo diese Bedingungen nicht stattfinden, können hier bei unserer allgemeinen Betrachtung nicht weiter discutirt werden, sie werden sich aber im Allgemeinen durch eine der pag. 141 angewandten ähnliche Methode lösen lassen.

#### § 8.

. . . . . . . .

# Schlussbemerkungen.

Sollte die Aufgabe in der Fassung der pag. 125 unlösbar sein, so wird sie doch nach dem, was über Symmetrieverhältnisse gesagt wurde, immer lösbar sein, wenn die anzunehmenden elektrischen Massen als irgend wie symmetrisch zur Rotationsaxe angeordnet im Innern der einzelnen Conductoren angenommen werden. Es ist dann statt der pag. 128 eingeführten Function  $f_p(\varrho)$  eine Function  $f_p(\varrho, \sigma)$  zu bestimmen, wenn  $\varrho$ und  $\sigma$  die Coordinaten eines Punktes im Innern der Meridiancurven des  $p^{ten}$  Conductors sind. Denkt man sich  $f_p(\varrho, \sigma)$  ebenfalls in eine Fourier'sche Reihe entwickelt, so ist dann auch die Bestimmung von  $f_p(\varrho, \sigma)$  ganz analog der Bestimmung von  $f_p(\varrho)$  ausführbar.

Diese Methode ist immer anzuwenden, wenn die von Rotationsflächen mit gemeinschaftlicher Rotationsaxe umschlossenen Conductoren einander einschliessen.

Es ist dann auf diesem Wege weitergehend nicht besonders schwierig, die elektrische Vertheilung auf einem beliebigen Conductorensystem zu bestimmen.

Das Schwierigste bei der Lösung des vorgelegten Problems ist immer die Beschaffung der pag. 142 eingeführten Function *W*. Die genauere Bestimmung dieser Functionen muss einer besonderen Arbeit vorbehalten bleiben.

Die Wichtigkeit der Lösung des vorgelegten Problems sowohl für strömende, als auch für statische Elektricität, bedarf für den Physiker zu ihrer Begründung keiner Worte.

Endlich bemerke ich noch, dass für mich bei Abfassung dieser Arbeit namentlich der Gesichtspunkt massgebend war, für das Experiment eine solche theoretische Grundlage zu erlangen, dass die Ergebnisse des Experimentes mit beliebiger Genauigkeit vorher bestimmt werden können. Es galt daher auch für mich nicht z. B. bestimmte Integrale zu entwickeln, sondern nur anzugeben, indem dann jeder auf höchst einfachem Wege, z. B. mit Hülfe eines Planimeters, den Werth des bestimmten Integrales beliebig genau sich verschaffen kann.

# Kleinere Mittheilungen.

IV. Lineare Construction des Punktepaares, welches zu zwei gegebenen Punktepaaren gleichzeitig harmonisch ist. Von DR. GRELLE. Angesichts des bekannten Satzes über die Eigenschaften der Durchschnitte der Diagonalen eines vollständigen Vierecks liegt der Gedanke nahe, das Punktepaar, welches zu zwei gegebenen Punktepaaren gleichzeitig harmonisch ist, im Fünfeck zu suchen. Und in der That, zerlegt man ein Fünfeck auf zweierlei Art durch eine Diagonale so je in ein Dreieck und ein Viereck, dass die beiden Vierecke eine Diagonale gemeinschaftlich haben, vervollständigt die Vierecke, so wird man auf dieser gemeinsamen Diagonale zwei Punktepaare erhalten, welche zu dem Paare, das die durch jene Diagonale verbundenen Ecken des Fünfecks bilden, gleichzeitig harmonisch sind. Um demnach aus jenen beiden ersten Paaren das dritte construiren zu können, muss man versuchen, aus den gegebenen vier Punkten das Fünfeck herzustellen. Untersucht man zu diesem Zwecke die Lage verschiedener Linien und Punkte im Fünfeck, so gelangt man zu den gewissen Gesetzen, die in der That die gestellte Aufgabe lösen. Diese Gesetze sollen in dem Folgenden mitgetheilt werden, ohne jedoch dabei das Fünfeck als Ausgangspunkt zu nehmen; es würde nämlich sonst eine so grosse Fülle von Linien und Punkten in Betracht zu ziehen sein, dass ich fürchten müsste, die Geduld des Lesers zu sehr in Anspruch zu nehmen.

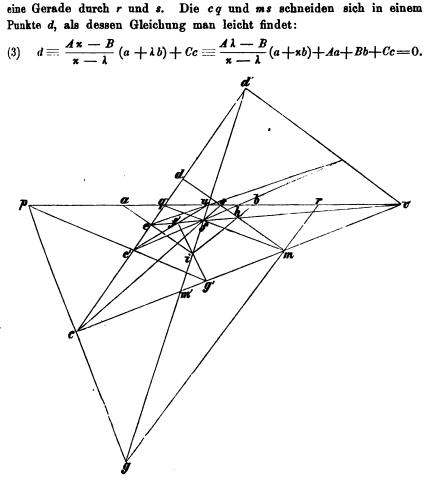
Die Gleichungen der Punkte des gesuchten Paares seien a = 0, b = 0, und die der Punkte der gegebenen Paare:

(1) 
$$p \equiv a - \lambda b = 0 \qquad r \equiv a - \pi b = 0 q \equiv a + \lambda b = 0, \qquad s \equiv a + \pi b = 0;$$

ausserdem seien die Gleichungen irgend zweier Punkte ausserhalb der Geraden, auf welcher jene sechs Punkte liegen:

(2) 
$$c = 0$$
  
 $m \equiv Aa + Bb + Cc = 0.$  (Siehe die Figur.)

Wir ziehen von C aus je eine Gerade durch p und q, von m aus je



Durch Vertauschung des  $+ \times \text{mit} - \times, \text{des} + \lambda \text{mit} - \lambda$  geht hieraus sofort die Gleichung des Durchschnitts g der pc und mr hervor mit:

(4) 
$$g \equiv \frac{Ax+B}{x-\lambda} (a-\lambda b) + Cc = 0,$$

während man die Gleichung des Durchschnitts f der cs und mq dadurch erhält, dass man in (3)  $\pi$  mit  $\lambda$  und umgekehrt vertauscht. Man bekommt:

(5) 
$$f \equiv -\frac{A\lambda - B}{x - \lambda} (a + x b) + Cc = 0.$$

Und endlich folgt noch aus (3), dass die Gleichung des Punktes e, der mit d ein zu c und q harmonisches Paar bildet:

(6) 
$$e \equiv \frac{Ax-B}{x-\lambda} (a + \lambda b) - Cc = 0,$$

und die des Punktes h, der mit d ein zu s und m harmonisches Paar bildet:

(7) 
$$h = -\frac{A\lambda - B}{x - \lambda} (a + xb) + Aa + Bb + Cc = 0$$

sein muss.

Es wird behauptet, dass die Geraden, welche bez. a mit e, und b mit h verbinden, sich in einem Punkte der fg schneiden müssen.

Um dieses zu zeigen, stellen wir die Gleichung des Durchschnitts i der *ae* und fg her. Zu diesem Zwecke sind drei Constanten  $\rho$ ,  $\sigma$ ,  $\tau$  so zu bestimmen, dass:

$$ea + \sigma e \equiv \tau g + f$$

stattfindet. Man wird finden:

$$\varrho = A \frac{x+\lambda}{\lambda}, \ \sigma = -\frac{x+\lambda}{2\lambda}, \ \tau = \frac{x-\lambda}{2\lambda},$$

woraus sich als die gesuchte Gleichung des Punktes i ergiebt:

(8) 
$$i = -\frac{A\lambda - B}{\kappa - \lambda} (a + \kappa b) + Aa - Bb + Cc = 0.$$

Aus (7) und (8) folgt aber:

$$h-i\equiv 2 Bb$$
,

womit obige Behauptung erwiesen ist. Wenn sich demnach eine zweite Gerade finden lässt, die ebenso wie die fg den Punkt i enthält, so ist damit die gestellte Aufgabe gelöst.

Zur Bestimmung dieser zweiten Geraden bedarf es zunächst noch eines drittten Punktpaares, ebenfalls zum Paare a, b harmonisch. Dieses ist in der bis jetzt gezeichneten Figur bereits vorhanden; denn da aus (4) und (5) folgt:

 $f-g\equiv\frac{\lambda+\kappa}{\lambda-\kappa}(Aa-Bb),$ 

und ausserdem:

$$m - Cc \equiv Aa + Bb$$

ist, so schneiden die fg und cm die Gerade der gegebenen vier Punkte in den beiden Punkten u und v der Gleichungen:

$$u \equiv Aa - Bb = 0$$
$$v \equiv Aa + Bb = 0$$

d. i. in zwei Punkten, die ein zu a, b harmonisches Paar bilden.

Verfährt man demnach mit den Paaren u, v und p, q ebenso, wie vorhin mit r, s und p, q, wobei nur darauf Acht zu geben ist, dass der Punt e bei der letzten Construction dieselbe Rolle spielt wie bei der vorherigen, so ist i und damit auch das Paar a, b auf lineare Weise festgelegt.

Mit dem geringsten Aufwand von Geraden wird wohl die Sache

erledigt, wenn man das durch u und v zu legende Linienpaar von  $m_1$ (siehe die Figur) zieht. Die  $m_1 u$  schneidet die cd in  $d_1$ , und ist jetzt der Punkt  $c_1$ , von welchem aus das zweite Linienpaar durch p und qzu legen ist, auf der  $d_1 c$  so zu bestimmen, dass  $d_1$ , e zu q,  $e_1$  harmonisch wird. Alsdann findet man leicht die Punkte  $g_1$  und  $f_1$ , damit die  $g_1 f_1$ , den Punkt i und schliesslich die Punkte a und b.

Auf die Bestimmung zweier Punkte der letzten Art läuft die Lösung verschiedener, die Kegelschnitte betreffender Probleme hinaus und zwar namentlich die Construction eines Kegelschnitts aus 4 Punkten und 1 Tangente, 4 Tangenten und 1 Punkte, 3 Punkten und 2 Tangenten, 3 Tangenten und 2 Punkten, welche, falls die gegebenen Punkte nicht in den gegebenen Tangenten liegen, bekanntlich bislang nur mit Hülfe eines Kreises ausführbar war, nunmehr aber in linearer Weise geschehen kann. Es soll dieses hier an den beiden ersten jener vier Aufgaben gezeigt werden.

I. Gegeben 1 Tangente und 4 Pankte, von denen keiner der Berührungspunkt der gegebenen Tangente ist.

Verbindet man je zwei und zwei der gegebenen Punkte in der Weise, dass ein dem Kegelschnitte eingeschriebenes Viereck entsteht, bezeichnet die Gleichungen der Seiten dieser Figur der Reihe nach mit:

(9)  
$$a = 0$$
$$b = 0$$
$$c = 0$$
$$d = Aa + Bb + Cc = 0,$$

so ist bekanntlich die Gleichung des zu suchenden Kegelschnittes:

(10) Kac + bd = 0,

wo K eine Constante bedeutet, die in Rücksicht auf die Bedingung, dass die gegebene Gerade, etwa der Gleichung:

$$(11) t \equiv A_1 a + B_1 b + C_1 c = 0$$

die Curve berühren soll, zu bestimmen ist. Setzt man zu dem Zweck den Werth von d in (10) ein:

$$(12) Kab + Aab + Bb2 + Cbc = 0$$

und eliminirt darauf aus der Kegelschnittsgleichung in dieser Form und aus (11) eine der Variabeln, z. B. *b*, so entsteht unter Benutzung der Bezeichnungen:

$$\begin{array}{l} A_1 B - A B_1 = p \\ B C_1 - B_1 C = q \end{array}$$

die nach a und c quadratische Gleichung:

(13) 
$$A_1 p a^2 + a c (B_1^2 K + C_1 p + A_1 q) + C_1 q c^2 = 0,$$

aus der man durch Auflösung nach a zwei Gleichungen von der Form: Digitized by GOOGLE

$$a - \lambda c = 0, \quad a - \mu c = 0$$

erhält. Da diese, ihrer Entstehung zufolge, den Geraden angehören, welche die beiden Punkte, die der Kegelschnitt und die gegebene Gerade t = 0 gemeinsam haben, je mit dem Durchschnitte der a = 0 und c = 0 verbinden, diese beiden Punkte aber zusammenfallen, indem t = 0 eine Tangente sein soll, so muss  $\lambda = \mu$  sein, d. h. muss (13) gleiche Wurzeln haben. Hierfür ist die Bedingung:

(14) 
$$(B_1^2 K + C_1 p + A_1 q)^2 = 4 A_1 C_1 pq,$$

welche K bestimmt. Durch Auflösung nach K erhält man dafür aber zwei verschiedene Werthe, woraus zu schliessen ist, dass es zwei Kegelschnitte der verlangten Art giebt. Die Lage der Punkte, worin diese beiden Curven die t = 0 berühren, ist leicht zu erkennen, wenn die beiden aus (14) für K folgenden Werthe in (13) eingeführt werden. Man erhält alsdann als Gleichungen der Geraden, welche die Berührungspunkte je mit dem Durchschnitt der a = 0, c = 0 verbinden:

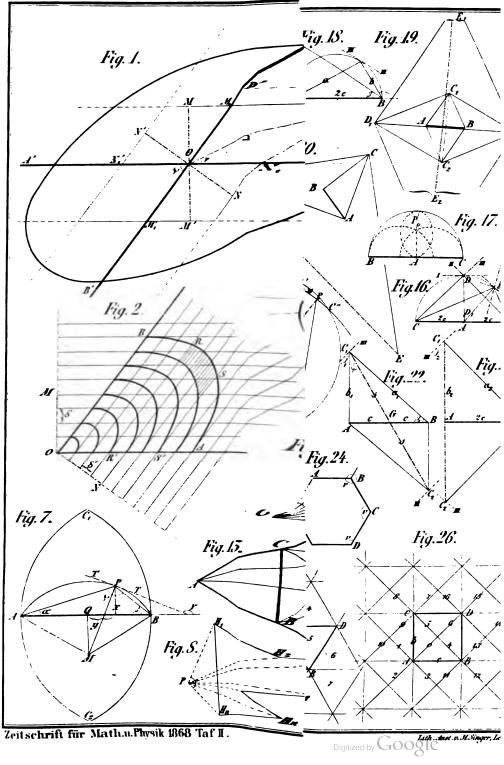
(15) 
$$a + c \sqrt{\frac{C_1 q}{A_1 p}} = 0, \quad a - c \sqrt{\frac{C_1 q}{A_1 p}} = 0,$$

d. i. ein zu a = 0, c = 0 harmonisches Linienpaar. Was für irgend ein Paar gegenüberliegender Seiten des eingeschriebenen Vierecks bewiesen ist, gilt für jedes. Es ist demnach gezeigt, dass die beiden Berührungspunkte ein Paar bilden, gleichzeitig harmonisch zu den beiden Punktepaaren, worin je zwei gegenüberliegende Seiten des eingeschriebenen Vierecks die gegebene Tangente schneiden.

Hiermit ist die gestellte Aufgabe als gelöst zn betrachten, da nach dem Satz vom Pascal'schen Sechseck jetzt jede beliebige Anzahl von Punkten, die den gesuchten Kegelschnitten angehören, construirt werden kann.

II. Gegeben 4 Tangenten und 1 Punkt, der in keiner der Tangenten liegt.

Die Formeln der letzten Betrachtung beziehen sich ohne Weiteres auf diesen Fall, wenn man sich unter a = 0, b = 0, c = 0 jetzt die Gleichungen irgend dreier aufeinander folgender Eckpunkte des aus den gegebenen Tangenten gebildeten umschriebenen Vierecks denkt. Alsdann ist d = 0 die Gleichung der vierten Ecke dieser Figur, t = 0 die des gegebenen Punktes, und ist (12) die Gleichung zwischen den Dreieckcoordinaten der Tangenten des dem Viereck eingeschriebenen Kegelschnitts. Folglich sind  $a - \lambda c = 0$  und  $a - \mu c = 0$  die Gleichungen zweier Punkte auf der Diagonalen ac so gelegen, dass ihre geradlinigen Verbindungen mit A Tangenten sind, sodass, weil f ein Kegelschnittspunkt ist, wieder wie vorhin  $\mu = \lambda$  sein muss. Man hat also





wieder die für K quadratische Bestimmungsgleichung (14), woraus, ebensowie vorhin, auf die Existenz zweier Curven der verlangten Art zu schliessen ist. Und zwar haben diese wegen (15) solche Lage, dass ihre Tangenten in dem gegebenen Punkte *t* ein Linienpaar bilden, gleichzeitig harmonisch zu den beiden Linienpaaren, die man durch Verbindung des Punktes *t* je mit zwei gegenüberliegenden Ecken des umschriebenen Vierecks erhält.

Hannover, im Januar 1868.

V. Ueber das grösste einer Ellipse einbeschriebene *n*-Eck. Von DR. GRELLE. Die Ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  kann man als rechtwinklige Projektion des Kreises  $x^2 + y^2 = a^2$  ansehn, dessen Ebene die der Ellipse in ihrer grossen Achse unter dem Winkel arc  $\cos\left(\frac{b}{a}\right)$  schneidet. Folglich ist das grösste der Ellipse eingeschriebene *n*-Eck die Projektion eines grössten dem Kreis eingeschriebenen *n*-Ecks. Dieses lässt sich folgendermassen bestimmen.

Sind die Coordinaten der *n* Eckpunkte  $P_1, P_2, P_3, \ldots P_n$  von der positiven *x*-Achse nach links herungerechnet  $x_1, y_1; x_2, y_2; x_3, y_3; \ldots x_n, y_n$ , dann ist der Inhalt des eingeschriebenen Polygons:

(1) 
$$i = \frac{1}{2} [y_1 x_2 - y_2 x_1 + y_2 x_3 - y_3 x_2 + y_3 x_4 - y_4 x_3 + \dots + y_{n-1} x_n - y_n x_{n-1} + y_n x_1 - y_1 x_n],$$

wenn die Bedingungen erfüllt werden:

(2)  
$$x_{1}^{2} + y_{1}^{2} = a^{2}$$
$$x_{2}^{2} + y_{2}^{2} = a^{2}$$
$$\cdots$$
$$\vdots$$
$$x_{n}^{2} + y_{n}^{2} = a^{2}$$
$$x_{n}^{2} + y_{n}^{2} = a^{2}$$

Um das Maximum von *i* zu erhalten, sind demnach die partiellen ersten Abgeleiteten nach  $x_1, x_2, \ldots x_n, y_1, y_2, \ldots y_n$  von

(3) 
$$u = \frac{1}{2} [y_1 x_2 - y_2 x_1 + y_2 x_3 - y_3 x_2 \dots + y_n x_1 - y_1 x_n] + x_1 [x_1^2 + y_1^2 - a^2] + x_2 [x_2^2 + y_2^2 - a^2] + \dots + x_n [x_n^2 + y_n^2 - a^2],$$

wo  $x_1, x_2, \ldots, x_n$  vor der Hand beliebige Constante bedeuten, einzeln gleich Null zu setzen. Dies giebt:

Digitized by Google

Zeitschrift f. Mathematik u. Physik XIII, 2.

$$\begin{cases} \frac{\partial u}{\partial x_{1}} = \frac{-y_{2} + y_{n}}{2} + 2x_{1}x = 0 \\ \frac{\partial u}{\partial x_{2}} = \frac{y_{1} - y_{4}}{2} + 2x_{2}x_{2} = 0 \\ \frac{\partial u}{\partial x_{3}} = \frac{y_{2} - y_{4}}{2} + 2x_{3}x_{3} = 0 \\ \frac{\partial u}{\partial x_{n-1}} = \frac{y_{n-1} - y_{1}}{2} + 2x_{n-1}x_{n-1} = 0 \end{cases} \begin{cases} \frac{\partial u}{\partial y_{1}} = \frac{x_{2} - x_{n}}{2} + 2x_{1}y_{1} = 0 \\ \frac{\partial u}{\partial y_{2}} = \frac{-x_{1} + x_{3}}{2} + 2x_{2}y_{2} = 0 \\ \frac{\partial u}{\partial y_{3}} = \frac{-x_{2} + x_{4}}{2} + 2x_{3}y_{3} = 0 \\ \frac{\partial u}{\partial y_{3}} = \frac{-x_{2} + x_{4}}{2} + 2x_{3}y_{3} = 0 \\ \frac{\partial u}{\partial y_{n-1}} = \frac{-x_{n-2} + x_{n}}{2} + 2x_{n-1}y_{n-1} = 0 \\ \frac{\partial u}{\partial y_{n-1}} = \frac{-x_{n-1} + x_{1}}{2} + 2x_{n}y_{n} = 0. \end{cases}$$

Durch Elimination von  $x_1$  aus den beiden ersten, von  $x_2$  aus den beiden zweiten u. s. w. Gleichungen der Systeme (4) und (5) erhält man:

(6)  

$$(-y_{2} + y_{n}) y_{1} = (x_{2} - x_{n}) x_{1}$$

$$(y_{1} - y_{3}) y_{2} = (-x_{1} + x_{3}) x_{2}$$

$$(y_{2} - y_{4}) y_{3} = (-x_{2} + x_{4}) x_{3}$$

$$(y_{n-2} - y_{n}) y_{n-1} = (-x_{n-2} + x_{n}) x_{n-1}$$

$$(y_{n-1} - y_{1}) y_{n} = (-x_{n-1} + x_{1}) x_{n}$$

Die Summe von irgend (n-1) dieser Gleichungen (6) ist immer die  $n^{te}$ ; zur Bestimmung der 2n Unbekannten  $x_1 \ldots x_n$ ,  $y_1 \ldots y_n$  hat man also nur 2n-1 Gleichungen [(2) und (6)], woraus hervorgeht, dass es unendlich viele einem Kreis eingeschriebene grösste n-Ecke giebt. Ihre Beschaffenheit ist leicht zu erkennen, wonn man aus (6) durch Auflösung der Klammern und nachherige Division mit  $a^2$  zunächst zicht:

(7) 
$$\frac{y_1}{a}\frac{y_2}{a} + \frac{x_1}{a}\frac{x_2}{a} = \frac{y_2}{a}\frac{y_3}{a} + \frac{x_2}{a}\frac{x_3}{a} = \frac{y_3}{a}\frac{y_4}{a} + \frac{x_3}{a}\frac{x_4}{a}$$
$$= \dots = \frac{y_{n-1}}{a}\frac{y_n}{a} + \frac{x_{n-1}}{a}\frac{x_n}{a} = \frac{y_n}{a}\frac{y_1}{a} + \frac{x_n}{a}\frac{x_1}{a},$$

und darauf in diese Bedingungsgleichung für die Coordinaten der Eckpunkte eines grössten Kreis-*n*-Ecks die Winkel einführt, welche die Halbmesser jener Eckpunkte mit der positiven *x*-Achse bilden. Werden diese nämlich der Reihe nach mit  $\alpha_1, \alpha_2, \ldots \alpha_n$  bezeichnet, so lässt sich (7) in der Form geben:

(8) 
$$\cos(\alpha_2 - \alpha_1) = \cos(\alpha_3 - \alpha_2) = \cos(\alpha_1 - \alpha_3) = \ldots = \cos(\alpha_n - \alpha_{n-1})$$
  
=  $\cos(2\pi - \alpha_n + \alpha_1),$ 

woraus

 $\alpha_2 - \alpha_1 = \alpha_3 - \alpha_2 = \alpha_4 - \alpha_3 = \ldots = \alpha_n - \alpha_{n-1} = 2 \pi - \alpha_n + \alpha_1$ , und in weiterer Fölge zu schliessen ist, dass von allen einem Kreis eingeschriebenen *n*-Ecken das regelmässige das grösste sein muss. Um die Lage der Projektionen der Eckpunkte eines solchen regelmässigen Polygons auf die Ellipsenebene kennen zu lernen, nehmen wir an, dass von irgend einem Kreispunkte der Abscisse  $x_1$  aus in dem Kreise ein regelmässiges *n*-Eck construirt wäre. Wird der Winkel des Halbmessers dieses Punktes mit der positiven *x*-Achse  $\varphi$  genannt, dann sind die Coordinaten der Eckpunkte dieses Kreispolygons der Reihe nach:

$$x_{1} = a \cos \varphi, \quad a \cos \left(\varphi + \frac{2\pi}{n}\right), \quad a \cos \left(\varphi + 2 \frac{2\pi}{n}\right),$$
$$y_{1} = a \sin \varphi, \quad a \sin \left(\varphi + \frac{2\pi}{n}\right), \quad a \sin \left(\varphi + 2 \frac{2\pi}{n}\right), \dots$$

demnach die der Eckpunkte eines grössten einer Ellipse eingeschriebenen *n*-Ecks:

$$x_{1} = a \cos \varphi, \quad a \cos \left(\varphi + \frac{2\pi}{n}\right), \quad a \cos \left(\varphi + 2 \frac{2\pi}{n}\right),$$
$$y_{1} = b \sin \varphi, \quad b \sin \left(\varphi + \frac{2\pi}{n}\right), \quad b \sin \left(\varphi + 2 \frac{2\pi}{n}\right), \dots,$$

woraus sich ohne Mühe die folgende Construktion eines grössten Ellipsen *n*-Ecks ableitet: Man beschreibe um die Ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ den Kreis  $x^2 + y^2 = a^2$  und construire in letztem irgend ein regelmässiges *n*-Eck; die Ordinaten der Eckpunkte dieser Figur schneiden alsdann die Ellipse in den Eckpunkten des gesuchten Vielecks. In einigen speziellen Fällen z. B. denen des Dreiecks und Vierecks kann man den Kreis vermeiden.

Nach Vorigem sind nämlich die Coordinaten der Eckpunkte  $P_1$ ,  $Q_1$ ,  $R_1$  eines grössten Ellipsendreiecks:

$$P_1: \begin{cases} x_1 = a \cos \varphi \\ y_1 = b \sin \varphi, \end{cases} \quad Q_1: \begin{cases} -a \cos \left( 60^0 - \varphi \right) \\ +b \sin \left( 60^0 - \varphi \right), \end{cases} \quad R_1: \begin{cases} -a \cos \left( 60^0 + \varphi \right) \\ -b \sin \left( 60^0 + \varphi \right). \end{cases}$$

Hieraus erhält man als Gleichung einer durch  $P_1$  und den Coordinaten-Anfang A gelegten Geraden, wenn noch die Projektion des Winkels  $\varphi$  auf die Ellipsen-Ebene mit  $\alpha$  bezeichnet wird, sodass  $lg\varphi = \frac{a}{b}lg\alpha$ sein muss:  $y = lg\alpha \cdot x$ und als Gleichung der durch  $Q_1$  und  $R_1$  gelegten Geraden:

 $y = -\frac{b^2}{a^2 t g \alpha} x - \frac{b}{2 \sin \varphi}.$ 

Diese beiden Geraden schliessen demnach den Winkel irgend eines Pa'ares conjugirter Durchmesser ein; und da sie sich ausserdem, wovon man sich durch eine einfache Rechnung leicht überzeugt, im Punkte der Abscisse  $-\frac{x_1}{2}$  schneiden, so gelangt man in folgender Weise zu einem grössten Ellipsendreieck: Man ziehe irgend ein Paar conjugirter Durchmesser:  $P_1 AS_1$  und  $Q_2 AR_2$ , und durch den Halbirungspunkt *M* der  $AS_1$  eine Sehne  $Q_1 MR_1$  parallel der  $Q_2 AR_2$ ; dann sind  $P_1, Q_1$ und  $R_1$  die Ecken der verlangten Figur. (Die singulären Fälle, in denen die grosse und kleine Achse der Ellipse als die betreffenden conjugirten Durchmesser genommen werden, hat Sohncke in seiner Sammlung von Aufgaben aus der Differentialrechnung als Lösungen des gestellten Problems (s. II. Aufl. pag. 112) angegeben.)

Die Coordinaten • der Eckpunkte eines grössten Ellipsen - Vierecks sind:

$$\begin{aligned} x_1 &= a \cos \varphi, \quad -a \sin \varphi, \quad -a \cos \varphi, \quad +a \sin \varphi, \\ y_1 &= b \sin \varphi, \quad +b \cos \varphi, \quad -b \sin \varphi, \quad -b \cos \varphi, \end{aligned}$$

woraus sich als Gleichungen der Geraden, die je zwei gegenüberliegende Punkte verbinden, ergeben:

$$y = lg\alpha \cdot x$$
$$y = -\frac{b^2}{a^2 lg\alpha} \cdot x$$

Dies beweiset, dass die vier Eckpunkte eines grössten einer Ellipse eingeschriebenen Vierecks die Punkte sind, in denen irgend ein Paar conjugirter Durchmesser die Ellipse schneidet.

Hannover, im Januar 1868.

VI. Verallgemeinerung des Problems der kürzesten Linie. Es ist bekannt, dass die kürzeste Linie, welche man auf einer Oberfläche zwischen zwei Punkten ziehen kann, die characteristische Eigenschaft besitzt, dass ihre Schmiegungsebene in jedem Punkte durch die Normale der Oberfläche geht.

Wenn man diese Eigenschaft auf bekannte Weise projectivisch verallgemeinert (cf. Salmon, Kegelschnitte Art. 478 ff.), so gelangt man zu einem Problem, welches die Behandlung in homogenen Coordinaten zulässt und also lautet:

> Auf einer Fäche  $n^{\text{ter}}$  Ordnung, deren Gleichung sei u = 0, soll eine Curve so gezogen werden, dass für jeden ihrer Punkte der Pol der Tangentenebene von u = 0 in Bezug auf eine gegebene

Fläche zweiter Ordnung v = 0 auf der Schmiegungsebene liege. Wenn wir die Gleichung der Fläche zweiter Ordnung v = 0schreiben in der Form

 $v = x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0$ 

indem wir der Kürze wegen als Coordinatentetraeder ein Polartetraeder

von v = 0 wählen, so sind die Coordinaten des Pols der Tangentenebene von u, wenn wir

$$u \cdot = \frac{1}{n} \frac{du}{dx_i}$$

setzen, wie bekannt  $u_1$ ,  $u_2$ ,  $u_3$ ,  $u_4$ ; und es wird also die Differentialgleichung der gesuchten Curve:

(1) 
$$\begin{vmatrix} u_1 \cdot u_2 & u_3 & u_4 \\ x_1 & x_2 & x_3 & x_4 \\ dx_1 & dx_2 & dx_3 & dx_4 \\ d^2x_1 & d^2x_2 & d^2x_3 & d^2x_4 \end{vmatrix} = 0.$$

Diese Gleichung ist mit Hülfe der Gleichung u = 0 zweimal zu integiren. Um zu einem ersten Integral zu gelangen, multipliciren wir die obige Gleichung mit der Determinante

(2) 
$$R = \begin{vmatrix} u_1 & u_2 & u_3 & u_4 \\ du_1 & du_2 & du_3 & du_4 \\ x_1 & x_2 & x_3 & x_4 \\ dx_1 & dx_2 & dx_3 & dx_4 \end{vmatrix},$$

welche gleich Null gesetzt die Differentialgleichung der projectivisch verallgemeinerten Krümmungslinien ist. Führt man die Multiplication aus, beachtet man die Gleichungen

$$\Sigma u_i x_i = 0, \quad \Sigma u_i \, dx_i = 0$$

sowie die aus ihnen durch Differentiation folgenden

$$\Sigma du_i x_i = 0, \quad \Sigma u_i d^2 x_i = -\Sigma du_i dx_i,$$

und entwickelt die Determinante, so erhält man die folgende Gleichung :

$$\frac{\Sigma x_i d^2 x_i \cdot \Sigma x_i dx_i - \Sigma x_i^2 \cdot \Sigma dx_i d^2 x_i}{\Sigma x_i^2 \Sigma dx_i^2 - (\Sigma x_i^2 dx_i)^2} + \frac{\Sigma du_i d^2 x_i}{\Sigma u_i dx_i} + \frac{\Sigma u_i du_i}{\Sigma u_i^2} = 0.$$

Das erste Glied der linken Seite ist ein vollständiges Differential, ebenso das dritte, das mittlere wird es auch, wenn die Gleichung besteht

$$\Sigma \, du_i \, d^2 x_i = \Sigma \, d^2 u_i \, dx_i.$$

Unter dieser Voraussetzung liefert also die Integration der vorigen Gleichung ein erstes Integral in der Form

(3) 
$$\frac{\sum du_i dx_i \cdot \sum u_i^2}{\sum x_i^2 \sum dx_i^2 - (\sum x_i dx_i)^2} = Const.$$

Jene Voraussetzung ist erfüllt, wenn u = 0 die Gleichung einer Fläche zweiter Ordnung ist und in diesem Falle können wir auch die zweite Integration ausführen und zwar indem man die elliptischen Coordinaten, welche bei der kürzesten Linie die Lösung liefern, in entsprechender Weise verallgemeinern, wie dies mit dem Probleme selbst geschehen ist.

Wir denken uns die abwickelbare Fläche der den beiden Flächen u = 0 und v = 0 gemeinsamen Tangentenebenen construirt und schreiben nun in Ebenencoordinaten die Gleichung frgend einer Fläche zweiter Ordnung, welche jener abwickelbaren Fläche eingeschrieben ist,

$$w = a_1 y_1^2 + a_2 y_2^2 + a_3 y_3^2 + a_4 y_4^2 = 0,$$

indem wir zum Coordinatentetræeder ein gemeinsames Polartetræeder der Flächen u = 0 und v = 0 wählen. Die Gleichung der Fläche u = 0hat dann in Ebenencoordinaten die Form  $w + \lambda v = 0$  und lautet in Punktcoordinaten

(4) 
$$\frac{x_1^2}{a_1+\lambda} + \frac{x_2^2}{a_2+\lambda} + \frac{x_3^2}{a_3+\lambda} + \frac{x_4^2}{a_4+\lambda} = 0.$$

Durch jeden Punkt des Raumes gehen, wie diese Gleichung zeigt, drei Flächen der Schaar, deren Parameter wir  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$  nennen wollen. Es ist klar, dass, wenn für einen Punkt diese Bezeichnung festgestellt ist, es nicht zweifelhaft sein wird, wie man in einem andern Punkt die Wurzeln zu bezeichnen hat, wenn man nur von dem einen Punkt zum andern gelangen kann, ohne die abwickelbare Fläche zu durchschneiden. Sind die reellen Grössen *a* so bezeichnet, dass

$$a_1 < a_2 < a_3 < a_4$$

so erkennt man leicht, dass die Wurzeln liegen zwischen den Grenzen

| die | grösste  | <br>a 1   | und | <br>$a_2$          |
|-----|----------|-----------|-----|--------------------|
| die | mittlere | <br>$a_2$ | und | <br>a <sub>3</sub> |
| die | kleinste | <br>$a_3$ | und | <br>a 1            |

Diese drei Parameter  $\lambda$  führen wir nun als neue Coordinaten ein. Der Ausdruck der Coordinaten x durch diese neuen findet sich leicht.

Denn aus den Gleichungen

$$\Sigma \frac{x_i^2}{a_i + \lambda_h} = 0, \quad (h = 1, 2, 3)$$

ersieht man, dass die  $x_2$  proportional sind den Determinanten, welche man aus dem System der Coefficienten dieser Gleichungen bilden kann. Rechnet man diese Determinanten aus und zieht die allen  $x^2$  gemeinsamen Factoren in den Multiplicator  $\varrho$ , so findet sich

(5) 
$$\begin{cases} \varrho x_1^2 = (a_2 - a_3) (a_2 - a_4) (a_3 - a_4) (a_1 + \lambda_1) (a_1 + \lambda_2) (a_1 + \lambda_3) \\ \varrho x_2^2 = -(a_3 - a_4) (a_3 - a_1) (a_4 - a_1) (a_2 + \lambda_1) (a_2 + \lambda_2) (a_2 + \lambda_3) \\ \varrho x_3^2 = (a_4 - a_1) (a_4 - a_2) (a_1 - a_2) (a_3 + \lambda_1) (a_3 + \lambda_2) (a_3 + \lambda_3) \\ a x_4^2 = -(a_1 - a_2) (a_1 - a_3) (a_2 - a_3) (a_4 + \lambda_1) (a_4 + \lambda_2) (a_4 + \lambda_3) \end{cases}$$

Aus diesen Gleichungen folgt zunächst

$$\varrho (r_1^2 + x_2^2 + x_3^2 + x_4^2) = (a_1 - a_2) (a_1 - a_3) (a_1 - a_4) = P (a_1 a_2 a_3 a_4) 
(a_2 - a_3) (a_2 - a_4) 
(a_3 - a_4) 
Digitized by Goog[e]$$

und also durch Differentation

$$d\varrho \Sigma x_i^2 + 2 \varrho \Sigma x_i \, dx_i = 0.$$

Aus den Gleichungen (4) ergibt sich ferner durch logarithmische Differentiation, Quadrirung und Addition

$$\left(\frac{d\varrho}{\varrho}\right)^4 \cdot \Sigma x_i^2 + 4 \frac{d\varrho}{\varrho} \Sigma x_i \, dx_i + 4 \Sigma \, dx_i^2 = \Sigma_i \Sigma_k \Sigma_k \frac{x_i^2 \, d\lambda_k \, d\lambda_k}{(a_i + \lambda_k) (a_i + \lambda_k)}$$

Setzt man hier für  $\frac{d\varrho}{\varrho}$  seinen obigen Werth, so findet man das Vierfache des Nenners von (3)

$$4 \left[ \sum x_i^2 \sum dx_i^2 - (\sum x_i dx_i)^2 \right] = \sum x_i \cdot \sum_i \sum_k \sum_k \frac{x_i d\lambda_k d\lambda_k}{(a_i + \lambda_k) (a_i + \lambda_k)}.$$

Bezeichnen wir jetzt den constanten Parameter der Fläche u = 0mit  $\lambda_1$ , so ist

$$u = \Sigma \frac{x_i^2 \cdot}{a_i + \lambda_1}, \quad U_i = \frac{x_i}{a_i + \lambda_1}$$

also

$$\Sigma du_i dx_i = \Sigma \frac{dx_i^2}{a_i + \lambda_1}, \quad \Sigma u_i^2 = \Sigma \frac{x_i^2}{(a_i + \lambda_1)^2}$$

und man findet, da

$$\Sigma \frac{x_i \, dx_i}{a_i + \lambda_1} = 0,$$

ähnlich wie oben

$$4 \Sigma \frac{dx_i^2}{a_i + \lambda_1} = \Sigma_i \Sigma_k \Sigma_k \frac{x_i^2 d\lambda_k d\lambda_k}{(a_i + \lambda_1)(a_i + \lambda_k)(a_i + \lambda_k)}$$

wo  $d\lambda_1 = 0$  zu setzen ist.

Ordnen wir die hier vorkommenden dreifachen Summen nach h und k, so haben wir also die folgenden einfachen Summen auszuwerthen:

$$\Sigma_i \frac{x_i^2}{(a_i + \lambda_k)(a_i + \lambda_k)}$$
 und  $\Sigma_i \frac{x_i^2}{(a_i + \lambda_1)(a_i + \lambda_k)(a_i + \lambda_k)}$ .

Man sieht sofort, dass die erste Null ist, wenn h und k verschieden sind, und die zweite, wenn h und k untereinander und von 1 verschieden sind. Ferner findet sich, wenn wir

$$(a_1 + \lambda_h) (a_2 + \lambda_h) (a_3 + \lambda_h) (a_4 + \lambda_h) = \Lambda_h$$

setzen,

$$\varrho \Sigma \frac{x_i^2}{(a_i + \lambda_h)^2} = P(a_1 a_2 a_3 a_4) \frac{(\lambda_h - \lambda_k)(\lambda_h - \lambda_m)}{A_h},$$
$$\varrho \Sigma \frac{x_i^2}{(a_i + \lambda_k)(a_i + \lambda_h)^2} = P(a_1 a_2 a_3 a_4) \cdot \frac{\lambda_h - \lambda_m}{A_h}.$$

Da nun  $d\lambda_1 = 0$  zu setzen ist, so findet sich mit Hülfe dieser Formeln unsere Differentialgleichung

$$d\lambda_2^2 \frac{\lambda_2 - \lambda_1}{(CA_1 + \lambda_1 - \lambda_2) A_2} - d\lambda_3^2 \frac{\lambda_3 - \lambda_1}{(CA_1 + \lambda_1 - \lambda_3) A_3} = 0$$

wo C die Constante der ersten Integration bezeichnet. Setzen wir  $CA_1 + \lambda_1 = A$ , so ist auch A eine Constante und unsere Differentialgleichung kann dann in zwei zerlegt werden, deren Integrale wir in

$$\int \frac{d\lambda_2}{\sqrt{A}-\lambda_2} \cdot \frac{\sqrt{\lambda_2-\lambda_1}}{\sqrt{A}_2} \pm \int \frac{d\lambda_3}{\sqrt{A}-\lambda_3} \cdot \frac{\sqrt{\lambda_3-\lambda_1}}{\sqrt{A}_3} = Const.$$

zusammenfassen können. Die hier vorkommenden Integrale sind hyperelliptische erster Gattung, wie es bei der gewöhnlichen kürzesten Linie der Fall ist.

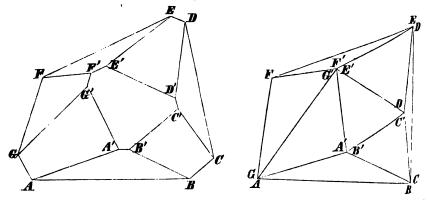
Wenn man in der Gleichung der verallgemeinerten Krümmungslinien R = 0 (wo R in (2) definirt ist) für die u und x ihre eben gebrauchten Ausdrücke substituirt, so geht sie nach Fortlassung eines nicht verschwindenden Factors über in

$$d\lambda_2 \cdot d\lambda_3 = 0.$$

Daher der Satz:

Durch jeden Punkt einer Fläche zweiter Ordnung A gehen zwei Flächen, welche die der Fläche A und einer andern zweiter Ordnung B gemeinsame Tangentenebene berühren. Jede Fläche dieser beiden Schaaren trifft A in einer Curve, welche die Eigenschaft haben, dass die Linien sich schneiden, die zwei benachbarte Punkte verbinden mit den Polen ihrer Tangentenebenen in Bezug auf die Fläche B.

VII. Ueber den Obelisken und des Prismatoid. Von den beiden in der Ueberschrift genannten Körpern hält man gewöhnlich das Prisma-



toid für allgemeiner, weil aus diesem der Obelisk entsteht, wenn man den beiden Parallelflächen des Prismatoides gleichviel Seiten giebt und

**16**0

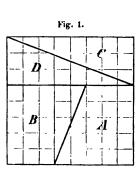
die entsprechenden Seiten parallel legt. Nach einer brieflichen Bemerkung des Herrn Dr. A. Bauer, k. k. Gymnasiallehrer zu Pisek i. B., ist es aber ebenso richtig, das Prismatoid als einen speciellen Fall des Obelisken anzusehen. Wenn nämlich jede der Parallelflächen des Obelisken m + n Seiten zählt und in der Grundfläche n Seiten, in der hierzu parallelen Fläche m Seiten auf blosse Punkte reducirt werden, so geht der Obelisk in ein Prismatoid über, dessen Grundfläche m und dessen obere Fläche n Seiten besitzt. Für den Fall m = 4, n = 3mögen vorstehende Figuren zur Erläuterung dienen, welche die Grundrisse der betreffenden Körper darstellen. Schl.

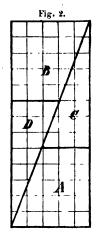
VIII. Beiträge zur Kenntniss der Sternschnuppen. In einer unter dem vorstehenden Titel' der Wiener Akademie eingereichten Abhandlung sucht Dr. Edm. Weiss zuerst die Ansicht zu begründen, dass wir in den Sternschnuppenringen nichts anderes als Auflösungsprodukte periodischer Kometen vor uns haben. Er wurde zu derselben durch die epochemachende Entdeckung Schiaparelli's geleitet, dass die Bahnen der periodischen Kometen 1862 III und 1866 I mit den Bahnen der bekannten periodischen Sternschnuppen in den Nächten vom 10.—12. August und 13.—14. November zusammenfallen. Davon ausgehend, ist es dem Verfasser gelungen, noch zwei andere Kometen aufzufinden, welche zwei andere periodische Sternschnuppenfälle veranlassen: es sind dies der eine Komet des Jahres 1861 (I) und der unter dem Namen Biela'scher bekannte; der erstere veranlasst die periodischen Sternschnuppenfälle um den 20. April, der letztere die um den 28. November.

Hierauf wird die Wirkung des Durchganges der Erde durch einen Meteorstrom an den Meteoren des Biela'schen Kometen specieller untersucht, weil diese Meteere unter allen bekannten weitaus die grössten Störungen durch die Erde erfahren. Es wird gezeigt, dass die Anziehung der Erde den Radiationspunkt zu einer ganzen Radiationsgegend von beträchtlichem Umfange ausdehnt, und dass ausserdem noch zahlreiche Meteore des Stromes, die noch in die Attractionssphäre der Erde gelangen, ohne jedoch auf sie herabzustürzen, in den Weltraum zerstreut werden, indem sie wieder in den Anziehungsbereich der Sonne gelangt, Bahnen um dieselbe beschreiben, deren Umlaufszeit zwischen  $5^3/_4$  und 390 Jahren schwankt, während sie vor der Störung durch die Erde  $6^3/_4$  Jahre betrug.

Endlich wird noch die mehrfach beobachtete Thatsache besprochen, dass die helleren Meteore in der Regel die entfernteren sind, eine Thatsache, die besonders bei den bekannten August- und Novembermeteoren bemerkt wurde, von denen die letzteren im Allgemeinen viel-intensiver Digilized by leuchten und in bedeutenderen Höhen erscheinen und wieder verlöschen als die ersteren. Der Hauptgrund davon liegt nun darin, dass die Geschwindigkeit, mit der die Novembermeteore in die Erdatmosphäre eintreten, weit beträchtlicher ist, als die der Augustmeteore. Die ersteren bringen daher auch ein weit grösseres Quantum lebendiger Kraft mit, welches in Licht und Wärme umgesetzt wird, als die Meteore des Laurentiusstromes.

IX. Ein geometrisches Paradoxon. Um ad oculos zu demonstriren, dass das Schachbret nicht nur 64, sondern auch 65 Felder besitzt, schneide man dasselbe aus starkem Papier, zerlege es auf die in Fig. 1





angegebene Weise in vier, zu je zweien congruente Stücke A, B, C, P und setze diese zu einem Rechtecke zusammen, welches, wie Fig. 2 zeigt, die Grundlinie 5 und die Höhe 13 besitzt also 65 Felder enthält. — Wir theilen diese kleine Neckerei mit, weil die Aufsuchung des begangenen Fehlers eine hübsche Schüleraufgabe bildet und weil sich an die Vermeidung des Fehlers die Lösung und Construction einer quadratischen Gleichung knüpfen lässt. Schl.

# V.

# Studien über rationelle Vermessungen im Gebiete der höhern Geodäsie.

(Fortsetzung.)

#### Von

FRIEDRICH ROBERT HELMERT, Grodät zu Dresden.

## III. Zur Theorie der Basisnetze.

#### 40.

Eine Basis, AB, eines Dreiecksnetzes ist immer beträchtlich kleiner, als die grossen Dreiecksseiten und es entsteht also die Aufgabe, eine der letzteren möglichst scharf durch Triangulationen aus der Grundlinie ABabzuleiten. Man ist gewöhnt, als zweckmässigstes Multiplicationsnetz ein solches von der Form 19) zu betrachten, welches aus der Basis AB eine erste Vierecksdiagonale  $C_1C_2$ , aus dieser eine zweite  $D_1D_2$ , etc. ableitet. Die letzte dieser Diagonalen ist die grosse, abzuleitende Dreiccksseite. Es wird in der That auch verhältnissmässig leicht sein, ein zur Basismessung passendes Terrain so auszusuchen, dass zunächst zu beiden Seiten der Basis zwei Punkte C liegen, welche weit bessere Fernsicht als die Endpunkte der Basis selbst gewähren. Doch kann auch der Fall eintreten, wo wenigstens einer der Endpunkte A oder B eine gute Fernsicht bietet und hier ist es fraglich, ob nicht ein Basisnetz von der Form 20), welches successive die Längen AC, CD, etc. bestimmt, bessere Dienste leisten würde, als das schon erwähnte Multiplicationsnetz.

#### 41.

Aus der Basis AB = 2c in Fig. 21. 22. 23. soll die gleiche Länge  $AC = C_1 C_2 = 2s = a$ , wobei AC immer grösser als AB genommen werden wird, mit Hilfe eines oder zweier, der Basis anliegenden Dreiecke gefunden werden.

In dem Dreiecke ABP, wo P in Fig. 21. irgend welche Lage auf der Peripherie eines mit dem Radius AC um A beschriebenen Kreises erhalten kann, wird auf die Bestimmung der Länge AP = a den grössten Einfluss

Zeitschrift f. Mathematik u. Physik XIII, 3.

# Digitize2by GOOSIC

nächst der Winkelmessung in B diejenige des Winkels P haben, welche den Schnitt III. in der Figur\*) giebt.

Die Visur von *B* aus schneidet AP am günstigsten, wenn der Winkel *P* ein Maximum erreicht, d. h. in dem in *B* rechtwinkligen Dreiecke AC'B, wie sich leicht beweisen lässt. Gleichzeitig bekommt der Schnitt III. zu AC' die günstigste Neigung, nämlich die senkrechte. Jedoch ist hierbei die Genauigkeit der Visur von *B* aus an der Stelle *P*, sowie diejenige des Schnittes III. noch nicht die grösstmögliche; sie nimmt zu, je kleiner der Winkel bei *A* wird, je mehr die Seite BP = b abnimmt. Daher ist zu vermuthen, dass die günstigste Dreiecksform nicht ABC', sondern die eines Dreieckes ist, dessen Spitze *P* zwischen *C'* und *C''* liegt, wenn *C''* den zweiten Durchschnitt des Kreises um *A* mit dem Kreise, welcher dem gleichschenkligen Dreiecke ABC umschrieben ist, bezeichnet. Für letztern Punkt (Fig. 20.) ist die Neigung der Visur von *B* aus, sowie auch die des Schnittes III. gegen die Linie AC'' dieselbe (ohne Rücksicht auf den Quadranten) wie im Dreiecke ACB.

Allgemein ist für eine beliebige Lage von AP die Präcision in der Bestimmung dieser Länge dieselbe, welche sich für eine bestimmende Gerade senkrecht zu AP aus den Formeln des Abschnittes 20. ergiebt. Man hat daselbst zu substituiren, indem man jene bestimmende Gerade als Achse der x betrachtet und wenn  $n_1$ ,  $n_2$ ,  $n_3$  die Beobachtungszahlen für die Winkel A, B, P bedeuten,

wegen Visur 
$$AP \ \gamma_1 = 90^0$$
  
 $h_1^2 = \frac{n_1}{2 a^2 \omega^2},$   
wegen Visur  $BP \ \gamma_2 = 90^0 - P$   
 $h_2^2 = \frac{n_2}{2 b^2 \omega^2},$   
wegen Schnitt III.  $\gamma_3 = 90^0 - B$   
 $h_3^2 = \frac{2 n_3 c^2}{a^2 b^2 \omega^2},$   
ferner die Zwischenwinkel  $(1.2) = P; \ (1.3) = B; \ (2.3) = A.$ 

Damit wird das Quadrat der Präcision in der Bestimmung von AP

$$H^{2} = \frac{\left\{\frac{n_{1} \cdot n_{2}}{4 a^{2} b^{2} \omega^{4}} \sin^{2} P + \frac{n_{1} n_{3} c^{2}}{a^{\frac{1}{4}} \cdot b^{2} \omega^{4}} \sin^{2} B + \frac{n_{2} n_{3} c^{2}}{a^{2} b^{4} \cdot \omega^{4}} \sin^{2} A\right\}}{\left\{\frac{n_{1}}{2 a^{2} \omega^{2}} \cdot 1 + \frac{n_{2}}{2 b^{2} \omega^{2}} \cdot \cos^{2} P + \frac{2 n_{3} c^{2}}{a^{2} b^{2} \omega^{2}} \cdot \cos^{2} B\right\}},$$

oder auch

55) 
$$\begin{cases} H^2 = \frac{(n_1 n_2 + n_1 n_3 + n_2 n_3) \sin^2 P}{2 \omega^2 (n_1 b^2 + n_2 \cdot a^2 \cos^2 P + 4 n_3 c^2 \cdot \cos^2 B)}, \\ H^2 = \frac{(n_1 n_2 + n_1 n_3 + n_2 n_3) \cdot \sin^4 P}{8 \omega^2 c^2 (n_1 \sin^2 A + n_2 \sin^2 B \cos^2 P + n_3 \sin^2 P \cdot \cos^2 B)}. \end{cases}$$

\*) Der Deutlichkeit wegen in derselben nur bei den besonderen Lagen C und C' von P angegeben.

. . .

Um die günstigsten Beobachtungszahlen n bei unveränderter Dreiecksform zu finden, suche man das Maximum von  $H^2$  für  $(n_1 + n_2 + n_3) =$ Const. Die Beziehungen der n unter einander werden dabei

 $n_1 + n_2$ .  $(n_1 \sin^2 A + n_2 \sin^2 B \cos^2 P + n_2 \sin^2 P \cos^2 B) - \sin^2 A (n_1 n_2 + n_1 n_3 + n_2 n_3)$  $=(n_1+n_3).(n_1\sin^2A+n_2\sin^2B\cos^2P+n_3\sin^2P\cos^2B)-\sin^2B\cos^2P(n_1n_2+n_1n_3+n_2n_3)$  $= (n_1 + n_2) \cdot (n_1 \sin^2 A + n_2 \sin^2 B \cos^2 P + n_3 \sin^2 P \cos^2 B) - \sin^2 P \cos^2 B (n_1 n_2 + n_1 n_3 + n_2 n_3).$ 

Daraus folgt

 $n_1 - n_2 : n_1 - n_3 : n_2 - n_3 : (n_1 n_2 + n_1 n_3 + n_2 n_3) =$  $=(\sin^2 B \cos^2 P - \sin^2 A):(\sin^2 P \cos^2 B - \sin^2 A):(\sin^2 P \cos^2 B - \sin^2 B \cos^2 P)$  $:(n_1 \sin^2 A + n_2 \sin^2 B \cos^2 P + n_3 \sin^2 P \cos^2 B).$ 

Setzt man für den Augenblick zur Abkürzung  $\sin^2 A = \alpha^2$ ;  $\sin^2 B \cos^2 P = \beta^2$ ;  $\sin^2 P \cdot \cos^2 B = \gamma^2$ ,  $\Sigma(n) = n_1 + n_2 + n_3$ , so findet sich 2 1 5 ( ) 103

$$n_{2} = \frac{n_{1}(\gamma^{2} - 2\beta^{2} + \alpha^{2}) + 2(n) \cdot (\beta^{2} - \alpha^{2})}{\gamma^{2} - 2\alpha^{2} + \beta^{2}},$$

$$n_{3} = \frac{n_{1}(\alpha^{2} + \beta^{2} - 2\gamma^{2}) + \Sigma(n) \cdot (\gamma^{2} - \alpha^{2})}{\gamma^{2} - 2\alpha^{2} + \beta^{2}},$$

$$n_{2} - n_{3} : (n_{1}n_{2} + n_{2}n_{3} + n_{1}n_{3}) = \gamma^{2} - \beta^{2} : (n_{1}\alpha^{2} + n_{2}\beta^{2} + n_{3}\gamma^{2}),$$

$$n_{2} - n_{3} : (n_{1}n_{2} + n_{2}n_{3} + n_{1}n_{3}) = \gamma^{2} - \beta^{2} : (n_{1}\alpha^{2} + n_{2}\beta^{2} + n_{3}\gamma^{2}),$$

$$n_{1} + n_{2}n_{3} + n_{1}n_{3} = \frac{(-3n_{1}^{2} + 2n_{1}.\Sigma(n))(\alpha^{4} + \beta^{1} + \gamma^{4} - \alpha^{2}\beta^{2} - \alpha^{2}\gamma^{2} - \beta^{2}\gamma^{2}) + \Sigma^{2}(n) \cdot (\beta^{2} - \alpha^{2})(\gamma^{2} - \alpha^{2})}{(\gamma^{2} - 2\alpha^{2} + \beta^{2})^{2}},$$

$$r_{1}n_{1} + n_{2}\beta^{2} + n_{3}\gamma^{2} = \frac{-2n_{1}(\alpha^{4} + \beta^{4} + \gamma^{4} - \alpha^{2}\beta^{2} - \alpha^{2}\gamma^{2} - \beta^{2}\gamma^{2}) + \Sigma(n) \cdot (\gamma^{4} + \beta^{4} - \alpha^{2}(\beta^{2} + \gamma^{2}))}{(\gamma^{2} - 2\alpha^{2} + \beta^{2})}.$$
Führt man  $A = 180 - (B + C), \ \alpha^{2} = \beta^{2} + \gamma^{2} + 2\beta\gamma$  ein, so geht die Proportion über in  

$$(:n_{1} - \Sigma n) : [(-3n_{1}^{2} + 2n_{1}\Sigma(n))(\beta^{2} + \gamma^{2} + \beta\gamma)^{2} + \Sigma^{2}(n) \cdot (\beta^{2} + 2\beta\gamma)(\gamma^{2} + 2\beta\gamma)] =$$

$$=1:\left[-2n_{1}\cdot(\beta^{2}+\gamma^{2}+\beta\gamma)^{2}+2\Sigma(n)\cdot(\beta^{2}+\gamma^{2}+\beta\gamma)^{2}\right]=$$

$$=1:\left[-2n_{1}\cdot(\beta^{2}+\gamma^{2}+\beta\gamma)^{2}-2\Sigma(n)\cdot((\beta^{2}+\gamma^{2})\beta\gamma+\beta^{2}\gamma^{2})\right].$$

Daraus folgt

t

$$n_1^2 + 2n_1 \cdot \frac{\Sigma(n) \cdot \beta\gamma}{\beta^2 + \gamma^2 + \beta\gamma} + \frac{\Sigma^2(n) \cdot \beta^2 \gamma^2}{(\beta^2 + \gamma^2 + \beta\gamma)^2} = 0, \text{ oder}$$
$$n_1 = \Sigma(n) \cdot \frac{-\beta\gamma}{\beta^2 + \gamma^2 + \beta\gamma}.$$

Damit hat man weiter

$$n_{2} = \Sigma(n) \cdot \frac{\gamma^{2} + \gamma\beta}{\beta^{2} + \gamma^{2} + \gamma\beta}; \quad n_{3} = \Sigma(n) \cdot \frac{\beta^{2} + \beta\gamma}{\beta^{2} + \gamma^{2} + \gamma\beta};$$

$$n_{1}n_{2} + n_{1}n_{3} + n_{2}n_{3} = \Sigma^{2}(n) \cdot \frac{\gamma^{2}\beta^{2}}{(\beta^{2} + \gamma^{2} + \gamma\beta)^{2}};$$

$$n_{1}\alpha^{2} + n_{2}\beta^{2} + n_{3}\gamma^{2} = \Sigma(n) \cdot \frac{\gamma^{2}\beta^{2}}{(\beta^{2} + \gamma^{2} + \gamma\beta)} \text{ und endlich}$$

$$H^{2} = \frac{\Sigma(n)}{8\omega^{2}c^{2}} \cdot \frac{\sin^{4}P}{\beta^{2} + \gamma^{2} + \beta\gamma}.$$
Degree Google

166 Studien über rationelle Vermessungen im Gebiete der höhern

Geht man auf die ursprüngliche Bezeichnung zurück, so sind die günstigsten Beobachtungszahlen n und der ihnen entsprechende Werth von  $H^2$ 

$$\begin{cases} n_1 = -Q \cdot \sin B \cos B \cdot \sin P \cos P \\ n_2 = Q \cdot \sin A \cdot \cos B \cdot \sin P \\ n_3 = Q \cdot \sin A \cdot \sin B \cdot \cos P \end{cases}, Q = \frac{\Sigma(n)}{\sin^2 B \cos^2 P + \sin^2 P \cos^2 B + \sin B \sin P \cos B \cos P}, \\ H^2 = \frac{\Sigma n}{8\omega^2 \cdot c^2} \cdot \frac{\sin^2 B \cdot \cos^2 P + \sin^2 P \cos^2 B + \sin B}{\sin^2 B \cdot \cos^2 P + \sin^2 P \cos^2 B + \sin B} \frac{1}{\sin P \cos B \cos P}. \end{cases}$$

Diese Formeln sind praktisch nicht streng zu gebrauchen, denn für Dreiecke, in welchen Winkel  $B > 90^{\circ}$  ist, wird  $n_2$  negativ; dagegen ist für Dreiecke, wo $B < 90^{\circ}$ , wieder  $n_1$  negativ. Nimmt man daher bei allen Dreiecksformen (Fig. 20.) zwischen *ABC* und *ABC*, wo  $B < 90^{\circ}$ ,  $n_1$  sehr klein an, so geht  $H^2$  über in

57) 
$$H^2 = \frac{\sin^4 P}{8 \omega^2 c^2} : \left\{ \frac{\sin^2 B \cos^2 P}{n_3} + \frac{\sin^2 P \cos^2 B}{n_2} \right\}$$

Unter Voraussetzung von  $n_2 + n_3 = \Sigma(n) = \text{Const. wird dieses } H^2$ am grössten für

nämlich gleich

 $n_{2}: n_{3}: \Sigma n = \sin P \cos B: \sin B \cos P: \sin A$   $H^{2} = \frac{\Sigma(n)}{8 \omega^{2} c^{2}} \cdot \frac{\sin^{4} P}{\sin^{2} A}$  58).

 $H^2$  nimmt beständig zu, wenn die Dreiecksspitze P sich von C nach C' bewegt und man hat insbesondere

für das gleichschenklige Dreieck ABC  
59) 
$$\begin{cases} n_1 = 0, \ n_2 = 2 \Sigma(n) \cdot \cos^2 A = \frac{2 c^2}{a^2} \cdot \Sigma(n); \ n_3 = \Sigma(n) - n_2 \\ H^2 = \frac{2 \Sigma(n) \cdot c^2 \cdot (a^2 - c^2)}{\omega^2 \cdot a^6} \\ dagegen \end{cases}$$
für des neckterinkline Desirch ABC

für das rechtwinklige Dreieck ABC'

60) 
$$\begin{cases} n_1 = 0 = n_2; \quad \Sigma(n) = n_3 \\ H^2 = \frac{2 \Sigma n \cdot c^2}{\omega^2 a^2 (a^2 - 4 c^2)} \end{cases}$$

Setzt man weiter für Dreiecke, wo  $B > 90^{\circ}$  ist,  $n_{2} = 0$ , so wird

57\*) 
$$H^2 = \frac{\sin^4 P}{8 \omega^2 c^2} : \left(\frac{\sin^2 A}{n_3} + \frac{\sin^2 P \cdot \cos^2 B}{n_1}\right).$$

Ein Maximum hiervon tritt ein für

 $n_1:n_3: \Sigma(n) = -\sin P \cdot \cos B : \sin A : \sin B \cos P;$ es beträgt dann

$$H^{2} = \frac{\sum n}{8 \omega^{2} c^{2}} \cdot \frac{\sin^{2} P}{\sin^{2} B} \cdot \tan^{2} P = \frac{\sum n}{8 \omega^{2} s^{2}} \cdot \tan^{2} P \cdot \int_{\text{Digitized by GOOS}}^{\text{OIY}}$$

Da Winkel P in C' einen grössten Werth erlangt, so ist das rechtwinklige Dreieck überhaupt bei Annahme der günstigsten Beobachtungszahlen n von der günstigsten Form zur Multiplication der Basis AB.

Obgleich negative Beobachtungszahlen nicht möglich sind, so kann man doch nach der Lage von P fragen, für welche  $H^2$  aus Gleichung 56) ein Maximum wird. Man erkennt dann einestheils, wie viel Verlust an Genauigkeit eintritt, indem man eben die negativen n-Werthe mit Null vertauscht, anderntheils aber hat die Untersuchung noch die praktische Bedeutung, zu der günstigsten Dreiecksform unter Annahme gleicher  $n, n_1 = n_2 = n_3$ , zu führen, wie Gleichung 62) später zeigen wird. Um also das Maximum von  $H^2$  für veränderliche Lagen P (immer unter Voraussetzung von AP = a = 2s =Const.) zu suchen, bringe man  $H^2$  zunächst auf die Form

$$H^{2} = \frac{\Sigma(n)}{2\omega^{2}} : (a^{2} \cot^{2} P + 4c^{2} \cdot \csc^{2}; P - a^{2} + 2ac \cos B \cos P \cdot \csc^{2} P).$$

Durch Differentiation nach P und B, wobei zu bedenken ist, dass sin B : sin P = a : 2c,

findet man die Bedingungsgleichung für das Max. von  $H^2$ 

$$0 = \frac{8 a c^2}{a^2 + 4 c^2} + 4 c \cdot \cos B \cos P - a \sin^2 P.$$

Werden mit x, y, z und k folgende constructiv leicht darstellbare Grössen bezeichnet, nämlich

 $x = -2c \cos B = BM, \quad y = a\cos P = MP, \quad z = a\sin P = AM$  $k = \frac{2ac}{\sqrt{a^2 + 4c^2}} = AF, \text{ wenn } AF \text{ senkrecht zur Hypotenuse } NB \text{ des in}$ 

A rechtwinkligen Dreiecks ABN genommen wird, so geht obige Gleichung über in

$$xy + \frac{z^{2}}{2} = k^{2},$$
  
und da  $b = y - x$ , sowie  $z^{2} + x^{2} = 4c^{2}$  ist, so wird daraus  
 $x = \frac{k^{2} - 2c^{2}}{b + \frac{x}{2}} = \frac{2c^{2}}{b + \frac{x}{2}} \cdot \frac{a^{2} - 4c^{2}}{a^{2} + 4c^{2}},$ 

woraus x sich rasch ausprobiren lässt.

Betrachtet man x und  $b + \frac{x}{2}$  als Veränderliche, so erhellt, dass x rasch zunimmt, wenn P von C nach C'' geht, dagegen ändert sich  $b + \frac{x}{2}$  fast gar nicht:

Für C' hat man 
$$\underline{x=0}$$
,  $b + \frac{x}{2} = b = \underline{1/a^2 - 4c^2} = \underline{b'} = \underline{BC'}$ ,  
Digitized by Google

168 Studien über rationelle Vermessungen im Gebiete der höhern

für C" wird  $\sin P = \frac{2c}{a^2} \sqrt[4]{a^2 - c^2}, \quad \cos P = \frac{a^2 - 2c^2}{a^2}$ 

(ebenso gross wie für P, wenn es die Lage C hat),

$$x'' = \frac{2c^2}{a}, \ b = BC'' = \frac{a^2 - 4c^2}{a} = b'' *); \ b'' + \frac{x}{2} = \frac{a^2 - 3c^2}{a}$$

Während nun der Werth  $x\left(b+\frac{x}{2}\right)$  für C' Null ist, erreicht er für C'' einen Betrag, grösser als  $(k^2-2c^2)$ ; es wird nämlich für C''  $x''\left(b+\frac{x'}{2}\right)-(k^2-2c^2)=2c^2\left\{\frac{a^2-3c^2}{a^2}-\frac{a^2-4c^2}{a^2+4c^2}\right\}=\frac{2c^4(5a^2-12c^2)}{a^2(a^2+4c^2)},$ was in praktischen Fällen stets positiv ist.

Zwischen C' und C'' muss daher dasjenige P liegen, dessen entsprechendes x obige Gleichung erfüllt. Der Werth dieses x kann näherungsweise dadurch angegeben werden, dass man oben für  $b + \frac{x}{2}$  diejenige Grösse substituirt, welche  $b + \frac{x}{2}$  für C' oder C' annimmt. Die erstere Substitution giebt x zu klein, die letztere zu gross:

$$\frac{2c^2\sqrt{a^2-4c^2}}{a^2+4c^2} < x < \frac{2c^2(a^2-4c^2)}{(a^2+4c^2)(a^2-3c^2)} . **)$$

Der Unterschied dieser Grenzen ist nicht von Belang, man erhält z. B. bei  $a^2 = 4 s^2 = 12 c^2$ 

0,35 c < x < 0,38 c;

bei  $a^2 = 4s^2 = 46c^2$  aber x = 0,28c aus beiden Grenzen.

In Fig. 21. ist P so gelegt, dass für Dreieck  $ABP H^2$  ein Maximum wird und dazu gesetzt worden

$$x < \frac{2 c^2 \cdot (a^2 - 4 c^2)}{(a^2 - 4 c^2)} \frac{a}{(a^2 - 3 c^2)} = \frac{a}{2} \cdot \left(\frac{2 c \cdot b'}{B N \cdot G C}\right)^2,$$

welcher Werth sich ohne Mühe construiren lässt.

ł

Berechnet man endlich  $H^2$  für das gleichschenklige, das rechtwinklige und das günstigste Dreieck, so ergiebt sich

bei 
$$a^2 = 12 c^2$$
 resp.  
 $H^2 = \frac{\Sigma(n)}{\omega^2 \cdot c^2}$  mal  $\frac{1}{78}$ , mal  $\frac{1}{48}$ , mal  $\frac{1}{46}$ ;

<sup>\*)</sup> Es ist also  $(BC) \cdot (BC') = (BC')^2$ , BC' von BC und BC'' das geometrische Mittel.

<sup>\*\*)</sup> x ist hiernach immer kleiner, als die Projection AG' von AG = c auf AC'; x < AG'.

and a conserve and a conserve and a conserve a conserve a conserve a conserve a conserve a conserve a conserve

bei 
$$a^2 = 46 c^2$$
 resp.  
 $H^2 = \frac{\Sigma(n)}{\omega^2 \cdot c^2}$  mal  $\frac{1}{1081}$ , mal  $\frac{1}{966}$ , mal  $\frac{1}{953}$ .

Diese Zusammenstellung zeigt, wie gering der Verlust ist, welchen man erleidet, indem das rechtwiuklige Dreieck für dasjenige der günstigsten Form — aber wegen z. Th. negativer *n* unmögliche — substituirt wird, denn es bietet mit dem Dreiecke der günstigsten Form fast gleiche Genauigkeit.

Bisher war immer vorausgesetzt worden, dass die Winkel des Dreiecks auf die rationellste Weise nach den günstigsten Beobachtungszahlen beobachtet werden. Nimmt man indess jeden Winkel gleich oft,

$$n_1 = n_2 = n_3 = \frac{\Sigma(n)}{3},$$

so geht H<sup>2</sup> über in

62) 
$$H^{2} = \frac{\Sigma(n)}{16 \omega^{2} c^{2}} \cdot \frac{\sin^{2} B \cos^{2} P + \sin^{2} P \cos^{2} B}{\sin P \cos^{2} P + \sin^{2} P \cos^{2} B + \sin B \cos B \sin P \cos P}$$

also von dem Werthe bei günstigsten n ungefähr die Hälfte nur. Da das veränderliche Glied in  $H^2$  völlig übereinstimmt mit demjenigen von  $H^2$  aus Gleichung 56), so ist — wie schon früher angedeutet die Rechnung auf Seite 167—169 zur Bestimmung der günstigsten Form des Dreiecks auch für den Ausdruck der Gleichung 62) gültig, nur ist das Dreieck der günstigsten Form (*ABP* Fig. 21.) im jetzigen Falle nicht mehr praktisch unbrauchbar, wie sich zufolge der Werthe der n von selbst versteht. Das rechtwinklige Dreieck giebt  $H^2$  genau halb so gross wie in Gleichung 60); dagegen giebt das gleichschenklige Dreieck die Formel

$$H^{2} = \frac{\Sigma(n)}{\omega^{2}} \cdot \frac{c^{2}(a^{2}-c^{2})}{a^{2}(a^{4}-2a^{2}c^{2}+4c^{1})} \cdot \frac{c^{2}(a^{2}-c^{2})}{a^{2}(a^{4}-2a^{2}c^{2}+4c^{1})}$$

Dieser Werth ist für 
$$a^2 = 12 c^2$$
  $H^2 = \frac{\Sigma(n)}{\omega^2 c^2} \cdot \frac{1}{135}$ ,  
für  $a^2 = 46 c^2$   $H^2 = \frac{\Sigma(n)}{\omega^2 c^2} \cdot \frac{1}{2073}$ 

d. i. ebenfalls nahezu nur die Hälfte des früheren Werthes.

Nach diesen Erörterungen möge nun zu derjenigen Form des Multiplicationsnetzes übergegangen werden, welche zunächst aus AB eine erste Diagonale  $C_1 C_2$  (Fig. 21. 22. 23.) ableitet.

#### 42.

Die günstigste Form der Dreiecke eines derartigen Netzes ist offenbar die gleichschenklige; ihr entspricht (Fig. 21.) der Rhombus  $AB C_1C_2$ . Jedoch werden sehr häufig auch andere Formen vorkommen und es Digitized by OOS 170 Studien über rationelle Vermessungen im Gebiete der höhern

können Fig. 22. und 23. als Grenzformen angesehen werden, zwischen denen sich jene bewegen.

Im Anschluss an Fig. 21. hat man in dem allgemeinen Ausdrucke für  $H^2$  aus Abschnitt 20. zu setzen, um das Quadrat der Präcision in der Bestimmung der Längen  $C_1 G$  und  $C_2 G$  zu erhalten,

wegen Visur  $AC_1$   $h_1^2 = \frac{\sin^2 \varphi}{2\omega^2 c^2}$ .  $n_1$   $\gamma_1 = 90^0 - \varphi$ wegen Visur  $BC_1$   $h_2^2 = h_1^2$   $\gamma_2 = 90^0 - \varphi$ (1.2)  $= 2\varphi = 4C_1B$ wegen Winkelmessung in  $C_1$   $h_3^2 = \frac{2\sin^4 \varphi}{\omega^2 c^2}$ .  $n_3$   $\gamma_3 = 0$  (1.3)  $= (2.3) = 90^0 - \varphi$ , wobei  $n_1 = n_2$  als selbstverständlich eingeführt wurde.

Mit diesen Werthen gehen über  $\Sigma(h^2 \sin^2 \gamma)$  und (1:N) in  $\Sigma(h^2 \sin^2 \gamma) = \frac{n_1}{c^2 \omega^2} \cdot \sin^2 \varphi \cos^2 \varphi; \quad (1:N) = \frac{n_1}{\omega} \frac{(n_1 + 2n_3)}{c^4} \sin^6 \varphi \cos^2 \varphi,$ und es wird für  $C_1 G$ , ebenso für  $C_2 G$ 

$$H^{2} = \frac{(n_{1} + 2n_{3}) \sin^{4}\varphi}{\omega^{2} c^{2}}$$

daraus folgt das Quadrat der Präcision in  $C_1C_2$ , der abgeleiteten Diagonale

63) 
$$H'^2 = -\frac{(n_1 + 2n_3)\sin^4\varphi}{2\omega^2 c^2} = \frac{(n_1 + 2n_3)c^2}{2\omega^2 (c^2 + s^2)^2}$$

Erscheint die Basis um die Mitte G gedreht und zwar soweit, dass je ein Winkel an der Basis in jedem Dreiecke 90° wird, wie in Fig. 22., so sind zu substituiren

wegen 
$$AC_1$$
  $h_1^2 = \frac{n_1}{2b_1^2} \frac{1}{\omega^2} \gamma_1 = 90^0 - \psi$   
(1.2) =  $90^0 - \beta_1$   
wegen  $BC_1$   $h_2^2 = \frac{n_2}{2a_1^2} \frac{1}{\omega^2} \gamma_2 = \beta_1 + \psi$   
(1.3) =  $\beta_1$   
egen Schnitt III.  $h_3^2 = \frac{2n_3c^2}{a_1^2b_4^2} \gamma_3 = 90^0 - \psi - \beta_1$  (2.3) =  $90^0$ .

Damit hat man

w

$$\Sigma(h^2 \sin^2 \gamma) = \frac{n_1 \cos^2 \psi}{2 b_1^2 \omega^2} + \frac{n_2 \sin^2 (\beta_1 + \psi)}{2 a_1^2 \omega^2} + \frac{2 n_3 c^2 \cos^2 (\beta_1 + \psi)}{a_1^2 b_1^2 \omega^2}$$
  
(1: N) =  $\frac{n_1 n_2 \cos^2 \beta_1}{4 a_1^2 b_1^2 \omega^2} + \frac{n_1 n_3 c^2 \sin^2 \beta_1}{a_1^2 b_1^4 \omega^1} + \frac{n_2 n_3 c^2}{a_1^4 b_1^2 \omega^1}$ , also

das Quadrat der Präcision für  $C_1 G$  (und  $C_2 G$ )

$$H^{2} = \frac{2 c^{2}}{\omega^{2} \cdot a_{1}^{2}} \cdot \frac{n_{1} n_{2} + n_{1} n_{3} + n_{2} n_{3}}{n_{1} a_{1}^{2} \cos^{2} \psi + n_{2} b_{1}^{2} \sin^{2} (\beta_{1} + \psi) + 4 n_{3} c^{2} \cos^{2} (\psi + \beta_{1})}.$$

Da hierin der besondere Werth von  $\psi$  noch nicht eingeführt ist, kann diese Formel auch auf Fig. 23. für  $AC_1$ , resp.  $AC_2$  Anwendung finden, indem man  $\psi = 0$  nimmt.

Zunächst ist für Fig. 22:  

$$b_1^2 = s^2 - c^2; \ a_1^2 = s^2 + 3c^2; \ \cos \psi = \frac{b_1}{s}; \ \sin (\beta_1 + \psi) = \frac{s^2 + c^2}{a_1 s}$$
  
 $\sin \beta_1 = \frac{b_1}{a_1}; \ \cos \beta_1 = \frac{2c}{a_1}; \ \cos (\beta_1 + \psi) = \frac{c \ b_1}{s \ a_1}$ 

somit

$$H^{2} = \frac{2c^{2} \cdot s^{2}}{\omega^{2} (s^{2} - c^{2})} \cdot \frac{n_{1} n_{2} + n_{1} n_{3} + n_{2} n_{3}}{n_{1} (s^{2} + 3c^{2})^{2} + n_{2} (s^{2} + c^{2})^{2} + 4n_{3} c^{4}}.$$
  
Das Quadrat der Präcision für  $C_{1}C_{2}$  ist wieder nur die Hälfte

Das Quadrat der Präcision für  $U_1 U_2$  ist wieder nur die Haller hiervon,  $H'^2 = -\frac{H^2}{2}$ , 64)  $H'^2 = \frac{c^2 s^2}{\omega^2 (s^2 - c^2)} \cdot \frac{n_1 n_2 + n_1 n_3 + n_2 n_3}{n_1 (s^2 + 3c^2)^2 + n_2 (s^2 + c^2)^2 + 4n_3 c^4}$ .

Bezüglich der Fig. 23. hat man in der Formel für  $H^2$  auf voriger Seite zunächst die Indices 1 an *a* und *b* mit 2 zu vertauschen, sodann aber zu substituiren

$$b_2 = s; \ a_2 = s^2 + 4c^2; \ \psi = 0; \ \sin \beta_2 = \frac{s}{a_2}; \ \cos \beta_2 = \frac{2c}{a_2};$$

es wird hiermit, ähnlich wie oben, für  $C_1 C_2$ 

65) 
$$H^{\prime 2} = \frac{c^2}{\omega^2} \cdot \frac{n_1 n_2 + n_1 n_3 + n_2 n_3}{n_1 (s^2 + 4 c^2)^2 + n_2 \cdot s^4 + 16 n_3 c^4}$$

Werden in jedem Dreiecke die drei Winkel gleich oft beobachtet, und setzt man

$$\begin{array}{l} 2 \left( n_{1} + n_{2} + n_{3} \right) = 6n = \Sigma n, \quad \text{so werden} \\ \text{für Fig. 21. } H'^{2} = \frac{\Sigma n \cdot c^{2}}{4 \, \omega^{2} \, (c^{2} + s')^{2}}; \\ \text{für Fig. 22. } H'^{2} = \frac{\Sigma n}{4 \, \omega^{2}} \cdot \frac{c^{2} \, s^{2}}{(s^{2} - c^{2}) \, (s^{4} + 4 \, c^{2} \, s^{2} + 7 \, c^{4})}; \\ \text{für Fig. 23. } H'^{2} = \frac{\Sigma n}{4 \, \omega^{2}} \cdot \frac{c^{2} \, s^{2}}{s^{1} + 16 \, c^{1} + 4 \, c^{2} \, s^{2}}; \end{array}$$

d. h. es ist Fig. 21. günstiger wie Fig. 22. und diese günstiger als Fig. 23.

43.

Die Werthe von  $H^2$  können bedeutend vergrössert werden — unter Voraussetzung gleicher Mühe,  $\Sigma n = \text{Const.}$  — wenn die Beobachtungszahlen so verschieden genommen werden, dass  $H^2$  einen Maximalwerth erreicht.

1) Für  $H'^2$  aus Gleichung 63), zu Fig. 21. gehörig, nehme man  $n_1 = n_2$  sehr klein, also  $\Sigma n = 2n_3$  nahezu, und hat damit

67)  $H'^2 = \frac{\Sigma n \cdot c^2}{2 \omega^2 (c^2 + s^2)^2}$ ,

d. i. gegen den Werth aus Gleichung 66) das Doppelte.

2) Für  $H'^2$  aus Gleichung 64), zu Fig. 22. gehörend, ist die Rechnung schwieriger. Hinsichtlich der *n* gleicht nun Ausdruck 64) völlig dem zweiten der Ausdrücke 55), es lassen sich daher die dasclbst gewonnenen Resultate übertragen, wenn man setzt für  $sin^2 A$ , dort  $\alpha^2$  genannt im weiteren Laufe der Rechnung,

$$sin^2 A = \alpha^2 = (s^2 + 3c^2)^2$$
, ferner

 $\sin^2 B \cos^2 P = \beta^2 = (s^2 + c^2)^2$ ;  $\sin^2 P \cdot \cos^2 B = \gamma^2 = 4 c^4$ . Die daselbst angegebene Relation  $\alpha^2 = \beta^2 + \gamma^2 + 2\beta\gamma$  bleibt auch hier giltig.

Man bemerkt nun sofort, dass für das Maximum  $n_1$  sich negativ ergeben wird. Nimmt man daher  $\underline{n_1 = 0}$  (oder sehr klein), so giebt Gleichung 64):

$$H^{\prime 2} = \frac{c^2 s^2}{\omega^2 (s^2 - c^2)^-} : \left\{ \frac{(s^2 + c^2)^2}{n_3} + \frac{4 c^1}{n_2} \right\}$$

Sucht man jetzt das Maximum für  $H^2$  bei  $2(n_2 + n_3) = \Sigma n = \text{Const.}$ , so erhält man die Relation zwischen  $n_2$  und  $n_3$ 

$$\underbrace{(s^2+c^2): 2\,c^2=n_3:n_2}_{c^2}; \quad \Sigma n=\frac{s^2+3\,c^2}{c^2} \,.\, n_2$$

und es wird

68) 
$$H^2 = \frac{\Sigma n}{2\omega^2} \cdot \frac{c^2 s^2}{(s^2 - c^2)(s^2 + 3c^2)^2}.$$

3) Verfährt man mit  $H'^2$  aus Gleichung 65) so, wie mit  $H'^2$  aus Gleichung 64), dann findet man ebenfalls einen negativen Werth von  $n_1$  für ein Maximum von  $H'^2$ . Man wird dem entsprechend  $n_1$  sehr klein nehmen. Für  $n_1 = 0$  giebt Gleichung 65)

$$H^{2} = \frac{c^{2}}{\omega^{2}} : \binom{s^{1}}{n_{3}} + \frac{16c^{4}}{n_{2}}.$$

Dieses wird ein Grösstes, wenn zwischen  $n_2$  und  $n_3$  die Relation stattfindet

$$\frac{s^{2}: 4 c^{2} = n_{3}: n_{2};}{\text{also}} \quad \Sigma n = 2(n_{2} + n_{3}) = \frac{s^{2} + 4 c^{2}}{2 c^{2}} \cdot n_{2}, \text{ und}$$

$$69) \ H'^{2} = \frac{\Sigma n}{2 \omega^{2}} \cdot \frac{c^{2}}{(s^{2} + 4 c^{2})^{2}}.$$

Die Werthe von  $H'^2$  der letzten beiden Gleichungen sind ungefähr doppelt so gross, als diejenigen für dieselben Figuren aus Gleichung 66). Uebrigens sieht man, dass den wesentlichsten Einfluss auf die Bestimmung der Länge  $C_1 C_2 = AC$ , wie bei nur einem Dreiecke an der Basis, die Winkel bei  $C_1$  und  $C_2$  haben. 44.

Um einen Ueberblick über die Resultate zu erhalten, möge eine Zusammenstellung der H und H' folgen und zwar für zwei verschiedene Längen von  $C_1C_2 = AC = 2s = a$ :

1)  $s^2 = 3c^2$ 

wird einer kleinsten Multiplication der Basis 2c entsprechen und man hat dafür

| $\frac{s^2 = 3c^2}{\omega^2 c^2} \qquad \qquad$ |                    | altiplicirt mit | it Verhältnisse<br>der günstigsten n. |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|---------------------------------------|--|
| 1) Ein Dreieck.                                                                                                                                                        | $n_1 = n_2 = n_3.$ | günstigste n.   | $n_1:n_2:n_3:\Sigma n$                |  |
| Gleichschenkliges Dreieck ABC                                                                                                                                          | 1/135              | 1/78            | 0 : 17 : 83 : 100                     |  |
| Rechtwinkliges Dreieck ABC'                                                                                                                                            | 1/96               | 1/49            | 0: 0:100:100                          |  |
| Günstigstes Dreieck ABP                                                                                                                                                | 1/18               |                 |                                       |  |
| 2) Zwei Dreiecke.                                                                                                                                                      |                    |                 |                                       |  |
| Rhombische Form (Fig. 21.)                                                                                                                                             | 1/64               | 1/3.            | 0: 0:50:100                           |  |
| Form von Fig. 22.                                                                                                                                                      | 1/75               | 1/44            | 0 : 17 : 33 : 100                     |  |
| Form von Fig. 23.                                                                                                                                                      | 1/119              | 1/98            | 0:29:21:100                           |  |

Hierin ist  $\Sigma(n) = 100$  gesetzt und bedeutet bei einem Dreiecke  $(n_1 + n_2 + n_3)$ , bei zwei Dreiecken, da sie doch jenem entsprechen,  $2(n_1 + n_2 + n_3)$ .

Es sei weiter 2)  $\underline{s^2 = 11,5c^2}$ , einer grössten Multiplication der Basis entsprechend:

| $s^2 = 11,5 c^2$ .                                                                                  | Coefficienter                                                                          | $\frac{\sum n}{\omega^2 c^2}$        | Günstigsto n:                                                                |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|
| 1) Ein Dreieck.<br>Das gleichschenklige Dreieck<br>Das rechtwinklige Dreieck<br>Günstigste Form ABP | $\begin{array}{c} n_1 = n_2 = n_3. \\ 1/_{2073} \\ 1/_{1932} \\ 1/_{1907} \end{array}$ | n ungleich.<br>1/ 0~1<br>1/1088<br>— | $n_1 : n_2 : n_3 : \Sigma(n) .$<br>0 : 5 : 95 : 100<br>0 : 0 : 100 : 100<br> |
| 2) Zwei Dreiecke.<br>Rhombische Form (Fig. 21.)<br>Form von Fig. 22.<br>Desgl. für Fig. 23.         | 1/625<br>1/677<br>1/777                                                                | 1/812<br>1/3-3<br>1/440              | 0 : 0 : 50 : 100<br>0 : 7 : 43 : 100<br>0 : 13 : 37 : 100                    |

Die Tabelle lehrt:

"Man bestimmt 1) die gleiche Länge  $AC = C_1 C_2$  immer günstiger aus zwei Dreiecken als aus nur einem Dreiecke. 2) Dabei sind im erstern Falle Formen, wo die Basis gegen ihre Lage im Falle der rein rhombischen Form nur gedreht erscheint, wesentlich günstiger, als solche, bei welchen die Basis in ihrer Richtung verschoben erscheint. 3) Die Winkel, welche der Basis gegenüberliegen, sind die eigentlich maassgebenden der Bestimmung."

**45**.

Es möge nun noch die Frage erörtert werden, wieviel man (vergl. Fig. 19. und 20.) einzelne Dreiecke oder Rhomben anzuwenden hat, um Digitized by · 174 Studien über rationelle Vermessungen im Gebiete der höhern

eine grössere Länge aus der Basis AB bei gleicher Mühe am genauesten abzuleiten.

Ist  $m_1^2$  das Quadrat des mittleren Fehlers der ersten abgeleiteten Seite, so wird für die nächste abgeleitete Seite

$$m_2^2 = m_1^2 \cdot \frac{s^2}{c^2} + m_1^2 \cdot \frac{s^2}{c^2},$$

wo der erste Summand wegen der fehlerhaften Winkelmessung bei Ableitung der zweiten Seite aus der ersten und der zweite Summand wegen des Fehlers  $m_1$  in der letztern angesetzt worden sind. Selbstverständlich ist dabei Voraussetzung, dass die zur Verbindung der ersten und zweiten Abgeleiteten dienende Figur derjenigen ähnlich sei, welche zur Herleitung der ersten Abgeleiteten aus der Basis diente.

Allgemein ist für eine pte Abgeleitete das Quadrat des mittlern Fehlers

$$m_p^2 = m_1^2 \cdot \left(\frac{s^2}{c^2}\right)^{p-1} + m_{p-1}^2 \cdot \frac{s^2}{c^2} \text{ und daher}$$
  
70)  $m_p^2 = m_1^2 \cdot p \cdot \left(\frac{s^2}{c^2}\right)^{p-1}$ ,

und nennt man S die Länge der pten Abgeleiteten, so ist dabei

$$\left(\frac{s}{c}\right)^p$$
.  $2c = S$ .

1) Für das rechtwinklige Dreieck folgt aus Gleichung 61) u. 62)

$$m_1^2 = \frac{1}{2H^2} = \frac{\varepsilon}{\Sigma n} = \frac{s^2}{tan^2 \bar{P}}$$

wo  $\varepsilon = 4 \omega^2$  oder 8  $\omega^2$  ist, je nachdem man die günstigsten *n* oder gleiche n annimmt.

Damit wird

ferner

$$m_p^2 = \frac{\varepsilon}{\Sigma n} \cdot \frac{s^2}{\tan^2 P} \cdot p \cdot \left(\frac{s^2}{c^2}\right)^{p-1}$$

Bezeichnet man nun mit N = p.  $\Sigma n$  die Summe aller Winkelmessungen, welche constant zu bleiben hat für dieselben c und S, und führt man in  $m_p^2$  hiernach ein

$$\Sigma n = \frac{N}{p},$$
$$p = \frac{l\left(\frac{S}{2c}\right)}{l\left(\frac{s}{c}\right)}$$

wo l den log. nat. bedeutet, so geht  $m_p^2$  über in

$$m_p^2 = \left\{ \frac{\varepsilon}{4} \frac{S^2}{N} \left( l \frac{S}{2c} \right)^2 \right\} : \left( tan \ P \cdot l \frac{1}{sin} \frac{1}{P} \right)^2.$$
  
Minimum für  $\frac{\partial m_p^2}{\partial P} = 0,$ 

 $m_p^2$  wird ein Minimum für

$$\cos^2 P = l \frac{1}{\sin P}$$

d. i. für

Digitized by Google

Diesem entspricht  $P = 27^{\circ}$ , s = 2,20 c d. h. das rechtwinklige Dreieck ist am günstigsten, wenn die Hypotenuse AC' von der bekannten Kathete (Basis) das 2,20 fache beträgt. Es ist dabei

$$m_p^2 = \frac{\varepsilon}{\sin^2 2} \frac{S^2}{P \cdot N} \left( l \frac{S}{2c} \right)^2; \ \sin 2P = 0.81.$$

Für  $P = 22^0$  wird  $m_p^2 = \frac{\varepsilon \cdot S^2}{(0.80)^2 N} \left( l \frac{S}{2c} \right)^2$ , also wenig grösser,

für  $P = 32^{\circ}$  tritt an Stelle der Zahl  $(0,80)^2$  im Nenner von  $m_p^2 (0,79)^2$ , für  $P = 45^{\circ}$  und  $P = 13^{\circ}$  aber  $(0,69)^{2}$ .

Man erkennt daraus, dass alle Dreiecke, deren Winkel P (d. i. Winkel C) zwischen 45° und 13° liegt, nahezu die gleiche, nämlich die Maximalsicherheit bieten.

2) Für die rhombische Form des Netzes ist nach 66) und 67)

$$n_1^2 = \frac{1}{2H'^2} = \frac{\varepsilon'}{\Sigma n} \cdot \frac{c^2}{\sin^4 \varphi},$$

wo  $\epsilon' = 2\omega^2$  oder  $\omega^2$  ist, je nachdem die *n* gleichwerthig oder die günstigsten sind. Aus Gleichung 70) folgt hiermit

$$m_p^2 = \frac{\varepsilon}{\Sigma n} \cdot \frac{c^2}{\sin^4 \varphi} \cdot p \cdot \left(\frac{s^2}{c^2}\right)^{p-1},$$
  
$$p^2 = \left\{\frac{\varepsilon}{N} \frac{S^2}{N} \left(l \frac{S}{2c}\right)^2\right\} : (\sin 2\varphi \cdot l \cot \varphi)^2$$

oder auch

m,

und bezüglich o wird dieses ein Minimum, wenn

d. i. 
$$1 = \cos 2\varphi \cdot l \cot a \varphi$$
$$\frac{2\varphi = 33^{0}}{2}$$

Das rhombische Multiplicationsnetz ist daher am günstigsten, wenn die Winkel, welche der bekannten Diagonale (Basis) gegenüber liegen, 33° betragen. Die Multiplication beträgt dabei in jedem Rhombus etwa das  $\frac{10}{3}$ fache.

Der entsprechende kleinste Werth von  $m_{-}^{2}$  beträgt

r entsprechende kleinste werth von 
$$m_p^2$$
 betragt  
2  $\epsilon' \cdot S^2 (\cdot S)^2$ 

$$m_p^2 = \frac{\epsilon \cdot S}{\tan^2 2\varphi \cdot N} \left( l \frac{S}{2c} \right)^2,$$
$$m_p^2 = \frac{\epsilon \cdot S^2}{(0.65)^2 \cdot N} \left( l \frac{S}{2c} \right)^2.$$

oder

Da nun 
$$\varepsilon = 4 \varepsilon'$$
, so ist zwischen den kleinsten Werthen von  $m_p^2$  für die Netze aus rechtwinkligen Dreiecken und Rhomben die Relation vorhanden :

$$m'_{p}^{2} = \left(\frac{0.80}{0.65}\right)^{2} \cdot \frac{1}{4} \cdot m_{p}^{2},$$
  
 $m'_{p}^{2} = \frac{4}{11} \cdot m_{p}^{2},$ 

oder

v

wo  $m'_p^2$  sich auf das Rhombennetz bezieht. Man sieht daraus, dass es sehr unvortheilhaft ist, "Dreiecke" und nicht Rhomben zu nehmen.

Für  $2\varphi = 60^0$  wird in  $m_p^2$  aus dem Divisor  $(0,65)^2$  $(0,48)^2$ ,

für  $2\varphi = 50^{\circ}$  ebenso . . . .  $(0,59)^2$ .

Interessant ist für letztere Grösse von  $2\varphi$ , dass sie der jenigen Rhombenform entspricht, für welche  $m_p^2$  ein Min. ist, ohne Rücksicht auf die Mühe.

Schreibt man nämlich  $m_p^2$  in der Form

$$m_p^2 = \left\{ \frac{\varepsilon S^2}{\Sigma n} \cdot l \frac{S}{2c} \right\} \cdot (sin^2 2\varphi \cdot l \cot \varphi)$$

so wird dieses  $m_p^2$  bei constantem  $\Sigma n$  und veränderlichem  $\varphi$  ein Min. für  $2 \varphi = 50^{\circ}$ , doch ist dabei die Mühe, entsprechend der Gesammtzahl  $N = p \cdot \Sigma n$  aller Winkelmessungen, veränderlich mit der Zahl der Dreiecke.

46.

Man könnte noch manche ähnliche Betrachtung über die Basisnetze anstellen. Hier sei nur noch ein wichtiger Punkt erwähnt. Die vorbergehenden Berechnungen zeigen nämlich, dass in jedem Basisnetze gewisse, als "maassgebende Winkel" bezeichnete Winkel hervorragenden Einfluss haben, auch dann, wenn alle Beobachtungszahlen gleich genommen werden. Es kann daher auch nicht davon die Rede sein, dass das Resultat ein wirklich ausgeglichenes ist, denn die maasgebenden Winkel unterdrücken sozusagen den Einfluss der anderen. Dem lässt sich allerdings abhelfen, wenn man die maassgebenden Winkel wenig, die andern oft beobachtet, also gerade nicht so verfährt, wie es bisher als rationell bezeichnet worden ist. Abgesehen von der Ungereimtheit, die darin liegt, erzielt man dadurch doch nur soviel, dass das Endresultat aus etwa zwei Einzelresultaten sich bestimmt. Daher ist es jedenfalls zweckmässiger, die maassgebenden Winkel auf die feinste Art zu ermitteln, sie vielleicht mit mehreren guten Theodoliten zu beobachten, kurzum dafür zu sorgen, dass in ihnen selbst schon ein sicheres, weiterer Ausgleichung nicht bedürftiges Resultat vorliegt.

Anhangsweise sei ferner bemerkt, dass Richtungsbeobachtungen (insbesondere bei dem Rhombusnetze) Anwendung finden könnten. Besonderer Untersuchung bedarf dieser Fall nicht, eben darum, weil die maassgebenden Winkel den grössten Einfluss behaupten, sodass in das Resultat der Character der Richtungsbeobachtungen wenig eingeht\*).

.....

<sup>•)</sup> Einige Bemerkungen über günstigste Basisnetze finden sich auch in dem Vorwort von Struve zu der Ermittelung des Höhenunterschieds zwischen dem Schwarzen u. Kaspischen Meere etc. von Fuss, Sabler u. Sawitsch. Petersburg 1849." Seite IX. u. f. Besonders umfassend sind aber die Untersuchungen hierüber in dem Werke: "die kleine Speyerer Basis" von F. M. Schwerd 1822.

. .....

and the second second

# IV. Ueber die günstigste Vertheilung der Hauptpunkte eines grossen Dreiecksnetzes.

#### 47.

Es kann nicht die Aufgabe dieser Arbeit sein, über die Grösse der Entfernungen benachbarter Hauptpunkte etwas Maassgebendes anzuführen, ebenso wenig wie im vorhergehenden Hauptabschnitte die wirkliche Länge der Basis in den Kreis der Betrachtungen gezogen wurde. Bessel empfahl möglichst grosse Distanzen, Struve fand Distanzen von 3 bis 4 geographischen Meilen als die praktisch zweckmässigsten, namentlich hinsichtlich der Schnelligkeit der Messungsarbeit und der Elimination der Lateralrefraction.

Man scheint indess im Allgemeinen der Ansicht zu sein, die grösste Genauigkeit durch Verbindung möglichst weit entfernter Nachbarpunkte erreichen zu können, und lässt das Terrain in gewissen Richtungen Lateralrefraction vermuthen, so sucht man ihren Einfluss durch Controlverbindungen zu mindern. Ist die Messung Theil einer Gradmessung, so ist sicher dabei auch der Zweck "geringsten Kostenaufwandes" erreicht; triangulirt man aber nur, um die Grundlage einer Landesvermessung zu erhalten, so geben Punkte in kurzen Distanzen meist ausreichende Genauigkeit bei weniger Gesammtkosten.

Im Folgenden möge der in neuerer Zeit häufigste Fall der Combination beider Endzwecke durch eine einzige Triangulation festgehalten werden. Diese muss, soll sie möglichst vortheilhaft sein, die Lage einer grössern Anzahl gleichmässig vertheilter Punkte zu ermitteln suchen. Es hätte einestheils keinen Sinn, im Allgemeinen eine andere Vertheilung anzunehmen, anderntheils erleichtert aber die gleichmässige Vertheilung der Punkte ihre gleichmässige Bestimmung, sowie auch diejenige der Punkte zweiter Classe. Unter "gleichmässiger Bestimmung" ist dabei eine solche zu verstehen, welche nicht nur Punkte in gleicher Entfernung von der Basis gleichgenau angiebt (also mit gleichem M ermittelt), sondern auch jeden einzelnen Punkt gleichmässig nach allen Richtungen bestimmt (H constant). Wenn sich überhaupt eine Triangulation dem entsprechend vornehmen lässt, so ist es gewiss diejenige, deren Nachbarpunkte zu regelmässigen Figuren verbunden werden können.

Kann man alle Nachbarpunkte in gleiche Entfernung legen, so erhält man als Grundfigur des Netzes das gleichseitige Dreieck. Dieser Grundfigur steht am nächsten das Quadrat mit zwei Diagonalen. Digilized by

Weitere Grundformen giebt es nicht. Denn ist ABCD... (Fig. 24.) eine solche Grundform, also ein reguläres n-Eck, innerhalb dessen keine Netzpunkte liegen, so muss der Winkel des n-Eckes sich im Umkreise jeder Ecke (B z. B.) eine ganze Anzahl Male auftragen lassen, weil jeder Punkt Theil ist von mehreren Vielecken gleicher Form. Das giebt

$$4: \frac{2n-4}{n} = \text{einer ganzen Zahl},$$
oder 
$$\frac{4}{n-2} = \text{einer ganzen Zahl}, \quad \text{was nur möglich ist}$$
für 
$$n = 3, 4 \text{ und } 6.$$

Das reguläre Sechseck giebt durch die zu seiner Construction nöthigen Diagonalen ein dem Netze aus gleichseitigen Dreiecken verwandtes Netz. Es bleiben hiernach nur die erwähnten zwei Grundfiguren übrig.

Bei gleicher Punktzahl auf gleicher Fläche sind die Distanzen benachbarter Punkte für beide Grundfiguren ziemlich gleich; denn indem einem Quadrate immer etwa zwei Dreiecke entsprechen werden, muss

$$s_q^2 = 2 s_d^2 \cdot \frac{\sqrt{3}}{4}; \quad s_q = 0.93 s_d$$

sein, wo  $s_q$  die Quadratseite,  $s_d$  die Dreiecksseite bedeuten.

Die in der Praxis vorkommenden Netzformen werden aber, falls nicht besondere örtliche Verhältnisse es hindern, zwischen dem Quadratnetze und regulären Dreiecknetze schwanken. Es ist daher im Folgenden ein Vergleich beider Grenzfälle dahin ausgeführt worden, welcher von beiden das Verhältniss entsprechender Seiten der Grundfiguren am genauesten "bei gleicher Mühe" angiebt.

49.

Im Anschluss an Fig. 25. sei ABC ein im Innern des Netzes gelegenes, gleichseitiges Dreieck. Die Messung von 文 BAC = α und 文 ABC  $= \beta$  giebt für die Gegenseiten BC = a und AC = b

$$\frac{a}{b} = \frac{\sin \alpha}{\sin \beta}, \text{ wobei } d\left(\frac{a}{b}\right) = \cot \alpha \, d\alpha - \cot \beta \, d\beta = \frac{d\alpha - d\beta}{\sqrt{3}}$$

die Grösse des Fehlers in  $\frac{a}{b}$  bezeichnet, welcher den Winkelfehlern  $d \alpha$ und  $d\beta$  entspricht.

Diese Formel gilt für jedes andere Seitenverhältniss im Dreiecke, und es hat daher das gleichseitige Dreieck die Eigenschaft, sich von jeder Seite aus gleich gut construiren zu lassen. (Vergl. Abschnitt 38). Die Beobachtung des dritten Winkels  $\swarrow ACB = \gamma$  hat auf  $d\left(\frac{a}{b}\right)$  im Mittel keinen Einfinss, denn y controlirt nur die Summe von a und Byindem

 $\alpha + \beta + \gamma - 180^0 = 0$ 

scin soll. Findet man nun rechts anstatt Null einen Werth v, so sind aus  $d\alpha + d\beta + d\gamma = v$ 

die wahrscheinlichen Aenderungen  $d\alpha = d\beta = d\gamma = \frac{v}{3}$ , daher  $d\alpha - d\beta$ , wie es in  $d\left(\frac{a}{b}\right)$  nur vorkommt, gleich Null. Bezeichnet nun  $\pm \omega$  den mittleren Fehler in der Messung der Winkel  $\alpha$ ,  $\beta$ ,  $\gamma$ ... (in Bogen) und  $+\delta$  den mittleren Fehler in  $\frac{a}{h}$ , so ist also bei Messung von  $\alpha$  und  $\beta$  oder  $\alpha$ ,  $\beta$  und  $\gamma$ 7

(1a) 
$$\delta^2 = \frac{2}{3} \omega^2$$
.

Da nun das Dreieck ABC von andern Dreiecken umschlossen wird, muss man  $\frac{a}{b}$  noch aus der Dreieckskette (1. 2. 3. 4. 5), sowie aus der Kette (1.12. 11. 10. 9. 8. 7. 6. 5), (Fig. 25.), welche als unabhängig von einander angesehen werden können, berechnen. Die erste Kette giebt  $\frac{a}{b}$  durch 5 Scitenverhältnisse, die zweite durch 9 solche. Obgleich sich nun jedes dieser Verhältnisse schliesslich für sich betrachtet ebenso genau bestimmt, wie  $\frac{a}{b}$  für sich betrachtet, so darf man doch hier, wo benachbarte Dreiecke in Frage kommen, den Seitenverhältnissen diese Genauigkeit nicht beilegen, wie sofort klar ist. Nennt man  $\pm$   $\delta_2$  und  $\pm$   $\delta_3$  die mittleren Fehler in  $\frac{a}{b}$  aus beiden Ketten,  $\pm m_1$  den noch unbekannten, aus allen Einzelbestimmungen sich ergebenden mittlern Fehler in  $\frac{a}{b}$ , so wird

$$5 m_1^2 < \delta_2^2 < 5 \delta^2; \ 9 m_1^2 < \delta_3^2 < 9 \delta^2.$$

Betrachtet man weiter die Winkel um A und B, so zeigt sich, dass diese bei den Bestimmungen von  $\delta_2$  und  $\delta_3$  bisher nur zum kleinen Theil in Anwendung gekommen sind. Man wird daher der Wahrheit näher kommen, wenn man sich  $\alpha$  und  $\beta$  noch aus den Summengleichungen der Winkel um A und B bestimmt denkt und zwar mit dem mittlern Fehler  $\pm \frac{\omega}{\sqrt{5}}$ , wie leicht ein-Das Quadrat des mittlern Fehlers der Bestimmung von  $\frac{a}{h}$  mit zusehen. Hilfe von  $\alpha$  und  $\beta$  geht damit über in

$$\delta_1^2 = \frac{2}{3} \cdot \frac{5}{6} \omega^2 = \frac{5}{9} \omega^2.$$

In die obern Grenzen von  $\delta_2^2$  und  $\delta_3^2$  darf dieser Werth für  $\delta^2$  nicht eingeführt werden. Es kommt z. B. in der Kette (1. 2. 3. 4. 5.) der Quo-Digitized 13 00gle Zeitschrift f. Mathematik u. Physik XIII, 3.

tient  $\frac{\sin \alpha_2}{\sin \beta_3}$  vor, und da $\alpha_2$  und  $\beta_3$  gleich sind, sowie derselben Summengleichung angehören, gilt für den Quotienten eine ähnliche Bemerkung, wie sie früher für  $\frac{\sin \alpha}{\sin \beta}$  gemacht wurde: Der Einfluss der Summengleichungen fällt bei den Dreiecksketten beinahe gänzlich weg.

Vernachlässigt man nun noch den geringen Einfluss verschiedener Polygonzusammenschlüsse, so bekommt man zur Bestimmung von  $\pm m_i$ , dem schliesslichen mittlern Fehler in  $\left(\frac{a}{b}\right)$ , die Ungleichung

$$\frac{1}{\frac{1}{\frac{5}{9}\omega^{2}} + \frac{1}{5m_{1}^{2}} + \frac{1}{9m_{1}^{2}}} < m_{1}^{2} < \frac{1}{\frac{1}{\frac{5}{9}\omega^{2}} + \frac{1}{5\delta^{2}} + \frac{1}{9\delta^{2}}}$$

Die obere Grenze giebt  $m^2 < 0.44 \omega^2$  und hiermit giebt die untere Grenze  $0.40 \omega^2 < m^2$ . Der Gesammtbestimmung des Verhältnisses zweier Nachbarseiten im Netze (zweier Seiten desselben Dreieckes) entspricht sonach das mittlere Fehlerquadrat

71 b) 
$$m^2_1 = 0.42 \omega^2$$
.

Hat man Richtungen boobachtet, so ändert sich  $\delta^2$  in 71a) gar nicht, dagegen muss für  $m_1^2$  der Factor  $\frac{5}{6}$  in  $\delta_1^2$  weggelassen werden, wie sich von selbst versteht.  $\delta_2^2$  und  $\delta_3^2$  bleiben in den früheren Grenzen eingeschlossen; denn betrachtet man z. B. wieder  $\dots \frac{\sin \alpha_2}{\sin \beta_3}$ ... in der Kette (1.2.3.4.5.), so könnte man zunächst erwarten, dass der mittlere Fehler dicses Verhältnisses sich anders als zu $\left(\frac{2\delta^2}{2}\right)$  ergeben würde, da  $\alpha_2$  und  $\beta_3$  eine Visur gemeinsam haben. Man überzeugt sich indess leicht, dass dieses keinen Einfluss hat, indem man  $\frac{\sin \alpha_2}{\sin \beta_3}$  differenzirt und die Richtungsfehler einführt. (Vergleiche später eine ähnliche Rechnung bei Untersuchung des Quadrates.) Aus der Ungleichung

$$\frac{1}{\frac{1}{\frac{2}{3}\omega^2} + \frac{1}{5m'_1{}^2} + \frac{1}{9m'_1{}^2}} < m'_1{}^2 < \frac{1}{\frac{1}{\frac{2}{3}\omega^2} + \frac{1}{5\delta^2} + \frac{1}{9\delta^2}}$$

folgt wie vorher  $0.51 \ \omega^2 > m'_1^2 > 0.46 \ \omega^2$  $71 \ c) m'_1^2 = 0.48 \ \omega^2.$ 

 $m'_1^2$  ist somit nicht viel grösser als  $m_1^2$ .

Das Verhältniss AB: CD im Rhombus ABCD bestimmt sich aus Digitized by GOOGLE

(ABC und CDB), aus (ABC, 1, 2, 3, 4) und aus (9, 8, 7, 6, CDB), also auf drei verschiedenen, ziemlich unabhängig von einander bestehenden Wegen. (ABC und CDB) geben  $\frac{AB}{CD} = \frac{\sin ACB}{\sin BCD} \frac{\sin CDB}{\sin CAB}$ , und da diese Winkel in verschiedenen Summengleichungen vorkommen, ist das Quadrat des mittlern Fehlers

$$\frac{5}{6}\cdot\frac{1}{3}\cdot(4\,\omega^2)=\frac{10}{9}\,\omega^2.$$

Berücksichtigt man nun die beiden Ketten aus je 5 Dreiecken und nennt  $m_2^2$  das Quadrat des mittlern Fehlers der schliesslichen Bestimmung von  $\frac{AB}{CD}$ , so ist

$$\frac{1}{\frac{1}{\frac{1}{9}\omega^{2}} + \frac{1}{5m_{1}^{2}} \cdot 2} < m_{2}^{2} < \frac{1}{\frac{1}{\frac{1}{9}\omega^{2}} + \frac{1}{5d^{2}} \cdot 2}$$

72a) 0,55 
$$\omega^2 < m_2^2 < 0,67 \ \omega^2$$
;  $\underline{m_2^2 = 0.61 \ \omega^2}$ .

Für Richtungsbeobachtungen hat man unter Weglassung des Factors  $\frac{5}{6}$ 

$$\frac{1}{\frac{1}{\frac{4}{3}\omega^2} + \frac{1}{5m'_1^2} \cdot 2} < m'_2^2 < \frac{1}{\frac{1}{\frac{4}{3}\omega^2} + \frac{1}{5\delta^2} \cdot 2},$$
  
72 b) 0,63  $\omega^2 < m'_2^2 < 0.74 \omega^2; m'_2^2 = 0.68 \omega^2.$ 

Das Verhältniss der Seiten AB: BD im Rhombus bestimmt sich aus

(ABC und CDB); (ABC, 1, 2, 3, 4, CDB); (9, 8, 7, 6) und zwar wieder ziemlich unabhängig. Erstere 2 Dreiecke geben

$$\frac{AB}{BD} = \frac{\sin ACB}{\sin BCD} \cdot \frac{\sin CDB}{\sin CAB};$$

die Winkel des erstern Verhältnisses gehören hierbei zu derselben Summengleichung, der Factor $\frac{5}{6}$  darf daher auf sie nicht angewendet werden. Man erhält das Quadrat des mittlern Fehlers dieser Bestimmung zu

$$\frac{1}{3}\omega^2\left(2\cdot\frac{5}{6}+2\right)=\frac{11}{9}\omega^2\cdot$$

 $m_{3}^{2}$ , das mittlere Fehlerquadrat aus allen Bestimmungen, wird mithin

$$\frac{1}{\frac{1}{19}\omega^{2}} + \frac{1}{6m_{1}^{2}} + \frac{1}{4m_{1}^{2}} < m_{3}^{2} < \frac{1}{\frac{1}{19}\omega^{2}} + \frac{1}{6\delta^{2}} + \frac{1}{4\delta^{2}},$$
  
73 a)  $0,56 \omega^{2} < m_{3}^{2} < 0,69 \omega^{2}; \quad \underline{m_{3}^{2}} = 0,62 \omega^{2}.$   
Doll 3\*by Google

Für Richtungsbeobachtungen kommt wieder der Factor  $\frac{5}{6}$ in Wegfall und man findet, ähnlich wie früher:

73 b) 0,62  $\omega^2 < m'_3{}^2 < 0,72 \omega^2; m'_3{}^2 = 0,67 \omega^2.$ 

Man erkennt hieraus, dass sich die Verhältnisse zweier Rhombusseiten, die zu verschiedenen Dreiecken gehören, ziemlich gleich genau bestimmen. Es mögen daher im Folgenden solche Seiten (also AB und BD, AB und CD etc.) kurz "Gegenseiten" heissen. Liegt der Rhombus nicht im Netze, sondern isolirt, so ist das mittlere Fehlerquadrat des Verhältnisses solcher Gegenseiten

74) 
$$\delta'^2 = 2 \cdot \delta^2$$
.

50.

Für ein im Innern des Netzes gelegenes Quadrat ABCD (Fig. 26.) hat man zunächst die directen Bestimmungen

$$\frac{AB}{AC} = \frac{\sin ACB}{\sin ABC}, \ d\left(\frac{AB}{AC}\right) = d(ACB) - d(ABC) \text{ und}$$
$$\frac{AB}{CD} = \frac{\sin ACB}{\sin CAB} \cdot \frac{\sin BDC}{\sin CBD}, \ d\left(\frac{AB}{CD}\right) = d(ACB) - d(CBD).$$

Werden also nur die nöthigsten Winkel gemessen, so bestimmen sich beide Verhältnisse gleich genau. Das mittlere Fehlerquadrat beträgt  $2\omega^2$ . Beobachtet man alle Winkel, so hat man noch

$$\frac{AB}{AC} = \frac{\sin ADB}{\sin ABD} \cdot \frac{\sin ACD}{\sin CDA}; \ d\begin{pmatrix} AB \\ AC \end{pmatrix} = d \ (ADB) - d \ (CDA)$$
$$\frac{AB}{CD} = \frac{\sin ADB}{\sin ABD} \cdot \frac{\sin ACD}{\sin CAD}; \ d\begin{pmatrix} AB \\ AC \end{pmatrix} = d \ (ADB) - d \ (CAD).$$

Die sämmtlichen Bestimmungen aus den Winkelmessungen im Quadrate hängen daher von den  $45^{\circ}$ -Winkeln ab. Ein Einfluss der rechten Winkel kommt erst herein, wenn man die Gleichung zwischen den 3 Winkeln jedes Dreieckes berücksichtigt. Die erste Bestimmung von  $\frac{AB}{BC}$  ändert sich jedoch auch dann nicht, weil die betreffenden Winkel derselben Summengleichung angehören; in den andern Verhältnissen jedoch ist es erlaubt, überall das mittlere Fehlerquadrat eines Winkels gleich  $\frac{2}{3}\omega^2$  anzunehmen, da die Summengleichungen die einzelnen Winkel noch mit dem Gewicht  $\frac{1}{2}$  bestimmen. Man hat daher für das erste und zweite Verhältniss die Bestimmungen mit den Fehlerquadraten:

$$2\omega^2$$
,  $\frac{4}{3}\omega^2$ , resp.  $\frac{4}{3}\omega^2$ ,  $\frac{4}{3}\omega^2$ .

Man überzeugt sich leicht, dass diese Bestimmungen jedes Verhältnisses

völlig unabhängig von einander sind, nicht etwa irgend ein Winkel oder eine Summengleichung mehrfach Anwendung fanden. Es sind sogar für  $\frac{AB}{AC}$  noch die Winkel CDB, CAB, BCD und CBD unberücksichtigt, doch geben sie nur Summengleichungen von ACB und ABC, ADB und CDA, ihr Einfluss ist mithin Null.

Vereinigt man die Resultate, so ist das Quadrat des m. F.

(75 a) 
$$\begin{cases} \text{für } \frac{AB}{AC} \dots \quad \vartheta^2 = \frac{\omega^2}{\frac{1}{2} + \frac{3}{4}} = \frac{4}{5}\omega^2; \\ \text{für } \frac{AB}{CD} \dots \quad \vartheta^2 = \frac{\omega^2}{2 \cdot \frac{3}{4}} = \frac{2}{3}\omega^2. \end{cases}$$

Diese Rechnung gilt in gleicher Weise für Winkel- und Richtungsbeobachtungen.

Im letztern Falle könnte man vermuthen, dass z. B. die zweite Bestimmung von  $\frac{AB}{BC}$  einen andern mittlern Fehler erhielte. Nun ist  $d\left(\frac{AB}{BC}\right) = d(ADB) - d(ADC) = 2d(A) - d(B) - d(C)$ , wo d(A) etc. die Richtungsfehler sind. Im Mittel ist ein Richtungsfehler  $\frac{\omega}{V_2}$ , also bleibt der mittlere Fehler von  $\frac{AB}{BC}$  hier genau so gross, als wenn die Winkel unabhängig von einander gemessen worden wären.

 $\frac{AB}{AC}$  bestimmt sich weiter durch die Ketten (1. 2. 3.) und (9. 8. 7. 16. 15. 14. 13. 12. 11), erstere drei Nachbarseitenverhältnisse, letztere 4 solche und 2 Gegenseitenverhältnisse enthaltend. Für die mittlern Fehler dieser Verhältnisse hat man Werthe einzuführen, die zwischen  $\vartheta$ , resp.  $\vartheta'$  und denjenigen mittlern Fehlern liegen, welche sich schliesslich für  $\frac{AB}{AC}$ , resp.  $\frac{AB}{CD}$  aus allen Bestimmungen ergeben. Letztere Grössen mögen mit m und m<sub>1</sub> bezeichnet werden. Berücksichtigt man nun noch die Summengleichungen der Winkel um A, B, C, D, welche für die erste der directen Bestimmungen von  $\frac{AB}{AC}$  den Factor  $\frac{7}{8}$  erheischen und nennt man das m. Fehlerquadrat für das Mittel der beiden directen Bestimmungen

$$\vartheta_1^2 = rac{\omega^2}{rac{1}{2\cdotrac{7}{8}}+rac{1}{rac{4}{3}}} = rac{3}{4}\omega^2,$$

\*) Eine strenge Ausgleichung gab genau gleiche Resultate Highized by GOOGIC

•

so ist

 $\frac{1}{\frac{1}{\vartheta_{1}^{2}} + \frac{1}{3 \cdot m^{2}} + \frac{1}{4 \cdot m^{2} + \frac{1}{2 \cdot m^{2}}}} \leq m^{2} < \frac{1}{\frac{1}{\vartheta_{1}^{2}} + \frac{1}{3 \cdot \vartheta^{2}} + \frac{1}{4 \cdot \vartheta^{2} + 2 \cdot \vartheta^{2}}};$ die obere Grenze giebt  $m^{2} < 0.51 \cdot \omega^{2}.$ 

Für  $\frac{AB}{CD}$  hat man 2 ganz gleiche indirecte Bestimmungen aus (3. 2, 10. 9. 8. 7.) und (11. 12. 13. 14. 15. 16) mit je 4 Nachbarseiten- und einem Gegenseitenverhältnisse. Wegen der Summengleichungen um A, B, C, D ist der Factor  $\frac{7}{8}$  bei beiden directen Bestimmungen, also bei  $\vartheta'^2$ selbst in Anwendung zu bringen. Nennt man daher

$$\vartheta'_1^2 = \frac{7}{8} \cdot \vartheta'^2 = \frac{7}{12} \omega^2,$$

so wird

$$\frac{1}{\frac{1}{\vartheta_{1}^{'}}^{2}+2\cdot\frac{1}{4\,\mathfrak{m}^{2}+\mathfrak{m}_{1}^{'2}}} < \mathfrak{m}_{1}^{2} < \frac{1}{\frac{1}{\vartheta_{1}^{'}}^{2}+2\cdot\frac{1}{4\,\vartheta^{2}}\frac{1}{+\vartheta^{'2}}}$$

Die obere Grenze giebt  $m_1^2 < 0.45 \omega^2$ .

Führt man jetzt die Näherungswerthe in die untern Grenzen ein, so ergibt sich

$$\begin{array}{c} \mathfrak{m}^{2} > 0,43 \ \mathfrak{\omega}^{2} \\ \mathfrak{m}^{2} < 0,51 \ \mathfrak{\omega}^{2} \end{array} \right\}, \qquad \begin{array}{c} \mathfrak{m}_{1}^{2} > 0,40 \ \mathfrak{\omega}^{2} \\ \mathfrak{m}_{1}^{2} < 0,45 \ \mathfrak{\omega}^{2} \\ \mathfrak{m}_{1}^{2} < 0,45 \ \mathfrak{\omega}^{2} \end{array}$$

$$\begin{array}{c} \mathfrak{m}_{1}^{2} = 0,42 \ \mathfrak{\omega}^{2}. \end{array}$$

Man kann hiernach für  $\frac{AB}{AC}$  und  $\frac{AB}{CD}$  das mittlere Fehlerquadrat zu 0,45  $\omega^2$  annehmen.

Sind Richtungsbeobachtungen gemacht, so ist nur der Factor  $\frac{7}{8}$  wegzulassen, sonst ändert sich an der Rechnung weiter nichts. Die Ungleichungen gehen über in

$$\frac{1}{\frac{1}{\vartheta^{2}} + \frac{1}{3 u^{2}} + \frac{1}{4 u^{2} + 2 u^{'_{1}^{2}}}} < u^{'^{2}} < \frac{1}{\vartheta^{2}} + \frac{1}{3 \vartheta^{2}} + \frac{1}{4 \vartheta^{2} + 2 \vartheta^{'^{2}}}$$
  
für  $\frac{AB}{AC}$ , sodass also  
 $u^{'^{2}} < 0,53 \omega^{2}$ ,  
und für  $\frac{AB}{CD}$  in  
 $\frac{1}{\vartheta^{'^{2}}} + 2 \cdot \frac{1}{4 \cdot u^{'^{2}} + u^{'^{1}}} < \frac{m'_{1}^{2}}{\vartheta^{'^{2}}} + 2 \cdot \frac{1}{4 \vartheta^{2} + \vartheta^{'^{2}}},$   
woraus  $u^{'^{2}} < 0,50 \omega^{2}$  folgt.

| Hiermit gel | oen die untern Grenzen                                        | resp.                                 |  |
|-------------|---------------------------------------------------------------|---------------------------------------|--|
| und da      | m' $^2 > 0,45 \omega^2$                                       | $m'_1^2 > 0.44 \omega^2$              |  |
|             | $\mathfrak{m}^{'2} < 0,53 \ \omega^2$                         | $\mathfrak{m'_1}^2 < 0,50 \ \omega^2$ |  |
| war, so kan | n man setzen                                                  |                                       |  |
| 7           | $(5c) \underline{\mathfrak{m}^{\prime 2} = 0,49 \ \omega^2}.$ | $m'_1^2 = 0,47 \omega^2.$             |  |

Hiernach kann das mittlere Fehlerquadrat für  $\frac{AB}{AC}$ ,  $\frac{AB}{CD}$  zu 0,48  $\omega^2$  bei Richtungsbeobachtungen gesetzt werden.

51.

Die gewonnenen Formeln stellen sich am übersichtlichsten dar, wenn man noch alle Fehlerquadrate auf gleiche Mühe, etwa diejenige für Winkelbeobachtungen in einem Quadratnetze, reducirt. Man hat hier in einem Quadrate 12 Winkel zu messen, d. i. soviel wie 24 Einstellungen; dieses gilt für ein Quadrat im Netze ebenso, wie für ein isolirtes Quadrat. Dagegen hat man im Rhombus nur 6 Winkelmessungen gleich 12 Einstellungen zu machen. Für Richtungsbeobachtungen im isolirten Quadrate, resp. Rhombus beträgt die Anzahl der Einstellungen 12, resp. 10, dagegen hat man für dieselben Figuren im Netze nur 8, resp. 6 Einstellungen zu rechnen, da die begrenzenden Visuren (z. B. *AB*, *AC*...) auch für die Nachbarfiguren gelten, also nur zur Hälfto in Anschlag zu bringen sind. Reducirt man nun alle mittleren Fehlerquadrate auf 24 Einstellungen, so ergiebt sich, wenn  $\pm \omega$  der mittlere Fehler einer Winkelmessung  $\left(\pm \frac{\omega}{V_2}\right)$  der einen Richtung) ist:

|                  |                       | Mittleres Fehlerquadrat des |                    |            |
|------------------|-----------------------|-----------------------------|--------------------|------------|
|                  | Verhältn, 2r Nachbar- |                             | und 2r Gegenseiten |            |
|                  | Winkel                | Richtungen                  | Winkel             | Richtungen |
| Rhombus isolirt, | 0,33 w²               | 0,28 ω <sup>2</sup>         | 0,67 <b>ω²</b>     | 0,56 a²    |
| ,, im Netz,      | 0,21                  | 0,12                        | 0,31               | 0,17       |
| Quadrat isolirt, | 0,80                  | 0,40                        | 0,67               | 0,33       |
| ,, im Netze      | 0,47                  | 0,16                        | .0,42              | 0,16       |

Wenn nun auch die Zahlen dieser Tabelle, soweit sie sich auf Figuren im Netze beziehen, der Vernachlässigungen wegen nur relativen Werth für die Vergleichung des Rhombus und Quadrates im Netze besitzen, so erhellt doch daraus mit Gewissheit, dass insbesondere bei Richtungsbeobachtungen das Quadratnetz recht günstige Bestimmungen liefert und dem Dreiecksnetz gleichgestellt zu werden verdient.

## 52. Schluss.

Um die Arbeit nicht zu sehr auszudehnen, sind weitere Betrachtungen über Netzformen im Allgemeinen, über Kranzsysteme (was z. Th. Digitized by 186 Studien über rationelle Vermessungen etc. v. F. R. HELMERT.

eine Rechnung wie in Abschn. 45. geben würde) und Anderes mehr nicht angestellt worden. Freilich ist nicht zu verkennen, dass das hier Gegebene nur den leichtesten Theil der Discussion der Landestriangulirung vollständiger abhandelt, nämlich die Einschaltung der Punkte niederster Ordnung, und dass der vierte Hauptabschnitt sehr dürftig ausgefallen ist. Wer jedoch weiss, welche Anhäufung von Fragen bei der Untersuchung eines Hauptnetzes entsteht und wie gerade hier die speciellen Terrainverhältnisse zu berücksichtigen sind, wird es nicht sonderbar finden, dass zunächst das Einfachere eingehender untersucht wurde, um so mehr, als in demselben das Allgemeinere, in allen Fällen Giltige zur Darstellung gelangte.

Anmerkung zu Abschn. II. 32. Da unter gleichen Umständen die aufgewandte Mühe umgekehrt proportional  $M^2$  ist, in diesem Abschnitte es aber darauf ankam, die Resultate gleicher Mühe zu vergleichen, so hat sich der Verf. erlaubt, hier — abweichend vom gewöhnlichen Gebrauche — die Genauigkeit in der Bestimmung des Punktes ebenfalls umgekehrt proportional dem Quadrate des mittlern Gesammtfehlers M zu setzen, sodass sie direct proportional der aufgewandten Mühe wird.

-----



## VI.

## Mathematische Studien über die Materie.

Zur Lehre der Aequivalentvolumina.

#### Von

## L. PUDENZ,

Candidat des höheren Schulamts zu Ershausen auf dem Eichsfelde.

Aus dem Dalton'schen Gesetze für chemische Verbindungen ergibt sich für den Verstand der nothwendige Schluss, dass eine bestimmte Masse eines elementaren Stoffes eine bestimmte Anzahl von Individuen enthält; die ganze Eigenthümlichkeit dieser Individuen zu verstehen, reicht es aber nicht aus. Der Verstand fasst diese Individuen, diese die Materie räumlich constituirenden Momente, je als ein für sich dastehendes Ganze auf, gerade wie er die Zellen eines organischen Körpers ihrem constituirenden Charakter nach als Einheiten nimmt. Es folgt aus diesem Dalton'schen Gesetze durchaus nicht die Nothwendigkeit, dass diese Individuen überhaupt untheilbare seien; die Annahme der Untheilbarkeit ist nur eine wahrscheinliche Hypothese. So klein auch diese Individuen immer sein mögen, wir können sie wohl in Theile zerlegt denken, aber ob sie in Wahrheit theilbar sind, wissen wir nicht. Eine Theilbarkeit auf mechanischem Wege lässt sich nicht gut verstehen, denn dann müsste ein Individuum das andere durchschneiden und gäbe also letzteres Individuum eher seine Einheit auf, als seine Verknüpfung mit benachbarten anderen. Ebenso wenig, wie der Verstand die Theilbarkeit auf mechanischem Wege nothwendig findet, muss er das Individuum für sich als aus Theilen constituirt auffassen. Denn der Umstand, dass wir wohl eine Vorstellung von Raumform, aber kein Verständniss des Raumes, resp. der ihn anfüllenden Masse, gewinnen, führt uns weder zum Individuum als Atom, noch zum Individuum als aus Atomen constituirt, analog der Pflanzenzelle.

Wir können also diese Individuen eben nur als Individuen fassen und ihrer Constitution nach weiter nicht verstehen.

Wenn wir die Individuen aber auch nur als Individuen fassen, so Zeitschrift f. Mathematik u. Physik XIII, 3. 14

wird dadurch die Unveränderlichkeit der Raumgrenzen dieser Individuen nicht ausgeschlossen. Es folgt aus dem Begriffe des Individuums und aus dem Unverständniss seiner Raumconstitution nicht die Unmöglichkeit seiner Formänderung. Es wäre möglich, dass es sein Volumen vergrössere oder verringere; dass es seine Form ändere, etwa aus der Form des Würfels in die des Oktaeders übergehe. Diese Möglichkeit wird heute allgemein nicht angenommen — man nennt das Individuum starr. Die Veränderlichkeit der Individuen anzunehmen, wird man gezwungen, wenn man den Raum des durch sie constituirten Körpers nur durch sie erfüllt denkt, in welchen Temperaturzuständen der Körper sich auch befinde. Die Individuen als starre zu nehmen bedingt in der allgemein gewordenen Hypothese des Aethers; man denkt sich das Individuum starr, dagegen die es umgebende Aethersphäre elastisch.

Suchen wir diese Elastizität des Aethers zu verstehen, so kommen wir zu dem Resultate, dass man die Individuen der Körper als starre nimmt, dagegen die Individuen des Aethers als veränderliche. Denn da nach unserer Aetherlehre kein leerer Raum existirt, so heisst Condensation des Aethers Condensation des Aether-Individuums. Es ist daher ein durchaus falscher Vergleich, wenn die Freunde des Aethers lehren, die Condensation des Aethers sei analog der Condensation eines Gases. Denn letztere wird als Annäherung der Gas-Moleküle erklärt, während die nächsten Aethertheilchen als sich berührende gedacht werden. — Dies denjenigen Denkern, welche die Veränderlichkeit eines Körper-Individuums ungereimt finden!

Der Aether ist ein Phantasiegeschöpf, geschaffen, die Schwierigkeiten der Erklärung des Leuchtprozesses in sich aufzunehmen. Seine Existenz ist wegen der, durch die bis unendlichfache Condensibilität erhaltenen, Eigenthümlichkeit, dass ein phantasievoller Physiker von einigem mathematischen Takte durch ihn alle physikalischen Erscheinungen sinnlich vorstellen kann, noch keineswegs erwiesen. Ja wegen dieser seiner Eigenthümlichkeit führt er zu vielen Spielereien der Phantasie; ich erinnere nur an die hübschen Zeichnungen der Aether-Ellipsoiden in der jüngst erschienenen Molekularphysik des Hrn. Cornelius. – So geistreich auch durch den Aether manche Vorstellungen entstanden sind, als z. B. die Vergleichung der Körperconstitution mit dem Makrokosmos – diese Vorstellungen werden dadurch nicht wahr, sie sind eben nur Zeugniss einer guten Phantasie.

Abgesehen davon, dass durch den Aether der Begriff des Atoms ein zweifacher (Körper-Atom = starr, Aether-Atom = veränderlich) geworden ist, und dass wegen der durch ihn hervorgerufenen schwindelhaften Gedankenbahn mehr und minder die Naturforscher ihn fallen lassen, wie z. B. Schrauf in seinen physikalischen Studien; so viel ist gewiss, dass durch seine Annahme jedes tiefere Eindringen in die

Körperconstitution abgeschnitten ist und dass er gerade hierbei nicht zu Grunde gelegt werden darf, da ja die Annahme seiner Existenz höchstens Frucht dieses Studiums sein könnte, wenn er wirklich existirte. Wie man aber hierbei den Aether bei Seite setzen muss, ebenso auch den leeren Raum — eine Meinung, welche der Hr. Rath Karsten in seinen hierher gehörigen Aufsätzen schon ausgesprochen hat. Man stellt sich dadurch freilich auf den simplen Standpunkt eines gewöhnlichen Menschen und sieht einen Berg voll Schwierigkeiten, aber so nur findet man des Pudels Kern.

Auf diesen Standpunkt stelle ich mich. Alsdann muss ich annehmen, dass die kleinsten Individuen der Elemente ihr Volumen ändern. Hierzu nehme ich noch die Hypothese, begründet durch die Polymorphie der Körper, dass das Individuum auch seine Form ändern könne. Der Uebergang von einer Form zur anderen geschieht durch einen Wärmeprozess (vergl. Rose über  $TiO_2$ ,  $SiO_2$ ,  $TaO_2$ ,  $NbO_2$  etc., ferner die Modifikationen des P, S etc.).

Ob diese Hypothese ihre Wahrheit hat, wird die Untersuchung über die Form und Anordnung der Individuen in den Krystallen ergeben; welche Untersuchung freilich erst dann geschehen kann, wenn durch das Studium der Aequivalentvolumina genug Boden zur Abstraktion gewonnen ist. Ein wesentliches Mittel für diese Untersuchungen sind die sogenannten Vikariationen. Wird z. B. in einem Krystalle *FeO* durch *MnO* vertreten, ohne dass Form- und Volumen-Aenderung eintritt, so folgt sofort, dass *MnO* und *FeO* an Form und Anzahl gleiche Individuen besitzen. Auch sehr lehrreich sind in dieser Beziehung gewisse Abänderungen, z. B. die des Kieselzinkerzes von Nertschink (nach Hermann):

| I.  | $210 SiO_2 = 26,08$                                                | (gefunden | 25,96 |
|-----|--------------------------------------------------------------------|-----------|-------|
|     | $390 \ Zn0 = 65,54$                                                |           | 65,66 |
|     | 225 H0 = 8,38                                                      |           | 8,38) |
| II. | $210 SiO_2 = 25,39$                                                | (gefunden | 25,38 |
| 200 | $\begin{array}{r} 384 \ Zn0 = 62,84 \\ 6 \ Pb0 = 2,70 \end{array}$ |           | 62,85 |
| 350 | 6 Pb0 = 2,70                                                       |           | 2,70  |
|     | 250 H0 = 9,07                                                      |           | 9,07) |

In II. ist nicht, wie Hr. Rammelsberg meint,  $Pb.0^2 SiO_2 + HO$  mit I. vermengt, sondern bei gleichem Verhältniss der Kieselerde zu den basischen Oxyden (= 7:13) eine grössere Anzahl von Wasseratomen vorhanden. Worin hat das seinen Grund? Etwa nur darin, dass die PbO-Individuen grösser sind als die ZnO-Individuen? Mussten, um die räumliche Ungleichheit aufzuheben, gerade  $\frac{1}{2}$  der Wasseratome von I. in II. mehr sein? Um diese Fragen zu lösen, muss erst diese beantwortet sein: Sind die Aequivalentvolumina, oder die Individuen, der  $SiO_2$ , ZnO, HO in I. und II. dieselben? — Sed haec hactenus!

Aus der Annahme der möglichen Polymorphie der Individuen folgt die Möglichkeit der verschiedenen Aequivalentvolumina desselben Elementes, derselben Verbindung, oder was dasselbe ist: die Möglichkeit, dass dasselbe Element, dieselbe Verbindung verschiedene spezifische Gewichte haben kann, und dass, wenn dies ist, wir in Wahrheit verschiedene Körper vor uns haben, ebenso verschieden, wie es die isomeren Verbindungen der organischen Chemie sind. Man hatte früher die Meinung, dass das verschiedene spezifische Gewicht desselben Körpers nur Folge schlechter Beobachtung sei - eine Meinung, welche dem intelligenten Herapath seine Ehre kostete bei den Deutschen Buff, Kopp und Anderen - bis man durch die Polymorphie der Krystalle derselben Verbindung anders denken lernte. Man fand jedoch nicht gleich das Rechte. Denn man nahm die Verschiedenheit der Moleküle nur da an, wo eine augenfällige Formänderung dazu zwang, und bedachte nicht, dass wir neben dem Gesichtssinne noch andere Sinne haben, welche auch ihre Berechtigung bei Beurtheilung der Körper haben. Denn warum sollen die Körper, welche dem Gesichte verschieden erscheinen, ihrem spezifischen Gewicht nach verschieden angenommen werden, und nicht auch die Körper, welche nach Geschmack, nach Ge-Oder aber: wenn die Krystalle des Anatas, fühl verschieden sind? Rutils, Brookits uns nicht bekannt wären und die Individuen dieser Mineralien nur in scheinbar amorphen Pulvern entgegenträten, würden dann diese verschiedenen Individuen und ihre verschiedenen spezifischen Gewichte nicht existiren sollen?

Hr. Kopp schreibt im Graham-Otto, dass die Studien der Aequivalentvolumina fester Verbindungen darum von so weniger Frucht gefolgt seien, weil man nicht die Temperaturen kenne, bei welchen die Volumina zu vergleichen seien. Dies ist durchaus nicht Schuld, denn die Ausdehnungen der festen Körper sind viel zu gering, als dass durch sie die Fehlergrenze bei der Angabe der spezifischen Gewichte merklich verändert würde. Die Schuld lag darin, dass man auf die mögliche Polymorphie eines jeden Elementes, einer jeden Verbindung, nicht kam; und man kam nicht darauf, weil man nicht vorsichtig genug zu Werke ging. Wie man aber zu Werke ging, ergibt sich daraus, dass man aus verschiedenen Angaben des spezifischen Gewichts einer Verbindung das arithmetische Mittel als das wahrscheinlichste spezifische Gewicht annahm, ohne zu bedenken, dass die verschiedenen spezifischen Gewichte der Fingerzeig für verschiedene Modifikationen seien, oder dass die eine Angabe die genaueste sei, dagegen die anderen weniger Hatte man, um ein handgreifliches Beispiel vorzuführen, etwa genau. für CaO die Angaben p' = 2,95 (für Arragonit), p'' = 2,72 (für Kalkspath), so nahm man das wahrscheinlichste spez. Gewicht für  $Ca\theta =$  $\frac{1}{2}(2,95+2,72) = 2,84$ , also ein spez. Gew., welches keine Modifikation

des CaO hat. Freilich kann man nicht jede Angabe des spezifischen Gewichts eines Körpers als wahr annehmen, am wenigsten bei unkrystallisirten Körpern, weil in einem solchen verschiedene Modifikationen derselben chemischen Verbindung vorhanden sein können. Dieses Zusammensein hängt von der Präparation ab. Am einleuchtendsten ist dies beim Schwefel. Hr. Rath Karsten machte auf die Präparation des S aufmerksam, indem er sagt, dass von der Vorsicht beim Abkühlen abhinge, ob die äusseren Schichten krystallisirten, d. h. anderer Modifikation seien, als die inneren. Eine Norm für solche Präparate kann gelten ihre Löslichkeit in den verschiedenen Lösungsmitteln. — Auch sehr lehrreich in dieser Hinsicht sind die interessanten Versuche des Hrn. Beudant\*).

Sehr Recht hat dagegen Hr. Kopp, wenn er obige Bemerkung bei flüssigen Verbindungen macht, welche mit wenigen Graden schon bedeutende Aenderungen des Acquivalentvolumens haben. Hier wird die Frage: bei welchen Temperaturen muss man ihre Aequivalentvolumina vergleichen, um sofort einen Einblick in die räumliche Constitution zu haben? sehr kritisch. Sie ist auch schon vielfach der Gegenstand der Diskussion gewesen. Um aus dem Multa das einzig Brauchbare zu nennen, gedenke ich der Untersuchungen des Hrn. Kopp, welcher die Aequivalentvolumina bei den Siedepunkten verglich. So lehrreich diese Untersuchungen uns auch noch werden, so erkennt man doch sofort, dass durch sie zur in Frage stehenden Aufklärung wenig geleistet ist; denn, wenn gewisse isomere Verbindungen beim Siedepunkt dasselbe Volumen haben, so ist für diese Verbindungen nur die Thatsache festgestellt, dass in ihnen beim Uebergang in die Dampfform die constituirenden Elemente resp. elementare Verbindungen gleiches Volumen haben, aber der Grund ihrer Verschiedenheit ist um nichts mehr ergründet.

Da diese Frage so eng mit der Wärmelehre zusammenhängt, und letztere durch die Beziehungen zwischen Raum und Wärme in der organischen Chemie ausgezeichnete Nahrung erhält, falle ihre Diskussion hier weg, wo ich vorläufig mich auf die Aequivalentvolumina der festen Körper beschränke. Bei der späteren Behandlung dieser Frage werde ich auch im Stande sein, den Beweis zu liefern, dass die Individuen des Wassers bei 4° Cels., wo es also am dichtesten ist, in festen Hydraten wieder gefunden werden. Aus diesem Satze lernen wir, dass nicht gerade nur feste Körper mit festen zu vergleichen sind, um einfache Relationen zu gewinnen; dass man nicht gerade das Eis hierzu in Vergleichung bringen muss. — Die Thatsache, dass die Individuen des Wassers bei 4° C. in festen Körpern auftreten, neben dem Umstande, dass die spezifischen Gewichte der festen Körper meist auf

<sup>\*)</sup> Ann. de chim. et de phys. XXXVIII, 398 und Pogg. ann. tom. XIV pag. 474

solches Wasser bezogen sind, ist von höchstem Interesse für das Berechnen der Aequivalentvolumina, wie wir gleich sehen werden.

Beziehungen der Aequivalentvolumina aufzufinden, haben bekanntlich schon Viele angestrebt (die Meisten in den Jahren 1842-1845), aber noch Keiner hat es zu einem glaubwürdigen System gebracht. Ich werde in Folgendem mein System der mathematischen Chemie für feste Körper skizziren. Es hat Vieles in sich, was schon Hr. Schröder gesagt; steht aber zu dessen Arbeiten in demselben Verhältniss, wie dasjenige System, welches die Beziehungen der Aequivalentvolumina durch Potenzverhältnisse erschlösse — wenn's also möglich wäre — zu den Priorität suchenden Anstrengungen des Engländers Playfair sich stellen würde, welcher Chemiker alle möglichen Wurzeln der Aequivalentzahlen und ihrer Multipla mit den spezifischen Gewichten der Elemente verglich.

Mein Hauptsatz für die Aequivalentvolumina fester Körper in allen ihren Modifikationen ist der, dass sie in rationalem Verhältniss zu einander stehen; und der durch Untersuchungen sich heraustellende Untersatz ist, dass diese Verhältnisse einfacher Art sind.

Jetzt macht sich die Zahl 9 des Aequivalentvolumens von Wasser bei 4<sup>o</sup> C. geltend. Es stellt sich heraus, dass die Aequivalentvolumina durch 3 theilbar sind. Hierin liegt die Norm für die Bestimmung der Aequivalentvolumina. So finden wir in den Otyden, dass der Sauerstoff die Aequivalentvolumina:

...2,7; 3,9; 4,5; 4,8; 5,1; 5,4 ...

hat.

Mancher, welcher in dieser Sache noch keine Studien gemacht hat und vor dem Prüfen zu verwerfen leicht geneigt ist, mag denken, ich schaffe mir mit diesen vielen Zahlen eine Schablone der Willkühr. Ich bitte ihn, diesmal erst nach sorgfältiger Prüfung sein Urtheil fällen zu wollen; mag dann sein Urtheil mit meiner Ueberzeugung von meinem System differiren, zu der Ueberzeugung glaube ich ihn dann doch geführt zu haben, dass die Modifikationen der Elemente, resp. elementarer Verbindungen, in ühren Verbindungen uns wieder entgegentreten.

Ehe ich jedoch zur wirklichen Rechnung übergehe, glaube ich noch Etwas sagen zu müssen über die sogenannte Binartheorie. Durch meine Untersuchungen stellt sich heraus, dass in einer höheren Verbindung die Moleküle der elementaren Verbindungen ihren individuellen Charakter behalten, sodass sie also Individuen sind, wie die kleinsten Theile der Elemente. Es wird sich z. B. herausstellen, dass die Individuen des Rubins, Sapphirs, Corunds in den Thonerdesalzen wieder zum Vorschein kommen.

Ich schicke mich an, mein System und meine Ansichten durch praktisch gewonnene Grössen zu vertheidigen. Ich bin mir dabei recht Digitized by Von L. PUDENZ.

bewusst, dass Naturwissenschaft keine Wissenschaft ist, bei der man a priori schliesst, und dass meine Angaben bei den Lesern am besten dann ziehen würden, wenn diese schon die Mühe sich genommen hätten, die sämmtlichen bekannten Mineralien nach ihrer räumlichen Constitution verstehen zu wollen. — Zunächst will ich einige Hydrate anführen, in denen das Acquivalentvolumen des Wassers 9 ist.

Zur Abkürzung bezeichne ich die Acquivalentzahl, das Aequivalentvolumen, das spezifische Gewicht eines Körpers K mit

*ae*(*K*), *v*(*K*), *p*(*K*)  
*ae*(*Fe*<sub>2</sub> 
$$\theta_3$$
) = 80  
*v*(*Fe*<sub>2</sub>  $\theta_3$ ) = 15,3  
*v*(*Fe*<sub>2</sub>  $\theta_3$ ) = 5.225.

Um aber z. B. das Aequivalentvolumen von Fe in  $v(Fe_2 \ \theta_3) = 15,3$ anzugeben, schreibe ich  $2 \cdot Fe_v$  ( $Fe_2 \ \theta_3$ ) oder kurz  $Fe_v^2$ . Die berechneten p markire ich.

$$(H0)_{v} = 9.$$
1.  $v(P) = 17,4; p' = 1,781$   
 $p = 1,77$  (Berzelius)  
 $v(P.H0) = 17,4 + 9,0 = 26,4; p' = 1,515$   
 $p = 1,515$  (Pelouze)  
2.  $v(Zn0) = 7,2; p' = 5,666$   
 $p = 5,657$  (Rose).  
 $v(Zn0.H0) = 7,2 + 9,0 = 16,2; p' = 3,055$   
 $p = 3,053$  (Filhol)  
.  $v(Ca0.) = 8,85; p' = 3,164$   
 $p = 3,161$  (Karsten)  
 $v(Ca0.H0) = (8,85 + 9,0) = 17,85; p' = 2,073$   
 $p = 2,078$  (Filhol)  
4.  $v(K0) = 17,7; p' = 2,666$   
 $p = 2,656$  (Karsten)  
 $v(K0.H0) = 17,7 + 9,0 = 26,7; p' = 2,105$   
 $p = 2,10$  (vulgo)  
5.  $v(Na0) = 11,1; p' = 2,793$   
 $p = 2,805$  (Karsten)  
 $v(Na0.H0) = 11,1 + 9,0 = 20,1; p' = 1,948.$   
 $p = 2,0$  (Dalton)  
6.  $v(Fe_2 0_3) = 15,3; p' = 5,224$   
 $p = 5,225$  (Boullay)  
 $v(Fe_2 0_3.H0) = 15,3 + 9,0 = 24,3; p' = 3,662$   
 $p = 3,65$  (Berzelius).  
Displaced by GOOGLE

Diese Hydrate könnte ich noch vermehren, wenn nicht das v der Metalloxyde in den gedachten Hydraten erst nach den später kommenden Regeln bestimmt werden müsste. An betreffender Stelle werde ich sie erwähnen.

Die v der vorgeführten Metalloxyde lernen wir ihrer Constitution nach später kennen, und zwar nach dem System als mathematisch genaue Grössen, z. B.

$$v(Ca0) = 8,85$$
 besteht aus  $Ca_v = 6,3$   
 $0_v = 2,55$ 

wo  $O_v$  die oft auftretende Hälfte von 5,1 ist und  $Ca_v$  die Hälfte des v(Ca) = 12,6; p' = 1,587

$$p = 1,584$$
 (Bunsen).

Es gehört nämlich Ca zu denjenigen Metallen, welche häufig Verbindungen mit der Hälfte des v im freien Zustande eingehen.

Dass in obigen Hydraten das v(H0) = 9,0 auftritt, ist sicher; es käme darauf an, die Constitution dieses Wassers kennen zu lernen. Dieselbe lässt sich nur durch die Volumenänderung des flüssigen Wassers bei anderen Temperaturen als 4°C. angeben und ihre Erkennung würde also die Frucht der Vergleichung mit den Flüssigkeiten der organischen Chemie sein. Ich ponire in v(H0) = 9,0 das  $H_v = 3,6$  und  $O_v = 5,4$ . Dies anzunehmen hindert nicht

$$v(HO_2) = 11,7 = 9,0 + 2,7; p' = 1,453$$
  
 $p = 1,452$  (Thénard)

denn das zweite O ist eine vom ersten verschiedene Modifikation\*).

\*) Darin jedoch, dass das zweite O bei geringer Erwärmung weggeht, liegt nicht gerade der Grund seiner Verschiedenheit vom ersten. So geht z. B. auch aus dem Polianit des Hrn. Plattner das O und HO fort, obgleich dies fortgehende O von derselben Modifikation mit dem im MnO zurückbleibenden zu sein scheint. Dieser Polianit nämlich ist

$$64(Mn0 + 0) + (Mn0 + H0)$$

denn

| 65 Mn0 = 81,37 | (gefunden 81,40 |
|----------------|-----------------|
| 64 0 = 18,31   | 18,28           |
| 1 HO = 0,32    | 0,32).          |

Hierin scheint nämlich das Mn mit dem Fe des Hrn. Beaudrimont:

$$v(Fe) = 3,6; p' = 7,778$$

p = 7,778 (Beaudrimont) auch das  $O_v$  des entweichenden Sau

isoster zu sein; ebenso aber auch das  $O_v$  des entweichenden Sauerstoffs gleich dem  $O_v$  des aus  $HO_2$  entweichenden O und gleich dem  $O_v$  des O im zurückbleibenden MnO. Denn v[64(MnO + O) + MnO.HO] = 64.[(3,6 + 2,7) + 2,7] + [(3,6 + 2,7) + 9,0] = 573,3 liefert p' = 4,877, also gleich dem p = 4,88 des Hrn. Plattner.

Das Studium des Entweichens ein und desselben Stoffes bei verschiedenen Temperaturen aus ein und derselben Verbindung ist noch wenig in Angriff genommen worden, und desswegen will ich an diesem Orte nicht unterlassen, die chemische Constitution eines Pyrolusits vom p = 4.94 anzugeben:

Digitized by GOOGLE

$$(H0)_v = 6,3.$$

Man hat einen gewissen Anhaltspunkt für eben angegebene Constitution des  $(HO)_v = 9,0$  in dem oft als Base sich geltend machenden Wasser vom v = 6,3. Dieses Wasser hat die Constitution:  $H_v = 3,6$ und  $O_v = 2,7$ . Die Existenz dieses Wassers ergibt sich aus:

1. 
$$v(MGO) = 6,3; p' = 3,174$$
  
 $p = 3,20$  (Karsten)  
 $v(MGO.HO) = 6,3 + 6,3 = 12,6; p' = 2,30$   
 $p = 2,30$  (Kirvann)  
2.  $v(SnO_2) = 10,8; p' = 6,944$   
 $p = 6,96$  (Kopp)  
 $v(SnO_2) = 10,8 + 6,3 = 17,1, v' = 1,912$ 

 $v(SnO_2, HO) = 10.8 + 6.3 = 17.1; \quad p = 4.912$ p = 4.932 (Grh. - Otto).

$$(H0)_{v} = 7,65.$$

Dass in diesem, sehr oft auftretenden Wasser vom v = 7,65 auch  $H_v = 3,6$  existirt, hat sehr viel Wahrscheinlichkeit. Denn dann müsste  $\theta_v = 4,05 = \frac{3}{2}.2,7$  sein, welches  $\theta_v$  uns  $a.i.a.\mathfrak{V}$ . in  $v(S\theta_3) = 20,25$  auch entgegentritt:

$$v(S) = 8,1; \quad p' = 1,975$$
  
 $p = 1,976$   
 $v(SO_3) = 8,1 + 3,4,05 = 20,25; \quad p' = 1,975$   
 $p = 1,970$  (Bussy).

Dass  $(H0)_v = 7,65$  existirt, ergibt sich aus

1. v(Na0) = 11,1 (siehe oben) v(Na0, H0) = 11,1 + 7,65 = 18,75; p' = 2,133 p = 2,130 (Filhol) 2.  $v(Fe_2 \ 0_3) = 15,3$  (siehe oben)  $v(Fe_2 \ 0_3 + H0) = 15,3 + 7,65 = 22,95;$  p' = 3,878p = 3,878 (Vohl).

Ich habe schon drei verschiedene Modifikationen des Wassers angeführt; es sei mir erlaubt, hier noch auf zwei Modifikationen aufmerksam zu machen. Die eine ist die Modifikation von  $(H0)_{\nu} = 8,1$ , welche dadurch charakterisirt ist, dass sie gewöhnlich bei 100° C. entweicht und die Verwitterung so leicht möglich macht. Die andere ist die durch ihr grosses Acquivalentvolumen merkwürdige Modifikation

 Pyrolusit = 1290 (MnO + O) + 35 (MnO + 2.HO) + 2 (2.BaO + HO);

 gefunden: MnO 80,44; 17,90 0; 1,13 HO; 0,53 BaO;

 berechnet: , 80,444; 17,901 ,, 1,124 ,, 0,531 Biglized by Goog[C] 

TTO

$$HO_{v} = 15,0.$$
1.  $v(NaO) = 11,1$  (siehe oben)  
 $v(NaO.HO) = 11,1 + 15,0 = 26,1;$   $p' = 1,533$   
 $p = 1,536$  (Gehlers Lex.)  
2.  $v(KO) = 17,7$  (siehe oben)

$$v(KO, HO) = 17,7 + 15,0 = 32,7; p' = 1,721$$
  
 $p = 1,708$  (Gehl. Lex.)

Es wäre manchem Leser gewiss interessant gewesen, neben den erwähnten Modifikationen des Wassers nicht die des Eises vermissen zu \* müssen; es thut mir leid, darin nicht entsprechen zu können; auf dem Dorfe, worin ich zur Zeit mich aufhalten muss, habe ich keine Gelegenheit, die mir verloren gegangenen Notizen über das Eis wieder ersetzen zu können.

Ich will jetzt dazu übergehen, die einfachen Verhältnisse zwischen den O, an verschiedenen Oxyden zu zeigen. Dazu ist nothwendig, über die v der Metalle gewiss zu werden. Wie soll ich es anfangen, hierüber so üherzeugend als möglich für die Leser mich auszudrücken? Es würde mancher Leser vielleicht erwarten, dass ich erst die v aller Metalle systematisch anführe und darauf die v ihrer Oxyde mit ihnen vergliche. Dies zu thun finde ich für meinen Zweck nicht angemessen. Ich will vielmehr also verfahren: ich will erst an mehreren Oxyden, in denen solche Metall-Individuen, welche im freien Zustande bekannt sind, uns entgegentreten, die Existenz verschiedener Modifikationen des Sauerstoffs und die v derselben bis zur Gewissheit lehren; dann nach Kenntniss der  $O_v$  auf die v solcher Metall-Individuen, welche als freie nicht bekannt sind, zurückschliessen.

$$O_v = 1,35 = \frac{1}{2}.2,7$$
  
 $O_v = 2,7.$ 

Die dichteste Modifikation des 0 finden wir als  $O_v = \frac{1}{4} \cdot 2,7 = 1,35$ im Zinnstein und krystallisirten Kadmiumoxyd:

1. 
$$v(Sn) = 8,1; p' = 7,284$$
  
 $p = 7,291$  (Karsten)  
 $v(SnO_2) = 8,1 + 2.1,35 = 10,8; p' = 6,944$   
 $p = 6,96$  (Kopp)  
2.  $v(Cd) = 6,45; p' = 8,682$   
 $p = 8,677$  (Herapath)  
 $v(CdO) = 6,45 + 1,35 = 7,8; p' = 8,205$   
 $p = 8,183$  (Herapath)

Die Modifikation des 0, deren v doppelt so gross ist, finden wir im Cd0 des Hrn. Kopp: Digitized by Google

3. 
$$v(Cd0) = 6,45 + 2,7 = 9,15;$$
  $p' = 6,994$   
 $p = 7,00$  (Kopp);  
ferner in  $(H0)_v = 6,3 = 3,6 + 2,7;$  ferner in  
4.  $v(Fe) = 3,6;$   $p' = 7,778$   
 $p = 7,778$  (Beaudrimont)  
 $v(Fe_2 0_3) = 2.3,6 + 3.2,7 = 15,3;$   $p' = 5,224$   
 $p = 5,225$  (Boullay)  
5.  $v(Zn) = 4,5;$   $p' = 7,24$   
 $p = 7,24$  (Böckmann)  
 $v(Zn0) = 4,5 + 2,7 = 7,2;$   $p' = 5,666$   
 $p = 5,657$  (Rose).

Die eben erwähnte Modifikation:  $O_v = 2,7$  tritt sehr oft auf, wie wir später sehen werden. Eine fast nicht minder oft uns begegnende Modifikation ist

$$0_{\mathbf{v}} = \frac{1}{2} \cdot 3,9 = 1,95$$
  
 $0_{\mathbf{v}} = 3,9.$ 

1. v(Ni) = 3,6; Ni isoster mit dem eben erwähnten Fe und dem Cr, dessen p = 7,3 angegeben wird.

$$v(NiO) = 3,6 + 1,95 = 5,55; \quad p' = 6,666$$

$$p = 6,661 \quad (Rammelsberg)$$
2.  $v(Sn) = 8,1 \quad (siehe oben!)$ 

$$v(SnO) = 8,1 + 1,95 = 10,05; \quad p' = 6,666$$

$$p = 6,666 \quad (Herapath)$$
3.  $v(Ag) = 10,2; \quad p' = 10,587$ 

$$p = 10,567 \quad (G. Rose)$$

$$v(AGO) = 10,2 + 3,9 = 14,1; \quad p' = 8,227$$

$$p = 8,256 \quad (Karsten)$$
4.  $v(Si) = 5,7; \quad p' = 2,456$ 

$$p = 2,490 \quad (W\"ohler)$$

$$v(SiO_2) = 5,7 + 2.3,9 = 13,5; \quad p' = 2,222$$

$$p = 2,222 \quad (Schaffgotsch).$$

$$\theta_v = \frac{1}{2}.5, 1 = 2,55.$$

Die Modifikation  $\theta_v = 2,55$ , welche auch oft auftritt, haben wir in 1.  $(Ca\theta) = 6,3 + 2,55 = 8,85$  (siehe oben!)

kennen gelernt. Als fernere Beispiele gelten:

2. 
$$v(Cu) = 3,6; \quad Cu_v = Fe_v = Ni_v = 3,6;$$
  
 $v(Cu0) = 3,6 + 2,55 = 6,15; \quad p' = 6,455$   
 $p = 6,451 \quad (Jentzsch) og [effective]$ 

- ----

3. v(Pb) = 9,15; p' = 11,312  $v(Pb_2 0_3) = 2.9,15 + 3.2,55 = 25,95; p' = 8,902$  p = 8,902 (Herap.) 4.  $v(Pb_3 0_4 = \text{Mennige}) = 3.9,15 + 4.2,55 = 36,75;$  p' = 9,097p = 9,096 (Herap.).

Hierhin wäre vielleicht etwa noch zu rechnen

5. 
$$v(Pb0) = 9,15 + 2,55 = 11,7; p' = 9,530$$
  
 $p = 9,50$  (Boullay),

aber nicht mit Gewissheit. Denn es existirt auch die Modifikation  $(Pb)_r = 9,0$ , und da könnte v(Pb0) = 11,7 die Constitution  $Pb_v = 9,0 + 0_r = 2,7$  haben. Sehr oft begegnen uns Verbindungen, deren v so beschaffen ist, dass verschidene Modifikationen der sie constituirenden Elemente der Grösse des v Genüge leisten. So z. B. die andere, oktaed. kryst., Modifikation von Pb0:

$$v(Pb0) = 13,95; p' = 8,025$$
  
 $p = 8,02.$ 

Hier kann nun sein v(Pb0) = 9,15 + 4,8, aber auch = 9,0 + 4,95 (dies wahrscheinlich!); denn dass  $\theta_v = 4,95$  existirt, ergibt sich a. a. O. auch aus

$$v(As) = 13,2; p' = 5,682$$
  
 $p = 5,672$  (Herap.)\*)  
 $v(AsO_3 = \text{regul. Octaed.}) = 13,2 + 3.4,95 = 28,05;$   
 $p' = 3,5294$   
 $p = 3,529$  (Regn. Stre.).

Die dritte Modifikation

$$v(Pb0) = 9,0 + 3,0 = 12,0; p' = 9,277$$
  
 $p = 9,275$  (Herap.)

lässt freilich keinen Zweifel über ihre Constitution übrig, weil  $0_v = 3,0$  wohl oft auftritt, aber nie  $0_v = 2,85$ .

Zu den Oxyden, in denen  $O_r = 2,55$  existirt, gehört auch noch

6. 
$$v(HGO) = 7,2 + 2,55 = 9,75;$$
  $p' = 11,077$   
 $p = 11,078$  (Herapath).

Man verzeihe mir, wenn ich hier von der Norm abweiche und das oft auftretende  $HG_v = 7,2$  hierhersetze, ohne seine Existenz im isolirten Zustande angeben zu können. Ich that es, weil ich nicht wusste, wie ich diese Constitution später passend anbringen könne, und um gleich durch folgendes

\*) Dieses As ist isoster und isomorph mit dem rothen krystallisirten Phosphor: v(P) = 13,2; p' = 2,348; p = 2,34 (Hittorf), GOOG[C and the second second

.......

$$v(HG_20) = 2.7, 2 + 5, 1 = 19,5; p' = 10,67$$
  
 $p = 10,69$  (Herapath)

den Ammermüller'schen Satz\*), dass im Oxydul das O<sub>v</sub> doppelt so gross auftreten kann als im Oxyd, in Erinnerung zu bringen.

Wir haben in den vorgeführten Oxyden nun schon verschiedene Modifikationen des O kennen gelernt, als:

$$0_{\nu} = 1,35; 2,7$$
  
= 1,95; 3,9  
= 2,55; 5,1  
= 3,0; 4,95  
= 4,05 = 3.1,35 vergl.  $v(SO_3) = 20,25.$ 

Diese Anzahl von Modifikationen wird genügen, um die weiteren Untersuchungen über Oxyde ohne Meinungsdifferenz mit mir durchzugehen.

 $BO_3$ .

Wir haben oben v(Sn) = 8,1 kennen gelernt. Mit diesem Sn ist isomorph das diamantenartige Bor (dimetrisch) vom p = 2,681. Dieser Modifikation des Bor entspricht das  $v = 4,05 = \frac{1}{2}.8,1 = \frac{1}{2}.v(Sn)$ . Die vwürden für diese isomorphen Stoffe gleich sein, wenn man statt  $BO_3$ schriebe  $B(O^3)_2$ ; und diese Schreibweise würde zweifelsohne zweckmässiger sein, als das dieser Isomorphie einst zur Liebe geschriebene  $SnO_3$  für  $SnO_2$ .

Die Individuen dieses Bor finden wir mehrfach wieder:

1. Im Boracit =  $MGO^3$ .  $BO_3^4$ . Es ist hierin

2. Im oktaedrischen Borax =  $NaO \cdot BO_3^2 + 5 HO$ .

$$NaO_{v} = 11,1 = 11,1$$
  

$$2 (BO_{3})_{v} = 2.12,15 = 24,3$$
  

$$5 (HO)_{v} = 5.9,0 = 45,0$$
  

$$v = 80,4; p' = 1,813$$
  

$$p = 1,815$$

3. In NaO.  $BO_3^2 + 10$ . HO.

$$\begin{array}{rll} Na9_{\nu} & = 11,1 & = 11,1 \\ 2\,(B0_3)_{\nu} & = 2.12,15 = 24,3 \\ 10\,(H0)_{\nu} & = 10.7,65 = 76,5 \\ & \nu = 111,9\,; \quad p' = 1,705 \\ & \nu = 1,692 \quad (Filhol). \end{array}$$

<sup>•)</sup> Vergl. Ammermüller's Dissertation in Poggend. ann. tom. 49 pag. 341; 1840, Nr. 2. Digitized by GOOGLE

In den drei erwähnten Verbindungen war das  $(BO_3)_{\nu}$  dasselbe; in den beiden letzten finden wir verschiedene, schon bekannte, Modifikationen des Wassers.

Jene Individuen des Bors finden wir wieder:

4. im Borax anhydre = 
$$Na0.B0_3^2$$
:  
 $(Na0)_v = 11,1 = 11,1$   
 $2.(B0_3)_v = 2.15,75 = 31,5$   
 $v = 42,6; p' = 2,366$   
 $p = 2,367$  (Filhol).

Diese Borsäure enthält nicht die Modifikation  $O_v = 2,7$ , sondern die  $O_v = 3,9$  d. h.  $(BO_3)_v = 4,05 + 3.3,9 = 15,75$ .

5. In der geschmolzenen 
$$BO_3$$
 des Hrn. Davy:  
 $v(BO_3) = 4.05 + 3.5.1 = 19.35; p' = 1.804$   
 $p = 1.803$  (Davy)

Hierin ist also  $O_v = 5,1$ , wie oben in  $(HG_2 O)_v$ .

6. Die eben erwähnte  $BO_3$  des Hrn. Davy begegnet uns wieder in  $BO_3 + 3HO$  oder  $BO_3HO + 2HO$ . Es ist bekannt, dass 2HO hieraus bei Erhitzung weggehen. Dies hat hier seinen Grund darin, dass zwei verschiedene Modifikationen von HO in der Verbindung existiren, nämlich die abgehende ist vom  $HO_v = 8,1$ , die zurückbleibende dagegen die schon kennen gelernte  $HO_v = 6,3$ . Demnach

$$v(BO_3, HO + 2HO) = 19,35 + 6,3 + 2.8,1 = 41,55$$
  
 $p' = 1,479$   
 $p = 1,480$  (Berzel.)  
 $p = 1,4797$  (Böttger)

Würde man die 2*H0* so entfernen, dass das Restirende  $BO_3HO$  dabei keine Aenderung erleidet, so würde man

$$p(BO_3.HO) = \frac{ae(BO_3.HO)}{19,35+6,3}$$
 finden.

Eine dieser Constitution ganz ähnliche haben wir in  $C_2 O_3$ . HO + 2HO. Es ist hierin  $(C_2 O_3)_{\nu} = 16,2$ , welche  $(C_2 O_3)$ -Modifikation uns auch in anderen Verbindungen wieder entgegentritt. Es ist alsdann

 $v(C_2 O_3 . HO + 2 HO) = 16,2 + 6,3 + 2.8,1 = 38,7; p' = 1,628$  p = 1,629 (Buignet) p = 1,63 (Bödeck.)

und

$$v(C_2 O_3.HO) = 16,2 + 6,3 = 22,5; p' = 2,000$$
  
 $p = 2,00$  (Bödecker).

Durch das Zusammenhalten solcher analoger Verbindungen wie  $HO.BO_3 + 2HO$  und  $HO.C_2O_3 + 2HO$  kann man viel lernen. Aus der Differenz:

$$v(H0.C_2O_3 + 2H0) - v(H0.C_2O_3) = 16,2$$
  
Digitized by  $16,200$ 

ergibt sich  $HO_{\nu} = 8,1$ . Denke ich mir dieses Wasser auch in  $HO.BO_3$ + 2 HO, so ist  $v(HO.BO_3) = 25,65$  d. h. gleich dem  $HO_{\nu} = 6,3$  und  $(BO_3)_{\nu}$  des Hrn. Davy. Setze ich nun wieder  $HO_{\nu} = 6,3$  in  $HO.C_2O_3$ , so bleibt  $(C_2O_3)_{\nu} = 16,2$ , was auch durch oxalsaure Salze als recht erkannt wird. Welche Constitution hat  $(C_2O_3)_{\nu} = 16,2$ ?

Es ist hierin  $C_v = 4,05$  und  $O_v = 2,7$ . Diese Kohle hat man freilich im freien Zustande noch nicht wahrgenommen, obgleich sie oft auftritt, wie auch in  $(CO_2)_v = 10,05$ . Von den als freien beobachteten C-Individuen ist die Modifikation, welche am öfteren auftritt, diejenige des Hrn. Kenngott:

$$v(C) = 2,7; p' = 2,222$$
  
 $p = 2,229$  (Kenngott).

Diese existirt z...B. im Arragonit und im  $PbO.CO_2$  des Hrn. Beudant. Es ist hierin

$$(CO_2)_v = 2,7 + 2.2,7 = 8,1,$$

daher

- 1.  $(Ca0)_r = 8,85$  (siehe oben!)  $v(Ca0.C0_2) = 8,85 + 8,1 = 16,95; p' = 2,9498$ p = 2,949 (H. Rose)
- 2.  $(Pb0)_v = 11, 7$  (siehe oben!)  $v(Pb0.C0_2) = 11,7 + 8,1 = 19,8; p' = 6,742$ p = 6,7293 (Beudant).

In der erwähnten Kohlensäure-Modifikation ist  $C_v = O_v$ .

### Einige Erdmetalle.

I. Ba, Sr, Th.

Zunächst will ich an einigen Erdmetallen eine noch nicht beachtete Gleichheit des Aequivalentvolumens zeigen, nämlich an Barium, Strontium und Thallium.

$$ae(Ba) = 68,5; v = 17,1; p' = 4,006$$
  
 $p = 4,00$  (Gehl. Lex.)  
 $ae(Sr) = 43,8; v = 17,1; p' = 2,561$   
 $p = 2,504 - 2,580$  (Bunsen)  
 $ae(Tl) = 203,5; v = 17,1; p' = 11,901$   
 $p = 11,9$  (Crookes).

Mit dem v = 17,1 aber treten diese Mctalle in Verbindungen höchst selten auf; ja  $(Ba)_v = 17,1$  liegt gar nicht vor.

Wie wir später sehen werden, tritt in den salpetersauren Salzen sehr oft  $(NO_5)_r = 26,1$  auf; diese  $NO_5$ -Modifikation existirt auch in den Salzen:

1. 
$$v(Sr0.N0_5) = (17, 1 + 2, 7) + 26, 1 = 45, 9; p' = 2,305$$
  
 $p = 2,305$  (Buign.)  
2.  $r(T(0, N0)) = (17, 1 + 2, 7) + 26, 1 = 45, 9; p' = 5,305$  (Buign.)

$$(Tl0. NO_5) = (17,1+2,7) + 26,1 = 45,9; p' = 5,80$$
  
 $p = 5,80$   
(Wien. Ac. Ber. vol. 48, pga. 370 ff.)

Mathematische Studien über die Materie.

Obgleich es keinem Zweifel unterliegt, dass in diesen zwei Verbindungen das v des Metalls gleich 17,1 ist, so will ich doch noch eine analoge Constitution zur weiteren Erhärtung hinzufügen:

3. 
$$v(AG) = 10,2$$
 (siehe oben!)

$$v(AGO.NO_5) = (10, 2 + 2, 7) + 26, 1 = 39, 0; p' = 4,3590$$

In den meisten Verbindungen des *Ba* und *Sr* tritt uns das v der Metalle bald als  $\frac{2}{3}$ .17,1 d. i. als 11,4, bald als  $\frac{1}{2}$ .17,1 = 8,55 entgegen. Wir haben also dann speziell hier eine Gesetzmässigkeit, welche Hr. Schöder (Pogg. ann. 1842) allgemein für die Aequivalentvolumina der Elemente geltend gemacht hat.

So ist z. B.

v(Ba0) = 11,4 + 2,7 = 14,1; p' = 5,425p = 5,456 (Filhol).

Diese Ba0 - Modifikation begegnet uns wieder z. B. in

1. v(Ba0 + 9H0) = 14,1 + 9.9,0 = 95,1; p' = 1,657

$$p = 1,656$$
 (Filhol)

2.  $v(Ba0.NO_5) = 14,1 + 26,1 = 40,2; p' = 3,246$ p = 3,240 - 3,242 (Krem.)

Die Uebereinstimmung der p(Ba0 + 9H0) und  $p(Ba0.NO_5)$  mit ihren p' lehrt, dass das p(Ba0) des Hrn. Filhol nicht exact ausgefallen ist.

Sollte nicht auch  $r(Sr\theta) = 14,1$  existiren? Diese Modifikation des Sr $\theta$  ist noch nicht beobachtet worden, aber, dass sie existirt, ergibt sich aus

$$v(Sr0 + 9H0) = 14,1 + 9.9,0 = 95,1; p' = 1,396$$
  
 $p = 1,396$  (Filhol).

Es ist also dieses Strontjanhydrat gleicher Constitution mit dem angeführten Barythydrat.

Dass auch  $(Ba)_r$  und  $(Sr)_r$  in Oxyden mit der Hälfte von 17,1 auftreten, will ich nun zeigen. Ein solches BaO liegt mir zwar augenblicklich nicht vor, aber seine mögliche Existenz ergibt sich aus einem solchen SrO.

1. 
$$r(Sr0) = 8,55 + 2,7 = 11,25; p' = 4,605$$
  
 $p = 4,611$  (Filhol).

Wir haben hier, wie in der angeführten Modifikation von SrO, die Modifikation  $O_p = 2,7$ ; es wird uns aber nicht wundern, wenn auch die Modifikation  $O_p = 1,95$  in diesem Oxyde existirte. Und es exisirt in der That:

2.  $(Sr0)_v = 8,55 + 1,95 = 10,5$ . Dies erhellt aus:

1. 
$$v(Sr0.H0) = 10,5 + 6,3 = 16,8; p' = 3,619$$
  
 $p = 3,625$  (Filhol)  
2.  $v(Sr0.N0_5) = 10,5 + 26,1 = 36,6; p' = 2,8907$   
 $p = 2,8901$  (Karsten).  
Digitized by GOOGLE

Wir haben demnach bis jetzt vier Modifikationen von SrO kennen gelernt:

v(Sr0) = 17,1 + 2,7 = 19,81.

- 2. v(Sr0) = 11,4 + 2,7 = 14,1
- v(Sr0) = 8,55 + 2,7 = 11,253.
- v(Sr0) = 8,55 + 1,95 = 10,5.4.

Und zwei Modifikationen von SrO. NO<sub>5</sub>:

- $v(Sr0.N0_5) = 19.8 + 26.1 = 45.9$ 1.
- $v(Sr0.N0_5) = 10,5 + 26,1 = 36,6.$ 2.

Sollten dies die einzigen Modifikationen von Sr0 und Sr0. NO5 sein? Ganz wahrscheinlich nicht!

#### Ueber Ca und MG. II.

Die merkwürdige Eigenschaft der Volumenänderung des Ba und Sr theilt im gleichen Maasse das Ca und das MG.

v(Ca) = 12,6(siehe oben!) 1.  $v(CaO) = \frac{1}{2} \cdot 12.6 + 2.55 = 8.85$  (siehe oben!) 2.  $v(Ca0) = \frac{2}{4} \cdot \frac{12}{6} + \frac{3}{9} = \frac{12}{3}; p' = 2277$ p = 2.3 (Berzel.) v(MG) = 7,2; p' = 1,6673. p = 1,69 - 1,71 (Kopp)  $v(MGO) = \frac{1}{4} \cdot 7, 2 + 2, 7 = 6, 3$  (siehe oben!)  $v(MGO) = \frac{2}{3} \cdot 7, 2 + 3, 9 = 8, 7; p' = 2, 30$ 4. p = 2.3(Berzel.). Man findet hier v(CaO) = 12,3 und v(MGO) = 8,7 paralleloster!

Wie nach ihrem zahlreichen Auftreten die Thonerde eine grosse Rolle unter den elementaren Verbindungen spielt, so auch nicht minder durch ihre zahlreichen Modifikationen. Ohne letztere wahrscheinlich nicht die erstere! Die Verschiedenheit dieser Modifikationen lässt sich leicht klar darthun, weniger jedoch die spezielle Constitution, denn die meisten Modifikationen existiren für sich und lassen sich in Verbindungen meist leicht wieder erkennen; dagegen ist das Aluminium-Metall, so wie es in den verschiedenen Modifikationen der Thonerde auftritt, nicht in freiem Zustande wahrgenommen: es ist selbst mehrerer Zustände fähig und in diesen nur durch Schlussfolgerung per analogiam aus dem  $v(Al_2 O_3)$  zu bestimmen. Für gewalztes Aluminium gibt Deville das p = 2,67, wofür v = 5,1 und p' = 2,686 ist. Neben diesem p findet man noch für krystallis. Aluminium p = 2,56, wofür v = 5,4 ist. Aus den von mir bald vorgeführten Thonerde-Modifikationen werden wir aber schliessen, dass  $(Al_2)_v$  weder mit v = 2.5,1 noch mit v = 2.5,4, überhaupt mit einem v über 8 wohl nicht auftritt, und dass das Aluminium Metall nicht zu denjenigen gehört, Zeitschrift f. Mathematik u. Physik XIII, 3.

welche die Schröder'sche Regel befolgen. Nur bei einer einzigen Modifikation scheint dies stattzufinden, nämlich bei  $(Al_2 O_3)_v = 13,2$ :  $v(Al_2 0_3) = 5,1 + 3.2,7 = 13,2.$ Die Existenz dieser Modifikation ergibt sich aus  $p[.Al_2 O_3.SeO_3^3 + KaO SeO_3 + 24 HO] = 1,971$  (R. Weber). Hierin ist nämlich  $HO_n \implies 8.1$ Ka0 = 17;7 (siehe oben!)  $SeO_3 = 15,9.$ Diese  $SeO_3 = 15,9$  ergibt sich aus 1.  $v(Ba0.Se0_3) = 14,1 + 15,9 = 30,0; p' = 4,666$  $p = 4,67 \cdot (\text{Schafarik})$  $v(Pb0.Se0_3) = 11,7 + 15,9 = 27,6; p' = 6,341$ 2. p = 6,37 (Schafarik) und ist also constituirt:  $(SeO_3)_r = 7,8 + 3.2,7 = 15,9,$ worin das  $(Se)_r = 7,8$  entspricht dem v(S) = 7,8; p' = 2,051

 $v(Al_2 O_3.SeO_3^3 + KaO.SeO_3 + 24HO) =$ (13,2+3.15,9) + (17,7 + 1.15,9) + 24.8,1 = 288,9; p' = p.

Diese  $Al_2O_3$ -Modifikation begegnet uns noch im Wermiculith des Hrn. Crossley.

p = 2,050 (Karsten).

In anderen Thonerde-Modifikationen ist man gezwungen das  $(Al_2)_r$ = 4,8 anzunehmen, als im

1. orientalischen Sapphir des Hrn. Scholz:  $v(Al_2O_3) = 4.8 + 3.1,95 = 10,65; p' = 4,836$ p = 4,830 (Scholz).

Die Individuen dieses Sapphirs haben wir wieder in

- a) reinem Diaspor =  $Al_2 O_3$ . HO; v = 10,65 + 7,65 = 18,3; p' = 3,306p = 3,303
- b) Hydrargillit =  $Al_2 O_3 + 3HO$ ; v = 10,65 + 3.7,65 = 33,6; p' = 2,336; p = 2,34.
  - 2. Orient. Sapphir des Hrn. Brisson:  $v(Al_2O_3) = 4.8 + 3.2,7 = 12.9; p' = 3.997$ p = 3.994 (Brisson).

Die Modifikationen dieses Sapphirs finden wir wieder im Spinell  $Al_2 O_3$ . ZnO. Denn

Digitized by Google

$$(ZnO)_{v} = 7,2$$
 (siehe oben !)  
 $(Al_{2}O_{3})_{v} = 12,9$   
 $v = 20,1; p' = 4,58; p = 4,58$  (Ebelmen).

204

3. Orient. Sapphir des Hrn. Brisson:  $v(Al_2 O_3) = 4,8 + 3.3,9 = 16,5; p' = 3,115$ p = 3,131 (Brisson).

Ebendies  $(\mathcal{M}_2)_v = 4.8$  scheint auch zu existiren in der nur aus Verbindungen bekannten Modifikation:

4.  $(Al_2 0_3)_{\bullet} = 13,8 = 4,8 + 3.3,0.$ 

War man genöthigt, in den vier erwähnten Modifikationen des  $(Al_2)_r$ = 4,8 anzunehmen, so ist man in den beiden folgenden  $(Al_2)_r$  = 5,4 oder = 4,5 anzunehmen genöthigt.

5. Orient. Sapphir des Hrn. Muschenbroek:  $v(.4l_2 0_3) = 5.4 + 3.3,0 = 14.4; p' = 3,569$ 

p = 3,562 (Muschenbroek).

Man findet die Individuen dieses Sapphirs wieder im künstlichen Spinell des Hrn. Ebelmen:

$$v(Al_2 O_3.MGO) = 14,4 + 6,3 = 20,7; p' = 3,450$$
  
 $p = 3,452$  (Ebelmen)

und in der Gemme

 $v(MGO.Al_2O_3^2) = 6,3 + 2.14,4 = 35,1; p' = 3,500$ p = 3,523 (Mohs).

Die Differenz zwischen p' und p findet ihre Erklärung darin, dass stets ein *FeO*-Gehalt das p erhöht.

6. Korund:  $v(Al_2 0_3) = 4,5 + 3.2,7 = 12,6; p' = 4,079$ p = 4,0 - 4,07.

Dass diese Modifikation existirt, ergibt sich aus

$$v(Al_2 0_3 + 8H0) = 12,6 + 8.9,0 = 84,6; p' = 1,459$$
  
 $p = 1,459$  (Filhol).

7. Wie aber ist die Constitution des oft auftretenden orient. purpurrothen Rubins zu fassen?

v (Rubin =  $Al_2 O_3$ ) = 12,0; p' = 4,2833p = 4,2813 (Brisson). Etwa v = 6,15 + 3.1,95 = 12,0?

Wir haben oben schon je eine Modifikation zweier Alkalien kennen gelernt, nämlich  $(KaO)_{\nu} = 17,7$  und  $(NaO)_{\nu} = 11,1$ . Diese alkalischen Individuen sind die einzigen, welche allein für sich erkannt worden sind. Von *LiO* liegt leider keine Bestimmung vor. Es ist

$$v(Ka) = 45,0; p' = 0,871$$
  
 $ae(Ka) = 39,2; p = 0,865$  (Gay-Lussac)  
 $v(Na) = 23,4; p' = 0,983$   
 $p = 0,988$  (Schröder)

Mathematische Studien über die Materie.

$$v(Li) = 11,7; p' = 0,5983$$
  
 $p = 0,598$  (Bunsen).

Zwischen v(Na) und v(Li) herrscht die merkwürdige Gesetzmässigkeit:  $v(Na) = 2 \cdot v(Li)$ .

In den bemerkten Oxyden existiren die  $\frac{1}{3}$  dieser v:

$$v (Ka0) = \frac{1}{3} \cdot 45,0 + 2,7 = 15,0 + 2,7 = 17,7$$
  
$$v (Na0) = \frac{1}{3} \cdot 23,4 + 3,3 = 7,8 + 3,3 = 11,1.$$

Aus v(NaO) = 11,1 ergibt sich also als wahrscheinlich  $O_s = 3,3$ . Diese O-Modifikation scheint auch im Lithion des folgenden salpetersauren Lithion zu existiren:

$$v(Li0) = \frac{1}{3} \cdot 11,7 + 3,3 = 3,9 + 3,3 = 7,2$$
  
 $v(Li0.NO_5) = 7,2 + 21,0 = 28,2; p' = 2,447$   
 $p = 2,442$  (Troost).

Es existirt neben  $(NO_5)_v = 26,1$ , welches wir schon kennen gelernt haben, nämlich auch die Modifikation  $(NO_5)_v = 21,0$ , wie sich aus folgenden Salzen ergibt:

1. 
$$v(Na0.NO_5) = 11, 1 + 21, 0 = 32, 1; p' = 2,649$$
  
 $p = 2,654$  (Kremers)  
2.  $v(Sr0.NO_5) = 14, 1 + 21, 0 = 35, 1; p' = 3,0050$   
 $p = 3,0061$  (Hassenfratz)

Es wäre freilich auch möglich, dass

 $(Li0)_{v} = 7,2 = \frac{1}{2}.11,7 + 1,35 = 5,85 + 1,35$ 

wäre. Denn dass  $(Li)_r = 5,85$  existirt, ergibt sich aus dem Lithion der andern  $LiO.NO_5$ -Modifikation:

$$v(Li0.NO_5) = 8,55 + 21,0 = 29,55; p' = 2,335$$
  
 $p = 2,334$  (Kremers);

dieses  $(Li0)_{\nu} = 8,55$  ist 5,85 + 2,71

In einer NaO-Modifikation ist  $(Na)_r = \frac{1}{3} \cdot v(Na) = 7,8$  und  $O_r = 4,95$ , welche O-Modifikation wir oben fanden im regul. octaed. As.  $O_3$  und im octaed. PbO; demnach

 $(Na0)_v = 7.8 + 4.95 = 12.75.$ 

Die Existenz dieser Natron-Individuen ergibt sich aus

1.  $v(NaO.NO_5) = 12,75 + 26,1 = 38,85; p' = 2,1880$ 

$$p = 2,1880$$
 (Marx)

2. 
$$v(NaO.C_2O_3) = 12,75 + 16,2 = 28,95; p' = 2,315$$
  
 $p = 2,315$  (Buignet).

Wenn so der Calcul mit der Erfahrung übereinstimmt, muss wohl jeder Zweifel weichen!

In den bisher kennen gelernten alkal. Oxyden Ka0 und Na0 und Li0. mit Ausnahme des  $(Li0)_v = 8,55$ , nehmen wir das v des verbundenen Metalls als  $\frac{1}{2}$  des freien Metalls. Ich werde nun zeigen an Oxyden, dass wie in  $(Li0)_r = 8,55 = \frac{1}{2} \cdot v(Li) + 2,7$  so auch in  $(Na0)_r$  und  $(Ka0)_r$  das  $(Na)_r$  und  $(Ka)_v$  gleich  $\frac{1}{2} \cdot v(Na)$  und  $\frac{1}{2} \cdot v(Ka)$  gefunden wurden.

Entsprechend dem  $(LiO)_{\sigma} = \frac{1}{2} \cdot 11,7 + 2,7$  finden wir  $(NaO)_{\sigma} = \frac{1}{2} \cdot 23,4 + 2,7 = 14,4$  in  $v \cdot (NaO \cdot NO_5) = 14,4 + 26,1 = 40,5; p' = 2,099$  p = 2,096 (Klapproth, Mohs). Ich komme nun zu einem KaO, das durch ein besonderes  $O_{\sigma}$  ausgezeichnet ist, nämlich zu  $(KaO)_{\sigma} = 28,5 = \frac{1}{2} \cdot 45,0 + 6,0 = 22,5 + 6,0.$ Diese KaO-Modifikation ergibt sich aus 1.  $v(KaO \cdot BO_3^2) = 28,5 + 2 \cdot 19,35 = 67,2; p' = 1,741$  p = 1,740 (Buignet) 2.  $v(KaO \cdot HO + 2 \cdot C_2 O_3) = 28,5 + 9,0 + 2 \cdot 16,2 = 69,9;$  p' = 1,834; p = 1,836 (Buignet) 3.  $v(KaO \cdot NH_4 O \cdot C_5 H_4 O_{10})$ , dessen p = 1,700 (Schiff) ist. Auch dass  $(Na)_{\sigma}$  als  $\frac{2}{3} v(Na)$  auftritt, scheint gewiss zu sein; denn  $(NaO)_{\sigma} = \frac{2}{3} \cdot 23,4 + 3,9 = 15,6 + 3,9 = 19,5$ 

scheint wirklich zu existiren in

$$v(Na0.NO_5) = 19,5 + 26,1 = 45,6; p' = 1,864$$
  
 $p = 1,8694$  (Muschenbroek).

In Vorstehendem habe ich gezeigt, wie man sich aus den verschiedentlichsten Angaben des spezifischen Gewichtes für ein und dieselbe Verbindung zurechtfinden kann. Die Verbindung  $NaO.NO_5$ , deren p folgende sind:

$$p(NaO.NO_5) = 1,8694$$
 (Muschenbroek)  
= 2,096 (Klapproth)  
= 2,188 (Marx)  
= 2,654 (Kremers)

ist sehr lehrreich. Aus ihr kann man lernen den Glauben an die mehrfachen Modifikationen ein und derselben Verbindung und dass das wahre spezifische Gewicht nicht das arithmetische aus seinen verschiedenen Angaben ist.

Ich habe nur vier verschiedene Modifikationen der NaO. NO<sub>5</sub> angeführt, ich will noch eine hinzufügen:

$$v(NaO.NO_5) = 37,5; p' = 2,266$$
  
 $p = 2,265$  (Buignet).

Ist hier v = 11,4 + 26,1? Diess stimmte mit

 $v(NaO.ClO_5) = 11,4 + 35,1 = 46,5; p = 2,289;$ 

denn dass  $(ClO_5)_r = 35,1$  existirt, ergibt sich aus

1.  $v(Ka0.ClO_5) = 17,7 + 35,1 = 52,8; p = 2,325$  (Buignet)

2.  $v(Ba0.ClO_5.H0) = 10,5 + 35,1 + 8,1 = 53,7$ ; p = 2,988 (Buign.) und seine Constitution ist einfach diese

$$v(ClO_5) = 21,6 + 5.2,7 = 35,1;$$

denn

Ŀ.

1. 
$$v(NiCl) = 3.6 + 21.6 = 25.2; p = 2.56$$
 (Schiff)<sub>Digitized by</sub> Google

2. v(Fe.Cl) = 3,6 + 21,6 = 25, 2; p = 2,53

3.  $v(HG_2.Cl) = 2.7, 2 + 21, 6 = 36, 0; p = 6,56$  (Schiff).

Nach dieser Uebereinstimmung zwischen  $v(NaO.NO_5) = 37,5$  und  $v(NaO.ClO_5) = 46,5$  scheint es gewiss zu sein, dass  $(NaO)_* = 11,4 = 7,8 + 3,6$  existirt. Aber es scheint nur so! absolute Gewissheit ist es nicht, wie man aus Folgendem erkennen kann.

Hr. Kremers (vergl. Liebig's und Kopp's Jahresbericht für 1852 pag. 15) fand

 $p_1(Ba0.NO_5, bei 14^0 \text{ krystallis.}) = 3,240 - 3,242$ 

 $p_2(Ba0.NO_5, \text{ bei } 100^0 \text{ krystallis.}) = 3,222 - 3,228$ 

Wir haben oben kennen gelernt v(Ba0) = 14,1. Dieses v(Ba0) ist in  $v(Ba0.NO_5)$  vom  $p_1$ ; denn

 $v_1 (Ba0.N0_5) = 14,1 + 26,1 = 40,2; p'_1 = 3,246$ 

aber in

v

 $v_2(Ba0.NO_5) = 40,5 \ (p'_2 = 3,222 = p_2)$ 

kann Ba0 oder auch  $NO_5O_5$  modifizirt sein. Wäre hier  $(Ba0)_{\nu} = 14,4$ , so wäre oben auch  $(Na0)_{\nu} = 11,4$ ; ist dagegen hier  $(NO_5)_{\nu} = 26,4$ , so ist oben auch  $(NO_5)_{\nu} = 26,4$ . Diese exakte Untersuchung des Hrn. Kremers lässt also sehr wahrscheinlich erscheinen, dass obiges  $Na0.NO_5$  des Hrn. Buignet nach nochmaliger Auflösung, bei niederer Temperatur mit einem um 0,3 geringeren  $\nu$  krystallişiren würde.

Oben haben wir kennen gelernt

v(Si) = 5,7a.  $v(SiO_2) = 5,7 + 2.3,9 = 13,5; p' = 2,222$ 

Diese SiO<sub>2</sub>-Modifikation finden wir wieder im

1. Leucit =  $Al_2 O_3 . SiO_2^3 + KaO . SiO_2$  v = (16,5 + 3.13,5) + (17,7 + 13,5) = 88,2; p' = 2,479p = 2,480 (Rammelsb.).

In diesem  $Al_2 O_3$  (siehe oben !) ist also dasselbe  $O_r$  wie im  $SiO_2$ .

2. Eudnophit =  $Al_2O_3 \cdot SiO_2^3 + NaO \cdot SiO_2 + 2HO$ . v = (16,5 + 3.13,5) + (11,1 + 13,5) + 2.7,65 = 96,9;p' = 2,274; p = 2,27 (Berlin).

Man kann diesen Eudnophit als ein Natron-Leucit-Hydrat auffassen.

3. Natrolith =  $Al_2O_3 \cdot SiO_2^2 + NaO \cdot SiO_2 + 2HO$ ; er gibt leicht sein Wasser ab  $(HO_v = 8, 1)$ .

$$= (16,5 + 2.13,5) + (11,1 + 13,5) + 2.8,1 = 84,3;$$
  
 $p' = 2,259; p = 2,254 - 2,258$  (Kenngott).

4. Apophyllit aus dem Radanthale am Harze =  $4.Ca0^2.Si0_2^3 + Ka0.Si0_2^3 + 16.H0.$ 

v = 4(2.8,85 + 3.13,5) + (17,7 + 3.13,5) + 16.9,0 = 435,0p' = 1,966; p = 1,96 (Rammelsberg).

Man übersche nicht, dass hier  $2(CaO)_v = (KaO)_v$  ist! Hat  $(KaO)_v$  vielleicht noch einmal so viel Individuen als  $(CaO)_v$ ?

5. Bronzit =  $MGO.SiO_2$ .

v = 8,7 + 13,5 = 22,2; p' = p = 2,252.

Hier haben wir also das oben discutirte v(MGO) = 8,7, worin  $O_v = 3,9$  ist, wie in  $v(SiO_2) = 13,5$ .

6. Thomsonit von Dumbarton:

 $8(Al_2O_3.SiO_2) + 6(CaO.SiO_2) + NaO^2.SiO_2^3 + 20HO.$ 

v = 8(12,6+13,5) + 6(8,85+13,5) + (2.11,1+3.13,5) + 20.7,65 = 558,6p' = p = 2,383 (Rammelsberg).

In diesem Thomsonit haben wir also die Individuen des Korunds.

7. Glas, von Pelouze kurz vor seinem Tode hergestellt (Compt. rend. 14 Janvier 1867):

 $\begin{array}{rll} 102 \; SiO_2 &= 74,97\; (75,00); & v = 102.13,5 = 1377,0\\ 23 \; NaO &= 17,46\; (17,40) & 23.11,1 = 255,3\\ 6 \; \mathcal{A}l_2O_3 &= 7,57\; (7,60) & 6.13,8 = 82,8\\ \hline v &= 1715,1\\ p' = 2,380; \; p = 2,380\; (\text{Pelouze}).\\ 8. \; \text{Tayalit des Hrn. Gmelin: $FeO^5.SiO_2^2$.}\\ v &= 5.6,6 + 2.13,5 = 60,0; \; p' = 4,133\\ p = 4,138\; (\text{Gmelin}). \end{array}$ 

Hier haben wir  $(Fe0)_r = 6,6$ ; wie z. B. auch in  $v(Fe0.SO_3) = 6,6 + 20,25 = 26,85$ ; p' = 2,840p = 2,841 (Filhol).

In diesem schwefelsauren Eisenoxydul haben wir nämlich das  $v(SO_3)$ = 20,25, was für  $p(SO_3)$  = 1,970 (Bussy) oben kennen gelernt wurde.

9.  $Cu0.Si0_2 + 2H0$ ; schönste Varietät. v = 6,6 + 13,5 + 2.9,0 = 38,1; p' = 2,302 p = 2,304 (Breithaupt). b.  $v(Si0_2) = 11,7 = 5,7 + 2.3,0$ ; p' = 2,5641p = 2,5648 (Brisson).

Diese Modifikation nennt Brisson ägyptischen Kiesel. Wir finden sie wieder in

$$v(Al_2 O_3^4.SiO_2^3) = 4.12,0 + 3.11,7 = 83,1; p' = 3,559$$
  
 $p = 3,559$  (Mobs).

worin wir die Individuen des purpurrothen Rubins haben.

c.  $v(SiO_2) = 11,25; p' = 2,666$ p = 2,664 (Brisson).

Auch diese Modifikation nennt Brisson ägyptischen Kiesel. Libre Con-

stitution lässt sich bis jetzt nicht feststellen. Die Individuen dieser Modifikation finden wir wieder im

1. Wollastonit =  $CaO.SiO_2$ ; v = 8,85 + 11,25 = 20,1; p' = 2,889; p = 2,885 (Mohs) 2.  $v(FeO.SiO_2) = 6,6 + 11,25 = 17,85$ ; p' = 1,709p = 1,713 (Neumann).

Hier haben wir dieselbe FeO, wie in  $FeO.SO_3$ !

3. Gymnit =  $MGO^4 \cdot SiO_2^3 + 6HO$ ; v = 4.6,3 + 3.11,25 + 6.7,65 = 104,85; p' = 2,136p = 2,136.

d. 
$$v(SiO_2 = \text{Bergkrystall}) = 5,7 + 2.2,7 = 11,1; p' = 2,70$$
  
 $p = 2,70 \text{ (Gmel.)}$ 

Die Individuen dieses Bergkrystalls finden wir neben den Individuen des Sapphirs von Muschenbroek im

1. Audalusit =  $Al_2 O_3^2 . SiO_2^3$ ; v = 2.14.4 + 3.11.1 = 62.1; p' = 3.105p = 3.104 (Mohs)

2. 
$$Al_2O_3.SiO_2^2 + 2HO;$$
  
 $v = 14.4 + 2.11.1 + 2.7.65 = 51.9; p' = 2.686$   
 $p = 2.690$  (Finkenscher).

Die Individuen des Bergkrystalls finden wir wieder im

3. Serpentin =  $MGO. HO^2 + 2(MGO. SiO_2)$ ; v = (6,3 + 2.6,3) + 2(6,3 + 11,1) = 53,7; p' = 2,570 p = 2,57 (Hermann) 4. Sarkolith vom Vesuv =  $52. Al_2 O_3. SiO_2 + 13. NaO. SiO_2 + 3 KaO SiO_2 + 47. CaO^3 SiO_2^2$ ; v = 52(16,5 + 11,1) + 13(11,1 + 11,1) + 3(17,7 + 11,1) + (3.8,85 + 2.11,1) = v = 4101,45; p' = 2,932; p = 2,932(Rammelsberg).

Die übrigen Modifikationen der Kieselerde und ihr Auftreten in den Silikaten in der Fortsetzung.

# VII.

# Beiträge zur Molecularphysik.

Von

Prof. Dr. WITTWER

in Regensburg.

Bekanntlich war es die Lehre vom Lichte, welche zuerst darauf aufmerksam machte, dass es ausser den schweren Stoffen noch einen anderen, den sogenannten Aether, gebe, der sich dadurch auszeichnet, dass seine einzelnen kleinsten Theilchen sich nicht anziehen, wie das Gravitationsgesetz von den Körpern erheischt, sondern sich abstossen; denn wenn diese Bedingung nicht erfüllt wäre, so würde es unmöglich sein, dass der Aether den ganzen Raum erfüllte und durch seine Schwingungen das Licht veranlasste. Die Erfüllung des ällgemeinen Raumes wäre allenfalls noch denkbar, wenn die Aethertheilchen auf einander weder eine anziehende noch eine abstossende Wirkung ausüben würden, aber die Oscillationen, welche anzunehmen die Optik gezwungen ist, weisen mit strenger Nothwendigkeit auf eine gegenseitige Abstossung hin, welche einerseits das schwingende Aethertheilchen wieder in die Ruhelage zurückzuführen strebt, andererseits einem andern mit dem ersten nicht in unmittelbarer Berührung stehenden Theilchen Bewegung mittheilt. In unmittelbarer Berührung können aber die Aethertheilchen nicht sein, und dabei doch den ganzen Raum erfüllen, denn sonst wäre alle Bewegung unmöglich. Es bleibt also nur die Annahme übrig, dass die Aethertheilchen sich abstossen, und dieser Annahme folgen auch die sämmtlichen Physiker unserer Zeit.

Bezüglich der gegenseitigen Einwirkung der Aether- und der schweren Theilchen gilt zumeist als Thatsache, dass dieselbe eine Anziehung sei, während einzelne Stimmen (z. B. Wiener, die Grundzüge der Weltordnung) sich für eine Abstossung aussprechen.

Als Resultat des Zusammenwirkens von Aether- und schweren Theilchen findet man die Theorie als allgemein herrschend, dass um ein schweres Atom herum eine Atmosphäre von Aethertheilchen sich lagere, in deren Schichten, wie bei der Atmosphäre unserer Erde, die Aethertheilchen um so dichter bei einander sind, je näher erstere dem schweren Kerne sind, während bei wachsender Entfernung von dem Kerne die Dichtigkeit der Schichten immer geringer wird, bis endlich der Unterschied zwischen der Schichte und dem allgemeinen Raume verschwindet. Am deutlichsten ausgesprochen findet sich dieser Satz in Redtenbachers "Dynamidensystem".

Was die Bewegung der Lichtstrahlen anbelangt, so heisst es in sämmtlichen mir bekannten Lehrbüchern der Physik, die darüber sprechen, dass die Schwingungen sich in dem dichteren Aether weniger rasch fortpflanzen als in dem dünneren, dass also das Licht im allgemeinen Raume schneller gehe als in den durchsichtigen Körpern, weil in letzteren der Wirkung der schweren Atome auf die Aethertheilchen wegen diese Aethertheilchen dichter bei einander sind. Man denkt sich das Licht etwa so durch das Medium gehend, wie eine Kugel durch die Luft oder einen andern Körper wandert, wobei sie in dem dichteren Medium des grösseren Widerstandes wegen nur langsamer vorwärts kommen kann. Es lässt sich schwerlich behaupten, dass diese Vorstellung über jedes Bedenken erhaben sei, denn der Aether ist nicht das die Bewegung des Lichtes hemmende Medium, sondern er ist selbst der Träger derselben, und die Bewegung muss sich im Allgemeinen um so rascher fortpflanzen, je grösser die gegenseitige Einwirkung der Aethertheilchen ist, und dass diese wächst, wenn die Distanzen der Aethertheilchen kleiner werden, wenn also deren Dichtigkeit wächst, dürfte wohl als sicher angenommen Will man das Licht rücksichtlich seiner Fortpflanzung mit werden. einem andern Vorgange vergleichen, so eignet sich weit besser als die fliegende Kugel oder die bekannte Cavalerieabtheilung der Schall, und von diesem weiss man, dass er in den festen Körpern und in den tropfbaren Flüssigkeiten rascher geht als in den Gasen, und seine grössere Geschwindigkeit fällt also auf die dichteren Medien. Es gibt nun sicherlich Umstände genug, welche veranlassen können, dass der Schall bei nicht sehr bedeutender Dichtigkeitsverschiedenheit in dem dichteren Medium langsamer geht; allein die Vergleichung des Verhaltens der die grösste Verschiedenheit bietenden Stoffe, der festen und der tropfbarflüssigen Körper einerseits, der Gase andererseits, spricht offenbar dafür, dass der Schall in dichteren Körpern schneller geht. Bei dem Lichte, das mit dem Schalle so viel Analogie hat, kann man nun nicht wohl das Entgegengesetzte annehmen.

Offenbar ist die Lehre vom Lichte unter den physikalischen Disciplinen diejenige, welche am ehesten geeignet ist, uns über die Verhältnisse des Aethers Aufschluss zu geben, und sie sagt uns, dass der Aether in der Nähe der schweren Atome weniger dicht sei als im allgemeinen Raume.

Ausser diesen theoretischen Schlussfolgerungen kann ich mich auch auf einen mathematischen Beweis' stützen, und mein Gewährsmann ist Cauchy, welcher in seinem *Mémoire sur la dispersion de la lumière* § 9 die Fortpflanzung des Lichtes untersucht, wie sie in denjenigen Medien stattfindet, welche keine Farbenzerstreuung haben, und hierbei gefunden hat (S. 193), dass in denselben die Lichtgeschwindigkeiten sich direct (also die Brechungscoëfficienten umgekehrt) verhalten, wie die Quadratwurzeln der Aetherdichtigkeit.

Ich muss gestehen, dass es mir höchst auffallend war, dass dieser Satz, der sich in einem eben so berühmten als vielfach citirten Werke findet, so ganz in Vergessenheit gerathen konnte, dass die ihm direct widersprechende Annahme, die Aetherkugeln seien in der Nähe der Körper näher bei einander als im allgemeinen Raume, so unbedingt herrschend wurde. Allerdings bezieht sich der Cauchy'sche Satz zunächst nur auf das Verhältniss von allgemeinem Raume und Gasen, unsern einzigen Medien, die keine Farbenzerstreuung haben; aber man kann doch nicht annehmen, dass bei den farbenzerstreuenden Medien bezüglich der Aetherdichtigkeit gerade das Entgegengesetzte von dem eintrete, was die Medien ohne Dispersion zeigen. Einen Rechnungsfehler, der dieses allgemeine Stillschweigen in den allgemeineren Werken rechtfertigte, habe ich in der in Rede stehenden Abhandlung nicht finden können, und Radike hat wohl dasselbe Schicksal gehabt, denn sonst würde er diesen Satz nicht zweimal (Handbuch der Optik II 466 und Abhandlung über die Optik in Doves Repertorium der Physik) in verschiedenen Bearbeitungen wiedergegeben haben.

Die Ursache der in der Nähe der schweren Atome vorkommenden Verdünnung des Aethers sind diese Atome selbst, und da jede Ursache in der Nähe ihrer Quelle stärker wirkt als in der Ferne, so müssen wir annehmen, dass zunächst um die Atome herum diese Verdünnung des Aethers den höchsten Werth erreiche, so dass also entgegengesetzt von der allgemein herrschenden Ansicht die Dynamiden eine von innen nach aussen zunehmende, nicht abnehmende Aetherdichtigkeit zeigen.

Bekanntlich gilt für die Gase die Gleichung  $\frac{n^2-1}{\partial} = c$ , wenn n den Brechungscoëfficienten,  $\partial$  die Dichtigkeit des Gases, c eine Constante bedeutet. Bezeichnet man mit  $\varrho$  die Aetherdichtigkeit, so wird  $n^2 = \frac{a}{\varrho}$ , wenn a eine Constante ist, und durch Verbindung dieser Gleichung mit der vorhergehenden erhält man:

213

$$\frac{\frac{a}{e}-1}{\frac{a}{e}} = c, \text{ d. i. } e = \frac{a}{c\partial+1};$$

wenn also  $\partial$  (im allgemeinen Raume) = 0 wird, so wird q = a, welch letzteres mithin die Aetherdichtigkeit im freien Raume angibt. q ist die mittlere Dichtigkeit des Aethers der Dynamide, und da dieselbe abnimmt, wenn das Volumen sich vermindert, d. i. die Dichtigkeit  $\partial$  des Gases wächst, so ergibt sich, dass die einzelnen Aetherschichten von aussen nach innen immer weniger dicht sein müssen. Das Brechungsvermögen der nichtluftförmigen Körper, also die Grösse  $\frac{n^2-1}{\partial}$ , scheint constant zu bleiben, so lange der Körper nicht in den gasförmigen Zustand übergeht (Müller-Pouillets Lehrbuch der Physik und Meteorologie, 6. Aufl. I 561) und soweit diese Beständigkeit anhält, muss auch für sie bezüg-

lich der Aetheratmosphäre die nämliche Norm gelten wie bei den Gasen. Es möge mir gestattet sein, über die Annahme, dass bei sehr kleinen Distanzen die kleinsten Theilchen der Körper nach einem andern Gesetze als bei grössern wirken, wie z. B. nach der Formel a<sup>r</sup>, in welcher a eine Constante, r die Entfernung bedeutet, einige Bemerkungen zu machen.

Auf solche Formeln musste man zu einer Zeit kommen, als die Lehre vom Aether noch nicht anerkannt war, denn es ist klar, dass, wenn man die Existenz des Aethers ignorirt, man durch die einfache Beobachtung der Porosität der Körper darauf geführt werden muss, dass die Newton'sche Attraction nicht ausreicht, dieselbe zu erklären. Nimmt man Dynamiden mit einem schweren von Aetherkugeln umgebenen Kerne an, so kann man, wie ich in einer andern Abhandlung\*) gezeigt habe, die verschiedenen Erscheinungen der Cohäsion, als da sind Abstossung bei sehr geringer Distanz, Indifferenzpunkt, dann Anziehung, die bei wachsender Entfernung zweier Dynamiden zuerst grösser wird, dann abnimmt, wie das Quadrat der Entfernung wächst u. s. w., ganz leicht aus den Differenzen der verschiedenen Wirkungen ableiten, ohne dass man andere Gesetze zu Hülfe zu nehmen brauchte, als man jeden Tag zu beobachten Gelegenheit hat.

Bekanntlich nimmt die gegenseitige Wirkung zweier Magnete ab, wie die dritte Potenz der Entfernung wächst; sie thut dieses, solange die Entfernung gegen die Dimensionen der Magnete gross ist, und bei Nichterfüllung dieser Bedingung kommt ein ganz anderes Resultat zum Vorschein. Wollte man all den Wechsel, der hier stattfindet, der Wirkung einer einzigen Kraft zuschreiben, so müsste diese wohl nach einem ganz sonderbaren Gesetze wirken; nimmt man aber Differenzen von

<sup>\*)</sup> Entwurf einer Molecularphysik. Diese Zeitschr. XI 3. Digitized by Google

Kräften an, die stets abnehmen, wie das Quadrat der Entfernung wächst, so erklären sich die beobachteten Erscheinungen auf die einfachste Weise von der Welt. Ist es unmöglich, ist es nur unwahrscheinlich, dass es bei den Molecularerscheinungen auch so sei? Die Erfahrung lehrt, dass diejenigen Naturgesetze, welche die einfachsten sind, sich am besten bewähren, und hievon sollte man ohne die äusserste Noth nicht abgehen. Dass eine einfache Kraft in geringer Entfernung nach einem andern Gesetze wirke als in grösserer, ist meines Wissens in der Natur ohne Beispiel, denn wo scheinbar eine solche auftritt, ergibt sich bei näherer Betrachtung ein Zusammenwirken von mehreren. Ich werde daher in dem Nachstehenden von dem Satze ausgehen, dass die gegenseitige Einwirkung zweier Elementarkörper in jeder Entfernung dem nämlichen Gesetze gehorche.

Betrachten wir nun das Zusammenwirken von Aether und Massentheilchen in den Dynamiden etwas näher, und nehmen wir der allgemeinen Ansicht folgend an, jede Dynamide bestehe aus einem schweren Kerne und einer ihn umgebenden Atmosphäre, die aus einer ungezählten Menge von Aethertheilchen besteht!

Die Aethertheilchen stossen sich ab. Dieses ist notorisch. Der schwere Kern kann auf die Aethertheilchen

- I. anziehend,
- II. gar nicht,
- III. abstossend

wirken.

I. Ist die Wirkung eine anziehende, so haben wir folgende zwei Möglichkeiten. Es kann

- a) die Anziehung bezüglich der Entfernungen dem nämlichen Gesetze gehorchen, welches die Abstossung der Aethertheilchen unter einander beobachtet;
- b) die Anziehung kann mit einer höheren Potenz also rascher, oder sie kann mit einer niedrigeren Potenz also langsamer abnehmen als die gegenseitige Abstossung der Aethertheilchen.

a) Wenn beide Wirkungen das nämliche Gesetz befolgen, so muss sich um den Massenkern eine Anzahl von Aethertheilchen sammeln und dieses wird solange fortdauern, bis die Anziehung, welche der Massenkern auf ein fernstehendes Aetheratom ausübt, durch die Abstossung der bereits angezogenen aufgehoben wird. Es tritt hier der Fall ein, den ich in meinem Entwurfe einer Molecularphysik S. 179 Gleichung 1 und 2 abgeleitet habe. Die durch den Massenkern angesammelten Aetherkugeln sind entweder sämmtlich mit dem Kerne in unmittelbarer Berührung (oder bilden bei gehöriger Anzahl eine Art von Rinde um ihn), oder sie thun dieses nur zum Theile. Im ersten Falle, welcher eintritt, wenn die Kräfte abnehmen, wie das Quadrat der Entfernung

Digitized by GOOGLE

216

wächst, haben wir einen Massenkern und fest damit verbundene Aetherkugeln, und die ganze Verbindung ist auf den äussern Aether ohne Einfluss, da Anziehung der Massenkugel und Abstossung der Aetherrinde sich aufheben, und wir haben daher den oben unter II. vorgesehenen Zustand. Befolgen die beiden Wirkungen ein anderes Gesetz, so entsteht im Allgemeinen um den Massenkern herum eine Aetheratmosphäre, die durch die Anziehung des Kernes festgehalten wird und auch bleiben würde, wenn der allgemeine Raum frei von allem Aether wäre. Kommt der Aether des allgemeinen Raumes noch in's Spiel, so vermehrt sich durch den Druck desselben die Dichtigkeit des von der um den Kern stehenden Atmosphäre erfüllten Raumes noch um eine der Dichtigkeit, welche der Aether des allgemeinen Raumes hat, entsprechende Grösse und es ergibt sich also, dass der Aether, der den Massenkern umgibt, jedenfalls dichter ist als der fern stehende.

b) Wenn die Anziehung zwischen Aether und Massenkern ein anderes Gesetz befolgt, als die Aetherabstossung, so ist die eben angegebene Sättigung des Kernes nicht möglich, oder, wenn man will, die Sättigung für die eine Entfernung gilt nicht auch für die andere. Es wäre in diesem Falle gar nicht denkbar, dass der in einiger Entfernung von einem Weltkörper befindliche Aether die nämliche Dichtigkeit hätte, als der Aether, welcher fern von allen Sternen sich befindet. In diesem Falle wären die verschiedensten Brechungen des Lichtes im allgemeinen Raume selbst die unausbleibliche Folge, von dem regelmässigen (scheinbaren) Laufe der Gestirne wäre keine Rede mehr. Man könnte allenfalls, insoweit die Erde im Spiele ist, die eintretende Lichtbrechung als in der Strahlenbrechung des Luftkreises einbegriffen betrachten; aber bei Sternbedeckungen des Mondes müsste die Wirkung nothwendig eintreten. Bekanntlich beruht auf der Erscheinung der Sternbedeckungen der Beweis, dass der Mond keine Atmosphäre hat. Der Fall b) kommt also in der Natur nicht vor, die Anziehung swischen Massentheil und Aether und die gegenseitige Abstossung der Aethertheilchen befolgen rücksichtlich der Entfernung das nämliche Gesetz, es möge dieses sein, welches immer es wolle.

II. Wenn Aethertheilchen und Massentheilchen gar nicht auf einander wirken, so ist auch kein Grund vorhanden, warum in der Nähe der letzteren eine andere Vertheilung der ersteren eintreten sollte als ferne davon.

III. Stossen Massenkern und Aether sich ab, es mag dieses nach was immer für einem Gesetze geschehen, so sind die zwei Fälle möglich:

a) die Massenkerne ziehen sich an;

b) sie stossen sich ab.

a) Ziehen sich die Massentheilchen an, so werden unter vorstehender Bedingung die porösen Körper unmöglich, d. h. es kann nicht mehr

vorkommen, dass zwei Kerne in einiger Entfernung stehen bleiben. Befindet sich eine Aetherkugel zwischen zwei Massenkugeln, so wird jede der letzteren abstossend auf sie wirken, und man kann diese Abstossung in zwei Kräfte zerlegen, von denen die eine in der Verbindungslinie der beiden Massenkugeln liegt, während die andere senkrecht darauf steht. Letztere drückt die Aetherkugel weg und die Massenkugeln nähern sich einander bis zur Berührung. Es wäre denkbar, dass die Aetherkugel genau in der Verbindungslinie der Massenkugeln liegt, dass also die auf dieser senkrecht stehende Componirende der Abstossung verschwindet; allein dieses wäre nur ein dem labilen Gleichgewichte entsprechender Specialfall, der im nächsten Augenblicke bei der geringsten Bewegung (und Oscillationen hat man ja fortwährend) aufgehoben würde.

b) Stossen sich auch die Massenkerne ab, so haben wir in der ganzen Natur keine Anziehung, und das Vorkommen der Körper, die aus mehreren Theilen bestehen und deren Theile zusammenhängen, würde unmöglich.

Es bliebe nun noch übrig, die Möglichkeit zu besprechen, dass die Massenkerne auf einander abstossend, auf den Aether anziehend wirken, sowie der Fall, dass die Massenkerne keine Kugeln sind, sondern beliebige Gestalt haben.

Wenn Abstossung zwischen Massenkern und Massenkern, Anziehung zwischen Kern und Aether stattfindet, so haben wir, insoweit es sich wie hier nur um die Aetherhülle des Kernes handelt, den oben unter I. besprochenen Fall.

Weicht die Gestalt der Massenkerne von der der Kugel ab, so wird darum wohl die Gestalt der Dynamide geändert, auf die Frage aber, ob die Aetherkugeln der Hülle in der Nähe des Kernes dichter seien als ferne davon, ist dieser Umstand ohne Einfluss.

Aus den vorstehenden Betrachtungen ergibt sich, dass die Entstehung von Aetherhüllen der schweren Körper unmöglich sei, wenn man die Bedingungen stellt, dass diese Hüllen aus einer grossen Menge von Aethertheilchen zusammengesetzt und dabei weniger dicht sein sollen als der Aether im allgemeinen Raume. Wenn nun die Beobachtung lehrt, dass in dem die schweren Atome rings umgebenden Raume Aether von geringerer Dichtigkeit sich befindet, so muss die erste der obigen Bedingungen nicht in der Natur begründet sein. Ich kann mir nun keine andere Zusammensetzung der Dynamiden denken als die, welche der von mir in meinem Entwurfe einer Molecularphysik (S. 189) angegebenen analog ist, und die darauf beruht, dass die Zahl der sich an einen Massenkern anlagernden Aethertheilchen kleiner ist, als die Zahl der einem Aethertheilchen des freien Raumes zunächststehenden. Cauchy hat in seinem Mémoire sur la dispersion de la lumière (§ 9 p. 191) auch das Gesetz angegeben, nach welchem sich die gegenseitige Abstossung der Aethertheilchen regelt, er hat nämlich gefunden, dass sie abnimmt wie die vierte Potenz der Entfernung wächst. Man hätte demnach alles, was man zur Ableitung. der Molecularerscheinungen braucht, und es wäre nur noch die Constantenbestimmung übrig. Denn setzt man:

- 1) Massentheilchen und Massentheilchen ziehen sich mit einer Kraft an, welche dem Quadrate der Entfernung umgekehrt proportional ist (Newton'sches Gesetz), und
- 2) die Aethertheilchen stossen sich mit einer Kraft ab, die im umgekehrten Verhältniss zum Biquadrate der Entfernung steht (Cauchy'sches Gesetz),

so bleibt nur die Wirkung zwischen Aether und Massentheilchen zu suchen übrig. Diese Wirkung muss eine Anziehung sein, denn sonst gäbe es nach dem oben angeführten Satze III. keine porösen Körper, nur muss die Zahl der sich um ein schweres Atom gruppirenden Aether theilchen eine kleine sein, und ausserdem nimmt diese Beziehung ab, wie das Biquadrat der Entfernung wächst, weil nach I. b) die Dynamiden auf den ihnen fern stehenden Aether des allgemeinen Raumes ohne Einfluss sein müssen.

In meiner mehrerwähnten Abhandlung bin ich von dem Satze ausgegangen, dass alle einfachen Kräfte in der Natur abnehmen wie das Quadrat der Entfernung wächst, und da hiebei auch die gegenseitige Abstossung der Aethertheilchen, für welche Cauchy das Biquadrat gefunden hat, eingeschlossen ist, so haben wir hier allerdings einen Widerspruch, allein es gibt doch Verhältnisse, welche darauf hinzudeuten scheinen, dass auch bei Zugrundelegung meiner Annahme den von Cauchy aufgestellten Bedingungen Genüge geleistet werden kann.

Bezeichnet man die Menge materieller Substanz eines Theilchens aus der Umgebung eines zunächst betrachteten mit m, sind  $\alpha$ ,  $\beta$ ,  $\gamma$  die Winkel, welche die Verbindungslinie beider Theilchen mit den Coordinatenaxen machen, ist ferner f(r) die von der Entfernung r abhängige Anziehung oder Abstossung, so ist für den Ruhezustand:

> $S(m \cos \alpha f(r)) = 0$   $S(m \cos \beta f(r)) = 0$  $S(m \cos \gamma f(r)) = 0$

Nimmt man nun an, das eingeschlossene Theilchen werde aus der Ruhelage entfernt und bedeuten  $\Delta \xi$ ,  $\Delta \eta$ ,  $\Delta \zeta$  die Componirenden der Verschiebung,  $r(1 + \varepsilon)$  die nunmehrige Entfernung zweier Theilchen, so bekommt Cauchy (S. 4 Gleichung 16) als Werthe der das Theilchen in die Gleichgewichtslage zurückführenden Kraft:

$$\frac{\partial^2 \xi}{\partial t^2} = S \left\{ m \left( \cos \alpha + \frac{\Delta \xi}{r} \right) \frac{f(r(1+\varepsilon))}{1+\varepsilon} \right\}$$
$$\frac{\partial^2 \eta}{\partial t^2} = S \left\{ m \left( \cos \beta + \frac{\Delta \eta}{r} \right) \frac{f(r(1+\varepsilon))}{1+\varepsilon} \right\}$$
$$\frac{\partial^2 \xi}{\partial t^2} = S \left\{ m \left( \cos \gamma + \frac{\Delta \xi}{r} \right) \frac{f(r(1+\varepsilon))}{1+\varepsilon} \right\}$$

wobei

 $1+i = \left[\left(1+\frac{2}{r}\left(\cos\alpha\ \Delta\xi+\cos\beta\ \Delta\eta+\cos\gamma\ \Delta\xi\right)+\frac{1}{r^2}\left(\Delta\xi^2+\Delta\eta^2+\Delta\xi^2\right)\right)\right]^{\frac{1}{2}}$ 

Diese Gleichungen lassen sich als das Fundament betrachten, auf denen das ganze Werk Cauchy's beruht.

Als Bedingung für das Ausbleiben der Farbendispersion im Aether des allgemeinen Raumes findet nun Cauchy (S. 190 Gleichung 26), dass

$$f(r) = \frac{-H}{r^4},$$

wenn H eine Constante bedeutet und das Zeichen - eine gegenseitige Abstossung der Aethertheilchen angibt.

Demzufolge wird

$$f(r(1 + \varepsilon)) = \frac{-H}{r^{1}(1 + \varepsilon)^{4}}$$

Nimmt man an, es sei

$$f(r)=\frac{-H}{r^n},$$

wenn n eine beliebige ganze positive Zahl bedeutet, und berücksichtigt man, abweichend von Cauchy, der bei den ersten Potenzen von 25,  $\Delta \eta$ ,  $\Delta \zeta$  stehen bleibt, auch die höheren Potenzen dieser Grössen, so erhält man nachstehende Hauptgleichung:

Zeitschrift f. Mathematik u. Physik XIII, 3.

 $+ \cos\beta^2 \Delta\xi \Delta\eta^2 + \cos\gamma^2 \Delta\xi \Delta\xi^2 + 2\cos\alpha \cos\beta \Delta\xi^2 \Delta\eta + 2\cos\alpha \cos\gamma \Delta\xi^2 \Delta\xi$  $+ 2\cos\beta \cos\gamma \Delta\xi \Delta\eta \Delta\xi) \Big] + \cdots \Big\}$ 

Wechselt man die Ausdrücke  $\cos \alpha$ ,  $\cos \beta$ ,  $\cos \gamma$ ,  $\Delta \xi$ ,  $\Delta \eta$ ,  $\Delta \zeta$  mit einander aus, so erhält man die Werthe von  $\frac{\partial^2 \eta}{\partial t^2}$ ,  $\frac{\partial^2 \zeta}{\partial t^2}$ , deren Gleichungen ich im Interesse des Raumersparnisses weglasse.

Die Vertheilung des Aethers im allgemeinen Raume, die zu wissen zur genauen Berechnung der Werthe von  $\frac{\partial^2 \xi}{\partial t^2}$ ,  $\frac{\partial^2 \eta}{\partial t^2}$ ,  $\frac{\partial^2 \zeta}{\partial t^2}$  nothwendig ist, kennen wir allerdings nicht, es bleibt aber kaum eine andere Annahme übrig, als die, dass diese Vertheilung eine regelmässige sei. Sind ausserdem die Aethertheilchen kleine Kugeln, die nach allen Richtungen in gleicher Weise thätig sind, so muss es möglich sein, durch ein solches Aethertheilchen ein rechtwinkliges Axensystem so zu legen, dass die um die eine Axe stattfindende Gruppirung des Aethers sich bei den andern wiederholt, dass die Aethertheilchen sich etwa so um das den Anfangspunkt der Coordinaten bildende herum lagern, wie die Ecke eines tesseralen Krystalles um dessen Mittelpunkt. Ist dieses richtig, und befindet sich ein Aethertheilchen auf der einen Seite einer Axe, so muss auf der entgegengesetzten Seite in der gleichen Entfernung von dem Ursprunge wieder ein Theilchen sein, und die Gruppirung um die eine Axe, sie möge sein, welche immer sie wolle, wiederholt sich bei den beiden andern. Bezeichnet man die Winkel, welche die Verbindungslinie eines Aethertheilchens und des Coordinatenanfangspunktes mit den drei Axen machen, mit a, b, c, geben also cos a, cos b, cos c die Lage dieses Theilchens, so muss sich auch ein Theilchen vorfinden, das auf der andern Seite der Z-Axe gelegen durch  $\cos a$ ,  $\cos b$ ,  $-\cos c$  bestimmt wird. Weitere zwei Theilchen werden bestimmt durch cos a, - cos b, cos c und cos a, -cos b, -cos c und jenseits des Anfangspunktes sind wieder vier Theilchen, deren Lage bestimmt wird durch

| <br>cos a, | cos b,   | cos c    |
|------------|----------|----------|
| <br>cos a, | cos b,   | cos c    |
| <br>cos à, | — cos b, | cos c    |
| <br>cos a, | — cos b, | — cos c. |

Bilden diese acht Theilchen je eine Gruppe auf der positiven und auf der negativen Seite der X-Axe, so müssen auch solche Gruppen um die beiden andern Axen vorhanden sein. Tauscht man daher a, bund c ordnungsgemäss aus, so erhält man:

A. für die um die V-Axe stehenden Gruppen

#### Von Prof. Dr. WITTWER.

|            | cos c,              | — cos a,   | — cos b  |
|------------|---------------------|------------|----------|
|            | $-\cos c$ ,         | cos a,     | cos b    |
|            | $-\cos c$ ,         | cos a,     | — cos b  |
|            | $-\cos c$ ,         | - cos a,   | cos b    |
|            | $-\cos c$ ,         | cos a,     | — cos b. |
| <b>B</b> . | für die um die Z-Ax | e stehende | Gruppen  |
|            | cosb,               | cos c,     | cos a    |
|            | cos b,              | cos c,     | - cos a  |
|            | cos b,              | — cos c,   | cos a    |
|            | cos b,              | — ćos c,   | — cos a  |
|            | $-\cos b$ ,         | cos c,     | cos a    |
|            | _                   | cos c,     |          |
|            | $-\cos b$ ,         | $\cos c$ , | cos a    |
|            | -                   | - cos c,   |          |
|            | •                   |            |          |

Die Glieder der ersten Verticalreihe beziehen sich insofern auf die Axe der X, als sie die Cosinusse der Winkel angeben, welche die verschiedenen Verbindungslinien der zum ganzen Systeme gehörigen Theilchen und des Anfangspunktes der Coordinaten mit der X-Axe machen. Man hat also diese verschiedenen Cosinusse in der obigen Formel an die Stelle von  $\cos \alpha$  zu setzen. Ebenso repräsentiren die Glieder der zweiten und dritten Verticalreihe den  $\cos \beta$  und  $\cos \gamma$  der Formel. Mit dem Worte System bezeichne ich die Gesammtheit der zusammengehörigen Aethertheile, etwa analog der Bezeichnung, die man bei den Linsen der Mikroskope benutzt.

Im Allgemeinen machen 24 Aethertheilchen ein System aus, doch sind auch Specialfälle vorhanden, in denen nur  $\frac{24}{2}$ ,  $\frac{24}{3}$ ,  $\frac{24}{4}$  Theilchen vorkommen. Ist z. B. eine der vorstehenden Grössen, etwa cos c = 0, so dentet der Rest auf 12 Theilchen hin, die sich in den Ebenen der XY, XZ und YZ selbst befinden, wie dieses bei den Ecken der Fall ist, welche die charakteristischen Kanten des Pentagondodecaëders abschliessen. Wird auch cos b = 0, so werden noch 6 Theilchen angegeben, die in den Axen selbst liegen (Octaëderecke). Ist cos a = cos b = cos c, so erhält man 8 Theilchen, deren Gruppirung die der Würfelecke ist. Ist cos c = 0 und cos a = cos b, so erhält man die 12 Ecke der Combination von Würfel und Octaëder. Das Rhombendodecaëder besteht aus zwei Systemen, die auch schon die verschiedene Entfernung der Ecke von dem Mittelpunkte nothwendig macht. Das eine System umfasst die 8 Würfelecke, das andere die 6 Octaëderecke.

Nimmt man die vorstehende Anordnung als Grundlage, so erhält man aus der Hauptgleichung für je ein System, wenn man nach Cauchy n = 4 setzt, und mit p die Zahl der Glieder des Systems bezeichnet, da

$$S \cos \alpha = 0$$
  
$$\frac{\partial^2 \xi}{\partial t^2} = \frac{-Hm}{r^5} \left( \frac{-5p}{3} \left( \cos a^2 + \cos b^2 + \cos c^2 \right) \Delta \xi - p \Delta \xi \right)$$
  
$$= \frac{Hm}{r^5} \left( \frac{5}{3} - 1 \right) p \Delta \xi.$$

Wir haben also eine Kraft, deren Werth positiv ist, und die abnimmt, wie die fünfte Potenz der Entfernung wächst.

Nimmt man nach meiner Voraussetzung n = 2, so wird S cos  $\alpha = 0$ 

$$S[(n+1) (\cos \alpha^2 \Delta \xi + \cos \alpha \cos \beta \Delta \eta + \cos \alpha \cos \gamma \Delta \xi) - \Delta \xi] = \left[\frac{3p}{3} (\cos \alpha^2 + \cos b^2 + \cos c^2) - p\right] \Delta \xi = 0.$$

Dieses Glied fällt also aus. Ebenso ist es mit dem nächstfolgenden Gliede, weil seine sämmtlichen Theile ungerade Potenzen von Cosinussen enthalten. Das zweitnächste Glied (das mit  $\frac{1}{r^5}$  multiplicirt ist) verschwindet nicht, weil in ihm die Producte

$$\frac{15}{2}\cos\alpha^{2}\,\Delta\xi\,(\Delta\xi^{2}+\Delta\eta^{2}+\Delta\xi^{2})-\frac{35}{2}\cos\alpha^{1}\,\Delta\xi^{3}-\frac{35}{2}\cdot3\,\Delta\xi\,(\cos\alpha^{2}\cos\beta^{2}\,\Delta\eta^{2}+\cos\beta^{2}\,\Delta\eta^{2}+\cos\beta^{2}\,\Delta\eta^{2}+\cos\beta^{2}\,\Delta\eta^{2}+\cos\beta^{2}\,\Delta\eta^{2}+\cos\beta^{2}\,\Delta\eta^{2}+\cos\beta^{2}\,\Delta\eta^{2}+\cos\beta^{2}\,\Delta\eta^{2}+\cos\beta^{2}\,\Delta\eta^{2}$$

vorkommen, und es wird, wenn wieder p die Zahl der zum System gehörenden Aethertheilchen bedeutet, die Wirkung des Systemes

$$\frac{\partial^{2}\xi}{\partial t^{2}} = -\frac{Hm}{r^{5}} \left( \frac{15}{2} \cdot \frac{p}{3} \Delta \xi \left( \Delta \xi^{2} + \Delta \eta^{2} + \Delta \xi^{2} \right) - \frac{35}{2} \cdot \frac{p}{3} \left( \cos a^{4} + \cos b^{4} + \cos c^{4} \right) \Delta \xi^{3} - \frac{35}{2} \cdot p \Delta \xi \left( \cos a^{2} \cos b^{2} + \cos a^{2} \cos c^{2} + \cos b^{2} \cos c^{2} \right) \left( \Delta \eta^{2} + \Delta \xi^{2} \right) - \frac{3}{2} p \Delta \xi \left( \Delta \xi^{2} + \Delta \eta^{2} + \Delta \xi^{2} \right) + \frac{15}{2} \cdot \frac{p}{3} \cdot \Delta \xi \left( \Delta \xi^{2} + \Delta \eta^{2} + \Delta \xi^{2} \right) \right) + \dots$$

$$= \frac{Hmp \Delta \xi}{r^{5}} \left( -\frac{7}{2} \left( \Delta \xi^{2} + \Delta \eta^{2} + \Delta \xi^{2} \right) + \frac{35}{6} \left( \cos a^{4} + \cos b^{4} + \cos c^{4} \right) \Delta \xi^{2} + \frac{35}{6} \left( \cos a^{2} \cos b^{2} + \cos a^{2} \cos c^{2} + \cos b^{2} \cos c^{2} \right) \left( \Delta \eta^{2} + \Delta \xi^{2} \right) \right) + \dots$$

Um das Aethertheilchen, das oben als Anfang der Coordinaten genommen wurde, und das sich irgendwo im allgemeinen Raume befinden mag, lagert nun eine unendliche Anzahl anderer, die sich alle zu Systemen von 6, 8, 12 oder 24 Gliedern vereinigen lassen. Bei jedem einzelnen dieser Systeme heben sich die ersten Glieder der Hauptgleichung auf, also auch für alle zusammen. Das mit  $\frac{1}{r^5}$  versehene Glied verschwindet im Allgemeinen für jedes System nicht und wenn mehrere derselben zusammenwirken, so wird das Verschwinden immer unwahrscheinlicher. Bezüglich der Frage, ob dieses Glied einen positiven, ob

einen negativen Werth habe, ist darauf aufmerksam zu machen, dass die Vertheilung des Aethers jedenfalls eine Gleichgewichtslage desselben darstellen muss, und dass bei der geringsten Verschiebung eines Theilchens nothwendig eine Thätigkeit auftritt, welche die Gleichgewichtslage wieder herzustellen sucht.

Es hat also  $\frac{\partial^2 \xi}{\partial t^2}$  einen positiven Werth wie bei Cauchy, und die von ihm repräsentirte Kraft nimmt für jedes System ebenfalls ab wie die fünfte Potenz der Entfernung wächst. Diese Abnahme ist eine sehr rasche, und es werden daher nicht allzuviele Systeme in der Natur in's Spiel kommen, denn für die ferneren wird die Wirkung bald verschwinden.

Was für  $\frac{\partial^2 \xi}{\partial t^2}$  gilt, findet selbstverständlich *mutatis mutandis* auch auf  $\frac{\partial^2 \eta}{\partial t^2}$  und  $\frac{\partial^2 \xi}{\partial t^2}$  seine Anwendung.

Geht die Verschiebung in der Richtung einer Axe vor sich, so kann nicht wohl etwas anderes eintreten als das, was man Polarisation des Lichtstrahles nennt, und es ergibt sich

$$\frac{\partial^2 \xi}{\partial t^2} = \frac{A \Delta \xi^3}{r^5},$$

wenn A eine Constante bedeutet.

Diese Gleichung unterscheidet sich von der Cauchy'schen dadurch, dass die beschleunigende Kraft nicht der ersten, sondern der dritten Potenz der Verschiebung proportional ist. Dass auch im letzteren Falle Schwingungen um die Gleichgewichtslage stattfinden müssen, ist offenbar und ebenso haben wir auch Interferenzen und Beugungen des Lichtes, es könnte aber schon sein, dass es die eine oder andere Lichterscheinung gibt, die mir bis jetzt entgangen ist, und die sich mit der vorstehenden Annahme nicht verträgt.

Nach dem, was ich in meinem Entwurfe einer Molecularphysik (S. 196) über die Construction der Gase gesagt habe, ist es leicht, sich die Erscheinung zu erklären, warum die Gase die Eigenschaft des freien Aethers, die Farben nicht zu zerstreuen, theilen, denn die Vertheilung der einzelnen Aetherkugeln in den Gasen kann sich von der des Aethers im allgemeinen Raume nicht wesentlich unterscheiden, solange jedes Massenatom eine grosse Aetherhülle besitzt, solange die Dichtigkeit der Luft nicht bedeutend ist. Es hat dieses jedoch seine Gränzen, und bei dichten Gasarten wird auch eine Farbendispersion eintreten müssen. Bei den tropfbar-flüssigen und den festen Körpern ist die Vertheilung der Aetherkugeln um den Massenkern eine andere, es verschwinden die ersten Glieder der Hauptgleichung nicht mehr, und die Farbenzerstreuung tritt ein. Bei den farbenzerstreuenden Körpern wäch die in die Gleichgewichtslage zurückführende Kraft nicht wie die dritte, sondern wie die erste Potenz der Verschiebung.

Auf die Bestimmung des Aethergesetzes lässt Cauchy eine Untersuchung über die Dichtigkeit des Aethers im Raume und eine Vergleichung der mittleren Aetherdichtigkeit und der Dichtigkeit der schweren Atome auf der Erde folgen. Er findet (S. 192 Gleichung 35) die Zahl  $\varrho$  der in einem Kubikmeter enthaltenen Aetherkugeln

$$\varrho = 22968 \ (10)^{12} \ \frac{1}{H},$$

wenn H die in Metern ausgedrückte Endgeschwindigkeit angibt, welche ein 1 Meter von einem andern entferntes Aethertheilchen unter dem Einflusse desselben in einer Secunde bekommt. Das Verhältniss der Aetherdichtigkeit  $\rho$  zur Dichtigkeit D der schweren Atome findet Cauch y in Gleichung 40

$$\frac{\varrho}{D} = 62448 \ (10)^{13} \ \frac{G}{H}$$

wenn G die Anziehungsconstante zweier schweren Theilchen, die in 1 Meter Entfernung sind, vorstellt.

Was das erste dieser beiden Resultate anbelaugt, so müssen wir uns in Ermangelung aller weiteren Anhaltspunkte mit demselben zufrieden stellen, doch glaube ich, dass es nicht unzukömmlich wäre, wenn *H* nicht einen sehr geringen, sondern einen etwas beträchtlichen Werth hätte, damit der Aetherkugeln nicht allzuviele werden.

Bezüglich der zweiten Gleichung ist es unbedingt nothwendig, dass der Bruch  $\frac{\varrho}{D}$  keinen gar grossen Werth hat, denn nach dem, was ich oben über die Aetherdichtigkeit der Dynamidenhüllen angeführt habe, muss die Zahl der ein schweres Atom umgebenden Aethertheilchen eine beschränkte sein, und aus diesem Grunde darf der Bruch  $\frac{\varrho}{D}$  keinen grossen Werth bekommen. Folgt man dem Satze, dass die Aethertheilchen sich der vierten Potenz der Entfernung umgekehrt proportional abstossen, so muss H im Verhältniss zu G sehr gross gesetzt werden. Bei der Annahme, dass die Aethertheilchen sich mit einer Kraft abstossen, die dem Quadrate der Entfernung umgekehrt proportional ist, ist der erwähnte Satz an und für sich Grundbedingung (mein Entwurf u. s. w. S. 179 und 180). Die Schwere muss gegen die Molecularwirkung ausserordentlich klein sein.

Nimmt man an, es stossen sich die Aethertheilchen der vierten Potenz der Entfernung umgekehrt proportional ab, so wird sich um ein im allgemeinen Raume befindliches Massentheilchen eine Aetherhülle bilden, die sich nach der Abstossung von Acther und Aether und der Digitized by

224

Anziehung zwischen Aether und schweren Theilchen regelt. Folgt die Anziehung, was man nach dem oben sub I. b) Gesagten voraussetzen darf, dem nämlichen Gesetze wie die Aetherabstossung, so wird eine auf solche Weise construirte Dynamide auf ein fernstehendes Aethertheilchen ohne Einwirkung sein, und setzt man voraus, dass die Zahl der Aetherkugeln einer Dynamide eine beschränkte sei, so ist nicht einzusehen, warum sich nicht unter diesen Verhältnissen gerade so gut poröse Körper und Krystalle bilden sollten, als nach meinen früheren Annahmen. Es bleibt noch übrig, für das Zusammenwirken der Massentheilchen eine zweckmässige Norm zu Grunde zu legen, und welche diese sei, darüber lässt das Newton'sche Schweregesetz keinen Zweifel walten. Diese Annahme hat vor der in meinem "Entwurfe u. s. w." vorgetragenen Theorie den grossen Vorzug, dass die Körper zu ihrer Bildung nicht in demselben Maasse den äussern Aetherdruck nothwendig haben, und gerade dieser dürfte wohl manchem Mathematiker mehr als anstössig sein. Andererseits hat die Theorie den nicht unbedeutenden Nachtheil, dass man das Schweregesetz nicht recht rein herausbringt. Nach der Entwicklung, die ich in meinem "Entwurfe u. s. w." (S. 179 Gleichung 1-4) gegeben habe, bekäme man, wenn man sich der dort benützten Bezeichnung bedient, als gegenseitige Einwirkung zweier Körper

$$W = \left(-\frac{c}{r^2} - \frac{b^2}{ar^4}\right) mm_1,$$

also zwei Anziehungen, von denen die eine dem Quadrate, die andere dem Biquadrate der Entfernung umgekehrt proportional ist.

