Skip to main content

Full text of "Scientific Papers - Vi"

See other formats

It is .some cheek upon the formula* to compare the exact results for n= 6 in ((54) with those derived for the case of n great in (70), although with such a modi-rale value of n no precise agreement could be expected. The following table gives the numerical results for ldPK/dr in the two cases:
n = 6.
rll	From ((51)	From (70)
i) .....	"2~>()()r"/l~	^483^;^
r) ...	Oft'MK)	O.r)88(i
1 .....	200.r)	ii(K>7
~2 .....	4 1 (!7	4 If!!)
tt .....	2! M)	25)22
4 .....	os;i3	.[().r).r)
r> .....	oo(ir)2	007 Hi
(J .....	ooooo	......
So far us the principal term in (TO) is concerned, the maximum value ore-urn whrii /// 2.
If. will la1 .seen (,hut tho agreement of the two Formuk) in in fact very good, *i lon^ UH /;/ ditcH not, much exceed \/->i. AH the, maximum value of r/l for which tSn Irm* rrsull. differs from xevo, is a] )proaehei I, the agreement neces-Miirily falls itV, Hi-ymid r/l  n, whe.u the true value, iw xero, (70) yields finite, thouh small,
I',S. March 'Jrd. --In (45) we have the cxpreHHion for [ihe probability of a iv.miltniil i>"1 wlii-n a large number (//.) of iHiqx-riodic vibrationH are combined, nlutw rcprcwnlnlive poinlH are distributed at random along the circumference ufa cirrh uf rmlitiH /, HO that the, comporumt amplitudoN are all equal. It IB of iiitt.Tt'Kt tiM*xttnd t,ho inveHtigation to cover the cane of a number of groups in which lh< umpliludeH are different, nay a group of pi components of amplitude /i, n group containing ?% of amplitude 19, and HO on to any number of groups, hut ill way* umW llw roatriction that every p is very large. The total number (2J/;) niny Htill br denoted by n, The roBult will be; applied to a caae where flu- number of groupH in infinite, the reprewintative points of the components being diHlribuled at random over the area of a circle of radius L. Wo start from (U }, now taking- the form
The fhrivation of the limiting form proceeds as before, where only one I WUH connulcrutl.    Writing 8l  |pAa, 8  %pA\ etc., we have
K. VI.
f(:4 appears to have been devised to meet the case when s = 0 and the integral,, though finite, does not converge to a definite value when x = <x>. If, however, ,s < -1, or <0, respectively, according as the cosine factors in (38) do or do not produce a constant term, the integral (38) has been shown to be finite; it is -also convergent; and the integrals obtained by omitting before each successive differentiation the factor to be differentiated, viz.': cos (%ir-rx-lqir) where g<p, are also finite (cf. Todhifnter's Integral Calculus, 1889, Arts. 214, 284). In these circumstances it would appear that-_(38) is itself valid, and that it is unnecessary to consider the integral obtained by "the next following operation" (s =p + f - %ri). It would seem then that the above considerations are sufficient to justify the differentiation by which 0,t is obtained (jp = 0, s- -f), and a fortiori that for <fe (# = 0, s=-2), etc. W..IY.S.]elative index is then much restricted, the