
\3

a

48/80 FORTH
FOR 48K AND 80K ZX SPECTRUM

INTRODUCTION AND TECHNICAL MANUAL

© East London Robotics Lid. 1983

48/80 FORTH

from

EAST LONDON ROBOTICS LIMITED

© East London Robotics Ltd 1983

INDEX

PREFACE

48/80 FORTH

About this manual
About the tape
Use of the Spectrum Keyboard
Use of the ZX Printer
Breaking into the program

BEGINNERS INTRODUCTION

The Word, the Vocabulary and the Dictionary
Forth, BASIC and Machine Code
Defining a new word
Run-time and Compile-time
The parameter stack
Math operations
Stack manipulation
No floating point arithmetic
Loops
Conditionals
Variables, Constants and Arrays
Forth and line-numbers
Saving and Loading
Fields

48/80 FORTH EXTENSIONS TO STANDARD FIG-FORTH

THE EDITOR

CONCLUSION

APPENDICES

Graphics
Sound
Timing words
Free memory space
Cassette handling words

Loading the Editor
Forth Screens
Selecting a screen and inputting text
Line editing
Cursor control and string editing

Future plans
Acknowledgements

GLOSSARY
EDITOR GLOSSARY

ERROR MESSAGES
MEMORY MAPS
BIBLIOGRAPHY
REGISTER USAGE
COLD/WARM START PARAMETERS SOUR WNF

PAGE

NNR Re

Ww

3
3
4

4

5
5
6
6
7
8
9

10
10

12

12
te)
14
14
14

17

17
iF
18
18
18

20

20
20

21-48
49-51

52
53
54
55
56

PREFACE

ABOUT THIS MANUAL

If you are new to Forth, it is ESSENTIAL that you refer
to one of the books recommended in Appendix 5. This manual is primarily
a formal definition of the words in the Forth vocabulary. It is not
a text book.

We have, however, written an extensive introduction for
beginners. This is of necessity over-simplified and in-complete, but
it is hoped that it will provide enough of an insight into the language
for you to understand most of the word-definitions in the Glossary,

and to get started on writing some programs.

ABOUT THE TAPE

Each tape includes both a 48k version and an 80k version of
48/30 Forth. On one side of the tape the 48k version precedes the 80k
version. On the other side they are the other way round.

The order of programs on each side of the tape is therefore
as follows:

SIDE 1 SIDE 2

48k Forth Compiler 80k Forth Compiler
48k Forth Editor 80k Forth Editor
80k Forth Compiler 48k Forth Compiler
80k Forth Editor 48k Forth Editor

weet To load either version of the compiler, type LO

The Editor can only be loaded when the compiler is already
running. To load the Editor, type

LOADSCREENS EDITOR (No inverted commas needed)

When you have loaded the compiler, you should get the
sign-on message as follows:

48/80 FORTH v 1.1 (48k VERSION)
or 48/80 FORTH v 1.1 (80k VERSION)

followed by the copyright message and a flashing C cursor. If you
press enter, the system will respond with OK.

USE OF THE SPECTRUM KEYBOARD

The cursor types which are needed for Spectrum 48/80 Forth
are C,L,G and E. The E cursor should only be used for square brackets
{ and J. (Keywords will not appear in E mode).

All Forth words must be typed in letter by letter.

USE OF THE ZX PRINTER

The ZX Printer can be selected by pressing Caps Shift
and 1. If you do this, all output to the screen will also be printed
out on the Printer.

To get back to screen output only, (i.e. to tur the
printer off), press Caps Shift and 1 again.

BREAKING INTO THE PROGRAM

The normal Break function is available using Caps
Shift and Space. Note, however, that the ability to break into
your own Forth programs is dependent on your own programming -
if you write an endless loop with no break-in provisions, you
may have to pull the plug and reload.

The Break function will return you to BASIC in certain
circumstances. This will happen in particular when
- you are saving to tape
- you are loading from tape
- you are using the ZX Printer

If you are in BASIC and wish to return to Forth, enter one
of the following:

RANDOMISE USR 24576 This performs a "cold start'', deleting
any additions you have made during the
session.

RANDOMISE USR 24580 This gives a "warm start'', retaining any
additions you have made during the session.

Note: 80k users must ensure that page 1 is selected for these
cold and warm starts.

THE 80k SPECTRUM

The 80k version of 48/80 FORTH will work only on a
Spectrum fitted with the SP80 64k paged memory expansion produced
by East London Robotics Ltd

BEGINNERS INTRODUCTION

THE WORD, THE VOCABULARY AND THE DICTIONARY

Any form of program instruction in FORTH ¥ called a
"word''. This includes not only such words as DO and THEN, but also
punctuation marks such as: ' ! and ;.

These ''words'' are grouped into a series of "vocabularies".
You may have one or more vocabularies in your FORTH system. The
name of the vocabulary in your FORTH compiler is ''FORTH''. Your
editor uses a different vocabulary, called "EDITOR". You, as the
user, will eventually wish to form your own specialised vocabularies
suited to your own particular purposes.

All the words in all the vocabularies which have been
loaded onto your Sectrum are held in the ''dictionary", which is
a specially reserved area of RAM. The words of several different
vocabularies may be intermingled. But if you specify which
vocabulary you are using, your system will only find the words in
that vocabulary, and the vocabularies to which it is linked.

The FORTH compiler (whose vocabulary is called FORTH) has
enough words for you to be able to write almost any kind of
program.

FORTH is unique in that it allows you to add to the
dictionary by defining your own words. The initial FORTH vocabulary
is extensive enough to let you define your own words purely in
terms of other words which have already been defined.

Not only can you define new words in terms of the words
already supplied by the compiler; you can also define further words
in terms of the new words you have defined.

FORTH, BASIC AND MACHINE CODE

FORTH is, so to speak, half way between. BASIC and machine
code. FORTH programs, therefore, do not read like English. The
meaning of a simple BASIC program can often be worked out by someone
who has never heard of computers. To translate ("interpret’') a
BASIC program, a very large amount of work has to be done by the
microprocessor and the interpretation routines in ROM before the
command itself can be carried out. BASIC programs are therefore
slow.

Forth is much much closer to machine code than BASIC. So
to program successfully, you will have to go some way towards
understanding what goes on inside the computer, and learn to think
in terms of numberselogic, rather than in the English-type grammar
of a BASIC program. More of this later.

Meanwhile, it is most important to gain some idea of
what goes on when you define a new word.

at oss

DEFINING A NEW WORD

The word " : " (colon) tells the system that you are
about to define a new word.

The colon is always followed by the name of the word
to be defined. The name is followed by the definition itself.

The whole definition is terminated with '' ; " (semi). If

you forget this semi-colon, the system will not know when the
definition ends, and will attempt to include whatever comes next.
This can cause the system to crash, and you will have to reload.

All FORTH words must be separated by one or more spaces.

When you have written your definition, beginning with
: and ending with ; you must press Enter. ONCE YOU HAVE PRESSED
ENTER YOU CANNOT GO BACK AND EDIT THE DEFINITION.

This is because the computer has already turned (or
tried to turn) your definition into machine code. When you enter
a BASIC line with a line number, the actual text of the line is
stored in memory. FORTH does not remember the actual text of the
line. It simply stores the "meaning", i.e. the compiled code, next
to the new word name in the dictionary.

The editor allows you to retain the actual text of your
definitions. More of this later.

FORTH has no syntax checking to stop you entering garbage.
Words are translated immediately into machine code. This means that
the system is not difficult to crash if you enter garbage.

If you define a word incorrectly, it may still be entered
in the dictionary, but because it makes no sense, it cannot be used.
It will appear on the dictionary listing, but will produce an
error report if you attempt to use it.

To remove a word from the dictionary, type FORGET and the
name of the word. If the definition is garbage, this may not work.
In these circumstances type SMUDGE and try again. (See SMUDGE and
TOGGLE in the Glossary).

RUN-TIME AND COMPILE-TIME

It should now be clear that the FORTH system operates in
two different modes; called run-time and compile time. At run-time,
the system executes the words in the program. At compile-time, the
system converts words within a definition into code which can later
be used at run-time.

Certain words can only be used for compiling (i.e. within
colon-definitions. These include the looping words DO and LOOP (which
are similar to BASIC's FOR...NEXT)

THE PARAMETER STACK

If you ask the FORTH system to store temporarily a few
mumbers, it will, in most cases, push them onto the parameter stack.
The stack is, so to speak, a spring-loaded ping-pong ball box. The
mmbers (ping-pong balls) are pushed inside the box. This means
that the most accessible one is always the last one to be pushed in.

So if you type

1 2 3 45 and Enter
5

the stack will look like this: 4
3

So if you ask the computer to print 2
out the numbers on the stack, you]
will get them out in reverse order.

The word " . "' (called DOT) removes the number at the
top of the stack and prints it on the screen. So if you type

2 306: Br elo wows and Enter

you will get 54321 OK

At this point the stack will be empty again.

MATH OPERATIONS

All arithmetic in FORTH is performed on the numbers on
the stack. Even if the numbers are stored elsewhere in memory,
they must first be brought to the stack before they are operated
on.

This means that the programmer must ensure that the
numbers are already on the stack before he asks the system to
do something with them (such as add, subtract, multiply etc.)

So Forth uses "Reverse Polish" notation, also known as
"“post-fix" notation. Instead of writing:

3+4
we write 34+

The Forth word "' + '' adds the two numbers on the top of the
stack and leaves the answer in their place on top of the stack. (If
you want to print the answer, you must put a. (dot) after the +. Don't
forget the space).

When programming in FORTH, you must always be aware of
what is happening to the stack. If you look at the formal
definitions of the word + - * and / in the Glossary, you will find
they are all defined in terms of what is happening to the stack.