Ich habe nie etwas davon gehört, dass bei irgend einer Erscheinung in der Sternenwelt neben der Schwere eine Spur von einer Anziehung beobachtet worden wäre, der man die letztere Wirkung zuschreiben könnte. Bei der Ebbe und Fluth hat man eine Kraft, die im umgekehrten Verhältnisse zum Kubus der Entfernung steht, alsbald gefunden. Sollte es wohl möglich sein, dass die andere so lange verborgen bleiben konnte? Allerdings nimmt dieselbe noch etwas schneller ab, aber es ist dabei nicht zu übersehen, dass  $\frac{a^2}{b}$  ohne Vergleich grösser sein muss als c.

Geht man von dem Satze aus, dass die Aetherabstossung dem Quadrate der Entfernung umgekehrt proportional sei, so ist die weitere Annahme, dass auch die sogenannten schweren Theile sich gegenseitig nach dem nämlichen Gesetze abstossen, unbedingt nothwendig, denn die Grösse  $\left(c - \frac{a^2}{b}\right)$  muss gegen  $\frac{a^2}{b}$  ausserordentlich klein sein, und da sie dem Schweregesetze gemäss (nach meiner bisherigen Bezeichnung) negativ sein muss, so ist c positiv und um ein Minimum kleiner als  $\frac{a^2}{L}$ . Bei der relativen Grösse der Molecularanziehungen und Abstossungen ist es sehr leicht denkbar, dass bei durch die Zusammensetzung bedingten Differenzen in den Wirkungen bald (für uns) bedeutende Härtegrade u. dgl. der Körper eintreten können. Eine andere Frage ist die, ob unter meinen Voraussetzungen die Weltkörper auf ihrem Wege nicht allzusehr gehemmt werden. In dieser Beziehung verlasse ich mich darauf, dass man sich schon seit langer Zeit mit dem Gedanken befreundet hat, dass die Weltkörper ihren Weg machen können, ohne sonderlich gehemmt zu werden, obwohl sie durch einen Raum müssen, von dem nach Canchy jedes Kubikmillimeter von Millionen von Aethertheilchen besetzt ist. Ein Vorzug meiner Theorie dürfte wohl darin zu suchen sein, dass sie, ohne mit dem Schweregesetze in die mindeste Collision zu kommen, keine anderen Wirkungen voraussetzt, als man jeden Tag allenthalben zu beobachten Gelegenheit hat. Dass auch in der Sternenwelt polare Wirkungen auftreten, ist nicht neu; schon Bessel hat bei der Beschreibung des Halley'schen Kometen von 1836 darauf aufmerksam gemacht.

Es bleibt noch die Frage zu beantworten übrig, ob es nicht möglich wäre, dass ein System von Aethertheilchen ein von diesen eingeschlossenes ebenfalls mit einer Kraft in die Gleichgewichtslage zurückzuführen strebe, welche abnimmt wie die fünfte Potenz der Entfernung wächst, wenn die ursprüngliche Abstossung zweier Theilchen der ersten oder dritten Potenz umgekehrt proportional ist.

Im ersten dieser beiden Fälle müssten sich die ersten vier Glieder der Hauptgleichung auf Null reduciren, das fünfte dagegen bleiben; im zweiten Falle müssten die ersten zwei Glieder verschwinden, das dritte dagegen nicht. Man sieht sehr leicht, dass beides nicht geschieht, denn wenn man n = 1 beziehungsweise n = 3 setzt, so verschwindet das zweite Glied nicht, wohl aber in beiden Fällen das mit  $\frac{1}{r^5}$  multiplicirte, weil seine sämmtlichen Theile ungerade Potenzen von Cosinussen als Factoren haben.

Nimmt man an, dass die Aetherabstossung einer höheren Potenz der Entfernung umgekehrt proportional sei als der vierten, so kann augenscheinlich die das Aethertheilchen in die Gleichgewichtslage zurückführende Kraft nicht der fünften Potenz umgekehrt proportional sein, wie es die Cauchy'sche Gleichung verlangt, und ebenso ist es bei der Annahme irgend eines andern Gesetzes. Wir haben daher nur die Wahl zwischen der zweiten und der vierten Potenz. Welche von den beiden Annahmen die richtige sei, wird die Zukunft lehren.

Digitized by Google

### VIII.

# Ueber Isophoten

### (Linien gleicher Lichtintensität).

#### Von

#### Dr. L. BURMESTER,

Lehrer der Physik und der darstellenden Geometrie am deutschen Realgymaasium zu Lodz in Russisch-Polen.

#### Erster Theil.

#### § 1.

Die Linien gleicher Lichtintensität, welche ich der Kürze wegen mit dem Namen Isophoten\*) bezeichne, sind bis jetzt noch sehr wenig analytisch untersucht worden. Ich habe daher diese Linien zum Gegenstande meiner gegenwärtigen Untersuchung gemacht. Hierbei habe ich viele interessante Resultate erhalten, welche ich in einem besonderen Werke zu veröffentlichen gedenke. Da aber das Zeichnen vieler Tafeln viel Zeit und Musse erfordert, so werde ich hier vorläufig einige Resultate meiner Studien mittheilen.

Nehmen wir an, eine Fläche sei von parallelen Lichtstrahlen beleuchtet, deren Intensität *i* constant, also unabhängig von der Länge der Lichtstrahlen ist, und bezeichnen wir mit L die Beleuchtung oder Lichtstärke eines Flächenelementes, mit  $\lambda$  den Winkel, welchen die Normale dieses Elementes mit den parallelen Lichtstrahlen bildet, so ist bekanntlich

#### $L = i \cos \lambda$ .

Die Gesammtheit aller parallelen Lichtstrahlen, welche eine Fläche beleuchten, nennen wir ein Strahlenbündel; und als Richtung desselben nehmen wir die Gerade, welche den Lichtstrahlen parallel durch den Coordinatenanfang der beleuchteten Fläche geht.

Sind  $v_x$ ,  $v_y$ ,  $v_z$  die Winkel, welche die Strahlenrichtung mit den rechtwinkeligen Coordinatenaxen der x, y, z bildet, sind analog

Digitized by GOOGLE

<sup>\*)</sup> L. Burmester, Elemente einer Theorie der Isophoten. (Diss.) Gött. 1865.

 $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_z$  die Winkel, welche die Normale eines Flächenelementes mit diesen Axen einschliesst, so ist nach einem Satze der analytischen Geometrie

 $\cos \lambda = \cos \nu_x \cos \sigma_x + \cos \nu_y \cos \sigma_y + \cos \nu_z \cos \sigma_z.$ Ist die beleuchtete Fläche durch die Gleichung

$$f(x, y, z) = 0$$

gegeben, dann haben wir

$$\cos \sigma_{x} = \frac{\frac{\partial F}{\partial x}}{\sqrt[3]{\left(\frac{\partial F}{\partial x}\right)^{2} + \left(\frac{\partial F}{\partial y}\right)^{2} + \left(\frac{\partial F}{\partial z}\right)^{2}}},$$

$$\cos \sigma_{y} = \frac{\frac{\frac{\partial F}{\partial y}}{\sqrt[3]{\left(\frac{\partial F}{\partial x}\right)^{2} + \left(\frac{\partial F}{\partial y}\right)^{2} + \left(\frac{\partial F}{\partial z}\right)^{2}}},$$

$$\cos \sigma_{z} = \frac{\frac{\frac{\partial F}{\partial z}}{\sqrt[3]{\left(\frac{\partial F}{\partial x}\right)^{2} + \left(\frac{\partial F}{\partial y}\right)^{2} + \left(\frac{\partial F}{\partial z}\right)^{2}}},$$

Hiernach ist die Lichtstärke irgend eines Flächenelementes dieser Fläche durch die Gleichung

$$L = i \cdot \frac{\cos v_x \frac{\partial F}{\partial x} + \cos v_y \frac{\partial F}{\partial y} + \cos v_z \frac{\partial F}{\partial z}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2}} \dots \dots I.$$

bestimmt. Diese Gleichung, welche eine Fläche repräsentirt, ist die Grundformel der Isophoten, die durch ein Bündel paralleler Lichtstrahlen erzeugt werden. Geben wir dem L successive verschiedene Werthe, welche die Grenzen +i und -i nicht überschreiten dürfen; dann sind die Durchschnitte der beiden Flächen

$$L = i \cdot \frac{\cos v_x \frac{\partial F}{\partial x} + \cos v_y \frac{\partial F}{\partial y} + \cos v_z \frac{\partial F}{\partial z}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2}}}{F(x, y, z) = 0}$$

die Isophoten der letzteren Fläche. — Je nachdem wir aus diesen beiden Gleichungen x, y oder z eliminiren, erhalten wir die Gleichungen für die Projectionen der Isophoten in den Coordinateneben yz, xz oder xy. Da es für unseren Zweck nur erforderlich ist, die Lichtstärke relativ zu bestimmen, so nehmen wir die Intensität i des Strahlenbündels gleich der Einheit an; dann ist

# Von Dr. L. BURMESTER.

$$L = \frac{\cos v_x \frac{\partial F}{\partial x} + \cos v_y \frac{\partial F}{\partial y} + \cos v_z \frac{\partial F}{\partial z}}{\sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2}} \dots \dots \Pi.$$

Um nun ein vollständiges regelmässiges Isophotensystem einer Fläche zu erhalten, mittelst dessen die Auftragung der Farbentöne leicht ausgeführt werden kann, bestimmen wir eine beliebige, aber ausreichende Anzahl Isophoten, so dass der Lichtstärkenunterschied je zwei auf einander folgender Isophoten gleich ist.

Wir geben daher dem L der Reihe nach die Werthe

$$L = +1, +\frac{n-1}{n}, +\frac{n-2}{n}, \dots +\frac{2}{n}, +\frac{1}{n}, 0, -\frac{1}{n}, -\frac{2}{n}, \dots -\frac{n-1}{n}, -1^{*}).$$

Diese Werthenreihe, in welcher n eine ganze positive Zahl bezeichnet, liefert uns ein regelmässiges, aus 2n + 1 Isophoten bestehendes Isophotensystem.

Bezeichnen wir mit  $\alpha$  und  $\beta$  beziehungsweise die Tangenten der Winkel, welche die Projection der Strahlenrichtung in der zx- und xy-Ebene mit der z-Axe bildet, ist ferner die Gleichung der beleuchteten Fläche in der Form

$$z = f(x, y)$$

gegeben, so ergiebt sich aus der Gleichung II.

$$L = \frac{1 - \alpha \frac{\partial z}{\partial x} - \beta \frac{\partial z}{\partial y}}{\sqrt{1 + \alpha^2 + \beta^2}} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \quad . \quad . \quad III.$$

Diese Gleichung, die nur noch die Coordinaten x, y in sich trägt, liefert uns die Projectionen der Isophoten in der xy-Ebene, d. h. im Grundriss. — Können wir die Projectionen der Isophoten im Grundriss ermitteln, und ist die beleuchtete Fläche construirbar, so können wir mittelst der darstellenden Geometrie die Isophotenprojectionen im Aufriss und Seitenriss stets construiren.

Die Gleichung III. können wir noch vereinfachen, wenn wir das Coordinatensystem um die z-Axe drehen, so dass die positive x-Axe mit der Grundrissprojection der positiven Strahlenrichtung zusammenfällt. Hierdurch wird die Allgemeinheit nicht beschränkt. Bezeichnen wir mit  $\nu$  den Winkel, welchen die positive Strahlenrichtung mit der positiven z-Axe bildet, so wird

<sup>\*)</sup> In der Praxis genügt im Allgemeinen n = 10 für die Auftragung der Farbentöne.

v

$$\begin{array}{l} \alpha = - \ tan \\ \beta = 0, \end{array}$$

und folglich

$$L = \frac{\cos \nu + \sin \nu \cdot \frac{\partial z}{\partial x}}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}} \dots \dots IV.$$

Von allen Isophoten des ganzen Systems zeichnen sich die, welche der Lichtstärke

$$L=0, cos v, +1$$

entsprechen, besonders aus.

Für L = 0 erhalten wir aus IV.

$$1 + \tan v \cdot \frac{\partial z}{\partial x} = 0.$$

Diese Gleichung giebt uns die Grundrissprojection der Isophoten, welche die Grenze zwischen Licht und Schatten bildet. Wir wollen sie deshalb mit dem Namen Grenzisophoten bezeichnen.

Setzen wir  $L = \cos \nu$ , so ergiebt sich aus der genannten Gleichung

$$\left(\frac{\partial z}{\partial x}\right)^{2} \left[1 - \tan^{2}\nu\right] + \left(\frac{\partial z}{\partial y}\right)^{2} - 2 \tan\nu \frac{\partial z}{\partial x} = 0.$$

Diese Gleichung liefert die Grundrissprojection der Isophote der Lichtstärke, welche auf der xy-Ebene auftritt.

Specielle Betrachtungen zeigen, dass wir im Allgemeinen nach der Gestalt dieser Isophote oft die Form des ganzen Isophotensystems beurtheilen können. — Wir wollen diese Isophote desswegen die Typusisophote nennen.

Die Lichtstärke  $L = \pm 1$  kann nach der Gleichung IV. wie man leicht erkennt nur eintreten, wenn

$$\frac{\partial z}{\partial x} = \tan v$$
$$\frac{\partial z}{\partial y} = 0$$

ist. — Die Isophote, welche durch diese Doppelgleichung bestimmt ist. wird im Allgemeinen durch einen oder mehrere isolirte Punkte repräsentirt, in denen die grösste positive oder negative Lichtstärke auftritt. — Wir wollen dieselbe daher mit dem Namen Maximalisophote bezeichnen.

Es wird für die Folge von Nutzen sein, wenn wir in die Gleichung IV. statt der rechtwinkeligen Coordinaten die sogenannten cylindrischen Coordinaten einführen, welche durch die Gleichungen

$$\begin{aligned} x &= r \cos \theta \\ y &= r \sin \theta \end{aligned}$$

definirt sind. -- Dann ist

# Von Dr. L. BURMESTER.

$$r = \sqrt{x^{2} + y^{2}},$$
  

$$\theta = \arctan\left(\frac{y}{x}\right);$$
  

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial x} = \frac{\partial z}{\partial r} \cos \theta - \frac{\partial z}{\partial \theta} \frac{\sin \theta}{r},$$
  

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial z}{\partial \theta} \frac{\partial \theta}{\partial y} = \frac{\partial z}{\partial r} \sin \theta + \frac{\partial z}{\partial \theta} \frac{\cos \theta}{r}.$$

Substituiren wir diese Werthe in die Gleichung IV., so erhalten wir

$$L = \frac{\cos \nu + \sin \nu \left[\frac{\partial z}{\partial r}\cos \theta - \frac{\partial z}{\partial \theta}\frac{\sin \theta}{r}\right]}{\sqrt{1 + \left[\frac{\partial z}{\partial r}\right]^2 + \left[\frac{1}{r}\frac{\partial z}{\partial \theta}\right]^2}} \quad \dots \quad \nabla.$$

Diese Gleichung liefert die Grundrissprojectionen der Isophoten einer Fläche, deren Gleichung in cylindrischen Coordinaten und in der Form

$$z = f(r, \theta)$$

gegeben ist.

Obgleich die Formel V. weniger einfach ist als die Formel IV., so wird sie uns doch in der Folge wichtige Vortheile bieten. Wir können der Formel V. noch eine andere Gestalt geben, wenn wir

$$\frac{\partial z}{\partial r} = p \cos \omega$$
$$\frac{1}{r} \frac{\partial z}{\partial \theta} = p \sin \omega$$

setzen, worin

$$p^{2} = \left(\frac{\partial z}{\partial r}\right)^{2} + \left(\frac{1}{r} \frac{\partial z}{\partial \theta}\right)^{2}$$
$$tan \ \omega = \frac{\partial z}{r \frac{\partial \theta}{\partial r}} = -\frac{1}{r} \frac{dr}{d\theta}$$

ist. Wir erhalten dann

$$L = \frac{\cos \nu + \sin \nu \cdot p \cdot \cos (\theta + \omega)}{\sqrt{1 + p^2}} \quad \dots \quad \text{VI.}$$

Geometrisch bedeutet p die Tangente des Winkels, welchen die Flächennormale des Punktes z, r,  $\theta$  mit der z-Axe einschliesst,  $\omega$  den Winkel, welchen der Radiusvector r mit der Normale der Durchschnittscurve

$$z = f(r, \theta) z = const.$$

bildet.

#### Die Isophoten der Rotationsflächen.

### § 2.

Die allgemeine Gleichung der Rotationsflächen, welche durch Umdrehung einer einfach- oder doppelt gekrümmten Curve um die z-Axe erzeugt werden, ist in cylindrischen Coordinaten

$$z = f(r).^*)$$

Betrachten wir z als Ordinate und r als willkürliche Abscisse, 50 giebt diese Gleichung die Meridiancurve der Rotationsflächen.

Es ist

$$\frac{\partial z}{\partial r} = f'(r)$$
$$\frac{\partial z}{\partial \theta} = 0.$$

Diese Werthe, in die Gleichung V. gesetzt, liefern

$$L = \frac{\cos \nu + \sin \nu \cdot f'(r) \cdot \cos \theta}{\sqrt{1 + [f'(r)]^2}} \dots \dots \dots 1$$

Dies ist die allgemeine Gleichung der Isophoten<sup>\*\*</sup>) der Rotationsflächen. Hierin ist r der Radiusvector,  $\theta$  die Anomalie, welche von der positiven Strahlenrichtung aus gezählt wird. Die Gleichung 1) giebt für gleiche entgegengesetzte Werthe von  $\theta$  gleiche Werthe für r, das ganze Isophotensystem wird daher durch die Strahlenrichtung symmetrisch getheilt.

Wenn wir die Gleichung 1) auf  $\cos \theta$  reduciren, so wird

$$\cos\theta = \csc\nu \frac{\sqrt{1+[f'(r)]^2}}{f'(r)} \cdot L - \frac{\cot\nu}{f'(r)} \cdot \ldots \cdot 2$$

Hieraus folgt der Satz:

Auf den Parallelkreisen der Rotationsflächen ist die

Grösse cos  $\theta$  eine lineare Function der Lichtstärke L. Bezeichnen wir mit  $\tau$  den Winkel, welchen die Tangente der Meridiancurve (z = f(r)) mit der Axe der r bildet, so ist

$$f'(r) = lan \tau$$
,

and

$$\cos \theta = \csc \nu \cdot \csc \tau \cdot L - \cot \nu \cdot \cot \tau \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 3$$

Betrachten wir die Grössen  $\cos \theta$  und L als rechtwinkelige Coordinaten, so repräsentirt diese Gleichung eine Gerade, deren Abschnitte von den entsprechenden Axen durch die Grössen —  $\cot v$ .  $\cot \tau$  und

232

<sup>\*)</sup> Hierbei ist vorausgesetzt, dass die Gleichung auf z reducirt werden kann.

<sup>\*\*)</sup> Wir wollen, wenn nichts besonders bemerkt wird, unter Isophoten der Kürze wegen die Projectionen derselben im Grundriss verstehen, ebense unter Strahlenrichtung die Projection derselben im Grundriss.

cos  $v \cos \tau$  gegeben sind. Beide Abschnitte lassen sich leicht construiren. Wenn wir nun dem L die Lichtstärken der Werthenreihe Seite 231 geben, so erhalten wir entsprechende Werthe für  $\cos \theta$ , welche diejenigen Punkte auf einem beliebig angenommenen Parallelkreis vom Radius rbestimmen, in denen jene dem L beigelegte Lichtstärken auftreten. Bestimmen wir nach dieser Angabe auf mehreren beliebig, aber zweckmässig angenommenen Parallelkreisen die Lichtstärken der erwähnten Werthenreihe, dann liefern uns die so erhaltenen Punkte die Isophoten der Fläche.

Zu jedem Parallelkreis gehört ein bestimmter Werth von  $\tau$  und daher entspricht jedem Parallelkreis eine Gerade, mit deren Hülfe wir die Orte gegebener Lichtintensitäten bestimmen können. Wir wollen diese Geraden, deren Lage durch die leicht zu construirenden Werthe cot  $\nu$  cot  $\tau$  und cos  $\nu$  cos  $\tau$  bestimmt ist, die Hülfsgeraden nennen.

Die Construction der Isophoten der Rotationsflächen ist hiernach auf das Problem des Tangentenziehens an die Meridiancurve (z = f(r))zurückgeführt.

Obgleich die Hülfsgeraden durch die Werthe —  $\cot v \cot \tau$  und  $\cos v \cos \tau$ , welche die Abschnitte auf den Axen des  $\cos \theta$  und der L darstellen, gegeben sind, so wollen wir noch eine andere Methode angeben, die den Vortheil bietet, dass wir nicht mit Bestimmungswerthen, wie  $\cot v \cot \tau$ , zu thun haben, die sehr gross werden und die Darstellung auf der begrenzten Zeichnenfläche nicht gestatten. Zu diesem Zweck suchen wir die einhüllende Curve der Hülfsgeraden.

Wir setzen

$$\cos\theta = \eta, \ L = \xi,$$

so ist nach Gleichung 3)

$$\eta = \csc \nu \csc \tau \cdot \xi - \cot \nu \cot \tau.$$

Differenziren wir diese Gleichung nach r, dann erhalten wir

$$0 = -\csc\nu \cdot \cos\tau \cdot \xi + \cot\nu.$$

Durch Elimination der Grösse z ergiebt sich aus diesen beiden Gleichungen die Gleichung der einhüllenden Curve der Hülfsgeraden

$$\frac{\xi^2}{\cos^2\nu}-\frac{\eta^2}{\cot^2\nu}=1.$$

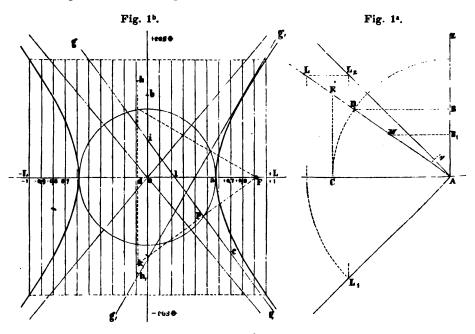
Dies ist die Mittelpunktsgleichung einer Hyperbel, deren halbe Hauptaxe cos  $\nu$  und deren halbe Nebenaxe cot  $\nu$  ist. Diese Hyperbel, an der die Hülfsgeraden Tangenten sind, wollen wir, da sie indirect ein Hülfsmittel bei der Bestimmung dieser Geraden ist, die Hülfshyperbel nennen.

Bekanntlich liegen die Fusspunkte der vom Brennpunkt auf die Hyperbeltangenten gefällten Senkrechten auf der Peripherie des Hauptkreises. Wir können hiernach die Hyperbeltangenten, d. h. die Hülfs-

Ueber Isophoten.

geraden, leicht ziehen, ohne die Hyperbel selbst zu construiren; denn da die Richtungsconstante der Hülfsgeraden nach Gleichung 3)  $\csc \nu . \csc \tau$ ist, so ist die Richtungsconstante der darauf vom Brennpunkte gefällten Senkrechten durch  $\sin \nu \sin \tau$  gegeben.

Wenn wir die Construction der Isophoten der Rotationsflächen ausführen wollen, so haben wir zwei einfache Hülfsfiguren Fig. 1° und Fig. 1° nöthig, die für alle Rotationsflächen gelten, wenn die Strahlenrichtung unveränderlich genommen wird.



Es seien (Fig. 1<sup>a</sup>)  $L_1 A$  und  $L_2 A$  die Projectionen der Strahlenrichtung im Grundriss und im Aufriss, AD gleich der Einheit, und AZsenkrecht auf der Projectionsaxe AC; dann ist, wie man leicht aus der Figur ersieht,

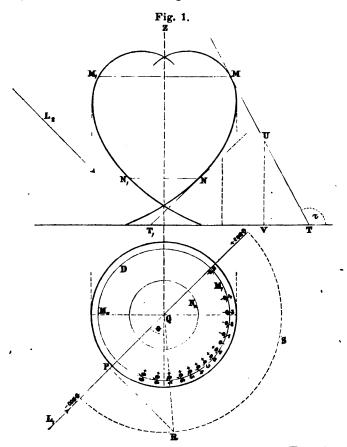
$$\begin{array}{ccc} & DAZ = v, & BD = \sin v \\ & AB = \cos v, & CE = \cot v. \end{array}$$

In Fig. 1<sup>b</sup> seien oL und  $o\cos\theta$  die Coordinatenaxen, auf welche die Constructionsgeraden bezogen sind. Die Strecken  $o(+L) = \overline{o(-L)} = 1$ sind in n = 10 gleiche Theile getheilt, und durch diese Theilpunkte, welche in unserem speciellen Falle den Lichtstärken: +1, +0,9...0...-0,9, -1 entsprechen, sind Ordinaten gezogen. Auf den Axen sei  $oa = AB = \cos \nu$ ,  $ob = CE = \cot \nu$  gemacht; a und b sind dann die Endpunkte der Hyperbelaxen, und der mit oa beschriebene Kreis ist der Hauptkreis. Ferner sei  $\overline{ab} - oF$ , Fd = 1, so ist F der eine Digitized by Google Brennpunkt der Hülfshyperbel und dh die Gerade, auf welche die Werthe sin  $\nu$  sin  $\tau$  abgetragen werden. Hiermit ist Alles, was wir zur Construction der Isophoten der Rotationsflächen nöthig haben, vorbereitet.

Wenn wir die Strahlenrichtung so wählen, wie sie gewöhnlich bei technischen Zeichnungen angenommen wird, dann wird die Hülfsfigur 1<sup>h</sup>, da *L*,  $\cos \theta$  und  $\sin \nu . \sin \tau$  nie grösser als 1 werden, nur die Grösse eines Quadrats haben, dessen Seite gleich 2 ist, und die Hülfsfigur 1<sup>a</sup> einen noch kleineren Flächenraum einnehmen. Es werden daher alle Grössen, die wir zur Construction gebrauchen, nie die Grenzen der Zeichnenfläche überschreiten.

Nach dieser Vorbereitung sind die Isophoten der Rotationsflächen sehr leicht zu construiren. Wir wollen dies an einem Beispiel zeigen.

Es sei in Fig. 1 durch Grund- und Aufriss eine Rotationsfläche dargestellt, welche durch Umdrehung einer ebenen Curve MN erzeugt



wird. Diese Curve ist zugleich die Meridiancurve. Es sei TM eine Tangente im Punkte M an derselben, 7' der Durchschnitt mit der Pro-Zeitschrift f. Mathematik u. Physik XIII, 3.

jectionsaxe und  $TU = \sin \nu = BD$  (Fig. 1<sup>a</sup>); dann ist  $UV = \sin \nu \sin \tau$ . Diesen Werth tragen wir auf  $dh_1$  (Fig. 1<sup>b</sup>) ab, so dass  $dk_1 = UF =$ sin  $v \sin \tau$  ist. Hierauf ziehen wir  $k_1 F$  und durch den Schnittpunkt pmit dem Hauptkreis die Hülfsgerade GG senkrecht auf kF. Die Abschnitte, welche durch diese Gerade auf den Ordinaten (-1, -0.9, $-0.8, \ldots 0, \ldots +0.8, +0.9, +1$ ) entstehen, geben uns die Werthe der cos 0. Wir beschreiben (Fig. 1) um Q einen Kreis S mit dem Radius 1; tragen auf die Projection  $L_1Q$  der Strahlenrichtung die Werthe der cos  $\theta$ , welche wir aus der Fig. 1<sup>b</sup> entnehmen, ab. So erhalten wir die Winkel<sup>6</sup>, die auf dem Parallelkreis M,, die Punkte bestimmen, in denen die angenommenen Lichtstärken auftreten. In der Fig. 1 ist QP = +0.7c(Fig. 1<sup>b</sup>), PR senkrecht auf L<sub>1</sub>Q, dann giebt der Durchschnitt der Geraden QR mit dem Parallelkreis M,, den Punkt, in welchem auf diesem Kreis die Lichtstärke +0,7 auftritt. Ebenso findet man die Punkte für die anderen Lichtintensitäten. In gleicher Weise kann man die Orte der gegebenen Lichtstärken auf einem anderen Parallelkreis N,, finden. Diesem entspricht in Fig. 1<sup>b</sup> die Hülfsgerade G,G,. Wenn wir so auf mehreren Parallelkreisen diese Orte bestimmen, dann erhalten wir die Projectionen der Isophoten im Grundriss. Um die Projectionen im Aufriss zu erhalten, brauchen wir die gefundenen Punkte nur hinauf zu projiciren. Eine Controle für die richtige Lage der Hülfsgeraden liefern uns die Abschnitte derselben auf den Axen; denn es muss (Fig. 1<sup>h</sup>)  $oi = cot v cot \tau$  und  $ol = cos v cos \tau$  sein, und diese Werthe lassen sich auch leicht construiren.

Die Maximalisophote  $(L = \pm 1)$  wird im Allgemeinen durch einen oder mehrere isolirte Punkte repräsentirt; diese kann unsere bisherige Constructionsweise nur dann liefern, wenn zufällig diese Punkte auf einigen von den beliebig angenommenen Parallelkreisen liegen. Wir müssen daher diese isolirten Punkte noch besonders zu bestimmen suchen. Aus der Gleichung 1) folgt für L = +1

$$\cos \theta = 1$$
,  $\tan \tau = \tan \nu$ .

Die erste Gleichung zeigt, dass die Projectionen dieser Punkte auf der Projection der Strahlenrichtung liegen, und aus der zweiten ergeben sich die Abstände dieser Punkte vom Pol. Um diese constructiv zu bestimmen, müssen wir an die Meridiancurve Tangenten ziehen, welche mit der Axe der r den Winkel v bilden. — Die Abstände der so erhaltenen Berührungspunkte von der Axe der z sind dann die Abstände der Grundrissprojectionen der isolirten Punkte von dem Pol.

In besonderen Fällen können wir die Hülfsgeraden noch auf einem anderen als auf dem oben angegebenen Wege bestimmen. Nehmen wir an, es sei die Grundrissprojection einer Isophote gegeben, deren Lichtstärke *m* ist; dann können wir umgekehrt durch die Punkte, wo diese Cnrve die beliebig zweckmässig angenommenen Parallelkreise schneidet,

Digitized by GOOSIC

die entsprechenden Werthe von  $\cos \theta$  ermitteln. Diese Werthe tragen wir auf die den Theilpunkt *m* gebende Ordinate ab, und durch die erhaltenen Punkte legen wir Tangenten an die Hülfshyperbel<sup>\*</sup>) (Fig. 1<sup>b</sup>), welche dann die Hülfsgeraden sind. Hierauf verfahren wir wieder wie oben gezeigt worden ist und bestimmen die übrigen Isophoten. Damit wir auf diese Weise unseren Zweck vollständig erreichen, wird erfordert, dass die Projection der gegebenen Isophote die Projection aller nöthigen Parallelkreise schneide. Ist dies nicht der Fall, so muss noch die Projection einer zweiten Isophote gegeben sein, die wenigstens durch diejenigen Kreise geht, welche von der erstgegebenen nicht getroffen werden. Zwei solche Isophoten, die diese Forderung in manchen Fällen erfüllen und sich oft durch die Eigenschaften ihrer Gleichungen direct construiren lassen, sind die Grenzisophote und Typusisophote. Aus der Gleichung 1) folgt für L = 0 die Gleichung der Grenzisophote

and für  $L = \cos \nu$  die Gleichung der Typusisophote

$$f'(r) \left[ f'(r) \left( 1 - \tan^2 \nu \cdot \cos^2 \theta \right) - 2 \tan \nu \, \cos \theta \right] = 0 \quad . \quad . \quad 4$$

Mit Hülfe dieser Isophoten kann man oft, selbst bei complicirten Flächen, die Construction des ganzen Isophotensystems in einfachster Weise ausführen.

Ist z = f'(r) die Gleichung der Meridiancurve der durch irgend eine Curve erzeugten Rotationsfläche, so ist z = f'(r - d) die Gleichung der Meridiancurve der Rotationsfläche, welche durch Umdrehung derselben Curve im Abstande d von der Axe erzeugt wird.

Die Gleichung der Isophoten dieser letzteren Fläche ist dann nach Gleichung 1)

$$L = \frac{\cos \nu + \sin \nu \cdot f'(r-d) \cdot \cos \theta}{\sqrt{1 + [f'(r-d)]^2}} \quad \dots \quad 5)$$

Denken wir uns diese Gleichung auf r - d reducirt, so gilt der Satz:

Bei den Grundrissprojectionen der Isophotensysteme zweier Rotationsflächen, die durch dieselbe Curve in ungleichen Abständen von der Drehungsaxe erzeugt worden sind, ist die Differenz der gleichgerichteten Leitstrahlen gleich der Differenz der beiden Abstände von der Drehungsaxe.

Haben wir nun die Grundrissprojectionen von dem Isophotensystem einer Rotationsfläche fertig vor uns, dann erhalten wir das System der

<sup>\*)</sup> Dies kann leicht mit Hülfe des Hauptkreises und des Brennpunktes ausgeführt werden, ohne die Hülfshyperbel selbst zu construiren. In Fig. 1<sup>b</sup> ist diese Hyperbel nur der Vollständigkeit wegen construirt.

um d erweiterten oder verengerten Rotationsfläche, wenn wir sämmtliche Lichtstrahlen jenes fertigen Systems um d verlängern oder verkürzen.

In speciellen Fällen können wir die Isophoten der Rotationsflächen oft noch in einfacherer Weise construiren, als dies nach der allgemeinen Methode ausgeführt werden kann. Wir wollen dies an den Isophoten der Kugelfläche zeigen.

Die Gleichung der Kugelfläche in cylindrischen Coordinaten ist

$$z = \sqrt{\varrho^2 - r^2}$$

wenn e den Radius der Kugel bezeichnet.

Es ist dann

$$f'(r) = -\frac{r}{\sqrt{\varrho^2 - r^2}}$$

Setzen wir diesen Werth in Gleichung 1), so wird

$$L = \frac{\cos v \cdot \sqrt{e^2 - r^2} - \sin v \cdot r \cdot \cos \theta}{e} \quad \ldots \quad \ldots \quad \varepsilon_{j}$$

Führen wir in diese Gleichung rechtwinkelige Coordinaten ein, so ist

$$r^{2} = x^{2} + y^{2},$$
  
$$r \cos \theta = x$$

und dann ergiebt sich

$$\frac{y^2}{\varrho^2 [1-L^2]} + \frac{(x+L\varrho\sin\nu)^2}{\varrho^2 [1-L^2]\cos^2\nu} = 1.$$

Aus dieser Gleichung ersieht man, dass die Projectionen der Isophoten der Kugelfläche Ellipsen sind, deren Mittelpunkte auf der Projection der Strahlenrichtung liegen.

Hieraus lassen sich leicht einige Eigenschaften ableiten, die für die Construction dieser Ellipsen von besonderem Nutzen sind. Bezeichnen wir mit b die grosse Halbaxe dieser Ellipsen, mit e ihre Excentricität, und mit m den Abstand der Ellipsenmittelpunkte vom Coordinatenanfang, so ist

$$b = \varrho \sqrt{1 - L^2},$$
  

$$c = \varrho \sqrt{1 - L^2} \sin \nu,$$
  

$$m = L \varrho \sin \nu.$$

Hiernach ist

$$\frac{b^2}{\varrho^2} + \frac{m^2}{(\varrho \sin \nu)^2} = 1.$$

Die Endpunkte der grossen Axen der Ellipsen liegen auf einer Ellipse, deren Halbaxen ę und ę*sinv* sind.

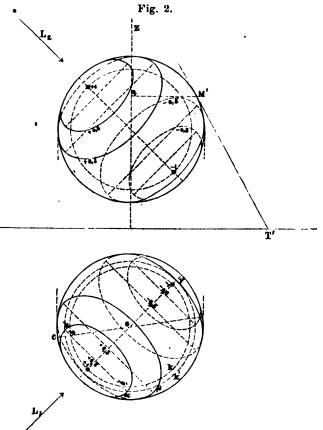
Ferner ist

$$e^2 + m^2 = (\varrho \sin \nu)^2$$

Die Brennpunkte der Ellipsen liegen auf einen Kreise vom Radius *e sin v*.

Auf diese Eigenschaften gründet sich eine sehr einfache Construction der Isophoten der Kugelfläche.

Es sei Fig. 2 die Grundriss- und Aufrissprojection einer Kugelfläche vom Radius  $\rho$ , welche von einem Strahlenbündel beleuchtet wird, dessen Richtung in Fig. 1<sup>a</sup> gegeben ist, also mit der z-Axe den Winkel  $\nu$  einschliesst.



Wir machen in Fig. 1°  $AW = \varrho$  und beschreiben mit  $WB_1$  als Radius in Fig. 2 um o den Kreis K. Auf diesem Kreis liegen die Brennpunkte der Ellipsen. Die Punkte +1 und -1 sind die isolirten Punkte der Maximalisophote. Wir theilen jede der beiden gleichen Strecken  $\overline{0, +1}$ und  $\overline{0, -1}$  in n = 10 gleiche Theile. Die erhaltenen Theilpunkte sind die Mittelpunkte der elliptischen Isophoten, welche den Lichtstärken +0,9, +0,8...0...-0,8, -0,9 entsprechen. Wollen wir nun eine Isophote, z. B. die der Lichtstärke +0,8, construiren, so ziehen wir durch +0,8 eine Gerade auf oL senkrecht. Diese ist dann die Axe der Ellipse; wo sie den Kreis K schneidet, liegen auf ihr die Brennpunkte b und  $b_1$ . Hierauf ziehen wir durch b den Radius oc und cd parallel der Axe  $oL_1$ , so ist d der eine Endpunkt der grossen Axe. Wir haben hiernach den Mittelpunkt, die Brennpunkte und die grosse Axe der Ellipse und somit Alles, was zur einfachsten Construction der Ellipse, resp. der Isophoten der Kugelfläche, nöthig ist.

Ganz so wie im Grundriss, können wir bei der Kugelfläche auch im Aufriss die Construction ausführen, wenn wir von dem Hinaufprojiciren keinen Gebrauch machen wellen. In der Fig. 2 sind die Projectionen der Isophoten der Lichtstärken +1, +0.8, +0.5 und -0.5, -0.8, -1, im Grundriss und Aufriss dargestellt.

Die Isophoten der Kugelfläche können auch als Fundament einer zweiten Isophotenconstruction der Rotationsflächen dienen.

Für die Kugel ist

$$f'(r) = \frac{-r_{\kappa}}{\sqrt{\varrho^2 - r_{\kappa}^2}},$$

wenn e den Kugelradius, r<sub>k</sub> den Radiusvector bezeichnet.

Diesen Werth in die Gleichung 2) gesetzt giebt

$$\cos\theta = -\frac{\varrho}{r_{K}} \frac{\csc\nu}{r_{K}} \cdot L + \frac{\cot\nu \cdot 1/\varrho^{2} - r_{K}^{2}}{r_{K}} \cdot \ldots \cdot 7$$

Dies ist die Gleichung für die Isophoten der Kugelfläche.

Aus der Gleichung

$$f'(r) = \frac{-r_{\kappa}}{\sqrt{\varrho^2 - r_{\kappa}^2}}$$

folgt, wenn wir

 $f'(r) = tan \tau$ 

-

setzen,

$$r_K = \varrho \sin \tau$$
.

Haben wir an die Meridiancurve einer Rotationsfläche Fig. 1 in Meine Tangente *MT* gezogen, welche mit der Axe des r den Winkel rbildet, so erhalten wir aus 7) die Werthe der Winkel  $\theta$ , welche auf den Parallelkreis *MM*, die Punkte gegebener Lichtstärken bestimmen.

Um die Werthe der  $\theta$  zu erhalten, construiren wir den Werth  $r_{K} = \varrho \sin \tau$ . Es sei in Fig. 2 der Radius der dargestellten Kugel  $\varrho$ , MT' eine zu MT parallele Tangente; so ist, wenn wir Mq parallel der Projectionsaxe ziehen,

$$M'q = r_{\kappa} = \varrho \sin \tau.$$

Mit M'q beschreiben wir um o im Grundriss den Kreis K'. Die Durchschnitte  $\alpha$ ,  $\beta$ .... dieses Kreises mit den Isophoten der Lichtstärken 0,8, 0,5.... verbinden wir mit dem Mittelpunkt o. Diese Verbindungslinien schliessen dann mit oL die Winkel  $\theta$  ein, welche den genannten Lichtstärken entsprechen. Ziehen wir (Fig. 1)  $\overline{Q0,8}$  parallel  $\overline{o\alpha}$  (Fig. 2), so ist der Schnittpunkt 0,8 dieser Geraden mit dem Parallelkreis der Rotationsfläche der Ort der Lichtstärke 0,8. In gleicher

Digitized by GOOGLE

Weise kann man die Punkte der anderen gegebenen Lichtstärken bestimmen.

Diese zweite Construction, mit Benutzung der sogenannten Kugelskala, ist schon von einigen Autoren ausgeführt worden. Wir haben dieselbe, nur der hier angegebenen leichten Ableitung wegen mit angeführt. Diese Construction wird ungenau, wenn der Radius des Parallelkreises (K' Fig. 2) sich dem Radius der Kugel nähert, und ohne Aufrissprojection ganz unbrauchbar, wenn er gleich demselben wird. In diesem Falle liefert aber die erste Construction mit Benutzung der Linienskala die schärfsten Schnitte; denn im Grenzfalle werden dort die Hülfsgeraden g'g' Asymptoten der Hülfshyperbel. Ein anderer Vortheil besteht darin, dass wir bei der Linienskala durch gerade Linien unseren Zweck erreichen, während wir bei der Kugelskala viele Ellipsen gebrauchen.

#### Die Isophoten der Schraubenflächen.

## § 3.

Die Schnittcurve, welche eine durch die Drehungsaxe gelegte Ebene mit einer Schraubenfläche bildet, wollen wir, wie bei den Rotationsflächen, auch hier Meridiancurve nennen.

Ist nun

$$z = f(r)$$

die Gleichung dieser Meridiancurve, so ist die allgemeine Gleichung der Schraubenfläche, welche durch eine einfach- oder doppeltgekrümmte Curve erzeugt wird, deren Drehungsaxe in der z-Axe liegt, in cylindrischen Coordinaten

$$z = \gamma \cdot \theta + f(r).$$

Die constante Grösse  $\gamma$  wollen wir den Hauptparameter der Schraubenflächen nennen. Für  $\gamma$  gleich Null gehen die Schraubenflächen in Rotationsflächen über.

Aus dieser Gleichung folgt

$$\frac{\partial z}{\partial r} = f'(r),$$
$$\frac{\partial z}{\partial \theta} = \gamma.$$

Setzen wir diese Werthe in die allgemeine Gleichung VI., so wird zunächst

$$p = \sqrt{[f'(r)]^2 + \frac{\gamma^2}{r^2}},$$
  
$$\tan \omega = \frac{\gamma}{r f'(r)}$$

Ueber Isophoten.

$$L = \frac{\cos \nu + \sin \nu \cdot \sqrt{[f'(r)]^2 + \frac{\gamma^2}{r^2} \cdot \cos (\theta + \omega)}}{\sqrt{1 + [f'(r)]^2 + \frac{\gamma^2}{r^2}}} \quad . \quad . \quad 1)$$

Diese allgemeine Gleichung der Isophoten der Schraubenflächen hat ganz die Form der Gleichung 1) (§ 2). Die Construction der Isophoten der Schraubenflächen kann demnach ganz in derselben Weise wie bei den Rotationsflächen ausgeführt werden. Dieselbe Hülfsfigur (1<sup>h</sup>) kann in unveränderter Gestalt auch bei den Schraubenflächen Anwendung finden; ebenso auch die Kugelskala (Fig. 2). Wir brauchen nur die Werthe  $\sqrt{[f'(r)]^2 + \frac{\gamma^2}{r^2}}$  und  $\frac{\gamma}{rf'(r)}$  zu construiren, was mit Leichtigkeit geschehen kann, wenn der Werth f'(r) zu ermitteln ist. Die Construction der Isophoten der Schraubenflächen ist hiernach auf das Problem der Tangentenziehung an die Meridiancurve der Schraubenfläche zurückgeführt.

Eleganter gestaltet sich noch die Gleichung 1), wenn wir den Werth

$$\tan \omega = \frac{\gamma}{r f'(r)}$$

substituiren, dann ist

$$\sqrt{[f'(r)]^2 + \frac{\gamma^2}{r^2}} = \frac{\gamma}{r\sin\omega},$$

folglich

$$L = \frac{\cos \nu + \sin \nu \cdot \frac{\gamma}{r \sin \omega} \cdot \cos (\theta + \omega)}{\sqrt{1 + \left(\frac{\gamma}{r \sin \omega}\right)^2}} \quad . \quad . \quad . \quad 2)$$

Auch nach dieser Gleichung kann die Construction der Isophoten der Schraubenflächen mit Benutzung der Figur 1<sup>b</sup> in derselben Weise, wie bei den Rotationsflächen ausgeführt werden. Wir haben statt f'(r) hier

 $\frac{\gamma}{r\sin\omega}$  und statt  $\cos\theta$  hier  $\cos(\theta + \omega)$ .

Geometrisch bedeutet  $\omega$  den Winkel zwischen Radiusvector und Normale der Schnittcurve

$$z = \gamma \theta + f'(r) \\ z = 0$$

und r sin w den Abstand dieser Normale vom Pol.

Hiernach ist die Construction der Isophoten der Schraubenfläche auf das Problem des Tangentenziehens an die Schnittcurve zurückgeführt, welche die Grundriss-Ebene mit der Schraubenfläche bildet. Um die Construction der Isophoten der Schraubenflächen im Grundriss auszuführen, construirt man die Schnittcurve des Grundrisses — die überhaupt bei

242

## Von Dr. L. BURMESTER.

einer Darstellung einer Schraubenfläche nicht fehlen darf — und beschreibt einen Kreis vom Radius r um den Pol. Im Punkte, wo dieser Kreis die Schnittcurve trifft, ziehen wir die Tangente resp. Normale derselben. Dann haben wir den Winkel  $\omega$ . Diesen legen wir mit einem Schenkel an die Axe der Polarcoordinaten, so bildet der andere Schenkel den Anfang für die Zählung des Winkels  $\theta$ . Um nuu  $\cos(\theta + \omega)$  zu bestimmen, verfahren wir ganz wie bei den Rotationsflächen, indem wir analog

$$\frac{\gamma}{r \sin \theta} = \tan \tau$$

setzen.

Die Construction der Isophoten der Schraubenflächen unterscheidet sich von der Construction der Isophoten der Rotationsflächen nur dadurch, dass bei diesen der Winkel  $\theta$  beständig von der Projection der Strahlenrichtung, bei jenen aber von einer mit r veränderlichen Anfangsrichtung ausgezählt wird, welche mit der Projection der Strahlenrichtung den durch r bestimmten Winkel  $\omega$  einschliesst. Haben wir so auf beliebig vielen um den Pol concentrisch beschriebenen Kreisen die Punkte gegebener Lichtstärken bestimmt, so geben diese die Projectionen der Isophoten im Grundriss. Da diese concentrischen Kreise die Grundrissprojectionen von Schraubenlinien sind, welche auf der Schraubenfläche liegen, so erhalten wir durch Hinaufprojiciren die Projectionen der Isophoten im Aufriss.

Um das Isophotensystem der Schraubenfläche vollständig zu erhalten, müssen wir noch der isolirten Punkte der Maximalisophote gedenken, welche unsere Construction, wie schon bei den Rotationsflächen gesagt, nur zufällig liefern kann.

Es wird  $L = \pm 1$ , wenn in Gleichung 2)

ist. Aus der ersten Gleichung folgt

$$r \sin \omega = \frac{\gamma}{\tan \nu}$$
.

Um nun die Orte der Lichtstärke  $L = \pm 1$  zu bestimmen, müssen wir hiernach die Normale der genannten Schnittcurve zu construiren suchen, deren Abstand vom Pol  $\frac{\gamma}{tan v}$  ist; dann ist  $\omega$  bekannt und hierdurch sind es auch  $r, \theta$ , die Coordinaten der isolirten Punkte. Die Bestimmung dieser Normale ist aber im Allgemeinen nicht leicht. Wir müssen daher diese Punkte theils durch Rechnung, theils durch Construction zu ermitteln suchen.

#### Ueber Isophoten.

Aus den beiden Gleichungen a) folgt auch, wenn wir für *tan to* den Werth  $\frac{\gamma}{r f'(r)}$  setzen

$$r \sin \theta = -\frac{\gamma}{lan\nu}$$

$$\frac{\gamma^2}{r^2} + [f'(r)]^2 = lan^2\nu$$

Aus der ersten dieser beiden Gleichungen folgt der Satz:

Die isolirten Punkte der Maximalisophote liegen bei allen Schraubenflächen auf einer Geraden, welche im

Abstande  $-\frac{\gamma}{tan \nu}$  der Grundrissprojection der Strahlenrichtung parallel ist.

Aus der zweiten Gleichung ergiebt sich der Abstand dieser Punkte vom Coordinatenanfang, wenn wir dieselbe auf r reduciren.\*)

Wir wollen hier beispielsweise einige specielle Fälle betrachten: 1) Die Isophoten der schiefen Schraubenfläche (Schraube mit scharfem Gewinde)

$$z = \gamma \theta + ar.$$

Diese Gleichung, in der a die Cotangente des Winkels bedeutet, welchen die erzeugende Gerade mit der Drehungsaxe einschliesst, geht in die Gleichung der geraden Schraubenfläche (Schraube mit flachem Gewinde) über, wenn a = 0 ist.

Es ist hier

$$f'(r) = a$$
$$\tan \omega = \frac{\gamma}{r \cdot a}.$$

Die Gleichung der Isophoten dieser Fläche ist dann nach Gleichung 1) d. §

$$L = \frac{\cos v + \sin v \sqrt{a^2 + \frac{\gamma^2}{r^2}} \cos (\theta + \omega)}{\sqrt{1 + a^2 + \frac{\gamma^2}{r^2}}} \qquad \dots \qquad \alpha)$$

Digitized by Google

Da nun die Werthe

 $\frac{\gamma}{ra}$  und  $\sqrt{a^2+\frac{\gamma^2}{r^2}}$ 

mit Leichtigkeit construirt werden können, so ist auch die Construction dieser Isophoten einfach.

Setzen wir in die Gleichung  $\alpha$ ) für  $\omega$  seinen Werth, so wird

\*) Giebt diese Gleichung, auf r reducirt, nur einen Werth für r, so besteht selbstverständlich die Maximalisophote nur aus einem isolirten Punkt.

244

$$L = \frac{\cos \nu + \sin \nu \left(a \cos \theta - \frac{\gamma}{r} \cdot \sin \theta\right)}{\sqrt{1 + a^2 + \frac{\gamma^2}{r^2}}} \cdot \cdot \cdot \cdot \cdot \beta$$

Denken wir uns diese Gleichung auf  $\frac{r}{v}$  reducirt, so gilt der Satz:

Die Leitstrahlen der Grundrissprojectionen von den Isophoten der Schraubenfläche

 $z = \gamma \theta + a \nu$ 

sind dem Hauptparameter  $\gamma$  proportional.

Wenn wir also das Grundrissisophotensystem einer dieser Schraubenflächen vom Hauptparameter  $\gamma_0$  fertig vor uns haben, so können wir das System einer anderen, deren Hauptparameter  $\gamma_1$  ist, leicht mit Hülfe dieser Proportionalität construiren.

Für L = o erhalten wir die Gleichung der Grenzisophote

$$r = \frac{\gamma \sin \nu \cdot \sin \theta}{\cos \nu + a \sin \nu \cdot \cos \theta}.$$

Die Grenzisophote geht hiernach stets durch den Pol und erstreckt sich in die Unendlichkeit, wenn  $a \sin \nu \ge \cos \nu$  ist. Für den besonderen Fall  $a \sin \nu = \cos \nu$  wird

$$r = \gamma \tan \nu \cdot \tan \frac{1}{2} \theta$$
.

Aus der zweiten der beiden Gleichungen b) folgt

$$r=\frac{\gamma}{\sqrt{\tan^2 \nu-a^2}},$$

wodurch auch die Maximalisophote mit Berücksichtigung der ersten der Gleichungen b) bestimmt ist.

Die Lichtintensität  $L = \pm 1$  kann also nur auf dieser Schraubenfläche auftreten, wenn  $tan \nu \ge a$  ist.

2) Die Isophoten der logarithmischen Schraubenfläche  $z = \gamma \theta + al(r)$ .

Diese Gleichung, in welcher a eine Constante bedeutet, geht für a = 0auch in die Gleichung der geraden Schraubenfläche über.

Es ist dann

$$f'(r) = \frac{a}{r},$$
$$\tan \omega_1 = \frac{\gamma}{a}.$$

Aus der Gleichung 1) d. § folgt hier die Gleichung der Isophoten dieser Fläche

$$L = \frac{\cos \nu + \sin \nu \cdot \frac{\sqrt{\gamma^2 + a^2}}{r} \cos (\theta + \omega_1)}{\sqrt{1 + \frac{\gamma^2 + a^2}{r^2}}}.$$

Ueber Isophoten.

Da der Winkel w constant ist und die Werthe

 $\frac{\gamma}{a}$  und  $\frac{\sqrt{\gamma^2 + a^2}}{r}$ 

sehr leicht construirt werden können, so ist auch die Construction der Isophoten dieser Fläche einfach.

Aus der Gleichung dieser Isophoten folgt der Satz:

Die Grundrissprojectionen der Isophoten der logarithmischen Schraubenfläche

$$z = \gamma \theta + al(r)$$

und des Rotationslogarithmoids\*)

$$z = \sqrt{\gamma^2 + a^2} \cdot l(r)$$

sind congruent, und unter dem Winkel  $\omega_1$  gegen einander gedreht, wenn diese beiden Flächen von gleichgerichteten Strahlenbündeln beleuchtet werden.

Denken wir uns die Gleichung dieser Isophoten auf  $\frac{r}{\sqrt{\gamma^2 + a^2}}$  reducirt, so ergiebt sich der Satz:

Die Leitstrahlen der Grundrissprojectionen von den Isophoten der Schraubenflächen

$$z = \gamma \theta + a l(r)$$

sind der Grösse  $\sqrt{\gamma^2 + a^2}$  proportional.

Selbstverständlich gilt dies auch von der Rotationsfläche

$$z = \sqrt{\gamma^2 + a^2} \cdot l(r)$$

Mit Hülfe dieser Proportionalität können wir sehr leicht die Isophotensysteme aller Flächen dieser Gattung construiren, wenn wir das Isophotensystem einer dieser Flächen fertig vor uns haben, und uns nur den Parameter  $\gamma$  veränderlich denken.

Die Gleichung der Grenzisophote dieser Flächen ist

$$r = \tan \nu \cdot \sqrt{\gamma^2 + a^2} \cdot \cos (\theta + \omega_1)$$

Dies ist die Gleichung eines Kreises, der durch den Polgeht und dessen Durchmesser gleich  $tan \nu \sqrt{\gamma^2 + a^2}$  ist.

Die Gleichung der Typusisophote ist

$$r = \frac{\sqrt{\gamma^{2} + a^{2}}}{2 \tan \nu \cdot \cos(\theta + \omega_{1})} - \frac{\sqrt{\gamma^{2} + a^{2} \cdot \tan \nu}}{2} \cdot \cos(\theta + \omega_{1})$$
  
-  $\frac{\sqrt{\gamma^{2} + a^{2}}}{r} = 0.$ 

Die Curve der ersten Gleichung lässt sich leicht direct construiren. Sie geht, wenn  $tan \nu \ge 1$ , durch den Pol und erstreckt sich mit zwei sym-

<sup>\*)</sup> Wir bezeichnen die Rotationsfläche, welche durch Umdrehung der logarithmischen Linic (z = al(r) + b) entsteht, mit dem Namen Rotationslogarithmoid.

metrischen Zweigen in den unendlich grossen Kreis, welchen die zweite Gleichung repräsentirt.

Für den besonderen Fall tan v = 1 wird

$$r = \frac{\sqrt{\gamma^2 + a^2}}{2} \cdot \frac{\sin^2\left(\theta + \omega_1\right)}{\cos\left(\theta + \omega_1\right)}$$

Dies ist die Cissoide des Diokles.

Aus der zweiten der beiden Gleichungen b) d. § ergiebt sich

$$r=\frac{\sqrt{\gamma^2+a^2}}{\tan\nu}.$$

Hierdurch ist die Maximalisophote mit Beachtung der ersten der Gleichungen b) bestimmt.

3) Die Isophoten der geraden Schraubenfläche

$$z = \gamma \theta.$$

Diese Fläche ist, wie schon gesagt, der specielle Fall a = 0 von der eben betrachteten Fläche. Es wird aber für die Folge von besonderem Nutzen sein, wenn wir auf die Isophoten dieser Schraubenfläche specieller eingehen. Je nachdem  $\gamma$  negativ oder positiv ist, erhalten wir die rechts- oder linksgängige Schraubenfläche. Wir wollen der Bestimmtheit wegen  $\gamma$  negativ nehmen. Dann ist die Gleichung der rechtsgängigen Schraubenfläche  $z = -\gamma \theta$ .

In diesem Falle ist

$$\omega_1 = - 90^0;$$

folglich die Gleichung der Isophoten dieser Fläche

$$L = \frac{\cos \nu + \sin \nu \cdot \frac{\gamma}{r} \cdot \sin \theta}{\sqrt[p]{1 + \frac{\gamma^2}{r^2}}}$$

Diese Isophoten lassen sich wegen des einfachen Werthes  $\frac{\gamma}{r}$  mit grösster Leichtigkeit nach der für Rotationsflächen angegebenen Methode construiren. Da die Lichtstrahlen r dem Parameter  $\gamma$  proportional sind, so kann man nach einem fertigen Isophotensystem einer dieser Schraubenfläche die Isophotensysteme aller Flächen dieser Gattung sehr leicht mit Benutzung dieser Proportionalität construiren.

Aus der Gleichung dieser Isophoten folgt, da

$$\sin\theta = \cos\left(90^{\circ} - \theta\right)$$

ist, dass das ganze Isophotensystem im Grundriss von der durch den Pol gehenden auf der Projection der Strahlenrichtung senkrechtstehenden Geraden symmetrisch getheilt wird.

Die Gleichung der Grenzisophote ist

## Ueber Isophoten.

$$r = -\gamma \tan \nu$$
. sin  $\theta$ .

Die Grundrissprojection der Grenzisophote ist ein durch den Polgehender Kreis, dessen Radius gleich y tan v ist. Die Gleichung der Typusisophote ist

$$r = \frac{\gamma}{2 \tan \nu} \csc \theta - \frac{\gamma \tan \nu}{2} \sin \theta$$
$$\frac{\gamma}{r} = 0$$

Diese Curve, welche aus zwei Theilen besteht, ist schon S. 247 besprochen. Die Maximalisophote wird durch einen isolirten Punkt repräsentirt, dessen Coordinaten

$$r = \frac{\gamma}{\tan \nu}$$
$$\theta = 90^{0}$$

sind.

#### Die Isophoten der Conoidflächen.

### §4.

Die allgemeine Gleichung der Conoidflächen, welche durch eine Gerade erzeugt werden, die senkrecht an einer festen Geraden und zugleich an einer Curve hingleitet, ist in cylindrischen Coordinaten, wenn wir die feste Gerade zur z-Axe nehmen

Hiernach ist

$$\frac{\partial z}{\partial r} = \theta, \quad \frac{\partial z}{\partial \theta} = f'(\theta)$$

 $z = f'(\theta).$ 

und diese Werthe in die Gleichung V. gesetzt, wird

$$L = \frac{\cos v - \sin v \cdot \frac{f'(\theta)}{r} \cdot \sin \theta}{\sqrt{1 + \left[\frac{f'(\theta)}{r}\right]^2}}$$

Dies ist die allgemeine Gleichung der Isophoten der Conoidflächen. Denken wir uns diese Gleichung auf  $\frac{f'(\theta)}{r}$  reducirt, so ergiebt sich der Satz:

Die Leitstrahlen der Grundrissprojectionen von den Isophoten der Conoidflächen sind der Grüsse f'(0) proportional.

Wir können daher nach dem fertigen Isophotensystem der einfachsten Conoidfläche, der geraden Schraubenfläche, die Construction der Iso photen aller construirbaren Conoidflächen ausführen, wenn der Werth  $f'(\theta)$  ermittelt werden kann.

**24**8

Von Dr. L. BURMESTER.

Setzen wir

$$r=-\frac{f'(\theta)}{\gamma}\cdot\varrho_L,$$

so ist

$$L = \frac{\cos \nu + \sin \nu \cdot \frac{\gamma}{\varrho_L} \cdot \sin \theta}{\sqrt{1 + \left(\frac{\gamma}{\varrho_L}\right)^2}}.$$

Dies ist die Gleichung des Isophotensystems der geraden Schraubenfläche oder des um 90° gedrehten Isophotensystems des Rotationslogarithmoids. Um nun die Isophoten der Conoidflächen zu construiren, ziehen wir im Grundriss des Isophotensystems der geraden Schraubenfläche einen Leitstrahl unter einem Winkel  $\theta$  durch alle Isophoten. Die Durchschnittspunkte geben uns die Werthe der  $\varrho_L$ , welche den Lichtstärken der durchschnittenen Isophoten entsprechen; dann ist

$$r=-\frac{f'(\theta)}{\gamma}\varrho_L,$$

und somit haben wir auf diesem Leitstrahl die Punkte jener Lichtstärken auf der Conoidfläche bestimmt. Wiederholen wir dieses auf mehreren Leitstrahlen, so erhalten wir alle Punkte, welche verbunden das Isophotensystem der Conoidflächen liefern.

Da für den Leitstrahl des hellsten Punktes der geraden Schraubenfläche  $\theta = 90^{\circ}$  ist, so liegen auch die Punkte der Maximalisophote aller Conoidflächen auf einer senkrecht zur Grundrissprojection der Strahlenrichtung durch den Pol gehenden Geraden.

Denken wir uns den Durchschnitt der Conoidfläche  $z = f(\theta)$  mit der Fläche des Kreiscylinders, dessen Radius 1 ist und dessen Axe<sup>-</sup>in der z-Axe liegt, von dem Cylinder abgewickelt und in einer Ebene ausgebreitet, so ist  $z = f(\theta)$  die Gleichung dieses Schnittes in rechtwinkeligen Coordinaten.

## Kleinere Mittheilungen.

X. Bemerkungen über einige bestimmte Integrale. Setzt man zur Abkürzung:

i) 
$$p = \int_{0}^{\infty} \frac{\cos(z^2 u^2)}{1 + u^2} \, \partial u, \quad q = \int_{0}^{\infty} \frac{\sin(z^2 u^2)}{1 + u^2} \, \partial u,$$

so findet man leicht:

$$-\frac{1}{2z}\frac{\partial p}{\partial z}+q=\int_{0}^{\infty}\sin(z^{2}u^{2})\,\partial u\,,\quad \frac{1}{2z}\frac{\partial q}{\partial z}+p=\int_{0}^{\infty}\cos(z^{2}u^{2})\,\partial u\,,$$

oder:

. •

2) 
$$\frac{\partial p}{\partial z} = -\sqrt{\frac{\pi}{2}} + 2zq, \quad \frac{\partial q}{\partial z} = \sqrt{\frac{\pi}{2}} - 2pz.$$

Multiplicirt man die zweite der vorstehenden Gleichungen mit  $i = \sqrt{-1}$ , addirt das Product zur ersten, so folgt:

$$\frac{\partial (p+qi)}{\partial z} = -(1-i)\sqrt{\frac{\pi}{2}} 2iz (p+qi).$$

Die vorstehende Gleichung mit  $e^{z^2 i}$  multiplicirt, giebt:

$$\frac{\partial (p+qi) e^{z^2 i}}{\partial z} = -(1-i) \sqrt{\frac{\pi}{2}} e^{z^2 i}.$$

Da nun nach 1)  $(p)_{z=0} = \frac{\pi}{2}$ ,  $(q)_{z=0} = 0$ , so folgt durch Integration nach z:

$$p + qi = \frac{\pi}{2} e^{-z^2 i} - (1 - i) \sqrt{\frac{\pi}{2}} \int_{0}^{z} e^{-(z^2 - u^2) i} \partial u.$$

Aus dieser Gleichung leitet man unmittelbar die beiden folgenden ab:

$$p = \frac{\pi}{2} \cos(z^2) + \sqrt{\frac{\pi}{2}} \int_{0}^{z} \sin(z^2 - u^2) \, \partial u - \sqrt{\frac{\pi}{2}} \int_{0}^{z} \cos(z^2 - u^2) \, \partial u,$$
3)

$$q = -\frac{\pi}{2} \sin(z^2) + \sqrt{\frac{\pi}{2}} \int_{0}^{z} \sin(z^2 - u^2) \, du + \sqrt{\frac{\pi}{2}} \int_{0}^{z} \cos(z^2 - u^2) \, du.$$

Setzt man in den Integralen rechts zu statt u, so folgt:

$$2(p-q) = \pi \left\{ \cos(z^2) + \sin(z^2) \right\} - 2 z \sqrt{2\pi} \int_{0}^{1} \cos z^2 (1-u^2) \, \partial u,$$

und hieraus:

4) 
$$2\int_{0}^{z} (p-q) \partial u = \pi \int_{0}^{z} \cos(u^{2}) \partial u + \pi \int_{0}^{z} \sin(u^{2}) \partial u - \sqrt{2\pi} \int_{0}^{1} \frac{\sin z^{2}(1-u^{2})}{1-u^{2}} \partial u.$$

Die Gleichungen 2) respective 2p, 2q multiplicirt und addirt geben:

$$2\left(p\frac{\partial p}{\partial z}+q\frac{\partial q}{\partial z}\right)=\frac{\partial \left(p^{2}+q^{2}\right)}{\partial z}=-2\sqrt{\frac{\pi}{2}}\cdot\left(p-q\right).$$

Diese Gleichung nach z integrirt giebt:

$$p^{2} + q^{2} = \left(\frac{\pi}{2}\right)^{2} + 2 \sqrt{\frac{\pi}{2}} \int_{0}^{t} (p-q) \, \partial u.$$

Setzt man links für p und q ihre Werthe aus 3) und für das Integral rechts den in 4) aufgestellten Ausdruck, so erhält man nach einigen sehr einfachen Reductionen:

$$\left\{\int_{0}^{z} \cos(z^{2}-u^{2}) \, \partial u\right\}^{2} + \left\{\int_{0}^{z} \sin(z^{2}-u^{2}) \, \partial u\right\}^{2} = \int_{0}^{1} \frac{\sin z^{2} (1-u^{2})}{1-u^{2}} \, \partial u,$$

oder auch  $\sqrt{z}$  statt z gesetzt:

$$\left\{\int_{0}^{1} \cos z \,(1-u^2)\,\partial u\right\}^2 + \left\{\int_{0}^{1} \sin z \,(1-u^2)\,\partial u\right\}^2 + \int_{0}^{1} \frac{\sin z \,(1-u^2)}{z \,(1-u^2)}\,\partial u.$$

Durch Entwicklung der Integrale folgt für 2z = x:

$$\begin{cases} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-2}}{1.3.5\dots(4n-3)} \right\}^2 + \left\{ \sum_{n=1}^{n=\infty} (-1)^{n-1} \frac{x^{2n-1}}{1.3.5\dots(4n-1)} \right\}^2 \\ = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \frac{x^{2n-2}}{1.3.5\dots(4n-3)}. \end{cases}$$

Die durch p und q bezeichneten Integrale stehen mit den beiden Integralen:

$$\int_{0}^{\infty} \cos(u^{2}) e^{-2zu} \partial u, \quad \int_{0}^{\infty} \sin(u^{2}) e^{-2zu} \partial u$$

in nahem Zusammenhang, was sich leicht direct auf folgende Art darthun lässt. Setzt man in den beiden Integralen:

$$\sqrt{\frac{\pi}{2}} = \int_{-\infty}^{\infty} \cos(w^2) \, \partial w, \ \sqrt{\frac{\pi}{2}} = \int_{-\infty}^{\infty} \sin(w^2) \, \partial w$$

w = u + v, so folgt: Zeitschrift f. Mathematik u. Physik XIII, 3.

Digitizes By Google

$$\sqrt{\frac{\pi}{2}} = \int_{-\infty}^{\infty} \cos(u^2 + v^2 + 2uv) \, \partial v = 2 \int_{0}^{\infty} \cos(u^2 + v^2) \, \cos 2uv \, \partial v,$$
  
$$\sqrt{\frac{\pi}{2}} = \int_{-\infty}^{\infty} \sin(u^2 + v^2 + 2uv) \, \partial v = 2 \int_{0}^{\infty} \sin(u^2 + v^2) \, \cos 2uv \, \partial v,$$

Die erste der vorstehenden Gleichungen multiplicire man mit  $cos(u^2)$ , die zweite mit  $sin(u^2)$  und bilde die Summe der Producte; ferner multiplicire man die erste Gleichung mit  $sin(u^2)$ , die zweite mit  $cos(u^2)$  und bilde die Differenz der Producte, hierdurch ergeben sich die Gleichungen:

$$\left\{ \cos(u^2) + \sin(u^2) \right\} \sqrt{\frac{\pi}{2}} = 2 \int_{0}^{\infty} \cos(v^2) \cos 2uv \, \partial v, \\ \left\{ \cos(u^2) - \sin(u^2) \right\} \sqrt{\frac{\pi}{2}} = 2 \int_{0}^{\infty} \sin(v^2) \, \cos 2uv \, \partial v.$$

Diese Gleichungen geben:

$$2\int_{0}^{\infty}\int_{0}^{\infty}\cos(v^{2})\cos 2uv \ e^{-2zu} \ \partial u \ \partial v = \sqrt{\frac{\pi}{2}}\int_{0}^{\infty}\left\{\cos\left(u^{2}\right) + \sin\left(u^{2}\right)\right\} \ e^{-2zu} \ \partial u,$$

$$2\int_{0}^{\infty}\int_{0}^{\infty}\sin\left(v^{2}\right)\cos 2uv \ e^{-2zu} \ \partial u \ \partial v = \sqrt{\frac{\pi}{2}}\int_{0}^{\infty}\left\{\cos\left(u^{2}\right) - \sin\left(u^{2}\right)\right\} \ e^{-2zu} \ \partial u.$$

Integrirt man in den Doppelintegralen links zuerst nach u, so folgt:

$$\int_{0}^{\infty} \frac{z \cos(v^{2})}{z^{2} + v^{2}} \, \partial v = \int_{0}^{\infty} \frac{\cos(z^{2} v^{2})}{1 + v^{2}} \, \partial v = \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} \left\{ \cos(u^{2}) + \sin(u^{2}) \right\} e^{-2zu} \, \partial u,$$

$$\int_{0}^{\infty} \frac{z \sin(v^{2})}{z^{2} + v^{2}} \, \partial v = \int_{0}^{\infty} \frac{\sin(z^{2} v^{2})}{1 + v^{2}} \, \partial v = \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} \left\{ \cos(u^{2}) - \sin(u^{2}) \right\} e^{-2zu} \, \partial u.$$

Setzt man hierin bz statt z, so ergeben sich die Gleichungen:

$$\int_{0}^{\infty} \frac{b \cos(u^{2})}{b^{2} + \left(\frac{u}{z}\right)^{2}} \, \partial u = z \, \sqrt{\frac{\pi}{2}} \, \int_{0}^{\infty} \left\{ \cos(u^{2}) + \sin(u^{2}) \right\} \, e^{-\frac{2}{2}b \, zu} \, \partial u,$$
5)
$$\int_{0}^{\infty} \frac{b \sin(u^{2})}{b^{2} + \left(\frac{u}{z}\right)^{2}} \, \partial u = z \, \sqrt{\frac{\pi}{2}} \, \int_{0}^{\infty} \left\{ \cos(u^{2}) - \sin(u^{2}) \right\} \, e^{-\frac{2}{2}b \, zu} \, \partial u.$$

Aus diesen Gleichungen lassen sich andere ableiten, in welchen  $cos(u^2)$ und  $sin(u^2)$  unter dem Integralzeichen mit ähnlichen Functionen von umultiplicirt erscheinen.

253

Nimmt man in den Gleichungen 5)  $b = \frac{2n-1}{2} \pi$ , multiplicirt mit  $(-1)^{n-1}$ , legt *n* alle ganzzahligen Werthe von 1 his  $\infty$  bei, so giebt die Summation der Integrale, mit Rücksicht auf:

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\frac{2n-1}{2}\pi}{\left(\frac{u}{z}\right)^2 + \left(\frac{2n-1}{2}\pi\right)^2} = \frac{1}{\frac{u}{e^z} + e^{-\frac{u}{z}}},$$

die beiden Relationen:

$$\int_{0}^{\infty} \frac{\cos(u^{2})}{e^{z}} + e^{-\frac{u}{z}} \partial u = z \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} \frac{\cos(u^{2}) + \sin(u^{2})}{e^{u\pi z} + e^{-u\pi z}} \partial u,$$
$$\int_{0}^{\infty} \frac{\sin(u^{2})}{e^{\frac{u}{z}} + e^{-\frac{u}{z}}} \partial u = z \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} \frac{\cos(u^{2}) - \sin(u^{2})}{e^{u\pi z} + e^{-u\pi z}} \partial u.$$

(6

| Für | $z=\frac{1}{\sqrt{\pi}}$ | geben | die | vorstehenden | Gleichungen : |
|-----|--------------------------|-------|-----|--------------|---------------|
|-----|--------------------------|-------|-----|--------------|---------------|

$$\left(\sqrt{2}-1\right)\int_{0}^{\infty}\frac{\cos\left(u^{2}\right)}{e^{u\sqrt{\pi}}+e^{-u\sqrt{\pi}}}\,\partial u=\int_{0}^{\infty}\frac{\sin\left(u^{2}\right)}{e^{u\sqrt{\pi}}+e^{-u\sqrt{\pi}}}\,\partial u.$$

Setzt man:

$$\int_{0}^{\infty} \frac{\cos(u^2)}{e^{zu} + e^{-zu}} \, \partial u = \varphi(z) \cdot \int_{0}^{\infty} \frac{\sin(u^2)}{e^{zu} + e^{-zu}} \, \partial u,$$

so geben die Gleichungen 6) durch Division die Functionalgleichung:

$$\varphi\left(\frac{1}{z}\right) = \frac{\varphi(\pi z) + 1}{\varphi(\pi z) - 1}.$$

Schliesslich sei noch bemerkt, dass die Gleichungen 6) sich auch direct herleiten lassen, wenn man die bekannte Gleichung:

$$\frac{1}{e^{\frac{u}{z}} + e^{-\frac{u}{z}}} \oint \int \frac{\cos \frac{uv}{z}}{e^{\frac{1}{2}\pi v} + e^{-\frac{1}{2}\pi v}} \partial v = 2z \int_{0}^{\infty} \frac{\cos 2uv}{e^{\pi v z} + e^{-\pi v z}} \partial v$$

mit  $\cos(u^2) \partial u$ ,  $\sin(u^2) \partial u$  multiplicirt und nach u zwischen den Grenzen  $-\infty$  und  $+\infty$  integrirt.

Göttingen.

Dr. Enneper.

Digitize 18 Google

## XI. Ableitung der Partialbruch- und Produkt-Entwickelungen für die trigonometrischen Funktionen. Von Prof. Dr. SCHRÖTER zu Breslau.

Die Partialbruch-Entwickelungen der trigonometrischen Funktionen cotq x und cosec x werden gewöhnlich aus den Produktentwickelungen und diese aus dem allgemeinen Multiplikationstheorem der Trigonometrie, d. h. aus dem algebraischen Ausdruck von sin nx durch sin x hergeleitet; dabei bedarf man des Fundamentalsatzes der Algebra, der eigentlich mit der Trigonometrie weiter nichts zu thun hat, nämlich des Nachweises, dass jede rationale ganze Funktion sich in lineäre Faktoren zerlegen lasse u. s. w. Dieser beträchtliche Apparat von Formeln und Hülfsbetrachtungen kann ersetzt werden durch die einzige trigonometrische Formel für die Verdoppelung des Winkels, aus welcher, wie es scheint, in der elementarsten Weise, sowohl die Entwickelungen der trigonometrischen Funktionen in Partialbrüche, als auch in Faktorenfolgen hervorgehen; ein schliesslicher Uebergang zur Grenze ist natürlich hier wie dort unentbehrlich, aber bei beiden Arten der Herleitung durch ganz dieselben Betrachtungen ausführbar. Da sich der angedeutete elementarere Weg für Zwecke des Unterrichts besonders empfiehlt, so sei es gestattet, ihn hier mitzutheilen.

Wir gehen von der bekannten trigonometrischen Formel aus:

(I.) 
$$clg x = \frac{1}{2} \left\{ clg \frac{x}{2} + clg \frac{x+\pi}{2} \right\}$$

und zerlegen jede der beiden *ctg* auf der rechten Seite mit Hülfe derselben Funktionalgleichung (I.) in die Summe zweier neuen, also:

$$clg \ x = \frac{1}{4} \left\{ clg \ \frac{x}{4} + clg \ \frac{x+\pi}{4} + clg \ \frac{x+2\pi}{4} + clg \ \frac{x+3\pi}{4} \right\}.$$

Wegen der Eigenschaft der Periodicität:

$$ctg (x-\pi) = ctg x$$

lässt sich die letzte Gleichung auch so schreiben:

$$\operatorname{ctg} x = \frac{1}{4} \left[ \operatorname{ctg} \frac{x}{4} + \left\{ \frac{\operatorname{ctg} \frac{x+\pi}{4}}{\operatorname{ctg} \frac{x-\pi}{4}} \right\} + \operatorname{ctg} \left( \frac{x}{4} + \frac{\pi}{2} \right) \right]$$

Die in gleicher Weise weiter ausgeführte Zerlegung jedes *ctg* in die Summe zweier neuen giebt:

254

•••••

$$clg x = \frac{1}{8} \left[ clg \frac{x}{8} + \begin{cases} clg \frac{x+\pi}{8} + clg \frac{x+2\pi}{8} + clg \frac{x+3\pi}{8} \\ + clg \frac{x-\pi}{8} + clg \frac{x-2\pi}{8} + clg \frac{x-3\pi}{8} \end{cases} + clg \frac{x-3\pi}{8} \end{cases} + clg \left( \frac{x}{8} + \frac{\pi}{2} \right) \right].$$

Setzt man dieselbe Operation n Mal fort, so ergiebt sich, wie leicht zu überschen ist, die allgemeine Formel:

(II.) 
$$ctgx = \frac{1}{2^{n}} \left[ ctg \frac{x}{2^{n}} + \sum_{1}^{2^{n-1}-1} \left\{ ctg \frac{x+h\pi}{2^{n}} + ctg \frac{x-h\pi}{2^{n}} \right\} + ctg \left( \frac{x}{2^{n}} + \frac{\pi}{2} \right) \right],$$

ans welcher, wenn wir *n* bis in's Unendliche wachsen lassen, die Partialbruch-Entwickelung für ctg x hervorgeht. Das letzte Glied der auf der rechten Seite von (II.) stehenden Reihe nähert sich nämlich für  $n = \infty$  dem Grenzwerthe O und dasselbe gilt auch für die letzten Glieder in den beiden Summen

$$\frac{1}{2^n}\sum_{1}^{\frac{n-1}{2^n-1}} ctg\left(\frac{x \pm h\pi}{2^n}\right)$$

während mit wachsendem n zugleich die Anzahl der Glieder dieser Reihen fort und fort wächst; für jeden endlichen Zahlenwerth k wird aber

$$\lim_{n \to \infty} \frac{1}{2^n} \operatorname{clg}\left(\frac{x \pm k\pi}{2^n}\right) = \frac{1}{x \pm k\pi}$$
$$\lim_{n \to \infty} \frac{1}{2^n} \operatorname{clg}\left(\frac{x}{2^n}\right) = \frac{1}{x}.$$

und

Denken wir uns nun eine vorerst endliche Zahl k so gross, dass 2k > x ist, dann dürfen wir schreiben:

$$x = \frac{1}{x} + \sum_{1}^{n} \left( \frac{1}{x + h\pi} + \frac{1}{x - h\pi} \right) + R_k$$

wo

$$R_{k} = \lim_{n = \infty} \sum_{k+1}^{2^{n} - 1} \frac{1}{2^{n}} \left\{ clg\left(\frac{x + h\pi}{2^{n}}\right) + clg\left(\frac{x - h\pi}{2^{n}}\right) \right\}$$

n----1

bedeutet und es bleibt zu untersuchen, was aus  $R_k$  wird, wenn mit nauch k in's Unendliche wächst, so aber, dass k nur bis  $2^{\frac{n-1}{1}}$  geht, d. h.  $\frac{k}{2^{\frac{n-1}{1}}}$  immer noch unter 1 liegt.

Das allgemeine Glied der Summe für  $R_k$  lässt sich mit Hülfe der trigonometrischen Formel:

$$clg (a + b) + clg (a - b) = \frac{\sin 2a}{\sin^2 a - \sin^2 b}$$

so umformen:

$$2x\left(\frac{2^{n}}{x}\cdot\sin\frac{x}{2^{n-1}}\right)$$
$$x^{2}\left(\frac{2^{n}}{x}\sin\frac{x}{2^{n}}\right)^{2}-h^{2}\pi^{2}\left(\frac{2^{n}}{h\pi}\cdot\sin\frac{h\pi}{2^{n}}\right)^{2}$$

und hiernach wird:

$$-R_{k} = 2 x \lim_{n \to \infty} \sum_{k+1}^{2^{n}-1} \frac{1}{h^{2}\pi^{2} \left(\frac{2^{n}}{h\pi} \sin \frac{h\pi}{2^{n}}\right)^{2} - x^{2}}$$

Hier hat der Faktor  $\frac{2^n}{h\pi} \cdot \sin\left(\frac{h\pi}{2^n}\right)$  einen Werth, der zwischen 1 und  $\frac{2}{\pi}$  liegt, da *h* nur Werthe bis  $2^{\frac{n-1}{2}}$  1 annehmen kann; ist daher *k* so gross gewählt, dass  $2^k > x$ , so werden alle Glieder der Summe

$$\sum_{k+1}^{3^{-1}} \frac{1}{h^2 \pi^2 \left(\frac{2^n}{h \pi} \cdot \sin \frac{h \pi}{2^n}\right)^2 - x^2}$$

positiv sein und unter den entsprechenden Gliedern der Reihe

$$\sum_{k+1}^{2^{n-1}} \frac{1}{4 h^2 - x^2}$$

liegen; von dieser ist aber das Anfangsglied das grösste und die Anzahl  $= 2^{n-1} - k$ , folglich liegt der Werth dieser Summe unter

$$\frac{2^{n-1} - 1 - k}{4 k^2 - x^2} \quad \text{oder} \quad \frac{1}{2^{n-1} - 1} \quad \left\{ \begin{array}{c} 1 - \frac{k}{2^{n-1} - 1} \\ 4 \left( \frac{k}{2^{n-1} - 1} \right)^2 - \left( \frac{x}{2^{n-1} - 1} \right)^2 \end{array} \right\}.$$

Lassen wir nun *n* und *k* gleichzeitig bis in's Unendliche wachsen, so aber, dass  $\frac{k}{2-1}$  unter 1 liegt, dann wird der in Parenthese stehende Faktor des letzten Ausdrucks endlich bleiben und der andere Faktor  $\frac{1}{2-1}$  bis zur 0 abnehmen; der Werth von  $R_k$  wird also auch mit wachsendem *k* sich der Null nähern und wir erhalten die Entwickelung:

$$ctg \ x = \frac{1}{x} + \sum_{1}^{\infty} \left( \frac{1}{x+h\pi} + \frac{1}{x-h\pi} \right) \text{ oder}$$

$$ctg \ x = \sum_{n=0}^{+\infty} \frac{1}{h\pi+x}.$$

Aus dieser folgt nun vermittelet der bekannten trigonometrischen Formel:

$$\frac{1}{\sin x} = \frac{1}{2} \left\{ clg \, \frac{x}{2} - clg \, \frac{x+\pi}{2} \right\}$$

die Entwickelung für

(III.)

(IV.) 
$$\operatorname{cosec} x = \sum_{-\infty}^{+\infty} \frac{(-1)^{h}}{h\pi + x}$$

und endlich die Partialbruchentwickelungen für

(V.) 
$$lg x = \sum_{-\infty}^{+\infty} \frac{1}{(h+\frac{1}{2})\pi - x} + \infty$$

(VI.) 
$$\sec x = \sum_{-\infty}^{+\infty} \frac{(-1)^n}{(n+\frac{1}{2})\pi + x}$$

Um zu den Produkt-Entwickelungen für die trigonometrischen Funktionen zu gelangen, kann man sich in ähnlicher Weise der bekannten Formel:

(VII.) 
$$\sin x = 2 \cdot \sin \frac{x}{2} \cdot \sin \frac{x+\pi}{2}$$

bedienen, indem man jeden der beiden Faktoren auf der rechten Seite dieser Gleichung vermittelst derselben Relation in zwei neue Faktoren auflöst und so beliebig weit fortfährt; um indessen den unbequemen Faktor 2, welcher sich dabei wiederholt, zu eliminiren, fassen wir lieber den Quotienten zweier *sin* Funktionen auf:

$$\frac{\sin \frac{x}{y}}{\sin \frac{y}{y}} = \frac{\sin \frac{x}{2}}{\sin \frac{y}{2}} \cdot \frac{\sin \frac{x+\pi}{2}}{\sin \frac{y+\pi}{2}}$$

und setzen diese Gleichung in der angegebenen Weise fort; dann ist leicht zu überschen, dass wir folgende allgemeine Formel erhalten:

$$(\text{VIII.}) \quad \frac{\sin x}{\sin y} = \frac{\sin \frac{x}{2^n}}{\sin \frac{y}{2^n}} \cdot \prod_{1}^{2^{n-1}} \left\{ \frac{\sin \frac{x+h\pi}{2^n} \cdot \sin \frac{x-h\pi}{2^n}}{\sin \frac{y+h\pi}{2^n} \cdot \sin \frac{y-h\pi}{2^n}} \right\} \cdot \frac{\sin \left(\frac{x}{2^n} + \frac{\pi}{2}\right)}{\sin \left(\frac{y}{2^n} + \frac{\pi}{2}\right)}$$

wo das Produktzeichen  $\Pi$  die bekannte Bedeutung hat.

Kleinere Mittheilungen.

Aus dieser Formel folgt, wenn wir *n* bis in's Unendliche wachsen lassen, die Produkt-Entwickelung für  $\frac{\sin x}{\sin y}$ ; der letzte Faktor nähert sich nämlich für  $n = \infty$  dem Grenzwerthe 1 und dasselbe gilt für die letzten Faktoren, welche unter dem Produktzeichen stehen, während mit wachsendem *n* zugleich die Anzahl der Faktoren dieses Produktes fort und fort wächst; der erste Faktor hat aber zum Grenzwerthe

$$\lim_{n \to \infty} \frac{\sin \frac{x}{2^n}}{\sin \frac{y}{2^n}} = \frac{x}{y}$$

und für jeden endlichen Zahlenwerth k wird

$$\lim_{n=\infty}\frac{\sin\left(\frac{x+k\pi}{2^n}\right)}{\sin\left(\frac{y+k\pi}{2^n}\right)} = \frac{x+k\pi}{y+k\pi}.$$

Nehmen wir daher vorerst eine endliche gehörig gross gewählte Zahl k, so zerfällt das obige Produkt in (VIII.) in zwei Theile, die wir so schreiben könuen:

$$\frac{\sin x}{\sin y} = \frac{x}{y} \prod_{1}^{k} \left\{ \frac{x + h\pi}{y + h\pi} \cdot \frac{x - h\pi}{y - h\pi} \right\} \cdot P_{k}$$

$$P_{k} = \lim_{n \to \infty} \prod_{k=1}^{2^{n-1}} \left\{ \frac{\sin \frac{x + h\pi}{2^{n}} \cdot \sin \frac{x - h\pi}{2^{n}}}{\sin \frac{y + h\pi}{2^{n}} \cdot \sin \frac{y - h\pi}{2^{n}}} \right\}$$

wo

bedeutet, und es bleibt zu untersuchen, was aus  $P_k$  wird, wenn mit nauch k bis in's Unendliche wächst, so jedoch, dass k immer unter  $2\frac{n-1}{k}$ bleibt, also  $\frac{2^{n-1}}{k}$  ein ächter Bruch ist.

Das allgemeine Glied des Produktes  $P_k$  lässt folgende Umformung zu:

$$1 - \frac{\sin^2 \frac{x}{2^n}}{\sin^2 \frac{h\pi}{2^n}}$$
$$1 - \frac{\sin^2 \frac{y}{2^n}}{\sin^2 \frac{h\pi}{2^n}}$$

und dieselbe Betrachtungsweise, welche Schlömilch (Handbuch der algebraischen Analysis, 1862, Seite 196 ff.) über die einzelnen im Zähler

und Nenner auftretenden Produkte angestellt hat und welche hier zu wiederholen unnöthig erscheint, führt für ein gehörig gewähltes k zu dem Werthe von

$$P_{k} = \frac{1 - \frac{\mu x^{2}}{4k}}{1 - \frac{\nu y^{2}}{4k}}$$

wo  $\mu$  und  $\nu$  nicht näher bestimmte positive ächte Brüche bezeichnen; gehen wir nun zur Grenze über, indem wir auch k bis in's Unendliche wachsen lassen, so nähert sich  $P_k$  dem Grenzwerth 1 und wir erhalten die Produkt-Entwickelung für:

(IX.) 
$$\frac{\sin x}{\sin y} = \frac{x}{y} \prod_{1}^{\infty} \frac{x + h\pi}{y + h\pi} \cdot \frac{x - h\pi}{y - h\pi}$$

woraus denn für y = 0 folgt:

(X.) 
$$\sin x = x \cdot \prod_{1}^{\infty} \left(1 - \frac{x^2}{\hbar^2 \pi^2}\right)$$

und wenn wir in IX. y = 0 und statt x setzen  $x + \frac{\pi}{2}$ :

$$\cos x = \prod_{1}^{\infty} \left( 1 - \frac{4x^2}{(2h-1)^2 \pi^2} \right).$$

## XII. Zwei Sätze aus der Theorie der binären quadratischen Formen.

In seiner Inauguraldissertation "de acquationibus secundi gradus indeterminatis" leitet Göpel aus der Kettenbruch-Entwickelung der Quadratwurzeln aus ganzen Zahlen interessante Sätze über gewisse Darstellungen der Form  $x^2 - Dy^2$  ab, wenn D eine Primzahl von den Formen 8n+3, 8n+7 oder das Doppelte einer solchen ist.

Jacobi theilt den Inhalt dieser Arbeit im 35. Bande des Crelle'schen Journals in einer Notiz über Göpel mit, auf welche ich hier verweisen muss, da das obengenannte Schriftchen schwerlich im Buchhandel aufgefunden werden dürfte.

Es soll hier gezeigt werden, wie sich diese Sätze einfach und ohne Hülfe der Kettenbrüche nachweisen lassen und dabei gewisse Beschränkungen verlieren, welche ihnen bei jener Methode anhaften. Wir beweisen zu dem Ende die folgonden Sätze I. u. II., in denen, wie sich . jeder überzeugen kann, die entsprechenden Sätze Göpels enthalten sind.

I. Ist D = p oder D = 2p und p eine Primzahl 8n + 3 und bezeichnet man mit  $\varphi$ ,  $\psi$  eine von denjenigen Darstellungen der Zahl D in der Form  $D = \varphi^2 + 2\psi^2$ , in welchen  $\psi \equiv 1 \mod 4$  wenn D = p, und  $\psi \equiv 1$  oder  $\equiv 3 \mod 8$  wenn D = 2p, so ist die Form:  $(-2\psi, \varphi, \psi)$ äquivalent der Form (1, 0, -D).

Beweis. Wir stützen uns auf einen Satz des Legendre, welcher unter anderm in seiner "*Théorie des nombres, tome I* §. VII" gefunden werden kann, nach welchem die Zahl — 2 stets darstellbar ist in der Form: (1) —  $2 = s^2 - Dt^2$ , wenn *D* die in unserem Theorem verlangten Bedeutungen hat.

Die Form (Dt, s, t), welche aus jenen Zahlen s, t gewonnen wird, hat nach (1) den Determinanten — 2 und ist daher, nach einem bekannten Satze der Theorie der quadratischen Formen, der Form (1,0,-2)äquivalent.

Ist also  $\begin{vmatrix} \alpha, \gamma \\ \beta, \delta \end{vmatrix}$  eine Substitution, durch welche letztere Form in die crste übergeht, so hat man:

 $Dt = a^2 + 2\beta^2, \quad s = \alpha\gamma + 2\beta\delta, \quad t = \gamma^2 + 2\delta^2.$  (2)

Wir behaupten nun, dass die Substitution  $\begin{vmatrix} \alpha, \beta \\ \gamma, \delta \end{vmatrix}$ , welche aus jener durch Vertauschung der Stellen von  $\beta$  und  $\gamma$  entsteht, die Form (1, 0, -D) in eine von den beiden Formen:  $(-2\psi, \varphi, \psi)$ ,  $(-2\psi, -\varphi, \psi)$  überführt.

Denn bezeichnet man die transformirte Form mit (a, b, c) so ist:

 $a = \alpha^2 - D\gamma^2, \quad b = \alpha\beta - D\gamma\delta, \quad c = \beta^2 - D\delta^2$  (3) und man findet, wegen (2), dass:

$$= -2c;$$
 (4)

im Falle D = p ist b ungerade, c ungerade und:

$$= \beta^2 - D\delta^2 \equiv \beta^2 + \delta^2 \equiv 1 \mod 4$$

im Falle D = 2p ist b gerade, c ungerade und:

 $c \equiv \beta^2 + 2\delta^2 \equiv 1$  oder  $\equiv 3 \mod 8$ .

Da nun 
$$D = b^2 - ac$$
, so folgt aus (4):  
 $D = b^2 + 2c^2$ 

Hieraus sicht man, dass b, c eine von den im Theoreme gemeinten Darstellungen  $\varphi$ ,  $\psi$  ist, und dass, da ausser der Darstellung  $\varphi$ ,  $\psi$  nur noch die Darstellung  $-\varphi$ ,  $\psi$  existirt:  $b = +\varphi$ ,  $c = \psi$ .

Es ist also die Form (1, 0, -D) stets einer von den Formen:

 $(-2\psi, \varphi, \psi), (-2\psi, -\varphi, \psi)$  äquivalent,

woraus, wegen der Aequivalenz beider, die Richtigkeit des Satzes folgt.

II. Ist D = p oder = 2p und p eine Primzahl 8n + 7, und be zeichnet man mit  $\varphi$ ,  $\psi$  irgend eine von den unendlich vielen Darstellungen der Zahl D in der Form:

 $D = \varphi^2 - 2\psi^2$ , in welchen:  $\psi \equiv 1 \mod 4$  wenn D = p,  $\psi \equiv 1 \mod \equiv 3 \mod 8$  wenn D = 2p, so ist die Form  $(2\psi, \varphi, \psi)$ stets äquivalent der Form (1, 0, -D).

Beweis. Hier ist nach derselben Quelle, welche wir im Beweise von I. angeführt, die Zahl + 2 stets darstellbar in der Form:

 $+ 2 = s^2 - Dl^2.$ 

Die Form (Dt, s, t) hat den Determinanten 2 und ist, der Theorie der quadratischen Formen gemäss, äquivalent der Form (1, 0, -2).

Bezeichnen wir nun eine Substitution, durch welche letztere Form in erstere übergeht, mit  $\begin{vmatrix} \alpha & \gamma \\ \beta & \delta \end{vmatrix}$ , so findet man, ähnlich wie in dem Beweise von I., dass die Form (1,0,-D) durch die Substitution  $\begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix}$ in eine Form (a, b, c) übergeht, in welcher: a = 2c, und wo ausserdem c den Congruenzbedingungen von  $\psi$  genügt.

Da nun: D = bb - 2cc, so folgt hieraus zunächst, dass es eine Darstellung  $b = \varphi_0$ ,  $c = \psi_0$  der Zahl D in der Form:  $D = \varphi \varphi - 2\psi \psi$ giebt, so dass die Formen (1, 0, -D) und  $(2\psi_0, \varphi_0, \psi_0)$  äquivalent sind.

Die übrigen Darstellungen  $\varphi$ ,  $\psi$  gehen aber, wie man aus der Theorie der quadratischen Formen des Determinanten 2 sieht, aus einer  $\varphi_0 \psi'_0$  vermittelst der Formeln:  $\varphi = \pm \varphi_0 u \pm 2v \psi_0$ ,  $\psi = \psi_0 u \pm \varphi_0 v(1)$ hervor, in welchen  $\psi$ , v eine Lösung der Gleichung:

$$v^2 - 2v^2 = 1$$

bedeutet, bei welcher u positiv ist.

Die Zahlen u, v sind ihrerseits in den Formen enthalten:

 $u=\omega^2+2\eta^2, \quad v=2\omega\eta,$ 

wo unter  $\omega$ ,  $\eta$  eine Lösung einer der beiden Gleichungen:

 $\omega^2 - 2\eta^2 = 1, \quad \omega^2 - 2\eta^2 = -1$ 

zu denken ist.

Man überzeugt sich nun leicht, dass die Form (1, 0, -D) durch die Substitution  $\begin{vmatrix} \pm \alpha \omega + 2\beta \eta, & \pm \alpha \eta + \beta \omega \\ \pm \gamma \omega + 2\delta \eta, & \pm \gamma \eta + \delta \omega \end{vmatrix}$  in  $(2\psi, \varphi, \psi)$  übergeht, wenn das Zeichen  $\pm$  in derselben mit dem Zeichen  $\pm$  in den Formeln (1) übereinstimmend genommen wird.

Berlin, im April 1868.

GEORG CANTOR.

XIII. Ueber die Bedingungen, dass vier Punkte auf einem Kreise und fünf Punkte auf einer Kugelfläche liegen. Liegen die vier Punkte  $(a_0, b_0)$ ,  $(a_1, b_1)$ ,  $(a_2, b_2)$ ,  $(a_3, b_3)$  auf dem Umfang eines Kreises mit dem Radius r und dem Mittelpunkte (x, y), so finden die Gleichungen statt:

$$(x - a_0)^2 + (y - b_0)^2 = r^2, \quad (x - a_1)^2 + (y - b_1)^2 = r^2, (x - a_2)^2 + (y - b_2)^2 = r^2, \quad (x - a_3)^2 + (y - b_3)^2 = r^2, oder: a_0^2 + b_0^2 - 2a_0x - 2b_0y + x^2 + y^2 - r^2 = 0, a_1^2 + b_1^2 - 2a_1x - 2b_1y + x^2 + y^2 - r^2 = 0, a_2^2 + b_2^2 - 2a_2x - 2b_2y + x^2 + y^2 - r^2 = 0, a_3^2 + b_3^2 - 2a_3x - 2b_3y + x^2 + y^2 - r^2 = 0. Digitized by Google$$

## Kleinere Mittheilungen.

Durch Elimination von -2x, -2y,  $x^2 + y^2 - r^2$  zwischen den vorstehenden Gleichungen folgt:

1) 
$$\begin{vmatrix} a_0^2 + b_0^2, & a_0, b_0, 1 \\ a_1^2 + b_1^2, & a_1, b_1, 1 \\ a_2^2 + b_2^2, & a_2, b_2, 1 \\ a_3^2 + b_3^2, & a_3, b_3, 1 \end{vmatrix} = 0.$$

Vertauscht man in der Determinante die erste mit der vierten Verticalreihe, multiplicirt die zweite und dritte Verticalreihe mit -2, so ist auch:

2) 
$$\begin{vmatrix} 1, -2a_0, -2b_0, a_0^2 + b_0^2 \\ 1, -2a_1, -2b_1, a_1^2 + b_1^2 \\ 1, -2a_2, -2b_2, a_2^2 + b_2^2 \\ 1, -2a_3, -2b_3, a_3^2 + b_3^2 \end{vmatrix} = 0.$$

Setzt man:  $(a_r - a_s)^2 + (b_r - b_s)^2 = p_r^2$ ,  $s = p_s^2$ , r, so ergiebt das Produkt der Gleichungen 1) und 2):

$$3) \begin{vmatrix} 0, & p_0^2, 1, & p_0^2, 2, & p_0^2, 3 \\ p_0^2, 1, & 0, & p_1^2, 2, & p_1^2, 3 \\ p_0^2, 2, & p_1^2, 2, & 0, & p_2^2, 3 \\ p_0^2, 3, & p_1^2, 3, & p_2^2, 3, & 0 \end{vmatrix} = 0.$$

Diese Determinante entwickelt giebt:

 $\begin{array}{c} (p_{0,1} \ p_{2,3})^4 + (p_{0,2} \ p_{1,3})^4 + (p_{0,3}, \ p_{1,2})^4 - 2 (p_{0,1} \ p_{2,3})^2 (p_{0,3} \ p_{1,2})^2 \\ - 2 (p_{0,1} \ p_{2,3})^2 \ (p_{0,2} \ p_{1,3})^2 - 2 (p_{0,3} \ p_{1,2})^2 \ (p_{0,2} \ p_{1,3})^2 = 0, \\ \text{oder:} \end{array}$ 

 $\begin{array}{c} (p_{0,1} p_{2,3} + p_{0,2} p_{1,3} + p_{0,3} p_{1,2}) (-p_{0,1} p_{2,3} + p_{0,2} p_{1,3} + p_{0,3} p_{1,2}) \times \\ (p_{0,1} p_{2,3} - p_{0,2} p_{1,3} + p_{0,3} p_{1,2}) (p_{0,1} p_{2,3} + p_{0,2} p_{1,3} - p_{0,3} p_{1,2}) = 0. \end{array}$ 

Diese Gleichung enthält ein bekanntes geometrisches Resultat, da  $p_r$ , , die Länge der Verbindungslinie der Punkte  $(a_r, b_r)$  und  $(a_s, b_s)$  ist.

Sollen die fünf Punkte  $(a_0, b_0, c_0) \dots (a_4, b_4, c_4)$  auf einer Kugelfläche liegen, setzt man:  $(a_r - a_s)^2 + (b_r - b_s)^2 + (c_r - c_s)^2 = p_{r,s}^2$ , so erhält man auf ganz analoge Weise wie vorhin:

$$4) \begin{vmatrix} 0, & p_0^2, 1, & p_0^2, 2, & p_0^2, 3, & p_0^2, 4 \\ p_0^2, 1, & 0, & p_1^2, 2, & p_1^2, 3, & p_1^2, 4 \\ p_0^2, 2, & p_1^2, 2, & 0, & p_2^2, 3, & p_2^2, 4 \\ p_0^2, 3, & p_1^2, 3, & p_2^2, 3, & 0, & p_3^2, 4 \\ p_0^2, 4, & p_1^2, 4, & p_2^2, 4, & p_3^2, 4, & 0 \end{vmatrix} = 0.$$

Die Entwicklung dieser Determinante führt zu keinem einfachen Resultate. Man bemerkt leicht, dass die Gleichungen 1) und 2) Folge der Gleichung 3) sind, so dass also die Gleichungen 3) und 4) für die angenommenen Werthe von  $p_r$ , s eine einfache geometrische Deutung zulassen. Das angewandte Verfahren lässt sich ohne Schwierigkeit auf ein entsprechendes System von n + 1 Gleichungen mit n Unbekannten ausdehnen.

Göttingen.

Dr. ENNEPEB.

262

**XIV.** Ueber eine gewisse Classe von Curven dritten Grades. 1. Es seien A, B, C die Eckpunkte eines Dreiecks, l, m, n drei durch dieselben gehende, sich in einem Punkte schneidende gerade Linien; ferner seien L, M, N diejenigen geraden Linien, welche mit den Linien l, m, n die Winkel des Dreiecks harmonisch theilen. Alsdann gehen die sechs Linien L, M, N, l, m, n viermal zu je dreien durch einen Punkt.

Diejenigen Curven dritten Grades nun, welche durch die vier so erhaltenen Punkte P,  $P_1$ ,  $P_2$ ,  $P_3$ , und durch die Eckpunkte des Dreiecks gehen, besitzen eine Reihe merkwürdiger Eigenschaften, so dass eine nähere Betrachtung derselben nicht ganz ohne Interesse sein dürfte.

Bei der Betrachtung der Curven wählen wir die drei Punkte A, B, C zu Fundamentalpunkten eines Systems von Dreiliniencoordinaten, und setzen voraus, dass die Coordinaten der vier Punkte P durch die Gleichungen

$$\frac{\alpha}{a} = \frac{\beta}{b} = \frac{\gamma}{c}$$

$$\frac{\alpha}{a} = \frac{\beta}{b} = -\frac{\gamma}{c}$$

$$\frac{\alpha}{a} = -\frac{\beta}{b} = \frac{\gamma}{c}$$

$$\frac{\alpha}{a} = \frac{\beta}{b} = \frac{\gamma}{c}$$

gegeben seien. Alsdann ergiebt eine leichte Rechnung als die allgemeinste Gleichung einer Curve dritten Grades, welche durch die Fundamentalpunkte und durch die vier Punkte P geht:

1)  $A\alpha (c^2\beta^2 - b^2\gamma^2) + B\beta (a^2\gamma^2 - c^2\alpha^2) + C\gamma (b^2\alpha^2 - a^2\beta^2) = 0.$ 

Die Gleichungen der drei Tangenten, welche an diese Curve in den drei Fundamentalpunkten gelegt werden können, sind sodann:

2) 
$$\begin{cases} \frac{B\beta}{b^2} = \frac{C\gamma}{c^2} \\ \frac{C\gamma}{c^2} = \frac{A\alpha}{a^2} \\ \frac{A\alpha}{a^2} = \frac{B\beta}{b^2} \end{cases}$$

Diese drei Tangenten gehen durch einen und denselben Punkt, dessen Coordinaten durch die Gleichung

3) 
$$\frac{A\alpha}{a^2} = \frac{B\beta}{b^2} = \frac{C\gamma}{c^2}$$

gegeben werden, und der ausserdem ein Punkt der Curve ist, weil durch Erfüllung der Bedingungen in 3) auch der Gleichung 1) genügt wird.

## Kleinere Mittheilungen.

Ferner ergeben sich als Gleichungen der Tangenten, welche man in den vier Punkten P an die Curve legen kann:

4) 
$$\begin{cases} \alpha(Cb-Bc) + \beta(Ac-Ca) + \gamma(Ba-Ab) = 0\\ \alpha(Cb+Bc) - \beta(Ac+Ca) + \gamma(Ba-Ab) = 0\\ -\alpha(Cb+Bc) + \beta(Ac-Ca) + \gamma(Ba+Ab) = 0\\ \alpha(Cb-Bc) + \beta(Ac+Ca) - \gamma(Ba+Ab) = 0. \end{cases}$$

Auch diese vier Tangenten gehen durch einen und denselben Punkt, welcher überdiess in der Curve liegt, und dessen Coordinaten bestimmt werden durch:

5) 
$$\frac{\alpha}{A} = \frac{\beta}{B} = \frac{\gamma}{C}$$
.

Die in diesem Punkte an die Curve gelegte Tangente hat die Gleichung:

6)  $A\alpha(C^2b^2 - B^2c^2) + B\beta(A^2c^2 - C^2a^2) + C\gamma(B^2a^2 - A^2b^2) = 0.$ 

Dieser Gleichung wird aber durch die Coordinaten des Punktes 3) Genüge geleistet. Daher schneiden sich im Punkte 3) die Tangenten, welche an die Curve in den drei Fundamentalpunkten und im Punkte 5) gelegt worden sind; im Punkte 5) dagegen treffen sich die vier in den Punkten *P* an die Curve gelegten Tangenten.

Die drei Seiten des Fundamentaldreiecks treffen die Curve ausser in den Ecken A, B, C noch in drei Punkten D, E, F. Die Coordinaten derselben werden bestimmt durch je zwei der folgenden Gleichungen:

7) 
$$\begin{cases} \alpha = 0, \quad \frac{\beta}{B} = \frac{\gamma}{C} \\ \beta = 0, \quad \frac{\gamma}{C} = \frac{\alpha}{A} \\ \gamma = 0, \quad \frac{\alpha}{A} = \frac{\beta}{B} \end{cases}$$

Die Vergleichung von 7) mit 5) zeigt, dass der Punkt, in welchem eine Seite des Fundamentaldreieckes der Curve fernerbin begegnet, in gerader Linie liegt mit dem gegenüberliegenden Scheitel und dem Punkt 5).

Die Tangenten, die man in den drei eben erwähnten Punkten an die Curve legen kann, haben die Gleichungen:

8) 
$$\begin{cases} A\alpha (B^2 c^2 - C^2 b^2) + a^2 BC (B\gamma - C\beta) = 0. \\ B\beta (C^2 a^2 - A^2 c^2) + b^2 CA (C\alpha - A\gamma) = 0 \\ C\gamma (A^2 b^2 - B^2 a^2) + c^2 AB (A\beta - B\alpha) = 0. \end{cases}$$

Eine einfache Rechnung ergiebt, dass auch diese Tangenten sich in einem Punkte schneiden, dessen Coordinaten durch die Gleichung bestimmt werden:

264

مدينات الديم والالالالا

9) 
$$\frac{Aa}{a^{2}[A^{2}(B^{2}c^{2} + C^{2}b^{2}) - B^{2}C^{2}a^{2}]} = \frac{B\beta}{b^{2}[B^{2}(C^{2}a^{2} + A^{2}c^{2}) - C^{2}A^{2}b^{2}]} = \frac{C\gamma}{c^{2}[C^{2}(A^{2}b^{2} + B^{2}a^{2}) - A^{2}B^{2}c^{2}]} \cdot$$

Auch dieser Punkt liegt in der Curve und durch ihn geht zugleich die im Punkte 3) an die Curve gelegte Tangente, deren allgemeine Gleichung ist:

10)  $A^3 b^2 c^2 (C^2 - B^2) \alpha + B^3 c^2 a^2 (A^2 - C^2) \beta + C^3 a^2 b^2 (B^2 - A^2) \gamma = 0$ , denn diese Gleichung wird zur Identität, sobald man setzt:

 $A\alpha = ka^2 \left[ A^2 (B^2 c^2 + C^2 b^2) - B^2 C^2 a^2 \right]$  u. s. w.

Auch die vier Kegelschnitte, welche man durch die Fundamentalpunkte so legen kann, dass sie die Curve in einem der Punkte *P* berühren, schneiden sich in einem Punkte und zwar im Punkte 3); dagegen geht der Kegelschnitt, welcher durch die Fundamentalpunkte geht und die Curve im Punkte 3) berührt, durch den Punkt 5).

Ebenso treffen sich drei Kegelschnitte, welche durch die Fundamentalpunkte gehen und die Curve in einem derselben osculiren, in einem Punkt, dessen Coordinaten der Gleichung genügen:

$$11)\frac{\alpha}{A} \left[ A^2 (B^2 c^2 + C^2 b^2) - B^2 C^2 a^2 \right] = \frac{\beta}{B} \left[ B^2 (C^2 a^2 + A^2 c^2) - C^2 A^2 b^2 \right] \\ = \frac{\gamma}{C} \left[ C^2 (A^2 b^2 + B^2 a^2) - A^2 B^2 c^2 \right].$$

Durch eben denselben Punkt geht auch der Kegelschnitt, welcher durch die drei Fundamentalpunkte geht und die Curve im Punkte 5) tangirt.

2. Eine der wichtigsten Eigenschaften der betrachteten Curven ist die, dass ihre Gleichung nicht nur auf eine Weise auf die Form 1) gebracht werden kann. Bezieht man nämlich die Gleichung auf ein Fundamentaldreieck, dessen Ecken in D, E, F liegen, d. i. in den Punkten, wo die Seiten des früheren Fundamentaldreiecks der Curve nochmals begegnen, so bleibt die Form der Gleichung ganz dieselbe, wie vorher, nur die Coefficienten ändern sich. Die früheren Punkte P werden hier ersetzt durch die Punkte A, B, C und durch den Punkt 5), denn die einfachste Betrachtung ergiebt, dass die sechs Linien, welche diese vier Punkte unter einander verbinden, zu je zweien durch die Punkte D, E, Fgehen und dass die zwei durch eine und dieselbe Ecke gehenden Linien den zugehörigen Winkel des Dreiecks D, E, F harmonisch theilen. Bei dieser Transformation geht der frühere Punkt 3) über in den Punkt 9), der Punkt 5) dagegen in den Punkt 3).

Diese Transformation kann aber beliebig oft wiederholt werden, Digitized by Google indem man z. B. die Punkte, in welchen die Seiten des Dreiecks D, E, F der Curve fernerhin begegnen, als Eckpunkte eines neuen Fundamentaldreiecks wählet. Es folgt somit, dass, sobald die Gleichung einer Curve dritten Grades einmal auf die Form 1) gebracht werden kann, diess auf unzählig viele Weisen geschehen kann.

3. Von den hier betrachteten Curven sind als specielle Fälle diejenigen Curven dritten Grades zu bemerken, welche durch die drei Eckpunkte eines Dreiecks und durch die Mittelpunkte der vier die Seiten dieses Dreiecks berührenden Kreise gehen. Die Gleichungen dieser Curven sind einfacher:

 $A\alpha (\beta^2 - \gamma^2) + B\beta(\gamma^2 - \alpha^2) + C\gamma (\alpha^2 - \beta^2) = 0.$ 

Wenn in der Gleichung 1) einer der Coefficienten A, B oder C verschwindet, so berührt die Curve zwei Seiten des Fundamentaldreiecks. Ist z. B. C = 0, so berührt die Curve die Seite AC im Punkte A und BC im Punkte B.

Wenn dagegen der Quotient aus zwei der Coefficienten A, B, C in 1) gleich ist dem positiven oder negativen Quotienten der entsprechenden Coefficienten a, b, c, wenn also z. B.

$$\frac{A}{B}=\pm\frac{a}{b},$$

so zerfällt die Curve in eine gerade Linie und einen Kegelschnitt. Die gerade Linie ist dabei einer der beiden durch den Punkt C gehenden, oben erwähnten harmonischen Strahlen.

Unter dieser Voraussetzung ergeben sich aus den oben aufgestellten Sätzen sehr leicht als specielle Fälle die folgenden:

Es seien A und B zwei Punkte eines Kegelschnittes, C ein beliebiger ausserhalb desselben gelegner Punkt. Die Verbindungslinie des Punktes C mit dem Punkte, in welchem die Polare von C die Sehne AB schneidet, begegne dem Kegelschnitt in P und  $P_i$ . Alsdann schneiden sich in einer Linie, welcher der vierte harmonische Strahl zu AC, PC und BC ist:

1) die in A und B an den Kegelschnitt gelegten Tangenten;

2) die Tangenten des Kegelschnittes in P und  $P_1$ ;

3) die Tangenten in den Punkten, in welchen die Seiten AC und BC vom Kegelschnitt nochmals getroffen werden;

4) die Kegelschnitte, welche durch die drei Punkte A, B, C gehen und den gegebenen Kegelschnitt in einem der Punkte P oder  $P_1$  berühren;

5) die Kegelschnitte, welche durch *A*, *B* und *C* gehen und den gegebenen Kegelschnitt in einem der Punkte *A* oder *B* osculiren.

Reichenbach i/V.

Digitized by ECKARDT.

## IX.

# Die projectivischen Eigenschaften der gewöhnlichen und ausgezeichneten Elemente ebener Curven.

Von

PAUL SCHOLZ aus Krotoschin in Posen.

## Erster Abschnitt.

## Gerade Punktreihen und ebene Strahlbüschel in perspectivischer Lage.

## §. 1. Voraussetzungen.

1a) Die Begriffe Punkt, gerade Linie, Ebene nehmen wir als durch die Anschauung bekannt an; insbesondere setzen wir voraus, dass wir uns jede Gerade als Träger einer stetigen Punktreihe und als Axe eines Ebenenbüschels, jeden Punkt als Mittelpunkt eines ebenen Strahlbüschels und jede Ebene als Träger unendlich vieler Punktreihen und ebener Strahlbüschel vorstellen können, dass diese Gebilde (Punktreihe, ebener Strahlbüschel, Ebenenbüschel) derart eine stetige, in sich zurückkehrende, d. i. sich schliessende\*) Aufeinanderfolge ihrer Elemente (Punkt, Gerade, Ebene) darstellen, dass jedes Element nur an zwei Nachbarelemente grenzt, so dass, wenn wir eines derselben als das vorhergehende bezeichnen, nur eines das folgende sein kann, und nur zwei Möglichkeiten gegeben sind, um von jedem Element zum darauf folgenden fortschreitend die ganze Aufeinanderfolge derselben zu durchlaufen; jede dieser Möglichkeiten stellt einen Bewegungssinn dar.

b) Ein diese Gebilde (Punktreihe, Strahlbüschel, Ebenenbüschel) in einem bestimmten Bewegungssinne continuirlich durchlaufendes Element derselben (resp. Punkt, Strahl, Ebene) gelangt daher nicht eher wieder in die Anfangslage, von welcher es ausging, bis es die Lage aller anderen Elemente seines Gebildes eingenommen; wir sagen dann: das Element hat das Gebilde einmal durchlaufen, einen Umlauf gemacht.

<sup>\*)</sup> v. Staudt, Geometrie der Lage No. 55. 61. Zeitschrift f. Mathematik u. Physik. XIII, 4.

## 268 Die projectivischen Eigenschaften der gewöhnlichen und

2. Es gehört zur Natur dieser Grundgebilde, dass sie jedes zwei seiner Elemente der Lage nach eindeutig bestimmt sind, so dass Gebilde derselben Art, welche zwei Elemente gemeinschaftlich haben allen ihren Elementen in einanderfallen und zwei verschiedene Gederselben Art höchstens ein Element gemeinschaftlich haben können dass

eine Punktreihe, von welcher zwei Punkte in einer gewissen E liegen, mit allen ihren Punkten in dieselbe falle,

ein ebener Strahlbüschel, von welchem zwei Strahlen in einer benen Ebene liegen, ganz mit allen seinen Strahlen in derselben liege

eine Punktreihe, welche in zwei verschiedenen Ebenen eines Eb büschels enthalten ist, in allen Ebenen desselben liegt, also mit seiner Ax sammenfällt.

3. Durch Einführung der Bezeichnungen "unendlich entfernter Pu "unendlich entfernte Gerade", "unendlich entfernte Ebene" sind wir in Stand gesetzt, den Satz auszusprechen:

a) dass zwei von einander verschiedene Punktreihen derselben E stets einen Punkt, zwei Strahlbüschel derselben Ebene stets einen S zwei Ebenenbüschel, deren Axen sich in einem Punkte schneiden, eine Ebene gemeinschaftlich haben;

b) dass jede endliche Gerade einen und nur einen unendlich ent ten Punkt, jede endliche Ebene eine und nur eine unendlich entfernte rade enthält und alle unendlich entfernten Punkte und Geraden in Ebene, der unendlich entfernten Ebene liegen.

4. Die in diesem Paragraphen angeführten Sätze bilden wesen die Grundlage jeder geometrischen Untersuchung, in etwas anderer drucksweise auch der elementaren und analytischen Methoden und sind den namhaftesten Mathematikern entweder als aus der Anschauung schöpfte und nicht zu widerlegende Grundsätze erklärt, oder stillsch gend durch Anwendung anerkannt, oder in ihrem Zusammenhange ver schaulicht worden\*). Wir führen sie nur deshalb an, weil wir ledi durch Anwendung dieser wenigen Fundamentalsätze die Resultate zu schliessen gedenken, welche den Gegenstand dieser Abhandlung bis N incl. bilden; in No. 44 entnehmen wir der Anschauung eine neue Vor setzung, mit welcher im Verein sie die Grundlage auch für die folgen Untersuchungen sind. Denn wiewohl wir unsere Untersuchung so zu ren gedenken, dass die abzuleitenden Sätze sich rein aus der Anschau ergeben, so wollen wir doch jedesmal zeigen, dass dieselben eine r

<sup>\*)</sup> Vergl. Steiner, Entwickelung der Abhängigkeit geometrischer Gest No. 1. 2. v. Staudt, Geometrie der Lage §§ 1 bis 3, 5 und 6. Schroeter Theorie der Kegelschnitte §§. 1 bis 4. Reye, Geometrie der Lage, Vortrag 1 u. 2

ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 269 

wendige Folge der in diesem Paragraphen angegebenen und, wie sich aus den Citaten ergiebt, allgemein anerkannten Voraussetzungen sind und damit zugleich die Bedingungen und Grenzen der Giltigkeit der gefundenen Sätze bestimmen\*).

## §. 2. Beziehung der Grundgebilde auf einander. Gebilde mit unendlich entferntem Träger.

5a) Den Sätzen in No. 2 und 3 zufolge kann jede Punktreihe einer Ebene auch als der Inbegriff aller Strahlbüschel dieser Ebene aufgefasst werden, welche einen und denselben Strahl, nämlich den Träger der Punktreihe, gemeinschaftlich haben; jeder ebene Strahlbüschel kann als der Inbegriff aller Punktreihen dieser Ebene aufgefasst werden, welche einen und denselben Punkt, nämlich den Mittelpunkt des Strahlbüschels, gemeinschaftlich haben, und jeder Ebenenbüschel als der Inbegriff aller Strahlbüschel im Raume, welche einen Strahl, die Axe des Ebenenbüschels, gemeinschaftlich haben.

b) Liegt ein Punkt a in einer Geraden a, und diese Gerade a in einer Ebene A, so sagen wir: der Punktaliege perspectivisch mit der Geraden a und mit der Ebene A, die Gerade a liege perspectivisch mit dem Punkt a und mit der Ebene A, die Ebene A liege perspectivisch mit dem Punkt a und mit der Geraden a.

6a) Aus No. 3 und 5 folgt: In je zwei Gebilden (Punktreihe, Strahlbüschel, Ebenenbüschel) verschiedener Art, deren Träger nicht perspectivisch mit einander liegen, liegt jedes Element des einen Gebildes perspectivisch mit je einem Element des anderen Gebildes, welches sein entsprechendes heisse; je zwei auf einanderfolgende Elemente des einen Gebildes können nur zwei auf einanderfolgenden Elementen im anderen Gebilde entsprechen. Die drei Grundgebilde sind also in Bezug auf ihre in No. 1 bezeichneten Elemente von gleicher Mächtigkeit, sie enthalten jedes gleich viel Elemente.

b) Wenn daher ein Element des einen Gebildes nach einander in einem und demselben Bewegungssinne die Lage aller anderen Elemente seines Gebildes einnimmt, so muss das in dem anderen Gebilde ihm entsprechende Element ebenfalls die Lage aller anderen Elemente seines Gebildes einnehmen und zwar in einem von dem Bewegungssinn des ersten abhängigen Bewegungssinne, so dass, wenn das eine den entgegengesetzten Bewegungssinn einschlägt, auch das andere den seinigen ändern muss. Dem einen

<sup>\*)</sup> Dies möge zugleich als Rechtfertigung\_dafür dienen, dass in der Folge auch einige Sätze angeführt und bewiesen werden, welche schon von v. Staudt inseiner Geometrie der Lage und den Beiträgen zu derselben angegeben, zumal Verfasser, treu die von dem grossen Meister Steiner aufgestellte Regel befolgend, erst nachdem der Inhalt dieses Aufsatzes durch eigene Untersuchung gefunden und in seinen wesentlichen Theilen festgestellt war, sich das v. Staudt'sche Buch zu verschaffen suchte.

## 270 Die projectivischen Eigenschaften der gewöhnlichen und

Bewegungssinn in irgend einem der Grundgebilde entspr demnach in allen auf die in a) angegebene Weise perspe visch auf dasselbe bezogenen Grundgebilden ein bestim Bewegungssinn, dem anderen der entgegengesetzte\*).

..........

c) Aus den Sätzen des §. 1 folgt hiernach ferner: Die sämmtl Strahlen eines ebenen Strahlbüschels müssen die Ebene desselben vol dig in allen ihren Punkten bedecken, so aber, dass jeder vom Mittel des Büschels verschiedene Punkt derselben stets nur durch einen ein Strahl und von diesem mit einem einzigen Punkte bedeckt wird; die sä lichen Ebenen eines Ebenenbüschels müssen den Raum vollständig in seinen Punkten erfüllen, so dass durch jeden seiner von der Axe de schels verschiedenen Punkt nur eine Ebene desselben geht.

7a) Dass die in No. 1 ausgesprochenen Voraussetzungen auch fi Punktreihe, deren Träger die unendlich entfernte Gerade  $g_{\infty}$  einer H ist, und für ebene Strahlbüschel, deren Mittelpunkt ein unendlich en ter Punkt ist, gelten müssen, wenn sie für endliche Punktreihen und S büschel mit endlichem Mittelpunkt gelten, lässt sich mit Hilfe der G sätze in No. 2 und 3 wie folgt beweisen:

Irgend eine endliche Gerade a kann von allen mit ihr in einer und selben Ebene liegenden Geraden, von denen sie nicht in endlichen Pa geschnitten wird, nur in dem einen unendlich entfernten Punkt a schnitten werden, den sie nach No. 3b enthält; und alle diese Gerade den einen ebenen Strahlbüschel mit unendlich entferntem Mittelpunkt (I welchem auch a angehört. Ist b irgend eine andere endliche Gerade selben Ebene, welche a in einem endlichen Punkte schneidet, so geht No. 2 und 3a durch jeden Punkt von b eine und nur eine Gerade, w zugleich mit a den unendlich entfernten Punkt a<sup>20</sup> gemeinschaftlich also ein und nur ein Strahl des Büschels a<sup>∞</sup>; wegen No. 3a giebt es keinen Strahl des Büschels a<sup>∞</sup>, welcher nicht einen Punkt mit b ge schaftlich hätte; andererseits können nach No. 2 zwei von einander schiedene Strahlen eines ebenen Strahlbüschels § mit endlichem Mittel nie denselben unendlich entfernten Funkt enthalten, und nach No. 3b es keine Gerade derselben Ebene, deren unendlich entfernter Punkt, überhaupt keinen unendlich entfernten Punkt in dieser Ebene, welcher 

b1. Die Strahlen eines ebenen Strahlbüschels mit unendlich en tem Mittelpunkt (eines Parallelstrahlbüschels)\*\*) folgen daher ebenso auf einander, wie die Punkte einer endlichen Punktreihe und sind ein bilde von gleicher Mächtigkeit als diese.

\*) v. Staudt, Beiträge zur Geometrie der Lage, erstes Heft, No. 47. Schter, Theorie der Kegelschnitte §. 4.

\*\*) v. Staudt, Geometrie der Lage, No. 41.

ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 271

2. Die Punkte einer unendlich entfernten Geraden, das sind die sämmtlichen unendlich entfernten Punkte einer Ebene, folgen eben so stetig auf einander, als die Strahlen eines Strahlbüschels mit endlichem Mittelpunkt und sind ein Gebilde von gleicher Mächtigkeit als diese\*).

3. Die Elemente eines ebenen Parallelstrahlbüschels wie die der unendlich entfernten Geraden einer Ebene bilden daher einestetige, sich schliessende Aufeinanderfolge von der in No. 1 angegebenen Beschaffenheit, wie die Grundgebilde mit endlichen Trägern\*\*).

c) Der Bewegungssinn eines die unendlich entfernte Punktreihe  $g_{\infty}$ durchlaufenden Punktes wird daher in der Hinsicht, ob er an irgend einer Stelle geändert wird oder nicht, da diese Gerade sich der Anschauung entzieht, nach dem Drehsinn des mit ihm perspectivischen Strahles eines Strahlbüschels mit endlichem Mittelpunkt, und der Bewegungssinn eines einen Parallelstrahlbüschel durchlaufenden Strahles nach dem Richtungssinn des mit ihm perspectivischen Punktes einer endlichen Punktreihe beurtheilt. Vgl. No. 41*a d*<sup>3</sup>. Die auf den Voraussetzungen des §. 1 beruhenden Folgerungen gelten daher für die unendlich entfernte Punktreihe und für Strahlbüschel mit unendlich entferntem Mittelpunkt in ganz gleicher Weise, wie für Strahlbüschel mit endlichem Mittelpunkt und endliche Punktreihen.

d) Ebenso lässt sich zeigen, dass die Voraussetzungen in No 1 auch für jeden in der unendlich entfernten Ebene liegenden Strahlbüschel und für jeden Ebenenbüschel, dessen Axe eine unendlich entfernte Gerade ist, gelten, wenn sie für die entsprechenden Gebilde mit endlichen Trägern gelten; doch bedürfen wir für unsern Zweck dessen nicht, da wir uns in dieser Abhandlung überhaupt auf Gebilde beschränken, welche mit allen ihren Elementen in einer endlichen Ebene liegen, und nur da darüber hinausgehen, wo es uns darauf ankommt, zu zeigen, wie leicht diese Entwickelungen auch auf räumliche Gebilde zu übertragen sind, dass ihr Charakter also ein durchaus allgemeiner ist.

#### §. 8. Strecke. Winkel. Intervall.

8a) Die ganze Aufeinanderfolge der Punkte einer Geraden wird wegen No. 1 durch irgend zwei ihrer Punkte  $a^2$ ,  $a^{\tau}$  in zwei Gruppen getheilt. Den Inbegriff aller der Elemente der Geraden, deren Lage ein in einem und demselben Bewegungssinne von  $a^2$  (oder von  $a^{\tau}$ ) aus auf der Geraden

<sup>\*)</sup> Schroeter, die Theorie der Kegelschnitte 1867. S. 80.

<sup>\*\*)</sup> v. Staudt, Geometrie der Lage, §. 5, insbesondere No. 56. Reye, Geometrie der Lage, Vortrag 2.

## 272 Die projectivischen Eigenschaften der gewöhnlichen und

sich stetig bewegender Punkt einnimmt, bis er nach  $a^{\tau}$  ( $a^{\lambda}$ ) gelangt, a die sämmtlichen Punkte einer der beiden Gruppen in ihrer Aufeinand folge und Lage nennen wir eine durch  $a^{\lambda}$  und  $a^{\tau}$  begrenzte Strecke  $a^{(\lambda)}$ jede ist die Ergänzungsstrecke der anderen\*). Die Punkte  $a^{\lambda}$  $a^{\tau}$  nennen wir die Grenzpunkte derselben.

b1. Durch Angabe irgend eines dritten von den Grenzpunkten v schiedenen Punktes a<sup> $\nu$ </sup> lassen sich die beiden Strecken unterscheiden u damit die beiden Bewegungssinne, in welchen von einem der beiden Gre punkte ausgehend die Punkte der beiden Strecken auf einander folgen. V bezeichnen durch a<sup> $(\lambda \tau) \nu$ </sup> diejenige der durch a<sup> $\lambda$ </sup> und a<sup> $\tau$ </sup> begrenzten Streck der Geraden *a*, welche den Punkt a<sup> $\nu$ </sup> nicht enthält, mit a<sup> $(\lambda \nu \tau)$ </sup> diejeni welche ihn enthält.

2. Sind beide, wie diese Bezeichnung angiebt, von demselben Anfan punkt aus beschrieben zu denken, so folgen die Punkte der beiden Strech nach No. 1 in entgegengesetztem Bewegungs- oder Richtungssinne einander, so dass durch die Aufeinanderfolge der Punkte  $a^{\lambda} a^{\tau} a^{\tau}$  oder k zer der Indices  $\lambda \tau \nu$  der eine, durch die Aufeinanderfolge der Punkte a oder  $\lambda \nu \tau$  der andere der beiden möglichen Bewegungssinne auf der Gerau a fixirt ist. So werden durch  $a^{(\lambda \tau)\nu}$  und  $a^{(\tau \lambda)\nu}$  die Punkte derselben Strec aber in entgegengesetzter Aufeinanderfolge, durch  $a^{(\tau \nu \lambda)}$  und  $a^{(\lambda \nu \tau)}$ Punkte der anderen Strecke in entgegengesetzter Aufeinanderfolge, du  $a^{(\lambda \tau)\nu}$  und  $a^{(\tau \nu \lambda)}$  die Punkte beider Strecken in der durch denselben Be gungssinn bestimmten Aufeinanderfolge bezeichnet.

Demnach ist  $a^{(\lambda \tau) \infty}$  die endliche der beiden Strecken  $a^{(\lambda \tau)}$ ,  $a^{(\lambda \tau)}$ 

Auch durch die Bezeichnung  $a^{(\lambda | \tau)}$  und  $a^{(\lambda - \tau)}$  werden wir öf die beiden Strecken unterscheiden. Vergl. No. 15.

c1. Ist einer der beiden Grenzpunkte auf einer endlichen Geraden etwa  $a^{\tau}$  identisch mit dem unendlich entfernten Punkte  $a^{\infty}$ , so nennen die beiden Strecken die Halbstrahlen der Geraden *a* in Bezug auf Punkt  $a^{\lambda}$ , die wir entweder durch einen dritten Punkt oder durch die zeichnung  $a^{(\lambda|\infty)}a^{(\lambda-\infty)}$  unterscheiden.

2. Bewegt sich ein Punkt  $a^{\xi}$  auf einem der Halbstrahlen von a in l zug auf  $a^{\lambda}$  in dem Bewegungssinne  $a^{\lambda \xi \infty}$ , so sagen wir: er entfernt s von dem Punkt  $a^{\lambda}$ ; bewegt er sich in dem Sinne  $a^{\infty \xi^{\lambda}} = a^{\xi \lambda \infty}$ , so sagen v er nähert sich dem Punkt  $a^{\lambda}$ .

9a) Ebenso werden die sämmtlichen Strahlen s eines ebenen Strabiene strahlen s durch zweiderselben $s_1$ ,  $s_x$ , die wir die Grenzstrahlen neur

<sup>\*)</sup> v. Staudt, Geometrie der Lage, No. 61. Reye, Geometrie der Lage 1866.

ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 273

in zwei Gruppen getheilt; die sämmtlichen Strahlen jeder der beiden Gruppen in ihrer Lage und Aufeinanderfolge von dem einen der beiden Grenzstrahlen aus nennen wir einen durch  $s_{\lambda}$  und  $s_{\tau}$  begrenzten Winkel, nach v. Staudt's Bezeichnung einen vollkommenen Winkel $s_{(\lambda\tau)}$ ; ist  $s_{(\lambda|\tau)}$ der eine derselben, so ist  $s_{(\lambda-\tau)}$  der andere, sein Ergänzungswinkel. Ist  $s_{\mu}$  ein dritter Strahl des Büschels, so ist  $s_{(\lambda\tau)\mu}$  der eine der beiden Winkel  $s_{(\lambda\tau)}$ , derjenige, welcher den Strahl  $s_{\nu}$  nicht enthält,  $s_{(\lambda\nu\tau)}$  der andere, welcher den Strahl  $s_{\nu}$  enthält.

b) Auch hier wird der Bewegungs- oder Drehsinn eines einen Winkel von einem seiner Grenzstrahlen aus beschreibenden Strahles und damit die Aufeinanderfolge der Strahlen des Winkels von einem seiner Grenzstrahlen aus durch die Reihenfolge, in welcher drei Strahlen desselben oder ihre Indices darin auftreten, fixirt, so dass z. B. die beiden durch  $s_1$  und  $s_{\tau}$ begrenzten Winkel, in demselben Drehsinn beschrieben, durch  $s_{(1\tau)}$ , und  $s_{(\tau\tau)}$  bezeichnet werden.

c1. Ist  $\mathfrak{g}$  der Mittelpunkt des Strahlbüschels ein unendlich entfernter Punkt, so ist auch die unendlich entfernte Gerade  $g_{\infty}$  ein Strahl des Büschels, also wenn  $s_1$  und  $s_{\tau}$  endliche Strahlen desselben,  $s_{(\lambda\tau)\infty}$  derjenige Winkel (Parallelstreifen), welcher die Gerade  $g_{\infty}$  nicht enthält, und  $s_{(\lambda\infty\tau)}$ derjenige, welcher sie enthält.

2. Ist aber  $\hat{s}$  ein unendlich entfernter Punkt,  $s_{\lambda}$  ein endlicher Strahl des Büschels  $\hat{s}$ , aber  $s_{\tau} = g_{\infty}$ , so nennen wir die entstehenden Winkel die beiden Halbebenen in Bezug auf die Gerade  $s_{\lambda}$ , welche wieder durch Angabe eines dritten Strahles  $s_{\tau}$  oder eines endlichen Punktes a<sup>v</sup> unterschieden werden, so dass  $s_{(\lambda_{\infty})\nu}$  die eine ist, welche den Strahl  $s_{\nu}$  oder den Punkt a<sup>v</sup> nicht enthält, und  $s_{(\lambda_{\nu}\infty)} = s_{(\infty \nu \lambda)}$  die andere, welche  $s_{\nu}$  oder a<sup>v</sup> enthält.

d) Der Inbegriff aller derjenigen Halbstrahlen der einen Winkel  $s_{(\lambda \nu \tau)}$ bildenden Strahlen, welche von demselben Halbstrahl eines den Winkel von einem seiner Grenzstrahlen aus in einem und demselben Bewegungssinne einmal durchlaufenden Strahles gedecktwerden, heisst nach v. Staudt ein einfacher Winkel; der Inbegriff der übrigen Strahlen bildet den Scheitelwinkel. Von jedem Strahl eines vollkommenen Winkels liegt daher ein Halbstrahl in dem einen, der andere in dem anderen der einfachen Winkel, aus denen er besteht. Unter dem Ausdruck "Winkel" ohne das Attribut "einfach" verstehen wir immer einen vollkommenen Winkel, und zwar einen, der nur einen Theil der Strahlen des Büschels enthält.

e) Analoges wie für den Strahlbüschel lässt sich auch für den Ebenenbüschel festsetzen. Vergl. No. 7d.

10. Unserer Definition gemäss (No. 9*a*) liegt jeder von den Grenzstrahlen verschiedene Strahl eines Strahlbüschels, da er nach No. 5 schon

den Mittelpunkt mit den Grenzstrahlen gemeinschaftlich hat, zufolge No dieselben aber nicht noch einmal schneiden kann, in einem von denselb begrenzten Winkel ganz mit allen seinen Punkten, wenn wir wissen, da einer seiner vom Mittelpunkt verschiedenen Punkte in diesem Winkel lie d. i. in dem von seinen Grenzstrahlen begrenzten und den Strahlen o Winkels bedeckten Gebiet der Ebene sich befindet.

a) Die Strahlen eines Winkels müssen daher das durch die Grei strahlen von der Ebene ausgeschnittene Gebiet, in welchem einer derselb liegt, ganz mit allen Punkten erfüllen und bedecken, so dass jeder Pur desselben stets von einem und nur einem einzigen Strahl dieses Winkels u von diesem nur mit einem einzigen Punkte bedeckt wird, von dem Erg zungswinkel aber nicht ein einziger Strahl oder Punkt eines solchen in i liegt.

b) Insbesondere liegt jeder Strahl eines Strahlbüschels mit unendl entferntem Mittelpunkt ganz in einem von zwei anderen Strahlen sein Büschels gebildeten Parallelstreifen also wenn einer der beiden Grei strahlen die unendlich entfernte Gerade ist, ganz in einer der beiden Ha ebenen in Bezug auf den anderen Grenzstrahl.

c) Ebenso muss ein Halbstrahl eines Büschels in einem von zwei and ren Halbstrahlen desselben Büschels begrenzten einfachen Winkel, in w chem einer seiner vom Mittelpunkt verschiedenen Punkte sich befind ganz mit allen seinen Punkten liegen.

d) Zufolge No. 2, 3 und 10 können wir den Satz aussprechen: Je Ebene wird durch je zwei in ihr gelegener Geraden in zwei Winkel gethe welche dem Strahlbüschel angehören, dessen Mittelpunkt der den beie Geraden gemeinschaftliche Punkt ist.

11*a*) Wie bisher wollen wir auch im Folgenden irgend einen Strate eines Strahlbüschels  $\mathfrak{s}^{\mathfrak{q}}$  durch das Zeichen  $s_{\eta}^{\mathfrak{q}}$ , irgend einen Punkt einer a raden Punktreihe  $a_{\lambda}$  durch das Zeichen  $a_{\lambda}^{\mathfrak{k}}$  markiren. Jeden Strahl ein Büschels  $\mathfrak{s}^{\mathfrak{q}}$ , also auch den das Büschel durchlaufenden Strahl wollen v mit  $\mathfrak{s}^{\mathfrak{q}}$ , jeden Punkt einer Punktreihe  $a_{\lambda}$ , also auch den dieselbe durchla fenden Punkt wollen wir mit  $a_{\lambda}$  bezeichnen. Wir werden ferner den Schn punkt einer Geraden a mit einem Strahl  $s_{\eta}^{\mathfrak{q}}$  durch  $a_{\eta}^{\mathfrak{q}}$ , den einer Gerad  $a_{\lambda}$  mit einer Geraden  $s_{\tau}$  durch  $a_{\lambda}^{\mathfrak{t}}$  oder  $\mathfrak{s}_{\tau}^{\lambda}$  bezeichnen, die Gerade, welc die beiden Punkte  $\mathfrak{g}$  und  $a_{\lambda}^{\mathfrak{k}}$  enthält und durch dieselben bestimmt ist, n  $s_{\lambda}^{\mathfrak{k}}$ , die Gerade, welche mit den beiden Punkten  $a^{\lambda}$  und  $\mathfrak{s}^{\tau}$  perspectivisch lie mit  $a_{\tau}^{\lambda}$  oder  $s_{\tau}^{\mathfrak{t}}$ .

b) Wenn wir von dem durch die Elemente  $\lambda$  und  $\tau$  begrenzten und cElement  $\nu$  enthaltenden, durch das Symbol ( $\lambda \nu \tau$ ) bezeichneten Interva eines der Grundgebilde sprechen, so verstehen wir darunter sowohl die durch die Punkte  $a^{\lambda}$  und  $a^{\tau}$  begrenzte, den Punkt  $a^{\nu}$  enthaltende Strecke  $a^{(\lambda \nu \tau)}$  einer Geraden *a*, als auch den durch die Strahlen  $s_{\lambda}$  und  $s_{\tau}$  begrenzten, den Strahl  $s_{\nu}$  enthaltenden Winkel  $s_{(\lambda \nu \tau)}$  eines Strahlbüschels  $\hat{s}$ , sowie den durch die Ebenen  $\mathfrak{S}^{\lambda}$  und  $\mathfrak{S}^{\tau}$  begrenzten, die Ebene  $\mathfrak{S}^{\nu}$  enthaltenden Flächenwinkel  $\mathfrak{S}^{(\lambda \nu \tau)}$  eines Ebenenbüschels *s*.

12a) Wir können so den allgemeinen Satz aussprechen:

1. Die ganze Aufeinanderfolge der Elemente eines der bezeichneten Grundgebilde wird durch irgend zwei derselben  $\lambda$ ,  $\tau$  in zwei Gruppen getheilt; den Inbegriff aller der Elemente des Gebildes, deren Lage ein in einem und demselben Bewegungssinne von  $\lambda(\tau)$  aus stetig das Gebilde durchlaufendes Element einnimmt, bis es nach  $\tau(\lambda)$  gelangt, also die sämmtlichen Elemente einer der beiden erwähnten Gruppen nennen wir ein Intervall  $(\lambda \tau) [(\tau \lambda)].$ 

2. Von demselben Grenzelement aus kann von einem laufenden Element in demselben Bewegungssinne (No. 1) immer nur dasselbe Intervall und im entgegengesetzten Bewegungssinne immer nur das Ergänzungsintervall beschrieben werden.

Hieraus und aus No. 1 folgt ferner:

3. Die beiden durch irgend zwei Elemente eines der Grundgebilde begrenzten Intervalle ergänzen sich zu dem ganzen Gebilde und schliessen einauder aus, so dass kein Element des einen Intervalles zugleich dem anderen angehören kann.

b) Je ein Element des einen und ein Element des anderen der durch zwei beliebige von einander verschiedene Elemente  $\lambda$  und  $\tau$  in einem der Grundgebilde bestimmten Intervalle sind einerseits durch das eine, folglich andererseits durch das andere Grenzelement getrennt; wir nennen so gelegene Elemente ein Elementenpaar (Punkten-, Strahlen-, Ebenenpaar) der ersten Art in Bezug auf die Grenzelemente  $\lambda$  und  $\tau$ .

c) Je zwei Elemente eines und desselben Intervalles sind einerseits durch keines, folglich andererseits durch beide Grenzelemente getrennt; wirnennensogelegene Elemente ein Elementenpaar (Punkten-, Strahlen-, Ebenenpaar) der zweiten Art in Bezug auf die Grenzelemente  $\lambda$  und  $\tau$ .

- d)1. Fallen das eine Element eines Elementenpaares in einem der Grundgebilde mit einem der beiden Grenzelemente zusammen, oder
  - 2. fallen beide mit beiden Grenzelementen oder in einem derselben zusammen, oder
- 3. wird eines der Elemente des Elementenpaares unbestimmt oder
- 4. wird eines der Grenzelemente unbestimmt,

so können wir ein solches Elementenpaar sowohl denen der ersten Art, w denen der zweiten Art zuzählen, ausschliesslich aber weder den einen, no den andern; ein solches Elementenpaar nennen wir ein Elemente paar (Punkten-, Strahlen-, Ebenen-Paar) der dritten Art zug auf die Grenzelemente J und r.

13*a*) Hiernach bilden zwei unendlich nahe oder zusammenfallende, v den Grenzelementen verschiedene Elemente stets ein Elementenpaar d zweiten Art.

b) Sind die Grenzelemente zwei unendlich nahe oder zusammenfallen Elemente, so bilden je zwei von ihnen verschiedene Elemente ein Eleme tenpaar der zweiten Art.

c) n in einem und demselben oder ein-oder mehrmal ve änderten Bewegungssinne stetig auf einanderfolgende El mente eines der Grundgebilde, deren keines mit einem d Grenzelemente zusammenfällt, müssen zufolge No. 1 und 12 sämmtlich in demselben Intervall liegen.

d) Bilden zwei Elemente  $\alpha$ ,  $\kappa$  eines der Grundgebilde Bezug auf zwei andere Elemente  $\lambda$ ,  $\tau$  desselben als Grenzelmente ein Elementenpaar der ersten, zweiten oder dritte Art, so bilden die Elemente  $\lambda$ ,  $\tau$  in Bezug auf die Elemente  $\alpha$ , als Grenzelemente ebenfalls resp. ein Elementenpaar der e sten, zweiten oder dritten Art.

#### §. 4. Bewegungssinn. Folgerungen.

14 a) Ein Bewegungssinn in einem der Grundgebilde ist eindeutigb stimmt

- 1. durch Angabe der Aufeinanderfolge irgend zweier benachbarte Elemente (No. 1);
- durch Angabe eines Intervalles und desjenigen Grenzelemente von welchem ausgehend ein Element dasselbe durchlaufen so (No. 12a);
- durch Angabe der Reihenfolge, in welcher beliebige drei Element des Gebildes auf einander folgen sollen (No. 12 a\*).

b) Es wird derselbe Bewegungssinn bestimmt, wenn statt eines de drei Elemente irgend ein anderes mit ihm in demselben der von den beide anderen Elementen bestimmten Intervalle befindliches Element gesetzt wir (No. 12 $a^{2}$ , 14 $a^{2}$ ).

c) Verändern daher die drei Elemente ihre Lage, sodas jedes stets in demselben der von den beiden anderen bestimm ten Intervalle bleibt, so bezeichnen sie in jeder Lage densel ben Bewegungssinn; fallen zwei derselben zusammen, so wird die Be

•) Schroeter, die Theorie der Kegelschnitte, 1867, §. 4. — v. Staudt, Be träge zur Geometrie der Lage, erstes Heft, No. 47.

ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 277

stimmung des Bewegungssinnes illusorisch; so oft ein Element eines der beiden anderen überschreitet, also in das andere der von denselben bestimmten Intervalle übergeht, bezeichnet dieselbe Aufeinanderfolge den dem früheren entgegengesetzten Bewegungssinn.

15. Ein in einem der Grundgebilde von der Lage  $\lambda$  aus in demselben Sinne  $\Sigma$  sich bewegendes Element desselben muss von den durch  $\lambda$  und ein beliebiges anderes Element  $\tau$  begrenzten Intervallen zunächst das eine, durch den Bewegungssinn und den Anfangspunkt bestimmte durchlaufen, und kann nicht eher in das andere Intervall gelangen, bis es alle Elemente des ersten einmal gedeckt hat (No. 1, 12 $a^3$ ).

a) Durch jede Lage  $\xi$  des das Gebilde in einem und demselben Sinne  $\Sigma$  stetig durchlaufenden Elementes und ein beliebig gewähltes Element  $\tau$  wird das Gebilde in zwei Intervalle getheilt, von denen das eine das im Sinne  $\Sigma$  folgende und daher nach No. 1, 12 $\alpha$ , 15 alle die Elemente enthält, deren Lage das laufende Element einnehmen muss, bis es nach  $\tau$  gelangt, während das andere das im Sinne  $\Sigma$  vorhergehende und alle die Elemente enthält, deren Lage das laufende Element nicht einzunehmen braucht und nicht einnehmen kann, bis es im Sinne  $\Sigma$  das erste Mal nach  $\tau$  gelangt ist, das erstere bezeichnen wir mit  $(\xi | \tau)$ , das zweite mit  $(\xi - \tau)^*$ ).

b) Demnach bezeichnen wir mit Rücksicht auf No. 1, wenn  $\lambda$  das Anfangselement, mit  $(\xi - \lambda)$  dasjenige Intervall, welches das laufende Element von der Lage  $\lambda$  aus bereits beschrieben, und mit  $(\xi | \lambda)$  dasjenige, welches das laufende Element zu beschreiben hat, bis es wieder nach  $\lambda$ gelangt.

c) Dasjenige der beiden durch zwei Elemente  $\lambda$ ,  $\tau$  begrenzten Intervalle, welches das in einem gegebenen Sinne  $\Sigma$  auf das gewählte Anfangselement  $\lambda$  folgende, also auch das in demselben Sinne  $\Sigma$  dem Endelement  $\tau$ vorhergehende Element enthält, ist demzufolge mit  $(\lambda | \tau) = (\tau - \lambda)$  zu bezeichnen, das andere der Intervalle  $(\lambda \tau)$  aber, welches das in dem Sinne  $\Sigma$  dem Element  $\lambda$  vorhergehende, also das im Sinne  $\Sigma$  auf das Anfangselement  $\tau$  folgende Element enthält, mit  $(\tau | \lambda) = (\lambda - \tau)$ .

d) Während das laufende Element das Intervall  $(\lambda | \tau)$  von der Anfangslage  $\lambda$  an stetig beschreibt, theilt es in jeder seiner Lagen dasselbe in zwei Theile  $(\lambda \xi) \tau$  und  $\lambda(\xi \tau)$ , welche wir demgemäss resp. mit  $(\xi - \lambda)$  und  $(\xi | \tau)$  zu bezeichnen haben; der letztere Theil  $(\xi | \tau)$  und das ganze Intervall  $(\tau | \lambda) = (\lambda - \tau)$  bilden das Intervall  $(\xi | \lambda)$  und gehören demselben mit allen ihren Elementen an; der erstere Theil  $(\xi - \lambda)$  und das Intervall  $(\lambda - \tau)$ bilden das Intervall  $(\xi - \tau)$ . Beschreibt das laufende Element, nachdem

<sup>\*)</sup> Lesen können wir diese Symbole resp: ξ plus τ und ξ minus τ. Der verticale Strich (|) ist der Einfachheit wegen statt des gewöhnlichen Pluszeichens gesetzt worden.

es in die Lage  $\tau$  gelangt, in gleichem Bewegungssinn das Intervall  $(\tau \mid \lambda$ so theilt es in jeder seiner Lagen dieses in zwei Theile  $(\xi - \tau) = (\xi \mid \lambda)$ ; de erstere Theil  $(\xi - \tau)$  und das ganze Intervall  $(\lambda \mid \tau) = (\tau - \lambda)$  bilden m allen ihren Elementen das Intervall  $(\xi - \lambda)$ , der letztere Theil  $(\xi \mid \lambda)$  un das Intervall  $(\lambda \mid \tau)$  bilden das Intervall  $(\xi \mid \tau)$ .

Während daher das laufende Element das Intervall  $(\lambda | \tau)$  beschreib ist  $\lambda$  ein Element des Intervalles  $(\xi - \tau)$ ; während es das Intervall  $(\tau | \tau)$ = $(\lambda - \tau)$  beschreibt, gehört  $\lambda$  dem Intervall  $(\xi | \tau)$  an.

e) Sind demnach  $\xi$ ,  $\eta$  zwei beliebige Lagen des laufenden Elemente so ist stets eines der Intervalle  $(\xi - \tau)$ ,  $(\eta - \tau)$  ein Theil des anderen un eines der Intervalle  $(\xi | \tau)$ ,  $(\eta | \tau)$  ein Theil des anderen; aber die Interval  $(\xi | \tau)$  und  $(\eta - \tau)$ ,  $(\xi - \tau)$  und  $(\eta | \tau)$  haben das eine Paar kein einziges Ele ment gemeinschaftlich, das andere nur das Intervall  $(\xi\eta)\tau$ .

Elemente des Intervalles  $(\xi \tau \eta)$  können daher nur zwei Intervallen g meinschaftlich sein, welche in ihrem Zeichen entweder beide den verticale oder beide den horizontalen Strich enthalten, Elemente des Intervalle  $(\xi \eta) \tau$  nur zwei Intervallen, von denen das eine den verticalen, das ander den horizontalen Strich in seinem Zeichen enthält.

(7) Ferner folgt aus 15d: Ist  $\nu$  ein Element des Intervalles  $(\lambda | \tau)$ , s ist, während das laufende Element  $\xi$  das Intervall  $(\lambda \nu) \tau$  beschreibt, alle Intervallen  $(\xi - \tau)$  der Theil  $(\tau \lambda) \nu$ , allen Intervallen  $(\xi | \tau)$  der Theil  $\lambda(\nu$ gemeinschaftlich; während  $\xi$  das Intervall  $\lambda(\nu \tau)$  beschreibt, ist allen Inte vallen  $(\xi - \tau)$  der Theil  $(\tau \lambda \nu)$  und während  $\xi$  das Intervall  $\nu(\tau \lambda)$  beschreib ist allen Intervallen  $(\xi | \tau)$  der Theil  $(\lambda \nu \tau)$  gemeinschaftlich.

16. Aus No. 1 und 12*a* geht hervor:

a) Hat ein Element eines der Grundgebilde in demselben in einem gegebenen Bewegungssinne  $\lambda \nu \tau$  ein Intervall  $(\lambda \nu \tau)$  von der Lage  $\lambda$  an durch laufen und bewegt es sich in demselben Sinne weiter, so beschreibt es de zweite der durch  $\lambda$  und  $\tau$  begrenzten Intervalle  $(\tau \lambda) \nu$ ; ändert es aber in de Lage  $\tau$  den Bewegungssinn, so muss es in das erste Intervall zurückkehret

b) Sind demnach drei aufeinanderfolgende von einander verschieder Lagen  $\alpha, \beta, \gamma$  eines in einem der Grundgebilde sich bewegenden Elemente so beschaffen, dass, wenn  $\psi$  irgend eines der übrigen von  $\alpha, \beta, \gamma$  verschie denen Elemente ist,  $\alpha$  und  $\gamma$  nicht in demselben der durch  $\psi$  und  $\beta$  begrenz ten Intervalle sich befinden, also  $\gamma$  nicht in ( $\psi\alpha\beta$ ) liegt, so folgen die dr Lagen  $\alpha\beta\gamma$  in demselben Bewegungssinne auf einander, und wir nennen ein gewöhnliches Element; befinden sich aber  $\gamma$  mit  $\alpha$  in demselbe Intervall, so dass ( $\psi\alpha\beta$ )=( $\psi\gamma\beta$ ), so hat das sich bewegende Element i der Lage  $\beta$  seinen Bewegungssinn geändert, in den entgegengesetzten ver wandelt; wir nennen dann  $\beta$  ein Rückkehrelement. Hierbei ist nich ausgeschlossen, dass in dem Elemente  $\beta$  mehrere in der Bewegung des lag fenden Elementes aufeinanderfolgende Lagen zusammenfallen (vereinig sind),  $\gamma$  ist dann die erste von  $\beta$  verschiedene Lage desselben.

ausgezeichneten Elemente ebener Curven, Von PAUL SCHOLZ, 279 

-----

c) Acudert das laufende Element, nachdem es ein Intervall ( $\psi|\beta$ ) beschrieben, in der Lage  $\beta$  den Bewegungssinn und beschreibt es in dem entgegengesetzten Sinne das Intervall  $(\beta - \varphi) = (\varphi \mid \beta)$ , so ist daher entweder  $(\beta - \varphi)$  ein Theil von  $(\psi | \beta)$ , oder  $(\psi | \beta)$  ein Theil von  $(\beta - \varphi)$ ; in dem beiden Intervallen gemeinschaftlichen Theile ist jedes Element doppelt zu zählen als dem einen und dem anderen Intervall angehörig; die Stetigkeit erfordert auch von dem Grenzelement, dem Rückkehrelement β, anzunehmen, dass in ihm zwei, nämlich zwei aufeinanderfolgerde Lagen des laufenden Elementes vereinigt sind.

17. Bewegen sich daher zwei Elemente ξ, ρ eines Grundgebildes in demselben, resp. von den Lagen I und 7 aus in dem'selben Bewegungssinne, so beschreibt das eine Element zunächst das eine, das andere Element zunächst das andere der durch l und r begrenzten Intervalle und umgekehrt; bewegen sie sich aber in entgegengesetztem Bewegungssinn, so beschreiben beide dasselbe Intervall und umgekehrt. Im ersten Falle ist es nicht nothwendig, dass die beiden Elemente sich begegnen, im zweiten begegnen sie sich immer.

a) Ist die Bewegung der beiden Elemente 5, o nun eine solche, dass, während das eine,  $\xi$ , von  $\lambda$  aus das Intervall  $(\lambda | \tau)$ , das andere,  $\rho$ , von  $\tau$  aus das Intervall  $(\tau | \lambda) = (\lambda - \tau)$  durchläuft, so dass nie beide in demselben Intervall sich befinden und sie gleichzeitig  $\xi$  in  $\tau$ ,  $\rho$  in  $\lambda$  anlangen, so theilen je zwei gleichzeitige Lagen von § und o das ganze Gebilde in zwei Intervalle, welche nach No. 15a mit  $(\xi|\varrho) = (\varrho - \xi)$  und  $(\varrho|\xi) = (\xi - \varrho)$  zu bezeichnen sind, und deren jedes nach No. 12b und 13d stets eines der Elemente  $\lambda$ ,  $\tau$  enthält; und zwar enthält, so lange  $\xi$  in dem Intervall ( $\lambda | \tau$ ), also  $\varrho$  in dem Intervall  $(\tau | \lambda)$  sich befinden, das Intervall  $(\xi | \varrho) = (\varrho - \xi)$  stets das Element  $\tau$ , das Intervall  $(\varrho|\xi) = (\xi - \varrho)$  stets das Element  $\lambda$ , so dass  $(\xi|\tau)$  stets ein Theil von  $(\xi|\varrho)$  und  $(\xi-\lambda)$  stets ein Theil von  $(\xi-\varrho)$ ,  $(\varrho|\lambda)$ stets ein Theil von  $(\varrho|\xi) = (\xi - \varrho)$  und  $(\varrho - \tau)$  stets ein Theil von  $(\varrho - \xi)$ =( $\xi | \varrho$ ) ist. Ist dann  $\nu$  irgend ein Element des Intervalles ( $\lambda | \tau$ ), und ist, wenn  $\xi$  nach v,  $\rho$  nach v gelangt, welches ein Element des Intervalles  $(\lambda - \tau)$  ist, so folgt aus No. 15 f:

Während  $\xi$  das Intervall  $(\lambda | \nu) = (\lambda \nu) \tau$  beschreibt, sind allen Intervallen  $(\xi|\varrho)$  die sämmtlichen Elemente des Intervalles  $(r|\tau) = \lambda(r\tau)$  gemeinschaftlich und nur diese, allen Intervallen  $(\varrho|\xi) = (\xi - \varrho)$  die sämmtlichen Elemente des Intervalles  $(v|\lambda)$  $=\tau(\nu\lambda)=(\lambda-\nu)$  und nur diese; während  $\xi$  den Theil  $(\nu|\tau)=\lambda(\nu\tau)$ durchläuft, ist allen Intervallen  $(\xi - \varrho)$  der Theil  $(\nu - \lambda) = (\lambda | \nu)$ =(lv)r gemeinschaftlich und sonst kein Element, allen Intervallen  $(\varrho - \xi) = (\xi | \varrho) \operatorname{der} \operatorname{Theil} (\upsilon - \tau) = (\tau | \upsilon) = (\tau \upsilon) \lambda$ .

b) Durchläuft ein Element eines der Grundgebilde dasselbe zweimal hintereinander in demselben Bewegungssimne von der Lage  $\lambda$  an, so bilden

alle diese Lagen, wenn wir die des ersten und zweiten Umlaufes untersch den, ein Gebilde, von welchem der Satz in No. 1 ebenfalls gelten muss n seinen sämmtlichen Folgerungen. Wir denken uns die Lagen des zweit Umlaufes auf denen des ersten liegend, dann haben wir, wenn das laufen Element einen Umlauf vollendet, nach No. 15*a* den zweiten Umlauf n  $(\lambda|\lambda)$ , den ersten mit  $(\lambda-\lambda)$  zu bezeichnen. Lassen wir nun zwei au einanderliegende Elemente  $\xi\xi$  gleichzeitig sich in diesem Gebilde von ein bestimmten Lage  $\lambda\lambda$  an in bestimmtem Bewegungssinne bewegen, so gen gen dieselben den Bedingungen für die Bewegung der Elemente  $\xi$  und in No. 17*a*; wenn das eine derselben einen Umlauf gemacht, hat auch d andere einen vollendet; bei jeder Lage von  $\xi\xi$  enthält jedes der beid Intervalle  $(\xi|\xi), (\xi-\xi)$  die sämmtlichen Elemente des einfachen Gebilde einmal.

#### §. 5. Perspectivische Intervalle.

18. Lediglich als Folgerung aus den Voraussetzungen und Sätzen No. 1, 6, 7, 8, 9, 10, 15 ergiebt sich:

Ist a eine beliebige Punktreihe in der Ebene eines beliebigen eben Strahlbüschels §°, welche nicht mit dem Mittelpunkte §° perspectivisch lief so entspricht jedem Punkt a<sup>§</sup> derselben ein und nur ein Strahl s<sup>°</sup><sub>ξ</sub> des B schels und umgekehrt. Wählen wir zwei beliebige Punkte von a<sup> $\lambda$ </sup> und a<sup> $\tau$ </sup> zu Grenzpunkten und die mit diesen perspectivise liegenden Strahlen s<sup>°</sup><sub> $\lambda$ </sub>, s<sup>°</sup><sub> $\tau$ </sub> zu Grenzstrahlen des Büschels, s entsprechen allen Punkten der einen Strecke a<sup> $(\lambda \tau)$ </sup> nur Stra len, und zwar die sämmtlichen Strahlen des einen Winke s<sup>°</sup><sub> $(\lambda \tau)\nu$ </sub> und umgekehrt, allen Punkten der anderen Strecke a<sup> $(\tau \tau)</sup>$ </sup> nur Strahlen, und zwar die sämmtlichen des anderen Winke s<sup>°</sup><sub> $(\tau \tau \lambda)$ </sub> und umgekehrt. Dies gilt ganz allgemein (No. 3), mag *a* ei endliche oder die unendlich entfernte Gerade, mag §° ein endlicher od unendlich entfernter Punkt sein, bei ganz beliebiger Wahl der Grenzel mente.

a) Die einem Punktenpaar erster, zweiter, dritter Art entsprechend Strahlen bilden daher stets ein Strahlenpaar resp. erster, zweiter oder dr ter Art, und die einem Strahlenpaar erster, zweiter, dritter Art entspr chenden Punkte bilden stets ein Punktepsar resp. erster, zweiter, dritt Art; vorausgesetzt ist dabei, dass die Grenzelemente der Punktreihe un des Strahlbüschels perspectivisch liegen.

b) Die eine der durch a<sup>1</sup> und a<sup> $\tau$ </sup> begrenzten Strecken a<sup>( $\lambda \tau$ )<sup> $\pi$ </sup> liegt nach</sup> No. 10 ganz mit allen ihren Punkten in dem von den Strahlen des einen der von  $s_1^{\varrho}$  und  $s_{\tau}^{\varrho}$  begrenzten Winkels  $s_{(1\tau,\tau)}^{\varrho}$ , des entsprechenden Winkels, bedeckten Gebiet der Ebene, die andere Strecke a(\*\*1) ganz mit allen ihren Punkten in dem Gebiet des anderen, des ihr entsprechenden Winkels s(zw2).

c) Nach No. 6 und 15 *a* entspricht der Strecke  $a^{(\xi|\tau)}(a^{(\lambda|\tau)})$  der Winkel  $s^{\boldsymbol{\varrho}}_{(\boldsymbol{\xi}|\boldsymbol{\tau})}\left(s^{\boldsymbol{\varrho}}_{(\boldsymbol{\lambda}|\boldsymbol{\tau})}\right)$  und umgekehrt; demnach liegt die Strecke  $\mathfrak{a}^{(\boldsymbol{\xi}|\boldsymbol{\tau})}\left(\mathfrak{a}^{(\boldsymbol{\lambda}|\boldsymbol{\tau})}\right)$ ganz in dem Winkel  $s_{(\xi|\tau)}^{\boldsymbol{\varrho}}\left(s_{(\lambda|\tau)}^{\boldsymbol{\varrho}}\right)$ ; die Strecke  $a^{(\xi-\tau)}\left(a^{(\lambda-\tau)}\right)$  liegt ganz mitallen ihren Punkten in dem ihr entsprechenden Winkel $s^{\varrho}_{(\xi-\tau)}\left(s^{\varrho}_{(\lambda-\tau)}\right)$ . Ueberhaupt liegt eine Strecke ganz mit allen ihren Punkten in demjenigen von zwei mit ihren Grenzpunkten perspectivisch liegenden, sonst beliebigen Strahlen einer Ebene gebil-

(No. 3b, 10.) a) Die mit den Punkten einer Strecke, die nur einen Theil der Geraden a bildet, perspectivischen Strahlen eines Büschels, dessen Mittelpunkt nicht in der Geraden a liegt, bilden daher einen Winkel, der stets nur einen Theil des Büschels ausmacht und umgekehrt (No. 3).

deten Winkel, in welchem einer ihrer Punkte sich befindet

e) Zwei Punkte der unendlich entfernten Geraden bilden daher in Bezug auf zwei beliebige Grenzpunkte derselben ein Punktepaar erster, zweiter oder dritter Art, wenn in irgend einem Strahlbüschel mit endlichem Mittelpunkt die mit diesen beiden Punkten perspectivischen Strahlen in Bezug auf die mit den Grenzpunkten perspectivischen Strahlen ein Strahlenpaar resp. erster, zweiter oder dritter Art bilden; in allen übrigen Strahlbüscheln mit endlichem Mittelpunkt bilden dann die entsprechenden Strahlen ebenfalls ein Strahlenpaar resp. erster, zweiter oder dritter Art. (Vergl. die Anmerk. zu No. 19.)

So beurtheilen wir das Verhalten der sich der Anschauung entziehenden unendlich fernen Elemente aus dem Verhalten der mit ihnen perspectivischen endlichen Elemente.

19. Daraus geht hervor: Beziehen wir irgend eine Punktreihe a, perspectivisch auf einen Strahlbüschel \$1, dessen Mittelpunkt mit keinem der Punkte von a, identisch ist, den Strahlbüschel 31 ferner perspectivisch auf eine Punktreihe ag, deren Träger nicht den Punkt \$1 enthält, diese Punktreihe wieder auf einen Strahlbüschel 8<sup>e</sup>, dessen Mittelpunkt nicht mit einem ihrer Punkte zusammenfällt u. s. f., und sind in jedem der Gebilde a, s<sup>1</sup>, a, 3°, ... zwei Elemente zu Grenzelementen so gewählt, dass sie mit den Grenzelementen des jedesmal in der Reihe vorhergehenden, also auch des folgenden Gebildes perspectivisch sind, so entsprechen jedem Elementen-

paar erster, zweiter oder dritter Art des einen Gebildes in jedem der and ren Gebilde Elementenpaare resp. der ersten, zweiten oder dritten Art Bezug auf die erwählten Grenzelemente, so dass allen Elementen desselb Intervalles eines Gebildes in jedem der anderen Gebilde nur Elemente de selben Intervalles und zwar die sämmtlichen entsprechen, welches wir d dem ersteren entsprechende Intervall nennen\*). Dem einen Bewegung sinn in einem dieser Gebilde entspricht in jedem der anderen Gebilde e ganz bestimmter, von diesem abhängiger Bewegungssinn. Vergl. No. 6b, 12 Die Träger dieser Gebilde brauchen nicht sämmtlich in derselben Ebe zu liegen; nothwendige und hinreichende Bedingung ist nur, dass je Punktreihe in der Ebene der beiden mit ihr perspectivischen Strahlbüsch nämlich des in der Reihenfolge vorhergehenden und des folgenden, lie also nach No. 2 mit der Schnittlinie der beiden Ebenen zusammenfällt u keinen der Mittelpunkte dieser beiden Büschel enthält.

20. Ist aber a eine Gerade in der Ebene eines ebenen Strahlbüsch  $\mathfrak{g}^{\varrho}$ , welche mit dem Mittelpunkt  $\mathfrak{g}^{\varrho}$  perspectivisch liegt, so ist a ein Stra des Büschels  $\mathfrak{g}^{\varrho}$  und  $\mathfrak{g}^{\varrho} = \mathfrak{a}^{\varrho}$  ein Punkt der Punktreihe a; die allen übrig Strahlen des Büschels auf der Geraden a entsprechenden Punkte fallen sammen (No. 2) in den Punkt  $\mathfrak{a}^{\varrho}$  und die allen übrigen Punkten der Ge den a im Büschel entsprechenden Strahlen fallen zusammen in den Stra a, so dass dem Punkt  $\mathfrak{a}^{\varrho}$  von a alle Strahlen des Büschels ausser a, d Strahl a des Büschels aber alle Punkte von a ausser  $\mathfrak{a}^{\varrho}$  entsprechen \*\*).

#### a) Wählen wir nun

zwei beliebige von a<sup> $\rho$ </sup> verschiedene Punkte von *a* a<sup> $\lambda$ </sup> und a<sup> $\tau$ </sup> zu Strahlen des Büschels s<sup> $\rho$ </sup> s<sup> $\rho$ </sup> und Grenzpunkten und die mit diesen zu Grenzstrahlen und die mit dies

\*\*) Schroeter, die Theorie der Kegelschnitte. 1867. §. 19a.

<sup>\*)</sup> Dass das Gesagte in der That auch für eine unendlich entfernte Pun reihe  $g_{\infty}$  und mit ihr perspectivische Strahlbüschel gilt, erhellt auch aus F gendem: Je zwei solcher Strahlbüschel, deren Mittelpunkte ausserhalb  $g_{\infty}$  lieg also endliche Punkte sind (No. 36), müssen entweder in derselben Ebene, weh auch die unendlich entfernte Gerade  $g_{\infty}$  enthält, oder in zwei verschieden Ebenen liegen, die sich in dieser unendlich entfernten Geraden  $g_{\infty}$  schr den. In jedem Falle lässt sich von irgend einem Punkte von  $g_{\infty}$  in der Ebeines jeden dieser Strahlbüschel eine Gerade ziehen, welche mit keinem der Büsch strahlen zusammenfällt; diese beiden Geraden liegen in einer Ebene, werden je von einem der beiden Strahlbüschel in projectivischen Punktreihen geschnitt welche perspectivisch liegen, da in dem unendlich entfernten Punkt swei entsp chende zusammenfallen, so dass für die projectivische Beziehung der beiden zwei endliche Panktreihen, welche mit einem Strahlbüschel perspectivisch lieg dessen Mittelpunkt ein endlicher Punkt ist.

perspectivischen Strahlen zu Grenzstrahlen des Büschels, so fallen letztere zusammen in den Strahl a; je zwei vou a verschiedene Strahlen bilden daher ein Strahlenpaar der zweiten Art und die ihnen entsprechenden Punkte der Geraden a bilden ein Punktepaar der zweiten Art; die einem Punktepaar erster, zweiter oder dritter Art, von welchen wenigstens einer nicht mit a<sup>e</sup> identisch ist, entsprechenden Strahlen bilden ein Strahlenpaar dritter Art.

b) Fallt aber  $\hat{s}^{e}$  mit einem der Grenzpunkte auf a, etwa mit a<sup> $\tau$ </sup> zusammen, so ist a der eine Grenzstrahl des Büschels, welcher dem Punkt a<sup>1</sup> entspricht, der andere Grenzstrahl, welcher dem a<sup> $\tau$ </sup> entsprechen sollte, aber wird unbestimmt, so dass sich Strahlenpaare erster und zweiter Art nicht unterscheiden lassen; demnach entspricht jedem Punktepaar der Geraden a ein Strahlenpaar dritter Art des Büschels  $\hat{s}^{e}$  und jedem Strahlenpaar des Büschels ein Punktepaar dritter Art auf der Geraden a. perspectivischen Punkte zu Grenzpunkten von a, so fallen letztere zusammen in den Punkt  $\overset{o}{s}^{e}$ ; je zwei von a<sup>e</sup> verschiedene Punkte von abilden daher ein Punktepaar der zweiten Art und die ihnen entsprechenden Strahlen des Büschels  $\overset{o}{s}^{e}$ ein Strahlenpaar der zweiten Art, die einem Strahlenpaar erster, zweiter oder dritter Art, von welchen wenigstens der eine von a verschieden ist, entprechenden Punkte bilden ein Punktepaar dritter Art.

Fällt aber a mit einem der Grenzstrahlen von  $\hat{s}^{\varrho}$ , etwa mit  $s_{\tau}^{\varrho}$  zusammen, so ist  $a^{\varrho}$  der eine Grenzpunkt auf a, welcher dem Strahl  $s_{\lambda}^{\varrho}$  entspricht, der andere Grenzpunkt, welcher dem  $s_{\tau}^{\varrho}$  entsprechen sollte, aber wird unbestimmt, so dass sich Punktepaare erster und zweiter Art nicht unterscheiden lassen; demnach entspricht jedem Strahlenpaar des Büschels  $\hat{s}^{\varrho} = a^{\varrho}$  ein Punktenpaar dritter Art auf a und jedem Punktepaar auf a ein Strahlenpaar dritter Art im Büschel  $\hat{s}^{\varrho}$ .

Ob 3<sup>e</sup> ein endlicher oder unendlich entfernter Punkt, a eine endliche oder die unendlich entfernte Gerade ist, ist hierfür gleichgiltig (No. 2, 3, 7, 8 a).

#### §. 6. Grenzgerade.

A. Ein Strahlbüschel und eine Punktreihe. Streckenbüschel.

21. a) 1. Bezeichnen wir die Gerade  $s_{1}^{\varphi}$  in No. 18 als Strahl des Büschels  $a^{2}$  gemäss No. 11 a mit  $a_{\varphi}^{\lambda}$  und die Gerade a mit  $a_{\psi}^{\lambda}$ , so wird  $s^{\varphi}$  in jeder seiner Lagen durch die mit diesen Geraden perspectivischen Punkte  $\bar{s}^{\varphi}$  und  $\bar{s}^{\psi}$  in zwei Strecken getheilt, von denen zufolge No. 18*b* die eine  $\bar{s}^{(\varrho \chi \psi)}$  die sämmtlichen Punkte enthält, welche mit den Strahlen des einen Zeitschrift f. Mathematik u. Physik. XIV. 4.

der durch  $a_{\varphi}^{1}$  und  $a_{\psi}^{1}$  begrenzten Winkel,  $a_{(\varrho z\psi)}^{1}$ , perspectivisch liegen, m nur diese, während die andere Strecke  $\tilde{s}^{\mathcal{I}}(\psi \varrho)$  die sämmtlichen Pun enthält, welche mit den Strahlen des andern Winkels  $a_{\mathcal{I}}^{1}(\psi \varrho)$  perspectivi liegen, und nur diese;  $a_{\mathcal{I}}^{1}$  ist aber ein ganz beliebiger von  $a_{\varphi}^{1}$  und  $a_{\psi}^{1}$  v schiedener Strahl des Büsches  $a^{1}$ .

2. Zufolge No. 10 giebt es keinen Punkt in dem Winkel  $a_{(q\,z\,\psi)}^{\lambda}$ , welc nicht auf einem ganz mit allen seinen Elementen in denselben fallene Strahl des Büschels  $a^{\lambda}$  läge und zugleich nach No. 2, 3*a*, 6*c* einem Str des Büschels  $\hat{s}^{q}$  angehörte, und zwar derjenigen Strecke desselben, wel nach No. 18*c* ganz mit allen ihren Punkten in diesem Winkel liegt, o mit  $a_{\chi}^{\lambda}$  gemeinschaftlichen Punkt enthält und daher mit  $\hat{s}^{(q\,z\,\psi)}$  zu zeichnen ist.

b) Ist  $g_{\delta}$  irgend eine andere Gerade derselben Ebene, welche we mit a<sup>2</sup> noch mit  $\tilde{s}^{0}$  perspectivisch liegt und nach No. 3 mit  $a_{0}^{2}$ ,  $a_{z}^{1}$ , resp. die Punkte  $g_{\delta}^{0} = a_{0}^{\delta}$ ,  $g_{\delta}^{z} = a_{z}^{\delta}$ ,  $g_{\delta}^{\psi} = a_{\psi}^{\delta}$  gemeinschaftlich hat, denen nach No. 2 keine zwei zusammenfallen, so liegt jeder Funkt Strecke  $g_{\delta}^{(e_{Z}\psi)}$  sowohl mit einem Strahl des Winkels  $a_{(e_{Z}\psi)}^{1}$ , als mit ein Strahl des Winkels  $s_{(e_{Z}\psi)\delta}^{e}$  perspectivisch, wo  $s_{0\delta}^{e} = s_{1}^{2} = a_{0}^{2}$ ,  $s_{2\delta}^{e}$ , ddie resp. mit den Punkten  $g_{\delta}^{e}$ ,  $g_{\delta}^{z}$ ,  $g_{\delta}^{\psi}$  perspectivischen Strahlen Büschels  $\tilde{s}^{0}$  sind; und jeder Punkt der Strecke  $g_{\delta}^{z(\psi e)}$  liegt sowohl einem Strahl des Winkels  $a_{z(\psi e)}^{1}$ , als mit einem Strahl des Winkels  $s_{z(\psi e)}^{e}$  enthi daher die Strecke  $\tilde{s}^{(e_{Z}\psi)}$  den mit  $g_{\delta}$  perspectivischen Punkt und sonst auf keinem andern Strahl; auf jedem Strahl d Winkels  $s_{z(\psi e)}^{e}$  enthält die Strecke  $\tilde{s}^{z(\psi e)}$  den mit  $g_{\delta}$  perspectivischen Punkt wischen Punkt  $\tilde{s}^{0}$ , nie die Strecke  $\tilde{s}^{(e_{Z}\psi)}$ .

c) Lassen wir daher einen Strahl  $s^{\varphi}$  von der Lage  $s_{1}^{\varphi} =$ aus den Strahlbüschel  $\tilde{s}^{\varphi}$  in demselben Sinne continuirli durchlaufen, so muss die eine der beiden durch  $\tilde{s}^{\varphi}$  und d mit  $a_{\varphi}^{\lambda}$  perspectivischen Punkt  $\tilde{s}^{\psi}$  begrenzten Strecken  $\tilde{s}^{(\varrho_{\lambda})}$ 

stetig den Winkel  $a_{(\varrho \chi \psi)}^{\lambda}$  beschreiben, bis  $s^{\varrho}$  einen Umlauf vollendet und wieder nach  $s_{\lambda}^{\varrho}$  gelangt (No. 1), in allen ihren Lagen während desselben und in allen ihren Punkten in diesem Winkel liegen, und es kann keinen Punkt in diesem Winkel geben, welcher von dem Strahl  $s^{\varrho}$  während eines Umlaufes mehr als einmal oder keinmal (No. 6c) getroffen würde, und keinen, welcher nicht in der mit ihm perspectivischen Lage von  $s^{\varrho}$  der Strecke  $\tilde{s}^{(\varrho \chi \psi)}$  angehörte; die andere Strecke  $\tilde{s}^{\chi(\psi \varrho)}$ aber muss in derselben Weise den andern Winkel  $a_{\chi(\psi \varrho)}^{\lambda}$  beschreiben.

22.  $\tilde{s}^{\varrho}$  und jeder Punkt von  $a_{\psi}^{\lambda}$  gehören, ihrer Natur als Grenzpunkte gemäss, beiden Strecken des perspectivischen Strahles an, jeder von diesen verschiedene Punkt aber nur einer Strecke. Jede Gerade der Ebene wird daher in dem mit  $a_{\psi}^{\lambda}$  gemeinschaftlichen Punkt und, wenn sie den Punkt  $\tilde{s}^{\varrho}$ enthält, auch in diesem gleichzeitig von beiden Strecken des Strahles  $s^{\varrho}$ getroffen, in jedem der übrigen Punkte aber nur von einer. Wir bezeichnen die eine der beiden Strecken  $\tilde{s}^{(\varrho\psi)}$ , welche im Drehsinne  $\Delta$  von  $s^{\varrho}$  den Winkel  $a_{(\varrho \chi \psi)}^{\lambda}$  beschreibt, mit  $\tilde{s}^{(\varrho|\psi)}$ , die andere mit  $\tilde{s}^{(\varrho=\psi)}$ ,  $\tilde{s}_{\lambda}^{(\varrho=\psi)}$ .

Während  $s^{\varphi}$  im Sinne  $\varDelta$  einen Umlauf macht, werden von derselben Strecke  $\tilde{s}^{(\varphi|\psi)} = \tilde{s}^{(\varphi,\chi\psi)} (\tilde{s}^{(\varphi-\psi)} = \tilde{s}^{\chi(\varphi,\psi)})$  getroffen:

a) jede von  $a_{\varrho}^{1}$  und  $a_{\psi}^{1}$  verschiedene Gerade des Winkels  $a_{(\varrho \chi \psi)}^{\lambda} \left( a_{\chi(\psi \varrho)}^{\lambda} \right)$ in allen Punkten,  $a^{1}$  ausgenommen;

b) jede beliebige Gerade der Ebene  $g_{\delta}$ , welche weder mit  $a^{4}$  noch mit  $\bar{s}^{\varphi}$  perspectivisch liegt, in allen Punkten der Strecke  $g_{\delta}^{(\varrho, \chi\psi)}\left(g_{\delta}^{\chi(\psi, \varrho)}\right)$ , welche von den Grenzpunkten  $g_{\delta}^{\varphi}$  und  $g_{\delta}^{\psi}$  verschieden sind, und in dem Punkte  $g_{\delta}^{\varphi}$ , wenn dieser der Strecke  $\bar{s}_{\lambda}^{(\varphi+\psi)}\left(\bar{s}_{\lambda}^{(\varphi-\psi)}\right)$  von  $s^{\varphi}$  in der Anfangslage  $a_{\rho}^{\lambda} = s_{\lambda}^{\varphi}$  angehört;

c) jede Gerade der Ebene, welche mit  $\hat{s}^{\varphi}$  perspectivisch, also ein Strahl  $s_{\xi}^{\varphi}$  des Büschels ist, in allen Punkten der Strecke  $\hat{s}_{\xi}^{(\varphi Z \psi)}\left(\hat{s}_{\xi}^{Z(\psi \varphi)}\right)$ ausser den Grenzpunkten  $\hat{s}^{\varphi}$  und  $\hat{s}_{\xi}^{\psi}$ , aber in der einzigen Lage (No. 2) des

20\*

laufenden Strahles  $s^{\mathbf{q}}$ , in welcher er mit  $s_{\xi}^{\mathbf{q}}$  zusammenfällt; in allen ande Lagen desselben wird  $s_{\xi}^{\mathbf{q}}$  sowohl von der einen wie von der anderen Stre im Punkt  $\hat{s}^{\mathbf{q}}$  getroffen (No. 20).

23. Da, wenn  $a_{\varphi}^{1}$  von  $a_{\psi}^{1}$  verschieden, jede der beiden Street  $\begin{pmatrix} (\varphi \, \psi) \\ g\delta \end{pmatrix}$  (No. 21b) nur ein Theil der Geraden  $g_{\delta}$ , also auch jeder der beiden Winkel  $s_{(\varphi \, \psi)}^{\varphi} \delta$  (No. 18) nur einen Theil des Büschels  $\tilde{s}^{\varphi}$  ausmachen ka aber jeder der Punkte von  $g_{\delta}$  während eines Umlaufes des Strahles einmal mit ihm perspectivisch liegt (No. 3, 6, 21 c), so muss diejenige beiden Strecken  $\tilde{s}^{(\varphi \, \psi)}$  von  $s^{\varphi}$ , welche in der Anfangslage  $s_{1}^{\varphi}$  am Anfan der Bewegung den mit  $g_{\delta}$  gemeinschaftlichen Punkt  $a_{\varphi}^{\delta} = g_{\delta}^{\varphi}$  nicht enth denselben nach Beendigung des ersten Umlaufes von  $s^{\varphi}$  enthalten, und d jenige Strecke  $\tilde{s}^{(\varphi \, \psi)}$ , welche den Punkt  $a_{\varphi}^{\delta}$  in der Anfangslage am Aufan der Bewegung enthält, kann denselben nicht nach Beendigung des erst Umlaufes enthalten.

a) Jede der beiden Strecken  $\tilde{g}^{(\varphi\psi)}$  bildet demgemäs wenn  $s^{\varrho}$  den Büschel  $\tilde{g}^{\varrho}$  einmal durchlaufen, in der Anfang lage  $s^{\varrho}_{\lambda}$  die Ergänzung zu derjenigen Strecke, welche sie s Anfange der Bewegung bedeckte, und muss beim zweiten Un laufe von  $s^{\varrho}$  in demselben Drehsinne  $\Delta$  den entgegengesetzte des beim ersten Umlaufe beschriebenen Winkels beschreibe so dass sie nach Beendigung des zweiten Umlaufes diesell Lage hat und dieselben Punkte enthält, als beim Anfange de Bewegung.

b) Die sämmtlichen Lagen einer der beiden Strecken  $\hat{s}^{(\varphi \psi)}$  währer zweier aufeinanderfolgender Umläufe von  $s^{\varphi}$  in demselben Drehsinne sin daher ein Gebilde, welches wir ein Streckenbüschel nennen wolle von welchem die Voraussetzungen in No. 1 und die daraus hervorgehende Folgerungen in ihrer ganzen Ausdehnung gelten, und welches die ganz Ebene des Büschels so erfüllt, dass jeder von  $\hat{s}^{\varphi}$  verschiedene Punkt der selben, welcher nicht der Grenzgeraden  $a_{\psi}^{\lambda}$  angehört, mit einer solche Strecke in einer und nur einer ihrer Lagen perspectivisch liegt; mit  $\hat{s}$ aber liegt die laufende Strecke in allen ihren Lagen und nit jedem Punk von  $a_{\psi}^{\lambda}$  in zwei durch einen ganzen Umlauf von  $s^{\varphi}$  getrennten Lagen per spectivisch.

c) Jeder der beiden Winkel  $a_{(\varphi\psi)}^{\lambda}$  erscheint hiernach als nes der Intervalle, in welche das Streckenbüschel  $\hat{s}^{\varphi}(a_{\psi}^{\lambda})$ , swie jedes andere  $\hat{s}^{\varphi}(a_{\psi}^{\lambda})$ , dessen Mittelpunkt  $\hat{s}^{\varphi}$  irgend ner der Punkte von  $s_{\lambda}^{\varphi}$  ist und welches auf dieselbe Grenzerade  $a_{\psi}^{\lambda}$  bezogen wird, zerfällt durch die beiden von en Punkten  $a^{\lambda} = \hat{s}_{\lambda}^{\psi}$  und  $\hat{s}^{\varphi}$  (resp.  $\hat{s}^{\varphi}$ ) begrenzten Strecken  $w^{\psi}(\hat{s}_{\lambda}^{(\varphi\psi)})$ .

d) Aus No. 12  $a^2$  und 16 geht ferner hervor: Dieselbe der durch  $a^2$ d ŝ<sup>e</sup> auf s<sup>e</sup> bestimmten Strecken, welche, während s<sup>e</sup> sich im nne  $\Delta$  von  $s_{\lambda}^{\varrho}$  an bewegt, den Winkel  $a_{(\varrho \chi \psi)}^{\lambda}$  beschreibt, behreibt, wenn s<sup>e</sup> sich im entgegengesetzten Sinne bewegt, n Ergänzungswinkel  $a_{(\varrho\psi)z}^{\lambda}$ ; und derselbe der Winkel  $a_{(\varrho\psi)}^{\lambda}$ , elcher von der einen der in der Anfangslage durch a<sup>2</sup> und ß<sup>e</sup> stimmten Strecken beschrieben wird, während s<sup>e</sup> sich im nne⊿bewegt, wird, wenn s<sup>ę</sup> sich im entgegengesetzten nne bewegt, von der anderen dieser Strecken beschrieben. 24. Während  $s^{\varphi}$  im Sinne  $\varDelta$  von  $s_1^{\varphi}$  aus den Büschel  $\hat{s}^{\varphi}$  beschreibt, rchläuft der auf einer Geraden  $g_s$ , welche weder mit a noch mit  $s^q$ spectivisch liegt, entsprechende Punkt gemäss No. 21, 22 zuerst die in n Winkel  $a_{(q\,z\,\psi)}^{\lambda}$  befindliche Strecke  $g_{\delta}^{(q\,z\,\psi)}$ , wenn  $g_{\delta}$  die Gerade  $s_{\lambda}^{q}$  in end einem Punkt der Strecke  $\mathfrak{s}_{1}^{(arphi \mid \psi)}$  schneidet, und er durchläuft zuerst in dem Winkel  $a_{(\varrho \psi)z}^{\lambda}$  befindliche Strecke  $g_{\delta}^{(\varrho \psi)z}$ , wenn  $g_{\delta}$  die Gerade in irgend einem Punkt der Strecke  $\hat{s}_1^{(q-\psi)}$  schneidet.

Daher bewegt sich, während  $s^{e}$  im Sinne  $\Delta$  den Büschel  $\tilde{s}^{e}$ schreibt, der entsprechende Punkt auf allen Geraden g der sene, welche mit  $s^{e}_{\lambda}$  einen Punkt der Strecke  $\tilde{s}^{(e|\psi)}_{\lambda}$  gemeinhaftlich haben, im Sinne  $g^{e^{\chi\psi}}$ , auf allen Geraden g der ene, welche mit  $s^{e}_{\lambda}$  einen Punkt der Strecke  $\dot{s}^{(e-\psi)}_{\lambda}$  gemeinhaftlich haben, im Sinne  $g^{e^{\psi\chi}}$ , welchem im Büschel  $a^{\lambda}$  nach . 1 der dem Sinne  $a^{\lambda}_{e^{\chi\psi}}$  entgegengesetzte  $a^{\lambda}_{e^{\psi\chi}}$  entspricht. Beschreibt aber  $s^{\varphi}$  den Büschel  $s^{\varphi}$  in dem dem Sinne  $\Delta$  entgegengesetzten Sinne  $\overline{\Delta}$ , so bewegt sich zufolge No. 6 der entsprechende Punkt auf allen Geraden der ersteren Art im Sinne  $g^{\varphi\psi z}$ , auf allen Geraden der letzteren Art im Sinne  $g^{\varphi z\psi}$ .

25. Die ausnahmlose Allgemeinheit der Voraussetzungen des §. 1 und der darauf sich gründenden Folgerungen und Definitionen gestattet uns, unsere Untersuchungen ihrem Wesen nach ganz allgemein bei ganz beliebiger Lage der in Betracht kommenden Gebilde und bei ganz beliebiger Wahl der in denselben hervorzuhebenden Elemente anzuwenden. Besonderheiten in der Lage der Gebilde und der Wahl gewisser Elemente derselben werden nur gewisse Modificationen des Resultates veranlassen, welche aber ebenfalls in der allgemeinen Untersuchung als Specialitäten enthalten sein müssen.

a) Jegliche zwei Elemente eines stetigen geschlossenen Gebildes von der in No. 1 angegebenen Beschaffenheit theilen dasselbe in zwei Intervalle; auch von zwei aufeinanderfolgenden oder zusammenfallenden Elementen können wir dies sagen, nur findet dann der besondere Fall statt, dass das eine Intervall gleich Null, das andere gleich dem ganzen Gebilde wird. Ist  $\mathfrak{g}^{\mathsf{Q}}$  ein Punkt von  $a_{\psi}^{\mathsf{I}}$ , so wird die eine der Strecken  $\mathfrak{g}^{(\mathsf{Q}\,\psi)}$  in jeder Lage von  $s^{\mathsf{Q}}$ , welche verschieden von  $a_{\psi}^{\mathsf{I}}$  ist, gleich Null, die andere gleich dem ganzen Strahl; in der einzigen mit  $a_{\psi}^{\mathsf{I}}$  zusammenfallenden Lage aber wird die Begrenzung der beiden Strecken  $\mathfrak{g}^{(\mathsf{Q}\,\psi)}$  unbestimmt.

b) Daher folgern wir, damit dieser specielle Fall den allgemeinen Gesetzen dieses Paragraphen sich unterordne: Während  $s^{q}$  von dem beliebigen Anfangsstrahl  $s_{\lambda}^{q}$  an den einen der Winkel  $a_{(q \ \psi)}^{\lambda}$  beschreibt, wird die eine der Strecken, während  $s^{q}$  den anderen der Winkel  $a_{(q \ \psi)}^{\lambda}$  beschreibt, die andere der Strecken  $g(q \ \psi)$ gleich Null, und die Lage  $a_{\psi}^{\lambda}$  von  $s^{q}$  bildet den Uebergang.

Also auch: Während  $s^{\varphi}$  von dem beliebigen Strahl  $s_{\lambda}^{\varphi}$  an den einen Winkel  $a_{(\varphi\psi)}^{\lambda}$  beschreibt, wird die eine der Strecken  $\hat{g}^{(\varphi\psi)}$ gleich dem ganzen Strahl, während  $s^{\varphi}$  den anderen Winkel  $a_{(\varphi\psi)}^{\lambda}$  beschreibt, die andere. Durch die Anschauung kann man sich davon überzeugen, wenn man sich zunächst die Grenzgerade  $a_{\psi}^{\lambda}$  nicht mit  $\hat{g}^{\varphi}$  perspectivisch denkt und nach und nach um den Schnittpunkt mit irgend einem Strahl  $s_{\xi}^{\varphi}$  des Büschels  $\hat{g}^{\varphi}$  sich drehen lässt, bis sie mit  $s_{\xi}^{\varphi}$ zusammenfällt, was nothwendig einmal stattfinden muss nach No. 2.

Dem Satz in No. 24 würde dann der schon aus No. 1 und 6 folgende hen, dass auf allen Geraden der Ebene, welche nicht mit  $\hat{s}^{q}$  perich liegen, der entsprechende Punkt sich entweder im Sinne  $g^{q \chi \psi}$ i muss, wenn  $s^{q}$  den Sinn  $s^{q}_{\chi \chi \psi} = a^{1}_{q \chi \psi}$  hat, oder im Sinne  $g^{q \psi \chi}$ den Sinn  $s^{q}_{\chi \psi \chi} = a^{2}_{q \psi \chi}$  hat. In Bezug auf die mit  $\hat{s}^{q}$  perspecti-Geraden ist No. 20 und 22 c zu vergleichen.

Lassen wir den Anfangsstrahl der Bewegung von  $s^{\varphi} s_{\lambda}^{\varphi}$  mit  $a_{\psi}^{\lambda}$  zufallen, so können wir den No. 21*b* und 22*b* entsprechenden Satz ermassen aussprechen: Alle nicht mit  $\hat{s}^{\varphi}$  perspectivischen en der Ebene werden in allen ihren Punkten von  $s^{\varphi}$  mit ben Strecke  $\hat{s}^{(\varphi \, \psi)}$  getroffen.

r heben nur diese Einzelheiten hervor; die den übrigen Sätzen Paragraphen für den Fall, dass  $\mathfrak{F}^{\mathsf{Q}}$  ein Punkt der Grenzgeraden  $a \frac{\mathfrak{I}}{\psi}$ prechenden Sätze ergeben sich hiernach von selbst.

#### B. Ein Strahlbüschel und zwei Punktreihen.

Nehmen wir nun zunächst wieder den Punkt  $\hat{g}^{\varphi}$  ausserhalb der eraden  $a_{\psi}^{\lambda}$  an, und sind  $g_{\delta}$  und  $g_{\xi}$  irgend zwei Gerade derselben welche mit  $a_{\varphi}^{\lambda} = s_{\lambda}^{\varphi}$  je einen Punkt resp.  $a_{\varphi}^{\delta} = g_{\delta}^{\varphi}$  und  $a_{\xi}^{\xi} = g_{\xi}^{\varphi}$ en Strecke  $\hat{s}_{\lambda}^{(\varrho|\psi)}$ gemeinschaftlich haben, so muss nach No. 21*b* und den beiden resp. mit den Strecken  $g_{\delta}^{(\varrho \chi \psi)}$  und  $g_{\xi}^{(\varrho \chi \psi)}$  perspectivi-Vinkeln  $s_{(\varrho \chi \psi)\delta}^{\varphi}$  und  $s_{(\varrho \chi \psi)\xi}^{\varphi}$  des Büschels  $\hat{s}^{\varphi}$  der eine ein Theil des sein. Die Indices  $\delta$  und  $\xi$  mögen so gewählt sein, dass der Winkel ein Theil von  $s_{(\varrho \chi \psi)\xi}^{\varphi}$  ist, so ist der dem Punkt  $g_{\delta}^{\psi}$  auf  $g_{\xi}$  entspre-Punkt ein Punkt der Strecke  $g_{\xi}^{(\varrho \chi \psi)}$  und der dem Punkt  $g_{\xi}^{\psi}$  entnde Punkt von  $g_{\delta}$  ein Punkt der Strecke  $g_{\delta}^{(\varphi\psi)\chi}$ . Den Winkeln  $g_{\chi}$  und  $s_{(\varrho \chi \psi)\xi}^{\varphi}$  entsprechen demnach auf  $a_{\psi}^{\lambda}$  resp. die Strecken  $a_{\psi}^{(\lambda\delta)\xi}$   $\delta_{\xi}^{\xi}$ , so dass sie resp. mit  $s_{\psi}^{\varphi}(\lambda\delta)\xi$  und  $s_{\psi}^{\varphi}(\lambda\delta\xi)$  bezeichnet werden und ferner  $s_{\chi}^{\varphi}(\psi) \delta = s_{\psi}^{\varphi}(\delta\xi\lambda)$  und  $s_{\chi}^{\varphi}(\psi) \xi = s_{\psi}^{\varphi}\delta(\xi\lambda)$  ist. Dart der mit der Strecke  $a_{\psi}^{\lambda}$  perspectivische Winkel  $s_{\psi}^{\varphi}\lambda(\delta\xi)$  den

Winkeln  $s_{(\varrho \chi \psi)\xi}^{\varrho}$  und  $s_{\chi(\psi \varrho)\delta}^{\varrho}$  gemeinschaftlich und in jedem seiner v den Grenzstrahlen  $s_{\psi\delta}^{\varrho}$  und  $s_{\psi\xi}^{\varrho}$  verschiedenen Strahlen liegen die mit und  $g_{\xi}$  perspectivischen Punkt  $\delta^{\delta}$  und  $\delta^{\xi}$  je einer auf einer der Streck  $\delta^{\chi(\psi \varrho)}$ ,  $\delta^{(\varrho \chi \psi)}$ , und bilden also ein Punktepaar der ersten Art in Bez auf die Grenzpunkte  $\delta^{\varrho}$  und  $\delta^{\psi}$  (No. 12b).

Auf jedem Strahl des Winkels  $s_{\psi}^{\varphi}(\xi_{\lambda}\delta)$  aber liegen die beiden Punk  $\hat{s}^{\delta}$  und  $\hat{s}^{\xi}$  in einer der beiden Strecken  $\hat{s}^{(\varphi\psi)}$ , bilden also ein Punktep zweiter Art in Bezug auf  $\hat{s}^{\varphi}$  und  $\hat{s}^{\psi}$ ; und zwar liegen beide  $\hat{s}^{\delta}$  und  $\hat{s}^{\xi}$ der Strecke  $\hat{s}^{(\varphi|\psi)} = \hat{s}^{(\varphi\chi\psi)}$  auf jedem Strahl des Winkels  $s_{\psi(\lambda\delta)\xi}^{\varphi}$ , in jed Strahl des Winkels  $s_{\psi}^{\varphi}\delta(\xi\lambda)$  aber auf der Strecke  $\hat{s}^{(\varphi-\psi)} = \hat{s}^{\chi(\psi\varphi)}$ , welc wenn  $s^{\varphi}$  den ersten Umlauf beendet, auf dem Strahl  $s_{\lambda}^{\varphi} = a_{\varphi}^{\lambda}$  mit  $\hat{s}_{\lambda}^{(\varphi)}$ zusammenfällt (No. 23*a*).

a) Haben die Geraden  $g_{\delta}$  und  $g_{\xi}$  mit  $a_{\varphi}^{2} = s_{\lambda}^{\varphi}$  je einen Punkt of Strecke  $\tilde{s}_{\lambda}^{(\varphi-\psi)}$  gemeinschaftlich, so gilt mit Vertauschung der Streck  $\tilde{s}^{(\varphi,\psi)}$  und  $\tilde{s}^{\chi(\psi,\varphi)}$  dasselbe. Das Resultat ist unabhängig von dem Dro sinne  $\Delta$  von  $s^{\varphi}$ . Derjenige Strahl des Büschels  $\tilde{s}^{\varphi}$ , welcher mit d Schnittpunkt  $g_{\delta}^{\xi}$  der Geraden  $g_{\delta}$  und  $g_{\xi}$  perspectivisch liegt, muss (No. 13 ein Strahl des Winkels  $s_{\psi}^{\varphi}(\xi_{\lambda}\delta)$  sein, und zwar ein Strahl des Thei  $s_{\psi}^{\varphi}(\xi_{\lambda})_{\delta}$  oder des Theiles  $s_{\psi}^{\varphi}\xi(\lambda\delta)$ , je nachdem der Punkt  $g_{\delta}^{\xi}$  in dem W kel  $a_{\chi(\psi,\varphi)}^{\lambda}$  oder  $a_{(\varrho,\chi\psi)}^{\lambda}$  liegt.

b. Der Anfangsstrahl  $s_{\lambda}^{\varrho}$  ist beliebig gewählt; nehmen wir statt dess irgend einen anderen Strahl desselben Winkels  $s_{\psi}^{\varrho}(\delta \xi)$ , so wird das H sultat, wie aus demselben von selbst hervorgeht, nicht geändert. Es lä sich jedoch auch schon erkennen, wie der Satz lauten muss, wenn statt $s_{\lambda}^{\varrho}$ Strahl  $s_{\tau}^{\varrho}$  des anderen Winkels  $s_{\psi}^{\varrho}(\delta \xi)$  gewählt wird, oder was dasselbe wenn  $g_{\delta}$  und  $g_{\xi}$  den Anfangsstrahl die eine in einem Punkt der einen, o andere in einem Punkt der anderen Strecke  $\hat{s}^{(\varrho \psi)}$  schneiden; es lässt si aber auch durch eine ähnliche Betrachtung ableiten.

Wir können demnach folgenden von der Wahl des Anfangsstrah ganz unabhängigen Satz aussprechen, wobei wir den Schnittpunkt der G raden g<sub>a</sub> und g<sub>b</sub> kürzer mit g<sup>o</sup>, den mit demselben perspectivischen Stra \*\*\*\*

des Büschels  $\tilde{s}^{e}$  mit  $s_{\phi}^{e}$  und den mit diesem perspectivischen Punkt der Geraden  $a_{\psi}^{1}$  mit  $a_{\psi}^{o}$  bezeichnen, also: Zwei beliebige Gerade  $g_{\delta}$  und  $g_{\xi}$ derselben Ebene, welche nicht Strahlen des Büschels  $\tilde{s}^{e}$  sind, schneiden die Grenzgerade in zwei Punkten  $g_{\delta}^{\psi} = a_{\psi}^{\delta}$  und  $s_{\xi}^{\psi} = a_{\psi}^{\xi}$ , welche diese in zwei Strecken theilen. Auf allen Strahlen  $s^{e}$ , welche mit den Punkten der Strecke  $a_{\psi}^{(\delta \circ \xi)}$  perspectivisch sind, das ist auf allen Strahlen des Winkels  $s_{\psi}^{e}(\delta \circ \xi)$ , in dessen Gebiet der Punkt  $g^{o}$  sich befindet, bilden die mit  $g_{\delta}$  und  $g_{\xi}$  gemeinschaftlichen Punkte  $\tilde{s}^{\delta}$  und  $\tilde{s}^{\xi}$  ein Punktepaar der zweiten Art in Bezug auf die Grenzpunkte  $\tilde{s}^{e}$  und  $\tilde{s}^{\psi}$ ; auf allen Strahlen des anderen Winkels  $s_{\psi}^{e} \circ (\xi \delta)$  bilden sie ein Punktepaar der ersten Art, und auf den mit  $a_{\psi}^{\delta}$  und  $s_{\psi}^{\xi}$  perspectivischen Strahlen  $s_{\psi}^{e} \delta$  und  $s_{\psi}^{e} \xi$ , den Grenzstrahlen, ein Punktepaar der dritten Art (No. 12d<sup>2</sup>).

27. a) Ist der Mittelpunkt des Büschels  $\mathfrak{s}^{\varphi}$  bei ganz beliebiger Lage der Geraden  $g_{\mathfrak{s}}$  und  $g_{\mathfrak{k}}$  mit einer derselben, etwa mit  $g_{\mathfrak{s}}$  perspectivisch, so ist  $\mathfrak{s}^{\varphi}$  verschieden von  $\mathfrak{g}^{\circ}$  und es gilt von den den Strahlen des Büschels auf  $g_{\mathfrak{s}}$  entsprechenden Punkten das in No. 20, von den auf  $g_{\mathfrak{k}}$  entsprechenden Punkten das in No. 20, von den auf  $g_{\mathfrak{k}}$  entsprechenden Punkten das in No. 20, von den auf  $g_{\mathfrak{k}}$  entsprechenden Punkten das in No. 18 Gesagte. Die den sämmtlichen Punkten von  $g_{\mathfrak{k}}$  ausser  $\mathfrak{g}^{\circ}$  auf  $g_{\mathfrak{s}}$  entsprechenden Punkte fallen in den Grenzpunkt  $\mathfrak{s}^{\varphi}$  zusammen und die den übrigen Punkten von  $g_{\mathfrak{s}}$  auf  $g_{\mathfrak{k}}$  entsprechenden in  $\mathfrak{g}^{\circ}$ ). Auf allen von  $g_{\mathfrak{s}}$  verschiedenen Strahlen  $\mathfrak{s}^{\varphi}$  bilden die mit den Geraden  $g_{\mathfrak{s}}$  und  $g_{\mathfrak{k}}$  gemeinschaftlichen Punkte Punkte tepaare der dritten Art in Bezug auf die Grenzpunkte  $\mathfrak{s}^{\varphi}$  und  $\mathfrak{s}^{\varphi}$  nach No. 12 $d^1$ , auf dem mit  $g_{\mathfrak{s}}$  "Zusammenfallenden Strahl s $\mathfrak{s}^{\varphi}$  cbenfalls ein Punktepaar dritter Art aber nach No. 12 $d^3$ .

b) Ist  $\hat{s}^{q}$  mit beiden Geraden g perspectivisch, also nach No. 2 mit dem Schnittpunkt  $g^{o}$  identisch, so sind die den sämmtlichen Punkten von  $g_{\delta}$ ausser  $g^{o}$  auf  $g_{\xi}$  und die den sämmtlichen von  $g_{\xi}^{i}$  ausser  $g^{o}$  auf  $g_{\delta}$  entsprechenden Punkte in  $g^{o}$  vereinigt; auf allen von  $g_{\delta}$  und  $g_{\xi}$  verschie-

<sup>\*)</sup> Schroeter, die Theorie der Kegelschnitte 1867, §. 19a.

denen Strahlen  $s^{\varphi}$  bilden die mit  $g_{\vartheta}$  und  $g_{\xi}$  gemeinschaftliche Punkte Punktepaare dritter Art in Bezug auf die Gren punkte  $\vartheta^{\varphi} = \vartheta^{\circ}$  und  $s^{\psi}$  nach No. 12 $d^2$ , auf den mit  $g_{\vartheta}$  und  $g_{\xi}$  zw sammenfallenden Strahlen Punktepaare dritter Art nac No. 12 $d^3$ .

28 a) Ist  $\hat{s}^{q}$  mit keiner der Geraden  $g_{\delta}$ ,  $g_{\xi}$  perspectivisch, so könn wir nach No. 25 den Satz in No. 26 auch in dem Falle anwenden, wenn d Punkte  $a_{\psi}^{\delta}$  und  $a_{\psi}^{\xi}$  auf  $a_{\psi}^{\lambda}$  zusammenfallen, was nach No. 2 nur mögli ist, wenn  $g^{o}$  ein Punkt der Grenzgeraden  $a_{\psi}^{\lambda}$ ; der besonderen Lage von eutspricht das Nullwerden einer der beiden Strecken  $a_{\psi}^{(\delta\xi)}$  im Result Sind also  $g_{\delta}$  und  $g_{\xi}$  irgend zwei Gerade in der Ebene des Büschels  $\hat{g}^{q}$ , welc einen Punkt der Grenzgeraden  $a_{\psi}^{\lambda}$  gemeinschaftlich haben,  $a_{\psi}^{o}$ , so bilde

1. wenn beide Gerade g von  $a_{\psi}^{\lambda}$  verschieden sind und den Punkt nicht enthalten, die Punkte  $\hat{s}^{\delta}$  und  $\hat{s}^{\xi}$  entweder auf allen Strahlen s<sup>e</sup>d Büschels  $\hat{s}^{\,\varphi}$ , den mit  $a_{\psi}^{\,\varphi}$  perspectivischen Strahl  $s_{\phi}^{\,\varphi}$  ausgenommen, e Punktepaar der zweiten Art oder auf allen Strahlen ein Punktepaar d ersten Art in Bezug auf die Grenzpunkte  $\hat{s}^{\,\varphi}$  und  $\hat{s}^{\,\psi}$ , je nachdem das ei oder das andere von einem der Strahlen gilt, je nachdem nämlich d Strahlen  $s_{\phi}^{\,\varphi}$  und  $a_{\psi}^{\,\lambda}$  im Büschel  $a_{\psi}^{\,\varphi}$  ein Strahlenpaar zweiter oder erst Art bilden in Bezug auf die Geraden  $g_{\delta}$  und  $g_{\xi}$  als Grenzstrahlen (dies fol auch aus No. 18), aber auf dem Strahl  $s_{\phi}^{\,\varphi}$  stets ein Punktepaar dritter A (No. 12 d<sup>2</sup>);

2. wenn eine der Geraden g oder beide mit  $a_{\psi}^{4}$  zusammenfallen, d mit  $g_{\delta}$  und  $g_{\xi}$  perspectivischen Punkte eines jeden Strahles  $s^{\varrho}$  ein Punkt paar dritter Art in Bezug auf die Grenzpunkte  $\tilde{s}^{\varrho}$  und  $\tilde{s}^{\psi}$  (No. 19 $c^{12}$ ).

b) Ist  $\hat{s}^{\boldsymbol{\varrho}}$  ein Punkt von  $a_{\psi}^{\boldsymbol{\lambda}}$  und

1. sind  $g_{\delta}$  und  $g_{\xi}$  zwei beliebige in der Ebene des Büschels  $\hat{s}^{\varrho}$  g legene Gerade, welche von  $a_{\psi}^{\lambda}$  verschieden sind und den Punkt  $\hat{s}^{\varrho}$  nic enthalten, so bilden nach No. 13*b* und 25 die Punkte  $\hat{s}^{\delta}$  und  $\hat{s}^{\xi}$  auf de Strahl  $s^{\varrho}$  in allen seinen von  $a_{\psi}^{\lambda}$  verschiedenen Lagen ein Punktepa

zweiter Art, in der Lage  $a_{\psi}^{\lambda}$  aber ein Punktepaar dritter Art in Bezug auf die Grenzpunkte  $\mathfrak{s}^{q}$  und  $\mathfrak{s}^{\psi}$  (No. 12 $d^{4}$ );

2. fallen eine der Geraden  $g_{\delta}$ ,  $g_{\xi}$  oder beide mit  $a_{\psi}^{\lambda}$  zusammen, so bilden die Punkte  $\hat{s}^{\delta}$  und  $\hat{s}^{\xi}$  auf  $s^{\varphi}$  in allen seinen Lagen Punktepaare der dritten Art (No. 12 $d^{1}$ <sup>2</sup><sup>3</sup><sup>4</sup>).

29. Beachten wir, dass  $a^{\lambda}$  ein beliebiger Punkt von  $a^{\lambda}_{a}$  (No. 18), also  $s_1^{\varrho}$  ein beliebiger Strahl des Büschels  $\tilde{s}^{\varrho}$  und wählen wir in No. 24 statt des beliebigen Strahles  $a_{\chi}^{l}$  (No. 21*a*) des Büschels  $a^{l}$  den mit dem Punkt g<sup>o</sup> perspectivischen Strahlag desjenigen Strahlbüschels a<sup>°</sup>, dessen Mittelpunkt der mit dem beweglichen Strahl s<sup>e</sup> des Büschels s<sup>e</sup> perspectivische Punkt von  $a_w^{\lambda}$  ist, so folgt: Von je zwei entsprechenden Lagen  $\hat{s}^{\delta} = g_{\delta}^{0}$ und  $\hat{s}^{\xi} = g_{\xi}^{\varphi}$ , welche auf dem mit ihnen perspectivischen Strahl s<sup>e</sup> von <sup>g</sup><sup>e</sup> ein Punktepaar erster Art in Bezug auf <sup>g</sup><sup>e</sup> und g<sup>#</sup> == a<sup>d</sup> als Grenzpunkte bilden, bewegen sich die beiden dem Strahls<sup>9</sup>, während er den Büschel  $\hat{s}^{9}$  beschreibt, auf  $g_{\delta}$  und  $g_{\xi}$ entsprechenden Punkte  $g_{\delta}$  und  $g_{\xi}$ , der eine im Sinne  $g^{\rho \circ \psi}$  auf das Gebiet des einen der durch die Grenzgerade am und die perspectivische Lage von s? a bestimmten Winkel, welches den Punkt g<sup>o</sup> enthält,  $a_{(\varphi \circ \psi)}^{\sigma}$ , der andere im Sinne g<sup> $\varphi \psi \circ$ </sup> auf das Gebiet des andern Winkels  $a^{\sigma}_{(\varrho\psi)o}$  weiter; von je zwei entsprechenden Lagen aber, welche auf dem mit ihnen perspectivischen Strahl s<sup>9</sup> ein Punktepaar zweiter Art bilden, bewegen sich die Punkte  $\hat{g}_{s}$  und  $g_{t}$  entweder beide im Sinne  $g^{\rho o \psi}$ auf das Gebiet des Winkels  $a^{\sigma}_{(\varrho \circ \psi)}$  oder beide im Sinne g<sup> $\varrho \psi \circ$ </sup> auf das Gebiet des Winkels  $a^{\sigma}_{(\varphi\psi)\sigma}$  (vergl. 14c).  $g^{\varphi}$  und  $g^{\psi}$  sind aber die resp. mit  $a_{a}^{\sigma}$ ,  $a_{w}$  perspectivischen Punkte der Geraden g.

## §. 7. Zwei Strahlbüschel und zwei Punktreihen. Folgerung.

30. Fassen wir jeden der Strahlen s<sup>e</sup> von  $\tilde{s}^{e}$  als Ganzes auf, nicht als bestehend aus zwei Strecken  $\tilde{s}^{(e\psi)}$ , so ist  $a_{\psi}^{2}$  eine beliebige Gerade der Digitized by GOOGLE

Ebene (No. 18, 21*a*) und  $a^{2}$  ein beliebiger Punkt derselben und die dr Strahlen des Büschels  $a^{2}a^{2}_{q}$ ,  $a^{2}_{\chi}$ ,  $a^{2}_{\psi}$  bestimmen einen gewissen B wegungssinn (No. 14*a*<sup>3</sup>); demnach erhalten wir aus No. 20, 24, 27:

a) Bilden die Schnittpunkte  $a_{\rho}^{\delta}$  und  $a_{\rho}^{\xi}$  zweier Geraden , und  $g_{\xi}$  in der Ebene zweier ebener Strahlbüschel  $a^{\lambda}$  und  $s^{\rho}$  m dem diesen beiden Büscheln gemeinschaftlichen Strahl  $a_{\rho}^{\lambda}$ ein Punktepaar der ersten Art in Bezug auf die Mitte punkte  $a^{\lambda}$  und  $\tilde{s}^{\rho}$  und

beschreiben ein Strahl  $a^2$  von  $a^2$  und einer s<sup>e</sup> von  $\mathfrak{g}^{e}$  jeder in beliebigem Drehsinne sein Büschel, so bewegen sich die auf den Geraden  $g_{\mathfrak{g}}$  und  $g_{\mathfrak{g}}$ entsprechenden Punkte auf einer in demselben, auf der anderen in entgegengesetztem Richtungssinne. durchlaufen ein Punkt  $g_{\delta}$  vo  $g_{\delta}$  und einer  $g_{\xi}$  von  $g_{\xi}$  jede inbeliebigem Richtungssinn seine Punktreihe, so bewege sich die in den Büscheln o

und & entsprechenden Stral len in dem einen Büschel i demselben, in dem andere in entgegengesetztem Drel sinne.

b) Bilden die Punkte  $a_q^{\delta}$  und  $a_q^{\xi}$  auf  $a_q^{\lambda}$  aber ein Punktepas

der zweiten Art in Bezug auf  $a^{\lambda}$  und  $\mathfrak{s}^{\varrho}$ , sobewegensich die den Strahlen  $a^{\lambda}$  und  $s^{\varrho}$  entsprechenden Punkte entweder auf beiden Geraden g in demselben oder auf beiden in entgegengesetztem Richtungssinne.

so bewegensich die den Pun ten g<sub>ö</sub> und g<sub>e</sub> entsprechende Strahlen entweder in jede der beiden Büschelin demse ben oder in jedem in entge gengesetztem Drehsinne.

c) Fällt einer der Punkte  $a_{\varrho}^{\delta}$ ,  $a_{\varrho}^{\xi}$  mit einem der Punkte  $a_{\rho}^{1}$ , s zusammen, etwa  $a^{\delta}$  mit  $\mathfrak{z}^{\varrho}$ , so dass das eine Paar ein Punkte paar dritter Art bildet in Bezug auf das andere als Grenz punkte,

so verändert der dem Strahl  $s^{e}$  auf  $g_{a}$  entsprechende Punkt seine Lage nicht, bis  $s^{e}$  mit der Geraden  $g_{a}$  zusammenso verändert der dem Punkt

im Büschel 3<sup>e</sup> entsprechend Strahl seine Lage nicht, bi 3δ mit 3<sup>e</sup> zusammenfällt un

## sgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 295

nd nimmt nach her, wenn Bewegung fortsetzt, die-Lage wieder ein, nämie des Punktes  $\tilde{g}^{\theta}$ . Es n diesem Falle von einem chen Bewegungssinn (No. 1) n Strahl  $s^{\theta}$  auf  $g_{\tilde{d}}$  entspren Punktes nicht die Rede sein, ch nicht von einer Vergleinit dem Bewegungssinn des rahl  $a^{\lambda}$  auf  $g_{\tilde{d}}$  entsprechennktes.

den Strahlen  $s^{e}$  und  $a^{2}$ er anderen Geraden  $g_{\xi}$ echenden Punkte köneselbe sowohl in gleials in entgegengesetzchtungssinne beschreias auch durch Hinzuziehung ritten von  $g_{\xi}$  verschiedenen nit  $a^{2}$  noch mit  $\tilde{s}^{e}$  perspecn Geraden aus den Fällen b) erkannt wird. kehrtnachher, wenn  $g_{\delta}$  diesen verlässt, in dieselbe Lagezurück, nämlich in die der Geraden  $g_{\delta}$ . Es kann in diesem Falle daher von einem eigentlichen Bewegungssinne (No.1) des dem Punkt  $g_{\delta}$  im Büschel  $\delta^{q}$  entsprechenden Strahles nicht die Rede sein, also auch nicht von einer Vergleichung mit dem Bewegungssinne des dem Punkt  $g_{\xi}$  im Büschel  $\delta^{q}$  entsprechenden Strahles.

Die den Punkten  $g_{\delta}$  und  $g_{\xi}$ in dem anderen Büschela<sup>1</sup>entsprechenden Strahlen können dasselbe sowohl in gleichem als in entgegengesetztem Drehsinne beschreiben, was auch durch Hinzuziehung eines anderen Strahlbüschels, dessen Mittelpunkt weder mit  $g_{\delta}$  noch mit  $g_{\xi}$  perspectivisch liegt, aus den Fällen a) und b) erkannt wird.

a) Jedesmal wenn die Funkte  $a_{\varrho}^{\delta}$  und  $a_{\varrho}^{\xi}$  ein Punktepaar erster, oder dritter Art in Bezug auf die Punkte  $a^{\lambda}$  und  $\tilde{s}^{\varrho}$  bilden, bilden b. 13 und 18 die mit  $a^{\lambda}$  und  $\tilde{s}^{\varrho}$  perspectivischen Strahlen des Bü-<sup>9</sup> ein Strahlenpaar resp. erster, zweiter oder dritter Art in Bezug Geraden  $g_{\delta}$  und  $g_{\xi}$  und umgekehrt. Die Punkte  $a_{\varrho}^{\delta}$  und  $a_{\varrho}^{\xi}$  bilden ets ein Punktepaar erster Art in Bezug auf  $\tilde{s}^{\varrho}$  und  $a_{\varrho}^{\lambda}$ , wenn sie eine in dem einen, der andere in dem anderen der Winkel  $g_{(\delta\xi)}$ , und stets ein Punktepaar zweiter Art in Bezug auf .dieselbenenkte, wenn sie sich in demselben Winkel  $g_{(\delta\xi)}$  befinden, und stets ktepaar dritter Art, wenn einer derselben oder beide auf einer der  $a_{\delta}$ ,  $g_{\xi}$  oder in beiden liegen, und umgekehrt.

Dies berücksichtigend folgern wir aus No. 24 und 30 folgende Sätze:

a) Durchläuft ein Punkt  $g_{\delta}$ stetig in einem bestimmten Sinne die Punktreihe  $g_{\delta}$ , so wird dadurch den mit  $g_{\delta}$  perspectivischen Strahlen  $a^{\lambda}$  und  $s^{\varrho}$  der Büschel  $a^{\lambda}$  und  $\tilde{s}^{\varrho}$  jedem ein bestimmter Drehsinn ertheilt (No. 1 und 6).

b) Die mit  $a^{\lambda}$  und  $s^{\varrho}$  auf  $g_{\xi}$  perspectivischen Punkte  $g_{\xi}^{\lambda}$  und  $g_{\xi}^{\varrho}$  durchlaufendanndie Punktreihe  $g_{\xi}$  in entgegengesetztem Richtungssinne (No. 17), wenn  $a^{\lambda}$  und  $\mathfrak{s}^{\varrho}$  sich, der eine in dem einen, der andere in dem anderen der durch  $g_{\mathfrak{F}}$  und  $g_{\xi}$  bestimmten Winkel befinden, in gleichem Richtungssinne, wenn  $a^{\lambda}$  und  $\mathfrak{s}^{\varrho}$  sich in demselben Winkel  $g_{(\mathfrak{F})}$  befinden.

#### c) Oder:

Die Punkte  $g_{\xi}^{\lambda}$  und  $g_{\xi}^{\rho}$  bewegen sich in gleichem oder in entgegengesetztem Richtungssinne, jenachdem  $g_{\delta}$  und  $g_{\xi}$  die Gerade  $a_{\rho}^{\lambda}$  in Punkten derselben Strecke  $g_{\lambda}^{(\rho,\lambda)}$  oder verschiedener Strecken  $g_{\lambda}^{(\rho,\lambda)}$ schneiden.\*) Beschreibt ein Strahl s stetig in einem bestimmte Sinne den Büschel  $\mathfrak{s}^{\mathfrak{g}}$ , so wir dadurch den mit  $\mathfrak{s}^{\mathfrak{g}}$  perspect vischen Punkten  $\mathfrak{g}_{\mathfrak{g}}$  und  $\mathfrak{g}_{\mathfrak{g}}$  de Geraden  $g_{\mathfrak{g}}$  und  $g_{\mathfrak{g}}$  jedem ei bestimmterRichtungssinne theilt (No. 1 und 6).

Die mit ga und ge im Büsch a<sup>4</sup> perspectivischen Strahle  $a_{\delta}^{\lambda}$  und  $a_{\xi}^{\lambda}$  durchlaufen dan ihr Büschel in entgeger gesetztem Drehsinne (No. 17  $g_8$  und  $g_t$  den beide wenn Büscheln & und a gemein schaftlichen Strahla, dieein in einem Punkt der einen, di andere in einem Punkt de anderen der durch die Mitte punkte bestimmten Strecke schneiden, in gleichem Drel sinn, wenn  $g_{\delta}$  und  $g_{\sharp}$  beide de Strahl a in Punkten derse ben Strecke \$<sup>(o l)</sup> schneide

Die Strahlen  $a_{\delta}^{1}$  und  $a_{\xi}^{1}$  be wegen sich in gleichem ode in entgegengesetztem Dreb sinne, jenachdem  $a^{2}$  und  $\delta^{2}$  sic in demselben Winkel  $g_{(\delta\xi)}$  ode in verschiedenen Winkel  $g_{(\delta\xi)}$  befinden.

\*) Vgl. v. Staudt, Beiträge zur Geometrie der Lage, erstes Heft, No. 50, 5 Digitized by GOOSIC

# gezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 297

iegt der Mittelpunkt der beiden Strahlbüetwað<sup>e</sup> in einer der Geg, so verharrt der dem  $s^{\mathbf{Q}}$  auf  $g_{\mathbf{E}}$  entsprechende in seiner Lage, nämlich s<sup>e</sup> in der Geraden g, en, im Schnittpunkt g<sup>o</sup>, ð<sup>e</sup> in g<sub>e</sub> gelegen, in å<sup>e</sup>, resp. den Punkt \$<sup>9</sup> oder t, undnimmt, sobaldg, verlassen, die alteLage r ein; der ausgezeichneten on g, in resp. 3° oder g° tsprechen im Buschel s<sup>e</sup> im all die sämmtlichen Strahlen 88, im zweiten der einzige g<sub>g</sub>, in beiden Fällen auf der n g<sub>z</sub> die sämmtlichen Punkte esp. g<sup>0</sup> und g<sup>(\*)</sup>). Fällt auch ne der Geraden g, so gilt von m Strahl  $a^2$  auf  $g_{t}$  entspre n Punkt Analoges.

Geht eine der Geraden g, etwag<sub>R</sub> durch den Mittelpunkt eines der beiden Büschel, so verharrt der dem Punkt ga im Büschel a<sup>2</sup> entsprechende Strahl in seiner Lage, nämlich wenn  $g_{\delta}$  durch  $\delta^{\varrho}$  geht, in dem gemeinschaftlichen Strahl  $a_{\alpha}^{\lambda}$ , wenn  $g_{\beta}$  durch  $a^{\lambda}$ geht, in  $g_{\mathfrak{d}}$ , bis  $s^{\mathfrak{q}}$  resp. den Strahlg, oder  $s_1^{\varrho} = a_0^{\lambda} \operatorname{deckt}$ , und nimmt, sobalds<sup>e</sup> dieseverlassen, die alte Lage wieder ein; der ausgezeichneten Lage von  $s^{\varrho}$  in resp.  $g_{\delta}$  oder  $s_1^{\varrho}$  aber entsprechen auf der Geraden  $g_8$  im ersten Fall die sämmtlichen Punkte ausser §<sup>e</sup>, im zweiten der einzige Punkt a<sup>2</sup>, in beiden Fällen im Büschel a<sup>2</sup> die sämmtlichen Strahlen ausser resp.  $a_{a}^{\lambda}$  und  $g_{a}^{*}$ ). Geht auch  $g_{b}$  durch einen der Mittelpunkte 3°, a<sup>1</sup>, so gilt von dem dem Punkt g<sub>z</sub> in a<sup>2</sup> entsprechenden Strahl Analoges.

eraus und aus No. 27 ergiebt sich von selbst das Resultat für 11,

r Mittelpunkt eines der beischel mit g<sup>o</sup> zusammenfällt. dass eine der Geraden g mit  $a_q^{\lambda} = s_{\lambda}^{q}$ zusammenfällt.

Digitized by Google

. Wüssten wir eine Gerade  $g_{y}$ , welche die Eigenschaft hat, dass, d sie von einem ihrer Punkte  $g_{y}$  in beliebigem aber ein und demselne stetig durchlaufen wird, alle Strahlbüschel der Ebene, deren unkte nicht in ihr liegen, von dem mit  $g_{y}$  perspectivischen Strahle in m Drehsinn beschrieben werden, welches auch die allgemeine De-

Schroeter, die Theorie der Kegelschnitte §. 19a.

finition für die Gleichheit des Drehsinnes in zwei nicht concentrischen Strahlbüscheln sei, wofern sie nur in das in No. 17 angegebene Kriterium übergeht, sobald die Mittelpunkte der beiden Büschel zusammenfallen, so würden wir mit Rücksicht auf No. 17 folgendes specielle Kriterium eihalten: Je zwei nicht concentrische Strahlbüschel der Ebene, deren Mittelpunkte ausserhalb der Geraden  $g_{v}$  liegen, werden jeder von einem seiner Strahlen in gleichem oder ungleichem Drehsinne beschrieben, je nachdem die Spuren der laufenden Strahlen in der Geraden  $g_{v}$  sich in gleichem oder ungleichem Richtungssinne bewegen.

Durch Anwendung des Satzes in No. 31, wenn  $g_{y}$  eine der beliebig in der Ebene gelegenen Geraden  $g_{\delta}$ ,  $g_{\xi}$  vertritt, folgt dann:

a) Wird eine beliebige von  $g_{y}$  verschiedene Gerade  $g_{\partial}$  der Ebene von einem ihrer Punkte  $g_{\partial}$  in einem bestimmten Sinne durchlaufen, so beschreiben die mit  $g_{\partial}$  perspectivischen Strahlen aller Strahlbüschel, deren Mittelpunkte ausserhalb der Geraden  $g_{y}$  und  $g_{\partial}$  befindliche Punkte des einen der von  $g_{y}$ und  $g_{\partial}$  begrenzten Winkel sind, ihre Büschel in gleichem Drehsinne, die mit  $g_{\partial}$  perspectivischen Strahlen aller Strahlbüschel, deren Mittelpunkte ausserhalb der Geraden  $g_{y}$  und  $g_{\partial}$  befindliche Punkte des anderen Winkels  $g_{(v\partial)}$  sind, ihre Büschel ebenfalls in unter sich gleichem, aber dem der ersteren entgegengesetzten Drehsinne.

b) Die Grenze zwischen diesen beiden Gruppen von Büscheln, also den Uebergang von den einen zu den anderen bilden die Strahlbüschel, deren Mittelpunkte in den Geraden  $g_{\delta}$  und  $g_{\nu}$  liegen. Da sie gemäss ihrer Lage als Grenzgebilde beiden der bezeichneten Gruppen angehören, so müssen sie die Eigenschaften beider in sich vereinigen; der ihnen durch die Bewegung von  $g_{\delta}$  ertheilte Bewegungssinn muss das Resultat sein, wenn wir uns den laufenden Strahl sowohl dem Bewegungssinn der einen wie dem der anderen Gruppe (dem entgegengesetzten) folgend denken, kann also mit keinem derselben verglichen werden. In den Strahlbüscheln, deren Mittelpunkte die Punkte der Geraden  $g_{\delta}$  sind, erscheint dieser resultirende Bewegungssinn in der in No. 30*c* und 31*d* angegebeuen Weise, in den Strahlbüscheln, deren Mittelpunkte die Punkte der Geraden  $g_{\nu}$  sind, jedenfalls in anderer Weise, da hier je zwei verschiedenen Lagen von  $g_{\delta}$  auch zwei verschiedene Strahlen entsprechen (No. 2, 6, 18).

c) Daraus folgt nun, dass, wenn es überhaupt in der Ebene eine Gerade von der Beschaffenheit giebt, wie wirsie von $g_{y}$  angenommen haben, es nur eine einzige der Art geben kann, dass diese sich durch ihre Lage von den anderen unterscheiden und als eine ausgezeichnete kennzeichnen muss; denn die von vornherein von ihr vorausgesetzte wie die in b) daraus geausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 299

folgerte Eigenschaft der Strahlbüschel, deren Mittelpunkte in ihr liegen, kommen dieser Geraden an sich zu, sind an keine sonstigen Daten geknüpft, von denen sie abhängig wären.

#### 5. 8. Die unendlich entfernte Gerade als Grenzgerade.

A. Eine Punktreihe und ein Strahlbüschel.

33. Da unsere bisherigen Untersuchungen lediglich in einer Ausbeutung der in §. 1 gestellten Voraussetzungen, vorzüglich der Eigenschaften der Stetigkeit und der sich schliessenden Aufeinanderfolge der Elemente in den Grundgebilden bestehen, und wohl in der Anschauung eine Erläuterung finden, deren aber zur Beweisführung nicht bedürfen (vergl. No. 4); da ferner aber die Voraussetzungen des §. 1 gemäss No. 2, 3, 7 auch für die unendlich entfernten Elemente und Träger von Grundgebilden in gleicher Weise gelten, wie für die endlichen (No. 25), so müssen jene den erhaltenen Eigenschaften und Gesetzen ebenso unterworfen sein wie diese, obwohl sie sich der Anschauung entziehen; nur werden eben deswegen die Sätze sich oft etwas einfacher gestalten. Ja wir werden finden, dass Eigenschaften, welche in ihrer einfacheren Form an den unendlich fernen Elementen auffallen und diesen eigenthümlich zu sein scheinen, allgemein allen Elementen der Ebene (Punkten und Geraden) in gleicher Weise zukommen.

34. Wählen wir daher statt der beliebigen Geraden  $a_{\psi}^{\lambda}$  die unendlich entfernte Gerade  $g_{\infty}$  als Grenzgerade, und ist  $\hat{s}^{\varphi}$  irgend ein endlicher oder unendlich entfernter Punkt der Ebene,  $s_{\lambda}^{\varphi}$  ein beliebiger Strahl des Büschels  $\hat{s}^{\varphi}$ ,  $g_{\infty}^{\lambda} = \hat{s}_{\lambda}^{\infty}$  der mit der unendlich entfernten Geraden gemeinschaftliche Punkt desselben und  $g_{\chi}^{\lambda}$  ein beliebiger von  $s_{\lambda}^{\varphi} = g_{\varphi}^{\lambda}$  und  $g_{\infty}$  verschiedener Strahl des Büschels  $\hat{g}_{\infty}^{\lambda}$ , so folgt aus No. 21*a* mit Rücksicht auf No. 25:

a) Jede Gerade g der Ebene wird durch die mit  $g_{\varrho}^{1}$  und  $g_{\infty}$ perspectivischen Punkte  $g^{\varrho}$  und  $g^{\infty}$  in zwei Halbstrahlen getheilt, von denen der eine  $g^{(\varrho \chi \infty)}$  ganz mit allen seinen Punkten in der einen der beiden Halbebenen in Bezug auf  $g_{\varrho}^{1} = s_{\chi}^{\varrho}$ ,  $g_{(\varrho \chi \infty)}^{1}$ , der andere  $g^{\chi}(\varrho \infty)$  ganz mit allen seinen Punkten in der anderen Halbebene  $g_{\chi}^{2}(\varrho \infty)$  liegt. In allen mit  $g_{\infty}^{2}$  perspectivischen Geraden wie z. B.  $g_{\chi}^{1}$  wird der eine der beiden Halbstrahlen (No. 25) gleich Null, der andere wird gleich dem ganzen Strahl, welcher demnach mit allen Zeitschrift f. Mathemathik u. Physik, XIV, 4.

seinen Punkten einer der beiden Halbebenen in Bezug auf  $s_{1}^{\varrho} = g_{\varrho}^{1}$  an hört (vergl. No. 11*a*).

Die Geraden  $g_{\varrho}^{\lambda}$  und  $g_{\infty}$  gehören ihrer Eigenschaft Grenzgeraden gemäss jeder der beiden Halbebenen an.

b) Da alle Strahlen s<sup>e</sup> des Büschels s<sup>e</sup> mit dem beliebigen Strahl desselben den Mittelpunkt s<sup>e</sup> gemeinschaftlich haben, so folgt

1. Die beiden Halbstrahlen eines jeden Strahles ein ebenen Strahlbüschels in Bezug auf den Mittelpunkt, die mag ein endlicher oder ein unendlich entfernter Punktse liegen in Bezug auf jeden der übrigen Strahlen desselben verschiedenen Halbebenen, jeder mit allen seinen Punkt in einer (No. 11*a*).

2. Ein Halbstrahl eines Büschels liegt in Bezug auf irge einen anderen Strahl desselben Büschels in allen sein Punkten auf derselben Halbebene, auf welcher einer sein vom Mittelpunkt verschiedenen Punkte sich befindet.

35. Aus No. 21 c, 22, 24, 25 folgt ferner:

a) Lassen wir einen Strahl  $s^{\varphi}$  von der Lage  $s_{\lambda}^{\varphi}$  aus de Strahlbüschel  $\tilde{s}^{\varphi}$  in einem bestimmten Bewegungssinne  $\Delta$  stig durchlaufen, bis er einen Umlauf vollendet und wied nach  $s_{\lambda}^{\varphi}$  gelangt, so muss der eine Halbstrahl  $\tilde{s}^{(\varphi|\infty)} = \tilde{s}^{(\varphi)}$  stetig die eine der beiden Halbebenen in Bezug auf  $s_{\lambda}^{\varphi} = g_{(\varrho|\infty)}^{\lambda}$  beschreiben, in allen seinen Lagen währe dieses ersten Umlaufes und in allen seinen Punkten in dies Halbebene liegen und es kann keinen vom Mittelpunkt  $\tilde{s}^{\varphi}$  vor schiedenen Punkt derselben geben, welcher von dem Halstrahl $\tilde{s}^{(\varrho|\infty)} = \tilde{s}^{z(\varrho)}$  aber muss in gleicher Weise die andere Halbebene  $g_{z}^{\lambda}$  beschreiben.

b) Es wird demnach, während  $s^{e}$  von  $s^{e}_{\lambda}$  an einen Umla macht, ganz allgemein jede endliche Gerade g der Ebene allen von den Grenzpunkten verschiedenen Punkten ein und desselben Halbstrahles in Bezug auf den mit  $g^{2}_{e}$  gemei schaftlichen Punkt g<sup>e</sup> von einem und demselben Halbstra

ezeichneten Elemente ebener Curven. Von PAUL SCHOLz. 301

Bezug auf den Mittelpunkt  $\mathfrak{s}^{\mathfrak{q}}$  getroffen, in allen Punkanderen Halbstrahles von dem anderen; nämlich in allen des in der Halbebene  $g_{(\mathfrak{q}\chi\infty)}^{\lambda} = g_{(\mathfrak{q}|\infty)}^{\lambda} \left(g_{\chi(\mathfrak{q}\infty)}^{\lambda} = g_{(\mathfrak{q}-\infty)}^{\lambda}\right)$ gelegeostrahls  $\mathfrak{g}^{(\mathfrak{q}\chi\infty)} = \mathfrak{g}^{(\mathfrak{q}|\infty)} \left(\mathfrak{g}^{\chi(\mathfrak{q}\infty)} = \mathfrak{g}^{(\mathfrak{q}-\infty)}\right)$  von dem im Sinne  $\Delta$ bebene von der Anfangslage  $\mathfrak{s}_{\lambda}^{(\mathfrak{q}|\infty)} \left(\mathfrak{s}_{\lambda}^{(\mathfrak{q}-\infty)}\right)$  an beschreibenden hles  $\mathfrak{s}^{(\mathfrak{q}|\infty)} \left(\mathfrak{s}^{(\mathfrak{q}-\infty)}\right)$ ; und zwar:

ede Gerade, welche mit  $\mathfrak{s}^{\varphi}$  perspectivisch liegt, also ein Strahl ischels ist, während  $\mathfrak{s}^{\varphi}$  die einzige mit  $\mathfrak{s}^{\varphi}_{\xi}$  zusammenfallende Lage

ede endliche Gerade  $g_{\xi}$ , welche nicht mit  $\hat{s}^{\varphi}$  perspectivisch ist und dlichen Punkt  $g_{\xi}^{\varphi}$  mit dem Anfangsstrahl  $s_{\lambda}^{\varphi}$  gemeinschaftlich hat,  $s^{\varphi}$  den mit dem Halbstrahl  $g_{\xi}^{(\varrho \chi \infty)} = g_{\xi}^{(\varphi | \infty)} (g_{\xi}^{\chi(\varrho \infty)} = g_{\xi}^{(\varphi - \infty)})$ vischen Winkel  $s_{(\varrho \chi \infty)}^{\varphi} = s_{(\lambda | \xi)}^{\varphi} (s_{\chi(\varrho \infty)}^{\varphi} = s_{(\lambda - \xi)}^{\varphi})$  beschreibt, mach No. 18*d* nur einen Theil des Büschels ausmacht;

ede endliche Gerade g, welche nicht mit 3<sup>9</sup> perspectivisch ist und nunendlich entfernten Punkt gemeinschaftlich hat, während s<sup>9</sup> contilen ganzen Büschel beschreibt.

√on beiden Halbstrahlen, ĝ<sup>(e|∞)</sup>sowohl, alsĝ<sup>(e−∞)</sup>werroffen:

unendlich entfernte Gerade g<sub>xo</sub> in allen Lagen von s<sup>e</sup>; e mit ŝ<sup>e</sup> perspectivische Gerade in allen Lagen von s<sup>e</sup> einer, der mit ihr zusammenfallenden;

e andere endliche Gerade nur in einer Lage von s<sup>e</sup>, der em unendlich entfernten Punkt perspectivischen.

e Gerade der Rubrik  $b^{\mathfrak{r}}$  wird in dem mit  $s_{\lambda}^{\varrho}$  gemeinschaftlichen akte g<sup> $\varrho$ </sup> von dem Halbstrahl  $\mathfrak{s}^{(\varrho|\infty)}$  oder  $\mathfrak{s}^{(\varrho-\infty)}$  getroffen, je nach-Punkt g<sup> $\varrho$ </sup> der Anfangslage des einen,  $\mathfrak{s}_{\lambda}^{(\varrho|\infty)}$ , oder der des anderen angehört.

Auf den Geraden der Rubrik b<sup>i</sup> ist eine Bewegung des dem Strahl s<sup>9</sup> entsprechenden Punktes, also ein icher Bewegungssinn nicht vorhanden, also auch nicht bar mit einem anderen Bewegungssinne.

