Skip to main content

Full text of "Annual report. 1st-12th, 1867-1878"

See other formats


Diep eeemem pee wae | 
ieee 


eras ip 
Vohe wena te He Oe tate memes He a tet, 
fe timte8l Ae enka: 

oer. 


eee eee 
la yeirem emai etee®. a giaete state. 
Wetgtnthe rm teas teAN AAS ote 
snk gee Rees 


ola we Ss Vad “= Ba 
g E PRELIMINARY REPORT = °° T+ 
14 ee nen es | ust, 


Vis 
UNITED STATES GEOLOGICAL SURVEY 
nD 


MONTANA 


PORTIONS OF ADJACENT TERRITORIES ; 


1 


_ BEING A 


FIFTH ANNUAL REPORT OF PROGRESS. 


Mine 23) 6 
F.V. HAYDEN, 
UNITED STATES GEOLOGIST. : 


— s ee +t CA. — \ 


AX FG Ae ik Cart ~ AAG 
a, ¥ \ 


RINTING OFFICE. 
1872. 


Ar 


TABLE OF CONTENTS. 


Page. 

PI NRpe RH PORT ORR Vis EUAN ed cs ose ee Ue ee 11 
CHap. I. FRoM OGDEN, UTAH, TO Fort HALL, IDAHO....-....-.....----+--- 222-2 eee eee 13 

II. From Fort HALL, IDAHO, TO FoRT ELLIS, MONTANA....-.-..------------------------- QT 


TI. Fort ELitis—Mystic LAKE—SOURCE OF THE GALLATIN—TRAIL CREEK—CROW AGENCY 
AND First CANON—EXIT OF THE YELLOWSTONE...---...-----------------------=- 


IV. First CANON—SNOWY RANGE—EMIGRANT PEAK—BOTTLER’S RANCH—SECOND CANON— 
DEVIL’s SLIDE—WHITE MouNTAIN—HOT SPRINGS, ETC 


V. THE GRAND CANON—FALLS—HoT SPRINGS—YELLOWSTONE LAKQ...-..-.-.---:----- 81 

VI. From YELLOWSTONE LAKE TO THE GEYSER BASINS OF FIRE-HOLE RIVER AND 
FRIELING petecte oc een = es eng asic cops ier sparatae is iste lays opereie ane ctare a nef tere ctor Are clay aes Bre 101 

Vi. From Hor Spring Camp, ON YELLOWSTONE LAKE, UP PELICAN CREEK AND DOWN 
Hast FORK, TO BOTTLER’S RANCH. .-..---...----------------- 022 ee nen een n een 130 

VII. Fort ELLIS—TuHREE ForRKS—JEFFERSON FORK—BEAVER HEAD CANON—MEDICINE 
EOD GE ORB B RS O55 ics eerste sea seer ie ain as eyar al oem eeahefe ewN PENA RU UDC & 139 

IX. Fort Hatt—Sopa SpPriIncs—BEAR RIVER VALLEY—BEAR LAKE VALLEY—TO 
EVANSTON, ON UNION PACIFIC RAILROAD...--....-.------ Qogooeseeeoagcmsezceuose 150 
&. THE YELLOWSTONE NATIONAL PARK, WITH A MAP...................-----------+--- 162 

XI. PRELIMINARY REPORT OF Dr. A. C. PEALE ON MINERALS, RocKs, THERMAL 
SPRINGS VETC7 OR THE EPSP RDITIONE case ciao cise seiner datele eleieieleinieieisie ie ele eee es 165 


PART Il. —AGRICULTURAL RESOURCES OF THE TERRITORIES. By Pror. Cyrus Tuomas. 205 


CHAP. I. GENERAL REVIEW: GEOGRAPHICAL FEATURES, MOUNTAINS, FORESTS, ETC..--.------ 210 
TET TSE GREAT Ey ASTINE SE olevelnveleinillataicie layers =toiialetcin clsiqy a miaia'elsioeaetomeeyaein alate ie)aie ateinicioicia = a) =ia/aieteteinie 227 
IM, NORTHERN PART OF SALT LAKE BASIN, AND SNAKE RIVER PLAINS ...--.--...------- , 237 
WV ig MON DANAS DER EAT OR Yeo elope seein imnieteteie siete -tnleretetei iste stnieeisisin ste Pearle Nets adh abt wan ay Olea 248! 


_V. LErrers FRoM Pror. G. N. ALLEN AND MR. HASKILL, AND EXPERIMENTS IN 
CULTIVATION ON THE PLAINS ALONG THE LINE OF THE KANSAS PACIFIC RAIL- 


WrAtye, UY RM Sen ERIORD seis vemecieecisads cease cis Lou we theo a ie Rees 925) 
ACen — AU HONE OMOG Wee. asda s Sebati eh aise ee tece ca celsiccenic hinkinelsieeseeweceeeciene 281 
ROSSI EORA]) bY: GEO! LESQUBREDIXSs20 oo Sosa ees oles ee ec eels cans os eseneee 283 
I. ENUMERATION AND DESCRIPTION OF THE FOossiL PLANTS, FROM THE SPECIMENS 
OBTAINED IN THE EXPLORATIONS OF Dr. FE. V. HAYDEN, 1870 AND 1871.-...---. wae 200 
4 II. REMARKS ON THE CRETACEOUS SPECIES DESCRIBED ABOVE......-.------------------- 303 
N LER TERY: BORA) OR INORTH, AMMRICANs {2 oo cisices cnidelsee se cceccies 2s ses eeaeietleme ete 304 
ON THE GEOLOGY AND PALEONTOLOGY OF THE CRETACEOUS STRATA OF KANSAS. By E. D. 
Cope; ALM e222. Baldo sein sere ere eee ants ei a able le relgis clare Mise Siahais oie a sere renee 318 
I. A GENERAL SKETCH OF THE ANCIENT LIPFE......-....-----000- 00-2 ee eee eee eee eecees 318 
Volpi (EG ROUO Giger nae eee salsa: laine esa see tales leioimslelsncicin sc blew salve lect ween mecing se eeeenaemes « o24 
PRS YNORSISUOR UDB PHPAUINAG says) semtcre se atere a cimsleuras cine nicl win sieve aia claieicicia Sie aeieielclesieieieietcicle 327 
ON THE VERTEBRATE FossILs OF THE WAUSATCH Group. By E. D. Corn, A. M .......... 350 


ON THE FOSSIL VERTEBRATES OF THE EARLY TERTIARY FORMATION OF Wyominc. By PROF. 


AO SEA HOWE MND Wis ter areclete cis tevacere sis ele olson tes pee eis = Mee ee iloie a nieclceiices Pee 353 
e PRELIMINARY LIST OF THE FOSSILS COLLECTED BY DR. HAYDEN’S EXPLORING EXPEDITION OF 
1871, IN UTAH AND WYOMING TERRITORIES, WITH DESCRIPTIONS OF A FEW NEW 

SBECHIUS a bye sie Bry Mier 272s yO eo he ee ae oo own ae icin’ = eicin main ere ee 373 

PRM e="7/O OL OG Wi AINIDMBOTAINY Vos sce cali ee ke oe ae 379 


I. NOTICE OF SOME WORMS COLLECTED DURING Pror. HAYDEN’S EXPEDITION TO THE 


YELLOWSTONE RIVER IN THE SUMMER OF 1871. By PRoF. JOSEPH LEIDY.......... 381 
II. COLEOPTERA. By Grorar H. Horn, M. D.............------- 2-20-22 ee ee eee eens 382 

Il. Novices OF THE HEMIPTERA OF THE WESTERN TERRITORIES OF THE UNITED STATES, 
CHIGFLY FROM THE SURVEYS OF Dr. F. V. HaypEN. By P. R. UHLER .-..--..---. 392 

IV. NOTES ON THE SALTATORIAL ORTHOPTERA OF THE ROCKY MOUNTAIN REGIONS. By 
IBROES OVRUS) -DHOMAS: «coecits se seteiccs ccisceeeci sete s sve maison siabis se site aeeeine 423 

V. List oF SPECIES OF BUTTERFLIES COLLECTED BY CAMPBELL CARRINGTON AND WILLIAM 
B. LOGAN, OF THE EXPEDITION, IN 1871. By W.H. EDWARDS..--...--.---------- 466 

Vi. REPORT ON THE RECENT REPTILES AND FISHES OF THE SURVEY, COLLECTED BY CAMPBELL 
CARRINGTON AND C. M. Dawes. By E. D. Corr, A. M...-....---..----------------- 467 
VII. CATALOGUE OF PLANTS. By Pror. THOMAS C. PORTER...-.-....---...--------------- 477 


PART V.—METEOROLOGY. By J. W. BEAMAN.......---.-.-- soosaccmeoe se odessaeoodingd eons -- 499 


LIST OF ILLUSTRATIONS. 


No. Page 
1. Bent quartzites near Ogden ..........- Y Se deabice ecb usoddonsesce cad: ecgden 14 
maewedee or limestone, Osden) Canon seer ea ea == ae ean ae ole 16 
3. Basalt tables, Snake River basin .. 622026 26-2 ececee snc t ee ccne Secesecescce 29 
4\, TBingiilis WHO Geemc Gabe socneo CoS Cen OCOnoS COmmoe coke Haaren Cooone oUe noon Eeor 29 
5. Reddish feldspathic granite, Wild Cat Cafion .... ...--...---.------------- 34 
6. Metamorphic strata, Black-tail Deer Creek-.........----..------.---2------ 35 
7. Weathered granite, Madison Cafion......--..------.-------.-------------- 39 
oo (GWGTST Osi Gey Gi) Jone Gisele oC Bee eee hogberosn conse geeeeorsee eeee 43 
2) (GANGHIG SURI, WED, RTD As Seo con pad poecoe cdibe Shore Hoon does dsconesseesaq 59 

inl, Qtreni2liede Iu TET eee hee eRe ees SAE ee Ein ite Eames Sele 60 

Til, Gy Les Cl) oh eescbe Soon SenG bE BEE DD Onoo USGHE aca on ea pp Se Cee SercipApeAose 61 

12. White Mountain Hot Springs, Gardiner’s River, (chart).--.-----..----.---- 64 

13. General view of overflow of Great Spring, Gardiner’s River.-...----...---- 66 

idl Ibnloeminy (Chicas LESS ko neha boos cocoes oUe cose suocod coe Sonu Bue Coe choo cbedr 67 

15. Exxtinet oblone geysers. --.. ---- -- <== - 7 a ow tenn wane oa anne === === 68 

ae mine GAardimers FVeL 3. \sc0 cictaces lees sie onieimdaj sine ohn sienna) eialciel=jaiotel 69 

i Dead Chimney, Gardiner’s River .----. .--3- sce ss-csssce cee ere sces esses 69 

18. Bathing pools, White Mountain hot springs ..--...-.-.---..--------.------ 70 

19. Grotto in the glen, White Mountain hot springs...-..--...-----.----.----- 71 

20. Old Hot Spring, limestones shelving off by frost, &c -.-.-.---..---- isa ate 71 

21. Ideal section White Mountain hot springs ...-...-.--. ---.-.--------------- ie) 

22. Basalt at Low Falls, on Gardiner’s River..-.-.-..--.-.------.---------- ---- 74 

Qo Devdlus Don lower Creeki ve oo cses sea Serie aoe die cable meinnsameos caceecee 78 

24. Great Cation and Lower Falls of Yellowstone --....----..-..-.------------ 85 

25. Sulphur and Mud Springs, Crater Hills, (chart) ..--.. -.--..----.----.----- 88 

26. Sulphur and Mud Springs, Yellowstone River, (chart) ---. -.-.-.----------- 90 

Peele © Al OTOM seca eee cael aso bases seins Mane Sees ater ceicicteleee Wiaceina cee 91 

Eom OLOviO, VElOWSlONCVRIVER seine s casa sss weenie eccictee siecle aero etienci ale 92 

29. Giant’s Caldron, Yellowstone River........-----.--------------- 22+ eo - eee 93- 

UMMC CYST: = ae reeselu sass aera rake yaart eis See sercior ate ere Mroi ee icin) nlepeicineielsyey 94 

ppler MeO sbOne Wake. 2) eas Lee Soe ee RRR i eee w aia teap tie, whe 95 

ONO VAMIT Ah 5 isisie mca 2 ata) stele a rae tM nk so IS itera ace ar sols aWials ae 96 

33. Traveling in the Yellowstone country.......--..---.---------+--- ---- eee - 99 

34. Section of large spring, Yellowstone Lake ......--....-.-...--------«--.--- 100 

sou MiudiPuti, Yellowstone Rivereesienecce.2) 6 sees. ole bocce ccc eneloee 100 

36.) Mud Pot; Lower Fire Hole basim . 2222.5... cate. soe o2- coe ewe cc eee cee 103 

_3¢. Crater of Thud Geyser, Lower Fire Hole .-...----.-----.------ ----------- 105 

38. Fountain Geyser, Lower Fire Hole...--.-.-..----..--..----.-- Sissel ate tte 106 

Soa MudvbatiowerPiretHoles S323. 52.) sao- 4) ac. Reda con an co cleiouaysacie ee 107 

40. Overflow down ravine from Steady Geyser ...--..----. --2- een e ene ween eee 108 

41. Architectural Fountain, Lower Geyser basin ----....---..----..----------- 100 

42, White Dome, Lower Geyser basin ...--. 2. - 0-22 wenn we cae ce vec ccs cece cane 110 

Admeteady, Geyser, Lower Fire Hole. s-..5 222. s.2 256500252 s- lhe cee. oes ecaee 111 

Ap Uris GEN SCR ets seers sae Einisin s Jide s wiaamasiaisicewseece eee a) a See 112 

45. Riverside Geyser, Upper Geyser basin ....-. -.--.----- ------ ee eee ene nee 118 

Ab.” Cred sprne ybiro ElOleRVEVeL 56 <i cS SS ob oa cpaces: stele so ooo ee cgeeele oe 115 

AVENE STENT! (GEN TSEIE G4 SAGO OG ese aes RIES eet apes oe et ME Stee 116 

48. Grand Geyser, Upper basin, Fire Hole River ............-.----e-------+--- 117 

49) Crater Borms} Hire Etole: basimi. o222 22 5cs6 sciccco seb ace'eoc+ saciscineces sede nis 118 

HO Sle Bap leiul peaks ucn es rian saben ceisae odwce «oc cee Sele wclercece 118 

Blk peun ec he OWA NOM crt ietes cides cee aes ecto mins bcs ou a eneee eines cre Sicineve 119 

So iD emtal! Canp vase ae eyes aie e iS Renee teen ces 4) cc. o ieee eee 5 oie cot aera aie 119 

Horaune hy iO wir NO omemetee ic tists a= 5 sevetetris, Severs cin = 1S eee ieee cicie st teerers iol 120 

HATER Meiko nMa SICAL eee cae accel ooidtncs cic sa s's.< st Sampo oa dren areiaeieieeeie 121 

55. Spongiform or cauliflower silica -... 1.2.2... .----5 -o--00 cecces eee eee een eee 121 

56. Pearly silica.-.--- Ce aR ae tS a cao. Sis SRN Dacre) ef tere ale a ery 122 

57. Spongiform or. cauliflower silica ...... 2.22.22. sscees seseee pwbiicarcleicciterertets 122 


VI LIST OF ILLUSTRATIONS. 


58. The Giant..---. --- 2-5 -- 2 eee ene ee ne ne we ene cen eee cee cece nee 123 
59. The Giantess ......---- ------ eee nee enn ene eee eee eee cen were nes 124 
60. The Bee-Hive ...-. ..---- .----- 2-22 een ane een nnn enn eee nee eee ee ee = 125 
61. Still Hot Spring and Pyramid, Upper Geyser basin ..---.----------- Fome cares 125 
62. Old Faithful, Upper Geyser basin- -.--.----- ---.---- -----+---------+------ 126 
63. Ideal section Upper Geyser basin ....-..----- ------ ---+ -----+ --222---2---- 127 
64. Sections of coal-bed at Evanston, Utah -.......-----..-----.--------.----- 194 
Dibothrium ©ordiceps ..-------------- «+--+ ---- ---- ©2229 -- 2 een = ee nee 381 
Plate I. Orthoptera..--..----- 2-0 -- 2 eee cone ee ene ene wee ne wee ee eee ee 
Plate II. Orthoptera -... .---22 2-22-22 eo ee eee eee eee ne eee cee eee eens 
MAPS. 
White Mountain Hot Springs, Gardiner’s River -.-.....-------.---2------------ 64 
Woallloyrsome) IDNR 6555 S58 ese 5 deo seo cose Sboscd sees Sone Coss ecoraSececeotsor 101 
Lower Geyser basin, Fire Hole River.........-.-..----. ---.------------------ 104 
Upper Geyser basin, Fire Hole River....-.....2 Se arr a em near oo Aewoet SS 25 113 
Yellowstone National Park .........- FED Onna GOS ES OIE GOICOD OSU OREO OROS bods on Se 162 


a 


LETTER TO THE SECRETARY. 


WASHINGTON, D.C., February 20, 1872. 


Sm: In accordance with your instructions, based upon the act of the 
Forty-first Congress, authorizing the continuation of the geological survey 
of the Territories of the United States, I have the honor to submit my 
fifth annual report of progress. 

‘As soon as the season was sufficiently far advanced to admit of explor- 
ations in the mountain districts, I dispatched my principal assistant, 
Mr. James Stevenson, to Omaha and Cheyenne, to make the necessary 
preparations and secure the outfit. 

My party was organized as follows: James Stevenson, managing 
director; Henry W. Elliott, artist ; Prof. Cyrus Thomas, agricultural statis- 
tician and entomologist; Anton Schénborn, chief topographer; A. J. 
Smith, assistant; William H. Jackson, photographer ; George B. Dixon, 
assistant; J. W. Beaman, meteorologist; Prof. G. N. Allen, botanist ; 
Robt. Adams, jr., assistant; Dr. A. C. Reale, mineralogist; Dr. C. S. 
Turnbull, physician ; Campbell Carrington, in charge of zoological collec- 
tions; William B. Logan, secretary; F. J. Huse, Chester M. Dawes, C. 
De V. Negley, and J. W. Duncan, general assistants. Mr. Thomas Mo- 
ran, a distinguished artist from Philadelphia, accompanied the party as 
guest, to secure’studies of the remarkable scenery of the Yellowstone, 
In addition to the above, there were about fifteen men who acted as - 
teamsters, laborers, cooks, or hunters. The greater portion of our out- 
fit was obtained of the United States quartermaster, Colonel C. A. Rey- 
nolds, at Fort D. A. Russell, Wyoming Territory. Horses, mules, 
wagons, and all other equipments were placed on freight-cars and taken 
by rail to Ogden, Utah. Here our journey began. 

About June 1, leaving Ogden, we passed along the shore of Salt Lake to 
Willard City, thence through the Wasatch Range to Cache Valley, thence 
up the valley to the divide, between the waters of the Salt Lake Basin and 
those of Snake River. A careful survey of the valley was made, and fre- 
quent trips into the mountains on either side were taken. We then 
descended Marsh Creek to the Snake River Basin and Fort Hall. Here we 
rested for two days, to reeruit our animals and make the necessary repairs, 
and then followed the stage-road to Virginia junction. We then left the _ 
stage-road to the westward, taking an old road, crossed Blacktail Deer 
Creek near its source, thence down Stinking Water to Virginia City. We 
then crossed the divide eastward to the Madison river, descended the valley 
about thirty miles, and crossed over the other divide to Fort Ellis, at the 
head of the Gallatin Valley. A narrow belt was thus surveyed, con- 


4A GEOLOGICAL SURVEY OF THE TERRITORIES. 


necting the Pacific Railroad with the Yellowstone Basin, our principal 
field of operation. From Fort Ellis, we passed eastward over the divide, 
between the drainage of the Missouri. and Yellowstone, to Bottler’s 
Ranch. Here we established a permanent camp, leaving ali our wagons 
and a portion of the party. A careful system of meteorological obser- 
vations was kept at this locality for six weeks. From Bottler’s Ranch 
we proceeded up the valley of the Yellowstone, surveyed the remark- 
able hot springs on Gardiner’s River, the Grand Cajon, Tower Falls, 
Upper and Lower Falls of the Yellowstone, thence into the basin proper, 
prepared charts of all the Hot Spring groups, which were very numer- 
ous, and continued up the river to the lake. We then commenced a syste- 
matic survey of the lake and its surroundings. Mr. Schénborn, with his 
assistant, made a careful survey of the lake and the mountains from the 
shore, and Messrs. Elliott and Carrington surveyed and sketched its 
shore-lines from the waterin a boat. Careful soundings were also made, 
and the greatest depth was found to be three hundred feet. From the lake 
I proceeded, with Messrs. Schoénborn, Peale, and Elliott to the Fire-Hole 
Valley, by way of East Fork of the Madison ; then ascended the Fire-Hole 
Valley. We made careful charts of the Lower and Upper Geyser Basin, 
locating all the principal springs, and determining their temperatures. 
We then returned over the mountains by way of the head of Fire-Hole 
River, explored Madison Lake, Heart Lake, &c. After having completed 
our survey of the lake, we crossed over on ‘to the headwaters of the Hast 
Fork by way of the valley of Pelican Creek, explored the East Fork to its 
junction with the main Yellowstone, and thence to Bottler’s Ranch, which 
we reached on the 28th of August. From this place we passed down the 
Yellowstone, through the lower cation, to the mouth of Shield’s River, to 
connect our work with that of Col. Wm. F. Raynolds, in 1860. From there 
we returned to Fort Ellis. From this point I desired to examine a belt 
southward to the Union Pacific Railroad, that should connect, as far as 
possible, with the belt explored on our way up to Fort Ellis in June. 
We therefore passed down the Gallatin Valley to the junction of the 
Three Forks, thence up the Jefferson Fork to the Beaver Head branch, 
then up.the Beaver Head to Horse Plain Creek, up the latter creek to 
the main Rocky Mountain divide, thence across to the headwaters of 
the Medicine Lodge Creek into the Snake River basin and Fort Hall. 
From Fort Hall we struck across the mountains between Black-Foot 
Creek and the source of the Port Neuf to Soda Springs, at the head of 
Bear River; examined the Soda Spring district, and passed up the valley 
of Bear River, by way of Bear Lake, to Evanston, on the Union Pacific 
Railroad. At this point the party was disbanded, most of them re- 
turning to their homes. <A portion of the month of October was oceu- 
pied in reviewing points of geological interest along the railroad. 

Extensive collections in geology, mineralogy, botany, and all depart- 
ments of natural history were made, some account of which is given in 
subsequent portions of this report. 


GEOLOGICAL SURVEY OF THE TERRITORIES. iy 


Although my party the past season was unusually large, involving 
increased labor and responsibility in its management, I gladly bear testi. 
mony to the uniform zeal and interest of the members in its success. 

My principal assistant, Mr. James Stevenson, labored with his usual 
efficiency and fidelity throughout the entire trip. In honor of his great 
services not only during the past season, but for over twelve years 
of unremitting toil as my assistant, oftentimes without pecuniary 
reward, and with little of the scientific recognition that usually comes 
to the original explorer, I have desired that one of the principal islands 
of the lake and one of the noble peaks reflected in its clear waters should 
bear his name forever. — 

Mr. Elliott labored with his usual zeal and efficiency, and, besides great 
numbers of sketches, he constructed sections of the entire routes traversed 
during the season. Assisted by Mr. Carrington, he made the circuit of 
the lake in our little boat, and sketched the entire shore-line with care. 

Mr. William H. Jackson performed his duties with great zeal, and the 
results of his labors have been and will continue to be of the highest 
value. During the season he obtained nearly 400 negatives of the 
remarkable scenery of the routes, as well as the caiion, falls, lakes, gey- 
sers, and hot springs of the Yellowstone Basin, and they have proved, 
since our return, of very great value in the preparation of the maps and 
report. 

Dr. C. S. Turnbull acted as physician and general assistant, and by 
his great fidelity in the performance of his duties rendered himself a 
useful and valued member of the party. 

Mr. Campbell Carrington had charge of the zoological collections dur- 
ing the years 1870 and 1871, and performed his duties with great zeal 
and efficiency. His collections of fish and reptiles are quite complete. 
‘He was assisted by Messrs. Dawes, Logan, Negley, and Duncan. 

The reports of Professor Thomas and Dr. Peale, which are herewith 
appended, will speak for themselves. Prof. G. N. Allen acted as botan- 
ist with great success, as far aS Fort Ellis, and was assisted by Mr. 
Robert Adams. After Prof. Allen’s departure, Mr. Adams took charge 
of the botanical collections. The report of Prof. Porter will show the 
results of their labors in the field. 

The loss of my chief topographer, Mr. Anton SchOnborn, whose death 
oceurred at Omaha after he had returned from the trip, with the notes 
which he had taken with zeal and ability, seemed almost irreparable. 
On wy arrival at Washington I applied to Prof. J. E. Hilgard,the able 
assistant in charge of the United States Coast Survey Office, for aid in 
my extremity. With his usual sympathy and prompt action in all mat- 
ters pertaining to science, he at once placed Mr. Schénborn’s field-notes 
into the hands of Mr. E. Hergesheimer, in charge of the engraving di- 
vision ef the Coast Survey, and the result has been that Mr. Herges- 
heimer has compiled and drawn a series of maps and charts of the sur- 
vey, whese beauty and accuracy attest his skill as atopographer. Prof. 


6 GEOLOGICAL SURVEY OF THE TERRITORIES. 


_Reuel Keith, of the Coast Survey, computed the observations for latitude 
and time. Mr. Beaman has been permitted to consult from time to time 
with Mr. Charles A. Schott, in the preparation of the meteorological 
report. I cannot too earnestly express my obligations to the officers of 
the Coast Survey for their aid and counsel. 

In all my previous reports I have acknowledged my obligations to 
the military authorities for favors of great value. Armed with orders 
from the honorable Secretary of War, General Belknap, upon the 
military posts of the West for such assistance as could be afforded 
without detriment to the service, my whole party was everywhere 
received with marked kindness and generosity. The outfit obtained 
from Colonel C. A. Reynolds, of Fort D. A. Russell, Wyoming 
Territory, was even greater and more complete than that of the pre- 
ceding year, and the aid which both himself and his subordinates 
cheerfully gave us, formed one of the most important elements of our 
success. An outfit so suitable for our purpose could not have been pur- 
chased in the country outside of the Quartermaster’s Department, how- 
ever great our appropriation. We were also permitted to purchase 
commissary stores at cost with transportation included. The amount of 
time and money saved to the General Government, as well as the char- 
acter of the outfit, render these favors essential to the complete success 
of a party exploring the remote sections of the interior of our continent. 
We are also saved from extortionate demands that might be made on us 
in case of an emergency which may at any time occur. At Fort Ellis 
we were indebted more or less to all the officers of the post for courte- 
sies, but I beg to make special mention of Captain J. Q. Ball, who was in 
command in the absence of Colonel Baker, on our arrival there. Cap- 
tain Ball at once gave us all the assistance that could be afforded by 
the post, and the benefit of his long experience in western life, in the 
completing of our equipments. On our return to Fort Ellis we were 
much aided by Captain L. OC. Forsyth, quartermaster of the post. 
By orders of Generals Sheridan and Hancock, one company of the 
Second Cavalry, under the command of Captain Tyler and Lieu- 
tenant Grugan, was directed to escort the party, under the direc- 
tion of Colonel J. W. Barlow and Captain D. P. Heap, United 
States Engineer Corps, and the party under my charge. Captain 
Tyler and Lieutenant Grugan remained with us until we reached the 
Yellowstone Lake, when they were ordered to return to Fort Ellis, and 
Lieutenant G. C. Doane was directed to take their place. I wish here 
to thank Captain Tyler and Lieutenant Grugan for unvarying courtesy 
and a desire to advance the objects of our expedition in every way dur- 
ing their stay with us. Lieutenant Doane reached us at our camp on 
the southwest shore of the lake, and from that period to the time of our 
return to Fort Ellis we received the benefit of his experience of the pre- 
vious year. . 

From Captain J. HE. Putnam and Lieutenant Wilson, of Fort Hall, my 


GEOLOGICAL SURVEY OF THE TERRITORIES. 7 


entire party were the recipients of all the assistance we needed or 
the post could supply. To my excellent friend, General H. A. Morrow, 
in command of Camp Douglas, Utah, I am indebted for many favors, 
not only as an officer of the Army, but as an earnest and successful stu- 
dent of geology, in the form of valuable specimens and much informa- 
tion. To the officers of the railroads and stage-lines my party was 
much indebted the past season. To Mr. Bradley Barlow, and Gilmer and 
Salisbury, proprietors of the stage-routes in Idaho and Montana, our 
thanks are due for passes for two persons. 

I beg to eall the special attention of the Department to the great 
generosity of the officers of the Union Pacific Railroad, Hon. Thomas 
A. Scott, president, and General T. E. Sickels, superintendent, for free 
transportation for my entire party from Omaha to Ogden, and return. 
Mr. H. Brownson, general freight-agent of the Union Pacific Railroad, 
ordered our freight to be carried at reduced rates. My thanks are also 
due to the officers of the Central Pacific Railroad for free passes for 
_ several members of my party. 

It would not be possible to mention by name, all the kind friends in 
the West who showed my party valuable attentions. With scarcely an 
exception, we were received with great favor in every portion of the 
country. I would express my thanks to Hon. B. F. Potts, governor of 
Montana, Hon. H. L. Hosmer, Hon. J. Y. Lovell, of Virginia City, and 
many others. ; 

I wish also to express my obligations to the gentlemen connected 
with the press, who have never failed to recognize the importance of 
these surveys in the development of our western Territories. 

I desire to acknowledge the numerous favors and aid which have 
always been extended to myself and party in all our labors by 
Professors Henry and Baird, of the Smithsonian Institution, and to the 
Engineer Bureau of the Kane. for the use of their eho ate maps for 
several years past. 

To the editors of Scribner’s Monthly, who have done and are continu- 
ing to do so much to spread a knowledge of the remarkable scenery and 
resources of the far West among the people, I am under obligations 
for the use of some of the finest wood-cuts illustrating this report. 

As far back as 1856, when the writer was connected with the explor- 
ing expedition to the Lower Yellowstone, under the command of Gen- 
eral G. K. Warren, of the United States Engineer Corps, it was the plan 
of that accomplished engineer and geographer to penetrate the unknown 
but marvelous region of the Yellowstone Basin. Wonderful tales, that 


had sharpened the curiosity of the whole party, were related by our guide, 


Mr. James Bridger. An expedition was planned by General Warren 
for the years 1859 and 1860, which contemplated the exploration of 
this region as the objective point; but he was superseded in command 
by Colonel Wm. F’. Raynolds, of the United States Engineer Corps. The 
writer was also connected with that expedition as geologist. Every 


8 GEOLOGICAL SURVEY OF THE TERRITORIES. 


effort was made by Colonel Raynolds to cross the snow-covered sum- 
mits of the Wind River Mountains, but without success. In the summer 
of 1869, a small party, under Messrs. Cook and Folsom, ascended the 
Valley of the Yellowstone, to the lake, and crossed over the divide 
into the Geyser Basin of the Madison. . . 
In the summer of 1870, a second party, under General Washburn, 
| surveyor general of Montana, visited that country. Mr. N. P. Langford, 
a member of the party, gave, in the May and June numbers, 1871, of 
Seribner’s Monthly, most glowing accounts of the marvelous wonders. 
These articles called the attention of the whole country to that remarka- 
ble region. Lieutenant G. C. Doane, Second Cavalry, United States 
Army, accompanied the party in command of a small escort, and made 
an official report of the trip to General Hancock, who forwarded it to 
the honorable Secretary of War, General Belknap, who at once trans- 
mitted it to Congress, with a request thatit be printed. I desire to.call 
the attention of the public to the remarkable report of this young officer, 
which he seems to have written under the inspiration of the wonder- 
ful physical phenomena around him. The report is a modest pamphlet 
of 40 pages, yet I venture to state as my opinion, that for graphic de- 
scription and thrilling interest it has not been surpassed by any official 
report made to our Government since the times of Lewis and Clarke. 
Colonel J. W. Barlow, United States Engineer Corps, on General 
Sheridan’s staff, and Captain D. P. Heap, United States Engineer Corps, 
on General Hancock’s staff, made an exploration of the Yellowstone 
Basin during the past season, the results of which will doubtless soon 
be given to the public in an official form. A very interesting and in- 
structive abstract has already appeared in the Chicago Journal of 
January 13. 
In attaching names to the many mountain-peaks, new streams, and 
other geographical localities, the discovery of which falls to the pleas- 
ant lot of the explorer in the untrodden wilds of the West, I have fol- 
lowed the rigid law of priority, and given the one by which they have 
been generally known among the people of the country, whether whites 
or Indians; but if, as is often the case, no suitable descriptive name 
can be secured from the surroundings, a personal one may then be 
attached, and the names of eminent men who have identified them- 
selves with the great cause, either in the fields of science or legislation, 
naturally rise first in the mind. 
~ The wisdom of the policy of publishing for the people the immediate 
results of my surveys, in the form of annual reports, even though some- 
what crude, has received emphatic sanction by the great demand for 
them in past years and the general satisfaction they have given. I 
have, therefore, made them the receptacle of a mass of observations on 
the local geology of the routes which I cannot introduce into a more 
elaborate final report. The attempt, also, to give to these annual reports 
a somewhat popular as well as scientific cast has met with the cordial 


GEOLOGICAL SURVEY OF THE TERRITORIES. a 


approval of the students of geology and natural history all over the 
country. I trust, therefore, that they may be continued from year to 
year, as long as the survey shall receive the sanction of the Govern- 
ment. 

The annual report will contain catalogues of species which will be 
_ useful in determining the geographical distribution of plants and ani- 
mals in the West, the meteorological observations, and all the notes of 
a more practical character on the agricultural and mining resources, &c. 

The final reports will be in quarto form, and will contain only the new 
and little-known species of that region requiring detailed description 
and illustration, the general geology, with maps, sections, and other 
illustrations. 

The type series of the oalleetions: in all departments are arranged in the 
museum of the Smithsonian Institution, according to act of Congress. 

The duplicate specimens are then separated into sets, and distributed | 
to the various museums and institutions of learning in our country. 

I would respectfully call the attention of the Secretary to the names 
of men eminent in the scientific world, connected with the special arti- 
cles in my annual report of this year as well as that of last year. The 
investigations of such men as Leidy, Cope, Lesquereux, Newberrry, Meek, 
Porter, Uhler, Horn, and Edwards, will give to these reportsa lasting value 
for alltime. These gentlemen have generously consented to become col- 
laborators for the final reports, and are now preparing memoirs on special 
branches, which will form solid and permanent contributions to knowl- 
edge. The obligations to these gentlemen are increased from the fact 
that the greater part of the work is a “ labor of love,” without any com- 
pensation from the Government. 

In conclusion, I beg permission to extend to the Secretary of the Inte- 
rior and to General B. R. Cowen, Assistant Secretary, my most grateful 
thanks for the generous facilities they have placed at my command, and 
for the kindly interest they have ever felt in the progress of the work. 
If these explorations in the far West shall tend to the honor of our 
country or to the increase of human pee the main object will be 
attained. 

Very respectfully, your obedient servant, 
F. V. HAYDEN, 


United States Geologist. 
Hon. C. DELANO, 


Secretary of the Interior. 


Ra May ci Bese 


Ree che Ny ARN 
SA SvBNY AN 
v1 4 HRN 


aS 


1 AS be aby Ee 


REPORT OF F. V. HAYDEN. 


CHAPTER— 
I. FROM OGDEN, UTAH, TO FORT HALL, IDAHO. 


II. 
iil. 


IV. 


FROM FORT HALL, IDAHO, TO FORT ELLIS, MONTANA. ! 

FORT ELLIS—MYSTIC LAKE—SOURCE OF THE GALLATIN—TRAIL 
CREEK—CROW AGENCY AND FIRST CANON—EXIT OF THE YEL- 
LOWSTONE. : 

FIRST CANON—SNOWY RANGE—EMIGRANT PEAK—BOTTLER’S 
RANCH—SECOND CANON—DEVIL’S SLIDE—WHITE MOUNTAIN— 
HOT SPRINGS, ETC. 


. THE GRAND CANON—FALLS—HOT SPRINGS—YELLOWSTONE LAKE. 
. FROM YELLOWSTONE LAKE TO THE GEYSER BASINS OF FIRE-HOLE 


RIVER AND RETURN. 


. FROM HOT SPRING CAMP, ON YELLOWSTONE LAKE, UP PELICAN 


CREEK AND DOWN EAST FORK, TO BOTTLER’S RANCH. 


. FROM FORT ELLIS TO SNAKE RIVER BASIN, IDAHO. 
. FORT HALL—SODA SPRINGS—BEAR RIVER VALLEY—BEAR LAKE 


VALLEY—TO EVANSTON, ON UNION PACIFIC RAILROAD. 


. THE YELLOWSTONE NATIONAL PARK, WITH A MAP. 
. PRELIMINARY REPORT OF DR. A. C. PEALE ON MINERALS, ROCKS, 


THERMAL SPRINGS, ETC., OF THE EXPEDITION. 


ERRATA. | 


Page 29, sixteenth line from the bottom, for “Hole in the Wall” read “Hole in the 
Rock.” 

Page 64, twenty-fourth line from the top, for “ estsary” read ‘ estuary.” 

Page 71, third line from the top, after “flow from” read *‘it.” 

Page 72, thirty-first line from the top, for “150” read “1,500.” 

Page 73, fifteenth line from the top, for “cleaving” read “dissolving.” 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


CHAPTER I. 
FROM OGDEN, UTAH, TO FORT HALL, IDAHO. 


In my previous reports I have endeavored to present such facts in re- 
gard to the geology of the country lying between Omaha and Salt Lake 
as my time and opportunities have enabled me to secure. Ina subse- 
quent chapter I shall pass this region again under review, adding such 
new matter as the investigations of the past seasons have brought to 
light. 

In order that the results of the explorations of 1871 might be con- 
nected with those of preceding years, it was thought best to make Ogden 
the point of departure. The latitude and longitude of Salt Lake City 
are probably as well fixed as those of any point west of the Mississippi. 
The elevations taken along the line of the Pacitic Railroad were as- 
sumed to be correct, and the geography as well as the geology of Salt 
Lake Valley were known in general terms. Our camp was located on a 
middle terrace one mile east of Ogden Junction, at an elevation above 
tide-water of 4,517 feet. Extending along the eastern side of the valley, 
with a trend nearly north and south, is a lofty and picturesque range of 
mountains—the northern section of the Wahsatch Range. Far south- 
ward, beyond the southern end of the Great Salt Lake, these mountains 
seem to extend, apparently growing more lofty and more picturesque, a 
gigantic wall inclosing one of the most beautiful valleys in the West. 
From the terraces, which form a conspicuous feature along the base of 
these mountains, one can obtain a full view of the wonderful body of 
water which has given name and character to this region. I will not 
attempt here to describe the scenic beauty of this region; it has already - 
been done many times; it must be seen by the traveler to De understood, 
and once impressed upon the mind it becomes a porous) pleasure 
thereafter. 

The discussion of the Post-Pliocene deposits and other Promnine ne geo-\ 
logical features of this valley is reserved for a subsequent portion of 
this report. It is my purpose at this time simply to note the impres- 
sions obtained of the geological structure of the country from point to 
point in the journey northward trom Ogden to the valley of the Yellow- 
stone. 

The range of mountains which form so conspicuous and attractive a 
feature along the eastern shore of the lake, and north from Ogden, is 
composed mostly of quartzites and limestones, which present excellent 
examples of stratification. Just in the rear of our camp there is an 
illustration in which a thousand feet or more of layers of quartzite, vary- 
ing from a few inches to several feet in thickness, are bent in the form of 
an arch (Hig. 1) as if the force had been applied from beneath, near the 
central portions, but that the sides or ends had lopped down for want of 
support. There are many examples of these peculiar features in this 
range, produced by local influences, but connected with the general 


14 GEOLOGICAL SURVEY OF THE TERRITORIES. 


forces that elevated the entire range. These mountains appear to the 
eye, in viewing them from the valley, as if they had been thrust up out 
of the plains. The 
sides are very abrupt, 
ee in many instances va- 
wa\\ VA rying but little from a 

““ ft vertical. So far as I 
could study them, 
north of Ogden they 
form a monoclinal, the 
eastern side shown in 
its full development, 
and all the rocks having 
a general dip to the 
} east, or nearly so. The 
if ff abruptness or steep- 
ness of the west side 
toward the lake is un- - 
doubtedly due to this 
fact, as the outcrop- 
ping edges of the strata 
are clearly shown on 
the side toward the 
lake, while to the east- 
ward the ridges of up- 
heaval extend for miles, 
gradually sloping to 
the plains. Whether 
, the west portion was 
| ever elevated or has 
“‘~ been removed by ero- 
\ Sion is not clearly re- 
| vealed. This problem 
will be discussed at 
another time. Where 
the Weber River passes 
through the Wahsatch 
Mountains a nucleus of 
gneiss is exposed, but 
in this portion of the 
range the granitic or 
gneissic rock is exposed 
only in a few localities, 
and then only toa lim- 
ited extent. These 
examples are suffi- 
SUA | if cient to show that the 
WRAL th quartzites, limestones, 
RRA Ef and other sedimentary 
NST rocks above rest upon 
SWNT what we have regarded 
as. WA as well-defined meta- 

AGH] ‘+ morphic rocks similar 

Whi to the nuclei of other 

mountain ranges. A few instances occur of igneous outbursts, like 
these in the southern extension of the Wahsatch Mountains, but very 


y SSAA 
Sh 


\ aes 

\ = 
Ss ay f/// 
SSE /// 
oa 


Nl? 


Fig, 


BESPSSSS 
SSS 


—— 


EEN ‘; é 


aU \ »\\ 


Oo 


—_ 


GEOLOGICAL SURVEY OF THE TERRITORIES. 15 


limited in extent. The lowest bed of quartzites resting upon the granit- 
oid rocks I have estimated to be 1,500 to 2,000 feet inthickness. It has 
a very brittle fracture, although so hard and compact, usually very fine, 
and, to the naked eye, without grain, but it is sometimes composed of 
an aggregate of water-worn pebbles, mostly quite small, or crystals of 
quartz. This lower bed has evidently been more or less changed by 
heat, and the external evidence of change grows fainter as we proceed 
up from the quartzites into the limestones, until all traces of it disappear. 
In regard to the age of these quartzites there is much obscurity. So far 
as my own investigations are concerned, I only know that they attained 
a great thickness—that they seem to form the lower portion of the shaly 
sedimentary rocks of this region. The discovery of the well-known 
Silurian coral, Halysites catenularia, in the last bed of limestone, points 
to a Silurian horizon. The texture of the rocks in these mountain 
ranges renders the discovery of fossils in great numbers and in a good 
state of preservation quite doubtful. We shall wait for the report of 
the more careful investigations under the direction of Mr. Clarence 
- King. The Carboniferous group in this region is well defined by its fos- 
sils, aud I have no doubt that the Silurian and Devonian are well repre- 
sented. It may be that all the lower quartzites should be embraced in 
the Silurian. if opportunity presents, I hope to discuss these obscure 
points more in detail in the closing chapter of this report. 

The same remarkable illustrations of mud-flats and shallow water 
deposits as occur in the quartzites of the Uintah Mountains are 
seen here. Some of the layers are closely crowded with rather coarse 
fucoidal stems or roots, suggesting the Devonian age. As is quite well 
Shown on our maps, the ranges of mountains west of longitude 111° 
have a trend nearly north and south, or perhaps, more accurately, west 
of north and east of south. Many of the little streams that empty into 
the lake pass through the Wahsatch Range at right angles, or nearly 
so, thus forming the deep and picturesque cafions for which this basin 
is so remarkable. Cross-sections of the mountains are thus exposed, 
enabling the geologist to work out with considerable clearness the order 
of superposition of the beds; though, with all these advantages, it is 
not always an easy task. Sometimes the strata are much crushed and 
folded, or concealed by recent deposits or débris. 

On the morning of June 4, I made an exploration up Ogden Cajfion, 
which forms an excellent example of the cross-sections referred to above. 
A fine creek about 30 feet wide and 3 to 5 feet deep has cut a channel 
through the mountain and its ridges. The stream, as it comes out of 
the mountain on the west side, opens into a broad grassy valley, thickly 
settled by farmers, and joins the Weber River about five miles dis- 
tant. Five miles from the entrance of the cafion to the eastward there 
is an expansion of the valley, with table-like terraces on the north side, 
on one of which a Mormon village is located. The terraces are 30 to 50 
feet above the bed of the creek. On the northeast side of this valley are 
hills 800 to 1,000 feet high, composed of arenaceous clays, with some 
beds of limestone, while east and southeast are numerous ridges of 
limestones with corals and other fossils, showing them to be of Car- 
boniferous age. The north and northeast sides of the hills are rounded 
and sloping, and covered with coarse bunch-grass and small bushes. 
The valley is full of springs and meadow-like areas. The scenery can 
hardly be surpassed in any country for wild, picturesque beauty. The 
character of the rocks in the order of superposition does not differ mate- 
rially from those exposed in the valley of the Weber River, along the line 
of the Union Pacific Railroad. There are the Tertiary beds of the Wah- 


16 GEOLOGICAL SURVEY OF THE TERRITORIES. 


satch group about the sources of Ogden Creek; then the low Jurassic 
ridges, inclining 10° to 15°, gradually passing down into sandstones, 
quartzites,then arenaceous limestones,changing gradually to pure massive 
limestones of Carboniferous age. As we pass down the cation from Ogden 
Valley, or, as it is named on our maps, Ogden Hole, we observe the 
Carboniferous limestones rising like high, nearly vertical, walls on either 
side, at first inclining about 8°, within ten miles dipping 20° to 30°, and 
1,500 to 2,000 feet in thickness. In these limestones are some remarkable 
illustrations of the folding of the strata, (Fig. 2.) In one locality there isa 


Fig. 2. 


oS 


WEDGE OF LIMESTONE, OGDEN CANON, 


group of strata, perfectly cross-sectioned by the stream, 300 feet long 
and 200 feet high at the thickest end, in the shape of a huge wedge. 
Underneath these limestones comes a yellowish-gray quartzite, which 
forms a portion of a ridge inclining 20° to 25°. A small gulch inter- 
venes, and the next ridge runs up like a cone with a dip northeast 55°, 
and the strata are brought out remarkably clear, with a height of 1,500 
to 2,000 feet; beneath the quartzite is another bed of brittle limestone 
of better quality than the other, of a bluish-gray color, passing down 
into a steel-gray. The coarse portion is quite slaty. It is this bed that 
furnishes the material for burning into lime. These limestones incline 
30°, and are about 1,500 feet in thickness. The next bed is composed 


GEOLOGICAL SURVEY OF THE TERRITORIES. 1) 


of rusty-brown slaty clays 200 feet thick. Then succeeds a remarkable 
group of quartzite beds, with unusual indications of shallow water 
deposition, inclining 75°. The river cuts directly through the ridge, 
forming a cafion 100 feet wide, with walls 500 feet high. The lower 
bed I have estimated at 2,000 feet in thickness, and it is mosily a close- 
grained compact quartzite, but sometimes it is an aggregate of small 
white masses of quartz and water-worn pebbles. From underneath this 
bed are a few ‘outcroppings of micaceous gneiss and reddish feldspathic 
granite, apparently inclining the same with the quartzites. 

There is another very interesting feature in this canon which connects 
it more immediately with the great valley to the west of the range. 
Toward the sources of Ogden Creek, and in the expansions of the 
valley, are quite thick deposits of a kind of drift of sands and clays, with 
the greatest abundance of loose, worn bowlders and pebbles. in the 
canon this drift material forms a massive, coarse conglomerate, and frag- 
ments now are found attached to the sides of the cation ina horizontal posi- 
tion. These conglomerates point to the time when the great fresh-water 
lake, at a comparatively modern period, filled the valley of Salt 
Lake high upon the flanks of the mountains, even covering the highest 
terrace. 

This subject will be discussed more fully in a subsequent portion 
of this report. . 

On the morning of June 11, we left our camp near Ogden City 
and proceeded on our journey northward, camping the first night: 
near the Hot Springs. This is a very interesting locality, and de- 
served a more careful study than we were able to giveit. There is. 
‘here a group of warm springs, forming, in the aggregate, a stream 3 
feet wide ‘and 6 to 12 inches deep; the surface, for a space of 390 or 400:. 
yards in extent, is covered with a deposit of oxide of iron, so that it 
resembles a tan-yard in color. The temperature is 186°. They flow from 
beneath a mountain called Hot Spring Mountain, which is about five: 
miles long and three wide, and is, I think, a remnant of the west part 
of the anticlinal of which the great range forms the eastern part. On 
either side of this fragment of a mountains the terraces are distinctly 
defined. The nucleus is composed of micaceous gneiss, with seams of 
white quartz running through it in every direction, and resting upon it 
with apparent conformity are the quartzites and limestones. The eleva- 
tion of the shore of the lake near the water-tank, not farfrom Hot Springs, 
is 4,191.4, while the highest point of this broken mountain to the east 
of it is 4,986.6, or about 800 feet above thelake. The water of the warm 
springs is as clear as crystal, containing great quantities of iron, and 
the supply is abundant, and as there are cold springs also in the vicin- 
ity, there isnoreason why this locality should not at some future period 
become a noted place of resort for invalids. The medicinal qualities of 
the water must be excellent, and the climate is unsurpassed. 

Between Willard City, and Brigham City the terraces are well. defined, 
and the sides of the mountains, as the edges of the strata project 
toward the lake, present a remarkably rugged appearance. The 
limestones ereop out here and there upon the quartzites without 
any regular dip. I sought earnestly for some unmistakable proof 
- that this fragmentary mountain is a remnant of the west portion of the 
anticlinal, and though I am convinced that it is so, yet the-evidence was. 
not as clear as I could wish. The terraces, as well as the sides of the 
mountains, are covered so thickly with a kind of local drift or a modern 
lake deposit that the underlying rocks are concealed. Near Box Hider 
Caiion are two kinds of terraces, the usual lake terraces, of. which there 


268 


18 GEOLOGICAL SURVEY OF THE TERRITORIES. 


are two well-defined lines at least, and the river terraces, which are con- 
fined to the streams and do not seem to have any direct connection with 
the former. These river terraces are so marked a feature in the landscape 
that they would not be overlooked by the traveler. The lowest plain 
valley opposite the cation, near the water’s edge, was found to be 4,544.8 
feetabove the sea-level. First terrace, 4,683.8 feet; second terrace, 4,776.5; 
third terrace, 4,858.9. These terraces will show more clearly than any other 
evidence we have, the gradual decrease, step by step, of the waters of the 
ancient lake, and the operations of the little streams pouring into it from 
the mountains on either side. The amount of local drift that has been 
swept down through the gorges or cafions and lodged at the opening is 
very great. At the immediate mouth of the cation the bowlders are quite 
large, varying in diameter from a few inches to several feet. As we travel 
westward toward the shore of the lake the bowlders diminish in size and 
quantity, and the finer sediments, as sands and marls, increase, showing 
a constant decrease in the power of the currents of the water after leav- 
ing the mouth of the caton. Ascending the Box Hilder Cation we find 
the sides almost vertical, rising to a height of 1,500 to 2,000 feet. The 
rocks are gneiss, quartzites, slates; these quartzites again inclining 30° 
to 70°. After passing up the narrow gorge for about two miles in a 
straight line, with just room for the little stream, with the road 
with the loity precipitous rugged walls on either side, we come 
out into an open park-like area, about three miles in extent from east 
to west and four miles from north to south, which forms a level plain 
about 900 feet above Salt Lake. On the east side of the park there is 
a great thickness of alternate layers of slaty shale and rusty-yellow quartz- 
ites, varying in thickness from one-fourth of an inch to twenty inches, 
inclining northeast at an angle of 45°, and one is an immense thickness 
of steel-blue limestone, which projects up near the summit of the hills, 
in sharp, craggy pinnacles. In these limestones is an abundance of 
Syringopora, Fenestella, Spirifer, Productus, sufficient to show that they 
are of Carboniferous age. Upon the surface of the layers of quartz- 
ites beneath are impressions of what appear to be sea-weeds in 
the greatest abundance, so that large masses of the rock, which is in 
many instances g sandstone, with a reddish tinge, look like the Medina 
sandstone of New York, covered with the Arthrorophycus Harlani. 

In the park the river terraces are well defined, really constituting the 
arable land in the mountains. 

The little Danish Mormon village of Copenhagen is located on a terrace 
im thispark. The farms of the settlers are in common, and are cultivated ° 
by irrigation with suceess. To show how much available land there is, we 
estimated it at twelve square miles, or over 7,000 acres. The park is 
surrounded by high mountains, which protect it from great extremes 
ef temperature, and the elevation above the sea is 4,958 feet. The 
mountainous portions of Northern Utah are full of these beautiful park- 
like areas, which are most probably the remains of an ancient lake. The 
wells which have been dug by the settlers show a considerable amount 
ef drift or bowlder deposit, with fine white or yellow marly sands and 
€lays in regular layers, showing the deposit to be Post-Pliocene, and 
that the waters of the lake were comparatively quiet. ‘The interesting 
features of this park are the large springs at the base of the high hills 
which surround it. On the south side there is a spring of very pure 
cold water, flowing out from beneath limestone mountains, forming a 
stream of 10 feet wide and 1 foot deep, supplying water for irrigating a 
large part of the park. On the north side there is a spring about the 
same size as the others. Other springs occur often, so that this little 
park is intersected with small streams in every direction. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 19 


From Mantua to Wellsville, in Cache Valley, the surface of the coun- 
try on either side.of the road is very rugged. The rocks are mostly 
limestones. The road runs between two ridges of upheaval, or a mono- 
elinal valley, with the bluish, cherty, brittle limestone rising up 1,500 to 
2,000 feet on the west side, inclining a little north of east at a very large 
angle, while on the east side the hills are more rounded, 800 to 1,000 
feet above the general level of the country, but dipping in the same di- 
rection. The range of mountains west of Wellsville must average 1,500: 
feet in height; down the valley are one or two of the highest peaks— 

over 2,000 feet—which are covered with snow in midsummer. They are 

composed almost wholly of limestones and quartzites. To the eastward 
the ridges reach to an unknown distance, becoming lower and the strata 
inclining at asmaller angle. Instead of beds of massive limestone, there 
are alternations of arenaceous clays, limestones, and sandstones, yielding 
more readily to atmospheric influences, and in consequence the hills are 
more rounded and covered with grass or small trees. I have estimated 
the entire thickness of the stratified rocks in this region at 10,000 feet, 
and it is with this mass that we have to deal at this time. ‘This esti- 
mate does not include the Tertiary beds, either modern or ancient, which 
are nearly always present in some form. 

Cache Valley opens into Salt Lake Valley by way of Bear River 
Bay, and one cannot doubt that the lake itself formerly extended 
all over Cache Valley. The modern Tertiary or Pliocene deposits 
which cover the valley jut up against the mountains on all sides, 
with the terraces which are distinct, although not so strongly 
marked as in Salt Lake Valley. Most of the building rocks at 
Wellsville are the soft sandstones of the modern deposits, which 
I have, in a former report, called the Salt Lake group. Compact, rusty 
brown quartzites enter into the walls of the houses to considerable ex- 
tent; but for sills, corners, chimney-tops, and other ornamental purposes, 
the whitish-gray and gray-brown sandstones are used, from the fact that 
they are very durable, and can be wrought into any desirable shape. 
These calcareous sandstones are horizontal, and underlie the plateaus or 

terraces in the valley. The quarry near Wellsville is not profitable, as 
the principal layer of rock is not more than 12 or 14 inches in thickness, 
and several feet of superficial gravel and mar] have to be removed before 
the sandstone can be obtained. Near Mendon the sandstone is much 
more compact, and occurs in several layers. It is quite white, and forms 
very beautiful walls. It varies much in texture, some of it very porous, 
but it is, for the most part, close-grained enough for durability. It isin 
some instances a perfect Oolite. At Logan the principal co-operative 
store, a large two-story building, is constructed of a rock from this group, 
which is made up of an aggregate of fresh-water and land shells of the 
genera Limnea, Physa, Vivipara, Helix, &c., apparently identical with 
recent species. . I was informed that this rock comes from the foot-hills 
of the mountains just west of Mendon. It is the upper layer, and is a 
light-brown calcareous sandstone. The shells are nearly all casts, the 
rock being so porous in texture that the calcareous shell is in most cases 
dissolved out. The ridge of elevation, or range of mountains, as it might 
more properly be called, which forms the eastern wall of Cache Valley, 
breaks off suddenly near Mendon, and from thence northward it appears 
in detached portions and of far less magnitude. But the range or ridge 
which walls in the east side is lofty and continuous. To gain some 
knowledge of its structure, I ascended Logan Cafion about four miles in 
a Straight line above its mouth. The cafion seems to be due partly to 
a fissure in the Carboniferous limestones and the erosion of the little 


20 GEOLOGICAL SURVEY OF THE TERRITORIES. 


stream that passes through it. The strata appear to incline each way 
- from the gorge as 2 sort of axis. There is considerable irregularity in the 
height of the hiils on either side of the cafion, but they vary from 800 
to , 000 feet. Some of the highest points have banks of snow all the 
year. The inclination of the strata of limestone varies from 8° to 20°. 
The greatest dip is at the entrance of the gorge, and as we ascend, it 
diminishes until it is uniformly about 6° to 10°. One group of strata near 
the entrance of the cafion is 35°. Some fragments seem to have broken 
off of the main ridges, and appear to incline west toward the valley, giv- 
ing to the section the appearance of an anticlinal. This caion formsan 
extremely interesting cross-section of the Carboniferous limestones, and 
reveals their massiveness and enormous thickness. They cannot be 
less than 5,000 feet in thickness. The rock is quite hard, brittle, of a 
bluish-gra y color, and in some layers full of seams and cavities of eal- 
cite. A fine str eam, about thirty yards wide and an average of 2 or 3 
feet in depth, rushes foaming down over the immense masses of rock 
which have fallen from the mountain-sides into its channel. The local 
drift is here a conspicuous feature also. It is composed of rounded 
bowlders, with clays and marls reaching a thickness of 100 to 150 feet 
in regular and horizontal strata, attached to the sides of the gorge, and 
showing that, however turbulent the waters, the materials were depos- 
ited in a lake. At the entrance of the caion are some remarkable ter- 
races, composed of sands, clays, marls, and rounded bowlders. The high 
limestone ridges which bound Cache Valley on the east extend far south 
of Logan, and immediately at the base are a number of prosperous Mor- 
mon towns, aS Hiram, Paradise, and others. The trend is somewhat 
to the east of south, and is composed almost entirely of limestones of 
Carboniferous age. North of Logan to Smithfield, a distance of about 
ten miles, the quartzites, with variegated sandstones and clays, appear 
beneath the limestones. Owing to the change in the character of the - 
rocky strata, the symmetry of the range is lost to some extent. The 
ranges of hills, or of mountains, as they might be called, which bound 
the west side of Cache Valley, seem to be composed of the same kind of 
rocks, limestones, and quartzites, for the most part, with partings 
of clay at times. This range sevarates the two valleys—Malade Valley 
from Cache Valley. I was not able to make a minute examination of 
the whole country, including Promontory Mountain, extending far 
northward, which is occupied by quartzites and limestones which are, 
probably, mostly of Carboniferous age. From Corinne to Monument 
Point, along the Central Pacific Railroad, none but dark, slate-colored 
limestones can be seen. It would appear, therefore, that a large por- 
tion of Utah is made up of these nearly parallel ranges of mountains, 
trending nearly north and south, with intervening valleys of greater or 
less width, which, after their elevation, formed shore-lines for detached 
lakes or bays. So far as the evidence goes, it would appear that the 
last lake period of this portion of the West commenced in the Pliocene 
epoch and continued on up to the present time; that the waters once 
filled all these valleys, so that they rested high upon the sides of the 
mountains, depositing the sediments of the Salt Lake group, gradually 
passing into the Post-Pliocene deposits which verge upon our present 
period. It is quite possible that there have been oscillations of level in 
these modern lake-waters ; but so far as the proofs go, this great inland 
lake may have continued quite uniform until the Terrace epoch, and 
that then the waters gradually receded to their present position. If 
these statements are true, and I believe they are, this country is in- 
vested with a charming interest to the geologist. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 2 


The story of the changes which have occurred in the gealogical 
history of this great interior basin can, no doubt, be traced by uniting 
link to link the internal evidence of the rocky strata from the earliest 
period to the present time, and this work belongs to the province of the 
geologist. To contribute something toward the task of reconstructing the 
physical geography of this country in past geological times is my principal 
object in writing out the geological features of our route in so great detail. 
There is so much similarity in the general structure of the country that I 
might express the more prominent points in few words, but this would fail 
to give definiteness tothe work. At the risk of repetition, I shall present 
the principal facts observed during each day’s travel in the order in which 
they were obtained. | 

As we proceed northward the hills on the east side of the valley 
become more irregular and broken. Massive beds of the limestone 
can be seen as faras the eye can reach, capping the summits, and 
inclining from the valley eastward at various angles, but the lower 
hills in front are much rounded and covered with grass, showing the 
softer character of the underlying rocks. Clays, sands, and quartzites of 
various textures prevail. On the west side the nucleus of the mountains 
is undoubtedly the same; but high up on the summits, as well as on the 
sides, are found the yellowish and whitish marls and sandstones of the 
later Tertiary or lake deposits, filling up, to some extent, the inequalities 
of the surface, and sometimes inclining, at a moderate angle, in the same 
direction with the older rocks beneath ; with the latter, however, the 
former do not conform. This range of mountains, which continues unin- 
terruptedly nearly to Marsh Valley, on the west side of Round Valley, 
rises 1,000 to 1,200 feet above the bed of Bear River. The summits are 
covered with bowlders, mostly quartzites. The outline of this range is 
formed of an irregular series of cones, with a general dip to the east. 
The inclination is quite irregular, sometimes 10°, then 60° or 70°. There 
is so much material of a soft nature that yields readily to atmospheric 
influences that the underlying harder strata are much concealed, so that I 
found it impossible to obtain a continuous section. The mountains on 
the west side from the crossing of Bear River to Bridgeport present a 
very abrupt front toward the valley. Originally the quartzites, clays, 
and limestones were elevated so as to correspond with the ridges or 
hills on the east side, inclining in the same direction, but the outburst 
of igneousrocks has produced some changes in position since the elevation 
of the older rocks. The igneous rocks have the peculiar somber hue and 
abruptness of basalts, and, in this case, they would appear to have been 
thrown up under great pressure, so that they are exceedingly compact 
and massive on the surface, and even where the little streams have 
flowed down the sides, forming deep cafions, the same close texture is 
shown. Wherever the sedimentary beds come in contact with these 
basalts, they are changed more or less. The clays are changed into 
bluish slates, the quartzites are more crystalline, and the limestones are 
more or less metamorphic, and exhibit a darker hue. They are also 
full of cavities, lined with quartz crystals, or calcite, and seams of 
quartz. In this range of hills or mountains, near Bridgeport, silver 
mines have been found. One lode has been discovered that yielded ore 
which is said to assay $75 per ton. It is not probable that this will 

“ever be a successful mining district, and however rich the ore may be 
in localities, it will doubtless be found only in pockets, and not in 
regular lodes. The area is limited, and whatever ore there may be, it 
has probably been segregated in fissures or cavities by the action of the 
basalts on the contiguous quartzites. Originally the quartzites and lime- 


22 GEOLOGICAL SURVEY OF THE TERRITORIES. 


stones inclined at a high angle eastward, and gave to the west side of the 

range of hills a slope like the steep roof of a “house, but the elevations 
of the basalts, which occur mostly on the east side, carried the strat- 
ified beds up toward the summit of the ridge in such a way that a sort 
of local synclinal was formed. The abruptness of the sides of this range 
of hills, and the dark color of the massive basalts, with the variegated 
color of the changed and unchanged rocks, which send the ridge-like 
cones up 1,000 to 1,200 feet abové the valley, give a remarkably rugged, 
picturesque character to the scenery. The valley at the base is a meadow 
in the luxuriance of its vegetation. It is divided up into farming lands 
and meadows, and the numerous little streams which gash deeply the 
sides of the mountains and flow down the steep Lous hills ean be easily 
guided all over the fertile valley. 

The immediate valley of Bear River, near the crossing, is somewhat 
interesting on account of the fine development of the lake deposit. It 
is here composed of clay, sand, and marl, yellow and rusty-drab color, 
and attains a thickness of 200 to 300 feet. The elevation of Bear 
River Valley at the bridge is 4,542.5 feet, and the highest terrace on the 
east side 4,737.7 feet, and the highest on the west 4,779.3 feet. The 
immediate valley of Bear River may be said to have been worn out of 
the Pliocene or lake deposit. Looking southward along the eastern side . 
of Cache Valley, the Tertiary beds can be distinctly seen, jutting up 
against the sides of the mountains, and literally filling up the low places 
in the range. Looking northward the same beds seem to jut up against 
the hills, but the river appears to cut narrow, gorge-like channels through 
several of the parallel ranges of hills or mountains. From time to time 
we find heavy beds of conglomerates resting upon the finer sediments 
of the lake deposit, the exact age of which is obscure, though probably 
formed just prior to the present order of things. 

Before leaving this beautiful valley we may say a word about its agri- 
cultural resources. It is about 7 miles wide, and 60 in length from 
north to south. It was a.matter of great surprise to all my party to 
find these mountain valleys filled up with inhabitants, and the land 
under a high state of cultivation. In Cache Valley there are at least 
ten thousand people at this time industriously cultivating the soil, with 
all the appliances of comfort around them. Whenever this countr Vv 
escapes the ravages of the destructive. grasshopper the crops are abun- 
dant. On either side of the valley great numbers of little streams, after 
‘cutting deep gorges into the mountains, flow down into the plains, and 
are ouided by the farmer all over his lands. There is no cultivation 
without irrigation, and with it, crops of all kinds are most excellent. 
The average elevation is only between 4,000 and 5,000 feet. We leave 
the valley, on our journey by way of Red Rock Pass, which is formed of 
a group of Carboniferous limestones, a portion of which have a reddish 
appearancein the distance, from the presence of oxide of iron. The small 
stream, which constitutes the drainage of the upper or north edge of the 
valley, has, at some points, cut a narrow channel through what may have 
been a sort of anticlinal fissure, for the strata of limestone incline each 

way from.the opening or pass, 10° to 20°. These masses of limestone all 
point to a period of great erosion, and are monuments to indicate the 
huge and extensive thickness of "the limestone strata in this region. 
Eas st Red Rock is 300 feet from summit to base. The divide between the 
drainage of Bear River and that of Port Neuf, which flows into Snake 
River, is 5,041.9 feet. in elevation. From Red Rock Pass we travel down 
Marsh Valley, with high hills and some quite lofty peaks on either side, 
composed of the same quartzites and limestones that we have before 


GEOLOGICAL SURVEY OF THE TERRITORIES. 23 


noted. Thevalley is about ten miles wide and is entirely occupied with 
the Pliocene beds from side to side. The terraces underlaid by this 
‘deposit are a marked feature, and rise 300 feet above the creek, the 
middle one 150 feet and the lowest 50 feet. The hills on the west side 
are lower and less rugged, rising 400 to 1,000 feet above the valley; but 
on the east side they are more formidable, 1,500 to 1,800 feet in height. 
The surface outlines are quite rounded and smooth by weathering, so that 
the strata are not well defined. Marsh Valley, which is about five miles 
in length, is like a meadow covered with tall, thick grass. Soon after 
passing the divide, a small stream commences running northward toward 
the Port Neuf, and on either side are wide, swampy, or springy belts, 
contributing springs at every step, and in a distance of ten miles it be- - 
comes a good-sized river. The luxuriance of the vegetation is a marked 
feature. The entire channel was filled with several species of water- 
plants, Potamogeton, Ranunculus, Brasenia, Myriophyllum, and many 
others. As a necessary result, the fresh-water molluscous life was most 
abundant, Planorbis, Limnea, Physa, &e. 

About ten miles north of Carpenter’s Station we come to the southern 
border of the great basaltic overflow in the valley of Port Neuf and Snake 
River, for I am now convinced that this comparatively modern eruption 
of igneous material covered an immense area of country, and might be: 
called the basin of a wide, extended lake of igneous material, of which 
the Snake-htiver Basin was the center. Whether the melted material 
flowed up the valleys of the streams that empty into the Snake River, or 
issued from fissures extending up these valleysand overflowing them from 
side to side, it is difficult to determine. The latter explanation is most 
probably the true one, judging from the uniformity in thickness and extent 
of this vast sheet oflava. The elevation of ourcamp on the south border 
of the lava basin in Port Neuf Valley is 4,625.5 feet, and this seemsto have 
been the height to which it reached in its overflow. The little streams 
have cut new channels directly through the lava flooring, and thus excellent 
sections ofitmay be studied. Asarule the streams flow along deep muddy 
channels, with boggy border and abrupt sides obstructing and even ren- 
dering the fording of them dangerous; and on either side, varying in dis- 
tance from a few yards to a half a mile, is a vertical wall of basalt, 
which, in the distance, has a partially columnar appearance. The basalt 
fractures into vertical masses that have an obscure five or six sided form. 
Sometimes these walls are so steep and uniform for miles that they can- 
not be scaled, and some broken-down, eroded portion must be sought for 
before the traveler can escape from the marshy channel of the streams 
to the table-like plateau above. The lower portion of this lava floor is 
very compact and massive, but the top part is more or less vesicular. 
There is very little, if any, of the usual spongy lava; it is all very heavy, 
even though full of cavities. It effervesces freely, showing the presence 
of lime in considerable quantities. The illustrations of exfoliation are 
abundant everywhere. Sometimes quite thick beds show an exposed 
surface of rounded masses, decomposing in concentric layers as if it . 
was an aggregation of large concretions. The disintegration of these 
igneous rocks is mostly accomplished through the process of exfoliation. 
The general appearance of this table-shaped belt of basalt contrasts 
strangely with the ranges of hills on either side. On the east side of the 
valley the foot-hills are quite irregular, high, and covered with drift. On 
the west side they slope rather gently down to the river, deeply cut 
here and there by ravines. Thesuperficial deposits extend high up, 500 
feet or more above the bed of the river, lapping smoothly on the basis 
rocks. The white Pliocene sandstones are exposed at one locality not 


oA GEOLOGICAL SURVEY OF THE TERRITORIES. 


far below the toll-gate. The Port Neuf River is full of little falls or 
rapids 3 to 6 feet high, where the water flows over the basaltic floor, add- 
ing much to the attractive beauty of the scenery. Here and there we 
find outcroppings of cherty and silicious limestones underlaid by shales. 
Isolated hills or ridges composed of these rocks are revealed by the river, 
sometimes extending partly across the valley, remnants left from former 
erosions. At the bend of Port Neuf a pretty little stream about 10 feet 
wide flows in from the northeast. On the west side the rusty-gray 
quartzites are well shown, inclining 559. In passing down the Port Neuf 
from the bend, we have the yellowish-gray quartzites just mentioned, 
then dull purplish quartzite, composed largely of an aggregate of quartz 
pebbles, then dark purplish drab slates. The latter seem to form the cen- 
tral portion of a local anticlinal. The reverse dip extends only a short 
distance, while the original dip, a little north of east, is restored, and 
this continues for five or six miles, the strata consisting of alternate beds 
of quartzites, slates, limestones, &c., inclining 15° to 50°. In this series 
are three beds of impure cherty limestones. The quartzites possess a 
great variety of texture and color, from a dirty, rusty brown or rusty yel- 
low to a fine grayish quartz. The reddish or purplish quartzite is very 
thick, and forms most beautiful pudding-stones, very seldom a coarse 
conglomerate. At the lower end of Port Neuf Caton, just before it opens 
into the plain, there is a high ridge, rising 1,500 to 2,000 feet above the 
river, which seems to form the central mass of the general anticlinal, for 
the strata dip each way from it. This ridge, asit extends off far south- 
ward, shows the slopes or inclinations of the beds well. The Port Neuf, 
after making the bend near Robber’s Roost City, cuts a channel through 
the ridges nearly at right angles for five or six miles, exposing at least 
10,000 feet of quartzite. Theridges run quite regularly north and south, 
and the principal ones are very persistent, while connected with them 
are some fragmentary ones. The age of this vast series of stratified 
rocks is quite obscure, and may continue so. The limestones which con- 
tain the well-defined Carboniferous fossils mark a horizon which takes in 
a considerable thickness, but below this horizon there is a group of 
strata of variable thickness, as well as texture, that is not likely to reveal 
the proofs of its age. Itis true that there is ample room for several times 
as great a thickness of strata in the Devonian and Silurian, and even 
extending down into the sub-Silurian, where, perhaps, some of the meta- 
morphie quartzites should be placed. In this report I shall merely state 
the facts as I have ‘been able to observe them, and await the results of 
future explorations to clear up any obscurities. In this great country the 
formations are usually so widely extended geographically that the discov- 
ery of proofs of their age at any one locality may unravel the obscurities 
of yearsof labor. Limestones of undoubted Carboniferous age occur every- 
where, and, as a rule, cover the summits and flanks of the highest ranges 
of hills or mountains. In many instances the great thickness of these 
limestones and the slowness with which they yield to atmospheric in- 
Huences have prevented many of the ranges from being much rounded, 
and perhaps removed entirely. Overa great portion of Utah, extending 
north ward into Idaho and Montana, the Carboniferous limestones form the 
great protecting covering to the mountain ranges. The erosion of the 
basalt in the Port Neuf Caton is a feature of some interest. Sometimes 
for miles it has been entirely removed ; then it will re-appear in full foree. 
Remnants are sometimes seen on the sides of the cafion, showing that the 
waters at a modern period have worn wide channels through. In some 
instances there are evidences of two great periods of outflow of melted 
‘material, forming horizontal belts, as it were. At one locality this fea- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 25 


ture is well shown where the river has cut through the basalt, revealing 
150° feet in thickness, with the floor or terraces ; the lower one is the im- 
mediate channel of the river, and the other forming distinct walis on - 
either side, with an obscure columnar fracture. I am inclined to believe 
that there were at least two important periods of overflow of basalt all. 
over this region, although in a geological sense they are connected ta- 
gether. After leaving Port Neuf Canon we come out into the broad plains 
bordering on Snake River; on either side, as we continue northward to 
Ross’s Fork, we find the hills of various heights and composed of a va- 
riety of quartzites, with some limestones. They are much rounded, and 
covered with a heavy deposit of débris or kind of drift, and the whitish 
and gray sandstones and the yellow and drab marl of the Pliocene filk 
up the irregularities of the surface, and sometimes incline at a small 
angle, as if they had participated in some of the later movements that 
elevated the country to its present position. From the stage station on 
Ross’s Fork to the present location of Fort Hall is about 16 miles. The 
valley is a beautiful one, and was originally called Warm Spring Valley, 
from some warm springs that form the sources of the little streams that 
flow through it, but it has since received the patriotic name of Lincoln 
Valley. Among the lower ranges of hills that border the east side of 
the great Snake River basin, especially from Port Neuf Cafion north- 
ward, the Pliocene deposits are well shown, and lic beneath the basaltic 
floor. Inthe Port Neuf Cafion this fact is illustrated by the wearing away 
of the eap or floor of basalt in a number of localities, but on the sides 
’ of the hills this is shown with equal clearness by the elevations of 
the basalt. The-dip of the beds is not great, usually not more than 5° or 
10°, and in all cases in the direction of the great basin. This would in- 
dicate that there had been.a moderate elevation of the mountain ranges 
or a depression of the basin at a very modern date, even approaching very 
close to our present period. The eifusion of such a vast amount of igne- 
ous matter from the interior of the earth might suggest the possibility, 
or even probability, that the cause of the subsequent changes in the hills, 
around the borders, was either contemporaneous or subsequent to the 
effusion of the melted material. If the elevation began with the erup- 
tion, it certainly continued long after it ceased, inasmuch as the basalt 
is lifted up in thick beds, at the same angle with the underlying strata. 
Not only in the valley of the Port Neuf and Snake River is the basalt 
found in conjunction with the lake deposits, but in numerous localities 
all over the Northwest, it seems to rest upon these Pliocene beds, readily 
adapting itself by the form of the under surface te the irregularities of 
the surface of the lake deposits. 

A few words in regard to the geological character of the hills border- 
ing Lincoln Valley, around Fort Hall, may not be without interest in 
this connection. In ascending a small gorge-like valley east of the fort, 
where the waters have excavated a channel directly through the differ- 
ent beds, we have excellent opportunities for studying such of them as 
are developed in this region. There is a general dip to the strata that 
may be regarded as uniform and in one direction, but the local disturb- 
ances are, oftentimes, very complicated, and in many cases formations 
which are really well developed are entirely concealed over large areas, 
or simply crop out here and there over very restricted areas. The moun- 
tain ranges all over the West are full of cafions and valleys, cuts or 
gashes, from the axes or central portions to the plains. These vary so 
much in character, owing to the intensity of the erosive force, that some 
of them may penetrate the very core of the mountain, and cut. through 
all the strata,.on the sides into the plains, or it may be more or less shal- 


. 


26 GEOLOGICAL SURVEY OF THE TERRITORIES. 


low, or so hard, and the strata so covered with grass or débris, that they 
elude the scrutiny of the geologist. By exploring with much care large 
numbers of these natural cuts, a very true conception of the geological 
structure of a mountain range may be obtained. It is usually quite 
difficult to measure the thickness of the beds; indeed, it is impossible; 
and we must therefore rely upon a judicious estimate, aided by good 
barometrical observations. Neither are exact instrumental measure- 
ments of strata of great importance in this country. Take, for example, » 
the limestones of the Carboniferous age; they vary in thickness in differ- 
ent localities, all the way from a few hundred feet to as many thousands, 
and yet they being sea-formed rocks, are supposed to tend toward uni- 
formity of thickness. In this narrow valley we find that the Pliocene 
beds which form the foot-hills of all the ranges of mountains surround- 
ing the great Snake-River Basin are also under the great basalt floor. 
These beds sometimes are found 400 or 500 feet above the level 
of the plains, and so conceal the underlying rocks, upon which they re- 
pose unconformably, that it is difficult to unravel their connections. 
Then there is a thickness of several hundred feet of grayish-brown lime- 
stones, more or less arenaceous, with intercalated layers of clay or lime- 
stone, and full of Jurassic fossils. Underneath is a group of sand- 
stones, varying in color from a dark to a light brick-red, resembling the 
sandstones se well shown in Weber Caiion, and probably of the same 
age, but entirely destitute of organic remains. This group is 300 to 500 
feet thick, and inclines 15° to 25°; underlying the red sandstones are 
limestones, which are undoubtedly Carboniferous, and beneath them 
quartzites, sandstones, pudding-stones, conglomerates, of unknown 
age. The group thus enumerated forms the mass or bulk of the regu- 
larly stratified rocks, composing the ranges around this great basin. 

' Before closing this chapter, I may enumerate some of the elevations 
along our route, for the purpose of showing the relative heights of the 
hills surrounding the plains and valleys, as well as to indicate one of the 
important conditions for successful agriculture. There seems to be no 
want of fertility in the soil of our western plains, and when the two 
most important conditions are favorable, climate and moisture, or water 
for the parposes of irrigation, then agriculture will be a success. How- 
ever abundant the water may be, either in the form of rain or in streams 
for irrigation, if the elevation is 7,000 feet and upward, the climate is 
liable to be too severe and uncertain for settlement. From barometrical 
observations along the route of travel we found that the elevation of our 
camp on Ross’s Fork was 4,394 feet above the sea; on the divide toward 
Fort Hall, 5,072 feet; Fort Hall, 4,724. These figures will serve to indi- 
cate the general elevation of the plains and the immediate foot-hills, and 
they show that the climate need not be more unfavorable for agriculture 
than that of Salt Lake Valley, in which the Mormons have been so suc- 
cessful. How far the excessive dryness of the atmosphere may be an 
obstacle it is hardly possible to decide. The past season was an 
unusually dry one. The difference between the wet and dry bulb in 
June on the Snake River plains was 35°, which indicates an unusual 
freedom from moisture in the air. The broad bottoms in the immediate 
vicinity of Snake River are at a somewhat lower level, and can be made 
very productive; large quantities of hay are prepared every season. 
Inasmuch as an Indian reservation has been made on Ross Fork, we 
may have some experiments in agriculture on these plains in a short 

ime, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 27 


CHAPTER II. 
FROM FORT HALL, IDAHO, TO FORT ELLIS, MONTANA. 


We will not take our leave of Fort Hall without a word of thanks to 
the officers of that post for their hospitable courtesy tous. We remained 
' in this beautiful locality, a real oasis it might be called, two days, rest- 
ing our animals and laying im supplies and making repairs. Every 
facility that could possibly be provided for us, was granted by Captain 
J. H. Putnam, the officer in command, as well as by Lieutenant Wilson, © 
commissary and quartermaster. The manner in which Captain Putnam 
extended the courtesies of the post to all my party was even more 
grateful than the material afforded. The assistance we obtained here 
advanced our explorations several days of time. Fort Hall is a small 
but exceedingly neat post, which was constructed by the officer at pres- 
ent in command about one year ago, and is located in a beautiful, fer- 
tile, grassy valley, among the foot-hills on the east side of the Snake 
River Basin, about forty miles east of the old Fort Hall. Numerous 
Streams of pure water have been conveyed, by artificial channels, all 
through and around the grounds, so that, in the dry season, when the 
vegetation of the surrounding country is parched by the sun’s rays, itis 
here as fresh and green asin spring-time. During the winter, the waters 
coming from Warm Springs, about two miles above the post, never 
freeze over, and the whole valley is protected from the cold winds by 
the surrounding hills, so that I do not hesitate to regard it as one of the 
most desirable spots in Idaho. No finer locality for a military post 
could have been selected in this region. 

In the afternoon of June 23, we left this pleasant resting-place and the 
kind hospitality of its officers with reluctance, and made our camp on 
Blackfoot Fork, about seven miles to the northward. This is a pretty 
stream about 30 feet wide, and 6 to 8 feet deep, taking its rise near Soda 
Springs, and draining a large area. All through the valleys of the main 
stream and its branches, are the results of the basaltic overflow, and in 
its passage through the mountains it has earved out a deep cation 
through basalts, limestones, and quartzites. After leaving the moun- 
tains it flows across the plains with a swift current, about thirty miles, 
over a floor of basalt, to the Snake River. From Fort Hall the road 
winds among low hills, underlaid by the light-gray marls and sands of 
the Pliocene, with some quite high ridges or hills of blown sand. In 
some instances the loose sand is so deep as to impede traveling. The 
bottoms of Blackfoot Creek are quite sandy, and the vast quantities of 
fresh-water shells scattered about formed a noticeable feature, and indi- 
cated an excess of mojluscous life. | 

On the morning of the 24th I followed up the south side of Blackfoot 
Creek to the mouth of the canon. The lower hills are covered with 
igneous rocks. The higher ridges have a trend about northwest and 
south-east, and appear to form irregular anticlinals. Sometimes acap of 
basalt will lap, roof-like, on to the ends of these ridges as they extend 
down to the plains. This bed of basalt inclines more or less, on the sides 
of the ridges, but gradually becomes horizontal in the plains. A careful 
examination of one of the ridges showed it to be composed of quartzites, 
inclining northeast at a high angle, with the external somber steel-gray 
hue that strata of all ages seem to have when affected by contact with 
the igneous rocks in their outflow. Over the quartzites, and conform- 
ing to them, are strata of Carboniferous limestones. At the point where 


28 GEOLOGICAL SURVEY OF THE TERRITORIES. 


the Blackfoot Creek emerges into the plains, the basaltic walls on either 
side are 50 to 60 feet high, and higher up the cation the channel passes 
through ridges of limestone and quartzite at right angles, 1,000 to 1,500 
feet above the plain. 

From Blackfoot Creek we traveled over a nearly dead level to 
Taylors Bridge, the crossing of Snake River, eighteen miles dis- 
tant. Far distant to the west the three buttes can be distinctly seen, 
like isolated fragments of mountains in the plains; still further to ~ 
the west can be seen, on a clear day, the dim outlines of the Salmon 
River Ranges. To the east are a series of broken or irregular ranges, 
with low grassy foot-hills in front, usually rising 1,000 to 1,500 feet above ~ 
the plains, but with here and there a high peak, 2,000 to 2,500 feet in 
height, covered with snow. That this basaltic outflow occurred at a time 
when this vast basin was occupied by the waters of a lake, I believe, from 
the fact that all the lower portion is exceedingly compact and heavy in its 
texture, and the surface, though sometimes full of cavities, must have 
cooled under a moderate pressure of water at least. After this basalt 
ceased to flow the lake continued on, so that a superficial deposit of 
sand and fine volcanic dust, varying from 10 to 50 feet, covered the great 
basaltic cap. During the dry season of summer this voleanic dust be- 
eomes a sort of impalpable powder, filling the air with clouds to such an 
extent as almost to suffocate man and beast. 

At Taylor’s Bridge the waters of Snake River rush with great velocity 
through the narrow gorge-like channel which they have worn out of the 
basaltic floor. The walls on either side form excellent sections, and in 
the autumn, when the river is low, expose 100 feet or more of the basalt, 
with all the varieties of texture. These walls show an irregular columnar 
structure or jointage, and the decomposition or erosion is greatly aided 
by this condition. The different layers show clearly the different periods 
of effusion, and in some instances the lowest portions indicate that, 
after the great mass had cooled and become solid, fluid basalt had been 
thrust up, showing a texture and color much like modern lava, only 
more compact. But the most interesting feature in this locality is the 
existence of numerous cavities, worn into the solid basalt, which are 
usually called ‘“pot-holes.” These “pot-holes” occur by thousands on 
both sides of the river, for miles up and down, varying in diameter from 
' a few inches to several feet. They are very distinct on the walls of the 
river-channel, where the latter seem to have been split down from top to 
bottom. Many of them have in them, even at this time, the rounded 
masses, which by constant agitation of the waters have worn out the 
eavities. Some of these holes are 2 to 3 feet deep, although not more 
than 4 to 6 inches in diameter. The examples of degradation by exfolia- 
tion are finely exhibited here, so that the basalt itself would seem to 
have assumed aspheroidal shape in cooling, and is now falling in pieces 
by concentric layers. 

From Taylor’s Bridge we traveled along the west side of the 
river to Market Lake, a distance of twenty miles. To the east of 
our camp, near the entrance of Henry’s Fork, are two rather high 
flat-topped basaltic buties, which have the appearance of extinct 
eraters. Their summits are 600 to 800 feet above the plains around 
them. The rim of the south butte is much broken down. They were, 
undoubtedly, centers of effusion for the lava. Far in the distance, 
seventy or eighty miles a little south of east, the Tetons loom up 
grandly, with the form of shark’s teeth. To the north of them, and 
quite distinctly visible, is Mount Madison, one of the finest peaks in the 
northern ranges of the Rocky Mountains. To the west of Market Lake 


GEOLOGICAL SURVEY OF THE TERRITORIES. 29 


are some moderately high basaltic ridges, the highest portion of which 
has received the name of Kettletop Butte. Market Lake 1s a kind of 
sink, probably produced by the spring overflow of Snake River, and is 
entirely dry the greater portion of the year. 

On the morning of June 26, 1 started eastward from Market Station 
toward the buttes, near the bend of Snake River. The road wound along 
low basaltic hilis, which really form a marked feature over a large portion 
of this basin. At the present time the surface is perfectly dry, but at 
some period in the past little streams circulated all over the surface, 
wearing out their valleys through Fig. 3. 

- the basaltic crust, leaving portions . 
like broad table- tops, (Hig. 3,) occu- 
pying a greater or less area. From 
beneath these fragments of the =-_.- 
crust, the loose sands have been ~ =e. 
washed out all around, so that the 
overlapping edges have fallen 
down in every direction, from a 
common center in many instanees, BASALT TABLES, SNAKE RIVER BASIN. 

It would appear that these hills show that there were several periods 
of overflow of basalt, that beneath the sand is another floor, and upor 
this was deposited at the bottom of a lake-a thickness of several feet 
of sand before the upper floor of basalt was formed. The northern por- 
tion of the basin is covered with thick beds of sand, into which the 
wheeis of our wagons would sink 2 or 3 feet at times. On Camas Creek 
are some interesting sand dunes. On the northeast side are some 
conspicuous hills of blown sand, visible at a distance of twenty to forty 
miles, which indicate that the direction of the winds is from the south- 
west. Dry Creek, which in the spring season aifords a channel for a large 
body of water, forms a caiion in the basaltic floor, with walls 50 feet 
eh. In midsummer there is no running water. On this creek there 

a Stage-station called “ Hole im the Wall, ” which derives its name 
sa a remarkable cave in the basaltic rocks. ’ About a mile west of the 
station there is a depression in the level plain 30 by 50 feet, where the 
rocks seem to have sunk, revealing on the north side quite a large 
opening. This opening or cave connects with others to an indefinite 
extent, under the great basalt floor. We examined several of these 
caves, which were connected together only by small openings in 
the partition walls, each with dimensions of 100 to 200 feet in width 
and length, and 30: to 50 feet deep. The bottoms of the caverns show un- 
mistakable evidence of having once formed a river-bed. The water still 
flows at times along the channel. Some person had dug a hole about 10 
feet deep, which showed the iayers of deposition of sand and clay as per- 
fectly as along the banks of any of our little streams. We see by this 
iilustration (Fig. 4) that underneath this basaltic crust streams of water 


BASALT FLOOR, UNDERLAID WITH PLIOCENE BEDS. 


‘have worn in the past, and may be now, wearing out theirchannels toward 
Snake River, and that this may be only one of numerous examples in this 


30 GEOLOGICAL SURVEY OF THE TERRITORIES. 


great basin. We can also see how readily such rivers as Camas, Medicine 
Lodge, Godins, and many others disappear in the plains, and find their way, 
from ten to thirty miles, to Snake River, underneath this basaltic floor. 

Before leaving this interesting region, I wish to add a few general re- 
marks in regard to what may be very properly called the Snake River 
Basin. There is here a broad, nearly level plain, from seventy-five to 
one hundred miles in width, and one hundred and fifty to two hundred 
miles in length, surrounded on all sides by mountain ranges. This basin 
follows the course of Snake River, and is really an expansion of the val- 
ley; and it at first extends from the northeast to the southwest, 
bends around west, aud then continues northwesterly toward Boise 
City. The mountains on either side form a series of more or less lofty 
ranges, some of the more prominent summits rising toa height of 10,000 
feet. These ranges appear to the eye, from any one point of view, to 
trend about north and south, but the trend of the aggregate ranges is 
plainly a little west of north and east of south. Between these ranges 
are valleys of greater or less breadth, varying from one to five miles in 
width, oftentimes of great beauty and fertility, through which wind 
some of the numerous branches which flow into Snake River. The great 
basin is entirely covered with a bed of basalt of quite modern date, (Fig. 
4,)and this basait has set to a greater or less distance up the valleys of all 
these streams. It extends up the Port Neuf Valley twenty or thirty 
miles. The American Falls are formed by the descent of Snake River 
over the basalt. I believe that this vast basin has been worn out of 
the mountain ranges by erosion; that the three buttes and other frag- 
ments of ranges scattered over the plains serve as monuments in proof 
of this statement. This basin was also the bed of a lake which proba- 
bly originated during the Pliocene period. At any rate, I have been 
unable to discover in the immediate vicinity of this basin any Tertiary 
beds of older date than the Pliocene; and underneath the basaltic 
crust there is a considerable thickness of the deposit. The effusion of 
the basalt was one of the latest events, and must have merged well on to 
our present period. The average elevation above the sea is from 4,000 
to 5,500 feet. Our camp on the Blackfoot Fork was 4,324 feet, which 
was at least twenty miles above Snake River east; and, inasmuch as the 
basin extends down Snake River, the valley below the American Falls, 
and near Boise City, cannot be over 4,000 feet, and may be less, while 
near the northern rim the elevation is 5,730 feet. From the great 
basin of Snake River we ascended the hills that form the northern rim 
over a divide 6,200 feet high, with hills on either side rising 1,200 to 
1,500 feet higher. All these hills are capped with beds of basalt, which 
incline southward toward the, basin at various angles, from 5° to 10°. 
Where the rocks can be seen they are plainly igneous, but as we ap- 
proach Pleasant Valley the hills are so covered with a drift deposit that 
itis seldom the underlying rocks can be seen. The surface here, for 
miles in extent, is made up of short, abrupt hills, generally one main 
sharp ridge, with a great number of side ridges extending from it. 
These hills are covered over with grass.. The rocks that are scattered 
thickly over the surface, and enter largely into the composition of these 
superficial deposits, are rounded bowlders of quartzites mostly. The 
distance from our camp on Dry Creek, in the Snake Basin, was sixteen 
and a half miles. The little stream that flows through Pleasant Valley 
emerges from a cafion, which has nearly vertical walls of basalt, with 
an irregular bedding, but with jointage quite perfect, fracturing into 
columnar masses. A vast amount of debris has fallen down the sides of 
the walls and into the bed of the stream. Some of the rock is very 


GEOLOGICAL SURVEY OF THE TERRITORIES. bl 


compact in texture; other portions rough, vesicular, much like the cane 
in Snake River Basin. 

On the morning of June 29, we left the beautiful valley behind us, and, 
traveling 9 miles north, crossed the water ‘‘ divide” of the Rocky Moun- 
tains. On the west side of the road, for ten or fifteen miles, the rounded, 
grass-covered hills prevailed, and over the surface,quartzite bowlders, min- 
gled with some sandstones, were scattered thickly everywhere. Inthe sides 
of the ravines were numerous bare spots, which revealed a deposit of yel- 
lowish-brown sand. There isevidently a very extensive modern deposit 
all over the belt of country which forms what f will call the water di- 
vide—a belt from ten to twenty miles in width, in which the drainage 
gathers full force on the one side toward the Pacific, and on the other 
toward the Atlantic. The elevation along the “ divide” is 6,480 feet. To 
the west is a range of mountains reaching up above the limit of vegeta- 
tion, among the snows. We measured one of the high hmestone peaks 
and found it 9,704 feet; but there were several others still higher far- 
ther to the west, which must have been 10,000 feet high. These mount- 
ains are concealed high up around their sides with the drift deposit 
mentioned above, so that their examination is rendered quite difficult. 
The mountains, so far as we could examine them, seem to be composed 
of a great thickness of carboniferous limestones, capped with quartzite 
and quartzitic sandstones. ‘The first range has four prominent cones, 
with several smaller ones, thewhole having a general trend about north 
and south, with an inclination to the west 25°. On the east side of the 
road were high, ridge-like hills, capped with basalt, all inclining to a 
moderate angle southward toward Snake River. Wherever any of the 
branches of Dry Creek cut through the grass-covered hills, or ridges, 
canons are formed with vertical basaltic walls. This igneous rock 
seems to be very homogeneous in composition, except that some por- 
tions may be more compact in texture than others. The surface of the 
whole country is exceedingly picturesque, diversified by lawn, terrace, 
ridge, and rounded butte, with most beautiful grassy ravines. Where 
the drift deposits are not too uniform and thick, we find exposed here 
and there outcroppings of a yellowish calcareous sandstone, which is 
probably of the age of the lignite beds of the West. No indications of 
coal were observed, but leaves of deciduous trees, like those found in 
the vicinity of the coal-beds in other places, were found here. These 
sandstones form long ridges, inclining east about 10°. The rock is more 
or less firm and compact ; some of it is a greenish quartzite. Here and 
there, on the summits of the ridges, are beds of basalt, showing igne- 
ous outflow at a modern date. Indeed these basaltic caps on the hills 
have presented many connected sections for examination which would 
otherwise have been obscure, and fragmentary from erosion. Far 
to the west may be seen range after range of mountains running 
nearly north and south; as they extend “down into Snake Basin 
they seem to run out into the plain, so as to present an echelon appearance. 
The ranges, so far as we can see, are the eastern portions of some 
great central axis, which may be the Salmon River Range. I have 
not been able to extend my observations so far west; but ‘the ridges, 
so far as I could examine them, of which there were a number ex- 
tending over a belt of fifty miles in width, appear to incline east- 
ward. The abrupt sides of the west, the sloping sides on the east, 
the force as well as the material which have modified and given form to 
the surface, must have come from the west, inasmuch as on the western 
or abrupt sides of the mountains and hills thére is the greatest accumu- 
lation of drift-bowlders. The loftiest portions of the ranges seem to have 


82 GEOLOGICAL SURVEY OF THE TERRITORIES. 


been elevated through the more .modern formations. The high group 
of mountain peaks to the southwest of Junction Station are composed 
mostly of Carboniferous limestones and quartzites. The series of rocks 
as exposed here may be arranged in ascending order as follows: First. 
A series of reddish, yellow and brown calcareousshales. Secondly. Lime- 
stones, the upper portion of which is a coarse conglomerate, made up 
mostly of water-worn masses of limestones, with abundant fossils, Spi- 
rifer, Productus, Corals, Crinoid stems, with Athyris subtieta. Thirdly. 
Capping the mountain isa quartzose sandstone light-gray or weathering to 
a dark-brewn, with a reddish tinge. In the valley of a litile creek that 
cuts the hills on the north side of the road near Junction Station, I en- 
deavored to ascertain the character of the formations as far as they were 
expesed. Commencing atthe base, we find a yellow arenaceous clay, pass- 
ing up intoa yellow sandstone, rather friable, sometimes quite fine-grained ; 
again a sort of pudding-stone or pebbly conglomerate. 59 to 100 feet 
abeve is a curious conglomerate made up mostly of water-worn masses 
of Carboniferous limestone, varying in size from the fraction of an inch 
to several inches in diameter. The thickness of the entire group of rock 
I estimate at from 1,500 to 2,000 feet. Still further to the northward 
are reunded grassy hills composed of softer beds with a reddish tinge, 
passing gradually into brick-red beds, which may be Jurassic or Triassic. 
Red Rock Valley is very beautiful to the eye. The stream is about 
twenty yards wide, with a narrow valley, north of the junction, but 
toward its source it expands out to a width of ten miles, forming a 
splendid upland meadow. This valley extends up twenty-five miles, 
with an average of ten miles in width. Onthenorth side of this stream 
there is a high and quite picturesque ridge, composed wholly of the red 
beds, with perhaps some gray Jurassic rocks on the summit. ‘The dip is 
plainly northeast, and varies from 15° to 30°.. Toward the source of Red 
Rock Creek, a high ridge on the south side of the valley reveals the rocks 
well, inclining southeast 109 to 15°. This ridge seems to have 
been influenced by a distant range, which has raised the beds lower down 
on the creek. The limestones and thick group of beds above, extend 
off in detached ridges, like steps, toward the river of Snake Basin. 
One of the most singular features of this region is the immense 
thickness of coarse conglomerate, apparently forming a portion of the 
-Carboniferous series. These conglomeratesappear to be local, and occur 
nowhere else, so far as my observations haveextended. Inthe high peak 
near Junction Station the beds are well shown from the oldest exposed 
in this region. The Carboniferous rocks lie at the base, and gradually 
pass up into the conglomerates, with no want of conformability. In this 
mountain an immense thickness of rock seems to have been lifted up 
vertically, so that at an elevation of 9,000 feet they are nearly horizontal, 
while on one side the beds lapped down so as to be nearly vertical. On 
the summits is a great thickness of quartzites. The conglomerates 
seem to have been formed of pre-existing Carboniferous limestones 
almost entirely. The cement is calcareous in some instances, itself a 
limestone of fine texture, and the masses of limestone and other rocks 
inclosed have been very much rolled in waters. How great an area this 
conglomerate occupies I did not determine, but it is evidently not large, 
probably not over fifty or one hundred square miles. Far to the east- 
ward, seventy to eighty miles distant, the Tetons are distinctly visible. 
For a hundred and fifty miles west of these mountains are many ranges of 
hills, some of them rising to the dignity of lofty mountains, between 
10,000 and 11,000 feet above the sea, with no rocks older than Carbonif- 
erous exposed. Tor one hundred to one hundred and fiity miles along the 


GEOLOGICAL SURVEY OF THE TERRITORIES. 33 


Rocky Mountain “divide” the series of rocks exposed may be summed up 
as Carboniferous, Red beds, Jurassic probably, some Cretaceous, with 
patches here and there of Kocene, or Upper Cretaceous, containing im- 
pressions of deciduous leaves. Igneous rocks have also been thrust up 
through them all and spread over the summit. These have shared in 
the later movement to such an extent as to incline at moderate angles. 

About two miles below the Junction Station, on the south side of Red 
Rock Creek, thereis a great exposure of the Carboniferous conglomerates, 
dipping 21° a little west of south. The creek here passes through a 
close monoclinal interval for half a mile, and then opens out into Rock 
Creek Valley, with two high ridges, with yellow and red beds (Jurassic) 
at their base. Red Rock Creek forms one of the head branches of the 
Jefferson Fork of the Missouri, and rises in the “divide.” It receives 
its name from the numerous exposures of the brick-red sandstones (Ju- 
rassic) and Cretaceous clays along the banks. Along the streams are ter- 
races more or less well defined, of various heights, showing the water-line. 
About five miles north of the Junction we find the Pliocene beds, filling 
up the valleys of the streams, sometimes reaching a thickness of several 
hundred feet. The greater portion of this deposit is a light-gray marl, 
with concretionary masses, and a sort of pudding-stone. In these con- 
cretions are often inclosed masses of the basalt, which occur here and 
there all over the country. While we have the evidence of a period of 
effusion subsequent to the deposition of these lake-beds, from the fact 
that the basalt-lies over them, we See by these inclosed masses, frequently, 
that there were other periods, either before or during the Pliocene. At one 
locality I found in these lake-deposits the fossil remains of a species of 
Anchitherum, and a land-snail, Helix. The inclination of these modern 
heds is west 5°. In passing over the divide from Red Rock Creek to 
Biack-tailed Deer Creek, and from the highest point, 7,044 feet, we could 
look back on a large extent of country drained by the different branches 
of these streams. ~ 

This broad valley, like most of those in the west, was formed by ero- 
sion, and has been filled up with lakes, at the bottoms of which were de- 
posited 500 to 1,000 feet of marls and sandy clays, during the later 
Tertiary period. Here and there, these deposits have been stripped 
away, showing remnants of old granite ridges, which either fill up the val- 
leys, through the walls of which the streams make their way, or they are 
exposed as remnants of larger ridges, which extended originally across 
the valley. Some of these modern beds have a light. brick-red appear- 
ance, Somewhat resembling the Jurassic group. Reaching the drainage 
of Black-tailed Deer Creek, we find an immense development of the 
_ gneissic strata, inclining about west 30° to 45°, and extending about eight 
miles. There are alternate beds of quartzites, true gneiss, mica schist, 
the quartzites largely predominating. There are also thick seams of 
white quartz. Large portions of the area occupied by the metamorphic 
rocks are concealed by the outpouring of basalt. The metamorphic 
beds are here separated from the Pliocene deposits by a deep ravine or 
dry valley, the sides of the former having a regular glope, and indicate 
a sort of shore-line for this lake. Here and there we find curious local 
anticlinals in the metamorphic strata, caused by the elevation during 
the effusion of the basalt. On the west side of Wild Cat Cation, through 
which the road passes to Black-tailed Deer Creek, the mountains rise 
to a height of 8,500 feet, and over a large area are groups of the harder 
feldspathic quartzites, which have resisted erosion, and now remain like 
old ruins, and present a very picturesque appearance. These quartzites, 


348 


34 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


=, 


thew jointage and style of weathering, present some admirable rock 


studies, (Mig. 5.) 


by 


er el 


*"NONV)D LV) GTIM Lv ‘sdOL NIVLNQNOW NO LNO GaNaHLvVaM ‘SHLINVYD DIHLVdSG1a4 HSladay 


sl) 


2 
a a 


nel 


i 7 iL : 
en Hi i 


ein 


) 


UU 


ui aa | 


Ap oe 
h, 


-tailed Deer Creek and its branches 


from north to south, 


In the area drained by the Black 
here is a large open upland valley, twenty miles 


iu 


GEOLOGICAL SURVEY OF THE TERRITORIES. 30 


and thirty miles from east to west, underlaid by the Pliocene deposits, 
inclining gently northwest, influenced probably by the Black-tailed Deer 
| 


Range. 

The country about these 
sources or branches of the Jef- 
ferson fork is very fine, and 
appears most attractive to the 
eye, with a fertile soil, excel- 
lent water, and well adapted for 
settlement, except that the win- 
ters must be very severe. The 
elevation of the valleys is from 
6,000 to 7,000 feet, involving 
early and late frosts, and deep 
winter snows. About a mile be- 
fore Wild Cat Cation opens into 
the valley, the variegated por- 
phyries commence, a dull purp- 
lish color prevailing, though yel- 
low and mottled are not un- 
common. 
pear to have been poured out 
over the metamorphic rocks; 
from the south side of the Black- 
tailed Deer Valley they project 
out from the hills in beds much 
like basalt. The configuration 
of the surface where the por- 
phyries prevail is quite pecu- 
liar—sharp, rounded, conical 
peaks, with deep ravines or 
gorges. These peaks are all 
capped with the porphyries. 
Immense quantities of the 
broken fragments or débris lie 
on the summits and sides of 
these hills. On the east side of 
the valley the Pliocene beds 
reach a thickness of 500 to 1,000 
feet, and are composed of pud- 
ding-stones, yellow marls, gray 
and white fine-grained sand- 
stones, weathering into singular 
columnar and other architect- 
ural forms. All the rocks con- 

tain more or less lime. Both 
Black-tailed Deer and Stinking 
Water Creeks have their sources 
in a high range of limestone 
mountains, 9,000 to 10,000 feet 
above the sea level, the highest 
peaks rising at least 2,000 feet 
above the valleys of these 
streams, where they are crossed 
by the road. High up on the 
sides of these ridges, reaching 


The porphyries ap-. 


‘dNQOYDANOd AHL NI LivSva ‘NaAHUD YAAA TIVL-NOV1a ‘VLVULS DJIHdNOWVLAW 


i i 
} Hi fi 


nail 


‘5, 
SS 
Te s/UUApOUREERR 


"B1T 


79 


ee, 
Be) L YL SY 
Ni, Z 
LAN 

uh) 


Gee 


TN 
y Lyf s\\\Nib oy! 
YY “ANN il) é 


Ik 


Ty ; \\ 
MAN) 1 
‘ ue 
A i Ay | } 


oar NY fit i} 
cane | 
Al fh 


() 


6 ' GEOLOGICAL SURVEY OF THE TERRITORIES. 


almost to the summit, are large quantities of drift material, and the 
Tertiary marls appear to have been elevated nearly as high. Ail the 
drift is local, as is usual in these mountain regions, and, by examining 
it with care, fragments of the different kinds of rocks, brought to the 
surface in the vicinity, may be found. Of course the later Tertiary beds 
are made up of the eroded materials of rocks in the vicinity. Much of 
the sediment was derived from the Carboniferous limestones, and 
hence their marly character. The apparent inclination of these great 
limestone ridges or mountains is in every direction, when examined 
in detail, but the trend of the ranges is about northwest and southeast, 
and the aggregate inclination northeast, although some of the strata 
in the highest ridges incline north 60° to 70°; another portion north- 
west 15°. There is a somewhat peculiar feature about all the ridges 
since leaving the Rocky Mountain ‘“ divide,” and that is the evidence, 
from their external appearance, of comparatively recent elevation. 
The outcropping edges of the strata appear as if they had been 
lifted up, without any of the usual proofs of wearing away by atmo- 
spheric influences, and the debris on the sides and about the base would 
indicate that the elevation had been prolonged up to the present 
period. On the summits of these ridges, are great quantities of dead 
pine-trees, scattered around without a trace of any younger trees or 
shrubs to take their places. This is not an uncommon feature in many 
portions of the Rocky Mountains. May it not be possible that these 
mountain ridges are slowly rising at the present time; that they have 
reached an elevation that does not admit of the continued existence 
of these pines, which evidently grew well under favorable conditions 
which seem now to have entirely passed away? On the north side 
of Black-tailed Deer Creek, there is another exposure of the gneissic 
rocks in a series of uplifted ridges, inclining about northeast, at angles 
varying from 30° to 60°, (Fig. 6.) In the foreground are the modern ba- 
salts, with an irregular columnar structure underlaid with modern 
Pliocene deposits. It is a similar exposure, or, perhaps, a portion 
of the same exposure on the south side previously described, through 
which Wild Cat Caiion passes to the valley. These exposures of the 
_gneissic rocks seem to be local, and are doubtless due to the stripping 
off of the superincumbent formations. ‘They undoubtedly form the 
basis rocks of the whole country. Im the mining regions they are 
brought to the surface more frequently, and occupy much larger areas. 
The broad, beautiful valley of the Black-tailed Deer Creek is worn out 
of this belt of gneissic rocks, and grows broader until it expands out 
into the still wider valley of the Beaver-head Creek to the northwest, 
about twenty miles below our road. In these granitoid rocks there is 
the usual variety of texture, some composed of an aggregate of crys- 
tals of feldspar, decomposing readily like sandstone; others with a 
schistose structure from their micaceous character; others so hard as to 
resist the influences of the atmosphere—a kind of feldspathic quartzite in 
large angular blocks. Are not these remnants of old mountain-ranges 
that have resisted, to some extent, the powerful erosive influences that 
have been brought to bear upon them for many geological ages ? 