STACK MANIPULATION

The initial Forth vocabulary includes some words which
enable you to change the position of numbers on the stack. Examples
of these are:

DROP This simply erases the top number from the stack.
SWAP This swaps the positions of the top two numbers.
DUP This adds a duplicate of the top number to the stack.
OVER This adds a duplicate of the second number to the top of

the stack.
ROT Rotates the top three values. (i.e. the third becomes the first)

Both DUP and OVER create a new number on the top of the
stack, so all the other numbers already on the stack are pushed down
one place.

NO FLOATING POINT ARITHMETIC

All numbers in Spectrum BASIC are held to 9 or 10
significant digits, even such simple ones as 1 or 2. This is
very expensive in processing time.

Your Forth system deals with whole numbers only. If you
need floating point arithmetic, then you must define the procedures
yourself.

Furthermore, numbers entered ordinarily will be held
in only two bytes. This allows a maximum range of -32768 to +3276/.
(You should be aware that one of the 16 bits in the two bytes is
used to indicate whether a number is negative or positive. Such
15+1 bit numbers are called "signed" numbers, the 16th bit being the
sign.)

Thus if you enter a number larger than 32767, only part
of the binary bit-pattern will be stored, so when you enter . you
will get back a totally different number.

Certain words allow you to use the normal two bytes for
unsigned numbers. 16 bits allow a range from @ to 65535. See
the Glossary from U. to U€

Other words allow you to use four bytes to hold a
number, giving a range 2147483647 to -2147483648. See the
Glossary from D+ to D.R

Unless you define your own number-handling routines,
Forth can manipulate whole numbers only. So the calculation
5/3, written

5 34
will leave the answer l.

But if you use the word /MOD instead of just / it will
leave the result (1) on top of the stack, and the remainder (2)
second on the stack. Try

5 3 /MOD

MOD will leave the remainder only. So

5 3 MOD.

will give the answer 2 only.

The reason that FORTH leaves the number handling systems so open
is because different applications require totally different levels
of accuracy. If you are using FORTH for a financial application, you
are highly unlikely every to need more than two places of decimals.
If you are writing games, you are probably better off with whole
numbers, and no decimals will be used. If your application is
scientific, you may need extreme accuracy.

LOOPS

You can usually only create a loop within
a colon-definition.

The simplest type of loop uses the words DO
and LOOP. The syntax is, however, very different from

the BASIC "'FOR......NEXT'’ loop.

The limits of the loop must first be put on the
stack, with the highest limit first. Next comes DO, followed by
whatever you want to happen each time the program loops. Finally
type LOOP. For example:

LOOPER 10 @ DO ."' I'M LOOPING" LOOP ;

(The word ."' means - print the following string up to the next" .
Note that there must be a space after ."' as ."" is a word.)

The name of your new word is "'LOOPER''. If you now
type in LOOPER, the Spectrum will print "I'M LOOPING’ ten times.

What actually happens in this loop is as follows:
a) On reaching the word DO, the program transfers the two values
on the parameter stack to another stack (called the Return Stack).
As soon as LOOP is reached, the lower value on the return stack
is incremented by 1, and compared with the limit value. If they
are not equal, (i.e the limit has not yet been reached) then
the program will jump back to just after the word DO. As soon as
the limit is reached, however, the program will pass LOOP and
carry on to what is next.

The word +LOOP enables you to loop in steps other
than 1. For example:

: STEPLOOP 100 @ DO ."' ONE IN TEN’ 10 +LOOP ;

This will add 10 to the loop index each time.

The DO loop is called a definite" loop, because its
upper limit is specified within the program. With careful use of
the stack, however, the user can specify how many times the loop
should be performed without having to redefine the word each time.
For example:

LOOPER @ DO ."' THIS MANY TIMES '' LOOP ;

Then type

5 LOOPER

As the limit comes first, the 5 you have entered will
be found by DO in its correct position on the stack.

I

The word I is extremely useful in looping. It transfers
the top value from the return stack to the parameter stack without
deleting it from the return stack. You can thus use the loop index
as a variable. For example:

: SCREENFILL 22527 16384 DO 255 I ! LOOP ;

(The word ! means ''store in the address held at the top of the stack
the number held second on the stack)

This word SCREENFILL will fill in all the bits in the

Spectrum display file.

For more complex loops, see BEGIN AGAIN REPEAT and
WHILE in the Glossary. These words allow an "indefinite" loop, which
repeats itself until or while a certain condition is met.

CONDITIONALS

Consider the following conditional colon-definition:

: TEST @ € IF .'' THE NUMBER IS NEGATIVE "' ELSE ."’ THE NUMBER
IS POSITIVE " ENDIF ;

If you now type
5 TEST

or -5 TEST
the computer will tell you whether the

number is positive or negative.

What actually happens in this program?

First your 5 (or -5) goes on the parameter stack.
Then @ goes on the parameter stack.
Then the two numbers are compared to see whether the first number (5)
is less than the second number.
If it is, (i.e. if it is true), then a "true" flag is left at the
top of the stack. A true flag is any mumber greater than 9.
IF looks at the flag at the top of the stack. If it is true, then
execution continues from immediately after IF. If it is false (i.e.@)
then execution jumps to immediately after the ELSE.

ENDIF (which can be replaced by THEN) terminates the conditional
structure.

VARIABLES, CONSTANTS AND ARRAYS

Variables, constants and arrays are all dictionary
definitions and are held in the dictionary just like a colon-
definition. Each one has the effect of reserving bytes for
holding the appropriate numbers.

The difference between a variable and an array lies
in what happens when you "call" it, rather than in the form in
which it is held in memory.

A constant called, for example, C, with a value of

say 365, is entered as follows:

365 CONSTANT C

No colons or semi-colons must be used.
If you then type

204%
C will be executed. Execution of a constant

means that the value of the constant is pushed directly onto the
stack.

A variable called, for example, V, with an initial value

of say 10, is defined as follows:

10 VARIABLE V

But if you then execute V, you will not get the number 10 on the
stack. You will instead get the address of the two bytes (called a
cell) where the variable is stored. To get the actual value of V,
you must use the word @ (pronounced "'fetch"), which fetches the
number stored at the address currently held on the stack.

So if you type

Ve@.
you will get the number 10.

To change the variable you must likewise use the word !
(pronounced ''store'') which "pokes" the second number held on the
stack into the address held at the top of the stack. For example

20 Vv!
will change V to 20.

Arrays (defined in BASIC using the DIM statement) are
created in Forth by reserving extra bytes in the dictionary immediately
after aVARIABLE definition. This is done by using the word ALLOT.
For example

20 ALLOT
will reserve 20 free bytes in excess of those

already reserved by VARIABLE. (enough for 10 more values of V). To
store or fetch these values, a little simple arithmetic must be
put into your instructions. For example:

30 V2+!

will store the value 30 in the next free
cell in the array.

FORTH AND LINE NUMBERS

Once a Forth program has been compiled it has no line
numbers. If you are used to BASIC only, this may startle you
as you can no longer use GOTO or GOSUB.

But of course each word you have defined is in itself
a GOSUB routine, and to call that routine, you simply type in the
word.

Moreover, you can call a long and complex program with
a single word, and you can use this word within a DO... LOOP structure
or a BEGIN ... UNTIL structure without difficulty.

Forth's use of colon-definitions forces you to structure
your programs in a much more logical and efficient way than BASIC.
Too many programmers start writing their sub-routines in BASIC before
they have decided what the general structure of the program will be,
and even before they have decided what they want the program to do.
A Forth programmer, writing say a stock-control program, would start
at the other end of the problem. The last word to be compiled will
be STOCKCONTROL, but this will be the first one to be defined by
the programmer. He will define it with words he has not yet precisely
defined, such as GOODSIN, GOODSOUT, BALANCE and so on. He will
proceed to define these lower level words until he reaches a level
where he is using only those words which are already in the vocabulary.

This is also the process one ought to follow when writing
a program in any other language.

Line numbers do, however, exist in Forth. An essential

part of a Forth system is the editor. This allows you to store
"source code'' in the original form;- i.e. in the same format as
when you typed it in.

Source code is stored in "Screens" of 1k bytes each, made
up of 16 lines of 64 bytes. When you list a screen (see the section
on the EDITOR in this manual) you will see a series of colon-definitions
and program instructions in a comprehensible form. These can be
edited, added to or deleted.

Code held in screens will not execute until it has been
compiled. To compile the words in screen 3, for example, you must
type

3 LOAD
This will compile the words

defined in screen three and put them into the dictionary. Once
they are in the dictionary, the code on the screen can be deleted.

SAVING AND LOADING

You can both load and save either;-
a) The contents of the screens, using the word SAVESCREENS or LOADSCREENS.
or
b) Thecontents of the dictionary, using the words SAVETAPE or LOADTAPE.

Don't forget that the contents of the screens will not
execute until you have compiled them with LOAD.

ae oe

FIELDS

In browsing through the Glossary you will frequently come
across references to the PFA (Parameter Field Address) and the NFA
(Name Field Address). This is a brief explanation of the meaning
of these terms.

A dictionary definition is held in memory as follows:

It consists of four distinct areas known as ''fields"'.

1. The Name Field. The first byte of this area holds the
number of characters in the name in the lowest 5 bytes, thus limiting
the length of any Forth name to 31 characters maximum. The sixth
bit is 1 when SMUDGEd, thus preventing a match by (FIND). The
seventh bit is called the "precedence bit, and is set to] when
the word is "immediate". 'Immediate'' means that if the word is used
within a colon definition, it will be executed and not compiled.
The eighth bit is always set to 1. The rest of the name field is
made up of the ASCII characters of the name of the word.

2. The name field is followed by the link field. This is a field of
two bytes, which contains the start address of the previous definition
in the dictionary. Using this address, the system can search through
the dictionary very rapidly. Note that the dictionary is searched
backwards, so if you have two definitions of the same name, the
one most recently defined will be found first and used, and earlier
ones will be ignored.

3. Next comes the code field. This is also two bytes only, and
contains the ''code-pointer"’.
The code pointer points to the run-time code which is appropriate
for this particular definition.
If the definition is a variable, or a machine code definition, then

the run time code will push the first address of the parameter field (pfa)
onto the stack.
If the definition is a constant, the run-time code will push the contents
of the first two bytes of the parameter field onto the stack.
If it is a colon definition, the code pointer will point to code
which jumps one by one through each address held in the parameter
field.