21\*

2. Von den Geraden der Rubrik  $b^{\epsilon}$  bewegt sich (No. 24) dem Strahl  $s^{\epsilon}$  entsprechende Punkt auf allen, welche einem Punkte des Halbstrahles  $\mathfrak{s}_{\lambda}^{(\epsilon)\infty}$  schneiden, im S  $\mathfrak{g}^{\ell \chi \infty}$ , auf allen, welche  $s^{\epsilon}$  in einem Punkte des Halbstra  $\mathfrak{s}_{1}^{(e-\infty)}$  schneiden, im Sinne  $\mathfrak{g}^{\ell \infty \chi}$ .

3. In den Geraden der Rubrik  $b^s$  lässt sich über den Bewegung des dem Strahl  $s^{\varrho}$  entsprechenden Punktes unter den angenommenen hältnissen nichts bestimmen; da aber dieser Bewegungssinn nicht vor Anfangselement abhängt, so können wir einen anderen Strahl $s^{\varrho}_{\nu}$  als Anf strahl wählen, in Bezug auf welchen die zu untersuchenden Gerade Rubrik  $b^{2}$  einzureihen sind. Vergl. No. 29, 30.

e) Ein Uebergehen des dem Strahls<sup>e</sup> auf einer Gerade welche misg<sup>e</sup> nicht perspectivisch ist, entsprechenden P tes  $g_{\xi}$  von einem Halbstrahl in Bezug auf den Mittelpun auf den anderen kann nur stattfinden und findet stets s wenn der Punkt  $g_{\xi}$  auf  $g_{\xi}$  den unendlich entfernten Punkt ü schreitet\*) (No. 21*b*), also während eines ganzen Umlaufes Strahles s<sup>e</sup> nur einmal. Umgekehrt bleibt, während s<sup>e</sup> e Theil des Büschels g<sup>e</sup>, einen Winkel beschreibt, der aufe Geraden  $g_{\xi}$  entsprechende Punkt auf demselben Halbstr also der der einen Grenzlage entsprechende, so enthäl in dem Winkel liegende Strecke den unendlich entfern Punktnicht; und sie enthält ihn stets, wenn der eine der Gr punkte von dem einen, der andere von dem anderen Halbstr von s<sup>e</sup> getroffen wird.

#### B. Folgerungen. Halbebene. Halbstrahlbüschel. Der unendlich entfernte Punkt.

36. a. Wir haben wiederholt hervorgehoben, dass gewisse Eigense ten für alle Gebilde resp. Elemente von Gebilden innerhalb gewisser g festgestellter Grenzen gelten, ausserhalb derselben aber für keines, dern durch andere die ersteren ausschliessende Eigenschaften ersetzt den. Die Umkehrungen von Sätzen, welche solche Eigenschaften betre müssen ebenfalls richtig sein und in ihrer ganzen Ausdehnung gelten.

\*) v. Staudt, Geometrie der Lage No. 55.

Digitized by Google

b) Aus No. 35*eb* folgt mit Rücksicht darauf, dass der Anfangsstrahl  $s_1^{\mathbf{q}}$  ein beliebiger Strahl des Büschels ist:

Schneidet der irgend einen Strahlbüschel  $\hat{s}^{e}$  in demselben Bewegungssinne stetig durchlaufende Strahl  $s^{e}$  beliebige Gerade derselben Ebene, welche mit dem Mittelpunkt des Büschels  $\hat{s}^{e}$  nicht perspectivisch sind, in *n* aufeinanderfolgenden Lagen jede derselben nur in endlichen Punkten, so wird jede dieser Geraden in allen *n* Punkten von demselben Halbstrahl des laufenden Strahles  $s^{e}$  getroffen, von welchem sie in einem dieser Punkte getroffen wird, und alle Gerade, deren Schnittpunkte mit  $s^{e}$  in einer der *n* Lagen demselben Halbstrahl von  $s^{e}$ , augehören, werden in allen *n* Lagen von demselben Halbstrahl getroffen.

Der Satz gilt auch dann, wenn  $s^{\varrho}$  sich continuirlich in dem Büschel  $g^{\varrho}$ bewegend, seinen Drehsinn innerhalb der *n* aufeinanderfolgenden Lagen einoder mehrmal ändert.

c) Von dem ein Strahlbüschel, dessen Mittelpunkt irgend ein Punkt  $\hat{s}$ einer Geraden s ist, in irgend einem, aber einem und demselben Sinne von s ans einmal durchlaufenden Strahl  $s^{Q}$  müssen zwei Punkte derselben Halbebene in Bezug auf s mit demselben, zwei Punkte, welche auf verschiedenen Halbebenen in Bezug auf s liegen, aber der eine mit dem einen, der andere mit dem anderen Halbstrahl in Bezug auf den Mittelpunkt  $\hat{s}$  getroffen werden; dies gilt auch von dem Strahlbüschel, dessen Mittelpunkt der Schnittpunkt der die beiden Punkte enthaltenden und durch dieselben bestimmten (No. 2) Geraden mit s ist; die beiden gegebenen Punkte müssen daher im ersten Fall auf demselben Halbstrahl dieser Geraden in Bezug auf den Schnittpunkt mit s liegen, im zweiten auf verschiedenen Halbstrahlen. Das heisst:

1. Die Verbindungsgerade  $b_y^{*} = b_x^{y}$  zweier Punkte  $b^{*}$ ,  $b^{y}$  wird von einer anderen Geradens in einem Punkt der Strecke  $b^{(xy)\infty}$ getroffen, wenn die Punkte  $b^{*}$  und  $b^{y}$  auf verschiedenen Halbebenen in Bezug aufsliegen, in einem Punkt der Strecke  $b^{(x \infty y)}$ , wenn  $b^{*}$  und  $b^{y}$  auf derselben Halbebene in Bezug auf sliegen, und umgekehrt.

2. Sind  $\mathfrak{b}^{*}$  und  $\mathfrak{b}^{*}$  zwei aufeinanderfolgende, also unendlich nahe Punkte, so ist die Strecke  $\mathfrak{b}^{(\mathfrak{n} \mathfrak{v})}^{(\mathfrak{n} \mathfrak{v})}$  der Geraden  $b_{\mathfrak{v}}^{*}$  gleich Null; die Gerade  $b_{\mathfrak{v}}^{*}$  kann von allen Geraden, von denen sie nicht in den Punkten  $\mathfrak{b}^{*}$  und  $\mathfrak{b}^{*}$  selbst getroffen wird, nur in Punkten der Strecke  $\mathfrak{b}^{(\mathfrak{n} \mathfrak{c} \mathfrak{v})}$  getroffen werden. Also: Zwei aufeinanderfolgende endliche Punkte befindens in Bezug auf jede Gerade, welche mit ihnen in dersell Ebene, aber mit keinem perspectivisch liegt, stets auf ders ben Halbebene und in Bezug auf jeden der übrigen Pun ihrer Verbindungslinie auf demselben Halbstrahl.

37. Durch Vergleichung von No. 21 c oder 35 a und 10 folgt: Der eine beiden einfachen Winkel, aus denen ein vollkommener Winkel, der Strahlen nur einen Theil eines Strahlbüschels bilden, besteht und wel  $s_{\lambda}^{\varrho}$  entweder gar nicht, oder nur als Grenzstrahl enthält, liegt ganz mit s seinen Halbstrahlen und den diesen zugehörigen Punkten auf einer der bei Halbebenen in Bezug auf  $s_{\lambda}^{\varrho}$ , der andere einfache Winkel, der Sche winkel des ersteren, ganz auf der anderen. Also:

a) Die beiden einfachen Winkel eines jeden vollkom nen Winkels mit endlichem Mittelpunkt, der nur einen Th des concentrischen Strahlbüschels bildet, liegt in Bezug jeden der beiden Grenzstrahlen, wie in Bezug aufjeden Str des Ergänzungswinkels auf entgegengesetzten Halbeben jeder mit allen seinen Halbstrahlen auf einer.

b) n in demselben oder in ein- oder mehrmal geänder Drehsinne aber stetig aufeinanderfolgende Lagen dessel Halbstrahles eines stetig in einem Strahlbüschel sich be genden Strahles liegen in Bezug auf jeden der übrigen Str len des Büschels, d. i. in Bezug auf jeden Strahl desselben, welchem der bewegliche Strahl in keiner dieser n Lagen sammenfällt, auf derselben Halbebene.

c) Liegt der eine Halbstrahl eines Strahles  $s_{\pi}^{\varrho}$  und der eine Halbstrahl eines Strahles  $s_{\mu}^{\varrho}$  in Bezug auf einen anderen Strahles  $s_{\mu}^{\varrho}$  desselben Büschels auf derselben oder auf entgegengeset ten Halbebenen, so liegen sie in Bezug auf jeden Strahl Winkels  $s_{(\mu\pi\pi\pi)}^{\varrho}$  auf derselben, resp. auf entgegengesetz Halbebenen und in Bezug auf jeden Strahl des Winkels  $s_{\mu}^{\varrho}$  resp. auf entgegengesetzten Halbebenen oder auf derselbe

d) Sind  $s^{\varrho}_{\lambda}$  und  $s^{\varrho}_{\mu}$  zwei aufeinanderfolgende Strahlen des Büschel so enthält der Winkel  $s^{\varrho}_{(\lambda\mu)\nu}$  keinen Strahl; daher folgt aus vorigem s mit Rücksicht auf No. 34 $b^2$ : Befinden sich irgend zwei endlig von  $s^{\varrho}$  verschiedene Punkte  $s^{\eta}_{\lambda}$ ,  $s^{e}_{\mu}$  zweier aufeinanderfo'g der Strahlen  $s^{\varrho}_{\lambda}$ ,  $s^{\varrho}_{\mu}$  eines Büschels  $s^{\varrho}$  in Bezug auf irgend sin

#### ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 305

r übrigen Strahlen auf derselben oder auf entgegengesetzh Halbebenen, so liegen sie und die sie enthaltenden Halbahlen  $\hat{s}_{\lambda}^{(\varrho \eta \infty)}$  und  $\hat{s}_{\mu}^{(\varrho \varepsilon \infty)}$  in Bezug aufjeden der übrigen Strahauf derselben resp. auf entgegengesetzten Halbebenen.

Diese Sätze gelten,  $\hat{s}^{e}$  mag ein endlicher oder unendlich entfernter ukt sein (No. 25,  $a_{m}^{\lambda} = g_{\infty}$ ).

38. Jeder der beiden Halbstrahlen von  $s^{\varrho}$  bildet, wenn  $s^{\varrho}$  von  $s^{\varrho}_{\lambda}$  an a Büschel  $s^{\varrho}$  einmal durchlaufen und wieder nach  $s^{\varrho}_{\lambda}$  gelangt ist, die Ernzung zu demjenigen Halbstrahl, welchen er am Anfange der Bewegung akte, und muss beim zweiten Umlauf von  $s^{\varrho}$  in demselben Sinne  $\Delta$  die beim ersten Umlauf durchlaufenen entgegengesetzte Halbebene bereiben, so dass er nach Beendigung des zweiten Umlaufes dieselbe Lage , als am Anfange der Bewegung (No. 23*a*).

a) Demnach kann jede der beiden Halbebenen in Bezug auf irgend en der Büschelstrahlen gemäss No. 10 und 35*a* als ein einfacher Winkel resehen werden\*), dessen vollkommener Winkel der ganze Strahlbüschel Also zufolge No. 12*a* und 23*d*: Derselbe Halbstrahl  $\tilde{g}^{(\varphi|\infty)}(\hat{g}^{(\varphi-\infty)})$ , cher von der Lage  $\tilde{g}_{\lambda}^{(\varrho|\infty)}(\hat{g}_{\lambda}^{(\varrho-\alpha)})$  aus in dem Drehsinne  $\varDelta$  von  $s^{\varrho}$  die bebene  $\tilde{g}_{(\lambda|\lambda)}^{(\varrho|\infty)}(\hat{g}_{(\lambda|\lambda)}^{(\varrho-\alpha)})$  beschreibt, beschreibt in dem entgegengesetz-Drehsinne  $\overline{\varDelta}$  die andere Halbebene  $\tilde{g}_{(\lambda-\lambda)}^{(\varrho|\infty)}(\hat{g}_{(\lambda-\lambda)})$ , und dieselbe bebene, welche, während  $s^{\varrho}$  im Sinne  $\varDelta$  den Büschel beschreibt, von in Halbstrahl  $\tilde{g}^{(\varrho|\infty)}$  aus der Anfangslage  $\tilde{g}_{\lambda}^{(\varrho|\infty)}$  beschrieben wird, wird em Drehsinne  $\overline{\varDelta}$  von dem Halbstrahl  $\tilde{g}^{(\varrho-\infty)}$  aus der Anfangslage  $\tilde{g}_{\lambda}^{(\varrho-\infty)}$ chrieben, so dass  $\tilde{g}_{(\lambda|\lambda)}^{(\varrho|\infty)} = \tilde{g}_{(\lambda-\lambda)}^{(\varrho-\infty)}$  und  $\tilde{g}_{(\lambda-\lambda)}^{(\varrho|\infty)} = \tilde{g}_{(\lambda|\lambda)}^{(\varrho-\infty)}$ , wie auch aus Bezeichnung nach No. 15 hervorgeht.

b) Die sämmtlichen Lagen eines der beiden Halbstrahlen  $\tilde{s}^{(\boldsymbol{\varphi}^{\infty})}$  wähdzweier aufeinanderfolgender Umläufe von  $s^{\boldsymbol{\varrho}}$  in demselben Bewegungse erfüllen daher die ganze Ebene und sind ein Gebilde, von welchem Voraussetzung in No. 1 und die daraus hervorgehenden Folgerungen, die in §. 5, in ihrer ganzen Ausdehnung gelten; wir nennen es ein Ibstrahlenbüschel; jeder von  $\tilde{s}^{\boldsymbol{\varrho}}$  verschiedene Punkt der Ebene t mit einem Halbstrahl dieses Halbstrahlbüschels in einer und nur er Lage perspectivisch.

<sup>\*)</sup> v. Staudt, Geometrie der Lage No. 22.

39. Die Halbstrahlen  $\hat{s}_{\lambda}^{(\varrho \mid \infty)}$  und  $\hat{s}_{\lambda}^{(\varrho - \infty)}$  von  $s_{\lambda}^{\varrho}$  sind zwei Elemen des Halbstrahlbüschels, welche dasselbe in zwei Intervalle, Halbeben theilen, die wir entsprechend dem Princip in No. 15*a* mit  $\hat{s}_{(\lambda|\lambda)}^{(\varrho|\infty)}$  und  $\hat{s}_{(\lambda-\lambda)}^{(\varrho|\alpha)}$ oder resp. mit  $\hat{s}_{(\lambda-\lambda)}^{(\varrho-\infty)}$  und  $\hat{s}_{(\lambda|\lambda)}^{(\varrho-\infty)}$  in Bezug auf den Drehsinn  $\varDelta$  bezeic nen, je nachdem wir uns das laufende Element in der Lage  $\hat{s}_{\lambda}^{(\varrho|\infty)}$  oder  $der \hat{s}_{\lambda}^{(\varrho-\infty)}$  denken (vergl. No. 38*a*). Von einem zweiten Strahl  $s_{\nu}^{\varrho}$  geh nach No. 34 b<sup>1</sup> der eine Halbstrahl  $\hat{s}_{\nu}^{(\varrho|\infty)}$  der Halbebene  $\hat{s}_{(\lambda|\lambda)}^{(\varrho|\infty)} = \hat{s}_{(\lambda-\lambda)}^{(\varrho-\infty)}$ an und der andere  $\hat{s}_{\nu}^{(\varrho-\infty)}$  der Halbebene  $\hat{s}_{(\lambda|\lambda)}^{(\varrho-\infty)} = \hat{s}_{(\lambda-\lambda)}^{(\varrho-\infty)}$ . Jede d Halbebenen in Bezug auf  $s_{\lambda}^{\varrho}$  wird daher, als Intervall des Halbstrahlbische aufgefasst, durch den in ihr enthaltenen Halbstrahl von  $s_{\nu}^{\varrho}$  in zwei The getheilt, die gemäss No. 15*a* in der Reihenfolge, wie sie von dem im Sin  $\varDelta$  den Halbstrahlbüschel von  $\hat{s}_{\lambda}^{(\varrho|\infty)}$  an durchlaufenden Halbstrahl beschri ben werden, folgendermassen zu bezeichnen sind:

oder resp.  $\hat{\mathfrak{G}}_{(\lambda|\nu)}^{(\varrho|\infty)} \hat{\mathfrak{G}}_{(\nu|\lambda)}^{(\varrho|\infty)} \hat{\mathfrak{G}}_{(\lambda|\nu)}^{(\varrho-\infty)} \hat{\mathfrak{G}}_{(\nu|\lambda)}^{(\varrho-\infty)}$ 

$$\hat{s}^{(\varrho \mid \infty)}_{(\nu-\lambda)} \xrightarrow{\hat{s}}^{(\varrho - \infty)}_{(\lambda-\nu)} \xrightarrow{\hat{s}}^{(\varrho - \infty)}_{(\nu-\lambda)} \xrightarrow{\hat{s}}^{(\varrho \mid \infty)}_{(\lambda-\nu)}$$

Der erste und dritte dieser einfachen Winkel ergänzen sich als Scheit winkel zu dem vollkommenen Winkel  $s_{(\lambda|\nu)}^{q} = s_{(\nu-\lambda)}^{q}$  und ebenso der zwe und vierte zu dem Winkel  $s_{(\nu|\lambda)}^{q} = s_{(\lambda-\nu)}^{q}$ . Während nun  $s^{q}$  von  $s_{\lambda}^{q}$  aus Sinne  $\Delta$  einen Umlauf macht, beschreiben gleichzeitig (No. 21 c und 35 der Halbstrahl  $\hat{s}^{(q|\infty)}$  von  $\hat{s}_{\lambda}^{(q|\infty)}$  aus die Halbebene  $\hat{s}_{(\lambda|\lambda)}^{(q|\infty)}$ , der Halbstrahl  $\hat{s}_{\lambda}^{(q-\infty)}$  von  $\hat{s}_{\lambda}^{(q-\infty)}$  aus die Halbebene  $\hat{s}_{(\lambda|\lambda)}^{(q-\infty)}$ ; die beiden Halbstrahl bewegen sich in gleichem (Drehsinn) Bewegungssinn; wir können dal No. 17 anwenden und erhalten, indem wir noch bemerken, dass, was v dem willkürlich gewählten Strahl  $s_{\lambda}^{q}$  festgesetzt ist, auf jeden beliebig anderen Strahl  $s_{\lambda}^{q}$  angewendet werden kann.

a) Während  $s^{\varrho}$  im Sinne  $\varDelta$  von  $s_{\lambda}^{\varrho}$  aus den Büschel  $s^{\varrho}$  einm durchläuft, ist den Halbebenen  $\mathfrak{g}_{(\xi|\xi)}^{(\varrho|\infty)}$  in Bezug auf alle Lag  $s_{\xi}^{\varrho}$  des Winkels  $s_{(\lambda|\psi)}^{\varrho}$  der einfache Winkel  $\mathfrak{g}_{(\psi|\lambda)}^{(\varrho|\infty)}$  gemeinscha lich mit allen seinen Halbstrahlen und ausser diesen keinv

gezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 307

ug auf alle Lagen  $s_{\xi}^{\varrho}$  des Winkels  $s_{(\nu|\lambda)}^{\varrho}$  der einfache l $\mathfrak{s}_{(\lambda|\nu)}^{(\varrho-\infty)}$  in gleicher Weise; den Halbebenen  $\mathfrak{s}_{(\xi-\xi)}^{(\varrho|\infty)}$  aber Bezug auf alle Lagen  $s_{\xi}^{\varrho}$  des Winkels  $s_{(\lambda|\nu)}^{\varrho}$  der einfache l $\mathfrak{s}_{(\nu|\lambda)}^{(\varrho-\infty)}$  und in Bezug auf alle Lagen  $s_{\xi}^{\varrho}$  des Winkels er einfache Winkel  $\mathfrak{s}_{(\lambda|\nu)}^{(\varrho|\infty)}$  gemeinschaftlich.

Aus No. 15 ad und 34 b1 ergiebt sich:

where  $s_{\lambda}^{e}$  von  $s_{\lambda}^{e}$  aus im Sinne  $\Delta$  stetig den Winkel  $s_{(\lambda|\nu)}^{e}$ eibt, liegen auf derselben Halbebene  $\hat{s}_{(\xi-\xi)}^{(e|\infty)}$  in Bezug de seiner Lagen  $s_{\xi}^{e}$  der von dem Halbstrahl  $\hat{s}^{(e|\infty)}$  bebene einfache Winkel  $\hat{s}_{(\lambda\xi)\nu}^{(e|\infty)}$  von  $s_{(\lambda\xi)\nu}^{e}$  und von  $s_{\lambda(\xi\nu)}^{e}$  der he Winkel  $\hat{s}_{\lambda(\xi\nu)}^{(e-\infty)}$ , welcher von dem Halbstrahl  $\hat{s}^{(e-\infty)}$  bebene wird; auf der Halbebene  $\hat{s}_{(\xi|\xi)}^{(e|\infty)}$  aber liegen die ein-Winkel  $\hat{s}_{\lambda(\xi)\nu}^{(e|\infty)}$  und  $\hat{s}_{(\lambda\xi)\nu}^{(e-\infty)}$ ; also in Bezug auf jede Lage Vinkel  $\hat{s}_{\lambda(\xi)\nu}^{(e|\infty)}$  liegen stets auf derselben Halbebene der m Halbstrahl  $\hat{s}^{(e|\infty)}$  beschriebene einfache Winkel des and der von dem Halbstrahl  $\hat{s}^{(e-\infty)}$  beschriebene ein-Winkel des anderen der beiden Theile, in welche der

In Bezug auf jede Lage  $s_{\xi}^{\varphi}$  von  $s^{\varphi}$  während des ersten Umlaufes sus, in welchem die Halbstrahlen  $\tilde{g}^{(\varphi|\infty)}$  und  $\tilde{g}^{(\varphi-\infty)}$  von resp. Ind  $\tilde{g}_{1}^{(\varphi-\infty)}$  aus resp. die Halbebenen  $\tilde{g}_{(\lambda|\lambda)}^{(\varphi|\infty)}$  und  $\tilde{g}_{(\lambda|\lambda)}^{(\varphi-\infty)}$  beschreiit der Halbstrahl  $\tilde{g}_{1}^{(\varphi|\infty)}$  auf der Halbebene  $\tilde{g}_{(\xi-\xi)}^{(\varphi|\infty)}$ , daher  $\tilde{g}_{1}^{(\varphi-\infty)}$   $\tilde{g}_{1}^{(\infty)}$ , während des zweiten Umlaufes, in welchem die Halbstrahlen ind  $\tilde{g}^{(\varphi-\infty)}$  von resp.  $\tilde{g}_{1}^{(\varphi-\infty)}$  und  $\tilde{g}_{1}^{(\varphi|\infty)}$  aus resp. die Halbebenen und  $\tilde{g}_{(\lambda|\lambda)}^{(\varphi|\infty)}$  beschreiben, liegt der Halbstrahl  $\tilde{g}_{1}^{(\varphi|\infty)}$  auf der Halb- $\tilde{g}_{1}^{(\infty)}$ , also  $\tilde{g}_{1}^{(\varphi-\infty)}$  auf  $\tilde{g}_{1}^{(\varphi|\infty)}$ .

Durchläuft von demjenigen Halbstrahl  $\hat{s}_{\lambda}^{(q\,\xi\,\infty)}$  von  $s_{\lambda}^{q}$  aus, welcher einer Geraden  $g_{\xi}$  der Rubrik  $b^{2}$  in No. 35 gemeinschaftlichen Punkt

 $\mathfrak{g}_{\boldsymbol{\xi}}^{\boldsymbol{\varrho}} = \mathfrak{s}_{1}^{\boldsymbol{\xi}}$  enthält, der Halbstrahl  $\mathfrak{s}^{(\boldsymbol{\varrho} \mid \infty)}$  im Bewegungssinne  $\varDelta$  stetig Halbstrahlbüschel  $\hat{s}^{\boldsymbol{q}}$ , so trifft er nach No. 21 *b* und 35  $b^2$  die Gerade  $g_i$ den von  $\mathfrak{g}_{\xi}^{\boldsymbol{\varrho}}$  an stetig aufeinanderfolgenden Punkten des Halbstrahls  $\mathfrak{g}_{\xi}^{(\boldsymbol{\varrho})}$ während er den einfachen Winkel  $\mathfrak{z}_{(\ell|\mathfrak{S})}^{(\varrho|\mathfrak{S})}$  beschreibt, bis er in die mit perspectivische Lage  $\hat{s}_{\xi}^{(\varrho \mid \infty)}$  gelangt; darauf so lange nicht, bis er in Lage  $\mathfrak{s}_{\xi}^{(\varrho-\infty)}$  gelangt ist, d. i. bis er die Halbebene  $\mathfrak{s}_{(\xi|\xi)}^{(\varrho-\infty)}$  beschrieben, Strahl  $s^{\mathbf{q}}$  also, dem  $\mathfrak{g}^{(\mathbf{q} \mid \infty)}$  angehört, von  $s_{\underline{e}}^{\mathbf{q}}$  aus einen ganzen Umlauf v endet hat (No. 38); von da ab aber trifft der laufende Halbstrahl 3<sup>(?</sup> wieder die Gerade  $g_{\sharp}$ , während er den Rest des Halbstrahlbüschels, o einfachen Winkel  $\mathfrak{g}_{(\xi|\lambda)}^{(q-\infty)}$  beschreibt, in den von  $\mathfrak{g}_{\xi}^{\infty}$  an im gleichen Ri tungssinne wie in  $\mathfrak{g}_{\boldsymbol{\xi}}^{(\boldsymbol{\varrho}\mid\boldsymbol{\alpha})}$  (No. 16) aufeinanderfolgenden Punkten von  $\mathfrak{g}_{\boldsymbol{\xi}}^{(\boldsymbol{\varrho}-\boldsymbol{\alpha})}$ Lassen wir daher einen Punkt  $\mathfrak{g}_{\xi}$  die Gerade  $g_{\xi}$  von  $\mathfrak{g}_{\xi}^{\mathbf{e}}$  ab im Sinne  $\mathfrak{g}_{\xi}^{\mathbf{e}}$ (No. 14a<sup>2</sup>) durchlaufen, so ist deswegen, weil er beim Ueberschreiten unendlich entfernten Punktes  $\mathfrak{g}_{\xi}^{\infty}$  von dem einen Halbstrahl  $\mathfrak{g}_{\xi}^{(\varrho|\infty)}$  auf d anderen  $\mathfrak{s}_{\mathfrak{k}}^{(q-\infty)}$  rückt, der mit demselben perspectivische Halbstrahl Halbstrahlbüschels 3<sup>9</sup> genöthigt, die Hälfte seines Gebildes, entspreche einem ganzen Umlauf von s? zu überspringen, damit den hintereinand folgenden Lagen von  $\mathfrak{g}_{\sharp}$  hintereinanderfolgende Lagen desselben Halbstra entsprechen. Dadurch nur ist es möglich, dass das Halbstrahlbüschel, Gebilde von doppelt so grosser Mächtigkeit als die gerade Punktreihe, dieser in perspectivische Beziehung gebracht werden kann.

Die Modification, welche eintritt, wenn  $g_{\xi}$  eine Gerade der Rubrik in No. 35, ergiebt sich schon hieraus von selbst, wenn wir beachten, da die ganze Untersuchung ihrem Wesen nach dieselbe bleiben muss, n einer der Halbstrahlen  $g_{\xi}^{(\varrho \infty)}$  gleich Null, der andere gleich der ganzen G raden  $g_{\xi}$  wird (No. 25).

Betreffs der Fälle, wenn  $g_{\xi} = g_{\infty}$  oder eine Gerade der Rubrik b' No. 35, vergleiche No. 35*c*.

41. Zufolge No. 25 und 33 gelten die in diesem Paragraphen angeste ten Untersuchungen und abgeleiteten Sätze, sowohl wenn der Mittelpun des Büschels  $\hat{s}^{\boldsymbol{q}}$  ein endlicher, als wenn er ein unendlich entfernter Pun ist; die eintretenden Modificationen wenn  $\hat{s}^{\boldsymbol{q}}$  ein unendlich entfernter Pun

usgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 309

denselben schon enthalten und lassen sich mit Berücksichtigung von , bezogen auf  $a_{\psi}^{\lambda} = g_{\infty}$ , leicht erkennen.

ass, wenn der Mittelpunkt  $\hat{s}^{e}$  eines ebenen Strahlbüschels ein end-Punkt und  $g_{\xi}$  irgend eine endliche den Punkt  $\hat{s}^{e}$  nicht enthaltende e ist, ihr unendlich entfernter Punkt beiden Halbstrahlen des mit ihm ctivischen Strahles  $s_{\xi}^{e}$  angehört, nach entgegengesetzten Richtungen ren scheint,

ass, während ein Strahl  $s^{\mathbf{q}}$  den Büschel beschreibt, der ihm auf der en  $g_{\underline{s}}$  entsprechende Punkt beim Ueberschreiten des unendlich ent-

n Punktes von einem Halbstrahl von s<sup>e</sup> auf den andern rückt,

wohl in der dem unendlich entfernten Punkt vorhergehenden, wie in n folgenden Lage auf derselben Halbebene in Bezug auf den mit dem ich entfernten Punkt perspectivischen Strahl (Parallelstrahl) liegt, in auf jeden mit einem endlichen Punkt  $g_{\xi}^{\mu}$  perspectivischen Strahl aber auf  $g_{\xi}^{\mu}$  folgenden Lage nach No. 34*a* und 18 auf der entgegengesetzlbebene sich befindet, als in der  $g_{\xi}^{\mu}$  vorhergehenden Lage,

urchaus keine dem unendlich entfernten Punkt als solchem eigenche Eigenschaften, sondern sie sind eine Folge der allgemeinen in No. 21 b und 22; sie kommen, wenn wir statt der unendlich entferneraden eine beliebige endliche Gerade  $a_{\psi}^{\lambda}$  als Grenzgerade wählen, edem endlichen Punkt derselben in gleicher Weise zu:

wohl beim Durchlaufen der einen Strecke  $\hat{s}^{(q \psi)}$  von  $\hat{s}^{q}$  aus, als beim laufen der anderen (in entgegengesetztem Richtungssinne, No. 12*a*) en wir zu demselben;

enn der dem Strahl  $s^{\mathbf{q}}$  auf  $g_{\underline{\xi}}$  entsprechende Punkt den der Geraden  $a_{\psi}^{\mathbf{l}}$  gemeinschaftlichen Punkt  $g_{\underline{\xi}}^{\psi}$  überschreitet, geht er stets von der Strecke  $s^{(\mathbf{q} \ \psi)}$  auf die andere über (No. 21*b*, 22), und

efindet sich in der dem Punkt  $g_{\xi}^{\psi}$  vorhergehenden, wie in der auf ihn den Lage in demselben der durch  $a_{\psi}^{\lambda}$  und den mit  $g_{\xi}^{\psi}$  perspectivischen  $s_{\xi}^{\varphi}$  gebildeten Winkel, weil in diesem Falle  $a_{\psi}^{\lambda}$ ,  $g_{\xi}$  und  $s_{\xi}^{\varphi}$  Strahlen inchels  $g_{\xi}^{\psi}$  sind, also der eine mit allen seinen Punkten in einem on den beiden anderen bestimmten Winkel sich befinden muss o); in jeder der übrigen Lagen  $g_{\xi}^{\mu}$  aber fällt nach No. 2  $g_{\xi}$  nie mit Digitized by Google einem Punkt von  $a_{\psi}^{\lambda}$  zusammen; die dem Punkt  $g_{\xi}^{\mu}$  vorhergehende und die ihm folgende Lage gehören daher nach No. 16 verschiedenen Strecken  $g_{\xi}^{(\mu \psi)}$  an, also der eine dem einen, der andere dem anderen der von  $a_{\psi}^{\lambda}$ und dem mit  $g_{\xi}^{\mu}$  perspectivischen Strahl  $s_{\mu}^{q}$  gebildeten Winkel (No. 18*bc*), werden aber beide von derselben Strecke  $\hat{s}^{(q \psi)}$  getroffen (No. 21*b*).

C. Ein Strahlbüschel und zwei Punktreihen.

42. Aus No. 26 bis 28 folgt, wenn wir die unendlich entfernte Gerade  $g_{\infty}$  statt  $a_{\psi}^{1}$  als Grenzgerade wählen, indem wir die Strahlen  $s_{\infty}^{q}\delta$ ,  $s_{\infty}^{q}\xi$  von  $\dot{s}^{q}$ , welche mit den den Geraden  $g_{\delta}$ ,  $g_{\xi}$  und der Grenzgeraden  $g_{\infty}$  gemeinschaftlichen Punkten, d. i. mit den unendlich entfernten Punkten von  $g_{\delta}$  und  $g_{\xi}$  perspectivisch sind, kürzer mit  $s_{\delta}^{q}$ ,  $s_{\xi}^{q}$  und den Schnittpunkt g<sup>o</sup> perspectivischen Strahl mit  $s_{\delta}^{q}$  bezeichnen: Die den Strahlen eines ebenen Strahlbüschels  $\dot{s}^{q}$  auf zwei Geraden  $g_{\delta}$ ,  $g_{\xi}$  derselben Ebene entprechenden Punkte

a) ein Punktepaar dritter Art:

- α) auf jedem Strahl des Büschels:
  - 1. wenn der Mittelpunkt  $\mathfrak{F}^{\varrho}$  auf  $g_{\delta}$  oder  $g_{\xi}$  oder im Schnittpunkte beider liegt, bei beliebiger Lage der Geraden  $g_{\delta}$ ,  $g_{\xi}$  (No. 27);
  - 2. wenn eine der Geraden  $g_{\delta}$ ,  $g_{\xi}$  oder beide mit  $g_{\infty}$  zusammenfallen, bei beliehiger Lage der endlichen Geraden und des Punktes  $\delta^{\circ}$ (No. 28*a*<sup>2</sup>, *b*<sup>2</sup>).

β) nur auf einzelnen Strablen des Büschels in allen anderen Fällen, also wenn sowohl  $g_{\delta}$  als  $g_{\xi}$  endliche Gerade sind und nicht durch den Punkt  $\hat{s}^{\varrho}$  gehen, nämlich

- wenn β<sup>Q</sup> ein endlicher Punkt, stets und nur auf den Parallelstrahlen zu g<sub>δ</sub> und g<sub>ξ</sub>, mögen diese durch einen endlichen Winkel von einander getrennt, unendlich nahe sein oder zusammenfallen (No. 26 b);
- 2. wenn  $\mathfrak{s}^{\varphi}$  ein unendlich entfernter Punkt, stets und nur auf dem Strahl, welcher mit  $g_{\infty}$  zusammenfällt, und welcher hier die Parallelstrahlen vertritt (No. 28 b<sup>1</sup>),

war Punktepaare dritter Art nach No. 12 $d^4$  nur (im Falle [ $\beta^*$ ]) auf trahl  $g_{\infty}$ , nach No. 12 $d^3$  nur (im Fall [ $\alpha^1$ ]) auf dem mit  $g_{\delta}$  oder  $g_{\xi}$  zuenfallenden Strahl oder auf beiden, nach No. 12 $d^{1*}$  in allen anderen ;

) ein Punktepaar zweiter Art, nur wenn sowohl  $g_{\delta}$  als  $g_{\xi}$  end-Gerade sind und  $\hat{s}^{\varrho}$  ein ausserhalb derselben befindlicher Punkt der ist, nämlich, wenn dies der Fall, die Parallelstrahlen  $s_{\delta}^{\varrho}$ ,  $s_{\xi}^{\varrho}$ , resp. mendlich entfernte Gerade  $g_{\infty}$  von vornherein ausgenommen;

- ) auf jedem der übrigen Strahlen des Büschels
- 1. bei beliebiger Lage der Geraden  $g_{\delta}$ ,  $g_{\xi}$  mit Berücksichtigung der schon erwähnten Beschränkungen, wenn  $\delta^{\varrho}$  ein unendlich entfernter Punkt (No. 28 b<sup>1</sup>);
- 2. wenn  $g_{\delta}$  und  $g_{\xi}$  unendlich nahe Gerade und  $\hat{s}^{\varrho}$  ein beliebiger Punkt (No. 26*b*);
- 3. wenn  $g_{\vartheta}$  und  $g_{\xi}$  zwar durch einen endlichen Winkel getrennt sind, sich aber in einem unendlich entfernten Punkte schneiden und  $\vartheta^{\varrho}$  ein Punkt des Winkels  $g_{(\vartheta \propto \hat{s})}$  ist, welcher die Gerade  $g_{\infty}$ enthält (No. 28 $a^{1}$ );

b) nur auf einem Theil der Büschelstrahlen, wenn  $g_{\mathfrak{z}}$  und  $g_{\xi}$  beliebige che durch einen endlichen Winkel von einander getrennte Gerade die sich in einem endlichen Punkte schneiden, und  $\mathfrak{s}^{\mathfrak{q}}$  ein beliebiger cher Punkt ausserhalb derselben, nämlich auf den sämmtlichen Strahes Winkels  $s_{(\mathfrak{do}\xi)}^{\mathfrak{q}}$ , welcher den Schnittpunkt  $\mathfrak{g}^{\mathfrak{o}}$  enthält (No. 26*b*); ) ein Punktepaar erster Art, nur wenn  $g_{\mathfrak{d}}$  und  $g_{\xi}$  zwei endliche urch einen endlichen Winkel von einander getrennte, sonst beliebige le sind und  $\mathfrak{s}^{\mathfrak{q}}$  ein endlicher ausserhalb derselben gelegener Punkt bene ist, nämlich wenn dies der Fall, die Parallelstrahlen  $s_{\mathfrak{d}}^{\mathfrak{q}}$ ,  $s_{\xi}^{\mathfrak{q}}$  ausnmen,

auf jedem der übrigen Strahlen des Büschels, wenn  $g_{\delta}$  und  $g_{\xi}$  sich nem unendlich entfernten Punkte schneiden, und  $\hat{s}^{\varrho}$  ein Punkt des els  $g_{(\delta,\xi),\infty}$  ist, welcher  $g_{\infty}$  nicht enthält (No. 28  $a^1$ );

3) nur auf einem Theil der Büschelstrahlen, stets wenn  $g_{\delta}$  und  $g_{\xi}$  sich nem endlichen Punkte schneiden, nämlich auf den sämmtlichen Strahes Winkels  $s_{o(\delta\xi)}^{q}$ , welcher den Schnittpunkt g<sup>o</sup>nicht enthält (No. 26*b*).

43. a) Aus No. 29 folgt,  $a_{2h}^{\lambda} = g_{\infty}$  gesetzt:

Beschreibt ein Strahl  $s^{\circ}$  continuirlich in demselben Dre sinne einen ebenen Strahlbüschel  $\tilde{s}^{\circ}$ , so bewegen sich die a irgend zwei Geraden  $g_{\mathfrak{d}}$ ,  $g_{\sharp}$  derselben Ebene entsprechend Punkte  $g_{\mathfrak{d}}^{\circ}$ ,  $g_{\sharp}^{\circ}$  von jedem derjenigen Büschelstrahlen aus, a denen sie in Bezug auf den Mittelpunkt  $\tilde{s}^{\circ}$  und den unendlientfernten Punkt  $\tilde{s}^{\infty}$  als Grenzpunkte ein Punktepaar erst Art bilden, nach entgegengesetzten Halbebenen (wenn d Schnittpunkt  $g^{\circ}$  der Geraden  $g_{\mathfrak{d}}$ ,  $g_{\sharp}$  ein endlicher Punkt, der eine im Sin  $g^{\circ \infty}$ , d. i. sich dem Schnittpunkt  $g^{\circ}$  nähernd (No. 8 $c^{2}$ ), der andere Sinne  $g^{\circ \infty \circ}$ ; d. i. sich von  $g^{\circ}$  entfernend); von jedem derjenigen B schelstrahlen aus aber, auf denen sie ein Punktepaar d zweiten Art bilden, bewegen sich die auf  $g_{\mathfrak{d}}$  und  $g_{\sharp}$  entspreche den Punkte auf dieselbe Halbebene (also, wenn $g^{\circ}$  ein endlicher Punk entweder beide sich dem Punkt  $g^{\circ}$  nähernd, oder beide sich von ihm en fernend).

b) Auf denjenigen Strahlen  $s^{e}$ , auf denen die Punkte g  $g_{t}^{\sigma}$  ein Punktepaar dritter Art bilden, gehen sie in den Fälle  $[\beta^{t*}]$  in No.42*a* je einer oder beide zugleich von dem einen Hal strahl  $\mathfrak{z}^{(e^{\infty})}$  auf den andern über (No. 25, 35*e*, 41).

Im Falle  $[\alpha^i]$  in No. 42*a* verändert der der einen Gerade entsprechende Punkt seine Lage (d. i. die des Punktes  $\mathfrak{s}^{\mathfrak{q}}$ ) nic und wird nur in der einen mit dieser Geraden zusammenfallenden La von  $\mathfrak{s}^{\mathfrak{q}}$ , welcher auf der anderen der Schnittpunkt  $\mathfrak{g}^{\mathfrak{q}}$  entspricht, durch d Summe der übrigen Punkte ersetzt (No. 27).

Im Falle  $[\alpha^{s}]$  in No. 42*a* können wir, da die unendlich entfernte Gera  $g_{\infty}$  als Grenzgerade beiden Halbebenen in Bezug auf irgend eine endlic Gerade angehört, sowohl sagen: die Punkte  $g_{\delta}^{\sigma}$ ,  $g_{\xi}^{\sigma}$  bewegen sich Bezug auf jede Lage von  $s^{\varrho}$  auf dieselbe, als sie bewegen sich auf entgegengesetzte Halbebenen.

### §. 9. Abhängigkeit der entsprechenden Bewegungssinne in zwei perspectivis auf einander bezogenen Grundgebilden (Punktreihe, Strahlbüschel) von der relativen Lage ihrer Träger.

44. Beziehen wir irgend zwei Strahlbüschel mit endlichem Mittelpun perspectivisch auf einander durch die unendlich entfernte Gerade, so da je zwei entsprechende Strahlen parallel sind, so lehrt die Anschauung, da der einem beliebigen Drehsinn des einen Büschels in dem anderen (No. 6, 19) entsprechende stets diesem gleich ist\*), wir mögen die Kennzeichnung jedes der beiden in jedem ebenen Strahlbüschel (No. 1) möglichen Bewegungssinne an sich auf die in der "Entwickelung der Abhängigkeit geometrischer Gestalten" von Steiner auf pag. 46 oder auf die in der "Theorie der Kegelschnitte" von Herrn Schroeter in §. 4, pag. 3 angegebenen Weise ausführen; jede dieser Methoden ist nur auf Strahlbüschel mit endlichem Mittelpunkt und auf jedes solche Strahlbüschel anwendbar, also jedesmal und nur dann, wenn beim Uebergange des laufenden Strahles aus einer Lage in die nächstfolgende eine eigentliche Drehung stattfindet, welche ihrem Begriffe nach das Vorhandensein eines endlichen Punktes als festen Drehungscentrums voraussetzt.

a) Die unendlich entfernte Gerade hat daher, wie sie durch ihre Lage vor allen anderen Geraden der Ebene ausgezeichnet ist, die in No. 32 von der Geraden  $g_{y}$  angenommene ausgezeichnete Eiglenschaft, dass demselben Richtungssinn in ihr in allen Strahlbüscheln mit endlichem Mittelpunkt derselben Ebene der gleiche Drehsinn entspricht, und umgekehrt. Daher erhalten wir aus No. 30, 31, wenn wir eine der beliebigen Geraden  $g_{\delta}$ ,  $g_{\xi}$ -uns durch  $g_{\infty}$ vertreten denken, folgende Sätze:

b. Sind irgend zwei Strahlbüschel  $a^2$ ,  $s^{\varphi}$  mit endlichem Mittelpunkt auf eine endliche Gerade  $g_{\delta}$  derselben Ebene, welche keinem derselben als Strahl angehört, perspectivisch bezogen,

1. so sind die einem beliebigen Richtungssinne von  $g_{\partial}$  entsprechenden Drehsinne in a<sup>2</sup> und  $\hat{s}^{e}$  einander gleich, wenn die Punkte a<sup>2</sup> und  $\hat{s}^{e}$  sich auf derselben Halbebene in Bezug auf  $g_{\partial}$  befinden, und entgegengesetzt, wenn auf verschiedenen,

2. so ist der einem Drehsinn des einen Büschels im anderen entsprechende ihm gleich, wenn der beiden Büscheln gemeinschaftliche Strahl  $s_{\lambda}^{Q} = a_{Q}^{\lambda}$  von  $g_{\delta}$  in einem Punkte der Strecke  $\hat{s}_{\lambda}^{(Q \propto \lambda)}$ , ihm entgegengesetzt, wenn  $s_{\lambda}^{Q}$  von  $g_{\delta}$  in einem Punkt der Strecke  $\hat{s}_{\lambda}^{(Q\lambda) \infty}$  getroffen wird (No. 36*c*).

c) Werden zwei Strahlbüschel derselben Ebene mit endlichen Mittelpunkten  $a^2$ ,  $\tilde{s}^q$  jeder von einem seiner Strahlen resp.  $a^2$  und  $s^q$  in beliebigem Drehsinn beschrieben, so bewegen sich in jeder Geraden der Ebene, welche den Strahl $s_1^q$  in

<sup>\*)</sup> Schroeter, Theorie der Kegelschnitte 1867. §. 19c.

# 314 Die projectivischen Eigenschaften der gewöhnlichen und

einem Punkte der Strecke $\tilde{s}_{l}^{(\varrho \propto l)}$  schneidet, auch auf der v endlich entfernten Geraden, die den Strahlen  $a^{l}$  und  $s^{\varrho}$  e sprechenden Punkte in gleichem Richtungssinn, wenn Strahlbüschel in gleichem, in entgegengesetztem Richtun sinne, wenn die Strahlbüschel in entgegengesetztem Dre sinne durchlaufen werden, und umgekehrt; aufjeder Gerad

jedoch, welche den Strahl  $s_{\lambda}^{\varrho}$  in einem Punktder Strecke $\tilde{s}_{\lambda}^{(\varrho)}$ 

schneidet, bewegen sich die den Strahlen  $a^{\lambda}$  und  $s^{\varrho}$  entsp chenden Punkte in gleichem Richtungssinne, wenn die Stra büschel in entgegengesetztem, in entgegengesetztem Ritungssinne, wenn die Strahlbüschel in gleichem Drehsin durchlaufen werden, und umgekehrt. Betreffs der Geraden, wel durch einen der Punkte  $a^{\lambda}$ ,  $\tilde{s}^{\varrho}$  gehen, vergl. No. 30*c*, 31*d*, 43*b*.

d) Lassen wir einen Punkt  $g_{\xi}$  eine beliebig gelegene en liche Punktreihe  $g_{\xi}$  in einem bestimmten Sinne stetig dur laufen,

1. so müssen die mit  $g_{\xi}$  perspectivischen Strahlen all Strahlbüschel, deren Mittelpunkte endliche, ausserhalb gelegene Punkte derselben Halbebene in Bezug auf $g_{\xi}$  sin ihre Büschelin gleichem Drehsinne durchlaufen;

2. die mit  $g_{\xi}$  perspectivischen Strahlen aller Strahlbüsch deren Mittelpunkte endliche, ausserhalb  $g_{\xi}$  gelegene Punk der anderen Halbebene in Bezug auf  $g_{\xi}$  sind, müssen ihre B schel ebenfalls in unter sich gleichem, aber dem der ander entgegengesetzten Drehsinne beschreiben.

3. Beim Uebergange des dem Punkte  $g_{\xi}$  entsprechenden Strah eines der Büschel, deren Mittelpunkte in den die Halbebenen begrenzend Geraden  $g_{\xi}, g_{\infty}$  liegen, aus einer Lage in die nächstfolgende müsste wohl eine Drehung in dem einen, wie eine im entgegengesetzten Sin erfolgen, es erfolgt daher gar keine eigentliche Drehung, sondern nur e Verschiebung.

† Der mit g<sub>g</sub> perspectivische Strahl jedes Strahlbüschels, des Mittelpunkt in der Geraden  $g_{\xi}$  liegt, fällt in diese Gerade und behält di Lage bei, so lange nicht g<sub>g</sub> seinen Mittelpunkt deckt (No. 27, 30*c*, 31*d*);

†† der mit  $g_{\xi}$  perspectivische Strahl jedes Strahlbüschels, des Mittelpunkt in  $g_{\infty}$  liegt, ein unendlich entfernter Punkt ist, (jedes Parall

#### gezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 315

schels) beschreibt sein Büschel in einem von dem Richtungssinne abhängigen und mit demselben sich änderuden (No. 6) Bewegungsr aber keinem und jedem der beiden Drehsinne eines Strahlbüschels ichem Mittelpunkt gleichgesetzt werden kann (No. 32)\*).

Denken wir uns demnach, alle Strahlbüschel mit endlifittelpunkt werden jeder von einem seiner Strahlen in em Drehsinne durchlaufen, so ertheilen alle Strahlel, deren Mittelpunkte endliche Punkte derselben Halbin Bezug auf eine beliebige in dieser Ebene befindliche eg<sub>ξ</sub> sind, dem mitdem laufenden Strahlaufg<sub>ξ</sub> perspecti-

nPunkte denselben Bewegungssinn, alle Strahlbüschel, Mittelpunkte endliche Punkte der zweiten Halbebene Bezug auf g<sub>t</sub>, den entgegengesetzten Bewegungssinn;

giebt keinen einzigen Strahlbüschel, dessen Mittelpunkt ein endlicher alb  $g_{\xi}$  gelegener Punkt der einen Halbebene in Bezug auf  $g_{\xi}$ , und , in demselben Sinne  $\Delta$  beschrieben, auf  $g_{\xi}$  denselben Bewegungssinn

efe, als die Strahlbüschel, deren Mittelpunkte Punkte der anderen ne sind.

r dem laufenden Strahl eines Strahlbüschels, dessen punkt in  $g_{\xi}$  liegt, auf  $g_{\xi}$  entsprechende Punkt verharrt Lage des Mittelpunktes, so lange nicht der laufende mit  $g_{\xi}$  zusammenfällt.

ser Satz enthält den in No. 44 a als speciellen Fall.

Mit Berücksichtigung von No. 34, 35 a, e folgt aus No. 44 c oder aus 44 e:

erden zwei Strahlbüschel derselben Ebene mit endli-Littelpunkten  $a^2$ ,  $3^6$  jeder von einem seiner Strahlen  $a^2$ ,  $s^6$  von dem beiden Büscheln gemeinschaftlichen Strahl aus stetig einmal durchlaufen, so beschreiben je ein trahl von  $a^2$  und einer von  $s^6$ , welche in der Lage  $a^2$  einen

rift f. Mathematik u. Physik. XIII, 4.

Anmerkung. Die Bezeichnung "Drehsinn" im engeren Sinne darf daher sig auch nur bei Strahlbüscheln mit endlichem Mittelpunkt angewendet im Allgemeinen aber haben wir den Bewegungssinn eines jeden Strahl-"Drehsinn" genannt im (egensatz zu dem Bewegungssinn iu einer Punktm Richtungssinn, weil die Bedingung eines festen Mittelpunktes schon in riff des Strahlbüschels (No. 1, 5) enthalten ist und die Strahlen eines trahlbüschels, wenn auch keinen gemeinschaftlichen, endlichen Mittelo doch was wir einen unendlich entfernten Punkt nennen (die Richtung) haftlich haben.

Punkt der Strecke  $s_{\lambda}^{(\varphi \propto \lambda)}$  gemeinschaftlich haben, diese Halbebene in Bezug auf  $s_{\lambda}^{\varphi}$ , wenn die Büschel in gleichem, v schiedene Halbebenen, wenn sie in entgegengesetztem Dre sinne beschrieben werden; je ein Halbstrahl von  $a^{\lambda}$  aber und ner von  $s^{\varphi}$ , welche in der Lage  $s_{\lambda}^{\varphi}$  keinen Punkt der Strecke  $\tilde{s}_{\lambda}^{(\varphi}$ gemeinschaftlich haben, beschreiben verschiedene Ha ebenen, wenn die Büschel in gleichem, dieselbe Halbeber wenn sie in entgegengesetztem Drehsinn durchlaufen werd und umgekehrt (No. 15e).

g) Wir heben hervor, dass, wie sehr auch die Untersuchung in No darauf hinweist, dass die dort von der Geraden  $g_{y}$  angenommene Eigensch thatsächlich bei der unendlich entfernten Geraden  $g_{\infty}$  stattfindet, d doch dadurch nicht bewiesen ist und der Satz am Anfange von No. 44 ein Erfahrungssatz aus der Anschauung entnommen ist, wie dies auch der "Systematischen Entwickelung der Abhängigkeit geometrischer Ges ten" pag. 52 und der "Theorie der Kegelschnitte" §. 19c pag. 79 geschel

Aus der Vergleichung von No. 32 und 44 bis 44  $d^3$  mit der Anschau geht aber hervor, dass dieser Satz mit den auf die Voraussetzungen §. 1 allein sich stützenden früheren Untersuchungen im vollsten Einklau steht.

h) Wollten wir in ähnlicher Weise den Richtungssinn in zwei beli gen geraden Punktreihen der Ebene an sich, d. i. ohne Rücksicht auf Strahlbüschel vergleichen, so würde eine No. 32 ganz analoge Untersuch als Bedingung erkennen lassen das Vorhandensein eines Strahlbüschels der Ebene, welcher die ausgezeichnete Eigenschaft besässe, dass ein und demselben Drehsinn in ihm in allen nicht mit ihm perspectivisch Geraden der Ebene derselbe Richtungssinn entspreche, oder von dem dies annehmen wollten. Ein solcher Strahlbüschel müsste aber aus d in No. 32 c angegebenen Grunde durch seine Lage ausgezeichnet sein allen übrigen. Der Strahlbüschel mit endlichem Mittelpunkt giebt es endlich viele, die sich an sich keiner von dem anderen unterscheiden lass und Strahlbüschel mit unendlich entferntem Mittelpunkt giebt es auch endlich viele, die sich keiner von dem anderen unterscheiden lassen, einen ausgezeichneten Punkt wie jede endliche Gerade besitzt die une lich entfernte Gerade nicht. Da wir also keinen einzig und allein von al übrigen sich unterscheidenden Strahlbüschel kennen, so können wir nie allgemein den Richtungssinn einer Geraden mit dem einer anderen an si vergleichen, sondern nur in Rücksicht auf ein oder mehrere Strahlbüsch von gewisser Lage\*).

\*) v. Staudt, Beiträge zur Geometrie der Lage, erstes Heft, No. 49.

45. a) Bewegen wir, nachdem der Strahl  $s^{\varphi}$  in dem ebenen Strahlbüschel  $\hat{s}^{\varphi}$  einen Winkel  $s_{(1|\nu)}^{\varphi}$  in demselben Drehsinn  $\varDelta_{\varphi}$  von  $s_{1}^{\varphi}$  an stetig durchlaufen, den Mittelpunkt  $\hat{s}^{\varphi}$  auf dem beliebig gewählten Strahl  $s_{\nu}^{\varphi}$  in einem und demselben Sinne  $P_{\varphi}$ , so theilt er in jeder seiner Lagen den Strahl  $s_{\nu}^{\varphi}$  in zwei Halbstrahlen, die wir nach dem Princip von No. 15*a* mit  $\hat{s}_{\nu}^{(\varphi|\infty)}$ und  $\hat{s}_{\nu}^{(\varphi-\infty)}$  bezeichnen. Denken wir uns nun  $s^{\varphi}$  in jeder Lage von  $\hat{s}^{\varphi}$  in demselben Sinne  $\varDelta_{\varphi}$  von  $s_{\nu}^{\varphi}$  an den Büschel weiter durchlaufend, so beschreibt nach No. 15*e* und 44*f* der von der Anfangslage  $\hat{s}_{\nu}^{(\varphi|\infty)}$  ausgehende Halbstrahl  $\hat{s}^{(\varphi|\infty)}$ , stets eine und dieselbe der Halbebenen in Bezug auf  $s_{\nu}^{\varphi}$ ,  $\hat{s}_{(\nu|\nu)}^{(\varphi|\infty)}$ , der von der Anfangslage  $\hat{s}_{\nu}^{(\varphi-\infty)}$  ausgehende Halbstrahl  $\hat{s}^{(\varphi-\infty)}$ . stets die andere  $\hat{s}_{(\nu|\nu)}^{(\varphi-\infty)}$  $=\hat{s}_{(\nu-\nu)}^{(\varphi|\infty)}$  (vergl. No. 39).

b) Während  $s^{\varrho}$  den Winkel  $s_{(\lambda|\nu)}^{\varrho}$  beschrieben, beschrieb der ihm auf jeder Geraden  $g_{\chi}$ , welche nicht den Punkt  $\bar{s}^{\varrho}$  enthält, entsprechende Punkt  $g_{\chi}$  eine Strecke  $g_{\chi}^{(\lambda|\nu)}$  in bestimmtem Richtungssinne  $P_{\chi}$ . Wenn nun  $s^{\varrho}$ , nachdem  $\bar{s}^{\varrho}$  in eine beliebige Lage  $\bar{s}_{\nu\xi}^{\varrho}$  gerückt, seinen Büschel in demselben Sinne  $\Delta_{\varrho}$  von der Lage  $s_{\nu}^{\varrho}$  an weiter beschreibt, so durchläuft der ihm auf irgend einer Geraden  $g_{\xi}$ , welche nicht den Punkt  $\bar{s}^{\varrho}$  enthält, entsprechende Punkt  $g_{\xi}$  in demselben Sinne  $P_{\xi}$ , in welchem er die Strecke  $g_{\xi}^{(\lambda|\nu)}$ durchlaufen, weiter die Strecke  $g_{\xi}^{(\nu|\lambda)}$ , wenn die neue Lage  $\bar{s}_{\nu\xi}^{\varrho}$  von  $\bar{s}^{\varrho}$  mit der ursprünglichen, die wir mit  $\bar{s}_{\nu\rho}^{\varrho}$  bezeichnen wollen, auf derselben Halbebene in Bezug auf  $g_{\xi}$  sich befindet (nach No. 44*e*); sobald aber, sei es dadurch, dass  $\bar{s}^{\varrho}$  die Gerade  $g_{\xi}$  oder die Gerade  $g_{\infty}$  überschritten, die neue Lage  $\bar{s}_{\nu\xi}^{\varrho}$  sich nicht mehr mit  $\bar{s}_{\nu\rho}^{\varrho}$  auf derselben Halbebene befindet, beschreibt der Punkt  $g_{\xi}$  in dem entgegengesetzten Richtungssinne  $\overline{P}_{\xi}$  zunächst dieselbe Strecke  $g_{\xi}^{(\nu-\lambda)} = g_{\xi}^{(\lambda|\nu)}$ .

Rückt der Punkt  $\hat{s}^{\varrho}$  in die mit $g_{\xi}$  perspectivische Lage  $\hat{s}^{\varrho}_{, \varrho}$ , so verharrt der dem Strahl  $s^{\varrho}$  entsprechende Punkt in dieser Lage  $\hat{s}^{\varrho}_{, \varrho} = \alpha^{\varphi}_{\xi} = \hat{s}^{\xi}_{, \varrho}$ .

Rückt der Punkt s<sup>e</sup> in die Lage des unendlich entfernten Punktes von

Digfized by Google

 $s_{\nu}^{q} \tilde{s}_{\nu \infty}^{q}$ , so lässt sich der Drehsinn von  $s^{q}$  nicht mehr mit dem des Büsc $\tilde{s}_{\nu o}^{q}$  vergleichen; der dem Strahl  $s^{q}$  entsprechende Punkt  $g_{\xi}$  kann d mit gleichem Recht in demselben Sinne  $P_{\xi}$  die Strecke  $g_{\xi}^{(\nu|\lambda)}$ , als in entgegengesetzten Sinne  $\overline{P}_{\xi}$  die Strecke  $g_{\xi}^{(\nu-\lambda)} = g_{\xi}^{(\lambda|\nu)}$  beschreiben.

c) Eine Aenderung des Bewegungssinnes von  $g_{\xi}$  fin demnach statt:

- 1. wenn  $\mathfrak{s}^{\mathbf{q}}$  die Gerade  $g_{\mathbf{f}}$  überschreitet,
- 2. wenn  $\hat{s}^{e}$  die Gerade  $g_{\infty}$  überschreitet,
- 3. wenn s<sup>e</sup> den Drehsinn ändert (No. 6).

Da, wo gleichzeitig zwei dieser Fälle auftreten, hebt eine Aender die andere auf; so durch Combination der Fälle 1 und 2, wenn  $s_{\psi}^{q}$  die rade  $g_{\xi}$  in ihrem unendlich entfernten Punkte schneidet (vergl. No. 16 44e) oder  $g_{\xi}$  mit  $g_{\infty}$  zusammenfällt (vergl. 44a),  $\hat{s}^{q}$  also gleichzeitig so den Punkt  $\hat{s}_{\psi\xi}^{q}$  als den Punkt  $\hat{s}_{\psi\infty}^{q}$  überschreitet; bei solcher Lage vo resp.  $g_{\xi}$  wird daher der Bewegungssinn von  $g_{\xi}$  nicht geändert, welche I auch der Punkt  $\hat{s}^{q}$  auf der Geraden  $s_{\psi}^{q}$  haben mag, so lange der Strak in demselben Drehsinne sich bewegt; es geht aber bei der ersten Comb tion gemäss No. 35e der Punkt  $g_{\xi}$  auf den anderen Halbstrahl von  $s^{q}$  i

d) Andererseits denken wir uns den Mittelpunkt des Strahlbüsc fest, drehen aber, nachdem der Punkt  $g_{\xi}$  auf der Geraden  $g_{\xi}$  eine Stra  $g_{\xi}^{(\lambda|\gamma)}$  in demselben Richtungssinne  $P_{\xi}$  von  $g_{\xi}^{\lambda}$  an durchlaufen, die Ge  $g_{\xi}$  um den beliebig gewählten Punkt  $g_{\xi}^{*}$  in einem und demselben Drehs  $\Delta_{\gamma}$ , und durchläuft der Punkt  $g_{\xi}$  auf der Geraden  $g_{\xi}$  in irgend einer no Lage  $g_{\xi\eta}^{*}$  die andere Strecke  $g_{\xi}^{(\nu|\lambda)}$  in demselben Richtungssinne  $P_{\xi}$ , so schreibt auch  $s^{\varphi}$  in demselben Drehsinn  $\Delta_{\varphi}$  weiter den Winkel  $s_{(\nu|\lambda)}^{(\nu|\infty)}$ , w der Halbstrahl  $g_{\xi\eta}^{(\nu|\infty)}$  (die Bezeichnung bezogen auf den Richtungssinn auf derselben Halbebene in Bezug auf  $s_{\psi}^{\varphi}$  liegt, als der Halbstrahl  $g_{\xi\eta}^{(\nu|\infty)}$ der ursprünglichen Lage  $g_{\xi0}^{*}$  von  $g_{\xi}$  (No. 35, 38*a*, 37); sobald aber dadu dass  $g_{\xi}$  den Funkt  $\tilde{s}^{\varphi}$  überschreitet, die Halbstrahle  $g_{\xi\eta}^{(\nu|\infty)}$  und  $g_{\xi0}^{(\nu|\infty)}$ entgegengesetzten Halbebene in Bezug auf  $s_{\psi}^{\varphi}$ , oder was dasselbe ist (No.

gezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 319

and  $g_{\xi^0}^{(\nu-\infty)}$  auf derselben Halbebene sich befinden, beschreibt der in dem entgegengesetzten Drehsinn  $\overline{\mathcal{A}}_{\varrho}$  zunächst wieder den Win-  $\lambda = s_{(\lambda|\nu)}^{\varrho}$  (No. 16). Dies Kriterium gilt zufolge No. 10, wenn elpunkt des Strahlbüschels ein unendlich entfernter Punkt, wie wenn dlicher Punkt ist. de Aenderung des Bewegungssinnes von  $s^{\varrho}$  findet demets und nur statt, wenn

 $g_{\xi}^{*}$  den Punkt  $\hat{s}^{\varphi}$  überschreitet, sei es, dass in der mit  $\hat{s}^{\varphi}$ ctivischen Lage  $g_{\xi\varphi}^{\psi}$   $\hat{s}^{\varphi}$  dem Halbstrahl  $g_{\xi\varphi}^{(\psi|\infty)}$  oder dem rahl  $g_{\xi\varphi}^{(\psi-\infty)}$  angehört,

g<sub>e</sub> den Richtungssinn ändert (No. 6).

einer Combination zweier Fälle findet keine Aenderung des Drehon s<sup>e</sup> statt.

Mit Rücksicht auf No. 38*a*, 15*e*, 39*c*, 44*d*,*e*, 45 können wir aende Sätze auch folgendermassen aussprechen:

ssenwir, nachdem*s*<sup>e</sup> in enen Strahlbüschel 🕉 ie ⊿ den Winkels(1|r), r auf der Geraden  $g_{t}$ tsprechende Punkt g<sub>g</sub> ie.  $P_{\mu}$  die Strecke  $g_{\mu}^{(\lambda|\nu)}$ ieben, den Mittelpunkt inem und demselben ngssinne P<sub>o</sub>von der urlichen Lage 🍰 an den s<sup>e</sup> durchlaufen, und in euen Lage 3<sup>e</sup>t von 3<sup>e</sup> rahl s<sup>e</sup> in demselben nu⊿ von s¢ an weiter on, so bewegt sich nkt g<sub>k</sub> auf  $g_k$ , je nachezogen auf den Rich-

Lassen wir, nachdem der Punkt  $g_{\xi}$  auf der Geraden  $g_{\xi}$ im Sinne  $P_{\xi}$  die Strecke  $g_{\xi}^{(\lambda|r)}$ , also der in einem Büschel 3<sup>°</sup> entsprechende Strahl s<sup>°</sup> im Sinne  $\Delta_{o}$  den Winkel  $s^{e}_{(\lambda|v)}$  beschrieben, die Gerade  $g_{k}$  in einem und demselben Drehsinne ⊿, von der ursprünglichen Lage $g_{\pm 0}^{\mu}$ aus den Büschel g<sup>\*</sup> durchlaufen, und in jeder neuen Lage  $g_{\sharp\eta}^{\nu}$  von  $g_{\sharp}$  den Punkt g<sub>2</sub> in demselben Richtungssinn  $P_{\mu}$  von  $g_{\mu}^{\mu}$  an sich weiter bewegen, so bewegt sich der Strahl s<sup>e</sup> im Büschel s, je nachdem, bezogen auf

#### Die projectivischen Eigenschaften der gewöhnlichen und 320

tungssinn  $P_{\sigma}, g_{\xi}$  den Sitrahl  $s_{y}^{\varphi}$ in einemPunkt des Halbstrah. les  $\mathfrak{s}_{yo}^{(arrho)}$  oder  $\mathfrak{s}_{yo}^{(arrho-\infty)}$  schneidet,

in demselben Richtungs- $\sinh P_{\underline{k}}$  weiter, so  $\ln geg_{\underline{k}}$  auch in Bezug auf die neue Lage s, den Strahl s in einem Punkt des Halbstrahles  $\hat{s}_{p\zeta}^{(\varrho|\infty)}$ resp.  $\hat{s}_{v\xi}^{(q-\infty)}$  trifft,

in dem entgegengesetzten Sinne  $\overline{P}_{\underline{k}}$ , wenn  $g_{\underline{k}}$  den Strahl se in einem Punkt des Halbstrahles  $\hat{s}_{a}^{(\varrho - \infty)}$  resp.  $\hat{s}_{a}^{(\varrho \mid \infty)}$ schneidet,

perspectivisch liegt.

den Drehsinn 🎝 der Punk in Bezug auf  $g_{\underline{k}o}$  sich auf Halbebene  $g_{(\xi|\xi)^0}^{(v|\infty)}$  oder  $g_{(\xi|\xi)}^{(v-1)}$ befindet.

in demselben Drehs  $\Delta_{o}$  weiter, so lauge  $\mathfrak{s}^{\mathbf{q}}$  a in Bezug auf die neue L  $g_{\mu\eta}$  sich auf der Halbeb  $\mathfrak{g}_{(\xi|\xi)\eta}^{(\boldsymbol{v}\mid\boldsymbol{\infty})}$  resp.  $\mathfrak{g}_{(\xi|\xi)\eta}^{(\boldsymbol{v}-\boldsymbol{\infty})}$  befinde

in dem entgegengese ten Drehsinn ⊿ <sub>o</sub>, wenn §<sup>e</sup>s aufder Halbebene  $g_{(\xi|\xi)\gamma}^{(\nu-\infty)}$ re  $\mathfrak{g}_{(\xi|\xi)\eta}^{(\nu|\infty)}$  befindet,

garnicht, wenn 3<sup>9</sup> mit garnicht, wenn  $g_{\sharp}$  mit  $\mathfrak{s}_{\mathfrak{g}}^{\mathfrak{g}}$ perspectivisch liegt.

f) Als Zusatz zu dem Satz rechts gehört Folgendes:

Befindet sich der Punkt  $\mathfrak{z}^{\varrho}$  auf der Halbebene  $\mathfrak{g}_{(\boldsymbol{\xi}|\boldsymbol{\xi})^{\varrho}}^{(\boldsymbol{r}|\boldsymbol{\infty})}$ muss, wenn  $g_{\underline{k}}$  im Sinne  $\Delta_{\underline{v}}$  den Büschel  $g_{\underline{k}}^{\underline{v}}$  bis zur Lage  $s_{\underline{v}}^{\underline{v}} = g_{\underline{k}}^{\underline{v}}$  beschr in dieser Lage nach No. 35 a und 39 der Halbstrahl  $\mathfrak{g}_{\xi}^{(\boldsymbol{v}\mid\boldsymbol{\infty})}$  denselben tre also die Lage  $\mathfrak{g}_{\boldsymbol{\xi}}^{(\boldsymbol{\nu}\boldsymbol{\varrho},\boldsymbol{\infty})} = \tilde{\mathfrak{g}}_{\boldsymbol{\nu}}^{(\boldsymbol{\xi}\boldsymbol{\varrho},\boldsymbol{\infty})}$  haben. Der auf irgend einer Gerader der Ebene, welche  $g_{\xi} = g_{\xi o}^{\psi}$  in einem endlichen vou  $g_{\xi}^{\psi}$  verschiede Punkte  $g_{\psi}^{\xi} = g_{\xi 0}^{\psi}$  des Halbstrahles  $g_{\xi 0}^{(\psi|\infty)}$  und  $s_{\psi}^{Q}$  in einem Punkt  $\tilde{s}_{\psi}^{\psi} =$ der endlichen Strecke  $\hat{s}_{v}^{(\xi q) \infty}$  schneidet, entsprechende Punkt muss da nach No. 35*e* die endliche Strecke  $\mathfrak{g}_{\psi}^{(\boldsymbol{\xi} \boldsymbol{v}) \, \boldsymbol{\infty}}$  von  $\mathfrak{g}_{\psi}^{\boldsymbol{\xi}}$  an durchlaufen. W nun der Strahl s<sup>e</sup> im Sinne 🛆 von s<sup>e</sup>n den Büschel s<sup>e</sup> durchläuft, trifft er (No. 35) mit demselben Halbstrahl, welcher in der Anfangs  $\hat{s}_{\boldsymbol{y}}^{(\boldsymbol{\varrho}\,\boldsymbol{\xi}\,\boldsymbol{\infty})}$  die Punkte  $\mathfrak{g}_{\boldsymbol{\xi}}^{\boldsymbol{v}} = \hat{s}_{\boldsymbol{y}}^{\boldsymbol{\xi}}$  und  $\mathfrak{g}_{\boldsymbol{\psi}}^{\boldsymbol{v}}$  enthält und die Halbebene  $\mathfrak{g}_{(\boldsymbol{v}\,|\,\boldsymbol{v})}^{(\boldsymbol{\varrho}\,\boldsymbol{\xi}\,\boldsymbol{\infty})}$  beschre in welcher die Halbstrahlen  $\mathfrak{g}_{\xi o}^{(\boldsymbol{\nu} \mid \boldsymbol{\infty})} = \mathfrak{g}_{\xi o}^{(\boldsymbol{\nu} \not \boldsymbol{\psi} \cdot \boldsymbol{\infty})}$  von  $g_{\xi o}^{\boldsymbol{\nu}}$  und  $\mathfrak{g}_{\boldsymbol{\psi}}^{(\boldsymbol{\nu} \xi \cdot \boldsymbol{x})}$  von  $g_{\boldsymbol{\psi}}$ 

ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 321

allen ihren Punkten liegen (No. 34 $b^2$ ), auch den Punkt  $g_{\psi}^{\xi} = g_{\xi o}^{\psi}$ ; der auf  $g_{\psi}$  entsprechende Punkt muss daher von  $g_{\psi}^{\psi}$  an (No. 35e) die endliche Strecke  $g_{\psi}^{(\psi \xi) \infty}$  durchlaufen, also dieselbe, wie der dem Strahl  $g_{\xi}^{\psi}$  entsprechende Punkt, aber von dem anderen Grenzpunkt aus, also nach No. 17 in entgegengesetztem Richtungssinne.

Die beiden Drehsinne  $\Delta_{\gamma}$  und  $\Delta_{\varrho}$  sind daher nach No. 44*c* einander gleich.

Befindet sich der Punkt  $\hat{g}^{\varphi}$  aber auf der Halbebene  $g_{(\xi-\xi)}^{(\psi|\infty)}$ bezogen auf den Drehsinn  $\varDelta_{\gamma}$ , so deckt der Halbstrahl  $g_{\xi}^{(\psi|\infty)}$ , wenn  $g_{\xi}^{\psi}$ das erste Mal in die Lage  $s_{\varphi}^{\varphi}$  kommt, den Halbstrahl  $\hat{g}_{\varphi}^{(\xi\infty)}$ , der auf derselben Geraden  $g_{\psi}$  entsprechende Punkt beschreibt daher nach No. 35*e* die Strecke  $g_{\psi}^{(\xi\infty\psi)}$ , welche den unendlich entfernten Punkt enthält, der dem Strahl  $s^{\varphi}$  entsprechende Punkt beschreibt wieder die Strecke  $g_{\psi}^{(\psi\xi)\infty}$  von  $g_{\psi}^{\psi}$ an, bewegt sich also nach No. 17 in demselben Richtungssinne; in die sem Falle sind die beiden Drehsinne  $\varDelta_{\gamma}$  und  $\varDelta_{\varphi}$  nach No. 44*c* entgegengesetzt.

(Fortsetzung folgt.)



# Х.

# Ueber die developpabele Fläche, welche zwei gegebenen Flächen umschrieben ist.

#### Von

# Dr. A. ENNEPER, ausserordentliches Mitglied der Gesellschaft der Wissenschaften zu Göttingen.

### I.

Die Gleichungen der beiden gegebenen Flächen auf ein orthogonales Coordinatensystem bezogen seien f(x, y, z) = 0 und  $f_1(x, y, z) = 0$ , oder kürzer f = 0 und  $f_1 = 0$ . Der Punkt (x, y, z) der Fläche f = 0 möge mit dem Punkte  $(x_1, y_1, z_1)$  der Fläche  $f_1 = 0$ , dieselbe berührende Ebene haben. Sind a, b, c die Winkel, welche die Normale zur Fläche f = 0 im Punkte (x, y, z) mit den Coordinatenaxen bildet, haben  $a_1, b_1, c_1$  analoge Bedeutungen für den Punkt  $(x_1, y_1, z_1)$  der Fläche  $f_1 = 0$ , so finden bekanntlich folgende Gleichungen statt:

$$\frac{\left\{\begin{array}{l} \cos a \\ \frac{\partial f}{\partial x} \end{array} = \frac{\cos b}{\frac{\partial f}{\partial y}} = \frac{\cos c}{\frac{\partial f}{\partial z}} = \frac{1}{\sqrt{\left\{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)\right\}}}, \\ \frac{\cos a_1}{\frac{\partial f_1}{\partial x_1}} = \frac{\cos b_1}{\frac{\partial f_1}{\partial z_1}} = \frac{1}{\sqrt{\left\{\left(\frac{\partial f_1}{\partial x_1}\right)^2 + \left(\frac{\partial f_1}{\partial y_1}\right)^2 + \left(\frac{\partial f_1}{\partial z_1}\right)^2\right\}}}. \end{array}\right\}}$$

Die Gleichungen der berührenden Ebenen in den Punkten (x, y, z) und  $(x_1, y_{11}, z_1)$  sind:

$$(X-x)\cos a + (Y-y)\cos b + (Z-z)\cos c = 0,$$
  
 $(X-x)\cos a + (Y-y)\cos b + (Z-z)\cos c = 0.$ 

Sollen diese Gleichungen identisch sein, so müssen folgende Relationen stattfinden:

2)  $\cos a = \cos a_1, \quad \cos b = \cos b_1, \quad \cos c = \cos c_1,$  $x \cos a + y \cos b + z \cos c = x_1 \cos a_1 + y_1 \cos b_1 + z_1 \cos c_1.$ 

Setzt mau:

3)  $x \cos a + y \cos b + z \cos c = p$ ,  $x_1 \cos a_1 + y_1 \cos b_1 + z_1 \cos c_1 = p$ , Digitized by Google Ueber die developpabele Fläche etc. Von Dr. ENNEPER. 323

so geben die Gleichungen 2) und 3) in Verbindung mit f=0 und  $f_1=0$ ein System von sechs Gleichungen, welchen zufolge x, y, z und  $x_1, y_1, z_1$ als Functionen von p angesehen werden können. Lässt man p variiren, so erhält man auf jeder der beiden Flächen eine Curve, längs welcher dieselben gleiche berührende Ebenen in zwei entsprechenden Punkten haben. Die Enveloppe dieser berührenden Ebenen ist die developpabele Fläche, welche den beiden Flächen f=0 und  $f_1=0$  gleichzeitig umschrieben ist. Es soll vorausgesetzt werden, dass in den Gleichungen 3) p nicht constant ist infolge einer der Gleichungen f=0 oder  $f_1=0$ , ein Umstand, welcher stattfindet, wenn eine der gegebenen Flächen die Parallelfläche einer Kegelfläche oder eine Kugelfläche ist. Der erste Fall ist überhaupt aus zuschliessen, der Fall einer Kugelfläche ist weiter unten besonders behandelt, wobei sich herausstellt, dass die allgemeinen Gleichungen ihre Gültigkeit behalten.

Die Coordinaten des Punktes der Wendecurve der developpabelen Fläche, welcher mit den Punkten (x, y, z) und  $(x_1, y_1, z_1)$  auf derselben Geraden liegt, sind durch  $(\xi, \eta, \zeta)$  bezeichnet. Zur Bestimmung von  $\xi, \eta, \zeta$  dienen die Gleichungen:

4)  
$$\begin{cases} \xi \cos a + \eta \cos b + \zeta \cos c = p, \\ \xi \frac{\partial \cos a}{\partial p} + \eta \frac{\partial \cos b}{\partial p} + \zeta \frac{\partial \cos c}{\partial p} = 1, \\ \xi \frac{\partial^2 \cos a}{\partial p^2} + \eta \frac{\partial^2 \cos b}{\partial p^2} + \zeta \frac{\partial^2 \cos c}{\partial p^2} = 0. \end{cases}$$

Berücksichtigt man, dass:

 $\cos a \frac{\partial x}{\partial p} + \cos b \frac{\partial y}{\partial p} + \cos c \frac{\partial z}{\partial p} = 0, \quad \cos a_1 \frac{\partial x_1}{\partial p} + \cos b_1 \frac{\partial y_1}{\partial p} + \cos c_1 \frac{\partial z_1}{\partial p} = 0,$ 

so geben die Gleichungen 3) nach p differentiirt:

$$x\frac{\partial\cos a}{\partial p} + y\frac{\partial\cos b}{\partial p} + z\frac{\partial\cos c}{\partial p} = 1, \quad x_1\frac{\partial\cos a_1}{\partial p} + y_1\frac{\partial\cos b_1}{\partial p} + z_1\frac{\partial\cos c_1}{\partial p} = 1,$$

$$x \frac{\partial \cos a}{\partial p} + y \frac{\partial \cos b}{\partial p} + z \frac{\partial \cos c}{\partial p} = 1, \quad x_1 \frac{\partial \cos a_1}{\partial p} + y_1 \frac{\partial \cos b_1}{\partial p} + z_1 \frac{\partial \cos c}{\partial p} = 1.$$

Diese Gleichungen in Verbindung mit:

$$\cos a \, \frac{\partial \cos a}{\partial p} + \cos b \, \frac{\partial \cos b}{\partial p} + \cos c \, \frac{\partial \cos c}{\partial p} = 0$$

geben:

5)  
$$D \frac{\partial \cos a}{\partial p} = (z - z_1) \cos b - (y - y_1) \cos c,$$
$$D \frac{\partial \cos b}{\partial p} = (x - x_1) \cos c - (z - z_1) \cos a,$$
$$D \frac{\partial \cos c}{\partial p} = (y - y_1) \cos a - (x - x_1) \cos b,$$

wo zur Abkürzung gesetzt ist:

6) 
$$D = \begin{vmatrix} \cos a, & \cos b, & \cos c \\ x, & y, & z \\ x_1, & y_1, & z_1 \end{vmatrix}$$

Mittelst der Gleichungen 5) geht die zweite Gleichung 4) über in:

7) 
$$[(z-z_1)\cos b - (y-y_1)\cos c] \xi + [(x-x_1)\cos c - (z-z_1)\cos a] \eta + [(y-y_1)\cos a - (x-x_1)\cos b] \xi = D.$$

Wegen der Gleichungen 2) geben die Gleichungen 3) subtrahirt:

8)  $(x-x_1)\cos a + (y-y_1)\cos b + (z-z_1)\cos c = 0.$ 

Mit Rücksicht auf die Gleichungen 9) folgt:

$$= -\frac{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}{D} \begin{bmatrix} x \cos b & \frac{\partial \cos c}{\partial p} \\ x, & y, & z \\ x_{11}, & y_{11}, & z_1 \end{bmatrix}$$

+  $[x(x-x_1)+y(y-y_1) + z(z-z_1)][(x-x_1)\cos a + (y-y_1)\cos b + (z-z_1)\cos c],$ d. i. wegen 3) und 8):

$$\begin{vmatrix} \frac{\partial \cos a}{\partial p}, & \frac{\partial \cos b}{\partial p}, & \frac{\partial \cos c}{\partial p} \\ x, & y, & z \\ x_1, & y_1, & z_1 \end{vmatrix} = -\frac{p}{D} \left[ (x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 \right].$$

Analog findet man mit Hülfe der Gleichungen 5), 8) und  $\xi \cos a + \eta \cos b + \zeta \cos c = p$ :

$$\frac{\xi}{\frac{\partial \cos a}{\partial p}}, \quad \frac{\partial \cos b}{\partial p}, \quad \frac{\partial \cos c}{\partial p} = -\frac{p}{D} \left[ (x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2 \right].$$

Differentiirt man die Gleichung 7) nach p, wobei  $\xi$ ,  $\eta$ ,  $\zeta$  als Constanten anzusehen sind, so zeigen die beiden zuletzt entwickelten Gleichungen, dass auf beiden Seiten der Term:

$$\frac{p}{D} \left[ (x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 \right]$$

wegfällt, es bleibt dann:

$$0) \qquad \qquad \left| \begin{array}{c} \frac{\partial x}{\partial p}, \quad \frac{\partial y}{\partial p}, \quad \frac{\partial z}{\partial p} \\ \cos a, \ \cos b, \ \cos c \\ \xi - x_1, \ \eta - y_1, \ \xi - z_1 \end{array} \right| = \left| \begin{array}{c} \frac{\partial x_1}{\partial p}, \quad \frac{\partial y_1}{\partial p}, \quad \frac{\partial z_1}{\partial p} \\ \cos a, \ \cos b, \ \cos c \\ \xi - x, \ \eta - y, \ \xi - z \end{array} \right|$$

Durch die vorstehende Gleichung, die Gleichung 7) und  $\xi \cos a + \eta \cos b + \zeta \cos c = p \text{ sind } \xi, \eta, \zeta$  bestimmt. Es bleibt noch übrig, die Differentialquotienten von x, y, z und  $x_1, y_1, z_1$  nach p auf einfache Weise darzustellen.

------

Da die drei Punkte  $(\xi, \eta, \zeta)$ , (x, y, z) und  $(x_1, y_1, z_1)$  auf derselben Geraden liegen, so kann man setzen:

$$\frac{\xi-x}{\xi-x_1}=\frac{\eta-y}{\eta-y_1}=\frac{\xi-z}{\xi-z_1}=q,$$

oder:

10) 
$$\xi = \frac{x - q x_1}{1 - q}, \quad \eta = \frac{y - q y_1}{1 - q}, \quad \zeta = \frac{z - q z_1}{1 - q}.$$

------

Mittelst dieser Gleichungen wird die erste Gleichung 4) und die Gleichung 7) identisch. Die Gleichung 9) geht über in:

11) 
$$\begin{pmatrix} \frac{\partial x}{\partial p}, & \frac{\partial y}{\partial p}, & \frac{\partial z}{\partial p} \\ \cos a, & \cos b, & \cos c \\ x - x_1, & y - y_1, & z - z_1 \end{pmatrix} = q \begin{vmatrix} \frac{\partial x_1}{\partial p}, & \frac{\partial y_1}{\partial p}, & \frac{\partial z_1}{\partial p} \\ \cos a, & \cos b, & \cos c \\ x - x_1, & y - y_1, & z - z_1 \end{vmatrix}$$

Die Quantität q, bestimmt durch die Gleichung 11), hat eine sehr einfache geometrische Bedeutung, wie gleich gezeigt werden soll.

Differentiirt man  $\cos a$ ,  $\cos b$ ,  $\cos c$ , welche Functionen von x, y, z sind, nach p, so folgt:

$$\frac{\partial \cos a}{\partial p} = \frac{\partial \cos a}{\partial x} \frac{\partial x}{\partial p} + \frac{\partial \cos a}{\partial y} \frac{\partial y}{\partial p} + \frac{\partial \cos a}{\partial z} \frac{\partial z}{\partial p},$$
  
$$\frac{\partial \cos b}{\partial p} = \frac{\partial \cos b}{\partial x} \frac{\partial x}{\partial p} + \frac{\partial \cos b}{\partial y} \frac{\partial y}{\partial p} + \frac{\partial \cos b}{\partial z} \frac{\partial z}{\partial p},$$
  
$$\frac{\partial \cos c}{\partial p} = \frac{\partial \cos c}{\partial x} \frac{\partial x}{\partial p} + \frac{\partial \cos c}{\partial y} \frac{\partial y}{\partial p} + \frac{\partial \cos c}{\partial z} \frac{\partial z}{\partial p}.$$

Setzt man diese Werthe von

$$\frac{\partial \cos a}{\partial p}, \quad \frac{\partial \cos b}{\partial p}, \quad \frac{\partial \cos c}{\partial p}$$

in die Gleichungen:

$$x\frac{\partial\cos a}{\partial p} + y\frac{\partial\cos b}{\partial p} + z\frac{\partial\cos c}{\partial p} = 1, \quad x_1\frac{\partial\cos a}{\partial p} + y_1\frac{\partial\cos b}{\partial p} + z_1\frac{\partial\cos c}{\partial p} = 1,$$

nimmt zu denselben noch die Gleichung:

$$\cos a \frac{\partial x}{\partial p} + \cos b \frac{\partial y}{\partial p} + \cos c \frac{\partial z}{\partial p} = 0$$

so erhält man zur Bestimmung von

$$\frac{\partial x}{\partial p}, \quad \frac{\partial y}{\partial p}, \quad \frac{\partial z}{\partial p}$$

folgende Gleichungen:

$$12) \begin{cases} \left(x\frac{\partial\cos a}{\partial x} + y\frac{\partial\cos b}{\partial x} + z\frac{\partial\cos c}{\partial x}\right)\frac{\partial x}{\partial p} + \left(x\frac{\partial\cos a}{\partial y} + y\frac{\partial\cos b}{\partial y} + z\frac{\partial\cos c}{\partial y}\right)\frac{\partial y}{\partial p} \\ + \left(x\frac{\partial\cos a}{\partial z} + y\frac{\partial\cos b}{\partial z} + z\frac{\partial\cos c}{\partial z}\right)\frac{\partial z}{\partial p} = 1, \\ \left(x_{1}\frac{\partial\cos a}{\partial x} + y_{1}\frac{\partial\cos b}{\partial x} + z_{1}\frac{\partial\cos c}{\partial x}\right)\frac{\partial x}{\partial p} + \left(x_{1}\frac{\partial\cos a}{\partial y} + y_{1}\frac{\partial\cos b}{\partial y} + z_{1}\frac{\partial\cos c}{\partial y}\right)\frac{\partial y}{\partial p} \\ + \left(x_{1}\frac{\partial\cos a}{\partial z} + y_{1}\frac{\partial\cos y}{\partial z} + z_{1}\frac{\partial\cos c}{\partial z}\right)\frac{\partial z}{\partial p} = 1, \\ \end{bmatrix}$$

$$\cos a \frac{\partial x}{\partial p} + \cos b \frac{\partial y}{\partial p} + \cos c \frac{\partial z}{\partial p} = 0.$$

Sind R', R'' die beiden Hauptkrümmungshalbmesser der Fläche f=0im Punkte (x, y, z), so hat man für das Product derselben die Gleichung:

13) 
$$\begin{vmatrix} \cos a, & \cos b, & \cos c, & 0\\ \frac{\partial \cos a}{\partial x}, & \frac{\partial \cos b}{\partial x}, & \frac{\partial \cos c}{\partial x}, & \cos a\\ \frac{\partial \cos a}{\partial y}, & \frac{\partial \cos b}{\partial y}, & \frac{\partial \cos c}{\partial y}, & \cos b\\ \frac{\partial \cos a}{\partial z}, & \frac{\partial \cos b}{\partial z}, & \frac{\partial \cos c}{\partial z}, & \cos c \end{vmatrix} = \frac{1}{R'R''}$$

Wegen der Gleichungen 1) lässt sich die vorstehende Gleichung auch schreiben:

14) 
$$\frac{1}{R'R''} \left[ \left( \frac{\partial f}{\partial x} \right)^{2} + \left( \frac{\partial f}{\partial y} \right)^{2} + \left( \frac{\partial f}{\partial z} \right)^{2} \right]^{2} = \begin{vmatrix} \frac{\partial f}{\partial x}, & \frac{\partial f}{\partial y}, & \frac{\partial f}{\partial z}, & 0\\ \frac{\partial^{2} f}{\partial x}, & \frac{\partial^{2} f}{\partial x \partial y}, & \frac{\partial^{2} f}{\partial x \partial z}, & \frac{\partial f}{\partial x} \\ \frac{\partial^{2} f}{\partial x \partial y}, & \frac{\partial^{2} f}{\partial y \partial z}, & \frac{\partial^{2} f}{\partial y} \\ \frac{\partial^{2} f}{\partial x \partial z}, & \frac{\partial^{2} f}{\partial y \partial z}, & \frac{\partial^{2} f}{\partial y} \end{vmatrix}$$

Bildet man das Product der Gleichung 13) mit der folgenden:

$$\begin{vmatrix} \cos a & \cos b & \cos c & 0 \\ x & y & z & 0 \\ x_1 & y_1 & z_1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = D,$$

so bemerkt man leicht, dass das Product der beiden Determinanten gleich der Determinante des Systems 12) ist in Beziehung auf

$$\frac{\partial x}{\partial p}, \quad \frac{\partial y}{\partial p}, \quad \frac{\partial z}{\partial p}$$

als Unbekannte, der gemeinschaftliche Nenner derselben ist also einfach gleich  $\frac{D}{R'R'}$ .

15)  $V[(x-x_{1})^{2} + (y-y_{1})^{2} + (z-z_{1})^{2}] = \Delta,$ (x-x\_{1}) $\frac{\partial \cos a}{\partial x} + (y-y_{1})\frac{\partial \cos b}{\partial x} + (z-z_{1})\frac{\partial \cos c}{\partial x} = L\Delta,$ (a)  $\begin{cases} (x-x_{1})\frac{\partial \cos a}{\partial y} + (y-y_{1})\frac{\partial \cos b}{\partial y} + (z-z_{1})\frac{\partial \cos c}{\partial y} = M\Delta, \\ (x-x_{1})\frac{\partial \cos a}{\partial z} + (y-y_{1})\frac{\partial \cos b}{\partial z} + (z-z_{1})\frac{\partial \cos c}{\partial z} = N\Delta. \end{cases}$ Digitized by Google umschrieben ist. Von Dr. A. ENNEPER.

$$(x - x_1) \frac{\partial \cos a_1}{\partial x_1} + (y - y_1) \frac{\partial \cos b_1}{\partial x_1} + (z - z_1) \frac{\partial \cos c_1}{\partial x_1} = L_1 \Delta,$$
  

$$(x - x_1) \frac{\partial \cos a_1}{\partial y_1} + (y - y_1) \frac{\partial \cos b_1}{\partial y_1} + (z - z_1) \frac{\partial \cos c_1}{\partial y_1} = M_1 \Delta,$$
  

$$(x - x_1) \frac{\partial \cos a_1}{\partial z_1} + (y - y_1) \frac{\partial \cos b_1}{\partial z_1} + (z - z_1) \frac{\partial \cos c_1}{\partial z_1} = N_1 \Delta.$$

Schreibt man die Gleichung 8) auf folgende Weise:

$$(x-x_1)\frac{\partial f}{\partial x}+(y-y_1)\frac{\partial f}{\partial y}+(z-z_1)\frac{\partial f}{\partial z}=0,$$

so erhält man mittelst der vorstehenden Gleichung und der Gleichungen 1) aus 16) für L, M, N auch nachstehende Werthe:

17)  

$$\begin{cases}
(x - x_1) \frac{\partial^2 f}{\partial x^2} + (y - y_1) \frac{\partial^2 f}{\partial x \partial y} + (z - z_1) \frac{\partial^2 f}{\partial x \partial z} = L \Delta . H, \\
(x - x_1) \frac{\partial^2 f}{\partial x \partial y} + (y - y_1) \frac{\partial^2 f}{\partial y^2} + (z - z_1) \frac{\partial^2 f}{\partial y \partial z} = M \Delta . H, \\
(x - x_1) \frac{\partial^2 f}{\partial x \partial z} + (y - y_1) \frac{\partial^2 f}{\partial y \partial z} + (z - z_1) \frac{\partial^2 f}{\partial z^2} = N \Delta . H, \\
H = \sqrt{\left\{ \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2 \right\}}.$$

Durch die Verbindungslinie der beiden Punkte (x, y, z),  $(x_1, y_1, z_1)$  und die Normale zur Fläche f=0 im Punkte (x, y, z) werde eine Ebene gelegt und der Krümmungshalbmesser des Normalschnittes im Punkte (x, y, z)durch R bezeichnet. Für R hat man bekanntlich die Gleichung:

18)  

$$\frac{d^{2}}{R} \bigvee \left\{ \left( \frac{\partial f}{\partial x} \right)^{2} + \left( \frac{\partial f}{\partial y} \right)^{2} + \left( \frac{\partial f}{\partial z} \right)^{2} \right\}^{2} = (x - x_{1})^{2} \frac{\partial^{2} f}{\partial x^{2}} + (y - y)^{2} \frac{\partial^{2} f}{\partial y^{2}} + (z - z)^{2} \frac{\partial^{2} f}{\partial z^{2}} + 2(x - x_{1}) (y - y_{1}) \frac{\partial^{2} f}{\partial x \partial y} + 2(x - x_{1}) (z - z_{1}) \frac{\partial^{2} f}{\partial x \partial z} + 2(y - y_{1}) (z - z_{1}) \frac{\partial^{2} f}{\partial y \partial z}.$$

Wegen der Gleichungen 17) lässt sich die Gleichung 18) auf folgende Form bringen:

19) 
$$(x-x_1) L + (y-y_1) M + (z-z_1) N = \frac{\Delta}{R}$$

Setzt man in den Gleichungen 14) und 18)  $f_i$ ,  $x_i$ ,  $y_i$ ,  $z_i$  statt f, x, y, z, s mögen R'R'' und R übergehen in  $R'_1R''_1$  und  $R_1$ .

Mit Rücksicht auf die Gleichungen 16) erhält man aus 12):

20) 
$$\begin{cases} \frac{\partial x}{\partial p} = (\cos b \cdot N - \cos c \cdot M) \ R' R'' \frac{d}{D}, \\ \frac{\partial y}{\partial p} = (\cos c \cdot L - \cos a \cdot N) \ R' R'' \frac{d}{D}, \\ \frac{\partial z}{\partial p} = (\cos a \cdot M - \cos b \cdot L) \ R' R'' \frac{d}{D}. \end{cases}$$

------

Wegen  $\cos a_1 = \cos a$ ,  $\cos b_1 = \cos b$ ,  $\cos c_1 = \cos c$  hat man analog:

21) 
$$\begin{pmatrix} \frac{\partial x_1}{\partial p} = (\cos b \cdot N_1 - \cos c \cdot M_1) R'_1 R''_1 \frac{\partial}{D}, \\ \frac{\partial y_1}{\partial p} = (\cos c \cdot L_1 - \cos a \cdot N_1) R'_1 R''_1 \frac{\partial}{D}, \\ \frac{\partial z_1}{\partial p} = (\cos a \cdot M_1 - \cos b \cdot L_1) R'_1 R''_1 \frac{\partial}{D}. \end{cases}$$

Substituirt man die Werthe der Differentialquotienten aus den Gleichungen 20) und 21) in die Gleichung 11), so folgt wegen  $(x-x_1)\cos a + (y-y_1)\cos b + (z-z_1)\cos c = 0$ :

$$\{(x-x_1)L+(y-y_1)M+(z-z_1)N\}R'R'' = q \{(x-x_1)L_1+(y-y_1)M_1+(z-z_1)N_1\}R'R''_1,$$

d. i. wegen 19) und der analogen Gleichung für R<sub>1</sub>:

22) 
$$q = \frac{R'R''}{R} \cdot \frac{R_1}{R_1'R_1''_1}$$

Durch die vorstehende Gleichung ist q in Function von x, y, z und  $x_1, y_1, z_1$ bestimmt. Die Gleichungen 10), 22) in Verbindung mit  $f=0, f_1=0$  und

$$\frac{\frac{\partial f_1}{\partial x_1}}{\frac{\partial f}{\partial x}} = \frac{\frac{\partial f_1}{\partial y_1}}{\frac{\partial f}{\partial y}} = \frac{\frac{\partial f_1}{\partial z_1}}{\frac{\partial f}{\partial z}} = \frac{x_1 \frac{\partial f_1}{\partial x_1} + y_1 \frac{\partial f_1}{\partial y_1} + z_1 \frac{\partial f_1}{\partial z_1}}{x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z}}$$

geben ein System von neun Gleichungen; eliminirt man  $x, y, z, x_i, y_i, z_i$ zwischen denselben, so erhält man drei Gleichungen zwischen  $\xi, \eta, \zeta$  und q, welche die Coordinaten  $\xi, \eta, \zeta$  eines Pünktes der Wendecurve der developpabelen Fläche in Function der Variabelen q bestimmen.

Das Bogenelement der Wendecurve sei  $\partial s$ , ferner  $\rho$  der Krümmungshalbmesser und r der Torsionsradius. Da nun

$$\left(\frac{1}{r}\frac{\partial s}{\partial p}\right)^2 = \left(\frac{\partial \cos a}{\partial p}\right)^2 + \left(\frac{\partial \cos b}{\partial p}\right)^2 + \left(\frac{\partial \cos c}{\partial p}\right)^2,$$

so geben die Gleichungen 5) nach 8) und 15):

$$\frac{1}{r}\frac{\partial}{\partial p}s = \frac{\Delta}{D}.$$

Aus den Gleichungen 20) findet man mittelst 9) und 19)

$$(y-y_1)\frac{\partial z}{\partial p} - (z-z_1)\frac{\partial y}{\partial p}$$
  
=  $R'R''\frac{\Delta}{D} \{(L(x-x_1)+M(y-y_1)+N(z-z_1))\}\cos a = \frac{R'R''}{iR}\frac{\Delta^2}{D}\cos a,$ 

folglich:

$$(y-y_1)\frac{\partial(z-z_1)}{\partial p}-(z-z_1)\frac{\partial(y-y_1)}{\partial p}=\frac{\Delta^2}{D}\Big(\frac{R'R'}{R}-\frac{R'R'}{R_1}\Big)\cos a.$$

Diese Gleichung und zwei analoge Gleichungen geben:

$$\left(\frac{\partial}{\partial p}\frac{x-x_1}{\varDelta}\right)^2 + \left(\frac{\partial}{\partial p}\frac{y-y_1}{\varDelta}\right)^2 + \left(\frac{\partial}{\partial p}\frac{z-z_1}{\varDelta}\right)^2 = D^{\frac{1}{2}}\left(\frac{R'R'}{R} - \frac{R'R'_1}{R_1}\right)^2.$$

Die linke Seite dieser Gleichung ist aber  $\left(\frac{1}{\varrho}\frac{\partial s}{\partial p}\right)^{2}$ . Nimmt man die Quadratwurzel positiv, so folgt:

$$\frac{1}{\varrho}\frac{\partial s}{\partial p} = \frac{1}{D}\left(\frac{R'R''}{R} - \frac{R'_1R''_1}{R_1}\right),$$

oder, wenn man die vorstehende Gleichung durch die Gleichung 23) dividirt:

24) 
$$\frac{r}{\varrho} \cdot \varDelta = \frac{R'R''}{R} - \frac{R'_1R''_1}{R_1}$$

Die Bogenelemente der Contactcurven der developpabelen Fläche mit den Flächen f=0 und  $f_i=0$  seien  $\partial \sigma$  und  $\partial \sigma_i$ , ferner  $\varphi$  und  $\varphi_i$  die Winkel, welche die bemerkten Curven mit der Verbindungslinie der Punkte (x, y, z) $(x_i, y_i, z_i)$  bilden. Die Gleichungen 20) geben:

$$\begin{pmatrix} \frac{\partial}{\partial p} \\ \frac{\partial}{\partial p} \end{pmatrix}^{2} = \left( \frac{\partial}{\partial p} \\ \frac{\partial}$$

Mittelst der Gleichung 19) leitet man aus den vorstehenden Gleichungen leicht die folgenden ab:

25) 
$$\sin \varphi \frac{\partial \sigma}{\partial p} = \frac{R'R'}{R} \frac{\Delta}{D}, \quad \begin{vmatrix} x - x_1, y - y_1, z - z_1 \\ \cos a, \cos b, \cos c \\ L, M, N \end{vmatrix} = \frac{\Delta}{R} \cot \varrho.$$

Ebenso folgt:

26) 
$$\sin \varphi_1 \frac{\partial \sigma_1}{\partial p} = \frac{R'_1 R'_1}{R_1} \frac{\Delta}{D}, \quad \begin{vmatrix} x - x_1, y - y_1, z - z_1 \\ \cos a, \cos b, \cos c \\ L, M, N, \end{vmatrix} = \frac{\Delta}{R_1} \operatorname{col} \varphi_1.$$

Es ist offenbar:

$$\frac{\partial x}{\partial p} \frac{\partial x_{1}}{\partial p} + \frac{\partial y}{\partial p} \frac{\partial y_{1}}{\partial p} + \frac{\partial z}{\partial p} \frac{\partial z_{1}}{\partial p} = \cos(\varphi - \varphi_{1}) \frac{\partial \sigma}{\partial p} \frac{\partial \sigma}{\partial p}$$
$$= (1 + \cos\varphi \cos\varphi_{1}) \sin\varphi \sin\varphi_{1} \frac{\partial \sigma}{\partial p} \frac{\partial \sigma_{1}}{\partial p},$$

oder nach 25) und 26)

27) 
$$\frac{\partial x}{\partial p} \frac{\partial x_{1}}{\partial p} + \frac{\partial y}{\partial p} \frac{\partial y_{1}}{\partial p} + \frac{\partial z}{\partial p} \frac{\partial z_{1}}{\partial p} = (1 + \cot\varphi \cot\varphi_{1}) \frac{R'R''}{R} \cdot \frac{R'_{1}R''_{1}}{R_{1}} \left(\frac{\Delta}{D}\right)^{2}.$$

Substituirt man in

$$\left(\frac{\partial s}{\partial p}\right)^{2} = \left(\frac{\partial \xi}{\partial p}\right)^{2} + \left(\frac{\partial \eta}{\partial p}\right)^{2} + \left(\frac{\partial \xi}{\partial p}\right)^{2}$$

für  $\xi$ ,  $\eta$ ,  $\zeta$  ihre Werthe aus 10), so folgt nach 2 $\upsilon$ ) and 21):

$$\begin{pmatrix} \frac{\partial}{\partial p} \\ \frac$$

Wegen der Gleichungen 25), 26) und 27) wird die vorstehende Gleichung einfacher:

$$\frac{1}{A^{*}} \left(\frac{\partial}{\partial p}\right)^{*} = \left\{ \frac{\partial}{\partial p} \frac{1}{1-q} + \frac{1}{1-q} \frac{R'R''}{R} \frac{1}{D} \cot \varphi - \frac{q}{1-q} \frac{R'_{1}R''_{1}}{D} \cot \varphi_{1} \right\}^{*} + \frac{1}{(1-q)^{*}} \frac{1}{D^{*}} \left\{ \frac{R'R''}{R} - q \frac{R'_{1}R''_{1}}{R_{1}} \right\}^{*}.$$

In dieser Gleichung verschwindet nach 22) das zweite Quadrat auf der rechten Seite, man hat also einfach:

$$\frac{\partial s}{\partial p} = \Delta \frac{\partial}{\partial p} \frac{1}{1-q} + \frac{1}{1-q} \frac{R'R'}{R} \frac{\Delta}{D} \cot \varphi - \frac{q}{1-q} \frac{R'_1 R''_1}{R_1} \frac{\Delta}{D} \cot \varphi_1,$$

oder auch nach 25) und 26)

28) 
$$\frac{\partial s}{\partial p} = \Delta \frac{\partial}{\partial p} \frac{1}{1-q} + \frac{\cos \varphi}{1-q} \frac{\partial \sigma}{\partial p} - \frac{q \cos \varphi}{1-q} \frac{\partial \sigma}{\partial q}.$$

Diese Gleichung lässt sich noch weiter vereinfachen. Die Differenz der beiden Gleichungen:

$$\frac{x-x_1}{\Delta}\frac{\partial x}{\partial p} + \frac{y-y_1}{\Delta}\frac{\partial y}{\partial p} + \frac{z-z_1}{\Delta}\frac{\partial z}{\partial p} = \cos\varphi\frac{\partial \sigma}{\partial p},$$
  
$$\frac{x-x_1}{\Delta}\frac{\partial x_1}{\partial p} + \frac{y-y_1}{\Delta}\frac{\partial y_1}{\partial p} + \frac{z-z_1}{\Delta}\frac{\partial z_1}{\partial p} = \cos\varphi_1\frac{\partial \sigma_1}{\partial p}$$
  
$$\frac{\partial \Delta}{\partial \sigma} = \frac{\partial \sigma_1}{\partial \sigma}$$

giebt:

$$\frac{\partial \Delta}{\partial p} = \cos \varphi \frac{\partial \sigma}{\partial p} - \cos \varphi_1 \frac{\partial \sigma_1}{\partial p}.$$

Mittelst dieser Gleichung lässt sich die Gleichung 28) auf eine der folgenden Formen bringen:

29) 
$$\frac{\partial s}{\partial p} = \frac{\partial}{\partial p} \frac{q \Delta}{1-q} + \cos \varphi \frac{\partial \sigma}{\partial p},$$
$$\frac{\partial s_1}{\partial p} = \frac{\partial}{\partial p} \frac{\Delta}{1-q} + \cos \varphi_1 \frac{\partial \sigma_1}{\partial p}.$$

Aus den vorhergehenden Entwickelungen lassen sich einige bemerkenswerthe Sätze ableiten. Zufolge der Gleichungen 10) ist q das Verhältniss der Distanzen der Punkte (x, y, z),  $(x_1, y_1, z_1)$  vom Punkte  $(\xi, \eta, \zeta)$ . Mittelst der Gleichung 22) folgt:

> Ist eine developpabele Fläche zwei Flächen umschrieben, so verhalten sich die Distanzen zweier Punkte der Berührungscurven, welche derselben Generatrix angehören, vom entsprechenden Punkte der Wendecurve, wie die Producte der Hauptkrümmungshalbmesser in diesen Punkten, dividirt durch die Krümmungshalbmesser der Normalschnitte, welche durch ihre Verbindungslinie gehen.

Aus den Gleichungen 5), 20) und 25) folgt:

$$\begin{vmatrix} \frac{\partial x}{\partial p}, & \frac{\partial y}{\partial p}, & \frac{\partial z}{\partial p} \\ \frac{\partial \cos a}{\partial p}, & \frac{\partial \cos b}{\partial p}, & \frac{\partial \cos c}{\partial p} \\ \cos a, & \cos b, & \cos c \end{vmatrix} = \frac{\Delta}{D} \cos \varphi \frac{\partial \sigma}{\partial p}.$$

Ist nun  $\cos \varphi = 0$ , so genügt die Berührungscurve der Fläche f=0 der Differentialgleichung der Krümmungslinien und umgekehrt. Setzt man:

$$(\xi-x)^2+(\eta-y)^2+(\zeta-z)^2=t^2$$
,

so ist nach 10)  $t = \frac{q \Delta}{1-q}$ . Für  $\varphi = \frac{\pi}{2}$  giebt die erste Gleichung 29):  $\frac{\partial t}{\partial s} = 1$ , oder  $t - t_0 = s - s_0$ , wo  $t_0$  der Werth von t ist, welcher dem Werthe  $s_0$  von s entspricht. Aus dem Vorstehenden folgt unmittelbar:

Berührt eine developpabele Fläche eine beliebige Fläche längs einer Krümmungslinie, so ist die Differenz zweier Generatricen, begrenzt durch die Wendecurve und die Contactcurve, gleich dem zwischen ihnen liegenden Bogen der Wendecurve.

Berührt eine developpabele Fläche zwei Flächen in Krümmungelinien, so ist die Distanz zwischen zwei entsprechenden Punkten der Berührungscurven constant.

#### II.

Die in I angewandte Methode erfordert einige Modificationen für den Fall, dass eine der gegebenen Flächen eine Kugelfläche ist. Setzt man:

1) 
$$x_1^2 + y_1^2 + z_1^2 = k^2$$
,

BO ist:

2)

3) 
$$x x_1 + y y_1 + z z_1 = k^2$$
.

Diese Gleichungen und f=0 gestatten es, je fünf der Quantitäten  $x, y, z, x_1, y_1, z_1$  als Functionen der sechsten anzusehen, oder besser, man kann Zeitschrift f. Mathematik n. Physik. XIII, 2.

 $x_1 = k \cos a, \quad y_1 = k \cos b, \quad z_1 = k \cos c;$ 

die sämmtlichen Coordinaten als Functionen einer Variabelen ansehen, welche man z. B. den Bogen der Berührungscurve der developpabelen Flä mit der Kugelfläche nehmen kann. Diese unabhängige Variabele we durch  $\tau$  bezeichnet und zur Abkürzung gesetzt  $\frac{\partial x}{\partial \tau} = x'$ ,  $\frac{\partial x_1}{\partial \tau} = x'_1$  etc. Gleichungen 1) und 2) geben:

4)  $x_1 x'_1 + y_1 y'_1 + z_1 z'_1 = 0$ ,  $x_1 x' + y_1 y' + z_1 z' = 0$ . Mittelst dieser Gleichungen und 2) folgt:

5) 
$$x x'_1 + y y'_1 + z z'_1 = 0.$$

Bezeichnet g eine Unbestimmte, so erhält man aus 2), 4) und 5):

6)  
$$\begin{cases} x'_{1} = k \frac{\partial \cos a}{\partial \tau} = g(zy_{1} - z_{1}y), \\ y'_{1} = k \frac{\partial \cos b}{\partial \tau} = g(xz_{1} - x_{1}z), \\ z'_{1} = k \frac{\partial \cos c}{\partial \tau} = g(yx_{1} - y_{1}x). \end{cases}$$

Ist wieder  $(\xi, \eta, \xi)$  der Punkt der Wendecurve, welcher mit den Punkt (x, y, z) und  $(x_1, y_1, z_1)$  auf derselben Geraden liegt, so hat man zur H stimmung von  $\xi, \eta, \xi$  die Gleichungen:

7) 
$$\begin{cases} \xi x_1 + \eta y_1 + \zeta z_1 = k^2, \\ \xi x'_1 + \eta y'_1 + \zeta z'_1 = 0, \\ \xi x''_1 + \eta y''_1 + \zeta z''_1 = 0. \end{cases}$$

Die zweite der vorstehenden Gleichungen geht wegen 6) über in:

$$\begin{vmatrix} \boldsymbol{\xi}, & \boldsymbol{\eta}, & \boldsymbol{\zeta} \\ \boldsymbol{x}, & \boldsymbol{y}, & \boldsymbol{z} \\ \boldsymbol{x}_1, & \boldsymbol{y}_1, & \boldsymbol{z}_1 \end{vmatrix} = 0,$$

welche Gleichung selbstverständlich ist. Setzt man:

8) 
$$\xi = \frac{x - qx_1}{1 - q}, \quad \eta = \frac{y - qy_1}{1 - q}, \quad \zeta = \frac{z - qz_1}{1 - q},$$

so giebt die dritte Gleichung 7):

9)  $x x''_{1} + y y''_{1} + z z''_{1} = q (x_{1} x''_{1} + y_{1} y''_{1} + z_{1} z''_{1}).$ Die Gleichungen:

$$x x'_1 + y y'_1 + z z'_1 = 0, \quad x_1 x'_1 + y_1 y'_1 + z_1 z'_1 = 0$$

nach r differentiirt geben:

$$xx''_{1} + yy''_{1} + zz''_{1} = -(x'x'_{1} + y'y'_{1} + z'z'_{1}),$$
  
$$x_{1}x''_{1} + y_{1}y''_{1} + z_{1}z''_{1} = -(x'^{2} + y'^{2} + z'^{2}).$$

Die Gleichung 9) lässt sich also auch schreiben:

$$q(x'_{1}+y'_{1}+z'_{1})=(x'x'_{1}+y'y'_{1}+z'z'_{1}),$$

d. i. nach 1), 3) und 6):

umschrieben ist. Von Dr. A. ENNEPER.

$$gk^{2}(x^{2}+y^{2}+z^{2}-k^{2})q = \begin{vmatrix} x', & y', & z' \\ x_{1}, & y_{1}, & z_{1} \\ x, & y, & z \end{vmatrix}$$

e dieser Gleichung x', y', z' zu eliminiren, wird es am einfachsten e rechts stehende Determinante mit derjenigen zu multipliciren, wele reciproke Product der beiden Hauptkrümmungshalbmesser der Flä-0 im Punkte (x, y, z) darstellt. Die in I, 13) gegebene Gleichung ch leicht auf folgende Form bringen:

$$\begin{array}{cccc} \cos a, & \cos b, & \cos c, & 0\\ \frac{\partial \cos a}{\partial x}, & \frac{\partial \cos a}{\partial y}, & \frac{\partial \cos a}{\partial z}, & \cos a\\ \frac{\partial \cos b}{\partial x}, & \frac{\partial \cos b}{\partial y}, & \frac{\partial \cos b}{\partial z}, & \cos b\\ \frac{\partial \cos c}{\partial x}, & \frac{\partial \cos c}{\partial y}, & \frac{\partial \cos c}{\partial z}, & \cos c \end{array} = \frac{1}{R'R''}.$$

stehende Gleichung werde mit der folgenden multiplicirt:

$$\begin{vmatrix} x', & y', & z', & 0 \\ x_1, & y_1, & z_1, & 0 \\ x, & y, & z, & 0 \\ 0, & 0, & 0, & 1 \end{vmatrix} = \begin{vmatrix} x', & y', & z' \\ x_1, & y_1, & z_1 \\ x, & y, & z \end{vmatrix}.$$

en Gleichungen 1), 2), 3) und 6) ist:

$$\cos a \cdot x' + \cos b \cdot y' + \cos c \cdot z' = 0,$$
  
$$x' \frac{\partial \cos a}{\partial x} + y' \frac{\partial \cos a}{\partial y} + z' \frac{\partial \cos a}{\partial z} = \frac{\partial \cos a}{\partial z} = \frac{g}{k} (zy_1 - x_1y),$$
  
$$x \cos a + y \cos b + z \cos c = x, \cos a + y, \cos b + z, \cos c = k.$$

t man diese Gleichungen an und ersetzt in dem Product der Gleich-11) und 12) die vier Elemente der letzten Horizontal- oder Ver-

he 0,  $\cos a$ ,  $\cos b$ ,  $\cos c$  durch 0,  $\frac{x_1}{k}$ ,  $\frac{y_1}{k}$ ,  $\frac{x_1}{k}$ , so folgt:

$$\frac{1}{R'R'} \begin{vmatrix} x', y', z' \\ x_1, y_1, z_1 \\ x, y, z \end{vmatrix} \frac{1}{gk}$$
  
$$(x-x_1) \begin{cases} (x-x_1) \frac{\partial \cos a}{\partial x} + (y-y_1) \frac{\partial \cos b}{\partial x} + (z-z_1) \frac{\partial \cos c}{\partial x} \end{cases}$$
  
$$y-y_1) \begin{cases} (x-x_1) \frac{\partial \cos a}{\partial y} + (y-y_1) \frac{\partial \cos b}{\partial y} + (z-z_1) \frac{\partial \cos c}{\partial y} \end{cases}$$
  
$$z-z_1) \begin{cases} (x-x_1) \frac{\partial \cos a}{\partial z} + (y-y_1) \frac{\partial \cos b}{\partial z} + (z-z_1) \frac{\partial \cos c}{\partial z} \end{cases}$$

Heichung durch

$$(x-x_1)^2 + (y-y_1)^2 + (z-s_1)^2 = (x^2+y^2+z^2-k^2)$$
23\*

333

dividirt, giebt:

 $\begin{vmatrix} x', y', z' \\ x_1, y_1, z_1 \\ x, y, z \end{vmatrix} = \frac{R'R''}{Rk^2(x^2+y^2+z^2-k^2)} = \frac{R'R''}{R}\frac{1}{k},$ d. i nach 10):  $q = \frac{R'R''}{R} \frac{1}{k},$ 

wo R dieselbe Bedeutung wie in I) hat. Aus dem Vorstehenden folgt, d die in I) aufgestellten Gleichungen 10) und 22) für die Kugelfläche gü bleiben, d. h. wenn  $R'_1 = R''_1 = R_1 = k$  ist. Haben  $r, \varrho, s, \sigma, \sigma_1$  und

13) 
$$\Delta = V\{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2\} = V(x^2+y^2+z^2-k^2)$$
dieselben Bedeutungen wie in I), so findet man aus den Gleichungen

3) und 10):

14) 
$$\frac{1}{r}\frac{\partial s}{\partial \tau} = g \varDelta, \quad \frac{\partial \sigma}{\partial \tau} = kg \varDelta$$

Die Gleichung 13) nach 7 differentiirt, giebt:

15) 
$$\frac{\partial \Delta}{\partial \tau} = \frac{x x' + y y' + z z'}{\Delta}$$

Die Gleichung 10) quadrirt, giebt mit Rücksicht auf 4), 13) und 15):

16) 
$$x'^{2}+y'^{2}+z'^{2}=(q k g d)^{2}+\left(\frac{\partial d}{\partial z}\right)^{2}.$$

Aus 6) und 10) findet man leicht:

17) 
$$\begin{aligned} x' x'_{1} + y' y'_{1} + z' z'_{1} = (kg \Delta)^{2} q, \\ x'^{2}_{1} + y'^{2}_{1} + z'^{2}_{1} = (kg \Delta)^{2}. \end{aligned}$$

Mittelst der Gleichungen 15), 16) und 17) lässt sich zwischen  $\rho$ , r und s e bemerkenswerthe Gleichung darstellen. Zufolge dieser Gleichung findet man:

$$\left(\frac{1}{\varrho}\frac{\partial s}{\partial \tau}\right)^2 = \frac{1}{\varDelta^2} \left| (x' - x'_1)^2 + (y' - y'_1)^2 + (z' - z'_1)^2 - \left(\frac{\partial \varDelta}{\partial \tau}\right)^2 \right| = (kg)^2 (1 - q)^2$$
  
Setzt man also:

$$\frac{1}{\varrho}\frac{\partial s}{\partial \tau} = kg(1-q),$$

so folgt mittelst der ersten Gleichung 14):

$$\frac{\varrho}{r} = \frac{1}{k} \frac{\varDelta}{1-q}.$$

Mittelst der Gleichungen 15), 16) und 17) geben die Gleichungen 8):

$$\left(\frac{\partial s}{\partial \tau}\right)^{2} = \left(\frac{\partial \xi}{\partial \tau}\right)^{2} + \left(\frac{\partial \eta}{\partial \tau}\right)^{2} + \left(\frac{\partial \xi}{\partial \tau}\right)^{2} = \left(\frac{\partial z}{\partial \tau} \frac{\Delta}{1-q}\right)^{2},$$

oder:

$$1 = \frac{\partial}{\partial s} \frac{\Delta}{1-q}.$$

Eliminirt man  $\frac{\Delta}{1-q}$  zwischen der vorstehenden Gleichung und der Gleichung 18), so folgt:

$$\frac{\partial}{\partial r}\frac{\varrho}{k}=\frac{1}{k},$$

oder integrirt:

$$\frac{\varphi}{r} = \frac{s}{k} + h,$$

wo h eine Constante ist. Durch diese Gleichung ist die kürzeste Linie einer Kegelfläche charakterisirt\*). Aus dem Vorstehenden folgt:

> Die Wendecurve einer developpabelen Fläche, welche eine Kugelfläche berührt, ist die kürzeste Linie einer Kegelfläche.

Ist (X, Y, Z) ein Punkt der developpabelen Fläche, welche der Fläche f=0und einer Kugelfläche umschrieben ist, bezeichnet man durch v die Distanz der beiden Punkte (X, Y, Z) und  $(x_i, y_i, z_i)$ , so finden die Gleichungen statt:

$$X = x_1 + v \frac{x - x_1}{\Delta}, \quad Y = y_1 + v \frac{y - y_1}{\Delta}, \quad Z = z_1 + v \frac{z - z_1}{\Delta}.$$

Ist p eine Constante, so hat man für einen Punkt  $(X_1, Y_1, Z_1)$  der Parallelfläche:

$$X_{1} = x_{1} + v \frac{x - x_{1}}{\Delta} - p \cos a,$$
  

$$Y_{1} = y_{1} + v \frac{y - y_{1}}{\Delta} - p \cos b,$$
  

$$Z_{1} = z_{1} + v \frac{z - z_{1}}{\Delta} - p \cos c.$$

Nun ist nach 2)  $\cos a = \frac{x_1}{k}$ ,  $\cos b = \frac{y_1}{k}$ ,  $\cos c = \frac{z_1}{k}$ , nimmt man also in den vorstehenden Gleichungen p = k, so folgt:

$$\frac{X_i}{x-x_1} = \frac{Y_1}{y-y_1} = \frac{Z_1}{z-z_1}.$$

Die Elimination von  $x, y, z, x_1, y_1, z_1$  zwischen diesen Gleichungen, den Gleichungen 1), 2), 3) und der Gleichung f=0 giebt offenbar ein Resultat von der Form:

$$\Phi\left(\frac{Y_1}{Z_1},\frac{X_1}{Z_1}\right)=0,$$

was die Gleichung einer Kegelfläche ist, welche den Anfangspunkt der Coordinaten (Mittelpunkt der Kugelfläche) zur Spitze hat. Hieraus ergiebt sich:

<sup>\*)</sup> Der Beweis dieses Satzes ist in den "Bemerkungen über Raumcurven" gegeben, welche ein Supplement zu II bilden.

Eine beliebige developpabele Fläche, welche einer Kugelfläche umschrieben ist, ist die Parallelfläche einer Kegelfläche, welche den Mittelpunkt der Kugelfläche zur Spitze hat.

Um eine einfache Anwendung der vorhergehenden Entwickelungen zu geben, seien die Gleichungen der beiden Flächen f=0 und  $f_1=0$ , respective:

19) 
$$\frac{x^2}{A} + \frac{y^2}{B} + \frac{z^2}{C} = 1, \quad \frac{x^2}{A_1} + \frac{y^2}{B_1} + \frac{z^2}{C_1} = 1.$$

Wegen

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = x_1\frac{\partial f_1}{\partial x_1} + y_1\frac{\partial f_1}{\partial y_1} + z_1\frac{\partial f_1}{\partial z_1} = z$$

findet man:

$$\frac{\partial f_1}{\partial x_1} = \frac{\partial f}{\partial x}, \quad \frac{\partial f_1}{\partial y_1} = \frac{\partial f}{\partial y}, \quad \frac{\partial f_1}{\partial z_1} = \frac{\partial f}{\partial z},$$

oder:

20) 
$$\frac{x}{A} = \frac{x_1}{A_1}, \quad \frac{y}{B} = \frac{y_1}{B_1}, \quad \frac{z}{C} = \frac{z_1}{C_1}.$$

Diese Gleichungen in Verbindung mit:

$$\xi = \frac{x - qx_1}{1 - q}, \quad \eta = \frac{y - qy_1}{1 - q}, \quad \zeta = \frac{z - qz_1}{1 - q}$$

geben:

21) 
$$\begin{cases} x = A\xi_1, \quad y = B\eta_1, \quad z = C\xi_1; \\ x_1 = A_1\xi_1, \quad y_1 = B_1\eta_1, \quad z_1 = C_1\xi_1, \end{cases}$$

wo zur Abkürzung gesetzt ist:

22) 
$$\xi_1 = \frac{1-q}{A-qA_1}\xi, \quad \eta_1 = \frac{1-q}{B-qB_1}\eta, \quad \zeta_1 = \frac{1-q}{C-qC_1}\xi.$$

Die Substitution der Werthe von  $x, y, z, x_1, y_1, z_1$  aus 21) in 19) giebt:

23)  $A\xi_1^{t} + B\eta_1^{t} + C\zeta_1^{t} = 1$ ,  $A_1\xi_1^{t} + B_1\eta_1^{t} + C_1\zeta_1^{t} = 1$  etc. Es ist ferner :

$$\frac{\frac{R'R''}{R_1'R_1''} = \frac{ABC}{A_1B_1C_1},}{\frac{R_1}{R} = \frac{(x-x_1)^2}{A} + \frac{(y-y_1)^2}{B} + \frac{(z-z_1)^2}{C},}{\frac{(x-x_1)^2}{A_1} + \frac{(y-y_1)^2}{B_1} + \frac{(z-z_1)^2}{C_1},}$$

oder wegen 21) und 23):

$$\frac{B_{1}}{B} = \frac{\frac{A_{1}^{2}}{A}}{\frac{A_{1}^{2}}{A_{1}^{2}}} \frac{\xi_{1}^{2} + \frac{B_{1}^{2}}{B}}{\frac{B_{1}^{2}}{B_{1}^{2}} + \frac{B_{1}^{2}}{B_{1}^{2}}} \frac{\eta_{1}^{2} + \frac{C_{1}^{2}}{C}}{C_{1}^{2}} \frac{\zeta_{1}^{2} - 1}{\zeta_{1}^{2}}.$$
Digitized by Google

Die Gleichung für q wird hierdurch:

$$\frac{A_{1}B_{1}C_{1}}{ABC}q = \frac{\frac{A_{1}^{2}}{A}\xi_{1}^{2} + \frac{B_{1}^{2}}{B}\eta_{1}^{2} + \frac{C_{1}}{C}\xi_{1}^{2} - 1}{\frac{A_{1}^{2}}{A_{1}}\xi_{1}^{2} + \frac{B_{1}^{2}}{B}\eta_{1}^{2} + \frac{C_{1}^{2}}{C}\xi_{1}^{2} - 1},$$

Bestimmt man aus dieser Gleichung und den Gleichungen 23) die Werthe von  $\xi^a_{1}$ ,  $\eta^a_{1}$ ,  $\xi^a_{1}$ , setzt darauf für  $\xi_i$ ,  $\eta_i$ ,  $\xi_i$  ihre Werthe aus 22) ein, so ergeben sich für  $\xi$ ,  $\eta$ ,  $\zeta$  folgende Gleichungen:

$$\xi^{*} = \frac{(B-B_{1})(C-C_{1})}{(AB_{1}-A_{1}B)(AC_{1}-A_{1}C)} \left(\frac{A-qA_{1}}{1-q}\right)^{*},$$
  

$$\eta^{*} = \frac{(A-A_{1})(C-C_{1})}{(BA_{1}-B_{1}A)(B\bar{C}_{1}-B_{1}C)} \left(\frac{B-qB_{1}}{1-q}\right)^{*},$$
  

$$\xi^{*} = \frac{(A-A_{1})(B-B_{1})}{(CA_{1}-C_{1}A)(CB_{1}-C_{1}B)} \left(\frac{C-qC_{1}}{1-q}\right)^{*}.$$

Nimmt man A, B, C positiv, A > B > C, ferner  $A_1 = B_1 = C_1 = k$ , A > k > B, so ist ein Punkt  $(\xi, \eta, \zeta)$  der Wendecurve der developpabelen Fläche, welche den beiden Flächen:

$$\frac{x^2}{A} + \frac{y^2}{B} + \frac{z^2}{C} = 1, \quad x^2 + y^2 + z^2 = k$$

umschrieben ist, durch folgende Gleichungen bestimmt:

24)  
$$\begin{pmatrix} (k \xi)^{s} = \frac{(k-B)(k-C)}{(A-B)(A-C)} \left(\frac{A-kq}{1-q}\right)^{s}, \\ (k \eta)^{s} = \frac{(A-k)(k-C)}{(A-B)(B-C)} \left(\frac{B-kq}{1-q}\right)^{s}, \\ (k \zeta)^{s} = \frac{(A-k)(k-B)}{(A-C)(B-C)} \left(\frac{kq-C}{1-q}\right)^{s}, \end{cases}$$

wo  $\frac{B}{k} > q > \frac{C}{k}$ . Die developpabele Fläche ist die Parallelfläche für die constante Distanz  $\sqrt{k}$  zur Kegelfläche:

$$\frac{x^2}{A-k} = \frac{y^2}{k-B} + \frac{z^2}{k-C}.$$

Aus den Gleichungen 24) findet man:

$$k \frac{\partial s}{\partial q} = V \{ (A-k)(k-B)(k-C) \} \cdot \frac{\partial}{\partial q} \frac{1}{(1-q)^{\frac{1}{2}}},$$
  

$$\frac{1}{\varrho} \frac{\partial s}{\partial q} = \frac{1}{2} k V k \cdot \frac{V(1-q)}{V \{ (A-kq)(B-kq)(C-kq) \}},$$
  

$$\frac{1}{r} \frac{\partial s}{\partial q} = \frac{1}{2} V \left\{ \frac{(A-k)(B-k)(C-k)}{(A-kq)(B-kq)(C-kq)} \right\} \frac{1}{1-q}.$$
  
Digitized by Google

#### III.

Sind die beiden Flächen f=0 und  $f_1=0$  zwei Flächen zweiten Grades, so lässt sich die Gleichung der umschriebenen developpabelen Fläche am einfachsten ausführen, wenn statt der Punktcoordinaten sogenannte tetraedrische Coordinaten zu Grunde gelegt werden. Man kann bekanntlich das Fundamentaltetraeder so wählen, dass die Ecken desselben, in Beziehung auf jede der gegebenen Flächen, die Pole der gegenüberliegenden Seitenebenen sind. Die auszuführenden Rechnungen entsprechen dann dem einfachsten Fall für Punktcoordinaten, wenn nämlich die beiden Flächen concentrisch sind und ihre Hauptachsen gleiche Richtungen haben. Die Reduction zweier homogenen Functionen zweiten Grades mittelst einer linearen Substitution auf ihre einfachsten Formen, in welchen die Producte ungleicher Variabelen nicht enthalten sind, ist schon mehrfach ausgeführt; der grösseren Uebersichtlichkeit wegen sind im Nachstehenden nur die Entwickelungen der bemerkten Reduction ausgeführt, unter Hinzufügung einiger neuen Relationen, welche für den vorliegenden Zweck erforderlich sind.

Seien P und Q zwei homogene Functionen zweiten Grades der n Variabelen  $x_1, x_2, \ldots x_n$ , so dass:

1) 
$$P = \sum_{r=1}^{r=n} \sum_{s=1}^{s=n} a_{r,s} x_r x_s, \quad Q = \sum_{r=1}^{r=n} \sum_{s=1}^{s=n} b_{r,s} x_r x_s,$$

wo allgemein  $a_{r,s} = a_{s,r}$  und  $b_{r,s} = b_{s,r}$  ist. Mittelst der Substitution:

2) 
$$\begin{cases} c_{1,1}x_1 + c_{2,1}x_2 + \dots + c_{n,1}x_n = \varrho y_1, \\ c_{1,2}x_1 + c_{2,2}x_2 + \dots + c_{n,2}x_n = \varrho y_2, \\ \dots \\ c_{1,n}x_1 + c_{2,n}x_2 + \dots + c_{n,n}x_n = \varrho y_n, \end{cases}$$

lassen sich P und Q als Functionen von  $\varrho y_1, \ldots, \varrho y_n$  auf folgende Art darstellen:

3) 
$$\begin{cases} P = (a_1 y_1^* + a_2 y_2^* + \dots + a_n y_n^*) \varrho^2, \\ Q = (b_1 y_1^* + b_2 y_2^* + \dots + b_n y_n^*) \varrho^2. \end{cases}$$

Substituirt man in die Gleichungen 3) für P, Q ihre Werthe aus 1) und die Werthe von  $\varrho y_1, \varrho y_2, \ldots, \varrho y_n$  aus 2), so ergeben sich die n(n+1) Gleichungen:

4) 
$$\begin{cases} a_1 c_{r,2} c_{s,1} + a_2 c_{r,2} c_{s,2} + \dots + a_n c_{r,n} c_{s,n} = a_{r,s}, \\ b_1 c_{r,1} c_{s,1} + b_2 c_{r,2} c_{s,2} + \dots + b_n c_{r,n} c_{s,n} = b_{r,s}, \end{cases}$$

wo r, s alle ganzen Zahlen von 1 bis n durchlaufen. Von den n<sup>2</sup> Coefficienten  $c_{r,s}$  der Substitution 2) und den 2n Quantitäten  $a_1, a_2, \ldots, a_n$ ,  $b_1, b_2, \ldots, b_n$  bleiben n unbestimmt, eine Unbestimmtheit, welche sich leicht aufheben lässt, wenn  $\frac{y_1}{\sqrt{a_1}}, \ldots, \frac{y_n}{\sqrt{a_n}}$  statt  $y_1, \ldots, y_n$  gesetzt wird. Es soll vorausgesetzt werden, dass keine der Determinanten:

umschrieben ist. Von Dr. A. ENNEPEB.

$$\begin{vmatrix} a_{1,1}, & a_{1,n} \\ a_{n,1}, & a_{n,n} \end{vmatrix} = A, \begin{vmatrix} b_{1,1}, & b_{1,n} \\ b_{n,1}, & b_{n,n} \end{vmatrix} = B$$

indet. Durch C werde die folgende Determinante bezeichnet:

$$\begin{vmatrix} c_{1,1} & c_{1,n} \\ c_{n,1} & c_{n,n} \end{vmatrix} = C.$$

Determinanten A, B, C seien respective  $\alpha_{r,s}$ ,  $\beta_{r,s}$ ,  $\gamma_{r,s}$  die Factoren ,  $\hat{b_{r,s}}$ ,  $c_{r,s}$ .

Determinante C mit  $a_1, a_2 \dots a_n$  multiplicirt, giebt:

$$\begin{vmatrix} a_1 & c_{1,1}, & a_2 & c_{1,2}, \dots, & a_n & c_{1,n} \\ a_1 & c_{2,1}, & a_2 & c_{2,2}, \dots, & a_n & c_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & c_{n,1}, & a_2 & c_{n,2}, \dots, & a_n & c_{n,n} \end{vmatrix} = a_1 a_2 \dots a_n C.$$

det man das Product mit der Gleichung 6), so ist nach 4) die linke s Products gleich A, die rechte Seite gleich  $a_1 a_2 \dots a_n C^{\mathbf{e}}$ . Man erdie beiden Gleichungen:

$$A = a_1 a_2 \dots a_n C^2, \quad B = b_1 b_2 \dots b_n C^2.$$

cirt man die erste Gleichung 4) mit b<sub>m</sub>, die zweite mit a<sub>m</sub>, bildet die z der Producte, so folgt:

$$\sum_{i=1}^{n} (a_m b_i - b_m a_i) c_{r,t} c_{s,t} = a_m b_{r,s} - b_m a_{r,s}.$$

 $s = 1, 2, \dots n$  ergeben sich hieraus die Gleichungen:

$$\sum (a_{m}b_{t} - b_{m}a_{t}) c_{r,t} c_{1,t} = a_{m}b_{r,1} - b_{m}a_{r,1},$$
  

$$\sum (a_{m}b_{t} - b_{m}a_{t}) c_{r,t} c_{2,t} = a_{m}b_{r,2} - b_{m}a_{r,2},$$
  

$$\sum (a_{m}b_{t} - b_{m}a_{t}) c_{r,t} c_{n,t} = a_{m}b_{r,n} - b_{m}a_{r,n}.$$

cirt man diese Gleichungen resp. mit γ<sub>1,</sub>,, γ<sub>2,</sub>,, ... γ<sub>n,m</sub>, bildet die der Producte, berücksichtigt:

$$\gamma_{1,m} c_{1,t} + \ldots + \gamma_{n,m} c_{n,t} = 0, \ t \ge m, \\ a_m b_t - b_m a_t = 0, \ t = m,$$

$$(a_{m}b_{r,1}-b_{m}a_{r,1})\gamma_{1,m}+\ldots+(a_{m}b_{r,n}-b_{m}a_{r,n})\gamma_{n,m}=0,$$

= z gesetzt:

$$(z b_{r,1} - a_{r,1}) \gamma_{1,m} + \ldots + (z b_{r,n} - a_{r,n}) \gamma_{n,m} = 0.$$

zt man hierin r=1,2,...n, so ergiebt sich für  $\gamma_{1,m}$  ...  $\gamma_{n,m}$  ein Syn *n* Gleichungen, dessen Determinante verschwinden muss, da nicht itig  $\gamma_{1,m}$  .... $\gamma_{n,m}$  verschwinden können. Hieraus folgt:

$$\begin{vmatrix} z b_{1,1} - a_{1,1}, z b_{1,2} - a_{1,4} \\ z b_{2,1} - a_{2,1}, z b_{2,2} - a_{2,2}, \dots z b_{2,n} - a_{2,n} \\ \vdots \\ z b_{n,1} - a_{n,1}, z b_{n,2} - a_{n,2}, \dots z b_{n,n} - a_{n,n} \end{vmatrix} = 0$$

340 Ueber die developpabele Fläche, welche zwei gegebenen Fläche

oder:

9) 
$$Bz^n - pz^{n-1} + \ldots + (-1)^{n-1}qz + (-1)^n A = 0,$$

wo:

10) 
$$\begin{cases} p = \sum_{\substack{r=1 \ r=n \ r=n \ r=n \ r=n \ r=n \ r=n \ q=\sum_{\substack{r=1 \ r=n \ r=1 \ r=n \ r=1 \$$

Bezeichnet man die Wurzeln der obigen Gleichung in z durch  $z_1, z_2$ , so hat man bekanntlich:

$$z_1 + z_2 + \ldots + z_n = \frac{p}{B}, \quad \frac{1}{z_1} + \frac{1}{z_2} + \ldots + \frac{1}{z_n} = \frac{q}{A}.$$

Da nun allgemein  $z = \frac{a_m}{b_m}$ , so sind die Wurzeln von 9)  $\frac{a_1}{b_1}$ ,  $\frac{a_2}{b_2}$ , ...,  $\frac{a_n}{b_n}$ . aus folgt:

11) 
$$\frac{a_1}{b_1} + \frac{a_2}{b_2} + \dots + \frac{a_n}{b_n} = \frac{p}{B}, \quad \frac{b_1}{a_1} + \frac{b_2}{a_2} + \dots + \frac{b_n}{a_n} = \frac{q}{A}.$$

Multiplicirt man die Gleichung:

$$\begin{vmatrix} c_{1,1}, & c_{1,s}, & c_{1,n} \\ c_{r-1,1}, & c_{r-1,s}, & c_{r-1,n} \\ 0, & 1, & 0 \\ c_{r+1,1}, & c_{r+1,s}, & c_{r+1,n} \\ c_{n,1}, & c_{n,s}, & c_{n,n} \end{vmatrix} = \gamma_r, s$$

mit der Gleichung 7), so folgt nach 4):

12) 
$$\begin{vmatrix} a_{1,1} & a_{1,s} & a_{1,n} \\ a_{r-1,1} & a_{r-1,s} & a_{r-1,n} \\ c_{1,s} & c_{r,s} & c_{n,s} \\ a_{r+1,1} & a_{r+1,s} & a_{r+1,n} \\ a_{n,1} & a_{n,s} & a_{n,n} \end{vmatrix} a_{s} = a_{1}a_{2} \dots a_{n}C\gamma_{r,s}.$$

Die links stehende Determinante ergiebt sich aus A, wenn die Elem  $a_{r,1}, a_{r,2} \dots a_{r,n}$  ersetzt werden durch  $c_{1,2}, c_{2,2}, \dots c_{n,s}$ . Hieraus folgt

$$a_s\left(\alpha_{r,1} c_{1,s} + \alpha_{r,2} c_{2,s} + \ldots + \alpha_{r,n} c_{n,s}\right) = a_1 \ldots a_n C \gamma_{r,s}.$$

Wegen  $a_1 a_2 \dots a_n C = \frac{A}{C}$  und  $\alpha_r, s = \alpha_s, r$  lässt sich die vorstehende Gleich auch schreiben:

13) 
$$a_s(\alpha_1, r, c_1, s + \alpha_2, r, c_2, s + ... + \alpha_n, r, c_n, s) = \frac{A}{C} \gamma_{r,s}$$

Multiplicirt man die Gleichungen 2) respective mit  $a_1 c_{r,1}, a_2 c_{r,2}, \dots a_n$ bildet die Summe der Producte, so folgt nach 4)

$$\varrho (a_1 c_{r,1} y_1 + a_2 c_{r,2} y_2 + \dots + a_n c_{r,n} y_n) = x_1 a_{r,1} + x_2 a_{n,2} + \dots + x_n a_n$$
Digitized by Google

$$\frac{1}{2}\frac{\partial P}{\partial x_r} = e^{\sum_{s=1}^{s=n}} e^{\sum_$$

t dieser Gleichung folgt:

$$\frac{1}{2} \left\{ \beta_{1}, r \frac{\partial P}{\partial x_{1}} + \beta_{2}, r \frac{\partial P}{\partial x_{2}} + \ldots + \beta_{n}, r \frac{\partial P}{\partial x_{n}} \right\}$$
  
=  $\varrho \sum_{s=1}^{s=n} a_{s} y_{s} \left( \beta_{1}, r c_{1}, s + \beta_{2}, r c_{2}, s + \ldots + \beta_{n}, r c_{n}, s \right).$ 

wie die Gleichung 13) findet man:

$$b_s(\beta_{1,r}c_{1,s}+\beta_{2,r}c_{2,s}+\ldots+\beta_{n,r}c_{n,s})=\frac{B}{C}\gamma_{r,s}.$$

eichung 15) geht hierdurch über in:

$${}^{t=n}_{\substack{\boldsymbol{y} \in \boldsymbol{\beta}_{s}, r \\ \boldsymbol{y} = 1}} \frac{\partial P}{\partial x_{s}} = \varrho \; \frac{B}{C} {}^{t=n}_{\substack{\boldsymbol{z} \in \boldsymbol{z} \\ \boldsymbol{z} = 1}} \; \frac{a_{t}}{b_{t}} y_{t} \gamma_{r,t}.$$

=1, 2,...n ergeben sich hieraus die n Gleichungen :

$$\frac{i}{2} \sum_{s=1}^{n} \frac{\partial P}{\partial x_s} = \varrho \frac{B}{C} \sum_{t=1}^{t=n} \frac{a_t}{b_t} y_t \gamma_{1,t},$$

$$\frac{i}{2} \sum_{s=1}^{n} \frac{\partial P}{\partial x_s} = \varrho \frac{B}{C} \sum_{t=1}^{t=n} \frac{a_t}{b_t} y_t \gamma_{2,t},$$

$$\frac{i}{2} \sum_{s=1}^{n} \frac{\partial P}{\partial x_s} = \varrho \frac{B}{C} \sum_{t=1}^{t=n} \frac{a_t}{b_t} y_t \gamma_{n,t}.$$

Gleichungen resp. mit  $\frac{1}{2} \frac{\partial P}{\partial x_1}$ ,  $\frac{1}{2} \frac{\partial P}{\partial x_2}$ , ...  $\frac{1}{2} \frac{\partial P}{\partial x_n}$  multiplicit und ad-.

$$\frac{1}{k} \sum_{s=1}^{l=n} \frac{\partial P}{\partial x_s} \left( \beta_{s,1} \frac{\partial P}{\partial x_1} + \beta_{s,2} \frac{\partial P}{\partial x_2} + \dots + \beta_{s,n} \frac{\partial P}{\partial x_n} \right)$$
$$= \varrho^2 \frac{B}{C} \sum_{t=1}^{l=n} \sum_{s=1}^{s=n} \frac{a_s a_t}{b_t} y_s y_t (c_{1,s} \gamma_{1,t} + \dots + c_{n,s} \gamma_{n,t}).$$

der Doppelsumme rechts nur die Terme übrig bleiben, für welche t, so folgt:

$$\frac{f_{s=1}^{r=n}}{f_{s=1}^{s=n}} \sum_{s=1}^{s=n} \frac{\partial P}{\partial x_r} \frac{\partial P}{\partial x_s} = \varrho^* B \sum_{s=1}^{s=n} \frac{a_s^*}{b_s} y^*,$$

aloge Weise folgt:

$$\int_{r=1}^{r=n} \sum_{a=1}^{s=n} \frac{\partial Q}{\partial x_r} \frac{\partial Q}{\partial x_s} = \varrho^2 A \sum_{s=1}^{s=n} \frac{b^2}{a_s} y^2.$$

#### IV.

ien  $y_1, y_2, y_3, y_4$  vier homogene, lineare Functionen der vier Varia $=x, x_2=y, x_3=z$  und  $x_4$ . Die Gleichungen P=0 und Q=0 zweier n zweiten Grades lassen sich auf folgende Formen bringen:

1)  $\begin{cases} a_1 y_1^2 + a_2 y_2^2 + a_3 y_3^2 + a_4 y_4^2 = 0, \\ b_1 y_1^2 + b_2 y_2^2 + b_3 y_3^2 + b_4 y_4^2 = 0. \end{cases}$ 

Zur Vereinfachung werde im Folgenden gesetzt:

 $g_1 + g_2 + g_3 + g_4 = \Sigma g.$ Berührt die Ebene: 2)  $\Sigma v y = 0$ jede der Flächen 1), so finden die Relationen statt:

3) 
$$\Sigma \frac{v^2}{a} = 0, \quad \Sigma \frac{v^2}{b} = 0.$$

Von den vier Parametern  $v_1$ ,  $v_2$ ,  $v_3$ ,  $v_4$  der Gleichung 2) sind nur drei ar biträr, da dieselbe durch einen der Parameter dividirt nur drei beliebige Constanten enthält. Die Gleichungen 2) und 3) bleiben ungeändert, wenn allgemein v ersetzt wird durch  $\frac{v}{c}$ , wo  $c^2 (v_1^2 + v_2^2 + v_3^2 + v_4^2) = 1$  genommen werden kann, so dass, unbeschadet der Allgemeinheit: 4)  $\Sigma v^2 = 1$ 

sein möge. Die vier Parameter  $v_1$ ,  $v_2$ ,  $v_3$ ,  $v_4$  der Gleichungen 2), 3) und 4) werden als Functionen einer Variabelen u angesehen. Differenziirt man unter dieser Voraussetzung die Gleichung 2) nach u, so ist das Resultat der Elimination von u zwischen der Gleichung 2) und der folgenden:

5) 
$$\Sigma y \frac{\partial v}{\partial u} = 0,$$

die Gleichung der developpabelen Fläche, welche die beiden Flächen 1) gleichzeitig berührt. Die Gleichungen 3) und 4) nach u differentiirt geben:

6)  $\Sigma \frac{v}{a} \frac{\partial v}{\partial u} = 0, \quad \Sigma \frac{v}{b} \frac{\partial v}{\partial u} = 0, \quad \Sigma v \frac{\partial v}{\partial u} = 0.$ 

Aus den Gleichungen 5) und 6) folgt:

7) 
$$\begin{vmatrix} y_1, & y_2, & y_3, & y_4 \\ \frac{v_i}{a_1}, & \frac{v_2}{a_2}, & \frac{v_3}{a_3}, & \frac{v_4}{a_4} \\ \frac{v_1}{b_1}, & \frac{v_2}{b_2}, & \frac{v_3}{b_3}, & \frac{v_4}{b_4} \\ v_1, & v_2, & v_3, & v_4 \end{vmatrix} = 0.$$

Eliminirt man  $v_1, v_2, v_3, v_4$  zwischen den Gleichungen 2), 3), 4) und 7), so ist das Resultat der Elimination die Gleichung der developpabelen Fläche. Die Gleichung 7) lässt sich durch vier Gleichungen von folgender Form ersetzen:

$$y_r = \lambda \, \frac{v_r}{a_r} + \mu \, \frac{v_r}{b_r} + \nu \, v_r \, ,$$

für  $r=1, 2, 3, 4; \lambda, \mu, \nu$  sind drei Unbestimmte. Multiplicirt man diese Gleichung mit  $v_r$ , setzt darauf r=1, 2, 3, 4, addirt die Producte, so folgt nach 2) und 3):  $\nu=0$ . Man hat also:

$$y_r = v_r \left( \frac{\lambda}{a_r} + \frac{\mu}{b_r} \right),$$

t Weglassung des Index :

 $v = \frac{y}{\frac{\lambda}{a} + \frac{\mu}{b}}.$ 

an diesen Werth von v in die Gleichungen 3), so gehen dieselben

$$\Sigma \frac{1}{a} \frac{y^2}{\left(\frac{\lambda}{a} + \frac{\mu}{b}\right)^2} = 0, \quad \Sigma \frac{1}{b} \frac{y^2}{\left(\frac{\lambda}{a} + \frac{\mu}{b}\right)^2} = 0.$$

cirt man die erste Gleichung 9) mit  $\lambda$ , die zweite mit  $\mu$ , so giebt nme:

$$\Sigma \frac{y^{*}}{\frac{\lambda}{a} + \frac{\mu}{b}} \doteq 0.$$

ichungen 9) folgen respective durch Differentiation der Gleichung a & und µ. Hieraus folgt, dass die Discriminante der Gleichung 10) Null gesetzt, die gesuchte Gleichung der Fläche ist. e Gleichung 10) vollständig entwickelt ist:

$$\begin{aligned} \frac{\lambda^{2}}{a_{1}a_{2}a_{3}a_{4}} \left(a_{1}y^{2}_{1} + a_{2}y^{2}_{2} + a_{3}y^{2}_{3} + a_{4}y^{2}_{4}\right) \\ + \frac{\lambda^{2}\mu}{a_{1}a_{3}a_{3}a_{4}} \left\{ \left(\frac{a_{1}}{b_{1}} + \frac{a_{2}}{b_{2}} + \frac{a_{3}}{b_{3}} + \frac{a_{4}}{b_{4}}\right) \left(a_{1}y^{2}_{1} + a_{2}y^{2}_{2} + a_{3}y^{2}_{3} + a_{4}y^{2}_{4}\right) \\ - \left(\frac{a^{2}_{1}}{b_{1}}y^{2}_{1} + \frac{a^{2}_{2}}{b_{2}}y^{2}_{2} + \frac{a^{2}_{3}}{b_{3}}y^{2}_{3} + \frac{a^{2}_{4}}{b_{4}}y^{2}_{4}\right) \right\} \\ + \frac{\lambda\mu^{2}}{b_{1}b_{2}b_{3}b_{4}} \left\{ \left(\frac{b_{1}}{a_{1}} + \frac{b_{2}}{a_{2}} + \frac{b_{3}}{a_{3}} + \frac{b_{4}}{a_{4}}\right) \left(b_{1}y^{2}_{1} + b_{2}y^{2}_{2} + b_{3}y^{2}_{3} + b_{4}y^{2}_{4}\right) \\ - \left(\frac{b^{2}_{1}}{a_{1}}y^{2}_{1} + \frac{b^{2}_{2}}{a_{2}}y^{2}_{2} + \frac{b^{2}_{3}}{a_{3}}y^{2}_{3} + \frac{b^{2}_{4}}{a_{4}}y^{2}_{4}\right) \right\} \\ + \frac{\mu^{4}}{b_{1}b_{2}b_{3}b_{4}} \left(b_{1}y^{2}_{1} + b_{2}y^{2}_{2} + b_{3}y^{2}_{3} + b_{4}y^{2}_{4}\right) = 0. \end{aligned}$$

stimmung der Wendecurve dienen die Gleichungen:

$$\Sigma v y = 0, \quad \Sigma y \frac{\partial v}{\partial u} = 0, \quad \Sigma y \frac{\partial^2 v}{\partial u^2} = 0.$$

den ersten Gleichungen 6) und die Gleichung 5) nach u differentiirt,

$$\Sigma \frac{v}{a} \frac{\partial^2 v}{\partial u^2} + \Sigma \frac{1}{a} \left( \frac{\partial v}{\partial u} \right)^2 = 0, \quad \Sigma \frac{v}{b} \frac{\partial^2 v}{\partial u^2} + \Sigma \frac{1}{b} \left( \frac{\partial v}{\partial u} \right)^2,$$

$$\Sigma y \frac{\partial^2 v}{\partial u^2} = 0.$$

343

Multiplicirt man die erste Gleichung mit  $\lambda$ , die zweite mit  $\mu$ , die dritte -1 und bildet die Summe, so folgt:

$$\mathcal{E}\left|\left(\frac{\lambda}{a}+\frac{\mu}{b}\right)v-y\right|\frac{\partial^2 v}{\partial u^2}+\mathcal{E}\left(\frac{\lambda}{a}+\frac{\mu}{b}\right)\left(\frac{\partial v}{\partial u}\right)^2=0.$$

Da nun nach 8) allgemein  $\left(\frac{\lambda}{a} + \frac{\mu}{b}\right) v = y$ , so reducirt sich die vorstehe Gleichung auf:

2) 
$$\Sigma\left(\frac{\lambda}{a}+\frac{\mu}{b}\right)\left(\frac{\partial v}{\partial u}\right)^2=0$$

Bedeutet H eine Unbestimmte, so geben die Gleichungen 6):

$$H\frac{\partial v_1}{\partial u} = \begin{vmatrix} v_2, & v_3, & v_4 \\ \frac{v_2}{a_2}, & \frac{v_3}{a_3}, & \frac{v_4}{a_4} \\ \frac{v_2}{b_2}, & \frac{v_3}{b_3}, & \frac{v_4}{b_4} \end{vmatrix} = \frac{1}{a_2 a_3 a_4} \begin{vmatrix} a_2 v_2, & a_3 v_3, & a_4 v_4 \\ v_2, & v_3, & v_4 \\ \frac{a_2}{b_2} v_2, & \frac{a_3}{b_3} v_3, & \frac{a_4}{b_4} v_4 \end{vmatrix}.$$

Bildet man das Product der beiden rechts stehenden Determinanten, folgt:

$$a_{2} a_{3} a_{4} H^{2} \left(\frac{\partial v_{1}}{\partial u}\right)^{2} = \begin{vmatrix} \Sigma a v^{2} - a_{1} v^{2}_{1}, & 1 - v^{2}_{1}, & \Sigma \frac{a}{b} v^{2} - \frac{a_{1}}{b_{1}} v^{2}_{1} \\ 1 - v^{2}_{1}, & -\frac{v^{2}_{1}}{a_{1}}, & -\frac{v^{2}_{1}}{b_{1}} \\ \Sigma \frac{a}{b} v^{2} - \frac{a_{1}}{b_{1}} v^{2}_{1}, & -\frac{v^{2}_{1}}{b_{1}}, & \Sigma \frac{a}{b^{2}} v^{2} - \frac{a_{1}}{b^{2}_{1}} v^{2}_{1} \end{vmatrix}$$

oder entwickelt:

1

$$a_{1}a_{2}a_{3}a_{4}H^{2}\frac{1}{a_{1}}\left(\frac{\partial v_{1}}{\partial u}\right)^{2} = \frac{a_{1}}{b^{2}_{1}}v_{1}^{2} + (2v^{2}_{1}-1)\Sigma\frac{a}{b^{2}}v^{2} - 2\frac{v^{2}_{1}}{b_{1}}\Sigma\frac{a}{b}v^{2} + \frac{v^{2}_{1}}{a_{1}}\left\{\left(\Sigma\frac{a}{b}v^{2}\right)^{2} - \Sigma av^{2}.\Sigma\frac{a}{b^{2}}v^{2}\right\}.$$

Diese Gleichung und drei analoge Gleichungen geben, mit Rücksicht au und 4):

$$a_1 a_2 a_3 a_4 H^2 \Sigma \frac{1}{a} \left( \frac{\partial v}{\partial u} \right)^2 = -\Sigma \frac{a}{b^3} v^2.$$

Auf ganz ähnliche Weise folgt:

$$b_1 b_2 b_3 b_4 H^2 \Sigma \frac{1}{b} \left( \frac{\partial v}{\partial u} \right)^2 = -\Sigma \frac{b}{a^2} v^2.$$

Mittelst der beiden letzten Gleichungen geht die Gleichung 12) über in:

$$\frac{\lambda}{a_{1}a_{2}a_{3}a_{4}}\Sigma\frac{a}{b^{2}}v^{2} + \frac{\mu}{b_{1}b_{2}b_{3}b_{4}}\Sigma\frac{b}{a^{2}}v^{2} = 0,$$
  
d. i. nach 8):  
13)  $\frac{\lambda}{a_{2}a_{3}a_{4}}\Sigma\frac{a}{b^{2}}\frac{y^{2}}{\left(\frac{\lambda}{a} + \frac{\mu}{b}\right)^{2}} + \frac{\mu}{b_{1}b_{2}b_{3}b_{4}}\Sigma\frac{b}{a^{2}}\frac{y^{2}}{\left(\frac{\lambda}{a} + \frac{\mu}{b}\right)^{2}} = 0.$ 

Nun ist:

$$\mu^{2} \Sigma \frac{a}{b^{2}} \frac{y^{2}}{\left(\frac{\lambda}{a} + \frac{\mu}{b}\right)^{2}} = \Sigma a y^{2} - 2 \lambda \Sigma \frac{y^{2}}{\frac{\lambda}{a} + \frac{\mu}{b}} + \lambda^{2} \Sigma \frac{a y^{2}}{\left(\frac{\lambda}{a} + \frac{\mu}{b}\right)^{2}}.$$

Diese Gleichung reducirt sich nach 9) und 10) einfach auf:

$$\boldsymbol{\Sigma}\frac{a}{b^2}\frac{\boldsymbol{y}^2}{\left(\frac{\lambda}{a}+\frac{\mu}{b}\right)}=\frac{1}{\mu^4}\boldsymbol{\Sigma}a\boldsymbol{y}^2.$$

Mittelst dieser Gleichung und

$$\Sigma \frac{b^2}{a} \frac{y^2}{\left(\frac{\lambda}{a} + \frac{\mu}{b}\right)^2} = \frac{1}{\lambda^2} \Sigma b y^2$$

lässt sich die Gleichung 13) auf folgende Weise schreiben:

$$\frac{\lambda^3}{a_1a_2a_3a_4}\Sigma ay^2 + \frac{\mu^3}{b_1b_2b_3b_4}\Sigma by^2 = 0,$$

oder entwickelt:

14) 
$$\frac{\lambda^{2}}{a_{1}a_{2}a_{3}a_{4}}(a_{1}y_{1}^{2}+a_{2}y_{2}^{2}+a_{3}y_{3}^{2}+a_{4}y_{4}^{2})$$
$$+\frac{\mu^{3}}{b_{1}b_{2}b_{3}b_{4}}(b_{1}y_{1}^{2}+b_{2}y_{2}^{2}+b_{3}y_{3}^{2}+b_{4}y_{4}^{2})=0.$$

Durch diese Gleichung und die Gleichungen 9) ist die Wendecurve bestimmt. Nimmt man in den Gleichungen 1), 3), 8), 10), 11) und 16) von III n=4, so kann man in den Gleichungen 11) und 14) von IV unmittelbar statt der tetraedrischen Coordinaten die gewöhnlichen Punktcoordinaten einführen. Man gelangt dann zu folgendem Resultat.

In den beiden homogenen Functionen:

$$P = \sum_{r=1}^{r=4} \sum_{s=1}^{s=4} x_r x_s, \quad Q = \sum_{r=1}^{r=4} \sum_{s=1}^{s=4} z_r x_s,$$

sei allgemein  $a_{r,s} = a_{s,r}, b_{r,s} = b_{s,r}$ . Bezeichnet  $\alpha_{r,s}$  den Factor von  $a_{r,s}$ in A,  $\beta_r$ , den Factor von  $b_r$ , in B, wo:

$$A = \begin{vmatrix} a_{1,1}, & a_{1,4} \\ a_{4,1}, & a_{4,4} \end{vmatrix}, \quad B = \begin{vmatrix} b_{1,1}, & b_{1,4} \\ b_{4,1}, & b_{4,4} \end{vmatrix},$$

setzt man:

$$p = \sum_{r=1}^{r=4} \sum_{s=1}^{s=4} \beta_{r,s}, \quad q = \Sigma \Sigma b_{r,s} \alpha_{r,s},$$

$$4P_1 = \Sigma \Sigma \beta_{r,s} \frac{\partial P}{\partial x_r} \frac{\partial P}{\partial x_s}, \quad 4Q_1 = \Sigma \Sigma \alpha_{r,s} \frac{\partial Q}{\partial x_r} \frac{\partial Q}{\partial x_s},$$

so ist die Discriminante der Gleichung:

$$PB\lambda^{3} + (Pp - P_{1})\lambda^{2}\mu + (Qq - Q_{1})\lambda\mu^{2} + AQ\mu^{3} = 0$$

gleich Null gesetzt, die Gleichung der developpabelen Fläche, welche den beiden Flächen P=0 und Q=0 umschrieben ist. Die Gleichung der Fläche

ist also das Resultat der Elimination von  $\frac{\lambda}{\mu}$  zwischen den Gleichungen :

345

346 Ueber die developpabele Fläche etc. Von Dr. ENNEPER.

$$3PB\lambda^{2}+2(Pp-P_{1})\lambda\mu+(Qq-Q_{1})\mu^{2}=0, (Pp-P_{1})\lambda^{2}+2(Qq-Q_{1})\lambda\mu+3AQ\mu^{2}=0.$$

Für die Wendecurve tritt zu den vorstehenden Gleichungen noch die folgende:

 $BP\lambda^3 + AQ\mu^3 = 0.$ 

Durch Ausführung der angegebenen Elimination ergiebt sich als Gleichung der Fläche:

$$(Pp-P_{i})^{*} (Qq-Q_{i})^{*} - 4AQ(Pp-P_{i})^{*} - 4BP(Qq-Q_{i})^{*} - 27 (ABPQ)^{*} + 18ABPQ(Pp-P_{i})(Qq-Q_{i}) = 0.$$

Die Wendecurve ist durch die beiden folgenden Gleichungen bestimmt:

$$(Pp-P_1)^{t} = 3 B P (Qq-Q_1),$$
  
 $(Qq-Q_1)^{t} = 3 A Q (Pp-P_1).$ 

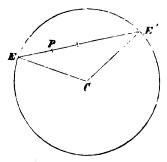
Die durch  $P_1$  und  $Q_1$  bezeichneten Functionen haben eine sehr einfache geometrische Bedeutung, es ist nämlich  $P_1=0$  die Gleichung der reciproken Polarfläche der Fläche Q=0 in Beziehung auf die Fläche P=0. Analoge Bedeutung hat die Gleichung  $Q_1=0$ .

# Kleinere Mittheilungen.

XV. Mittheilungen aus Thomson and Tait, treatise on natural philosophy. Oxford 1867.

Inhalt des Stückes, den ein Kegel von sehr geringer Oeffnung aus einer Kugelfläche herausschneidet. Es sei E der Inhalt eines sehr kleinen Stückes der Kugelfläche (d. h. eines Stückes, wovon

jeder Theil dem Punkt E sehr nahe liegt) und welches durch einen Kegel, der P zur Spitze hat, aus der Kugelfläche herausgeschnitten wird. Die sehr kleine Oeffnung dieses Kegels sei  $\omega$ ; so gross ist also das Stück, welches er aus einer Kugel schneidet, deren Mittelpunkt mit seiner Spitze zusammenfällt und deren Radius die Einbeit ist. Aus einer Kugel, deren Mittelpunkt P und deren Radius PE ist, würde jener Kegel das Stück  $\omega PE^2$ 



schneiden. Dieses Stück ist die orthogonale Projection des Elementes E, und weil der Winkel zwischen beiden Kugelstücken = PEC ist, so hat man

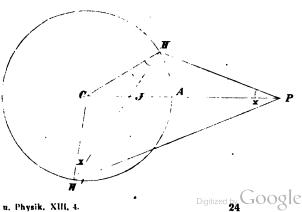
$$E = \omega P E^2 : \cos P E C = \frac{2 a \omega P E^2}{E E'},$$

wenn a = CE den Radius der Kugel bezeichnet.

Die Anziehung einer homogenen Kugelschale auf einen ausserhalb gele-

aussernalo gelegenen Punkt ist dieselbe, als ob die Masse der Schaleim Mittelpunkt derselben concentrirtwäre. Es sei C der Mittelpunktdersehrdünnen Kugelschale, P der ansserhalb gelegene Punkt und J ein





Punkt auf PC, so dass CJ:CA=CA:CP. Ferner sei die ganze Kugelscha in Paare von Elementen zerlegt, die durch einen Doppelkegel mit d Spitze J herausgeschnitten werden. H und H' seien die Inhalte zwei solcher Elemente, dem Kegel mit der Oeffnung  $\omega$  entsprechend. Dann in nach dem Obigem

$$H = \frac{\omega J H^2}{\cos C H J} \text{ und } H' = \frac{\omega J H'^2}{\cos C H' J}$$

Bezeichnet man mit  $\rho$  die überall gleiche Dichtigkeit der Schale, sind die Anziehungen der beiden Elemente H und H' auf P bezüglich

$$\varphi \frac{\omega}{\cos CHJ}$$
,  $\frac{JH^2}{PH^2}$  und  $\varphi \frac{\omega}{\cos CH'J}$ ,  $\frac{JH'^2}{PH'^2}$ .

Ans der Aehnlichkeit der Dreiecke CPH und CHJ folgt  $\angle CPH = \angle CH$ und  $JH \_ CH \_ a$ 

$$\frac{JH}{HP} = \frac{CH}{CP} = \frac{a}{CP}$$

Gleicherweise folgt aus der Aehnlichkeit der Dreiecke PCH' um CH'J, dass LCPH' = LCH'J und

$$\frac{JH'}{H'P} = \frac{CH'}{CP} = \frac{a}{CP}.$$

Die Ausdrücke für die Anziehungen der Elemente H und H' auf gehen durch diese Substitutionen über in

$$e \frac{\omega}{\cos CHJ} \cdot \frac{a^2}{CI^{\prime 2}}$$
 und  $e \frac{\omega}{\cos CH'J} \cdot \frac{a^2}{CP^2}$ .

Weil Dreieck H'CH gleichschenklig ist und die Winkel CPH un CPH' bezüglich gleich CHJ und CH'J sind, so sind diese Ausdrücke gleic und geben eine Resultirende in der Richtung PC, deren Grösse

$$2\omega \varrho. \frac{a^2}{CP^2}.$$

Um die ganze von der Schale auf den Punkt *P* ausgeübte Kraft z finden, wird die ganze Schale durch Doppelkegel, deren Spitzen in Jliege in entsprechende Elemente zerlegt. Die Resultirende je zweier Element ist  $2\omega'$ .  $e \frac{a^2}{CP^2}$  und liegt in der Richtung *PC*. Da  $\Sigma 2\omega$  gleich der Oberfläch der mit dem Radius 1 um *J* beschriebenen Kugelfläche, also  $= 4\pi$  ist, so ha man als Ausdruck der ganzen von der Kugelschale auf *P* ausgeübten Kra

$$\frac{4\pi\varrho.a^2}{CP^2}$$

Duisburg, 3. Mai 1868.

Dr. W. KRUMME, Oberlehrer an der Realschule.

XVI. Auflösung einer Aufgabe von Prinz A. Boncompagni, die Summ von Cubikzahlen betreffend. Von Dr. Ludwig Matthiessen in Husur

Im IX. Jahrgange der Zeitschrift wurde die Aufgabe mitgetheilt: D ganzen Zahlenwerthe der Grössen x, n, r zu bestimmen, welche die Summ

$$x^{3} + (x+r)^{3} + (x+2r)^{3} + \dots + [x+(n-1)r]^{3}$$
  
r Cubikzahl machen.

zwischen ist nach einem im XI. Bande pag. 248 u. flg. von Professor r in Heidelberg gegebenen Referat im Jahre 1866 von Angelo Gei der päpstlichen Academia de' nuovi Lincei eine Abhandlung vorgeprin er Auflösungen der unbestimmten Gleichungen

$$x^{3} + (x + r)^{3} + (x + 2r)^{3} + \dots + [x + (n - 1)r]^{3} = y^{3}$$
  
$$x^{3} + (x + r)^{3} + (x + 2r)^{3} + \dots + [x + (n - 1)r]^{3} = z^{2}$$

Genocchi wendet dabei das bekannte Verfahren an, aus bereits ten Werthen der Unbekannten neue Wurzeln zu erfinden. Angees bekannten Beispiels

$$3^3 + 4^3 + 5^3 = 6^3$$

nun keine Schwierigkeit für n = 3 neue Werthe von x, r und y zu nen. Da aber auch für n andere ganze Zahlenwerthe verlangt werdessen aus dem Referate von Professor Cantor nicht zu ersehen o Genocchi zu anderen Zahlenwerthen dieser Grösse gelangt, so i hier mein Verfahren mittheilen. Man kann nämlich ausgehen von en identischen Gleichungen:

$$0^{3} + 1^{4} = 1^{3} \qquad n = 2$$

$$(-1)^{3} + 1^{3} + 3^{3} = 3^{3} \qquad n = 3$$

$$(-1)^{3} + 0^{3} + 1^{5} + 2^{5} = 2^{5} \qquad n = 4$$

$$(-3)^{3} + (-1)^{3} + 1^{5} + 3^{3} + 5^{5} = 5^{5} \qquad n = 5$$

$$(-2)^{3} + (-1)^{3} + 0^{3} + 1^{3} + 2^{3} + 3^{3} = 3^{3} \qquad n = 6$$

$$u, s, w,$$

ttelst dieser Gleichungen ist man nun im Stande, eine beliebige von Zahlen zu finden, welche eine arithmetische Progression bild deren Cubensumme wieder eine Kubikzahl ist, sowie umgekehrt de Cubikzahl in eine beliebige Anzahl anderer Cubikzahlen zu vern, deren Basen eine arithmetische Progression bilden.

e Summe der gegebenen Reihe ist nämlich

$$n\left(x+\frac{n-1}{2}r\right)\left\{x^{2}+(n-1)rx+\frac{n(n-1)}{1.2}r^{2}\right\}=y^{3}$$

vidirt man die Gleichung durch  $r^3$  und setzt  $x:r=\xi$ ,  $y:r=\eta$ , subausserdem  $2\xi + n - 1 = \zeta$ , so erhält man

$$\frac{n}{8}\zeta(\zeta^2+n^2-1)=\eta^3.$$

s den oben angeführten speciellen Beispielen folgt nun, dass die der Reihe ein Cubus wird, wenn

$$n=2p=3, x_p=-(2p+1), r=2, y=2p+3, n=2p+4, x=-(p+1), r=1, y=p+2$$

gt man hinzu die speciellen Fälle

$$3^3 + 4^3 + 5^3 = 6^3$$
  
 $(-2)^3 + (-1)^3 + 6^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 6^3$ ,

#### Kleinere Mittheilungen.

so ist die Summe ein Cubus, wenn

3) n=3, x=3, r=1, y=6,4) n=8, x=-2, r=1, y=0.

Setzt man 2x + (n - 1)r = z, so kann die Summe offenbar noch ei Cubus werden, wenn *n* eine beliebige gerade oder ungerade Zahl un z = r = 1 ist, also:

5) 
$$n=n, x=\frac{2-n}{2}, r=1, y=\frac{n}{2}.$$

Zu der Auflösung  $3^3 + 4^3 + 5^3 = 6^3$  gelangt man, wenn man

$$n=8, r=1, z=1+u, y=4+u$$

setzt. Hieraus ergiebt sich die Bedingung u = 2 und y = 6, x = -2. Hist also die Auflösung

$$(-2)^3 + (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 6^3$$
,  
die erstere involvirt.

welche die erstere involvirt. Zu der schönen Auflösung

 $11^3 + 12^3 + 13^3 + 14^3 = 20^3$ 

gelaugt man, wenn man n = 4, r = 1, z = 1 + u setzt. Dann ist

$$y^{3} = \frac{4}{8}(1+u)\left\{(1+u)^{2}+15\right\} = 8+9u+\frac{3}{2}u^{2}+\frac{1}{2}u^{3}.$$

Setzt man y = 2 + pu, so erhält man die Bedingungsgleichungen de Rationalität

$$p = \frac{3}{4}, \ u = \frac{3 - 12p^2}{2p^3 - 1} = 24, \ \text{also} \ y = 20, \ x = 11.$$

Was den Fall n = 2 anbetrifft, so bemerkt schon Euler in seine Schriften, dass es unmöglich sei, zwei Cubikzahlen anzugeben, dere Summe wieder einen Cubus gäbe. Also wäre das Beispiel  $0^3 + m^3 = m^3$  di einzige Lösung. Dann kann natürlich auch n = 1 sein. Dass man im Stand ist, auf diese Art Cubikzahlen in die Summe beliebig vieler andere Cubikzahlen zu verwandeln, deren Basen in arithmetischer Progressio stehen, ersicht man aus folgender Zusammenstellung:

$$351120^{3}$$

$$= 0^{3} + 351120^{3}$$

$$= 175560^{3} + 234080^{3} + 292000^{3}$$

$$= 193116^{3} + 210672^{3} + 228228^{3} + 245784^{3}$$

$$= 183540^{3} + 193914^{3} + 204288^{3} + 214662^{3} + 225036^{3}$$

$$= 132240^{3} + 153824^{4} + 175408^{3} + 196992^{3} + 218576^{3} + 240160^{3}$$

$$= 91245^{3} + 117150^{3} + 143055^{3} + 168960^{3} + 194865^{3} + 220770^{3} + 246675^{3}$$

$$= 58520^{3} + 85690^{3} + 112860^{3} + 140030^{3} + 167200^{3} + 194370^{3} + 221540^{3} + 248700^{3}$$

### XVII. Zur Geschichte der Erfindung der elektrischen Telegraphie

Abbé Moigno theilt in "Les Mondes" tome XV, livr. 14, pag. 56 mit: Cantu habe von Mailand an den Administrator des historischen In stituts, Renzi, eine Mittheilung über den Antheil Alexander Volta's a

indung der elektrischen Telegraphie gelangen lassen. Cantu sagt, olta zuerst daran gedacht habe, Signale auf grosse Entfernungen eines auf hölzernen Pfählen ausgespannten Drahtes zu befördern. weis dafür wird ein von Volta an den Professor Barletti am 15. 777 geschriebener Brief mitgetheilt. Bis auf Weiteres scheint mir eser Beweis durchaus ungenügend, weil erstens in dem Briefe zwar Möglichkeit, von Como aus in Mailand eine elektrische Pistole zu die Rede ist, nicht aber von einer Verwerthung dieser Möglichkeit graphische Zwecke, und weil zweitens bereits aus den Jahren 1753 4 Vorschläge zu elektrischen Telegraphen bekannt sind.

e betreffende Stelle des Briefes von Volta giebt Moigno mit fol-Worten wieder: Je ne sais à combien de milles un fil de fer tendu sur le champs ou de la route, replié en arrière ou traversant un canal d'eau, confetincelle suivant le parcours indiqué. Mais je prévois que dans un trèsgage sur la terre humide ou à travers les eaux courants, ils s'établirait une communication qui dévierait le cours du feu électrique séparé du de la bouteille pour retourner au fond. Mai, si le fil de fer était soutenu ertaine élévation au-dessus du sol par des poteaux en bois plantés de didistance, par exemple de Côme à Milan, et interrompu seulement dans er lieu par mon pistolet, qu'il continuât et vint enfin plonger dans un caavigation, qui communique avec mon lac de Côme, je ne crois pas imde faire partir mon pistolet à Milan, avec une bonne bouteille de Leyde par moi à Côme.

gegen wurde aus "Scots Magazine" (Bd. XV, S. 78) zuerst von dem wer Journal "The Common Wealth" in der Nummer vom 21. Februar a Brief mitgetheilt, welcher nach der französischen Uebersetzung im s, revue encycloped-que" (IV, 7) auch in die Zeitschrift des deutschchischen Telegraphen-Vereins (I, 94)überging; derselbe ist von Renn 7. Februar 1753 datirt und mit C. M. unterzeichnet, was man für die sbuchstaben des Schotten Charles Marshall hält (vgl. Du Monaité de télégr. électr. p. 304). In diesem Briefe wird vorgeschlagen, en Buchstaben einen Draht mittels Glas oder Harzkitt isolirt an feste zu befestigen und am Ende mit einer Kugel zu versehen, welche mElektrisiren einen auf Papier geschriebenen Buchstaben anziehen oder man sollte anstatt dieser Buchstaben Glocken von verschiedeisse uehmen und auf diese den elektrischen Funken überspringen Zur besseren Isolation könne man auch die Drähte ihrer ganzen nach mit einer dünnen Lage von Holzkitt überziehen.

ehnlich war bekanntlich der 1774 von Lesage in Genf gemachte ag, mittels an den Drähten angebrachter Hollundermarkkügelchen graphiren.

hliesslich möge noch eine Notiz (in "Comptes rendus", LXVI, 1109) nung finden, in welcher die erste Idee zu einem magnetischen Tele-

351

graphen in das Jahr 1636 verlegt wird; dieselbe scheint sich aber auf de in Daniel Schwenter's mathematisch-philosophischen Erquickstunde (Nürnberg 1636) enthaltenen, damals und auch jetzt noch unausführbare Vorschlag zu beziehen, welchen auch Dub (Anwendung des Elektromagne tismus S. 272) aus Poggendorff's Annalen (82, 335) mittheilt.

EDUARD ZETZSCHE.

**XVIII. Ueber den Aufsatz von Dr. Grelle: "Lineare Construction de Punktepaares, welches zu zwei gegebenen Punktepaaren gleichzeitig har monisch ist"** (Seite 148 laufenden Jahrganges). Die vom Verfasser behan delte Aufgabe ist augenscheinlich unmöglich lösbar; denn das Resultat sin zwei Punkte, demnach bestimmen sich diese durch eine quadratische Glei chung, und diese letztere kann nie linear lösbar sein. — Die Folgerunge des Aufsatzes sind richtig bis Seite 150 unten, wo der Verfasser sagt: "Ver fährt man demnach mit den Paaren u, v und p, q ebenso, wie vorhin mit r, und  $p, q, \ldots$  so ist  $i\ldots$  festgelegt." Hier hat der Verfasser übersehen, das dieses i ein anderes auf der neuen Linie ist, als das vorhergehende (die beiden i liegen auf einer Geraden, welche durch a geht). Selbstverständ lich sind auch die folgenden Aufgaben nicht linear zu lösen.

Berlin.

Dr. H. HERTZER, Lehrer an der Gewerbeakademie.

XIX. Das Carpi-Prämium. Wir wünschen unsere Leser auch diese Jahr wieder mit der Preisfrage bekannt zu machen, an deren Lösung die päpstliche Akademie der Nuovi Lincei in Rom die Ertheilung das Carpi Prämiums von 1000 Lires knüft. Der Gegenstand der Bearbeitung, welche bekanntlich in italienischer, lateinischer oder französischer Sprache abge fasst, spätestens am 31. October 1869 der Akademie übergeben sein muss und welcher der Name des Verfassers in mit einem Motto zu versehender geschlossenen Couvert beizuliegen hat, ist

> "Die Vergleichung der Ebbe- und Fluthverhältnisse der hauptsächlichsten Häfen an der italienischen Küste, die Prüfung und Erklärung der dabei auftretenden Unterschiede."

Mathematische Erörterungen im Anschluss an die Untersuchungen von Laplace über den Gegenstand sind dringend empfohlen; zum Mindester eine klare Darstellung der Schwierigkeiten, welche einer mathematischer Behandlung entgegenstehen. Das experimentelle Material muss aus officiellen Quellen geschöpft sein.

XX. Erklärung in Betreff der Abhandlung des Herrn Dr. v. Drach über die cubischen Kegelschnitte. Gegenüber den Angriffen, welche unser College Dr. v. Drach durch seine Schrift über die cubischen Kegelschnitte sich zugezogen hat, fühlen wir uns zu folgender Erklärung veranlasst.

Nachdem im Eingange jener Schrift Möbius, Chasles, Seidewitz, Schröter, Cremona als diejenigen bezeichnet worden sind, durch welche die Theorie der ubischen Kegelschnitte entstanden und ansgebildet ist, fährt Drach fort:

"Mit Rücksicht darauf, dass einerseits synthetische Betrachtungen "nicht Jedermann angenehm sind und andererseits die analytische Behand-"lung Cremona's ausserhalb seines Vaterlandes weniger bekanntsein mag, "dürfte vielleicht nachfolgende Zusammenstellung der hauptsächlichsten "Eigenthümlichkeiten der Raumcurven dritter Ordnung, welche zugleich "einen Beitrag liefert zu der immer innigeren Verschmelzung der neueren "analytischen und synthetischen Geometrie, sowie zu einer Theorie der "algebraischen Raumcurven überhaupt, nicht unerwünscht sein und die "Aufmerksamkeit in etwas höherem Grade auf jene Curven hinlenken, "deren Bedeutung für die Mechanik schon von Möbius und Chasles er-"kannt wurde und denen möglicher Weise für die weitere Entwickelung "mancher mechanischer und physikalischer Untersuchungen eine nicht "Oberflächen zweiter Ordnung."

In der Schrift selbst sucht Drach die Untersuchungen der genannten Autoren so gut als möglich zu benutzen, um eine Darstellung zu liefern, durch welche dem Leser ein bequemer Zugang eröffnet werden soll in das Innere der in Rede stehenden Theorie.

Wenn Drach in seiner Schrift zuweilen Untersuchungen von Cremona fast wörtlich wiedergiebt, so können wir hierin nur eine Anerkennung der Vortrefflichkeit derselben erblicken, und können überhaupt nicht zugeben, dass, nachdem die von ihm benutzten Quellen in der Einleitung einmal genannt waren, der Verfasser auch im weiteren Verlaufe der Schrift zu fortwährenden Citationen verpflichtet gewesen wäre.

Allerdings, einräumen müssen wir, dass das Verfahren unseres Collegen Drach ein etwas unvorsichtiges gewesen ist. Denn jeder Leser wird, sobalder in der Einleitung einen so glänzenden Namen wie Cremona gefunden hat, ein Vorurtheil fassen zu Gunsten Cremona's, und jeden beliebigen Theil der Schrift von vornherein mehr geneigt sein, als ein Werk Cremona's denn als ein Werk Drach's anzuschen. Und was wohl zu beachten ist, jeder Leser wird fast unwillkürlich sämmtliche gute Partieen der Schrift auf Rechnung Cremona's, hingegen die weniger gelungenen oder gar fchlerhaften Partieen derselben auf Rechnung Drach's setzen.

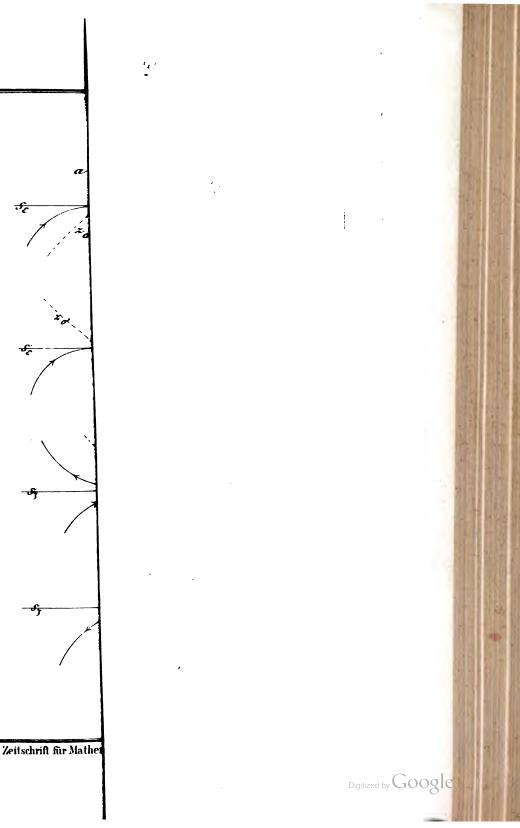
Digitized by GOOGLE

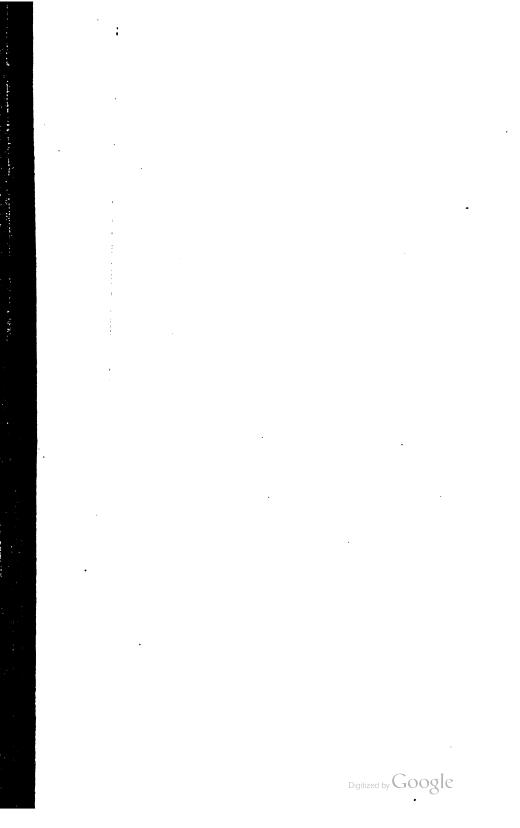
Unvorsichtig ist es also allerdings, dass Drach nicht Schrit Schritt angegeben hat, in wie weit die einzelnen Betrachtungen von mon a oder von ihm selbst herrühren. Aber es ist eine Unvorsichtig durch welche Cremona in keinerlei Weise geschädigt werden kann, Unvorsichtigkeit, durch welche nur Drach selbst in üble Lage kon konnte.

Jedenfalls dürfte nicht zu bestreiten sein, dass Drach sich un grössere Publicum ein anerkennenswerthes Verdienst erworben, inde die Aufmerksamkeit desselben auf die schätzbaren Untersuchungen ( mona's geleitet hat.

> O. HESSE. A. CLEBSCH. C. NEUMANN.







# rojectivischen Eigenschaften der gewöhnlichen und ausgezeichneten Elemente ebener Curven.

Fortsetzung (siehe viertes Heft).

Zweiter Abschnitt.

# ebene Punktreihen und ebenes Strahlbüschel, ebenes Tangentenbüschel und gerade Punktreihe in perspectivischer Lage.

#### 10. Allgemeine Definition und Erzeugungsweise von Curven.

a) Denken wir uns einen Punkt  $\hat{s}$  aus der Lage  $\hat{s}^0$  auf einer Gein die Lage eines der ihm benachbarten Punkte gerückt, etwa in von  $\hat{s}^1$ , dann eine Gerade *s* aus der Lage  $s_0$  in der Ebene  $\mathfrak{S}$  um kt  $\hat{s}^1$  in die Lage eines der dem Strahl  $s_0$  benachbarten Strahlen en Strahlbüschels  $\hat{s}$ , etwa in die Lage  $s_1$  gedreht, dann  $\hat{s}$  auf der Geaus der Lage  $\hat{s}^1$  in die eines derbeiden benachbarten Punkte gerückt, ch  $\hat{s}^3$ , *s* um den Punkt  $\hat{s}^2$  in derselben Ebene  $\mathfrak{S}$  aus der Lage  $s_1$  in der beiden im Büschel  $\hat{s}^2$  benachbarten Strahlen  $s_2$  gedreht u. s. f., ht eine stetige ebene Curve\*); an welchen Begriff wir jedoch ngung knüpfen, dass  $\hat{s}$  und *s* in wenigstens zwei aufeinander follagen denselben Richtungs- resp. Drehsinn beibehalte\*\*). Jede der  $s_0, s_1, s_2 \dots s_{\xi} \dots$  verbindet zwei aufeinander folgende Curvenpunkte,  $\hat{s}^1, \hat{s}^1, \hat{s}^2, \hat{s}^2, \hat{s}^3 \dots \hat{s}^{\xi}, \hat{s}^{\eta} \dots$  und jeder der Punkte  $\hat{s}^1, \hat{s}^2, \dots, \hat{s}^{\xi}, \dots$  ist ittpunkt zweier aufeinander folgender Tangenten resp.  $s_0 s_1, s_1 s_2 \dots$ 

commt es vor, dass, wenn s in eine Lage  $s_{\lambda}$  und der zugehörige der 3 in die Lage  $s^{\lambda+1}$  gelangt sind, der Winkel, um welchen nun s

Siehe die Anmerkung zu, No. 5062.

ift f. Mathematik u. Physik, XIV, 5,

gl. Cremona, Introduzione ad una teoria geometrica delle curve piane No. 23; t, Geometrie der Lage No. 2, 21.

# 356 Die projectivischen Eigenschaften der gewöhnlichen und

sich dreht, gleich Null ist, also  $\tilde{g}$  auf der Geraden  $s_{\lambda}$  an die Stelle e der Nachbarelemente von  $\tilde{g}^{\lambda+1}$ , etwa  $\tilde{g}^{\lambda+2}$  rücken muss, dass s fe diese Lage  $s_{\lambda}$  beibehält und nur  $\tilde{g}$  in die dem  $\tilde{g}^{\lambda+2}$  benachbarte l  $\tilde{g}^{\lambda+3}$  rückt u. s. f., bis  $\tilde{g}$  zu einem Punkt  $\tilde{g}^{\lambda+\mu}$  der Geraden  $s_{\lambda}$  gelangt welchen sich s aus der Lage  $s_{\lambda}$  in die eines der Nachbarelemente des schels  $\tilde{g}^{\lambda+\mu}$  dreht; oder kommt es andererseits vor, dass, wenn  $\tilde{g}$  in Lage eines Punktes  $\tilde{g}^{\lambda}$  und s in die Lage  $s_{\lambda}$  gekommen, s aus der Lage in die darauffolgende u. s. f. übergeht, ohne dass  $\tilde{g}$  aus der Lage  $\tilde{g}^{\lambda}$  r bis s in eine Lage  $s_{\lambda+\mu}$  gelangt, auf welchem Strahl  $\tilde{g}$  aus der Lage in eine benachbarte rückt, s aber in seinen sämmtlichen Lagen in derse Ebene  $\mathfrak{S}$  liegt, so nennen wir eine solche Curve eine ebene gebroch Curve, eine stetige ebene gebrochene Curve, wenn weder der Punktfolge von  $\tilde{g}^{\lambda+1}$  bis  $\tilde{g}^{\lambda+\mu-1}$  incl., noch s in der Strahlent von  $s_{\lambda}$  bis  $s_{\lambda+\mu-1}$  incl. den Bewegungssinn ändert.

47. Zur Erzeugung einer ebenen Curve nahmen wir die sämmtli in  $\mathfrak{s}^1, \mathfrak{s}^2...\mathfrak{s}^{\xi}...$  befindlichen ebenen Strahlbüschel in einer und derse Ebene liegend an. Denken wir uns jedoch, nachdem \$ in den dem \$<sup>0</sup> ben barten Punkt 3<sup>1</sup> und s von s nach s gerückt, die Ebene S aus der l  $(s_{a}s_{b}) = \mathfrak{S}^{0}$  in die der einen der  $\mathfrak{S}^{0}$  benachbarten Ebenen des Ebe büschels s, gedreht, etwa in die Lage S<sup>1</sup>, dann 3 von 3<sup>1</sup> auf der Gerad nach 3<sup>2</sup> und s aus der s, in die des einen seiner Nachbarstrahlen in der Ebene S<sup>1</sup> zugehörigen Strahlbüschel 3<sup>2</sup>, s gedreht und nun wiede Ebene S aus der Lage S<sup>1</sup> in die der einen ihrer Nachbarebenen im 1 nenbüschel s, gedreht, etwa in die Lage S<sup>2</sup>, und nachdem s von s<sup>2</sup> auf die folgende Lage 3<sup>3</sup> gerückt, in dem der Ebene S<sup>2</sup> zugehörigen Stral schel \$<sup>3</sup> die Gerade s aus der Lage s, in die des einen der Nachbarstra s gedreht u. s. f., so entsteht eine gewöhnliche stetige Raumcun sobald wir die Bedingung erfüllen, dass, wenn s in irgend einer Lag der Geraden s den Richtungssinn oder s in irgend einer Lage s<sup>µ</sup> von s Drehsinn oder S in irgend einer Lage s, von s den Drehsinn ändern, beweglichen Elemente \$, s, S den jedesmaligen neuen Richtungs- r Drehsinn wenigstens in zwei aufeinanderfolgenden Lagen beibehalten.

zeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 357

, <sup>g²</sup> u. s. f. , andererseits s<sub>0</sub>, s<sub>1</sub>, s<sub>2</sub> u. s. f., S<sup>1</sup>, S<sup>2</sup>, S<sup>3</sup> u. s. f. nennen in ander folgende Elemente der Raumcurve.

Inbegriff der Bewegung, welche die drei Elemente  $\mathfrak{s}, s, \mathfrak{S}$  ausvenn sie resp. aus einer Lage  $\mathfrak{s}^{\lambda}, s_{\lambda}, \mathfrak{S}^{\lambda}$  in die darauffolgende <sup>1</sup>,  $s_{\lambda+1}, \mathfrak{S}^{\lambda+1}$  übergehen, nennen wir eine Bewegungseinerändern in einer Aufeinanderfolge von Bewegungseinheiten eines der Elemente  $\mathfrak{s}, s, \mathfrak{S}$  ihre Lage nicht, so erhalten wir eine gee stetige Raumcurve; wir stellen aber auch hier die Bedinss, so lange in einer Aufeinanderfolge von Bewegungseinheiten zwei der Elemente  $\mathfrak{s}, s, \mathfrak{S}$  ihre Lage nicht ändern, das dritte den - resp. Drehsinn nicht ändern darf, und dass, so lange eines und ler Elemente  $\mathfrak{s}, s$  seine Lage nicht verändert, die anderen beiden vegungssinn nicht ändern dürfen.

esteht zwischen den Ortsveränderungen der Elemente ŝ, s, S egungseinheit und den Bewegungseinheiten unter sich ein Gesetz, die Curve eine gesetzmässige, im anderen Falle eine gesetz-

ngen nach einer Aufeinanderfolge von Bewegungseinheiten die  $\mathfrak{s}, s, \mathfrak{S}$  resp. aus den Lagen  $\mathfrak{s}^{1}, s_{1}, \mathfrak{S}^{1}$  in die Anfangslage resp. und fallen sie in den folgenden Bewegungseinheiten  $(\mathfrak{s}\mathfrak{S})^{1+2}$ ,  $\mathfrak{s}$ . f. resp. mit den gleichartigen Elementen der Bewegungs-  $(\mathfrak{s}\mathfrak{S})^{1}, (\mathfrak{s}\mathfrak{S}\mathfrak{S})^{2}$  u. s. f. zusammen, so heisst die Curve eine geene Curve.

Verändert während des ganzen Verlaufes der Curve die Ebene S nicht, so erhalten wir eine stetige ebene Curve; verändert des ganzen Verlaufes der Curve s seine Lage nicht, so entsteht nenbüschel, dessen Bewegungseinheiten aus den zwei bewegementen 3 und S bestehen, und verändert während des ganzen der Curve 3 seine Lage nicht, so hüllen die Elemente s und S gel ein. Bleiben während des ganzen Verlaufes der Curve s und entsteht ein Ebenen büschel, dessen Bewegungseinheiten nur einen Element S bestehen; bleiben S und 3 fest, so entsteht ein Strahlbüschel und bleiben S und s fest, eine gerade Punkts specielle Fälle der allgemeinen Curve.

ind nie während des ganzen Verlaufes einer in der angegebenen zeugten, stetigen, gebrochenen geschlossenen Raumcurve alle drei der Bewegungseinheiten in Bewegung, wenn diese aus einer lie nächstfolgende übergehen, und wechseln stets die Aufeinander n Bewegungseinheiten, in denen die Gerade s festbleibt, während

25\*

g und S in der angegebenen Weise stetig ihre Lage verändern, mit solchen Aufeinanderfolgen ab, in denen die Gerade s stetig ihre Lage verändert, während g und S festbleiben, so entsteht ein räumliches und wenn die Ebene S stets festbleibt, ein ebenes Polygon als specieller Fall der allgemeinen, stetigen, gebrochenen und geschlossenen Raumcurve.

c) Aus dem Vorhergehenden folgt, gemäss den in § 1 gemachten Voraussetzungen als charakteristisches Merkmal aller Curven, welche auf die erwähnte Art erzeugt gedacht werden können, dass jede Bewegungseinheit nur an zwei benachbarte grenzt, so dass, wenn die eine derselben als die vorhergehende bezeichnet wird, nur eine die folgende sein kann, und dass jedes der Elemente der Bewegungseinheiten (der Curve) nur an zwei gleichartige grenzt, derart, dass, wenn das eine derselben das vorhergehende, nur eines das folgeude sein kann, die Curve also nur in zweierlei, einander entgegengesetzten Bewegungssinnen von den sie bildenden Bewegungseinheiten oder deren Elementen beschrieben werden kann.

Weiter auf die Raumcurven einzugehen, entspricht unserem Zwecke nicht; bis hierher glaubten wir aber auch auf sie unsere Discussion ausdehnen zu müssen, um die allgemeine Giltigkeit der angegebenen Erzeugungsart der Curven und damit ihre Berechtigung und ihre Grenzen zu erkennen (vergl. No. 7d).

48. Nachdem in dem ersten Abschnitt die speciellen ebenen stetigen Curven, eine oder mehrere gerade Punktreihen mit einem oder mehreren ebenen Strahlbüscheln in perspectivische Beziehung gebracht und die in den verschiedenen Lagen derselben stattfindenden und die jedesmalige Lage charakterisirenden Eigenschaften, die Abhängigkeit der Lage und des Bewegungssinnes jedes der Elemente von der Lage und dem Bewegungssinn des entsprechenden erörtert, wollen wir in diesem Abschnitt die allgemeinen stetigen ebenen nicht gebrochenen Curven in ihren Beziehungen zu diesen einfachsten ebenen stetigen Curven in gleicher Weise untersuchen und im Folgenden unter "Curve" immer eine ebene stetige nicht gebrochene Curve verstehen, welche wir uns auf die in No. 46 angegebene Art erzeugt denken können.

a) Eine solche Curve kann, da jede ihrer Bewegungseinheiten stets aus zwei Elementen, Punkt und Gerade besteht, ihrer Entstehung gemäss (No. 46 und 47 c) sowohl als eine continuirliche Aufeinanderfolge von Punkten, eine krumme Punktreihe, wie als eine continuirliche Aufeinanderfolge von Strahlen, ein Tangentenbüschel angesehen werden. Jeder Punkt der Curve erscheint als der Mittelpunkt eines ebenen Strahlbüschels, welcher zwei aufeinanderfolgende Strahlen mit der Curve, d. i. ihrem Tangentenbüschel gemeinschaftlich hat, und jede Tangente der Curve als eine Digitized by gezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 359

Punktreihe, welche zwei aufeinanderfolgende Punkte mit der Curve shaftlich hat.

Den Voraussetzungen in No. 2 und 3 zufolge oder nach No. 5 ent-

Punkt der Curve in jedem schel der Ebene, mit deselpunkt er nicht zusammenund nur ein Strahl, welcher perspectivisch liegt; in dem-Strahlbüschel aber, dessen nkt mit ihm identisch ist, hen ihm alle Strahlen;

von einander verschiedeeinanderfolgenden Punkten

<sup>1</sup> der Curve entsprechen der Strahlbüschel der Ebene, l**ittelpunkte ausserha**lb der emeinschaftlichen Tangente n, zwei aufeinanderfolgende nder verschiedene Strahlen; m der Strahlbüschel der deren Mittelpunkte die von #+1 verschiedenen Punkte ind, ein und derselbe (zwei enfallende) Strahl, nämlich e verbindende Tangente s\_; n der beiden Strahlbüschel, littelpunkte die Punkte 3<sup>#</sup> <sup>+1</sup> selbst sind, die Tangente beiden gemeinschaftliche und alle übrigen Büscheljeder Tangente der Curve auf jeder geraden Punktreihe der Ehene, deren Träger nicht mit ihr zusammenfällt, ein und nur ein Punkt, welcher mit ihr perspectivisch liegt; auf derjenigen Punktreihe aber, deren Träger mit ihr identisch ist, entsprechen ihr alle Punkte;

je zwei von einander verschiedenen aufeinanderfolgenden Tangenten  $s_{\pi-1}$ ,  $s_{\pi}$  der Curve entsprechen aufjeder der geraden Punktreihen der Ebene, welche nicht den beiden gemeinschaftlichen Punkt $\mathfrak{g}^{\pi}$  enthalten, zwei aufeinanderfolgende von einander verschiedene Punkte;

auf jeder der Punktreihen, welche den beiden gemeinschaftlichen Punkt

g<sup>π</sup> enthalten, aber mit keiner derselben zusammenfallen, ein und derselbe(zwei zusammenfallende)Punkt, nämlich der Curvenpunkt g<sup>π</sup>;

auf jeder der beiden Punktreihen, deren Träger diese beiden Tangen-

ten selbst sind, der Curvenpunkt  $\mathfrak{s}^{\pi}$ , welcher beiden gemeinschaftlich ist, und alle übrigen Punkte der Geraden.

#### §. 11. Gewöhnliche endliche Curvenelemente.

#### A. Allgemeine Bestimmungen.

Bewegen wir eine Gerade s so, dass sie in einem bestimmten der Reihe nach die Lage der Tangenten s einer ebenen stetigen einnimmt, von irgend einer ihrer Tangenten an, welche wir mit s bezeichnen wollen, und rücke ein Punkt  $\hat{s}^{e}$  auf der Geraden  $s_{e}$  in jeder ihrer Lagen so fort, dass er der Reihe nach die Punkte der Curve von  $\hat{s}^{o}$ an deckt, das heisst also, lassen wir die Gerade  $s_{e}$  im Sinne  $\Sigma$  von  $s_{o}$  an den Tangentenbüschel und zugleich den Punkt  $\hat{s}^{e}$  von  $\hat{s}^{o}$  an die krumme Punktreihe S durchlaufen, so wird zufolge No. 46 und 14 $a^{i}$  durch die Bestimmung des Bewegungssinnes  $\Sigma$  auf jeder der Tangenten s der Curve ein gewisser Richtungs- und in jedem der Büschel  $\hat{s}$  ein gewisser Drehsinn bezeichnet, welche jeder gleichzeitig mit  $\Sigma$  in den entgegengesetzten übergehen.

a) Wir nehmen nun vorläufig an, die Curve S habe in den nächsten  $\lambda$ im Sinne  $\Sigma$  auf  $s_0$  resp.  $\mathfrak{z}^0$  folgenden Tangenten  $s_1 s_2 \ldots s_{\lambda}$  und Punkten  $\mathfrak{z}^1 \mathfrak{z}^2 \ldots \mathfrak{z}^{\lambda}$ , welche das Curvenstück  $S^{(o\lambda)}$  bilden, die Eigenschaft,

- 1. dass diese Tangenten von  $S^{(o\lambda)}$  lauter endliche Gerade, welche sich sämmtlich nur in endlichen Punkten schneiden, so dass also auch die  $\lambda + 1$  Curvenpunkte  $\hat{s}$  von  $S^{(o\lambda)}$  lauter endliche Punkte sind,
- 2. dass  $s_{\rho}$  beim Uebergang aus jeder der ersten  $\lambda$  Tangenten von  $S^{(o\lambda)}$  in die im Sinne  $\Sigma$  folgende eine Drehung in demselben Sinne  $\Delta$  ausführe, als bei dem Uebergange aus der Lage  $s_{\rho}$  in die  $s_{\rho}$ ,
- 3. dass der Punkt  $\mathfrak{F}^{\mathbf{q}}$ , um aus der Lage irgend eines der ersten  $\lambda$  Curvenpunkte von  $S^{(o \ \lambda)}$  in den im Sinno  $\Sigma$  folgenden zu gelangen, auf der mit beiden perspectivischen Lage von  $s_{\rho}$  sich jedesmal in dem selben Richtungssinn P bewegen muss, der auf der Geraden  $s_{\rho}$  in der Aufangslage derselben  $s_{\rho}$  durch die Bewegung des Punktes  $\mathfrak{s}^{\varrho}$  aus der Lage  $\mathfrak{s}^{\circ}$  in die  $\mathfrak{s}^{1}$  eindeutig bezeichnet ist (No. 14 $\mathfrak{a}^{1}$ ).

Diese Annahmen sind nach No. 46 gestattet, da über den Werth von  $\lambda$  nichts bestimmt ist.

b)  $s_{\delta}$ ,  $s_{\varepsilon}$ ,  $s_{\gamma}$ ,  $s_{\eta}$ ,  $s_{\theta}$  seien irgend fünf im Sinne  $\Sigma$  aufeinanderfolgende der erwähnten  $\lambda + 1$  Tangenten von  $S^{(o \lambda)}$ , von denen die ersten vier resp. die Curvenpunkte  $\hat{s}^{\delta} \hat{s}^{\varepsilon}$ ,  $\hat{s}^{\varepsilon} \hat{s}^{\beta}$ ,  $\hat{s}^{\delta} \hat{s}^{\eta}$ ,  $\hat{s}^{\eta} \hat{s}^{\vartheta}$  enthalten;  $s_{\alpha}$ ,  $s_{\beta}$  seien irgend zwei im Sinne  $\Sigma$  aufeinanderfolgende der  $\zeta + 1$  Tangenten von  $s_{o}$  bis  $s_{\zeta}$ welche resp. die Punkte  $\hat{s}^{\alpha} \hat{s}^{\beta}$ ,  $\hat{s}^{\beta} \hat{s}^{\gamma}$  enthalten, wobei also  $\zeta$  jeden der Werthe 0, 1, 2, ...,  $\lambda - 2$ ,  $\beta$  jeden der Werthe 1, 2...,  $\zeta - 1$  haben kann.

• c) Befindet sich  $s_{\varrho}$  in der Lage einer der Tangenten von  $S^{(o \lambda)}$ , etwa  $s_{\varrho}$ , so deckt der Halbstrahl  $\hat{e}^{(\varrho \mid \infty)}$ , d. i. der Halbstrahl, welcher mit dem

Grenzpunkt  $\mathfrak{s}^{\mathfrak{q}}$  als Anfangspunkt den Richtungssinn P angiebt (No. 14 $\mathfrak{a}^{\mathfrak{s}}$ ), wenn  $\mathfrak{s}^{\mathfrak{q}}$  in der Lage  $\mathfrak{s}^{\mathfrak{f}}$ , den Halbstrahl  $\mathfrak{s}_{\xi}^{(\mathfrak{f} \pi \infty)} = \mathfrak{s}_{\xi}^{(\mathfrak{f} | \infty)}$ , und wenn  $\mathfrak{s}^{\mathfrak{q}}$  in die Lage  $\mathfrak{s}^{\mathfrak{q}}$  rückt, den Halbstrahl  $\mathfrak{s}_{\xi}^{\mathfrak{f}(\eta \infty)} = \mathfrak{s}_{\xi}^{(\eta | \infty)}$ ; geht nun  $s_{\mathfrak{q}}$  in die im Sinne  $\Sigma$  auf  $s_{\xi}$  folgende Lage  $s_{\eta}$  über, im Büschel  $\mathfrak{s}^{\eta}$  im Sinne  $\varDelta$  sich fortbewegend, so geht nach Voraussetzung (No. 49 $\mathfrak{a}^{\mathfrak{s}}$ ) der Halbstrahl  $\mathfrak{s}^{(\mathfrak{q}|\infty)}$ aus der Lage  $\mathfrak{s}_{\xi}^{(\eta|\infty)}$  in die Lage  $\mathfrak{s}_{\eta}^{(\eta|\infty)} = \mathfrak{s}_{\eta}^{(\eta \oplus \infty)}$  über, in welcher er mit der folgenden, wenn  $\mathfrak{s}^{\mathfrak{q}}$  aus der Lage  $\mathfrak{s}^{\eta}$  in die  $\mathfrak{s}^{\mathfrak{s}}$  rückt, ausser diesen beiden (Punkten)  $\mathfrak{s}^{\mathfrak{q}}$  und  $\mathfrak{s}^{\mathfrak{s}}$  alle übrigen Punkte gemeinschaftlich hat; desgleichen haben die Halbebenen  $\mathfrak{s}_{(\xi|\xi)}^{(\eta|\chi)}$  und  $\mathfrak{s}_{(\eta|\eta)}^{(\eta|\chi)}$  ausser den Punkten der begrenzenden Halbstrahlen, d. i. ausser den Punkten der Geraden  $s_{\xi}$  und  $s_{\eta}$ alle übrigen Punkte gemeinschaftlich (No. 17 $\mathfrak{a}$ , 39 $\mathfrak{a}$ ). Ebenso haben auch die Halbstrahlen  $\mathfrak{s}_{\xi}^{(\eta-\infty)} = \mathfrak{s}_{\xi}^{(\eta|\xi\infty)}$  und  $\mathfrak{s}_{\xi}^{\eta(\xi\infty)} = \mathfrak{s}_{\xi}^{(\xi-\infty)}$  ausser den Grenzpunkten  $\mathfrak{s}^{\mathfrak{s}}$  und  $\mathfrak{s}^{\mathfrak{q}}$  alle übrigen Punkte und die Halbebenen  $\mathfrak{s}_{(\xi|\xi)}^{(\eta-\infty)} = \mathfrak{s}_{(\xi-\xi)}^{(\eta|\infty)}$ und  $\mathfrak{s}_{(\eta|\eta)}^{(\eta-\infty)}$  alle Punkte ausser denen der Geraden  $s_{\xi}$  und  $\mathfrak{s}_{(\xi-\xi)}^{(\eta|\infty)}$ 

Der Schnittpunkt irgend einer Geraden  $g_{\pi}$  mit der Tangente  $s_{\xi}$  gehört demnach, wenn er ein endlicher von  $\mathfrak{F}$  und  $\mathfrak{F}^{7}$  verschiedener Punkt ist, demjenigen der beiden Halbstrahlen  $\mathfrak{F}^{(q|\alpha)}, \mathfrak{F}^{(q-\alpha)}$ , welchem er in Bezug auf die eine der beiden Lagen  $\mathfrak{F}^{\zeta}$  und  $\mathfrak{F}^{7}$  von  $\mathfrak{F}^{q}$  angehört, auch in Bezug auf die andere an. Der Mittelpunkt  $\mathfrak{p}$  irgend eines Strahlbüschels gehört, wenn er ein endlicher ausserhalb der Geraden  $s_{\zeta}$  und  $s_{\eta}$  gelegener Punkt der Ebene ist, derjenigen der beiden Halbebenen  $\mathfrak{s}_{(\varrho|\varrho)}^{(\varrho|\infty)}$ , welcher er in Bezug auf die eine der beiden Lagen  $s_{\zeta}$  und  $s_{\eta}$ von  $s_{\varrho}$  angehört, auch in Bezug auf die andere an.

Wegen der Voraussetzungen in No. 49*a* gilt, was hier von den Punkten  $\mathfrak{g}^{\xi}$  und  $\mathfrak{g}^{\eta}$  und den Tangenten  $s_{\xi}$  und  $s_{\eta}$  gesagt ist, von je zwei aufeinanderfolgenden Punkten und je zwei aufeinanderfolgenden Tangenten des Curvenstücks  $S^{(o \lambda)}$ .

B. Ein nur gewöhnliche endliche Elemente enthaltendes Curvenstück und eine gerade Punktreihe.

50. Aus No. 49c und 45e oder 38c<sup>2</sup> und 45b erhalten wir folgende Sätze:
a) 1. Da die Punkte \$\vert von S<sup>(0 \lambda)</sup> continuirlich sich aneinander reihen,

und lauter endliche Punkte sind, so liegen sie in Bezug auf jede Gerade, welche keinen derselben enthält, auf derselben Halbebene.

2. Es folgen daher, während die Gerade  $s_{\rho}$  von  $s_{\rho}$  an stetig im Sinne  $\Sigma$  das Curvenstück  $S^{(o\,\lambda)}$  beschreibt bis  $s_{\lambda}$ , die mit den aufeinanderfolgenden Lagen derselben, d. i. mit den im Sinne  $\Sigma$  aufeinanderfolgenden Tangenten von  $S^{(o\,\lambda)}$  auf irgend einer Geraden  $g_{\pi}$  der Ebene, welche keinen der Punkte  $\hat{s}$  von  $S^{(o\,\lambda)}$  enthält, also auch auf  $g_{\infty}$ , perspectivischen Punkte stetig in demselben Richtungssinne  $P_{\pi}$  aufeinander und bilden auf derselben di Strecke  $g_{\pi}^{(o|\lambda)}$ ;

3. und zwargehören, wenn  $g_{\pi}^{(o|\lambda)}$  den unendlich entfernten Punkt von  $g_{\pi}$  nicht enthält, diese Punkte entweder sämmtlich dem Halbstrahl  $\hat{g}^{(\varrho|\infty)}$  oder sämmtlich dem Halbstrahl  $\hat{g}^{(\varrho-\infty)}$ der perspectivischen Lagen von  $s_{\varrho}$  an. Wenn aber die Strecke  $g_{\pi}^{(o|\lambda)}$  den unendlich entfernten Punkt  $g_{\pi}^{\infty}$  einmal enthält, also  $g_{\pi}$  zu einer der Tangenten von  $S^{(o\lambda)}s_{\mu}$  parallel ist, so gehören (No. 35 e) die den Tangenten  $s_{o}s_{1}\cdots$  bis  $s_{\mu}$  entsprechenden Punkte, das sind die Punkte des Halbstrahles  $g_{\pi}^{(o|\infty)}$ , wenn einer derselben in dem Halbstrahl $\hat{g}^{(\varrho|\infty)}(\hat{g}^{(\varrho-\infty)})$ der perspectivischen Lage von  $s_{\varrho}$  liegt, sämmtlich dem Halbstrahl  $\hat{g}^{(\varrho|\infty)}$  $(\hat{s}^{(\varrho-\infty)})$ , und die den Tangenten von  $s_{\mu}$  bis  $s_{\lambda}$  entsprechenden Punkte das sind die Punkte des Halbstrahles  $g_{\pi}^{(\infty|\lambda)}$  sämmtlich dem Halbstrahl  $\hat{s}^{(\varrho-\infty)}$  ( $\hat{s}^{(\varrho|\infty)}$ ) der perspectivischen Lagen von  $s_{\varrho}$  an (vgl. No. 52f).

b) 1. Enthält die Gerade  $g_{\pi}$  einen der Punkte § von  $S^{(e\lambda)}_{\beta}$ und fällt sie mit keiner der Tangenten von  $S^{(e\lambda)}$  zusammen, so liegen die beiden Halbstrahlen  $\hat{s}_{\alpha}^{(\beta|\alpha)}$  und  $\hat{s}_{\beta}^{(\beta|\alpha)}$  der beiden aufeinanderfolgenden Tangenten  $s_{\alpha}$  und  $s_{\beta}$ , welche sich im Punkte  $\hat{s}^{\beta}$  schneiden, nach No. 37b (für n = 2) auf derselben Halbebene in Bezug auf  $g_{\pi}$ , also nach No. 34b<sup>1</sup> die Halbstrahlen  $\hat{s}_{\alpha}^{(\beta-\alpha)} = \hat{s}_{\alpha}^{(\beta\alpha\alpha)}$  und  $\hat{s}_{\beta}^{(\beta|\alpha)} = \hat{s}_{\beta}^{(\beta\gamma\alpha)}$  und demnach auch die Punkte  $\hat{s}^{\alpha}$  und  $\hat{s}^{\gamma}$  auf entgegengesetzten Halbebenen in Bezug auf  $g_{\pi}$ . Es liegen folglich, wenn  $\hat{s}^{\beta}$  der einzige Punkt von

S<sup>(o 1)</sup> ist, welchen g<sub>z</sub> enthält, die Punkte §<sup>o</sup>, §<sup>1</sup> bis §<sup>a</sup> auf einer, die Punkte §<sup>7</sup> bis §<sup>1</sup> auf der anderen Halbebene in Bezug auf g<sub>z</sub>.

2. Der Punkt  $\hat{s}^{\beta}$  gehört dem Halbstrahl  $\hat{s}_{\alpha}^{(\alpha\beta\alpha)} = \hat{s}_{\alpha}^{(\alpha\mid\alpha)}$  von  $s_{\alpha}$  und dem Halbstrahl  $\tilde{s}_{\beta}^{(\boldsymbol{y} \ \boldsymbol{\beta} \ \boldsymbol{\infty})} = \tilde{s}_{\beta}^{(\boldsymbol{y} - \boldsymbol{\alpha})}$  von  $s_{\beta}$  an. Mithin folgen die mit den Tangenten s, s, bis s, auf g, perspectivischen Punkte in demselben Richtungssinne P\_aufeinander, bilden die Strecke  $\mathfrak{g}_{\pi}^{(\mathfrak{o}|\mathfrak{a})}$   $(\mathfrak{g}_{\pi}^{\mathfrak{a}} = \mathfrak{F}^{\mathfrak{f}})$  und gehören, wenn diese den unendlichentfernten Punkt nicht enthält, sämmtlich dem Halbstrahl g<sup>(q) ∞)</sup> der perspectivischen Lagen von  $s_{\rho}$  an. Im Punkt  $g_{\pi}^{\alpha} = g_{\pi}^{\beta} = s^{\beta}$  fallen die mit den beiden Tangenten s, und s, perspectivischen Punkte zusammen (vgl. No. 30c, 31d, 45e)\*). Die mit den Tangenten  $s_{\beta}$  bis  $s_1$  auf  $g_{\pi}$  perspectivischen Punkte folgen ebenfalls stetig in unter sich gleichem, aber dem ersteren entgegengesetzten Richtungssinne  $\overline{P}_{a}$  auf einander, bilden die Strecke  $g_{\pi}^{(\beta|\lambda)}$  bezogen auf den Richtungssinn  $\bar{P}_{\pi}$ ,  $g_{\pi}^{(\beta-\lambda)}$  bezogen auf den Sinn  $P_{\pi}$ (vgl. No. 16c), und gehören, wenn diese den unendlich entfernten Punktnicht enthält, sämmtlich dem Halbstrahl g<sup>(q-∞)</sup> der perspectivischen Lagen von san. Es geht also der dem Strahl s aufeiner Geraden g entsprechende Punkt, wenn 3° diese überschreitet, stets von dem Halbstrahl #<sup>(e|∞)</sup> über auf den Halbstrahl  $\mathfrak{s}^{(\varrho-\infty)}$ , nie umgekehrt.

3. Enthält nun aber auch eine der Strecken oder jede derselben einmal den unendlich entfernten Punkt, so gehören die sämmtlichen Punkte des Theiles  $g_{\pi}^{(\infty \mid \beta)}$  der ersten Strecke dem Halbstrahl  $\tilde{s}^{(\varrho \mid \infty)}$ , die des Theiles  $g_{\pi}^{(\beta - \infty)}$  (die Bezeichnung bezogen auf den Richtungssinn  $P_{\pi}$ ) der zweiten Strecke dem Halbstrahl  $\tilde{s}^{(\varrho - \infty)}$ , folglich (No. 35 e, 50 a<sup>3</sup>) die sämmtlichen Punkte des Theiles  $g_{\pi}^{(o' \propto)}$  der ersten Strecke dem Halbstrahl  $\tilde{s}^{(\varrho - \infty)}$ 

<sup>\*)</sup> Wie dies die Annahme in No. 16c begründet, so ist andererseits die Be obachtung von No. 16c bei der Erzeugung von Curven auf die in No. 46 angegebene Weise als Bedingung für die Stetigkeit derselben aufsustellen. Vgl. No. 51 b<sup>2</sup> und No. 60.

und die des Theiles  $g_{\pi}^{(\infty - \lambda)}$  der zweiten Strecke dem Halbstrahl  $\mathfrak{g}^{(\boldsymbol{\varphi} \mid \infty)}$  der perspectivischen Lagen von  $s_{\alpha}$  an (vgl. No. 52 f).

4. Geht aber die Gerade  $g_{\pi}$  nicht blos durch den Punkt  $\hat{s}^{\beta}$  von  $S^{(0,1)}$ , sondern noch durch einen anderen,  $\hat{s}^{\xi}$ , ohne aber mit einer der Tangentens zusammenzufallen, so muss der der Tangente  $s_{\rho}$  auf  $g_{\pi}$  entsprechende Punkt von  $\hat{s}^{\beta}$  aus den unendlich entfernten Punkt von  $g_{\pi}$  überschreiten, um so auf den Halbstrahl  $\hat{s}^{(\rho \mid \infty)}$  von  $s_{\rho}$  zu gelangen, ehe er nach  $g_{\pi}^{\epsilon} = g_{\pi}^{\xi} = \hat{s}^{\xi}$ kommt; die Strecke  $g_{\pi}^{(\beta - \epsilon)}$ , welche die im Sinne  $\overline{P}_{\pi}$  aufeinanderfolgenden den im Sinne  $\Sigma$  geordneten Tangenten  $s_{\beta}$  bis  $s_{\epsilon}$  entsprechenden Punkt umfasst, muss daher den unendlich entfernten Punkt enthalten, d. i. eine der Tangenten von  $s_{\beta}$  bis  $s_{\epsilon}$  muss zu  $g_{\pi}$  parallel sein. Die den Tangenten  $s_{\xi}$  bis  $s_{\lambda}$  entsprechenden Punkte folgen dann von  $g_{\pi}^{\epsilon} = \hat{s}^{\xi}$  aus wieder im Sinne  $P_{\pi}$  aufeinander und gehören dem Halbstrahl  $\hat{s}^{(\rho-\infty)}$  der perspectivischen Lagen von  $s_{\rho}$  an.

c) 1. Fällt die Gerade  $g_{\pi}$  mit einer der Tangenten von  $S^{(o\lambda)}$   $s_{\xi}$  zusammen, so enthält sie zwei aufeinanderfolgende Curvenpunkte, welche sie, den einen mit der vorhergehenden Tangente  $s_{\xi}$ , den anderen mit der folgenden Tangente  $s_{\eta}$  gemeinschaftlich hat. Zufolge No. 396, c und 45*a* liegen auf der Halbebene  $\hat{s}_{(\xi|\xi)}^{(\xi|\infty)}$  der Halbstrahl  $\hat{s}_{\varepsilon}^{(\xi-\infty)} = \hat{s}_{\varepsilon}^{(\xi\in\infty)}$  von  $s_{\xi}$ , also unter anderen der Punkt  $\hat{s}^{\varepsilon}$ , und der Halbstrahl  $\hat{s}_{\eta}^{(\eta|\infty)} = \hat{s}_{\eta}^{(\eta\otimes\alpha)}$  von  $s_{\eta}$ , also unter anderen der Punkt  $\hat{s}^{\Theta}$ . Hat  $g_{\pi} = s_{\xi}$  ausser den beiden Punkten  $\hat{s}^{\xi}$  und  $\hat{s}^{\eta}$ keine weiteren mit dem Curvenstück  $S^{(o\lambda)}$  gemein, so müssen daher die Punkte  $\hat{s}$  sämmtlich auf der selben Halbebene in Bezug auf  $s_{\eta}$ , nämlich auf der Halbebene  $\hat{s}_{(\xi|\chi)}^{(\xi|\infty)}$  liegen (vgl. No. 50¢).

2. Also müssen wegen No. 44*e* und 45*b* die mit den übrigen im Sinne  $\Sigma$  geordneten Tangenten auf  $s_{\xi}$  perspectivischen Punkte stetig in demselben Richtungssinne  $P_{\xi}$  aufeinanderfolgen, und zwar müssen (No. 49*c*), da  $s^{\xi}$ auf dem Halbstrahl  $\hat{s}_{\epsilon}^{(\epsilon + \infty)}$ ,  $\hat{s}^{\eta}$  aber auf dem Halbstrahl  $\hat{s}_{\eta}^{(\Theta - \infty)}$  der entsprechenden Tangente resp.  $s_{\epsilon}$  oder  $s_{\eta}$  liegt, die den Tangenten von  $s_{\rho}$  bis  $s_{\epsilon}$  entsprechenden Punkte sämmtlich dem Halbstrahl  $\hat{s}^{(\Theta + \infty)}$ , die den Tangenten von  $s_{\eta}$  bis  $s_{\lambda}$  entsprechenden aber sämmtlich dem Halbstrahl  $\hat{s}^{(\Theta - \alpha)}$  ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 365

der perspectivischen Lagen von  $s_{\varrho}$  angehören. Da der Halbstrahl  $\tilde{s}_{\delta}^{(\varepsilon \mid \infty)}$ von  $s_{\varrho}$  der der Tangente  $s_{\varepsilon}$  im Sinne  $\Sigma$  vorhergehenden, und der Halbstrahl  $\tilde{s}_{\zeta}^{(\zeta - \infty)}$  von  $s_{\zeta}$ , der auf  $s_{\varepsilon}$  im Sinne  $\Sigma$  folgenden Tangente, nach No. 15e und 39h, c, 45a auf der Halbebene  $\tilde{s}_{(\varepsilon - \varepsilon)}^{(\varepsilon \mid \infty)}$  liegen, so kann der der Tangente  $s_{\vartheta}$  auf  $s_{\varepsilon}$  entsprechende, dem Punkt  $\tilde{s}_{\varepsilon}^{\varepsilon} = \tilde{s}^{\zeta}$  im Sinne  $P_{\xi}$  vorhergehende Punkt  $\tilde{s}_{\zeta}^{\vartheta}$  nur dem Halbstrahl  $\tilde{s}_{\zeta}^{(\zeta - \infty)} = \tilde{s}_{\zeta}^{\eta(\zeta \infty)}$  angehören; das heisst, die Punkte  $\tilde{s}_{\zeta}^{\vartheta}$ ,  $\tilde{s}^{\zeta}$ ,  $\tilde{s}^{\eta}$  und somit die mit den sämmtlichen Tangenten s von  $S_{\zeta}^{(o,\lambda)}$  ausser  $s_{\zeta}$  auf  $s_{\varepsilon}$  perspectivischen Punkte folgen stetig in demselben Richtungssinne P aufeinander, welcher durch die beiden in ihr befindlichen Curvenpunkte und den Bewegungssinn  $\Sigma$  schon bestimmtist.

3. Ferner folgt hieraus:

Jeder Schnittpunkt zweier Tangenten gehört dem Halbstrahl ĝ<sup>(q| x)</sup> der einen, der im Sinne Σvorångehenden und dem Halbstrahl ĝ<sup>(q-∞)</sup> der anderen an, der zweiten im Sinne Σ.

Der der laufenden Tangente  $s_{\rho}$  auf einer festen Tangente  $s_{\rho}$  entsprechende Punkt geht, sobald  $s_{\rho}$  die Lage von  $s_{\rho}$  überschreitet, stets von dem Halbstrahl  $\mathfrak{g}^{(\rho \mid \infty)}$  über auf den Halbstrahl  $\mathfrak{g}^{(\rho - \infty)}$ .

4. Sollte nun das Curvenstück  $S^{(o\,\lambda)}$  mit  $s_{\zeta}$  ausser den Punkten  $\mathfrak{F}_{s}$  und  $\mathfrak{F}^{\eta}$  noch einen Punkt gemeinschaftlich haben, in welchem  $\mathfrak{F}^{\theta}$  die Gerade  $s_{\zeta}$  überschritte oder  $s_{\varrho}$  zum zweiten Male mit  $s_{\zeta}$  zusammenfiele, so müsste nach No. 50 $b^{s\,4}$  und 50 $c^{s}$  der dem Strahl  $s_{\varrho}$  auf  $s_{\zeta}$  entsprechende Punkt den unendlich entfernten Punkt überschreiten, was gegen Voraussetzung No. 49 $a^{1}$  ist.

# C. Ein nur gewöhnliche endliche Elemente enthaltendes Curvenstück und ein ebener Strahlbüschel.

51. Aus No. 49c und 45e oder 37b (für n = 2) und 45d folgt weiter:

a) 1. Beschreibt  $\mathfrak{s}^{\mathsf{e}}$  von  $\mathfrak{s}^{o}$  an stetig im Sinne  $\Sigma$  das Curvenstück  $S^{(o\lambda)}$  bis  $\mathfrak{s}^{\lambda}$ , so folgen die mit den aufeinanderfolgenden Lagen von  $\mathfrak{s}^{\mathsf{e}}$ , d. i. mit den im Sinne  $\Sigma$  sich stotig an einanderreihenden Punkten von  $S^{(o\ \lambda)}$  in einem Strahlbüschel  $\mathfrak{p}^{\mathfrak{P}}$  der Ebene, durch dessen Mittelpunkt keine der Tangenten s von  $S^{(o\ \lambda)}$  geht, perspectivischen Strahlen stetig in demselben Drehsinne  $\Delta_{\mathfrak{P}}$  aufeinander und bilden in demselben den Winkel  $p_{(o|\lambda)}^{\mathfrak{P}}$ .

2. Der Punkt  $\mathfrak{p}^{\varphi}$  liegt entweder in Bezug auf die sämmtlichen Lagen von  $s_{\varrho}$  auf der Halbebene  $\mathfrak{s}_{(\varrho|\varrho)}^{(\varrho|\infty)}$  oder in Bezug auf die sämmtlichen Tangenten auf der Halbebene  $\mathfrak{s}_{(\varrho|\varrho)}^{(\varrho-\infty)}$  $=\mathfrak{s}_{(\varrho-\varrho)}^{(\varrho|\infty)}$ ; im ersten Falle ist nach No. 45f der Drehsinn  $\varDelta_{\varphi}$ gleich dem dem Bewegungssinn  $\Sigma$ entsprechenden Drehsinne  $\varDelta$ vons $_{\varrho}$ , im zweiten Falle gleich dem dem Drehsinn  $\varDelta$  von  $s_{\varrho}$ entgegengesetzten Drehsinn.

b) 1. Liegt der Punkt  $\mathfrak{p}^{\varphi}$  auf einer der Tangenten von  $S^{(o\lambda)}$ , etwas<sub> $\beta$ </sub>, und fällt er mit keinem der Curvenpunkte von  $S^{(o\lambda)}$ zusammen und befindet er sich auf dem Halbstrahl  $\mathfrak{s}_{\beta}^{(\beta-\alpha)}\left(\mathfrak{s}_{\beta}^{(\beta|\infty)}\right)$ , also auch auf dem Halbstrahl  $\mathfrak{s}_{\beta}^{(\gamma-\infty)}\left(\mathfrak{s}_{\beta}^{(\gamma|\alpha)}\right)$ , so gehört er der Halbebene  $\mathfrak{s}_{(e|\varrho)}^{(e-\alpha)}\left(\mathfrak{s}_{(e|\varrho)}^{(e|\varrho)}\right)$  in Bezug auf die der Lage  $s_{\beta}$  im Sinne  $\Sigma$  vorhergehende Lage  $s_{\alpha}$  von  $s_{\varrho}$  und der Halbebene  $\mathfrak{s}_{(e-\varrho)}^{(e-\alpha)}\left(\mathfrak{s}_{(e-\varrho)}^{(e|\alpha)}\right)$  in Bezug auf die im Sinne  $\Sigma$  auf  $s_{\beta}$  folgende Lage  $s_{\gamma}$  von  $s_{\varrho}$  an (No. 15c, 39b). Istnun  $s_{\beta}$  die einzige Tangente von  $S^{(o\lambda)}$ , welche durch den Punkt  $\mathfrak{p}^{\varphi}$  geht, so gehört  $\mathfrak{p}^{\varphi}$  in Bezug auf alle Lagen von  $s_{\varrho}$  von  $s_{\rho}$  bis  $s_{\lambda}^{}$  derselben Halbebene  $\mathfrak{s}_{(\varrho-\alpha)}^{(\varrho-\alpha)}\left(\mathfrak{s}_{(\varrho|\alpha)}^{(\varrho|\alpha)}\right)$ , in Bezug auf alle Lagen von  $s_{\gamma}$  bis  $s_{\lambda}$  der Halbebene  $\mathfrak{s}_{(\varrho-\alpha)}^{(\varrho-\alpha)}\left(\mathfrak{s}_{(\varrho-\varrho)}^{(\varrho|\alpha)}\right)$  an.

2. Es folgen demnach die mit den Punkten  $\dot{s}^{o}$ ,  $\ddot{s}^{1}$  bis  $\ddot{s}^{\beta}$ perspectivischen Strahlen des Büschels  $p^{\varphi}$  in demselben Drehsinne  $\Delta_{\varphi}$  stetig aufeinander und bilden einen Winkel  $p^{\varphi}_{(o|\beta)}$ , die mit den Punkten  $\ddot{s}^{\beta}$  und  $\ddot{s}^{\gamma}$  perspectivischen Strahlen  $p_{\beta}$ ,  $p_{\gamma}$  fallen in dem Strahl $s_{\beta}$  zusammen; die mit den Punkten  $\ddot{s}^{\gamma}$  bis  $\ddot{s}^{1}$  perspectivischen Strahlen folgen ebenfalls in gleichem Drehsinne aufeinander, aber in dem dem ersteren

entgegengesetzten  $\overline{\Delta}_{\varphi}$  und bilden den Winkel  $p_{(\beta|\lambda)}^{\varphi}$ , bezogen auf den Drehsinn  $\overline{\Delta}_{\varphi}$ , d. i.  $p_{(\beta-\lambda)}^{\varphi}$  bezogen auf den Drehsinn  $\Delta_{\varphi}$  (vergl. No. 16c, sowie die Anmerkung zu No. 50<sup>6</sup>); dies gilt zufolge No. 45d,  $\mathfrak{p}^{\varphi}$  mag ein endlicher oder der unendlich entfernte Punkt von  $s_{\beta}$  sein. Liegt  $\mathfrak{p}^{\varphi}$  auf dem Halbstrahl  $\hat{s}_{\beta}^{(\beta-\infty)}$ , so ist der Drehsinn  $\Delta_{\varphi}$  nach No. 45f dem Drehsinn  $\Delta$  von  $s_{\varphi}$  stets entgegengesetzt, also gleich  $\overline{\Delta}$ ; liegt  $\mathfrak{p}^{\varphi}$  aber auf dem Halbstrahl  $\hat{s}_{\beta}^{(\beta|\infty)}$ , so ist der Drehsinn  $\Delta_{\varphi}$  dem Drehsinn  $\Delta$  von  $s_{\varphi}$  stets gleich, also  $\overline{\Delta}_{\varphi} = \overline{\Delta}$ . Ist  $\mathfrak{p}_{\varphi}$  ein unendlich entfernter Punkt, so lässt sich der Bewegungssinn  $\Delta_{\varphi}$  nicht mit  $\Delta$  vergleichen.

3. Ist daher  $s_{\beta}$  nicht die einzige Tangente von  $S^{(o\lambda)}$ , welche durch den Punkt  $\mathfrak{p}^{\varphi}$  geht, sondern geht von den Tangenten  $s_{\gamma}$  bis  $s_{\lambda}$  noch eine  $s_{\xi}$ durch  $\mathfrak{p}^{\varphi}$  und liegt  $\mathfrak{p}^{\varphi}$  auf dem Halbstrahl  $\tilde{s}_{\beta}^{(\beta-\infty)}\begin{pmatrix} \mathfrak{s}_{\beta}^{(\beta+\infty)} \end{pmatrix}$ , so folgen die mit den Punkten  $\mathfrak{s}$  von  $\mathfrak{s}^{\circ}$  bis  $\mathfrak{s}^{\beta}$  perspectivischen Strahlen von  $\mathfrak{p}^{\varphi}$  im Sinne  $\overline{\Delta}$  ( $\Delta$ ) aufeinander, die den Punkten von  $\mathfrak{s}^{\gamma}$  bis  $\mathfrak{s}^{\xi}$  entsprechenden im Sinne  $\Delta$  ( $\overline{\Delta}$ ) und die den Punkten  $\mathfrak{s}^{\eta}$  bis  $\mathfrak{s}^{\lambda}$  entsprechenden im Sinne  $\overline{\Delta}$  ( $\Delta$ ). Der Punkt  $\mathfrak{p}^{\varphi}$  muss also, wie hieraus folgt, auf der Tangente  $s_{\xi}$ dem Halbstrahl  $\mathfrak{s}_{\xi}^{(\xi|\infty)}$  ( $\mathfrak{s}_{\xi}^{(\xi-\infty)}$ ) angehören (vgl. No. 50 $c^{3}$ ).

c) Fällt der Punkt  $\mathfrak{p}^{\varphi}$  mit einem der Curvenpunkte,  $\mathfrak{s}^{\eta}$ , zusammen, so gehen durch ihn die beiden aufeinanderfolgenden Tangenten  $s_{\xi}$  und  $s_{\eta}$ , welche ausser ihm noch die ihm benachbarten Punkte resp.  $\mathfrak{s}^{\xi}$  und  $\mathfrak{s}^{\varphi}$  enthalten. Der Punkt  $\mathfrak{s}^{\eta}$  gehört dem Halbstrahl  $\mathfrak{s}_{\xi}^{(\xi|\alpha)}$ an, liegt also in Bezug auf die im Sinne  $\Sigma$  vorhergehende Tangente  $s_{\varepsilon}$  auf der Halbebene  $\mathfrak{s}_{(\varepsilon|\mathfrak{s})}^{(\varepsilon|\alpha)}$ ; er gehört ferner dem Halbstrahl  $\mathfrak{s}_{\eta}^{(\vartheta \pi \infty)} = \mathfrak{s}_{\eta}^{(\vartheta - \infty)}$ an, liegt also nach No. 396 in Bezug auf die im Sinne  $\Sigma$  folgende Tangente auf der Halbebene  $\mathfrak{s}_{(\vartheta|\vartheta)}^{(\vartheta|\infty)}$ . Ist also  $\mathfrak{s}^{\eta}$  der einzige Curvenpunkt von  $S^{(\alpha\lambda)}$ , welcher mit  $\mathfrak{p}^{\varphi}$  zusammenfällt und sind die beiden aufeinanderfolgenden Tangenten  $s_{\xi}$  und  $s_{\eta}$  die einzigen von  $S^{(\alpha\lambda)}$ , welche mit  $\mathfrak{p}^{\varphi}$  perspectivisch sind, so liegt  $\mathfrak{p}^{\varphi} = \mathfrak{s}^{\eta}$  in Bezug auf alle Tangenten ausser  $s_{\xi}$  und  $s_{\eta}$  auf der Halbebene  $\mathfrak{s}_{(\varrho|\varphi)}^{(\varrho|\infty)}$ . Die den Punkten  $\mathfrak{s}^{\circ}$  bis  $\mathfrak{s}^{\xi}$  im Büschel  $\mathfrak{p}^{\varphi}$  entsprechenden Strahlen folgen daher nach No. 45/ im Sinne  $\varDelta$  stetig aufeinander und ehenso folgen die den Punkten  $\mathfrak{z}^{\mathfrak{D}}$  bis  $\mathfrak{z}^{\mathfrak{A}}$  entsprechenden in demselben Sinne  $\varDelta$  stetig aufeinander. Nun sind aber die den Punkten  $\mathfrak{z}^{\mathfrak{L}}$  und  $\mathfrak{z}^{\mathfrak{D}}$  entsprechenden Strahlen die im Sinne  $\Sigma$  der Curve also im Drehsinne  $\varDelta$  des Büschels  $\mathfrak{p}^{\mathfrak{P}} = \mathfrak{z}^{\mathfrak{I}}$  aufeinanderfolgenden Tangenten  $s_{\mathfrak{L}}$  und  $s_{\eta}$ , der Punkt  $\mathfrak{z}^{\mathfrak{L}}$  dem Halbstrahl  $\mathfrak{z}_{\mathfrak{L}}^{(\eta-\infty)}$ ,  $\mathfrak{z}^{\mathfrak{D}}$  dem Halbstrahl  $\mathfrak{z}_{\eta}^{(\eta+\infty)}$  angehörend; es folgen daher die den sämmtlichen Punkten  $\mathfrak{z}$  von  $S^{(\mathfrak{o},\mathfrak{A})}$  im Sinne  $\Sigma$ entsprechenden Strahlen des Büschels  $\mathfrak{p}^{\mathfrak{P}} = \mathfrak{z}^{\mathfrak{I}}$  stetig im Sinne  $\varDelta$  aufeinander, und ein das Büschel  $\mathfrak{z}^{\mathfrak{I}}$  von der mit  $\mathfrak{z}^{\mathfrak{O}}$  perspectivischen Lage an im Simne  $\varDelta$  durchlaufender Strahl  $s^{\mathfrak{I}}$  trifft die Punkte  $\mathfrak{z}^{\mathfrak{O}}$  bis  $\mathfrak{z}^{\mathfrak{L}}$  mit demselben, die Punkte  $\mathfrak{z}^{\mathfrak{D}}$  bis  $\mathfrak{z}^{\mathfrak{L}}$  mit dem anderen Halbstrahl.