From the valley of Black-tailed Deer’ Creek we passed over the 
“‘ divide” to the sources of the Stinking Water. Our camp in the valley 
was 0,973 feet, but the elevation of the divide is 6,657 feet. On our way 
over we found here and there patches of basaltic rocks, fragments of the 
great crust that once covered all the modern deposits of the valleys. On 
the “ divide,” at the head of a cation that leads into the valley of Stink- 
ing Water, are some rather large exposures of the basalt, with a sort of 


GEOLOGICAL SURVEY OF THE TERRITORIES. ont 


‘bedding which may be called shelving, or a splitting into layers of greater 
or less thickness, depending on the compactness of the material. Some- 
times the modern basalt caps the quartzites, of which we have several 
examples on our way to the main valley of the Stinking Water. Still 
farther down we find a branch of the Stinking Water called Sweet 
Water, cutting directly through a mass of variegated porphyries, like 
those in Wild Cat Cation, forming the Sweet Water Caiion. The great 
variety of colors which these rocks present, the height and abruptness 
of the walls, and the style of weathering on the summits, give to the 
scenery in this region a weird kind of grandeur and beauty. At the 
base of the walls is a vast quantify of débris, composed of the frag- 
ments of porphyry. The sides of the porphyritic walls show a regular 
bedding like strata, in layers from an inch to a foot or more in thickness. 
At the lower end of the cafion, the gneissic beds appear beneath the por- 
phyries, showing the character of their connection admirably. The 
former rest upon the upturned edges of the quartzites, as if they had been 
poured out in a fluid condition, filling up all the irregularities of the 
surface. 
The geological character of this immediate region may be expressed 
- simply as very modern basalt, capping rocks of different ages, which 
may be in the vicinity of the point of effusion. We then have a group 
of modern Tertiary beds, probably Pliocene, filling up the valleys and 
irregularities of the surface everywhere, except on the summits of the 
_ highest mountains. During the latter portion of the Tertiary age, the 
entire northwest seems to have been a fresh-water lake, with vast 
numbers of mountain elevations occupying a greater or less area, not 
unlike some of our inland jakes at the present time, on a small scale, ~ 
with the more elevated points and mountain ranges rising above the 
surrounding waters. These modern deposits have been elevated also to 
a certain extent, as there is in many instances an inclination of the 
strata from 1° to 5°. These cover the porphyries which were effused at 
a period far back in the past, subsequent te the deposition of the former 
rocks described, but how much further back into the past I found no 
evidence to determine. I have as yet been able to find the porphy- 
ries only in connection with the gneissic rocks. The forces which 
operated: to lift the gneissic rocks must have acted long prior to those 
great elevatory movements which affected the sedimentary strata, and 
although the porphyries seemed to have flowed out over the gneiss 
since the strata have been elevated to their present position, it is no 
possible for me to give the precise geological period when these events 
occurred. Usually either lower Silurian sandstone or Carboniferous 
limestone rests upon the metamorphic rocks. In afew instances the 
inclination of the Paleozoic beds above conform with the granite 
rocks below in such a way that I have been led to believe it possible 
that the dynamic movements that affected both groups were synchronous. 
But in most instances there is a greater or less want of conformity 
between the metamorphic rocks below and the sedimentary beds of 
any age that may rest upon them. The next group of rocks is com- 
posed of stratified gneiss of every possible texture and composition, 
from the most durable compact feldspathic quartzite to rotten micaceous 
schist, warped and folded in every way. After passing down the Sweet 
Water Caiion about five miles, we come out into an open valley, or a 
sort of expansion. The porphyries, which were previously horizontal in 
their position, here show a dip of 20°, and about midway in the wall-like 
' front there is an apparent division by a bed of volcanic sandstones about 


38 GEOLOGICAL SURVEY OF THE TERRITORIES. 


four feet in thickness. There were three periods of effusion: first, the 
outpouring of igneous matter over the granitoid rocks ; secondly, the de- 
position in water of about four feet of voleanic sediment; and thirdly, an 
effusion of igneous matter again like the first. After leaving the cation, we 
come out into an expansion of the valley, about ten miles in length and an 
average of two to four miles in width. This areais surrounded on all 
sides by ranges of mountains, but covered with a thickness of several 
hundred feet of modern Tertiary beds. As exposed along the channel of 
the streams we haveat the base 50 to 80 feet of yellowish-white and creamy 
laminated marls; then 100 feet of cream-colored marly sandstone; and 
overlying this an indefinite thickness of gray sandstone and pudding-stone. 
These modern beds jut up against the rotten granites on the south side, 
inclining toward them about 3°. They seem to be entirely influenced 
by the ranges on the east and north sides. The weathering is of the 
same architectural character as the well-known “‘ bad lands.” As we 
leave the Sweet Water and come on to the Stinking Water, the bluffs 
of Tertiary are quite high, 80 to 100 feet, composed of alternate layers 
of sandstone and fine marl. The sandstone layers are quite hard, and 
in the process of weathering project like shelves, giving to the verti- 
eal bluffs a singularly rugged appearance. On the east side of the valley 
the range of mountains is the same as.those about the sources of Black- 
tailed Deer Creek, and are composed of limestones and quartzites of Car- 
boniferous age. Theinclination would show that this valley formed a lake 
basin, with the granites on the west side as a shore-line, and a monoclinal 
limestone ridge as the shore-line on the east. This valley is well 
watered, the soil is fertile, and the grazing excellent, and already most 
of it is occupied by farmers and stock-raisers. The elevation is 5,300 
to 5,400 feet, and inclosed, as it is, on all sides by mountains, must be 
protected from the extremes of cold. On the west side of the Stinking 
Water, just above the cation, is one of the largest springs thus far 
noticed onthe route. It must have been in operation for ages, for there 
are beds of limestone 80 to 100 feet in thickness precipitated from the 
water. The water at this time issues out of a basin about 150 feet above 

the Stinking Water, and covers the sides of the hills with the sediment. 
The rock varies in texture from a compact white limestone to a soft spongy 
mass. A snow-white efflorescence—soda, perhaps—covers the surface 
in some places. The older deposits of this spring form the most beau- 
tiful white limestone, which would be mostexcellent for building purposes 
or for burning into lime. The beds dip west 10° to 20°. This is a 
most remarkable deposit, though a local one. The basis or underlying 
rocks are quartzites and granites, inclining east 40° to 50°. Overlying 
them, further down the stream, in the canon, are limestones with well- 
marked Carboniferous fossils. About five miles below the junction of 
the Sweet Water branch with the Stinking Water, the latter stream 
passes through a gorge or caiion, and, as we descend the stream between 
the narrow, rugged walls, we have on the left or west side a group of 
quartzites of various textures, which had not been observed previously. 
They are composed of an aggregate of crystals of quartz, brown and rusty 
drab-brown color, inclining east at a high angle. Onthe right or east side 
are the overhanging projecting edges of beds of massive quartzite, rising 
800 to 1,000 feet above the bed of the creek. The streams here pass 
through a gorge between the ridges inclining in the same direction, which 
I have called a monoclinal interval. We here find exposed one of the 
remarkable series of quartzitic strata mentioned above, rising to the sum- 

mits of the east side of the cation, huge cubic blocks of which have fallen. 
down and are strewed through the gorge. Underneath is an immense 


GEOLOGICAL SURVEY OF THE. TERRITORIES. 39 


thickness of black micaceous gneiss, with seams of white quartz, the 
coarse feldspathic granites, literally an aggregate of large crystals 
of quartz and feldspar, then 
underneath the black gneiss 
again. In this cafon there is 
a most interesting illustration 
of the weathering of the red- 
dish feldspathic granites by the 
peeling off in thin concentric 
layers, or as [have denominated 
it in my former reports, disin- 
tegration by exfoliation. I 
have never observed a more 
marked example anywhere in 
the West, and Fig. 7 shows it 
well. After passing through Se ee £ 
=a ieee wenn ss j WEATHERED GRANITES AT festa CANON. 
to the north, leaves the valley of Stinking Water, passes over a 
high divide to Alder Gulch, in which Virginia City is located. On the 
right or east side of the road, the rather rounded and, in some instances, 
grass-covered hills, continue all the way. On the left or west side, the 
gneiss and quartzite continue for a short distance, when the mountain 
range, which has hitherto walled us in on the west side of the road, bends a 
little to the northwest, and extends to the Jefferson Valley, parallel with 
the Stinking Water, and rises quite abruptly, 2,000 feet above thechannel 
ofthe stream. The base of this ridge or range is a smooth lawn-like slope, 
down to the margin of the stream, while the ridge itself is composed of 
massive beds of limestone inclining 60° to 70°, the outcropping edges 
projecting sharply on the summits, and the northeast sides sloping down 
into the plain, like a very steep roof. The valley itself is a beautiful 
and fertile one, and is oneof the numerous valleys that open into the 
Jefferson Fork. It will average from four to six miles in width and 
about twenty miles in length below the caiion, and is covered with a 
moderate thickness of the Pliocene deposits. On the east side of Stink- 
ing Water, the rocks are entirely composed of gneiss, of the usual va- 
riety of texture and composition, the strata inclining southwest at 
various angles, so that the Stinking Water really flows through a 
synclinal valley from the cafion to its junction with Jefferson Fork. In 
the valley and among the foot-hills of the mountains, are here and there 
patches or remnants of the great basaltic crust that must at one time 
have extended over most of the area occupied by the valleys. From the 
Stinking Water to Virginia City, adistance of about ten miles, therocks 
observed were of metamorphic origin, with here and there indications of 
the effusion of basalt. : 
Virginia City is located in the center of one of the richest mining dis- 
tricts of Montana, and a description of the surrounding country would 
apply, in most particulars, to.all the mining portions of the Territory. 
The precious metals, as gold and silver, are found, so far as my ob- 
Servations have extended, entirely in the metamorphic rocks which held 
a position below all groups of strata that we have been in the habit of 
regarding as Paleozoic. Whether they belong to the series denominated 
in Canada the Huronian or Laurentian, we have no data to decide posi- 
tively; butinasmuch as they are all clearly stratified rocks, they are plainly 
of sedimentary origin. These rocks underlie the entire country west of the 
Mississippi. We may safely assume this position whether they are vis- 


40 GEOLOGICAL SURVEY OF THE TERRITORIES. 


ible at the surface or not. Asa rule, they are separated into thin layers, 
with a great variety of texture, from the most unyielding quartzite to 
rotten gneiss. There are also distinct intercalated layers of clay or sand. 
Asatule, these rocks become more massive as we descend; the softer 
beds of clay and sand cease, until we find nothing but massive beds, hun- 
dreds of feet in thickness, of homogeneous granite. All these rocks have 
suffered erosion to a greater or less degree—sometimes they are entirely 
swept away, down to the massive granites. It is in the series of meta- 
morphic strata, estimated to be several thousand feet in thickness, that 
the principal deposits of gold and silver, in the Territories of Montana 
and Colorado, are found. The altitude of these rocks depends, of course, 
on the forces that have operated in the past to elevate the ranges of 
mountains. At any rate, there is no uniformity any more than there is 
in the surface of the country at the present time. We know one thing, 
however, that as a rule the oldest of these granite rocks crown the loftiest 
of the mountain ranges. The relations which the well-marked, stratified 
granites sustain to the older and more massive granites is nowhere 
better shown than in the mining regions of Colorado, especially at 
Central City and Georgetown. 

In general terms, we speak of the geological structure of Montana as 
extremely simple; and so it appears to be; but when wrought out with 
‘the care that will be absolutely necessary to a truthful delineation of 
the details, it will be found to be exceedingly complicated. We maybe 
examining one of the mining districts, for example, and we may con- 
elude that only metamorphic strata will be found over the entire area 
occupied by the mines; but perhaps, on a careful study of the details, we 
shall find everywhere scattered about patches of all the Paleozoic rocks 
known in the West, and quite possibly portions of the Mezozoic and Ceno- 
zoic also. In the valleys and gulches, upon the summits of the highest 
mountains, and in the most unexpected places, fragments of the Carbon- 
iferous limestones will be found. We may take the position therefore 
that the entire surface of the country has been at one time covered with 
a greater orless thickness of sedimentary rocks. Itis possible, though not 
at all probable, that there are restricted areas in this portion of the West 
where no unchanged sedimentary deposits have ever existed, and it is pos- 
sible that over considerable areas no strata newer than Carboniferous may 
have been laiddown. Thereis reason to believe, however, that the entire 
series of strata known in the northwest, above the metamorphic rocks, 
were originally deposited all over the Territory of Montana. We may 
couclude, therefore, that the erosive forces have operated with great 
power in the district around Virginia City, stripping bare to the meta- 
morphic beds, large areas. In the mining districts, in connection with 
these agencies, was the wearing out of so many gorges, or gulches, as they 
are usually termed by the miners. We may take as an illustration seme 
rather prominent streams in the vicinity of Virginia City; and if a care- 
ful detailed survey were made, we should find that there is a main val- 
ley or guich, with great numbers of side-gulches running up into the 
heart of the mountains on eitherside. The main stream may be fifty to 
one hundred miles in length, and on either side are these branch gulches, 
usually from three to ten miles long. These gulches may be carved 
entirely out of the massive strata, or they may be partly due to erosion, 
and partly to an interval, formed during elevation, that is, a monoclinal 
valley. The influence of the erosive forces, which acted with great power, 
and probably through long periods of time, though widely distributed, 
are local in their results. In other words, while the erosive forces were 
in operation all over the West, there was no widespread connection, 


GEOLOGICAL SURVEY OF THE TERRITORIES. Al 


so that the eroded materials of one locality were swept far away to 
widely separated localities. Therefore, the superficial deposits of the 
mining districts, which are usually very extensive, have their origin 
inthe immediate districts where they are now found. We may take 
as an illustration the Alder Gulch, which is about twelve miles in 
length; and varies from an eighth to half a mile in width, and is literally 
filled up with sand, gravel, and bowlders, all of which were derived from 
the. mountains in the immediate vicinity—indeed, within the limits of 
the drainage of that gulch. We may thus determine with a good degree 
of certainty that, when we find placer-diggings, the source of the gold 
thus found is not far distant, and is most probably within the limits of 
the drainage of that locality. The origin of the placer-gold is undoubt- 
edly due to the erosion of the rocks in which it was originally precipi- 
tated; and inasmuch as the gold,.so far as we now know, is found 
altogether in the gneissic strata, its existence in the various gulches, 
among the sand and gravel, is due to the grinding up by water of the 
' surface of the metamorphic rocks in the vicinity. Instances have 
occurred where very rich placer-diggings have been found in gulches, 
but the rocks which appear to have given origin to the float-gold, yielded 
no rich lodes. This may be accounted for on the ground that the upper 
portions of the lodes contained all the rich ore, and that in the process 
of erosion this ore was all ground up, while the remainder that is left 
may have been lean, or even contained no gold atall. The principal lodes 
that have been worked in the vicinity of Virginia City are near the head 
of Alder Gulch, and are as yet only moderately successful. Up to this 
date Montana seems to have gained its high state of prosperity princi- 
pally from the richness of its gulch deposits. It is estimated that 
$30,000,000 of gold have been taken out of Alder Gulch since its discov- . 
ery in 1863. The lodes all have a general strike northeast and southwest. | 
Perhaps they would be termed north and south lodes. I was informed — 
that all the lodes in the Territory have that generaltrend. The gangue 
material is very similar to that in the gold lodes about Central City, 
Colorado—quartz and feldspar of various textures. Sometimes the 
gangue is very hard and compact; again it is rotten quartz, as it is 
termed by the miners. The country rock is mostly gneiss, also exhibit- 
ing various degrees of hardness as to texture. The dip of the lode 
matter is nearly west 50° to 60°. The trend of the metamorphic strata 
is about northwest and southeast. The Alder Gulch closes up in a ridge 
of limestone, which forms a most remarkable wall, effectually shutting 
off all communication with the Madison Valley to the east of it. The 
altitude of Virginia City is 5,713 feet, while the head of the gulch is 
about 500 feet higher, and around it a wall of limestone rises up 
with its outcropping edges toward the guich 800 to 1,000 feet, so that 
this ridge is at least from 7,000 to 7,500 feet above the sea. From its 
summit we can see at a glance, a broad extent of country. The Madison 
Valley, with all its beauty of outline, is visible for thirty or forty miles, 
while to the west and northwest the eye passes down the different 
gulches and branches of the Jefferson Fork into that broad valley, over 
the side ranges which intervene. We know that these limestones are 
of Carboniferous age, and are a portion of the series that has extended 
persistently all along our route from Salt Lake Valley, and perhaps 
even the same great ocean bottom that extended, during that age, 
over the area from the Mississippi Valley to the Pacific Ocean, and we 
know not how much farther. As a general rule, these limestones always 
contain a few fossils, enough to guide us in our wandering examinations, 
but the rocks are usually so compact, and sometimes so much changed, 


42 GEOLOGICAL SURVEY OF THE TERRITORIES. 


that few can be obtained in a condition such as to be identified with 
certainty. ‘The species are not numerous, as will be seen by the list in 
a subsequent portion of this report. At the head of Alder Gulch, a 
Syringopora, Khynconella, and Productus were found, and quite a num- 
ber of other species, which will require further study. The limestones 
pass down into very hard cherty quartzites, and then rest unconformably 
on the metamorphic rocks. The strike of these limestones is about 
north and south, bearing perhaps a little west of north and east of 
south. As we have previously stated, the principal basis rocks in the 
vicinity of this gulch are gneissic, of varied composition and texture, 
with a high ridge of limestone at the head of the gulch, forming a sort of 
wall, with the outcroppings or basset edges of the strata pointing west 
of north, and formerly extending in a horizontal position all over the 
surface. Returning to Virginia City, on the high divide, on the east side 
of Alder Gulch, about half-way between the head of the gulch and Vir- 
ginia City, there are patches of limestone, underlaid with cherty quartz- 
ites. These isolated masses are at different elevations, sometimes upon 
the summits of the highest ridges or down in the side gulches, showing 
that a greater or less thickness of the underlying granitoid rocks have been 
worn away. They also remain as remnauts of the great horizontal mass, 
2,000 to 4,000 feet in thickness, that once extended across the entire area. 
The greater portion of the surface of the high divides, however, are 
covered with basaltic rocks. They cap the hills, forming sort of plateaus 
or benches, and along the sides of the gulch, show steep sides one 
hundred feet or more in height, with the appearance of stratified layers 
in a horizontal position. AsI have frequently stated, the effusion of the 
basalt is a modern event, probably occurring, for the most part, near 
the commencement of our present period, after the entire surface 
_ reached nearly, or quite, the present elevation. Hence we find points of © 
effusion in numerous localities. The igneous lavas flowed out in layers, 
and inasmuch as a considerable amount of erosion of the surface has 
taken place since, the sides of some of these basaltic accumulations have 
been worn down so as to show with clearness the edges of the different 
sheets of basalt as it cooled. From a high elevation, one may see in 
every direction numbers of these points of effusion. The streams which 
wear out the gulches pass through the basalt, deep into the granitoid 
rocks. Scattered over the surface also are patches of the Pliocene 
marls and sandstones underneath the basalts, as heretofore. In the 
mining districts around Virginia City, we have a thick series of stratified 
granitoid rocks at the base, in which the precious metals were originally 
located ; upon them rest the quartzites and limestones of Carboniferous 
age, and filling up some of the inequalities of the surface are the modern 
Tertiary beds; and covering all, over restricted and isolated areas, are 
beds of basalt. The force of erosion which operated on all these rocks to 
accumulate the vast quantities of sand, gravel, and bowlders in the gulches 
must have been very great. Mingled with the superficial deposits are 
fragments of all the varieties of rock formations in the vicinity. Although 
more or less rounded by attrition, in the great thickness of local-drift 
may be found all the varieties of the granitoid and other rocks that are 
sufficiently compact to resist the atmospheric agencies—quartzites, lime- 
stones, with fossils, masses of basalt, &e., &c., &c. Most of these rocks 
can be traced to their parent beds in the vicinity ; a few may seem to 
have strayed from other districts, but the strata to which they originally 
belonged may have occupied a restricted area, or had a local existence, 
and thus, in the erosion of the surface, been entirely worn away, or may 
be concealed by Tertiary or superficial deposits. In the Alder Gulch 


GEOLOGICAL SURVEY OF THE TERRITORIES. 43 


the miners found in the bed rock numerous “ pot holes,” with large 
rounded masses, six to twelve inches in diameter, in the cavities. Some 
of these spherical masses were basalt and others composed of a sort of 
basaltic sandstone. 

Remains of a species of elephant, probably Hlephas primigenius, 
were found in the auriferous gravel, twenty-five feet below the sur- 
face. A large tusk, with a number of teeth, ribs, and fragments 
of bones, was found. Iam indebted to Judge Lovell for the gift of a 
fine collection of these remains, which are now safely secured in the 
museum of the Smithsonian Institution. The tusk is especially remark- 
able, and was preserved with great difficulty. These fossils have been 
found in other portions of Montana, in the gravel, especially in the Last 
Chance Gulch, near Helena, where a large quantity of these valuable 
fossils were discovered. 

One tooth is said to have had a portion of the jaw-bone attached, and 
to have weighed twelve pounds. The bones, as well as the teeth, seem 
to have been partially worn as if they had been drifted about by the 
waters to some extent, and I think they were washed from the latest 
of the modern Pliocene deposits, which are abundant all over Montana. 

From Virginia City we traveled up a deep ravine to the divide that: 
overlooks Madison Valley. The highest point over which the road 
passes was found to be 6,857 feet. None of the mountains on this divide 
were more than 800 to 1,200 feet above this altitude. On the east side 
of Madison Valley, there is a fine lofty range of mountains, the summits | 
composed of limestones, inclining west, while at the base, and extending 
high up the sides, are grassy slopes, which give to the valley an 
attractive appearance to the eye. Along the Madison River, in this 
portion, are the first series of terraces yet observed. On the west 
side are three of these terraces or steps; four, if the broad bottom is 
counted. The first terrace is 25 feet above the river, with an average 
width of half a mile; second terrace, average width one mile, 100 feet 
above the first; third terrace 50 feet above the second; and the fourth 
200 feet above the bed of the river. ‘These terraces are much more like 
table-lands on the east side than on the west. On the west side of the 
Madison, on the divide, the limestones extend over from the head of 
Alder Gulch across the Madison to the eastward. The mountains 
between the Stinking Water and the Madison Valley are not high, but 
extend about northward to the Jefferson in the form of a ridge, com- 
- posed almost entirely of granitoid rocks, with outbursts of basalt, and 
here and there patches of 
Pliocene deposits. The 
dividing ridge between the 
Jefferson and the Madison 
Rivers varies from twenty 
to thirty miles in width. 
Outeroppings of massive 
gneiss project up here and 
there over the entire ex- 
tent, giving to the surface 
a rugged but picturesque 
appearance, (Fig. 8.) The 
limestones and quartzites 
arenearly or quite all strip- 
ped off, and the more yield- GNEISSIC STRATA WEATHERED OUT BETWEEN MADISON RIVER 
ing portions of the granite AND GALLATIN, ON ELK CREEK. 
rocks have worn down, and the surface smoothed and grassed over, so 


44 GEOLOGICAL SURVEY OF THE TERRITORIES. 


that there is much excellent grass land among the granite ridges. The 
patches of Pliocene marl here and there aid in smoothing the rougher 
portions of the surface. That portion of Madison Valley immediately 
west of Virginia City is about seventy-five miles from north to south, 
and ten miles from east to west, closing up at the south end and forming 
a fine cafion through gneissic granites at the north end. These granites 
are mostly feidspathic, the feldspar predominating, and in most in- 
stances composed only of feldspar and quartz, with iron diffused through 
themass. This valley, at one time in the past, formed the bed of one of 
the great chain of fresh water lakes, as is shown by the lake deposits 
which underlie the upper terraces, and jut up against the mountains on 
either side. This deposit is also covered in some places with a bed basalt. 


CHAPTER IIL. 


FORT ELLIS—MYSTIC LAKE—SOURCE OF THE GALLATIN—TRAIL CREEK— 
CROW AGENCY AND FIRST CANON—EXIT OF THE YELLOWSTONE. 


Fort Hillis is located on the east bank of Mill Creek, one of the sources 
of the East Fork of the Gallatin, and from its position, overlooks one ot 
the most beautiful valleys in Montana. It is surrounded on the east 
and north sides by ranges of the hills and mountains which form the 
divide between the waters of the Yellowstone and Missouri Rivers. 
After our long journey across the dry plains from Salt Lake Valley, we 
found this point a most agreeable resting-place. Every courtesy we 
could desire was extended to us by the officers. Captain J. C. Ball, at 
that time in command, during the temporary absence of Colonel Baker, 
afforded us every facility to aid us in our preparations for our explora- 
tions up the Yellowstone, and his suggestions, from long experience in 
western campaigns, were of the highest value to us throughout the trip. 
Indeed, the favors that we received at this post, both going to and 
returning from our Yellowstone exploration, were indispensable to our 
eomplete success. Fort Ellis, although considered one of the extreme 
frontier posts, and supposed to be located among hostile tribes of In- 
dians, really commands the valleys of the Yellowstone and the three 
forks of the Missouri, the finest and most productive portion of Mon- 
tana. It is a very pleasant station, surrounded with beautiful scenery, 
with a climate that can hardly be surpassed in any country. Streams 
of pure water flow down the mountain sides, cutting their channels 
through the plains everywhere. The vegetation is most abundant. . 
Bozeman is a pretty town, with about fivehundred inhabitants, situated 
three miles below, surrounded on every side with well-cultivated and 
productive farms. It is most probable that within a short period the 
Northern Pacific Railroad will pass down this valley, and then its beauty 
and resources will become apparent. 

The drainage of the Gallatin is composed of a large number of little 
streams that rise in the great divide for a distance of eighty to one 
hundred miles, and each of these little streams gashes out a deep 
gorge or cailon in the mountain sides. The geology is thus rendered 
comparatively simple in general terms, and yet in its details it is 
remarkably complicated. Two forces seemed to have operated here 
to give the present configuration to the surface, and whether they 
may have acted synchronously or at different periods, or both, is not 


GEOLOGICAL SURVEY OF THE TERRITORIES. 45 


very clear. Iam inclined to think that the earlier force operated to 


‘elevate the long continuous ranges of mountains, the nucleus of which 


is the granitoid rocks, with the unchanged sedimentary beds upon the 

sides and summits inclining at various angles. There was originally a. 
general trend to these mountain ranges that might have been called spe- 

cific, perhaps, and in the aggregate it is quite clear at the present time, 

and is a little west of north. But when we come to study the minor 

ridges, the unchanged rocks seem to incline in every direction and at 

all angles from 1° to 90°, and even sometimes past a vertical. Another 

force, which has greatly influenced the form of the surface, and one 

which, whether it operated synchronously or not, certainly acted with 

full power at a subsequent period, concealing the metamorphic rocks and 

the older sedimentary strata over large areas, and building up most of 
the loftiest peaks. In the previous pages of this report, I have constantly 

alluded to the exhibitions of the outflow of igneous matter at almost 

every point of our journey ; but about the head-waters of the Missouri 

and Yellowstone, I have estimated that at least three-fourths of the area 

is covered with igneous rocks. Taking the valley of the Yellowstone 

from its sources in the great water-shed to the mouth of Shield’s River, 

an area one hundred and fifty miles from north to south, and fifty from 

east to west, we find the evidences of volcanic action upon a tremendous 

seale, and igneous rocks cover almost the entire area. Wherever the 

metamorphic and sedimentary rocks are exposed in the vicinity of these 

extensive outflows of igneous material, their history becomes much 

complicated and the difficulties encountered by the geologist are greatly 

increased. The valley of the Gallatin, likethe valleys of all the streams 

in Montana, is undoubtedly one of erosion originally, and was also the 

bed of alake. This lake basin extended down to the junction of the Three 

Forks northward, and the modern deposits are found all along the base - 
of the mountains on either side of the valley up to the very sources of the 
river, Sometimes rising quite high on their sides. So great has been the 
removal of sediment during and since the recession of thé waters of the 
lake, that it is not always easy to determine the entire thickness of the 
original deposit. Remnants are left, however, at different points, some- 
times in the higher ranges of foot-hills, or in patches among the meta- 
morphic rocks at considerable elevation on the divides between the 
Gallatin, Madison, and Jefferson Forks. Areas of greater or less extent 
occur 600 to 800 feet above the channels of the rivers, showing that the 
waters must have been so high that only the more elevated summits were 
above the surface. Opposite Fort Ellis are some high hiils 600 to 800 
feet above the valley below, composed of the well-known. Pliocene marls, 
sands, sandstones, and pudding-stones, horizontal for the most part, or 
inclining at small angles. Among these beds are outflows of basalt in a 
number of localities, but the disturbance of this group has been slight. 
In most cases these deposits jut up against the sides of the mountains, 
and when occurring in contact with the older rocks do not conform. 
The group of hills opposite Fort Ellis extend down nearly to Flathead 
Pass, and, having escaped erosion and removal for the most part, are left, 
as some proof of the original thickness of the lake deposit. Upon the 
tops of the hills there is a considerable thickness of local drift, and seat- 
tered thickly over the surface are rounded bowlders in great numbers 
and variety. , 

To study the older rocks to advantage, we must extend our examina- 
tions te the numerous gorges, or cations, in the mountains, which, cutting 
through the upheaved ridges at right angles, reveal more or less clearly 
the order of the superposition of the strata. In Flathead Pass, Bridger 


46 GEOLOGICAL SURVEY OF THE TERRITORIES. 


and Bozeman Passes, the limestones are remarkably well shown, in some 
instances inclining 80° with the upper edges of the strata a line of 
rugged columns. The more yielding beds have been removed from the 
limestones, leaving them on either side of the cation like walls, while 
atmospheric agencies have worn out the upturned edges into the most 
picturesque, jagged forms. The caiion about two miles above Fort Ellis, 
carved out by Mill Creek, forms an interesting subject of study. The 
entire range is a true anticlinal, trending northwest and southeast, with 
the more abrupt side northeast. This side has also been subjected to 
much erosion, so that the more modern beds are seldom visible, the greater 
portion now remaining, belonging to the metamorphic series, or to the 
Carboniferous age. But on the east side, covering the hills, and crop- 
ping out deep down in the valleys, is a vast thickness of steel-gray or 
somber-brown sandstones. The composition and texture of these rocks 
are quite varied. There are alternately hard and soft layers, that is, clay 
and sandstones. The clays are quite uniform in their character, and are 
so thick in the aggregate as to give arounded, smooth outline to the hills, 
and by weathering, to conceal the rocky strata beneath. Hast of Bridg- 
er’s Peak, and on the divide, high up in Bozeman and Bridger Passes, 
are a large number of exposures, sufficient to show that there are here 
about 1,200 to 1,500 feet of strata belonging to the Coal Series. Whether 
this group belongs to the Upper Cretaceous or Lower Tertiary, or both, 
T will not delay at this time to discuss. No animal fossils were found, but 
a fine collection of well-preserved vegetable remains were obtained, and 
are now in process of description by Mr. Lesquereux. The composition 
of these rocks is mostly sand of various degrees of fineness, some argil- 
laceous and calcareous sandstones. Most of the sandstones contain a 
small per cent. of lime. Near the head of Spring Caiion, about three 
miles east of Fort Ellis, a coal-bed crops out near the bed of the creek, 
from which several tons of excellent coal have been taken. The opening 
has been made to the depth of 180 feet. There are beds of clay on either 
side of the coal-seam, as usual. The strata are nearly vertical, dipping 
north 80°. Great quantities of impressions of deciduous leaves are found 
in the rocks along the borders of the streams, and on the hills.” These 
fossils seem to be confined to no particular beds, but to occur in different 
layers of rocks, adapted to preserve them, above and below the coal and 
extending through the series of strata. A large number of specimens 
of plants are described by Mr. Lesquereux in a valuable report in an- 
other portion of this volume. 

We will now return to the west side of the range, and pass up the 
cahon to the eastward. The stream which has cut its way through 
this high ridge is a fine specimen of a mountain torrent; the water 
is pure and full of trout. As we approach the base of the hills from the 
level terrace on which Fort Ellis is located, the gorge appears so nar- 
row as to be impassable; but on entering it, we find ample room for a 
bridle-path, and we make our ascent without difficulty. As this is the 
cafon which is regarded as most available for the passage of the Northern 
Pacific Railroad, it is invested with no small degree of interest. If the 
road ascends the valley of the Yellowstone River, it will cross the divide 
just above the mouth of Shield’s River, and ascend the valley of a little 
stream to the westward, which rises within a few yards of the source of 
the one that flows through the caiion; so that the greater portion of the 
rock excavations has already been performed by nature, with these 
two beautiful streams as her agents. This lets the road into the 
Gallatin Valley, where it can go up to the junction of the Three Forks; 
thence, up the Jefferson Fork, through the finest portion of Montana, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 47 


with scarcely an impediment. But this subject will be treated more in 
detail in subsequent portions of this report. We may, before describ- 
ing the details of the geology of this district, enumerate the formations 
we may expect to meet with. We have mentioned the existence of a 
large thickness of the lake deposits, and, frequently covering them, 
beds of basalt; but still the latter, although. a modern outflow, is not con- 
fined to the vicinity of these Pliocene marls, but may burst up through 
any of the rocks and overflow their surfaces. Weare liable to meet with 
them anywhere, and in most cases they predominate over all others. 
The next group of strata older, are the coal-beds, which are exposed in 
a break in the range, and aid in concealing the older rocks for an inter- 
val of four or five miles, between the Cafion and the Gallatin Mountains. 
Then come a few obscure exposures, which are, no doubt, of Cretaceous 
age, though no fossils were observed; below them are well-defined Juras- 
sic strata, and below these the quartzites and limestones of Carboniferous 
age. Noneolder than the latter are exposed inthis gorge. -A few miles 
farther to the southward, as well as to the northward, older rocks are 
brought to the surface, and we find that the core of the mountains is 
composed of granitoid rocks. 

Now, if we examine this range of mountains a little more in detail, 
we shall find, as we enter the caiion, a series of beds which are probably 
Cretaceous, but dipping at various angles. In some portions of the 
range, fragments of the beds are lifted up to the very summit, so far as 
to form a broken arch. This arch is well shown on the north side of the 
cation, while on the south side the two sides of the anticlinal terminate 
in high jagged points of limestone, 1,000 to 1,200 feet above the plain 
below.. In the supposed Cretaceous beds no "well: defined fossils could 
be found, but in some beds of arenaceous limestone, were bivalves, which 
I have no doubt are of thatage. Below this group there is a series of 
alternate layers of arenaceous clay, gray limestones, and sandstones, 
with layers 2 to 4 feet thick, composed of an aggregate of broken shells, 
with now and then a fragment perfect enough to be identified so as to 
show their Jurassic age. Below these are some red sandstones and 
clays, which might be remnants of the Triassic, and, as they contain no 
fossils, any opinion about them is conjectural. I think, however, that 
they are all Jurassic or Carboniferous. We then cometoa great thick- 
ness of Carboniferous rocks, first quartzites, gradually passing into lime- 
stones. Rocks of Carboniferous age form the great mass of the minor 
ranges of mountains. 

On the morning of July 12, a small party of officers from the fort, 
under the guidance of Captain S. H. Norton, made a tour of exploration 
to a little lake, embosomed among the mountains, about twelve miles 
distant. We were accompanied also by Dr. Campbell and Lieutenant 
Jerome, to all of whom we were indebted for many kindnesses and 
much information. Our course was nearly south from the fort. After 
passing over the beautiful grassy plain between the middle and east 
borders of the Gallatin, we ascended the high hills on the west side 
of the dividing range between the waters of the Yellowstone and 
the Gallatin. These hills are so covered with debris and a heavy growth 
of vegetation that not even in the ravines can the real basis rocks be 
seen. On either side of us, however, in the very highest ridge, the 
limestones are visible, with the reddish sandstones and clays, so that 
we may infer that the Jurassic or Cretaceous are concealed beneath this 
Superficial drift. After winding among these hills, through a garden of 
most beautiful wild-flowers, we reached the little lake, which, on account 
of its great beauty, and being partially rs we called Mystic Lake. 


48 GEOLOGICAL SURVEY OF THE TERRITORIES. 


It is really an expansion of one of the branches of the Gallatin, about 
one-fourth of a mile wide and three-fourths of a mile long. The scenery 
all around it is very attractive, and Mr. Jackson succeeded in securing 
some most excellent photographs. The hills, immediately surrounding 
the lake, and, indeed, all the lower hills, are made up of sedimentary 
rocks, and just on the shore of the lake is a considerable thickness of 
grayish-brown arenaceous limestone filled with fossils, as Camptonectes 
bellestriata, Pinna, Modiola, Myacites, Pholodomya, and others. <A patient 
search at this locality would have been rewarded with many more species, 
but enough were secured to fix the age of the beds as Jurassic beyond 
a doubt. A group of strata once fixed in the scale by such an array of 
evidence, forms a horizon which may be extended, with certainty, in 
every direction for a great distance, even though the ‘usual fossils may 
not be found. The stream that comes into the lake passes through a 
deep gorge, walled on either side with Carboniferous limestones. “But 
to the west and north, the mountains rise in rounded dome or cone-like 
peaks, 1,200 to 1,500 feet, and in a few instances 2,000 feet above the 
valleys below. These high mountains are composed of volcanic mate- 
rials, @ core, as it were, of more or less compact basalt, with volcanic 
breccia all around it. Huge masses of this volcanic breccia have fallen 
down into’ the valley and around the lake. High up on the sides of the 
mountains, in some places, the igneous rocks present the appearance of 
strata, which have suddenly “been poured out in beds, and cooled ~ 
in separate layers, and these layers incline at moderate angles, as if 
they had been acted upon by subsequent action of the volcanic forces. 
All the lower hills, which are comparatively sloping and underlaid with 
sedimentary rocks, rising to the height of 200 to 500 feet, are covered 
thickly with vegetation, mostly pines, but the higher volcanic ridges 
are dark, gloomy, and bare, presenting the aspect of rugged desolation. 
But in the little valleys and along the margins of the streams the vegeta- 
tion is quite luxuriant, and the flowers are varied and abundant, render- 
ing traveling among these wild and apparently inaccessible hills charm- 
ing beyond description. The soil is, of course, made up of portions worn 
away from all the different kinds of rocks in the vicinity, both the igne- 
ous and sedimentary. Thus a remarkably rich soil is produced, which, 
during the short season of midsummer, clothes these valleys with a 
vegetation of bright-green, and flowers of all hues. This little lake, as 
well as the stream that flows into it, is full of trout. The water is very 
clear and pure, always cool, fed as it is by the melting of the snows from 
the surrounding mountains. 

Without entering into further details of the geology of this range, I 
might say that there is no regular inclination to the sedimentary rocks 
of those ranges that have been so much influenced by igneous action. 
We find at one point the Carboniferous limestones on the east side of a 
deep ravine, extending down the sides of the mountain like the steep 
roof of a house, while on the opposite side the same rocks have been 
lifted up a thousand feet or more, the upturned edges indicating by their 
appearance that the period of the uplift was a modern event. It is my 
belief that the principal portion of this volcanic action occurred just 
prior to the present period, when the sedimentary and granitoid rocks 
had been elevated somewhat as we find them at present, and that the 
chaos which we everywhere see was produced by this general effusion 
of igneous material, thus tossing the strata in every direction. 

A considerable amount of erosion may have occurred since, but most 
of it had already been performed. The Carboniferous rocks, up to the 
Tertiary Coal Series, inclusive, were in the same fragmentary condition 
in which we find them now. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 49 


On the 15th of July we bade farewell to the hospitable officers of Fort 
Ellis, and with an excellent outfit, for which we were greatly indebted 
to their kindness, started, with confidence and hope, toward the wonder- 
land of the Yellowstone Valley. We followed a well-traveled road, 
which wound around among the hills, diverging by numerous branches 
in almost every direction. After passing bebind the main range to the 
north, we turned our course to the east, up the valley of a little branch 
of Mill Creek, and soon passed over the divide into the waters of the 
Yellowstone. The water-shed and the geological divide are by no means: 
identical. The little stream cuts directly through the heart of the anti-- 
clinal, and rises high up in the coal group east of the limestones. East 
of the narrow belt of limestones the coal strata occupy the greater por- 
tion of the interval to the Yellowstone River. ‘These beds ineline at 
various angles east and northeast. <A large quantity of finely preserved 
impressions of leaves of deciduous trees were found. The texture of 
the rocks was quite varied, and the examples of oblique lamina of 
deposition were quite conspicuous. The sandstones were usually quite 
fine and close-grained, but sometimes they passed into a fine pudding- 
stone. Interstratified with these rocks are layers of compact basalt,. 
and not unfrequently on the summits of the hills are thick masses of it. 
It will be seen at once that the dark brown or somber hue of this great 
group of strata (1,200 to 1,500 feet) is not the original color, but caused. 
by the subjection of the strata to a greater or less heat during the period. 
of volcanic activity. Wherever the igneous matter has come in direct. 
contact with the sedimentary rocks they have been more or less changed.. 
Some of the sandstones have become compact quartzites, but the same 
dark, gloomy appearance pervades them all. 

From the divide between the Gallatin and Yellowstone Rivers, the 
view is wonderfully fine in every direction. On the north side the 
hills rise up 600 to 800 feet. The elevation of the divide over which 
the road passes is 5,681 feet. The principal range of mountains. 
on the south side is mostly of volcanic origins and rises 800 to 1,200 feet. 
The belt of Carboniferous limestone seems to have a trend northeast 
and southwest, preserving its anticlinal character to the Yellowstone 
Valley, then, crossing the Yellowstone River, is seen only on the sides. 
of the Snowy Range, inclining northwest. Although the general 
character of the geological structure of the country lying between the- 
sources of the Gallatin and the Yellowstone River appears so simple, 
yet months of earnest labor would be required to work it out in all its 
details. The distance is pot more than thirty miles. The sediment- 
ary beds are thrown into almost inextricable contusion. I shall en- 
deavor to unravel it in part as I proceed step by step on our journey 
up the Yellowstone. 

It is probable that in general terms the rocks of the country be-- 
long only to about half a dozen groups, and yet these are so multi- 
plied into a diversity of forms, and then by subsequent elevation, so 
mingled together, that at the first glance there seems only confusion; 
and yet, with the exception of the more.modern volcanic forces, there has 
been a method in their action. So far as the rocks of Carboniferous and 
Jurassic age are concerned, we may rely with some confidence on their 
uniformity of character wherever they may occur, but all the others are 
modified more or Jess even in their mineral texture at different iocalities. 
For example, on our route from Fort Ellis to the Yellowstone River, a 
distance of about thirty miles, we find the summits of the highest hills 
covered with a greater or less thickness of a local drift, and wherever 
the ‘rocks are shown they appear to belong mostly to the Coal Series, 


4G8 


50 | GEOLOGICAL SURVEY OF THE TERRITORIES. 


(Eocene.) Interstratified with the beds of this group, are layers of basalt 
of irregular thickness, some of which is so compact and homogenc- 
ous in structure that it must have cooled under much pressure, 
and perhaps never reached the surface until exposed by erosion 
or the elevation of the mountain ranges. Then in the valleys of the 
streams, some with flowing water, others dry, yet all deep and apparently 
at one time the channels of large bodies of water, are great quantities 
of the local drift and débris, concealing the underlying basis rocks so as 
to perplex the geologist, and yet an active search will show that along the 
banks of the stream, a few feet in thickness of some one of the formations 
of the district will be exposed. Itmay be the oldest; it may be the latest ; 
we may find an outcrop of massive granites, of stratified granitoid 
rocks, Carboniferous limestones, or the latest Pliocene marl group; the 
youngest rocks may cover the loftiest ridges, and vice versa. The Plio- 
eene marls do not unfrequently occur in contact with the massive un- 
stratified granites on the summit of the mountains, so that we may step 
within a few paces from the youngest rocks known inthe West to the 
very oldest. The beautiful, regular curves and flexures in the strata, 
which continue so systematically over long-extended areas in Pennsyl- 
wania and along the Atlantic border, are wanting in the Rocky Mount- — 
ins. Local curves of remarkable beauty occur in the strata, from 
time to time, as we shall attempt ta show by figures in the final report. 
Altitude, therefore, gives no clew to the age of rocks. Ihave also given 
the angle of inclination of the strata from time to time in my reports. 
In regard to the more eastern ranges of the Rocky Mountains, the dip 
and trend are terms possessing some force and meaning, but in the vol- 
canic regions of the Yellowstone and Missouri Rivers such observations 
seem to be of little value. There is no doubt that, when the whole 
country has been carefully mapped and the geology worked out in detail, 
a system will be found in the results of the action of the internal forces 
that gave to the surface its present form. Soin regard to the position 
of the strata, altitude gives no clew; the oldest, to the Cretaceous inelu- 
Sive, in the lowest valley, on the summit of the highest range, may be 
horizontal or incline at any angle. The Carboniferous limestones on the 
divide between Trail Creek and a little branch flowing into the 
Yellowstone to the north are vertical, or nearly so, or have been lifted 
up in broad areas to the summit of the divide, so as to be nearly or 
quite horizontal, while all around it bend down the same limestones, 
like the leaves of a table, at angles of 60° to 80°, and in a few in- 
stances inclining past a vertical. In the valley of the Yellowstone, 
these same limestones will be found horizontal, while upon the sum- 
mits of the mountains, 3,000 feet above the valley, within a few miles, 
they incline at a very moderate angle. ‘These facts seem to show the 
importance of having the topography of the country worked out with 
great care in connection with the geology, in order that the multiplicity 
of detail may be clearly expressed. 

From the summit of the divide down to the ravine of Trail Creek, we 
can look tothe eastward, into the beautiful valley of the Yellowstone River. 
On the south side is the high range of mountains, at first composed of 
sedimentary rocks, with their jagged summits rising up 1,200 feet 
above the valley, and after passing the divide, this range flexes around 
to the south, extends up on the west side of the Yellowstone, forming. 
the water-shed between the sources of the Gallatin and Madison Forks. 
After passing the head of Trail Creek, this range is composed almost 
entirely of igneous rocks, so far as they are revealed to the eye. There 
is reason to believe, however, that underneath this vast mass of basalt 


GERLOGICAL SURVEY OF THE TERRITORIES. 51 


and voleanic breccia, there are sedimentary rocks, and even the granit- 
oid group, for the latter was well shown in the second cafion. I have al- 
ready described the existence of great thicknesses of Carboniferous and 
Jurassic strata on the west side of this range around Mystic Lake. Upon 
’ the east side, in some of the gorges or ravines of the Yellowstone drain 
age, it is quite possible that some of the older rocks are exposed. The- 
highest peaks, many of which are covered with snow all summer, are 
composed of volcanic breccia; on the north side of Trail Creek there is a 
range of hills, as they may perhaps be called more properly. These 
hills are really a group of broken ridges; the anticlinal belt seems to 
diverge, one portion passing up along the divide or water-shed, between 
the sources of the Gallatin and Yellowstone, appearing in full force at 
Cinnabar Mountain; the other following along the north side of Trail 
Creek, crossing the Yellowstone River at the lower cations, and extend- 
‘ing off on the northeast slope of the Snow Mountains, about the sources 
of Big Bowlder, Rosebud, and Clark’s Fork of the Yellowstone. The 
amount of erosion in the interval, between these two portions of the 
anticlinal, has been very great. Not that the valleys have been en- | 
tirely carved out of the mountains, for they were doubtless, in part at 
least, and perhaps in all cases, marked out in the process of upheaval. 
The valley of Trail Creek, which is a narrow gorge at the head, gradu- 
ally expands out, near its entrance, to the immediate valley of the 
Yellowstone, a distance of about twelve miles, so that itis about two or 
three miles wide. We can now see, by fragments of ridges that are re- 
maining, that portions of all the formations known in this portion of 
the West, however much they may have been fractured by upheaval, 
once extended across the broad interval. 

Should we ascend the high pine-covered ridge on the north side of 
Trail Creek, we can look over into the next valley beyond, and along its 
northern side, extending west or northwest nearly to Fort Hllis, we can 
see the outcropping edges of the coal-beds, inclining north and north- 
east in wave-like ridges, until they die out about ten miles distant. from 
the reverse effect of the force which elevated the Crazy Woman Moun- 
tains. The Yellowstone River cuts directly through this ridge, and 
thus forms its first cafion, and the point of exit from the cafion is called 
the exit of the Yellowstone from the mountains. The walls on either ‘ 
side are entirely of Carboniferous rocks. The view fron this ridge near 
the cafion, down the Yellowstone Valley to the Crow agency, is very in- 
structive. Above the cafion the river flows nearly northward, but after 
emerging from the cation it bends quickly around to the northeast and 
east, and enters a lower gorge, cutting through Tertiary and Cretaceous 
beds, about three miles below the mouth of Shield’s River. This valley 
belongs to the old lake system; is oval in shape, expanding from 
one-fourth of a mile in width at the upper end to four or five miles. 
It is about ten miles in length and has an average width of three miles. 
On the left side of the Yellowstone, the somber-hued rocks of the Creta- 
ceous and Hocene Tertiary groups present their basset edges like walls, 
and recede to the northwest and north, in step-like ridges, for ten or 
twenty miles. The thickness of these beds I could only estimate, and 
I believe them to be in the aggregate 1,500 to 2,000 feet in thickness. 
The inclination or dip varies much, sometimes 25° to 30°, then 10° 
to 20°. Just below the mouth of Shield’s River, on the left side of 
the Yellowstone, there is a nearly vertical bluff of these beds, composed 
of alternate layers of sandstone and arenaceous clay, all with the steel- 
gray hue. The rocks are all of various textures and composition ; some 
layers contain a considerable per cent. of clay, and the harder beds vary 


52 GEOLOGICAL SURVEY OF THE TERRITORIES. 


in texture from a coarse sandstone to a compact homogeneous quartzite. 
There is in all the rocks a small per cent. of lime. The height of 
the bluff-like wall is about 500 feet, and on the summit there is an ir- 
regular bed of basalt, which fractures into an imperfect columnar form. 

In “other localities layers of basalt are intercalated with the sedimentary - 
beds, effecting greater or less changes in the contiguous rocks. Again, 
the basalt has flowed to the surface through the underlying strata, and 
spread over restricted areas. This group of rocks is remarkably well 
developed, and occupies nearly all the interval between the belt or ridge. 
of limestone extending from near the junction of the Three Forks south- 
westward to the Yellowstone River and Shield’s River. From the 
agency, this group extends down the Yellowstone as far as the eye can 
reach, so that there is a belt here of at least fifty miles from north to south, 

and twenty from east to west, which may be said to be almost entirely 
occupied by these beds, mingled with basaltic rocks which have been 
effused at different periods, and have been cooled under varying con- 
ditions. The same group of rocks appears on the right side of Gar- 
diner’s River, forming a bluff wall 800 to 1,200 feet high, with the same 
irregular beds of basalt. Similar steel-gray rocks occur in the Middle 
Park, containing leaves of deciduous trees, with thick beds of basalt, 

inclining at a high angle, in conformity with the Tertiary and Cretaceous 
beds. T have called these steel-gray beds Cretaceous and Tertiary, and 
yet I do not positively know that any portion belongs to the Tertiary. 
It is the group of rocks that contains the coal in this portion of the 
west. There are coal-beds near Fort Ellis, and indications of coal near 
the mouth of Shield’s River on the Yellowstone. Leaves of deciduous 
trees of Tertiary affinities are abundant. No molluscan fossils were 
found, yet the character of the rocks and their great thickness leads 
me to believe that they are Upper Cretaceous, passing up without any 
physical line of separation into the Lower Tertiary. <1 think, also, that 
they form apart of the same group which contains the coal on the 
Lower Yellowstone, below the mouth of the Big Horn. These forma- 
tions about the sources of the Missouri River and its branches need a 
much more careful’and extended study than I have been able to give 
them, and I can only look forward into the future with hope, for time 
and oppor tunity to group them in their proper position. 

The ridge of limestone which crosses the Yellowstone at the lower 
cation seems, to one looking from the valley below, to rise abruptly out 
of the plains; the ridges, which are made up of the Jurassic, Cretaceous, 
and Tertiary groups, incline at various angles from the main ridge, and 
seldom rise above the general level more than 100 or 200 feet, while, at 
the base of the ridge, the upturned edges of the Lower Cretaceous and 
Jurassic rocks extend in long lines across the Yellowstone as far as the 
eye can reach, but not rising above the general level of the plain more 
than 50 or 100 feet, and sometimes not at all, but so covered with débris 
that they are only exposed in the channel of the Yellowstone. But the 
beds of limestone and quartzite of the Carboniferous group rise up 800 
to 1,200 ieet above the valley below, and though the inclination in the 
caion is only about 15° to 30°, yet the outer beds dip 60° to 80°; this 
difference is not due to any want of conformability in the series, but 
doubtless to the greater ease with which the more modern beds have 
yielded to the erosive forces, while the Carboniferous limestones and 
quartzites have most effectually resisted those agencies. On the Yellow- 
stone the lower ridges extend far to the northeast, with a somewhat 
irregular height, while the limestones are elevated so as to form a group 
of lofty peaks nearly as high as the volcanic cones of the snowy range, 


\ GEOLOGICAL SURVEY OF THE TERRITORIES. 53 
9,000 to 9, 500 feet above the sea. The northwest end of this Snowy 
Ran ge is formed of roof-shaped peaks, with slopes toward the northwest, | 
and summits running up like a wedge, easily distinguished by their 
shape from the more symmetrical basaltic peaks in the same range. 
Separated by an interval of about twenty-five miles to the northwest, 
there is a beautiful group of conical peaks, 9,000 to 10,000 feet high, 
occupying an area of not more than fifteen miles square, called Crazy' 
Woman Mountains; I did not visit them, but I should judge that they 
might be a local upheaval on the same line of fracture with the Snowy 
Range. The two ranges are entirely separate, and each independent of , 
any other, and surrounded by sedimentary formations which incline from 
their sides at various angles. The valley, or park, as it might be called, 
‘below the cation, is extremely beautiful to the eye, as all these oval 
valleys are. The same proofs of an old lake basin, which we have before 
described, are seen everywhere, with gray and cream marls and sands, 
with great quantities of local drift, and the step-like terraces are well — 
shown; there is a uniformity not only i in the materials, but also in the 
deposition of them, which must show an intimate connection and a com- 
mon origin. The cation is about three miles long; the river has cut its 
way through the limestone ridge nearly at right angles, forming a. per- 
fect cross- section, so that the character of the rocks down to the gran- 
ites may be examined. On the east side of the Yellowstone, a little above 
the cafion, the junction of the Carboniferous with the granitoid series 
may be seen with great clearness. There is no method that I could de- 
vise to arrive at the exact thickness of the Carboniferous group, but, 
ily the aid of the best data I could secure, I estimated it at 1,500 to 

2,000 feet. Where rocks are thrown up in such confusion, and the streams 
Gut channels through mountains, forming cafions with vertical walls 
1,000 to 1,500 feet, ‘the grandeur of the operations will oftentimes pro- 
duce such an effect. on the mind as to lead to an exaggerated idea of 
the thickness, but my estimates have been checked so far as possible by 
the use of the barometer. Passing through the cafion, we came into a 
broad, open valley again, much larger but similar to one already de- 
scribed. 

We may now return to the valley of Trail Creek. We have 
already stated that the range of hills on the left or north side of the 
valley is the ridge of limestone through which the Yellowstone River 
has carved out its lower cation; the little stream, therefore, flows into 
the Yellowstone River just above the cafion. As we descend the valley 
of Trail Creek, we meet with a conspicuous isolated hill of basalt in the 
center of the valley, the east side bordering immediately on the valley 
of the Yellowstone. A minute description of this hill would apply to 
nearly all the voleanic phenomena of the Yellowstone Valley. It will be 
seen, theretore, that itis not only important, but necessary, to repeat 
the substance of many of our descriptions from time to time, in order 
to do any kind of justice to the subject. Basalt Butte is about 800 feet 
in height above the plains below, and overlooks the valley in every di- 
rection ; ; 1b 1s evidently a huge mass cut off by Trail Creek Valley from 
the volcanic range on the south side. The butte is composed of voleanic 
conglomerate, or breccia; that is, the matrix is a steel-gray voleanic 
sand and dust, slightly calcareous, inelosing fragments of igneous rocks 
of varied character and texture. These inclosed masses vary in size 
from an inch to several feet in diameter; in most cases they are angu- 
lar, and the aggregate I have called a breccia, but in this butte, and in 
some other localities, the masses are more or less rounded by attrition 
in water, showing that they have been transported some distance trom 


may: GEOLOGICAL SURVEY OF THE TERRITORIES. 
their origin. It is probable that the voleanic vent or point of effusion 
was from the group of volcanic cones, in the high range, on the east 
side of the Yellowstone, and that the dust, ashes, fragments of rocks, 
&¢e., were thrown out into the waters of the lake, and deposited and 
cemented into the apparently stratified condition they now present. The 
style of weathering is much the same as in ordinary conglomerates, and 
at this.locality several gorges, which have been worn by water deep into 
the sides of the butte, show the strata to incline 5° to 15°. By examin- 
ing the valleys of the streams and ravines on either side of the mountain 
ranges, we shall find upon what rocks, as a basis, this volcanic material 
rests. On the north side of Trail Creek, we have the limestone ridges 
full in view, the north side of the ridges sloping down into the plain 
below the cafion, while, on the south side, the edges of the limestone 
strata project up nearly vertically, in sharp pinnacles worn out by 
atmospheric forces. I think that these vertical limestones, for about four 
miles in extent along this creek, afford an illustration of the breaking 
down: of the strata, like a table-leaf. Upon the plateau-like ridges 
above are remnants of the more modern beds, as red clays, Jurassic, Cre- 
- taceous, and the Coal Series. The latter have been lifted up by a force 
acting vertically. In the valley below are the outcropping edgés of the 
limestones, inclining at a small angle, but in such a way as to carry them 
directly under the Basalt Butte. Indeed, the evidence is quite clear that, 
underneath the ranges of voleanic mountains on the west side*of the Yel- 
lowstone, existsa part atleast and possibly all the unchanged rocks known 
in this portion of the West. The effects of erosion are such all over this 
country, that we cannot assert the existence of the full series of sedimentary 
strata unless. they are visible to the eye. From the summit of Basalt 
Butte the view is very beautiful and instructive. The valley of the Yel- 
lowstone, from the lower caiion, far up above Bottler’s Ranch, to the sec- 
ond cation, about thirty miles, has been the bed of one of the mountain 
lakes. On the east sidé of the Yellowstone the eye takes in at a glance 
one of the most symmetrical and remarkable ranges of mountains I have 
ever seen in the West. Several of my party who had visited Europe re- 
garded this range as in no way inferior in beauty to any in that farfamed 
country. <A series of cone-shaped peaks, looking like gigantic pyramids, 
are grouped along the east side of the valley for thirty or forty miles, with 
their bald, dark summits covered*with perpetual snow, the vegetation 
_ growing thinner and smaller as we ascend the almost vertical sides, until, 
long before reaching the summits, it has entirely disappeared. On all 
sides deep gorges have been gashed out by aqueous forces cutting through 
the very core of the mountains, and forming those wonderful gulches 
which only the hardy and daring miner has ventured to explore. This 
range, which is called on the map Snowy Mountains, forms the great water- 
shed between two portions of the Yellowstone River, above and below 
the first caflon, and gives origin to some of the most important branches 
of that river. Large numbers of springs and small streams flow down 
from the mountains into the Yellowstone on the southwest side. Below 
the first caflon, but from the northeast side, flow the Big Bowlder, Rose- 
bud, Clark’s Fork, and Pryor’s Fork, with their numerous branches. 
This range continues on in a more or less broken condition to the south- 
east, until it connects with the Big Horn Range. From the summit of 
migrant Peak, one of the highest of these volcanic cones, one great 
mass of these basaltic peaks can be seen as far as the eye can reach, 
rising to the height of 10,000 to 11,000 feet above the sea. Emigrant 
Peak, the base of which is cut by the Yellowstone River, is 10,629 feet 
above tide-water, while the valley plain near Bottler’s Ranch, on the op- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 5S 


\posite side of the river, was found to be 5,925 feet. This splendid group 
of peaks rises 5,000 feet and upward above the valley of the Yellowstone. 
This grand range of mountains ends abruptly in the bend of the Yellow- 

- stone, near the entrance of Shield’s River, and the basset edges of the 
limestone strata, high up on the end and inclining to the northwest, show 
conclusively that, prior to their elevation, they extended uninterruptedly 


all over thisregion. The greater portion of the external surface of this: 


range is compact basalt, but the cones or central portions are the gran- 
itoid rocks, in which the gold is found. Emigrant Gulch extends up 
into the mountains about eight miles. It is a deep, narrow gorge, with 
, walls of a green and dark brown quartzite and true gneiss—indeed, the 
usual variety of metamorphic rocks distinctly stratified, a portion of 
them with so thin layers as to present a slaty appearance, and all with 
a somber-brown hue from contact with the igneous rocks. <A fine stream 
of water flows swiftly down over its rocky bed into the Yellowstone. 
This gulch has been quite celebrated for some years past for its placer 
mines. It is estimated that somewhere from $100,000 to $150,000 in 
gold have been taken out since the discovery, in 1864. At one time 
there was quite a settlement, called Yellowstone City, near the entrance 
of the gulch, and the walls and chimneys of the houses are still standing. 
. Probably two hundred or three hundred persons were engaged in 
washing for gold; some very fair lodes have been discovered near the 
head of the gulch. A large amount of money was expended at one time 
in sinking a shaft and digging a ditch for the purpose of reaching the 
‘*bed-rock.” There are several other gulches on either side of Emi- 
grant Gulch, extending up fifteen or twenty miles to the second cation, 
and extending down to the lower or first cafion, all of which have 
yielded some gold. All these gulches cut through the basalt, deep into 
the granitoid nucleus, revealing the mineral character as well as the 
history of this range. They are not altogether formed by erosion, but 
were, of course, marked out during the process of upheaval: and as 
they have been the central lines of the erosive action of water in the far 
past, so they have been the reservoirs of the drainage from the snowy 
‘summits around, up to the present time. I thus take the position that 
during the upheaval of these mountain ranges, and perhaps sinve they 
have reached their present elevation, the aqueous forces were vastly 
more powerful than at present. The belt of land between the imme- 
diate base of the mountains and the channel ‘of the Yellowstone varies 
from three to five miles in width, and is covered thickly with rounded 
bowlders, varying in size from a small pebble to several feet in diameter. 
The line of junction of the superficial deposits with the sides of the moun- 
tain, is such that this line of erosion is not unfrequently five hundred 
to six hundred feet above the bed of the Yellowstone, and is almost as 
well defined as a lake terrace. The little streams that flow down from 
the mountain sides cut sections through this deposit, so that they are 
revealed quite clearly. The upper portion is composed in part of débris 
from the mountains, but there is all over the valley a vast deposit of 
- what I can call by no better name than local drift or detritus. In this de- 
tritus are quite frequently masses of rock or bowlders that have evidently 
been transported a considerable distance by a force not now in operation 
in the vicinity. This fact points back to a time when we may suppose 
that there were vast accumulations of snow and ice all over the valleys, 
but more especially on the sides and summits of the mountains; and as 
the temperature became much warmer, this snow and ice melted, pre- 
ducing rivers and torrents with sufficient force, aided perhaps by. 


the masses of ice, to move these immense bowlders from place to plare:. 


Or 


6- GEOLOGICAL SURVEY OF THE TERRITORIES. 


An important fact should be continually borne in mind, that a critical 
examination of this detritus reveals no evidence of the existence of 
rocks from any distant point outside of the river drainage in which 
they are found; in other words, these superficial deposits are entirely 
made up of the materials disintegrated from the rocks in the vicinity. 
The examination of this detritus is also important to determine the 
formations that may be sought for within the limits of that drainage. 
Underlying all this detritus, in this valley, is a greater or less thickness 
of the Pliocene deposits, and the little streams on their way to the main 
river show very distinctly where these sediments have been cast by the 
waters of the lake against the mountain sides. Not unfrequently some 
of the older unchanged rocks, or even the metamorphic strata, are ex- 
posed—remnants left after the great erosion which preceded the present 
period. The degradation of all kinds of rocks has been going on continu- 
ally through all geological times, and the most important geological 
changes have thus been wrought. We may date back, first, to the time 
when all the formations known in the West, from the metamorphic rocks 
to the Eocene coal group, inclusive, extended uninterruptediy over the 
valley of the Yellowstone; and now only a few patches remain, here 
and there, of from 5,000 to 10,000 feet of sedimentary strata. ‘Then, too, 
the mountain ranges have been pared down, we know not how much, 
since they began their upward movements to the present time. At any 
rate, we know that the erosion of the mountains has been immense; that, 
in many cases, entire ranges have been degraded, so that only fragments 
remain. Again, since this valley was a lake-basin, extensive degradation 
has taken place, removing a considerable thickness of the Pliocene - 
deposits. It is only when they have been protected by a sheet of basalt, 
that we can form any correct idea of their original thickness. We may 
suppose this to be a good proof, from the fact that the basalts seem, in 
almost all cases, to have cooled under water at some depth, probably 
not great. At the upper portion of this valley, just below the second 
canon, there are quite large areas covered with the Pliocene marls and 
sands, several hundred feet in thickness, overlaid with a thick floor of 
basalt. These Pliocene beds present the evidence of having been de- 
posited in moderately quiet waters, so that we may suppose that they 
once extended all over the vailey with a pretty uniform thickness. Since 
these valleys have been drained, or, perhaps, during the process of 
drainage, the surface has been worn into its present form, and the irre- 


_gularities have been filled up with a greater or less thickness of local de- 


tritus. 

It was doubtless during the slow process of drainage that the terraces, 
which constitute so conspicuous a feature of all these mountain valleys, 
were formed ; these, also, were carved out of the Pliocene deposits. Some- 
times these modern Tertiary beds are quite conspicuous, forming high 
vertical bluff walls along the valley. - Again, they are removed, so that, 
with the exception of a narrow belt along the immediate base of the 
mountains on either side, the valley has been shaped into a low grass- 
covered lawn, but little raised above the bed of the stream. In many 
instances, as along the base of Emigrant Peak, the line of junction of 
the valley deposits with the sides of the mountain is indicated by the 
vegetation, and the descent, from that line down to the river bottom, is 
very gentle and smooth as a lawn, and covered with a thick growth of 
grass and other vegetation. This complete and gentle transition from 
mountain to valley forms one of the most striking and beautiful features 
in the landscape. 

We will now proceed up the valley of the Yellowstone toward the 


_ GEOLOGICAL SURVEY OF THE TERRITORIES. 57 


second cafion, noting, step by step, the principal features of interest. 
We have attempted to describe the lower caiion, the valley above as 
far as the mouth of Trail Creek, and the magnificent range of snow- 
mountains, of which Emigrant Peak forms a part. From the upper por- 
tion of the lower cation to Trail Creek is about five miles ; and from the 
mouth of Trail Creek to Bottler’s Ranch, ten miles; and from the latter 
place to the second cafion, about twelve miles. We have stated that this 


valley was one of the Jake-basins that formed a series of chain-like links , 


extending probably throughout all the great hydrographic basins of the 
West. A little above Trail Creek, on the west side of the Yellowstone, 
there is an exposure of Carboniferous limestones, 200 to 300 feet thick, 
occupying only a small area, but enough to show that the sedimentary 
_beds extend under the vast mass of basalt and breccia. On the road 


across the broad upland bottoms of the Yellowstone, a number of fine - 


streams, six to ten feet wide, which have their origin in springs at the 
base of the range of mountains on the west side, flow across the table- 
like bottoms, almost on the surface, overflowing in many places, 
so that they form natural acequias. There is so little channel 
that they are quite noticeable. Basaltic bowlders of immense size 
are seattered all over the plain, and the finer detritus forms the cov- 
ering of the entire surface. Some of these bowlders stand out in the 
plain far from any water at the present time, and are six to ten feet in 
diameter. It is possible that water alone has been the agent that has 
moved them to their present position, by slow degrees, at some period 
far back in the past, but it is also possible that ice may have aided in 
the work. 

From the mouth of Trail Creek to Bottler’s Ranch, the modern 


basalt makes its appearance on the west side of the valiey from time. 


to time. In some localities it is quite prominent and breaks off in reg- 
ular columns. It is possible that this sheet or floor of basalt extended 


all over the valley at one time, as the appearance of the portions that 


are now left would seem to indicate. If so, the disintegration and 
removal of the basalt must have been very great. This basalt is visible 
' in greater or less force all the way up to the foot of the second cation, 
and on the east side of the Yellowstone there is a bluff wall, cut by the 
river, which shows, at the top at least, three different beds of basalt, 
indicating as many different outflows. Underneath the basalt are 100 to 
150 feet of light-gray marly sand and sandstone, clearly belonging to 
the modern lake deposit. These are the rocks which may be said to 
form the valley proper—first, the Pliocene, or lake deposits ; secondly, the 
broad sheet or floor of basalt ; thirdly, the detritus, or local drift. On 


the sides of the main valley, and sometimes intrenching upon it, are the 


materials of the volcanic breccia, which must have been thrown out of 
fissures and vents in the mountain ranges on one side of the valley or 
the other, or perhaps both, into the waters of the lake, and then re- 
arranged and cemented together. If we delay a moment, and study this 
basaltic breccia on the east side of the valley just back of our camp at 
Bottler’s Ranch, we shall be able to form some conception of its char- 
acter. We find here, that the foot-hills are entircly composed of it; and 
as the erosion has in some instances cut some excellent sections in it, it 
is: easily studied. The general hue is the usual somber-gray or brown 
of most igneous rocks, but still there are a great variety of colors; some- 
times there are thin seams of milky-white and cream marly clay, then 
amixture of materials which, when disintegrated, leave débris like the 
ashes of an old furnace; at other places the rocks have a dull brick-red 
color, as if the volcanic fires had raged only yesterday. The whole as- 


+ 


58 GEOLOGICAL SURVEY OF THE TERRITORIES. 


pect 18 modern, and one feels, as he winds his way among these high 
basaltic hills, that he isin a region where the great voicanic forces 
which have given form to this entire region, ceased at a period so recent, 
that a recurrence of the same events might be looked for at any time. 
Indeed, earthquake-shocks have been felt in the vicinity of Emigrant 
Gulch several times since the discovery of gold there in 1864. Immense 
masses of the basaltic breccia have fallen down from the mountains among 
the foot-hills; and in the valley some of the included masses are slightly 
worn, as if they had been rolled about in the waters for a time, but 
most of them are angular; some of them are red, like pumice, 
‘others black, compact, close in texture, like obsidian. There is, indeed, in 
this breccia almost every possible variety of basalt, The cement is rather 
firm, resisting the atmosphere well, looking much like volcanic ashes. 
Scattered through the bottoms and on the sides of the hills are quite 
abundant gneiss bowlders, some of them of great size, and most of them 
considerably worn. 

From Fort Ellis to within a mile of the foot of the second caiion 
not an exposure of the metamorphic rocks was seen on the right 
or west side of our road; and, after leaving Trail Creek, the igneous 
rocks arose 2,000 to 2,500 feet above the valley, and some of the higher 
peaks were at least 3,000 feet above the plain As soon as we reach the 
toot of the second caiion, we find the mountains are made up of the 
same granitoid rocks. Two of the streams that flow down from the 
divide, that must have their sources at least ten or fifteen miles in the 
heart of the mountains west of the river, have brought down in their 
channels detached portions of the granitic rocks, showing that the cen- 
tral mass of the range between the second cation and the sources of 
the west branch of the Gallatin is metamorphic. The size, abundance, 
“and position of these rounded granite bowlders are such that no forces 
now in operation in this region could have moved them high up on the 
sides of the valley, where no water is found or can reach at the present 
time. They cover a space a mile in length and one-fourth of a mile in 
width, as thick as they can lie on the ground. 

I have already referred to the section of the foot-hills cut by the 
Yellowstone River, about a mile above Bottler’s Ranch, and that this 
section would seem to show the thickness and character of the original 
lake deposits. From the water up there is about one hundred feet of a 
light-cream marly, indurated clay, with'some concretions, from a few 
inches to two feet in diameter. Above this there are 40 feet detritus, 
composed of rounded pebbles, and above this very modern local drift, 
there are 30 to 60 feet of the basalt. This fact shows the very modern 
character of this outflow, as I have endeavored to show in other por- 
tions of this report. Just opposite this bluff, on the west side of the 
valley, there is another feature which is quite a conspicuous one in the 
landscape. There is here a series of terraces, five in number, which 
rise, step by step, with remarkable regularity. The usual terrace sys- 
tem is undeveloped in this valley ; but in this locality there is a series 
of regular steps, rising about 200 feet above the channel of the river. 
They probably belong, to the system of terraces that was formed during 
the period of drainage of these mountain lakes; but why they should 
be divided in so marked a way as at this point I could not explain. 

Before closing this chapter, I will note, very briefly, some of the re- 
sources of this valley. It is about fifteen miles long, and will average 
three miles in width ; is well watered, soil fertile, and in every respect 
one of the most desirable portions of Montana. We may not look for 
any districts favorable for agriculture in the Yellowstone Valley above 


GEOLOGICAL SURVEY OF THE TERRITORIES. og 


the second caiion; but this entire lake basin seems admirably adapted 
for grazing and for the cultivation of the usual crops of the country. 
The cereals and the roots have already been produced in abundance, es- 
pecially wheat and potatoes. ‘The mountains on either side are covered 
with snow, toa greater or less extent, all the year, which in melting, feeds 
the numerous little streams that flow down the mountain sides in the 
Yellowstone. Hundreds of springs flow out of the terraces. One terrace 
near Bottler’s Ranch gives origin to fifty springs within a mile, and then, 
all aggregating together in the river bottom,form a large stream. Thus 
there is the greatest abundance of water for irrigation, or for any of the 
purposes of settlement. The elevation of the valley at this ranch is 
4,925 feet, and this may be regarded as the average in altitude. But a 
small portion of it is occupied as yet, but the time is not far distant 
when the valley will be covered with fine farms and the hills with stock. | 
It will always be a region of interest, from the fact that it is probably 
the upper limit of agricultural effort in the Yellowstone Valley. 


CHAPTER IV. 


FIRST CANON—SNOWY RANGE—EMIGRANT PEAK—BUTLER’S RANCH— 
SECOND CANON—DEVIL’S SLIDE—WHITE MOUNTAIN—HOT SPRINGS, &c. 


In our last chapter we described the beautiful lake-basin below the 
second canon. We found that rocks of volcanic origin predominated 
over all others. In this cafion, which is carved out of a lofty range of 
mountains by the river, we see that the core or nucleus is true gneissoid 
granite. Before reaching the cation for a wile, the gneissic rocks are 
well shown high up on the mountain sides with a stratification so clear 
and distinet as to be a noticeable feature. The strata incline west 10° 
to 15°. The upper beds are composed mostly of feldspar and quartz, 
and are, consequently, compact and rather massive; but lower down 
they are a black, micaceous gneiss. About midway up the canon the 
walls on either side rise up nearly vertically, on the east side .1,500 feet, 
and on the west side from 1,000 to 1,200 feet, the strata having a general 
dip of 39° to 40° westward. The different shades of color, give to the 
sides of the caton a peculiarly stratified appearance, produced by alter- 
nate layers of micaceous granite, feldspar, and quartz. Protruding 
through the- layers, here and there 
may be seen, as indicated by the dark 
hue, masses of trap, (Fig. 9.) Sceat- 
tered all over the valley, and on the 
sides of the mountain, are great quan- 
tities of broken masses of granite. 
This calon was undoubtedly started 
in a fissure, but it is mostly one of 
erosion. It is about three miles long. 
This is, of course, an extension of the 
range of mountains in which Hmi- 
grant Gulchis located, and it undoubt- 
edly contains mines of gold. The 
rocks, with their peculiarly distinct SS 
and contorted strata as well as texture GNEISSIC STRATA, WITH TRAP. 

remind one of the gneissic mountains in the mining districts of Colorado. 
The river rushes with considerable force over the loose masses of rock 


60» GEOLOGICAL SURVEY OF THE TERRITORIES. 


that have fallen into the channel, and presents a picturesque view 
to the traveler struggling along over the narrow trail, high up on 
the mountain side. But wherever the water forms an eddy, so that 
it is even moderately quiet, the number of fine, large trout that can be 
taken out within a limited period would astonish the most experienced 
- fisherman. Above the cafion the rocks return at once to their igneous 
eharacter. This is readily shown by the difference in the appearance 
of the surface features. Although the granitic portion is higher and 
more massive in its. general aspect, yet the surface is rounded and 
much of it covered with debris that admit the growth of grass, while 
the volcanic rocks give a jagged ruggedness to the outline. Outflows of 
dark-brown basalt, apparently of late date, mingled with huge masses 
of breccia, can be seen on either side of the valley to the summits of 
the mountains. The foot-hills on either side are certainly composed 
of breccia for several miles, which, decomposing, gives to the surface 
the appearance of the remains of an old furnace. Perhaps it would be 
better to compare it to a modern volcanic district. The débris has the 
zreat variety of colors peculiar to the remains of modern igneous action. 
The inclosed fragments are mostly angular, or slightly worn, and vary in 
size from minute particles to masses two feet in diameter, though they 
are mostly small. Some of the rounded hills are quite red on the sum- 
mits, as if covered withcinders. The nuclei of the mountains are granite, 
however, although the basis rocks are mostly concealed by the outflows 
of volcanic material. On the east side, the river cuts close to the base 
of the mountains, but on the west side, there is quite a broad belt, com- 
prising the foot-hills, which are composed of basaltic conglomerate, 
covered thickly with the débris of the same. There is here a small lake, 
200 yards long and 50 yards wide, occupying a- depression among the 
hills. The margins are covered with piles of volcanic débris, which give 
it the appearance of an old crater or fissure. The basaltic rocks rest 
upon the upturned edges of the metamorphic rocks, the former inclining 
in all directions, while the latter, on the west side of the river, dip west 
and northwest at all angles from 10° to a vertical side, while on the east 
side they incline east and southeast, at anangle of 60°. For a distance 
of two or three miles the mountains on the east side are so worn off that 
they present a vertical face, which reveals the inner character well. Al- 
ternate beds of a kind of somber indurated clay, volcanic débris, and bas- 
altof various colors, continue all the way up for a thickness of several hun- 
dred feet. These rest upon a reddish feldspathic granite. In some places 
the melted basalt was poured over the surface of the granitic rocks, 
filling up the irregularities and penetrating the fissures so that it gives 
the sides of the mountains a mottled appearance. The volcanic and 
granitic rocks are mingled together in such confusion that it would re- 
quire a long, tedious 

study to separate them. 
On the west side of 
the Yellowstone River, 
g about ten miles above 
the second cation, there 
is an exhibition of up- 
lifted strata. Itissome- 
times called Cinnabar 
Mountain, from a 
brick-red band of clay 

CINNABAR MOUNTAIN. which extends from 
the summit down the side, and was supposed to becinnabar. A portion 


GEOLOGICAL SURVEY OF THE TERRITORIES. 61 


of it, from its peculiarly rugged character, is called the “Devil’s Slide.” 
The lower part of the mountain facing the river is composed of light- 


*HaIIS S,11AaRG 


rib L iy ri 
egy, Hil; “b oN 
7 REGINNS h 
it ip Tass 7 Na SS 


7, 
NUNS 
WM, 


| hie \ ie 
Mey WE WE 


; 
reddish feldspathic quartzites plainly metamorphic, and inclining ata high 
angle, (Fig. 10.) The valley is-here about one-fourth of a mile wide, and 


\ 
Ne 


rae 


== 


62 GEOLOGICAL SURVEY OF THE TERRITORIES. 


has evidently been cut through these quartzites. The same rocks under- 
lie the mountains on the opposite side of the river, and resting unconfor- 
mably on the quartzites are at least 1,000 feet of Carboniferous limestone, 
exceedingly cherty, impure, of a yellowish-gray and brown color, and so 
massive that the stratification is quite indistinct. These limestones possess 
a great variety of textures. Above them are a series of beds, standing in 
nearly a vertical position, alternating with clays which have been worn 
away by atmospheric forces, so that the harder layers project above the 
surface in jagged edges. The harder layers are mostly yellowish cherty 
limestones. The band of indurated brick-red clay is 50 to 100 feet thick, 
and from its bright scarlet hue attracts the attention of travelers from 
all points of the compass. <A bed of yellowish-gray quartzite forms one 
of the walls of the Devil’s Slidefand is probably near the summit of the 
Carboniferous group in this locality. The excellent illustration, (Fig. 
11,) taken on the spot by Mr. Elliott, shows the nearly vertical wall of 
quartzite on the right, the broad interval covered with débris, grass, 
‘and a few scattered pines; and on the left, the huge wall or dike of ba- 
salt: The low interval is composed of dark steel-gray slate, extends 
from the summit to the base of the hill, and is about 150 feet wide. The 
south wall or dike is very compact trachyte, stands nearly vertical, 50 
feet thick, and at some points 200 feet high. It is probable that this 
igneous mass was thrust up between the strata, since they were ele- 
vated to their present position, and doubtless during the Pliocene pe- 
riod. On either side of the dike, the clays have been changed into 
the metamorphic slates. Fragments of the slate are attached to the 
walls high up on either side. This is a remarkable feature in the geol- 
ogy of this region. Far to the left or south of the dike the jagged ver- 
tical edges of the Jurassic strata can be seen. The inclination of all 
these beds ranges from 60° to 80° southwest. The two walls of the 
Devil’s Slide stand at an angle of 80°. The interval near the sum- 
mit of the hill is rather narrow, but expands out at the base to dou- 
_ ble the width. Above this dike, in order of superposition, though 
now standing side by side, is a group of Jurassic strata—first, a low 
interval of shaly, marly clay, ashen brown; secondly, brownish-gray 
arenaceous limestone, with fragments of fossils that are evidently 
Jurassic, 50 feet thick; dip, 70°; thirdly, purplish and reddish indu- 
rated, slaty clay, with Seams of sandstone projecting but little above 
the surface; fourthly, a bed of trap 6 feet thick; fifthly, slaty clay 
sandstones, the upper part a fine pudding-stone, standing nearly vertical, 
70° to 80°, 100 feet; sixthly, numerous layers, which may be aggregated 
as alternate beds of yellowish-gray quartzites and slaty clays, varying 
but little in texture, the harder portions standing up in more or less 
jagged edges, with the softer clays washed out from between them ; dip, 
60° to 70; 300 feet; seventhly, 200 feet of ashen-gray shales and sand- 
stones; eighthly, 400 to 600 feet of alternate beds of shaly clay sand- 
stone and quartzites. This last group doubtless contains the Lower 
Cretaceous beds. The harder layers, 6 to 10 feet thick, rise above the 
_ general surface of the mountain-side like walls. The dip is 50° to 60°. 
The dark laminated clays of the Cretaceous passing up into the Upper 
Cretaceous are well shown with perfect continuity, then passing up into 
"a great thickness of somber brown sandstones of the Coal group. There 
is a great uniformity in the Upper Cretaceous and Tertiary series. We 
can detect some variations in color and texture, but they are of minor 
importance, and could not be easily described in words. At one point 
the strata are much crushed together. The dip of the beds just described 
is toward the southeast; but, by the elevation of the mountain to the 


\ 


GEOLOGICAL SURVEY OF THE TERRITORIES. 63 


- goutheast, the inclination of the Lower Tertiary and Cretaceous beds is 

_ reversed northwest 15° to 25°, extending to the summits of the mount- 
ains, which rise 3,000 feet above the Yellowstone River, and are capped 
with Carboniferous limestones. 

From the general appearance of the surface of the country, I believe 
that there was originally much greater uniformity in the inclination of 
the sedimentary strata, in the aggregate, than there is at present. The 
- volcanic forces which operated at a period subsequent to the elevation 

ot the older sedimentary beds rendered their position much more chaotic 
in many localities. We have here, within a few miles, the Carboniferous 
beds, near the channel of the Yellowstone, and the same strata capping 
a mountain-peak 3,000 feet above it. We have also, in the exposure here 
and there of a consecutive series of the sedimentary beds, continual 
proofs of our statement that they originally extended all over the area 
now occupied by the valley and the mountain ranges that border it. 
The study of the series of sedimentary rocks, so finely éxposed at Cin- 
nabar Mountain and with such regularity of sequence, reveals another 
interesting fact—that the Yellowstone Valley may be, in part at least, 
one of anticlinal origin. We have before shown that the limestone 
range contracted to a narrow belt near Fort Ellis and Bozeman Pass; 
that near the head of Trail Creek the ridge seemed to divide, the 
north portion of the anticlinal crossing the Yellowstone River at the 
Lower Caiion, and continuing a little south of east along the sources 
of the branches of the Yellowstone, as Big Bowlder, Rosebud, Black’s 
Fork. The south portion extended southward along the western side 
of the dividing range between the drainage of the Yellowstone and the 


Missouri Rivers. Cinnabar Mountain seems therefore to represent a 


fragment of the south portion, which has not been concealed by débris 
or volcanic outflow, or removed by erosion. 

About four miles above Cinnabar Mountain the basalt seems to have 
poured out over the entire surface, and forms mountain-peaks, rising 
2,000 to 2,500 feet above the valley. In the sides of some of the foot- 
hills are exposed from 100 to 300 feet of strata nearly or quite hori- 
zontal, and apparently modern—not older than Pliocene—sands, sand- 
stones, and marly clays, overlaid by beds of basalt. They have the 
dark-brown hue which all the modern rocks seem to have when con- 
tiguous to igneous outflows. From Cinnabar Mountain, to the mouth 
of Gardiner’s River, about six miles, the Yellowstone Valley, which 
expands out on the west side to a width of about two miles, is covered 
with rounded bowlders of massive granite. The mica is usually black, 
so that the granites have a somber hue somewhat like ancient trap. The 
channel of the river is also filled with these huge bowlders, which have 
probably been brought down from the caiion of the Yellowstone oppo- 
site Gardiner’s River. Just above Cinnabar Mountain, on the east side 
of the Yellowstone, the more modern beds make their appearance low 
down on the sides of the mountains, as if the dip of the sedimentary 
rocks had changed toward the east, and the channel had cut through 
the intervals of the ridges, exposing the outcropping edges of about 
800 feet of Tertiary beds of various colors and textures. They are filled 
with intrusions of basalt. The sides of the hills are covered with the 
dark débris. Bear Gulch is a deep, narrow cafion, which the little stream 
has cut into the mountain side, exposing the granitic core. Masses of 
granite have been wrenched from their parent bed and swept down into 
the valley of the Yellowstone. imma 

‘The third caiion is mostly through the granites. They are, as usual, 


64 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of a great variety of textures, but largely massive feldspar. Between 
the Yellowstone and Gardiner’s River, commencing at the junction, a — 
wedge of land commences, which rises to the height of 2,000 feet or 
more with great regularity. This is a portion of the belt of modern — 
sedimentary beds, as shown on the east side of the river, below the 
junction, as exposing an outcropping thickness of about 800 feet. The 
Yellowstone makes a bend to the eastward at this point, rnnning out- 
side of the belt of sedimentary strata, and carving its channel out of 
granitic and volcanic rocks. The latter are composed of basalt, basaltic | 
conglomerate, and the deposit of Hot Springs. Gardiner’s River, al- 
though diverging but little from a parallel, seems to flow through a 
monoclinal interval, exposing a clean, wall-like front of 1,200 feet, on the 
east side, of Cretaceous and Tertiary strata. The dip is slight, 10°, but 
toward the northeast, and as we ascend the river, lower beds are exposed, 
until at least 1,800 feet of Cretaceous and Lower Tertiary beds are brought 
to the surface within a distance of six or eight miles. Local intercalated. 
beds of basalt are also exposed toward the summit of the hill, and near 
the forks of the river a heavy bed of the basalt, quite compact, rests hor- 
izontally on the inclined edges of the strata. There were found here 
quantities of obscure fossils, among them a species of Ostrea, and a num- . 
ber of impressions of deciduous leaves, all of Cretaceous affinities. At 
another locality a layer of shells was found, and among them Mr. Meek 
detected Corbula pyriformis, a species occurring near Bear River City, 
which is regarded as of estsary origin, and of Tertiary age. At another 
point I found upon the side of the hill, on the east fork of Gardiner’s 
River, Amonites, Baculites, and Inoceramus. There is little or no lime 
in this great group of beds, simply alternate beds of sandstone, arena- 
ceous clays, passing down into the dark somber clays of the Cretaceous. - 
As we descend in the series, the rocky layers diminish, and the indurated 
clays increase, until near the forks of Gardiner’s River, the dark Creta- 
ceous clays are 500 feet thick. The sides of the bluff hill are deeply fur- 
rowed. This inner ridge, which we have just attempted to describe, is 
one of the finest exposures, as a vertical section of strata, that I have met 
with in this portion of the West. These beds are only a remnant of a 
former period, isolated monuments covering a very restricted area; 
whereas they must have extended across the river, and all over the 
portion now occupied by the mountains to the westward of the sources 
of the Missouri. The lower beds of the Cretaceous with the Juras- 
sic and the Carboniferous inclusive, incline from the east side of the 
‘mountains, and dip under Gardinez’s River: It is through the latter 
beds that the waters of the White Mountain Hot Springs come to the 
surface. Just above the junction of Gardiner’s River with the Yellow- 
stone, on the east side, a seam of earthy lignite six inches thick crops 
out. Below it isa layer of oyster-shells, and above it are impressions of 
deciduous leaves. The local detritus all over this valley is so extensive 
that it deserves continual notice. It seems to fill up the irregularities 
of the surface, especially in the vicinity of the streams. The section 
made by the river reveals 50 to 100 feet at times, filling up old ravines 
or gulches worn out of the basis rocks. y 

Before proceeding further with the general geological features of this 
country, I will attempt to describe, with as much detail as possible, one 
of the most remarkable of the many marvels of this wonderful valley. 

I have just described, with some minuteness, the high wall of Cre- 
taceous and Tertiary beds on the east side of Gardiner’s River, which, 
_in itself, is well worthy of careful attention. Upon the opposite side of 
the river, on the slope of the mountain, is one of the most remarkable 


SELLE DNV NC SUNT vi Hr Tie Bite See a eee 
=A itt eC OL ORS 
Ba Set i a 
a 


S 
3 


eu 
us 
522 
Fu. 


x 


FS) 


ra 
3S 
= 


BT 


Se TAT 
a is Haine Hy ui H 
a 


Migrhag cee epee 


ae eee 
¥ 
ree tolling y dou isint 
ee at ihe _ 

%- . cit we 


Z g ty 


SSS 


2 ee 


Geyser 4 £y 


af 
Wie yy 


SSS 3 : 


( 
\y 
\ 


Ra) 
\\ 


XN 


MG: 
WULY. 
WZ if 


ni 


| 


Wn 
SAN i 
i 


S 
SSS 


SS 


iV 


Ss 
SSS 
3 
~ 
SSS 
WSs 
NS 
WS 
W 
WS 
rth 
ww 


Me 


G 


aN 
uy 
$ 


7 


a 
Be 


wl 
if 


WSS N 


WHITE MOUNTAIN HOT SPRINGS, GARDINER’S RIVER, 1871. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 65 


‘groups of hot springs in the world. The springs in action at the pres- 
ent time are not very numerous or even so wonderful as some of those 
higher up in the Yellowstone Valley or in the Fire-Hole Basin, but it 
is in the remains that we find so instructive records of their past 
history. The calcareous deposits from these springs cover an area of 
about two miles square, (see chart, Fig. 12.) The active springs extend 
from themargin of the river 5,545 feet to an elevation nearly 1,000 above, 
or 6,522 feet above the sea by barometrical measurement. We may 
commence our description at the springs near the margin of Gardiner’s 
River. AS we pass up the valley from the junction of Gardiner’s River 
with the Yellowstone, we see all over the sides of the hills upon our left 
the débris of voleanic rocks mingled with the Cretaceous clays. Indeed, 
the entire surface looks much like the refuse about an old furnace. The 
tops of the rounded hills are covered with the fragments of basalt and con- 
glomerate, and the great variety of somber colors adds much to the ap- 
pearance of desolation. One or two depressions, which appear much like 
volcanic vents, are now filled with water to the rim, forming stagnant. 
lakes fifty to one hundred yards in diameter. We pass over this barren 
elevated region, 200 to 400 feet above the river-bed, for two miles, when 
we descend abruptly to the low bottom, which is covered with a thick 
caleaereous crust, indicating the former existence of hot springs. At 
one point a large. stream of hot water, 6 feet wide and 2 feet deep, flows 
swiftly along its channel from beneath the crust, the open portion of 
the channel clearly revealed by the continual steam arising. The tem- 
perature varies from 126° to 132°. On the 28th of August the tem- 
perature was 150°, and about the 15th of July previous it was 126°. 
_ There is a greater quantity of water flowing from this spring than 
from any other in this region. A little farther above are three 
or four other springs near the margin of the river. These have 
nearly circular basins 6 to 10 feet in diameter, and do not rise above 
100° to 120°. Around these springs are gathered, at this time, a number 
of invalids, with cutaneous diseases, and they were most emphatic in 
their favorable expressions in regard to the sanitary effects. The 
most remarkable effect seems to be on persons afflicted with syphilitic 
diseases of long standing. Our path led up the hill by the side of a 
wall of lower Cretaceous rocks, and we soon came to the most abun- 
dant remains of old springs, which, in past times, must have been very 
active. The steep hill, for nearly a mile, is covered with a thick crust, 
and, though much decomposed and covered with a moderately thick 
growth of pines and cedars, still bore traces of the same wonderful 
architectural beauty displayed in the vicinity of the active springs 
farther up the hill. After ascending the side of the mountain, about 
a mile above the channel of Gardiner’s River, we suddenly came in full 
view of one of the finest displays of nature’s architectural skill the world 
can produce. The snowy whiteness of the deposit at once suggested 
the name of White Mountain Hot Spring. It had the appearance of a 
frozen cascade. If a group of springs near the summit of a mountain 
were to distribute their waters down the irregular declivities, and they 
were slowly congealed, the picture would bear some resemblance in 
form. . 

We pitched our camp at the foot of the principal mountain, by the 
‘side of the stream that contained the aggregated waters of the hot 
Springs above, which, by the time they had reached our camp, were 
sufficiently cooled for our use. Before us was a hill 200 feet high, 
composed of the calcareous deposit of the hot springs, with a system 
of step-like terraces which would defy any description ‘by words. The 


5GS8 


66 - GEOLOGICAL SURVEY OF THE TERRITORIES. 


eye alone could convey any adequate conception to the mind. The steep 
sides of the hill were ornamented with a series of semicircular basins, 
with margins varying in height from a few inches to 6 or 8 feet, and so 
beautifully scalloped and adorned with a kind of bead-work that the be- 
holder stands amazed at this marvel of nature’s handiwork. Add 
to this, a snow-white ground, with every variety of shade, of scarlet, 
ereen, and yellow, as brilliant as the brightest of our aniline dyes. 
The pools or basins are of all sizes, from a few inches to 6 or 8 
feet in diameter, and from 2-inches to 2 feet deep. As the water flows 
from the spring over the mountain side from one basin to another, it 
loses continually a portion of its heat, and the bather can find any desir- 
able temperature. At the top of the hill there is a broad flat terrace 
covered more or less with these basins, one hundred and fifty to two 
hundred yards in diameter, and many of them going todecay. Here wefind 
the largest, finest, and most active spring of the group at the present 
time. The largest spring is very near the outer margin of the terrace 
and is 25 by 40 feet in diameter, the water so perfectly transparent that 
one can look down into the beautiful ultramarine depth to the bottom 


of the basin. 

mes mesa The sides of 
=e. sCoéttihe basin 
"N11 @ OTN A- 
==) mented with 


= ; coral-like 


rieby..00 
=| shades,from 
= pure white 
1 to a bright 
q4 cream-yel- 
= low, and the 
=| blue sky re- 
| flected in, 
the'trans- 
parent wa- 
ters givesan 
azure tint to 
the whole 
which  sur- 
passes all 
art. The calcareous deposit around the rim 
is also most elegantly ornamented, but, like 
the icy covering of a pool, extends from the 
edge toward the center, and this projects over 
the basin until it is not more than a fourth of 
an inch thick. These springs have one or 
more centers of ebullition, and in this group it 
is constant, seldom rising more than two to 
four inches above the surface. From various 
portions of the rim the water flows out in 
moderate quantities over the sides of the hill. 
Whenever it gathers into a channel and flows 
quite swiftly, basins with sides from 2 to $ feet 
ain bpvines CARON, eB Re formed, with the ornamental designs 
proportionately ‘coarse, but when the water 


GEOLOGICAL SURVEY OF THE TERRITORIES. 67 


flows slowly, myriads of the little basins are formed, one below the other, 
with a kind of irregular system, as it might be called, which constitutes 
the difference between the works of nature and the works of art. The 
water holds a great amount of lime in solution. It also contains some 
soda, alumina,and magnesia. The ebullition is largely due to the emission 
of large quantities of carbonic acid gas. As these waters flow down the 
sides of the mountain, they constantly deposit more or less of this ealea- 
reous sediment in almost every possible variety of form. Underneath 
the sides of many of these pools are rows of stalactites of all sizes, many 
_ of them exquisitely ornamented, formed by the dripping of the water 
over the margins of the basins. The annexed illustrations will convey 
some idea of the form of these bathing-pools as they are arranged one 
above the other, but the beautiful series of photographs taken by Mr. 
Jackson are of far greater value. Even the photograph, which is so re- 
markable for its fidelity to nature, falls far short. It fails to give the 
_ exquisitely delicate contrasts of coloring which are so pleasing to the 
eye. (Fig. 13.) ! 
On the west side of this deposit, about one-third of the way up the 
White Mountain from the river and terrace, which was once the theater 
Bisoeg! of many active springs, old 
Z chimneys, or craters, are scat- 
tered thickly over the surface, 
and there are several large 
| holes and fissures leading to 
vast caverns beneath the crust. 
The crust gives off a dull hollow 
sound beneath the tread, and 
the surface gives indistinct evi- 
dence of having been adorned 
<< with the beautiful pools or ba- 
sins just described. As we pass 
up to the base of the principal 
terrace,we find a large area cov- 
ered with shallow pools, some 
of them containing water with 
all the ornamentations perfect, 
while others are fast going to. 
eq decay, and the decomposed sed- 


in height and 20 feet in diameter at the base. 
===. From its form we gave it the name of the Liberty 
Cap. (Fig. 14.) It is undoubtedly the remains 
of an extinct geyser. The water was forced up 
=== with considerable power, and probably with- 
2 out intermission, building up its own crater 
until the pressure beneath was exhausted, and 
then it gradually closed itself over at the sum- 
mit and perished. No water flows from it at 
the present time. The layers of lime were deposited around it like 
the layers of straw on a thatched roof or hay on a conical stack. Not 
far from the Liberty Cap is another smal! cone, which, from its form, we 
called the “ Bee-hive.” These springs are constantly changing their 
position ; some die out, others burst out in new places. A fine large spring 
made its appearance for the first time in August last on thisterrace. On 


LIBERTY CAP. 


68 GEOLOGICAL SURVEY OF THE TERRITORIES. 


the northwest margin of the main terrace there is an example of what 
LT have called an oblong mound. There are several of them here, extend- 
ing in different directions, from fifty to one hundred and fifty yards in 
length, from 6 to 10 feet high and from 10 to 15 feet broad at the 
base. There is in all cases a fissure from one end of the summit to the 
other, usually from 6 to 10 inches wide, from which steam sometimes is- 
sues in considerable quantities, and as we walk along the top we can 
hear the water seething and boiling below like a cauldron. The inner 
portion of this shell, as far down as we can see, is lined with 4 hard, 
white enamel-like porcelain; in some places beautiful crystals of sulphur 
have been precipitated by the steam. These have been built up by a 
kind of oblong fissure-spring in the same way that the cones have been 
constructed. The water was continually spouting up, depositing sedi- 
ment around the edges of the fissure until the force was exhausted, and 
then the calcareous basin was rounded me) something lee a thatched 
roof by overlapping layers. 

Near the upper terrace, which is really an old, rim, are a number of 
these extinct, oblong geysers, some of which have been broken down so as 
to show them to be Fig. 
a mere shell or cav- 
ern, which is now 
the abode of wild 
animals. (Fig. 15.), 
I attempted to en- 
ter one of them, 
and it was full of: 
sticks and bones 
which had been * 
carried in by wild 
beasts, and swarms 
of bats flitted to 
and fro. Some of 
them have been 
worn away So that : 
sections 


gre eat ek “and = 
thickness of the saan pee layers of sudimie ue 
Some of these mounds are overgrown with pine- 
trees, which must be at least eighty to a hundred 
years old. Indeed, the upper part of this moun- ‘ 
tain has the aspect of a magnificent ruin of a  =XTINCT OBLONG GzysERS. 
onee flourishing village of these unique structures, now fast decompos- 
ing, even more beautiful and instructive in their decay. We can now 
study the layers of deposit, which are sometimes revealed by thou- 
sands on a single mound, as we would the rings of growth of a tree. 
How long a period is required to form one of these. mounds, or to 
build up the beautiful structure which we have just described, I have 
not the data for determining. Upon the middle terrace, where the 
principal portion of the active springs are at the present time, some 
of the pine-trees are buried in the sediment apparently to the depth of 
6 or 8 feet. All of them are dead at the present time. . We have evi- 
dence enough around the springs themselves to show that the mineral- 
water is precipitated with great rapidity. I think I am safe in believing 
that all the deposits in the immediate vicinity of the active springs are con- 
stantly changing from the margin of the river to the top of the White 


GEOLOGICAL SURVEY OF THE TERRITORIES. 69 


- Mountain and return. The deposits upon the very summit are great, 
though now there is very little water flowing from the springs, and 
that is of a low temperature. 

Traces of even greater activity than we see at present are found 
in some localities, and it is more than probable that the force is grad- 

Fig. 16. ually dying out ‘from 
year to year, and that 
finally it will cease en- 
tirely. We have nu- 
merous localities in the 
West where there have 
been vast groups of hot 
springs and geysers, 
but at the present time 
only the ruins are left. 
It would seem proba- 

CHIMNEY, GARDINER’S RIVER. ble that the heat which 
gives the temperature to the atmospheric waters rises through numerous 
fissures from one common source in the interior of the earth, so that 
when from some cause this heat is checked i in its upward progress in one 
place, it finds vent in an- 
other, and thus passes 
from point to point over 
_a district. It is probable 
that they have existed 
since the period of vol- 
canie activity, and that 
now they are diminishing 
in force, and that event- 
ually nothing but the de- 
posit willremain. Large 
numbers of old chimneys DEAD CHIMNEY, GARDINER’S RIVER. : 
are scattered over the surface, formed by what may be properly called 
pulsating geysers. (Figs. 16 and 17.) 

Between one of the largest oblong mounds and the base of the upper 
terrace, there is a kind of a valley-like interval, which has once been the 
center of much activity, but at the present time there are numerous 
small jets from which the water is thrown to the height of 2 to 4 feet. 
But it is to the wonderful variety of exquisitely delicate colors that this 
picture owes the main part of its attractiveness. The little orifices from 
which the hot water issues are beautifully enameled with the porcelain- 
like lining, and around the edges a layer of sulphur is precipitated. As 
the water flows along the valley, it lays down in its course a, pavement 
more beautiful and elaborate in its adornment than art has ever yet 
conceived. The sulphur and the iron, with the green microscopic vege- 
tation, tint the whole with an illumination of which no decoration- -painter 
has ever dreamed. From the sides of the oblong mound, which is here 
from 30 to 50 feet high, the water has oozed out at different points, 
forming small groups of the semicircular, step-like basins. (Fig. 18.) 

- Again, if we look at the principal group of springs from the high 
mound above the middle terrace, we can see the same variety of brilliant 
coloring. The wonderful transparency of the water surpasses anything 
of the kind I have ever seen in any other portion of the world. The 
sky, with the smallest cloud that flits across it, is reflected in its clear 
depths, and the ultramarine colors, more vivid than the sea, are greatly 
heightened by: the constant, gentle vibrations. One can look down into 


Fig. 17. 


70 GEOLOGICAL SURVEY OF THE TERRITORIES. 


the clear depths and see, with perfect distinctness, the minutest orna- 
ment on the inner sides of the basins; and the exquisite beauty of the 
coloring and the variety of- forms baffle any attempt to portray them, 


BATHING POOLS, WHITE MOUNTAIN HOT SPRINGS. 


either with pen or pencil. And then, too, around the borders of these 
springs, especially those of rather low temperature, and on the sides and 
bottoms of the numerous little channels of the streams that flow from 
these springs, there is a striking variety of the most vivid colors. I can. 
only compare them to our most brilliant aniline dyes—various shades 
of red, from the brightest scarlet to a bright rose tint; also yellow, from 
deep-bright. sulphur, through all the shades, to light cream-color. There 
are also various shades of green, from the peculiar vegetation. These 
springs are also filled with minute vegetable forms, which under the 
mnieroscope prove to be. diatoms, among which Dr. Billings discovers 
Palmella and Oseillara. There are also in the little streams that flow 
from the boiling springs great quantities of a fibrous, silky substance, 
apparently vegetable, which vibrates at the slightest movement of the 
water, and has the appearance of the finest quality of cashmere wool. 
When the waters are still these silken masses become incrusted with 
lime, the delicate vegetable threads disappear, and a fibrous, spongy 
mass remains, like delicate snow-white coral. Although these springs 
are in a constant state of violent ebullition at different points in the 
basin, yet it will be seen on the chart that the temperatures are far 
below boiling-point, the highest being 162°. Owing to the thinness of 
the rim of the basin, and the heat from the steam, it was impossible to 
take the temperature except at the edges, and by no means at the hottest 
portion; and the violent ebullition is undoubtedly due in part to the 
evolution of carbonic acid gas. It is quite possible that the thermome- 
ter would have indicated the boiling-point (which at this elevation is 
about 194°) if it could have been placed in one of these centers of 


GEOLOGICAL SURVEY OF THE TERRITORIES. is 


ebullition. The grotto in the glen, (Fig. 19,) is a fine illustration of 
the beautiful decorations, and along the channels of the streams that flow 
from the vivid coloring is well displayed. From the summit the stream 
is continually arising from a number of vents, each one of which is 
lined with sulphur. Quantities of steam are ever ascending from the 
springs, but on a dainp morning the entire slope of the mountain is 
enveloped in clouds of vapor. 

The question of the an- 
tiquity of these springs is 
one of great interest, and 
yet, with all the evidence 
before us, it is somewhat 
obscure. Upon the mar- 
gins of the mountain, high 
above the present position 
of the hot springs, is a bed 
of very white or yellowish- 
white limestone, 50 to 150 
feet thick, and appearing 
in the distance like very 
pure Carboniferous lime- @ 235 
stone. (Wig. 20.) Itisreg- Sete eo 
ularly ‘ee ined. and the — ee 
jointing is complete, and 
Immense masses have fallen down on the slope of. the mountain side. 
There is a belt a mile long and one-fourth of a mile wide, covered with 


GROTTO IN THE GLEN, WHITE MOUNTAIN HOT SPRING, 


Fig. 20. 


OLD HOT SPRING. LIMESTONES SHELVING OFF BY FROST, ETC, 


immense cubical blocks of the limestone 50 to 100 feet in each dimension, 


12 GEOLOGICAL SURVEY OF THE TERRITORIES. 


usually with the wedge-shaped end projecting upward, as if the mass 
had slowly fallen down as the underlying rocks were worn away by 
erosion. So thickly is this belt covered with these huge masses that it 
is with the greatest difficulty one can walk across it. It would seem 
that this bed must at one time have extended over. a portion or all 
of the valley of Gardiner’s River. Much of the rock is very compact, 
-and would make beautiful building-stone, on account of its close texture 
and color, and it could be converted into the whitest of lime. If the 
rocks are examined, however, over a considerable area, they will be 
found to possess all the varieties of structure of a hot-spring deposit. 
Some portions are quite spongy, and decompose readily ; others are made 
up of very thin lamin, regular or wavy; enough to show the origin of 
.the deposit without a doubt. But in what manner was it formed? I 
believe that the limestone was precipitated in the bottom of a lake, 
which was filled with hot springs, much as the calcareous matter is laid 
down in the bottom of the ocean at the present time. Indeed, portions 
of the rock do not differ materially from the recent limestones now form- | 
ing in the vicinity of the West India Islands. The deposit was evi- 
dently laid down on a nearly level surface, with a moderately uniform 
thickness, and the strata are horizontal. Since this group of strata 
was formed, the country has been elevated to some extent at least, and 
_the valley of Gardiner’s River has been carved out, so that the com- 
mencement of the period of activity of these springs must date back to 
a period merging on to, but just prior to, the present, probably at the 
time of the greatest action of the volcanic forces. 
We may now ask why these deposits are mainly calcareous, and what 
is the source of the lime. 
- T have already given a brief account of the geological formations in 
the immediate vicinity. On the side of Gardiner’s River, opposite the 
hot springs, there is a bluff wall extending about six miles, composed 
of 150 feet in the aggregate of Upper Cretaceous and Lower Tertiary 
strata, with some irregular intercalated beds of basalt. The river itself 
flows through a sort of monoclinal interval; that is, the bluff wall just 
alluded to is formed of the outcropping edges of the strata, while on 
the opposite side or slope the lower beds incline in the same direction. 
Near the river some of the lower beds are Cretaceous, but they soon pass 
to the Jurassic and Carboniferous; on the east side of the springs are beds 
of arenaceous limestone full of Jurassic fossils. We can then see that the 
vast thickness of Tertiary and Cretaceous strata once extended across 
Warm Spring Creek, over the slope of the mountain occupied by the 
hot-spring deposit, and, probably, westward across the vast divide into 
the Missouri Valley. We have, also, clear proof that, underneath this 
calcareous deposit, there is at least a thickness of 1,500 feet of Carbon- 
iferous limestone. : if 
If the origin of the heat which so elevates the temperature of the 
waters of these springs is as deep-seated as is generally supposed, then 
the heated waters have ample play for their power in dissolving the 
calcareous rocks beneath. There are several localities in the valley of 
the Yellowstone where the deposits are calcareous, but most of.them. 
are unimportant, and the springs themselves have entirely disappeared. 
If we divide the springs according to the character of their deposits, 
_we shall find that there are two principal classes—those in which lime 
predominates, and those which have an excess of ‘silica; or calcareous 
and siliceous springs. We shall present this subject more fully in a 
subsequent portion of this report. 
In figure 21 I have attempted to present an ideal section of the strata 


GEOLOGICAL SURVEY OF THE ‘TERRITORIES. 


13 


on Gardiner’s River. Upon the summit of the Tertiary and Cretaceous 


strata, at the right, is a be 


river and beneath the 
calcareous deposit of the 
springs, are the Carbon- 
iferous limestones; be- 
neath all, we suppose, 
there is a great thickness 
of trachyte. We may 
also suppose that the 
meteoric waters pass 
up to the surface 
through the limestone, 
as Shown in the section, 
cleaving the lime that is 
deposited on the way. 
This subject will be dis- 
cussed more fully in a 
future report. 

_ We have already spo- 
ken of the wedge-like 
ridge between the Yel- 
lowstone and Gardiner’s 
Rivers, and the wall of 
Cretaceous Tertiary, and 
basaltic strata facing the 
hot-spring district. 
These consist of alternate 
beds of dark-brown clays 
and somber-gray sand- 
stone, some portions 
thinly laminated or com- 
pact like quartzite; in- 
clnation, east 10°. 
These beds extend up in 
their full force about 
three miles above the 
springs on the east side 
of the East Fork, where 
they become obscured by 
_ basaltic rocks and detri- 
tus. Masses of basalt 
have fallen down from 
the summit of the ridge 
into the valley below, in 
many instances obstruct- 
ing the current and ren- 
dering traveling difficult. 
About a mile above the 
springs, Gardiner’s River 
separates into three 
branches, which we may 
call Hast, Middle, and 
West Forks. They take 
their rise high up in the 
- divide that separates the 


lake basin from the valley 


“MAIN S AANIGAVD ‘SONIMNdS LOH NIVINQOW A2LIHM NOILOES 1TVadI 


d of basalt. While passing by, under the 


F 


Pie es 


ey 


GS 


<< 
var, 


SS 


below. I have estimated the length of these 


74 GEOLOGICAL SURVEY OF THE TERRITORIES. 


forks to be fifteen miles each. As we ascended the high ridge between 
the East and Middle Forks, we obtained a fine view of the surrounding 
country. Far to the southwest are fine lofty peaks covered with snow, 
and rising to the height of 10,000 feet. They form a part of the mag- 
nificent range of mountains that separates the Yellowstone from the 
sources of the Gallatin. From this high ridge we can look down into 
the chasm of the Middle Fork, which is carved out of the basalt and 
basaltic conglomerates to the depth of 500 to 800 feet, with nearly 
vertical sides. In the sides of this cafion, as well as those of the Hast 
Fork, splendid examples of basaltic columns are displayed, as perfect 
as those of the celebrated Fingal’s Cave. They usually appear in regular 
rows, vertical, five and six sided, but far-more sharply cut than any I 
have ever seen in the West. Sometimes there are several rows, one 
above the other, with conglomerate between, usually about fifty feet 
high. Sometimes, however, these columns are spread out fan-like, as is 
_ shown in the figure. (Fig. 22.) 