4 The last field in a dictionary definition is the parameter field.
In the case of variables, arrays and constants, this will hold the
variable or constant numbers.
In the case of a colon definition, however, the parameter field will
hold the addresses of each word used in the definition. The code-
pointer points to code which executes the code held at each one of
these addresses in turn.

Ali

48/80 EXTENSIONS TO STANDARD FIG FORTH

This section describes the additional words included in
48/80 FORTH which enable you to take full advantage of the Spectrum's
capabilities. These words cover the colour, graphics, sound and tape
handling facilities which you will need to give the same range of
capabilities as are available when writing programs in Spectrum
BASIC.

GRAPHICS

Several words are available which are very similar to the
equivalent BASIC statements.

n INK
n PAPER

where n is a number between @ and 9 and is
equivalent to a Spectrum colour.

n BORDER
where n is a mumber between @ and 7.

A further facility included in 48/80 FORTH is that a
colour can be typed in directly, instead of using a number. i.e.

BLACK INK WHITE PAPER
is equivalent to

@ INK 7 PAPER

The following expressions are equivalent to the BASIC
statements:

n FLASH
n BRIGHT
n INVERSE

n GOVER

GOVER is equivalent to the BASIC OVER statement, and
has been renamed so that it does not clash with the standard FORTH
word OVER. n is @ to turn the appropriate function off, and
non-zero to turn it on.

Note that all these words affect both the temporary and
permanent Spectrum colour attributes. (See pages 194 and 195 in
the Spectrum manual). This means that the effect of these words
will last until changed by the use of the word again.

These four words perform the same functions as the
Spectrum statements;

x y POINT
x y PLOT
x y DRAW
x y z CIRCLE

but unlike the Spectrum, DRAW statement
x and y are actual screen coordinates, rather than displacements.
DRAW draws a line from the last plotted position (or end of the last
line drawn) to the coordinates give. So to draw a square in the

centre of the screen you could type:

an

100 60 PLOT 100 116 DRAW 156 116 DRAW 156 60 DRAW

100 60 DRAW and Enter.

z is the radius of the circle. POINT returns @ on the

stack if the pixel at x y is PAPER colour, else it returns 1 on
the stack if it is INK colour.

nl n2 AT
positions the cursor at nl column and n2 line.

nl TAB
positions the cursor at cclumn number ni, modulo 32,

either on the present line if that does not involve back-spacing
or else on the next line.

CLS
This is similar to the BASIC statement, clearing the

screen, setting it to the present PAPER colour, and placing the
cursor at the top left hand corner of the screen.

nl n2 n3 n4 n5 n6 n7 n8 nchar UDG
This enables user defined

graphics characters to be created. nchar lies between @ and 15 and
is equivalent to the graphics shift characters A to P. nl is the
bottom byte of the 8 X 8 pixel UDG, and n8 is the top byte. So to
define graphics-shifted A as a square box, tyupe:-

HEX FF 81 81 81 81 81 81 FF @ UDG (Note that the word HEX changes
the number base from 10 to 16)

SOUND

nl n2 BEEP

This words allows sounds to be produced. The smaller
nl is, the higher the frequency which will be produced, and the
larger n2 is, the longer the duration of the note. More precisely
the value of nl can be calculated from the following equation:

nl = (>——-—

where fout is the required frequency. Note that the value of 3500000
is the frequency of the Spectrum system clock, i.e. 3.5 MHz. So
to produce middle C (= 261 Hz) nl will be 1646.

n2 is equal to the no. of cycles in the BEEP, so to
produce 1 second of middle C there will be 261 cycles , so n2 = 261.
i.e.

1646 261 BEEP

By using BEEP within a loop it is possible to produce
real arcade games types of sounds. Enter these two lines as an
example:

: SOUND] 399 19 DO I 2 BEEP 4 +LOOP ;
3; SOUND2 6 1 DO SOUND1 LOOP ;

and then type SOUND2

-13-

TIMING WORDS

There are 3 words which help you to implement timing
functions. They operate on the Spectrum FRAMES system variable
(see page 175 of the Spectrum Manual)

TIMEO
sets the FRAMES variable back to zero.

TIME@
fetches the contents of FRAMES, i.e. the elapsed

time since the Spectrum was switched on, or since TIMEQ was
executed, and leaves it as a double mumber on top of the stack.
This is the elapsed time in 50ths of a second, or 60ths in the
USA.

TIME.
prints the elapsed time in seconds to 9.92 of

a second.

Note that the FRAMES system variable is not incremented
during operation of the ZX Printer, or during loading and saving
cassette operations, or during BEEP operation.

FREE MEMORY SPACE

The available space which is free for your own word
definitions can be found by using the word

FREE
which will leave the available space on the top

of the stack. You may wish to define a word which will actually
print this information for you, such as this example:

: FREE. FREE CR U. ." Bytes free '' (CR ;

Then by. typing FREE, you should get the following response:

31568 Bytes free. (for 80k version)

CASSETTE HANDLING WORDS

Four words are included which allow you to save and
load data from cassette. They will all be dealt with here,
although two of them (LOADSCREENS and SAVESCREENS) will usually
only be used with the Editor, which is dealt with in a separate
section of the manual.

SAVETAPE

address length SAVETAPE ccccc

where address is the starting address and length is the number of
bytes of code to be saved, to a tape with a name (not more than
10 characters, just as in BASIC) following the SAVETAPE command
in the position of the cccec. Note that no quotes are required
round the name, also that there is no "Start tape and press any

The output will start as soon as you press enter. The most important
use of this is to save an extended version of 48/80 FORTH, including
your own words which have been added to the top of the dictionary.
Note that this copy is for your own use only and is not for resale
or hiring purposes, as this would infringe the copyright.

Before you can save the extended dictionary you will
need to change the cold start parameters, as is shown below. Type
in the following lines:

FORTH DEFINITIONS DECIMAL
LATEST 12 +ORIGIN !
HERE 28 +ORIGIN !

HERE 30 +ORIGIN !
HERE FENCE !
"FORTH 6 + 32 +ORIGIN !

Then type the following, but before pressing enter
at the end of the line, start the tape running with the cassette
recorder in record mode (and do not use your master 48/80 FORTH
tape!)

@ +ORIGIN DUP WERE SWAP - SAVETAPE NEWFORTH (or whatever you
wish to call it)

and you will record a new extended version of your
48/80 FORTH.

Change FORTH for the name of the appropriate
vocabulary if you are using a different vocabulary. An example is
to be found on screen #5 of the editor supplied.

LOADTAPE

The syntax for this word is

addr LOADTAPE ccccc

where ccccc is the name of the bytes to be loaded from tape. This
is not normally a very useful word, and finds most use when
transferring screens (see the section on the Editor for a discussion
of screens) between the 80k and 48k versions of FORTH and vice versa.

LOADSCREENS

This word enables edited source code prepared using
the FORTH editor to be saved on cassette. The syntax for this word
is

Ist-screen-no No-of-screens SAVESCREENS cccc

where screen-nos refers to the Editor screen numbers. So to save
screens 7 and 8 to tape with a name FORTHTOOLS (for example) type

7 2 SAVESCREENS FORTHTOOLS

and again start the tape before pressing the enter key, just as for

the SAVETAPE word.

ac

LOADSCREENS

The syntax for this word is

LOADSCREENS ccccc

and is used to load a previously saved screen or screens of source
code from tape. So to load the source code for FORTHTOOLS, type

LOADSCREENS FORTHTOOLS

Some general comments on using the tape cassette routines
are in order. Firstly, error message #19 will occur if the name is
longer than ten characters, and control will then be passed back to
the Forth operating system, just as for any other error message.
If you press the break key during tape operations, then you will
be returned to BASIC. If this happens type

RANDOMIZE USR 24530

to perform a WARM start. You will not lose any of the words
you have defined. (This is also the case when pressing the Break
key during ZX Printer operation, and during BEEP). If you mistype
the name of the tape you wish to load, and have already pressed the
enter key before you realise your mistake, then you will have to
press the break key to exit from the tape routines. Perform a warm
start as above to retrieve the situation.

a te

THE EDITOR

LOADING THE EDITOR

The EDITOR is located on your tape immediately after both
the 48k and the 80k compilers. Once you have loaded 48/80 FORTH
you can load the EDITOR by typing

LOADSCREENS EDITOR and enter.

Once the editor is loaded successfully, the program
will respond with OK.

The source text of the EDITOR is now held in the
screens. It cannot be used until it is compiled into the
dictionary. To do this, type

1 LOAD and enter.

The EDITOR words will now be compiled. Do not worry
about error message 4, which will occur for the words R and I,
which have different definitions in FORTH and the EDITOR.

Now type EDITOR. This will select the new vocabulary
called EDITOR. Then type VLIST. You will see that you have a
whole new list of words in the dictionary.

FORTH SCREENS

Forth organises all mass storage on a system of screens.
A screen consists of 1024 bytes, or characters, and is divided
into 16 lines of 64 characters each. This does not correspond
to the screen format of the Spectrum, but this is not important.

Note that since the screens are an arrangement of
“virtual memory" (i.e. they are loaded into RAM complete, and
are thus treated by the system as though they were part of RAM)
you can have any number of them stored on tape. You are limited
to having 16 screens in RAM with the 48k FORTH and 32 screens
with 80k FORTH at any one time.

The screens are numbered 9 to 15 (48k FORTH) and @
to 31 (80k version). Screen number @ is usually reserved for
comments, and cannot be used to load source code.

teal ae

SELECTING A SCREEN AND INPUTTING TEXT

To start an editing session, the user types EDITOR to
select the appropriate vocabulary.

The screen to be edited is then selected using either

n LIST (List screen n and select it for editing) or
n CLEAR (Clear screen n and select it for editing)

To input new text to screen n after LIST or CLEAR

the P (PUT) command is used. i.e.