Geht durch den Punkt  $\hat{s}^{\eta}$  ausser  $s_{\zeta}$  und  $s_{\eta}$  von den Tangenten  $s_{o}$  bis  $s_{\zeta}$  noch die Tangente  $s_{\alpha}$ , aber keine der Tangenten von  $s_{\alpha}$  bis  $s_{\zeta}$  und geht durch denselben von den Tangenten  $s_{\eta}$  bis  $s_{1}$  noch die Tangente  $s_{i}$ , aber keine der Tangenten von den Tangenten  $s_{\eta}$  bis  $s_{1}$  noch die Tangente  $s_{i}$ , aber keine der Tangenten von  $s_{\eta}$  bis  $s_{i}$ , so gilt das von den sämmtlichen Tangenten und Punkten von  $S^{(\alpha \lambda)}$  in No. 51 c Gesagte nur von den Tangenten und Punkten resp.  $s_{\alpha}$  bis  $s_{i}$  und  $\hat{s}^{\alpha}$  bis  $\hat{s}^{4}$ . Das die Tangenten von  $s_{o}$  bis  $s_{\alpha}$  und von  $s_{i}$  bis  $s_{1}$ , sowie die Punkte  $\hat{s}^{o}$  bis  $\hat{s}^{\alpha}$  und von  $\hat{s}^{i}$  bis  $\hat{s}^{\lambda}$  Betreffende folgt theils aus No. 51 b, theils durch wiederholte Anwendung von No. 51 c, je nachdem  $\mathfrak{p}^{\varphi} = \hat{s}^{\eta}$  ein von  $\hat{s}^{\alpha}$ ,  $\hat{s}^{\beta}$  und von  $\hat{s}^{i}$ ,  $\hat{s}^{\pi}$  verschiedener Punkt der Tangenten  $s_{\alpha}$  und  $s_{i}$  ist oder mit einem derselben zusammenfällt.

D. Beschaffenheit eines nur gewöhnliche endliche Elemente enthaltenden Curvenstückes.

52. a) Aus No. 50 c<sup>34</sup> folgt:

Ein Curvenstück S<sup>(01)</sup>, welches den in No. 49a angegebenen Bedingungen genügt, hat die Eigenschaft,

- 1. dass alle seine Punkte in Bezug auf jede seiner Tangenten auf derselben Halbebene, nämlich  $\mathfrak{g}_{(\varrho|\varrho)}^{(\varrho|\alpha)}$  (bezogen auf den Drehsinn  $\Delta$ ) liegen;
- 2. dass sich in einem Punkte nicht mehr als zwei Tangenten von S<sup>(02)</sup> schneiden;

ansgeseichneten Elemente ebener Curven. Von PAUL SCHOLZ. 369

3. dass die mit irgend einer Tangente von S<sup>(o l)</sup>, s<sub>g</sub> perspectivischen Punkte der übrigen eine endliche Strecke B<sup>(o|l)</sup> bilden, welche zugleich die beiden dieser Tangente s<sub>g</sub> angehörigen Curvenpunkte g<sup>l</sup> und g<sup>n</sup> enthält.

b) 1. Die Gerade  $s_0$  liegt mit den Anfangspunkten dieser sämmtlichen Strecken  $\hat{s}_{Q}^{(o|\lambda)}$ , die Gerade  $s_1$  mit den Endpunkten derselben perspectivisch. Bezeichnen wir den Schnittpunkt von  $s_0$  und  $s_1$  mit  $\hat{s}^{\mathbb{Z}}$ , so kann mit jeder dieser Strecken, da sie endlich sind, nur ein Theil der Strahlen des Büschels  $\hat{s}^{\mathbb{Z}}$  perspectivisch liegen; und da jede derselben zwei Punkte von  $S^{(o1)}$  enthält, so müssen dieselben, wie die Punkte  $\hat{s}$  von  $S^{(o1)}$ , sämmtlich in demjenigen der von  $s_0$  und  $s_1$  begrenzten einfachen Winkel liegen, welcher den beiden Halbebenen  $\hat{s}_{(o|0)}^{(o|\infty)}$  und  $\hat{s}_{(1|1)}^{(1|\infty)}$  gemeinschaftlich ist (No. 39*a*) und welchen wir mit  $\hat{s}_{(o1)}^{(o|\infty)}$  bezeichnen wollen.

2. Da durch  $\mathfrak{g}^{\mathbb{Z}}$  keine der Tangenten von  $s_1$  bis  $s_{\lambda-1}$  geht (No. 52 $a^i$ ), so hat der Punkt  $\mathfrak{g}^{\mathbb{Z}}$  in Bezug auf diese die Lage von  $\mathfrak{p}^{\varphi}$  in No. 51a. Jeder von  $s_0$  und  $s_{\lambda}$  verschiedene Strahl  $s^{\mathbb{Z}}$  des Winkels  $s_{(\mathfrak{o} \ \mathfrak{f} \ \lambda)}^{\mathbb{Z}}$ , welchem der einfache Winkel  $\mathfrak{g}_{(\mathfrak{o} \ \mathfrak{f} \ \lambda)}^{(\mathfrak{o} | \mathfrak{o} \ \lambda)}$  angehört, muss daher einen und nur einen der Punkte von  $S^{(\mathfrak{o} \ \lambda)}$  und von jeder von  $s_0$  und  $s_{\lambda}$  verschiedenen Tangente von  $S^{(\mathfrak{o} \ \lambda)}$ einen Punkt der endlichen Strecke  $\mathfrak{g}_{\mathfrak{o}}^{(\mathfrak{o} | \lambda)}$  enthalten. Daraus folgt

einerseits, dass der den Punkten von  $S^{(o\lambda)}$  im Büschel  $\mathfrak{s}^{\xi}$  entsprechende Winkel  $S^{\xi}_{(o\xi\lambda)}$  (No. 51 c) nur einen Theil des Büschels  $\mathfrak{s}^{\xi}$  ausmachen kann, da der mit dem Büschel  $\mathfrak{s}^{\xi}$  gemeinschaftliche Strahl  $s^{\xi}_{\chi} = s^{\xi}_{\xi}$  ausser  $\mathfrak{s}^{\xi}$  keinen Punkt von  $S^{(o\lambda)}$  enthält, dass also auf einer Geraden nicht mehr als zwei Curvenpunkte von  $S^{(o\lambda)}$  liegen können,

andererseits, dass die mit den Tangenten von  $s_0$  bis  $s_{\zeta}$  perspectivischen Punkte vou  $s_{\zeta}^{Z} = s_{\chi}^{\zeta}$  die endliche Strecke  $\tilde{s}_{\zeta}^{(\chi\,\zeta)\,\infty}$  in der Reihenfolge von  $\tilde{s}^{Z}$  bis  $\tilde{s}^{\zeta}$ erfüllen (No. 50 $b^{2}$ ) und die mit den Tangenten von  $s_{\eta}$  bis  $s_{\chi}$  perspectivischen Punkte dieselbe Strecke in der Reihenfolge von  $\tilde{s}^{\zeta}$  bis  $\tilde{s}^{Z}$ ; folglich: 3. Die Schnittpunkte der Tangenten mit einander erfüllen das von den Strecken  $\tilde{s}_{0}^{(0,\chi)\,\infty}$  von  $s_{0}$ ,  $s_{\chi}^{(\chi\,\lambda)\,\infty}$  von  $s_{\chi}$  und dem Cur-Digitized by Google venstück  $S^{(10)}$  begrenzte, dem einfachen Winkel  $\mathfrak{s}^{(\varrho|\infty)}_{(o \ \zeta 1)}$  angehörige Gebiet der Ebene vollständig, und ausserhalb desselben giebt es keinen. Von jedem Punkt dieses Gebietes gilt das in No. 51 b<sup>6</sup> Gesagte. Wir bezeichnen dies Gebiet durch das Symbol  $\mathfrak{S}^{2}_{(o1)}$  (vgl. No. 52 e).

c) 1. Die Strecken  $\hat{g}^{(\zeta \, \infty \, \chi)}$  der Strahlen  $s^{\chi}$  des Winkels  $s^{\chi}_{(o \, \zeta \, \lambda)}$  enthalten keinen einzigen Schnittpunkt einer Tangente, daher enthält das von den Strecken  $\hat{g}^{(o \, \infty \, \chi)}_{o}, \hat{g}^{(\chi \, \infty \, \lambda)}_{\lambda}$  und dem Curvenstück  $S^{(\lambda \, o)}$  begrenzte dem Winkel  $s^{\chi}_{(o \, \zeta \, \lambda)}$  angehörige Gebiet der Ebene nur Punkte, welche mit keiner der Tangenten von  $S^{(o \, \lambda)}$  perspectivisch liegen, also die Lage von  $\mathfrak{p}^{\varphi}$  in No. 51*a* haben, und wir bezeichnen dasselbe mit  $\mathfrak{S}^{(o \, \lambda)}_{(o \, \lambda)}$ .

2. Durch die unendlich entfernte Gerade wird das Gebiet  $\mathfrak{S}_{(ol)}^{0}$  in zwei<sup>4</sup>Theile getheilt, deren einer dem den beiden Halbebenen  $\mathfrak{s}_{(o|o)}^{(o|\infty)}$  und  $\mathfrak{s}_{(1|\lambda)}^{(\lambda|\infty)}$  gemeinschaftlichen einfachen Winkel  $\mathfrak{s}_{(o\xi\lambda)}^{(o|\infty)}$ , deren anderer dem den beiden Halbebenen  $\mathfrak{s}_{(o|o)}^{(o-\infty)}$  und  $\mathfrak{s}_{(\lambda|\lambda)}^{(\lambda-\infty)}$  gemeinschaftlichen einfachen Winkel  $\mathfrak{s}_{(o\xi\lambda)}^{(o-\infty)}$ , deren anderer dem den beiden Halbebenen  $\mathfrak{s}_{(o|o)}^{(o-\infty)}$  und  $\mathfrak{s}_{(\lambda|\lambda)}^{(\lambda-\infty)}$  gemeinschaftlichen einfachen Winkel  $\mathfrak{s}_{(o\xi\lambda)}^{(o-\infty)}$  angehört; es folgt mit Rücksicht auf No. 51 a<sup>2</sup>, dass der erstere Theil alle Punkte der Ebene enthält, welche den Halbebenen  $\mathfrak{s}_{(o|o)}^{(o|\alpha)}$  in Bezug auf die sämmtlichen Tangenten s von  $S^{(o\lambda)}$  gemeinsam sind und nur solche, der andere alle Punkte der Ebene  $\mathfrak{s}_{(e|o)}^{(o-\infty)}$  in Bezug auf die sämmtlichen Tangenten s von  $S^{(o\lambda)}$  gemeinsam sind und nur solche, der andere alle Punkte der Ebene, welche den Halbebenen  $\mathfrak{s}_{(e|o)}^{(o-\infty)}$  in Bezug auf die sämmtlichen Tangenten sind und nur solche, was auch aus No. 39a und 45a abgeleitet werden kann; wir bezeichnen den ersteren Theil mit  $\mathfrak{S}_{(o|\lambda)}^{(o)}$ , den zweiten mit  $\mathfrak{S}_{(o-\lambda)}^{(o-\lambda)}$ .

3. Jeder Punkt von  $\mathfrak{S}_{(o|\lambda)}^{\mathfrak{o}}$  befindet sich mit jedem Curvenpunkt von  $S^{(o\lambda)}$  in Bezug auf jede der Tangenten von  $S^{(o\lambda)}$ , mit Ausnahme der beiden, welche sich in letzterem schneiden, auf derselben Halbebene; jeder Punkt von  $\mathfrak{S}_{(o-\lambda)}^{\mathfrak{o}}$  befindet sich mit jedem Curvenpunkt von  $S^{(o\lambda)}$  in Bezug auf jede Tangente von  $S^{(o\lambda)}$  mit Ausnahme der beiden, welche sich in letzterem schneiden, auf entgegengesetzten Halbebenen (No. 36c). Jedem Punkt von  $\mathfrak{S}_{(o|\lambda)}^{\mathfrak{o}}$  kehrt daher das Curvenstück  $S^{(o\lambda)}$  in seiner

ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ, 371

ganzen Ausdehnung seine concave, jedem Punkt von  $\mathfrak{S}^{o}_{(o-\lambda)}$  seine convexe Seite zu. Also:

4. Bewegt sich, während die Elemente  $\mathfrak{s}^{\varphi}$  und  $s_{\varphi}$  in einem gewissen Sinne  $\Sigma$  das Curvenstück  $S^{(o\lambda)}$  beschreiben, welches den in No. 49*a* angegebenen Bedingungen genügt, der mit  $\mathfrak{s}^{\varphi}$ perspectivische Strahl  $p^{\varphi}$  eines Strahlbüschels  $\mathfrak{p}^{\varphi}$ , dessen Mittelpunkt ein endlicher Punkt der Ebene ist, durch welchen keine der Tangenten von  $S^{(o\lambda)}$  geht, von  $p_{o}^{\varphi}$  an bis  $p_{\lambda}^{\varphi}$  in dem Drehsinne  $\Delta$ , welchen  $s_{\varphi}$  beim Uebergange aus jeder Lage in die im Sinne  $\Sigma$  folgende hat, so kehrt das Curvenstück  $S^{(o\lambda)}$ dem Punkt  $\mathfrak{p}^{\varphi}$  seine concave Seite zu, und umgekehrt; bewegt sich aber der mit  $\mathfrak{s}^{\varphi}$  perspectivische Strahl des Büschels  $\mathfrak{p}^{\varphi}$ von  $p_{o}^{\varphi}$  bis  $p_{\lambda}^{\varphi}$  in dem dem Sinne  $\Delta$  von  $s_{\varphi}$  entgegengesetzten Sinne  $\overline{\Delta}$ , so kehrt das Curvenstück  $S^{(o\lambda)}$  dem Punkte  $\mathfrak{p}^{\varphi}$  seine convexe Seite zu, und umgekehrt. Im ersteren Falle gehört der Punkt  $\mathfrak{p}^{\varphi}$  dem Gebiet  $\mathfrak{S}^{(o_{\lambda})}_{(o_{\lambda})}$ , im zweiten dem Gebiet  $\mathfrak{S}^{(o_{\lambda})}_{(o-\lambda)}$  an.

d) 1. Der andere Winkel  $s_{\xi(o,\lambda)}^{\chi}$  enthält (No. 18 und 52b<sup>1</sup>) die Ergänzungsstrecken  $\tilde{s}_{\varrho}^{(\lambda \propto o)}$  sämmtlicher Tangenten von  $S^{(o,\lambda)}$  zu den Strecken  $\tilde{s}_{\varrho}^{(o|\lambda)}$ . Jeder Strahl  $s^{\chi}$  dieses Winkels hat (No. 10) die Lage der Geraden  $g_{\pi}$  in No. 50*a*; die mit den Tangenten *s* von  $S^{(o,\lambda)}$  auf einem solchen Strahl perspectivische Strecke enthält folglich, da die Grenzpunkte in den Punkt  $\tilde{s}^{\chi}$  zusammenfallen und nach No. 52*b*<sup>s</sup> jeder ihrer übrigen Punkte höchstens von einer der Tangenten von  $S^{(o,\lambda)}$  getroffen werden kann, alle Punkte desselben ausser  $\tilde{s}^{\chi}$  einmal, diesen aber zweimal; also wird der Winkel  $s_{\xi(o,\lambda)}^{\chi}$  von den Strecken  $\tilde{s}_{\varrho}^{(\lambda \propto o)}$  der Tangenten *s* von  $S^{(o,\lambda)}$  derart stetig erfüllt, dass durch jeden in seinem Gebiet gelegenen Punkt eine und nur eine der Tangenten *s* von  $S^{(o,\lambda)}$  geht. Wir bezeichnen ihn deshalb mit $\mathfrak{S}_{(o,\lambda)}^{1}$ ; jeder in seinem Gebiet befindliche Punkt hat die Lage von  $\mathfrak{p}^{\varphi}$  in No. 51*b*<sup>1, \*</sup>.

2. Dieser Winkel  $s_{\zeta(o\lambda)}^{\chi} = \mathfrak{S}_{(o\lambda)}^{1}$  enthält in dem mit der Halbebene  $\mathfrak{s}_{(o|o)}^{(o-\infty)} = \mathfrak{s}_{(o|o)}^{(\chi o \infty)}$  (der Punkt  $\mathfrak{s}^{\chi}$  gehört nach No. 50  $c^{3}$  dem Halbstrahl  $\mathfrak{s}_{o}^{(o|\infty)}$ von  $s_{o}$  und dem Halbstrahl  $\mathfrak{s}_{\lambda}^{(\lambda-\infty)}$  von  $s_{\lambda}$  an) gemeinschaftlichen einfachen Zeitschrift f. Mathematik u. Physik, XIV, 5. 26 ized by Google Winkel (No. 38*a* und 45*a*) von jeder Tangente denjenigen Theil der Strecke  $\hat{s}_{q}^{(o \ \infty \ \lambda)}$ , welcher dem Halbstrahl  $\hat{s}^{(q \ \infty)}$  angehört, in dem der Halbebene  $\hat{s}_{(o \ 0)}^{(o \ \infty)} = \hat{s}_{(o \ 0)}^{o(z \ \infty)}$  gemeinschaftlichen einfachen Winkel (No. 37*a*) den anderen Theil, welcher dem Halbstrahl  $\hat{s}^{(q \ \infty)}$  angehört; den ersteren bezeichnen wir hiernach mit  $\mathfrak{S}_{(o \ 1)}^{1}$ , den anderen mit  $\mathfrak{S}_{(o \ 1)}^{1}$ .

8. Aus No. 51 b<sup>2</sup> und 52 c<sup>4</sup> folgt:

Jedem Punkt von  $\mathfrak{S}^{1}_{(o-1)}$  kehrt, wenn wir allgemein mit  $s_{\xi}$ die Tangente bezeichnen, mit welcher er perspectivisch liegt, nämlich dem Halbstrahl  $\mathfrak{s}^{(\xi-\infty)}$  angehörend, das Curvenstück  $S^{(ot)}$ , welches die der Tangente  $s_{\xi}$  im Sinne  $\Sigma$  vorhergehenden Lagen von  $s_{\xi}$  enthält, seine convexe, das Curvenstück  $S^{(\eta\lambda)}$ , welches die auf  $s_{\xi}$  im Sinne  $\Sigma$  folgenden Lagen von  $s_{\xi}$  enthält, seine concave Seite zu; jedem Punkt des Gebietes  $\mathfrak{S}^{(o|\lambda)}_{(o|\lambda)}$  aber, der auf der Tangente  $s_{\xi}$  liegt und also dem Halbstrahl  $\mathfrak{s}^{(\xi|\infty)}$ angehört, kehrt das Curvenstück  $S^{(os)}$  die concave und  $S^{(\eta\lambda)}$  die convexe Seite zu.

e) In gleicher Weise folgt aus No. 51 b<sup>3</sup>, 52 b<sup>3</sup>, c<sup>4</sup>:

Jedem Punkt des Gebietes  $\mathfrak{S}^{(o\,l)}_{(o\,l)}$  kehrt, wenn wir mit  $s_{\beta}$  und  $s_{\zeta}^{\ast}$  allgemein die beiden Tangenten von  $S^{(o\,l)}$  bezeichnen, welche sich in demselben schneiden, das Curvenstück  $S^{(o\,\alpha)}$  seine concave,  $S^{(\gamma e)}$  die convexe und  $S^{(\eta l)}$  wieder die concave Seite zu.

f) Beschreiben s und  $g^{e}$  im Sinne  $\Sigma$  das Curvenstück  $S^{(ol)}$ , so ist, so lange der mit irgend einer endlichen Geraden  $g_{\pi}$  der Ebene perspectivische Punkt  $\tilde{g}^{\pi}$  von  $s_{e}$  dem Halbstrahl  $\tilde{g}^{(e-\infty)}$ angehört, der Bewegungssinn P von  $\tilde{g}^{e}$  gleich  $\tilde{g}^{\pi e^{\infty}}$ , das heisst, der Punkt  $\tilde{g}^{e}$  entfernt sich (No. 8c) von dem ihm auf  $g_{\pi}$  entsprechenden Punkte, also auch von  $g_{\pi}$ ; so lange der mit  $g_{\pi}$  perspectivische Punkt von  $s_{e}$  dem Halbstrahl  $\tilde{g}^{(e|\infty)}$  angehört, ist der Bewegungssinn P gleich  $\tilde{g}^{e\pi\infty}$ , das heisst, der Punkt  $\tilde{g}^{e}$  nähert sich dem ihm auf  $g_{\pi}$  entsprechenden Punkte, also auch der Geraden  $g_{\pi}$  (vgl. No. 50).

ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 373

53. Dies ist das Bild, welches ein den Bedingungen in No. 49a unterworfenes Curvenstück S<sup>(0 1)</sup> einer Curve S der Anschauung bietet, sowie die Art und Weise, in welcher sich die mit den Elementen eines solchen Curvenstückes in irgend einem Strahlbüschel oder einer geraden Punktreihe der Ebene perspectivischen Strahlen, resp. Punkte an einander reihen; diese Art und Weise wird, da über den Werth von  $\lambda$  nichts bestimmt ist und wie aus No. 50 und 51 hervorgeht, nicht geändert, wenn wir uns das Curvenstück  $S^{(o\lambda)}$  fortgesetzt denken durch andere  $S^{(\lambda\xi)}_{\cdot}$ ,  $S^{(\xi\tau)}_{\cdot}$  etc., welche denselben Bedingungen genügen und bei deren Beschreibung im Sinne  $\Sigma$  s und 3<sup>e</sup> denselben Dreh - resp. Richtungssinn *d* und *P* haben, als bei Beschreibung von  $S^{(o \lambda)}$ . Der mit der laufenden Tangente  $s_{\rho}$  auf  $s_{\rho}$  perspectivische Punkt durchläuft zunächst (No. 50  $c^3$ ) den Halbstrahl  $\beta_{\alpha}^{(\varrho \mid \infty)}$ , dem Halbstrahl  $\hat{s}^{(q-\infty)}$  von  $s_{o}$  angehörend; wenn derselbe in die Lage  $\hat{s}_{o}^{\infty}$ , entsprechend der Lage s, von s, gelangt, so gilt auch von der unendlich entfernten Geraden, was von jedem Strahl  $s^{\mathcal{I}}$  des Winkels  $s_{\mathcal{L}(a,1)}^{\mathcal{I}}$  in No. 52 d<sup>1</sup> gesagt ist; der eine Theil des Gebietes  $\mathfrak{S}^{\mathfrak{o}}_{(\mathfrak{o}\mu)}$  (No. 52 c<sup>\*</sup>) wird Null, nämlich der nicht von den Curvenpunkten von  $S^{(o\mu)}$  begrenzte. Bis hierher entfernt sich \$<sup>e</sup> von s<sub>o</sub>; im weiteren Verlauf der Curve geht der der Tangente  $s_{\varrho}$  auf  $s_{\rho}$  entsprechende Punkt auf den Halbstrahl  $\hat{s}_{\rho}^{(\rho-\infty)}$  von  $s_{\rho}$  und  $\hat{s}^{(\varrho|\infty)}$ von s<sup>e</sup> über, nähert sich also der Punkt s<sup>e</sup> der Tangente s<sub>o</sub>. Erst in den auf s<sup>#</sup> resp. s, folgenden Lagen kann nach No. 506°, c² 3° die Gerade s, überschreiten oder s mit s zusammenfallen. Das Gebiet S (or) ist, wenn bis zu den Lagen 3<sup>°</sup> resp. s, keine dieser beiden Möglichkeiten eingetreten, durch die Strecken  $\hat{s}_{o}^{(o \ \infty \tau)}, \hat{s}_{\tau}^{(o \ \infty \tau)}$   $(\hat{s}_{\tau}^{o} = \hat{s}_{o}^{\tau}$  ist der Schnittpunkt von  $s_{o}$  und  $s_{\tau}$ ) und das Curvenstück  $S^{(\tau o)}$ , das Gebiet  $\mathfrak{S}^{o}_{(o \tau)} = \mathfrak{S}^{o}_{(o | \tau)}$  durch die endlichen Strecken  $\mathfrak{z}_{0}^{(0\tau)}$ ,  $\mathfrak{z}_{\tau}^{(0\tau)}$  und  $S^{(\tau 0)}$  begrenzt, und also, wenn  $\mathfrak{z}^{\tau}$  mit  $\mathfrak{z}^{0}$  zusammenfällt, rings von dem Curvenstück  $S^{(o t)}$  eingeschlossen.

## §. 12. Ausgezeichnete Curvenelemente.

A. Allgemeine Bestimmungen.

54. a) Um nun alle möglichen Weisen, in denen ein nach No. 46 eine Curve beschreibender Punkt oder Tangente in die folgende Lage übergehen kann, ihren Einfluss auf die Beschaffenheit der Curve und die Bewegung 26\* der mit denselben in den Strahlbüscheln und geraden Punktreihen der Ebene perspectivischen Strahlen resp. Punkte zu erkennen, stellen wir uns ein Curvenstück  $S^{(o\,\xi)}$  vor, welches die Curvenpunkte  $\hat{s}^0, \hat{s}^1, \dots, \hat{s}^d, \hat{s}^\epsilon, \hat{s}^{\epsilon}$  und die Tangenten  $s_0, s_1, \ldots, s_d, s_e$  (No. 46), wo  $s_d = \hat{s}^d \hat{s}^e, s_e = \hat{s}^e \hat{s}^c$ , umfasst und welches der Bedingung (1) in No. 49a in allen Elementen von s, bis s, den Bedingungen (2) und (3) aber in allen Elementen von s bis s resp. 3° bis  $s^{\zeta}$  genügt; dies Curvenstück  $S^{(o \zeta)}$  denken wir uns fortgesetzt (nach No. 46) durch ein zweites  $S^{(\zeta \nu)}$ , welches, die Punkte  $\mathfrak{s}^{\zeta}, \mathfrak{s}^{\eta}, \mathfrak{s}^{\vartheta}, \ldots, \mathfrak{s}^{\upsilon}$  und die Tangenten  $s_s, s_{\varepsilon} = \mathfrak{s}^{\zeta} \mathfrak{s}^{\eta}, s_n = \mathfrak{s}^{\eta} \mathfrak{s}^{\theta}, s_{\theta}, \ldots, s_{\mu}$  umfassend, für sich den Bedingun gen (2) und (3) in No. 49*a* in allen Elementen von  $s_{r}$  bis  $s_{s}$  resp.  $\tilde{s}^{\xi}$  bis  $\tilde{s}^{*}$ , der Bedingung (1) in den Elementen von sa bis s genügt; so jedoch denken wir uns  $S^{(o \xi)}$  durch  $S^{(\xi v)}$  fortgesetzt, dass die das ganze Curvenstück  $S^{(ov)}$  in dem durch die Wahl der Elemente s und s zu Anfangselementen eindeutig bestimmten (No. 47 c, 14 a<sup>2</sup>) Bewegungssinne  $\Sigma$  durchlaufenden Elemente  $s_{\alpha}$  und  $\tilde{s}^{\varrho}$  beim Uebergang von den Elementen resp.  $s_{\alpha}$  und  $\tilde{s}^{\zeta}$ , welche eine ganz beliebige endliche oder unendlich entfernte Lage in der Ebene haben können, in die Lagen  $s_{\ell}$  und  $\mathfrak{g}^{\eta}$  beliebig den Bewegungssinn beibehalten oder ändern können, den sie beim Uebergang von jedem Element von  $S^{(o \xi)}$  in die Lage des im Sinne  $\Sigma$  folgenden haben. Dem Bewegungssinne  $\Sigma$  entspreche in dem Theil  $S^{(o \ \xi)}$  der Drehsinn  $\varDelta$  von  $s_{\alpha}$  und der Richtungssinn P von 3<sup>9</sup> auf s.

b) Wir bezeichnen

die Summe aller der Strahlbüschel der Ebene, deren Mittelpunkte ausserhalb der Tangente sz liegen, durch das Symbol (3), jeden derselben durch 3;

die Summe aller der Strahlbüschel, deren Mittelpunkte die von den Curvenpunkten auf  $s_{\zeta}(\tilde{s}_{\zeta}^{\sigma})$  verschiedenen Punkte von  $s_{\zeta}$  sind, mit  $[\mathfrak{z}^{\sigma}]$ , jeden derselben durch  $\mathfrak{z}^{\sigma}$ . die Summe aller der Geraden der Ebene, welche nicht durch den Punkt  $\mathfrak{s}^{\varsigma}$  gehen, durch das Symbol (z), jede derselben durch z;

die Summe der geraden Punktreihen der Ebene, deren Träger die von den Tangenten, welche sich in  $\mathfrak{s}^{\xi}$  schneiden  $(\mathfrak{s}^{\xi}_{\sigma})$ , verschiedenen Strahlen des Büschels  $\mathfrak{s}^{\xi}$  sind, mit  $[z_{\sigma}]$ , jede derselben durch  $z_{\sigma}$ . Der in einem der Büschel  $[s^{\sigma}]$  mit  $s^{\xi}$  perspectivische Strahl ist stets  $s_{\xi}$ , der in einem der Büschel (s) mit  $s^{\xi}$  perspectivische Strahl kann nie  $s_{\xi}$ , wohl aber eine andere der Geraden  $(s^{\xi}_{\sigma})$  sein, und ist, wenn dies nicht der Fall, stets eine der Geraden  $[z_{\sigma}]$ . Jede der Geraden  $[z_{\sigma}]$  muss daher mit einem Strahl  $z_{\xi}$  identisch sein.

Der auf einer der Geraden  $[z_{\sigma}]$  mit  $s_{\varepsilon}$  perspectivische Punkt ist stets  $s^{\zeta}$ , der auf einer der Geraden (z) mit  $s_{\varepsilon}$  perspectivische Punkt  $s^{\varepsilon}$  kann mit einem der Punkte  $[s^{\sigma}]$  nur zusammenfallen, wenn  $s_{\zeta}$  mit  $s_{\varepsilon}$  zusammenfällt, also alle Punkte  $s^{\varepsilon}$  mit allen Punkten  $[s^{\sigma}]$  identisch sind. c) Jede der Geraden  $[z_{\sigma}]$  kann | Jeder der Strahlbüschel  $[s^{\sigma}]$ 

c) Jede der Geraden  $[z_{\sigma}]$  kann mit der Punktreihe  $S^{(\sigma \nu)}$  ausser  $\hat{s}^{\xi}$ höchstens zwei Punkte gemeinschaftlich haben, einen mit  $S^{(\sigma \xi)}$ , den wir mit  $\hat{s}^{\gamma}$ , und einen mit  $S^{(\xi \nu)}$ , den wir mit  $\hat{s}^{1}$  bezeichnen (No. 52  $b^{2}$ ).

Jede der Geraden (z) kann mit  $S^{(ov)}$  höchstens vier Punkte gemeinschaftlich haben; wir bezeichnen von den beiden dem Theil  $S^{(o\xi)}$  angehörigen immer denjenigen, welcher  $\hat{s}^{\xi}$  am nächsten ist, mit  $\hat{s}^{\gamma}$ , von den beiden dem Theil  $S^{(\xi v)}$  angehörigen denjenigen, welcher  $\hat{s}^{\xi}$  am nächsten ist, mit  $\hat{s}^{\lambda}$ . Jeder der Strahlbüschel  $[3^{\sigma}]$ kann mit der Tangentenfolge  $S^{(\sigma\nu)}$ ausser  $s_{\xi}$  höchstens zwei Strahlen gemeinschaftlich haben, einen mit  $S^{(\sigma\xi)}$ , den wir mit  $s_{\alpha}$ , und einen mit  $S^{(\xi\nu)}$ , den wir mit  $s_{\xi}$  bezeichnen (No. 52 $a^{\epsilon}$ ).

Jeder der Strahlbüschel ( $\mathfrak{z}$ ) kann mit  $S^{(o\nu)}$  höchstens vier Tangenten gemeinschaftlich haben; wir bezeichnen von den beiden dem Theil  $S^{(o\xi)}$  angehörigen immer diejenige, welche  $s_{\mathfrak{z}}$  am nächsten ist, mit  $s_{\alpha}$ , von den beiden dem Theil  $S^{(\xi\nu)}$  angehörigen diejenige, welche  $s_{\mathfrak{z}}$  am nächsten ist, mit  $s_{\mathfrak{z}}$ .

d) 1. Während die Elemente  $s_{\rho}$  und  $\hat{s}^{\rho}$  das Curvenstück  $S^{(o\nu)}$  von resp.  $s_{o}$ ,  $\hat{s}^{o}$  an, also im Sinne  $\Sigma$  stetig beschreiben, bilden die auf allen Geraden der Ebene  $\{(z), [z_{\sigma}], (s_{\sigma}^{\xi}) (s_{\chi})\}$  und in allen Strahlbüscheln der Ebene  $\{(\hat{s}), [\hat{s}^{\sigma}], (\hat{s}_{\xi}^{\sigma}) (\hat{s}^{\xi})\}$  perspectivischen Punkte und Strahlen eine stetige Punktenfolge  $(\hat{s}^{(o\nu)}, \hat{s}^{(o\nu)}_{\sigma}, \hat{s}^{\xi(o\nu)}_{\sigma} (\hat{s}^{(o\nu)}_{\chi}))$  resp. Strahlenfolge  $(z_{(o\nu)}, z_{(o\nu)}^{\sigma}, s_{\xi(o\nu)}^{\sigma})$  $s_{\xi(o\nu)}^{\sigma} (s_{(o\nu)}^{\xi}))$  (No. 48b, 50, 51).

### 2. Nach den Bestimmungen in c

folgen in den Strahlbüscheln  $(z), [z^{\sigma}]$  die den Punkten  $S^{(o \xi)}$  von <sup>α</sup> bis <sup>β<sup>ζ</sup></sup> entsprechenden Strahlen stetig in einem und demselben Drehsinne auf einander, und ein die Strahlenfolge  $z_{(\alpha \zeta)}$  resp.  $z_{(\alpha \zeta)}^{\sigma}$  durchlaufender Strahl trifft die Punkte von  $S^{(\alpha \xi)}$  mit demselben Halbstrahl. Analoges gilt von den Punkten von  $S^{(\xi\iota)}$  und den entsprechenden Strah-Im Büschel \$ folgen die den len. sämmtlichen Punkten von  $S^{(o\xi)}$  entsprechenden Strahlen in demselben Sinne (1) auf einander, bilden nur einen Theil des Büschels g<sup>¢</sup> und der die Strahlenfolge  $s_{(o\zeta)}^{\zeta}$  durchlaufende Strahl s<sup>\$</sup> trifft die Punkte von  $S^{(o\,\zeta)}$  alle mit demselben Halbstrahl. Analoges gilt von den sämmtlichen Punkten von  $S^{(\zeta \nu)}$  und den in  $\mathfrak{s}^{\zeta}$ entsprechenden Strahlen (No. 51c).

folgen auf den Geraden (z),  $[z_{\sigma}]$  die den Tangenten von S<sup>(o \$)</sup> von s, bis s, entsprechenden Punkte stetig in einem und demselben Richtungssinne auf einander, und in Bezug auf jede der Geraden (z), [z,] liegen die Punkte von  $S^{(\gamma \zeta)}$  auf derselben Halbebene. Analoges gilt von den Tangenten von  $S^{(\xi 1)}$ und den auf denselben befindlichen Curvenpunkten. Auf der Geraden s, folgen die den sämmtlichen Tangenten von  $S^{(o\xi)}$  entsprechenden Punkte in demselben Sinne auf einander, bilden nur einen Theil der Punktreihe s, und die Punkte von  $S^{(o \xi)}$  liegen sämmtlich auf derselben Halbebene in Bezug auf s<sub>p</sub>. Analoges gilt von den sämmtlichen Tanrenten von  $S^{(\boldsymbol{\zeta}\boldsymbol{\nu})}$  und den auf denselben befindlichen Curvenpunkten (No. 50 c).

55. a) Da keiner der Punkte  $(\mathfrak{z})$  oder  $[\mathfrak{z}^{\sigma}]$  mit einem Punkte des ihm nach No. 53 c zugehörigen Curvenstückes  $S^{(\alpha \xi \iota)}$  zusammenfällt (höchstens die Punkte  $\mathfrak{z}^{\alpha}$ ,  $\mathfrak{z}^{\beta}$  auf  $s_{\alpha}$  und  $\mathfrak{z}^{\iota}$ ,  $\mathfrak{z}^{n}$  auf  $s_{\iota}$  ausgenommen), so können nach No. 35 e und 25  $(a_{\psi}^{\lambda} = g_{\infty})$  die Punkte von  $S^{(\xi \iota)}$  von dem anderen Halb strahl des die Strahlenfolge  $z_{(\alpha \iota)}$ ,  $z_{(\alpha \iota)}^{\sigma}$  in den Büscheln  $(\mathfrak{z})$ ,  $[\mathfrak{z}^{\sigma}]$  durchlaufenden Strahles als die Punkte von  $S^{(\alpha \xi)}$  nur, wenn  $\mathfrak{z}^{\xi}$  ein unendlich entfernter Punkt, getroffen werden und auch dann nicht immer.

b) Jeder der Punkte (z),  $[z^{\sigma}]$  kann als auf einer Geraden z liegend augesehen werden, und es folgt aus No. 35 $\alpha$ , dass in allen Büscheln (z).  $[z^{\sigma}]$ , deren Mittelpunkte in einer und derselben Geraden z liegen, die Punkte von  $S^{(\zeta 4)}$  von dem anderen oder demselben Halbstrahl des die Strahlenfolge  $z_{(\alpha 4)}$  resp.  $z^{\sigma}_{(\alpha 4)}$  durchlaufenden Strahles getroffen

werden, als die Punkte von  $S^{(\alpha \ \xi)}$ , je nachdem der den Curvenstücken  $S^{(\xi \iota)}$ und  $S^{(\xi \iota)}$  (bezogen auf diese Gerade z) gemeinschaftliche Theil von  $S^{(\xi \nu)}$  auf der and eren oder derselben Halbebene liegt in Bezug auf diese Gerade, als der den Curvenstücken  $S^{(\alpha \xi)}$  und  $S^{(\gamma \xi)}$  gemeinschaftliche Theil von  $S^{(o \xi)}$ ; und dass in Bezug auf alle Geraden z, welche durch einen und denselben der Punkte  $(\mathfrak{z}), [\mathfrak{z}^{\sigma}]$  gehen, die Punkte von  $S^{(\xi \iota)}$  auf der anderen oder derselben Halbebene liegen, als die Punkte von  $S^{(\gamma \xi)}$ , je nachdem die  $S^{(\xi \iota)}$  und  $S^{(\xi \iota)}$  (bezogen auf diesen Punkt  $\mathfrak{z}$  oder  $\mathfrak{z}^{\sigma}$ ) gemeinschaftlichen Curvenpunkte von dem anderen oder demselben Halbstrahl des die Strahlenfolge  $z_{(\alpha \iota)}$  resp.  $z^{\sigma}_{(\alpha \iota)}$  in diesem Büschel durchlaufenden Strahles getroffen werden, als die  $S^{(\gamma \xi)}$  und  $S^{(\alpha \xi)}$  gemeinschaftlichen Punkte. Daraus folgt ferner:

c) Liegen die Punkte  $S^{(\xi \lambda)}$  in Bezug auf eine der Geraden (z) auf derselben oder auf der entgegengesetzten Halbebene als die Punkte  $S^{(\gamma \xi)}$ , so liegen sie in Bezug auf alle Gerade (z) resp. auf derselben oder auf der entgegengesetzten Halbebene als die Punkte  $S^{(\gamma \xi)}$ .

d) Werden die Punkte  $S^{(\zeta i)}$  in einem der Büschel (j),  $[j^{\sigma}]$ von demselben oder dem entgegengesetzten Halbstrahl getroffen, als die Punkte  $S^{(\alpha \zeta)}$ , so werden sie in allen Büscheln (j),  $[j^{\sigma}]$  von dem die Strahlenfolge  $z_{(\alpha i)}$  resp.  $z^{\sigma}_{(\alpha i)}$  durchlaufenden Strahl resp. mit demselben oder dem entgegengesetzten Halbstrahl getroffen, als die Punkte  $S^{(\alpha \zeta)}$ .

e) Liegen die Punkte  $S^{(\xi \lambda)}$  in Bezug auf eine der Geraden (z) auf derselben oder auf der entgegengesetzten Halbebene als die Punkte  $S^{(\gamma \xi)}$ , so werden die Punkte  $S^{(\xi \lambda)}$  in jedem der Büschel (z),  $[z^{\sigma}]$  von dem die Strahlenfolge  $z_{(\alpha \lambda)}$  resp.  $z^{\sigma}_{(\alpha \lambda)}$  durchlaufenden Strahl mit demselben resp. dem entgegengesetzten Halbstrahl getroffen, als die Punkte  $S^{(\alpha \xi)}$  und umgekehrt.

f) Die Tangenten  $(s_{\sigma}^{\xi})$ , welche die dem Punkt  $\tilde{s}^{\xi}$  benachbarten Curvenpunkte enthalten, sind unmittelbar aufeinanderfolgende Strahlen des Büschels  $\tilde{s}^{\xi}$ ; daher folgt aus No. 37*d* und 54*d*<sup>\*</sup>: Liegen die Punkte  $S^{(\xi \lambda)}$  in Bezug auf den mit  $\tilde{s}^{\xi}$  perspectivischen Strahl $z_{\xi}$  eines der Büschel (3) (oder in Bezug auf eine der Geraden  $[z_{\sigma}]$ ) auf derselben oder

# 378 Die projectivischen Eigenschaften der gewöhnlichen und

۰.

auf der entgegengesetzten Halbebene als die Punkte  $S^{(\gamma \xi)}$ , so liegen sie in Bezug auf den in jedem der Büschel (3), deren Mittelpunkte nicht auf einer der Geraden  $(s_{\sigma}^{\xi})$  gelegen sind, dem Punkte  $\tilde{s}^{\xi}$  entsprechenden Strahl, also in Bezug auf alle Gerade  $[z_{\sigma}]$ resp. auf derselben oder auf der entgegengesetzten Halbebene als die Punkte  $S^{(\gamma \xi)}$ .

Betreffs der Büschel (z), deren Mittelpunkte auf den Geraden  $(s_d^{\zeta})$  (ausser  $s_{r}$ ) gelegen sind, vergleiche No. 56 d.

Gleichfalls liegen die Punkte  $S^{(\xi_4)}$  in Bezug auf den in jedem der Büschel  $[s^{\sigma}]$  dem Punkt  $\tilde{s}^{\xi}$  entsprechenden Strahl  $z_{\xi}^{\sigma} = s_{\xi}$  (No. 54b) auf derselben oder auf der entgegengesetzten Halbebene als die Punkte  $S^{(\alpha \xi)}$ , je nachdem das Eine oder das Andere in Bezug auf eines der Büschel  $[s^{\sigma}]$  gilt.

g) Je nachdem die Punkte  $S^{(\xi\lambda)}$  in Bezug auf den in einem der Büschel (3) dem Punkt  $\hat{s}^{\xi}$  entsprechenden Strahl  $z_{\xi}$  (oder in Bezug auf eine der Geraden  $[z_{\sigma}]$ ), auf derselbenoder auf der entgegengesetzten Halbebene liegen als die Punkte  $S^{(\gamma\xi)}$ , werden die Punkte  $S^{(\xi\nu)}$  von dem im Büschel  $\hat{s}^{\xi}$  die Strahlenfolge  $s_{(\sigma\nu)}^{\xi}$ durchlaufenden Strahl resp. mit demselben oder dem entgegengesetzten Halbstrahl getroffen, als die Punkte von  $S^{(o\xi)}$ (No. 35*a*, 54*a*<sup>4</sup>) und umgekehrt.

B. Einfluss der ausgezeichneten Elemente eines Curvenstückesauf die mit demselben perspectivischen Strahlen- und Punktenfolgen; Classificirung der ersteren.

56. a) 1. Jedesmal, wenn in den Büscheln (z),  $[z^{\sigma}]$ ,  $z^{\xi}$  die den Punkten von  $S^{(\xi \iota)}$  im Sinne  $\Sigma$  eutsprechenden Strahlen in demselben Bewegungssinne aufeinanderfolgen, als die den Punkten  $S^{(\alpha \xi)}$  im Sinne  $\Sigma$  entsprechenden, also resp. der Strahl  $z_{\xi}$ ,  $z_{\xi}^{\sigma} = s_{\xi}$ ,  $s_{\varepsilon}$  in diesen Büscheln für die Strahlenfolge resp.  $z_{(o\nu)}$ ,  $z_{(o\nu)}^{\sigma}$ ,  $s_{(o\nu)}^{\xi}$  ein gewöhnlicher Strahl ist, müssen von den nicht in diesem Strahl befindlichen Curvenpunkten nach No. 34  $b^{2}$ , 39b die auf den Punkt  $z^{\xi}$  im Sinne  $\Sigma$  folgenden, das sind die von  $S^{(\xi \iota)}$ 

ausgezeichneten Elemente ebener Curven. Von PAUL SCHOLZ. 379

entweder auf der anderen Halbebene in Bezug auf resp.  $z_{\ell}, z_{\ell}^{\sigma} = s_{\ell}, s_{\epsilon}$  liegen und von demselben Halbstrahl,

oder auf derselben Halbebene in Bezug auf resp.  $z_{\xi}, z_{\xi}^{\sigma} = s_{\xi}, s_{\xi}$  liegen und von dem anderen Halbstrahl

des eines der Büschel resp.  $(\mathfrak{z})$ ,  $[\mathfrak{z}^{\mathfrak{s}}]$ ,  $\mathfrak{z}^{\mathfrak{s}}$  durchlaufenden Strahles getroffen werden, als die dem Punkt  $\mathfrak{z}^{\mathfrak{s}}$  in demselben Sinne  $\Sigma$  vorhergehenden Curvenpunkte, nämlich als die von  $S^{(\alpha \mathfrak{s})}$ , und umgekohrt.

2. Jedesmal, wenn der Strahl  $z_{\xi}$ ,  $z_{\xi}^{\sigma} = s_{\xi}$ ,  $s_{\varepsilon}$  für die Strahlenfolge resp.  $z_{(\sigma v)}$ ,  $z_{(\sigma v)}^{\sigma}$ ,  $s_{(\sigma v)}^{\xi}$  ein Rückkehrstrahl ist, müssen von den nicht in diesem Strahl befindlichen Curvenpunkten die von  $S^{(\xi s)}$ 

entweder auf derselben Halbebene in Bezug auf resp.  $z_{\zeta}, z_{\zeta}^{\sigma} = s_{\zeta}, s_{z}$  liegen und von demselben Halbstrahl, oder auf der anderen Halbebene in Bezug auf resp.  $z_{\zeta}, s_{j}, s_{z}$  liegen und von dem anderen Halbstrahl

des eines der Büschel ( $\mathfrak{z}$ ), [ $\mathfrak{z}^{\sigma}$ ],  $\mathfrak{z}^{\zeta}$  durchlaufenden Strahles getroffen werden, als die Punkte von  $S^{(\alpha \zeta)}$ , und umgekehrt.

b) 1. Jedesmal, wenn auf einer der Geraden (z),  $[z_{\sigma}]$ ,  $s_{\xi}$  die den Tangenten von  $S^{(\xi\lambda)}$  im Sinne  $\Sigma$  entsprechenden Punkte in demselben Bewegungssinne auf einander folgen, als die den Tangenten von  $S^{(\gamma\xi)}$  im Sinn  $\Sigma$  entsprechenden Punkte, also resp. der Punkt  ${}_{\delta}^{s}$ ,  ${}_{\delta}^{s}_{\sigma} = \tilde{s}^{\xi}$ ,  $\tilde{s}^{\xi}$  auf diesen Geraden für die Punktenfolge resp.  ${}_{\delta}^{(o\nu)}$ ,  ${}_{\delta}^{(o\nu)}$ ,  ${}_{\delta}^{(o\nu)}$  ein gewöhnlicher l'unkt ist, muss nach No.  $36c^{s}$  und 45a, b die Tangente  $s_{\rho}$  beim Uebergang aus der Lage  $s_{\epsilon}$  in die im Sinne  $\Sigma$  folgende,  $s_{\xi}$ , und somit aus jeder Lage im Curvenstück  $S^{(\xi\nu)}$  in die im Sinne  $\Sigma$  folgende (No. 54a), sich in demselben Sinne  $\Delta$  bewegen, den sie hat beim Uebergange aus jeder Lage im Curvenstück  $S^{(o\xi)}$  in die im Sinne  $\Sigma$  folgende, oder in dem entgegengesetzten  $\overline{\Delta}$ , je nachdem die Punkte von  $S^{(\xi\lambda)}$  auf derselben Halbebene in Bezug auf diese Gerade resp.  $z, z_{\sigma}, s_{\xi}$  liegen, als die l'unkte von  $S^{(\gamma\xi)}$ , oder auf der intgegengesetzten.

2. Jedesmal aber, wenn der Punkt  $\mathfrak{z}^{\mathfrak{e}}, \mathfrak{z}_{\sigma}^{\mathfrak{e}} = \mathfrak{z}^{\mathfrak{f}}, \mathfrak{z}^{\mathfrak{f}}$  für die Punktenfolge resp.  $\mathfrak{z}^{(o\nu)}, \mathfrak{z}^{(o\nu)}, \mathfrak{z}^{(o\nu)}$  ein Rückkehr punkt ist, muss  $\mathfrak{z}_{\mathfrak{g}}$  beim Ueber-Digitized by Google gang aus der Lage  $s_{\varepsilon}$  in die im Sinne  $\Sigma$  folgende,  $s_{\zeta}$ , in dem entgegengesetzten Sinne  $\overline{\Delta}$  oder demselben Sinne  $\Delta$  sich bewegen, je nachdem die Punkte  $S^{(\zeta\lambda)}$  sich auf derselben Halbebene in Bezug auf diese Gerade resp. z,  $z_{\sigma}$  oder  $s_{\zeta}$  befinden, als die Punkte  $S^{(\gamma\zeta)}$ , oder auf der entgegengesetzten.

c) Durch Vergleichung hiermit und mit No. 45 b, d folgt aus No. 55c, d, e und 6, wenn wir

betreffs der Strahlbüschel  $z_{\xi}$ , deren Mittelpunkte die von  $z_{\xi}^{\xi}$  verschiedenen Punkte der von  $s_{\xi}$  verschiedenen Tangenten  $(s_{\sigma}^{\xi})$  sind, für welche, indem  $s_{\alpha}$ oder  $s_{\iota}$  mit  $z_{\xi}$  zusammenfällt, einer der beiden Theile  $S^{(\alpha \xi)}$ ,  $S^{(\xi \iota)}$  gleich Null wird, und

betreffs der Geraden z, welche die Tangente  $s_{e}$  in einem der auf derselben befindlichen von  $\mathfrak{s}^{\xi}$  verschiedenen Curvenpunkte schneiden, ohne mit ihr zusammenzufallen, für welche, indem  $\mathfrak{s}^{\gamma}$  oder  $\mathfrak{s}^{\lambda}$  mit  $\mathfrak{s}^{\varepsilon}$  zusammenfällt einer der beiden Theile  $S^{(\gamma \xi)}$ ,  $S^{(\xi \lambda)}$  gleich Null wird, No. 25 *a* berücksichtigen:

1. dass in allen Büscheln (j) der dem Punkt  $\mathfrak{g}^{\xi}$  entsprechende Strahl  $z_{\xi}$  für die Strahlenfolge  $z_{(ov)}$  ein gewöhnlicher oder Rückkehr-Strahlist, wenn er in einem derselben ein gewöhnlicher resp. Rückkehr-Strahlist;

2. dass in allen Büscheln [ $\delta^{\sigma}$ ] der dem Punkt  $\delta^{\xi}$  entsprechende Strahl  $s_{\xi}$  für die Strahlenfolge  $z^{\sigma}_{(\sigma\nu)}$  ein gewöhnlicher oder Rückkehr-Strahl ist, wenn er in einem derselben ein gewöhnlicher resp Rückkehr-Strahlist.

d) 1. Nach No. 51 b, c ist die Tangente  $s_{\alpha}$  in den Strahlbüscheln 3 und  $3^{\sigma}$ , deren Mittelpunkte die von den dass auf allen Geraden (:) der der Tangente se entsprechende Punkt z<sup>e</sup> für die Punktenfolge z<sup>(ov)</sup> ein gewöhnlicheroder Rückkehr-Punktist, wenn er auf einer derselben ein gewöhnlicher resp. Rückkehr-Punktist;

dass auf allen Geraden [z<sub>o</sub>] der der Tangente sentsprechende Punkt ä<sup>k</sup> für die Punktenfolge 3<sup>(ov)</sup> ein gewöhnlicher oder Rückkehr-Punkt ist, wenn er auf einer derselben ein gewöhnlicher resp. Rückkehr-Punkt ist

Nach No. 50 b, c ist der Punkt s<sup>7</sup> auf den Punktreihen z und deren Träger die von den sich in Digitized by Curvenpunkten auf  $s_{\alpha}$ ,  $\mathfrak{F}^{\alpha}$ ,  $\mathfrak{F}^{\beta}$  verschiedenen Punkte von  $s_{\alpha}$  sind, ein Rückkehrstrahl für die Strahlenfolge  $z_{(ov)}$  resp.  $z_{(ov)}^{\sigma}$ , in den Strahlbüscheln, deren Mittelpunkte die Curvenpunkte  $\mathfrak{F}^{\alpha}$ ,  $\mathfrak{F}^{\beta}$  sind, aber ein gewöhnlicher Strahl. Gleiches gilt für  $s_{\mu}$ .

2. Daher erscheint der dem Punkt  $\hat{s}^{\xi}$  entsprechende Strahl  $z_{\xi}$ , wenn er in den Strahlbüscheln  $(\xi)$ , deren Mittelpunkte mit keiner der Geraden  $(s_{\sigma}^{\xi})$  perspectivisch liegen, ein gewöhnlicher oder Rückkehr-Strahl ist für die Strahlenfolge  $z_{(\sigma r)}$ ,

in den Strahlbüscheln z, deren Mittelpunkte die von  $\hat{s}^{\zeta}$  verschiedenen, auf den von  $s_{\zeta}$  verschiedenen Tangenten  $(s_{\sigma}^{\zeta})$  befindlichen Curvenpunkte sind, ebenfalls resp. als ein gewöhnlicher oder Rückkehr-Strahl,

in den Büscheln  $\delta$ , deren Mittelpunkte die übrigen von  $\delta^{\zeta}$  verschiedenen Punkte der von  $s_{\zeta}$  verschiedenen Tangenten  $(s_{\sigma}^{\zeta})$  sind, resp. als ein Rückkehr- oder gewöhnlicher Strahl.  $\mathfrak{s}^{\gamma}$  schneidenden Tangenten  $s_{\beta}$  und  $s_{\gamma}$  verschiedenen Strahlen des Büschels  $\mathfrak{s}^{\gamma}$  sind, ein Rückkehrpunkt für die Punktenfolge  $\mathfrak{z}^{(o_{\gamma})}$  resp.  $\mathfrak{z}_{\sigma}^{(o_{\gamma})}$ , auf den Geraden  $s_{\beta}$  und  $s_{\gamma}$ jedoch ein gewöhnlicher Punkt. Gleiches gilt von  $\mathfrak{s}^{1}$ .

Daher erscheint der der Tangentes, entsprechende Punkt $y^{e}$ , wenn er auf den Geraden (z), welche mit keinem der auf  $s_{p}$  befindlichen Curvenpunkte perspectivisch liegen, ein gewöhnlicher oder Rückkehr-Punkt ist für die Punktenfolge  $y^{(o \, p)}$ ,

auf den Geraden z, welche mit den von  $s_{\varepsilon}$  verschiedenen, diese Gerade  $s_{\varepsilon}$  in den von  $\hat{s}^{\sharp}$  verschiedenen auf derselben befindlichen Curvenpunkten schneidenden Tangenten identisch sind, ebenfalls resp. als ein gewöhnlicher oder Rückkehr-Punkt,

auf den übrigen Geraden z, welche die Tangente s<sub>g</sub> in einem der auf ihr befindlichen von \$<sup>\$</sup> verschiedenen Curvenpunkte schneiden, resp. als ein Rückkehr- oder gewöhnlicher Punkt.

3. Dies hier in No. 56*d* Gesagte würde zunächst nur gelten, wenn  $s_e$  cine endliche Gerade und  $\mathfrak{s}^{\zeta}$  ein endlicher Punkt derselben ist, da die Untersuchungen in No. 50 und 51 sich nur auf endliche Curvenelemente beziehen; da aber die hier in Betracht kommenden Eigenschaften nach No. 58*c*, 25 für solche Curvenelemente, die wir gewöhnliche nennen, auch gelten, wenn sie eine unendlich entfernte Lage haben, so gilt dasselbe allgemein. Wir können hiernach, ohne die Allgemeinheit der Untersuchung zu beschränken, des leichteren Ausdruckes wegen diejenigen Strahlbüschel z, de-ren Mittelpunkte den Geraden  $(s_{\sigma}^{\xi})$ angehören, diejenigen Geraden z, welche  $s_{\varepsilon}$  in einem der von  $\tilde{z}^{\xi}$  verschiede-nen Curvenpunkte schneiden,

ausschliessen, da dieselben Gesetze, welche für die übrigen Punkte (3) resp. Geraden (z) gelten, auch auf diese Anwendung finden, aber die angegebene Modification erleiden.

57. a) 1. Sind der der Tangente s, auf einer der Geraden (z) entsprechende Punkt 3 und der ihr auf einer der Geraden [z, ] entsprechende  $\mathfrak{z}_{\mathfrak{a}}^{\mathfrak{e}} = \mathfrak{s}^{\mathfrak{f}}$  beide auf ihren Geraden entweder gewöhnliche oder beide Rückkehr-Punktefür die Punktenfolgen  $\mathfrak{z}^{(ov)}$  resp.  $\mathfrak{z}^{(ov)}_{\sigma}$ , so befinden sich 3<sup>e</sup> und 3<sup>c</sup> stets in demselben der von einer der Tangenten von  $S^{(\gamma \xi)}$  und einer der Tangenten von  $S^{(\xi \lambda)}$  gebildeten Winkel\*); die Schnittpunkte je einer Tangente von  $S^{(\gamma \xi)}$  und einer von  $S^{(\xi \lambda)}$  mit  $s_{\mu}$  bilden daher stets ein Punktepaar zweiter Art in Bezug auf die Punkte 3 und s<sup>5</sup> (No. 31, 12), gehören also derselben von den beiden durch 3<sup>e</sup> und ¢ begrenzten Strecken an; das heisst (No. 16): der Punkt و ist für die Punktenfolge  $\hat{s}_{s}^{(o\nu)}$  auf  $s_{t}$  und somit auch für die Punktenfolge  $s_{\mu}^{(ov)}$  auf s, ein Rückkehrpunkt (No. 42 ba<sup>2</sup>, 37)\*\*).

2. Ist der eine der Punkte 3<sup>e</sup>, 3<sup>c</sup> auf seiner Geraden für die Punktenfolge resp.  $\mathfrak{z}^{(o\,\mathfrak{v})}$  oder  $\mathfrak{z}^{(o\,\mathfrak{v})}_{\sigma}$  ein gewöhnlicher, der andere ein Rückkehrpunkt, so gehört stets der eine dem einen, der andere dem anderen der durch eine Tangente von  $S^{(\gamma \, \zeta)}$  und eine von  $S^{(\zeta \lambda)}$  gebildeten Winkel an; die Schnittpunkte zweier solcher Tangenten mit s bilden daher ein Punkte-

<sup>•)</sup> Unter  $S^{(\gamma \xi)}$  und  $S^{(\xi l)}$  sind hier die Theile von  $S^{(o \nu)}$  zu verstehen, welche resp. den durch die gewählte Gerade z nach No. 54c bestimmten Curvenstücken  $s^{(\gamma \, \xi)}$  und  $s^{(\xi \, \lambda)}$  mit den durch die gewählte Gerade  $z_{\sigma}$  bestimmten gemeinschaftlich sind.

<sup>\*\*)</sup> Dass der Punkt  $\mathfrak{z}^{\zeta}$ , je nachdem er für die Punktenfolge  $\mathfrak{z}_{\mathfrak{z}}^{(o\nu)}$  ein gewöhnlicher oder ein Rückkehr-Punkt, auch für die Punktenfolge  $\mathfrak{F}_{\mathcal{F}}^{(o\nu)}$  resp. ein gewöhn licher oder ein Rückkehr-Punkt ist, ist, wenn 3<sup>8</sup> ein Rückkehr-Punkt für die Punktenfolge  $\mathfrak{z}^{(op)}$ , also  $\mathfrak{z}^{\mathfrak{s}} = \mathfrak{z}^{\mathfrak{k}}$  (No. 16c) folglich  $\mathfrak{s}_{\mathfrak{s}} = \mathfrak{s}_{\mathfrak{k}}$  (No. 2), selbstverständlich; wenn aber  $\int_{0}^{\varepsilon}$  ein gewöhnlicher Punkt für die Punktenfolge  $\int_{0}^{(o\nu)}$ , so lässt sich die-selbe Schlussfolge, welche in No. 57*a* auf  $s_{\varepsilon}$  angewandt ist, ebenso für  $s_{\zeta}$  durchführen.

paar der ersten Art in Bezug auf die l'unkte  $\mathfrak{z}^{\varepsilon}$  und  $\mathfrak{z}^{\zeta}$ , das heisst (No. 16): der Punkt  $\mathfrak{z}^{\zeta}$  ist für die Punktenfolge  $\mathfrak{z}_{\varepsilon}^{(o\nu)}$  und somit auch für die Punktenfolge  $\mathfrak{z}_{\zeta}^{(o\nu)}$  auf  $s_{\zeta}$  ein gewöhnlicher Punkt\*).

b) 1. Aus No. 55g und 56 $a^2$  folgt, dass die Tangente  $s_g$  in dem Büschel  $s_s^{\dagger}$  für die Strahlenfolge  $s_{(0\nu)}^{\dagger \dagger}$  ein Rückkehrstrahl ist, wenn

entweder sowohl in Bezug auf  $s_{\xi} = z_{\xi}^{\sigma}$  als in Bezug auf  $z_{\xi}$ , dem in einem der Büschel (3) mit 3<sup> $\xi$ </sup> perspectivischen Strahl, die Punkte  $S^{(\xi \lambda)}$  auf derselben Halbebene liegen, als die Punkte  $S^{(\gamma \xi)}$ .

oder wenn sowohl in Bezug auf eine der Geraden  $z_{\xi}$  als in Bezug auf  $s_{\xi} = z_{\xi}^{\sigma}$  die Punkte  $S^{(\xi \lambda)}$  auf der entgegengesetzten Halbebene liegen, als die Punkte  $S^{(\gamma \xi)}$ .

Aus No. 39*a* geht nämlich hervor, dass, da  $s_{\varepsilon}$  und  $s_{\zeta}$  zwei unmittelbar aufeinander folgende Strahlen des Büschelss<sup>5</sup> sind, alle Punkte, welche in Bezug auf  $s_{\zeta}$  auf derselben Halbebene sich befinden und weder mit  $s_{\varepsilon}$ noch mit  $s_{\zeta}$  perspectivisch liegen, auch in Bezug auf  $s_{\varepsilon}$  ein und derselben Halbebene angehören, und dass je zwei weder mit  $s_{\varepsilon}$  noch mit  $s_{\zeta}$  perspectivische Punkte, welche in Bezug auf eine dieser Geraden auf entgegengesetzten Halbebenen liegen, auch in Bezug auf die andere entgegengesetzten Halbebenen angehören.

Da aber  $z_{\xi}^{\sigma} = s_{\xi}$  der dem Punkt  $\hat{s}^{\xi}$  in einem der Büschel  $[\hat{s}^{\sigma}]$  entsprechende Strahl ist, so können wir mit Rücksicht auf No. 55*c*, *d*, *e* auch sagen: Die Tangente  $s_{\xi}$  ist in dem Büschel  $\hat{s}^{\xi}$  für die Strahlenfolge  $s_{(\sigma \nu)}^{\xi}$  ein Rückkehrstrahl, wenn sowohl in einem der Büschel  $(\hat{s})$  als in einem der Büschel  $[\hat{s}^{\sigma}]$  der dem Punkt  $\hat{s}^{\xi}$  entsprechende Strahl für die Strahlenfolge  $z_{(\sigma \nu)}$  resp.  $z_{(\sigma \nu)}^{\sigma}$  ein gewöhnlicher Strahl oder in beiden ein Rückkehrstrahl ist.

2. Die Tangentes<sub>e</sub> aberistin dem Büschel<sup>§ f</sup>ür die Strahlenfolges<sup> $\xi$ </sup><sub>(ov)</sub> ein gewöhnlicher Strahl, wenn die Punkte S<sup>( $\xi \lambda$ )</sup>

in Bezug auf  $s_{\zeta} = z_{\zeta}^{\sigma}$  auf derselben und in Bezug auf eine der Geraden  $z_{\rho}$ , d. i. eine der Geraden  $[z_{\sigma}]$ , auf der entgegengesetzten, oder

\*) Siehe vorhergende Anmerkung.

in Bezug auf  $s_{\xi} = z_{\xi}^{\sigma}$  auf der entgegengesetzten und in Bezug auf eine Gerade  $z_{\xi}$  oder  $z_{\sigma}$  auf derselben

Halbebene sich befinden, als die Punkte  $S^{(\gamma \xi)}$ , also nach No. 55 c, d, e und 58 a jedesmal, wenn der dem Punkt  $\mathfrak{F}^{\xi}$  entsprechende Strahl resp. für die Strahlenfolge  $z_{(\alpha \gamma)}$  oder  $z_{(\alpha \gamma)}^{\sigma}$ 

in einem der Büschel (3) ein gewöhnlicher und in einem der Büschel  $\begin{bmatrix} 3^{\sigma} \end{bmatrix}$  ein Rückkehr-Strahl, oder

in einem der Büschel [3<sup>6</sup>] ein gewöhnlicher und in einem der Büschel (3) ein Rückkehr-Strahlist.

c) Mit Hilfe von No. 56b folgern wir weiter aus No. 57b:

 Die Tangente s<sub>e</sub> kann im Büschel s<sup>6</sup> für die Strahlenfolge s<sup>6</sup><sub>(ov)</sub> nur dann ein gewöhnlicher Strahl sein,

wenn  $\mathfrak{s}^{\xi}$  auf  $s_{\xi}$  für die Punktenfolge  $\mathfrak{s}_{\xi}^{(o \nu)}$  ein gewöhnlicher und auf einer der Geraden  $[z_{\sigma}]$  für die Punktenfolge  $\mathfrak{z}_{\sigma}^{(o \nu)}$  ein Rückkehr-Punkt ist, oder wenn  $\mathfrak{s}^{\xi}$  auf  $s_{\xi}$  ein Rückkehr- und auf einer der Geraden  $[z_{\sigma}]$  ein gewöhnlicher Punkt ist,

das heisst, nach No. 57 a², jedesmal, wenn der der Tangentes<sub>e</sub> auf einer der Geraden (z) entsprechende Punkt z<sup>g</sup> für die Punktenfolge z<sup>(ov)</sup> ein gewöhnlicher Punkt ist.

2. Die Tangente s<sub>e</sub> kann im Büschel 3<sup>5</sup> für die Strahlenfolge s<sup>5</sup><sub>(av)</sub> nur dann ein Rückkehrstrahlsein,

wenn  $\hat{s}^{\xi}$  auf  $s_{\xi}$  für die Punktenfolge  $\hat{s}_{\xi}^{(o\nu)}$  und auf einer der Geraden  $[z_{\sigma}]$  für die Punktenfolge  $\hat{s}_{\sigma}^{(o\nu)}$  ein gewöhnlicher Punkt ist, oder

wenn  $\mathfrak{s}^{\mathfrak{l}}$  auf  $s_{\mathfrak{l}}$  und einer der Geraden  $[z_{\mathfrak{l}}]$  ein Rückkehrpunkt ist,

das heisst nach No. 57 a<sup>1</sup>, jedesmal, wenn der der Tangentes<sub>e</sub> auf einer der Geraden (z) entsprechende Punkt 3<sup>e</sup> für die Punktenfolge 3<sup>(ov)</sup> ein Rückkehrpunkt ist.

d) Zufolge No. 6, 28, 37*b*, 45*d* muss jedesmal, wenn der dem Pankt  $\mathfrak{g}^{\sharp}$  in einem der Büschel ( $\mathfrak{g}$ ) entsprechende Strahl  $z_{\xi}$  für die Strahlenfolge  $z_{(ov)}$  ein gewöhnlicher Strahl ist, der Punkt  $\mathfrak{g}^{\varphi}$  auf  $s_{\varphi}$  in der Lage  $s_{\xi}$  von  $\mathfrak{g}^{\sharp}$  aus sich in demselben Richtungssinne *P* weiter bewegen, mit wolchem Digitized by **OOSIC** 

er auf  $s_{\rho}$  in der vorhergehenden Lage  $s_{g}$  nach  $\hat{s}^{\zeta}$  gelangt war; jedesmal aber, wenn der Strahl  $z_{\zeta}$  für die Strahlenfolge  $z_{(ov)}$  ein Rückkehrstrahl ist, muss  $\hat{s}^{\rho}$  den Richtungssinn auf  $s_{\rho}$  in der Lage  $s_{\zeta}$  ändern in den entgegengesetzten  $\overline{P}$ .

Daraus folgt, dass der Punkt  $\mathfrak{F}^{\xi}$  auf  $s_{\xi}$  für die Punktenfolge  $\mathfrak{s}_{\xi}^{(ov)}$  jedesmal ein gewöhnlicher oder Rückkehr-Punkt ist, wenn der dem Punkt  $\mathfrak{F}^{\xi}$  entsprechende Strahl in einem der Büschel (z) für die Strahlenfolge  $z_{(ov)}$  resp. ein gewöhnlicher oder Rückkehr-Strahl ist.

58. a) Wir stellen hier die in No. 57 gefundenen Sätze zusammen; diese sind:

1. Sind die dem Punkt  $\tilde{s}^{\xi}$ in einem der Büschel  $(\mathfrak{z})$  und einem der Büschel  $[\mathfrak{z}^{\sigma}]$  entsprechenden Strahlen resp.  $z_{\xi}, s_{\xi}$  für die Strahlenfolgen resp.  $z_{(\sigma\nu)}$  und  $z_{(\sigma\nu)}^{\sigma}$  beide gewöhnliche oder beide Rückkehr-Strahlen, so ist  $s_{\xi}$  im Büschel  $\tilde{s}^{\xi}$  für die Strahlenfolge  $s_{(\sigma\nu)}^{\xi}$  ein Rückkehrstrahl, und umgekehrt.

Ist eines der Elemente  $z_{\xi}$ ,  $z_{\xi}^{\sigma} = s_{\xi}$  ein gewöhnlicher, das andere ein Rückkehr-Strahl für die Strahlenfolge resp.  $z_{(ov)}$  oder  $z_{(ov)}^{\sigma}$ , so ist  $s_{\xi}$  für die Strahlenfolge  $s_{(ov)}^{\xi}$  ein gewöhnlicher Strahl, und umgekehrt.

2. Jedesmal, wenn s<sub>s</sub> im Büschel s<sup>g</sup> für die StrahlenSind die der Tangente  $s_g$ auf einer der Geraden (z) und einer der Geraden  $[z_g]$  entsprechenden Elemente resp.  $z^{\varepsilon}$  und  $z^{\varepsilon}$  für die Punktenfolge resp.  $z^{(o\nu)}$  und  $z^{(o\nu)}_{\sigma}$  beide gewöhnliche oder beide Rückkehr-Punkte, so ist  $z^{\varepsilon}$  auf der Tangente  $s_{\varepsilon}$  für die Punktenfolge  $z^{(o\nu)}_{\varepsilon}$  ein Rückkehrpunkt, und umgekehrt.

Ist eines der Elemente  $\mathfrak{z}^{\mathfrak{e}}$ und  $\mathfrak{z}^{\mathfrak{e}}_{\sigma} = \mathfrak{z}^{\mathfrak{f}}$  ein gewöhnlicher, das andere ein Rückkehr-Punkt für die Punktenfolge resp.  $\mathfrak{z}^{(o\nu)}$  oder  $\mathfrak{z}^{(o\nu)}_{\sigma}$ , so ist  $\mathfrak{z}^{\mathfrak{f}}$ für die Punktenfolge  $\mathfrak{z}^{(o\nu)}_{\mathfrak{f}}$  ein gewöhnlicher Punkt, und umgekehrt.

Jedesmal, wenn 3<sup>5</sup> aufder Tangentes, für die Punkten-Digitized by Google folge  $s_{(ov)}^{\xi}$  ein gewöhnlicher oder Rückkehr-Strahlist, ist der der Tangente  $s_{\epsilon}$  auf einer der Geraden (z) entsprechende Punkt  $g^{\epsilon}$  resp. ein gewöhnlicher oder Rückkehr-Punkt für die Punktenfolge (ov), und umgekehrt. folge  $\hat{s}_{\xi}^{(ov)}$  ein gewöhnlicher oder Rückkehr-Punkt ist, ist der dem Punkt $\hat{s}^{\xi}$  in einem der Büschel (3) entsprechende Strahl  $z_{\xi}$  resp. ein gewöhnlicher oder Rückkehr-Strahl fürdie Strahlenfolge  $z_{(ov)}$ , und umgekehrt.

b) Diese Sätze im Verein mit No. 56c zeigen die Abhängigkeit der Bewegungssinne der den laufenden Curvenelementen  $\hat{s}^{e}$  und  $s_{e}$  in den Strahlbüscheln (s),  $[s^{\sigma}]$ ,  $\hat{s}^{\xi}$ , resp. den Punktreihen (z),  $[z_{\sigma}]$ ,  $s_{\xi}$  entsprechenden Elemente von einander; sie lassen erkennen, dass, sobald wir den Be wegungssinn des den laufenden Curvenelementen  $\hat{s}^{e}$  und  $s_{e}$  in einer gleichzeitigen Lage in irgend zwei ungleichartigen der erwähnten Gebilde kennen, dadurch der Bewegungssinn des in jedem der anderen Gebilde entsprechenden Elementes und somit auch der Charakter der Curvenelemente, welche gerade von  $\hat{s}^{e}$  und  $s_{e}$  gedeckt werden, in der Hinsicht bestimmt ist, ob  $\hat{s}^{e}$ und  $s_{e}$  beim Uebergang in die nächstfolgende Lage ihren Bewegungssinn ändern müssen oder nicht.

c) Wir stellen darnach folgende Definitionen auf:\*)

Lassen wir die Elemente  $\mathfrak{F}^{(\mathfrak{o}\mathfrak{F})}$  und  $\mathfrak{s}_{\varrho}$  das Curvenstück  $S^{(\mathfrak{o}\mathfrak{F})}$ stetig im Sinne  $\mathfrak{E}$  durchlaufen, und ist die Lage der Theile  $S^{(\mathfrak{o}\mathfrak{F})}, S^{(\mathfrak{F}\mathfrak{F})}$  gegen einander eine derartige,

\*) Haben  $\mathfrak{F}^{Q}$  und  $s_{Q}$  den Theil  $S^{(\mathfrak{o}\mathfrak{f})}$  von  $S^{(\mathfrak{o}\mathfrak{p})}$  im Sinne  $\Sigma$  durchlaufen, so dass  $s_{Q}$  die Lage  $s_{g}$ ,  $\mathfrak{F}^{Q}$  die von  $\mathfrak{F}^{G}$  hat, so beginnt nach No. 46 die Beschreibung des Theiles  $S^{(\mathfrak{f}\mathfrak{p})}$  mit einer Bewegung von  $s_{Q}^{*}$ , für welche  $\mathfrak{F}^{G}$  als Drehungscentram gegeben ist, und darauf erst kann eine Bewegung von  $\mathfrak{F}^{Q}$  von der Lage  $\mathfrak{F}^{G}$  aus erfolgen. Ausserdem ist nun ein zweiter Fall möglich und ebenso berechtigt, demzufolge wir das Curvenstück  $S^{(\mathfrak{o}\mathfrak{p})}$  uns so in zwei Theile zerlegt denken, dass der durch den Bewegungssinn von  $\mathfrak{F}^{Q}$  und  $s_{Q}$  bestimmte erste Theil mit einer Bewegung von  $s_{Q}$  schliesst, also der zweite mit einer Bewegung von  $\mathfrak{F}^{Q}$  beginnen muss, für welche die Bahn, nämlich die zuletzt erlangte Lage der Geraden  $s_{Q}$ gegeben ist.

Wir haben willkürlich für die Durchführung den ersten Fall gewählt; der andere führt zu demselben Resultat, d. i. zu denselben Formen für das Curven-Digitized by

1. dass der dem Punkt  $\tilde{s}^{e}$ in der Lage  $\tilde{s}^{\xi}$  in einem der Büschel (3) entsprechende Strahl  $z_{\xi}$  ein gewöhnlicher, der in einem der Büschel [ $\tilde{s}^{\sigma}$ ] entsprechende  $z_{\xi}^{\sigma} = s_{\xi}$  ein Rückkehr-Strahl istresp. für die Strahlenfolge  $z_{(or)}$  oder  $z_{(or)}^{\sigma}$ ,

so ist  $s_{\varepsilon}$  im Büschel $\hat{s}^{\xi}$  für die Strahlenfolge  $s_{(o\nu)}^{\xi}$  ein gewöhnlicher Strahl, und wir nennen  $\hat{s}^{\xi}$  einen gewöhnlichen Curvenpunkt; dass der der Tangentes, in der Lage  $s_{g}$  auf einer der Punktreihen (z) entspre-.chende Punkt  $z^{f}$  eingewöhnlicher, der auf einer der Geraden  $[z_{\sigma}]$  entsprechende  $z_{\sigma}^{g}$  $= \tilde{z}^{f}$  ein Rückkehr-Punkt ist resp. für die Punktenfolge  $z^{(ov)}$  oder  $z_{\sigma}^{(ov)}$ ,

so ist  $\mathfrak{F}^{\mathfrak{s}}$  auf der Geraden  $s_{\xi}^{\mathfrak{s}}$ für die Punktenfolge  $\mathfrak{s}_{\xi}^{\mathfrak{s}}$  ein gewöhnlicher Punkt, und wir nennen  $s_{\xi}$  eine gewöhnliche Tangente;

stück  $S^{(o\,p)}$ , denn wir erhalten den einen stets aus dem anderen, wenn wir den Bewegungssinn  $\Sigma$  für die Elemente  $g^{\rho}$  und  $s_{\rho}$  in den entgegengesetzten  $\overline{\Sigma}$  umkehren; diese Umkehrung des Bewegungssinnes ist aber unabhängig von der Gestaltung des Curvenstückes, also ohne Einfluss auf dieselbe. Denken wir uns nämlich das Curvenstück  $S^{(p\,0)}$  so in zwei Theile getheilt, dass der erste im Sinne  $\overline{\Sigma}$ ,  $S^{(p\,\zeta)}$ , die Tangenten  $s_{p}, s_{p-1}, \ldots s_{\eta}, s_{\zeta}$  und die Punkte  $g^{p}, g^{p-1}, \ldots g^{0} g^{\eta}$ , der zweite,  $S^{(\zeta 0)}$ , also die Tangenten  $s_{\zeta}, s_{\varepsilon}, s_{\delta} \ldots s_{1}, s_{0}$  und die Punkte  $g^{\eta}, g^{\zeta}$ ,  $g^{\varepsilon} \ldots g^{1}, g^{0}$  umfasst, so erhalten wir für die möglichen Formen von  $S^{(p\,0)}$  folgende, den in No. 58c angegebenen ganz analoge Definitionen, in denen die Symbole (g) $(g^{0}), (z), [z_{\eta}]$  die in No. 54b bestimmte Bedeutung haben:

Lassen wir die Elemente  $\mathfrak{s}^{\varrho}$  und  $\mathfrak{s}_{\varrho}$  das Curvenstück  $\mathfrak{S}^{(\nu 0)}$  stetig im Sinne  $\overline{\Sigma}$  durchlaufen und ist die Lage der Theile  $\mathfrak{S}^{(\nu \zeta)}$ ,  $\mathfrak{S}^{(\zeta 0)}$  gegen einander eine derartige,

dass der dem Punkt  $\hat{s}^{\varphi}$  in der Lage  $\hat{s}^{\eta}$  in einem der Büschel ( $\delta$ ) entsprechende Strahl  $z_{\eta}$  ein gewöhnlicher, der in einem der Büschel [ $\delta^{\sigma}$ ] entsprechende  $z_{\eta}^{\sigma}$  ein Rückkehr-Strahl ist resp. für die Strahlenfolge  $z_{(\psi 0)}$  oder  $z_{(\psi 0)}^{\sigma}$ , so ist  $s_{\xi}$  im Büschel  $\hat{s}^{\xi}$  für die Zeitschrift f. Mathematik u. Physik XIII, 5. dass der der Tangente  $s_{\rho}$  in der Lage  $s_{\hat{\xi}}$  auf einer der Punktreihen (z)entsprechende Punkt  $\mathfrak{z}^{\hat{\xi}}$  ein gewöhnlicher, der auf einer der Geraden  $(z_{\sigma})$  entsprechende  $\mathfrak{z}_{\sigma}^{\hat{\xi}}$  ein Rückkehr-Punkt ist resp. für die Punktenfolge  $\mathfrak{z}^{(\Psi 0)}$  oder  $\mathfrak{z}_{\sigma}^{(\Psi 0)}$ , so ist  $\mathfrak{z}^{\eta}$  auf der Geraden  $s_{\hat{\xi}}$  für die

2. dass sowohl der Strahl  $z_{\xi}$  in einem der Büschel (z) als der Strahl  $z_{\xi}^{\sigma} = s_{\xi}$  in einem der Büschel [ $y^{\sigma}$ ] ein gewöhnlicher Strahl ist für die Strahlenfolge resp.  $z_{(\sigma r)}$  oder  $z_{(\sigma r)}^{\sigma}$ ,

so ist  $s_{g}$  im Büschel  $\hat{s}^{\xi}$  für die Strahlenfolge  $s_{(o\nu)}^{\xi}$  ein Rückkehrstrahl, und wir nennen  $\hat{s}^{\xi}$  einen einfachen Wendepunkt;

3. dass der Strahl  $z_{\xi}$  in einem der Büschel (z) ein Rückkehr-, der Strahl  $z_{\xi}^{\sigma} = s_{\xi}$  in einem der Büschel  $[z^{\sigma}]$  eingewöhnlicher Strahlist für die Strahlenfolge resp.  $z_{(\sigma r)}$  oder  $z_{(\sigma r)}^{\sigma}$ ,

Strahlenfolge  $s_{(vo)}^{\zeta}$  ein gewöhnlicher Strahl,  $\hat{s}^{\eta}$  ein gewöhnlicher Curvenpunkt; dass sowohl  $z_{\eta}$  in einem der Bü-

schel (j) als  $z_{\eta}^{\sigma} = s_{\zeta}$  in einem der Büschel [ $j^{\sigma}$ ] ein gewöhnlicher Strahl ist für die Strahlenfolge resp.  $z_{(y\sigma)}$  oder  $z_{(y\sigma)}^{\sigma}$ ,

so ist s<sub>ζ</sub> im Büschel <sup>g<sup>ζ</sup></sup> für die Strahlenfolge s<sup>ζ</sup><sub>(VO)</sub> ein Rückkehrstrahl, <sup>g<sup>ζ</sup></sup> ein einfacher Wendepunkt; dass der Punkt  $j^{\varepsilon}$  auf einer der Geraden (z) ein Rückkehr-, der Punkt  $j^{\varepsilon}_{\sigma} = j^{\zeta}$ auf einer der Geraden  $[z_{\sigma}]$  ein gewöhnlicher Punkt ist für die Punktenfolge resp.  $j^{(o\nu)}$ oder  $j^{(o\nu)}_{\sigma}$ ,

so ist  $\hat{s}^{\xi}$  auf der. Geraden  $s_{\xi}$  für die Punktenfolge  $\hat{s}_{\xi}^{(o\nu)}$ ein gewöhnlicher Punkt und wir nennen  $s_{\xi}$  eine einfache Wendetangente;

dass sowohl der Punkt  $\mathfrak{z}^{\mathfrak{s}}$ auf einer der Geraden (z) als auch der Punkt  $\mathfrak{z}_{\sigma}^{\mathfrak{s}} = \mathfrak{z}^{\mathfrak{s}}$ aufeiner der Geraden  $[z_{\sigma}]$  ein gewöhnlicher Punktist für die Punktenfolge resp.  $\mathfrak{z}^{(\sigma \nu)}$  oder  $\mathfrak{z}_{\sigma}^{(\sigma \nu)}$ ,

Punktenfolge  $\mathfrak{g}_{\xi}^{(\psi 0)}$  cin gewöhnlicher Punkt,  $s_{\xi}$  eine gewöhnliche Tangente;

dass  $\mathfrak{z}^{\xi}$  auf einer der Geraden (z) ein Rückkehr-,  $\mathfrak{z}_{\sigma}^{\xi} = \mathfrak{z}^{\xi}$  auf einer der Geraden  $[z_{\sigma}]$  ein gewöhnlicher Punkt ist für die Punktenfolge resp.  $\mathfrak{z}^{(vo)}$  oder  $\mathfrak{z}_{\sigma}^{(vo)}$ ,

so ist  $\hat{s}^{\eta}$  auf der Geraden  $s_{\xi}$  für die Punktenfolge  $\hat{s}_{\xi}^{(po)}$  ein gewöhnlicher Punkt,  $s_{\xi}$  eine einfache Wendetangente; Digitized by GOOGLE

so ist  $s_{t}$  im Büschel  $\mathfrak{F}^{\zeta}$  für die Strahlenfolge  $s_{(0\nu)}^{\zeta}$  eingewöhnlicher Strahl, und wir nennen  $\mathfrak{F}^{\zeta}$  einen einfachen Rückkehrpunkt;

4. dass so wohl der Strahl  $z_{\zeta}$  in einem der Büschel (3), als auch der Strahl  $z_{\zeta}^{\sigma} = s_{\zeta}$  in einem der Büschel [3<sup> $\sigma$ </sup>] ein Rückkehrstrahl ist für die Strahleufolge resp.  $z_{(\sigma \nu)}$  oder  $z_{(\sigma \nu)}^{\sigma}$ ,

dass  $z_{\eta}$  in einem der Büschel ( $\mathfrak{z}$ ) ein Rückkehr-,  $z_{\eta}^{\sigma} = s_{\zeta}$  in einem der Büschel [ $\mathfrak{z}^{\sigma}$ ] ein gewöhnlicher Strahl ist für die Strahlenfolge resp.  $z_{(\mathfrak{v}\,\mathfrak{o})}$  oder  $z_{(\mathfrak{v}\,\mathfrak{o})}^{\mathfrak{o}}$ ,

so ist s<sub>ζ</sub> im Büschel 3<sup>5</sup> für die Strahlenfolge s<sup>ζ</sup><sub>(VO)</sub> ein gewöhnlicher Strahl, 3<sup>7</sup> ein einfacher Rückkehrpunkt;

dass sowohl  $z_{\eta}$  in einem der Büschel ( $\lambda$ ) als auch  $z_{\eta}^{\sigma} = s_{\zeta}$  in einem der Büschel [ $\lambda^{\sigma}$ ] ein Rückkehrstrahl ist für die Strahlenfolge resp.  $z_{(\nu \sigma)}$  oder  $z_{(\nu \sigma)}^{\zeta}$ , so ist  $s_{\zeta}$  im Büschel  $\lambda^{\zeta}$  für die Strah-

lenfolge s (vo) ein Rückkehrstrahl, 3<sup>7</sup> ein Rückkehr-Wendepunkt. soist  $\mathfrak{s}^{\boldsymbol{\xi}}$  auf der Geraden  $s_{\boldsymbol{\xi}}$ für die Punktenfolge  $\mathfrak{s}_{\boldsymbol{\xi}}^{(\boldsymbol{o}\boldsymbol{y})}$  ein Rückkehrpunkt, und wirnennen  $s_{\boldsymbol{\xi}}$  eine einfache Rückkehrtangente;

dass sowohl der Punkt  $\mathfrak{z}^{\mathfrak{e}}$ auf einer der Geraden (z), als auch der Punkt  $\mathfrak{z}_{\sigma}^{\mathfrak{e}} = \mathfrak{z}^{\mathfrak{z}}$  auf einer der Geraden  $[z_{\sigma}]$  ein Rückkehrpunkt ist für die Punktenfolge resp.  $\mathfrak{z}^{(o\nu)}$  oder  $\mathfrak{z}_{\sigma}^{(o\nu)}$ ,

dass  $\mathfrak{z}^{\zeta}$  auf einer der Geraden (z) sowohl, als auch  $\mathfrak{z}_{\sigma}^{\zeta} = \mathfrak{z}^{\zeta}$  auf einer der Geraden  $[z_{\sigma}]$  ein gewöhnlicher Punkt ist für die Punktenfolge resp.  $\mathfrak{z}^{(\nu 0)}$  oder  $\mathfrak{z}_{\sigma}^{(\nu 0)}$ ,

so ist  $\hat{s}^{\eta}$  auf der Geraden  $s_{\zeta}$  für die Punktenfolge  $\hat{s}_{\zeta}^{(\nu 0)}$  ein Rückkehrpunkt,  $s_{\zeta}$  eine einfache Rückkehr tangente;

dass sowohl  $\mathfrak{z}^{\xi}$  auf einer der Geraden (z) als auch  $\mathfrak{z}_{\sigma}^{\xi} = \mathfrak{z}^{\xi}$  suf einer der Geraden  $[z_{\sigma}]$  ein Rückkehrpunkt ist für die Punktenfolge resp.  $\mathfrak{z}^{(\nu 0)}$  oder  $\mathfrak{z}_{\sigma}^{(\nu 0)}$ ,

so ist  $\hat{s}^{\eta}$  auf der Geraden  $s_{\xi}$  für die Punktenfolge  $\hat{s}_{\xi}^{(\nu 0)}$  ein Rückkehrpunkt,  $s_{\xi}$  eine Rückkehr-Wende tangente.

Diese Definitionen bestimmen ganz dieselbe Gestaltung von  $S^{(o\nu)}$  in den einzelnen Fällen als die in No. 58*c*, da es beispielweis gleich ist (No. 16*c*), ob  $z_{\xi}$ für  $z_{(o\nu)}$  oder  $z_{\eta}$  für  $z_{(\nu o)}$  ein gewöhnlicher, ein Rückkehr-Strahl, ob für  $S^{(o\nu)}$ im Sinne  $\Sigma s_{\xi}$  oder für  $S^{(\nu o)}$  im Sinne  $\Sigma s_{\xi}$  eine Wendetangente ist. so ist  $s_{\varepsilon}$  im Büschel  $\hat{s}^{\xi}$ fürdie Strahlenfolge  $s_{(o\nu)}^{\xi}$ ein Rückkehrstrahl, und wirnennen  $\hat{s}^{\xi}$  einen Wende - Rückkehrpunkt. so ist  $\hat{s}^{\xi}$  auf der Geraden  $s_{\xi}$ für die Punktenfolge  $\hat{s}_{\xi}^{(o\nu)}$  ein Rückkehrpunkt, und wirnennen  $s_{\xi}$  eine Wende-Rückkehrtangente.\*)

Von den in gleicher Höhe stehenden Sätzen ist der eine die Folge des anderen.

Andere als diese vier Möglichkeiten für die Beschaffenheit der den Elementen 3<sup>e</sup> und s<sub>e</sub> in irgend einer Lage in den Strahlbüscheln und Punktreihen der Ebene entsprechenden Strahlen resp. Punkte sind nicht vorhanden.

d) Noch haben wir bis jetzt die Strahlbüschel, deren Mittelpunkte die von  $\hat{s}^{\xi}$  verschiedenen auf  $s^{\xi}$  gelegenen Curvenpunkte  $\hat{s}_{\xi}^{\sigma}$  sind, und die Geraden der Ebene, welche mit den durch  $\hat{s}^{\xi}$  gehenden von  $s_{\xi}$  verschiedenen Tangenten  $s_{\sigma}^{\xi}$  identisch sind, nicht berücksichtigt.

1. Erstere gehören in die Klasse der Strahlbüschel  $[3^{\sigma}]$ ; für sie sind aber  $s_{\xi}$  und  $s_{\iota}$  oder, wenn  $s_{\xi}$  mit  $s_{\xi}$  zusammenfällt, auch  $s_{\alpha}$  und  $s_{\xi} = s_{\xi}$  aufeinanderfolgende Strahlen ihrer Büschel, und zwar zufolge der Voraussetzungen in No. 54*a*, nach No. 51*c* oder 58*c*<sup>1</sup> in demselben Sinne aufeinanderfolgende, in welchem die den Punkten von  $S^{(\iota\nu)}$  resp.  $S^{(\alpha\alpha)}$  im Sinne  $\Sigma$ entsprechenden Strahlen aufeinanderfolgen. Daher ist in diesen Büscheln  $3^{\sigma} (= \tilde{s}_{\xi}^{\sigma}$  ausser  $\tilde{s}^{\xi})$  der dem Punkt  $\tilde{s}^{\xi}$  entsprechende Strahl  $s_{\xi}$  für die Strahlenfolge  $z_{(\alpha\nu)}^{\sigma}$  ein Rückkehr- oder gewöhnlicher Strahl, wenn er in allen übrigen Büscheln  $[3^{\sigma}]$  resp. ein gewöhnlicher oder Rückkehr- Strahl ist (No. 56*d*<sup>1</sup>, 58*c*<sup>1</sup>).

2. Die von  $s_{\xi}$  verschiedenen Geraden  $s_{\sigma}^{\xi}$  sind Gerade der Art  $[z_{\sigma}]$ , in denen  $\tilde{s}^{\gamma}$  und  $\tilde{s}^{\xi}$  oder, wenn  $\tilde{s}^{\eta}$  und  $\tilde{s}^{\xi}$  zusammenfallen, auch  $\tilde{s}^{\xi} = \tilde{s}^{\eta}$  und  $\tilde{s}^{\lambda}$ aufeinanderfolgende Punkte ihrer Geraden sind, und zwar in demselben Sinn aufeinanderfolgende, in welchem die den Tangenten von  $S^{(\sigma \gamma)}$  resp.  $S^{(\lambda \nu)}$  im Sinne  $\Sigma$  entsprechenden Punkte aufeinanderfolgen. Daher ist auf diesen Geraden  $z_{\sigma} (= s_{\sigma}^{\xi}$  ausser  $s_{\epsilon}$ ) der der Tangente  $s_{\epsilon}$  ent-

\*) Vergl. v. Standt, Geometrie der Lage No. 197-204.

Digitized by Google

sprechende Punkt $\mathfrak{s}^{\delta}$  für die Punktenfolge  $\mathfrak{z}_{\sigma}^{(\mathfrak{o}\nu)}$  ein Rückkehroder gewöhnlicher Punkt, wenn er auf allen übrigen Geraden  $[z_{\sigma}]$  resp. ein gewöhnlicher oder Rückkehr-Punkt ist (No. 56 d<sup>1</sup>, 58 c<sup>1</sup>).

3. Da das Verhalten des dem Punkt  $\hat{s}^{\zeta}$  resp. der Tangente  $s_{\varepsilon}$  entsprechenden Elementes in der mit  $S^{(\sigma\nu)}$  perspectivischen Elementenfolge in diesen Gebilden in dieser einfachen Weise durch das Verhalten in den übrigen Gebilden  $[\frac{1}{3}^{\sigma}]$  oder  $[z_{\sigma}]$  bestimmt und erkennbar ist, so mögen dieselben nach wie vor von der Bezeichnung  $[\frac{1}{3}^{\sigma}]$ ,  $[z_{\sigma}]$  ausgeschlossen bleiben (No. 54b, 56d<sup>3</sup>).

#### §. 13. Einfluss der ausgezeichneten Elemente auf die relative Lage und Anordnung der übrigen Elemente des Curvenstückes, d. i. auf die Gestalt desselben.

59. Im Folgenden wollen wir aus diesen Definitionen und Eigen schaften das diesen in den einzelnen Fällen entsprechende Bild des Curvenstückes  $S^{(ov)}$  ableiten. Wir haben da gemäss der schon früher erkannten ausgezeichneten Eigenschaften der unendlich entfernten Punkte und der unendlich entfernten Geraden (No. 44) folgende drei Fälle zu unterscheiden:

I. s ist eine endliche Gerade und  $s^{\xi}$  ein endlicher Punkt derselben,

II.  $s_{\varepsilon}$  ist eine endliche Gerade und  $\mathfrak{s}^{\xi}$  ihr unendlich entfernter Punkt, III.  $s_{\varepsilon}$  ist die unendlich entfernte Gerade  $g_{\infty}$ , also auch  $\mathfrak{s}^{\xi}$  ein unendlich entfernter Punkt.

a) In dem ersten dieser Fälle sind die sämmtlichen Punkte und Tangenten von  $S^{(o \, \nu)}$  endliche Punkte und Gerade; in Bezug auf jede der Geraden (z) liegen die Punkte  $S^{(\xi \lambda)}$  auf derselben Halbebene mit den Punkten  $S^{(\gamma \, \xi)}$ .

1. Es werden daher nach No. 55 *e* in jedem der Büschel (z),  $[z^{\sigma}]$  die Punkte  $S^{(\xi t)}$  von demselben Halbstrahl des die Strahlenfolge resp.  $z_{(\sigma \nu)}$ oder  $z^{\sigma}_{(\sigma \nu)}$  durchlaufenden Strahles getroffen, als die Punkte  $S^{(\alpha \xi)}$ .

2. Es liegen mithin jedesmal wenn der dem Punkt  $\mathfrak{s}^{\xi}$  in einem der Büschel ( $\mathfrak{z}$ ),  $[\mathfrak{z}^{\sigma}]$  entsprechende Strahl  $z_{\xi}$  oder  $z_{\xi}^{\sigma}$  ein gewöhnlicher oder

Rückkehr Strahl ist, die Punkte  $S^{(\xi \ t)}$  resp. auf der entgegengesetzten oder derselben Halbebene in Bezug auf den Strahl  $z_{\xi}$  oder  $z_{\xi}^{\sigma} = s_{\xi}^{-}$ .

3. Jedesmal wenn der der Tangente sauf einer der Geraden (z) entsprechende Punkt z<sup>e</sup>ein gewöhnlicheroder Rückkehr-Punkt, muss sein der Lage seden Drehsinn Aresp. beibehalten oder in den entgegengesetzten Äändern.

4. Jedesmal wenn  $\mathfrak{s}^{\mathfrak{q}}$  auf  $s_{\mathfrak{q}}$  in der Lage  $\mathfrak{s}^{\sharp}$  den Richtungssinn ändert, fällt der Halbstrahl  $\mathfrak{s}^{(\mathfrak{q}|\mathfrak{x})}$  in Bezug auf die zweite der in  $\mathfrak{s}^{\sharp}$  (No. 16c) zusammenfallenden Lagen von  $\mathfrak{s}^{\mathfrak{q}}$  auf den Halbstrahl  $\mathfrak{s}^{(\mathfrak{q}-\mathfrak{x})}$ in Bezug auf die erste dieser Lagen; jedem Punkt dieses Halbstrahles kehren daher sowohl  $S^{(\sharp t)}$  als  $S^{(\alpha \xi)}$  die convexe Seite zu (No. 52 $d^{\mathfrak{s}}$ ), jedem Punkt des anderen Halbstrahls beide die concave Seite. Wenn  $\mathfrak{s}^{\mathfrak{q}}$  auf  $s_{\mathfrak{q}}$  in der Lage  $\mathfrak{s}^{\sharp}$  den Richtungssinn nicht ändert, kehrt jedem Punkt des Halbstrahls  $\mathfrak{s}^{(\xi-\mathfrak{x})}$  $S^{(\alpha \xi)}$  die convexe,  $S^{(\sharp t)}$  die concave, jedem Punkt des Halbstrahls  $\mathfrak{s}^{(\sharp|\mathfrak{x})}$   $S^{(\alpha\xi)}$  die concave und  $S^{(\xi t)}$  die convexe Seite zu

b) 1. Im zweiten Falle werden stets die Punkte  $S^{(\xi v)}$  von dem im Büschel  $\mathfrak{s}^{\xi} = \mathfrak{s}^{\infty}_{\mathfrak{s}}$  die Strahlenfolge  $s^{\xi}_{(ov)}$  durchlaufenden Strahl  $s^{\xi}$  mit demselben Halbstrahl getroffen als die Punkte  $S^{(o\xi)}$ , da der andere Halbstrahl gleich Null ist (No. 25)

2. Jedesmal also wenn  $s_{g}$  für die Strahlenfolge  $s_{(ov)}^{\xi}$  ein gewöhnlicher oder Rückkehr-Strahl, d. i. (No. 58 $a^{2}$ ) wenn  $s_{g}^{\xi}$  auf einer der Geraden (z) für die Punktenfolge  $s_{(ov)}^{(ov)}$  ein gewöhnlicher oder Rückkehr-Punkt ist, liegen die Punkte  $S^{(\xiv)}$  und  $S^{(o\xi)}$  resp. auf verschiedener oder derselben Halbebene in Bæzug auf  $s_{g}$  und  $s_{\xi}^{c}$ .

3. Gemäss No. 55g liegen daher in Bezug auf jede der Geraden  $z_{\zeta}$ oder  $[z_{\sigma}]$  die Punkte  $S^{(\gamma \xi)}$  und  $S^{(\xi \lambda)}$  auf derselben Halbebene, so dass, je nachdem  $z_{\xi}$  für die Strahlenfolge  $z_{(\sigma \gamma)}$  in den Büscheln (3) ein gewöhnlicher oder Rückkehr-Strahl ist, die Punkte  $S^{(\xi \lambda)}$  von dem anderen oder demselben Halbstrahl (No. 56a) des die entsprechende Strahlenfolge durchlaufenden Strahles getroffen werden, als die Punkte  $S^{(\alpha \xi)}$ , und nach No. 55d, e in Bezug auf jede der Geraden (z) die Punkte  $S^{(\xi \lambda)}$  resp. auf der entgegengesetzten oder derselben Halbebene liegen, als die Punkte  $S^{(\gamma \xi)}$ .

4. Wenn  $\hat{s}^{\varphi}$  in  $\hat{s}^{\xi}$ , dem unendlich entfernten Punkt von  $s_{\xi}$ , angelangt, so gehören alle endlichen Punkte von  $s_{\xi}$  dem Halbstrahl  $\hat{s}^{(\varphi - \infty)}$  an (No. 15, 49*c*); sobald aber  $\hat{s}^{\varphi}$  auf dem Strahl  $s_{\xi}$  in die auf  $\hat{s}^{\xi}$  folgende Lage übergeht in demselben oder dem entgegengesetzten Richtungssinne, so gehören alle Punkte von  $s_{\xi}$  dem Halbstrahl  $\hat{s}^{(\varphi|\infty)}$  an; daher kehren allen Punkten  $[s^{\delta}]$  nach No. 52 $d^{234}$  stets beide Theile von  $S^{(\alpha t)}$ , sowohl  $S^{(\alpha \xi)}$ , welcher die im Sinne  $\Sigma$  der  $s_{\xi}$  vorhergehenden Lagen von  $s_{\varphi}$ , als  $S^{(\xi t)}$ welcher die im Sinne  $\Sigma$  auf  $s_{\xi}$  folgenden Lagen von  $s_{\varphi}$  enthält, die convexe Seite zu.

c) 1. Im dritten Falle muss nach No. 44*a* jedesmal wenn der Punkt  $\hat{s}^{\xi}$  auf  $s_{\xi}$  für die Punktenfolge  $\hat{s}_{\xi}^{(o\nu)}$  ein gewöhnlicher oder Rückkehr-Punkt, das heisst, jedesmal wenn der Strahl  $z_{\xi}$  in einem der Büschel (z) für die Strahlenfolge  $z_{(o\nu)}$  ein gewöhnlicher oder Rückkehr-Strahl (No. 57*d*) ist,  $s_{\xi}$  in der Lage  $s_{\xi}$  den Drehsinn  $\varDelta$  resp. beibehalten oder in den entgegengesetzten  $\overline{\varDelta}$  ändern und umgekehrt.\*)

2. Jedesmal wenn die Punkte  $S^{(\xi\lambda)}$  in Bezug auf eine der Geraden (z) auf derselben oder der entgegengesetzten Halbebene liegen, als die Punkte  $S^{(\gamma\xi)}$ , liegen die Punkte  $S^{(o\xi)}$  und  $S^{(\xi\nu)}$  in Bezug auf die unendlich

\*) Die Frage, ob  $\mathfrak{s}^{\mathbf{Q}}$  auf  $s_{\mathbf{Q}}$  in der Lage  $s_{\mathbf{\xi}}$  den Richtungssinn beibehält oder ändert, scheint bei Untersuchung einer Form von  $S^{(o\,\mathbf{p})}$ , in welcher  $s_{\mathbf{\xi}} = g_{\infty}$ , mit der Frage zusammenzufallen, ob  $s_{\mathbf{Q}}$  seinen Drehsinn in der Lage  $s_{\mathbf{\xi}}$  beibehält oder ändert. Wollen wir jedoch die Verschiedenheit der Formen, welche den Bedingungen in No. 58  $c^{1}$ ,  $\mathfrak{c}$  (No.  $\mathfrak{c}0a^{4}$ ,  $b^{4}$ ), sowie der Formen, welche No. 58  $c^{3}$ , 4 (No.  $\mathfrak{60}c^{4}$ ,  $d^{4}$ ) entsprechen, auf die Bewegung von  $\mathfrak{s}^{\mathbf{Q}}$  zurückführen, und was in den Fällen I und II (No. 59) evident und bewiesen ist (No. 50 c, 60) auch für den Fall III annehmen (No. 25 b,  $a_{\mathbf{m}}^{1} = g_{\infty}$ ), nämlich

dass die Punkte  $S^{(o\xi)}$  und  $S^{(\xi\nu)}$  sich auf derselben Halbebene in Bezug auf <sup>s</sup><sub>E</sub> oder s<sub>g</sub> befinden müssen, wenn  $\mathfrak{g}^{\mathfrak{g}}$  auf der Geraden s<sub>g</sub> in der Lage s<sub>g</sub> und s<sub>g</sub> im Büschel  $\mathfrak{g}^{\xi}$  ihren Bewegungssinn entweder beide beibehalten oder beide ändern, und

dass die Punkte  $S^{(\xi o)}$  und  $S^{(\xi v)}$  sich auf entgegengesetzten Halbebenen in Brzug auf  $s_{\varepsilon}$  oder s befinden, also  $\mathfrak{s}^{\mathsf{q}}$  die Gerade  $s_{\zeta}$  überschreitet, wenn von den Elementen  $\mathfrak{s}^{\mathsf{q}}$  auf der Geraden  $s_{\varrho}$  beim Durchgang durch die Lage  $s_{\zeta}$  und  $s_{\varrho}$  im Büschel  $\mathfrak{s}^{\zeta}$  eines den Bewegungssinn beibehält, das andere aber ändert, Digitized by Google

•

entfernte Gerade resp. auf derselben oder auf entgegengesetzten Seiten (das heisst:  $\hat{s}^{\varrho}$  überschreitet in der auf  $\hat{s}^{\xi}$  folgenden Lage die Gerade  $g_{\infty}$ ).

3. Da stets der dem Punkt 3<sup>°</sup> in einem der Büschel (3) entsprechende Strahl in der Lage  $z_{\xi}$  den Drehsinn beibehält oder ändert, je nachdem s seinen Drehsinn ⊿ in der Lage s beibehält oder ändert, so müssen irgend einem der Punkte ( $\mathfrak{z}$ ),  $\mathfrak{z}^{\mathfrak{X}}$  entweder beide Theile  $S^{(\alpha \mathfrak{z})}$  und  $S(\hat{\xi}_{\ell})$  die concave oder beide die convexe Seite zukehren. Durch den Punkt  $z^{\chi}$  geht entweder keine der Tangenten von  $S^{(o\zeta)}$ , dann liegt  $i^{\chi}$ in dem Gebiet  $\mathfrak{S}^{\mathfrak{o}}_{(\mathfrak{o}|\xi)}$ , denn das Gebiet  $\mathfrak{S}^{\mathfrak{o}}_{(\mathfrak{o}-\xi)}$  ist Null (No. 52*c*<sup>2</sup>); oder durch  $z^{\mathbf{z}}$  gehen zwei der Tangenten von  $S^{(o\xi)}$ , dann gehört  $z^{\mathbf{z}}$  auf der s, oder s zunächst liegenden dem Halbstrahl  $\mathfrak{s}^{(q-\infty)}$  an (No. 50 c<sup>3</sup>, 54*a*); oder durch  $z^{\chi}$  geht nur einer der Tangenten von  $S^{(o \xi)}$ , dann gehört  $z^{\chi}$ dem Halbstrahl  $\mathfrak{z}^{(q-\infty)}$  derselben an, weil der ganze Halbstrahl  $\mathfrak{z}^{(q|\alpha)}$  innerhalb des Gebietes  $\mathfrak{S}^{2}_{(\mathbf{0}\,\mathbf{i})}$  (No. 52b) liegt; also gehört der beliebige Punkt  $x^{\pi}$  entweder in Bezug auf alle Tangenten von  $S^{(o\xi)}$  oder wenigstens in Bezug auf die von  $s_{\alpha}$  bis  $s_{\varepsilon}$  der Halbebene  $\hat{s}_{(\varrho-\varrho)}^{(\varrho-\infty)} = \hat{s}_{(\varrho|\varrho)}^{(\varrho|\infty)}$  an. (Gleiches . gilt bezüglich des Curvenstückes  $S^{(\xi_i)}$  und jeden beliebiges Punktes 3). Daher kehren beide Theile  $S^{(\alpha\xi)}$  und  $S^{(\xi_i)}$  jedem der Punkte(i) ihre concave Seite zu.

4. Jede Bestimmung, dass einer der beiden Theile  $S^{(\alpha \xi)}$ ,  $S^{(\xi t)}$  einem der Punkte  $(\mathfrak{z})$  oder  $[\mathfrak{z}^{\sigma}]$  die concave oder convexe Seite zukehre, kann sich nur auf endliche Punkte  $(\mathfrak{z})$  oder  $[\mathfrak{z}^{\sigma}]$  beziehen und hat nur für solche Bedeutung, da die unendlich entfernten Punkte sowohl der Halbebene  $\mathfrak{s}_{(\varrho|\varrho)}^{(\varrho|\infty)}$  als  $\mathfrak{s}_{(\varrho-\varrho)}^{(\varrho|\infty)}$  in Bezug auf jede Lage von  $\mathfrak{s}_{\varrho}$  angehören (vgl. No. 45/, 52  $c^{\mathfrak{s}}$ ).

d) Der in No. 59 $c^3$  bewiesene Satz ist nur ein specieller Fall von folgendem allgemeineren: Jedem Punkt 3, welcher mit den Punkten  $S^{(o\,\zeta)}$  in Bezug auf  $s_{g}$  auf derselben Halbebene liegt, kehrt das

so würde daraus folgen, dass 3<sup>Q</sup> auf s<sub>Q</sub> beim Durchgang durch die Lage s; seinen Richtungssinn

beibchält, wenn  $s_{\varepsilon} = g_{\infty}$  cine gewöhnliche, oder  $s_{\zeta} = g_{x}$  eine einfache Rückkehrtangente ist, und

ändert, wenn  $s_{\varepsilon} = g_{\infty}$  eine einfache Wende- oder Wende-Rückkehrtangente ist (vgl. No. 58 c und 60).

Curvenstück  $S^{(\alpha \ \xi)}$  die concave Seite zu. Nach No. 52 $a^1$  gehören nämlich, wenn  $s_{\varepsilon}$  eine endliche Gerade, alle Punkte  $\mathfrak{z}$ , welche mit den Punkten  $S^{(\alpha \ \xi)}$  auf derselben Halbebene in Bezug auf  $s_{\varepsilon}$  liegen, der Halbebene  $\mathfrak{s}_{(\varepsilon|\varepsilon)}^{(\zeta|\infty)}$  an, welche nach No. 52b, c, d die Gebiete  $\mathfrak{S}_{(\alpha \ \xi)}^2$ ,  $\mathfrak{S}_{(\alpha \ \xi)}^0$ ,  $\mathfrak{S}_{(\alpha \ \xi)}^1$ enthält. Der angegebene Satz ist mithin die Folge von No. 52 $c^3, d^3, \varepsilon$ . Ebenso folgt daraus, dass jedem Punkt  $\mathfrak{z}$ , welcher mit den Punkten  $S^{(\zeta^{*})}$ in Bezug auf  $s_{\varepsilon}$  auf derselben Halbebene liegt, das Curvenstück  $S^{(\zeta_4)}$  seine concave Seite zukehrt, denn alle diese Punkte  $\mathfrak{z}$ gehören der Halbebene  $\mathfrak{g}_{(\varepsilon|\varepsilon)}^{(\zeta|\infty)}$  (bezogen auf den dem Sinne  $\Sigma$  in  $S^{(\zeta^{*})}$ entsprechenden Richtungssinn von  $\mathfrak{g}^{\varrho}$  und Drehsinn von  $s_{\varrho}$ ) an, welche die Gebiete  $\mathfrak{S}_{(\zeta^{*})}^2$ ,  $\mathfrak{S}_{(\zeta|w)}^0$ ,  $\mathfrak{S}_{(\zeta|w)}^1$  enthält. Die Sätze in No. 52 lassen sich leicht so weit ausdehnen, dass sie auch für den Fall  $s_{\varepsilon} = g_{\infty}$  anwendbar sind. (No. 25).

In gleicher Weise ergiebt sich aus No. 52, dass jedem der Punkte (z), welcher in Bezug auf  $s_{g}$  auf der entgegengeseten Halbebene sich befindet als die Punkte  $S^{(o\xi)}$  oder  $S^{(\xi\nu)}$ , das Curvenstück  $S^{\alpha\xi}$  resp.  $S^{(\xi\iota)}$  seine convexe Seite zukehrt. Daraus folgt: Wenn die beiden Theile  $S^{(o\xi)}$  und  $S^{(\xi\nu)}$  von  $S^{(o\nu)}$  sich auf derselben Halbebene in Bezug auf  $s_{g}$  befinden, dann kehren jedem der Punkte (z) entweder beide Theile  $S^{(\alpha\xi)}$  und  $S^{(\xi\iota)}$  ihre concave oder beide ihre convexe Seite zu; wenn die Punkte  $S^{(o\xi)}$ und  $S^{(\xi\nu)}$  auf entgegengesetzten Halbenen in Bezug auf  $s_{g}$  liegen, so kehrt jedem der Punkte (z) einer der beiden Theile  $S^{(\alpha\xi)}$ ,  $S^{(\xi\iota)}$  die concave, der andere die convexe Seite zu.

60. a) Wenn  $\mathfrak{g}^{\xi}$  ein gewöhnlicher Curvenpunkt, also  $s_{\mathfrak{g}}$  eine gewöhnliche Tangente ist, so liegen in der Tangente  $s_{\xi}$  zwei Curvenpunkte, welche nicht zusammenfallen, sondern von einander verschieden sind, da  $z_{\xi}$  in jedem der Büschel ( $\mathfrak{g}$ ) für die Strahlenfolge  $z_{(\mathfrak{o} \mathfrak{v})}$  ein gewöhnlicher Strahl; ebenso sind, da  $\mathfrak{g}^{\xi}$  auf jeder der Geraden (z) ein gewöhnlicher Punkt für die Punktenfolge  $\mathfrak{g}^{(\mathfrak{o} \mathfrak{v})}$ , die beiden sich in  $\mathfrak{g}^{\xi}$  schneidenden aufeinanderfolgenden Tangenten von  $S^{(\mathfrak{o} \mathfrak{v})}$  von einander verschieden. Also giebt es nur eine von  $s_{\xi}$  verschiedene Tangente  $s_{\sigma}^{\xi}$  nämlich  $s_{\mathfrak{g}}$ , und nur einen von  $\mathfrak{s}^{\xi}$  verschiedenen Curvenpunkt auf jeder der Tangenten s und  $s_{\mathfrak{g}}$ . nämlich resp.  $\mathfrak{s}^{\varepsilon}$  und  $\mathfrak{s}^{\eta}$ ; die in No. 56 $d^2$ , 58d angegebenen Fälle bieten keine Besonderheiten, da von jeder der Tangenten und jedem der Curvenpunkte von  $S^{(o \nu)}$  das Gleiche gilt, als von  $s_{\varepsilon}$  resp.  $\mathfrak{s}^{\xi}$ .

In dem auf jeder der Geraden  $[z_{\sigma}]$  der Tangente  $s_{\varepsilon}$  entsprechenden Punkt  $\mathfrak{F}^{\xi}$  fallen zwei aufeinanderfolgende Punkte der Punktenfolge  $\mathfrak{f}_{\sigma}^{(ov)}$ , in dem in jedem der Büschel  $[\mathfrak{f}^{\sigma}]$  dem Punkt  $\mathfrak{F}^{\xi}$  entsprechenden Strahl  $s_{\xi}$ zwei aufeinanderfolgende Strahlen der Strahlenfolge  $z_{(ov)}^{\sigma}$  zusammen. (No. 16c, 50b<sup>2</sup>, 51b<sup>2</sup>). In den Punktenfolgen  $\mathfrak{f}_{\varepsilon}^{(v1)}$ ,  $\mathfrak{F}_{\varepsilon}^{(ov)}$  jeder der Geraden (z) und von  $s_{\xi}$ , sowie in den Strahlenfolgen  $z_{(\alpha i)}$ ,  $s_{\xi}^{(ov)}$  jedes der Büschel (\mathfrak{f}) und von  $\mathfrak{F}^{\xi}$  fallen ausser in den Grenzelementen  $\mathfrak{f}^{\gamma}$ ,  $\mathfrak{f}^{\lambda}$  resp.  $z_{\alpha}$ ,  $z_{\epsilon}$  an keiner Stelle zwei aufeinanderfolgende Elemente in eines zusammen.

1. Im Falle I liegen in Bezug auf jede Gerade  $z_{\xi} = z_{\sigma}$  die Punkte  $S^{(\xi^1)}$ auf der entgegengesetzten Halbebene, als die Punkte  $S^{(\gamma\xi)}$ ; in Bezug auf jede der Geraden  $s_{\sigma}^{\xi}(s_{\xi})$  liegen mit Ausnahme der auf diesen selbst gelegenen die sämmtlichen Curvenpunkte  $S^{(\sigma\gamma)}$  auf derselben Halbebene (No. 58 c<sup>1</sup>, 59a); die Elemente  $s_{\rho}$  und  $\mathfrak{g}^{\rho}$  behalten daher in den Lagen  $s_{\varepsilon}$  resp.  $\mathfrak{s}^{\xi}$ den Drehsinn resp. Richtungssinn, der ihnen im Theil  $S^{(\varphi\xi)}$ zugehört, auch für den Theil  $S^{(\xi\gamma)}$  bei.

Da auch in jedem der Büschel  $({}_{\delta})$  der entsprechende Strahl in der Lage  $z_{\xi}$  den Drehsinn nicht ändert, so kehrt nach No. 45 f, 52 c<sup>3</sup>,<sup>4</sup> das Curvenstück  $S^{(\xi_1)}$  jedem der Punkte  $({}_{\delta})$ , welchem  $S^{(\alpha\xi)}$  die concave oder convexe Seite zukehrt, auch seinerseits resp. die concave oder convexe Seite zu. In beiden Theilen  $S^{(\alpha\xi)}$  und  $S^{(\xi_1)}$  entspricht dem Sinne  $\Sigma$  derselbe Drehsinn  $\varDelta$  von  $s_{\varrho}$ ; in jedem der Büschel  $[{}_{\delta}^{\sigma}]$  aber entspricht, da  $z_{\xi}^{\sigma} = s_{\xi}^{\sigma}$ für die Strahlenfolge  $z_{(\alpha\xi)}^{\sigma}$ , cin Rückkehrstrahl, dem Sinne  $\Sigma$  von  $\hat{s}^{\varrho}$  in dem einen der Theile  $z_{(\alpha\xi)}^{\sigma}$ ,  $z_{(\xi_1)}^{\sigma}$  der entgegengesetzte Drehsinn als in dem anderen; dereine der beiden Theile  $s^{(\xi\alpha)}$ ,  $s^{(\xi_1)}$  kehrt daher jedem der Punkte  $[{}_{\delta}^{\sigma}]$  diecoucave, der andere die convexe Seite zu (vgl. No. 50, 51, 52).

2. Im Falle II liegen in Bezug auf jede Gerade  $z_{\xi} = z_{\sigma}$  die  $S^{(\xi^1)}$  auf derselben Halbebene, als die Punkte  $S^{(\gamma\xi)}$ , in Bezug auf jede der Geraden  $(s_{\sigma}^{\xi})$  aber mit Ausnahme der in diesen Geraden selbst liegenden Curvenpunkte die  $S^{(\xi\nu)}$  auf der entgegengesetzten Halbebene, als die Punkte

 $S^{(o\xi)}$ , und in Bezug auf jede Gerade (z) die Punkte  $S^{(\xi\lambda)}$  auf der entgegengesetzten Halbebene, als die Punkte  $S^{(\gamma\xi)}$  (No.58  $c^1$ , 50 b). Der Punkt  $\tilde{s}^{\varrho}$ behält in der Lage  $\tilde{s}^{\xi}$  den Richtungssinn auf  $s_{\varrho}$  für das Curvenstück  $S^{(\xi\nu)}$  bei (No. 57 d),  $s_{\varrho}$  aber ändert seinen Drehsinn in der Lage  $s_{\varepsilon}$  in den entgegengesetzten  $\overline{A}$  (No. 44 d, 45 b). Da nun der dem Punkt  $\tilde{s}^{\varrho}$  entsprechende Strahl in jedem der Büschel ( $\mathfrak{z}$ ) in der Lage  $z_{\xi}$  den Drehsinn beibehält, in jedem der Büschel [ $\mathfrak{z}^{\sigma}$ ] aber in der Lage  $z_{\xi}^{\sigma} = s_{\xi}$  ändert, so kehrt jedem der Punkte ( $\mathfrak{z}$ ) stets einer der Theile  $S^{(\alpha\xi)}$ ,  $S^{(\xi\iota)}$  die concave, der andere die convexe Seite zu; einem der Punkte [ $\mathfrak{z}^{\sigma}$ ] aber kehren stets beide Theile die convexe Seite zu (No. 59  $b^4$ ).

3. Im Falle III behält die Gerade  $s_{\rho}$  für den Theil  $S^{(\xi^{\gamma})}$  den Drehsinn bei, den sie bei Boschreibung des Theiles  $S^{(o\,\xi)}$  im Sinne  $\Sigma$  hatte. (No. 58  $c^1$ , 44a, siehe die Anmerkung zu No. 59 $c^1$ ). Die Punkte  $S^{(\xi^{1})}$  liegen in Bezug auf jede der Geraden (z) auf derselben, in Bozug auf jede der Geraden  $[z_{\sigma}]$  auf der entgegengesetzten und in Bezug auf jede der Geraden $s_{\sigma}^{\xi}(g_{\infty})$ auf derselben Halbebene, als die Punkte von  $S^{(\gamma\,\xi)}$  (No. 44d, 45b, c). Jedem der Punkte (3) kebreu beide Theile ihre concave Seite zu (No. 59 $c^{34}$ ).

b) Wenn  $\tilde{s}^{\xi}$  ein einfacher Wendepunkt, also  $s_{g}$  eine einfache Wendetangente, so ist die Tangente  $s_{g}$  im Büschel  $\tilde{s}^{\xi}$  für die Strahlenfolge  $s_{(ov)}^{\xi}$  ein Rückkehrstrahl; es fällt daher die folgende Lage von  $s^{\xi}$ , d. i. der dem Punkt  $\tilde{s}^{\eta}$  entsprechende Strahl mit  $s_{g}$ , der mit  $\tilde{s}^{e}$  perspectivischen Lage nach No. 16c zusammen, so dass in  $s_{g}$  drei aufeinanderfolgende Curvenpunkte liegen\*), von denen keine zwei zusammenfallen, weil sie mit in demselben Drehsinn aufeinanderfolgenden Strahlen in jedem der Büschel ( $\tilde{s}$ ) perspectivisch sind; oder was dasselbe ist, die beiden aufeinanderfolgenden Tangenten  $s_{g}$  und s fallen zusammen; auch jeder der übrigen den Winkeln  $s_{(o\xi)}^{\xi}$  und  $s_{(\xiv)}^{\xi}$  gemeinschaftlichen Strahlen des Büschels  $\tilde{s}^{\xi}$  enthält ausser  $\tilde{s}^{\xi}$ einen Punkt von  $S^{(o\xi)}$  und einen von  $S^{(\xiv)}$ , also drei Curvenpunkte von  $S^{(ov)}$ . Damit steht im Einklange, dass der der Tangente  $s_{g}$  auf jeder der Geraden (z) entsprechende Punkt ein Rückkehrpunkt ist für die Punktenfolge  $\tilde{s}^{(ov)}$ , also zwei aufeinanderfolgende Punkte, welche zwei aufeinan-

<sup>\*)</sup> Cremona, Introduzione ad una teoria geometrica delle curve piane. Art. 5, 28. Digilized by

derfolgenden Lagen von  $s_{\rho}$  entsprechen, vereinigt enthält. Ebenso fallen auf jeder der Geraden  $[z_{\sigma}]$  in den der Tangente  $s_{\varepsilon}$  entsprechenden Punkt  $\mathfrak{s}^{\xi}$  zwei aufeinanderfolgende,

auf jeder der von  $s_{\vartheta}$  und  $s_{\eta}$  verschiedenen Geraden (z), welche durch die Punkte  $\mathfrak{s}^{\varepsilon}$  und  $\mathfrak{s}^{\eta}$  gehen (No. 56  $d^2$ ), drei aufeinanderfolgende Punkte, entsprechend den Tangenten  $s_{\varepsilon}$ ,  $s_{\zeta}$  und resp.  $s_{\vartheta}$  oder  $s_{\eta}$  (der Punkt  $\mathfrak{z}^{\varepsilon}$  resp. gleich  $\mathfrak{z}^{\varepsilon}$  oder  $\mathfrak{z}^{\eta}$  erscheint als gewöhnlicher Punkt für die Punktenfolge  $\mathfrak{z}^{(\mathfrak{o}\,\mathfrak{p})}$ ),

auf jeder der Geraden  $s_{\delta}$  und  $s_{\eta}$  nur zwei entsprechend den Tangenten  $s_{\varepsilon}$ ,  $s_{\zeta}$  ( $\mathfrak{z}^{\varepsilon}$  resp. gleich  $\mathfrak{z}^{\varepsilon}$  oder  $\mathfrak{z}^{\eta}$  erscheint als Rückkehrpunkt für  $\mathfrak{z}^{(\mathfrak{o}^{\eta})}$ ) zusammen. In jedem der Büschel [ $\mathfrak{z}^{\sigma}$ ] fallen in den mit  $\mathfrak{z}^{\zeta}$  perspectivischen Strahl  $s_{\zeta}$  drei aufeinanderfolgende Strahlen, entsprechend den Punkten  $\mathfrak{z}^{\varepsilon}$ ,  $\mathfrak{z}^{\zeta}$ ,  $\mathfrak{z}^{\eta}$ ,

in jedem der Büschel  $\tilde{s}^{\varepsilon}$  und  $\tilde{s}^{\eta}$  (No. 58  $d^{1}$ ) aber nur zwei, entsprechend den Punkten  $\tilde{s}^{\zeta}$  und resp.  $\tilde{s}^{\eta}$  oder  $\tilde{s}^{\varepsilon}$  ( $z_{\zeta}^{\sigma} = s_{\zeta} = s_{\varepsilon}$  erscheint als Rückkehrstrahl für  $z_{(\alpha \tau)}^{\sigma}$ ) zusammen.

Von  $s_{\varepsilon}$  oder  $s_{\zeta}$  verschiedene Gerade  $s_{\sigma}^{\zeta}$  sind nicht vorhanden.

In der Strahlenfolge  $z_{(\alpha i)}$  jedes der Büschel (3) fallen ausser in den Strahlen  $z_{\alpha}$ ,  $z_i$  nirgends zwei aufeinanderfolgende Strahlen zusammen.

1. Im Falle I liegen in Bezug auf jede der Geraden  $z_{\xi} = [z_{\sigma}]$ , so wie in Bezug auf jede der Geraden  $(s_{\sigma}^{\xi})$  die Punkte  $S^{(\xi \lambda)}$  auf der entgegengesetzten, in Bezug auf jede der Geraden (z) aber auf derselben Halbebene, als die Punkte  $S^{(\gamma \xi)}$  (No. 58  $c^2$ , 59 a).  $s_{\rho}$  ändert in der Lage  $s_{\epsilon}$ den Drehsinn,  $\tilde{s}^{\rho}$  aber behält seinen Richtungssinn auf  $s_{\rho}$  bei (No. 45b, 57d). Jedem der Punkte $(\tilde{s})$  und  $[\tilde{s}^{\sigma}]$  kehrt einer der beiden Theile  $S^{(\alpha \xi)}$ ,  $S^{(\xi_i)}$ die concave, der andere die convexe Seite zu (No. 52 $c^4$ ).

2. Im Falle II liegen in Bezug auf jede der Geraden (z) die Punkte  $S^{(\zeta\lambda)}$  auf der entgegengesetzten, in Bezug auf jede der Geraden  $[z_{\sigma}] = z_{\zeta}$  und in Bezug auf jede der Geraden  $(s_{\sigma}^{\zeta})$  auf derselben Halbebene als die Punkte  $S^{(\gamma\zeta)}$  (No. 59*b*). Weder  $\hat{s}^{\varphi}$  noch  $s_{\sigma}$  ändern in der Lage  $\hat{s}^{\zeta}$  resp.  $s_{z}$  den Richtungs - resp. Drehsinn (No. 57*d*, 45*c*). Irgend einem der Punkte  $(\mathfrak{z})$  und  $[\mathfrak{z}^{\sigma}]$  kehren daher entweder beide Theile  $S^{(\alpha\zeta)}$  und  $S^{(\imath\zeta)}$  die concave oder beide die convexe Seite zu (No. 52*c*<sup>4</sup>).

3. Im Falle III behält  $s_{\varrho}$  seinen Drehsinn bei (No. 58 $c^2$ , 44a, siehe die Anmerkung zu No. 59 $c^1$ ). In Bezug auf jede der Geraden (z) liegen die Punkte  $S^{(\xi\lambda)}$  auf der entgegengesetzten Halbebene, als die Punkte  $S^{(\gamma\xi)}$  (No. 58 $c^2$ , 45c), also überschreitet der Punkt  $\hat{s}^{\varrho}$  in den auf  $\hat{s}^{\xi}$  folgenden Lagen die unendlich entfernte Gerade  $g_{\infty} = s_{\varepsilon} = s_{\xi}$ ; in Bezug auf jede der Geraden  $[z_{\sigma}] = z_{\xi}$  liegen jedoch die Punkte  $S^{(\xi\lambda)}$  und  $S^{(\gamma\xi)}$  auf derselben Halbebene (No. 44d, 45b). Jedem der Punkte ( $\hat{s}$ ) kehren daher beide Theile  $S^{(\alpha\xi)}$  und  $S^{(\xi+)}$  die concave Seite zu (No. 52 $c^4$ , 59 $c^{34}$ ).

c) Wenn  $\mathfrak{s}^{\xi}$  ein einfacher Rückkehrpunkt, also  $s_{\xi}$  eine einfache Rückkehrtangente, so ist der Punkt  $\mathfrak{s}^{\xi}$  für die Punktenfolge  $\mathfrak{s}_{\xi}^{(ov)}$  auf  $s_{\xi}$  ein Rückkehrpunkt; es fällt daher die folgende Lage von  $\mathfrak{s}_{\xi}$ , d. i. der Punkt  $\mathfrak{s}^{\eta}$ , in welchem  $s_{\xi}$  von der folgenden Tangente  $s_{\eta}$  geschnitten wird, mit  $\mathfrak{s}^{\xi}$  zusammen, so dass in  $\mathfrak{s}^{\xi}$  sich drei aufeinanderfolgende Tangenten  $s_{\varepsilon}, s_{\xi}, s_{\eta}$  von  $S^{(ov)}$  schneiden \*), von denen keine zwei zusammenfallen, weil mit ihnen auf jeder Geraden z drei in demselben Richtungssinne aufeinanderfolgende Punkte perspectivisch liegen; auch durch jeden der übrigen den Strecken  $\mathfrak{s}_{\xi}^{(o\xi)}$  und  $\mathfrak{s}_{\xi}^{(\xiv)}$  auf  $s_{\xi}$  gemeinschaftlichen Punkte gehen ausser  $s_{\xi}$  eine der Tangenten von  $S^{(o\xi)}$  und eine von  $S^{(\xiv)}$ , also drei der Tangenten von  $S^{(ov)}$ . Damit steht im Einklange, dass der dem Punkt  $\mathfrak{s}^{\xi}$  in jedem der Büschel ( $\mathfrak{z}$ ) entsprechende Strahl für die Strahlenfolge  $z_{(ov)}$ ein Rückkehrstrahl ist, also zwei aufeinanderfolgende Strahlen, welche zwei aufeinanderfolgenden Lagen von  $\mathfrak{s}^{\varrho}$  entsprechen, enthält.

In jedem der Strahlbüschel  $[s^{\sigma}]$  fallen in den dem Punkt  $s^{\xi}$  entsprechenden Strahl  $z_{\rho}^{\sigma} = s_{\rho}$  zwei aufeinanderfolgende,

in jedem der Büschel ( $\mathfrak{z}$ ), deren Mittelpunkte die von  $\mathfrak{s}^{\mathfrak{s}}$  und  $\mathfrak{s}^{\mathfrak{d}}$  verschiedenen Punkte der Geraden  $s_{\mathfrak{s}}$  und  $s_{\eta}$  sind (No. 56 $d^{\mathfrak{s}}$ ), drei aufeinanderfolgende Strahlen, entsprechend den Punkten  $\mathfrak{s}^{\mathfrak{s}}$ ,  $\mathfrak{s}^{\eta}$  und resp.  $\mathfrak{s}^{\mathfrak{s}}$  oder  $\mathfrak{s}^{\mathfrak{d}}$  (der Strahl  $z_{\mathfrak{s}}$  resp. gleich  $s_{\mathfrak{s}}$  oder  $s_{\eta}$  erscheint als gewöhnlicher Strahl für die Strahlenfolge  $z_{(\mathfrak{a}\mathfrak{s})}$ ),

<sup>\*)</sup> Cremona, Introduzione ad una teoria geometrica delle curve piane Art. 5, 30. g

in jedem der Büschel  $\mathfrak{s}^{\varepsilon}$ ,  $\mathfrak{s}^{\mathfrak{D}}$  aber nur zwei entsprechend den Punkten  $\mathfrak{s}^{\varepsilon}$  und  $\mathfrak{s}^{\eta}(z_{\varepsilon} \operatorname{resp. gleich} s_{\varepsilon} \operatorname{oder} s_{\eta} \operatorname{erscheint}$  als Rückkehrstrahl für  $z_{(ov)}$  zusammen.

In den der Tangente  $s_{\varepsilon}$  auf jeder der Geraden  $[z_{\sigma}]$  entsprechenden Punkt  $\tilde{s}^{\xi}$  fallen drei aufeinanderfolgende Punkte der Punktenfolge  $z_{\sigma}^{(ov)}$ , entsprechend den Tangenten  $s_{\varepsilon}$ ,  $s_{\chi}$ ,  $s_{\eta}$  zusammen,

auf jeder der Geraden  $s_{\varepsilon}$ ,  $s_{\eta}$  nur zwei entsprechend den Tangenten  $s_{\xi}$ und resp.  $s_{\eta}$  oder  $s_{\varepsilon}$  ( $s_{\sigma}^{\varepsilon} = \hat{s}_{\xi}$  erscheint als Rückkehrpunkt für  $z_{\sigma}^{(o\nu)}$ , No.58d).

Von  $\mathfrak{z}^{\xi}$  verschiedene Curvenpunkte  $\mathfrak{z}_{\xi}^{\sigma}$  sind nicht vorhanden (No. 58d)<sup>.</sup> In der Punktenfolge  $\mathfrak{z}^{(\gamma\lambda)}$  jeder der Geraden (z) fallen ausser in  $\mathfrak{z}^{\gamma}$ ,  $\mathfrak{z}^{\lambda}$  nirgend zwei aufeinanderfolgende Punkte in einen zusammen.

1. Im Falle I liegen in Bezug auf jede der Geraden  $[z_{\sigma}] = z_{\zeta}$  die Punkte  $S^{(\zeta\lambda)}$  auf derselben und in Bezug auf jede der Geraden (z) ebenfalls auf derselben Halbebene, als die Punkte  $S^{(\gamma\zeta)}$  (No. 59*a*).  $\mathfrak{s}^{\varphi}$  ändert in der Lage  $\mathfrak{s}^{\zeta}$  auf der Geraden  $s_{\varphi}$  den Richtungssinn,  $s_{\varphi}$  behält seinen Drehsinn bei. In Bezug auf jede der Geraden  $(s_{\sigma}^{\zeta})$ , die in diesen befindlichen Curvenpunkte ausgenommen, liegen also nach No. 44*e* die Punkte  $S^{(\zeta\gamma)}$ auf der entgegengesetzten Halbebene, als die Punkte  $S^{(\alpha\zeta)}$ . Jedem der Punkte ( $\mathfrak{z}$ ) kehrt daher der eine der beiden Theile  $S^{(\alpha\zeta)}$  und  $S^{(\zeta\epsilon)}$  die concave, der andere die convexe Seite zu (No. 52*c*<sup>4</sup>, 59*d*); irgend einem der Punkte [ $\mathfrak{z}^{\sigma}$ ] aber kehren entweder beide dieser Theile die concave oder beide die convexe Seite zu, jedem Punkt des Halbstrahles der Tangenten  $(s_{\sigma}^{\zeta})$ , welcher die Schnittpunkte mit den anderen Tangenten enthält, die convexe, jedem Punkt des anderen Halbstrahles die concave Seite (vergl. No. 59*a*<sup>4</sup>).

2. Im Falle II liegen die Punkte  $S^{(\xi\lambda)}$  auf der entgegeugesetzten Halbebene in Bezug auf jede der Geraden  $(s_{\sigma}^{\xi})$  und auf derselben Halbebene in Bezug auf jede der Geraden  $[z_{\sigma}]$ , als die Punkte  $S^{(\gamma\xi)}$  (No. 59 $b^{\epsilon s}$ )  $\tilde{s}^{\varrho}$  ändert den Richtungssinn auf  $s_{\varrho}$ ,  $s_{\varrho}$  aber behält seinen Drehsinn  $\varDelta$  bei (No. 58 $c^{s}$ , 44d, 45c). Daher liegen auch in Bezug auf jede der Geraden (z) die Punkte  $S^{(\xi\lambda)}$  und  $S^{(\gamma\xi)}$  auf derselben Halbebene. Jedem der Punkte (3) kehrt daher einer der beiden Theile  $S^{(\alpha\xi)}$ ,  $S_{\text{Lottreed}}^{(\xi1)}$  die concave, der andere die convexe, irgend einem der Punkte  $[3^{\sigma}]$  aber kehren beide Theile die convexe Seite zu (No. 52 $e^4$ , 59 $b^4$ , 59d).

3. Im Falle III ändert  $s_{\rho}$  den Drehsinn in den entgegengesotzten  $\Delta$  (siehe die Anmerkung zu No. 59 $c^{1}$ ). In Bezug auf jede der Geraden (z) und  $[z_{\sigma}]$  liegen die Punkte  $S^{(\xi_{1})}$  auf der entgegengesetzten Halbebene, als die Punkte  $S^{(\gamma \xi)}$ ; der Punkt  $\tilde{s}^{\rho}$  überschreitet daher in den auf  $\tilde{s}^{\xi}$  folgenden Lagen die Gerade  $g_{\infty}$ . Jedem der Punkte ( $\mathfrak{z}$ ) kehren beide Theile  $S^{(\alpha \xi)}$  und  $S^{(\xi_{1})}$  die concave Seite zu (No. 52 $c^{4}$ , 59 $c^{34}$ ).

d) Wenn  $\tilde{s}^{\xi}$  ein Wenderückkehrpunkt, also  $s_{g}$  eine Wenderückkehrtangente, so ist  $s_{g}$  im Büschel  $\tilde{s}^{\xi}$  für die Strahlenfolge  $s_{(0\nu)}^{\xi}$ ein Rückkehrstrahl und  $\tilde{s}^{\xi}$  auf der Geraden  $s_{\xi}$  für die Punktenfolge  $\tilde{s}_{\xi}^{(0\nu)}$ ein Rückkehrpunkt; es sind deshalb in  $s_{g}$  die beiden aufeinanderfolgenden Tangenten  $s_{g}$  und  $s_{\xi}$  und in  $\tilde{s}^{\xi}$  die beiden aufeinanderfolgenden Punkte  $\tilde{s}^{\xi}$ und  $\tilde{s}^{\eta}$  vereinigt. Die Tangente  $s_{g} = s_{\xi}$  enthält daher drei aufeinanderfolgende Curvenpunkte  $\tilde{s}^{\xi}, \tilde{s}^{\xi}, \tilde{s}^{\eta}$ , darunter einen  $\tilde{s}^{\xi}$ , welcher von  $\tilde{s}^{\xi}$  verschieden ist, und durch  $\tilde{s}^{\xi} = \tilde{s}^{\eta}$  gehen drei aufeinanderfolgende Tangenten  $s_{g}$ ,  $s_{\xi}, s_{\eta}$ , darunter eine  $s_{\eta}$ , welche von  $s_{g}$  und  $s_{\xi}$  verschieden ist (No. 56  $d^{\xi}$ , 58 d). Daher ist der dem Punkt  $\tilde{s}^{\xi}$  entsprechende Strahl

im Büschel  $\tilde{s}^{\Phi}$  und von den übrigen Büscheln (3) auf allen, deren Mittelpunkte ausserhalb  $s_{\eta}$  liegen, für die Strahlenfolge  $z_{(ov)}$  ein Rückkehrstrahl, zwei aufeinanderfolgende Strahlen enthaltend,

in jedem der Büschel ( $\mathfrak{z}$ ), deren Mittelpunkte die von  $\mathfrak{z}^{\eta}$  und  $\mathfrak{z}^{\mathfrak{d}}$  verschiedenen Punkte von  $\mathfrak{s}_{\eta}$  sind, ein gewöhnlicher Strahl, drei aufeinanderfolgende Strahlen enthaltend, welche den Punkten  $\mathfrak{z}^{\xi}$ ,  $\mathfrak{z}^{\eta}$ ,  $\mathfrak{z}^{\mathfrak{d}}$  entsprechen,

in jedem der Büschel  $[s^{\sigma}]$  für die Strahlenfolge  $z_{(\sigma \nu)}^{\sigma}$  ein Rückkehrstrahl, drei aufeinanderfolgende Strahlen enthaltend, welche den Punkten  $s^{\varepsilon}$ ,  $s^{\zeta}$ ,  $s^{\eta}$  entsprechen, im Büschel  $s^{\varepsilon}$  ein gewöhnlicher Strahl, zwei aufeinanderfolgende Strahlen enthaltend, welche den Punkten  $s^{\zeta}$  und  $s^{\eta}$  entsprechen. Der der Tangente  $s_{s}$  entsprechende Punkt ist

auf der Geraden  $s_{\vartheta}$  und von den übrigen Geraden (z) auf allen, welche nicht durch  $\vartheta^{\varepsilon}$  gehen, für die Punktenfolge  $\vartheta^{(ov)}$  ein Rückkehrpunkt, zwei aufeinanderfolgende Punkte enthaltend, Digitized by GOOGLE auf allen von  $s_{\partial}$  verschiedenen Geraden (z), welche durch den Punkt  $\hat{s}^{\varepsilon}$  gehen, ein gewöhnlicher Punkt, drei aufeinanderfolgende enthaltend, welche den Tangenten  $s_{\partial}$ ,  $s_{\varepsilon}$ ,  $s_{\varepsilon}$  entsprechen,

auf allen Geraden  $[z_{\sigma}]$  für die Punktenfolge  $\mathfrak{z}_{\sigma}^{(o v)}$  ein Rückkehrpunkt, drei aufeinanderfolgende enthaltend, welche den Tangenten  $s_{\varepsilon}, s_{\zeta}, s_{\eta}$ entsprechen,

auf der Geraden  $s_{\eta}$  ein gewöhnlicher Punkt, zwei aufeinanderfolgende enthaltend, welche den Tangenten  $s_{\mu} = s_{\mu}$  entsprechen.

In jedem der Fälle I, II, III liegen in Bezug auf jede der Geraden (z),  $[z_{\sigma}]$ ,  $(s_{\sigma}^{\xi})$  die Punkte  $S^{(\xi \lambda)}$  auf derselben Halbebene, als die Punkte  $S^{(\gamma \xi)}$  (No. 58 c<sup>4</sup>, 59); in jedem der drei Fälle ändern sowohl  $s_{\rho}$  als  $\tilde{s}^{\rho}$  auf  $s^{\rho}$ ihren Dreh- resp. Richtungssinn. Demnach kehrt jedesmal jedem der Punkte ( $\mathfrak{z}$ ) und  $[\mathfrak{z}^{\sigma}]$ , welchem einer der beiden Theile  $S^{(\alpha \xi)}$ ,  $S^{(\xi \iota)}$  seine concave oder convexe Seite zukehrt, auch der andere resp. seine concave oder convexe Seite zu; und zwar kehren  $S^{(\alpha \xi)}$  und  $S^{(\iota \xi)}$ 

im Falle III jedem der Punkte (3) die concave Seite,

im Falle II jedem der Punkte [3<sup>d</sup>] die convexe,

im Falle I jedem der  $[3^{\sigma}]$ , welcher auf dem Halbstrahl von  $s_{\zeta}$  liegt, welcher die Schnittpunkte mit den übrigen Tangenten enthält, die convexe, jedem Punkt  $3^{\sigma}$ , welcher dem anderen Halbstrahl angehört, die concave Seite zu; ferner jedem der mit  $S^{(ov)}$  auf derselben Halbebene in Bezug auf  $s_{\zeta}$  liegenden Punkt (3) die concave, jedem der auf der anderen Halbebene liegenden Punkte (3) die convexe Seite. (Letzteres gilt auch für den Fall II, No. 59*d*).

61. a) Wegen der in No. 46*a* angegebenen Bedingung lässt sich die Untersuchung nach der Beschaffenheit einer ebenen stetigen, nicht gebrochenen Curve in irgend einem ihrer Elemente und die Beurtheilung, ob das mit irgend einem Curvenelement in irgend einem der Strahlbüschel resp. einer der geraden Punktreihen der Ebene 'perspectivische Element für die den sämmtlichen Curvenelementen perspectivische Strahlen - resp. Punktenfolge ein gewöhnliches oder Rückkehrelement ist, auf die hier durchgeführte Untersuchung zurückführen. Jedem Curvenelement  $\mathfrak{s}^{\xi}$  resp.  $s_{\mathfrak{s}}$ , in welchem eines der laufenden Elemente  $\mathfrak{s}^{\varrho}$  und  $s_{\varrho}$  oder beide den Bewegungssinn ändern, geht ein Curvenstück  $S_{\varrho}^{(o\,\xi)}$  vorher und folgt ein Digitized by

Curvenstück  $S^{(\zeta *)}$ , welche den Bedingungen in No. 49*a* in der in No. 54*a* geforderten Weise genügen; jedes dieser Curvenstücke besteht einschliesslich der Elemente  $\tilde{s}^{\zeta}$ ,  $s_{g}$  mindestens aus drei aufeinanderfolgenden Elementen (drei Punkten und drei Geraden). Curvenstücke aber, welche den in No. 49*a* gestellten Bedingungen genügen, sind in No. 49 bis 53 behandelt worden (vergl. No. 58*c*<sup>4</sup>).

b) Zugleich erkennen wir, dass die Antwort auf die Frage, ob das mit einem Curvenelement 3<sup>5</sup> oder s in einem der Strahlbüschel resp. einer Geraden der Ebene perspectivische Element für die den sämmtlichen Curvenelementen perspectivische Strahlen-, resp. Punktenfolge ein gewöhnliches oder Rückkehrelement ist, nicht blos davon abhängt, ob die laufenden Elemente  $s^{Q}$ ,  $s_{a}$  in der Lage  $s^{\zeta}$  resp.  $s_{a}$  ihren Bewegungssinn P oder  $\Delta$ ändern oder nicht, sondern auch von der Lage der Elemente  $\mathfrak{s}^{\varsigma}$  und s\_, dass daher die Sätze in No. 201 der "Geometrie der Lage von v. Staudt", wie sie lediglich der Anschauung entnommen sind, auch nur für endliche Curvenelemente gelten. Eine allgemeine, alle Fälle umfassende Beantwortung obiger Frage konnte nur dadurch erzielt werden, dass wir, wie es in den vorhergehenden Paragraphen geschehen, den umgekehrten Weg einschlugen und aus der Beschaffenheit und Bedeutung der mit \$<sup>9</sup> und s in den Strahlbüscheln und geraden Punktreihen der Ebene perspectivischen Elemente für die der Curve entsprechende Elementenfolge die Beschaffenheit von  $s^{e}$  und  $s_{o}$  in irgend einer Lage in der Hinsicht, ob sie den Bewegungssinn ändern oder nicht, und die Bedeutung des einen oder des anderen für die Gestaltung der Curve in diesem Punkte abzuleiten versuchten.

Auf der beigefügten Figurentafel sind die verschiedenen Formen, welche das Curvenstück  $S^{(o \zeta \nu)}$  haben kann und wie sie sich aus der Beschreibung in No. 60 ergeben, aufgezeichnet; den daselbst in No. 60  $a^{i}, a^{2}, a^{3},$  $b^{i}$  etc.. beschriebenen Fällen entsprechen resp. die Figuren  $a^{1}, a^{2}, a^{3}, b^{1}$  etc.

Digitized by Google

'Zeitschrift f. Mathematik u. Physik. XIII, 5.

## XI.

# Ueber Polartetraeder und die Schnittcurve zweier Flächen •zweiter Ordnung.

Von

## Dr. LÜROTH,

Docent an der Universität Heidelberg.

Bei Gelegenheit von Vorlesungen über die analytische Geometrie des Raumes wurde ich auf eine Lücke aufmerksam, welche unsere ausgezeichnetsten Lehrbücher über diesen Gegenstand, wie die Werke der Herren Hesse und Salmon zeigen. Dieser Mangel betrifft die Eigenschaften der Schnittcurve zweier Flächen zweiter Ordnung und ihren Zusammenhang mit den algebraischen Eigenschaften der Gleichung vierten Grades von der die Kegel abhängen, welche in dem durch jene Raumcurve bestimmten Flächenbüschel auftreten. Ich habe versucht, diese Lücke auf die unten angegebene Weise zu ergänzen. Es handelt sich hierbei wesentlich um die geometrische Bedeutung des Verschwindens von simultanen Invarianten, die zugleich auf eine eigentliche und eine uneigentliche Fläche zweiter Ordnung (Kegel, Ebenenpaar) sich beziehen. Ich habe zunächst diese Interpretation vorgenommen für zwei allgemeine Flächen zweiter Ordnung, weil die Methode ganz die gleiche ist, und weil in den oben angeführten Werken zwar gezeigt ist, dass jene Invarianten verschwinden, wenn gewisse geometrische Eigenschaften Statt haben, aber der Nachweis fehlt, das auch das Umgekehrte richtig ist.

#### §. 1.

Die Singularitäten der Schnittcurve zweier Flächen zweiter Ordnung A und B, deren Gleichungen in homogenen Punktcoordinaten wir schreiben wollen

 $A \equiv \Sigma a_{ik} \xi_i \xi_k = 0,$  $B \equiv \Sigma b_{ik} \xi_i \xi_k = 0,$ 

hängen ab von dem Verhalten der Wurzeln einer Gleichung vierten Grades in  $\lambda$ , welche erhalten wird, wenn man die Hesse'sche Determinante H von  $A + \lambda B$  gleich Null setzt. Schreibt man diese Gleichung

$$H \equiv \varDelta + 4\Theta\lambda + 6\Phi\lambda^2 + 4\Theta'\lambda^3 + \varDelta'\lambda^4 = 0,$$

so sind, wie bekannt,  $\Delta$ ,  $\Theta$ ,  $\Phi$ ,  $\Theta'$ ,  $\Delta'$  Invarianten und zwar mit Ausnahme der ersten und letzten simultane Invarianten beider Flächen.

Wir untersuchen jetzt die geometrische Bedeutung des Verschwindens dieser Invarianten.  $\Delta = 0$  und  $\Delta = 0$  stellen, wie bekannt, die Bedingungen dar dafür, dass die Flächen A und B Kegel sind.

Um die Bedeutung der übrigen zu erkennen, benutzen wir ein Polartetraeder der Fläche A. Wir bemerken zu dem Zwecke, dass sich, wie auch die Fläche A beschaffen sein mag, stets vier nicht in einer Ebene liegende Punkte angeben lassen, von denen jeder der harmonische Pol der andern ist. Bezeichnen wir solche vier Punkte mit x, y, z, w und multipliciren H zweimal mit der Determinante

$$D = \Sigma \pm x_1 y_2 z_3 w_4,$$

die nach dem eben Bemerkten nicht verschwindet, so erhalten wir mit Rücksicht auf die zwischen den Coordinaten der vier Punkte bestehenden Gleichungen und indem wir abkürzende Bezeichungen wie

$$\Sigma b_{ik} x_i y_k = b(xy)$$

einführen :

$$D^{2}H = \begin{vmatrix} a(xx) + \lambda b(xx) & \lambda b(xy) & \lambda b(xz) & \lambda b(xw) \\ \lambda b(yx) & a(yy) + \lambda b(yy) & \lambda b(yz) & \lambda b(yw) \\ \lambda b(xx) & \lambda b(zy) & a(zz) + \lambda b(zz) & \lambda b(zw) \\ \lambda b(wx) & \lambda b(wy) & \lambda b(wz) & a(ww) + \lambda b(ww) \end{vmatrix}$$

Aus dieser in  $\lambda$  identischen Gleichung folgen die Ausdrücke für  $4 \Theta D^2$ ,  $6 \Phi D^2$ ,  $4 \Theta' D^2$ . Bezeichnen wir der Kürze wegen die Determinante

$$\begin{array}{c|c} b(xx) & b(xy) \\ b(yx) & b(yy) \end{array} \quad \text{int } B(xy)$$

und die Determinante

$$\begin{array}{c|cccc} b(xx) & b(xy) & b(xz) \\ b(yx) & b(yy) & b(yz) \\ b(zx) & b(zy) & b(zz) \end{array} \quad \text{mit } B(xyz)$$

und führen für analoge Ausdrücke ähnliche Bezeichnungen ein, so finden wir

$$4\Theta D^{2} = a(xx)a(yy)a(zz)a(ww)\left\{\frac{b(xx)}{a(xx)} + \frac{b(yy)}{a(yy)} + \frac{b(zz)}{a(zz)} + \frac{b(ww)}{a(ww)}\right\}$$
  

$$6\Phi \cdot D^{2} = a(xx)a(yy)B(zw) + a(xx)a(zz)B(yw) + a(xx)a(ww)B(yz) + a(yy)a(zz)B(xw) + a(yy)a(ww)B(xz) + a(zz)a(ww)B(xy)$$

 $\begin{array}{l} + a(yy) a(zz) B(xw) + a(yy) a(ww) B(xz) + a(zz) a(ww) B(xy) \\ 4\theta' D^2 = a(xx) B(yzw) + a(yy) B(xzw) + a(zz) B(xyw) + a(ww) B(xyz) \\ B(xy) = 0 \text{ ist, wie man sofort sieht, die Bedingung, dass die Linie } xy \end{array}$ 

die Fläche *B* berührt und in ähnlicher Weise sagt B(xyz) = 0 aus, dass die Ebene der drei Punkte xyz Tangentenebene der Fläche *B* ist.

### **§**. 2.

Wir nehmen nun zuerst an, A sei eine allgemeine Fläche zweiter Ordnung. Man kann dann, wie man geometrisch leicht einsieht, unendlich viele Polartetraeder von A so construiren, dass drei ihrer Ecken auf einer gegebenen Fläche zweiter Ordnung B liegen. Sind dies etwa die Ecken xyz, so reducirt sich  $\Theta = 0$  auf

$$b(ww) = 0$$

und sagt also aus, dass auch die durch jene drei bestimmte vierte Ecke auf *B* liegen muss.

> $\Theta = 0$  ist also nothwendige und hinreichende Bedingung dafür, dass Polartetraeder von Aexistiren, deren Ecken auf *B* liegen.

 $\Theta'$  verschwindet, wenn es ein Polartetraeder von A giebt, dessen Seiten die Fläche B berühren. Da nun stets solche construirt werden können, die drei Tangentenebenen von B zu Seiten haben, so erkennt man wie vorhin, dass,

> wenn die Seiten eines Polartetraeders von A die Flüche B berühren sollen, es nothwendig und hinreichend ist, wenn  $\Theta'$  verschwindet.

Was nun endlich  $\mathcal{O}$  betrifft, so verschwindet es, wenn man ein Polartetraeder von A angeben kann, dessen Kanten B berühren. Es lässt sich nun stets ein Polartetraeder so construiren, dass fünf seiner Kanten Tangenten von B sind. Man kann dies folgendermassen zeigen. Nehmen wir irgend einen Punkt a an und schneiden mit seiner Polarebene in Bezug auf A die Flächen B, A und den von a an B gelegten Tangentenkegel. Die Schnittcurven mögen sein resp. B', A', B''. Wenn wir nun in besagter Ebene ein Polardreieck von A' beschreiben können, dessen Ecken in B'' liegen und von dem zwei Seiten Tangenten von B' sind, so berühren ausser diesen offenbar auch noch die Verbindungslinien von a mit den Ecken des Dreiecks die Fläche B und somit in der That fünf Kanten eines Polartetræders. Man schliesst dann wie früher, dass

> die Existenz eines Polartetraeders von A, dessen Kanten B berühren, durch die Gleichung  $\Phi = 0$  bedingt ist

Die Forderung, ein Polartetraeder zu beschreiben, von dem fünf Kanten die Fläche *B* berühren, zieht zwei Bedingungen nach sich: erstens die, dass *B*" ein Polardreieck von *A*' eingeschrieben werden kann und zweitens, dass ein Polardreieck möglich ist, das mit zwei Seiten *B*' berührt, während zwei seiner Ecken auf *B*" liegen. Der Ort des Punktes *a* ist also eine Curve. Wenn die Bedingung  $\Phi = 0$  erfüllt ist, so wird diese Curve beschrieben von den Ecken der Polartetraeder, welche obigem Satze gemäss construirt sind; ich behalte mir die Untersuchung dieser Curve auf eine andere Gelegenheit vor.

## §. 3.

Betrachten wir jetzt den Fall, dass die Fläche A ein Kegelist. Es muss dann die Spitze des Kegels ein Eckpunkt des Polartetraeders sein und die drei andern sind nicht mehr vollständig bestimmt, sondern nur die geraden Linien, auf welchen sie beliebig angenommen werden können, so dass das Polartetraeder zu einem Polartrieder wird.

Legen wir die Ecke *w* in die Spitze des Kegels, so ist a(ww) = 0 und die Gleichung  $\Theta = 0$  reducirt sich dann auf b(ww) = 0, d.h.  $\Theta = 0$  zeigt an, dass die Spitze des Kegels auf B liegt.

Die Gleichungen  $\Phi = 0$  und  $\Theta' = 0$  sind ähnlich wie im vorigen Paragraphen die Bedingungen dafür, dass resp. die Kanten und Seiten eines Polartrieders von A die Fläche B berühren. Wenn die beiden Bedingungen  $\Phi = 0$  und  $\Theta' = 0$  zusammen bestehen, so giebt es Polartrieder, welche dem Tangentenkegel, den man von der Kegelspitze an B legen kann, eingeschrieben und andere, welche ihm umschrieben werden können.

Verschwinden aber  $\Theta$  und  $\Phi$  zu gleicher Zeit, so ziehe man durch die Spitze des Kegels A, die ja dann auf B liegt, eine Tangente an diese Fläche und nehme in dieser einen der Punkte xyz, etwa z an. Dann liefert  $\Phi = 0$  die Gleichung

oder

٧

r

$$a(yy) b(wx)^{2} + a(xx) b(wy)^{2} = 0,$$

$$\sqrt{a(yy) b(wx) \pm i\sqrt{a(xx)} \cdot b(wy)} = 0,$$
  
die aussagt, dass eine der Linien, die man von *w* nach den beiden Punkten  
 $x\sqrt{a(yy)\pm iy}\sqrt{a(xx)}$  ziehen kann, Tangente an *B* ist. In diesen beiden  
Linien wird aber der Kegel *A* berührt von den Tangentenebenen, die durch  
die Linie *w z* zu legen sind, wie man leicht erkennt. Es fällt also eine dieser  
beiden Ebenen zusammen mit der Tangentenebene von *B* im Punkte *w*. Da-  
her der Satz: Wenn mit  $\Theta$  zug leich  $\Phi$  verschwindet, so ist die Spitze  
von *A* ein Punkt von *B*. Der Kegel berührt in diesem Punkte die  
Fläche *B*, d. h. er wird von ihrer Tangentenebene in zweizusam  
menfallen den Linien geschnitten.  $\Theta$  und  $\Theta'$  verschwinden gleichzei-  
tig, wenn die Spitze des Kegels auf *B* liegt und die Seiten eines Polartrieders  
die Fläche berühren. Da nun alle Ebenen, welche durch einen Punkt e aus-  
gehenden Geraden der Fläche schneiden, so verschwindet  $\Theta'$  wenn die  
Triederseiten durch diese Geraden gehen. Aber auch die Umkehrung ist  
richtig. Denn man kann zwei Ebenen, von welchen jede durch eine der  
genannten Geraden geht und von denen die eine die Polare der andern  
enthält, als zwei Seiten des Polartrieders betrachten. Die dritte Seite ist  
dadurch bestimmt und berührt, wie  $\Theta'=0$  dann zeigt, ebenfalls die Fläche,  
d. h. geht durch eine der Geraden.  
Wenn  $\Theta$  und  $\Theta'$  zusammen verschwinden so liegt die Snitze des Kes-

gels auf B. Nehmen wir die eine der durch sie gehenden Geraden von B

zur Schnittlinie zweier der Triederseiten, so sagt  $\Theta'=0$  aus, dass die dritte durch die andere Gerade der Fläche geht und  $\Phi=0$ , dass sie den Kegel in zwei Linien schneidet, von welchen die eine in der Tangentenebene der Fläche *B* liegt, was zusammengefasst den Satz ergiebt: das Verschwinden von  $\Theta$ ,  $\Phi$  und  $\Theta'$  ist die Bedingung dafür, dass der Kegel seine Spitze auf der Fläche *B* hat, sie in diesem Punkte berührt und in einer geraden Linie schneidet.

#### §. 4.

Nimmt man für A ein Ebenenpaar und zwei der Punkte xyzw, etwa z und w auf der Schnittlinie der beiden Ebenen, so verschwindet  $\Delta$ und  $\Theta$ ,  $\Phi$  reducirt sich auf a(xx) a(yy) B(zw), so dass  $\Phi = 0$  aussagt, dass die Schnittlinie des Ebenenpaares die Fläche B berührt.  $\Theta'$  besteht dann nur noch aus zwei Gliedern. Nimmt man nun für die Ebene yzw eine Tangentenebene von B, so liefert  $\Theta'=0$  die Gleichung B(xzw)=0, d. h.  $\Theta'$  verschwindet, wenn die beiden Ebenen harmonische Polarebenen der Fläche B sind.

Wenn nun mit  $\Theta'$  zugleich  $\Phi = 0$  ist, so kann man zunächst bemerken, dass wegen der letzteren Bedingung der Ausdruck

 $B(xzw) = -\{b(xz)\sqrt{b(ww)} - b(xw)\sqrt{b(zz)}\}^{2}$ ist. Hiermit erhellt sofort, dass aus  $\Theta' = 0$  folgt

 $B[y\sqrt[]{a(xx)} \pm ix\sqrt[]{a(yy)}, zw] = 0,$ 

welche Gleichung aussagt, dass eine der beiden Ebenen des Paares die Fläche *B* berührt.  $\Theta'=0$  und  $\Phi=0$  zeigt also an, dass eine der Ebenen des Paares zwei Gerade von *B* enthält, durch deren Schnittpunkt die andere Ebene hindurchgeht.

Wenn nun endlich die Fläche A in zwei zusammenfallende Ebenen ausgeartet ist, so kann man die drei Punkte yzw auf dieser Ebene und x ganz beliebig ausserhalb annehmen; es verschwinden dann  $\Delta$ ,  $\Theta$ ,  $\Phi$ von selbst und  $\Theta'$  wird = a(xx) B(yzw).  $\Theta'=0$  ist also die Bedingung, dass die doppelt zu rechnende Ebene, in welche A ausgeartet ist, die Fläche B berührt.

#### §. 5.

Alle die bis jetzt erlangten Resultate bezogen sich auf den Fall, dass die Fläche *B* eine allgemeine Fläche zweiter Ordnung war. Wir müssen jetzt noch den Fall ins Auge fassen, dass *B* selbst eine uneigentliche Fläche zweiter Ordnung ist.

Es möge zunächst B ein Kegel sein, dann verschwindet  $\Delta'$ . Ist nun A gleichfalls ein Kegel, so verschwindet auch  $\Delta$  und es bleiben nur noch die Invarianten  $\Phi$ ,  $\Theta$  und  $\Theta'$  zu untersuchen.

Die Gleichungen  $\Theta = 0$  und  $\Phi = 0$  haben die nämlichen Bedentungen, die wir im §. 4 für sie gefunden haben: die erste sagt aus, dass die Spitze

Digitized by GOOGIC

des Kegels A auf B liegt, und die zweite, dass man Polartrieder des Kegels A construiren kann, deren Kanten B berühren und umgekehrt. Die Invariante  $\Theta'$  hat in Bezug auf die Flächen B, A dieselbe Bedeutung, die  $\Theta$  in Bezug auf die Flächen A, B hat; diese entsteht aus jener durch Vertauschung der a mit den b;  $\Theta'=0$  ist somit die Bedingung dafür, dass die Spitze des Kegels B auf A liegt.

Das Zusammenbestehen der Gleichungen  $\Theta = 0$  und  $\Phi = 0$  zeigt, wie im §. 4, an, dass die Spitze des Kegels A auf B liegt, und dass dieser letztere Kegel vom ersteren berührt wird, während dem gleichzeitigen Verschwinden von  $\Theta'$  und  $\Phi$  der umgekehrte Fall entspricht.

Da beim Verschwinden von  $\Theta$  und  $\Theta'$  jeder der Kegel durch die Spitze des anderen geht, so ist dies auch die Bedingung, dass sie eine gerade Linie gemein haben. Wenn dagegen die drei Gleichungen  $\Theta = 0$ ,  $\Phi = 0$ ,  $\Theta' = 0$  zusammenbestehen, so haben die beiden Kegel eine Erzeugende gemein und berühren sich längs derselben.

Ist B ein Kegel, A ein Ebenenpaar, so sind die Invarianten A,  $\Delta'$  und  $\Theta$  identisch Null. Die Bedeutung von  $\Theta'$  wird nicht geändert und  $\Theta'=0$  zeigt also an, dass die Spitze des Kegels auf einer der Ebenen des Paares liegt. Auch  $\Phi=0$  bedeutet, seiner früheren Interpretation conform, dass die Schnittlinie der beiden Ebenen den Kegel berührt.

Das Zusammenbestehen der Gleichungen  $\Theta'=0$ ,  $\Phi=0$  bedingt somit, dass die eine Ebene des Paares den Kegel berührt.

Degenerirt endlich A in eine doppelt zu rechnende Ebene, so verschwindet auch noch  $\Phi$  identisch, und die einzig übrigbleibende Invariante  $\Theta'$  zeigt durch ihr Verschwinden an, dass die Spitze des Kegels auf dieser Ebene liegt.

### §. 6.

Ist *B* ein Ebenenpaar, so sind die Bedingungen  $\Delta'=0$  und  $\Theta'=0$  an und für sich erfüllt. Wenn nun auch *A* ein Ebenenpaar ist, so bleibt nur noch die Invariante  $\Phi$  als simultane übrig. Wenn auch diese Invariante noch verschwindet, so schneiden sich die Schnittlinien der beiden Ebenenpaare, d. h. die vier Ebenen beider Paare gehen durch einen Punkt.

Andere als die jetzt absolvirten Fälle brauchen wir nicht zu untersuchen, weil entweder sie sich aus diesen durch Vertauschung der Flächen A und B ergeben oder sämmtliche Invarianten verschwinden.

#### §. 7.

Wir wollen jetzt die Invarianten bilden für die beiden Flächen  $A + \mu B$ und B. Indem wir die Zeichen  $\Delta$ ,  $\Theta$ ,  $\Phi$ ,  $\Theta'$ ,  $\Delta'$  in der nämlichen Bedeutung wie bisher anwenden, wollen wir die neuen Invarianten bezeichnen  $\Delta_{A+\mu B}$ ,  $\Theta_{A+\mu B}$ , B. u. s. w. Wir finden so

$$\begin{aligned} \mathcal{A}_{A+\mu B} &= \mathcal{A} + 4 \,\Theta \mu + 6 \,\Phi \,\mu^2 + 4 \,\Theta' \,\mu^3 + \mathcal{A}' \,\mu^4 = H(\mu) \\ \Theta_{A+\mu B, B} &= \Theta + 3 \,\mu \,\Phi + 3 \,\mu^3 \,\Theta' + \mu^3 \mathcal{A}' \qquad = \frac{1}{4} \frac{d \,H(\mu)}{d \,\mu} \\ \Phi_{A+\mu B, B} &= \Phi + 2 \,\mu \,\Theta' + \mu^2 \,\mathcal{A}' \qquad = \frac{1}{3.4} \cdot \frac{d^2 \,H(\mu)}{d \,\mu^2} \\ \bullet \quad \Theta'_{A+\mu B, B} &= \Theta' + \mu \,\mathcal{A}' \qquad = \frac{1}{2.3.4} \frac{d^3 \,H(\mu)}{d \,\mu^3}. \end{aligned}$$

Mit Hülfe dieser Resultate ist es nun leicht, die Eigenthümlichkeiten der Schnittcurve zweier Flächen A, B abzuleiten aus den algebraischen Eigenschaften der Gleichung des §. 1. Diese Curve ist ja der Schnitt von irgend zweien der Flächen des Büschels  $A + \mu B$  und also z. B. der Schnitt eines der vier Kegel mit der Fläche B. Wir wollen uns dieser letzten Anschauungsweise bedienen.

Wenn nun die Gleichung H = 0 keine Doppelwurzeln besitzt, so hat auch die in Rede stehende Schnittcurve keine Singularitäten.

Soll die Gleichung H = 0 eine Doppelwurzel besitzen, so muss für diese neben H auch noch  $\frac{dH}{d\lambda}$  verschwinden. Bezeichnen wir diese Wurzel mit  $\lambda$ , so muss also nach den obigen Gleichungen

 $\mathcal{D}_{A+\lambda B} = 0$ ,  $\mathfrak{D}_{A+\lambda B, B} = 0$ sein. Die erste Gleichung ist erfüllt. Die zweite sagt gemäss den in §. 4 enthaltenen Resultaten aus, dass die Spitze des Kegels, welcher der Doppelwurzel entspricht, auf der Fläche *B* liegt. Da diese Fläche in der Nähe eines ihrer Punkte von ihrer Tangentenebene unendlich wenig abweicht, so hat also die Schnittcurve einen Doppelpunkt, dessen Tangenten die Schnittlinie des Kegels mit der Tangentenebene der Fläche sind.

Hat aber die H=0 eine dreifache Wurzel  $\lambda$ , so genügt diese den Gleichungen

$$\Theta_{A+\lambda B, B}=0, \quad \Phi_{A+\lambda B, B}=0.$$

Der Kegel  $A + \lambda B$  hat dann seine Spitze auf B und wird von der dort an B gelegten Tangentenebene in zwei zusammenfallenden Linien geschnitten; d. h. die beiden Tangenten der Curve in diesem Punkte fallen zusammen, die Curve hat einen Rückkehrpunkt.

Wenn endlich die 3 Invarianten

 $\Theta_{A+\lambda_B,B}, \quad \Phi_{A+\lambda_B,B}, \quad \Theta'_{A+\lambda_B,B}$ 

ür einen Werth von  $\lambda$  zusammen verschwinden, so hat die Gleichung H=0vier gleiche Wurzeln. Unsere früheren Resultate zeigen, dass der Kegel, welcher dieser Wurzel entspricht, die Fläche berührt und in einer Geraden schneidet. Die Schnittcurve besteht folglich in einer Curve dritter Ordnung und einer ihrer Tangenten.

Wenn für eine Wurzel von H = 0 sämmtliche erste Unterdeterminanten von H verschwinden, so ist diese Wurzel natürlich Dop-

pelwurzel. Der entsprechende Kegel ist ein Ebenenpaar, die Raumcurve zerfällt in zwei Kegelschnitte.

Verschwinden aber für eine dreifache Wurzel alle ersten Unterdeterminanten von H, so ist für diese Wurzel 1 auch noch

$$\Phi_{A+\lambda B,B}=0.$$

Nach §. 5 berührt die Schnittlinie des Ebenenpaares die Fläche B. Die Schnittcurve besteht somit aus zwei sich berührenden Kegelschnitten.

Ist die Wurzel  $\lambda$ , welche alle ersten Unterdeterminanten annullirt, vierfache Wurzel von H=0, so bestehen die beiden Gleichungen

$$\Phi_{A+\lambda B, B} = 0, \qquad \Theta'_{A+\lambda B, B} = 0$$

welche bedingen, dass nicht nur die Schnittlinie der beiden Ebenen, sondern auch eine der Ebenen selbst die Fläche *B* berührt. Die Raumcurve besteht aus zwei sich schneidenden Geraden und einem Kegelschnitt, der durch ihren Schnittpunkt geht und von der Ebene der Geraden berührt wird.

Giebt es einen Werth von  $\lambda$ , für welchen die zweiten Unterdeterminanten von H alle verschwinden, so finden die Gleichungen

 $\Theta_{A+1B,B} \equiv 0, \quad \Phi_{A+1B,B} \equiv 0$ identisch statt.  $\lambda$  ist dann dreifache Wurzel von  $H \equiv 0$ . Der eine Kegel degenerirt in eine doppelt zu rechnende Ebene und die Schnittcurve besteht aus einem doppelt zu rechnenden Kegelschnitt, längs dessen sich beide Flächen berühren.

Soll eine derartige Wurzel vierfache Wurzel sein, so muss neben den beiden obigen noch die Gleichung

$$\Theta'_{A+lB,B}=0$$

bestehen. Die doppelt zu rechnende Ebene berührt die Fläche und die Schnittcurve besteht aus zwei sich schneidenden Geraden, welche doppelt zu rechnen sind.

Wenn aber die Gleichung H = 0 zweimal zwei gleiche Wurzeln  $\lambda$  und  $\lambda'$  hat, so finden die Gleichungen statt

 $\Theta_{A+\lambda B, B} = 0$ ,  $\Theta_{A+\lambda' B, B} = 0$ ; ans diesen beiden Gleichungen folgt aber, weil

$$\Theta_{A+\lambda B, A+\lambda B} = 4 \Delta_{A+\lambda B} = 0,$$
  
$$\Theta_{A+\lambda' B, A+\lambda' B} = 4 \Delta_{A+\lambda' B} = 0$$

ist:

$$\Theta_{A+\lambda B, A+\lambda' B} = 0, \qquad \Theta_{A+\lambda B, A+\lambda' B} = 0.$$

Wie wir in §. 6 gesehen haben, haben also die beiden Kegel, welche zu den Wurzeln 1 und 1 gehören, eine gerade Linie gemein. Die Schnittcurve besteht som it aus einer Curve dritter Ordnung und einer • ihrer Sehnen.

411

Nun können aber für eine dieser Wurzeln  $\lambda$  die ersten Unter determinanten von *H* alle verschwinden. Dann ist  $\Theta_{A+\lambda B, B}$  identisch Null und es bleibt als Bedingung nur  $\Theta_{A+\lambda B, B} = 0$ . Wie vorhin hat man aber auch hier die Gleichung

 $\Theta'_{A+\lambda B, A+\lambda' B}=0,$ 

welche nach §. 6 anzeigt, dass die Spitze des Kegels, der  $\lambda'$  entspricht, auf dem Ebenenpaare liegt. Die Schnittcurve besteht dann also aus einem Kegelschnitt und zweien ihn und sich selbstschneidenden Geraden.

Wenn endlich für die beiden Wurzeln die ersten Unterdeterminanten sich sämmtlich annulliren, so liegt die Schnittcurve ganz auf zwei Ebenenpaaren und besteht folglich aus einem windschiefen Viereck.

**§.** 8.

Wie sich diese Untersuchungen auf Flächen zweiter Klasse und die Eigenthümlichkeiten der ihnen umschriebenen abwickelbaren Fläche übertragen lassen, ist klar.

Betrachten wir nun neben der Schnittcurve der beiden Flächen zweiter Ordnung A und B, die wir als allgemeine voraussetzen wollen, die ihnen umschriebene abwickelbare Fläche. Schreiben wir die Gleichungen dieser Flächen in Ebenencoordinaten resp.

$$\Sigma A_{ik} u_i u_k = 0, \qquad \Sigma B'_{ik} u_i u_k = 0,$$

wo  $A_{ik}$  und  $B'_{ik}$  die Unterdeterminanten der Determinanten  $\Delta$  und  $\Delta'$  bezeichnen, so hängen die Singularitäten der abwickelbaren Fläche ab von den Wurzeln der Gleichung

$$H' \equiv \begin{vmatrix} A_{11} + \lambda B_{11} & A_{12} + \lambda B_{12} & A_{13} + \lambda B_{13} & A_{14} + \lambda B_{14} \\ A_{21} + \lambda B_{21} & A_{22} + \lambda B_{22} & A_{23} + \lambda B_{23} & A_{24} + \lambda B_{24} \\ A_{31} + \lambda B_{31} & A_{32} + \lambda B_{32} & A_{33} + \lambda B_{33} & A_{34} + \lambda B_{84} \\ A_{41} + \lambda B_{41} & A_{42} + \lambda B_{42} & A_{43} + \lambda B_{43} & A_{44} + \lambda B_{44} \end{vmatrix} = 0.$$

Man multiplicire diese Gleichung mit den Determinanten  $\Delta$  und  $\Delta'$ , die der Voraussetzung gemäss nicht Null sind; man erhält dann

so dass

$$H'. \Delta. \Delta' = \lambda^4. \Delta'^4 H\left(\frac{\Delta}{\lambda \Delta'}\right)$$

Wenn also  $\lambda$  eine Wurzel der Gleichung H = 0 ist, so ist  $\frac{\Delta}{\lambda \Delta}$  eine Wurzel von H' = 0.

Weil ferner die Unterdeterminanten von H' nach obiger Gleichung lineare Functionen sind der Unterdeterminanten von H, so verschwinden die ersten und zweiten Unterdeterminanten von H' für den Wurzelwerth  $\frac{\Delta}{\lambda\Delta}$ , wenn die von H für den Werth  $\lambda$  zu Null werden und umgekehrt. Die Singularitäten der Gleichung H=0 ziehen demnach ganz entsprechende der Gleichung H'=0 nach sich; zugleich mit jedem der in §. 7 aufgezählten Fälle, welche sich auf die Schnittcurve der beiden Flächen A und B beziehen, findet ein anderer statt, den man aus ihm durch dualistische Uebertragung erhält und der sich auf die denselben Flächen A und B umschriebene abwickelbare Fläche bezieht.

Heidelberg, im December 1867.

## XVII.

## Ueber magnetische Fernwirkung elektrischer Ströme und Stromringe.

Von

### EMIL WEYR,

#### ord, Hörer am polytechnischen Institut zu Prag.

Dieselben Vortheile, welche das Massenpotential bei Betrachtung der Wechselwirkung materieller Systeme darbietet, ergeben sich bei der Verwendung des magnetischen Potentials für die Untersuchung der Fernwirkungsweise elektrischer Ströme und Stromsysteme.

Das magnetische Potential ist, wie das Potential der Massen, eine Function, deren Ableitung nach einer Richtung die Wirkungscomponente nach dieser Richtung hin angiebt; ausserdem stehen beide, nämlich das Massenpotential und das Strompotential, in mannichfachen gegenseitigen Beziehungen, so z. B. auch in der, dass beide die partielle Differentialgleichung  $\Lambda^{*} V = 0$ 

erfüllen.

Das Strompotential wurde bisher gewöhnlich aus dem Massenpotential abgeleitet, indem man sich dabei auf das Ampère'sche Theorem von der Aequivalenz elektrischer Ströme und der von ihnen umgrenzten transversalmagnetischen Flächen stützte.

Wie ich nun in einem Aufsatze\*) gezeigt habe, ist dieses Theorem, ausser in dem speciellen Falle, wenn sowohl der Strom, als auch die transversal-magnetische Fläche eben ist, nicht giltig, weshalb ich mir im Anfange dieser Arbeit eine, von der Betrachtung transversal-magnetischer Flächen unabhängige Entwickelungsweise des Strompotentials anzugeben erlaube.

\*) Novemberheft der Sitzungsberichte der kaiserlichen Akademie der Wissenschaften in Wien, 1867.

Ueber magnetische Fernwirkung etc. Von EMIL WEYR. 415 

~~~~~~~~~

Um die Untersuchung so allgemein als möglich führen zu können, war es nöthig, den Begriff eines Elementarstromes dahin zu erweitern, dass derselbe nicht eben zu sein brauche, und seine Fernwirkungsweise zu bestimmen.

Ich könnte wohl ohne Weiteres von den bekannten Grundgleichungen für die drei Componenten der Fernwirkung eines elektrischen Stromes ausgehen; des Zusammenhanges und der Vollständigkeit wegen möge es mir jedoch erlaubt sein, dieselben aus dem Gesetze der elektromagnetischen Action in Kürze abzuleiten.

I.

Ist ds das Bogenelement einer geschlossenen Linie S, durch welche ein elektrischer Strom von der Intensität 1 geleitet wird und M ein Punkt, in welchem das nordmagnetische Quantum 1 concentrirt ist, so wirkt bekanntlich ds auf M mit der Kraft

$$\frac{ds}{R^2}, \frac{sin\theta}{R^2},$$

wobei R die Entfernung des magnetischen Punktes von dem Stromelemente and θ den Winkel bedeutet, welchen R mit ds einschliesst.

Die Richtung der Kraft steht senkrecht auf der durch M und ds gelegten Ebene und wird durch die Ampère'sche Regel näher bestimmt.

Würde die Stromintensität i und die in M vorhandene magnetische Quantität m sein, so hätte man den obigen Ausdruck noch mit mi zu multipliciren.

Bezeichnet man die Coordinaten von ds mit x, y, z, jene von M mit α , β , γ und die Projectionen von ds auf die drei Axen mit dx, dy, dz, so haben die Richtungscosinus cos l, cos µ, cos v der Kraft, weil die Richtung dieser Kraft auf der Ebene von R und ds senkrecht steht, die Werthe:

•
$$\cos \lambda = \pm \frac{\left(\frac{y-\beta}{R}\right)\frac{dz}{ds} - \left(\frac{z-\gamma}{R}\right)\frac{dy}{ds}}{\sin \theta},$$

 $\cos \mu = \pm \frac{\left(\frac{z-\gamma}{R}\right)\frac{dx}{ds} - \left(\frac{x-\alpha}{R}\right)\frac{dz}{ds}}{\sin \theta},$
 $\cos \nu = \pm \frac{\left(\frac{x-\alpha}{R}\right)\frac{dy}{ds} - \left(\frac{y-\beta}{R}\right)\frac{dx}{ds}}{\sin \theta}.$

Das obere oder untere Zeichen der Cosinus ist zu nehmen, je nachdem die Kraft die eine oder die direct entgegengesetzte Richtung besitzt, was wieder von der Richtung des die Curve durchfliessenden Stromes abhängt.

Die drei Kraftcomponenten haben demzufolge die Werthe: Google

$$dX = \pm \frac{(y-\beta) dz - (z-\gamma) dy}{R^6},$$

$$dY = \pm \frac{(z-\gamma) dx - (x-\alpha) dz}{R^6},$$

$$dZ = \pm \frac{(x-\alpha) dy - (y-\beta) dx}{R^6}.$$

Die Kraftcomponenten des ganzen geschlossenen Stromes sind daher:

$$X = \pm \int \frac{(y-\beta) dz - (z-\gamma) dy}{R^8},$$

$$Y = \pm \int \frac{(z-\gamma) dx - (x-\alpha) dz}{R^8},$$

$$Z = \pm \int \frac{(x-\alpha) dy - (y-\beta) dx}{R^8}.$$

wobei man

$$R = \sqrt{(x-\alpha)^2 + (y-\beta)^2 + (z-\gamma)^2}$$

zu setzen hat.

Ist der Strom eben, d. h. liegt er ganz in einer Ebene, und bringt man ihn, ohne seine Ebene umzuwenden, in die XY-Ebene, so ist dann das obere Zeichen zu nehmen, wenn eine im Strome schwimmende menschliche Figur, gegen die von ihm begrenzte Fläche blickend, die +z-Axe zur rechten Hand behält. Ist die Richtung des Stromes die entgegengesetzte, so gilt das untere Zeichen.

II.

Wenn man auf irgend einer Fläche um einen Punkt herum eine ge schlossene Linie von verschwindender Länge beschreibt und sie als die Leitlinie eines Stromes betrachtet, so nennt man einen solchen Strom einen Elementarstrom, vorausgesetzt, dass in dem betrachteten Punkte der Fläche keine Singularität (etwa eine Spitze u. s. w.) vorkommt.

Um für einen solchen die Fernwirkungscomponenten zu bestimmen, verlegen wir den Coordinatenanfang bei parallel bleibenden Axen in den angegriffenen Punkt M. Demzufolge erhält man für die drei Componenten:

$$X = \pm \int \frac{y \, dz - z \, dy}{R^8},$$

$$Y = \pm \int \frac{z \, dx - x \, dz}{R^8},$$

$$Z = \pm \int \frac{x \, dy - y \, dx}{R^8},$$

 $R^2 = x^2 + y^2 + z^2$

wobei

Digitized by Google

ist.

elektrischer Ströme und Stromringe. Von EMIL WEYR.

Betrachten wir nun z. B. die Componente Z, so lässt sich das Integral $\int \frac{x \, dy - y \, dx}{R^3}$

leicht auf folgende Art entwickeln.

Bezeichnet man die xy-Projection von R mit r und den Winkel, welchen r mit der x-Axe einschliesst, durch φ , so ist:

$$r^{2} = x^{2} + y^{2} = R^{*} - z^{*},$$

$$\varphi = \arcsin \frac{y}{x},$$

somit

 $x dy - y dx = r^{2} d\varphi$

und folglich das, einem Stromelemente zugehörige

$$dZ = \pm \frac{r^2 d\varphi}{R^3}.$$

Legt man durch die Endpunkte dieses Elementes und durch die z-Axe zwei Ebenen, so schliessen diese unter einander den Winkel $d\varphi$ ein und werden auf der Stromcurve ein zweites Element abschneiden, in welchem der Strom die entgegengesetzte Richtung hat, für welches also dZ negativ zu nehmen ist, und zwar in der Grösse

$$=\frac{(r+\delta r)^2 \cdot d\varphi}{(R+\delta R)^3},$$

wenn δr und δR die diesem Uebergange entsprechenden Zuwächse von rund R sind. Der Theil des Integrales also, welcher von den beiden Elementen herrührt, welche durch die zwei die z-Axe enthaltenden Ebenen herausgeschnitten werden, ist:

$$dZ = \pm \left[\frac{r^2}{R^3} - \frac{(r+\delta r)^2}{(R+\delta R)^3}\right] \cdot d\varphi,$$

oder wenn man bis auf unendlich kleine Grössen zweiter Ordnung geht:

$$dZ = \pm \left[\frac{3r^3 \delta R}{R^4} - \frac{2r \delta r}{R^3}\right] d\varphi$$

Nun ist

 $R^2 = r^2 + z^2,$

$$\delta R = \frac{r \cdot \delta r + z \cdot \delta z}{R}.$$

Sei

also

$$z = f(x, y)$$

die Gleichung der Fläche, auf welcher sich der Elementarstrom befindet, so ist

$$\delta z = p \cdot \delta x + q \cdot \delta y,$$

mit p und q die Ableitungen von z nach x und y bezeichnet Goog[c]

Nun geschieht der Uebergang in einer durch die z-Axe gehenden Ebene, welche mit der x-Axe den Winkel φ einschließt.

Es muss also

$$\delta x = \delta r \cdot \cos \varphi = \delta r \cdot \frac{x}{r},$$

$$\delta y = \delta r \cdot \sin \varphi = \delta r \cdot \frac{y}{r},$$

und somit

$$\delta z = \frac{\delta r}{r} (p x + q y)$$

sein.

Denkt man sich im Punkte (x, y, z) an die Fläche die Tangentialebene gelegt und fällt von M auf dieselbe das Perpendikel t, so ist bekanntlich

$$t = \frac{-px - qy + z}{\sqrt{1 + p^2 + q^2}},$$

folglich

$$px + qy = z - t\sqrt{1 + p^2 + q^2}$$

oder, wenn man den Winkel, den t mit der z-Axe bildet, durch v bezeichnet:

$$px+qy=z-\frac{t}{\cos v},$$

daher

$$\delta z = \frac{\delta r}{r} \left[z - \frac{t}{\cos v} \right].$$

Setzt man den Werth für δz in die Gleichung für δR , so erhält man

$$\delta R = \frac{\delta r}{r} \left[\frac{R^{2} - \frac{zt}{\cos v}}{R} \right],$$

und somit, wenn man substituirt

$$dZ = \pm \left[\frac{1}{R^{5}} - \frac{3tz}{R^{5}\cos\nu}\right] r \,\delta r \,.\,d\varphi,$$

daher:

$$Z = \pm \int \int \left[\frac{1}{R^6} - \frac{3tz}{R^6 \cos v} \right] r \cdot \delta r \cdot d\varphi.$$

Da die Ausdehnung eines Elementarstromes unendlich klein ist, so kann man für x, y, z die Coordinaten irgend eines Punktes der von dem Strome umflossenen Fläche setzen und sie als constant betrachten; t ist dann das von M auf die diesem Punkte zugehörige Tangentialebene gefällte Perpendikel und ν der Winkel, welchen t mit der z-Axe bildet. Demzufolge wird:

$$Z = \pm \left[\frac{1}{R^8} - \frac{3iz}{R^6 \cos \nu}\right] \int \int r \cdot \delta r \cdot d\varphi.$$
Digitized by GOOg[e

elektrischer Ströme und Stromringe. Von EMIL WEYR. 41

Das Integral

$$\int\int r \cdot \delta r \cdot d\varphi$$

ist aber nichts Anderes, als die xy-Projection der von dem Strome umflossenen Fläche. Wenn wir also letztere mit f bezeichnen und beachten, dass sie unendlich klein ist:

$$\iint r \cdot \delta r \cdot d\varphi = f \cos \nu$$

und folglich

$$Z = \pm f \left[\frac{\cos v}{R^3} - \frac{3iz}{R^6} \right],$$

und ebenso

$$X = \pm f \left[\frac{\cos \lambda}{R^8} - \frac{3 l x}{R^6} \right],$$

$$Y = \pm f \left[\frac{\cos \mu}{R^8} - \frac{3 l y}{R^6} \right]^*,$$

wenn λ und μ die Winkel sind, welche *t* oder die in x, y, z auf die Fläche errichtete mit *t* gleichsinnige Normale mit der x- und y-Axe bildet.

Giebt man dem Coordinatensystem wieder die allgemeine Lage, so wird:

$$X = \pm f \left[\frac{\cos \lambda}{R^3} - \frac{3t}{R^5} \left(\frac{x - \alpha}{R^5} \right) \right]^{**},$$

$$Y = \pm f \left[\frac{\cos \mu}{R^3} - \frac{3t}{R^5} \left(\frac{y - \beta}{R^5} \right) \right],$$

$$Z = \pm f \left[\frac{\cos \nu}{R^3} - \frac{3t}{R^5} \right].$$

Das Perpendikel t ist bestimmt durch die Gleichung

$$t = (x - \alpha) \cos \lambda + (y - \beta) \cos \mu + (z - \gamma) \cos \nu.$$

Aus der letzteren ergiebt sich:

 $\cos \lambda = -\frac{\partial t}{\partial \alpha},$ $\cos \mu = -\frac{\partial t}{\partial \beta},$ $\cos \nu = -\frac{\partial t}{\partial \gamma}.$

Es ist jedoch

 $\frac{3(x-\alpha)}{R^5} = \frac{\partial}{\partial \alpha} \left(\frac{1}{R^5} \right),$

•) Dieselben Ausdrücke findet man für einen ebenen Elementarstrom in ähnlicher Weise in Karsten's "Encyclopädie der Physik" XIX. Bd. entwickelt, pag. 235 und 281.

**) Ich glaube diesen allgemeineren Formeln vor den vorhergehenden deshalb einen Vorzug geben zu müssen, weil ihre Form sie sofort als Differentialquotienten des Potentiales zu erkennen giebt.

Zeitschrift f. Mathematik u. Physik. XIII, 5.

Digitized by Google

$$\cos \gamma = -\frac{\partial}{\partial \gamma}.$$

419

~~~~~

$$\frac{3}{R^5} \frac{(y-\beta)}{R^5} = \frac{\partial}{\partial\beta} \left(\frac{1}{R^3}\right),$$
$$\frac{3}{R^5} \frac{(z-\gamma)}{R^5} = \frac{\partial}{\partial\gamma} \left(\frac{1}{R^3}\right),$$
$$X = \overline{+} \frac{\partial}{\partial\alpha} \left(\frac{tf}{R^3}\right),$$
$$Y = \overline{+} \frac{\partial}{\partial\beta} \left(\frac{tf}{R^3}\right),$$
$$Z = \overline{+} \frac{\partial}{\partial\gamma} \left(\frac{tf}{R^3}\right).$$

Man kann also die drei Componenten der magnetischen Fernwirkung eines Elementarstromes als partielle Ableitungen der Function:

$$W = \mp \frac{if}{R^3}$$

nach den drei Coordinaten  $\alpha$ ,  $\beta$ ,  $\gamma$  betrachten. Es wird daher diese Function W das magnetische Potential des Elementarstromes genannt. Diese Function genügt, so wie das Massenpotential der Laplace'schen Differentialgleichung:

$$\varDelta^{\mathbf{1}} W = 0,$$

wovon man sich durch wirkliches Differentiiren überzeugt.

Es lässt sich nun sehr leicht nachweisen, dass man einen Elementarstrom der Wirkung nach durch ein magnetisches Element ersetzen kann.

Denkt man sich nämlich im Punkte (x, y, z) einen Magnetpol von der Intensität  $\pm m$  und in einem auf der mit t gleichsinnigen Normale im Abstande  $\delta n$  gelegenen Punkte den gleich intensiven entgegengesetzten Pol, so bilden beide zusammen ein magnetisches Element mit dem Momente

Das Potential des ersten Poles ist

$$\overline{+}m\cdot\frac{1}{R}$$

und jenes des zweiten

$$\pm m \left[ \frac{1}{R} + \delta \left( \frac{1}{R} \right) \right]$$

und somit das Potential des magnetischen Elementes:

$$\frac{\delta R}{R^2}$$
.

Nun ist jedoch

$$\delta R = \frac{\delta n.t}{R},$$

folglich das Potential des magnetischen Elementes

$$+\overline{m}\cdot\delta n\,\frac{t}{R^{s}}$$

Digitized by Google

Daraus folgt:

elektrischer Ströme und Stromringe. Von EMIL WEYR.

Man sieht, dass dieses identisch wird mit dem des Elementarstromes von der Intensität i, wenn

$$if = m \cdot \delta n$$

wird, d. h. wenn das magnetische Moment des Elementes gleich ist jenem des Elementarstromes.

Man kann demnach den Elementarstrom durch ein solches Element ersetzen und umgekehrt.

Wie man sich leicht überzeugt, ist hierbei die Lage der Pole des Elementes eine solche, dass eine im Strome schwimmende menschliche Figur, gegen das Element blickend, den Nordpol zur Linken hat.

Um das magnetische Feld eines Elementarstromes und des ihm äquivalenten magnetischen Elementes zu untersuchen, wollen wir die im Punkte (x, y, z) an die Fläche gezogene Tangentialebene zur Ebene der xy- und die Normale zur z-Axe nehmen. Dann wird:

$$t = -\gamma,$$
  

$$x = 0,$$
  

$$y = 0,$$
  

$$z = 0,$$

und folglich das Potential:

$$W = \underline{+} f \frac{\gamma}{R^{3}},$$
$$R^{2} = \alpha^{2} + \beta^{2} + \gamma^{2}.$$

Die Gleichung der Niveauflächen ist:

$$W = const.$$

und für unseren Fall, wenn wir den Factor  $\pm f$  in die Constante hineinziehen,

$$\gamma c^2 = (\alpha^2 + \beta^2 + \gamma^2)^{\frac{3}{2}}.$$

Aus dieser Gleichung der Niveauflächen sieht man, dass dieselben Rotationsflächen sind, deren Axe die Normale ist. Die Gleichung ihres Meridians ist:

$$\gamma c^2 = (\alpha^2 + \gamma^2)^{\frac{3}{2}}$$

oder, wenn man Polarcoordinaten einführt:

 $r^2 = c^2 \sin \varphi$ .

Die Analysis der Gleichung der Niveauflächen lehrt, dass dieselben durch die Coordinatenebenen symmetrisch getheilt werden, dass alle im Punkte (x, y, z) die xy. Ebene (d. i. die Ebene des Elementarstromes) inflectorisch berühren und die z-Axe überdies zweimal unter rechten Winkeln durchschneiden. Ferner sind alle ähnlich und ähnlich gelegen in Bezug auf den Punkt (x, y, z) als Aehnlichkeitscentrum. Ganz dasselbe gilt von den Meridianen der Niveauflächen, den Niveaulinien.

Digitized by Google

421

Dieselben bilden Achterlinien, deren Doppelpunkt der Coordinatenanfang ist und welche die Z-Axe zur Axe haben. Aus der Gleichung:

$$r^2 = c^2 \sin \varphi$$

ergiebt sich eine sehr einfache Construction für diese Meridiane.

Ist nämlich  $\xi O \zeta$  die Ebene eines solchen Meridians (siehe d. Taf.), dessen Parameter c ist, und man will Punkte desselben bestimmen, so beschreibe man aus O den Kreis K mit dem Radius c und über OB=c als Durchmesser den Kreis K'. Um nun die auf dem Leitstrahle OS liegenden Punkte des Meridians zu finden, mache man  $OT \perp OS$  und beschreibe über MN als Durchmesser einen Kreis, welcher den Strahl OS in  $P_1$  und  $P_2$ schneidet; so sind  $P_1$  und  $P_2$  Punkte des Meridians.

Denn es ist:

$$\overline{OP_1}^2 = \overline{OP_2}^2 = r^2 = \overline{OM} \cdot \overline{ON} = c \cdot c \sin \varphi = c^2 \sin \varphi.$$

Da alle Meridiane in Bezug auf O ähnlich und ähnlich gelegen sind, so kann man aus einem Meridiane alle übrigen ableiten.

Weil die Niveauflächen Rotationsflächen sind, so sind die Kraftlinien ebene Curven, deren Ebenen durch die z-Axe gehen, und zwar sind sie deshalb die orthogonalen Trajectorien der Meridiane der Niveauflächen.

Die Gleichung der letzteren war:

$$r^{\mathbf{2}} = c^{\mathbf{2}} \sin \varphi$$
,

daher ihre Differentialgleichung:

$$2\,dr-r\,.\,cot\varphi\,.\,d\varphi=0$$

und somit die Differentialgleichung der Kraftlinien

$$dr \cdot cot\varphi + 2r \cdot d\varphi = 0$$
,

woraus sich durch Integration ergiebt:

$$r = c_1 \cos^2 \varphi,$$

welches die Gleichung der Kraftlinien ist.

Aus derselben ergiebt sich folgende einfache Construction der Kraftlinien:

Man beschreibe aus O mit  $c_1$  als Radius den Kreis K (siehe d. Taf.) und, um die dem Leitstrahle OS entsprechenden Punkte der Kraftlinie zu finden, mache man  $M_1O_1$  und  $M_2O_2$  parallel zu  $O\zeta$  und  $Q_1P_1$  und  $Q_2P_2$  senkrecht auf OS, so sind  $P_1$  und  $P_2$  zwei Punkte der Kraftlinie.

Denn es ist:

 $0 P_1 = 0 P_2 = r = \overline{0} \overline{Q} \cdot \cos \varphi = c_1 \cos \varphi \cdot \cos \varphi = c_1 \cos^2 \varphi.$ Für  $\varphi = 0$  und  $\varphi = \pi$  wird:

also sind B<sub>1</sub> und B<sub>2</sub> auch Punkte der Kraftlinie.

Die Untersuchung der Gleichung der Kraftlinien zeigt, dass alle in einer und derselben durch die ζ-Axe gehenden Ebene liegenden Kraft-

 $r = c_1$ 

linien durch  $0\zeta$  und  $0\xi$  symmetrisch getheilt werden und alle in 0 die  $\zeta$ -Axe inflectorisch berühren und überdies noch zwei Mal die §-Axe unter rechten Winkeln durchschneiden. Sie bilden ein System von Achterlinien, welche in 0 ihren Doppelpunkt haben und deren Axe die §-Axe ist.

#### III.

Die Resultate, welche sich aus der Betrachtung eines Elementarstromes ergeben, lassen sich sofort auf einen endlichen Strom Sübertragen.

Legt man nämlich durch S eine Fläche F, deren einzige Begrenzung 8 bildet, und zerlegt man nun F in unendlich kleine Flächenelemente, so kann man sich jedes derselben von einem mit S gleichgerichteten und gleich intensiven Strome umflossen denken. Die Gesammtwirkung dieser Elementarströme ist dann offenbar identisch mit jener des Stromes S, da sich die ausserhalb S liegenden Elementarströme ihrer entgegengesetzten Richtung wegen der Wirkung nach aufheben.

Das Potential eines dieser Elementarströme, welcher die Fläche df umfliesst, ist nach Früherem:

$$+\frac{df_{\cdot}t}{R^3}.$$

Das Potential des ganzen Stromes S ist also:

$$W = \int \overline{+} \frac{df_{\cdot}t}{R^3}.$$

Das doppelte Zeichen ist zu dem df zu rechnen und richtet sich nach der Lage von df und der Richtung des df umkreisenden Elementarstromes. Denkt man sich jeden der Elementarströme durch das ihm äquivalente magnetische Element ersetzt, und rechnet man die Axenrichtung desselben vom Nordpole nach dem Südpole als positiv, so ist das obere Zeichen dann zu nehmen, wenn die Axenrichtung des magnetischen Elementes mit jener von t übereinstimmt, und das untere, wenn diese beiden Richtungen entgegengesetzt sind. Wenn wir also t als positiv oder negativ rechnen, je nachdem es mit der Axe des betreffenden Elementes dieselbe oder die entgegengesetzte Richtung hat, so kann man

$$W = -\int \frac{df \cdot t}{R^3}$$

schreiben.

Die drei Wirkungscomponenten sind dann:

$$X = \frac{\partial W}{\partial \alpha},$$
$$Y = \frac{\partial W}{\partial \beta},$$
$$Z = \frac{\partial W}{\partial \gamma}.$$