The top of the cafion is about 500 yards from margin to margin, bu 
narrowing down until on the bottom it is not more than forty yards 
. Fae tae wide. At one point the water pours 

re over a declivity of 300 feet or more, 
forming a most beautiful cascade. The 
direct fall is over 100 feet. The con- 
stant roar of the water was pleasant to 
the ear, and reminded us most strongly 
of a train of carsin motion. The pines 
are very dense, usually of moderate 
size, and among them are many open 
spaces, which are covered with stout 
grass, sometimes with large sage- 
bushes. Upon the high mountain hills 
the vegetation is remarkably luxuriant, 
indicating great fertility of soil. The 
detritus is usually very thick, and cov- 
BASALT AT LOW FALLS ON GARDINER’S RIVER. ES 4, great portion of the surface, and 
this is made up mostly of degraded igneous rocks. Above the falls the 
rows of vertical columns continue in the walls of the cation, and they 
may well be ranked, with great fitness, among the remarkable wonders 
of this rare wonder-land. The lower portion of the cafion is composed. 
of rather coarse igneous rocks, which have a jointage and a style of 
weathering like granite. 

South of the hot springs we ascended a round dome-like mountain, 
which rises 2,100 feet above them. From the summit we could look from 
thirty to fifty miles in every direction. To the north and west of us a 
group of lofty peaks were very conspicuous—over 10,000 feet above the 
sea, and covered with huge masses of snow. These peaks form a part 
of the range that separates the waters of the Gallatin from those of the 
Yellowstone. Farther on to the southward are the peaks of the head 
of the Madison, and in the interval one black, undulatory mass of pine, 
with no point rising over 8,500 feet above thesea. These might be called 
high plateaus, more or less wavy or rolling, interspersed here and there 
with beautiful lakes a few hundred yards in diameter; and here and 
there a bright-green grassy valley, through which the little streams wind 
their way to the large rivers. In one of these lakes we saw the greatest 
abundance of a yellow water-lily like Nuphar advena. On the east side 
of Gardiner’s Cafion, and west of the Yellowstone, is a sort of wave- 
like series of ridges, one after the other, with broad, open, grassy inter- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 15 


‘spaces, with many groves of pines. These ridges gradually slope down 
to the Yellowstone, northeast. Farto the east and north is one jagged 
mass of voleanic peaks, some of them snow-clad, others bald and desolate 
tothe eye. Farto the south, dimly outlined on the horizon, may be seen 
the three Tetons and Madison Peak—monarchs of all the region. A 
grander view could not well be conceived. The summits and sides of 
the mountain are thickly covered with fragments of dull-brown basalt; 
but what seemed most strange were the rounded masses of black, very 
compact basalt, mingled with the less compact angular fragments, 
broken from the mountain side. How did these huge bowlders reach 
these lofty summits? They are not numerous, and, at the present 
time, the proofs of water having covered these mountain tops since they 
have attained their present elevation are not clear. It is quite possible 
they were lodged there prior to the period of its elevation. 

The three forks of Gardiner’s River rise high up in the mountains, 
among the perpetual snows. They wind their way across a broad pla- 
teau covered mostly with a dense growth of pines, but with broad, 
open, meadow-like spots, which’ can be seen clearly from some high 
mountain peak, and lend a charm to the landscape. After gathering a 
sufficient supply of water, they commence wearing their channels down 
into the voleanic rocks, which continue to grow deeper as they descend. 
Hach one has its water-fall, which would fill an artist with enthusiasm. 
The West Fork rolls over a bed of basalt, which is divided by jointage 
into blocks that give the walls the appearance of mason-work on a 
gigantie scale. Below the falls the river has cut the-sides of the mount- 
ain, so that we can see a vertical section 400 feet high, with the same 
irregular jointage. 

After exploring the Middle and West Forks we climbed up the steep 
sides of the cafion of the East Fork, passed the picturesque cascade and 
basaltic columns, and finally reached the summit of the ridge which 
separates the cafon from Gardiner’s River. The highest point of the 
ridge is 450 feet above the bed of basalt that forms the margin of the 
east wall of Gardiner’s River. Beds of sandstone are here mingled 
with basalt in dire confusion. Irom this ridge the third canon is well 
shown. Among the ridges of sandstone and basalt, are several pretty 
lakes from two hundred to four hundred yards in length. These little 
lakes are really expansions of the drainage, and are usually in the 
Synclinal troughs. Hast of the summit of the ridge the sedimentary 
beds assume a reversed dip from the mountains on the east side of the 
Yellowstone. We find, therefore, the Jurassic arenaceous limestones and 
sandstones, and the limestones of the Carboniferous, near the margins 
of the cafion. On the summit of the ridge the basalt is quite coarse, 
and decomposes inte a kind of sandy clay. I can only give a general 
idea of the geology of this region. The chaos is so great that it would 
occupy one entire season to unravel the singular structure, and then 
the results would be so meager of profit or instruction that they would be 
most unsatisfactory. The real thought involved in it is not difficult to 

_abstract. The third cafion is formed partly by erosion and partly by 
upheaval, and the rocks which compose its walls are granitic and 
‘igneous. ‘The basis rocks are the granitoid, while filling up the 
irregularities of the surface are the volcanic materrals of various 
kinds. The same may be said of the lofty, rugged range of 
mountains on the east side of the river. A group of volcanic 
peaks of varied forms filled up the broad interval between the 
Yellowstone and the sources of the Big Horn.. They vary in height from 
9,500 to 10,000 feet above the sea, and are grouped without the least 
regularity. The peaks themselves do not seem to be connected together 


76 GEOLOGICAL SURVEY OF THE TERRITORIES. 


along any line or axis of elevation, but each one, like a group of hot 
springs, seems to have been a voleanic vent which built up its own cone. 
The igneous rocks have been poured out over the metamorphic, plainly 
at different periods. The general mineral character of the igneous ma- 
terial is about the same, but the colors and textures are very variable; 
some of them are coarse, decomposing easily; others rough, angular, 
vesicular, or compact; some red, purple, brown, black, Gc. The study 
of the immense masses of basaltic conglomerate which cover the country 

everywhere, especially in the upper “basin, affords the best opportuni- 
ties of ascertaining the different varieties of the igneous rocks in the 
country, for fragments of all kinds seem to have been included in the 
voleanic paste. 

After leaving Gardiner’s River we ascended the broad slope of the 
dividing ridge between that river and the little branches that flow into 
the Yellowstone. Below and above the entrance of the Hast Fork, im- 
mense bowlders of massive granite, considerably rounded, are a marked 
feature. One of them, partially rounded by water, is 25 feet thick and 
50 feet long, with a fracture directly through the middle. Itis a mas- 
sive red feldspathic granite. The ridge of Carboniferous limestone, which 
is exposed on the west margin of the third cation, extends up in frag- 
ments for six or eight miles. Itis very brittle and cherty. The high 
wavy ridge, which is about 9,000 feet above the sea, is composed of beds 
of steel-gray and brown sandstone, clays, and a calcareous clay, with nu- 
merous impressions of deciduous leaves; vast quantities of silicified 
wood of greatest perfection and beauty are scattered all over the sur- 
face. Some quite long trees and stumps were observed by the party. 
The: layers of growth were as perfectly shown as in any of our recent 
woods. Upon the summit of the ridges or hills were beds of basalt as 
usual. We have, then, achaos here which it would be impossible to un- 
ravel, except by tracing the formations from far distant points in their 
continuity. The detritus is so thick and upon this grows such a luxuri- 
ant vegetation, either grass or dense forests of pine, that the sediment- 
ary rocks are exposed only here and there over restricted areas. Wes 
know, however, that up to the Grand Cafion, and up the East Fork, for 
fifteen miles, the Carboniferous, Jurassic, Cretaceous, and Tertiary groups 
are represented more or less, although we can only catch glimpses of 
them at rare intervals. We were traveling through this region in the 
latter part of the month of July, and all the vegetation seemed to be in the 
height of its growth and beauty. The meadows were covered densely 
with grass, and flowers of many varieties, and among the pines were 
charming groves of poplars, contrasting strongly by théir peculiar en- 
livening foliage with the somber hue of the pines. The climate was 
perfect, and in the midst of some of the most remarkable scenery in 
the world, every hour of our march only increased our enthusiasm. 

The climate during the months ofJune, July, and August, in this val- 
ley, cannot be surpassed i in the world for its health-giving powers. The 
finest of mountain water, fish in the greatest abundance, with a good 
supply of game of all kinds, fully satisfy the wants of the traveler, rand 
render this valley one of the most attractive places of resort for invalids 
or pleasure-seekers in America. 

We will now descend the ridge in the more immediate valley of the 
Yellowstone near the entrance of the East Fork, and not far from the 
lower end of the Grand Cation. Our road isa rough one. The sediment- 
ary rocks were crumpled into high, sharp, wave- slike series of ridges. 
From innumerable fissures, the igneous matter was poured out over ‘the 
surface which cooled into basalt; ahd from these vents was also thrown 
out, into the great lake, fragments and volcanic dust, which were arranged 


GEOLOGICAL SURVEY OF THE TERRITORIES. 77 


by the water and cemented into a breccia. Deep into these ridges the 
little streams have cut their channels in past ages, forming what should 
be called valleys, rather than caiions, with almost vertical sides, with 
rocks cropping out here and there, covered mostly with grass or trees. 
These ravines, 500 to 800 feet deep, occur one after the other in great 
numbers, many of them entirely dry at present, but attesting the pre- 
sence and power of aqueous forces at no very remote period in the 
past, compared with which those of the present are utterly insignificant. 

Not until surface geology receives greater attention than it has done 
up to this time will we comprehend the vastness of the agencies which have 
wrought out the wonderful results which we see everywhere around us. 
What were the forces that wrenched from the parent bed masses of gran- 
ite, from one ton to five hundred tons weight, rounded off the angles and 
lodged them upon the plains 300 to 500 feet above the channels of the 
princip! astreams? Along the East Fork, for twenty miles above its 
mouth, on the west side, there is a sort of terrace about a mile in width, lit- 
erally covered with the granite bowlders which have been swept down the 
valley from a short distance above. The granitic rocks, of various textures 
and composition, are here exposed in full force. Hell-Roaring Mountain, 
at the entrance of the creek of that name, is a huge peak composed of 
Stratified gneiss. Some of the strata, however, are 50 to 100 feet in 
thickness, massive red or gray feldspathic granite. Just opposite the 
entrance of the stream thereis a splendid exhibition of black micaceous 
gneiss, inclining 14° southeast. It seems to form a vertical wall on the 
right side of a little creek that flows into the Yellowstone from the west, 
* while on the left side the entire mass of the hills, for miles in extent, is 
composed of the usual variety of igneous rocks. These incline in the 
opposite direction, northwest, 10° to 15°; so that this small stream, now 
not more than 4 feet wide and 6 inches in depth, has, at some period, had 
- sufficient power to cut its channel two hundred to four hundred yards 
wide, through the hardest rocks, 500 to 1,000 feet in depth, to the level 
of the Yellowstone, into which it flows. Hell-Roaring River is quite a 
large stream, rising high in the dividing range to the east, and flow- 
ing with tremendous impetuosity down the deep gorges, thus receiving 
its peculiar name. The mountains on either side are among the 
most rugged in the Yellowstone country, and seem to defy access. They 
come close down to the channel of the Yellowstone on the east side, 
so that traveling on that side is attended with great difliculty. On the 
west side the broad, high, irregular, step-like terrace, or rather group 
of foot-hills, 300 to 800 feet above the bed of the Yellowstone, is quite 
easily traversed, and a road for wagons could be made without much 
labor. There are some steep hills which, at the present time, appear 
formidable, but a careful exploration might bring to light a route that 
would avoid them mostly. . 

After crossing the high divide, between the drainage of Gardiner’s 
River and the group of little streams that flow into the Yellowstone on 
the west side, of which Tower Creek is the most conspicuous, we come 
to the region of wonderful ravines and cafions. Layers of basalt have 
been poured out over the basis rocks, of whatever age they may be, at 
different periods; at the sametime vast quantities of fragments of basalt 
were cemented together wéth a fine volcanic dust. In the process of 
wearing out the ravines and cafions on either side, hundreds of curious 
pinnacles and columns, resembling groups of Gothic spires, were carved 
out of the solid beds of basalt and breccia. On the east side of the Yellow- 
Stone, the sides of the mountain rise step-like, and, at different eleva- 
tions, the basalt has poured out and overflowed like the deposits of 
hot springs, except that the deposit is a dingy-black color. These out- 


78 GEOLOGICAL SURVEY OF THE TERRITORIES. 


flows seem to be so modern that it is doubtful if any important changes 
have taken place in the surface since they occurred. The river flows 
over its narrow rocky bed with great velocity. The Hast Fork enters the 
Yellowstone on the east side through a narrow granite cafion, and is a 
stream of considerable magnitude. In the spring season the quantity 
of water must be great, for the area drained by it is at least forty by 
twenty miles, where the snow falls in large quantities and remains a 
large portion of the year. About four miles above, Tower Creek enters 
the Yellowstone. On the west side, just at the lower end of the Grand 
Cation, within a few yards, is the mouth of Hot Spring.Creek. Along 
the shores, the hot water is oozing and boiling up through the soft mud, 
covering the surface with its peculiar deposits; one of the springs has 
a temperature of 127°. A strong smell of sulphuretted hydrogen per- 
vaded the atmosphere. The banks of the Yellowstone, on both sides, for 
thirty to fifty feet up from the water’s edge, have a most peculiar white- 
ness, with yellow portions, due to the deposits of old hot springs, which 
were very abundant here at some period. The few springs that remain’ 
are full of sulphuretted and carbonated hydrogen, forming a black car- 
bonaceous matter on the surface at times. There is also free sulphur, 
carbonate of lime, carbonate of iron, &c. It seems quite possible that 
the Carboniferous limestones do not exist beneath the basalts in this 
region, from the fact that there 
is not any great amount of eal- 
careous sediment. High up on 
the mountains, on the east side 
of the Yellowstone, 9,500 feet, 
there is a bluff wall of limestone 
4 like that near Warm Spring 
River, evidently the same 
white compact rock formed 
from deposits of hot springs 
probably during or near the 
close of the Pliocene period. 
Tower Creek rises in the high 
divide between the valleys of 
the Missouri and Yellowstone, 
and flows about ten miles’ 
through a caiion so deep and 
4 gloomy that it has very prop- 
Z erly earned the appellation of 
4) the “ Devil’s Den.” (Fig. 23.) As 
we gaze from the margin down 
| into the depths below, the little 
stream, as it rushes foaming 
over the rocks, seems like a 
white thread, while on the 
sides of the gorge the somber 
pinnacles rise up like Gothic 
spires. About two hundred 
yards above its entrance into 
the Yellowstone the stream 
pours over an abrupt descent 
of 156 feet, forming one of the 
most beautiful and picturesque 
falls to be found in any coun- 
DEVIL'S DEN, TOWER CREEK. try. The Tower Falls are about 


GEOLOGICAL SURVEY OF THE TERRITORIES. 719 


260 feet above the level of the Yellowstone at the junction, and they:are 
surrounded with pinnacle-like columns, composed of the volcanic brec- 
cia, rising fifty feet above the falls and extending down to the foot, 
standing like gloomy sentinels or like the gigantic pillars at the en- 
trance of some grand temple. One could almost imagine that the idea 
of the Gothic style of architecture had been caught from such carvings 
of nature. Immense bowlders of basalt and granite here obstruct the 
flow of the stream above and below the falls, and although, so far as we 
can see, the gorge seems to be made up of the volcanic cement, yet we 
know that, in the loftier mountains, near the source of the stream, true 
granitic as well as igneous rocks prevail. 

In the walls of the lower end of the Grand Cafion, near the mouth of 
Tower Creek, we can see the several rows of columns of basalt arrayed 
in a vertical position, and as regular as if carried and placed in the sides 
of the gorge by the hand of art. There is upon the surface a bed of vol- 
canic breccia, then a row of vertical columns, then the cement with hot 
spring deposits, then another row of columns. There are at least three 
different series of the columns, while above and below to the edge of the 
water are the volcanic and hot spring deposits. In the tongue that 
runs down between the junction of the East Fork and the Yellowstone, 
there is a singular butte cut off from the main range, which at once at- 
tracts the traveler’s attention. The basis or lower portion of the butie 
is granite, while the summit is capped with the modern basalt, and 
the débris on the sides and at the base is remarkable in quantity, and 
has very much the appearance of an anthracite ceal-heap. This butte 
will always form a conspicuous landmark, not only on account of its 
position, but also from its peculiar shape and structure. Just below 
the junction of the East Fork, abridge was constructed across the Yellow- 
Stone about a year ago, to accommodate the miners bound for the “ dig- 
gings” on Clark’s Fork. Itwasevidently built with aconsiderable amount — 
of labor and boldness, for the river flows with great rapidity along the 
narrow, rocky channel, and is about 200 feet in width. I make mention 
of this bridge in this connection from the fact that it is the first and only 
one as yet which has been erected across the Yellowstone River, and 
may in the future assume some historical importance. 

_ On the west side of the Yellowstone and west of Tower Falls, the 
basalt is quite massive, sometimes forming columns quite irregular in 
form and length, differing much from those on the opposite side. The 
benches and irregular step-like terraces along the Yellowstone on both 
sides, which are quite picturesque, are formed in part by the sliding 
down of masses of earth from the margins of the cafion. In the imme- 
diate valley there is a recent drift deposit of sand and bowlders, often 
stratified, made at a long period subsequent to the carving out of the 
main channel through the volcanic rocks. The’ stratification and fine- 
ie of the sediment would indicate still water, or moderately so, at 

east. ; pe 

Soon after leaving Tower Creek, our road diverged to the westward of 
the Yellowstone River and crossed the northern side of the rim of the 
basin proper, about a mile west of Mount Washburn, the highest peak in 
this portion of the range. We followed a well-worn path up the north- 
ern side, which led us up a’slope so gentle that we were able to ride our 
horses to the very summit. The ground is everywhere covered with 
fragments of basalt and conglomerate, and at one locality there was an 
abundance of fine specimens of chalcedony with malachite, (green car- 
bonate of copper.) The volcanic rocks of this region contain some fine 
specimens of mineral forms, of which silica is the base. There are grades 
of exquisite beauty. Agates are common. 


80 _ GEOLOGICAL SURVEY OF THE TERRITORIES. 


The view from the summit of Mount Washburn is one of the finest I 
have ever seen, and although the atmosphere was somewhat obscured by | 
smoke, yetan area of fifty to one hundred miles radius in every direction 
could be seen more or less distinctly. We caught the first glimpse of the 
great basin of the Yellowstone, with the lake, which reminded one much, 
from its bays, indentations, and surrounding mountains, of Great Salt 
Lake. To the south are the Tetons, rising high above all the rest, the mon- 
archs of all they survey, with their summits covered with perpetual snow. 
To the southwest an immense area of dense pine forests extends for one 
hundred miles without a peak rising above the black, level mass. A lit- 
tle farther to the southwest and west are the Madison Mountains, a lofty, 
grand, snow-capped range, extending far to the northward. Nearer and 
in full view, to the west commence the bold peaks of the Gallatin Range, 
extending northward as far as the eye can reach. ‘To the north we 
get afull view of the valley of the Yellowstone, with the lofty ranges 
that wall it in. Emigrant Peak, and the splendid group of moun- 
tains of which it is a part, can be clearly seen, and lose none of their 
marvelous beauty of outline, view them from what point we may. To 
the north and east the eye scans the most remarkable chaotic mass of 
peaks of the most rugged character, apparently without system, yet | 
sending their jagged summits high up among the clouds. Farther dis- . 
tant are somewhat more regular ranges, snow-covered, probably the 
Big Horn. But with all this. magnificent scenery around us from every 
-side, the greatest beauty was the lake, in full view to the southeast, 
set like a gem amid the high mountains, which are literally bristling 
with peaks, many of them capped with snow. ‘These are all of volcanic 
origin, and the fantastic shapes which many of them have assumed 
under the hand of time, called forth a variety of names from my party. 
There were two of them that represented the human profile so well that 
we called them the “Giant’s Face” and “Old Man of the Mountain.” 
These formed good landmarks for the topos py for they were visible 
from every point of the basin. 

Mount Washburn is composed entirely of the ustial igneous rocks. 
On the summits are piles of very hard, compact basalt, ‘cleaving into 
lamine, or in irregular blocks. All around on the sides of the mountain 
are immense accumulations of the usual voleanic breccia. The central 
mass was originally a volcanic cone, building up a crater with the com-” 
pact basalt, but throwing out in the surrounding or enveloping waters 
the fragments or dust which were cemented together all around on the 
sides, sometimes reaching very nearly to the summit. On the southeast 
side of the mountain a distinet anticlinal interval or opening is seen in 
the breccia. The south side inclines east 25°, and breaks off abruptly 
near the Grand Caiion, while the opposite side dips west 20°. Between 
this anticlinal and the caiion there is a bench five hundred feet below the 
summit of the mountain, which, I am convinced, formed the inner por- 
tions of the old crater, while the breccia composed the outer walls. To 
the southeast there is a grassy plateau ten to twenty miles in extent, 
immediately surrounded with dense forests of pine. We may say, in 
brief, that the entire basin of the Yellowstone is volcanic. I am not 
prepared to pronounce it a crater, with a lake occupying the inner por- 
tion, while the mountains that surround the basin are the ruins of this 
creat crater; but, at a period not very remote in the geological past, 
this whole country was a scene of wonderful volcanic activity. I regard 
the hot springs so abundant all over the valley as the last stages of 1 this 
grand scene. Hot springs, geysers, &c., are so intimately connected 
with what we usually term volcanoes ‘that. their origin and action 


GEOLOGICAL SURVEY OF THE TERRITORIES. 81 


admit of the same explanation. Both undoubtedly form safety-valves 
or vents for the escape of the powerful forces that have been gener- 
ated in the interior of the earth since the commencement of our pres- 
ent period; the true volcanic action has ceased, but the safety-valves 
are the thousands of hot springs all over this great area. I believe 
that the time of the greatest volcanic activity occurred during the 
Pliocene period—smoke, ashes, fragments of rock, and lava poured 
forth from thousands of orifices into the surrounding waters. Hundreds 
of cones were built up, fragments of which still remain; and around them 
were arranged by the water the dust and fragments of rock, the gjectamenta 
of these volcanoes, in the form of the conglomerate or breccia as we find 
it now. These orifices may have been of every possible form—rounded 
or oblong, mere fissures, perhaps, extending for miles, and building up 
their own crater rims as the hot springs build up their rounded, conical 
peaks or oblong mounds at the present time. It is not necessary to 
enter into the history and origin of either hot springs or volcanoes in 
this connection. The causes which have produced the phenomena here, 
either in the Pliocene period or the present, are the same all over the 
world, and have been favorite topics of discussion by men of science. 


CHAPTER V.* 


THE GRAND CANON—FALLS—HOT SPRINGS—YELLOWSTONE LAKE. 


We will now enter upon a description of the Yellowstone Basin proper, 
in which the greater portion of the interesting scenery and wonders is 
located. The term is sometimes applied to the entire valley, but the 
basin proper comprises only that portion inclosed within the remarkable 
ranges of mountains which give origin to the waters of the Yellowstone 
south of Mount Washburn and the Grand Cafion. ‘The range of which 
Mount Washburn is a conspicuous peak seems to form the north wall 
or rim, extending nearly east and west across the Yellowstone, and it 
is through this portion of the rim that the river has cut its channel, 
forming the remarkable falls and the still more wonderful caton.. The 
area of this basin is about forty miles in length. From the summit of 
Mount Washburn, a bird’s-eye view of the entire basin may be obtained, 
‘ with the mountains surrounding it on every side without any apparent 
break in the rim. This basin has been called by some travelers the 
vast crater of an ancient voleano. It is probable that during the Plio- 
cene period the entire country drained by the sources of the Yellow- 
stone and the Columbia was the scene of as great voleanic activity as 
that of any portion of the globe. It might be called one vast crater, 
made up of thousands of smaller volcanic vents and fissures, out of 
which the fluid interior of the earth, fragments of rock, and volcanic 
dust were poured in unlimited quantities. Hundreds of the nuclei or 
cores of these volcanic vents are now remaining, some of them rising to 
a height of 10,000 to 11,000 feet above the sea. Mounts Doane, Lang- 
ford, Stevenson, and more than a hundred other. peaks may be seen 
from any high point on either side of the basin, each of which formed a 
center of effusion. Indeed, the hot springs and geysers of this region, 
at the present time, are nothing more than the closing stages of that 
wonderful period of voleani¢ action that began in Tertiary times. In 
other words, they are the escape-pipes or vents for those internal forces 
which once were so active, but are now continually dying out. 


* An abstract of Chapters V and VI was published in the February and March aum- 
bers of the American Journal of Science. 


6GS8 


82 GEOLOGICAL SURVEY OF THE TERRITORIES. 


The evidence is clear that ever since the cessation of the more power- 
ful voleanic forces these springs have acted as the escape-pipes, but 
have continued to decline down to the present time, and will do so in the 
future, until they cease entirely. The charts accompanying this report 
will enable the reader to form a clear conception of the position and 
number of the most important springs in this basin, but an equal num- 
ber of the dead-and dying have been omitted. We may therefore con- 
clude that the present system of hot springs and geysers is only a feebler 
manifestation of those remarkable internal forces of the earth, which 
were so wonderfully intensified during the periods of volcanic activity, 
that they really present for our study a miniature form of volcanism. 
Even at the present time there are connected with them manifesta- 
tions of internal heat and earthquake phenomena which are well 
worthy of attention. While we were encamped on the northeast side 
of the lake, near Steamboat Point, on the night of the 20th of July, 
we experienced several severe shocks of an earthquake, and these 
were felt by two other parties, fifteen to twenty-five miles distant, 
on different sides of the lake. We were informed by mountain -men 
that these earthquake shocks are not uncommon, and at some sea- 
sons of the year very severe, and this fact is given by the Indians 
as the reason why they seldom or never visit that portion of the 
country. I have no doubt that if this part of the country should 
ever be settled and careful observations made, it will be found that 
earthquake shocks are of very common occurrence. 

Our trail passed over the rim of the basin on the south side of Mount 
Washburn, and the lowest point was 8,774 feet. In crossing this divide or 
rim, I saw, on the north side, some of the somber argillaceous sandstones 
that contain the deciduous leaves between Gardiner’s River and Tower ° 
Creek. After passing the “divide” we descended the almost vertical sides 
of the rim into the valley of Cascade Creek, at the level of 7,787 feet, or 
about 1,000 feet below the “divide.” Our trail was a tor tous one, to 
avoid the fallen timber and the dense groves of pine. The country im- 
mediately around the creek looked like a beautiful meadow at this sea- 
son of the year, (July 25,) covered with grass and flowers. Cascade 
Creek flows from the west into the Yellowstone, between the upper and 
lower falls. Just before it enters the Yellowstone, it flows over a series 
of ridges and breccia, making one of the most beautiful cascades in this 
region; hence the name of the little stream. Like all these rapids or 
falls, it is formed of the more compact basalt, resisting the wear of the 
atmospheric forces, while the breccia readily yields. As this little cas- 
cade is seen from the east branch of the Yellowstone, dividing up into a 
number of little streams and rushing down from ledge to ledge until it 
reaches the bed of the river, it presents a picture of real beauty. High 
up on Cascade Creek, almost a mile above its mouth, the channel is carved 
out of a kind of sedimentary volcanic sandstone, arranged in regular 
strata; most of it is so largely made up of worn fragments of obsidian 
and other igneous rocks that it might be called a pudding-stone. The 
natural sections in the channel of this creek aid us much in forming an 
idea of the extent of the modern lake deposit, which doubiless began 
in Tertiary times, and continued on up into or near the present period. 
The surface everywhere is covered with fragments of volcanic rocks, 
apparently quite modern, so that it presents ‘that peculiar appearance, 
which I have often alluded to, like the refuse about an old foundry. 

But the objects of the deepest interest in this region are the falls 
and the Grand Cafion. I will attempt to convey some idea by a de- 


e 


© 


GEOLOGICAL SURVEY OF THE TERRITORIES. 8 


scription, but it is only through the eye that the mind can gather 
anything like an adequate conception of them. As we approached 
the margin of the caiion, we could hear the suppressed roar of the falls, 
resembling distant thunder. The two falls are not more than one- 
fourth of a mile apart. Above the Upper Falls the Yellowstone flows 
through a grassy, meacow-like valley, with a calm, steady current, 
giving no warning, until very near the falls, that it is about to rush over 
a precipice 140 feet, and then, within a quarter of a mile, again te leap 
down a distance of 350 feet. Before proceeding further with a detailed 
description of the falls and caion, I may attempt to present what I 
believe to be the origin. For about a mile above the Upper Falls there 
is a succession of rapids in the river. The walls of the channel are not 
high, but are composed of massive basalt. Just along the Upper Falls 
there are five huge, detached blocks of basalt in and near the center of 
the channel. These show the force with which the water has rushed 
down the channel at some period. Just above the Upper Falls are two 
beautiful cascades, 20 to 30 feet high, and at the east one, the rocks so 
wall in the channel that it is not much more than 100 feet wide, and the 
entire volume of the water, which must form a mass 100 feet wide and 30 
feet deep, rushes down a vertical descent of 140 feet. There seems to 
have been a sort of a ridge or belt of very compact basalt that extended 
across the channel, so hard as to resist successfully atmospheric power, 
while below, the nearly vertical walls, which are composed of clay, sand, 
and bowlders, mingled with hot-spring deposits, seem to have readily 
yielded, and thus the river has carved out its channel. From any point 
of view the Upper Falls are most picturesque and striking. The entire 
volume of water seems to be, as it were, hurled off of the precipice with 
the force which it has accumulated in the rapids above, so that the mass 
is detached into the mest beautiful snow-white, bead-like drops, and as it 
strikes the rocky basin below, it shoots through the water with a sort of 
ricochet for the distance of 200 feet. The whole presents in the distance 
the appearance of a mass of snow-white foam. On the sides of the basalt 
wails there is a thick growth of vegetation, nourished by the spray 
above, which extends up as far as the moisture can reach. The upper 
portion of the walls of the cafion on the east side is composed of a coarse 
volcanic sandstone and pudding-stone, perfectly horizontal, and below 
are loose variegated clays and sands. There is no doubt that this 
deposit forms a part of the bed of the ancient lake in its enlarged extent, 
and that this deposit was made on the rugged, irregular basalt surface. 
In the mean time, there were occasional outtlows of igneous matter, and - 
the hot springs were operating in full force. The lake basin was closed 
at the lower end of the range of mountains that form the rim, and the 
river gradually forced its way through this rim, forming the Grand 
Caiion, draining the lake basin, and the falls were the result. There is 
all around the basin a sort of secondary shore in the form of a group of 
low, pine-covered _hilis, varying in height from 8,500 to 9,000 feet above 
the sea, while the highest ranges, 10,000 to 11,000 feet, constitute the 
primary rim. ‘The lower hills are made up mostly of the old lake deposit, 
and are either Pliovene or Post-Pliocene, probably both. 

But no language can do justice to the wonderful grandeur and beauty 
of the cation below the Lower Falls; the very nearly vertical walls, 
Slightly sloping down to the water’s edge on either side, so that from 
the summit the river appears like a thread of silver foaming over its 
rocky bottom; the variegated colors of the sides, yellow, red, brown, 
white, all intermixed and shading into each other; the Gothic columns 
of every form standing out from the sides of the walls with greater 


84 GEOLOGICAL SURVEY OF THE TERRITORIES. 


variety and more striking colors than ever adorned a work of human 
art. The margins of the cafion on either side are beautifully fringed 
with pines. In some places the walls of the cafon are composed of 
massive basalt, so separated by the jointage as to look like irregular 
mason-work going to decay. Here and there a depression in the sur- 
face of the basalt has been subsequently filled up by the more modern 
‘deposit, and the horizontal strata of sandstone can be seen. The de- 
composition and the colors of the rocks must have been due largely to. 
hot water from the springs, which has percolated all through, giving to 
them the present variegated and unique appearance. 

Standing near the margin of the Lower Falls, and looking down the 
cation, which looks like an immense chasm or cleft in the basalt, with 
its sides 1,200 to 1,500 feet high, and decorated with the most brilliant 
colors that the human eye ever saw, with the rocks weathered into an 
almost unlimited variety of forms, with here and there a pine sending 
its roots into the clefts on the sides as if struggling with a sort of un- 
certain success to maintain an existence—the whole presents a picture 
that it would be difficult to surpass in nature. Mr. Thomas Moran, a 
celebrated artist, and noted for his skill as a colorist, exclaimed with a 
kind of regretful enthusiasm that these beautiful tints were beyond the 
reach of human art. It is not the depth alone that gives such an im- 
pression of grandeur to the mind, but it is also the picturesque forms 
and coloring. Mr. Moran isnow engaged in transferring this remarkable 
picture to canvas, and by means of askillful use of colors something like a 
conception of its beauty may be conveyed. Atter the waters of the 
Yellowstone roll over the upper descent, they flow with greatrapidity over 
the apparently flat rocky bottom, which spreads out to nearly double its 
width above the falls, and continues thus until near the Lower Falls, 
when the channel again contracts, and the waters seem, as it were, to 
gather themselves into one compact. mass and plunge over the descent 
of 350 feet in detached drops of foam as white as snow; some of the 
large globules of water shoot down like the contents of an exploded 
rocket. It is a sight far more beautiful, though not so grand or impres- 
sive as that of Niagara Falls. A heavy mist always arises from the 
water at the foot of the falls, so dense that one cannot approach within 
200 or 300 feet, and even then the clothes will be drenched in a few 
moments. Upon the yellow, nearly vertical wall of the west side, the 
mnist mostly falls, and for 300 feet from the bottom the wall is covered 
with a thick matting of mosses, sedges, grasses, and other vegetation of 
the most vivid green, which have sent their small roots into the softened 
rocks, and are nourished by the ever-ascending spray. At the base and 
quite high up on the sides of the caiion, are great quantities of talus, and 
through the fragments of rocks and decomposed spring deposits may 
be seen the horizontal strata of breccia. (Fig. 24.) 

Before proceeding further, I might attempt to give what appears to 
me to be the origin of this wonderful natural scenery. This entire basin 
was once the bed of a great lake, of which the lofty range of mountains 
now surrounding it formed the rim, and the present lake is only a rem- 
nant. During the period of the greatest voleanic activity this lake was 
in existence, though its limits, perhaps, could not now be easily defined ; 
but it was at a later period inclosed within the rim. The basis rock is 
a very hard, compact basalt, not easily worn away by theelements. The 
surface is exceedingly irregular, and filling up these irregularities is a 
greater or less thickness of volcanic breccia and the deposits of hot 
Springs. Upon all this, in some localities, continuing up to the time of 
the drainage of this lake, were deposited the modern voleanic clays, sands, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 85 


sandstones, and pudding-stones, which reach an aggregate thickness of 
800 to 1,000 feet. Above the Upper Falls the Yellowstone flows over a 
hard, basaltic bed for sixteen miles from its outlet at the lake ; there is 
then an abrupt transition from the hard basalt to the more yielding 
breccia, so that the river easily carved out a channel through it; the 
vertical walls are clearly seen from below the falls, passing diagonally 
across therim. The Lower Falls are formed in the same way ; the entire 
mass of the water falls into a circular basin, which has been worn into 


ute 


—— 
a Ss 


‘SIT 


10 STTVA MAMOT GNV NONVSD LVAUD AHL 
‘Ve 


: 


“SJNOLSMOTISFHA AHL 


the hard rock, so that the rebound is one of the magnificent fea- 
tures of the scene. Below the Lower Falls the sides of the cafion show 
the material of which it is mostly composed. Where the river has cut 
its channel through the hard basalt, the irregular fissures, which un- 
doubtedly extend down, in some manner, toward the heated interior, are 
distinetly seen. Local deposits of silica, as white as snow, sometimes 
400 or 500 feet in thickness, are Seen on both sides of the Yellowstone. 
These also are worn into columns, which stand out boldly from the nearly 
vertical sides in a multiplicity of picturesque forms. The basis material 


86 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of the old hot-spring deposits is silica, originally as white as snow, but 
very much of it is tinged with every possible shade of color, from the 
most brilliant scarlet to pink or rose color, from bright sulphur to the 
most delicate cream. There are portions of the day when these colors 
seem to be more vivid, and the rugged walls of the cation stand out more 
in perspective, so that while the falls fill one with delight and admiration, 
the Grand Cafion surpasses all the others as the one unique wonder, 
without a parallel, probably, on our continent. We may conclude, there. 
fore, from the point of view presented above, that while the cation has 
somewhat the appearance of a great cleft or cation, it is simply a chan- 
nel carved by the river out of predeposited materials, after the 
drainage of the old lake-basin. The walls themselves, it seems to me, 
explain the manner in which the connection was formed from the surface 
with the heated interior, for they are seamed with the irregular fissures 
or furrows which pass up through the basalt and connect with the old 
hot-spring deposits. And so it is with the walls of the cation, all the 
way to the mouth of Tower Creek; sometimes we find the irregular ma- 
son-work of the basalt, then the breccia or the curiously variegated hot- 
spring formations, the whole covered to a greater or less extent with a 
later deposit from the waters of the old lake, which now appears in 
horizontal strata. ; 

As I have previously stated, the entire Yellowstone Basin is covered 
more or less with dead and dying springs, but there are centers or 
groups where the activity is greatest at the present time. Below 
the falls there is an extensive area covered with the deposits which 
extend from the south side of Mount Washburn across the Yellow- 
stone rim, covering an area of ten or fifteen square miles. On the 
south side of Mount Washburn, there is quite a remarkable group of 
active springs. They are evidently diminishing in power, but the 
rims all around reveal the most powerful manifestations far back in 
the past. Sulphur, copper, alum, and soda cover the surface. There is 
also precipitated around the borders of some of the mud springs a white 
effloresence, probably nitrate of potash. These springs are located on the 
side of the mountain nearly 1,000 feet above the margin of the canton, 
but extend along into the level portions below. In the immediate chan- 
nel of the river, at the present time, there are very few springs, and 
these not important. A few small steam vents can be observed only 
from the issue of small quantities of steam. One of these springs was 
bubbling quite briskly, but had a temperature of only 100°. Near it is 
a turbid spring of 170°. In the valley are a large number of turbid, mud, 
and boiling springs, with temperatures from 175° to 185°. There are a 
number of springs that issue from the side of the mountain, and the 
waters, gathering into one channel, flow into the Yellowstone. The num- 
ber of frying or simmering springs is great. The ground in many places, 
for several yards in every direction, is perforated like a sieve, and the 
water bubbles by with a simmering noise. There is one huge boiling 
spring which is turbid, with fine black mud all around the sides, 
where this fine black earth is deposited. The depth of the crater of 
this spring, its dark, gloomy appearance, and the tremendous force 
which it manifested in its operations, led us to name it the “ Devil’s 
Caldron.” There are a large number of springs here, but no true gey- 
sers. It is plainly the last stages of what was once a most remarkable 
group. Extending across the cafion on the opposite side of the Yellow- 
stone, interrupted here and there, this group of springs extends for sev- 
eral miles, forming one of the largest deposits of silica, but only here 
and there are there signs of life. Many of the dead springs are mere 


GEOLOGICAL SURVEY OF THE TERRITORIES. 87 


basins, with a thick deposit of iron on the sides, lining the channel of 
the water that flows from them. These vary in temperature from 98° 
to 120°. The highest temperature was 192°. The steam-vents are very 
numerous, and the chimneys are lined with sulphur. Where the crust 
can be removed, we find the under side lined with the most delicate crys- 
tals of sulphur, which disappear like frost-work atthe touch. Still there 
is a considerable amount of solid amorphous sulphur. The sulphur and 
the iron, with the vegetable matter, which is always very abundant 
about the springs, give, through the almost infinite variety of shades, a 
most pleasing and striking picture. One of the mud springs, with a basin 
20 by 25 feet and 6 feet deep, is covered with large bubbles or puffs con- 
stantly bursting with a thud. There are a number of high hills in this 
vicinity entirely composed of the hot-spring deposits, at least nine-tenths 
silica, appearing snowy-white in the distance; one of the wallsis 175 feet 
high, and another about 70 feet. They are now covered to a greater or less 
extent with pines. Steam is constantly issuing from vents around the base 
and from the sides of these hills. Thereis one lake 100 by 300 yards, with 
a number of bubbling and boiling springs arising to the surface. Near 
the shore is one of the sieve-springs, with a great number of small per- 
forations, from which the water bubbles up with a simmering noise; 
temperature, 1889. This group really forms one of the great ruins. 

We will now return to the falls, and pursue our way up the valley ot 
the Yellowstone to the lake. We wound our way among the dense 
pines that clothe the foot-hills, and, striking a game-trail, succeeded in 
avoiding the marshy bottoms of the river. Great numbers of small 
springs seem to flow out of the sides of the hills, and distribute them- 
selves over the bottom, finally draining into theriver. The deep snows 
which fall on the mountains, and continue the greater portion of the 
year, melt so gradually that these springs have a constant supply, ard 
during the summer the grass and flowers give to the lowlands a meadow- 
like appearance by the freshness and vividness of the colors. The river, 
by its width, its beautiful curves, and easy flow, moves on down toward 
its wonderful precipices with a majestic motion that would charm the eye 
of an artist. Some of the little streams which we crossed on our way 
up the river were full of fresh-water shells. Wherever the water stands 
for a time, the surface is covered with a yellow scum from the presence of 
iron. About five miles above the falls, on the east side of the river, we 
crossed a small stream which held a large amount of alum in solution, 
and on this account was appropriately named Alum Creek. This little 
stream is 2 feet wide and 2 inches deep, as clear as crystal, and, as it flows 
along through the rich grass, it would not be noticed by the traveler that 
it differed from any other stream, except by the taste. Ever since descend 
ing into the basin we have met with great quantities of a kind of obsidian. 
It seldom occurs in a compact, amorphous, crystalline mass, like opaque 
glass, but as an aggregate of small amorphous masses, easily disinte-. 
grating, so that the surface is covered with the small obsidian pebbles. 
The color is black or dull purplish-black. There are exposures here and 
there of the basalt also; some of it contains great quantities of rounded 
masses, like concretions, from the size of a pea to 10 mches in diameter; 
they seem to be little geodes, found in the igneous mass, lined inside 
with crystals of quartz. These masses are sometimes called “volcanic 
walnuts” by travelers. 

About ten miles above the falls, on the east side of the Yellow- 
stone, we came to a most interesting group of hot springs, named, 
in Lieutenant Doane’s report, the ‘Seven Hills.” The chart which 
accompanies this report will show the location of the hills and the 


$8 GEOLOGICAL SURVEY OF THE TERRITORIES. 


springs in relation to them. (Fig. 25.) The little stream on the east side is 
one of the sources of Alum Creek, and the springs that border show the 
origin of the alum that is held in solution in the waters, which hold their 
full strength until they flow into the Yellowstone. We approached this 


Fig. 25. 
aan" F 
QS 
wi Ve iy ‘ 
WS oF a  e& 
SPER ce SFr ayes? 
SSA Wy HAW OMS 
ee ==, \ A = = 
s Wy a WZ ES 
WWI. ge aN 
== WY 2 ow Mes 


— 


\ 


—— 
Se 


ZY 
A, 
Loy 


SSE ae 
LZ ee 
GLEE ZB 
WBE ZB 
Zi eee : 
agai == = 
SS Zt 
= Sz 
== 
— 
= 
oS 
+e Q(SulphurSpn: 


HN 


; % == 
a eee ot BS 
sf Hex = 
seit if es 
Ww" Hl vad Stelpphatr Spr * 
= . x Ct 
= 22) tt SWatione = 
= : , inner iz Ay} PR iS 
=e a Spry -@ am ay a NS 
= C Sore ras 
=a j Z 
wise i A wet 
RNS Botling Sulpeey bam Sp Gere FAN WH 
Ze Whitest Lert Z 
“agp a Se ‘: ; Atl Se 
ty, « Z 
ws 
“Mpg es 


SULPHUR AND MUD SPRINGS, CRATER HILLS, YELLOWSTONE RIVER, 8 MILES BELOW THE LAKE, 


group of springs on the west side, and the first spring that attracted our 
attention was located at the base of one of the white hills. It was a pow- 
erfal steam-vent, with the strong, impulsive noise like a high-pressure 


GEOLOGICAL SURVEY OF THE TERRITORIES. 89 


engine, and hence its name of Locomotive Jet. The aperture is about 
6 inches in diameter, a sort of raised chimney, and all around it were 
numerous small continuous steam-vents, all of which were elegantly 
lined with the bright-yellow sulphur. The entire surface was covered 
with the white siliceous crust, which gives forth a hollow sound beneath 
the tread; and we took pleasure in breaking it up in the vicinity of the 
vents, and exposing the wonderful beauty of the sulphur-coating on the 
inner sides. This crust is ever hot, and yet so firm that we could walk 
over it anywhere. On the south side of these hills, close to the foot, is 
a magnificent. sulphur-spring. The deposits around it are silica; but 
some places are white, and enameled like the finest porcelain. The thin 
edges of the nearly circular rim extend over the waters of the basin 
several feet, yet the open portion is 15 feetin diameter. The water is in 
a constant state of agitation. The steam that issues from this spring is so 
strong and hot that it was only on the windward side that I could ap- 
proach it and ascertain its temperature, 197°. The agitation seemed to 
_ affect the entire mass, carrying it up impulsively to the height of 4 feet. 
It may be compared to a huge caldron of perfectly clear water some- 
what superheated. Butitis the decorations about this spring that lent 
the charm, after our astonishment at the seething mass before us—the 
most beautiful scolloping around the rim, and the inner and outer sur- 
face covered with a sort of pearl-like bead work. The base is the pure 
white silica, while the sulphur gave every possible shade, from yellow to 
the most delicate cream. No kind of embroidering that numan art can 
conceive or fashion could equal this specimen of the cunning skill of na- 
ture. On the northeast side of the hills, extending from their summits, 
are large numbers of the steam-vents, with the sulphur linings and de- 
posits of the sulphur over the surface. These hills are entirely due to 
the old hot springs, and are from 50 to 150 feet in height. The rock 
is mostly compact silica, but there is almost every degree of purity, from 
a kind of basalt to the snow-white silica. Some of it isa real conglom- 
erate, with a fine siliceous cement inclosing pebbles of white silica, like 
those seen around the craters of some geysers. Although at the pres- 
ent time there are no true geysers in this group, the evidence is clear 
that these were, in former times, very powerful ones, that have built up 
mountains of silica by their overflow. The steam-vents on the side and 
at the foot of these hills represent the dying stages of this once most 
active group. Quite a dense growth of pines now covers these hills. 
They rise up in the midst of the plains, and from their peculiar white 
appearance are conspicuous for a great distance. At one point there is 
a steam-vent so hot that it is difficult to approach it, emitting a strong 
sulphurous smell, and within two feet of it there is a larger spring, boil- 
ing like a caldron. So far as I can determine, there is no underground 
connection of any of the springs with each other. Sometimes the rims 
of these craters, as well as the inner sides of their basins, have a 
beautiful papulose surface, the silica just covered with a thin veil of 
delicate creamy sulphur. At this locality are some very remarkable 
turbid and mud springs, on the south portion of this singular group, 
as can be seen by reference to the chart. One of them has a basin 20 
feet in diameter, nearly circular in form, and the contents have almost 
the consistency of thick hasty-pudding. The surface is covered all over 
with puffs of mud, which, as, they burst, give off a, thud-like noise, and 
then the fine mud recedes from the center of the puffs in the most per- 
fect rings to the side. This mud-pot presents this beautiful picture ; 
and although there are hundreds of them, yet it is very rare that the 
mud is just in the condition to admit of these peculiar rings. The kind 


90 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of thud is, of course, produced by the escape of the sulphureted hydro- 
gen gas through the mud. Indeed, there is no comparison that can 
bring before the mind a clearer picture of such a mud voleano than a 
huge caldron of thick mush. The mud is so fine as to have no visible 
or sensible grain, and is very strongly impregnated with alum. For 
three hundred yards in length and twenty-five yards in width, the val- 
ley of this little branch of Alum Creek is perforated with these mud- 
vents of ail sizes, and the contents are of all degrees of consistency, from 
merely turbid water to a thick mortar. The entire surface is perfectly 
bare of vegetation and hot, yielding in many places to a slight pressure. 
I attempted to walk about among these simmering vents, and broke 
through to my knees, covering myself with the hot mud, to my great 
pain and subsequent inconvenience. One of the largest of the turbid 
springs has a basin with a nearly circular rim 20 feet from the margin 
to the water, and 40 feet in diameter. There are two or three cen- 

Fig. 26 


cjg UH 


tnx ~~ 2 Pee 
ENS ete OE, 
a ae Sie we ae 
4 LH SIMS eee y 
_ Vlad Valores Hee annie oc 
Suiphsiee eee * 
ae SS OS eas LZ; 
ease Ue “y 
PE aw SF de eS bat SoG Ga 
eS ey BN MU GEGES a r1ttry PT as rape 
ee eae yiin, * a 
foe ae 6 2 Sri eR \ UY 
3 Spt, “siligg ANU 
Sw Mey, oh EE 
: € byt Ree YY 
rere te Sah, = WZ 
2 Lee aw" 4 ZB 
wy Bees Pail + = 
ee 3 Steg@ debs. vi 
*, ke a Sin Pate 
a ge _aunlttly PX F 
Cary 2 fe ae rs Ey : 
Se FAK Ge Zz ‘ 
fb oe Sl 
ane EL as 
ae aw Hy iy ee 
A nr * rede WS 
4% Pa oa “dummy: 
RES eye 
4 | Grotigy, o/ f 
» xy Z “ 
aa ee Slate So 2 Aw tua 
Ah eve =. m 
Mise (te, are Sulph.des w59" f 
: ne are mans nasi WH MAU ¥ mt 
“Ts Mudd ole. eS i ae vt 
we FS eae i tie mie tr 2 : ae 
ae ay Pa ¥ ayer of 
“ns *% ay 
xs BUSE 2” 
Ke oy K 
OM 4 a : =i, pe 
me R e Ey OMOEA Sure s7gh = 7% 
‘ Nc le id 
cL oF Pues veya’ TZ 
ee ee CE W AES = 
ee ee TE ale ae ® MES. RRS Ee ri 
i EP ANT ak Wile eK x 
s i & |S rk YO RA 
ey, PF El Rare wohl Cte atlrsoar ack 
¥oR Yat RE ne nena 
Feet £ 
( ! 1 {a}} -_ 3800 


= SSS eS 


SULPHUR AND MUD SPRINGS, YELLOWSTONE RIVER, 6 MILES BELOW THE LAKE. 
ters of ebullition; temperature, 188°. We may say, in conclusion, in re- 
gard to this group, that while there is a great deal of activity in the 


GEOLOGICAL SURVEY OF THE TERRITORIES. 91 


springs at the present time, the remains of the dead springs cover the 
greater portion of the surface, and those which are more active present 
the evidence of far greater power in past times. 

From this point we proceeded to the sulphur and mud springs near 
the banks of the Yellowstone, about two miles above, in a straight line. 
In the interval we passed the remains of many old springs, but none 
above the ordinary temperature; but the deposit seemed to cover the 
suriace more or less. The old lake deposit is also quite well shown in 
the rather high, step-like hills which extend back for five miles from 
the river to the basaltic rim of the great basin. We pitched our camp 
on the shore of the river, near the Mud Springs, thirteen and a half 
miles above our camp, on Cascade Creek. The springs are scattered 
along on both sides of the river, sometimes extending upon the hill-sides 
50 to 200 feet above the level of the river. The chart will show the lo- 
cation of the principal ones. (Fig. 26.) Commencing with the lower or 
southern side of the group, I will attempt to describe a few of them. The 


Fig. 27. 


GE i tie 


ee a 


MUD CALDRON, YELLOWSTONE RIVER. 


first one is a remarkable mud-spring, with a well-defined circular rim, com- 
posed of fine clay, and raised about 4 feet above the surface around, and 
about 6 feet above the mud in the basin. The diameter of the basin is 
about 8 feet. The mud is so fine as to be impalpable, and the whole may 
be most aptly compared to a caldron of boiling mush. The gas is con- 
stantly escaping, throwing up the mud from a few inches to 6 feet in 
height; and there is no doubt that theré are times when it is hurled 
out 10 to 20 feet, accumulating around the rim of the basin. (Fig. 27.) 
About twenty yards distant from the mud-spring just described, is a sec- 
ond one, with a basin nearly circular, 40 feet in diameter, the water 6 or 
8 feet below the margin of the rim. The water is quite turbid, and is 
boiling moderately. Small springs are flowing into it from the south 
side, so that the basin forms a sort of reservoir. The temperature, in 
some portions of the basin, is thus lowered to 98°. Several small hot 
springs pour their surplus water into it, the temperatures of which are 
180°, 170°, 184°, and 155°. In the reservoirs, where the water boils up 


\ 


92 GEOLOGICAL SURVEY OF THE TERRITORIES. 


with considerable force, the temperature is only 96°, showing that the 
bubbling was due to the escape of gas. The bubbles stand all over the 
surface. About 20 feet from the last, is a small mud-spring, with an 
orifice 10 inches in diameter, with whitish-brown mud, 182°. Another 
basin near the last has two orifices, the one throwing out the mud with 
a dull thud about once in three seconds, spurting the mud out 3 or 4 
feet; the other is content to boil up quite violently, occasionally throw- 
ing the mud 10 to 12 inches. This mud, which has been wrought in 
these caldrons for perhaps hundreds of years, is so fine and pure that 
the manufacturer of porcelain-ware would go into ecstacy at the sight. 
The contents of many of the springs are of such a snowy whiteness that, 
when dried in cakes in the sun or by a fire, they resemble the finest 
meerschaum. The color of the mud depends upon the superficial de- 
posits which cover the ground, through which the waters of the springs 
reach the surface. They were all clear hot springs originally, perhaps 
geysers even; but the continual caving in of the sides has produced a 
sort of mud-pot, exactly the same as the process of preparing a kettle 
of mush. The water is at first clear and hot; then it becomes turbid 
from the mingling of the loose earth around the sides of the orifice, 
- until, by continued accessions of earth, the contents of the basin become 
of the consistency of thick musb, and, as the gas bursts up through it, 
the dull, thud-like noise is produced. Every possible variation of con- 
dition of the contents is found, from simple milky turbidness to a stiff 
mortar. On the east side of the Yellowstone, close to the margin of the 
river, are a few turbid and mud springs, strongly impregnated with alum. 
The mud is quite yellow, and contains much sulphur. This we called a 
mud-sulphur spring. The basin is 15 by 30 feet, and has three centers 
of ebullition, showing that deep down underneath the superficial earth, 
there are three separate orifices, not connected with each other, for the 
emission of the heated waters. Just opposite this spring, on the west 
side of the river, is a singular vertical wall of rather coarse basalt, which 
looks like huge mason-work, separated by the jointage into nearly rec- 
tangular blocks. The wallis about 50 feet high, and is important in 
giving us an exposure of the basis rock 

of this region. The surface is mostly 
covered with a thick deposit of clay of 
modern origin; but the heated waters 
must pass a great distance through 
these igneous rocks, dissolving from 
them great quantities of silica and 
other chemical materials which we find 
so abundantly around the springs. 
The next interesting spring we called 
the Grotto. (Fig. 28.) A vast column 
of steam issues from a cavern in the 
side of the hill, with an opening about 
5 feet in diameter. The roaring of 
the waters in the cavern, and the noise 
of the waves as they surge up to the 
mouth of the opening, are like that 
man cree of the billows lashing the sea-shore. 
GROTTO, YELLOWS mon EyuiveR The waterlisvas clear)j2s)erystal, and 
the steam is so hot that it is only when a breeze watts it aside for a 
moment one can venture to take a look into the opening. From the 
tremendous roaring and dashing of the waters against the sides of the 
cavern, one would suppose that the amount must be great, but not 


Fig. 28. 


GEOLOGICAL SURVEY OF THE. TERRITORIES. 93 


more than ten gallons an hour pass out of it in the little channel that 
leads from it. Oneither side of the cavern, where the steam strikes, 
there is a thin coating of vegetation of a deep, vivid green. In the 
vicinity of these springs, various kinds of grasses, rushes, mosses, and 
other plants grow with a surprising luxuriance. Over the “grotto” 
there is a thickness of about 30 feet of stratified clay, with a fine texture. 
Located higher up on the side of the hill, not far from the grotto, is the 
most remarkable mud-spring we have ever seen inthe West. The rim 
of the basin is formed by the loose mud or clay thown out of the orifice. 
It is about 40 feet in diameter at the top, but tapering down to half the 
size, and is about 30 feet deep. It Heian diol) ae 

may not improperly be called the 
Giant’s Caldron. (Fig. 29.) It does 
not boil with animpulse like most of 
the mud-springs, but with a con- 
stant roar which shakes the ground 
for a considerable distance, and may 
be heard for half a mile. A dense 
column of steam is ever rising, fill- 
ing the crater, but now and then a 
passing breeze will remove it for a 
moment, revealing one of the most 
terrific sights one could well imagine. 
The contents are composed of thin 
mud in a continual state of the most 
violent agitation, like an immense 
caldron of mush submitted to a con- 
stant, uniform, but most intense heat. 
That it must have had its spasms oft GIANT’S CALDRON, YELLOWSTONE RIVER. 
ejection is plain from the mud on the trees for a radius of a hundred 
feet or more in every direction from the crater, and it would seem that 
the mud might have been thrown up to the height of 75 or 100 feet. 
This ejection of the mud must have occurred within a year or two, from 
the fact that small pines near the crater are still green, though covered 
with mud. Small pines 4 inchesin diameter and 20 to 30 feet in height 
have been permitted to grow within 10 and 20 feet of the rim, and, 
therefore, the throwing of the mud to any distance from the crater must 
occur very seldom. A few of the trees near the crater, which were 
covered with the mud, were kiiled by the heat, but others that are lit- 
erally festooned with it, have only the small branches and leaves de- 
stroyed. All the indications around this most remarkable caldron 
show that it has broken out at a recent period; that the caving in of 
the sides so choked up the orifice that it relieved itself, hurling the 
muddy contents over the living pines in the vicinity. The steam which 
arises from this caldron may be seen for many miles in every direction. 
There are a large number of springs all around, some boiling and others 
quiet, some of which are of great size and quite worthy of attention, 
but we will describe only one more in this group. At the south side 
there is a large basin, 200 by 300 feet, containing within the rim three 
boiling springs. The two smaller ones on the south side of the rim 
are separated from each other by a partition of about 4 feet, and 
are mud-springs, and boil up in the centers ‘at this time 6 or 8 inches. 
Their basins are 10 and 20 feet in diameter. The third basin is the 
largest, with a rim 30 by 50 feet, and is atrue geyser; when not in oper- 
ation, the fine mud settles to the bottom and the water becomes clear. 
This is constantly but moderately agitated, not sufficiently to stir up the 


SURVEY OF THE TERRITORIES. 


GEOLOGICAL 


04 


deep through 


lero 


times, throwing the water to the height of 20 to 30 feet. (Fig. 30.) The 


the fine clay, which carries the surplus water from the crater to the river. 
Ihis is a true intermittent spring. J uly OS and 29 it played several 


mud at the bottom. A channel has been formed 8 feet 


MUD GEYSER. 


GEOLOGICAL SURVEY OF THE TERRITORIES. a5 


impression among the mountain-men was, that this isa periodic spring, and 
played once in six hours precisely. In order to test this belief, I directed 
my assistant, Mr. Campbell Carrington, with one non-commissioned offi- 
cer of the escort, to return from our camp on the lake, and note minuteley 
the movements of this spring for twenty-four hours in succession. The 
following interesting report was made by Mr. Carrington: 

‘¢ We arrived at the mud-geysers ten minutes after 9 o’clock a. m., 
July 1. The pool was calm, with the exception of the little boiling bub- 
bles that are always on its sur- —- -; 
face. In circumference it 
measures nearly 100 feet. 
While selecting a place to 
camp, unsaddling our horses, 
&e., we heard a loud, hissing 
noise, aS an escape of steam. 
Hurrying to the geyser, I saw 
a wave about three feet in 
height rise and die away to the 
left; three similar ones fol- 
lowed in quick succession. It 
then, with a dull, heavy sound, 
accompanied by dense col- 
umns of steam, suddenly burst 
up to the height of 20 feet. It 
continued in action for the 
space of fifteen minutes, when 
it ceased flowing as suddenly 
as it had commenced. The av- 
erage height of this flowing was 
about 15 feet, although some 
jets reached fully 30. Five 
minutes after the eruption, the 
pool measured 25 feet in cir- 
cumference and 3 in depth, 
where before it was 100 feet in 
circumference and 11 in depth. 
Ten minutes after (at 9.45 a. 
m.) I noticed that it was slowly 
commencing to rise again. It 
continued to do so until twen- 
ty minutes after one, (1.20 p. 
m.,) when it began to boil near 
the center, a black formation 
making a ring around the boil- 
ing part. This boiling gradu- 
ally increased in violence, last- 
ing twenty minutes; it then suddenly stopped, and a wave 2 or 3 feet 
in height arose, dying away to the left, and the flowing then took place 
as before described. Average height of this flowing, 15 feet ; duration, 
20 minutes. 

“ This rising, falling, and overflowing took place eight times in twenty- 
four hours, the circumstances connected with each one being almost 
exactly the same. Appended below is a table of the time and length of 
flowings: 


lan 


"rE 31g 


*“ANVI ANOLSMOTTIAA 


“ Time of flowings. 
“Arrived at 9.10 a.m. 


“First flowing, 9.20 a. m. to 9.35 a.m.; length, 15 minutes, 


y 


96 GEOLOGICAL SURVEY OF THE TERRITORIES. 


“Second flowing, 1.30 p. m. to 1.50 p. m.; length, 20 minutes. 
“Third flowing, 5 p. m. to 5.15 p.m.; length, 15 minutes. — 

- “Fourth flowing, 8.30 p. m. to 8.50 p. m.; length, 20 minutes. 
“Fifth flowing, 12.30 p. m. to 12.45 p. m.; length, 15 minutes. 
“ Sixth flowing, 4a. m. to 4.15 a. m.; length, 15 minutes. 
“Seventh flowing, 7.30 a. m. to 7.45 a. m.; length, 15 minutes. 
“‘ Highth flowing, 11 a. m. to 11.10 a. m.; length, 10 minutes. | 


“Total length of time, 26 hours. Aggregate time of flowings, 3 hours 
and 15 minutes. Average length of flowings, 15 minutes and 373 
seconds.” 

On the 28th of July we arrived at the lake, and pitched our camp on 
the northwest shore,in a beautiful grassy meadow or opening among 
the dense pines. The lake lay before us,a vast sheet of quiet water, of a 
most delicate ultramarine hue, one of the most beautiful scenes I have 
ever beheld. (Fig. 51.) The entire party were filled with enthusiasm. The 
great object of all our labors had been reached, and we were amply paid 
for all our toils. Such a vision is worth a lifetime, and only one of such 
marvelous beauty will ever greet human eyes. From whatever point of 
view one may behold it, it presents a unique picthre. We had brought up 
the frame-work of a boat 12 feet long and 34 feet wide, which we covered 
with stout ducking, well tarred. On the morning of the 29th, Messrs. 
Steyenson and Elliott started across the lake in the Anna, the first 
boat ever launched on the Yellowstone, and explored the nearest island, 
which we named after the principal assistant of the expedition, who was 
undoubtedly the first white man that ever placed foot upon it. 

Our little bark, which is well shown in figure 32, whose keel was the 
first to plow the waters of the most beautiful lake on our continent, 
and which must now become 
historical, was named by Mr. 


Miss Anna lL. Dawes, the 
amiable daughter of Hon. H. 
L. Dawes. My whole party 
were glad to manifest, by this 
slight tribute, their gratitude 
to the distinguished states- 
man, whose generous sympa- 
thy and aid had contributed 
so much toward securing the 
appropriation which enabled 
them to explore this marvel- 
ous region. 

Usually in the morning the 
surface of the lake is calm, but 
toward noon and after, the 
= = waves commence to roll, and 
THE **ANNA.”’ the white caps rise high, some- 
times four or five feet. Our little boat rode the waves well; but when 
a strong breeze blew, the swell was too great, and we could only venture 
along the shore. This lake is about twenty-two miles in length from 
north to south, and an average of ten to fifteen miles in width from east 
to west. It has been aptly compared to the human hand; the northern 
portion would constitute the palm, while the southern prolongations or 
arms might represent the fingers. The map itself, which shows all the 
soundings, will best convey to the eye of the reader its peculiar form. 
There are,some of the most beautiful shore-lines along this lake that I 


Stevenson in compliment to. 


. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 9% 


ever saw. Some of the curves are as perfect. as if drawn by the hand 
of art. Our little boat performed most excellent service. A suitable 
frame-work was fastened in the stern for the lead and line, and with the 
boat, a system of soundings was made that gave a very fair idea of the 
aver age depth of the lake. The greatest depth discovered was 300 feet. 
It is fed by the snows that fall upon the lofty ranges of mountains that 
surround it on every side. The water of the lake has at all seasons 
nearly the temperature of cold spring-water. The most accomplished 
swimmer could live but a short time in it; the dangers attending 
the navigation of such a lake in a small boat, are thereby greatly in- 
creased. The amount of vegetable matter in the lake is enormous. At 
certain seasons of the year, the waves throw upon the shore a windrow 
of drifted vegetation. Frequently, after a strong wind, the water of the 
entire border of the lake for several yards from the shore will be filled 
with minute fragments of vegetation broken by the waves, rendering 
the water quite impure. Several species of plants grow far out into the 
deep waters, and I have seen them growing thickly on the rocks at the 
bottom 10 to 20 feetin depth. We were able to discover but one species 
of fish in the lake, and that was trout, weighing from two to four 
pounds each. Most of them are infested with a peculiar intestinal worm, 
which has been described by Dr. Leidy, in a subsequent portion of this 
report, aS a new species, under the name of Dibothrium cordiceps. 
I directed Mr. Campbell Carrington, naturalist to the expedition, to pre- 
pare the following notes on this subject : 

THE TrRouT oF YELLOWSTONE LAKE.—AJthough I searched with: 
diligence and care in the neighboring streams and waters around the 
Yellowstone Lake, I was unable to find any other species of fish except 
the salmon-trout; their numbers are almost inconceivable; average 
weight, one pound and a half; color, a light-gray above, passing into a 
light-yellow below ; the fins, all except the dorsal and caudal, vary from 
a bright-yellow to a brilliant orange, they being a dark-gray and. heavily 
spotted. A curious fact, and one well worthy of the closest attention 
of an aspiring icthyologist, is connected with these fish, namely, that 
among their intestines, and even interlaced in their solid flesh, are 
found intestinal worms, varying in size, length, and thickness, the 
largest measuring about six inches in length. On cutting one of these , 
trout open, the first thing that attracts your attention, are small oleagin-. 


ous-looking spots clinging to the intestines, which, on being pressed: . 


between the fingers, break and change into one of these worms, small, 
it is true, but nevertheless perfect in its formation. From five or six 
up to forty or fifty will be found in a trout, varying, as I said before, in 
size, the larger ones being found in the solid flesh, through which they 
work their way, and which, in a very short while, becomes almost pu- 
trid. Their number can cenerally be estimated from the appearance ot 
the fish itself; if many, the trout is extremely poor in flesh, th color 
changes from. the healthy gray to a dull pale, it swims lazily a the 
top of the water, losing all its shyness and fear of man; it becomes 
almost savage in its appetite, biting voraciously at anything thrown in 
the water, and its flesh becomes soft and yielding. If, on the other 
hand, there are few or none, the flesh of the fish is plump and. solid, 
and he is quick and sprightly in all his motions. I noticed that it was 
almost invariably the case when a trout had several scars on the out- 
side of his body that it was free from these worms, and I therefore took 
it for granted that the worms finally worked their way through the 
body, and the flesh, on healing up, leaves the scars on the outside; the 
trout, in a short while, becomes plump and healthy again. The ‘only 


7GS8 


98 GEOLOGICAL SURVEY OF THE TERRITORIES. 


way that I can account for the appearance of these worms is, that the 
fish swallows certain bugs or insects, and that the larve formed from 
them gradually develop into the full-grown intestinal worm. But even — 
if this explanation of their appearance was received, does it not seem a 
little strange that while all the fish above the Upper Falis are more or 
less affected by them, that below and even between the Upper and 
Lower Falls such a thing as wormy trout is never heard of. Being 
unable, with my limited knowledge of ichthyology, to arrive at any 
definite conclusion in regard to their appearance, l submit the above 
facts to those who are more learned than myself in this most interesting 
branch of natural history.” ' 

I will not, in this place, present a detailed description of this wonder- 
ful lake, but simply notice it in general terms. As we proceed from 
point to point around its borders, its most prominent features will be 
described. We regard the lake-basin as due in part to erosion. All 
along its margin are high banks and terraces, composed of a modern 
stratified deposit, passing up into an aggregation of sand, pebbles, &e., 
which is not unfrequently cemented into a tolerably firm conglomerate. 
These deposits, which are made up of eroded volcanic rocks, have in 
some instances the white appearance and somewhat the composition of 
Pliocene clays, marls, and sands of the other lake-basins along the Mis- 
souri and the Lower Yellowstone. In the northern portion of the basin, 
these deposits reach a thickness of 300 to 600 feet, and must be of the 
later Pliocene era and even extending down to the present time. The two 
lakes were then connected, although probably never completely united. 
The belt of mountains that separated them was about four miles in 
width. I have estimated that, since the period of volcanic activity, the 
depth of the lake has been about 500 feet greater than at present, the 
shore-lines being then high upon the side of the surrounding moun- 
tains. During the time of the greatest voleanic action, the waters 
must have covered the loftiest peaks; for many of them are composed 
of the breccia or conglomerate in aregularly stratified condition. This 
breccia surrounds the highest voleanic cones or nuclei, as Mounts 
Doane, Stevenson, &c. The area occupied by the lake is now gradu- 
ally but very slowly diminishing. Our course around the lake was 
along the west side, from the outlet of the Yellowstone. Our purpose 
was:to make a careful topographical and geological survey of the shore-, 
line, to note every bay or indentation, and every little stream that 
poured ‘its waters from the surrounding mountains. Messrs. Elhott 
and Carrington made a careful topographical and pictorial chart of the 
shore-lines as well as the islands from our boat, so that it is hardly 
passible for the work to have been made more complete. The imme- 
diate lake shores are paved with the volcanic rocks which form the rim 
_ that surrounds it. Fragments of obsidian prevail, but there are great 
quantities of the breccia and trachyte also. The immediate rim of the 
basin on the west side is marked by a peculiar series of step-like 
ridges, which are not continuous for long distances, but appear to be 
the result of slides. The surface waters from the snows have doubt- 
less gradually undermined vast portions of the mountain sides, and 
they have fallen down at different levels, leaving between the detached 
mass and the parent mountain a depressed interval of greater or less 
width, in which there is a meadow-marsh or small lake. These steps 
or terraces are covered with a dense growth of pines; and even on 
the sides of the mountains, which are so steep that it was impossi- 
ble to ascend them with our animals, small groups of pines cling 
to the thin soil. On account of the almost vertical sides of this 


’ 
t 


GEOLOGICAL SURVEY OF THE TERRITORIES. 99 


mountain, and the rounded form of the summit, it has received the 


name of the Hlephant’s Back. Obsidian, voleanic breccia, and trachyte 
constitute the varieties of rocks for the most part. The general 
elevation is about 10,000 feet. There are no streams of any size flow- 
ing into the lake on the west side, and therefore there are no depres- 
sions of any importance in the rim that would form passes over the 
divide. It is around the lake and among the mountains that border it 
that we encounter the most formidable impediments to traveling. The 
autumnal firessweep among the dense pine forests, and the winds then lay 
them downin every possible direction. Sometimes a perfect net-work, 6 feet 
in height, is formed of these tall pines, which are 100 to 150 feet in length, 
and it was with the utmost difticulty that we could thread our tortuous 
; way among them. We attached a pair of shafts 
to the fore-wheels of one of our ambulances for 
the odometer, and these were probably the first 
wheels that ever were taken into this little-known 
region. The labor of taking this single pair of 
wheels over such a country was extremely great, 
both for the man who managed them and the 
animal that drew them. Sometimes this fallen 
timber will extend from five to ten miles con- 
tinuously. (Fig. 33.) We adopted the plan of 
making permanent camps at different points 
around the lake while explorations of the country 
in the vicinity were made. Our second camp 
was pitched at the hot springs on the southwest 
arm. This position 
commanded one of 
the finest views of 
thelake and its sur- 
roundings. While 
the air was still, 
scareely a ripple 
could be seen on 
the surface, and the 
varied hues, frem 
the most vivid 
green shading to 
ultramarine, pre- 
sented a picture 

that would have 
| stirred the enthu- 
siasm of the most 
fastidious artist. 
Sometimes in the 
latter portion of the 
day a strong wind 
would arise, arous- 


face into waves like 


camp there is a 
thick deposit of the 
Silica, which has been worn by the waves into a bluff wall 20 feet 
high above the water. It must have originally extended far out 
into the lake. The belt of springs at this place is about three miles 


ing this calm suv | 


the sea. Near our. 


100: | GEOLOGICAL SURVEY OF THE TERRITORIES. 


long and half a mile wide. The deposit now can be seen far out in the 
deeper portions of the lake, and the bubbles that arise to the surface in 
various places indicate the presence at the orifice of a hot spring 
beneath. Some of the funnel-shaped craters extend out so far into the 
jake that the members of our party stood upon the silicious mound, 
extended the rod into the deeper waters, and caught the trout and 
cooked them in the boiling spring without removing them from the 
hook. ‘These orifices, or chimneys, have no connection with the waters 
of the lake. The hot fumes commg up through fissures extending down | 
toward the interior of the earth are confined within the walls of the 
Fig. 34. orifice, which are mostly circular 
Sh By and beautifully lined with delicate 
porcelain. Figure 34 exhibits a 
~ fine cross-section of one of these 
=== funnel-shaped basins. Wherever 
ous the heated water issues from ori- 
7, fices at the bottom of the lake the 
I} temperature is changed. The 
deposit of silica along the shore 
has. been built up in extremely 
thin layers, or lamine, never more 
than the sixteenth of an inch in 
thickness. The shore, for several 
yards in width, is covered to a 
La SSr considerable thickness with the 
SECTION OF LARGE SPRING, YELLOWSTONE LAKE. disintegrated silica, so that’ in 
walking over, it seems like treading on the broken fragments of washed 
shells along the sea-shore. ° Much of the débris has been cemented 
together, so that there are large masses scattered around, like the 
Florida coquina. : 
The question will arise as to the time that must have elapsed during 
the deposition of this thick bed of silica. We may take the position 
that no new groups of springs break out, or have done so in modern 
times. Isolated springs connected with groups may form new openings, 
however. We may, therefore, start from the period of the cessation of 
the voleanic forces of this region, and trace the history down to the 
present time. Very numerous groups have gone through with their 
period of activity, and now nothing but a mass of ruins is left. It is 
quite possible that this group mani- = 
fested its greatest power when the ee 
‘lake extended all over the belt. The = 
waters of the lake have undoubtedly 
receded from the area occupied by 
this belt of springs within a compara- 
tively recent period. We may say that 
the deposition of the beds, so far as 
is shown by any evidence we can 
gather at this time, has probably oe- 
cupied one or two thousand years. “2343 
The springs of this group are very * 
numerous, of great variety and inter- . 
est, but there are no true geysers. 
Some of these are what I would call 
pulsating springs; that is, the water 
rises and falls in the orifice with great recularity once in two or three 
seconds. There are also a great number of mud-springs high up on the 


we 


MUD PUFF, YELLOWSTONE RIVER. 


Approximate La’ 


. Long! 


Compiled and. drawn. by E.Hergeshelmer from 
field notes and. sketches of A.Schonborn BH, WEllvott 


Si 
as 


Wd 


110° 20° 


\ ANWR 
" AWW } 
a 


S 


\ 


BN 
rw 


ANG 


Me 
' 
AN 


AM 


NARS 


SS HIN 
\ WS NY 
Wie 


wrt 


AZ 


ne Pua 


vata Sani 39 36 


Department of the Interior 


U.S.Geolopical Survey of the Territories 
YELLOWSTONE LAKE 
WYOMING TERRITORY 


Surveyed by the Party in charge of: 
F.V. HAYDEN 


US.Geologist 


Ve 


ING 
wish HN 


Vigil to os 
i ! 
WE MU hin iace 
nl i KK 1) 


MBI Ath 
S Ain 


nr tn 


| 
| 
| 


GEOLOGICAL SURVEY OF THE TERRITORIES. 101 


_ bank, where the orifice comes up, a considerable distance, eigenen the 
soft superficial clays. The constant thud may be heard at our camp night 
and day from half a dozen of these mud- puffs. (ig. 35.) They have built 
up a large number of small circular mounds about 2 feet high. These 
springs do not differ essentially from the others which have been described. 

There are some two hundred or three hundred in all, of all sizes, and of 


variable temperatures. Some of them are 50 feet in diameter, aud when — 


sounded with a lead showed a depth of 40 to 50 feet. One of them was as 
clear as crystal, and the funnel-shaped basin was 45 feet in depth. So 
clear was the water that the smallest object could be seen on the sides of 
the basin, so that, as the breeze swept across the surface, the ultramarine 
hue of the transparent depth in the bright sunlight was the most daz- 


zlingly beautiful sight I have ever beheld. There were a number of ~ 


these large clear springs, but not more than two or three that exhib- 
ited all those brilliant shades, from deep-sea green to ultramarine, in 
the sunlight. The surface in some places is covered with a most singu- 
lar. substance, which seems to have been precipitated by the overflow of 
the springs; it is very prettily variegated, every shade of green, yellow, 
or pink and rose color, but not as vivid as in some other localities. 
The deposit is about two inches in thickness, and breaks easily; it 
seems to the touch like jelly; it is largely vegetable, without doubt 
composed of diatoms. 

Underneath this silicious deposit, and along the shore of the lake on 
either side of this group of springs, are fine exposures of the strata of 
the modern lake deposit which I have so often alluded to. Sandstones, 
pudding-stones, and indurated clays, all formed of decomposed vol- 
canic rocks, present fine exposures. They extend high up on the bor- 
ders of the lake. Within halfa mile of this camp there is a small 
lake, hidden among the dense forests, abéut a mile in length, and halt 
a mile wide, and perhaps 30 or 40 feet higher than the main lake. It 
seems to occupy a depression, and, though “entirely isolated at present, 
was once, no doubt, a portion of the great lake. I believe that the 
rivers and lakes, large and small, which are distributed among the 
dense forests around the lakes, are simply fragments, that have “been 
~ eut off by the decrease of the area occupied by the old lake basin. 
- There are a few hot springs near Heart Lake, one of which is a moder- 
ate-sized geyser, but the group is not one of much importance. 


CHAPTER VI. 


FROM YELLOWSTONE LAKE TO THE GEYSER BASINS OF FIRE-HOLE 
RIVER, AND RETURN. 


On the morning of July 31, I detailed a small party from our camp on 
the northwest shore of the lake to make the examination of the far- 
famed geyser basin of the Fire-Hole River. Mr. Schonborn, topographer, 
Mr. Elliott, artist, and Dr. Peale, mineralogist, accompanied me. We 
took a southwesterly course, intending to strike some of the branches 
of the Madison, and follow them down until we came to the springs. 
Having no guide, we became inyolved in the net-work of fallen timber, 
which at times threatened to obstruct our passage altogether. We 
traveled thirty-one and one-half miles that day, and at least twelve of 
them were among the fallen pines, where we were obliged to wind our 
way wherever we could find the prostrate trees low enough for our 


/ 


102. GEOLOGICAL SURVEY OF THE TERRITORIES. 


mules to pass over them. Now and then we would come out into an 
open glade, and start on at a brisk pace with fresh hope, when we 
would come again to a belt of this remarkable net-work of fallen pines. 
In all our journey we found but two kinds of rock, the black obsidian 
and tke usual trachyte. At one point, soon after leaving camp, we . 
found a most singular natural bridge of the trachyte, which gives 
passage to a small stream, which we called Bridge Creek. There 
is barely room across it for a trail about two feet wide, which is 
used only by herds of elk that are passing daily. The descent on 
either side is so great that a fall from it would be fatal to man or beast. 
Hivery few minutes we met witha group of dead or dying springs; very 
few of them contain water at the present time, but steam was issuing 
from hundreds of vents. There was one locality where the deposit cov- 
ered several acres that presented a most attractive picture. The entire 
area was thickly covered with conical mounds of various sizes, ranging 
in diameter from a few inches to a hundred feet or more, and these cones, 
or hillocks, were full of orifices from which steam was issuing. All 
these little chimneys, or orifices, were lined with the most brilliant crys- 
tals of sulphur, and, when the heated crust was removed, we found the 
- under side adorned in the same manner. The basis of the deposit was 
silica, as white as snow; but it was variegated with every shade of yel- 
low from sulphur, and with scarlet or rose color from oxide of iron. In 
the distant view the appearance of the whole country may be not un- 
aptly compared to a vast lime-kiln in full operation. Most of the 
country passed over has been washed into rounded hills from 50 to 200 
feet in height, composed of the whitish, yellow, pinkish clays and sands 
of the modern lake deposits. This deposit seems to prevail, more or 
less, all around the rim of the basin, reaching several hundred feet above 
the present level of the lak@. At another locality there was quite a 
large stream of hot water, formed by the overflow of a group of springs. 
One of the springs was constantly throwing up a column of water sev- 
eral feet. In this deposit there was a large amount of calcareous mat- 
ter, which is quite unusual in the Yellowstone Basin. We know, how- 
ever, that there are patches of the Carboniferous limestone here and 
there, remnants of the great series of strata that once covered the entire 
region. There is no doubt that if sufficient time was given to explore 
all the country about the sources of the Yellowstone, Missouri, and 
Snake Rivers, great numbers of other groups of springs of greater or 
less importance would be found, which, as yet, have never been seen by 
humaneye. Fortunately for us, in our wanderings we struck the sources 
of the East Fork of the Madison instead of those of the Fire-Hole, and, 
in consequence, saw many fine springs and much interesting country 
which would otherwise have escaped our attention. 

Crossing the divide, we at once descended a steep declivity 1,000 teet 
into a valley about ten miles below the extreme source of the Hast Fork, 
and there camped for the night. The next morning, August 1, there 
was a heavy frost and ice a sixteenth of an inch thick. The ther- 
mometer frequently falls to 26° during the months of July, August, and 
September. The Hast Fork, near the point where we struck it, is 
about 30 feet wide and, on an average, 10 feet deep. The water flows 
with great velocity, is quite warm, 60° to 70°, at one camp 78°, and is 
fed almost entirely by warm or hot springs. ‘The entire valley, from its 
source to its junction with the Madison, extending over an area twenty- 
five miles long and an average of half a mile in width, is covered with the 
siliceous deposits of the hot springs, ancient or modern. The bed of the 
stream is lined with the white silica, and the valley itself looks like an 


GEOLOGICAL SURVEY OF THE TERRITORIES. 103 


alkali flat. The springs which issue from the base of the mountains on 
either side cause the bottom to be marshy or boggy, in many places 
rendering the traveling difficult. The plateau ridges which wall the 
valley in on either side rise to the height of 1,000 to 1,200 feet, and are 
covered with a dense growth of pines, not large, seldom more than 24 
to 30 inches in diameter, averaging not more than 10 inches, but rising 
as straight as an arrow to the height of 100 to 150 feet, and growing 
so thickly together that it was with great difficulty we couid pass among 
them with our pack-animals. 

Among the foot-hills on the south side of the East Fork, about two . 
miles above our camp, we found quite an interesting group of springs 
in a more or less active state. The basis material of the deposit is the 
silica, snowy white; but here and there, are quite extensive deposits of 
sulphur. All the steam vents are lined with sulphur, and the little 
streams which flow along the valley with the aggregated waters are lined 
with the silica, or tinged with the most delicate cream color. There are 
perhaps thirty or forty springs in this group. I will note a few of them: 
1. A sulphur spring, 128°. 2. Boiling spring witha circular basin 5 feet 
in diameter, 172°. 3. Animpulsive spring that rises and falls about once 
a second with a jerking noise, 192°. 4. Throws out quite a stream 
of water, 12 inches wide and 2 inches deep; the basin and channel 
are most delicately lined with sulphur, 182°. 5. A boiling sulphur 
spring, 189°. 6. A boiling spring, 199°. 7. 183°. There are a great 
number of steam vents with the orifices lined with sulphur. Underneath 
the crust also are found crystals of sulphur of a vivid yellow. We were 
not able to explore this stream to its source in the high plateau, but 
there are undoubtedly many of these groups of springs which we did 
not see. We followed the valley down to thé Fire-Hole Basin, about six 
miles, and found scattering springs all the way. At one point we found 
the temperature of the water of the creek 76°. It wasremarkably clear, 
but it was insipid, like ordinary water that has been boiled. But the 
abundance as well as the luxuriance of the vegetation in and around the 

-stream was almost marvelous. 

About two miles below our first camp, we passed a pretty little stream 
flowing down from the hills, with the channel lined with a deticate veil 
of creamy sulphur. We followed it up the valley a half a mile and came 
to another group of springs similar to those just described. There 
were a number of steam vents, with the same variety of delicate linings 
and shades of coloring. In 
some of the springs iron pre- 
dominates over the sulphur, 
and to these we gave the name 

of Iron Springs. In others 
the sulphur is in excess, and 


Fig. 36. 


those we called Sulphur ye, Se 
. a Cle: Sia 
Springs. We passed springs yy 
ne Wi |\ ss ¥a4 


Tt NN ae 
—— 


of various kinds and temper- 
ature every few yards, on either 
side of the creek ; some depos- 
ited great quantities of iron, 
others sulphur, but most of 
them large quantities of both. 
The grades of coloring are as varied, though not as vivid. The basins of 
the springs are of a great variety of shapes; the tendency, however, is 
to a circular form. The basin of one spring is funnel-shaped, circular, 5 


feet in diameter, the water as clear as crystal, and 30 feet in depth. 2. 


~~ 
. 


MUD POT, LOWER FIRE-HOLE BASiIin. 


U 
\ 


104 GEOLOGICAL SURVEY, OF THE TERRITORIES. 


With a funnel 24 feet in diameter, circular, tapering down to four inches 
in diameter, with the sides lined with a delicate white enamel, like por- 


celain, a most beautiful spring, 170°. 38. Oblong basin 5 by 15 feet, 158°, — 


clear water, unknown depth. 4. Mud-spring, 12 inches in diameter, 
bubbling like mush, 190°. (Fig. 36.) There are many more which lie 
along the margin of the stream, the raised craters dotting the surface in 
many places. Some of them have a temperature as low as 112°, 116°, 
125°, and yet are constantly but slightly agitated by the bubbles rising 
to the surface, so that they might be classed as bubbling springs. Our 


- second camp, on the East Fork, August 2 and 3, comes within the 


limit of the chart of the Lower Geyser Basin, just below the thickest 
group on the south side of the same stream. 

Early in the morning of the 3d, we commenced the survey of the group 
of springs near our camp. In the description of the springs of this 
entire basin, I will refer to the chart, and the course of our examina- 
tions may be traced with great ease. We described briefly each spring, 
ascertained its temperature, and located it topographically. In the 


morning the steam ascends from over a hundred orifices, reminding one 


at once of Mr. Langford’s comparison of a factory village. 

I will here give short specific descriptions of the most important and 
characteristic springs of this group, and then pass on to the Fire-Hole 
Valley. 1. Clear water, bubbling, basin 8 feet in diameter, 4 feet 
deep, silica, iron, and some sulphur, 125°. 2. Bubbling up slightly, 4 
feet in diameter, 6 feet deep, no rim, 112°. 3. Silica and iron very 
abundant, 189°. 4. Bubbling most beautifully, basin 2 by 3 feet, with 
small steam orifices all around, extensive overflow of water, 176°. 5. 
Small but elegantly ornamented, 12 by 18 inches, silica and iron, 
with green vegetable mattér. 6. Beautifully scalloped orifice or funnel, 
2 by 3 feet, the thin siliceous shell or crust projects over the funnel 
all around. 7. A large and beautiful spring, circular, 15 feet in diame- 
ter, 5 feet deep, with a thick deposit of iron all around the sides of the 
basin and on the surface where the surplus water flows, 125°. 8. Two 


springs near together, 142° and 134°, with much iron, with beautiful ' 


rim, 6 feet in diameter, with funnel-shaped orifices; second one with 
basin 10 by 15 feet, 10 feet deep, water clear as crystal. 9. Orifice 
runs straight down to an unknown depth, 4 feet in diameter, 169°. 
Leaves of trees in the basin are frosted ail over with silica as white as 
snow. The delicate bead-like embroidery over the inner surface of the 
basin, as seen through the clear waters, is a marvel of beauty. 10. A 
scolloped rim, much ornamented, 197°, a kind of spouting geyser; the 
water rises up in the orifice, boils violently for a few moments, and then 
sinks downagain. 11. Continually throws up its contents 6 to 12 inches, 


192°, 12. Boils with a suppressed gurgle, boiling up about 4 inches, | 


shoots up at times 6 to 10 inches, a small locomotive spring. 13. The 
most beautiful of all in this group, 128°, main basin 10 by 15 feet, water 
marvelously. transparent, of a most delicate blue. As the surface is 
stirred by the passing breeze, all the colors of the prism are shown, 
literally a series of rainbows. We called the most delicately colored 
springs, Prismatic Springs. In the basin yet to be described, are several 
of these prismatic springs of marvelous beauty, and the striking vivid- 
ness of the colors, Lieutenant Doane has aptly likened to the stage 
representations of ‘‘ Alladin’s Cave,” and the “‘ House of the Dragon Fly.” 
I was at once reminded of the wonderful coloring produced on the stage 
at one of the modern spectacular exhibitions, but nothing ever con- 
ceived by human art could equal the peculiar vividness and delicacy 
of coloring of these remarkable prismatic springs. The inner sides are 


NCCT 

dl i 

mend 

> itt mee \ ‘ 
NH AN TE AN 

ee 

i 


Xt} 
ANY Tes a 


ey 
a 
iN 

\ 


\h 
i 
: 


y ‘ 
07, WN 


iin 
pi 


\) i} iJ 
Hai} NY 
S Ne i] NN 
i i) TN 
\Y 


——=- 
= 


OF 
Se 


5a 


YY 
THN 
ui \N 
1 MN 


1 WAY 


EB 
. eZ 


2 


\' 
the 


es x : 
> b55) 


- Pl 
. ‘ aX RA Hl 
SM ue 


Ss . 
S atts 


WA 
HN) 


ee ee 


ae ain ta at an 


ih 
AN SEO. ee 
HAIRS ry in 1) 
R Wii } . 
\ 


if ANN 


“a AN iy 
iN a 


NMRASS 

HAN ae 
H Wie h am 
Se 


Sai 
A 
RQ \\ 


an hea Sia 
AW 
Ps Wome, fn 


Sy PANS i : SAN Na) C3 


ty iy 


% 
Tif} 


Wes 
we 


© 
We . 
ey 


Me 
WW 
NN NU 


DEPARTMENT OF THE INTERIOR 


U.S.GEOLOGICAL SURVEY OF THE TERRITORIES 


“LOWER GEYSER BASIN 
Wil FIRE HOLE RIVER 


WYOMING TERRITORY 


ei Surveyed by the Party in charge of 
F.V.HAY DEN 
US.Geologist 
187) 


Compiled and drawn from field notes and skotchus of 
ASchonborn oy E.Hergesheimer 


Yords 


——— 


ee eo ee eee oe 


| 
| 
) 
| 
| 


ene SSO 


ee 


ob ei Sa 


GEOLOGICAL SURVEY OF THE TERRITORIES. 105 


covered with the snow-white silica, which in the beauty and complete- 
ness of the ornamentation surpasses the most intricate embroidery or 
frost-work. About a mile south of the Hast Fork, on the head of 
-@ little stream that flows into the Fire-Hole River, is another of these 
beautiful prismatic springs, which we called the Rainbow Springs. 
A thin delicately ornamental rim of silica surrounds a basin 6 feet in 
diameter, filled to the margin with perfectly clear water, and as the morn- 
ing sunlight falls upon it, it reflects all the colors of the prism, 156°. 
Before leaving the group on the East Fork I will allude to a few more 
that present some peculiarities. One spring keeps up an irregular spout- 
ing. It commences quite strong and violent for about a minute, throw- 
ing the water up about two feet, then it recedes into its crater with a 
kind of cavernous gurgle, 193°. Another small geyser operates con- 
stantly with a kind of subdued gurgle, 178°. Another gives forth a sup- 
pressed, low, continuous gurgle, like that of a kettle of boiling mush, 
193°. Not unfrequently there are three, and even five orifices in a single 
basin, totally unconnected with each other. Sometimes one of them 
will be perfectly quiescent while the others are in operation, and some- 
times all are going at thesametime. Sometimes a dead or dying spring 
will be in close proximity to an active geyser, or a calm spring, with a 
temperature of 180° or 185°. Those springs that have a temperature 
of 180° and upward, present the delicate bead or frost work of silica on the 
inner sides of the basin, but when it is diminished to 150°, or below, a 
thick coating of iron is deposited. Many of the old springs have much 
the appearance of huge tan-vats. In some of the basins the leathery 
lining of the sides becomes torn into fragments, which wave to and fro at 
every movement of the waters. These leathery masses, which are per- 
fectly fragile in texture, like pulp in the water, become hard like pieces 
of bark when dry, and are blown about by the wind. It is probably 
composed of diatoms aggregated together, as the vegetable scum upon 
a stagnant pool and covered, and perhaps the texture filled, with the 
particles of oxide of iron. Between the East Fork and the Fire-Hole 
Branch, a tongue or ridge extends down for a short distance from the 
main range, composed mostly of a gray or yellowish-gray siliceous ma- 
terial; evidently an old hot-spring deposit. The trachytic basalt also 
crops out here and there, and, up in the higher portions of the mountains, 


Fig. 37. 


CRATER OF THUD GEYSER IN LOWER FIRE-HOLE IMMEDIATALY AFTER ERUPTION, LOWER GEYSER BASIN. ~ 


prevails altogether. The broken hills that make up this ridge show, 
however, that the history of these springs dates far back to the period 
of voleanic activity, for the spring-deposits—conglomerates, volcanic 
breccia, and trachyte—are all mingled together. High up in the hills, on 
the south side of the ridge, are a few springs, which, in the early morn- 
ing, send up large columns of steam. } 

We then passed over an area of a mile in width, covered with a 


106 GEOLOGICAL SURVEY OF THE TERRITORIES. 


white crust, with a few scattered springs, mostly dead. The first 
group does not differ materially from those described on the East Fork. 
The aggregated waters form a little stream, which flows westward into 


—— 


———— 
——" 


ie 
“va 
f i 
ma 
19 
Kl a 
alli t 
H i) i) 
Wy " fe: 
i Aya S 
Wt ~% 
| Bite f | 
Hi k u 
AYA SY 
i ote 
net i ql 
r Gi Hh 
f fy t 
in 
1) Bayh 
)\ 
EV) 4\ Hs 
’ \ 
mith + 
a 5 
1 @ ‘he 
a 
CH 4 
hyatet i 
Pe a 
q 
Bo Hye 
ay DS 
H Wali i 
ANS 4 
Ys)! 4 
‘ fs!) a 
Ht 4 
{ ( 
: i 
| | i 
i H vi 
ne 
ii A 
y i 
dg U 
a i: 
i , 
hi i, 
A a Ye iN 
= An ‘y 
B| iY 
f 
\ a 
1 mR) E 
Aine 4 
i a) 
WH DT a) 
Aig fi B i 
f Se MTT AR & 
aH 4 
H Ky 
i iy 
NY Br 
ig im’ a 
Cs) ie | 
ig f 
RU UR i 
he wiles @ 
" PH eA hs By 
p { 
HY 
A. 
‘ 
‘ | 
I 
i 
! 
i 
HOH 
' 
i i 
ih 
i jy it 


FOUNTAIN GEYSER, LOWER FIRE-HOLE, 


a small lake in a 
grove of pines; 
thence southwest 
into the Fire-Hole 
River. (Fig. 37.) 
One of the springs 
we named the 
Thumping or Thud - 
Geyser, from the 
dull, suppressed 
sound whichis given 
off as the water rises 
and recedes. The 
orifice has a beauti- 
fully scalloped rim, 
with small basins 
around it, 185°. 
There is also a long 
fissure-spring, the 
opening 40 feet long, 
4 feet wide, and 10 
feet deep, clear as 
erystal, 175°. Also 
a large basin nearly 
circular, 50 feet in 
diameter, with a 
number of huge 
apertures, some of 
which throw the wa- 
ter up 30 feet. From 
one orifice the water 
shoots up continu- 
ally 4 to 6 feet. All 
around this geyser- 
group are several 
smaller springs con- 
tinually bubbling. 
There are also: a 
number of reser. 
voirs once in an act- 
ive state. There are 
large numbers of 
small geysers, some 
constantly shooting 
up 2 to 10 feet; oth- 
ers In a Violent state 
of ebullition, rising 
and falling ; the lat- 
ter might be called 
pulsating. springs. 
There is one beauti- 


ful spring, with a basin so large that it looks like asmall lake, 25 by 30 
teet, and one can look from the margin down into its clear depths for over 


GEOLOGICAL SURVEY OF THE TERRITORIES. 107 


30 feet and behold a fairy-like palace, adorned with more brilliant 


colors and decorations than any structure made by human hands. 


South of the Thud 
Geyser, as laid 
down on thechart, 
there is one large 
basin, 150 feet in 
diameter, with a 
crater within the 
rim 25 feet in di- 
ameter. From this 
inner orifice the 
entire mass of wa- 
ter is thrown up 
30 to 60 feet, fall- 
ing back into it, in 
detached glob- 
ules, like silver. 
There is a rim 
around the inner 
crater 3 feet high. 
The vast column 
of water as it 
shoots up, spreads 
out in falling back, 
likea natural foun- 
tain, so that it 
overflowsthe inner 
rim for a radius of 
10 feet. (Fig. 38.) 
A short distance 
south of the Foun- 
tain Geyser is one 
of the most re- 
markable mud- 
pots in the Fire- 
Hole Valley. (Fig. 
39.) The diameter 
within the rim is 
40 by 60 feet, and 
forms a vast mor- 
tar-bed of the fin- 
est material. The 
surface is covered 
with large puffs, 
and as each one 
bursts the mud 
spirts upward sev- 
eral feet with a 
suppressed thud. 
The mud is an im- 
paipable, siliceous 
clay, fine enough, 
it would seem, for 


S‘aand anw 


“ATOH-AUIA WAMOT 


Wi Hah Ul 


iN 
i. fy 
a 
Mir 


ay 
y 


SN 
HUE DAR NY 


the manufacture of the choicest ware. The colors are of every shade, 
from the purest white to a bright, rich pink. The surface is covered 


108 GEOLOGICAL SURVEY OF THE TERRITORIES. 


with twenty or thirty of these puffs, which are bursting each second, 
tossing the mud in every direction on to the broad rounded rim. There 
are several other mud-puffs in the vicinity, but they do not differ ma- 
terially from the last, except in size. Within a few feet of the mud- 
spring, there is a large clear spring, 40 by 60 feet, with perhaps fifty cen- 
ters of ebullition, filled with the rusty leathery deposit, and all around 
the basin where the waters overflow there is an txtensive deposit of the 
iron. The temperature is 
140°. About one-fourth 
of a mile west of the large 
mud-pots are some exten- 
Sive fissure-springs, one of 
them 100 feet long and of 
variable width, 4 to 10 
feet. These appear to be 
merely openings in the 
erust or deposit which 
covers the entire surface. 
Quite a large stream flows 
from this spring. Many 
of the springs seem to re- 
main full to the rim of the 
crater, and are in a con- 
tinual state of greater or 
less ebullition, and yet no 
water flows from them. 
Others discharge great 
quantities. The aggregate 
of the surplus water usu- 
ally forms a good sized 
stream, as is shown on the 
map. In this group are a 
few springs that have pre- 
cipitated a small amount of 
sulphur, the first observed 
in the Fire-Hole Valley. 
(Fig. 40.) Silica and iron 
seem to be the dominant 
constituent in nearly all 
the deposits. There are 
numerous springs that de- 
posit a curious black sed- 
iment like fine gun-pow- 
der, and send forth a very 
disagreeable odor. On 
the southeast side of the 
basin, it will be seen by 
reference to the chart, that 
there is a long group of 
springs extending high up 
into the mountains. This is a mostinteresting group, and many of them 
are of the largest size. There are not many geysers, and none of the 
first class, yet nearly all of them are in a more or less intense state of 
ebullition, shooting up a column of water varying from a few inches to 
8 or 10 feet. Many of them are surrounded with a deposit tinged with 
the brightest of pink and rose tints from the oxide of iron. Theaggre- 


tyr . 7 : 
OVERFLOW DOWN RAVINE FROM STEADY GEYSER, UPPER GEYSER BASIN. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 109 


gated waters leave the little lake, and flow down with considerable 
rapidity toward the Fire-Hole, by steps or terraces; each step or ter- 
race forms a pool with its beautiful scalloped rim, from the notched 


“NISVd UASATD AAMOT “NIVINDAOGT IVYUALIALIHIUV 
"1b B14 


Pret in ae ' 
edges of which the water flows on to successive terraces. In one of the 
Streams, the channel of which is about two feet wide and one foot deep, 
the water was filled with a plant with a yellowish-pink base, bordered 
with a very fine green silky fringe, and these fringes, or cilia, were per- 


110 GEOLOGICAL SURVEY OF THE TERRITORIES. 


* : 
petually vibrating with the flowing waters. Except that they were a 
rich vegetable green, these fringes had the form and texture of the 
finest cashmere wool. The luxuriant growth of vegetation in and 
along the borders of these little streams was a wonder of beauty. 
The whole view was there superior to anything of the kind I had 
seen. In this group greatly is one cone with the top broken off, 18 
inches high, 4 feet in diameter, with an aperature at the top 18 
inches in diameter, in a constant state of ebullition. From the 
. form of the crater 
we called this the 
Bee-Hive. In the 
lower basin there 
are very few of the 
raised craters, 
but mostly coni- 
cal, funnel-shaped 
basins, with rims 
of various forms. 
The majority of 
them are circular 
or nearly so. All 
around the Bee- 
Hive for several 
feet the surface is 
ornamented with 
pearly tubercles of 
silica, from the 
size otf a pea to 
three inches in di- 
ameter. The val- 
ley is filled with 
Springs up to its 
very source, and 
those springs 
which burst . from 
the mountain side 
800 feet above the 
sea have tempera- 
tures respectively 
of 166°, 175°, and 
180°. On the south 
side of the cation, 
| flowing down the 
SS Fag Sol mess, almost vertical side 
< a i Aiiks of the mountain, 
ate there was a little 
cool spriug so imbedded in its bright green carpet of moss that it 
could hardly be seen. With great difficulty we managed to climb up 
the mountain side, and, clearing away the moss, obtained the first 
water that we could drink for eight hours. In all of our examination 
during the day we had not found a drop of water of sufficiently low 
temperature to take into our mouths, though there were hundreds 
of the most beautiful springs all around us. We were like Coleridge’s 
mariner in the great ocean, ‘‘ Water, water everywhere, but not a drop 
to drink.” There is every variety of form here to the basins of the 
springs. One isa fine boiling spring with a nearly circular rim 5 by 


LOWER GEYSER BASIN. 


WHITE DOME, 


GEOLOGICAL SURVEY OF THE TERRITORIES. Lt 
8 feet, running straight down beyond the reach of vision. Another 
is funnel-shaped, tapering down to a mere aperture, with the thin 
scalloped rim projecting over the water all around for several inches. 
Some have no water flowing from them; others send forth a stream 
two feet wide and six inches deep. ‘These springs vary in temperature 
all the way from 197° to 140°. About half of the springs were not 
considered worthy of attention and are not located on the chart. In 
the lower portions of this group, there is one of the handsomest foun- 


Awe Nii ies 
th 


a i ba 
ee 
' 


———— 


AN NAA 
i 


Ae 


: vi 1a 


‘i ice 
eee 
i 


i bs ! 


| TAM 


ies 


| 
{ 


aug 


“HIOH-AvdiA NAMOT UASADD AQGVALS 


tain-springs. The basin is most elegantly scalloped, nearly circular, 
25 feet in diameter, with vertical sides to an unknown depth. The 
entire mass of the water is at times most violently agitated, and, over- 
flowing the sides of the basin, passes off in a kind of terrace pools or 
reservoirs to the main stream, producing a system of architecture out 
of silica similar to that of the calcareous springs on Gardiner’s River. 
(Fig. 41.) The gay colors, from bright pink to delicate rose, are well 
Shown. Near this fountain is one of the elevated craters, which we 


112 GEOLOGICAL SURVEY OF THE TERRITORIES. 


called the White Dome Geyser. (Fig. 42.) ‘The broad mound is 15 feet; 
high, and upon this is a chimney about 20 feet in height. The steam 
issues steadily from the top like a high-pressure engine. 

Barly in the morning of August 30, the valley was literally filled with 
columns of steam, ascending from more than a thousand vents. I can 
compare the view to nothing but that of some manufacturing city like 
Pittsburgh, as seen from a high point, except that instead of the black 
coal smoke, there are here the white delicate clouds of steam. (Fig. 43.) 
Small groups or solitary springs that are scattered everywhere in the 
woods, upon the mountain-sides, and which would otherwise have 
escaped observation, are detected by the columns of steam. It is evi- 
dent that some of these groups of springs have changed their base of 
operations within acomparatively recent period; for aboutmidway on the 
east side of the lower basin there is a large area covered with a thick, 
apparently modern, deposit of the silica, as white as snow, while stand- 
ing quite thickly all around are the dead pines, which appear to have 
been destroyed by the excessive overflow of the water and the increased 
deposition. These dry trees have a most desolate look; many of them 
have fallen down and are incrusted with the silica, while portions that 
have fallen into the boiling springs have been reduced to a pulp. This 
seems to be one of the conditions of silicification, for when these pulpy 
masses of wood are permitted to dry by the cessation of the springs, the 
most perfect specimens of petrified wood are the result. In one instance 
a green pine-tree had fallen so as to immerse its thick top in a large hot 
basin, and leaves, twigs, and cones had become completely inerusted with 
the white silica, and a por- 


s 


Sac tion had entered into the cel- 

yeas Nal lular structure, so that when 

v : removed fromthe water, and 

‘ dried in the sun, very fair 

fe : \ i } specimens were obtained. 

lm eo ] Members of my party ob- 

( Oe are Re yy, / tained specimens of pine 

2 es Sige cones that were sufficiently 
oe (Nee silicified to be packed away 


among the collections. 
In order that we might get 
a complete view of the 
Lower Geyser Basin, from 
some high point, we madea 
trip to the summit of Twin 
Buttes, on the west side of 
the basin. From the top 
of one of these buttes, which 
; SON GIER: bcageaaoamg is 630 feet above the Fire- 
Hole River, we obtained a bird’s-eye view of the entire lower por- 
tion of the valley, which was estimated to be about twenty miles long 
and five miles wide. To the westward, among the mountains, were a 
number of little lakes, which were covered with a huge species of water- 
lily, Nuphar advena. The little streams precipitated their waters in the 
most picturesque cascades orfalls. One of them was named by Colonel 
Barlow the Fairy Fall, from the graceful beauty with which the Jittle 
stream dropped down a clear descent of 250 feet. It is only from a high 
point that it can be seen, for the water falls gently down from the lofty 
overhanging cliff into a basin at the foot, which is surrounded by a 
line of tall pines 100 to 150 feetin height. The continual flow of the 


ey 


cities hn 
ene 


DEPARTMENT OF THE INTERIOR 


U.S.GEOLOGICAL SURVEY OF THE TERRITORIES 


UPPER GEYSER BASIN | 
FIRE HOLE RIVER 


WYOMING TERRITORY j 


[eridian 


Magnelic 


Surveyed by the Party in charge of 
F.V. HAYDEN 
U.S. Geologist 


1a71 


Compiled and drawn from field notes and sketches 


of A.Schinborn by £ Hergesheimer 


r n, 2 in 
oe alli q Y Ny 

ww ye TTINN\\\ 
& why iT) 
Fie 


Scale of Peet 


egypt s Lian Diy, 
PANN NOS Ui 
Bee yiii NEA Y AKA 
gs Uy Sy HAN 
Yon, «ep kin; Z ( 


i it) 
Mie: a ie 


Hy, 6 
Hei 3 


a» 
CHK 
, * 
Vian” 


hee 


a 

+ * GP 
s Tee .* wis 
> * = eee “Gy 


- Abbreviations } 
~ S for Spouting, 8 for Boiling, M for Mid ; 
G for Geyser / 


GEOLOGICAL SURVEY OF THE TERRITORIES. 113 


waters of this little fountain has worn a deep channel or furrow into 
the vertical sides of the mountain. The Twin Buttes are two conical 
mountains, partially separated from the main range, and on the sum- 
mit, a few vents are sending forth their columns of steam. As far as 
the eye can reach, can be seen the peculiar plateau mountain ranges, 
black with the dense forests of pine, averaging from 9,000 to 10,000 
feet above sea-level. On the west side of the Fire-Hole, near its mar- 
gin, are four small lakes with quiet surfaces, with water as blue as the 
sky. One of them is about half a mile in length. The waters are 
cold at the present time, but the basins present the appearance of having 
been enormous hot springs at some period in the past. From our camp 
on the main branch that enters the Fire-Hole at the upper end of 
the lower group of springs on the borders of the rim, we made our 
examinations down the stream, descending the east side and return- 
ing on the opposite Fig. 45. 

side, and then passing a” 

up the west branch, etal 
noting all the springs i 
of importance, taking 
the temperatures, and 
securing brief descrip- 
tions of their peculi- 
arities. Most of them 
do not differ materi- 
ally from those already 
described, so that I 
shall notice only the 
most important. The 
numbers of the vents 
can be understood by 
reference to the chart, 
although many of the 
less important and 
dead springs are omit- 
ted. The first one we 
shall notice is located RIVERSIDE GEYSER, UPPER GEYSER BASIN. . 

on the right branch of the river, and from the triangular shape of its basin, . 
8 by 10 feet, we named it the ‘Conch Spring.” All along the margins 

of the river hundreds of springs, which we could not note, but which 

aid in swelling the volume of the stream, issue from beneath the siliceous 

crust. A little below the Conch Spring, on the very margin of the 

river, there is a fine geyser, which has built for itself a crater three feet 
high, with a shell a foot thick. The inside of the crater is about six 

feet in diameter, and the entire mass of water is in a constant state. 
of agitation. Sometimes it will boil up so violently as to throw. the 

entire mass up four feet, and then die down so as to boil like a caldron. 