@ P THIS IS HOW
1 P TO INPUT TEXT
2 P TO LINES @, 1 AND 2 OF THE SELECTED SCREEN.

LINE EDITING

During this description of the EDITOR, reference is made to
PAD. This is a text buffer which may hold a line of text used by
or saved with a line-editing command, or a text string to be found or

deleted by a string editing command.

PAD can be used to transfer a line from one screen to
another as well as to perform edit operations within a sincle screen.

Line Editor Commands

nH Hold line n at PAD (Used by system more often than by user)
nD Delete line n but hold it in PAD. Line 15 becomes blank as

line n+l to line 15 move up one line.
nT Type line n and save it in PAD
nR_ Replace line n with the text in PAD
nI Insert the text from PAD at line n, moving the old line n and

following lines down. Line 15 is lost.
nE Erase line n with blanks.
nS Spread at line n. n and subsequent lines move down one line.

Line n becomes blank. Line 15 is lost.

CURSOR CONTROL AND STRING EDITING

The screen of text being edited resides in a buffer area
of storage. The editing cursor is a variable holding an offset into
this buffer area. Commands are provided for the user to position
the cursor, either directly, or by searching for a string of buffer
text, and to insert or delete text from the current cursor position.

Commands to position the cursor

TOP Position the cursor at the top of the screen.
nM _ Move the cursor by a signed amount n and print the cursor

line. The position of the cursor on its line is shown
by _ (underline).

Pe

Commands to position the cursor (cont)

F text Search forward from the current cursor position until
string ''text'' is found. The cursor is left at the end
of the text string, and the cursor line is printed.
If the string is not found an error message is given and
the cursor is repositioned at the top of the screen.

B Used after F to back up cursor by the length of the most
recent text.

N Find the next occurence of the string found by an
F command.

X text Find and delete the string "text".
C text Copy in text to the cursor line at the cursor position.
TILL text Delete on the cursor line from the cursor until the end

of the text string "text".

NOTE: Typing C with no text will copy a null into the text at
the cursor position. This will abruptly stop later compiling!
To delete this error, type TOP X and Enter.

n LIST List screen n and select it for editing.
n CLEAR Clear screen n with blanks and select it for editing.
nl n2 COPY Copy screen nl to screen n2.
L List the current screen, The cursor is relisted after the

screen listing to show the current cursor position.
FLUSH Used at the end of an editing session to ensure that all

entries and updates of text have been transferred from
the buffer area to the mass storage area.

FUTURE PLANS

Work is already in progress to extend 48/80 FORTH.
In future it is planned to offer a set of Forth software tools
including a Z80 Assembler, a decompiler and several other useful
aids for the Forth programmer.

It is also planned to add additional words to enable
operation with the Microdrive and Interface 1, and our own
Trickstick.

ACKNOWLEDGEMENTS

Acknowledgement is duly made to the Forth Interest
Group, P.O. Box 1105, San Carlos, Ca 94070 for parts of this
compiler and manual.

- 20 -

APPENDIX 1

GLOSSARY

This glossary contains all the word definitions in 48/80 FORTH.
The words are presented in the order of their ASCII sort.

The first line of each entry shows a symbolic description of
the action of the procedure on the parameter stack. The symbols
indicate the order in which input parameters have been placed on
the stack. Three dashes ''---'"' indicate the execution point. Any
parameters left on the stack are listed. In this notation the top
of the stack is to the right.

The symbols include:

addr memory address
b 8 bit byte (i.e. high 8 bits zero)
c 7 bit ASCII character (high 9 bits zero)
d 32 bit signed double integer, most significant

portion with sign on top of stack.
£ boolean flag. Zero = false, non-zero = true.
EL boolean false flag
n 16 bit signed integer
u 16 bit unsigned integer
tf boolean true flag

The capital letters to the right of some definitions show
definition characteristics as follows:

C word may only be used within a colon-definition.
E Intended for execution only.
P has precedence bit set. Will execute even when

compiling.
U a user variable.

48/80 FORTH uses standard FIG-FORTH, and the definitions in this
glossary are those specified by the FORTH Interest Group.

2) &

!CSP

if

>

i##BUF

#S

(.")

(;CODE)

n addr ---

Store 16 bits of n at address.
Pronounced " store ".

Save the stack position in CSP. Used
as part of the compiler security.

dl --- d2
Generate from a double number dl, the next ASCII
character which is paced in the output string.
Result d2 is the quotient after division by BASE,
and is maintained for further processing. Used
between ¢# and #).
See #S

d --- addr count
Terminates numeric output conversion by dropping
d, leaving the text address and character count
suitable for TYPE.

--- n
A constant returning the number of disk buffers
allocated.

dl --- d2
Generates ASCII text in the text output buffer,
by use of #, until a zero double nunber results.
Used between # and # .

--- addr P
Used in the form:

" nnnn
Leaves the parameter field address of dictionary
word nnnn. As a compilation directive, executes in a
colon-definition to compile the address as a literal.
If the word is not found after a search of CONTEXT
and CURRENT an appropriate error message is given.
Pronounced " tick "’.

Used in the form:
(ecec)

Ignore a comment that will be delimited by a
right parenthesis on the same line. May occur
during execution or in a colon definition. A
blank after the leading parenthesis is required.

C
The run-time procedure, compiled by ."' which
transmits the following in-line text to the selected
output device. See ." é

The run-time procedure, compiled by ;CODE, that
rewrites the code field of the most recently defined
word to point to the following machine code
sequence. See ;CODE.

ay ae

(+LOOP)

(ABORT)

(DO)

(FIND)

(LINE)

(LOOP)

(NUMBER)

ay

*/MOD

nN --- C
The run-time procedure compiled by +LOOP,
which increments the loop index by n and tests for
loop completion. See +LOOP.

Executes after an error when WARNING is -1.

This word normally executes ABORT but may be
altered (with care) to a user's alternative
procedure.

C
The run-time procedure compiled by DO which
moves the loop control parameters to the return
stack. See DO.

addrl addr2 --- pfa b tf (OK)
addr1 addr2 --- ff (bad)
Searches the dictionary starting at the name field
address addr2, matching to the text at addrl.
Returns parameter field address (pfa), length
byte of name field and boolean true for a good
match. If no match is found only a boolean false
is left.

nl n2 --- addr count
Convert the line no. nl and the screen no. n2 to
the disk buffer address containing the data. A
count of 64 indicates the full line text length.

C
The run-time procedure compiled by LOOP which
increments the index and tests for loop completion.
See LOOP.

dl addrl --- d2 addr2
Convert the ASCII text beginning at addrl+] with
regard to BASE. The new value is accumulated into
double number dl, being left as d2. Addr2 is the
address of the first unconvertable digit. Used
by NUMBER.

nl n2 --- prod
Leave the signed product of two unsigned numbers.

nl n2 n3 --- n4
Leave the ratio n4 = nl * n2/n3 where all are
signed numbers. Retention of an intermediate
31 bit product permits greater accuracy than would
be available with the sequence nl n2 * n3 /

nl n2 n3 --- n4n5
Leave the quotient n5 and remainder n4 of the
operation nl*n2/n3. A 31 bit intermediate product
is used as for */.

3935

+!

+BUF

+LOOP

+ORIGIN

nl n2 --- sum
Leave the sum of nl + n2.

n addr ---
Add n to the value at the address. Pronounced

"' plus-store ".

nl n2 --- n3
Apply the sign of n2 to nl, which is left as n3.

addrl --- addr2 f
Advance the disk-buffer address addrl to the address
of the next buffer addr2. Boolean f is false when
addr2 is the buffer presently pointed to by
variable PREV.

nl --- (run) P,C

addr n2 --- (compile)
Used in a colon definition in the form:
DO nl +LOOP
At run time, +LOOP selectively controls branching
back to the corresponding DO based on nl, the loop
index and the loop limit. The signed increment nl
is added to the index and the total compared to the
limit (nl 0), or until the new index is equal to or
less than the limit (nl 0). Upon exiting the loop
the parameters are discarded and execution continues
ahead.
At compile time, +LOOP compiles the run time word
(+LOOP) and the branch offset computed from HERE to
the address left on the stack by DO. n2 is used
for compile time error checking.

n --- addr
Leave the memory address relative by n to the
origin parameter area. n is the minimm address
unit, either byte or word. This definition is
used to access or modify the boot-up parameters
at the origin area.

Nn -——

Store into the next available dictionary memory
cell, advancing the dictionary and pointer. (comma)

nl n2 --- diff
Leave the difference of nl-n2.

P
Continue interpretation with the next disk screen.
Pronounced ' next-screen "'.

nl --- nl (if zero)
nl --- nl nl (if non-zero)
Reproduce nl only if it is non-zero. This is
usually used to copy a value just before IF, to
eliminate the need for an ELSE part to drop it.

ee Dik

-FIND

-TRAILING

-CPU

- LINE

/MOD

9123

O<

--- pfa b tf (found)
--- ff (not found)
Accepts the next text word (delimited by blanks) in the
input stream to HERE, and searches the CONTEXT and then
CURRENT vocabularies for a matching entry. If found, the
dictionary entry's parameter field address, its length
byte and a boolean true is left. Otherwise only a
boolean false is left.

addr nl--- addr n2
Adjusts the character count of a text string beginning
address to suppress the ouput of trailing blanks. i.e.
the characters at addr+nl to addr+n2 are blanks.

n ———

Print a number from a signed 16 bit two's complement
value, converted according to the numeric BASE. A
trailing blank follows. Pronounced DOT.

Used in the form P
" eccc"

Compiles an in-line string cccc (delimited by the
trailing '') with an execution procedure to transmit the
text to the selected output device. If executed
outside a definition, ."' will immediately print the
text until the final "' . The maximum number of
characters may be an installation dependant value. See (."’)