Digitized by Google

423

~~~~~

Es braucht nicht bemerkt zu werden, dass auch das Potential eines geschlossenen, endlichen Stromes der Gleichung

$$\Delta^{t} W = 0$$

genügen muss.

Dem Integrale

$$\int \frac{df \cdot l}{R^{s}}$$

kann man eine bemerkenswerthe Deutung geben.

Es ist nämlich $\frac{t}{R}$ der Cosinus des Winkels δ zwischen dem Leitstrahle *R* und der in *df* auf die Fläche errichteten Normale, letztere in der Richtung vom Nord- zum Südpole des äquivalenten magnetischen Elementes gezählt; somit ist das erwähnte Integral auch gleich

$$\int \frac{df \cdot \cos \delta}{R^2}.$$

Nun ist $df.\cos\delta$ die centrale Projection von df auf die mit dem Radius R aus M beschriebene Kugel, und somit $\frac{df.\cos\delta}{R^2}$ die centrale Projection von df auf die aus M mit dem Radius 1 beschriebene Kugel.

Der Winkel δ ist entweder für alle Punkte der Fläche F spitz oder überall stumpf. Dies wird dann der Fall sein, wenn sich von M an F kein Berührungskegel legen lässt, oder wenn der aus M über S construirte Kegel die Fläche F (ausser in S) nicht schneidet.

Dann ist das Integral

$$\int \frac{df \cdot \cos \delta}{R^2}$$

der Flächeninhalt der centralen Projection von S auf die aus M mit dem Radius 1 beschriebene Kugel.

Es kann aber auch δ theils spitz, theils stumpf sein.

Dies wird dann eintreten, wenn sich von M an F ein oder mehrere Be rührungskegel legen lassen. Die Berührungscurven trennen dann jeue Partien ab, in welchen der Winkel δ ausschliesslich spitz oder stumpf ist. Wenn man in diesem Falle aus M über S als Leitcurve einen Kegel construirt, so wird dieser die Fläche F (ausser in S noch) schneiden. Offen bar werden sich die Glieder des Integrales, welche sich auf die ausserhalb dieses Kegels liegenden Theile von F erstrecken, tilgen, und es bleibt nur das Integral über den Theil der Fläche, welcher innerhalb des Kegels liegt.

Dies giebt aber dem Integral

$$\int \frac{\cos \delta \, df}{R^2}$$

wieder den Werth des Flächeninhaltes der Centralprojection von S auf die aus M mit 1 beschriebene Kugel. Nennen wir diese Fläche F, so hat man:

Digitized by Google

424

$W = \mp F.$

Aus diesem geht sofort klar hervor, dass, wenn man das Integral

 $\int \frac{df \cdot t}{R^{s}}$

über eine geschlossene Fläche ausdehnt, dasselbe verschwinden müsse.

Da man ferner durch S unendlich viele Flächen legen kann, so lässt sich W auf unendlich viele Arten darstellen, und man sieht, dass das über eine Fläche ausgedehnte Integral

 $\int \frac{df \cdot t}{R^8}$

nur von der Begrenzung der Fläche abhängt und mit dieser gleichzeitig verschwindet.

Die Niveauflächen des Stromes S werden durch die Gleichung

$$W = const.$$

charakterisirt.

Diese Gleichung kann man der angegebenen Auffassungsweise des Potentials gemäss folgendermaassen in Worte umsetzen:

> Eine Niveaufläche ist jene, von deren jedem Punkte aus man die Stromcurve denselben Flächeninhalt einschliessen sieht.

Um die Nützlichkeit der angeführten Auffassungsweise des Potentials an einem Beispiele zu zeigen, soll dasselbe für einen Strom bestimmt werden, dessen Leitlinie irgend ein Kegelschnitt in seiner ganzen Ausdehnung ist.

Um das Potential zu finden, verwenden wir die Gleichung:

$$W = + F$$
,

wobei F die Fläche ist, welche die centrale Projection von S auf die aus M mit dem Radius 1 beschriebene Kugel einschliesst. Um diese Centralprojection zu finden, hat man jeden Punkt des Stromes mit M zu verbinden und den Schnitt mit der Kugel zu suchen. Die Gesammtheit der Projectionsstrahlen bildet einen Kegel zweiten Grades, dessen Schnitt mit der Kugel die Centralprojection von S ist. Dieser Schnitt ist nun ein sphärischer Kegelschnitt, und wir haben die Aufgabe aufzulösen: die Fläche zu finden, welche dieser sphärische Kegelschnitt auf der Kugel begrenzt. Zu dem Ende denke man sich das Coordinatensystem in eine solche Lage gebracht, dass die Hauptaxen der Kegelfläche zugleich Coordinatenaxen werden. Werden die zwei Parameter des Kegels mit λ und μ bezeichnet, so ist seine Gleichung:

$$\lambda^2 x^2 + \mu^2 y^2 - z^2 = 0,$$

und die Gleichung der Kugel:

$$x^2 + y^2 + z^2 = 1.$$

Esist somit die Gleichung der xy - Projection des sphärischen Kegelschnittes:

$$x^{2}(1+\lambda^{2})+y^{2}(1+\mu^{2})=1$$
,

folglich diese eine Ellipse mit den Axen:

$$\frac{1}{1+\lambda^2} \text{ und } \frac{1}{1+\mu^2}.$$

Werden die Winkel, welche die Hauptschnitte des Kegels mit der z-Axe bilden, mit A und B bezeichnet, so hat man:

$$\lambda = \cot A, \\ \mu = \cot B,$$

daher die Gleichung der xy-Projection auch:

$$\frac{x^2}{\sin^2 A} + \frac{y^2}{\sin^2 B} = 1,$$

so dass sin A und sin B die beiden Axen der Ellipse sind.

Heisst o der Radiusvector in der xy-Ebene, so ist das Differential der Kugelfläche:-

$$df = \frac{\varrho \cdot d\varrho \cdot d\varphi}{z}$$

oder, da

$$z = \sqrt{1-q^2}$$

ist, so hat man für die Fläche des sphärischen Kegelschnittes:

$$F = \iint \frac{\varrho \cdot d\varrho \cdot d\varphi}{\sqrt{1-\varrho^2}},$$

welches Doppelintegral über den ganzen Flächenraum der Ellipse

$$\frac{x^2}{\sin^2 A} + \frac{y^2}{\sin^2 B} = 1$$

auszudehnen ist.

Nach ρ kann die Integration durchgeführt werden, und zwar hat sie von 0 bis r zu geschehen, wenn r der dem Winkel φ zugehörige Radiusvector der Ellipse ist.

Man erhält demnach

$$F = \int_{0}^{2\pi} (1 - \sqrt{1 - r^2}) d\varphi = 2\pi - \int_{0}^{2\pi} \sqrt{1 - r^2} d\varphi.$$

Führt man die excentrische Anomalie ω ein, so hat man:

$$x = \sin A \cdot \cos \omega,$$

$$y = \sin B \cdot \sin \omega,$$

$$\varphi = \arcsin \left(\frac{\sin B}{\sin A}\right) \cdot \tan \varphi \omega,$$

demnach

$$d\varphi = \sin A \cdot \sin B \cdot \frac{d\omega}{\sin^2 A \cos^2 \omega + \sin^2 B \sin^2 \omega}$$

٩nd

$$r^2 = x^2 + y^2 = \sin^2 A \cdot \cos^2 \omega + \sin^2 B \cdot \sin^2 \omega$$

sonach:

$$F = 2\pi - \sin A \cdot \sin B \int_{0}^{1} \frac{d\omega \sqrt{1 - (\sin^{2} A \cos^{2} \omega + \sin^{2} B \sin^{2} \omega)}}{\sin^{2} A \cos^{2} \omega + \sin^{2} B \sin^{2} \omega}$$

2 -

Wenn man annimmt, dass A der kleinere von den beiden Winkeln A und B ist, so setze man:

$$\frac{\sin^2 B - \sin^2 A}{\sin^2 A} = h,$$

$$\frac{\sin^2 B - \sin^2 A}{\cos^2 A} = k^2.$$

Nun kann F leicht auf die Form gebracht werden:

$$F = 2\pi - \frac{4\sin A \sin B}{\cos A} \left[\frac{1}{\sin^2 A_0} \int_{0}^{\frac{\pi}{2}} \frac{d\omega}{(1+h\sin^2\omega) \Delta(\omega \cdot k)} - \int_{0}^{\frac{\pi}{2}} \frac{d\omega}{\Delta(\omega \cdot k)} \right].$$

Oder wenn man, wie üblich, mit II_0 das vollständige elliptische Integral dritter Art in der Form von Legendre und mit K das vollständige elliptische Integral erster Art für k als Modulus und h als Parameter bezeichnet:

$$F = 2\pi - 4 \tan A \cdot \sin B \left[\frac{\Pi_0}{\sin^2 A} - K \right].$$

Diese Gleichung ist jedoch nicht mehr giltig, wenn der Punkt *M* in die Stromebene hineinfällt, weil dann der Kegel eine Ebene wird. Dieser Fall lässt sich jedoch unmittelbar sehr einfach erledigen, und zwar kann zweierlei zutreffen. Entweder fällt der Punkt ausserhalb der vom Strome umflossenen Fläche, dann ist sofort:

$$F=0,$$

oder aber er fällt innerhalb dieser Fläche; dann ergiebt sich:

$$F=2\pi;$$

denn im ersten Falle schneidet der Kegel die Kugel in einer nicht geschlossenen Linie und im zweiten Falle in einem grössten Kreise.

Das Potential ist:

$$W = \frac{1}{4} 2\pi \pm 4 \tan \beta A \sin B \left[\frac{\Pi_0}{\sin^2 A} - K \right].$$

Ich lasse nun eine Entwickelung des Potentials resp. der sphärischen Fläche F nach Kugelfunctionen folgen.

Bezeichnet man die Grösse

$$sin^2 A \cdot cos^2 \omega + sin^2 B \cdot sin^2 \omega$$

mit z, so ist

$$F = 2\pi - \sin A \sin B \int_{0}^{2\pi} \frac{d\omega \cdot \sqrt{1-z}}{z}.$$

Entwickelt man nun $\sqrt{1-z}$ nach Potenzen von z, so findet ma sehr leicht die Gleichung:

$$\sqrt{1-z} = 1 - \sum_{1}^{\infty} \frac{1}{2n-1} \frac{\Pi(2n)}{[2^n \Pi(n)]^l} \cdot z^n$$

somit:

$$F = 2\pi - \sin A \sin B \int_{0}^{2\pi} \frac{d\omega}{z} + \sin A \sin B \sum_{1}^{\infty} \frac{1}{2n-1} \frac{\Pi(2n)}{[2^{n} \Pi(n)]^{2}} \int_{0}^{2\pi} d\omega \cdot z^{n-1}.$$

Nun ist aber:

$$\int_{0}^{2\pi} \frac{d\omega}{z} = \int_{0}^{2\pi} \frac{d\omega}{\sin^{2}A\cos^{2}\omega + \sin^{2}B\sin^{2}\omega} = \int_{0}^{4\pi} \frac{d(2\omega)}{\sin^{2}A + \sin^{2}B - \cos^{2}\omega(\sin^{2}B - \sin^{2}A)}$$
$$= 2 \cdot \frac{2\pi}{\sqrt{(\sin^{2}A + \sin^{2}B)^{2} - (\sin^{2}B - \sin^{2}A)^{2}}} = \frac{2\pi}{\sin A \sin B},$$

somit:

$$F = \sin A \sin B \sum_{1}^{\infty} \frac{1}{2n-1} \frac{\Pi(2n)}{[2 \ \Pi(n)]^2} \int_{0}^{2\pi} d\omega \cdot z^{n-1}.$$

Es ist nun:

$$\int_{0}^{2\pi} d\omega \cdot z^{n-1} = 4 \int_{0}^{\frac{\pi}{2}} (\sin^2 A \cos^2 \omega + \sin^2 B \cdot \sin^2 \omega)^{n-1} \cdot d\omega,$$

oder, wenn man $2\omega = \varphi$ setzt, gleich.

$$\frac{1}{2^{n-2}}\int_{0}^{\pi} \left[\sin^{2}A + \sin^{2}B - \cos\varphi\left(\sin^{2}B - \sin^{2}A\right)\right]^{n-1}d\varphi;$$

setzt man jedoch:

$$sin^{2} A + sin^{2} B = \varrho x,$$

$$sin^{2} B - sin^{2} A = \varrho \sqrt{x^{2} - 1},$$

so wird:

$$\int_{0}^{2\pi} z^{n-1} d\omega = \frac{\varrho^{n-1}}{2^{n-2}} \int_{0}^{\pi} (x - \sqrt{x^{2} - 1} \cos \varphi)^{n-1} d\varphi.$$

Da jedoch;

$$\frac{1}{\pi} \int_{0}^{\pi} (x - \sqrt{x^{2} - 1} \cos \varphi)^{n-1} d\varphi$$

die (n-1)^{te} Kugelfunction für das Argument x ist, so folgt daraus:

$$\int_{0}^{2\pi} z^{n-1} d\omega = \frac{\pi \varrho^{n-1}}{2^{n-2}} P_{(x)}^{(n-1)}.$$

Aus den zwei vorbergehenden Gleichungen ergiebt sich sofort:

$$x = \frac{\sin^2 A + \sin^2 B}{2 \sin A \sin B},$$

$$\varrho = 2 \sin A \sin B,$$

Digitized by Google

somit:

$$\int_{0}^{2\pi} z^{n-1} d\omega = 2\pi (\sin A \sin B)^{n-1} P_{(x)}^{(n-1)}$$

und folglich:

$$F = 2\pi \sum_{1}^{\infty} \frac{(\sin A \sin B)^n}{2n-1} \frac{\Pi(2n)}{[2^n \Pi(n)]^2} P_{(x)}^{(n-1)}.$$

Das Potential endlich ergiebt sich aus der Gleichung:

$$W = \mp F$$
.

Da ebene Ströme von besonderem Interesse sind, so will ich nun zu der Betrachtung ihres Potentials im Allgemeinen übergehen.

Legen wir den ebenen geschlossenen Strom so in die xy-Ebene, dass eine in ihm schwimmende menschliche Figur, ins Innere der von ihm umflossenen Fläche blickend, die z-Axe zur linken Hand hat und machen die Annahme, dass seine Leitcurve sich nirgends selbst durchschneide, so bietet sich zur Bestimmung des Strompotentials W sofort das von der Stromcurve umflossene Stück der xy-Ebene dar.

Wenn wir das Integral

$$\int \frac{df}{\bar{R^s}} df df$$

auf diese Fläche beziehen, so ist für alle Punkte

somit:

$$W = -\gamma \int \frac{df}{R^3}.$$

 $t = \gamma$

Denkt man sich die Stromcurve S als die Basis eines zur z-Axe parallelen Cylinders, so hat das Potential innerhalb desselben eine andere Form als ausserhalb.

Offenbar wird für alle Punkte, welche innerhalb des Cylinders liegen, die xy - Projection in den von dem Strome umflossenen Theil der xy - Ebene fallen, wogegen für ausserhalb liegende Punkte diese Projection ausserhalb der Stromcurve liegt.

Der Kürze halber möge dieser Cylinder der Stromcylinder heissen.

Betrachten wir nun den Punkt M, auf welchen sich das Potential bezieht, und legen wir der Einfachheit wegen die z-Axe durch denselben. Dann wird:

> $\alpha = 0$, $\beta = 0$,

folglich:

$$R^{\mathfrak{r}} = x^{\mathfrak{r}} + y^{\mathfrak{r}} + \gamma^{\mathfrak{r}},$$

oder, wenn wir die xy-Projection von R mit e bezeichnen:

$$R^{2} = \rho^{2} + \gamma^{2}.$$

Dabei ist ϱ von der xy. Projection M_1 des l'unktes M gerechnet.

Heisst ferner φ der Winkel, welchen ϱ mit einer beliebigen durch M_i in der xy-Ebene gezogenen Axe bildet (gezählt in der angegebenen Stromrichtung), so ist: $df = \varrho \cdot d\rho \cdot d\omega$.

folglich:

$$W = -\gamma \int \int \int \frac{\varrho \cdot d \varrho \cdot d \varphi}{\left[\varrho^2 + \gamma^2 \right]^{\frac{3}{2}}}$$

Stellen wir uns nun die Aufgabe, dieses Doppelintegral, welches sich auf den vom Strome umflossenen Theil der xy-Ebene bezieht, in ein einfaches zu verwandeln, das sich über die geschlossene Stromcurve S selbst erstreckt.

Da hat man nun die zwei Fälle zu unterscheiden, ob nämlich M innerhalb oder ausserhalb des Stromcylinders liegt.

Liegt erstlich M ausserhalb des Stromcylinders, so liegt M_i ausserhalb des Stromes S; dann schneidet jeder durch M_i gezogene Leitstrahl die Stromcurve in Punkten von einer geraden Anzahl. Sie mögen 1, 2, 3, ..., 2nund die ihnen zugehörigen Werthe von $\varrho r_1, r_2, ..., r_{sn}$ heissen. Führt man nun in W die Integration nach ϱ aus, so hat man von r_i bis r_z , von r_s bis r_4 u. s. w. zu integriren und erhält:

$$W = \gamma \int d\varphi \left[\frac{1}{\sqrt{r_{2}^{2} + \gamma^{2}}} - \frac{1}{\sqrt{r_{1}^{2} + \gamma^{2}}} + \frac{1}{\sqrt{r_{4}^{2} + \gamma^{2}}} - \frac{1}{\sqrt{r_{3}^{2} + \gamma^{2}}} + \cdots \right].$$

Ist nun ds ein Stromelement (in der Stromrichtung gezählt) und θ der Winkel, welchen dasselbe mit seinem Leitstrable r einschliesst (welcher Winkel alle Werthe von 0 bis 2π annimmt), so hat man:

und

$$r \cdot d\varphi = ds \cdot \sin \theta$$
$$d\varphi = \frac{ds \cdot \sin \theta}{r}.$$

Man wird einsehen, dass bei der angegebenen Zählung des Winkels φ in den Punkten 1, 3, 5... die Richtung des wachsenden φ jener des wachsenden s entgegengesetzt ist, während beide in 2, 4, 6... gleich sind.

Für die ersten Punkte ist

$$d\varphi \stackrel{\cdot}{=} -\frac{ds\sin\theta}{r}$$

und für letztere

$$d\varphi = \frac{ds \cdot \sin\theta}{r}.$$

Dies berücksichtigt, erhält man für W sofort den Werth:

$$W = \gamma \int^{s} \frac{ds \cdot \sin\theta}{r \sqrt{r^{2} + \gamma^{2}}},$$

elektrischer Ströme und Stromringe. Von EMIL WEYR. 431

wo sich nun das Integral über die geschlossene Stromcurve zu erstrecken hat, und r die Entfernung eines Punktes des Stromes von der x y-Projection M_1 des Punktes M bedeutet, auf welchen sich das Potential bezieht.

Bezeichnet man mit p das von M_i auf die Tangente der Stromcurve gefällte Perpendikel (welches + oder — ist, je nachdem seine Richtung mit der der äusseren Normale der Stromcurve übereinstimmt oder ihr entgegengesetzt ist), so ist:

$$\sin\theta = \frac{p}{r},$$

also auch

$$W = \gamma \int \frac{ds \cdot p}{r^2 \sqrt{r^2 + \gamma^2}}.$$

Liegt zweitens der Punkt M innerhalb des Stromcylinders, also M_1 innerhalb S, so schneidet jeder durch M_1 gezogene Leitstrahl die Stromcurve eine ungerade Anzahl — mal, z. B. in den Punkten 1, 2, 3... (2n-1).

Führt man die Integration nach ρ abermals aus, so hat man von 0 bis r_1 , von r_2 bis r_3 u. s. w. zu integriren und erhält:

$$W = \gamma \int d\varphi \left[\frac{1}{\sqrt{r_1^2 + \gamma^2}} - \frac{1}{\gamma} + \frac{1}{\sqrt{r_3^2 + \gamma^2}} - \frac{1}{\sqrt{r_2^2 + \gamma^2}} + - \dots \right],$$

oder, da die Integration nach φ in diesem Falle offenbar von 0 bis 2π geschehen muss:

$$W = -2\pi + \gamma \int_{0}^{2\pi} d\varphi \left[\frac{1}{\sqrt{r_{1}^{2} + \gamma^{2}}} + \frac{1}{\sqrt{r_{3}^{2} + \gamma^{2}}} - \frac{1}{\sqrt{r_{2}^{2} + \gamma^{2}}} + \frac{1}{\sqrt{r_{5}^{2} + \gamma^{2}}} - \dots \right],$$

oder da hier für die geraden Indices:

$$d\varphi = -\frac{ds \cdot \sin\theta}{r}$$

and für die ungeraden:

$$d\varphi = \frac{ds \cdot \sin\theta}{r}$$

ist:

$$W = -2\pi + \gamma \int \frac{ds \cdot \sin \theta}{r \sqrt{r^2 + \gamma^2}},$$

oder:

$$W = -2\pi + \gamma \int \frac{ds \cdot p}{r^2 \sqrt{r^2 + \gamma^2}}.$$

Wenn wir also das über die ganze Stromcurve ausgedehnte Integral:

$$\int \frac{ds \cdot p}{r^2 \gamma' r^2 + \gamma^2}$$

mit U bezeichnen, so ist für ausserhalb des Stromcylinders liegende Punkte

 $W = \gamma U$

und für innerhalb liegende Punkte:

$$W = -2\pi + \gamma U.$$

Wenn man somit von Aussen in den Stromcylinder oder umgekehrt übergeht, so ändert sich der Werth des Potentials um 2π .

Liegt der Punkt M in der Stromebene und zwar ausserhalb S, so wird:

W=0;

liegt er innerhalb S, so wird:

$$W = -2\pi.$$

Auf der entgegengesetzten Seite der Stromebene ist der Potentialwerth (weil y aus dem Negativen sich der Null nähert):

$$W=\pm 2\pi.$$

Beim Durchgang durch die Stromebene innerhalb des Stromes ändert sich der Potentialwerth um 4π , ausserhalb des Stromes gar nicht.

Da in der ganzen Stromebene das Potential entweder den Werth 0 oder 2π aufweist, so ist die Stromebene eine Niveaufläche, oder eigentlich bildet sie zwei Niveauflächen, da dem vom Strome umflossenen Theil ein anderer Potentialwerth zukommt, als dem äusseren. Und in der That ist auch in diesen beiden Theilen der Stromebene die Kraftrichtung die entgegengesetzte.

Es mag nun noch der Grenzwerth betrachtet werden, dem sich das Potential eines ebenen Stromes für sehr grosse Entfernungen nähert.

Für diesen Fall kann man R für alle Punkte der Stromcurve als constant betrachten und erhält:

$$W = \frac{-\gamma}{R^6} \int df,$$

oder, wenn mit F die vom Strome umflossene Fläche bezeichnet wird:

$$W = \frac{-\gamma F}{R^3},$$

welches derselbe Ausdruck ist, wie wir ihn für das Potential eines Elementarstromes erhalten haben.

Die Niveauflächen und Kraftlinien nehmen daher für sehr grosse Entfernungen den Charakter der Niveauflächen und Kraftlinien eines Elementarstromes an.

Unter den ebenen Strömen zeichnet sich seiner praktischen Verwendbarkeit wegen insbesondere der kreisförmige aus.

Es sollen daher die eben gefundenen allgemeinen Ergebnisse auf einen solchen angewendet werden.

Um sein Potential für alle Fälle zu bestimmen, hat man blos das Integral U zu entwickeln.

Damit jedoch die Entwickelung möglichst einfach ausfalle, nehmen wir den Mittelpunkt des Kreises zum Coordinatenanfangspunkt und legen elektrischer Ströme und Stromringe. Von EMIL WEYR. 433

(ohne der Allgemeinheit der Untersuchung zu schaden) die xz-Ebene durch den Punkt M, auf den sich das Potential bezieht. Dann ist α die Entfernung des Kreiscentrums von der xy-Projection M_1 des Punktes M.

Heisst α der Radius des Kreises und φ der Winkel, welchen er in irgend einer Lage mit der negativen x Axe bildet (diesen Winkel in der Stromrichtung gezählt), so ist:

$$ds = a \, d\varphi,$$

$$p = a + \alpha \cos\varphi,$$

$$r^{2} = a^{2} + \alpha^{2} + 2a\alpha \cos\varphi,$$

somit:

$$U = a \int_{0}^{2\pi} \frac{(a + \alpha \cos \varphi) \, d\varphi}{(a^2 + \alpha^2 + 2 \, \alpha \alpha \cos \varphi) \, \sqrt{a^2 + \alpha^2 + \gamma^2 + 2 \, \alpha \alpha \cos \varphi}}$$

Setzt man: ·

$$\frac{\psi - 2\omega}{(a+\alpha)^2} = h,$$
$$\frac{4a\alpha}{(a+\alpha)^2 + \gamma^2} = k^2,$$

so ergiebt sich nach einer einfachen Umformung sehr leicht:

$$U = \frac{-2}{\sqrt{(a+\alpha)^2 + \gamma^2}} \left[\left(\frac{\alpha - a}{\alpha + a} \right) \int_0^{\frac{\pi}{2}} \frac{d\omega}{(1 + h\sin^2 \omega) \, \Delta(\omega k)} - \int_0^{\frac{\pi}{2}} \frac{d\omega}{\Delta(\omega k)} \right],$$

oder: 🕔

$$U = -\frac{2\left(\frac{\alpha-\alpha}{\alpha+\alpha}\Pi_0 - K\right)}{\sqrt{(\alpha+\alpha)^2 + \gamma^2}}.$$

Daher das Strompotential:

$$W = -\frac{2\gamma\left(\frac{\alpha-\alpha}{\alpha+\alpha}\Pi_0 - K\right)}{\sqrt{(\alpha+\alpha)^2+\gamma^2}} + \pi \ (\pm 1-1).$$

Das doppelte Zeichen von π entspricht den zwei Lagen des Punktes, auf welchen sich das Potential bezieht, bezüglich des Stromcylinders.

Für Punkte innerhalb desselben ist das untere, für ausserhalb liegende dagegen das obere Zeichen zu wählen.

Die Wirkungscomponenten würden sich aus W durch Differentiation nach den Coordinaten ergeben. Da jedoch dieselbe complicirt ausfällt, scheint es mir entsprechender zu sein, die Componenten aus den für sie entwickelten Fundamentalgleichungen Seite 416 abzuleiten.

Behält man das eben verwendete Coordinatensystem bei, so liefern die anfangs entwickelten Gleichungen für die drei Componenten die Ausdrücke:

$$X = -\gamma \int^{s} \frac{dy}{R^{a}},$$
$$Y = \gamma \int^{s} \frac{dx}{R^{a}},$$
$$Z = -\int^{s} \frac{(x-\alpha)dy - ydx}{R^{a}}$$

. Wenn man wieder den Winkel φ einführt, so ist:

2

$$y = a \sin \varphi,$$

$$x = -a \cos \varphi,$$

$$R = \sqrt{a^2 + a^2 + 2 a \alpha \cos \varphi + \gamma^2},$$

folglich :

$$K = -a\gamma \int_{0}^{2\pi} \frac{\cos\varphi \, d\varphi}{\left(a^2 + \alpha^2 + 2\,a\,\alpha\cos\varphi + \gamma^2\right)^{\frac{3}{2}}},$$

$$Y = a\gamma \int_{0}^{2\pi} \frac{\sin\varphi \, d\varphi}{\left(a^2 + \alpha^2 + 2\,a\,\alpha\cos\varphi + \gamma^2\right)^{\frac{3}{2}}},$$

$$Z = a \int_{0}^{2\pi} \frac{(\alpha\cos\varphi + a) \, d\varphi}{\left(a^2 + \alpha^2 + 2\,a\,\alpha\cos\varphi + \gamma^2\right)^{\frac{3}{2}}}.$$

Vor allem Anderen sieht man, dass sich die Integration in Vunmittelbar durchführen lässt und

Y = 0

liefert; d. h. die Resultantenrichtung befindet sich in der xz-Ebene oder in der durch den afficirten Punkt und die Stromaxe gelegten Ebene.

Für die zwei übrigen Componenten erhält man nach Einführung des Winkels ω die Ausdrücke:

$$X = -\frac{4a\gamma}{\left[(a+\alpha)^2+\gamma^2\right]^{\frac{3}{2}}} \int_{0}^{\frac{\pi}{2}} \frac{(2\cos^2\omega-1)d\omega}{\Delta^3(\omega k)},$$
$$Z = \frac{4a}{\left[(a+\alpha)^2+\gamma^2\right]^{\frac{\pi}{2}}} \int_{0}^{\frac{\pi}{2}} \frac{a+\alpha(2\cos^2\omega-1)d\omega}{\Delta^3(\omega k)},$$

oder endlich:

$$X = \frac{4a\gamma}{[(a+\alpha)^2 + \gamma^2]^{\frac{3}{2}}} \left[2 \cdot \frac{K-E}{k^2} - \frac{E}{1-k^2} \right],$$

$$Z = \frac{4a}{[(a+\alpha)^2 + \gamma^2]^{\frac{3}{2}}} \left[2\alpha \frac{K-E}{k^2} - \frac{(\alpha-a)E}{1-k^2} \right].$$

Liegt der magnetische Punkt in der Stromebene, so wird:

folglich:
$$x=0$$
,
 $X=0$

elektrischer Ströme und Stromringe. Von EMIL WEYR. 435

und

$$Z = \frac{4\alpha}{(a+\alpha)^3} \cdot \left[2\alpha \frac{K-E}{k^2} - \frac{(\alpha-a)E}{1-k^2} \right]$$

Nun ist hier:

$$k^2 = \frac{4 \, a \, \alpha}{(\alpha + \alpha)^2}$$

$$1-k^2=\left(\frac{\alpha-a}{\alpha+a}\right)^2,$$

woraus sich leicht

$$Z = 2\left[\frac{K}{\alpha+\alpha} - \frac{E}{\alpha-\alpha}\right]$$

ergiebt*).

Liegt der magnetische Punkt in der Stromaxe, so ist:

$$k = 0.$$

 $\alpha = 0$,

Der Werth von X nimmt eine unbestimmte Form an, welche sich jedoch leicht bestimmen lässt.

 $K = \frac{\pi}{2} \left[1 + \left(\frac{1}{2}\right)^2 k^2 + \left(\frac{1}{2}, \frac{3}{4}\right)^2 k^4 + \dots \right]$

Bekanntlich ist:

und

$$E = \frac{\pi}{2} \left[1 - \left(\frac{1}{2}\right)^2 \frac{k^2}{1} - \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \frac{k^4}{3} - \dots \right],$$

folglich:

$$\lim\left(\frac{k-E}{k^2}\right)=\frac{\pi}{4},$$

und weil

 $lim\left(\frac{E}{1-k^2}\right) = \frac{\pi}{2}$

ist, so hat man:

X = 0.

Für Z ergiebt sich der bekannte Werth:

$$Z = \frac{2 \pi a^2}{(a^2 + \gamma^2)^{\frac{3}{2}}}$$

und überdies für $\gamma = 0$:

*) Denselben Ausdruck findet man im sweiten Hefte des 14. Theiles von Grunert's Archiv, wo Herr Dr. Haedenkamp die Wirkung linearer elektrischer Ringe, aber nur für den Fall betrachtet, dass der magnetische Punkt in der Stromebene liege.

 $Z=\frac{2\pi}{2}.$

Zeitschrift f. Mathematik u. Physik. XIII, 5.

Wir haben zur Bestimmung des Potentials eines ebenen Stromes (zur Berechnung des Integrals $\int \frac{df.t}{R^3}$) den von ihm umgrenzten Theil der Stromebene verwendet. Man gelangt zu demselben Resultate mit Benutzung irgend einer anderen durch den Strom gelegten Fläche.

Des folgenden Abschnittes wegen will ich jetzt das Potential eines-Kreisstromes mittelst einer durch ihn zur z-Achse parallel gelegten Cylinderfläche bestimmen. Damit der Kreisstrom die einzige Begrenzung der Cylinderfläche bilde, muss man dieselben nach einer Richtung (wir wollen die +z-Axe wählen) unbegrenzt lassen.

Für eine solche ist mit Beibehaltung des angewendeten Coordinatensystems und der angegebenen Stromrichtung:

$$df = a \cdot d\varphi \cdot dz,$$

$$l = -(u + \alpha \cos \varphi),$$

$$R^{2} = u^{2} + \alpha^{2} + 2 u \alpha \cos \varphi + (z - \gamma)^{2},$$

somit ist das Potential des Kreisstromes:

$$W = \int_{0}^{\infty} \int_{0}^{\frac{2\pi}{3}} \frac{a(a + \alpha \cos \varphi)}{[a^{2} + \alpha^{2} + 2 a \alpha \cos \varphi + (z - \gamma^{2})]^{\frac{3}{2}}}$$

Würde man die Integration nach z ausführen (was unmittelbar geschehen kann) und dann weiter reduciren, so erhielte man dieselbe Form für W, wie ich sie im Vorhergehenden angab.

Zugleich kommt man auf die doppelte Form des Potentials, entsprechend der doppelten Lage des magnetischen Punktes; nämlich innerhalb und ausserhalb des Stromcylinders.

Für uns ist nur die letztentwickelte Form des Potentials wichtig. Es lässt sich nämlich, wie sofort erhellen wird, auch schreiben:

$$W = -a \frac{d}{da_0} \int_{0}^{\infty} \int_{0}^{2\pi} \frac{d\varphi \, dz}{\sqrt{a^2 + \alpha^2 + 2a\alpha\cos\varphi + (z-\gamma)^2}}.$$

Bezeichnet man mit V das Massenpotential des Stromcylinders, so ist

$$V = \int_{0}^{\infty} \int_{0}^{2\pi} \frac{a \, d\varphi \cdot dz}{\sqrt{a^2 + \alpha^2 + 2 \, a \, \alpha \cos \varphi + (z - \gamma)^2}},$$

und folglich existirt die bemerkenswerthe Relation:

$$W = - a \frac{d}{da} \left(\frac{V}{a} \right),$$

oder:

$$W = -\frac{d V}{d u} + \frac{V}{u}.$$

Dabei ist $\frac{dV}{da}$ die auf die Cylinderaxe senkrechte Kraftcomponente. Digitized by GOOgle IV.

Ich übergehe nun zur Betrachtung der Fernwirkungsweise eines ebeen T. nen Stromsystems, nämlich des Ringstromes. Man denke sich zwei contate = centrische Kreise 1 und 2 mit den Radien a, und a. Die von ihnen gebilhe. dete Ringfläche möge so als geschlossener Stromleiter auftreten, dass die oten einzelnen Strömungscurven zu 1 und 2 concentrische Kreise sind. Man stelle sich einen beliebigen Radius der Kreise vor, welcher die Kreise I e I great... und 2 in den Punkten I und II schneiden mag; dann denke man sich die Gerade 1 II als Ein - und Austrittsstelle für den Ringstrom. ្នាោះ

Offenbar werden die einzelnen Elementarströme verschiedene Intensitäten besitzen, da sie dem Strome, ihrer verschiedenen Länge wegen, verschiedene Widerstände entgegensetzen.

Nimmt man als Einheit der Stromstärke jene an, welche auf die Breiteneinheit bezogen dem Stromkreise vom Radius 1 entspricht, so ist die Stromintensität des Elementarstromringes von der Breite da und dem Radius a offenbar $\frac{da}{a}$ und somit sein Potential:

$$dS = W \cdot \frac{da}{a}.$$

Um das Potential des ganzen Ringstromes zu erhalten, hat man von a_1 bis a_2 zu integriren; also:

$$S = \int_{a_1}^{a_2} \frac{W}{u} \, da.$$

Führt man statt W den letztgefundenen Differentialausdruck:

$$-a\cdot \frac{V}{du}\left(\frac{V}{a}\right)$$

ein, so erhält man sofort:

$$S = \frac{V_1}{a_1} - \frac{V_2}{a_2},$$

wobei nach Früherem V_1 und V_2 die beiden Massenpotentiale der beiden Grenzstromcylinder sind.

Schreibt man für diese ihre Integralausdrücke, so ist:

$$S = \int_{0}^{\infty} \int_{0}^{2\pi} \frac{d\varphi \, dz}{\gamma a_{1}^{2} + \alpha^{2} + 2 a_{1} \alpha \cos \varphi + (z - \gamma)^{2}} - \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{d\varphi \, dz}{\gamma a_{2}^{2} + \alpha^{2} + 2 a_{2} \alpha \cos \varphi + (z - \gamma)^{2}}.$$

Für die beiden Wirkungscomponenten hat man:

Digitized by Google

437

Sa::

Ueber magnetische Fernwirkung

$$X = \frac{\frac{\partial V_2}{\partial \alpha}}{\frac{\partial V_1}{\alpha_1} - \frac{\partial V_2}{\alpha_2}},$$
$$Z = \frac{\frac{\partial V_1}{\partial \gamma}}{\frac{\partial V_2}{\alpha_1} - \frac{\partial V_2}{\partial \gamma}},$$

Dabei ist also allgemein:

$$\frac{\partial V}{\partial \alpha}_{a} = -\int_{0}^{\infty}\int_{0}^{\infty}\int_{0}^{2}\frac{d\varphi \cdot dz (\alpha + \alpha \cos \varphi)}{[a^{2} + \alpha^{2} + 2\alpha \cos \varphi + (z - \gamma)^{2}]^{\frac{3}{2}}}$$

und wenn man nach z integrirt:

$$\frac{\partial V}{\partial \alpha}_{a} = -\int_{0}^{2\pi} \int_{0}^{2\pi} \frac{(\alpha + a\cos\varphi)}{a^{2} + \alpha^{2} + 2a\cos\varphi} \left[1 + \frac{\gamma}{\sqrt{a^{2} + \alpha^{2} + 2a\cos\varphi + \gamma^{2}}}\right] d\varphi.$$

Nun ist:

$$\int_{0}^{2\pi} \frac{a^{2\pi}}{a^{2} + \alpha^{2} + 2a} \frac{\cos \varphi}{\cos \varphi} \frac{d\varphi}{\cos \varphi} = 2 \int_{0}^{2\pi} \frac{(\alpha + a\cos \varphi) d\varphi}{a^{2} + \alpha^{2} + 2a \alpha \cos \varphi} \frac{d\varphi}{\cos \varphi}$$
$$= 2 \frac{\partial}{\partial \alpha} \int_{0}^{\pi} \log (a^{2} + \alpha^{2} + 2a \alpha \cos \varphi) d\varphi,$$

oder:

$$\int_{0}^{2\pi} \frac{(\alpha + a\cos\varphi) d\varphi}{a^2 + \alpha^2 + 2a\alpha\cos\varphi} = 2\frac{\partial}{\partial\alpha} \int_{0}^{\pi} \log\left[1 + \left(\frac{\alpha}{a}\right)^2 + 2\left(\frac{\alpha}{a}\right)\cos\varphi\right] d\varphi.$$

Aber bekanntlich ist:

$$\int_{0}^{\pi} \log \left[1 + \left(\frac{\alpha}{a} \right)^{2} + 2 \left(\frac{\alpha}{a} \right) \cos \varphi \right]$$

gleich Null oder gleich $2\pi \log \frac{\alpha}{a}$ je nachdem α beziehungsweise kleiner oder grösser ist als a; folglich ist:

$$\int_{0}^{2\pi} \frac{(\alpha + a\cos\varphi) d\varphi}{a^2 + \alpha^2 + 2a\alpha\cos\varphi}$$

gleich Null oder gleich $\frac{2\pi}{\alpha}$; also jedenfalls von *a* unabhängig. Wenn man jedoch die Form von X betrachtet, so erscheint sie als eine Differenz, in deren beiden Theilen dieser nämliche (weil von *a* unabhängige) Werth 0 oder $\frac{2\pi}{\alpha}$ vorkommen und sich also wegheben wird.

Wir können daher, dies bemerkt,

$$\frac{\partial V}{\partial \alpha} = -\gamma \int_{0}^{2\pi} \frac{(\alpha + a\cos\varphi) d\varphi}{(a^{2} + \alpha^{2} + 2a\alpha\cos\varphi) \sqrt{a^{2} + \alpha^{2} + 2a\alpha\cos\varphi + \gamma^{2}}}$$

setzen.

Dieses Integral geht aber aus dem Seite 429 entwickelten, mit U bezeichneten hervor, wenn man, den Factor a in $-\gamma$ umwandelnd, a und α vertauscht.

Dies giebt sonach:

$$\frac{\frac{\partial V}{\partial \alpha}}{a} = \frac{2\gamma}{a} \frac{\left[\frac{\alpha - a}{\alpha + a} \Pi_0 - K\right]}{\sqrt{(a + \alpha)^2 + \gamma^2}}.$$

Die X-Componente wird nun durch Einsetzung der Grenzen a_1 und a_2 in den rechter Hand stehenden Ausdruck erhalten.

Besonders erwähnungswerth ist der Fall, wo der Ringstrom ein voller, d. h. wo $a_1 = 0$ wird.

Dann wird auch $k^2 = 0$ und h = 0 und folglich in diesem Falle:

$$\lim \frac{\partial V_1}{\partial \alpha} = \frac{-2\pi\gamma}{\alpha \sqrt{\alpha^2 + \gamma^2}}.$$

Zur Berechnung der Componente Z hat man allgemein :

217

$$\frac{\frac{\partial V}{\partial \gamma}}{a} = \int_{0}^{\infty} \int_{0}^{2\pi} \frac{(z-\gamma) dz \cdot d\varphi}{\left[a^{2} + \alpha^{2} + 2 a \alpha \cos \varphi + (z-\gamma)^{2}\right]^{\frac{3}{2}}},$$

und wenn man nach z integrirt:

$$\frac{\frac{\partial V}{\partial \gamma}}{a} = \int_{0}^{2\pi} \frac{d\varphi}{\sqrt{a^{2} + \alpha^{2} + 2a\alpha\cos\varphi + \gamma^{2}}},$$

oder:

$$\frac{\partial \gamma}{\partial a} = \frac{4K}{\sqrt{(a+\alpha)^2 + \gamma^2}}.$$

Die Componente Z selbst wird erhalten, wenn man rechts für a die Grenzen a_1 und a_2 einsetzt.

Insbesondere für eine Stromscheibe $(a_1=0)$ wird, wenn man statt a_2 nur a schreibt:

$$Z = \frac{4K}{\sqrt{(a+\alpha)^2 + \gamma^2}}.$$
 Digitized by Google

Der Fall der Stromscheibe ist deshalb bemerkenswerth, weil das Potential derselben, wie man sich leicht überzeugt, unstetig ist.

Denn setzt man in den Ausdruck für $S a_i = 0$ und schreibt a statt a_i , so ergiebt sich:

$$S = -\int_{0}^{s} \int_{0}^{2\pi} \frac{d\varphi \, dz}{\sqrt{a^{2} + \alpha^{2} + 2a\alpha\cos\varphi + (z-\gamma)^{2}}} + \int_{0}^{\infty} \int_{0}^{2\pi} \frac{d\varphi \, dz}{\sqrt{a^{2} + (z-\gamma)^{2}}}$$

oder:

$$S = -\int_{0}^{\infty} \int_{0}^{2\pi} \frac{d\varphi \, dz}{\sqrt{u^2 + \alpha^2 + 2 \, \alpha \cos \varphi + (z - \gamma)^2}} + 2\pi \int_{0}^{\infty} \frac{dz}{\sqrt{\alpha^2 + (z - \gamma)^2}}$$

Das Integral:

$$\int_{0}^{\infty} \frac{dz}{\sqrt{\alpha^{2} + (z - \gamma)^{2}}}$$

hat aber, wie man sieht, den Werth ∞.

Die Componenten behalten jedoch, wie gezeigt wurde, für $a_1 = 0$ vollkommen bestimmte stetige Werthe.

Prag, im Januar 1868.

Kleinere Mittheilungen.

XXI. Note über die Integration der partiellen Differentialgleichung: 1) $\frac{d^n z}{dx^n} + P_1 \frac{d^n z}{dx^{n-1} dy} + P_2 \frac{d^n z}{dx^{n-2} dy^2} + \ldots + P_{n-1} \frac{d^n z}{dx dx^{n-1}} + P_n \frac{d^n z}{dy^n} = Q$, wo $P_1, P_2, \ldots, P_{n-1}, P_n, Q$ gegebene Functionen der unabhängigen Variablen x und y sind.

1. Wenn $\varphi_1, \varphi_2, \varphi_3 \dots \varphi_n n$ unbekannte Functionen der unabhängigen Variablen x und y bedeuten, und man setzt

2)
$$\begin{cases} P_{1} = \varphi_{1} + \varphi_{2} + \varphi_{3} + \dots + \varphi_{n} = S_{n, 1} = S_{n-1, 1} + \varphi_{n} \\ P_{2} = \varphi_{1} \varphi_{2} + \varphi_{1} \varphi_{3} + \dots = S_{n, 2} = S_{n-1, 2} + \varphi_{n} S_{n-1, 1} \\ P_{3} = \varphi_{1} \varphi_{2} \varphi_{3} + \varphi_{1} \varphi_{2} \varphi_{4} + \dots = S_{n, 3} = S_{n-1, 3} + \varphi_{n} S_{n-1, 2} \\ \dots \\ P_{n-1} = \varphi_{1} \varphi_{2} \dots \varphi_{n-1} + \dots = S_{n, n-1} = S_{n-1, n-1} + \varphi_{n} S_{n-1, n-2} \\ P_{n} = \varphi_{1} \varphi_{2} \varphi_{3} \dots \varphi_{n} = S_{n, n} = \varphi_{n} S_{n-1, n-1} \end{cases}$$

so sind $\varphi_1, \varphi_2, \varphi_3, \dots, \varphi_n$ als Wurzeln der algebraischen Gleichung 3) $\varphi^n - P_1 \varphi^{n-1} + P_2 \varphi^{n-2} - \dots (-1)^{n-1} P_{n-1} \varphi + (-1)^n P_n = 0$ bestimmt.

Durch Einsetzung der Ausdrücke 2) für die Coefficienten $P_1, P_2 \dots P_n$ in die vorgelegte Differentialgleichung 1) erhält man

4)
$$\begin{cases} \frac{d^{n} z}{dx^{n}} + S_{n,1} \frac{d^{n} z}{dx^{n-1} dy} + S_{n,2} \frac{d^{n} z}{dx^{n-2} dy^{2}} + \cdots \\ \dots + S_{n,n-1} \frac{d^{n} z}{dx dy^{n-1}} + S_{n,n} \frac{d^{n} z}{dy^{n}} = 0, \end{cases}$$

oder

$$\frac{d^{n}z}{dx^{n}} + (S_{n-1,1} + \varphi_{n})\frac{d^{n}z}{dx^{n-1}dy} + \dots + \varphi_{n}S_{n-1,n-1}\frac{d^{n}z}{dy^{n}} = Q,$$

oder endlich

• :

5)
$$\begin{cases} \frac{d^{n} z}{dx^{n}} + S_{n-1,1} \frac{d^{n} z}{dx^{n-1} dy} + S_{n-1,2} \frac{d^{n} z}{dx^{n-2} dy^{2}} + \dots + S_{n-1,n-1} \frac{d^{n} z}{dx dy^{n-1}} \\ + \varphi_{n} \left(\frac{d^{n} z}{dx^{n-1} dy} + S_{n-1,1} \frac{d^{n} z}{dx^{n-2} dy^{2}} + \dots + S_{n-1,n-1} \frac{d^{n} z}{dy^{n}} \right) = Q. \\ & \text{Digitized by Google} \end{cases}$$

Falls nun in der Differentialgleichung 5) die Coefficienten $S_{n-1, 1}$, $S_{n-1, 2}$, $S_{n-1, 3}$ $S_{n-1, n-1}$ von einer solchen Beschaffenheit sind, dass sie folgende n-1 Bedingungen:

6)
$$\begin{cases} \frac{dS_{n-1,1}}{dx} + \varphi_n \frac{dS_{n-1,1}}{dy} = 0, \\ \frac{dS_{n-1,2}}{dx} + \varphi_n \frac{dS_{n-1,2}}{dy} = 0, \\ \frac{dS_{n-1,2}}{dx} + \varphi_n \frac{dS_{n-1,2}}{dy} = 0, \\ \frac{dS_{n-1,n-1}}{dx} + \varphi_n \frac{dS_{n-1,n-1}}{dy} = 0 \end{cases}$$

erfüllen, so kann man 5) unter der Form

7)
$$\frac{dQ_1}{dx} + \varphi_n \frac{dQ_1}{dy} = Q$$

schreiben, wo

8)
$$\begin{cases} \frac{d^{n-1}z}{dx^{n-1}} + S_{n-1,1} \frac{d^{n-1}z}{dx^{n-2}dy} + S_{n-1,2} \frac{d^{n-1}z}{dx^{n-3}dy^{3}} + \dots \\ \dots + S_{n-1,n-1} \frac{d^{n-1}z}{dx^{n-1}} = Q_{1}. \end{cases}$$

Man ersieht hieraus, dass, insofern die Bedingungen 6) erfüllt sind, das Integral Q_1 die Gleichung 7) auf eine Differentialgleichung 8) zurückführt, deren Ordnung um eins kleiner ist, als die der vorgelegten Gleichung 1).

Um die Gleichung 7) zu integriren, bedienen wir uns hier eines von dem gewöhnlichen etwas abweichenden Verfahrens, indem wir für y eine neue unabhängige Variable y_1 einführen, dergestalt, dass y_1 durch die Function von x und y bestimmt ist, welche das Integral der Differentialgleichung

$$\frac{dy}{dx} = \varphi_n$$

darstellt, wenn dieses Integral unter der Form

$$y_1 = c$$

geschrieben wird, wo c die willkürliche Constante bedeutet. Es reducirt sich nämlich die Gleichung 7) auf die Form

$$\frac{dQ_1}{dx} \doteq Q,$$

wo Q jetzt eine Function von x und y_1 ist.

Integrirt man diese Gleichung mit Rücksicht auf x, indem y_1 als constant betrachtet wird, und fügt man eine willkürliche Function von y_1 hinzu, ergiebt sich

$$Q_1 = \int Q \, dx + f(y_1),$$

Digitized by Google

wo f die willlküriche Function bezeichnet.

442

Die Differentialgleichung 8) erhält also die Form

$$(i) \qquad \begin{cases} \frac{d^{n-1}z}{dx^{n-1}} + S_{n-1, 1} \frac{d^{n-1}z}{dx^{n-2} dy} + \dots + S_{n-1, n-1} \frac{d^{n-1}z}{dy^{n-1}} \\ = \int \mathcal{Q} dx + f(y_1) = Q_1; \end{cases}$$

da aber die Coefficienten in dieser Gleichung dieselben Functionen von $\varphi_1, \varphi_2 \dots \varphi_{n-1}$, als die Coefficienten in der ursprünglichen Gleichung 4) oder 1) von $\varphi_1, \varphi_2 \dots \varphi_n$ sind, und die linke Seite von 9) aus 4) erhalten werden kann, wenn man n mit n-1 vertauscht, so ist klar, dass man auch im Stande sein muss, die Gleichung 9) unter der Form

9')
$$\frac{dQ_2}{dx} + \varphi_{n-1} \frac{dQ_2}{dy} = Q_1$$

zu schreiben, wo

10)
$$\begin{cases} \frac{d^{n-2}z}{dx^{n-2}} + S_{n-2, 1} \frac{d^{n-2}z}{dx^{n-3}dy} + S_{n-2, 2} \frac{d^{n-2}z}{dx^{n-4}dy^2} + \dots \\ \dots + S_{n-2, n-2} \frac{d^{n-2}z}{dy^{n-2}} = Q_2, \end{cases}$$

vorausgesetzt, dass die Bedingungen 6) erfüllt sind, wenn man darin n mit n-1 vertauscht, wodurch zugleich die Anzahl der Bedingungsgleichungen auf n-2 reducirt wird.

Das Integral Q, der Gleichung 9') wird somit zu einer Differentialgleichung 10) führen, welche um zwei Ordnungen niedriger ist, als die vorgelegte 1). Durch eine ähnliche Betrachtung mit Rücksicht auf die Differentialgleichung 10) gelangt man zu einer Gleichung von der Ordnung n-3 u. s. w., so dass eine auf diese Weise fortgesetzte Reduction zuletzt auf die Gleichung

$$\frac{ds}{dx} + \varphi_1 \frac{ds}{dy} = Q_{n-1}$$

führt, deren Integration die primitive Gleichung

$$\mathbf{s} = Q_n$$

mit ihren zugehörigen willkürlichen Functionen giebt.

2. Aus dieser allgemeinen Betrachtung geht also hervor, dass, wenn die Bedingungen 6) bei der allmäligen Vertauschung der Indices n mit n-1, n-2...2 erfüllt sind, man sofort die Gleichungen:

11)

$$\begin{cases}
\frac{dQ_1}{dx} + \varphi_n \frac{dQ_1}{dy} = Q, \\
\frac{dQ_2}{dx} + \varphi_{n-1} \frac{dQ_2}{dy} = Q_1, \\
\frac{dQ_3}{dx} + \varphi_{n-2} \frac{dQ_3}{dy} = Q_2, \\
\frac{dQ_{n-1}}{dx} + \varphi_2 \frac{dQ_{n-1}}{dy} = Q_{n-2}, \\
\frac{dZ_n}{dx} + \varphi_1 \frac{dZ}{dy} = Q_{n-1}
\end{cases}$$

aufschreiben kann. Aus diesen erhält man dann durch wiederholte Integration die primitive Gleichung

$$s = Q_n$$

mit ihren zugehörigen willkürlichen Functionen.

3. Die Bedingungsgleichungen 6) zeigen unmittelbar, dass sie für constante Werthe der Functionen $\varphi_1, \varphi_2 \dots \varphi_n$ befriedigt sind.

Hat also die vorgelegte Gleichung die Form

$$\frac{d^n \mathbf{z}}{dx^n} + a_1 \frac{d^n \mathbf{z}}{dx^{n-1}} \frac{d^n \mathbf{z}}{dy} + a_2 \frac{d^n \mathbf{z}}{dx^{n-2}} + \dots + a_{n-1} \frac{d^n \mathbf{z}}{dx \, dy^{n-1}} + a_n \frac{d^n \mathbf{z}}{dy^n} = Q,$$

wo $a_1, a_2, a_3 \ldots a_{n-1}, a_n$ gegebene constante Grössen sind und Q eine beliebige Function von x und y, so sind $\varphi_1, \varphi_2 \ldots \varphi_n$ als Wurzeln der algebraischen Gleichung

$$\varphi^n - a_1 \varphi^{n-1} + a_2 \varphi^{n-2} - \dots (-1)^{n-1} a_{n-1} \varphi + (-1)^n a_n = 0$$

bestimut.

In diesem Falle werden die Gleichungen 11) integrabel, und durch . wiederbolte Integration gelangt man zu der primitiven Gleichung

 $\mathbf{z} = \int^{(n)} \mathcal{Q} \, dx^n + f_1 \left(y - \varphi_n x \right) + f_2 \left(y - \varphi_{n-1} x \right) + \ldots + f_n \left(y - \varphi, x \right),$ wo $f_1, f_2 \ldots f_n$ die *n* willkürlichen Functionen bezeichnen.

Beispiel:

$$\frac{d^2 z}{d x^2} + 3 \frac{d^2 z}{d x d y} + 2 \frac{d^2 z}{d y^2} = x + y.$$

Hierin sind φ_1 und φ_2 durch die quadratische Gleichung • $\varphi^2 - 3\varphi + 2 = 0$

bestimmt.

Diese giebt $\varphi_1 = 2$ und $\varphi_2 = 1$ oder umgekehrt, wodurch die Gleichungen 11) in die folgenden übergehen:

$$\frac{dQ_1}{dx} + \frac{dQ_1}{dy} = x + y,$$
$$\frac{dz}{dx} + 2\frac{dz}{dy} = Q_1.$$

Führt man nun in die erste von diesen anstatt y eine neue, durch die Gleichung $y_1 = y - x$ bestimmte unabhängige Variable ein, erhält man

$$\frac{dQ_1}{dx} = 2x + y,$$

mithin

$$Q_1 = xy + f(y - x)$$

Die zweite Gleichung wird folglich

$$\frac{dz}{dx} + 2\frac{dz}{dy} = xy + f(y - x).$$

Setzt man hierin anstatt y eine neue unabhängige Variable $y_1 = y - 2x$, findet man

$$\frac{dz}{dx} = xy_1 + 2x^2 + f(y_1 + x),$$

woraus man durch Integration erhält

$$= \frac{1}{2}x^{2}y - \frac{1}{3}x^{3} + f_{1}(y - x) + f_{2}(y - 2x).$$

Kopenhagen, 11. August 1868. Dr. phil. CAMILLO TYCHSEN.

XXII. Zweite Mittheilung aus Thomson and Tait, A treatise on natural philosophy. Von Dr. W. KRUMME, Oberlehrer an der Realschule zu Duisburg.

Anziehung einer homogenen dünnen Kugelschale auf ein Element der Schale selbst. Das in P gelegene Element der Kugelschale (Tafel II, Fig. 1) habe den Inhalt σ . Ein Kegel, der P zur Spitze hat und dessen Oeffnung ω ist, schneidet bei H aus der Schale ein Element H heraus, welches nach dem Früheren

zum Inhalt hat. Bezeichnet ϱ die Dichtigkeit der Kugelschale, so ist die Anziehung des Elementes H auf P in der Richtung HP

$$\frac{\varrho \omega P H^2}{\cos C H P} \cdot \frac{\rho \sigma}{P H^2} = \frac{\omega}{\cos C H P} \cdot \varrho^2 \sigma.$$

Die Anziehung der ganzen Schale auf P hat aus Gründen der Symmetrie die Richtung PC. Die von H auf P ausgeübte Anziehung hat nach der Richtung PC die Componente

ω ρ¹ σ.

Die Anziehung der ganzen Schale auf das Element o ist also

$$\sigma \Sigma \omega = 2\pi \varrho^2 \sigma = A.$$

Denn $\Sigma \omega$ bezeichnet die Summe der Elemente einer Kugelfläche vom Radins 1 und dem Mittelpunkt P, die auf derselben Seite einer in P an die Kugel gelegten Tangentialebene liegen. $\Sigma \omega$ ist also 2π .

Die Anziehung derselben Kugelschale auf einen ausserhalb gelegenen, aber der Oberfläche nahen Punkt von der Masse $\rho\sigma$ (Masse des Elementes σ) ist nach dem Früheren $4\pi \rho^2 \sigma = A'$:

A'=2A.

Anziehung einer dünnen Kugelschale auf einen Punkt P, wenn die Dichtigkeit eines jeden Punktes der Schale der 3ten Potenz seiner Entfernung von einem nicht mit dem Mittelpunkt zusammenfallenden Punkte S umgekehrt proportionalist. Dieser Fall hat ein hervorragendes Interesse, weil er in einigen der wichtigsten elementaren Probleme aus der Elektricitätslehre seine Anwendung findet.

a) Pund S sind durch die Kugelschale getrennt.

Der Punkt P kann innerhalb (Taf. II, Fig. 1) und ausserhalb (Fig. 2) liegen. Ausdrücke, die sich für beide Figuren verschieden gestalten, sollen als Marke diejenige Figur erhalten, worauf sie sich beziehen. Der Kugelradius werde mit a, der Abstand des Punktes S vom Kugelmittelpunkt mit f bezeichnet.

Man verbinde S mit P und nehme auf SP oder seiner Verlängerung den Punkt T so, dass

(Fig. 1) $SP.ST = f^2 - a^2$; (Fig. 2) $SP.TS = a^2 - f^2$.

Durch T lege man eine beliebige Gerade, welche die Kugel in K und K' schneidet, verbinde K und K' mit S und bezeichne die resp. Schnittpunkte mit der Kugeloberfläche mit E und E'.

Die ganze Kugelschale werde in Paare von Elementen zerlegt, deren Umfänge auf Kegelflächen liegen, die P zur gemeinschaftlichen Spitze haben. K und K' seien zwei solche an den Endpunkten der Sehne KK'gelegene Elemente; ihr Kegel habe die Oeffnung ω . Die Kegel, welche entstehen, indem man eine durch S gehende Gerade sich längs des Umfangs von K resp. K' bewegen lässt, mögen aus der Kugelschale die Elemente E resp. E' herausschneiden. Hierdurch zerlegt man die Kugelschale in Paare von Elementen E und E'; denn man sicht leicht, dass wenn alle Paare von Elementen K und K' genommen worden sind, die Summe der Elemente E und E' die ganze Kugelfläche ergiebt und dass kein Element zweimal vorkommt. Die Anziehung der ganzen Kugelschale auf P ist also die Resultirende der Anziehungen aller Elementenpaare E und E' auf P.

Bezeichnet ρ die Dichtigkeit im Punkte E und F die Anziehung E auf P, so ist

$$F = \frac{\varrho E}{E P^2}.$$

Nach dem vorausgesetzten Dichtigkeitsgesetz ist, unter λ eine Constante verstanden,

$$\rho = \frac{\lambda}{S E^*}$$

Die Gerade SEK hat in den beiden Durchschnittspunkten mit der Kugel gleiche Neigung gegen dieselbe, also ist

$$E = \frac{SE^2}{SK^2} \cdot K = \frac{SE^2}{SK^2} \cdot \frac{2 \, \omega \, \sigma \, K^2}{KK'}$$

und deshalb

$$F = \frac{\frac{\lambda}{SE^3} \cdot \frac{SE^2}{SK^2} \cdot \frac{2a\omega TK^2}{KK'}}{EP^2} = \lambda \cdot \frac{2a}{KK'} \cdot \frac{TK^2}{SE \cdot SK^2 \cdot EP^2} \cdot \omega.$$

In dem grössten Kreise, dessen Ebene SK aufnimmt, ist

(Fig. 1) $SK.SE = f^2 - a^2$ und (Fig. 2) $SK.SE = a^2 - f^2$. Demnach ist SK.SE = SP.ST und folglich sind die Dreiecke KSTund PSE ähnlich. Hieraus ergiebt sich

TK:SK = PE:SP

und

 $\frac{TK^2}{SK^2.EP^2} = \frac{1}{SP^2}$

Der Ausdruck für F geht durch diese Substitution über in

$$F = \lambda \frac{2a}{KK'} \cdot \frac{1}{SE.SP^2} \cdot \omega,$$

dem man auch die Form geben kann

(Fig. 1)
$$F = \lambda \frac{2a}{KK} \cdot \frac{\omega}{(f^2 - a^2) SP^2} \cdot SK$$
 und
(Fig. 2) $F = \lambda \frac{2a}{KK} \cdot \frac{\omega}{(a^2 - f^2) SP^2} \cdot KS$.

Gleicherweise ergiebt sich für die Anziehung von E' auf P

(Fig. 1)
$$F' = \lambda \frac{2a}{KK'} \cdot \frac{\omega}{(f^2 - a^2) SP^2} \cdot SK'$$
 und
(Fig. 2) $F' = \lambda \frac{2a}{KK'} \frac{\omega}{(a^2 - f^2) SP^2} \cdot K'S.$
Also $F: F' = SK: SK'.$

Es ist gezeigt worden, dass L TKS = L EPS; ganz in derselben Weise folgt L TK'S = L E'PS. Zieht man KK''//SK' und K'K''//SK, so ist F:F' = KS:KK''L SKK'' = L EPE'.

Die Resultirende von F und F' muss also gegen diese Einzelkräfte dieselbe Lage haben, wie KK' gegen KS und KK''. Hieraus ergiebt sich:

Die Resultirende der von E und E' auf P ausgeübten Anziehungen geht durch S und hat zu den Einzelkräften F und F' dasselbe Verhältniss, wie KK' zu den Seiten KS und K'S des Dreiecks SKK'.

Die Grösse der Resultirenden ist mit Berücksichtigung des letzten Theiles dieses Satzes:

$$\lambda \frac{2a}{KK'} \cdot \frac{\omega}{(f^2 \sim a^2) SP^2} \cdot KK' \text{ oder } \frac{\lambda \cdot 2a \cdot \omega}{(f^2 \sim a^2) SP^2}.$$

(Anmerkung: $f^* \sim a^*$ bedeutet Differenz zwischen f^* und a^* .) Die Gesammtanziehung auf P ist also

$$\frac{\lambda \cdot 2a}{(f^2 \sim a^2) SP^2} \cdot \Sigma \omega = \frac{\lambda \cdot 4\pi a}{(f^2 \sim a^2) SP^2}.$$

Die Anziehung der ganzen Kugelschale auf P ist demnach dieselbe, als wenn die Masse $\frac{\lambda \cdot 4\pi a}{f^* \sim a^2}$ im Punkte S concentrirt wäre.

b) P und S liegen beide innerhalb oder beide ausserhalb der Kugelfläche.

Unter C (Taf. IV, Fig. 7) den Mittelpunkt der Kugel verstanden, nehme man auf CS oder seiner Verlängerung einen Punkt S_1 , so, dass $CS_1 = a^2$.

Verbindet man C mit E, so folgt aus der Aehnlichkeit der Dreiecke CES und CES₁, dass für jeden Punkt der Kugelfläche

$$\frac{SE}{SE_1}=\frac{f}{a}.$$

Hieraus folgt $\frac{\lambda}{SE^3} = \frac{\lambda a^3}{f^3S_1E^3}$. Ist ϱ die elektrische Dichtigkeit im Punkt *E*, so hat man

$$\varrho = \lambda \frac{a^3}{f^3} = \frac{\lambda_1}{S_1 E^3}, \text{ wenn } \lambda_1 = \lambda \frac{a^3}{f^3}.$$

Nach den Ausführungen unter a) hat also die Anziehung der Kugelschale auf P die Richtung $S_1 P$ und erfolgt gerade so, als ob die Masse $\frac{\lambda_1 4 \pi a}{f_1^* \sim a^2}$ im Punkte S_1 concentrirt wäre. Setzt man statt λ_1 und f_1 ihre Werthe $\frac{\lambda a^3}{f^3}$ und $\frac{a^2}{f}$, so hat man für die in S_1 concentrirt zu denkende Masse

$$\frac{\lambda \frac{a}{f} \cdot 4\pi a}{a^{2} \sim f^{2}}.$$

Wird eine Kugel so elektrisirt, dass die elektrische Dichtigkeit jedes Punktes der Oberfläche der 3ten Potenz der Entfernung dieses Punktes von einem innerhalb der Kugel gelegenen Punkte S umgekehrt proportional ist, so zieht sie einen äussern Punkt so an, als ob ihre ganze Elektricität in S concentrirt wäre. Die Anziehung auf einen innern Punkt ist dieselbe, als ob eine im Verhältniss a zu f grössere Elektricitätsmenge in einem Punkte S_t concentrirt wäre, der auf der Verlängerung von CS liegt und mit S durch die Relation $CS \cdot CS_t = a^t$ verbunden ist.

Die Dichtigkeit in *E*, Fig. 4, sei wie vorhin $\frac{\lambda}{SE^3}$. Betrachten wir die Elemente *E* und *E'*, die aus der Kugelschale durch einen Doppelkegel herausgeschnitten werden, dessen Spitze *S* und dessen Oeffnung ω ist, so hat man für die Inhalte der Elemente *E* und *E* bezüglich $\frac{\omega \cdot 2a \cdot SE'^2}{EE'}$ und $\frac{\omega \cdot 2a \cdot SE'^2}{EE'}$.

Die beiden Elemente haben die Elektricitätsmenge

 $\frac{\lambda 2 a \omega}{E E'} \cdot \left(\frac{1}{SE} + \frac{1}{SE'}\right) = \frac{\lambda 2 a \omega}{SE' \cdot SE}.$ Digitized by Google

SE. SE' hat für alle durch S gehende Geraden den constanten Werth $a^2 - f^2$. Für die ganze Elektricitätsmenge findet man also den Ausdruck

$$\frac{\lambda \cdot 4 \pi a}{a^2 - f^2}.$$

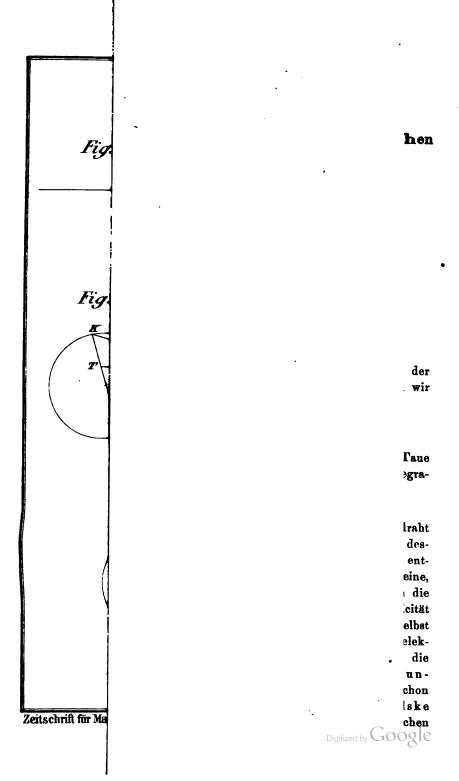
Bezeichnet man diesen Ausdruck mit m, so sind nach dem Obigen die Elektricitätsmengen, die in S oder S_1 concentrirt gedacht werden mitssen, je nachdem P ausserhalb oder innerhalb der Kugelfläche liegt, bezüglich

m und
$$\frac{a}{f}m$$
.

Druckfehler im Supplementhefte 1968.

Seite 117 Zeile 15 v. o. lies $\frac{2025}{1012}$ statt $\frac{2025}{2048}$, 8 v. o. ,, 52607 statt 52637, 119 ,, ,, 135 12 v. u. " fis+ statt Ges+, ۰, " 15 v. o. ,, m+nq+pt statt m+np+pt, 19 v. u. ,, 07682 statt 07681. 138 ,, " 139 ,, ,,

.



XV.

Beiträge zur Geschichte der Fortschritte in der elektrischen Telegraphie.

Von

Professor Dr. EDUARD ZETZSCHE.

V. Die unterseeische Telegraphie.

(Dritte Abtheilung.)

(Hierzu Tafel V, Fig. 38-67.)

Nach der im vorhergehenden Aufsatze erfolgten Besprechung der Herstellung, Prüfung und Versenkung der Unterseeleitung wenden wir uns zur

III. Benutzung der unterseeischen Leitung zum Telegraphiren

und haben dabei zunächst das elektrische Verhalten unterseeischer Taue zu betrachten, darauf aber die auf Unterseelinien verwendeten Telegraphenapparate.

1. Das elektrische Verhalten unterseeischer Telegraphentaue.

Jeder im Wasser oder in feuchter Erde liegende Telegraphendraht bildet bekanntlich eine Art Leydener Flasche und Siemens nannte deshalb solche Drähte Flaschendrähte; die Isolirschicht des Drahtes entspricht nämlich dem Glas der Flasche, der Leitungsdraht bildet die eine, die metallene Schutzhülle oder die umgebende Feuchtigkeit dagegen die andere Belegung. Jede in dem Leitungsdrahte auftretende Elektricität muss daher vertheilend auf die äussere Hülle wirken, dadurch aber selbst gebunden werden und es muss demnach die Fortpflanzung eines elektrischen Stroms im Leitungsdrahte wesentlich verlangsamt werden; die ersteren Erscheinungen bezeichnet man als die Ladungserscheinungen, die letztere nennt man die Verzögerung des Stroms. Schon im Jahre 1848 wurden diese Erscheinungen von Siemens und Halske einerseits und von Kramer andererseits bei Anlegung der unterirdischen Digitized 31 GOOGLE

Zeitschrift f. Mathematik und Physik XIV, 6.

Leitungen von Berlin nach Frankfurt a. M. und von Berlin nach Köln beobachtet; Dr. A. Kramer deutete sie zuerst als Ladungserscheinungen (Zeitschr. d. Tel.-Ver. I, S. 137), Dr. Werner Siemens untersuchte sie weiter und veröffentlichte einen am 18. Jan. 1850 gehaltenen Vortrag in Poggendorff's Annalen (Bd. 79 S. 481; Delamarche, Elemente der unterseeischen Telegraphie S. 14), und fast gleichzeitig machte Guillemin Mittheilungen über diesen Gegenstand (Poggendorff's Annalen, 79 S. 333). Weitere Untersuchungen von Siemens finden sich in dessen der Pariser Akademie vorgelegtem und unter demselben Titel 1851 auch besonders erschienenen Aufsatze: Mémoire sur la télégraphie électrique (vgl. Zeitschr. d. Tel.-Ver. 1, S. 138), in Poggendorff's Annalen (Bd. 102 S. 66) und in der Zeitschr. d. Tel.-Ver. (6, S. 97). Da die Ladungserscheinungen seitdem wiederholt ausführlich besprochen worden sind (vgl. Dub, Anwendung des Elektromagnetismus S. 183-191 und S. 233; Schellen, der elektromagnetische Telegraph, 4. Aufl. S. 244-208; Du Moncel, traité de télégraphie électrique, S. 55 und 264-277), so können wir uns hier auf eine kurze Erwähnung der für die Einrichtung der Telegraphenapparate wichtigen Erscheinungen beschränken.

Wird ein gut isolirter unterseeischer Leitungsdraht ab an dem einen Ende b isolirt, an dem andern Ende a mit dem einen Pole P_1 einer Batterie verbunden, während der andere Pol P_2 mit der Erde verbunden ist, so durchläuft den Draht ein kurz andauernder Ladungsstrom in der Richtung von a nach b; trennt man das Ende a des geladenen Drahtes ab von dem Batteriepole P_1 und verbindet es dafür mit der Erde, so wird der Draht in der Richtung von b nach a von dem ungefähr gleich starken Entladungsstrome oder Rückstrome durchlaufen; trennt man dagegen das Ende a des geladenen Drahtes ab von dem Pole P_1 und verbindet dafür das Ende b mit der Erde, so hat der eben so starke Entladungsstrom jetzt die Richtung von a nach b. Ist das Ende b vom Anfang an nicht isolirt, sondern mit der Erde verbunden, so wird der Strom der bei a eingeschalteten Batterie bei b erst nach der erfolgten Ladung des Drahtes wahrnehmbar; wird nach der Ladung a isolirt, so tritt der Entladungsstrom bei b ans.

Die umfassendsten Versuche über die Ladung haben Faraday (Zeitschr. d. Tel.-Ver. 1, S. 126 und 2, S. 101) und Charles Wheatstone (Zeitschr. d. Tel.-Ver. 2, S. 152) angestellt. Prof. Faraday benutzte einen 100 englische Meilen langen Kupferdraht von $\frac{1}{16}$ Zoll Durchmesser mit einem etwa $\frac{1}{10}$ Zoll dicken Guttaperchaüberzug, welcher in 200 unter sich verbundenen Rollen von je $\frac{1}{2}$ Meile Länge zu beiden Seiten eines auf einem Kanale schwimmenden Fahrzeugs, in das Wasser eintauchend, aufgehängt war; weitere 100 Meilen desselben Drahtes waren auf dem Fussboden eines trockenen Speichers aufgehäuft. Die Batterie enthielt 360 Paare von Platten zu je 3 und 4 Zoll Länge und Breite. Die Oberfläche

des Kupferdrahtes betrug 8300, die der Wasserbelegung 33000 Quadratfuss. Faraday und Latimer & Clark experimentirten ferner auf 8 unterirdischen Leitungen zwischen London und Manchester, in einer Gesammtlänge von 1500 englischen Meilen. Prof. Wheatstone stellte seine Versuche an dem 110 englischen Meilen langen, für die Mittelmeerlinie Spezzia-Corsica-Sardinien bestimmten Tau an, dessen 6 Kupferdrähte von $\frac{1}{16}$ Zoll Durchmesser je $\frac{1}{10}$ Zoll dick mit Guttapercha überzogen waren, während die $\frac{1}{8}$ Zoll dicke Schutzhülle aus 12 Eisendrähten bestand.

Whitehouse, der Physiker der transatlantischen Compagnie, machte Versuche mit einem 200 Kilometer langen unterirdischen und einem eben so langen unterseeischen Drahte und fand bei ersterem eine Verzögerung von 1/8, bei letzterem von 1/4 Secunde (Delamarche, Elemente, S. 17). Bei neueren Versuchen, welche Varley mit einer aus mehreren Widerstandsrollen gebildeten Leitung anstellte, deren Widerstand dem von 13000 Meilen Kabel gleichkam, zeigte die Magnetnadel des Galvanometers am Ende der Leitung erst nach 10 Secunden eine merkliche Ablenkung (Schellen, d. atlant. Kabel S. 133). Varley zeigte an dieser künstlichen Leitung durch ein- und auszuschaltende Condensatoren zugleich den Einfluss der elektrischen Vertheilung auf die Fortpflanzungsgeschwindigkeit und die Dauer der Entladung gegenüber der einfachen Ladung und Entladung des Drahtes. Bei Faraday's Versuchen brauchte eine elektrische Welle zum Durchlaufen der 1500 englische Meilen langen unterirdischen Leitung 2 Secunden, während bei einer gleich langen Luftleitung die Zeitdauer des Durchgangs kaum messbar war (Zeitschr. d. Tel.-Ver. 1, Seite 133). Um das atlantische Tau zu durchlaufen, brauchte Nach Siemens (Poggendorff's Anualen 102, der Strom 0,31 Secunde. Seite 66) steht die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten im Verhältniss der Quadrate der Drahtlängen.

Wegen der Verzögerung des Stroms kann man auf langen Unterseeleitungen nur langsam arbeiten; dagegen kommen die Apparate bei den Unterseeleitungen, obgleich deren Leitungsfähigkeit um ¹/₄ geringer ist, mit schwächeren Batterien in gleich schnellen Gang, wie oberirdische mit stärkeren, da die im Drahte gebundene Elektricität sich auf der ganzen Oberfläche vertheilt und demnach nur ein kleiner Theil den Widerstand des ganzen Drahtes zu überwinden hat. Sehr störend sind die auftretenden Entladungsströme und deshalb müssen die Apparate den Wirkungen derselben entzogen werden; das Mitsprechen des eigenen Relais ist bei der directen Correspondenz von geringerer Bedeutung und liesse sich z. B. bei Anwendung von Inductionsrelais durch entsprechende Schaltung der Batterien umgehen^{*}); allein der kräftige Rückstrom macht das Relais eine

^{*)} Auf der Cagliari-Malta-Corfu-Linie wurde das Relais durch einen besonderen Umschalter während des Sprechens aus der Leitung ausgeschaltet; blieb die

454 Beiträge zur Geschichte der Fortschritte in der elektrischen

 Zeit lang für von der andern Station kommende Telegraphirströme unempfindlich. Bei Translation werden die Schwierigkeiten noch grösser. Matzenauer schlug zur Beseitigung derselben vor, den Tasterhebel oder den die Translation besorgenden Morse-Schreibhebel während seiner Bewegung vorübergehend mit der Erdleitung in Verbindung zu setzen (Zeitschr. d. Tel.-Ver. 6, S. 95).

Die Grösse der Ladung einer Unterseeleitung kann 30-40 Mal so gross sein, als bei einer gleich langen oberirdischen; sie hängt ab von der Dicke des Leitungsdrahtes und seiner isolirenden Hülle, von der Natur des Isolationsmittels; sie wächst mit der Stärke der Batterie und mit der Dauer der Berührung der Leitung und des Batteriepoles. Bei rasch vorübergehender Berührung ist die Ladung bei Leitungsdrähten der verschiedensten Art fast immer dieselbe. Gaugain nimmt daher eine zweifache Ladung an: eine momentane, von der isolirenden Substanz unabhängige, durch eine Wirkung in die Ferne erzeugte seitliche Condensation oder Ladung, und eine langs amer erfolgende, von Atom zu Atom durch die isolirende Substanz fortschreitende, also durch molekulare Wirkung erzeugte. Beim Telegraphiren dauert die Berührung so lange, dass letztere auftritt, die Ladung also dem specifischen Vertheilungsvermögen des Isolirmittels proportional ist. Dieses ist bei Luft == 1, Glas 1,76, Schellack 2, Schwefel 2,24, Kautschuk 2,8, Guttspercha 3,8 (Schellen, elektromagn. Tel. 4. Aufl. S. 251). - Die Grösse der Ladung ist dem Strome proportional, der sich von dem Leitungsdrahte durch die isolirende Schicht nach der Kabelhülle bewegt. Nach dem Ohm'schen Gesetze hat man für die Ströme S und S_1 von n und n_1 gleichen Elementen bei den Widerständen n und m

$$S:S_1=\frac{n}{w}:\frac{n_1}{w_1};$$

da nun der Widerstand des Drahtes und der Batterie gegen den Widerstand der isolirenden Hülle (vom specifischen Leitungswiderstand $\frac{1}{\lambda}$) verschwindet, für letztere aber (d. 2. Abth. S. 17; Pogg. Annalen 102, S. 103)

$$V = \frac{\log nat \frac{R}{r}}{2 \pi \lambda l} \text{ gefunden wurde, so ergiebt sich}$$
$$S: S_1 = \frac{n}{V}: \frac{n_1}{V_1} = \frac{n \lambda l}{\log nat \frac{R}{r}}: \frac{n_1 \lambda_1 l_1}{\log nat \frac{R_1}{r}},$$

woraus die Gesetze der Ladung und Entladung*) zu entnehmen sind.

*) Du Moncel (traité, S. 272) hebt noch besonders hervor, dass das Leitungs-

Leitung Cagliari-Malta nach jeder Stromgebung isolirt (durch Isolation des Rubecontacts im Taster), so wurden die Zeichen sehr unregelmässig. Delamarche, Elemente, S. 15 und 16.

Digitized by GOOGLE

Ständen bei zwei Tauen von gleichem Isolirmittel $(\lambda = \lambda_1)$ die Drahthalbmesser r und r_1 in demselben Verhältnisse, wie die Halbmesser R und R_1 der isolirenden Hülle, so würde

$$S:S_1=nl:n_1l_1$$

d. h. die Ladungen sind bei gleichen Längen l und l_1 der Zahl der Elemente oder der Spannung der Batterie, bei einer und derselben Batterie dagegen der Länge der Taue proportional. — Wäre dagegen $n = n_1^{l}$, $l = l_1$ und $\lambda = \lambda_1$, so würde

$$S: S_1 = lognal \ \frac{R_1}{r_1}: lognal \ \frac{R}{r}.$$

Da die obige allgemeine Formel für $S:S_1$ einen unbequemen Werth für S oder für die Ladung liefert, so hat Wheatstone aus Versuchen an Unterseetauen die bequemere Formel

$$S = B \sqrt{\frac{r}{d}}$$

abgeleitet, worin B einen für dasselbe Tau constanten Coefficienten, r den Halbmesser des Leitungsdrahtes und d die Dicke der Isolirschicht bedeutet (Schellen, elektromagn. Telegr. 4. Aufl. S. 254). Da nun die Stromstärke mit dem Quadrate, die Ladung nur mit der Quadratwurzel des Drahthalbmessers wächst, so ist es wirksamer, den Drahthalbmesser, als die Dicke der Isolirschicht zu vergrössern; denn diese hat auf die Stromstärke keinen Einfluss und die Ladung ist nur umgekehrt proportional der Quadratwurzel dieser Dicke. Eisendrähte würden eine weit dickere Isolirschicht erfordern, wenn bei gleicher Leitungsfähigkeit die Ladung nicht grösser werden sollte, als bei Kupferdrähten (*Du Moncel*, *traite*, S. 276 und 277).

Ist ein Flaschendraht geladen und man lässt seine Entladung durch eine Tangentenbussole gehen, so wirkt dieser Strom von sehr kurzer Dauer nach denselben Gesetzen wie ein horizontaler Stoss auf ein ruhendes Pendel, d. h. es ist die Kraft dem Sinus des halben Ausschlagswinkels α proportionál (Pogg. Ann. 34, S. 392); bei zwei verschiedenen Tauen haben wir daher auch:

$$\sin \frac{\alpha}{2} : \sin \frac{\alpha_1}{2} = S : S_1 = \frac{n \lambda l}{lognat} \frac{R}{r} : \frac{n_1 \lambda_1 l_1}{lognat},$$

oder bei $n = n_1$, $\lambda = \lambda_1$ und $R: R_1 = r: r_1$

vermögen des Metalls keinen Einfluss, Temperatur und Druck nur durch ihre Abänderung der Isolation Einfluss auf den Entladungsstrom haben, dass nach Guillemin die Zeit derEntladung eines ungefähr 100 Lieues langen Drathes etwa 4 mal so gross ist, als die der Ladung, und dass ein isolirter Draht etwa doppelt so stark geladen wird, als ein zur Erde abgeleiteter; dass endlich die Ladung sehr schwach ist, wenn die äussere Hülle nicht mit der Erde verbunden ist.

456 Beiträge zur Geschichte der Fortschritte in der elcktrischen

$$l: l_1 = sip \, \frac{\alpha}{2} : sin \, \frac{\alpha_1}{2},$$

d. h. die Länge zweier Stücken desselben Taus verhalten sich wie die Sinus der halben Ausschlagswinkel, welche bei Entladungen entstehen, die aus der Ladung mittels derselben Batterie herrühren.

Wheatstone fand mittels eines Galvanometers mit astatischen, an einem Coconfaden ohne Torsion aufgehängten Nadeln bei einem Umwindungsdraht von 233 preuss. Fuss Länge und 1/40 engl. Zoll Durchmesser in einem Tau von

bei 16 Daniell'schen Elementen				1 Meile 0º	8 Meilen 2,5°	16 Meilen Länge, 5 ⁰
,,	32	,,	,,	0	5	10
"	64	, "	,,	0	10	20
"	128	- ,,	**	2,5	20	41
,,	256	. "	>>	5	41	88
"	512	÷,	,,	10	88	88

Erscheint der Ladungsstrom nach den Zeiten l und l_1 an den Enden der beiden Taustücken von der Länge l und l_1 , so ist:

$$l: l_1 = \frac{l^2}{r^2 \log nal \frac{R}{r}} : \frac{l_1^2}{r_1^2 \log nal \frac{R}{r_1}} *)$$

(Zeitsch. d. Tel.-Ver. 6, S. 98) oder, falls wieder $\hat{R}: R_1 = r: r_1$ wäre, $l^2: l_1^2 = tr^2: l_1r_1^2.$

Die Ladungszeiten sind also unabhängig von den Batterien.

Bei der Berechnung der Geschwindigkeit, mit welcher telegraphische Zeichen durch eine Leitung gegeben werden können, ist die von Faraday zuerst beobachtete Bildung elektrischer Ladungswellen im Kabeldraht zu berücksichtigen. Unterbricht man nämlich die Verbindung des Drahtes mit dem freien Pole der zur Erde abgeleiteten Batterie, so verbreitet sich die bisher im Drahte angesammelte ruhende Elektricität über den ganzen Draht und der Strom beginnt im Messinstrumente nach einiger Zeit. Kehrt man die Batterie um, anstatt sie zu unterbrechen. so fliesst die vorhergehende Ladung theils durch das Messinstrument, theils vereinigt sie sich mit der nachfolgenden entgegengesetzten Elektricität. Bei schnellem Batteriewechsel bilden sich in beliebiger Zahl^{**})

*) Aus
$$t = \frac{x/^2}{3r^2 \lambda \log nat \frac{R}{r}}$$
; vgl. 2. Abth. S. 18 u. Zeitschr. d. Tel.-Ver. 7, S. 206. –

Pogg. Ann. 102, S. 66 ff. — In der durch die Ladung verbranchten Zeit liegt eine Ursache, weshalb die verschiedenen Messungen zur Bestimmung der Fortpflanzungsgeschwindigkeit der Elektricität so sehr von einander abweichende Werthe ergeben.

**) In langen Leitungen, wie die zwischen England und Amerika, konnte man (Wellen erhalten (Du Moncel, truité, S. 265).

Wellen, deren jede von der nachfolgenden entgegengesetzten verzehrt wird, sich aber dabei nach dem Ende hin bewegt und bei ausreichender Kraft das telegraphische Instrument bewegt. Wechseln lange und kurze Strömungen ab, so werden die kurzen Wellen von der vorhergehenden und folgenden leicht ganz oder über das praktisch zulässige Mass hinaus verzehrt (Zeitschr. d. Tel. Ver. 6, S. 97).

Die Grösse der Ladung (Elektricitätsmenge), welche ein Leiter auf die Längeneinheit mittels eines elektrischen Motors von der Spannung 1 erhält, nennt man seinen Ladungscoefficienten, seine Inductions- oder elektrostatische Capacität; derselbe ist für das Telegraphiren auf weite Entfernungen von grosser Bedeutung. Da die Ströme S und S_1 offenbar den die Leiter von der Länge l und l_1 durchströmenden Elektricitätsmengen proportional sind, so erhält man bei den Ladungscoefficienten C und C_1

$$\sin \frac{\alpha}{2} : \sin \frac{\alpha_1}{2} = S : S_1 = Cln : C_1 l_1 n_1.$$

Lässt man anstatt eines einzigen Entladungsstosses mittels eines Unterbrechungsrades eine Reihe rasch hinter einander folgender Entladungen durch das Galvanometer (Sinusbussole) gehen, so nimmt dessen Nadel während der Ladungen und Entladungen eine feste Ablenkung β und β_1 an; diese ist abhängig von der den Galvanometerdraht durchströmenden Elektricitätsmenge, d. h. von der Zahl *m* und m_1 der Ladungen in I Minute und der Elektricitätsmenge, welche bei jeder Entladung durch den Draht geht. Dann wird

$$\sin \beta : \sin \beta_1 = Cnml : C_1n_1m_1l_1.$$

Bei Tauen von sehr grosser Länge erfordert die Ladung einige Zeit; die vorstehenden Methoden setzen aber voraus, dass für beide Taue die volle Ladung in nahezu derselben Zeit erreicht werde. Bei nur einige Fuss langen Tauen erhält man nur bei rasch auf einander folgenden Ladungen und Entladungen in einer Bussole mit 20000 bis 30000 Umwindungen eine hemerkbare dauernde Nadelablenkung.

Als Einheit für den Ladungscoefficient wählt man die Ladung eines Condensators von 1 Quadratmeter Oberfläche, dessen ebeuso grosse, zur Erde abgeleitete zweite Platte durch eine Luftschicht von 1 Millimeter von der ersten getrennt ist. Danach ist der Ladungscoefficient eines Taus, dessen 1,5 Millimeter dicker kupferner Leitungsdraht mit einer 4 Millimeter dicken Guttaperchaschicht bekleidet ist, etwa 8,6.

Bei oberirdischen Leitungen findet nach Siemens (Pogg. Ann. 102, S. 108) auch eine Ladung statt, nur ist sie wegen der grösseren Entfernung des Drahtes von der Erde sehr schwach; sie wächst mit der Oberfläche und mit der Stärke der Krümmung bei gleicher Oberfläche, aus dem ersteren überwiegenden Grunde wächst sie mit dem Halbmesser, aus dem zweiten nimmt sie mit dem Halbmesser ab. 458 Beiträge zur Geschichte der Fortschritte in der elektrischen

Ein von einem Strome durchflossener (am Ende nicht isolirter) Leiter wird wegen der Ladung erst nach einiger Zeit einen dauernden elektrischen Zustand annehmen, obgleich die Elektricität fast augenblicklich am anderen Ende erscheint. Erst wenn der Draht vollständig geladen ist, geht der Strom regelmässig und in unveränderlicher Stärke durch den Draht. Die Dauer D des veränderlichen Zustandes ist bei 2 Leitern von gleicher Länge und gleichem Widerstande (oder Leitungsfähigkeit) proportional dem elektrischen Vertheilungsvermögen*) oder dem Ladungscoefficienten C. Mit der Länge / des Leiters wächst nicht blos die Ladung, sondern auch der von der Elektricität zu durchlaufende mittlere Weg; daher wächst die Dauer des veränderlichen Zustandes mit dem Quadrate der Länge. Sie wächst aber endlich auch im geraden Verhältniss zur Leitungsfähigkeit oder im umgekehrten zum Widerstande des Leiters; daher steht sie auch im umgekehrten Verhältnisse zu dem Querschnitte q des Leiters. Die elektromotorische Kraft der Batterie ist ohne Einfluss auf jene Dauer; denn wenn diese Kraft wächst, so wird zwar die Ladung eine schnellere, aber auch eine grössere und deshalb eine längere Zeit erfordernde **). Bei den specifischen Leitungsvermögen λ und λ_i ist daher

$$D: D_1 = \frac{Cl^2}{\lambda q}: \frac{C_1 l_1^2}{\lambda_1 q_1}; D = M \frac{Cl^2}{\lambda q}.$$

Bei gewöhnlichen eisernen Telegraphendrähten von 4 Millimeter Durchmesser und 500 Kilometer (etwa 65 Meilen) Länge, welche mittels der Isolirhüte auf Tragstangen in der Luft ausgespannt sind, schwankt die Dauer des veränderlichen Zustandes zwischen 0,014 und 0,022 Secunden, ist also im Mittel 0,018 Secunden. Bei einem Draht von 1 Meile Länge, aber von gleichem Widerstande $(l: l_1 = \lambda q: \lambda_1 q_1)$ wäre demnach diese Dauer nur 0,018:65 = 0,0003 Secunden; bei einem Drahte von der nämlichen Beschaffenheit, aber 100 Meilen Länge, würde die Dauer 100^e = 10000 so gross sein.

Nehmen wir nun nach der obigen Formel von Wheatstone die Ladung und damit auch den Ladungscoefficient proportional \sqrt{r} , so erhalten wir für den Draht von 4 Millimeter Durchmesser und 500 Kilometer Länge $C = \sqrt{2}$, $q = 4\pi$ und

$$0,018 = \frac{\sqrt{2} \cdot 500^2}{4\pi \lambda} \cdot M \text{ Secunden}$$

^{•)} Nach Gaugain geben Schwefel und Gummilack zwar schnell eine starke Ladung, die vollständige Ladung wird aber viel später erreicht, als bei Guttapercha (Du Moncel, traité, S. 273).

^{**)} Ueber die von Guillemin aufgestellten Gesetze, vgl. auch Dub, Anw. d. Elektromagn. S. 235, aus *Annales de chim. et de phys.* 60, S. 386. — Eine Vergrösserung der Dicke des Leitungsdrahtes wäre also auch aus diesem Grunde räthlich.

und daraus bei dem Halbmesser r Millimeter oder r_0 preuss. Linien und der Länge l Kilometer oder l_0 preuss. Meilen

$$D = \frac{\sqrt{r} l^2}{\lambda \pi r^2} \cdot M = 0.018 \cdot \frac{2\sqrt{2}}{r\sqrt{r}} \cdot \frac{l^2}{500^2} = 0.018 \cdot \frac{0.915\sqrt{0.915}}{r_0\sqrt{r_0}} \cdot \frac{l_0^2}{0.05^2}$$
Secunden.

Bei l = 500 Kilometer findet man für r = 1,5 Millimeter D = 0,027 und für r = 2,5 Millimeter D = 0,013 Secunden.

Wie schon erwähnt, ist der Ladungscoefficient bei einem Unterseetan 30-40 mal so gross, als bei einer Luftleitung; wäre nun die Leitungsfähigkeit des Drahtes dieselbe, wie bei einem 4 Millimeter dicken Eisendraht, so wäre die Dauer des veränderlichen Zustandes bei 500 und 2000 Kilometern Länge 30.0,018 = 0,54 und 4^e.0,54 = 8,64 Secunden. Bei einem Unterseetau mit einem 1,5 Millimeter dicken Kupferdraht und einer 4 Millimeter dicken Guttaperchalage würde die Dauer des veränderlichen Zustandes nahe ebenso gross sein, wenn sie nicht dadurch noch verlängert würde, dass die Elektricität in die isolirende Schicht eindringt.*)

Bei einem am anderen Ende isolirten Leitungsdrahte erstreckt sich die Ladung blos auf die Oberfläche und ist in ihrer Grösse durch die Grösse und Gestalt dieser Oberfläche bedingt; die Ladung ist proportional der Drahtlänge, wenn die Isolation so gut ist, dass in allen Punkten dieselbe Spannung herrscht; sie wächst mit dem Umfange des Drahtes und ist proportional der Spannung oder der elektromotorischen Kraft der Batterie. Die Dauer des veränderlichen Zustandes ist 4 mal so gross als bei einer zur Erde abgeleiteten Leitung, erfolgt also bei Unterseetauen keineswegs augenblicklich und die gesammte Ladung kann deshalb bei langen Leitungen nicht durch einen Galvanometernadelausschlag beim ersten Erguss der Elektricität in den Draht gemessen werden, weil dieser als durch einen momentanen Stoss erzeugt anzusehen ist.

Die Dauer der Entladung eines geladenen Drahtes lässt sich nicht mit grösserer Genauigkeit angeben, als die der vollendeten Ladung; die Entladung durch beide zur Erde abgeleitete Drahtenden erfolgt in derselben Zeit wie die Ladung; ist aber blos ein Ende abgeleitet, das andere isolirt, so dauert die Entladung 4mal so lange, als die Ladung. Bei Unterseetauen entladet sich die von Elektricität durchdrungene isolirende Schicht theils durch den Leitungsdraht, theils durch die äussere Schutzhülle, daher bemerkt man bei einem solchen Tau gleich nach erfolgter Hauptentladung an beiden Enden noch einen schwachen Strom, der um so länger anhält, je länger die Batterie mit dem Leitungsdrahte verbunden war, je mehr also die Elektricität in die Isolirschicht eindrin-

^{*)} Varley erhielt bei einem 1500 engl. Meilen langen, mit Guttapercha isolirten Drahte am andern Ende die grösste Intensität erst nach 7 Secunden, dieselbe hielt aber auch noch 7 Secunden nach Unterbrechung der Batterie an (Zeitschr. d. Tel.-Ver. 1, S. 287). Vgl. auch die Nachträge.

460 Beiträge zur Geschichte der Fortschritte in der elektrischen

gen konnte. Dadurch kann bei Unterseetauen die Ladung und Entladung um 15 bis 20 Minuten verlängert werden*). — Aus dem atlantischen Tau von 1866 entwich die von einer schwachen Batterie herrührende, also nicht starke Ladung, wenn beide Enden isolirt waren, so langsam, dass nach 1 Stunde kaum die Hälfte der Elektricität durch die Guttapercha in's Wasser übergegangen war.

Die zur Erzeugung eines Signals erforderliche Zeit, vom Anlegen der Batterie an dem einen Ende der Linie bis zum Entstehen des Signals am anderen Ende, ist nicht (wie die Dauer des veränderlichen Zustandes) proportional dem Quadrat der Länge; sie wird bedingt durch den Zeichengeber, die Empfindlichkeit des Empfangsapparates, Länge und Isolationszustand der Linie, die Batterie. Bei einer 500 Kilometer langen, 4 Millimeter dicken oberirdischen Eisenleitung waren für den Apparat von Hughes 0,002 bis 0,003 Secunden erforderlich, und diese Zeit änderte sich nahezu proportional zu der Länge der Linie; der Elektromagnet dieses Apparates ist sehr empfindlich, und daher kann man für einen Zeiger- oder Morse'schen Telegraphen bei 70-80 Daniellschen Elementen bei 500 Kilometern 0.01 Secunde und bei 1000 Kilometern 0,03 Secunden annehmen. Bei einer unterirdischen oder unterseeischen Leitung würden bei 500 Kilometern für den Elektromagnet von Hughes 0,09 Secunden, für ein gewöhnliches Relais 0,45 Secunden erforderlich sein. Hughes fand für seinen Apparat bei einem Unterseetau mit 1,6 Millimeter dickem Kupferdrahte und einer 2,4 Millimeter dicken Guttaperchaschicht bei Längen von

> 121 242 363 484 605 726 Kilometern 0,025 0,045 0,080 0,115 0,140 0,160 Secunden;

Whitehouse 1858 am transatlantischen Kabel mit Kupferlitze von 0,07 Millimeter Durchmesser und 3 Guttaperchalagen von 3,7 Millimeter Gesammtdicke bei einem gewöhnlichen Relais bei Längen von

233 398 796 Kilometern

0,14 0,34 0,79 Secunden.

Bei zu kurzer Dauer des Contactes erreicht der Strom nicht seine volle Intensität und kann deshalb möglicher Weise gar kein Zeichen hervorbringen, um so mehr als er hierzu mit der nöthigen Intensität eine hinreichend lange Zeit wirken muss; während der Entladungsstrom einer Leydener Flasche, selbst von sehr grosser Intensität' die Magnetnadel nicht ablenkt, thut dies ein viel schwächerer Strom von einiger Dauer. Die Dauer des Contactes kann indess stets kleiner sein, als die zur Erzeugung eines Signals erforderliche Zeit; sie beträgt bei einer gewöhnlichen, 500 Kilometer langen, oberirdischen Leitung für den Elektromagnet von Hughes 0,003, für einen gewöhnlichen Elektromagnet 0,01 Secunden. Bei einem Unter-

^{*)} Auf der Linie London-Amsterdam dauerte die Entladung etwa 1/2 Secunde. Digitized by

seetau von 726 Kilometern fand Hughes bei seinem Elektromagnet nur einen Contact von 0,021 Secunden erforderlich, während das Zeichen erst nach 0,160 Secunden erschien. Bei einem gewöhnlichen Relais muss auf einer Unterseelinie zur Erzeugung eines vollen Ankeranzugs der Contact 0,10 bis 0,15 Secunden dauern; für ein Galvanometer etwa 0,3 Secunden.

Die Geschwindigkeit der Aufeinanderfolge der telegraphischen Signale ist wesentlich durch die Dauer der Ladung und Entladung bedingt. Bei zu raschem Schliessen und Oeffnen der Batterie verschwindet der Strom im Empfangsapparate nicht ganz, sondern seine Intensität nimmt nur abwechselnd zu und ab. Ein Elektromagnetanker wird in dem Momente angezogen, wo der Strom ausreichend stark ist, und wieder losgelassen, sobald die Stromstärke so weit herabgesunken ist, dass die ihr entsprechende Magnetisirung nicht mehr ausreicht, den Anker angezogen zu erhalten; je näher sich diese beiden Stromstärken liegen, desto rascher können (abgeschen von der Zeichendauer) die Zeichen auf einander folgen. Die Empfindlichkeit des Empfangsapparates dagegen hat auf diese Geschwindigkeit keinen Einfluss. Beim Elektromagnet von Hughes wird der Anker mechanisch gegen die permanent magnetischen Pole angelegt und fällt daun ab, wenn der Strom diesen permanenten Magnetismus schwächt; daher hängt bei ihm die Geschwindigkeit des Telegraphirens vorwiegend von der Geschwindigkeit jener mechanischen Bewegung ab. Bei länger dauernden Zeichen, z. B. Morse-Strichen, wird die Ladung stärker, die Entladung dauert länger und man muss langsamer sprechen. Die Entladung kann man beschleunigen durch Anlegen einer Erdleitung nach jedem Strom (wie es beim Morse-Taster geschieht); durch Nebenschliessungen zur Eide von hinreichend grossem Widerstande (doch sind dabei Anlässe zu Störungen, namentlich zu Polarisation zu vermeiden); durch Anwendung von Inductions- und magnetoelektrischen Strömen*), welche wegen ihrer grösseren Spannung die zur Zeichengebung nöthige Stärke schneller erreichen; durch Ströme von wechselnder Richtung**), indem man z. B. zum Zeichengeben positive Ströme benutzt, zwischen je 2 positiven Strömen aber einen negativen zur theilweisen Entladung in die Linie sendet, weshalb auch dieser negative kürzere Dauer haben oder von einer schwächeren Batterie herrühren muss.

Bonelli berichtet, dass auf dem Cagliari-Malta-Tau mit etwa 2 Millimeter dicker Drahtlitze aus 7 Drähten und 2 Millimeter dicker

461

^{*)} Doch dürfen diese (ebenso auch die galvanischen) nicht so stark sein, dass sie die Guttaperchahülle gefährden.

^{**)} Die Zeichen abwechselnd durch einen positiven und negativen Strom hervorzubringen, ist weniger vortheilhaft, weil dann jeder negative Strom erst die ganze Ladung des positiven beseitigen und darauf den Leiter negativ laden muse

Guttaperchahülle kaum 75 Signale in 1 Minute gegeben werden konnten, und dass man bei schnellem Spiel beim Morse-Alphabet anstatt Punkten und Strichen nur kurze und lange Striche erhielt, indem auf einander folgende Punkte zu einem Strich verschwammen oder ganz ausblieben (Shaffner, telegraph manual, S. 509).

2. Die Apparate für Unterseelinien.

Die auf Unterseelinien zu verwendenden Apparate müssen vor Allem möglichst empfindlich sein, damit man mit möglichst schwachen Strömen telegraphiren kann; denn zu starke Ströme gefährden (abgesehen von der längeren Zeit zur Entladung) erfahrungsgemäss die Guttapercha theils durch zu grosse Erwärmung, theils durch Durchschlagen der Elektricität, und gerade in der Anwendung von zu starken Strömen in der bereits mangelhaft gewordenen und mit schwachen Strömen nicht mehr betriebsfähigen Leitung sucht man die eine Ursache des Misslingens der atlantischen Kabellegung vom Jahre 1858. Die Einrichtung der Apparate muss ferner den soeben erörterten Erscheinungen der Ladung und Entladung Rechnung tragen.

Auf den verschiedenen Unterseelinien kamen auch sehr verschiedene Apparate zur Anwendung. Auf der Linie Oxfordness-Haag wurden vorwiegend Doppelnadelapparate, jedoch auch Bain's elektrochemischer Schreibapparat verwendet (Zeitschr. d. Tel.-Ver. 1, S. 56); auf ersteren waren die Ladungserscheinungen weit weniger störend, wegen der sich wiederholenden Umkehrung der Stromrichtung. Auf derselben Linie benutzte man auch Morseapparate mit einer von Varley angegebenen Vorrichtung, durch welche der Strom bei jeder Bewegung des Tasters umgekehrt wurde; als Relais diente eine sehr empfindliche Galvanometernadel, welche aber nicht stumpf gegen einen festen Contact sich anlegte, sondern schief auf einer Goldfeder hinglitt, damit bei schneller Bewegung nicht etwa eine dünne Luftschicht zwischen Nadel und Contact bleiben und die Innigkeit der Berührung beeinträchtigen sollte; man telegraphirte bis 25 Worte in 1 Minute (Zeitschr. d. Tel.-Ver. 1, S. 288; Dingler's Journal 134, S. 418). Auch auf den Linien Varna-Sebastopol (?) und Varna-Constantinopel fanden Morscapparate Verwendung (Zeitschr. d. Tel.-Ver. 2, S. 108 und 284). Im persischen Golfe nahm Hughe's seine Typendrucktelegraphen (Zetzsche, Copirtelegraphen, Typendrucktelegraphen und Doppeltelegraphie, Leipzig 1865, S. 61) in Gebrauch.

Besondere Verdienste um die Vervollkommnung der Apparate für unterseeische Linien erwarben sich Siemens & Halske, Varley und Thomson.

a) Die Apparate von Werner Siemens & Halske.

Das Fortgeben der Telegramme vermittelt der Submarintaster (Zeitschr. d. Tel.-Ver. 6, S. 100). Während bei dem gewöhnlichen Taster Digitized by GOOSIC

~

Telegraphie. Von Dr. EDUARD ZETZSCHE.

Fig. 38 Taf. V die Luftleitung L mit der Axe 1 des Tasterhebels T, das Relais R mit dem Rubecontact 2 und der eine Pol der Batterie B mit dem Arbeitscontact 3, der andere Pol und das Relais aber mit der Erde E verbunden zu werden pflegt, ist der Marinetaster, um dem Entladungsstrome den Weg durch das Relais abzuschneiden, nach der Skizze Fig. 39 eingeschaltet; steht die Leitung L mittels des als beweglich gedachten Armes a mit s, in Bertihrung, so ist das Relais R zum Empfangen eingeschaltet; wird L dagegen mit s, verbunden, dann ist das Relais ausgeschaltet, der Taster zum Geben bereit, und sendet in seiner Ruhelage einen negativen Strom der Gegenbatterie B, beim Niederdrücken auf 3 aber einen positiven aus der Arbeitsbatterie B_1 in die Leitung; um endlich bei Herstellung der Verbindung zwischen L und s, nicht den letzten Entladungsstrom durch das Relais gehen zu lassen, berührt a auf seinem Wege nach s, kurze Zeit den mit der Erde E verbundenen Contact s. Der Tasterhebel ist zugleich mit seinen beiden Lagerständern um eine verticale Axe drehbar, wird aber durch eine Spiralfeder in seiner Ruhelage erhalten und dabei mit einer Contactschraube gegen einen mit dem Relais verbundenen Contact s, angedrückt; da die Tasteraxe durch ihren Ständer mit der Luftleitung verbunden ist, so ist das Relais zum Empfangen eingeschaltet; in dieser Ruhelage kann aber der Tasterhebel um seine horizontale Axe nicht niedergedrückt werden, weil sein Handgriff gerade über einem Anschlage der Grundplatte liegt. Soll der Taster zum Sprechen eingeschaltet werden, so wird er zuerst um jene verticale Axe gedreht; dadurch wird einerseits der nach dem Relais führende Contact von seiner Contactschraube verlassen und das Relais ausgeschaltet, andererseits aber durch einen gegen die Ständer isolirten Knopf eine mit dem Ruhecontact des Tasters verbundene Contactfeder s, an ihren nach der Gegenbatterie führenden Contact angedrückt, diese Batterie also geschlossen, so lange der Tasterhebel auf dem Ruhecontact liegt; drückt man dann den Tasterhebel auf den mit der Arbeitsbatterie verbundenen Arbeitscontact nieder, so wird die Gegenbatterie geöffnet und dafür die Arbeitsbatterie geschlossen. Wird endlich der Taster um die verticale Axe in seine anfängliche Lage zurückgeführt, so streift ein Vorsprung an ihm gegen einen mit der Erde verbundenen Contact s. und entladet die Linie. Die Ruhecontactschraube des Tasters legt sich nicht unmittelbar auf ihren Contact, sondern drückt eine ebenfalls mit dem Tasterständer und so mit der Luftleitung verbundene Feder auf diesen Contact nieder.

Das polarisirte Relais (Zeitschr. d. Tel.-Ver. 6, S. 102) ist sehr empfindlich. Sein senkrecht stehender Elektromagnet hat 2 Schenkel E und E_1 (Fig. 40), deren untere Enden durch einen Verbindungsanker wie gewöhnlich verbunden sind; an diesem Verbindungsanker ist ein winkelförmig nach oben gebogener Stablmagnet mit seinem Nordpol ver-

463

-

schraubt, macht also zugleich den Verbindungsanker und die beiden Eisenkerne des Elektromagnets in ihren oberen Enden nordpolarisch; auf dem Südpol S des Stahlmagnetes dagegen ist in einem Lager eine eiserne Zunge Z so befestigt, dass sie sich zwischen den oberen Elektromagnetpolen leicht bewegen kann, wobei ihre Bewegung durch 2 Schrauben dund d_1 begrenzt wird, deren eine d den Contact für den Schluss der Localbatterie bildet. Liegt diese südpolarische Zunge nicht genau zwischen beiden Polen, so wird sie von dem näheren angezogen. Die positiven Telegraphirströme durchlaufen den Elektromagnet so, dass der auf der Seite von d liegende Pol N der Kerne nordpolarisch, der auf der Seite von d_1 liegende. Pol N_1 aber südpolarisch wird; unter Einwirkung der Telegraphirströme überwiegt also die Wirkung von N auf die Zunge, bei der Einwirkung der entladenden Ströme der Gegenbatterie aber die Wirkung von N_1 . Will man ohne Gegenbatterie arbeiten, so muss die Zunge näher an N_1 liegen.

Um den Strom stets in der zur Erzielung der eben geschilderten Wirkungen nöthigen Richtung durch das Relais senden zu können, befindet sich vor dem Relais ein einfacher Stromwender (Zeitschr. d. Tel.-Ver. 6, S. 104), dessen Einrichtung Fig. 41 skizzirt; die Kurbel kdesselben kann durch Einschnappen eines Stiftes in das eine oder das andere von 2 Löchern in 2 Stellungen festgehalten werden; in der einen Stellung verbindet der eine mit der Kurbel verbundene Metallbügel mittels der aufschleifenden Federn die Klemmen 1 und 2, der andere Bügel die Klemmen 3 und 4 wie in Fig. 4P; in der anderen Stellung verbindet der eine Bügel die Klemmen 1 und 3, der andere die Klemmen 2 und 4 und der Strom durchläuft nun das Relais R in der entgegengesetzten Richtung.

Der polarisirte Schwarzschreiber (Zeitschr. d. Tel.-Ver. 6, S. 160) hat einen eben solchen Elektromagnet, wie das Relais, nur liegen seine Schenkel horizontal; nur die Pole stehen sammt der Zunge aus dem das Triebwerk zur Bewegung des Papierstreisens enthaltenden Kasten hervor; die Zunge ist rückwärts verlängert und hat an ihrem Ende eine Schneide, welche, wenn der Apparat schreibt, den Papierstreifen an die von einer täglich frisch anzufeuchtenden Schwärzwalze aus mit Farbe versehene vom Triebwerke umgedrehte Schwärzscheibe andrückt. Der Schwarzschreiber ist mit einer Selbstauslösung des Trieb- oder Laufwerkes versehen; es sitzt nämlich innerhalb des Kastens unmittelbar neben dem Schreibmagnet noch ein kleiner Elektromagnet E Fig. 42, welcher mit jenem in demselben Schliessungskreise liegt; so lange der Anker a nicht angezogen ist, liegt die Feder / am Ankerhebel bremsend mit einem durch das Laufgewicht p regulirbaren Drucke auf der kleinen Elfenbeinwalze g und hemmt das Laufwerk; wird a angezogen, so lässt f die Walze g und das Laufwerk los, zugleich aber stellt sich der seitwärts von p liegende Stiefel

s senkrecht, so dass er mit dem Absatze auf der darunter liegenden, auf einer Radaxe des Triebwerks sitzenden und sich deshalb mit drehenden Trommel *T* so lange tanzt, als telegraphirt wird; hört das Telegraphiren auf, so wird der Stiefel durch die Reibung von der Trommel wieder seitwärts mitgenommen; in Folge dessen senkt sich die Feder *f* wieder auf die Walze *g* und hemmt das Laufwerk. Bei den in neuerer Zeit gebanten Schwarzschreibern läuft die Schwärzscheibe mit ihrem unteren Theile in einem offenen Farbtroge und wird durch den Schreibhebel mit ihrem oberen Theile gegen den an dieser Stelle über eine scharfe Kante laufenden Papierstreifen angedrückt; auch ist ihr Rand fein gekerbt, damit. die Schrift deutlicher wird. Der Schwarzschreiber ist so empfindlich, dass er meist ohne Relais unmittelbar in die Leitung eingeschaltet werden kann.

Soll der polarisirte Schreibapparat als Translator (Zeitschr. d. Tel.-Ver. 6, S. 163) dienen, so wird die Einschaltung nach der Skizze Fig. 43 bewirkt. Bringt ein aus der Leitung Li eintreffender Strom das Relais R, zum Ansprechen, so wird die Localbatterie b geschlossen, der Schreibhebel h des Schreibapparates legt sich auf den Contact 3 und schliesst die Arbeitsbatterie B_1 , welche ihren Strom in die Leitung L_2 sendet, sobald der Arm a auf s. liegt; beim Rückgang des Schreibhebels erfolgt wieder eine Entladung mittels des Stromes_der Gegenbatterie B. Durch das Relais R, kann kein Rückstrom gehen; denn selbst wenn der Arm a von s, auf s, zurückgeführt wird, streift er erst s, und setzt dabei die Leitung L_2 ableitend mit der Erde E in Verbindung. Das Umschalten der Kurbel a erfolgt am Schreibapparat nicht durch Menschenhand, sondern von selbst, nämlich durch den auf der Axe des Hebels der Selbstauslösung (Fig. 42) sitzenden Commutatorhebel, indem sich dieser auf die eine oder die andere zweier Contactschrauben legt, von denen die eine mit dem Schreibhebel, die andere mit dem Relais in Verbindung steht; die Entladung (Stellung von a auf s_3) aber besorgt der Stiefel nder Selbstauslösung, welcher vorn an der Zehe und hinten am Abeatze isolirt ist, nicht aber in der Mitte der Sohle, so dass er in seiner ruhenden oder tanzenden Stellung nicht, wohl aber wenn er seitwärts abgleitet, den Hebel der Auslösung mit der Trommel T und durch eine auf dieser schleifenden Feder mit der Erde leitend verbindet. - Um bei Anwendung der Translation die vom Schreibhebel zu seiner Bewegung verbrauchte Zeit nicht von der Schliessungszeit der durch den Schreibhebel geschlossenen Batterie in Contact kommen zu lassen, haben Siemens & Halske dem Schreibhebel einen federnden Contact gegeben, so dass die Contactfeder ihren Contact früher erreicht, als der Schreibhebel ibn erreichen würde, und auf ihm selbst noch eine Zeit lang liegen bleibt, wenn der Schreibhebel schon seinen Rückgang begonnen hat (vgl. Jahrgang X S. 216 und 348). Auch der Commutatorhebel erhält solche

Contactfedern. — Die vollständigen Schemata der Einschaltung und Verbindung sämmtlicher Apparate, sowie die verschiedenen Stöpselungen sind beschrieben und durch Abbildungen erläutert in der Zeitschrift des deutsch-österreichischen Telegraphen - Vereins (6, S. 169) und daraus in Dub, Anwendung des Elektromagnetismus (S. 425), und in Schellen, der elektromagnetische Telegraph (4. Aufl. S. 490 und 495).

Die Apparate von Siemens & Halske kamen auch auf den unterseeischen Linien von Port-Vendres nach Algier und von Malta nach Alexandrien zur Anwendung.

b) Die Apparate von Cromwell Fleetwood Varley.

Am 16. Februar 1854 liess sich Varley 3 zusammen gehörige Apparate patentiren (Polytechn. Centralbl. 1855, S. 729 oder Dingler's Journal 136, S. 262 aus Repertory of Patent Inventions, April 1855, S. 293): einen Taster, ein Relais und einen Commutator (switch). Der Commutator befindet sich auf der Platte des Tasters und enthält eine auf zwei Ständern lagernde, mit der Leitung L verbundene Welle, deren Kurbel in zwei durch die Worte "Abgang" und "Empfang" bezeichnete Lagen gebracht wird; in der ersteren Lage liegt ein an der Welle befindlicher Stift h auf einer Feder g, in der anderen Lage ein Stift i auf einer Feder j; beim Umstellen des Commutators aus der einen in die andere Lage kommt ein dritter Stift o der Welle mit einer dritten, mit der Erde verbundenen Feder n in Berührung, wodurch die Leitung L bei jedem Wechsel entladen wird. Die Axe des Tasterhebels besteht aus zwei gegen einander isolirten, durch ein scheibenförmiges elfenbeinernes Mittelstück mit einander verbundenen Theilen; diese Theile stehen durch 2 Federn b und c, welche zugleich den Tasterhebel in seiner Ruhelage erhalten, mit den Polen C und Z der Telegraphirbatterie in Verbindung; das elfenbeinerne Mittelstück ist von 2 sich nicht berührenden metallenen Halbkreisen umgeben, von denen der eine mit dem Tasterhebel und dem Pol Z, der andere mit dem Pol C verbunden ist. Ist der Taster in seiner Ruhelage, so geht der positive Strom durch ihn in eine mit der Commutatorfeder g verbundene Feder /, und wenn der Commutator auf "Abgang" steht, durch den Stift h in die Leitung L, nach der anderen Station, wo der Commutator auf "Empfang" steht, durch den Stift i und die Feder j nach dem Relais, bewegt aber den Relaishebel so, dass die Localbatterie nicht geschlossen wird. Drückt man nun den Taster nieder, so wird zunächst die Leitung L mittels einer am Taster schleifenden Feder k (welche also jetzt zugleich mit f auf demselben Halbkreise aufschleifen muss) entladend mit der Erde verbunden, gleich darauf aber kommt k mit dem anderen Halbkreise in Berührung und bewirkt die Umkehrung des Stroms (weil f noch auf dem ersteren Halbkreise schleift), wodurch das Relais auf der Empfangsstation den Localstrom schliesst.

Telegraphie. Von Dr. EDUARD ZETZSCHE.

Das Relais (Fig. 44) ist dem Wesen nach ein Galvanometer, dessen Nadel in Folge einseitigen Uebergewichts sich mit einem an seiner Axe befestigten Arm d gegen eine Feder e anlegt und so den Localstrom schliesst; während jedoch der Taster sich in der Ruhelage befindet, durchläuft der Strom das Relais so, dass er den Arm d von der Feder e entfernt. Der Contact am Arm d hat eine Kugelhaube als Oberfläche. Die Regulirung des Relais wird durch Vergrösserung oder Verkleinerung des Uebergewichts in Folge einer grösseren oder kleineren Schrägstellung bewirkt. Der Empfangsapparat ist ein gewöhnliches Galvanometer.

Die in Fig. 45 abgebildete Einrichtung des Relais für Ströme von wechselnder Richtung von Varley erwähnt Du Moncel (traite, S. 488). Der Relaishebel ab liegt innerhalb der Spulen S und schwingt zwischen den Polen zweier permanenter Magnete P_1 und P_2 , welche zu ihm parallel zu beiden Seiten seiner Axe c liegen; an die beiden Arme seines Querhauptes d sind 2 Federn angelöthet, welche die beiden Cotactkugeln aus Platin tragen und mit diesen sich an die Stellschrauben v, und v, anlegen können.

Ein noch anderes Relais von Varley, welches für vérschiedene Zwecke dienen kann und einen polarisirten und einen nicht magnetisirten eisernen Hebel hat, beschreibt Glösener (traité des applications de l'électricité I, S. 215).

Ein anderer Apparat von Varley besteht aus einem eigenthümlichen Taster, nebst einem Relais (Switch). Mit diesem Switch steht eine besondere' Switchbatterie in Verbindung, so dass jede Station 2 Linienund 2 Localbatterien und für jede Linie 2 Relais (ein gewöhnliches und einen Switch) braucht. Beim Niederdrücken des Tasters wird der Strom der Linienbatterie nach der anderen Station entsendet und zugleich einem von der anderen Station kommenden Strome ein anderer Weg als gewöhnlich durch das Relais eröffnet. Diesen Weg durch den Switch nämlich verfolgt nach dem Loslassen des Tasters der Rückstrom und der Strom der Gegenbatterie; er ist jedoch dem Strome nur kurze Zeit geöffnet, nämlich so lange der Rückstrom dauert, damit dieser nicht durch das Relais gehe; dann wird dieser Weg unterbrochen und der alte durch das Relais hergestellt. Die Eröffnung des neuen Weges wird durch eine eigenthümliche Einrichtung des Tasters, dagegen die nicht plötzlich mit dem Loslassen des Tasters erfolgende Unterbrechung desselben durch den Der Taster hat ausser den gewöhnlichen 2 Contact-Switch bewirkt. kegeln und der Leitung nach der Hebelaxe noch 2 Klemmen, von denen die eine mit einem dritten Contactständer, die andere mit einer langen Feder verbunden ist, welche letztere beim Niederdrücken des Tasterhebels von diesem auf den dritten Contactständer aufgedrückt wird und dadurch die Switchbatterie schliesst; indem nun der Strom dieser Batterie den Switch-Elektromagnet a (Fig. 46) umkreistund dieser seinen Anker

Zeitschrift f. Mathematik u. I hysik XIII, 6.

467

463 Beiträge zur Geschichte der Fortschritte in der elektrischen

anzieht, unterbricht der Ankerhebel e zunächst den Weg über die Stellschraube u nach dem Relais, bringt dafür aber die Feder / mit der Schraube bei w in Verbindung. Damit nun beim Loslassen des Tasters, wo die Gegenbatterie in Thätigkeit tritt, nicht auch die Feder / loslässt, steht der Hebel e des Switch mit einem kleinen Gewicht, einem Zahnrad und einem Windflügel in Verbindung, wodurch er genöthigt ist, sich nur langsam zu senken und erst etwa 1/2 Secunde nach dem Loslassen des Tasters die Gegenbatterie zu öffnen und mittels des Contactes u das Relais wieder einzuschalten (Schellen, d. elektrom. Telegraph, 3. Aufl. S. 291). - Deutlicher lassen sich die Vorgänge an dem Einschaltungsschema Fig. 47 erkennen. Beim einfachen Telegraphiren ist der Umschalter U in 4 und 5 gestöpselt. Wird der Taster T niedergedrückt, so geht der Strom der Telegraphirbatterie B_1 über 3 und 1 nach 4 und durch L nach der Empfangsstation, daselbst aber aus L über 4 in U, 1 und 2 des ruhenden Tasters T nach dem Hebel e des Switch S über u durch das Relais R zur Erde E, so dass der Strom der Localbatterie b₁ über 5 des Umschalters U durch den Schreibapparat M geht; zugleich ist aber auf der sprechenden Station die Switchbatterie b, geschlossen worden und der Strom derselben geht über p durch den Taster T nach q durch den Switchelektromagneten nach r, daher wird der Switchhebel e der sprechenden Station angezogen, dadurch der Weg von 2 in Tüber e und den Contact u nach dem Relais R und zur Erde E abgebrochen, dafür aber die Feder f an den Contact wangelegt und der Weg von e aus über w und B, zur Erde E hergestellt; die Gegenbatterie R₂ ist aber noch nicht geschlossen, weil in dem noch niedergedrückten Taster 1 und 2 ausser Verbindung sind. Sowie aber der Taster in die Ruhestellung zurückgelangt ist, sendet die Gegenbatterie B, ihren Strom über w, e, 2 und 1 in T, 4 in U nach L zur Entladung, bis der Switchhebel sich in seine Ruhelage begiebt, wobei f von w fortgeht und e sich wieder an u anlegt. - Bei der Translation ist natürlich noch ein zweites eben so beschaffenes Apparatsystem (nach Befinden jedoch ohne Switch und mit gewöhnlichem Taster) vorhanden, etwa rechts von dem in Fig. 47 skizzirten. Der Umschalter U ist dann in 6 und 7 gestöpselt. Kommt nun in der einen Apparathälfte ein Strom aus L' durch U' und die Apparate dieser Hälfte: M, 2 in T, e und u in S durch R' zur Erde E, so spricht das Relais R' dieser Hälfte an, der Strom der zu R' gehörigen in der anderen Apparathälfte stehenden Localbatterie b', und Switchbatterie b', wird geschlossen und läuft von b'_1 über x durch R', 7 in U', 5 in W nach b'_2 , r', S' und M'. die beiden letzteren ziehen ihre Anker an, wodurch R ausgeschaltet und · zugleich ein Strom nach L weitergegeben wird.

Schellen (d. elektrom. Telegraph, 4. Aufl. S. 512) beschreibt einen auf der Unterseeleitung London-Amsterdam auf 8 Drähten ohne jede Schwierigkeit und Störung durch die Rückströme (mit einer Geschwindigkeit von ungefähr 300 Punkten in 1 Minute) arbeitenden Kabeltranslator

oder Switch von Varley, welcher nur eine Abänderung des polarisirten Relais ist. In Fig. 48 sind a und a, die Pole des Elektromagnetes, dessen Drahtenden / und /, sind; c ist der leichte Hebel, welcher mit seiner Drehaxe auf dem Südpolschenkel des Stahlmagnetes aufsitzt, während der Nordpolschenkel dieses Stahlmagnetes mit den Kernen des Elektromagnetes verschraubt ist. Im Ruhezustande zieht das Polende a, den Hebel c gegen die Schraube d: die Contactschraube d, ist mit dem Zinkpole der Gegenoder Zinkbatterie B, verbunden, während die Arbeits- oder Kupferbatterie B, mit dem Kupferpole nach dem Taster geführt ist. Die Polenden a und a_1 und die Contactschrauben d und d_1 sind so gestellt, dass der Hebel von jedem Polende an der Contactschraube, an welche er sich durch die Wirkung eines Stroms angelegt hat, auch dann noch festgehalten wird, wenn der Strom verschwindet, so dass es also jedesmal eines zweiten Stromes von entgegengesetzter Richtung bedarf, wenn der Hebel von einer Schraube an die andere gelegt werden soll. Der Widerstand der Drahtrollen entspricht ungefähr dem der ganzen Leitung. - Wollen 2 Stationen durch eine Unterseeleitung L mit einander sprechen, so haben sie beide die nämliche in Fig. 49 angedeutete Einschaltung, und in beiden ist der Umschalter U bei 4 und 5 gestöpselt. Wird der Taster T niedergedrückt, so geht der Strom der Kupferbatterie B, über 3 und 1 des Tasters und 4 des Umschalters nach dem Galvanometer G: von hier aus bieten sich ihm 2 Wege von gleichem Widerstande: der eine führt nach der Klemme / des Switch, die Drahtrollen des Elektromagnetes und über t_1 zum Zinkpole von B_1 zurück, der andere Weg führt durch das Galvanometer und in die Leitung nach der anderen Station. Auf der gebenden Station wird daher der Nordpol a verstärkt, der Nordpol a, geschwächt oder gar in einen Südpol umgewandelt, der Hebel c also gegen die Contactschraube d₁ angelegt; allein trotzdem kann die Zinkbatterie B, ihren entladenden Strom nicht eher in die Leitung senden, als bis der Taster in seine Ruhelage zurückgekommen ist; damit dieser Strom aber eine etwas längere Zeit erhalte, ist der Switchhebel auf der Contactseite mit einer leichten Stahlfeder versehen, welche die Zinkbatterie noch kurze Zeit geschlossen hält, wenn der Hebel bereits seinen Rückweg angetreten hat; natürlich muss auch der Tasterhebel beim Rückgang sich fest auf seinen Ruhecontact auflegen, weil sonst in Folge mangelnder Entladung der Rückstrom störend auftreten würde. Auf der Empfangsstation geht der Strom der Kupferbatterie B, durch das Galvanometer, den Hebel des ruhenden Tasters, durch den Switchhebel, durch das Relais R und durch die Erde E nach der gebenden Station zurück; durch die Switchdrahtrollen geht von e aus nur ein verhältnissmässig geringer Stromtheil, weil der Widerstand auf diesem Wege beträchtlich grösser ist; der Relaishebel schliesst natürlich den durch den Schreibapparat M gehenden Strom der Localbatterie b. Auch der Entladungsstrom der Zinkbatterie theilt sich bei e in 2 Theile, von denen der eine in die Leitung L geht und Digitized 132 000 C

den Rückstrom nentralisirt, während der andere Theil durch die Rollen des Switch geht und den Switchhebel in die Ruhelage zurückführt, so dass das Relais der gebenden Station wieder in die Leitung eingeschaltet wird. - Soll zwischen der unterirdischen Leitung L_1 und einer oberirdischen Leitung Le übertragen werden, so braucht die Translationsstation ausser den bisher erwähnten Apparaten der Fig. 49 noch den in Fig. 50 abgebildeten Wechsel W und den in Fig. 51 skizzirten Apparatsatz, welcher durch den Draht pp mit dem Apparatsatz der Fig. 49 verbunden ist. 'In Fig. 49 aber muss der Umschalter U1 ebenso wie der Umschalter U2 in Fig. 51 gestöpselt sein, nämlich in 6 und 7. Kommt nun ein Strom aus L_{q} , so geht er durch das Galvanometer G, über 6 in U, nach dem Hebel des Schreibapparates M_2 durch den Umschalter V und das Relais R_2 zur Erde E_i der Relaishebel schliesst die Localbatterie b_i , welche ihren Strom durch pp, R_2, U_1, n_2 und m_1 in W und M_1 sendet, worsuf der Schreibhebel von M_1 den Strom der Arbeitsbatterie B_1 in die Leitung L_1 weiter giebt, ebenfalls mit Stromtheilung bei dem Galvanometer G_1 , so dass zugleich auch der Switchhebel gegen die Schraube d_1 gelegt wird und beim Rückgang des Schreibhebels ein Entladungsstrom der Batterie B, die Leitung durchströmt. Um ein Zurückprallen des Schreibhebels vom Ruhecontact unschädlich zu machen, ist der Schreibhebel auch gegen diesen Contact hin mit einer leichten Feder versehen. Kommt ein Strom aus L₁, so geht er durch U_1 , M_1 , S_1 über d und f durch R_1 , schliesst dadurch die Batterie b_2 , deren Strom durch pp, R_1 , U_1 , n_1 und m_2 in W, durch M_2 geht, so dass der Hebel des Schreibapparates M₂ jetzt den Strom der Batterie B über U_2 und \mathcal{C}_2 nach L_2 weiter giebt.

Am 26 December 1862 liess sich Varley mehrere Telegraphirmethoden patentiren (Dingler's Journal 175, S. 329 oder Polytechn. Centralbl. 1863, S. 1625, aus *The Engineer*, August 1863, S. 95), bei denen die telegraphischen Zeichen nicht durch das Auftreten von Strömen (wie gewöhnlich), sondern durch Zu- und Abnahme der Stromstärke*) hervorgebracht und zugleich Ladungsplatten **) und Widerstandsrollen angewendet werden. Bei der ersten Methode sind auf der Empfangsstation zwischen Leitung L und Erde E eine Anzahl metallener, gegen einander isolirter Ladungsplatten P (Fig. 52) so angebracht, dass die Platten gerader Nummer mit L, die ungerader Nummer mit E verbunden sind; das Relais R

^{*)} Etwas Aehnliches war schon 1858 für R. A. Brooman patentirt worden (Jahrg. V, S. 46). Auch Caselli und Bonelli suchten bei ihren Copirtelegraphen die Rückströme unschädlich zu machen (Zetzsche, Copirtelegraphen, S. 12 u. 26).

^{**}) In gewisser Beziehung dem verwandt ist die Verwendung einer Gegenbatterie zur Beseitigung der Rückströme, wozu M. H Jacobi grosse Platinelektroden in einem Gefäss mit verdünnter Schwefelsäure, Gaston Planté Bleielektroden vorschlug (Zeitschr. d. Tel.-Ver. 7, S. 11 und 13). Ueber Jacobi's Gegenbatterie vgl. auch Du Moncel, traite, S. 354.

ist zwischen den Platten und L oder zwischen den Platten und E eingeschaltet; ausserdem ist zwischen L und E noch eine zur Erhöhung der Geschwindigkeit des Telegraphirens dienende Widerstandsrolle W eingeschaltet. Der ankommende Strom tritt auf der Empfangsstation mit allmälig wachsender Stärke auf und verzweigt sich theils nach den Ladungsplatten, theils durch W zur Erde; hat mit vollständiger Ladung der Platten die Stromstärke ihr Maximum erreicht, so hört der Zweigstrom durch das Relais auf, wenn auch der Strom in der Leitung fortdauert. Wird auf der gebenden Station der Strom umgekehrt, so senden die sich entladenden Platten einen Strom von entgegengesetzter Richtung durch das Relais. Bei der zweiten Methode schliesst ein Elektroscop, dessen beide Pole durch eine Widerstandsrolle verbunden sind, beim Wechsel der Stromstärke die Localbatterie. Bei der dritten Methode ist die äussere (primäre) Windung einer Inductionsspule mit der Leitung L und der Erde E verbunden, während der Empfangsapparat R in die innere (secundäre) Windung eingeschaltet ist und somit bei jedem Auftreten oder Verschwinden, Zu- oder Abnehmen eines Stromes in der äusseren Windung von einem Inductionsstrome durchlaufen wird. Der Eisenkern der Inductionsspule besteht aus einem Bündel Eisendrähten, welche 4 Mal so lang sind, als die Spule, worauf die äusseren und inneren Windungen aufgewickelt sind; diese Eisendrähte sind umgebogen, so dass sie die ganze Spule wie eine Büchse umschliessen. Bei der vierten Methode hat das Relais zwei Windurngen von verschiedener Länge und verschiedener Windungszahl; die erste Umwickelung habe z. B. halb so viel Widerstand und halb so viel Windungen, als die zweite, und es sei ein Elektromagnet und eine Inductionsspule vorhanden, dessen Widerstand dem der zweiten Umwickelung gleich ist. Wird nun die erste Umwickelung mit der zweiten und zugleich auch mit dem Elektromagnet verbunden, so geht jeder Strom ungetheilt durch die erste Umwickelung und verzweigt sich dann zur Hälfte in die zweite Umwickelung und zur anderen Hälfte in den Elektromagnet; da nun der Strom in der ersten und in der zweiten Umwickelung in entgegengesetzter Richtung fließst, so gleicht sich seine magnetisirende Wirkung aus und es würde folglich keine Wirkung im Relais auftreten, wenn nicht das Eisen jenes Elektromagnetes während des Magnetisirens dem Durchgange des Stromes eine Art Widerstand entgegenstellte, so dass der Strom in der zweiten Umwickelung etwas mehr als die Hälfte beträgt und ein Zeichen auf dem Relais giebt. - Bei der fünften Methode umkreist der Strom zwei Galvanometer von verschiedener Grösse, deren Nadeln sich zwar durch einen gegebenen Strom nach derselben Richtung bewegen und denselben Ausschlag erlangen, aber nicht gleich schnell. Die grössere und langsamere hat mehr Umwickelungen, giebt aber keinen grösseren Ausschlag, da ein Theil des Stromes in eine Widerstandsrolle abgezweigt ist Die Digitized by GOOGLE

471

472 Beiträge zur Geschichte der Fortschritte in der elektrischen

beiden Galvanometer bilden ein Relais; ihre Axen liegen vertical über einander, stehen aber nicht in metallischer Verbindung; die eine Axe trägt eine isolirte Gabel, bei welcher der eine Zinken isolirt, der andere mit einer kleinen Contactfeder mit Gold- oder Platin-Knöpfchen versehen Wenn die Nadeln sich nach der einen Richtung bewegen, so legt ist. sich die Contactfeder an einen von der Axe der anderen Nadel zwischen die Gabelzinken herabreichenden Stab und schliesst einen Localstrom; bei der Bewegung nach der anderen Seite wird der Kreis des Localstromes geöffnet. Oder es hängt von der Gabel ein Draht herab in einen halbkreisförmigen mit Wasser gefüllten Trog und zwischen den Gabelzinken hängt ein zweiter, gegen die Zinken isolirter Draht herab in den Trog, auf dessen Boden ein mit dem einen Batteriepol verbundener Draht liegt; der andere Batteriepol ist mit der einen Nadelaxe verbunden, von der Mitte der Batterie aber geht ein Draht durch ein (zweites) Relais nach der zweiten Galvanometeraxe. Wenn nun der Linienstrom sich in dem einen Sinne ändert, so werden, wegen der schnelleren Bewegung der kleineren Nadel, die beiden Drähte in der Flüssigkeit sich einander nähern; bei einer Aenderung der Stromstärke im entgegengesetzten Sinne entfernen sie sich von einander. Wurde nun die Entfernung der Drähte im Trog entsprechend gewählt (mit Zuhilfenahme von Widerstandsrollen), so wird in den genannten beiden Fällen ein Strom nach der einen oder nach der andern Richtung das (zweite) Relais durchlaufen, selbst wenn der Unterschied in der Entfernung der beiden Drähte weniger als 1/10 Zoll beträgt. Auch hier lassen sich mit Vortheil Inductionsplatten anwenden. - Wesentlich einfacher wird die Einrichtung, wenn man blos eine Galvanometer-Nadel nimmt und mit einem daran angebrachten Arm in das Wasser des Trogs tauchen lässt; ein Ende des Trogs ist dann durch die primäre Umwickelung einer Inductionsspule hindurch mit dem einen Pole der Batterie verbunden, während der andere Pol mit der Axe der Nadel in Verbindung steht; in die secundäre Umwickelung der Inductionsspule ist ein polarisirtes Relais oder ein anderer Telegraphen-Apparat eingeschaltet. Dreht ein Strom die Nadel nach der einen oder anderen Seite, so wird der Widerstand der Wassersäule grösser oder kleiner, deshalb nimmt die Stromstärke ab oder zu, es wird also ein Strom in der einen oder anderen Richtung in die secundäre Umwickelung inducirt und durchläuft das Relais. - Die Einschaltung der Batterie B in der gebenden Station kann verschieden sein, doch werden auch hier Inductionsplatten P zwischen Erde E und Kabel L eingeschaltet, und deren Spannung addirt sich beim Umkehren des Stromes zu der der Batterie. Solche Einschaltungen zeigen Fig. 3, 4 u. 5 auf Taf. 47 des Polytechn. Centralblatts vom J. 1863; in diesen Figuren sind durch W Widerstandsrollen angedeutet, welche einen schwachen Strom nach dem ersten kräftigen veranlassen sollen; die Inductionsrollen (Iin Fig. 4) sind von feinem Draht, enthalten ein Bündel Eisen-

drähte und befördern die Entladung des Kabels, indem sie nach ihrer vollständigen Magnetisirung, wenn der Strom von den Platten Paufhört, den Magnetismus verlieren und dabei einen entgegengesetzten Strom in die Leitung senden. Der Taster mag so eingerichtet sein, dass er die Leitung behufs der Entladung nach jedem Strom kurze Zeit mit der Erde in Verbindung bringt.

Die Contactfedern an dem Relaishebel sind nicht einfache flache Federn, sondern sie sind mit kleinen kuglichen Contactknöpfchen aus Platin versehen, wodurch die Tendenz zu Vibrationen wesentlich vermindert ist. Die Federn erhöhen zugleich die Empfindlichkeit der Relais, da sie die magnetische Anziehung zum Theil überwinden und so das Haftenbleiben verhüten. Bei dem einen Relais läuft der Hebel in eine Feder aus und hat 2 Contactschrauben gegenüber; erst legt sich die Feder auf die erste und dann der Hebel selbst an die zweite Schraube. - Beim Betrieb langer unterseeischer Leitungen ist es meist wichtig, zu wissen, wie die Zeichen auf der Empfangsstation ankommen. Um dies zu erfahren, soll eine sogenannte Prüfungsleitung in der gebenden Station angebracht werden, so dass, wenn Etwas am zeichengebenden Apparate oder die Batterie nicht in Ordnung ist, die Prüfungsleitung den Gebenden unterrichtet, was von seinen Zeichen wahrscheinlich auf der Empfangsstation ankommt, oder ob er zu schnell telegraphirt. Es genügt, dass der in die Prüfungsleitung gesendete Strom nur 1/10 von der Stärke des Stromes im Kabel hat. - Als Isolator wendet Varley zwischen den Ladungsplatten mit Paraffin getränktes Papier an.

c) Die Apparate von Edward Brailsford Bright in Liverpool

sind zum Telegraphiren mit gleich langen Strömen von wechselnder Richtung bestimmt und wurden am 13. Januar 1858 patentirt (Polytechu. Centralbl. 1859, S. 368, aus London Journal October 1858, S. 206). Beim Loslassen und Niederdrücken des Tasters dreht sich eine excentrische Scheibe, auf welcher Federn aufschleifen, allemal durch ein Uhrwerk mit Sperrvorrichtung um 90° und unterbricht dadurch oder schliesst den Strom in der einen oder anderen Richtung. Das Relais hat 2 Arbeitscontacte, an die sich der Hebel anlegt, um den Localstrom zu schliessen.

d) Die Apparate für die transatlantische Linie von Thomson und Varley.

Da man bei dem atlantischen Tau mit Rücksicht auf die Erhaltung desselben auf die Benutzung sehr schwacher galvanischer Ströme angewiesen war, so war die Anwendung von Apparaten mit Elektromagneten ausgeschlossen, weil bei diesen nur durch kräftige Ströme eine ausreichende Magnetisirung der Eisenkerne zu erzielen ist, und weil zugleich die Erzeugung und das Verschwinden des Elektromagnetismus eine merkliche Zeit erfordert. Die Galvanometer dagegen lassen sich durch Vermin-

Digitized by GOOGLE

derung des Nadelgewichtes und Vermehrung der Umwindungen beliebig empfindlich machen. Um den Nadelausschlag noch deutlicher wahrnehmbar zu machen, griff Professor William Thomson in Glasgow 1858 zu dem bereits 1833 von Gauss und Weber in Göttingen benutzten Spiegelgalvanometer*) zurück. Wirft der Spiegel AB (Fig. 53) den in der Richtung FTC durch einen Schlitz in dem mit einer Skala versehenen Schirme MM normal auffallenden Strahl der Lampe F in sich selbst zurück, so muss der Winkel FCE, um welchen der reflectirte Strahl CE nach der Drehung des Spiegels in die Lage $A_1 B_1$ von dem einfallenden Strahle FC abweicht, doppelt so gross sein, als der Drehwinkel ACA_1 , weil dieser ja eben so gross ist, als der Winkel DCF, um welchen das Einfallsloth DC jetzt vom einfallenden Strahle abweicht. Der Weg, den das Spiegelbild auf der Skala zurücklegt, ist ausserdem auch noch proportional der Entfernung des Schirms MM oder M_1M_1 von dem Spiegel AB, wodurch eine weitere Vergrösserung desselben möglich ist. Thomson gab nun seinem Reflex- oder Spiegelgalvanometer die aus Fig. 54 ersichtliche Anordnung. Das mit vielen tausend gut isolirten Windungen eines feinen Kupferdrahtes versehene Galvanometer G wird mit den Drahtenden x und y in die Leitung eingeschaltet; in der Mitte der Rolle hängt an einem feinen Coconfaden das sehr leichte Magnetstäbchen m. auf dessen Rücken ein kleines Stahlspiegelchen s so befestigt ist, dass die Spiegelebene mit der verticalen Ebene der Nadel m zusammenfällt und bei der Ruhelage der Nadel in dem magnetischen Meridian liegt, in welchen auch die Drahtwindungen eingestellt werden. Drei Fuss von dem Spiegel entfernt steht ein Schirm S mit einer Spalte T, welche sich durch einen Schieber nach Bedarf verengern lässt; eine dicht hinter dem Schirm stehende Lampe F wirft ein Lichtbündel durch die Spalte T auf die Sammellinse L, so dass das Bündel auf dem Spiegel s als eine helle und scharfe Lichtlinie erscheint und als solche vom Spiegel auf die etwas höher stehende Latte mit Skala MM geworfen und in einem dunkeln Raume dem Auge sichtbar wird **). So lange kein Strom in den Win-

^{*)} Dasselbe war schon von Poggendorff zu einem hohen Grade der Vollkommenheit und Genauigkeit ausgebildet und von Du Bois-Reymond in Berlin in der Weise, wie es jetzt von Thomson geschicht, bei seinen Vorlesungen zum Sichtbarmachen schwacher Nerven- und Muskelströme angewandt worden; auch Lamont und Wiedemann haben solche Apparate construirt, letzterer mit magnetisirtem Spiegel vor etwa 16 Jahren.

^{**)} Zum Hervorrufen der überraschenden Leistungen dieses Galvanometers reicht ein gewöhnlicher Multiplicator, auf dessen Nadel ein etwa einen halben Quadratzoll grosses Glasspiegelchen mit Wachs befestigt ist, völlig aus, wenn man nur eine recht intensive Gas-, Petroleum- oder Oellampe und eine ziemlich grosse Condensatorlinse von etwa sechs Zoll Brennweite anwendet, dabei aber durch Einschliessen der Lampe in einen mit einer Spalte versehenen Blechkasten alles Seitenlicht von der mit weissem Papier überzogenen Latte abhält.

dungen von G die Nadel m umkreist, steht dieselbe im magnetischen Meridian und die helle Lichtlinie, der Lichtzeiger (*index light*) steht im Nullpunkte der Skala. Geht ein Strom durch den Multiplicator G, so wird die Nadel mit dem Spiegel abgelenkt und der Lichtzeiger schreitet dabei auf der Skala um den doppelten Winkel nach rechts oder links fort.

In den Fig. 55 und 56 ist das Instrument in der Form abgebildet, wie es praktisch angewandt wird. (Dingler's Journal 181, S. 429 aus Engineer, Juni 1866, S. 447). Das Magnetstäbchen, wegen seiner Kleinheit in der Zeichnung kaum zu erkennen, ist einen halben Zoll lang, einen Zehntel Zoll breit und einen Zehntel Zoll dick; das damit verbundene kreisrunde Glassilberspiegelchen ist nur einen Zweihundertstel Zoll dick, beide zusammen wiegen nur ein Zweiundzwanzigstel preussisches Loth; Spiegel und Magnet können übrigens so zart gearbeitet werden, dass ihr Gesammtgewicht nicht mehr als 11/2 Grains (ein Einhundertsechzigstel preussisches Loth) beträgt und derartige Apparate sind von Thomson bereits ausgeführt worden. Das Magnetstäbchen besteht dann aus einem kleinen Stück einer sehr feinen Uhrfeder und das Spiegelchen aus einem der dünnsten Mikroskopdeckgläschen, welches auf der einen Seite chemisch versilbert ist. Die Multiplicatordrähte G sind in mehrere Rollen vertbeilt und so in Gruppen angeordnet, dass man je nach Bedürfniss das Instrument für schwache oder starke Ströme anwenden kann. Sie sind mittels Platten von Hartkautschuk an dem Gehäuse D befestigt. In der Mitte derselben ist die Magnetnadel mit ihrem Spiegelchen an einem Coconfaden aufgehängt, und dicht davor befindet sich die kleine Sammellinse, deren Brennpunkt beinahe im Spiegel liegt. Das luftdicht schliessende Gehäuse D hält jede störende Einwirkung von Luftströmungen auf die Nadel fern. Ein gekrümmter Stahlmagnet NS ist au der Aufhängeröhre p mittels eines eigenen Halters so befestigt, dass er mittels der Mikrometerschraube v verrückt und eingestellt werden kann, bis er auf die Nadel so einwirkt, dass in dessen Ruhelage das von der Mitte des Spiegels reflectirte und ebenfalls durch die Linse zurückgehende Licht auf dem Nullpunkt der Elfenbeinskala MM einspielt. Der Rahmen R hält jede weitere Verbreitung des Lampenlichtes von dem Telegraphenapparate ab, so dass der Lichtzeiger E scharf auf der dunkeln Skala MM Thomson hat übrigens die Absicht, die Skala so anzuhervortritt. ordnen, dass die telegraphischen Signale auf photographischem Papiere gleich fixirt werden (Engineer, Juli 1866, S. 2). Zur Erzielung der erforderlichen Empfindlichkeit ist das ganze Instrument auf einem gegen alle seitlichen Erschütterungen geschützten und gemauerten Steinpfeiler in einem dunkeln Zimmer aufgestellt, welches nur für den mit dem Empfange der Depeschen beauftragten Beamten zugänglich ist. Dieser Beobachter sitzt hinter dem Galvanometer, den Blick unverwandt auf Digitized by GOOSIC

den Lichtzeiger gerichtet, der je nach der Stromwirkung auf der Elfenbeinskala rechts oder links ausschwingt.

Soll das Instrument als Marinegalvanometer dienen (Schellen, das atlant. Kabel, S. 144), so dürfen die Schwankungen des Schiffs die Stellung des Spiegelchens gegen die Skala nicht ändern. Deshalb wird das Magnetstäbchen vermittelst eines Coconfadens sowohl oben als unten an das die Drahtwindungen tragende Holzrähmchen AB befestigt und, wie Fig. 57 zeigt, in der Mitte der Multiplicatorwindungen einge-Der Coconfaden muss genau durch den gemeinschaftlichen spannt. Schwerpunkt des Magnetstäbchens und des Spiegelchens gehen, so dass letzteres, wenn der Multiplicatordraht gedreht oder geneigt wird, seine Lage zu der Skala und zu dem darauf erscheinenden Lichtzeiger unverändert beibehält. Der Einfluss der Schwere der Erde wird hierdurch aufgehoben, und der Magnet behält unter allen Stellungen des Instrumentes dieselbe verhältnissmässige Lage zu der Skala, welche mit ihm auf demselben Tischbrette befestigt ist. Ferner muss der Einfluss des Erdmagnetismus auf den Magnet aufgehoben werden, indem man den Multiplicatordraht nebst Magnet und Spiegelchen in eine Büchse von starkem, weichem Eisen einschliesst und zugleich im Innern dieser Büchse einen mässig starken Stahlmagnet NS in Hufeisenform so aufstellt, dass seine beiden Pole die Drahtrollen zwischen sich fassen. Da die magnetische Wirkung dieser Pole auf die Magnetnadel stärker ist, als die Richtkraft der Erde, so wird letztere dadurch aufgehoben und die Nadel stellt sich in der Ruhelage bei allen Stellungen des Instrumentes in die Linie SN, welche die Pole des Hufeisenmagnets verbindet.

Mit einem so eingerichteten Marinegalvanometer lassen sich selbst hei sehr stürmischem Wetter auf der See alle Arten galvanometrischer Messungen eben so leicht und sicher ausführen, wie auf dem Lande; weder der stets wechselnde Cours des Schiffs, noch die hochgehenden Wellen der See haben auf die Ablenkungen des Lichtzeigers irgend einen Einfluss. Der seitliche Hufeisenmagnet beeinträchtigt die Empfindlichkeit des Instrumentes etwas; bei seiner Anwendung als Schiffsgalvanometer pflegt man daher auch etwas stärkere Ströme anzuwenden, als es sonst erforderlich ist.

Bezüglich der Erzielung eines möglichst schnellen Telegraphirens einigten sich Thomson und Varley dahin, durch einen positiven Strom den Lichtzeiger nach rechts abzulenken, bei Unterbrechung desselben durch einen (etwas stärkeren oder länger andauernden) negativen den Lichtzeiger nach der Ruhelage zurückzuwerfen, vor Erreichung derselben aber ihn zur Verhinderung von lebhafteren Schwingungen durch einen dritten (kürzeren oder schwächeren) positiven Strom aufzuhalten, darauf die vom dritten Strom herrührende Ladung durch einen vierten noch kürzeren negativen Strom zu beseitigen und endlich durch einen

ĭð

Telegraphie. Von Dr. EDUARD ZETZSCHE.

fünften ganzkurzen positiven Strom die Nadel in der Ruhelage zum Stillstand zu bringen. Nach Versuchen an dem im Great Eastern liegenden Kabel mussten sich die Ströme der Dauer nach wie + 100:-156:+80:-32,5:+26 verhalten. Diese fünf Ströme geben ein einfaches Signal oder Urzeichen. Aus den positiven und negativen Urzeichen (Ablenkung nach rechts und links) kann man Gruppen zur Bezeichnung der Buchstaben und Ziffern bilden. Bei dem atlantischen Kabel dagegen verwandte man nicht positive und negative, sondern Urzeichen mit gleichsinnigen, aber verschieden grossem Ausschlag und liess einen Ausschlag von 15° einen Morsestrich, einen Ausschlag von 20° einen Morsepunkt bezeichnen. Ausserdem kam bei der atlantischen Telegraphie der Signalcodex des englischen Capitains F. J. Bolton (Dingler's Journal 183, S. 337 ans Génie industriel Decbr. 1866, S. 316) zur Anwendung, welcher Marryat's Schiffscodex in einem gewissen Grade ähnlich ist. Von seinen 5 Theilen enthält der erste auf den Seiten 0-9 mit den Zeilen 0-9 die Buchstaben, Ziffern, Interpunctionszeichen und Dienstphrasen, der zweite enthält auf den Seiten 00-99 mit den Zeilen 0-9 die Silben der englischen Sprache, der dritte auf den Seiten 000-999 mit den Zeilen 0-9 häufig vorkommende Ortsnamen, die Monate, Tage, Stunden und Signale für commercielle, industrielle und politische Nachrichten, der vierte auf den Seiten 0000-9999 mit den Zeilen 0-9 die Worte der englischen Sprache und einige Sätze, der fünfte endlich auf den Seiten 00000-99999 mit den Zeilen 0-9 alle bekannten Ortsnamen und eine Reihe von Sätzen. Bei Benutzung des ersten, zweiten, dritten, vierten oder fünften Theils werden Gruppen von je 2, 3, 4, 5 oder 6 Ziffern telegraphirt. Die Benutzung dieser 5 Codices soll die Geschwindigkeit des Telegraphirens um 100% erhöhen.

Den von Thomson und Varley angegebenen Zeichengeber zum Hervorbringen positiver und negativer Urzeichen machen die Fig. 58-64 anschaulich (vgl. Dingler's Journal 181, S. 423 aus Engineer, Juli 1866, S. 433). Die Hauptwelle AA wird während des Telegraphirens durch ein Uhrwerk in dauernder Umdrehung erhalten; auf sie ist ein hohler Cylinder BB lose aufgesteckt, welcher in einer Reibungsscheibe D endet; durch die auf B. liegende, sich einerseits gegen die auf A sitzende Scheibe T, andererseits gegen eine auf B sitzende Scheibe L anstemmende, kräftige Spiralfeder F wird D unter Vermittelung einer geölten Lederscheibe an die auf A befestigte Scheibe C angepresst; daher wird C den Cylinder B mitnehmen, so lange D sich frei bewegen kann, d. h. so lange sich nicht der zweimal rechtwinkelig gebogene, durch eine Feder auf D aufgedrückte, um die Axe cc drehbare Sperrarm G in die Nuth p (Fig. 62) am Umfang von D einlegt. Wird eine der 'Tasten P, oder P, auf den darunter befindlichen Stempel niedergedrückt und gleich wieder losgelassen, so hebt sie zunächst G von D ab und geht dann durch die Wirkung einer Feder gleich wieder in die Ruhelage zurück; dadurch ist aber B frei geworden und

kann A während einer Umdrehung folgen, bis sich G wieder in die Nuth p einlegt. Nun sitzen aber auf B noch 2 unter den Federn fi und fa liegende, sectorförmig ausgeschnittene parallele Scheiben L und M (Fig. 59 und 60); L mit 3 Ausschnitten liegt unter f_2 , M mit 2 Ausschnitten unter f_1 , und zwar sind diese beiden Scheiben, wie Fig. 61 zeigt, so gestellt, dass die massiven Sectoren der einen den leeren der andern gegenüberstehen; nur wenn beide Federn fi und fe in dem leeren Ausschnitte 6 ruhen, stehen demnach beide Federn tief, sonst ist die eine gehoben und die andere gesenkt und dabei tritt die gehobene mit einer der oberen Contactfedern v, oder v, die gesenkte mit einer der unteren Contactfedern V1 oder V2 in Berührung; diese Contactfedern haben Platincontacte; die Feder f, steht mit der Kabelklemme K, die Feder f, mit der Erdleitung E in Verbindung. Die Tasten P1 und P2 sind unabhängig von einander in den Lagern m_1 , m_2 und m_3 drebbar, heben mit ihrem bintern Ende den Sperrarm G, mit dem vordern Ende dagegen wirken sie auf die beiden metallenen Arme z_1 und z_2 des Hebels des Commutators (Fig. 63); diese Arme sitzen an einer um die Axe kk drehbaren Scheibe, sind aber gegen einander isolirt und mit je einem Pole der Telegraphirbatterie b leitend verbunden; die Arme z, und z, schleifen federnd auf den Contactstücken o_1 und o_2 , u_1 und u_2 des Commutators, von denen o_1 und o_2 unter sich verbunden, aber gegen die ebenfalls unter sich verbundenen u_1 und u_2 isolirt sind; letztere beide stehen durch den Draht r mit den Contactfedern v_1 und v_2 , erstere durch den Draht q mit den Federn V_1 und V_2 in Verbindung. Wird die Teste P_i niedergedrückt, so kommt z_i mit o_i und z_2 mit u_2 , wird P_2 niedergedrückt, so kommt z_1 mit u_1 und z_2 mit o_2 in Berührung; im ersteren Falle geht der positive, im anderen der negative Strom von b über v_2 und L in das Kabel K.

Die Vorgänge beim Telegraphiren sind nun leicht zu übersehen. Stehen beide Tasten in der Ruhelage, so liegt G in der Nuth p und verhindert B, die Drehung von A mitzumachen, f_1 und f_2 liegen in den Ausschnitten 6, daher ist die Batterie b nicht geschlossen, aber das Kabel K steht durch f_1 und f_2 , V_1 und V_2 mit der Erde E in Verbindung und ein ankommender Strom kann auf dem Galvanometer ein Zeichen hervorbringen. Wird die Taste P_1 niedergedrückt und so G gehoben, z_1 mit u_1 und z_2 mit o_2 in Berührung gebracht, so macht *B* eine Umdrehung mit *A*: dabei schleift erst f_2 auf 1 in L und kommt mit v_2 , f_1 aber gleichzeitig mit V_1 in Berührung und der positive Strom geht von *b* aus über *h*, z_1 , u_1 , u_2 und r, v_2 und f_2 nach K; gleich darauf schleift f_1 auf 2 in M auf, tritt mit v_1 , f_2 aber mit V_2 in Berührung, so dass jetzt ein negativer Strom von b über z_2 , o_2 , q, V_2 und f_2 nach K geht; beim weiteren Drehen des Cylinders B kommen dann noch die Sectoren 3 in L, 4 in M und 5 in L der Reihe nach unter die Federn f_1 und f_2 , wodurch noch ein positiver, darauf ein negativer und endlich noch ein positiver Strom in das Kabel.

Telegraphie. Von Dr. EDUARD ZETZSCHE.

gesendet wird. Endlich fällt G wieder in die Nuth p und nun kann ein neues Zeichen abgesendet werden, was dem Telegraphisten durch den Ton bemerklich gemacht wird, den eine von der Nase einer auf dem Cylipder B sitzenden Scheibe (Fig. 64) abspringende Stahlfeder erzeugt. Beim Niederdrücken der Taste P_{*} ist der Vorgang ganz ähnlich, nur sind u und \circ jetzt mit anderen Polen von b verbunden, daher haben alle Ströme jetzt das entgegengesetzte Vorzeichen. Dass die auf einander folgenden Ströme die richtige Dauer haben, bewirken die genau abgemessenen Längen der Ausschnitte. Nach jedem Urzeichen tritt das Kabel mit der Erde in leitende Verbindung. Die Hauptwelle A kann 100-200 Umdrehungen in 1 Minute machen; bei Zusammenstellung der Buchstaben und Ziffern aus 2 Urzeichen sind durchschnittlich 3,7 Urzeichen zu je einem Buchstaben erforderlich; bei 100 Umdrehungen kann man daher in 1 Minute 27 Buchstaben (= 5,4 Worte) telegraphiren; in der That telegraphirt man 6-10 Worte in 1 Minute (vgl. auch Zeitschr. d. Tel.-Ver. 11, S. 72 und 73).

Der vorstehend beschriebene Apparat lässt sich auch leicht dahin abändern, dass beim Niederdrücken der einen oder der andern Taste ein Strom von demselben Vorzeichen, aber von verschiedener Stärke in das Kabel gegeben wird. Da der Strom auch auf der Abgangsstation durch das Galvanometer geht, so bewegt sich hierbei der Lichtzeiger beim Geben vom Nullpunkt aus auf der einen, beim Empfangen von Zeichen auf der andern Seite der Skala.

Die angewandte Batterie besteht aus 20 Daniell'schen Elementen, deren Zinkzellen blos mit Wasser gefüllt sind, indem die durch Zersetzung des Kupfervitriols sich bildende, zur Leitung des Stromes erforderliche Schwefelsäure von selbst zur Zinkzelle übergeht; doch gelang es sogar durch die zu einem Stromlauf vereinigten Taue von 1865 und 1866 mittels eines Stromes zu telegraphiren, den man erhielt, indem man in einen silbernen Fingerhut verdünnte Schwefelsäure goss und 2 Stückchen Zink und Kupfer in die Flüssigkeit tauchte (*Les Mondes* XII, S. 270).

IV. Die Legung des atlantischen Telegraphentaues zwischen Irland und Neufundland.

Eine eingehende Schilderung der Vorkommnisse bei den 3 ersten atlantischen Kabellegungen in den Jahren 1857 und 1858 kann hier um so eher unterlassen werden, als diese 3 Unternehmungen in der seitdem verflossenen Zeit wiederholt eine ausführliche Besprechung gefunden haben. Die Vorgänge bei dem nach gründlichen Vorarbeiten (Zeitschr. d. Tel.-Ver. 3, S. 175) begonnenen Unternehmen d. J. 1857 beschreibt u. A. Delamarche in den Elementen der unterseeischen Telegraphie (deutsch von Vichelmann, Berlin 1859, S 68-92) sehr ausführlich; desgleichen Shaffner im telegraph manual (S. 622-634), auch in Dingler's Journal (146, S. 104-114) findet sich eine längere Mittheilung darüber aus dem

479

Civil Engineer and Architect's Journal (August 1857, S. 245), dem Cosmos. revue encyclopedique (August 1857) und dem Mechanics' Magazine (29. August 1857); ähnlich in der Zeitschr. d. Tel.-Ver. (4, S. 233). Das Tau riss jedenfalls in Folge zu starker Bremsung der Auslegmaschine. Nach Yerbesserungen der Auslegmaschine durch Wm. E. Everett, Appold und Charles Bright, nach den umfänglichen Versuchen des Prof. Thomson über die Leitung des Kupferdrahtes und nach der Erfindung des Spiegelgalvanometers und des Marinegalvanometers im März und April 1858, schritt man zu den beiden Versuchen des Jahres 1858, deren erster mit dem Reissen des Taus endete, während der zweite auf kurze Zeit eine telegraphische Verbindung zwischen Europa und Amerika herstellte. Die Ursachen des Misslingens und die Wahrscheinlichkeit des endlichen Gelingens bespricht Maury im Civil Engineer and Arch. Journal (1859, S. 221 und 320), Siemens in Dingler's Journal (151, S. 380; gegen Mohr, Bd. 150, S. 285), Varley und Henley in Shaffner's telegraph manual (S. 637 bis 647); vgl. auch Schellen, das atlantische Kabel (S. 40-60). Der 1858 mit verwendete Rest des Taus von 1857 war schlecht isolirt, während seiner Verfertigung nicht gründlich geprüft worden und hatte inzwischen mehrere Monate trocken und nicht kühl genug gelegen; trotzdem ward er ohne durchgreifende Ausbesserung und in einer nach Maury's Erfahrungen günstig gewählten Zeit versenkt; die Risse in der Guttapercha erzeugten Stromverluste, man griff daher zu immer kräftigeren, abwechselnd positiven und negativen Strömen*) und unter dem Einfluss derselben ward die Oxydation des Kupferdrahtes und die Zerstörung des Taus bald eine vollständige. Alle Versuche der Wiederherstellung waren vergeblich. Das Unternehmen hatte der Gesellschaft 379029 Pfd. St. (nach einer anderen Angabe 1350000 Pfd.; D. Ind.-Ztg. 1866, S. 449) gekostet, obgleich die englische und amerikanische Regierung die 2 Auslegschiffe und ihre 3 Begleitdampfer unentgeltlich dazu hergegeben hatten.

Die zur Verbindung Europas und Amerikas gewählte Linie hatten die Sondirungen als eine sehr günstige erkennen lassen. Von Irland bis 11° 15' westlich von Greenwich ist der Meeresboden sandig und die Tiefe nimmt allmälig bis 19 Faden zu, bei 12° ist felsiger Boden in 200 Faden Tiefe, von da bis 13° 15' schlammiger mit durchschnittlich 400 Faden Tiefe; die sandige Ebene zwischen 13° 30' und 14° 30' liegt im Mittel 200 Faden, der felsige Boden unter 14° 48' 550 Faden, der schlammige unter 15° 6' 1750 Faden tief (irischer Abhang, mit der stärksten Neigung). Zwischen dem irischen Abhang und dem 45° wechseln die Tiefen

^{*)} Die telegraphische Verbindung zwischen den beiden das Tau auslegenden Schiffen ward durch 2 sogenannte Sandbatterien unterhalten, welche aus 240 Paaren Zink- und Kupferplatten von 14 Quadralzoll Oberfläche bestanden; diese Platten waren in verdünnte und zum Schutz gegen das Verschütten mit Sägemehl angemachte Schwefelsäure eingesetzt.

mit sanften Uebergängen zwischen 1450 und 2400 Faden (Maury: Telegraphenplateau), sind also wesentlich geringer, als anderwärts im atlantischen Ocean. Zwischen 45° 28' und 45° 45' nimmt die Tiefe von 2225 auf 1450 Faden ab. Fig. 67 zeigt den Verticalschnitt des Telegraphenplateaus; die Länge und Breite der Punkte, deren Tiefe in Faden eingeschrieben ist, ergiebt sich leicht aus der zugehörigen Fig. 65. Den zwischen A und B gelegenen irischen Abhang zeigt Fig. 66 in etwas geringerer Vergrösserung der Tiefen.

Da die gerade Entfernung von St. Johns auf Neufundland bis zur Insel Valentia 1640 englische (= 356 deutsche) Meilen beträgt, so hatte man 2500 Meilen Tau zur Hälfte bei Glass und Co. in Greenwich, zur Hälfte bei Newall & Co. in Birkenhead anfertigen lassen und 1858 lieferte Glass noch 900 Meilen nach. Das in Fig. 21 (Taf. I) abgebildete etwa 16 Millim. dicke Tau hatte einen 2 Millim. dicken Strang von 7 Kupferdrähten, von denen 6 um den 7. gewunden waren, darüber 3 Lagen Guttapercha, welche zusammen 2 Millim. dick waren, dann eine Lage aus fünf Fäden Hanfgarn, getränkt mit einer Mischung von 5/12 Stockholmer Theer, 5/12 Pech, 1/12 gekochtem Leinöl und 1/18 gewöhnlichem Wachs; die 18 Litzen der Schutzhülle bestanden aus je 7 Holzkoblen Eisendrähten Nr. 22 (2 Millim. Dicke). Das von der letzten Maschine ablaufende Tau wurde durch eine heisse Mischung aus Theer, Pech und Leinöl gezogen. Das Gewicht einer Meile betrug 1 Tonne, nämlich das Kupfer 93 Pfd., die Guttapercha 237 Pfd., die Garnhülle 2 Centner, die Schutzhülle 15 Centner, der äussere Ueberzug von Pech 16 Pfd.; im Wasser wog es 13,4 Centner; seine Festigkeit betrug 3,25 Tonnen, d. h. nahe 70 Kilogramm auf 1 Quadratcentimeter. Die Eisendrähte liefen aus Versehen bei der einen Hälfte rechts, bei der anderen links herum. Die Küstenenden hatten eine doppelte Hanflage und 12 Eisendrähte von 7 Millim. Dicke, nach dem Tiefseetau zu aber verjüngte es sich bis zur Stärke des letzteren.

Im Jahre 1865 wurde das zum Tau zu verarbeitende Material von der dazu niedergesetzten wissenschaftlichen Commission (Galton, Fairbairn, Wheatstone, Thomson, Whitworth) geprüft; es wurden demnach über 120 verschiedene Probetaue angefertigt, vorwiegend Abänderungen des Constructionsprincips, welches von der Commission bereits unter den in Folge eines öffentlichen Ausschreibens eingelieferten Tauproben ausgewählt worden war. Als Preis für das 2300 Seemeilen lange Kabel waren 700000 Pfd. Sterl. festgesetzt und für den Fall des Gelingens noch 137170 Pfd. in alten ungarantirten Actien der *Atlantic Telegraph Company*; jedoch betheiligten sich Glass und Co. selbst mit 315000 Pfd, da 1864 erst 285000 Pfd. gezeichnet waren. Fig. 22 zeigt das Tau; der Kupferstrang war in Chatterton's Masse gehüllt, sonst wie 1858, nur wog die Seemeile nicht 107, sondern 300 Pfd.; Drahtdicke Nr. 18; Strangdicke fast 4 Millim.; Gewicht der 4 Lagen Guttapercha, welche mit Chatterton's Mischung abwechselten, 400 Pfd. (1858 nur 261); die Schutzhülle bildeten 10 Eisendrähte (homogenous iron) Nr. 13 aus Webster und Horsfall's Werken zu Killmarsh bei Sheffield; jeder dieser Drähte war mit fünf Strängen aus Manilla-Garn, welches mit einer conservirenden Masse getränkt (getheert) war, umgeben; die 10 Drähte wurden spiralförmig um den mit (nach John und Edwin Wright's Patent) Jute-Hanf, der ebenfalls mit conservirender Masse (Catechulösung) getränkt war, umwickelten Kern gelegt. Gewicht einer Seemeile in der Luft 353/, Centner, im Wasser 14 Centner, Zerreissungsfestigkeit 7 Tonnen 15 Centner, d. h. das 11 fache seines Gewichts im Wasser für 1 Meile (gegen das nicht ganz 5 fache von 1858), so dass es bis zu 11 Meilen Wassertiefe sich selbst tragen konnte (Zeitschr. d. Tel.-Ver. 11, S. 74; Mech. Magaz. XIII, S. 41). Vor Umlegung der Hanfhülle prüfte Willoughby Smith die Leitung und Isolation im Wasser von 24º C. und unter sehr hohem Drucke; als Minimum des Widerstands der Isolation für 1 Seemeile war 5700000 Einheiten von Varley (= 151,5 Millionen Siemens'scher Einheiten) festgesetzt. Das Küstenkabel hatte als Schutzhülle 12 Eisenlitzen aus je 3 galvanisirten, 1/4 Zoll starken Drähten und wog bei 56 Millim. Dicke 20 Tonnen; für die irländische Küste waren 27, für die neufundländische 3 Meilen davon vorhanden; auf den letzten 1500 Fuss geht seine Dicke allmälig in die des Tiefseetaus über. Verbraucht wurden im Ganzen 25000 Meilen Kupferdraht, 35000 Meilen Eisendraht und 400000 Meilen Hanfstränge. Nachdem das Tau auf dem Great Eastern eingeschifft war, stellten Thomson und Varley am 12. Juli noch eine Reihe Versuche damit an, wobei mit den neuen Apparaten von Varley eine Geschwindigkeit von 4,27 bis 5,7 Worten in 1 Minute erreicht wurde. Die Legung leitete Canning, an Bord standen die Elektriker der Telegraph Construction and Maintenance Company unter der Oberleitung von de Sauty, während Varley und Thomson die Oberleitung über die Techniker der Atlantic-Telcgraph-Company hatten. Die Batterie bestand aus 40 Daniellschen Elementen. Die Gesammtladung des Great Eastern schätzt man auf 24000 Tonnen (Mech. Magaz. XIV, S. 31). Der Lauf des Schiffs ist aus Fig. 65 ersichtlich, von l bis a, doch sollte das Tau nicht wie 1858 am fernsten Ende (Bull arm) der Trinity-Bay, sondern in dem der Trinity-Bay 45 Meilen näheren Hafen von Heart's Content gelandet werden, ebenso sollte es an der irischen Küste nicht, wie 1858, um die Insel Valentia bei Doulus Head herum nach Ballycarberry Strand geführt werden, sondern die Landungsstelle war bei Bray Head an der gegen Wind und Wellen sehr geschützten Foilhommerumbay der Insel Valentia gewählt worden. Eine ausführliche Beschreibung des Verlaufs der ebenfalls missglückten Legung enthält The Atlantic Telegraph (London 1866, S. 41 ff.). Am 23. Juli Abends 10¹/4 Uhr, als schon 78¹/9 Seemeilen Tau abgelaufen waren, zeigte das Galvanometer einen Fehler im Tau; nachdem 10 Meilen

wieder aufgewunden waren, fand man einen etwa 2 Zoll langen Eisendraht im Tau, der bis auf die Kupferseele reichte. Beim Punkt g (Fig. 65), 636 Meilen von Valentia, kam der Great Eastern am 29. Juli an, und es waren schon Tiefen von 2400 Faden überschritten und 707 Meilen Tau ansgelegt; da zeigte sich Nachts 1 Uhr "dead earth" und abermals musste das Tau aufgewunden werden, bis Abends 111/4 Uhr die fehlerhafte Stelle*) an Bord kam. Am 30. Juli musste abermals ein Stück herausgeschnitten werden, da das Tau stark beschädigt wurde, als man es vom Vordertheil, wo es beim Aufwinden zusammengelegt worden war, nach dem Hintertheil auf die Auslegmaschine brachte; erst um 10 Uhr ging die Fahrt vom Punkt h, 660 Meilen von Valentia, weiter. Am 31. Juli Mittags, bei k, war man 793 Meilen von Valentia entfernt und hatte 903 Meilen Tau versenkt. Am 2. August Morgens 8 Uhr war ein Stück Draht im Kabel mit über Deck gegangen; dasselbe war aber sicher nicht absichtlich in's Tau gesteckt, sondern aus den Hanfsträngen hervorgesprungen, rührte also, wie wahrscheinlich auch die andern, von den Schutzdrähten her. Beim Aufwinden arbeitete die Aufwindemaschine wegen Wassermangel in den Kesseln schlecht, der Great Eastern musste daher stillstehen, um das Tau nicht zu überlaufen, und gerieth dabei in eine schiefe Lage gegen das Tau; dieses legte sich über den vorstehenden Rand des äussersten V-Rades am Bug und verwickelte sich an dem eisernen Vorsprunge einer der Klüsen am Vordersteven. Zum Schutz des Taues, welches durch die heftige Reibung an 2 Stellen beschädigt wurde, liess man eine Kette mit einem Drahtseil hinab, um es zu halten und wieder in die Rinne des Rades zu bringen; die Aufwindemaschine kam wieder in Gang, Tau und Kette gelangten auf das Rad, allein in schräger Richtung gegen dasselbe. Schon war die erste beschädigte Stelle an Bord gebracht, da sprang das Dynamometer plötzlich noch 3¹/₂ Zoll über 60 Centner, den höchsten Punkt, der markirt war. Kette und Drahtseil waren aus der Rinne des V-Rades über dessen Rand geschnappt und krachend auf ein kleineres Rad herabgefallen, wobei das Tau, mit dem sie noch verbunden waren, einen heftigen Ruck erlitt. Noch war die Maschine in Gang, Tau und Drahtseil wurden noch aufgewunden, ersteres auf eine Trommel, letzteres auf die Gangspille, da riss das Tau kurz vor dem Dynamometer ab und bald war es im Meere verschwunden. 1213 Meilen Tau waren versenkt und der Great Eastern befand sich (bei Punkt I) unter 51° 25' Breite und 39° 6' Länge, über einer Tiefe von 1950 Faden. Der bald darauf an einem Drahtseile von 10 Tonnen Tragkraft hinabgelassene 3 Centner schwere

Digitized 83 Google

^{*)} In einem Einschnitt des einen Hanfstrangs fand man ein das ganze Tau durchdringendes Stück Eisendraht von der Dicke der äusseren Drähte, an dem einen Ende rauh, am anderen wie mit der Beisszange zugeschärft; da man diese Beschädigung für eine böswillige und absichtliche hielt, so sprach Canning öffentlich von einem erkauften Kabelmörder.

Zeitschrift f. Mathematik u. Physik XIII, 6.

Enterhaken erreichte den Boden erst mit 2500 Faden; während das Schiff den Anker quer über die Kabellinie hin und her schleppte, stieg die Spannung des Seils bis auf 80 Centner; 6 Uhr 40 Minuten Morgens begann man das Aufwinden des Hakens mit dem Kabel und setzte es fort, obgleich kurz nach 9 Uhr ein Spurrad der Aufwindemaschine brach, allein um 3 Uhr 20 Minuten riss einer der Ringe, mittels deren die 100 Faden langen Drahtseilstücke verbunden waren, und der Haken mit 1600 Faden Seil sank ins Meer zurück. Wegen des eintretenden Nebels musste der nächste Versuch bis zum 7. August verschoben werden; 2 Uhr 40 Minuten ruhte der Enterhaken am Boden mit 2500 Faden Seil; am nächsten Morgen 71/2 Uhr waren 1500 Faden (=1 Meile) Seil aufgewunden, da sprang wieder ein Ring bei seiner dritten Windung auf der Gangspille. Ein am 10. hinabgelassener Enterhaken fasste das Tau nicht und ward wieder aufgewunden. Am 11. ward ein Haken mit kürzerem Stock an einem aus 1600 Faden Drahtseil, 220 Faden Hanfseil und 510 Faden Manillaseil bestehenden und sorgfältig geprüften Seil hinabgelassen, fasste das Tau, beim Aufwinden stieg der Zug einmal, als ein Kettenglied durch die Maschine ging, bis auf 106 Centner, allein 9 Uhr 40 Minuten Abends, als 765 Faden aufgewunden waren, riss wieder ein Glied.

Das Tau von 1866 (Fig. 23) wurde in denselben Fabriken verfertigt, wie das von 1865, von dem es sich auch nur wenig unterscheidet; unter den mit 5 Litzen aus weissem Manillahanf umwickelten Eisendrähten lag eine Schicht (mit präservirender Mischung getränkter) gewöhnlicher Hanf. Gewicht einer Seemeile in der Luft 31 Centner, im Wasser 14% Centner, Festigkeit 162 Centner. Die beiden Küstenenden erhielten eine Schutzhülle aus 12 einzelnen Eisendrähten, die noch mit einer präparirten Hanflage überzogen sind; an der irischen Küste ist das stärkste Ende 8 Meilen lang, die folgenden 8 Meilen sind etwas dünner und dann 14 Meilen noch dünner; das neufundländische Küstenende ist nur 5 Meilen lang. Zu dem vom vorigen Jahre verbliebenen Reste wurden noch 1660 Meilen neu gefertigt und im Ganzen 2730 Seemeilen verschifft, wovon 1960 auf die neue Linie und etwa 700 auf die Ergänzung der alten gerechnet wurden. Vor der Abfahrt des Great Eastern wurde noch ein sehr strenger Versuch mit dem Tau gemacht. In der Mitte einer Strecke von 1700 Meilen wurde das Kabel von der Eisenhülle befreit, die Guttapercha auf eine Länge von einem Fuss berausgeschält und so die Kupferader blosgelegt; das Seilstück wurde dann ins Meer geworfen und so tief hinabgelassen, dass der blosliegende Kupferdraht auf dem Meeresboden auflag. Als man nun durch den Draht telegraphirte, wobei der Strom die blosliegende Drahtstelle passiren musste, um zum anderen Drahtende hinzugelangen, erhielt man an dem Reflexgalvanometer noch immer vollkommen deutliche und lesbare Zeichen, obgleich der grösste Theil des Stromes sicher an der nicht isolirten Kabelstelle direct ins Meer und in

die Erde ging und nur ein kleiner Bruchtheil desselben das Ende der Leitung und das Galvanometer erreichte. Vor der Auslegung betrug der Isolationswiderstand 713, nach der Auslegung 2300 Millionen Siemensscher Einheiten für 1 Knoten; die Zunahme ist theils auf Rechnung der Temperatur, theils auf Rechnung des Druckes zu schreiben (Dingler's Journal 182, S. 71 aus Mech. Magaz. XVI, S. 81).

Den Great Eastern begleiteten der Dampfer Medway, der Raddampfer Terrible und die Schraubendampfer Albany und William Cory. Dem Capitain Anderson des Great Eastern war Capitain Moriarty zur Anstellung der astronomischen Beobachtungen beigegeben; Canning und Clifford leiteten das Auslegen, W. Smith und Professor Thomson überwachten das elektrische Verhalten, während Varley dies an der irischen Küste that. Am 30. Juni 12 Uhr ging der Great Eastern von Sheerness die Themse binab, in der er an mehreren Stellen den Schlamm aufrührte, da ` er 32 Fuss Tiefgang hatte; am 13. Juli traf er bei Valentia ein. Während der ganzen Legung (14.-27. Juli) fand nur eine einzige Unterbrechung von 3 Stunden statt; als nämlich das Tau in der Nacht vom 17. Juli vom hinteren Tender ausgelegt wurde, warf es vor der Auslegmaschine zwei Schleifen, die, weil die Maschine nicht sofort stillstand, sich zu einem unentwirrbaren Knoten zusammenzogen; in weniger als 1 Minute wurde jedoch das Schiff angehalten, ein Schaufelrad gelöst und so geschickt gesteuert, dass das vom Stern herabhängende Tau nicht eine zu starke Spannung auszuhalten hatte; nach etwa 2 Stunden war Alles wieder in Ordnung und die Fahrt ging weiter. Das 3 Meilen lange Küstenkabel wurde vom Medway aus mit Hilfe der Boote des Terrible Freitag, den 27. Juli 4 Ubr Nachmittags gelandet und nach einer vollkommen befriedigenden elektrischen Untersuchung des Taues gab Daniel Gooch, der Director der Telegraph Construction and Maintenance Company an Richard Atwood Glass das erste Telegramm nach Valentia*). Darauf wurden Beglückwünschungstelegramme zwischen der englischen Königin und dem Präsidenten der Vereinigten Staaten gewechselt. Am 31. Juli und 1. August wurde die telegraphische Verbindung zwischen Neufundland und dem amerikanischen Festlande durch den Albany hergestellt und am 4. August wurde die transatlantische Linie dem Verkehr übergeben.

Behufs Ergänzung des Tanes von 1865 musste man von dem Bruchende des Taues absehen, weil dieses mit den Enterhaken und schweren Drahtseilen vom vorigen Jahre belastet war. Daher wurden zunächst in der Richtung der Taulinie mehrere Bojen ausgelegt und dann sollten 3 Schiffe in gewissen Entfernungen von einander zugleich nach dem Tau

^{*)} W. Smith hat die während der Legung zwischen dem Schiff und Valentia gewechselten Telegramme gesammelt und unter dem Titel Great Eastern Telegraph 1866 and Test room Chronicle als Manuscript drucken lassen.

486 Beiträge zur Geschichte der Fortschritte in der elektrischen

fischen. Der Albany fasste am 12. August das Tau und hing es an ein Bojentau auf, doch sank es wieder, weil ein Glied der Kette riss, welche die Boje mit dem Enterhakentau verband. Vergeblich fischte der Great Eastern am 13. fünfzehn Meilen vom Bruchende; der 14. und 15. war trüb und nebelig; am 15. Nachmittags wurde es hell, daher liess man den Enterhaken 3 Meilen südlich von der Boje Nr. 2, wo der Albany aufgestellt blieb, hinab, während der Medway 2 Meilen weiter westlich fischte. Gegen 7 Uhr hatte der Haken des Great Eastern das Tan erfasst; als man aber anfing, das Tau aufzuwinden und die grösste Boje (von 70 Centner Gewicht) vom Schiff hinabgelassen werden sollte, stiess dieses mit der Boje Nr. 1 zusammen, da es bei dem wieder eingetretenen Nebel unbemerkt von einer starken Strömung von Ost nach West getrieben worden war. Als man sich von der Boje frei gemacht hatte und Nachts 1 Uhr begann, die Kette der auszulegenden grossen Boje mit dem inzwischen um 1300 Faden aufgehobenen Enterhakentau zu befestigen, um das Kabel schwebend zu erhalten, verschwand das Kabel wieder, bevor die Spleissung des Enterhaken - und Bojentaus vollendet war. Am 16. 41/2 Uhr Nachmittags wurde der Enterhaken 6 Meilen östlicher 2400 Faden tief hinabgelassen, fasste um 7 das Tau; am 17. 41/2 Uhr Morgens begann man das Aufziehen und 1034 Uhr erschien das Tau über dem Meeresspiegel und zeigte in seiner oberen Hälfte die schwarzen getheerten Manillastränge, unten einen Ueberzug von weisslichem Schlamm. Aus dem vom Dynamometer angegebenen Zuge von 61/2 Tonnen berechnete Thomson, dass das Tau zu jeder Seite des Enterhakens in einer Länge von 4½ Meilen gehoben sei, dass es den Meeresboden in 2 um 8 Meilen von einander entfernten Punkten berühre, dass es am Fanghaken einen Winkel von 89° bildete und auf jeder Seite dieses Hakens 41/2 Tonnen Spannung Als man aber einen Stopfer, d. h. eine an einem starken Drahthabe. seile befindliche Klemmvorrichtung an das Enterhakentau befestigen wollte. sprang das Kabel bei einer seitlichen Neigung des Hakens von dessen Flügeln ab und versank wieder, 5 Minuten später, als es erschienen war. Am 19. August 4¼ Uhr ward das Tau wieder gefasst, 1000 Faden aufgewunden und unter 51º 31 1/2' Breite und 38º 39' 50" Länge an eine Boje befestigt. Die folgende Woche bemühten sich die 3 Schiffe vergeblich, an verschiedenen Stellen das Tau zu fischen, aber bei dem ungünstigen Wetter fuhr man einen falschen Cours oder das (mehrmals) gefasste Tau entschlüpfte wieder. Die Stimmung an Bord wurde dadurch ungünstig. Am 26. Abends 5 Uhr fasste der Albany ein Tau, brachte es um 11¹/₂ an Bord und hängte es 121/2 Uhr an eine Boje, allein beim Aufwinden desselben durch den Albany erwies es sich als ein 2 Meilen langes Bruchstück. Auch die am 19. gelegte Boje sah man flott an einer anderen Stelle, sie hatte also das Kabel verlassen. Am 28. machte der Great Eastern wieder zwei vergebliche Versuche, war inzwischen 15 Meilen östlich von der Digitized by GOOGLE

Telegraphie. Von Dr. EDUARD ZETZSCHE.

Stelle, wo man das Fischen begonnen hatte, in immer tieferes Wasser gelangt und beim letzten Versuch am 29. erreichte der Enterhaken bei 2500 Faden anscheinend den Boden nicht. Jetzt beschloss man, 80 Meilen östlicher zu gehen, wo die Karten nur 1900 Faden Tiefe angaben. \mathbf{Am} 30. legte man hier eine Boje aus, da der heftige Wind nichts Anderes vorzunehmen gestattete. Am 31. hatte sich der Wind gelegt; von 10-1 Uhr Mittags liess der Great Eastern einen Enterhaken mit 2150 Faden Tau hinab, um 2 Uhr 50 Minuten war das Kabel gefasst und man begann sofort mit dem Aufwinden; am 1. September 4 Uhr 50 Minuten früh wurde das Tau in 800 Faden Tiefe an einer Boje befestigt, 95 Meilen von dem Bruchende entfernt; um 8 Uhr 50 Minuten liessen der Great Eastern 3 Meilen und der Medway 5 Meilen von der Boje Enterhaken hinab; um 5 Uhr Nachmittags fasste der Great Eastern das Kabel und hob es bis 300 Faden unter dem Spiegel; 7 1/2 Uhr hatte auch der Medway das Kabel gefasst, erhielt den Befehl: "schnell aufziehen und das Kabel brechen" und um 10 Uhr Abends war das Kabel 300 Faden unter dem Spiegel am Enterhaken gerissen. Nun begann der Great Eastern wieder das Aufwinden, worauf das Kabel 10 Minuten vor 1 Uhr über dem Spiegel erschien und 3¹/₂ Uhr Morgens in den Untersuchungsraum an Bord eingeführt wurde. Das dritte nach Valentia gesandte elektrische Signal wurde von dort beantwortet, worauf Canning und Glass unter allgemeinem Jubel ihre Glückwünsche austauschten. Um 6% Uhr war das Ergänzungsstück an das gehobene Kabel angeknüpft und 7 Uhr 10 Minuten brach der Great Eastern nach Heart's Content auf, welches er am 8. September 11 Uhr Vormittags erreichte, nachdem an diesem Tage, 13 Meilen von Heart's Content, der einzige Unfall auf dieser Fahrt glücklich überstanden, nämlich eine entdeckte Fehlerstelle aus dem Kabel herausgeschnitten worden war, noch ehe sie das Meer erreicht hatte. Das Kabelende wurde auf den Medway gebracht, mit dem Küstentau zusammengespleisst und dieses noch an demselben Abende gelandet. Die Isolation zeigte sich bei dem aufgehobenen Tau besser, als sie 1865 bei seiner Legung gewesen war.

Die Lage der beiden Taue, von denen das neue am 20. Juli 1867 zum zweiten Male, 50 Seemeilen von Heart's Content, gerissen ist, ergiebt sich aus folgenden, dem *Nautical Magazine* (October 1866) entnommenen täglichen Schiffspositionen:

1865	Nörd	l. Br.	W. L.	v. Gr.	Entfernung	Taulänge
					in Se	emeilen
24. Juli	52 ⁰	2′	120	23′		
25.	52	5	14	22	150	175
26.	52	32	18	30	_	300
27.	52	38	19	38	- .	—
28.	52	42	22	20	145	500
29.	52	40	26	12	600	650
30.	52	40	27	30	650	750
					Dig	gitized by GOOSIC

487

18	365	Nörð	ll. Br.	W	. L.	v. Gr.	Entfernung	Taulänge
							in Seem	neilen
31.	Juli	52 ⁰	20′		30 0	10′	750	900
1.	Aug.	51	57		34	5	900	1050
2.	Ŭ	51	35		37	52	1050	1200
18	866							
2. Septbr. 52			0		36	40	von diesem	Punkt
3.	•	51	32		39	37	157	184
4.		51	0		41	55	226	254
5.		50	12		45	0	353	418
6.		49	44		48	2	472	555
7.		49	10		51	28	606	698
8.		$\mathbf{L}\mathbf{s}$	indung	; bei	i H	eart's C	Content.	
1866	Nörd	1. Br.	w.	L.	E	atfernun	g Kabellänge	Tiefe
						in a	Seemeilen	in engl. Faden
14. Juli	52 ⁰	0'	14 ⁰	1′		in 8 135,75	Seemeilen 144,25	in engl. Faden 120-216
14. Juli 15.	52 ⁰ 52	0' 1		1′ 29				•
			17	-		135,75	144,25	120-216
15.	52	1	17 20	2 9		135,75 263	144,25 283	120-216 216-1950
15. 16.	52 52	1 6	17 20 23	29 36		135,75 263 378	144,25 283 420	120-216 216-1950 1950 - 1575
15. 16. 17.	52 52 52 52	1 6 15	17 20 23 26	29 36 48		135,75 263 378 495,5	144,25 283 420 557,82	120-216 216-1950 1950 - 1575 1575-1950
15. 16. 17. 18.	52 52 52 52	1 6 15 1	17 20 23 26 29	29 36 48 37		135,75 263 378 495,5 600,9	144,25 283 420 557,82 682,48	120-216 216-1950 1950 - 1575 1575 - 1950 1950 - 2400
15. 16. 17. 18. 19.	52 52 52 52 52 51	1 6 15 1 54	17 20 23 26 29	29 36 48 37 39		135,75 263 378 495,5 600,9 712,9	144,25 283 420 557,82 682,48 811,14	120-216 216-1950 1950 - 1575 1575 - 1950 1950 - 2400 2400-2176
15. 16. 17. 18. 19. 20.	52 52 52 52 51 51	1 6 15 1 54 36	17 20 23 26 29 32 36	29 36 48 37 39 57		135,75 263 378 495, 5 600,9 712,9 830,4	144,25 283 420 557,82 682,48 811,14 938,6	120 - 216 $216 - 1950$ $1950 - 1575$ $1575 - 1950$ $1950 - 2400$ $2400 - 2176$ $2176 - 1550$
15. 16. 17. 18. 19. 20. 21.	52 52 52 51 51 51	1 6 15 1 54 36 18	17 20 23 26 29 32 36 30	29 36 48 37 39 57 1		135,75 263 378 495,5 600,9 712,9 830,4 952,3	144,25 283 420 557,82 682,48 811,14 938,6 1074,33	120 - 216 $216 - 1950$ $1950 - 1575$ $1575 - 1950$ $1950 - 2400$ $2400 - 2176$ $2176 - 1550$ $1600 - 1657$
15. 16. 17. 18. 19. 20. 21. 22.	52 52 52 51 51 51 51 50	1 6 15 1 54 36 18 48	17 20 23 26 29 32 36 30 42	29 36 48 37 39 57 1 14		135,75 263 378 495,5 600,9 712,9 830,4 952,3 1075,7	144,25 283 420 557,82 682,48 811,14 938,6 1074,33 1207,47	120 - 216 $216 - 1950$ $1950 - 1575$ $1575 - 1950$ $1950 - 2400$ $2400 - 2176$ $2176 - 1550$ $1600 - 1657$ $1657 - 1950$
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.	52 52 52 51 51 51 50 50 49 49	1 6 15 1 54 36 18 48 16 30 30	17 20 23 26 29 32 36 30 42 45	29 36 48 37 39 57 1 14 16		135,75 263 378 495,5 600,9 712,9 830,4 952,3 1075,7 1196,9	144,25 283 420 557,82 682,48 811,14 938,6 1074,38 1207,47 1345,24	$\begin{array}{r} 120 - 216\\ 216 - 1950\\ 1950 - 1575\\ 1575 - 1950\\ 1950 - 2400\\ 2400 - 2176\\ 2176 - 1550\\ 1600 - 1657\\ 1657 - 1950\\ 2424 - 2050\\ \end{array}$
15. 16. 17. 18. 19. 20. 21. 22. 23. 24.	52 52 52 51 51 51 50 50 49 49 48	1 6 15 1 54 36 18 48 16 30 30 45	17 20 23 26 29 32 36 30 42 45 48 51	29 36 48 37 39 57 1 14 16 21 11 16		135,75 263 378 495,5 600,9 712,9 830,4 952,3 1075,7 1196,9 1319,67	144,25 283 420 557,82 682,48 811,14 938,6 1074,33 1207,47 1345,24 1480,06	$\begin{array}{r} 120 - 216\\ 216 - 1950\\ 1950 - 1575\\ 1575 - 1950\\ 1950 - 2400\\ 2400 - 2176\\ 2176 - 1550\\ 1600 - 1657\\ 1657 - 1950\\ 2424 - 2050\\ 2050 - 2225\end{array}$

Die Unternehmungen in den Jahren 1865 und 1866 haben je 600000 Pfd. Sterl. gekostet. Das einfache Telegramm von 20 Worten kostete anfänglich 20 Pfd., seit dem 1. Novbr. 1866 10 Pfd.; die für den 1. März 1867 beabsichtigte Herabsetzung auf 5 Pfd, trat nicht ein. Die Geschwindigkeit des Telegraphirens wird verschieden angegeben; 6 Worte (Dingler's Journal 182, S. 71), 12-14 Worte, 15-20 Worte in 1 Minute; in der 81 Worte enthaltenden Botschaft des amerikanischen Präsidenten an die englische Königin betrug sie 7 Worte in 1 Minute (D. Ind.-Ztg. 1866, S. 330 und 339; Les Mondes XII, S. 270). Bei 10 Worten in der Minute würde die Einnahme sich täglich auf 14400, jährlich auf 4320000 Pfd. belaufen. In den ersten 8 Wochen vom 28. Juli bis 21. Sept. betrug sie 46084 Pfd., d. h. täglich 837 Pfd. Das Tau von 1865 beförderte am 17. Mai 71 Telegramme für 1008 Pfd. 19 Schillinge. Nach der Herabsetzung der Beförderungegebühr von 20 auf 10 Pfd. stieg die tägliche Einnahme von 813 auf 874 Pfd. (D. Ind.-Ztg. 1867, S. 9). Der Reingewinn stieg bald auf 25 Procent, so dass 10 Procent als Abschlagsdividende gegeben werden konnten (D. Ind.-Ztg. 1867, S. 29).

Es möge gestattet sein, einige

Berichtigungen und Nachträge

anzufügen, welche erst nach Schluss des Manuscriptes (im Herbst 1867) veröffentlicht, beziehentlich mir bekannt wurden:

1. Auf Jahrgang XIII, Seite 27 ist

 $(u - v \cos \alpha) \sqrt{WD : (WD - T) \sin \alpha}$

zu lesen, und S. 22 Z. 1 v. o. "Wird dagegen".

2. (Zu Jahrg. XII, S. 424.) Das Tau zwischen Frankreich und Nordamerika ist 1868 nicht gelegt worden, muss aber von der durch Erlauger und Reuter vertretenen, zu seiner Legung concessionirten Gesellschaft contractlich bis 1. September 1869 vollständig versenkt sein. Es bekommt zwischen Brest und den Inseln St. Pierre und Miquelon 2688 und zwischen St. Pierre-Miquelon und New-York 960 englische Seemeilen Länge. Von St. Pierre-Miquelon läuft es nach der Küste Neubraunschweigs und durch die nordamerikanischen Staaten Maine, New-Hampshire, Massachusets und Connecticut nach New-York (Leipziger Ztg. 1868, S. 4703).

3. (Zu Jahrg. XIII, S. 459.) Am Ende der oben (S. 453) erwähnten künstlichen Leitung von 13000 Meilen Länge erreichte der Strom erst nach 17, 26 und 40 Secunden nach dem Schliessen der Batterie ein Viertel, die Hälfte und drei Viertel seiner Maximalstärke.

4. Ueber die Versuche von Varley mit zwei künstlichen Kabeln von gleicher Länge, von denen das eine (aus Röhren mit Zinkvitriol gebildete) sechsmal so langsam arbeitet, als das andere (aus Neusilberdraht) vgl. *Les Mondes* XV, 13. und 14. Lieferung (vom 13. Novbr. und 5. Decbr. 1867) S. 539 und 578 ff.

5. Auf dem Tau von 1858 wurden in der Zeit vom 10. August bis 1. September 1858 (nach Dingler's Journal 153, S. 236) 97 Telegramme von Valentia nach New-York und 269 von New-York nach Valentia befördert. (Nach Westermann's Monatsheften Nr. 127, S. 90 dagegen 129 und 271 Telegramme.)

6. Dingler's Journal (187, S. 24 aus *Mechanics' Magazine*, November 1867, Seite 330) enthält eine Abhandlung von C. W. Siemens über die zum Auslegen des Kabels im mittelländischen Meere angewandte Maschinerie. — Ueber Bright's Relais (S. 473) vgl. auch Jahrg. VI, S. 382.

7. In Dingler's Journal (185, S. 1) bespricht C. F. Varley die Phänomene des atlantischen und anderer langer Unterseekabel und giebt auch einen Apparat an zur Beseitigung der durch fremdartige (Erd.) Ströme hervorgebrachten Störungen im Signalisiren.

8. Die Einschaltung der Unterseestation Valentia habe ich im Polytechnischen Centralblatt (Jahrg. 1867, S. 1303 aus Etudes sur l'exposition de 1867), die Einschaltung der Untersee-Translationsstation Emden aber ebendaselbst (Jahrg. 1868, S. 285) mitgetheilt. 9. Das Tau vom Jahre 1866 ist seitdem (vgl. Jahrg. XII, S. 421) noch zweimal gerissen; das erste Mal schon am 20. Juli 1867 in einer Entfernung von 50 Seemeilen von Hearts Content und erst am 20. September konnte von New-York die Wiederherstellung gemeldet werden. Das zweite Mal am 3. August 1868, und es dauerte diese dritte Unterbrechung bis zum 2. October 1868.

10. Vom 1. December 1867 ab sollte ein zwischen London und New-York gewechseltes Telegramm von 15 Worten == 75 Buchstaben (5 Worte für die Adresse) 35 Thaler kosten. Eine weitere Herabsetzung ward am 30. Juni 1868 beschlossen.

Digitized by Google

XVI.

Beitrag zur mechanischen Theorie der Wärme.

Von

Professor Julius Eibel

in Stockerau bei Wien.

I.

Seitdem die Vibrationstheorie in der Acustik und Optik zu so überraschenden Resultaten gelangte, war man bemüht, auch die Erscheinungen der Wärme, des Magnetismus und der Elektricität durch rein mechanische Principien zu erklären und die Emanationstheorien aus der Physik zu verbannen. Melloni hatte durch seine genialen Versuche die Identität der Wärmestrahlen mit den Lichtstrahlen dargethan. Die Analogie mit dem Schalle führte nun zu der Hypothese, dass das Brennen und das fühlbare Warmsein eines Körpers wahrscheinlich nur ein Schwingungszustand sei, der sich mit der Temperatur ändere; ein leuchtender oder warmer Körper sei analog einer tonerzeugenden Platte oder Glocke in sogenannter stehender Schwingung und theile seine Vibrationen dem umgebenden Aether mit, welcher dieselben fortpflanze, bis sie unsere Nerven erreichen. Mayer sprach im Jahre 1842 zum ersten Male entschieden aus, dass wir jene Arbeitsgrösse finden müssten, welche äquivalent sei der calorischen Einheit; auch gab er eine freilich rohe Bestimmung dieser Grösse (365 Meter-Kilogrammes statt 424). Es war damit gesagt, dass die Wärme überhaupt nichts Anderes, als eine Molecularbewegung sei, die Art und Weise dieser Bewegung war damit noch keineswegs angegeben; auch ist man wegen der Schwierigkeit des Problems noch heute zu keiner genauen Angabe gelangt, obwohl sich viele Koriphäen der Wissenschaft darnach bestrebten. Ich erinnere hier an die Arbeiten Redtenbacher's, Clausius's, Krönig's, Jochmann'setc.

Schon ohne Kenntniss der Molecularschwingungen, blos durch das Princip der Aequivalenz von Wärme und Arbeit, ist die mechanische Theorie der Wärme zu überraschenden Resultaten gelangt, ja sie ist bereits im Stande, technischen Zwecken mit einer hinreichenden Vollkommenheit zu dienen, wie dies Zeuner und Clausius wohl deutlich genug gezeigt haben; aber die Forderung nach Aufstellung einer speciellen Schwingungshypothese tritt immer gebieterischer an uns heran, insbesondere in den Wärmeprocessen der Dämpfe. Die verbreitetste Ansicht über die Molecularconstitution der Körper ist wohl die von Clausius und Krönig; es sind aber gegen dieselbe mehrere Bedenken erhoben worden, so durch Jochmann (Schlömilch's Journal 1860, V. Jahrg. 2. Heft). Es soll nun der Zweck dieser Zeilen sein, einiges Streiflicht auf diese sehr wichtige Sache zu werfen.

п.

Nach der atomistischen Anschauungsweise ist ein jeder Körper ein System materieller Punkte (Atome), zwischen denen Verbindungen existiren, die erzeugt werden durch Molecularkräfte, welche Functionen der Entfernungen sind. Die Atome eines jedeu (warmen) Körpers schwingen um gewisse Gleichgewichtslagen; es werden daher im Allgemeinen ihre Verbindungen Functionen der Zeit und der Coordinaten der einzelnen Molekel sein. Die Verbindungen zwischen den Atomen können geändert werden; denn sonst könnte nicht ein Körper aus einem Aggregatszustande in den anderen übergehen; ja zwischen den schwingenden Molekeln eines (idealen) Gases hören dieselben ganz auf, wie gewöhnlich (nach Claus ius und Krönig) angenommen wird; es werden diese Molekel also in geradlinigen Bahnen fortschreiten, so lange sich ein jedes ausser der Wirkungssphäre des benachbarten befindet.

Um zu einer mathematischen Anschauung zu gelangen, denken wir uns vor der Hand nur ein System, welches aus einer endlichen Anzahl von materiellen Punkten besteht; die Schlüsse, welche für dasselbe gelten, lassen sich dann leicht auf ein System von unendlich vielen Molekeln ausdehnen.

Die genannten Verbindungen sollen ausgedrückt werden durch die Gleichungen

$$L=0, M=0, N=0, \dots$$

denen die Coordinaten der betreffenden Molekel und die Zeit zu genügen haben; diese Gleichungen sind in unserem Falle nichts Anderes, als die algebraischen Darstellungen der Bahnen der schwingenden Molekel, und von ihnen hängt im Grunde der Aggregatszustand ab.

Ausser diesen Beziehungen zwischen den Molekeln können auf das System noch Aussenwirkungen stattfinden, die wir uns repräsentirt denken durch Kräfte, welche auf die einzelnen Molekel wirken. Seien X_1 , Y_1 , Z_1 die rechtwinkeligen Componenten jener Kraft, die auf das Molecul m_1 (mit den Coordinaten x_1 , y_1 , z_1) wirkt; X_2 , Y_2 , Z_3 die Componenten der auf m_2 (x_2 , y_2 , z_3) wirkenden Kraft etc. Die Kräfte verleihen den materiellen

Digitized by GOOGLE

Punkten nicht jene Geschwindigkeiten oder Bewegungen, welche dieselben erhielten, wenn sie frei wären; auch werden die vermöge ihrer (Aggregats-) Verbindungen bereits schwingenden Molekel im Allgemeinen aus den Bahnen gelenkt und erhalten neue Geschwindigkeiten, die wir mit v_1, v_2, \ldots bezeichnen wollen. Dadurch, dass die Molekel aus ihren ursprünglichen Bahnen (die wohl Curven der zweiten odez ersten Ordnung sind) herausgebracht werden, entstehen neue Verbindungen unter ihnen; es ist also durch äussere Einwirkung auf ein System eine Aenderung des Aggregatszustandes denkbar.

III.

Bevor wir das Princip des D'Alembert anwenden, müssen wir noch einen Blick auf die (Aggregats-) Verbindungen werfen und eine wichtige Unterscheidung machen. Ob nun äussere Kräfte auf das System wirken oder nicht, so können die Verbindungen der Art sein, dass die Molekel analog den Doppelsternen geschlossene Bahnen beschreiben; es giebt aber auch Zustände, wo die Molecularbewegungen so beschaffen sind, dass durch sie in dem Systeme selbst schon eine äussere Bewegung erzeugt wird. Letzterer Zustand kann auch herbeigeführt werden, wenn man, falls auf das System keine äusseren Kräfte wirken, solche anbringt, oder die etwa schon vorhandenen ändert. Ein Beispiel hierzu wäre folgendes: Man denke sich einen relativ kleinen Theil einer Gasmenge comprimirt und nun das System sich selbst überlassen; bekanntlich schreitet eine Welle in demselben fort, d. h. es gelangen die verschiedenen Theile in äussere Bewegung. Auch das Ausströmungsproblem gehört hierher.

Mathematisch ist der Unterschied der genannten Zustände dadurch auszudrücken, dass im ersten Falle die Coordinaten des Molekels wohl von der Zeit abhängen

$$\begin{aligned} x &= f(\alpha, t), \\ y &= F(\beta, t), \\ z &= \varphi(\gamma, t), \end{aligned}$$

aber diese letztere eliminirt werden kann, wodurch man dann eben auf die Gleichungen der Bahnen

$$L = 0, M = 0, N = 0, \dots$$

kommt, dass aber im zweiten Falle die Parameter α , β , γ der Bahncurven noch Functionen der Zeit sind, diese also in den Functionen L, M, N explicirt erscheint. Um den Unterschied der Molecularbewegungen durch ein einfaches Analogon zu veranschaulichen, denke man sich die Bewegung eines Punktes im Kreise mit der in einer Epicycloide verglichen.

IV.

Das Princip des D'Alembert giebt nun bekanntlich für den ersten der in III unterschiedenen Fälle die Relation: $\frac{1}{2} \partial \Sigma (mv^2) = \Sigma (X \partial x + Y \partial y + Z \partial z)$

1) oder

1')
$$\frac{1}{2} \Sigma(mv^2) - \Sigma \int (X \partial x + Y \partial y + Z \partial z) = const.,$$

welche uns aussagt, dass die lebendige Kraft der schwingenden Molekel ungeändert bleibt, wenn keine Aussenkräfte auf das System wirken, weil für Y=0, Y=0, Z=0

2)

3)

í

$$\frac{1}{2}\Sigma(mv^2) = const.$$

Die Differenz auf der linken Seite der Gleichung 1') wird gewöhnlich die Wirkungsfunction des Systems genannt. Die Kräfte, welche die Verbindungen ersetzen könnten, seien $\lambda, \mu, \nu \dots$; sie können bestimmt werden aus den Gleichungen:

Wir wollen nun die Aenderungen ins Auge fassen, die mit dem Systeme vorgenommen werden können, und sehen dabei zuerst, dass dieselben einen Einfluss auf die Wirkungsfunction haben dürften. Solche Aenderungsprocesse können aber zweifacher Natur sein: entweder bleibt während der Aenderung das System stets in dem Zustande des ersten Falles, so dass sich in jedem Augenblicke eine der Gleichung 1') analoge Beziehung aufschreiben lässt, oder es wird der Zustand des zweiten Falles herbeigeführt, so dass plötzlich in den nunmehr entstehenden Molecularverbindungen

$$L'=0, M'=0, N'=0, ...$$

die Zeit maassgebend erscheint und für die Aenderung nicht mehr eine mit der Relation 1') analoge giltig bleibt. Eine Zustandsänderung der ersten Art nennt man "einen umkehrbaren Process", weil das System auf demselben Wege wieder in seinen ursprünglichen Zustand gelangen kann, im Gegensatze zu dem letzteren Processe, der ein "nicht umkehrbarer" ist.

Die Gleichungen 1) und 1') gelten für diese letzteren Processe nicht mehr; ebenso ändern sich die Relationen 3) mit jedem Augenblicke, weil die Verbindungsgleichungen andere werden.

Digitized by Google

494

V.

Die Anwendung der in den ersten vier Abschnitten aufgestellten Sätze auf die Wärmebewegung ist nun ohne Schwierigkeit. Die Gleichung 2)

 $\frac{1}{3}\Sigma(mv^2) = const.$ (X=0, Y=0, Z=0)

interpretirt Clausius dadurch, dass er annimmt, "die Temperatur eines Körpers sei proportional der Summe der lebendigen Kräfte seiner Molekel"; es bliebe also nach dieser Annahme die Temperatur constant, so lange keine äusseren Kräfte auf die Molekel wirken.

Jochmann hat nun in Schlömilch's Journal ("Beiträge zur Theorie der Gase" 1860 V, 2. Heft) die Consequenzen aus der Clausiusschen Annahme gezogen und auf Ergebnisse gewiesen, die mit den Beobachtungen im Widerspruche stehen. Er zählt insbesondere vier Punkte auf, die ihm auf eine Unhaltbarkeit der Clausius'schen Hypothese deuten:

"2. Diese Hypothese ist bis jetzt mindestens noch den Nachweis schuldig, warum die Bedingung des Wärmegleichgewichts zwischen zwei heterogenen Körpern darin besteht, dass die mittlere lebendige Kraft eines (chemischen) Atoms in beiden Körpern gleich gross ist.

3. Man stösst bei dieser Hypothese auf die Schwierigkeit, dass die Wärmebewegung von der fortschreitenden Bewegung einer Gasmasse überhaupt nicht zu unterscheiden ist; dieselbe führt bei der Ausströmung eines Gases in einen luftleeren oder luftverdünnten Raum zu Consequenzen, welche mit der Erfahrung im Widerspruche stehen.

4. Die Argumente, durch welche Herr Clausius gewisse gegen die Hypothese gerichtete Einwürfe zu widerlegen gesucht hat, erreichen diesen Zweck nur theilweise. Insbesondere treffen sie nicht den Einwand, dass locale Temperaturverschiedenheiten in einem luftförmigen Medium sich in ausserordentlich kurzer Zeit ausgleichen müssten.

5. Die Hypothese ist ferner nicht im Stande, über die Gesetze der Fortpflanzung des Schalls in luftförmigen Medien genügende Rechenschaft zu geben.

6. Aus alledem ergiebt sich die Folgerung, dass es wenigstens vor der Hand noch ungerechtfertigt ist, die in einem Körper enthaltene Wärmemenge ohne Weiteres, wie es zu geschehen pflegt, mit der lebendigen Kraft der Molecularbewegung zu identificiren oder die Temperatur der lebendigen Kraft eines Atoms proportional zu setzen."

Ich glaube nun, dass die letzten vier Punkte als widerlegt und die Ansichten von Clausius als gerechtfertigt angesehen werden können, wenn man die Wärmeprocesse so auffasst, wie es in den Abschnitten I--IV geschehen ist. Man bemerkt dann sogleich den Irrthum Herrn-Jochmann's: die Probleme, welche er betrachtet, das Ausströmungs-Digitized by

495

das Wärme-*) und das Schallleitungsproblem sind lauter nicht umkehrbare Processe, auf die er aber nichtsdestoweniger die Gleichung 1') $\frac{1}{2} \Sigma (mv^2) - \Sigma \int (X \partial x + Y \partial y + Z \partial z) = const.$

anwendet, obwohl dieselbe für seine Fälle keine Geltung mehr hat, wie wir in IV gesehen. In der That schwingen auch die Molekel bei den genannten Problemen in ganz anderen Bahnen, als wenn ein Gas sich selbst überlassen oder einem umkehrbaren Processe unterworfen wird. Die Hypothese des Clausius entgeht durch Adoption dieser hier entwickelten Ansichten zugleich der in Jochmann's drittem Punkte angedeuteten Klippe, "dass die Wärmebewegung von der fortschreitenden Bewegung einer Gasmasse überhaupt nicht zu unterscheiden ist." Denn es ist wohl richtig, dass in Folge der Ansicht Clausius' das Potential einer Gasmasse auf sich selbst einen constanten Werth haben müsste, wenn das Gas ohne Aenderung seiner Wirkungsfunction sich ausdehnt, weil nach Thomson-Joule's Versuchen bei einer solchen Dilatation die lebendige Kraft constant bleibt. Es ist aber nur richtig, sobald die Gleichung 1') fortwährend besteht, so lange also die Processe, die mit dem Gase vorgenommen werden, umkehrbare sind. Nun ist aber nach dem Gesagten klar, dass das Potential einer Gasmasse auf sich selbst bei einem nicht umkehrbaren Processe gar nicht mehr constant, sondern eine Function der Zeit sein wird, wodurch es eine fortschreitende Bewegung involvirt, die sehr gut von der Wärmebewegung zu trennen ist, wie auch, um ein bereits gewähltes Analogon nochmals in Erinnerung zu bringen, die fortschreitende Bewegung in einer Cycloide sehr deutlich von der wälzenden unterschieden werden kann.

Schliesslich erwähne ich noch, was auch aus dem Gesagten naturgemäss fliesst, dass der Potential-Calcul für die mechanische Theorie der Wärme nicht ausreicht, weil derselbe nur unter der beschränkenden Bedingung ausgebildet ist, dass in dem Systeme keine Verbindungen existiren, welche die Zeit explicite enthalten; die mathematischen Physiker werden genöthigt sein, einen allgemeineren "Vibrations-Calcul" zu entwickeln, um auch die so häufig vorkommenden nicht umkehrbaren Wärmeprocesse in den Kreis ihrer Betrachtungen ziehen zu können. Dieser Vibrationscalcul enthielte dann als speciellen (so zu sagen "adiabatischen") Fall sämmtliche Probleme der Aërodynamik, von welchen einige schon durch Zeuner gelöst worden sind, während die umkehrbaren Wärmeprocesse auch calorisch-statische genannt werden dürften (z. B. das barometrische Höhenmessen, die Festigkeitsaufgaben etc.). Es ist aus diesen wenigen Andeutungen schon, glaube ich, die grosse Wichtigkeit und die ungeheure Tragweite der Hypothese des Clausius genügend abzusehen.

^{*)} Beiläufig sei gesagt, dass für dieses das Experiment mit dem sogenannten Wackler wichtig werden kann.

XVII.

Ueber den Temperaturzustand eines von zwei nicht concentrischen Kugelflächen eingeschlossenen Körpers.

Von

Dr. FROSCH, Gymnasiallehrer zu Schneidemühl.

§. 1.

Darlegung der Methode, durch welche die Lösung des allgemeinen Problems zurückgeführt wird auf diejenige eines speciellen Falles.

1. Unter Zugrundelegung einer festen Ebene kann man in optischer Beziehung jeden von zwei Punkten das Bild des anderen nennen, wenn sie in ein und derselben auf der Ebene errichteten Senkrechten liegen und ihre Entfernungen von der ersteren gleich sind. Von dieser Ausdrucksweise soll im Folgenden, um eine kürzere und bequemere Bezeichnung zu ermöglichen, auch in dem Falle Gebrauch gemacht werden, wenn anstatt der festen Ebene eine feste Kugelfläche S zu Grunde gelegt wird, und zwar soll unter dem Bilde eines beliebigen Punktes o im Raume derjenige ω verstanden werden, welcher mit dem gegebenen auf demselben Radius resp. dessen Verlängerung gelegen ist, dergestalt, dass ihre Distanzen vom Mittelpunkt als Product das Quadrat des Radius der Kugel ergeben. Man sieht leicht ein, dass diese Bezeichnungsweise in die ursprüngliche übergeht, sobald man den Mittelpunkt der Kugel in unendliche Ferne fortrücken lässt, wodurch die Kugelfläche selbst sich in eine Ebene verwandelt.

Es soll nun die Abhängigkeit des Bildes ω eines beliebigen Punktes o von diesem analytisch ausgedrückt werden. Zu dem Ende werde der Mittelpunkt der Kugel als Anfangspunkt eines rechtwinkligen Coordinatensystems angenommen, x, y, z seien die Coordinaten des Punktes o, ξ, η, ζ diejenigen des Punktes ω . Alsdann folgen aus der Definition der Verwandtschaft beider die Gleichungen:

$$\begin{aligned} x: y: z &= \xi: \eta: \xi, \\ r \cdot \varrho &= c^2, \end{aligned}$$

wenn c den Radius der Kugel und

Digitized by Google

$$r = \sqrt{x^2 + y^2 + z^2},$$
$$q = \sqrt{\xi^2 + \eta^2 + \zeta^2}$$

die Entfernungen der Punkte vom Anfangspunkte darstellen; oder in einer anderen zur Transformation geeigneteren Form

$$x = c^{2} \cdot \frac{\xi}{\varrho^{2}}, \quad \xi = c^{2} \cdot \frac{x}{r^{2}},$$
$$y = c^{2} \cdot \frac{\eta}{\varrho^{2}}, \quad \eta = c^{2} \cdot \frac{y}{r^{2}},$$
$$z = c^{2} \cdot \frac{\xi}{\varrho^{2}}, \quad \xi = c^{2} \cdot \frac{z}{r^{2}},$$

aus deren Symmetrie erhellt, dass jeder der Punkte o und o das Bild des anderen ist.

2. Aus einer einfachen geometrischen Betrachtung ergiebt sich weiter, dass jedem Punkte ausserhalb entspricht, dass dagegen beide zusammenfallen, sobald einer von ihnen auf der Kugelfläche selbst liegt. Ferner: dass, wie das Bild eines Punktes wiederum ein Punkt ist, so auch dasjenige einer Linie, einer Fläche, eines Körpers wiederum eine Linie, eine Fläche, ein Körper ist, deren Gleichungen aus den gegebenen durch die obigen Transformationsformeln gefunden werden.

3. Um zunächst zu untersuchen, welches das Bild einer Ebene ist, seien A, B, C die Cosinusse der Winkel, welche ihre Normale mit den Coordinatenaxen bildet, D ihre Entfernung vom Anfangspunkte. Ihre Gleichung ist alsdann:

$$Ax + By + Cz - D = 0.$$

Durch Einsetzung der Werthe für x, y, z geht dieselbe über in:

 $Ac^2\xi + Bc^2\eta + Cc^2\zeta - D\varrho^2 = 0.$

Es sind jetzt zwei Fälle zu unterscheiden. Wenn nämlich die Ebene durch den Anfangspunkt geht, also D = 0 ist, so erhält man

$$A\xi + B\eta + C\xi = 0,$$

die Gleichung der Ebene selbst. Ist dies jedoch nicht der Fall, so lässt sich die obige Gleichung auf die Form bringen:

$$\left(\xi - \frac{c^2}{2D}A\right)^2 + \left(\eta - \frac{c^2}{2D}B\right)^2 + \left(\xi - \frac{c^2}{2D}C\right)^2 - \left(\frac{c^2}{2D}\right)^2 = 0.$$

Dies ist aber die Gleichung einer Kugelfläche, deren Mittelpunkt in der Normalen der gegebenen Ebene in einer Entfernung $=\frac{c^2}{2D}$ vom Anfangpunkt liegt, und welche, weil ihr Radius $=\frac{o^2}{2D}$ ist, durch diesen selbst hindurchgeht.

Digitized by Google

Kugelflächen eingeschlossenen Körpers. Von Dr. FROSCH. 499

Es folgt daraus, dass in Bezug auf eine gegebene Kugelfläche das Bild einer beliebigen, durch den Mittelpunkt hindurchgehenden Ebene wiederum eine Ebene, dasjenige einer beliebigen anderen Ebene eine Kugel ist.

4. Um ferner das Bild einer beliebigen Kugelfläche zu erhalten, werde angenommen, dass ihr Mittelpunkt auf der X-Axe in einer Entfernung =avom Anfangspunkt liegt. Ihre Gleichung ist alsdann, wenn d den Radius dieser Kugelfläche bezeichnet:

oder

$$(x-a)^{2} + y^{2} + z^{2} - d^{2} = 0,$$

$$r^{2} - 2ax + (a^{2} - d^{2}) = 0.$$

Dieselbe geht durch die Transformation über in:

$$c^4 - 2ac^2\xi + (a^2 - d^2) \varrho^2 = 0.$$

Auch hier sind zwei Fälle zu unterscheiden. Geht die Kugelfläche durch den Anfangspunkt, ist also a=d, so erhält man:

$$\xi - \frac{c^2}{2a} = 0,$$

die Gleichung einer Ebene, welche der YZ-Ebene parallel ist und um die Strecke $=\frac{c^2}{2a}$ von ihr absteht. Ist dies jedoch nicht der Fall, so geht sie über in die folgende:

$$\varrho^2 - 2 \cdot \frac{a c^2}{a^2 - d^2} \xi + \frac{c^4}{a^2 - d^2} = 0,$$

oder auch

•

$$\left(\xi - \frac{a c^2}{a^2 - d^2}\right)^2 + \eta^2 + \xi^2 - \left(\frac{d c^2}{a^2 - d^2}\right)^2 = 0.$$

Sie repräsentirt also ebenfalls eine Kugelfläche, deren Centrum in der X-Axe in einer Entfernung $=\frac{ac^2}{a^2-d^2}$ vom Anfangspunkt liegt und deren Radius $=\frac{dc^2}{a^2-d^2}$ ist.

Es ist also in Bezug auf eine feste Kugelfläche das Bild einer beliebigen anderen Kugelfläche, wenn sie durch den Anfangspunkt hindurchgeht, eine Ebene, in jedem anderen Falle wiederum eine Kugelfläche.

5. Die zuletzt gefundene Gleichung des Bildes einer Kugelfläche soll nun genauer untersucht und zugleich der bisher beliebig angenommene Radius der Kugelfläche S näher bestimmt werden. Es sei in Bezug auf die Kugelfläche K, deren Bild bestimmt werden soll, α der dem Anfangspunkt als Pol (im gewöhnlichen Sinne) entsprechende Punkt, so ist $\overline{\alpha K} = \frac{d^2}{a}$; derselbe ist demnach vom Anfangspunkt um die Strecke $=a - \frac{d^2}{a} = \frac{a^2 - d^2}{a}$ Zeitschrift f. Mathematik u. Physik, XIII, 6. entfernt. Nimmt man nun an, dass die Kugelfläche S durch den Punkt α hindurchgeht, so hat man zu setzen $c = \frac{a^2 - d^2}{a}$. Durch diese Substitution geht die obige Gleichung über in die folgende:

$$(\xi-c)^2+\eta^2+\zeta^2-\left(\frac{d\,c}{a}\right)^2=0.$$

Mit Rücksicht darauf, dass während der Transformation der Punkt a als ein Punkt der Oberfläche unverändert bleibt, erhält man daraus das Resultat:

Das Bild einer beliebigen Kugelfläche in Bezug auf eine feste Kugelfläche, welche durch den dem Centrum der letzteren als Pol hinsichtlich der ersteren entsprechenden Punkt geht, ist eine Kugelfläche, deren Centrum mit diesem Pol zusammenfällt.

6. Aus der Elementargeometrie ist ferner bekannt, dass der geometrische Ort aller der Punkte, deren Abstände von zwei festen Punkten pund p_1 ein constantes Verhältniss haben, ein System excentrischer Kugelflächen ist, deren Mittelpunkte sämmtlich auf der Linie $\overline{pp_1}$ liegen, sowie dass für jede dieser Kugeln die Punkte p und p_1 Pole sind. Wenn man nun um den einen von ihnen, z. B. p, mit einem Radius $= \overline{pp_1}$ eine Kugel construirt und in Bezug auf dieselbe das obige System von Kugelflächen ab bildet, so ist aus dem Vorigen ersichtlich, dass man wiederum ein System von Kugelflächen erhält, deren Mittelpunkte indess sämmtlich mit dem anderen Pole p_1 zusammenfallen.

7. Es ist nun im Folgenden das Bild eines Körpers zu untersuchen, welcher von zwei beliebigen, im Allgemeinen nicht concentrischen Kugelflächen begrenzt wird. Dieselben können offenbar eine doppelte Lage gegen einander haben; entweder nämlich liegt die eine von ihnen ganz innerhalb oder ganz ausserhalb der anderen. Dementsprechend wird im ersteren Falle der Körper von schalenförmiger Gestalt sein, im letzteren dagegen wird er sich nach allen Richtungen ins Unendliche erstrecken und im Innern zwei kugelförmige Höhlungen besitzen. Welche Lage indess auch die beiden Grenzflächen gegen einander haben, es werden sich immer, wie die Geometrie lehrt, zwei Punkte p und p_1 so construiren lassen, dass sie in Bezug auf jede der begrenzenden Kugelflächen einander als Pole entsprechen, auch werden beide ganz ausserhalb des Körpers liegen. Construirt man nun um irgend einen von ihnen, z. B. p, eine durch den anderen p, hindurchgehende Kugelfläche und bildet in Bezug auf dieselbe den gegebenen Körper ab, so leuchtet ein, dass der letztere sich in einen von zwei concentrischen Kugelflächen eingeschlossenen und daher allseitig begrenzten Körper verwandeln wird. Es wird im Folgenden dargethan werden, dass auch die Aufgabe, die Wärmevertheilung in einem von zwei excentrischen Kugelflächen eingeschlossenen Körper zu finden, auf die ein-

Digitized by GOOGLE

fachere und bekanntere zurückgeführt werden kann, die sich auf einen von zwei concentrischen Kugelflächen eingeschlossenen Körper bezieht. Zuvor sind aber noch einige zur Uebertragung nöthige Formeln zu entwickeln.

8. Wenn man vom Anfangspunkt des Coordinatensystems, als Mittelpunkt der Kugelfläche S, einen sehr schmalen Kegel construirt, so wird derselbe aus irgend einer der gegebenen Grenzflächen ein Element ds, aus deren Bild ein Element $d\sigma$ herausschneiden. Da man jedes derselben als die sphärische Projection des anderen ansehen kann, so findet die Relation statt:

$$\frac{ds \cdot \cos\left(\frac{n}{r}\right)}{r^2} = \frac{ds \cdot \cos\left(\frac{v}{\varrho}\right)}{\varrho^2},$$

in welcher $\left(\frac{n}{r}\right)$ und $\left(\frac{\nu}{\varrho}\right)$ diejenigen spitzen Winkel bezeichnen, welche die auf den Flächenelementen ds und $d\sigma$ errichteten Normalen mit dem gemeinsamen Radiusvector r oder ϱ bilden. Aus einer einfachen geometrischen Betrachtung ergiebt sich indess, was sich auch allgemein von je zwei entsprechenden Oberflächenelementen beweisen lässt, dass diese Winkel unter sich gleich sind. Mit Rücksicht hierauf erhält man:

$$\frac{ds}{r^2} = \frac{d\sigma}{\varrho^2};$$

oder wenn man, um späteren Zweideutigkeiten auszuweichen, die Entfernungen der Elemente ds und $d\sigma$ vom Anfangspunkt mit e und e bezeichnet

$$\frac{ds}{e^2} = \frac{ds}{\epsilon^2}.$$

9. Kehren wir noch einmal zu den Transformationsformeln in No. 1 zurück. Dieselben lassen sich auch auf folgende Weise schreiben:

$$\begin{aligned} \xi & (x^2 + y^2 + z^2) - c^2 x = 0, \\ \eta & (x^2 + y^2 + z^2) - c^2 y = 0, \\ \zeta & (x^2 + y^2 + z^2) - c^2 z = 0. \end{aligned}$$

Betrachtet man in ihnen die Coordinaten ξ, η, ζ als constante Parameter, so ersieht man sofort, dass dieselben drei Systeme von Kugelflächen darstellen, welche sich, weil jede von ihnen durch den Anfangspunkt geht, gegenseitig durchsetzen.

Differentiirt man dieselben, so erhält man:

$$\frac{\partial \xi}{\partial x} = -2c^{2} \frac{x}{r^{4}} x + \frac{c^{2}}{r^{2}} \begin{vmatrix} \frac{\partial \eta}{\partial x} = -2c^{2} \frac{y}{r^{4}} x \\ \frac{\partial \xi}{\partial y} = -2c^{2} \frac{x}{r^{4}} y \\ \frac{\partial \eta}{\partial z} = -2c^{2} \frac{y}{r^{4}} y + \frac{c^{2}}{r^{2}} \begin{vmatrix} \frac{\partial \xi}{\partial x} = -2c^{2} \frac{z}{r^{4}} x \\ \frac{\partial \eta}{\partial y} = -2c^{2} \frac{y}{r^{4}} y + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial y} = -2c^{2} \frac{z}{r^{4}} y \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{2}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} z + \frac{c^{2}}{r^{4}} \\ \frac{\partial \xi}{\partial z} = -2c^{2} \frac{z}{r^{4}} + \frac{c^{2}}{r^{4}} + \frac{c^{2}}{r^{$$

Multiplicirt man diese Gleichungen je zwei und zwei mit einander und addirt die senkrechten Reihen, so findet sich:

$$\frac{\partial \eta}{\partial x} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z} \cdot \frac{\partial \xi}{\partial z} = 0,$$

$$\frac{\partial \xi}{\partial x} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \xi}{\partial y} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \xi}{\partial z} \cdot \frac{\partial \xi}{\partial z} = 0,$$

$$\frac{\partial \xi}{\partial x} \cdot \frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y} \cdot \frac{\partial \eta}{\partial y} + \frac{\partial \xi}{\partial z} \cdot \frac{\partial \eta}{\partial z} = 0.$$

Diese Gleichungen zeigen an, dass die drei Systeme von Kugelflächen einander unter rechten Winkeln schneiden.

10. Es soll nun der Ausdruck $\Delta^{xyz} W = 0$ transformirt werden, in welchem, wie es gebräuchlich ist, der Kürze wegen

$$\Delta^{xyz} = \frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2}$$

gesetzt ist. Mit Rücksicht darauf, dass die neu eingeführten Coordinaten als die Parameter dreier orthogonalen Flächensysteme aufgefasst werden können, findet die Jacobi'sche Formel:

$$LMN \Delta^{xyx}W = \frac{\partial}{\partial \xi} \left(\frac{MN}{L} \frac{\partial W}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(\frac{LN}{M} \frac{\partial W}{\partial \eta} \right) + \frac{\partial}{\partial \xi} \left(\frac{LM}{N} \frac{\partial W}{\partial \xi} \right)$$

Anwendung, in welcher der Kürze halber

$$L^{2} = \left(\frac{\partial x}{\partial \xi}\right)^{2} + \left(\frac{\partial y}{\partial \xi}\right)^{2} + \left(\frac{\partial z}{\partial \xi}\right)^{2},$$

$$M^{2} = \left(\frac{\partial x}{\partial \eta}\right)^{2} + \left(\frac{\partial y}{\partial \eta}\right)^{2} + \left(\frac{\partial z}{\partial \eta}\right)^{2},$$

$$N^{2} = \left(\frac{\partial x}{\partial \zeta}\right)^{2} + \left(\frac{\partial y}{\partial \zeta}\right)^{2} + \left(\frac{\partial z}{\partial \zeta}\right)^{2}$$

gesetzt ist. Um die ebengenannten Grössen zu erhalten, hat man nur nöthig, die Transformationsformeln in No. 1 zu differentiiren

$$\frac{\partial x}{\partial \xi} = -2c^2 \frac{\xi}{\varrho^4} \xi + \frac{c^2}{\varrho^2} \begin{vmatrix} \frac{\partial x}{\partial \eta} = -2c^2 \frac{\eta}{\varrho^4} \xi \\ \frac{\partial y}{\partial \xi} = -2c^2 \frac{\xi}{\varrho^4} \eta \\ \frac{\partial y}{\partial \xi} = -2c^2 \frac{\xi}{\varrho^4} \eta \\ \frac{\partial z}{\partial \eta} = -2c^2 \frac{\eta}{\varrho^4} \eta + \frac{c^2}{\varrho^2} \begin{vmatrix} \frac{\partial x}{\partial \xi} = -2c^2 \frac{\xi}{\varrho^4} \xi \\ \frac{\partial y}{\partial \xi} = -2c^2 \frac{\xi}{\varrho^4} \eta \\ \frac{\partial z}{\partial \xi} = -2c^2 \frac{\xi}{\varrho^4} \xi \\ \frac{\partial z}{\partial \eta} = -2c^2 \frac{\eta}{\varrho^4} \xi \\ \frac{\partial z}{\partial \xi} = -2c^2 \frac{\xi}{\varrho^4} \xi + \frac{c^2}{\varrho^2} \end{vmatrix}$$

die erhaltenen Gleichungen ins Quadrat zu erheben und senkrecht zu addiren. Man erhält schliesslich:

$$L^2 = \frac{c^4}{\varrho^4}, \quad M^2 = \frac{c^4}{\varrho^4}, \quad N^2 = \frac{c^4}{\varrho^4},$$

oder

$$L = M = N = \frac{c^2}{q^2}.$$

Digitized by Google

Kugelflächen eingeschlossenen Körpers. Von Dr. FROSCH. 503

Durch Einsetzung derselben geht die Jacobi'sche Formel über in

$$\frac{c^*}{\varrho^*} \Delta^{xyz} W = \frac{\partial}{\partial \xi} \left(\frac{c^2}{\varrho^*} \frac{\partial W}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(\frac{c^2}{\varrho^*} \frac{\partial W}{\partial \eta} \right) + \frac{\partial}{\partial \zeta} \left(\frac{c^2}{\varrho^*} \frac{\partial W}{\partial \zeta} \right),$$

oder

$$\frac{c^4}{\varrho^6} \Delta^{xyz} W = \frac{\partial}{\partial \xi} \left(\frac{1}{\varrho^8} \frac{\partial W}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(\frac{1}{\varrho^8} \frac{\partial W}{\partial \eta} \right) + \frac{\partial}{\partial \xi} \left(\frac{1}{\varrho^8} \frac{\partial W}{\partial \xi} \right).$$

Sie ist indess noch einer weiteren Vereinfachung fähig. Bezeichnet man nämlich mit φ und ψ zwei beliebige Functionen von ξ , η , ζ , so gelten die Differentialgleichungen:

$$\psi^{2} \frac{\partial \frac{\varphi}{\psi}}{\partial \xi} \stackrel{=}{=} \psi \frac{\partial \varphi}{\partial \xi} - \varphi \frac{\partial \psi}{\partial \xi},$$
$$\psi^{2} \frac{\partial \frac{\varphi}{\psi}}{\partial \eta} \stackrel{=}{=} \psi \frac{\partial \varphi}{\partial \eta} - \varphi \frac{\partial \psi}{\partial \eta},$$
$$\psi^{2} \frac{\partial \frac{\varphi}{\psi}}{\partial \xi} \stackrel{=}{=} \psi \frac{\partial \varphi}{\partial \xi} - \varphi \frac{\partial \psi}{\partial \xi},$$

oder wenn man sie zum zweiten Male differentiirt:

$$\frac{\partial}{\partial\xi} \left(\psi^{2} \frac{\partial \frac{\varphi}{\psi}}{\partial\xi} \right) = \psi \frac{\partial^{2} \varphi}{\partial\xi^{2}} - \varphi \frac{\partial^{2} \psi}{\partial\xi^{2}},$$
$$\frac{\partial}{\partial\eta} \left(\psi^{2} \frac{\partial \frac{\varphi}{\psi}}{\partial\eta} \right) = \psi \frac{\partial^{2} \varphi}{\partial\eta^{2}} - \varphi \frac{\partial^{2} \psi}{\partial\eta^{2}},$$
$$\frac{\partial}{\partial\xi} \left(\psi^{2} \frac{\partial \frac{\varphi}{\psi}}{\partial\xi} \right) = \psi \frac{\partial^{2} \varphi}{\partial\xi^{2}} - \varphi \frac{\partial^{2} \psi}{\partial\xi^{2}}.$$

Addirt man dieselben, so wird:

$$\frac{\partial}{\partial \xi} \left(\frac{\partial}{\psi^2} \frac{\varphi}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(\psi^2 \frac{\partial}{\partial \eta} \right) + \frac{\partial}{\partial \xi} \left(\psi^2 \frac{\partial}{\partial \xi} \frac{\varphi}{\psi} \right) = \psi \varDelta \varphi - \varphi \varDelta \psi.$$

Setzt man hierin die beliebigen Functionen $\varphi = \frac{1}{\varrho} W$ und $\psi = \frac{1}{\varrho}$, so ergiebt sich:

$$\frac{\partial}{\partial\xi}\left(\frac{1}{\varrho^2}\frac{\partial W}{\partial\xi}\right) + \frac{\partial}{\partial\eta}\left(\frac{1}{\varrho^2}\frac{\partial W}{\partial\eta}\right) + \frac{\partial}{\partial\zeta}\left(\frac{1}{\varrho^2}\frac{\partial W}{\partial\xi}\right) = \frac{1}{\varrho} \varDelta\left(\frac{1}{\varrho}W\right) - \frac{1}{\varrho} W \varDelta\frac{1}{\varrho},$$

oder, da bekanntlich $\Delta \frac{1}{\varrho} = 0$ ist,

$$\frac{\partial}{\partial \xi} \left(\frac{1}{\varrho^2} \frac{\partial W}{\partial \xi} \right) + \frac{\partial}{\partial \eta} \left(\frac{1}{\varrho^2} \frac{\partial W}{\partial \eta} \right) + \frac{\partial}{\partial \xi} \left(\frac{1}{\varrho^2} \frac{\partial W}{\partial \xi} \right) = \frac{1}{\varrho} \underbrace{\Delta \left(\frac{1}{\varrho} W \right)}_{\text{bigin}}.$$

504 Ueber den Temperaturzustand eines von zwei nicht concentr.

Es geht demnach die Transformationsformel über in:

$$\frac{c^4}{\varrho^5} \Delta^{xyz} W = \Delta^{\xi\eta\xi} \left(\frac{1}{\varrho} W \right).$$

Für den Fall, dass $\Delta^{x yz} W = 0$ ist, erhält man mithin die entsprechende Gleichung $\Delta^{\xi \eta \zeta} \frac{1}{\varrho} W = 0$, oder wenn man die Entfernung des Punktes ξ, η, ζ vom Anfangspunkt wie vorhin mit ε bezeichnet:

$$\Delta^{\xi\eta\zeta}\left(\frac{1}{\varepsilon}W\right)=0.$$

Lösung der Aufgabe für den besonderen Fall, dass die den Körper begrenzenden Kugelflächen concentrisch sind.

11. Die Aufgabe, um deren Lösung es sich hier handelt, lässt sich in doppelter Weise aussprechen. Physikalisch aufgefasst lautet dieselbe:

"Gegeben ist ein von zwei concentrischen Kugelflächen eingeschlossener Körper. Es soll nach Eintritt des stationären Temperaturzustandes die Vertheilung der Wärme im Innern desselben bestimmt werden, wenn die Temperatur eines jeden Punktes der Grenzflächen eine gegebene und unveränderliche ist."

In die Sprache der Analysis übertragen:

"Es ist die Function V so zu bestimmen, dass

Ia) $\Delta^{\xi \eta \zeta} V$, in jedem Punkte im Innern des Körpers = 0,

Ib) daselbst V nebst den ersten Differentialquotienten $\frac{\partial V}{\partial \xi}$, $\frac{\partial V}{\partial \eta}$, $\frac{\partial V}{\partial \zeta}$ stetig und endlich ist;

II. dass die Function V in jedem Punkte der Grenzflächen einen gegebenen und unveränderlichen Werth annimmt."

Die Gleichungen unter I), zu denen im Allgemeinen noch hinzutritt die Bedingung

Ic) dass, falls der Körper sich ins Unendliche erstreckt, εV , wo ε die Entfernung des Punktes ξ, η, ζ vom Anfangspunkt darstellt, überall einen endlichen Werth behält, heissen (nach Neumann*), weil sie nur von der Gestalt des vorgelegten Körpers abhängen, Hauptbedingungen, diejenigen unter II), weil sie ausserdem von gewissen Grenzwerthen abhängig sind, Nebenbedingungen. Es ist somit klar, dass für einen und denselben Körper unzählig viele Lösungen existiren, je nach der Festsetzung der Werthe, welche die Function V in den Punkten der Grenzflächen annehmen soll. Dieselben lassen sich jedoch sämmtlich, wie die Untersuchungen von Green

^{*)} Neumann, Allgemeine Lösung des Problems über den stationären Temperaturzustand eines homogenen Körpers, welcher von irgend zwei nicht concentrischen Kugelflächen begrenzt wird. Pag. 14. Digitized by GOOG

Kugelflächen eingeschlossenen Körpers. Von Dr. FROSCH. 505

und Neumann gezeigt haben, auf eine einzige zurückführen, nämlich auf folgende Aufgabe:

Es ist die Function G zu bestimmen, welche

I. den Hauptbedingungen Genüge leistet,

II. in einem beliebigen Punkte (o) der Oberfläche den Werth T_{10} erlangt, wenn man unter T_{10} den reciproken Werth der Entfernung des Punktes (o) von einem beliebigen, aber festen Punkte (1) im Innern des Körpers versteht, so dass also $G'_0 = T_{10}$ ist.

Ist nämlich die Function G für einen Körper ermittelt und versteht man unter η_0 die Grösse

$$\eta_0' = \frac{dG_0'}{dn} - \frac{dT_{10}}{dn},$$

wo n die Richtung der im Punkte o nach Aussen errichteten Normale darstellt, so findet man die gesuchte Function durch die Gleichung:

$$4\pi V_1 = \int \eta_0' V_0 \, do,$$

in welcher do das Flächenelement im Punkte o darstellt und die Integration auf alle Elemente der Grenzflächen auszudehnen ist.

12. Diese Beziehungen sollen angewendet werden, um den Werth der Function V zunächst für einen von zwei concentrischen Kugelflächen begrenzten Körper zu ermitteln. Bezeichnet man mit σ einen Punkt der äusseren, mit τ einen Punkt der inneren Grenzfläche, ferner mit $d\sigma$ und $d\tau$ die Flächenelemente in den Punkten σ und τ , so ist die Gleichung, durch welche die Function V bestimmt ist:

$$4\pi V_{i} = \int \eta_{\sigma}' V_{\sigma} d\sigma + \int \eta_{\tau}' V_{\tau} d\tau,$$

in welchen die Grössen η die Werthe haben:

$$\eta'_{\sigma} = \frac{dG_{\sigma}'}{dn} - \frac{dT_{1\sigma}}{dn},$$
$$\eta'_{\tau} = \frac{dG_{\tau}'}{dn} - \frac{dT_{1\tau}}{dn}.$$

Berücksichtigt man, dass die in $d\sigma$ errichtete Normale dieselbe Richtung hat, wie der Radiusvector r, die in $d\tau$ errichtete aber eine dem letzteren entgegengesetzte, so lassen sich die obigen Werthe auch folgendermaassen darstellen:

$$\eta'_{\sigma} = + \frac{dG_{\tau}'}{dr} - \frac{dT_{1\sigma}}{dr},$$
$$\eta'_{\tau} = - \frac{dG_{\tau}'}{dr} + \frac{dT_{1\tau}}{dr}.$$

Da in denselben $T_{1\sigma}$ und $T_{1\tau}$ bekannte Functionen sind, so handelt es sich darum, die Green'sche Function G zu ermitteln.

Digitized by Google

13. Es sei, wie oben, 1 ein im Innern des Körpers beliebig angenommener, aber fester Punkt, dagegen o ein veränderlicher Punkt, ihre Polarcoordinaten r_1 , ω_1 , φ_1 und r, ω , φ , dann ist

$$T_{10} = \frac{1}{\sqrt{r^2 + r_1^2 - 2rr_1\cos\vartheta}},$$

wo

$$\cos \vartheta = \cos \omega \cdot \cos \omega_1 + \sin \omega \cdot \sin \omega_1 \cdot \cos (\varphi - \varphi_1)$$

gesetzt ist. Dieser Ausdruck lässt sich auf doppelte Weise nach Kugelfunctionen entwickeln

$$T_{10} = \begin{cases} \sum_{n=0}^{n=\infty} \frac{r^n}{r_1^{n+1}} \cdot P^n (\cos \vartheta) \\ \sum_{n=\infty}^{n=\infty} \frac{r_1^n}{r^{n+1}} \cdot P^n (\cos \vartheta) \end{cases}$$

von denen die erstere Entwickelung anzuwenden ist, so lange der Punkt (o) innerhalb einer mit dem Radius r_1 um das gemeinsame Centrum construirten Kugel, die letztere dagegen, wenn er ausserhalb derselben liegt. Schreibt man der Kürze wegen P_{10}^n für $P^n(\cos \vartheta)$, da diese Function nur von der Lage der Punkte o und 1 abhängt, so ist demnach

$$T_{10} = \begin{cases} \sum_{n=0}^{n=\infty} \frac{r^n}{r_1^{n+1}} P_{10}^n & r < r_1 \\ \sum_{n=\infty}^{n=\infty} \frac{r_1^n}{r^{n+1}} P_{10}^n & r > r_1. \end{cases}$$

Hinsichtlich der Function $P^{n}(\lambda)$ hat Laplace gezeigt, dass dieselbe der Gleichung genügt

$$\frac{\partial}{\partial \lambda} (1-\lambda^2) \frac{\partial P^n(\lambda)}{\partial \lambda} + n (n+1) P^n(\lambda) = 0,$$

vermittelst welcher sich leicht beweisen lässt, dass jedes Glied der obigen Reihen

 $r^n P_{10}^n$ und $\frac{1}{r^{n+1}} P_{10}^n$

der Gleichung genügt

$$\Delta r^n P_{10}^n = 0$$
 und $\Delta \frac{1}{r^{n+1}} P_{10}^n = 0.$

Aus einfacher geometrischer Anschauung erhellt ferner, dass jede von diesen Grössen sammt ihren ersten Differentialquotienten, so lange der Punkt 0 im Innern des Körpers bleibt, stetig und endlich ist. Es folgt daraus, dass jede von ihnen den obigen Hauptbedingungen Genüge leistet. Dasselbe gilt auch von jedem aus ihnen beliebig. zusammengesetzten Ausdrucke

$$J = Ar^{n} P_{10}^{n} + B \frac{1}{r^{n+1}} P_{10}^{n} = \left[Ar^{n} + B \frac{1}{r^{n+1}} \right] P_{10}^{n}$$

Da diese Function ebenso, wie die Function G den Hauptbedingungen genügt, so wird sie mit derselben identisch sein, wenn beide auch den-Digitized by GOOR selben Nebenbedingungen genügen; es ist demnach zu untersuchen, ob die bisher willkürlichen Constanten A und B sich so bestimmen lassen, dass die Functionen J und G oder, was dasselbe ist, die Functionen J und T dieselben Grenzwerthe besitzen, d. h. dass die Gleichungen stattfinden

$$J_{\sigma} = T_{1\sigma}$$
 und $J_{\tau} = T_{1\tau}$

Nach der obigen Entwickelung hat man aber

$$T_{1\sigma} = \sum_{n=0}^{n=\infty} \frac{r_1^n}{r_{\sigma}^{n+1}} P_{1\sigma}^n$$
$$T_{1\tau} = \sum_{n=0}^{n=\infty} \frac{r_{\tau}^n}{r_{i}^{n+1}} P_{1\tau}^n,$$

sowie

$$J_{o} = \Sigma \left[Ar_{\sigma}^{n} + B \frac{1}{r_{\sigma}^{n+1}} \right] P_{1\sigma}^{n},$$

$$J_{\tau} = \Sigma \left[Ar_{\tau}^{n} + B \frac{1}{r_{\tau}^{n+1}} \right] P_{1\tau}^{n}.$$

Daraus geht hervor, dass, wenn die Functionen J und G identisch sein sollen, einerseits die für J entwickelten Reihen von n = 0 bis $n = \infty$ summirt werden müssen, andererseits, dass die willkürlichen Constanten A und B so bestimmt werden müssen, dass

$$Ar_{\sigma}^{n} + B \frac{1}{r_{\sigma}^{n+1}} = \frac{r_{1}^{n}}{r_{\sigma}^{n+1}},$$
$$Ar_{\tau}^{n} + B \frac{1}{r_{\tau}^{n+1}} = \frac{r_{\tau}^{n}}{r_{1}^{n+1}}.$$

Aus diesen Gleichungen ergiebt sich

$$A = \frac{1}{r_1^{n+1}} \cdot \frac{r_{\tau}^{2n+1} - r_1^{2n+1}}{r_{\tau}^{2n+1} - r_{\sigma}^{2n+1}},$$

$$B = \frac{r_{\tau}^{2n+1}}{r_1^{n+1}} \cdot \frac{r_{\sigma}^{2n+1} - r_1^{2n+1}}{r_{\sigma}^{2n+1} - r_{\tau}^{2n+1}}.$$

Versteht man nun unter A und B die genannten Grössen, so stellt sich die gesuchte Function dar

$$G_0' = \sum_{n=0}^{n=\infty} \left[Ar^n + B \frac{1}{r^{n+1}} \right] P_{10}^n.$$

14. Es sind gegenwärtig die Grössen η selbst zu berechnen. Da die Function *T* bekannt, die Function *G* soeben ermittelt ist, hat man beider Differentialquotienten zu bilden. Berücksichtigt man, dass die Function P_{10}^n von der Coordinate *r* unabhängig ist, so ergiebt sich

$$\frac{dG_0'}{dr} = \sum_{n=0}^{n=\infty} \left[A_n r^{n-1} - B_n(n+1) \frac{1}{r^{n+2}} \right] P_{10}^n,$$

desgleichen findet man die Differentialquotienten von T_{10} Digitized by Google

$$\frac{dT_{10}}{dr} = -\sum_{n=0}^{n=\infty} (n+1) \frac{r_1^n}{r^{n+2}} P_{10}^n \text{ für } r > r_1,$$

$$\frac{dT_{10}}{dr} = +\sum_{n=0}^{n=\infty} n \frac{r^{n-1}}{r_1^{n+1}} P_{10}^n \text{ für } r < r_1.$$

Setzt man diese Werthe der Differentialquotienten in die Gleichungen, durch welche die Grössen η_{σ}' und η_{π}' bestimmt werden,

$$\eta_{\sigma}' = + \frac{dG_{\sigma}'}{dr} - \frac{dT_{1\sigma}}{dr},$$
$$\eta_{\tau}' = - \frac{dG_{\tau}'}{dr} + \frac{dT_{1\tau}}{dr}$$

ein, so erhält man

$$\eta_{\sigma}^{\mathbf{v}} = \sum_{\substack{n=0\\ n=0}}^{n=\infty} \left[+Anr_{\sigma}^{n-1} - B(n+1)\frac{1}{r_{\sigma}^{n+2}} + (n+1)\frac{r_{1}^{n}}{r_{\sigma}^{n+2}} \right] P_{1\sigma}^{n},$$

$$\eta_{\tau}' = \sum_{\substack{n=0\\ n=0}}^{n=\infty} \left[-Anr_{\tau}^{n-1} + B(n+1)\frac{1}{r_{\tau}^{n+2}} + n\frac{r_{\tau}^{n-1}}{r_{1}^{n+1}} \right] P_{1\tau}^{n}.$$

Werden jetzt für die Grössen A und B ihre Werthe substituirt, so ergiebt sich nach einigen Reductionen

$$\begin{split} \eta_{\sigma}' &= \sum_{n=0}^{n=\infty} (2n+1) \frac{r_{\sigma}^{n-1}}{r_{1}^{n+1}} \cdot \frac{r_{1}^{2n+1} - r_{\tau}^{2n+1}}{r_{\sigma}^{2n+1} - r_{\tau}^{2n+1}} P_{1\sigma}^{n}, \\ \eta_{\tau}' &= \sum_{n=0}^{n=\infty} (2n+1) \frac{r_{\tau}^{n-1}}{r_{1}^{n+1}} \cdot \frac{r_{1}^{2n+1} - r_{\sigma}^{2n+1}}{r_{\tau}^{2n+1} - r_{\sigma}^{2n+1}} P_{1\tau}^{n}. \end{split}$$

Man erhält somit das Resultat:

Bezeichnet man mit η_{σ}' und η_{τ}' die oben aufgestellten Ausdrücke, so ist der Werth der Function V im Punkte (1) bestimmt durch die Gleichung 4

$$\pi V_i = \int \eta_\sigma V_\sigma \, d\sigma + \int \eta_\tau V_\tau \, d\tau.$$

§. 3.

Zurückführung der Lösung des allgemeinen Problems auf den im §. 2 behandelten speciellen Fall.

15. Die Aufgabe, deren Lösung die vorliegende Untersuchung zum Gegenstande hat, lautet, wie bekannt ist, folgendermaassen:

Gegeben ist ein von zwei nicht concentrischen Kugelflächen eingeschlossener Körper. Es ist die Function W zu bestimmen, welche

I. im Innern des Körpers den Hauptbedingungen genügt,

II. in Punkten o und z der Grenzflächen gegebene, unveränderliche Werthe annimmt.

Es war früher gezeigt, dass der vorgelegte Körper, mag er endlich begrenzt sein oder sich nach allen Richtungen bis ins Unendliche erstrecken, nach der in §.1 auseinandergesetzten Methode sich in einen Körper verwandeln lässt, welcher von zwei concentrischen Kugelflächen eingeschlossen ist. Es ist daher von Wichtigkeit, zu untersuchen, in welcher Art sich die Bedingungsgleichungen der Function W für den erhaltenen Körper transformiren. Es mag deshalb daran erinnert sein, dass zunächst nach No. 10 die Bedingungsgleichung Ia) $\Delta^{x y z} W = 0$ übergeht in die ähnliche $\Delta^{\xi \eta \zeta} \left(\frac{1}{\epsilon}W\right) = 0$, wo ϵ die Entfernung des Punktes $\xi \eta \zeta$ vom Anfangspunkt darstellt. Um die hier auftretende Function $\frac{1}{\epsilon}W$ zu untersuchen, sind die beiden Fälle, von denen oben die Rede war, einzeln zu betrachten.

Ist der zu untersuchende Körper nach allen Richtungen endlich begrenzt, so liegt der Anfangspunkt ausserhalb des durch die Transformation erhaltenen; es kann daher niemals $\varepsilon = 0$, also $\frac{1}{\varepsilon} = \infty$ werden. Da auch die Function W im Innern des Körpers stetig ist, so folgt, dass daselbst die Function $\frac{1}{\varepsilon}$ W ebenfalls stetig und endlich ist. Dasselbe lässt sich auch von ihren ersten Differentialquotienten darthun.

Ist dagegen der Körper nach allen Richtungen hin unbegrenzt, so liegt der Anfangspunkt in dem durch die Transformation erhaltenen Körper selbst, und es könnte daher fraglich erscheinen, ob die Function $\frac{1}{\varepsilon} W$ im Anfangspunkte endlich ist. Indessen tritt für diesen Fall noch die Bedingung Ic) hinzu, welche besagt, dass die Function eW auch für $e = \infty$ endlich bleibt. Da nun $eW = \frac{c^*}{\varepsilon} W$ ist, so ergiebt sich, dass die Function $\frac{1}{\varepsilon} W$ auch für $\varepsilon = 0$, d. h. im Anfangspunkte endlich bleibt. Dasselbe gilt, wie sich leicht zeigen lässt, auch für die ersten Differentialquotienten derselben.

Aus diesen Erörterungen geht hervor, dass, wie auch der ursprüngliche Körper beschaffen sein mag, die Function $\frac{1}{\varepsilon}$ *W* im Innern des transformirten Körpers

Ia) der Gleichung $\Delta\left(\frac{1}{\varepsilon}W\right) = 0$ genügt,

1b) sammt ihren ersten Differentialquotienten stetig und endlich ist.

Dies sind nichts anderes, als die vier Hauptbedingungen für den transformirten Körper, da die Bedingung Ic) hier, weil derselbe jedenfalls endlich begrenzt ist, ihre Bedeutung verliert. Es ist demnach noch übrig, die Nebenbedingungen zu transformiren. Da jedem Punkte s und t des ursprünglichen Körpers ein Punkt σ und τ des transformirten entspricht,

Digitized by GOOGLC

so folgt $W_s = W_{\sigma}$ und $W_t = W_{\tau}$. Die Function $\frac{1}{s}$ W nimmt folglich in

Punkten der Grenzflächen die bestimmten Werthe $\frac{1}{\epsilon_r}W_s$ und $\frac{1}{\epsilon_r}W_s$ an.

Man erhält somit schliesslich das Resultat:

Die Function $\frac{1}{-}W$ genügt

I. im Innern des Körpers den Hauptbedingungen,

II. sie nimmt auf den Grenzflächen die unveränderlichen Werthe $\frac{1}{\epsilon_s}W_s$ und $\frac{1}{\epsilon_s}W_t$ an.

Es war aber im §. 2 die Aufgabe gelöst worden, für einen Körper derselben Art die Function V zu ermitteln, welche

I. im Innern den Hauptbedingungen genügt,

II. auf den Grenzflächen gegebene feste Werthe V_{σ} und V_{τ} annimmt. Da nun eine jede Function durch die obigen Bedingungen unzweideu-

tig bestimmt ist, so müssen die Functionen $\frac{1}{s}$ W und V, weil sie beide den Bedingungen I genügen, identisch sein, wenn dies auch hinsichtlich der Be-

dingungen II der Fall ist. Setzt man demnach

$$\frac{1}{\varepsilon_{\sigma}}W_{s} = V_{\sigma} \text{ und } \frac{1}{\varepsilon_{\tau}}W_{t} = V_{\tau},$$

so folgt

oder

Es leuchtet hieraus ein, dass die gestellte allgemeine Aufgabe, weil zurückgeführt auf einen besonderen schon behandelten Fall, ebenfalls als gelöst anzusehen ist. Es ist jedoch noch nöthig, zu untersuchen, welche Bedeutung für den ursprünglichen Körper die Grössen, welche in der Function V enthalten sind, besitzen. Vor Allem liegt die Frage nahe, in welcher Weise die Coordinaten r, ω , φ in die gegebene Figur sich übertragen lassen.

16. Es seien in der letzteren, wie früher, p und p_1 die beiden Pole, um den Pol p sei mit der Polardistanz pp1 die Kugelfläche construirt, in Bezug auf welche o das Bild eines beliebigen Punktes o sei. Aus den Principien der Tranformation ergiebt sich alsdann $\overline{po} \cdot \overline{po} = \overline{pp_1}^2,$

folglich

 $\Delta p \circ p, \sim \Delta p p, \omega$ $\overline{p_1 \omega} : \overline{p p_1} = \overline{p_1 o} : \overline{p o}.$

$$W = \varepsilon V.$$

 $\frac{1}{e}W = V$

Setzt man, wie früher, $pp_1 = c$ und erwägt, dass $p_1 \omega$ nichts anderes ist, als die Polarcoordinate r, so hat man

$$r = c \cdot \frac{\overline{p_1 o}}{\overline{p o}}.$$

Der hier auftretende Quotient der Entfernungen des variabeln Punktes o von den beiden Polen lässt sich als neue Coordinate K einführen, so dass

$$r = c.K.$$

Aus der Achnlichkeit der Dreiecke pop_1 und $pp_1\omega$ ist ferner ersichtlich, dass

$$L p p_1 \omega = L p o p_1$$

wo $L p p_1 \omega$ das Supplement des Winkels ist, welcher sonst als Polarcoordinate ω betrachtet wurde, an deren Stelle $L p \circ p_1$, d. h. der Winkel, den die Radien po und $p_1 o$ mit einander bilden, als neue Coordinate Ω eingeführt werden soll, so dass man hat

$$\boldsymbol{\omega}=\boldsymbol{\pi}-\boldsymbol{\Omega}.$$

Was die dritte Coordinate φ anbelangt, welche den Winkel darstellt, den die durch den variabeln Punkt ω und die X-Axe gelegte Ebene mit der XY-Ebene bildet, so soll dafür der Winkel, welchen die durch den entsprechenden Punkt o und die X-Axe hindurchgelegte Ebene mit der XY-Ebene bildet, als neue Coordinate Φ eingeführt werden. Da die genannten Ebenen indessen nach No. 3 zusammenfallen, so hat man

$$\varphi = \Phi$$
.

17. Mit Hilfe der soeben aufgestellten Transformationsformeln

$$r = c.K$$

$$\omega = \pi - \Omega,$$

$$\omega = \Phi.$$

lässt sich zunächst zeigen, dass der Ausdruck

 $\cos \omega . \cos \omega_1 + \sin \omega . \sin \omega_1 . \cos (\varphi - \varphi_1)$

in den folgenden übergeht

 $\cos \Omega . \cos \Omega_1 + \sin \Omega . \sin \Omega_1 . \cos (\Phi - \Phi_1),$

d. h. dass er unverändert bleibt, abgeschen davon, dass an die Stelle der monopolaren Coordinaten die dipolaren getreten sind, wenn man nämlich die neu eingeführten Coordinaten $K\Omega \Phi$, weil sie sich auf zwei Pole beziehen, dipolare nennt im Gegensatz zu den gewöhnlichen Polar- oder monopolaren Coordinaten. Da der obige Ausdruck das Argument der Function P bildet, so gilt ein Gleiches offenbar auch von dieser und man hat

$$P_{10}^{n} = P_{10}^{n}$$
 und $P_{1t}^{n} = P_{1t}^{n}$.

Durch die Substitution derselben verwandeln sich die Grössen η in die folgenden

$$\eta_{\sigma}' = \frac{1}{c^{*}} \sum_{n=0}^{n=\infty} (2n+1) \frac{K_{s}^{n-1}}{K_{1}^{n+1}} \cdot \frac{K_{1}^{2n+1} - K_{t}^{2n+1}}{K_{s}^{2n+1} - K_{t}^{2n+1}} P_{1s}^{n},$$

$$\eta_{\sigma}' = \frac{1}{c^{*}} \sum_{n=0}^{n=\infty} (2n+1) \frac{K_{t}^{n-1}}{K_{1}^{n+1}} \cdot \frac{K_{1}^{2n+1} - K_{s}^{2n+1}}{K_{t}^{2n+1} - K_{s}^{2n+1}} P_{1t}^{n}.$$

Digitized by Google

Die Function V wird aber repräsentirt durch die Gleichung

$$4\pi V_1 = \int \eta_{\sigma}' V_{\sigma} d\sigma + \int \eta_{\tau}' V_{\tau} d\tau.$$

Nach Einsetzung der Werthe

$$V_{\sigma} = \frac{1}{\varepsilon_{\sigma}} W_s \text{ und } V_{\tau} = \frac{1}{\varepsilon_{\tau}} W_t,$$

sowie

$$V_1 = \frac{1}{\varepsilon_1} W_1$$

ergiebt sich die Gleichung

$$4\pi W_{1} = \varepsilon_{1} \int \eta_{\sigma}' \frac{W_{s}}{\varepsilon_{\sigma}} d\sigma + \varepsilon_{1} \int \eta_{\tau}' \frac{W_{t}}{\varepsilon_{\tau}} d\tau$$
$$= \int \frac{\epsilon_{1}}{\varepsilon_{\sigma}} \eta_{\sigma}' W_{s} d\sigma + \int \frac{\epsilon_{1}}{\varepsilon_{\tau}} \eta_{\tau}' W_{t} d\tau,$$

Zur Transformation der Flächenelemente $d\sigma$ und dr dienen die For meln in No. 8

$$\frac{ds}{e_s^2} = \frac{d\sigma}{\varepsilon_0^2} \text{ und } \frac{dt}{e_t^2} = \frac{d\tau}{\varepsilon_\tau^2}$$

oder

$$d\sigma = \frac{\varepsilon_{\sigma}^4}{c^4} ds$$
 und $d\tau = \frac{\varepsilon_{\tau}^4}{c^4} dt$.

Durch Substitution derselben geht die Gleichung über in

$$4\pi W_1 = \int \frac{\epsilon_1 \epsilon_0^3}{c^4} \eta_0' W_s \, ds + \int \frac{\epsilon_1 \epsilon_\tau^3}{c^4} \eta_\tau' W_t \, dt.$$

Dieselbe lässt sich wiederum in die Normalform bringen

$$4\pi W_1 = \int H_s' W_0 \, ds + \int H_t' W_t \, dt$$

wenn man unter H_s^1 und H_t^1 die folgenden Ausdrücke versteht

$$H'_{s} = \frac{\varepsilon_{1} \varepsilon_{\sigma}^{3}}{c^{4}} \eta_{\sigma}' = \frac{c^{4}}{e_{1} e_{s}^{3}} \eta_{\sigma}',$$
$$H'_{1} = \frac{\varepsilon_{1} \varepsilon_{\tau}^{3}}{c^{4}} \eta_{\tau}' = \frac{c^{4}}{e_{1} e_{t}^{3}} \eta_{\tau}',$$

oder mit Rücksicht auf die Werthe von η_{σ}' und η_{τ}'

$$H'_{s} = \frac{c^{2}}{e_{1}e_{s}^{3}} \sum_{n=0}^{n=\infty} (2n+1) \frac{K_{s}^{n-1}}{K_{1}^{n+1}} \cdot \frac{K_{1}^{2n+1} - K_{t}^{2n+1}}{K_{s}^{2n+1} - K_{t}^{2n+1}} P_{1s}^{n},$$

$$H'_{t} = \frac{c^{2}}{e_{1}e_{t}^{3}} \sum_{n=0}^{n=\infty} (2n+1) \frac{K_{t}^{n-1}}{K_{1}^{n+1}} \cdot \frac{K_{1}^{2n+1} - K_{s}^{2n+1}}{K_{t}^{2n+1} - K_{s}^{2n+1}} P_{1t}^{n}.$$

18. Um die Grösse e, welche den Abstand des variabeln Punktes ovom Anfangspunkt darstellt, ebenfalls durch die dipolaren Coordinaten auszudrücken, hat man im $\Delta p \varpi p_1$

$$\overline{p \, \omega^2} = \overline{p \, p_1^2} - 2 \, \overline{p \, p_1} \cdot \overline{p_1 \, \omega} \, \cos \, \overline{p \, p_1 \, \omega} + \overline{p_1 \, \omega^2}$$

oder

$$\varepsilon^2 = c^2 + 2c \cdot r \cdot cos \omega + r^2$$
.
Digitized by Google

Setzt man darin r = c. K und $\omega = \pi - \Omega$, so wird $\varepsilon = \frac{c^2}{e}$, und man erhält

$$\frac{c^2}{e^2} = 1 - 2K \cdot \cos \Omega + K^2,$$

oder wenn man die stets positive Grösse

$$1-2K.\cos\Omega+K^2=\psi^2$$

setzt,

$$e = \frac{c}{\psi}.$$

Durch diese Substitution gehen die obigen Gleichungen über in

$$\begin{split} H_{s}' &= \frac{\psi_{1}\psi_{s}^{3}}{c^{2}} \sum_{n=0}^{n=\infty} (2n+1) \cdot \frac{K_{s}^{n-1}}{K_{1}^{n+1}} \cdot \frac{K_{1}^{2n+1}-K_{t}^{2n+1}}{K_{s}^{2n+1}-K_{t}^{2n+1}} P_{1s}^{n}, \\ H_{t}' &= \frac{\psi_{1}\psi_{t}^{3}}{c^{2}} \sum_{n=0}^{n=\infty} (2n+1) \cdot \frac{K_{t}^{n-1}}{K_{1}^{n+1}} \cdot \frac{K_{1}^{2n+1}-K_{s}^{2n+1}}{K_{t}^{2n+1}-K_{s}^{2n+1}} P_{1t}^{n}. \end{split}$$

Diese Formeln stimmen, abgesehen von der verschiedenen Bezeichnungsweise, vollständig mit denen überein, welche Herr Prof. Neumann vermittelst einer anderen Methode aufgestellt hat*).

19. Es war oben mehrmals die Behauptung ausgesprochen, dass die Untersuchung eines von zwei concentrischen Kugelflächen eingeschlossenen Körpers hinsichtlich seiner Temperatur nur ein specieller Fall derjenigen ist, welche sich auf einen von zwei excentrischen Kugelflächen umschlossenen Körper bezieht. Inwiefern dies richtig ist, soll zum Schluss noch dargethan werden, indem gezeigt wird, dass durch gewisse Einschränkungen die im §. 3 gefundenen Formeln in die des §. 2 übergehen.

Es seien wiederum p und p_1 die beiden Pole, o ein variabeler Punkt, so stellt die Gleichung

$$\frac{\overline{o p_1}}{\overline{o p}} = Const.$$

ein System von nicht concentrischen Kugelflächen dar mit der gemeinschaftlichen Centrale $\overline{pp_1}$. Lässt man den Punkt p in die unendliche Ferne fortrücken, so wächst der Radiusvector \overline{op} bis ins Unendliche und die Gleichung scheint ihre Bedeutung zu verlieren. Multiplicirt man jedoch vorher mit der Polardistanz $\overline{pp_1} = c$, so wird

$$\overline{op_1} \cdot \frac{c}{\overline{op}} = Const.$$

Lässt man jetzt den Punkt p bis nis Unendliche fortrücken, so convergirt der Quotient $\frac{c}{op}$ gegen den Werth = 1, und die Gleichung verwandelt sich in

$$\overline{p_1} = Const.$$

^{*)} Neumann, Lösung des allgemeinen Problems u. s. w., pag. 109-Digitized by Google

Dieselbe stellt jetzt ein System von concentrischen Kugelflächen dar, deren Mittelpunkte sämmtlich mit p_1 zusammenfallen. Hieraus zeigt sich zugleich, inwiefern die monopolaren Coordinaten in den dipolaren enthalten sind.

Da nämlich $\frac{\overline{op_1}}{\overline{op}} = K$ oder $\overline{op_1} \cdot \frac{c}{\overline{op}} = c \cdot K$, so folgt $\overline{op_1}$ oder $r = c \cdot K$. oder endlich

$$K = \frac{r}{c}$$
 für $c = \infty$.

Während sich der Pol p bis ins Unendliche entfernt, nähert sich zugleich der Radiusvector \overline{op} mehr und mehr der durch o parallel zur Centralen gezogenen Geraden, und es geht demnach der Winkel Ω , welchen er mit dem andern Radiusvector $\overline{op_i}$ bildet, allmählich in denjenigen Winkel ω über, welchen der letztere mit der Centralen bildet, so dass man erhält

$$\Omega = \omega$$

Was endlich den Winkel Φ betrifft, so bleibt derselbe unverändert und ist ein und dasselbe mit der Polarcoordinate φ , so dass

$$\Phi = \varphi$$

zu setzen ist. Vermittelst dieser Substitution ergiebt sich, dass der Ausdruck $\cos \Omega \cos \Omega_i + \sin \Omega \sin \Omega_i \cos (\Phi - \Phi_i)$

und daher auch die Function P_{10}^n , deren Argument er ist, unverändert bleibt, sofern an Stelle der dipolaren Coordinaten Ω und Φ die monopolaren ω und φ eingesetzt werden.

Hinsichtlich der Grösse e ist, da $e = c \cdot \frac{op}{c}$ gesetzt werden kann,

leicht einzusehen, dass sie gegen den Werth = c convergirt.

Setzt man zugleich $K = \frac{r}{c}$, so erhält man schliesslich

$$H'_{s} = \sum_{\substack{n=0\\n=0}}^{n=\infty} (2n+1) \frac{r_{s}^{n-1}}{r_{1}^{n+1}} \cdot \frac{r_{1}^{2n+1} - r_{t}^{2n+1}}{r_{s}^{2n+1} - r_{s}^{2n+1}} \cdot P_{1s}^{n},$$

$$H'_{t} = \sum_{\substack{n=0\\n=0}}^{n=\infty} (2n+1) \frac{r_{t}^{n-1}}{r_{1}^{n+1}} \cdot \frac{r_{1}^{2n+1} - r_{s}^{2n+1}}{r_{t}^{2n+1} - r_{s}^{2n+1}} \cdot P_{1t}^{n},$$

mit Rücksicht auf welche Gleichungen die Function W gefunden wird ans der Relation

$$4\pi W_1 = \int H_s' W_s \, ds + \int H_t' W_t \, dt.$$

Es ist augenscheinlich, dass diese Gleichungen vollständig mit denen übereinstimmen, welche in No. 14 entwickelt worden sind und damit ist die obige Behauptung gerechtfertigt.

Digitized by Google

Kleinere Mittheilungen.

XXIII. Zur Theorie der Maximal- und Minimalwerthe. Von Prof. KLEINFELLER in München.

Eine Function F(x), deren *n* erste Differentialquotienten für x = asämmtlich Null werden, während $F^{(n+1)}(a)$ eine von Null verschiedene Grösse ist, soll bekanntlich für obengenannten Werth der Variabelen nur dann ein Grösstes oder Kleinstes werden können, wenn *n* eine ungerade Zahl ist. Dass aber diese Eigenschaft keine vollkommen allgemeine ist, sondern nur unter gewissen weiteren Bedingungen stattfinden kann, mag zunächst nachfolgendes Beispiel darthun.

Die.zwei ersten Differentialquotienten der Function $(x-a)^{\frac{3}{2}}$, nämlich $\frac{5}{3}(x-a)^{\frac{4}{3}}$ und $\frac{4}{3}$ $(x-a)^{\frac{4}{3}}$ werden offenbar für x = a Null, während der dritte Differentialquotient derselben für den nämlichen Werth der Variabelen nicht Null, sondern unendlich gross wird. Der bisher für allgemein giltig angenommenen Regel zufolge könnte also $(x-a)^{\frac{4}{3}}$ für x=a weder ein Maximum noch ein Minimum werden; und doch wird diese Function für x=a ein Kleinstes, da sie für jeden reellen Werth der Variabelen positiv bleibt und für x=a Null wird, also, während x durch a hindurchgeht, zuerst abnehmen und sodann wieder zunehmen muss. Vorstehendes Beispiel zeigt wohl zur Genüge, dass die im Eingange dieses Artikels angeführte Regel nur unter gewissen weiteren Bedingungen Giltigkeit haben kann und werden die letzteren sogleich klar werden, wenn man die Begründungsweise des fraglichen Gesetzes näher ins Auge fasst. Letzteres wird nämlich gewöhnlich mit Hilfe der Gleichung

$$F(a+h)-F(a) = \frac{h^{n+1}}{1 \cdot 2 \cdot 3 \cdot \dots \cdot (n+1)} F^{(n+1)}(a+\theta h)$$

bewiesen, welche Gleichung nicht nur erfordert, dass die *n*ersten Differentialquotienten von F(x) für x=a Null werden, sondern auch noch voranssetzt, dass F(x) sammt seinen n+1 ersten Differentialquotienten für x=akeine Unterbrechung der Stetigkeit erleidet*), welche letztere Bedingung

^{*)} Dass eine Function auch dann eine Unterbrechung der Stetigkeit erleidet, wenn sie unendlich wird, ist hier immer stillschweigend vorausgesetzt.

Zeitschrift f. Mathematik u. Physik XIII, 6.

Digitized 35 Google

in dieser Form genügt, weil hier nur unendlich kleine Werthe von h in Betracht kommen. Ist also n eine gerade Zahl und $F^{(n+1)}(a)$ von Null verschieden, so lehrt obige Gleichung in der That, dass F(a+h) - F(a) das Vorzeichen wechseln muss, während h von einem unendlich kleinen negativen Werth zu einem unendlich kleinen positiven stetig übergeht, und dass mithin in diesem Falle F(a) weder ein Maximal- noch ein Minimalwerth von F(x) sein kann. Allein diese Eigenschaft gilt offenbar nur dann, wenn $F^{(n+1)}(x)$ für x = a nicht unstetig wird. Was im letzteren Falle geschieht, lehrt obige Gleichung nicht und kann es auch nicht lehren, weil sie dann keine Giltigkeit mehr besitzt.

