(navigation image)
Home American Libraries | Canadian Libraries | Universal Library | Community Texts | Project Gutenberg | Children's Library | Biodiversity Heritage Library | Additional Collections
Search: Advanced Search
Anonymous User (login or join us)
Upload
See other formats

Full text of "History Of The Theory Of Numbers - I"

TABLE OF CONTENTS.
CHAPTER.                                                                                                                        PAGE.
I. Perfect, multiply perfect, and amicable numbers.................         3
II. Formulas for the number and sum of divisors, problems of Fermat
and Wallis................................................       51
III.  Fermat's and Wilson's theorems, generalizations and converses;
symmetric functions of 1, 2,..., p1, modulo p..............       59
IV.  Residue of (up~"1  l)/p modulo p..............................      105
V. Euler's <-function, generalizations; Farey series..................      113
VI. Periodic decimal fractions; periodic fractions; factors of 10n=*=l....      159
VII. Primitive roots, exponents, indices, binomial congruences.........      181
VIII. Higher congruences..........................................      223
IX. Divisibility of factorials and multinomial coefficients.............      263
X. Sum and number of divisors...................................      279
XI. Miscellaneous theorems on divisibility, greatest common divisor,
least common multiple.....................................      327
XII. Criteria for divisibility by a given number......................      337
XIII.  Factor tables, lists of primes..................................      347
XIV.  Methods of factoring.........................................      357
XV. Fermat numbers Fn^2^+l..................................      375
XVI. Factors of an=*=6n............................................      381
XVII. Recurring series; Lucas' un, vn................................      393
XVIII. Theory of prime numbers.....................................      413
XIX. Inversion of functions; Mobius' function /*(n); numerical integrals
and derivatives............................................      441
XX. Properties of the digits of numbers.............................      453
Author index................................................      467
Subject index...............................................      484
1