This word prints out the version of memory for which
the FORTH is configured, either 48k or 80k.

line scr ---
Print on the terminal device a line of text from the
disk by its line and screen number. Trailing blanks
are suppressed.

nl n2 ---
Print the number nl right-aligned in a field whose
width is n2. No following blank is printed.

nl n2 --- quot
Leave the signed quotient of nl/n2

nl n2 --- rem quot
Leave the remainder and signed quotient of nl/n2.
The remainder has the sign of the dividend.

--- n

These small numbers are used so often that it is
attractive to define them by name in the dictionary
as constants.

n--- f
Leave a true flag if the mmber is less than zero
(negative), otherwise leave a false flag.

ee ae

@BRANCH

1+

2+

2!

2@

2DUP

3CODE

nee £
Leave a true flag if the number is equal to zero,
otherwise leave a false flag.

f --- C
The run-time procedure to conditionally branch.
If f is a false (zero) the following in-line
parameter is added to the interpretive pointer to branch
ahead or back. Compiled by IF, UNTIL and WHILE.

nl --- n2
Increment nl by 1

nl --- n2
Leave nl incremented by 2

nlow nhigh addr ---
32 bit store. nhigh is stored at addr. nlow is
stored at addr+2.

addr --- nlow nhigh
32 bit fetch. nhigh is fetched from addr. nlow
is fetched from addr+2.

n2 nl --- n2 nl n2 nl
Duplicate the top two values on the stack.
Equivalent to OVER OVER.

Pak
Used in the form called a colon-definition:

PICCCCE: aeniet.33
Creates a dictionary entry defining cccc as equivalent
to the following sequence of FORTH word definitions "...
until the next " ; " or '"' ;CODE". The compiling process
is done by the text interpreter as long as STATE is
non-zero. Other details are that the the CONTEXT
VOCABULARY IS SET TO THE CURRENT vocabulary and that
words with the precedence bit set are executed rather
than compiled.

P,C
Terminate a colon definition and stop further
compilation. Compiles the run-time ;S.

P,C
Used in the form:

: cece ;CODE
Stop compilation and terminate a new defining word
cece by compiling (;CODE). Set the CONTEXT vocabulary
to ASSEMBLER, assembling to machine code the
following mnemonics.
When cccc later executes in the form:

eccc nnnn
the word nnnn will be created with its execution
procedure given by the machine code following cccc.
That is, when nnnn is executed, it does so by
jumping to the code after nnnn. An existing
defining word must exist in cccc prior to ;CODE.

£96 2

<i

<BUILDS

aR

?COMP

?CSP

?ERROR

P

Stop interpretation of a screen. ;S is also the
run-time word compiled at the end of a colon
definition, which returns execution to the calling
procedure.

nl n2 ---- f
Leave a true flag if nl is less than n2, otherwise
leave a false flag.

Set up for pictured numeric output formatting using
the words:

<i # #S SIGN #>
The conversion is done on a double number producing
text at PAD.

Used within a colon definition:
: cccc <BUILDS

.-DOES> +

Each time cccc is executed, <BUILDS defines a new word
with a high level execution procedure. Executing cccc
in the form :

ecec nnnn
uses <BUILDS to create a dictionary entry for nnnn
with a call to the DOES> part for nnnn. When nnnn
is later executed, it has the address of its parameter
area on the stack and executes the words after DOES
in cccc. <BUILDS and DOES> allow run-time procedures
to be written in high level rather than assembler
code (as required by ;CODE)

nl n2 ---- f
Leave a true flag if nl=n2. Otherwise leave a
false flag.

nl n2 ---f
Leave a true flag if nl is greater than n2.
Otherwise leave a false flag.

2 eaters C
Remove a number from the computation stack and
place it as the most accessible on the return stack.
Use should be balanced with R> in the same definition.

addr ---
Print the value contained at the address in free
format according to the current BASE.

Issue an error message if not compiling.

Issue an error message if stack position differs
from value saved in CSP.

£ nb. ===
Issue an error message number n if the boolean
flag is true.

?EXEC

?LOADING

?PAIRS

?STACK

? TERMINAL

ABORT

ABS

AGAIN

AT

B/BUF

Issue an error message if not executing.

Issue an error message if not loading.

nl n2 ---
Issue an error message if nl does not equal n2.
The message indicates the compiled conditionals
do not match.

Issue an error message if the stack is out of
bounds. This definition may be implementation
dependant.

--- f
Perform a test of the terminal keyboard for actuation
of the break key. A true flag indicates actuation.
This definition is implementation dependant.

addr --- n
Leave the 16n bit contents of address.

Clear the stacks and enter the execution state. Return
control to the operators terminal, printing a
message appropriate to the installation.

n--- u
Leave the absolute value of n as u

addr --- (compiling) PC
Used in a colon definition in the form

BEGIN... .AGAIN
At run-time, AGAIN forces execution to return to
corresponding BEGIN. There is no effect on the stack.
Execution cannot leave this loop (unless R DROP is
executed one level below).
At compile time, AGAIN compiles BRANCH with an offset
from HERE to addr. n is used for compile time error
checking.

hess

Add the signed number to the dictionary pointer DP.
May be used to reserve dictionary space or re-origin
memory. n is with regard to computer address type
(byte or word).

nl n2 --- n3
Leave the bitwise logical and of nl and n2 as n3.

nl n2 ---
Positions the print position at nl colum and n2 line.

Seen
This constant leaves the number of bytes per disk-
buffer, the byte count read from disk by BLOCK.

yl: ae

B/SCR

BACK

BASE

BEEP

BEGIN

BL

BLACK

BLANKS

BLK

--- n
This constant leaves the number of blocks
per editing screen. By convention an editing
screen is 1024 bytes organised as 16 lines of
64 characters each.

addr ---
Calculate the backward branch offset from HERE
to addr and compile into the next available
dictionary memory address.

--- addr U
A user variable containing the current number
base used for input and output conversion.

nl n2 ---
Sounds n2 cycles of frequency given approximately
by the expression

fout = (437500/n1)-30Hz

--- addr (compiling) P
Occurs in a colon-definition in the form:

BEGIN....UNTIL
BEGIN... .AGAIN
BEGIN... .WHILE....REPEAT

At run time, BEGIN marks the start of a sequence
that may be repetitively executed. It serves as
a return point from the corresponding UNTIL,
AGAIN or REPEAT.
When executing UNTIL, a return to BEGIN will
occur if the top of the stack is false: for
AGAIN and REPEAT a return to BEGIN always
occurs.
At compile time BEGIN leaves its return address
and n for compiler error checking.

--- ¢

A constant that leaves the ASCII value for
blank

Leaves the numerical value of BLACK colour
on the stack for use by PAPER, INK and BORDER.

addr count ---
Fill an area of memory beginning at address
with blanks.

--- addr U
A user variable containing the block number
being interpreted. If zero, input is taken from
the terminal input buffer.

- 29 -

BLOCK

BLUE

BORDER

BRANCH

BRIGHT

BUFFER

n --- addr
Leave the memory address of the block buffer
containing block n. If the block is not
already in memory, it is transferred from
disk to whichever buffer was least recently
written.
If the block occupying that buffer has been
marked as updated, it is rewritten to disk
before block n is read into the buffer.
See also BUFFER R/W UPDATE and FLUSH.

--- 1
leaves the numerical value of BLUE on the stack
for use by PAPER, INK and BORDER.

n -———

Sets the BORDER colour to n, where n lies

between @ and 7.

The run-time procuedure to unconditionally
branch.
An in-line offset is added to the interpretive
pointer IP to branch ahead or back.
BRANCH is compiled by ELSE, AGAIN and REPEAT.

n -—-<—=<

Turns permanent BRIGHT attribute on if n is non-
zero.
Turns it off if n is zero.

n --- addr
obtain the next memory buffer, assigning it to
block n. If the contents of the buffer is marke
as updated it is written to the disk. The
block is not read from disk.
The address left is the first memory cell within
the buffer for data storage.

- 30 -

BYE

Cc!

C/L

c@

CFA

CIRCLE

CMOVE

CMOVE2

COLD

COMPILE

Return to BASIC

b addr ---
Store 8 bits of b at address.

ices

Store 8 bits of b into the next available dictionary
byte, advancing the dictionary pointer.

--- n
Constant leaving the number of characters per line.
Used by the editor.

addr --- b
Leave the 8 bit contents of memory address.

pfa --- cfa
Convert the parameter field address of a definition
to its code field address.

nl n2 n3 ---
Draws a circle of radius n3 centred on coordinates

nl n2.

Clears screen and sets cursor or print position to
top left hand corner of screen.

from to count ---
Move the specified quantity of bytes beginning at
address from to address to. The contents of address
from is moved first proceeding towards high memory.

from to count ---
Move bytes to or from FORTH screens (i.e. page 2 of
SP80 memory). Normally this will be used to access
screens. The switching between page 1 and page 2
is done automatically. Otherwise the action is just
as for CMOVE. 80k version only.

The cold start procedure to adjust the dictionary
pointer to the minimm standard and restart via
ABORT. May be called from the terminal to remove
application programs and restart.

C
When the word containing COMPILE executes, the
execution address of the word following compile is
copied (compiled) into the dictionary. This allows
specific compilation situations to be handled in
addition to simply compiling an execution address(which
the interpreter already does).

ees | ae

CONSTANT

CONTEXT

COUNT

CREATE

CSP

CYAN

a

A defining word used in the form
n CONSTANT cccc

to create word cccc with its parameter field containing
n. When cece is later executed, it will push the value
of n onto the stack.

--- addr U
A user variable containing a pointer to the vocabulary
within which dictionary searches will first begin.

addrl --- addr2 n
Leave the byte address 2 and byte count n of a message
text beginning at address addrl. It is presumed that
the first byte at address 1 contains the text byte
count and the actual text starts with the second byte.
Typically COUNT is followed by TYPE.

Transmit a carriage return and line feed to the
selected output device.

A defining word used in the form
CREATE cccc

by such words as CODE and CONSTANT to create a
dictionary header for a FORTH definition. The code
field contains the address of the word's parameter
field. The new word is created in the CURRENT
vocabulary.