Es ist nun der Hauptzweck der nachfolgenden Untersuchungen, darzuthun, dass F(x) auch dann noch einen Maximal- oder Minimalwerth für x=a haben kann, wenn die 2*m* ersten Differentialquotienten dieser Function für x = a Null werden, während der $(2m+1)^{te}$ nicht Null ist für diesen Werth der Variabelen; allein es wird dann noch die weitere Bedingung hinzugefügt werden müssen, dass $F^{(2m+1)}(x)$ für x = a unstetig werden und, während x durch a hindurchgeht, das Vorzeichen wechseln muss. Es soll bei dieser Gelegenheit auch zngleich gezeigt werden, dass die Theorie vom Grössten und Kleinsten auch ohne Zuziehung des Taylor'schen Satzes durchgeführt werden kann und werden wir uns zu dem Ende im Folgenden lediglich nur auf den auch bisher schon bei Begründung der ersten Fundamentalsätze über Grösstes und Kleinstes gewöhnlich in Anwendung gebrachten bekannten Satz stützen, demzufolge eine Function F(x), so lange sie stetig bleibt, bei wachsenden Werthen der Variabelen zuoder abnehmen muss, je nachdem F'(x) beziehungsweise positiv oder negativ ist.

Aus diesem Satze ergiebt sich bekanntlich sogleich, dass, während xwachsend durch a hindurchgeht, F'(x) vom Positiven zum Negativen oder vom Negativen zum Positiven übergehen muss, je nachdem F(x) für x=abeziehungsweise ein Maximum oder Minimum wird. Bleibt nun F'(x)während dieses Zeichenwechsels fortwährend stetig, so muss F'(a) Null sein und F'(x) nimmt, während x wachsend durch a hindurchgeht, im Falle eines Maximums, stetig vom Positiven zum Negativen übergehend, fortwährend ab, so dass F''(x) als erster Differentialquotient einer im Abnehmen begriffenen Function für $x=a\pm\delta$ negativ sein muss, wobei nicht nur hier, sondern auch im Folgenden unter δ stets eine gegen Null convergirende Grösse zu verstehen ist. Wäre dagegen, während immer noch F'(a)=0, F(a) ein Minimalwerth von F(x), so würde F'(x), stetig vom Negativen zum Positiven übergehend, zu nehmen, während x durch a hindurchgeht und F''(x) müsste daher für x=a positiv sein.

Nehmen wir nun an, F'(a) sei nicht Null, so müsste F'(x), um während x durch a hindurchgeht — das Vorzeichen wechseln zu können, für x = a unstetig werden. Fassen wir dabei speciell den Fall ins Auge, wenn $F'(a) = \pm \infty$, so wird sich in Beziehung auf das Vorzeichen von F''(a) gerade das entgegengesetzte Gesetz ergeben, als dort, wo F'(a) = 0.

I. F''(a) wird nämlich positiv oder negativ, je nachdem F(a) ein grösster oder kleinster Werth von F(x) ist, wenn zugleich $F'(a) = \pm \infty$.

Dieses meines Wissens bis jetzt unbekannt gebliebene Gesetz wird ganz in derselben Weise bewiesen, wie das vorhergehende. Erlangt nämlich F(x) für x = a einen Maximalwerth und ist zugleich $F'(a) = \pm \infty$, so muss F'(x), um vom Positiven zum Negativen übergehen zu können, während x durch a hindurchgeht, zuerst bis $\pm \infty$ zugenommen haben, sodann bei x = a auf $-\infty$ überspringen und hierauf einem endlichen negativen Werth sich nähern, also wieder zunehmen. Da nun F'(x) zunimmt, wenn x wachsend der Grösse a sich nähert, und abnimmt, wenn x abnehmend sich a nähert, so muss offenbar $F''(a \pm \delta)$ positiv sein. F''(a) selbst wird also $\pm \infty$, weil F'(a) unendlich gross ist und F'(x) der Voraussetzung zufolge in unmittelbarer Nähe von x = a keine weitere Unterbrechung der Stetigkeit erleiden soll.

Eine ähnliche Betrachtung zeigt, dass, falls F(a) ein Minimalwerth von F(x) ist und $F'(a) = \pm \infty$, F'(x) zuerst bis $-\infty$ abnehmen, hierauf zu $+\infty$ überspringen und alsdann wieder abnehmen muss, während x durch a bindurchgeht. Da hier F'(x) stets abnimmt, so ist $F''(a \pm \delta)$ negativ und $F''(a) = -\infty$.

Nachdem wir erkannt, wie aus dem Vorzeichen von F''(a) nicht nur wenn F'(a) = 0, sondern auch wenn $F'(a) = \pm \infty$ auf die Existenz eines Maximal- oder Minimalwerthes von F(x) geschlossen werden kann, wenden wir uns wieder dem Falle zu, wenn F'(a) = 0, und nehmen an, es sei auch F''(a) = 0, während noch immer F(x) durch x = a zu einem Grössten oder Kleinsten wird. Nehmen wir zunächst an, F(a) sei ein Maximalwerth von F(x), so ist $F''(a + \delta)$ negativ, und da F''(a) = 0, so muss $F''(a + \delta)$, als Function von o betrachtet, zuerst zunehmen, während o von einem unendlich kleinen negativen Werth an bis Null geht und sodann, während 8 von Null an bis zu einem unendlich kleinen positiven Werth hin zunimmt, wieder abnehmen. F''(x) besitzt also für x = a ebenfalls einen Maximalwerth. Aehnlich erkennt man, dass, F'(a) = 0, F''(a) = 0 und F(a) als Minimalwerth vorausgesetzt, F''(x) für x = a ebenfalls ein Minimum werden muss, da in diesem Falle $F(a \pm \delta)$ positiv ist, F''(x) also, während x durch a hindurchgeht, von einem positiven Werth an bis zu Null herabsinken und sodann wieder zu einem positiven Werth heranwachsen muss.

II. Wird also F(x) für x = a ein Maximum oder Minimum, ist F'(a) = 0 = F''(a), unterbrechen ferner F(x), $\dot{F}'(x)$, F''(x) für x = a ihre Stetigkeit nicht, so wird zugleich $0 \ge 35^{*}$ by $0 \ge 02^{*}$ mit F(x) auch F''(x) beziehungsweise ein Maximum oder Minimum für x = a.

Hieraus ergiebt sich sogleich, dass unter den sub II gemachten Voraussetzungen der erste Differentialquotient von F''(x), nämlich F'''(x), während x durch a hindurchgeht, vom Positiven zum Negativen oder vom Negativen zum Positiven übergehen muss, je nachdem F''(x) oder, was dasselbe ist, F(x) für x = a ein Grösstes oder Kleinstes wird. Findet dieser Uebergang in unstetiger Weise statt und wird dabei speciell F'''(a) $= +\infty$, so wird $F^{IV}(a)$ ebenfalls unendlich, und zwar entschieden $+\infty$, wenn F(a) ein Maximalwerth und $-\infty$, wenn F(a) ein Minimalwerth ist, wie unmittelbar aus I zu erkennen ist. Bleibt dagegen F'''(x) stetig, während x durch a hindurchgeht, so ist F'''(a) = 0 und das Vorzeichen von $F^{V}(a)$ zeigt, je nachdem es + oder - ist, an, ob F(a) beziehungsweise ein Minimal- oder Maximalwerth ist. Sollte jedoch $F^{(V)}(x)$ für x = a Null sein und stetig bleiben, so ergiebt sich unmittelbar aus II, dass $F^{V}(x)$, als zweiter Differentialquotient von F''(x), mit dieser letztgenannten Function und also auch mit F(x) zugleich für x = a beziehungsweise einen Maximaloder Minimalwerth besitzen muss. $F^{\nabla}(a)$ und $F^{\nabla 1}(a)$ würden sodann denselben Gesetzen genügen müssen, welche vorher in Beziehung auf F'''(a)und $F^{V}(a)$ ausgesprochen wurden; wäre also $F^{V}(a) = 0 = F^{V}(a)$, so würde auch $F^{V_1}(x)$ durch x = a zugleich mit F(x), F''(x) und $F^{V}(x)$ zu einem Maximum, beziehungsweise Minimum gemacht werden.

Die vorstehenden Betrachtungen verallgemeinert, ergeben zunächst folgende Eigenschaft der Functionen:

III. Bleibt die Function F(x) sammt ihren *n* ersten Differentialquotienten für x = a stetig, werden diese Differentialquotienten für den genannten Werth der Variabelen sämmtlich gleich Null, ist endlich 2r eine ganze Zahl und nicht grösser als *n*, so erlangt $F^{(2r)}(x)$ für x = aeinen grössten oder kleinsten Werth, wenn F(a) beziehungsweise ein Maximal- oder Minimalwerth von F(x) ist.

Da vorstehender Satz den eigentlichen Kern gegenwärtiger Untersuchung bildet, so dürfte es nicht ungeeignet erscheinen, denselben vor Uehergang zum Schlussresultat nnabhängig von den obigen Betrachtungen mit einem Schlage ganz allgemein zu beweisen. Wir stützen uns dabei auf die bekannte Gleichung

$$F(a+h) = F(a) + \frac{h}{1}F'(a) + \frac{h^2}{1\cdot 2}F''(a) + \dots$$

$$\dots + \frac{h^{n-1}}{1\cdot 2\cdot 3\dots (n-1)}F^{(n-1)}(a) + \frac{h^n}{1\cdot 2\cdot 3\dots n}F^{(n)}(a+0h),$$

welche unter Voraussetzung eines unendlich kleinen Werthes von h immer Digitized by giltig bleibt, wenn die Function F(x) sammt ihren *n* ersten Differentialquotienten für x = a nicht unstetig wird. Angenommen, diese Bedingung sei erfüllt, es seien ferner F'(a), $F''(a) \dots F^{(n)}(a)$ sämmtlich gleich Null, so kann man offenbar in obiger Gleichung statt *n* auch irgend eine der ganzen Zahlen von 1 bis *n* setzen. Wählen wir nun die gerade Zahl 2r < n, so reducirt sich obige Gleichung auf

$$F(a+h) - F(a) = \frac{h^{2r}}{1 \cdot 2 \cdot 3 \dots (2r)} F^{(2r)}(a+\theta h).$$

Lässt man in dieser Gleichung h von einem unendlich kleinen negativen zu einem unendlich kleinen positiven Werth übergehen, so bleibt dabei F(a+h) - F(a) im Falle eines Maximums der Function F(x) für x = aimmer negativ, im Falle eines Minimums dagegen stets positiv, und da h²r immer positiv ist, F^{2r} (a $\neq \theta h$) daher fortwährend dasselbe Vorzeichen wie F(a+2) - F(a) besitzt, so bleibt $F^{(2r)}(a+\theta h)$, während h durch Null hindurchgeht, stets negativ, wenn F(a) ein Maximalwerth von F(x) ist, stets positiv dagegen, wenn F(a) ein Minimalwerth ist. Da nun $F^{(2r)}(a)$ =0, so muss $F^{(2r)}(a+\theta h)$, als Function von h betrachtet, während h durch Null hindurchgeht, zuerst von einem negativen Werth an bis zu Null zuund sodann wieder bis zu einem negativen Werth hin abnehmen, für x = aalso einen Maximalwerth erreichen, wenn F(a) ein solcher in Beziehung auf F(x) ist. Wird F(x) dagegen durch x = a zu einem Minimum, so nimmt $F^{(2r)}(a + \theta h)$, während h wachsend durch Null hindurchgeht, von einem positiven Werth bis zu Null hin ab, von da an sodann wieder bis zu einem positiven Werth hin zu, erreicht demnach für h = 0 einen Minimalwerth. Man erkennt also, dass unter gegenwärtigen Voraussetzungen $F^{(2r)}(a + \theta h)$ für h = 0 oder, was dasselbe ist, $F^{(2r)}(x)$ für x = a mit F(x) zugleich beziehungsweise einen Maximal- oder Minimalwerth annimmt.

Durch geeignete Verbindung der im Vorigen gewonnenen Resultate ergiebt sich nun nachstehendes Schlussresultat, in welchem jedoch die schon früher bekannten Eigenschaften der Maximal- und Minimalwerthe nicht mehr näher berührt werden sollen.

IV. Wird für x = a eine Function F(x) sammt ihren 2mersten Differentialquotienten nicht unstetig, werden genannte Differentialquotienten für diesen Werth der Variabelen sämmtlich gleich Null und erlangt F(x)für eben denselben Werth von x einen grössten oder kleinsten Werth, so wird auch $F^{(2r)}(x)$ für x = a beziehungsweise ein Grösstes oder Kleinstes und es muss daher, während x durch a hindurchgeht, $F^{(2m+1)}(x)$ vom Positiven zum Negativen oder vom Negativen zum Positiven übergehen, je nachdem F(a) beziehungsweise ein Maximal- oder Minimalwerth von F(x) ist. Wird daher $F^{(2m+1)}(a)$ nicht gleich Null, so muss $F^{(2m+1)}(x)$ für x = a eine Unterbrechung der Stetigkeit erleiden, um, während die Variabele durch diesen Werth hindurchgeht, sein Vorzeichen- wechseln zu können. Sollte dabei $F^{(2m+1)}(a) = \pm \infty$ werden, so wird $F^{(2m+2)}(a)$ gleich $\pm \infty$ oder $-\infty$, je nach dem beziehungsweise F(a)ein Maximal- oder Minimalwerth ist.

Es bedarf wohl schliesslich kaum noch der Erwähnung, dass durch die umgekehrte Reihe von Schlüssen leicht dargethan werden kann, wie eine auf obige Eigenschaften der Function basirte Regel zur Aufsuchung von Maximal- und Minimalwerthen in der That auch immer ihren Zweck erreichen muss.

Die betreffende Regel liesse sich übrigens in Verbindung mit dem bis zu I Mitgetheilten kurz folgendermassen in Worte kleiden:

V. Um die Werthe der Variabelen zu finden, welche eine gegebene Function F(x), deren *n* erste Differentialquotienten für x = a Null sind und zugleich stetig bleiben, zu einem Maximum oder Minimum machen, braucht man nur die Werthe zu bestimmen, für welche, wenn *n* gerade ist, $F^{(n)}(x)$ und, wenn *n* ungerade ist, $F^{(n-1)}(x)$ beziehungsweise ein Grösstes oder Kleinstes wird.

Aus den vorangegangenen Entwickelungen ergiebt sich auch offenbar nachstehende Wahrheit:

VI. Sind die *n* ersten Differentialquotienten einer Function F(x) für x = a sämmtlich Null und zugleich stetig, ist jedoch $F^{(n+1)}(a)$ von Null verschieden, so besitzt F(x) für x = a weder einen Maximal- noch einen Minimalwerth, wenn bei einem ungeraden *n* die Function $F^{(n+1)}(x)$, während *x* durch *a* hindurchgeht, unter Aenderung des Vorzeichens unstetig wird, bei einem geraden *n* dagegen $F^{(n+1)}(a)$ entschieden positiv oder negativ ist, einerlei, ob dabei $F^{(n+1)}(x)$ für x = a stetig bleibt, oder unstetig, z. B. unendlich gross wird.

Für ein ungerades *n* würde sich das soeben erwähnte Gesetz auch aus nachstehendem Satze ergeben, dessen Beweis entweder analog der im Obigen mitgetheilten Begründung der Lehre vom Grössten und Kleinsten oder auch unmittelbar mit Hilfe der Gleichung

$$F(a+h) - F(a) = \frac{h^{2m+1}}{1 \cdot 2 \cdot 3 \cdot \dots \cdot (2m+1)} F^{(2m+1)}(a+\theta h)$$

geführt werden kann.

Digitized by Google

VII. Sind die *n* ersten Differentialquotienten von F(x) für x = a sämmtlich Null und zugleich stetig, ist ferner F(a) weder ein Maximal- noch ein Minimalwerth von F(x), so ist, wenn 2m + 1 eine ganze Zahl $\leq n$ bedeutet, $F^{(2m+1)}(a)$ ein Minimal- oder Maximalwerth von $F^{(2m+1)}(x)$, je nachdem, während x durch a hindurchgeht, F(x) beziehungsweise zu- oder abnimmt.

XXIV. Ueber Curvenbündel dritter Ordnung. Von Prof. TH. REYE in Zürich.

Die Eigenschaften der Raumcurven III. Ordnung sind bekanntlich denjenigen der Kegelschnitte in mancher Hinsicht analog. So z. B. wird ein Kegelschnitt aus je zwei seiner Punkte durch projectivische Strahlenbüschel projicirt; eine Raumcurve III. Ordnung dagegen aus je zwei ihrer Secanten durch projectivische Ebenenbüschel, und zugleich wird ihr Secantensystem aus je zwei ihrer Punkte durch collineare Ebenenbündel projicirt. Die Tangenten eines Kegelschnittes können durch zwei projectivische gerade Gebilde erzeugt werden; ebenso die Schmiegungsebenen einer Raumcurve III. Ordnung durch drei projectivische Gerade oder auch durch zwei collineare Ebenen, welche letzteren zugleich alle Tangenten und Axen der Raumcurve (d. h. die Schnittlinien ihrer Schmiegungsebenen) Durch einen Kegelschnitt ist ein ebenes Polarsystem bestimmt, erzeugen. in welchem jeder Tangente ihr Berührungspunkt und überhaupt jeder Geraden ein Punkt zugeordnet ist; andererseits ist durch eine Raumcurve III. Ordnung ein Nullsystem bestimmt, in welchem jede Schmiegungsebene ihrem Berührungspunkte, jede Tangente sich selbst, und überhaupt jede Ebene einem in ihr liegenden Punkte, sowie jede Gerade einer Geraden zugeordnet ist*).

Für einen wichtigen Abschnitt der Kegelschnittslehre ist jedoch ein Analogon bei den Raumcurven III. Ordnung bisher nicht gefunden worden, nämlich für die Lehre von den Kegelschnittsbüscheln. Alle Kegelschnitte, die durch vier reelle oder imaginäre Punkte einer Ebene gelegt werden können, bilden einen solchen Büschel, dessen Haupteigenschaften folgende sind. Von einer beliebigen Geraden werden die Kegelschnitte in den Punktenpaaren eines involutorischen geraden Gebildes geschnitten; dagegen werden zwei Gerade, welche durch je einen gemeinschaftlichen Punkt der Kegelschnitte gehen, durch den Büschel in projectivischen Punktreihen geschnitten. Die Polaren eines beliebigen Punktes der Ebene in Bezug

^{*)} Bezüglich der hier angeführten und weiterhin benutzten Sätze verweise ich auf meine "Geometrie der Lage", II. Alth. p. 68-88.

auf die Kegelschnitte gehen sämmtlich durch einen Punkt, und die Pole einer Geraden der Ebene liegen auf einem Kegelschnitt. Zu einigen dieser Sätze die analogen für die Raumcurven III. Ordnung aufzustellen und zu beweisen, ist die Aufgabe der vorliegenden Arbeit.

1. Die Gesammtheit aller Raumcurven III. Ordnung, welche durch fünf gegebene Punkte S, T, U, V, W hindurchgehen, nenne ich einen Curvenbündel III. Ordnung; man kann denselben als das Analogon des Kegelschnittsbüschels ansehen. Die fünf gemeinschaftlichen Punkte der Raumcurven sollen die Knotenpunkte des Curvenbündels genannt werden; zwei oder vier derselben können imaginär sein; auch können sie paarweise zusammenfallen, wobei die Verbindungslinie eines solchen Paares zu einer gemeinschaftlichen Tangente der Raumcurven wird. Ich mache über die Knotenpunkte nur die Annahme, dass keine vier derselben in einer Ebene liegen. Mit k^3 , k_1^3 , k_2^3 werde ich einzelne Curven des Bündels, mit k^* , k_1^* aber Kegelschnitte und mit F^* , F_1^* Flächen II. Ordnung bezeichnen.

2. Durch einen beliebigen Punkt P des Raumes geht im Allgemeinen eine einzige Curve k^3 des Bündels. Dieselbe wird aus jedem ihrer Punkte durch eine Kegelfläche II. Ordnung projicirt und ist als Schnittlinie von zwei solchen Kegelflächen leicht zu construiren. Liegt insbesondere P mit drei Knotenpunkten in einer Ebene, so zerfällt k^3 in die Verbindungslinie u der letzten beiden Knotenpunkte und denjenigen Kegelschnitt k^3 , welcher P mit den drei ersten Knotenpunkten und einem Punkte von u verbindet. Nur durch diejenigen Punkte, welche mit zwei Knotenpunkten in einer Geraden u liegen, können mehr als eine, nämlich unendlich viele k^3 gelegt werden; jede derselben zerfällt in die Gerade u und einen k^4 , welche durch die übrigen drei Knotenpunkte geht und die u schneidet.

3. Zwei Curven k³ und k_i³ des Bündels können allemal durch eine geradlinige F^e verbunden werden Ziehen wirnämlich von irgend zwei Punkten der k⁸ Secanten an k₁⁸ und verbinden wir dieselben mit k_1^3 durch eine F^2 , so geht diese anch durch k^3 ; denn sie hat mit k^3 mehr als sechs Punkte gemein. Diese F^2 ist entweder eine Kegelfläche mit einem der fünf Knotenpunkte als Mittelpunkt, oder eine Regelfläche, und im letzteren Falle bestehen ihre beiden Regelschaaren aus Secanten von je einer der Curven k^3 und k_1^3 . Dass nämlich nicht eine dieser Regelschaaren aus gemeinschaftlichen Secanten von k^3 und k_1^3 bestehen kann, folgt aus dem Satze: Jede Gerades, welche mit keinen zwei Knotenpunkten in einer Ebene liegt, ist Secante von einer einzigen Curve k³ des Bündels. Diese k³ wird aus s und beliebigen zwei von den zehn Verbindungslinien der Knotenpunkte durch drei projectivische Ebenenbüschel projicirt, und ist völlig bestimmt, weil die projectivische Verwandtschaft dieser Büschel schon durch die fünf Knotenpunkte festgestellt wird.

Kleinere Mittheilungen.

. 4. Von einer beliebigen Ebene φ, die durch keinen der fünf Knotenpunkte hindurchgeht, werden die Curven des Bündels III. Ordnung in Polardreiecken eines ebenen Polarsystemes geschnitten. Jede Gerade a von φ ist Secante von einer einzigen k⁸ und kann dem Punkte A zugeordnet werden, in welchem k⁸ von o ansserhalb a geschnitten wird. Umgekehrt finden wir zu A die zugeordnete Gerade a, indem wir durch A eine k^3 legen und in φ deren nicht durch A gehende Secante aufsuchen. Um den obigen Satz zu beweisen, haben wir nur noch zu zeigen, dass a sich um einen Punkt B dreht, wenn A die zu B zugeordnete Gerade b beschreibt. Dieses folgt aber aus 3. Denn die beiden durch A und B gehenden Curven k_a^3 und k_b^3 des Bündels können durch eine F² verbunden werden, welche alle von den Punkten der einen Curve an die andere gezogenen Secanten enthält. Liegt nun A auf b, so geht F² durch b und durch diejenige in φ liegende Secante a von k_a^3 , welche von b ausserhalb A geschnitten wird; und da F^2 auch durch B geht, so muss B auf a liegen, und der Satz ist bewiesen.

5. Wenn der Pankt A auf \overline{ST} liegt, so zerfällt k^3 in \overline{ST} und einen durch U, V, W gehenden und die \overline{ST} schneidenden k^4 . Daraus folgt: Die zehn Seitenflächen des aus den Knotenpunkten gebildeten räumlichen Fünfecks STUVW schneiden das ebene Polarsystem φ in Geraden, deren Pole auf den gegenüberliegenden Kanten des Fünfecks enthalten sind Das Polarsystem φ kann also äusserst leicht construirt werden. Dasselbe ist auch in demjenigen räumlichen Polarsystem enthalten, in welchem die Ebene φ einem der fünf Knotenpunkte zugeordnet ist und die übrigen vier Knotenpunkte ein Poltetraëder bilden. — Diejenigen Geraden von φ , welche durch ihre Pole hindurchgehen, umhüllen bekanntlich einen Kegelschnitt, die sogenannte Ordnungscürve des Polarsystemes. Daraus folgt: Die Ebene φ wird von unendlich vielen Curven des Bündels berührt, und zwar in den Punkten eines Kegelschnittes, der aber auch imaginär sein kann.

6. Jeder Strahl *t* des Knotenpunktes *S* wird von einer einzigen k^3 des Bündels berührt, weil eine Raumcurve III. Ordnung bestimmt ist durch fünf Punkte und die Tangente von einem derselben. Andererseits ist jeder Strahl *s* des Raumes Secante einer einzigen k^3 , wenn *s* mit keinen zwei Knotenpunkten in einer Ebene liegt. Ich behaupte nun: Ist Σ eine durch den Knotenpunkt *S* gehende Ebene, und wird jedem Strahle *s* von Σ ein Strahl *t* von *S* zugewiesen, so dass *t* diejenige k^3 berührt, von welcher *s* eine Secante ist, so ist dadurch die Ebene Σ reciprok auf den Strahlenbündel *S* bezogen. Oder mit anderen Worten: wenn *s* sich in Σ um einen Punkt *P* dreht, so beschreibt zugleich der entsprechende Strahl *t* von *S* eine Ebene. — Zum

Beweise legen wir durch P eine Curve k_p^3 des Bündels und bezeichnen mit Q deren dritten, von P und S verschiedenen Schnittpunkt mit Σ , sowie mit π diejenige durch Q gelegte Ebene, welche in S die k_p^3 berührt. Jede andere k^3 , welche von π in S berührt wird und deren Tangente t also in π liegt, kann mit k_p^3 durch eine F^2 verbunden werden. Und weil π die Curven k^3 und k_p^3 in S berührt und zugleich die k_p^3 in Q schneidet, so wird auch F^2 von π im Punkte S berührt und in der Geraden \overline{SQ} geschnitten. Folglich wird F^2 auch von Σ in zwei Geraden geschnitten, von denen die eine \overline{SQ} Secante von k_p^3 ist, und die andere s durch den gemeinschaftlichen Punkt P von k_p^3 und Σ gehen und eine Secante von k^3 sein muss (3). Jeder in π liegenden Geraden t von S entspricht also wirklich eine durch P gehende Gerade s von Σ , und unser Satz ist bewiesen.

7. Die reciproke Verwandtschaft, welche so durch den Curvenbündel zwischen dem Strahlenbündel S und der Ebene Σ hergestellt wird, ist durch das Tetraëder TUVW der übrigen vier Knotenpunkte völlig bestimmt. Denn jedem Punkte, in welchem Σ von einer Kante des Tetraëders geschnitten wird, entspricht die Ebene, durch welche aus S die gegenüberliegende Kante projicirt wird. Auch sind der Strahlenbündel S und die ihm reciproke Ebene Σ zugeordnete Gebilde eines Polarsystemes, von welchem TUVW ein Poltetraëder ist. Die Ordnungsfläche dieses Polarsystemes wird von Σ in S berührt und kann mit Σ zwei Gerade gemein haben. Dieselben fallen zusammen mit den entsprechenden Strahlen des Bündels S und sind wie man leicht erkennt, Tangenten von zwei Curven k^3 , welchen die Ebene Σ im Punkte S sich anschmiegt.

8. Werden durch einen Knotenpunkt S zwei Ebenen Σ und Σ_i gelegt, und je zwei nicht durch S gehende Gerade s und s, derselben einander zugewiesen, welche von einer und derselben k^3 des Bündels Secanten sind, so werden dadurch die Ebenen Σ und Σ_i collinear auf einander bezogen; denn sie sind beide reciprok zu dem Tangentenbündel S.

9. Wenn eine Gerade w durch einen Knotenpunkt W geht, so ist sie Secante von unendlich vielen k^{δ} . Dieselben liegen auf der Kegelfläche II. Ordnung, welche durch die fünf Strahlen w, \overline{WS} , \overline{WT} , \overline{WU} , \overline{WV} gelegt werden kann, und werden von den Strahlen dieser Kegelfläche in projectivischen geraden Gebilden geschnitten. Denn sie werden aus jedem anderen Knotenpunkte S durch einen Büschel von Kegelflächen II. Ordnung projicirt, von welchem die genannten geraden Gebilde Schnitte sind. Die von \overline{SW} verschiedenen Strahlen dieser Kegelflächen, welche die Kegelfläche W(wSTUV) berühren, sind bekanntlich die Tangenten der Curven k^{δ} im Punkte S; also: Die Tangenten aller dieser k^{δ} in einem anderen Knotenpunkte S bilden einen Strahlenbüschel, dessen

Ebene die Kegelfläche W (wSTUV) II. Ordnung im Strahle \overline{SW} berührt und welcher zu den vorhin erwähnten geraden Gebilden projectivisch ist.

10. Wenn man je zwei solche Strahlen der Knotenpunkte S und Teinander zuweist, welche eine und dieselbe k^3 berühren, so entspricht also jedem Strahlenbüschel von S, dessen Ebene durch einen dritten Knoten**punkt** W, V oder U hindurchgeht, ein projectivischer Strahlenbüschel in T, dessen Ebene gleichfalls durch resp. W, V oder U geht. Aber auch die Ebenenbüschel \overline{SU} und \overline{TU} (oder \overline{SV} und \overline{TV}) sind dadurch projectivisch auf einander bezogen; denn sie schneiden zwei homologe Ebenen der Büschel \overline{SW} und \overline{TW} in projectivischen Strahlenbüscheln. Daraus folgt aber⁶): Werden je zweisolche Strahlen der Knotenpunkte S und T einander zugewiesen, welche eine nud dieselbe Curve des Bündels berühren, so wird dadurch zwischen den Strahlenbündeln S und T eine geometrische Verwandtschaft zweiten Grades hergestellt; d. h. jedem Strahlenbüschel von S (oder T) entspricht im Allgemeinen in T (resp. S) eine zu ihm projectivische Kegelfläche II. Ordnung, welche durch die übrigen drei Knotenpunkte hindurchgeht.

11. Werden durch die Knotenpunkte S und T die resp. Ebenen Σ und Σ_i gelegt und je zwei nicht durch S oder T gehende Strahlen derselben einander zugewiesen, welche von einer und derselben k^3 des Bündels Secanten sind, so ist dadurch zwischen Σ und Σ_i eine geometrische Verwandtschaft zweiten Grades hergestellt; d. h. jedem Strahlenbüschel der einen Ebene entsprechen im Allgemeinen die Tangenten eines Kegelschnittes in der anderen Ebene, und alle solche Kegelschnitte sind einem bestimmten Hauptdreiecke eingeschrieben. Der Beweis folgt daraus, dass die Strahlenbündel Sund T einander geometrisch verwandt und den resp. Ebenen Σ und Σ_i reciprok sind. Das Hauptdreieck von Σ (oder Σ_i) ist eine Projection des Dreieckes UVW aus dem Punkte T (resp. S).

12. Die sämmtlichen Curven des Bündels, welche eine beliebig gegebene Gerade g schneiden, liegen in einer Fläche, welche ausser der Geraden g noch die zehn Verbindungslinien der Knotenpunkte enthält und zweimal durch diejenige k^3 geht, von welcher g eine Secante ist. Mit jeder Verbindungsebene von drei Knotenpunkten hat die Fläche drei Gerade und einen Kegelschnitt gemein (2); sie ist deshalb von der fünften Ordnung. Liegt g mit zwei Knotenpunkten S, T in einer Ebene, so zerfällt die Fläche in die Eben^e \overline{UVW} und eine Fläche vierter Ordnung. Letztere geht zwei-

^{*)} Vgl. Seydewitz in Grunert's Archiv für Mathem. Bd. 7 p. 113-148, sowie meinen Aufsatz über die geometr. Verwandtschaften zweiten Grades in der Zeitschrift f. Mathem. Bd. XI, p. 297.

mal durch die Gerade \overline{ST} und wird von jeder durch \overline{ST} gelegten Ebene ansserdem in einem die Punkte S und T enthaltenden Kegelschnitt getroffen. Nämlich zwischen zwei beliebigen durch \overline{ST} gehenden Ebenen besteht eine geometrische Verwandtschaft zweiten Grades, wenn je zwei von S und T verschiedene Punkte derselben einander zugewiesen werden, die auf einer und derselben Curve des Bündels liegen; zwei Hauptpunkte der Ebenen fallen mit S und T zusammen. Dieser Satz ist ähnlich wie derjenige von Nr. 10 zu beweisen mit Hilfe von 9; aus ihm folgt, dass jeder Geraden g der einen Ebene ein durch S und T gehender Kegelschnitt der anderen entspricht.

13. Hinsichtlich einer k^{5} ist bekanntlich jedem Punkte P des Raumes ein Punkt P_1 conjugirt, d. h. P und P_1 sind einander conjugirt hinsichtlich jeder durch k^3 gelegten F^2 , und die Gerade $\overline{PP_1}$ ist eine Secante der k^3 . Die sämmtlichen Punkte P₁, welche einem gegebenen Punkte P conjugirt sind hinsichtlich der Curven k⁸ des Bündels, liegen in einer Fläche F⁸ dritter Ordnung. Projicirt man nämlich eine k³ aus den Knotenpunkten durch Kegelflächen II. Ordnung und sucht in Bezug auf diese die Polarebenen von P, so schneiden sich dieselben in einem Punkte P_1 . Die sämmtlichen k^3 werden aber aus jedem Knotenpunkte (S) durch einen Büschel von Kegelflächen II. Ordnung projicirt, indem letztere sich in vier Strahlen (\overline{ST} , \overline{SU} , \overline{SV} , \overline{SW}) schneiden müssen; die Polarebenen von P in Bezug auf alle solche Kegelflächen bilden also fünf Ebenenbüschel, deren Axen s, t, u, v, w durch die resp. fünf Knotenpunkte gehen. Bewegt sich nun k^3 auf einer Kegelfläche K^2 sweiter Ordnung mit dem Mittelpunkte S, so liegt P, mit s in der Polarebene von P in Bezug auf K^2 und beschreibt einen die Geraden t, u, v, w schneidenden Kegelschnitt. Daraus erkennen wir, dass die Ebenenbüschel s, t, u, v, w in der von Herrn F. August*) untersuchten Weise doppelt projectivisch auf einander bezogen sind, also eine Fläche F³ III. Ordnung erzeugen. Auf F^3 liegen die Geraden s, t, u, v, w und die zehn Geraden, welche vom Punkte P durch je eine Kante und die gegenüberliegende Fläche des Fünfecks STUVW harmonisch getrennt sind, sowie die Tangente der durch P -gehenden k^3 im Punkte P. Diese letztere k^3 wird aus P durch eine Kegelfläche II. Ordnung projicirt, deren sämmtliche Strahlen die F^3 in Posculiren und welche sechs Strahlen mit F^3 gemein hat.

Zürich, im Mai 1868.

^{*)} F. August, Disquisitiones de superficiebus tertii ordinis (diss. inaug., Berolini 1862).

XXV. Einfache lineare Construction der Flächen zweiter Ordnung aus neun und ihrer Durchdringungseurven aus acht Punkten. Von Prof. TH. REVE in Zürich.

Eine Baumcurve k^4 vierter Ordnung, in welcher zwei Flächen F^2 zweiter Ordnung sich schneiden, ist bekanntlich durch acht ihrer Punkte völlig bestimmt. Nur müssen diese Punkte von einander unabhängig sein, d. h. es dürfen von ihnen keine vier in einer Geraden, keine sechs in einer Ebene und nicht alle acht in einer Raumcurve k^3 dritter Ordnung liegen, auch dürfen sie nicht die einzigen gemeinschaftlichen Punkte von drei Flächen zweiter Ordnung sein. In besonderen Fällen kann die k^4 aus einer k^3 und einer Secante derselben bestehen, oder auch aus zwei Kegelschnitten, die zwei reelle oder imaginäre Punkte gemein haben und welche auch in je zwei sich schneidende Gerade zerfallen oder sich auf je eine Gerade reduciren können.

Sind von einer k^4 acht von einander unabhängige oder mehr als acht Punkte bekannt, so kann in jeder Verbindungsebene von drei dieser Punkte der vierte Schnittpunkt mit k^4 lin ear (d. h. mit ausschliesslicher Hilfe von Geraden und Ebenen) construirt werden, und man gelangt so zu unendlich vielen Punkten der Raumcurve. Legt man dagegen durch zwei jener Punkte eine Ebene und verlangt deren anderen beiden Schnittpunkte mit k^4 , so bedarf man zur Construction derselben der Hilfe eines Kegelschnittes, weil diese Aufgabe vom zweiten Grade ist. Wir wollen sowohl jene lineare als auch diese Construction zweiten Grades ausführen; die erstere wird alsdann genügen, um von einer durch neun Punkte gegebenen Fläche zweiter Ordnung alle Kegelschnitte linear zu construiren, welche durch je drei dieser Punkte hindurchgehen. Ausser einigen bekannten Sätzen über die Raumcurven vierter Ordnung werden wir nur die Sätze 4 und 5 des vorhergehenden Aufsatzes über Curvenbündel dritter Ordnung benutzen.

1. Die Schnittcurve k^4 von zwei Flächen zweiter Ordnung kann mit jedem Punkte P des Raumes durch eine einzige F^2 verbunden werden. Liegt P auf einer Secante von k^4 , so ist die Fläche F^2 geradlinig und jede Gerade derselben ist eine Secante von k^4 . Alle durch k^4 gehenden F^2 bile den einen Flächenbüschel zweiter Ordnung, der von einer beliebigen Ebene in einem Kegelschnittsbüschel und folglich von einer Geraden g im Allgemeinen in einem involutorischen Gebilde geschnitten wird. Aus diesen bekannten Sätzen folgt: Werden durch eine beliebige Gerade g zwei Ebenen gelegt, welche die k^4 in zwei Vierecken schneiden, so treffen die sechs Paar Gegenseiten der letzteren die Gerade g in sechs Punktenpaaren eines involutorischen Gebildes. Je zwei solche Gegenseiten liegen nämlich auf einer durch k^4 gehenden F^2 .

2. Sind also von einer k^4 vier in einer Ebene liegende Punkte A, B, C, D bekannt, so construirt man in jeder Verbindungsebene von drei anderen schon bekannten Punkten P, Q, R folgendermaassen ihren vierten Schnittpunkt S mit k^4 . Man bringt die drei Paar Gegenseiten des Viereckes ABCD zum Durchschnitt mit der Ebene \overrightarrow{PQR} und erhält so drei Paar zugeordnete Punkte eines involutorischen geraden Gebildes g. In diesem sucht man zu den drei Punkten, welche g mit den Seiten des Dreiecks PQRgemein hat, die zugeordneten Punkte, und verbindet dieselben mit den resp. gegenüber liegenden Eckpunkten des Dreiecks. Dann schneiden sich (zufolge 1) die drei Verbindungslinien in dem gesuchten Punkte S. Sollten in besonderen Fällen zwei von den Verbindungslinien mit zwei Seiten des Dreiecks zusammenfallen, so wird k^4 von der dritten im Schnittpunkte dieser Seiten berührt, wie sich ebenfalls aus 1) leicht ergiebt.

3. Von einer k^4 seien bekannt zwei ebene Vierecke A B C D und PORS, ausserdem aber zwei Punkte U, V. Es seien zu construiren die übrigen zwei Punkte X, Y, welche eine beliebige, durch U und V gelegte Ebene s mit k^4 gemein hat. — Wir nehmen an, dass s durch keinen Eckpunkt der beiden Vierecke hindurchgeht, weil dieser Fall schon in 2) erledigt wurde. Die Gegenseiten des Vierecks ABCD (oder PQRS) schneiden die Ebene s in drei Paar zugeordneten Punkten eines involutorischen geraden Gebildes g (resp. g_i). Verbinden wir nun U und V mit dem Schnittpunkte G von g und g, und mit den beiden Punkten, welche dem G in g und g_1 zugeordnet sind, durch einen Kegelschnitt k^2 , so liegt dieser auf einer durch k^4 gehenden $F^*(1)$ und geht folglich auch durch die gesuchten Punkte X und Y. Andererseits ist die Gerade \overline{XY} leicht zu construiren; denn sie und \overline{UV} schneiden g und ebenso g_1 in einem Paare zugeordneter Punkte. Man braucht also nur noch k^2 mit \overline{XY} zum Durchschnitt zu bringen, was auf bekannte Art geschieht, und die Punkte X, Y sind gefunden.

4. Die Construction einer k^4 aus acht gegebenen Punkten ist nach 2) und 3) leicht ausführbar, sobald zunächst ein der k^4 eingeschriebenes ebenes Viereck gefunden ist. Die Lösung dieser Hauptaufgabe aber stützt sich auf den Satz: Eine k^4 und eine k^3 , welche fünf Punkte und eine durch keinen derselben gehende Secantesgemein haben, liegen auf einer durch s gehenden Fläche zweiter Ordnung. Die k^4 kann mit s durch eine F^2 verbunden werden, und auf F^2 giebt es eine k_1^3 , welche durch die fünf Punkte geht und die Gerade s zur Secante hat. Weil aber nur eine einzige, den letzten beiden Bedingungen genügende Raumcurve dritter Ordnung existirt, so muss k_1^3 mit k^3 identisch sein.

5. Von einer k⁴ sind acht unabhängige Punkte gegeben, von denen keine vier in einer Ebene liegen; es ist derjenige

Digitized by GOOgle

neunte Punkt D von k⁴ zu construiren, welcher mit drei A, B, C der gegebenen in einer Ebene liegt. - Die letzten fünf gegebeuen Punkte bilden ein räumliches Fünfeck, dessen zehn Seiten wir mit der Ebene \overrightarrow{ABC} zum Durchschnitt bringen. Ordnen wir den zehn Schnittlinien die resp. Punkte zu, welche die gegenüberliegenden Kanten des Fünfecks mit der Ebene \overline{ABC} gemein haben, so erhalten wir zehn Paar zugeordnete Elemente eines ebenen Polarsystemes. In diesem bestimmen wir zu den Seiten des Dreiecks ABC die Pole und verbinden dieselben mit den gegenüberliegenden Eckpunkten von ABC; die drei Verbindungsgeraden schneiden sich dann in dem gesuchten Punkte D. -Legen wir nämlich durch das Fünfeck einen Curvenbündel dritter Ordnung, so wird derselbe von \overrightarrow{ABC} in dem genannten Polarsystem geschnitten. Eine k^3 des Bündels hat die Gerade \overline{AB} zur Secante und schneidet die Ebene \overrightarrow{ABC} noch in dem Pole C_1 von \overrightarrow{AB} . Zugleich liegt diese k^3 mit k^4 und \overline{AB} auf einer F^* , welche von \overline{ABC} noch in einer zweiten, durch C, D und C_1 gehenden Geraden geschnitten wird, und somit liegt der gesuchte Punkt D auf $\overline{CC_1}$, wie zu beweisen war.

6. Wenn in speciellen Fällen zwei Seiten des Dreiecks ABC einander conjugirt sind in dem soeben benutzten Polarsystem, so liegt der Pol der dritten Seite auf der Tangente von k^4 im gegenüberliegenden Eckpunkte und man gewinnt diese Tangente durch unsere Construction. Fällt aber der Pol einer Seite \overline{AB} zusammen mit dem gegenüberliegenden Eckpunkte C, so besteht die k^4 aus der durch C gehenden k^3 des Curvenbündels und ihrer Secante \overline{AB} . Ich unterlasse es, diese besonderen Fälle, in denen die Aufgabe ebenfalls als gelöst zu betrachten ist, weiter zu erörtern. Dagegen fasse ich das Ergebniss von 5) in folgendem Satze zusammen: Liegen von neun beliebigen Punkten einer k^4 irgend vier A, B, C, Din einer Ebene, so sind in dem Polarsystem, in welchem vier von den übrigen fünf Punkten ein Poltetraëder bilden und dem fünften die Ebene \overline{ABCD} zugeordnet ist, je zwei Gegenseiten des Vierecks ABCD einander conjugirt.

7. Von einer Fläche zweiter Ordnung sind neun von einander unabhängige Punkte gegeben, die nicht alle auf einer k^4 liegen. Die Schnittlinie der Fläche mit der Verbindungsebene von irgend drei A, B, C dieser Punkte ist zu construiren. Man bestimmt nach 5) die vierten Schnittpunkte der Ebene \overline{ABC} mit irgend welchen k^4 , welche A, B und C mit je fünf von den übrigen sechs gegebenen Punkten verbinden. Sobald zwei solche vierte Schnittpunkte gefunden sind, kann der, auch durch sie hindurchgehende, gesuchte Kegelschnitt auf bekannte Art gezeichnet werden.

Schliesslich bemerke ich noch, dass die in 5) und 7) auszuführenden Constructionen zuerst von v. Staudt (in seinen Beiträgen zur Geometrie der Lage Nr. 591 und 592) angegeben worden sind, jedoch mit ganz anderer Begründung.

Zürich, im Mai 1868.

XXVI. Gelegentliche Bemerkung über die Ellipse. Bezeichnet E(1, x) die Länge des Quadranten einer aus den Halbachsen 1 und x < 1 construirten Ellipse, so giebt der Ausdruck

$$M = \int_{0}^{1} 4 E(1, x) dx = 4 \int_{0}^{1} dx \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2} \varphi + x^{2} \sin^{2} \varphi} d\varphi$$

das arithmetische Mittel der Umfänge aller Ellipsen, deren gemeinschaftliche grosse Halbachse = 1 ist, und deren kleine Halbachsen die von 0 bis 1 stetig auf einander folgenden echten Brüche sind Das obige Doppelintegral würde nach Ausführung der auf x bezüglichen Integration eine logarithmische Form erhalten; man vermeidet dieselbe durch Anwendung der identischen Gleichung

$$\int_{0}^{1} \sqrt{\alpha + \beta x^{2}} \, dx = \frac{\sqrt{\alpha + \beta}}{2} \left\{ 1 + \int_{0}^{4} \frac{\alpha \, du}{\alpha + \beta - \beta u^{2}} \right\},$$

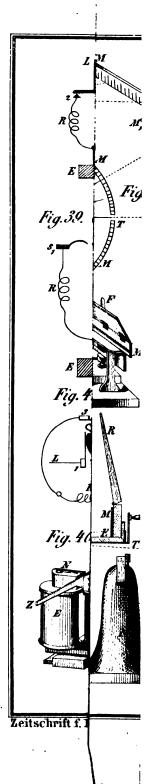
welche giebt

$$M = 2 \int_{0}^{\frac{\pi}{2}} d\varphi \left\{ 1 + \int_{0}^{1} \frac{\cos^{2}\varphi}{1 - u^{2}\sin^{2}\varphi} du \right\}$$
$$= \pi + 2 \int_{0}^{4} \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2}\varphi}{1 - u^{2}\sin^{2}\varphi} du d\varphi.$$

Nach Ausführung der angedeuteten Integrationen findet man sehr leicht $M = \frac{1}{2}\pi^2 = 4,9348022,$

also ist das gesuchte Mittel gleich der Peripherie eines mit dem Radius $\frac{1}{2}\sqrt{\pi}$ beschriebenen Kreises.

Schlömilch.



.

der

Zeitschrift für Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

von

Dr. O. Schlömilch, Dr. E. Kahl

und

Dr. M. Cantor.

Dreizehnter Jahrgang.

LEIPZIG, Verlag von B. G. Teubner. 1868. Digitized by Google

Inhalt.

٠

Geschichte der Mathematik und Physik.	Seite
Ueber die geometrische Hypothesis in Platon's Menon. Von Dr. BENEKE	9
Der Magnet im Alterthum. Von Prof. PALM	12
Zeitschrift für Bibliographie und Geschichte der Mathematik. Herausgegeben	
von B. Boncompagni	15
Galilée, Les droits de la science et la méthode des sciences physiques. Par	
TH. H. MARTIN	5 3
Arithmetik und Analysis.	
Sammlung von Aufgaben aus der algebraischen Analysis. Von Prof. LIEBLEIN	3
Theorie der Bessel'schen Functionen. Von Prof. Dr. NEUMANN	13
Nouvelles tables d'intégrales définies. Par Dr. BIERENS DE HAAN	21
Theorie der elliptischen Functionen, Von Prof. Dr. Dunkass	21
Schularithmetik, bearbeitet von Prof. TRAPPE	48
Descriptive Geometrie.	
Anleitung zum Linearzeichnen. Von Prof. DELABAE	4
Mechanik.	
Aufgaben aus der analytischen Mechanik. 1. Theil. Aufgaben aus der Geo-	
statik. Von Dr. FUHEMANN	1
Physik.	
Die Principien der Elektrodynamik. Von Prof. Dr. NEUMANN	87
Die Weltschöpfung vom Standpunkte der neuen Wissenschaft. Von Prof.	
Spiller	61
Bibliographie Seite 6, 17, 25, 51, 5	59 , 68
Mathematisches Abhandlungsregister: Januar bis Juni 1867	27
Juli bis December 1867 • • • •	99

-

Recensionen.

Aufgaben aus der analytischen Mechanik, von Dr. A. FUHRMANN, Assistent für Mathematik und Vermessungslehre an der königl. polytechnischen Schule zu Dresden. Mit einem Vorworte von Dr. O. SCHLÖ-MILCH, königl. sächs. Hofrath, Professor etc. etc. In zwei Theilen. Erster Theil: Aufgaben aus der analytischen Geostatik. Mit in den Text eingedruckten Holzschnitten. Leipzig, Verlag von B. G. Teubner. 1867.

Da eine Besprechung des vorliegenden Werkes hier unpassend sein würde, so möge das Vorwort des Unterzeichneten Platz finden. Es lautet:

"Wenn es schon zur tieferen Kenntniss einer fremden Sprache unerlässlich ist, nicht nur das Geschriebene oder Gesprochene zu verstehen, sondern auch selbst die Sprache reden zu können, so darf man von der Sprache der exacten Wissenschaften um so mehr behaupten, dass sie nicht blos gelernt, sondern auch geübt sein will. Findet man doch häufig genug unter seinen Zuhörern solche, keineswegs unbegabte Studirende, welche zwar alles Vorgetragene bestens verstanden haben, die sich aber äusserst ungeschickt anstellen, sobald ihnen die selbständige Lösung einer Aufgabe zugemnthet wird, die etwas mehr verlangt, als die Substitution specieller Werthe in allgemeine Formeln. Dieser Erfahrung dankt das hiesige Polytechnikum schon seit langer Zeit die bewährte Einrichtung, den Vorträgen über reine und angewandte Mathematik besondere Repetitionen beizugeben. Letztere beschränken sich nicht auf eine blosse Wiederholung des Vorgetragenen, vielmehr suchen sie durch zahlreiche Beispiele, welche von den Studirenden theils coram omnibus weiss auf schwarz gerechnet, theils zu Hause bearbeitet werden, dem Jünger der Wissenschaft die erforderliche Gewandtheit in der Lösung von Aufgaben zu verschaffen. Die nämliche Einrichtung empfiehlt auch der deutsche Ingenieurverein in seinem Organisationsplane der polytechnischen Institute, jedoch mit dem ausdrücklichen Wunsche, dass die Repetitionen womöglich von dem vortragenden Professor selbst abgehalten werden möchten. Gegen die Zweckmässigkeit dieses Vorschlags lässt sich aber ein Bedenken erheben. Da Niemand seine Indivi-

Literaturatg. d. Zeitschr. f. Math. u. Phys. XIII. 1.

Digitized by GOOGLE

dualität verleugnen kann, so wird der repetirende Professor seiner Anschauungs- und Ausdrucksweise treu bleiben, also nur noch einmal sagen, was er schon im Vortrage gesagt hat; der Assistent dagegen bringt die Sache unter einem anderen Gesichtspunkte und in anderer Redeform wieder und bietet damit dem Znhörer eine neue Seite des Gegenstandes dar. Wir machen ja nicht selten die Erfahrung, dass von zwei Rednern, die ihr Thema mit gleicher Klarheit behandeln, der eine sympathischer für uns ist, als der andere und dass wir eben deshalb den ersten leichter verstehen. während Andere den zweiten vorziehen; giebt man dies zu, so muss man es gerade bei abstracten Wissenschaften für einen Vortheil halten, wenn dem Studirenden die Gelegenheit geboten wird, über denselben Gegenstand zwei verschiedene Docenten zu hören. Eine praktische Schwierigkeit dürfte hieraus nicht entspringen, sobald sich der Assistent im Allgemeinen dem Gedankengange des Professors anzuschmiegen weiss, und der Professor kein Pedant ist, der da meint, dass es ohne seine sacramentalen Formeln gar nicht gehen könne.

Das hiesige Polytechnikum besitzt glücklicher Weise in Herrn Dr. Fuhrmann einen Assistenten, der meine Vorträge über höhere Analysis und analytische Mechanik wirksam zu unterstützen versteht, und ich habe es daher gern übernommen, dem Erstlingswerke desselben einige empfehlende Worte auf den Weg zu geben. Sowohl für Repetitionen als für das Selbststudium ist eine Aufgahensammlung ohne Zweifel ein willkommenes Hülfsmittel, und da in der That keine Sammlung von Aufgaben aus der analytischen Mechanik existirt, welche den Bedürfnissen der Studirenden an Universitäten und polytechnischen Instituten entspricht, so dürfte das vorliegende Buch wohl als eine zeitgemässe Erscheinung gelten. Der erste Theil desselben, welchem ein zweiter unverzüglich folgen wird, enthält nur Aufgaben aus der Statik fester Körper, wobei Probleme über die Elasticität und Festigkeit ausgeschlossen wurden, weil diese an polytechnischen Schulen in besonderen Vorlesungen ansführlich behandelt zu werden pflegen. Die meisten der mitgetheilten, für das erste Stadium der analytischen Mechanik berechneten Aufgaben sind neu; Bekanntes ist selten und nur dann aufgenommen worden, wenn sich später eine Verweisung darauf nöthig machte. Bei schweren Aufgaben findet man eine Andeutung über den Gang der Auflösung, bei leichteren ist nur das Resultat angegeben. Und damit sei diese anspruchslose, jedenfalls aber brauchbare Schrift den Lehrern und Jüngern der Wissenschaft bestens empfohlen.

Dresden, im August 1867.

SCHLÖMILCE.

2

Sammlung von Aufgaben aus der algebraischen Analysis. Bearbeitet von

Joh. LIEBLEIN, Professor am Polytechnikum zu Prag. Prag, Verlag von J. Satow. 1867.

An dem Prager Polytechnikum ist die algebraische Analysis als selbständige Disciplin in den Lehrplan aufgenommen und findet ihre Vertretung in den Vorträgen des Verfassers. Dem letzteren machte sich hierbei der Mangel einer Aufgabensammlung fühlbar und dieser bewog ihn, "die eben so mühsame als wenig dankbare Bearbeitung" eines solchen Hülfsbuches zu unternehmen. Dabei hat sich der Verfasser ziemlich genau dem Hændbuch der algebraischen Analysis des Referenten angeschlossen, und dem entsprechend giebt die Sammlung zu jedem Capitel des genannten Buches (mit alleiniger Ausnahme des Capitels über die Mittelwerthe der Functionen) eine Reihe von Beispielen und Aufgaben mit nur kurzen Andeutungen zur Lösung der schwierigeren Aufgaben, nebst einigen, die behandelten Theorien ergänzenden Zusätzen. Hiermit dürfte der allgemeine Charakter des vorliegenden Werkchens bezeichnet sein; in Beziehung auf das Detail mögen noch einige Bemerkungen folgen.

Vor Allem ist rühmend anzuerkennen, dass die Sammlung, trotz ihres geringen Umfanges von 12 Bogen, einen grossen Reichthum an Beispielen und Aufgaben enthält, und dass die letzteren methodisch gut geordnet sind, d. h. eine Stufenfolge vom Leichten zum Schweren darbieten. Weniger einverstanden ist Referent mit der Trennung der Aufgaben von ihren Lösungen; werden nämlich die letzteren überhaupt mitgetheilt, so ist es für den Gebrauch des Buches ohne Zweifel bequemer, die Lösung unmittelbar nach der Aufgabe zu finden, statt sie in einem Anhange suchen zu müssen. Der letztere enthält übrigens eine Fülle werthvoller Bemerkungen, namentlich über unendliche Reihen, unendliche Producte und Kettenbrüche. Beispielweis seien erwähnt 1) der Satz, dass die unendlichen, nur positive Glieder enthaltenden Reihen

$u_1 + u_2 + u_3 + u_4 + u_5 + \dots$ und $u_1 + k u_k + k^2 u_{k^2} + k^3 u_{k^6} + \dots$

gleichzeitig convergiren und divergiren, woraus für k=2 ein specieller Satz Cauchy's folgt; 2) die Transformationen verschiedener unendlicherProducte und Reihen, welche theils in der Theorie der elliptischen Functionen, theils bei der Untersuchung über die hypergeometrische Reihe eine Rolle spielen; 3) die Betrachtungen über die Convergenz und die geometrische Deutung der Kettenbrüche. Diese Proben werden hinreichend documentiren, dass der Verfasser weit mehr giebt, als man nach dem Titel seines Werkchens erwarten sollte, und dass derselbe überhaupt die Wissenschaft mit Freiheit und Geschick zu behandeln versteht. Und so fürchtet Referent keineswegs, dass der Verfasser eine "wenig dankbare" Arbeit unternommen habe.

SCHLÖMILCH.

Anleitung zum Linearzeichnen, von Prof. DELABAR. 3 Hefte. Freiburg im Breisgau, Herder'sche Verlagshandlung.

Der Verfasser geht von der wohl unzweifelhaft richtigen Idee aus, dass der Unterricht im Linearzeichnen drei Stufen haben müsse. Auf der ersten Stufe steht das "geometrische Linearzeichnen", wobei es zunächst nur darauf ankommt, den Schülern Fertigkeit im Gebrauche der Zeichneninstrumente beizubringen, sie an genaue und reinliche Ausführung ihrer graphischen Arbeiten zu gewöhnen und bei dieser Gelegenheit eine Reihe oft vorkommender geometrischer Constructionen einzuüben. Die nächste Stufe enthält die "Elemente der darstellenden Geometrie" oder, wie Referent kürzer sagen würde, die Projectionslehre, deren Aufgabe ist, jeden begrenzten Körper in jeder beliebigen Lage darzustellen. Der letzten Stufe endlich gehört "die weitere Ausführung der rechtwinkligen Projectionsart" d. h. die eigentliche descriptive Geometrie, welche auch unbegrenzte Gebilde in Untersuchung nimmt und an diesen ganz dieselben Aufgaben durch Construction löst, welche in der analytischen Geometrie calculatorisch behandelt werden. Für diese drei Unterrichtsstufen sind nun die drei Hefte des obigen Werkes bestimmt; über deren Inhalt mögen einige Bemerkungen folgen.

Im ersten Hefte giebt der Verfasser sunächst einige praktische Winke über die Behaudlung und Handhabung der Instrumente und sonstigen Materialien; die folgenden Abschnitte enthalten die gewöhnlichen Constructionen von Parallelen und Senkrechten, die Theilung von Geraden und Winkeln, die Anfertigung von Maassstäben etc. Bei den Kreistheilungen dürfte zweierlei zu erinnern sein. Erstens ist die Anwendung des Transporteurs zur Construction von $\frac{360^{0}}{7}$, $\frac{360^{0}}{11}$ etc. weder sonderlich bequem, noch hinreichend genau; man erhält viel bessere Resultate, wenn man die gesuchten Centriwinkel mittelst ihrer trigonometrischen Tangenten construirt, z. B.

$$\tan \frac{360^{\circ}}{7} = \frac{79}{63}, \quad \text{Fehler 0'', 6}$$
$$\tan \frac{360^{\circ}}{9} = \frac{73}{87}, \quad ,, \quad 2'', 3$$
$$\tan \frac{360^{\circ}}{11} = \frac{232}{361}, \quad ,, \quad 0'', 3$$

Zweitens muss bei der Construction regelmässiger Vielecke davor gewarnt werden, dass der Zeichner die eine gefundene Seite im Kreise herumträgt, um die übrigen Seiten zu finden; denn hierbei wird der unvermeidliche Fehler, womit jene erste Seite behaftet ist, multiplicirt und der Schluss des Polygons selten erreicht. Vielmehr ist (wie schon Hofrath Kunze bemerkt hat) auf eine andere Weise zu verfahren, die hier in Erinnerung gebracht

und am Elfeck erläutert werden möge. Nachdem man die Seite $A_1 A_2$ gefunden hat, halbire man den übrigen Kreisbogen, welcher $\frac{10}{11}$ der Peripherie umfasst; der Halbirungspunkt ist die Ecke A_7 . Von dieser schneide man rechts und links zwei Bögen $= arc A_1 A_2$ ab, man hat dann die Ecken A_6 und A_8 ; hierauf halbire man die Bögen $A_2 A_6$ und $A_8 A_1$, wodurch A_4 und A_{10} entstehen u. s. w. — Bei den folgenden Constructionen von Kegelschnitten und anderen Curven wäre es zweckmässig gewesen, die sehr einfachen Constructionen der Normalen anzugeben und dabei zu bemerken, dass die Durchschnitte der Normalen nahezu die Krümmungsmittelpunkte sind und dass sich mit deren Hülfe jede Curve aus kleinen Kreisbögen zusammensetzen lässt. Dieses Verfahren giebt weit genauere und zugleich weit elegantere Zeichnungen, als wenn die gefundenen Curvenpunkte aus freier Hand verbunden werden.

Im sweiten und dritten Hefte hat der Referent nichts Wesentliches zu erinnern gefunden, was bei der schon ziemlich festen Gestaltung der eigentlichen descriptiven Geometrie Niemanden überraschen wird.

Die Darstellung des Verfassers ist klar und durchaus leicht verständlich; die Figuren sind zwar dem kleinen Formate des Buches (Queroctav) angepasst, aber hinreichend deutlich.

SCHLÖMILCH.

Bibliographie

vom 15. October bis 15. December 1867.

Periodische Schriften.

Mathematische Abhandlungen der Königl. Preussischen Akademie der Wissenschaften. Aus dem Jahre 1866. Berlin, Dümmler. 1 Thir. 16 Ngr. Physikalische Abhandlungen der Königl. Preussischen Akademie der Wissenschaften. Aus dem Jahre 1866. Ebendas. 4 Thir. 18 Ngr. Sitzungsberichte der Königl. Bayer. Akademie der Wissenschaften. 1867. II. Bd. 2. Heft. München, Franz. 16 Ngr. Mémoires de l'académie impér. des sciences de St. Petersbourg. VII[•] Série. Tome XI, No. 9. Leipzig, Voss. 8 Ngr. Memorie dell'Accademia delle scienze dell'Instituto de Bologna. Serie II. Tomo VI. Torino et Firenze, Loescher. 15 *l*. Indice delle materie contenute: Chelini, sugli assi centrali delle force e delle rotazioni nell' equilibrio e nel moto dei corpi. Piani, del metodo nentoniano per la risoluzione approssimata delle equazione numeriche. Cremona, Preliminari di una teoria geometrica delle superficie; memoria prima,

Delle Gasa, Esame di alcune critiche osservazioni sull' elettricità statica.

Reine Mathematik.

- CANTOR, M., Euklid und sein Jahrhundert. Mathematisch-historische Skizze. Leipzig, Teubner. 18 Ngr.
- OFTERDINGER, C., Beiträge zur Geschichte der Mathematik in Ulm bis zur Mitte des 17. Jahrhunderts. Tübingen, Fues. ¹/₅ Thlr.
- NATANI, C., die Variationsrechnung. Anhang zur höheren Analysis. Berlin, Wiegandt & Hempel. % Thlr.
- WORPITSKY, J., Ueber die Endlichkeit von bestimmten Integralen und Reihensummen. Berlin, O. Müller.

HEIME, F., Untersuchungen überrelative Primzahlen, primitive
und secundäre Wurzeln, quadratische Reste und Nicht-
reste. Berlin, Uthemann & Müller. 🕺 Thlr.
RIEMANN, B., Grundlagen für eine allgemeine Theorie der
Functionen einer complexen veränderlichen Grösse. 2. Ab-
druck. Göttingen, Rente. 1 ¹ / ₂ Thlr.
GERLACH, H., Lehrbuch der Mathematik. 4 Theile in 1 Bd. 2. Aufl.
Dessau, Aue. 1 Thir. 26 Ngr.
REIDT, F., Die Elemente der Mathematik für höhere Lehr-
anstalten. 1. Theil: Arithmetik; 2. Theil: Planimetrie. Berlin, Grote .
26 Ngr.
DRACH, A. v., Einleitung in die Theorie der cubischen Kegel-
schnitte (Raumcurven 3. Ordnung). Leipzig, Teubner. 28 Ngr.
KOUTNY, E., Construction des Durchschnitts einer Geraden mit
den Kegelschnittslinien (Akad.). Wien, Gerold. 1/5 Thlr.
DILLING, A., Sammlung von Aufgaben und Beispielen aus der
algebraischen Geometrie. Halle, Schmidt. 2 Thlr.
SALOMON, J., Lehrbuch der Elementarmathematik. 2. Bd. Geome-
trie. 3. Aufl. Wien, Gerold. 1% Thlr.
DE NIEM, Beweise und Auflösungen sämmtlicher Lehrsätze und
Aufgaben der Jacobi'schen Anhänge zu van Swinden's
Geometrie. 2 Theile. Halle, Schmidt. 34 Thlr.
Van Swinden's Geometrie im Auszuge etc. Aus dem Holländischen
übersetzt von de Niem. Ebendas. 12½ Ngr.
Rorrox, Lehrbuch der ebenen und sphärischen Trigonometrie.
Hamburg, Jowien 4/4 Thlr.
SERRET, J. A., Cours de calcul différentiel et intégral. Tome 1. Cal-
cul differentiel. Paris, Gauthiers - Villars. pro compl. 22 Frcs.
HAAN, B. DE, Nouvelles tables d'intégrales définies. Leide, Engels.
14 Fl.

Angewandte Mathematik.

- HANSEN, P. A., Die Methode der kleinsten Quadrate im Allgemeinen und ihre Anwendung auf die Geodäsie. Leipzig, Hirzel. 2 Thlr.
- BRETTNER, H., Mathematische Geographie. 5. Aufl. Von F. Bredow. Leipzig, G. E. Schulze. 12 Ngr.
- FÖRSTER, W., Bericht der Berliner Sternwarte für das Jahr 1866. Berlin, Dümmler. % Thlr.
- HEIS, E., Sammlung von 5 Sternkarten für die vier Himmelsgegenden und für den Zenith zum Einzeichnen der Sternschnuppen der Novemberperiode. Köln, Du Mont-Schauberg.

	L	/it	er	at	ur	ze	it	un	g,
--	---	-----	----	----	----	----	----	----	----

Auwers, B., Bestimmung der Parallaxe des Sterns 34 Groombridge durch chronographische Beobachtungen am Aequatoreal der Gothaer Sternwarte. Berlin, Dümmler. % Thlr.

OEHL, E., Versuch einer Theorie über Kometen. Wien, Pichler. % Thlr.

- FUHRMANN, A., Aufgaben aus der analytischen Mechanik. 1. Theil: Aufgaben aus der analytischen Geostatik. Leipzig, Teubner. % Thir.
- ZECH, Ueber die Schwingungsbewegungen der Locomotiven. Tübingen, Fues. % Thlr.

Physik.

- KÜLP, E., Lehrbuch der Experimentalphysik. 4. Bd.: Wärmelehre von R. Dreser. Darmstadt, Diehl. 2 Thlr.
- LANG, V. v., Einleitung in die theoretische Physik. Braunschweig, Vieweg. 1% Thlr.
- PRANGHOFER, J., Sammlung von Aufgaben und Beispielen aus der Physik. 1. Theil: Mechanische Naturlehre. Wien, Braumüller. 1 Thlr.
- BRIOT, Ch., Versuche über die mathematische Theorie des Lichtes. Uebersetzt und mit einem Zusatze vermehrt von W. Klinkerfues. Leipzig, Quandt und Händel. 1¹/₃ Thlr.
- TYNDALL, J., Die Wärme als eine Art der Bewegung. Autorisirte deutsche Ausgabe von Helmholtz und Wiedemann. Braunschweig, Vieweg. 2% Thlr.
- GAUSS, C. F., Werke, 5. Bd. Mathematische Physik, herausgegeben von der Königl. Gesellschaft der Wissenschaften zu Göttingen.. Göttingen, Vandenhoek & Ruprecht. 7¹/₆ Thlr.

8

BRABSEUR, J., Programme du cours de géométrie descriptive fait à l'université de Liège. 4° Edit. Lüttich, Sazonoff. 2% Thlr.

Recensionen.

Ueber die geometrische Hypothesis in Plato's Menon von DR. ADOLPH BENECKE, Direktor des Gymnasiums zu Elbing. Elbing 1867. In Commission bei C. Meissner. 34 Seiten in 4⁰ nebst einer Figurentafel.

In dem platonischen Dialoge, welcher den Titel "Meno" führt, befindet sich eine mathematische Stelle, welche, man darf wohl sagen Jahrhunderte lang, die Verzweiflung der Philologen verursachte, ohne den Mathematikern verständlicher zu sein. Referent hat deshalb in seiner jüngst in einem Separathefte dieser Zeitschrift erschienenen Abhandlung "Euclid und sein Jahrhundert" jene Stelle nur sehr im Vorübergehen (S. 46-47) berührt und darauf verzichtet ein besonderes Gewicht auf sie zu legen, weil, was hier zugestanden werden mag, mehrwöchentliche Beschäftignng mit jener Stelle ihm die Sache nur immer unklarer machte.

Fast gleichzeitig mit der genannten Abhandlung erschienen zwei Untersuchungen, die speciell auf die Meno-Stelle sich bezogen, welche aber vermöge dieser Gleichzeitigkeit bei unserer Zusammenstellung nicht mehr berücksichtigt werden konnten. Wir meinen die nachgelassene Abhandlung des vor einigen Jahren verstorbenen Gymnasialdirektors Fr. Carl Wex in Schwerin "Platons Geometrie im Menon und die Parabole des Pythagoras bei Plutarch" (Grunert's Archiv, Bd. XLVII, S. 131-163) und die Monographie des Herrn Benecke, welche in der Ueberschrift dieser Besprechung des Näheren genannt ist, Die erwähnte posthume Arbeit enthält manche schätzenswerthe Bemerkung (einige derselben sollen in diesem Referate noch Platz finden), ohne jedoch nach unserem Dafürhalten die eigentliche Frage zu lösen. Herr Benecke dagegen hat, wie wir wenigstens überzeugt sind, das Ei des Columbus gefunden. Er hat eine Uebersetzung und Erklärung vorgeschlagen, welche durch die Vereinigung folgender Vorzüge vor allen bisherigen Versuchen sich auszeichnet.

Literaturztg. d. Zeitschr. f. Math. u. Physik XIII, 2,

1. Der durch die Codices überlieferte Wortlaut des Textes wird unverändert erhalten, während man insgemein mehr oder weniger kühne Correkturen und Conjekturen sich erlaubte.

2. Der mathematische Sinn ist ein so elementarer und naheliegender, dass er jetzt in der That den Dienst leisten kann, den er leisten soll, als beleuchtendes Beispiel in einer durchaus nichtmathematischen Discussion gebraucht zu werden.

3. Die Benecke'sche Auffassung behandelt die früher schwierige Stelle nicht aus dem Zusammenhange des Dialoges herausgerissen, sie kumpft vielmehr unmittelbar an andere mathematische Versinnlichungen an, welche wenige Minuten vorher in demselben Gespräche benutzt worden waren und zur Zeichnung gewisser Figuren in den Sand Anlass gegeben hatten, welche man desshalb als noch vorhanden und weiter benutzbar voraussetzen muss.

Diese vereinigten Momente scheinen uns zwingend für die Richtigkeit der neuen Auffassung, und nur in zwei freilich nebensächlichen Dingen möchten wir von Herrn Benecke abweichen. Einmal glauben wir, dass allerdings der Kreis die erste Zeichnung ist, welche Sokrates entwirft, und zwar schon 73, E bei Gelegenheit des Runden, welches eine Figur, nicht aber die Figur überhaupt sei ($\sigma\tau \varrho o \gamma \nu l \delta \tau \eta \tau \sigma \varsigma$ $\epsilon i \pi \sigma \iota \mu \dot{\alpha} \nu \bar{\epsilon} \gamma \omega \gamma \epsilon \sigma \tau \sigma \chi \eta \mu \dot{\alpha} \tau l \dot{\epsilon} \sigma \tau \nu$, où $\chi o \ddot{\nu} \tau \omega \varsigma \dot{\alpha} \pi l \tilde{\omega} \varsigma \ddot{\sigma} \tau \sigma \chi \eta \mu \dot{\alpha}$. Zweitens glauben wir, dass wo zuerst das 4füssige Quadrat gezeichnet wird 82, Cund Sokrates die Frage stellt: Sind nicht auch diese durch die Mitte gehenden Linien eben dieselben? (où xal ταυτασl τàς διà μέσου ἐστιν $l \sigma \alpha \varsigma \bar{\epsilon} \chi \sigma \nu$;) keineswegs die Diagonalen gemeint sind, sondern die Linien, welche die Mitten von je zwei gegenüberliegenden Seiten des Quadrates verbinden.

Für unsere erste Abweichung steht uns nur der Grund zur Verfügung, dass es immerhin möglich ist. dass Sokrates schon bei jener frühern Veranlassung eine Zeichnung entwirft, wenn auch an sich keine Nothwendigkeit dazu vorliegt; dass dagegen unter der Voraussetzung einer schon vorhandenen Kreisfigur neben dem Quadrate es später an der Hauptstelle 86, E viel natürlicher wird, dass Sokrates bei dem als Versinnlichung zu wählenden Beispiele die beiden vorhandenen Figuren benutzt, auf die zufällig sein Auge wieder fällt, als dass er jetzt erst dem Beispiele zu Liebe einen Kreis zeichnet.

Für die zweite Aenderung besitzen wir so viele Gründe, dass wir in Verlegenheit sind alle mitzutheilen, während für die Benecke'sche Auffassung, wie uns scheinen will, auch nicht ein stützendes Moment aufzufinden ist, es müsste denn sein, dass man sich auf die ihr entsprechende Uebersetzung bei Hieronymus Müller, Platon's sämmtliche Werke, Bd. II, S. 142 (Leipzig 1851), beriefe, wogegen uns die Autorität Stallbaums (l'latonis Meno, prolegomenis et commentariis illustravit

Godofr. Stallbaumius, pag. 66 et 69. Lipsiae 1827) zur Seite steht. Blosse Namen gelten aber mit Recht Herrn Benecke so wenig, wie uns als Gründe, und so mögen einige von den Erwägungen genannt werden, durch welche wir uns bestimmen liessen. Die keinen Augenblick zu vernachlässigende Situation ist die, dass Sokrates einen ungebildeten Sklaven vor sich hat, dem er durch seine Fragen Aussprüche geometrischer Wahrheiten entlockt, von deren Kenntniss Jener sich nicht be-Die Fragen des Sokrates allein würden dazu nicht auswusst ist. reichen; mit Hülfe von in den Sand gezeichneten Figuren genügen sie. Alle herausgefragten Wahrheiten müssen daher solche sein, welche durch blosse Anschauung einleuchten, ohne dass ein eigentlicher geometrischer Beweis zu führen versucht würde. Während Herr Benecke diesen Gesichtspunkt im Uebrigen festhält, lässt er ihn hier aus den Augen. Die Identität der beiden Diagonalen scheint sich uns nicht ohne Weiteres der blossen Anschanung darzubieten, wie überhaupt zwei in ihrem Verlaufe sich schneidende Linien erfahrungsmässig weniger gut bezüglich ihrer Länge abgeschätzt werden können, als wenn die Linien nur in einem Endpunkte zusammenstossen, und diese wieder weniger gut als Parallellinien. Unsere Deutung giebt aber den ursprünglichen Vierecksseiten parallele und diesen ebenso wie unter sich gleiche Linien, was ebenfalls in dem oben citirten Wortlaute von des Sokrates Frage gelegen zu haben scheint. Ferner ist bei unserer Auffassung, welche die Seiten halbirt, das Quadrat viertheilt, einleuchtend, wesshalb Sokrates bei dieser ersten Figur, welche er dem Sklaven vorzeichnet, die Seite als 2 Fuss lang annimmt und nicht als 1 Fuss lang, was doch eigentlich näher liegt. Ferner ist auch Herr Benecke genöthigt nachher bei den Quadraten der 4 Fuss und 3 Fuss langen Seiten eine Zeichnung anzunehmen, welche der unsrigen analog ist, während in dem Texte des Dialogs bis dahin nicht die leiseste Andeutung sich findet, dass eine von neuen Grundgedanken ausgehende Construktion vorgenommen würde. Endlich halten wir es geradezu für entscheidend, dass 85, A die Diagonale gezogen und definirt (aury ή γραμμή ή έκ γωνίας είς γωνίαν τείνει) und 85, B auch benannt wird (xalovoi de ye ravry diauerpov of soopistal). Das wäre der angewandten heuristischen Methode nach zu spät, wenn diese Linien schon in einem früheren Augenblicke der Besprechung gezogen worden wären.

Wir wiederholen es, dass wir selbst diese Bemerkungen nur für nebensächliche halten, keineswegs geeignet, das unstreitige Verdienst des Verfassers der uns vorliegenden Abhandlung irgendwie zu schmälern. Wir beabsichtigen durch deren Darlegung nur unser Interesse an dem Gegenstande zn erweisen und zu ergänzen, was uns übersehen scheint.

Zu demselben Zwecke führen wir aus der Wex'schen Abhandlung

zwei Stellen an, welche auf das missliche Wort παρατείνειν sich beziehen und für den philologischen Theil der Untersnchung nicht ohne Wichtigkeit sind. Herr Wex schreibt l. c. S. 137: "Wir befinden uns also hier auf dem Gebiete geometrischer Techniker und ihrer Elementar-Geometrie. Diese haben aber für ihre praktischen Operationen und zum Theil mechanischen Kunstgriffe auch besondere Kunstausdrücke. Man trete bei uns in eine Elementarklasse; da hören wir manche termini, wie eins borgen, eins im Sinne behalten, einen Bruch heben, eine Zahl zerfällen und Anderes. Hofft man diese mathematischen Kunstausdrücke auch in Schriften von Leibnitz, Euler, Gauss zu finden? Nun, ebensowenig suche man παρατείνειν bei den griechischen Mathematikern." Die zweite Stelle findet sich l. c. S. 161, Anmerkung ** und lautet: "Noch will ich denen, die παρατείνω für gleichbedeutend mit παραβάλλω halten möchten, eine Combination an die Hand geben, durch die sie ihre Meinung unterstützen können. In dem Euclid des Boethius bei Lachmann grammatici script. p. 385 finden sich folgende zwei Aufgaben neben einander gestellt: Dato triangulo acquale parallelogrammum in dato rectilineo angulo constituere. — Iuxta rectam lineam dato triangulo dato rectilineo angulo parallelogrammum aequale praetendere. In der ersteren Aufgabe ist constituere offenbar das Euclidische συστήσασθαι (Elem. I, 42) und in der zweiten wird man in dem praetendere das Euclidische παρα- $\beta \alpha \lambda \epsilon \tilde{\iota} \nu$ (Elem. I, 44) zu suchen haben. Man könnte also vermuthen, in dem griechischen Originale, welches Boethius vorgelegen, habe παρατείνω als Synonymon die Stelle von παραβάλλω vertreten. Wenigstens wird das geographische παρατείνω (ή δέ γ' Εύβοια ήδε παρατέταται Arist. Nub. 212. τη μέν γάρ της Άραβίης ούρος παρατέταται Herodot. II, I) im Lateinischen durch practendere ausgedrückt. Baeticae latere septentrionali praetenditur Lusitania. Plin. N. H. III, 1, 2. Die übliche Uebersetzung des mathematischen παραβάλλειν durch applicare scheint modernen Ursprungs zu sein."

Im Uebrigen verweisen wir Jeden, dem es um Uebersetzung der platonischen Worte und um deren Verständniss zu thun ist, auf die Benecke'sche Abhandlung, welcher wir recht viele Leser wünschen, und desshalb den Kern der Untersuchung hier nicht weiter enthällen wollten, als nöthig schien um zu dessen Genusse einzuladen. CANTOR.

Der Magnet im Alterthum von Prof. GUST. ALBERT PALM. Programm des königlich württembergischen evangelisch-theologischen Seminars Maulbronn zum Schluss des vierjährigen Curses von 1863–1867. Stuttgart 1867.

Die an und für sich fleissig gearbeitete Abhandlung besteht ans 7 Kapiteln mit folgenden Ueberschriften: 1. Was wussten die Alten vom Magnet? 2. Wie erklärten die Alten das, was sie vom Magnet wussten? 3. Die Benennungen des Magnets. 4. Woher bezogen die Alten den Magnet? 5. Der medicinische und magische Gebrauch des Magnets. 6. Die bildliche Verwendung des Magnets bei den verschiedenen Schriftstellern. 7. Das frei schwebende Bild. Daran knüpfen sich 52 Belegstellen aus den lateinischen und griechischen Schriftstellern, der verschiedensten Zeitalter welche im Originaltexte mitgetheilt werden.

Diese letztere Beilage macht das Programm des Herrn Palm zu einer immerhin schätzbaren Sammlung, während die Mühe, welche der Verfasser auf die eigentliche Abhandlung verwandte, als eine leider müssige bezeichnet werden muss. Derselbe kannte offenbar nicht die Observations et théories des Anciens sur les attractions et les répulsions magnétiques et sur les attractions électriques von Th. Henri Martin, welche bereits in den Atti dell' Academia Pontificia de' nuovi Lincei für die Sitzungen vom 3. December 1864 und 8. Januar 1865 abgedruckt sind. Diese Untersuchungen des gelehrten Decan der philosophischen Facultät von Rennes enthalten aber absolut Alles, was auch Herr Palm jetzt auffand, und noch Einiges mehr.

CANTOR.

Theorie der Bessel'schen Functionen. Ein Analogon zur Theorie der Kugelfunctionen. Von Carl Neumann. Leipzig 1867.

Es wird wohl kaum nöthig sein an die Wichtigkeit und an die vielfachen Anwendungen der Functionen zu erinnern, welchen die vorliegende Schrift gewidmet ist. Jeder, der sich eingehender mit dem Probleme der mathematischen Physik, z. B. mit der Theorie der Bewegung der Wärme beschäftigt, kennt dieselben, und wird daher das schöne Werkchen von Neumann mit Freuden begrüssen. Wiewohl der Herr Verfasser in der Vorrede die Absicht einer umfassenden Darstellung der ganzen Theorie dieser merkwürdigen Functionen bescheiden ablehnt, so glauben wir doch, dass Demjenigen, welcher sich behufs der Anwendung mit den wichtigsten Eigenschaften der Bessel'schen Functionen vertraut machen will, durch das vorliegende Werk nützliche Dienste geleistet werden, da durch die äusserst klare und elegante, und wie uns bedünkt, für die meisten Zwecke auch hinlänglich ausführliche Darstellung der wichtigsten Sätze und Formeln ihm manches mühsame Nachschlagen und Suchen erspart wird. Es soll damit natürlich nicht gesagt sein, dass dadurch nun die Acten über die Theorie der Bessel'schen Functionen als geschlossen zu betrachten seien. Im Gegentheil sind wir der Mei-

nung, dass diese Functionen späteren Forschungen noch ein ergiebiges Feld bieten, welche, in gehöriger Weise verallgemeinert, zu wichtigen Aufschlüssen über allgemeine Eigenschaften gewisser partieller Differen-Ein solcher Zusammenhang mit einer tialgleichungen führen können. partiellen Differentialgleichung, die für die Physik von grossem Interesse ist, findet sich, wiewohl nur als nebensächlicher Zweck des Herrn Verfassers, in dem letzten Abschnitt des in Rede stehenden Werkes angedeutet, und dieser Zusammenhang führt zu der merkwürdigen Entwickelung der Function Y^(o) für ein Argument, das die Entfernung zweier Punkte ausdrückt, nach den Bessel'schen Functionen. Die Hauptaufgabe des Verfassers, deren Lösung ihm in völlig befriedigender Weise gelingt, ist der allgemeine Nachweis der Entwickelbarkeit einer Function eines complexen Arguments nach den Bessel'schen Functionen, und die Feststellung der Grenzen der Gültigkeit dieser Entwickelung. Das Hülfsmittel, welches zu diesem Ziele führt, ist dasselbe, welches schon von Cauchy zur Begründung der Taylorschen Reihe für complexe Argumente angewandt wurde, und dessen sich der Herr Verfasser schon früher zur Begründung der Entwickelung nach den Kugelfunctionen bedient hat. Es ist die von Cauchy aufgestellte Formel:

$$f(c) = \frac{1}{2\pi i} \int \frac{f(z) dz}{z - c},$$

indem die Integration sich über eine beliebige geschlossene Curve in der z-Ebene erstreckt, in deren Innerem die Function f(z) einwerthig und stetig ist. Aus dieser Formel lässt sich nun immer eine Entwickelung der Function f(c) ableiten, wenn man eine entsprechende Entwickelung von $\frac{1}{z-c}$ finden kann. Eine solche Entwickelung liefert, wenn es sich um das Taylor'sche Theorem handelt, der binomische Satz, bei der Entwickelung nach Kugelfunctionen das Theorem von Heine. Es ergibt sich dabei, dass die Coefficienten der Entwicklung von $\frac{1}{z-c}$ nach steigenden Potenzen von c die fallenden Potenzen von z, nach Kugelfunctionen der ersten Art für das Argument c die Kugelfunctionen der zweiten Art für das Argument z werden, und daraus entspringen Entwickelungen für solche Functionen, die in einem zwiefach zusammenhängenden Gebiet eindeutig und stetig sind, welche im ersten Fall nach steigenden und fallenden, im zweiten nach Kugelfunctionen der ersten und zweiten Art fortschreiten. Um dem entsprechend die Entwickelung nach Bessel'schen Functionen zu finden, kam es also vor Allem darauf an, die Function $\frac{1}{z-c}$ nach diesen Functionen zu entwickeln. Die Coefficienten dieser Entwickelung sind Functionen von c,

welche Herr Neumann Bessel'sche Functionen der zweiten Art nennt, und die er in mannigfacher Weise ausdrücken lehrt.

Es würde zu weit führen, wollten wir hier des Weiteren auf die Mittel eingehen, durch welche der Verfasser diese Resultate gewinnt, nur müssen wir anerkennend hervorheben, dass er uns den Weg zeigt, der mit Sicherheit, wenn auch nicht mit voller Strenge zu dem gewünschten Ziele führt, und sich nicht damit begnügt, mit dem fertigen Resultat und dem zugehörigen strengen Beweis, der übrigens in vollständig befriedigender Weise erbracht wird, uns vor Augen zu treten. Der erwähnte strenge Beweis beruht auf der wirklichen Summation der gefundenen Reihe und ist durch das dabei zur Anwendung gekommene Prinzip der Aufstellung einer partiellen Differentialgleichung erster Ordnung für die gesuchte Summe bemerkenswerth.

Ein anderer Theil der Untersuchung ist derjenigen Differentialgleichung zweiter Ordnung gewidmet, von welcher ein partikuläres Integral durch die Bessel'sche Function der ersten Art gegeben ist. Hier ist nicht etwa, wie bei den Kugelfunctionen, die Bessel'sche Function zweiter Art das andere partikuläre Integral, sondern dieses zweite partikuläre Integral wird durch eine dritte Function ausgedrückt, welche gleichfalls interessante Eigenschaften besitzt, die zum Theil denen der Bessel'schen Function erster Art analog sind. Die hierauf bezüglichen Untersuchungen sind etwas weitläufig und dürften vielleicht in Zukunft einer einfacheren Darstellung fähig sein, was auch der Verfasser am Schluss des dritten Abschnittes anerkennt.

Hoffen wir, dass das verdienstvolle Werkchen, dessen Lektüre bei der bekannten klaren Darstellungsweise des Verfassers eher einer Unterhaltung, als einer Anstrengung gleicht, zur Weiterverbreitung der Kenntniss dieser so interessanten und merkwürdigen Functionen beitragen und zu weiteren Forschungen über dieselben führen möge.

Heidelberg, im Januar 1868.

HEINRICH WEBER.

Zeitschrift für Bibliographie und Geschichte der Mathematik herausgegeben von B. BONCOMPAGNI in Rom.

Vor wenigen Wochen erhielten wir die nachfolgend abgedruckte Ankündigung einer neuen Monatsschrift:

Le recueil intitulé "Bullettino di Bibliografia e di Storia delle Scienze matematiche e fisiche" est un ouvrage périodique dont on publie chaque mois un cahier de trois feuilles au moins, et de cinq au plus. Ces cahiers se vendent à Rome dans l'imprimerie des sciences mathématiques et physiques (Via Lata, n⁰. 211 A) au prix de 35 centimes la feuille. Les personnes qui voudront bien envoyer des écrits destinés à être publiés dans ce recueil, sont priées de les remettre au bureau de la poste dans des plis adressés à D. B. Boncompagni à Rome. Ceux de ces écrits qui seront redigés en italien, en français ou en latin, seront publiés textuellement dans ce Bulletin.

Wir sind überaus begierig auf das Erscheinen dieser Zeitschrift selbst, für deren ausgezeichnete Leistungen der Name des Herausgebers schon im Voraus bürgt. Wir treten sicherlich keinem Gelehrten irgend eines Landes zu nahe, wenn wir die Behauptung aussprechen, dass Prinz Boncompagni dermalen an der Spitze derer steht, die sich gleichzeitig mit Geschichte und Bilbliographie der Mathematik beschäftigen. Sein Fleiss, seine sorgsame Mühe, sein kein Opfer an Geld und Zeit scheuender Eifer haben ihm diese Stellung angewiesen und befähigen ihn wie keinen Anderen zur Mittelperson europäischer Gelehrsamkeit. Wir wünschen daher dem neuen Unternehmen den ergiebigsten Erfolg und möchten unsere eigenen wissenschaftlichen Freunde hiermit öffentlich zur Unterstützung desselben auffordern. Wir fürchten dabei nicht mit unseren eigenen redactionellen Interessen in Widerstreit zu gerathen, da es selbstverständlich ist, dass ein und derselbe Beitrag sehr wohl gleichzeitig in deutscher Sprache in unserer Zeitschrift und in fremder Sprache im Bulletino Boncompagni erscheinen kann.

CANTOR.

Bibliographie

vom 15. December 1867 bis 1. März 1868.

Periodische Schriften.

- Sitzungsberichte der Königl. Sächs. Gesellschaft der Wissenschaften zu Leipzig. Mathem.-phys. Classe. 1867. 1. u. 2. Heft. Leipzig, Hirzel. % Thlr.
- Sitzungsberichte der Königl. Bayer. Akademie der Wissenschaften. 1867. Band II, Heft 3. München, Franz. 16 Ngr.
- Abhandlungen der Königl. Gesellschaft der Wissenschaften zu Göttingen. 13. Band aus den Jahren 1866 und 1867. Göttingen, Dieterich. 7 Thlr.
- Denkschriften der Kaiserl. Akademie der Wissenschaften zu Wien. Mathem.-phys. Classe. 27. Band. 1867. Wien, Gerold. 12½ Thlr.
- Journal für reine und angewandte Mathematik (begründet von Crelle) herausgegeben von C. W. Borchardt. 68. Band. 1. Heft. Berlin, G. Reimer. pro compl. 4 Thlr.
- Vierteljahresschrift der astronomischen Gesellschaft, herausgegeben von C. Bruhns. 2. Jahrg., Heft 3 u. 4. Leipzig, Engelmann. à ½ Thlr.
- Annalen der Königl. Sternwarte bei München, herausgegeben von J. v. Lamont. 15. Band. 1867. München, Franz. 13 Thlr.
- Astronomisches Jahrb'uch für das Jahr 1870, mit Ephemeriden der Planeten (1)-(93) für 1868. Herausgegeben von W. Foerster. Berlin, Dümmler. 3 Thlr.
- Wochenschrift für Astronomie, Meteorologie und Geographie, redigirt von E. Heis. Neue Folge. 11. Jahrg. 1868. No. 1. Halle, Schmidt. pro compl. 3 Thlr.
- Memorie della R. Accademia delle scienze di Torino. Serie II, Tome XXIII. Torino, Loescher.

Indice delle materie contenute nella parte I:

Plana, J., Mémoire sur la loi du refroidissement des corps sphériques etc. Genocchi, A., Intorno alla formazione ed integrazione d'alcune equazioni differenziali nella teorica delle funzioni ellitiche.

Govi, G., Sulla misura della amplificazione degli strumenti ottici e sul uso di un megametro etc.

.

Reine Mathematik.

PETERSON, K., Ueber Curven und Flächen. 1. Lieferung. Leipzig, Wagner. % Thlr.

1/2 Thlr.

Angewandte Mathematik.

- SCHELL, O., Ueber die Bestimmung der Constanten des Polarplanimeters. (Akad.) Wien, Gerold. 4 Ngr.
- Fils, A., Barometer-Höhenmessungen im Herzogthum S. Gotha. 2. Aufl. Weissensee, Grossmann. ¹/₃ Thlr.
- ASTRAND, J., Neue einfache Methode für Zeit- und Längenbestimmung. (Akad.) Wien, Gerold. 8 Ngr.
- Oppolzer, Th., Die Constanten der Präcession nach Leverrier. (Akad.) Ebend. 3 Ngr.
- Auwers, A., Bestimmung der Bahn des Cometen III, 1860. (Akad.) Berlin, Dümmler. ½ Thlr.
- Auwers, C. F., Untersuchungen über veränderliche Eigenbewegungen. 2. Theil. Bestimmung der Elemente der Siriusbahn. Leipzig, Engelmann. 2% Thlr.
- CLAUSIUS, R., Ueber den zweiten Hauptsatz der mechanischen Wärmetheorie. Ein Vortrag. Braunschweig, Vieweg. 4 Ngr.

PFEIFFER, J., Die Elemente der algebraischen Analysis zunächst für seine Schüler zusammengestellt. Leipzig, Voss. 18 Ngr.

RIEMANN, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe. Göttingen, Dieterich. 24 Ngr.

REYE, TH., Die Geometrie der Lage. 2. Abtheilung. Hannover, Rümpler. 2 Thlr.

RIEMANN, B., Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Göttingen, Dieterich. 12 Ngr.

WITTSTEIN, TH., Lehrbuch der Elementarmathematik. 2. Band, 1. Abtheilung. Ebene Trigonometrie. 2. Aufl. Hannover, Hahn.

BOLTZMANN, L., Ueber die Anzahl der Atome in den Gasmolekulen und die innere Arbeit in Gasen. (Akad.) Wien, Gerold. 2 Ngr.

HANDL, A., Beiträge zur Molekulartheorie. I. (Akad.) Ebend. 2 Ngr.

Mohr, F., Die mechanische Theorie der chemischen Affinität und die neuere Chemie. Braunschweig, Vieweg. 2 Thlr.

MOIGNO, A., Leçons de mécanique analytique, rédigées principalement d'après les méthodes de A. Cauchy. Vol. I. Statique. Leipzig, Alphons Dürr.

•

•

Physik.

Mach, E., Zwei populäre Vorträge über Optik.	Graz, Leuschner &
Lubensky.	8 Ngr.
FRIESACH, K., Ueber den Einfluss des den Schal	l fortpflanzen-
den Mittels auf die Schwingungen eines	tönenden Kör-
pers. (Akad.) Wien, Gerold.	2 Ngr.
STEFAN, J., Ueber einen akustischen Interferenz	apparat. (Akad.)
Ebend.	1½ Ngr.
WEYR, E., Ein Beitrag zur Theorie transversal	-magnetischer
Flächen. (Akad.) Ebend.	3 Ngr.
JELINEK, C., Ueber die Reduction der Barometer	stände bei Ge-
fässbarometern mit veränderlichem Nivea	u. (Akad.) Ebend.
	2 Ngr.
HANN, J., Ueber den Einfluss der Winde auf	f die mittleren
Werthe der wichtigeren meteorologische	n Elemente zu
Wien. (Akad.) Ebend.	4 Ngr.
MEIBAUER, O., Der Novemberschwarm der Sterns	chnuppen. Ber-
lin, Lüderitz.	1/3 Thlr.
Schneider, J., Fernere Nachrichten über die F	ortschritte der
Astrometeorologie. 3. Fortsetzung. Leipzig,	List & Francke.
	1¾ Thlr.
Guillemin, A., Les phénomènes de la physique. Ou	vrage illustré, Pa-
ris, Hachette & Co.	5½ Thlr.
RADAU, R., L'acoustique ou les phénomènes du son. Ebend	. 2 Frcs.

.

٠

•

Recensionen.

Nouvelles tables d'intégrales définies, par D. BIERENS DE HAAN. Leide, P. Engels. 1867.

Das vorliegende Werk bildet eine neue Auflage der im J. 1858 erschienenen Tables d'intégrales définies desselben Verfassers, die bereits seit einiger Zeit vergriffen waren. Wie sich erwarten liess, ist diese zweite Auflage eine vermehrte und verbesserte, vermehrt nämlich durch die während der Zwischenzeit bekannt gewordenen neuen Resultate, verbessert in so fern, als es dem Verf. durch Kürzung der früheren literarischen Angaben und durch Weglassung allzu bekannter Formeln gelungen ist, seinem Werke eine compendiösere Gestalt zu verleihen. Indem Ref. dem Fleisse und der Gelehrsamkeit des Verfassers von Neuem seine höchste Anerkennung zollt, wiederholt er gleichzeitig den schon früher ausgesprochenen Wunsch, dass es dem Verf. gefallen möge, eine ähnliche Sammlung doppelter und mehrfacher Integrale herauszugeben.

Schlömilch.

Theorie der elliptischen Functionen; Versuch einer elementaren Darstellung von Dr. H. Durège, ordentl. Prof. am Polytechnikum zu Prag. Zweite Auflage. Leipzig, B. G. Teubner. 1868.

Da es dem Verf. hauptsächlich um eine erste Einführung in die Theorie der elliptischen Functionen zu thun ist, so hat derselbe in der zweiten Auflage die früher benutzten Methoden beibehalten, welche sich zwar nicht durch Strenge, wohl aber durch eine gewisse Leichtigkeit und Einfachheit empfehlen. Gegen diese didaktische Rücksicht lässt sich im vorliegenden Falle nichts einwenden, weil der Verf. seine Leser keineswegs mit der Miene verabschiedet, als ob nun die ganze Theorie vollständig und zweifellos begründet sei, sondern vielmehr den eigentlich dunkelen Punkt (die unendliche Vieldeutigkeit der Integrale zwischen complexen Grenzen) ausdrücklich hervorhebt und die Mittel zu dessen Aufklärung angiebt. Bei dem Additionstheoreme ist zweckmässigerweise die Sturm'sche Methode in den Vordergrund gestellt worden; neu hinzugekommen ist ein Digitized by GOOSIC

Literaturztg. d. Zeitschr. fr Math. u. Phys. XIII, 3.

lehrreicher Abschnitt über das Abel'sche Theorem. Und hiermit sei das sorgfältig gearbeitete und seinem Zwecke vollkommen entsprechende Werk von Neuem bestens empfohlen.

Schlömilch.

In den Berichten der mathem.-physischen Classe der königl. Sächsischen Gesellschaft der Wissenschaften, 1865, findet sich eine historische Bemerkung des Herrn Baltzer, in welcher ich lese:

"Was nun das Wort Million anlangt, so war ich verwundert, dasselbe beim Numeriren bis zum 18. Jahrh. hartnäckig vermieden zu sehen."

und ferner:

"Die Million gehört also gewiss nicht Girard, vermuthlich auch nicht einem ältern Arithmetiker; erst im 18. Jahrh. hat Million als abstractes Zahlwort allgemeinern Eingang gefunden."

und endlich:

"Man wird also Girard für den Autor dieser Bildungen*) halten dürfen, bis Citate aus früherer Zeit aufgefunden werden."

Zu diesen drei Aeusserungen habe ich Folgendes zu bemerken: Ob ich nun gleich mit Herrn Baltzer glaube, il milione sei eine italienische Bildung, meine ich doch, dass die Franzosen sie zuerst als reines Zahlwort gebraucht haben. In der Arithmetique de Jean Trenchant, departie en trois liures. Ensemble un petit discours des changes, avec l'art de calculer aux Getons, wovon der erste Druck im J. 1557, eine neue Auflage 1610 erschienen ist, findet sich Seite 11: puis iusques à dix cens mile, qui sont un milion: puys iusques à dix cens millions, qui sont un miliart, und Seite 13: ainsi procedant de lieu en lieu, le precedent vers main gauche est tousiours decuple de son sequët: comme enseigne l'echelle de numeration, sçavoir est. Nöbre, dizeine, centeine, miliers, dizeine de miliers, centeine de miliers, milions, dizeine de milions, centeine de milions, miliars, dizeine de miliars, centeine de miliars, miliers de miliars; und Seite 15: Soit pour exemple, 579. 837. 420, qui s'exprime 579 milions, 837 mille, 420. Parlant qui sçait nombrer trois figures, c'est depuis les cens, il nombrera facilement tous nombres.

In L'Arithmetique de Jaques Peletier du Mans. Departie en quatre liures. Troisieme edition reuend et augmentee. Par Jean de Tournes M. DC. VII finde ich Seite 16: La forme est telle, 123 451 234 678 567 Le premier poinct est sous 7, qui se prend en sa simple et naturelle valeur: le second est sous 8 et est le siege de mil: le tiers est sous 4, et est le siege de Millions: le quart est sous 1 qui est le siege de Mille Millions: et le dernier sous 3, qui est le siege de Milliars: c'est a dire millions de millions..... Et partant, la figure prochaine vers la senestre (qui est au second lieu apres le poinct des Milliars) signifie dixaines

*) Bilion, Trilion, Quadrilion.

de Milliars et l'autre figure signifie centaines, aussi de Milliars. Hierdurch wird es deutlich, dass am Ende des 16. Jahrh. das Wort Million in Frankreich schon allgemein üblich gewesen; und dieser Gebrauch leuchtet noch heller hervor aus dem Satze des Pelletier, womit er die Anwendung des Wortes Milliart vertheidigt, Seite 19: Je n'eusse point usurpé ce mot de Milliart, n'eust été l'autorité de Budé au Traicté de la Liure et de ses parties: et me fusse contenté de demeurer aux Millions; wodurch er also aussagt, dass dies Wort schon allgemein bekannt war und also keiner Vertheidigung mehr bedurfte.

Im Jahre 1607 schlug Robbert Robbertz, ein Niederländischer Rechenmeister, öffentlich an, die Zahl

1 357 328 400 000 761 010 843 278 140 030 045 728 345 730 285 927 003 210 Holländisch auszusprechen. Er erhielt darüber folgenden Brief von Jacob van der Schnere, Rechenmeister zu Haarlem:

"Guter Freund Robbert Robbertz. Ihnen sei Seligkeit. Gestern am Mittage ist mir einer Ihrer gedruckten Zettel zugekommen mit der oben angegebenen Aufgabe, um diese Niederdeutsch auszusprechen, und wiewohl man solches früher niemals von mir verlangt hat, und ich auch niemals darüber gedacht habe [ob ich gleich ein echter Liebhaber der echten Niederdeutschen *) Sprache sei], so sah ich mich doch genöthigt, sie gut Niederdeutsch wiederzugeben, wie's hierunten folget. Ich hätte sie zwar mit tausendmal, tausendmal u. s. f. aussprechen können, aber das würde allen Niederdeutschen eine ganz zu finstre und schwindliche Sache gewesen sein.... Zu Haarlem in meiner Studirstube, als Phöbus fünfmal hinter Thetys mit ihrem Hunde versteckt gewesen, wieder der frohen Aurora folgend, uns das hellste Weltlicht angeboten hat mit einem hell leuchtenden Antlitze im Jahre 1607.

Ew. dienstfertiger Diener

J. van der Schuere."**)

Die Namen, welche er zum Benennen dieser Zahl einführt, sind:

**) In der Originalsprache ist der Brief folgender:

Goeden Vriendt Robbert Robbertsz, ulieden zy saligheydt. Gesteren middagh is my behandight een uwer ghedruckte Briefkens, met de bovengestelde opgave, om in Nederduyts uyt gesproken te hebben; Ende haewel my 't selve noyt te voren af-geeyseht is geweest: Ick oock noyt sulex overdacht hebbe (niet legenstaende ick een recht bemmder der rechte Neder-Duytsche sprake ben), too ben ick noch tansghedrongen geweest, 't selve in goed Neder-Duyts te beantwoorden, als hier volghet. Ick sonde det wel met duysentmael duysentmael duysent, etc. uytghesproken hebben, maer dat sonde voor al temoel de Nederduytschen, een alte malle duyster duyselinghe gheweest zyn.... t' Haerlem in myn overdenckplaets, als Phoebus vyfmael achter Thetis met synen hond gescholen hebbende, wederomme de blyde Aurora volgende, ons is gekomen 't lichtste W'ereldlicht voordragen met een kluerlachende aenschyn, in 't jaer 1607.

4*

^{*)} Niederdeutsch sagte man damals für Niederländisch.

U. lieden dienst willigen dienaer. C

erstes Glied tausend, zweites Glied tausend, drittes Glied tausend*) u. s. f., wo wir Million, Billion, Trillion u. s. w. aussprechen. Die aufgegebene Zahl lautet dann: Ein neuntes Glied tausend, drei hundert sieben und funfzig tausend drei hundert acht und zwanzig achtes Glied tausend, vier hundert tausend siebentes Glied tausend u. s. f.

In einem zweiten Briefe, welchen er den 21. December 1608 an denselbigen Robbert Robbertsz richtete, sagt er u. m.: "Ich meine nicht, dass Gott mir eine neue Zahlenbenennung offenbart hat, sondern dass Er mir's im Sinn hat kommen lassen, die Fremdwörter zu verdeutschen wie folgt:

million		erstes	Glied	tausend
bimillion oder billion	nenne ich	zweites	17	» .
trimillion oder trillion		drittes	17	"
quadrimillion oder quadrillion		viertes	"	1,
quintimillion oder quillion		fünftes	,,	,,
seximillion oder sexillion		sechstes	,.	17
septimillion oder septillion		siebentes	,,	"
octomillion oder octillion		achtes	"	,,
nonemillion oder nonillion		neuntes	,,	,,

und so weiter, wie gross eine Zahl auch sein möge."

In diesem Briefe spricht v. d. Schuere noch von den französischen Schriftstellern Jean Gentils, der 1554 in Paris, und Estienne de la Roche, der 1538 in Lyons Bücher herausgegeben hat, worin die Benennung der Zahlen ganz klar und deutlich wird angezeigt. — Diese Bücher sind mir weiter unbekannt; ich kann also keine Nachrichten geben, welcher Methode beim Aussprechen sie folgten.

Alle diese Schriftsteller sind älter als Girard, der seine Prolation erst im Jahre 1629 veröffentlichte. Wenn ich nun in Betrachtung nehme:

- a) dass Girard seine erste Schrift im Jahre 1626 herausgab;
- b) dass er immer französisch schrieb, oder in's Französische übersetzte;
- c) dass er anfängt in den Niederlanden bekannt zu werden um die Zeit, als die Hugenotten in Frankreich durch Richelieu um alle ihre Vorrechte gebracht wurden;
- dass er in seinen Schriften dann und wann seinen Hass wider einen gewissen Kardinal nicht verschweigen kann **);

dann schliesse ich daraus, dass Girard ein geborener Franzose ist, der wegen der Verfolgung in Frankreich nach den Niederlanden ausgewiesen ist und sich in Leyden hat niedergelassen. Aus seinem Vaterlande brachte er die Benennung grosser Zahlen mit nach Holland, wo sie jedoch aus französischen Büchern schon früher bekannt geworden und von einigen schon in Gebrauch gekommen waren. Wahrscheinlich hat er im Anfange

24

^{*)} Eerste lit duysent, tweede lit duysent, derde lit duysent, enz.

^{**)} S. u. m. auch: Oeuvres math, par S. Marolais. Reueue par Albert Girard. 1628.

die holländische Sprache nicht verstanden, und ist also fremd geblieben van der Schuere's Arbeit; er giebt in seiner Prolation die Methode, wie sie schon lange in Frankreich üblich war und sagt auch nirgendwo, dass es seine Methode sei; doch weil seine Werke, hauptsächlich seine Uebersetzung von Stevin, mehr verbreitet worden ist, als die Bücher anderer holländischer und französischer Rechenmeister, hat man ihm eine Ehre zuerkannt, die er, welch ein grosser Mathematiker er auch gewesen, sich doch hiermit nicht verdient hat.

Aardenburg, 10. Febr. 1868.

G. A. VORSTERMAN VAN OYEN, Lehver der Math. und Phys.

Bibliographie

vom 1. März bis 15. Juni 1868.

Periodische Schriften.

- Monatsbericht der Königl. Preuss. Akademie der Wissenschaften. 1868. No. 1. Berlin, Dümmler. pro compl. 2 Thlr.
- Sitzungsberichte der Königl. Bayer. Akademie der Wissenschaften. 1867, Band II, Heft 4 und 1868, Band I, Heft 1. München, Franz. à 16 Ngr
- Mittheilungen der naturforschenden Gesellschaft in Bern' aus d. J. 1867. Bern, Huber & Comp. 11/2 Thlr.
- Archiv der Mathematik und Physik, herausgeg. von J. A. GRUNERT. 48. Theil. 1. Heft. Greifswald, Koch. pro compl. 3 Thlr.

Reine Mathematik.

- Durege, H., Theorie der elliptischen Functionen. 2. Aufl. Leipzig, Teubner. 3 Thlr.
- Schlömilch, O., Handbuch der algebraischen Analysis. 4. Aufl. Jena, Frommann. 23 Thlr.
- SOHNCKE, L., Ueber den Zusammenhang hypergeometrischer Reihen mit höheren Differentialquotienten und vielfachen Integralen. Berlin, Calvary. 12 Ngr.

PRANGHOFER, J., Beiträge zu einer Abel'schen Gleichung und zu einem Satze von Parseval. (Akad.) Wien, Gerold. 3 Ngr.

CLASEN, B., Lehrbuch der elementaren Algebra. Luxemburg, Bück. 12 Ngr.

- BREMIKER, C., Logarithmisch-trigonometrische Tafeln mit 6 Decimalstellen. Neue Stereotypausgabe. 1. Lief. Berlin, Nicolai. 12½ Ngr.
- VEGA, G. v., Logarithmisch-trigonometrisches Handbuch. 51. Aufl. Berlin, Weidmann. 14 Thlr.

BURBACH, O., Grundriss der Planimetrie. Weimar, Böhlau. 1/3 Thlr.

FELD, A., und W. SERF, Leitfaden für den geometrischen Unterricht. Cöln, Schmitz. 12 Ngr. SPITZ, C., Lchrbuch der Stereometrie. 3. Aufl. Leipzig, Winter. 24 Ngr.

REIDT, F., Die Elemente der Mathematik. 3. Theil: Stereometrie. 4. Theil: Trigonometrie. Berlin, Grote'sche Verlagsh. à ½ Thlr.

Schell, A., Geometrischer Beweis des Lehmann'schen Satzes über die Lage des Standortes in Bezug auf das Fehlerdreieck. (Akad.) Wien, Gerold. 5 Ngr.

EXNER, K., Ueber die Maxima und Minima der Winkel, unter welchen Curven von Radien durchschnitten werden. (Akad.) Wien, Gérold. 3 Ngr.

KIESSLING, H., Huyghens de circuli magnitudine inventa; ein Beitrag zur Lehre vom Kreise. Flensburg, Herzbruch. 16 Ngr.

Angewandte Mathematik.

Mühll, K. v., Ueber ein Problem der Kartenprojection. Leipzig, Hinrichs. ½ Thlr.

PESCHKA, G., und E. KOUTNY, Freie Perspektive in ihrer Begründung und Anwendung. Hannover, Rümpler. 31/3 Thlr.

- REITZ, F. H., Theorie des Amsler'schen Planimeters. Hamburg, Grüning. 6 Ngr.
- Höltschl, J., Das Pothenot'sche Problem in theoretischer und praktischer Beziehung; nebst einem kurzen Anhang über das Hansen'sche Problem. Weimar, B. Fr. Voigt. ¾ Thlr.

FRISCHAUF, J., Theorie der Bewegung der Himmelskörper um die Sonne nebst deren Bahnbestimmung in elementarer Darstellung. Graz, Leuschner & Lubensky. 16 Ngr.

SPOERER, Beobachtungen von Sonnenflecken. No. III. Anclam, Dietze. ¹/₃ Thlr.

KEPLERI, J., Opera omnia, ed. Ch. Frisch. Vol. VII. Frankfurt a. M., Heyder & Zimmer. 5 Thlr.

Physik und Meteorologie.

- FRICK, J., Anfangsgründe der Naturlehre. 6. Aufl. Freiburg i. Br., Wagner. 27 Ngr.
- GREISS, C. B., Lehrbuch der Physik für Realschulen und Gymnasien. 2. Aufl. Wiesbaden, Kreidel. 1½ Thlr.
- Fortschritte der Physik im J. 1865. Dargestellt von der physikalischen Gesellschaft zu Berlin. Berlin, G. Reimer. 2% Thlr.

WACHSMUTH, A., Ueber die Ströme in Nebenschliessungen zusammengesetzter Ketten. (Akad.) Wien, Gerold. 2 Ngr.

MAGENER, A., Das Klima von Posen. Resultate der meteorologischen Beobachtungen zu Posen von 1848 bis 1865. Posen, Lissner. 1½ Thlr.

BRUHNS, C., Resultate aus den meteorologischen Beobachtungen im Königr. Sachsen. 1866. Leipzig, Günther. 2½ Thlr.

- Dove, H. W., Der Schweizer Föhn. Nachtrag zu "Eiszeit, Föhn und Scirocco". Berlin, D. Reimer. 6 Ngr.
- WILD, H., Ueber Föhn und Eiszeit. Rectoratsrede. Bern, Jent & Reinert. 8 Ngr.

26

EMSMANN, A. H., Physikalisches Handwörterbuch für Jedermann. 2 Bde. 2. Aufl. Leipzig, O. Wigand. 5½ Thlr.

Mathematisches Abhandlungsregister.

1867.

Erste Hälfte: 1. Januar bis 30. Juni.

Δ.

Analytische Geometrie der Ebene.

- 1. Note sur une transformation géométrique. Cayley. Crelle LXVII, 95. [Verg]. Bd. XII, Nro. 186.]
- 2. On tangential coordinates. Routh. Quart. Journ. math. VIII, 111.
- 3. Some formulae in trilinear coordinates. Walker. Quart. Journ. math. VIII, 154.
- 4. Die Gleichungen der regulären Vielecke und Zerlegung derselben in Gleichungen niederer Grade. Schoenborn. Grun. Archiv XLVI, 425.
- 5. On the geometry of the triangle. Griffiths. Quart. Journ. math. VIII, 50.
- 6. Ueber das aus den Medianen eines gegebenen Dreiecks gebildete Dreieck. Grunert. Grun. Archiv XLVI, 340.
- Investigation of the envelope of the straight line joining the feet of the perpendiculars let fall on the sides of a triangle from any position in the circumference of the circumscribed circle. Frerrers. Quart. Journ. math. VIII, 209.
 Vergl. Bipolarcoordinaten. Brennpunkte. Ellipse. Hyperbel. Kegelschnitte.
 - Kreis. Kreisliniencoordinaten. Lemniscaten. Normalen. Parabel.

Analytische Geometrie des Raumes.

- 8. Analytisch-geometrische Entwicklungen. Enneper. Zeitschr. Math. Phys. XII, 123. [Vergl. Bd X, Nro. 259.]
- 9. Ueber Strahlensysteme der ersten Ordnung und der ersten Klasse. O. Hermes. Crelle LXVII, 153.
- 10. Untersuchungen über Strahlenquadrupel. Hermes. Crelle LXVII, 279.
- 11. Sur certains paradoxes géométriques, qui s'expliquent par le dédoublement des équations données. Mathieu. N. ann. math. XXVI, 177.
- 12. On an integral expressing the range of conditioned variables. Monro. Quart. Journ. math. VIII, 278.
- Ueber die Curve, welche aus einem Ringe mit kreisförmigem Querschnitte durch eine Doppeltangentialebene ausgeschnitten wird. Eckardt. Zeitschr. Math. Phys. XII, 183.
- Sections planes de la surface de révolution engendrée par une ellipse de Cassini tournant autour de son axe non-focal. Arm. Levy. N. ann. math. XXVI, 73. Vergl. Determinanten in geometrischer Anwendung. Ellipsoid. Geodätische Linien. Normalen 134. Oberflächen. Oberflächen zweiter Ordnung.

Approximation.

15. Calcul approximatif de la racine carrée et de la racine cubique d'un nombre avec m chiffres exacts. Ruchonnet. N. ann math. XXVI, 84. Vergl. Kettenbrüche 109.

Astronomie.

16. On the lunar theory. Walton. Quart. Journ. math. VIII, 297.

Attraktion.

17. On an elementary proposition in attractions. Routh. Quart. Journ. VIII, 320. Vergl. Potential.

B.

Bessel'sche Funktionen.

Ueber die Entwicklung beliebig gegebener Funktionen nach Bessel'schen Funk-tionen. Neumann. Crelle LXVII, 310.

Bestimmte Integrale.

- A demonstration of Fourier's theorem. Walton. Quart. Journ. math. VIII, 136.
 Ueber einige Sätze aus der Theorie der θ-Funktionen. Enneper. Zeitschr. Math. Phys. XII, 79.
- 21. Ueber die Entwickelbarkeit des Quotienten zweier bestimmten Integrale. Schlaefli, Crelle LXVII, 183.
- 22. On the expansibility of a multiple integral. Schlaefli. Quart. Journ. math. V111, 370. Vergl. Analytische Geometrie des Raumes 42. Bessel'sche Funktionen. Gammafunktionen. Kettenbrüche 110. Ultraelliptische Transcendenten.

Bipolarcoordinaten.

23. Gleichung der magnetischen Curven. Zech. Zeitschr. Math. Phys. XII, 277.

Biquadratische Formen.

24. Zur Theorie der binären Formen vierten Grades. Clebsch. Crelle LXVII, 371.

Brennpunkte.

25. On the formulae which connect the foci of a conic subject to three conditions. Burnside, Quart. Journ. math. VIII, 31.

c.

· Combinatorik.

- 26. On partition and sums of powers of numbers. Scott. Quart. Journ. math. VIII, 21. [Vergl. Bd. XI, Nro. 243.]
- 27. On the problem of the fifteen schoolgirls. Power. Quart. Journ. math. VIII, 263.
- 28. Du chemin minimum d'un sommet d'un carré au sommet opposé par lignes brisées. Gayon. N. ann. math. XXVI, 182.
- 29. On nasik cubes. Frost. Quart. Journ. math. VIII, 74. Vergl. Wahrscheinlichkeitsrechnung.

Cubatur.

30. Sur les secteurs terminés d'une part par une surface conique et de l'autre par une surface quelconque. Kretkowski. N. ann. math. XXVI, 227.

Cubische Formen.

31. Ueber simultane binäre cubische Formen. Clebsch. Crelle LXVII, 360.

D.

Determinanten.

- 32. Darstellung symmetrischer Funktionen durch die Potenzsummen. H. Hankel. Crelle LXVII, 90.
- 33. Sull' uso dei determinanti per rappresentare la somma delle potenze intere dei numeri naturali. Siacci. Annali mat. VII, 19.
- 34. Notes on determinants. Horner. Quart. Journ. VIII, 157. Vergl. Elimination. Invarianteu.

Determinanten in geometrischer Anwendung.

- 35. Analytical metrics. Clifford. Quart. Journ. math. VIII, 16, 119. [Vergl. Bd. XI, Nro. 250.]
- 36. A consequence of Abr. Coyley's theory of skew determinants concerning the displacement of a rigid system of an even number of dimensions about a fixed origin. Schlaefli. Quart. Journ. math. VIII, 167.
- 37. Ueber die Steiner'sche Fläche. Clebsch. Crelle LXVII, 1.

28

- 38. Zur Theorie der windschiefen Flächen. Lüroth. Crelle LXVII, 130. 39. Ueber einige Identitäten. Hunyady. Zeitschr. Math. Phys. XII, 89.

Vergl. Sphärik 173.

Differentialgleichungen.

- 40. Ueber die Bedingungen der Integrabilität einiger Differentialgleichungen. Letnikow. Zeitschr. Math. Phys. XII, 223.
- 41. Zur Theorie der linearen Differentialgleichungen. Dienger. Grun. Archiv XLVI, 34.
- 42. On linear differential equations with particular integrals all of the same form. Steen, Quart, Journ. math. VIII, 228.
- 43. On linear differential equations of the third order. Cockle. Quart. Journ. math. VIII, 373. [Vergl. Bd. XI, Nr. 258.]
- 44. Zur Integration einer Differentialgleichung erster Ordnung mittelst Aufsteigen zu höherer (zweiter) Ordnung. Dienger. Grun. Archiv XLVI, 317.
- 45. Integration der Differentialgleichung $x \frac{d^n y}{dx^n} + \lambda \frac{d^{n-1} y}{dx^{n-1}} = \star \left(x \frac{dy}{dx} + \mu y\right)$, in

welcher λ , \varkappa und μ constante Zahlen bezeichnen. S. Spitzer. Grun. Archiv XLVI, 25.

- 46. Sur les équations simultanées homogènes. Catalan. Annali mat. VII, 66. Tortolini ibid. 70.
- 47. Solution of a partial differential equation. Schlaefli. Quart. Journ. math. VIII, 252. Vergl. Funktionen 57.

Differentialquotient.

On interpolation with reference to development and differentiation. S. Roberts. Quart. Journ. math. VIII, 52, 139. [Vergl. Bd. XI, Nro. 259.]

Drehungsmittelpunkt.

49. Sulle proprietà geometriche e dinamiche de' centri di percossa ne moti di rotazione. Chelini, Annali, mat. VII, 217.

Đ.

Elimination.

50. Solution of a problem of elimination. Cayley. Quart. Journ. math. VIII, 183.

Ellipse.

51. Construction des axes d'une ellipse donnée par deux diamètres conjugués. Trouillet. N. ann. math. XXVI, 181. Vergl. Quadratur 163.

Ellipsoid.

- 52. Construction der Intensitätslivien eines dreiaxigen Ellipsoids mit Benutzung einer Kugelscala. Koutny. Grun. Archiv XLVI, 49.
- 53. Eine stereometrische Schulaufgabe, welche zu einer leichten Inhaltsbestimmung eines Ellipsoides führt. Martus. Grun. Archiv XLVI, 419.

F.

Faktorenfolge.

54. Ueber die Entwicklung des Produktes $\Pi(x) = 1(1+x)(1+2x)\dots(1+(n-1)x)$. Schlaefli. Crelle LXVII, 179.

Funktionen.

- 55. Trouver la forme générale d'une fonction telle que φ(x + y). φ(x y) = [φ(x) + φ(y)]. [φ(x) φ(y)]. Roux. N. ann. math. XXVI, 74.
 56. Sur les fonctions périodiques. Laurent. N. ann. math. XXVI, 267.
- 57. Beweis der Formel $e^{xi} = \cos x + i \cdot \sin x$. K. L. Bauer. Grun. Archiv XLVI, 355.
- 58. Zerlegung des Productes von 4 Monomen ersten Grades in die algebraische Summe von 8 vierten Potenzen von Quatrinomen ersten Grades. Tardy. Grun. Archiv XLVI, 324.

Vergl. Bessel'sche Funktionen. Determinanten. Faktorenfolge. Gammafunktiouen. Homogene Funktionen. Invarianten. Kettenbrüche. Kugelfunktionen. Ultraelliptische Transcendenten.

.

G.

Gammafunktionen.

59. Ueber die Gammafunktionen $\Gamma\left(\frac{1}{z}\right)$, $\Gamma\left(\frac{2}{z}\right)$..., $\Gamma\left(\frac{z-1}{z}\right)$ und einen dieselben betreffenden Satz von Legendre. Stern. Crelle LXVII, 114.

Geodätische Linien.

60. Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette. Beltrami, An-nali mat. VII, 185.

Geometrie (descriptive).

61. Perspectivische Darstellung der ebenen Schnitte von Kegel- und Cylinder-flächen. Koutny. Zeitschr. Math. Phys. XII, 195. Vergl. Ellipsoid 52.

Geometrie (höhere).

- 62. Démonstration des relations plückeriennes. Zeuthen. N. ann. math. XXVI, 200.
- 63. Sull' inversione quadrica delle curve plane. Hirst. Annali mat. VII, 49. 64. Sur la diminution de la classe d'une courbe. Painvin. N. ann. math. XXVI, 113. 65. Mouvement d'une figure qui reste trujours semblable à une figure donnée. Dur and. N. ann. math. XXVI, 80.
- 66. Sur les courbes du troisième ordre. Sartiaux. N. ann. math. XXVI, 68.
- 67. Ueber die 9 Schnittpunkte zweier Curven dritten Grades. Geiser. Crelle LXVII, 78.
- Sur les dépendances mutuelles des tangentes doubles des courbes du quatrième degré. Steiner. H. ann. math. XXVI, 241.

Vergl. Kettenbrüche 107. Kreis 115.

Geschichte der Mathematik.

- 69. Le Messûhat de Mohammed ben Moussa al Khûrrzmi, Aristide Marre. Annali mat. VII, 269.
- 70. Abraham Judäus-Savasorda und Ibn Esra. Steinschneider. Zeitschr. Math. Phys. XII, 1.
- 71. Sur Petrus Adsigerius et les plus anciennes observations de la déclinaison de l'aiguille aimantée. Wenckebach. Annali mat. VII, 159.
- 72. Notice biographique sur Edmond Bour † 8 Murs 1866. N. ann. mulh. XXVI. 145. 73. Nekrolog von G. K. C. von Staudt † 1. Juni 1867. Borchardt. Crelle LXVII, 217.

Gleichungen.

- 74. Démonstration d'un théorème de M. Sylvester comprenant la règle de Newton sur le
- nombre des racines imaginaires. Genocchi. N. ann. math. XXVI, 5. 75. Théorèmes généraux sur les équations algébriques. Poulain. N. ann. math. XXVI, 21. Maffiotti ibid. 76, 78. [Vergl. Bd. XII, Nro. 283.] 76. Ueber die Zurlegung einer general actionale. Function in Falterer Part
- 76. Ueber die Zerlegung einer ganzen rationalen Funktion in Faktoren. Bretschneider. Grun. Archiv XLVI, 422.
- 77. Etant donnée une équation réciproque f(x) = 0 quelles sont les conditions néces-

saires et suffisantes pour que l'équation en y obtinue en posant $x + \frac{1}{2} = y$ soit

elle-même reciproque? Giard. N. ann. math. XXVI, 126.

- 78. Kennzeichen ob eine Gleichung dem numerischen Werthe nach gleiche, dem Vorzeichen nach entgegengesetzte Wurzeln besitze. Franz Müller. Grun. Archiv XLVI, 32.
- Limites des racines d'une équation de degré pair, dont les termes sont alternative-ment positifs et négatifs. Laisant. N. ann. math. XXVI, 34.
- 80. Limites des racines d'une équation de degré impair, dont les termes sont alterna-tivement positifs et négatifs. Laisant. N. ann. math. XXVI, 35.
- 81. Risoluzione di un problema relativo all'equazioni di lerzo grado. Tortolini. Annali mat. VII, 297.

- 82. Sur le cas irréductible de l'équation du troisième degré. Hermann. N. ann. math. XXV1, 270.
- 83. Recherches sur les équations du cinquième degré. M. Roberts. Annali mat. VII, 257.
- 81. Valeur de coefficient de la première puissance de l'inconnue dans une équation du cinquième degré exprimée par les racines de l'équation. Gayou. N. ann. math. XXVI, 37.
- 85. Sur l'ordre des conditions de la coexistence des équations algébriques à plusieurs variables. S. Roberts. Crelle LXVII, 266. [Vergl. Bd. XII, Nro. 242.]

H.

Homogene Funktionen.

- 86. Ueber einen besonderen Fall der orthogonalen Substitutionen. Stern. Crelle LXVII, 293.
 - Determinanten. Inva-Vergl. Biquadratische Formen. Cubische Formen. rianten.

Homographie.

87. Nouvelle théorie du déplacement continu d'un corps solide. Picart. N. ann. math. XXVI, 158.

Hydrodynamik.

- 88. Sur l'équilibre des fluides. Moutier. N. ann. math. XXVI, 216.
- 89. On metacentre in a liquid of variable density. Besant. Quart. Journ. math. VIII, 75.

Hyperbel.

90. Ueber eine Eigenschaft der Hyperbel. Thiel. Grun. Archiv XLVI, 45. 91. Ueber einen Satz von der Hyperbel. Grunert. Grun. Archiv XLVI, 337. Enveloppe des polaires de lous les points d'une parabole par rapport à un cercle ayant pour centre le sommet de la parabole. Nouaux. N. ann. math. XXVI, 38. — De Grossouvre ibid. 40.

Vergl. Normalen 133.

Hypergeometrische Reihe.

Vergl. Kettenbrüche 108.

I.

Imagināres.

Vergl. Funktionen 57. Gleichungen 74, 75.

Invarianten.

93. Deyli invarianti e covariante delle forme binarie ed in particolare di quelle di 3⁰ e 4º grado. Siacci. Annali mat. VII, 70.

ĸ.

Kegelschnitte.

- 94. On the foci, axes and asymptotes of conics referred to trilinear coordinates. Jeffery. Quart. Journ. math. VIII, 348.
- 95. Demonstration de quelques théorèmes par la transformation polaire. Picquet. N. ann. math. XXVI, 89.
- 96. Theorems relating to the group of conics passing through four given points. Fer-rers. Quart. Journ. math. V111, 259.
- 97. On the conics which pass through two given points and touch two given lines. Cayley. Quart. Journ. math. VIII. 211.
- 98. Theorem relating to the four conics which touch the same two lines and pass through the same four points. Cayley. Quart. Journ. math. VIII, 162.
- 99. On the conics which touch three given lines and pass through a given point. Cayley. Quart. Journ, math. VIII. 220.
- 100. On some special forms of conics. Taylor. Quart. Journ. math. VIII, 126, 343. 101. On some special forms of conics. Salmon. Quart. Journ. math. VIII, 235.
- 102. Bemerkung hinsichtlich der Priorität einiger Sätze über confocale Kegelschnitte. Lommel. Zeitschr. Math. Phys. XII, 276.

103. On a locus in relation to the triangle. Cayley. Quart. Journ. math. VIII, 264. 104. Lieu géométrique engendré au moyen de deux coniques homofocales. Bertrand.

N. ann. math. XXV1, 278. 105. On a locus derived from two conics. Cayley. Quart. Journ. math. VIII, 77.

106. Elementar-geometrischer Beweis des Satzes: die Kegelschnitte werden von den in den Kegel gelegten Kugeln in ihren Brennpunkten berührt. Fresenius. Grun. Archiv XLVI, 321.

Vergl. Brennpunkte. Ellipse. Hyperbel. Kreis. Normalen. Parabel.

Kettenbrüche.

- 107. Geometrische Deutung der Kettenbrüche. Lieblein. Zeitschr. Math. Phys. XII, 185.
- 108. Ueber die Kettenbruchentwicklung des Gauss'schen Quotienten $F(\alpha, \beta + 1, \gamma + 1, x)$. Thomé. Crelle LXVII, 299.

 $F(\alpha, \beta, \gamma, x)$

109. Verwandlung der irrationalen Grösse V in einen Kettenbruch. Seeling. Grun. Archiv XLVI, 80.

Grun. Archiv ALVI, ou. 110. Ueber den Kettenbruch, in welchen sich $\int_{-\pi}^{\beta} f(z) \frac{dz}{x-z}$ verwandeln lässt.

Heine. Crelle LXVII, 315.

Kreis.

- 111. Theorem concerning six points on a circle. Griffiths. Quart. Journ. math. VIII, 341.
- 112. On the nine-point circle. Griffiths. Quart. Journ. math. VIII, 15. 113: Geometrical theorems concerning circles. Walker. Quart. Journ. math. VIII, 47.
- 114. Théorème ayant lieu lors de la transformation de deux cercles en deux autres par rayons vecteurs réciproques. Vaison. N. ann. math. XXVI, 184.
- 115. Investigations in connexion with Casey's equation of a pair of circles touching each of three given circles. Cayley. Quart. Journ. math. VIII, 334. Vergl. Rectification 166.

Kreislinien - Coordinaten.

116. Grundzüge eines Kreislinien-Coordinaten Systems. Gyurkovich. Zeitschr. Math. Phys. XII, 265. [Vergl. Bd. XII, Nro. 302.)

Kreistheilung.

Vergl. Zahlentheorie 191.

Krümmung.

- 117. On formulae of curvature in terms of trilinear coordinates. Walton. Quart. Journ. math. VIII, 39.
- 118. Relation entre les rayons de courbure d'une courbe et de sa polaire réciproque. Chemin. N. ann. math. XXVI, 49. [Vergl. Bd. XII, Nro. 49.]
- 119. Sur les centres de courbure de deux courbes se déduisant géométriquement l'une de l'autre. Le maître. N. ann. math. XXVI, 283.

Vergl. Oberflächen 139, 140.

Kugelfunktionen.

120. Kurzer Abriss einer Theorie der Kugelfunktionen und Ultrakugelfunktionen. Neumann. Zeitschr. Math. Phys. XII, 97.

L.

Lemniscate.

121. Ueber lemniscatische Coordinaten. Lommel Zeitschr. Math. Phys. XII, 45. Vergl. Mechanik 130.

M.

Maxima und Minima.

122. Elementarer Beweis des Satzes, dass das Minimum der Ablenkung beim Prisma eintritt, wenn Eintritts- und Austrittswinkel des Lichtstrahles gleich gross sind. Kahl. Zeitschr. Math. Phys. XII, 176. Vergl. Combinatorik 28. Oberfläche 135.

Mechanik.

- 123. Neue analytische Entwicklung der allgemeinsten Gesetze der Statik. Grunert. Grun. Archiv XLVI, 152.
- 124. Der Mittelpunkt oder das Centrum beliebig vieler auf beliebige Weise in einer und derselben Ebene wirkender Kräfte. Grunert. Grun. Archiv XLVI, 276.
- 125. On the equilibrium of a spherical envelope. Maxwell. Quart. Journ. math. VIII, 325.
- 126. On tension. Besant. Quart. Journ. math. VIII, 35.
- 127. On the composition of infinitesimal rotations. Cayley. Quart. Journ. math. VIII, 7.
- 128. Ueber das Problem der Rotation eines festen Körpers. Zajackowski, Grun. Archiv XLVI, 19.
- 129. Wurfbewegung im widerstehenden Mittel und Construction der Flugbahn. Nell. Grun. Archiv XLVI, 361.
- 130. Moto di un punto materiale lungo un arco della lemniscata Bernoulliana. Azzarelli. Annali mat. VII, 284.
- 131. Mouvements relatifs à la surface de la terre. Page. N. ann. math. XXVI, 97. Vergl. Attraktion. Drehungsmittelpunkt. Hydrodynamik. Optik. Potential. Schwerpunkt. Wärmelehre.

Methode der kleinsten Quadrate.

132. Ueber den mittleren Fehler der Resultate aus trigonometrischen Messungen. Boersch. Grun. Archiv XLVI, 40.

N.

Normalen.

- 133. Normales communes à une parabole et à une hyperbole équilatère données. Choron. N. ann. math. XXVI, 252. — Gérono ibid. 258.
- 134. On normals to conics and quadrics. Purser. Quart. Journ. math. VIII, 66.

0.

Oberflächen.

- 135. Ueber einige allgemeine Eigenschaften der Minimumsflächen. Christoffel. Crelle LXVII, 218.
- 136. Risoluzione di un problema relativo alla teoria delle superficie gobbe. Beltrami. Annali mat. VII, 139.
- Annali mai. VII, 139.
 137. Sopra alcuni punti della teoria delle superficie applicabili. Ulisse Dini. Annali mat. VII, 25. [Vergl. Bd. XI, Nro. 158.]
 138. Sulla flessione delle superficie rigate. Beltrami. Annali mat. VII, 105.
 139. Sulle superficie nelle quali la somma dei due raggi di curvatura principale è costante. Ulise Dini. Annali mat. VII, 5.
 140. Sulle superficie gobbe nelle quali uno dei due raggi di curvatura principale è una funzione dell'altro. Ulisse Dini. Annali mat. VII, 205.
 141. Ucher dia caradiniaron Flüchen Ginften Grades. H. Schwarz, Crelle

- 141. Ueber die geradlinigen Flächen fünften Grades. H. Schwarz, Crelle LXVII, 23.

Vergl. Cubatur. Determinanten in geometrischer Anwendung 37, 38. Geometrie (descriptive). Quadratur 164. Variationsrechnung.

Oberflächen 2ter Ordnung.

- 142. Sur les surfaces gauches du second degré. Durrande. N. ann. math. XXVI, 168, 207.
- 143. On a theorem in quadrics. Purser. Quart. Journ. math. VIII, 149. Google

- 144. On the number of surfaces of the second degree which can be described to satisfy nine conditions. Salmon. Quart. Journ. math. VIII, 1.
- 145. Sur les tétraèdres conjugués à une surface du second ordre. Maffiotti. N. ann. math. XXVI, 219.
- 146. On a property of the director spheres of a system of quadrics touching a common system of planes. Townsend. Quart. Journ. math. VIII, 10. Vergl. Ellipsoid. Normalen 134.

Operationscalcul.

- 147. On certain transformations in the calculus of operations. Walton. Quart. Journ. math. VIII, 222.
- 148. On the sums of the reciprocals, of their products and powers. Worontzof. Quart. Journ. math. VIII, 185, 310.
- 149. On the properties of the \varDelta^m oⁿ class of numbers and others analogous to them as investigated by means of representative notation. Blissard, Quart. Journ. math. VIII, 85. Optik.
- 150. Theorie des Anorthoskops und der anorthoskopischen Figuren. Fr. Weber. Zeitschr. Math. Phys. XII, 133. Vergl. Maxima und Minima.

P.

Parabel.

- 151. Inscrire dans une parabole un triangle dont un sommet soit donné, et qui soit semblable à un triangle donné. Laisant. N. ann. math. XXVI, 124.
- 152, Sur le roulement d'une parabole sur une autre. Lemaitre, N. ann. math. XXVI, 136.

Vergl. Hyperbel 92. Normalen 133.

Planimetrie.

- 153. Critical examination of Euclid's first principled compared to those of modern geometry, ancient and modern analysis. Wolff. Quart. Journ. math. VIII, 301. [Vergl. Bd. XI, Nro. 371.]
- 154. Zur geometrischen Construction der vierten und der mittleren Proportionale. Weihrauch. Grun. Archiv XLVI, 336.
- 155. Auf das Entfernungsorts-Dreieck Bezügliches. Emsmann. Grun. Archiv XLVI, 121.
- 156. Zur Construction von Dreiecken mit Benutzung der Eigenthümlichkeiten des Entfernungsortsdreiecks. Emsmann. Grun. Archiv XLVI, 147.
- 157. Ueber das Verhältniss in welchem sich drei durch einen Punkt gehende Transversalen eines Dreiecks schneiden. v. Behr. Grun. Archiv XLVI, 331.
- 158. Die Höhendurchschnittspunkte der vier Dreiecke, die ein vollständiges Viereck darbietet, liegen in einer geraden Linie. C. Schmidt. Grun Archiv XLVI, 328. — v. Behr ibid. 330. — Stammer ibid. 331.
- 159. Tout quadrilatère dans les diagonales sont entre elles comme les sommes des produits des côtés, qui comprennent ces diagonales, est inscriptible. D'Amoux & Caffarelli. N. ann. math. XXVI, 186. 160. Ueber das vierte Porisma von Fermat. Ofterdinger. Grun. Archiv XLVI, 1.
- Nagel ibid. 11.

Vergl. Zahlentheorie 190.

Potential.

161. Sull' attrazione di un cilindro omogeneo retto elissoidale. Riemann. Annali mat. VII, 281. Vergl. Attraktion.

Q.

Quadratur.

- 162. Ueber die Berechnung des Flächeninhaltes geradliniger Figuren durch Tra-peze. Grunert. Grun. Archiv XLVI, 335.
- 163. Lösung zweier Aufgaben über Berechnung der Flächeninhalte verschiedentlich bestimmter Ellipsen. Matzka. Grun. Archiv XLVI, 300.
- 164. Sulla quadratura di alcune superficie risultanti dalla intersezione di citindri. Lanciani. Annali mat VII, 169. Digitized by GOOGIC

R.

Rectification.

165. Sugli archi di cicloide. Tortolini. Annali mat. VII, 211.
166. Zur elementaren Berechnung des Kreisumfangs. Grunert. Grun. Archiv XLVI, 345.

Reihen.

- 167. Sur une règle de convergence des séries. Genocchi. N. ann. math. XXVI, 261.
 168. Summirung einer nach Cosinussen vom Vielfachen eines Winkels fortschreitenden Reihe. Curtze. Grun. Archiv XLVI, 857
- tenden Reihe. Curtze. Grun. Archiv XLVI, 357. 169. Sum of a series of particular form. Ellis. Quart. Journ. math. VIII, 256.
- 170. Summirung der Quadrate von aufeinanderfolgenden Dreieckszahlen. Grunert. Grun. Archiv XLVI, 327.
- 171. Ueber die Summe von Kubikzahlen, deren Wurzeln in arithmetischer Progression stehen. Grunert. Grun. Archiv XLV1, 326. Vergl. Kettenbrüche 108.

S.

Schwerpunkt.

172. Ueber den Krümmungeschwerpunkt algebraischer Curven. Neumann. Zeitschr. Math. Phys. XII, 172.

Sphärik.

- 173. Ueber die Auflösung des sphärischen Dreiecks, wenn die drei Höhen desselben gezeben sind. Hunyady. Zeitschr. Math. Phys. XII, 91. [Vergl. Bd. XII, Nro. 145.]
- 174. On the spherical ellipse referred to trilinear coordinates. Jeffery. Quart. Journ. math. VIII, 283. Vergl. Mechanik 125.

Stereometrie.

175. Ueber die regelmässigen Sternvielflache. Wiener. Zeitschr. Math. Phys. XII, 174.

Vergl. Ellipsoid 53. Kegelschnitte 106.

т.

Tetraeder.

176. Die Transversalen des Tetraeders und Sätze über die Transversalen im Viereck. Stammer. Grun. Archiv XLVI, 333. Vergl. Oberflächen zweiter Ordnung 145.

Trigonometrie.

- 177. Goniometrischer Beweis einiger Gleichungen zwischen den Sinussen und Cosinussen gewisser Winkel. Thiel. Grun. Archiv XLVI, 134.
- 178. Beweis der Gleichung 16 sin 20°. sin 40°, sin 60°. sin 80° = 3. Lindman. Grun. Archiv XLVI, 143. — Meyer ibid. 359.
 170. 4
- 179. A new construction for the difference of two angles of a plane triangle. Walker. Quart. Journ math. VIII, 323.
- Propriété du quadrilatère circonscriptible a deux cercles. Dostor. N. ann. math. XXVI, 57.
- 181. Bestimmung des kürzesten Abstandes zweier im Raume gelegener nicht paralleler Geraden, Bretschneider. Grun. Archiv XLVI, 501.

Ultraelliptische Transcendenten.

- 182. Ueber die Transformation des zweiten Grades für die Abel'schen Funktionen erster Ordnung. Königsberger. Crelle LXVII, 58.
- 183 Ueber die Transformation dritten Grades und die zugehörigen Modulargleichungen der Abel'schen Funktionen erster Ordnung. Königsberger. Crelle LXVII, 97.

v.

Variationsrechnung.

184. Ueber ein Princip der Abbildung der Theile einer krummen Oberfläche auf einer Ebene. H. Weber. Crelle LXVII, 229.

w.

Wärmelehre.

185. Ueber das Integral $\int \frac{dQ}{T}$ gegen Prof. Clausius. Bauschinger. Zeitschr. Math. Phys. XII, 180. [Vergl. Bd. XII, Nro. 388.]

Wahrscheinlichkeitsrechnung.

186. Ueber das Rouge et noir und den Vortheil der Bank bei diesem Spiele. Oettinger. Crelle LXVII, 327.

Z.

Zahlentheorie.

- 187. Intorno ad alcune somme di cubi. Genocchi. Annali mat. VII, 151.
- 188. Summe von Kubikzahlen. Catalan. Zeitschr. Math. Phys. XII, 170. N. ann. math. XXVI, 63, 276.
- 189. Zur Theorie der complexen Zahlen. Bachmann. Crelle LXVII, 200.
- 190. Dreiecke, in welchen a, b, c, r, Q und F rationale Zahlen sind. Ligowski. Grun. Archiv XLVI, 503. [Vergl. Bd. XII, Nro. 398.]

191. Ueber die Funktionen Y und Z, welche der Gleichung $\frac{4(x^p-1)}{x-1} = Y^2 \mp p Z^2$

Genüge leisten, wo p eine Primzahl der Form $4k \pm 1$ ist. v. Staudt. Crelle LXVII, 205.

Zinszinsrechnung.

192. Ueber ein Problem der Forstwissenschaft. Clebsch. Crelle LXVII, 248.

Zur Abwehr.

Herr Prof. Bettrami hat bei Gelegenheit einer dem Reale Istituto Lombardo am 7. Mai d. J. gemachten Mittheilung über Raumcurven 8. O. an meiner im verflossenen Jahre in dieser Zeitschrift und zugleich als Separatabdruck veröffentlichten "Einleitung in die Theorie der cubischen Kegelschnitte" verschiedene Fehler und Ungenauigkeiten gerügt und dieselbe als ein Plagiat aus Cremona's Arbeiten hingestellt. Um diese Beschuldigung zurückzuweisen, wird es, wie ich glaube, genügen, folgende im Eingang meiner Arbeit, worin die von mir benutzten Quellen, insbesondere auch die Abhandlungen Cremona's in den Annali genau angegeben sind, befindliche Worte anzuführen: "Mit Rücksicht darauf, dass einerseits synthetische Betrachtungen nicht Jedermann angenehm sind und anderseits die analytische Behandlung Cre-

"Mit Rücksicht darauf, dass einerseits synthetische Betrachtungen nicht Jedermann angenehm sind und anderseits die analytische Behandlung Cremona's ausserhalb seines Vaterlandes weniger bekannt sein mag, dürfte vielleicht nachfolgende Zusammenstellung der hauptsächlichsten Eigenthümlichkeiten der Raumcurven 3. O. nicht unerwünscht sein",

woraus doch deutlich hervorgeht, dass ich meine Arbeit nur als eine zusammenhängende Darstellung von schon Bekanntem in zum bequemen Studium geordneter Weise angesehen wissen wollte. Ob ich mich durch eine derartige Benutzung von fremden Arbeiten eines Plagiats schuldig gemacht habe, überlasse ich dem Urtheile des mathematischen Publikums.

Was die von Herrn Bettrami bemerkten Fehler betrifft, so bin ich Demselben für ihren Nachweis sehr zu Dank verpflichtet und werde die Verbesserungen derselben demnächst zugleich mit einem genauen Quellen- und Literaturnachweis, nm allen Missdeutungen zu entgehen, veröffentlichen.

Marburg am 9. Juni 1868.

C. A. von Drach. Digitized by GOOGLE

36

2.

Sir W. R. Hamilton hat im Jahre 1834 die weitere Bemerkung hinzugefügt, dass die Differentialgleichungen B) die Bedingung dafür enthalten, dass die Variation des Integrals

$$u = \int (T+U) dt$$

verschwindet; dass man also umgekehrt aus der Gleichung

 $\delta \int (T+U) \, dt = 0$

die mechanischen Differentialgleichungen abzuleiten im Stande ist. Vorausgesetzt wird dabei, dass man nur solche Variationen der Coordinaten berücksichtigt, welche nebst ihren verschiedenen Differentialquotienten an den Integrationsgrenzen verschwinden. Auf die Bedeutung dieser Voraussetzung braucht man zunächst nicht weiter einzugehen, da sie, wie aus dem Folgenden erhellt, nur einen formalen Sinn hat. Es sollen einfach bei Bildung der Variation des Integrals diejenigen Glieder, die mit den an den Grenzen stattfindenden Werthen der Variationen und ihrer Differentialquotienten multiplicirt sind, ausser Rechnung bleiben. Neumann bezeichnet desshalb die Grösse δu als innere Variation.

Die Variation eines Integrals von der Form

$$u = F(x x' x'' \dots y y' y'' \dots z z' z'' \dots) dt,$$

wo zur Abkürzung $x' = \frac{dx}{dt}$, $x'' = \frac{d^2x}{dt^2}$ etc. geschrieben ist, drückt die Aenderung aus, welche das Integral erfährt, wenn man die von t abhängigen Variabeln x um δx , y um δy , z um δz , folglich x' um $\delta x'$ $\left(d. h. \frac{dx}{dt} \text{ um } \frac{d\delta x}{dt}\right)$ u. s. w. wachsen lässt. Hier bedeuten die Incremente δx , δy , δz ganz beliebige Functionen der unabhängigen Integrationsvariabeln t und führen den Namen von Variationen, sofern sie als beliebig klein betrachtet werden, damit die höheren Potenzen in der Taylorschen Entwickelung ohne Einfluss bleiben. Man pflegt daher eine solche variirte Function $\xi = x + \delta x = \varphi t$ eine Nachbarfunction der Function x = f tzu nennen, und kann dieselben unter dem Bilde zweier Nachbarcurven sich vorstellen, bei denen den Abcissen t die resp. Ordinaten ξ und x, deren Differenz δx jeden Grad der Kleinheit erreichen darf, zugehören. Das Verschwinden der Ordinatendifferenzen δx an den Integrationsgrenzen würde alsdann anzeigen, dass die Nachbarcurven sich in den Punkten schneiden (oder berühren) müssen, welche die Grenzwerthe von t zu Abscissen haben.

Nach dem Taylor'schen Lehrsatze folgt mit Weglassung der höheren Potenzen der Variationen

$$\delta u = \int \Sigma \left(\frac{\partial F}{\partial x} \, \delta x + \frac{\partial F}{\partial x'} \, \delta x' + \frac{\partial F}{\partial x''} \, \delta x'' \dots \right) dt,$$
Digitize $\delta u = \int \Sigma \left(\frac{\partial F}{\partial x} \, \delta x + \frac{\partial F}{\partial x''} \, \delta x'' \dots \right) dt,$

wo sich das Summationszeichen auf die verschiedenen Variationen oder Coordinaten bezieht. Man erhält leicht durch partielle Integration

$$\int \frac{\partial F}{\partial x'} \frac{d\delta x}{dt} dt = \frac{\partial F}{\partial x'} \delta x - \int \delta x \frac{d}{dt} \frac{\partial F}{\partial x'} dt.$$

Da aber in Gemässheit der oben gemachten Voraussetzung δx an den Integrationsgrenzen verschwindet, so wird

$$\int \frac{\partial F}{\partial x'} \, \delta x' \, dt = -\int \delta x \, \frac{d}{dt} \, \frac{\partial F}{\partial x'} \, dt$$

In derselben Weise folgt durch wiederholte partielle Integration

$$\int \frac{\partial F}{\partial x''} \, \delta x'' \, dt = \frac{\partial F}{\partial x''} \, \delta x' - \int \delta x' \frac{d}{dt} \frac{\partial F}{\partial x''} \, dt$$
$$= \frac{\partial F}{\partial x'} \, \delta x' - \frac{d}{dt} \frac{\partial F}{\partial x''} \, \delta x + \int \delta x \left(\frac{d}{dt}\right)^{2} \frac{\partial F}{\partial x''} \, dt,$$

wo wiederum die vor das Integralzeichen getretenen in δx und $\delta x'$ multiplicirten Glieder verschwinden. Folglich ist

$$\int \frac{\partial F}{\partial x''} \, \delta x'' \, dt = + \int \delta x \, \left(\frac{d}{dt}\right)^* \, \frac{\partial F}{\partial x''} \, dt,$$

und weiter

$$\int \frac{\partial F}{\partial x''} \, \delta x''' \, dt = -\int \frac{\delta x}{\partial t} \left(\frac{d}{dt} \right)^3 \frac{\partial F}{\partial x''} \, dt,$$

allgemein:

$$\int \frac{\partial F}{\partial x^{(n)}} \, \delta x^{(n)} \, dt = (-1)^n \int \delta x \left(\frac{d}{dt}\right)^n \frac{\partial F}{\partial x^{(n)}} \, dt.$$

Hiernach ergibt sich

$$\delta u = \int \Sigma \left\{ \frac{\partial F}{\partial x} - \frac{d}{dt} \frac{\partial F}{\partial x'} + \left(\frac{d}{dt} \right)^2 \frac{\partial F}{\partial x''} - \left(\frac{d}{dt} \right)^2 \frac{\partial F}{\partial x'''} \pm \dots \right\} \delta x \, dt.$$
3.

Wenn der gefundene Integralausdruck für ganz beliebige Nachbarcurven (beliebiger Abhängigkeit der Variationen δx , δy , δz von t entsprechend) verschwinden soll, so müssen die Coefficienten der einzelnen Variationen unter dem Integralzeichen Null werden; mit anderen Worten. es müssen die Differentialgleichungen

$$0 = \frac{\partial F}{\partial x} - \frac{d}{dt} \frac{\partial F}{\partial x'} + \left(\frac{d}{dt}\right)^{2} \frac{\partial F}{\partial x'} - \left(\frac{d}{dt}\right)^{4} \frac{\partial F}{\partial x''} \pm \dots$$

$$0 = \frac{\partial F}{\partial y} - \frac{d}{dt} \frac{\partial F}{\partial y'} + \left(\frac{d}{dt}\right)^{2} \frac{\partial F}{\partial y''} - \left(\frac{d}{dt}\right)^{3} \frac{\partial F}{\partial y''} \pm \dots$$

$$0 = \frac{\partial F}{\partial z} - \frac{d}{dt} \frac{\partial F}{\partial z'} + \left(\frac{d}{dt}\right)^{2} \frac{\partial F}{\partial z''} - \left(\frac{d}{dt}\right)^{4} \frac{\partial F}{\partial z'''} \pm \dots$$

erfüllt sein. Denn wären ein oder einige solche Coefficienten von Null verschieden, also der Coefficient von δx etwa gleich ψt , so könnte man z. B. $\delta x = \varepsilon \psi t$, $\delta y = \delta z = 0$ setzen und würde damit

$$\delta u = \epsilon \int \psi \psi dt$$

erhalten, d. i. wegen des positiven Quadrates jedenfalls gegen die Voraussetzung von Null verschieden. Der von t unabhängige Factor ε ist hinzugefügt worden, um durch beliebige Kleinheit desselben die hinreichende Abnahme der Variation δx herbeizuführen.

Die Gleichungen C) führen den Namen der isoperimetrischen Differentialgleichungen und besitzen die Eigenschaft, ganz abgesehen von der speciellen Beschaffenheit der Function F eine Integration zuzulassen.

Bildet man nämlich die Summe

$$S = \Sigma x' \left\{ \frac{\partial F}{\partial x} - \frac{d}{dt} \frac{\partial F}{\partial x'} + \left(\frac{d}{dt} \right)^2 \frac{\partial F}{\partial x''} + \cdots \right\}$$

und vergleicht damit den Werth des vollständigen Differentialquotienten

$$\frac{dF}{dt} = \mathcal{E} \left\{ x' \frac{\partial F}{\partial x} + x'' \frac{\partial F}{\partial x'} + x''' \frac{\partial F}{\partial x''} \dots \right\},$$

so wird

$$\frac{dF}{dt} - S = \Sigma \left\{ \left(x'' \frac{\partial F}{\partial x'} + x' \frac{d}{dt} \frac{\partial F}{\partial x'} \right) + \left(x''' \frac{\partial F}{\partial x''} - x' \left(\frac{d}{dt} \right)^* \frac{\partial F}{\partial x''} \right) + \left(x^{IV} \frac{\partial F}{\partial x'''} + x' \left(\frac{d}{dt} \right)^* \frac{\partial F}{\partial x'''} \right) \dots \right\} \\ = \frac{d}{dt} \Sigma \left\{ x' \frac{\partial F}{\partial x'} + \left(x'' \frac{\partial F}{\partial x''} - x' \frac{d}{dt} \frac{\partial F}{\partial x'''} \right) + \left(x''' \frac{\partial F}{\partial x'''} - x'' \frac{d}{dt} \frac{\partial F}{\partial x'''} + x' \left(\frac{d}{dt} \right)^* \frac{\partial F}{\partial x'''} \right) \dots \right\}$$

Da aber S vermöge der isoperimetrischen Differentialgleichungen verschwindet, so erhält man die zugehörige Integralgleichung

$$F + Const = \Phi$$
,

$$\Phi = \Sigma \left\{ x' \frac{\partial F}{\partial x'} + \left(x'' \frac{\partial F}{\partial x''} - x' \frac{d}{dt} \frac{\partial F}{\partial x''} \right) + \left(x''' \frac{\partial F}{\partial x'''} - x'' \frac{d}{dt} \frac{\partial F}{\partial x'''} + x' \left(\frac{d}{dt} \right)^{*} \frac{\partial F}{\partial x'''} \right) \dots \right\} D$$

gesetzt wird.

Es ist nunmehr leicht, die Bedingung $\delta u = 0$ für $u = \int (T+U) dt$ auf das Stattfinden der mechanischen Differentialgleichungen zu reduciren. Man hat dazu in C) statt F nur T+U zu substituiren. Da aber T nur die ersten Differentialquotienten der Coordinaten, die Kräftefuuction U dagegen als Function von r nur die Coordinaten selbst (ohne deren Differentialquotienten) enthält, so folgt ohne Weiteres

$$0 = \frac{\partial U}{\partial x} - \frac{d}{dt} \frac{\partial T}{\partial x'}$$

oder

$$\frac{\partial U}{\partial x} = \frac{d}{dt} m x' = m \frac{d^2 x}{dt^2}$$

und analog für die übrigen Coordinaten.

Da in unserem die Anziehung zweier Punkte betreffenden Falle $U = \frac{m m_1}{r}$, so erhält man, wie bereits bemerkt,

$$\frac{\partial U}{\partial x} = \frac{\partial U}{\partial r} \frac{\partial r}{\partial x} = -\frac{m m_1}{r^2} \frac{x - x_1}{r} = R \cos \alpha,$$

$$\frac{\partial U}{\partial y} = \frac{\partial U}{\partial r} \frac{\partial r}{\partial y} = -\frac{m m_1}{r^2} \frac{y - y_1}{r} = R \cos \beta,$$

$$\frac{\partial U}{\partial z} = \frac{\partial U}{\partial r} \frac{\partial r}{\partial z} = -\frac{m m_1}{r^2} \frac{z - z_1}{r} = R \cos \gamma;$$

mithin die dem Newton'schen Attractionsgesetze entsprechende Kraft

$$E \qquad \qquad R = \frac{m m_1}{r^2} = - \frac{d U}{dr} ,$$

welche auf den Punkt m = (x, y, z) in der durch die Winkel α, β, γ gegebenen Richtung wirkt. Aus den Gleichungen

$$\cos \alpha = \frac{x_1 - x}{r}, \ \cos \beta = \frac{y_1 - y}{r}, \ \cos \gamma = \frac{z_1 - z}{r}$$

folgt, dass diese Richtung in der Verbindungslinie r durch die Anziehung nach m_1 bestimmt ist.

Das allgemeine Integral $\Phi = F + h$ geht jetzt über in

$$T + U + h = \Sigma x' \frac{\partial T}{\partial x'} = 2 T$$

oder

und liefert demnach den Satz von der lebendigen Kraft.

4.

Prof. Neumann hat sich die Frage gestellt, welche Form der Kräftefunction U gegeben werden müsse, um auf dem nämlichen Wege, der uns jetzt von der Kräftefunction U zu der Newton'schen Kraft R geführt hat, aus dem in der Gleichung $\delta \int (T+U) dt = 0$ enthaltenen Hamilton'schen Principe das Weber'sche Fundamentalgesetz der Elektrodynamik, mit anderen Worten, den Ausdruck

F)
$$R = \frac{mm_1}{r^2} \left\{ 1 - \frac{1}{c^2} \left(\frac{dr}{dt} \right)^2 + \frac{2r}{c^2} \frac{d^2r}{dt^2} \right\}$$

für die in der Verbindungslinie der beiden materiellen Punkte m und m_1 wirkende Kraft abzuleiten.

Das von ihm entdeckte Gesetz ertheilt folgende Antwort auf die gestellte Frage: "Wenn r_0 den Abstand der Punkte zur Zeit t_0 bezeich-"net, die der Zeit t jedesmal um dasjenige Zeitintervall $t-t_0$ vorhergebt, "welches erforderlich ist, um die Entfernung r = ft mit einer durch die "Constante c gegebenen Geschwindigkeit zurückzulegen, so ist

$$U = \frac{m m_1}{r_0}$$

"der gesuchte Werth der Kräftefunction."

Wir werden zunächst wiederum die Variation des Integrals $u = \int (T+U) dt$ zu bilden haben. Der Ausdruck der halben lebendigen Kraft T bleibt derselbe wie früher, nur abhängig von den ersten Differentialquotienten der Coordinaten; dagegen enthält U, wenigstens implicite, jetzt gleichzeitig die Coordinaten und ihre verschiedenen Differentialquotienten. Um diess anschaulich zu machen, bilden wir die Gleichung

$$r = f t = c (t - t_0), \qquad G$$

welche der Definition gemäss angiebt, dass die Strecke r im Zeitintervall $t - t_0$ mit der Geschwindigkeit c durchlaufen wird. Durch diese Gleichung ist

$$l_0 = l - \frac{r}{c}$$

als Function von t bestimmt, und da

$$r_0 = f t_0$$

den Abstand zur Zeit t_o ausdrücken soll, so erhält man nach dem Taylorschen Lehrsatze

$$r_{0} = f\left(t - \frac{r}{c}\right) = f t - \frac{r}{c} f' t + \frac{r^{3}}{2c^{2}} f'' t - \frac{r^{3}}{6c^{3}} f''' t \pm \dots$$
$$= r - \frac{rr'}{c} + \frac{r^{2}r''}{2c^{2}} - \frac{r^{3}r'''}{6c^{3}} \pm \dots,$$

wenn die Differentialquotienten von r = ft nach dem Argument t wie die derivirten Functionen durch Accente bezeichnet werden. Man kann also U als Function von r und seinen Differentialquotienten betrachten, worin implicite wiederum die Coordinaten und ihre Differentialquotienten enthalten sind.

Ebenso wird

$$\frac{dr_0}{dt_0} = f't_0 = f'\left(t - \frac{r}{c}\right) = f't - \frac{r}{c}f''t + \frac{r^2}{2c^2}f'''t - \frac{r^3}{6c^3}f^{1V}t \pm \dots$$

$$= r' - \frac{rr''}{c} + \frac{r^2r'''}{2c^2} - \frac{r^3r^{1V}}{6c^3} \pm \dots$$

$$I)$$

Bildet man jetzt

$$\delta u = \int \left(\frac{\partial U}{\partial r} \, \delta r + \frac{\partial U}{\partial r'} \, \delta r' + \frac{\partial U}{\partial r''} \, \delta r'' \, \dots + \Sigma \, \frac{\partial T}{\partial x'} \, \delta x' \right) dt$$

und reducirt wie früher durch partielle Integration, so wird bei Bildung der inneren Variation, da die Variation

$$\delta r = \frac{\partial r}{\partial x} \delta x + \frac{\partial r}{\partial y} \delta y + \frac{\partial r}{\partial z} \delta z + \frac{\partial r}{\partial x_1} \delta x_1 + \frac{\partial r}{\partial y_1} \delta y_1 + \frac{\partial r}{\partial z_1} \delta z_1$$

so wie ihre Differentialquotienten, mit den Variationen der Coordinaten und deren Differentialquotienten an den Integrationsgrenzen verschwinden oder Null zu setzen sind:

$$\delta u = \int \left\{ \delta r \left[\frac{\partial U}{\partial r} - \frac{d}{dt} \frac{\partial U}{\partial r'} + \left(\frac{d}{dt} \right)^2 \frac{\partial U}{\partial r''} - \left(\frac{d}{dt} \right)^3 \frac{\partial U}{\partial r''} \cdots \right]_{\text{digitized by}} \underbrace{\mathcal{E} \, \delta x \, \frac{d}{dt} \, \frac{\partial T}{\partial x'}}_{\text{C}} \right\} dt.$$

Substituirt man hier den eben angeführten Werth von δr , um nach den Variationen der Coordinaten ordnen zu können, so wird

$$\frac{\partial r}{\partial x} \left[\frac{\partial U}{\partial r} - \frac{d}{dt} \frac{\partial U}{\partial r} + \left(\frac{d}{dt} \right)^2 \frac{\partial U}{\partial r'} + \cdots \right] - \frac{d}{dt} \frac{\partial T}{\partial x'}$$

der Coefficient von δx , und analog für die übrigen Coordinaten. Da diese Coefficienten verschwinden sollen, so erhält man die Differentialgleichungen

$$\frac{d}{dt}\frac{\partial T}{\partial x'} = \frac{\partial r}{\partial x} \left[\frac{\partial U}{\partial r_0} \frac{\partial r_0}{\partial r} - \frac{d}{dt} \left(\frac{\partial U}{\partial r_0} \frac{\partial r_0}{\partial r'} \right) + \left(\frac{d}{dt} \right)^* \left(\frac{\partial U}{\partial r_0} \frac{\partial r_0}{\partial r''} \right) + \cdots \right]$$

d. i, wegen

 \overline{a}

$$\frac{\partial U}{\partial r_0} = -\frac{mm_1}{r_0^2}$$

$$m \frac{d^2 x}{dt^2} = -mm_1 \frac{x-x_1}{r} \left[\frac{1}{r_0^2} \frac{\partial r_0}{\partial r} - \frac{d}{dt} \left(\frac{1}{r_0^2} \frac{\partial r_0}{\partial r'} \right) + \left(\frac{d}{dt} \right)^2 \left(\frac{1}{r_0^2} \frac{\partial r_0}{\partial r''} \right) + \cdots \right].$$

Durch Substitution der aus den Gleichungen H) und I) zu entnehmenden Werthe von

$$\frac{\partial r_0}{\partial r} = 1 - \frac{r}{c} + \frac{r r''}{c^2} - \frac{r^2 r'''}{2c^3} + \frac{r^3 r^{1V}}{6c^4} + \dots = 1 - \frac{1}{c} \frac{dr_0}{dt_0},$$

$$\frac{\partial r_0}{\partial r'} = -\frac{r}{c}, \quad \frac{\partial r_0}{\partial r''} = \frac{r^2}{2c^2}, \quad \frac{\partial r_0}{\partial r'''} = -\frac{r^3}{6c^3},$$

u. s. w. ergibt sich

$$K) \qquad m \frac{d^2 x}{dt^2} = m m_1 \frac{x_1 - x}{r} \left\{ \frac{1}{r_0^2} + \frac{1}{c} \frac{d}{dt} \frac{r}{r_0^2} + \frac{1}{2c^2} \left(\frac{d}{dt} \right)^2 \frac{r^2}{r_0^2} + \frac{1}{6c^3} \left(\frac{d}{dt} \right)^3 \frac{r^3}{r_0^2} + \dots - \frac{1}{cr_0^2} \frac{dr_0}{dt_0} \right\}.$$

$$5.$$

Die unendliche Reihe innerhalb der Parenthese lässt sich summiren, wenn man den Lagrange'schen Satz über die Entwickelung impliciter Functionen anwendet.

Um diess zu zeigen, wollen wir der Gleichung G) $r = ft = c (t - t_0)$

eine analoge Gleichung

 G^*) $r_1 = f t_1 = c (t_1 - t)$

an die Seite stellen und dadurch die Zeit t_1 definiren, welcher der Abstand r_1 der beiden Massen entspricht. Es bedeutet hier $t_1 - t$ das Zeitintervall, welches seit der Zeit t verfliessen muss, um die Strecke r_1 mit der Geschwindigkeit c zu durchlaufen. Das nämliche Functionsverhältniss, welches früher zwischen t und t_0 festgesetzt worden ist, findet jetzt resp. zwischen t, und t statt.

Der Lagrange'sche Lehrsatz liefert unmittelbar die Entwickelungeiner Function

$$\varphi t_{1} = \varphi t + x f t \varphi' t + \frac{1}{2} x^{2} \frac{d}{dt} (f^{2} t \varphi' t) + \frac{1}{3!} x^{3} (\frac{d}{dt})^{2} (f^{3} t \varphi' t) + \text{etc.}$$
Digitized by Google

nach den Potenzeu von x, wenn

$$l_1 = l + x f l_1$$

gegeben ist. Setzt man hier $x = \frac{1}{c}$, so wird

$$\varphi l_{l} = \varphi l + \frac{1}{c} r \varphi' l + \frac{1}{2c^{2}} \frac{d}{dt} (r^{2} \varphi' l) + \frac{1}{bc^{3}} \left(\frac{d}{dt}\right)^{2} (r^{3} \varphi' l) + \text{etc.} \quad L$$

Differentiirt man beide Seiten dieser Gleichung nach *t*, so ergibt sich

$$\varphi' t_1 \frac{dt_1}{dt} = \varphi' t + \frac{1}{c} \frac{d}{dt} (r \varphi' t) + \frac{1}{2c^2} \left(\frac{d}{dt}\right)^2 (r^2 \varphi' t) + \frac{1}{6c^3} \left(\frac{d}{dt}\right)^3 (r^3 \varphi' t) + \dots$$

Die rechte Seite dieser Gleichung stimmt mit der zu summirenden Reihe überein, wenn

$$\varphi' l = \frac{1}{r_0^2}$$

gesetzt wird. Da gleichzeitig t in t_1 und t_0 in t übergehen, so folgt ohne Weiteres

$$\varphi' l_1 = \frac{1}{r^2},$$

mithin

$$\frac{1}{r^2}\frac{dt_1}{dt} = \frac{1}{r_0^2} + \frac{1}{c}\frac{d}{dt}\frac{r}{r_0^2} + \frac{1}{2c^2}\left(\frac{d}{dt}\right)^2\frac{r^2}{r_0^2} + \frac{1}{6c^3}\left(\frac{d}{dt}\right)^3\frac{r^3}{r_0^2} + \dots$$

Bevor wir diesen Werth in K) substituiren, wollen wir den Differentialquotienten $\frac{dl_1}{dl}$ eliminiren, was mittelst der durch Differentiation von G*) zu erhaltenden Relation

$$f't_{1} = \frac{dr_{1}}{dt_{1}} = c\left(1 - \frac{dt}{dt_{1}}\right)$$
$$\frac{dt_{1}}{dt} = \frac{1}{1 - \frac{1}{c}\frac{dr_{1}}{dt_{1}}}$$

oder

geschieht. Damit erhält man endlich

$$m \frac{d^2 x}{dt^2} = m m_1 \frac{x_1 - x}{r} \left[\frac{1}{r^2 \left(1 - \frac{1}{c} \frac{dr_1}{dt_1} \right)} - \frac{1}{c r_0^2} \frac{dr_0}{dt_0} \right].$$

Die Ausdrücke für die den übrigen Coordinaten entsprechenden Componenten werden ganz analog gebildet, und führen wegen $\frac{x_1 - x}{r} = \cos \alpha$ etc. zu dem gesuchten Ausdrucke für die in der Richtung der Verbindungslinie r zur Zeit t zwischen den Massenpunkten m und m_1 wirkenden bewegenden Kraft

$$R = \frac{m m_{1}}{r^{2}} \left[\frac{1}{1 - \frac{1}{c} \frac{dr_{1}}{dt_{1}}} - \frac{r^{2}}{c r_{0}^{2}} \frac{dr_{0}}{dt_{0}} \right].$$
M)
Digitized by Goog[6]

Es handelt sich nur noch um den Nachweis, dass dieser Werth, wenigstens in den ersten Gliedern bei der Entwickelung nach den absteigenden Potenzen von c, mit der Formel des Weber'schen Grundgesetzes übereinstimmt. Hierzu hat man sich der bereits früher benutzten Gleichungen

$$r_0 = f t_0 = r - \frac{r r'}{c} + \text{etc.}$$

und

$$\frac{dr_0}{dt_0} = f't_0 = r' - \frac{rr''}{c} \pm \text{ etc.},$$

so wie des aus der Lagrange'schen Entwickelung L) für $\varphi t = f't$ hervorgehenden Werthes

$$\frac{dr_1}{dt_1} = f't_1 = f't + \frac{1}{c}rf''t + \dots = r' + \frac{rr''}{c} + \dots$$

zu bedienen. Man erhält ohne Schwierigkeit, wenn man die durch c^3 und die höheren Potenzen dividirten Glieder weglässt:

$$R = \frac{m m_{i}}{r^{2}} \left\{ \frac{1}{1 - \frac{r'}{c} - \frac{r r''}{c^{2}} \dots} - \frac{r' - \frac{r r''}{c} \dots}{c \left(1 - \frac{r'}{c} - \frac{r' r''}{c} \dots\right)^{2}} \right\}$$
$$= \frac{m m_{i}}{r^{2}} \left\{ 1 - \frac{r' r' - 2r r''}{c c} \right\},$$

übereinstimmend mit der von W. Weber entdeckten Formel F) des elektrodynamischen Fundamentalgesetzes.

6.

Um endlich die Gestalt zu untersuchen, in welcher der Satz von der lebendigen Kraft nunmehr erscheint, haben wir die Function

$$\Phi = \Sigma x' \frac{\partial}{\partial x'} + \Sigma \left\{ x' \frac{\partial}{\partial x'} + \left(x'' \frac{\partial}{\partial x''} - x' \frac{d}{dt} \frac{\partial}{\partial x''} \right) + \left(x''' \frac{\partial}{\partial x''} - x'' \frac{d}{dt} \frac{\partial}{\partial x''} + x' \left(\frac{d}{dt} \right)^{t} \frac{\partial}{\partial x''} + \dots \right\}$$

zu bilden. Hier ist vor Allem zu bemerken, dass die beiden Summen auf der rechten Seite, die sich auf die 6 Coordinaten der beiden Punkte erstrecken, vereinfacht werden können Die auf die homogene Function T der Differentialquotienten der Coordinaten bezügliche Summe ist vermöge eines bekannten Satzes gleich 2T, während die von der Kräftefunction U abhängige Summe sich auf die Form

$$V = r' \frac{\partial U}{\partial r'} + \left(r'' \frac{\partial U}{\partial r''} - r' \frac{d}{dt} \frac{\partial U}{\partial r''} \right) + \left(r''' \frac{\partial U}{\partial r'''} - r'' \frac{d}{dt} \frac{\partial U}{\partial r'''} + r' \left(\frac{d}{dt} \right)^* \frac{\partial U}{\partial r'''} \right) + \dots$$

bringen lässt.

Hiermit erhält man

 $\Phi = 2T + V = T + U + h$

oder

$$T = U - V + h \qquad \qquad 0)$$

für das an Stelle des Satzes von der lebendigen Kraft tretende Integral. Differentiirt man diesen Ausdruck, so wird

$$\frac{d\,T}{d\,t} = \frac{d\,U}{d\,t} - \frac{d\,V}{d\,t}$$

wo zugleich

$$\frac{dT}{dt} = \Sigma m (x' x'' + y' y'' + z' z'') = \Sigma x' \frac{x_1 - x}{r} R$$
$$= -R \frac{dr}{dt}.$$

Diese Gleichung lehrt, dass die in der Richtung der Entfernung wirkende bewegende Kraft

$$R = \frac{dW}{dt}: \frac{dr}{dt} = \frac{dW}{dr} \qquad \qquad P)$$

durch vollständige Differentiation der Function

$$W = V - U$$

nach der Entfernung erhalten werden kann.

Da ferner

$$\frac{d U}{dt} = r' \frac{\partial U}{\partial r} + r'' \frac{\partial U}{\partial r'} + r''' \frac{\partial U}{\partial r''} + \dots$$

$$\frac{d V}{dt} = \left(r'' \frac{\partial U}{\partial r'} + r' \frac{d}{dt} \frac{\partial U}{\partial r'}\right) + \left(r''' \frac{\partial U}{\partial r''} - r' \left(\frac{d}{dt}\right)^* \frac{\partial U}{\partial r''}\right) + \left(r^{IV} \frac{\partial U}{\partial r''} + r' \left(\frac{d}{dt}\right)^* \frac{\partial U}{\partial r''}\right) + etc.,$$

so folgt

$$\frac{dW}{dt} = r' \left[\frac{\partial U}{\partial r} - \frac{d}{dt} \frac{\partial U}{\partial r'} + \left(\frac{d}{dt} \right)^2 \frac{\partial U}{\partial r''} - \left(\frac{d}{dt} \right)^3 \frac{\partial U}{\partial r'''} + \dots \right] = R \frac{dr}{dt},$$

woraus die Richtigkeit des für Vaufgestellten Werthes erhellt. Uebrigens kann man der Function W auch die Form geben

$$W = -\frac{m m_1}{r} \left\{ 1 - \frac{r' r'}{c c} - \frac{2 r'^3}{c^3} - \frac{18 r'^4 + 2 r r'^2 r'' - r^2 r''^2 + 2 r^2 r' r'''}{6 c^4} \dots \right\}.$$
 Q)

Leipzig, 11. August 1868.

•

W. SCHEIBNER,

Schularithmetik, bearbeitet von A. TRAPPE, Professor und Prorector der Realschule am Zwinger in Breslau. Verlag der Universitätsbuchhandlung von F. Hirt in Breslau.

Referent würde das vorliegende Werkchen einfach ignorirt haben, wenn der Verfasser durch sein brauchbares, bereits in dritter Auflage erschienenes Lehrbuch der Physik nicht so bekannt wäre, dass wohl Mancher darauf hin auch die "Schularithmetik" unbesehen kaufen dürfte. Leider stehen aber beide Bücher auf sehr verschiedenen Standpunkton, und während "die Physik" des Verfassers den Entdeckungen der Neuzeit Rechnung trägt, macht die "Schularithmetik" den Eindruck, als wäre sie der unveränderte Abdruck eines Werkes aus dem vorigen Jahrhundert. Zum Beweise mögen einige Proben folgen:

Auf Seite 79 behauptet der Verfasser, die Gleichung

$$a + ae + ae^{2} + ae^{3} + \dots \text{ in inf.} = \frac{a}{1 - e}$$

sei für je des e richtig — er wendet sie auf die Fälle a=3, $e=\frac{1}{2}$ und a=3, e=2 an und sagt bezüglich des ersten Falles: "Es könnte scheinen, als ob durch Addition unendlich vieler Grössen eine unendlich grosse Summe entstehen müsste; da aber die Glieder immer kleiner werden, so werden sie auch endlich verschwindend klein." Was mit diesem unverständlichen Gerede erklärt werden soll, ist schwer abzusehen; sollte aber der Verfasser meinen, dass man gegen das Ende der Reihe hin ein paar Millionen Glieder weglassen dürfe, weil sie verschwindend klein sind, so müsste er die Voraussetzung machen, dass verschwindend kleine Summanden eine verschwindend kleine Summe geben. Wie unrichtig dieser Satz ist, zeigt schon das bekannte Beispiel

$$\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \ldots + \frac{n}{n^2}$$

wenn $n = \infty$ genommen wird. — Noch wunderlicher lautet die Erklärung des für a = 3, e = 2 zum Vorschein kommenden absurden Resultates

$$3+6+12+24+\ldots$$
 in inf. $=\frac{3}{1-2}=-3;$

der Verfasser sagt nämlich: "Das Resultat sollte = ∞ sein, da die Reihe aus unendlich vielen immer grösser werdenden positiven Zahlen besteht. Der Widerspruch lässt sich dadurch erklären, dass die Aufgabe, eine unendliche Menge immer grösser werdender Zahlen zu addiren, etwas Unausführbares fordert; aber dennoch stellt der Ausdruck $\frac{3}{1-2}$ die Reihe dar, denn wenn man 1-2 in 3 dividirt und wie bei Buchstaben verfährt, so erhält man die Reihe." Nach des Verfassers eigener Definition von positiven und negativen Grössen und nach dem

Obigen kann man sich also dadurch in Schulden stürzen, dass man Jahr aus Jahr ein Vermögen aufhäuft. — Die Sache ist aber viel einfacher: wer für e > 1

$$a + ae + ae^2 + ae^3 + \ldots = S$$

setzt und mit diesem S weiter rechnet, als wenn es eine endliche bestimmte Grösse wäre (z. B. S-S=0, $\frac{S}{S}=1$), der hat schon von Hause aus eine falsche Voraussetzung gemacht und braucht sich dann über seine widersinnigen Resultate gar nicht zu verwundern. Diese Bemerkung gilt übrigens für alle Rechnungen mit unendlichen Reihen, Producten und Kettenbrüchen.

Seite 80 heisst es: "Eine unendliche fallen de Reihe nennt man convergirend, eine unendliche steigen de Reihe divergiren d." Hiernach scheint der Verfasser nicht einmal zu wissen, dass die bekannte harmonische Reihe $\frac{1}{4} + \frac{1}{2} + \frac{1}{5} + \dots$ zwar eine fallen de ist aber divergirt. Weiter sagt der Verfasser: "eine divergirende Reihe lässt sich nicht addiren", obschon er zwei Zeilen vorher — 3 als Summe von 3+6+ 12 + etc. angegeben hat.

Die Gleichungen ersten Grades werden mit zwei Beispielen abgefertigt, von denen das zweite die Form

$$(\alpha - \beta x) (\gamma - \delta x) = 0$$

hat, also doch wohl nicht hierher gehörte.

Auf Seite 107 definirt der Verfasser eine Function von x als "eine Grösse, in welcher x vorkommt" und sucht dann den Satz zu beweisen: "Jede Function von x, welche dadurch zu Null wird, dass man x = msetzt, hat den Factor (x - m)." Hier fehlt die Beschränkung des Satzes auf algebraische rationale Functionen; denn schon bei irrationalen Functionen (wie z. B. $\sqrt[p]{x} - \sqrt[p]{m}$) gilt der Satz nicht mehr.

In § 116 heisst es, wenn die Gleichung

 $a + bx + cx^{2} + \ldots = m + nx + rx^{2} + \ldots$

für je den Werth von x gilt, so ist a = m, b = n etc. Hier kann erstens die Voraussetzung dahin beschränkt werden, dass die anfängliche Gleichung nur innerhalb eines die Null umfassenden Intervalles zu gelten braucht, zweitens ist hinzuzufügen, dass bei unendlichen Reihen die gleichzeitige Convergenz beider Reihen vorhanden sein muss. Kann man hierüber nicht entscheiden, so läuft man Gefahr, die abenteuerlichsten Resultate zu erhalten. So ist z. B.

$$\int_{0}^{\infty} \frac{l(1+x^{2}t^{2})}{1+t^{2}} dt = \pi l (1+x),$$

wenn man aber beiderseits nach Potenzen von x entwickelt, so liefert die Vergleichung der Coefficienten von x, x^2 etc. durchgängig falsche Gleichungen.

In § 117 will der Verfasser den Satz beweisen: "jede Gleichung vom n^{4r} Grade hat n Wurzeln"; zu diesem Zwecke erinnert er erst daran, dass eine quadratische Gleichung zwei Wurzeln besitzt, und fährt dann fort: "Hat eine cubische Gleichung, die auf Null gebracht ist, eine Wurzel x = m, so muss sie den Factor (x - m) haben, und der zweite Factor muss eine Function von x^2 sein. Setzt man diesen = 0, so erhält man noch zwei Werthe für x, welche die Gleichung zu Null machen. Auf dieselbe Weise ergiebt sich, dass die Gleichung vom vierten Grade 4, die vom fünften 5 Wurzeln haben muss u. s. w." Der Verfasser setzt also ohne Weiteres voraus, dass jede Gleichung mindestens eine Wurzel habe, deren Beschaffenheit er übrigens ganz dahin gestellt sein lässt.

In § 126 "soll versucht werden", log(1+x) in eine Reihe von der Form $A + Bx + Cx^2 + \text{etc. zu verwandeln.}$ Mit Hülfe der Gleichung

2 log $(1+x) = \log [1+x (2+x)]$

findet der Verfasser

 $2Bx + 2Cx^{2} + 2Dx^{3} + \dots$ = 2Bx + (B + 4C) x² + (4C + 8D) x³ + ...

und sagt weiter: "Diese Gleichung gilt für jeden Werth von x, da die beiden Gleichungen, aus denen sie zusammengesetzt ist, für jeden Werth von x gelten." Woher weiss denn der Verfasser, dass die versuchsweise aufgestellte Gleichung $log (1 + x) = A + Bx + Cx^2 + \text{etc. für jeden}$ Werth von x gilt? — Später wird B mittelst der Formel

$$B = \frac{1}{2\left[\frac{9}{11} + \frac{1}{3}\left(\frac{9}{11}\right)^3 + \frac{1}{6}\left(\frac{9}{11}\right)^5 + \dots\right]}$$

bestimmt und hinzugefügt: "Die Reihe des Nenners convergirt so, dass man nur wenig Glieder zu berechnen braucht, um *B* bis auf 7 Stellen richtig zu erhalten." In der That sind hierzu 30 Glieder nöthig, und das dürfte.doch nicht gerade wenig sein.

Diese Blumenlese (besser Distelnlese) mag zu dem Beweise hinreichen, dass der Verfasser von einer den Ansprüchen der Neuzeit genügenden präcisen Behandlung der Wissenschaft gar keine Idee hat und daher auch zur Abfassung mathematischer Lehrbücher nicht berufen ist.

SCHLÖMILCH.

Bibliographie

, *1*,

vom 15. Juni bis 1. September 1868.

Periodische Schriften.

Abhandlungen der math. phys. Classe der Königl. Sächs. Gesellschaft der Wissensch. VIII. Bd. Leipzig, Hirzel. 8 Thlr.

- Denkschriften der Kaiserl. Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Classe. 28. Bd. Wien, Gerold's Sohn. 14% Thlr.
- Journal für die reine und angewandte Mathematik. Herausgeg. von C. W. Borchardt. Berlin, Reimer. pro compl. 4 Thlr.

Reine Mathematik.

BARDEY, E., Algebraische Gleichungen. Leipzig, Teubner. 1⁴/₃ Thlr. Gouzy, E. A., Vereinfachtes Verfahren für die Ausziehung der

Cubikwurzelaus Zahlen. Aarau, Sauerländer. 1½ Ngr.

GRETSCHEL, H., Lehrbuch zur Einführung in die organische Geometrie. Leipzig, Quandt & Händel. 2⁴/₃ Thlr.

HERING, R. G., Sammlung von Aufgaben aus-der niederen und höheren Arithmetik. Für Bürger-, Realschulen und Gymnasien.
2. Heft. Leipzig, Gräbner. 4⁴/₂ Ngr.

SCHLÖMILCH, O., Compendium der höheren Analysis. 3. Aufl. 1. Bd. 1. Hälfte. Braunschweig, Vieweg und Sohn. 1⁴/₂ Thlr.

ZEHFUSS, G., Ueber eine Erweiterung des Begriffes der Determinanten. Frankfurt a. M., Hermann'sche Buchhandlung. 1⁴/₂ Ngr.

WINKLER, A., Der Rest der Taylor'schen Reihe. Wien, Gerold's Sohn. 18 Ngr.

WITTSTEIN, TH., Lehrbuch der Elementar - Mathematik. 1. Band. 1. Abth. Arithmetik. 3. Aufl. Hannover, Hahn'sche Hofbuchhandlung. % Thlr.

- MAYR, A., Der integrirende Factor und die particulären Integrale mit besonderer Anwendung auf die linearen Differentialgleichungen. Prolegomena zur Theorie der Integration. Würzburg, Kellner's Buchhandlung. 1 Thlr.
- SCHWAGER, H., Die Elemente der Arithmetik und Algebra. Ein Leitfaden für den Unterricht. Würzburg, Kellners Buchhdlg. 27 Ngr.
- BREMIKER, C., Logarithmisch-trigonometrische Tafeln mit sechs Decimalstellen. Mit besonderer Rücksicht für den Schulgebrauch bearbeitet. Berlin, Nicolai'sche Verlagsbuchhandlung. 12¹/₂ Ngr.

Digitized by GOOGLC

WITTSTEIN, TH., Fünfstellige logarithmisch-trigonometrische
Tafeln. Hannover, Hahn'sche Hofbuchhandlung. % Thlr.
SCHNEIDEWIND, O., Ueber die Convergenz unendlicher Reihen.
Inaugural-Dissertation. Nordhausen, Haacke. ¹ / ₄ Thlr.
Schlömilch, O., Uebungsbuch zum Studium der höheren Analy-
sis. 1. Thl. Leipzig, Teubner. 1 Thlr. 18 Ngr.
SERRET, J. A., Handbuch der höheren Algebra. Deutsch bearbeitet
von G. v. Wertheim. Leipzig, Teubner. 2% Thlr.
HECHEL, C., Compendium der Geometrienach Legendre. 3 Thl.
Sphärische Trigonometrie. Reval, Kluge's Verlag. ⁴ / ₂ Thlr.
BAHNSON, Leitfaden für den Unterricht in der Geometrie. 1 Thl.
Hamburg, Rudolphi. 18 Ngr.
SCHONDORFF, A., Ueber die Minimalfläche, die von einem doppelt-
gleichschenkligen räumlichen Viereck begrenzt wird.
(Göttingen) Güstrow, Opitz & Co. 5 Thlr.
Sonnenburg, A., Lehrbuch der gesammten Elementar-Geometrie
für Gymnasien, Realschulen etc. 1. Thl. Ebene Geometrie.
2. Aufl. Bremen, Geisler. 1 Thlr. 12 Ngr.
Kourny, E., Construction der Kegelschnittlinien aus Punkten
und Tangenten. Wien, Gerold's Sohn. 8 Ngr.
WEYR, E., Studien aus der höheren Geometrie. Wien, Gerold's
Sohn. 6 Ngr.
Kunze, M. F., Siebenstellige Kreisflächen für alle Durchmesser
von 0,01 bis 99,99. Dresden, Schönfeld's Buchhandlung. 1 Thlr.
MATZKA, W., Beiträge zur Lehre der universellen Sammlung
von Strecken, d. i. ihrer Aneinanderfügung mittels Parallelver-
schiebung. Prag, Calve'sche Universitätsbuchhandlung. % Thlr.
SCHUMANN, H., Lehrbuch der Elementar-Mathematik für Gym-
nasien und Realschulen. 3. Thl. Ebene Trigonometrie. Berlin,
Weidmann'sche Buchhandlung. 9 Ngr.
Koppe, K., Anfangsgründe der analytischen Geometrie und der
Lehre von den Kegelschnitten für den Schul- und Selbst-
unterricht. Essen, Bödeken. 24 Ngr.
HARMS, CHR., Die erste Stufe des mathematischen Unterrichts.
2. Abth. Geometrische Aufgaben. Oldenburg, Stalling's Verlag.
12 ¹ /2 Ngr.
PLücker, J., Neue Geometrie des Raumes, gegründet auf die
Betrachtung der geraden Linie als Raumelement. 1. Abth.
Leipzig, Teubner. 3 Thlr.

Digitized by Google

.

Recensionen.

Galilée, les droits de la science et la methode des sciences physiques par TH. HENRI MARTIN. Paris 1868 bei Didier et Cie librairie académique. Wenige Gegenstände aus der Geschichte der Wissenschaften haben in den letzten 5 Jahren sich so eifriger Bearbeitung zu erfreuen gehabt, wie das Leben und die Schicksale des Gründers der modernen Mechanik. Herr Martin, der letzte Schriftsteller über Galilei, hatte in einer seinem Buche angehängten bibliographischen Notiz unseren Aufsatz im 9. Bande dieser Zeitschrift mit Nr. LIII zu bezeichnen und gelangt dann noch bis zu Nr. LXVII unter Aufzählung nur solcher Abhandlungen, welche er gelesen hat, und welche leicht noch vermehrt worden könnten, z. B. durch den Aufsatz von Joh. Streit: "Galileo Galilei, ein Vortrag, gehalten in Greifswald zur Erinnerung an seinen 300 sten Geburtstag" (Grun. Archiv Bd. 42, S. 241-255), durch die Brochure von H. Christian Herrmann Vosen: "Galileo Galilei und die römische Verurtheilung des Kopernikanischen Systems"• herausgegeben von dem katholischen Brochurenverein in Frankfurt a. M., durch eine Recension des letzterwähnten Machwerkes, welche wir ohne Namensunterschrift in den Grenzboten von 1865 S.422-436 veröffentlicht haben. Wenn nach so vielen Vorgängern aus jüngster Zeit ein Gelehrter, wie Herr Martin, nochmals zur Feder greift und eine fast 28 Druckbogen füllende Untersuchung über das Leben und Wirken des Mannes veröffentlicht, dem schon Dutzende von Geschichtsschreibern ihre Zeit und Mühe widmeten, so ist das ein sicherer Beweis für die hohe Bedeutsamkeit des Stoffes, aber auch dafür, dass von allen Vorgängern der Stoff nicht in seiner ganzen Vollständigkeit bewältigt wurde. Herr Martin mit seiner auf allen Gebieten der Geschichte der Wissenschaft gleich unermesslichen Belesenheit, mit seiner eleganten Schreibweise, mit seinem so selten fehlgehenden kritischen Verstande ist ganz der Mann dazu, Untersuchungen abzuschliessen und zusammenzufassen, und so freuten wir uns im Voraus auf die Zusendung des in der Ueberschrift genannten Werkes, wenn gleich Herr Martin in dem sein freundliches Geschenk begleitenden liebenswürdigen Briefe uns ankündigte, dass er vielen von uns ausgesprochenen Meinungen entgegengetreten sei.

Literaturztg. d. Zeitschr. f. Math. u. Phys. XIII, 5.

Digitized by Google

Wir sind weit entfernt, Widerspruch übel zu nehmen, hoffen aber mit Zuversicht auf gleiche Unbefangenheit bei unserem hochverehrten Herrn Gegner rechnen zu dürfen, wenn wir unter achtungsvollster Anerkennung seiner Verdienste seine Angriffe zurückweisen müssen.

Wir glauben uns dieses um so mehr schuldig zu sein, als es im Allgemeinen zu den stylistischen Eigenthümlichkeiten von Herrn Martin gehört, in dem kritischen Theile seiner Werke Ansichten, die er anfeindet, mit den Persönlichkeiten, von welchen dieselben ausgehen, scheinbar zu verwechseln, so dass zwischen den achtungsvollen Briefen und dem mitunter weit weniger achtungsvollen Tone der gedruckten Aeusserungen fast ein Gegensatz zu bestehen scheint.

Wir gestehen es zu, wir fühlen uns einigermassen verletzt durch Bezeichnungen, wie "les plus violents détracteurs de la conduite de Galilée", S. 402, welche auf einen Philarète Chasles, auf einen Vosen und Consorten passen mögen, welche wir uns aber recht sehr verbitten. Was in aller Welt haben wir denn in unseren Abhandlungen gegen Galilei gesagt, um ein Herabwürdiger des grossen Mannes zu heissen? Wir haben behauptet (Zeitschr. f. Math. u. Phys. IX. S. 179), Galilei habe gegen Ende 1613 den Beweis seiner astronomischen Ansichten in der Bibel gesucht. Wir haben eine Erklärung dafür in dem autoritätsbedürftigen Eigensinne seiner Gegner gefunden. Wir haben hinzugefügt: "Ich wüsste nicht, wie man ihm dieses übelnehmen könnte, und wenn es ein Fehlschritt war, den er that, so liegt die Schuld nicht darin, dass er auf das theologische Gebiet hinübertrat, sondern darin, dass sein Fuss den schlüpfrigen Boden nicht gewohnt war, dass sein Auge die Fussangeln nicht sah, mit welchen der neue Kampfplatz rings umgeben war." Nennt man das Einen herabwürdigen? Dann müssen wir freilich auch heute noch dies wenig schmückende Beiwort uns gefallen lassen; denn heute wie vor 41/2 Jahren halten wir dafür, dass Galilei den theologischen Streit thatsächlich begonnen hat. Es ist wahr, Herr Martin hat (S. 51) Briefe Galilei's an den Cardinal Dini angeführt, in welchen er das Bedauern ausspricht, dass er auf biblischem Gebiete kämpfen müsse, auf welches man ihn hingezwungen habe; aber diese Briefe sind aus dem Jahre 1615, und der Brief an Castelli, welcher den theologischen Anfeindungen des Dominicaners Caccini, den Denunciationen des Lorini, kurz dem eigentlichen Streite voranging, war vom 21. December 1613 (Martin S. 42). Ja, noch weit früher befragte Galilei den Cardinal Conti über die theologische Seite seiner naturwissenschaftlichen Ansichten, denn dessen Antwortsschreiben datirt sogar vom 7. Juli 1612 (Martin S. 40).

Oder haben wir Galilei herabgewürdigt, weil wir (S. 191) über die Ausreden, welche er im Verhöre vom 12 April 1633 gebrauchte, die Bemerkung machten: "Man ärgert sich über die geistige Schwäche Galilei's, welcher hier offenbar gegen seine Ueberzeugung aussagte. Allein man thut Digitized by

54

es nur deshalb, weil ein gewisses, ich möchte sagen, dramatisches Gefühl im Menschen uns geneigter macht, den Sturz eines grossen Mannes zu beweinen, als von einer moralischen Niederlage desselben Zeuge zu sein." Wir setzten sogleich die Frage hinzu: "Wie viele Männer, welche über Galilei den Stab brechen, würden wohl anders als er gehandelt haben? Wie viele würden den 70 jährigen gebrechlichen Körper den Qualen dargeboten haben, mit welchen die damalige Zeit verschwenderisch war?" Wir hoben ganz besonders den Einfluss Niccolini's auf das Benehmen des Galilei hervor. Möge uns Herr Martin die Behauptung nicht übel nehmen, dass auch er in diesem Sinne zu den détracteurs les plus violents de la conduite de Galilée gehört. Er nähert sich sogar unserem Wortlaute, wenn er sagt: "Certainement Galilée ne joua pas du tout dans son procès le rôle d'un héros de tragédie" (S. 196), wenn er weiter hinzufügt: "il espérait qu'il n'y aurait pas de peril pour sa personne, s'il se soumellait; mais s'il résistait obstinément, il pouvait tout craindre. Il savait comment deux héréliques avaient été traités à Rome, l'un trente-deux ans, l'autre huit ans seulement avant son procès". Und wenn wir von Niccolini sagten: "er rieth ihm zur Besiegelung seiner Schmach", so gebraucht Herr Martin die Worte: "Telle était la souplesse beiden Aermes caractères en Italie au dix-septième siècle". Wir können in des plus fussprüchen nur Wahrheit finden, aber sicherlich keine Herabwürdigung.

Oder endlich ist es Herabwürdigung des Galilei, wenn wir unsere Abhandlung mit den Sätzen schlossen: "Die wissenschaftliche Forschung ist frei geworden von den Fesseln der Kirche Dass es aber so gekommen ist, dass der Kampf, man kann wohl sagen, jetzt ausgekämpft ist, das mahnt uns um so mehr zur dankbaren Erinnerung an die ersten Opfer des Kampfes, vor Allem an Galileo Galilei." Ein anderweitiges Urtheil wird aber Herr Martin uns nirgends nachweisen können; nur an den drei erwähnten Stellen haben wir uns über Galilei's Benehmen ausgesprochen, und, wie wir glauben, in völlig gerechter Weise, in einer Weise, welche mit den Ansichten von Herrn Martin selbst geradezu übereinstimmt.

Eine wesentliche Verschiedenheit zwischen unseren beiderseitigen historischen Auffassungen findet sich dagegen dem Charakter und der Handlungsweise Urban's VIII. gegenüber. Hier haben wir uns im December 1843 entschieden getäuscht. Die päpstlichen Verordnungen vom 16. Juni 1633 (Martin S. 123 – 124) und vom 23. März 1634 (Martin S. 215), welche erst im letztverflossenen Jahre durch Herrn Henri de l'Épinois (*Revue* des sciences historiques, 1867) bekannt wurden, lassen unsere Auffassung nicht mehr zu, als habe Urban VIII. späterhin Reue darüber empfunden, dass er in die Einleitung des Inquisitionsverfahrens gegen Galilei seiner Zeit willigte, als habe er ihn nach Vermögen geschützt, und als habe insbesondere nur seine Weigerung die Anwendung der Folter verhindert. Diese Anschauung ist gegenwärtig nicht mehr möglich — aber wir sind noch

55

weiter davon entfernt, die Darstellung von Herrn Martin für richtig zu halten. Wir wollen diese mit seinen eigenen Worten (S. 210) anführen: "Sous l'influence des hommes auxquels, depuis 1632, Urbain VIII avait laissé prendre trop d'empire sur son esprit, sa conscience trompée lui disait qu'il avait eu tort de laisser paraître en Italie un livre plein d'une doctrine contraire à l'Écriture sainte, et que, pour réparer sa faute, il devait étouffer, au moins en Italie, cette erreur, qu'il voyait se propager malgré les condamnations ecclésiastiques. Il ne fallait pas. pensait-il, avoir l'air de faiblir à l'égard de Galilée, et enhardir ainsi tant d'autres catholiques, tout prêts à marcher sur ses traces. Telle est la pensée, que nous trouverons dans toule la conduite d'Urbain VIII envers le malheureux condamné."

Herr Martin wird uns wohl zugeben, dass positive Beweise für seine Auffassung nicht vorhanden sind; wir meinen, dass keinerlei Documente, Briefe oder Verordnungen uns einen ungetrübten sicheren Einblick in die Seele des Papstes gestatten, dass wir also, so zu sagen, nur einen Indicienbeweis besitzen, welches auch die Folgerungen sein mögen, die wir aus den gegebenen Thatsachen ziehen. Diese Thatsachen wollen wir deshalb in der Kürze, welche einer kritischen Besprechung angemessen erscheint, hier wiederholen.

Es ist Thatsache, dass Maffeo Barberino der Freund Galilei's war und insbesondere 1616 bei dem ersten Processe auf dessen Seite stand. Es ist Thatsache, dass eine Tradition des römischen Clerus bis zum Jahre 1825 existirte (Martin S. 159), wonach Galilei seinen ehemaligen Freund persönlich beleidigte und dadurch zum Feinde machte. Es ist Thatsache (Martin S. 159 und 162), dass schon 1632 diese Tradition vorhanden war, "et ils firent quelques dupes, parmi lesquelles fut peut-ètre d'abord Urbain VIII lui-même". Es ist Thatsache, dass nicht blos "peut-être" der Papst selbst den Process nur von der persönlichen Seite betrachtete, denn Niccolini sagt (Martin S. 121): dans l'excès de sa passion il a fait de cette persécution son affaire personnelle." Wie kann Herr Martin es dann rechtfertigen, wenn er S. 136 behaupten will: "Il ne cherchait point une vengeance personelle d'un outrage imaginaire"? Freilich war die Beleidigung eine imaginäre, freilich war Simplicius nicht die Karrikatur des Paptes, wie wir S. 186 unserer Abhandlung mit denselben Gründen gezeigt haben, welche auch Herr Martin (S. 164 flgg.) benutzt; freilich hat Herr Martin Recht, wenn er gegen uns beweist, dass Galilei den Einwurf der Allmacht Gottes in sein Werk aufnehmen musste, wenn er Urban VIII. nicht wirklich beleidigen wollte; aber darauf kommt es keineswegs an, sondern nur darauf: War Urban VIII. erzürnt und handelte er im Zorne? Und diese Frage muss die Geschichtsforschung einfach bejahen. Wir haben demnach von unserer Auffassung nur das zurückzunehmen, was allerdings unser persönliches Eigenthum daran war: die spätere Aenderung in der Gemüthsstimmung Urban's. Urban besänftigte sich nicht. Er war es, der am 16. Juni 1633 den Befehl

Digitized by GOOGLE

der Territion erliess, welcher nach unserer früheren Meinung von den Inquisitoren ausging und in der Lücke der Processacten enthalten sein musste, zu deren Annahme uns die confuse, wie man gegenwärtig weiss, durchaus unrichtige Beschreibung jener Acten durch Marino Marini verleitet hatte. Er war es, der am 23. März 1634 Galilei verbot, um weitere Vergünstigungen zu bitten, wenn er nicht in die wirklichen Kerker der Inquisition verbracht werden wolle. Er war es aber auch, der beide Verordnungen nur insgeheim erliess, der sich beidemal hinter das heilige Gericht steckte, wahrlich weit eher das Kennzeichen persönlichen Rachegefühls, als der Befürchtung, die Religion möge durch Galilei's wissenschaftliche Thätigkeit Gefahr laufen. Hätte Urban in diesem Gefühle gehandelt, so war es viel natürlicher für ihn, jetzt ex cathedra die Kopernikanische Lehre ein - für allemal zu verdammen, welche bisher nur in nichtofficieller Weise verurtheilt war, wie Herr Martin mehrfach hervorhebt, welcher gerade darauf ein vielleicht übermässig grosses Gewicht legt. Wir gestehen freilich dabei die Unfähigkeit zu, uns in die Seele eines frommen Katholiken zu versetzen, für welchen die Unfehlbarkeit des Papstes als Papst Glaubenssache ist.

Urban VIII. schob das Inquisitionsgericht auch deshalb vor, weil er selbst bei der Veröffentlichung der berühmten Galilei'schen Dialoge zu sehr betheiligt war. Wir haben zuerst (S. 184 unserer Abhandlung) darauf hingewiesen, dass die Vorrede vielleicht auf Urban VIII. zurückzuführen sei. Herr Martin benutzt, allerdings ohne uns zu citiren, den Theil unserer Behauptung, der brieflich erwiesen ist, dass nämlich Riccardi die Vorrede an Galilei schickte (Martin S. 105). Dann fügt er neu die werthvolle Bemerkung hinzu (S. 106), dass in der Vorrede Anklänge an einen Brief sich fänden, welchen Galilei 1624 an Ingoli geschrieben hatte. Aber hat denn Herr Martin ganz vergessen, dass er selbst (S. 94) gezeigt hat, dass Urban VIII. von jenem Briefe Kenntniss nahm, dass also unsere Hypothese von dem Ursprunge der Vorrede, von der Ursache der nachfolgenden Ungnade sowohl des Riccardi, als des Ciampoli nur noch mehr Bestätigung erhält? Jedenfalls schenken wir dieser Auffassung mehr Glauben, als dass wir Herrn Martin beipflichten möchten, wenn er auf Galilei den Vorwurf ladet: "au lieu de rediger lui-même cette préface peu sincère, il eut l'habileté de l'inspirer d'abord au P. Riccardi, et de se la laisser imposer ensuite."

Wir könnten noch einige andere Angriffe gegen das neuerschienene Buch richten, wenn es uns darum zu thun wäre, ängstlich jedes Wort aufzusuchen, in welchem der gelehrte Verfasser sich geirrt hat. Wir wollen nur schliesslich zwei Unterlassungssünden hervorheben. Einmal hätte es zur Vollständigkeit des Werkes entschieden beigetragen, wenn Herr Martin den Beweis, dass das ganze Verfahren von 1632-1633 in der Sitte des üblichen Processes begründet war, aufgenommen hätte, welchen er in unserer Abhandlung S. 187-189 hätte finden können, während kein anderer Schriftsteller diesen Gesichtspunkt bemerkt hat. Zweitens durfte Herr Martin nicht übersehen, dass allerdings im Saggiatore Theologisches vorkommt, dass nämlich Galilei im 50. Capitel dieser Streitschrift an den Männern im Feuerofen herumdeutelt wegen der Frage, ob eine Flamme durchsichtig sein könne oder nicht.

Aber hiermit wollen wir dieses unangenehme Geschäft beendigen. Wir wollen weit lieber noch einige Punkte hervorheben, welche uns wenigstens neu und überraschend waren, auch wohl neu sein dürften, da Herr Martin keinen Vorgänger dafür citirt, was er sonst nur sehr ausnahmsweise und offenbar absichtslos unterlässt. Wir rechnen zu diesen historisch wichtigen Thatsachen, welche wir bei Herrn Martin zum ersten Male hervorgehoben finden, die Hinterlist des Erzbischofs von Piss, Francesco Boncinni (S. 56 flgg.), welcher von Castelli den Galilei'schen Brief unter dem Scheine der Freundschaft herauszulocken sucht; ferner das ganz ähnliche Benehmen des P. Grassi gegenüber von Mario Guiducci in derselben Zeit, wo er die giftigste Antwort auf den Saggiatore vorbereitet (S. 96-97); den noch ganz unbekannten Umstand, dass bereits 1616 Galilei vor das Inquisitionsgericht geladen worden war, dass also seine damalige Reise nach Rom durchaus nicht als eine freiwillige betrachtet werden darf (S. 69). Bezüglich des Processes von 1632 lernen wir durch Herrn Martin (S. 117), dass dem Befehle, in Rom zu erscheinen, welcher am 1. October 1632 dem Galilei vorgelesen wurde, ein Notar und zwei Zeugen anwohnten, aber insgeheim, ohne dass Galilei selbst ihre Gegenwart ahnen konnte. Endlich war uns persönlich die Beweisführung interessant, durch welche Herr Martin aus einer Veröffentlichung des Pater Mersenne aus dem Jahre 1634 den Dissens von drei Richtern bei dem Urtheilsspruche über Galilei bestätigt (S. 134), welchen wir zuerst bemerkt hatten.

Wir können ferner nur mit aufrichtigem Danke von der ganzen zweiten Abtheilung des Martin'schen Buches (S. 281-382) reden, in welcher der Verfasser in ganz mustergiltiger Weise die Methode des Galilei schildert, ihn als den wahren Erfinder der Inductionswissenschaften kennzeichnet, neben welchem die Ansprüche eines Baco, wie eines Cartesius verstummen müssen.

Unsere Leser erwarten wohl nach diesen manche Einzelheit berührenden Erörterungen ein Gesammturtheil. Wir stehen nicht an, es dahin abzugeben, dass das Buch von Martin seines Verfassers würdig ist. Wenn wir auf Ausstellungen, welche wir zu machen hatten, einen verhältnissmässig grösseren Raum, als auf die verdienten Lobsprüche verwandt haben, so mag man uns dieses aus unserem persönlichen Antheile an den Forschungen über Galilei zu erklären, vielleicht zu entschuldigen erlauben; aber keineswegs wünschten wir in unseren Lesern das Gefühl zu hinterlassen, als ob das hier besprochene Werk mehr des Tadelnswertben, als des

Digitized by GOOGLE

Vortrefflichen enthalte. Mängel sind vorhanden, das durften und konnten wir weniger als irgend ein Anderer verschweigen, wenn wir uns selbst gerecht sein wollten, aber Mängel, welche den Tugenden gegenüber an Zahl, wie an Grösse verschwinden.

CANTOR.

Bibliographie

vom 1. September bis 15. October 1868.

Periodische Schriften.

- Sitzungsberichte der Königl. Sächs. Gesellsch. d. Wissensch. Mathem. physikal. Classe. 1868 Iu. II. Leipzig, Hirzel. **%** Thlr.
- Sitzungsberichte der Königl. Bayer. Akademie d. Wissensch. 1868. I. 3. u. 4. Heft. München, Franz. à 16 Ngr.
- Verhandlungen der naturforschenden Gesellschaft in Basel. 4. Bd. Basel, Schweighauser. 3 Thlr.
- Vierteljahrschrift der astronomischen Gesellschaft. Herausgeg. von C. Bruhns. 3. Jahrg. 2. Heft. Leipzig, Engelmann. ¹/₂ Thlr.
- Tageblatt der 42. Versammlung deutscher Naturforscher und Aerzte in Dresden, vom 18. – 24. September 1868. Dresden, Schönfeld. 2 Thlr.

Reine Mathematik.

- Königsberger, L., Die Transformation, die Multiplication und die Modulargleichungen der elliptischen Functionen. Leipzig, Teubner. 1¹/₃ Thlr.
- BOLTZMANN, L., Ueber die Integrale linearer Differentialgleichungen mit periodischen Coefficienten. (Akad.) Wien, Gerold. 2 Ngr.
- LOMMEL, E., Studien über die Bessel'schen Functionen. Leipzig, Teubner. I Thlr.
- FRISCHAUF, J., Lehrbuch der allgemeinen Arithmetik für Mittelschulen. Im Anschluss an Heis's Beispielsammlung bearbeitet. Graz, Leuschner & Lubensky. 16 Ngr.
- SPITZ, C., Lehrbuch der allgemeinen Arithmetik. 1. Th. 2. Aufl. Leipzig, Winter. 2 Thlr.
- WIECKE, P., Algebraisches Uebungsbuch für mittlere und obere Classen höherer Unterrichtsanstalten. 1. Reihe. Berlin, G. Reimer. ¹/₄ Thlr.

LEHMANN, O., Fünfstellige Logarithmentafeln. Leipzig, Hunger. % Thir.

- FRESENIUS, F. C., Die psychologischen Grundlagen der Raumwissenschaft. Wiesbaden, Kreidel. 24 Ngr.
- Schlömlich, O., Grundzüge einer wissenschaftl. Darstellung der Geometrie des Maasses. 4. Aufl. Eisenach, Bärecke. 1¹/₄ Thlr.
- KRÜGER, J., Grundzüge der Dreiecksrechnung (Goniometrie und Trigonometrie). Leipzig, Seemann. 12 Ngr.
- UNFERDINGER, F., Ueber einige merkwürdige Formeln der sphärischen Trigonometrie. (Akad.) Wien, Gerold. 6 Ngr.

Digitized by GOOGIC

59

Literaturzeiturg.

Angewandte Mathematik.

Resarsiv, J., Lehrbuch der praktischen Geometrie. Framenfeld. Huter. 23 Thlr.
DEFERT, C. F., Tafela zur Berechnung rechtwinkliger Coordi- naten. Berlin, Springer. 2 ¹ 4 Thlr.
HANNEN, P. A., Fortgesetzte geodätische Untersuchungen, be- stehend in 10 Supplementen zur Abhandlung über die Methode der kieinsten Quadrate. Leipzig, Hirzel. 14, Thir.
HOCHSTETTLE, F. v., und A. BISCHING, Leitfaden zur beschreiben-
den Krystallographie. Wien, Braumüller. 24 Ngr.
DELAUNAY, M., Lehrbuch der analytischen Mechanik. Nach der
4. Aufl. des Originals übers. v. G. Krebs. Wiesbaden, Kreidel. 2 ¹ 3 Thlr. RHEINAUER, J., Grundriss der Mechanik fester Körper. Für die
Schule bearb. Freiburg, Schmidt.
WINKLER, E., Die Lehre von der Elasticität und Festigkeit.
1. Th., 2. Hälfte. Prag, Dominicus. 1 Thlr. 24 Ngr.
Wikke, F. H. K., Allgemeine Theorie der Turbinen. Berlin, Ernst & Korn. 1 ¹ / ₃ Thlr.
MRIMR, F., Experimentaluntersuchungen über Blasenbildung
in kreisförmig cylindrischen Röhren. 1. Th.: Die Libellen-
blasen. Marburg, Elwert. % Thir.
RRUSCH, F. E., Theorie der Cylinderlinsen. Leipzig, Teubner. 16 Ngr.
JEASER, M., Lehrbuch der mathematischen Geographie für die k. k. Neustädter Militärakademie. Wien, Seidel. 1% Thlr.
AKUELANDER, F. W. A., Astronomische Beobachtungen auf der Sternwarte zu Bonn. 7. Band, I. Abtheilung. Bonn, Marcus. pro compl. 5 Thlr.
FRIEBACH, C., Der Merkurdurchgang am 5. November 1868, nach den Angaben des Nantical-Almanac ausführlich berechnet. Graz, Leuschner & Lubensky. 12 Ngr.
Physik.
HEURNI, J., Elementarer Leitfaden der Physik. 9. Aufl. Leipzig,
Duncker & Humblot. 12 Ngr.
KAMBLY, L., Die Physik für den Schulunterricht bearbeitet.
Breslau, Hirt. % Thir.
Schuhrze, Tu., Betrachtungen über die physikalischen Lehren
vom farbigen Lichte und dessen wahrscheinlichen Ur-
sprung. Kiel, Schwers. 12 Ngr.
DITSCHEINER, L., Ucber die Anwendung des Spectralapparates zur optischen Untersuchung der Krystalle. (Akad.) Wien,
(iorold, 4 Ngr.
HUGGINS, W., Ergebnisse der Spectralanalyse in Anwendung
auf die Himmelskörper. Deutsch, mit Zusätzen v. W.Klinker-
fues. Leipzig, Quandt & Händel. 35 Thlr.
BRUUNS, C., Mcteorologische Beobachtungen, angestellt auf

dor Loipziger Universitäts - Sternwarte in den Jahren 1866 und 1867. Leipzig, Hinrichs. 1 Thlr. • Allus meteorologique de l'Observatoire impérial. Année 1867. Paris. Gauthier - Villars. 15 fres.

() ()

Literaturzeitung.

Recensionen.

Die Weltschöpfung vom Standpunkte der neuen Wissenschaft. Von SPILLER. Berlin bei Carl Duncker 1868. gr. 8. Preis 20 Ngr. Seit Kant in seiner "Allgemeinen Naturgeschichte und Theorie des Himmels" die scharfsinnige Idee der sogenannten Nebel- oder Dunsttheorie und einer perpetuirlichen Fortbildung in den Himmelsräumen, mit anderen Worten: "der Stern- und Planetenerzeugung aus kosmischem Nebel" niedergelegt hat und diese nach ihm von Laplace in der Hypothese von der Entstehung der Planeten aus kreisenden Ringen dunstförmiger Stoffe specieller ausgebildet worden ist, ist diese Hypothese bis jetzt immer noch als die beste von den Naturkundigen anerkannt geblieben. Weshalb es derselben immer noch an einer Basis gefehlt hat, ist der Umstand, dass Keine, weder die Begründer der Theorie noch Spätere auch nur irgend eins der vielen damit zusammenhängenden Probleme dem Calcül unterzogen haben, wenn man nicht etwa die Untersuchungen über das Gleichgewicht freier homogener rotirender Ellipsoide von Maclaurin, Ivory, Ramus und Jacobi, über die Mondfiguren von Roche und Vaughan, die analytischen Untersuchungen über die Stabilität der Saturnringe von Laplace, Bond und Peirce, sowie über die Gesetze des Gleichgewichts und der Bewegung freier kosmischer Ringe ohne Centralkörper hierher rechnen will. Ausser der Laplace'schen ist später eine Reihe anderer zum Theil sehr wunderlicher Hypothesen ans Licht getreten (wie z. B. die "Blasentheorie" von Gether), wodurch den astronomischen Wissenschaften wenig oder gar nicht gedient worden ist, weil sie sämmtlich als reine Phantasiegebilde jeder Erfahrung und mathematischen Begründung ermangelnd, nur auf Principien gestützt sind, aus denen sich (der Schriftsteller braucht nur etwas geistreich zu sein) alle möglichen Phänomene auf eine sehr plausible Art erklären lassen, ohne dass auch nur für einen speciellen Fall mathematisch der Beweis geführt wird, dass man für denselben auch eine physische Möglichkeit voraussetzen, dürfe. Digitized by Google

Literaturztg. d. Zeitschr. f. Math. u. Phys. XIII, 6.

Zu diesen Theorieen der Welt- und Planetenbildung fügt nun Professor Spiller in seiner Schrift eine neue, die "Abschleuderungstheorie", welche auch an dem Gebrechen leidet, dass ihr Princip mathematischphysikalischen Gesetzen widerstreitet, weshalb wir uns veranlasst sehen, dieselbe einmal vom mathematischen Standpunkte aus zu beleuchten, zumal da Spiller in seiner Schrift neben dem keck gewählten Titel: "vom Standpunkte der neuen Wissenschaft" ein altes Dogma angreift, an welches sich der Name eines Mannes knüpft, welcher in seiner Mécanique céleste und seinem Système du monde zwei auf dem Gebiete der Astronomie unsterbliche Werke hinterlassen hat. Nachdem Spiller die Laplace'sche Hypothese widerlegt zu haben meint, fährt er fort, die Weltbildungsprocesse und ihre Resultate zu demonstriren, wie man ein anderes physikalisches oder chemisches Experiment erklärt; dabei werden aber die wichtigeren Thatsachen übergangen, wahrscheinlich weil hier das Princip seinen Dienst versagt. Ich führe hier nur beispielsweise das merkwürdige Gesetz an, dass die Rotation aller Planeten und die Revolution der Monde in demselben Sinne erfolgt, wie die Revolution der Planeten und der Sonne. Dies erklärt Spiller nicht. Nach seiner Abschleuderungstheorie, die zur Bildung eines jüngeren Planeten immer die Annäherung zweier älterer Himmelskörper an einander erfordert, kann ebenso gut die Rotation um seine Axe eine rückläufige werden. Ein auf die Laplace'sche Ringhypothese gegründeter Calcul erklärt dies Gesetz sehr einfach. Die Ringe nämlich haben wegen der durch gegenseitige Störung und Reibung allmälig eintretenden gleichen Winkelgeschwindigkeit aller Massentheilchen an ihrer äusseren Peripherie eine grössere Geschwindigkeit in der Bahn, als an ihrem inneren, dem Centralkörper zugewendeten Rande. Wenn sich nun ein Ring durch Theilung auflöste, musste sich bei einem dichteren und weniger ausgedehnten Ringe eine, bei einem lockeren und zugleich weit ausgedehnten Ringe mehrere ellipsoidische Gleichgewichtsfiguren bilden, deren innere, dem Centralkörper zugewendete Seite eine in Beziehung auf ihren Massenmittelpunkt rückläufige Bewegung erhielt. Dasselbe musste bei den von der Hauptmasse abgelösten oder auch bei der Zerstörung des Gleichgewichts des Ringes abgerissenen Satelliten der Fall sein, - sie mussten ihre Revolution und Rotation in dem Sinne der Revolution und Rotation der Planeten vollenden, was in der That bei allen der Fall ist, und zwar mit grösserer oder geringerer Axenneigung gegen die Ekliptik, je nachdem die noch theilweise fortdauernde Strömung der flüssigen und luftförmigen Massen auf der Nord- oder Südseite des Ringes durch Temperatur- und Attractionsverhältnisse modificirt, eine mehr oder weniger gleich starke war. Durch analytischen Calcul sind wir im Stande, mittelst des Princips von der Erhaltung der Summe der Winkelflächen aus der bekannten Bewegung des zerstörten Körpers, Axenlage, Abplattung

Literaturzeitung.

und Umdrehungsgeschwindigkeit der neuen Gleichgewichtsfigur zu berechnen, und ebenso umgekehrt aus der neuen Figur die alte. Dies Eine wenigstens zur Vertheidigung der Laplace'schen Hypothese. Wir wollen nun aber einige Punkte der Spiller'schen Theorie selbst beleuchten. Das Einzige, worin wir mit Professor Spiller gewiss schon längst übereinstimmten, ist die Thatsache, dass die rotirende Bewegung der chaotischen Dunstkugel nicht durch seitlichen (excentrischen) Stoss, sondern durch die Verhältnisse der Gravitation, Attraction und Abkühlung oder Erwärmung hauptsächlich veranlasst worden ist. Ich wage nicht darüber zu entscheiden, ob Kant an einen momentanen und localen primitiven Stoss oder an einen Willensact des Schöpfers gedacht hat. Nun aber stellt Spiller unter Anderem folgende Behauptungen auf:

1. "Eine Folge der durch Abkühlung und Gravitation bewirkten Condensation der chaotischen Dunstkugel war die Vergrösserung der Abplattung, d. h. der Durchmesser des Aequators wuchs, während die Drehungsaxe abnahm." Wäre dieser Zusatz vermieden worden, so würde zu dem Hauptsatze nichts zu bemerken gewesen sein. Dieser aber ist ein Resultat, welches nicht von Jedem eingesehen, sondern nur auf analytischem Wege gewonnen wird. Wenn Professor Spiller dies nicht hat, sondern es blos vermuthet, so wollen wir es für ihn beweisen. Für das Rotationsellipsoid ist die Summe der Momente der Bewegungsquantität (Energie) gleich:

$$E = \frac{\omega}{5 \left(\frac{4}{3} \pi \varrho\right)^{\frac{9}{3}}} M^{\frac{9}{3}} (1 + \lambda^2)^{\frac{1}{3}} *),$$

worin ω die Winkelgeschwindigkeit, *M* die Masse, ϱ die Dichtigkeit und $\sqrt{1+\lambda^2}$ das Axenverhältniss bezeichnen. Für eine constante Masse und Energie ist also

$$\frac{\omega^3}{\varrho^2} \left(1+\lambda^2\right) = \frac{\omega_1^3}{\varrho_1^2} \left(1+\lambda_1^2\right)$$

oder

$$\frac{\omega^3}{\omega_1^{3}}\cdot\frac{1+\lambda^2}{1+\lambda_1^{2}}=\frac{\varrho^2}{\varrho_1^{2}},$$

und wenn man $\omega^2 = 2\pi/\varrho \nu$ setzt, wo f die Gravitationsconstante bedeutet, ν das Rotationsmoment,

$$\frac{\nu^3\left(1+\lambda^2\right)^2}{\nu_1^{\ 3}\left(1+\lambda_1^{\ 2}\right)^2} = \frac{\varrho}{\varrho_1}.$$

Da die Grenze der Expansion durch $\rho = 0$, die der Condensation durch $\rho = \infty$ bestimmt ist, so ist für den ersten Fall die Winkelgeschwindigkeit ω des Sphäroides gleich Null und wegen der Gleichgewichtsbedingung

^{*)} Vgl. Neue Untersuchungen über frei rotirende Flüssigkeiten im Zustande des Gleichgewichts. Kieler Universitätsschriften von 1859-160 pag. 42.00

Literaturzeitung.

$$\frac{3\lambda + \nu\lambda^3}{3 + \lambda^2} - \arctan \lambda = 0^*)$$

auch & gleich Null, mithin die Kugel die Grenzfigur der Expansion. Bei starker Expansion ist

$$\nu^{\mathfrak{s}}\,(1+\lambda^{\mathfrak{s}})^{\mathfrak{s}}=(\tfrac{4}{\mathsf{T}\,\mathsf{5}})^{\mathfrak{s}}\,\lambda^{\mathfrak{s}},$$

also

$$\varrho: \varrho_1 = \lambda_0^6: \lambda_1^6,$$

für den zweiten Fall ist ν nicht ∞ , da ν nach der sehr genauen Berechnung von Ramus^{**}) ein Maximum 0,2246657 erreicht und dann wieder bis Null abnimmt, sondern es wird $\sqrt{1+\lambda^2}$ gleich ∞ . Die Grenzfigur der Condensation, wenn diese mit dem flüssigen Aggregatzustande vereinbar wäre, ist also der Discus, eine unendlich dünne Linse und zwar von endlich grossem Aequatorialdurchmesser. Es wird demgemäss hei zunehmender Dichtigkeit die Abplattung in der That wachsen Dabei verhalten sich bei geringer Dichtigkeit die Cuben der Winkelgeschwindigkeiten wie die Quadrate der Dichtigkeiten

$$\omega_1^{\mathfrak{s}}:\omega_1^{\mathfrak{s}}=\varrho^{\mathfrak{s}}:\varrho_1^{\mathfrak{s}}.$$

Ferner folgt aus $\omega^2 = 2\pi f \rho v$, dass bei gleichen Rotationsmomenten v (es giebt deren immer zwei) die Quadrate der Winkelgeschwindigkeiten sich direct wie die Condensationen verhalten; also $\omega^2 : \omega_1^2 = \rho : \rho_1$.

Demgemäss muss also bei zunehmender Dichtigkeit der Dunstkugel sich die Rotationsgeschwindigkeit immer mehr vergrössern; indess keineswegs 'bis ins Unendliche. Es ist nämlich an der Grenze $\rho = \infty$.

$$\boldsymbol{\varphi}:\boldsymbol{\omega}_1 = \boldsymbol{\varrho}^{\boldsymbol{\varphi}}:\boldsymbol{\varrho}_1^{\boldsymbol{\varphi}} = T_1:T$$

d. h. die Winkelgeschwindigkeit wird zuletzt constant und erreicht ein Maximum, die Umdrehungszeit ein Minimum, welches bei dem Erdball ungefähr den 440000^{40 n} Theil seiner Tageslänge betragen würde. Da sich ferner aus der Theorie der Gleichgewichtsellipsoide die Relation

$$\omega:\omega_1=b_1^2:b^2$$

ergiebt, so würde an jener Grenze der Condensation der Aequatorialdurchmesser noch ungefähr 2,6 geogr. Meilen betragen; die Polaraxe aber gleich Null geworden sein. Wenn nun aber trotzdem von Spiller, der in der gedachten Vergrösserung der Rotationsgeschwindigkeit der "Mutterdunstkugel" die Hauptursache der Bildung junger Planeten und Trabanten suchen zu müssen glaubt,

2. behauptet wird, dass "bei zunehmender Rotationsgeschwindigkeit die Aequatorialaxe wuchs und endlich die Centrifugalkraft die

^{*)} Vgl. Lehrbuch der analytischen Mechanik von Duhamel. Deutsch von Dr. O. Schlömilch. Bd. II, p. 192.

^{**)} Om de ellipsoidiske Ligevaegts figurer af flydende masser. Kong. Dansk. Videnskab. Selskabs Afhandl. Kjöbenhavn 1846, XI, 111-185. zed by GOOS

die Centripetalkraft überwog", so ist beides total falsch. Spiller scheint überhaupt der Meinung zu sein, dass mit einer zunehmenden Rotationsgeschwindigkeit auch stets eine Vergrösserung der Abplattung verbunden sei. Dies ist bei den Ellipsoiden, deren Axenverhältniss den Werth 2,7198 übersteigt, gerade umgekehrt, und ferner: beide Axen werden kürzer und die Fallgeschwindigkeit am Aequator nimmt rasch zu statt abzunehmen, wie wir an einem einfachen Zahlenbeispiele beweisen wollen. Für das Erdsphäroid ist bekanntlich b: a = 301: 300; für ein homogenes würde b: a = 231: 230 sein. Dasselbe möge sich auf das 8 fache seiner Dichtigkeit condensiren, so ist die constante Masse

$$M = \frac{4}{3} a b^2 \pi \varrho = \frac{4}{3} a_1 b_1^2 \pi \varrho_1$$

und

$$\varrho: \varrho_1 = a_1 b_1^2: a b^2: = \left(\frac{b^2}{a^2} - 1\right)^3: \left(\frac{b_1^2}{a_1^2} - 1\right)^3 = 1:8,$$

also

$$b_1^{2}: a_1^{2} = 2\left(\frac{301}{300}\right)^{2} - 1 = 1,0133,$$

 $b^{2}: a^{2} = 1,0067.$

Ferner

$$b_{1}^{2}a^{2}:b^{2}a_{1}^{2} = 1,0066:1,$$

$$b_{1}^{2}a_{1}:b^{2}a = 0,1250:1,$$

$$a^{3}:a_{1}^{3} = 8,0550; a:a_{1} = 2,0046;$$

$$b:b_{1} = 1,9989,$$

$$b:a = \sqrt{1+\lambda^{2}} = 1,0033; b_{1}:a_{1} = \sqrt{1+\lambda^{2}} = 1,0087.$$

Hieraus folgt, dass sich der Polarhalbmesser um mehr, der Aequatorialhalbmesser um etwas weniger als die Hälfte verkürzt hat. Dies Resultat ergiebt sich noch einfacher aus der Relation

$$\lambda^6:\lambda_1^6=\varrho:\varrho_1$$

Betrug nun weiter vorher die Gravitation am Aequator 9,8133, die Schwungkraft daselbst 0,0339, so beträgt jetzt die Gravitation nahezu 39^m, die Schwungkraft aber nur 0,2712. Wie oben gezeigt, ist nahezu

$$\omega^{a}: \omega_{1}^{a} = \varrho^{2}: \varrho_{1}^{2} = 1:64,$$

also

$$\omega_1 = \omega \sqrt[p]{64} = 4 \omega.$$

Die Winkelgeschwindigkeit ist also nach der Condensation die vierfache der früheren und die Erde würde sich statt in 24 Stunden schon in 6 Stunden einmal um ihre Axe drehen. Bezeichnen k und k_i die Schwungkräfte am Aequator, so ist

$$k: k_1 = \omega^2 r: \omega_1^2 r_1 = 1:8.$$

Hieraus folgt denn nun (wahrscheinlich zum grössten Schrecken des Herrn Prof. Spiller), dass die Zunahme der Schwerkraft (Fallgeschwindigkeit) am Aequator sich trotz der Zunahme der Schwungkraft fast auf

das Vierfache gesteigert hat, also nun an seine "Abschleuderung" erst recht nicht zu denken ist. Wir bemerken nur beiläufig, dass aus der Theorie des Gleichgewichts der Ellipsoide überhaupt folgt, dass die Fallgeschwindigkeit am Aequator bei zunehmender Condensation ein Maximum erreicht bei $\sqrt{1+\lambda^2} = 7,07$, dass die Schwungkraft die Gravitation niemals überwinden kann, sondern ihr nur an den beiden Grenzen der Dilatation der Stoffe gleich wird. Der Beweis würde hier zu weit führen. Trotz dieser Thatsachen ist nach Spiller

3. der Hauptgrund fürdie Entstehung und Absonderung der Planeten die Abplattung der Mutterdunstkugel und die Vermehrung ihrer Drehungsgeschwindigkeit bis zum Ueberwiegen (!) der Fliehkraft über die Centralkraft am Aequator. Da Prof. Spiller aber doch selbst einen geringen Zweifel an der glücklichen Entbindung der Mutterkugel hegt, so lässt er einen anderen in der Nähe (?) befindlichen Weltkörper als Hebamme fungiren und die nähere Veranlassung zur Abschleuderung oder Geburt durch Erregung einer Fluthwelle geben. Ein Berichterstatter des "Ausland" Nr. 24 nennt dies "geniale" Gedanken und Herrn Prof. Spiller einen "neuen grossen Eroberer im Dienste des menschlichen Geistes".

In gleich unkritischer Weise verfährt Spiller in dem übrigen Theile seiner Schrift. Falsch wie die vorigen sind folgende Sätze:

4. Nach jeder Abschleuderung musste der Centralkörper sich etwas langsamer bewegen. Dies ist doch etwas zu menschlich gedacht und tritt in Widerspruch mit dem Princip von der Erhaltung der Summe der Bewegungsquantität; denn es kommt vorzugsweise darauf an, von woher die Fluthwelle ihren Ursprung nimmt, ob sie von den Polen zuströmt, oder ob sie mit einer compacteren Masse vom Aequator losgerissen wird. In letzterem Falle kann die Rotationsgeschwindigkeit abnehmen, im anderen aber auch wachsen.

5. "Der Schwerpunkt des Mondes ist weiter von der Erde entfernt, als sein geometrischer Mittelpunkt"; es ist gerade umgekehrt — oder will Prof. Spiller den Cometen eine Gesetzwidrigkeit zum Vorwurf machen ? sonst muss er uns doch erklären, warum ihr Kopf und nicht der Schweif der Sonne zugewendet ist. Aus der Theorie des Gleichgewichts der Flüssigkeiten folgt aber, dass der Massenmittelpunkt eines frei schwebenden Sphäroides stets der Ort des grössten hydrostatischen Druckcs ist. Bekanntlich ferner ist es die grosse Nähe der Monde, welche nach Roche die verlängerten Ellipsoide erzeugt, deren grösste Axe gegen den Planeten gerichtet ist. Der Theorie der Saturnringe ist Prof. Spiller ebenfalls unkundig. Es liegen die Saturnringe grösstentheils ausserhalb der Grenze der Stabilität sphäroidischer Gleichgewichtsfiguren — darum konnten in diesem Abstande vom Saturn keine Monde existiren, d. h. keine Sphäroide gebildet werden, wenn auch die Masse den Keplerschen Gesetzen folgte, aber ohne statischen Zusammenhang — ein Meteoritenschwarm oder eine im ewigen Flusse verharrende flüssige oder luftförmige Masse. Spiller findet aber leicht eine Erklärung ihrer Entstehung: die "Zähigkeit" der Saturnmasse ist daran schuld, und doch ist der Saturn der am wenigsten dichte von allen Planeten; seine Dichtigkeit ist nur ³/₄ von der des Wassers. Behauptet Spiller: die Saturnmasse ist von Pech, also zähe, so sagen wir: sie ist von Petroleum, also flüchtig.

Und nun noch Eins: Prof. Spiller führt

6. auch das bekannte Beispiel wieder an, dass bei unserer Erde am Acquator die Flichkraft der Centripetalkraft gleich werde, wenn sie 17 Mal schneller um ihre Axe rotire, ohne aber die Ursache der Beschleunigung anzugeben. Nun kann diese Beschleunigung nur durch zwei Ursachen herbeigeführt werden, entweder durch einen excentrischen Impuls, d. i. durch eine Vermehrung der Energie, oder durch Condensation der Masse. Es folgt nun aber aus der Theorie der Gleichgewichtsfiguren, dass bei der Annahme einer constanten Dichtigkeit und der wachsenden Euergie einer Flüssigkeitsmasse, als welches wir denn doch das Erdsphäroid im Grossen und Ganzen anzusehen haben, das gedachte Phänomen nie eintreten kann, sondern dass das Sphäroid sich immer mehr abplattet und die Rotation bei v = 0,2240657 ihr Maximum und zwar fast genau nur das Zehnfache der wirklichen erreichen kann, worauf sie wieder trotz jedes beliebigen Impulses mehr und mehr abnehmen würde. Die Centripetalkraft bleibt aber so lange grösser, als die Centrifugalkraft, als & nicht gleich ∞ ist. Bei der Annahme einer constanten Energie und einer wachsenden Dichtigkeit durch Abkühlung oder Druck kann die Rotationsgeschwindigkeit des Erdsphäroids auf das 440000 fache des jetzigen gebracht werden, ohne aber dass die Fallgeschwindigkeit gleich Null oder gar negativ werden könnte.

Endlich widerspricht die wunderliche Annahme, die ja nicht mehr neu ist, nämlich, dass die Erde "hohl" sei, allen hydrostatischen Gesetzen, und erinnert an die Gether'sche Blasentheorie. Die Gesetze des hydrostatischen Gleichgewichts hohler Sphäroide sind bereits von mehreren Physikern dem Calcul unterbreitet worden, um hierüber weiter Worte zu verlieren. Wenn eine Theorie wie die Spiller'sche auf so unsicherer Basis beruht und ganz specifisch ein Product der Phantasie ist, entblösst von Anschauung, Erfahrung und analytischem Calcul, so thun wir doch wohl besser, bei der alten Hypothese zu bleiben, bis Jemand eine neue, aber mathematisch begründete aufstellt.

LUDWIG MATTHIESSEN.

Bibliographie

vom 15. October bis 15. November 1868.

Periodische Schriften.

- Sitzungsberichte der Königl. Bayer. Akademie der Wissensch. 1868. II. 1. u. 2. Heft. München, Franz. & 16 Ngr.
- Vierteljahrsschrift der naturforschenden Gesellschaft in Zürich; redig. v. R. Wolf. 13. Jahrg. 1. Heft. Zürich, Höhr.

- Archiv der Mathematik und Physik, herausgeg. von J. A. Grunert. 49. Thl. 1. Heft. Greifswald, Koch. pro compl. 3 Thlr.
- Bibliotheca historico-naturalis, physico-chemica et mathematica. Herausgeg. von H. Guthe. 18. Jahrg. 1. Heft, Januar bis Juli 1868. Göttingen, Vandenhoeck & Ruprecht. 7 Ngr.

Reine Mathematik.

- SERRET, J. A., Handbuch der höheren Algebra. Deutsch bearb. von G. Wertheim. 2. Bd. Leipzig, Teubner. 2% Thlr.
- BALTZER, R., Die Elemente der Mathematik. 1. Bd. Arithmetik und Algebra. 3. Aufl. Leipzig, Hirzel. 14 Thlr.
- SOLIN, J. M., Ueberdie Normalen fläche zum dreiachsigen Ellipsoide länge einer Ellipse des Hanptsystems. Prag, Calve. % Thlr.

BINDER, Das Malfatti'sche Problem. Tübingen, Fues. 4/2 Thlr.

- LANGE, Aufgaben aus der Elementargeometrie. 2. Heft. Berlin, Stilke & van Muyden. % Thlr.
- SPIEKER, TH., Lehrbuch der ebenen Geometrie. 3. Aufl. Potsdam, Riegel. 5/6 Thlr.
- NAGEL, CH. H., Lehrbuch der ebenen Geometrie. 12. Aufl. Ulm, Wohler. % Thlr.
- FOCKE, M., und M. KRASS, Lehrbuch der Geometrie für höhere Lehranstalten. 1. Thl. Planimetrie. Münster, Coppenrath. 7/19 Thlr.
- KAMBLY, L., Die Elementarmathematik. 1. Thl. Arithmetik. 2. Thl. Planimetrie. 10. u. 18. Aufl. Breslau, Hirt. à 12⁴/₂ Ngr.
- BAUMANN, J., Die Lehren von Raum, Zeit und Mathematik in der neueren Philosophie. 1. Bd. Berlin, G. Reimer. 24/2 Thlr.

Angewandte Mathematik.

- BREYMANN, C., Sammlung geodätischer Aufgaben. Wien, Braumüller. 24 Ngr.
- Rонк, R., Tafeln zur Berechnung relativer Höhen. Bern, Jent & Reinert. 2 Thlr.
- Anleitung zur Einrichtung und zum Gebrauche des Polarplanimeters, insbesondere bei Anwendung des Metermaasses. Berlin, Geh. Oberhofbuchdruckerei. 2½ Ngr.
- HÄNEL, v., Zur Theorie der Tonnengewölbe. Tübingen, Fues. 9Ngr.
- LIGOWSKI, W., Taschenbuch der Mechanik (Phoronomie, Statik, Dynamik). Berlin, Ernst & Korn. % Thlr.
- Evers, A., and J. MERRIFIELD, Navigation and nautical astronomy. London, Longmans. 14 sh.

Physik.

DEHMS, F., Uebereine Reproduction der Siemens'schen Widerstandseinheit. Berlin, Ernst & Korn. % Thlr.

Digitized by GOOGLE

pro compl. 3 Thlr.

Mathematisches Abhandlungsregister.

1867.

Zweite Hälfte: 1. Juli bis 31. December.

Akustik.

Vergl. Wärmelehre 417.

Analytische Geometrie der Ebene.

193. Ueber einige Curven höheren Grades. Hochheim. Grun. Archiv XLVII, 121. 191. On a property of curves which fulfil the condition $\frac{d^2 \varphi}{dx^2} + \frac{d^2 \varphi}{dy^2} = 0$. Rankine. Phil.

Mag. XXXIV, 65.

- 195. Die vier merkwürdigen Punkte des Dreiecks analytisch behandelt. Metzler. Grun. Archiv XLVII, 243.
- 196. Lieu engendré au moyen de deux circonférences. Kaher Bey. N. ann. math. XXVI, 515.
- 197. Discussion de la courbe $13 y = p (25 x 12 x^3)$. Weisch. N. ann. math. XXVI, 377. Vergl. Bipolarcoordinaten. Brennpunkte. Ellipse. Hyperbel. Kegelschnitte. Parabel.

Analytische Geometrie des Raumes.

- 198. Grundzüge von Plücker's neuer Raumgeometrie. Dronke. Zeitschr. Math. Phys. XII, 481.
- 199. Sulle teoria delle coordinate curvilinee. Brioschi. Annali mat. Ser. II, I, 1.
- 200. Sulla coordinate curvilinee d'una superficie e dello spazio. Codazzi. Annali mat. Ser. 11, 1, 293.
- 201. De la courbure inclinée d'un système de lignes coordonnées et du rôle de cette courbure dans la théorie des lignes tracées sur une surface. Aoust, Compt. rend. LXV, 814.
- 202. Bemerkungen über Raumcurven. Enneper. Zeitschr. Math. Phys. XII, 510.
- 203. Die Winkel zweier Ebenen auszudrücken durch ihre Parameter auf drei schiefwinkligen Axen. Junghann. Zeitschr. Math. Phys. XII, 350.
- 204. On donne un cylindre droit, une hélice tracée sur ce cylindre et une sphère inscrite. Une droite horizontale se meut en s'appuyant sur l'hélice et reste tangente à la sphère inscrite étudier la surface engendrée par la droite. Le page. N. ann. math. XXVI, 504.

Vergl. Ellipsoïd. Oberflächen. Oberflächen zweiter Ordnung.

Astronomie.

- 205. Sur les orbites des comètes. Lo emy. Compt. rend. LXV, 458.
- 206. On the change that would be superinduced upon an Elliptic Orbit if the intensity of the force of gravity were influenced by the centripetal velocity of the Orbital Body. Waterston. Phil. Mag. XXXIV, 55.
- 207. Zur Entwicklung der Störungsfunction. Gylden. Astr. Nachr. LXX, 151.

- 208. Sur l'accélération séculaire du mouvement de la Lune. Puiseux. Compt. rend. LXIV, 118.
- 209. Lois de l'insolution. Lumbert. Compt. rend. LXIV, 156. Vergl. Optik.

Attraction.

210. Geometrischer Ort aller der Punkte, welche von einem Ellipsoide gleich stark angezogen werden. S. Spitzer. Grun. Archiv XLVII, 82. Vergl. Geodäsie 256. Potential.

B.

Bernoulli'sche Zahlen.

211. Développement des séries à termes alternativement positifs et négatifs à l'aide des nombres de Bernoulli. Thoman. Compt. rend. LXIV, 655.

Bestimmte Integrale.

- 212. On the conversion of integrals. Cockle. Phil. Mag. XXXIII, 537; XXXIV, 442.
- 213. Sulle relazioni tra diversi integrali definiti che giovano ad esprimere la soluzione generale della equazione di Riccati. Schlaefli. Annali mat. Ser. II, I, 232.
- 214. Zur Theorie der bestimmten Integrale und der Gammafunctionen. Matthiessen. Zeitschr. Math. Phys. XII, 302.
- 215. Sur l'intégrale $\int \frac{x^m d x}{\sqrt{1-x^2}}$. Hermite. Annali mat. Ser. II, I, 155.
- 216. Sur l'intégrale double $\int \int (\theta \sin \theta) dx dy$. Crofton. Compt. rend. LXV, 994. Vergl. Reihen 399.

Bipolarcoordinaten.

- 217. Einfache Construction der Berührungslinie an die Lemniscate. Cantor. Zeitschr. Math. Phys. XII, 428. [Vergl. No. 23.]
- 218. Ueber orthogonale Trajectorien in bipolaren Coordinaten. Baur. Zeitschr. Math. Phys. XII, 430. [Vergl. No. 23.]

Biquadratische Reste.

219. Mémoire sur lu théorie des résidus biquadratiques. Emile Mathieu. Journ. mathém. XXXII, 377. — Compt. rend. LXIV, 568.

Brennpunkte.

- 220. Lieu des foyers des coniques inscrites dans un parallélogramme donné. Lippmann. N. ann. math. XXVI, 456.
- 221. Lieu des foyers des coniques tangentes à quatre droites données. Lippmann. N. ann. muth. XXVI, 496.

C.

Capillarität.

222. Sur l'écoulement des liquides dans les tubes capillaires. Boussinesq. Compt. rend. LXV, 48.

Combinatorik.

223. On inverse orthogonal matrices. Sylvester. Phil. Mag. XXXIV, 461.

Cubatur.

224. Sur les volumes trapézoïdaux. Giard. N. ann. math. XXVI, 408. Vergl. Nautik, Tetracder 412.

Cycloide.

225. L'enveloppe des droites coupant une cycloide sous un angle constant est une cycloide égule. Rouquet. N. ann. math. XXVI, 380.

Literaturzeitung.

D.

Determinanten.

Vergl. Gleichungen 279. Sturm'sche Functionen.

Determinanten in geometrischer Anwendung.

- 226. Coniques circonscrites à un triangle de manière à ce que les normales aux trois sommets pussent par un même point. Lefebure & Miniscloux. N. ann. math. XXVI, 510.
- 227. Démonstration nouvelle du théorème de Mr. Casey par rapport aux cercles qui touchent à trois cercles donnés. Cayley. Annali mat. Ser. II, 1, 132.
- 228. Einleitung in die Theorie der cubischen Kegelschnitte. C. A. v. Drach. Zeitschr. Math. Phys. XII, Supplement 73.
- 229. Ueber die 4- und 5 punktige Berührung einer Geraden mit einer algebraischen Fläche. Gordan. Zeitschr. Math. Phys. XII, 495.

Differentialgleichungen.

- 230. Beweis eines die Pfaff'sche Integrationsmothode betreffenden Lehrsatzes. Zajaczkowski. Grun. Archiv XLVII, 196.
- 231. Integration einer Differentialgleichung, welche durch sämmtliche Differentialquotienten der abhängig Veränderlichen mit constanten Factoren gleich dem *x* fachen eines Differentialquotienten sich bildet. S. Spitzer. Grun. Archiv XLVII, 110.
- 232. Ueber die Integration der linearen Differentialgleichungen nter Ordnung mit constanten Coefficienten. Tychsen. Zeitschr. Math. Phys. XII, 507.
- 233. Intégration de l'équation $(y+z) \frac{dz}{dx} + (z+x) \frac{dz}{dy} = x + y$. Gigon. N. ann. math. XXVI, 398.
- 234. Intégration des équations simultanées $\frac{dy}{dx} + u'y v'z = 0$, $\frac{dz}{dx} + v'y + u'z = 0$, u et vétant des fonctions données de x. Gigon. N. com. math. XXVI, 551. — Pépin ibid. 553.
- 235. Intégration d'un système d'équations différentielles simultanées en nombre quelconque de premier ordre linéaires et circulairement symétriques par rapport à toutes les variables dépendantes. Gigon, N. ann. math. XXVI, 400. Voral analyticable Cocometrie des Filense 104. Particulate Literrale 212
 - Vergl. analytische Geometrie der Ebene 194. Bestimmte Integrale 213.

Differentialquotienten.

236. Ueber "begrenzte" Derivationen und deren Anwendung. Grünwald. Zeitschr. Math. Phys. XII, 441.

E.

Electrodynamik.

- 237. A contribution to electrodynamics. Riemann. Phil. Mag. XXXIV, 368.
- 238. On the mechanical theory of the electrical current. Gerlach. Phil. Mag. XXXIV, 382.
- 239. On the identity of the vibrations of light with electrical currents. Lorenz. Phil. Mag. XXXII', 287.
- 240. Ueber die Verwendung einer gemeinschaftlichen Batterie für vielfache Schliessungskreise. Militzer. Wien. Akad.-Ber. LIV, 352.

Ellipse.

- 241. Den Durchschnittspunkt zweier Berührungelinien der Ellipse zu finden. Grunert. Grun. Archiv XLVII, 227.
- 242. Ueber einen Satz von dem der Ellipse eingeschriebenen Dreiecke. Grunert. Grun. Archiv XLVII, 462.
- 243. Geometrischer Ort des Punktes, von welchem zwei Berührungslinien mit gleich grosser Berührungsschne an die Ellipse gezogen werden. Grunert. Grun. Archiv XLVII, 477.

71

Literaturzeitung.

- 244. Ueber einige Sätze von der Ellipse. Grunert. Grun. Archiv XLVII, 480.
- 245. Sur des parallélogrammes inscrits dans une ellipse. Annequin & Morel. N. ann. math. XXVI, 420.
- 246. Les cercles circonscrits aux différents triangles sémi-réguliers inscrits dans une ellipse ont pour centre radical commun le centre de cette ellipse. Pellet N. ann. math. XXVI, 466. Vergl. Rectification 392.

Ellipsoid.

- 247. Cones de révolution dont le sommet est un point de la surface d'un ellipsoïde et les directrices les sections du même ellipsoïde avec des plans passant par une droite donnée. Ellie. N. ann. math. XXVI, 457. - Welsch ibid. 459. - Duvivier ibid. 462.
- 248. Ueber eine das Ellipsoid betreffende Aufgabe. Grunert. Grun. Archiv XLVII, 204.

Vergl. Attraction. Normalen. Wärmelehre 420.

Elliptische Transcendenten.

- 249. Sur les formules d'addition des fonctions elliptiques. Björling. Grun. Archiv XLVII, 399.
- 250. Sur la transformation cubique d'une fonction elliptique. Cayley. Compt. rend. LXIV, 560.

F.

Factorenfolge.

251. Somme des n premiers produits de p nombres entiers consécutifs. Laisant, N. ann. math. XXVI, 366.

Functionen.

- 252. Bestimmung der symmetrischen Function $(x_0^n + x_{i_1}^n)(x_0^n + x_{i_2}^n)(x_0^n + x_{i_3}^n)$ $\dots (x_{m-2}^{n} + x_{m-1}^{n})$ der Wurzeln einer Gleichung vom m^{ten} Grade. Matthiessen. Zeitschr. Math. Phys. XII, 322.
- 253. Des fonctions $\varphi(\mathbf{x}) = \Sigma \frac{\mathbf{x}^n}{1 \cdot 2 \cdot \cdot (2n)} et \varphi_1(\mathbf{x}) = \Sigma \frac{\mathbf{x}^n}{1 \cdot 2 \cdot \cdot (2n+1)}$. Grossoupre. N. ann. math. XXVI. 374
- 254. Propriétés de la fonction x_n donnée par l'équation $x_n = (p + \sqrt{p^2 + q x_{n-1}})^{\frac{1}{2}}$ ajoutant que p et q sont positifs et $x_1 = \sqrt{p}$. Berquet & Jouffrey. N. ann. math. XXVI, 323.
 - Vergl. Elliptische Transcendenten. Factorenfolge. Gammafunctionen. Homogene Functionen. Kugelfunctionen. Laplace'sche Functionen. Logarithmen. Sturm'sche Functionen.

G.

Gammafunctionen.

Vergl. Bestimmte Integrale 214.

Geodäzie.

- 255. On the figure of the earth as obtained (rom geodetic data. Pratt. 1'hil. Mag. XXXIII, 10, 145, 261, 332, 445.
- 256. De l'effet des attractions locales sur les longitudes et les azimuts; application d'un nouveau théorème à l'étude de la figure de la terre. Yvon Villarceau. Journ. Mathém. XXXII, 65.
- 267. Messung auf der kurzen Basis. L. v. Pfeil. Grun. Archiv XLVII, 49.
 259. Ein Punkt auf einer gegebenen Geraden soll aus dem daselbst gemessenen Winkel zwischen 2 ausserhalb der Geraden liegenden Punkten bestimmt werden. Baur. Zeitschr. Math. Phys. XII, 505. Vergl. Methode der kleinsten Quadrate.

Digitized by Google

 $\mathbf{72}$

Geometrie (descriptive).

- 259. Ueber die räumliche Projection (Reliefperspective), insbesondere diejenige der Kugel. Morstadt. Zeitschr. Math. Phys. XII, 326.
- 260. Die Grenzebene. Anton. Wien. Akad. Ber. LIV, 230.
- 201. Beweis von Pohlke's Fundamentalsatz der Axonometrie. Reye, Zeitschr. Math. Phys. XII, 433.

Geometrie (höhere).

- 262. Einige allgemeine Sätze über algebraische Curven. Eckardt. Zeitschr. Math. Phys. XII, 352. [Vergl. Bd. XI, No. 225.]
- 263. Sur les courbes exceptionelles. Chasles. Compt. rend. LXIV, 799. Cayley, Cremona, Hirstibid. 1079.
- 264. Sur une espèce particulière de surfaces et de courbes algébriques et sur des propriétés générales des courbes du quatrième ordre. De Hunyady. Compt. rend. LXIV, 218, 497.

Vergl. Krümmung. Normalen.

Geschichte der Mathematik.

- 265. Sur un papyrus egyptien contemporain de Salomon contenant un fragment d'un traité de géométrie appliquée à l'arpentage. Lenormant. Compt. rend, LXV, 903. 206. Ueber die παφαβολή des Pythagoras. Wex. Grun. Archiv XLVII, 146. 267. Platon's Geometrie im Menon. Wex. Grun. Archiv XLVII, 131.

- 268. Euclid und sein Jahrhundert. Cantor. Zeitschr. Math. Phys. XII, Supplem. 1.
- 269. Sur le Calcul de Victorius et le Commentaire d'Abbon. Chastes. Compt. rend. LXIV, 1059.
- 270. Sur une édition de l'ouvrage Arabe, Introduction au calcul Gobâri et Hamâi". Chasles. Compt. rend. LXIV, 82.
- 271. Débats entre Mr. Chasles et divers autres savants sur la question si Pascal a pu connaitre la loi d'attraction Compt. rend. LXV, 89 - 1060.
- 272. Sur l'établissement des Acudémies. Chasles. Compt. rend. LXV, 49.
- 273. Huygens, der Erfinder des Reversionspendels. Grunert. Grun. Archiv XLVII, 119. '
- 274. Sur l'origine de la découverte du théorème de Sturm. Duhamel. N. ann. math. XX*VI*, 427.
- 275. Michael Forady, his life and works. De la Rive. Phil. Mag. XXXIV, 409.
- 276. Nekrolog von Georg Merz + 12. Januar 1867. S. Merz. Astr. Nachr. LXX, 361.
- 277. Nekrolog von Valz + 22. Februar 1867. Tempel. Astr. Nachr. LXIX, 13.
- 278. Nekrolog von Eugène Prouhet. Gérono. N. ann. math. XXVI, 385.

Gleichungen.

- 279. Mémoire sur la résolution algébrique des équations. Camille Jordan. Journ. Mathém. XXXII, 109. — Compt. rend. LXIV, 269, 586, 1179.
- 280. On the order of the conditions that an algebraical equation may have a set of multiple roots. S. Roberts. Phil. Mag. XXXIII, 530.
- 281. Sur les racines de l'équation F(x) = 0 et de l'équation $F(x) k \cdot F'(x) = 0$. Realis. N. ann. math. XXVI, 415.
- 282. Résolution graphique des équations numériques d'un degré quelconque à une inconnue. Lill. Compl. rend. LXV, 854. - N. ann. math. XXVI, 359.
- 283. Sur la simplification et la vérification des calculs relatifs au théorème du Sturm. Ho usel. N. ann. math. XXV1, 351.
- 284. Ueber ein die cubischen Gleichungen betreffendes Problem. Matthiessen. Grun. Archiv XLVII, 460. [Vergl. No. 81.]
- 285. Résolution trigonométrique d'une équation du troisième degré. De Virieu. N. ann. math. XXVI, 444.
- 286. Ueber die Beurtheilung der Wurzeln einer biquadratischen Gleichung. Kerz. Grun. Archiv XLVII, 363. [Vergl. Bd. XII No. 275.]
- 287. La soluzione più generale delle equazioni del quinto grado. Brioschi. Annali mat. Ser. 11, 1, 222.
- 288. Sur les équations du cinquième degré. Michael Roberts. Annali mat. Ser. II, I, 135. [Vergl. No. 83.]

- 280 Umformung von $z^5 a z^4 + b z^3 c z^2 + d z e = 0$ in $y^5 + y + 1 = 0$ mittelst Tschirnhausen'scher Substitutionen. Sievers. Astr. Nachr. LXX, 353.
- Sur l'équation du sixième degré, Joubert. Compt. rend. LXIV, 1025, 1081, 1237.
 Sur un théorème de M. Hermite relatif à la transformation des équations. Combescure. Compt. rend. LXIV, 174.
- 292. Sur deux équations U=0 et V=0 desquelles on tire la même équation comme résult tant de l'élimination de certaines variables entre les équations données et leurs dérivées. Laisunt. N. ann. math. XXVI, 473.
- 293. Auflösung der Gleichungen $x^2+y^2+z^2=a$, x+y+z=b, y-z=c. Grunert. Grun. Archiv XLVII, 241.
- 294. Einfachste Auflösung der Gleichungen $x^3 + y^3 = a$, $x^2y + xy^2 = b$. Grunert. Grun. Archiv XLVII, 118.

Vergl. Combinatorik. Functionen 252. Geschichte der Mathematik 274. Imaginäres 308.

Н.

Homogene Functionen.

- 295. Les invariants et les covariants en qualité de critères pour les racines d'une équation. Schramm. Annali mat. Ser. 11, 1, 259.
- 296. Sulla rappresentazione tipica delle forme binarie. Clebsch & Gordan. Annuli mat. Ser. 11, 1, 23.
- 297. Sull'equazione modulare della trasformazione di quinto ordine. Gordan. Annal. mat. Ser.. II, 1, 367.
- 298. Sur les formes binuires du sixième degré. Clebsch & Gordan. Compt. rend. LXIV, 582.
- 299. Il discriminante delle forme binarie del sesto grado. Brioschi. Annati mat. Ser. II. 1, 159.

Vergl. Quadratische Formen.

Hydrodynamik.

- 300. Sur la stabilité de l'équilibre des corps flottants. Jordan. Annali mat. Ser. II, I, 170.
- 301. Études sur l'écoulement et le mouvement des eaux. Gauchier. Compt. rend. LXIV, 818.
- 302. On the dynamical theory of deep-sea-tides and the effect of tidal friction. Heath. Phil. Mag. XXXIII, 165, 400. — Stone ibid. 318.

Hyperbel.

- 303. Construction de l'hyperbole. Habich. N. ann math. XXVI, 446.
- 304. Ueber eine Eigenschaft der Hyperbel. Barsky. Grun. Archiv XLVII, 235. [Vergl. No. 90.]
- 305. Sur les hyperboles ayant pour asymptote une droite donnée et tangentes à une seconde droite à un point fixe. Cayla. N. ann. math. XXVI, 489.
- 306. Lieu des foyers d'une hyperbole équilatère tangente et concentrique à une ellipse donnée. Ravon. N. ann. math. XXVI, 424.

I.

Imagināres.

- 307. Delle variabili complesse sopra una superficie qualunque. Beltrami. Annali mat. Ser. II, 1, 329.
- 308. Criterium pour savoir si une équation U=0 a des racines imaginaires. Pellet. N. ann. math. XXVI, 517.
- 309. Ueber scheinbare Unstetigkeit geometrischer Constructionen, welche durch imaginäre Elemente derselben verursacht wird. Wiener. Zeitschr. Math. Phys. XII, 375.

Integrationen.

310. Sur l'integration de quelques fonctions contenant un radical du second degré. Ko e hler. N. ann math. XXVI, 448.

ĸ.

Kegelschnitte.

- 311. Construction der Directrix eines Kegelschnittes. Curtze. Grun. Archiv XLVII, 358.
- 312. Propriété d'une conique circonscrite à un triangle. Driant. N. ann. math. XXVI. 327.
- 313. Théorème sur un triangle inscrit à une conique. Willière de Thuin. N. aun math. XXVI, 556. — Koehler ibid. 557.
- 314. Ueber das einem Kegelschnitte eingeschriebene Viereck. Curtze. Grun. Archiv XLVII, 356.
- 315. Sur la théorie des systèmes de coniques. Salvatore Dino. Compt. rend. LXV, 499. 316. Théorèmes sur les coniques homofocales. Volpicebli. Compt. rend. LXIV, 224.
- 317. Sur les coniques conjuguées par rupport à un triangle. Painvin. N. ann, math. XXVI, 433.

Vergl. Brennpunkte. Ellipse. Hyperbel. Imaginares 309. Kreis. Parabel.

Kreis.

- 318. Sur une transformation du théorème de Ptolémée et sur une relation analogue dans la sphère. Fouret. N. ann, math. XXVI, 497.
- 319. Gegeben sind 3 Punktenpaare. Man soll einen solchen Kreis construiren, dass dieselben in Bezug auf ihn conjugirte sind. Fuhrmann. Grun. Archiv XLVII, 47.
- 320. Ueber einen Satz vom Kreise. Grunert. Grun. Archiv XLVII, 468.
- 321. Décrire un cercle qui rencontre 3 droites ou 3 circonférences de manière que les cordes interceptées soient égales à une longueur donnée. De Villepin. N. ann. math. XXVI, 370.
- 322. Ueber die ausgezeichneten Kreise des Dreiecks. Kücker. Gran. Archiv XLVII, I.
- 323. Placer sur trois circonférences données les sommets d'un triangle dont les côtés soient parallèles aux droites qui unissent deux à deux les centres de ces circonférences. Fornasari, N. ann. math. XXVI, 476.
- 324. Théorème sur quatre circonférences Geoffroy. N. ann. math. XXVI, 559. Macé ibid. 581.
 - Vergl. Determinanten in geometrischer Anwendung 227. Ellipse 246. Rectification 390, 391.

Krümmung.

325. Détermination géométrique, pour un point de la surface des ondes, de la normale, des centres de courbure principaux et des directions des lignes de courbure. Mannheim. Compt. rend. LXIV, 170, 268. Vergl. Schwerpunkt.

Krystallographie.

326. Ueber einen besonderen Fall anomaler Flächenneigung beim Apatit. Purgold.. Zeitschr. Math. Phys. XII, 340.

Kugelfunctionen.

327. Sopra le funzioni sferiche, Betti. Annali mat. Ser. II, I, 81.

L.

Laplace'sche Functionen.

328. Alcune osservazioni intorno alle funzioni di Laplace. Schlaefli. Annali mat. Ser. II, I, 243. Digitized by Google

Lemniscate.

Vergl. Bipolarcoordinaten 217.

Logarithmen.

329. Sur la recherche d'un logarithme isolé avec un grand nombre de décimales. Lefort. N. ann. math. XXVI, 308.

M.

Maxima und Minima.

330. Ueber das Maximum oder Minimum der Summe der positiven und negativen Quadrate der Abstände eines Punktes von 3 Geraden einer Ebene. Wetzig. Zeitschr. Math. Phys. XII, 281. [Vergl. Bd. IX, No. 130.] Vergl. Optik 363. Variationsrechnung.

Mechanik.

- 331. Ueber die Bestimmung eines Punktes in der Richtungslinie der Resultirenden eines beliebigen Systems von Kräften. Grunert. Grun. Archiv XLVII, 164.
- 332. A new altempt to determine the resultant of two pressures on a fixed point. Keely. Phil. Mag. XXXIV, 354.
- 333. Sur la théorie moléculaire des corps. Guldberg. Compt. rend. LXV, 941.
- 334. Sur l'action réciproque de deux molécules. Boussinesq. Compt. rend. LXV, 41.
 335. Équations des petits mouvements des milieux isotropes comprimés. Boussinesq. Compt. rend. XLV, 107.
- 336. Sur les forces centrifuges mises en usage par Poinsot dans sa théorie de la rotation des corps. Breton (des Champs). N. ann. math. XXVI, 362.
- 337. Sur un théorème de Jacobi. Bresse. Compt. rend. LXV, 1085.
- 338. Mouvements relatifs à la surface de la terre. Page. N. ann. math. XXVI, 357, 481. [Vergl. No. 131.]
- 339. Mouvement d'un point materiel pesant sur une parabole tournante autour de son axe. Dieu. N. ann. math. XXVI, 302.
- 340. Mouvement occasionné par le changement d'une force qui à l'extrémité d'une corde tenait équilibre à un corps pesant attaché à la corde au moyen d'une poulie mobile. Dieu. N. ann. math. XXVI, 298.
- 341. Sul moto di una figura piana che, mantenendosi simile a sè stessa, scorre con tre delle sue rette sopra tre punti fissi. Wiener. Annali mat. Ser. II, 1, 139.
- 842. Sul moto di un pendolo, quando la retta passante pel punto di sospensione e pel centro di gravità è, per questo punto in solo asse principale d'inerzia che sia determinato di posizione. Schlaefli. Annali mat. Ser. II, I, 105.
- 343. Wurfbewegung im widerstehenden Mittel. Nell. Grun. Archiv XLVII, 338, 449. [Vergl. No. 129.]
- 844. Der Centrifugalflügel. Martin. Wien. Akad.-Ber. LIV, 412.
- 345. Sur le mouvement longitudinal d'un système de plusieurs prismes. De Saint-Venant. Journ. Mathém. XXXII, 237. [Vergl. Bd. XII, No. 317.]
- 346. Sur le choc longitudinal des barres parfaitement élastiques. De Saint-Venant. Compt. rend. LXIV, 1009, 1192.
- 347. Ueber ein neues von de Saint-Venant ausgesprochenes Theorem der Mechanik. Lippich. Wien. Akad.-Ber. LIV, 63.

Vergl. Astronomie. Capillarität. Electrodynamik. Hydrodynamik. Optik. Schwerpunkt. Variationsrechnung 416. Wärmelehre.

Methode der kleinsten Quadrate.

- 349. Considérations à l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés. Bien aymé. Journ. Mathém. XXXII, 153.
 - 349. Der mittlere Fehler und die königlich preussische Landestriangulation. Wittstein. Astr. Nachr. LXIX, 289.
 - 350. Die Ausgleichung beobachteter Richtungen und die königlich preussische Landestriangulation. Wittstein. Astr. Nachr. LXIX, 321.000

N.

Nautik.

851. Ueber einige Formeln zur annähernden Berechnung der körperlicken Räume mit besonderer Rücksicht auf die Aichung der Schiffe. Grunert. Grun. Archiv XLVII, 176.

Normale.

352. Sulle normali all'ellissoide. Geiser. Annali mat. Ser. 11, 1, 317. Vergl. Determinanten in geometrischer Anwendung 226. Krümmung.

0.

Oberflächen.

- 353. Einige Sätze aus der Analysis Situs Riemann'scher Flächen. Thomae. Zeitschr. Math. Phys. XII, 361.
- 354. Théorie générale des surfaces réglées leur classification et leur construction. Plücker. Annali mat. Ser. II, I, 160.
- **355.** Sulle superficie che hanno le linee di curvatura piane. Dini. Annali mat. Ser. 11, 1, 146.
- 356. Sur une propriété de l'équation différentielle des lignes de plus grande pente. Breton (de Champ). Compt. rend. LXIV, 407.
- 357. Roppresentazione di una classe di superficie gobbe sopra un piano e determinazione delle loro curve assintotiche. Cremona. Annali mal. Ser. II, I, 218. Voral Determinazione recomstriache Auvendung 290 Krimmung
 - Vergl. Determinanten in geometrischer Anwendung 229. Krümmung.

Oberflächen sweiter Ordnung.

- 358. Discussion de l'équation qui donne les plans principuux d'une surface du second degré. For estier. N. ann. math. XXVI, 355.
- 359. Des surfaces du second degré ayant une même intersection. Aoust. Compt. rend. LXIV, 590, 746.
- 360. Sur une propriété des surfaces homofocales du second ordre. Gilbert. N. ann. math. XXVI, 529.

Vergl. Ellipsoid.

Operationscalcul.

361. On the multiplication of partial differential operators. Sylvester. Phil. Mag. XXXIII, 48.

Optik.

- 362. Théorie nouvelle des ondes lumineuses. Boussinesq. Compt. rend. LXV, 235.
- 363. Ueber das Brechungsgesetz. F. Eisenlohr. Zeitschr. Math. Phys. XII, 438. [Vergl. No 122.]
- 364. Ueber merkwürdige Punkte der Spiegel- und Linsensysteme. Grunert. Grun Archiv XLVII, 84.
- 365. Eine auffällige Eigenheit der Richtungen der durch ein Prisma oder durch mehrere Prismen mit parallelen Kanten gebrochenen Lichtstrahlen. Matzka. Grun. Archiv XLVII, 74.
- 366. Ueber den Einfluss der Bewegung der Lichtquelle auf die Brechung. Sohncke. Astr. Nachr. LXIX, 209.
- 367. Sur la réflexion et la réfraction cristallines. Briot. Compt. rend. LXIV, 956. Journ. Mathém. XXXII, 185.
- 368. Sur la propagation et la polarisation de la lumière dans les cristaux. Sarrau. Journ. Mathém. XXXII, 1.
- 369. Théorème sur la relation de position des vibrations incidende, réfléchie et réfractée dans les milieux isotropes. Le Roux. Compt. rend. LXIV, 38.
- 370. Sur l'emploi de la diffraction pour déterminer la direction des vibrations dans la lumière polarisée. Gilbert. Compt. rend. LXIV, 161.
- 371. Ueber die Lichtmenge, welche im Polarisationsapparat durch eine zur optischen Axe oder zur ersten Mittellinie senkrecht geschnittene Krystallplatte hindurchgeht. Lommel. Zeitschr. Math. Phys. XII, 514.
- 372. Recherches sur la diffraction de la lumière polarisée. Potier. Compt. rend. LXIV, 960.

Literaturztg. d. Zeitschr. f. Math. u. Phys. XIII, 6.