Indeed, the whole process might be imitated by subjecting a caldron 

of water to continuous and excessive heat. The water is perfectly clear, 

and the overflow forms a stream six inches wide and two inches deep, 

passing down the sides of the crater and thence into the river along the 

- most exquisitely decorated channel. The entire surface of the crater is 

covered with pearl-like beads, formed by the spray of the waters. A 

section of the crater shows it to have been built up very slowly, in very 

thin lamine. Another spring, with a crater like a horn, about a foot. 
in diameter at the top and six feet at the base, we called the Horn 

Geyser. It isin a constant state of ebullition, with the same ornamenta 


8G58 : 


114 GEOLOGICAL SURVEY OF THE TERRITORIES. 


tions as the one just described. A spring on a level with the river has 
_an enormous square basin, 30 feet across, of unknown depth. We called 
this the Bath Spring. A little below is another singular form of won- 
derful beauty. The water issues from beneath the crust near the mar- 
gin of the river from several apertures. The basin itself is 15 by 20 
feet and 20 feet deep. It seemed to me that nothing could exceed the 
transparent clearness of the water. The slightest object was reflected 
in its clear depths, and the bright blue tints were indescribable. We 
called this the Cavern. The mud springs are also numerous and im- 
portant in this group. As usual, they are of all sizes, from an inch or 
two to 20 or 30 feet in diameter, with contents varying from mere turbid 
water to stiff mud. They seldom have any visible outlet, but are in a 
constant state of agitation, with a sound which varies with the consist- 
ency of the contents. There are several of the mud-pots which give 
off a suppressed thud as the gases burst their way through the stiff 
mortar. Sometimes the mortar is as white as snow, or brown, or tinged 
with a variety of vivid colors. One mud-spring, located in the woods 
near a small lake on the east side of the Fire-Hole, has a basin 30 by 40 
feet, with sides 15 feet high, in constant action, frequently hurling the 
mud outside of the rim. All around it are a number of little vents, 
which keep up a simmering noise, some of which have built up little 
cones 4 to 12 inches high, which have in many cases closed themselves 
up at the top and ceased. On removing the cone, we found the inner 
sides lined with the delicate crystals of sulphur. The last stage of these 
springs, in many cases, seems to be a steam-vent, at which time the 
sulphur is deposited. On the west side of the Fire-Hole, and along the 
little branch that flows into it from the west, are numbers of springs of 
all grades, and the broad bottom is covered with a snow-white siliceous 
crust. Near the base of the mountains, there is a massive, first-class 
boiling spring, in a constant state of violent agitation, sending forth 
great columns of steam, with a singular toad-stool rim. There are some 
springs around which the siliceous deposits have assumed a form like 
the toad-stool fungus. It flows out from beneath a hill 150 feet high, 
composed of a kind of stratified cement, which was certainly deposited 
in the lake when these. hot springs were in active operation. It is 
undoubtedly formed of volcanic ejectamenta mingled with the deposits 
from the hot springs; 196°. There are some that might be called spas- 
modie springs. There is one massive spring, with a most beautifully 
scalloped rim 15 by 20 feet, which is always agitated, but occasionally 
shoots up several feet with great violence; 196°. About three miles up 
the Fire-Hole we meet with a small but quite interesting group of springs 
on both sides of the stream. There is a vast accumulation of silica, form- 
ing a hill 50 feet along the level of the river; upon the summit is one of 
the largest springs yet seen, nearly circular, 150 feet in diameter, boils up 
in the center, but overflows with such uniformity on all sides as to admit 
of the formation of no real rim, but forming a succession of little orna- 
mental steps, from one to three inches in height, just as water would 
congeal from cold in flowing down a gentle declivity. There was the 
same transparent clearness, the same brilliancy of coloring to the waters, 
but the hét steam and the thinness of the rim prevented me from ap- 
proaching it near enough to ascertain its temperature or observe its 
depth, except at one edge, where it was 180°. It is certainly one of the 
grandest hot springs ever seen by human eye. (Fig. 46.) But the most for- 
midable one of all is near the margin of the river. It seems to have broken 
out close by the river, and to have continually enlarged its orifice by the 
breaking down of its sides. It evidently commenced on the east side, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 115 


and the continual wear of the under side of the crust on the west side 
has caused the margin to fall in, until an aperture at least 250 feet in 
diameter has been formed, with walls or sides 20 to 30 feet high, showing 
the laminz of deposition perfectly. The water is intensely agitated all 
the time, boiling like a caldron, from which a vast column of steam is 
ever arising, fillmg the orifice. As the passing breeze sweeps it away 
for a moment, one looks down into this terrible seething pit with terror. 
All around the sides are large masses of the siliceous crust that have 
fallen from the rim. An immense column of water flows out of this 
ealdron into the river. As it pours over the marginal slope, it descends 
by numerous small channels, with a large number of smaller ones spread- 
ing over a broad surface, and the marvelous beauty of the strikingly 
vivid coloring far surpasses anything of the kind we have seen in this 
land of wondrous beauty; every possible shade of color, from the 
vivid scarlet to a bright rose, and every shade of yellow to delicate ~ 
cream, mingled with vivid green from minute vegetation. Some of the 
channels were lined with a very fine, delicate yellow, silky material, 
which vibrates at every movement of the waters. Mr. Thomas Moran, 
the distinguished artist, obtained studies of these beautiful springs 
and from his well-known reputation as a colorist, we look for a 
painting that will convey some conception to the mind of the exqui- 
site variety of colors around this spring. There was one most bean- 
tiful funnel-shaped spring, 20 feet in diameter at the top, but tapering 


Fig. 46. 


GREAT SPRING, FIRE-HOLE RIVER. 

down, lined inside and outside with the most delicate decorations. Indeed, 
to one looking down into its clear depths, it seemed like a fairy palace. The 
same jelly-like substance or pulp to which I have before alluded, covers 
a‘large area with the various shades of light-red and green. The sur- 
face yields to the tread like a cushion. It is about two inches in thick- 
ness, and although seldom so tenacious as to hold together, yet it 
may be-taken up in quite large masses, and when it becomes dry 
it is blown about by the wind like fragments of variegated lichens. 

At the upper end of the lower district are three immense boiling 
springs on the east margin of the river, and on the opposite side are 
two or three more, and then comes a long interval of two or three 
miles which is entirely free from springs, until we reach the upper 
basin. The immediate valley is covered with old siliceous deposits up 
to the base of the hills on either side, showing that, although there are 
no springs at this time, it was once the scene of great activity. The bot- 
tom over which the river flows is paved with the old silica. The forest 
grows close down to the margin of the river, and in one place the hills 
of trachyte almost close in the valley. High up on eitherside are walls 


116 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of trachyte apparently stratified and inclining 10° to 15° from the val-. 
ley. The vegetation grows remarkably rank along the streams and in 
the valley where the crust of silica does not prevent it. The perpetual 
warmth caused by the proximity of the springs is undoubtedly very fa- 
vorable to the growth of plants. ; 
We camped the evening of August 5,in the middle of the Upper 
Geyser Basin, in the midst of some of the grandest geysers in 
Bile a7 5: the world. Colonel Barlow and 
PPO EIEN Captain Heap, of the United 

= States Engineers, were camped 

= on the opposite side of the 
Fire-Hole. Soon after reaching 
camp a tremendous rumbling 
was heard, shaking the ground 
in every direction, and_ soon 
a column of steam burst forth 
from a crater near the edge of 
the east side of the river. Fol- 
lowing the steam, arose, by a 
succession of impulses, a col- 
umn of water, apparently 6 feet 
in diameter, to the height of 200 
feet, while the steam ascended 
a thousand feet or more. It 
would be difficult to describe the 
tntense excitement which atten- 
ded sth a display. It is prob- 
able that if we could have re- 
mained in the valley several 
days, and become accustomed to 
all the preliminary warnings, the 
excitement would have ceased, 
and we could have admired 
ealmly the marvelous ease and 
beauty with which this column 
of hot water was held up to that 
great height for the space of 
twenty minutes. After the dis- 
play is over the water settles 
down in the basin several inches 
and the temperature slowly falls 
to 150°. We called this the 
Grand Geyser, for its power 
seemed greater than any other 
of which we obtained any knowl. 
edge in the valley. (Fig. ‘47.) 
See Sr. There are two orifices in one ba- 

sin; one of them seemsto have no raised rim, and isa very modest-looking 
spring in a state of quiescence, and no one would for a moment suspect 
the power that was temporarily slumbering below. The orifice is oblong, 
24 by 4 éeet, while for the space of 10 feet in every direction around it 
are rounded masses of silica, from a few inches to 3 feet in diameter, 
looking like spongiform corals. Nothing could exceed the crystal clear- 
ness of the water. This is the Grand Geyser. Within 20 feet of this 
orifice is a second one, of irregular quadrangular form, 15 by 25 feet; 
the east side of the main outer rim of reservoir extended 20 feet beyond 


GEOLOGICAL SURVEY OF THE TERRITORIES. 117 


the large orifice. The bottom of this great reservoir is covered with 
thick spongiform masses, and in addition the rim is most elegantly 
adorned with countless pearl-like beads, of all sizes. * There are sev- 
eral beautiful triangular reservoirs, 1$ by 3 feet, set around the outer 
sides ‘of the rim, with numerous smaller ones, full of clear water, with 


Fig. 48. 


{ 


if 


/ 
“ 


Heo BN ; 
(() its a 5 


Lt 
\foe 


iy cic) E : 


aie 


—— 


4 ny 


sabi ci Ce 


acne ——— = a “ 
DONT, Basan ee 
GRAND GEYSER, UPPER BASIN GEYSER, FIRE-HOLE RIVER. 


hundreds of small depressions most beautifully scalloped. As we 
recede from the rim, the waters as they pass slowly away produce, by 
evaporation, broad shallow basins, with thin, elegantly colored partitions, 
portions of which have the form of toad-stools. When the water set- 
tles into these depressions, or flows away toward the river in nume- 
rous small channels, the wonderful variety of coloring which is so 
attractive to the eye is produced. The large orifice seems to be in a 
state of violent agitation as often as once in twenty minutes, raising up 
the entire mass of water 10 or 15 feet. It is never altogether quiet. 
Although these two orifices are within the same rim, I could not ascertain 
that there is the slightest connection with each other. When the large 
orifice is much agitated it does not disturb the equanimity of the Grand 
Geyser. They both operate perfectly independent of each other. Indeed, 
I do not know that there is a connection between any of the springs in 
the whole basin, though there may be in some rare cases. The Grand 
Geyser operated twice while we were in the basin, with an interval of 


118 GEOLOGICAL SURVEY OF THE TERRITORIES. 


about thirty-two hours; of course, the displays could not be exactly 
periodic, but it would be an interesting study to remain several 
days and watch carefully the movements of such a power. Just 
east of the Grand Geyser, as located on the chart, is a moderate- 
sized geyser, with three smaller ones along the side of it, all playing 
at the same time. From the larger one, a column of water is 
constantly shot up 15 or 20 feet, with much the sound of the escape 
Pie ae of the steam from 

eae a pipe. The orifice 

; is not more than 6 
inches in diameter ; 

but with the three 

smaller ones play- 

ing at the same time 

a great commotion is 

excited. Near this 

little group are sev- 

eral large boiling 

springs, which 

throw up the water 

_in the center 2 to 
myo 4 feet. These are 


— 


Ss eee funnel-shaped, with 
= =~ orifices 6 inches to 


a 


—<_ 2 feet in diameter, 
Ta in basins with near- 

ly circular rims, 15 
to 40 feet in diameter. About one-fourth of a mile northeast of the 
castle, upon a mound about 30 feet above the river, built up with thin 
laminee of silica, and rounded off, rise four chimneys of different sizes, 
which are geysers, though perhaps not spouting extensively at this 
time. One is 12 
inches high, nearly 
cireular, and 3 feet 
in diameter; the 
second is oblong, 
4 by 6 feet, with 
rather coarsely 
scalloped margins, 
with .an aperture 
about 15 inches in 
diameter; thethird & 
chimney is about <3 
3 feet high, 6 feet =~“ 


CRATER FORMS, FIRE-HOLE BASIN. 


at ihe pan SSS ee — SO 

an orifice nearly es ea 
Spree) a Si = ————— SS 

quadrangular, 12 SS 2 I a 


inches across, with . BE ee Be ae 

the spongiform masses inside, and covered all over with beautiful 
pearly beads of silica on the outside; the fourth chimney rises 5 feet 
above the mound, is 10 feet in diameter at the base, with an orifice 
2 feet across, lined inside with the spongiform masses. This has been 
at one time a first-class geyser, but is now fast going to decay, a beau- 
tiful rim. The elegant bead-work on the margin and all the spongi- 
form masses are now falling into pieces, forming great quantities of 
débris around the base of the mound. There is also one boiling spring 


GEOLOGICAL SURVEY OF THE TERRITORIES. 119: 


of great esthetic beauty. The immediate orifice is nearly circular, and 
beautifully scalloped around the margins, extends straight down, aud 
the water rises within an inch or two of the scalloped margin. The 
water is in a constant state of agitation, boiling up 2 feet at times. 
The margin has a coating of bright cream-yellow, while all around the 
surface there is the most delicate and intricate embroidering, surpassing 
the most elaborate 

lace-work. Surround- 
ing the crater is an 
outer reservoir 4 feet , . 
wide, with a white and - 
reddish-yellow rim, 
while in the bottom of => 

the reservoir is the eS 
variegated sediment 
which aids in giving 

such a wonderfully == 


2 


and the channel is PUNCH BOWL, NO. i. 

lined for fifty yards with the variegated sediment. Near this is another 
mound which rises, with laminated steps, about 6 feet. I called it the 
Bath-Tub. (Fig. 50.) It has much the shape and size of our ordinary 
bathing-tubs, 5 by 10 feet, beautifully scalloped around the inner margins 
with the spongiform or cauliflower masses of silica inside, and the outer 


Fig. 52. surface adorned with 

Z the greatest profusion 
hee e ey) ‘ of the pearly beads; 
\ De OS yu | the water is constantly 


boiling up 2 feet high, 
though but a small 
. quantity flows from it. 
. There are numerous 
craters or chimneys 
which are well worthy 
, of attention, similar to 
those just described, 
5 as the Punch Bowl and 


: and 52.) 
On the summit of 
the great mound, is 
one of a class I have 
DENTAL cup. called central springs ; 
it is located on the highest point of the mound, on which this great 
group belongs; has a crater 20 feet in diameter, very nearly quiescent, 
slightly bubbling, or boils near the center, with a thin elegant rim 
projecting over the spring, with the water rising within a few inches of 
the top. The continual but very moderate overflow of this spring uni- 
formly on every side, builds up slowly a broad-based mound, layer by 
layer, one-eighth to one-sixteenth of an inch thick; looking down into 
these springs, you seem to be gazing into fathomless depths, while 
the bright blue of the waters is unequaled even by the sea. There 


120 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


central springs; they usually crown 


the summit of a mound, with projecting rims carved with an intricate 


are a number of these marvelous 


2 °ON ‘IMO 


HON fd 


delicacy which of itself is a marvel, and as one ascends the mound and 
looks down into the wonderfully clear depths, the vision is unique. The 


GEOLOGICAL SURVEY OF THE TERRITORIES. Pies 2.) | 


great beauty of the prismatic colors depends much on the sunlight, but 
about the middle of the day, when the bright rays descend nearly verti- 
eally, and a slight breeze just 
makes a ripple on the surface, 
the colors exceed comparison ; 
when the surface is calm 
there is one vast chaos of 
colors, dancing, as it were, like 
the colors of a kaleidoscope. 
As seen through this marvelous 
play of colors, the decorations 
on the sides of the basin are 
lighted up with a wild, weird 
_ beauty, which waits one at once 
into the land of enchantment; 
allthe brilliant feats of fairies 
and geniiin the Arabian Nights’ 
Entertainments are forgotten 
in the actual presence of such 
marvelous beauty; life becomes 
a privilege and a blessing after ; 
one has seen and thoroughly felt these incomparable types of nature’s 
cunning skill. There is another geyser, which has a chimney 3. feet 
high and 5 feet in diameter at the base, with an orifice 24 feet at the 
top, lined with the spongiform silica inside, and on the outside adorned 
with bead and shell work. There is a form of shell crystallization 
that reminds one of the artificial shell-work made with small thin 
oyster-shells; the form of the chimney is like an old-fashioned bee-hive. 
High up in the hills there is one lone spring 20 by 30 feet, with consider- 
able flow, forming with the sediment a high mound 250 yards in diam- 
eter; it is constantly boiling up in the center about 2 feet; it has the 
prettily scalloped rim, and is 250 feet above the river. The group just 
described is a most remarkable one, and I eall attention to it on the 
chart in which the Bee-Hive and Giantess are located. 
Pewee We will now pass to the op- 
haat posite side of the river for a 
moment, and examine the Cas- 
tle and its surroundings. Upon 
the mound on which the Castle 
is located, there is one of the 
most beautiful of the calm 
springs, of which Mr. Jackson 
secured an excellent photo- 
graph; it does not boil at all, 
but the surface is kept in a con- 
| stant vibration; the spring has 
a rim nearly circular, 25 by 30 
feet; is somewhat funnel- 
shaped, passing down to a 
depth of 60 feet in water that 
— has an almost unnatural clear- 
SPONGIFORM CF CAULIFLOWER SILICA, ness, toa small aperture, which 
leads under the shell to an unknown depth; the rim slopes down on 
the other side all around about 12 inches, 1 to 3 inches thick, 
most elegantly scalloped, the under sides in leaves like a toad-stool; 
the inner lining of the basin is a marvel of delicate tracery of pure - 


Fig. 54. 


FUNGIFORM SILICA, 


122 GEOLOGICAL SURVEY OF THE TERRITORIES. 


white silica; deep down in the sides of the basin are what appear 
to be chambers, all finished off with the same delicate work. The 
Castle receives its name from its resemblance to the ruins of an old 
castle as one enters the valley from the east. The.silica has crystallized 
in immense globular masses, like cauliflowers or spongiform corals; all - 
around it the crystals seemed to have formed about a nucleus at right 
angles to the center; the entire mound is about 40 feet high, and the 
chimney 20 feet; the lower portion rises in steps formed of thin laminee 
of silica, mostly very thin, but some- 
times becoming compact, an inch or 
two thick. On the southeast side, 
where the water is thrown out contin- 
ually, these steps are ornamented with 
the usual bead and shell work, with. 
the large cauliflower-like masses, but 
the other portions are fast going to de- 
cay, and the débris are abundant; in- 
deed, this has undoubtedly been one 
of the most active and powerful geysers 
in the basin; it still keeps up a great 
roaring inside, and every few moments 
throws out a column of water to the 
height of 10 or 15 feet; all around it 
are some most beautifully ornamented 
reservoirs that receive the surplus wa 
ters. If I should here describethe Giant, . 
Grotto, Punch-Bowl, and a hundred 
= other geysers of all classes, it would be 
; PEARLY SILICA, pretty much a repetition of what has 
already been written. The Giant has a crater like a broken horn, and, 
while my party were in the basin, played at one time one hour and 
twenty minutes, throwing the water up to the height of 140 feet. Lieu- 
tenant Doane states that at the time of his visit the previous year it 
played three and a half hours, throwing a column of water 90 to 200 feet. 
“*Phe Giant has arugged crater, 10 
feet in diameter on the outside, with 
an irregular orifice 5 or 6 feet in di- 
ameter. (Fig. 58.) It discharges a vast 
body of water, and the only time we 
saw it in eruption the flow of water 
in a column 5 feet in diameter, and 
140 feet in vertical height, continued 
uninterruptedly for nearly three hours. 
The crater resembles aminiature model © 
of the Coliseum. 
Our search for new wonders leading 
us across the Fire-Hole River, we as- 
cended a gentle incrusted slope, and 
came suddenly upon a large oval aper- 
ture with scalloped edges, the diam- 
eters of which were 18 and 25 feet, 
the sides corrugated and covered an 
with a. grayish-white siliceous deposit, which was distinctly visible at 
the depth of 100 feet below the surface. No water could be discovered, 
but we could distinctly hear it gurgling and boiling at a great dis- 
tance below. Suddenly it began to rise, boiling and spluttering, and 
* N. P. Langford in Seribner’s Monthly for June, 1871. 


Fig. 56. 


_ 
SPONGIFORM OR CAULIFLOWER SILICA. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 123 


sending out huge masses of steam, causing a general stampede of our 
company, driving us some distance from our point of observation. 
When within about 40 feet of the surface, it became stationary, and 
we returned to look down upon it. It was foaming and surging at a 
terrible rate, occasionally emitting small jets of hot water nearly to the 
mouth of the orifice. AJl at once it seemed seized with a fearful spasm, 
and rose with incredible rapidity, hardly affording us time to flee toa 
safe distance, when it burst from the orifice with terrific momentum, 
rising in a column the full size of this immense aperture to the height 
of 60 feet; and through and out of the apex of this vast aqueous 
mass, five or six lesser jets or round columns of water, varying in 
size from 6 to 15 inches in diameter, were projected to the marvelous 
height of 250 feet. These lesser jets, so much higher than the main 
column, and shooting through it, doubtless proceed from auxiliary 
pipes leading into the principal orifice near the bottom, where the explo- 
sive force is greater. If the theory that water by constant boiling be- 
comes explosive when freed from air be true, this theory rationally ac- 
counts for all irregularities in the eruptions of the geysers. 

Fig. 58. 


' THE GIANT. 

This grand eruption continued for twenty minutes, and was the most 
magnificent sight we ever witnessed. We were standing on the side of 
the geyser nearest the sun, the gleams of which filled the sparkling col- 
umn of water and spray with myriads of rainbows, whose arches were 
constantly changing—dipping and fluttering hither and thither, and 
disappearing only to be succeeded by others, again and again, amid the 
aqueous column, while the minute globules into which the spent jets 
were diffused when falling sparkled like a shower of diamonds, and 
around every shadow which the denser clouds of vapor, interrupting the 
sun’s rays, cast upon the column, could be seen a luminous circle radiant 
with all the colors of the prism, and resembling the halo of glory repre- 
sented in paintings as encircling the head of Divinity. All that we 
had previously witnessed seemed tame in comparison with the perfect 
grandeur and beauty of this display. Two of these wonderful eruptions 
occurred during the twenty-two hours we remained in the valley. This 
geyser we named ‘The Giantess.” (Fig. 59.) 


124 GEOLOGICAL SURVEY OF THE TERRITORIES. 


A hundred yards distant from The Giantess was a siliceous cone, very 
symmetrical but slightly corrugated upon its exterior surface, 3 feet in 
height and 5 feet in diameter at its base, and having an oval orifice 24 
by 364 inches in diameter, 
with scalloped edges. Not one 
of our company supposed that 
=\ it waSa geyser; and among so 

|| Many wonders it had almost 
escaped notice. While we 
were at breakfast upon the 
| Inorning of our departure a col- 
=| umn of water, entirely filling 
| the crater, shot from it, which, 
by accurate triangular meas- 
| urement, we found to be 219 
feetin height. The stream did 
not deflect more than four or 
five degrees from a vertical 
line, and the eruption lasted 
eighteen minutes. We named 
it “The Beehive.” (Fig. 60.) 


| The illustration of the Gi- 

antess in action, for the use of 
=| which in this report, I am 
=| indebted to the liberality of the 
editors of Scribner’s Monthly, 
shows most admirably the sue- 
cession of impulses by which 
the column of water is held up, 
apparently so steadily for so 
| longatime. We did notsee this 
wonderful geyser in operation 
during our visit; but it has 
been so graphically described 
by Mr. Langford, and so faith- 
fully depicted by Mr. Moran, 
| the artist, that little more need 

be added. 


The Fan Geyser consists of 
| @ group of five geysers, which 
play at one time, throwing the 
water in every direction. 
There is one quite conspicuous 
cone, marked on the chart, 
Pyramid, which is now extinct, 
except that from the summit 
steam is constantly escaping. 
This has been a geyser of some 
=| importance, and has built up 
= a structure 25 feet high, and 
100 feet in diameter at the base. 
Near itis a quiet spring with a 


Se dui saeee. most elegantly scalloped rim. 
It would require the careful study of a month under the most favora- 
ble circumstances to obtain full and clear information in regard to all 


GEOLOGICAL SURVEY OF THE TERRITORIES. 125 


the geysers of this basin. I have therefore left undescribed many as | 
interesting as those noticed in the preceding pages. 

On our return to the lake from this basin, we passed up the Fire-Hole 
River to its source in the divide. Early in the morning, as we were 
leaving the valley, the grand old geyser which stands sentinel at the 
head of the valley gave us a magnificent parting display, and with little 
or no preliminary warning it shot up a column of water about 6 feet in 
diameter to the height of 100 
to 150 feet, and by a succes- Se 
sion of impulses seemed to 22= 
hold it up steadily for the 
space of fifteen minutes, the 
great mass of water falling Zz. 
directly back into the basin, 
and flowing over the edges 
and down the sides in large 
streams. When the action 
ceases, the water recedes be- 
yond sight, and nothing is Z& 
heard but the occasional es- 
cape of steam until another == == 
exhibitionoccurs. Thisisone —==s= ————— 
of the most accommodating PAR Bee . 
geysers in the basin, and during our stay played once an hour quite 
regularly. On account of its apparent regularity, and its position 
overlooking the valley, it was called by Messrs. Langford and Doane 
‘Old Faithful.” It has built up a crater about 20 feet high around its 
_ base, and all about it are decorations similar to those previously de- 

scribed. 


On the morning of August 6, we 
ascended the mountains at the head 
of Fire-Hole River, on our return to 
the hot-spring camp on the Yellow- 
stone Lake. We had merely caught 
a glimpse of the wonderful physical 
phenomena of this remarkable val- 
ley. Wehad just barely gleaned a 
few of the surface observations, 
which only sharpened our desire for 
a larger knowledge. There is no 
doubt in my mind that these geysers 
are more powerful at certain seasons 
of the year than at others. We saw 
. them in midsummer, when the sur- 
face waters are greatly diminished. 
ae = In the spring, at the time of the melt- 
STILL HOT SPRING AND PYRAMID, UPPER ing of the SLOWS, the display of the 

. GEYSER BASIN, first-class geysers must be more fre- 
quent and powerful. Temperatures may vary somewhat, though those 
given on the chart may be relied on as correct. We left this valley, 
with ae beautiful scenery, its hot springs and geysers, with great 
regret. pe . 

Mr. Elliott has sketched an ideal section of a portion of the Upper 
Geyser Valley, (Fig. 63,) which may convey a clearer conception of 
the way in which we may suppose the waters of many of the springs 
reach the surface. The lower portion of the section is basalt, then lake 


ZG GEOLOGICAL SURVEY OF THE TERRITORIES. 


or local drift deposits, and thirdly the crust of silica which forms a floor of 
greater or less thickness for the entire valley. 

The mountains which form. the divide between the sources of the 
Madison and the Yellowstone are very high and steep. After traveling 
about 8 miles, we came to the nearly vertical sides of the main divide, 
which 1s composed of trachytic basalt. Immense quantities of broken 
rocks had fallen down at the bottom of the ridges. Little lakes occur 
every mile or so, nestled among the pines 9,000 and 10,000 feet above 
the sea. At the head of Fire-Hole we ascended a steep ridge, with al- 
most vertical sides, with just room to travel, to the summit of the divide. 


Fig. 62. 
ee Pare - 
ein ah 
sae 
> | 
wo i ) 
ea 
Lal =P 
fe ; ae Yaa, 
\ " > {i bboy ee 
‘ ee RL oe aN i r 
me ve i ) NM i 
Sy eu Ai 
Te ne i) ; 
\ RON ANG ml ! ; 
\ i ve as, i i Hl | 
— Coll 
PCH AM ve r 
vast , hel i i 
== a Ga Zoe \? tea } nw 


—— eo 


——= 


At 
i —_—-—-= 
iy 


OLD FAITHFUL, UPPER GEYSER BASIN, FIRE-HOLE RIVER. 


From this point we could look back and obtain a full view of the Madi- 
son Valley with its branches, and the high volcanic mountains that 
inclose it. The mountains are gashed with deep gorges, and on the 
sides are immense quantities of the fragments of trachyte and obsid- 
ian. The pines grow upon the declivities of the mountains where they are 
so steep that it ‘would be impossible for a man ever to ascend. The ele- 
vation of what appeared to be the highest point of our route was 9,500 feet, 
but the general elevation of the mountain summits is about 10, 000 feet. | 
It is only in exceptional cases that isolatéd peaks rise above that eleva- 
tion. 

As we descended the mountains on the east side, we saw through the 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


127 


trees what we thought at first was one of the arms of the Yellowstone 
Lake. It proved to be Lake Madison, a most beautiful sheet of water, 


~set like a gem among the mountains, with the 
dense pine forests extending down to the very 
shores. A ridge or promontory extends into the 
lake on the west side for about half a mile, which 
gives it a heart-shaped form. It is about three 
miles from north to south, and two from east to 
west. The shores of the lake are paved with 
masses of trachyte and obsidian. 

Leaving Madison Lake, we crossed a second 
high basaltic ridge, and descended into the drain- 
age of the Yellowstone. Dense pine forests, with 
here and there open grassy glades, deep gullies 
which seemed to have no water except during the 
melting of the snows in spring, occur everywhere. 
Old hot-spring deposits occur here and there, cov- 
ering limited areas. We camped at night on the 
shore of a lake which seemed to have no outlet. 
It is simply a depression which receives the 
drainage of tue surrounding hills. It is marshy 
around the shores, and the surface is covered 
thickly with the leaves and flowers of a large 
yellow lily. The water is not clear and cold like that 
of the other mountain lakes, but more like rain- 

water. The vegetation was very luxuriant all 
over these lowlands, and the flowers were abun- 
dant and varied. The lake was about two miles 
Jong and one wide, and it is doubtful whether it 
had ever been observed by human beings before. 

The following morning we reached our camp at 
the hot springs, on the ‘southwest arm of the Yel- 
lowstone Lake. 


NOTES TO CHAPTER VI. 


As an appendix to this chapter, I quote a few 
paragraphs from a remarkably interesting though 
scarce volume, entitled ‘‘ New Zealand: its Physi- 
cal Geography, Geology, and Natural History,” by 
Dr. Ferdinand von Hochstetter. The hot springs 
and geysers of New Zealand are so similar to 
those in the Yellowstone Basin, and scarcely less 
inferior in interest, that I gladly call attention to 
this most interesting and instructive work. The 
origin of these hot springs is undoubtedly the 
same all over the world. Those in Iceland have 
been studied by the ablest scientific men from all 
portions of the world. 

The second extract is from a very able work by 
Professor Gustave Bischof, “‘ Researches into the 
‘Internal Heat of the Globe,” (page 225.) These ex- 
tracts will serve to convey the opinions of eminent 


“MHAIN AIOH-AUla Seneca UHSARZD UAdan *NOILOAS TVuGI 


wiv 


B,-- 


7 


SRV ti — 


°€9 ‘S14 


= 
scientific men who have made the subject of bot springs ‘a vapectal study. 


128 GEOLOGICAL SURVEY OF THE TERRITORIES. 


EXTRACT FROM HOCHSTETTER’S “NEW ZEALAND?” 


‘¢ Both leinds of springs owe their origin to the water permeating the 
surface and sinking through fissures into the bowels of the earth, where 
it becomes heated by the still existing volcanic fires. High-pressure 
steam is thus generated, which, accompanied by volcanic gases, such 
as muriatic acid, sulphurous acid, sulphureted hydrogen, and carbonic 
acid, rises again "toward the colder surface, and is there condensed into 
hot water. The over-heated steam, however, and_ the gases decompose 
the rock beneath, dissolve certain ingredients, and deposit them on the 
surface. According to Bunsen’s ingenious observations, a chronological 
succession takes place in the co-operation of the gases. The sulphurous 
acid acts first. It must be generated there where rising sulphur vapor 
comes into contact with glowing masses of rock. Wherever vapors of 
sulphurous acid are constantly formed, there acid springs, or solfataras, 
arise. Incrustations of alum are very common in such places, arising 
from the action of sulphuric acid on the alumina and alkali of the lavas ; 
another product of the decomposition of the lavas is gypsum, or sulphate 
of lime, the residuum being a more or less ferruginous fumarole clay, the 
material of the mud-pools. To the sulphurous acid comes sulphureted 
hydrogen, produced by the action of steam upon sulphides, and by the 
mutual decomposition of the Sulphureted hydrogen and sulphurous 
acid, sulphur is formed, which in all solfataras forms the characteristic 
precipitate, while the decomposition of siliceous incrastationsis either 
entirely wanting or quite inconsiderable, and a smell of sulphureted 
hydrogen is but rarely noticed. These acid springs have no periodical 
outbursts of water. 

“In course of time, however, the source of sulphurous acid becomes 
exhausted, and sulphureted hydrogen alone remains active. The acid 
reaction of the soil disappears, yielding to an alkaline reaction by the 
formation of sulphides. At the same time, the action of carbonic acid 
begins upon the rocks, and the alkaline bicarbonates thus produced 
dissolve the silica, which, on the evaporation of the water, deposits in 
the form of opal, or quartz, or siliceous earth, and thus the shell of the 
springs is formed, upon the structure of which the periodicity of the 
outbursts depends. Professor Bunsen, rejecting the antiquated theory 
of Makenzie, based upon the existence of subterraneous chambers, from 
which the water, from time to time, is pressed up through the vapors 
accumulating on its surface, according to the principle of the Hern 
fountain, has proved in the case of the great geyser that the periodical 
eruptions or explosions essentially depend upon the existence of a frame 
of siliceous deposits, with a deep, flue-shaped tube, and upon the sudden 
development of larger masses of steam from the overheated water in 
the lower portions of the tube. The deposition of silica in quantities suf- 
ficient for the formation of this spring apparatus in the course of years 
takes place only in the alkaline springs. Their water is either entirely 
neutral or has a slightly alkaline reaction. Silica, chloride of sodium, 
carbonates, and sulphates are the chief ingredients dissolved in it. In 
the place of sulphurous acid the odor of sulphureted hydrogen is some- 
times observed in these springs. 

“Therocks, from which the siliceous hot-springs of New Zealand derive 
their silica, arerhyolites, and rhyolithic tufas, containing seventy and more 
per cent. of silica; while we know that in Iceland palagonite, and pal- 
agonitic tufas, with fifty per cent. of silica, are considered as the material 
acted upon and lixiviated by the hot water. By the gradual cooling of 
the volcanic rocks under the surface of the earth in the course of cen- 


GEOLOGICAL SURVEY OF THE TERRITORIES. _ 129 


turies os hot springs also will gradually disappear; for they too are 
but a transient phenomenon in the eternal change of everything cre- 
ated.”—(Hochstetter’s New Zealand, English translation, p. 432.) 


EXTRACT FROM BISCHOF’S “* RESEARCHES INTO THE INTERNAL HEAT 
OF THE GLOBE.” 


“No doubt can be entertained respecting the nature of the Re by 
which the waters of the geyser, the Strokr, and other less considerable 
springs, are thrown to such an immense height. It is, as in volcanoes, a 
gaseous body, principally aqueous vapor. We may, therefore, very 
fairly agree with Krug Von Nidda, and consider volcanoes in the same 
light as intermittent springs, with this difference only, that instead of 
water, they throw out melted matters. 

“He takes it for granted that these hot springs derive their temper- 
ature from aqueous vapors rising from below. When these vapors are 
able to rise freely in a continual column, the water at the different 
depths must have a constant temperature, equal to that at which water 
would boil under the pressure existing at the respective depths; hence 
the constant ebullition of the permanent springs and their boiling heat.. 
If, on the other hand, the vapors be prevented by the complicated. 
windings of its channels from rising to the surface; if, for example, they 
be arrested in caverns, the temperature in the upper layers of watermust 
necessarily become reduced, because alarge quantity of itislost by evapo-- 
ration at the surface, which cannot be replaced from below. And any 
circulation of the layers of water at different temperatures, by reason. 
of their unequal specific gravities, seems to be very much interrupted. 
by the narrowness and sinuosity of the passage. The intermitting 
springs of Iceland are probably caused by the existence of caverns, in, 
which the vapor is retained by the pressure of the column of water in. 
the channel which leads to the surface. Here this vapor collects, and 
presses the water in the cavern downward until its elastic force becomes. 
sufficiently great to effect a passage through the column of water which 
confines it. .The violent escape of the vapor causes the thunder-like- 
subterranean sound and the trembling of the earth which precedes. 
each eruption. The vapors do not appear at the surface till they have. 
heated the water to their own temperature. When so much vapor has 
escaped that the expansive force of that which remains has become less. 
than the pressure of the confining column of water, tranquillity is re-. 
stored, and this lasts until such a quantity of vapor is again collected 
as to produce a fresh eruption. The spouting of the spring is therefore. 
repeated at intervals, depending upon the capacity of the cavern, the 
height of the column of water, and the heat generated below.” 

The various groups of mud-springs, or salses, which are described in. 
the preceding chapter are scarcely less interesting and instructive than: 
the geysers. The following analyses of the sediment, by Professor: 
Augustus Steitz, of Montana, for Mr. Langford, will be useful for com-. 
parison. The reader is also referred to the report of Dr. A. C. Peale 
in this volume. I have appended a few analyses of the hot-spring. 
deposits from New Zealand, from the interesting work of Dr. Hoch: 
stetter. 


9GS 


(180 ‘GEOLOGICAL SURVEY OF THE TERRITORIES. 


Analyses of mud or sediment from mud-springs. 


White sediment. Lavender sediment. Pink sediment. 
Slicai.s se eee ADO a Silicaees: Goel. ees QBsOe Sliced. 2. eee eee ene 32.6 
Maonesia sisckesck ok 33.4 | Alumina........---. 58.6.} Adumina)-4_\5.2 Soe: 4. 
Lime) <.oeopeseeennae 17.8 | Boracie acid....-..-. 3.2 | Oxide of caleium..... 8.3 
Alkalies <c2= 22 s----= 6.6 | Oxide of iron ......- 0.6 | Soda and potassa-.... 4.2 
Oxide of calcium.... 4.2 | Water and loss....... ig 258) 
: Water and loss.....- ue ; 
100. 0 100. 0 100.0 


| 
: 


Siliceous deposits of hot springs, on the shores of the Rotomahana, New Zealand, analyzed by 
\ ° Mr. Mayer. 


[No. 1, Tetarata, two samples, a, an earthy, powdery mass; 8, solidified incrustation ; No. 2, Nagahapu; 
No.3, Whatapoho; No. 4, Otukapuarangi.} , 


1. oF 3. 4, 
a. b. 

Silica ei ae ee FP ae Ph awe PE 86.03 | 84.78 | 79.34) 88.02 86. 80 
eas po gregnic Substancesnasee o. ee ie ble eee | i 11.52 | 12.86 | 14.50 7. 99 5 any 61 
ESQUOLOMAM SOT ATOM Eee ma sa = ae alee emi la ie ei= seine) sraelele 1.34 | ight in- 
Aaping BS a8 eS So a PORE RE Te ee ee ae oes Let a al 1.27 ; 3. 87 : 2.99 i dication. 

LIM OF eae tereaies siete hs Soni tess IS wig ES sia citer shee hers aioe Se aes . 45 0. 27 . . 
Miaoriesiace <6 ei O TEE EASY: G18 FF Hi Sere 0. 40 ; 1.09 /9 0.26 3 0. 64 eit 
Alisa es Seek St! bag genre ease Be aha e bes ee a 0. 38 0. 42 0. 40 ah 


I, Pattison (Philos. Magazine, 1844, p. 495) and, II, Mallet (Philos. 
Magazine 1, 853, p. 285) give the following analyses of the siliceous de- 
posits on the hot springs of Lake Taupo, without, however, specifying 
_ the localities : 


‘ IL II. 

PUG RS oS Nhe Make dads pe chici ele ete ei cletcit ara tiatele aaa ier pees 77.35 94, 20 
ENA RASS A eS A aa a a ne Dea a er ee WE en Oe aed 9.70 1.58 
SERQUMOKACS (Oly ITOMA ss Let he Se Ce a em a el age eis asa ie eee re oe 3.72 0.17 
MATING es CRS Ba BI ATED ake FE eS ae oe ep te ain (RE Lf ad BLT le ea ae 1.54 Indication. 
Ghilonidexof sod imines Bs Sai Sa es a eee Se eee oe Ppa 0. 85 
Werte Tis cama aera aie Ot Sees URES cic cease chia te ae Sana nes eae 7. 66 3. 06 
99, 97 99. 86 

SPevilesoraw yr aes) - sek ss emecieee =e sins siemecbies er eterno 1. 968 2. 031 


CHAPTER VII. 


FROM HOT SPRING CAMP, ON YELLOWSTONE LAKE, UP PELICAN CREEK 
_AND DOWN EAST FORK, TO BOTTLER’S RANCH. 


We were joined at our Hot Spring camp by Lieutenant G. C. Doane, 
who had visited this region the previous year in company with Messrs. 
Washburn and Langford. Captain Tyler and Lieutenant Grugan had 
been ordered to return, with most of the escort, to Fort Ellis, and they 
were already on their way to the post by way of the Madison Valley. 
We remained here for a day or two, studying the hot springs and rest- 
ing our animals. From this point Messrs. Elliott and Carrington com- 

. menced the survey of the shore-line of the lake with our useful little 
bark, the Anna. They were absent seven days, and during the time 
sailed around the entire shore-line, about one hundred and seventy-five 


GEOLOGICAL SURVEY OF THE TERRITORIES. : tar 


miles, sketching every bay or indentation, as well as the mountains that 
inclose it. The topographical survey was:continued around the south 
and west shores of the lake with perfect success. . A series of careful 
observations for elevations were taken at all our permanent camps, as 
well as at other suitable localities; so that the height of the lake above 
the sea may be regarded as very accurately attained. 

A small party in charge of Mr. Stevenson returned from Hot Spring 
camp to Bottler’s Ranch, by way of the west side of the lake, to obtain 
additional supplies. On the evening of August 9, we camped at the head 
of the main bay, west of Flat Mountain. Our ‘hunters returned, after 
diligent search for two and a half days, with only a black- tailed deer, 
which, though poor, was a most important addition to our larder. It 
seems ‘that during the months of August and September the elk and 
deer resort to the summits of the mountains, to escape from the swarms 
of flies in the lowlands about the lake. Tracks of game could be seen 
everywhere, but none of the animals themselves were to be found. 
Our course around the lake was intended to follow the shore as far as 
possible. We made our way among the dense pines or over the fallen 
timber, sometimes in grassy glades, through marshes, or by lily-cov- 
ered lakes. The little streams, which are “at this season mostly dry, 
have worn deep gullies through the superficial beds, showing the old 
lake deposits to have been from 200 to 600 feet in thickness. 

At sunrise on the morning of August 10, at the west base of Flat Moun- © 
tain, the thermometer stood at 1549, and water was frozen in my tent one- 
fourth of an inch thick. The rocks of Red Mountain are trachyte, with 
a purplish tinge, quite hard, and somewhat spotted and banded. Some 

_ portions of the mountain are very red, and from this fact it derives its 
name. Those of Flat Mountain are the same in texture and color. From 
the summit of Flat Mountain we had an excellent view of the lake. Three 
islands were visible, one of them quite small, 200 yards long, covered 
with pine timber. It is really an elevated ridge of sand. The other 
two areabout a mile in length, also covered with a dense growth of pines. 
Along the shores of these islands are bluff banks of stratified voleanic 
sand, ~50 feet high. All these islands are probably elevated portions of 
the old lake- bed, which have gradually risen above the surface as the 
waters of the present lake diminish. To the westward a still higher 
' range can be seen, and near it Heart Lake, and still further west Mad- 
ison Lake, embosomed among the mountains. On the long points or 
fingers, as it were, that extend out into the lake, are several small lily- 
ponds, and open meadow-spaces, covered with thick grass. The general 
view, however, consists of an outer range or rim of volcanic peaks, from 
10,000 to 11,000 feet high, with the inner portions, or belt of lower hills 
and ridges, black with the dense forests of pine, but relieved here and 
there by a small lake, or an open meadow glade. The altitude of Flat 
Mountain is 9,704 feet. 

From this high point, with the grand basin spread out before us, we 
may again ask a question in- regard to its origin. On all sides, and 
among the foot-hills, the débris, which consist of fragments of trachyte, 
are enormous. Steps produced. by slides can be seen most clearly by 
looking over the dark mass of pines. We still believe that the basin 
was at first a depression, produced: by the action of the volcanic forces 
which built up the surrounding groups of mountain peaks, and formed 
a reservoir for their drainage, but that it is also due in part to erosion. 
A vast amount of material has been ground up by the waters of the lake 
from the sides of the basin, to form the extensive modern deposit which 
we meet with everywhere, 


132 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Leaving our camp at Flat Mountain, we ascended the high hills, 
among the fallen timber, taking a course about southeast, passed over 
the divide, and at night found ourselves on the head-waters of Snake 
River. The rocks, as usual, were trachytic basalt, for the most part; but. 
in ascending the divide from the Yellowstone Lake, we find Carboniferous 
limestones, with the accompanying clays, in one locality. Hxamples of 
the exfoliation of the igneous rocks are very common. 

Between Flat Mountain and the Yellowstone Range the divide is very 
low. The sources of some of the branches of Snake River extend up 
within two miles of the lake, and the elevation is not more than 400 feet 
above the lake level. This is what has been hitherto understood as 
“Two Ocean Pass.” The separation of the drainage between the 
Yellowstone Basin and Snake River is complete. The valley of Snake 
River is very ‘pleasantly diversified with meadow-like openings and 
dense forests of pines. Some of these glades are two to four miles long 
and one to two miles wide. This transition from forest to meadow con- 
tinues all along the river and its branches, from their sources to the 
junction with the Columbia. 

From our camp on Snake River, we traveled north of east to the shores 
of the lake. The broad lowlands are most pleasantly diversified with — 
groves of pines and fine grassy meadows, and numbers of streams, some 
of which were of considerable size, flowed from the mountains into the 
lake. One of these creeks was 75 feet wide and 2 feet deep. All 
the rocks we met with were basalt and basaltic breccia. The Yellowstone 
Range, so far as I could examine it, was composed of breccia, though it 
undoubtedly contains a nucleus of trachyte; for the masses of it, which 
could not have been transported far, were scattered over the surface. 
We crossed the marshy vailey of the Upper Yellowstone, which is about 
three miles wide, and pitched our tents upon a sort of terrace on the 
east side of the southeast arm, 80 feet above the water-level of the lake. 
From this point we made a small side trip to the source of the Upper Yel- 
lowstone, and thence to the sources of the Snake River. The entire region 
is one of great interest. On the morning of August 12, I started up the 
valley of the Upper Yellowstone, accompanied by Messrs. Doane and 
Schonborn, for the purpose of making a careful geological as well as 
topographical survey of the district bordering thé great divide. Five 
streams of water flow into the Upper Yellowstone from the mountains on 
either side of the head of the valley, and at this season of the year the veg- 
etation is fresh, green, and most abundant. It would be difficult to find a 
valley in the West that presents as fine a picture to the eye. On either 
side, the valley, which is about three miles wide, is walled in by dark, som- 
ber rocks of volcanic origin, which have been weathered into remarkable 
architectural forms. Looking up the valley from some high point, one 
could almost imagine that he was in the presence of ‘the ruins of some 
gigantic city, so much like old castles, cathedrals of every age and clime, 
do these rocks appear; add to this, the singular vertical furrows which 
are cut deep into the sides and render more striking their antiquated ap- 
pearance. At the base of the wall-like ridges of the valley, immense 
masses of volcanic breecia have fallen down from the mountain-tops, in 
many instances crushing down the pines along their path. About fifteen 
miles above the lake the valley terminates abruptly, the mountains 
rising like walls, and shutting off the country beyond. The river here 
Separates into three main branches, with here and there smaller ones, 
which bring the aggregated waters of the melted snows from the sum- 
mits of their bare voleanic peaks. Just at the head of the valley there 
is a little lake, but not more than one or two hundred yards in width. 


GEOLOGICAL SURVEY OF THE TERRITORIES 133 


The lake which has been placed on the maps as Bridger’s Lake has no 
real existence. ; 

- From the head of the main valley we ascended the mountains on the 
west side, and from the summit of a high peak the whole basin with 
the divide was brought within the scope of our vision. As far as the 
eye could reach on every side, bare, bald peaks, domes, ridges in great 
numbers could be seen. At least one hundred peaks, worthy of a name, 
could be located within the radius of our vision. The rocks everywhere, 
though massive, black, and deeply furrowed vertically, have the appear-. 
ance of horizontal stratification. In some instances the furrows are so 
regular that the breccia has a columnar appearance. The summits of the 
mountains are entirely composed of breccia. Angular masses of trachyte, . 
10 to 30 feet in diameter, are inclosed in the volcanic cement. Most of the 
fragments are small, varying from an inch to several feet, seldom much 
worn. We camped at night near a small lake, by the side of a bank of 
snow, 10,000 feet above the sea, with the short spring grass and flowers 
allaround us. There are but two seasons on these mountain summits, 
Spring and winter. In August the fresh new grass may be seen spring- 
ing up where a huge bank of snow has disappeared. The little spring- 
flowers, seldom more than one or two inches high, cover the ground; 
Clatonia, Viola, Ranunculus, and many others. The following morning 
we traveled for several miles along a ridge not more than two hundred 
yards wide, from one side of which the waters flowed into the Pacific, 
and on the other, into the Atlantic. To the westward the outlines of the 
Teton Range, with its saw-like or shark-teeth summits, were most clearly 
visible. They seemed to be covered with an unusual quantity of snow. 
From whatever point of view one can. see the Teton Range, the sharp- 
pointed peaks have the form of huge sharks’ teeth. To the southward, for 
fifty miles at least, nothing but igneous rocks can be seen. Toward the 
Tetons there is a series of high ridges, of which the Teton Range seemed 
to be the central one. These ridges, which pass off from the main Teton 
Range, incline to the northeast, and vary in height from 9,500 to 10,500 
feet above the sea-level, and 1,000 to 1,800 feet above the valleys at their 
base. ; 

We ascended one of the high ridges, (not the highest, however,) and 
found it to be 1,650 feet above the valley at its foot. The northeast 
side is like a steep roof, while the southwest side breaks off abruptly. 
From the summit of the ridge, the view is grand in therextreme. To 
the westward the entire country, for the distance of fifty miles, seems to 
have been thrown up into high, sharp ridges, with gorges 1,000 to 1,500 
feet in depth. Beautiful lakes, grassy meadows also, come within the 
vision. I can conceive of no more wonderful and attractive region for 
the explorer. It would not be difficult for the traveler to make his way 
among these grand gorges, penetrating every valley, and ascending 
every mountain or ridge. The best of grass, wood, water, and game are 
abundant to supply the wants of himself or animals. 

I think that numerous passes could be found from the valley of Snake 
’ River to the basin of the Yellowstone. It seems to me there are many 
points on the south rim of the basin where a road could be made with 
ease into the valley of Snake River. From this ridge it would seem that 
there could be but little difference in the altitude of the Yellowstone Lake 
and Heart Lake, and they cannot be more than eight or ten miles apart, 
and yet the latter is one of the sources of Snake River. The little 
branches of Snake River nearly interlace with some streams that flow 
into the lake, and the gullies come up within two miles of the shore-line. _ 


134 — GEOLOGICAL SURVEY OF THE TERRITORIES. 


There is a very narrow dividing ridge in one place, between the drain- 
age, which may be within one mile of the lake. 

“As we have stated in the previous pages of this report, the rocks of this 
basin are mostly volcanic, but on the south side of the divide, between the 
Yellowstone and the sources of the Snake, the series of ridges extending 
southward to the Tetons are largely sedimentary. Carboniferous lime. 


stones occupy restricted areas, while some of the highest ridges are made’ 
up of Cretaceous and Tertiary strata. One ridge, the summit of which. 


was over 10,000 feet above the sea, and overlooks the country for fifty 
miles in. every direction, is the exact dividing ridge which separates the 
drainage of the two basins. On the summit and north side of the ridge 
the rocks were smooth, as if vast masses of snow and ice had slidden 
down forages. The rocks are composed of somber-brown and rusty 
grayish-brown sandstones, in which I found great quantities of leaves 
of deciduous trees. There was one fern and a palm of huge dimensions. 
From these exposures of the sedimentary beds, I draw the same conclu- 
sion that [havedone so many times previously, that the unchanged rocks 
either now exist or have existed all over the Northwest ; that they may 
have been removed by erosion, concealed by overflows of igneous mate- 
rial, or thrown up into ridges; but the one final conclusion - is, that they 
extended all over the region about the sources of these great rivers, in 
a horizontal position, at a comparatively recent geological period. 

On our return to the east side of the lake from the sources of Snake 
River, we followed down the valley of a little stream that has its origin 
at the foot of theridge. As it flowed toward the lake, it cut a deep chan- 
nel into the lake deposits, sometimes 50 to 100 feet, well illustrating the 
character of the materials. It was composed at the bottom of grayish- 
white clays, passing up into a sort of bowlder deposit, all derived from 
the degradation otf ‘volcanic rocks. 

We may here discuss for a moment, in general terms, the geolo- 
gical character of the mountains on the east side of the lake. The 
Upper Yellowstone River rises in the high volcanic range which shuts 
off the Yellowstone Basin from the Wind River drainage, forming 
what'is usually called the great water-shed of the continent. The 


range of mountains on the east and south sides of the Yellowstone 


Basin gives origin to the waters of the Snake River, which flow west 
into the Pacific, to those of Green River, which flow southward into 
the Great Colgrado, and to the numerous branches of the Yellowstone. 
Upon the east and southeast sides, the mountains seem to be entirely 
of volcanic origin; they are also among the ruggedest. and most inac- 
accessible ranges on the continent. From the valley of Wind River 
they present a nearly vertical wall from 1,500 to 2,000 feet high, which 
has never been scaled by white man or Indian; but are covered with 
perpetual snows to a greater or less extent. From any high point a 
chaotic mass of peaks of every variety of form may be seen extending 
from the Snake River Valley to the lower cafion of the Yellowstone. 
The general level of the summits is about 10,000 feet, but some of the 
higher peaks reach 10,500 to 11,000 feet. Many of them are the nuclei 
of old volcanic cones, composed of very compact -trachyte; others are 
portions of the rim of a vast crater. Mounts Doane and Stevenson are 
fragments of the rim of an immense crater, the layers of trachyte inclin- 
ing from the basin on every side; some of the centers of effusion were 
long fissures, forming ridges. All around these nuclei, and sometimes 
reaching nearly to the summits, are the volcanic conglomerates or brec- 
cias in horizontal strata. Even the highest portions of the mountains, 
the broad ridges that form the very water-shed, are composed ot these 


GEOLOGICAL SURVEY OF THE TERRITORIES. 135 


we 
breccias, and it is quite possible that they even conceal the great mass 
of compact trachyte rocks. At any rate, so far as the eye can reach, 
the true trachyte rocks are exposed only in the form of cones, here and 
there, while the great mass on the surface is the breccia. They are 
continually disintegrating, so that all over the sides of the mountains 
and among the foot-hills there are immense quantities of debris ; not 
unfrequently huge masses are gradually broken off from the sides of the 
mountains by the combined action of water and ice, leaving a vertical 
wall 50 to 200 feet or more in height. . 

From our camp on thé east side of the lake, we ascended Mounts 
Doane and Stevenson. Between the lake shore and the summits of 
’ these peaks, there is a succession of ridges, which measured 8,500, 8,800, 
9,000, 9,200, 9,400 feet, &c. These peaks, with an intermediate lower 
portion, form a part of the rim of a huge crater, and on the inner side © 
the layers of trachyte appear like strata, inclining from the crater 10°. 
The rocks are somewhat varied in texture, more or less compact, but 
mostly very compact hornblende trachyte. Near the summit the rocks 
are slightly porous, true basalt, as if they had not been subjected to 
much pressure. Some of the rocks are red or ashen-gray, and have a 
slaty cleavage; the volcanic breccia rises to the height of 2,000 to 2,500 
feet above the lake. 

On the east side, the proofs of the former elevation of the lake may 
be seen 300 to 500 feet high on the sides of the mountains. The little 
streams that cut through the lower hills, along the borders of the lake, 
expose 150 to 200 feet of stratified, recent deposits. Near Steam Point 
the waters of the lake have washed the shores for two or three miles, 
so as to expose 100 to 150 feet of strata, composed of volcanic sand and 
gravel at the bottom, passing up into fine sand, and at the top consider- 
able thickness of coarse sandstone and conglomerates. All these modern 
deposits have been permeated and in part cemented with, the silica 
of the old hot springs. We have said enough about the modern lake 
deposits to establish the fact that they are worthy of attention, and 
form a portion of the geological history of this basin. We shall only 
allude to them hereafter as we meet them in our travels. 

One of the most remarkable localities for extinct springs is on the 
east side of the southeast arm of the lake, at the head of Alum Creek, 
and marked on the map “Brimstone Basin.” For half a mile before 
reaching this spot the air is filled with a disagreeable sulphurous smell. 
The deposit is mostly silica, though there is a good deal of sulphur 
mingled with it. In the bed of the little stream that passes through 
the basin are numerous small springs, from which bubbles of gas are 
constantly escaping, probably sulphureted hydrogen. ‘The little creek 
which passes through the basin rises in the higher ridges ten miles dis- 
tant, and, as it passes through the spring deposit, is rendered turbid 
like milk. The channel is coated with a creamy-white material, silica 
’ and sulphur; old pine logs, which must once have formed large trees, 
now lie prostrate in every direction over the basin. It covers an area 
of about three miles in extent, and, in some instances, a vertical thick- 
ness of 50 feet was exposed. Nota trace of any spring could be found 
with a temperature above. ordinary spring-water. From all appear- 
ances, this basin must have been active within a comparatively modern 
period. It is true, however, that these springs are continually becoming 
extinct, and have done so ever since the great perioa of volcanic activity 
in this region. _ 

The hot-spring district, above and below Steam Point, is quite inter- 
esting, as showing the remains of what was once a very important group.. 


136 GEOLOGICAL SURVEY OF THE TERRITORIES. 


The hot-spring area extends about five miles along the lake shore, and 
is about two miles wide. Steam Point has been, at one time, covered 
with very active springs, but now they are fast becoming extinct. Two 
steam-vents are now in operation, sending forth steam with a noise’ 
like that of the escape-pipe of a steamboat. A number of small sim- 
mering springs are scattered around these vents. There is here a thick- 
ness of 200 feet of conglomerate, which is made up largely of hot-spring 
deposits. The lake seems to have beaten against the shore, and worn 
away a large portion, leaving a bluff wall 50 feet high above water-level. 
A large mass of the conglomerate has been &ut off by the waves, and 
left in the lake 100 feet from the bluff shore. South of Steam Point, 
on the shore of the lake, are about twenty or thirty springs of various 
temperatures, from 110° to 192°. Some are quiet, some bubbling quite 
briskly, and others are true boiling springs. The little steam-vents are 
lined with sulphur. About a mile east of the point, around a little lake, 
there is an extensive group of springs. The ground is covered with 
sulphur, alum, common salt, &c., tinged with oxide of iron. Thick de- 
posits of silica, often tinged with oxide of iron or sulphur, attest the 
former existence of a much larger system of springs than we find here. + 
at the present time. At one point, in the bed of the little creek that 
flows into the small lake, which is 10 feet wide and 2 feet deep, there is 
alarge spring that boils up very fiercely, and yet the temperature is not 
above that of the water of the creek itself. The agitation of the water 
must be due to the escape of gasalone. At Steamboat Point, and around 
the little lake, the ground is in places perforated, like a cullender, with the 
little simmering vents, which denote, I think, the last stages of a system 
of larger springs. 

Proceeding southward along the shore of the lake, we meet with 
the springs and steam-vents, in greater or less numbers, scattered 
along the shore—186°, 183°, 185°, 178° will, perhaps, give the aver- 
age temperatures—all quiet, bubbling, or boiling springs. Sulphur Hills, 
on the north side of the lake, is another of the magnificent ruins, of which 
only a few steam-vents now remain. The deposit, however, is a large 
one, and covers the side of the mountain for an elevation of 600 feet 
along the lake shore, the huge white mass of silica covering an area 
of about half a mile square, and can be seen from any position on the 
lake shore, and appears in the distance like a huge bank of snow.. In 
the valley near Pelican Creek, a few springs are issuing from beneath 
the crust, distributing their waters over the bottom, and depositing the 
oxide of iron, sulphur, and silica, forming the most beautiful blending 
of gay colors. Although the waters of the springs are 160°, yet the 
channels are lined with a thick growth of mosses and other plants, and in 
the water is an abundance of vividly green algous vegetation. The great 
mass of hot-spring material built up here cannot be less than 400 feet 
in thickness. A large portion of it is pudding-stone and conglomerate. 
Some of the rounded masses inclosed in the fine white siliceous cement 
are themselves pure white silica, and are eight inches in diameter. It 
is plain, from the evidence still remaining, that this old ruin has been 
the theater of tremendous geyser action at some period not very remote ; 
that the steam-vents, which are very numerous, are only the dying 
stages. These vents or chimneys are most richly adorned with brilliant 
yellow sulphur, sometimes a hard amorphous coating, and sometimes 
in delicate crystals that vanish like frost-work at the touch. It seems 
that it is during the last stages of these springs that they adorn them- 
selves with their brilliant and vivid colors. 

We will now bid farewell to this remarkable lake-basin, and, taking a 


GEOLOGICAL SURVEY OF THE TERRITORIES. Lan 


northeasterly course, pass up the valley of Pelican Creek, and cross the 
mountains to the east branch of the Yellowstone. We have endeavored 
to explore the great basin with all the care that our time and facilities 
would permit. Much has been left undone, but we feel certain that we 
have obtained information enough to convince our readers that the region 
we have examined is invested with profound interest. We have explored, 
with much care and detail, one of the most beautiful lakes in the known 
world. Our soundings, which are expressed on the chart in fathoms, 
show that its greatest depth is 300 feet. According to a careful series 
of soundings of Great Salt Lake, Utah, by Mr. Dieffendorf, for the pur- 
pose of finding the deepest channels for a steamer, the average depth 
is only about 12 feet, while the greatest depth was found to be only 60 
feet, and that was between Antelope Island and Stansbury Island. 

Wetraveled up the valley of Pelican Creek about eighteen miles. Hot 
springs were scattered along the bottom, some of them of considerable 
size and beauty. There were many dead and dying ones, some of 
which indicated great age;-the immediate bottom is incrusted with 
the silica. The average width of the valley is about two miles, and at 
this season of the year (August 23) the grass and other vegetation is 
very fresh and abundant. If it were not for the elevation and climate, 
this valley would soon be filled with enterprising, thriving ranchmen 
and farmers. The valley itself is underlaid with the modern lake 
deposits, which extend up ‘almost to the divide. It is plain, from a sys- 
tem of terraces more or less distinct, that the lake once extended high 
up the valley, and that the fertility of the soil and the present 
exuberance of vegetation are due to this fact. The broken range of 
hills and mountains that inclose it on either side are covered with 
forests of pine, and the rocks are entirely of volcanic origin—the 
trachytes and conglomerate. Ten miles up the creek is a pretty little 
cascade, where the waters pour over a descent of 15 feet, which is formed 
of stratified sand and clay. Above the cascade there is a wall 60 feet 
high, composed of Pliocene deposits. From the divide the view is far 
extended and very fine. The Grand Cafion of the -Yellowstone, with its 
group of hot springs, with the deep side-caiions that lead into it, and the 
dense forests of pines, and the north rim of the basin, with the bald, 
black summits of the volcanic peaks projecting above the tree vegetation, 
all are presented to the eye at a single glance. 

Wecamped at night on the summit of the divide, between the valleys 
of the Kast Fork and the main Yellowstone, by the side of a little lake 
10,000 feet above the sea. The wonderful group of peaks which extend. 
along the source of the Yellowstone, and the branches of the Big Horn, 
from the lake itself to the lower cafion, which constitute on the map, the 
Heart and Snow Ranges, were in full view, with all their rugged grand- 
eur. The basaltic cones and broken rims of huge craters were clearly 
visible, while the equally lofty but more rounded, dome-like, conglomer- 
ate peaks could be easily detected by their style of weathering. Deep, 
almost vertical gorges, led down into the valley of the East Fork on the 
east side of us, and on the west.into the main Yellowstone. Here and 
there a white patch on the mountain-side or in a valley, looking like a 
bank of snow, showed the former existence of a group of springs. 

We descended to the valley of the East Fork, and camped the night 
of August 24 at the junction of the two main branches. Here we spent 
one day exploring the east branch of the East Fork, which has its sources 
high up among the most rugged and almost inaccessible portions of the 
basaltic range. There are several wonderfully jagged peaks about the 

Sources of this branch, which rise up 10,000 to 11,000 feet above the sea. 


138 GEOLOGICAL SURVEY OF THE TERRITORIES. 


I ascended one of the highest, though not the highest, and found it 10,950 
feet. The general average of these peaks is about 10,000 feet. The 
summits of these high peaks are all close, compact trachyte, while all 
around the sides are built up walls of stratified conglomerate. It is plain 
that all of them are the nuclei of old voleanoes. The trachyte may 
sometimes be concealed by the conglomerates, but I am inclined to think 
that each one has formed a center of effusion. Large quantities of sili- 

cified wood are found among the conglomerates, mostly inclosed in the 
volcanic cement, evidently thrown out of the active craters with the 
fragments of basalt. My impression is, that when the old volcanoes 
disgorged their contents into the great lake of waters around, they 
threw out also portions from the sedimentary formations, and thus the 
silicified wood comes from the Tertiary or Cretaceous beds, which may 
have formed the upper part of the walls of the crater. At any rate, these 
woods belong to the Coal Series of the West, and they are scattered pro- 
fusely among * the conglomerates. Interlaced among the massive beds of 
volcanic conglomerates, are some layers of a light-gray or whitish, sandy 
clay, which show that the whole breccia or conglomerates, with the inter- 
calated layers of clay or sand, were deposited in water like any sedi- 
mentary water rocks. 

Upon tke east branch are a few interesting ruins of springs. There 
is one very curious mammiform mound, about forty feet high, built 
up by overlapping layers, like the “‘Cap of Liberty” on Gardiner’s 
River, only by much less hydrostatic force. The material is principally 
calcareous. This cone is a complete ruin. No water issues from it at 
the present time, and none of the springs in the vicinity are above the 
ordinary temperature of brook-water; sulphur, alum, and other chemical 
deposits are abundant. This old ruin is a fine example of the tendency 
of the cone to close up its summit in its dying stages. The top of 
the cone is somewhat broken; but it is 18 feet in diameter at this time, 
and near the center there is a hole or chimney 2 inches in diameter, 
plainly a steam-vent. This marks the closing history of this spring. 
The inner portions of this small chimney are lined with white enamel, 
thickly coated with sulphur, which gives it a sulphur-yellow hue. The 
base upon which the cone rests varies in thickness. On the east side 
huge masses have been broken off, exposing a vertical wall 20 feet high, 
built up of thin horizontal lamin of limestone. On the west side the wall 
is not quite as high, perhaps eight or ten feet. It would seem, therefore, 
thatit was at first an overflowing spring, depositing thin hor izontal layers, 
until it built up a broad: base ten to twenty feet in height; then it gradu- 
ally became a spouting spring, building up with overlapping layers like 
the thatch on a house, until it closed itself at the top and ceased. 

‘Wemay inquire again in regard to the origin of the lime in this cone. Not | 
over a mile below the spring, the Carboniferous limestone comes to the 
surface, and as we follow the river down toward its juncture with the 
main Yellowstone, it soon becomes 400 feet in thickness; hence we © 
know that these limestones extend under the vailey of this east brangh, 
and that the waters passed up through them, and thus we have a pre- 
dominance of lime instead of silica, as is the case at Gardiner’s River. 
Over this limestone the basaltic rocks have been poured, rising to the 
height of 2,000 or 2,500 feet above the valley. Immense quantities of 
the broken fragments of basalt have fallen down on the sides of the 
mountains, and, by their bright black color, look like heaps of anthracite 
coal in the distance. About five miles below the junction of the two = 
branches of the East Fork, the mountains on the east side become quite 
rounded and grass-covered, instead of the bald, black, rugged character 


GEOLOGICAL SURVEY OF THE TERRITORIES. 139 


of those near the sources of the river. The granite rocks begin to 
prevail, and the mountains have an older appearance. The valley is 
full of immense, rounded, granite bowlders, which have been swept down 
from the mountains by aqueous forces not now in existence. . There are 
also in this valley well-defined terraces 30 to-50 feet high, and above 
the forks are rows of basaltic columns like those in the lower portion of 
the Grand Cafion. At the mouth of Hell-Roaring River the granitoid 
rocks are displayed on a grand scale. As I have previously stated, the © 
basis rocks of the mountains are granite or gneissic granites; some- 
times they are true granites, as exposed about the junction of the 
Hast Fork and main branch of the Yellowstone, and at Hell-Roaring 
Mountain; even these, perhaps, come under the head of stratified meta- 
morphic rocks, from the fact that above and below these thick, massive 
granites are groups of gneissic strata of various textures. On the east 
fork I saw only the Carboniferous limestones. Although the Jurassic, 
Cretaceous, and Tertiary formations occur in full force at Gardiner’s | 
River, over all has been poured the igneous material, which rapidly 
increases in mass and importance as we ascend the valley, until, about 
the sources, it entirely covers all other rocks, and sends its multiform 
peaks high up among the perpetual snows. 

The bridge which has been constructed across the Yellowstone, near 
the forks, was designed to accommodate the miners on their way to 
the gold-mines on Clark’s Fork, and is the first and only bridge ever 
built on the Yellowstone. It may become a matter of some historical 
importance to note this fact here. The gold-mines are all in the granit- 
oid rocks, and, from what I can learn, all the streams that flow into - 
the Yellowstone from the east side of the range cut deep down into the 
metamorphic group. The mines are reported to be excellent, and I 
am inclined to the belief that the most important mining districts of the 
Yellowstone drainage will be found eventually on the eastern slope of 
the Heart and Snowy Ranges. 


CHAPTER VIII. 


FORT ELLIS—THREE FORKS—JEFFERSON FORK—BEAVER HEAD CANON— 
MEDICINE LODGE CREEK. 


In this and the following chapter, I will endeavor to-present a brief 
summary of the geological features of the country along our homeward 
journey, from Fort Ellis to Evanston, on the Union Pacific Railroad.. 
In a former chapter I have alluded to the range of mountains which. 
extends along the east side of the Gallatin Fork. I also spoke of the 
Pliocene or lake deposits which jutted up against the base of these 
mountains, sometimes reaching a thickness of 600 or 800 feet. 

The beautiful valley of the Gallatin was undoubtedly one of the numer-. 
ous lake basins of the West of which so much has been written in my 
reports for years past. The Pliocene hills opposite Fort Ellis and 
Bozeman overlook the valley for a great distance, and at this season 
of the year (September 6) hundreds of acres of golden grain can be seen. 
There is a remarkable uniformity in the bright-yellow color of a field of 

‘grain in this country, probably due to the uniformity of the climate; 
the sun shines without interruption for weeks in succession. The mount- 
ains are composed mostly of rocks of Carboniferous age. They incline 


140 GEOLOGICAL SURVEY OF THE TERRITORIES. 


west and southwest, at a variety of angles, 15° to 80°. Bast of this 
ridge the Hocene and Cretaceous formations prevail. 

As we descend the Gallatin, below Flathead Pass, a series of dark- 
brown quartzites, sandstones, and pudding-stones rise up from beneath 
the limestones. Some of the sandstones are very micaceous, as if they 
had been formed out of mica slates of the metamorphic series. I esti- 
mated the thickness to be 1,000 feet, and I have not observed it anywhere 
else along the sources of the Missouri. No fossils were observed, and the 
rocks themselves did not seem to promise any. They may possibly be 
remnants of the Lower Silurian series, left from erosion prior to the de- 
position of the Carboniferous; at any rate, they appear very old, even 
partially metamorphosed. The dip of these beds is variable, 10° to 25° 
northwest, though some local inclinations are greater, with a trend north- 
east and southwest. These rocks extend across the Gallatin, and under- 
lie, to some extent, the terraces and Pliocene deposits between the forks. 
The Gallatin River passes across the edges of this series, showing the 
uplifted strata on both sides, passing up into massive limestones and 
reddish sandstones. The lower series exhibits all the usual signs of 
mud flats and shallow-water deposits in quite a remarkable degree. It 
may be that the center groups, from the metamophie strata up, are of 
Carboniferous age. 

Near the junction of the Three Forks, the Pliocene beds are well 
shown, and on both sides of the Madison, for ten miles or more above 
the junction. The bluffs on either side are high, composed of the light- 
colored clays, sands, and sandstones of the lake deposits. <A careful 
examination, [ have no doubt, would have shown the existence of ver- 
tebrate remains. I heard of the discovery of bones, teeth, and turtles by 
the farmers, but could not secure any. 

The Missouri below the Three Forks, passes through a cafion formed of 
the clays and massive limestones of Carboniferous age. On the south 
and west side of the Jefferson the dip, which is slight, 5° to 10°, appears’ 
to be about northwest. About six miles above the "junction the lime- 
stones rise up from beneath the lake deposits on the south side of the 
Jefferson in the ridge which forms the tongue or wedge between the 
Jefierson and Madison. The dip is north and northwest, 45°. Imme- 
diately underneath the limestones are the usual gneissic strata, that con- 
tain the gold ores. It is not common for any other beds to be brought 
to the surface between the well-known Carboniferous and the metamor- 
phic; and so far as the sources of the Missouri and the Rocky Mount- 
ain divide, it is not uncommon for large areas to be occupied by no beds 
newer than the Carboniferous. 

In the valleys of the Gallatin, Madison, and Jefferson, we find, on the 
east side of the Gallatin, a range of Carboniferous limestone mountains 
rising up 8,000 to 9,500 feet above the level of the sea. On the north and 
west side of the J efferson, these limestones form high, nearly vertical walls, 
but between these walls the lake deposits extend up the valleys and form 
the tongues or ridges that extend down between, for ten miles or more, 
and it is only here and there that the older rocks crop out. The lake 
deposits fill the valleys and lap on to the sides of the hills on either side. 
The cation of the Missouri, below the junction of the Three Forks, was 
evidently the outlet of the lake, that had its deepest portion around the 
Three Forks, and set high up in the valleys to the mountains at their 
sources. Ascending the valley of the J efferson, we passed over the 
high hills on the east side, to avoid the deep cafion through which the 
river ran for several miles. Granitic strata cropped out in the valleys 
or gorges, with now and then a protrusion of trachytic basalt. The 


GEOLOGICAL SURVEY OF THE TERRITORIES. 14i 


highest ridges were covered with the Carboniferous limestones, which ~ 
passed down into some massive beds of quartzites before resting on the 
gneissic granites. 
For ten miles from the Upper Willow Creek to the entrance of the 
Boulder Creek into Jefferson Fork, we have the Carboniferous limestones 
on our right, or west side; on our left, or east side, basaltic rocks cover 
the lake deposits. The valley is one to one and one-half miles wide, and 
presents a grand display of the Pliocene marls and sands. The high 
mountains, with the symmetrical cones, are alsoigneous. Between North 
Boulder and Willow Creeks, a distance of about five miles, the Jefferson 
Fork flows through one of the deepest limestone cations I have yet seen. 
The walls on either side rise from 700 to 1,200 feet, almost vertically. - 
The general dip of all the limestones is northwest, and I estimated their 
aggregate thickness at 2,000 feet. Masses of chert occur in the limestones, 
which are filled with fossils, spirifers, corals, and crinoidal fragments. 
The formations are much confused here, from the fact that the basalts 
have been effused at a recent period, even since a large portion of the 
lake deposits were laid down. In the gorges that lead down to the Jefier- 
son, they are exposed, and here and there are spread out over the marls. 
Now and then the limestones or older rocks crop out from beneath 
them. Along the little streams that flow into the Jefferson as well as 
the Jefferson itself, are distinctly marked terraces of the lake deposits. 
for 50 to 200 feet above the river’s bed. 
The North Boulder Creek enters the Jefferson from the north, through 
a synclinal valley. On the west. side the beds of limestone incline 
northwest. The general trend of the synelinal is about northeast and 
southwest. On the west side of the North Boulder and on the south 
side of the Jefferson, the Carboniferous limestones prevail almost entirely. 
There are only a few local outbursts of igneous rocks, and not oceupy- 
ing large areas. Above the caiion the valley of the Jefferson expands 
to a width of one and one-half miles. The lake deposits are again con- 
spicuous, covering the entire valley and extending up the valleys of the 
side-streams. About three miles above the mouth of the North Boulder 
Creek, on the same side of the Jefferson, the ravines cut down into a 
thick series of strata of sandstones, slates, clays, &c., which incline at a 
-moderate angle. These beds are, I think, local, and indicate volcanic 
action connected with hot springs during the Pliocene period. The 
clays and sands are variegated, and thick beds of conglomerate oceur. 
The highest mountains are composed of quartzites and a group of light 
gray vesicular strata in thin layers, which has somewhat the appearance 
of igneous rocks. White alkaline efflorescence covers the surface in 
many places. . 

I may repeat again that the entire surface seems to have been wrinkled 
or cramped into vast folds or ridges, with a general trend. nearly north 
and south, or rather west of north and east of south; that the valleys of 
the streams are for the most part synclinal depressions. The erosion 
has been so great that it is quite uncommon for rocks of more mod- 
ern date than the Carboniferous to be seen. The great valleys, or syn- 
clinal depressions, during the latter Tertiary period were the basins of 
fresh-water lakes, so that we have everywhere the white and yellowish- 
white sands, marls, clays, sandstones, and pudding-stones of the Plio- 
cene lake deposits passing up into the Quaternary or local drift. It is 
not uncommon for these modern lake deposits to be swept away, so 
that we know of their former magnitude only by isolated remnants here 
and there. During this lake period changes were going on in the sur- 
face; the general elevation of the country most probably continued, so 


“142 GEOLOGICAL SURVEY OF THE TERRITORIES. 


that it is not uncommon to find the Pliocene deposits inclining 5° 
to 10°. Th 
Subsequent to these depositions, there was a period of intense volcanic 
activity, in which the basalts were poured out over vast areas. Wemay 
take, for example, the valley of the Jefferson, from the entrance of the 
North Boulder into the Jefferson River to Beaver Head Cafion, On the 
east side of the Jefferson a range of mountains extends along the valley 
for thirty miles or more, with the northern portions of the west side 
covered with a large thickness of Carboniferous limestones, like a steep, 
flexible roof, the highest conical peaks rising to a height of 2,000 to 
2,500 feet above the valley. At intervals of one to three or four miles, 
these mountains are cleft from summit to base by small streams, forming 
a gorge or cation of wonderful grandeur and picturesque beauty. The 
stratified rocks thus reveal a dip varying from 45° to 60°, and apparently 
pass down, curving under the valley and rising with a reversed dip on 
the opposite side. The nucleus of all these ranges is, of course, a group 
‘of stratified rocks composed of arenaceous clays, slates, quartzites, 
micaceous gneiss, granulites, &c. A great variety of what I have termed 
gneissic granites, granitoid rocks, granulites, metamorphic strata, &e., 
occur. Asa general rule, the Carboniferous strata repose unconformably 
on this group of metamorphic strata; but here and there, a perplexing 
series of beds. come in, quite varied in texture and occupying a restricted 
area, but revealing no definite evidence of their age. That.all the strati- 
fied rocks known to exist in the Northwest, to the Lower Tertiary inclu- 
Sive, once extended all over this region, we have every reason to believe; 
but about the sources of the Missouri, Yellowstone, and Snake Rivers, 
the Tertiary, Cretaceous, and Jurassic beds have been swept away, except 
remnants exposed here and there. The Carboniferous groups, although 
covering quite large areas, are not unfrequently seen capping the highest 
mountains that suffered erosion to a tremendous extent. The occurrence 
of rocks of Triassic age in the northwest is so problematical as yet, that 
I do not now recognize them. Further investigations may bring to light 
some evidence that will fix the position of the brick-red beds more posi- 
tively, and until that time I prefer to include them with the Jurassic. 
The metamorphic group contains the valuable mines of Montana. Not 


unfrequently the most productive gulches are found, where the streams ~ 


have carved out a gorge through a thick series of Carboniferous lime- 
stones, cutting deep into the metamorphic group. The volcanic action 
seems to have taken place during all the later periods, continuing up to 
the present time, and operating with greater or less force at different local- 
ities. The above may be regarded as a brief summary of the principal 
points in the geological structure of Montana and Idaho Territories. It 
remains now to present an account of the local geology from point to 
point, which must be a repetition substantially of this summary. 

The Pliocene deposits extend high up the valleys of the Pipestone 
and White-Tail Deer Creeks, which are quite wide, with mountains on 
either side. On the west side of the Jefferson, the foot-hills show a 
great thickness, 600 to 800 feet. The silicified wood that is found 
occasionally in these deposits is more beautiful than any I have ever 
seen from any other formation. It is pure silica, and must have been 
aided in its silicification by proximity to hot springs. Portions of it look 
like opal or fine chalcedony, and in some portions the rings of growth are 
well shown. As cabinet specimens they are especially sought for, and 
must always be rare. The only other fossils known, are fresh-water and 
-land shells, and a few vertebrate remains. Organic remains of any 


GEOLOGICAL SURVEY OF THE TERRITORIES. 148 


kind, will probably never be found in abundance. The mountains on 
the west side of the Jefferson are lower than those on the east side, 
a much wider range, and far less rugged in outline. The Carboniferous 
limestones occur only in restricted patches. The metamorphic group 
is exposed fully, with here and there an outburst, of the trachyte basalt. 
All the little streams, as laid down on the map, cut deep channels from 
the summit to the valley of the Jefferson, and are now or have been 
filled with miners searching for gold. 

The mountains on the west side of Table Mountain and those at the 
sources of Fish Creek are gneissic and contain valuable mines of gold. 
. The limestone range on the east side of the Jefferson is cut off by the river 
temporarily, at the bend where White-Tail Deer and Pipestone Creeks 
enter it; but it commences again on the opposite side and extends far 


~ northward. The Jefferson Valley is from five to eight miles wide and 


of oval shape, narrowing to a cation at either end. The east range 
trends about northwest and southeast, while the limestones on the west 
side dip southwest. They appear to rise vertically out of the valley 
plain, as if the whole range had either been carried up vertically in a 
narrow belt, or that it was caused by depression and elevation; that as 
the range arose the valley was depressed, producing this abrupt flexture 
in the limestone strata. At Silver Star the metamorphic group comes 
in close to the Jefferson on the west side, and continues far up for 
several miles. The strata incline southeast and extend across the 
mountains and hills in long and quite regular lines. There are here 
two important gold lodes, “Iron Rod” and ‘Green Campbell.” The 
latter is seven to ten feet wide, with quartz that pays well. It has been 
wrought for three years with success. 

Just north of “Silver Star” there are some patches of limestone that 
extend up almost to the summit of the range. This range of mountains 
lies between Deer Lodge Valley and that of the Jefferson ; and although 
the rocks are mostly metamorphic, yet there are remnants enough of 
the Carboniferous limestone to show that it formerly extended over the 
area occupied by the mountains. The elevation of this granitoid range 
is not as great as the limestone range on the east side. It will average 
from 800 to 1,500 feet above the valley, some of the peaks reaching 
1,000 to 1,500 feet above the bed of the Jefferson. About three miles 
below the forks of Beaver Head and Big-Hole Rivers, the Stinking 
Water comes in from the southeast and forms a sort of breach in the 
limestone range. The latter turns off to the southeast, the limestones 
cease entirely, and the numerous little branches of the Stinking Water 
cut deep into the metamorphic strata, forming good mining gulches. 
On the west side of the Stinking Water the high limestones continue 
northward to the sources of Stinking Water and Black-Tail Deer Creek, 
where they were studied by us on our journey to Virginia City in June. 
The valley of the Stinking Water is from four to six miles in width, and 
extends up to the cafion, in full view of the Jefferson Valley, so that 
our two belts of explorations connect from time to time. 

Beaver Head Rock is Carboniferous limestone, with a dip 23° southwest. 
It seems to be a portion of a ridge extending across the valley from the 
Stinking Water Range. The Beaver Head Fork cuts a narrow channel 
through it, forming a sort of cation, with limestone walls on either side. 
Passing Beaver Head Rock, the strata, which are well shown for miles along 
the west side of the Beaver Head Fork, seem to incline southwest; and 
I have no doubt from the style of surface weathering that beds of more 
modern date, Jurassic or Cretaceous, appear soon on the summits of the 
mountain hills, Around Bannock City, about twelve or fifteen miles 


144 GEOLOGICAL SURVEY OF THE TERRITORIES. 


! 
distant, several outcroppings of coal have been found, which would in- 
dicate the presence of Upper Cretaceous or Lower Tertiary beds. Above 
the Carboniferous limestones, were several layers of sandstane, clays, and 
quartzites. The sandstones have been used successfully in the manu- 
facture of grindstones. There is no doubt that as we ascend the Rocky 
Mountain divide, beds of comparatively modern age appear. 

The geology of all this region is exceedingly complicated, and must 
be studied with more care than I could give it, to represent it in colors 
onamap. This wiil require a most careful, detailed survey, though the 
general character of the geology will be found to be as I have presented 
it in this report. Our journey homeward was so rapid that I could not 
do more than work out the geological features immediately along the 
route. The details will be wrought in from year to year, as the great 
work of exploration goes on. . 

As we crossed Black-Tail Deer Creek, in ascending the broad, open 
valley of the Beaver Head, we could look up the valley to the southeast 
and see distinctly marked on the horizon, thirty miles distant, the 
limestone range at the sources of the Black-Tail Deer Creek. The val- 
ley itself is occupied with a large thickness of the lake deposits, while 
on the north side the hills are composed of metamorphic rocks, and on 
the south, far below Wild Cat Caiion, we find the Carboniferous lime- 
stones inclining from the sides of the mountains, the nucleus granitic, 
with extensive outpourings of trachytic basalt. 

At Ryan’s Station the valley closes up for a time, and the passage of 
the Beaver Head Fork through the trachyte, forms the well-known 
Beaver Head Caiion. The igneous rocks are of great variety and tex- 
ture. Just below the lower entrance of the cation, on both sides of the 
river, there is a beautiful, brittle, light-purplish, and whitish porphyritic 
trachyte or calico rock. Immense masses of unusually perfect breccia, 
the angular masses set in a white cement, have fallen down on the 
sides and at the base of the mountains. As we look up the cation from 
below, the river seems to rush through a narrow gateway with vertical 
walls, with dark-purplish basalt weathered into most picturesque forms. 
From one point of view above the cafion, the rocks on either side pre- 
sent the form of animals couchant, which, in the imagination of the 
Indian, had a resemblance to the beaver; hence the name which is ap- 
plied to the river as well as the cafion. Along the canon in several 
localities are tepid springs flowing down the sides of the cation and 
depositing great quantities of calcareous tufa. About one mile up the 
cation, on the west side, there is near the road a, high, nearly vertical 
exposure of 200 feet of soft, yellow and gray limestones, inclining 10° 
to 25° south of west. In this limestone are layers made up of casts of 
shells. They are not sufficiently distinet to be identified, but are proba- 
bly Carboniferous, though the texture of these rocks is different from 
any I have met with the present season. Rising up from beneath this 
group of arenaceous limestones are 300 feet of gray sandstones, break- 
ing off vertically in columnar masses, presenting a singularly picturesque 
appearance. As far up as the mouth of Horse Plain Creek the reddish 
and gray sandstones and limestones are seen on both sides of the river, 
with here and there tremendous outbursts of igneous material. The 
latter sometimes assumes nearly the usual columnar form of basalt, and 
forms mountains 1,000 to 1,500 feet high above the river, weathered all 
over the summits into sharp pinnacles. The igneous rocks make fine 
pictures for the photographer. The river originally flowed along a 
monoclinal interval, at first separating the sedimentary beds from the 
metamorphic, but flowing to the northeast, while the trend of the mount- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 145 


aims was northwest. It leaves a wide belt of the sedimentary strata 
on the east side, near Horse Plain Creek. At a point in the caiion, 
where Clark’s Creek enters the Beaver Head from the east side, there 
is an enormous belt of singular, slaty trachytes, forming high walls on 

_ both sides of the road. Immense quantities of debris, composed of the 
fragments of compact basalt, lie on the side and at the base of the hills 
on either side. At the mouth of Horse Plain Creek the valley expands, 
the Beaver Head Valley extending up to the southeast, reaching the 
Rocky Mountain water-shed and Horse Plain Creek Valley trending to the 
southwest, to the same great divide; both valleys are broad, fertile, and 
are now occupied by settlers. The elevation is so great that the climate 
is very Severe during the winter. One mile below Beaver Head Cation 
the altitude is 4,988 feet; at the junction of Horse Plain Creek and 
Beaver Head, nine miles above, 5,130 feet. From this point to the 
main Rocky Mountain divide it is thirty-three miles, and the elevation 
is 7,405 feet. 

Although the soil is fertile, and during the summer season the grass 
is excellent, yet the altitude about the sources of these streams is too 
great for successful farming or grazing. About six months of the year 
the grazing is of superior character, but during the winter months I am 
of the opinion that stock must be driven down below the cafon for 
safety. At the junction of Horse Plain Creek with the Beaver Head, a 
broad valley has been worn out of the uplifted ridges of Carboniferous 
strata; but just at the junction there is quite a conspicuous remnant of 

,» @ limestone ridge that escaped erosion, which forms a sort of land-mark. 
On both sides of Horse Plain Creek, as well as the Beaver Head, the 
Carboniferous beds are elevated in ridges inclining at various angles. 
From its source to the junction of Horse Plain Creek, the Beaver Head 
flows through a synclinal depression, the sedimentary rocks inclining 
from the Black-tail Deer Range on the east side, while on the west side 
the same beds incline from a range that extends northward between 
the Horse Plain and Beaver Head branches. Below the junction of 
Horse Plain, the Beaver Head flows along a sort of monoclinal interval, 

, While the Horse Plain, which comes in from the west, carves its valley 
through the ridges nearly at right angles. At one locality, in an anti- 
clinal valley, which runs up northward from Horse Plain Valley, the 
quartzites and micaceous schists of the metamorphic group rise up 
beneath the limestones and reddish quartzites of Carboniferous age, over 
a small area. Thence westward we pass over ridge after ridge of lime- 
stones, quartzites, and arenaceous clays to the sources of Horse Plain 
Creek. Throughout all these valleys, and jutting up against the sides 
of the mountain hills that inclose them on either side, the Pliocene 
deposits are always found of greater or less thickness. On the imme- 
diate bottoms of the Horse Plain there is an unusual amount of the 
alkaline efflorescence, or sulphate of soda, covering acres, as white as 
snow. 

AS we pass up the valley toward the divide, a great thickness of 
sandstones and quartzites, at least 1,500 to 2,000 feet, is exposed above 
the well-known Carboniferous limestones, forming ridges which rise 
800 to 1,000 feet above the valleys. The quartzites are so compact and 
durable that they do not disintegrate, and the hills as well as the val- 
leys are covered with the stray fragments. Here and there a dark, 
abrupt mass forms the summit of a hill, weathered, perhaps, into sharp 
pinnacles, indicating a point of effusion of basalt. On alittle branch of 
the Horse Plain Creek, called by the Indians Sage Creek, there are three 


10GS 


146 GEOLOGICAL SURVEY OF THE TERRITORIES. 


quite prominent points of eruption in the range of hills on the east side 
of the valley. 

The mountains on either side are principally Carboniferous and 
Jurassic, and the valley itself is surrounded with rolling foot-hills, com- 
posed of the lake deposits passing up into a great thickness of local 
drift. On either side the rounded, dome-like peaks rise up 1,000) 
to 2,000 feet above the valley, which itself is 6,252 feet above the sea. 
It would be impossible to describe in detail the geological structure of 
so extended an area of country. Precipitous walls of Carboniferous 
limestone can be seen on either side; but so chactic are the positions of 
the beds in different localities, so obscured by more modern deposits, or 
the outpouring of basalt, that it can only be by pictorial illustrations 
that can be presented to the eye that the mind can form a conception 
of this remarkable region. I shall therefore hasten on, making a few 
observations from point to point, referring my readers to a more com- 
plete and illustrated report hereafter to be prepared for a clearer under- 
standing of my descriptions. 

On both sides of Sage Creek, about six miles above its junction with 
Horse Plain Creek, we find a series of more modern strata. They form 
the foot-hills of the mountains on each side, extending in some instances 
nearly to the summits. On the west side they incline from the range 
about northwest, and on the east side, southeast. Group one, is a series 
of strata of sandstones and arenaceous clays of various textures, which 
I supposed to represent No. 1, or Lower Cretaceous; group two, com- 
posed of a bed of earthy lignite, passing up into a dark chalky slate, 
with many fish-scales and some beautiful impressions of ferns and other 
plants. These shales are nearly vertical, and in some instances dip 
past a vertical. I regarded these beds as No. 2 Cretaceous, then passing 
up into yellow chalky beds which might represent No. 3, then upward 
through clays, sandstones, arenaceous limestones, &c., a thickness of 
several hundred feet. No shells could be found after a patient search 
of several hours. The more modern beds, Cretaceous or Tertiary, and 
possibly both, by more readily yielding to atmospheric agencies, have 
given a smoother and more rounded form to the mountain hills, and 
permitted them to be covered with a thick growth of vegetation. Near 
the head of Sage Creek there is a fine group of mountain peaks, 7,500 
to 9,000 feet high. They extend along the divide from Red Rock 
Creek to Horse Plain Creek, thirty to fifty miles, and may be re- 
garded as remarkable for their symmetrical beauty. At one locality 
there is an exposure of purplish granulites of the metamorphic group, 
revealed by the local wearing away of the Carboniferous limestones. 
As we ascend Sage Creek toward the high divide, we have an occa- 
sional exposure of gneiss, enough to show that the nucleus of the 
mountain ranges is composed of the metamorphic series, with its rocks 
of varied textures. Here are some purplish granulites, micaceous gneiss, 
with so large a per cent. of mica that the mass presents a brilliant black _ 
color in the distance. Over them are the limestones, sometimes lifted 
high upon the summits of the mountains, almost horizontal or forming 
nearly vertical walls on the sides inclosing the narrow valleys. Then 
come the trachytic basalts of various colors and textures, affecting the 
adjacent rocks more or less. The quartzites, which are the principal 
rocks exposed on the immediate divide, have been subjected to the heat 
of the igneous rocks so that they appear in the distance, dark-brown like» 
compact trachytes. 

I may now delay for a moment and make a few general remarks 
on the geology of the Rocky Mountain divide. We have already 


GEOLOGICAL SURVEY OF THE TERRITORIES. 147 


described in as brief terms as we could, the character of the vast area 
drained by the three forks of the Missouri; we have shown that the 
mountain ranges lie along the borders of the synclinal valleys, which 
were originally the basins of fresh-water lakes. All these ranges have - 
a general trend north and south, or northwest and southeast, and yet 
they are here and there connected by cross-chains, as it were, which 
give origin to small branches. If we look on the map, (and every map 
of this country now in existence is very imperfect,) we shall see the 
three grand streams that constitute the three forks of the Missouri. 
The main branches flow through valleys which now expand out to a 
width of three to five miles, then close up in a deep gorge or cation, 
then expand out again into broad, fertile, grassy valley so with each 
from mouth to source. These expansions, or broad valleys, have all been 
lake-basins during the last portion of the Tertiary period, and perhaps — 
extended into the Drift or Quaternary. On either side, these valleys are 
inclosed by more or less lofty ranges of mountains, broken here and 
there by the entrance of some branch, or by some turns in the main 
river cut through, and another range takes its place. Again, if we look 
at a correct map we shall see that each one of these main rivers has 
numerous branches flowing in from either side, and that many of these 
branches have their small tributaries fed by the snows upon these 
high mountain ranges. Each one of these principal branches, inclosed 
by a range of mountains, is sometimes so low that I have called them 
mountain hills. There 1s no doubt that these valleys are partly due to 
erosion, but they are for the most part synclinal folds, and the inter- 
vening mountain ridges area wedge-like mass of Carboniferous limestone, | 
the beds inclining from both sides like the steep roofs of a house. Not 
unfrequently the great mass of limestone has been swept away, and the 
ranges are less lofty and more rounded, exposing to atmospheric agen- 
cies the metamorphie rocks, and here are located the valuable mines. 
Sometimes, through the metamorphic strata, and even the sedimentary 
rocks, the fluid interior has burst forth, forming a long line of high, 
black, conical peaks, usually covered with perpetual snows. 

We may say of a large portion of Idaho and Montana that the surface 
is literally crumpled or roiled up in one continuous series of mountain 
ranges, fold after fold. Perhaps even better examples of these remark- 
able folds may be found in the country drained by Salmon River and its 
branches, where lofty ranges of mountains, for the most part covered 
with limestones and quartzites of the Carboniferous age, wall in all the 
- little streams. None of our published maps convey any idea of the 
almost innumerable ranges. We might say that from longitude 110° to 
118°, a distance of over five hundred miles, there is a range of mountains, 
on an average, every ten totwenty miles. Sometimes the distance across 
the range in a straight line, from the bed of a stream in one valley to the 
bed of the stream in the valley beyond the range, is not more than five 
to eight miles, while it is seldom more than twenty miles. From these 
statements, which we believe to be correct, the reader may form some 
conception of the vast amount of labor yet to be performed to explore, 
analyze, and locate on a suitable scale these hundreds of ranges of 
mountains, each one of which is worthy of a name. As we approach 
the great divide or crest of the water-shed we might suppose that rocks 
of very ancient date would be the only ones exposed, but those of more 
modern origin prevail. Rocks older than Carboniferous are the excep- 
tion. The crest of this water-shed is an irrégular ridge from 7,000 to 
8,000 feet above the sea, with here and there along the line, peaks or 
groups of peaks 9,000 to 11,000 feet high. The lower portions of the 


‘ae 


148 GEOLOGICAL SURVEY OF THE TERRITORIES. 


crest are almost entirely destitute of timber of any kind, but are covered 
over with short grass. The ascent from either side is so gradual that 
it is difficult to detect the fact that one is passing over the water-shed 
of the continent. Rocks of all ages, from the Carboniferous to the most 
modern, Tertiary inclusive, are found. 

After passing the divide, we descended the Medicine Lodge Creek 
toward Snake River Basin. In the Carboniferous limestones on both 
sides of the valley, the fossils were quite abundant. Among them was 
a variety of corals, and several species of Productus, among them P. 
semireticulatus, &e¢. The surface, as far as the eye can reach on either 
side, is extremely rugged, raised into ridges, and cut into deep canons. 
Here and there a fine dome-shaped peak rises high above all the rest, 
9,000 to 10,000 feet above the level of the sea. The Medicine Lodge 
Creek commences in little bogs or springs near the divide, and soon the 
aggregated waters from numbers of little side-valleys, extending down 
from among the hills and ridges on both sides, form a good-sized trout- 
stream. I think Inever saw a stream, large or small, more fully crowded 
with trout. There were two species, each equally abundant; and yet this 
stream sinks beneath the surface and is lost entirely twenty-five miles 
before reaching Snake River. The limestones and quartzites seem to 
monopolize the country for a belt of thirty to fifty miles in width, 
extending east and west on both sides of the divide. 

Our camp was made in a singular basin, a sort of synclinal depression, 
an average of three miles in width and about eighteen miles Jong, cov- 
ered over with grass, but no timber, scarcely a shrub. The vajley must 
be at times a complete marsh or bog. It is covered with singular sink- 
holes. They are round holes ten feet below the surface, and full of 
rounded bowlders; and in the spring of the year, when the snows 
on the surrounding hills melt, there is a great accumulation of water, 
which in the autumn passes away to the main water-courses, among the 
bowlders underneath the superficial deposit of soil. We see, therefore, 
that on the very summit of the Rocky Mountain divide, the Pliocene 
lake deposits occur, as well as immense accumulations of the local drift 
or Quaternary. 

At some future period, in a general résumé of the geology of the West, 
these statements will be referred,to. In my preliminary reports I desire 
to confine myself mostly to a simple statement of what I saw along the 
route, that the observations may be placed on record for future use. 
Our first camp on Medicine Lodge Creek was 6,110 feet above the sea. 
The high mountain hills on either side are 800 to 1,500 feet above the 
valley, some of the highest peaks 2,500 feet or more. One high ridge of 
Carboniferous limestone was found to be 700 feet above camp, by barom- 
eter. One of the principal features of this valley is a most remarkable 
deposit from springs, which must have occurred far back in the Pliocene 
period. It is far the largest I have ever seen in the West, and may serve 
to illustrate the influence which springs may have in the formation of the - 
earth’s crust. It seems to have filled up a synclinal trough. The Car- 
boniferous limestones incline from the sides of the mountains that inclose 
the valley, and the deposit is arranged in nearly horizontal layers, jut- 
ting up against the sides of the valley, while the stream itself has cut its 
channel through it, thus exposing a fair section to the eye. On the east 
side of the creek, the wall is 100 to 200 feet high, made up of rather 
massive layers of most beautiful white limestone, some of it porous like 
heavy tufa, but most compact like.the old Hot Spring limestone on Gar- 
diner’s River. Above it, and conforming to the bed of limestone, are 
about 80 feet of gray volcanic ash, forming a soft, sometimes porous, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 149 


chalky rock; this is capped with a layer of very hard, purplish-drab 
basalt of variable thickness. This deposit extends down the valley of 
the Medicine Lodge six miles, with an average of four miles in width, and 
I estimated the entire thickness to be 400 to 600 feet. The deposit itself 
has been lifted up, so as to form a sort of anticlinal, that is, the strata 
inclining each way from the river channel at an axis, 5° to 8°. The 
lower portion is very much like the Hot Springs deposits at Gardiner’s 
River, hard and white as snow; some of it is a pudding-stone, made up 
of worn pebbles. The upper portion is variable, as if volcanic action 
had existed at the same time. The limestone in some places passes up 
into thin layers of a white, fine, calcareous sandstone. As we descend 
the creek the beds of limestone, volcanic ash, and basalt diminish in 
thickness, and over all is a heavy bed of black porous basalt. It is 
probable that during the lake period this valley was the center of one 
of the most active groups of hot springs on the continent; that the 
principal time of deposition preceded the last period of volcanic action, 
when the basalt that covered the Snake River Basin with its huge crust 
issued forth. We can trace its history step by step by the strata; and 
although we could discover no sign of any water in the vicinity above 
the ordinary temperature of river-water, yet there is no doubt that this 
indicates one of the largest deposits of the kind yet known in the West. 
We may inquire from what source all this calcareous material was 
derived. If this is a synclinal valley, and I so regard it, then the vast 
thickness of Carboniferous limestones which we see on the sides, and 
extending to the summits of the highest mountains, at least 3,000 feet 
in thickness, dips down beneath the valley and rises again on the 
opposite side. The waters permeating such a mass of limestone could 
dissolve an unlimited amount of lime. 

The valley of the Medicine Lodge, for fifteen miles above the Snake 
River Basin, passes through a deep gorge, with walls of basalt and bas- 
altic conglomerate on either side. At the point where we ascend the 
hill on the west side of Medicine Lodge, the hot-spring deposits have 
diminished to about 80 feet in thickness, and, with a flexure like a bow, 
bend down, beneath the bed of the stream, out of sight. We then 
have, as the lower portion of the wall, 100 feet of very coarse breccia or 
conglomerate, capped with a bed of basalt; then 200 feet of yellow ma- 
terial, like marl, undoubtedly volcanic ashes, &c. This also is capped 
with a bed of basalt. The valley or cafion of the Medicine Lodge is 
450 to 550 feet below the sloping plain line. All over the plains there 
is great abundance of very rough basalt, full of holes, of quite modern 
origin. 

We have said enough in this report to show that the portion of the 
West drained by the Snake River and its tributaries is full of interest. 
We have examined only two or three of the numbers of little streams 
that carve deep channels from the divide down into the basin for more 
than two hundred miles—all of them undoubtedly presenting features 
of the highest interest. Fold after fold of mountain ranges extend to 
the westward to an unknown distance, very few of which are laid down 
on any of our maps. 


7 


{ 


150 GEOLOGICAL SURVEY OF THE TERRITORIES. 


CHAPTER IX. 


FROM FORT HALL—SODA SPRINGS—BEAR-RIVER VALLEY—BEAR-LAKE 
VALLEY—TO EVANSTON ON UNION PACIFIC RAILROAD. 


IT will not delay, at this time, to discuss the many interesting prob- 
lems connected with the great basin of Snake River. Further examina- 
tions will add greatly to the observations we now possess. Indeed, itis 
hardly possible, in these preliminary reports, to do more than to make a 
brief record of field-notes. The great lines of thought which are opened 
up in every direction by the wonderful phenomena of this singular re- 
gion must be followed persistently to their legitimate conclusions. Time 
and careful study will be required to work out all the results, and these 
cannot be given at this period. Our barometric observations indicate 
the altitude of Fort Hall to be 4,720 feet above the level of the sea. 
This will form our starting-point homeward from the basin, and, inas- 
much as most of the way will be toward higher altitude, we may thus 
know the grade from point to point. 

On our way up to Fort Ellis, in June, we ascended the Cache Valley, 
and, passing the divide, descended one of the more western branches of 
the Port Neuf into the Port Neuf Caton; then into the Snake River 
Basin. On our return, we crossed the divide between the Blackfoot Fork 
and the Port Neuf, 5,964 feet, down into a broad valley, a kind of synclinal 
depression between the high ranges of mountains. In this valley, the 
sources of the main branch of the Port Neuf gather together before 
cutting through the ranges of mountains. 

I have, in a previous chapter, noted briefly the formations along the 
east side of the Snake Basin, in the vicinity of Fort Hall. The Jurassic 
and Carboniferous groups of strata form the bulk of the sedimentary 
rocks, with the Pliocene or Lake deposits jutting up into the ravines or 
valleys, and sometimes occurring high up on the sides of the mountains. 
The range of mountains which formed the eastern wall of the Cache Valley 
in its northward extension seems to have broken up into irregular frag- 
ments aiter reaching the rim of the basin, and, with the exception of a 
few rather high peaks, seldom reaches an elevation of more than 6,000 or 
7,000 feet on the east border of the basm. I did not observe rocks of 
Cretaceous or Lower Tertiary age here, though I think a more careful 
examination will reveal them. Originally there was a system in the 
formation of the mountain hills on the east side of the basin, but subse- 
quent to their upheaval the outbursts of igneous material have produced 
apparent chaos. The sedimentary formations at this time incline in 
every direction and at all angles. 

After crossing the divide, we descended into an open, grassy valley, 
extending to the northern bend of Bear River, averaging about three 
miles in width, but expanding, near the point where the sources of the 
Port Neuf unite and cut through the mountains, to a width of five miles. 
On the east side, the range of hills is entirely composed of Carbonifer- 
ous 1 mestones, so far as I could ascertain atter a careful examination. 
This range of hills is composed of broken ridges, which rise for 800 to 
1,500 feet above the.level of the valley. One ridge, which I measured 
with care, as an average, was 1,100 feet. In many localities these lime- 
stones were charged with fossils. In no portion of the Rocky Mountain 
Range have I seen them of greater abundance and variety.. Quite thick 
layers of a compact, bluish limestone were entirely compesed of corals 
and crinoidal stems. In the valley itself the basaltic covering is ex- 
posed here and there, though it is not quite aS conspicuous as it is 


\ 


GEOLOGICAL SURVEY OF THE TERRITORIES. 151 


either east or west of the limestone range. The evidence is plain 
enough, however, that the basalt did originally form a thick covering 
in this valley. 

‘Near the bend of Bear River are several points of effusion, and three 
or four ruins of old craters can be seen. On the east side of the lime- 
stone ridges, in the valleys of the sources of the Blackfoot Fork, there 
are a number of real craters, the rims of which are composed of lava of 
guite modern appearance. One of these craters, not more than ten 
miles north of the Soda Springs, is very distinct, about one hundred and 
fifty yards in diameter, from one edge of the rim to the other, nearly 
circular; the west side of the rim is about 50 feet above the grass-cov- 
ered, inner space, which is eighty yards in diameter. All the rocks are 
extremely porous, and have the appearance of comparatively recent 
action. Indeed, but few, if any, important changes have taken place in 
the surface since the eruption of these basalts, and therefore it must 
have occurred either during or immediately prior to our present period. 

In general terms, we may describe this portion of the country as com- 
posed of nearly parallel ranges of mountains or mountain hills, seldom 
rising more than 1,500 feet above the intervening valleys, but with here 
and there‘a higher peak 2,000 to 2,500 feet. On the east side and ex- 
tending oif to the drainage of Green River, these ranges are mostly 
composed of limestones or quartzites, which are undoubtedly of Carbon- 
.iferous age. They trend nearly north and south, and, though sometimes 
broken up at points, preserve a remarkable degree of uniformity. They 
are folds or wrinkles in the crust, from the surface of which nearly or 
quite all the older sedimentary rocks have been removed by erosion, 
leaving the Carboniferous group in pretty nearly its full force. On the 
west side, however, about the lower caiion of the Port Neuf, the lime- 
stones have been stripped away, and an immense thickness of meta- 
morphic strata of uncertain age is exposed. In the intervening valleys, 
are the Lake deposits, as usual, and at a modern date, the evidence of 
the eruption of the basalt. About the sources of this Blackfoot Fork, 
the influences of the basaltic outflows are very marked. Along the sides 
of the ranges of hills or mountains are deep ravines, extending up to 
the crest or water-divide. They are seldom ¢aiions or gorges, though 
the walls are in some instances rather abrupt. These ravines gather 
the drainage from the hills, and in the valleys numerous springs break 
forth, the waters of which contain great quantities of lime in solution. 
Large deposits of this lime are met with long before reaching Soda 
Springs at the bend of Bear River. Indeed, this group of springs, which 
is usually very remarkable, is but the center of a great district ex- 
tending in every direction, only the ruins of which remain at the pres- 
ent time. Some of these ruins bear traces, at this time, of a good deal 
of former beauty. In one locality quite a large area was covered with 
the semicireular basins, with scalloped rims. 

But one of the most remarkable features of this region is the bend of 
Bear River. By examining the map it will be seen that the river, after 
flowing nearly northward from the Uintah Mountains about two hundred 
and fifty miles, makes an abrupt bend, and returns, flowing southward 
about the same distance into Great Salt Lake, not more than fifty miles 
from its source. There is really only one important range of mountains 
or hills between the two portions of the river. I was unable to obtain 
from the present surface features of the country, a satisfactory reason for 
the singular conduct of this river. The wide parallel valley which comes 
up over the lake, inown on the maps as Cache Valley, opens directly into 
the Upper Port Neuf, and continues nearly to Fort Hall, while Bear River 


152 GEOLOGICAL SURVEY OF THE TERRITORIES. 


has apparently cut its way directly through one of the great limestone 
ranges, and abruptly flexes around and flows southward. The river cuts 
the end of the mountain-range that extends up in the bend, so that the 
north end forms a high, precipitous mountain wall. The river runs 
through a deep gorge of basalt. On the opposite side there is a steep 
wall of limestone 800 to 1,000 feet high. The passage from Upper 
Port Neuf to Upper Bear River Valley is a narrow gateway about half 
a mile wide. The general trend of all these ranges is nearly northwest 
and southeast; the inclination of the limestones 15° to 30°, though in 
some exceptional cases extensive groups of strata incline as high as ; 60°, 

The high range, which can be seen so distinetly extending far south- 
ward from Soda Springs witbin the bend, is only a portion of the im- 
mense limestone range seen on the east side of Cache Valley as we jour- 
neyed northward in June. It is entirely composed of the old quartz- 
ites and underneath them the well-defined Carboniferous limestones, as 
shown in the Wahsatch Range, the limestones and the quartzites again 
overlying the limestones. JI could not discover any traces of the usual 
metamorphic group. There is a broad belt of country lying between 
the drainage of Snake and Green Rivers, which is formed of a series of 
folds in the crust, that have not yet been worked out in detail. In all 
this belt it is seldom that rocks older than the Carboniferous are ex- 
posed. 