--- addr
A user variable temporarily storing the stack pointer
position for compilation error checking.

--- addr
A user variable containing a pointer to the current
vocabulary.

--- 5
Leaves the numerical value of CYAN on the stack for
use by PAPER, INK and BORDER.

dl d2 --- dsum
Leave the double number sum of two numbers.

dl n --- d2
Apply the sign of n to dl leaving it as d2.

oe

Print a signed double number from a 32 bit two's
complement value. The high order 16 bits are the
most accessible on the stack. Conversion is
performed according to BASE. A blank follows.
Pronounced D dot.

690

D.R

DABS

DECIMAL

DEFINITIONS

DIGIT

DLIST

DLITERAL

DMINUS

dn ---
Print a signed double number d right aligned in a
field n characters wide.

d --- ud
Leave the absolute value ud of a double number.

Set the numeric conversion BASE for decimal
input/output.

Used in the form
cccc DEFINITIONS

Set the current vocabulary to the CONTEXT vocabulary.
In the example, executing vocabulary name cccc made
it the CONTEXT vocabulary and executing DEFINITIONS
made both specify vocabulary cccc.

ec nl --- n2 tf (ok)
ec nl --- fff (bad)
Converts the ASCII character c (using base nl) to
its binary equivalent n2, accompanied by a true flag.
If the conversion is invalid only a false flag is left.

List the names of the dictionary entries in the
CONTEXT vocabulary.

d --- d (executing) P
d --- (compiling)
If compiling, compile a stack double number into
a literal. Later execution of the definition containing
the literal will push it onto the stack. If executing,
the number will remain on the stack.

dl --- d2
Convert dl to its double-number two's complement.

nl n2 --- (execute)
addr n --- (compile)
Occurs in a colon definition in the form

DO..... +LOOP
At run time, DO begins a sequence with repetitive
exectuion controlled by a loop limit nl and an index
with initial value n2. DO removes these from the stack.
Upon reaching loop the index is incremented by one.
Until the new index equals or exceeds the limit, execution
loops back to just after DO; otherwise the loop parameters
are discarded and execution continues ahead. Both
nl and n2 are determined at run-time and may be the
result of other operations. Within a loop, 'I' will
copy the current value of the loop index to the stack.
See I, LOOP, +LOOP LEAVE.
When compiling within the colon-definition, DO compiles
(DO) , leaves the following address addr and n for
later error checking.

- 3-

DOES >

DP

DPL

DRAW

DROP

ELSE

EMIT

EMPTY-BUFFERS

A word which defines the run-time action within a
high level defining word. DOES alters the code field and
first parameter of the new word to execute the sequence
of compiled word addresses following DOES .
Used in combination with BUILDS. When the DOES part
executes it begins with the address of the first
parameter of the new word on the stack. This allows
interpretation using this area or its contents.
Typical uses include the FORTH assembler, multi-
dimensional arrays, and compiler generation.

U
A user variable, the dictionary pointer, which
contains the address of the next free memory above the
dictionary. The value may be read by HERE and
altered by ALLOT.

--- addr 1a
A user variable containing the number of digits to the
right of the decimal point on double integer input.
It may also be used to hold output column location
of a decimal point, in user generated formating.
The default value on single number input is -1l.

nl n2 ---
Draws a line from the last plotted or drawn pixel
to coordinates nl and n2.

n -———

Drop the number from the stack.

N---nn
Duplicate the value on the stack.

addrl nl --- addr2 n2 (compiling) P.C.
Occurs within a colon-definition in the form:

IF ... ELSE ... ENDIF
At run-time, ELSE executes after the true part
following IF. ELSE forces execution to skip over the
following false part and resumes execution after the
ENDIF. It has no stack effect.
At compile time ELSE emplaces BRANCH reserving a.
branch offset, leaves the address addr2 and n2 for
error testing. ELSE also resolves the pending forward
branch from IF by calculating the offset from addrl to
HERE and storing at addrl.

Cc -———

Transmit ASCII character c to the selected output device.
OUT is incremented for each character output.

Marcks all block-buffers as empty, not necessarily
affecting the contents. Updated blocks are not written
to the disk. This is also an initialisation procedure
before first use of the disk.

ENCLOSE

END

ENDIF

ERASE

ERROR

EXECUTE

EXPECT

addrl c --- addrl nl n2 n3
The text scanning primitive used by WORD. From the
text address addrl and an ASCII delimiting character c,
is determined the byte offset to the first non-delimiter
character nl, the offset to the first delimiter after
the text n2, and the offset to the first character not
included. This procedure will not process past an ASCII
"null', treating it as an unconditional delimiter.

PEGs
This is an ‘alias' or duplicate definition for
UNTIL.

addr n --- (compile) PC,
Occurs in a colon definition in the form

IF ... ENDIF
IF ... ELSE ... ENDIF

At run-time, ENDIF serves only as the destination of a
forward branch from IF or ELSE. It marks the conclusion

of the conditional structure. THEN is another name for

ENDIF. Se also IF and ELSE.

At compile time ENDIF computes the forward branch offset
from addr to HERE and stores it at addr. n is used for
error testing.

addr n ---
Clear a region of memory to zero from addr over
n addresses.

line --- in blk
Executes error notification and restart of system.
WARNING is first examined. If 1, the text of line n
relative to screen 4 is printed. This line number
may be positive or negative, and beyond screen 4.
If WARNING = 9, n is just printed as a message number.
If WARNING is -l, the definition (ABORT) is executed
which executes the system ABORT. The user may
cautiously modify this execution by altering (ABORT).
The contents of IN and BLK are saved to assist in
determining the location of the error. Final action
is execution of QUIT.

addr ---
Execute the definition whose code field address is on the
stack. The code field address is also called the
compilation address.

addr count ---
Transfer characters from the terminal to address
until a 'return' or the count of characters have been
received. One or more nulls are added to the end of
the text.

= 395 <

FENCE

FILL

FIRST

FLASH

FLUSH

FORGET

FORTH

GOVER

HEADER

--- addr
A user variable containing address below which
FORGETting is trapped. To FORGET below this point the
user must alter the contents of FENCE.

addr quan b ---
Fill memory at address with specified quantity of
bytes b.

--- n

A constant that leaves the address of the first

(lowest) block buffer.

--- addr U
A user variable for control of number output field
width. Presently unused.

n -———

Sets permanent FLASH attribute on if n is non-zero,
and turns it off if n is zero.

Write all updated disk-buffers to disk. Shjould be
used after editing.

Executed in the form
FORGET cccc

Deletes definition named cccc and all successive entries
from the dictionary. An error message will occur if
the CURRENT and CONTEXT vocabularies are not the
same.

P
The anme of the primary vocabulary. Execution
makes FORTH the CONTEXT vocabulary. Until additional
user vocabularies are defined new user definitions
bocom a part of FORTH. FORTH is immediate so it
will execute during the creation of a colon definition,
to select this vocabulary at compile-time.

--- n
Leaves the available free dictionary space on the
stack.

n -———

Sets permanent OVER attribute on if n is non-zero,
and off if n is zero.

---4
Leaves the numerical value of GREEN on the stack for
use by PAPER INK and BORDER.

Used in the form
HEADER cccc

where cccc is the name given to a file saved to or
loaded from cassette. Issues an error message if cccc
is greater than 10 characters. Used by LOADTAPE,

SAVETAPE, LOADSCREENS and SAVESCREENS.

296.=

HOLD

ID,

IF

IMMEDIATE

IN

INDEX

--- addr
Leave the address of the next available dictionary
location.

Set the numeric conversion base to 16 (hexadecimal)

--- addr
A user variable that holds the address of the latest
character of text during numeric output conversion.

Cc -<—

Used between # and # to insert an ASCII character
into pictured nummeric output string. e.g. 2E HOLD
will place a decimal point.

---n C
Used within a DO loop to copy the loop index to the
stack. See R.

addr ---
Print a definition's name from its name field address.

f --- (run time) P,C
--- addr n (compile)
Occurs in a colon-definition in the form

IF (true part) ... ENDIF
IF (true part) ELSE (false part) ... ENDIF

At run-time, IF selects execution based on a boolean

flag. If f is true (non-zero), execution continues
ahead through the true part. If f is false (zero),
execution skips till just after ELSE to execute the
false part. After either part, execution resumes
after ENDIF. ELSE and its false part are optional
and if missing execution skips to just after ENDIF.
At compile time, IF compiles OBRANCH and reserves
space for an offset at addr. addr and n are used for
resolution of the offset and error testing.

Mark the most recently made definition so that when
encountered at compile time it will be executed rather
than compiled. i.e. the precedence bit in its header
is set. This method allows definitions to handle
unusual compiling situations, rather than build them
into the fundamental compiler. The user may force
compilation of an immediate definition by preceding
it with COMPILE .

--~ addr
A user variable containing the byte offset within
the current input text buffer (terminal or disk) from
which the next imput will be accepted. WORD uses and
moves the value of IN.

from to ---
Print the first line of each screen over the range
from to. This is used to view the comment lines of
an area of text on disc screens.

Beso ae

INK

INTERPRET

INVERSE

LATEST

LEAVE

LFA

LIMIT

LIST

nl ---
Sets permanent INK colour to nl, where nl is from
® (black) to 9.

The outer text interpreter which sequentially executes
or compiles text from the input stream (terminal or
disk) depending on STATE. If the word name cannot
be found aftyer a search of CONTEXT and then CURRENT
it is converted to a number according to the current
base. That also failing, an error message echoing
the name with a ''?" will be given. Text input will
be taken according to the convention for WORD. If
a decimal point is found as part of a number, a
double number value will be left. The decimal point
has no other purpose than to force this action.
See NUMBER.

nN -———

Turns permanent INVERSE attribute on if n is non-zero,
and off if n is zero.