~~~~~

P.

#### Parabel.

- 375. Ueber das von drei Berührenden einer Parabel gebildete Dreieck. Grunert. Grun. Archiv XLVII, 403.
- 376. Construction de la développée de la parabole. Habich. N. ann math. XXVI. 447. Vergl. Mechanik 339.

#### Philosophie der Mathematik.

- 377. Sur le principe et la règle des signes. Abel Transon. N. ann. math. XXVI, 289.
- 878. Sur l'usage et l'emploi des quantilés négatives. Prouhet. N. ann. math. XXVI, 337.

#### Planimetrie.

- 379. Ueber den neuesten Stand der Frage von der Theorie der Parallelen Grunert. Grun. Archiv XLVII, 307.
- 380. On the iwelfth axiom of Euclid. Murray. Phil. Mag. XXXIII, 264. 381. Satz vom Dreieck. Curtze. Grun. Archiv XLVII, 357.
- 382. Eigenschaft der gemeinschaftlichen Berührungslinie an den Inkreis und Mittenkreis eines Dreiecks. Baur. Zeitschr. Math. Phys. XII, 354.
- 383. Deux figures polygonales équivalentes étant données on demande si l'une se peut dé-
- composer en parties superposables à l'autre. Sénène. N. ann. math. XXVI, 494. 884. On isoperimetric regular polygons. Rankine. Phil. Mag. XXXIV, 305. Vergl. Zahlentheorie 427, 428.

#### Potential.

385. On professor Stokes's proof of Clairaut's theorem. Pratt. Phil. Mag. XXXIV, 25. 388. On the internal distribution of matter which shall produce a given potential at the surface of a gravitating mass. Stokes. Phil. Mag. XXXIV. 235. Vergl. Attraction.

#### Quadratische Formen.

387. Sur la forme à cinq indélerminées x<sub>1</sub>x<sub>2</sub>+x<sub>2</sub>x<sub>3</sub>+x<sub>3</sub>x<sub>1</sub>+x<sub>4</sub>x<sub>5</sub>. Liouville. Journ. Mathém. XXXII, 47.

#### Quadratur.

388. Eine angenäherte Quadratur. Baur. Zeitschr. Math. Phys. X11, 355.

389. Betrachtung des Flächeninhaltes der Curve, deren Gleichung  $r = \frac{\gamma}{1 + t_{R} \alpha}$ . Bender. Grun. Archiv XLVII, 45.

#### R.

#### Rectification.

- 390. On the approximate rectification of circular arcs. Rankine, Phil. Mag. XXXIV, 381.
- 391. On the approximate drawing of circular arcs of given lengths. Rankine. Phil. mag. XXXIV, 284.
- 892. Construire un cercle dont la circonférence égale la circonférence d'une ellipse en négligeant la huitième puissance de l'excentricité. Muzeau. N. ann. math. XXVI, 331.

#### Reihen.

- 393. Sur le nombre e. Realis. N. ann. math. XXVI, 541.
- 394. Zur Entwicklung von  $\cos \mu \theta$  und  $\sin \mu \theta$  nach den ganzen Vielfachen von  $\theta$ . Gyldén. Astr. Nachr. LXIX, 193.

Digitized by Google

78

-----

<sup>873,</sup> Sur la théorie de la dispersion de la lumière. Renard. Compt. reud. LXIV, 857. 374. Theorie der Beugungserscheinungen in doppeltbrechenden Medien. Ditscheiner. Wien. Akad.,Ber. LIV, 523. Vergl. Electrodynamik 239.

- **395.** Ueber die Darstellung des Sinus (Cosinus) eines Vielfachen von x durch eine Reihe, welche nach den Sinussen (Cosinussen) des Vielfachen von y fortgeht unter der Voraussetzung 'g x = m. tgy. Wolfers. Astr. Nachr. LXIX, 41. 396. Summirung von Sinus- und Cosinusreihen. Curtze. Grun. Archiv XLVII, 238. [Vergl. No. 163.]
- 397. Sur la rechriche des fonctions auxiliaires dans l'application de la methode Kummer à In sommation des séries. Bresse. Compt. rend. LXIV, 1023, 1138. 398. Summirung einer Reihe von Kreisbogen. Roiti. Grun. Archiv XLVII, 361.

**399.** Summirung einer Reihe mit Hilfe des Integrals  $\int_{0}^{x} (1-x)^{n} dx$ . Grunert.

Grun. Archiv XLVII, 359. .

400. Ueber  $lim\left[\frac{1}{m+1}+\frac{1}{m+2}+\ldots+\frac{1}{2m}\right]$  bei  $m = \infty$ . Unfordinger. Grun. Archiv XLVII. 23

401. Limite de la série  $\Sigma(-1)^n \frac{p_n}{q_0 \cdot q_1 \cdot q_2 \cdot \cdot \cdot q_n}$  tous les p et q étant des nombres entiers. Pellet. N. ann math. XXVI. 372. Voral Remembliche R.

Vergl. Bernoulli'sche Zahlen. Zahlentheorie 429.

### 8.

### Schwerpunkt.

- 402. Ueber den Krümmungsschwerpunkt algebraischer Curven. C. Neumann. Zeitschr. Math. Phys. XII, 425. [Vergl. No. 172.]
- 403. Sul baricentro di curvatura delle curve algebriche. C. Neumann. Annali mat. Ser. 11, 1, 2.0.
- 404. Sul baricentro di curvuluru delle superficie algebriche. C. Neumann. Annali mat. Ser. 11, 1, 283.

#### Sphärik.

405. Die Pothenot'sche Aufgabe auf der Kugel. Grunert. Grun. Archiv XLVII, 194. 406. Sur la plus courte distance de deux points sur la sphère. Del aunay. N. ann. math. X X V I, 454.

Vergl. Geometrie (descriptive) 259. Kreis 319.

#### Stereometrie.

- 407. Elementarer Beweis des Satzes von der körperlichen Gleichheit dreiseitiger Pyramiden. Hessel. Grun. Archiv XLVII, 433.
- 408. On the partition of the cube and some of the combinations of its parts. Willich. Phil. Mag. XXXIII, 27.
- 409. Die Construction der fünf regulären Körper. Sohneke. Grun. Archiv XLVII, 39.

#### Sturm'sche Functionen.

410, Sur les fonctions de Sturm. Gilbert. Journ. Mathém. XXXII, 87.

#### T.

#### Tetraeder.

- 411. Inclinaisons mutuelles des arètes opposées du tétraèdre. Dostor. N. ann. math. XXVI, 452.
- 412. Diverses expressions du volume du tétraèdre. Dostor. N. ann. math. XXVI, 410.

#### Trigonometrie.

- 413. Produit de 4 sinus et de 4 cosinus. Driaut. N. ann. math. XXVI, 383. Dupain ibid. 471.
- 414. Bestimmung eines Dreiecks aus einer Seite, dem gegenüberliegenden Winkel und dem Radius des eingeschriebenen Kreises. Grunert. Grun. Archiv XLVII, 229.

Vergl. Gleichungen 285.

Digitized by Google

T.

## Variationsrechnung.

- 415. On the figure of the bullet which experiences the least resistance from the air. Tarleton. Phil. Mag. XXXIV, 377. 416. Ueber die Curve des kleinsten Widerstandes. Dienger. Grun. Archiv XL
- 229. [Vergl. Bd. XII, No. 808.]

#### Wärmelchre.

- 417. Application de la théorie mécanique de la Chaleur à l'étude de la transmission du son. Dupré. Compt. rend. LXIV, 350.
- 418. Sul problema delle temperature stazionarie e la rappresentazione di una data suverficie. Christoffel. Annali mat. Ser. 11, 1, 89.
- 419. Sopra la determinazione delle temperature variabili di una lastra terminata. Betti. Annali math. Ser. II, I, 373.
- 420. Sur un nouvel ellipsoïde, qui joue un grand rôle dans la théorie de la chaleur. Bousssinesq. Compt. rend. LXV, 101.

#### Wahrscheinlichkeitsrechnung.

- 421. Des valeurs moyennes. De Tchébychef. Journ. Mathém. XXXII, 177.
- 422. Vermischtes aus dem Gebiete der Wahrscheinlichkeitsrechnung. Matthiessen. Grun. Archiv XLVII, 457.
- 423. Sur quelques formules de probabilité. Jor dan. Compt. rend. LXV, 983.
- 424. Paschwerfen mit 6 Würfeln. Baur. Zeitschr. Math. Phys. XII, 355.

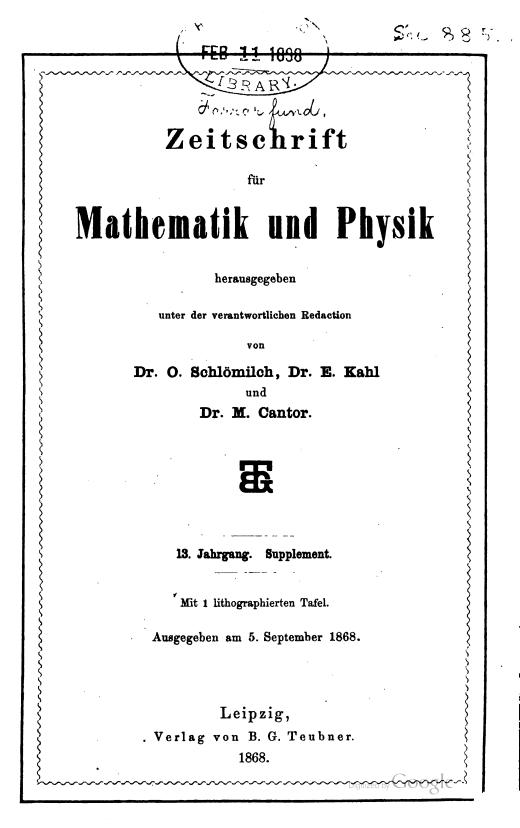
#### Z.

#### Zahlentheorie.

- 425. Sur un caractère de divisibilité. Dupain. N. ann. math. XXVI, 368.
- 426. Bemerkung über die dekadischen Werthe der Potenzen ganzer Zahlen. Schlömilch. Zeitschr. Math. Phys. XII, 350.
- 427. Ueber Kreisvierecke, in welchen die Seiten, die Diagonalen, der Radius des Kreises und die Fläche rationale Zahlenwerthe haben. Ligowski. Grun. Archiv XLVII, 113.
- 428. Dreiecke zu bestimmen, deren Seiten rational sind und in denen die Summe der drei Seiten dreimal so gross ist, als die Höhe in Bezug auf eine dieser Seiten. Grunert. Grun. Archiv XLVII, 233.
- 429. Sur la série de Lambert et la loi des nombres premiers. Max Curtze, Annali mat. Ser. 11, 1, 285.
- 430. Ueber einen arithmetischen Satz von Lagrange. Grunert. Grun. Archiv XLVII, 328.
- 431. Sur la fonction numérique qui exprime pour un déterminant négatif donné le nombre des classes de formes quadratiques, dont un au moins des coefficients extrêmes est impair. Liouville. Journ. Mathém. XXXII, 98. [Vergl. Bd. XII, No. 170.]
- 432. Réduction au second degré d'une équation indéterminée en x et y du troisième degré relativement à x ou y. Le Besgue, Compt. rend. LXIV, 1267.

Vergl. Biquadratische Reste. Combinatorik. Quadratische Formen.

Ċ,





•

.

.

.

# Zeitschrift

Ø

für

Mathematik und Physik

herausgegeben

unter der verantwortlichen Redaction

von

Dr. O. Schlömilch, Dr. E. Kahl

uud

Dr. M. Cantor.

番

## Dreizehnter Jahrgang.

Supplement.

## LEIPZIG,

Verlag von B. G. Teubner.

1868.



# Sui 885.40

# INHALT.

.

,

,

•

.

.

|                                                                             | Seite |
|-----------------------------------------------------------------------------|-------|
| Erhard Weigel. Ein Beitrag zur Geschichte der mathematischen Wissenschaften |       |
| auf den deutschen Universitäten im 17. Jahrhundert. Von                     |       |
| Dr. BARTHOLOMÆI in Jens                                                     | 1     |
| Ueber die Handschrift R. 4º. 2, Problematum Euclidis explicatio der Königl. |       |
| Gymnasialbibliothek zu Thorn. Von MAXIMILIAN CURTZ                          | 45    |
| Die Tonleiter und ihre Berechnung. Von GUSTAV SCHUBRING, in Halle a/S       | 105   |
|                                                                             |       |

Druck von B. G. Teubner in Leipzig.

•

4

Digitized by Google

•

•

## Erhard Weigel.

## Ein Beitrag zur Geschichte der mathematischen Wissenschaften auf den deutschen Universitäten im 17. Jahrhundert.

Von

Dr. BARTHOLOMÆI in Jena.

## I. Grundlagen.

1. Historische.

Erhard Weigel wurde 1625 zu Weida in der Pfalz geboren, siedelte aber schon, als er erst zwei Jahr alt war, mit seinen Eltern, welche den Religionsbedrückungen zu entgehen suchten, nach dem damals brandenburgischen Wunsiedel über<sup>1</sup>). Sein Vater lebte zwar in beschränkten Verhältnissen, sorgte aber nach Kräften für die Ausbildung seines Sohnes, liess ihn die Stadtschule und später das Gymnasium besuchen und privatim im Rechnen und Schreiben unterrichten. Leider starb er ohne Vermögen zu hinterlassen, als dieser erst 11 Jahr alt war. Doch der Knabe schlug sich tapfer durch das Leben, unterrichtete die Kinder der angesehenen Familien im Rechnen und Schreiben, mundirte die Predigten des ersten Geistlichen "für gute Information" und schrieb und copirte Briefe für Jeden, der bezahlte. So erwarb er sich nicht nur die nothwendigen Subsistenzmittel, sondern ersparte sich auch eine Summe Geldes, "um ein fernes Gymnasium zu besuchen". Seine Wahl fiel auf Halle. Hier wurde er in seinen Freistunden Schreiber bei dem Professor Schimpfer, der die Astrologie geschäftsmässig betrieb, copirte die astrologischen "Indicia" und setzte zu jedem der zwölf Capitel nach Ranzow's Regeln Einiges hinzu. Im nächsten Jahre

<sup>~1)</sup> Zeumeri Vitae Philosophorum jenensium. Jenas 1711. S. 105 ff.; Günther, Lebensskizzen der Professoren der Universität Jena. Jena 1858. S. 181.

Zeistchrift f. Mathematik u. Physik. (Supplem.)

1645 machte er eine Ferienreise nach Wunsiedel und lauschte hier dem als Kenner der Mathematik, Astronomie und Astrologie bekannten Diaconus Elrode die astrologische Rechnung ab. Schimpfer war mit dieser Verwandlung seines Schreibers in einen Rechner sehr wohl zufrieden und übertrug ihm das ganze astrologische Geschäft mit sammt dem Kalendermachen. Während des Ferienaufenthaltes im folgenden Jahre 1646 in Wunsiedel liess sich Weigel von Elrode so weit in die Mathematik einführen, dass er sich selbst helfen konnte. In Halle setzte er seine Beschäftigung als Gymnasiast, Astrolog und Kalendermacher fort. Unter den Studenten, welche von Leipzig nach Halle kamen, um sich die Nativität stellen zu lassen, oder die zn begleiten, welche ihre Zukunft aus den Sternen erfahren wollten, fanden sich auch Liebhaber der Mathematik oder wenigstens der astrologischen Rechnung. Diesen gab Weigel, der ja von seinem elften Jahre an Lehrer gewesen war, Anweisung und Unterricht, gewann ihre Freundschaft und Unterstützung und liess sich von ihnen bestimmen, nach Leipzig zu gehen, um Mathematik zu studiren<sup>1</sup>).

Die damalige deutsche Mathematik, wenn man überhaupt von einer solchen reden kann, hatte zwar einen grossen Umfang, aber einen winzigen Inhalt. Weigel selbst rechnete zu ihr Arithmetik, Geometrie, Phoronomie, Mechanik, Statik, Optik, Musik, Astronomie, Chronologie, Gnomonik, Geographie, Aerometrie, Hydrometrie, Pyrometrie und Architektonik<sup>2</sup>). An eine tiefere Auffassung, an einen eigentlichen Wissenschaftsbau war nicht zu denken. Die Mathematik stand bei den Gelehrten in Misscredit und ihr Werth wurde lediglich nach dem gemeinsten Nützlichkeitsprincip bemessen. Daher hatte Weigel nicht viel zu lernen. Eigentliche Mathematik hörte er wahrscheinlich gar nicht, denn als Leibnitz in Leipzig studirte, wurde nur Euklid vorgetragen<sup>3</sup>), den Weigel bereits verstand und sicher ebenso gut lehren konnte, als einer seiner deutschen Zeitgenössen.

Die "Prophezeihungen" des Kalenders hatte Weigel alsbald in ihrer Nichtigkeit begriffen und bekämpfte sie, so gut er konnte; aber nicht so schnell vermochte er den astrologischen Kram über Bord zu werfen. Er trieb die Astrologie auch in Leipzig fort und zwar nicht sowohl, weil er von ihrer Wahrheit überzeugt war, als vielmehr "um sich bei den Pennalputzern einen guten Wind zu machen". Denn schon in Halle kam sie ihm verdächtig vor, aber er misstraute sich selbst und hoffte, durch fortgesetztes Nachdenken hinter die Wahrheit zu kommen. Doch bald "merkte er im Herzen, dass die Astrologie auf schwachen Beinen stand und dass man der

<sup>1)</sup> Zeumeri Vitae etc. a. a. O.; Fortsetzung des Himmelszeigers. Jena 1681. S. 51 ff.

<sup>2)</sup> Idea matheseos universae Jenae 1659.

<sup>3)</sup> Guhrauer, Gottfried Wilhelm Leibnitz. Breslau 1846. I. S. 26.

auf den deutschen Universit. im 17. Jahrh. Von Dr. BARTHOLOMÆI. 3

Erhaltung Gottes zu nahe trat, wenn man zwar Gott den Schöpfer und Erhalter nannte, aber Alles, was geschah, den Sternen zuschrieb"<sup>1</sup>).

Nach dieser Vorbereitung ist nicht zu erwarten, dass Weigel Erhebliches in der Mathematik und den verwandten Wissenschaften leistete. Und doch wurde er einer der gefeiertsten Lehrer. Als er 1654 die Professur der Mathematik an der Universität Jena übernommen hatte, lehrte er mit grossem Beifall. Von allen Seiten kamen junge Männer herbei, um bei ihm zu hören. Unter ihnen die beiden nachmaligen Bahnbrecher der Wissenschaft, Pufendorf und Leibnitz, welche sich zu dem "weltberühmten" Weigel hingezogen fühlten. Als er das erste Mal über den "Pennosmus" las, hatte er mehr als 400 Zuhörer, so dass kein Hörsaal die Menge fasste und der Lehrstuhl im Freien aufgeschlagen werden musste<sup>2</sup>).

## 2. Philosophische.

Weigel trat, durch seinen Bildungsgang zum Realismus hingedrängt, als entschiedener Gegner der Scholastik und des Lateins auf und forderte Vorlesungen in deutscher Sprache als Thomasius noch auf den Schulbänken sass<sup>3</sup>). Als Muster der Philosophie galt ihm die Mathematik. "Damit das Denken, Beschliessen und Erinnern (cogitare, decernere, animadvertere) immer vernünftig ausgeführt werde, und der Geist sich beständig freue und das höchste Gut, für welches er bestimmt ist, geniesse, ist der Geist mit einem Directorium ausgerüstet, dessen Geschäft gewisse dem Menschen angeborene Gedanken, Axiome, besorgen. Die Erweckungsmittel der Axiome sind Erfahrungen. Sie sind Principien, Gründe und Ursachen der geistigen Thätigkeiten. Auf sie gestützt, leitet der Geist ab, was von den Dingen wahr und von den Handlungen gut ist. Die Ableitung ist entweder prädicirend, sprechend, oder producirend, rechnend." Da jene nichts Neues hervorbringt, so gestattet nur diese eine fruchtbare Anwendung. Die producirende Ableitung hält sich an die Dinge, welche auch ohne Worte vorausgesetzt sind und erwägt deren wirkliche und wesentliche Verhältnisse und Umstände und bringt durch Vergleichung des Bekannten unter sich ein Unbekanntes heraus oder hervor<sup>4</sup>).

Mit diesen Worten ist die "rechnende" Ableitung genügend charakterisirt; aber es bleibt dabei der sonderbare Name "rechnend" unerklärt. Diese kann nur durch die Auffassung des Rechenbegriffs gegeben werden. Die geistige Thätigkeit nun, welche Weigel durch Rechnen bezeichnet, ist nun zwar von dem, was man sonst Rechnen nennt, verschieden, aber es ist von Interesse, von wie vielen Seiten er den Begriff darstellt und dadurch

<sup>1)</sup> Fortsetzung des Himmelszeigers a. u. O. Himmelszeiger. Jena 1681. S. 48.

<sup>2)</sup> Programma de possibili grataque pravitatis inveteratae emendatione. Jenae 1678. A. 2.

<sup>3)</sup> Vorstellung der Kunst- und Handwerke. Jena 1672. 8. 103.

<sup>4)</sup> De supputatione multitudinis. Jenae 1679. A. 3. A. 4.

Digitized by Google

die rechnende Ableitung näher erläutert. Es scheint daher nicht überflüssig, diese verschiedenen Auffassungen zusammen zu stellen.

"Rechnen kommt her von Recht, heisst daher gleichsam rechtnen, d. h. gleich und richtig in Acht nehmen, nicht zu viel und nicht zu wenig zu thun"<sup>1</sup>).

"Die Thätigkeit des Gemüths ist doppelter Art. Entweder begründet oder nicht begründet. Jenes ist das Meinen und das blose Wollen, dieses Rechnen. Meinen heisst ein Ding als so und so beschaffen sich einbilden und dafür halten, das blose Wollen heisst etwas als Gutes an sich ziehen, von sich als etwas nicht Gutes abziehen, Rechnen dagegen mit Ueberlegung vorhandener Gründe nach Anweisung dazu geeigneter Wahrheiten einen verborgenen Zusammenhang aufsuchen und zwar so, dass das Resultat einer Probe unterworfen wird, welche erst Gewissheit giebt<sup>2</sup>)."

"Der Verstand geht mit dem Object um, entweder so, dass er dasselbe nur fasst, empfängt, wiederholt, sagt und spricht mit eben diesen oder anderen Gedanken, welche aber unter den vorigen sich selbst verstehen und durch anderweitige Rechenschaften nicht daraus erforscht zu werden brauchen, sondern aus der Denkung des Objects erhellen; oder so, dass er aus gegebenen Posten durch gewisse Rechenschaften weiter etwas forschet, welches er zuvor noch nicht gewusst hat, oder aus den angegebenen Worten ohne andere Mittel selbst verstehen können; oder so, dass er aus solchen Posten nach gewissen Rechenschaften Etwas wirklich vorgiebt, schafft und macht, welches vorher nicht gewest. Die letztere Wirkung des Verstandes heisst Rechnen: rationes reddere, subducere, ratiocinari<sup>3</sup>)."

"Rechnen heisst nicht nur mit Ziffern spielen oder nur mit Symbolen grübeln, sondern Rechnen heisst aus gewissen Voraussetzungen (Posten) und Wahrheiten ein verlangtes Resultat (Facit) mit Nachdenken erforschen und entweder ein geschicktes Werk aus angegebenen Mitteln als Ursachen hervorbringen, oder zu einem verlangten Werke als dem Zwecke geschickte Mittel suchen und ausdenken, wie dieselben in Anwendung zu bringen sind. Rechnen ist also nichts Anderes als Consultiren, d. i. Rathschlagen, wie man das, worauf man consultirt, als Facit oder Product herausbringt<sup>4</sup>)."

"Ja das Zifferrechnen ist das wenigste vom rechten Rechnen, sogar, dass Ziffern an und für sich nichts als Stäblein sind, womit ein Blinder oder Einer mit verbundenen Augen durch einen Irrgang geleitet wird und endlich zwar den Ausgang trifft, aber nicht weiss, wie er dazu gekommen. Rechnen heisst im höhern Sinne, Rechenschaft geben, ein Resultat aus ge-

<sup>1)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst. Jena 1684. S. 9.

<sup>2)</sup> Ebendas. S. 10. 11.

<sup>3)</sup> Aretologistica. Nürnberg 1687. S. 69.

<sup>4)</sup> Extractio radicis. Jenae 1689. Darin "Rolle der Schullaster" besonders paginirt. S. 5.

wissen Grundwahrheiten in Zahlen finden, und noch weiter gefasst: etwas nicht Gegebenes herausbringen, nicht allein in Zahlen, sondern auch in Zielungen<sup>1</sup>)."

"Alle Rechensorge beruht auf der Erforschung gewisser Hauptwahrheiten. Man muss also 1) nach solchen Hauptwahrheiten greifen und 2) das Ergriffene schicklich nehmen. Was das Erstere anlangt, so greift man blindisch ehe man geübt ist, und ergreift, was einem vor die Hand kommt, was einem einfällt. Was das Letztere betrifft, so muss man wissen, ob das, was man sucht, aus dem Gegebenen folge oder nicht. Trifft's nun zu, so hat man was man sucht, und springt vor Freuden. Trifft's nicht, so muss man anders greifen, bis man die rechten Hauptwahrheiten findet, die sich dazu schicken<sup>2</sup>)."

"Die Form des Rechenprocesses ist 1) Ueberlegung, was aus dem Gegebenen folgen könne, 2) Annahme des wahrscheinlichen Resultates, 3) Prüfung desselben, 4) neuer Versuch, wenn das Resultat falsch ist<sup>3</sup>)."

"Wenn man die Rechnung vernachlässigt, so geschieht Nichts, wenn man sich auch den Sinn eines allgemeinen Satzes noch so tief eingeprägt hat und noch so logisch subsumirt, denn man weiss damit nichts Gründliches, und wenn man's weiss, so denkt man nicht daran, was weiter zu bedenken ist<sup>4</sup>)."

"Das besinnliche sorgsame Rechnen ist ein vorsichtiges Hin- und Wieder-, Um- und Herzielen, aus gewissen Gründen etwas Angenehmes auszuspüren und schicklich anzubringen, kurz überhaupt: die Folge aufdecken, welche in den Gründen liegt und den Zusammenhang zwischen beiden nachweisen <sup>5</sup>)."

"Das Rechnen ist der Form nach ein doppeltes. Denn da man den Zusammenhang zwischen Grund und Folge nicht unmittelbar nach blosem Wahn oder Dünkel, wie die Quäker ihre Träume, sondern aus Erkenntnissgründen gewinnt, so geschieht's, dass die Erkenntnissgründe Realgründe des Gefundenen sind, oder dass das Gefundene der Realgrund der Gründe ist. Jenes ist Synthesis, dieses Analysis<sup>6</sup>)."

"Dem Object nach ist das Rechnen Wörter- oder Sachenrechnen. Was das Wörter- und Gedankenrechnen anlangt, so ist das blose Sprechen, wenn es nach gewissen Regeln angewiesen und verübet wird, als rein nach der Grammatik oder Prosodie, zierlich der Rhetorik nach, vorsichtig und anhebig nach der Dialektik ebenfalls ein Rechnen. Denn die Regeln sind

6) Ebendas. S. 8.

<sup>1)</sup> Aretologistica. S. 1-4.

<sup>2)</sup> Ebendas. S. 119-121.

<sup>3)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst. S. 13-17.

<sup>4)</sup> De supputatione multitudinis. A. 4.

<sup>5)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst. S. 6.

Hauptrechenschaften, was dazu gegeben, die Materie, giebt die Grundrechenschaften. Daraus denn ein Facit, nämlich ein nach der Kunst wohlgesetztes Reden, ein wohl declinirtes und conjugirtes, wohlverdrehtes, wohlgesetztes Wort, ein rechter Spruch, ein rechter Schluss herauskommt."

Man sieht aus diesen Variationen des Rechenbegriffs, dass Weigel für das philosophische Denken denselben als Folgern fasste. Anstatt aber diesen Begriff festzuhalten, nahm er "Rechnen" auch in dem üblichen Sinne. Da er den Begriff des Folgerns sehr genau kannte und auch den Widerspruch, mit dem der Begriff der Folge behaftet ist, entdeckte, so muss man die willkürliche Veränderung des Rechenbegriffs entweder für eine Schrulle halten oder für ein Mittel, sich um billigen Preis den Schein der Originalität zu geben. Uebrigens setzte Weigel voraus, dass der Grund nicht einfach ist, und es schwebte ihm etwas von dem vor, was später Herbart Methode der Beziehungen nannte. Dass er trotz dieser guten Anfänge in der Philosophie nichts leistete, hat seinen Grund darin, dass er die genetische Methode nicht kannte, überhaupt Ignorant in der Mathematik war und durchaus nicht das innere Bedürfniss hatte, die Probleme der Philosophie zu lösen, sondern im wüstesten Empirismus befangen blieb.

Die Axiome, welche das Amt des Directoriums des Geistes verwalten, hielt er einfach für ein Geschenk Gottes. "Darum hat Gott selbst den Menschen befohlen, die Rechenweisheit zu üben, und die Zahl- und Rechenfertigkeit als ein natürliches Pfund gegeben, die Cassa der zeitlichen Wohlfahrt durch sothanen rechtmässigen Wucher damit reich zu machen." ----"Gott hat den Menschen seinem Haupttheile nach so geschaffen, dass er immer rechne." Daher ist die Rechenfähigkeit das specifische Merkmal des Menschen im Gegensatz zu dem Thiere, welches seinerseits durch Unrechenschaftlichkeit charakterisirt wird. "Jeder Mensch ist rechenschaftlich. Ob er Mann oder Weib, weiss oder schwarz, macht keinen Unterschied." Die Sprache als unterscheidendes Merkmal des Menschen vor dem Thiere anzunehmen, ist ein Irrthum; denn die Thiere verständigen sich durch Laute, und die Papageien lernen sogar sprechen; aber auf die Frage. wie viel 2 mal 3 sei, hat noch keiner 6 geantwortet. Nur der Mensch vermag in dieser sichtbaren Welt die endlichen Dinge aufzufassen und zu schätzen<sup>1</sup>).

Das Zählen entsteht aus der Anschauung. Wenn das Denken absieht von dem Stoffe und den Eigenschaften der Dinge, so bleibt für das Vorstellen nur die Zahl, das Wieviel übrig<sup>2</sup>). Die Zahlen sind den Dingen

De supputatione multitudinis. A. 3; Grundmässige Auflösung des militar-Problematis, warum doch der Türk den Christen endlich weichen müssen. Jens 1689. Obs. I.; Philosophia mathematica theologia naturalis solida. Jenae 1693. S. 27-31.

<sup>2)</sup> Universi corporis pansophici prodromus. Jenae 1672. S. 52.

auf den deutschen Universit. im 17. Jahrh. Von Dr. BABTHOLOMÆI. 7

ähnlich und werden durch Ziffern bezeichnet<sup>1</sup>). Die Wesen der Dinge sind Zahlen<sup>2</sup>). Die Allgemeinschaft der Zahlen verhält sich zu den Dingen, wie ein Begriff zu seinen Arten, also kommen bei denselben beide Denklichkeiten, das Allgemeine und das Besondere, zusammen<sup>3</sup>).

"Nichts ist das, was wir denken, wenn wir gar nicht denken. Wenn wir aber nicht denken, so denken wir auch keine Endschaft. Daher ist das Nichts unendlich. Dieses reine Nichts ist der Anfang aller Zahlen, aber nicht selbst Zahl, sondern eine Unzahl, ein bloser *terminus*, von welchem aus das Zählen anhebt. Null verhält sich zu den Zahlen 1, 2, 3 u. s. f. wie ein Punct gegen die Dimensionen. Daher ist der Punct der Anfang der Extension. Das Nächste nach der Null, das Eins, ist eine Zahl, sowie das Nächste nach dem Punct das erste Stücklein einer Linie ist<sup>4</sup>)." Diesem reinen oder abstracten Nichts stehen concrete Nichtse gegenüber. Während jenes das ist, was wir concipiren, wenn wir gar nicht denken, so ist ein concretes Nichts ein solches, welches wir bestimmt denken, indem wir auf ein Bestimmtes reflectiren. Solche concrete Nichtse sind z. B. der Raum, die Grenze, der Punct, die Linie, Nullhundert etc.<sup>5</sup>).

"Das Nichts ist gänzlich unvermögend, zu hindern, dass ein Geist an seine Stelle Etwas denkt und dort vorstellt, und da der Geist ausserordentlich viel denken und vorstellen kann, so löst sich das Nichts auf als ein Schatten der beweglichen Dinge, als die Fassung endschaftlicher Dinge ausser einander, als das (reine) Nichts mit der Eigenschaft, Dinge in sich haben zu können. Das ist aber der Raum. Dieser ist durch und durch mit Endungsdenklichkeiten behaftet und stellt sich somit als endlich und zwar unendlich endlich dar. Wie die Unbestimmtheit (Unendlichkeit?) des reinen Nichts ein unendliches Unvermögen, ein äusserster höchster Mangel, die höchste Dürftigkeit und Schwachheit ist, so ist die Unendlichkeit des Raumes nichts Anderes, als eine unendliche Fähigkeit der Enden, Endlichkeiten und Endschaften ausser einander<sup>6</sup>)."

Wir haben in der Zahl ein bestimmt Erkanntes, weil wir in ihr ein bestimmtes uns bekanntes Minimum antreffen. Diesem Minimum, dem Eins, steht ein uns bekanntes Maximum, der Winkel von 360°, gegenüber. Zu beiden kommen noch die Töne, in welchen wir zwar kein Maximum und Minimum, aber doch eine stets bestimmte Quantität erkennen. Alle bestimmte Erkenntniss der Natur stützt sich auf die Vierzahl, so dass Gott entweder die Natur nach der menschlichen Anlage oder die menschliche Anlage nach der Natur eingerichtet haben muss. Die Vierzahl ist mit be-

<sup>1)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst. S. 30. 32.

<sup>2)</sup> Tetractys. Jenae 1673. S. 25.

<sup>3)</sup> Aretologistica. S. 150-155.

<sup>4)</sup> Ebendas. S. 16. Philosophia mathematica etc. S. 9.

<sup>5)</sup> De supputatione multitudinis C.

<sup>6)</sup> Aretologistica S. 16. Philosophia mathematica etc. S. 9.

sonderen Eigenthümlichkeiten ausgestattet, durch welche der Verstand sehr wirksam *(efficacissime)* unterstützt wird. Denn die Natur ist in höherem Grade *(potius)* nach dem Verhältniss der Vier als nach einer andern discreten Form constituirt, so dass wir, wenn wir uns mit den Arten der Dinge nach der Vierzahl bekannt gemacht haben, auf das Natürlichste und Leichteste beliebige Untersuchungen anstellen, Erkenntnisse gewinnen, gelehrte Auseinandersetzungen *(discursus eruditos)* über jeden beliebigen Gegenstand *ex tempore* vornehmen können<sup>1</sup>). Weigel glaubte also die Lullische ars magna auf anderem Wege zu erreichen.

## II. Mathematik.

## 1. Allgemeines.

Wie schon erzählt, hatte Weigel während seiner Studienzeit wenig Gelegenheit, seine mathematischen Kenntnisse zu erweitern. Auch das bekannte "docendo discimus" sollte er nicht an sich erfahren, denn die meisten damaligen Studenten hatten auf den Gymnasien oft nicht Gelegenheit gefunden, das Einmaleins zu lernen. Daher kam es, dass er sich nicht einmal die Lehren des Cartesius aneignete, geschweige die seines grossen Schülers Leibnitz. Der Inhalt seiner Mathematik ist höchst dürftig und armselig<sup>2</sup>).

Die Mathematik hat es mit der Quantität zu thun und ist die Wissenschaft von der Quantität der endlichen Dinge und die Kunst sie auszumessen, nachzuahmen und zu verwandeln. Die Quantität ist gleichsam eine anderweitige Beschaffenheit der Dinge. Quantum ist entstanden aus *quam tam*, worin das "*quam*" die Frage "Wie?" und "*tam*" die Antwort "So!" enthält, also ist Quantum das Wie-So, die Mathematik die Wie-So-Kunst, welches wahrscheinlich mit "Wissen" zusammenhängt, wie denn auch bei den Niederländern die Mathematik Wiss-Kunst — Wie-So-Kunst genannt wird. Die Grenzen sind entweder rein, wie in der Geometrie, oder haften an den Werken Gottes, woran sie auch den Sinnen bemerklich sind, wie man, wenn man mit dem Kopfe anstösst und an ein hartes Ende anläuft, in der That erfährt. Doch sind die Grenzen der Dinge nicht Theile derselben. "*Finis rei nihil rei est*<sup>3</sup>)."

Die Quantität ist entweder discret und heisst Zahl, Menge, Vielheit, oder continuirlich und heisst Ordnung d. h. Anzeige gewisser Wirkung der Mehrheit, die, in oder ausser sich wechselsweise gesetzt, verbunden ist<sup>4</sup>).

Das Rechnen ist Inhalts- oder Zielungsrechnung. Die Inhaltsrech-

<sup>1)</sup> Tetractys S. 25-30.

<sup>2)</sup> Fortsetzung des Himmelsspiegels. Jena 1665. Zuschr. u. S. 106; Wienerischer Tugendspiegel. Nürnberg 1687. Zuschr.

<sup>3)</sup> Universi corporis pansophici prodromus S. 52; Aretologistica S. 19. 61; Philosophia mathematica etc. S. 1. 12 ff.

<sup>4)</sup> De supputatione multitudinis S. 54.

nung ist die Bestimmung, wie viel Etwas austrage. Die Vielheit besteht in einer gewissen Zahl und darum heisst die Inhaltsrechnung auch Zahlenrechnung. Die Zielungsrechnung erforscht, wohin und wo dieses oder jenes ziele, ob Etwas, das so und so gilt, steht, geht, geordnet, gestellet ist, sich schicket zu einem Audern; wie Etwas so und so geordnet, eingerichtet und proportionirt sein muss, wenn es zu dem, was da und dort so und so geht und steht, geschickt sein soll. Die Proportion ist nicht bloser Inhalt<sup>1</sup>).

## 2. Arithmetik.

"Jede Zahl muss einen Namen haben, damit nicht quid pro quo statt Pfeffer Mäusekörner genommen werden. Zählen heisst discrete Einheiten eines Namens nach einander nehmen und bescheiden, wie viel ihrer seien." Es ist pur oder modal. Das pure Zählen ist das Hinzufügen der Eins und Bezeichnung der Zahl durch ein Wort, das modale geschieht mit "mal".

"Wenn die Finger alle verwandt waren, nahm man vor Alters, ehe Schuhe und Strümpfe erfunden worden, auch die Zehen, wovon das Wort Zehn, oder was sonst für sonderartige Stücke am Leibe sind, zu Hülfe. Man schreibt noch heut zu Tage in den Schänken und auf Kornböden so viel Strichlinien, als Einzelkeiten zusammen zu zählen (sind). Weil man aber diese Strichlein eben so mühsam als die Einzelkeiten selbst alle Zcit von Neuem zählen muss, wenn man von ihnen wissen will, wie viel die Summe macht, weil auch die besonderen Summenwörter nicht so sehr vermehrt werden können, dass eine jede andere Summe auch ein ganz anderes Wort bekäme, denn so sehr viel Wörter Niemand merken kann, so hat man einen andern Vortheil ausgedacht und angebracht, womit, wenn alle Finger angebracht sind, es heisst: das erste Mal zehn und weiter Nichts, und es wird jenes mit der Eins (1) und dieses mit der Null (0) bedeutet. Daher man noch einmal die Finger wie vorher gebraucht, sagt oder schreibt 11, 12, 13, 14 etc."

"Nach der Anzahl der Posten ist das Rechnen einfach oder mehrfach. Das einfache Rechnen ist Messen und Zählen. Messen heisst nach einem Instrument die Quantität eines besonderen Dinges nach einer besonderen Beschaffenheit gedacht erforschen. Das Mass ist 1) Mass der Extension, als Längen-, Flächen-, Tiefenmass, als Ellen, Schuh, Zoll, Gran, Scheffel, Eimer, Kannen und dergleichen, 2) Mass der Intension als der Schwere oder Kraft, als Centner, Pfund, Loth, Quent, womit des Schlags, des Drucks, der Resistenz und anderer dergleichen Quantität gemessen wird, 3) Mass der Zielung. Das Zielungsmass ist entweder innerlich oder äusserlich. Aeusserlich ist das Lineal, die Norm, das Winkelmass, das Schrägmass, das Perpendikel, die Setzwage, der Transporteur, Sextant, Octant,

Digitized by Google

9

<sup>1)</sup> Aretologistica S. 73. 74.

Kreis, der Magnetszug und dergleichen; innerliche Zielungsmasse sind die Denkbilder, Hauptwahrheiten und Instructionen<sup>1</sup>)."

"Das mehrfache Rechnen ist entweder Berechnen oder Ausrechnen. Das Berechnen umfasst die Species in ganzen Zahlen, das Ausrechnen die übrigen Rechnungsarten. Die fünf Species sind Numeriren, Addiren, Subtrahiren, Multipliciren, Dividiren, die fünf Species des Ausrechnens aurea detri, societatis, alligationis, veri und algebrae regula<sup>2</sup>)."

"Was in der Rechnung gesetzt wird, ist mehr als Nichts. Ist dieses nun nicht befohlen oder bedingt, dass es da sein und gesetzt sein soll, so ist in diesem Falle der Mangel pur Nichts und steht in contradictorischem Gegensatze zu dem Gesetzten und wird deshalb nur mit Null bezeichnet. Wenn aber das Gesetzte befohlen und bedingt ist, dass es da sein soll, so ist es nicht pure Nichts, sondern weniger als Nichts, so viel weniger als Nichts, wie viel es austrüge, wenn's vorhanden wäre. Es wird auch mit derselben Ziffer angezeigt, die so viel heisst, als wenn's vorhanden wäre, doch mit dem Zeichen Minus (—), dass hier so viel weniger vorhanden sei. Die Gegenstände geben positive, mithin alle Mängel negative (privative) Zahlen. Durch die Vermischung beider entsteht die algebraische oder heimliche Zahl, womit die Algebra, das vornehmste Stück der Rechenkunst, umgeht<sup>3</sup>)."

"Analytisch ist die Rechnung, wenn man aus vorgeschriebenem Werk und Effect sammt einigen Beschaffenheiten durch gewisse Rechenschaften einige andere Beschaffenheiten aufsucht und sie als die Wurzel des Effects erfindet, die Ursachen aus den Sachen forscht und findet, woher dieses oder jenes so und so Beschaffenes komme, wie doch das beschaffen sei und sich verhalte, dass dieses Werk als sein Effect herauskomme, wie man Mittel finden möge, dass ein solches Werk, ein solcher Zweck dadurch erhalten werde. Will man eine algebraische Gleichung lösen, so muss man 1) ein gewisses Zeichen setzen, 2) sich anstellen, als ob das, was man nur in Gedanken setzt, auch in der That vorhanden wäre, 3) das Gesetzte so behandeln, wie es die Umstände fordern. Damit erhält man eine doppelte Bestimmung des Effects: einmal, wie er durch die Umstände gegeben ist, und dann, wie er aus dem Gesetzten entspringt, also eine Gleichung. Der Name Coss für die Unbekannte kommt her von causa<sup>4</sup>)."

Von Einzelheiten ist etwa noch Folgendes hervorzuheben:

I. Bei der Subtraction wird, falls die Stelle des Subtrahenden

<sup>1)</sup> Aretologistica S. 36. 40. 74. 109. 150 ff.

<sup>2)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst S. 1; Aretologistica S. 78. 80. 81; Philosophia mathematica etc. S. 99.

<sup>3)</sup> Aretologistica S. 29-31; De supputatione multitudinis S. 54; Idea matheseos universae S. 32.

<sup>4)</sup> Aretologistica S. 75. 130; De supputatione multitudinis B; Von der Wirkung des Gemüths, so man das Rechnen heisst S. 52.

auf den deutschen Universit. im 17. Jahrh. Von Dr. BARTHOLOMÆI. 11

grösser ist als die des Minuenden, die nächste Stelle des Subtrahenden um 1 erhöht. Dass das wichtig ist, leuchtet ohne Weiteres ein, denn es ist

$$\begin{array}{l} (a \, x^n + b \, x^{n-1} + \ldots) - (a' \, x^n + b' \, x^{n-1} + \ldots) \\ = ((a - 1) \, x^n + x^n + b \, x^{n-1} + \ldots) - (a' \, x^n + b' \, x^{n-1}) \\ = a \, x^n - (a' + 1) \, x^n + x^n + b \, x^{n-1} - b' \, x^{n-1} + \ldots \\ = [a - (a' + 1)] \, x^n + [(x + b) - b'] \, x^{n-1} + \ldots$$

Dieser Mechanismus sollte das Borgen über Null verleiten. Die Umformung dachte sich jedoch Weigel in folgender Art:

$$(ax^{n} + bx^{n-1} + \ldots) - (a'x^{n} + b'x^{n-1} + \ldots)$$
  
=  $(ax^{n} + bx^{n-1} + \ldots) - [(a'+1)x^{n} - x^{n} + b'x^{n-1} + \ldots]$   
=  $[ax^{n} - (a'+1)x^{n}] + [(x+b)x^{n-1} - b'x^{n-1}] + \ldots$ 

Denn er sagt: "Dieser Nachbar unten, weil er über seine eigne Forderung von seinem oberen auch noch eins zur Hülfe hergegeben hat, so muss er billig um Eins mehr als sonst abziehen, dass es gleich und recht zugehe. Daher gilt er um Eins mehr, als wenn er seinem Nachbar nichts geliehen hätte."

II. Den Multiplicator fasst er ganz richtig als Zahl, dem Multiplican den hingegen gab er den nichtssagenden Namen "die Mahl". Die erste Auflösung der Multiplication behandelte er in folgender Form:

| 468   |
|-------|
| 32    |
| 116   |
| 82    |
| 124   |
| 128   |
| 14976 |

Den Satz (a + b + c + ...) n = an + bn + cn + ... nannte er nach dem Vorgange Anderer *regula pigrorum*.

III. Den Satz  $\frac{a}{b-c} = \frac{a}{b} + \frac{a - \frac{a}{b}(b-c)}{b-c}$  hielt Weigel für eine eigne Entdeckung, unterliess es aber, ihn zu begründen und allgemein auszudrücken, sondern benutzte ihn für die Anwendung als "divisor vicinus" für die Division mit 99 = 100 - 1, 98 = 100 - 2, 999 = 1000 - 1, 998 = 1000 - 2...

IV. Die Ausziehung der Quadrat- und Cubikwurzel basirte er zwar auf die Sätze

$$(a + b)^2 = a^2 + 2 a b + b^2,$$
  
 $(a + b)^3 = a^3 + 3 a^2 b + 3 a b^2 + b^3,$ 

aber weder stellte er diese in Gleichungsform dar, noch wandte er sie auf decadische, geschweige denn auf allgemeine systematische Zahlen an.

V. Die arithmetische und geometrische Proportion

$$a - a' = b - b', \ a : a' = b : b'$$

bezeichnete Weigel durch

 $a \, . \, a' \, : \, a \, . \, b' \, , \, a \, . \, a' : : \, b \, . \, b' \, ,$ 

die Fundamentalsätze

 $a + b' = a' + b, a \cdot b' = a' \cdot b$ 

leitete er aber nach verschiedenen Principien ab. Denn indem er für die arithmetische Proportion

$$a - a' = x, b - b' = x,$$
  
 $a = a' + x, b' = b - x,$ 

also auch

mithin

$$a + b' = a' + x + b - x = a' + b$$

setzte, hätte er consequenter Weise für die geometrische Proportion

$$a:a'=z,\ b:b'=z,$$

also

$$a = a'z, b' = \frac{b}{z}$$

mithin

$$a b' = a'z \cdot \frac{b}{z} = a'b$$

setzen müssen. Dagegen beliebt ihm folgende Ableitung:

$$a: a' = z, b: b' = z,$$
  
 $a = a'z, b = b'z,$   
 $ab' = a'zb', a'b = a'b'z,$ 

folglich

$$ab' = a'b$$

VI. Die Addition der algebraischen Zahlen wird durch folgende Darstellung abgefertigt

| + 3 | + 3      | +3  | + a | _ + a     | — a       |
|-----|----------|-----|-----|-----------|-----------|
| 3   | <u> </u> | - 2 | a   | <i>b</i>  | + 6       |
| 0   | <u> </u> | +1  | 0   | + (a - b) | - (a - b) |

Die Begründung des Satzes a - (-b) = a + b lautet: "Von wem der Mangel einer so grossen Habe abgenommen wird, dem wird so viel Hab gegeben".

VII. Ueber die arithmetische Reihe stellte Weigel folgende Sätze auf

1) 
$$d + 2d + 3d + \ldots + nd = \frac{(n+1)n}{2}d$$
,  
2)  $a_n = a_1 + (n-1)d$ ,  
3)  $a_1 = a_n - (n-1)d$ ,  
4)  $d = \frac{a_n - a_1}{n-1}$ ,  
5)  $n = \frac{a_n - a_1}{d} + 1$ ,

bewies aber nur den ersten durch das Schema

auf den deutschen Universit. im 17. Jahrh. Von Dr. BARTHOLOMÆI. 13

und vermochte sich nicht zu allgemeinen Formeln zu erheben.

VIII. Für die geometrische Reihe wusste er nur den Satz

$$a + ae + ae^{2} + ae^{3} + \ldots + ae^{n-1} = a \cdot \frac{e^{n} - 1}{e - 1}$$

ohne eine genügende Ableitung desselben beibringen zu können.

IX. Den Begriff der Logarithmen knüpfte Weigel an die Reihen

$$1, 3, 9, 27, 81, 243, 729, \ldots$$

$$0, 1, 2, 3, 4, 5, 6, \ldots$$

brachte es aber weder zu einer allgemeinen Theorie noch zur Benutzung des Potenzbegriffs.

X. Die Art, wie er algebraische Gleichungen, und zwar nur einfache, auflöste, mag folgendes "Exempel" veranschaulichen: "Wird einer Zahl 11 addirt und 7 von ihr subtrahirt, so ist die Differenz halb sogross als jene Summe.

Durch Addition der 11 kommt die Summe x + 11,

Durch Subtraction der 7 kommt die Differenz x - 7,

wenn dieses als die Hälfte jenes ihm noch einmal angesetzt wird, kommen 2x - 14, welches jenem x + 11 gleich sein soll. Ist also dieses die Aequation

2x - 14 = x + 11.

Zur Reduction lasst uns was fehlt bei jeder Part (14) einer wie der andern addiren, dann bekommen gleiche Brüder gleiche Kappen, bleiben also auch nach der Vermehrung gleich

$$\begin{array}{c} 2x - 14 = x + 11 \\ \text{add.} \quad 14 = 14 \\ \text{summa } 2x \quad 0 = x + 25 \end{array}$$

Nun sind 2x einer einzelnen mit dem Zusatz 25 gleich. Also lasst uns von beiden gleichen Parten x subtrahiren also

$$2x = x + 25$$
  
subtr.  $x = x$   
resid.  $x = 25.$ "

Im Allgemeinen tritt der Beweis in den Hintergrund, wird oft weggelassen und erscheint als Nebensache. Hierin liegt wohl auch der Grund, weshalb Weigel die Bedeutung der allgemeinen Arithmetik nicht begriff.

# 2. Geometrie.

Die Geometrie bietet nichts Bemerkenswerthes. Mit Ausnahme von ein Paar Definitionen, wie z. B. Aehnlichkeit ist Identität ohne Rücksicht

14 Erh. Weigel. Ein Beitrag zur Geschichte der math. Wissenschaften

auf Quantität, brachte er nichts Eigenthümliches zu Stande. In der Trigonometrie ist etwa nur der Satz

 $\frac{a}{a} + \frac{b}{b} = \frac{lg \frac{1}{2} (A + B)}{lg \frac{1}{2} (A - B)}$ 

zu erwähnen.

## 4. Tetractys.

Da Weigel die Rechenfähigkeit als specifisches Merkmal des Menschen ansah, so forderte er consequenter Weise, dass jeder Mensch, auch abgesehen von dem practischen Nutzen, rechnen lernte. Aber er musste wahrnehmen, dass unter hundert Gelehrten kaum Einer hatte künstlich rechnen lernen können, und forderte daher, dass die übrigen das Versäumte nachholten, allein "das Zehner-Einmaleins schien ihm, wenn man's nicht in der Jugend wie ein Vogel im Nachsingen lernte, gar schwerlich in einen alten Kopf zu bringen, zumal wenn man nicht immer darüber liegen könnte, sondern andere Dinge mehr dabei zu verrichten hätte". Er sann daher darüber nach, wie auch noch alten Leuten zur Fertigkeit des Rechnens verholfen werden könnte. Da er die Hauptschwierigkeit in dem Zehner-Einmaleins fand, "durch dessen Weitläufigkeit und Schwierigkeit so viel Tausend Leute vornehmlich abgeschreckt und zurückgehalten würden", so musste er eine kleinere Grundzahl als Zehn wählen. Durch seine pythagoreischen Ansichten von der Bedeutung der Zahlen, die er noch durch allerhand Zusätze ausschmückte, wurde er bestimmt, sich für die Vier zu entscheiden. "Wie das schlechte Eins nur ein Element der Anzahl ist, also ist das Zwei die Wurzel, und das Vier ist die Zwifel und der Samen der geraden Zahlen; Drei hingegen ist die Wurzel ungerader Zahlen und Sieben sind ihre Phasen, Neun ist aber die Zwifel und der Samen derselben. Zwischen welchen allen Sechs das Gerade und Ungerade vermählt, weshalb ihrer Theiler Summe dem Ganzen gleich ist

 $1 \cdot 2 \cdot 3 = 1 + 2 + 3 = 6$ 

und sie die erste Gleichzahl ist." Ausserdem ist

$$1 + 2 + 3 + 4 = 10$$

und ist 4 nicht nur das erste Product derselben bei den gleichen Zahlen, sondern auch die erste Zahl, welche aus Gerade und Ungerade zusammengesetzt ist

 $4 = 2 + 2 = 2 \cdot 2 = 1 + 3 = 3 + 1$ .

Ausserdem glaubte Weigel die Vierzahl nicht nur in der Natur, sondern auch im Menschenleben überall anzutreffen. "Wir sind ohne absonderliches Bedenken durch Anleitung unserer Finger oder Zehen als durch angeborene Rechenstäblein, keineswegs aber durch die Vortrefflichkeit der Zahlen selbst dahin verführet worden, dass wir Alles an den Fingern abzählen." Aber selbst bei den Zehnerzahlen kann man die vier "Ecknamen Eins, Zehn, Hundert, Tausend" nicht entbehren. Das Volk hat das Beste

Digitized by GOOGLE

bereits vorweg genommen. Es setzt aus 4 Korn 1 Zoll, aus 4 Zoll 1 (palma), aus 4 Handbreiten 1 Fuss, aus 4 Fuss 1 Schritt, aus 1 Ruthe zusammen, theilt die Elle in 4 Viertel oder 16 Sechz misst damit jegliche Grösse; Tag und Nacht wird in 4 Theile, in 4 Viertelstunden zerlegt; die intensiven Grössen, namentli wichte, werden nach der Vierzahl gezählt, Birnen, Aepfel, Nüss Mandeln (= 4.4) und Schocken (= 4.4.4). Das Volk, schwierigen Rechnungen nicht geübt ist, würde die Tetractys  $\xi$ men, wie Dalecarlier, die ihr Kupfer zu je 4 und je 4 Haufen zunsere Bauern beweisen, die nach Anleitung der Natur mit 4 als in einer Fahnen die verkauften Scheffel, Kannen etc. abzäl mit war die Wahl der Vier, "deren Einmaleins nur 4 Zeilen lang man's nur das erste Mal hört oder lieset, auch von einem alten F kömmlich begriffen und nach demselben gerechnet werden ka ständig motivirt<sup>1</sup>).

I. Was das Numeriren anlangt, so zählte Weigel anfang 1 Eins 11 Ein und vier 21 Ein und zweivier 31 Ein u: 2 Zwei 12 Zwei " · " 22 Zwei " 32 Zwei ۰, •• 3 Drei 23 Drei " 33 Drei 13 Drei " ,, " •• 20 Zwei vier 10 Vier 30 Drei vier 100 Secht, später aber und zwar ganz rationell in folgender Weise 1 Eins 11 Ein und erff 21 Ein und zwerff 31 Ein 1 2 Zwei 12 Zwei .. 22 Zwei " 32 Zwei " ,, 3 Drei 13 Drei " 23 Drei " 33 Drei ,, ,, 10 Erff 20 Zwerff 30 Dreff 100 Secht Für die Potenzen von 4 wählte er die Namen

- 1 Eins,
- 4 Erff,
- 16 Secht.
- 64 Schock,
- 256 Erffschock,
- 1024 Sechtschock.

4096 Schockmalschock, u. s. w.

Die Addition geschieht nach folgenden Regeln: 1) me jeder Verticalreihe bis 4, macht, sobald man 4 erreicht hat, e zur Seite und setzt den letzten Ueberschuss über 4 ins "Facit zählt die zur Seite gemachten Puncte jeder Verticalreihe, setzt derselben einen Punct in die dritte Reihe nach links und den U in die zweite; 3) man zählt die Puncte zu den bereits gefun sultaten.

<sup>1)</sup> Die Tetractys wurde von Weigel behandelt in Universi corporiprodromus; Tetractys; Aretologistica.

|   | 1 | 2   | 3.       | 0     | 2     |   |
|---|---|-----|----------|-------|-------|---|
|   |   | 2   | . 3      | . 2   | 1.    |   |
|   |   | 1   | <b>2</b> | 3     | . 3   |   |
|   | 3 | . 2 | 1        | 3     | . 2 . |   |
|   |   | 2   | . 0      | 3     | 3.    |   |
|   |   | 1   | 2.       | . 1 . | . 1   |   |
|   |   | 3   | . 2      | 1     | 1     |   |
|   |   | 3   | . 3 .    | . 2   | 2.    |   |
|   | 2 | 3   | 1        | 0     | 3     |   |
| • | 2 | 3   | 1        | 3     | 2     | - |
| : | • |     | .:.      |       |       |   |
| 3 | 0 | 0   | 1        | 3     | 2     |   |
|   |   |     |          |       |       |   |

Die Subtraction bietet nichts Eigenthumliches dar. Die Multiplication setzt das Einmaleins

> 1 2 3 2 10 12 3 12 21

voraus und wird wie in folgendem Schema ohne Weiteres ersichtlich ist ausgeführt:

| ,              |     |           |             | 3         | 2   | 1      | 0            | 3           | · 2 |     |
|----------------|-----|-----------|-------------|-----------|-----|--------|--------------|-------------|-----|-----|
|                |     |           |             |           |     |        | 1            | 2           | 3   |     |
|                |     |           | ••          | :         | ••  | •••    | ••           | :           | ••  |     |
|                |     | •         | <i>.</i> :. | 0         | ••  | •      | <i>.</i> ••• | 0           |     |     |
|                |     | •••       | ••          |           | 0   | •••    | ••           |             |     |     |
|                | 1   | 2         | 0           | 0         | 2   | 0      | 3            | 2           | 2   |     |
| Ist der Quotie | n t | 120<br>32 | 020         | 322<br>32 |     | D<br>d | zu b         | esti        | mme | en, |
| tipla          | 1   | d =       | = 1 .       | . 32      | 103 | 2 =    | - 3          | <b>21</b> 0 | 32  |     |

Mult

 $2d = 2 \cdot 321032 = 1302130$ 3d = 3.321032 = 2223222

und hat dann ohne Weiteres

321032) 120020322 = 123321032 2131112 1302130 2223222 2223222 • 0

Dazu dachte Weigel einen Mechanismus aus, welchen er folgendermassen beschreibt: "Den Divisor schreibe stracks auf ein klein Brieflein, neben ihn zur Rechten setze sein Gedoppeltes und nächst sein Dreifaches, 50 hast du das Divisionsinstrument fertig. Hierauf lege das Brieflein unter

Digitized by Google

so bildet man die

auf den deutschen Universit. im 17. Jahrh. Von Dr. BARTHOLOMÆI. 17

den Dividenden und siehe zu, ob dessen erste Zahlen von der Linken zur Rechten dem einfachen Divisor oder dem zweifachen oder dem dreifachen gleich ist, so dass nichts fehle, wenn auch nichts oder etwas übrig bleibt, so hast du stracks den Quotienten 1, 2 oder 3, den schreibe dorthin, den einfachen oder mehrfachen Divisor, welcher also nächstes da begriffen, ziehe ab von den über ihm stehenden Zahlen des Dividenden: so ist die erste Operation richtig. Rücke den Divisor oder dessen Doppel- und Trippelquantität um eine Stelle fort gegen der Rechten und verfahre wie vorhin."

Die Reduction der decadischen Zahlen auf tetradische geschieht durch fortgesetzte Division mit 64. Ist z. B. die Zehnerzahl 6576819 in eine Viererzahl zu verwandeln, so hat man

|            |            |      | 64<br>64 |
|------------|------------|------|----------|
| 6576829    | 102762     | 1605 | 25 0     |
| 64         | 64         | 128  | 00       |
| 176        | 387        | 325  | 25       |
| 128        | <b>384</b> | 320  | •        |
| 488        | 362        | 5    |          |
| <b>448</b> | 320        |      |          |
| 402        | 42         |      |          |
| <b>384</b> |            |      |          |
| 189        |            |      |          |
| 128        |            |      |          |
| 61         | •          |      |          |

verwandelt die Reste 25, 5, 42, 61 in dreizifferige tetradische Zahlen

 $\begin{array}{c} 25 = 1 \cdot 16 + 2 \cdot 4 + 1 = 121, \\ 5 = 0 \cdot 16 + 1 \cdot 4 + 1 = 011, \\ 42 = 2 \cdot 16 + 2 \cdot 4 + 2 = 222, \\ 61 = 3 \cdot 16 + 3 \cdot 4 + 1 = 331, \end{array}$ 

und erhält darnach die Reihe der Ziffern der verlangten Zahl. Doch legte Weigel auf diese Reduction wenig Gewicht, denn sie setzte ja das Zehnereinmaleins voraus, sondern entwarf Tafeln der decadischen und tetradischen Zahlen, so dass der Rechner in der That nur bis 4 zu zählen brauchte.

Nicht nur die "Tetractys", sondern auch den schon erwähnten *divisor* vicinus, sowie die Begriffe der negativen Zahl, des Raums, der Grenze und der Zeit hielt er für so wichtige Entdeckungen, dass er noch im Jahre 1690 mit dem Plane umging, sie der königlichen Societät in London vorzulegen. Gewiss ein Beweis, wie wenig er sich um das, was bereits geleistet worden war, bekümmert hatte<sup>1</sup>).

1) Acta des Mathematici Weigels in dem S. E. Archiv. Zeitschrift f. Mathematik u. Physik. (Supplem.)

#### 5. Instrumente.

Dieselbe Wichtigkeit legte er auch den mathematischen, astronomischen, physikalischen und technischen Instrumenten bei, welche er erfunden, und zählte sie bei jeder passenden und unpassenden Gelegenheit auf<sup>1</sup>). Die mathematischen Instrumente sind nun folgende:

1) "Microgonioscopium, Minutenmesser. Ist eine Regul auf den Winkel messenden Instrumenten als auf Quadranten, Sextanten und dergleichen angebracht, also dass man mit einem mässigen Quadranten, der von einer einzigen Person zu handhaben ist, so viel, wo nicht mehr verrichten kann, als mit dem grossen Tychonischen, welcher durch Hülfe vieler Handlanger hat müssen aufgerichtet werden. Zum grossen Vortheil und Ersparung von Unkosten."

2) "Ein schlechter Visirstab."

3) "Abacus arithmeticus. Ist ein Vortheil, die Fortificationstabellen ohne Rechnen auf allerlei Längen zu reduciren, und ist eine jedwede Länge dadurch genau zu fortificiren."

#### 6. Nutzen der Mathematik.

Die Mathematik enthält nach Weigel die vier Hauptstellungen, worauf das ganze menschliche Leben beruhet: die Nahrung und Oekonomie, die Kunst- und Handwerke, die Handelsgeschäfte, die Kriegführung.

"Der bürgerlichen Nahrung und Oekonomie giebt die Mathematik Anleitung zu vortheilhafter Disposition des Haus- und Stadtwesens, zu genauer Ermessung und Eintheilung an Hab und Gut, des Jahres und Tages, zur Anstalt vor Feuersgefahr, vor Wasser- und Wetterschaden, zu nützlichen Wasserleitungen zur Reinlichkeit und Zierde in Städten und Häusern, wie auch zu ehrbaren und gemeinnützigen Belustigungen zumal der Jugend, vornehmlich aber zur Angewöhnung aller häuslichen und bürgerlichen Tugenden vermittelst arithmetischer und geometrischer Lehrübungen, dadurch eine kluge und dabei fromme Welt erzogen wird."

"Dem Handel hilft die Mathematik nicht allein mit der Rechenkunst und Buchhalterei, in der gleichsam die Form des Handels besteht, sondern auch mit der Wissenschaft von allerhand Manufacturen, womit die meisten Geschäfte zu thun haben, und bekommen also die so nützlichen Commercien im gemeinen Wesen sowohl die Form als die Materie, gleichsam Seele und Leib von der Mathematik."

"Was sie den Kriegsführungen für Anweisung und Vortheil gebe, bezeuget die Fortification und die dazu gehörigen Exercitien mit mehreren."

"Wie sehr ein Volk, das keine Mathematik treibt, im Nachtheil gegen

Digitized by GOOGLE

<sup>1)</sup> Wir folgen vorzugsweise einem besonderen Anhange der Philosophia mathematica theologia naturalis solida, welcher deutsch geschrieben ist.

ein solches ist, welches sich mit ihr beschäftigt, beweisen ( und Peruaner, welche den Europäern unterliegen mussten<sup>1</sup>).

Vor Allem hob Weigel das Rechnen hervor. "Die Re finden sich bei der Wirkung und im Leben von selbst, ohne sinnen. Denn alle Werke Gottes sind nach Mass, Zahl un schöner Harmonie geschaffen und ist kein Thun ohne Rechn zum Andern sich gesellt, da wird addirt; wo Eins von der Ge kommt, da wird subtrahirt. Wenn Einerlei zu gleichen Vi wächst, da wird multiplicirt; wenn solcher Haufen in sein schlagen wird, da wird dividirt. Wenn Eins zum Andern sich als es der Zweck erfordert oder die Regel, das Muster, das ] proportionirt." Anwendung des Rechnens findet sogar statt, nicht ausdrücklich darauf besinnt. "Wenn Speise zu Speise eingeschluckt, und ein Stück nach dem andern aus der Schi gerichteten abgezogen wird, so ist dort addirt, hier subtrahirt. Schritt für Schritt fortgehen muss, um zu sehen, wie lang dei multiplicirt und dividirt man. Wenn sich Etwas wendet, so w bogen addirt und subtrahirt. Gott wirkt Alles, was er in de nach den Rechnungsarten, z. B. wenn er die Zeit giebt, wol nungsarten sind<sup>2</sup>)."

Dies Alles lässt sich noch hören, aber geradezu in's A verfiel Weigel, indem er dem Rechnen einen beinahe allmä lichen Einfluss zuschrieb. "Die Rechnungsarten führen an sie den gewissermassen in verjüngtem Massstabe bei sich, denn Rechnen, welches nicht tugendhaft geübt werden müsste; rechnung ist lauter Tugendübung. Werz. B. dividirt, und da er den Quotienten selbst nicht weiss, so hebt er gl Augen auf und bittet damit, dass der Herr der Wahrheit i suchten, aber annoch verborgenen Wahrheit leiten wolle. Er die Schwachheit des Gemüths und traut dem Scheine nicht, ihn obgedachtem Herrn der Wahrheit vor und bittet damit zu ob er recht gerathen, denn ihm habe der Herr der Wahrheit von ihm aufzusuchende Vorwahrheiten, nämlich durch die Je Herz gedrückten Primwahrheiten oder schon vorher berecht wahrheiten Bescheid gegeben. Stimmt der Schein mit den V überein, so ist's getroffen, und vor Freude zum Zeugniss Weisheit springt das Herz; wo nicht, so lässt sich's der Recl verdriessen, sich von ganzem Herzen zu bekehren, anderweit (

<sup>1)</sup> Die Fried und Nutz bringende Kunstweisheit. Jena 1773. ] Wasserschatz. Jena 1671. A. 2; Vorstellung der Kunst- und Hand 1672. S. 91.

<sup>2)</sup> Von der Wirkung des Gemüths, so man das Rechnen heiss

20 Erh. Weigel. Ein Beitrag zur Geschichte der math. Wissenschaften

zu erwählen und also zu probiren, bis es trifft. Wir lernen beim Rechnen mit Wissen und Willen keinen Panct, geschweige denn mehr, vergebens, (viel) weniger zum Betrug in unserem Thun mit einzuschieben, sondern gleich und recht, und nicht zu viel und nicht zu wenig zu thun, genau doch auch recht zu handeln, arbeitsam, geduldig, sparsam und haushältig zu verfahren und mit unserem Nachbar friedsam und verträglich, auch behülflich umzugehen, welches Alles bei Gelegenheit des Rechnens und Messens durch anmuthige Erinnerung als lebhaft vorgestellt und den Kindern angewöhnet werden kann. — Wenn man die Tugend üben und kein Laster begehen will, so muss man rechnen und zwar scharf rechnen, kurz nicht allein die Einnahme und Ausgabe, nicht allein den Inhalt, sondern auch die Zielung, Kehrung, Wendung bei dem Thun und Lassen, man muss nicht allein die Inhaltsrechnung, sondern auch die Zielungsrechnung können; ja man muss diese Rechnung nicht nur können, sondern man muss sie auch anwenden und zwar gern anwenden und darnach thun. Durch das Rechnen lernen die Kinder Mass und Weise in allem 'Thun und also auch im Sittenthun bescheiden und die Tugend üben."

"Das Rechnen wird nicht vom Gemüth passiv geübt, d. h. nicht vom leidenden Verstande, sondern als freithätig und zwar bezogen auf die Bilder des thätigen Verstandes oder auf die Dinge."

"Durch das Rechnen lernt man nicht allein erkennen, dass die Gebote Gottes ohne Ausnahme gelten, sondern man lernt sich auch hüten, etwas Grosses zu begehen, sehr zu sündigen. Und wenn man Etwas begangen hat, so lernt man es beim Rechnen bekennen und den Vorsatz der Besserung fassen<sup>1</sup>)."

"Durch die Species werden ausgeübt und angewöhnt

1) die Liebe zur Weisheit, philomathia, eine Faser von der Wurzel aller gemeinen Tugenden, daraus die andern alle unausbleiblich als Zweige erwachsen. Denn man entschliesst sich zum scharfen Rechnen nicht aus Muthwillen, es wird auch Niemand eine falsche Ziffer in die Zifferzeil mit Fleiss verfügen und hineinpartiren, da sonst Maucher öfters ein zweideutig Wort zum Mittel einer Schlussrede einschiebt, seinen Gegenpart dadurch zu fangen, zu betrügen, sondern er entschliesst sich zu dem Zifferrechnen aus lauter Liebe zur Weisheit, man will gern wissen oder sich weisen lassen, was für ein Facit aus gegebenen Posten komme, zunächst nur, dass man es kenne, den Verstand damit erbaue, dass man die Gewissheit einer sonst verborgenen Wahrheit sehe und mit rechter Rechenschaft ein Stück der Weisheit gleichsam bei sich selber zeugen und Erkenntniss dessen

<sup>1)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst § 15; Unmassgebliche mathematische Vorschläge, betreffend einige Grundstücke des gemeinen Wesens. Jena 1682. II. § 6; Extractio radicis S. 3. 5. 11; Rolle der Schullaster S. 15. 16.

haben möge, es mag solche Erkenntniss angewendet werden, wo man sie will. Da denn nie erhöret worden, dass ein Zifferrechner jemals einige Berechnung angestellt und sich vorgenommen, einen Andern mit dem Facit zu betrügen, d. h. ein falsches Facit zu erfinden und herauszubringen. Ja es kann nicht sein, denn sonst würde sich ein Rechner selbst betrügen, weil das Facit zunächst auf den Rechner geht, dass dieser ohne Falsch, gewiss und richtig messe, was die Posten geben, da sonsten in dem Wörterrechnen in den Schulen ordentlicher Weise die Declamanten einer dieses Thema und der andere sein Gegentheil auf's Scheinbarste zu defendiren und zu behandeln angewiesen werden, unter welchen doch eins falsch sein muss, dadurch man keineswegs den Willen zu dem Guten wie bei dem Zifferrechnen präpariret.

2) Bedachtsamkeit, considerantia. Denn wie bedenkt man sich beim Addiren, Subtrahiren, Multipliciren und besonders beim Dividiren, dass man auch auf das erste Mal nicht weit abschreiten, sondern, wo nicht gänzlich, so doch beinahe treffen möge. Und wenn man gleich die Kunst des Dividirens wohl inne hat, und den Verstand darin schon recht erbaut, so übereilt man sich doch nicht, die schon erlangte Weisheit anzubringen, sondern man verfährt bedachtsam, sieht sich um und lernt damit auch überall vorsichtig handeln, practicirt's in der geringen Gattung des Objects, in Ziffern: warum sollte man dadurch sich nicht gewöhnen, auch in wichtigeren Sachen die Bedachtsamkeit auszuüben, wenn man nur liebreich und in treuen Worten des Oeftern erinnert wird.

3) Sittsamkeit, modestia, indem nur gegen das 'Thier, das nicht rechnen kann, eine gewisse Ueberhebung entsteht, aber nicht gegen die Mitschüler, welche ebenfalls rechnen können. Zwar rechnen nicht alle gleich fertig, aber wenn auch der Eine etwas besser rechnet, so hält doch Jeder jeden Andern auch für einen Rechner, so dass also durch das Rechnen die Gemüther zu rechtschaffener Liebe des Nächsten verbunden und aus Feinden leichtlich Freunde werden. Das Rechnen hält den Dünkel, dass man Viel wisse, fern, denn es zeigt, wie viel Realien gelernt werden müssen und wenige davon begriffen werden können.

4) Gleichmüthigkeit, *aequanimitas*. Denn obgleich das Addiren, Subtrahiren, Multipliciren gleich ein geringes Werk ist, dass man sich schämen sollte da zu fehlen und den Febler zu bekennen, so erkennt man doch die menschliche Schwachheit auch bei dem geringsten Thun und schämt sich nicht zu bekennen, denn man fehlt nicht gern und geschieht der Fehler nicht aus Vorsatz<sup>1</sup>).

<sup>1)</sup> Die vollständige Darstellung der einzelnen Tugenden, mit welchen das Rechnen "verübet" wird, findet sich in Aristologistica S. 185 ff. Wir citiren daher nur die Stellen, in welchen Weigel dasselbe oder Achnliches vorbringt; Rolle der Schullaster S. 11. 18. 35.

5) Sanftmuth, mansuetudo, Vergnügung, autarkia, Geduld, patientia, Herzhaftigkeit, fortitudo. Die beiden ersten haben schon Grund in gewissen Rechnungsarten, z. B. bei der Bruchrechnung und Algebra, womit auch die Tapferkeit herrlich abgebildet wird, wenn die Gleichungen endlich bis auf Null getrieben, ihre beste Lösung daselbst haben<sup>1</sup>). Besonders aber die Geduld. Denn bei den Ziffern lernt man sitzen, wenn es auch ein müssiger Vagant sonst wäre. Wie nun langes Sitzen frischen Leuten, zumalen Kindern eine Qual, ein Schmerz ist, das Zifferrechnen diesen aber eine sonderliche Lust und Freude macht, wenn sie ein Facit treffen und errathen lernen, da sie so gern Rathens spielen (z. B. Spitzlein oder Knöpflein, Gerade und Ungerade), so sind sie denn zufrieden, ob sie gleich beschwerlich sitzen, sie gewöhnen sich, ein leiblich Uebel dem Gemüthe zum Besten auszustehen und lernen eine Unannehmlichkeit nicht wie die Uebrigen als ein Unglück zu nehmen, sondern als ein freudiges Thun, als eine Lust und als ein Spiel. Die Lust beim Rechnen, Zeichnen und Ausmessen bringt sie zur Geduld mit Freuden, so dass sie viele Stunden nach einander arbeiten.

Die Tapferkeit wird angeeignet durch die Wurzelausziehung. Denn hier soll man dividiren und hat doch keinen Divisor, man muss sich also in das Nichts hinein wagen, um einen Divisor zu finden, der die Wurzel ist, däraus der Leib als das Product entstanden. Nämlich du bist Erde und von der Erde und also musst du wieder zur Erde werden. Wenn es nun sein muss, so wag man's frisch, dass man das Product aus solcher Wurzel wieder erbaue und zur Freud einführen lassen könne, da das Product viel klärer aus der Wurzel producirt wird, als es vor der Extraction gegeben worden. Man bedenke nur, woher der Leib entstanden sei, so wird man dessen Tod sich nicht befremden lassen. Lebt doch unsere Seele allezeit und wird nicht mit dem Leibe zerstört, sondern sie steigt nur vom Pferde, das unter ihr erschossen oder umgefallen ist, und dient dem grossen Herrn der Heerschaaren nunmehr als Engel ohne Leiblichkeit gleichsam zu Fuss etc.

6) Die Sprechtugenden: Gesprächigkeit, affabilitas, Scherzhöflichkeit, urbanitas, Verschwiegenheit, taciturnitas, Wahrhaftigkeit, veracitas. Wie man durch die Sprechkunst lieblich reden, durch das liebliche Reden (weil man sich sodann selbst gern hört) schwatzen, durch das Schwatzen plaudern, plappern, tröschen, schnappern, nattern, keifen, beissen lernt, und sich's leicht angewöhnt, so lernt man durch das Rechnen schweigen, denn man ist gern stille, wenn man rechnet, sonst verdirbt man's, wie man denn auch einem Stummen alle Zifferrechnung lehren kann.

Besonders ist die Wahrheit dem Zifferrechnen eigen, denn da muss Alles wahr sein, was man über vorgegebene Posten spricht. Man gewöhnt

<sup>1)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst § 19. S. 22.

sich zu der Wahrheit durch die Zifferrechnung so sehr, dass man auch hernach nicht leichtlich lügen kann. Ein Rechner als solcher kann mit Willen auf kein falsches Resultat hinarbeiten, selbst wenn es auf das Böse gerichtet wäre. Das Rechnen geht eben auf den Rechner, das Sprechen aber auf den Hörer, daher kann es leicht geschehen, dass mit Fleiss unwahr gesprochen wird. Der Sprecher spricht nur, was er zuvor gedacht, spricht also nichts, als was er will, ein Rechner aber findet, was er vorher noch nicht gewusst und ist streng an das Resultat gebunden<sup>1</sup>).

7) Sparsamkeit, parsimonia. Sparsam ist der, welcher das Seine zu Rathe hält. Nun hat aber ein Zifferrechner zunächst nichts als Ziffern. Diese hält man beim Zifferrechnen so zu Rathe, dass man vergebens keine in die Zeile zu schreiben, keine auszugeben oder auszulassen sich gewöhnt. Und weil die Sparsamkeit durch gute Ordnung dessen, was man hat, befördert wird, dergleichen bei dem Zifferrechnen ist, womit verursacht wird, dass mit gar wenig Ziffern eine grosse Vielheit hergestellt werden kann.

8) Emsigkeit, sedulitas. Der Fleiss ergiebt sich von selbst bei dem Zifferrechnen. Denn da sitzt man oft viel Stunden nach einander, etwas auszurechnen und lässt nicht nach bis man's gefunden. Und dabei gewöhnt man sich zum Fleiss auch anderweit.

9) Mässigkeit und Nüchternheit, *frugalitas* und sobrietas. Denn wenn man beim Addiren nicht mehr darf in die Summe bringen, als man durch Subtraction der Posten von der Summe, dass nichts übrig bleibt, wieder nehmen kann, so soll man nicht mehr in den Magen füllen oder zu sich nehmen, als die Zehrkraft consumiren kann, wenn sie von einem Mal zum andern subtrahirt oder abzieht.

10) Keuschheit, castitas. Wenn den Kindern das Fressen, Saufen, Naschen, Schlucken verleidet, und sie von der Leibeslust ab und zur Seelenfreude angewöhnt worden bis die Jahre der Geilheit ihres angehorenen Thieres kommen, ist's nur halbe Mühe, dieselben auch in diesem Stücke zur Tugend durch die Rechnung zu gewöhnen. Denn sie wissen, dass man nicht eher darf multipliciren, bis man das Addiren und Subtrahiren gelernt hat, d. h. dass man in seinem Stande so viel addirt (erworben) hat, als beim Haushalten täglich muss subtrahirt werden, so dass auch nach unserem Tode zum Dividiren für unsere Erben noch etwas übrig bleibe.

11) Die Geberdentugenden: Stellhöflichkeit, *civilitas*, Gleichberdigkeit, *comitas*<sup>2</sup>), Anständigkeit *decentia*<sup>3</sup>), Schamhaftigkeit, *verecundia*. Denn wie die Ziffern alle nett, gleichsam geputzt geschrieben als in schöner Ordnung, als in Gliedern und Reihen neben und hinter einander vorgestellt

3) "Bei Grossen heisst die Tugend Ernsthaftigkeit, gravitas."

Digitized by Google

<sup>1)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst S. 13.

<sup>2) &</sup>quot;Dass man sich eines Hauses oder Landes oder Freundes sonst unschuldiger Weise gefallen lässt, so lange man da ist, dass man ihm zu Ehren auf solche Weise mitmacht."

werden müssen, so kann man die Kinder leichtlich damit bedeuten, dass sich auch die Menschen gegen einander so bezeigen müssen, dass sie nicht wie Hunde und Katzen, Schweine und dergleichen durch einander ungeberdig laufen, sondern rittermässig, wie die Ritter und Soldaten, Ordnung halten müssen.

12) Die Affectentugenden. Denn Jeder, der mit rechnet, muss Jeden für einen Menschen halten und die Leutseligheit humanitas üben, weil ein Mensch ist animatum rationale, ein mit Rechenschaft begabter Lebling. Dazu kommt benevolentia, die Wohlwolligkeit. Denn man sieht es trefflich gern, wenn mehr als einer rechnet, weil man keiner andern Probe bedarf, als die sich bei so Vielen selber giebt. Denn wenn Viele mit einander rechnen, jeder heimlich, jeder für sich, bringen aber Alle oder doch die Meisten und Besten eben ein Product, so ist's nahe bei der Wahrheit und Gewissheit. Wer nun einem einen Vortheil thut, den hat man lieb und will ihm wohl, also muss die Benevolenz durch das Rechnen angewöhnt werden. Welches aber auch von der Eintracht zu gedenken, dass oft sonst widerwärtige Köpfe, die einander Feind gewesen, wenn sie in Collegiis die Zifferrechnung mit einander ausgeübet, daher Gelegenheit bekommen, von freien Stücken wieder Freund zu werden. Denn man kann's nicht lassen bei dem Zifferrechnen, der Eine muss den Andern an- und nachfragen, ob er einerlei Product mit ihm. Da zieht denn bald die Einigkeit der Rechnung die Gemüthseinigkeit nach sich. Die Rathgebigkeit und Folgeleistung, obsequentia, kann nicht besser als durchs Rechnen angewöhnt werden. Denn wie alle Rathserfindung ohnedies nichts ist, als eine Rechnung, so lässt sich Einer bei der Zifferrechnung von dem Andern gern rathen, schämt sich nicht zu folgen. Denn die Probe giebt's, dass der Rath gut und die Folge richtig sei.

13) Die Werktugenden bekommen ihr Mass und ihre Weisung durch das Rechnen<sup>1</sup>). Die Gerechtigkeit hat ihren Sitz in der Rechenkunst. Die Gutthätigkeit, *beneficientia*, wird beim Subtrahiren klar gemacht, da man oft borgen muss, und ist der Nachbar, ob er gleich viel höher ist, dennoch allezeit parat, auch ohne Zins etwas herzuleihen. Durch das Proportioniren wird eingeflösst und angewöhnt die Liebe zum gemeinen Wesen und der gerechte Wandel in demselben, denn beide beruhen auf Harmonie und Proportion."

"Daher muss ein Rechenkind ganz unvermerkt und lieblich, gleichsam im Schlafe zur Fertigkeit der Tugend in kleinem Massstabe gelangen. Dieser kleine Massstab wird bei zunehmendem Alter von selbst immer grösser und zuletzt vollkommen, wenn nur der Rechenlehrer nicht vergisst, den Kindern die Tugendübung, welche unvermerkt im Rechnen liegt, zu entdecken und dieselbe auch sonst auf die in der Schule vorfallenden Thä-

<sup>1)</sup> Von der Wirkung des Gemüths, so man das Rechnen heisst S. 23. 24.

tigkeiten und Verrichtungen, auf das Leben der Schule wie in einem Staate anzuwenden. Denn wenn man diesen Nutzen des Rechnens verschweigt, und das, was dem kleinen Massstabe nach bekannt ist, nicht immer auf Grösseres anwendet, so kommt's, dass ein erwachsener Rechenknabe, ja mancher Rechenmeister ausser seinem Rechnen sich ganz unrechenmässig und untugendhaft bezeigt."

Nimmt man zu diesem practischen und pädagogischen Nutzen der Mathematik noch hinzu, dass Weigel in ihr die deutlichsten und richtigsten Principien und in ihrer Vernachlässigung eine "Schwächung wo nicht gar Zerreissung des gesammten Wissenschaftsbaues" erblickte, so ist es erklärlich, dass er fort und fort für die Verbreitung mathematischer Kenntnisse thätig war. Er forderte, dass Mathematik in allen Schulen, auch in den niedrigsten, getrieben würde und zwar nicht jejune, sondern usualiter zum Nutzen des gemeinen Wesens, dass das alte "undels ayemuéronros eloiro!" beachtet und dass "nicht leichtlich ein Universitätsprofessor angestellt würde, der nicht die so friedsame mathesin Euclideam gutes Theils begriffen habe"1). Die Vernachlässigung der vier freien Künste und besonders die der Arithmetik und Geometrie hielt er für eine Hauptursache des Verfalls der deutschen Schulen und der deutschen Wissenschaft. Die Schulen verfielen, "als die vier freien Künste, die Arithmetik oder Rechenkunst, die Geometrie oder Ziel- und Wendekunst, die Astronomie oder Weltkunst, die Musik oder Harmoniekunst aus den Kinder- und Knabenschulen vertrieben wurden, bis auf die Vocalmusik und bis hie und da auf's Rechnen, welches auf einer sonderlichen und verächtlichen Bank noch für die geduldet wurde, welche nicht studiren sollten, und nicht einmal die rechte Rechenkunst und Weisheit war." Er hielt es für die Pflicht seiner Profession, für die Einführung der Mathematik in die Schulen und für ihre Förderung zu wirken, und errichtete seine Jugend- und Tugendschule, um in ihr den grossen pädagogischen Nutzen der Mathematik zur Anschauung zu bringen 2). Der Widerstand, welchen er bei seinen Collegen und den Regierungen fand, war wohl die Hauptursache, weshalb seine Bemühungen im Ganzen ohne erheblichen Erfolg blieben.

## III. Astronomie.

Wenn man von der Geoscopia Selenitarum absieht, so begann Weigel seine schriftstellerische Thätigkeit in der Astronomie im Jahre 1661 mit

٠

ľ

<sup>1)</sup> Acta des Mathematici Weigels etc.; Vorstellung der Kunst- und Hand-Werke S. 110.

<sup>2)</sup> Idea totius encyclopaediae math. phil. Jenae 1671. S. 288; Fortsetzung des Himmelszeigers S. 40. 41; Unmassgebliche mathematische Vorschläge, betreffend einige Grundstücke des gemeinen Wesens. Jena 1682. II, § 3 — § 5. Zugabe; Von der Wirkung des Gemüths, so man das Rechnen heisst; Acta des Mathematici Weigels etc.

dem Himmelsspiegel. Die Armseligkeit seiner Mathematik gestattete ihm nicht, sich zu den höheren Problemen der Wissenschaft zu erheben, und wo seine Mathematik ausreichte, versperrte er sich den Weg zur richtigen Erkenntniss durch seine Theologie. Die Welt war ihm vorzugsweise "ein Schauplatz der Werke Gottes und ein herrlicher Palast, in dessen Mittelpuncte Gott der Allmächtige dem Menschen eine Stelle eingeräumt hat, von der aus er dieses aus Nichts erschaffene künstliche Werk rings umher beschauen und seinen Schöpfer dadurch erkennen, fürchten und lieben lernen möge. Der Himmel ist des Geistes wegen da und steht um die Erde als ein fest geschlossenes Gewölbe mit unzählig vielen Sternen und güldenen Buckeln geziert<sup>1</sup>). Der Himmel giebt's augenscheinlich und sonnenklar zu verstehen, was wir auf deutsch gereimt zu sagen pflegen

> Alles, was wir haben, Das sind Gottes Gaben.

Zwar nicht mit Worten giebt's der Himmel zu verstehen, er lässt uns auch selten seine Donner in die Ohren gellen, aber er macht Mienen, als wollte er mit uns reden, als ob die Sternlichter eitel feurige Zungen wären. Denn die Storne ziehen schön geputzt in ihrer Ordnung auf und winken alle mit subtilem Blinkern. Die Sonne scheint so helle und sticht uns so heiss auf die Haut, dass auch die Blinden aufmerken müssen. Der Mond verstellet gar oratorisch sein Gesicht und wendet es bald da bald dorthin, dass ein Jeder wohl daran vermerken, sehen, fühlen und empfinden mag, er habe uns etwas Wunderbares und höchst Wichtiges mitzutheilen und vertraulich zuzubringen. Der Himmel macht ein Heergeschrei und ruft mit vollem Halse so vieler Tausend Gottes-Söldner, grosser und kleiner Sterne, nicht allein die Atheisten zu gewinnen, sondern auch die Träumenden und Unachtsamen zur fleissigen Besinnung aufzumuntern. Mich däucht, ich höre, was der Himmel ruft, indem er oft concertenweis, oft im gesammten Chor. oft auch einstimmig, wie jetzt durch des ungemeinen Sterns, des Kometeu grausame Bassstimme intonirt und spricht : Bedenke doch, o Mensch, dass du das morgende Leben noch nicht habest"2). Dieser theologische Anstrich passte vielleicht auf die Kanzel, aber nicht in ein Lehrbuch der Astronomie, sondern musste hier alle höhere Auffassung im Werden ersticken. Schon die allgemeine Weltauffassung war mindestens eine leichtsinnige, denn er hielt das Universum für eine Kugel, weil es von Innen als solche erscheine, wenigstens erblickte er hierin einen Wahrscheinlichkeitsbeweis. Eben so sonderbar, um nicht zu sagen leichtsinnig, beantwortete er die Frage von der Bewohnbarkeit der Sterne in Bezug auf den Mond dahin, es widerspräche zwar nicht der göttlichen Allmacht und der Vernunft, dass

<sup>2)</sup> Fortsetzung des Himmelszeigers S. 29.



<sup>1)</sup> Fortsetzung des Himmelsspiegels. Jena 1665. S. 1. 2; Himmelszeiger. Jena 1681. S. 3.

Werke Gottes betrachteten und bewunderten, aber es wäre der heiligen Schrift zuwider, nach welcher das Menschengeschlecht von Adam abstammte, die Erde und nicht den Mond bewohnte, und die Sterne zum Dienste des Menschen bestimmt wären. Sein Schluss war daher, es sei überflüssig, mit der Laterne des Diogenes Menschen anderwärts als auf der Erde zu suchen '). Noch mehr werden wir den verderblichen Einfluss der Theologie im Einzelnen wiederfinden.

#### 1. Sternbilder und Namen.

Die Namen der Sternbilder waren Weigel wegen ihres heidnischen Ursprungs ein Greuel. Für die aus der heiligen Geschichte von Schiller<sup>2</sup>) vorgeschlagenen Namen konnte er sich jedoch nicht entscheiden. Dagegen stimmte er Schickard<sup>3</sup>) bei, welcher die alten Sternbilder mit biblischen Personen, Gegenständen und Verhältnissen in Beziehung brachte (Himmelsspiegel).

"Statt der alten mehrentheils abscheulichen und fabulosen Bilder, womit die Poeten den sonst reinen Himmel beschmitzt, und der abgeschmackten, so gar garstigen Possen, wollte Weigel, dass Gottes und der klugen Menschen Werke, Ordnungen und Thaten am Himmel betrachtet würden." Da nun der Himmel zu dem Erstern ohne unser Zuthun anreizt, so blieb ihm nur übrig, die menschlichen Angelegenheiten an den Himmel zu bringen. Er wählte die Wappen der Potentaten. Diese jeder höheren Idee bare Wahl lässt sich nur daraus erklären, dass er eben so wie seine Zeitgenossen in dem von Luther erfundenen oder wenigstens auf die Spitze getriebenen Dogma vom Unterthanenverstande befangen war. Denn er besass eine ziemliche Portion Devotion gegen die Grossen dieser Welt, und nahm sogar an den Planeten "ein Exempel, wie die Unterthanen und Diener ihre Oberherren respectiren und ehren sollten"<sup>4</sup>).

Aehnlich wie die Sternbilder ihn nach Schickard's Anleitung an die heilige Geschichte erinnerten, so nach Riccioli die Planeten an die 7 Engel der Offenbarung.

#### 2. Das Sonnensystem.

Weigel erkannte ganz wohl, dass die grossen Geschwindigkeiten der Himmelskörper bei ihrer täglichen Bewegung höchst auffällig wären, sah ein, dass die etwaigen Mondbewohner nichts von der Axendrehung ihres Wohnplatzes spüren, sondern die Bewegung der Sonne zuschreiben wür-

н

- 3) Astroscopium Ulm. 1659.
- 4) Speculum uranicum; Der europäische Wappenhimmel.

<sup>1)</sup> Geoscopia Selenitarum.

<sup>2)</sup> Coelum stellatum Christianum Aug. Vind. 1627.

den, ja er suchte sogar a priori zu beweisen, dass sich die Erde bewegte und machte auf das keplersche System als das aufmerksam, durch welches die Schwierigkeiten des ptolemäischen beseitigt würden, aber dennoch hielt er in Anbetracht der Bibellehre dafür, "dass man hierin als in natürlichen und für die Seligkeit gleichgültigen Dingen keinen gewissen Schluss machte", verwies auf das eigne Nachdenken<sup>1</sup>) und folgte seinerseits dem Ptolemäus.

Diese Widersprüche, welche Weigels Astronomie drückten, scheinen ihm selber nicht den mindesten Kummer verursacht zu haben. Dass er sich nicht zu Kepler erheben konnte, mochte zum Theil in der Orthodoxie Jena's begründet sein; aber sicher nur zum kleinsten Theil, denn er scheute in andern Dingen den Widerspruch seiner orthodoxen Collegen durchaus nicht und musste sogar erleben, dass ihn die Philosophen nicht in ihrem "collegio dulden" wollten. Wahrscheinlich blieb er an Ptolemäus kleben, weil er eine der Bibellehre zuwiderlaufende Lehre selbst für schädlich oder gar für falsch hielt, denn er war sowohl bibelfest als bibelgläubig.

Die Sonne hielt Weigel für eine glühende und geschmolzene Masse. Er schloss dies aus ihrem Glanze und ibrer Hitze und aus den Veränderungen ihrer Oberfläche, welche nichts Anderes als Aufwallungen sein könnten<sup>2</sup>).

Die Erde hat die Gestalt einer Kugel. Den Beweis dieses Satzes fand Weigel in dem allmäligen Sichtbarwerden oder Verschwinden der Gegenstände, wenn man sich ihnen nähert oder von ihnen entfernt, und in der Form des Erdschattens bei den Mondfinsternissen. Doch machte er sich augenscheinlich von dieser Kugelgestalt eine falsche Vorstellung, denn nicht nur sprach er von einem declivischen und einem acclivischen Horizonte, sondern bewies auch alles Ernstes, dass das Wasser Berge, aber keine Tiefen bilde<sup>3</sup>).

Zu Keplers Ansicht, dass Ebbe und Fluth durch den Mond bewirkt würde, bemerkte er: "Man muss sehr krumm herum denken, wenn man innerhalb 24 Stunden, während welcher Zeit sich der Mond nur ein Mal um die Erde bewegt, zwei Mal Ebbe und Fluth bekommen soll" und stellte dagegen die folgende Theorie auf: 1) Die Sonne kommt in 24 Stunden ein Mal um die Erde herum und erwärmt in den Tropengegenden die Luft und das Wasser. 2) Durch die Wärme steigt das getroffene Stück der Luft viel höher als die ringsherum liegende Luftmasse, in geringerem Grade auch das Wasser. 3) Die nach und nach so aufgerührte Luft giebt einen beständigen Ostwind. 4) Der Gang der fortrollenden Luft treibt das Was-

<sup>1)</sup> Speculum uranicum; Geoscopia Selenitarum; Pendulum ex Tetracty deductum. Jenae 1674; Cosmologia. Jenae 1680. D. 4.

<sup>2)</sup> Fortsetzung des Himmelsspiegels S. 19.

<sup>3)</sup> Cosmologia A; Fortsetzung des Himmelsspiegels S. 87. 91, 92, 96. Digitized by

auf den deutschen Universit. im 17. Jahrh. Von Dr. BARTHOLOMÆI. 29

ser unter ihr aus der Stelle. Dieses kehrt, wenn der Druck aufhört, wieder zurück, das Meer schwingt also 6 Stunden hin und 6 Stunden zurück, wobei sich bei der Wendung etwa eine Viertelstunde einschleicht. 5) Das einmal in Schwingung gerathene Wasser setzt nun die Schwingungen von selber fort, ebenfalls 6 Stunden hin und 6 Stunden zurück und mit einer Viertelstunde Wendung. Die vier Schwingungen machen also mit der doppelten Wendung 25 Stunden. 6) "Ehe der letzte Schwank aus und absolvirt ist, da kommt ihm nach 24 Stunden die Sonne entgegen und drückt noch einmal westwärts, der letzte Schwank aber widerstehet etwas, hemmt des Monats Unterscheids 8. Theil und geht die Fluth nach 25 Stunden so viel schwächer wieder westwärts ein". 7) "Des monatlichen Unterscheids 8 Achtel werden in 8 Tagen aufgehoben und so lange bringt auch der Mond von einem Schein zum andern zu, da zeigt der Schein des Mondes die schwächste Ebbe und Fluth." 8) "Die westwärts drückende Sonne trifft hierauf bei ihrer Wiederkunft den Schwank des Meeres auch gegen Westen aber immer schon geneigter und geneigter an, dass in 8 Tagen 8 Achtel des Unterscheids im Schwange wieder wachsen. Da zeigt der Gegenschein des Mondes die stärkste Ebbe und Fluth etc.", womit die monatliche Periode erklärt sein soll. 9) "Dazu kommt der jährliche Unterscheid zu Hülfe, indem die Sonne in der Zona torrida stärker als daneben drückt, dass im Frühling und Herbst grösserer Unterschied zu spüren ist, als im Sommer und Winter." 10) "Wie sich nun der Schwank zu dem Ufer wohl oder übel schicket, so spürt man daselbst unterschiedene Ebbe und Fluth 1)."

### 3. Der Kalender.

Am Eingehendsten beschäftigte sich Weigel mit der Zeit und dem Kalender und erwarb sich durch seine auf die Verbesserung des letzteren gerichteten Bestrebungen nicht geringes Verdienst. Am 12. Nov. 1663 gab ihm die Regierung den Auftrag, die "Conformationis- oder Mittel-Calender Jacobi Elrodii" zu begutachten. Nachdem er "denselben mit allem Fleisse durchgelesen und nach den chronologischen principiis überleget, befand er: 1) das Werk ist "der Form nach ziemlich obscur und das Fundament meistens versteckt", 2) es steht dem gregorianischen Kalender nach. Um seine Ansicht zu begründen, arbeitete er den Zeitspiegel aus und schickte am 9. März 1664 einen Auszug aus demselben an den Herzog, "bis der vollständige Tractat auf E. fürstl. Durchlaucht gnädigsten Consens vermittelst eines Verlegers zum Druck befördert werden möchte"<sup>2</sup>). Er selbst entschied sich für den gregorianischen Kalender mit der Modification, dass

<sup>1)</sup> Himmelszeiger S. 36 ff.

<sup>2)</sup> Acta des Mathematici Weigels etc.

30 Erh. Weigel. Ein Beitrag zur Geschichte der math. Wissenschaften

der Vollmond nach dem Frühlingsäquinoctium und dieses selbst astronomisch festgestellt würden <sup>1</sup>).

Der Himmel ist ein Richtungs- und Zeitinstrument. In beiderlei Hinsicht sehr nützlich und nothwendig<sup>2</sup>); besonders aber als Zeitinstrument. "Denn Zeit wird nicht mit der Einheit der Maligkeit gemessen, denn der Wechsel wird sogar geschwind verüht, dass man die kürzeste Währung eines Males als das Mass der Zeit nicht haben kann. Dieses giebt der Him. mel, die grosse selbstumgehende, selbstzählende und selbstschnappende Lebenshaspel. Der wickelt selber auf und zählt die Wickel, ja die kleinsten Währungen davon; die zählt er mit Verrückung seiner Sterne, sonderlich der Sonne und des Mondes, zeiget jede ganze Wickelung mit sichtbarer Abwechselung des Lichtes und der Finsterniss, wir heissen's Tag und Nacht. Er fährt im Aufwickeln bin und her und macht Gebinde, Zahlen, Strähnen, heissen Wochen, Monate, Jahre. Ja der Himmel meldet auch die Zahl der Jahre, zeichnet sie mit Finsternissen, Adspecten und Planeten, rechnet selbst und setzt das Facit allemal zur Schau vor Augen. Und Gott muss die Umdrehung des Himmels selber ausführen, der unbeschreiblich grosse Herr, bei dem selbst kein Unterschied der Zeit sein kann, der alle Augenblicke zugleich und auf einmal allen Völkern, diesen bier ihr Morgenbrod und Frühstück, andern dort eben dazumal das Mittagsessen, weiter andern eben damals das Vesperbrod und aber andern eben dazumal die Abendkost darreicht und giebt: die übrigen lässt er schlafen und bereitet ihnen unterdessen Speise"<sup>3</sup>).

Damit haben wir in Gedanken die Reise um die Erde in Aequatorrichtung gemacht und werden an den Tag Gewinn oder Verlust erinnert, den eine solche mit sich bringt. Weigel machte dieses Verhältniss in folgender Weise anschaulich: "Wenn zwei Schiffe von demselben Orte, das eine gegen Abend, das andere gegen Morgen reisen, so müssen sie auf halbem Wege einander begegnen und daselbst jedes schon die Hälfte eines Tages zur Differenz am ersten Orte bei sich führen, das eine Schiff einen halben Tag zu wenig, das andere zu viel. So grüsset nun ein Schiff am Sonntag mit geputzten Passagieren, das andere dankt mit ungeputzten Passagieren in schwarzen Krausen am Samstag"<sup>4</sup>).

In Bezug auf die Zeitrechnung und den Kalender herrschte bei den Zeitgenossen Weigels grosse Unwissenheit. "Wie der gemeine Mann – klagte er — der von der Rechnung nichts weiss, so ist wer unter den Priestern, der die Ostern nach dem Cyclus abzählet und nicht in dem Kalender suchet? Wie viel sind aber unter den Kalenderschreibern, welche die Ostern nach der Rechnung und nicht nach den Ephemeriden in den Kalen-

<sup>1)</sup> Zeitspiegel S. 96 ff.; Himmelszeiger S. 17.

<sup>2)</sup> Himmelszeiger S. 9. 10.

<sup>3)</sup> Fortsetzung des Himmelszeigers S. 17-19, 20-25.

<sup>4)</sup> Zeitspiegel S. 76.

Ephemeriden gemacht, die Priester verlassen sich auf die Kalender, der gemeine Mann fastet und feiert, wie es ihm der Priester von der Kanzel verkündigt. Das ganze wichtige Werk der christlichen Fest- und Feiertage beruht also auf einem einzigen gelehrten Manne, der die Ephemeriden ausarbeitet und nach den Cyclen die Festtage mit angiebt. Hat's dieser wohl getroffen, so treffens die Kalenderschreiber auch; hat er irgend gefehlt, so fehlen alle haufenweise." Nicht mit Unrecht hielt er dafür, dass solche Unwissenheit dem deutschen Volke zur Schande gereichte. "Die Türken lernen ihre stets veränderliche und wunderbarliche Mondjahre nicht nur nach Tagen, sondern auch nach Stunden und Minuten ausrechnen." Eben so die Perser. "Die in Kunstsachen sonst so dumme Juden begreifen und berechnen ihren Festkalender gar wohl. Diese ungeschickten Völker, die nicht Latein gelernt, können in ihren Schulen die astronomische Rechnung begreifen und wir Gelehrte, die wir die lateinische Sprache bis in's zwanzigste Jahr, die Logik aber bis in's dreissigste studiren, sollten ihnen hierin nicht gleichkommen? Möchten wir doch lieber Grammatik und Syntax, Terenz und Plautus daran geben und uns unterdessen mit der Muttersprache nächst der Tugendlehre den rechten Grund zur Wissenschaft und zu den Kunsterfindungen in fähigen Jahren aneignen, damit unsere studirten Leute bis ins hohe Alter nicht unwissender bleiben als jene Völker, welche kein Latein gelernt haben<sup>1</sup>)."

Ganz besonders war Weigel über die beim "Pöbel" - und was war damals nicht "Pöbel"? - so leicht verfangende "Wahrsagerei" der Kalender erbittert. "Die ganze Arbeit der Kalendermacher besteht in dem Prognosticiren oder auf deutsch Wahrsagen oder noch besser deutsch Lügen. Und dabei ist der Betrug ganz offenkundig. In dem Capitel vom Kriege richten sie sich nach den Avisen, in dem Capitel von den Krankheiten erzählen sie bisweilen alle Beschwernisse vom Kopf bis auf die Füsse, darunter zum Wenigsten allemal eins treffen muss. Im Capitel von allgemeinen Zufällen stellen sie Alles auf Schrauben und helfen sich damit, dass wenn Etwas an einem Orte nicht eintreffe, es für den andern gelte etc. Zuerst fing man mit dem Wetter an, als dies aber toleriret wurde, ging man weiter, und sie haben von Krieg und Frieden, von allerlei Bündnissen, von Veränderungen der Länder und Königreiche, vom Fall und Wachsthum hoher fürstlicher Häuser, von Tugend und Laster der Potentaten, von hunderterlei dergleichen Glücks- oder Unglücksfällen und höchst nachdenklichen leider willkürlichen, mehr ihre nur aus bloser Muthmassung mit Vorwand dieses oder jenes unschuldigen Adspects also ungescheut herausgeflossenen Wahrsagungen dem ausgeschriebenen Jahrbuche angeschmitzet. Sie streuen wider hohe Potentaten, Staaten, Länder, Städte, Nationen und Ge-

10

1) Zeitspiegel S. 80.

schlechter schimpfliche Pasquille aus und bemänteln sie mit dem Deckel des unschuldigen Himmels" und bringen die Mathematik in Misscredit<sup>1</sup>).

Ebenso eiferte Weigel dagegen, dass neben den Namen der Heiligen so viel "Kinderludeln, Drudenfüsse, Bartscherlein, Lassköpflein, Pillenpünctlein und dergleichen, wie auch viele Sybillensprüche im sogenannten Lügenfelde angesetzt" wurden.

Er verurtheilte die Wahrsagereien schon aus dem Grunde, weil die Kalender "allgemeine ehrbare bürgerliche, ja geistliche Kirchenbücher" waren, noch mehr aber wegen ihres äusseren und inneren Schadens. Jenen machte er durch folgendes Beispiel anschaulich: "Einer, der im Kalender las, die Schafe würden gut stehen und tragen, kaufte zu seinen wenigen Schafen noch viele hinzu", musste aber erleben, dass eine bedeutende Zahl derselben hinwegstarb. "Auf sein Befragen erhielt er die Antwort, derselbige Kalender wäre auf Nürnberg und nicht auf Leipzig eingerichtet, da hätte er seine Schafe hintreiben sollen." Der innere Schaden war ihm ganz handgreiflich. "Denn ist der Kalender mit dergleichen gar albernen, bisweilen sehr erschrecklichen Betrügereien bis oben angefüllt und ausgestopft, hin und wieder mit nachdrücklichen Sprüchen aus Gottes Wort, wie bei den Zaubereien zu geschehen pflegt, dadurch die Einfältigen desto eher versichert werden können, so ist es kein Wunder, wenn die einfältigen Leute, welche solches Buch täglich in Händen haben und darin zu lesen pflegen, ganz und gar abergläubig und abgöttisch werden, und daher bei liebkosenden Adspecten als sicher und stolz zu Ueppigkeit und unbändigen Tumultuiren sich neigen, bei gefährlichen aber als furchtsam und schüchtern die Hände sinken lassen<sup>2</sup>)."

Zwar war die Redensart gäng und gebe: "Du lügst wie ein Kalendermacher", während man diesem die Antwort in den Mund legte: "Ich mache den Kalender, aber Gott das Wetter", aber die Verrohung des dreissigjährigen Kriegs hatte den Aberglauben eher befestigt als geschwächt, und ganz richtig bemerkte Weigel: "Von den Wahrsagungen trifft erst eine von tausend plumpsweise ein", aber gerade über diese ist die Verwunderung so gross, dass die übrigen neunhundertneunundneunzig gar nicht in Betracht kommen; die Leute sehen doch im Kalender nach, "ob Krieg oder Friede sein würde, wenn man auf die Freite gehen sollte, welche Potentaten in Correspondenz treten würden, wie's den Weibern oder den Männern, den Geistlichen oder den Martialisten, den Kaufleuten oder Künstlern, den Alten oder Jungen der Zeit ergehen würde, ob die Eheleute würden Friede oder Zank haben, und was der Teufel hin und her thun

<sup>1)</sup> Zeitspiegel S. 77, 84, 89, 90; Fortsetzung des Himmelsspiegels, Jena 1665. S. 111; Kurzer Entwurf des Mittels zur erspriesslichen Aufnahme aller Kunst- und Hand-Werke, Jena 1681. I.

<sup>2)</sup> Zeitspiegel S. 87. 88. 89. 91; Fortsetzung des Himmelszeigers S. 45.

Für dieses Jahr war eine "giftige Sonnenfinsterniss prognosticiret" worden. Die Leute drängten sich in ihrer Angst haufenweis zu den Predigten und Betstunden, genossen Sonntags vorher das heilige Abendmahl und suchten sich durch mancherlei Mittel "vor dem Gifte der zukünftigen Schwärze solcher Finsterniss" zu schützen, so dass "fast kein Theriak mehr zu bekommen war". Mit Zittern und Zagen wartete man der Dinge, die da kommen sollten, aber es geschah nichts, als dass die Finsterniss ihren üblichen Verlauf nahm und den Leuten nichts übrig blieb, als sich zu ärgern und sich gegenseitig auszulachen. Die Leipziger Studenten beschlossen in ihrer Erbitterung, einen gerade anwesenden Kalendermacher am hellen Mittage mit Fackeln oder Laternen beimzuleuchten und "anstatt der aus der dicken Luft herabgefallenen Vögel mit etwas Anderem zu tractiren, wie die Charteke meldete". Daher ist Weigels Polemik, sowie seine populäre Behandlung der astronomischen Chronologie und der Astronomie überhaupt nicht gering anzuschlagen.

Als seine belehrenden und strafenden Worte nichts fruchteten, wandte er sich 1682 an den Reichstag, dem er die Verbesserung des Kalenders dringend ans Herz legte und zur Besorgung der astronomischen Rechnung und des Kalenders überhaupt ein "*Collegium Artis Consultorum*" vorschlug. Dieses Collegium sollte nach späteren Vorschlägen aus 20 Mann bestchen und, ausser für Astronomie, für die Hebung der Künste und Handwerke thätig sein<sup>1</sup>). Er erlebte aber weder die Einführung des verbesserten und "von Wahrsagerei gesäuberten" Kalenders, noch die Errichtung eines *Collegii Artis Consultorum*, denn er starb<sup>2</sup>) am 21. März 1699, während der Beschluss zur Einführung des verbesserten Kalenders erst am 23. September desselben Jahres gefasst wurde, die Kalender-Wahrsagerei noch heute nicht ganz verschwunden ist, und das genannte Collegium in Weigels Sinne nie zu Stande kam.

Bemerkenswerth ist seine nationale und pädagogische Auffassung der Sache. Wenn man seine Vorschläge annähme, so würde — wie er meinte — "der Ehrenglanz des Landes von Beschmitzung "gesäubert, die chaldäischen Baalshöhen abgethan, der Rauchaltar Melechet abgebrochen, Gottes Zorn, der wider allgemeinen Aberglauben heftig ist, verhütet und das Mittel zum Gedeihen der Kunst- und Handwerke, worauf eines guten 'Theils die Wohlfahrt eines Volkes beruht, gefunden sein". Wenn aber "der Kalender nicht von Abgötterei und Aberglauben gesäubert" würde und das "übermässige Sprechen in den Schulen" fort bestände, so wäre jede Schulver-

Zeitschrift f. Mathematik u. Physlk. (Supplem.)

<sup>1)</sup> Kurzer Entwurf etc. I. II.; Acta des Mathematici Weigels etc.

<sup>2)</sup> Günther Lebensskizzen etc. S. 181.

besserung unnütz; denn "Gott will haben, dass die Menschen keine Aberglauber, sondern Rechner seien und rechenschaftlich Alles thun, auch endlich Rechenschaft von Allem geben sollen"<sup>1</sup>).

# 4. Die Kometen.

Vor Weigel bestand die Meinung, dass die Kometen wie überhaupt neue Sterne nur nach Zusammenkünften und Gegenscheinen entständen. Obgleich er nun wusste, dass diese Regel nicht mit der Erfahrung übereinstimmte, so gab er sie doch nicht ohne Weiteres auf, sondern suchte die Ausnahme dadurch zu motiviren, dass der Himmel die Materie aufsparte.

Nach Weigels Lehre entstehen die Kometen aus Dunstmassen, welche von den Weltkörpern ausströmen. "Die Zusammenfahrung geschieht etwa aus Antrieb der vorangegangenen Adspecten oder sonst. Kommen die Theile näher zusammen, so fangen sie die Sonnenstrahlen auf und reflectiren dieselben; die meisten jedoch gehen hindurch: die feineren Theilchen folgen ihnen, wie man in den dunkeln Kammern sehen kann, und bilden den Schweif." Daher scheint der Komet durch steten Ausfluss verzehrt zu werden<sup>2</sup>).

Die Materie wird von der Erde und dem Himmel geliefert. Von jener "gehen schwefelige und salpeterige Dunsttheile aus, weil sie ihrer Beschaffenheit nach mehr als die andern angetrieben und gleichsam von des Sonnenstrahlen gelocket werden. In ihrem Eifer fahren sie über die nicht 4 Meilen hohe Luftschale hinaus in den weiten Himmelsraum und bleiben dort bis sie mit andern Theilen zusammengerathen und einen Kometen bilden". Der Komet vom Februar 1661 hatte, wie Weigel mit grosser Dreistigkeit behauptete, wenn auch nicht seine ganze Substanz, so doch den grössten Theil derselben von der Erde entlehnt, da die grosse Bewegung der Luft 1660 und besonders der "grausame Wind am 9. December unfehlbar Dunststäublein in den Himmelsraum entführen musste". Der Komet von 1665 dagegen stammte aus der Sonne, denn da es in diesem Jahre keine Sonnenflecken gab, so mussten die Dünste in den Weltraum hinausgetrieben worden sein. Diese beiden Kometen "verriethen auch sonst ihren Ursprung. Jener war von schwachem Lichte und nur 4 Tage sichtbar, gleichsam als ob er von der Erdkugel allein nicht genug Materie, lange zu stehen und sich prächtig sehen zu lassen, hätte bekommen können"; der letztere dagegen "war grösser, heller und stand länger am Himmel".

<sup>1)</sup> Kurzer Entwurf etc. II.; Grundmässige Auflösung des militar-Problematis, warum doch der Türk den Christen nunmehr weichen müsse. Jena 1689.

<sup>2)</sup> Fortsetzung des Himmelsspiegels S. 93.

auf den deutschen Universit. im 17. Jahrh. Von Dr. BABTHOLOMÆI. 35

Demnach besteht der Komet aus "Himmelsdunst und Gewölkniss". Er ist eine "Himmelswolke und besteht aus sehr kleinen Körperchen oder Stäubchen". Der Dichtigkeit nach verhält er sich zum Aether, wie die irdische Wolke zur atmosphärischen Luft. Daher ist es sehr wahrscheinlich, dass die Kometensubstanz nicht einmal so dicht ist, wie atmosphärische Luft. Die Mitte des Kopfes ist eigentlich nicht heller als der übrige Theil, sondern erscheint nur heller, weil "man in der Mitte mehr Stäublein hinter einander sieht"<sup>1</sup>).

Der Komet ist jenseits der Atmosphäre, denn wäre er in der Luft, so müsste die ihn umgebende Luft ebenfalls Sonnenstrahlen empfangen; wenn aber die Luft Sonnenstrahlen empfängt, so haben wir Tag etc.

Die Bahn des Kometen ist eine gerade Linie, auf der er mit unveränderter Geschwindigkeit fortrückt. Daher kehrt er niemals wieder, und daher wächst seine scheinbare Geschwindigkeit, wenn er sich der Erde nähert und nimmt ab, wenn er sich von derselben entfernt. Die geradlinige Bewegung ist sehr leicht zu erklären. Die Bewegung eines irdischen Körpers hört nämlich auf durch den Widerstand der Luft und durch den Erdmagneten; diese beiden Ursachen fallen aber im Himmelsraume weg, also "kann eine Himmelswolke ganz gut ihren Strich halten", und man braucht zur Erklärung keiner "aristotelischen Intelligenz oder eines andern Geistes, der ihr den Weg weist". Bedenklicher ist ihm die grosse Geschwindigkeit, bei der "es schier zu verwundern ist, dass der lockere Komet nicht zerreisst"<sup>2</sup>).

Die angegebene Theorie über die Entstehung des Schweifes fand Weigel später ungenügend. Er fragte, ob der Schweif aus derselben Masse wie der Kopf bestände oder ein bloser Schein, ein bloser Reflex wäre. Das Natürlichste ist — meinte er — Gleichheit der Materie des Kopfes und Schweifes. Dem aber widerspricht 1) die "unmenschliche Grösse" und 2) die grosse Veränderlichkeit, "da er bald kurz bald lang, bald schmal bald breit, bald gerad bald krumm erscheint". Und wenn die Sonnenstrahlen "den so grossen Wust der Dunststäublein so leicht lenken könnten, so müssten sie den ganzen Kometen von sich abstossen, es müsste denn sein, dass sie (die Theilchen des Schweifes) mit langsamerer Bewegung in den Kometen eingetreten wären und den Sonnenstrahlen keinen oder nur geringen Widerstand entgegensetzen könnten".

Daher ist der Schweif ein bloser Schein. Aber hier entsteht die Frage, was die zurückwerfende Materie sei. Diese hängt entweder mit

<sup>1)</sup> De cometa novo. Cap. XXI.; Fortsetzung des Himmelsspiegels S. 70. 71. 90. 91; Kirch's Himmelszeitung 1681 S. 7.

<sup>2)</sup> Fortsetzung des Himmelsspiegels S. 87; Himmelszeiger S. 53.

36 Erh. Weigel. Ein Beitrag zur Geschichte der math. Wissenschaften

dem Kometen zusammen oder nicht. Wenn sie aber mit dem Kometen zusammenhängt, so gehört sie zu ihm, was ja eben zweifelhaft ist. Man könnte allerdings sagen, die Sonnenstrahlen gingen durch die rings um den Kometen gelagerte Masse bis zum Kopfe desselben und würden hier wie in einem runden Wasserglase zusammengebrochen, so dass sie die von der Sonne abwärts befindliche Materie zu erleuchten vermöchten; allein dann müsste der Schweif nur ein schmaler spindelförmiger Lichtstreifen sein; auch widerspricht es der Natur, welche den kürzesten Weg zu wählen pflegt, "dass ein so grausam grosser Himmelsplatz, welcher zwei Mal so breit als der Schwanz lang erscheint, von solcher Materie rings um den Kometen alle Zeit angefüllt sein und mit demselben fortbeweget werden müsste".

Die "spiegelnde" Substanz muss also ausserhalb des Kometen, also entweder die Substanz des Himmels oder die Luft sein. Der ersteren Annahme widerspricht aber der Umstand, dass weder das Sonnen- noch das Sternenlicht von der Materie des Himmels reflectirt wird, also kann nur die "atmosphärische Luft der Spiegel sein", und der Schweif entsteht "wie ein Licht über einem fliessenden Wasser einen langen Strahl vor Augen stellt". Dass nur die Hälfte sichtbar wird, erkläre sich durch die Annahme, dass diese sichtbare Hälfte viel heller sei; denn diese Helligkeit müsse bewirken, dass die andere leuchtende Hälfte nicht bemerkt wird, wie wir etwa am Tage vom Mondschein nichts wahrnehmen, weil das Sonnenlicht zu stark ist<sup>1</sup>).

Es ist bereits erzählt worden, wie sich Weigel von der Astrologie, diesem, wie er sagte, "der Astronomie in das Haus geworfenen Wechselbalge" emancipirte. Ursprünglich wurde er nur durch theologische Gründe zum Abfall bestimmt, später verwarf er sie auch aus logischen und ethischen. Erstens sind Direction und Procession widersinnig, sie sind Fictionen, Dichtungen, Einbildungen. "Ist so viel, als wenn ein Herold alle Tage nur eine Meile reisen und in eben dieser Zeit täglich 30 Meilen zurücklegen sollte." Zweitens ist die Vertheilung unter die zwölf himmlischen Zeichen principlos. Drittens widerspricht die Astrologie der menschlichen Freiheit. "Die verständige Seele ist ein Ritter, welcher seines Thieres (des Leibes) Begierden, wenn es aus dem Wege zu treten sucht, leichtlich merket, wie denn auch das Thier ihm gern fölget, wenn nur er, der Ritter, selbst geübt, und das Thier von Jugend auf wohl angewöhnt ist. Kehrt sich's aber um und lässt der Geist dem Thiere den Zügel, dass es geht, wohin es will, und thut nun was es will, ja ist der Geist so lässig, dass das

<sup>1)</sup> Fortsetzung des Himmelsspiegels S. 97-100; Himmelszeiger S. 82; Fortsetzung des Himmelszeigers S. 74.

Schänke, bald in's Hurenhaus, zum Krakehl, durch Dick und Dünn, so kann der Mensch keinem Sterne, geschweige Gott die Schuld beimessen. Mit der Astrologie gäbe es kein freiwilliges Thun, sondern es wären lauter unumgängliche Begebenheiten in der Welt. Es würde keine freie Creatur existiren, der Mensch nicht Mensch, sondern der vornehmste Unmensch sein. Wo bliebe die Rechnung, die Freiwilligkeit? Wozu wäre die Rechnung nütze? Man dürfte ja nur lesen lernen, das zu lescn, was die Sterndeuter auf's Papier gebracht, ja man braucht nur zu hören, ja gar nichts zu lernen, sondern nur die Influenz erwarten wie die Krebse, welche ohne Rechnung mit dem Monde fett und mager werden."

In einigen Widerspruch mit diesen Lehren gerieth Weigel durch seine Ansicht von der Bedeutung der Kometen. Schon 1653 sprach er sich hierüber folgendermassen aus: 1) Wenn der Komet ein Unglück bedeutet, so bringt er es doch nicht, sondern mahnt uns nur, dasselbe durch Beten, Bitten und Besserung zu vermeiden, ja er kann, wie schon öfters geschehen, auch Glück verkündigen. 2) Der Komet ist eine allgemeine Erscheinung, das Unglück betrifft aber nur einzelne Gegenden. Daher ist es höchst unwahrscheinlich, dass der Komet überhaupt ein Unglück anzeigt, wenigstens bleibt es gånz unbestimmt, welche Gegend von demselben heimgesucht werden soll. Diese Unbestimmtheit bleibt auch dann noch, wenn man die Länder in Betracht zieht, über welche der Komet seinen Lauf nimmt. Es ist also klar, dass man über die Bedeutung der Kometen nichts wissen kann<sup>1</sup>). Diese Auffassung konnte man sich recht wohl von Einem gefallen lassen, der eben mit der Astrologie gebrochen hatte und durfte erwarten, dass er sie zum vollsten Naturalismus entwickeln würde, aber die Theologie liess Weigel nicht nur nicht weiter schreiten, sondern warf ihn zum Theil wieder auf den astrologischen Standpunct zurück. "Gott der Allmächtige - sagte er 1665 - pflegt nicht sowohl durch die Kräfte der von ihm erschaffenen Natur als vielmehr übernatürlicher Weise ein und das andere Wunderzeichen, also auch einen Kometen zu schaffen. Erkennen dabei unsere Blödigkeit und Gottes überschwängliches Vermögen, welcher, wenn er seine Kinder auf dem Platz der Erden ihres vielfältigen Muthwillens wegen schrecken oder zum Wenigsten zur Verwunderung über seine Kunstwerke anreizen will, keiner grossen Mühe, also zu reden, von nöthen hat, sondern nur mit hin- und herfahrenden Dunststäublein gleichsam einen Ball machen und bei seiner bösen und frommen, mehrentheils aber bösen Kinder ihrem Spielplatz, der Erdkugel, hinweg und vorbei werfen darf, so stehet sobald die Welt mit dem Haupt empor

12

<sup>1)</sup> De cometa novo. Jenae 1653. Cap. XIX.

38 Erh. Weigel. Ein Beitrag zur Geschichte der math. Wissenschaften

und ist so bekümmert, was doch das Wunderwerk für Gutes oder Böses nach sich ziehen und ihnen bringen werde<sup>1</sup>)."

Noch mehr wusste Weigel 1681, wo er entschieden aussprach: Der Komet ist ein außserordentlicher Stern, also muss er auch ausserordentliche Bedeutung haben. "Wer sich durch denselben bessern lässt, dem bedeutet er nichts Böses, sondern etwas Gutes. Denn Gott will die Menschen nicht wie Ross und Mäuler unterweisen, denen die Peitsche immer vor Augen sein, und wenn sie straucheln, stets ein Schmitz damit gegeben werden muss, sondern Gott will die Menschen frei behandeln, denn sonst würden sie keine Menschen bleiben. Daher sind die Kometen ursprünglich Liebes- und Erbarmungszeichen, denn sonst würde sie Gott nicht erscheinen lassen, sondern lieber gleich dreinschmeissen. Sie sind Lock- und Drohmittel und nur dann Zornzeichen, wenn sich die Menschen nicht bekehren<sup>2</sup>)."

Und diese Inconsequenz war nicht das Schlimmste. Praktisch vertrat Weigel die Ansicht, dass die Kometen nicht nur etwas Bestimmtes anzeigen, sondern er unterfing sich sogar, die Deutung selbst zu versuchen und war nicht wenig stolz, wenn sie ihm gelungen war. So deutete er die Kometen von 1652, 1661, 1664, 1680, 1681. Ueber den von 1680. meinte er: "Wenn ich nun die Bilder, unter welchen unser jetziger Komet erschienen und fortgewandert, ansehe, so scheint mir gar muthmasslich zu sein, weil Gott denselben mitten in dem Löwenbild heim Mars, der sonst insgemein der Kriegsplanet genennet wird, entstehen und zur Jungfrau, welche sonst die Kirche Christi vorzubilden pflegt, nächstes und gerades Wegs hat hinlaufen lassen, so drohe er die Christenheit mit Krieg heimzusuchen. Welcher, wenn er seinen Fortgang haben sollte, möchte er dem Brodkorbe hin und her so nahe kommen, als nahe der Komet bei der Jungfer Kornähre weggestrichen. Da sich der Komet in die Wage begab, so ist Hoffnung da, es werden gleichmässige Liebhaber der gemeinen Wohlfahrt sich finden, die das ungeschickte Wesen der Streithaftigkeit und Kriegführung eines Christenvolks wider das andere wohl erwägen etc. Der Scorpion, welcher seinen eigenen Biss heilet, mag bedeuten, dass der Krieg mit dem ihm folgenden Elende den Betheiligten zu Gute komme etc.<sup>3</sup>)." Die Vorfrage, ob es nicht ungereimt sei, dass sich Gott nach unseren Zeichen richte, die doch "meistens von Heiden herrühren, die von Gott gar wenig wussten und

<sup>1)</sup> Fortsetzung des Himmelsspiegels S. 70. 94. 100-102.

<sup>2)</sup> Fortsetzung des Himmelszeigers S. 39. 41; Kirchs Himmelszeitung. 1681. S. 1. 2.

<sup>3)</sup> Himmelsspiegel. Jena 1661; Himmelszeiger S. 34. 43; Fortsetzung des Himmelszeigers S. 11; Kirchs Himmelszeitung. 1381. S. 4. 11.

auf den deutschen Universit. im 17. Jahrh. Von Dr. BARTHOLOMÆI. 39

Sonne und Mond für Götter hielten", beantwortete er dahin, "dass Gott es gegen Christen thäte, nicht den Heiden zu Gefallen, sondern denen, welche diese Zeichen angenommen haben. Er hätte ja auch griechisch geredet, das doch von lauter Heiden ausgesonnen wäre"<sup>1</sup>).

### 5. Apparate und Instrumente.

Wenn hiernach Weigels Astronomie im Ganzen ein trauriges Bild von dem Zustande dieser Wissenschaft auf den deutschen Universitäten darbot, so zeigte sie doch auch einzelne Lichtpuncte: die national-pädagogische Richtung, die Bestrebungen für die Einführung des verbesserten Kalenders und den Kampf gegen den Aberglauben, welcher in den Kalendern grassirte. Dazu gehören endlich noch die Apparate, welche er construirte. Zwar arbeitete er zumeist nur im Dienste des Unterrichts und seine Instrumente sind vergessen worden; aber seine Bemühungen wurden nach ihm fortgesetzt und Gehler<sup>2</sup>) erkannte bereitwilligst an, dass sich "Weigel um die Verfertigung der Globen sehr verdient gemacht" hätte. Das Verzeichniss dieser Inventionen findet sich in vielen Schriften<sup>3</sup>) angegeben. Sie waren folgende:

1) "Astrodictium simplex. Ein Sternweiser. Ohne Vorzeigung alle Sterne vor sich zu kennen. Ist eine Regul auf die gestellte Himmelskugel zu appliciren, dass wenn die Regul auf den begehrten Stern gerichtet wird, so weiset ein Zirkelbogen am Instrument auf der Himmelskugel, was es für ein Stern sei."

2) "Astrodictium compositum. Ein Sternschranken, dadurch über hundert Personen ihr Absehn auf jeden begehrten Stern zugleich und geschwind zu richten. Ist ein gross Instrument, welches über 100 Observatores auf einmal fasset. Es hat statt der Absehen so viel lange Kimmen, welche von demjenigen, so das Werk regieret, auf einen jedweden nach Belieben begehrten Stern gerichtet werden, dadurch man also allen Observatoribus einen jeden Stern zugleich vorstellet. Es ist zu verwundern, wie leicht man mit dergleichen Instrument einem begierigen Himmelsliebhaber die Sterne bekannt machen kann."

3) "Globus mundanus. Ein Weltgloben. Welcher äusserlich die Landschaften der Erden, innerlich die Sterne in ihrem Stande und Bewegung und zum Schein Donner, Blitz, Regen, Wind sammt der Gestalt der Antipoden weiset." Man konnte in demselben hin- und hergehen, denn er hatte 33 Fuss im Umfang. Er bestand aus Kupfer, war aus "zernehmlichen"

<sup>1)</sup> Fortsetzung des Himmelszeigers S. 37.

<sup>2)</sup> Phys. Wörterbuch IV. S. 197.

<sup>3)</sup> Ausser in den bereits bezeichneten noch in Extractus der Himmelskunst; Pancosmus; Kurze Beschreibung der Erd- und Himmelsgloben.

40 Erh. Weigel. Ein Beitrag zur Geschichte der math. Wissenschaften

Stücken zusammengesetzt, so dass er durch jede gewöhnliche Thür geschafft werden konnte, und ruhte für den Gebrauch auf einem Gestelle von Holz.

4) Viceglobus. Ein Mass, "die Weitschaften der Orte" aus Länge und Breite zu finden.

5) "Horographium. Ein Schattenmass, allerhand Sonnenuhren auf allerlei Flächen leichtlich und doch genau zu beschreiben etc."

6) Apparat zur Reduction des alten und neuen Kalenderstyls.

7) Globus coclestis perpetuus.

8) "Theoriae mobiles. Der Planetenlauf. Ist ein plattes Instrument, welches, an der Wand hangend, den Lauf der Planeten und wo sie täglich am Himmel stehen mit einem leichten Vortheil weiset."

9) "Geocosmus. Die wirkende Erdkugel. Welche nicht allein die Landschaften, sondern auch die Jahres- und Tageszeiten an allen Orten weiset; ferner Wind und Regen wie auch die Feuerspeiung der Berge gar anmuthig nachahmet und vorstellet."

# IV. Physik, Mechanik und Technologie.

Durch die Armseligkeit seiner Mathematik wurde Weigel auch endlich in der mechanischen Physik auf höchst niedriger Stufe festgehalten. Bemerkenswerth ist hingegen seine Vorsicht hinsichtlich der Beobachtung. Ob das - sagt er - was dem einzelnen Menschen wirklich zu sein scheint, auch ausscrhalb seines Denkens wirklich ist, kann er nicht wissen, selbst dann nicht, wenn er ganz genau wahrnimmt und ihm die Erscheinung sogar Schmerz verursacht. Denn die Gesichtsempfindung bleibt, nachdem die Lichtquelle bereits entfernt ist, wir können auch mit Absicht Denkbilder erzeugen und im Traume nehmen wir die Denkbilder als wirklich, obgleich sie entschieden nur Denkbilder sind. Wenn daher solche Bilder ohne Vorwissen des Geistes entstehen, ohne ausserhalb desselben zu existiren, so scheinen sie doch dem Geiste wirklich zu sein, folglich kann der Einzelne nicht wissen, ob das, was er ausser sich wahrnimmt, auch von Andern wahrgenommen werde, geschweige denn ausser seinem Denken existire. - Wenn dieselbe Erscheinung an einem und demselben Orte von Mehreren wahrgenommen und von diesen in unzweideutiger Weise angezeigt wird, so sind wir sicher, dass die Erscheinung für beide vorhanden ist, während jeder einzelne Beobachter glaubt, dass sie auch ausser ihm stattfinde. Obgleich sich nun diese täuschen können, wenn sie die Realität des Erschienenen annehmen, so täuschen sie sich doch nicht, wenn sie die Erscheinung für wirklich und nicht für eine Fiction halten. Das offenbare

Zeichen der Realität des Phänomens ist die gleichzeitige Wahrnehmung Mehrer und zwar die wirkliche Wahrnehmung, die man eher aus ihrem Thun als aus ihren Worten erkennt. Zeichen der Realität ist auch die Beistimmung des Leibes; deshalb kann auch der Einzelne das, was er öfters wahrnimmt, als wirklich setzen <sup>1</sup>).

In der mechanischen Physik behandelte Weigel nur Hebel, Winde, Rolle, schiefe Ebene, Keil und Schraube<sup>2</sup>) und die Fallgesetze<sup>3</sup>), wobei er den Leser für den Beweis des Satzes

$$s_1^2: s_2^2 = t_1: t_2$$

auf andere Schriftsteller verweist. Um so mehr muss man seinem technischen Geschicke Gerechtigkeit widerfahren lassen. Seine *inventio* $nes^4$ ) sind

1) Pincerna stathmicus, ein Zugheber.

2) Lusus opticus, ein Malerspiel, alles Sichtbare durch ein Bretspiel abzunehmen.

3) Nuntius acusticus, ein Sprachrohr.

4) Pons heteroclitus. "Eine Verkehrbrücke, darauf im Heruntergehen in die Höhe zu kommen."

5) Lanx reciproca. "Eine Fahrwage. Verborgen in alle Stockwerke des Hauses ohne Steigen bequemlich zu kommen, dergleichen im Wohnhaus des Collegii allhier (in Jena) von der Studirstuben durch den Geschoss auf das Observatorium in einem nur drei Schuh breiten Canal angeordnet, welche vermittelst einer Gegenlast einen Menschen, so sich an den dazu geordneten Handhaben anhält, in die Höhe und wieder herunter lässt, da er doch, wenn er will, auch stille stehen kann."

6) Scala vectoria. "Eine Zugtreppe. Einem Hausvater höchst nützlich und bequem. Auf welcher nicht allein sehr gemächlich zu gehen, und nicht leicht, ja über fünf Stufen überhaupt nicht zu fallen ist, sondern auch die grössesten Lasten ohne Anrührung der Stufen in die Höhe und wieder herunter durch alle Geschoss ohne Mühe zu bringen sind. Unten im Keller kann man durch die offne und aus blosem Raume bestehende Spindel durch alle Vorgemächer jedes Geschosses bis zu dem Giebel, ja gar, wenn die Haube abgenommen, selbsten in den Himmel sehen." Diese Treppe ist

<sup>1)</sup> De supputatione multitudinis F. 2. S. 46. 47.

<sup>2)</sup> Vorstellung der Kunst- und Handwerke. Jena 1672. S. 65 ff.; De supputatione multitudinis E ff.

<sup>3)</sup> Pendulum ex Tetracty deductum. Jenae 1674.

<sup>4)</sup> S. Anmerkung 3 auf S. 39.

42 Erh. Weigel. Ein Beitrag zur Geschichte der math. Wissenschaften

noch im Weigelschen Hause vorhanden, aber schon wegen der auf ihr herrschenden Dunkelheit keineswegs "gemächlich" zu steigen.

7) Verna mechanicus, ein Hauszeug.

8) Heliotropium rorans, eine springende Sonnenblume.

9) Hydropota, ein Wasserspeier.

10) Ein Springbrunnen.

11) Triclinium, eine Speisetafel mit springenden Schalen.

12) Globus hydrostaticus, eine Nectarschale oder Himmelskugel.

13) Clepsydra tonans, eine schiessende Springuhr. "Ein sonderlich Werk in ein Lusthaus."

14) Patina saliens, eine springende Speiseschüssel.

15) Aeolus domesticus, ein Luftschöpfer.

16) Caminofornax, ein Kaminofen.

17) Fornax pracynans, ein gemeiner Ofen mit einem verjüngten.

18) Tectum decussatum, ein Erkerdach mit Altanen ohne Kehlen und Riunen.

19) Ein Ambos, bei dessen Gebrauch die Gebäude keine Erschütterung erleiden.

20) Ein Wagen ohne Stange, welche die Deichsel mit der Hinteraxe verbindet.

21) Das mechanische Amphibium, ein Wagen für vier Personen, der auch als Kahn benutzt werden kann.

22) Die Feldkutsche. Diese war nach Weigels Ansicht ein Ausbund aller Fahrzeuge zu Lande, denn sie bot nicht weniger denn 18 Vortheile vor den bekannten dar<sup>1</sup>).

23) Reiscrath. Diente als Koffer, Sitz, Nachtlager u. s. w. und wurde von Weigel so wichtig gehalten, dass er ihn patentiren liess; doch findet sich keinerlei Andeutung, welche Geschäfte er damit gemacht hat?).

24) Elastische Kissen, welche die Wirkungen des Stosses beim Reiten und Fahren aufheben.

25) Ein leichter Panzer oder Kleid aus sehr leichtem Stoffe für Soldaten gegen Hieb und Stich und Kleingewehr und gegen die Witterung sehr widerstandsfähig.

26) Eine Schaukel, die immer horizontal bleibt.

27) Die Schreib- und Rechenregel<sup>3</sup>).

28) Das Schulpferdchen.

<sup>1)</sup> Die Erdkutzsche. Jena 1673.

<sup>2)</sup> Neuerfundener Reiserath.

<sup>3)</sup> Kurze Relation von dem nun zur Prob gebrachten mathematischen Vorschlag, betreffend die Kunst- und Tugendinformation etc. Jena 1682. 'A. 4.

Nachbarschaft höchst nützlich zu gebrauchen. So vermittelst eines Druckwerks das im untersten Hause empfangene Wasser in die Höhe unter den Giebel treibet, von dannen es durch alle Gemächer nach Belieben zu gebrauchen oder sich damit als mit Springbrunnen zu belustigen oder (welches Gott verhüte) von daraus der in der Nachbarschaft entstandenen Feuersbrunst zu widerstehen, fortgeschrützet werden kann." Diese Wasserkunst war im Weigelschen Hause eingerichtet und beruhte àuf denselben Principien, nach welchen jetzt die grossen Städte mit Wasser versorgt werden<sup>1</sup>).

30) Perpetuum mobile. "Ist ein Kunstwerk, zum Wasserheben sehr bequem, welches in seiner Theorie eine immerwährende Selbstbewegung allen Umständen nach vollkömmlich darstellet. Ist aber wegen seiner grossen Kostbarkeit noch nicht in's Werk gerichtet oder auf die Probe gestellet worden." Nichts kann wohl die mangelhaften mechanisch-physikalischen Kenntnisse Weigels beweisen, als dieses angebliche Perpetuum mobile, und er hatte von Glück zu sagen, dass ihn die "Kostbarkeit" von weiteren Versuchen abhielt.

Weigel hielt es für Pflicht seiner Profession, neue Erfindungen zu machen, und er gab sich, wie die aufgezählten "inventiones" beweisen, nicht geringe Mühe damit, musste aber zu seinem Leidwesen wahrnehmen, dass bei der Menge der bereits gemachten "so vielen herrlichen Erfindungen" es schwer war, etwas Neues auszudenken. Dennoch wurde seine Brust geschwellt von dem Bewusstsein, "wie viele inventiones Gott seiner Wenigkeit beschert" hatte und fühlte sich gekränkt, dass er in Jena kein Glück damit und vor Allem kein Geld daraus machte. Er wandte sich daher 1690 an die Erhalter der Universität um Urlaub, um nach England zu reisen und seine sämmtlichen philosophischen, mathematischen, astronomischen, physikalischen Entdeckungen der königlichen Societät in London vorzulegen. Während seiner Abwesenheit sollte ihn der Privatdocent Hamberger vertreten, Herzog Johann Georg forderte ein Gutachten von der Universität, diese aber entschied, dass Weigel die Reise nach London vergeblich machen würde<sup>3</sup>). Es war vielleicht gut so, denn diejenige Erfindung, welche ihm in der Culturgeschichte einen Ehrenplatz für alle Zeiten gesichert haben würde - die Schnellpresse - zog er zurück, um die Arbeiter nicht um Arbeit und Brod zu bringen. Die Leistungsfähigkeit derselben war so bedeutend, dass "ein einziger Arbeiter

....

<sup>1)</sup> Concentrirte Wasserkunst. Jena 1672.

<sup>2)</sup> Ein Wasserschatz. Jena 1671. B. 3.

<sup>3)</sup> Acta des Mathematici Weigels etc.

mit ihr so viel prästiren konnte, als mit der Handpresse kaum zwei der kräftigsten". Aber gerade diese grandiose Erfindung giebt der Vermuthung Raum, dass möglicher Weise auch unter den übrigen technologischen Erfindungen Weigels sich die eine oder die andere findet, die ihrer Zeit unbeachtet blieb und später von Neuem gemacht werden musste<sup>1</sup>).

1) Paul Pater Dissert. de miraculotypis literarum S. 106. Paul Peter, ein Ungar, kam 1705 als Professor nach Danzig, wo er im "Poppenpfuhl" eine Druckerei anlegte, in welcher arme Schüler in ihren Freistunden arbeiteten. Weigels Presse hatte er selbst untersucht und daran gearbeitet: "Ego tamen in aedibus ejus admirando operi non semel manum admovi."

# Ueber die Handschrift R. 4°2, Problematum Euclidis explicatio der Königl. Gymnasialbibliothek zu Thorn.

Von

#### MAXIMILIAN CURTZE,

ordentlichem Lehrer an dieser Anstalt.

Durch einen Zufall wurde ich im Winter 1864-65 auf eine Handschrift der hiesigen Königl. Gymnasialbibliothek aus dem XIV. Jahrhundert aufmerksam, die im Kataloge der Bibliothek den Titel "Problematum Euclidis explicatio" führt. Dieser Titel machte meine Neugier rege, und ein eingehendes Studium derselben liess mich ihre grosse Wichtigkeit für die Geschichte der Mathematik ahnen. Da mir jedoch damals die nöthige Literaturkenntniss nicht nur, sondern auch die technische Fertigkeit im Entziffern fast völlig abging, so war es mir erst im Sommer 1865 möglich, meine Entdeckung competenten Richtern mittheilen zu können und ihnen ein ungefähres Bild meines Fundes zu machen. Vor Allem war es der tiefste Kenner mittelalterlicher mathematischer Literatur, der Fürst Don Baldassarre Boncompagni in Rom, der mich veranlasste, eine genaue Analyse der ganzen Handschrift auszuarbeiten. Mancherlei Berufsgeschäfte und die grosse Schwierigkeit, die sich mir in der Beschaffung ausreichender literarischer Hilfsmittel darbot, -- so war es mir z. B. unmöglich, eine Ausgabe der Geometria speculativa des Bradwardinus zu erhalten; ja selbst die Berliner Bibliothek besitzt nur die theologische Schrift desselben "De caussa Dei contra Pelagium et de virtute caussarum libri III" - haben die Vollendung dieser Abhandlung länger verzögert, als ich es gewünscht. Ich hoffe jedoch, dass auch jetzt noch, nachdem eine kurze Notiz über die Handschrift gleich, nachdem ich zu dieser Arbeit angeregt wurde, in einem Provinzialblatte\*) und hieraus abgedruckt in Grunerts Archiv\*\*) erschienen ist, eine genaue Analyse nicht überflüssig sein

\*\*) Grunerts Archiv Th. 44. S. 371 und 501.

<sup>\*)</sup> Altpreussische Monatsschrift herausg. vom Reicke und Wichert. Bd. 2. S. 457 ff. und S. 651 ff.

dürfte. Sie wird mir Gelegenheit geben, manche falsche Conjectur, die in dieser Notiz mit untergelaufen, nach jetzt besserem Wissen zu berichtigen.

# § 1.

#### Aeussere Beschreibung der Handschrift.

Die Handschrift, um die es sich handelt, hat im Kataloge der Bibliothek die Nummer R. 4? 2. und den Titel "Problematum Euclidis explicatio". Sie besteht aus 222 Seiten in klein Quart, welche mit einer Pergamentschale zusammengeheftet sind. Die Seiten 1, 2, 207-222 sind ohne Paginierung und auch mit Ausnahme von Seite 1 nicht beschrieben. Seite 3-206 aber sind von einer ganz modernen Hand mit den Zahlen 3-206 am äussern obern Rande bezeichnet. Der Codex enthält im Ganzen 13 verschiedene Stücke von grösserem oder geringerem Umfange. Der oben genannte Titel schien mir anfänglich vollkommen incorrect - er befindet sich auch auf der Seite 1, aber von sehr moderner Hand, vielleicht durch den ersten Beschreiber unserer Bibliothek, Petrus Jaenichius (Jaenichen), im Jahre 1723 hinzugefügt -, da ich einige wirklich Enklidische Stücke der Handschrift zuerst verkannte; jedenfalls wäre ein anderer vorzuziehen. Die Schriftgattung des Manuscriptes ist die gewöhnliche des XIV. Jahrhunderts, zum Theil durch die Abbreviaturen sehr unleserlich, Vielfach sind auch Randglossen von derselben Hand vorhanden, überhaupt ist das Manuscript von einer und derselben Hand geschrieben.

Auf der äussern Seite des vordern Umschlags findet sich ein, wie es scheint, nur um ein Geringes jüngerer Titel in gothischer Schrift : Perspectiua item Geometria Braswardini (sic!) w. p. v. a. — Ein ähnlicher Titel, der dem Ende des XV. Jahrhunderts anzugehören scheint, findet sich auch auf der Seite 1. Er lantet: hoc liber 10<sup>ms</sup> complectilur plures tractatus perspective et geometriam || Bradwardini etiam de latitudine formarum. Die Lehrsätze und Aufgaben sind zum grössten Theile bis Seite 128 in grösserer Schrift gegeben und nachher mit Roth unterstrichen. Auch die Initialen sind roth geschrieben und die Anfangsbuchstaben der Zusätze und Absätze roth durchstrichen. Von Seite 128 an fehlen die Initialen gänzlich, und zuletzt ist auch der Unterschied zwischen den Theoremen und dem Texte fallen gelassen. Nur das zweite Stück und der Tractatus de continuo Bradwardini sind ohne zugefügte Figuren. Sonst besitzen alle übrigen Stücke des Manuscriptes dergleichen in mehr oder weniger guter Ausführung. Am innern Rande werden die einzelnen Theoreme mit arabischen Ziffern numeriert in der um jene Zeit üblichen Form. Ein paar deutsche Sprüchworte, die sich auf der innern Seite des vordern Umschlags und auf Seite 1 finden, übergehe ich als für meinen jetzigen Zweck unwesentlich. Wen dieselben interessieren sollten, findet sie an den beiden oben citierten Orten.

### Erstes Stück: Euclidis liber de uisu.

Seite 3-30 umfasst zunächst einen der auf dem Titel erwähnten Tractatus Perspectiue, dem freilich die Einleitung fehlt und ebenso das Ende. Dieser Mangel der Einleitung in Verbindung mit dem Umschlagstitel Perspectiua item geometria Braswardini liessen mich lange diese Abhandlung für cine bis jetzt völlig unbekannte Perspective dieses berühmtesten Mathematikers des XIV. Jahrhunderts halten. Bestärkt wurde ich in meiner Meinung noch durch zwei Handschriften, die Montfaucon\*) als im Besitze der Bibliothek des Vatican befindlich angibt, so dass ich sie gewichtigen Autoritäten gegenüber in der oben angezogenen Notiz für bradwardinisch festzuhalten mich berechtigt glaubte. Um mir jedoch Gewissheit zu verschaffen, wandte ich mich an Fürst Boncompagni mit der Bitte, in der Bibliothek des Vatican nach den beiden Handschriften Montfaucons: Tractatus de Geometria Perspectiua autore Guilielmo Bruduardino und Guillemi Vradwardin Geometria et Perspectiua nachsuchen zu lassen und mir das Resultat mittheilen zu wollen. Der Fürst mit seiner bekannten Liberalität beauftragte Herrn Enrico Narducci mit der Untersuchung, und dieser geschätzte Gelehrte übersandte mir die nachfolgenden Zeilen in Betreff dieser Codices, die ich auch wegen späteren Gebrauchs hier abdrucken lasse:

Rome, 29 novembre 1865.

#### Monsieur,

Ayant reçu de M. le prince Boncom pagni la commission d'examiner quelques manuscrits de la Bibliothèque du Vatican, à l'aide desquels pouvoir repondre aux questions qui se trouvent dans votre lettre du 15 novembre 1865, c'est avec plaisir que je m'acquitte de cette commission en vous écrivant ci-après les résultats de ces recherches.

Les deux manuscrits indiqués par Montfaucon (Bibliotheca Bibliothecarum Manuscriptorum nova, Paris, 1739, T. I. p. 38 et 88) existent encore dans la Bibliothèque du Vatican, et sont actuellement cotés Regina Succorum n<sup>os</sup> 1235 et 1253. Seulement il y a confusion dans les titres, car aucun de ces deux manuscrits, ni aucun autre manuscrit de la même bibliothèque (ainsi que j'ai pu m'assurer en examinant les catalogues manuscrits) ne contient aucun exemplaire d'une Perspectiua, portant le nom de Brauardin, Braduardin, Bruduardin ou Vradwardin pour auteur.

Le premier des deux manuscrits ci-dessus mentionnés, c'est-à-dire celui coté Regina Suecorum nº 1235 est in 4° p°, de 67 feuillets en parche-

<sup>\*)</sup> Montfaucon, Bibliotheca Bibliothecarum Manuscriptorum nova. T. 1. Paris, 1739. Fol: p. 38 und 88. Man vergleiche: Heilbronner, Historia Matheseos Universae. Lipsine, 1724. 4°. p. 543 und 544.

## 48 Ueber die Handschrift R. 4º 2, Problematum Euclidis explicatio, der

min, dont les 1<sup>r</sup>.---4<sup>e</sup>, 67<sup>e</sup> ne sont pas numérotés ni écrits, et les 5<sup>e</sup>.--66<sup>e</sup> sont numérotés dans les marges supérieures des rectos avec les chiffres 1-62. Les feuillets numérotés 1-31 de ce manuscrit contiennent un exemplaire de la géométrie de Brauardin. Cet exemplaire commence (feuillet 1 recto, lig. 1-8): "GeometR'a gpsp<sup>e</sup>tiva (sic!) || guillemi braduadini\*) "GEomet'a assecutiua est 🛛 arismet'ce 👰 admodū rheto<sup>ca</sup> 🖉 dyaletice. nam et "posteri'ois || Est et nuov passiones mag'tudinib` || deseruiut pp qd' euclides geo-"mele || arismelcam int posuit ;" et finit (feuillet 31 verso, lig. 17-19) : "aul cu "eqli arcu de zo" oi'l quys plus quys plus quys mi' de eq'nocciali c'culo s! goici "phanc goom euidenter Tc ê finis nri opis T 5." Tout cela correspond exactement, à quelques variantes près, à l'édition "Geometria speculatiua Thome brauardini, etc. impressa parisi etc. Anno dmi 1495. die 20. may", depuis le commencement jusqu'à la ligne 9 du verso de l'avant-dernier feuillet. S'ensuitent dans l'édition et manquent dans le manuscrit 1º "C Recollectio oim proportionum numeralium" 2? "Tractatus de quadratura circuli editus a quodam archiepiscopo || ordinis fratrum minorum." La note suivante, écrite à l'encre rouge dans le feuillet 31 verso, lig. 20-22, nous donne l'âge du manuscrit: "Explicit geometa venerabilis docto is || ofgri gwli bradwardin ano xpi oge .ccc? Lxxxvj In vigilia natitatis xpi." L'écrit anonyme qui suit dans le même manuscrit (feuillets 32-62) est réellement la Perspective de Jean Peckkam, archévêque de Cantorbéry. Cet écrit commence (feuillet 32 recto, ligne 1-3): "phisice perspectiua || INter phyce 9sideracois studiu lux jocūdius afficit meditantes", et finit (feuillet 62 verso, lig. 44 et dernière): "eade roe i pt appe te explict GeometR'a psp<sup>c</sup>tiua"; ce qui correspond à tout ce qu'on lit dans l'édition intitulée : "Jo. Archiepiscopi Cantuariensis | Perspectiua communis. — Impressum hoc opus Venetiis per Jo. Baptistam Sessam. Cal. Junij MCCCCIIII. Diligentissime emendatū. Per L. Gauricum Neapolitanum" (feuillet 2 recto, ligne 5 jusqu'au feuillet 19 verso, ligne 41) c'està-dire le traité entier, sauf des variétés de mots.

"Le manuscrit coté Regina Suecorum 1253, qui est le second des deux manuscrits cités ci-dessus, est aussi en parchemin, in 4? p? de 77 feuillets, dont les 1<sup>r</sup>, 2<sup>d</sup>, 77° ne sont pas numérotés ni écrits, et les 3°-76° sont numérotés dans les rectos avec les numéros 1-74. Il est de plusieurs écritures, qui paraissent toutes du commencement du XIV° siècle. Les feuillets 34-61 contiennent un exemplaire complet, peut s'enfaut, de la Perspective de Peckkam. Cette exemplaire commence (feuillet 34 recto, ligne 1-3): "R... pacham. albumae (sic!) altmaco (?)  $psp^{u,a**}$  || INter phice 9siô'ationis

<sup>\*)</sup> Les mots "guillemi braduadini" sont d'une main différente et beaucoup plus moderne.

<sup>\*\*)</sup> Ce titre a été joint posterieurement. Malheureusement un relieur ignorant a emporté la partie supérieure des mots formant ces titres; ainsi que d'autre

"studia lux iocūdi' affic medilaites"; et finit (feuillet 61 verso, lig. 28-29): "Q au falso dar de yride ml'tu p'si | p t g i h' lapidibi gleplam'" ce qui correspond à tout ce qu'on lit dans l'édition indiquée dans la ligne 25 de la page 48 (feuillet 2 recto, ligne 5 jusqu'au feuillet 19 verso, lig. 21 -22). Ce qui suit dans les lignes 23-41 du même feuillet 19 verso est ainsi récapitulé dans le manuscrit (feuillet 61 verso, lig. 29-32): "C Gnatom "yridis ca thaclismū exclude' C Lucē solarē t sid'alē ī pspicuo || puro effice' "galaxiam f Quidam i h pho gtra dice' non uerentue". -- Les feuillets 70-74 du même manuscrit contiennent un exemplaire du Liber Karastonis. Cet exemplaire commence (feuillet 70 recto, lig. 1-4): "cOntinuel deus 9fuatione tua "I mh plicet ex salute portione tua I no puer ego germane qualis tu es qui abstêgil "me tes cum inquisitione sua t excitat aim ad speculand"; et finit (feuillet 74 recto, lig. 30-31): "7 facit te vid'e locu restitutois 7 facit te cognosce' casu "erroris Finitus Est liber Karastonis." Cette lection est conforme à celle donnée par M. Steinschneider (Intorno al liber Karastonis. Lettera di Maurizio Steinschneider a D. Baldassarre Boncompagni. Roma 1863; page 8) du commmencement et de la fin du Liber Karastonis, d'après un manuscrit conservé dans la Bibliothèque du Couvent de S. Marc de Florence (feuillets 112 verso - 119 recto). M. Steinschneider dans son opuscule ci-dessus mentionné, à l'appui de documents, croit, que ce liber Karastonis soit une tra-

duction faite par*Gérard de Crémone* d'après l'original arabs (كِتَاب القَرَ سُطُون) de *Thabit ben Corra*."

Die weiteren Worte sind ohne Interesse für das Folgende, weshalb ich sie hier übergehe. Nach dem Mitgetheilten ist der Irrthum Montfaucons in Betreff des ersten Manuscriptes Regina Suecorum 1235 leicht zu entschuldigen, da Anfang und Ende desselben in den Worten Geometria Perspectiua bestehen. In Betreff des zweiten Manuscriptes Regina Suecorum 1253 ist freilich die Möglichkeit eines Irrthums beinahe ausgeschlossen, obwohl die Blätter 1-33 desselben, deren Inhalt oben nicht mit angegeben ist, denselben vielleicht noch involvieren können. Jedenfalls hoffe ich Andere durch das Obige vor meinem Irrthum zu bewahren.

Während des Druckes dieser Abhandlung erhielt ich durch die Güte des Fürsten Boncompagni noch Nachrichten über einige Handschriften der Vaticana, aus denen erstens hervorgeht, dass das Manuscript Regina Suecorum 1253 gar nicht das Manuscript ist, welches Montfaucon a. a. O. p. 88 citiert, sondern ein anderes, das auf p. 25 desselben Werkes angeführt wird. Das wahrscheinlich mit dem auf S. 88 aufgeführten identische Manuscript der Vaticana, dessen Katalognummer ist: Codex Vaticanus 3102,

Digitized y Google

titres très-intéressants, cur ils faisaient connaître les ouvrages auxquelles ils so rapportaient.

50 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

enthält nun aber wirklich von Blatt 110<sup>b</sup> Zeile 26 – Blatt 111<sup>b</sup> Zeile 13 eine Perspective, die dort dem *Bradwardin* zugeschrieben wird. Es heisst nämlich Blatt 110<sup>b</sup> Zeile 25—26: "*Explicit Geomet'a brauardi & Quadrata circuli* || *Incipit pspetia eigdem*. Ueber den Inhalt kann ich leider, da ich die weitere Auskunft noch nicht erhalten habe, Näheres nicht angeben.

Ans der Abhandlung Steinschneiders in der "Zeitschrift für Mathematik und Physik" X. Jahrg. S. 456-498: "Die mittlern Bücher der Araber und ihre Bearbeiter", fand ich jedoch bald, dass die fragliche Perspective nichts Anderes sei, als die Optik des Euklides, die unter dem Namen Euclidis liber de uisu sich in lateinischer Uebersetzung in hunderten von Manuscripten des Mittelalters findet. Unter diesem Titel ist unser Werk auch in dem zweiten Stücke der Handschrift wörtlich eitiert. Zur Vergleichung stand mir nur die Pariser Ausgabe von 1557 zu Gebote: Euclidis || Optica et Catoptrica è Greço || uersa per Ioannem || Penam Regium || Mathematicum etc. || Parisiis || Ex Officina Andreae Wechelii. 2 Bll. und 64 S. 4? Was ich Abweichendes gefunden habe, werde ich nachher mittheilen. Jetzt zunächst die Bemerkung, dass Steinschneider im Irrthum ist, wenn er in der eitierten Abhandlung S. 467 Zeile 19 von oben der Optica und Catoptrica zusammen 64 Figuren gibt, da diese Zahl der Optik allein zugehört.

Unser Manuscript beginnt Seite 3, Zeile 1-2: "SUpponatur ab oculo eductas lineas rectas ferri spatiorum || magnitudinem et mensurarum"; das heisst, es fehlt die ganze Einleitung, die in andern Manuscripten vorhanden ist, und es beginnt also bei uns das *liber de uisu* sogleich mit den Thesen. Von diesen zähle ich 13. Die erste bis achte stimmen mit den Thesen der Pariser Ausgabe, unsere neunte ist dort die elfte, unsere zehnte dort die zwölfte. Auf sie folgen bei uns noch folgende drei Thesen:

- Omnes uisus equeveloces esse qui secundum equales angulos definiuntur;
- 12. Non autem sunt equeveloces qui secundum inequales lineas definiuntur :
- 13. Non sub quocunque angulo rem uideri.

Die Thesen 9 und 10 der citierten Ausgabe von 1557 fehlen bei uns vollständig. Bei den nun folgenden Theoremen ist es merkwürdig, dass die meisten neben dem mehr oder weniger zutreffenden Wortlaut genannter Edition jedesmal noch einen anders gefassten Ausspruch desselben Satzes in sich schliessen. So heisst z. B. der erste Satz bei uns: "Nullum uisorum simul totum uidetur. In eodem momento non uideri plura", während der Pariser Druck einfach als Theorema I aufführt: Nullum aspectabile simul totum cernitur. Mit dieser Eigenthümlichkeit hängt es wohl auch zusammen, dass zum grössten Theile bei uns die Beweise bei weitem ausgedehnter sind, als in dem gedruckten Exemplare. Die Figuren stimmen fast immer mit der Ausgabe, nur sind an Stelle der griechischen Buchstaben entsprechende lateinische getreten. Bis Lehrsatz 6 stimmen beide Ausgaben; Lehrsatz 7

der Handschrift findet sich nicht im Druck; bis Lehrsatz 16 bei uns stimmt dann wieder der um je eins niedrigere Lehrsatz bei Pena; Satz 17 ist wieder beiden gemein; 18 fehlt im Druck; 19-25 entspricht 18-24 der Ausgabe; Satz 25 in dieser fehlt bei uns; dann ist wieder 26-29 in beiden Redactionen gleichlautend. Satz 30 im Manuscript fehlt im Druck; 31-38 ist gleich 30-37. Satz 38 des Druckes fehlt bei uns; Theorem 39 stimmt beiderseitig. Der Satz 40 ist hei uns zweimal gezählt; 40° ist gleich 40 der Ausgabe, 40<sup>h</sup>, 41 respective gleich 44, 45 der Edition; 42 bei uns fehlt ganz bei Pena; 43-45 ist gleich 41-43 der Ausgabe. Der Satz 46 entspricht sich wieder in beiden Exemplaren; 47 entspricht dem Satze 49. Die Sätze 47 und 48 der Edition fehlen uns also völlig, dagegen ist unser Satz 48 bei Pena nicht vorhanden. Die Sätze 49-59 endlich entsprechen den Sätzen 50-60 des Pariser Druckes. Satz 61 der Ausgabe fehlt uns völlig und auch Satz 59 lautet bei uns Seite 29 Zeile 39-41 bis Seite 30 Zeile 2: "Si tetragoni contactis dyametrorum ad rectos trahatur recta in ipsa uero oculus ponatur latera tetragoni equalia apparebunt et dyametri equales apparebunt. Esto tetragonus .a. b. g. d. et protrahentur in eo dyagoni .d. b. g. a. et protrahutur perpendicularis ab .c. puncto empipedo elevata recta .e. in qua oculus .m. iaceat et accidant radij .m. a. m. b. m. d. m. g.", das heisst, es ist mitten im Beweise abgebrochen. Auf der Seite 30 würde aber gerade Raum genug sein, dass der vollständige Beweis und der fehlende letzte Lehrsatz der gedruckten Ausgabe noch Platz finden würden.

#### § 3.

#### Zweites Stück: UTrum uisio corporis que fit per radiorum reflexionem et refractionem possit esse equalis nisioni que fit per rectam radiorum radiationem.

(Seite 31 Zeile 1-2.)

Das Stück erstreckt sich von Seite 31 Zeile 1 bis Seite 33 Zeile 31 und endigt (Zeile 29-31): Omnis piramis est angulata igitur omnis pyramis est laterata quia anguli non sunt sine lateribus. aus patet quia omnis pyramis habet conum et basim. Den Verfasser zu ermitteln, ist mir nicht gelungen; mit grösserer Wahrscheinlichkeit lässt sich die Zeit der Abfassung bestimmen. Auf Seite 30 Zeile 32-37 werden nämlich als Beweismittel citiert: 1. Euclidis liber de uisu, wie schon oben angegeben wurde; 2. Witilo, Perspectiua lib. 3. prop. 15\*); 3. Bacon, Cap. 2 distinct. 6.; 4. Joh. de pysano p. I.

1

4\*

10

<sup>\*)</sup> Es sei mir erlaubt, über diesen berühmten Optiker, der freilich unter dem Namen Vitellio bekannter ist, hier in längerer Anmerkung einige Bemerkungen zu machen. Herr Prof. Cantor in Heidelberg, an den ich mich ebenfalls wegen der Handschrift gewandt und ein in derselben abgezeichnetes Auge mit eingelegt hatte, sprach in einem Briefe vom 3. August 1865 die Vermuthung aus, dass etwa dieser Gelehrte der Verfasser der darin enthaltenen Perspective sei. Wenn dies sich auch nicht bestätigte, so ergab sich doch bei den Nachforschungen,

52 Ueber die Handschrift R. 4º 2, Problematum Euclidis explicatio, der

na companya conservative conservative a conservative a conservative a

prp. 40, über welches letztere Werk wir gleich nachher zu handeln haben. Witelo und Joh. Peckkamus werden auch auf Seite 31 an mehreren

die der Custos der Königl, und Universitätsbibliothek zu Königsberg, Herr Dr. R. Reicke, für mich anzustellen die Güte hatte, dass es vielleicht möglich sei, dieser Optiker Vitellio sei ein geborner Thorner. In der Widmung seines Werkes nämlich sagt er: Veritatis amatori fratri Guilelmo de Morbeka Witelo filius Thuringorum et Polonorum cet. Nun meint Freytag, Analecta litteraria de libris rarioribus Lipsiae 1750. 8º S. 978, man müsse hier für Thuringo-Polonus lesen Thoringo-Polonus und dies solle heissen Thorunii natus, d. h. in Thorn geboren. Dass diese Ansicht eine blosse Conjectur, ist wohl schon daraus sicher, dass zu Lebzeiten des Witelo (Mitte bis Ende des Saec. XIII) Thorn als Stadt noch gar nicht existierte, ausserdem würde es dann auch Thorunius statt Thoringus heissen müssen. Die Widmung aber in Verbindung mit einer Stelle im Xten Buche, nämlich Theorema LXXIV: Quoniam enim non est possibile solis vel lunae (quorum solum modò corporum, ut 70 th. hulus diximus, radij iridem faciunt) centra in horizonte existere, nisi in oriente uel occidente, in nostra terra, scilicet Poloniae, habitabili, quae est circa latitudinem 50 graduum cet., hat die Polen veranlasst, den Witelo als einen der Ihrigen zn reclamieren. Sie haben sogar eine vollstündige Geschichte seines Lebens con struiert, dass er bei Krakau ein Observatorium gehabt u. s. w., obwohl wir über seine Lebensumstände nur auf einige dürftige Nachrichten seines Werkes angewiesen sind. Fast alle Schriftsteller, die über Geschichte der Optik geschrieben, haben der Historya literatury Polskiey des Felix Bentkowski, Warschau und Wilna 1814. 8º. 2. Band S. 296, 297, einfach nachgeschrieben, ohne sich auf eigne Untersuchungen einzulassen. Nach Bentkowsky ist Vitellio - diese Namensform mussten sie nothwendig beibehalten, um ihre Sache zu stützen - eine blosse Uebersetzung des polnischen Wortes Ciolek, was Kalb bedeutet und gleichzeitig der Name einer der berühmtesten polnischen Adelsfamilien ist. Nun haben aber die ältesten Handschriften niemals diese Form Vitellio, sondern wie schon Poggendorff, biogr.-litterar. Handwörterbuch zur Gesch, der exacten Wissensch. Bd. II. Sp. 1212, bemerkt hat, steis entweder die Form Witilo oder Witelo. Unscre Handschrift z. B., die von 1359 datiert ist, hat viermal die Form Witile deutlich ausgeschrieben. Auch Fürst Boncompagni besitzt in seiner reichen Manuscriptsammlung Nr. 358 einen Pergamentcodex dieser Optik aus dem XIV. Jahrhundert. In diesem heisst es nach der Beschreibung des Herrn Narducci (Catalogo di manoscritti cet. p. 167 Zeile 16-18 und Zeile 24-25): " Incipit prologue in primum Librum perspective. Eritatis amatori fratri Vilhelmo de morbeka Witelo filius thuringorum et colonorum cet." und "Incipit liber Xus continus (sic) et sine exceptionis de perspectiva demonstrata. Magistri Guittelonis". Beidemal also haben wir auch hier die Form Witelo, denn auch das zweite Mal steht, wie sonst immer im Lateinischen, Gu für W. Auch von den 6 Handschriften, die Heilbronner a. a. O. aufführt, haben drei die Form Witele oder Wytele für den Namen des Verfassers, die deshalb auch von ihm nicht dem Vitellio zugetheilt werden. Von den drei übrigen ist es ebenso ungewiss, ob der Titel der Handschrift mit der Form des Namens in derselben übereinstimmt, da z. B. auch die Handschrift des Fürsten Boncompagni den Katalogtitel Vitellionis Optica führt, obwohl die daselbst angewendete Namensform Witele ist. Von den beiden Handschriften der Vaticana: Codex Vatic. Urbin. 265 und Cod. Vat. Urbin. 296 hat nach gütigen Mittheilungen des Fürsten Boncompagni der erstere die Namensformen

Wytelo und Uitello; im zweiten steht einmal Bitelo, an zweiter Stelle Witello, doch macht Herr Narducci dazu die Bemerkung: Il est à observer qu'on lisait aupara-

am Ende des XIII. Jahrhunderts, so dass also das uns vorliegende Stück nicht vor Anfang des XIV. Jahrhunderts verfasst sein kann.

Was jetzt den Inhalt anbetrifft, so wird zuerst behauptet, gebrochne und reflectierte Strahlen gäben mehr Licht als directe Strahlen. Der Verfasser führt als Beweis an, 1. dass viele Menschen durch Gläser läsen, die bei directem Lichte nicht lesen könnten; 2. dass die Schreiber, die bei ciner Kerze in einem leeren Zimmer schreiben wollten, die Kerze vor einen Spiegel stellen, um dadurch das Licht zu verstärken. Er sagt dann, er wolle in der Art vorgehen, dass er zunächst *Definitiones*, 2. aliquas distinctiones, 3. aliquas petitiones; 4. conclusiones cum suis corrolariis setzen will, und dann 5. redire ad rationes proponentis. Seine Definitionen beziehen sich auf

vant "witelo" et qu'on a corrigé beaucoup plus tard "witello". Das Manuscript 265 ist aus dem XIV., das Manuscript 296 aus dem Anfange des XV. Jahrhunderts. Wir finden also hier chenfalls nur die Form Witelo. Auch F. Riesner verbessert die von den ersten Ausgaben 1533 und 1551 gegebene Namensform Vitellio in seiner Ausgabe von 1572 in Vitello, wahrscheinlich, da er nach seiner Angabe alle Manuscripte benutzte, weil diese die Form Witelo oder ähnliche darboten, obwohl er den Verfasser selbst als Polen betrachtet. Dagegen macht die Form Wilclo es sehr wahrscheinlich, dass unser Optiker ein geborner Thüringer war. Dieser Name ist nämlich im XIII. Jahrhundert einer der verbreitetsten in Thüringen, so dass man fast keine Urkundensammlung aus jener Gegend und Zeit aufschlagen kann, ohne auf eine der Formen Witilo, Witalo, Widdlo, Widelo, Widulo (abgeleitet als Diminutiv von Wido oder Wito) zu stossen, und dieser Name ist also bestimmt ein deutscher. Wäre Witelo ein Pole, so würde sicher filius Polonorum et Thuringorum stehen müssen. In diesem Wahne befindet sich z. B. Bernardino Baldi — auch Riesner dreht in seiner Vorrede die Reihenfolge um, damit er um so eher sich für seine polnische Abkunft entscheiden könne - in dem bis jetzt noch nicht veröffentlichten Werke De le vite de' Matematici, von welchem das Original im Besitze des Fürsten Boncompagni sich befindet, und von dessen carto 106-107 ich eine genaue Abschrift besitze, die gerade die Lebensbeschreibung des Witclo enthalten. Er sagt nämlich gleich zu Anfang: leggendovisi con modo barbaro figliuolo de Poloni e de Turingii, kehrt also das wirklich Vorhandene geradezu um. Nachdem er sich aber im Allgemeinen für die polnische Abkunft ausgesprochen, gibt er doch zu: Puo essere anco che non egli ma chi fece l'inscrittione al opera lo chiamasse figliuolo de Poloni e de Thuringi per crescer gloria a quelle nationi; ovvero que, s'egli fu que lo fece, s'inducesse a ciò per acquistarsi la gratia d'ambedue quei popoli; o forse perché egli nascesse in Turingia e fosse allevato in Polonia, overo per il contrario nascesse in Polonia e fosse allevato fra i Turingii. Schon Regiomontan und dessen Schüler Walther nennen denselben noster Vitellio Thuringus, sind also bestimmt der Ansicht, einen Thüringer vor sieh zu haben. Die Stelle im 10. Buche, die ich oben habe abdrucken lassen, würde doch nur so viel beweisen, dass er bei Abfassung seines Werkes vielleicht in dieser Gegend gewesen sei, und dass man, um in Polen zu leben, nicht dort geboren zu sein braucht, ist wohl selbstverständlich, noch dazu, da es grosse Wahrscheinlichkeit hat, dass Witelo ein Geistlicher geweseu, der also dahin gehen musste, wohin seine Obern ihn schickten.

54 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

Visio recta, die nach den kürzesten Linien ins Auge gelangt, Visio reflexa, bei der die Perception sowohl durch einfallende als reflectierte Strahlen geschieht, Visio refracta, bei der ebenfalls die Wahrnehmung durch directe und gebrochne Strahlen gleichzeitig geschieht. Distinctiones sind folgende: Visus vera, wenn die Sache selbst in die Augen fällt; Visus ficta, wenn nur ein Abbild geschen wird.

Petitiones hat ex drei. 1. Per fortiores radios certius uideri. 2. Radium oblique incidentem diversarum densitatum medijs refringi. 3. Speciem in speculo apparentem reflexe uideri.

Es folgen die conclusiones. 1. Omnis uisio fit mediante pyramide cuius conus est in oculo et basis in re uisa. Dazu das Corrolar: Duo in equalia possunt apparere equalia. 2. In uisione que fit per radiorum refractionem uel reflexionem radiorum fit notabilis deceptio et error, und der Zusatz Visio de rebus per radios fractos uisis debiliter fieri. 3. Visionem que fit per radios rectos uisioni que fit per radios refractos et reflexos esse certiorem, mit dem Corrolar Visio que fit per radium rectum non est equalis uisioni que fit per radium refractum uel reflexum: d. h. die aufgestellte Frage wird verneint.

Jetzt beginnt der füufte Theil, der sich nur damit beschäftigt, Alles, was bis dahin bewiesen zu sein schien, als falsch nachzuweisen. Der Verfasser geht hier den umgekehrten Gang und wendet sich zunächst gegen die  $3^{\alpha}$  conclusio und so rückwärts weiter bis zu den Distinctionen. Dieser fünfte Theil der Abhandlung ist der interessanteste, und es scheint dem Verfasser gelungen zu sein, die scheinbar von einem Andern aufgestellten Sätze zu entkräften.

§4.

# Drittes Stück: Joannis Peckkami Archiepiscopi Cantuariensis Perspective communis libri tres.

Seite 34 ist leer geblieben. Von Seite 35 bis 68 Zeile 20 folgt dann das eben genannte Werk, das im Mittelalter für classisch galt, und das auch in einer grossen Anzahl von Handschriften und Ausgaben existiert. Die älteste mir bekannte ist ohne Ort und Jahr circa 1490 erschienen und vor ungefähr 2 Jahren von der Friedländerschen Buchhandlung in Berlin angezeigt worden. Ehe ich mir dieselbe aber verschaffen konnte, war sie schon anderweitig verkauft. Dann kommen 2 Ausgaben im Jahre 1504 zu Leipzig impressa arte et sollertia Martini Herbipolensis und Venedig impressa cura J. B. Sessa. (Letztere schon oben in dem Briefe Narducci's erwähnt.) Ich selbst habe zur Vergleichung nur eine Ausgabe Coloniae Agrippinat MDLXXX 48 Blatt. Ausserdem kenne ich noch zwei Kölner Ausgaben von 1592 (Narducci, Catalogo di Manoscritti p. 112, Zeile 7-10) und 1627 (Kästner, Geschichte der Mathematik Bd. 2, S. 270). Auch in Nürnberg sollen nach Montucla mehrfache Ausgaben erschienen sein. In allen diesen Editionen und den besonders häufigen Handschriften ist der

daraus bei den Schriftstellern über Geschichte der Mathematik grosse Verwirrung entstanden ist. Ich habe mir z. B. die Formen notiert: Pechamus, Pechebam, Pethanus, Pisanus, Pathhan, Pichanus, Petsan\*); Cameracensis für Cantuariensis. Durch Vergleichung der Ausgaben kam aber schon Montucla zu der Ueberzeugung, dass alle diese verschiedenen Formen ein und denselben Mann bedeuten sollten, nämlich den Erzbischof von Canterbury, Johannes Peckkamus. Derselbeist nach Cave\*\*) zu Chichester im südlichen England geboren von niedrigen Eltern. Da er einsah, dass es ihm schwer fallen würde, in seinem Vaterlande sich hervorzuthun, ging er nach Paris, beendigte dort seine Studien und kehrte dann erst nach England zurück. Hier hielt er in Oxford mit solchem Beifall Vorlesungen, dass er von seinen Ordensbrüdern, den Franciscanern, zum Provincial für England gewählt wurde. Er blieb aber nicht lange in England, sondern wandte sich wieder nach Paris und von dort nach Leiden, wo er sich die Canonikatswürde erwarb. Von hier hegab er sich nach Rom und wurde dort bald als Lector Palatinus angestellt. Als bald darauf der Erzbischof von Canterbury, Robert Kilwarby, die Cardinalswürde erhielt, wurde Peckkam gegen den Willen des Capitels, wie es scheint durch Simonie, vom Papste zum Erzbischof von Canterbury geweiht am 6. März 1279. Gleich nach seiner Inthronisation musste er wenigstens bei Strafe des Bannes 4000 Mark nach Rom senden, wie Cave a. a. O. mittheilt. Peckkam starb am 8. December 1292. Das Datum seiner Weihe und seines Todes verdanke ich dem Oberbibliothekar Prof. Dr. C. Hopf in Königsberg, der mir überhaupt bei meinen Studien sehr förderlich gewesen ist.

Unser Manuscript beginnt (Seite 35 Zeile 1-3): Assit principio sancta maria meo || INter phisice considerationis studia lux iocundius afficit meditantes || inter magnalia mathematicorum certitudo demonstrationum preclarius extollit investigantes; und endigt (Seite 68 Zeile 15-17): Que autem dicuntur || false de yride multum possunt refelli per hoc quod in huius lapidibus || contemplamus. Das in allen Ausgaben und den meisten Handschriften dann Folgende ist gerade so wie in der oben von Herrn Narducci erwähnten Handschrift des Vatican, Regina Suecorum 1253, in folgender Weise zusammengefasst (Seite 68 Zeile 17-20): Generationem yridis cathaclismum excludere. || Lucem solarem et siderabilem in perspicuo puro efficere || Galaxiam. Quidam in hoc paragrapho contradicere non verentur.|| Explicit e amen deo gracias. Soweit ich sonst verglichen habe, stimmen sämmtliche Propositiones

\*) Auch den Anfang des Manuscriptes Regina Suecorum 1235: phisice perspectiua bin ich geneigt so zu verstehen, dass phisice eine Verdrehung, vielleicht von Pisanus sein soll.

\*\*) Cave, Scriptorum Ecclesiastic. Historia literaria, Genevae 1705. Fol. p. 647

11

12

unserer Handschrift mit der oben citierten Ausgabe überein. Das *liber 1* enthält *S4 propositiones*, das *liber 11 56 propositiones*, endlich *liber 111 21 prop.*, weil die in den Ausgaben getrennten letzten beiden Lehrsätze in unserem Manuscript als Ein Satz gerechnet werden und mit 21 numeriert sind.

#### § 5.

#### Viertes Stück: Postrema duo Theoremata libri de Speculis Euclidis.

Von Zeile 21-42 derselben Seite 68 finden sich nun, merkwürdig genug, noch die beiden letzten Lehrsätze der Katoptrik oder des liber de speculis des Euclides, nämlich: 1. Possibile est speculum construi et in eodem apparere plures facies, has quidem maiores illas uero minores, has quidem propius illas uero longius et hic quidem dextras illic uero sinistras. 2. Ex concauis speculis ad solem positis ignem accendere. Sie weichen ebenso, wie ich dies oben vom liber de uisu gesagt habe, ziemlich bedeutend von der Pariser Ausgabe von 1557 ab.

#### § 6.

#### Fünftes Stück: Carastonis liber editus a Thebith filio Thore.

Dieses Werk, über welches Steinschneider in den Annali di Matematica (T. V. No. 1. Gennaio 1862) ausführlich gehandelt hat, erstreckt sich in unserem Codex von Seite 69 Zeile 1 bis Seite 73 Zeile 24. In Bezug auf das von Steinschneider Mitgetheilte kann ich mich einfach auf ihn beziehen. Ich notiere hier zunächst nochmals seine Ergebnisse, wie er sie auf Seite 6 und 7 des durch Boncompagni besorgten Separatdruckes genannter Abhandlung zusammenstellt:

1. قرسطون vuol dire bilancia, la voce araba è d'origine greca, ma la voce greca è ancora da trovarsi. — Senza arrischiare una congettura certa, lasciando questo ai filologi classici, voglio soltanto accennare, che questa voce era forse primamente usata nel Siriaco, e que la voce greca è forse composta di zelo mano? — È vero che il traduttore latino scriveva caraston con due a, leggeva dunque تُرَسُّطون; ma gli arabi amano la vocale a, e non di rado hanno pronunciato le consonanti d'una voce esotica con qualche vocale, che i traduttori latini hanno poi espresso colla vocale a, quando non trovavano la vocale indicata nel loro testo. Cercando dunque il suono greco, è da tenersi alle consonanti\*).

- 2. Già esistevano almeno 4 opere trattanti della bilancia, vale a dire:
  - a) d'uno dei figli di Musa ben Sciachir,
  - b) di Thabit ben Corra (morì nell' anno 901),

\*) Nach schriftlicher Mittheilung des Herrn Steinschneider an mich, hat Herr Staatsrath Dorn in Potersburg die Herleitung des Wortes *Karaston* von χειρ vollständig durchgeführt.

c) di Costa ben Luca (Sec. IX, se non X),

d) d' Ibn Heithem (che è il celebre "Alhazen" e morì nell'anno 1038). Non si sa certamente quale di questi autori abbia impiegato la voce caraston, que poi era commune fra i dolli.

3. Il liber carastonis, esistente almeno in 4 manoscritti, è di Thabit, ma non si trova nei cataloghi delle sue operc, conosciuti finora.

4. Gherardo di Cremona tradusse un liber carastonis dall'arabo, ed è da presumere que sia l'opera di Thabit ancora esistente, ch'egli abbia tradotto, finchè non si trovi altro nome di traduttore nominato in uno dei manoscritti dell' opera di Thabit.

Den unter 3. erwähnten Manuscripten: No. 184 der Bibliothek des Klosters San Marco in Florenz, und No. 7377B<sup>3</sup>, 7434<sup>6</sup>, 8680A der Kaiserlichen Bibliothek zu Paris, reihen sich noch einige Handschriften an, auf die ich zuerst aufmerksam gemacht habe, nämlich: 1. Unsere Handschrift R. 4º 25, das Manuscript Regina Suecorum 1235 und ein Manuscript, das ich nur aus dem Verzeichniss kenne, was Heilbronner in seiner Historia Matheseos aus der Bibliotheca Bibliothecarum von Montfaucon ausgezogen hat. Auf Seite 540 § 8 No. 5 nennt er darin als in der Bibliothek des Vatican vorhanden ein Liber Carastonis de ponderibus, letzterer Zusatz ein Gegenstück zu dem Titel Liber Carastonis sive de Statera der cinen Pariser Handschrift. Dieses Manuscript ist, wie ich später gemerkt habe, eben das Manuscript Regina Suecorum 1235. Die Bemerkung sive de ponderibus findet sich in demselben von einer Hand des XV. Jahrhunderts anf dem untern Rande des Blattes 70° mit Bleistift geschrieben und fast unleserlich, nämlich : J'lit Karastonis edit' a thebit ben chorao dcus it ponderiby. Der Codex Vaticanus 2975 aus dem XVI. Jahrhundert enthält ebenfalls (Blatt 176-183) ein Exemplar dieses Werkes. Dasselbe beginnt in gleicher Weise mit den Worten: Incipit liber Karastonis de ponderibus. Dabei ist es noch interessant, dass Heilbronner, wie sich aus dem Index III sub verbo Carasto ergibt, den Titel so auffasst, als habe ein gewisser Carasto cin Buch über Gewichte geschrieben.

· Liber Carastonis heisst also Buch über die Handwage, und der Inhalt des Schriftchens lässt diesen Titel als völlig gerechtfertigt erscheinen. Nach den Worten eines Briefes des Fürsten Boncompagni vom 5. Aug. 1865: "Ce manuscrit doit être très-précieux. Les ouvrages intitulés "Verba filiorum Moysi filii Schaker, Mahumeti, Hameti, Hasan" et "Liber Carastonis" n'ont été, que je sache, jamais publiés entièrement et on en connaît très peut d'exemplaires. Les auteurs de ces traités sont des géomètres très célèbres. Vous seriez, je crois, une chose très-utile et très-agréable aux savants en rédigeant une déscription très-détaillée de ce manuscrit, et en la faisant ensuite imprimer", glaube ich annehmen zu dürfen, dass der vollständige Inhalt des Werkchens noch niemals veröffentlicht ist, und dass daher eine genaue Angabe desselben vielleicht mit Dank aufgenommen wird Google

58 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

Auf Seite 8 der oben citierten Schrift Steinschneiders über das *liber Karastonis* gibt derselbe den Anfang und den Schluss des fraglichen Werkes nach der Lesart der Handschrift No. 184 der Bibliothek des Klosters San Marco in Florenz. Aus diesem Bruchstück entnehme ich zunächst die Eigenthümlichkeit, der wir in unserem Codex noch öfter begegnen werden und einmal schon begegnet sind, dass nämlich die Einleitung sowohl als der Epilog bei den meisten Stücken derselben als unwesentlich weggelassen ist und nur die wichtigen Theile, Erklärungen und Theoreme, der Mittheilung für werth geachtet sind.

Unser Manuscript beginnt (Seite 69 Zeile 1-2) mit den Worten: Omnium duorum spatiorum que duo mota secant in tempore vno || proportio est sicud proportio uirtutum mouentium huius et spatia secantium, d. h. es beginnt erst mit dem dritten Worte der 27. Zeile auf Seite 8 des genannten Werkes. Auch stimmt der Wortlaut in beiden Exemplaren nicht vollständig überein, und die beweisenden Zeilen stimmen erst recht nicht, wenn auch der Sinn derselbe ist. Der zweite Satz, den Steinschneider auch noch mittheilt, und der mit dem 14. Worte der 33. Zeile beginnt, lautet bei uns (Seite 69 Zeile 6-13): Omnis linca que diuiditur in duas sectiones et figitur punctus (sic!) eius secans el mouetur linea tota penitus mota quo non recedit ad locum suum tunc ipsa facit acadere duas sectores similes duorum circulorum quorum medielas dyametri vnius est lineà longior, medietas dyametri secundi est linea breuior ita quod proportio arcus que signat punctum extremitatis vnius duarum harum ad arcum quem signal punctum extremitatis linee secunde sicud proportio linee reuoluentis illum arcum ad lineam secundam. Er lautet also mit wenigen Aenderungen genau so wie a. a. O. Der Sinn ist, wie man leicht übersieht: Die Bogen gleicher Centriwinkel verhalten sich wie die zugehörigen Radien. Dieser Ausspruch des Satzes findet sich auch, eingeleitet durch die Worte: Scnsus stat in hoc, als Marginalbemerkung neben dem zugefügten Beweise.

Von hier an verlässt uns der Steinschneidersche Text. Wir fahren in der Art fort, dass wir den Wortlaut der 8 Lehrsätze, aus denen in unserer Handschrift das *liber Carastonis* bestcht, angeben und an jeden eine kurze Erklärung anschliessen, was mit dem betreffenden Satze gemeint sei.

3. Satz. Omnis linea que diuiditur in duas sectiones et ymaginabimus quod linea suspendatur per punctum diuidens ipsam quod duorum ponderum proportionalium sicud proportionalitas duarum partium linee vnius ad conparem suam secundum alternationem suspendatur vnum in extremitate vnius duarum sectionum et secundum in extremitate altera tunc linea equatur secundum equidistantiam orizontis. Es ist dies offenbar der Ausspruch des Satzes von der Gleichheit der statischen Momente, dass sich also die Gewichte umgekehrt verhalten müssen wie die Hebelarme, an denen sie wirken, damit Gleichgewicht hergestellt wird. Auch hier gibt eine Randglosse dieselbe Bemerkung.

4. Satz. Omnis linea que diuiditur in duas sectiones diuersas suspensa ex puncto secante posito quoque pondere in extremitate alterius lateris eius et allero pondere posito in puncto alio inter hanc extremitatem et punctum diuidens ex loco suspensionis et pondus tertium in extremitate altera et equatur linea super equidistantiam orizontis tunc quum aggregantur duo pondera que suspenduntur in uno duorum laterum et permutantur de loco suo et suspendantur in puncto medio ex eo quod est inter ea cquatur illa linea super cquidistantiam orizontis. Aus den Erläuterungen, die Thabit hierzu gibt, folgt sogleich, dass die beiden auf einem Arme angebrachten Gewichte als gleich anzunchmen sind, unter dieser Voraussetzung lässt sich der Satz aber etwa so aussprechen: "Befindet sich ein Hebel durch drei Gewichte im Gleichgewicht, von denen zwei, die einander gleich sind, an dem einen Arme wirken, so kann man statt dieser beiden auch im Halbierungspuncte der Verbindungslinie ihrer Angriffspuncte das doppelt so grosse Gewicht wirken lassen, ohne dass das Gleichgewicht gestört wird." Auch ein specieller Satz von der Resultante paralleler Kräfte liegt in dem Theoreme.

5. Satz. Omnis linca que diuiditur in duas sectores diuersas suspensa linea a puncto diuidente ipsam posito in uno latere pondere aliquo et in alio pondera ponuntur equalia et conparites linearum que sunt inter pondera sunt equales ut postrema prime et sequens postrema equalis sequenti primam sic quelibet sue conpari et equidistat linea orizonti tune ista pondera aggregata suspensa in puncto medio uel ex eo que est inter pondus primum et postremum equidistabit linea orizonti. Erweiterung des vorigen Satzes dahin, dass statt zweier gleicher Gewichte mehrere aufgehängt werden, die paarweise von den Enden gleich sind und auch von den Enden gleich weit abstehen. Auch in diesem Falle bleibt das Gleichgewicht ungestört, wenn man im Halbierungspuncte der Verbindungslinie der beiden äussersten Angriffspuncte die Summe sämmtlicher Gewichte angreifen lässt.

6. Satz. Recta linea in duas sectiones diuersas [diuisa] suspensa ex puncto diuidente ipsam suspensa quoque pondera aliquo in vno extremitate et in altero eius latere sit pondus expansum equalis crassitudinis continuum tum punctum huius lateris secundum illud semper quod inuenitur crassitudo in perpendiculari trutine et quod illam crassitudo rectificat pondus quod est in extremitate linee donec sit equalis super equidistantiam orizontis. Quid si opprimeretur in lineam portionis habentis crassitudinem diuidi ex isto pondere continuo equalis expansionis et suspendetur in puncto medio linee portionis tunc linea remanet super illud super quod fuerit equalis super equidistantiam orizontis. Der Satz ist dahin zu verstehen: Es sei ab die gegebene Linie, g der Theilpunct. Im Puncte a sei ein Gewicht r angehängt und auf gb sei ein Stück db abgeschnitten und dieses Stück sei so völlig gleichmässig mit Gewicht belastet, dass in jedem 60 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

Puncte das Gewicht dieses Punctes und das des Wagebalkens (*trutina*) in demselben Puncte zusammen gleich der entsprechenden Summe in irgend einem andern Punctesei, dann ist es erlaubt, das ganze Gewicht des Stückes *db* im Halbierungspuncte *h* dieser Strecke angreifen zu lassen, ohne dass das Gleichgewicht aufgehoben wird. Er ist also die Ausdehnung der früheren Sätze auf eine continuierliche Vertheilung dor Gewichte.

7. Satz. Omnis linea que diuiditur in duas sectores diuersas in cuius cxtremitate pondere suspenso et in latere cius secunde partem perpendicularis plana continua secundam equalitatem demonstratam sr<sup>a</sup> qua perpendicularis trutinarum in parte vna illius lateris fixa in ea et equidistat linea orizonti quod proportio ponderis suspensi ex puncto extremitatis linee ad pondus portionis perpendicularis fixe in quadam parte linee est sicud proportio linee que est inter suspensorium et inter punctum medium portionis habentis crassitudinem ad lineam secundam. Erweiterung des Satzes 3. von den statischen Momenten dahin, dass bei der im voigen Satze angenommenen Vertheilung des Gewichtes, der Halbierungspunct des mit Masse belegten Theiles des Wagebalkens als Angriffspunct des einen Gewichtes angesehen wird.

8. Satz. Quando est perpendicularis recta equalis crassitudinis et substantie et suspenditur perpendicularis tum punctum ipsius non super medium erit. Die Erklärung dieses Satzes ist mir nicht gelungen. Damit dies Andern möglich ist. setze ich den Beweis unseres Manuscriptes noch hierher. Derselbe lautet (Seite 73 Zeile 11-23): Assumpta conclusione precedente illud quod hoc dicitur non fit nisi si esset linea .a.b., sicud .10. ct .a.g. duo et g.d. duo || ct .d.b. residua perpendicularis . d.b. . 12. et .a.d. linea cui non est pondus et perpendicularis ||.d.b. est cum pondere continuo cum portione lince .a.b. Patet igitur quod proportio ponderis | quod suspenditur cum puncto .a. ut sit rectificans pondus portionis et pondus portionis | .d.b. cst equalis .g.v. ad .g.a quia .v. est medium .d.b. et .g.v. est medictas | .a.b. quia .d.b. est superfluitas cius quod est inter duas sectores ita divisimus cam [ in duc mcdietates ct addidimus medietates eius secundum lineam breuiorem ergo .g.v. cst | medietas totius linee et proportio eius ad .g.a. est sicud proportio totius linee ad |. duplum linee .a.g. ergo cum multiplicamus pondus .d.b. in longiorem .a.b. et divisimus quod proueniel secundum subduplum ·a.g. est illud quod egreditur ex divisione ipsum pondus || quod rectificat pondus superfluens perpendicularis donec remanct equalis secundum equidistantiam | orizontis.

Im Codex Regina Succorum 1253 heisst dieser Satz: Dico ergo quod quoniam est perpendicularis recta equalis grossitudinis et substantie et suspenditur perpendicularis in puncto ipsius non super medium et uolumus seire quamlibet accipiamus quantitatem ponderis quod cum suspenditur in extremitate sectoris breuioris ex duabus sectoribus perpendicularis equalur super equidistantiam orizontis? sic nos seimus pondus alius perpendicularis et seimus longitudinem eius et longitudinem cuiusque duarum sectionum eius. Et accipiemus superfluum

quod est inter duas sectores et multiplicabimus ipsum in pondus perpendicularis et diuidimus quod aggregatur super longitudinem perpendicularis quod ergo cgreditur ex divisione est illud pondus superfluctatis que est inter duas sectiones et est proportio perpendicularis superfluens super equalitatem deinde accipiamus pondus huius portionis et multiplicabimus in longitudinem perpendicularis et quod aggregatur dividimus ipsum super duplum sectoris brevioris duarum sectionum perpendicularis quod ergo aggregatur ex divisione erit quantitas que cum suspenditur cum extremitate sectoris brevioris duarum sectionum perpendicularris equatur pondus eius super equalitatem orizontis.

Hier ist natürlich der Sinn unmittelbar gegeben.

Das Ende des Ganzen, wie es Steinschneider a. a. O. mittheilt, stimmt wieder gar nicht mit dem, was bei uns das Ende bildet. Denn nach den eben angeführten Worten des Beweises von Satz 8. folgt bei uns einfach (Seite 73, Zeile 23 und 24): Et sic discerne mirificum **C Explicit cara**stonis liber | editus a thebith filio thore. Betrachten wir die oben mitgetheilten Sätze in der Hinsicht genauer, als darin eine Theorie der Handwage liegen soll, so sieht man sogleich, dass dies nicht die sogenannte römische Schnellwage sein kann, bei der der Aufhängepunct fest ist, und das Gewicht verschoben werden kann, sondern dass das *liber curastonis* sich mit der schwedischen Schnellwage beschäftigt, bei welcher das Gewicht einen Theil des Wagebalkens bildet, und der Aufhängepunct verschoben wird.

#### § 7.

#### Sechstes Stück: Verba filiorum Moysi filii Schyr.i.Marmeti (sic!).Hameti. Hasen.

Von Seite 73 Zeile 25 bis Seite 79 Zeile 35 befindet sich in unserer Handschrift weiter ein Stück, neben welchem auf dem rechten Rande die oben als Inhaltsangabe gesetzten Worte sich befinden, während auf dem linken innern Rande zwei andere Worte stehen: 3<sup>um</sup> frat<sup>rum</sup> Es ist also wohl keinem Zweifel unterworfen, dass dieses Stück ein Exemplar des für die Geschichte der Geometrie so wichtigen Werkes sein soll, das von Chasles in seinem Aperçu historique an vielen Stellen hervorgehoben wird. Um so wunderbarer für mich war die Bemerkung, dass alle bis jetzt von diesem Werke veröffentlichten Bruchstücke sich absolut in unsrer Handschrift nicht nachweisen lassen. So fehlt z. B. der Lehrsatz, den Chasles besonders hervorhebt, und dessen Uebersetzung nach dem Basler Codex Kinkelin in Grunerts Archiv Th. XXXIX, 186 gibt, vollständig, obwohl er nach Chasles der einzige den Brüdern eigenthümliche Satz ist.

Nach Steinschneider (diese Zeitschrift X. Jahrg. S. 488) ist nun nur derjenige Theil der Handschriften als Verba filiorum etc. zu bezeichnen, dessen Ucberschrift ist: Tractatus de mensuratione superficierum et solidorum

62 Ueber die Handschrift R. 492, Problematum Euclidis explicatio, der

. . . . . . . . .

...

- ----

inprimis autem circuli et sphacrae. Aber auch die Worte, mit denen dieser Theil beginnt: Propterea quod uidimus quod conueniens est necessitas scientiae mensurae figurarum lassen sich bei uns nicht nachweisen, wohl aber beschäftigt sich die Abhandlung mit der Ausmessung der Flächen, insbesondere des Kreises, und der Körper. Da ich weitere Vergleichungsmittel nicht besitze, so muss ich mich begnügen, hier diejenigen Bemerkungen folgen zu lassen, die unsere Handschrift nöthig zu machen scheint.

Leider ist meine Bitte an Herrn Professor Kinkelin in Basel um einige Auskunft über die Baseler Handschrift der Verba filiörum, die vor länger als einem Jahre gemacht ist, vollständig unbeachtet geblieben. Vielleicht war sie etwas zu kühn, da aber die hervorragendsten Personen mir gern und bereitwillig Auskunft gegeben hatten, so hoffte ich auch hier keine abschlägige Antwort zu erbalten. Wie schon gesagt blieb ich ganz ohne Erwiederung.

Die Verba filiorum Moysi cet. beginnen in unserem Codex (Seite 73 Zeile 25-26): Longitudo est illud quod extenditur secundum rectitudinem in duas partes || simul terminum. Darauf folgen die Erklärungen von latitudo und altitudo sowie der Flächen- und Körpereinheit (cuius longitudo est vna et latitudo est vna cuius anguli sunt recti; cuius longitudo est vna, latitudo est vna et cuius altitudo est vna et elevatio superficierum eius guarundem super alias est secundum angulos rectos). Darauf folgen Lehrsätze und Aufgaben am innern Rande von 1-6 und dann nochmals von 1-5 numeriert. Diese Sätze und Aufgaben lauten:

1. Omnis figure laterate contingentis circulum multiplicatio medietatis dyametri circuli in medietatem omnium laterum figure contingentis circulum est embadum figure laterate.

2. Medietatis dyametri circuli multiplicatio in medietatem omnium laterum omnis figure in circulo contente est minor embado superficiei circuli.

3. Si fuerit omnis linea terminata et circulus tunc si fuerit linea terminata breuior linea continente circulum tunc possibile est quod fiat in circulo altera laterata quam contingat circulus et sunt latera eius coniuncti longius linea terminata et si fuerit linea terminata longior linea continente circulum tunc possibile est ut fiat supra circulum figura laterata contingens eum et erunt latera eius aggregata breuius linea terminata.

4. Medietatis dyametri cuiuslibet circuli multiplicatio in medietatem lince continentis ipsum est embadum superficiei ipsius.

5. Proportio dyametri omnis circuli ad lineam continentem ipsum est vna.

6. Que igitur sit proportio dyametri ad lineam continentem ipsum operabimus sicud Archim'enides solus ita quod non fallatur inquisitor in propinquitate ueritatis proponens vnius ad alterum nisi minus minuto quod est pars 60<sup>e</sup>, dyametri. Et si uoluerit quod non medium nisi minus secundo quod est pars 60<sup>e</sup> dyametri minuti et plus illa ut perucniat ad quamcumque limen uoluerit computator terminare. Hierzu erlaube ich mir die Berechnung des Manuscriptes

im Wortlaut folgen zu lassen: Sit circulus .a.c.b. cuius dyameter .a.b. centrum .g. et protraham ex centro lineam .g.z. continentem cum linea .g.b. tertiam anguli recti et erigam super punctum .b. linee .g.b. lineam .b.z. orlogonaliter manifestum est quod arcus qui subtenditur angulo .b.g.z. est medictas sexte circuli .a.c.b. et quod linea .b.z. est medietas lateris exagoni contingentis circulum .a.c.b. et dividam angulum .g.b.z. (muss heissen .b.g.z.) in duo media cum linea .g.n. et diuidam angulum .g.b.n. in duo media per lineam .g.d. et diuidam angulum .b.g.d. in duo media per lineam .g.h. Manifestum est quod arcus qui subtenditur angulo .b.g.h. est pars centesima et 924 circuli .a.c.b. et quod linea .b.h. est medietas lateris figure habentis 96 latera contingentis circulum .a.c.b. Tunc prefacientes vsus numeri in eo quod computatur ponamus lineam .g.z. 3 centum et .6. cuius linee quadratum numero erit nonaginta tria millia et sex centum et triginta sex et erit linea .b.z. centum et quinquaginta tres quia angulus .b.g.z. tertia anguli recti et angulus .g.b.z. est angulus reclus et erit quadratum linee .g.z. viginti tria milia et quadringenta et nouem et quadratum linee .g.b. septuaginta milia et ducenta et uiginti septem igitur linea .g.b. est plus ducentis. Obwohl hier die Rechnung offenbar noch nicht zum Ende gelangt ist, so schliesst sich doch an die hier mitgetheilten Worte unmittelbar ohne jeden Zwischenraum die zweite mit 1-5 bezeichnete Reihe von Sätzen an, und zwar beginnt dieselbe mit der letzten Zeile der Seite 76. Diese zweite Reihe von Sätzen

اردارا ومدرود ومرمون

1. Si fuerint quelibet quantitates quarum numeratio sit par et fuerit augmentum super alias equales fueritque prima earum maior composito prime medictatis earum adderit super compositionem secunde medietatis eorum secundum equalitatem multiplicationis medietatis summe numerationis carum in se et par ea in vnam additionem. Arithmetischer Lehnsatz. Er gibt die Regel für die Summe einer arithmetischen Reihe.

behandelt den Körperinhalt. Ihr Wortlaut ist der Folgende:

2. Quando a centro circuli super dyametrum medietas dyametri perpendiculariter educetur a cuius termino superiore vna equalium cordarum totam circuli quartam per equalia diuisam cordarum donec extra circulum cum dyametro concurrat protrahetur longitudo que inter centrum comprehenditur et concursum lineis omnibus que a sectionibus quadrante equedistantis protrahuntur intra circulum dyametro medio que dyametris penitus adequatur.

3. Si fuerit intra circulum poligona superficies quod ex medietate laterum eius in vnam lineam coniunctorum medio circuli dyametro producitur circulo minus esse si uero fuerit extra maius.

4. Cum rotunde pyramidis axis centro basis orthogonaliter obstiterit linea que ad circulum dyametris basis a uertice eadem in medietate circumferentie ducta pyramide exteriori reddit superficiem quia nec in maiorem nec in minorem. Quid per poligona declaratur ul supra vnam manifestum est quod si resecta fuerit pyramidis a pyramide erit residui superficies ex ductu lince duas duorum circulorum dyametros continuatis ex altera parte in medietates duarum circum-

igitized by GOOS

64 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

ferentiarum. Die hierin definierte abgekürzte Pyramide benennt der Verfasser frutellum, und gibt nun endlich hierüber noch folgenden Satz.

5. Cum frutellis et pyramide superposita compositum corpus in emisperio (d. h. hemisphaerio) concludetur aliudque concludens emisperia fueritque pyramidis et frutellorum reuolutiones eiusdem longitudinis erit eius exterior superficies minor duplo circuli qui basis est eiusdem corporis emisperii maioris autem duplo basis emisperii minor. Mit dem Beweise dieses Satzes schliesst unsere Abhandlung. Die letzten Worte lauten (S. 79 Zeile 35): Ex hijs manifestum est superficiem circuli maiorem quam plani reperiri. Die einzige Stelle, die eine entfernte Aehnlichkeit mit dem bekannten Werke Verba filiorum cet. hat, ist der Satz 2. der zweiten Reihe. Derselbe stimmt nämlich im Anfange des Beweises und im Ende desselben mit dem von Steinschneider a. a. O. S. 489 mitgetheilten Anhange, dessen Ueberschrift ist: Iste modus est sufficiens in arte heptagoni cadentis in circulo, doch ist dieser Satz mit seinem Beweise allein sicherlich nicht diesem Anhange adäquat.

#### § 8.

#### Siebentes Stück: Demonstratio magistri Campani de figura sectore.

In Bezug auf diesen Gegenstand kann ich mich kurz fassen. Was ins Besondere die Geschichte der Figura sector betrifft, so sehe man den dritten Brief Steinschneiders an den Fürsten Boncompagni\*) und die schon genannte Abhandlung "Ueber die mittlern Bücher der Araber" in dieser Zeitschrift Jahrg. X. Der in dem ebengenannten Briefe als Anhang abgedruckte Tratatello De Figura Sectore, dort für das Werk des Thabit ben Corra gehalten, obgleich in der Abhandlung in dieser Zeitschrift S. 496 diese Ansicht fallen gelassen ist mit Hinblick auf das uns vorliegende Manuscript, ist nun mit wenigen Varianten wörtlich mit dem in der Ueberschrift dieses Paragraphen genannten Stücke unserer Handschrift identisch. Im Folgenden beziehe ich mich deshalb einfach auf diesen Abdruck und gebe nur die hauptsächlichsten Varianten an. Zu nächst mache ich auf die verschiedene Zahl der Figuren aufmerksam. Die erste Figur des Abdrucks, ein Halbkreis mit einer auf dem Durchmesser stehenden Senkrechten, fehlt bei uns gänzlich, ebenso der durch zwei senkrechte Durchmesser getheilte kleine Kreis. Die Figur auf Seite 37 des obigen Abdruckes ist bei uns die erste, die auf Seite 36 gegebene bei uns die dritte, aber gerade umgekehrt; ausserdem sind aber hei uns noch drei Figuren vorhanden, die in dem Abdrucke sich nicht finden.

Unser Manuscript beginnt Seite 79 Zeile 36-39 in Uebereinstimmung mit dem Abdrucke "Cum aliquis semicirculus diuiditur in duos arcus quolibet

\*) Intorno a Nasawi ed Abu Sahl El-Kuhi etc. Roma 1864.

allerius. hoc enim || patet si perficias totum circulum et perpendicularem protrahas ad perficiendum cordam || nam erit corda dupli utriusque arcus. - Nur das grösser Gedruckte ist bei uns durch grössere Schrift ausgezeichnet. Auch die Zeilen 17-21 von Seite 36 des Abdrucks und der Beweis bis Seite 37, Col. 1, Zeile 1: chorde dupli . ce. stimmen bis auf ein paar Wortverschiedenheiten vollständig überein. Die dann folgenden Zeilen bis zum Zeichen C sind bei uns ein besonderer Absatz, und dann bilden die Zeilen 12-21 bis zu den Worten dupli arcus. cb. einen neuen Lehrsatz, der grösser geschrieben und mit Roth unterstrichen ist. Bis Zeile 33 intendimus ist dann Gleichheit vorhanden, dann aber bei uns der Beweis in drei Theile getheilt, die am Rande mit 1, 2, 3 gezählt sind. Der erste beginnt mit den Worten: Sit igitur residuum semicirculi und endigt mit den Worten des Abdrucks (S. 37, Col. 1, Zeile 57): arcus. cb. Der zweite Theil beginnt dann wieder mit: Sit ut residuum semicirculi und reicht bis zum Zeichen C Col. 2, Zeile 34. Der dritte Theil endlich stimmt mit dem Schlusse des Tratatello vollständig überein. Zuletzt steht bei uns noch die Bemerkung (Seite 82, Zeile 4): Explicit demonstratio magistri campani de figura sectore. Dass unser Manuscript recht hat, wenn es so eintheilt, wie ich angegeben habe, sieht man leicht, da der Satz, um deswillen der ganze tractatus geschrieben ist, eben der bei uns hervorgehobene Satz 3. ist, was man aus dem Abdrucke bei Steinschneider ohne Weiteres wenigstens nicht erkennen kann\*).

§ 9.

#### Achtes Stück: Algorismus proportionum magistri Nicolay Orem.

Wir sind jetzt zu einem der wichtigsten Theile unsrer Handschrift gelangt, über den ich mir sehr ausführlich zu berichten erlauben werde. Die fragliche Abhandlung erstreckt sich von Zeile 5, Seite 82 bis zum Ende der Seite 93. Den Verfasser finde ich in den Werken über Geschichte der Mathematik nur erwähnt bei **Montucla**, Histoire des Mathématiques. 2° édition T. I. p. 530. Hier sagt er unter Anderm: Nicolas Oresme fit une traduction ou traité original de la sphère, et traduisit le livre "de Mundo" d'Aristote. Il fut aussi auteur d'un traité "de Proportionibus proportionum" ou "de Proportionibus", resté manuscrit. Selbst in Händen gehabt zu haben scheint Montucla dieses Werk nicht, da er sonst wohl etwas mehr darüber gesagt haben würde. In den mir zugänglichen Handschriftenkatalogen habe ich nur zwei andere Manuscripte entdecken können, eins in der Bibliothek des Sam. Pepys<sup>\*\*</sup>) nämlich "Tractatus de proportionibus proportionum magistri

\*) In der Bibliotheca Mediceo-Laurenziana befindet sich ebenfalls ein Manuscript unter dem Titel: Tractatus Campani de proportione et proportion alitate et de figura, das offenbar auch mit unserm Tractate identisch sein dürfte. (M. s. Heilbronner, Historia matheseos uniuersae p. 553, § 44, N. 16.)

\*\*) M. s. Catalogus librorum manuscriptorum Angliae cet. Oxoniae 1697 Fol. T. II part. 1. Cat. MS. D. Sam. Pepysii pag. 209 N° 6780<sup>61</sup>.

5

EP.

Zeitschrift f. Mathematik u. Physik. (Supplem.)

66 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

Nicolai Orem," das andere in der Biblioteca Magliabechiana in Florenz\*). Aus dem Werke des Francis Mennier, Essai sur la vie et les ouvrages de Nicole Oresme, Paris 1857 entnehme ich noch, dass die Kaiserliche Bibliothek in Paris ebenfalls eine Handschrift besitzt, die möglicherweise die Originalhandschrift sein dürfte. Die Katalogsnummer derselben ist Ancien fond latin 7371. Wenn aber Herr Meunier hinzufügt: traité contre l'astrologie, so kann das nur daher rühren, dass er als Nichtmathematiker von dem Inhalte gar nichts verstanden hat. Auch Chasles muss diese Haudschrift nicht gekannt haben, da er sonst sicherlich in seinem Apercu historique dieses für das XIV. Jahrhundert ansgezeichneten Mannes, der auch in die politische Geschichte thatkräftig eingegriffen bat, Erwähnung gethan hätte. Das Work speciell, was wir vor uns haben, enthält, wie ich nachher nachzuweisen hoffe, die ganze Rechnung mit Potenzen für ganze und gebrochne Exponenten in einer Bezeichnungsweise, die mit der unsrigen die grösste Aehnlichkeit hat. Ebe ich jedoch zu dem Manuscripte selbst übergehe, von dem ich, während diese Abhandlung in den Händen der Redaction war, zur Jubelfeier des 300 jährigen Bestehens des hiesigen Gymnasiums im Auftrage des hiesigen Copernicus-Vereins für Wissenschaft und Kunsteinen Abdruck besorgt habe, der nachher im Verlage von S. Calvary & Cmp. in Berlin im Buchhandel erschienen ist, will ich Einiges über den Verfasser hier beibringen und darin nach der in diesem Puncte sehr gründlichen Arbeit Meuniers das berichtigen, was in obiger Ausgabe zum Theil Unrichtiges mitgetheilt ist\*\*).

Nicolaus Oresmius (Synonyma finden sich: Orem, Oresmus, Oresimus, Oremius, Oranus, Horen), auf französisch Nicole Oresme genannt, ist um das zweite Jahrzehnt des XIV. Jahrhunderts geboren; ob das Dorf Allemagne bei Caen in der Normandie sein Geburtsort ist, bleibt völlig ungewiss und beruht lediglich auf einer Localtradition. Wir wissen von ihm nur, dass er im Jahre 1348 in das *Collége de Navarre* in Paris eintrat, um Theologie zu studieren und dass er allgemein für einen Normannen galt. In Paris erwarb er sich auch die Doctorwürde und wird daher auch wohl *docteur de Paris* oder — wie in unsrem Manuscripte — *Parisius* genannt. In dem *Collége de Navarre* blieb er als Schüler und später als Lehrer bis zum 4. Oct. 1356. Von dieser Zeit an bis zum 4. Dec. 1361

\*) Die Katalogsnummer ist Conventi Sopressi I. IX. 26 früher Nº 123 der Bibliothek des Klosters San Marco in Florenz.

\*\*) Quellen waren ausser dem citierten Werke Meuniers: Gallia christiana T. XI, Paris 1759 p. 788-89; Biographie universelle T. 32 p. 62-64 Paris 1822 8°. Histoire littéraire de la France T. XXIV Quatorzième siecle. Paris 1862. 4° an verschiedenen Stellen, wieder abgedruckt in Victor le Clerc et Ernest Renan, Histoire littéraire de la France au XIV siecle 2° edit. T. I, II, Paris 1865 8°, Du Pin, Bibliothèque des auteurs ecclesiastiques du S. XIV. Utrecht 1731. T. XI. S. 82.

Digitized by GOOGLE

erhielt er das Amt als Grand maître diesos Collége. 1361 zum Dekan der Kirche zu Rouen gewällt, musste er, wenn auch nach langem Streuben, jenes Amt niederlegen. Sechzehn Jahre verwaltete er das Dekanat zu Rouen bis zum 16. Nov. 1377. Während dieser Zeit hielt er dem Papste und den Kardinälen in Avignon die berühmte Predigt über den Text: "Juxta est salus mea ut veniat, et justitia mea ut reveletur" und zwar am 24. Dec. 1363. Seine Sendung durch Charle V le Sage im Jahre 1366, um den Papst von seiner beabsichtigten Flucht zurückzuhalten, ist apokryph, ebenso wie die Behauptungen, dass er Lehrer Carl V. gewesen sei oder Archidiakonus von Bayeux oder Schatzmeister der St.-Chapelle zu Paris. Meunier zeigt die Unhaltbarkeit dieser Angaben auf schlagende Weise. Während seines Aufenthaltes in Paris verfasste er seine lateinischen Schriften, als Dekan von Rouen auf Veranlassung des Königs Charle le Sage die französich geschriebenen. Nachdem er durch die Fürsprache seines königlichen Gönners am 16. Nov. 1377 zum Bischof von Lisieux geweiht war, fehlte ihm ferner die Musse zu solchen Arbeiten und es sind auch dergleichen aus seinem spätern Leben nicht bekannt.

Oresme starb am 11. Juli 1382. Du Pin lässt ihn im Jahre 1384 sterben und fügt noch hinzu 7 Jahre nach seiner Investitur, aber mit Unrecht. Folgende Stelle der Gallia christiana (S. 788): Defunctus die 11. Julii 1382, sepulturam accepit in cathedrali juxta sinistram chori portam et die sequenti fit eius obitus in ecclesia Lexoviensi. Et certe vacabat sedes an. 1382 die 5. Augusti ex reg. 123 Caroli VI in quo Nicolai Lexoviensis bonae memoriae episcopi fit mentio, lässt über den 11. Juli 1382 als Todestag des Oresmius keinem Zweifel Raum.

Von seinen Werken führe ich die mathematisch-physikalischen an:

1) Traité de la sphère gedruckt Paris s. ā., 1508, 1546 in 50 Capiteln, in den Handschriften meistens lateinisch übersetzt.

2) Tractatus de latitudinibus formarum oder de uniformitate et difformilate intentionum gedruckt in dem Werke Questio de modulibus Bassani Politi etc. Venetiis sumptibus heredum etc. D. Octaviani Scoti etc. 1505 unter dem Titel: Incipit perutilis tractatus de latitudinibus formarum secundum Reverendum magistrum Nicholaum Horen\*). Auch dieser Tractat befindet sich in unserer Handschrift und wird von Meunier fälschlich als traité contre l'astrologie bezeichnet.

3) Algorismus proportionum, das Werk, mit dem wir uns zu beschäftigen

l.