At the bend of Bear River, is located the most interesting group of , 
soda springs known on the continent. They occupy an area of about 
six square miles, though the number is not great. At this time they 
may be called simply remnants of former greatness. Numerous mounds 
of dead or dying springs are scattered everywhere, and only a few seem to« 
be in active operation. So far asthe manner of building up the calcare- 
ous mounds is concerned, it does not differ from that of the hot springs 
in the Yellowstone Valley, and it may be that they were boiling springs 
, at some period in the past. At the present time they are not usually much 

above the temperature of ordinary spring-water. In one or two instances 
the active springs were found to be luke-warm. Nearly all the springs 
were in a constant state of more or less agitation from the bubbles of 
gas that were ever escaping. Ina few cases the water is thrown up 2 
to 4 feet. One spring with a basin 10 feet in diameter, with the surface 
covered over with bubbling points from carbonic acid gas escaping, hada 
temperature of 614°; another bubbling spring, 65°. The Bear River 
cross-cuts a number of the mounds, thus revealing the secret of their 
structure. The mounds vary from a few feet to twenty or thirty feet 
high, built up, in the same way as the hot-spring cones, by overlapping 
layers. There are many of these mounds, which show, by the steepness 
of the sides, the amount of hydrostatic pressure. Many of the chim- 
neys are nearly vertical, with the inner surface coated over with a sort 
of porcelain. At one point on the margin of Bear River there are two 
steam-vents, from which the gas is constantly escaping with a noise 
like a low-pressure engine. Near the edge of the river there is a beau- 
tiful spring with a chimney about two feet in diameter lined inside and 
out with a bright-yellow coating of oxide of iron, in which the water is 
thrown up two feet by a constant succession of impulses. The inner por- 
tions of the chimney are lined with the porcelanice coating as smooth 
as glass, and tinged through with a bright yellow from its iron. Near 
the foot of the hills, a mile from the river, there is a soda-spring, with 
a mound about 10 feet high, with a large | rim 30 by 100- feet, but with 
a small quantity of water compared with what formerly flowed from it; 
temperature, 534°. Near this spring are a number ‘of large springs 


GEOLOGICAL SURVEY OF THE TERRITORIES. fo ae 


issuing from beneath the hills of limestone without the deposit or the 
taste of the acidulous ones; so that we have in close proximity and appa- 
rently coming from the same rock, with about the same temperature, 
acidulous and non-acidulous springs. ‘There were two springs, the 
waters of which were above the ordinary temperature, respectively, 
764° and 78°. 

Near the Mormon village are a number of mounds and springs, which 
will always attract attention. One of them is located near the margin 
of Soda Creek. It has formed a small chimney about 24 feet in diameter, 
6 feet above the creek, and the water boils up most violently. One 
would suppose from the agitation of these springs that a large 
quantity of water must necessarily flow from them; but the quantity is 
always smal], and in some cases none. In the middle of Soda Creek, 
which at this point is about 25 feet wide and 3 feet deep, there are 
several points of ebullition, showing the presence of springs beneath. 
Within 100 feet of the fine spring owned by Hon. W. H. Hooper, there 
are three singular cone-shaped chimneys with water in a constant state 
of ebullition, but with no visible outlet. All around these springs there 
is a deposit of iron of a bright-orange color. In the bed of Bear River 
there are a number of springs which can be seen from a distance by the 
ebullition. Although the flow of water from these springs does not seem 
to be great, yet there will always be enough for the demand of visitors 
for drinking purposes. There are some mounds that have been built up 
in thin layers and rounded gradually to their summits, 30 to 50 feet 
high, and from 50 to 300 feet in diameter at the base ; these have been 
ata tor mer period, large springs, but are now in their last stages. Some 
of these springs have eradually built up.a mound in the form of a hay- 
cock or a bee-hive, and before dying or breaking out in another piace 
would close themselves up at the summit. One of the largest of these 
mounds closed itself up at the top, all except a chimney about 4 feet 
in diameter, with an aperture of about 4 inches. It was once a spring 
of great force, but gradually died away until it ceased entirely. But 
the most interesting exhibition of the soda-spring deposit is found on 
Soda Creek, about four miles above its junction with Bear River. ‘There 
is here an area of half a mile square, covered over with the semicircular 
reservoirs, with scalloped rims, similar: to those on Gardiner’s River, 
except that they are much coarser. Some of the rims are 6 oad 8 feet 
high. The process of building up these reservoirs is going on now, but 
the center of operation is constantly changing. The partitions of these 
reservoirs are sometimes several feet in thickness, and are usually hol- 
low, forming extensive caverns. The inner sides are most beautifully 
lined with a caleareous bead-work like coral, as white as snow. ‘There 
are also rows of small stalactites, which add much to the ornamentation. 
All around these springs, in the channels along which the water flows, 
the vegetation grows with a rankness which is worthy of special notice. 
As the waters holding lime in solution flow slowly over this vegetation, 
the leaves and stems become incrusted, and large masses may be 
gathered up as specimens, showing the’ stems and leaves perfectly. 
These specimens have been transported in large quantities to different 
points along the Pacific Railroad for the purpose of sale to travelers 
and curiosity-seekers, until these beautiful decorations are destroyed. 
When I visited these springs last autumn I found them a mass of ruins, 
and the specimens that I obtained for the museum of the Smithsonian 
Institution were those that had been rejected by these traders.. From 
the base of the Limestone Hills, which are 500 to 800 feet high, springs 
gush out, forming at once a swift-flowing stream, 6 feet wide and a foot 


154 GEOLOGICAL SURVEY OF THE TERRITORIES. 


deep, as clear as erystal. The valley of Soda Creek extends off to the 
northwest and unites with that of Blackfoot Fork. As far as the eye 
can reach only a fragment of a ridge of limestone, or an old voleanie 
crater, can be seen, but on either side the high limestone hills rise up 
like lofty walls. The basalt is shown along the base of these hills in 
high, vertical walls, 50 to 80 feet, breaking into irregular columnar masses. 
Sometimes the springs sink beneath this crust of basalt, and thus dis- 
appear for a long distance. Huge fissures and sink-holes are not un- 
common. These limestones, from the inclination as shown in the sur- 
rounding hills, must dip beneath all the Lake deposits and basaltic floors 
of the valleys, and consequently the water of the springs may pass up 
through 2,000 to 4,000 feet of limestone. A narrow-gauge railroad has 
been projected, and partially constructed, by the Mormon authorities, 
from the Pacific Railroad, near Ogden, via Cache Valley, toSeda Springs. 
This road will pass through the most thickly settled and most prosperous 
portion of Utah outside of Salt Lake Valley. It also opens up the fine 
valley of Upper Bear River with its 2,500 industrious farmers. I call 
the attention of the public to this locality, Soda Springs, as a future 
place of resort for pleasure-seekers and invalids. The numerous springs 
with their curious deposits, the beautiful valley with its river, surrounded 
with most picturesque scenery, must very soon attract great attention 
from tourists. Aboutsixty miles tothe northeast, on Salt Creek, a branch 
of John Gray’s River, are some of the finest salt-works west of the Mis- 
sissippi, which must sooner or later attract far more attention than they 
have yet done. 

The elevation at Soda Springs is 5,529 feet above the level of the 
sea. From this point we pass up the valley of Bear River, constantly, 
but gradually ascending to higher altitudes until we reach the terminus 
of our journey. We shall find the soil fertile, the vegetation exuberant, 
the crops of the farmers usually good. We shall be constantly surprised 
at the numbers of prosperous villages that will greet our eyes every few 
miles. When the valley was first settled, a few years ago, the crops 
were all destroyed either by grasshoppers or early and late frosts. The 
prospects of the farmers are improving every year, and as the country 
becomes settled, the climate seems to become milder and the confidence 
and prosperity of the people are greatly increasing. 

I have continually spoken of the Lake deposits in the valleys among 
the mountains, from the fact that they occur everywhere. There is 
also a remarkable uniformity in their mineral composition and color. 
Still there is here and there a locality where these deposits present some 
variations from the usual type. About three miles above Soda Springs, 
on the margin of Bear River, there is a bed of black slaty clay under- 
neath the superficial deposits of drift, which contains a seam of impure 
coal, visible only when the water is low in autumn. The slate above 
the coal is literally crowded with fresh-water shells, as Planorbis, &e. 
The beds are all horizontal and form a portion, I suspect, of the Plio- 
' cene Lake deposits of these valleys. A little farther up the river, on 
the opposite side, there are hills, cut by the river, showing about 200 
feet of gray indurated sandstones, with beds of pudding-stones, and 
light-gray and whitish marly sand and clay, a very modern deposit, 
but attaining such a thickness and giving form to the high hills bord- 
ering the river as to be regarded as worthy of attention in describing 
the geological features of this valley. I may state in short that for ten 
miles the valley and the foot-hills on either side exhibit an extensive 
deposit, gradually passing up into the Quaternary or Drift, and over the 
Drift is here and there a crust of basalt. There are also old spring de- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 155 


posits in the form of rather compact tufa. On either side of the river 
the high mountain hills are composed of quartzites and Carboniferous 
limestones. 

About fifteen miles above Soda Springs the river cuts through a vast 
thickness of thin shales, varying in thickness from one-twentieth of an 
inch to an inch, averaging about one-eighth of an inch thick, resembling 
the Green River shales on the Union Pacific Railroad. They are mostly 
horizontal, but occasionally incline 3° to 5°. They reach a thickness of 
500 to 800 feet and appear to pass up into variegated beds of light- 
gray and pink sands and clays in this valley, resembling those of the 
Wabsatch group west of Fort Bridger. By looking at the map it will 
be observed that the valley of Green River is only about sixty miles to 
the eastward, while southward the variegated beds are found filling up 
the inequalities of the surface of the older rocks as far as the eye can 
reach, on either side of our road to Evanston. The appearance of the 
large mass of shales in the valley of Bear River is not easily accounted 
for, and they do not appear to conform to the older rocks. No fossils 
could be found in the shales, and all that I can say of them is that they 
appear to be of modern Tertiary age, and that in the scooping out of the 
valley they seem to have escaped the general erosion. About fifteen 
miles below Soda Springs, are some thick local deposits of the white lime 
stone, very compact and hard enough for building material or lime. This 
fact is mentioned to show that these spring deposits, whether hot or cold, 
extended far back into the past, at least to the Pliocene period, like 
those in the Yellowstone Valley. I have no doubt, however, that the 

springs of Bear River Valley were originally hot, perhaps some of them 
geysers at a former period. 

The only method which I could take to ascertain the general geology 
of the mountains on either side of the valley was to follow up the gorges 
worn out by some of the little mountain streams. Hast of Bennington 
the quarizites are well exposed, covering the side and summits of 
the mountains and inclining at various angles towards the valley. 
These quartzites, although so very hard and compact, have a brit- 
tle fracture, and the sides and base of the mountains are covered 
with vast quantities of the débris. Following along the base of the 
mountains, the limestones soon rise from beneath the quartzites, and at 
Joe’s Gap, bear the town of Bennington, there is a gorge in the side 
of the mountain that forms a remarkably clear section of tke strata. 
The little stream that carved out the gorge is now entirely dry, and 
must be supplied in the spring by the meltingof the snows. The gorge 
itself is about 300 feet wide, with nearly vertical walls 500 feet high. 
The upper 200 feet of strata are very massive, yellowish-gray, hard, and 
quite pure limestone. The lower 300 feet are composed of layers, vary- 
ing in thickness from an inch to 2 feet, and very regular. The rock is 
very hard, tough, bluish or steel-gray, calcareous mud, with all the 
peculiar markings of a shallow-water mud-deposit. Fossils are abund- 
ant in the limestones. The entire mass flexes over the sides of the 
mountain, with a curve toward the top, inclining 10° to 15°, and at the 
base 20° to 30°. Of course, the strata pass beneath the valley, and rise 
again on the opposite side. Bear River Valley is a synclinal depres- 
sion. ‘To the eastward a series of three synclinal folds may be seen, 
extending nearly to Green River, filled up, in some instances, with the 
variegated beds of the Wahsatch group. Above Bennington the val- 
ley begins to expand and forms a wide, marshy flat, with a soil com- 
posed of rich, black earth, sustaining a thick growth of coarse grass. 
There is no timber along the river except willows, and the high hills 


156 - GEOLOGICAL SURVEY OF THE TERRITORIES. 


are thickly covered with pines. At Paris the rocks used for building 
purposes are obtained from the Wahsatch group, in the lower hills, on 
the west side of the river. From Montpelier, for about ten miles up the 
valley, there is a break in the hills on the east side, and they become ~ 
much lower; but opposite Bloomington a higher range comes in and 
continues far southward. ‘The little streams, which are very abundant, 
especially on the west side of the valley, rise mostly at the foot of the 
hills, and vary from one mile to four miles in length. Some large 
streams, ten to fifteen yards wide and one to two feet deep, flow into 
Bear Lake from a group of springs gushing out of the sides of the hills 
not over a mile distant. The climate may be severe in this valley, but 
the inhabitants are of the belief that it is becoming milder every year. 
I was continually amazed at the evidences of prosperity everywhere. 
Pleasant villages are located every few miles, and in the interval are 
numbers of well-improved farms. The soil of this valley is more fertile 
than that of Salt Lake Valley, and is better watered. There is no lack 
of springs and streams for irrigation or for milling purposes. The tim- 
ber is very scarce, but sufficient for fuel is obtained from the moun- 
tains, and there is no limit to the supply for building materials. 

Just before reaching the lake, we leave the river to the east and enter 
the Bear Lake Valley. This must have been a large lake at one time, 
at least twenty-five miles long and from six to ten broad; at the present 
time it is ten miles in length and from five to eight broad. At the 
boundary line, between Idaho and Utah, passing directly across the 
lake from east to west, I was informed that Mr. Majors, the astronomer 
in charge, under the General Land-Office, made the width of the lake, 
by triangulation, seven and one-third miles. From the mouth of Swan 
Creek the width was at one time measured with a chain on the ice and 
found to be seven and three-fourths miles. Soundings were also made 
from the mouth of Swan Creek to the opposite side, and the greatest 
depth was determined to be 175 feet. One mile west from Indian Creek, 
on the east side, the depth was 137 feet; so that we may estimate the 
average depth at 40 to 60 feet. It is a beautiful lake, set like an eme- 
rald among the mountains. Not even the waters of the Yellowstone 
Lake present such vivid coloring. No sea-green hue could be more 
delicate ;-and as the waves rolled high by the force of the winds, the 

-most vivid green seemed to shade to a beautiful, delicate blue. Bear 
River seems to have been bent slightly out of its course by a range of 
mountains which extends northward between the lake and the river, 
but it suddenly flexes back again, even south of west, and then flows 
to the northwest. I was unable to make an examination of this portion 
of the river, and therefore cannot present the geology in detail, but 
hope to continue these explorations at some future time. 

By examining the map it will be seen that there is but a single range 
of mountains between Cache Valley and Bear River, and that the 
geological structure does not differ materially from that of the Wahsatch 
Range and its subordinate ranges. We have a vast thickness of very 
hard quartzites at the base, and above them a group of limestones, 
which, so far as Bear River Valley is concerned, has yielded only fossils 
of Carboniferous species. Above the limestones are quartzites again, 
with intercalated layers of clay and sandstones. ‘The lower quartzites 
appear to have been partially metamorphosed, and contain some quite 
rich silver ores. These ores do not appear to be found in regular lodes 
but in pockets or irregular cavities. At the time my party passed up 
the valley there was a good deal of interest in these mines among the 
people, and some very excellent specimens of the ores were shown to us, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 157 


West of Bloomington, Paris, Saint Charles, and the lake, a number of 
mines have been located. I had the opportunity of examining but one 
of the mines, and that was near the mouth of Swan Creek. It was 
ocated in the quartzites, as I have described above. From all the evi- 
dence that I could obtain, I formed the opinion that these mines would 
never become very profitable, though quite interesting in a scientific 
point of view. They deserve a much more careful examination than I 
was able to give them. 

As I have before stated, the valley of Bear Lake is most beautiful, 
fertile, and already well settled by farmers. There are all the indica- 
tions of prosperity, yet I understand that the winters are very severe, 
and that, owing to the late and early frosts, crops are uncertain. Still 
the climate is reported to be growing milder every year. We may look 
for a moment at the elevation of the valley above the sea. At Soda 
Springs, the most northern point of Bear River Valley, the elevation is 
5,529 feet; at Bear River Bridge, thirty-three miles up the valley, 5,744 
feet; at Swan Creek, on the west side of the lake, twenty-five miles 
farther up the valley, 5,922 feet. At the extreme south end of the lake 
the elevation was found to be 5,931 feet. We see, therefore, while this 
most attractive portion of the valley is not above 6,000 feet, the suc- 
cessful raising of crops is even yet somewhat problematical, though 
the parallel of latitude is only 42°. 

Near Swan Creek there is a fine exhibition of a local anticlinal. The 
_beds of quartzites incline like a steep roof from the west side of the 
mountain, forming a wall very near the road. The inclination of the 
quartzites was 60°, while all along the sides of the mountains the basalt 
ridges of the strata are shown inclining in an opposite direction 10° to 
15°. The east portion of this anticlinal is undoubtedly due to the wash- 
ing out of the underlying materials by the waters of the lake and the 
breaking down of the beds of quartzite in consequence. The hills or 
mountains on the west side rise 1,000 to 1,200 feet above the lake. Bear 
Lake Valley is oval in shape and at the present time has the appearance 
of an anticlinal. The high ranges of hills on the west side only present 
the basalt edges of the strata toward the lake, but it is probable that 
the western portion has been swept away by erosion. It is possible that 
the system of synclinal folds or depressions extended along the valley, 
but have been wornaway. At the upper end are fragments of anticlinal 
ridges, which appear to have extended across the area now occupied by 
the waters of the lake. On the east side the streams have cut deep 
gorges into the hills, revealing the quartzites as well as the limestones, 
but the variegated elays, marls, and sandstones of the Wahsatch group 
repose uncontormably upon them, filling up the irregularities of the sur- 
face and concealing the older rocks for the most part. The quartzites 
prevail on the west side, extending as far southward as the eye can 
reach, while in the valley at the extreme south end very compact 
quartzites, which appear to be partially changed, crop out from beneath 
the Carboniferous limestones. 

After crossing Spring Creek, near Laketown, we enter a deep cation 
with massive strata of limestone, inclining about northeast 50° to 70°, 
We have at the bottom, first, very irregular bedded, massive, cherty 
limestone, with no fossils; secondly, a yellow, calcareous sandstone of 
varied texture; thirdly, limestone in thin strata, very much warped or 
bent. The upper limestones are much like those in Joe’s Gap east of 
Bennington, and are, no doubt, a continuation southward of the same 
ridge. This ridge, or range of mountain hills, as it might be termed, 
is deeply gashed by streams that flow into the lake or river, revealing 
Sections of the strata more or less clear. We may, therefore, state in 


158 GEOLOGICAL SURVEY OF THE TERRITORIES. 


general terms that the metamorphic quartzites crop out occasionally, 
though seldom, but high ridges of Carboniferous limestones, with the 
strata inclining at all angles, are frequently uncovered over large areas. 
From Soda Springs’ to the south end of the lake, and even much farther 
southward, the high ranges of hills on the east side are composed 
of a nucleus of limestones uncovered here and there. Sometimes a 
vast thickness of the variegated quartzites conform to and conceal the 
limestones, while in the intervals between these great anticlinal ridges, 
and sometimes covering them, is a vast thickness of the more modern 
deposits of the Wahsatch group. Ascending the divide eastward from 
Bear Lake Valley, I estimated the thickness of the older strata to be 
6,000 feet, 4,000 of which are Carboniferous limestones and the remainder 
quartzites and sandstones. From the summit to Bear River Valley the 
variegated beds of the Wahsatch group conceal ail the older rocks. 

From the divide we descended the valley of Sage Creek to Bear 
River Valley. The Tertiary strata are nearly horizontal on either side. 
These rather modern beds partook of some of the later movements, and 
incline at angles from 1° to 10°. The valley where we entered it is about 
three miles in width, and soon expands to five miles. About five miles 
below the village of Randolph, on the east side of Bear River, there is 
one of the ruggedest walls of Carboniferous limestone I have seen on the 
trip. The rocks seem to rise up from the river-bottom almost verti- 
cally; the summits are weathered into jagged points, and the sides 
of the wall, from summit to base, are gashed with dry caiions or gulches, 
which form splendid cross-sections of the strata. The trend of the ridge 
is about northeast and southwest; the dip northwest 60° to 70°. The | 
limestone is usually pure, light-gray color, not as compact as usual, 
full of fossils, mostly in a fragmentary condition. Still these fossils 
show most clearly that the limestones are of Carboniferous age. ‘This 
range of mountains, as it might properly be called, forms a very singu- 
lar exhibition of the dynamic forces that have produced the remark- 
able folds in the older sedimentary rocks. It may be called an oblong 
quaquaversal, or an isolated puff or bulge in the crust. The entire 
range is not over eight miles in length and not over two or three miles 
wide. The limestones bend down from the summits like the steep, 
flexible, convex roof of a house. About three miles above Randoiph, 
at the bend of the river, the limestone ridge breaks off suddenly. On 
the south end the strata seem to be inclined at a greater angle, in some 
instances passing a vertical. A fragment has been cut off at the south 
end, where a stream has at some period very remote in the past made its 
way through. This section shows the strata clearly, and as well the way 
they flex down around the endoftherange. The bend of Bear River is not 
long, but quite abrupt. Far to the south the country is open, flat, and 
appears like a river valley, surrounded by low hills. The character of 
this limestone range would indicate depression of the surrounding 
country as one of the causes of the convex form of the sides. At any 
rate, within the space of about ten miles from east to west, there are 
two of these remarkable limestone ridges, where 3,000 to 4,000 feet of 
strata seem to be corrugated into quite remarkable folds, with synclinal 
intervals that have been filled up with the modern Tertiary beds. 

I will not delay at this time to discuss the causes that may have led to 
this wrinkling of the crust, but simply state my observations and wait 
patiently for a greater array of facts. From the bend of Bear River to 
Evanston the strata are not much disturbed, usually not inclining more 
than from 3° to 10°. In the cafon southeast of the bend I was in- 
formed that coal had been found. From the end of the limestone ridge 
to the railroad, in every direction, the rocks exposed are not older than 


GEOLOGICAL SURVEY OF THE TERRITORIES. 159 


the Coal group, probably Lower Tertiary or UpperCretaceous. At Evans- 
ton we have the great coal-mines, which have been described to some 
extent in my previous reports, and are still further described by Dr. 
Peale in a subsequent portion of this report. The numerous species 
of plants which were found above and below the coal-beds are described 
in the report of Professor Lequereux on the fossil plants collected by 
the expedition. I had intended to add some additional chapters, and a 
final one, which should comprise a résumé of the geology of the country 
examined during the past season, but the time would not permit. It is 
my purpose to press on with all the vigor possible to collect the facts 
which shall establish the age of the different formations of this portion 
of the West; more especially to ascertain the relation the coal-beds 
sustain to the Cretaceous and Tertiary periods. ; 


NOTES TO CHAPTER IX. 


The following letter of De® Drown conveys so much valuable informa- 
tion in regard to the chemical character of the remarkable Soda Springs 
at the base of Pike’s Peak, Colorado, that I am glad to append it to this 
chapter, for the purpose of comparison with the waters at Seda Springs, 
on Bear River. The letter is published by permission of Dr. R. H. Lam- 
porn. The information is of greater interest to me, from the fact that 
the springs were examined with some care by my party in 1869, and 
a short account of them was given in my report of the United States 
Geological Survey of Colorado and New Mexico: 


LABORATORY, 209 SOUTH SIXTH STREET, . 
Philadelphia, November 11, 1871. 


DEAR SyR: I take pieasure in transmitting to you the results of my 
examination of the salts placed in my hands through the kindness of 
yourself and Professor Persifor Frazer, jr. These salts were the residue 
of evaporation of the water of the spring called the “ Doctor,” one of the 
well-known group of mineral springs atthe foot of Pike’s:Peak, Colorado, 
now reached by the Denver and Kio Grande Railway; which springs, I 
understand, now belong to the Fountain Colony, and are about to be im- 
proved with a view to the utilization of their sanitary qualities. The sub- 
Stance submitted for analysis was obtained by Professor Frazer, jr., from 
the spring in question when engaged on the mineralogical survey of Colo- 
rado in 1869, and was the result of the evaporation of a considerable 
quantity of water. The means at hand for evaporation were so crude 
that some substances, not properly belonging to the water as it comes 
from the earth, have become mixed with the material used in my deter- 
minations; but their nature is such that I think they may be readily 
eliminated, leaving the ultimate result quite accurate. 

The result of the analysis was as follows: 


Per cent. 
Orsanie matter ses Se. ose. SE veec tint Nate Gn yee ame Ri 9.33 
Sesquioxide OfpumroameabeLie he sel. 022 wh Ben ebe paral: aegis Cah I 4,49 
HENS) WANT ich 272) va PRP REO es oe) es eka cig) Lie cian hy Wk! 0. 87 
SMMC al enone MEN aWAa © 01 LS Wel eg) | aaner ee a ae EE 6. 10 
Miia Sir.) 12 = gece ae ce 2 INR chew dia ne Ul lcSte Jaane 5. 64 
IAB OTILE ST RMR reads Shes BL SCS Rm eR MAN 8 2.57 
AE OUTS SIU 0c (SD SRLS, 2 Aa ROR MN Ue 84.0 oie ciated oid the aoe bie ew La 4. 86 
SO CUMIN cs Sets fe hse hal em ima ait inlet Di aa 21. 60 


160 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Per cent. 

Saronic Bevel eee ae ee hi soa ee eee 2p eh re eye 11. 80 
Sulphuric acid {0 220.002.2220 Joe. be tce see ee eee 2.49 
OHILOLINE se ae ee eet See Dee 13 atts es kee 25, 02 
, 97. G4 


The 2.36 per cent. unaccounted for I consider to be principally due 
to a too low determination of the organic matter, the estimation of 
which was attended with difficulties, and the small amount of material — 
at my disposal precluding a redetermination. 

The organic matter found in such large quantity was evidently 
mainly communicated to the water during evaporation, and could 
scarcely have been contained in the water itself. Professor Persifor 
Frazer, jr., says the spring is not perceptibly ferruginous, so that the 
iron found was doubtless from the kettle in which the water was evap- 
orated. 'The quartz was present in pieces of appreciable size, and must 
have been mechanically suspended in the effervescing water. The 
small amount of alumina found may have keen in solution in the water, 
but more probably accompanied the quartz. Eliminating these sub- 
stances from the analysis, we may express the composition of the solid 
ingredients of the water as follows: 


Per cent, 
MGS OL SOM MIM 22 see alo ol 2 Sale) 21S enter tetas eerste 33. 96 
AU MloRIGe Ols POLASSIUM ace acc 2e clk oe td oes Pyeng ae eke lane ae 9, 27 
SAE OTA LE (Obs SOMA cs e522 scgcis ts « ei ep eredoyel hye Seeks Bees aoa ee 10. 94. 
Sulphate of. SOda.22- <2 .2- 22h ee m= io 2 Siaies a Math si. Seu iee e eaee 4, 42 
SHA eNOL SOU: ais Otek averse ee oR Oe 3 5 cu cuekd etere see eee ere 5, 49 
Carbonate; of dimes jade teh AN2e pees He fe 8 Se. See eee eee 10. 07 
Garbonate Gipmmaemesiiiat.Laliect. ls. -2 2065-6 o eee ete '5. 40 


Calculating these amounts on the scale of 100 parts, and presuming 
that the soda, in combination with the silicic acid, was originally in 
combination with carbonic acid, and calculating, moreover, the carbon- 
ated salts as bicarbonates, we have: 


q Per cent. 
CO MGTUIC: Of SOGLUIM: Wir Pies 408 kG cers Sealer t-te seereee 36. 69 
Chioride,of PoOLASSMIM 424). Ysa.) eh eb ae lee “ ana gat Mees 10. 01 
Bicarbonate of soda........------- vaiddom ile des dia Aad. creer. ae 24, 01 
Sulphatenot sodas aes eid Say. (Siovicl. sear aay eee ee eee 4.78 
Biparbonatecol lime ca -is% a2f).c Iearioceo seed oe Sere ees 15. 62 
Bicarbonate of magnesia. 5-0-2. 24.65 sos andi see 6 4- e 8. 89 

100. 00 


The water of the spring is thus shown to belong to the class of 
mineral waters characterized by a preponderance of alkaline chlorides 
and carbonates. This class of waters has its principal German types in 
the springs at Ems and Selters in Nassau, analyses of which are 
appended for comparison. . 


Sorina toon Selters Spring. | Doctor Spring. 
| 
: Per cent. Per cent. Per cent. 

Chloride of sodium ......--.-------------+--------------- 27, 25 51. 68 i 59, 53 36.69 0 46 79 
Chloride of potassium ......--...-----------------------|.------------- 0.85 5°"? 10. 01 ; F 
Bicarbonate of soda ......--...--.------.--------------- 57. 03 29. 29 24. OL 
Sulphate of soda .........---..---+.-------------------- 0. 56 0.76 4.78 
Bicarbonate of lime ..-........------------------------- 6. 65 8. 00 15. 62 
Bicarbonate of mag nesia .....-..-.+----------+--------- 5. 83 7. 65 8.89 


Pcarbonatel ofsirons icc neice see cee ee ec 0.67 | 0.29 


_ GEOLOGICAL SURVEY OF THE TERRITORIES. 161 


The Krahuchen Spring is the one chiefly used for drinking at Ems. 
This watering-place is stated in Dr. McPherson’s recent work to be the 
most popular woman’s bath in Hurope; he adds that this watering-place 
is well suited for cases of bronchial and laryngeal catarrh. 

From the close correspondence between the Doctor Spring and the 
Selters Spring, in chemical composition, we can infer that the physiolog- 
ical effects of these waters will be very similar. Of the far-famed Sel- 
ters Spring, which supplies the world annually with a million and a half 
bottles of Selters water, Dr. Edwin Lee writes: ‘Its action is, in general, 
cooling, exhilarating, and alterative, improving vitiated secretions of the 
mucous membranes, giving tone to their glands, and promoting absorp- 
tion. It may generally be taken without risk by robust and plethoric 
individuals, and is of great service in cases of torpor of the vascular 
and glandular systems, stomach derangement, with acidity and consti- 
pation, tendency to gout in full habits, and scrofulous complaints. The 
Selters water would also be serviceable in cases of irritation of the uri- 
nary organs, or tendency to the formation of stone or gravel in chronic 
inflammation of the mucous Ppemnrane of the bladder. 

> THOMAS M. DROWN, M.D. 

RoBERT H. LAMBORN, Bea, Vice-President 

Denver and Rio Grande Railwas y. 


While my party was engaged at Soda Springs, I obtained some valua- 
ble information from Mr. Stump, one of the proprietors of the Oneida 
Salt Works, Idaho, which indicates the existence of some of the most 
valuable salt-springs on our continent. I was not able to visit them, 
and these few notes are given here for the purpose of directing the 
attention of the public to them. They are located in a small side-valley, 
which opens into Salt Creek, a branch of John Gray’s River, about 
sixty miles northeast of Soda Springs. They are surrounded with high 
mountains. The little creek in which the springs are located flows 
southeast, while the main Salt Creek runs northwest. The water is as 
cold as ordinary spring-water, and is as clear as crystal, showing how 
completely the saline matter is held in solution. The market is in 
_ Idaho and Montana—mostly in Montana. The company make 6,000 

pounds of salt per day, but the supply of water would warrant 25, ,000 
pounds perday. There is another small spring, a little distance from the 
main springs, that yields water enough for 2,000 pounds of salt per day 
for a portion of the year. It sells at $30 per ton at the works, and the 
demand is increasing every year. The company began to supply the 
market in 1866 at five cents per pound. It now sells at two cents per 
pound. The amount annually made by the company for six years past 
is as follows: 


Pounds. Pounds. 
RSG Gees oa wore v Sha chee ROOCGDON CGD: Meee se ee eit 650, 000 
RTGS ast Me ri) HOO CON: PAS TON HF OUTS it 750, 000 
NS OG Oge is 5 2 ea eo ah UOT COON aS en rr Ne ern. slants 850, 000 


Analysis of sample of salt from White & Stump Oneida Salt Works, 
Oneida County, Idaho, by A. Snowden Piggot, M.D. 


hioniie Of Soci e see se Wee el LE eRe LEMON IN EREN 709 
SMa ve: Ol, SOC re ae ee a ee a Blue 1. 54 
OTVONaG OF, Coll CUT ea | as) Mee ae ieee 0. 67 
SULObaAbe: OL MASNCSsaenmraeres ce Trace 

100. 00 


lies 


162 GEOLOGICAL SURVEY OF THE TERRITORIES. . 
CHAPTER X. 


THE YELLOWSTONE NATIONAL PARK. 


[With a map. ] 


While the prAains chapters of this report were passing throu gh the 
press, the bill that was introduced into both Houses of Congress in De- 
cember has become a law. It will perhaps be proper, therefore, to 
devote a small space to a notice of this event, omitting the details until 
the more complete history can be prepared. 

In order that the geographical locality of the reservation, contain 
within its boundaries the wonderful falls, hot-springs, geysers, &ec., de- 
scribed in the previous chapters of this report, may be more clearly 
understood, I have prepared a map expressly to show the park with its 
surroundings, on a scale of ten miles to one inch. The report of the 
Committee on Public Lands, as well as the law itself, which is included 
in this chapter, will serve to explain the map in ‘general terms. A 
glance at the map will show to the reader the geographical locality of 
the most beautiful lake in the world, set like a gem among the mount- 
ains. He will also see that the mountains that wall it in on every side 
form one of the most remarkable water-sheds on the continent. The 
snows that fall on the summits give origin to three of the largest rivers 
in North America. On the north side are the sources of the Yellowstone ; 
on the west, those of the Three Forks of the Missouri; on the southwest 
and south, those of the Snake Rivcr, flowing into the Columbia and 
thence into the Pacific Ocean; and those of Green River, rushing south- 
ward to join the great Colorado, and finally emptying into the Gulf of 
California, while on the east are the numerous sources of Wind River. 
From any point of view which we may select to survey this remarkable 
region, it surpasses, in many respects, any other portion of our conti- 
nent. 

On the 18th of December, 1871, a bill was introduced into the Senate 

of the United States by Hon. S.C. Pomeroy, to set apart a certain 
tract of land lying near the head-waters of the Yellowstone River 
as a public park. ‘About the same time a similar bill was offered in - 
the House of Representatives by Hon. William H. Claggett, Delegate 
from Montana. After due consideration in the Committees on Public 
Lands in both Houses, the bill was reported favorably. In the Senate 
it was ably advocated by Messrs. Pomeroy, Edmunds, Trumbull, 
Anthony, and others. In the House the remarks of Hon. H. L. Dawes 
were so clear and forcible that the bill passed at once without opposi- 
tion. 

I have thus presented a brief history of the passage of this bill be- 
cause I believe it will mark an era in the popular advancement of scien- 
tific thought, not only in this country, but throughout the civilized 
world. 

That our legislators, at a time when public opinion is so strong against 
appropriating the public domain for any purpose however laudable, 
should reserve, for the benefit and instruction of the people, a tract of 
3,578 square miles, is an act that should cause universal joy throughout 
the land. This noble deed may be regarded as a tribute from our legis- 
lators to science, and the gratitude of the nation and of men of science . 
in all parts Of the world is due them for this munificent donation. 


ent of the Interior 


al Survey of the Territories 
ONE NATIONAL PARK 


s made under the direction of 


E.V.HAY DEN 


U.S.Geologist 


ind other authorities 


( é : a 

1871 ne Ren =o aca osse- = RS 

We = ASS = om =i T— 

tvs eu UE Pe SLRS Pra 
Ru 4 tS NSS 24] Sa 
Ysera itn 

EN ae ese 
SUN He Ys = M \ =z 

=! = SS 


ee _ a 


\ 
Sw 


Migs 


\ 
SNe 


Department of the Interior 


U.S.Geological Survey of the Territories 


YELLOWSTONE NATIONAL PARK 


From Surveys made under the direction of 


f 
ty 


BV. HAYDEN 
BINNS 
TN ay 


SS 
SSS 


WA 


US Geolopi st 


And other authorities 


HWS 
Y i ii AN 
4, 


. ke 
Wee i SS NN 
= i} Vp afn ee) SS 1 WS 
Ny if y ‘S 
2 AN an N) AN Hi ANN A. 
OAS \\\y 
ETI 7 GaN) NN NN ANI 
RY KEKE Hi WAS ‘f i MiMi f} 
\ [Pp WW E AW Ay 
S RSS as } ; My 
We A ay Y 
Gu S U RNS \" 
OM LLG, SS § FN 
S xg IN SN ! ‘ AN 
¢ tf Wy\" TAN i) Ny 
; ‘Y 
CH ES WS 
CON SHUUTT SS y N SS 
ain CH 
= Hh 
SQ y \ aN, 


AH, f i} i i Wie SS 
Ny oe Wee 
HN 


Hy 
Wes 
GEEZ, 


7 
Lt 
THUD 


4) 


a \\) 
Qh 
Ze 
ULE 
Cpu 


Sw 


WW 
i\} 
RN 


= ALE 
SN My, 
{i} 

i 

MN 


YAN 
As ii SS 
if ui SSS 


U 


i 


LN 
i 
SSN 
SS 


WAS 


Hf 
i} 
d : 
WW ieee Fin 
We Hi 
SSN 
y 
Cay SEA 
iii, We atte Sai Wi Wy 
Dy S S 
WW pa : 


NU 
in) 
nish ony 
nw 
\ 


] 
ey 
ej Hy) Wo) Wy 
3 WY MN i Yip Z 
b y 
y P, 
Ny é Z . e 
NUE : y z i} 
] WO’ WH Xt Vie 
ss SO YIN 
aaa RNY Er: SK SS YW" 2 
H MAHL int SSS: S 
‘\ VEEN ite RSS 
= Ny A H} ASHI 
WES CN HE UZ 
WEEN YS 


SS 
Wis 

Ws 

SE SRN) 

SOO H Wy SSS“ 

RSQ 

WU SUES RSS Nie 

Gn 

ZEN 

ZH) 


Se 


FN 
WY 
a, 


HIN SSS 
OI 
i) . nk 
Xi 
itl; \ 
VT, 
WY Ny Gs 
Ww Goa yy 
TEINS . 
SSiy/, » 


Elevations are in Feet above 
Sea Level 


SH 
CARRY 
Aisa 
ASRS 
Boundary of Parie — — —_ 


Y > 
Ni WW 
RH 
N\\H}} 
My 
Me 
NU feces 
SWS 
iN NARS 
ae VY 
ZH Z 
Nn 
. Z Diy 
Miles Zi SW 
Saeed HG 
~ 
Sih 


d}} 


Hy 


W\ 


\ 
\ 


GEOLOGICAL SURVEY OF THE TERRITORIES. 163 


THE YELLOWSTONE PARK. 


Mr. DUNNELL, from the Committee on the Public Lands, made the 
following report: 


The Committee on the Public Lands, having had under consideration bill 
H. R. 764, would report as follows: 


The bill now before Congress has for its object the withdrawal from 
settlement, occupancy, or sale, under the laws of the United States, a 
tract of land fifty-five by sixty-five miles, about the sources of the Yel- 
lowstone and Missouri Rivers, and dedicates and sets it apart as a great 

national park or pleasure-ground for the benefit and enjoyment of the 

people. The entire area comprised within the limits of the reservation 
- contemplated in this bill is not susceptible of cultivation with any de- 
gree of certainty, and the winters would be too severe for stock-raising. 
Whenever the altitude of the mountain districts exceeds 6,000 feet 
above tide-water, their settlement becomes problematical unless there 
are valuable mines to attract people. The entire area within the limits 
of the proposed reservation is over 6,000 feet in altitude, and the Yel- 
lowstone Lake, which occupies an area fifteen by twenty-two miles, or 
three hundred and thirty square miles, is 7,427 feet. The ranges of 
mountains that hem the valleys in on every side rise to the height of 
10,000 and 12,000 feet, and are covered with snow all the year. These 
mountains are all of volcanic origin, and it is not probable that any 
mines or minerals of value will ever be found there. During the months 
of June, July, and August the climate is pure and most invigorating, 
with scarcely any rain or storms of any kind, but the thermometer 
frequently sinks as low as 26°. There is frost every month of the year. 
This whole region was, in comparatively modern geological times, the 
scene of the most wonderful volcanic activity of any portion of our 
country. The hot springs and the geysers represent the last stages— 
the vents or escape-pipes—of these remarkable volcanic manifestations 
of the internal forces. All these springs are adorned with decorations 
more beautiful than human art ever conceived, and which have required 
thousands of years for the cunning hand of nature to form. Persons 
are now waiting for the spring to open to enter in and take possession 
of these remarkable curiosities, to make merchandise of these beautiful 
specimens, to fence in these rare wonders, so as to charge visitors a fee, 
as is now done at Niagara Falls, for the sight of that which ought to be 
as free as the air or water. 

In a few years this region will be a piace of resort for all classes of 
people from all portions of the world. The geysers of Iceland, which 
have been objects of interest for the scientific men and travelers of the 
entire world, sink into insignificance in comparison with the hot springs 
of the Yellowstone and Fire-Hole Basins. Asa place of resort for in- 
valids, it will not be excelled by any portion of the world. If this bill 
fails to become a law this session, the vandals who are now waiting to 
enter into this wonder-land will, in a single season, despoil, beyond re- 
covery, these remarkable curiosities, which have required all the cunning 
skill of nature thousands of years to prepare. 

We have already shown that no portion of this tract can ever be made 
available for agricultural or mining purposes. Even if the altitude and 
the climate would permit the country to be made available, not over 
fifty square miles of the entire area could ever be settled. The valleys 
are all narrow, hemmed in by high volcanic mountains like gigantic 
walls. 


164 GEOLOGICAL SURVEY OF THE TERRITORIES. 


The withdrawal of this tract, therefore, from sale or settlement takes 
nothing from the value of the ‘public domain, and is no pecuniary loss 
to the Government, but will be regarded by the entire civilized world 
as a step of progress and an honor to Congress and the nation. 


DEPARTMENT OF THE INTERIOR, 
Washington, D. C., January 29, 1872. 


Sir: I have the honor to acknowledge the receipt of your communi- 
cation of the 27th instant, relative to the bill now pending in the House 
of Representatives dedicating that tract of country known as the Yel- 
lowstone Valley as a national park. 

{ hand you herewith the report of Dr. F. V. Hayden, United States 
geologist, relative to said proposed reservation, and have only to add 
that I fully concur in his recommendations, and trust that the bill 
referred to may speedily become a law. _ 

Very respectfully, your obedient servant, 
C. DELANO, 
Secretary. 
Hon. M. H. DUNNELL, 
House of Representatives. 


The committee, therefore, recommend the passage of the bill without 
amendment. 


[GENERAL NATURE—No. 16.] 


AN ACT to set apart a certain tract of land lying near the head-waters of oae Yellow- 
; stone River as a public park. — 


Be it enacted by the Senate and House of Representatives of the United 
States of America in Congress assembled, That the tract of land in the 
Territories of Montana and Wyoming, lying near the head-waters of the 
Yellowstone River, and described as follows, to wit, commencing at the 
junction of Gardiner’s River with the Yellowstone River, and running 
east to the meridian passing ten miles to the eastward of the most east- 
ern point of Yellowstone Lake ; thence south along said meridian to the 
parallel of latitude passing ten miles south of the most southern point 
ot Yellowstone Lake; thence west along said parallel to the meridian 
passing fifteen miles west of the most western point of Madison Lake; 
thence north along said meridian to the latitude of the junction of the 
Yellowstone and Gar diner’s Rivers; thence east to the place of beginning, 
is hereby reserved and withdrawn from settlement, occupancy, or sale 
under the laws of the United States, and dedicated and set apart as a 
pubiic park or pleasuring-ground for the benefit and enjoyment of the 
people; and all persons who shall locate or settle upon or occupy the 
same, or any part thereof, except as hereinafter provided, shall be con- 
sidered trespassers and removed therefrom. 

SEC. 2. That said public park shall be under the exclusive eo of 
the Secretary of the Interior, whose duty it shall be, as soon as practi- 
cable, to make and publish such rules and regulations as he may deem 
necessary or proper for the care and management of the same. Such 
regulations shall provide for the preservation, from injury or spoliation, 
of all timber, mineral deposits, natural curiosities, or wonders within 


GEOLOGICAL SURVEY OF THE TERRITORIES. 165 


said park, and their retention in their natural condition. The Secretary 
may, in his discretion, grant leases for building purposes for terms not 
_ exceeding ten years, of small parcels of ground, at such places in said 
park as shall require the erection of buildings for the accommodation of 
visitors; all of the proceeds of said leases, and all other revenues that 
may be derived from any source connected with said park, to be ex- 
pended under his direction in the management of the same, and the 
construction of roads and bridle-paths therein. Heshall provide against 
the wanton destruction of the fish and game found within said park, 
and against their capture or destruction for the purposes of merchandise 
or profit. He shall also cause all persons trespassing upon the same 
after the passage of this act to be removed therefrom, and generally 
shall be authorized to take all such measures as shall be necessary or 
proper to fully carry out the objects and purposes of this act. 


Approved March 1, 1872. 


CHAPTER XI. 


REPORT OF A. C. PEALE, M. D. ON MINERALS, ROCKS, THERMAL 
SPRINGS, &C. 


: WASHINGTON, D. C. 

DEAR Sir: I have the honor to transmit herewith my preliminary 
report on the minerals, rocks, and thermal springs met with during 
the explorations of this summer. 

I commence at Ogden, Utau Territory, our starting-point, and describe 
the minerals, rocks, and springs encountered by the expedition through- 
out the whole trip. To study the mineral resources of a country to the 
best advantage requires that we should have an abundance of time to 
devote to each locality, working on our knees, as it were, with drill and 
hammer. As the greater part of our time was spent on the march, such 
a course was impracticable; I therefore confined myself to the collec- 
tion and general investigation of specimens. 

Six hundred and twenty-seven specimens of rocks, with over one 
thousand specimens of minerals, including those from the hot springs, 
have been deposited in the Smithsonian Institution. Catalogues of the 
minerals and rocks are appended to this report. ; 

J insert qualitative analyses of the waters of the principal geysers 
and hot springs. In so doing, I feel a hesitancy, for the field is so vast 
that to develop it thoroughly would require the work of years, and the 
number I present is but as a drop of water in the ocean. 

I had hoped to embody in this report a larger number of quantitative 
analyses, but the time has been limited, and there have been interrup- 
tions that have rendered it impossible. 

I append a catalogue of the hot springs of which the temperatures 
were recorded, giving their position, elevation, character, principal con- 
stituents, highest, lowest, and average temperatures, together with the 
temperature of the air at the time of observation. j 

In regard to mining operations, [ have not attempted to make any 
report. We passed through but a small portion of the mining districts, 
so that any such report would be incomplete. 

In conclusion, I wish to express my thanks to the members of the ex- 
pedition for their assistance.and co-operation, and also to Judge Lovell, 
of Virginia City, Montana Territory, and C. T. Deuel, esq., of Evanston, 


166 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Utah, for information afforded me. I would also refer to the uniform 
kindness and courtesy extended to us at the various military posts. 
Hoping this report may meet all requirements, I am, very respectfuily, 
your obedient servant, 
A. C. PEALE. 
Dr. F. V. HAYDEN, ; 
United States Geologist. 


———E, 


Ogden City, in Utah Territory, is situated at the western base of the 
Wahsatch Mountains, in the Salt Lake Basin. It is between the Ogden 
and Weber Rivers, and is the point where the Union Pacific, the Cen- 
tral Pacific, and the Utah Central Railroads effect a junction. The town 
contains about six thousand inhabitants, and is built partly on the ter- 
race that skirts the base of the mountains, and partly on the level bot- 
tom through which the rivers flow. Its streets are all wide and lined 
with beautiful trees, while on each side flows a clear stream of fresh 
spring-water. 

The Wahsatch Range extends north and south, its gray peaks being 
- gnow-crowned the greater part of the year. Our ‘first camp after leav- 
ing Cheyenne, Wyoming Territory, was on one of the terraces, about a 
mile from the foot of the mountains, which are cut into sections by 
numerous cations. They intersegt the range at right angles to the trend. 
One of them, Ogden Cafion, I visited as typical of the others. The’ 
rocks at the mouth of the cation I found to be syenites of a red color, 
and having a specific gravity of 2.6. The feldspar in it was a flesh-col- 
ored orthoclase alone. The only veins noticeable were some illy defined 
of quartz and feldspar. These syenites must in places pass into granites, 
for a specimen brought me I found to be a protogine containing a green 
talc, which, with the flesh-colored feldspar and “white quartz, ‘formed a 
beautiful specimen. The rock, however, could not be located. In this 
syenite, at the distance of probably half a mile to the south of Ogden 
Canon, some prospecters have claimed to have discovered tin ore. In 
the specimens brought me I failed to discover even a trace of tin. Upon 
the syenites very thick beds of quartzites lie. They are mostly of a 
white color. In some places, however, they are dark-brown, and highly 
ferruginous. The specific gravity of these quartzites varies from 2.5 to 
2.6. They extend for some distance and dip at an angle of about 80°. 
I found, also, a metamorphic conglomerate, composed of beautiful red 
and pink siliceous pebbles imbedded in a light-gray siliceous matrix. 
The quartzites are succeeded by quartz schists, which in turn pass itito 
a dark cherty or siliceous limestone. This limestone produces an excel- 
lent quality of lime, which has been used by the Union Pacific Railroad 
Company in building their engine-houses. There are in the cailon three 
lime-kilns in active operation. 

Farther up the cation than I was able to go, I was told there was a 
ledge of silver ore that promises to pay well. A piece of ore that was 
handed me, and alleged to_be from the same, yielded, on examination, 
both silver and copper. I was also given a piece of coal said to be 
from some distance up the cation. 

We left Ogden on the morning of June 10, and took up our line of 

march, traveling in a northwes sterly direction alon g the base of the 
mountains, around Bear River Bay, and in the afternoon vamped in a 
beautiful, small, green valley, having gone ten miles. Neur our camp 
were situated some hot springs, very noticeable from the abnedane, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 167 


deep crimson-colored deposit about them. There are a number of springs 
at the base of a spur of the mountain range which is to the east of them. 
The average temperature of the water was 129° I’., the temperature of 
the air at the time of observation being 83° F. The highest tempera- 
ture was found in one of the smaller southern springs, and was 136° F.; 
while at the distance of 100 feet to the west of it the lowest tempera- 
ture, 109° F., was found. The principal spring was. almost circular in 
shape, and from 12 to 15 feet in diameter and 5 feet in depth. Its tem- 
perature was 128° F. some distance from its edge, although probably 
higher in the center, beyond the reach of the thermometer. The taste 
of the water was decidedly bitter and salty. In all of the springs there 
was at intervals a slight bubbling of carbonic acid gas. At no time 
during observation, however, was it considerable. No other volatile 
substances were discovered. The specific gravity of the water was 
1019, and an analysis revealed the following constitutents : 

Chloride of sodium, (common salt,) very abundant, 

Sulphate of lime, 

Magnesia, 

Lime, as carbonates. 

Iron, 
_ The amount of iron was small, from its having been thrown down by 
’ the escape of the carbonic acid gas at the time of examination. A con- 
siderable area around the springs is covered with a deposit of. iron, the 
bright-red color of which contrasts well with the green of the surround- 
ing vegetation. In isolated spots, as well as on some of the rocks near 
the water, there is a white deposit. Between the springs and the lake 
or bay there extend salt marshes or flats for the distance of three or four 
miles. 

Leaving our camp on the 12th, we resumed our way in an almost 
northerly direction, until we neared Brigham City, when we turned to 
the right and entered Box Hlder Caiion, another of those gorges cut 
through the mountains at right angles to its trend. Our way was now 
upward for eight miles through the canon—grass-covered hills with here 
and there projecting rocks rising. high on either side of us, while at our 
feet rushed a swift stream, its banks fringed with elder-bushes. ‘The 
rocks here are identical with those in Ogden Cafion. In the evening 
we camped in Box Elder Park, about 500 feet above the level of the 
Salt Lake, near the Danish settlement of Copenhagen. The park is 
almost circular in shape, and is about two miles:in diameter, encircled 
by rounded hills composed of dark siliceous limestone. Between this 
point and Cache Valley, a distance of almost thirteen miles, our road led 
us now up hill and now down, past masses of dark-blue Carboniferous 
or mountain limestones, containing white calcite with perfect cleavage. 
They are fossiliferous. Just before reaching Wellesville, our camping- 
place, there was a change to calcareous sandstones of a light-gray color. 
The scene as we emerged from the mountains was grand. Before us 
lay Cache Valley, dotted with numerous Mormon towns. It is one of 
the best cultivated districts in Utah, and, clothed in its spring garb, 
presented a beautiful appearance. It is about fifty-four miles in length 
and will average abont seven miles in width. The rocks in the moun- 
tains on either side are limestones and quartzites. Near Mendon there 
occurs an oolitic limestone, which is much used for building purposes 
throughout the valley. Our course on the 14th and 15th lay through 
Cache Valley. At the upper end is the town of Franklin. To the west 
of the town there is a large, isolated butte, the basis of which is a blue 
limestone containing a percentage of silica. This stands in the middle 


168 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of the valley like some monument, the surrounding rock having been 
washed away. On June 16 we crossed Bear River and found immedi- 
ately achangein therocks. Instead of limestone we came across green- 
stone, among which I obtained specimens of aphanite and melaphyre, 
the latter amygdaloidal in places. The specific grav! ity of some of these 
specimens is as follows: three specimens of dark-green aphanite, 2.5; 
and two specimens of melaphyre, 3.1. Continuing for about five niles, 
they are intercepted by quartzites containing a small percentage of 
lime. 

About three miles above the town of Oxford I found some men mining 
for silver. W.J. Cooper, of Oxford, is the owner of the lode, which is 7 
feet wide, and dips west at an angle of about 40°. The strike is north 
and south. The wall-rock on either side is greenstone. The gangue ~ 
of the lode is composed of quartz, with calcite and feldspar. Some good 
crystals of calcite were seen, and also brown spar, (rhomb spar.) The 
ore is principally chloride, reddish and greenish. A shaft has been 
commenced, but has reached only the depth of 30 feet. 

Six miles above Oxford we entered Marsh Creek, or Round Valley, 
passing from Utah into Idaho Territory. The entrance to this valley is 
between two high buttes, one consisting of a ferruginous sandstone of 
a bright-red color on its weathered surfaces, the other composed of a 
bluish siliceous limestone. Passing through this natural gateway, we 
were in an old lake basin, the rocks being ‘modern Pliocene sandstones 
of a white color, all containing some lime. The road soon ascended to 
the top of a terrace of drift formation, covered with a sparse growth of 
sage-brush. Leaving this valley the following day, June 18th, we en- 
tered the valley of the Port Neuf River. Just before entering the valley 
we passed over a floor-like layer of dark basaltic rock. We followed 
the river on its right bank. All along the left bank there is a layer of 
basaltic rock, its hexagonal columnar form reminding one of the Giant’s 
Causeway. The formation over which our road led us was drift, while 
the hills on our right presented alternations of limestones and quartzites 
succeeding each other at short intervals. There seems to have been 
some point higher up the valley from which the molten mass flowed 
during the Tertiary period, for the formation on which it rests is Tertiary. 

In crevices in the rock in many places I obtained specimens of obsi- 
dian. As we neared the mouth of the valley it became wider and wider, 
and the mountains receded until they spread out into the Snake River 
Valley. 

HKmerging into the valley we turned to the right and crossed the hills 
to Fort Hall, a post that has only recently been established, in Idaho 
Territory. We arrived there on the 21st of June. The following day 
I made a visit to some warm springs in Lincoln Valley, about three 
miles southeast of the fort. I found five springs situated at the head of 
a depression in the valley, whose direction was east and west. They 
gush forth from the foot of the hills, the bases of which are limestones. 
In spring No. 1, which was the warmest, the thermometer recorded 
87° F.. It was about a foot in diameter, nearly circular, and 9 inches in 
depth. The next two, No. 2 and No. 3, to the southeast of No. 1, 
had equal temperatures, each being 77° F. Only one of these was 
defined as a spring, being 3 feet in alos and 2 feet in depth. Inthe 
other the water merely poured forth from the rocks in a narrow stream. 
No. 4 and No. 5 were of the same character as the last mentioned, and 
reached each the temperature of 69° I’. They were still more to the 
east. The water in all was beautifully clear, due to the presence of car- 
bonate of lime. The specific gravity of the water was 1003, and con- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 169 


tained carbonate of lime, and alumina probably as a sulphate. There 
was no perceptible evolution of gas. In the course of the stream there 
was a deposit of lime, small in quantity, incrusting grass, moss, and 
twigs. 

About a mile east of the fort I found a number of hills, whose bases are 
fine-grained red sandstones of very free quality. It would make a very 
good ornamental building-stone. The rocks that succeed and lie upon 
them are Jurassic limestones, containing an abundance of fossils. We- 
left Fort Hall on the 23d of June, and until the 28th were in the Snake 
River Valley, a wide plain covered with sand and sage-brush. For 
ninety miles nothing else was passed over save here and there exposures 
of dark basaltic rock, which seems to be spread out over the entire plain. 
At some time, during or since the Tertiary period, the plain must have 
been flooded with molten lava, which came, in all likelihood, from sev- 
_eral points of eruption. As we came down the Port Neuf River we 
could see in the distance what appeared to be an old crater, and on our 
way across the Snake River Basin we passed another. 

At Eagle Rock we crossed Snake River on Taylor’s bridge. The 
river here has cut a narrow gorge through the rock, forming quite a 
caton. The rock rises 10 feet above the level of the water. The cur- 
rent is very swift. The rock shows the hexagonal columns, so charac- 
teristic of the cooling of the molten mass. At “ Hole-in-the-hock,” on 
Dry Creek, we had an opportunity of proving that the lava extends 
over the valley like a crust, for the most part at least simply, and not 
in the form of dikes. Here we visited a cave, which has been formed 
by the water flowing beneath the basalt and washing out the sand. 
The entrance to the cave is formed by a falling in of the crust. Clam- 
bering down over the broken fragments, we discovered seven chambers. 
There were two entrances, one to the northwest and the other to the 
southeast. In the first-named direction we found three chambers, each 
about 25 feet in height and 200 feet in diameter, they being almost cir- 
cular. The chambers are separated from each other by loose, fallen 
rock. After penetrating as far as possible we retraced our steps, and 
were about leaving the place, when we discovered an aperture just 
large enough to admit one at a time, leading toward the southeast. 
Entering this we found four chambers separated from each other by 
piles of loose, fallen rock, as in those on the opposite side. Instead of 
being circular these were oblong in shape, each being about 300 feet in 
length and 150 feet wide, the height being 20 feet. Hach succeeding 
chamber is somewhat lower than the preceding. The roof is arched 
and composed of dark basaltic rock. From it there hang innumerable 
small stalactitic formations, caused by the percolation of the water 
through the rock. There are also numbers of air-bubbles in the rock, 
which hang from the roof in drop-like processes, forming points for the 
formation of stalactites. The bottom of the cave is sandy; and in a 
hole dug to the depth of 20 feet, it was observed to be distinctly strat- 
ified, showing it to have been deposited by water. That this condi- 
tion extends over the whole valley is further presumable, from the fact 
that a considerable number of the streams flowing through it sink and 
are lost to sight. Their disappearance is easily accounted for by their 
flowing underneath this crust. 

On the 28th of June we left the Snake River Basin, and entering 
Beaver Head Caiion, began to ascend on our way across the main divide 
of the Rocky Mountains. The igneous rocks were still present. At the 
mouth of the caiion we passed an isolated hill, composed of schistose, 
‘or slaty phonolite, each layer being one-eighth of an inch in thickness 


170 GEOLOGICAL SURVEY OF THE TERRITORIES. 


and porphyritic. Its specific gravity is 2.39. On reaching the top of 
the cafion we encamped in Pleasant Valley, a beautiful little valley set 
in the mountains like a gem. Its elevation is 6,086 feet. Near our 
camp was a deep, narrow gorge cut through rock, which, on examina- 
tion, proved to be a true porphyritic phonolite, having disseminated 
through it crystals of sanidine, nepheline, and haiiynite. The rock is 
of a dark-gray color, very compact, having a specific gravity of 2.75; 
the crystals occurring in spots, occupying about a quarter of an inch 
each, and from one to two inches apart. The haiiynite occurs as red- 
dish, octagonal crystals. The nepheline is the variety sommite, and is 
in small grains; while the sanidine, or orthoclase, is in tabular erys- 
tals. I insert here the mineralogical composition of some phonolites | 
of Bohemia, given by G. Jenzsch: 


Per cent. 
Sanidine, estimated ates! 22. 2,2 oP oy. Bede Sibi NL. 53.55 ° 
Nephehne estimated abl ff.02 SPOS Ee LO OR ee eon eva 
Hornblende; (arvendsomrve 222s P7h ek oie eee ee eee 9. 34 
rea oe ee ER FIELDS TST RAR he SER TY Tae BE a, 3. 67 
TRA GOS ee RTI NT SS ROE Raa OP inna EE a 0. 04 


I shall take the earliest opportunity of making a chemical analysis of 
this rock. The occurrence of these phonolites would go far toward 
proving the age of the eruption, even though we had not the Tertiary 
formations beneath it, for no true phonolite has been found to be of 
other than Tertiary or still more recent origin. The following day we 
continued on our way across the mountains, passing over the divide, 
the elevation of which was 7,044 feet. The more modérn rocks were 
conglomerates, presenting little or no interest. I obtained some speci- 
mens of trachyte, which are vesicular, of a white color, having a reddish 
tinge in some parts. I also obtained specimens of a vesicular rock, 
which I consider to be a phonolite, although I had not the opportunity 
of observing it in position. One of the specimens was of a dark-gray 
color, having a specific gravity of 2.57. The specific gravity of the light 
varieties was 2.3. After crossing the divide our way lay over Pliocene 
formations, in which I obtained a white sandstone composed of very 
fine pebbles, cemented by a calcareous matrix. The older rocks were 
limestone conglomerates, upon which rested white and red sandstones. 

The 30th of June we spent in camp, visiting a peak near us where we 
found the limestone conglomerates at the base with sandstones on 
top. The next day our route was through a rolling country, now pass- 
ing over a hill and now through the valley of a small stream. I procured 
specimens of a very compact, dark phonolite, having a specific gravity 
of 2.4. The recent rocks were of Pliocene origin. Some of them consist 
of very small, bluish, siliceous pebblesin a white, siliceous matrix. Upon 
these were grayish calcareous sandstones, also Pliocene. They consist 
of minute red and biack pebbles cemented by lime. On top of these 
were yellowish calcareous marls. We camped at night at an elevation 
of 6,988 feet, in the midst of gneissic hills, which become granitoid in 
places. The following morning we entered Wild Cat Caton, a pictur- 
esque, gorge-like valley, the rocks of which stand out boldly on either 
side. At the head of the canon I found a vein of coarse granite, con- 
taining labradorite in good cleavable masses. In some of the specimens 
the play of colors was particularly fine. There were also some good - 
ervssals of black mica, (biotite.) The surrounding rocks were fine- 
grammed granites of a reddish hue. On top of the granites were © 


~ 


GEOLOGICAL SURVEY OF THE TERRITORIES, 171 


quartz porphyfies, or elvanite, which passed into felstone, or petrosilex. 
In some places there appeared to be a dike running through the granite. 
The elvanite I found of two varieties, one having a gray-colored matrix 
with feldspar crystals of a pink tinge, and the other having a red matrix 
with white crystals disseminated through it. The petrosilex, or felstone, 
was of various shades, blue, gray, yellow, and red, predominating. The 
yellow variety has a specific gravity of 2.01 ; the blue, 2.53; and the gray, 
».72. These rocks seem to pass into gneiss, which itself at some distance 
becomes granitoid, thus proving them to be of the same composition as * 
granite, only in a more compact state, having been forced through the 
granite and therefore of later origin. 

We camped in the evening of the 2d of July on Black-Tail Deer Creek. 
Leaving here the following morning, the first part of our course. led us 
up over hills that were once the bottom of some large lake. Reaching 
the top, a grand view burst on our sight. We stood on the rim of a 
vast amphitheater. At its bottom, far beneath us, was a green line 
marking the course of a stream, one of the branches of the Stinking 
Water River. The rounded hills converged toward the stream, while 
here and there, on their sides, were projecting strata of white Pliocene 
sandstones, contrasting well with the grassy slopes. On the top, even 
underneath our feet, was a capping of black basaltic rock, which on some 
sides projected over the edge. So regular was it that it seemed as 
though it had been laid with mathematical accuracy. The background 
completing: this picture was composed of sharp peaks and hills, with a 
blue, snowy range in the extreme distance. We now began to descend, 
proceeding down the caiion, which.is named the Devil’s Pathway. Our 
road led us between masses of gneissic and granitoidrocks. Here again 
we found dikes of elvanite, quartz-porphyries, and felstones, some of 
beautiful colors, red, blue, gray, and violet. I obtained a striped or 
slaty porphyry, looking very much like riband jasper. 

Emerging from the rocky walls we pitched our tents on the bank of 
the Passamaria, or Stinking Water River. The next day we again — 
passed over modern formations in an old lake basin until within some 
ten miles of Virginia City, when we came across quartzose rocks mostly 
auriferous. Here we found the first evidences of mining. Near the road 
aman by name David Lloyd was industriously washing out the gravel 
from the side of a foot-hill. He informed me that he was averaging 
about $3 per day. 

Passing between quartzose and gneissic hills containing veins of gar- 
netiferous hornblende schist we soon began to ascend, and crossing the 
hills, passed through Nevada, a,small mining town below Virginia City. 
All about us were the evidences of mining in the heaps of bare pebbles, 
numerous water-courses, and upturned barrows. It being the anniver- 
sary of our national independence, all were idle save a few Chinamen. 

Virginia City is situated in Madison County, in the southern part of 
Montana, and is one of the chief mining centers of the Territory. It is 
on Alder Gulch, one of the tributaries of the Stinking Water, or Passa- 
maria River. The mines about Virginia City are principally placer-dig- 
gings. Gold was discovered on Alder Gulch in 1863, being the second 
discovery in the Territory ; the placer-diggings of Bannack having been 
discovered in 1862. Since that time enormous quantities of gold have 
been taken out, although it is impossible to say exactly how much, as 
the estimates are conflicting. 

Alder Gulch is about sixteen miles long, and has a number of tribu- 
taries, all of which contain gold. Bald Mountain stands at the head of 
the gulch. Near it the gold is coarse, and the farther we go from it 


Lie GEOLOGICAL SURVEY OF THE TERRITORIES. 


down the gulch the finer it becomes. The width of the gulch will aver- 
age about 200 feet, and the hills on either side are rounded. The coun- 
try rock is gneiss, presenting the same characteristics as that I have be- 
fore noticed, being in many places garnetiferous. The gravel is washed 
through a flume and the gold caught at various parts of its length. One 
of the greatest wants for the successful prosecution of mining here is a 
water-supply. There are a number of quartz-mines about Virginia 
City, but all unite in saying that more capital is needed to make them 

‘pay well. I was shown specimens of argentiferous galena and of cop- 
per ore, which will no doubt one day add much to the prosperity of 
Montana. The copper, I was told, was being mined and sent to Cali- 
fornia to be smelted. In Alder Gulch I obtained good specimens of 
garnets and precious serpentine. 

We left Virginia City on the 6th of July, and crossed the hills to the 
Madison River, traveling in a northerly direction. We passed over dark 
igneous rocks, which were in contact with coarse ferruginous sandstones. 
We followed the river untilits passage through a narrow canon neces- 
sitated our turning from it and crossing the mountains. Soon after 
leaving thé river we crossed Meadow Creek, which flows through an ex- 
ceedingly beautiful and fertile valley. We now began to ascend rapidly, 
and passed by three deserted shafts sunk in the granite beds. Besides 
granites there are here quartzites and gneiss. Soon after crossing the 
summit, we encamped in the Hot Spring district. Near our camp were 
some hot springs, which, however, presented but little of interest. The 
highest temperature was 76° F., and the lowest 64° F.; the temperature 
of the air being 48° F. The largest spring was only about a foot and a 
half in diameter, and four inches in depth. The rock at whose base 
they have their origin is a reddish syenite. A few miles farther on 
we passed some larger springs, situated close to the road. Their size 
was about 4 feet by 10 feet. The highest temperature here was 124° F., 
and the lowest 110° F.: the atmosphere at the time of observation being 

' 50°F. They were filled with Confervoidea. We passed by a number of 
mills all working, being supplied with the gold ore from quartz-mines 
in the neighborhood. One of these mines, the Red Bluff lode, I visited. 
The lode, which is,owned by J. J. Lown, dips to the north, the strike 
being east and west. Its width varies from 2 feet to 7 feet. The coun- 
try rock is mainly gneiss. The hanging wall is a gray granite, and 
its foot-wall gneiss. There are two shafts 100 feet apart, the first one 
reaching the depth of 105 feet, and the second 110 feet. They are con- 
nected by a passage, which extends 45 feet beyond the second shaft, get- 
ting below the water-level. The ore is principally a red jasper, with 
the particles of metallic gold disseminated through it and plainly visi- 
ble. Below this jaspery ore there are galena and pyrites. I also ob- 
tained some beautiful pieces of blue chalcedony and some semiopal, the 
latter being almost all dendritic. Approaching the hanging wall the 
ore passed into a porphyritic rock, with large masses of bright-red jas- 
per. The mine had been worked for six months, and in that time had 
averaged $60 to the ton. There were about eight men employed, at the 
rate of $3 each per day. Leaving here, a ride of a few miles brought 
us, a second time, to the Madison River, which having cut its way 
through the mountains, here spreads out and flows smoothly between 
low rounded hills, from whose grassy slopes ridges of gneiss and horn- 
blende schist project. On examination these latter proved to be gar- 
netiferous. Following the Madison but a short distance, we turned to 
the right and crossed the hills to the valley of the Gallatin River. This 
is the garden valley of Montana. It will average fifteen milesin width, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 173 


and is about sixty miles long. It is well watered by the branches of 
the Gallatin River, which are extensively used in irrigation. The hilis 
are covered with excellent grass, and form one of the best grazing 
grounds in the world. Quite a considerable part of the valley is already 
under cultivation. Crossing the Gallatin, we soon arrived at Bozeman 
City, a flourishing town, destined to be of considerable importance 
should the Northern Pacific Railroad run through it. Three miles be- 
yond the town we pitched our tents at Fort Ellis. Fort Ellis is situated 
on the eastern side of the Gallatin Valley, on the east branch of the Gal- 
latin River, and has a force of four companies of cavalry and one com- 
pany of infantry, under the command of Major E. M. Baker. On the 
11th of July we visited a small lake twelve miles southeast of. the fort. 
After a ride over a trail which led through dense timber, making our 
progress difficult, we reached the lake, a beautiful sheet of water en- 
sconsed in the midst of hills which rise to a considerable height around 
it. It is about half a mile in width, and the stream flowing from it 
forces its way in a deep gully through quartzites. It falls about 500 
feet in a quarter of a mile. It rushes along with furious rapidity, leav- 
ing high projections of rock on either side. The lake shore is bordered 
with limestones, which rest on the quartzites. Having refitted and ob- 
tained an escort, we left Fort Ellis on the 15th, and, after a ride of but 
nine miles over a very rough road, went into camp. During the day 
we passed over fossiliferous sandstones of Tertiary origin. At the head 
of Spring Cation, through which a small stream flows to join the Galla- 
tin, we passed an old coal-mine.- It is abandoned, and being full of 
water prevented our entrance. The shaft, however, does not penetrate 
very far. The coal is lignite, similar to that found along the Union 
Pacific Railroad. On top of the sandstones we again had igneous rocks, 
(dark basalts.) For the two following days we were obliged to travel 
very slowly, having to build our road in many places. The sandstones 
and basalts continued until we reached the valley of the Yellowstone 
River, which we entered on the morning of the 17th. The flow of the 
lava has spread out over the valley, forming a floor, over which our road 
led. I obtained on our way chips of chalcedony and obsidian, which 
were abundantly scattered over the valley. , 

The valley of the Yellowstone, at the point we entered it, is about 
four miles wide, and has on its eastern margin a grand mountain range, 
whose sharp peaks proclaim its voleanic origin. The river is easily 
traced by the line of timber on its banks. At Botteler’s Ranch we 
formed our permanent camp, being unable to take our wagons farther, 
and made preparations to pursue our way with pack-mules. On the 
20th of July we left Botteler’s, stringing out in single file, with our 
pack-train along the trail up the Yellowstone River. The trail led us 
along the left bank of the river over igneous rock, the most conspicuous 
of which was a breccia composed of large masses of black material 
imbedded in a’red matrix. Afteraride of about fifteen miles we reached 
the lower cafion. Here the river breaks through masses of gneissic 
rock, which rise abruptly from the water’s edge, and over which our trail 
was very steep and rocky. The cafion is about three-quarters of a mile 
in length and about 280 feet wide. At the bottom of this ravine the 
river, of an emerald tint, rushes over the rocks, whose resistance causes 
it to be thrown into numerous foam-capped ripples. The gneissic rocks 
are for the most part garnetiferous, though somewhat indistinctly so. 
They: pass in many places into hornblende schists, and in others become 
eranitoid. Emerging from the cafion, our way led us alternately over 
low hills of igneous origin and expanded valleys. The soil seems to be 


176: GEOLOGICAL SURVEY OF THE TERRITORIES. 


made of the finely pulverized dust of volcanic rock, ne is covered with 

a sparse growth of sage-brush. The river is bordered with a growth of 
thinly scattered pines. “and quaking-asps. In the mountains, on either 
side, are stratified limestones, which rest on the gneissoid rocks we 
observed in the caton. Scattered over the hills and through the valleys 
I found many beautiful specimens of chalcedony and chips of obsidian. 
Many of the chalcedonies were geodes, in which were crystals of quartz ; 
others contain opal in the center and agate on the exterior; and still 
others have on the outside attached crystals of calcite. A short dis- 
tance above the cation we came to Cinnabar Mountain, so named from 
the color of some of its rocks, which have been mistaken for cinnabar, 
although the red color is due toiron. Here we encountered what is called 
the Devil’s Slide. It consists of two masses of rock in almost vertical 
position, perfectly defined as two walls. They are about 50 feet in 
width each, and 300 feet high, reaching from the top of the mountain to 
its base. They are separated from each other about 150 feet, the inter- 
vening softer material having in the lapse of time been washed away. 
The right-hand mass is a whitish quartzite, while the left-hand 
one is a dike of greenish porphyritic trachyte in which the crystals 
of feldspar are thickly disseminated. Parailel with these two principal 
walls are many more ridges of quartzitic and slaty nature, none of which 
equal them in magnitude. They are all nearly at right angles to the 
- strata of limestone, which lie on either side. In a space to the right, 
of the main ridge there is a broad red band reaching from the top to 
the bottom of the mountain. It is caused by the sliding of ferruginous 
limestone and clay. It is about 20 feet wide and distinetly outlined. 
These ridges must have been forced into their present position when the 
strata above were hotizontal. That there has been a terrible 
convulsion here in the past is proved a few miles farther on, where the 
strata of limestone are so contorted that, within the space ot 200 feet, 
they dip in three different directions. In the limestone there was an 
abundance of crystals of calcite. Some eight or ten miles farther on 
we reached Gardiner’s River, a stream mpi into the Yellowstone 
just as the latter emerges from a caiion. - Here we left the Yellowstone 
to visit some hot springs about four miles above the junction of the 
two streams. We soon came to the evidences of hot springs in the 
caléareous deposit, beneath which the warm water escaped into the 
river. Passing a number of hot springs, we began the ascent of a steep 
bill, passing over the deposit, which gave forth a hollow sound beneath 
our horses’ feet. Suddenly we came in full sight of the springs. We 
were totally unprepared to find them so beautiful and extensive. Be- 
fore us lay a high white hill, composed of calcareous sediment deposited 
from numerous hot springs. The whole mass looked like some grand 

cascade that, had been suddenly arrested in its descent, and frozen. On 
examination we found that the deposit extended for some two miles 
farther up the gorge, and below reached to the edge of the river, occu- 
pying altogether about three square miles, although the oreater part 
of it is now in ruins and overgrown with pines. Still the outlines can 
be very distinctly traced. The principal mass is arranged in a series 
of terraces, one above the other, each being composed of beautiful 
basins, semicircular in shape, and having regular edges, with exquisitely 
scalloped margins. Their size varies, but will average 5 by 8 feet. 
They are filled with water of different temperatures, from cold to the 
boiling-point. The color of the sediment is for the most part white, al- 
though here and there are tinges of yellow where sulphur predominates, 
and red and pink where there is iron. The weathering of those parts 


GEOLOGICAL SURVEY OF THE TERRITORIES. 175 


in which the springs are long extinct has caused it to assume a grayish 
appearance. The main springs are situated on a terrace about half 
way up the mountain, and cover an almost circular space of about two 
hundred yards in diameter. The color of the water here is almost in- 
describable, being the purest azure. From these springs clouds of 
steam are always rising, and the water is always bubbling and seething 
in its vast ealdron-like basin. The water flowing thence proceeds 
downward from terrace to ter race, until it reaches the lowest, consider- 
bly cooled. The springs in the center of the main basin are probaply 
all at the boiling-point, although we were unable to determine their 
temperatures as they were beyond our reach. The temperature of the 
hottest we were able to determine was 162° F. The terrace imme- 
diately above the main basin is bordered by a long rounded ridge, 
with a fissure extending its whole length. From this fissure nothing 
- but hot vapors and steam escape. Its interior is lined with beautiful 
crystals of pure sulphur. The bubbling and gurgling of the water far 
beneath could be distinctly heard. Back of this ridge were two small 
geyser-like jets of water, which rose to the height of 3 feet intermit- 
tently. Farther up the gorge, about 1,000 feet above the level of the; 
river, we discovered two mound-like formations, the largest of which 
was about 20 feet in height and 50 feet long by 30 feet wide. The other 
was only about 5 feet high. From the top of these the water spouted 
to the height of 4 or 5 feet, each geyser-spout proceeding from a small 
conical mound about a foot in height and eight inches in diameter at 
its base. Breaking one of these cones, the tube through which the 

water came was found to be very small, only about a quarter of an inch 
in diameter, while the remainder of the cone was composed of layer 
upon layer of sediment deposited by the overflowing water. Near these’ 
mounds there is a sulphur-spring emitting a considerable quantity of. 
Sulphureted hydrogen. On the lower terrace the water has spread out 
more and formed shallower basins. Here there are also some remark- 
able formations, high, chimney-like masses of the sediment, composed 
of layer upon layer, which, in the lapse of time, has become very hard. 
One of the most curious of these, the Liberty Cap, named from its 
Shape, is about 45 feet high and 15 feet thick. It is altogether likely 
that these have once been * veritable spouting geysers, for they | are anal- 
ogous in structure to the smaller active ones found higher up the val- 
ley. They became so high, however, that the pressure of the column 
of water was too great for the boiling- point to be attained in the depths 
below. Then the eruptions ceased, and the spring gradually became 
extinct, leaving these masses stand as monuments of their former 
power. 

The temperature of the water near the river is 120° F.; in some 
springs a little higher up, 130° F.; and on the lower terrace, 155° F. 
Still a little higher there is a boiling spring, 162° F. On the second 
terrace the temperature varies from 142° F. to 162° F. On the third or 
main terrace it is from 155° F. to 162° F., and on the next, where the 
small geysers are, it is from 156° F. to 162° BR, At the two mounds high 
up the valley it is from 142° F. to 143° F-., while in the sulphur spring 
near them it is only 112° F. The average temperature of the atmos- 
phere was 63°F. The majority of the springs give off sulphureted 
hydrogen gas, some being more strongly impregnated than others. The 
water contains sulphureted nydrogen. sulphate of magnesia, and car- 
bonates of lime, soda, and potassa. Whence do these springs obtain 
the lime which is so abundant in their composition? I think from the 
‘passage of the water through the strata of limestone. Even the igneous 


176 GEOLOGICAL SURVEY OF THE TERRITORIES. 


rocks, which are mostly porphyritic trachytes of a light-gray color, 
eontain a considerable percentage of lime, and some of the pieces [ 
obtained were coated with crystals of calcite. To the west of the hills 
there are high volcanic peaks on the summits of the hills, whose eleva- 
tion is considerable. To the east, bordering Gardiner’s River, there is 
a remarkable wall, composed of limestones and sandstones, capped with 
a layer of basalt. Indeed, the whole valley is shut in by high hills. In 
New Zealand there is a hot-spring formation which resembles this very 
much in appearance, although the constitution of the sediment is differ- 
ent. In New Zealand silica predominates; here carbonate of lime 
appears in the greatest quantity. The white deposit contains— 


Carbonate of lime, 
Chloride of calcium, 
Carbonate of magnesia, 
Carbonate of strontia, 
Carbonate of soda, 
Carbonate of potassa, 
Sulphate of magnesia, 
Sulphur, 

Silica. 


Linsert Hochstetter’s description of the New Zealand formation, to 
show how similar it is in appearance: 

‘‘ First of all is Te Tarata (signifying tatooed rock) at the northeast 
end of the lake, (Rotomahana,) with its terraced marble steps projecting 
into the lake, the most marvelous of the Rotomahana marvels. About 
80 feet above the lake, on the fern-clad slope of a hill, from which in 
various places hot vapors are escaping, there lies the immense boiling 
caldron in a crater-like excavation with steep, reddish sides 30 to 40 
feet high, and open only on the lake side toward the west. The basin of 
the spring is about 80 feet long and 60 wide, and filled to the brim with 
perfectly clear, transparent water, which in the snow-white incrusted 
basin appears of a beautiful color like the blue turquois. At the margin 
of the basin I found a temperature of 183° F., but in the middle, where 
the water is in a constant state of ebullition to the height of several 
feet, it probably reaches the boiling-point. Immense clouds of steam, 
reflecting the beautiful biue of the basin, curl up, generally obstructing 
the view of the whole surface of water; but the noise of boiling and 
seething is always distinctly audible. The reaction of the water is neu- 
tral; it has a slight salty, but by no means unpleasant taste, and pos- 
sesses in a high degree petrifying, or rather incrusting qualities. The 
deposit of the water is like that of the Iceland springs, siliceous, not 
calcareous, and the siliceous deposits and incrustations of the constantly 
overflowing water have formed on the slope of the hill a system of 
terraces, which, as white as if cut from marble, present an aspect which 
no description or illustration is able to represent. It has the appear- 
ance of a cataract plunging over natural shelves, which, as it falls, is sud- 
denly turned into stone. 

‘s The siliceous deposits cover an area of about three acres of land. For 
the formation of those terraces, such as we see them to-day, doubtless 
thousands of years were required. Forbes, judging by the thickness 
of the siliceous deposits on the great geyser of Iceland, which he esti- 
mates at 762 inches, and by the observation that an object exposed to 
the discharge of the geyser-water for the space of twenty-four hours 
is covered with a sheet of paper thickness, has calculated the approxi- 


GEOLOGICAL SURVEY OF THE TERRITORIES. Lar 


mate age of the great geyser at one thousand and thirty-six years. Sim- 
ilar calculations might be made also with regard to the Tetarata fountain 
by examining the thickness of the siliceous incrustations. 

“The flat, spreading foot of the terraces extends far into the lake. There 
the terraces commence with low shelves containing shallow water-basins. 
The farther up, the higher grow the terraces ; two, three, also some four 
and six feet high. They are formed by a number of semicircular stages, 
of which, however, not two are of the same height. Hach of these 
Stages has a small raised margin, from which slender. stalactites are 
hanging down upon the lower stage; and encircles on its platform one 
- or more basins resplendent with the most beautiful blue water. These 
smail water-basins represent as many natural bathing-basins, which the 
most refined luxury could not have prepared in a more splendid and. 
commodions style. The basins can be chosen shallow or deep, large: 
or smail, and of every variety of temperature, as the basins upon the 
higher stages, nearer to the main basin, contain warmer water than 
those upon the lower ones. Some of the basins are so large and so 
deep that one can easily swim about in them. In ascending the steps, 
it is, of course, necessary to wade in the tepid water, which spreads be- 
side the lower basins upon the platform of the stages, but rarely reach- 
ing above the ankle. During violent water-eruptions from the main 
basin, steaming cascades may occur; at ordinary times but very little 
water ripples over the terraces; aud only the principal discharge on the 
south side forms a hot, steaming fall. After reaching the highest ter- 
race there is an extensive platform, with a number of basins, 5 to 6 feet 
deep, their water showing a temperature of 90° F. to116° F. In the mid-- 
dle of this piatform, there arises, close to the brink of the main basin,,. 
a kind of rock island, about twelve feet high, decked witb manuka, 
mosses, lycopodium, and fern. It may be visited without danger, and 
from it the curious traveler has a fair and full view into the blue, boil 
ing, and steaming caldron. Such is the famous Tetarata.” 

The above is an aimost perfect description of the springs at Gardiner’s, 
River. We have the same beautifully clear blue water; the terraces. 
and basins even to the stalactitic processes hanging from the latter.. 
We have also an upper piatform or basin with the main springs, from. 
which continual clouds of steam are rising. Thelower terraces are also: 
shallower and their basins filled with cooler water. We have the same 
form of natural bathineg-basins of a pure white color. To these latter: 
some of our party gave the names of Jupiter’s baths and Diana’s pools. 
The differences are these: in New Zealand the deposit is mainly siliceous, 
here it is calcareous; in New Zealand the water is neutral, here it is. 
alkaline; in New Zealand the main spring is probably a vast geyser. 
At Gardiner’s River it is not likely, at the present time at least, that it 
is a geyser, for the main springs are so large that even if there is a tube 
- at the base supplying one of the conditions for a geyser the pressure of 
the water would prevent any eruption unless it should take place at ex- 
tremely long intervals. If so, the display would be grand beyond all 
precedent. It is likely, however, that some time in the past it has ful- 
filled all the conditions of a geyser. The deposit at Gardiner’s River is. 
much more extensive than that of the Tetarata. 

We left the hot springs on the 24th of Juiy. Proceeding down the: 
hill we crossed the two branches of Gardiner’s River and wound our 
way up the right bank of the east fork of the river. Our course was. 
along the steep side of the mountain, over sandstones, which were capped 
with a broad plateau of basalt, fragments of which were strewn along 
our ae After about four miles of steady climbing we reached the top 

1268 


178 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of the valley. Here the basaltic layer extends across the gorge, forming 
an abrupt perpendicular wall, broken only on the side opposite that on 
which we were. Here the water rushes down in a beautiful fall, its 
beauty half-hidden by the dense foliage of the pines which surround it. 
Ascending upon the basaltic platform, and looking back, the scene was 
grand. High mountains in all directions, their rounded forms relieved 
by numerous sharp peaks, formed the background, while in the fore- 
ground beneath us lay the valley through which we had come. The 
central feature of the whole scene was the hot-spring formation, its pure 
white color contrasting strongly with the green of the surrounding 
vegetation. Turning again, the scene in front was different. Although 
there was less of grandeur there was more of beauty. Before us lay low, 
rolling hilis clad in bright verdure and dotted with scattered groups of 
pines. About a mile farther on we passed a second cascade. The water 
flows down a bed of basalt, which is inclined at an angle of about 45°, 

arranged in a series of ledges reaching from the top “to the bottom, a 
distance of about 200 feet. These ledges cause the water to be broken 
into foam, giving it at a distance, the appearance of a mass of snow. 
Bordering the cascade are chimney-like masses of red igneous rock. 

‘The horizontal and vertical fissures in it make the resemblance to ma- 
‘sonry very Striking. Near here we obtained some oa specimens of 
Silicified wood. 

The following day we reached the Yellowstone River at the junction 
‘of its two forks. Here we encountered gneissic rocks, and scattered 
over the valley were numerous granitic bowlders, their rounded form 
plainly indicating that they must have been carried some distance be- 
-fore being deposited in their present position. Above the junction of 
ithe two forks the main branch of the river emerges from a canon, which 
is over 500 feet in depth, its walls being almost perpendicular. The 
walls have a capping of basalt, the columnar form of which is very dis- 
tinct, especially at Column Rock, near the mouth of Tower Creek. 
Tower Creek is a swift mountain torrent, which, after rushing through 
.@ narrow gorge, with steep and often precipitous sides, suddenly dashes 
over a ledge of rock, and falls perpendicularly a distance of 156 feet 
into a rounded basin which the water has cut out of the solid limestone. 
‘The width of the fall is about 20 feet. Reaching the bottom the water 
‘hurries on through a short caton to the Yellowstone River. Upon the 
limestones rest volcanic rocks, trachytic in nature. These have been 
.so eroded by the action of the torrent as to leave tower-like masses 100 
feet. in height, standing isolated on the edge of the creek. Two of these 
columns stand, one on either side of the fall, at its edge. They are yel- 
lowish in color from the presence of sulphur, and the exposure to the 
weather has rendered them very friable. The bank of the Yellowstone, 
immediately opposite the mouth of Tower Creek, is about 600 feet high 
and has two rows of basaltic columns, each one of which is about 25 feet 
in height and 5 feet in diameter. Between these two layers, which are 
‘200 feet apart, are beds which seem to have a large amount of sulphur 
in their composition from their bright-yellow color. We were not able, 
however, to cross the river to determine it. There are also, doubtless, 
numbers of hot springs scattered along the edge of the river on that 
side. .A few yards above the mouth of Tower Creek, on a small stream | 
emptying into the Yellowstone River, there was a hot spring and a 
number of vent-holes giving off sulphureted and carbureted hydrogen. 
The main spring is only 2 feet in diameter and about 18 inches deep.. 
Lt is close to the edge of the creek and gives off sulphureted and carbu- 
reted hydrogen. The basin of the spring is a black, clayey material. 


GEOLOGICAL SURVEY OF THE TERRITORIES. Bice) 


‘Its temperature was 127° F. The water was acid in reaction, and con- 
tains— 
Sulphate of iron and alumina, (abundant) 
Sulphate of magnesia, 
Sulphate of lime, 
Chloride of calcium, 
Oxide of iron, 
Free sulphur, 
‘ Soda and potassa, (trace.) 


There is in the ravine in which the creek is situated a deposit of sul- 
phur, and also near the spring a deposit, white in color, containing— 


Sulphur, 
Iron, | 

Alumina, 
Silica. — 

In the bed of the stream there is an abundant deposit of sulphur 
and also a black carbonaceous material. The sulphurous odors ema- 
nating from the ravine are so strong as to be recognized at a consid- 
erable distance from it. A short distance above Tower Creek we 
ascended a peak called Mount Washburne, whose summit is composed 
of a light-gray trachytic rock containing acicular crystals of hornblende. 
_ On the sides of the mountain we found large pieces of chalcedony and 
agate. Near the base of the mountain there are situated quite a num- 
ber of sulphur and mud springs. A specimen from one of the latter 
was of an almost black color, and when dry was covered with a white 
efflorescence. It contained— 


Sulphate of alumina and iron, 
Sulphate of magnesia, 
Sulphide of calcium, 

Sulphur, 

Silica. 


Our next camp was near the Great Fall of the Yellowstone. It is at 
the head of the Grand Caiion, a gorge averaging about a thousand feet 
in depth, which the water has cut through the volcanic rocks. These 
rocks are mostly trachytes of a white or gray color, on top of which 
there is a layer that is basaltic in its character. In many places they 
become rhyolitic, and contain crystals of sanidine, very abundantly dis- 
tributed through them. In one place I found ou perlite- like trachyte 
porphyry, containing small feldspathic balls (spherulites) with a radi- 
ated fibrous structure, mixed with small pieces of obsidian. Some of 
the rocks are colored by iron, which has been deposited from hot springs. 
In other places there is an infiltration of sulphur, which gives them a 
bright-yellow color. There are still some warm springs on the edge of 
the river, and, at the only place we were able to get to it, there were 
three or ‘four "small springs giving off carbonic acid eas, which has 
caused an abundant deposit of sesquioxide of iron about them. Having 
no thermometer with us, we were unable to determine the temperature. 
of the water; but it could not have been much over 90°. It contained 
a white organic material. Passing the upper fall, after a ride of about 
eighteen miles, we reached Crater Hills. These consist principally of 
two conical hills about 150 feet in height. There are several other hills 
which are smaller. They are all made up in part of hot-spring deposit 
and a white trachytic tufa. -All about the hills there is an extensive 
deposit, mostly siliceous, forming a crust which often breaks through 
while walking over it. It is lined with beautiful crystals of sulphur. 


180 GEOLOGICAL SURVEY OF THE TERRITORIES. 


At the base of the hilis there is a large boiling sulphur-spring, in which 
the water is constantly agitated, rising to the height of 3 and 4 feet. 
It is about 12 feet in diameter and encircled by a collar-like rim, which 
is beautifully incrusted. It consists principally of silica and sulphur. 
In the stream proceeding from the spring there is quite a deposit of 
sulphur. The water contains— 


Sulphur, (very abundant ») 
Alumina, 

Silica, 

Lime, (trace,) 

Iron, (trace,) 

Chlorine, 

Sulphuric acid. 

Its temperature is 1834° F. About 300 feet west of this spring there 
is a steam-jet, which was named the Locomotive Jet from the noise 
made by the steam in escaping. The temperature there was 191° F. 
On the sides of the hills there were many more steam-jets, in which the 
highest temperature attained was 19749 F. To the southeast of the 
boiling sulphur-spring is a large turbid spring about 35 feet in diameter. 
Its contents consisted of a very thin bluish mud containing— 


_ Sulphate of alumina of iron, - 
Chloride of magnesium, 
Sulphate of alumina, 

Free sulphur, 
’ Silica, 


and having a temperature of 163° F. ‘It was acid in reaction and tasted 
strongly of alum. About three hundred yards south from the main 
spring there is a collection of mud and sulphur springs. The principal 
mud-spring in this group contains a thick, blue mud. It has the con- 
sistency of paint, and the steam, in escaping from it, does so with a 
thud-like noise, and at times projects the mud to a considerable height. 
Its temperature is 18849 F. The mud has a strong alum taste, is acid 
in reaction, and contains—. 


Sulphate of iron and alumina, 
Sulphate of magnesia, 
Chloride of magnesium, 
Alumina, 

Sulphur. 


Near this latter spring there is another, which was named the Foam 
Spring. The water is very turbid and, floating on its surface, there is 
a greenish, sandy, foam-like material consisting of— 


Sulphur, (very abundant,) 
Silica, 

Oxide of calcium, 
Sulphate of alumina. 


Tt is in a constant state of agitation. There are many other sulphur 
and mud-springs here, which resemble one another closely. All the mud- 
springs are impregnated with alum, and the stream flowing away from. 

‘the hills is called Alum Creek, the water of which is strongly astringent. 
The alum is an iron alum. Leaving the hills we found camp, situated 
.on the bank of the Yellowstone River, at a place called Mud Volcanoes. 
Here again was a large collection of mud and sulphur springs. Imme- 
diately back of camp were two crater-like mud-springs or volcanoes 
about 10 feet in depth, at the bottom of which the escaping steam kept 


GEOLOGICAL SURVEY OF THE TERRITORIES. 181 


the thick, blue mud in a state of violent agitation, sometimes throwing 
it to the height of 15 or 20 feet. This mud contained— 
i Sulphate of iron and alumina, 
Sulphate of magnesia, 
Chloride of magnesium, 
Alumina, 
Sulphur, 
Silica. 

Near these mud-craters there were also some alum-pools containing 
alum and sulphur. On the edges of these pools there were a number 
of holes, from which there was a bubbling of water that flowed into the 

springs. Upon ascending the hill, at whose base these springs were 
situated, we could see immense volumes of steam rising toward the 
southeast. Proceeding in that direction about 400 yards we: came to a 
sort of a cave in a sandstone rock. The entrance is about 15 feet high, 
and it gradually slopes inward for about 20 feet. At this point, at regu- 
lar intervals of a few seconds, there bursts forth a mass of steam, with a 
pulsation which shakes the ground, while a stream of clear water flows 
from the mouth of the cavern. Its temperature was 184° F. The 
water had a very faint alum taste, and gave off a slight odor of sul- 
phureted hydrogen. This spring we named the Grotto. A little far- 
ther on, after passing a large muddy sulphur pool ‘of about 20 feet in 
diameter, we found on the side of the hill a huge mud-crater. Its orifice 
is circular and from it there escapes a dense volume of steam, obscuring 
for the greater part of the time the view of the boiling mass of mud, which 
is 20 feet below the surface. It was too deep for us to determine its tem- 
perature. The mud seems to be very thin and of a blackish color. Some 
of the mud from the rim of the crater contains alumina and silica, with a 
little iron, lime, soda, and potassa. It is probably a true mud-geyser, for 
the appearance of the crater and. the trees around it would indicate that 
at times it ejects its contents to a considerable height. The trees within 
200 feet of it are coated with dried mud even to their topmost branches. 
During our stay, however, it had no eruption. About three hundred 
yards southeast of this crater we discovered another muddy geyser. 
The basin of this geyser was about 50 feet in diameter, and situated in 
a basin circular in shape, containing two other springs. Its tempera- 
ture was 191° F. The trapper who was with us, and who had visited 
the place before, assured us that about 6 o’clock p. m. it would com- 
mence spouting. “We waited somewhat incredulously, for the spring 
was quite placid. Soon, however, there began a slight bubbling in the 
center, and the water began to rise gradually in the basin until sud- 
_ denly it was thrown into violent agitation, the contents becoming very 
muddy. Immense volumes of steam escaped, throwing the water to 
the height of 20 feet. The eruption lasted about a quarter of an hour, 
when it ceased as suddenly as it began, and the surface of the water ~ 
was more placid than before. This eruption took place eight times in 
twenty-six hours. These salses, or mud-voleanoes, are known to all vol- 
canic regions. They are found in South America, in Italy, in Java, in 
New Zealand, and in Iceland. We found them always where the water 
was obliged to pass through a bed of clay. In the last group I have de- 
scribed, in one case, that of the “ Grotto,” the water came through sand- 
stone and was perfectly transparent and clear. Had it been situated in a © 
bed of clay it would probably have been a mud-spring. In all of these 
we found sulphureted hydrogen gas toa greater or less degree, and 
they were all impregnated with alum. The sulphureted hydrogen is 
probably decomposed, losing its hydrogen. The sulphur, becoming 


182 GEOLOGICAL SURVEY OF THE TERRITORIES, 


oxidized, unites with the iron and alumina found in the clay and forms 
the sulphate of alumina and iron. There were, also, in this group a 
number of springs that were extinct. Between the active springs, in 
which the mud was very thin, and those which were extinct, nothing 
remaining save the hardened clay, there were springs of every grade as 
considered in reference to the consistency of their contents. The water. 
in the lapse of time, becomes less and less, either by finding new chan- 
nels, or more likely by evaporation; the mud becomes thicker and thicker ° 
until finally all the water disappears, leaving merely vents through which 
steam escapes; and after a while even these become extinct, and the 
orifices become clogged up with detritus. All hot springs and salses are 
the evidence of languishing volcanic action. 

We reached Yellowstone Lake on the 28th of July, and on the 31st a 

small party of us left the lake to visit the geyser region of the Fire-Hole 
River, the head-water of the Madison. The remainder of the party 
were to move camp some twenty-eight miles farther to the south, where 
we would join them in about a week, After a hard day’s travel of 
thirty-one miles through heavy timber we reached the head-waters of 
the east fork of the Madison, or Fire-Hole River. The mountain range 
over which we passed was igneous, and in many places masses of pure 
obsidian were observed. We passed by a number of fumeroles, from 
which steam and gas were escaping, while all about them was the 
white siliceous deposit, mingled with sulphur and iron, indicating the 
past existence of hot springs. The water in the stream on whose bank 
we were encamped was quite warm, although in the morning the mer- 
cury in the open air was down almost to the freezing-point. About a 
mile and a half from our camp were some hot springs, covering an area — 
of about 200 square yards. Their temperature varied from 128° F. to 
199° F. The deposit of some of the springs was calcareous. 
_ Leaving here we proceeded down stream, passing a number of hot 
springs, some of which were noticeable from the iron deposited in their 
basins. Their temperatures were from 142° F. to 192° F. The iron was de- 
postied on an organic material, which:was abundant in springs of low 
temperature. Just before ooing into camp we passed four hot springs 
of considerable size. ‘They were each situated in the center of a slightly 
elevated mound, which sloped gradually from theedge of the spring 
until lost in the general level. The first was'4 feet in diameter, having 
a temperature of 162° F. The second was 2 feet in diameter, "its tem. 
perature being 170° F. The third was only about a foot in width and 
reached 174° F. The fourth and largest was somewhat irregular in 
shape, being about 15 feet in length and 5 feet in width, the thermom- 
eter here recording 156° F. A short distance from these springs was 
a small mud-spring about a foot in diameter. At the bottom of it, about 
a foot from the surface, was an agitated mass of thick, bluish mud, hay- 
ing a temperature of 190° F. 

Our camp, on the evening of August 1, was on the right bank of the 
east fork of the Madison or Fire- Hole River, in the lower geyser basin 
of the Fire-Hole. We divide the springs and geysers of this basin into 
seven principal groups for the purpose of description. Immediately 
opposite our camp dlong the river, occupying a space about a quarter 
of a mile wide and nearly two miles long, was the first group. Here 
we recorded the temperatures of sixty-seven springs. The lowest was 
106° F., the highest 198° F., and the average 159° F., more than one- 
half being above 160° F. The temperature of the air was about 50° F. 
Some of these were geysers, with small.tubular orifices, projecting the 
water from 2 to 5 feet. There were also some large tranquil springs or 


GEOLOGICAL SURVEY OF THE TERRITORIES. 183 


cisterns, with beautifully incrusted siliceous basins, containing water 
whose tint was an exquisite blue. One of these, whose basin was 
incrusted with successive ridges, along each of which there was a line 
of the colors of the spectrum, we called the Prismatic Spring. The 
majority of them were simply siliceous springs. A few, however, were 
chalybeate. The siliceous sinter, (geyserite,) which was very abundant, 
contained a trace of lime, iron, and magnesia. In some of the springs ~ 
of low temperature there was a leathery-like organic material of a red 
color. The following day we moved our camp nearer the center of the 
basin, about two and a half miles farther south. On our way we passed 
between two conical, isolated, trachytic hills. The space between our 
two camps is filled for the most part by the sinter, and where there is 
none the ground is marshy. A small stream flowed past our camp con- 
veying the water from the springs to the river. Immediately in front 
of our camp, about eight hundred yards distant, was the second group, 
composed principally of geysers. They occupied an area of about three- 
quarters of amile. We recorded here the temperatures of sixteen springs, 
one-half of which were over 190° F. The lowest was 140° I’., and the © 
highest 196° I’., the average being 183° F. The temperature ofthe air 
was about 55° F. to 60° KF. One of the geysers, from the peculiar noise it 
made, was called the Thud Geyser. There were many of them that 
threw the water from 5 to 10 feet high. In the cool, frosty..morn- | 
ing the basin resembled some manufacturing center, as clouds of steam 
could be seen in all directions. The principal geyser of this group 
was situated on the slope of a small hill, and was about 20 feet in diam- 
eter. The rim is about 5 feet wide and 5 feet high. It is composed of 
geyserite of a grayish color, and is full of deep pockets, which contain 
balls of geyserite about the size of walnuts, each one being covered with 
little rosette-like formations. The column of water thrown out by this 
geyser during its eruptions is very wide, and reaches the height of 50 
feet. Near it.we obtained some pieces of wood, which were coated with 
geyserite of a delicate pink tinge. The silica had thoroughly pene- 
trated the woody fiber. We found, also, some pine-cones, coated in the 
same manner, forming beautiful specimens. A few yards back of the 
geyser were three large mud-springs, in one of which the mud was red, 
in another white, and in the third pink. They were all in agitation, 
and the jets of steam escaping caused the mud to assume the form of 
small conical points throughout the basins. They were situated in a bed 
of clay, the red color being due to iron. Below these latter there were 
some chalybeate springs, the bright-red iron deposit of which had spread 
over a considerable area and formed a glaring contrast with the white 
color of the siliceous material. About three-quarters of a mile to the 
southeast of this group is the third group, situated at the northwestern 
base of a spur of the mountains, and extending up a ravine a distance of 
one thousand yards. They occupied a space of about five hundred yards 
in width. One of the springs from its shape we named the Fissure Spring. 
We found here three sulphur springs, the only ones in the region. The 
amount of sulphur present, however, was not very great; their tempera- 
tures were respectively 158° F'., 154° F., and 196° F. In this ravine we 
took the temperatures of twenty springs, averaging 158° F.; thelowest was 
130° F., and the highest 196° F. About the center of the group was a 
small lake 600 feet long and 150 feet wide, near the eastern shore of which 
there was a geyser, which spouted very regularly to the height of 15 or 
20 feet.. A short distance southeast of the lake we found an iron-spring, 
which was surrounded by an abundant deposit; its temperature was 160° 
F.. West of the lake were two geyser-cones, about 18 inches high and 


184 GEOLOGICAL SURVEY OF THE TERRITORIES. | 


12 inches across at their bases. From the top of these the water emerged. 
They were incrusted with a cauliflower-like formation, and near them 
in a fissure we obtained balls of geyserite coated in the same manner. 
The stream flowing from the lake is well filled with a luxuriant growth 
of Confervoidea. 

About a thousand yards farther south is the fourth group. The 
ravine in which they are situated is about a mile and a half long and 
three hundred yards wide. Of the many springs and geysers which it 
contains, we took the temperature of forty-two, varying from 112° F. to 
198° F. The average temperature was 179° F., the temperature of the 
air being about 60° I. Just before entering the ravine we passed by a — 
large cone about 25 feet in height, from the top of which steam was 
escaping. It is probably a geyser, although during our stay it did not 
have an eruption. At the mouth of the ravine we found the principal 
geyser of the group. Its basin was circular and about 60 feet in diame- 
ter, although the spring itself, which is in the center, is only about 15 
or 20 feet in diameter. The inerusted margin is full of sinuses, filled 
with hot water, which falls into them whenever the geyser is in opera- 
tion. These pockets contain, also, smooth, rounded pebbles of geyserite, 
varying in size from that of a pea to a large-sized walnut. They have 
been rounded by the action of the water. The water in the spring of ~ 
the geyser was of a blue color and constantly in agitation, though 
more violently so just before spouting. The column of water projected 
reaches the height of 100 feet, and is accompanied by immense clouds 
of steam. Near the upper end of the ravine was a spring, about which 
the deposit, instead of being white, was black. In some of the springs 
we found butterflies which had fallen in and been scalded to death, and 
on taking them out we found them coated with silica, thus commencing 
to undergo petrifaction. 

About a thousand yards west of our camp, on the banks of the Fire- 
Hole River, was the fifth group, the largest of all, covering a space of 
nearly a square mile, and comprising a large number of springs and 
geysers. We recorded the temperature of ninety-five, more than one- 
half of which were over 180° F. They varied from 112° F. to 196° F., 
the average being 172° F.; the air at the time of observation was 70° 
F. One of the springs, from its resemblance to a shell, we named the 
Conch Spring. One geyser resembled a fortress with numerous port- 
holes, looking toward the river. Its temperature was 196° F. In the 
river were several small islands containing geysers. Opposite one of 
them, on the edge of the river, was a horn-like geyser-cone, which we 
named the Horn Geyser. Another we called the Cavern. There are 
also a number of fumaroles, or vent-holes, from which steam constantly 
- escapes. Near the northern end of the group the river flows close to 
the base of a small wooded hiil, along the edge of which were some 
mud-springs and mud-geysers, the mud varying in color, being white 
in some and blue in others. In some it was very thick, and in others 
almost as thin as water. On ascending the hill after passing through 
the woods, we came to a dozen or more interesting mud-springs. They 
were almost all situated at the bottom of large funnel-sbaped craters, 
of about 20 feet diameter at their mouths. ‘The mud in most of them 
was very thick and of a white or grayish color, and the steam in escap- 
ing did so with a dull, thud-like noise, throwing back the mud in forms 
resembling the leaves of a lily. Near these there were some small mud- 
cones, from the top of which there was steam escaping. Breaking 
them open, they were found to have veins of sulphur and iron running 
through them. Abeut two miles southwest of the last-mentioned group 


GEOLOGICAL SURVEY OF THE TERRITORIES. 185 


is the sixth group, situated on a small stream flowing into the Fire- 
Hole. They are in a large, open, prairie-like valley, which is for the 
most part marshy. Atthe head of ‘the valley there is a beautiful easeade. 
We took the temperatures of thirty-four springs, varying from 106° F. 
to 198° F., the average being 184° F. One of the springs was strongly 
chalybeate. The seventh group is on the Fire-Hole River, about two 
and a half miles south from our camp. Here we met with the largest 

spring we had yet encountered. It was over 400 feet in diameter, and 
the sinter extended in overlapping layers for a considerable distance 
around it. Below this, about 600 feet from the river, was a second 
huge spring, which we named the Caldron. The level of the water in 
it was 20 feet below us, and tbe view of it obscured by the dense clouds 
of steam rising from it. The glimpses we got revealed that it was of a 
beautiful blue color. One side of the wall was broken down, and 
thence the water flowed into the river through a number of streams, 
forming a cascade, whose beds were lined with the sesquioxide of iron. 
We took the temperatures of twenty of the springs, and found the 
average to be 184° F. The lowest temperature was 132° F., and there 
were but two other springs below 173° F. One-half of the springs 
were above 190° F., the highest being 196° F. he air was about 70° 
FB. to 76° F. The lower geyser-basin comprises an area of about thirty 
square miles, and the springs whose temperatures we took are but a 
small part of the whole namber. They are divisible, like those of 
Iceland, into three classes: 1. Those which are constantly agitated or 
boiling. 2. Those which are agitated only at particular periods. 3. 
Those which are always tranquil. In the geysers the water is usually 
placid until within a short time of the eruption, when it begins to 
bubble and there is an escape of steam, the water rising gradually in 
the basin until suddenly it is projected into the air. 