--- n
Used within a DO loop to copy the second loop
index to the stack. Usually only useful for a nested
DO loop within the same word.
--- n
Used within a DO loop to copy the third loop
index to the stack. Used for nested DO loop within
a single definition, as J.
---c
Leave the ASCII value of the next terminal key
struck

--- addr
Leave the name field address of the topmost word
in the current vocabulary.

Force termination of a DO loop at the next opportunity
by setting the loop limit equal to the current value
of the index. The index itself remains unchanged
and execution proceeds normally until LOOP or +LOOP
is encountered.

pfa --- lfa
Convert the parameter field address of a dictionary
definition to its link field address.

--- n
A constant leaving the address just above the
highest memory available for a disk buffer. Usually
this is the highest system memory.

nese

Display the ASCII text of screen n on the selected
output device. SCR contains the screen number
during and after this process.

an

LIT

LITERAL

LOAD

LOADSCREENS

LOADTAPE

LOOP

LTAPE

aa Hh C
Within a colon definition LIT is automatically
compiled before each 16 bit leteral number
encountered in input text. Later execution of
LIT causes the contents of the next dictionary
address to be pushed to the stack.

n --- (compiling) PG
If compiling, then compile the stack value n as a
16 bit literal. This definition is immediate so
that it will execute during a colon-definition.
The intended use is

: xxx (calcualted) LITERAL ;
Compilation is suspended for the compile time
calcualtion of a value. Compilation is resumed
and LITERAL compiles this value.

nN —_—_——

Begin interpretation of screen n. Loading will
terminate at the end of the screen or at ;S
See ;S and --).

Occurs in the form
LOADSCREENS cccc

Loads bytes from tape with name cccc into screens
memory. It will load screens back to the screen
numbers from which they were saved. See SAVESCREENS.

addr ---
Occurs in the form

LOADTAPE cccc
Loads bytes from tape starting at address and of
length taken from header. If addr is @ then loads
length no of bytes starting at the address given in
the tape header. See LTAPE.

addr n --- (compiling)
Occurs in a colon definition in the form:

DO ... LOOP
At run-time LOOP selectively controls branching back
to the corresponding DO based opn the loop index
and the limit. The loop index is encremented by
one and compared to the limit. The branch back
to DO occurs until the index equals or exceeds the
limit. At that time the parameters are discarded
and execution continues ahead.
At compile time LOOP compiles (LOOP) and uses addr
to calculate an offset to DO. n is used for error
testing.

addr ---
This loads data from tape using the parameters set
up in a 34 byte block with start address addr using
the normal Spectrum format.

= 49

LTAPE2

M/

M/MOD

MAGENTA

MAX

MESSAGE

MIN

MINUS

MOD

NFA

NOOP

NUMBER

addr ---
As LIAPE but operates on page 2 of RAM. (80k version only)

nl n2 --- d
A mixed magnitude math operation which leaves the
double number signed product of two signed mmbers.

dnl --- n2 n3
A mixed magnitude math operator which leaves the signed
remainder n2 and signed quotient n3 from a double number
dividend and divisor nl. The remainder takes its
sign from the dividend.

ud] u2 --- u3 ud4
An unsigned mixed magnitude math operation which leaves
a double quotient ud4 and remainder u3 from a double
dividend udl and single divisor u2.

bee
Leave the numerical value of MAGENTA on the stack for

use by PAPER, INK and BORDER.

nl n2 --- MAX
Leave the greater of the two numbers.

n -——

Print on the selected output device the text line
n relative to screen 4. MESSAGE may be used to
print incidental text such as report headers. If
WARNING is zero the message will simply be printed
as a number.

nl n2 --- min

Leave the smallest of two numbers.

nl --- n2
Leave the two's complement of a nunber.

nl n2 --- mod
Leave the remainder of nl/n2 with the same sign as
nl

pfa --- nfa
Convert the parameter field address of a definition
to its name field address.

A FORTH'no-operation’.

addr --- d
Convert a character string left at addr with a
preceeding count to a signed double mumber, using
the current numeric base. If a decimal point is
encountered in the text, its position will be given
DPL but no other effect occurs. If numeric conversion
is not possible an error message is given.

240.2

OFFSET

OUT

OVER

P!

b@

PAD

PAPER

PFA

PLOT

POINT

QUERY

QUIT

--- addr U
A user variable which may contain a block offset
to disk drives. The contents of OFFSET is added
to the stack number by BLOCK. See BLOCK MESSAGE.

nl n2 --- or
Leave the bit-wise logical "or" of two 16 bit values.

--- addr
A user variable that contains a value incremented
by EMIT. The user may alter and examine OUT to
control display formatting.

nl n2 --- nl n2 nl
Copy the second stack value, placing it as the
new top.

b port# ---
Outputs byte b to port #.

port# --- b
Inputs byte b from port#.

--- addr
Leave the address of the text output buffer, which
is a fixed offset above HERE.

n -_-——

Set permanent PAPER colour to n where n = @ (black)
to 9

nfa --- pfa
Convert the name field address of a compiled
definition to its parameter field address.

nl n2 ---
Plots pixel at coordinates nl n2.

nl n2 --- n3
Returns 1 if pixel at coordinates nl n2 is INK.
Otherwise returns @

--- addr
A variable containing the address of the disk
buffer most recently referenced. The UPDATE
command marks this buffer to be later written to
disk.

Input 80 characters of text (or until a "return")
from the operator's terminal. Text is positioned
at the address contained in TIP with IN set to @.

Clear the return stack, stop compilation and
return control to the operators terminal. No
message is given.

@

Copy the top of the return stack to the computation

stack.

Ri

R/W

R>

RO

RED

REPEAT

ROT

RP!

RP@

S-?D

--- addr U
A user variable which may contain the location
of an editing cursor or other file related
function.

addr blk f ---
The disk read-write linkage. Addr specifies
the source or destination block buffer. Blk is
the sequential number of the referenced block,
and f is a flag for write (f=@) and read (f=1).
R/W determines the location on mass storage,

performs the read/write, and performs any error
checking.

--- n
Remove the top value from the return stack and
leave it on the computation stack.
See R and R.

--- addr U
A user variable containing the intial location
of the return stack. Pronounce Rzero.

See RP!

--- 2
Leaves the number value of RED on the
stack for use by PAPER, INK and BORDER.

addr n --- (compiling) P,C
Used within a colon definition in the forms

BEGIN....WHILE....REPEAT
At run time REPEAT forces an unconditional
branch back to just after the corresponding
BEGIN.
At compile time REPEAT compiles BRANCH and
the offset from HERE to addr. N is used
for error testing.

nl n2 n3 --- n2 n3 nl
Rotate the three values on the stack, bringing
the third to the top.

A computer dependant procedure to initialise
the return stack pointer from user variable RQ.

--- addr
Leaves the current value in the return stack
pointer register.

n---d
Sign extend a single number to form a double
number.

eae

TIME.

TIME@

TIMED

TOGGLE

TRAVERSE

TRIAD

TYPE

U*

U/

Ug

Prints elapsed time in seconds since the Spectrum
was switched on or the timer was reset with TIME@.

--- d
Leaves elapsed time in 50th of a second increments
as a double mumber on the stack.

Resets the Spectrum timer to 9

addr b ---
Complement the contents of addr by the bit pattern b.

addrl n --- addr2
Move across a variable length name field. addr] is
the address of either the length byte or the last
letter. If n=] the motion is towards high memory.
If n = -1 the motion is towards low memory. The
addr2 resulting is the address of the other end of
name.

scr ---
Display on the selected output device the three
screens which include that numbered screen, beginning
with a screen evenly divisible by three. Output is
suitable for source text records

addr count ---

Transmit count characters from addr to the selected

output device.

u —-———

Print a number from an unsigned
16 bit value, converted according to the numeric

BASE. A trailing blank follows.

ul u2 --- ud
Leave the unsigned double number product of two
unsigned numbers.

ud ul --- u2 u3
Leave the unsigned remainder u2 and unsigned quotient
u3 from the unsigned double dividend ud and unsigned
divisor ul.
ul u2: ===.
Leave the boolean value of an unsigned less-than
comparison. Leaves f = 1 for ul u2; otherwise
leaves 9. This function must be used when comparing
memory addresses.

nl n2 n3 n4 n5 n6 n/ n8 n9 ---
Creates a user defined graphic character n9 where
n9 lies between 9 and 15 and is equivalent to graphics
shifted A to P. nl is the bottom byte and n8 is the
top byte of the 8 X 8 pixels making up the character.

- 45 -

UNTIL

UPDATE

USE

USER

VARIABLE

VOC-LINK

VOCABULARY

f --- (run time)
addr n --- (compile)
Occurs within a colon definition in the form

BEGIN ... UNTIL
At run time UNTIL controls the conditional branch
back to the corresponding BEGIN. If f is false
execution returns to just after BEGIN; if true,
execution continues ahead.
At compile time UNTIL compiles (OBRANCH) and an
offset from HERE to addr. n is used for error tests.

Marks the most recently referenced block (pointed
to by PREV) as altered. The block will subsequently
be transferred automatically to disc should its buffer
be required for storage of a different block.

--- addr
A variable containing the address of the block buffer
to use next as the least recently written.

os

A defining word used in the form
n USER cccc

which creates a user variable cccc. The parameter
field of cccc contains n as a fixed offset relative
to the user pointer register UP for this user variable.
When cccc is later executed, it places the sum of its
offset and the user area base address on the stack
as the storage address of that particular variable.

A defining word used in the form E
n VARIABLE cccc
When VARIABLE is executed it creates the definition
cece with its parameter field initialised to n. Whn
ecce is later executed, the address of its parameter
field (containing n) is left on the stack so that a
fetch or store may access this location.

--- addr U
A user variable containing the address in the field
of a definition of the most recently created
vocabulary. All vocabulary names are linked by
these fields to allow control for FORGETting through
multiple vocabularies.

