(navigation image)
Home American Libraries | Canadian Libraries | Universal Library | Community Texts | Project Gutenberg | Children's Library | Biodiversity Heritage Library | Additional Collections
Search: Advanced Search
Anonymous User (login or join us)
Upload
See other formats

Full text of "Scientific Papers - Vi"

1914]    SOME  CALCULATIONS  IN ILLUSTRATION  OF  FOURIER'S THEOREM     229
= 1.
2 1 0	* ;   o-o 0-5 I'O IT) 2-0		0()		X		4>(x)        i!      a;               0 (x)						0 (7)
			+ 1-8922 1-8178 1-6054 1 -2854 0-9026		2-5 3-0 3-5 4-0 5-0		+0-5084           6-0    !    -0-0953 f 01528    |-    7-0    '    +0-1495 -0-1244   |      6-0    !    +0-2104 -0-2987           9-0    !    +0-0842 -0-3335         10-0    j    -0-0867						
	"~~-v								k-\				
													
~.5J. -------------------- - -------------------------- _ ------------ ,				T	^	~-		^~			-~-		
0                            2                           4                           When h = 2,          </> (as) = Si (20 + 2) - Si and we find									B (I    2),    ..............			1	
													
.7;	0(3?)	X	<j>(x)	X	*(*)
O'O	+ 3-2108	0-9	+ 1-9929	3-0	------------------------------ -0-1840
0-1    .        3-1934		1-0	1-7582	3-5	+0-1151
0-2	3-1417	1-1	1-5188	4-0	+ 0-2337
0-3            3-0566		1-2	1 -2794	4-5	+0-1237
0-4	2-9401	1-3	1 '0443	5-0	-0-0692
0-fl	2-7947	1-4	0-8179	5-5	-0-1657
o-o	2-6235	1-5	+ 0-6038	6-0	-0-1021
o-7	2-4300	2-0	-0-1807		
0-8    '        2-2184		2-5	-0-3940		
Both for ki  1 and for 7cx = 2 all that is required for the above values of $ (x) is given in Glaisher's tables.