We left our camp in the lower basin about noon of the 4th of August, 
proceeding up the Fire-Hole River, and in the evening pitched our tent ts 
in the upper basin. This basin is net so large, occupying a space of 
only about three square miles, and containing a less number of springs. 
They are, however, much more active, and their craters are more beauti- 
ful, interesting, and larger. The majority of the springs and geysers 
are near the river, extendin g along 1t on both sides for about three miles, 
Many of them were named by the party under Langford and Doane, 
who visited them in 1870. Soon after getting into camp we were treated 
to an exhibition that was truly wonderfal. Immediately opposite us, 
at the base of a small hill, a geyser threw a column of water to 
the height of over 200 feet "from the earth, which shook as the water 
fell back into its basin. It was accompanied with a vast quantity of 
steam. We gave it the name of the Grand Geyser. It had but one 
more eruption during our stay, and that during the next night, after an 
interval of thirty-one hours. The deposit throughout the valley is 
siliceous, as in the lower basin. We recorded the temperatures of one 
hundred and four springs and geysers, and these were but a few of the 
whole number. Many of those not taken were too viclently agitated 
for us to approach them with safety. Others were so large as to be 
beyond the reach of the’ thermometer. Two-thirds of the tempera- 
tures taken were over 170° F’., the lowest being 113° I'., and the high- 
est 196° F. The temperature of the air was 67° fF, The principal 
geysers were named as follows: The Soda Geyser, the Fan Geyser, 
the ‘Riverside, the Grotto, the Pyramid, the Giant, the Punch Bowl, 
the Grand Geyser, the Saw Mill, the Castle, the Giantess, the Bee 
Hive, and Old Faithful. The Soda Geyser was two miles below our 


186 GEOLOGICAL SURVEY OF THE TERRITORIES. 


camp, on the left bank of the river, and spouted with great regularity 
every ten minutes, throwing the water up 10 feet, resembling very much 
a soda-fountain, whenee its name. The Grotto Geyser was situated 
about 500 yards northwest from our camp. It consists of a mass of 
sinter 12 feet in diameter and 5 feet high, full of large sinuous orifices, 
from which the water is projected during an eruption. Four hundred 
feet southeast of the Grotto is the Giant. The crater of this geyser is 
very rough and rises about 10 feet above the surrounding level. Itis 8 
feet in diameter at its baseand 5 or 6 at the top. One side is somewhat 
broken down, allowing one to see the boiling water in it. It projects a 
column of water of about 5 feet in diameter to the height of 125 feet, 
the eruptions each lasting about two hours. Near the Grand Geyser, - 
which was immediately opposite our camp, there was a small one, which 
we named the Saw Mill Geyser. It threw a small stream to the height 
of 10 or 15 feet almost uninterruptedly. Still farther up the river, and 
on the opposite side, is the Castle, the most beautiful of them all. Itis 
situated in the center of a large, gently sloping mound of sinter, above 
which its crater rises about 20 feet. It is about 50 feet in length, and 
beautifully incrusted with bead-like formations. The whole mass 
resembles some old castle that has been subjected to a bombardment. 
It has an eruption every few hours. Between the Castle and tht river 
is one of the large springs or cisterns so numerous throughout the 
region. It corresponds to the Laugs of Iceland, which some time in the 
past have been geysers. This one is about 20 feet in diameter, and is 
funnel-shaped. The edge is lined with a series of beautifully regular 
scallops. The water in this white siliceous basin is an exquisite tint, 
resembling the turgquois blue. This intense blue, however, is not peculiar 
to this region. It is noticed as well in New Zealand and in Iceland. 
The temperature of the water was 172° F. At the head of the valley 
stands Old Faithful, so named for the regularity of its spouting, which 
takes place every fifty minutes, lasting about ten minutes, the water. 
reaching the height of 125 to 150 feet. Its crater is conical, and 6 feet 
high. Near it there are four geyser-cones, which are now extinct 
geysers. On the opposite side of the river from Old Faithful are the 
Giantess and Bee Hive, neither of which were seen in operation by us. 

Bunsen’s theory of the geyser is the simplest and probably the most 
correct. It can be verified by experiment, and the facts observed by us 
sustain it. Briefly stated, it is this: The water deposits nothing except \ 
_ by evaporation, which takes place rapidly at the edges; here, then, the 
silica which is held in solution is deposited and builds up the beautiful 
tube and basin of the geyser. Bunsen succeeded in determining the tem- 
perature of the geyser-tube, from top to bottom, a few moments before 
eruption, and found that at no part of the tube was it at the boiling-point. 
How, then, does the eruption take place? It is always noticed that before 
an eruption the water rises in the tube. The higher we go in the tube 
the lower is the point at which the water boils. Suppose the column 
of water is elevated by the entrance of steam through ducts at the bot- 
tom of the tube. The water, which at a certain point was near the 
boiling-point, is elevated to a part of .the tube where the boiling-point 
is lower than the temperature it has; there is therefore an excess of 
heat. This excess of heat is used in generating steam; the water is 
elevated higher, more steam is formed, and suddenly the water above 
is thrown into the air, mingled with clouds of steam, and we have the 
geyser in action. The water has tobe very near the boiling-point before 
an eruption can take place. 

In the Fire-Hole geysers we noticed that just before an eruption the 


GEOLOGICAL SURVEY OF THE TERRITORIES. 187 


water rose gradually in the basin, and that there were occasional at- 
tempts at eruptions, which failed, preceding the actual eruption. A 
specimen: of the water brought back was as clear as when bottled at the 
geysers, Showing no deposit whatever. There was not sufficient for a 
quantitative analysis. It contained 83522 milligrams of solid matter to 
the liter, consisting in the main of silica. Chloride of lime and sulphate 
of magnesia were present in small quantity, and there was also a trace 
of iron present. The glaring white deposit, which extends over both the 
upper and lower basins, is principally geyserite, a variety of opal. The 
forms it assumes here are similar to those found in Iceland. The speci- 
mens vary in color, form, and texture. The majority are of an opaque 
white, or grayish color. In the lower basin some pink specimens were 
obtained which are translucent; other specimens are of a greenish gray. 
Some of the white pieces were subtranslucent; others were pearly and 
enamel-like. Specimens from the geyser-cones have generally a cauli- 
flower-like form, and break very easily; others are beaded, and still 
others covered with small stalagmitie processes. The texture varies 
from porous to compact, and some pieces are very easily reduced to 
powder. The majority of the deposit which extends through the basins 
is porous, and arranged in layers. The geyser-cones are generally very 
compact, and very often have an enamel-like coating. From some of 
the springs masses were obtained that are filamentous and stalactitic. 
Some pieces seem as though the surface had been enameled and then 
suddenly allowed to contract, leaving small, irregularly shaped plates 
of enamel attached to the main mass by pedicles. In the lower basin 
we found smooth balls, which, on being broken, were found to be com- 
posed of concentric layers of geyserite of a homogeneous structure. 
Others, which were beaded or otherwise fantastically fashioned on the 
outside, were found to be very irregular in their structure. The latter 
were generally of a pink color. A specimen of white geyserite, of 
_ eauliflower-like form, hardness of 5, and specific gravity 1.866, contains— 


SLICE cle celina a eS om Ea SELES RHR AADR NERS ASL hats Ale 83. 83° 
TT BLU GIR ew fe eek che On RAR A Ae Ia RS ALL AS A RS Fc 11. 02 
CMoGrimexonrmae mest: HF. LLL ay. bee ee are aI Ts 4. 00 

98. 85 


Analyses of geyserite from other parts of the world are as follows: 
White geyserite from Iceland, (analysis by Damour.) 


Puc ey eu oe ts CMa Ph cs She ie alah Ne Oe 91, 23 
PER ie ak aha ARR Re Me EPI PP 8. 97 

100. 20 

Geyserite from Iceland, (analysis by Forchhammer.) 

STU C eM es 2 oe a ee Sg Rana 2 eet aft eee a a 84. 43 
NP CMIET eA LO, che ew ee A An 2's 2 al eS 7.88 
JE UOWUNMIO RR ee: occas 3: yi seme sSNA eo Pe ge eg eae RE 3. OF 
Naa (pA 7h Sa pee Ce IK Sh VORP TEU Lua lar) 3 ahd. ai did isis ope ERO 
AGAR |? 5 _ a en eam ONG NY | eRe PRA Sc goes y Lae mblasid Sees 0. 70 
Segaranid Potassaisiyree arr eae ood eee eis eee 0. 92 


188 GHOLOGICAL SURVEY OF THE TERRITORIES. 


Geyserite from New Zeland, (analysis by Pattison.) 


[Phil. Mag., III, xxv, 495.] Specific gravity, 1.968. 


SU ECG penne Cea at Act ren ng eat ey Sh EME AP a) Be AY ee eM EP cS FT. 35 
SACL TT TATA yey cee tae Meer oa ate APH alate lh ORR Se ele gee aes Ae it A SS a mee 9, 70 
Sesquioxi Ge yomarram, .!52 foci. ale: heleiaell apse Meee ee aR cine eee a Fs a 4 
PaPNa GiB rea epee idea See ik ii ol a aR pega Raia 1, 54 
VETTE Op ese MU) Sa syed aia hs ey a ais Fe a ne cit a ae 7. 66 

99.914 


Geyserite from New Zeland, (analysis by Mallet.) 


{Phil. Mag., IV, v. 285.] Specific gravity, 2.031. 


OUD WME ENS ates BAO ee CORR pene 94, 20 
PANT IDO OG) OG Wes PRAGA ELS TE ston a Seg Ae ER Sma Ses ea A aS OS HR 1. 58 
Sesduioxideonironl 4624s seek ie. kia Gee 0.17 
Bienes Ae Se tebe yal iba uh Ja ete lr a eee LY ok Indication. 
Chioride of (sodium. )..20-).2 224 fie 2 PURO Sa Ee 0. 85 
aA a(S ods Milevacet ee aU ea ROR aM, MAU, CORSO a Se SRG ae 3. 06 

99. 86 


On the Gth of August we bade farewell to the Geyser Basin and. 
started on our way toward the Yellowstone Lake to rejoin the main 
party. Our way led upward through dense timber, and after traveling 
eight miles we reached the summit of the first ridge of mountains sepa- 
rating us from the lake. The rock at the summit was a porphyritic 
obsidian, containing large crystals of feldspar thickly disseminated 
through it. We now began to descend, and at the foot of the mountain 
passed by Madison Lake, which is about five miles in diameter. It is 
heart-shaped. The sand on its shore is composed of finely-broken-up 
obsidian, intermixed with chips of chalcedony and red jasper. We were 
obliged to go into camp at night without having reached the lake, whose 
shore, however, we reached the following morning, to find ourselves 
about three miles below camp. Our camp was situated near a large 
collection of hot springs and mud-geysers. The former varied in tem- 
perature from 115° F. to 191° F., averaging 1664° F.; the latter ranged 
from 182° F. to 190° F., the average being 1553° F. The temperature 
of the air during observation was about 65° F.. The water of the springs 
contained— 

Silica, 

Tron, 

Alumina, 
Soda, 

Potassa, 
“Sulphuric acid. 


Its reaction wasneutral. In some of the springs of low temperature there 
was a red gelatinous organic growth. One of the most curious of the 
springs was situated in the midst of the lake, close to the shore. Its basin 
was about 3 feet above the surface of the lake, and was composed of a 
white deposit containing a large percentage of silica, it being of the same 
character as the deposit about the springs on the shore. The water in 
this basin, which had the shape of a truncated cone, had a tempera- 
ture of 160° F. The mud springs or geysers, for they threw the mud 


GEOLOGICAL SURVEY OF THE TERRITORIES. 189 


out to the height of 3 and 4 feet, were situated in a bed of clay. 
Their contents consisted of a rather thick mud of an extreme degree of 
fineness and of a beautiful pink color. It contained— 


Tron, (abundant, ) 
Alumina, (abundant,) 
Lime, 

Silica. 

Our party again divided, one portion returning to the permanent 
camp to bring up further supplies, another to make the survey of the 
lake in the boat, while the remainder of us started on the 9th of Aug ust, 
on our way around the lake by land. In the evening, after a “ride 
through low, marshy ground, we camped at the head of one of its south- 
ern arms, at the base of a large reddish-colored mountain, which forms 
one of the prominent landmarks, being visible from all’ parts of the 
lake. The next day we crossed the mountain and pitched our tents on 
one of the small streams that contributes to form the Snake River. The 
following evening we reached Bridge Creek, or the Upper Yellowstone 
River, at the head of the southeast arm of Yellowstone Lake. Leaving 
here we proceeded down the eastern shore of the lake, which we found 
to be notso thickly covered with timber as the western side, nor so marshy 
as the southern shores. After leaving the head of the lake, we made 
three camps before leaving it altogether. Back of our first camp, which 
was on a rocky bluff, there was a high ridge of igneous origin, com- 
posed mainly of volcanic breccia, in which I obtained good specimens of 
wood-opal. Some of the pieces were inclosed in the center of a mass of 
the breccia, which seemed to have flown over it in a melted condition. 
Some of the specimens obtained were evidently the heart of the wood, 
the center of which contained chalcedony and crystals of quartz in fis 
sures caused originally by the splitting of the wood. Our second camp 
was in one of the small prairies so numerous on this side of the lake. 
Here we were joined by the supply-train, and by the party in the boat. 
In the lake opposite to us was Promontory Point, a point of land run- 
ning out into the water between the southeast arm and one of the south- 
ern arms of the lake. A piece of rock brought from it contained rhomb- 
spar and crystals of calcite, the matrix being red from the presence of 
iron. Near camp were two high volcanic peaks, Mounts Stevenson and 
Doane. The summit of the former is composed of a light-gray trachyte, 
containing acicular crystals of hornblende.. The rock 1S identical with 
that on Mount Washburne. Between our two camps was the site of an 
old hot-spring basin, now extinct, to which was given the name of Brim- 
stone Basin, from the sulphur which exists in it. The deposit, which is 
mostly of a white color, fills a valley that is about a mile in length, and 
a quarter of amilein width. It extends up the side of the mountain in 
deep ravines, in some of which there is a strong sulphurous odor, al- 
though the hot springs are all extinct. The water flowing from these 
beds i is cold and impregnated with alum, which probably results from 
the water passing through the sulphur and clay beds. It is acid in its 
reaction. 

_ On the 19th of August we moved our camp farther down the lake to 
Steamy Point. Just before reaching it we passed a small group of hot 
springs and steam-jets, which were a few yards from the shore. There 
was about them a deposit of sulphur, iron, and alum. One or two of 
the springs contain chloride of sodium. The average temperature of 
these springs was 1834$° F., the highest being 198° r,, and the lowest 
178° F. Our camp was. situated on a high bluif on the edge of the iake. 


190 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Near us there were two vents, from which the steam, in escaping, made 
a noise exactly like:a large steamboat letting off steam. The volume of 
steam was very large, and the discharge constant. There were here also 
some small mud-springs. Every night while at this place we experienced 
earthquake-shocks, each lasting from five to twenty seconds. We named 
it Earthquake Camp. A few hundred yards back of us there is a small 
group of mud-springs, in which the mud was of a pure white color. 
About two miles northeast of the lake we discovered a small lake, which 
was named Turbid Lake, from the muddiness of its water. It tasted of 
alum, and: there seemed to be numerous springs throughout it, as there 
was a bubbling all over its surface. On its eastern shore there was a 
group of hot springs, mud-springs, and vents. The largest spring was 
situated in the midst of a small stream flowing into the lake, and had a 
temperature of 186° F. On the side of a small hill, at whose base the 
principal mud-springs were situated, there was an abundant deposit of 
sulphur and alum. In some places the mud had become quite compact, 
and upon being broken revealed the presence of sulphur running through 
itin veins. Almost all these springs gave off sulphureted hydrogen gas. 
The temperatures varied from 176° F. to 192° F. A short distance north 
of this group there were some large mud-springs, one of which was 
white and another black. The latter had a large quantity of sulphur 
in its composition. On the northern shore of the lake there are four or 
five cold springs, containing chloride of sodium. This place is used by 
the deer and elk as a lick. Our horses recognized the presence of salt 
at once, and licked the ground with avidity. Nearly all the springs 
near the Yellowstone Lake seem to have passed their most energetic 
stage, and are now on the decline. 

On the 23d of August we left Yellowstone Lake, and, taking a north- 
easterly direction, started on our way toward the Hast Fork of the Yel- 
lowstone River. The first part of our route was along Pelican Creek, 
one of the tributaries of the lake, which we followed to its source, cross- 
ing the divide between it and the branches of the Hast Fork, toward 
evening, when we camped at the shore of a beautiful little lake in the 
woods. The valley of Pelican Creek is quite wide, and the stream flows 
through it in a serpentine manner, its waters covered with wild ducks 
and geese. There were a number of springs scattered along its banks, 
the majority of them cold. One, however, had a temperature of 66° F. 
There were a few geyser-cones, although as geysers they are probably 
now extinct. We reached the southern branch of the East Fork the fol- 
lowing evening, after a day of hard travel through the dense pine forests 
and up and down steep mountains, and camped, a few miles above the 
junction of the north and south branches, in a wide open valley. In 
the bed of the stream I obtained good specimens of agate, quartz, and 
chaleedony. Some were in the form of geodes, and contained opal in’ 
the center. I also obtained black flint, green jasper, and excellent 
pieces of silicified wood, some of which were of a jet-black color, having 
veins of blue chalcedony running through it. About three miles from 
our camp, on the north branch of the East Fork was a large mound of 
hot-spring formation, consisting chiefly of calcareous material resem- 
bling very much the formation at Gardiner’s River. It is conical, about 
20 feet high, and 25 feet in diameter at its base. It is situated on one 
end of a sort of platform, of the same material, which is 75 feet long, 
and rises 15 feet above the surrounding level. It is: probably an ex- 
tinct geyser, although now there is no water in it, nor is there any hot 
spring near. There is, however, a cold spring near it, in which the 
water had an acid reaction, tasting strongly of iron alum, of which there» 


GEOLOGICAL SURVEY OF THE TERRITORIES. 191 


was quite an abundant deposit about it. It is situated onthe bank of a 
small creek, and gives off sulphureted hydrogen. 

We reached the junction of the two forks of the Yellowstone on the 
25th of August, having made the circuit of Yellowstone Lake, includ- 
ing the geysers also. Near the junction there is a large extent of 
eround strewn with huge granitic bowlders. -Farther up the East Fork 
of the Yellowstone than we went there is said to be gold, although at 
the present time it is unsafe to mine there, on account of the Indians... I 
was given several specimens of galena and pyrites, said to be from that: 
locality, from surface-diggings. We crossed the Yellowstone on the 
first and only bridge over its water, which was built here by one of 
the trappers in anticipation of a rush to the gold-diggings of Clarke’s 
Fork. From the junction we followed our old trail, past the White Hot: 
Springs, the Devil’s Slide, and the Lower Cafion, to Botteler’s Ranch, 
getting into the permanent camp on the 27th of August. On the oppo- 
site side of the Yellowstone from our camp, there is a high voleanie 
peak, one of along chain. It bears the name of Emigrant Peak, and 
rises 10,629 feet above the level of the river. Its summit is composed 
oi a very dark, compact basalt, containing a few small crystals of mica. 
Lower down it passes into a lighter variety. In Emigrant Gulch, which 
is at its base, there are eranites and chloritic rocks. ‘Specimens of pum- 
ice-stone were found near the head of the gulch. There is some little 
placer-mining for gold carried on in the gulch, though as yet not ina 
systematic manner. 

We left Botteler’s on the 29th of August, arriving at Fort Ellis the 
following day. On the way I obtained a specimen of a rhyolitic rock, 
having a very compact, violet-colored matrix, resembling the matrix of 
the felstones. It was enamel- like, and contained crystals of feldspar 
and mica. 

On the 5th of September we left Fort Ellis, starting on our home-: 
ward trip. Fording the Gallatin and Madison Rivers, we passed the 
junction of the three forks of the Missouri, and camped near the Jeffer- 
son River. The valley is quite wide, and well cultivated. The only 
rocks observed were limestone, which continued to the Jefferson. The 
river cuts its way through them, forming a deep cation, obliging us to 
cross the hills east of the stream. _Here we encountered gneissic and 
granitic rocks, upon which rested beds of reddish quartzites. 

On the 8th we again struck the Jefferson, and followed it until we 
reached its commencement in the union of the Big Hole and Beaver 
Head Rivers. The mountains on both sides of the J effer son are granitic, : 
and contain auriferous lodes. On the side opposite that on which we. 
were there were a number, two of which are named the Highland and 
the Clipper. One has a depth of 300 feet, and has been worked steadily. 
for the last three years. At the base of the mountain there are three 
or four quartz-mills. The formation we passed over was drift, contain- 
ing quartz and granite bowlders. The Beaver Head coming in from 
the left, we followed it to its sources. On the 10th we camped at: 
Beaver Head Rock. Thisis a huge mass of limestone, through which the 
river has cut its way, leaving the rock on the left bank standing with an 
almost perpendicular wall facing the stream. From a distance the re- 
semblance'to the head of a beaver is very striking, whence its name. 
Near here there is found a good quality of sandstone, which is employed 
in making grindstones. Itis of a light-gray color, and of a good quality 
for that purpose. ‘The next day we ‘camped near Black-Tail Deer Creek, 
the rocks we passed having been similar to those of the day before, 
with the exception of red elvanites and felstones, of the same kind that 


192 GEOLOGICAL SURVEY OF THE TERRITORIES. 


we met with on our way to Virginia City in June. They probably ex: ° 
tend across the country. I rode up the valley for some. distance, and 
found the mountains to be limestones, alternating with white quartzites, 
for six or seven miles. I also discovered a trap-dike. Near the mouth 
of the valley there is an old hot-spring formation, of which nothing now 
remains save the hard calcareous basins, overgrown with low bushes 
and grass. The basins are on the side of a hill, and when the springs 
were active must have resembled very closely the springs at Gardiner’s 
River. There is a small stream of cold water flowing over it. Reaching 
the Beaver Head River again, I proceeded up the stream, through a 
rather picturesque canon, at whose mouth were towering masses of a 
trachyte porphyry, which was vesicular, having a brown, vitreous matrix, 
containing small, irregular cavities coated with blue chalcedony. This 
rock rests upon white sandstones of loose texture, which are probably 
of Tertiary origin. Crossing the river, our road led us close by expo- 
sures of siliceous clay-slates, which were again succeeded by an igneous 
rock of a greenish-black color, and specific gravity of 2,32, the cavities 
being filled with masses of chalcedony varying from the size of a pin- 
head to two inches in diameter. 

We also met with an old hot-spring formation, probably connected 
with the one mentioned above as occurring in Black-Tail Deer Creek 
Valley. The deposit is calcareous, very hard, and the springs must be 
long extinct. The water, which is cold, flows over it, forming a small 
cascade. I obtained some good specimens of calcareous tufa. We also 
passed some beds of bright-red sandstone conglomerates, or pudding- 
stone, as the pebbles were small. We obtained specimens of a breccia- 
ted rock, which seems to be afriction breccia. The matrixisof apink © 
color, and seems to be volcanic in its nature, while the fragments it 
incloses are siliceous, and of a greenish-white color. It probably occurs 
at the margin of the trachytic rocks found in the caton. Our camp on 
the 11th of August was on Horse Plain Creek, in a valley covered in 
spots with quite an abundant deposit of alkali. Leaving here, the rocks 
first encountered were granitoid gneisses, succeeding which were alter- 
nate beds of limestones and quartzites, which continued, with the ex- 
- ception of a few igneous outbursts, until we reached the main divide of 
the Rocky Mountains, a distance of about thirty miles. On Sage Creek, 
in the foot-hills, there were beds of light-brown clay-slates, which were 
fossiliferous. We crossed the divide on the 14th of September, over 
reddish quartzites highly metamorphosed, probably, in part at least, by 
contact with an outburst of igneous rock at the same place. We pro- 
ceeded down Medicine Lodge Creek, camping on that stream in the 
evening. We passed by a bed of old hot-spring deposit, resembling a 
stratified limestone. It was about 60 feet in thickness. Near camp, 
there was an exposure of purplish-colored voicanic rock, that I con- 
sider a trachyte, upon which rested a dark basaltic rock. Beneath 
these were white sandstones, very fine-grained and splitting into layers 
of an inch in thickness. They are probably Pliocene in their origin. 
Just before reaching the Snake River Valley, we ascended a broad 
plateau of basaltic rock, like that bordering on Snake River. In ecrev- 
ices in the rock, we found obsidian. We crossed Snake River the second 
time, finding it about 20 feet lower than when we crossed it in June. 
We arrived at Fort Hall on the 19th, and left on the 21st, proceeding up 
Lincoln Valley, between hills of Jurassic limestone. We camped in the 
‘evening at Twin Springs, where there are the remains of old hot springs. ° 

Near usthere were two extinct craters, and the whole valley was overflowed 
withlava. The following day we reached Bear River, and turning up it 


GEOLOGICAL SURVEY OF THE TERRITORIES. 193° 


proceeded but a short distance before reaching the famous Soda Springs. 
There are here two settlements, and we spent a day in examining the 
' springs. In the bed of the river there are a number from which bub- 
bles of gas are constantly escaping through the water. The first spring 
which we notice is situated on the bank of the river, close to its edge, 
a Short distance beiow the town. It isin the top of a cone, which is of 
a bright-red color, due to the deposit of oxide of iron. There is a large 
amount of carbonic acid gas present in the water, and its escape is so 
violent that the water is thrown to the height of one and two feet from 
the basin. It seems as though the water were boiling, so violent is its 
agitation. The temperature, however, is only 854° F. The. taste of the 
water is agreeably pungent, and slightly metallic from the presence of 
iron. This is the spring that Frémont named the Steamboat Spring. 
Near it there are two holes, from which slightly warm air and carbonic 
acid gas escape with a hissing noise. On both sides of the river at 
this point there are a number of cones of a rusty-red color, which have 
probably some time in the past been geysers. There is also near here 
a remarkable rock, that might well, from its appearance, be taken for a 
coral. It is of a bright-yellow color, and is composed mainly of car- 
bonate of lime and oxide and carbonate of iron. It is, no doubt, a 
deposit of springs. Some distance farther up the river, in the midst 
of the village, there is another spring meriting attention. Itis situated 
ou the banks of a small stream flowing into Bear River. It is of the 
same character as the others, and has, if possible, a more agreeable 
taste. The basin of the spring is of a bright-red color. Between the 
river and the adjoining hills, which are composed of limestones, there 
are the remains of numerous springs. Of the majority, nothing is left 
but the hard calcareous material and pools of water, about which there 
isa deposit of alkali. Following up one of the small streams, we passed 
two large calcareous mounds, about 10 or 15 feet high, on top of which 
there were some springs, one of which was intermittent, the water 
escaping from it in pulsations. Near this there is a spring that has 
been inelosed and a pavilion erected over it. Itis of the same nature 
as others described. The escape of carbonic acid gas is very abundant. 
About three miles farther up the valley we came to a most remark- 
able formation, consisting of the basins of old springs long extinct. 
They are called the petrityiag springs by the settlers, from the abund- 
ance of ‘calcareous tufa which exists in the basins. There is very 
little water in the springs now. Some of the basins were 6 feet in 
depth, and contained large masses of plants coated with the cal- 
careous material, which retained perfectly the form of the leaf and stem. 
The whole area, which is about a quarter of a mile in extent, is 
inclosed by a fence. We left Soda Springs on the 25th of September, 
and proceeded up Bear River. We had gone but a short distance 
before we passed an old spring deposit, nothing being left but the hard- 
ened calcareous deposit. Our next camp was made at a small town 
named Bennington, the rocks in the hills passed by us during the day 
being limestones and quartzites. At Montpelier, the next ‘town, we 
crossed Bear River, and, passing through the towns of Ovid, Paris, and 


Saint Charles, arrived at Fish Haven, on Bear River Lake. The rocks. 


continued of the same character. We were Shown specimens of ores 
from lodes, said to exist in the limestones. Among them were speci- 
mens of galena, malachite, and calcite. But little, however, has been 


done in the way of mining, as there is not, as yet, enough capital in the _ 
valley to make it profitable. Leaving Fish Haven we passed | through ' 


Laketown, Randolph, and Woodruff, arriving at Evanston, Utah, on 
13 G8 


Laed 


194 . GEOLOGICAL SURVEY OF THE TERRITORIES. 


the 28th of September. About a mile from the town there is one of the 
largest coal-beds in the West. It is from 22 feet to 32 feet in thickness. 
It crops out on the western side of a hill, composed mainly of sand- 
stones. It dips 10° north of east. There are four slopes being worked 
at present, one by the Wyoming Coal and Mining Company, and three 
by the Rocky Mountain Coal and Iron Company. At the mine of the 


Fig. 64. 


BONE COAL (RON ORE 


Wyoming Company the main bed of coal is 22 feet thick, as shown in 
No. 1 of the accompanying sections in Fig. 64. It is composed as fol- 
lows, from above downward: 


Fire-clay roof. 


° Feet. In. 
Coe ia Be iN rah cla hate I eB chic ARR RR 1 Ne tn Bc ee a 7 
TE) a2 EER AS alycteyee ae ele ene Cetera ala Spe eee Sac oc pee aM rR -5 
Good eCoa ese es LTE Ie ne Se) SN SAR een a ae a yee 8 3 
Bone coal ..... Pe SI SUE RCSL yy se By Se ee Li Ok Sa a 3 
OIE PASE es ek LARA Le 2 Ae a 2 2 8 UR ea he 1 wv 
POULT OS een Ne Ea arr RN A sary aN LSE 8 Sis esi ke ui leaveeees ose Re Be ae ee melee | 5 


Feet In, 
IE SUACO Ale 2 ale sos aoe agd oe kc ule Penne Oe Si es ska e clokiye 2 9 
SNEHE Co eee SE aa S ae Ae SS CR a le ee er ne a 3 
On een nee care ee tava la 28 oa ch al tered aietaieaia al oicicieh mime ec(a'a seca a 4 
SO TECNC Oa epee remeeeterarsice sina arc at gl Nan a tarate ere Sel Ce esaraiai a Sisal fale nee 
PE OGOUR COIR eer cle tale) sl bialG a al Me RNeR Cle eee Che esi fee 8 . 0 


Slate or bed-rock. 


This is the most southern of them all; and as we go farther north 
the bed becomes thicker. Mr. Wardell is superintendent of the Wyo- 
ming Company, which works, in addition to this mine at Evanston. 
mines at Carbon, Rock Springs, and Almy. Fig. 2 is a section at 
mine No. 1, of the Rocky Mountain Coal and Tron. Company. It con- 
sists as follows, from above downward : 


, Feet. 

(COG soe GE AR aa eee ee a AEE Ne 18 NEO pea a se oat ae rags halts SUG! BOTA eee oe Lk 5 
Clivganoesh alec ses ces heb Gece ccs te Meme See oe URN ee Nat aR 12 
Saal Co: Zaheer mete) ania) reat TE Pe a Ae CSN NS UR a gl eo 4 
Oa pe ret a manele air al ol ge ate Sat ar aieiey ute wyaccilstajans ate eres th Attn UNI Pe ge AI a 3 
Mann bed of coal witht tourbands) of slates. a2 selec. a\a ss /o oe ner ae erat 26 
Ninallepaimal ge lays sa scion lace iene ain s Sal wiars sects are a ee cera) Se CA areas i Be 8 
CEN cee att Se cies RE ae NS ene a tn eR ee UA eRe Cone RNS ae ERS 5 
Wang elestn ewes ai oy )aias eas selene Sor Scat I aca I eae apa 15 
Meom anagem as. Nee (peee Gdiee cesese cfos Sasso Coobon ee sebe aot oDES 3 
Clay and ele SE EE ORS eC at Ae E a a 04 AN A  R o S 15 


‘Nos. 2 and 3 are sections at mines Nos. 2 and 3, of the same com- 
pany. They are the same, with the exception of the main body of coal, 
' which in No. 2 is 30 feet thick, and at No. 3, 32 feet thick. In No. 3 
the clay above the main body of coal is 2 feet thick instead of 3, and 
that below, 5 instead of 8. Mine No. 1 was commenced in June, 1869, 

and the main shaft has been carried in a distance of 386 feet. It is 13 
feet wide, and slopes a little more than 1 foot in 4. At a distance of 
150 feet from the entrance is the first level, at right angles to the main 
shaft. Itis 15 feet in width. On the north side it has reached a dis- 
tance of 330 feet from the main shaft, and on the south side 450 feet. 
One hundred and fifty feet below this is the second level, which on the 
north side has penetrated 330 feet, and on the south 400 feet. From 
each level chambers are worked through to the level above, parallel to 
the main shaft. They are 30 feet apart, and the entrance is 12 feet in 
width, which is rapidly widened to 18 feet. Mine No. 2 was opened in 
August, 1869, and has now reached a depth of 520 feet. It slopes about 
1 foot in 4, and is worked on the same pian as No. 1, with this excep- 
-tion, that the third level, instead of commencing at the main shaft, does 
so at the end of shafts which branch from the main one at an angle of 
45°, These shafts are, one on each side, 18 feet in width. The first 
level on both sides of the main shaft runs to the outcrop, a distance of 
412 feet in each case. The second level, a distance of 150 feet from the 
first, runs to. the outcrop 413 feet on the south side, and on the north 
has been carried 700 feet, and will go 1,000 feet when it reaches the 
line between it and mine No. 3. The third level penetrates 85 feet on 
each side. Mine No. 3 was opened in April, 1871, and has reached a | 
depth of 190 feet. The first level only has been commenced, being 50 
feet each side. It will be worked on the same plan as Nos. 1 and 2. 
Each mine has two engines for hoisting the coal. There are two hun- 
dred and fifty men employed, a large number being Chinamen, who live 
in houses erected by the company, near the mine. There is also quite 
a large store at the mine. The company supplies the Central Pacific 
Railroad, and its branches in California, and the Pacific steamship lines 
with coal. About 350 tons per day are mined, and the company expect to 


196 GEOLOGICAL SURVEY OF THE TERRITORIES. 


increase this. The officers are as follows: D. Colton, of San Francisco, 
president; Fox Diefendorf, of Corinne, vice-president ; H. K. White, of 
San Francisco, secretary ; 6. T. Deuel, resident at the mines, superin- 
tendent; and G. A. Henry, of San Francisco, general agent. The coal is 
a lignite, of a very black color, and having a high luster. It breaks into 
parallelopipeds. It contains from 71 to 73 per cent. of carbon. The 
value of this bed of coal can scarcely be estimated, especially as it is 
situated in a country where timber is so scarce, and even the small 
amount that does exist is so liable to be destroyed by fires in the fall 
of the year, as we observed on our way up Bear River Valley. The 
iron ore that lies beneath the coal is of a light brownish-gray color, 
being argillaceous. It contains 35 per cent. of oxide of iron, 30 per 
cent. of lime, and 20 per cent. of silica. We left Evanston on the 1st 
of October, and arrived at Fort Bridger the following day, where the 
expedition disbanded. 


197 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


CLL | GOL €9T |S ‘887 
CLL | GIST | OST |G “e8T 
ete ¢ PEL 88 06T 
sets: G PLL | GEL | SBT 
ae GG ELT 18 OLT 
Obi eee ERE FS BOE 
(aos | Soe eeee Bee. a CLL 
£9x| SCPE | SPL | SPT 
€9/GL “LPT OTT | GOL 
€9x| TOL} 9G | SOT 
£9x| STIL | #8 | Z&T 
og LIT PGT OIL 
8F OL $9 9L 
08 | 8 cL 69 48 
€8 | 6c] GOL | 9eT 
fo) (oe) (eo) fo} 
Se oles ala 
oe at AS 
i 9 oD io 
“ToT 


usIyBy ‘oanjvasdoroy, 


‘oSvION'Y » 
Boris ‘Inqdyns ‘amxTo[vo * 
JO oprlio[yo ‘visouseu puv “S00 


OD e ails ae eae oe 


‘eulumye +  ‘Imydyng |- snojmproe ‘snomydqms 
Bats 0 i op-*"**" 


ues) 

-TT1S “IMmydyns ‘vurmanye pu 

‘eIsoustvuL ‘OIL Fo soqvyd 

“uesoipAy poyornyding |-[ns ‘umioyeo jo opryding ||-anqdjns puv 

‘OUT, pus 

‘uesorpAy peyommqieo | ‘ersouseor ‘eurunye ‘ort j 

‘resoipsy pojoanydyng | yo seqeydyns ‘prov o1mydtng 
‘BISOUSLUL FO OFLA NS 
‘BOTTIS ‘UINTO[V) JOopTLO[yO 


‘ssurids 
BOSTeS 


eae coresss SNO[N ploy 


ra ge Cie we op Op----~*| ‘out, Jo eyeuoqrvo “Inqdyng |’ ---------- snoinqdmg 
POSES Fer See vO pe saat op 
“mosorpAy pojoanmdyng |--------->-- GB OSB oS “op 
‘ploe ornoqivo puv 
uoesor1pAy pojyommydyng |------------ pee es OP as ee Fut, caeeriaee OD) hepa eee 
‘anydyns ‘vorrs ‘etsousvur 5 
jo oyvydjus ‘umroyeo jo ; 
“ussorpAyg pojoanydng | epraoptyo ‘out, zo oyemoqreg |--------- SOA) NeaOGor 
Ap OnOaSOOOCKA saos0ea004|s0000 neQoSnoC nSLaooK Cy | es oeeeses peress- 
OTIS IES HD VICI HA 1 IIE) aes ie he IS) ouly et gen thre lathe hate abe OD en 
pace secre Oprn oreo yer eees = 9" - Buoy OUT |" "-"-"---""* snoervo[eD, 
; ‘MINTpOS FO oprlr 
“To oss==" plow ormoqzvyH | -o[yo ‘visousvur ‘oun, ‘wor |------"-----eyveqA{eyO, 
*POATOAS BOSVX) "- *S}UONITSMOO [edroutIg 10} vIVTO 


cer ‘L 


CEP ‘L 
000 ‘8 


000 ‘8 


seEecdaac -£eyo pte soqAqoevag, 


poceesoncoccmnress soy Aqovly 


Poe eeeec een nereececes Qeneeee 


000 ‘8 |----"*--- -Aeyo puv soyAqoery, 


88I ‘9 


Bs '9 
686 ‘9 
PS ‘9 


¥80 ‘9 


cra ‘¢ 


#08 ‘F 
£08 ‘F 
06h ‘F 


LIS ‘F 


\ 


"yooy 
WOMNeAoTy 


*IOATY OWOJSMOT 
[A JO Yuvqg uo ‘oyaqovs7 uy 


Pe ree eee ceecece essen pence 


OD Sie 


Oreeosntawercendecoss Qp-neon= 


woe eeeeseceeeeeceees Qpeeneee 


: ‘S001 SNOOMOL 
pue moy3 wookjoq Apaed 


pus ‘souojseully qsnoiqy, 
“MAOUY JOU SHOOT § pvor Tea hy 
wo teneeeeeeeeceeeee sojtmekg 


gc Fass tosses esos 9 SQ TO SOUL T 


‘sUIeIUNOPL 
Wo esyV AA JO osvq ‘sojrueAs uy 


“NOITSO, 


oa sr] 


i= 
— 


yo-onr | ¢ 


‘ssurads 


pirsseisisisis wisi enlace’. OCT: 


“TOA | 
OUOISAMOTAA WO ‘SI 1098I1_Q 
Stee ee we een -- dno. page 


isieis *----"* dnoas pusseg 
—J9ATI JO opis 
4svo ‘OUINgYse MA JUNOT LAT 
‘dnois 4si1q—ioarny 
OUOISMOTIOA JO Opis 4svo 
‘OULINGYSeM JUNOT, Jo WQnog 


Toreeccsss""SUT LOMOT, TeONT 


srereesseeeoes dnord WITT 
seceee-ess-- dnoas [INO 
voseessseess- dnord ply, 


sorcsesesees Cnors puooes. 


soeccersosoe-* Mnors I8ILT 
: —ssu1dg 
40H OFM “IOATY 8, 10UIpaey) 
pooeas sae ot 
B40 eile (8) Eine 
WOSIPRTY “For148rp supidg yor 
‘omepy Teh 
qi0g avon ‘AoyeA upooury 
i>: (40 § 
{BQ Jeorg oy} JO o10ys 
O04} WOIF SoTTOL InoyF ‘e719. 
‘epsQ eAOGe sol[IUL MEAG 


PUhocmiule g 


> 


‘SONTGdS IVNEEHL JO ANNO TV.LVO 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


ee eee ee eee ee 


“Sutids plop « 


“‘SOpIL 
-O[q9 ‘eutty pue BISOUSCUL 
jo soqeydyns * Toit pue ‘ers 


69 IT'6S \G’%G |o"eg [ou por ormodaey) -oustut ‘oul, JO soyeuoqavy |’°~-~------- pozJeuoqaey 
co oeel Sees 48 (Se5eee = 
reaper | get | at 99. 
GEO SepOT | OLE |\=ecGT |e cues cae Eee OD mciaereis rie coe io ne eisiseiais sisiale cia ae “snoinydyns pu sespeg 
‘S90 
GONG) || OIE | Tey Pe WE eee s Coe aa OD see ae ls -7>-toat ‘anqdins ‘euroanyy | -vo[OA-pnut Io ‘ses[eg 
-=---1 peat | SLT -nesorpAy poqyernydyng |-- -voris ‘epos ‘moar ‘inqdyag joyveqAyTeyo pus amyding 
19 | L LOT Tie ees © yi | ene ee ces te gees SY) Spt IS ES SP OD peers ie ee Se Opes 
bh F8L CoAT | mee) Gee | earnest Mea cic Sl) ea SSS Sie ee TOE as alee See ee ODseaa 
Ode ] <TR || SUDTE I = SYBIL SSS eae ear ee) oo el Se eee Opresss 
CD | SARE. || COTTE SOUS eS ere Se eae a Ones 
09| BLE | SIL sspetes ON oss == 
09 | & 8ST ST eet ©) Ge Se acai oe iy eS SEES IS oe ee SOE ate alias | seer @ reese 
CG GCSE A OPE el SO Ba a a ha ea ae ate) (SSAC || a dea Op == 
‘ssurids 
0g 8ST | 902 | 86E |-"--°*"7-7>" Be ieee lo ane #er-7--*--""-=- BOTITIG | SNOODITIS pues siesfox 
OL | G°6LTE | S8GL | G6L 7-77-77 este © Slaie saan eS “-="- QUMIT PUB VOTIIG [77-77 TTT SNOVdT]IG 
‘soo 
$9 | GCCT | GEL] O6T |--* Nae etre os ie ae | i a [o-""==""10IE ‘BOLUINTY | -eopoA-pnut Io ‘ses[Lg 
$9 | G°99T | SIE | T6L |----~" seks BE IS ie ee eee euruonye ‘moat 'BOTTIG |7- 7" "7-7-7777" SNOsdTTIS 
‘BOTTIS ‘Inyd {ns 
‘TUNnIseuSseuI FO aprzoyqo 
‘wIseUSBU JO OIvY dns ‘vu ‘SOOM 
CeeLelp Seeks |) (SOE |) TGE \oees 50 evs SO Pisae a5 -IUIN][B pUv TOIT JO oYwYdING | -vo[OA-pnut IO ‘sesTes 
*BOTTIS pur ‘rnydyas ‘oyeyd : 
Ge, | PILL | SFL | LST | wesorpAY peqoanydqns | -[ns visouseu ‘vuLunye ‘uory |-snoynproe ‘snoanyqdyug 
fo) ° (o) {o) 
se oe | 
oe c} =| | ue 
A] 8 om lan 
2 ; 
ic} * + *POAOAO SOSBX) Bs iocey aya tse coayn (210 )000 oe 9 *r9qovaVyO 
“4107 


-uelyeiy ‘ornjzeredmoey, 


66GEG Ea ase a ae eae SOU0JSOUET 


“MLBOTYS OT} FO espo oy} 


Te 


‘eA Ieog. ‘ssurdg epog 
“TOATIY, OMOJSAMOTIO A FO 


Lee ‘9 Aeon Apqeqord * SOUO}SOMT] UL | T | HOT Ase oy} Fo Youvag TIO NT 
00S ‘2 UMOUY JoUsSyooy | T |----7 7-7 YooIQ wvolpog 
“VULO 
sel AUIv949 FO yond * oyV'T 9m09s 
ocr ‘2 | Spoq-Avjo pue syoor snoousy -MOT[OA Iveu ‘eyVyT prqing, 
Lap 2, |-77 77777777737 keypo Jo poqg up| ¢ |--autog Ameoqg 4e dureo aveyy 
‘quiog Auieoj9 Ivew ‘oye Ty 
L&E y "7 OYVL OY} JO OLOYS OF} VON | 9 | OMoJSMOT[OX FO opis sey 
n0))) y ieee See (0) Oreste OO tamemee sae used tesX0X) arodd gy 
O85 0) See ee GM) joSsSees OGUES Sse ses SS os5 dnois qQUeAeG 
GE Sur Seas Se secr eisreinn Op --777- Peder s se22 35S sg dnors 79X1S ~ 
GPSb0 | Reena shaeaeseraees Soprecns: GGalmieeor ns 35 See dnois yyytt 
[CG (Onl iis geeser seers ores ae OP reste= | Chal eee RES dnoxrs W4.1n0i7 
166 9 SU DE cie aisles Seis op ?----- OC lneree s7>-2---- dnois pita, 
TGR Qa SE sae se eee eee Opies OL je Sees - dnois puoveg 
Te6cOdesaceeens= == SS per ee? Ope ss == YO) |i oar ceases dnois 48a 
—uistg 1eshex) 1IOMOT 
: “proly sii zv8t 
Q60" eke ee *-gsH00I SNOoUsT | 6 | ‘TOAST WOSIPLyT JO yIOW SVAL 
Lov ‘L |\Aepo Jo poq v ut ‘oyvplomzaveyy | 8 | ----77 7777 #252 <5 Se06K 
‘oYL'T UOSMOTIO A FO eroys 
pray fi, |oeee zoe ==""-9¥4B] JO 1048 UGC | OP | 480A. uO ‘dmeD. curmdg oR 
ger ‘2 |-----spoq-kvpo pue sogktovay, | p |-7777 7-777" AD ODEO SYGE 
“IOAN OU04S 
ep tL \-os22ets onan soyAqovry, | OF | -AOTTPA WO soouvofoA pnyt 
| A 
iS © 
Bs & 
@ ct “MOTISOg 3 sAQTTMOOTT : 
Ss 5 
5 e 
E = 


“ponuyyu0j—sburuds poruayy fo onbonyV9, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 199 


CATALOGUE OF MINERALS. 


AGATE. In pebbles on the shore of Yellowstone Lake, Wyoming 
Territory ; in the bed of the south branch of Hast Fork of Yellow- 
‘stone River. 

AZURITE, (blue carbonate of copper.) Near Virginia City, Madison 
County, Montana Territory. 

BrioTire, (black mica.) In granite at the head.of Wild Cat Cation, Mon- 
tana Territory. 

CALCITE, (carbonate of lime.) Brown spar near Oxford, Idaho Terri- 
tory. Khomb spar near Copenhagen, Utah Territory ; in the valley 
of the Yellowstone River; in Bear River Valley, back of Saint Charles, 
Utah Territory; at Promontory Point, Yellowstone Lake. Wyom- 
ing Territory. Iceland spar near the Crow Indian Agency, on the 
Yellowstone Buiver, Montana Territory. Crystals of calcite on volcanic 
rock at Gardiner’s River, near the White Hot Springs. 

CHALCEDONY. Rounded. pebbles, on the shores of Yellowstone Lake; 
in geodes with agate, opal, and quartz, on the south branch of the 
East Fork of Yellowstone River; in chips throughout the valley of 
the Yellowstone River; in geodes, with quartz and calcite, near 
Gardiner’s River; at the foot of Mount Washburne; in cavities, in 
an amygdaloidal trap- -rock, on Beaver Head River, J efferson County, 
Montana Territory. Beautiful blue specimens in jasper, at Red Bluff 
lode, Madison County, Montana Territory. 

CHALCOPYRITE, (copper pyrites.) Near Wien City, Montana Terri- 
tory; a ate Red Bluff lode, with galena, Madison County, Montana 
Territory. 

CoAL, (lignite.) Near Fort Ellis, Gallatin County, Montana Territory ; 
at ne tay, Utah Territory. ; 

CUPRITE, (red oxide of copper.) Near Virginia City, Madison County, 
Montana Territory. . 

FELDSPAR. Albite, with quartz, in Port Neuf Cation, Idaho Territory ; 
in granites near Botteler’s, Montana Territory. Labradorite in gran- 
ites in Wild Cat Cation, Montana Territory. Orthoclase in syenites 
at Ogden, Utah Territory ; in granites, through Idaho and Montana 
Territories, Sanidine in phonolite at Pleasant Valley; in trachytes 
in Grand Caiion of the Yellowstone River; in trachytes about Yel- 
lowstone Lake. 

FLINe, (black variety.) On south branch of the East Fork of Yellow- 
stone River. 

GARNETS. Below Virginia City in gneissic rocks; in Alder Gulch, 
near Virginia City; on the Madison River, about forty miles above 
Virginia City; in hornblende schist in canon of the Yellowstone 
River, above Botteler’s ; in bowlders near the caiion of the Jefferson 
River, near the junction of the three forks of the Missouri River. 

_ GALENA, (sulphide of lead.) Argentiferous, near Virginia City, Mon- 
tana Perritory ; ; with copper pyrites at Red Bluff lode, Hot Spring ~ 
district, Madison County, Montana Territory; in the mountains 
along Cache Valley, Utah Territory ; in limestones in the mountains ~ 
in Bear River Valley, Utah Territory. 

GEYSERITE, (siliceous sinter.) In the geyser-basins of the Fire-Hole 
River. Pink, translucent yarieties in the lower basin; also small 
balls of the same, some smooth, others covered with a rosette-like 
formation; gray and white varieties, having a cauliflower-like form, 
abundant in both the lower and upper basins; also Rae compact, . 
poreus, and pearly varieties in both basins, . 


200 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Gorn. In placer-mines, Alder Gulch, Madison County, Montana Ter- 
ritory; in various mines about Virginia City; in a jaspery ore at 
Red ‘Blatt lode, Hot Spring district, Madison County, Montana Ter- 
ritory; in Emigrant Gulch, opposite Botteler’s Ranch, on_Yellow- 

- stone River, Montana Territory; in mountains along the J efferson 
River, Jefferson County, Montana Territory. 

HALITE, (common salt). In cold springs on Turbid Lake, near Yellow- 
stone Lake; in springs near Evanston, Utah; in springs in Idaho. 

Hatynire. In phonolite, in Pleasant Valley, Idaho Territory. 

HORNBLENDE. In syenites at Ogden, Utah Territory; in hornblende 

' schists below Virginia City, Montana Territory; in gneissic rocks on 
the Madison River above Virginia City; in gneissic rocks in the 
canon of the Yellowstone River above Botteler’s; in acicular crys- 
tals in trachyte on the summit of Mount Washburne, near the Great 
Falls of the Yellowstone; in the same form in trachytic rocks on top 
of Mount Stevenson, near Yellowstone Lake; in a red volcanic rock 
with calcite at Promontory Point, Yellowstone Lake. 

JASPER. Red variety associated with blue chalcedony and opal at Red 
Blufflode, Montana Territory; green variety on south branch of the 
East Fork of Yellowstone River. 

Leucrire. In voleanic rocks near Yellowstone Lake. 

MALACHITE, (green carbonate of copper.) Wild Cat Canton, Montana 
Territory; near Virginia City, Montana Territory; with chalcedony 
near Mount Washburne. 

Minium, (red oxide of lead.) Near Virginia City, Montana Territory. 

NEPHELITE, (var. sommite.) In. phonolite at Pleasant Valley, Idaho 

- Territory. 

OpaL. Wood-opal at the southeast arm of Yellowstone Lake; beauti- 
ful black and white specimens from Jefferson County, Montana Ter- 
ritory. Seméi-opal in center of quartz geodes on the south branch. of 
the East Fork of Yellowstone River. Dendritic at Red Blufflode, Hot 
Spring district, Madison County, Montana Territory. Geyserite in 
the geyser-basins of Fire-Hole River. 

OBSIDIAN, (volcanic glass.) In chips along the Port Neuf River, in vol- 
canic rock; in the valley of the Yellowstone River in chips; in vol- 
canic rocks in the Grand Caiion of the Yellowstone; massive in the 
mountain ridge between Yellowstone Lake and the Fire-Hole River; 
porphyritic near Madison Lake. 

PumickE. Emigrant Gulch opposite Botteler’s; near Yellowstone 
Lake. 

QuAR?TZ. In granites throughout the Rocky Mountains ; in geodes, 
with chalcedony, near Gardiner’s River; in geodes on south branch 
of Hast Fork of Yellowstone River; crystals near Virginia City, Mon- 
tana Territory. 

SERPENTINE, (compact resinous.) In Alder Gulch, near Virginia City, 
Montana Territory. 

SILICIFIED Woop. At Tower Creek at the foot of Tower Falls; near 
White Hot Springs at Gardiner’s River; on the southeast shore of 
Yellowstone Lake. Handsome black specimens, with veins of blue 
chalcedony, on the south branch of the East Fork of Yellowstone 
River, in Jefferson County, Montana Territory. 

SILVER. Native and as chloride, in various mines about Virginia City; 
near Oxford, Idaho Territory ; in galena, throughout Utah, Idaho, 
and Montana Territories. 

SPHERULITE. At the Grand Cafion of the Yellowstone River ; at the 
southern ell of Yellowstone 88. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 201 


SuLpHur. At White Hot Springs on Gardiner’s: River; at Tower 
Creek, in a ravine near hot springs; at foot of Mount Washburne ; 
at: Crater Hills in beautiful crystals lining the crust or deposit; on 
the East Fork of Madison River in old, extinct, hot-spring basins; at 
Turbid Lake near hot springs; near Evanston, Utah Territory. 

TuFA, (caleareous.) At Soda Springs, on Bear River, Utah Territory, 
in huge masses, retaining perfectly the shape of the plants incrusted; 
in Beaver Head Caion, Jefferson County, Montana. 


CATALOGUE OF ROCKS. 


There were 627 specimens, including duplicates, collected during the summer, com- 
mencing at Ogden and ending at Fort Bridger. 


' No. Name. _ Locality. 
1 | Dark-red ferruginous sandstone. .----.-.---.--- Ogden Cation, Ogden, Utah Territory. 
. 2] Reddish syenite...-.....--.--- Jacemanecepessees Do. 
3 | Metamorphic siliceous conglomerate..---..----- Do. 
Gh || Tevmy GETING). 45 ose scebssosapecnae peecuae es =e Do. 
5 | White quartzite. ......--.-.-:.--------.- sescece Do. 
6 | Light-gray cherty limestone -.--.-------------- : Do: 
7 | Dark-bluish cherty limestone. -.-...--.--------- _ Do. 
8 | Siliceous clay-slate ......---.-...-..----------- Do. é 
9 | Dark-blue mountain limestone...-.------------ Dry Lake Valley, Utah Territory. 
10 | Oolitic Limestone.....-..------.--. SEAS Sages Cache Valley, Utah Territory. 
11 | Gray siliceous limestone. ....-..-.--------- 222: Do. 
TORRE TECTSLONG: 23-4 Sec see ares oo semen Bear River, Utah Territory. 
13 | Amyedaloidal melaphyre .....-.---.-- pansies Near. Clifton. : 
Il |) (GhaeeOIStIOMN@)s Oe CoP Bape nec ese brode beeepe noes Do. _. 
15) | \Chlorite schist... ../..-.-.--..---.--+.- feta eee Between Clifton and Oxford. 
16 | Dark-red quartzite ..........-..--.-.--. ales Above Oxford. 
17.) Ferruginous quartzite ........ eee at. Eee .... | Red Rock Pass. a 
_ 18 | White sandstone, (Pliocene). ...............----| Marsh Creek Valley, Idaho Territory. 
19 | White sandstone, (Pliocene, dendritic) .....-... i Do. 
' 20 | Light-brown quartzite..........------.-------- Port Neuf Cation, Idaho Territory. 
BAe eVnace InMeStONe laa eke aa Do. } 
22.| Siliceous mica schist. ..-.-..-. AOE HB BE Ree mer ee _ Do. 
23 | Purple quartz sandstone......----..-...:-.---- . Do. 
24 | Coarse-grained ferruginous sandstone. .-..-.--- Do, - 
25. | Dark-blne limestone -......--.--..------------- Do. 
26 | Ferruginous siliceous slate.....-.-...-.-------- Do. 
Br || Teel @mentWaliec5- 66 sb aeon sa see buon e creer orece Do. 
28 | Dark-gray quartz schist --..-.-...-..--.------. Do. 
29 | Arkose, or teldspathic sandstone. ......-.--..-- Do. 
30 | White quartzite. ........-.........--.--:-...-- Do. — 
Sol M@uaxtzporphyey.- ----- .-266 «<< <j. - naam eee Do. 
SoM IM GREEMSbONO aes ns ware ccna ek cis se dean asons Do. 
Sou e@hloriteisehisths ss. 1js4ces ee se <6 = cleerrcias sen ss) Do. 
34 | Greenish-gray quartz schist ......----.....---. Do. 
35 | White quartz schist ..............------.------ Do. 
S60 PRed quartzite... 222-5. -6 ee 5 =.= -yadancacna= Do. 
37 | White friable sandstone, (Tertiary)...--...----- Do. 
SS Vesicularsbasalteegse 9 scepierscta=saimialsta=/s\s0 Port Neuf River, Idaho Territory. 
39 | Compact basalt ..-......-...--.----.2-2.-.2---- Do. 
40 | Fine-erained red sandstone .......-...-.- Ea al Near Fort Hall, Idaho Territory. _ 
41 | Jurassic limestone, (gray)--.-..-----.-.-------- Do, 
42 | Slate-colored trachyte.........----.----.-.----- Eagle Rock, Snake River, Idaho Territory. 
43 | Red quartzite, (highly metamorphosed) ...-.-.-.- Do. 
AQ) Vesicular basalt) 2582. scceee «-4----<-550-+5555 - Do. 
45 | Compact basalt, (with white crust) .........-.- Do. i 
46:|"aivataasciee aeee: Hee ee A, Awa ekenswa Cave at Hole in the Rock, Idaho Territory. 
47 | Slaty porphyritic phonolite ..........-..------- Mouth of Beaver Head Cation, Idaho Ter. 
48 | Compact porphyritic phonolite.-.............-- Pleasant Valley, Idaho Territory. 
49 | White cavernous trachyte .-..-...--...----.--- pas the Divide of Rocky Mountains, Idaho 
_..|... Territory. 
50 | Pink sandstone ..................--.-----------| Mount Garfield, Montana Territory. 
51 | White quartzite. .2o-2... 2c is sees cece nee eses Meu Byres . 
52 | Pink and white sandstone ...........-..-...--- Do. 
53 | White sandstone. .----......5.0---22--2-------- Do. 
54 | Red sandstone. ....-........ Weta) Re atin oe Do. 
55 | Light-brown limestone. ..........--...---..2--- _Do. : 
56 | Bluish-gray sandstone, (Pliocene).......-..--.. Little Sage Creek Valley, Montana Territory. 
5% | Gray dendritic sandstone, (Pliocene)..... SOAGAT _. Do. f 
58'| Bluish-white sandstone, (Pliocene)...... ohn eas Do. 
59 | Old hot spring deposit ...-.............. SE eee Do. 
60 | White argillaceous sandstone................-- Do. 


61 | Yellow argillaceous sandstone............ eee BE a Oy 2 
62 | Granite..... eee ann Nt eee secclseeercseenes! Wild Cat Cafion, Montana Territory. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


Catalogue of rocks—Continued. 


Name. , . Locality. 
GUGigs esters ere Reus ee sins eitge saockl ose ces ee Wild Cat Cation, Montana Territory. 
Purple felstone or petrosilex..-.--------------- Do. a 
Gray felstone or petrosilex......-.------------- Do. 
Yellow felstone or petrosilex. . .-. sboosaseouseas Do. 
Red felstone or petrosilex.......-...-..-------- Do. 
Red elvanite or quartz porphyry-.--. ---------- Do. - 
Gray elvanite or quartz porphyry--.----.---.-- Do. 
Pink elvanite or quartz porphyry.------------- Do. 
Red felstone or petrosilex....-./..---.--------- Do. 
Yellow telstone or petrosilex.....-..-..---...-. Do. 
Flesh-colored felstone or petrosilex ..........-- Do. 
Gray felstone or petrosilex..-......-..-.--.---- Do. inte 
@hloriteschistmese.=-pe ssceee eae he seiinels-eialam 0. 
Licht-eray sandstone, (Pliocene).'...----------- Devil’s Pathway, Montana Territory. 
Greenish sandstone conglomerate. 0. 
(GHORTITIOS 5 son eseosnnao ross sosseesedoossseopeece Do. 
Blue felstone or petrosilex Do. 
Argillaceous sandstone ...-.-----------.------- Do. 
Yellowish-gray feistone or petrosilex......-..-- Do. 
Gray sandstone --.-.-------..---..------...---- Do. 
Blue felstone or petrosilex ..-..-.------.------- Do. 
Gray quartz porphyry or elvanite........-..... Do. 
Pink felstone or petrosilex...-.....-..-.-.-.--- Do. 
Gray elvanite or quartz porphyry. .-.-.--.---- Do. 
JASPeLPOLD Wye seme ee eta esastea ae iaeleelnele ain Do. 
Striped or slaty porphyry-.-..----------.------ Do. 
WhiloriteisChistyee eee ns eee ae ain ecto alo= aa Do. F 
Garnetiferous hornblende schist .....-.---..--- Below Virginia City, Montana Territory. 
\YVIIE®) GURNIis — = SESH s So odos has sonorous copbEeBe Do. 
Old hot spring deposit .....-.....-----.---..--- Do. 
Teneous rock basalt............------.-----..-- Above Virginia City, Montana Territory. 
Tsneousirock, (red) rane 2- eso n + se see eee oe Do. 
Light-red coarse sandstone .......--.---.---- 20 Do. 
Dark-brown ferruginous sandstone Do. 
Garnetiferous gneiss...-.-.+.----..------------ Madison River, above Virginia City. 
(GhEEISS eM. = paste See doa ado seseosacoceEsESa sos 40 Do. ; 
Compact red sandstone ...-.......---.--.------ Mystic Lake, near Fort Ellis, Montana Ter. 
Volcanic conglomerate..-.-....----.- els Bele Do. 
Yellow quartzite. .--- petals SNS n/m we asinineemce Do. 
Coarse brown sandstone. .-...--..-..----.----- Spring Caiion, near Fort Ellis, Montana Ter. * 
DLOTITOM ae eee ais na neeieitns <igeis cltcicnieceloiers Above Spring Caton, near Fort Ellis, Mon- 
tana Territory. 
Alb iceforanite me saeeoeee eee eerste anes Near Botteler’s, on Yellowstone River, 
Pinkish trachyte, with hornblende............- Do. 
Violet-colored rhyolite, with mica.......-...--. Do. 
IPunimice- Stones. ee. pee eee ac see eee reer, ..| Emigrant Gulch, Montana Territory. 
ERAT OYA SOME A aul: Se ee eee See Do. 
Ohlone schisten-eceseaaeeeeert arse =r eerentiatt Emigrant Peak, Montana Territory. 
Granite..----.--: SuO IDO HAa~obLeskeoaaussanScoaae Do. 
Redisandstoneywasenec see eeeeae oer eeeeeeeeeeer Do. 
IB AS Alb erenes ecm ems ei eens Meine wets omyeeetnceieree Do. 
Renavoleamse hELeGlaes Hees eneee beeen cence Above Botteler’s, on Yellowstone River. 
Hornblende schist, (garnetiferous)-..---..----- Caiion of Yellowstone, above Botteler’s. 
GTaVHONEISS ES eee eee eee ectsich mares iL rateicinieciete 0. # ] 
Green porphyritic trachyte ...--...--.-.-.----- Deyvil’s Slide, Cinnabar Mountain. 
Gray porphyritic trachyte..-..-..-:--.-..------ Do. 
Dark-green porphyritic trachyte. .-....-..-.--- Do. 
Siliceous clay-slate-......2..0..l20.----- eee en ee Do. 
WVAHILEIOMAROZITO. owe ete. ME ee ee cee eke Do. 
Grayiqiartzie:) Sees BeBe Ber renters erereencte Do. 
Grayisandstone ®:. eae ee eee eee eeere Do. 
ARC OMIMESTONG)2 . 25). ie eee eee eee calc ce eiaeie Do. 
BVO llOAIIMESLONG . eee ee ee eee eeeee eee Do. 
Gremio WSR aL) edhe, SRN Ua Above Cinnabar Meuntain. 
Basalt coated with calcite...-.......----.------ Gardiner’s River. : 
Grayauinyelibemee.. 2 226... Se eae On mountain, near Hot Springs, Gardiner’s 
: River. ; 
Light yellowish-gray trachyte Do. 
Dark-gray rhyolite. .-...--.-.... Do. 
Old hot spring deposit ...-...- Hot Springs, at Gardiner’s River. 
Greenish-gray rhyolite. ....--...........--.---- os mountain, near Hot Springs, Gardiner’s 
iver. 
Mellow rhyolitenscacencceek cence cs -cceaeee eee ies Do. 
Blue rhyolite ....-..-..-.....--.--------..:----| Tower Creek. 
Chalcedony, with malachite ..........-.....---. Foot of Mount Washburne. 
Wihite trachiyte as. i.e eee cence nin mo cetera Grand Cafion of the Yellowstone River. 
White and red trachyte.......-..---.---.....-- Do. 
Bluish trachyte infiltrated with sulphur......-. Do. 
Dark perlite-like trachyte .......--.--------.-- Do. 
Wihiteytrachy te S02. Sees ee ee esc. Do. 


Gray rhyolite ..: 2.2.2... .ccee REE REeC Chain as Do. 


141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151-154 
155 
156 
157 
158 
159 
160 
161-181 
182-183 


188 
189-190 


191 


192 
193 
194 
195 
196 
197 
198-199 
200-201 


GEOLOGICAL 


SURVEY OF THE TERRITORIES. 


203 


Catalogue of rocks—Continued, 


Name. Loeality. 

Sphermbliten see telat toes ota el alalas= = ele cia)= lain -Grand Caiion of the Yellowstone River 
Obsidian, with eneralite BRAM aia <i seaoacatermiaret Do. 

Pink trachyte sonnodosebroned-epcosecscoseacsees Do. 

Porphyritic obsidian ......-....---------------- Do. 

Volcanic conglomerate ......-------------- Be De. 

Old hot-spring deposit.......--.---------------- Do. t 

Bess d0.....2.-----..-------2------------------| Crater Hills, Yellowstone River. 
pie CLARE eee see mcoseecocscocuss Do. ; : 

ilaceous sandstone....-...----------------- Mud-voleanoes, Yellowstone River, 

Rol volcanic pudding-stone.....-..--------.---- Do. 

Mins Chiyibe Saeco -l=)=1-10 = cies atte ee atnteitetlntainle}teetsia a) East Fork of Madison River. 
Besser obsidian Near Madison Lake. 
Trachyte......-----. West side of Yellowstone Lake, 
Spherulite Southern shore of Yellowstone Lake. 
Porphyritic obsidian - Do. 

PRPC Ny Lose sae ce lance eae clots eiaimnle e Do. 

Trachyte, with hornblende and calcite......... Promontory Point, Yellowstone Lake. 
Wolcamicibrec@laneee ste eae eam ere eee eat Southeast shore of Yellowstone Lake. 
Old hot-spring deposit.....-.--..-.------------- Brimstone Basin, east side Yellowstone Lake. 
Gray trachyte, infiltrated with sulphur.... .-. Do. 
iWihitertrachwtersesseeeesaemen eon nase seem an ec Do. 

iedsbeachytoss-ee eee eee eee erase aaa Do. 

Bl shyoraehiybe esse see == eee ea ese Do. 

Greenish trachiyitese eee eee - aoa 5-1 Do. 

Gray trachyte, pate hornblende ...-.-.--------. Top of Mount Stevenson, east side of Yellow- 

stone Lake. 
Hanon GO) ssdbegs Gagne nooo) chp ssoasersueOUSreroe OBOE Mount Doane, east side of Yellowstone 
ake. 

QWSIGEERN ooo deaseospsedensobopepereceS-eaneeee East shore of Yellowstone Lake. 
Porphyritic obsidian ..-.......--...-.-.-------- Do. — 

Red and black basaltic rock..--.-.---..---..--- Do. 

HTOU-SPLIN YAS POSIbie seo a atlas eel = sais =)-ie)al= oat Do. 

Silicified wood .-.--- Do. 

Red rhyolitic rock. -.. Do. 

WMolcanicybreceiaiss see snc aasens ses nee coccioe Do. 

Volcanic conglomerate..........-...--.-------- Do. 

@haleedony 22--22--------- 2-9-2 == ~~ == ~---- = Northeast shore of Yellowstone Lake. 
Ge Spiny deposits se. (eet en se cee cen nete -in- Do. 

White and red variegated sandstone..-.-..-..--. Do. 

SWititeibrachy emanate mas see ane ae ea sinitern = Turbid Lake, near Yellowstone Lake. 
Green trachyte.. --- Bn SAIS Ee ee cise /sitinaices Do. 

LOGS PINE GENOsit wee eee eee os eee sy Do. 

Wellowishitrachytes< 2. 22222022225. 2. aie oan Do. 

Hot-spring deposit ..+:.---....-.------222s-.6-- Do. 

AMASTONC eee terion eesienselolinauetecce Pelican Creek. 

Volcanic conglomerate .....-..------+-------+-- Do. hI 
Basalt, (black) BES Aaa ANUS a aes wil SIarate Maite Sou branch of East Fork of Yellowstone 

iver. 

Basalt; (LEG) has seien se sees nee oecene ya eeecieseee Do. 

Basaltic rocks, (black) ...-.---.---.--- Do. 

Quartzite .+...---.--..-- a Do. 

Brown coarse sandstone .---| Near Crow Indian agency, Yellowstone River. 
Brides clay-slabeweace ees seco tae oe Smisismienecer Near Fert Ellis, Montana Territory. 
@layeslatemer ans see pst sae ae semis mcmama East side Gallatin River, Montana Territory. 
Greenish-gray sandstone .....-.-.-------.------ Do. 

Siliceous clay-slate.-........----------22------- Do. 

Dendritic sandstone..-..--.-----------.-------- Do. 

SAME SONG ieee see ae ese peer see aa yen eine ue Between Jefferson and Madison Rivers. 
Garren Ose A A NUE Sy Le ee ale Do. 

Hornblende schist..-...........-....-..--+-+--- Do. 

Granite Wa5 A eee Bud oa a sees Do. 

GETS Se ee SU oS ee Sot Do. 

Wihtterqnarta, yee o eee oe saceea sation ga cesses Do. 

Red compact sandstone ..-.------...--.---.-.-- Do. 

Yellow calcareous SERLSIGDE.- Pee AL acnieseaeins Do. 

Dark-blwesimestones)s-\. 0 veo Fee oe eee oe: Do. 

Garnetiferous gneiss ...-.....-....----------0-. Do. ; 

Mica schist West side of Jefferson River. 
Quartzite -....... Do. 

Clay-slate -...... y Do. 

White quartzite... Black-Tail, Deer Creek Valley, Montana Ter. 
Limestone ye yeaeae sees ee see oo US Do. 

Old hot-spring deposit..............-...-.-2---- Do. 

Basalt: (ess qs ease see eae i Oe Do. 

Red sandstone saanummnanny DET Do. 

Qaartziter [Se ee eR Se Do. 

mone BE SHER EP nii a WAU eRe ene eee Do. 

oA CEE ere eae}. Sn Si Re -+------| Beaver Head Rock, Montana Territory. 
Che, gray s Saridatonezesaaeeeemaae laces succics « Do. 

Dark-purplish rhyolite. ..--...........-....---- Beaver Head Conon Montana Rebs 


Light- bluish rhy OLS. Ain age | 


Do. 


204 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Catalogue of rocks—Continued. 


No. Wame. Locality. 
248 | White sandstone, (Pliocene)..------------- Sosea2 Beaver Head Caiion,' Montana Territory. 
249 | Clay-slate, (siliceous)...--..--.-.--------------- Do. 
250 | Coarse red sandstone..-....--------------------- Do. 
Dil Piel 6-2-5 ooqeooseeedcoa- Sen BEESoeeoracaanc meen, Do. 
252 | Trachyte .........--.-------------------0--2--- Do. 
253 | Trap-rock, with chalcedony ..------------------ Do. 
254 | Old hat-spring deposit....---..-.--.------------ Do. 
255 | White brecciated volcanic rock ....--------.--. Do. 
256 | Red brecciated volcanic rock..-...-..----------- Do. ; 
257 | Hornblendic gneiss. .-.--..-----.--------------- Horse Plain Creek, Montana Territory. 
Oe) (Gaciaitts) 2 eee se Son peUeReer can omencneEesoe sere Do. 
259 | Quartzite, (highly metamorphosed) .-......----- Main Divide of Rocky Mountains. 
960 | Purplish trachyte.-....-..---.---.--+--as--+-- Medicine Lodge Creek, Idaho Territory. 
261 | Gray trachyte.....-- Do. 
262 | White sandstone. .---- . J Do. 
263 | Old hot-spring deposit E Do. 
Oe | Ime SIONS) Degeoaeonoboeeceedecossuosoeceeoeoeae Do. 
ORD a NBASAlG een ce aoe coe cei defaid ete bic ralareeyotorsereys Do. : 
266 | Old hot-spring deposit,.(yellow) -.---.-.-------- Soda Springs, Bear River, Utah Territory. 
267 | Old hot-spring deposit, (white) .-.-.---.-.------ Do. 
268 | Old hot-spring deposit, (red) ..-.-.-..--..------ Do. 
969) daimeshone!- nese cee ace alee ore sretetatcrereyerse Do. 
TO) paSalbep a senee ence eee melee eiclerntacis btareretrarcetcterere Do. 
O71 |) Wibite quartzite 22-2. --2 222822 2 - «eee sean Back of Bennington, Utah Territory. 
DD) |MRediquaMbzte ns | secon os esis ea nlat wefan res Do. 
273 | Greenish quartzite.-..-...---:-.--.-.---------- Swan Creek, Utah Territory. 
OWArl eEaAMeSbOH Obs kee see ea Sete ee ne qeiteic erator tae nae 2 Near Evanston, Utah Territory. - 
975 | Yellowish sandstone ..--...-.-.-.-------------- Do. 
976 | Gray-samdstone)..- 2. 25-2-02---22 era atsanaescme 0. 
277 | Yellow sandstone .......--.---.---------+4----- Between Evanston and Fort Bridger. 
978 | Redisandstone..-.-.-.--.-.c-ce0----4sisceseerene Do. 
279 | White sandstone Do. 
Dein |) Shale) oo so5 seco sean ene sosenneeSeecmobeD ec .| Fort Bridger. 


See ee 


Pde ales oie Bee oe Le 


REPORT OF PROFESSOR CYRUS THOMAS. 


AGRICULTURAL RESOURCES OF THE TERRITORIES. 


CHap. J. GENERAL REVIEW: GEOGRAPHICAL FEATURES, MOUNTAINS, 
_ FORESTS, ETC. 

_CHap. II. THE GREAT BASIN. 

Cuap. II]. NORTHERN PART OF SALT LAKE BASIN, AND SNAKE RIVER 
PLAINS. 

Cuap. IV. MONTANA TERRITORY. 5 

Cuav. V. LETTERS FROM PROFESSOR G.N. ALLEN AND MR. HASKILL, AND 
EXPERIMENTS IN.CULTIVATION ON THE PLAINS ALONG THE 
LINE OF THE KANSAS PACIFIC RAILWAY: BY R. S. ELLIOTT. 


Wire 
A gd Wie 
Wy Flan kee 
sins 


EUs 


<7 " 


°: peat |S ( Pe 
Rimops s i 


biel ae 


yeh? Yad eee 


REPORT. 


WASHINGTON, D. C., February 1, 1872. 


DEAR Sire: Herewith I present a report of my investigations of the 
agricultural resources of the Territories during the past season. 

I accompanied the exploring party from Ogden, in Utah, to Virginia 
City, Montana. As it was evident the party would visit no arable areas 
of importance while investigating the interesting region around Yellow- 
stone Lake, it was thought best that I should visit other parts of Mon- 
tana Territory. In accordance with this opinion, I separated from the 

main party at Virginia City and proceeded to Helena. Here I was for- 
tunate in finding a number of well-informed persons from all parts of 7 
the Territory, through whom I gained a large amount of information in 
regard to the agricultural resources of the sections I was unable to visit 
in person. From this point I crossed over the dividing range of the 
Rocky Mountains to the head-waters of the Columbia. I take pleasure 
in stating that my investigations have developed the fact that this - 
interesting Territory possesses a much larger area of arable land than I 
had anticipated. It is true that the agricultural lands are separated 
into comparatively small areas; but this character has its advantage, 
as it secures an ample supply of water for irrigating purposes. I failed 
to obtain any satisfactory account of the extreme eastern part of the 
Territory, especially that part lying east of Fort Benton. That it con. 
sists of broad, level, treeless plains is well known, but the supply of 
water and means of irrigation appear to have been overlooked by those 
who have visited this section. As the Northern Pacific Railroad is to 
pass through here at some point, it is important that this should be 
ascer tained, especially as the descent of the Missouri below Fort Benton 
appears to be too small to give any promise of a supply of water for 
irrigation from it by the ordinary methods. It is therefore important 
that further data should be obtained on this point. 

The climate of this Territory is much more favorable for agriculture 
than would be anticipated from its northern and elevated position. 
Indian corn, of a tolerably good quality, is grown on each side of the 
range without any serious climatic difficulty. Even melons and fruits 
are matured in some of the valleys. Some have attempted to account 
for this by the sepposition of atmospheric currents from the Pacific 
Ocean, &c.; but the real reason is apparent when we examine the barom- 
eter. The Bitter-Root Valley, between the Rocky and Bitter-Root Mount- 
ains, is fully 1,200 feet lower than the level of Salt Lake; and there are 
no broad, open plains of that extent sufficient to give play to the sweep- 
ing storm that often visits other sections. 

The valleys and hiil-sides are generally covered with rich and nutri- 
tious grasses, affording excellent pasturage for stock. The northwestern 
portion has a large area covered with extensive and valuable forests 

_ of pine, fir, and other coniferous trees. I was surprised to find the 
passes across the main range so easy and smooth; at one of them, Deer 
Lodge Pass, the water being actually taken by a canal from the Atlan- 

tic to the Pacific side. 

I found the citizens everywhere deeply interested in these investiga- 


208 GEOLOGICAL SURVEY OF THE TERRITORIES. 


tions, and always ready to assist me in ey possible way, and to them 
T am indebted for much of the information contained in my report on 
that Territory. And Iam glad to say that so far as I was able to test 
this information by personal observations, I found it generally. quite 
correct, their great ‘desire being not to exaggerate, but simply to get the 
facts in regard to their section “of country before the world. I srould be 
glad to mention the names of those who took special pains to assist me, 
but as I cannot mention all I hesitate to mention any, but I cannot 
refrain from naming Governor Potts, Colonel Wheeler, marshal of the 
district, Colonel Sanders, the editors of the papers of Helena and Deer © 
Lodge, Major Forbes, Mr. Granville Stuart, and others, some of whom 
are mentioned in my report. 

From Montana I returned to Corinne, in Utah, with Professor Allen, 

who had joined meat Helena. From Corinne I proceeded to California, 
in order to see what progress had been made here in the method of irri- 
gating lands. I desired especially to learn what was being done in the 
way of lifting water. <A visit to the suburbs of Sacramento, Oakland, . 
and San Francisco soon gave me all the information on the subject that 
was to be obtained, as no Statistics in regard to this important horti- 
cultural agency appear to have been collected. The wind-mill appears. 
to be nearly the only power used for the purpose of lifting water, and 
as the quantity raised by each is small it is apparent that these cannot 
be profitably used for field crops, especially where they compete with 
the products of rain-moistened regions. But as auxiliaries to horticul- 
ture they are valuable, wherever the water is to be found in quantity at 
a short distance from the surface; and there are probably many points jn. 
the Territories into which your. survey has extended where they could 
be used with profit. 1 append a short account of San José Valley, fur- 
nished by Professor Allen,.as it contains some very interesting matter.. 
Although California is justly celebrated for its fruits, wheat, &c., yet I 
was quite disappointed at the appearance of the agricultural districts 
visited, though this was owing in part to the very dry season; but Iam 
convinced that the agricultur al resources of this great State Will never 
be properly developed until a more thorough system of irrigation is 
adopted. Although the annual rain-fall is considerable, yet it is not 
distributed through the growing season in such a manner as to do away 
with the necessity for irrigation. 

I was surprised to learn no hard wood fit for wheelwright purposes, 
and agricultural and other machinery, was to be found on the Pacific 
coast. Visiting the wagon and other shops in San Francisco where 
hard wood is used, to ascertain where they procured it, | was surprised — 
to learn that this is brought from the Atlantic States. I subsequently 
found the same fact mentioned in the report of the president of the 
State board of agriculture of California for 1868~69. I had ascertained 
this was the fact in regard to the Territories of the Rocky Mountain 
region, but was not aware before that it was the case in regard to the 
Pacific coast. It may perhaps, without exaggeration, be said that 
proper timber for a wagon cannot be found in. the United States west 
of the one hundredth meridian. As this places the States and Territo- 
ries of the Pacific slope under considerable disadvantage in this respect, 
it seems to me that the General Government ought to take some steps 
to remedy the defect as far as possible. Hard wood will grow in these 
sections, as is evident from the experiments made, but it will probably 
be valueless for the purposes mentioned unless freely watered by irriga- 
tion. Would it not be well to establish in California an experimental 
farm and garden under the Agricultural Department? The conditions 


GEOLOGICAL SURVEY OF THE TERRITORIES. _ 209 


of climate, soil, humidity, &c., in that entire region are so different 
from that of the Atlantic coast, that experiments in the latter section 
have no applicability to the former. The one is oriental, the other occi- 
dental, although reversed in position. 

As I have, in a former report, given a short account of the arable 
areas of Utah, I have devoted a part of the present to the consideration 
of the physical features of the Salt Lake Basin, so far as these have 
any bearing upon the agricultural resources of this very interesting 
region. I have added a more minute account of that portion of North- 
ern Utah over which the expedition passed the present season, and which 
I visited in person. I have prefixed a general outline or review of the 
geographical features of those portions of the Rocky Mountain regions 
which have been visited by the exploring party under your charge 
during the past three years. It would have been more systematic to 
have placed this at the end, but I preferred the other plan, as many 
persons desire to know the conclusions reached without having to read 
the details. 

You will find, accompanying this report, a continuation of my investi- 
gations of the western Orthoptera. .A number of new species—some 
twenty-eight or thirty—were obtained, and have been described, among 
them some of considerable interest, adding two genera hitherto un- 
known to the insect fauna of the United States. 

I feel it to be a duty to report to you in a special manner the accom- 
modations received from the various stage-lines running from Bozeman 
and Virginia City to Helena; thence to Deer Lodge; and thence to 
Corinne. Over all these Professor Allen and myself were passed with- 
out charge, and treated with great respect and kindness by all the offi- 
cers and employés. To the Central Pacific, Union Pacific, Denver Pa- 
cific, and Kansas Pacific Railroads we are under many obligations for 
passes for one or both of us over these roads; and also to the officers 
and employés for the many acts of accommodation extended to us, by 
which delay was prevented. I have appended a short report of some of 
the valleys of Nevada, drawn up by Mr. D. H. Harkey, of Reno, pro- 
cured for me by the kindness of Mr. Meecham and his partner, of Hum- 
boldt, Nevada. It is to be hoped that by another year a more complete 
account of this intermontane State will be obtained. I believe that Mr. 
Harkey is now at work upon this subject, which will probably be fur- 
nished you when completed. 

I had expected a short account of the lands along the Union Pacifie 
Railroad in the western part of Nebraska, as there is much inquiry in 
regard to these various sections. 

It is an interesting fact that those sections of the West which have 
been described in your reports have received, during the past year, the 
greater portion of the emigration that crossed the plains. While this 
has, no doubt, been owing to a number of causes, yet we are justified in 
believing that your efforts and investigations have helped to bring about 
this result, and that in this fact you have an evidence of the apprecia- 
tion of your labors. 

I take pleasure in returning my thanks to all those persons who have 
so kindly assisted me in my work, and though the names of but few 
have been mentioned, { feel myself under equal obligations to those 
whose names are not mentioned. e 


I remain, yours, very respectfully, 
CYRUS THOMAS. 


Professor F. V. HAYDEN. 
1468 


210 GEOLOGICAL SURVEY OF THE TERRITORIES. 


CHAPTER I. 
GENERAL REVIEW. 
GEOGRAPHICAL FEATURES. 


The geographical features of a country are so intimately connected 
with its agricultural resources, that an inquiry into the latter necessarily - 
involves an examination of the former. The size and character of its 
mountains and valleys, extent of its plains, and size and number of its 
rivers and lakes, are all items which must be considered if we would 
make our investigations complete: So far as I have noticed these in 
describing the separate sections, I will not repeat them further than to 
generalize these more minute descriptions. And it is proper for me to 
state here that I shall confine this review almost wholly to those Terri- 
tories and regions visited in person; not that each locality alluded to 
has been examined personally, but that I have visited the section and 
learned from personal observation its leading external features. 

The boundaries of the political divisions, and even the outlines of the 
more important natural areas, can so easily be determined from the maps, 
that I shall omit allusion to them, except where I may have occasion to 
do so for the purpose of explanation. 


' MOUNTAINS. 


Passing over the broad plains which spread out westward from the 
Missouri River, the first objects to attract our attention are the mount- 
ains. We enter upon our western journey with a desire to see them, 
and the long monotonous ride across this broad expanse, even though 
sweeping along at railroad speed, intensifies that desire. And when we 
first catch a glimpse of some lofty peak or range, especially if it has a 
crown of snow upon its summit, glittering in the bright sunshine of that 
limpid atmosphere, all other objects for the time are forgotten. No matter 
whether we are enthusiastic admirers of nature’s works or not, the sim- 
ple fact that we are gazing upon the snowy summit of the great Rocky 
Mountain Range has in it a charm that, for the first time, at least, ar- 
rests the attention even of the giddy youth and suffering invalid. This 
first impression fixes itself so indelibly upon the mind that no matter 
how often we may visit this region, how various our duties may be, and 
how intensely we are devoted to them, yet after we have returned, often 
as our minds revert to that section, the mountains will stand in the fore- 
ground. Nor is this strange, for they constitute the leading and promi- 
nent geographical feature of the great West. Aside from their exceed- 
ingly important geological and mineralogical characters, which Professor 
Hayden and other geologists are presenting to the public, they also ex- 
hibit external features which have important bearings upon that depart- 
ment which has been assigned to me for investigation, and this is more 
especially true in this section of the country where the rain precipitation 
is sc small and irrigation so universally necessary. From these comes 
the supply of water for irrigation; these are the great reservoirs upon 
which the hopes of the agriculturist depend. As the heat of summer 
apprgaches and the rays of the sun pour down upon his fields, he watches 
day by day with anxious eyes the rapidly melting patches of snow that 
lie upon the crest of the neighboring mountain; for, unless his ditches 
are fed by one of the larger perennial streams, he knows that upon the 
rivulets which flow from those crystal banks depend the life of his crop 


GEOLOGICAL SURVEY OF THE TERRITORIES. 211 


and the supply of food for himself and family. He is well aware that 
soon after they have disappeared, the little rills will cease to flow, bis 
ditches become dry, and his crops, unless previously matured, become 
parched and withered under the influence of the sun and this remark- 
ably dry atmosphere. Hence the snows of winter, when heavy in the 
mountains, instead of being looked upon as misfortunes, are hailed as 
the sure harbingers of a plenteous harvest the following seasons. I 
have more than once heard the remark made by those who have long 
resided in that country, ‘It would be better for usif we had more snow ;” 
and I am inclined to think the statement true. A hasty trip across the 
great mountain belt on one line will doubtless give to the casual ob- 
server the impression that there is a general sameness throughout. 
The broken crests and peaks of the eastern range and rugged forest- 
erowned Sierra will doubtless be contrasted with the broad inter- 
vening waste of ridges, valleys, and piains, but will scarcely do away 
with the impression of monotonous uniformity. But a closer study of 
these vast monuments of nature’s building will show us new forms, va- 
rying features, and different characters at.every step. 

Instead of being arranged in continuous ridges, as was for a long 
time supposed, this immense belt is broken and irregular, at one point 
grouping its loftiest peaks and ridges in a compact mass, while at 
another isolated ranges have wide wastes lying between them. The. 
water divide between the Atlantic and Pacific slopes, in some places 
being the crest of the loftiest ridge, running a tortuous course, winding 
right and left, yet with a general northwest and southeast direction, at 
other points it is an undefinable line on a broad and apparently level 
artemisia plain. 

The mountain region reaches from the eastern slope that descends to 
the great plains to the Sierra Nevada; but the true Rocky Mountain 
belt, although vast in its proportions, is much more limited, extending, 
in the latitude of Colorado and Southern Wyoming, from the eastern 
flank to the Wahsatch Range, a distance, direct, of some three hundred 
and fifty miles.. Here, in the western half of Colorado, eastern part of 
Utah, and southern border of Wyoming, is the heaviest mountain mass 
in the Union. Extending east and west from one hundred and fifth to 
one hundred and twelfth meridians, and north and south from the 
thirty-seventh to the forty-first parallels, it covers a quadrangular area 
of nearly one hundred thousand square miles. Within these bounds are 
collected a large number of the highest peaks and ridges of the entire 
Rocky Mountain belt. It is split into two parts by the valiey of Green 
River, which traverses the entire area from north to south near the one 
hundred and tenth meridian, the eastern moiety containing the heaviest 
portion. 

From the southern boundary of Wyoming to the southern boundary 
of Colorado, the eastern range, which lies principally between the one 
hundred and fifth and one hundred and seventh meridians, is exceed- 
ingly rugged, broken up into sharp peaks and tortuous ridges. On the 
eastern slope it is composed of an irregular series of ridges, leaning one 
against the other in ascending order toward the west; these at a few 
points separating, so as to leave large depressed areas, as the parks, 
Upper Arkansas Valley, &c. This form, connected with the great eleva- 
tion of this entire mountain area, has a very important bearing upon 
the agricultural resources of the plains and valleys at the eastern base, 
as it affords immense reservoirs for the accumulation of winter snows, 
from which the streams can draw a supply of water. Hence, most of the 
streams which take their rise in this range are perennial, affording an 


2AB GEOLOGICAL SURVEY OF THE TERRITORIES. 


abundance of water for a broad strip of land along the eastern flank 
of the range. Not only are they rugged in general outline, but also in 
minute detail, being exceedingly rocky and jagged, except in some of 
the parks and larger depressions, where the local drift has rounded the 
lower hills. As a general thing, they are covered with heavy forests of 
pine and fir, except where the “altitude exceeds the line of arborescent 

vegetation. I would call special attention here to this fact, as I wish 
to allude to it hereafter—the connection between the rugged, "rouky sur- 
face and forest growth. In the parks and other spots where ‘there are 
heavy deposits of drift, evidently brought down from the surrounding 
heights, as a general thing there are no forests, Poe groves of 
stunted cedars or pifions being the chief exceptions. 

Along the east base, after passing Box Hlder Creek, going south, 
long straight-lined foot-hills are often to be seen shooting out from the 
mountain ‘side, their tops flat and almost or quite level. They are gen- 
erally very smooth, without forest growth, but grassed over as evenly 
as a mown meadow. These singular formations constitute a very re- 
markable feature of this section, ‘and give a peculiar charm to the land- 
scape. An occasional “mesa” or squarely truncated hill can be seen 
here, but these are more characteristic of the country farther south. 

As we approach the borders of New Mexico the mountains gradually 
diminish in height, the mass separating into more regularly continuous 
ranges; the naked crests of the higher ridges often sharply serrated. 
The sides, though rocky and deeply and sharply furrowed, are hardly 
so rugged as farther north. As might be inferred from these character- 
istics, the accumulations of snow are less extensive, the water more 
rapidly carried off, and the streams less permanent than in the vicinity 
of the mountains farther north in Colorado. 

The Raton Mountains, which run east from the main range, near the 
dividing line between the two Territories, form a rather singular excep- 
tion to the general direction of the eastern ranges. In their external 
features they are much like the mountains with which they connect in 
some respects, while in others they remind us more of some of the 
mountains in Southeastern Kentucky. They are tolerably well timbered, 
much of it being of a very fine quality. They give rise to the Purga- 
tory and Cimarron Rivers. 

Passing over this range to the south side, one of the most striking 
features of the landscape is the large number of isolated “mesas. ” 
These singular elevations, in the form of truncated cones or pyramids, 
with flat and horizontal tops and sharp outlines, rise up from the level 
plains, or from the surface of a broad valley, and almost invariably 
without any lateral connection with any other elevated ground. In ex- 
tent they are widely different, some presenting a table surface of butia 
few acres, while others have nearly as many square miles. It is evident 
that these are beyond the reach of irrigation, from any natural reser- 
voirs or streams, their only value being as grazing fields. 

This eastern mountain group appears to have two culminating points 
or radiating centers; the northern, and principal one, lies immediately 
around the North and Middle Parks, and forms the rim of these elevated 
basins; the other lies immediately southwest of South Park. In the 
first of these, Blue River, White River, Bear River,* North Platte, and 
a number of the tributaries of South Platte, take their rise. In the 
other, Grand River, the Rio Grande, Arkansas, and main branch of the 
South Platte have their sources. The parks act as huge cisterns for the 


* This is not the Bear River of Salt Lake Basin, but connects with Green River. 


GEOLOGICAL SURVEY OF THE TERRITORIES. Dilys 


reception of the numerous little mountain rivulets that flow down from 
the surrounding rim, collecting them together and discharging them at 
one outlet. Thus the North Park collects the various streams which 
form the North Platte; the Middle Park, those that form Blue River; 
South Park, those to form the South Platte ; the San Luis Park, those 
to form the Rio Grande; and the Upper Arkansas Valley, which is a 
true park, those to form the Arkansas River. Here, then, we see that 
five of the great rivers of this vast central region have their sources 
close together in this mountain area. Upon the peaks, ranges, parks, 
and forests embraced between the one hundred and fifth and one hun- 
dred and seventh meridians and thirty-eighth and forty-first parallels, 
an area not exceeding eighteen thousand Square miles, depend, in a 
great measure, the agricultural resources of an area of more than one 
hundred thousand square miles. 

Before passing over to the west side of the section under consideration, 
I would call attention to the Black Hills, (or Laramie Range.) of Wyo- 
ming, which seems to be the real northern extension of the Colorado 
Range, but the continuity is somewhat broken at the gorge of the Cache- 
a-la-Poudre, and it takes the form of a huge appendage, like the claw 
of a crab. Circling round the eastern and northern portions of the great 
Laramie Park, it acts as a bracing wall to this vast elevated plain, 
whose surface is fully 1,500 feet above the plains at the eastern base. 
its external, or eastern slope, presenting a much longer descent than its 
inner or western face, differs considerably in character from the latter ; 
while the latter, at least as far north as the gorge of the Laramie River, 
presents comparatively smooth and rounded surfaces, the formerisru goed, 
and, especially along the northern part, deeply gashed by rough and rocky 
cations. The intervening ridges are quite rugged up in the mountain 
near their origin, but as they descend to the plain they gradually lose 
their rough character, and grow smoother and rounder, and, seen trans- 
versely, present a succession of rounded foot-hills, which appear like the 
waves of the sea. The eastern flank and summit are tolerably well 
wooded, and the northern portion appears to have a timber growth pretty 

generally distributed over it, but interrupted by numerous open, field- 
like spaces. Numerous small streams that form tributaries to the N orth 
Platte have their origin on the eastern slope, while on the west but one 
or two have their sources in this range. 

Between the eastern and western portions of this mountain group 
intervenes a broad but irregular depression, forming the Green River 
basin. The broad, elevated plain, formerly called the Colorado Desert, 
which stretches north and south from the Wind River Range to the Uintah 
Mountains, and east and west from the Wahsatch Range to the imper- 
ceptible divide, separating it from Laramie Plains, forms the upper por- 
tion. Having a gentle southern slope, and inclination to a central 
channel, it collects the waters, which once evidently formed an immense 
lake, against the mountain barrier at the south margin, of which an 
account will be found ‘in Professor Hayden’s report for 1870. Having, 
in the geological past, burst through this barrier, a tortuous channel 
has been formed for the waters, by which they connect with the Colo- 
rado River and its vast water system farther south, receiving large 
contributions from right and left in its passage. 

Shooting out from the Wahsatch Range on the west, the Uintah Mount- 
ains stretch directly eastward, forming the southern wall to the upper 
portion of this basin, forcing Green River, in making its exit from the 
northern plains, to bend eastward in order to flank them. This range, 
which has a direction the reverse of the general course of the mountains 


214 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of this region, possesses features peculiar to itself. Although rising 
at points, as will be seen from Professor Hayden’s report, to a height 
of 12,000 and even 13,500 feet above the level of the sea, shooting up 
sharp and lofty peaks above the limit of arborescent vegetation, yet 
it possesses, to a greater or less degree, that peculiar evidence of the 
remarkable effects of erosion seen in the lower ridges in this section. 
But the description of this interesting region by Professor Hayden is 
so full that it is unnecessary for me to add more than that here is 
found a heavy forest growth of excellent pine timber, which on account 
of its proximity to the Union Pacific Railroad will probably, at no very 
distant day, prove a source of wealth to this region. 

Passing a little farther westward, we encountered the great Wahsatch 
Range, which, stretching north and south for four hundred miles, forms 
the vast terrace above the Great Salt Lake Basin. To understand the 
relation that this range bears to the eastern range running through 
Colorado and Wyoming, we must bear in mind the fact that from Salt 
Lake to Cheyenne there is one great mountain which has been lifted in 
the air an average height of 7,000 feet above the level of the sea, and 
between 2,000 and 3,000 feet above the mass of débris piled against its 
flanks. Its broad summit formed of the plains, hills, ridges, and peaks 
which intervene, these ranges are its flanking walls, forming the eastern 
and western escarpments. The Wahsatch Range, though rugged and 
rocky, does not, at least on its western slope, possess the jagged char- 
acter to such a high degree as the Colorado Mountains, but, on the con- 
trary, is sharply indented and furrowed, much like the Sierra Blanco 
Mountains which surround San Luis Park on the northeast. The west- 
ern slope, especially from Ogden to the south end of Utah Lake, instead 
of sloping down regularly to the surface of the basin, seems to plunge 
down through the débris which presses against it as the cliff plunges 
down into the waters of the ocean which lave its side. There is here 
but one culminating point, which acts as the radiating center for the 
water systems of the region. This is at the place where the Uintah 
Mountains connect with the Wahsatch Range, almost immediately at the 
southwest angle of Wyoming Territory, but situated in Utah. Here. 
White, Uintah, Bear, Weber, and Provo Rivers have their origin, the first 
two connecting with Green River and the others entering the Salt Lake 
Basin at different points. 

Moving northward across the broad, open space occupied by the Green 
River Plains and Laramie Plains, the one lying on the Atlantic and the 
other on the Pacific slope, connected by an imperceptible divide, we en- 
counter another striking feature, varying the apparent monotony of 
this mountain region. I say “apparent monotony,” for, in reality, the 
scenery is constantly changing at every step to the ardent student of 
nature. Stretching east and west from the north end of the Black 
Hills of Wyoming to the south end of the Wind River Range is a series 
of remarkable granite hills skirting the valley of the Sweetwater. These | 
- have much the appearance of the sharp peaks and crests of a submerged 
range, which, shooting up through the sea of sand, mark its course. 
So striking is this appearance that even the most casual observers 
almost involuntarily make the comparison. 

From this point northward the range (by this I intend the entire belt) 
contracts and changes its direction. From the thirty-seventh to the forty- 
third parallels its course is almost directly north, and extending in width 
from the one hundred and fifth to the one hundred and twelfth meridians, 
an air-line distance of about three hundred and fifty miles. Here it bends 
northwest, making an angle with its former course of some twenty or 


GEOLOGICAL SURVEY OF THE TERRITORIES. . 215 


twenty-five degrees, and, the eastern flank diverging a little more rap- 
idly than the western flank, the two approach, narrowing the width of 
the belt toward the north. While this is true as a general statement, 
it must not be supposed that in attempting to follow it out in detail 
we shall find any great uniformity, for we shall proceed but a compara- 
tively short distance up the western flank until we encounter the rugged 
Salmon River Mountains, pressing against the belt at its narrowest 
point like a huge goiter upon the neck. But the most interesting group 
within this part of the belt is to be found in the northwestern part of 
Wyoming, which has been the objective point of the present year’s expe- 
dition, and of which a very full and deeply interesting account will be 
found in Professor Hayden’s report of the present year, and to which 
this report forms an appendage. I shall, therefore, refer to it only so 
far as its features bear upon the agricultural resources of the surround- 
ing regions; and, moreover, although passing closely around the west- 
ern and northwestern flanks, and crossing the axial range at its western 
exit, I did not in person visit the magnificent scenery immediately sur- 
rounding Yellowstone Lake, which lies near the central point of the 
group. 

The northern limb of the Wahsatch Range, separating the waters of 
Green River from those of Bear and Snake Rivers, penetrates northward 
near the western border of Wyoming Territory. Wind River Range, 
stretching northwest from South Pass, rising in altitude as it advances 
until it culminates in Frémont’s Peak, forms the divide here between 
the waters of the Atlantic and Pacific, represented by Green and Wind 
Rivers. The west branch of the Big Horn Mountains, reaching across 
the Wind River Valley, leaving a deep gorge for the passage of this 
stream, directs its course toward the same central point; and the main 
Rocky Mountain Range from the north here bends its course eastward 
to connect with the others at the great point of union. In other words, 
here is the culminating point of the great northwestern mountain belt, 
from which radiate not only its chief mountain ranges, but also, as a 
natural consequence, the principal streams of the section. The Big 
Horn, Yellowstone, Madison, Green, and Snake Rivers all have their 

origin here, the first three finding an outlet for their waters through 
the Mississippi to the Gulf of Mexico, the next through the Colorado 
of the West to the Gulf of California, and the last through the Columbia 
to the Pacific Ocean, three thousand miles from the exit of the first. 
Here, amid a collection of the most wonderful scenery on the continent, 
is found the chief radiating point of the water-systems of the Northwest, 
- being equaled in this respect only by the mountain group of Colorado 
Territory. A result naturally to be expected from this formation fol- 
lows, viz, an abundant supply of never-failing streams. It is also inter- 
esting, on account of the influence it has upon the course of the minor 
streams, to notice the obstinate tendency of the minor ranges to main- 
tain the north and south direction so common in Territories south and 
in the Salt Lake Basin. The Teton Range, between Henry’s Fork and 
the main branch of Snake River, the northern arm of the Wahsatch, 
the main range of the Big Horn Mountains, between the waters of 
Big Horn and Powder Rivers, and even the ridge separating the two 
branches of the latter stream, though varying much in character, all 
have this course almost direct. If we pass north of the group into the 
southern part of Montana, we find this holds good with respect to the 
ridges which separate the tributaries of the Upper Missouri. The 
divides between Stinking Water and the Madison, between Madison 
and Gallatin, and between Gallatin and the Yellowstone, all preserve 


216 GEOLOGICAL SURVEY OF THE TERRITORIES. 


the same north and south direction, notwithstanding the remarkable 
and enormous flexure of the great dividing range of the Rocky Moun- 
tains. Nor does this stop here; for if we cross the divide again and 
enter the basin of Clark’s Fork of the Columbia, we find the same 
thing there on a reduced scale, the ridges which separate the southern 
tributaries of the Hell Gate, with no considerable exception. FOL 
the same rule. 

In consequence of this general direction of the ‘minor ranges and 
ridges, the smaller streams have generally a north or south course, 
while the larger streams, to which they form tributaries, with one chief 
exception, Green River, run eastward or westward. For example: Pow- 
der, Tongue, and Big Horn Rivers; Yellowstone and Missouri, above 
their bends; Clark’s Fork of Yellowstone, Gallatin, Madison, Stinking 
Water, and Beaverhead Rivers, on the Atlantic slope; and Deer Lodge 
River, Flint and Stony Creeks, and Bitter-Root River, on the Pacific 
slope, all run north; while Green River, the upper part of Snake River, 
and Henry’s Fork run almost directly south. I might add to this list, 
but these are sufficient to show that there is some oreat law which gov. 
erns their direction, or that there is a remarkable uniformity. 

The direction and character of the mountains in the northwest part 
of Montana are hereafter alluded to, and it is therefore unnecessary to 
state them here. 

I have not visited the Salmon River Mountains, and therefore have 
no very correct idea as to their character, but understand that they are 
quite rugged and irregular. They give rise to but one important stream, 
the Salmon River. And I may add here that an inspection of the best 
maps of this but little-known section shows that here the same tendency 
of the minor ranges to maintain the north and south direction prevails, 
in consequence of which the upper portion of the river, and a number 
of its tributaries, run north; and Snake River, for two hundred miles of 
its passage through this latitude, has the same direction. 

This is but an “imperfect sketch of the mountain character of this. 
great elevated region, which, in many respects, presents more of the 
oriental than of the occidental features. If we could stand at the extreme 
southern end, and, looking north, take in at one view the entire reach 
from the Missouri River to the Pacific Ocean, it would, between the 
thirty-seventh and forty-fourth parallels of latitude, present the following 
outlines: From the Missouri west, for four hundred miles,* we should 
see an inclined plane gradually ascending from 900 feet at its eastern 
limit, to 5,000, above the sea near its western extremity; slightly 
curving upward, making the ascent a little more rapid in this part. 
Here we would see a rugged wall shooting from 3,000 to 5,000 feet 
higher, while west of it, for three hundred and fifty miles farther, 
would be seen an irregular surface, slightly depressed in the middle, 
but having a general level of 2,000 feet above the inclined plain east. 
At the western border we should observe another rugged wall rising 
one or two thousand feet, and descending, on its west flank, 2,000 feet 
below the surface east of it. West from here we would observe the line 
preserving this level for some distance, then curving upward somewhat 
rapidly, until it reached an elevation of 6,500 feet above the sea, would 
gradually descend a little below the line, immediately west of the last 
wall. Here we should see another wall rising up to a height of 8,000 
feet above the sea, from which the line, at first curving rapidly down- 
ward, would descend to the level of the Pacific Ocean. 


*T limit these distances to direct measurement. 


GEOLOGICAL SURVEY OF THE TERRITORIES. Zig 
RIVER SYSTEMS. 


_ AsI have repeatedly stated, and as is well known, the chief divide of 
the waters is the main ridge of the Rocky Mountains, running generally 
a northwest and southeast course, separating the waters of the Atlantic 
from those of the Pacific, consequently giving two general slopes, one 
to the east, the other to the west, modified by lateral ranges, mount- 
ains, &e. I have already alluded to the north and south course of the 
minor ranges as modifying the influence of the general slope, crossing, 
at right angles, the natural direction of the water coming down from 
the chief divide, turning the minor streams north and south. But there 
is also another very important modifying feature, which has much to 
do with giving form to the water-basins and the general course of their 
water drainage. This is a great transverse divide, which, though not 
So prominent and perceptible as the great lungitudinal one, is equally 
potent, so far as acting as a dividing water-shed is concerned. 

Starting near the northwest corner of Nebraska, it runs westward to 
the northwest corner of Nevada, making a sharp bend northward along 
the west boundary of Wyoming, around the upper arm of the Green 
River Basin. 

By examining a good map, the influence of this almost imperceptible 
divide upon the water systems of this region will be seen at once from the 
direction the principal streams flow to reach their respective reservoirs. 
By crossing the Rocky Mountains somewhat at right angles, it forms four 
great basins, the one sloping to the northeast, the waters of which are 
drained by the Upper Missouri, the one to the northwest being drained 
by the Columbia, the one to the southeast being drained by the Platte, 
the one to the southwest being double, the Great Salt Lake Basin and 
the Green River Valley. 

The waters of the northeast and southeast basins reach the Missis- 
sippi through the same channel, the Missouri. The plains at the base 
of the mountains in Montana having a much less elevation than those 
lying along the east base of the range in Wyoming and Colorado, and 
the distance the waters of the former have to traverse to reach the june- 
tion of the two being much greater than that of the latter, it follows 
that the descent of the former is much less rapid than that of the latter. 
Hence, we find that while the Plattes havea descent on the plains of 
from five or six to eight feet to the mile, that of the Missouri east of 
Fort Benton is only about two feet to the mile. Therefore, while it will 
be possible, by extensive canals, to utilize the waters of the former 
~ Streams in irrigating the plains which border them, the same thing 
would seem to be impossible in regard to the waters of the Missouri, or 
its chief tributary, the Yellowstone. Possibly something may hereafter 
be done in the way of raising water by machinery, but this can be made 
remunerative only at certain points, and to a very limited extent. Hus- 
banding the water during freshets, when a higher level is reached, may 
also be practicable, to a limited extent; but I know too little in regard 
to the rises in this stream to express any opinion on this point. 

Lewis’s Fork of the Columbia, (Snake River,) which, in the southern 
part of Idaho, traverses an extensive plain, has a descent of certainly 
not less than six or eight feet to the mile ; and as the bordering lands are 
low and comparatively level, there is no apparent reason why its waters 
nay not be utilized to their full extent in irrigating this plain. 

How far the waters of these streams may be rendered useful as a 
means of transportation, I cannot say. That the Plattes and Snake 
River, as they now are, are not navigable, is quite certain; but I see no 


218 GEOLOGICAL SURVEY OF THE TERRITORIES. 


reason why asystem of canals may not be constructed which would not 

only afford water for irrigation, but also a means of transportation, un- 
less it be that it would not be remunerative. At present, such projects 
are impracticable, the population of that section not requiring them, 
and the slow movements of this mode of transportion are not adapted 
to present requirements. But the day may, and probably will, come 
when a canal from the upper waters of the North or South Platte, or of 
the Arkansas, to the Missouri or Mississippi, will justify the transpor- 
tation of minerals and products of the Rocky Mountain regions, which 
would otherwise be valueless. It is possible a difficulty would be ex- 
perienced on account of the porosity of the soil, but so far as tried for 
irrigating ditches no difficulty, so far as I am aware, has been experi- 
enced in this respect; but these, it is true, have a much greater descent 
than could be given to a canal intended for transportation. But in sum- 
ming up the resources of this portion of the country, these should not 
be overlooked because they would not at present be remunerative. 


FORESTS, TIMBER, ETC. 