A defining word used in the form
VOCABULARY cccc

to create a vocabulary definition cccc. Subsequent
use of cccc will make it the CONTEXT vocabulary which
is searched first by INTERPRET. The sequence
cccc DEFINITIONS will also make cccc the CURRENT
vocabulary into which new defintions are placed.
eccc will also be so chained as to include all
definitions of the vocabulary in which cccc is itself
defined. All vocabularies ultimately chain to FORTH.
By convention, vocabulary names are to be declared

IMMEDIATE. See VOC-LINK.

hey tes

VLIST List the names of the definitions in the context
vocabulary. ‘''BREAK'' will terminate the listing.

WARM Perform a warm start.
WARNING --- addr

A user variable containing a value controlling
messages. If = 1 then screen 4 is is the base
location for messages. If = @ then messages will be
presented by number. If = -1 then execute (ABORT)
for a user specified procedure. See MESSAGE and ERROR.

WHILE f --- (run time) P.C,
addrl n --- addrl nl addr2 n2
Occurs in a colon definition in the form

BEGIN ... WHILE (true part) ... REPEAT
At run time WHILE selects conditional execution based
on boolean flag f. If f is true (non-zero) WHILE
continues exectuion of the true part through to
REPEAT, which then branches back to BEGIN. If f

is false (zero) execution skips to just after the REPEAT
exitting the structure. At compile time WHILE emplaces
(OBRANCH) and leaves addr2 of the reserved offset.
The stack values will be resolved by REPEAT.

WHITE --- 7

Leaves the numerical value of WHITE on the stack
for use by PAPER, INK and BORDER.

WIDTH Cc ---
A user variable containing the maximum number of
characters saved in the compilation of a definition's
name. It must be 1 throguh 31 with a default value of
31. The name character count and its natural
characters are saved, up to the value in WIDTH. The
value may be changed at any time within the above limits.

WORD Cons
Read the text characters from the input stream being
interpreted until a delimiter c is found, storing
the packed character string beginning at the
dictionary buffer HERE. WORD leaves the character
count in the first byte, the characters, and ends with
two or mor blanks. Leading occurrances of c are
ignored. If BLK is zero text is taken from the terminal
input buffer, otherwise from the disk block stored in
BLK. See BLK and IN.

XOR nl n2 --- xor
Leave the bitwise logical exclusive-or of two values

YELLOW --- 6

Leaves the numerical value of YELLOW on the stack
for use by PAPER, INK and BORDER.

Used in a colon definition in the form
: xxx [words J more ;

Suspend compilation. The words after [are executed,
not compiled. This allows calculation or compilation
exceptions before resuming compilation with]. See LITERAL. }

7

CCOMPILE] P.C

Used in a colon definition in the form
: xxx (COMPILE) FORTH ;

COMPILE will force the compilation of an immediate
definition that would otherwise execute during
compilation. The above example select the FORTH
vocabulary when xxx executes, rather than at compile
time.

Resume compilation to the completion of a colon
defintion. See [

EDITOR
GLOSSARY

LINE

R#

i#fLOCATE

ifLEAD

i#LAG

-MOVE

APPENDIX 2

Accept following text to PAD. c is text delimiter.

n --- addr
Leave address of line n of current screen. Thjis
address will be in the disk buffer area.

nl n2 ---
n2 is the block no., nl is offset into block. If an
error is found in the source when loading from
disk, the recovery routine ERROR leaves these values
on the stack to help the user to locate the error.
WHERE uses these to print the screen and line nos.
and a picture of where the arror occurred.

--- addr
A user variable which contains the offset of the

editing cursor from the start of the screen.

--- nl n2
From the cursor’ position determine the line-no n2
and the offset into the line nl.

--- line-address offset-to-cursor

--- cursor-address count-after-cursor-till EOL

addr line-no ---
Move a line of text from addr to line of current
screen.

n -——<=—

Hold numbered line at PAD.

Nn <=

Erase line n with blanks.

n —-———

Spread. Lines n and following move down. n becomes
blank.

n -——

Delete line n but hold in PAD.

n -—=—

Move cursor by a signed amount and print its line.

n —_——

Type line n and save in PAD

List the current screen.

hg 4

TOP

FLUSH

COPY

MATCH

ILINE

FIND

DELETE

sal -——_——

Replace line n with the text in PAD.

nN -——_——

Put the following text on line n

n -——

Spread at line n and insert text from PAD.

Position editing cursor at top of screen.

nN ——_——

Clear screen n. Can be used to select screen n
for editing.

Write all updated buffers to disk. This has been
modified to cope with an error in the Micropolis
CPM disk drivers.

nl n2 ---
Copy screen nl to screen n2.

addrl count addr2 --- f
True if strings exactly match.

cursor-addr bytes-left-till-EOL str-count
--- tf cursor-advance-till-end-of-matching-text
--- ff bytes-left-till-EOL
Match the string at str-addr with all strings on
the cursor line forward from the cursor. The
arguments left allow the cursor R# to be updated
either to the end of the matching text or to the
start of the next line.

--- f
Scan the cursor line for a match to PAD text.
Return flag and update the cursor R# to the end of
the matching text, or to the start of the next line
if no match is found.

Search for a match to the string at PAD, from the
cursor position till the end of the screen. If no
match is found issue an error message and reposition
the cursor at the top of the screen.

n -———

Delete n characters prior to the cursor.

Find the next occurrence of PAD text.

- 50 -

TILL

Input following text to PAD and search for match from
cursor position till end of screen.

Backup cursor by text in PAD.

Delete next occurrence of following text.

Delete on cursor line from cursor to end of
following text.

Spread at cursor and copy the following text into
the cursor line.

es ee

ERROR
MESSAGES

MSG #0

MSG #1

MSG #2

MSG #3

MSG #4

MSG #6

MSG #7

MSG #19

MSG #17

MSG #18

MSG #19

MSG #20

MSG #21

MSG #22

MSG #23

MSG #24

APPENDIX 3

Word not in dictionary

Stack empty.

Dictionary full

Has incorrect address mode

Word not unique

Screen number out of range

Stack full

Tape name too long

Compilation only. Use in a definition

Execution only

Conditionals not paired

Definition not finished

In protected dictionary

Use only when loading

Off current editing screen

Declare vocabulary

- 52 -

MEMORY MAPS

48k version

FFFFh

FE@Oh
Screen#15

Screens

Screen#@ nit -- BEQ@h

Screens
Buffers

BIEGh

B9Q0Gh

Word
Buffer

psn GIN - 662Ah
Boot up

6000h
Basic
Area

APPENDIX 4

80k version

Page 1 Page 2
FFFFh FFFFh

Screen#31
FE@@h

RQ --- FDCPh

Term-

inal
Buffer

TIB,SQ- FD2@h Screens

<<
Stack

:

Text

Buffer

Word
Buffer

— 644Ah

Screen
Buffers

Boot up
Literals

Basic
Area

Screen#@ 8000h

PAD---

DP =<

LIMIT--

FIRST - 602Ah

Se 6000h

APPENDIX 5

BIBLIOGRAPHY

This is not intended to provide a definitive list of
books on Forth. There are many books available covering all
aspects of the language and catering for the beginner and
advanced programmer. Some of them are based on a Forth implementation
for a specific computer, but those in this list contain material of
a general nature and can therefore be recommended to all.

Many magazines carry articles and/or programs in Forth. In
particular the August 1980 issue of BYTE should be mentioned, which
devoted most of that issue to Forth. Also the Forth Interest Group UK
publishes 'FORTHWRITE"” the journal of the group, six times a year.
Serious Forth programmers will wish to join. The address is

Roger Firth, membership secretary,
24 Western Ave,
Woodley,
Reading

Here is a list of recommended books.

Starting Forth Leo Brodie Prentice Hall

Using Forth Leo Brodie

Forth Programming Leo J Scanlon Howard Sarms

Complete Forth Alan Winfield Sigma Tech Press

Invitation to Forth H. Katzan Petrocelli Books

Discover Forth Thom Hogan McGraw Hill

Threaded Interpretive
Languages R.F. Loeliger McGraw Hill

Forth Encyclopedia Mitch Derick Mountain View Pass

Forth Theory and
Practice De-Grandis Harrison | Acorn-Soft

Introduction to Forth Ken Knecht Howard Samms

APPENDIX 6

REGISTER
USAGE

If you intend to write machine code definitions
using CREATE or ;CODE it is important to know how the Z80
registers are used.

FORTH Z80

IP BC

W DE

SP SP

HL

The following table shows this.

Forth Preservation Rules

Should be preserved across
Forth words.
Sometimes output from 'NEXT' may
be altered before jumping to NEXT.
Input only when DPUSH called.
Should be used only as data stack
across Forth words. May be used
within Forth words if restored
before NEXT.
Never output fren NEXT.
only when HPUSH called.

Input

The start of the inner interpreter code looks like this:

DPUSH : PUSH DE

HPUSH : PUSH HL

NEXT : etc

48k address 80k address
602Ah 644Ah

602Bh 644Bh

602Ch 644Ch

This gives you enough information to write machine code
definitions of words.

ce

APPENDIX 7

COLD/WARM START PARAMETERS

This appendix gives the source code for the first 34
bytes of FORTH, starting at address 6000h, and explains why
various locations are stored with certain values, before saving
an extended dictionary.

Address

6000 NOP
6001 JMP COLD ; jump to cold start
6004 NOP
6005 JMP WARM ; jump to warm start
6008 DEFB REL ; release no.

6009 DEFB REV ; revision no.
600A DEFB USRVER $; user version no.
600B DEFB QEH ; implementation attributes
600C DEFW TASK-7 ; topmost word in Forth vocab
600E DEFW CH ; backspace character
6019 DEFW INITRO ; initial user pointer
6012 DEFW INITS@ ; initial address for S@
6014 DEFW INITR@ ; initial address for R@
6016 DEFW INITS@ ; initial address for TIB
6018 DEFW IFH ; initial WIDTH
601A DEFW @ ; initial WARNING
601C DEFW INITDP ; initial FENCE
601E DEFW INITDP ; initial DP
6020 DEFW FORTH+8 3; initial VOC-LINK

=. 56.

+ *