\*) Wie ich soeben aus Fabricius, Bibliotheca mediae et infimae lutinitatis ersche, ist diese Ausgabe bis jetzt unbekannt geblieben. Aus derselben Quelle theile ich noch mit, dass die Bibliothek des Collége de Navarre zu Paris von diesem Werke, das dort aber gerade wie bei uns de latitudine formarum heisst, ein Manuscript, wahrscheinlich das Original, besitzt. Von dem Algorismus proportionum hat er nur Kunde durch Johannes Picus, Mirandulanus, aus dem wahrscheinlich auch Montucla seine Notiz geschöpft hat. Auch Meunier kennt obige Ausgabe nicht.

5\*

68 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

haben. Dies ist der Titel, den Oresmius selbst zweimal citiert. (Trad. des Politiques d'Aristote, VIII, 7. — Trad. du tr. du Ciel et du Monde, II, 15). Augenblicklich gedruckt. Berlin 1868.

4) Tractatus de proportionalitate motuum coelestium. Pariser Handschrift Ancien fond lat. 7378 A. — Codex Vaticanus 4082.

5-7) Rationes et causae mirabilium in natura. — Plura quodlibeta et diversae quaestiones. — Solutiones praedictorum problematum. Alle drei enthalten in dem Pariser Manuscript Fond St. Victor 439.

8) Uebersetzung des Buches de coelo et mundo des Aristoteles. Pariser Manscrpt. Anc. fond. français 7065\*).

Ich gehe über zu der Betrachtung des Inhalts des Algorismus proportionum, dessen ausführliche Darlegung ich auch nach der Herausgabe des ganzen Werkchens nicht für überflüssig halten kann.

a) Der Algorismus proportionum ist in drei Tractate getheilt. Hiervon beschäftigt sich jedoch nur der erste mit dem wirklichen Algorismus, eine Regel, die sich im zweiten Tractat findet, ausgenommen. Die beiden letzten Tractate behandeln nur Anwendungen der gegebenen Regeln auf die verschiedenen Zweige der Mathematik.

Der erste Tractat beginnt (S. 82, Zeile 1-2): VNa media debet sic scribi  $\begin{bmatrix} 1\\ 2 \end{bmatrix}$  vna tertia sic  $\begin{bmatrix} 1\\ 3 \end{bmatrix}$  et due tertie sic  $\|\begin{bmatrix} 2\\ 3 \end{bmatrix}$  et sic de alijs. Der Begriff proportio ist nicht definiert, doch ist er in dem im Alterthum und Mittelalter bekannten Sinne von geometrischem Verhältniss verstanden. Es hat diesen Namen bei Oresme aber nur dann, wenn es ein fallendes ist, d. h. wenn der Antecedent grösser ist als der Consequent. Ist das Verhältniss ein steigendes, so heisst es stets fractio. Die Namen der verschiedenen Verhältnisse sind die des Boethius, wenn auch nicht vollständig; er führt dabei aber neue Begriffe und neue Bezeichnungsweisen ein. Die proportio dupla, tripla etc. bezeichnet er durch 2<sup>P</sup>, 3<sup>P</sup> oder 2<sup>Ia</sup>, 3<sup>Ia</sup>

u. s. w., die proportio sesquialtera, sesquitertia cet. dagegen durch  $\begin{bmatrix} p \cdot 1 \\ 1 \cdot 2 \end{bmatrix}$ ,  $\begin{bmatrix} p \cdot 1 \\ 1 \cdot 3 \end{bmatrix}$ , cet. oder auch durch  $\begin{bmatrix} 1^p \cdot 1 \\ 2 \end{bmatrix}$ ,  $\begin{bmatrix} 1^p \cdot 1 \\ 3 \end{bmatrix}$ , cet. also gerade noch wie wir auch bezeichnen. Die Verhältnisse 5:3, 8:3 d. h. proportio superpartiens duas tertias, proportio dupla superpartiens duas tertias etc. bezeichnet er entsprechend durch  $\begin{bmatrix} p \cdot 2 \\ 1 \cdot 3 \end{bmatrix}$ ,  $\begin{bmatrix} p \cdot 2 \\ 2 \cdot 3 \end{bmatrix}$  cet. oder auch durch  $\begin{bmatrix} 1^p \cdot 2 \\ 3 \end{bmatrix}$ ,  $\begin{bmatrix} 2^p \cdot 2 \\ 3 \end{bmatrix}$ 

<sup>•)</sup> Dass die Franzosen von diesen Uebersetzungen selbst nichts mehr wissen, kann man aus dem im Jahre 1863 bei Ladrange in Paris erschienen Buche "Traité du Ciel d'Aristote traduit en français pour la première fois cet. par J. Barthélemy St. Hilaire erschen, während gerade das Französiche des Oresmius in diesen Uebersetzungen sehr gerühmt wird (Histoire litt. de la France T. XXII p. 182). Auch Iourdain, Sur les traductions latines d'Aristote hat nicht einmal den Namen einer Erwähnung werth gehalten.

diese Grössen die Zeichen  $\frac{1}{2}1$ ,  $\frac{2}{3}1$ ,  $\frac{2}{3}2$  d. h. gerade die umgekehrten des Oresme, wenigstens ist so in Libri's, *Histoire des Mathématiques en Italie* gedruckt. Diese Zeichen des Leonardo Pisano benutzt Oresme in einem ganz andern Sinne. Das Zeichen  $\frac{2}{3}2$ , oder wie Oresme schreiben würde  $\left[\frac{2}{3}2^{p}\right]$ , heisst nichts weiter als  $2^{\frac{2}{3}}$ , um unsre Zeichen zu gebrauchen. Mit Worten ausgedrückt heisst das bei Oresme: *due tertie proportionis duple* oder auch kurz *duo tertie duple*. Wir werden später sehen, auf welchem Grundgedanken diese Bezeichnung beruht. Die Potenzen mit gebrochenen Exponenten, von deren Gebrauch man bis jetzt annahm, dass derselbe durch Vieta zuerst in Anwendung gekommen sei\*), treten aber wohl an dieser Stelle zuerst auf. Dergleichen Verhältnisse heissen bei unserm Schriftsteller proportiones irrationales, die gewöhnlichen dagegen proportiones rationales, Bezeichnungen, die noch gäng und gebe sind.

Die Rechnung mit solchen Verhältnissen gibt Oresme nun in 9 Regeln, zu denen dann die im zweiten Tractat als zehnte tritt. Der Algorismus ist aber nicht etwa die Rechnung mit Brüchen, sondern die Aufsuchung der zusammengesetzten Verhältnisse, wenn die einfachen oder zusammensetzenden Verhältnisse gegeben sind. Die Zusammensetzung directer Verhältnisse heisst Addition derselben, die Zusammensetzung eines directen und eines indirecten dagegen Subtraction der Verhältnisse. Diese Bezeichnung findet sich schon bei Jordanus Nemorarius und zieht sich bis in Cardans Werk über Proportionen hinein. Die Regeln des Oresme für diese Rechnungen sind nun folgende:

1. Regel. Proportionem rationalem proportioni rationali addere, d. h. also, das zusammengesetzte Verhältniss zweier gleichartiger Verhältnisse bestimmen. Vorausgesetzt wird, dass die Verhältnisse in den kleinsten Zahlen gegeben sind. Dann lässt sich die Regel des Oresme in unsrer Art zu sprechen so ausdrücken: Man multipliciere die beiden grössten Zahlen, d. h. die Zähler, und ebenso die beiden kleinern Zahlen, d. h. die Nenner, die gefundnen Zahlen bilden die Glieder des gesuchten Verhältnisses. Auf diese Weise, fährt er fort, kann man auch zwei, drei, vier und überhaupt eine beliebige Anzahl von Verhältnissen addieren, d. h. zu einem einzigen Verhältniss zusammensetzen. Sind die Verhältnisse, die man zusammensetzen soll, einander gleich, so heisst die Operation nach Oresme

E ....

<sup>\*)</sup> Klügels Wörterbuch sub verbo Potenz. Nach Prouhet, Sur l'invention des exposants fractionnaires ou incommensurables (Nouv. Ann. de Math. T. 18. Bull. de Bibl. p. 42) war Simon Stevin von Brugge der Erfinder. (Briefliche Mittheilung des Herrn Prof. Cantor in Heidelberg).

#### 70 Ueber die Handschrift R. 4: 2, Problematum Euclidis explicatio, der

proportionem duplari, triplari cct. Die proportio duplata, triplata, u. s. w. ist nun aber offenbar nach dem Obigen das, was wir als quadratisches, cubisches u. s. w. Verhältniss bezeichnen., Der technische Ausdruck für das quadratische, cubische Verhältniss von 2:3 oder proportio sesquialtera ist nun aber bei Oresme folgendes: due sesquialtere, tres sesquialtere, u. s. w., wo überall proportiones zu ergänzen ist. Nun ist es auch klar, wie Oresme auf die irrationalen Verhältnisse, medictas sesquialtere, tertia pars sesquialtere u. dgl. gekommen, und dass diese Begriffe wirklich das bedeuten, was ich ihnen oben als Sinn unterlegte.

Für den Beweis bezieht der Verfasser sich auf die Arithmetik des Jordanus Nemorarius<sup>\*</sup>). In dieser befinden sich die hierher gehörigen Sätze im 5. Buche. Darin ist jedoch, wie in dem ganzen Werke des Jordanus nur gesagt, wie man zwei Verhältnisse addieren und wie subtrahieren muss, irrationale Verhältnisse und alle übrigen Sätze des Oresmius sind ihm aber eigenthümlich, und finden sich nicht in jenem Werke. Auch bei Cardanus<sup>\*\*</sup>) habe ich sie vergeblich gesucht, sowie in andern mir zu Gebote stehenden Werken aus den Zeiten der Erfindung der Buchdruckerkunst. Als selbstverständlich nimmt Oresme an, dass z. B. *due duple* und *tres duple* zur Summe *quinque duple* haben; darin liegt aber offenbar der Satz der neuern Arithmetik:

$$(1) \quad \ldots \quad a^m \cdot a^n = a^{m+n}.$$

2. Regel. Proportionem rationalem a proportione rationali subtrahere, d. h. das zusammengesetzte Verhältniss zweier anderer Verhältnisse bestimmen, wenn das eine direct, das andere indirect ist. Die obige Voraussetzung ist natürlich hier ebenfalls massgebend. Die vom Verfasser gegebne Lösung lässt sich folgendermassen aussprechen: Man stelle die Verhältnisse als Brüche geschrieben neben einander und multipliciere übers Kreuz, die so bestimmten Zahlen sind die Glieder des gesuchten Verhältnisses. Von den beiden gegebenen Verhältnissen ist dasjenige das grössere, dessen Zähler mit dem Nenner des andern multipliciert das grössere Product gibt. Von diesem ist dann natürlich das andere zu subtrahieren. Z. B. subtrahiert er die proportio sesquialtera von der proportio sesquictia d. h. er dividiert  $\frac{3}{4}$  durch  $\frac{4}{3}$ . Er findet  $3 \cdot 3 = 9$ ,  $2 \cdot 4 = 8$  und das zusammengesetzte Verhältniss, hier natürlich excessus genannt, ist 9: 8 d. h. proportio sesquioctava. Nach seiner Erklärung ist  $\frac{3}{4} > \frac{4}{8}$ , wie es sein muss.

Achnlich wie oben schliesst aber Oresme, dass z. B. quinque duple

<sup>\*)</sup> Jordani Nemorarii Clarissimi viri Elementa Arithmetica: cū demonstrationibus Jacobi Fabri Stapulensis. Parisiis 1496. Blatt 13<sup>b</sup>-15<sup>b</sup>. (NB! die Blätter sind nicht numeriert.) Jordanus Nemorarius lebte um 1235.

<sup>\*\*)</sup> Hieronymi Cardani Mediolanensis etc. Opus novum de proportionibus numerorum cet. praeterea Artis magnae sive de regulis algebraicis liber vnus cet, item De Aliza regula liber cet. Basileae 1570.

weniger duc duple gleich tres duple sind, damit bringt er aber die Formel unsrer Arithmetik in Anwendung:

$$(2) \qquad \qquad a^m = a^{m-n}$$

Hier muss natürlich m > n sein, da negative Zahlen für ihn nicht existieren.

3. Regel. Si proportio irrationalis fuerit partes alicuius rationalis, ipsam possibile est partem notare. Et hoc alterius rationalis licet non eiusdem. vnum competentius nominatur\*) pars quam partes. Der Sinn dieser Worte lässt sich am leichtesten durch eine Formel veranschaulichen. Sie bedeuten nämlich nichts anderes als:

(3) . . . 
$$a^{\frac{n}{m}} = (a^n)^{\frac{1}{m}}$$

Er hat z. B. das Exempel: due tertie quadruple sind gleich una tertia quadruple duplicate vel una tertia sedecuple, d. h.  $4^{\frac{2}{3}} = (4^2)^{\frac{1}{3}} = 16^{\frac{1}{3}}$ .

Aber Oresme geht noch weiter. Er fügt nämlich hinzu: Vniversale vna tertia totius est due tertie medietatis vel subduple und umgekchrt: due tertie subduple sunt vna tertia duple et sic de quibuslibet partibus. Darin liegen die beiden Formeln:

(4) . . . 
$$a^{\frac{1}{m}} = (a^{\frac{p}{m}})^{\frac{1}{p}},$$
  
(5) . . .  $(a^{\frac{1}{p}})^{\frac{p}{m}} = a^{\frac{1}{m}}.$ 

4. Regel. Denominatorem proportionis irrationalis proprissime assignare. Der Nenner eines irrationalen Verhältnisses ist dabei als der Nenner des Bruchexponenten aufgefasst. Die Aufgabe, deren Lösung hier Oresme gibt, ist in der Formel ausgedrückt:

(6) 
$$(a^m)^{\frac{p}{q}} = (a^{\frac{mp}{n}})^{\frac{1}{q:n}}$$

dabei ist aber vorausgesetzt, dass m und q beide durch n ohne Rest aufgehen, n ist dabei das grösste gemeinschaftliche Vielfache. Ore sme unterscheidet hier zwei Arten rationaler Verhältnisse: 1) Proportio rationalis primaria, 2) Proportio rationalis secundaria, d. h.Verhältnisse, deren Glieder sich nicht als dieselben Potenzen zweier Zahlen darstellen lassen, und solche, bei denen dies möglich ist. Zur ersten Art gehören proportio tripla und proportio sesquialtera, zur zweiten Art proportio quadrupla gleich due duple oder proportio octupla gleich tres duple oder proportio 16 ad 9 gleich due sesquitertie u. s. w. In unsern Zeichen sind seine Regeln folgende: Ist zu transfor-

•) So hat die Handschrift. Es ist nur der grossen Eile des Druckes, der des oben angegebnen Zweckes halber in 8 Tagen vollendet sein musste, zuzuschreiben, dass *notatur* stehen geblieben. Ich benutze die Gelegenheit noch um zwei unangenehm auffallende Druckfehler zu notieren. Auf S. 5 Zeile 6 v. o. muss es heissen: Seite 82 statt Seite 32 und in der Unterschrift auf der beigegebenen photographischen Tafel: Seite 82 statt Seite 22.

mieren  $(a^m)^{\frac{p}{q}}$  und sind *m* und *q* relative Primzahlen, so ist nach der letzten Regel

(7) 
$$(a^m)^{q} = (a^{mp})^{\frac{1}{q}}$$

Sind aber *m* und *q* nicht relative Primzahlen, sondern ist m = r.n, q = s.n, so erhält man die Formel (6) in der Form  $(a^m)^{\frac{p}{q}} = (a^{rp})^{\frac{1}{r}}$ . Als Beispiele findet man:

$$\begin{bmatrix} 3 \cdot \mathbf{p} \\ \underline{4 \cdot 4} \end{bmatrix} = \begin{bmatrix} 1 \cdot \mathbf{p} \\ \underline{2 \cdot 8} \end{bmatrix}, \quad (3^{i})^{\frac{1}{12}} = \begin{bmatrix} 1 \cdot \mathbf{p} \\ 3 \cdot 3 \end{bmatrix} = 3^{\frac{1}{3}}; \quad (3^{6})^{\frac{1}{4}} = 27^{\frac{1}{2}} = \begin{bmatrix} \underline{1 \cdot \mathbf{p}} \\ \underline{2 \cdot 27} \end{bmatrix}.$$

5. Regel. Proportionem irrationalem proportioni rationali addere. Diese Regel enthält das, was man bei der Wurzelrechnung das Bringen einer Zahl unter das Wurzelzeichen nennt. Das irrationale Verhältniss wird dabei nach Regel 4. als proprissime assignata angenommen. Die algebraische Formel, die unsre Regel ausdrückt, lässt sich folgendermassen schreiben

(8) 
$$\dots a \cdot b^n = (a^n \cdot b)^{\overline{n}}$$
.

Darin liegt natürlich auch die andere Formel

9) . . . 
$$(a^n)^{\frac{1}{n}} = a.$$

Als Beispiele findet man:

$$2^{\frac{1}{3}} \cdot \frac{3}{2} = \left[2 \cdot \left(\frac{3}{2}\right)^{3}\right]^{\frac{1}{3}} = \left(\frac{27}{4}\right)^{\frac{1}{3}} = \left(6\frac{3}{4}\right)^{\frac{1}{3}} = \left[\frac{1 \cdot p \cdot 3}{3 \cdot 6 \cdot 4}\right].$$

6. Regel. Proportionem irrationalem a proportioni rationali subtrahere. In dieser Regel ist auch die Lösung des umgekehrten Problems enthalten, je nachdem nämlich das rationale oder das irrationale Verhältniss das grössere ist. Dieselbe gibt die Anweisung zu folgenden beiden allgemeinen Formeln:

(10) 
$$\dots \qquad \frac{b^{\frac{1}{n}}}{a} = \left(\frac{b}{a^n}\right)^{\frac{1}{n}};$$
  
(11)  $\dots \qquad \frac{a}{b^{\frac{1}{n}}} = \left(\frac{a^n}{b}\right)^{\frac{1}{n}}.$ 

Daraus zieht Oresme aber auch noch die allgemeinere Formel:

(12) wenn 
$$\frac{a}{b} = c$$
 ist, so ist auch  $\frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = c^{\frac{1}{n}}$ .

7. und 8. Regel. In additione irrationalis ad irrationalem et subtraxione irrationalis ab irrationali sunt regule generales pro quibuslibet quantitatibus. Man findet 2 Fälle erledigt, nämlich 1. addendo (Regel 7.); 2. subtrahendo (Regel 8.). Es sei  $c = a^{\frac{1}{e}}, d = b^{\frac{1}{f}}$ , dann hat man zunächst nach Oresme  $c = a^{\frac{f}{e'}}$  und  $d = b^{\frac{e}{e'}}$ , d. h. die allgemeine Formel:

(13) . . . 
$$a^{\frac{1}{m}} = a^{\frac{1}{p}}$$

Aus dieser Formel folgt nun zunächst addendo:

14) . . 
$$c \cdot d = a^{\frac{1}{e}} \cdot b^{\frac{1}{f}} = (a^{f} \cdot b^{e})^{\frac{1}{e^{f}}}$$

und zweitens subtrahendo:

(15) 
$$\ldots \qquad \frac{c}{d} = \frac{\frac{1}{a^{e}}}{\frac{1}{b^{\bar{r}}}} = \left(\frac{a^{r}}{b^{e}}\right)^{cr}$$

9. Regel. Si autem partes habent candem denominatorem. Dies ist ein specieller Fall der beiden letzten Regeln. Die gegebne Auflösung liefert unsere Formeln:

(16) . . . 
$$a^{n} \cdot b^{\frac{1}{n}} = (ab)^{\frac{1}{n}};$$
  
(17) . . .  $\frac{a^{n}}{b^{\frac{1}{n}}} = \left(\frac{a}{b}\right)^{n}.$ 

Letztere Formel identisch mit Formel (12).

Es folgt die allgemeine Bemerkung: Proportio duplatur, triplatur et quomodolibet multiplicetur et scsquialteratur aut quomodolibet aliter proportionaliter augetur per additionem proportionis ad proportionem. Eodem modo per subtraxionem subduplatur, subtriplatur, subsesquialteratur etc. Darin liegen offenbar die Formeln

(18) . . . 
$$a^{m} \cdot \frac{1}{a^{n}} = a^{m+\frac{1}{n}}; a^{\frac{1}{m}} \cdot a^{\frac{1}{n}} = a^{\frac{1}{m}+\frac{1}{n}} = a^{m+n};$$
  
(19) . . .  $a^{m} \cdot a^{\frac{1}{n}} = a^{\frac{1}{m}-\frac{1}{n}}; a^{\frac{1}{m}} \cdot a^{\frac{1}{n}} = a^{\frac{1}{m}-\frac{1}{n}} = a^{\frac{n-m}{m,n}};$ 

specielle Fälle der Formeln (1) und (2), oder Ausdehnung derselben auf gebrochne Exponenten.

Wir haben endlich die Schlussworte des ersten Tractats (Seite 85, Zeile 32-38): Vna vero proportio per alteram non multiplicatur || nec diuiditur nisi inproprie sicud multiplicare duas duplas per duas duplas sunt quatuor duple || sed hoc non est nisi multiplicatio numerorum quoniam multiplicare duas duplas per duas triplas || nichil est sicud nec multiplicare homines per asinum et eodem modo de diuisione. || ergo nulla species algorismi habet locum in proportione additio et subtraxio ut || determinatum est sufficient. Explicit algorismus proportionum magistri || Nicolay orem. parisius. Incipit secundus tractatus.

Betrachten wir jetzt von unserm Gesichtspuncte aus den Hauptinhalt dieses ersten Tractates, so sehen wir augenblicklich, dass derselbe die vollständige Theorie der Potenzen mit positiven ganzen und gebrochnen Exponenten enthält, und zwar in einer Bezeichnung, die wie die unsrige auf einer Interpolation der ganzen Potenzen beruht, überhaupt mit der unsrigen eine nicht zu verkennende Aehnlichkeit besitzt. Die Formeln (1)-(19), die sich augenblicklich ergeben, sobald man die vorgeschriebenen Opera-Digitized by GOOR tionen mit allgemeinen Symbolen vornimmt, enthalten alle Gesetze der Potenzrechnung, und, wenn wir die Wurzelbezeichnung in Anwendung bringen, auch die der Wurzelrechnung. Oresme führt ausserdem seine Rechnung an vielen Stellen ganz allgemein mit Buchstaben aus, z. B. die Rechnungen der Regel 7. und 8. gerade so, wie wir dieselbe dargestellt haben. In einem Anhange erlaube ich mir, einige charakteristische Stücke dieses ersten Tractates in diplomatisch genauem Abdrucke mitzutheilen\*).

b) Der secundus tractatus enthält ausser noch einer weitern Regel nur Anwendungen auf die verschiednen Zweige der Mathematik. Er beginnt (Seite 86, Zeile 1-3): Est autem istarum regularum de algorismo proportionum utilitas || ualde magna quia possunt ad inumerabilia proposita applicari quorum || aliqua nunc occurrunt que ponuntur pro exemplis. Ehe ich jedoch zu diesen Anwendungen übergehe, werde ich vorher noch die Regel, welche sich, wie schon gesagt, in diesem Tractate findet, als Supplement des crsten Tractats hier hinzufügen. Dieselbe steht Seite 87, Zeile 29 bis Seite 88, Zeile 19, und lantet, wie folgt:

Si duarum rerum fuerit proportio data proportionem quamiliet sibi multi plicem assignare. Das Verhältniss zwischen a und b, also  $\frac{a}{b}$  sei c, es seien ferner die Grössen  $d = a \cdot e$ ,  $f = b \cdot g$  gegeben, und es sei auch das Verhältniss von g zu e bekannt, etwa  $\frac{g}{e} = h$ . Dann verlangt man das Verhältniss d : f. Es werden drei Fälle unterschieden.

1. Man hat e = g, also h = 1. In diesem Falle findet man unmittelbar d: f = a: b.

2. Es ist c > g also  $\frac{e}{g} = h$ , weil die grössere Zahl stets der Zähler ist. Nach Voraussetzung ist  $\frac{a}{b} = c$ , und wenn man also, um Oresmes' Ausdrucksweise zu gebrauchen, die beiden Verhältnisse c und h addiert, so entsteht  $\frac{ae}{bg} = c.h$  d. h. d: f = c.h.

3. Es ist g > c, folglich jetzt aus dem angegebnen Grunde  $\frac{g}{c} = h$ . Man unterscheidet wieder drei Fälle. (a) c = h d. h. a : b = g : c oder als Product geschrieben ac = bg oder d = f. - (b) c > h dann ist  $\frac{a}{b} = c$ ,  $\frac{g}{c} = h$ , und weil c > h, das zweite Verhältniss vom ersten zu subtrahieren. Man erhält  $\frac{ae}{bg} = \frac{c}{h}$  oder d : f = c : h. - (c) Endlich kann auch h > c

<sup>\*)</sup> Die Einleitung S. 82, Zeile 5-21; Regel 4. S. 83, Zeile 9-42; Regel 7 und 8. Seite 84, Zeile 29. — Seite 85, Zeile 26.

findet  $\frac{bg}{ac} = \frac{h}{c}$  oder f: d = h: c.

Man sieht die ganze Procedur stimmt mit der, welche wir anwenden, vollständig überein. Bei Cardanus, a. a. O. S. 2, Z. 14—26 und S. 6, Zeile 28 — S. 7, Z. 38 findet sich die nämliche Regel unter dem Namen Multiplication und Division zweier Proportionen; doch ist wohl einleuchtend, dass die Multiplication und Division, von der Oresme behauptet, dass sie unmöglich sei, mit dieser Regel nichts zu schaffen haben.

Die Anwendungen, die Oresme macht, beziehen sich in diesem zweiten Tractate auf Geometrie, Musik, Würfelspiel, Mechanik, im dritten auf die Theorie der regulären ein- und umgeschriebnen Polygone und die Astronomie.

1. Was ist das Verhältniss dreier Würfel, wenn das Verhältniss der Grundflächen gegeben ist? Gegeben ist Basis a: Basis b = 2:1, Basis a: Basis c = 3:1. Man findet Cubus a: Cubus  $b = 8^{\frac{1}{2}}$ , cubus b: cubus  $c = (\frac{9}{8})^{\frac{1}{2}}$ , Basis b: Basis  $c = (\frac{9}{8})^{\frac{1}{2}}$ ; Kante a: Kante  $b = 2^{\frac{1}{2}}$ , Kante a: Kante  $c = 3^{\frac{1}{2}}$ , Kante b: Kante  $c = (\frac{9}{8})^{\frac{1}{8}}$  Bemerkt wird noch, dass sich diese Betrachtungen direct auf die Verhältnisse von mehreren Kugeln ausdehnen lassen, bei denen man das Verhältniss der grössten Kreise kennt. Man hat deshalb

2. Es ist gegeben Kugel a: Kugel  $b = 2^{\frac{1}{2}}$ , Grösster Kreis a: Grösstem Kreis  $c = 3^{\frac{1}{2}}$ , wie heissen die Verhältnisse der Kugeln, der grössten Kreise und der Durchmesser? Oresme findet: Kugel a: Kugel  $c = 27^{\frac{1}{4}}$ , Kugel b: Kugel  $c = (2^{\frac{1}{4}})^{\frac{1}{4}}$ ; Kreis a: Kreis  $b = 2^{\frac{1}{2}}$ , Kreis b: Kreis  $c = (2^{\frac{1}{4}})^{\frac{1}{4}}$ ; Durchmesser a: Durchmesser  $b = 2^{\frac{1}{4}}$ , Durchmesser a: Durchmesser  $c = 3^{\frac{1}{4}}$ , Durchmesser b: Durchmesser  $c = (2^{\frac{1}{4}})^{\frac{1}{12}}$ .

3. Die folgende Anwendung ist zum Theil der Musik entnommen; am Rande steht: de quadratis musicis. Gegeben sind zwei Quadrate cd und fg. Ueber dieselben spannt man je eine Saite und zwar bei dem ersten in der Diagonale, bei dem zweiten parallel einer Seite. Die erste Saite gibt den Ton mi, die zweite den Ton fa, der Unterschied beider Töne ist ein halber Ton oder wie Oresme sagt dyesis. Verlangt wird das Verhältniss der Quadrate ed und fg. Die Diagonale von ed heisst a, die Seite von fg ist bgenannt, und die Seite des ersten Quadrates heisst c. Nach Boethius<sup>\*</sup>) hat man a: b = 256: 243 und nach der Voraussetzung  $a: c = 2^{\frac{1}{2}}: 1$ .

<sup>\*)</sup> Boethius, De Institutione musica libri quinqueed. Friedlein. Leipzig 1867. Liber I. cap. 17, S. 204, Zeile 8-9: Estque verum semitonium minus ducentorum quadraginta trium ad: CCLVI. comparatio.

76 Ueber die Handschrift R. 4º 2, Problematum Euclidis explicatio, der

Also, sagt Oresme, ist  $b: c = \sqrt{59049} : \sqrt{32768}$  also das Verhältniss der Quadrate  $fg: cd = \sqrt{3486784401} : \sqrt{1073741824}$ .

4. Es folgen jetzt Anwendungen der Regel dieses zweiten Tractates. Zunächst eine Aufgabe aus dem Würfelspiele (de ludo taxillorum). Man hat zwei Würfel und die Grundfläche des ersten ist doppelt so gross, als die des zweiten. Man macht einen Wurf, undes ist die Frage, wie ist das Verhältniss der Anzahl grosser Würfel, die auf seiner obern Fläche steht, zu der Anzahl kleiner Würfel, die auf desselben obern Fläche sich findet? Das Verhältniss eines grossen Würfels zu einem kleinen ist, wie in Questio I gefunden, gleich 8<sup>1/2</sup> : 1. Es sei nun die Zahl auf dem grossen Würfel 1, auf dem kleinen 3, so ist das Verhältniss von 3 kleinen Würfeln zu einem solchen wie 3:1. Da letzteres das grössere Verhältniss ist, so findet man subtrahendo das Verhältniss von 3 kleinen Würfeln zu einem grossen Würfel =  $(\frac{9}{8})^{\frac{1}{2}}$ . Wäre die Zahl auf dem grossen Würfel die beträchtlichere gewesen, so hätte man addendo operieren müssen. Oresme macht am Ende die Bemerkung: Si quis autem est bene promtus in hoc ludo bene intelligeret in proportionibus. Dass überhaupt dergleichen Spiele zur Zeit des Oresme sehr im Schwunge waren, kann man aus dem damals gerade ebenfalls viel getriebenen Spiele Rythmomachia d. h. Zahlenkampf sehen, wobei es auch der Hauptsache nach auf mittlere Proportionalen hinausläuft. Eine weitläufige Auseinandersetzung dieses Spieles findet man in der oben citierten Ausgabe des Jordanus Nemorarius auf den zwei letzten Blättern.

5. Wie verhalten sich 3 Diagonalen eines Quadrates zu 4 Seiten desselben Quadrates? Man findet: 3 Diagonalen zu 4 Seiten  $= (\frac{3}{8})^{\frac{1}{2}}$ .

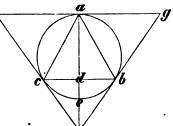
6 und 7. Das Ende des zweiten Tractates besteht endlich in zwei Aufgaben aus der Mechanik, die im Grunde ein und dieselbe Aufgabe bilden. Zwei Kreise a und b, von denen der eine doppelt so gross ist als der zweite, drehen sich um ihre Mittelpuncte und zwar der Kreis a um sein Centrum 5mal, während der Kreis b um sein Centrum in derselben Zeit sich 7mal dreht; was ist das Verhältniss der Geschwindigkeiten beider Kreise? Oder zweitens: die Seite und die Diagonale eines Quadrates werden in resp. 5 und 7 Tagen von zwei Puncten a und b durchlaufen, was ist in die sem Falle das Verhältniss der Geschwindigkeiten von a und b? Oresme findet, dass der Kreis oder Punct a sich im Verhältniss  $(\frac{50}{40})^{\frac{1}{2}}$  schneller bewegt als der Punct b. Et ita dicendum est de similibus questionibus. Explicit secundus tractatus. [Incipit tertius]. So endigt der zweite Tractat (S. 89, Zeile 12-13).

c) Es folgt der dritte Tractat. Derselbe beginnt (Seite 89, Zeile 13-14): Nunc ergo ludendo in alio proposito ponatur || triangulus equilaterus. a.b.c. inscriptus circulo cuius dyameter sit.a.e. Er beschäftigt sich zunächst mit den

Verhältnissen, die zwischen den regulären ein- und umgeschriebenen Vielecken eines und desselben Kreises bestehen. Zunächst beweist Oresme einige Lehrsätze, die er als Voraussetzungen für das Folgende benutzt. Wir finden 9 Theoreme dieser Art, von denen ich im Folgenden den Wortlaut gebe.

Satz I. Im gleichseitigen Dreieck ist das Verhältniss zwischen dem Quadrate des Durchmessers *ae* des umgeschriebnen Kreises und dem Quadrate der Seite *ac* des Dreiecks wie 4:3. (M. s. die Figur.)

**Satz II.** Für das nämliche Dreieck ist das Verhältniss zwischen



dem Quadrate von ac zum Quadrate von ad gleich 4:3.

**Satz III.** Es ist ferner das Quadrat von *ad* gleich dreimal dem Quadrate von *cd*.

**Satz IV.** In derselben Figurist das Verhältniss des Quadrates von *ad* zum eingeschrieben Dreieck *abc* gleich 3<sup>1/2</sup>.

Satz V. Das umgeschriebne Quadrat ist doppelt so gross als das demselben Kreise eingeschriebne Quadrat.

**Satz VI.** Das umgeschriebene reguläre Dreieck ist das Vierfache des gleichseitigen eingeschriebnen Dreiecks.

Satz VII. Das eingeschriebne reguläre Sechseck ist doppelt so gross als das eingeschriebne reguläre Dreieck.

Satz VIII. Das umgeschriebne reguläre Sechseck verhält sich zum eingeschriebnen regulären Sechseck wie 4:3.

Satz IX. Das eingeschriebne reguläre Achteck ist die mittlere geometrische Proportionale zwischen dem ein- und umgeschriebnen Quadrate.

Aus diesen Sätzen werden nun nach den im ersten und zweiten Tractat gegebenen Regeln die Verhältnisse zwischen den regulären ein- und umgeschriebnen Polygonen von 3, 4, 6 und 8 Seiten entwickelt. Ores me stellt seine Resultate in zwei Figuren zusammen, die jedoch von zu grosser Ausdehnung sind, als dass ich sie hier mittheilen könnte. Ich gebe deshalb im Nachfolgenden in anderer Art eine Uebersicht derselben, wobei ich der Kürze wegen überall das Wort regulär weggelassen habe.

Umgeschriebnes Dreieck:

Eingeschriebnen Dreieck = proportio quadrupla = 4 : 1, Eingeschriebnen Viereck = medietas proportionis 27 : 4 =  $3\sqrt{3}$  : 2, Eingeschriebnen Sechseck = proportio dupla = 2 : 1, Eingeschriebnen Achteck = medietas proportionis 27 : 8 =  $3\sqrt{3}$  :  $2\sqrt{2}$ , Umgeschriebnen Viereck = medietas proportionis 27 : 16 =  $3\sqrt{3}$  : 4, Umgeschriebnen Sechseck = proportio sesquialtera 3 : 2;  $3\sqrt{3}$  :  $2\sqrt{3}$ 

Umgeschriebnes Viereck: Eingeschriebnen Dreieck = medietas proportionis 256:27 = 16:3/3, Eingeschriebnen Viereck = proportio dupla = 2:1, Eingeschriebnen Sechseck — medietas proportionis  $64:27=8:3V_3$ , Eingeschriebnen Achteck = medietas proportionis duple = V2:1, Umgeschriebnen Sechseck = medietas proportionis sesyuitertie =  $2: \sqrt{3}$ ; Umgeschriebenes Sechseck: Eingeschriebnen Dreieck = proportio dupla superpartiens  $\frac{2}{3} = 8:3$ , Eingeschriebnen Viereck — medictas proportionis triple —  $\sqrt{3}$ : 1, Eingeschriebnen Sechseck = proportio sesquitertia = 4:3, Eingeschriebnen Achteck — medietas proportionis sesquitertie = 2: V3;Eingeschriebnes Achteck: Eingeschriebnen Dreieck = medietas proportionis  $128:27 = 8\sqrt{2}:3\sqrt{3}$ Eingeschriebnen Viereck = medietas proportionis duple = V2:1. Eingeschriebnen Sechseck — medietus proportionis  $32:27 = 4\sqrt{2}:3\sqrt{3}$ Eingeschriebnes Sechseck: Eingeschriebnen Dreieck = proportio dupla = 2:1

Eingeschriebnen Viereck = medietas proportionis  $27: 16 = 3\sqrt[3]{3}: 4$ . Eingeschriebnes Viereck:

Eingeschriebnen Dreieck = medietas proportionis  $64: 27 = 8: 3\sqrt{3}$ . Ores me macht hierzu noch die Bemerkung, dass in 6 von diesen Proportionen  $\sqrt{27}$  als ein Glied vorkommt, und dass stets auf der Seite des Verhältnisses eine Quadratzahl unter dem Wurzelzeichen steht, auf welcher das Quadrat das zu Vergleichende ist. Das andere Glied ist dann jedesmal eine Cubikzahl. Z. B. das umgeschriebene Dreieck verhält sich zum eingeschriebnen Quadrat wie  $\sqrt{3^3}: \sqrt{2^2}$ ; ebenso das umgeschriebne Quadrat zum eingeschriebnen Dreieck wie  $\sqrt{16^2}: \sqrt{3^3}$  u. s. w. Auch den Satz bemerkt er, dass bei den umgeschriebnen Figuren diejenige die kleinere ist, welche die grössere Seitenzahl hat, und dass es bei den eingeschriebnen Figuren umgekehrt sich verhält. Die beiden folgenden speciellen Fälle eines allgemeinen Satzes finden sich bei ihm: Das eing eschriebne reguläre Sechseck ist die mittlere Proportionale zwischen dem ein- und umgeschriebnen Achteck, der schon oben (Satz IX.) angemerkt ist.

Die beiden Reihen von Zahlen in stetiger Proportion

1, 2, 4, 8, 16, . . . 1, 3, 9, 27, 81, . . .

nennt er harmonische Reihen, und jedes Verhältniss zwischen zwei Gliedern derselben Reihe oder zwei Gliedern verschiedener Reihen heisst ihm ein harmonisches Verhältniss. Alle jene obigen Verhältnisse sind also armonice oder medietates armonicarum.

Den Schluss des ganzen Werkes endlich bildet die Aufsuchung der Verhältnisse der vier Aspecten: De proportionibus aspectuum celi. Seine Digitized by GOOGLE

Resultate stellt er wieder in einer Figur zusammen, aus der ich dieselben hier wieder in anderer Form mittheile. Er findet:

 $Aspectus \ oppositus:$   $Aspectus \ tertius = medietas \ proportionis \ sesquitertie = 2 : V3,$   $Aspectus \ quartus = medietas \ proportionis \ duple = V2 : 1,$   $Aspectus \ sextilis = proportio \ dupla = 2 : 1;$ 

Aspectus tertius:

Aspectus quartus — medietas proportionis sesquialtere —  $\sqrt{3}$ :  $\sqrt{2}$ , Aspectus sextilis — medietas proportionis triple —  $\sqrt{3}$ : 1;

Aspectus quartus:

Aspectus sextilis = medictas proportionis duple =  $\sqrt{2}$ : 1.

Die Endworte des Ganzen lauten (Seite 93, Zeile 17-18): Sic igitur se habent aspectus signorum celi secundum hanc considerationem et patet in figura. Darauf kommt noch die oben erwähnte Figur.

Ich will hier noch darauf hinweisen, dass in den Schlussworten der Handschrift der *Biblioteca Magliabechiana* der Satz IX. auf alle regulären *n*-Ecke erweitert ist, wie ich dies schon in meiner Ausgabe des *Algorismus proportionum*, Berlin 1868 näher angedeutet habe.

#### § 10.

#### Neuntes Stück: Theorica motus longitudinum septem planetarum.

Dieses Stück beginnt (Seite 94, Zeile 1–8) mit den Worten: IN phisica singulari et excellentissimo doctori Magistro Joanni || de ganduno Petrus de guclina mathematicorum et uariabus disciplinis || cum studio incendere Quia ea que de motibus planetarum et in theorica nar "ratione quidem habent ex geometris demonstrationibus idcirco conclusiones aliquas quas || girandus in sua theorica narrando proponit maxima imbecillitate mei || ingenii laboraui premom theorematum demonstratione. In quibus minus || bene dicta vnum ingenij claritas ac mcHc sollertia corrigat resecando || resecat supplea et supplenda.

Wer die beiden zuerst genannten Männer Joannes de Ganduno und Petrus de Guclina gewesen sind, habe ich nicht ausfindig machen können\*). Auch Fürst Boncompagni hat sich vergebens bemüht, mir darüber Auskunft zu verschaffen. Der weiter unten (Zeile 5) genannte Girandus ist dagegen ohne Zweifel Gerardus Cremonensis, der in eben diesem Fürsten Boncompagni einen so vortrefflichen Biographen gefunden hat. Das hier vorliegende Stück unsrer Handschrift ist nun vor zugsweise deshalb interessant, als aus dem eben Mitgetheilten in Ver-

<sup>\*)</sup> Johannes de Ganduno oder de Gandavo lebte um 1338. Er war ein berühmter Theolog und Philosoph und Vertheidiger Ludwig des Baiern gegen Johann XXII. Er schrieb unter Andern: Commentarius in Aristotelis de anima (Venetiis 1473, 1487, 1488 cet.); Quaestiones in librum physicorum Aristotelis (Venetiis 1488, 1501, 1544); und Expositio super libro de substantia orbis (Venetiis-1501).

gleichung mit den Schlussworten hervorzugehen scheint, dass der Verfasser desselben gleichzeitig derjenige gewesen ist, der überhaupt unsern ganzen Codex geschrieben hat. Die Schlussworte setze ich, um dies augenscheinlich zu machen, gleich vollständig hierher. Dieselben lauten (Seite 105, Zeile 15-20): He'c igitur de theorica motus longitudinum. 7. planetarum ad prius propositas || diuersas et inopinatas agibilium occupationes demonstrata || sufficiant. Et vos amantissimi magistri qui astrorum et omnis || physice contemplatione uacar proponitis et poleštis insufficientiam superpar||cetis quotiens uideritis hoc opusculum in meam commemorationem. || Explicit anno domini M? CCC. LIX? Amen deo gracias.

Ich füge diesem die 11 Lehrsätze und Aufgaben, aus denen unser Manuscript zusammengesetzt ist, im Wortlaute hinzu. Vielleicht lässt sich dadurch aus andern Manuscripten Näheres über den Verfasser ermitteln.

1. Solem in suo ecentrico equaliter motum in orbe signorum inequalia duci.

2. Lineam exeuntem a centro orbis signorum ad ipsius periferiam equedistantem lineam exeuntem a centro ecentrici ad ipsius periferiam medium motum solis demonstrare.

3. Medium motum solis ab opposito augis ecentrici eius usque ad augem minorem esse motu uero ab ipso uero auge usque ad augis oppositum maiorem.

4. Lineam ueri motus et medij in auge et augis opposito vnam semper esse est necessarium.

5. Maximam equationem solis alibi quam in medijs longitudinibus esse est impossibile.

6. Arcum equationis solis in orbe signorum notum facere.

7. Centrum epicicli lune super centrum deferentis equales angulos in temporibus equalibus describere est impossibile. Super uero circuli equalitatis eniformes angulos describere est necessarium.

8. Arcum equationis centri in epiciclo lune patefacere. arcum quoque equationis argumenti lune manifestare.

9. Argumentum equationis centri in epiciclo trium superiorum notificare. arcum quoque equationis centri eorundem in orbe signorum patefacere.

10. Centro deferentis mercurij in aliqua linearum a centro orbis signorum exeuntium que paruum circulum quem idem centrum deferentis motu describit contingunt exeunte centro epicicli mercurij maxime propinquum fore centro orbis signorum est necessarium.

Zu diesem Satze gehört als Lemma in den Beweis desselben einge schoben der letzte Satz:

11. Si a puncto extra circulum signato qui tamen distat a circumferentia eius quanta est semidyameter eiusdem due linee ducantur altera circulum ipsum contingens et a puncto sectionis ad punctum contactus ducatur corda ipsa corda est latus exagoni circulo inscripti eidem.

Hierin ist offenbar vor altero circulum contingens ausgefallen altera per centrum circuli, wie der Sinn augenblicklich ergibt.

#### Zehntes Stück: Geometria Bradwardini.

Von Seite 105, Zeile 21 bis Seite 110 findet sich nichts Geschriebenes. Erst auf Seite 111 von Zeile 1 an beginnt die Geometria Bradwardini. Der Anfang derselben lautet Zeile 1—10: Geometria bractardini || Geometria assecutiua est arismetice. quodammodo nam || et posterioris ordinis est et numerorum passiones deseruiunt in mag||nitudinibus propter quod euclides geometrie arismeticam interposuit, und der Schluss (Seite 153, Zeile 9–11): Nunc autem cum equali arcu de zodiaco oritur quamque plus quamque minus || equinociali circulo sicud conuincitur per hanc conclusionem euidenter. Et in hoc completa || est quarta et ultima pars thome Bradwardini.

Chasles in seinem Aperçu historique S. 614 der deutschen Ausgabe würdigt den Werth dieses Mannes nach Gebühr. Was er aber von seinen Lebensumständen anführt, ist ziemlich dürftig, selbst in Hinsicht auf die Dürftigkeit der Thatsachen, die wir überhaupt von seinem Leben kennen, und die man am besten zusammengestellt findet in dem Vorworte H. Savile's in der von ihm veranstalten Ausgabe der theologischen Schrift Bradwardins: De causa Dei contra Pelagium et de uirtute causarum libri III. Londini 1618 in fol. Aus dieser Vorrede und einigen andern Quellen will ich hier zunächst die Hauptsachen kurz zusammenstellen.

Thomas de Bradwardina, eigentlich Bredwardin, abergewöhnlich Bradwardinus genannt, ist geboren zu Hartfield bei Chichester in England, also mit seinem berühmten Vorgänger auf dem erzbischöflichen Stuhle zu Canterbury, Johannes Peckkam, fast an demselben Orte. Sein Geburtsjahr ist nicht nachweisbar, doch dürfte dasselbe wohl noch im XIII. Jahrhundert zu suchen sein. Ebenso zweifelhaft ist es, ob er Franciscaner oder Dominikaner gewesen, doch scheint die erstere Annahme die wahrscheinlichere. Im Jahre 1325 wurde er Proctor oder Procurator der Universität Oxford und las über Theologie, Philosophie und Mathematik mit solchem Erfolge, dass man ihm den Beinamen Doctor profundus beilegte. Nach andern Nachrichten, die aber wohl ziemlich unwahrscheinlich klingen, sei ihm dieser Beiname vom Papste gegeben. Später wurde er Kanzler der St. Paulskirche in London und auf Anrathen des derzeitigen Erzbischofs von Canterbury, Johann Stratford, von König Edward III. zu seinem Beichtvater erwählt. Als solcher begleitete er diesen in allen Kriegen, und soll durch seine, die Soldaten begeisternden Reden viel zu den Erfolgen desselben beigetragen haben. 1348 wurde er nach dem Tode seines Gönners Stratford zweimal zum Erzbischof von Canterbury gewählt, weil sein königl. Gönner ihn zuerst nicht von sich lassen wollte. Als aber der an seiner Statt Gewählte noch vor der Weihe starb, und er durch das Capitel zum zweiten Male gewählt war, gab der König ihn frei, und am 19. Juli 1349 wurde seine Weihe in Avignon Zeitschrift f. Mathematik u. Physik. (Supplem.)

н

82 Ueber die Handschrift R. 4º 2, Problematum Euclidis explicatio, der

vollzogen. Aber schon am 26. August desselben Jahres 1349 starb er. Seinen Werth als Mathematiker würdigt, wie schon gesagt, Chasles. Seinen Werth als Theologe findet man gebührend gewürdigt in G. V. Lechlers Abhandlung De Thoma Bradwardino, die in Leipzig 1862 als Universitätsprogramm zum Rectoratswechsel ausgegeben ist. Ausser der oben erwähnten theologischen Schrift De causa Dei cet. sind von ihm gedruckt, soweit ich darüber Nachricht habe: Geometria speculatiua Parisiis 1495, 1496, 1504, 1511, 1520 fol.; Arithmetica speculatiua Parisiis 1496, 1505, 1512 fol.; De proportionibus velocitatum Venetiis 1505 fol. Der als Anhang zu seiner Geometria speculativa gedruckte, auch besonders herausgegebne Tractatus de quadratura circuli editus a quodam archiepiscopo ordinis fratrum minorum ist schon von Chasles a. a. O. S. 614 als unecht nachgewiesen. Derselbe geht auch unter dem Namen des Campanus, dessen Ehrenrettung in Bezug auf dieses Machwerk Chasles ebenfalls a. a. O. Seite 611 geführt hat.

Ich kehre zu unserm Manuscripte zurück. Dasselbe weicht von dem gedruckten Exemplare, soweit ich durch die Güte des Fürsten Boncompagni davon Nachricht habe, nur unwesentlich ab. Jedoch gibt es die Eintheilung der vier *tractatus* oder, wie dieselben bei uns heissen, *partes* in *Capitula* jedenfalls richtiger als die gedruckte Ausgabe.

Die drei ersten Capitel der Ausgabe müssen aufhören, als solche gezählt zu werden. Sie enthalten die Suppositiones, Diffinitiones und Petitiones. Das im gedruckten Exemplare mit capitulum quartum bezeichnete hat bei uns richtig die Bezeichnung Capitulum primum de lineis mit 7 conclusiones. Dann folgt bei uns ebenso wie in der Ausgabe bezeichnet Capitulum secundum de figuris angulorum egredientibus mit 5 conclusiones: hierin sind die von Chasles hervorgehobenen Sätze über die Sternpolygone enthalten. Das ist der tractatus oder pars 1.

In der pars secunda muss das erste Capitel wieder nicht gezählt werden, es enthält nur Definitionen. Dann folgt übereinstimmend in der Ausgabe und dem Manuscripte Capitulum tertium de triangulis mit 9 conclusiones: capitulum quartum de quadrangulis mit 5 Conclusiones; capitulum quintum de circulis mit 13 conclusiones; capitulum sextum de figuris ysoperimetricis, 5 conclusiones. Chasles gibt davon nur vier, indem die erste nur eine vorbereitende ist. Damit endet der tractatus oder pars 2.

Bei der pars tertia müssen die beiden ersten Capitel wieder nicht mitgezählt werden. Sie enthalten nur Definitionen. Capitulum primum=capitulum 3 der Ausgabe de proportionibus rationalibus enthält 6 regulas: das capitulum secundum=capitulum quartum der Ausgabe de proportionibus irrationalibus umfasst 7 conclusiones; capitulum tertium=capitulum guintum der Ausgabe de proportionibus linearum hat 5 conclusiones; endlich besitzt das capitulum quartum ecapitulum sextum der Ausgabe de areis quadrangulis 5 conclusiones. Hierbei ist die Frage gerechtfertigt, ob die beiden Capitel

de proportionibus rationalibus et irrationalibus nicht etwa die Resultate des -Algorismus proportionum enthalten, so dass also die beiden Zeitgenossen beide selbständig auf dieselbe Idee gekommen wären. Dass dies nicht der Fall ist, kaun am einfachsten durch ein kurzes Resumé dieser Regeln und Lehrsätze gegeben werden, das ich deshalb hier folgen lasse.

**1. Regula.** Quanta est aliqua quantitas ad aliam tanta denominatur proportio eius ad ipsam.

2. Regula. Proportio extremorum ex mediorum eius est proportionibus composita. Bezieht sich auf mehrere mittlere Proportionalen zwischen zwei Zahlen.

3. Regula. Proportiones sunt equales quarum denominationes equales.

4. Regula. Proportiones sunt inequales quarum denominationes inequales et in multiplicibus quidem secundum eundem ordinem se habet denominatio et proportio in superparticularibus uero ordine converso.

5. Regula. Quantitates sunt equales que ad vnam quantitatem conparate proportionem habent equalem.

**6. Regula.** Quantitates quarum equimultiplices sunt equales ipse inter se sunt equales.

Ans der 5. Regel, sagt Bradward in noch, lässt sich schliessen, dass alle unendlichen Grössen einander gleich sind, aus der 6. dagegen, dass dies unmöglich ist. In dem folgenden Stücke unseres Codex, dem *Tractatus de continuo* desselben Verfassers, ist über das Unendliche umständlich gehandelt. Ich werde daher an der geeigneten Stelle darauf zurückkommen.

Das folgende Capitel *de proportionibus irrationialibus* enthält Lehrsätze wie folgende:

 Omnis quantitas omni quantitate est proportionalis sed non omnis omni commensuarabilis.

2. Omnium duarum quantitatum communicantium est proportio alterius ad alteram tanquam numeri ad numerum. Si autem earum non fuerit proportio sicud numeri ad numerum incommunicantes erunt. Dabei ist communicants = commensurabilis.

 Dyametri quadrati ad latus eiusdem est proportio irrationalis quia omnis dyameter coste sui quadrati assimetrus.

Diese Sätze sind hinreichend, da die folgenden noch weiter von den Untersuchungen abweichen, die Oresme im Algorismus proportionum angestellt hat.

Die particula quarta enthält zunächst wieder Definitionen für den Raum. Diese bilden den Inhalt des Capitulum primum des Druckexemplars. In unserm Manuscript hat erst das Capitulum secundum der Ausgabe die Bezeichnung capitulum primum de lineis. Es enthält 5 conclusiones. Darauf folgt capitulum secundum principia solidorum = capitulum tertium et quartum der Ausgabe mit 7 conclusiones; das capitulum tertium de repletione loci = capitulum quartum et quintum der Ausgabe (capitulum quartum ist im Drucke 84 Ueber die Handschrift R. 492, Problematum Euclidis explicatio, der

• doppelt gezählt) enthält keine Conclusiones. Endlich umfasst das Schlusscapitel des ganzen Werkes capitulum quartum de spera = capitulum sextum der Ausgabe 9 conclusiones.

Aus dem Mitgetheilten geht hervor, dass unser Manuscript dieses Werk genau in demselben Umfange enthält, als die Handschrift Regina Suecorum Nº 1235 der Bibliothek des Vatican. Wie diesem fehlen ihm der schon oben erwähnte Tractatus de quadratura circuli cet., der bestimmt unächt ist, und zweitens die Recollectio omnium proportionum numeralium, von der ich deshalb ebenfalls glauben möchte, dass sie erst durch den Herausgeber des Druckexemplars zugesetzt ist. In der Ausgabe von 1496, die Chasles benutzte, scheint dieses Stück sich gar nicht zu befinden, da in der ziemlich genauen Analyse der Geometria speculatiua, die derselbe gibt, desselben gar nicht Erwähnung geschieht, wohl aber des Tractatus de quadratura circuli.

Ehe ich zu dem nächsten Stücke unsrer Handschrift übergehe, bemerke ich noch, dass der Codex Nº 15 der Handschriftsammlung des Fürsten Bon-. compagni aus dem XV. Jahrbundert auch ein Fragment einer Geometrie enthält (*carto* 162—169), das allein aus dem XIV. Jahrbundert stammt, und von dem ich zuerst behauptet habe, es sei ein Fragment der *Geometria Speculatiua* des Bradwardin. Diese meine Vermuthung fand nach genauer Untersuchung ihre Bestätigung, und zwar umfasst dasselbe den Anfang derselben bis *Carto* 7 numerata Bj verso Zeile 14, der Ausgabe von 1495. In unserm Manuscripte erstreckt sich dasselbe bis Seite 123, Zeile 28. Ganz vor kurzer Zeit bin ich durch Fürst Boncompagni mit der Bitte um Veröffentlichung auf eine ziemlich aufällige Thatsache in Bezug auf die Geometrie des Bradward in hingewiesen worden. Sie ist kurz die folgende:

Das Manuscript der Vaticana Codex Ottobonianus 1359, Papierhandschrift aus dem XV. Jahrhundert, in klein 4? von 92 Seiten, die auf den Vorderseiten mit I-VIII, 1-84 bezeichnet sind, enthält von Blatt 4<sup>a</sup> bis Blatt 51<sup>a</sup> eine Geometrie, die dort dem Petrus de Daeia zugeschrieben wird, der am Ende des XIII. und Anfang des XIV. Jahrhunderts lebte. Es heisst nämlich Blatt 4<sup>a</sup>, Zeile 8-10: "Incipit summa artis Geometrie ualde bona, edi<sup>\*</sup><sub>a</sub>ta a magistro petro de dacia/que quidem fuit <sup>\*</sup><sub>a</sub> abstracta a Geometria Euclidis pro maiori parte."

Diese Worte sind roth geschrieben. Dann heisst es weiter (Zeile 11-13): gEometria assecutiva est arismetice || quodammodo nam el posterioris or ||dinis est . . . völlig übereinstimmend mit der Geometrie des Bradwardin. Ebenso lautet der Schluss, Blatt 51<sup>a</sup>, Zeile 3-4 wie bei Bradward in: Et in hoc est completa. 4. et || vitima pars huius tractatus 5 Deo gracias amen.

Von der Hand des Abschreibers hinzugefügt folgt nun Blatt 51°, Z. 5-10 nochmals dieselbe Behauptung: C Explicit hec breuis Theoria Geometrie valde bona e dita a magistro petro de dacia/que est multum vtilis voltenti Intelligere quod promittitur in opere seguenti (fuit || scripta per me Bertholomeum Juliani presbiterum magistrum  $\parallel$  in artibus in value?. xx die Junij Ano domini millesimo  $\parallel$  cccc. x iiij (Laudetur deus semper. amen, und dann findet sich, genau wie in der Handschrift Regina Suecorum 1235, die Perspectiua Communis des Johann Peckkam angehängt.

Nach der Versicherung des Fürsten Boncompagni und des Herrn Narducci ist die Uebereinstimmung des Manuscriptes mit der Ausgabe der Geometria speculativa Brauardini, wie sie 1495 erschienen ist, mit Ausnahme einiger Wortveränderungen, eine vollständige. Ich muss mich umsomehr jedes weitern Urtheils enthalten, als das Manuscript, welches die Geometrie dem Petrus de Dacia zuschreibt, jüngern Datums ist, als sämmtliche Handschriften, die mir von der Geometria speculativa des Bradwardin bekannt sind. Ich möchte aber die Vorstände der öffentlichen Bibliotheken bitten darauf Acht zu haben, ob etwa eine solche Behauptung sich auch noch in andern und vielleicht auch in früher datierten Manuscripten findet. Jede Mittheilung dieser Art würde ich mit dem aufrichtigsten Danke annehmen.

#### § 12.

#### Elftes Stück: Tractatus de continuo Bratwardini.

Von Seite 153, Zeile 12 bis Seite 192, Zeile 15 folgt nun ein, wie es scheint, bis jetzt völlig unbekannt gebliebenes Werk desselben Verfassers: Tractatus de continuo Bratwardini. Wenigstens ist er in der mehrerwähnten Vorrede Savile's zu der Ausgabe der Schrift de causa Dei contra Pelagium et de uirtute causarum, in der die übrigen Werke Bradwardins aufgeführt werden, nicht erwähnt. Derselbe dürfte, wenn er sich auch ziemlich negativ verhält, doch nicht ohne Interesse sein. Sein Anfang lautet (Seite 153, Zeile 12-14): Continum (sic!) est quantum cujus partes ad inuicem capulantur. Continuum || permanens est continuum cuius partes singule manent simul. continuum || successiuum est continuum cuius partes succedunt secundum prius et posterius. Diese Worte bilden zugleich die drei ersten Definitionen. Von diesen zähle ich 24. Zunächst kommen die Erklärungen derjenigen Formen, die zu dem Begriff Continuum permanens gehören. Es sind dies Körper, Flächen, Linien: Daran schliesst sich die Definition: Indiuisibile est quod nunquam diuidi potest, und dann die Erklärung von Punct: Punctus (sic!) est indiuisibile situatum. Es folgen die Erklärungen für die Continua successiua: 1. Tempus est continuum successionum successionem mensurans. 2. Instans est certus alhomus temporis. 3. Motus est continuum successiuum tempore mensuratum. 4. Motum esse est indivisibilis series motus. 5. Materia motus est quod per motum acquiritur. 6. Gradus motus est illud materie motus suscitatis magis , et minus quod acquiritur per aliquod motum esse. Die folgenden Definitionen geben an, was es heisst, eine Linie auf einer andern auftragen; früher gewesen sein als etwas Anderes; was ferner die Begriffe Digitized by Google 86º Ueber die Handschrift R. 4º 2, Problematum Euclidis explicatio, der

Anfangen und Aufhören (Incipere und desinere) bedeuten. Die beiden letzten Definitionen endlich betreffen das Unendliche und es folgt dann ein langer, fast drei Seiten füllender Excurs über die unendlichen Grössen. Diese Definitionen sind: 1. Infinitum cathetice et simpliciter est quantum sine fine. 2. Infinitum sinkathetice est secundum quid est quantum finitum et finitum maius isto et finitum maius isto maiori et sic sine finc ultimo terminante et hoc est quantum et non tamen contra maius. Man sieht also, dass das infinitum cathetice unendlich ist, ohne dass man weiss, wie dasselbe entstanden ist, während das infinitum syncathetice als wachsende Grenze des Zunehmenden aufgefasst wird. In dem längern Excurse weist er vorzugsweise manche Einwürfe zurück, die dahin gemacht werden könnten, dass es überhaupt nur Unendliches nach der ersten Art gäbe und nicht nach der zweiten. Wenn dem so wäre, sagt er, so könnte man viele Probleme der Physik, nicht lösen, wie z. B. das über Geschwindigkeit der Bewegung u. dergl. Ausserdem sucht er durch andere Aussprüche der beiden obigen Erklärungen den Begriff des Unendlichen so deutlich als möglich zu machen.

Seine suppositiones sind folgende: 1. Omne maius posse diuidi in equale et in differentiam qua excedit. — 2. Si finitum addatur finito totum erit finitum. — 3. vbi diuersitatis uel dissimilitudinis nulla est tum simile indicatur. — 4. Omnes scientias ueras esse, ubi non supponitur continuum ex indiuisibilibus componi. — 5. Omnia media distare omnia diuisa mediari. — 6. Omne corpus superficies atque punctum uniformiter posse moueri. — 7. Omnium duorum motuum localium eodem tempore uel equalibus temporibus continuatorum uelocitates et spacia illis pertransita proportionales existere. — 8. Omnium duorum motuum localium super idem spacium simul equalia deditorum proportionales e contrario semper esse. — 9. Quacunque uelocitate uel tarditate potest vnum mobile moueri uel vnum spacium quodcunque. — 10. Esse uel non esse finitum certo tempore mensuratur.

In der Thesis Nr. 4 ist eigentlich der gauze Inhalt des Werkes im Voraus gekennzeichnet. Derselbe besteht aus einer Durchnahme der Meinungen über die Zusammensetzung des Stetigen. Vorangehen eine Anzahl Sätze, die Bradwardin zur Bekämpfung dieser Ansichten benutzt. Ich führe davon die wichtigsten an: 1. Nullum indiuisibile maius alio esse. — 3. Nullius continui multa indiuisibilia in eodem situ indiuisibili situari. Darin liegt offenbar der Begriff der Undurchdringlichkeit. — 8. Inter nullas rectas sibi superpositas puncta mediare. — 9. Lineam rectam secundum totum uel partem mugnam recte alteri superponi et habere aliquod punctum intra secum communem cum ista non contingit. — 10. Lince recte vnam partem magnam alie recte imponi et aliam partem magnam superponi eidem uel aliud ad latus distare ab illa impossibile comprobatur. Hier tritt zuerst eine Eigenthümlichkeit auf, dass nämlich die Richtigkeit des Satzes dadurch nachgewiesen wird, dass eine grosse Zahl von Sätzen angeführt werden, die stattfinden müssten, wenn derselbe nicht richtig wäre. Diese Sätze sind später als selbständige

Königl. Gymnasialbibliothek zu Thorn. Von MAXIMILIAN CURTZE. 87

Theoreme aufgeführt, hier aber nur als Theile des Beweises am Rande mit 1-5 bezeichnet. Man findet darunter: Wenn dem nicht so wäre, so wäre ein Rechter grösser als der andere, der Theil wäre gleich dem Ganzen, Scheitelwinkel wären nicht gleich, Parallelen schnitten sich u. s. w. Es folgen dann eine ganze Reihe von Conclusiones, die mit den letzten beiden nur in geringfügigen Umständen unterschieden sind. — 14. Quelibet recta secans rectam secat eam in aliquo suo puncto et non in pluribus quam in vno. — 15. Nulle recte in aliquo puncto concurentes ad punctum internum illis habent optatum. — Dazu das Corollar: Nulle recte ducte a hasi trianguli ad annulum illi opnositum se tangene citag il

Nulle recte ducte a basi trianguli ad angulum illi oppositum se tangere citra illum. - Für angulus steht dabei fälschlich latus. - 16. Aufgabe: Angulum rectilineum assignatum in duos angulos rectilineos et datum latus trianguli rectilinei in duas rectas, triangulum rectilineum totum datum inter angulos rectilineos per rectam partiri. — 17. Aufgabe: Angulum contingentie quamlibet in angulum contingentie et angulum periferie super rectam basim trianguli contingentie oppositam angulo contingentie in duas rectas et totum triangulum contintingentie in triangulum contingentie minorem et triangulum a portionibus circumferentie et rectam contentum per circulum maiorem secare. In der Auflösung wird erwähnt Themistij de speris (d. h. sphaeris) pr. 3. primi libri, ein, soviel ich weiss, unbekanntes Werk. Den Namen finde ich nur in Heilbronner: Historia math. univ. S. 572. Themist. Alex. in Canones Ptolemaei, wo nach dem Index Heilbronner das Wort Themist. als Themistocles liest. Es könnte die hier erwähnte Handschrift wohl das Werk de sphaeris sein, sie befindet sich nach Heilbronner in der Kaiserlichen Bibliothek zu Paris. - Die folgende Aufgabe lehrt über einer bestimmten Geraden einen Kreisabschnitt kleiner als der Halbkreis zu construieren, dann folgt der Satz: 19. Si super candum cordam uel cordas equales portiones inequales circumferentiarum medietate minoris consistant minorem portionem maioris circuli circumferentiegue maioris. maior uero minoris. Si vero circulorum uel circumferentiarum inequalium et super eandem cordam constitit portiones medietate minores ille erunt necessario inequales et maior circulus et circumferentia minorem portionem habebit, minor uero maiorem. In dem Beweise nimmt Bradwardin auf eine Erscheinung Rücksicht, aus der er zu erklären versucht, weshalb das Wasser auf der Erde trotz der Kugelgestalt nicht herunterläuft, nämlich auf das, was wir Capillarität nennen. Ich kann wenigstens die folgenden Worte auf andere Weise nicht erklären: Continuum fluidum congregari et maxima uasis latera uacua derelinqui alque liquidi semiplene ultra uasis dyametrum continue eleuari. Rursum tale uas semiplenum ascendens fieri aliquotiens magis plenum aliquotiens uero plenum et superius cumulatum et aliquum internum quod affluent quedam partes descendens effici minus plenum. Si uero tale uas ponatur maxima lo<sup>m</sup> huius per totum contraria prioribus cuenire. - 20. Rectam perpendiculariter exeuntem a puncto medio corde ad punctum medium archus portionis circuli medietate minoris circulum in duas medietates

## 88 Ueber die Handschrift R. 4º 2, Problematum Euclidis explicatio, der

diuidere et utrumque angulum portionis minori et angulum circumferentie partiri ipsam insuper portionem minoris linealemque secare. — 21. Si linee punctum aliquod uel pars aliqua moueatur localiter quamlibet partem magnam et quodlibet medium punctum quod est cum eius uno extremo necessario commoueri. — 24. Quocumque motu locali signato potest motus localis uniformis et continuus in omni proportione recte finite ad rectam finitam uelocior et tardior inveniri. Dazu das Corrollar: Quodcumque spacium finitum quocunque tempore finito posse vniformiter et continue pertransiri. — Lehrsatz 25 ist derselbe Ausspruch für motus successiuus. Der 26. spricht aus, dass bei einer Ortsbewegung ein Continuum nicht gleichzeitig mehrere Lagen einnehmen könne. — 27. Omnis inceptio uel desinentio non mensuratur tempore. — 24. Omne quod non est aliquale et erit tale nunc incipit uel aliquando incipiet esse tale. — 29. Omne quod est aliquale et non semper tale nunc desinit uel aliquando desinet esse tale.

Jetzt beginnen die Sätze, welche die Ansichten über die Zusammensetzung der Continua enthalten. Am Rande steht als Glosse Nota quinque opiniones de compositione Continui. Die verschiedenen Meinungen über diese Zusammensetzung sind zusammengestellt vor dem Beweise des Satzes 31. Da diese Uehersicht von Wichtigkeit ist, so erlaube ich mir dieselbe mit den eigenen Worten des Verfassers hier zu reproducieren. Dieselbe lautet (Seite 165, Zeile 29-39): Pro intellectu huius || conclusionis est sciendum quod circa compositionem continui sunt 5 opiniones famose inter ueteres philosophos et modernos. ponunt enim quidam ut a4<sup>4</sup>. awreys(?)\*) et plurimi modernorum continuum non componi ex athomis sed ex partibus diuisibilibus sine fine **C** Alij autem dicunt ipsum componi ex indivisibilibus dupliciter uariantes quum democritus ponit continuum componi ex corporibus indivisibilibus. alij autem u ex punctis et hij dupliciter quia pythagoras primus huius secte et plato ac wall herus\*\*) modernus ponunt ipsum componi ex finitis indivisibilibus. alij autem || ex infinitis et sunt bipartiti quia quidam corum ut henricus modernus dicit || ipsum componi ex infinitis indivisibilibus in medietate coniunctis alij autem ut  $l_y cuf^{***}$  (?) || ex infinitis ad inuicem mediatis.

Die Refutation aller dieser Ansichten unternimmt nun Bradwardin. indem er sich aus allen Wissenschaften seine Gründe holt. Zunächst beweist er, dass wenn irgend ein *Continuum* auf eine bestimmte Weise zusammengesetzt, dass dann jedes andere *Continuum* in ähnlicher Weise zusammengesetzt sein muss, und wendet sich dann zuerst gegen die Ansicht des Pythagoras und Henricus. Von diesen Sätzen, durch die er diese zurückweist, fängt jeder mit *Si sic* an und zeigt, dass daraus völlig absurde Behauptungen gefolgert werden könnten. Z. B. 40. Si sic angulum rectum esse

<sup>\*)</sup> Vielleicht Averroes? oder Aristoteles?

<sup>\*\*)</sup> Nicht Joannes Walterus, der 1412 starb, sondern wahrscheinlich Walterus Evesham, der 1316 astronomische Beobachtungen machte.

<sup>\*\*\*)</sup> Später ist dieser Name lincof geschrieben.

Königl. Gymnasialbibliothek zu Thorn. Von MAXIMILIAN CURTZE. 89

minimum angulorum nec angulum esse acutum et omnes obtusos cquales esse ad inuicem nec aliguum angulum obtusum penitus reperiri. — 42. Si sic linee equedistantes concurrunt. — 49. Si sic indivisibile dividetur. — 52. Si sic aliguum tardissimum motum esse. — 53. Si sic continuum ex athomis integrari. — 55. Si sic omne continuum componitur ex indivisibilibus infinitis et tamen ex finitis et nec ex finitis nec infinitis et componitur ex athomis et non componitur ex illis.

Ehe zur Widerlegung der zweiten Ansicht fortgeschritten wird, beweist unser Verfasser zunächst den Satz 46. In nullo continuo athoma in medietate coniungi. Dann wendet er sich gegen die Ansicht, dass das Continuum aus einer endlichen Zahl von indiuisibilia zusammengesetzt sei, d. h. gegen die des Waltherus. Seine Hauptbeweismittel sind folgende: 57. Si continuum ex finitis athomis componitur sicud numerus athomorum vnius continui ad numerum athomorum alterius ita continuum ad alium se habere. — 58. Si sic athoma in contiuno in medietate coniunguntur. In dem Beweise bedieut er sich eines Satzes, der seine eigne Ansicht weiter ins Klare setzt, nämlich : Omnia continua habere athoma infinita sed ex athomis non componi. — 59. Si sic debilissimus gradus soni se habet sicud vnitas et ceteri se sine medio coniungentes ut sequens series numerorum. — 65. Si sic tonus partiri non potest. - Dann folgen zunächst wieder einige Sätze, die die Meinung des Bradward in aussprechen: 66. Omnis recta linea habet particulares lineas infinitas. --- 67. Omnem angulum rectilineum uel contingentie in tales angulos diuidere infinitos. - 68. Omnem triangulum rectilineum sine contingentie in infinitas tales angulos posse diuidi uel partiri. - 69. Omnis superficies habet superficies et lineas infinitas et puncta similiter infinita. --- 70. Omne continuum componitur ex infinitis continuis eidem speciei et habet athoma propria infinita. Nachdem dies nachgewiesen, wendet er sich wieder gegen die oben aufgestellte Ansicht. 72. Si sic certum circulum assignare quo maior esse non. — 73. Si sic periferiam circuli esse duplam dyametris. — 75. Si sic alique partes circumferentie circularis sunt recte et angulum rectilineum continentes. - 81. Si sic aliquis triangulus tres angulos rectos habet et linee equedistantes concurrunt. — 82. Si sic aliquis triangulus est subsesquitertius ad quadratum qui subduplus est ad idem. — 86. Si sic omnis quadrati dyameter sui lateri est equalis. — 87. Si sic aliquod quadratum est circulus. — 92. Si sic nullam esse uisionem rectam fractam siue reflexam lucis uel coloris. — 93. Si sic omnes speras celestes et elementares carum a terra esse quantitatis equalis et equeuelociter circumferri. — 95. Si substantia composita ex finitis substantiis athomis componitur condensationem materie prime non fieri per athoma prioribus pauciora. — 96. Si sic de substantia rarefactionem materie prime non fieri per athoma materie plura primis. - 98. Si sic de substantia condensationem et rarefactionem non esse possibilem. - 99. Coroll. Substantiam naturalem ex finitis athomis non componi. - 101. Si sic inpartibile in media partietur. — 105. Si sic motum non esse omnino. — 106. Si sic sanitatem habitam Digitized by **GO** 

90 Ueber die Handschrift R. 4º 2, Problematum Euclidis explicatio, der

non seruare nec perditam restaurare. -109. Si sic non contingit recte scribere nec recte loqui. -111. Si sic idem est iustum et iniustum.

Mit Satz 114 fängt er ein anderes Princip an zu bekämpfen, dass nämlich das Continuum aus unendlich vielen indiuisibilibus zusammengesetzt sei. Von den oben aufgestellten ist dies der letzte in Verbindung mit dem des Henricus. Die Hauptsätze lauten: 114. Si omne continuum ex indiuisibilibus infinitis compunitur esse continuum ciusdem generis et athoma propria eodem genere proportionalia reperiri. — 118. Si sic condensationem et rarefactionem omnino non esse. - 121. Si sic aliqua superficies erit summe alba et similiter summe nigra. — 124. Si sic agens naturale corporeum est equalis activitatis cum athomo naturali et aliquod maioris et quodlibet infinite. - 126. Si sic de continuo substantiam et qualitatem ex substantiis infinitis et qualitatibus integrari. - 127. Si sic athoma infinita in omni proportione finita et infinita ad alia infinita procul dubio se habere. — 128. Si sic omnia athoma infinita quibuscunque infinitis athomis adequari excedere et excedi omnia continua consimiliter continuis equalia esse eccedentia et excessa. — 131. Si sic aliquod continuum in codem situ indiuisibili situari. — 133. Si sic omnis quadrati medietas est maior toto quadrato. — 136. Si sic omnis linea circularis est equalis cuilibet linee circulari el costa quadrato dyumetris et omnis recta necessario omni recle erit equalis. Jetzt folgen einige Sätze, die wieder die Meinung des Bradward in aussprechen sollen. 137. Nullum continuum ex indiuisibilibus infinitis integrari uel componi. — 138. Nullum continuum ex infinitis indivisibilibus inmediatis componi. — 139. Nullum continuum ex indivisibilibus mediatis componitur. -- 140. Nullum continuum ex athomis integrari Dann heisst es, und dies ist schon oben einmal als Meinung des Bradwardin ausgesprochen: vnum sequitur et elicitur. Omne continuum ex infinitis continuis similis speciei cum illo componi. Am Ende des Beweises folgt dann die Bemerkung: Hiis tandem perscrutatis nunc adiuncto consilio est inue. stigandum an indiuisibilia continuorum sint realiter distincta ut ponitur. Daon kommt der Satz 141, der aber eigentlich aus einem längern Excurse besteht. Derselbe beginnt: Est igitur premittendum quod in continuatione sine discontinuatione corporum liquidorum nullam materiam primam nec aliquam substantiam primam nec qualitatem primam uel secundam corumpi et de quantitate et indivisibilibus quantitatis similiter esse constat. Dann folgen die Sätze: 142. Omnem substantiam esse per se impossibile carere omni accidente. --143. Omne quod non est pars nec causa alterius potest corrumpi altero toto saluo, z. B. vnus homo moritur altero uiuente. - 144. Quare potest esse continuum et finitum sine aliquo indivisibili continuante et finitante. --145. Si indiuisibilia continuorum sint realiter ut ponuntur substantia naturalis indiuisibiles substantias habet. — 146. Si sic indiuisibilia omnis continui in medietate coniungi. — 147. Si sic continuum ex athomis integrari. — 148. Si sic aliquod accidens substantiam primam non habere. — 149. Si sic potest non improbabiliter apparere omne corpus esse tenacitatis et resistentie infinite. — Digitized by 🔽 🖸

150. Superficien lineam sive punctum omnino non esse und hieraus endlich der Schluss des Ganzen: Continuum non continuari nec finitari per talia sed se ipso. · Die letzten Worte des Tractates enthalten davon den Beweis und und lanten (Seite 192, Zeile 10-15): Prima autem illius corrollarii sequitur ex  $\parallel$  illa conclusione plane. secunda uero pars eius sic patet. Si continuum non continuatur  $\parallel$  nec finitetur per indivisibilia talia ct non contingil assignare aliquod aliud per quod  $\parallel$  continuum terminetur uel finiatur et continuum terminatur et continuatur continuatur et finitur se ipso  $\parallel$  Sic igitur primus liber qui est de compositione continuj quantum ad sua essentialia finem  $\parallel$  capit. amen. C Explicit tractatus bratwardini (sic!) de continuo.

Hieraus dürfte zu schliessen sein, dass das uns hier vorliegende Stück nicht das ganze Werk des Bradwardin umfasst, sondern nur den ersten Theil desselben, wenn auch die letzten Worte wieder das Gegentheil behaupten.

#### § 13.

## Zwölftes Stück: Liber de ponderibus Jordani Nemorarii.

Bei diesem Stücke können wir uns wieder kurz fassen, da dasselbe in dem Drucke: Liber Jordani || Nemorarii viri Clarissimi || De Ponderibus Propositiones XIII. || etc. Am Ende Excussum Norimbergue per Jo. Petrcium, || Anno domini M. D. XXXIII. 16 Blatt in 4?, leicht zu erlangen ist. Unser Exemplar unterscheidet sich aber wesentlich von diesem Abdrucke, besonders dadurch, dass es eine bei weitem gedrängtere Recension darstellt, so dass man fast annehmen möchte, dass der Druck durch Petrus Apianus, den Herausgeber dieses Werkes, interpoliert sei. Unser Manuscript beginnt (Seite 192, Zeile 16-20): Omnis ponderosi motum ad medium esse. Quanto gravius est uelocius descendere. || Grauius esse in descendendo quanto motus eius ad medium est rectior. || Secundum situm gravius esse quanto in eodem situ minus oblique est descensus. || Obliquiorem autem descensum in eadem quantitate minus capere de directo. Minus graue alio || secundum situm quod descensu alterius sequitur contrario motu. Situm autem equalitatis esse equedistantiam superficiei orizontis. Im Drucke beginnt das liber de ponderibus auf Blatt 3<sup>b</sup> und der Anfang unsres Manuscriptes umfasst die Zeilen 26-33 von Blatt 4<sup>n</sup>. Es fehlt also wieder die ganze Einleitung des Werkes. Von den 12 Sätzen die unser Manuscript im Gegensatz zu dem Drucke nur enthält, sind nur 11 hervorgehoben, während der 12. eigentlich nur ein Corollar des vorhergehenden ist. Der Satz 13 fehlt bei uns völlig, doch ist auf Seite 197 noch so viel Platz, dass in der kurzen Fassung, die bei uns die Beweise haben, dieser Satz noch Raum haben würde.

Der Beweis der Propositio prima umfasst im Drucke Blatt  $4^{b}$  bis Blatt  $6^{a}$ , Zeile 14, während bei uns derselbe nur 9 Zeilen lang ist. Er enthält im Wesentlichen das, was im Drucke in dem zweiten Absatze von Blatt  $4^{b}$ , der mit Sequitur aliud commentum beginnt, enthalten ist. Jedoch nur bis

92 Ueber die Handschrift R. 4º 2, Problematum Euclidis explicatio, der

zum Ende des Blattes. Aehnlich verhält es sich mit den übrigen Beweisen und zwar sind unsre Beweise immer die Theile, welche mit *Aliud commentum sequitur* oder ähnlichen Phrasen eingeleitet werden, jedoch auch von diesen immer nur eine Anzahl von Zeilen. Da aber unsere Beweise stets vollständig das liefern, was sie nachweisen sollen, so ist wohl der Schluss gerechtfertigt, dass entweder, wie schon gesagt, der Herausgeber selbständig zugesetzt hat, oder dass er aus verschiednen Haudschriften, die verschiedne Beweise gaben, diese nebeneinander gestellt hat und durch die obige Einleitung zu den Beweisen einer andern Handschrift als der zuerst benutzten, dies hat anzeigen wollen. Da es gerade von diesem Stücke eine ganze Reihe von Manuscripten gibt, liesse sich vielleicht entscheiden, welche von diesen Annahmen die richtige ist.

Unser Manuscript schliesst (Seite 197, Zeile 11 - 12): Dico ergo quoniam pondus canonij . b . z . cum sit secundum . b . z . substantie . a . b. **C** und <sup>•</sup>zeigt schon durch das Strophenzeichen, dass es unvollendet abgebrochen ist. Der Beweis des 12. Satzes stimmt im Allgemeinen mit dem in der Ausgabe des Apianus, doch ist keine wörtliche Uebereinstimmung und es ist deshalb auch unmöglich zu bezeichnen, bis zu welchem Puncte dieses Druckes unser Manuscript sich erstreckt.

#### § 14.

#### Dreizehntes Stück: De latitudine formarum magistri Nicholai Horen.

Wir kommen jetzt zu dem letzten Stücke unsrer Handschrift Seite 198-206. Es ist das Stück, welches auf der Seite 1 bezeichnet ist durch item de latitudine formarum. Nach einer Mittheilung des Fürsten Boncompagni stimmt unser Manuscript mit der Ausgabe überein, die von ihm in dem äusserst seltnen Buche "Questio de Modalibus Bassani Politi etc. Venetiis mandato  $\sim$  sumptibus heredum quondā Nobilis uiri D. Octauiani Scoti etc. 1505 unter dem Titel "Incipit perutilis tractatus de latitudinibus formarum fum Reuerendū magrīm Nicholaū Horen" gemacht ist. Ich glaube der Seltenheit dieses Werkes wegen nichts Unnützes zu thun, wenn ich eine Uebersicht des Hauptinhaltes desselben hier folgen lasse.

Dieser Tractat beginnt (Seite 198, Zeile 1-5): Quia formarum latitudines multipliciter uariantur et multiplicitas || difficillime discernitur nisi ad figuras geometricas consideratio || referatur. Ideo premissis quibusdam latitudinum diuisionibus || cum suis diffinitionibus infinitas species earundem demum ad in finitas species figurarum applicatio ex quibus clarius apparebit. Was hier forma bedeutet, ergibt sich aus einigen Sätzen und Beweisen des tractatus de continuo Bradwardini sowie aus den Bemerkungen zu dem letzten Lehrsatze dieses Tractates. Danach ist forma jede Erscheinung in der Natur, z. B. unter andern jede Bewegung, jede Veränderung in der Wärme u. dgl. mehr. Diese formae werden nun in der Art durch geometrische Figuren dargestellt, dass, wie noch jetzt, die eine Grösse, von der die Form abhängig gedacht wird, als *longitudo* aufgetragen wird, während die *latitudo* in äquidistanten Puncten der *longitudo* senkrecht auf dieser, in dem nämlichen Masse gemessen, errichtet wird. *Longitudo* und *Latitudo* ist also genau das was wir Abscissen und Ordinaten pennen, auf physikalische Vorgänge angewendet. Die Endpuncte der Ordinaten werden, wie noch jetzt, durch einen zusammenhängenden Zug verbunden. *Gradus latitudinis* ist der Unterschied zweier aufeinanderfolgender Ordinaten. Beginnen die Ordinaten mit dem Werthe Null, so heisst das non gradus, fangen sie dagegen mit einer bestimmten Länge an, so wird das *certus gradus* genannt.

Die ganze Schrift ist, wie in den mitgetheilten Anfangsworten schon angedeutet ist, in zwei Theile getheilt. Der erste enthält Erklärungen der verschiednen Arten der Latitudo. Von der Longitudo natürlich kann es nur eine Art geben, da diese stets in gleiche Theile getheilt angesehen wird. Die Latitudo zerfällt zunächst in Latitudo miformis und latitudo difformis.-Erstere ist eiusdem gradus per totum die latitudo difformis autem est per oppositum. Die erstere wird also durch eine zu der Abscissenlinie parallele Gerade vorgestellt, d. h. durch ein Rechteck. Die zweite aber durch irgend eine andere Figur.

Die Latitudo difformis zerfällt wieder in secundum se totam difformis und in secundam partem difformis. Das Erstere braucht hier keine weitere Erklärung, das Letztere aber ist, wenn ein Theil der betreffenden Curve eine zur Abscissenaxe parallele Gerade vorstellt, der übrige Theil aber eine zur Abscissenaxe geneigte Gerade oder eine krumme Linie. Die Latitudo secundum se totam difformis wird wieder eingetheilt in: latitudo vniformiter difformis, d. h. solche, bei welcher der excessus graduum immer der nämliche ist, und difformiter difformis d. h. solche, bei welcher diese Gleichheit nicht stattfindet. Die erste Art hat als entsprechende Curve nothwendig eine unter einem beliebigen spitzen Winkel gegen die Abscissenaxe geneigte Gerade, die letzte Art irgend eine andere krumme Linie. Die erste Art kann anfangen a non gradu, muss dann aber aufhören ad certum gradum, oder sie kann beginnen a certo gradu und dann entweder ad non gradum oder ad certum gradum endigen. Ein viertes ist offenbar nicht möglich.

Die latitudo difformiter difformis wird in ähnlicher Weise wieder eingetheilt in latitudo secundum se tolam difformiter difformis und in latitudo non secundum se tolam difformiter difformis. Ich glaube kaum, dass ich diesen beiden unterschiednen Arten noch weitere Erklärung hinzuzusetzen brauche. Bei der ersten dieser beiden Arten unterscheidet er nun wieder latitudo vniformiter difformis d. h. solche Veränderung, dass die excessus graduum immer dieselbe Proportion, dass also die latitudines selbst eine arithmetische Reihe zweiter Ordnung bilden. Als Beispiel ist auf dem Rande angegeben eine Figur, an deren Ordinaten die Werthe stehen:

94 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

ار د دیا این ایر ایر د درمانی

0, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79. Alle übrige Arten der latitudo bezeichnet er durch latitudo difformiter difformiter difformis. Der erste Theil schliesst dann (S. 199, Zeile 3-6): Notandum || quod in supradictis diffinitionibus utcunque declaratur excessus graduum inter se equedistantium debet accipi distantia secundum partes latitudinis exclusiue et inclusiue || ut loquitur de distantia graduum situali et non graduali.

Der zweite Theil bringt nun Beispiele zu den im ersten Theile aufgestellten Arten der Latitudo per figuras geometricas. Er ist in drei Capitel getheilt. Das erste enthält diuisiones, das zweite supposita, das dritte endlich propositiones et diffinitiones. Die Begriffe von Linea, figura, augulus, linea recta, linea curua, figura plana, figura curua, angulus rectilineus, angulus curuus, figura angularis, figura non angularis setzt er zunächst aus dem ersten und zweiten Buche des Euclid als bekannt voraus, und gibt dann die Eintheilung der geometrischen Figuren. Er unterscheidet figura monangula, figura duplangula, triangula, ..., multiangula, er sagt dabei noch, es gäbe solcher verschiedener Arten ebensoviele als es verschiedne Zahlen gäbe. Eine zweite Eintheilung ist die in solche Figuren, die nur durch krumme Linien begrenzt werden, wie die Figur, die von zwei Kreisbogen eingeschlossen wird, und in gemischtlinige Figuren, die durch eine gerade und eine krumme Linie umschlossen sind. Dabei sind noch die Erklärungen von portio circuli = Kreisbschnitt und zwar portio maior und portio minor, jenachdem der Abschnitt grösser oder kleiner als der Halbkreis ist, von arcus und corda. Weiter theilt er ein in figure rectilinee, und figure curuilinee. Die letzte Eintheilung endlich ist in figure plane und figure curue und Oresme macht dabei darauf aufmerksam, dass figura curuilinea und figura curua wohl zu unterscheiden seien, da eine figura curuilinea sehr wohl eine figura plana sein könne. Das ist das erste Capitel.

Das zweite Capitel enthält die Voraussetzungen. Diese sind : 1. Que secundum aliquam proportionem sic se habent ad inuicem rationem participant quantitatis. -2. Omne quod excessu graduali excedit aliud uel exceditur per medium quantitatis ab aliquo ymaginandum est. — 3. Excessus gradualis, Latitudo gradus et intentio forme idem sunt. ex comuni vsu loquentium in tali materia. — 4. Omne quod excessu graduali excedit aliud uel exceditur ab alio habet latitudinem gradualem. — 5. Omne quod secundum aliquam perfectam dimensionem quantum est secundum illam dimensionem excedere potest uel excedi. - 6. Omne quod secundum dimensiones plures quantum est secundum plures dimensiones excedere potest uel excedi. — 7. Omne quod excedit uel exceditur ab aliquo secundum aliquam dimensionem ymaginandum est et est quantum. - 8. Quod solum secundum extensionem suarum partium excedit aliud uel exceditur est ymaginandum in proposito vnam solam habere dimensionem. — 9. Quod secundum intentionem suarum parlium ymaginabilium excedit aliud uel exceditur ab alio ymaginandum est in proposito duas habere dimensiones ideo ymaginandum est tanguam latitudo et longitudo siue superficies. — 10. Extensio forme ymaginanda est

Königl. Gymnasialbibliothek zu Thorn. Von MAXIMILIAN CURTZE. 95

per lineam rectam. Intentio uero per figuram planam supra datam lineam rectam consurgentem. — 11. Cuilibet puncto in linea recta supra quam figura plana collocatur oportet (?) propria latitudo in dicta figura. — 12. Quodlibet punctum in extensione propriam habet intensionem. — 13. Forme permanentes uel ymaginate tanquam permanentes habent extensionem secundum extensionem sui subjecti. forme uero successiue uel ymaginate tanquam successiue secundum extensionem sue durationis.

Im dritten Capitel endlich werden die propositiones und diffinitiones der verschiedenen Arten der Figuren gegeben als Erläuterung zu dem ersten Theile. Dieser Lehrsätze zähle ich 29. Der erste spricht aus, dass jede Latitudo irgend einer Form als eine ebene Figur dargestellt werden könne. Durch die folgende wird eine nur krummlinige Figur ausgeschlossen, denn die Abscissenlinie muss eine Gerade sein, daher kann 3. keine Form durch einen ganzen Kreis dargestellt werden, noch 4. überhaupt durch eine Figur ohne Winkel oder 5. durch eine figura monangula, sondern sie ist 6. stets durch eine mehrwinklige Figur darzustellen. Es kann 7. keine Form durch eine Figur dargestellt werden, die mit der Abscissenlinie einen Winkel grösser als ein Rechter macht. Dies ist sogleich klar, sobald man beachtet, dass zu damaliger Zeit negative Abscissen noch nicht bekannt waren, und nur unter dieser Bedingung der erwähnte Fall eintreten kann. Dieser Eigenschaft wegen kann 8. keine Form durch eine portio maior dargestellt werden, weil der Winkel, mit dem diese auf der Sehne aufsteht, ein stumpfer ist. 9. Jede latitudo vniformis hat denselben certus gradus von Anfang bis zu Ende. Also ist 10. diejenige Form difformis, die vom non gradus beginnt. 11. Es ist jede Form, die a certo gradu anfängt und ad certum gradum endigt, durch eine am Anfange spitzwinklige Figur zu verzeichnen. Speciell ist 13. eine latitudo vniformiter difformis, die a non gradu anfängt, durch eine Figur mit geradlinig spitzem Winkel darzustellen. Jede latitudo difformiter difformis aber muss, wenn sie a non gradu beginnt, durch eine krumme Linie mit anfangendem krummlinigen spitzen Winkel ansteigen, und jede latitudo difformis, die mit dem non gradus aufhört, wird 15. umgekehrt durch eine absteigende krumme Linie mit schliessendem spitzen Winkel dargestellt. 16. Jede latitudo vniformiter difformis per totum kann durch ein geradliniges Dreieck dargestellt werden, jede latitudo uniformis terminata ad certum gradum aber 17. durch ein Parallelogramm, oder eigentlich durch ein Rechteck. Dagegen ist 18. keine Form, die irgendwo difformis ist, aber Anfange und zu Ende uniformis, durch ein geradliniges Dreieck darstellbar. Oresme führt eine ganze Reihe verschiedner Formen auf, die die betreffende Figur annehmen kanu, sagt aber zuletzt poteris in infinitum uariare. Fängt eine latitudo vniformiter difformis a non gradu an, so ist 19. das geradlinige Dreieck, was sie darstellt, am Anfange spitzwinklig und am Ende rechtwinklig, umgekehrt, wenn sie 20. a certo gradu anfängt und ad non gradum endigt, durch ein entgegengesetzt liegendes Dreieck; fängt sie endlich a certo gradu an und

Digitized by GOOGLE

96 Ueber die Handschrift R. 4° 2, Problematum Euclidis explicatio, der

endigt auch ad certum gradum, so ist 21. die entsprechende Figur ein Trapez, dessen beide parallele Seiten auf der Abscissenlinie senkrecht stehen, der eine der beiden obern Winkel ist ein spitzer, der andere ein stumpfer. 22. Keine Latitudo, die von non gradus beginnt und auch mit dem non gradus endigt, ist uniformis oder vniformiler difformis, sie kann aber theilweise vniformis oder vniformiter difformis sein. 23. Jede latitudo, die vniformiter difformis vom non gradus beginnt und ebenso vniformiler difformis mit dem non gradus schliesst, ist durch eine Figur vorzustellen, die am letzten Ende der Basis einen spitzen Winkel bildet. Keine latitudo difformiter difformis kann 24. durch eine geradlinige Figur dargestellt werden, es ist folglich 25. jede latitudo secundum se totam difformiter difformis noch oben durch eine krumme Linie begrenzt, ebenso muss 26. eine latitudo, die nur zum Theil difformiter difformis ist, zum Theil durch eine krumme Linie begrenzt werden. Die latitudo vniformiter difformiter difformis beginnt 27. a non gradu, endet aber immer ad certum gradum; sie ist daher 28. darzustellen durch ein Dreieck, das einen rechten geradlinigen Basiswinkel hat, die beiden andern Winkel sind aber krummlinige spitze Winkel. Endlich sagt der letzte Satz 29. aus. dass wenn die Latitudo einer bestimmten Form in irgend einer Weise variiert, die entsprechende Figur in ähnlicher Weise sich verändert.

An diese Sätze schliessen sich eine Reihe von Bemerkungen, die nicht ohne Interesse sind. 1. Jeder Kreisabschnitt ist difformiter difformiter difformis. Doch muss derselbe kleiner als der Halbkreis sein, wie oben schon bemerkt ist. --- 2. Bei einer solchen Figur wächst die latiludo von Anfang bis zur Mitte und nimmt dann wieder bis zum Ende ab. -- 3. Bei einer solchen Figur ist die Aenderung der Geschwindigkeit des Wachsens und Fallens am obersten Puncte am langsamsten. - 4. ist dagegen zu beachten, dass die grösste Geschwindigkeit der Zunahme des Wachthums am Anfange der Figur und die grösste Schnelligkeit der Abnahme des Wachthums am Ende der Figur sich findet. - 5. Die Geschwindigkeit der Zunahme des Wachsthums nimmt stetig ab bis zum höchsten Puncte des Bogens, und dann nimmt umgekehrt die Schnelligkeit der Abnahme des Wachsthums von diesem Puncte bis zum Endpuncte des Bogens stetig zu. Im Anfangsund Endpuncte ist die grösste Zu- und Abnahme-Geschwindigkeit. 6. Wenn die latitudo vniformiter difformiter difformis zwischen den gradus excessium equedistantium immer dieselbe Proportion bewahrt, so ist dabei der Anfangs- und Endpunct derselben ausgeschlossen. - 7. Das Verhältniss zwischen Form und Form ist dasselbe, wie zwischen den entsprechenden Figuren. Dabei ist das Verhältniss irrational, sobald eine der Figuren oder beide krummlinig sind. Aus diesem letzten Satze folgert er noch einige Zusätze: 1. Zwei gleichförmige Bewegungen haben ein rationales Verhältniss, ebenso 2. eine gleichförmige und eine gleichförmig ungleichförmige Bewegung. Dagegen ist 3. das Verhältniss zwischen einer gleichförmigen oder gleichförmig ungleichförmigen und einer ungleichförmig ungleichför-

Königl. Gymnasialbibliothek zu Thorn. Von MAXIMILIAN CURTZE. 97

migen Bewegung irrational. Dann folgen endlich die Schlussworte (Seite 206, Zeile 37-39): Plura igitur alia corrollaria equalia per talem materiam euerti possunt ex precedentis que considerantibus faciliter patent. ideo transeo. I deo gracias virginique gloriose.

Dass das Werk, mit dem wir uns soeben beschäftigten, von dem grössten Werthe für die Geschichte der Mathematik ist, sieht man auf den ersten Blick. Der Begriff latitudo formarum ist offenbar ein sehr wesentlicher Vorläufer der Geometrie des Descartes. Dieser Begriff, dessen Dasein allen Geschichtsschreibern der Mathematik entgangen zu sein scheint, obwohl er ganz allgemein in Anwendung gewesen sein muss, erstreckt sich nachweisbar bis in den Anfang des XVI. Jahrhunderts und wahrscheinlich noch weiter, so dass er geradezu unmittelbar an Descartes und seinen Vorgänger heranreicht. Auch die Bemerkung Keplers, dass der Zuwachs einer Variablen z. B. der Ordinate einer Curve in der unmittelbaren Nähe eines Maximums oder Minimums gleich Null ist\*), finden wir in den Bemerkungen zu dem letzten Lehrsatz 29. des Oresme ausgesprochen, hier sogar in ganz allgemeiner Form, da der Begriff von Forma jede Art veränderlicher Grösse bedeuten kann. Auch die Bemerkung dürfte noch hervorzuheben sein, dass, wenn man für zwei beliebige Formen derselben Art die entsprechenden Figuren gefunden hat, man für die Formen, sobald es nur auf das Verhältniss ankommt, diese Figuren substituieren kann (7. Bemerkung zu Satz 29.), sowie die Erklärung dahin, dass obwohl nur eine bestimmte Anzahl von Ordinaten in den Figuren gezeichnet werden, doch jedem Puncte der longitudo eine bestimmte Ordinate zukommt, dass also die Veränderung der Latitudo eine stetige ist, eine wesentliche Eigenschaft der Descartschen Betrachtungen.

Oresme hat es also verdient in der Geschichte der Mathematik mit grösserem Nachdrucke genannt zu werden, als ihm dies bis jetzt zu Theil geworden. Jedenfalls sind die beiden Abhandlungen, durch deren glückliche Vereinigung in unsrem Codex es mir möglich geworden, den obigen Nachweis zu führen, von gleichem wenn nicht grösserem wissenschaftlichen Werthe als die beiden dem Bradwardin eigenthümlichen Theile seiner Geometria speculatiua.

## § 15.

## Ueber die Handschrift R. Fol. 23 derselben Bibliothek und Schlussbemerkungen.

Ausser der im Vorhergehenden genau analysierten Handschrift besitzt unsre Bibliothek augenblicklich noch ein Manuscript wenigstens zum Theil

<sup>\*)</sup> Chasles, Aperçu. S. 53 der deutschen Uebersetzung. Digitized by GOOGLE Zeitschrift f. Mathematik u. Physik. (Supplem.)

mathematischen Inhalts, dasselbe ist in klein Folio auf Pergament und umfasst 22 Blatt ohne jede Bezeichnung. Es stammt aus dem zweiten Jahrzehnt des 14. Jahrhunderts.

Blatt 1<sup>a</sup> enthält eine Darstellung des decadischen Zahlensystems auf dem *Abacus* ohne Anwendung der Null. Ich lasse dasselbe in verkleinertem Maassstab nebenbei abdrucken.

| Per s  | Decē      | Centū | Mil           | Decem         | Centū         | Mille                  | Decies                     | Cēties                 |
|--------|-----------|-------|---------------|---------------|---------------|------------------------|----------------------------|------------------------|
| vnū    |           |       | le            | mili <b>a</b> | milia         | Milia                  | mille<br>millia            | mille<br>mili <b>a</b> |
| 1      | 1         | 1     | 1             | 1             | 1             | 1                      | 1                          | 1                      |
|        | Vi        | Ducē  | Duo           | Viginti       | Ducēta        | Bis                    | Vigesies                   | Ducēties               |
| Per s  | gin<br>ti | ta    | milia         | milia         | milia         | mille<br>mili <b>a</b> | mille<br>milia             | mille<br>mili <b>a</b> |
| 8      | 2         | 2     | 2             | 2             | 2             | 2                      | 2                          | 2                      |
|        | Tri       | Tricē | Tria          | Trigīta       | Tricēta       | Ter                    | Tredecies                  | Tricēties              |
| Per s  | gin<br>ta | ta    | mili <b>a</b> | milia         | milia         | mille<br>milia         | mille<br>milia             | mille<br>milia         |
| 3      | 3         | 3     | 3             | 3             | 3             | 3                      | 3                          | 3                      |
|        | Qua       | Qua   | Qua           | Quadra        | Quadrī        | Quater                 | u<br>Qdrages <sup>es</sup> | Qudrīges               |
| Per s  | dra       | drin  | tuor          | ginta         | genta         | mille                  | mille                      | mille                  |
|        | gīta      | gēta  | milia         | milia         | mili <b>a</b> | milia                  | milia                      | millia                 |
| 4      | 4         | 4     | 4             | 4             | 4             | 4                      | 4                          | 4                      |
| 1      | Quī       | Quin  | Quĩợ          | Quiqua        | Quīgē         | Quĩquies               | u<br>Quiqgeses             | Quïgesies              |
| Per s  | qua       | gen   | milia         | ginta         | ta            | mille                  | mille                      | mille                  |
|        | ginta     | ta    | mina          | milia         | milia         | milia                  | milia                      | milia                  |
| 5      | 5         | 5     | 5             | 5             | 5             | 5                      | 5                          | 5                      |
|        | u<br>Sex  | Sexin | Sex           | Sexa          | Sexin         | Sexies                 | u<br>Sexgesies             | Sexīgēta               |
| Per s  | gin       | gen   |               | ginta         | genta         | mille                  | mille                      | mille                  |
|        | ta        | ta    | milia         | milia         | milia         | milia                  | milia                      | milia                  |
| 6      | 6         | 6     | 6             | 6             | 6             | 6                      | · 6                        | 6                      |
|        | Sep       | Sep   | Septē         | Septua        | Septin        | Sepcies                | u<br>Septugeses            | septīgēt               |
| Per s  |           | tin   |               | ginta         | genta         | mille                  | mille                      | mille                  |
| 1      | ginta     | genta | milia         | milia         | milia         | milia                  | milia                      | milia                  |
| 7      | 7         | 7     | 7             | 7             | 7             | 7                      | 7                          | 7                      |
|        | Octo      | Octin | Octo          | Octua         | Octin         | Occies                 | u<br>Octugeses             | Octīgēta               |
| Per se |           | gen   |               | ginta         | genta         | mille                  | mille                      | mille                  |
|        | ginta     | ta    | milia         | milia         | milia         | mili <b>a</b>          | milia                      | milia                  |
| 8      | 8         | 8     | 8             | 8             | 8             | 8                      | 8                          | 8                      |
|        | Nona      | Non   | Nouē          | Nona          | Nonin         | Nonies                 | u<br>Nongesie <sup>s</sup> | Nonīgēt                |
| Per s  | gin       | gen   |               | ginta         | genta         | mille                  | mille                      | mille                  |
|        | ta        | ta    | milia         | milia         | milia         | milia                  | milia                      | milia                  |
| 9      | 9_        | 9     | 9             | 9             | 9             | 9                      | 9                          | 9                      |

Königl. Gymnasialbibliothek zu Thorp. Von MAXIMILIAN CURTZE. 99

Blatt 1<sup>b</sup> Pronosticaciones super. xjj. signa celi in corpore humano für jedes Zeichen drei Pronosticationen. Auf ihm findet man auch die Bemerkung .1364.epacte.26. Die folgenden Blätter 2<sup>a</sup>-7<sup>b</sup> umfassen dann ein Calendarium für das Jahr 1328. Dasselbe enthält: 1. die Tage des Monats; 2. Quatuor cicli premacionis lune; 3. die goldne Zahl; 4. die Wochenbuchstaben; 5. die Tageslänge; 6. die Sonnenhöhe. Ausserdem ist eine Rubrik für den lateinischen Kalender vorhanden und eine für die Feste. Am Fusse jeder Seite, mit Ausnahme der ersten, findet sich noch eine Pronostication für den Monat. Auf einem eingelegten Blatt Papier liest man die Bemerkung: Deest in hoc martyrologio. s. Calendario festum Visitationis Mariae d. 2. Jul. quod institutum est a. 1389. ab Vrbano VI, confirmatum postea a Bonifacio IX Vrbani successore et in concilio Basil., von moderner Hand, wahrscheinlich dem letzten Jahrhundert angehörig.

Der Rest der Handschrift endlich enthält eine theologia dogmatica in 80 Capiteln von der nämlichen Hand geschrieben, als der erste Theil des Codex.

In frühern Zeiten bis 1724 war unsre Bibliothek, die 1594 gegründet ist, sehr reich an mathematischen Manuscripten. Nach dem grossen Blutbade in Thorn im Jahre 1724, bei welchem auch das Gymnasium aus seiner Localität vertrieben wurde, sind die meisten dieser Manuscripte, wie lässt sich nicht nachweisen, abhanden gekommen, und nur die beiden oben beschriebenen sind gerettet worden. Da es jedoch für literarische Zwecke vielleicht von Werth ist, so gebe ich hier ein Verzeichniss der mathematisehen Manuscripte, die 1724 noch vorhanden waren, aus der Notitia Bibliothecae Gymnasii Thorunensis von Petrus Jaenichius, die 1724 in Jena erschienen ist.

Diese sind\*): II. Liber Physicus; III. Dialectica et physica: V. Glossa super Aristotelis librum physicum de anima et coelo scripta a Tilemanno; XIX. Elementa Euclidis cum commentar. Campani, continens 796 Conclusiones finitas an. 1354 in 17 fer. natituit.; adiungitur Arsaniches\*\*) de mensura Circuli; XXI. De concordia Astronomiae et Theologiae Fr. Petri Alliaco Cardinal. scr. 1414. Eiusdem calculatio de aetatibus mundi ante Christum etc., Eiusdem declaratio figurarum coeli seu facierum dierum revolut. Calculatio X figurarum et significatio. Elucidarius Astronomiae de Natiuitate JEsu Christi. Tractatus dc Concordia discordantium Astronomorum super significationibus triplicitatum signorum Zodiaci; XXII. Liber mathematicus; XXIII. Euclidis problemata cum explicatione (Jetzt R. 4? 2); XXIV. Arithmetica; XXV. Jo. Aegidii Historia Naturalis; XXVIII. In lib. Aristotelis Phys. de Coelo et mundo; XXIX. Liber de metallis et lapidibus; XXX. Liber physicus; XXXI. Liber physicus; XXXV.

<sup>\*)</sup> Die Nummern sind die des Jänichenschen Katalogs.

<sup>\*\*)</sup> D. i. Archimedes.

100 Ueber die Handschrift R. 4? 2, Problematum Euclidis explicatio, der

Quaestiones physicae; XXXVI. Liber physicus; CV. Canones tabularum apothecarii, mathematici et astrologici Hist. de S. Jodaco. — Zu bedauern ist es jedenfalls, dass von diesen 16 Manuscripten nur ein einziges erhalten ist. Nach den Bemerkungen des Jaenichen zu dem Manuscpript XXI. von Petrus de Alliaco, scheint dasselbe die Originalhandschrift dieses berühmten Mannes, nachmaligen Cardinals und Erzbischofs von Cambrai enthalten zu haben.

## Nachschrift.

Bei der Besprechung des *liber trium fratrum* habe ich oben gesagt, dass ich auf eine Anfrage an Herrn Prof. Kinkelin in Basel wegen der dort befindlichen Handschrift dieses Werkes keine Antwort erhalten hätte. Ich wandte mich seitdem auf andern Wege an die öffentliche Bibliothek in Basel und erhielt am 19. Juli d. J. durch Herrn Prof. Vischer, Bibliothekar genannter Bibliothek, vorläufig mit einem freundlichen Briefe des Herrn Prof. Kinkelin, d. d. 17. Januar 1868, der eine Beschreibung der Handschrift enthält, eine Abschrift des *liber trium fratrum*, die ebenderselbe sich zu seinem Privatgebrauch angefertigt hat. Indem ich für diese Zusendungen hiermit öffentlich meinen Dank abstatte, bedauere ich, dass ich durch das unangenehme Zusammentreffen von Umständen zu der oben erwähnten Bemerkung gekommen bin.

Ich entnehme dem besagten Manuscripte noch, dass unser liber trium fratrum nur die sechs ersten Sätze des im Ganzen 19 Sätze umfassenden Werkes enthält und bis auf die Einleitung fast wörtlich gleichlautend mit der Basler Handschrift. Auch möchte ich noch bemerken, dass in dem Codex, der das liber trium fratrum enthält, das liber carastonis und wahrscheinlich anch der Algorismus proportionum sich vorfinden. Auch die Abhandlung Thabit ben Corra's, de figura sectore, die von Steinschneider fälschlich mit der gleichnamigen Abhandlung des Campanus identificiert wird, findet sich in dem Basler Codex. (F. II, 33.)

Weitere Mittheilungen über dieses Manuscript, das mir auf einige Monate zur Disposition stehen wird, behalte ich mir vor.

Thorn, d. 25. Juli 1868.

CUBTZE.

Digitized by Google

# Anhang.

# Einige Stellen aus dem Algorismus Proportionum Magistri Nicolay Orem nach der Lesart der Handschrift R. 4<sup>o</sup> der Königlichen Gymnasialbibliothek zu Thorn.

#### I. Die Einleitung: Seite 82, Zeile 5-21.

**Vn**a media debet sic scribi  $\begin{bmatrix} 1\\ 2 \end{bmatrix}$  vna tertia sic  $\begin{bmatrix} 1\\ 3 \end{bmatrix}$  et due tertie sic et sic de alijs . et numerus qui supra uirgulam dicitur numerator iste uero qui est sub uirgula dicitur denominator C Proportio dupla scribitur | isto modo 2<sup>1a</sup> et tripla isto modo 3<sup>1a</sup> et sic de alijs. Proportio sesquialtera sic scribitur  $|\begin{bmatrix} \frac{p}{1}, \frac{1}{1 \cdot 2} \end{bmatrix}$  et sesquitertia sic  $\begin{bmatrix} \frac{p}{1}, \frac{1}{1 \cdot 3} \end{bmatrix}$ . Proportio superpartiens duas tertias scribitur sic  $\begin{bmatrix} \frac{p}{2}, \frac{2}{1 \cdot 3} \end{bmatrix}$ . | Proportio dupla superpartiens duas quartas scribitur sic  $\begin{bmatrix} \frac{p}{2}, \frac{2}{2} \end{bmatrix}$  et sic de alijs. | Medictas duple scribitur sic  $\begin{bmatrix} \frac{1}{2}, \frac{p}{2} \end{bmatrix}$ . quarta pars duple sesquialtere scribitur sic  $\begin{bmatrix} 1 \cdot p & 1 \\ 4 \cdot 2 & 2 \end{bmatrix}$  et sic de alijs. Et quecunque proportio rationalis scribitur per suos terminos sev | numeros minimos sicud dicetur proportio.13.ad.9. que uocatur superpartiens quatuor nonas. Similiter proportio irrationalis sicud medietas superpartiens .  $\frac{2}{3}$  . scribitur sic. Medietas proportionis | . 5 . ad . 3ª . et ita de alijs. C Omnis proportio irrationalis de qua nunc est mentio (?) | denominatur a proportione rationali taliter quod dicitur pars eius aut partes sicud dicendo medietas duple aut tertia pars triple uel due tertie quadruple vnum patet quod in denominationis [loco] talis proportionis irrationalis | sunt tria scilicet numerator denominator et proportio rationalis a qua denominatur cuius ista | irrationalis dicitur pars aut partes sicud cum dicitur una medietas duple vnitas est numerator uel loco numeratoris. 2. est denominator et proportio dupla est ista a qua ista denominatur et | ita potest patere faciliter de alijs C.

#### II. Regel 4: Seite 88, Zeile 9-42.

**C** Denominatorem proportionis irrationalis proprissime assignare. Pro isto sciendum est | quod proportio rationalis dicitur primaria que non potest diuidi in proportiones rationales equales Et est | illa inter cuius numeros Digitized by GOOGLE

minimos nullus est numerus medius proportionalis sev numeri | medij proportionales sicud est dupla aut tripla aut sesquialtera. Sed ista uocatur secundaria que potest | sic diuidi et inter cuius numeros est numerus uel numeri medij proportionales id est in medio loco | proportionales sicud sunt quadrupla que diniditur in duas duplas et octupla in tres duplas. Similiter | nonupla in duas triplas et sic de alijs C. Proposita itaque proportione irrationali qualibet. Si denominentur | partes tunc per regulam precedentem fiat quod uocetur pars quo posito uideatur si | proportio rationalis a qua denominatur sit primaria. Et si sic tunc standum est quia proportio | irrationalis de qua est sermo est competentissime nominata sicud dicendo vna tertia | sextuple uel una tertia duple et sic de alijs. Si uero proportio rationalis a qua denominatur sit secundaria | uideatur quot habet proportiones rationales primarias que sunt eius partes equales. Et si numerus | quotiens istarum partium et denominator proportionis irrationalis proposite sunt incommunicantes standum | est in tali denominatione. Sicud si dicatur vna medietas octuple talis denominatio est propria. | quia octupla habet tres partes equales rationales scilicet tres duplas et duo est denominator | proportionis irrationalis proposite . modo .3. et. 2. sunt numeri incommunicantes ideo medietas octuple | non est pars alterius proportionis rationalis minoris quam octupla quamuis bene partes sit quia medietas | octuple est  $\left|\frac{3 \cdot p}{4 \cdot 4}\right|$  sed talis denominatio non esset propria. Si autem numerus minor | primarum partium talis proportionis rationalis secundarie a qua denominatur proportio irrationalis et denominator | illius proportionis irrationalis que est pars ipsius sint numeri communicantes tunc accipitur | maximus numerus in quo communicant et per ipsum diuidendus est vterque illorum et diui/dendo numerum partium proportionis secundarie prouenit numerus proportionum partialium ex quibus | componitur proportio rationalis a qua denominatur proportio proprissime proposita. Diuidendo uero denominatorem | proportionis per eundem maximum numerum prius habitum uenit denominator proportionis irrationalis | proprissimus

et quesitus. Verbi gratia. Proponatur proportio que uocetur  $\left[\frac{3 \cdot p}{4 \cdot 4}\right]$  | tunc agendo per tertiam regulam patet quod ipsa est vna quarta proportionis. 64<sup>10</sup> Sed quia . 64<sup>1a</sup> | componitur ex . 6 . duplis et . 6 . qui est numerus partium primariarum istius . 64<sup>10</sup> et | . 4 . qui est denominator proportionis proposite sunt communicantes in . 2 . ergo diuidendo | . 6 . per . 2 . exiet . 3 . igitur proportio proposita est pars trium duplarum sev pars octuple. Similiter di|uidendo . 4 . per . 2 . venit . 2 . igitur proportio proposita est vna medietas . patet ergo | ex hac regula quod proportio proposita est vna medietas octuple et scribitur sic  $\left[\frac{1 \cdot p}{2 \cdot 8}\right]$ . Et | ista est eius denominatio competentior. Eodem modo vna duodecima quatuor triplarum | sev 81<sup>10</sup> est vna tertia triple et similiter vna quarta sex triplarum est .  $\frac{1}{2}$  . trium triplarum sev 27<sup>10</sup> etc.

102

III. Regel 7-9: Seite 84, Zeile 29 - Seite 85, Zeile 26.

C In additione irrationalis ad irrationalem et subtraxione irrationalis ab irrationali | sunt regule generales pro quibualibet quantitatibus.: --- Sit itaque pars nota | rei note addenda parti note rei note uel demenda. Verbi gratia. Sit | . c . pars rei . a . et . d . sit pars rei . b . et quod . c . denominetur numero . e . et . d . numero . f . | Ducam igitur . a . in . f . idem continuabo totidem . a . quotus est | numerus . f. et exibit . g . Similiter ducam . b . in . e . et nenit . h . erit ergo . c . pars ipsius | . g . secundum numerum qui fit ex ductu.e.in.f. et secundum eundum numerum erit.d. pars ipsius | . h . igitur sicud . c . ad . g . ita d . ad . h. C Addendo igitur sequitur quod sicud. c. ad. g. | et etiam. d. ad. h. ita aggregatum ex. c. et .d. ad aggregatum ex.g.et.h. ergo additum | uel aggregatum.c.d. est pars aggregati.g.h. secundum numerum qui fit ex ductu |.e. in .f. C Subtrahendo uero sequitur Quod si . g . extrahatur ex . h . aut e contrario ||| et . c . ex . d . aut e contrario residuum erit residui tota pars quota pars . c . erat | ipsius . g . [aut quota pars . c . erat ipsius . g .] aut quota pars erat . d.ipsius | . h. et hoc est secundum numerum qui fit ex.e.in . f. [Exemplum in additione]. Verbi gratia in additione proportionum | irrationalium. Et sit medietas duple addenda cum tertia parte triple proportionis . continuabo | ex vna parte tres duplas ut docet prima regula et hoc facio quia alia proportio denominatur | a ternario et dicitur tertia pars et ex altera parte ibidem et per idem continuabo duas | triplas et multiplicabo denominationes partium vnum per alterum sev. 2. per. 3. et uenit. 6. | igitur medietas duple est sexta pars trium duplarum. Et similiter tertia pars triple est sexta pars | duarum triplarum ergo aggregatum ex medietate duple et tertia parte triple est sexta pars aggregati ex tribus duplis et duobus triplis. Et per primam regulam patet quod tale aggregatum | est proportio . 72<sup>1a</sup> scilicet. 72.ad.1. igitur addendo medietatem duple proportionis et tertiam partem | triple venit sexta pars proportionis. 721. C [Exemplum in subtraxione]. Verbi gratia in subtraxione proportionum irrationalium. | Subtrahatur medietas duple proportionis a tertia parte triple. Primo igitur subtrahatur ag gregatum ex tribus duplis ab aggregato ex duobus triplis per secundam regulam et remanet | sesquioctaua igitur subtrahendo sextam partem a sexta parte scilicet medietatem duple a tertia parte | triple remanet sexta pars sesquioctave. Nam medietas duple est sexta pars trium | duplarum et tertia pars triple est sexta " pars duarum triplarum igitur subtrahendo sextam a sexta | residui quod remanet subtrahendo totam a toto. Et hoc est facile demonstrare | C Si autem partes habent candem denominationem. Tunc preter | regulam generalem propositam potest dari facilior regula specialis ista. Quid si tertia pars.a. | addatur tertia parti - b . exibit tertia pars illius quod fieret ex additione . a . ad . b . Similiter si tertia pars . a . subtrahatur a tertia parte . b . remanebit tertia pars residui | quod restat per subtraxionem . a . de . b. Vt si dupla addatur

Digitized by GOOGLE

## Anhang.

triple venit sextupla | ergo si medietas duple addatur medietate triple venit medietas sextuple. Similiter | si dupla subtrahatur a tripla remanet sesqui altera ergo Si tertia duple subtrahatur | a tertia triple remanet tertia pars sesquialtere et ità de alijs. Additio autem | probat subtraxionem et e contrario sicud in alijs. C.

### IV. Die Regel des zweiten Tractates: Seite 87, Zeile 28 - Seite 88, Zeile 12.

C Adhuc occurrit alia difficultas uel utilitas et alius modus operan|di sed vna regula primitus est ponenda et est ista. Si duarum rerum fuerit proportio da ta proportionem quamlibet sibi multiplicem assignare. Sit.a. maius et . b . | minus et eorum proportio data sit . c . sitque . d . multiplex ad . a . secundum numerum . e . | sit etiam . f . multiplex ad . b . secundum numerum . g . et proportio inter . g . et . e . sit . h . Si igitur | numeri . e . et . g . sunt equales manifestum est quod proportio . d . ad . f . est sicud proportio. a. | ad. b. que est data. Si autem. e. est maior quam. g. tunc simul addende | sunt due proportiones . c . et . h . et proportio ex eis confecta est proportio.d.ad.f. quesita. Verbi gratia | Sit.c. sesquialtera et . h . sesquitertia et quod . e . sit . 4 . et . g . 3. tunc patet quod . 4 . | a. excedunt. 3. a. in sesquitertia. Et. 3. a. excedunt. 3. b. in sesquialtera | igitur . 4 . a . excedunt . 3 . b . in proportione composita ex sesquialtera et sesquitertia sev in | dupla igitur . d . excedit . f . in ista proportione. Si uero e contrario . g . fuerit maior quam . e . | tunc igitur uel . h . et . c . proportiones sunt equales et ergo . d . et . f . sunt equalia quoniam si . a . est sesquialterum ad . b . tunc tria . c . sunt equalia duobus . a. Sed si ||| proportiones . c . et . h . sunt inequales et sicud prius . g . sit maior numerus quam . e . tunc de | istis proportionibus subtrahenda est minor \* maiore secundum regulas superius positas | Et proportio residua est proportio.d.ad.f. Et si.e. est maior quam.g.tunc.d. est maius | quam . f. Et si e contrario tunc e contrario. Verbi gratia. Si.c. est proportio sesquialtera et . h . sesquitertia | tunc tria . a . faciunt magis quam . 4 . b . quod patet quia.3.a. ad.3.b. sunt in | proportione sesquialtera Sed.4.b. ad.3.b. est proportio sesquitertia ergo tria.a. sunt magis | quam.4.b. per proportionem in qua sesquialtera excedit sesquitertiam scilicet per sesquioctavam | ergo proportio .d.ad.f. est sesquioctaua. Eodem modo agendum est si fuerit e contrario | scilicet si .h. sit maior quam . c . ut si .h. sit sesquialtera et . c . sesquitertia sed tunc | euenit e contrario scilicet quod.f. erit maius quam . d . in proportione sesquioctaua autem prius . d . erat sicud | . 9 . et . f . 8 . nunc autem . f . est nouem et . d . 8 . et similiter agendum est de proportionibus | irrationalibus.

## VIII.

# Die Tonleiter und ihre Berechnung.

Von

GUSTAV SCHUBRING, in Halle a/S.

Theilweise schon veröffentlicht in der Zeitschrift für die gesammten Naturwissenschaften Bd. XXVII. S. 485-503.

Hierzu eine Tafel mit 8 Figuren.

Die im ersten Theile der "Akustik" von Chladni gegebene Darstellung der Lehre von den musikalischen Intervallen und der Tonleiter wird noch heute von den meisten Physikern als mustergültig betrachtet und in den Lehrbüchern der Physik ziemlich unverändert vorgetragen; man schliesst sich also auch fast überall der Behauptung an, dass die musikalische Temperatur eine absolute Nothwendigkeit sei. Chladni sagt nämlich (Akustik S. 38-40), die Abänderung der arithmetischen "Reinigkeit" der Intervalle auf den Clavieren und andern Instrumenten mit festen Tönen geschehe nicht diesen Instrumenten zu Gefallen, sondern es könnten die reinen Intervalle in der Musik überhaupt gar nicht angewendet werden, selbst wenn man auf allen Instrumenten die Intervalle ganz rein hervorbringen könnte. Wenn man nämlich eine Tonfolge (Melodie) ausführen will, so hat man die Wahl zwischen folgenden zwei Möglichkeiten: Entweder man führt dieselbe so aus, dass jeder Schritt einem der bekannten Intervalle genau gleich ist - und dann behalten die Töne nicht das richtige Verhältniss zum Grundtone; oder man bringt alle Töne ins richtige Verhältniss zum Grundtone — und dann stehen sie untereinander nicht im richtigen Verhältnisse. Will man z. B. die Tonfolge:

c f f d g c c ausführen, so kann man entweder die Intervalle derselben, nämlich: Quarte; kl. Terz Quarte Quinte (aufst.) (abst.) (abst.) sämmtlich richtig machen, oder man kann die einzelnen Töne so be-Digilized by OOQLE stimmen, dass sie alle zum Grundton das richtige Verhältniss haben. Im ersten Falle erhält man folgende Schwingungszahlen:

1;  $\frac{4}{3}$ ;  $\frac{4}{3} \cdot \frac{5}{6} = \frac{10}{9}$ ;  $\frac{10}{9} \cdot \frac{4}{3} = \frac{49}{27}$ ;  $\frac{49}{27} \cdot \frac{2}{3} = \frac{89}{81}$ ; der Ton c hat also am Schluss der Tonfolge die Schwingungszahl  $\frac{49}{51}$ , während er am Anfange die Zahl 1 hatte, mithin ist er um ein kleines Intervall, das sogenannte syntonische Komma, tiefer geworden.

Giebt man aber zweitens allen Tönen das richtige Verhältniss zum Grundtone, so kann man ihnen entweder folgende Schwingungszahlen beilegen:

 $1; \frac{1}{3}; \frac{10}{9}; \frac{3}{2}; 1 - \frac{1}{2}$ 

oder auch:

 $1; \frac{4}{3}; \frac{2}{5}; \frac{3}{2}; 1.$ 

Bei der ersten Art der Ausführung ist das **d** etwas tiefer und die Quart **d**—**g** hat das Intervall  $\frac{3}{2}$ :  $\frac{1}{9}^{0} = \frac{27}{26} = \frac{4}{3} \cdot \frac{8}{80}$ , sie ist also um ein "syntonisches Komma" zu gross; — bei der zweiten Ausführungsart aber ist das **d** etwas höher und die kleine Terz **d**—**f** hat das Intervall  $\frac{4}{3}$ :  $\frac{8}{5} = \frac{32}{27} = \frac{6}{5} \cdot \frac{80}{81}$ , sie ist also um ein syntonisches Komma zu klein.

Chladni ist nun der Meinung, dass in einer Melodie weder Aenderungen der Tonhöhe des Grundtones noch solche falschen Intervalle vorkommen dürften, er hält es daher für nothwendig, dass zur Erhaltung eines brauchbaren Tonsystemes jedes Intervall etwas von der genauen Stimmung abweichen müsste, und zwar empfiehlt er die sogenannte 12stufige gleichschwebende Temperatur als das beste Tonsystem auch für die Instrumente, auf denen, wie bei den Geigen, die Tonhöhe ganz beliebig bestimmt werden kann. — Dieser Deduction haben sich bis jetzt die meisten Physiker angeschlossen und sie sind daher mit Chladni der Meinung, dass die Temperatur der musikalischen Intervalle nicht zu vermeiden sei.

Durch die gleichschwebende Temperatur wird nun leider nur die Forderung erfüllt, dass die Tonhöhe des Grundtones constant bleibt, aber die einzelnen Töne haben weder mit dem Grundtone noch unter sich richtige Verhältnisse, so dass die Accorde durch die gleichschwebende Temperatur wesentlich in ihrem Wolklange beeinträchtigt werden. Die gleichschwebende Temperatur ist also ein schlechter Ausweg aus dem obigen Dilemma und man hat sie auch nur darum eingeführt und beibehalten, weil man sie für ein nothwendiges Uebel hielt. Dass sie diess nun in der That nicht ist, hat Helmholtz in seiner "Lehre von den Tonempfindungen" nachgewiesen. Helmholtz verlangt nämlich im Anschluss an die Hauptmann'sche "Theorie der Harmonik und Metrik", dass alle Töne einer Tonleiter zum Grundtone die durch die bekannten Schwingungszahlen festbestimmten Verhältnisse

haben; dabei werden natürlich einige Intervalle zwischen Tönen der Tonleiter nicht die einfachen Verhältnisse erhalten, aber das ist auch nach der Hauptmann'schen Theorie gar nicht nöthig — .es müssen sogar nach dieser Theorie in jeder Tonleiter einige Terzen und Quinten u. s. w. falsch, also dissonant sein. In C-Dur müssen z. B. die Quinte d-a und die kl. Terz d-f um ein Komma kleiner sein, als die consonanten Intervalle  $\mathbf{c} - \mathbf{g}$  und  $\mathbf{e} - \mathbf{g}$ ; die obige Tonfolge, die sich offenbar in C-Dur bewegt, muss also nach Hauptmann und Helmholtz in der zuletzt angegebenen Weise ausgeführt werden. Da aber in andern Tonarten, z. B. in d-Moll die kleine Terz d-f consonant sein muss, so muss Helmholtz bei der praktischen Ausführung der Hauptmann'schen Theorie mehrere Töne mit dem Namen f unterscheiden, nämlich den von Hauptmann als f bezeichneten Ton mit der Schwingungszahl  $\frac{2}{20}$ , und die als F bezeichnete reine Quarte  $\frac{4}{3}$ . In gleicher Weise muss man auch bei den andern Stufen der Tonleiter zwei und mehr Töne gleiches Namens unterscheiden.

Durch consequente Durchführung des Hauptmann'schen Principes gelangt nun Helmholtz zu einem sehr reichhaltigen Tonsystem, dessen Töne er zwar genau bestimmt, deren Schwingungszahlen er aber nicht angegeben hat. Es dürfte daher von Interesse sein, diese Zahlen kennen zu lernen und mit den Zahlen der von Chladni angegebenen Tonleiter zu vergleichen; ich habe nun dieselben im Folgenden berechnet und zur besseren Uebersicht die Logarithmen derselben hinzugefügt.

Soll nämlich ein Intervall gefunden werden, welches so gross ist als zwei Intervalle zusammengenommen, so hat man deren Schwingungszahlen mit einander zu multipliciren; soll aber das Intervall gefunden werden, um welches zwei gegebene Intervalle verschieden sind, so hat man den einen Bruch durch den andern zu dividiren; diese Multiplicationen und Divisionen, die mitunter recht unbequem werden können, verwandeln sich bei Anwendung der Logarithmen in Additionen und Subtractionen. Die Logarithmen erleichtern also die Rechnung und die Uebersicht über die gefundenen Resultate, zumal wenn man die von Opelt ("allgemeine Theorie der Musik") vorgeschlagene graphische Darstellung der Tonleiter zu Hülfe nimmt; dieselbe besteht darin, dass man auf einer Linie, von einem ihrer Endpunkte aus, welcher den Grundton (Schwingungszahl = 1, Logarithmus = 0) darstellt, Strecken abträgt, die den Logarithmen der einzelnen Töne proportional sind.

Die Logarithmen sind, soviel ich weiss, bei der Tonleiter zuerst augewandt von Marpurg ("historisch-kritische Beiträge zur Musik" V, 6.), später hat Opelt zu demselben Zwecke Logarithmen mit der Basis 2 (erhalten durch Division der gemeinen Logarithmen mit 0,30103) Digitized by COOR verwendet und endlich hat Mach in der "anschaulichen Darstellung einiger Lehren der musikalischen Akustik" (diese Zeitschrift 1865) sich desselben Mittels bedient zur Herstellung eines Modells für die Obertöne, auf welches ich später noch einmal zurückkommen werde.

Ich werde nun im Folgenden neben den Schwingungszahlen der Töne des Helmholtz'schen Tonsystemes die Logarithmen derselben für die Basis 2 angeben, — ich will aber des bessern Verständnisses wegen zunächst die Principien dieses Systemes auseinandersetzen und beginne dabei mit der Entwickelung der Dur- und Molltonleiter aus dem Dur- und Mollaccorde.

Die Schwingungszahlen der Töne des Duraccordes und die Logarithmen derselben im Logarithmensystem 2 sind folgende:

| Töne       | Schwingungszahlen    | Logarithmen |
|------------|----------------------|-------------|
| Grundton   | 1 = 1,00             | 0,00000     |
| gr. Terz   | $\frac{1}{4} = 1,25$ | 0,32193     |
| Quinte     | $\frac{3}{2} = 1,50$ | 0,58496     |
| Octave     | 2 = 2,00             | 1,00000     |
| gt. Decime | $\frac{5}{2} = 2,50$ | 1,32193     |
| Duodecime  | 3 = 3,00             | 1,58496     |
| 2te Octave | 4 = 4,00             | 2,00000     |
|            | u. s. w.             |             |

Man sieht, dass die Logarithmen aller Octaven des Grundtones ganze Zahlen sind, und dass die Logarithmen zweier Töne, welche um eine Octave auseinander liegen, wie z. B. Quinte und Duodecime, sich gerade um eine Einheit unterscheiden. Da es nun bei der Betrachtung der Verhältnisse einer Tonleiter nur auf Töne innerhalb einer Octave ankommt, so hat Opelt die vor dem Komma stehende Charakteristik der Logarithmen ganz weggelassen und die Decimalbruchstellen wie ganze Zahlen hingeschrieben; bei kleinern Intervallen hat er die in den ersten Stellen sich ergebenden Nullen mit verzeichnet. Ich werde diess Verfahren nachahmen, werde aber nicht wie Opelt nur 3 Decimalstellen anwenden, sondern 5, weil sonst gewisse kleine Unterschiede nicht sichtbar werden; ich multiplicire also alle Logarithmen mit 100000.

Im Molldreiklang tritt statt der grossen Terz die kleine ein; das Intervall der letztern ist aber schon im Duraccord vorhanden, nämlich als Intervall zwischen der grossen Terz und der Quinte; es ist also der Logarithmus der kleinen Terz = 58496 - 32193 = 26303. Demnach ergiebt sich für den Mollaccord:

| Töne<br>Grundton | Schwingungszahlen $1 = 1,0$ | Logarithmen<br>. 00000 |
|------------------|-----------------------------|------------------------|
| kl. Terz         | $\frac{6}{5} = 1,2$         | 26303                  |
| Quinte           | $\frac{3}{2} = 1,5$         | 58496                  |
|                  |                             | Digitized by Google    |

108

In Fig. 1. sind beide Accorde graphisch dargestellt; von der einen Seite zeigt die Figur den Duraccord, von der andern den Mollaccord; — ûm auch die zwei Umlagerungen jedes der beiden Accorde (die sogenannten Sexten- und Quartsexten-Accorde) zu zeigen, sind beide Accorde bis zur Duodecime fortgeführt. Schneidet man diesen Streifen aus, so kann man damit eine nach demselben Massstabe (Octave = 100 Millimeter) gezeichnete Tonleiter untersuchen, ob sie die zur Bildung der Accorde nöthigen Töne enthält. Man sieht auch an dieser Zeichnung ohne weiteres, wie sich die grosse und kleine Terz zur Quinte ergäuzen, ferner wie die Quinte und die Quarte, die grosse Terz und die kleine Sexte, ebenso auch die kleine Terz und die grosse Sexte zusammen eine Octave ausmachen. Wenn daher in einer Tonleiter die Octaven, Quinten und Terzen richtig sind, so sind auch die Quarten und Sexten richtig; man braucht also dann die letztern Intervalle nicht noch besonders zu untersuchen.

Die Durtonleiter wird nun bekanntlich gebildet aus drei Duraccorden, nämlich den Accorden des Grundtones, der Quinte und der Unterquinte, d. h. des Tones zu dem der Grundton die Quinte bildet. Der erste Accord wird gebildet vom Grundton, der grossen Terz und der Quinte, der zweite von der Quinte, der grossen Septime und der None, der dritte von der Quarte, der grossen Sexte und der Octave. Setzt man für die None die um eine Octave tiefere Secunde, so erhält man für die Durtonleiter folgende Bestimmungen:

|             | 0 0                                                                     |              |
|-------------|-------------------------------------------------------------------------|--------------|
| Töne        | Schwingungszahlen                                                       | Logarithmen  |
| Grundton    | 1 = 1                                                                   | 00000        |
| Secunde ·   | $\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} = \frac{9}{8} = 1,125$ | 16993        |
| gr. Terz    | $\frac{5}{4} = 1,25$                                                    | 32193        |
| Quarte      | $2 \cdot \frac{2}{3} = \frac{4}{3} = 1,333 \cdots$                      | 41504        |
| Quinte      | $\frac{3}{2} = 1,5$                                                     | <b>58496</b> |
| gr. Sexte   | $2 \cdot \frac{2}{3} \cdot \frac{5}{4} = \frac{5}{3} = 1,666 \cdots$    | 73697        |
| gr. Septime | $\frac{3}{2} \cdot \frac{5}{4} = \frac{15}{8} = 1,875$                  | 90689        |
| Octave      | 2 = 2                                                                   | 100000.      |

Die graphische Darstellung dieser Tonleiter ist in Fig. 2<sup>a</sup> gegeben und zwar mit den Noten der C-Durtonleiter; die drei Töne e, a, h, welche in den drei erwähnten Accorden die Terzen sind, sind nach der Hauptmann-Helmholtz'schen Bezeichnung mit kleinen Buchstaben geschrieben, während die im Quintenverhältniss zu einander stehenden Töne F - C - G - D mit grossen Buchstaben geschrieben sind. Setzt man diese Quintenreihe fort, so kommt man zu Tönen A, E und H mit folgenden Bestimmungen:

|             |       | löne      |   | Schwingungszahlen Logarithmen                                                                     |   |
|-------------|-------|-----------|---|---------------------------------------------------------------------------------------------------|---|
| falsche     | gross | se Sexte: | A | $\frac{2}{8} \cdot \frac{3}{4} = \frac{27}{16} = \frac{5}{3} \cdot \frac{81}{81}$ 75489           |   |
| "           | ,,    |           |   | $\frac{27}{16} \cdot \frac{3}{4} = \frac{31}{64} = \frac{5}{4} \cdot \frac{31}{80}$ 33985         |   |
| <b>,,</b> . | ,,    | Septime:  | H | $\frac{1}{64} \cdot \frac{3}{2} = \frac{1}{123} = \frac{1}{5} \cdot \frac{3}{64}$ gitized 9248102 | 2 |

Man sieht, dass die durch Quinten erhaltenen Töne alle um  $\frac{81}{80}$ höher sind, als die durch grosse Terzen erhaltenen. In Logarithmen beträgt dieser Unterschied 01792, Später wird sich zeigen, dass diess nicht nur für die Töne *a*, *e*, *h* und *A*, *E*, *H* gilt, sondern auch von allen andern Tönen. In Fig. 2<sup>b</sup> ist die C-Dur-Tonleiter mit den Tönen *A*, *E*, *H*, statt *a*, *e*, *h* dargestellt, also in der Form wie sie von Pythag or as angegeben worden ist. Durch Vergleichung dieser letztern Tonleiter mit Fig. 1. erkennt man, dass dieselbe keinen richtigen Duraccord enthält.

Da im Folgenden die grossen und kleinen Buchstaben zur Unterscheidung der durch Quinten und grosse Terzen gefundenen Töne benutzt werden, so gebraucht man zur Unterscheidung von Tönen verschiedener Octave andere Zeichen. Wenn eine solche Unterscheidung nöthig werden sollte, so wende ich obere und untere Indices an, so dass z. B. a' die höhere Octave von a bedeutet, E, aber die tiefere Octave zu E.

Für die Molltonleiter geben Hauptmann und Helmholtz gleichmässig die Regel, dass sie aus den Mollaccorden des Grundtones und der Unterquinte, und dem Duraccord der Quinte zu bilden sei. Dass die beiden Theoretiker verschiedene Gründe dafür haben, dass nicht auch von der Quinte der Mollaccord zu nehmen sei, ist bei der Berechnung der Schwingungszahlen gleichgültig.

Wir bezeichnen nun mit Helmholtz die kleine Terz von C durch  $\overline{cs}$ , die von F durch  $\overline{as}$  u. s. w.; dass diese Töne nicht mit cs und as identisch sind, werden wir später sehen. — Während also die C-Durtonleiter gebildet wird aus den Tönen der Accorde:

$$F-a-C'; \quad C-e-G; \quad G-h-D';$$

ergeben sich für die Bildung der C-Molltonleiter die Accorde:

$$F - \overline{as} - C'; C - \overline{es} - G; G - h - D'.$$

Die Molltonleiter unterscheidet sich mithin von der Durtonleiter nur durch die kleine Terz und kleine Sexte; es muss aber bemerkt werden, dass häufig (in aufsteigender Richtung) auch die grosse Sexte (a) statt der kleinen ( $\overline{as}$ ) — und dass ferner (in absteigender Richtung) statt der grossen Septime (h) die kleine ( $\overline{b}$ ) als kleine Terz der Quinte eintritt. — Die bei der Durtonleiter noch nicht angegebenen Intervalle der Molltonleiter sind daher folgende:

| Töne                          | Schwingungszahlen                                   | Logarithmen |
|-------------------------------|-----------------------------------------------------|-------------|
| kleine Terz es                | $\frac{6}{5} = 1,2$                                 | 26303       |
| kleine Sexte $\overline{as}$  | $\frac{4}{3} \cdot \frac{6}{5} = \frac{8}{5} = 1,6$ | 67807       |
| kleine Septime $\overline{b}$ | $\frac{3}{2} \cdot \frac{6}{5} = \frac{9}{5} = 1,8$ | 84800       |

. Fig. 3<sup>a</sup> zeigt die Molltonleiter nach den eben angegebenen Bestimmungen, die kleine Septime und grosse Sexte sind als Hülfstöne Digitized by LOOSIC nur punktirt. Wollte man aber die kleinen Terzen der drei Accorde nach Pythagoras durch Quinten bestimmen, so würde man die in Fig. 3<sup>b</sup> angegebenen Werthe erhalten, nämlich:

| Töne    |        |           | Schwingungszahlen                                                                    | Logarithmen |
|---------|--------|-----------|--------------------------------------------------------------------------------------|-------------|
| falsche | kleine | Septime B | $\frac{4}{3} \cdot \frac{4}{3} = \frac{16}{5} = \frac{9}{5} \cdot \frac{89}{81}$     | 83007       |
| "       | ,,     | Terz Es   | $\frac{1}{9}^6 \cdot \frac{2}{3} = \frac{32}{24} = \frac{6}{5} \cdot \frac{80}{81}$  | 24511       |
| "       | ,,     | Sexte As  | $\frac{32}{27} \cdot \frac{4}{3} = \frac{128}{81} = \frac{8}{5} \cdot \frac{80}{81}$ | 66015       |

Die durch kleine Terzen gefundenen Töne sind also um das Intervall  $\frac{91}{80}$  höher als die gleichnamigen durch Quinten gefundenen, während die durch grosse Terzen um dasselbe Intervall tiefer waren, man darf dieselben also nicht identificiren, wie es Hauptmann thut.

Nun sind, wie man leicht übersicht, nicht nur die Töne: .... As - Es - B - F - C - G - D - A - E - H....

untereinander richtige Quinten, sondern es bilden auch die Töne:

$$\ldots a - e - h \ldots$$

und in gleicher Weise

 $\ldots \overline{as} - \overline{es} - \overline{b} \ldots$ 

Reihen von richtigen Quinten.

Ferner sind nicht pur die Intervalle:

$$\ldots F - a; C - e; G - h \ldots$$

richtige grosse Terzen, sondern auch:

 $' \ldots \bar{as} - C'; es - G; \bar{b} - D' \ldots$ 

Endlich haben wir auch zweierlei kleine Terzen, nämlich erstens:

$$\ldots a - C'; e - G; h - D' \ldots$$

und zweitens:

 $\ldots$   $F - as: C - es: G - b \ldots$ 

Wir können jetzt von den Tönen, die mit grossen Buchstaben geschrieben sind, Dur- und Mollaccorde construiren; von den Tönen, die mit kleinen Buchstaben geschrieben sind, aber nur Mollaccorde; will man von diesen auch Duraccorde bilden, so braucht man dazu noch eine vierte Reihe von Tönen, welche untereinander wieder richtige Quinten bilden und die grossen Terzen zu den kleinen Buchstaben sind. Helmholtz bezeichnet diese Töne durch unterstrichene grosse Buchstaben:

$$\dots B - F - C - G - D - A - E \dots$$

Man kann sich leicht davon überzeugen, dass diese Töne abermals um das Komma  $\frac{8}{5}$ ? tiefer sind, als die gleichnamigen Töne der Reihe, die mit kleinen Buchstaben geschrieben ist, gerade so, wie diese Töne um  $\frac{8}{5}$ ? tiefer sind als die mit grossen Buchstaben bezeichneten. Digitized by GOOGLE

111

Mit Hülfe der Töne dieser Reihe können wir nun noch die grossen Terzen:

 $\ldots$  as -C'; es -G; b-D'....

und die kleinen Terzen:

 $\ldots$   $F - as: C - es: G - b \ldots$ 

bilden.

Wir haben also jetzt 4 Quintenreihen, von denen die Töne einer jeden um ein Komma tiefer sind, als die gleichnamigen Töne der folgenden. Die höchsten Töne sind enthalten in der Reihe:

 $\cdots b - f - c - \overline{g} - d \cdots$ 

dann kommen die gleichnamigen Töne der Reihe:

 $\ldots$   $B - F - C - G - D \ldots$ 

darauf :

 $\dots b - f - c - g - d \dots$ 

und endlich die tiefsten:

 $\dots B = F = C = G = D$ 

Man sieht, dass der Strich über einem kleinen Buchstaben den Ton um 2 Kommata, d. h. um  $(\frac{\$}{\$} \frac{1}{6})^2$ , oder in Logarithmen um 03588 erhöht; ein Strich unter einem grossen Buchstaben aber bedeutet eine Erniedrigung um dasselbe Intervall. — Zur Bildung von grossen und kleinen Terzen gehören immer Töne aus 2 benachbarten Reihen, wie man am einfachsten aus der folgenden Zusammenstellung der möglichen Dur- und Mollaccorde sieht. Man kann nämlich Duraccorde von folgenden Formen bilden:

| 1) | f - A - c'; | $c - E - \overline{g};$  | $\overline{g} - H - d'$ | u. s. w. |
|----|-------------|--------------------------|-------------------------|----------|
| 2) | F - a - C'; | C - c - G;               | G - h - D'              | u. s. w. |
| 3) | f - A - c'; | $c - \underline{E} - g;$ | g - H - d'              | u. s. w. |

Die Mollaccorde aber nehmen folgende Gestalten an:

1)  $C - \overline{es} - G$ ;  $A, -\overline{c} - E$  u. s. w. 2) c - Es - g; a, -C - e u. s. w. 3) C - es - G; A, -c - E u. s. w.

Unter Beobachtung der oben für die Bildung der Dur- und Molltonleitern angegebenen Regeln kann man aus den Tönen jener 4 Reihen dreierlei Dur- und zweierlei Molltonleitern bilden, — nämlich

a) Durtonleitern:

1)  $\bar{c}$ , d, E,  $\bar{f}$ ,  $\bar{g}$ , A, H,  $\bar{c}'$ . 4) C, D, e, F, G, a, h, C'. 3) c, d, E, f, g, A, H, c'. b) Molltonleitern: 1) C, D,  $\bar{es}$ , F, G,  $\bar{as}$ , h, C'. 2) c, d, Es, f, g, As, H, c'. Digitized by Google

Da man nun auf Clavieren und den andern Tastaturinstrumenten nicht soviel Töne anbringen wollte, als zum absolut reinen Spiel nöthig sind, so identificirte man nicht nur alle Töne gleiches Namens, sondern auch noch cis mit des etc., so dass man in der Octave nur die bekannten 12 Tasten übrig behielt. Nach mancherlei vergeblichen Versuchen, einige Tonleitern rein, andere falsch zu stimmen, kam man zu der · Ueberzeugung, dass für ein 12stufiges Tonsystem die sogenannte gleichschwebende Temperatur immer noch das beste Auskunftsmittel ist. Man theilte also die ganze Octave in 12 gleiche Intervalle, von denen jedes das Schwingungsverhältniss  $1:\frac{1}{2}=1:1.05946\ldots$ hat, der Logarithmus desselben ist 08333, oder in der eigentlichen Form (s. S. 108) als Decimalbruch mit der Charakteristik geschrieben:  $0,08333\ldots = \frac{1}{12}$ . Die Schwingungszahlen der einzelnen Töne der gleichschwebenden Temperatur sind die Potenzen von  $\sqrt[12]{2}$ , dieselben können bei Chladni, Wüllner, Eisenlohr u. s. w. nachgesehen werden; die Logarithmen derselben aber sind die Vielfachen von 08333..., welche anzugeben wohl nicht nöthig ist. Dagegen gebe ich in Fig. 4. die graphische Darstellung der gleichschwebenden Temperatur; schneidet man diese Figur aus und vergleicht sie mit Fig. 2. und 3., so kann man die Fehler der gleichschwebenden Temperatur leicht erkennen. Ich habe alle diese Fehler berechnet und in der folgenden Tabelle mit ihren Logarithmen zusammengestellt. Die Werthe der Fehler sind durch Kettenbrüche auf möglichst kleine Verhältniss-Zahlen reducirt; wenn der temperirte Ton zu hoch ist, steht die grössere Zahl vorn, und vor dem Logarithmus ein Pluszeichen; ist der temperirte Ton zu niedrig, so steht die kleinere Zahl vorn und vor dem Logarithmus ein Minus. — Als normale Intervalle betrachte ich die oben bei den beiden Tonleitern angegebenen, als normalen halben Ton aber das Intervall 15:16, wie z. B. e-F.

| Intervalle  | Fe         | hle <b>r</b>   |
|-------------|------------|----------------|
| •           | angenähert | in Logarithmen |
| Halber Ton  | 147:148    | 00978          |
| Secunde     | 442:443    | 00326          |
| kl. Terz    | 121:122    | - 01303        |
| gr. Terz    | 127:126    | + 01140        |
| Quarte      | 885:886    | +00163         |
| Quinte      | 886:885    | - 00163        |
| kl. Sexte   | 126:127    | - 01140        |
| gr. Sexte   | 122 : 121  | +01303         |
| kl. Septime | 98:99      | - 01467        |
| gr. Septime | 148:147    | + 00978        |

Zur praktischen Ausführung der gleichschwebend-temperirten Stimmung benutzt man bekanntlich den sogenannten "Quintencirkel", Zeitschrift f. Mathematik u. Physik. (Supplem.) d. h. man stimmt von einem Grundtone ausgehend 12 Quinten mit dem eben angegebenen Fehler ab, dadurch gelangt man genau zum Grundtone oder eigentlich zur 7. Octave desselben. Man kann sich davon am leichtesten auf folgende Weise überzeugen: der Logarithmus der temperirten Quinte (in der unverkürzten Form geschrieben) ist gleich  $\frac{1}{12} = 0.5833333...$ , den Logarithmus der 12. Quinte erhält man durch Multiplication mit 12, er beträgt also genau 7, und diess ist in der That der Logarithmus der 7. Octave. In gleicher Weise erhält man durch 12 absteigende Quinten einen um 7 Octaven tiefer liegenden Ton — ferner durch 3 aufsteigende grosse Terzen (Logarithmus  $= \frac{4}{12} = \frac{1}{3}$ ) oder 4 aufsteigende kleine Terzen (Logarithmus  $= \frac{3}{12} = \frac{1}{4}$ ) die höhere Octave des Grundtones.

Da die halben Tonstufen der gleichschwebend temperirten Scala alle einander gleich sind, so ist dieselbe für alle Tonarten gleich gut, oder vielmehr gleich schlecht - denn wenn man auch von dem grossen Fehler in der kleinen Septime, als einer fast nur in dissonanten Accorden vorkommenden Note, absieht, so bleiben doch noch die nicht unbedeutenden Fehler in den temperirten Terzen und Sexten, welche (nach den Helmholtz'chen Untersuchungen über den Grad des Wolklanges der einzelnen Accorde) durch ihre Schwebungen und falschen Combinationstöne ziemlich störend wirken, zumal bei den lang ausgehaltenen Tönen der Orgel und des Harmoniums. Helmholtz hat daher, zunächst für seine Untersuchungen, auf Grund des oben beschriebenen Tonsystems ein Harmonium mit mehreren Manualen nach reinen Quinten und Terzen einstimmen lassen, und die Accorde desselben so viel wolklingender gefunden, dass z. B. die Septimenaccorde ungefähr den Duraccorden der temperirten Scala an Wolklang gleichkommen. Er empfiehlt daher den Musikern dergleichen Instrumente sehr, besonders zum Gebrauch bei der Gesangbegleitung.

Sämmtliche Töne der oben angegebenen 4 Reihen würden sich nun schwerlich auf einem Instrumente mit festen Tönen anbringen lassen; es ist aber auch gar nicht nöthig, alle jene Töne wirklich einzeln herzustellen, denn bei der Berechnung der Schwingungszahlen und Logarithmen wird sich zeigen, dass eine ganze Anzahl von Tönen je zweier Reihen fast genau übereinstimmen.

Nach diesen Auseinandersetzungen komme ich endlich dazu, die oben (S. 108) versprochene Berechnung der 4 Quintenreihen des Helmholtz'schen Systems durchzuführen. Ich gehe aus von C = 1 und berechne zunächst von diesem Tone 12 aufsteigende und 12 absteigende Quinten, also einen sogenannten auf- und absteigenden "Quintencirkel", wie er z. B. schon von Chladui (Akustik S. 42) berechnet ist; ich füge aber zur bessern Vergleichung mit den Tönen der andern Quintenreihen die Werthe der von Chladui angegebenen gewöhnlichen

Brüche in Decimalbrüchen und ihre Logarithmen hinzu. Die Decimalbrüche sind bei dieser und den übrigen aufsteigenden Quintenreihen alle endliche, aber sie sind meistens abgekürzt, was durch einen Punkt hinter denselben bezeichnet ist; in den absteigenden Reihen sind die Decimalbrüche unendliche periodische, aber nur bei wenigen konnte die ganze Periode angegeben werden (durch ... bezeichnet), die übrigen sind, wie auch die Logarithmen, nach den gewöhnlichen Regeln abgekürzt.

## Reihe I.

|       | 1001110 10                                  |             |
|-------|---------------------------------------------|-------------|
|       | a) aufsteigend.                             |             |
| Töne  | Schwingungszahlen                           | Logarithmen |
| С     | 1 = 1                                       | 00000       |
| G     | $\frac{3}{2} = 1,5$                         | 58496       |
| D     | $\frac{9}{8} = 1,125$                       | 16993       |
| A     | $\frac{27}{16} = 1,6875$                    | 75489       |
| E     | $\frac{81}{64} = 1,265625$                  | 33985       |
| H     | $\frac{243}{128} = 1,898438.$               | 92481       |
| Fis   | $\frac{729}{512} = 1,423828.$               | 50978       |
| Cis   | $\frac{21 \times 7}{2048} = 1,067871.$      | 09474       |
| Gis   | $\frac{6561}{4096} = 1,601807.$             | 67970       |
| Dis   | $\frac{19693}{16384} = 1,201355.$           | 26466       |
| Ais   | $\frac{59049}{32768} = 1,802032.$           | 84963       |
| Eis   | $\frac{177147}{31047} = 1,351524.$          | 43459       |
| His,  | $\frac{531444}{262144} = 1,013643.$         | 01955       |
|       | b) absteigend.                              |             |
| Töne  | Schwingungszahlen                           | Logaiithmen |
| С     | 1 = 1                                       | 00000       |
| F     | $\frac{4}{3} = 1,3333333.$                  | . 41504     |
| B     | $\frac{16}{9} = 1,777777 \dots$             | . 83007     |
| Es    | $\frac{32}{27} = 1,185185$ .                | . 24511     |
| As    | $\frac{128}{81} = 1,580247.$                | 66015       |
| Des   | $\frac{256}{243} = 1,053498.$               | 07519       |
| Ges   | $\frac{1024}{729} = 1,404664.$              | 49022       |
| Ces   | $\frac{4096}{2187} = 1,872885.$             | 90526       |
| Fes   | $\frac{8192}{6561} = 1,248590.$             | 32030       |
| Bb    | $\frac{32768}{19683} = 1,664787.$           | 73534       |
| Eses  | $\frac{65536}{59049} = 1,109858.$           | 15037       |
| Ases  | $\frac{262141}{177141} = 1,479810.$         | 56541       |
| Deses | $\frac{104 \times 576}{531441} = 1,973081.$ | 98045       |
|       |                                             |             |

Man sieht leicht, dass die Schwingungszahlen der auf- und abstei-, genden Reihe umgekehrte Werthe zu einander sind, wenn man die Töne der aufsteigenden Reihe eine Octave tiefer, oder die der abstei-

115

genden um eine Octave höher nimmt; denn es ist z. B.  $G = \frac{3}{2}$ :  $F_{r} = \frac{3}{5}$ ;  $D = \frac{9}{5}$ :  $B_{r} = \frac{9}{9}$  u. s. w.; die Logarithmen dieser Töne ergänzen sich in Folge dessen zu 100000.

Graphisch dargestellt sind beide "Quintencirkel" in Fig. 5.; der aufsteigende in 5<sup>a</sup>, der absteigende in 5<sup>b</sup>. Durch Vergleichung mit der ausgeschnittenen Fig. 1. überzeugt man sich leicht, dass aus diesen 25 Tönen kein Duraccord aufgebaut werden kann, dazu braucht man eben noch die Töne der Reihe e-h-fis..., welche im Folgenden berechnet ist; eine besondere vollständige graphische Darstellung derselben scheint mir aber nicht nöthig zu sein, da in Fig. 6. die meisten Töne aller 4 Reihen dargestellt sind.

## Reihe II.

|       | neme 11.                                                              |             |
|-------|-----------------------------------------------------------------------|-------------|
|       | a) aufsteigend:                                                       |             |
| Töne  | Schwingungszahlen                                                     | Logarithmen |
| е     | $\frac{5}{4} = 1,25$                                                  | 32193       |
| h     | $\frac{15}{8} = 1,875$                                                | 90689       |
| fis   | $\frac{45}{32} = 1,40625$                                             | 49185       |
| cis   | $\frac{135}{128} = 1,054688.$                                         | 07682       |
| gis   | $\frac{495}{256} = 1,582031.$                                         | 66178       |
| dis   | $\frac{1215}{1024} = 1,186523.$                                       | 24674       |
| ais   | $\frac{3645}{2048} = 1,779785.$                                       | 83170       |
| eis   | $\frac{10935}{5192} = 1,334839.$                                      | 41667       |
| his,  | $\frac{32905}{32768} = 1,001129.$                                     | 00163       |
| fisis | $\frac{2}{6}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5} = 1,501694.$ | 58659       |
| cisis | $\frac{2952}{262144} = 1,126270.$                                     | 17155       |
| gisis | $\frac{55735}{24258} = 1,689406.$                                     | 75652       |
| disis | $\frac{2657205}{2007152} = 1,267054.$                                 | 34148       |
|       | b) absteigend:                                                        |             |
| Töne  | Schwingungszahlen                                                     | Logarithmen |
| е     | $\frac{5}{4} = 1,25$                                                  | 32193       |
| u .   | $\frac{5}{3} = 1,666666 \dots$                                        | 73697       |
| d     | $\frac{10^{\circ}}{9} = 1,1111111$                                    | 15200       |
| g     | $\frac{49}{29} = 1,481481\ldots$                                      | . 56704     |
| c'    | $\frac{160}{81} = 1,975309.$                                          | 98208       |
| ſ     | $\frac{320}{343} = 1,316872.$                                         | 39712       |
| b     | $\frac{1,2,2,0}{7,2,0} = 1,755830.$                                   | 81215       |
| es    | $\frac{2560}{187} = 1,170553.$                                        | 22719       |
| as    | $\frac{10240}{6561} = 1,560738.$                                      | 64223       |
| des   | $\frac{20480}{19683} = 1,040492.$                                     | 05726       |
| ges   | $\frac{110000}{100000000000000000000000000000$                        | 47230       |
| ces   | $\frac{327680}{147147} = 1,849763.$                                   | 88734       |
| _     |                                                                       |             |

 $\frac{233344}{233175}$  = 1,233175.

fes

30238

Die Töne der Reihe II. sind die grossen Terzen der entsprechenden Töne der Reihe I.; als Reihe III. berechne ich die Töne, welche wieder zu denen der Reihe II. grosse Terzen sind; dieselben sind nach dem 'Obigen zu bezeichnen durch unterstrichene grosse Buchstaben; die grosse Terz des Tones e heisst also <u>Gis</u> und die Schwingungszahl dieses Tones ist  $(\frac{5}{4})^2 = \frac{2.5}{16}$ , der Logarithmus aber  $2 \cdot 32193 = 64386$ .

Reihe III.

|       | a) aufsteigend:                     |             |
|-------|-------------------------------------|-------------|
| Töne  | Schwingungszahlen                   | Logarithmen |
| Gis   | $\frac{25}{16} = 1,5625$            | 64386       |
| Dis   | $\frac{75}{64} = 1,171875$          | 22882       |
| Ais   | $\frac{225}{128} = 1,757813.$       | 81378       |
| Eis   | $\frac{675}{512} = 1,318359.$       | 39874       |
| His   | $\frac{2025}{2048} = 1,977539.$     | 98371       |
| Fisis | $\frac{6075}{4096} = 1,483154.$     | 56867       |
| Cisis | $\frac{18225}{16384} = 1,112366.$   | 15363       |
| Gisis | $\frac{54675}{32768} = 1,668549.$   | 73859       |
| Disis | $\frac{161025}{131072} = 1,251412.$ | 32356       |
|       | u. s. w.                            |             |

#### b) absteigend:

| Töne             | Schwingungszahlen                | Logarithmen |  |  |
|------------------|----------------------------------|-------------|--|--|
| Gis              | $\frac{25}{16} = 1,5625$         | 64386       |  |  |
| <u>Cis</u>       | $\frac{25}{24} = 1,041666\dots$  | 05889       |  |  |
| <u>Fis</u>       | $\frac{25}{18} = 1,388888$       | 47393       |  |  |
| H                | $\frac{50}{27} = 1,851851\ldots$ | 88897       |  |  |
| E                | $\frac{100}{81} = 1,234568.$     | 30401       |  |  |
| A                | $\frac{100}{243} = 1,646091.$    | • 71904     |  |  |
| A<br>D<br>G<br>C | $\frac{500}{729} = 1,097394.$    | 13408       |  |  |
| G                | $\frac{3289}{2189} = 1,463192.$  | 54912       |  |  |
| C'               | $\frac{12900}{6561} = 1,950922.$ | 96415       |  |  |
|                  | u.'s. w.                         |             |  |  |

Der Ton <u>C</u> dieser Reihe hat also die Schwingungszahl  $\frac{6}{6}\frac{4}{5}\frac{6}{6}\frac{1}{1} = (\frac{5}{8}\frac{1}{4})^2$ folglich ist er in der That um zwei Komma tiefer als der Ton C in Reihe I., und ein Komma tiefer als der Ton c in Reihe II., welcher die Schwingungszahl  $\frac{6}{8}\frac{1}{4}$  hat.

Wir kommen jetzt zur Berechnung der letzten Reihe, welche die durch überstrichene kleine Buchstaben bezeichneten Töne enthält; dieselben sind um ein Komma höher als die durch grosse Buchstaben bezeichneten Töne. Sie bestimmen sich nämlich dadurch, dass die Töne der Reihe I. grosse Terzen der entsprechenden Töne dieser Reihe-sind, Die Tonleiter und ihre Berechnung.

es muss also *as*, die Schwingungszahl  $\frac{4}{5}$  haben, folglich ergiebt sich  $\overline{as} = \frac{5}{5} = 1,6$  und der dazu gehörige Logarithmus ist: 100000 - 32193 = 67807.

## Reihe IV.

a) aufsteigend:

|            | , .                                 |             |
|------------|-------------------------------------|-------------|
| Töne       | Schwingungszahlen                   | Logarithmen |
| as         | $\frac{8}{5} = 1,6$                 | 67807       |
| es         | $\frac{1}{2} = 1,2$                 | 26303       |
| <u>ь</u> . | $\frac{9}{8} = 1,8$                 | 84800       |
| f          | $\frac{27}{20} = 1,35$              | 43296       |
| c          | $\frac{81}{80} = 1,0125$            | 01792       |
| g          | $\frac{243}{163} = 1,51875$         | 60289       |
| đ          | $\frac{729}{640} = 1,139063.$       | 18785       |
| ā          | $\frac{2187}{1287} = 1,708594.$     | 77281       |
| e          | $\frac{6561}{120} = 1,281445.$      | 35777       |
| h          | $\frac{19633}{10240} = 1,922168.$   | 94274       |
| fis        | $\frac{59049}{40966} = 1,441626.$   | 52770       |
| cis        | $\frac{177147}{163847} = 1,081220.$ | 11266       |
| gis        | $\frac{53}{32}$                     | 69762       |
| •          | u, s. w.                            |             |

#### b) absteigend:

|      | ~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |             |  |
|------|-----------------------------------------|-------------|--|
| Töne | Schwingungszahlen                       | Logarithmen |  |
| us   | $\frac{8}{5} = 1,6$                     | 67807       |  |
| des  | $\frac{16}{15} = 1,06666666$            | 09311       |  |
| ges  | $\frac{64}{45} = 1,4222222 \dots$       | 50815       |  |
| ces  | $\frac{256}{135} = 1,8962962$           | 92318       |  |
| fes  | $\frac{512}{405} = 1,2641976$ .         | 33822       |  |
|      | u. s. w.                                |             |  |

Es erscheint mir überflüssig, diese Reihe noch weiter zu berechnen. Man sicht übrigens, dass die Zahlen in IV<sup>a</sup> die umgekehrten Werthe sind von denen in II<sup>b</sup>, und die in IV<sup>b</sup> die umgekehrten Werthe von denen in II<sup>a</sup>; wenn man nämlich die Töne in die entsprechenden Octaven verlegt, so hat man  $e = \frac{5}{4}: as, = \frac{4}{5}; h, = \frac{15}{5}: \overline{des} = \frac{16}{5};$  $a = \frac{5}{3}: \overline{es}, = \frac{3}{5}$  u. s. w. Die Logarithmen dieser Töne ergänzen sich natürlich zu 100000. Die beiden Reihen II. und IV. verhalten sich also zu einander so, wie die beiden Hälften der Reihe I. Um die umgekehrten Werthe der Zahlen in Reihe III. zu erhalten, würde man die Töne berechnen müssen, welche abermals um ein Komma höher sind, als die Töne in Reihe IV., oder, was dasselhe sagt, welche um zwei Kommata höher sind als die Töne in Reihe I., sie würden also unserer bisherigen Bezeichnung entsprechend durch grosse Buchstaben mit einem Strich darüber zu bezeichnen sein. Dem Tone  $\underline{Gis} = \frac{25}{16}$ , welcher

Digitized by GOOGLE

118

eine grosse Terz höher ist als e und den Logarithmus 64386 hat, entspricht dann als umgekehrter. Werth ein  $Fes_{,} = \frac{1}{2}\frac{6}{5}$ , oder eine Octave höher:  $Fes_{,} = \frac{3}{2}\frac{2}{5} = \frac{6}{5}\frac{19}{61} \cdot (\frac{8}{5}\frac{1}{5})^2 = \frac{512}{405} \cdot \frac{1}{5}\frac{1}{6}$ , welcher Ton eine grosse Terz tiefer ist als  $as = \frac{8}{5}$  und den Logarithmus 35614 hat. In dieselbe (fünfte) Quintenreihe gehören z. B. noch folgende Töne, welche alle innerhalb der Octave C = 1 bis C' = 2 liegen:

aufsteigend:
$$Ces' = \frac{48}{25} log = 94111$$
 $Ges = \frac{36}{25}$ 52637 $Des = \frac{27}{25}$ 11102 u. s. w.absteigend: $\overline{Bb} = \frac{128}{5}$ 77118 u. s. w.

Diese Töne würden sich mit denen der Reihe IV. in folgender Weise zu Accorden verbinden lassen:

a) Duraccorde: 
$$\overline{Fes} - \overline{as} - \overline{Ces}'$$
;  $\overline{Ces} - \overline{es} - \overline{Ges}$ ; u. s. w.

b) Mollaccorde: ges-Bb-des; des-Fes-as; u. s. w.

Wenn man aber grosse Buchstaben mit Strichen darüber zu einer fünften Quintenreihe benutzt, so kann man auch unterstrichene kleine Buchstaben anwenden, zur Bezeichnung einer sechsten Reihe von Quinten, deren Töne jedesmal um zwei Kommata tiefer sind, als die gleichnamigen Töne der Reihe II. oder um ein Komma tiefer als die Töne der Reihe III. In diese Reihe gehört z. B. der Ton his, welcher als grosse Terz von  $Gis = (\frac{5}{4})^2$  die Schwingungszahl  $(\frac{1}{4})^3 = \frac{125}{54}$  erhält, von diesem Ton aus kommt man durch absteigende Quinten zu den Tönen:  $his = \frac{125}{54} log = 96578$ 

| 1115 |   | 64          | log = 96578 |    |            |    |
|------|---|-------------|-------------|----|------------|----|
| eis  |   | $125 \\ 96$ | 38082       |    |            |    |
| ais  | = | 125<br>72   | 79586       |    |            |    |
| dis  | _ | 188         | 21090       | u. | <b>s</b> . | w. |

Diese Töne geben mit denen der Reihe III.:

Duraccorde von der Form Gis his Dis' u. s. w.

und Mollaccorde von der Form <u>eis</u> - Gis - his u. s. w.

Es geht hieraus hervor, dass man auf diese Weise eine unendliche Anzahl von Tönen bestimmen kann, weil man erstens jede Reihe beliebig weit fortsetzen und zweitens beliebig viele Reihen bilden kann; man hat dann nur 2 oder mehr Striche über oder unter die Buchstaben zu setzen. Ich komme hierauf weiter unten noch einmal zurück.

Zur Herstellung eines musikalischen Instrumentes mit reiner Stimmung ist es nun nothwendig, aus der grossen Menge der oben angegebenen Töne eine bestimmte Anzahl auszuwählen, welche möglichst viele Tonarten rein zu spielen erlaubt. Helmholtz benutzt bei dieser Auswahl einen Kunstgriff, den er im arabisch-persischen Tonsystem entdeckt hat. Es ist nämlich der Ton *his*, der Reihe II. nur um das sehr kleine Intervall  $\frac{325}{32765} = 1,001129150390625$  höher als der Ton *C* 

Digitized by GOOGLE

der Reihe I.; reducirt man diesen Bruch durch Kettenbrüche, so findet man  $\frac{8}{5}\frac{6}{5}$ , in Logarithmen aber beträgt die Abweichung 00163. Wenn man also beide Töne mit einander identificirt, so begeht man einen Fehler gleich dem der Quinten im gleichschwebend temperirten System und derselbe liegt nach den Helmholtz'schen Untersuchungen an der Grenze der wahrnehmbaren Unterschiede. Derselbe Unterschied findet sich — wie man am bequemsten an den Logarithmen übersieht — überhaupt zwischen je zwei Tönen zweier benachbarten Quintenreihen, nämlich zwischen:

C, G, D, A, E, H, Fis, Cis .... und his,, fisis, cisis, gisis, disis, aisis, cisis, hisis, .... und auch zwischen:

F, B, Es, As, Des, Ges, Ces', Fes....

und eis, ais, dis, gis, cis, fis, h, e....

ferner zwischen:

c, g, d, a.... und His,, Fisis, Cisis, Gisis....

und auch zwischen:

f, b, cs, as.... und Eis, Ais, Dis, Gis....

Sodann findet sich derselbe Unterschied noch zwischen  $\overline{c}$  und His,, desgleichen zwischen C und his, endlich auch zwischen C und his, und den entsprechenden Tönen dieser Reihen.

Der Ton his wurde nun oben (in Reihe II.) bestimmt durch 8 Quintenschritte von e aus (e-h-fis-cis-gis-dis-ais-eis-his); macht man nun alle diese Quinten um den achten Theil des oben genannten kleinen Intervalles zu klein, so wird der Ton his, der eigentlich etwas höher ist als der Ton C, demselben genau gleich. Der Fehler, den man hier in den Quinten begeht, ist also 8 mal kleiner als der im gleichschwebend-temperirten System, er ist nämlich gleich  $\sqrt[8]{\frac{3276}{32805}} = 1:1,000141$ , das ist ungefähr = 7084:7085; in Logarithmen beträgt der Fehler etwas über 00020. In gleicher Weise gelangt man vom Tone <u>Gis</u>, welcher annähernd mit as übereinstimmt, durch 8 Quinten, die um jenes Intervall zu klein sind, zu einem dem e absolut gleichem, etwas zu tiefem Disis.

Unter Beachtung dieses glücklichen Umstandes setzte Helmholtz ein sehr brauchbares Tonsystem zusammen, welches in seiner einfachsten Form aus 24 Tönen hesteht. Dieselben ordnen sich in folgende 3 Gruppen:

1) C, G, D, A, E, H, Fis, Cis;  
2) 
$$\begin{cases} c, h, fis, cis, gis, dis, ais, cis; \\ =Fes, Ces', Ges, Des, As, Es, B, F \end{cases}$$
  
3) as, es, b, f, c', g, d, a.  
Digitized by Google

120

Die Töne der zweiten Gruppe sind grosse Terzen von den darüber stehendten Tönen der ersten, und die Töne der dritten Gruppe wiederum die von den darüberstehenden Tönen der zweiten; ferner sind in der ersten Gruppe enthalten die kleinen Terzen von Tönen der zweiten Gruppe und in der zweiten Gruppe die kleinen Terzen von Tönen der dritten; endlich schliessen sich die Töne aller 3 Gruppen zu einer ununterbrochenen Reihe von Quinten zusammen, welche mit *as* beginnt und mit *Cis* schliesst.

Die Schwingungszahlen und Logarithmen dieser 24 Töne, die ich unter Berücksichtigung des ehen besprochenen kleinen Quintenfehlers berechnet habe, folgen weiter. unten. (S. 127.)

Die aus diesen Tönen gebildeten Dur- und Mollaccorde haben also ganz reine grosse Terzen, während die Quinten und die kleinen Terzen um ein verschwindend kleines Intervall zu klein sind. Man findet die sämmtlichen möglichen Dreiklänge, wenn man aus der folgenden Uebersicht, in der diese 24 Töne nach abwechselnden grossen und kleinen Terzen geordnet sind, je 3 neben einander stehende Töne herausgreift:

Fes, as, Ces, es, Ges, b, Des, f, As, c, Es, g, B, d, F, a, C, e, G, h, D, fis, A, cis, E, gis, H, dis, Fis, ais, Cis, cis.

Diese scheinbar aus 32, in Wirklichkeit aber nur aus 24 Tönen bestehende Reihe enthält also 15 Duraccorde (nämlich die von Fes, Ces, ....H, Fis) und ebensoviel Mollaccorde (von as, es, ....dis, ais).

Nach der oben für die Bildung der Durtonleiter gegebenen Regel kann man also aus den gegebenen 24 Tönen folgende 13 Durtonleitern bilden:

Ces, Ges, Des, As, Es, B, F, C, G, D, A, E, H.

Da nun die beiden Töne Ces' = h und H sich nur wenig unterscheiden, so kann man mit Hülfe einer en harmonischen Verwechselung zwischen diesen beiden Tönen durch alle Tonarten im Quintenkreise herum moduliren. Bei dem Uebergange von H nach Ces oder umgekehrt ändert sich die Tonhöhe allerdings merklich, nämlich um ein Komma  $\frac{8}{80}$ , oder vielmehr ungefähr um diess Intervall, denn wegen der Abweichung in den Quinten beträgt der Unterschied zwischen Hund h = Ces' jetzt nicht mehr 01792 (in Logarithmen), sondern nur noch 01711; vgl. die weiter unten (S. 127) folgende Tabelle.

Für die Molltonarten ist das System in der jetzt mitgetheilten Form nicht ganz so vollkommen, wie für die Durtonarten. Nach der oben mitgetheilten Regel für die Bildung der Molltonarten ergiebt sich nämlich z. B. für *a*-Moll:

 $d-F-a; a-C-e; e-\underline{Gis}-h.$  Digitized by Google

Nun ist a = Bb, e = Fes u. s. w., also kann man diese Accorde auch schreiben:

Eses - geses - Bb; Bb - deses - Fes; Fes - as - Ces.

Weil wir aber jetzt keine über- und unterstrichenen Buchstaben anwenden, so werden wir die Accorde von a-Moll = Bb-Moll am besten so schreiben:

$$d-F-a; \quad a-C-\begin{cases} e\\ \|Fes-as-Ces. \end{cases}$$

Die Quinte der Molltonleiter muss sich also in unserm System mit einem grossen und einem kleinen Buchstaben bezeichnen lassen, oder, mit andern Worten, sie muss einer der Töne in der zweiten Gruppe sein. Man sieht also, dass unser System nur die folgenden 8 Molltonarten enthält:

$$\left\{\begin{array}{cccc} a, & e, & h, & fis, & cis, & gis, & dis, & ais. \\ = Bb, & Fes, & Ces, & Ges, & Des, & As, & Es, & B. \end{array}\right\}$$

Man kann aber noch aus folgenden 6 Molltonarten spielen:

wenn man statt der richtigen grossen Septime die um ein Komma zu hohe pythagoreische zulässt, und also z. B. in *d*-Moll statt des Tones des = Cis den Ton *cis* anwendet. Mit Hülfe dieser 6 Molltonleitern kann man also auch bei den Molltonleitern vollständig im Kreise herum moduliren, indem man *b* und *B* oder *es* und *Es* enharmonisch miteinander verwechselt.

Man kann ferner aus jeder der oben genannten Durtonarten (mit Ausnahme von Ces-Dur) in die verwandte Molltonart, z. B. aus C-Dur nach a-Moll, aus G-Dur nach e-Moll u. s. w. moduliren; in die gleichnamige Molltonart kann man aber nur aus Ces-, Ges-, Des-, As-, Es- und B-Dur übergehen. Will man aber für einen ganzen Quinten-Cirkel von Grundtönen gleichmässig Dur- und Molltonarten haben, so muss man zu den vorhandenen 24 Tönen noch die folgenden 6 hinzufügen:

Gis, Dis, Ais, Eis, His, Fisis\*).

Durch Hinzunahme dieser 6 Töne, die man auch as, es, b, f, c, gnennen könnte, verlängert sich die oben zusammengestellte Terzenfolge noch um 12 Schritte, so dass dieselbe vom Tone H an folgendermassen lautet:

H. dis, Fis, ais, Cis, eis, Gis, his, Dis, fisis, Ais, cisis, Eis, gisis. His, disis, Fisis, aisis.

Man erhält also ausser den obigen Tonarten noch folgende sechs Durtonarten:

Fis, Cis, Gis, Dis, Ais, Eis

<sup>\*)</sup> Auch die Schwingungszahlen und Logarithmen dieser Töne folgen weiter unten (S. 127 und 129).

und auch sechs neue Molltonarten, nämlich:

 $\left\{\begin{array}{c} eis, his, fisis, cisis, gisis, disis.\\ = F, C, G, D, A, E. \end{array}\right\}$ 

Die genannten 30 Töne geben nun vollkommen rein 19 Dur- und 14 Molltonarten, von denen folgende 12 gemeinschaftliche Grundtöne haben:

Ces, Ges, Des, As, Es, B, F, C, G, D, A, E.

Da nun Ces' = h ist und die Quinte E-h nur um ein Komma zu klein ist, so wird man auch innerhalb dieser 12 Tonarten vollständig im Kreise herum moduliren können, wenn man beim Uebergang von E nach Ces eine wirkliche enharmonische Verwechselung ausführt. Zu einer solchen enharmonischen Verwechselung geben auch noch 7 andere Durtonarten Gelegenheit, nämlich:

> H, Fis, Cis, Gis, Dis, Ais, Eis.

deren Grundtöne sich nur um ein Komma unterscheiden von

 $\left\{\begin{array}{cccc}h, & fis, & cis, & gis, & dis, & ais, & cis\\ = Ces', & Ges, & Des, & As, & Es, & B, & F\end{array}\right\}.$ 

Und auch bei den Molltonarten kann man statt A-Moll und E-Moll

die ihnen sehr nahe gleichen

a- = Bb-Moll und e- = Fes-Moll

anwenden.

Will man wegen der Existenz dieser beiden letzten Molltonarten auf A- und E-Moll verzichten, so kann man die beiden Töne His und Fisis weglassen und mit Hülfe der übrigbleibenden 28 Töne 17 Durtonarten, nämlich:

Ces, Ges, Des, As ..... Fis, Cis, Gis, Dis und 12 Molltonarten:

 $a = Bb; e = Fes; h = Ces \dots C, G, D$ 

rein spielen.

In welcher Weise diese 24, 28 oder 30 Töne auf einem Tasteninstrumente anzubringen sind, darüber finden sich mehrere Vorschläge von Helmholtz in der "Lehre von den Tonempfindungen" S. 485 und 598-600, auf die ich hier verweise.

Beiläufig erlaube ich mir hier auf ein paar kleine Versehen aufmerksam zu machen, die sich in der Helmholtz'schen Darstellung des rein gestimmten Tonsystemes finden. In der "Lehre von den Tonempfindungen" wird nämlich (S. 484) das Intervall C: his, oder Ces: h, unter Zugrundelegung des angenäherten Verhältnisses 74:73 für das Intervall  $H_i$ : Ces berechnet und = 845:846 gefunden, während es sich bei genauerer Berechnung = 885:886, also noch etwas kleiner, ergiebt. Ferner sagt Helmholtz (S. 484 und 485), die Quinten seines Systemes seien alle um ein sehr kleines Intervall zu gross, während unsere Rechnung zeigt, dass sie etwas zu klein sind. Diess Versehen ist entstanden durch Anwendung absteigender Quinten C-F-B..., welche den Quarten gleich zu achten sind, und diese sind als Ergänzung zur Octave in der That um dasselbe kleine Intervall zu gross.

Endlich sagt Helmholtz wiederholt (Beilage XIII. S. 599 u. 600), dass sein vollständiges Tonsystem 31 Töne enthalte, während ich nur 30 darin finde. —

Es versteht sich nun von selbst, dass.man aus der grossen Zahl der oben berechneten Töne noch beliebig viele andere zur Construction eines Instrumentes in reiner Stimmung auswählen kann. Unter der Voraussetzung, dass man die oben (S. 120) angegebene Beziehung zwischen den Tönen der verschiederten Reihen : C = his, u. s. w. benutzt, erhält man jedesmal durch Hinzufügung eines neuen Quintenschrittes eine neue Dur- und eine neue Molltonleiter.

Im Allgemeinen sind also bei einem Tonsystem von n Töncn (vorausgesetzt, dass n gross genug ist und dass die Töne alle untereinander Quinten mit dem bekannten kleinen Fehler sind) stets n-11Durtonleitern und n-16 Molltonleitern möglich, von diesen Dur- und Molltonleitern haben n-18 gemeinschaftliche Grundtöne.

Herr Appunn, Orgelbauer und Fabrikant akustischer Instrumente zu Hanau<sup>\*</sup>), hat sich für die Herstellung von Instrumenten in reiner Stimmung ein grosses Verdienst erworben, indem er ein Harmonium mit 36 Tönen in der Octave construirt hat, welches in seiner äussern Einrichtung ganz und gar von dem von Helmholtz beschriebenen abweicht und sich vor demselben trotz der grössern Anzahl von Tönen durch bequemere Spielart vortheilhaft auszeichnet, so dass Herr Professor Helmholtz sein Instrument von Herrn Appunn nach dessen Principien hat umstimmen lassen.

Das Harmonium des Herrn Appunn ist bisher noch nicht öffentlich beschrieben; ich bin aber durch die freundliche Mittheilung des Verfertigers, für die ich ihm hiermit öffentlich meinen Dank ausspreche, in den Stand gesetzt, folgende Angaben darüber machen zu können: Das Instrument hat zwei Claviaturen, die wie die beiden Manuale einer Orgel übereinander liegen. Jede Taste trägt aber ein Knöpfchen, welches für sich niedergedrückt werden kann; der Ton, der durch dieses Knöpfchen angegeben wird, ist jedesmal um ein Komma tiefer als der Ton der zugehörigen Taste; die Töne der untern Claviatur sind untereinander reine Quinten, nämlich die Töne der Beihe I.: F-C-G-D-A-E-H-Fis-Cis-Gis-Dis-Ais; die Knöpfchen

\*) Firma: Georg Appunn & Söhne.

auf den Tasten geben die um ein Komma tiefern Töne der Reihe II.:  $f - c - g \dots$ ; die Tasten der obern Claviatur geben dieselben Töne, wie die Knöpfchen der untern und die Knöpfchen der obern Tastatur endlich geben die wiederum um ein Komma tiefern Töne der Reihe III.:  $F - \underline{C} - \underline{G} \dots$  Da nun F = eis und f = Eis gemacht werden kann, so schliessen sich diese 36 Töne zu einer langen Quintenreihe zusammen, welche mit F anfängt und mit Ais schliesst. Auf S. 126 habe ich diese Quintenreihe unter Anwendung aller synonymen Bezeichnungen möglichst übersichtlich angeordnet und daneben, auf S. 127 die Schwingungszahlen und Logarithmen der einzelnen Töne zusammengestellt, wie sich dieselben bei Berücksichtigung des bekannten kleinen Quintenfehlers ergeben; die Zahlen gelten also auch zugleich für das oben besprochene Helmholtz'che System. Die mit einem Sternchen \* versehenen Töne sind durch jenen Quintenfehler nicht beeinflusst.

Ordnet man diese 36 Töne in einer ununterbrochenen Reihe von abwechselnden grossen und kleinen Terzen, wie diess S. 121 und 123 für das Helmholtz'sche System geschehen ist, so sieht man, dass man auf dem Appunn'schen Instrumente 27 Duraccorde und 27 Mollaccorde hat, nämlich die Duraccorde:

 $des - F - as; as - C - es: \dots As - c - Es: \dots \overline{as} - C - es: es - G - b:$ und die Mollaccorde

 $\underline{F}-as-\underline{C};\ \underline{C}-es-\underline{G};\ \ldots c-\underline{E}s-\underline{g};\ \ldots \underline{C}-\underline{e}s-\underline{G};\ \underline{G}-\underline{b}-\underline{D}.$ 

Diese Accorde enthalten nach den oben (S. 109 flg.) angegebenen Regeln für die Bildung der Tonleitern das Material zu folgenden 25 Durtonarten:

$$Gis = as = Bbb;$$
  $Dis = es = Feses;$   $Ais = b = Ceses'; ...$   
bis zu  
...  $Cis = \overline{des};$   $Gis = \overline{as}.$ 

Molltonarten aber giebt es wie bei dem ursprünglichen Helmholtz'schen System 5 weniger, also nur 20, nämlich

$$Fis = ges = Aseses; Cis = des = Eseses: Gis = as = Bbb; \dots$$

... his,  $= C = \overline{deses}$ : fis = G = ases.

Unter diesen 25 Dur und 20 Molltonarten befinden sich je 18, welche dieselben Grundtöne haben, nämlich

$$Gis = as; \quad Dis = es; \quad Ais = b; \quad Eis = f \dots$$
  
bis zu  
$$\dots ais = B; \quad eis = F; \quad his, = C; \quad fisis = G.$$

Man hat also sowohl bei den Dur-, als auch bei den Molltonarten die Möglichkeit, mit Hülfe einer wirklich ausgeführten enharmonischen

(Fortsetzung auf S. 128).

Uebersicht über die Töne des Appunn'schen Harmoniums.

| CONCIDIONU U                          |                           | os septembris      |           |                |
|---------------------------------------|---------------------------|--------------------|-----------|----------------|
|                                       | he III. Reihe II.         | Reihe I.           | Reihe IV. |                |
| ri eis ==                             | F = geses                 |                    |           |                |
| 🖥 *his 🚃                              | C = deses                 |                    |           |                |
| e fisis —                             | G = ases                  | •                  |           |                |
| cisis ==                              | D eses                    |                    |           |                |
| o: gisis —                            | A = bb                    |                    |           |                |
| ै disis 🚃                             | E = fes                   | _                  |           |                |
| ler .                                 |                           | = Deseses          |           |                |
| ų.                                    | Fis = ges =               | = Aseses           |           |                |
| E T                                   | ('is == des ==            | = Eseses           |           |                |
| Cla                                   | Gis = as =<br>Dis = es =  | = Bbb              |           |                |
| viat                                  |                           | = Feses            |           |                |
| a l                                   | Ais <u> </u>              | = Ceses            |           |                |
| а н)                                  | Eis — ( =                 | - Canco            |           |                |
| ,u<br>nq                              | Eis == / =<br>His == c == | = Geses<br>= Deses |           |                |
| , de                                  | Fisis = c =               |                    |           |                |
| ж <sup>т</sup> Т                      | Cisis — d =               | = Eses             |           |                |
| löpf:                                 | Gisis — a =               | = Bb               |           |                |
|                                       |                           | = Fes              | •         |                |
| der<br>er u                           |                           | Ces =              | deseses   |                |
| obe                                   | fis =                     | = Ges 😑            | aseses    |                |
| rn -                                  | cis =                     | = Des 😑            | eseses    |                |
|                                       | U U                       | - As —             | bbb       |                |
| viat                                  |                           | = Es 😑             | feses     |                |
|                                       | uis =                     | = B ==             | ceses     |                |
| •                                     |                           |                    |           |                |
| Töne der Tasten der untern Claviatur. | eis ==                    |                    | geses     |                |
| re<br>d                               | his ==                    |                    | deses     |                |
| ler                                   | fisis =                   |                    | ases      |                |
| T 3.8                                 | cisis —                   |                    | eses      |                |
| ten                                   | gisis ==                  |                    | bb        |                |
| dej                                   | disis —                   |                    | fes       |                |
| r un                                  |                           |                    |           | Deseses        |
| iter                                  |                           | <b>a</b> .         |           | Aseses         |
| р<br>Q                                |                           |                    |           | Eseses<br>Bbb  |
| lavi                                  |                           | -                  |           | Boo<br>Feses   |
| atu                                   |                           |                    |           | resrs<br>Cesrs |
|                                       |                           |                    | -         |                |
|                                       |                           |                    |           |                |

|                                                                            | Töne                  | Schwingungszahlen | Logarithmen   |
|----------------------------------------------------------------------------|-----------------------|-------------------|---------------|
| Ţ                                                                          | F                     | 1,30227.          | 38103         |
| ine                                                                        |                       | *1,953125         | 96578         |
| đe                                                                         | C (= * his)<br>G<br>D | 1,46464.          | 55054         |
| r<br>K                                                                     | Ď                     | 1,09832.          | 13530         |
| nöŗ                                                                        | A                     | 1,64725.          | 72006         |
| ofe                                                                        | E                     | 1,23526.          | 30482         |
| der                                                                        | H                     | 1,85264.          | 88958         |
| do                                                                         | Fis                   | 1,38928.          | 47434         |
| ern                                                                        | Cis                   | 1,04181.          | 05910         |
| Q                                                                          | * Gis                 | *1,5625           | 64386         |
| avi                                                                        | Dis                   | 1,17171.          | 22862         |
| Töne der Knöpfe der obern Claviatur                                        | $\underline{Ais} = b$ | 1,75732.          | 81337         |
| un Tö                                                                      | f                     | 1,31780.          | 39813         |
| d d                                                                        | r                     | 1,97642.          | 98289         |
| der                                                                        | g                     | 1,48211.          | 56765         |
| Kn                                                                         | d                     | 1,11142.          | 15241         |
| äpfe                                                                       | · a                   | 1,66690.          | 73717         |
| Töne der Tasten der obern<br>und der Knöpfe der untern                     | *e ·                  | *1,25             | 32193         |
| der<br>er 1                                                                | h                     | 1,87474.          | 90669         |
| ob                                                                         | fis                   | 1,40585.          | 49145         |
| ern<br>ern                                                                 | cis                   | 1,05424.          | 07621         |
|                                                                            | gis                   | 1,58114.          | 66096         |
| avi<br>avie                                                                | dis                   | 1,18569.          | 24572         |
| Töne der Tasten der obern Claviatur<br>und der Knöpfe der untern Claviatur | ais = B               | 1,77828.          | 83048         |
| Ti                                                                         | F                     | 1,33352.          | 41524         |
| Töne                                                                       | * C                   | *1                | 00000         |
| dej                                                                        | G                     | 1,49979.          | 58476         |
| T.                                                                         | D                     | 1,12468.          | 1695 <b>2</b> |
| aste                                                                       | A                     | 1,68679.          | 75428         |
| der G<br>D<br>A<br>Fasten der H<br>Fis<br>Cis<br>Gis (<br>Dis<br>Ais       | E                     | 1,26491.          | . 33904       |
|                                                                            | H                     | 1,89710.          | <b>923</b> 80 |
| un                                                                         | Fis                   | 1,42262.          | 50855         |
| iteri                                                                      | Cis                   | 1,06682.          | 09331         |
| L<br>C                                                                     | Gis(=*as)             | * 1,6             | 67807         |
| la⊽i                                                                       | Dis                   | 1,19983.          | 26283         |
| iatu                                                                       | Ais                   | 1,79949.          | 84759         |

- . . ---

Schwingungszahlen u. Logarithmen der Töne des Appunn'schen Harmoniums.

Verwechselung zwischen zwei um ein Komma verschiedenen Tönen. also z. B. zwischen as und As, b und B, c und C u. s. w., in einem vollständigen Quintenkreise herumzugehen. Man kann aber auch durch einfach fortgesetzte Modulationen vom Grundton C allmälich nach c(in Dur- und Moll) übergehen u. s. w.

Ueber die Handhabung dieses Instrumentes ergeben sich aus der auf S. 126 befindlichen Zusammenstellung seiner Töne folgende Regeln:

Will man reine Quinten greifen, so braucht man 'dazu zwei Tasten oder auch zwei Knöpfchen einer Tastatur; nur die Quinten der Töne als bilden eine Ausnahme: Ais (auf der untern Claviatur) hat nämlich gar keine Quinte, ais = B (Knöpfchen unten und Taste oben) hat als Quinte eis = F (Taste unten) und Ais = b (Knöpfchen oben) endlich hat als Quinte Eis = f (Taste oben und Knöpfchen unten).

Will man richtige grosse Terzen greifen, so hat man in den meisten Fällen den Grundton auf einer Taste, die grosse Terz auf dem Knöpfchen der entsprechenden Taste: z. B. C auf der Taste und e auf dem Knöpfchen der Taste E. Diess gilt aber nur für die Untertasten und die Tasten fis beider Claviaturen, die Obertasten **cis**, **gis**, **dis**, **ais** haben — oben wie unten — ihre reinen Terzen auf den Tasten f, c, g, d selbst. Ebenso haben die Knöpfchen der letztgenannten 4 Obertasten — oben wie unten — ihre grossen Terzen auf Knöpfchen; die andern 8 Knöpfchen der untern Claviatur haben ihre grossen Terzen auf Knöpfchen der obern, und die andern 8 Knöpfchen der obern Claviatur mit den Tönen: F - C - G - D - A - E - H - Fishaben auf dem Instrumente gar keine grossen Terzen.

Die kleinen Terzen haben meistens den Grundton auf einem Knöpfchen und die zugehörige kleine Terz auf der entsprechenden Taste derselben Claviatur; Ausnahmen bilden die Knöpfchen auf den Tasten f, c, g, welche oben und unten ihre kleinen Terzen auf den Knöpfchen selbst haben. Da nun die untern Knöpfchen gleich sind den obern Tasten, so haben auch diese Tasten ihre kleinen Terzen auf den untern Tasten, mit Ausnahme der obern Tasten f - c - g, welche ihre kleinen Terzen As = gis; Es = dis; B = ais auf den Tasten der obern Claviatur selbst haben; dasselbe gilt von den Tasten F, C, Gder untern Claviatur; die andern Tasten der untern Claviatur D, A, E, H, Fis, Cis, Gis, Dis, Ais aber haben gar keine kleinen Terzen auf dem Appunn'schen Instrumente.

Was über die Quarten und Sexten zu sagen wäre, folgt ohne weiteres aus dem eben über Quinten und Terzen Gesagten, denn diese Intervalle ergänzen sich ja zu Octaven.

Will man nun noch die kleinen Terzen der Tasten der untern Claviatur *D*, *A*, *E*.... haben, so muss man noch eine Anzahl von Tönen einführen, nämlich die um ein Komma höhern Töne  $f = c_1 - g_1 \dots \dots$ 

128

der Reihe IV.; um dieselben in passender Weise mit dem schon vorhandenen Systeme zu verbinden, hat man  $\overline{f}$  = Eis zu machen und den Quinten den ofterwähnten kleinen Fehler zu geben. Dadurch ergeben sich als Töne einer neuen Claviatur die folgenden zwölf:

|       |   | Тö             | ne  |       | Schwingungszahlen | Logarithmen |
|-------|---|----------------|-----|-------|-------------------|-------------|
| Eis   | _ | Ī              | =   | Geses | 1,34943.          | 43235       |
| His   |   | c              | _   | Deses | 1,01193.          | 01711       |
| Fisis |   | $\overline{g}$ |     | Ases  | 1,51768.          | 60187       |
| Cisis | = | đ              |     | Eses  | 1,13820.          | 18663       |
| Gisis | - | ā              | _   | Bb    | 1,70691.          | 77138       |
| Disis | = | ē              | =   | * Fes | *1,28             | 35614       |
|       |   | ħ              | === | Ces   | 1,91973.          | 94090       |
|       |   | fis            | ==  | Ges   | 1,43959.          | 52566       |
|       |   | cis            | ==  | Des   | 1,07954.          | 11042       |
|       |   | gis            | ==  | As    | 1,61910.          | 69518       |
|       |   | dis            |     | Ēs    | 1,21694.          | 27994       |
|       |   | uis            | _   | B     | 1,82516.          | 86470       |

Diese Töne würden consequenterweise auf den Tasten einer neuen, unterhalb der ersten Claviatur anzubringenden, Claviatur anzugeben sein; die Knöpfchen dieser dritten Claviatur aber müssten dann mit den Tonen F, C, G.... übereinstimmen.

Diess jetzt erhaltene aus 48 Tönen bestehende Tonsystem würde 39 Duraccorde und ebensoviel Mollaccords enthalten und also

37 Durtonleitern, von Gis = as bis gis = As

und 32 Molltonleitern von Fis = ges bis Fisis =  $\overline{g}$ zu spielen erlauben; von diesen Tonleitern haben 30 gemeinschaftliche Grundtöne, nämlich von

Gis = as an, bis  $Fisis = \overline{q}$ .

Ob die Einführung dieser letztgenannten 12 Töne für die praktische Benutzung des Instrumentes von Vortheil sein würde, ist eine Frage für sich; theoretisch aber wird das Instrument durch diese Töne vervollkommnet. Es liegt in dieser Beziehung auch kein Grund vor, welcher die Einführung einer fünften Reihe von Tönen hindern sollte; dieselbe würde unter Berücksichtigung des kleinen Quintenfehlers folgende Logarithmen haben:

| Töne         | Logarithmen                  | Töne           | Logarithmen |
|--------------|------------------------------|----------------|-------------|
| F            | - 44946                      | $\overline{H}$ | · 95801     |
| С            | 03422                        | Fis            | 54277       |
| G            | 61898                        | Cis            | 12753       |
| D            | 20373                        | Gis            | 71229       |
| А            | 78849                        | Dis            | 29705       |
| E            | 37325                        | Ais            | 88181       |
| rift f. Math | ematik n. Physik. (Supplem.) |                |             |

Zeitschrift f. Mathematik u. Physik. (Supplem.)

129

Die letzten sieben Töne dieser Reihe:

E, H, Fis, Uis, Gis, Dis, Ais

unterscheiden sich von den Tönen

F, C, G, D, A, E, H,

welche auf den Knöpfchen der obersten Claviatur enthalten sind, nur um ein Intervall dessen Logarithmus 00777 beträgt, das ist etwa ein halbes Komma; man kann also mit Hülfe einer enharmonischen Verwechselung zwischen zwei von den genannten sieben Tönen vollständig in einem aus 53 Schritten bestehenden Quintenkreise herumgehen.

Hierbei haben wir alle Quinten um das bekannte kleine Intervall 7084:7085 (Log. = 00020) zu klein gemacht; wendet man aber reine Quinten an, so gelangt man nach 53 Schritten zu einem Tone, der dem ersten noch viel näher kommt. Der Logarithmus der richtigen Quinte ist nämlich - wenn man ihn der Genauigkeit wegen auf 7 Stellen berechnet - gleich 0,5849626; durch 53 Quintenschritte gelangt man also zu einem Tone, dessen Logarithmus =  $53 \cdot 0.5849626 = 31,0030178$ ist; dieser Logarithmus entspricht ziemlich genau der 31. Octave des Grundtones, dieselbe ist nämlich nur um ein sehr kleines Intervall, dessen Logarithmus nach unserer gewöhnlichen Schreibart == 00302 ist, Macht man nun jede der 53 Quinten um den 53. Theil zu hoch. dieses Intervalles zu klein, so gelangt man durch diese 53 Quinten genau zur 31. Octave des Grundtones, - gerade wie man durch 12 Quinten in der gewöhnlichen gleichschwebend-temperirten Scala zur 7. Octave gelangt. Auf diese Weise erhält man also ein System von 53 Tönen in der Octave:  $C = his_{ij}$   $c = His_{ij}$   $\overline{C} = \overline{his}_{ij}$ ;  $\underline{Cis} = des_{ij}$  $cis = Des; Cis = \overline{des}; cis = \overline{Des}; \overline{Cis} = des = \overline{D}; d; D; \overline{d}; \overline{D}$  u. s. w. Vom tiefsten Ton in der Octave: C = 1 ausgehend gelangt man zum 2. Tone c = His, durch 12 Quinten; da nun eine jede derselben den Logarithmus 0,5849056 erhält, so ergiebt sich für  $\overline{c} = His$ , der Logarithmus: 12.0,5849056 = 7,018867; das Intervall  $C:\overline{c}$  hat also den Logarithmus 01887, — ebenso gross ist auch das Intervall  $\overline{c}: C$  u. s. w. Ueberhaupt sieht man, dass alle Stufen dieser Tonleiter einander gleich sind, mithin erhält man auf diese Weise die 53 Töne einer 53stufigen gleichschwebend-temperirten Scala, gerade wie man die 12 Töne der gewöhnlichen gleichschwebenden Temperatur bestimmt durch 12 um das Intervall 885:886 (Log. = 00163) zu kleine Quinten. Die Stufen dieser neuen Tonleiter haben alle das Schwingungsverhältniss  $1:\frac{53}{1/2} = 1:1,01316$ oder angenähert 76:77 und den Logarithmus  $\frac{1}{53} = 0,0188679$  oder angenähert 01887, sie sind also nur um 00095 grösser als das syntonische Komma 80:81 = 1:1,0125 mit dem Logarithmus 01792. Man kann daher zu jedem Tone dieser Scala alle möglichen Intervalle, die "grossen" und die "kleinen", die "verminderten" und die "übermässigen", fast ganz richtig angeben und man kann daher auch auf jedem der 53 Töne eine Dur- und eine Molltonleiter in fast reiner Stimmung ausführen; um die Fehler derselben auszurechnen, habe ich vom Grundton *C* ausgehend abgezählt, mit welchen Stufen die einzelnen Intervalle übereinstimmen, und habe dann die Logarithmen dieser Stufen und die Abweichungen derselben von den reinen Intervallen genau berechnet; da die Scala eine gleichschwebende ist, so gelten dieselben Fehler auch für die Intervalle von jedem andern Grundtone aus.

| Töne           |       |     | Stufen     | Logarithmen<br>i | Fehler<br>n Logarithmen |
|----------------|-------|-----|------------|------------------|-------------------------|
| Grundton       | z. B. | С   | 0          | 00000            | 00000                   |
| kl. halber Ton | "     | Cis | 3          | 05660            | 00229                   |
| gr. halber Ton | ,,    | des | 5          | 09434            | +00123                  |
| kl: ganzer Ton | ,,    | d   | 8          | 15094            | 00106                   |
| gr. ganzer Ton | ,,    | D   | 9          | 16981            | 00012                   |
| kl. Terz       | ,,    | es  | 14         | 26415            | +00112                  |
| gr. Terz·      | ,,    | е   | 17         | 32075            | - 00118                 |
| Quarte         | ,.    | F   | 2 <b>2</b> | 41509            | +00006                  |
| Quinte         | ,,    | G   | 31         | 58491            | - 00006                 |
| kl. Sexte      | "     | as  | 36         | 67925            | +00118                  |
| gr. Sexte      | ,,    | a   | 39         | 73585            | 00112                   |
| kl. Septime    | ,,    | ī   | 45         | 84906            | + 00106                 |
| gr. Septime    | "     | h   | 48         | 90566            | - 00123                 |
| Octave         | ,,    | C'  | 53         | 100000           | 00000                   |

Für die Töne der beiden Hauptdreiklänge habe ich die Fehler der Schwingungsverhältnisse selbst berechnet; es beträgt nämlich der Fehler

| bei der | kleinen Terz | annähernd | 1324 : 1323 (zu hoch)    |
|---------|--------------|-----------|--------------------------|
|         | grossen Terz | "         | 1196 : 1197 (zu tief)    |
|         | Quinte       | "         | 12440 : 12441 (zu tief). |

Fig. 6 stellt fünf Reihen von je 12 Quinten mit der Helmholtz'schen Bezeichnung dar und zwar zunächst nach absolut reinen Quinten und Terzen; da aber bei der Kleinheit des Massstabes die kleinen Fehler ziemlich verschwinden, so kann diese Figur auch benutzt werden als graphische Darstellung der Töne des Appunn'schen und des Helmholtz'schen Harmoniums und zugleich der 53stufigen Scala. In der letztgenannten Bedeutung hat man  $\overline{Cis} = \underline{D}$ ;  $\overline{Dis} = \underline{E}$ ,  $\overline{E} = \underline{F}$ ,  $\overline{Fis} = \underline{G}$ ,  $\overline{Gis} = \underline{A}$ ,  $\underline{Ais} = \underline{H}$  und  $\overline{His} = \underline{C}'$  zu nehmen; — das Helmholtz'sche Instrument enthält aus Spalte III. die drei Töne as, es, b, ferner sämmtliche 12 Töne der Spalte II. und aus Spalte I. die neun Töne: F, C, G, D, A, E, H, Fis, Cis; — das Appunu'sche Harmonium endlich enthält die 36 Töne der drei Spalten I., II., III.; man könnte demselben aber auch noch die 12 Töne der Spalte IV., eventuell auch noch die der Spalte V hinzufügen. Die Fig. 6 enthält überhaupt die Töne, aus denen man bei Herstellung eines Instrumentes mit reiner Stimmung eine grössere oder geringere Anzahl auswählen muss, je nach den Ansprüchen, denen das Instrument genügen soll. Man könnte z. B. ein dem Appunn'schen Instrumente ähnliches bauen, welches die Töne der Reihen II, I und IV oder I, IV und V enthält — doch würde sich ein solches von dem Appunn'schen nur durch eine um 1 oder 2 Komma höhere Stimmung unterscheiden, denn es existirt bekanntlich noch keine allgemein angenommene feste Tonhöhe für die Töne  $C, c, C, \overline{c}$  u. s. w. Ich habe daher auch für die sämmtlichen Töne des vollständigen Helmholtz'schen Systemes (siehe S. 115—118) nur relative Schwingungszahlen, bezogen auf C = 1, angeführt, und mich dort auf die absoluten gar nicht eingelassen.

Nach der jetzt in Frankreich gesetzlich eingeführten sogenannten "tiefen Stimmung" des diapason normal macht das **a** der eingestrichenen Octave:



in der Secunde 870 halbe (sogenannte "einfache") oder 435 ganze (sogenannte "doppelte") Schwingungen\*). Fasst man diesen Ton als Sexte der C-Durtonleiter, also als a (Reihe II), so kommen auf das C (Reihe I) der eingestrichenen Octave 261 Schwingungen; fasst man es aber als Quinte von D, also als A (Reihe I), so kommen auf C nur 257,777.... Schwingungen in der Secunde; fasst man es endlich als das A' der gleichschwebend temperirten Scala, so erhält man ein eingestrichenes C'mit 258,653 Schwingungen.

Legt man der Berechnung das von Scheibler vorgeschlagene a' mit 440 Schwingungen zu Grunde, so erhält man, wenn man dasselbe als *a* betrachtet, ein der "eingestrichenen" Octave angehöriges C' mit 264 Schwingungen in der Secunde; diese Tonhöhe ist zur Berechnung der Schwingungszahlen der andern Töne sehr bequem, da sie für die meisten Töne der C-Durtonleiter innerhalb der in der Musik gebrauchten Octaven nur ganze Zahlen ergiebt. Würde zweitens der Ton der Stimmgabel als A<sup>\*</sup> betrachtet, so erhielte C die Schwingungszahl 260,470470.... Auf unsern gewöhnlichen, nach gleichschwebender Temperatur gestimmten Instrumenten aber hat der Ton A' in Bezug auf C' = 1 weder die Schwingungszahl  $\frac{5}{3}$ , noch  $\frac{2}{16}$ , sondern 1,68179... und daraus ergiebt sich, dass das C' unserer Instrumente, die genau im "Kammerton" gestimmt sind, in der Secunde 261,627... Schwingungen macht.

<sup>•)</sup> Die Angabe, dass das a des *diapuson normal* 875 halbe = 437,5 ganze Schwingungen mache, — wie an verschiedenen Orten angegeben wird — beruht wol auf einem Irrthum; vgl. den Katalog akustischer Apparate von König in Paris und Wüllner, Physik I, 516.

Diese Stimmung wird jetzt vielfach als zu hoch angesehen und man hat daher auch in Deutschland schon an manchen Orten die oben erwähnte "tiefe Pariser Stimmung" eingeführt; aber selbst diese Stimmung ist in Vergleich zu den früher gebräuchlichen Stimmungen immer noch ziemlich hoch; Chladni z. B. giebt als eine mittlere Tonhöhe diejenige an, bei der die Schwingungszahlen aller C Potenzen von 2 sind. Hiernach kommen auf das Contra-C 32 Schwingungen, auf das grosse C 64.... auf das der eingestrichenen Octave 256 Schwingungen. Durch Multiplication dieser Zahlen mit den für die einzelnen Töne angegebenen relativen Schwingungszahlen erhält man die absoluten Schwingungszahlen derselben; für die verchiedenen Töne a der eingestrichenen Octave ergeben sich z. B. folgende Werthe:

1) 
$$A = 256 \cdot \frac{27}{16} = 432$$
  
2)  $a = 256 \cdot \frac{5}{3} = 426\frac{2}{3}$   
3)  $A = 256 \cdot \frac{100}{243} = 421,399...$   
4)  $a = 256 \cdot \frac{210}{2450} = 437\frac{2}{5}$ 

Wollte man aber auf dem genannten Tone C' eine gleichschwebendtemperirte Tonleiter aufbauen, so würde sich ein

A' mit 256 · 1,68179 = 430,538

Schwingungen ergeben, was also ziemlich genau der Tonhöhe des Orchesters in der grossen Oper zu Paris im Jahre 1822 entspricht, denn dasselbe hatte damals eine Stimmgabel mit 431 Schwingungen.

Man sicht, wie nothwendig die Unterscheidung der verschiedenen gleichnamigen Töne bei genauern Untersuchungen ist. Die in den meisten Lehrbüchern aus Chladni's Akustik fast ungeändert aufgenommene Tabelle über die relativen Schwingungszahlen aller Töne der Tonleiter ist also in dieser Beziehung ungenügend, denn in derselben sind die Töne der einzelnen Quintenreihen durchaus nicht unterschieden, sondern nur aus den verschiedenen Quintenreihen diejenigen Töne herausgenommen, deren Schwingungszahlen, wenn sie als gewöhnliche Bruche geschrieben werden, einen möglichst einfachen Werth haben. Da man nun kein bestimmtes Princip darüber aufstellen konnte, wieviel Tone man aus jeder Quintenreihe herausnehmen sollte, so finden sich für einzelne Intervalle in verschiedenen Büchern verschiedene Werthe; Chladni giebt z. B. für des die Schwingungszahl 16, Wüllner aber 27, das erstere ist nach der oben von uns erweiterten Hauptmann-Helmholtz'schen Bezeichnung  $\overline{des}$ , das andere  $\overline{Des}$ . Jene Tabellen enthalten also nicht allein Töne aus den 4 Helmholtz'schen Reihen, sondern auch aus den beiden oben (S. 119 u. 120) noch hinzugefügten Reihen, welche ich durch unterstrichene kleine und überstrichene grosse Buchstaben bezeichnet habe; die dort beispielsweise bezeichneten Töne sind alle in den Tabellen von Chladni und Wüllner enthalten. Mit Digitized by GOOGLE

Hülfe der oben angegebenen Zahlen kann man nun jeden Ton dieser beiden Tabellen in eine der 6 Quintenreihen einordnen, nur die beiden von Chladni angegebenen Töne:

#### eses $= \frac{145}{145}$ und bb $= \frac{216}{145}$

passen in keine derselben, sie gehören vielmehr in eine Reihe, welche noch um ein Komma höher ist als die höchste jener 6 Reihen, sie sind demnach zu bezeichnen durch:

## eses und bb

weil sie nämlich um 4 Komma höher sind, als die Töne *cses* und *bb*, also um 6 Komma höher als die Töne <u>cses</u> und <u>bb</u>. Diess Intervall beträgt aber in Logarithmen  $6 \cdot 01792 = 10752$ , ist also grösser als ein halber Ton.

Durch die Unterscheidung der verschiedenen Töne gleiches Namens erledigt sich zugleich eine Frage, über die sich Musiker und auch Physiker zuweilen untereinander streiten, die Frage nämlich, ob cis oder des, dis oder es höher sei; man sicht nämlich jetzt ein, dass diese Frage im Allgemeinen gar nicht beantwortet werden kann, denn es ist z. B. Cis höher als Des, aber tiefer als Des u. s. w.

Bei dieser Gelegenheit möchte ich noch auf einige andere Ungenauigkeiten aufmerksam machen, die sich bei der Lehre von den musikalischen Intervallen auch in den besten Lehrbüchern der Physik finden.

In sämmtlichen mir bekannten Auflagen des grossen Lehrbuchs und auch des Grundrisses der Physik von Joh. Müller ist die Note: als kleines "c"; die Note aber als eingestrichenes "c" bezeichnet, während bekanntlich beide Noten gleichmässig das eingestrichene "c" bezeichnen.

Auch in dem trefflichen Buche von Wüllner, in dem das Capitel von den musikalischen Intervallen mit ziemlicher Ausführlichkeit behandelt ist, finden sich einige kleine Ungenauigkeiten, die ich mir hier anzuführen erlaube.

Wüllner sagt nämlich (I, S. 506), dass der Unterschied von einem Komma  $\left(\frac{8}{80}\right)$  vom Obre nicht mehr wahrgenommen werde, während doch schon nach den Untersuchungen von Chladni (dessen Akustik S. 55), "ein um  $\frac{8}{80}$  verstimmtes Intervall von keinem unverdorbenen Ohre ohne Widerwillen angehört werden kann."

Auf derselben Seite gieht Wüllner die Abweichungen in den Intervallen an, die die Töne der C-Durtonleiter miteinander bilden, es fehlt da aber nicht nur die in den Berichtigungen zur zweiten Ausgabe angemerkte falsche Quinte h-f', die wir nach der Hauptmann'schen Bezeichnung h-F' zu schreiben haben, sondern auch noch die falsche Quarte a-D', die falsche Sexte F-D' und die falschen kleinen Septimen D - C', G - F', H - A'; der Werth der kleinen Sexte F - D' ist auch in der Tabelle auf S. 505 falsch angegeben.

Endlich fehlen auf S. 502 bei der Aufzählung der consonanten Accorde zwei Umlagerungen; Wüllner giebt nämlich als consonante Accorde mit dem tiefsten Tonc C nur die folgenden 4 an:

1) der gewöhnliche C-Duraccord (C-e-G),

2) der gewöhnliche C-Mollaccord  $(C - \overline{es} - G)$ ,

3) der (Terz-)Sextaccord in a-Moll (C - e - a),

4) der Quart-Sextaccord in F-Dur (C - F - a);

es fehlen also noch

5) der (Terz-)Sextaccord in  $\overline{as}$ -Dur  $(C - \overline{es} - \overline{as})$ ,

6) der Quart-Sextaccord in F-Moll  $(C - F - \overline{as})$ .

Die Accorde 3-6 sind bekanntlich nur Umlagerungen der beiden ersten; aus dem C-Duraccord C-e-G folgt nämlich als erste Umlagerung der Sextaccord e-G-C' (cfr. Nr. 5) und als zweite Umlagerung der Quart-Sextaccord G-C'-e' (cfr. Nr. 4), chenso folgen aus dem C-Mollaccord  $C-\overline{es}-G$  der Sextaccord  $\overline{es}-G-C'$  (Nr. 3) und der Quart-Sextaccord  $G-C'-\overline{es'}$  (Nr. 6). Man kann diese Umlagerungen sehr gut demonstriren an dem Accordmesser (Fig. 1); — auch die oben erwähnten Abweichungen der einzelnen Intervalle der C-Durtonleiter erkennt man mit Hülfe der graphischen Darstellung (Fig. 2) leicht.

Man sicht hieraus, wie bequem diese graphische Darstellung zur Demonstration aller Gesetze der musikalischen Akustik ist; auch für die zu einem Grundtone gehörigen harmonischen Obertöne kann man eine sehr praktische Darstellung geben. Zum Grundtone C = 1 gehören bekanntlich die Ober- oder Theiltöne: C' = 2, G' = 3, C'' = 4, e'' = 5, G'' = 6 u. s. w.; die Logarithmen dieser Töne sind folgende:

| Theiltöne $1.2.4.8.=C$ | Logarithmen<br>00000 |
|------------------------|----------------------|
| 9. == D                | 16993                |
| 5.10. = e              | 32193                |
| 11 . (= Ges +)         | <b>4594</b> 3        |
| 3.6.12. = G            | 58494                |
| 13.(= a -)             | 70044                |
| 7.14.(= b-)            | 80736                |
| 15. = h                | 90689                |
| 2.4.8.16. = C'         | 100000               |

Neben den Nummern der einzelnen Theiltöne sind die Noten angegeben, die denselben entsprechen, <u>Ges</u> ist aber etwas zu erhöhen, a und b dagegen etwas zu erniedrigen, um den betreffenden Theiltönen gleich zu werden. — Fig. 7 und 8 stellen die Obertöne des Grundtones C graphisch dar.

Fig. 7 zeigt eine erweiterte Form des oben bereits erwähnten,

von Mach construirten Modells zur Demonstration der Obertöne. Zur Erläuterung bemerke ich Folgendes: Zwischen den die ganze Figur der Länge nach durchziehenden Linien  $\beta$  und  $\gamma$  befinden sich kleine Striche, welche für die darunter stehenden, zwischen  $\alpha$  und  $\beta$  befindlichen Tasten die Tonhöhe nach gleichschwebender Temperatur angeben; die Striche in dem Raume zwischen den Linien v und e bedeuten die Tonhöhe der Theiltöne des tiefsten C der Claviatur, bis zum 20. hinauf. Schneidet man nun die ganze Figur aus und trennt sie dann längs der Linie y, so kann man die obere Hälfte beliebig an der untern verschieben und dadurch die Obertöne zu jedem beliebigen Grundtone Wegen des kleinen Massstabes - die Octave ist hier nur finden. 50<sup>num</sup> lang — sind die Abweichungen der temperirten Quinten und Terzen kaum merklich, wol aber die der natürlichen Septime (7. Theilton : i) von der kleinen Septime B, welche bei dem Mach'schen Modelle zusammenfallen. - Theilt man nun den Streifen, der die Marken für die Theiltöne trägt, noch einmal längs der Linie  $\delta$ , so kann man die Figur, wie das Mach'sche Modell, benutzen zur Demonstration der Helmholtz'schen Theorie der Consonanz und Dissonanz. Es empfiehlt sich, dass man zu diesem Zwecke die ganze Figur auf Pappe kleben und in der durch Fig. 7<sup>h</sup> im Querschnitt angedeuteten Weise einrichten Man kann dann die beiden Streifen, die die Marken für die lässt. Theiltöne tragen, in dem Spalte hinter der Tastatur beliebig hin und her schieben: Man stelle zuerst den breitern Streifen  $(\delta - \epsilon)$  mit der Marke Nr. 1 auf den tiefern der beiden zu vergleichenden Töne, den schmalern ( $\gamma - \delta$ ) aber auf den höhern, dann kann man das Verhältniss der Obertöne beider Klänge bequem übersehen und die von Helmholtz angegebenen Gesetze leicht anschaulich nachweisen. --- Will man statt der temperirten Intervalle die natürlichen untersuchen, so kann man die Marken für dieselben zwischen  $\beta$  und  $\gamma$  nach den oben angegebenen Werthen der Logarithmen leicht einzeichnen, man muss aber beachten, dass der Massstab dieser Figur nur halb so gross ist, als in den Figuren 1-6; die Unterschiede zwischen der natürlichen und der reinen Stimmung sind also hier nicht so auffallend.

Im Massstabe der andern Figuren (Octave = 100 Millimeter) werden die Theiltöne von C durch Fig. 8 dargestellt; hier sind zur Vergleichung die Töne der C-Durtonleiter in reiner Stimmung beigefügt. — Die Figur zeigt nicht nur, dass die Theiltöne um so näher bei einander liegen, je höher sie sind, sondern auch, dass in jeder höhern Octave die Töne der vorigen sich wiederholen, dass sich aber jedesmal ein neuer Theilton — mit ungerader Zahl — zwischen dieselben einschiebt, so dass in jeder folgenden Octave noch einmal so viel Theiltöne auftreten, als in der vorigen.

Halle, im Januar 1868.

## Nachtrag.

Vorstehender Aufsatz war schon im Druck, als ich erfuhr, dass die in demselben enthaltene Anwendung der Logarithmen nicht -- wie S. 107 angegeben ist - von Marpurg, sondern von Leonhard Euler herrührt. Derselbe entwickelt in seinem Werke: "Tentamen novae theoriae musicae" (cap. IV, §. 35 u. flg.), dass das Mass des Intervalles zwischen zwei Tönen a und b bestimmt ist durch den Logarithmus ihres Quotienten:  $l\frac{b}{a} = lb - la$ ; demnach sei das Mass für das Octavenintervall (griechisch  $\delta\iota\alpha\pi\alpha\sigma\omega\nu$ ) gleich log 2 und das Mass für die Quinte ( $\delta\iota\alpha\pi\epsilon\nu\tau\epsilon$ ) gleich  $\log \frac{3}{4} = \log 3 - \log 2$ ; er bemerkt auch gleich, dass es hiernach kein noch so kleines Intervall giebt, welches zugleich ein aliquoter Theil der Quinte und der Octave ist; ähnlich verhält es sich mit der Terz. An einer andern Stelle (VII, 4) sagt er, dass wegen der Wichtigkeit und der häufigen Anwendung des Octavenintervalles die Rechnung am bequemsten wird, wenn man einen "canon" anwendet, in welchem der "logarithmus binarii collocatur unitas"; er wendet in Folge dessen ebenfalls die Logarithmen mit der Basis 2 an.-Ob Marpurg auch diese Logarithmen benutzt, weiss ich nicht, da ich dessen Werk nur aus einem Citate Chladni's kenne. - Das S. 107 erwähnte Opelt'sche Buch "Allgemeine Theorie der Musik" enthält im Wesentlichen nichts anderes, als das oben citirte Euler'sche. - Dagegen bringt Drobisch in 3 Abhandlungen über die Tonleiter mancherlei Neues: Die älteste "über die mathematische Bestimmung der musikalischen Intervalle" (herausgeg. von der Jablonowski'schen Gesellschaft) enthält einen Versuch, mit Hülfe der Principien der Herbart'schen Philosophie die Erscheinungen der Consonanz und Dissonanz zu erklären - ein Versuch, der durch die Helmholtz'sche Theorie wol als erledigt zu betrachten ist; der mathematische Theil der genannten Abhandlung wird ausführlicher wiederholt in einer späteren Schrift (herausgegeben von der K. Sächs. Gesellschaft der Wissenschaften) "über musikalische Tonbestimmung und Temperatur", zu der dann noch ein "Nachtrag" erschienen ist.

Es ist zu bedauern, dass Drobisch bei Abfassung dieser Schriften die Helmholtz'sche Unterscheidung der gleichnamigen Töne E und e u. s. w. noch nicht kannte, denn hierdurch würde seine Darstellung

noch viel klarer geworden sein. Er beweist zwar, dass die erhöheten und erniedrigten Töne cis, des u.s. w. sich gar nicht schlechthin, sondern nur beziehungsweise bestimmen lassen, nämlich unter Voraussetzung einer oder der andern Tonart, allein er unterscheidet die verschiedenen Töne gleiches Namens nicht durch verschiedene Bezeichnung; auch wagt er es nicht, den Haupttönen c, d, e ..., je nach den Tonarten, in denen sie angewendet werden sollen, verschiedene Höhe (C, c u. s. w.) beizulegen. Hätte er diese Unterschiede gemacht, so wäre er nothwendig zu dem Hauptmann-Helmholtz'schen System gelangt, denn seine Classification der Töne ist diesem System schon sehr ähnlich. Er bestimmt nämlich, wie Hauptmann und Helmholtz, die Töne nur durch Quinten und Terzen und setzt zur Abkürzung das Intervall der Quinte:  $\frac{3}{4} = Q$ , das der Terz:  $\frac{1}{4} = T$ , ferner log Q = q und log T = t, den Logarithmus der Octave: log 2 = 1und bringt alle Töne auf die Form  $2^m \cdot Q^n \cdot T^p$ , logarithmisch m + np + pt. Nimmt man nun auf die Verschiedenheit der Octaven keine Rücksicht, vernachlässigt also m, so kann man die 8 Classen von Drobisch in folgende allgemeine Formen bringen:

| Schwingungszahlen                    | Logarithmen | Schwingungszahlen                       | Logarithmen |
|--------------------------------------|-------------|-----------------------------------------|-------------|
| Classe I. $Q^n$                      | nq          | Classe II. Q <sup>-n</sup>              | -nq         |
| ,, Ⅲ. <i>T</i> <sup>p</sup>          | pt          | ,, IV. $T^{-p}$                         | — pl        |
| ,, V. $Q^n T^p$                      | nq + pt     | ,, VI. Q⁻^ T─p                          | -nq-pt      |
| " VII. Q <sup>,</sup> T <sup>p</sup> | -nq + pt    | ,, VIII. Q <sup>n</sup> T <sup>-p</sup> | nq—pl.      |

Diese Classification hat 2 Uebelstände, erstens sind die Classen I--IV nur specielle Fälle der Classen V---VIII, und dann sind in diesen letzteren jedesmal 2 Veränderliche n und p, so dass die Zahl der Töne in jeder dieser Classen nach 2 Richtungen unendlich ist. Bei der Helmholtz'schen Eintheilung aber giebt es nur einfach-unendliche Reihen; die allgemeinen Formen derselben sind unter Benutzung der Zeichen Qund T oder q und t folgende:

|                             | Schwingungszahlen                                       | Logarithmen |
|-----------------------------|---------------------------------------------------------|-------------|
| allgemeinste Form:          | $Q^n \cdot T^p$                                         | nq + pl     |
| -                           |                                                         | :           |
| Reihe III (Gis)             | $Q^n$ . $T^2$                                           | nq + 2t     |
| ,, II (e)                   | $Q^n T^1$                                               | nq + t      |
| " I ( <i>C</i> )            | $Q^n$                                                   | ng          |
| ,, IV $(\overline{as}_{t})$ | $\begin{array}{c} Q^n T^{-1} \\ Q^n T^{-2} \end{array}$ | ng — t      |
| $,, V(\overline{Fes})$      | Q <sup>n</sup> T <sup>-2</sup>                          | nq - 2t     |
|                             | u. s. 1                                                 | w. :        |

In jeder von diesen Reihen kann n alle möglichen ganzen Zahlen bedeuten; die positiven n geben die aufsteigenden Reihen, die negativen n dagegen die absteigenden, n = 0 ondlich giebt den jedes-

138

maligen Grundton der Reihe. Um die Töne in die Octave zwischen C und C' zu verlegen, wie in unsern obigen Tabellen, hat man die Schwingungszahlen mit einer Potenz von 2 (2<sup>m</sup>) zu multipliciren oder zu dividiren, so dass sie zwischen 1 und 2 fallen, und die Logarithmen um soviel (m) Einheiten zu vergrössern oder zu verkleinern, dass sie zwischen 0 und 1 fallen.

Die Bezeichnung m + nq + pt ist sehr geeignet, um die Entstehung und Bedeutung gewisser kleiner Intervalle auf einen Blick zu übersehen; diese kleinen Intervalle kommen besonders in ältern Werken z. B. bei Euler ziemlich häufig vor; ich habe in der folgenden Uebersicht stets ein Intervall aus den Helmholtz'schen Quintenreihen als Beispiel zugefügt:

| Intervalle       |                  | Schwingungs-<br>verhältnisse | Logarithmen         |                             |
|------------------|------------------|------------------------------|---------------------|-----------------------------|
| 1) Schisma       | C:his,           | 32768:32805                  | 00163 = t + 8q - 5  |                             |
| 2) Diaschisma    | His,:C           | 2025:2048                    | 01629 = 3 - 2t + 4q | ( <del>==</del> 10 Schisma) |
| 3) Synton.Kom    | ma C: <u></u>    | 80:81                        | 01792 = 4q - t      | (=11 Sch.)                  |
| 4) Pythag. Kom   | ma C:His,        | 524288:531441                | 01955 = 12q - 7     | (=12 Sch.)                  |
| 5) Kleine Diesi  | в <u>his</u> ,:С | 125:128                      | 03421 = 1 - 3t      | $(=21\frac{1}{8}$ Sch.)     |
| 6) Grosse Diesi  | 8 <u>His</u> : Č | 625:648                      | 05214 = 4(q-t) - 1  | (=32 Sch.)                  |
| 7) Kl. halber To | n C: <u>Cis</u>  | 24:25                        | 05889 = 2t - q      | $(=36\frac{1}{8}$ Sch.)     |
| 8) Gr.halberTo   | n C:des          | 15:16                        | 09311 = 1 - t - q   | $(=57\frac{1}{4}$ Sch.)     |
| 9) Pythag. Lim   | na C:Des         | 243:256                      | 07519 = 3 - 5q      | (=461 Sch.)                 |
| 10) Kleines Lim  | na. C:cis        | 128:135                      | 07681 = 3q + t - 2  | $(=47\frac{1}{8}$ Sch.)     |
| 11) Grosses Lim  | na C: Des        | 25:27                        | 11103 = 3q - 2t - 1 | $(=68\frac{1}{8}$ Sch.)     |

Drobisch weicht von diesen aus Euler und Chladni entnommenen Angaben zum Theil ab, er nennt nämlich das pythagoreische Limma den "diatonischen halben Ton" und die grosse Diesis den "Drittheilston", während er unter dem Namen der grossen Diesis das Intervall  $\overline{ces}: \underline{C} = 243:250$ , log = 3t - 5q + 2 = 04097 versteht, auch führt er noch einen "verminderten kleinen halben Ton" Deses: cis = 3072:3125, log = 5t - q - 1 = 02468 und ein "Komma der Alten"  $= \frac{1}{9}$  des grossen ganzen Tones,  $log = \frac{1}{9} (2q-1) = 01888$  an. Die Reihe dieser in den Lehrbüchern meistens nicht angegebenen Intervalle wird vervollständigt durch den der pythagoreischen Dur-Tonleiter angehörigen Ditonus = 2 grossen ganzen Tönen = C: E = 64:81, dessen log = 4q - 2 = 33985 ist und den Tritonus für den Euler folgende Werthe angiebt:

| 1) $18:25 = C: Fis;$ | log = 1 - 2(q - t) = 47393              |
|----------------------|-----------------------------------------|
| 2) $32:45 = C:fis;$  | log = t + 2q - 1 = 49185                |
| 3) $45:64 = C:ges;$  | log = 1 - t - 2q = 50815                |
| 4) $25:36 = C:Ges;$  | $log = 2(q-t) - 1 = 52607_{oy} Goog[e]$ |

140 Die Tonleiter und ihre Berechnung. Von GUSTAV SCHUBRING.

Nachdem Drobisch die Lehre von den Intervallen beendigt hat, kommt er zu der Temperatur und sucht da diejenigen gleichschwebenden Temperaturen zu bestimmen, deren Fehler so beschaffen sind, dass sie eine möglichst kleine Quadratsumme geben. Ausser mehreren andern entwickelt er auch die 53stufige Temperatur, er gelangt aber zu derselben auf einem ganz anderen Wege als wir oben (S. 130). Noch vollkommener soll eine 118stufige gleichschwebende Temperatur sein, die Stufe derselben ist ungefähr ein halbes syntonisches Komma, nämlich in Logarithmen == 00847, -- es scheint aber hier bei Drobisch ein Rechenfehler vorzuliegen. Die übrigen Temperaturen haben vom Standpunkte der Helmholtz'schen Theorie aus geringeres Interesse.

Zum Schluss noch ein Wort über die Bedeutung der Logarithmen. Euler hat dieselben einfach als Mass für die Intervalle eingeführt, Drobisch geht einen Schritt weiter, indem er dieselben betrachtet als Mass für die Empfindung der Tonhöhe. Diess Gesetz für die Abhängigkeit der Empfindung von dem empfundenen Reiz hat Fechner in seiner Psychophysik noch mehr erweitert und auf die Empfindungen aller Sinnesorgane ausgedehnt. Er weist nach, dass innerhalb bestimmter Grenzen alle Sinnesempfindungen proportional mit dem Logarithmus des Reizes wachsen, nicht mit dem Reize direct. Das Mach'sche Modell\*) (Fig. 7) lässt sich nun auch als eine graphische Darstellung dieses Gesetzes (des sog. Weber'schen Gesetzes) ansehen: Die Tasten, resp. die Striche zwischen den Linien  $\beta$  und  $\gamma$  bedeuten gleiche Zuwüchse der Empfindung, die Zahlen an der Linie  $\delta$  oder  $\epsilon$  aber die Grösse des Reizes. Der Reiz 1 ist der "Schwellenwerth des Reizes", die zugehörige Empfindung ist gleich Null, zum Reiz 2 gehört eine Empfindung 1, ein weiterer Zuwachs des Reizes um 1 erhöht aber die Empfindung'nur um  $0.58496 \ (= q)$  und erst der Reiz 4 giebt die Empfiudung 2; überhaupt sieht man dass die Reizzuwüchse bei wachsenden Reizen immer kleinere Empfindungszuwüchse bedingen oder "auslösen". - Durch diese Anwendung des Mach'schen Modells erhält dasselbe also noch eine allgemeinere Bedeutung für die Psychophysik.

Halle, im Juli 1868.

G. Sch.

\*) Zum Gebrauch in Vorlesungen u. s. w. empfiehlt cs sich, diess Modell etwas grösser herzustellen. Herr Buchbindermeister A. Henning hierselbst liefert dasselbe in 3mal grösseren Massstabe (Octave =  $150^{\text{mm}}$ , das ist also ungefähr die natürliche Grösse der Claviertastatur) bei einer Länge von 4 Octaven (Theilton 1-16) zu dem billigen Preise von  $\frac{2}{3}$  Thir. Zu bemerken ist noch, dass bei Umkehrung des Streifens  $\gamma - \delta$  die Zahlen an der Linie  $\gamma$  angeben, in welchen Klängen der Ton 1 als zweiter, dritter.... Theilton enthalten ist.

# Verlag von B. G. Teubner in Leipzig.

\*\*\*\*\*

Handbuch der höheren Algebra. Von G. Serret. Nach der dritten Auflage deutsch bearbeitet von G. WERTHEIM. 2 Bände. gr. 8. geh. 2 Thir. 20 Ngr.

Es giebt kein Werk, welches die Theorie der Gleichungen in der Vollständigkeit und Klarheit, wie die vor einem Jahre erschienene dritte Auflage von Serret, cours d'algèbre supérieure behandelt, und welches so sehr den Ansprüchen genügt, die man an ein Handbuch zu stellen hat. Die Reichhaltigkeit des Werkes ist am besten aus dem nachstehenden Inhaltsverzeichniss zu ersehen:

I. Theil: Allgemeine Eigenschaften und numerische Auflösungen der Gleichungen. Theorie der Kettenbrüche. 2. Cap. Periodische Kettenbrüche. 3. Cap. 1. Cap. Allgemeine Eigenschaften der algebraischen Gleichungen. 4. Cap. Simultane der Wurzeln der numerischen Gleichungen. II. Theil: Die symmetrischen Functionen. 1. Cap. Theorie der symmetrischen Functionen. 2. Cap. Allgemeine Formeln aus der Theorie der symmetrischen Functionen. 3. Cap. Excurs über die Zerlegung der rationalen Brüche und über die recurrierenden Reihen. 4. Cap. Alternierende 5. Cap. Entwicklungen aus der Theorie der Functionen und Determinanten. Elimination. Gleichungen und Elimination. 5. Cap. Eigenschaften der Wurzeln der Einheit 6. Cap. Trennung der Wurzeln der numerischen Gleichungen. 7. Cap. Berechnung. III. Theil: Eigenschaften der ganzen Zahlen. 1. Cap. Congruenzen. 2. Cap. Potenzreste und binomische Congruenzen. 3. Cap. Eigenschaften der ganzen Functionen einer Veränderlichen in Beziehung auf einen Primzahlmodus. 4. Cap. Ueber die Anzahl der zwischen gegebenen Ganzen enthaltenen Primzahlen. IV. Theil: Substitutionen. 1. Cap. Allgemeine Eigenschaften der Substitutionen. 2. Cap. Eigenschaften der Systeme conjugierter Substitutionen. 3. Cap. Indices der conjugierten Systeme. 4. Cap. Einige besondere Fälle aus der Theorie der Substitutionen. 5. Cap. Anwendungen der Theorie der Substitutionen. V. Theil: Algebraische Auflösung der Gleichungen. 1. Cap. Gleichungen 3. und 4. Grades. Allgemeine Betrachtungen über die algebraische Auflösung der Gleichungen. 2. Cap. Ueber die Unmöglichkeit der algebraischen Auflösung der allgemeinen Gleichungen, deren Grad grösser als 4 ist. 3. Cap. Abel'sche Gleichungen. 4. Cap. Ueber eine Klasse von Gleichungen 9. Grades, die algebraisch lösbar sind. 5. Cap. Ueber die Gleichungen, die algebraisch gelöst werden können.

Was die Uebersetzung betrifft, so war es das Bestreben des Herausgebers, dieselbe möglichst correct zu liefern. Bedeutende Aenderungen sind nirgend vorgenommen, an einzelnen Stellen nur kleine Zusätze gemacht, so ist z. B. die Tabelle der Nr. 316 nach Jacobi vervollständigt worden u. s. w.

# Theorie der elliptischen Functionen. Versuch einer elementaren Darstellung. Von Dr. H. DUREGE, Prof. am K. K. Polytechnikum zu Prag. Zweite verb. Aufl. Mit in den Text gedruckten Holzschn. gr. 8. geh. 3 Thlr.

Plan und Anordnung der ersten Auflage sind bei der zweiten Auflage bis auf unbedeutende Aenderungen beibehalten worden, nur die Behandlung des Additionstheoremes hat durch Voranschickung der Sturm'schen Integrationsmethode eine etwas andere Gestalt erhalten. Neu hinzugekommen ist ein Abschnitt über das Abel'sche Theorem. Die Aufnahme desselben wurde angeregt durch die vortreffliche Schrift von Clebsch und Gordan über die Abel'schen Functionen (Verlag von B. G. Teubner, 1866, 2 Thlr. 12 Ngr.), in welcher ein so schöner Beweis dieses Theoremes gegeben ist, und worin dasselbe mit seinen Einzelheiten eine so wichtige Rolle spielt. Obgleich nämlich streng genommen das Abel'sche Theorem nicht in eine Theorie der elliptischen Functionen hineingehört, so hoffte der Verfasser doch, durch die Darstellung der ersten ins Einzelne gehenden Untersuchung Abels dem Einen oder Anderen seiner Leser mit Rücksicht auf das erwähnte Buch eine willkommene Zugabe zu bieten, zumal die kurz vorher behandelten elliptischen Integrale ein passendes Beispiel zur Illustration des Abel'schen Theoremes lieferten.

## Algebraische Gleichungen nebst den Resultaten und den Methoden

zu ihrer Auflösung. Von Dr. ERNST BARDEY. gr. 8. geh. 1 Thlr. 10 Ngr.

Das Buch enthält 1000 Aufgaben, welche alle bis auf sehr wenige Ausnahmen vom Verfasser selber aufgestellt sind. Die Resultate sind jeder Aufgabe beigefügt. Die Methoden zur Auflösung sind allgemein gehalten und beziehen sich meistens auf ganze Klassen von Aufgaben, sind aber an einzelnen Aufgaben vollständig durchgeführt. Für viele Aufgaben sind, falls dies zweckmässig schien, noch besondere Andeutungen zur Auflösung gegeben. Gleichungen vom ersten Grade kommen nur der Vergleichung halber ausnahmsweise vor. Das Buch beginnt mit den rein quadratischen Gleichungen. Es zerfällt in drei Theile. Der 1. Theil behandelt die Gleichungen mit einer Unbekannten, der 2. Theil die mit zwei Unbekannten, der 3. die mit drei und vier Unbekannten. Die Auflösung aller Gleichungen, wenn auch viele derselben scheinbar von einem höheren Grade sind und im 2. Theil selbst Aufgaben vorkommen, die über den 20. und 30. Grad hinaus zugehen scheinen, lässt sich bei einer geeigneten Behandlung mit Hülfe quadratischer Gleichungen beschaffen.



•

1 1

۲ ۲

> ] i 1

> > •

•

;

.

- .
- - .
- **.**

.

.

.

·

-

.



•

.

,

.

•

.

e

•

# INHALT.

Druck von B. G. Teubner in Leipzig.

Digitized by Google

Seite



.

•

.

.

.

.



•



·

.

#### 

. . .

This book should be returned to the Library on or before the last date stamped below.

A fine of five cents a day is incurred by retaining it beyond the specified time.

Please return promptly.

DUE OCT 14 1913

UUL IAN 29 1924

BUE FEB 17 50

.UL 12 1023-

· · · ·

Digitized by Google

V