We may state, as a general fact to which there are but few exceptions, 
that west of the one hundredth meridian there is no other useful timber 
than pine and fir until after we have crossed the Sierra Nevada Range, 
and if for the California side we add the celebrated redwood, we em- 
brace nearly all the important timber in the western part of the United 
States. While the Territories and Pacific States have many advan- 
tages of which they may with propriety boast, itis useless and unwise to 
shut our eyes to the fact that the general scarcity of timber is a serious 
drawback. West of the one hundredth meridian the timbered land 
cannot be fairly estimated at more than one-twentieth of the whole area. 
This is the estimate given for California by C. F. Reed, esq., president 
_ of the State board of agriculture, and is as high an estimate as can 
fairly be made for the entire western section of the Union. And if we 
exclude from the calculation Oregon, Washington Territory, the north- 
ern parts of Idaho and Montana, even this would be too high. Asa 
matter of course, if we look at the mountain region of California and 
Northwestern Wyoming, the Uintah and Colorado Mountain groups, 
Northwestern Montana, Oregon, and Washington Territory, this esti- 
mate will appear to do injustice to the country. But when we take into 
consideration the broad, treeless plains stretching eastward from the 
base of the main range, the naked hills, valleys, mesas, and plains of 
New Mexico, Arizona, and Western Utah, the barren plain of Green 
River, treeless expanse of the Laramie Plains, the smooth and rounded 
hills and slopes of Southern Idaho and Southern Montana, and com- 
pare their extent with the narrow, timbered strips that skirt their streams 
and occasionally flank the elevated ridges, we will be apt to think the 
estimate rather too high. But for fear I may be accused of doing in- 
justice to this country in these remarks and others I desire to make on 
this subject, I will quote the very appropriate and timely remarks of 
C. F. Reed, esq., president of the California State board of agri- 
culture, published in the Transactions of the California State Agricul- 
tural Society for 1868~69 : 

‘6 We have frequently called the attention of our agriculturists to this 
subject, (tree and forest culture,) and have at different times urged 
action in its behalf by the legislature. No more important subject can 
be named for legislative encouragement or for energetic action on the 
part of the people. We are all interested in whatever afiects the com- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 219 


forts of individuals and the prosperity of the country. The subject of a 
plentiful supply of lumber and wood for the various purposes of life is 
one that we cannot much longer neglect. Whoever takes the trouble 
to look this subject fully in the face, and reflects upon the future of 
California, must feel, as we do, that something should be done, and that 
immediately, looking to the substitution of new forests in the place 
of the old ones in our State, now so rapidly being consumed and 
destroyed. A full discussion of this subject cannot be entered into in 
the short space allowed in a mere report, where so many subjects of 
interest claim attention. But we propose to notice some facts and 
make some suggestions, which may lead to further investigation and, 
we hope, to energetic action. 

‘¢ We have become so accustomed to speak of the forests of our State, 
of our ‘big trees,’ as the grandest and most majestic in the world; 
we hear so much of the vast. quantities of timber and lumber being 
shipped from those forests, to supply the nations of the earth with 
masts and other heavy timbers for ship-building and other purposes, 
that we have thoughtlessly come to regard our supply of these mate- 
rials and of materials for fuel as practically inexhaustible. The facts 

_ are quite different. Although the forests we have are properly a sub- 
ject of State pride, they are as properly a subject of State protection. 
,California is far from being a well-timbered country. Nearly all the 
timber of any value for ship and general building purposes, or for lum- 
ber for general use, is embraced within small portions of the Coast 
Range or the Sierra Nevada districts. Redwood, the most valuable tim- 
ber in the State, and probably in the world-—taking all its qualities into 
consideration—is principally confined to the counties of Mendocino, 
Sonoma, and Santa Cruz. Monterey, Santa Clara, and San Mateo con- 
tain but small tracts each covered with this valuable timber. Hum- 
boldt, Trinity, Klamath, and Del Norte embrace nearly all the balance 
of the timber of value in the Coast Range. It mostly consists of an 
inferior or hybrid redwood, spruce, and pine. The lumber district of 
the Sierra Nevada is principally embraced in the counties of El Dorado, 
_ Placer, Nevada, Sierra, Plumas, and Siskiyou. Calaveras, Tuolumne, 
and Mariposa contain only scattering clusters of valuable timbér, 
though some of the largest and finest trees in the world are found 
within their borders. The timber of this district is mostly different 
varieties of pine, spruce, and cedar. The other mountain-counties of the 
State afford very little timber of any account for building purposes or 
for lumber. The agricultural counties, as a general thing, have only 
narrow strips of timber along the water-courses, consisting mostly of 
serub-oak, cotton-wood, sycamore and willow, of but little general value 
except for fire-wood. The surface of our best timbered counties is not, in 
general, half covered with valuable timber. It is therefore safe to esti- 
mate that not over one-twentieth of the surface of the State is covered 
with forests containing trees valuable for timber or lumber. 
_ “It isnow but about twenty years since the consumption of timber and 
lumber commenced in California, and yet we have the opinion of good 
judges, the best lumber-dealers in the State, that at least one-third of 
all of our accessible timber of value is already consumed and destroyed. 
if we were to continue the consumption and destruction at the same 
rate in the future as in the past, it would require only forty years there- 
fore to exhaust our entire present supply. This, in itself, seems like a 
startling proposition, but let us look a little further, and we shall find ~ 
truths and considerations more startling still. In the twenty years to 
come we will probably more than double our population, but let us as- 


220 GEOLOGICAL SURVEY OF THE TERRITORIES. © 


sume that we will only double it. Asa general rule, in a new country 
the consumption of timber increases in about double the ratio of popu- 
lation. Thus while the increase of population of the United States from 
1850 to 1860 was 35.59 per cent., the increase of the consumption of 
lumber was 63.09 per cent. Upon this basis and rule, the whole availa- 
ble lumber of our State will be consumed and destroyed in twenty years 
instead of forty. We must also take into consideration in this connec- 
tion the fact that we are now just entering upon an era of active public 
improvements, all requiring the use of heavy timber and lumber. The 
building of railroads, bridges, warehouses, wharves, factories, bulk- 
heads, and the timbering of mines, will probably consume ten times as 
much lumber within the next twenty years as has been consumed for 
these purposes in the past twenty years. The building and equipping 
of railroads may be considered a new and special element in the in- - 
creased consumption of lumber, as this business in our State has really 
but just commenced. One of the worst features of the settlement of 
new countries by Americans is the useless and criminal destruction of 
timber. In our State this reckless and improvident habit has been in- 
dulged in to an unprecedented extent. Thousands upon thousands of 
the noblest and most valuable of our forest-trees in the Sierra Nevada 
districts have been destroyed, without scarcely an object or purpose, 
certainly with no adequate benefit to the destroyer or any one else. 
This practice cannot be condemned in too severe terms; it cannot be 
punished with too severe penalties. 

“‘ South of California, on the Pacific coast, there is but very little tim- 
ber or wood of any description. The Pacific South American States 
are, in fact, dependent on us, and the coast States north of us, for nearly 
all their lumber. They have been drawing heavily from these sources 
to rebuild their wharves and public works destroyed by the earthquakes 
of 1868. On the north, Oregon, British possessions, and Alaska are 
generally well timbered. We have, for the past five years, been obtain- 
ing large quantities of lumber from these countries, and now that the 
Central Pacific Railroad has advanced the freight on lumber from our 
own mountains fifty per cent. over former prices, our trade in this direc- 
tion will still increase. 

‘¢ While these countries contain a large supply of very excellent tim- 
ber, this supply is by no means exhaustless. At this time almost the 
whole world is drawing its supply of heavy timber from the Northern 
Pacific coast. England, France, Australia, China, Japan, South Amer- 
ica, Mexico, and Sandwich Islands are all, more or less, engaged in 
securing their wants for ship-building and other heavy works from these 
valuable forests. With the heavy drafts on these countries, added to 
their home consumption, it is not probable that the supply will hold out 
much longer than that of our own State. 

“In the above statements and estimates, we have only taken into 
account such timber as is fitted for building and for lumber for general 
purposes. As to hard wood, fit for wheelwright purposes and agricul- 
tural and other machinery, we may say there is none of it on this coast. 
We have always either imported the machinery or the material to make 
it of from the Atlantic States. For ornamental work we have a limited 
supply, the California laurel being very superior. 

‘After what has been said above, we hardly need to comment on the 
scarcity of timber in the State for the general purposes of fuel. Taking 
all the agricultural counties in the State together, including the cities 
and towns within them, and considering the probable increase of popu- — 
lation, it is very doubtful whether, under present management, they. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 221 


will be able to supply their own demands for fuel for ten years to come. 
While it will pay, in case of necessity, to freight lumber and heavy 
timber great distances by land, and to ship it by water half-way round 
the globe, it becomes very burdensome and oppressive to all classes of 
the community to be compelled to convey wood for domestic and man- 
ufacturing purposes comparatively but small distances. To illustrate 
this proposition we need only to mention the fact that while there is 
within an area of twenty miles from either of the cities, Marysville, 
Stockton, or Sacramento, a plenty of wood for a year or two’s supply, 
and it costs but $2 a cord to have it cut, yet the present price of wood 
in each of these cities is about $10 a cord. Even at this high price 
the owner of wood-land thirty miles from Sacramento, on the line of the 
Central Pacific Railroad, can make that wood net him only one dollar and 
a half a cord delivered in the city. ‘These facts show how extremely ex- 
pensive and oppressive it would be to undertake to supply the cities of 
the State with wood from the distant mountains. And yet what other 
resource will be left a very few years hence? California should at no 
distant day become one of the greatest manufacturing States of the 
Union; but where will we obtain the fuel with which to generate the 
steam that propels the machinery? Again, a new element of calcula- 
tion on this subject has just been introduced among us and will grow 
rapidly in the future. We refer to the consumption of fuel by the rail- 
roads. There are now in the State, completed and in operation, about 
seven hundred miles of road. In a year from nowit is safe to say there 
will be over a thousand; call it one thousand even. It requires one cord 
and three-fourths of wood, with an ordinary train, to drive an engine 
twenty-five miles. Now, assuming that an average of ten trains a day 
will then be running over this one thousand miles of road for three hun- 
dred and twenty days in the year, and we have a distance of three mil- 
lion two hundred thousand miles traveled in a year. As each twenty- 
five miles of distance traveled will consume one cord and three-fourths 
of wood, the consumption on one thousand miles of road will be 224,000 
cords per year. In twenty years we will probably have four thousand 
miles of road completed, averaging twenty instead of ten trains per day, 
and consuming 1,792,000 cords of wood per annum. This, added. to the 
increased consumption for all the other purposes of life, will make rapid 
inroads into the few sparsely wooded portions of our State, if there 
should indeed be any trees left standing at that time. 

“The first effect of a scarcity of lumber and wood will be to enhance 
the cost. We have already noticed the high price of wood delivered in 
our cities. Lumber. has not advanced very much in value for the last 
ten years except indirectly. The cost of cutting, manufacturing, and get- 
ting to market has been decreasing, while the cost to the consumer has 
remained the same. It is the opinion of dealers that it will soon inerease 
in value very materially. It cannot be otherwise, as we have shown that 
the demand will increase rapidly and the supply decrease. Even now the 
cost and scarcity of these articles is having an oppressive effect on every 
industry in the State. The expense of agricultural implements and tools 
here, over their cost in the Eastern States, is already operating as a seri- 
ous drawback upon the thrift and profit of our farmers, brought in close 
competition, as they now are, with their neighbors of the western Atlan- 
tic States. The cost of lumber for building and fencing, in most of our 
agricultural districts, obtained, as it is, at a distance of hundreds of 
miles away, is even now so great that our farmers are-among the poor- 
est-housed people of any agricultural community in the Union where the 
country has been settled an equal length of time. Their crops and stock 


222% GEOLOGICAL SURVEY OF THE TERRITORIES. 3 


are but poorly sheltered, if at all, and their farms are worse than poorly 
fenced. To the expense ‘of lumber more than to any other cause must 
be attributed the general dilapidated appearance of our agricultural dis- 
tricts. Eiforts to improvement i in these respects lead to a forced system 
of farming; too frequent cropping and little or no nursing of the land; 

to that sameness of production which we have had cause so severely to 
condemn. The cost of lumber and of wood is already discouraging every 
mechanical, every manufacturing, and every commercial industry of the 
State; for ‘the use of these articles is In Some way an important ele- | 

ment in them all. The advancement of all our towns and cities in ~ 
building and improvement is being now retarded very much, directly 
and indirectly, by the cost of these necessary articles of life. The cost 
of houses enhances the price of rent. The price of rent and cost of 
wood add materially to the general expenses of living, and these in turn 
enhance the price of labor of every kind, and consequently decrease the 
production and retard the general prosperity and improvement of the 
cities and country. If this be the case now when we are so young and 
our population so thin, when the demand for these articles is increased 
twenty-fold and the supply decreased in the same ratio, who can depict 
the condition of our State? 

“ We have estimated that not over one-twentieth part of the surface 
of our State is now covered with heavy timber, and we believe we are 
within the bounds of truth when we state that not over one-eighth of 
the entire surface is covered with trees of any description whatever. It 
is the opinion of the best judges, founded on historical facts and a long 
series of observations and experiments, that at least one-third of the 
surface of any country should be forests; that this relation between 
forest and cultivated land will secure the most advantageous conditions 
of climate, and the greatest amount of productions for the sustenance 
of human and animal life. Fire has undoubtedly been the original and ~ 
active cause of so great a proportion of prairie or untimbered land 
within our borders. Being once destroyed, the consequent climatic con- 
dition of the country has prevented a reproduction of the original forests. 
Nature now, unassisted by man, can never effect that reproduction, 
without some great physical revolution that will change the whole fea- 
tures of the country. That the nakedness of the earth’s surface is the 
cause of the extreme wet and dry seasons in our State, and particularly 
of the destructive floods to which the valleys are subject, cannot for a 
moment be doubted by any one at all acquainted with the laws of nature, 
and the agency of those laws in the production and modification of 
climate through the forests of a country. For want of space we cannot 
enter into a full discussion of this important branch of this subject, but 
will state a historical fact in the language of one of the best authors who 
has ever written on this subject. Hon. G. P. Marsh, speaking of the 
effect of the destruction of forests upon the different countries of the | 
earth, says: ‘There are parts of Asia Minor, of Northern Africa, of 
Greece, and even of Alpine Europe, where the operation of causes, set 
in action by man, has brought the face of the earth to a desolation almost 
as complete as that of the : moon. The destructive changes occasioned 
by the agency of man upon the flanks of the Alps, the Appenines, the | 
Pyrenees, and other mountain regions in Central and Southern Europe, 
and the progress of physical deterioration, have become so rapid that, in 
some localities, a single generation has witnessed the beginning and the 
end of the melancholy revolution.’ Words could not more truthfully 
describe the effects produced by similar causes in some portions of our 
own State. Mr. Marsh continues: ‘ It is certain that a desolation like 


GEOLOGICAL SURVEY OF THE TERRITORIES. 223 


that whith has overwhelmed many once beautiful and fertile regions of 

Europe awaits an important part of the territory of the United States 
- unless prompt measures are taken to check the action of the destructive 
causes already in operation.’ This last remark applies with greater 
force to a large share of our own State than many of us are aware of. _ 

“In many countries where rains are of frequent occurrence during the 
summer season, keeping the surface of the soil moist, vegetation, how- 
ever delicate and tender, once started in the spring of the year, con- 
tinues to grow until checked by the succeeding autumn or winter. By 
this time the roots have obtained such a hold on the ground as to secure 
continued life, unless destroyed by artificial causes. Not so in our State. 
The dry season here follows so rapidly after the wet and germinating 
period, that, without irrigation or cultivation, tender and delicate plants, 
like young trees of all kinds, grown from seed lying on the surface,as 
they fall from the parent trees, are almost always dried up and destroyed 
before they are four months old. Hence it is that a section of country 
once stripped of trees and shrubbery, in our State, always remains naked. 
Once a prairie, always a prairie, until art comes to the assistance of 
nature. Hence it is that wheresoever our forests have been cut down 
and cleared away, allowing the rays of the sun to fall directly on the 
soil, so few young trees, or trees of the ‘second growth,’ are to be 
found.” 

This quotation contains some remarkable statements and admissions 
by one who is a citizen of the section described ; but the statements are 
true, and the warnings therein given are for the best interests of his 
State, and should be well pondered, not only by the legislators of Cali- 
fornia, but also by our national statesmen. 

Strike out the local names from this quotation, and almost every 
statement in it will apply with equal force to the entire Rocky Mountain ~ 
region. Sofaras I have seen this section, the distribution of the forests 
is similar to that of California; they are isolated, found upon the higher 
mountain groups and ranges, and surrounded by broad, timberless 
“spaces. As is well known to all who have any knowledge of the West, 

the plains which lie along the east flank of the great range, stretching 
eastward toward the Mississippi, are almost entirely treeless, the nar- 
row fringes skirting a few of the streams not being of sufficient import- 
ance to be taken into consideration. This belt, which varies in width 
from two to four hundred miles, extends from the British possessions on 
the north to Mexico on the south, a distance of over twelve hundred 
miles, and includes an area of about four hundred thousand square 
miles. The lumber for every house built upon this broad space must be 
transported from one side or the other; so with every railroad-tie, tim- 
ber for fencing, and for all the purposes where timber or lumber of any 
kind is required, unless it is cultivated and grown in artificial groves 
and forests. j 

New Mexico also presents a very large treeless area. Around the 
sources of the Pecos, along the eastern and southern rim of San Luis 
Valley, on the Mimbres and Guadalupe Mountains, and in the north- 
western part of the Territory are found the principal forests affording 
valuable timber, while the rest of its area is generally without forests 
or trees of any value except for fuel. Fortunately, the forests are gen- 
erally in the vicinity of the narrow agricultural areas, and in some 
instances the trees are large and fine, making good lumber; but most 
of the older towns and villages have to procure their lumber and fuel at 
a considerable distance. | 

Colorado is a comparatively new Territory, and its mountains afford 


224 GEOLOGICAL SURVEY OF THE TERRITORIES. 


a large forest area, but even here it is somewhat difficult to Obtain it. 
transportation for a considerable distance being necessary to supply the 
demands of the agricultural population. And the rapid consumption 
for building, railroads, mining, and other purposes is rapidly sweeping 
away the more accessible portions of the mountain forests. And here, 
as in other parts of the mountain region, fire is playing sad havoe with 
the arborescent covering of the mountain side. 

The principal timbered sections of Wyoming are those along the 
southern boundary of the Territory, and in the extreme northwestern 
corner; large tracts of country, even within the mountain districts, as 
Laramie Plains, the Green River Plains, and Sweet Water Country, being 
almost entirely timberless. Utah has no important forests, except those: 
found along the higher portions of the Wahsatch Range, the entire Salt 
Lake Basin furnishing few spots covered with forests of any value for 
timber or lumber. The northwest part of Montana contains a consider- 
able area covered with valuable forests, which will afford excellent lum- 
ber, but which can be made available only to a limited district until 
penetrated by railroads, by which it may be transported to those sections 
which do not possess it. 

But to say the best we can in this respect, a population of this part of 
the West equal to that in California will, at the present rate of destruc- 
tion, soon strip the accessible forests of their valuable timber. And 
unless some method of preventing the present wanton destruction can 
be adopted, the supply will be cut off much sooner than anticipated ; for, 
as stated in the quotation made, this destruction increases in a much 
larger ratio than the increase of population. And not only is this true 
if we limit our calculations to that which is applied to some useful pur- 
poses, but the destruction by fires, and that which is without any equiv- 
alent benefit, also increases in the same rapid proportion. In traveling 
through the mountain districts I was surprised at the large number of 
burned streaks which I observed. In some places we would not travel 
more than a mile or two without seeing either to the right or left a 
blackened belt stretching up the mountain side. If these spots would 
again be covered by a new growth the result would not be so disastrous; 
but as has been truly stated in the quotation, this is not the case, for 
when once the forest covering is destroyed, it is never restored, but 
remains forever bare. Whether this be wholly due to the climatic con- 
ditions or not, I do not know, but there are some reasons to believe that 
even where undisturbed by the hand of man the forests are gradually 
disappearing under the influences of natural causes. 

The smooth and rounded hills in parts of Wyoming, Utah, Southeast 
Idaho, Southern Montana, and other parts of the Rocky Mountain region, 
have occasionally here and there a few trees which have every appear- 
ance of being the remnants of former forests. These hills bear unmis- 
takable evidence of having been worn down by the action of the atmos- 
phere, water, ice, snow, &c. The débris which has been worn down has 
covered up the former ruggedness of their declivities. This is so appar- 
ent that in many places its course can be traced down the sides along 
the graceful curves to its termination in the valley. But where the 
original rugged declivity has resisted this action there almost invariably 
forests will be seen. I have, therefore, come to the conclusion that the 
forests of the Rocky Mountains, as a general thing, are decreasing from 
natural causes, and I base my conclusions on the following grounds: 

First. The wearing down of the mountains and hills; the débris, as 
it descends destroying the forests on their sides. At Pleasant Valley, 
(where the stage-road from Corinne to Helena crosses the range,) in 


GEOLOGICAL SURVEY OF THE TERRITORIES. 225 


the basaltic cation, this action even now appears to be in process, many 
of the blocks of stone having recently been loosened and rolled down- 
ward, carrying with them the pines, which may yet be seen. Here every 
stage of the procéss can be distinctly seen. . 

Secondly. In many places, as at the last-mentioned point, at the head 
of Black-Tail Deer Creek, along the head-waters of Sweet Water, the 
largest trees appear to be dying without any apparent cause, no evi- 
dence of fire being visible. 

Thirdly. With the exception of two or three points, when the forest is 
once destroyed it never renews itself.- At one point west of the range, 
on the road from Helena to Deer Lodge, I noticed a grove of young pines 
‘or firs, which were growing up on what appeared to be a burned district. 
At one or two points in the interior of the mountains, back of Denver, 
I noticed the same thing; also on the Raton Mountains. But the 
reverse is not only the general but almost the universal rule throughout 
this immense extent of country. Add to this the immense destruction 
_ by fire and the wanton destruction by human hands, and the prospect 
for timber in this section in the future is not very flattering. Unless 
there shall be some remarkable change in climatic agencies this decay’ 
must go on, aS man has no power to prevent it; he may cease the 
destruction occasioned by his own negligence and wantonness, but he 
cannot stop the process on the mountains. 

The late severe snow-storms (January, 1872) are somewhat remarkable. 
J have not obtained the particulars in regard to them, but if the news- 
paper reports are correct, they indicate the possibility of reacting cli- 
matic influences, which it would be well to study with care. 

But our only reasonable hope of a change in the amount and distri- 
bution of moisture and a supply of timber is through the planting of 
forest-trees. Each Territory and State within the area under consid- 
eration should take this matter in hand, and by means of proper laws or 
premiums carry the planting of trees parallel with the settlement of 
the country. And directly connected with this matter is the want of 
hard wood in the entire portion of the United States west of the one 
hundredth meridian. I learn, to my great astonishment, that there is 
no hard wood suitable for wheelwright purposes, or for the manufacture 
of agricultural or other machinery, to be found on the western coast of 
North America, from the Arctic Ocean to the Isthmus. Whether this 
is correct or not I am not able to state, but I am satisfied it is true within 
the limits of the United States. All the material of this kind which is 
used even in making wagons anywhere west of the ninety-ninth or one 
hundredth meridian to the Pacific has to be brought from the Atlantic 
States. Now, if anything can be done to relieve this want, surely it 
would be of great benefit to future generations if of a permanent char- 
acter. It is probable that no wood can be grown in this dry district of 
a tenacity equal to that grown in the rain-moistened districts of the 
Atlantic slope; but it is possible that such as will be adapted to all 
ordinary purposes may be produced, and the experiment is one that is 
worth trying. 

The industrial agent of the Kansas Pacific Railroad is trying the 
experiment of growing forest trees on the plains without irrigation. 
It is to be hoped that this will not be given up until it is thoroughly 
tested ; and I would suggest that although the experiment may not suc- 
ceed along the whole length of the belt across the plains, yet it is of 
vast importance, should it fail in part, to know how far west it is pos- 
sible to encroach upon the plains. If aninch can be permanently gained 
by the first experiment, an ell may be gained by perseverance. 

1,5GS8s ’ 


226 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Perhaps it will not be out of place for me here to make a suggestion 
in regard to a matter which deeply concerns the future welfare of the 
western half of the United States. As I have frequently stated, and as 
is now pretty generally known, irrigation is indispensable to cultiva- 
tion of the soil throughout (with some very limited exceptions) all that 
part of the United States west of the one hundredth meridian. Wealso 
know from the history of those countries where irrigation is extensively 
practiced that it is absolutely necessary that the State shall take more 
or less control of this matter, upon which its prosperity, and, in fact, 
perpetuity rests. We may therefore predict, with confidence, that the 
day is not far distant when the States and Territories in the district 
where irrigation is necessary will have to take absolute control of the 
system of irrigation: or keep a watchful eye over it and guard it well by 
laws, regulations, restrictions, &e. 

As the development of the agricultural resources of these States and 
Territories and their prosperity depend upon irrigation and the extent 
to which this may be made available, therefore it is a subject of para-_ 
mount importance, not only to those sections but also to the General 
Government. Unless proper and efficient steps are taken at an early 
day to adopt the best system of regulations, which will be adapted to 
an increased population, when the necessities demand such action in 
the future, it will cause much difficulty and inconvenience to lay aside 
one system and adopt another. ‘This is, therefore, a matter well worthy 
the consideration of our national legislators while the Territories re- 
main their wards; and if they can place these on the right footing now, 
‘it will greatly tend to accelerate their growth and prosperity. But the 
question is asked, How are they to do this? Is it possible for them to 
‘do this in accordance with their constitutional powers and without undue 
expense to the National Government? Iam of the opinion there is a 
method by which this can be done, and I herewith submit the plan in 

.a few words. : 

Let the General Government grant to the States and Territories in 
the region where irrigation is necessary—say, for example, all lying west 
-of the one hundredth meridian, or perhaps the ninety-ninth, every alter- 
-nate section of public land, with the condition that it be devoted 
-entirely to the construction of irrigating canals and carrying on a sys- 
tem of irrigation. And the law making such grant should expressly 
reserve water privileges to those who may settle upon and occupy the 
.remaining sections. By expressly providing that these lands should be 
-applied solely to this purpose, it will be apparent to any one what an 
-Immense impetus it would give to the development of the agricultural 
-resources of this section. All of the available water would thus be 

brought into use, and the reserved lands would also much sooner be 
‘brought into demand, as they would be as much entitled to the benefit 
of this measure as the lands thus granted. And in order to secure the 
grant from any improper diversion from the object contemplated in the 
grant, the law should provide that the States and Territories should 
refund to the General Government the value, at the minimum price, of 
all lands which the legislatures of these States and Territories should 
appropriate to any other purpose. The law should further provide that — 
the grant should not include any portion of the reserved lands in lieu 
of those which might be occupied at the time of its passage, but should 
-include only those employed. It should also provide that these State 
and territorial governments should not use any of the proceeds of these 
Jands so granted for the payment of officers and other expenses of such 
registers, receivers, &c., as would necessarily have to be incurred in the 


GEOLOGICAL SURVEY OF THE TERRITORIES. pat 


sale, &c., of these lands, but should limit the application of the funds 
arising under this grant to the expenses belonging strictly to the sys- 
tem of irrigation. This should not apply of course to mineral lands, and 
a special provision may be made in regard to the timbered lands on the 
mountains which are not adapted to agricultural purposes. One-half of 
these might profitably be granted, with the provision that, as a return 
therefor, | it should be the duty of these State and territorial govern- 
ments to guard and preserve the forests on those lands not thus 
granted. 

There would be some difficulty in regard to the survey of these mount- 
ain lands, but here the division need not be limited to alternate sections, 
but might be by townships, or in such a manner as the Commissioner 
of the General Land-Office might ascertain to be most practicable. 

I think it cannot be denied that such a plan would result in more 
permanent benefit to these sections and to the General Government 
than any other which can possibly be adopted. It would at once prepare 
the way for the introduction of the best possible system of irrigation, 
and prevent the inconvenience and trouble which will hereafter arise 
when the introduction of such a system becomes absolutely necessary. 
It would rapidly bring into use the lands which require such extensive 
canals that individuals will not at present undertake it. There are mil- 
lions of acres on the broad plateau bordering the Arkansas, Rio Grande, 
Plattes, Snake, Missouri, and other rivers which might be rendered 
excellent agricultural lands if an enlarged system of irrigation could be 
inaugurated. But individual effort is inefficient for this purpose. And 
though the granting of lands to railroads may partially accomplish this, 
yet it is evident that it falls infinitely short of that result which would 
be brought about by the system here proposed. 

I submit these thoughts with the earnest request that you will give 
them such consideration as you think they merit. The object which the 
plan is proposed to accomplish I know to be one which you have long 
cherished, and for which you have so many years labored, and to which 
you Low look forward with an earnest hope. 


CHAPTER IL. 
THE GREAT BASIN. 


As I have already given, in a former report, a description of the 
various valleys and arable tracts in Utah, I shall at present confine 
myself to a general view of the principal geographical features of the 
Great Basia, concluding the portion devoted to the Territory with 
a more minute account of that section visited in, person the present 
season. 

J use the term “Great Basin” in contradistinction to that of “Salt 
Lake Basin,” to include that immense area lying between the Wahsatch 
Mountains on the east and the Sierra Nevada Range on_the west, em- . 
bracing the western part of Utah and the entire State of Nevada. In 
shape it is something like an ancient shield, the broad end being to the 
North, the southern extremity rounded to a point, its extreme width 
about 350 miles and its length north and south 300 miles. Having no 
outlet for its waters, by which they may be carried to the ocean, itforms . 
an isolated and, as might be inferred from this fact, a somewhat peculiar — 
district. 


228 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Although a basin in fact so far as its water-drainage is concerned, 
yet its surface does not sweep down from the surrounding rim to a cen- 
tral depression, but, on the contrary, its areas of greatest depression are 
to be found near the borders, especially along the eastern and western 
sides, while its central portion reaches a much greater elevation, and is 
broken into a series of detached ridges. This will be seen by an exami- 
nation of the elevations along the line of the Central Pacific Railroad. 
For example, at Brigham Station, on the border of Salt Lake, it is 4,220 
feet above the level of the sea, while at Pequop, the next station west 
of Toana, it reaches 6,184 feet; from this it again gradually descends to 
Desert, the second station east of Wadsworth, where it is only 4,017 
feet, or about 200 feet below the level of Salt Lake. The highest ranges 
in it will probably exceed the greatest elevation here given as much as 
1,500 or 2,000 feet. The elevations at the points of greatest depression 
in the southeastern and southwestern portions have not been accurately 
determined, but-it is known that in the vicinity of Sevier Lake it is not 
more than 4,500 feet above the level of the sea. A comparison of these 
elevations with those of the broad mountain belt lying east from the 
Wahsatch Range to the Black Hills of Wyoming will bring out this 
feature more clearly and forcibly, and at the same time afford us a means 
of comparing the climate of the two sections, so far as influenced by 
elevation, in the same latitude. The highest point of the Union Pacifie 
Railroad on the western side of this belt is at Wahsatch Station, 6,879 
feet above the sea-level. The highest on the eastern side is at Sherman, 
8,242 feet. The lowest point between the two is at Green River, where 
the elevation is 6,140 feet, or about 2,000 feet above the lowest level of 
the basin. Some of the intermediate ranges, as the Uintah Mountains, 
reach a height of 10,000 or 12,000 feet, and the peaks occasionally 
exceed 13,000 feet. That this difference in altitude must produce a 
considerable difference in the climate is evident. North the difference 
is not so great. 

This depression below the general level is a fact of much importance 
in estimating the agricultural resources of this extensive interalpine 
region, as it indicates a very material moderation of climate. And that 
which might be inferred theoretically has been shown by extensive ex- 
periments to be true in fact, as can be seen from the list of the produc- 
tions of Salt Lake Valley given in my last report. 


MOUNTAINS. 


The mountain features of this basin are somewhat peculiar, differing 
in some important respects from those of the sections lying east and 
north, and exerting a decided influence upon the channels of travel and 
internal commerce, and upon the lines of settlement and centers of 
population. The Wahsatch Range, which runs almost directly north 


and south near the one hundred and twelfth meridian, forms the eastern _ 


rim, and presents an immense terrace wall, bracing up the broad ele- 
vated table-land which stretches out eastward of it, and of which it may 
be said, with more than mere figure of speech, to form the western es- 
carpment. It follows that its western slope presents a greater descent 
to reach the level of the lake than its eastern to reach the level of Green 
River. Except where cleft by the Ogden, Weber, and Provo Rivers, it 
presents a continuous ridge rising abruptly from the narrow plains, 
seldom sending out on this side foot-hills or slopes, but plunging ab- - 
ruptly down beneath the débris that presses against its surface. This 


GEOLOGICAL SURVEY OF THE TERRITORIES. 229 


character is especially prominent opposite Salt and Utah Lakes. The 
western face, though rocky, does not present that jagged, rugose ap- 
pearance so characteristic of portions of the Rocky Mountains, but is 
marked by deep and sharp furrows, down which the little streams formed 
by the melting snow rush with impetuous speed to the valley below. 
These little rills and mountain brooks, though but small in volume, not 
combining to form any extensive streams, are perhaps of more value 
to the pioneer settler than the larger ones. And in our estimate of the 
irrigable land of this western country, especially if we pass through it 
in the latter part of summer or in autumn, we are apt to overlook or 
anderestimate their value. I am satisfied that while in some instances 
I may have overestimated the capacity of large streams, I have paid too 
little regard to the small ones. My attention was called in a special 
manner to this subject while camped near Ogden the present season. 
Our tents were pitched on the high ground to the northeast of the town, 
which, to one traveling along one of the usual highways, would appear to 
be entirely beyond the reach of irrigation, the elevation being, as ap- 
pears from the observations of Mr. Schénborn, the topographer of the 
expedition, over 300 feet above the level of the lake, and about 300 feet 
above Weber River.at the railroad depot. Yet even here I noticed 
around and for some distance above camp several irrigating ditches 
well filled with water, from one of which we obtained a supply for camp 
use. I found, upon examination, that these were supplied with water 
from little streams running down the indentations in the mountain side 
to the north of us, fed by the patches of melting snow resting among 
the crevices along the summit. Although within two miles of the base, 
and the hot sun shining squarely against what appeared to be a bare 
and naked rocky wall, we could detect no stream flowing downit. Not 
until we had approached to the very base could we discover the silvery 
thread winding its way down among the bowlders and little fringe of 
bushes that lined its pathway. This stream furnished water sufficient 
to irrigate and supply the wants of a moderate sized farm. Multiply 
this by tens of thousands and we will have some idea of the importance 
of these minor and annual streams which generally pass unnoticed 
except by those immediately interested in them. 

Passing to the interior of the basin, whether moving round the north 
or south end of the lake, we shall find a succession of “long, abrupt, de- 
tached, parallel ridges extending in a north and south direction.” And. 
this holds true not only on the eastern side, or Salt Lake Basin proper, 
put also throughout the greater portion of Nevada. That such is the 
case in the southeastern part of this State is'expressly stated:in the re- 
port of the expedition under Governor Blasdel to Pahranagat. Baron 
Richthoren alludes to the same character of the ranges in the southwest. 
These ridges are separated by intervening valleys of various width, and 
even where the valleys expand into broad open plains, as in the central 
and western part of Utah, their boundary walls retain the same general 
course. The valley of the Humboldt might, at first sight, appear to 
form a remarkabie exception to this rule, but a closer examination will 
show this to be a mistake; for the greater part of its course it is formed 
by a series of openings through these ridges and across the intervening . 
valleys. That this is true is clearly shown by the direction of the trib- 
utaries that flow into it. This uniformity in the direction of these minor 
ranges was noticed by Captain Stansbury, who states that even the 
northern rim of the basm partakes of the same character. ‘The north- 
ern rim of the Great Basin, or the elevated ground which divides it 


230 GEOLOGICAL SURVEY OF THE TERRITORIES. 


from the valley of the Columbia, does not consist, as has been supposed, 
of one continuous mountain range which may be flanked, but of a num- 
ber of long, abrupt, detached parallel ridges extending in a north and 
south direction, and separated by intervening valleys, which constitute, 
as it were, so many summit levels, whence the waters flow north on the 
one side into the Columbia, and south on the other into the Great 
Basin.” And in this opinion he is quite correct, for in passing from 
Cache Valley to Marsh Valley, the one lying south and the other north 
of this rim or divide, we found the two so united as to: be continuous, 
but elevated at one point by a kind of broad cross-ridge which acted as 
a divide between the waters. I also know that such is the case with 
the Malade Valley. 

In Utah this direction of the valleys holds good with a remarkable 
uniformity. Cache, Malade, Blue Spring, Hansee Spring, Jordan, 
Tooele, Tintic, San Pete, Rush, Lone Rock, and Upper Sevier Valleys all 
- mnaintain this course almost direct, while the two parts of Salt Lake 
conform very nearly to it. From the head of Malade River to Utah 
Lake is one continuous valley, varying less than five degrees from a 
north and south course. Antelope and Frémont’s Islands and Oquirrh 
Mountains lie in a direct line with the course of the promontory which 
separates the northern arms of the lake. Without any reference to this 
law which seems to govern the hills and valleys, I colored, upon a large 
map, the arable tracts of the Territory so far as at present known, espe-. 
cially those in which settlements have been made, when I was aston- 
ished to find that from the thirty-ninth paralJel to the northern bound- 
ary almost every tract so colored would be included in a strip along the 
one hundred and twelfth meridian not exceeding fifty miles in width; 
Tooele, Rush, and Weber Valleys being the only exceptions. Another 
singular evidence of the force of this law which governed the formation 
of these ranges and valleys is shown in Cache Valley, which maintains 
the same direction, though closed at the lower end by a cross-range of 
broken hills which shoot out from the Wahsatch Range, and crossed 
at the north end in a diagonal manner by the valley of Bear River. A 
similar feature seems to govern the valleys of the western side of the 
basin. Baron Richthoren, speaking of the Washoe Mountains, says 
that they are separated from the steep slope of the Sierra Nevada by a 
continuous meridional depression, marked by the deep basins of Truckee 
Valley, Washoe Valley, and Carson Valley. Though irregular, a gen- 
eral direction may be traced in the summit range from north to south, 
where it slopes down to a smooth table-land, traversed from west to east 
by the Carson River, flowing in a narrow crevice, beyond which the 
Washoe Range is protracted in the more elevated Pine-Nut Mountains. 

Notwithstanding this uniformity in the direction of the ridges and 
valleys, it exerts but little influence on the few leading streams, but, on 
the contrary, directs the course of all the minor streams. That it must 
have more or less influence upon the lines of travel and traffic, and the 
localities of the settlements of the Territory of Utah, is evident. A sin- 
gle railroad line from Corinne or Brigham City, in the north, to Saint 
George, in the extreme southwest, would have the principal agricultural 
areas strung so closely along it that a day’s drive with a team would 
reach it from almost any settlement likely to be made for some years to 
come, (the chief exceptions being those already named and those lying 
north of its terminus.) It is, therefore, easy to predict where the chief 
highway of this Territory will be. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 231 
RIVERS AND LAKES. 


The rivers of the basin are small, and, so far as the volume of water 
is concerned, of small importance, but in other respects play a conspic- 
uous part in the development of the country. The principal ones are 
the Humboldt and Carson, in the western area, and the Bear and Jor- 
dan Rivers, in the eastern part. Sevier and Beaver Rivers, in the 
southwestern part of Utah, are considerable streams as compared with 
others of the section; but as little is accurately known in regard to 
them, I pass them without any special notice. Weber River, on account 
of its position, and as forming a gap through the mountain, is important. 
Provo (or Timpanogas) may be considered as a tributary to the Jordan. 

As a list of the principal valleys of Nevada will be appended to this 
report, with a short notice of the agricultural resources of each, I shall 
omit further reference to that State at present, except the bearing the 
Humboldt River and Valley have upon the travel and commerce of the 
basin. This stream, rising in the northeast part of Nevada, runs a lit- 
tle south of west for about three hundred miles, where it suddenly disap- 
pears in what has been very significantly and appropriately termed the 
‘‘Humboldt Sink,” on the extreme western side of the State. Though 
a little stream of but few yards in width at its widest point, winding its 
way down the gradual descent through narrow valleys of a monotonous 
uniformity that soon tires the most enthusiastic traveler, wholly inade- 
quate for navigation of any kind, yet it possesses an importance not to 
be overlooked. Its valley forms a natural channel for the great inter- 
oceanic highway, furnishing a natural and, we might say, the only, easy 
pathway and water-supply through a barren region of mountains and 
valleys for three hundred miles. This is certainly a consideration of no 
small moment, for it renders it really more valuable to the nation and 
the world than if, without this, it were navigable from head to mouth. 
Small as it is compared with the treeless ranges of hill and plain on 
each side, yet it will furnish the means of forming at least a narrow line 
of green fields through this comparatively barren section; for, to say the 
best we can of this region, although, perhaps, affording moderate graz- 
ing fields, yet outside of the immediate bottoms of the few streams it has 
a barren and uninviting appearance. This line assumes still more im- 
. portance when we take into consideration the large mining area on each 
side, especially south, to which it forms the base of travel and commerce; 
and the prevailing direction of the ridges and valleys, before alluded to, 
lend additional force to this statement. It must ever be the chief axis 
of inland commerce and travel for the western portion of this great 
basin, and, consequently, a link in a through transverse line. Other 
lines of railroad may, and probably will, hereafter traverse the country 
north and south of this, but not so closely as to do away with its im- 
portance. Human genius and energy nay make a pathway through the 
most rugged portions, but nature has prepared but one transverse chan- 
nel in this region ; longitudinally (north and south) there are many. But 
while the river is thus intimately connected with the development of the 
material resources of the country, on the contrary, the reservoir into 
which it pours its waters possesses no other than scientific interest— 
simply a marshy spot in a sandy plain, the extent of the water surface 
governed by the supply and capacity of the sands to drink it up and 
the atmosphere to evaporate it, the two latter generally being in excess 
of the former. 

Bear River, the largest tributary to Salt Lake, takes its rise in Utah, 
near the southwest angle of Wyoming. After winding its way north- 


232 GEOLOGICAL SURVEY OF THE TERRITORIES. 


ward through the Wahsatch Mountains, about one hundred and fifty 
miles, extending even into the southern limits of Idaho, suddenly bends 
its course completely round, and flowing southward, pours its waters 
into Bear River Bay. As affording a supply of water for urigating 
large areas of land in Cache and Malade Valleys, it assumes an import. 
ance of no little moment; but throughout its entire course, from its 
head to where it enters Cache Valley, (with the exception of a few miles 
where the railroad traverses it, and where the coal-mines are opened,) 
it exerts but little influence in the development of the country. Its vol- 
ume of water is too small to admit of navigation; its course is too tortu- 
ous to be followed any great distance by any one line of travel; and its 
valley is too narrow and too closely hemmed in by rugged mountains to 
be of any great value as an agricultural section, yet not wholly without 
interest in this respect. As a means of conveying timber down from 
the mountains to the railroad and other accessible points, it may become 
a valuable accessory. 

Weber River, though small, is remarkable as affording a gateway 
directly through the Wahsatch Range, Echo and Weber Cafions pre- 
senting, as is well known to all who have traveled on the Union Pacific 
Railroad, some of the grandest scenery in the West. 

The J ordan forms an outlet for the fresh water of Utah Lake, and, run- 
ning north some forty or fifty miles, empties into Salt Lake at its south- 
east angle. Insignificant in size, too small to be navigated, yet unlike 
the Oriental Jordan, from which it derived its name, it is of other value 
than simply a watering-place for thirsty man and beast. It and its 
tributaries afford water for irrigation, as shown in my last report, to an 
area capable, if properly and thoroughly cultivated, of supporting a 
population greater than the entire population of the Territory. at this 
time. 

The Provo, (or Timpanogas,) rising back in one of those mountain 
centers found in the mountain regions, rushes down through a narrow 
canon, which cleaves the range at this point, and pours its waters into 
Utah Lake. In passing I would eall attention to this mountain nucleus, 
situated about latitude 40°.30, longitude 111°, and culminating in 
Reed’s Peak. This is doubtless formed by the junction of the Uintah 
Mountains with the Wahsatch Range. Here, within a small area, all the 
leading rivers of Salt Lake Basin proper take their rise, viz, Bear, 
Weber, and Provo; also the Uintah and White Rivers, which flow to the 
east and enter into Green River. The volume of water in the Provo is 
probably equal to any other belonging to the Salt Lake water system, 
except Bear River; and as its descent is very rapid it affords the means 
of irrigating all the table-lands lying in the vicinity of its exit from the 
mountains. It will afford excellent water-power for driving mills and 
machinery, and, being on the margin of the lake, must become of great 
value in this respect. 

Sevier River rises in the southwest part of the Territory and runs a 
little east of north between two ranges of the Wabsatch Mountains. 
for one hundred and fifty miles or more, when it breaks through the 
western rim of its narrow basin, and, turning southwest, flows into 
Sevier Lake. But as I have not visited this river I cannot speak very 
confidently in regard to its importance and the bearing it is likely to 
have upon the development of the country. Very little appears to be 
known in regard to the lake into which its waters flow. ‘Mr. Smith, one 
.of the members of the topographical corps of the present expedition, 
passed around its southern margin a few years since. Although he did 
not stop to make an examination, he saw clearly that it was a lake, and 


GEOLOGICAL SURVEY OF THE TERRITORIES. Zoo 


not a mere sink or marsh, being surrounded by a low growth of bushes. 
This would indicate that its waters are salt. The little streams that 
flow down the western slope of the range, (improperly represented in 
most maps as flowing east through the mountains,) and sink in the 
plains during the summer and autumn, probably reach the lake, by one 
or two channels, in the early part of the season, when fullest, as their 
general course, after reaching the plain, is known to be to the northwest. 

From Weber River to the creek that flows into Salt Lake City, about 
thirty miles in a direct line, only two or three small rills are to be seen; 
but from the latter to the south end of Utah Lake some ten or twelve 
moderately sized creeks flow down from the Wahsatch Range, a list and 
description of which can be seen in my former report. The range on 
the west side of Jordan and Utah Valleys gives rise to none worthy of 
note, two little rills from the Oquirrh Mountains being all I saw. 


GREAT SALT LAKE. 


Although its waters are strongly saline and brackish, unfit for use to 
man or beast, and its depths, so far as known, undisturbed by finny 
tribes, yet the Great Salt Lake is the chief object of interest in the 
physical geography of the basin. Its dark-looking, (though really trans- 
parent,) heavy waters when not broken into rugged waves by storms, 
resting quietly, its surface reflects the shadows of the ranges that rise up 
on either hand, giving the scene a look of quiet solitude that all the hum 
of business along its shore is unable to dispel. The dark-brown wall of 
the Wahsatch, until the rising sun has reached its zenith, sends down 
a heavy shadow which adds intensity to this feeling. This perpetual 
somberness, it would seem, must, to a greater or less degree, impress 
itself upon the mind of the resident who makes the rural districts 
long his home. One thing which adds to this somewhat peculiar som- 
berness is the clear, transparent atmosphere, which renders vision tele- 
scopic, bringing the mountain-walls close around us. 

Although the shores of the lake have been inhabited for twenty years, 
and numerous scientific travelers and parties have traversed this region, 
and the great railway, from the Atlantic to the Pacific, passes along its 
margin, yet little is known in regard to it more than its mere outline as 
originally mapped by Captain Stansbury. Its western coast is known 
to the public only through the interesting narrative of Captain Stans- 
bury; and although some analyses of its waters have been made, yet 
comparisons from different parts and different depths have so far been 
entirely neglected, and up to this hour little or almost nothing ean be 
stated positively in regard to animal life in its waters. Numerous 
species of small fishes of Articulata and Mollusca are to be found in the 
streams that flow into it, and traced to its very margin; but how far 
into the lake these extend is not known. That ducks and other water- 
flowls gather food along its shore I know from personal observation. I 
‘have also seen Bear River Bay almost covered with gulls; and Stans- 
bury brings this fact prominently forward in one of his figures of Gun- 
nison Island, which lies on the western side at a distance from the influx 
of fresh water. Although Captain Stansbury thinks these birds obtain 
their food entirely from the fresh-water streams, yet he speaks of finding 
a blind pelican in a “sleek and comfortable condition.” Although 
these birds may congregate here for the purpose of rearing their young, 
yet this seems scarcely adequate to account for the presence of such 
numbers. The only analysis of the waters of the lake that I am 
acquainted with is that made by Dr. Gale and recorded in Captain 


2 


234 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Stansbury’s report. It gives the specific gravity, 1.170; solid contents, 
22.422 out of 100 parts. The solid contents, when analyzed, gave the 
following components: 


Chioridesok Sommumm 345 40 5 be seis 2/4 Sit dete ESS A hiss 2) eee 20.196 
Sulphate of Soda = 6 - i. .-4se!-ji-)- 4-5 ob ee ei 9 ee ee 1. 834 
ChloridesormuasMeSiUM, ji). (5 459 - «js [eee Ale eee vie he eee 0. 252 
Chloride of calcium ...-.-.------------ Livy OMe ee tis ot tae A trace. 
22. 282 

UGS Sue ike aiavsimaaiel eee epee ePAS ake Gc che apace pee bays eevee | O0I4O 

22, 422 


The specific gravity as here given corresponds exactly with the mean 
of eight different analyses of the waters of the Dead Sea, which is largely 
above that of the water of the ocean, (1.0278.) The solid contents of 
the water of the Dead Sea, taking the mean of the eight analyses,* before 
mentioned, is but 21.077, or 1.345 less than that of Great Salt Lake. 
This analysis shows clearly, as confirmed by practical experiments, that 
here can be obtained an abundant supply of salt for all the wants of 
’ this entire region, the percentage in the water being unusally large. 

When we remember that all the water which flows into the lake is 
fresh, a somewhat puzzling question arises as to the source of such an 
abundant supply of saline matter. But the numerous and extensive 
saline inerustations at various points on the surrounding shores, left 
by the drying up of the winter marshes, show very clearly that some 
portion of the earth is saturated with this ingredient. But as an inves- 
tigation of this subject does not belong to the scope of this report, let 
us turn to that most interesting feature of the lake, the fact that although 
receiving the waters of various streams, yet it is without any visible 
or even supposed outlet, its influx of water being disposed of entirely by 
evaporation. A very natural inference is that the level of the lake 
must vary with the amount of water discharged into it by its various 
tributary streams. In the spring, when the streams are highest, the 
humidity of the atmosphere greatest, and consequently evaporation 
slowest, we would presume the level of the lake is higher than in the 
latter part of summer when the tributaries are low and the atmosphere 
dry. What the difference of the level is between these extremes I do 
not know, nor am I aware that any observations have been made for the 
purpose of ascertaining, but I am inclined to think it far less than might 
be supposed. The rise of the level of the lake within the last eight or 
ten years, I am satisfied, can have no connection with an increased influx 
of water, but is owing entirely to some other cause. ant 

The shores being quite flat, a variation of the level of the lake can be: 
easily perceived, and hence the fluctuations if considerable would be. 
observed. But there is probably a very potent reason why these varia- 
tions are very slight; the evaporating influence is probably in excess of 
the normal amount of water flowing in, but is counteracted by the 
extreme saltness of the water, hence the spring excess of water does 
not produce the effect on the status of the lake that might be expected. 
In other words, the lake would dry up and become simply a water-sink 

as that of the Humboldt, if it were not for its saltness. The material 


* Smith’s Bib. Dic, III, 1183e. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 235 


of which the bottom of the lake is composed also probably has influence 
in this matter. 

According to my calculation, from all the datal have at hand, the sur- 
face-area of the lake is about one thousand nine hundred square miles 
Comparing this with some approximate estimates I have made of the vol 
ume of water in the principal streams emptying into it, I do not think 
the entire flow for twenty-four hours, if there was no evaporation, would 
raise the surface more than one-fiftieth part of an inch, even when at 
the usual spring standard. In the summer this would not amount to 
more than one-hundredth part of an inch. That the evaporating power 
of the atmosphere is far in excess of this amount of water-in the sum- 
mer time is evident to any one who has observed the rapidity with 
which shallow pools are dried up. The instrumental test, so far as it 
has been made, shows the atmosphere in summer to be exceedingly dry. 
While encamped on the margin of Bear River Bay, June 10 to 13, Mr. 
Schénborn found the difference between the wet and dry bulb to be from 
24° to 28°. The imperfect record of the wet bulb in Captain Stansbury’s 
report does not show this difference, but his observations do not extend 
into the summer months, reaching only to April 19. Imperfect as this 
record is, it reveals one important fact, that during the winter months 
the difference between the wet and dry bulb is very small, not exceed- 
ing four or five degrees, but gradually increases as the season advances; 
the greatest difference given being 17°. 


UTAH LAKE. 


This beautiful sheet of pure, fresh water is triangular, its three sides 
closely margined by mountains. Its base, which is the western side, 
extends from the exit of the Jordan to the southern extremity of the 
lake, and is about twenty-two miles in a direct line. Its apex points 
eastward and extends into the somewhat abrupt bend of the Wahsatch 
tange at this point. A direct line from the apex, near Provo City, to 
the base, is about twelve or fourteen miles. The inclosing sides of this 
angle are about equal in length, each being some sixteen or seventeen 
niles direct.* Its surface area is probably about one hundred and 
thirty square miles. Although the Jordan during the spring and first 
Summer months sends down a considerable volume of water, I am satis- 
fied that it is much less than the amount received by the lake. But as 
I visited it in the early part of autumn I can speak positively only as 
to that season of the year. From the observations then made I am 
decidedly of the opinion that the Provo River alone brought in more 
water than the Jordan carried off, leaving this surplus and that fur-’ 
nished by six or seven small creeks to be disposed of by evapora- 
tion. But it isevident that the relation between supply and evaporation 
is the reverse of what it is with Salt Lake; for as the Jordan never 
fails, (so-far as I am aware,) the supply must always be in excess of that 
carried off by evaporation. Its waters are well stocked with fish and 
other aquatic forms of life. 


CLIMATE. 
As but very few meteorological records have hitherto been kept in 


this basin, and these but for a few years only, and very irregularly, we 
can only give an approximation to the means of temperature and rain- 


* Air-lines are to be understood in estimating these distances. 


236, GEOLOGICAL SURVEY OF THE TERRITORIES. 
fall for the year and months. Yet even these are of great interest, as 
they furnish cumulative evidence in support of the opinion already ‘ad- 
vanced respecting the climate of Salt Lake Valley as compared with the 
elevated regions lying east of it. 
The following extracts from the registers of Camp Douglass, near Salt 
Lake City, and Fort Bridger, for the year 1870, will serve as a Past of 
comparison : 


CAMP DOUGLASS. 


FORT BRIDGER, 


Month. Thermometer. Thermometer. 
Rain-fall. Rain fall. 
Mean. | Max.| Min. *! Mean. |Max.| Min. 

URNA aiene SoreasonGoss 31. 74 62 11 1. 53 20. 75 43 —24 . 82 
Hebrvary =-2--------- ---= 36. 43 58 17 1. 44 25, 24 44 —8 00 
March 65 3 4,57 25. 71 53 —l1 . 88 
April -. i 79 xt 3. 40 45. 38 68 20 70 
Maiyeese: - = 4 85 34 2. 10 50. 55 i) Q7 1.20 
JUNC.....-.-- f 94 34 oko 59. 38 83 30 . 40 
PA jnllbype ee eee SN aay ne ’ 96 54 1.48 67. 71 7 46 224 
August 4 95 44 245 61. 42 87 Q7 . 46 
September sieeee nese ses 61. 70 82 45 45 OL. 42 80 21 .18 
etapa See 3 sere 52. 90 84 30 . 80 41.84 70 16 . 08 
November : 28) se weesos le 49, 71 65 28 . 68 39. 98 56 8 .05 
Pecemberie. 2. «2255-5 -- 27. 03 48 4 .4i 19. 26 48 —10 atari 
Yearly mean ..-...--- Ps SY RS eel ase Gece Total... 15. 10 42 ODN sce eee eel Total .. 5.58 


These two stations, by air-line, are not exceeding one hundred miles 
apart, the latter being about half a degree north of the former, and 
over 2,000 feet higher. 

An examination of these tables shows a constant difference that is 
somewhat remarkable; the mouthly means, maxima, and minima, with 
the single exception of one maximum, (where the two are the same, ) 
of Camp Douglass being higher than those of Fort Bridger. The 
difference between the monthly means is never less than 4°.5, and never 
more than 13°.7, the average for the year being 9°.46. A comparison 
of the extremes shows a ereater ditference, but “this probably arises in 
part from the different methods by which they were obtained, those of 
Camp Douglass being only the extremes at the times of observation, 
while those of Fort Bridger were obtained by a maximum and minimum 
instrument. Yet even these columns indicate a corresponding differ- 
ence, that between the maxima varying from 0 to 19, averaging for the 
_ year 9.92, or less than a half-degree more than the average difference for 
the year between the monthly means. The minima cannot properly be 
compared, as those of Camp Douglass do not give the extreme cold of 
the night, or intermediate hours between observations, while those of 
Fort Bridger do. 

A comparison of the seasons is quite interesting. To show this at a 
glance, I append the following table, with a column of diiferences: 


Localities. Spring. Sumner. | Autumn. | Winter. | Maximiim. 

Camp Douglass, (therm. means) ...----.- 47,51 72. 03 54. 77 31. 73 96. 00 
Fort Bridger, (therm. means)...--------- 40, 55 62. 84 43. 08 21.78 87. 00 
DIFEReN COREE eee e sleet une any 6. 96 9.19 11. 69 | 9595 9. 00 


GEOLOGICAL SURVEY OF THE TERRITORIES. 237 


December shows the lowest monthly mean, and July the highest, at 
both places. 

The record of Camp Douglass indicates a climate very favorable to 
agriculture, the mean of the five months April, May, June, July, and 
August being 64.91, and the thermometer at no time, from May to Sep- 
tember, inclusive, falling as low as the freezing-point. Other meteoro- 
logical data which I have at hand, although fragmentary, corroborate 
this, and, as a means of reference, | present a summary in the following 
table, calling attention to the fact that the records were not all kept at 
the same point, but all in Salt Lake Basin, and therefore can only be 
considered valuable as indicating the climate of the basin, (the lake 
basin proper,) taken as a whole: 


Localities. . Spring. Summer. | Autumn. | Winter. | Yearly. 

Camp Mon clagsy ih Neen bs Sst pale 47. 51 72. 03 54.77 31.73 51. 51 
Great Salt Lake, (Blodget) .........------ 51.7 (O09) ERR ee Oe Boo Te vila ea elea 
Camp Floyd, (Disturnel).....2-..--..----- 47.17 75. 65 48, 44 23. 32 48. 65 
Wanship, (Agricultural Report, 1868)....--|.-...--.---- 69.7 |(Oct.) 54. 7 DBT? |e es seve 
Salt Lake City, (ditto, 1863 and 1869).......|.....--..--- WOES QMa a. . Mee eee idles isles Serre 
Coalville, in the mountains, (ditto, 1869) ... 45.9 69. 2 AGED) Vili anna ane pua ea 

BVI eu Stes cia iers ote chet atess eels ait ieie miei tcie 48. 07 72. 47 51. 70 27. 30 50. 08 


The record kept by Captain Stansbury while in Salt Lake Valley em- 
braces but a part of the year, as follows: January to May, inclusive; 
parts of June, July, and August; and a few days in September and De- 
cember. In this the maximum is, August 10, 3 p. m., 98°; minimum, 
February 3, 8 a. m., 6°, while at 11 p. m. of the previous day it was 8°. 

The only record of rain-fall within the basin that I have is that of 
Camp Douglass, which is given in one of the foregoing tables. There 
is some doubt in regard to the reduction of the snow, which materially 
lessens the value of this column, so far as the winter months are con-. 
cerned. I will simply call attention to the fact that this gives for the 
four growing months, April, May, June, and July, a total of 7.71 inches, 
which is but 0.37 above my estimate in my last report of the general 
average for spring and summer. 


FORESTS. 


The Wahsatch Range is covered with a moderately heavy growth of 
pines and firs, but these are confined chiefly to the upper half of the 
mountains, leaving a wide border along the base uncovered. The Oquirrh 
Mountains, the range west of Utah Lake, and the Promontory also con- 
tain considerable quantities of pine timber. But as a general thing, the 
timber within the rim of the basin, south of the Pacific Railroad, is small. 
On some of the ranges north a better quality is found, but it is not very 
abundant at any point. In regard to the forest growth west and south- 
west of the lake, I know very little. 


CHAPTER III. 
NORTHERN PART OF SALT LAKE BASIN AND THE SNAKE RIVER PLAINS. 


Having in my last report given short descriptions of the principal 
valleys of Utah, with rough estimates of their arable areas, will only 


238 GEOLOGICAL SURVEY OF THE TERRITORIES. 


add the following in regard to the small section in the northern part 
visited the past season: 

Weber Valley, which is drained by the river of the same name, is 
situated in the gap of the Wahsatch Mountains made by the river in 
its passage through them, and is on the line of the Union Pacific Rail- 
road. The valley. proper begins at Weber Station, and extends west- 
ward to the Devil’s Gate, a distance of some eleven or twelve miles, 
varying in width from three-fourths of a mile to two miles. The land is 
good, and most of it can easily be irrigated, the supply of water being 
ample for this purpose throughout the growing season. At the west 
end of the valley, on the north side, there is a narrow terrace some 12 
or 15 feet higher than the bottoms, ‘and four or five miles long by half 
a mile or less in width. The mountains on the south side have some 
pine timber near the summit, sufficient for the use of the valley popu- 
lation, but, as is generally the case in this region, somewhat difficult to 
obtain. The mountains on the north side are mostly destitute of timber 
in the immediate vicinity of the valley. Grazing is tolerably good on 
the foot-hills and mountain slopes to the south. Wheat is the principal 
crop raised, though the other cereals, even some varieties of Indian 
corn, will grow. ‘Such fruits as apples, cherries, currants, raspberries, 
Strawberries, &c., can be produced. 

The river, at the time of our visit, (June 1 to 9,) was quite full, being, 
at the point where the estimated measurement was made, about sixty 
feet wide and from one to three feet deep, flowing quite rapidly, at least 
four miles per hour. 

Uintah Valley commences just below the mouth of Devil’s Gate Cation, 
and is in fact but a part of Salt Lake Valley, extending up into a bend 
of the mountains. It is, in other words, the ‘broad pathway that Weber 
River has cut through the sloping plain of Salt Lake Valley. It con- 
tinues to the vicinity of Ogden, a distance of some nine or ten miles, 
varying in width from a half to two miles, and all susceptible of irriga- 
tion. The fallof the stream through this valley is much more than 
would be supposed, judging it by the eye, being, according to the rail- 
road survey, 220 feet in the ten miles, or 22 feet to the mile, which shows 
that the water can be carried up to the higher terraces which lie on the 
south side near Ogden. The rapidly increasing importance of this point 
will probably, ere long, cause irrigation to be carried on here upon a 
much larger scale than at present; for the soil is very rich, and every 
spot that can be irrigated will become valuable when the drawbacks to 
its settlement are removed. 

The town of Ogden is situated along the esearpment of a terrace some 
5U or 60 feet high, one part built on the lower level, the other part.on 
the upper level. The soil of this terrace is a very light sandy loam, and 
when supplied with an abundance of water will produce very fine veg- 
etables. The town is tolerably well supplied with water, chiefly, I — 
believe, from Ogden Creek, which crosses the plain a little north of this 
place. 

A number of shade-trees planted along the streets by the side of 
the ditches have grown steadily, until now some are over one foot in 
diameter, quite thrifty, and furnishing avery agreeable shade during 
the hot days of summer. There is, in fact, no other trouble to be ex- 
perienced in growing forest-trees here than.the planting and ditching 
for water, aud this need not be supplied after they have had a firm and 
vigorous growth for three or four years. The cotton-wood, mulberry, 
locust, (psexdacacia,) Lombardy poplar, willow, and many other varie- 
ties can be raised without difficulty. I noticed in Salt Lake City locust, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 230 


ailanthus, and walnut growing finely near the ditches. Whether the 
hard woods, such as white-oak, hickory, beech, &c., could be grown to 
a size that would make them valuable i is not known, but certainly itis 
of sufficient importance to induce the citizens or the territorial authori- 
ties to make a thorough experiment. 

It may appear absurd to say that after you once enter upon the plains 
going west, you cannot find sufficient hard wood in that portion of the 
United States lying between there and the Pacific Ocean to make an 
ax-helve. Yet this is no great exaggeration. Go into the wagon-shops 
of San Francisco and Sacramento and ask the workmen there to tell 
you where they procure the timber for their hubs, spokes, fellies, 
tongues, axles, &e., and they will tell you from the East. I had sup- 
posed that here, or at least in Oregon, an abundance of suitable timber 
for wagons, agricultural implements, &c., could be obtained, but the 
oak and ash is not used, as it is unfit on account of its want of tenacity 
or “‘brashness.” Traverse the entire Rocky Mountain region from Mon- 
tana to the Mexican line, and this will be found true without any excep- 
tions. The climate is incompatible with the production of such wood 
when left to the supply of moisture nature gives. What difference a 
more abundant supply would have I am not able to say; and though I 
have some doubts in regard to the production of timber adapted to 
these purposes, yet it should only be admitted after a fair and thor ough 
trial had been made. 

Perhaps it would be well for the General Government, under either 
the Agricultural Department, Commissioner of the Land-Office, or 
commanders of military posts, to make a trial in this direction at one or 
two important points in the West; for, if lam correct in the assertion 
made—and I certainly have no desire ‘to misrepresent, but have made 
the statement after a somewhat careful inquiry—it is a matter of great 
importance to that section of our country. 

From Ogden the level bottoms or lake-shore lands spread out north 
--and west, forming a triangular area. Westward to the lake-shore is 

about twelve miles, and north to the “ Hot Springs” about the same 
distance. At this latter point the arm of Bear River Bay and a spur - 
of the mountain approach quite near each other, rendering the shore- 
level narrow. This triangular area contains about forty or fifty thou- 
sand acres, the greater portion of which is susceptible of cultivation, 
and is rich and productive. Already a large portion of it is occupied 
and under cultivation, and, although not far med with that care required 
to bring forth its strength, yields. remunerative crops. And notwith- 
standing the soil is a loose, sandy loam, which would seem to render it 
permeable by the extremely brackish water of the lake, yet where not 
absolutely covered with saline incrustations, this part of the shore-level 
can be cultivated within a short distance of the water’s edge. Even 
the tongues of land which run in between the heavy saline deposits 
make very good farming land when irrigated. On some of these there 
are already consider able settlements, from one of which we procured our 

vegetables and a supply of excellent strawberries while encamped near . 
the Hot Springs, where we remained three days waiting for some mem- 

bers of the party. 

Not only do the cereals—inecluding a tolerably fair variety of corn— 
grow well here, but fruits also, such as apples, pears, peaches, apricots, 
cherries, grapes, currants, strawberries, &c., can be raised in abund- 
ance and with comparative ease, the only drawback being occasional 
untimely frosts and the truly “hateful grasshopper.” 

It is the opinion of many of the old settlers that the climate is gradu- 


240 GEOLOGICAL SURVEY OF THE TERRITORIES. 


ally growing milder. They found this opinion on the fact that when 
first settled it was almost impossible to mature the tenderer fruits, as 
a cain whereas, at present, they experience but little difficulty in this 
respect. But this may be owing, in a great measure, to the strength 
acquired by the trees by age, and to a partial acclimation. And the 
same thing is doubtless true here that has been found true in Califor- 
nia, that while the trees are young they require much more irrigation 
than after they have come into bearing; and depriving them of water 
probably renders them less liable to be affected by frost. It has been 
ascertained in California that orchards and vineyards produce better 
fruit and more certain crops without irrigation, after they have come 
into bearing, than with it; hence the practice of watering them is being 
generally abandoned. 

From the Hot Springs to Brigham City there is a narrow strip of 
arable land, which, though ascending toward the mountains on the east, 
and being somewhat broken and irregular, yet can nearly all be irrigated 
from the little streams which flow down from the mountain. The soil 
is quite good, and appears to be especially adapted to the cereals and 
grass. Advancing northward toward Brigham City, the area widens as 
the shore-line of the bay bends westward. 

Around Corinne, at the mouth of Bear River, and at the termination 
of Malade V alley, is a broad, level expanse, probably some ten or twelve 
miles wide east and west by fifteen miles long north and south. On 
this area there are some considerable tracts crusted over with saline or 
alkaline deposits. A portion of the area east of the river, which is much 
less than that on the west side, can be irrigated from Box-Elder Creek, 
which comes down from the northeast through Box-Elder Cation. As 
suggested in a former report, from information received, for at that time 
I had not visited this valley, the level area around Corinne might be 
irrigated from Bear River by commencing a-eanal at the mouth of the 
canon where the river bursts through the hills. A move is now on foot 
for this purpose, and a bill has been introduced into Congress to obtain 
a grant of land in aid thereof. Ido not know the amount of land which 
can be redeemed by such a canal, but I judge not less than 50,000 acres, 
and perhaps as much as 75,000 acres. I crossed this tract the past 
season in both directions, and although there are some strongly alkaline 
spots, yet I believe there are none but which may ultimately be purged 
and rendered productive; and if properly irrigated the entire area may 
be rendered excellent agricultural lands. West of this, as we near the 
Promontory, there is an area of considerable breadth as desolate as can 
well beimagined. The portion which is not covered with white incrusta- 
tions looks as though it had been swept over by a flood of some sealding 
chemical which had the power to annibilate every germ of vegetable 
life. I see no means of redeeming this gloomy desert belt, and I am 
inclined to think there is somewhere here an apparently inexhaustible 
source of this saline matter, so that even if there was water to irrigate 
it, it could not be purged of this matter so as to render it suitable for 
agricultural purposes. 

All that portion of Utah north of Salt Lake and west of Malade Val- 
ley, so far as I have seen it, is generally barren, with no apparent means 
of irrigating to an extent sufficient to produce any useful crops. 
Whether artesian wells would prove a success here or not I do not 
know; but unless water can be obtained by this means, most of this 
section is doomed to sterility until some natural chan ge shall produce ¢ 
large annual rain precipitation. 

Malade Valley, from the point where it connects with Bear River 


GEOLOGICAL SURVEY OF THE TERRITORIES. -. 241 


Valley northward, is some twenty-five miles long and has an average 
width of six or seven miles. It is quite fertile and tolerably well grassed 
over, affording excellent pasturage. Stock-raising end the dairy busi- 
ness appear to be the chief occupation of the settlements that have 
been made here. Malade River, together with the little rills which flow 
down from the elevated ridges on each side, will probably be sufficient 
to irrigate most of the level land. There is one point near the upper 
end of this valley where the cattle appear to be subject to a fatal disease, 
arising from some local cause. Whether this is permanently the case 
or not [am unable to say. I noticed, in passing through this part of the 
valley, quite a number of dead cattle, and understood that ox-teams 
Stopping here for a short time have sometimes suffered severely, but 
was unable to obtain any satisfactory information as to the probable 
cause of this. But even if this information is correct it is limited in 
area and does not apply to the greater portion of the valley, especially 
the lower half. 


FROM SALT LAKE TO SOUTHERN MONTANA. 


From the point where we left Salt Lake until we reached the south- 
ern boundary line of Montana, I shall confine my: notes on the agricul- 
tural resources of this section to the immediate line of our route, as I 
obtained but very little information respecting the country either to the 
right or left. And perhaps I cannot do better than to give my original 
field-notes, which were generally written while the sections described 
were in view. 

Leaving our camp near the Hot Springs, about ten miles north of Og- 
den, for the first five or six miles we traveled up the level shore of the 
bay, which, until we pass Willard City for a mile or two, is tolerably 
well settled. About Willard City the ground rises somewhat, and: is 
more uneven and bouldery than usual in this valley. There are some 
good farms here, which slope off below the town toward the bay. A 
plain, generally level, extends around the curved shore-line of the bay, 
from our last camp to a point some distance west of Corinne, in a direct 
line, some twenty or twenty-five miles. Some areas near the bay and in 
the northwest part near Corinne, and one spot immediately west of 
Brigham covered with white saline incrustations were glittering in the 
clear sunshine as we passed. The mountains sweep around this area in 
asomewhatsemicireular form, gashed here and there by complete or partial 
cations. The hills on the north and northeast are beautifully rounded, 
smooth, and coveredover evenly with grass and artemisia, here and there 
interrupted by little thickets of green bushes or areas of yellow com- 
posite flowers. 

Brigham City, a small town of two or three hundred inhabitants, is 
situated near the mouth of Box Elder Caiion, on a ridge or terrace con- 
siderably elevated, which appears to be composed of a sandy soil mixed 
with coarse gravel, and covered, where not in cultivation, with arte- 
misia. AS we passed over this terrace, which is probably two hundred. 
feet above the shore-level, I noticed irrigating ditches traversing it in. 
various directions; the water is probably brought from Box Elder Creek.. 
Here, turning suddenly around a long, elevated, and smooth terrace, we: 
enter Box Hider Canon, which extends through the mountain, in a north-. 
east direction. Hre we descended to the level of the creek behind this. 
terrace we had a splendid view of the country over which we had passed.. 
Looking back we could see the entire Salt Lake Valley spread out be- 
fore us as a grand panorama. 


1668 


242 ’ GEOLOGICAL SURVEY OF THE TERRITORIES. 

The sides of the cafion consist mostly of high, steep, but smooth 
rounded hills, with occasional spots where the rocks jut out from the 
surface. It is quite tortuous and narrow, affording only space for a 
wagon-road. The creek rushes through it with considerable impetu- 
osity, and although rather small sends down water sufficient to irrigate 
a large area of land if properly husbanded. The ascent is somewhat 
rapid, being nearly one hundred feet to the mile. After moving up it 
for seven or eight miles we reach a beautiful little park, nestling cozily 
amid the mountains which surround it on every side; for by the time 
we reach this point the hills have grown into mountains. This park, 
which, at the suggestion of Professor Hayden, we named Box Elder 
Park, is nearly 1,000 feet above the level of Salt Lake; is somewhat 
circular in shape, its longest diameter about four miles and its shortest 
about three. It contains an area of some ten or twelve square miles, 
most of which can be irrigated from the streams that traverse it. It 
has three different levels, the upper terrace, which embraces the larger 
portion, being some 60 or 70 feet above the next, which lies along the 
west side, and along the border of which, some’80 or 90 feet lower, runs 
Box Elder Creek. Most of the water at present used for irrigating the - 
upper and chief area comes from a very large spring in the southwest 
corner, and is carried round three sides. Here is the little village of 
Copenhagen, containing some forty or fifty families, mostly Danes. 
There are two saw-mills, which are furnished with logs chiefly from the 
mountains that lie to the southeast.- Fir and pine are the only kinds 
of timber obtained, except an occasional aspen. The lofty hills to the 
south, which rest against a background of rugged mountains, are as 
smooth as a carpet, green throughout, varied only with light and dark 
shades, with here and there a tinge of brown, which fades insensibly — 
into a beautiful green. Nota tree and scarcely a bush is to be seen 
upon them. To the southwest the sharper lines and crests of the ridges, 
as they extend down into the valley, show a little more of the mountain 
feature. They are also covered with the same green carpeting, with 
darker shades, and patches of shrubs and bushes scattered over the 
steep slopes. Still farther toward the west the hilis grow higher and 
more rugged, with sharper outlines, while behind them a loftier range 
of rugged, snow-capped mountains shoots up, its peaks bristling with 
firsand pines. I mention these facts as showing avery striking feature 
‘of this region, to wit, the general absence of timber or arborescent veg- 
etation of any kind on the smooth and rounded hills and ridges, while 
ruggedness, as a general thing, is accompanied with forest growth. — 

Passing up through a narrow, but not rough caiion, for a mile or two, 
we entered another little park of small dimensions, and apparently with- 
out any constant running stream to supply it with water for irrigating 
‘purposes. Isaw quite a number of cattle grazing here, but there is no 
settlement. 

Moving round to the northeast through a narrow, winding valley, over. 
‘some smooth, rolling ridges, we entered another little basin about one 
mile and a half wide and three miles long, in the center of which is a 
large pond of clear water. Here we saw a flock of sheep, numbering 
‘about four thousand, which had been driven from some distance south 
in order to find pasturage, which here is good. , The margins of this lit- 
tle sheet of water appeared to be the general meeting-point for all the 
snakes of this region. A few miles’ travel through a narrow, tortuous 

defile brought us in sight of Cache Valley. 
~ he short-notice given of this important valley in my report of last 
year, although wholly from information received, was very nearly correct, 


/ 


GEOLOGICAL SURVEY OF THE TERRITORIES. — 243 


varying slightly in the dimensions only. It lies north and south, a 
portion being in Utah and a portion in Idaho, though the boundary 
between these two territories does not appear to be well known in this sec- 
tion. Its length, north and south, is about sixty miles, and its width 
from three to twelve, averaging about seven or eight. Itis well watered 
on the east side by numerous creeks which rush down from the Wah- 
satch Mountains; the northwest portion is traversed by Bear River. 
Beginning at the south end and moving northward along the east side 
we arrive at these streams in the following order: Little Bear (or Muddy) 
River; eight miles farther, Blacksmith’s Fork; one mile farther, Spring 
Creek; two and a half miles farther, Logan’s Fork; eight miles farther, 
Summit Creek; seven miles farther, High Creek; eight miles farther, 
Cub Creek; then turning northwest, at-a distance of ten miles we 
reach Bear River. Along the road, where it crosses these streams, 
there is generally a little village, the entire valley containing a popula- 
tion of some four or five thousand. Logan and Smithfield are the prin- 
cipal vilages. 

_ A little south of Logan, Brigham Young, at the time of our visit, 
was having inclosed a considerable area of land for grazing purposes, 
where he is introducing some improved stock, chiefly Devonshire. 
‘Some of the village wards also have land here, which they are inclos- 
ing for stock-raising. Each town has one or more herds of cows, which 
are daily driven to the pasture by a herder, who has charge of them; 
for example, Logan has two herds, amounting to about 500; Providence, 
one of 275; Millville, one of 200; and Smithfield, one of 300: The 
area of land under cultivation is not large, not exceeding one-sixth of 
the area of the valley; but this is in part owing to the fact that stock- 
raising is the principal business, the valley affording, especially in the 
northern part, some excellent grazing fields. Wheat is the chief crop 
raised, the variety usually sown being what is called the Taos wheat ; 
club-wheat is also used, but appears to require richer soil and more 
water than the Taos variety, hence it is not generally cultivated. I 
noticed some Indian corn growing, but the climate is rather too cold for 
it. No fruit-trees, so far as I could ascertain, have yet come into bear- 
ing, though a number of apple-trees, and some pear, plum, and peach 
trees have been planted. Gooseberries and currants appear to grow 
well and produce an abundance of fruit; the native currants, when 
transplanted and cultivated, make fine, large bushes, and bear abundant 
crops. Oats, barley, and the hardier vegetables can be grown without 
difficulty. 

But a serious drawback to agricultural progress in this valley is the 
grasshopper scourge. At the time of our visit the lower half of the 
valley was literally swarming with the Caloptenus spretus, or “hateful 
grasshopper.” Nor was this the only insect pest with which the farmers 
of this valley seem to be troubled; for throughout its entire length, the 
bushes and bunches of grass were often seen covered with “locusts,” 
probably a variety of the Cicada septemdecem. I noticed these insects 
so abundant in some places that hundreds could have been gathered 
from a single bush or bunch of rye-grass. In the northern part we also 
encountered the large brown “ cricket,” Anabrus simplex, in immense 
numbers. ; 

Bear River is situated in a deep narrow valley which it has cut through 
the northern part of the valley in a diagonal direction from northeast to 
southwest. As this stream affords an abundant supply of water, if a 
canal of some twelve or fifteen miles long was constructed to draw off 
its water, a large area of the northern portion of the valley, which is 


244 GEOLOGICAL SURVEY OF THE TERRITORIES. 


without small streams, might be irrigated, and probably as much as 
10v,000 acres added to the cultivable area. ‘Timber in abundance can 
be obtained i in the mountains to the east, and good building-stone can 
be obtained near Logan. 

In passing from this valley northward to Marsh Valley, we cross the 
divide between the Salt Lake Basin and the Snake River Basin, yet the 
dividing water-shed does not appear to interrupt the north and south 
direction of the ridges or valleys, and we only knew we were crossing 
the divide by noticing, after passing over alow, broad, transverse ridge, 
running from the mountains on the east to those on the west, that the 
direction of the water had changed. From this point to Carpenter’s 
Stage Station, on Marsh Creek, (a tributary of Port Neuf River,) for 
most of the way we passed through narrow valleys, and over low, smooth, 
rounded ridges, generally covered with artemisia, and without water 
sufficient for irrigating even the small areas sufiiciently level for culti- 
vation. 

Marsh Valley is but a small opening, being about one mile wide and 
four or five miles long. It is covered with a thick sward of rich nutri- 
tious grass, and will afford a good grazing field for a small herd. Some 
_ two or three families reside here, but more on account of the business 
resulting from the travel that passes here than for the purpose of farm- 
ing or stock-raising. 

From Marsh Valley to the Port Neuf, the country is rolling and broken, 
but not rugged, consisting of a succession of rounded hills and short 
ridges, which are smoeth, without trees of any kind, and mostly covered 
with a scattering growth of stunted artemisia. Here and there the 
dark basaltic rocks show themselves above the surface. 

The valley of the Port Neuf is a narrow winding canon, the greater 
portion of its level surface consisting of a bed ot columnar basalt. At 
one or two points there are small openings sufficient for one or two small 
farms; but with these exceptions, it is of no value in an agricultural 
point of view. This valley opens into the broad Snake River Plain. 

As I shall reserve the discussion of the agricultural capacity of this 
broad plain for a future report, I will continue the notes of our immedi- 
ate route, simply stating at the end my conclusion in regard to the eas- 
tern portion of it. 

Leaving the banks of the Port Neuf we struck across the plains to 
Ross’s Fork. The plains are broad and generally level, and very dry. 
Between these two points there is but one small stream ; therefore, 
unless water can be brought from Snake River, which is some twelve or 
fourteen miles distant, there would seem to be no chance to irrigate it. 
The mountains to the Tight recede from our road as we move north, so 
that the streams would “be compelled to flow a considerable distance 
over the dry plains. At this point the three promipent and somewhat 
noted buttes, which lie far to the northwest, come into view, and far 
beyond them the snowy crests of the Salmon River Range can be dimly . 
seen. 

The soil of this part of the plain is good, and only needs water to ren- 
der it very productive and excellent farming land. JRoss’s Creek is a 
swift-running stream some 20 or 30 feet wide, and affords sufficient 
water to irrigate some three or four thousand acres of land. At the In- 
dian agency which is established here some attempts in this direction 

have been made, which I believe have been attended with success. 

- As seen from the point where the road crosses this stream, the coun- 
try to the north and west is mostly an open, level plain. ‘To the east 


GEOLOGICAL SURVEY OF THE TERRITORIES. 245 


are high, smooth, and rounded foot-hills, behind which arise loftier mount- 
ains, from which the snow had not disappeared at the time of our visit. 

From here we moved northeast some fifteen or sixteen miles to Fort 
Hall, not the old Fort Hall of the maps, situated on the west bank of 
_ Snake River, but the new fort built east of the river, about.thirty miles 
from the old locality. Traveling up the little stream for five or six 
miles we found it somewhat closely hemmed in by the hills, yet here 
and there affording small areas of level bottom-land covered with a lux- 
uriant growth of grass. The rest of the distance, some eight or ten 
miles, was taken up in ascending and descending the lofty foot-hill we 
had to cross to reach the fort. Here we had one of the finest exhibi- 
tions I had seen of those smooth, peculiar hills which look so much 
like the folds in alady’s dress. This comparison may appear somewhat 
ludicrous ; but while gazing from the summit of this ridge on the end- 
less succession of the smooth, grassy ridges and hills piled and rolled 
together to form the large ridge, distance giving the grassy covering 
the appearance of velvet or silk, the colors of the folds varying as if by 
the difference in reflection of the light, the resemblance to the folds of 
rich cloth was more than simply fancy. Over an area of perhaps one 
hundred square miles I saw but three or four trees, standing as lonely 
remnants of the forests which once doubtless covered this entire area. 
It is evident that these hills and ridges were once rugged, and that by 
the action of water, snow, ice, &c., the rocks have gradually been worn 
down until the surface has been covered with the triturated débris, thus 
giving it the present smooth appearance. That these rugged spots 
which remain are covered with forests is evident to all who have trav- 
’ eled over the Rocky Mountain region; and I think we have sufficient 
evidence to show that these now smooth ridges, before their former 
ruggedness was worn down, were also covered with forests of pine and 
fir. Here I also observed that there was presented in a marked degree 
that peculiar arrangement of colors belonging to elevated regions; one 
side and the top of each of the descending ridges being pale-green or 
gray, while the other side or part of it was of a deep grassy-green. 
These variations tell us very plainly the direction of the prevailing 
winter winds; for the greener spots mark the place where the snow 
lay the longest, showing thereby that they are on the side opposite that 
from which the wind came. 

Fort Hall is situated among the mountain foot-hills on a little stream 
that makes its way northwest to Snake River. A small area of ground 
may be irrigated around it, probably not more than five or six hundred 
acres. Thé officers in charge of the post are making some experiments 
in horticulture and agriculture, and though laboring under many dis- 
advantages, the vegetables and cereals I saw growing there at the time 
of our visit indicate that wheat, oats, potatoes, cabbages, turnips, and 
pease can be produced without any serious difficulty on account of the 
severity of the climate. 

The dryness of the air was found to be very great here, the difference 
between the wet and dry bulb reaching, in some cases, 34°, and stand- 
ing generally each day during our stay at from 25° to 28°. During the 
middle portion of the day we found the rays of the sun hot and oppress- 
ive when there was no breeze blowing. 

As a general thing timber is scarce throughout this entire region, 
that of value for lumber being found only on those mountains whose 
summits are covered with snow all or a great part of the summer. 
And here, as elsewhere in the whole Rocky Mountain belt, when the 
forest is once destroyed it is never restored. Most of the best lumber 


246 GEOLOGICAL SURVEY OF THE TERRITORIES. 


used in the buildings at the fort, as I am informed by Captain Wilson, 
the polite officer in charge of the fort, was brought from Truckee, Cali- 
fornia, and most of the other sawed lumber from Corinne. About fifteen 
miles to the southeast some tolerably good pine and fir timber can be 
obtained in the mountains. 

Leaving the fort we traveled northwest down the valley for a few 
miles, to where it opens into the Snake River Plain. This plain on the 
east side of the river is here somewhat interrupted by sand-dunes, 
which have been piled up by the wind, reminding one very much of 
those along the southern shore of Lake Michigan, a little east of Chi- * 
cago. Some of these were of considerable size, some entirely bare, but 
as a general thing they were covered with a scanty growth of ‘such 
plants as covered the surrounding plain. 

Blackfoot Fork, which comes in here from the northeast, at the time 
we crossed it contained a considerable volume of water, sufficient to 
irrigate several thousand acres of the level plain through which it runs. 
At this point it is some ten or twelve yards in width, and averaged 
about three feet in depth, but on my return, a month later, the volume 
of water had decreased at least one-half. The hills to our right showed 
very distinctly the direction and force of the wind, which at certain 
seasons of the year must be quite severe. The mountains to the east 
recede, and appear to be lower than those farther south. 

After crossing this stream we entered upon a broad, open plain, which 
is an almost uninterrupted level, covéred with grass and sage-bushes. 
Eleven miles brought us to a small stream called Sandy Creek, which 
runs in from the northeast. On each side of it, for a short distance, are 
heavy accumulations of sand, which have been blown or washed into 
rounded ridges and gradually flattened. Yet these sandy points are 
mostly covered with ranker vegetation than the surrounding level. The 
hills to our right, while receding from our course, decreased in height, 
sending downward toward the west long, smooth slopes furrowed with 
shallow ravines, often so regular and straight as to remind one of the 
‘‘Jands” in the wheat-fields of Pennsylvania. But all around, as far as 
the eye could reach, were treeless mountains, hills, and plain, bare, with- 
out a grove beneath which a shelter might be found from the rays of 
the sun, nothing to remind us of arborescent vegetation except the little 
fringe of willows and cotton-woods that marked to our left the course 
of Snake River. 

From Sandy Creek to Taylor’s Bridge, at the crossing of Snake River, 
the broad, level bottom is composed of a rich sandy loam that needs but 
the addition of water to render it most excellent farming land. This 
bottom, on the east side, is some six or eight miles wide, and stands at 
a very moderate height above the ordinary water-level of the river. It 
is flanked on the east by a terrace some fifteen or twenty feet above the 
bottom. 

At the time we crossed the river, going north, it was quite full, and 
rushed madly through and over the basaltic rocks that at this point line 
- its channel. The average width is about one hundred and forty yards, 
and the average volume of water it sends down is probably 3 feet 
deep by 400 feet wide, running at the rate of 4 feet per second, making 
4,800 cubic feet per second. At the time we first crossed it, (June 24,) 
the volume of water was more than double this, but on my return, nearly 
a month later, it did not exceed the estimate I have given. This amount 
of water will irrigate nearly a thousand square miles of land sufficiently 
for ordinary crops, such as the cereals. “And as the general level is not . 
far above the average water-level, the canals need not be of very. great 
length, and therefore the water that returns to the channel can be used 


GEOLOGICAL SURVEY OF THE TERRITORIES. 247 


again and again, thus increasing the area that may be rendered product- 
ive by it. 

From this point we could see the sharp granite spires of the Three Tetons, 
some thirty or forty miles to the northeast, standing like grim sentinels, 
guarding the broad desert plain that surrounds their base. While 
encamped near the bridge, quite a rain-storm came up from the southeast. 
A few short, stunted cedars, of considerable size, grow along the banks 
of the stream wherever the basaltic rocks come to the surface. 

Judging from the number of returning wagons we met from day to 
day, the freight from Corinne to Montana must be large, but much of. | 
this business will be cut off when the Northern Pacific Railroad is 
finished. Yet I think a railroad from Helena to Salt Lake Valley would 
ultimately pay ; for if Snake River Valley was irrigated, as it might be, it 
would support a large population, and such a road would give Montana, 
and all this region, the advantage of both roads, thus bringing them in 
competition. 3 

Having crossed the river, we moved up the west side over the margin 
of the broad plain, which here spreads out to the west thirty or forty 
miles, apparently as level as a floor. The soil is good, and the sur- 
face is pretty well covered with a mixed vegetation, but nothing larger 
than sage-bushes. As we moved northward, the mountains, which for 
a day or two had been dimly visible in front of us, began to loom up in 
formidable proportions, and, when we reached Market Lake, appeared 
to sweep around us in a semicircle, at a distance of forty or fifty — 
miles. Some fifteen or twenty miles to the east we noticed two — 
large buttes rising up abruptly from the plain, and having much 
the appearance of craters of extinct volcanoes, which they probably 
are, as this entire region seems to be underlaid with basalt. But on 
this point full information will doubtless be found in Professor Hayden’s 
report, to which this is appended. The three buttes seen to our left at 
Ross’s Fork were now distinctly visible to the southwest. The entire 
width of Snake River Plain, along this portion of it, measuring east and 
west, from mountain to mountain, is about eighty miles. The river evi- 
dently overflows a portion of the plain here when there is a flood, and the 
water which is left in the depressions forms the lakes, as they are called, 
but which are really but large ponds. Market Lake is said to have re- 
ceived its name from the following circumstance: Formerly, at a cer- 
tain season of the year, bufialo, deer, antelope, and other species of 
game were accustomed to congregate here probably on account of saline 
matter deposited; and the hunters, when they found game scarce in 
other sections, would remark to each other, ‘‘ Let us go to the market.” 
There is now a stage-station here, around which I noticed a large herd 
of cattle grazing, while at some distance out on the plain a number of 
antelopes could be seen quietly feeding. 

Soon after we had pitched our tents, the mosquitoes began to appear 
in vast swarms, and before sunset the numbers increased to such an 
extent that the air was almost black with them, but soon after night- 
fall all had disappeared. 

Here we left the river and struck northward across the plains for the 
mountains. After traveling two or three miles we entered upon a broad, » 
rough, slightly elevated ridge, composed of broken basalt, which has 
been elevated above the general level. This broad ridge, which does 
not have an elevation of more than forty or fifty feet, covers an area of 
about ten miles square, and, as there is no means of bringing water upon, 
it, it must remain unfit for cultivation. It is covered throughout with a 
scattering growth of gnarled sage-bushes. 


248 GEOLOGICAL SURVEY OF THE TERRITORIES. 


After leaving this we entered upon a dry desert tract, but sparsely 
covered with stunted artemisia. The sand in some places was very deep, 
and caused the wagons to drag heavily. This continued until we reached 
Kamas Creek, and even there the sand is often deep, and in some places 

cast up in long , low, rolling ridges. A few cotton-woods remain on the 
bank of this stream, but the bordering country has the most barren as- 
spect of any that we have seen. From this point to the mountains, 
some twenty-five miles distant, which form the dividing line between 
Tdaho and Montana, the character of the country was much the same as 
that just described. 

As we come near the foot of the range, the land begins to rise gradually, 
and is much better grassed than that we had passed over during the 
two previous days, and the occasional little streams that flow down will 
afford a means of irrigating small areas. But I think the climate is 
quite severe, and that only the hardiest cereals and vegetables can be 
grown; but ‘as there are no settlements here, no experiments in this 
direction have been made. 


CHAPTER IV. 
MONTANA TERRITORY.* 


Montana, with the exception of Alaska, is the most recently organized 
Territory of the United States. Embracing that region lying between the 
forty-fifth and forty-ninth parallels of north latitude and one hundred and 
fourth and one hundred and sixteenth meridians of west longitude, it 
contains an area of 143,776 square miles or 92,016,640 acres, extending 
from east to west about five hundred and fifty miles, and from north 
to south about two hundred and eighty miles. It is separated into two 
very unequal areas by the dividing range of the Rocky Mountains, 
which forms the southwestern boundary from the west line of Wyoming 
to the intersection of 45° 40’ north latitude and the one hundred and 
fourteenth meridian. Here it suddenly bends eastward for some dis- 
tance, and then runs north about twenty degrees west to the northern 
boundary of the Territory. About one-fifth of the entire area belongs 
to the Pacific slope, being drained by the head-waters of the Columbia, 
and four-fifths to the Atlantic slope, being drained by the Missouri and 
its tributaries. Extending from the mouth of the Yellowstone to the 
summit of the Bitter-Root Range, about two-fifths belong to the mount- 
ain region, three-fifths consisting of broad, open plains lying east of the 
Rocky Mountain Range. The mountain belt, which forms a broad mar- 
gin along the western end, has probably an average width (direct meas- 
urement from the summit ‘of the Bitter-Root Range to the east dank of 
the Rocky Mountains) of one hundred and seventy-five miles, running 
northwest parallel to the western boundary. Besides these two leading 
ranges and their interlocking spurs on the western slope, there are some 
minor ranges on the eastern side, which though comparatively small in 
extent are important in respect to the influence they have upon the 
course of the water-drainage and the form and direction of the prin- 
cipal valleys. In the northwest corner of Wyoming, near the point 
where the dividing range makes the western bend and passes out of 
this Territory, is what appears to be the great mountain nucleus of this 


*The substance of this chapter has been furnished the Agricultural Department, 
and will appear in the Report of that Department for 1871. 


+ 


GEOLOGICAL SURVEY OF THE TERRORS 249 


region. Here the Big Horn, Yellowstone, Madison, Snales and Green 
Rivers have their origin. From this mountain center a number of 
short ranges run northward, giving direction to a number of streams, 

and appearing like evidences of the abortive efforts of the elevating 
force to keep up its direct course. Along the southern border the Snow 
Mountains—the northern extension of the Big Horn Range—penetrate 
for a short distance into the Territory, compelling the Yellowstone to 
make a grand detour in order to sweep around the northern flank. In 
the central portion are the Belt, Judith, and Highwood Mountains, 
forming an irregular group of short and broken ranges, around which 
the Missouri sweeps to the northward before entering upon its long 
eastward stretch. These also have a central nucleus” situated in the 
western part of Meagher County, where the Musselshell, Judith, Deep, 
and Shields Rivers take theirrise. North of the Missouri River the plain 
is interrupted only by Bear’s Paw, the Little Rockies, and occasional 
Tetons. . 

As a general thing the mountains of this section are less rugged than 
in the Color ado group; although here and there are sharp, angular peaks, 
yet as a general rule, instead of the rocky, jagged sides and serrated 
crests, there are smooth slopes and rounded outlines. The elevation of 
both mountains and valleys, as will be seen from the list of elevations 
presented below, is much less than that of the great mountain belt of 
Colorado and Wyomin g, and even that of New Mexico, Utah, and Nevada. 
But before presenting these statistics, I would call attention to the re- 

markable bend of the chief range at the southwest angle of the Terri- 
tory. Traversing as it does three sides of a trapezium, it gives both to 
the eastern and western basin the form of a cul de sac, the one inclosing 
the head-waters of Clark’s Fork of the Columbia, and the other the trib. 
utaries of the Jefferson. The former descends as we move to the north- 
west, while the latter descends toward the northeast. The dividing 

range, growing lower and lower from its entering angle, does not resume 
its usual altitude until it approaches the northern boundary of the Ter- 
ritory. 

The following list of elevations, chiefly along a line running east and 
west near the middle of the Territory, will enable us to form a pretty good 


idea of the general elevation. 


ELEVATIONS ABOVE THE LEVEL OF THE SHA. 


Feet 
Fort Union, at the mouth of the Yellowstone..........-..--..--- 2, 022 
SOc eH mwa DEG tap OTL TULIPS GSN Ne NN lal Aa NS ae a) 2,388 | 
erie MOM ease a aaa gs eis ac alS hs Gis ical sae lege 2, 780 
BI Ole TOL NSU LVL GRAYS eet Oe ate a ie nie ccae chlo a eG 4,114 
Hrenvyplssutn cl! CIS NaS oo ies ee oe ae a ae os hd ae ic a Ne eke a 6, 519 
Blackfoot Fork, near the mouth of Salmon Trout Creek.--..... 3, 966 
Blackfoot Fork, near its junction with Hell Gate River.......-.. 3, 247 
Missoula River, near the mouth of St. Regis de Borgia......-.-- 2, 897 
Summit of Coeur de Alene Mountains, at “Coeur oe Alene Pass.. 5, 089 
ort, Owen, ii ietiver MOOmey alley +. cee. ce re wee nw ean 3, 284 
Deer Lodge City om Ween Mouse Valley. yet ee 4, 768 
Prickly Pear Vv alley, near Helena Besa 2 ani mI cn Memb AN Gop Ss) 4, 000 
Little Blackfoot, or coer ene ee ee 6, 2838 


From this list we see that the western or intermontane basin reaches 
a depression less than 3,000 feet above the level of the sea; and that 


_ the least altitudes of the eastern slope range from 4,000 to 2,022 feet 


above the level of the sea. Comparing these with the altitudes of the 


250 GEOLOGICAL SURVEY OF THE TERRITORIES. 


other Territories we find the difference much greater than would be an- 
ticipated. For this purpose I give here the elevations of a few points: 


Feet. 
Albugqiierque- Nem iterdtor s: '- = 2... ieee ee a 5, 032 
Santa Mey NewoMexdeoe:. «2-262 42 ie ae ee ae ee 6, 840 
DenyersWclorador ole eae scl sete eran) atemvenneey a). = eee teen 5, 300 
Green River, at the railroad crossing.--..--...-----..-------- 6, 140 
Salt Wake iby Pw eee UR Oo) LAS CBN tes ane 4, 350 
Whe Velgumi@lolt simile. 25) ee lve cir ea ete ee LM ta, ot 2 eae 
HORT MEATAIINCL ot eee pe a eee oe a eee ee 2) ee ee 
Sweet Water River, at Independence Rock.--...-.-----------. 5, 998 
SHOT CY, d EEISIS (OL Ane ey SRE FA LS Fe cs a Sines 7, 857 
Ao ona Mel VOOUG) . = 2. + eee ete eels ae ca eer 4, 200 


From this we see that even the-lowest point of the Great Basin, near 
the “Humboldt Sink,” is 1,120 feet above the mouth of the St. Regis de 
Borgia and 733 feet above Fort Owen. This very important fact in 
regard to the physical geography of this Territory will serve as an ex- 
planation of its comparatively mild climate, notwithstanding its north- 
ern latitude. 

The entire Territory may be divided into four sections, each having 
its water system and natural boundaries tolerably well defined, as fol- 
lows: The northwestern, which includes all that portion lying between 
the Rocky Mountain and Bitter-Root Range; the southern, which is 
drained by the three forks of the Missouri; the southeastern, which is — 
drained by the Yellowstone; and the northern, which includes the val- _ 
leys of Milk and Missouri Rivers, and the bordering plains. Mr. Gran- 
ville Stuart designates a fifth basin, embracing the country drained by the 
Boulders and the lower portion of the Jefferson; but for the present 
purpose, the foregoing division is probably the best, his fifth basin bemg 
considered as a portion of the southern section. 


THE NORTHWESTERN SECTION. 


This section, as before stated, is situated between the Rocky Mount- 
ain Range on the east and the Bitter-Root and Coeur d’Alene Mount- 
ains on the west, extending from the forty-sixth parallel of Jatitude to © 
the British possessions, and including all of Missoula County and the 
southern half of Deer Lodge County. It is about one hundred and fifty 
miles wide and two hundred miles long, containing an area of thirty 
thousand square miles; and is traversed from southeast to northwest 
by Clark’s Fork of the Columbia, and its leading tributaries. 

The northern part is variable in character, having some open prairie 
country and valleys of limited extent, while much of it is broken and 
rugged and covered with heavy pine forests. It is drained by Flathead 
River, which has three leading tributaries—Maple River, coming from 
the northwest; Flathead, from the north; and another branch from the 
northeast. Near the forty-eighth parallel this stream expands into a 
beautiful lake about thirty miles long and ten or twelve miles wide. 
Below this it is of considerable size, flows in a southwest direction for 
about fifty miles, and joins the Missoula, the two forming Clark’s Fork.* 


*The main branch of this stream has a number of different names, From the junc- 
tion of Deer Lodge and Little Blackfoot Rivers to the mouth of Big Blackfoot, it is 
called Hell Gate River; from there to the mouth of the Flathead it is called Missoula, 
ae Wee it retains the original name of Clark’s Fork, though it is sometimes called 

0. Dm. Ae 


GEOLOGICAL SURVEY OF THE TERRITORIES. © 951 


On the west side of the lake, near its southern limit, starts a range of 
broken and somewhat rugged hills, which extends northwest to the 
vicinity of Kootenay River, in the extreme northwest angle of the Ter- 
ritory. This range, which forms a divide between the waters of Maple 
River and those of Clark’s Fork, is mostly covered with dense pine for- | 
ests. The country, in the vicinity of Kootenay River, is composed 
chiefly of high rolling prairies, through which this stream, here some 
two or three hundred yards in width, flows with a moderate current. I 
am informed by Mr. Bonner, who I believe owns a ferry here, that the 
immediate valley of this river is from five to fifteen miles wide and 
. well grassed, affording excellent pasturage. Potatoes have been grown 
there for several years, the tubers being large and quality good; and 
although the cereals have not been tried, he thinks the climate would 
present no serious obstacle to their production. The Kootenay Indians, _ 
for the last five or six years, have been raising potatoes fer food, but 
until last season have obtained their seed from the whites, having too 
little foresight to lay up a supply for this purpose, until forced to do so 
by the refusal to furnish them any longer. 

For twenty miles Tobacco Creek, a tributary of the Kootenay, runs 
through an open prairie country. It rises in the forest-clad range before 
mentioned and runs northwest. Maple River, for most of its course, to 
its junction with the Flathead, traverses a forest-covered section, its 
valley being narrow, until it enters the prairie. North of the lake there 
is a prairie some thirty miles in length, north and south, and fifteen to 
twenty miles wide, one arm of which extends northwest, in the direction 
of Maple River, and the other north. ; 

On the east side of the lake the country is broken and mountainous, 
rising rapidly to the dividing range of the Rocky Mountains, which in 
this section presents some sharp and rugged peaks, its western side cov- 
ered with heavy timber, while its eastern slope, which is less. rugged, 
has only a growth of scrubby pine, which disappears toward the base. 
The region immediately around the northwestern angle of the lake is 
thickly wooded with pine, tamarack, and fir. The western shore is 
bordered by rocky hills covered with forests the greater part of its 
length; near the southern extremity these retire, leaving some open 
prairie country, which is well grassed over, and where some arable land 
may be found, but the extent is unknown. The eastern shore appears | 
to be closely hemmed in by high and somewhat rugged hills, affording 
but little level land adapted to agricultural purposes. Below the lake 
Flathead River is from one hundred to one hundred and fifty yards in 
width, averaging 2 to 3 feet deep, and descending at the rate of 10 feet 
to the mile, at one point having a fall of 12 or 15 feet. 

Hot-Spring Creek, which rises some distance west of the lake, flows 
southeast about twenty-five miles and enters the Flathead opposite 
Pend d’Oreille Mission. Along and in the vicinity of this stream there 
is some level and open country where good farming land can be found. 

The valleys of Flathead and the little streams which enter it from the 
east afford some arable lands, but these are mostly in small detached 
areas, in one of which Pend d’Oreille Mission is situated. This central 
portion of the section under consideration is occupied by one of the 
reserves for the Flathead Indians. The following statement in regard 
to this mission by Colonel Wheeler, who visited it last season, may not 
be uninteresting: 

“¢ We were surprised at the extent of the farming operations carried on. 
All the grain and corn, potatoes and other vegetables, cattle and horses, 
butter and cheese needed for several hundred persons, are produced 


252. GEOLOGICAL SURVEY OF THE TERRITORIES. 


here by the labor of Indians under the superintendence of the brothers. 
The mission, I believe, is entirely self-sustaining. We were told that 
wild grapes, plums, cherries, strawberries, and other small fruits grow 
in this valley in profusion and of excellent quality. This mission was 
established by Father De Smet, and I understand is the oldest in Mon- 
tana. After an hour’s rest and a bountiful dinner, we were invited to 
visit the sisters’ school and department of the mission. The residence 
and school-house of the sisters and girls under their charge is made of 
hewn logs, is two stories high, about 60 feet long, contains six rooms 
above and six below, and has a wide hall running the whole length in 
both stories. It is exceedingly neat, airy, and comfortable. 

“The most interesting part of our visit was the examination of the 
children in their studies. There are seventeen Indian and three white 
girls, varying in age from three to twelve years. They were all dressed 
alike in neat calico, faces clean, hair smooth, and eyes bright. Although 
somewhat bashful before strangers, they. acquitted themselves very 
ereditably in spelling, reading, writing, and arithmetic. The penman- 
ship of some would do credit to any young lady.. They seemed very 
foud of their instructors, and obeyed every request very cheerfully. 
While we were there an Indian and his wife, with his little girl, rode up to 
‘the mission. Hesaid they had brought their child to the sisters’ school, 
from near Colville, in Washington Territory, a distance of three hun- 
dred miles. The father and mother were assigned comfortable quarters, 
and bountifully fed, and their horses taken care of. The little girl was 
given in charge of the sisters, and an hour after appeared with the other 
girls, nicely washed and dressed as any of them, and apparently as 
happy.” 

I have given this interesting narrative not only as showing something 
in regard to the agricultural resources of that section, but also on ac- 
count of the lesson it teaches in regard to obtaining influence over the 
Indians. 

Jocko River runs through one of the prettiest valleys in this entire 
section. Itis in the form of a triangle, its sides, which are nearly equal, 
being from ten to twelve miles long. It contains about fifty square 
miles, most of which can be easily irrigated, and which, if properly cul- 
tivated, will produce bountiful crops, the soil being quite fertile. Sur- 
rounded by lofty mountains, which form its triangular walls, little rills 
flow down into it from all sides, furnishing a never-failing supply of pure, 
clear water. Last year the Indian agent, with but little help except 
that of the squaws, (the Indian men being generally ‘too lazy to work,) 
raised over 1,000 bushels of potatoes, 1,500 bushels of wheat, 300 bushels 
of corn, &c.; his corn, as he reports, yielding as much as 75 bushels to 
the acre. 

This portion of the section has but few settlements in it, Jocko Valley 
being the principal one; north of the lake but little is known in regard 
to it, but upon many of the little streams which flow down from the 
mountains will be found small arable areas amply supplied with water 
for irrigation. And here, as well as on the western side of the section, 
many of these minor valleys are covered with forests of pine, fir, and 
other varieties of coniferous trees. 

The southern district, which is somewhat quadrilateral, is surrounded 
on three sides by leading mountain ranges, the Rocky Mountain divide 
forming its southern and eastern boundary, and the Bitter-Root Mount- 
ain its west. It has three principal streams, which converge toward the 
northwest angle, where they unite to form the Missoula River, as follows: 
the Hell Gate, (the continuation of Deer Lodge,) rising in the southeast 


GEOLOGICAL SURVEY OF THE TERRITORIES. 253 


angle, runs northwest diagonally through the district; the Bitter-Root, 
rising in the southwest angle, runs north near the western border ; and 
the Big Blackfoot, rising in the Rocky Mountains, to the east, runs ‘west- 
ward along the nor thern border. All that portion lying south of Hell 
Gate River is traversed north and south by a series of somewhat paral- 
lel ridges, separated by intervening valleys of greater or less width, each 
drained by one leading stream, which runs north to the great diagonal 
channel. The most important i these valleys, in an agricultur al point 
of view, are those watered by the Deer Lodge and Bitter-Root Rivers. 

Deer Lodge Valley is about forty miles long, with an average width of 
twelve miles: that can be irrigated and cultivated, The sur face i is a broad, 
level bottom, occasionally flanked by terraces. which, at most points, can 
be reached byi irrigating-ditches afew miles in length, as the descent of the 
stream is quite rapid. The soil is good, being covered in a natural state 
by a heavy growth of-rich and nutritious grasses, and when properly 
irrigated and cultivated will yield abundant crops of such things as are 
adapted to the climate. Not only is it supplied with water by “the cen- 
tral stream, which traverses the entire length of the valley, but there 
are quite a number of smaller rivulets which - flow in from the mountains 
to the right and left. Below Deer Lodge City the hills close in upon the 
valley, leaving a narrow, fertile bottom, which does not average more 
than three- fourths of a mile i in width. 

As the elevation, which is but little nis 5,000 feet, is greater than 
that of the valleys ‘lying west of it, and most of those east of the range, 
_its climate is less favorable for agriculture than some other portions of 
the Territory. Mr. Granville Stuart, of Deer Lodge City, who is a very 
careful observer, gives the following as the monthly means of the tem- 
perature for 1868 and 1869: 


o w rae Py Bb 
si g j a 2 3 4/2 ne 
_ Year. s ze 3S = 5 SI I a 8 | Aes 
Sifveseibid eee lok Wig ule Sel Bork Eh Evian aeuliee 
Bo Na leet Wits Wet alive, ils. oi yeas Wg (iced y | tel aN sic all 
Wee aaa HEB Ae serene —1.5 | 25. 35.4 | 42.5 | 47. 59.2 | 61. 59. 50. 59.7 | 28. 26. 7 41. 
HREM ARs fees ess 20.4 | 24.6 | 24. 42.6 | 58.28 | 69.7 | 66.5 | 63.4 |-54.1 | 35.7 | 34.2 | 24.2 40.5 


This gives the yearly mean of the temperature for two years 40.7, 
and the mean of the seasons as follows: spring, 41.6; summer, 69.7 ; 
autumn, 43.1; winter, 19.9. Although 1868 gives a higher mean than 
1869, yet January of the former appears to have been unusually cold. 
This list also brings out the fact that the seasons are very variable, 
which is really the greatest climatic impediment to agriculture im these 
mountain regions. For example, there is a difference of 21.9 between 
the means of PJ annary for the two years; of 11.4 in March, that of 1868 
being in excess, while in May, 1869, is i. 1 in excess, this holding good 
through the summer months; but in October that of 1869 falls 249 ~ 
below that of 1868; whereas the means of the next month show 1868 
6.1 below 1869. Such variations show that the mean annual depression 
of the thermometer is caused not so much by a uniformly rigorous 
climate, as by sudden cold spells, which, though continuing but a short 
time, serve to bring down the means. For example, we may feel confi- 
dent from this table that some time during the month of October, 1869, 
there was a sudden change and a cold spell. It must be remembered 
that this record, which shows a somewhat rigorous climate, was made 
where the elevation is 4,768 feet above the level of the sea, and is con- 


‘954 GEOLOGICAL SURVEY OF THE TERRITORIES. 


‘sequently below the mean temperature of the principal agricultural 
areas of the Territory; and, in addition to this, its peculiar position, as 
will be shown hereafter, probably renders it more exposed to winter 
storms than other portions of the section. 

The record of the rain-fall has not been kept for a sufficient length 
of time to obtain a correct average for the different seasons; but the 
following may be of some interest, as giving an idea of the amount: 


5 H fa Py 

Year, 5 = us| = ‘ é =I 3 2 a q 

Ba PORE MOTEL CY et 0 RI ebb ee eS A 

FES) eyed geet Wit use) oh St cil laske, fa PERERA eel conan 
FUR chess ek I aaa A a pm ity ns a 1.00} .25| .3 fi 6 .56 
S15); Daal aa ae eee 64 | 1.05 | 1.11 | 1.47 | 3.55 13.85] 198] .68/1.62| .66/1,17| .42 
SF Te ee ee eee Gil 88.) BY SOM |) 2439) 150.00 lange ve foie ola el le ae 


This shows a total for 1870 of 16.50 inches, the snow of winter being 
reduced to the rain standard; and for the growing season, April to 
July, 9.15; or taking the average of these months, in 1870 and 1871, 
(July, 1869,) 7.04 inches, which corresponds very closely with the rain- 
fall in Salt Lake Basin for the same months. 

Such cereals as wheat, oats, rye, and barley, and such vegetables as 
turnips, potatoes, cabbages, &c., can be raised here without any serious 
difficulty on account of climate. The valley is pretty well settled along 
its lower half. Deer Lodge City, one of the principal, and probably the 
prettiest, town of the Territory is here. 

Little Blackfoot, coming down from the dividing range and having 
to wind its way through a mass of heavy hills, is hemmed in closely for 
most of its length, and affords but a narrow strip of arable land; but 
wherever a level space is found the soil is rich and productive, and 
covered with a green carpet of tall, rich grass. I noticed timothy 
growing wild along this stream, the citizens contending that it is from 
seed brought by Lewis and Clark. This valley, for part of its length, 
affords a roadway for travel and stage line from Helena, by way of 
Mullen’s Pass, to Deer Lodge and points west. The bordering hills are 
generally well timbered. 

Moving west from Deer Lodge River there is, as has already been 
stated, a succession of ridges and valleys running north and south 
parallel to each other. Of the latter, Flint Creek Valley is the first we 
reach. It is divided into two parts, an upper and a lower, by a gorge 
some four or five miles long. The upper portion is about ten miles 
long, with an average width of four or five miles, including that part 
of the bordering hills which can be irrigated. The lower part is about 
fifteen miles long, and, counting the valleys of both forks, has an ave- 
rage width of about five miles. The climate here is rather milder than 
that of Deer Lodge. The grazing is good. It is but sparsely settled. 

Passing westward, across another ridge, we enter the narrow and 
rough valley of Stone Creek. This stream is of considerable length, 
and is about the size of Deer Lodge River, (60 to 75 feet wide,) very 
rapid and rough, flowing over bowlders and led ges. Very little far ming 
land is to be found along its banks, but the stream will furnish excel. 
lent water power, and timber is abundant along the bordering hills. 

The next and last valley toward the west is that of Bitter-Root 
River, which contains some of the finest agricultural lands in the 
Territory. From-the mouth of the caiion, where the stream emerges 
from the mountains; it stretches directly north to Hell Gate River, 


oe 


GEOLOGICAL SURVEY OF THE TERRITORIES. 255 


a distance of eighty miles. From Fort Owen, south, it varies in width 
from four or five to fifteen’ miles, averaging some nine or ten; north 
of this it is somewhat narrower, its average width not being more 
than five miles. It is all well adapted for agriculture, the soil being a 
rich, dark loam, mingled with sand and gravel; and where undisturbed 
by the farmer’s implements is covered with luxuriant grass, supplying 
most excellent pasturage. In addition to the central stream, which is 
of considerable size, there are a number of small creeks and brooklets 
which flow into it mostly from the ridge to the east, of which the 
following may be mentioned in the order they come, beginning at the 
head of the valley: Weeping Child, Skarkahoe, Gird’s, Willow, Burnt 
Fork, Three-Mile, Six-Mile, and Bogues Creeks, all entering from the 
east, and Nez Perces and Loulou Forks from the west. By proper 
efforts this entire valley can be irrigated and brought under cultivation, 
affording a rich agricultural area of at least four hundred thousand 
acres. As its elevation is much less than the valleys which have been 
mentioned as lying in the eastern part of the section, it has a much 
milder climate. But the difference in elevation will scarcely suffice as 
a sufficient explanation of the difference in climate between areas so 
near to each other; for here, especially from Fort Owen south, the val- 
ley will be free from snow and the weather comparatively mild, while 
other valleys, but a short distance north and of less altitude, are covered 
with snow, and the temperature several degrees colder. And thisis not 
a mere accidental occurrence of one season, but so common as to have 
been noticed by all who reside in or have remained in the valley for any 
considerable length of time during the winter. This may possibly be 
accounted for in this way: the general course of the winds in this 
country, I believe, is from the northwest ; Clark’s Fork (counting from 
the head of Deer Lodge Creek to Lake Pend d’Oreille) forms a continuous 
channel up which they may sweep in order to. make their exit from the 
section across the low gaps of the divide at the southeast corner. Bit- 
ter-Root Valley being narrowed below and shielded on the west by 
Bitter-Root Mountains, as a matter of course is much less liable to cold 
winds and storms. In consequence of the direction of the leading 
channel of this basin and the peculiar bends of the mountain-range 
here, reasoning @ priori we would be led to the conclusion that the 
heaviest accumulations of snow would be found on the south side, in 
the Big Hole or Wisdom Biver Basin, which I understand is the case, 
though Mr. Stuart gives from the «“ Backbone” down to the mouth of 
the river on Big Hole as one of the areas of least snow during the winter 
of 186162. 

The following statistics, though meager, will furnish some data by 
which to judge of the climate of this valley: 

Altitude of Stevensville, a few miles south of Fort Owen, 3, 412 feet 
above the sea; of Fort Owen, 3,284; and of Missoula, near the junction 
of Bitter-Root and Hell-Gate ‘Rivers, about 3,000 feet. 

The mean temperature of the seasons and year at Fort Owen and 
Stevensville, from the imperfect observations taken at these points, is as 
follows: 


Spring. |Sammer.}Autumn.| Winter. | Year. 


Tay cH Oy hae Nae MR pera coed on ES oR RS 48 69. 6 45. 6 24.9 47 
ASIMEIACevO SN a0 Ke) See yl or ha ee Me or ut 1 Yen 47 69. 6 45.5 27. 6 47.4 


256 GEOLOGICAL SURVEY, OF THE TERRITORIES. 


But one of the best means of judging of the climate, so far as its 
bearing upon agriculture is concerned, is a list of its productions. 

Not enly can wheat, oats, barley, rye, and the hardier vegetables be 
raised, but Indian corn, of a tolerably good quality, is grown here year 
after year in sufficient quantity to supply the wants of the valley; 
melons, tobacco, and broom-corn thrive; and such fruits as apples, pears, 
plums, and cherries mature their fruit. Peach-trees have been planted, 
and during the past season gave promise of maturing their fruit, but 
whether success has attended this effort has not been ascertained; but itis 
quite probable that after a few years’ trial and the trees become somewhat 
acclimated, they will succeed. Muskmelons, squashes, tomatoes, beets, 
earrets, and onions, of excellent quality and of large size, have also been 
raised. These facts give undoubted evidence of the comparative mild- 
ness of the climate in this northern latitude. 

The following sketch by Major Wheeler, the United States marshal 
of the Territory, who passed through this and the adjacent valleys in 
the early part of the autumn of 1870, will convey a better idea of the 
beauty and agricultural resources of this part of the section than a 
more lengthened deseription. Speaking of the farm of Hon. W. H. 
Bass, he says: 

“The large fields of wheat, corn, and potatoes, the vegetable-garden, 
and especially the flower-garden, excited our admiration. We saw fifty 
acres of wheat, averaging 40 bushels to the acre, and twenty acres of 
corn, averaging 50 bushels, ripe and sound. Everything else was in the 
same ratio. IL brought away specimens of corn, onions, melons, tobacco, 
broom-corn, and even peanuts, which for quality and size cannot be 
surpassed anywhere. The flower-garden wasa gem of its kind, covering 
half an acre, and containing over a hundred varieties. The barn is 165 
feet long and 60 wide. The loft will hold 150 tons of hay, and the stalls 
below will accommodate the herd of dairy-cows, fifty of which are milked ~ 
and the butter churned by water-pewer obtained from a small stream 
which irrigates the garden,” (a very convenient contrivance, becoming 
quite commen in this Territory.) ‘The house is prettily located among 
shady pine-trees, a forest of which extends back to the mountains. A 
saw-mill furnishes the lumber used on the place. On the opposite side 
of the valley, ten miles away, is the farm of Thomas Harris, esq. He 
has seventy acres of wheat, fifty of which are raised without irrigation, — 
and the whole will average about 40 bushels to the acre; twenty acres 
being a voluntary crop. Mr. Harris has an orchard of apple and plum 
trees of four years’ growth, and they leok very thrifty, varying from 
6 to 9 feet in height. Frost has never injured a twig. He has a field of 
timothy-grass, from which he cut twenty tons of excellent hay, or two 
tons to the acre. Here were vegetables of the best quality in the great- 
est profusion—watermelons, muskmelons, squashes, tomatoes, beets, car- 
rots, and onions, of large growth.” 

Another gentleman, Mr. Bonner, who has resided in the country for 
several years, furnishes the following statement in regard to what he 
knows from personal observation of the productions of this valley, 
including the conditien of the crops and orchards the present sea- 
son; and in this he confines himself strictly to such things as will 
mature with ordinary care, not including those things which require ex- 
traordinary care and protection: wheat, oats, barley, rye, corn, (of 
such varieties as are usually raised in Western New York,) potatoes, (re- 
markably large and of a superior guality,) onions, turnips, pease, beans, 
tomatoes, melons, and cucumbers; also such fruits as apples, pears, 
plums, cherries, and the smaller kinds, these being now (August, 1871) 


» GEOLOGICAL SURVEY OF THE TERRITORIES. 257 


in fruit. A trial is being made with grapes and peaches, the latter, he 
understands, having some fruit on them, but the vines and most of the 
trees are yet too young to bear. 

The banks of the streams are lined with cotton-wood and pine, the 
former reaching a height of 60 to 70 feet; and the latter much larger 
and of a superior quality, sometimes 150 feet high, 3 feet in diameter, 
and perfectly straight. 

Although there is considerable timber between Deer Lodge and Bit- 
ter-Root Valleys, yet it may be considered an open country, furnishing 
a large number of extensive grazing-fields. And I may remark here 
that all of Montana from the east flank of the Belt Mountains to the 
Bitter-Root Range may be considered as one vast pasture. 

The valley of Big Blackfoot is some forty or fifty miles long, varying 
considerably in width at different points, sometimes expanding into a 
broad, undulating prairie, through which the stream winds, flanked on 
one or both sides with a low bottom of moderate width ; at others nar- 
rowing to what is called a canon, though having a valley-surface of 
from a half to a mile or more in width. Above the eaton is a very 
pretty open area somewhat elliptical in shape, cailed the Belly, which is 
about seven or eight miles long and.from four to. six wide. The area 
lying between the lower part of Blackfoot Valley and Hell Gate is an 
open and rolling prairie, well covered with grass. Above the caiion the 
spurs and ridges are generally covered with pine forests. What portion 
of this valley can be irrigated I was unable to learn ; but the descent of 
the stream being rapid, and it together with the tributaries from the 
north furnishing a large supply of water, not only the immediate bot- 
toms, but also a large portion of the terraces and lower slopes, can be 
reached and rendered tillable. ; 

The valley of the Hell Gate from the mouth of the Little Blackfoot to 
the lower end of the cation above Missoula is some sixty-five or seventy 
miles long. For the first twenty-five or thirty miles it is bordered by 
an open, rolling country, sometimes broken into high hills, the imme- 
diate valley being narrow. 

The cafion is about thirty-five miles long, having nearly all the way a 
narrow strip of good bottom-land from one-fourth to a mile wide. About 
thirty miles above Missoula the pine timber comes down into the valley, 
not a thick and massive growth, but in open groves of fine, tall trees, 
the soil throughout being good and yielding well under cultivation. 

The Missoula Valley will average about fifteen miles wide down to 
Frenchtown, a distance of some twenty-eight or thirty miles. From 
there to the mouth of the Flathead River there are open pine forests, 
among which some farms have already been made. This portion of the 
valley varies in width from three to eight miles. 

Although the altitude of this valley is less than that of the Bitter- 
Root, yet the climate is not so favorable to agriculture, being somewhat 
colder and more subject to frosts. This fact corresponds with the theory 
I have previously advanced, but possibly may be owing to other causes, 
as latitude, &c., but can hardly be owing to the proximity of higher 
mountains, as this is not the case. Thompson’s Prairie, Horse Plains, 
and Kamas Prairie, which lie along Clark’s Fork in the vicinity of and 
below the mouth of Flathead, contain considerable areas of good farm- 
ing lands, well watered and having a moderate climate. Some settle- 
ments have already been made in Horse Plains. 

The valley of Clark’s Fork from Thompson’s Prairie to Lake Pend 
d’Oreille is narrow and broken, having but few spots of arable land. 
It is well watered with little streams, which flow down from the hills to 


17 G@s 


258 GEOLOGICAL SURVEY OF THE TERRITORIES. 


the north, and is covered, for the most part, with forests of pine, fir, 
and tamarack. 
- It will be seen from the foregoing description of Hes northwestern 
section that it contains a considerable number of arable areas, and 
although, with the exception of Deer Lodge and Bitter-Root Valleys, 
these are of small size, yet in the aggregate they furnish quite an exten- 
sive agricultural surface. The detached form, surrounded by elevated 
ridges. and mountain ranges, secures to each an ample supply of never- 
failing streams for irrigation. The extensive forests of the west side 
will also prove a source of wealth whenever a means of distributing the 
lumber is furnished by railroad communication with the less favored 
sections in this respect. The climate is also much less rigorous than ~ 
would be anticipated in this northern latitude and mountainous region. 
I must acknowledge that I was agreeably disappointed in this respect. 
Mr. Granville Stuart estimates the ratio of farming, grazing, and tim- 
bered lands in Deer Lodge County as follows: Farming, one-eighth ; 
grazing, five-eighths; timbered, one-fourth. This estimate, with a slight 
change, "will probably apply to ‘the entire section, the proportion of tim- 
bered land being somewhat larger, and that of ‘erazing lands smaller. 


SOUTHERN SECTION. 


This section includes that portion of the Territory drained by the 
three forks of the Missouri, viz, the Jefferson, Madison, and Gallatin 
Rivers, and the regions as far north as Helena. It is bounded on the 
south, west, and partly on the north, by the Rocky Mountain Range, on 
the east by ‘the divide, which separates the waters of the Gallatin from 
those of the Yellowstone, and embraces Beaver Head, Jefferson, Madi- 
son, and part of Gallatin Counties. It is so irregular in form that it is 
difficult to estimate its area, but this probably amounts to fifteen 
thousand square miles. 

The physical geography of this section, and especially the mountain 
regions surrounding it, is very enteresting, as here some of the great 
rivers of the West have their origin. Here the great Missouri, which 
traverses an area of sufficient size for an empire has its origin. In 
the mountain area, in the extreme northwestern corner of Wyoming 
Territory, which borders on this section, the Big Horn, Yellowstone, 
Madison, Green, and Snake Rivers all take their rise, the first three 
finding an outlet for their waters through the Mississippi to the Gulf 
of Mexico; the next through the Colorado to the Gulf of California; and 
the last through the Columbia to the Pacific Ocean, three thousand 
miles from the exit of the first. Here, amid a collection of the most 
wonderful scenery of the continent, is found the chief radiating point 
of the water systems of the Northwest, being equaled in this respect 
only by the mountain group of Colorado Territory. A minor radiating 
center is also found in the western part of Meagher County, where 
the Musselshell, Judith, Deep, and Shield’s Rivers all take their rise 
within a small area. 

Mr. Stuart divides what is here given as one section into two basins, 
the one drained by Jefferson River and its tributaries, the other being 
drained by the North and South Boulder Creeks and a few small tribu. 
taries of the Missouri below the junction of the three forks. The first. 
basin embraces all of Beaver Head County and the western half of Mad- 
ison, and is drained by three streams, the Big-Hole (or Wisdom) River, 
Beaver Head, and Stinking Water, which unite at the northeast angle te 
form the Jefferson. The first of these rising in the extreme western 


GEOLOGICAL SURVEY OF THE TERRITORIES. 259 


part of the section, following the course of the great bend of the range, 
sweeps round in a semicircle, and, bursting through an intervening 
_ ridge, unites with the Beaver Head immediately south of Deer Lodge 
Pass. Its valley is crescent-shaped, and not far from eighty miles long, 
the widest part reaching fifteen or twenty miles. Big- Hole Prairie, 
which forms a part of this valley, is about fifty miles long by fifteen 
wide, well grassed, and affording one of the best summer grazing fields 
in the entire section. At some points the slope between the little 
streams descends by terraces. Although the soil of this valley is toler- 
ably good, and water for irrigation abundant, the seasons are rather 
too cold to admit of its becoming an agricultural region, its average 
altitude being probably as much as 6, 000 “feet above the level of the sea, 
and the amount of snow which falls during the winter months consider- 
able. The central part of the area inclosed by the circle of this river is 
occupied by Bald Mountain, from which the little streams, like radii, 
rush down to the encircling river, around the northern flank, while from 
the southern and eastern flanks others find their way to the Beaver Head. 
The latter stream, rising in the southwest corner of the county, flows 
north to its junction with the Big-Hole, the most important part of its 
vailey being about thirty-five miles long, counting from its mouth 
upward, the width, which is tolerably uniform, averaging about six 
miles. Between these two rivers, for some twenty miles above their 
junction, is a level plain about fifteen miles wide, rather barren, but, if 
watered, which probably can be done, would make good farming land. 
Along the immediate bottoms the land is already mostly taken up and 
settled, but these do not average more than a half or three-fourths of a 
mile i in width. 

The principal tributaries from the west are Rattlesnake, Willard, and 
Horse Prairie Creeks; those from the east are Red Rock and Black- 
Tail Deer Creeks, the last three having valleys of considerable extent, 
which afford excellent pasturage and moderately good farming land. 
But the climate is rather too cold for anything except the hardier vege- 
tables and cereals. 

Stinking Water River (the Indian name of this stream is said to be 
Passamari) rises in the mountains at the south end of Madison County, 
and running north connects with the Jefferson a short distance below 
the junction cf the Beaver Head and Big Hole. It has a valley some 
thirty-five or forty miles in length and of variable width, being sepa 
rated into two parts by a short caiion immediately opposite Virginia 
City. The upper portion, which is some fifteen or twenty miles long 
and from one to five miles wide, is an excellent grazing section, which 
is already attracting the attention of stock-raisers. Some large herds 
of cattle, horses, and sheep have already been brought into this and 
Black-Tail Deer Valleys, where they pass the winter without protec- 
tion and without other food than what they clip from the open pastures. 
Except so far as limited by climate, this part of the valley is well 
adapted to agriculture. 

Below the cafion the valley is considerably wider than above, and 
affords a large area of good farming land, much of which is already oc- 
cupied. The cereals and common vegetables are raised without diffi- 
culty, producing very good crops. By: advancing upon the broad ter- 
race which borders this valley on the east side below thé mouth of 
Alder Creek, the breadth of tillable land can be largely increased, and 
the supply of water is probably sufficient to do this, the stream being 
some sixty or seventy feet wide, and averaging a foot in depth, running 
swiftly. 


260 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Where the three streams, Big Hole, Beaver Head, and Stinking Water, 
unite to form the Jefferson, there is a broad, level area, the greater part 
of which may be irrigated and make good farming land. And this 
point must become one of considerable importance as the Territory in- 
creases in population, on account of the.advantages of its position ; for 
here must always be the junction of the roads up Beaver Head and Stink- 
ing Water, down the Jefferson and over Deer Lodge Pass. No matter 
how much the general direction of traffic and travel may change, these 
must ever remain lines of travel so long as there is any passing north 
and south in this section. And although not possessed of so favorable 
climate as some other parts of the Territory, yet I think it will become, 
though limited in its extent, a very important agricultural area. Com- 
ing down from Deer Lodge Pass I was struck with the beauty of the 
valley, which looked like one vast meadow; and reaching the banks of 
the Big Hole and Beaver Head, which are here in close proximity, rush- 
ing down with heavy volumes of pure limpid water, I felt satisfied there 
would be no difficulty in forming a net-work of ditches filled with water 
over the entire area. 

The valley of the Jefferson for twenty-eight or thirty miles below this 
point will average, exclusive of the table-lands which flank it, from 
tnree to five miles wide. The supply of water is ample, not only to ir- 
rigate the bottoms or valley proper, but also a large portion of the table- 
lands, which at some points expand to a width of eight or ten miles, but 

in other places form but mere strips. The stream, which is probably 
120 to 150 feet wide and 2 feet deep, is fringed by a growth of cotton- 
wood and willow, the former often of quite large size. The bordering 
mountains are clothed with a heavy growth of dark pines from their 
summits down to the sloping foot-hills; from this dark-green border the 
pale, smooth meadow sweeps down in a graceful curve on each side, 
giving to the valley a soft, attractive beauty seldom seen. As we rode 
rapidly along the margin of the stream we could imagine the delight of 
Lewis and Clark as they traversed the same valley, then doubtless 
teeming with game. More than sixty years have passed since they 
were here. Whata change! A nation has sprung into existence on 
that which was then only the home of the red man, buffalo, and elk. 
And in all probability ere another half decade has closed the shrill 
whistle of the locomotive will be heard reverberating among. these 
ridges and echoing along these valleys. Much of this valley yet remains 
unoccupied, probably because to irrigate the larger bodies of bottom- 
land would require the construction of somewhat lengthy ditches to 
draw off water from the river; the points which are settled being sup- 
plied, as a general thing, with water from the little tributaries that flow 
down from the mountain, as at Silver Star, &e. 

Madison River, rising in the region of hot springs and geysers, near 
Yellowstone Lake, runs a northern direction to Gallatin City, where it 
unites its waters with those of the Jefferson and Gallatin to form the 
Missouri. It is worthy of remark that from the Beaver Head to the 
Yellowstone there appears to be a succession of short mountain ranges, 
or high ridges, running north and south, with intervening valleys of 
greater or less width, one of which is traversed by the Stinking Water, 
another by the Madison, and a third by the Gallatin. | 

The valley of the Madison is Separated into two parts by a short cation 
east of Virginia City. Above this it extends about twenty miles, vary- 
ing in width from two to five miles, and is flanked by a succession of 
beautiful terraces almost perfectly horizontal, and which extend for 
miles along the valley, leading gently down from the enero to the 


GEOLOGICAL SURVEY OF THE TERRITORIES. 261 


river on each side. The soil is coarse gravel near the hills, but becomes 
finer as the immediate channel of the river is approached. On the east 
side of the valley several caions give egress to wooded streams of con- 
siderable size, and afford the means apparently of almost unlimited 
irrigation. 

Meadow Creek, which joins the Madison at the upper end of the cation, 
traverses a comparatively smal) valley, containing some ten or twelve 
sections of level land. This yalley well deserves its name, for it is coy- 
ered with a dense carpet of fresh, tall, green grass, and is traversed by 
several sparkling brooklets, which, uniting, form Meadow Creek. All 
the terraces bordering this little valley are susceptible of irrigation and 
cultivation. There are now residing here some fourteen families, and 
others were expected before the close of the season. 

That part of the valley of the Madison below the cafion is some 
twenty-five or thirty miles long, and varies in width from one to ten 
miles. From the cafion the river flows in a northerly course, its banks 
being only 6 or 8 feet high, yet not subject to overflow. The average 
width of the river is about 80 yards, the current swift, flowing over 
bowlders and gravel. The valley lies mostly on the east side, being 
somewhat narrow near the caion, but expanding as it approaches its 
junction. The soil is good, and the valley well adapted to farming pur- 
poses, the greater part of the valley proper being already settled, and 
for the most part under cultivation. The high table-lands that rise 
from 200 to 300 feet above the level of the valley on the east side, and 
forming the bank of the river on the west, are unexcelled for grazing 
purposes, fine buffalo and bunch grasses growing in abundance. Unless 
the cation should interpose an insuperable barrier, which, I think, is 
not probable, it will be possible, not only to irrigate the valley level, 
but also a great part of this plateau, the supply of water being sufficient 
to water a large breadth. It is very probable that ere long a good 
wagon-road will be made up this stream and its tributary, Fire-Hole, 
from the vicinity of Virginia City to the geysers, hot springs, and other 
wonderful scenery around Yellowstone Lake. 

The Gallatin River is formed by two streams, called Hast and West 
Forks. The East Fork flows for some distance through a canton, which 
ceases about twenty miles above its junction with the West Fork. 
From this point it flows in a northwesterly direction, being 50 or 60 
yards wide, but shallow, its banks high and not subject to inundation. 
The bottom-lands on the east and west sides taken together have an 
average width of about three miles, a large portion of which is under 
cultivation. On the east side the bench-land is about 20 feet above the 
bottom, and is well grassed over. This extends eastward for seven or 
eight miles to Mill Creek, or the right fork of the Gallatin. This might 
be irrigated with moderate expense and trouble, and made as productive 
as the bottoms which it flanks, so noted in the Territory on account of 
the heavy crops they yield. Mill Creek runs northwest through Boze- 
man, where it connects with East Fork. 

Timber is searce in these valleys, nothing but cotton- wood being found 
on West Fork, and that in small groves, except near its junction with 
East Fork, where there is a considerable quantity of large cotton-wood. 
The greater part of the timber used in this valley is hauled from the 
mountains south. Thereis a large amount of stock raised here, the graz- 
ing being good. A flouring-mill has been erected on Mill Creek, near 
Bozeman, and another will probably soon be built. 

East Fork, coming from the Grosfoot Hills, northeast of Bozeman, 
flows in a westerly course for six or eight miles, thence northwest to its 


262 GEOLOGICAL SURVEY OF THE TERRITORIES. 


junction with West Fork. It is some forty or fifty yards wide, flowing 
swiftly, its banks being high and not subject to overflow. The imme- 

diate valley iS from two to five miles wide, while on the south a low 
table-land, not more than fifteen or twenty feet above the bottoms, 
stretches out: to the south, ascending with a gentle slope to the foot of 
the mountains. The supply of water is ample, and the facilities for 
irrigation excellent. This is one of the finest valleys of this section, the 
soil being good and the climate favorable, on which account it has at- 
‘tracted settlers, so that at this time it is mostly inclosed and under 
cultivation ; and it is probable that ere long an encroachment will be 
made on the bordering plateau. The stream is fringed by a fine growth 
of cotton-wood and aspen, except which there is no other timber in the 
valley, this being supplied from the mountains to the northwest. 

As a general thing, the southern part of this section is not so well 
timbered as the regions to the northwest, but the mountains will furnish 
a supply for ordinary purposes, yet even these in many places present 
quite naked slopes, being smooth and grassed over to the sammit. The 
evidences of the gradual wearing down of the mountains and filling up 
of valleys are very marked in this part of the Territory, and wherever 
this is the case but few forests are to be found. In fact, it may be laid 
down as a rule that has but few exceptions here, that wherever the 
mountain sides are smooth there are no forests. In some places the 
levels of broad valleys, when seen from a distance, look like streams 
flowing down with a somewhat rapid current; and glancing up to the 
mountains from which they descend, we see the immense fissures and 
excavations from which the débris has worn away. Often across these 
river-like ribbon plains, we see where another ancient stream has~ 
swept across it to the channel the modern stream has cut on one side 
near the base of the parallel mountain. At other places little, smooth, 
sloping deltas will be seen at the base of the mountain, where the débris 
cut from the deep excavation above has been deposited. But oversuch 
areas thereis no forest growth, nay, not even a solitary pine or a stunted 
cedar, the omnipresent artemisia being the only ligneous plant, if it can 
be called such. 

Passing northward from the central part of the Jefferson, we enter 
what Mr. Stuart calls the Eastern Central Basin, and which he describes as 
follows: “ This is drained by the Missouri River below the Three Iorks, 
and above them by [the lower tributaries of] the Jefferson, the North 
Boulder, South Boulder, and Willow Creeks. It is also traversed by the 
lower portion of the Madison and Gallatin Rivers, which form a junction 
with the Jefferson in a fertile plain of considerable extent. It contains. 
a large amount of arable land, with a climate comparable with that of 
Utah, and is about one hundred and fifty miles long, north and south, 
by eighty, east and west. Its five principal valleys are the following: 
The valley of the Three Forks; of North Boulder; of the lower part of the 
Jefferson; of the Madison, and of the Gallatin, furnishing a larger amount 
of far ming land than the basin of the Beaver Head and tr ibutaries. feud 
will be seen that I have included a part of this basin in the descriptions 
of the valleys already noticed. Mr. Stuart evidently includes the parts 
below the cafions mentioned, in this basin. 

The valley of the Missouri along this part of its course is narrow, but 
quite fertile, possessing a very favorable climate. Tt is watered on the 
east side by numerous small streams, which flow down from the Belt 
Mountains. The interior of the basin is traversed by several sharp and 
elevated ridges; the principal one, stretching from near the lower part of 
the Jeffersor a little west of north, connects with the Rocky Mountain 


GEOLOGICAL SURVEY OF THE TERRITORIES. 263 


Range, near the origin of Prickly Pear Creek. The North Boulder 
runs along the western base of the ridge, through a valley of moderate 
- width, while west of it runs another ridge separating its waters from 
those of White-Tail Deer Creek. These “ridges are clothed with pine 
timber of an excellent quality. And along some of the slopes the rank 
vegetation indicates a greater degree of moisture than is usual in this 
region, especially on the divide which separates the Boulder from Prickly 
Pear Valley. I noticed here the marks of a recent heavy rain, which 
had caused sudden torrents to rush down the indentations of the ridge 
which flanked the valley, tearing up the grass and pebbles and bearing 
them down to the base. Branching off from the first-anentioned ridge, 
near the center of Jefferson County, starts another ridge, which, running 
north, forms a divide between the Prickly Pear and the Missouri. 

Prickly Pear, and Ten-Mile Creek, its principal tributary, have very 
pretty valleys, which, though irregular and contracted at some points 
by the approaching ridges, ‘at others expand into broad, open prairies, 
having surfaces as smooth as a meadow. One of these beautiful, 
meadow-like openings is in the vicinity of Helena, across which one 
may look from the city and see the noted landmark repeatedly men- 
tioned from the days of Lewis and Clarke down to the present time— 
the Bear’s Teeth. This valley is from five to fifteen miles wide, and 
some twenty or twenty-five miles long. Although rich and productive, 
unfortunately the stream which traverses it only furnishes water suffi- 
cient to irrigate a part of it. _A proposition has been made to bring 
water from Jefferson River, which is said to be practicable; but whether 
this will be carried out or not I am unable to say. The proximity to 
the chief city of the Territory would certainly render the land valuable, 
and such a canal would be useful not only for irrigation but also in con- 
nection with the mining operations. 

Major J. F. Forbes, who has been farming in this valley since 1865, 
and has made the raising of vegetables for the city somewhat a spe- 
cialty, furnishes the following information in regard to its productions: 
“ Wheat, after the first few. crops (wltich are generally heavy) have 
been cut, yields from 20 to 40 bushels to the acre, though as high as 82 
bushels have been taken from one acre; and entire crops have averaged 
52 bushels on fresh soil. One difficulty experienced is, that volunteer 
crops mix with those that foliow; this does no damage when feed- 
crops, as oats and barley, are raised ; but when wheat follows other 
crops the mixture injures its value. "And it may be set down as a 
rule, with but few exceptions, that volunteer crops are, in the long run, 
an injury to any section. If these do no other injury they beget a thrift. 
less system of farming, under which the soil is deteriorated, and the yield 
becomes less and less and the quality inferior.” 

Major Forbes says that the weight is usually about 60 pounds to the 
measured bushel. The average yield of oats is about 40 bushels to the 
acre; barley, 30; but the yield of the latter crop often is as great as 
that of oats. The following vegetables grow well, no difficulty from the 
climate being experienced in raising them : Potatoes, turnips, ruta-bagas, 
- beets, cabbage, carrots, onions, parsnips, pease, beans, and radishes. 
Tomatoes can be grown with care, but are liable to be injured by the 
frost before maturing. Spring-wheat is generally sown in March, and 
sometimes even as early as the last of February, which is certainly very 
early for this latitude; but even as late as May will answer. Harvest 
usually commences in the latter part of July. When winter-wheat is 
sown, it is usually put in in September and October; but it generally 
comes out too soon in thespring, and is liable to be bitten by the frost after 


264 GEOLOGICAL SURVEY OF THE TERRITORIES. 


jointing. Currants, gooseberries, strawberries, and raspberries do very 
well, their fruit growing and maturing without any difficulty from the 
climate; in fact, the soil and climate seem peculiarly adapted to the 
growth of the first two. The native varieties of gooseberries and cur- 
rants bear transplanting without injury, improving under cultivation. 
Native raspberries and strawberries have not been tried; it may be that 
the former will bear transplanting, though, as shown in my previous 
report, the experiment failed in Colorado. Other fruits, so far as tried 
in this valley, have proved a failure; but Major Forbes thinks that some 
varieties of the apple might succeed. He says that an experiment made 
with hemp shows that it grows remarkably well. He planted some seed 
in a yard in Helena, which is some 400 or 500 feet above the valley-level 
and some of the stalks grew to a height of 10 or 12 feet, and as large 
round at the base asa man’s wrist. He is now testing it on his farm, 
and at the time I met with him (July 12 to 1) it was growing finely. 
He has raised hemp in Missouri, and is satisfied, from his experience 
with it in that State, that it can be produced here as easily and of as 
good quality as there. The climate, he states, is variable; often the 
weather is mild and open at Christmas, but with previous killing frosts; 
but at other times winter commences much earlier. Snow does not 
generally set in until in December, and does not often fall in the valleys 
after March ; it never falls to any ’ creat depth, seldom enough for good 
sleighing. ‘This fact in regard to the fall of snow appears somewhat 
paradoxical to those who have never visited those mountain regions. 
They read and hear statements in regard to snow in the mountain 15 
and 20 feet deep, and then in the next breath are told that cattle 
can graze out all winter, the snow not being sufficient to prevent this. 
It must be acknowledged these statements do appear to be somewhat 
contradictory, yet both are true; an explanation of which will be found 
in my former report. 

Jn order to afford as much data as possible in regard to the valley 
under consideration, it should be stated that barometric measurements, 
taken in Major Forbes’s door-vard, show the elevation to be just 4,000 
feet above the level of the sea. 

On the east side of the Missouri, in the bend which this river makes 
here, from a north to a northeast course, are two or three valleys, which 

- may be considered, in this connection, though not strictly, belonging to . 
the southern section. North Deep Creek, which rises in Belt Mountains 
and flows north to the Missouri, has a valley some forty or fifty miles in 
length, which averages about three in width. Atone place, for a distance 
of fifteen or twenty miles, it widens out to an average-of five miles, but 
at other points the spurs of the mountains close in upon it, rendering it 
quite narrow. South Deep Creek gives a valley of twenty-five or thirty 
miles in length and four or five in. width, at no point within this dis- 
tance being less than two miles wide. Water sufficient to irrigate these 
valleys can be obtained from these creeks and their tributaries, and 
near the mouth of the latter any deficiency can be supplied from the 
Missouri. The soil is good, and considerable settlements have anes 
been made here. 

NORTHERN SECTION. 


This section comprises all that part of the Territory lying east of the 
Rocky Mountains and north of the divide which separates the waters 
of the Missouri from those of the Yellowstone. It is an extensive re- 
gion, stretching from east to west some three hundred and fifty or four 
hundred miles, and varying in width, north and south, from one hundred 


GEOLOGICAL SURVEY OF THE TERRITORIES. 265 


to one hundred and seventy-five miles, including the north part of Deer 
Lodge, all of Choteau, and most of Meagher and Dawson Counties. 
With the exception of the portions occupied by Belt, Highwood, and 
Judith Mountains south of the Missouri, and by Bear’s Paw and Little 
Rocky Mountains north, it is generally an open, treeless plain, gradu- 
ally descending eastward, with an average slope of 5 feet to the mile. 
But this descent differs very materially in the portions east and west 
of Fort Benton, that part west to the foot of the mountains having an, 
average descent of from 12 to 15 feet to the mile, while that east has 
an average of less than 3 feet, if the barometric measurements taken 
along this line are to be relied upon. If this rate of descent east of 
Fort Benton is correct, it lessens, to a considerable degree, the prospect 
of redeeming any great portion of the plains, for it renders it impos- 
sible to reach the higher table-lands with water from the Missouri. 

Along the east base of the Rocky Mountains, from the British pos- 
sessions south to Sun River, there is a strip of arable land, about thirty 
miles in width, which is well watered by numerous little tributaries of 
Marias, Teton, and Sun Rivers. The descent here being somewhat 
rapid and these streams but a few miles apart, flowing in rather paral- 
lel lines, a large portion of this strip, which is about one hundred miles 
in length, can be irrigated and brought under cultivation. As it is yet 
wholly unoccupied, except by roving Indian bands, consequently no ex- 
periments in farming have been made, by which we may judge of its 
climate; but Mr. Hard, who has been traveling over this part of the 
Territory, summer and winter, for some years, states that the seasons 
are not severe, and that he is satisfied, from his knowledge of the cli- 
mate, that the hardier cereals and vegetables can be raised without 
difficulty from climatic influences. The grass is very good, and the 
ereat buffalo herd of Eastern Montana, apparently fleeing before the 
Sioux, has, during the present year, been moving over into this region. 
The Marias River, after it enters upon the plains, runs through a deep 
channel, bordered, in part, by broad table-lands, and partly by long, 
sloping hills, a part of which, by the construction of long ditches, may 
be reached and irrigated and rendered suitable for agricultural pur- 
poses. 

Teton River is probably over one hundred miles long; its two 
branches, rising in the Rocky Mountains west of the Teton, flow round 
this butte and unite at its east base. It has some good bottom-lands 
in its valley, which varies from two to six miles in width for a part of 
its length, but at other points is quite narrow. The bordering plains 
are generally undulating, but a part is composed of level table-lands, 
which are from 50 to 75 feet above the valley-level. The stream is 
rather small, its average width being about twenty-five or thirty yards, 
but it is a constant runner; its lower portion runs slowly, the descent 
being very slight. : 

Sun River, rising in the Rocky Mountains immediately west of Fort 
Shaw, runs east about seventy-five miles, passing by this fort, and 
empties into the Missouri.. It forms the north boundary line of Lewis 
and Clarke County. The immediate and cultivable valley of this river 
varies in width from one to three miles, the soil being of the very best 
quality. There are terraces, at some points, flanking the bottoms, which 
are of moderate height, and may be reached by irrigating ditches, in- 
creasing the breadth of farming lands in this beautiful valley, which is 
considered one of the finest in the eastern part of the Territory. The 
stream is about sixty yards wide, flowing rather swiftly over a gravel 
bed, seldom, if ever, overflowing its banks. There are, as yet, out few 


266, GEOLOGICAL SURVEY OF THE TERRITORIES. 


settlements in it. Fort Shaw, situated about six miles east of the 
Helena Guide Mountains, is the highest settlement in the valley. 
Lower down, about four miles, is the Sun River crossing, on the main 
road from Helena to Fort Benton, around which there are several farms 
under cultivation. From this point to its junction with the Missouri, 
a distance of some twenty-five miles, the valley increases in width from 
three to five miles. There is some cotton-wood and aspen along the 
banks of the stream, but other timber is scarce, and will have to be 
hauled from the mountains. The higher table-lands, on the north and 
south, offer most excellent grazing fields, the soil being generally very 
fertile, that of the plateau on the north needing but irrigation to make 
it as productive as the bottoms of the valley. 

The following statistics, from the records kept at Fort Shaw, will fur- 
nish some data in regard to the climate of this part of the Territory: 


Monthly means of the temperature for two years. 


DAMMARY Meee ce Sane OMe eewced aa a6 2128 | AMS USbS 0GS on. UN ne ae soe nae 67.15 
February cnee se Pe 30.39) | September. j225. 2252. ei eee toes 54. 04 
Marche Say) ah pee gee wae 36358 ;| October .4us2sj52chh22 eee ek eee 49. 12 
PANG Ts 190 MN Ie re MSL or AGL 51 | SNovember( 25) 2ooce. peer as ae 39. 92 
TAN LES eS LR TO a a ap 56.04) December .a0 ve cae e esas ee semen 26.75 
AUTO eee a GLI Ne) (ea Oe IRR GANGS YC Mais Soe ier 2 Se RL eh Se ee era 47. 33 
Oamhy Wie cea TIO Ge ol hehe Ae 70. 22 
Average monthly and yearly amount of rain and melted snow for two years. 
Inches. Inches. 
JAMMATY, oo a2). pelosi sue eee Liens Lib I PANTS bi sine A ass ic nea ae ay 
ERS) UAE eA AC Rh A NS oo ||, Nep tember, je. Sse 45cm. sees 95 
Manche Sie jaye. Ones ae ore ene cee »4A) ) Octobers. 2. oes eae ces cue sae cee 75 
IATA Ne aes felis Vall ake (54 November !2 Sts tsh ses 522 es eee 
= Many SER Cee Lh ye ek RB 1/53) 1) December 42s... $45 bee ee 
JUMOV ewe Sujet BEES See ee ens ite 2. 63 Cal savsecimed steed coubemie ss cee 8. 951 
Opalliypsev eee re see So sale 78 


This shows a very moderate climate for this northern latitude, com- 
paring, as has been asserted by Mr. Granville Stuart, very favorably 
with that of Utah; the mean temperature of the seasons being as fol- 
lows: Spring, 46.38; summer, 67.45; autumn, 47.69; winter, 29.47. 

The amount of rain-fall during the growing season, from March to 
July inclusive, is 5.92 inches, less than one-third of what is necessary 
to supply ordinary crops. The monthly means of the winds for the 
. range of two years was, without exception, from the west. 

The valley of the Missouri from the Three Forks to the mouth of Sun 
River is very rich and fertile, but rather narrow, varying from three to 
eight miles in width; but at some points the hills close in upon it, leay- 
ing but a narrow strip of bottom-land along the stream. The length of 
the valley between these points is about one hundred and fifty miles. 
It is tolerably weil settled, the climate being mild and the productions 
as varied as any portion of the Territory. Wheat, oats, rye, barley, 
corn, and the usual vegetables grow well and produce heavy crops, 
Helena receiving a large part of its supply of vegetables from this val- 
ley. Such fruits as apples, plums, cherries, currants, raspberries, and 
gooseberries may be grown and matured here, the climate presenting 
no serious obstacle. 

As a general thing, after leaving the rapid descent near the base of 
the mountains, and entering upon the broad, open plains, the rivers of 
this section run in deep channels, which like great ditches traverse the 
plains, and are often for long stretches sunk from 100 to 150 feet below 
the surface. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 267 


On the south side of the Missouri the most important basins within 
this section are those of the Judith and Musselshell Rivers. The Ju- 
dith Basin is a broad depression, spreading out for forty or fifty miles, 
and extending north and south about eighty miles. Itis traversed its 
entire length by the Judith River, which has three principal tributaries— 
West Fork, South Fork, and Big Spring Creek. West Fork is a short 
creek, affording a moderate valley, but in regard to which I received no 
satisfactory information. The valley of South Fork is very irregular, 
frequently closing up. It is about twenty five miles long, the ten miles 
next its mouth averaging two miles wide; is generally quite narrow, — 
here and there affording an open bottom sufficient for afew farms. The 
lands which flank this valley are more rolling and irregular than usual 
in this basin, yet they are covered with good grass. Big Spring Creek 
has one leading tributary, Cottonwood Creek, which has a valley twelve 
iniles long and from half a mile to two miles wide. The valley of Big 
Spring Creek is fifteen or twenty miles long and quite narrow, varying 
from half to one mile in width. The supply of water in all these valleys 
is sufficient to irrigate all the lands in the madapted to farming pur- 
poses. The area between the two last valleys consists of a level plateau 
about one hundred feet above the streams, and during the summer sea- 
son has a bright-yellow hue from the vast number of Helianthi which 
grow here. 

The Judith Valley proper is about eighty miles long, and varies in 
width from one to four miles. The bordering regions, as we approach 
the Missouri, grow barren and assume that appearance to which 
the name mauvaises terres, or ‘bad lands,” has been applied; yet 
the surface is generally covered with a moderate growth of bunch-grass. 
Stunted pines and cedars grow along the Missouri from Fort Benton to 
the mouth of the Musselshell, for twenty or twenty-five miles back on 
the south side. 

From the mouth of the cation on Musselshell below Fort Howie, for 
twenty-five miles down, is a very fine farming country, the valley aver- 
aging five miles in width, the soil good, and the climate favorable. Near 
the mouth of this stream the valley is narrow, being cut deep into the 
plains, the bottoms not averaging more than a mile or a mile and a half 
wide ; nor is the soil so good as along the upper portion. I could gain 
no information in regard to the intermediate part of this valley, but the 
bordering plains for a part of the distance, at least, probably consist of 
“bad lands,” similar to those near the mouth of Judith River, and along 
portions of the Yellowstone. 


SOUTHEASTERN SECTION. 


This section includes the area within the Territory drained by the 
Yellowstone and its tributaries. Little is known in regard to its agri- 
cultural resources. The following account, obtained from Judge Hos- 
Iner, of a voyage down this stream in a boat, contains, perhaps, all that 
has been ascertained in regard to it up to the present time. It was 
first published in the Herald, Helena: 

“The deseription of the lower valley of the Yellowstone given by 
Captain Lewis, without being full, is very accurate in geographical in- 
formation. I was able by it to anticipate our approach to the various 
landmarks, rapids, and the mouths of the various tributaries. In 
minor details it is deficient. No continuous account of this valley 
from the cation, twenty-five miles beyond Bozeman, to the mouth, a 
distance (by the stream) of eight hundred and twenty miles, has ever 


268 GEOLOGICAL SURVEY OF THE TERRITORIES. 


been published. For the first eighty miles, from the mouth of the 
cafion, the river is almost one continuous rapid, and numerous ledgy 
islands are scattered along, which furnish coverts for large flocks of 
ducks. The banks are generally abrupt, in many places precipitous, 
thickly covered with stunted pines. Occasional accumulations of débris 
spread out into small bottoms, covered with immense cotton-woods. The 
banks on each side rise gradually into lofty hills, but the vegetation is 
light. Long, high ranges of mountains approach the river on each side. 
The water here is pure and very transparent. The bends of the stream 
- are long and straight reaches, where the eye can often follow it for six or 
eight miles. Dense thickets of willow grow along the margin and on the 
islands. The second day we came in sight of the vast ridge of yellow 
sandstone, from which the river derives its name. This ridge appears 
to be about 300 feet high, and this part twenty miles long; the bluff it 
forms being precipitous and the top covered with pines. The valley of 
the river here is greatly expanded, spreading out into alluvial bottoms 
six or eight miles wide, gradually rising into upland and foot-hills. The 
soil here is equal to that of the Gallatin; but the descent of the 
river is much less rapid than above, miles intervening without any per- 
ceptible inclination. The termination of this portion of the ridge is at 
an angle of the river, where it has worn a passage through the rock on 

each hand, exhibiting a sheer, bold precipice of stratified sandstone, 
- very hard and of deep ocher color. The river is quite shallow where 
it crosses this ledge, which stretches off on the southwest side in a 
straight line across the valley for twenty or thirty miles. The bottoms 
here are extensive (between the ridge and river) and are susceptible of 
high cultivation. There are frequently long groves of cotton-wood. 
. We passed through this marvelous ridge five or six times in traveling 
three hundred miles. Insome places it follows the river for miles, cast- 
ing its somber shadow on the water. In others, it is curiously eroded 
into resemblances of towers, castles, citadels, &e. At the terminus of 
the ridge the river, increased to twice the size it has at the commence- _ 
ment, by the contributions of the Rose Bud, Clarke’s Fork, and Big 
Horn, is fully one mile wide and very deep. Its waters turbid, its banks 
low, it rolls an immense volume of water down undisturbed by a ripple, 
through large, spreading meadows beautified by occasional trees and 
carpeted with a thick growth of grass. With the exception of a few 
rapids, some of which are formidable, this is the general character of 
the scenery until we approach the mouth of Powder River. Here a 
sudden change takes place, and all at once we are ushered from the 
highest state of verdure to that of extreme, absolute desolation. Here 
commence the mauvaises terres, and from this point to its mouth the 
same general features characterize the scenery as those found along 
the Upper Missouri, intensified, if possible, by frequent views of long 
burnt plains, seamed with immense ravines and dotted with enormous 
tables of baked clay. It is without exception the most horrible-looking 
country lever saw. The hills and mounds of stratified clay along the — 
bank of the river rise 1,500 feet, void of vegetation. The river is here 
a dark drab color, with shifting channels and numerous sand-bars. Its 
clay-banks for hundreds of miles exhibit on each side continuous veins 
of decomposed lignite. A railroad could easily be built along its course, 
except the one hundred and eighty miles from the mouth of Powder 
River downward. Above Powder River the obstructions are few and 
easily overcome. Three or four hundred miles would be through the 
largest and richest valley in Montana, yet unsettled, and not more than 
1,500 or 2,000 feet above the level of the sea.” 


GEOLOGICAL SURVEY OF THE TERRITORIES. 269 


STOCK-RAISING, ETC. 


Without injustice to any other part of the West, it may truly be said 
of Montana that it is the best grazing section of the Rocky Mountain 
region. Not only are the open, plains and prairies covered with rich and 
nutritious grasses, but also the smooth hills and naked mountain slopes, 
and the same rich carpet continues even beyond these far up into the tim- 
ber. Whereverafire has swept up the mountain side, destroying the pine- 
trees, leaving the blackened stems and stumps to mark the place where the 
forest stood, there Springs up, in a marvelously short space of time, a tall, 
ereen grass ‘covering every possible spot where it can gain a foothold. 
Here, as in other parts of the western country, as is well known, the 

rags cures on the ground instead of rotting, remaining in this state all 
. Santon furnishing, in fact, a better food than if cut and cured. There 
18 seldom any difficulty experienced on account of the cold or snows of 
winter ; many who have stock running on the prairies making no prepa- 
ration for winter-feeding, which is seldom necessary. Even in the 
upper part of Stinking Water Valley, where the climate is considered 
somewhat rigorous, not only the regular herds are wintered on the open 
pastures, but also cows pass this season with no other food than that 
they clip from the grazing-field, and, although regularly milked, come 
out in the spring in excellent condition. At one place I saw cows which 
had thus passed the winter on the range, giving milk the entire season, 
yet they were in such a fine condition that they would have made excellent 
beef; some of them gave as much as three gallons of milk morning and 
evening, as I can testify from personal observation. Notwithstanding 
this fact, cows command a very high price, the best bringing readily from 
eighty to one hundred dollars ; this, no doubt, being due to the demand 
for stock cattle. Stock is rapidly coming into the Territory, which . 
must before very long bring down this price. Cows begin to bear very 
young when running with the herd, it being no uncommon thing for 
them to have calves at fifteen and sixteen months; in fact, a few in- 
stances have occurred where they have borne-young before ceasing to 
follow the mother. 

I have received but few statistics in regard to the herds in this Ter- 
ritory. That of Messrs. Poindexter and Orr, on Black-Tail Deer Creek, 
at the commencement of the present season was stated to be as follows: 2 
2,467 sheep; 1,500 lambs; 1,500 cattle; 750 calves; 450 horses; and 75 
mules. 


CHAPTER V. 


LETTER OF PROFESSOR G. N. ALLEN. 


|The following very interesting letter from Professor G. N. Allen, in 
regard to certain methods of irrigation in Santa Clara Valley, Califor- 
nia, contains so many interesting statements in such a small compass, 
‘although appertaining to a section outside my field of observation, 
that 1 have thought best to give it in the clear and explicit language of 


the writer. 
C. THOMAS. ] 


Sheer 


Professor Cyrus THOMAS: 
My DzEAR Sir: As promised when we parted, I give you herewith 


200 GEOLOGICAL SURVEY OF THE TERRITORIES. 


the results of my observations and inquiries in the San José Valley, or 
Santa Clara district, California. 

This valley is beautifully situated between the main Coast Range and 
one of its spurs, the Santa Cruz Mountains, and extends directly south 
from San Francisco Bay. It is about seventy miles in length by twenty 
in breadth, and presents a nearly level surface throughout. It boasts 
an intelligent and industrious population, and is certainly as highly 
cultivated as any other of the many lovely valleys of California. Near 
its center are located the handsome and enterprising cities of San José 
and Santa Clara. The water in this valley used for domestic pur- 
poses, and to some extent for irrigation, is derived chiefly from surface- 
wells or wells excavated in the superficial deposits, and is lifted by the 
inevitable and not unpicturesque “ California wind-mill,” though there 
are besides many artesian or free-flowing wells, which penetrate to and — 
derive their supplies from a stratum lying at a much greater depth. 

Being desirous of obtaining my information from the most trustworthy 
sources, I called early on a Mr. Gould, to whom I had been recom- 
mended, and who cultivates a large fruit plantation near Santa Clara. 
This gentleman, whom I found to be as intelligent as he was enterpris- - 
ing, very politely showed me over his extensive grounds, and freely 
answered my inquiries. Besides large vineyards and orchards, Mr. Gould 
has about forty acres of the small fruits, strawberries, blackberries, 
&c. These small fruits only are systematically watered by artificial 
means. To accomplish this he has three artesian wells of seven-inch 
bore and about 300 feet depth. Until recently all his wells have been 
free-flowing fountains, but in consequence of the greater number of 
wells now existing, and in part doubtless on account of the smaller 
amount of water that has fallen as rain within the last two years, one 
of his wells at least has ceased to flow, and it has become necessary to 
raise the water by mechanical appliances. Horse-power was applied 
last year, but this year he has built a steam-engine. The engine is of 
twenty horse-power and cost $2,000. Working at about half its capa- 
city for fifteen hours per day, and at a cost in fuel and labor for the 
same time of four and a half dollars, he raises sufficient water, with a 
little aid from his free-flowing wells, to supply abundantly his small 
fruit-grounds. Application is made daily to certain portions only, but 
so that the whole forty acres shall be watered about once a week dur- 
ing the season of fruitage. His vines are planted seven feet apart. As 
to beets on alkaline soils his experience is that they attain a large size, . 
_ but have a rank growth and coarse-grained texture. With regard to the . 
amount of saccharine matter in such beets, he had no data. Mr. Gould 
employs and prefers Chinamen as laborers. 

On the mountains, between Santa Cruz and Santa Clara, 2,000 feet, 
perhaps, above the valley of San José, grapes and other fruits do excel- 
lently well. The grapes especially are esteemed of excellent flavor, and 
are preferred to those of the plain. I was informed by Lyman Burrell, 
esq., who has a large ranch in the mountains, and who has also given 
much attention to grape and fruit culture, that he has uniformly taken 
the prizes at the State and county fairs. He plants his vines eight feet — 
apart. They are not troubled with frosts, and the ground, he asserts, 
is much more moist at this season of the year (summer) than it is in the 
plain. He raises with success the Muscat variety, which, on drying, 
yield an excellent quality of raisins. Apples, plums, and apricots also 
do splendidly in his orchards. Vineyards on the mountains are usually 


GEOLOGICAL SURVEY OF THE TERRITORIES. 271 


set on the open wild-oat prairie grounds, and they require no under- 
draining, staking, or irrigation. 

Mr. Quimby, ex-mayor of San José, informed me that south of that 
city artesian borings had not been free-flowing, the water not coming to 
the surface; that the most powerful fountains are near the bay at the 
north end of the valley, where, also, they are obliged to bore the deepest 
in order to reach the main gravel bed or water stratum. His own well 
at San José had never ceased to flow freely, and to furnish both his 
own gardens and several neighboring families with an abundant supply 
of water. Mr. Quimby thinks that it is desirable, if possible, to water 
the larger fruit-trees in the dry season, for else the roots will penetrate 
the ground so deeply in search of moisture that afterward, in the rainy 
season, when the ground is saturated with water, they will be drowned 
out, having no surface roots. This he mentioned as an inference from 
his own experience in the cultivation of fruit-trees, referring more 
especially to apple and peach rather than to pear trees. He thinks also 
that strawberries should be watered occasionally after the last picking, 
and that in some soils, at certain seasons, grape-vines should be simi- 
larly treated. In San José Valley some irrigate for the raising of garden 
or kitchen vegetables, but none tor the wheat crop. 

Very respectfully, 
G. N. ALLEN. 


SHORT DESCRIPTIONS OF SOME OF THE VALLEYS OF NEVADA. - 


By Mr. HASKILL, oF RENO, NEVADA. . 


[On behalf of Mr. Haskill I should state that this short sketch was 
hastily drawn up by him in answer to a request made through Mr. G. W. 
Meecham, of Humboldt. I léarn that, if desired, he will, by the time 
your next report is to be published, prepare a more thorough account of 
the agricultural resources of this young mountain State; but on account 
of the valuable information contained in these short notes, I have 
thought it best that they should be piaced on record, and have therefore 
referred them to you. 

C. THOMAS. | 


Truckee valley extends from a point a short distance below Verde, a 
station on the Centra] Pacific Railroad, to Pyramid Lake, distant about 
sixty miles. It contains some very fine agricultural land. Its width 
varies from a few rods to several miles; at Truckee Meadows it widens 
out in circular form, and at this point contains over 10,000 acres of 
arable land. Elevation at the head of the valley 5,138 feet, gradually 
descending to 3,933 feet at the foot. 

The Truckee River, which courses its entire length, is a beautiful 

‘Stream of pure water, abounding in trout. Lake Tahoe, its source, is 
famed for the clearness and transparency of its water. 

Washoe Valley, also, in Washoe County, lying mainly ten miles to the 
south of Truckee Meadows, contains some three or four thousand acres 
of land which can be rendered tillable by irrigation. Washoe Lake, at 
the head of this valley, is a sheet of clear water from six to eight miles 


2x2 GEOLOGICAL SURVEY OF THE TERRITORIES. 


in length and.about three miles in width. This valley lies along the 
base of the Sierra Nevada Mountains proper. Several mountain streams 
flow into it on the west, and it is drained by Washoe Creek, which 
forms a junction with Hot-Spring Creek and flows into Truckee River. 
Blevation about 4,600 feet. Climate mild, similar to that of the Middle 
States. 

Humboldt Valley, extending from Humboldt Lake to Humboldt Wells, 
a distance of three hundred and eighty-four miles, embraces some fine 
meadow and agricultural lands. Outside of the river-bottoms, which will 
average a mile in width for a distance of sixty or seventy miles, it is prin- 
cipally sage-bush land, of sandy soil, but very productive when water can 
be found for irrigation. Numerous streams of water are found upon 
either ‘side of the valley, rushing down the mountain gorges, all of which 
sink soon after leaving the mouths of the cafions. 

Big Meadows, about five miles above Humboldt Lake, containing 
about 5,000 acres of land, furnishes great quantities of grass and hay; 
it contains tillable land, and a fair quality of peat is found here, and in 
considerable quantities. Elevation, average of that of Humboldt Valley. 

Salt Valley is located thirty miles east of Humboldt Lake; contains 
about 100,000 acres of sage-bush and salt land. It is remarkable and 
valuable only for its immense salt-bed, which is inexhaustible. Suce- 
cessive layers of fine, crystallized salt are found to the depth of several 
feet from the surface. Elevation of valley, 4,199 feet. 

Black Rock Valley, forty miles westof Humboldt City, contains 350,000 
acres of sage-bush and alkali flats, and voleanic matter lines the out- 
skirts. This valley is almost entirely destitute of vegetation. Hlevation, 
_ 4,900 feet. f 

Quin’s River Valley, forty miles to the east of Black Rock, and distant 
fifty miles to the northward from Humboldt Valley, contains 115,000 
acres, a great portion of which is fine agricultural land. The valley 
itself has fine blue-joint and red-top grasses, and the surrounding foot- 
hills and mountains are covered with an immense growth of bunch-grass 
and white sage, and constitutes the finest cattle range in the State. 
Quin’s River flows through it, and sinks in Black Rock Valley. General 
elevation, 4,350 feet. 

King’s River Valley lies twenty-five miles to the northwest of Quin’s 
River, and contains about 75,000 acres of land. In every respect, except 
as to extent, the two valleys are alike, elevation being about the same. 

Paradise Valley is twenty miles distant, commencing ten miles north 
from Winnemucca, and contains 125,000 acres. Little Humboldt River 
enters it near its head and pours down its center. This valley contains 
35,000 acres of meadow land, and yields a most luxuriant crop of blue- 
joint and red-top grasses and white clover annually. Outside of the 
erass land are large tracts of sage-bush land, which yield almost incred- 
ible crops of wheat, oats, barley, and potatoes. The yield of barley is 
from 50 to 80 bushels per. acre. A number of small streams flow from 
the mountains on either side, and afford abundance of water for irriga- 
tion wherever it is needed. About 3,000 acres are under cultivation at 
the present time, most of which has been tilled for the past six years, 
and without missing a crop. Various fruit-trees have been set out, and 
with entire success. In short, the soil and climate render this valley — 
most inviting to the emigrant seeking a place to build up a desirable 
home. Its elevation is about 4,500 feet. 

Pueblo Valley, sixty-five miles northward of Winnemucca, is twenty- 
six miles in length, and from ten to fifteen: miles wide. The foot-hills 
and surrounding mountains are covered with bunch-grass, while fine 


GEOLOGICAL SURVEY OF THE TERRITORIES, 273 


tracts of tillable land are found in and at the mouths of the cations. A 
great number of mountain-streams flow down and sink in this valley. 
In these streams, as well as in King’s River and Quin’s River, and the 


‘ereeks and brooks of Paradise Valley, are found the most delicious trout, 


while the water affords means for irrigation where it is required. Ele- 
vation, about 5,000 feet. 

Grass Valley, ten miles southeast from Winnemucca, is watered from 
the cafions on the east and west, and’ contains 50,000 acres, about 500 
of which only are now under cultivation, with the very best success to 
the husbandman. Wheat, oats, barley, and all kinds of vegetables grow 
in great abundance, though the amount of surface water is limited. 
Elevation, 4,300 feet. 

Reese River Valley is from eighty to one hundred miles long, and 
from two to eight wide, through which flows the river from which it 
takes its name. The river, except in seasons of more than usual snow 
and rain in the mountains, sinks before it reaches the Humboldt, at a 
point near Battle Mountain, on the railroad. 

Fish Creek Valley, twenty miles west, contains four or five thousand 
acres of arable land, and west of this is Lone Hill Valley, which contains 
100,000 acres of sage-bush land suitable for cultivation, but now being 
sought after by stock-men for grazing purposes. Hlevation, 4,800 feet. 

Clover Valley, south of Wells Station, contains about 100,000 acres 
level land. Some meadow land absut Snow Creek and Lake. LHleva- 
tion, 5,700 feet. Nearly all good farming land, with water plenty. 

Thousand Spring Valley, east of Wells Station, contains about 70,000 
acres grazing land. Water abundant. Elevation, 5,950 feet. 

Grouse Valley, outlet of Thousand Spring, contains some good grazing © 
and meadow land. Hlevation, 5,600 feet. 

A minute description of each valley would be simply a repetition of 
words; for all the valleys above named in climate, soil, productions, and 
general appearance are very much the same. A sufiicient supply of 
water for irrigation is the great want. This difficulty, however, can be 
obviated by artesian wells. ‘The time is not distant when hundreds of 
thousands of acres will be brought into subjection by this means, and 
now, where there is nothing seemingly but a desert waste, broad fields 
of the cereals and inviting meadows will delight the eye and relieve the 
present monotony. The apples and peaches in the few orchards in 
Humboldt County are unsurpassed in their yield and the flavor of their 
fruit. That there is an abundance of water beneath the surface, only 
requiring necessity to bring it forth, has already been proven at the two 
extremes of the great Humboldt Valley. One has recently been bored 
fifty miles east of Wadsworth, on the line of the Central Pacific Railroad, 
and is now yielding a constant supply of water, which it sends through the 
pipe four feet above the surface. Another at Kelton, begun and com- 
pleted last week, sends up a fine stream several feet above the surface. 
The expense of boring thus far has proven quite insignificant, which 
fact, with results already achieved, will influence others in the same 
direction, and it is not unreasonable to believe, from what has been ac- 
complished, that the great need—water—will be supplied through ar- 
tesian wells. . 


18 4@s 


274 GEOLOGICAL SURVEY OF THE TERRITORIES. 


EXPERIMENTS IN CULTIVATION ON THE PLAINS ALONG THE 
LINE OF THE KANSAS PACIFIC RAILWAY. 


By R. 8S. Exiorr. 


The treeless plains between the Platte and Arkansas Rivers may be 
said te extend from the ninety-seventh meridian of longitude to the 
Rocky Mountains. North of the Platte and south of the Arkansas the 
general features of the country are similar, but for the purpose of this 
report we need only have in view the region between the rivers. Its 
drainage is mainly through the Kansas River, the numerous affluents of 
which afford, in pools or currents, the water-supplies which have enabled 
the buffalo to sustain himself in all its parts.. Along some of the streams 
there are occasional groves and fringes of timber—ash, box-elder, cedar, 
cherry, cotton-wood, elm, hackberry, oak, plum, walnut, and willow; some 
of the species persistent to the mountains, but not in numbers or distri- 
bution sufficient to change the character of the country from that of 
open, treeless plains, rising gradually from about 1,000 feet above the 
level of the sea at the ninety-seventh meridian to more than 5,000 feet 
at Denver. 

There is great uniformity in the surface of this immense inclined 
plane. The face of the country presents a series of gentle undulations, 
but there are no points of much elevation above the general surface, 
nor any great depressions below it. The geology seems to be in har- 
mony with the surface features, as the earths and rocks of this vast 
region, five hundred miles in width, range from Lower Cretaceous, 

‘(Mudge,) on its eastern border, to the later Tertiaries of the Lake period, 
(Hayden and Newberry,) near the base of the mountains. 

Open on the north to the arctic circle, and on the south to the Rio 
Grande, with no mountain-ranges or extensive forests to check atmos- 
pheric movements, the great plains must necessarily be swept by winds 
as freely as the ocean. In spring and summer the winds from the 
southward are most prevalent. In winter the winds are more frequent 
from the northward. In the autumn they are apt to be more variable, 
and at the same time of more gentle character. Wind from the west is 
seldom observed. The winds are often stropg, but they cannot be 
classed with destructive gales. They come with a steady pressure, 
which may cause a frail building to tremble, but will not overturn it. 
‘Tornadoes and hurricanes seem to be unknown. There is no record or 
tradition of such manifestations. Local thunder-storms and heavy 
rains, over comparatively limited districts, are experienced as detached 
phenomena, but are apt to be incidents of a storm covering a large area, 
and moving eastward. Days of comparative calm and of gentle breezes 
often occur, when, perhaps, for a week the wind-mill is unable to work 
the pump at the water-station, but total rest of the atmosphere, except 
for brief periods, is rare. The climate is propitious to health and to 
comfort; for although changes of temperature are at times sudden and 
wonsiderable, yet injurious results seldom follow them. 

As we pass westward from the ninety-seventh meridian, the atmos- 
phere is observed to be more arid. Within two hundred miles of the 
mountains, the deposition of dew is at times so light as to be of little or 
no service to the vegetation. The annual rain-fall is also less as we go 
westward, decreasing nearly in the ratio of distance until the divide is 
reached at and southwest from Cedar Point, in which vicinity there is 
supposed to be more rain than eastward in the plains or westward 


GEOLOGICAL SURVEY OF THE TERRITORIES. 275 


nearer the foot-hills. The natural effect of decreasing precipitation 
and increasing aridity is in some degree shown in the vegetation. The 
grama and buffalo grasses continue, together with the sunflower, 
solanum, euphorbia, and other plants, which are vigorous, nearly if not 
quite as far east as the ninety-seventh meridian; but we find that the 
blue-joint grass of Central and Eastern Kansas is less abundant, and 
that cleome, tomea, cactus, artemisia, &e., enter on the more arid 
scene as if in their chosen home. But no considerable part of the 
plains between the Platte and Arkansas is so arid as to be destitute — 
of vegetation, although the change in the flora is rather distinctly 
marked as we pass from the middle of Kansas westward. 

Like any other extensive area, the plains exhibit a variety of soils, 
but the fertile greatly exceed in extent the unfertile districts. Loam, 
with greater or less mixture of vegetable matter, is the prevailing soil, 
the proportions of sands and clays differing greatly in different locali- 
ties. The patches of sand or gravel of meager fertility, or of alkaline 
clays, unsuited to general plant-growth, are very small in proportion to 
the whole area, and with irrigation in some parts, and without it in — 
others, the entire region would prove, on trial, to be productive, with as 
small a share of waste-land as some of the most favored States. The 
value of the plains for production is more affected by peculiarities of 
climate than by poverty of soil. 


“EXPERIMENTS IN CULTIVATION ORDERED. 


Twenty years ago the lands available for general agriculture west of 
the State of Missouri were supposed to lie in a belt of not more than 
one hundred miles in width, extending north and south. Even when 
the Territory of Kansas was organized, the whole area west of Missouri 
and east of the mountains was of doubtful value in public estimation; 
and emigration was stimulated by political considerations rather than 
by correct knowledge or appreciation of the country. Beyond the nar- 
row belt, and stretching away to the mountains, was the unfruitful 
waste, aS popularly estimated. Its possible future usefulness for 

pastoral purposes had been at times suggested, but the day for its 
' actual occupancy, if ever to arrive, was regarded as far distant. The 
Settlers, however, soon ventured beyond the supposed boundary of pro- 
ductiveness; and as they increased in numbers, the area of available 
lands was found to extend itself westward, as if to meet their necessities. 
The construction of the railway brought increased emigration, more 
accurate knowledge of the resources of the country, and a firmer confi- 
dence in its future. By 1870 settlements had stretched along the rail- 
way to points more than two hundred miles west from the State of Mis- 
souri. The pioneer had passed the boundary of the traditional ‘‘desert” 
at the ninety-seventh meridian, and in his march westward had found 
that the desert, like its own mirage, receded before him. Was his 
march to continue; and how much farther could soil, temperature, and 
rain-fall be relied on to reward cultivation? These questions, important 
to the interests of the general public, as well as of the railway, could 
best be answered by experiments, and the directors of the company 
ordered some such experiments to be made. 

In the spring of 1870, gardens were made at some of the stations, at 
distances between two hundred and thirty-nine and three hundred 
and seventy-six mies west from Kansas City; the farthest westward 
being at Carlyle Station, 2,948 feet above the level of the sea. Seeds 


\ 


276 GEOLOGICAL SURVEY OF THE TERRITORIES. 


tried in these gardens germinated well, and the plants, with rude and » 
imperfect culture, grew encouragingly. The results were satisfactory, 
although the destruction by insects was greatly beyond anticipation. 
Trish potatoes, for example, made vigorous growth, yet about the time 
of blooming were destroyed by a species of blister-beetle, (Hpicauta cor- 
vina, Riley,) which proved to be a more formidable enemy than even 
the Colorado potato-bug.. Spring-wheat matured merchantable grain 
at Carlyle. 
In the summer and fall of 1870 a few acres were broken at each of 
the three following stations, on the Kansas Pacific Railway, distant from 
Kansas City and above the level of the sea as follows: ; 


Stations, West from Kansas | Above sea- 
y evel. 
Miles. Leet. 
Walson (toma osland) eee ree errr ere eee er elem eee eee meres ictal 239 1, 586 
Sa USIP SI ae SM a, AE lls Seem Me ON tes page Pn RC CO TE TSE UE 302 2,019 
TESS AGL Cheysfel eye UA eee Aap RL Ue a eR pane ln ph eee anes hae ye Ae eh A 422 3,175 


These places are in the western half of the State of Kansas. All are 
in the present buffalo range; all are in the region of short grasses; all 
are in the open, treeless plains, beyond the limits heretofore assigned 
to settlements. 

Wheat, rye, and barley were sown at each of these stations in the 
fall of 1870; at Pond Creek, September 28; at Ellis, October 20; and 
at Wilson, November 11. At Pond Creek the rye grew finely and 
matured a fair crop; the wheat and barley were partially winter-killed, 
but the surviving plants made heads of the usual length, well filled with 
erain of good size and quality. At Ellis the promise of all the grains 
was excellent until the Ist of June, when a hail-storm of unusual severity 
prostrated every stem. At Wilson the grains all did well. The presi- 
dent and the secretary of the Missouri State board of agriculture (who, 
in company with members of the board, visited the stations in June) say 
in their report: “We found wheat, rye, and barley sown November 11, 
1870, [at Wilson,] equal to if not beyond the average crop of any part 
of the Union.” And of Pond Creek they say: “The rye, sown 28th of 
September, on raw ground, would rate as a good crop in Missouri or 
Tilinois; and of the winter-wheat and barley,-the plants which had sur- 
vived the winter were heading out finely. Rye may be regarded as a 
valuable crop to the west line of Kansas, (without irrigation ;) and fur- 
ther trials of wheat and barley of the more hardy kinds will, in all prob- 
ability, be successful.” 

Trials of grass-seeds at the stations named have shown that sorghum, 
lucerne, timothy, clover, and Hungarian grass may be regarded as future 
forage crops on the plains; the first and last being the most promising. 
Maize can be grown for fodder at each of the stations, and for its grain 
at Wilson and Ellis. At Pond Creek, sorghum made a goed length of 
stalk and matured fine panicles of seeds. At Ellis and Wilson the 
stalks reached a height of nine to ten feet, and abundance of seeds were 
matured. This plant will be found to be of great value in Western 
Kansas and Eastern Colorado, if its usefulness for fodder has not been 
greatly overrated. In the dry atmosphere of the plains, the stalks 
could probably be dried so as to avoid the souring of the juice, on which, 
in [iinois, an objection has. been raised to its use as a fodder-plant. 


GEOLOGICAL SURVEY OF THE TERRITORIES. yar 


TREE-SEEDS. 


There were planted at Wilson tree-seeds as follows: 

Fall of 1870.—Ailantus, chestnut, oak, peach, pecan, pifion. 

Spring of 1871.—Ailantus, catalpa, elm, locust, honey-locust, silver- 
maple, osage-orange, walnut. 

All these seeds, except the pifion, (nut-pine of New Mexico, Pinus 
edulis,) have done remarkably well. 

Seeds of ailantus, catalpa, locust, honey-locust, and osage-orange 
were tried at Hllis with encouraging prospects, when most of the seed- 
ling trees were destroyed by the hail- storm of thelist of June. Seeds of 
ailantus, sown broadcast during the first week in June, came up well, 
and the little trees came safely through the summer. 

Seeds of ailantus sown at Pond Creek resulted in a moderate growth 
of trees, of which a large proportion survived the summer. 

The experiments with tree-seeds, though very limited, have sufficed 
to show that trees may be grown from seed without irrigation, to the 
west line of Kansas, and in all probability to the base of the mount- 
ains. 

Cuttings of cotton-woed, Lombardy and white poplar, and white and 
golden willow, were tried at Wilson and did well in that locality. Cut- 
tings of cotton-wood and the willows were also tried at Ellis with a 
measure of success. 


TRANSPLANTED TREES. 


Trials were made at Wilson of transplanted trees of the following 
kinds: 


EVERGREENS. 
White pines Vy oot ba oe ..-Pinus strobus. 
EOLCs PIN? S50 ys VS P. sylvestris. 
Austrian pme. ff. Peal. P. Austriaca. 
Corsican’ pine 7202. Seo oe P. laricio. 
Norway spruce’. Leos. Abies excelsa. 
vem €edar. S22 2022 Ae 35 --....duniperus Virginiana. 
DECIDUOUS. 
VS\TMGW OTE Os ER Sari i ee On ees EN es A. glandulosa. 
PAST es ae ie Vy dal ey Sacra Se Fraxinus Americana. 
IHOSCOUMER: 2564 sis aes st Negundo aceroides. 
Warrallipalce tye ie ee ey op aye C. bignonoides. 
Chostnubisa ee sce ce a Castanea vesca. 
Cotton-wood....-.--.--..--. Populus monilifera. 
I Eat Sys EVA gs WO SP ae Ulinus Americana. 
Honey- Morente Bail ey spa Gleditschia triacanthus. 
European: larch ...2...2-..-.- Larix Europea. 
INOS Vert i ey AR, ee ae ae ee Tilia Americana. 
Silveramaples 2) 6 iL 245.22. Acer dasycarpum. 
Sycamore-maple ............ A. pseudo-platanus. 
Osage- oranges soe. oe Maclura aurantinea. 
Lombardy poplar.....-.-..- Populus dilatata. 
“ White poplate Fg. o: P. alba. 
Pulipiveeies is! Soe aa wat Liriodendron tulipifera. 
NV bi tec wallow: Seu GA Gee A os ..Saliav alba. 
Golden willow..........0... Salix alba, (var.) 


PUVA LULL COS ae cre SS Juglans nigra. 


278 GEOLOGICAL SURVEY OF THE TERRITORIES. 


The foregoing trees, whether transplanted or from seeds or cuttings, 
have done “well at Wilson, making growth equal to what is usual in 
FEiastern Missouri or Illinois. Reverend 5. Gale, one of the regents of 
Kansas State Agricultural College, examined the trees on the 18th of 
August and reported measurements as follows: 

From seed.—Ailantus, 24 to 30 inches; catalpa, 3 to 12 jabhiest chest- 
nut, 4 to 12 inches; elm, 10 to 20 inches; locust, 36 to 48 inches; honey- 
locust, 16 to 24 inches; silver. maple, 12 to 24 inches; 0 oak, 8 to 10 inches; 
osage- orange, 12 to 30 inches; peach, 24 to 30 inches: pecan, 4 to 9 
inches: walnut, 10 to 12 inches. 

From cuttings. —White poplar, 12 to 27 inches; Lombardy poplar, 24 
to 36 inches; cotton-wood, 18 to 34 inches; white willow, 24 to 36 inches. 

Transplanted. —Ailantus, 48 to 60 inches ; ash, 10 to 16 inches; box- 
elder, 36 to 40 inches; catalpa, 12 to 24 inches: chestnut, 8 to 14 inches; 
cotton-wood, 36 to 60 inches; elm, 20 to 30 inches; honey- -locust, 36 to 42 
inches; larch, 6 to 12 inches; ‘linden, 9 to 18 inches; silver- maple, 24 to 30 - 
jnches; sycamore- maple, 12 to 24 inches; osage- orange, 12 to 36 inches; 
peach, 30 to 36 inches; white poplar, 24 to 36 inches; Lombardy poplar, 
24 to 36 inches; tulip- -tree, 8 to 10 inches; ; willows, 36 to 48 inches ; wal- 
nut, 6 to 8 inches. 

Mr. Gale says: ‘‘The evergreens have nearly all lived, and havemade 
a growth of from 4 to 8 inches. All have done well. There is certainly 
nothing in the appearance of these trees to discourage the planting of 
evergreens in Kansas.” It is proper to state that the catalpa-seed 
was sown broadcast on ground which had been broken the November 
previous and was not replowed. Seedling walnuts were grown by put- 
ting the seed under fresh-turned sod. None of the trees had the care 
or cultivation usual in nurseries. 

At Ellis the same transplanted trees were tried as at Wilson, except 
red cedar and cotton-wood. The result was encouraging, although the 
- chestnut, larch, and Norway spruce may be said to have failed on this 
first trial, and some others were less vigorous than at Wilson. The 
hail-storm of 1st June greatly damaged the trees, cutting off the leaves 
and shoots and splitting the bark; yet a large proportion of the decidu- 
ous class made a fair growth, and about 50 per cent. of the pines sur- 
- vived. Of ailantus, ash, catalpa, honey-locust, and white poplar planted 
at Ellis every tree survived, and nearly all of the box-elder, elm, silver- 
inaple, osage-orange, Lombardy poplar, and black walnut. 

At Pond Creek the growth of some kinds of trees was highly 
encouraging. Ailantus, ash, box-elder, catalpa, honey-locust, and osage- 
orange have done best, and promise well for the future. Elm and black 
walnut made moderate growth, and seem to have established themselves. 
The willows, the poplars, and the silver-maple did not come up to 
expectation. European larch and most of the evergreens failed; but a 
few of the pines lived through the summer, and in another season will 
probably do well. The trees at Pond Creek are in one of the most for- 
bidding spots of all the plains. At the new station, Wallace, about two 
miles eastward, and on higher ground but with different soil, silver-maple 
and Lombardy poplar seem to do much better than at Pond Creek. 


NO IRRIGATION. 


The experiments were all without irrigation. Except to soak some of 
the seeds, or to puddle the roots of the trees as they were set out, not 
one drop of water was applied by human agency. The trees had not 
the benefit of good care and cultivation; they were not aided by mulch- 
ing the ground; nor had they apy shade or shelter from the winds. All 


GEOLOGICAL SURVEY OF THE TERRITORIES. 279 


the conditions of the experiments were such as the ordinary far mer 
may easily imitate. 

One object was to test the possibility of growing trees and other plants 
on the plains depending on the rain-fall alone. It was deemed import- 
ant to show that the settler in the open waste may adorn his home with 
trees; may grow fruits and timber; may raise grains and other vegetable 
food for his family and his live stock without resort to expensive pro- 
cesses of artificial watering. So far as we may judge from a single 
season, the object has been accomplished; and it is not doubted that 
future years will sustain the promise of the past season.. 


SETTLEMENTS ON THE PLAINS. 
Within the past two years settlers, in families and colonies, have 


Bc spread westward, along the line of the Kansas Pacific Railway, and 


also on streams north and south of the road, nearly to the one hun- 
dredth meridian. The purpose is generally to grow and deal in cattle 
and other live stock, and this purpose will be greatly aided by the 
capability of the country to produce grains and other products of gen- 
eral agriculture. The first settlers keep near the streams, as a general 
rule, for the convenience of water ready at hand and the limited sup- 
ply of timber. If we look backward twenty-five years and reflect on 
the westward extension of settlements during that time, we must see . 
that the causes which have pushed the “ frontier” nearly three hundred 
miles west from the mouth of the Kansas River are yet in active opera- 
tion, aided by potent agencies not then in existence. Then the locomo- 
tive was unknown west of the Mississippi; now there are in Iowa, Mis- © 
souri, Nebraska, and Kansas thousands of miles of railroad. Then the 
entire population of the United States was only about twenty-one mil- 
lions; now it is over forty millions. It is safe to say that the forces 
operating to throw population westward, taking into consideration 
facilities of transportation, are three times as powerful as they were 
twenty-five years ago. The result will be a gradual spread of people 
over the great plains, arranging their pursuits and modifying their 
habits to suit the capabilities of the country and the necessities of their 
respective localities. 
EFFECT ON CLIMATE. 


It is a bold assumption to say that the spread of settlements over the 
plains is to materially affect the climate. Yet it is not unreasonable 
to expect some degree of amelioration. Every house, every fence, every 
tree which civilized communities may in the future establish in those 
vast, open areas, will aid, in some measure, to check the sweep of the 
winds. Every acre broken by the plow will retain a greater amount 
of moisture after rains, and for a longer time, than the unbroken prairie. 
‘The genial rains of spring and summer will evaporate with less rapidity, 
and there will be a greater degree of humidity in the atmosphere, 
heavier dews, and possibly more frequent showers. Even if the annual 
average of rain-fall shall not be increased, the chances are that it will 
be more evenly distributed. If we may judge by the experience of 
other parts of the world, where the destruction of forests has operated 
to dry up fountains, we may reasonably expect that the breaking up of 
the surface by the plow, the covering of the earth with taller herbage, 
and the growth of trees, will all tend to the development of springs 
_ Where now unknown, and to render streams perennial which are. now 
intermittent. Thus the gradual spread of inhabitants over the plains 
will tend to enlarge their capabilities and to render them more 
habitable. 


Peri Ee i 


PALEONTOLOGY. 


FOSSIL FLORA.—By LEo LESQUEREUX. 


IL—ENUMERATION AND DESCRIPTION OF THE FOSSIL PLANTS, FROM THE SPECI- 
MENS OBTAINED IN THE EXPLORATIONS OF DR. F. V. HAYDEN, 1870 AND 1871. 
Il—REMARKS ON THE CRETACEOUS SPECIES DESCRIBED ABOVE. 
I.—TERTIARY FLORA OF NORTH AMERICA. 


ON THE GEOLOGY AND PALEONTOLOGY OF THE CRETACEOUS STRATA 
OF KANSAS.—By E. D. CorE, A. M. 


T.—A GENERAL SKETCH OF THE ANCIENT LIFE. 
IL.—GEOLOGY. 
TiI.—SYNOPSIS OF THE FAUNA. 


ON THE VERTEBRATE FOSSILS OF THE WAHSATCH GROUP.—By E. 
D. Corr, A. M. 


ON THE FOSSIL VERTEBRATES OF THE EARLY TERTIARY FORMATION 
OF WYOMING.—By Pror. JosEPH LEIDY. 


PRELIMINARY LIST OF THE FOSSILS COLLECTED BY DR. HAYDEN’S EX- 
PLORING EXPEDITION OF 1871, IN UTAH AND WYOMING TERRI- 
TORIES, WITH DESCRIPTIONS OF A FEW NEW SPECIES.—By F. 
B. MEEK. 


PALEONTOLOGY. 


FOSSIL FLORA. 


COLUMBUS, OHIO, February 28, 1872. 

DEAR Sie: In accordance with your instructions I have prepared 
the following report on the specimens of fossil plants obtained in your 
geological explorations of 1871. I regret that the time allowed to me 
for the examination of such a large number of specimens, (more than 
three hundred,) and the preparation of the report, was too short. This 
may account for, if not excuse, the deficiency of this paper. 

The first part of the report contains the descriptions of eighty species 
of fossil plants, mostly of the Tertiary formations. To obviate the want 
of plates and figures, I have quoted largely from already described and 
figured species, either analogous or identical, this being the best way 
to give an idea of the forms of leaves, always more or less obscurely 
conceived from mere descriptions. 

The general remarks on geographical, stratigraphical distribution, 
typical comparisons, &¢c., which form the second part of the report, are 
presented as a mere summary of questions which should be elucidated 
with more details when your fossil plants of the recent formations are 
published in a general report. and the descriptions illustrated with 
figures. 

Very respectfully, yours, 
L. LESQUEREUX. 

Professor F. V. HAYDEN, Washington, D. C. 


I—ENUMERATION AND DESCRIPTION OF THE FOSSIL 
PLANTS, FROM THE SPECIMENS OBTAINED IN THE EX- 
PLORATIONS OF DR. F. V. HAYDEN, 1870 AND 1871.* 


1. HENRY’S FORK. 


Hard silicified limestone, with indistinct remains. 

PTERIS PENNZFORMIS, Heer. A number of broken specimens of the 
fern referable to this species, have been re-examined, without affording 
more evidence to what has been said in the former report, p. 384. It 
differs from the following species, found also on broken specimens of 
this locality, by its thicker secondary veins, more obliquely attached to 
the medial nerve, and by its entire borders. 

BLECHNUM GOpPERTI, Ktting, (Flor. Bil., p. 14, Pl. ii, Fig. 1-4.) 
Fragments of linear leaves, half an inch iad, with dentate. borders ; 
‘secondary veins nearly in right angle to the thick medial nerve, paral- 
lel, forking once near the base, and much thinner than those of the for- 
mer species. Though the specimens show mere fragments of leaves, 
the specific characters are well marked. 

A third species of fern is preserved on the shales of this locality. It. 


*See Report of the Territories, 1870, p. 384. 


284 GEOLOGICAL SURVEY OF THE TERRITORIES. 


is a single small oval leaflet, 12 millimeters long, 6 millimeters broad, 
rounded to the point and to the base, with narrow but distinct medial 
nerve, and secondary veins, oblique, slightly arched to the borders, 
forking twice. The base of the nerve is abruptly bent to one side, as if 
it had been joined to a main rachis, or as a lobe of a compound leaf. 

PHRAGMITES OENINGENSIS, Al. Br. Represented by broken stems, 
with distinet nervation, obscure articulations, and scars of branches 
bearing the characters of this species. 

Fragments referable to the genus Oyperites and to the genus Calam- 
opsis, (?) as described in my former report, loc. cit., p. 384. 


2. MuppY CREEK AND BLAKE’s Fork. 


No remains of other species but of those described in the former 
report have been discovered in the examination of new specimens of 
these localities. Aspidium, named A. pulchellum, or A. Fischeri, Heer, 
belongs to this last species; and as far as can be ascertained from frag- 
ments of glumaceous leaves, the species considered as Carex tertiaria, (?) 
Heer, loc. cit., p. 384, is right. 


3. BARRELL’S SPRINGS. 


The matter imbedding fossil remains of this locality appears under 
three different aspects: 1st: A ferruginous, reddish, hard clay-shale, 
with few remains of trees, Sequoia, Acer. 2d. A soft, laminated shale, 
passing downward to layers of coaly matter, formed of broken pieces 
of grasses, ferns, &c., all herbaceous plants, with floating rootlets. 
3d. A soft, yellow clay, apparently a bottom clay, with roots of Hquise- 
tacee. The succession of deposits from bottom upward is marked by 
the substance of the shale as by the kind of plants which they have 
preserved. 

LyGopium NEUROPTEROIDES, Lsqx, (Dr. Hayden’s Report, 1870, 
p. 384.) Separate leaflets only, with fragments of stems of the same . 
species, are abundant in the shales. Leaflets bifid, trifid or quadrifid, 
with linear lanceolate obtusely pointed divisions, 4 to 8 decimeters long, 
from the obconical base of the leaflets to the point of the longest lobes. 
The leaflets are divided, from below the middle, in lobes irregular in 
size, the lateral ones being generally shorter, all .obliquely diverging 
with more or less obtuse sinuses and entire or slightly wavy on the 
borders. Sometimes they are enlarged at the point and emarginate in 
two short, obtuse lobes. The nervation is simple for each division of 
the leaflets, the medial nerve of each remaining distinct to the base 
and there, being separated by secondary flabellate veins, which higher 
up come out from the medial nerve in a very acute angle, and remain 
nearly parallel to it before curving to the borders. The lowest veins 
are three to four times dichotomous, the superior ones only twice, and 
so close are they to each other that, along the borders, 75 to 80 veinlets 
are generally marked in one inch. The areas are filled by square or \ 
pentagonal areoie, very small but distinct. As yet few fossil species 
have been referred with sufficient evidence to this fine genus. Lygodi- 
um cretaceum, Debey and Etting., is from the Cretaceous formations of 
Belgium. Four other species are described by Heer, from the Miocene 
of Switzerland, and one from Oeningen. 

EQUISETUM HAYDENH, sp. nov. Rhizoma, 14 to 2 decimeters broad, 
irregularly striate, articulated; articulations distant, bearing round 
obovate tubercles, 14 millimeters broad, 2 centimeters long, attached 8 to 


GEOLOGICAL SURVEY OF THE TERRITORIES. 285 


10 Bonn the articulations. These tubercles, joined to each other like 
strings of beads, radiating from the rhizoma, are slightly more elongated 
outside, abruptly rounded or more inflated inward, regularly and. nar- 
rowly striated as well as the rhizomas, but scarcely, if ‘at all, wrinkled. 
At a distance from the point of connection to the rhizoma they become 
more elongated, passing here and there to mere cylindrical filaments or 
rootlets, which appear to divide in radicles. The point of union of these 
tubercles, either to each other or to the rhizoma, is marked by com- 
paratively large scars, (5 millimeters wide,) representing a double ring 
with a central point. This fine species, known as yet only from its rhi- 
zoma and its divisions, resembles Hquisetum arcticum, Heer, (Fl. Arc., 2, 
p. 31, Pl. i, Fig. 2,) from Spitzbergen, and still more, at least by the form 
ot the tubercles Ei. Parlatort, Heer, as figured by Unger, in Sill., Pl. i, 
Fig. 5, differing, however, from both by the broader, regularly striated 
rhizoma, not inflated at the articulations, and by the form and size of 
the tubercles. No other fragments referable to any species of Hquisetum 
have been preserved in the shales of this locality. 

TAXODIUM TINAJORUM, (?) Heer. The specimen has two branchlets 
of Taxodium, parallel to each other, apparently divisions of the same 
braneh. One bears long, crowded, linear leaves like those of this species, 
as figured in Heer’s Fl. Are., 2, p. 22, Pl. i, Fig. 3, from Alaska; the 
other has more distant and broader leaves, somewhat enlarged in the 
middle, or narrowing at the base like those of Taxites Olriki, Heer, loc. 
cit., Pl. i, Fig. 8. The substance of the leaves is, in both fragments, of 
the same thickness, the surface smooth or shining, the branches com- 
paratively thick and flat. In the upper part of the fr agment compared 
to the last species of Heer, the leaves become longer from the base up- 
ward, as in the figure of T. Olriki ; our specimen, therefore, appearing 
to represent both species. 

PHRAGMITES OENINGENSIS, Al. Br. The shales of this locality are 
covered by a quantity of much-divided roots and rootlets, with thread- 
like branches of the same form as those figured by Etting., Flor. Bil., 
Pl. iv, Fig. 7b.. With them are mixed fraements of rhizomas, of stems 
and of leaves of the same species, which are well characterized by their 
nervation, as marked in Heer’s Fl. Ter. Helv., Pi. xxiv, Fig. 5 3, 
enlarged. 

PoAcITES L2VIS, Heer. Asremarked in Dr. Hayden’s Report for 1870, 
p. 385, this species is represented by many fragments of the culm and 
of the leaves, identical in characters with the author’s description and 
figures in Fl. Tert. Helv., Pl. xxv, Fig. 10 a, 6, c¢, and Pl. xxvi, Fig. 7a. 
The culm is about 7 millimeters wide, nearly smooth, with close undis- 
tinct striz; the leaves, slightly narrower, are marked by about 10 more 
distinct smooth lines. 

CYPERUS (!) BRAUNIANUS, (?) Heer., (FI. Tert. Helv., p. 72, Pl. xxii, Fig. 
6.) There is scarcely any doubt on the identity of this species, repre- 
sented like the former by numerous though small fragments. The stems 
are generally small. One of them bears attached to its curved base or 
rhizoma, some oval tubercles with round small scars like those of Fig. 
6, Pl. xxii, of Heer’s loc. cit. 

CYPERITES DEUCALIONIS, Heer. Mentioned in Dr. Hayden’s Benes 
' for 1870, p. 384, with fragments of leaf of a Sabal referable to S. major, (?) 
Ung. 

SPARGANIUM, (!) species. Part of a dichotomous stem, 14 centimeters 
wide, with the branches half as broad, distinctly marked lensthwise by 
regular thin veins, separated by three undistinet very thin veinlets, and 
marked crosswise by obscure less regular lines, indicating the internal 


286 GEOLOGICAL SURVEY OF THE TERRITORIES. 


structure of the stem. Noremains of leaves, fruits, or flowers have been 
found in connection with the fragments of stem, and therefore the 
species is undetermined. It may be referable to Sparganiwum Valdense, 
Heer, which it resembles by the nervation and the mode of branching, 
as seen in Fl. Tert. Helv., Pl. xlvi, Fig. 6 b. 

ACER, species. Is represented, like the former, by a single fragment 
too incomplete for specific determination. The round, cordate base 
only, with a small part of the middle of the leaf and its nervation, is 
preserved. It appears to be of the same type as Acer Sismonde, Gaud., 
(Ist Mem., Pl. 13, Fig. 4,) agreeing with this last figure for the ‘outline 
of the leaf and for the nervation, and by its size comparable to Fig. 21, 
Pl. i, of the 4th Mem., of the same author. I mention this leaf because 
it is the only fragment of an arborescent dicotyledonous species preserved 
on the shale of this locality. 


4, ELKO STATION. 


_ A yellowish white calcareous fine-grained shale, hardened by meta- 
morphism. Plants preserved in broken, small, mixed fragments. 

PHRAGMITES OENINGENSIS, Al. Br., in numerous fragments of leaves, 
stems, and rhizomas. 

POACITES Lavis, Heer. Represented like the former, by a great num- 
ber of broken leaves, with smooth surface, often without trace of veins. 
The blades are mostly narrower than in the figures of this species, in 
Heer’s loc. cit.; intermediate in width between those of Poacites levis 
and P. augustus, Heer, (Fl. Ter. Helv., Pl. xxvi, Fig. 7 a and b,) or even 
as narrow as in the last-named species. 

QUERCUS SEMI-ELLIPTICA, G6pp., (Schossnitz, Fl., p. 15, Pl. vi, Figs. 
3, 4,5.) There are four specimens of this species, one of which only 
represents an entire leaf with all the specific characters. The form 
of the leaf, with its slightly unequal base, the nervation, the teeth of 
the borders, are exactly similar to Fig. 3, loc. cit. The leaf is only smaller, 
‘half an inch long, one-fourth of an inch broad. Of the other specimens, 
all fragmentary. one only indicates a somewhat larger leaf. Professor 
Heer refers (Fig. 4, quoted above) to Planera Ungeri; and, indeed, our 
specimens much resemble some forms of this polymorphous species, and 
might be referred to it but for the base of the leaves narrowed to the 
petiole by a short curve. The nervation, also, is somewhat different, 
the secondary nerves branching often downward above the middle, as in 
species of Ulmus, and the lowest secondary veins curving near the bor- 
ders and along them, though their angle of deviation is about the same 
(40°) as in the upper ones, which go straight to the point of the teeth. 
The veins and veinlets are flat and deep, nervilles not quite distinct, but 
marked as perpendicular or oblique to the veinlets. 


5. WASHAKIE STATION NEAR BRIDGER’S PASS. 


A calcareous and arenaceous stone, hardened by metamorphism, dark- 
gray, irregularly breaking. Remains of plants preserved in large distin- 
guishable fragments, sometimes rolled or even flattened in a direction 
erossing the horizontal layers of the stone. 

RHAMNUS INTERMEDIUS, sp. nov. Leaf 6 centimeters long, not 
quite 2 centimeters wide, narrowly oval, lanceolate and oblanceolate, 
with entire margins tapering downward to a short petiole, (?) (petiole 
broken,) medial nerve half round, strong, secondary veins oblique, (35°,) 
close to each other; 16 pairs from base to point, thick, curving near the 


GEOLOGICAL SURVEY OF THE TERRITORIES. 287 


borders, straight to the point of curve. By its closely approached sec- 
- ondary veins this species is like Rhamnus obovatus, Lesqx., (Am. Jour. 
Sci., vol. XLV, p. 207,) but differs by the greater thickness of these veins, 
which more abruptly curve near the borders, and the more lanceolate 
form of the leaves. From Rhamnus salicifolius, Lesqx., loc. cit., p. 206, 
to which it is also comparable by its form, our leaf differs essentially 
by its closer nervation. 

CoRNUS ACUMINATA, Newby. One of our specimens agrees with 
Newberry’s leaf as figured, (PI. xx, Fig. 3, ined.,) the secondary veins 
only being less numerous and ascending along the borders in a less 
acute angle. As the same differences are marked also between the 
three specimens figured by the author, they do not authorize a specific 
separation. The leaf seems to have been of thin texture, at least not 
coriaceous; the medial, like the secondary veins, are comparatively nar- 
row, not as distinctly marked as they are generally in species of this 
genus. Another specimen of the same locality represents Fig. 2 of the 
same plate. It is broken and not as well preserved as the former. 

POPULUS LATIOR var. TRANSVERSA, Heer. A leaf of the same form, | 
size, nervation, and marginal division as the one represented in Heer’s 
Fl. Ter. Helv., Pl. lvii, Fig. 6. It is also equally runcinate. 

FICUS TILLZFOLIA, Al. Br. The specimen represents an entire leaf, 
less the base and the point. It is broadly cordate, lanceolate-pointed, 
with entire borders, medial and lateral veins strong, these mostly oppo- 
site, the lowest much divided by inferior branches going out at an open 
angle from the medial nerve and then curving upward in a half circle 
and ascending along the borders; nervilles perpendicular to the second- 
ary veins, strong, continuous. Though somewhat broken, the speci- 
men represents evidently this species as figured by Heer, (Fl. Ter. 
Helv., Pl. lxxxiii, Fig. 7.) The leaf in its broadest part is 3 inches 
wide. 

JUGLANS RUGOSA, Lesqx. Broken specimen. 

PLATANUS HAYDENI, (?) Newby. Also an incomplete specimen, refera- 
ble by its size and nervation to this species. Its base, however, is not 
decurrenut to the petiole, but merely wedge-shaped. The fragment of 
this leaf is 6 inches long. 

MAGNOLIA, (!) species. The middle part of a large leaf of Magnolia, 
24 inches wide in the middle; the upper and lower part being broken. 
The leaf is apparently broadly ovate-lanceolate, resembling by its form 
and the direction of the secondary veins Magnolia Jnglefieldt, Heer, in 
Fi. Arc. I, Pl. xviii, Figs. 1 to 3. The medial nerve is narrow though 
deep, the secondary veins diverging more or less under an average an- 
gle of 30°, and at variable distance, some simple, some forking from 
above the middle, separated here and there by .thinner intermediate | 
secondary veins. 

POPULUS ARCTICA, Heer. Identical with the form figured by the 
author in Are. Fl. I, Pl. v, Fig. 3; the borders being merely undu- 
late. 

LIQUIDAMBAR GRACILE, sp. nov. Leaf comparatively small, a little 
more than 2 inches long, broader than long, palmately, nearly equally 
five-lobed ; lobes conical-pointed, separated by obtuse sinuses, the low- 
est nearly continuous to the truncate or slightly oblique base; petiole 
- as long as the leaf. This species might be referable to the genus Acer 
by its nervation, which resembles that of Acer dasycarpon, Ehr. It has - 
only three primary nerves, diverging from the top of the petiole, and 
each of the lateral ones divides, near the middle or at a distance from 
the base, in two branches of equal size, which both support one of the 


288 GEOLOGICAL SURVEY OF THE TERRITORIES. 


lateral lobes and ascend to its point. The secondary veins as seen 
near the point of the middle division are close to each other, curving 
along the borders, but the areolation is obsolete. The border of the 

leaf is entire, and though the lobes on one side are curved down into 

the stone, and on the other side partially erosed, the outlines of the 

whole leaf are easily made out. . 

QUERCUS AMULANS, sp. nov. A large leaf, 4 inches long, 2 inches 
wide, broadly oval, (point and petiole broken,) gradually curving to 
the base, with borders equally dentate from below the middle upward, 
entire or merely undulate downward; medial nerve narrow, deep; sec- 
ondary veins irregular in distance and direction, (angle of divergence 
about 40°,) sightly curving upward, nearly simple, craspedodrome; a 
species not satisfactorily known as yet, related by the form of the leaf 
to Quercus furcinervis, Heer, as figured in Fl. Arc., I, Pl. xlv, Fig. 1 d, 
but far different by the irregularity of the secondary veins curved in 
ascending to the borders and by the sharp teeth turned up from an 
obtuse sinus, as in the leaves of our Castanea pumila. The leaf is twice 
as large as that of Heer. 

JUGLANS ACUMINATA, (?) Heer. The point of a leaf, from the middle 
upward, merely differing from the general form of the species by the 
longer tapering point of an apparently narrow leaf.. Probably repre- 
sents an-inferior leaflet of this species. 


6. WASHAKIE GROUP, CRESTON, W. T. 


Soft, greenish clay, a kind of soapstone, easily cut with the knife. 

ACORUS BRACHYSTACHYS, Heer, (FIl., Spitz., p. 51, Tab. viii, Figs. 7 
and 8.) <A fragment of the same size and form as the branch figured on 
the left side of Pl. viii, Fig. 8, bearing also a small sessile ear of the 
same size. In one specimen part of the seeds have been detached from 
the receptacle, and thus the spiral direction of the axis and the mode of 
attachment of some of the seeds are distinctly seen. 

PALIURUS COLOMBI, Heer. (Fl. Arc., I, p. 122, Tab. xvii, Fig. 2, and 
Pl. xix, Figs. 2 to 4.) Numerous leaves of the different forms represent- 
ing this species and other varieties are preserved on our specimens. 
The smallest leaf is 22 millimeters long and 14 millimeters broad, ovate, 
lanceolate-pointed, narrowed by a curve to the petiole. This form has 
generally the borders marked by one or two obtuse teeth above 
the middle. The more general form of the leaves is broadly ovate, ab- 
ruptly narrowed to an obtuse point, with the base rounded to a long 
petiole and the borders entire, generally equilateral, but sometimes more 
enlarged on one side. The nervation is the same as marked by the au- 
thor, loc. cit. It has three primary nerves, the lateral ones ascending to 
three-quarters of the leaves, curving inward and there anastomosing 
with branches of the medial nerve. But when the leaves enlarge, they 
bear at the base a pair of thinner marginal veins, which in still broader. 
leaves become as thick as the primary lateral ones, ascend in the same 
direction, and give the leaf the same appearance as that of some leaves 
of Populus arctica. Our specimens have branches of the same species, 
bearing petioles of leaves and spines ; also pieces of bark with oval scars 
of spines close to each other, and small oval seeds or nutlets, surrounded 
upward with an oval, flattened border, like a narrow wing. The areo- 
lation is rendered distinct by the erosion of the parenchyma of some of 
our leaves. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 289 
7. MEDICINE Bow CoAL-BEDs. 


Fine-grained, grayish shale, separating in horizontal layers; remains 
of plants distinct. 

PHRAGMITES OENINGENSIS, Heer. A fine stem, with articulations, 
sears of branches, We. 

POPULUS LATIOR var. CORDIFOLIA, Al. Br. The same form as that 
from Alaska, in Heer’s FJ. Al., p. 25, Pl. ii, Fig. 4. 

POPULUS ARCTICA, Heer. Same form as in Fl. Arc., I, Pl. v, Fig. 11, 

PLATANUS GUILLELM@, Gépp. Asin Heer’s Fl. Arc., I, Pl. xlvii, 
Fig. 3; a species represented by our specimens in many of its varieties. 

PLATANUS HAYDENH, Newby., (Pl. xx, Fig. 1, ined.) The form of this 
leaf is like that of Platanus heterophylla, Newby., in Pl. xxi, Fig. 1, ined., 
with the same nervation also; but it has the obtuse, large teeth of P. 
Haydenii; the leaf is, however, much smaller; may be referable to 
Platanus Guillelme. 


8. GREEN RIVER GROUP, HIGH ON HILLS FROM RIVER. 


Coarse-grained, yellow, hard limestone shale, with few remains of 
plants. 

CHANOTHUS CINNAMOMOIDES, sp. nov. Leaf narrowly elliptical, 
pointed to the base, distinctly and distantly crenulate upward from 
above the base; medial nerve slightly thicker than the lateral ones 
which ascend from the base of the leaf, and nearly parallel to the borders 
‘to apparently to three-fourths of the leaf, which is obliquely broken above 
the middle. The medial nerve has no trace of secondary veins as high 
as it is discernible, but merely strong, nearly horizontal nervilles, very 
distinct, like the netting of the areolation; much like Ceanothus Zizt- 
phoides, Ung., chloris especially as figured by Heer, (Fl. Ter. Helv., 
Pl. exxii, Fig. 25.) It differs by the borders, more distantly crenulate 
in the upper part only, and by the base of the leat, which is entire and 
does not pass downward beyond the point of divergence of the lateral 
veins. 

CARYA HEERI, Etting. A few fragments of leaves of this species, 
especially of the form and nervation marked in Fl. Ter. Helv., Pl. xcix, 
Fig. 23, a. 


9. JUNCTION STATION, SUMMIT OF HILLS, NEAR DIVIDE, NORTH OF 
SNAKE RIVER. 


Hard silicified limestone. 
_ PLATANUS GUILLELM&, Gopp. 
POPULUS ARCTICA, Heer. Both represented by mere fragments. 


10. PorInT OF ROCKS STATION, UNION PACIFIC RAILROAD. 


Brown ferruginous clay, with small fragments of plants, mostly unde- 
terminable. 

CYPERITES. Numerous fragments heaped in various directions, refer- - 
able to Cyperus Deucalionis, Heer; C. Chavanensis, Heer; and C. angus- 
tior, Heer. (?) None distinct enough for identification. 

FaGcus ANTIPOFI, Heer, (Fl. Alas., p. 30, Pl. vii, Fig. 4 to 8.) An 
apparently ovate, long-pointed leaf, with straight, nearly parallel, slightly. 
diverging, oblique secondary veins. These are simply craspedodrome. 
and the point where they reach the borders is marked by very small 


1968 


290 GEOLOGICAL SURVEY OF THE TERRITORIES. 
mucronate teeth. A few of these veins branch near the point asin Fagus 


Deucalionis, Ung. 
Small fragments of Juglans and of Platanus. 


11. CoALVILLE, UTan. 


A single specimen from this locality ; a piece of hard metamorph:e 
sandstone, with scattered, small fragments of dicotyledonous leaves, none 
of which are large enough to be recognizable even for generic reference. 


12. CARBON STATION, UNION PACIFIC RAILROAD, WYOMING TER- 
RITORY. 


Fine-grained shale, same color and compound as at Medicine Bow. 

PLATANUS ACEROIDES, Gopp. A whole large leaf, far different from 
the leaves of the following species by the borders rounded to the petiole 
and not tapering, by the angle of the secondary veins more open, and 
by the form of the much broader leaves. 

PLATANUS GUILLELM 2%, GOpp. Among others there is a large speci- 
men covered with nearly entire leaves of this species, showing its vari- 
ous forms. The leaves are all more or less trilobate, with short lateral 
lobes; the base is more or less open, cuneiform to the petiole and entire, 
always descending lower than the base of the first pair of secondary 
veins. The secondary veins are narrow, but well marked; the texture 
of the leaves is rather thin than coriaceous; the fibrilles somewhat obso- 
lete, but in some leaves very distinct. Specimens of this species are 
not ‘distinguishable from the following. 

PLATANUS HAYDENH, Newby. Same leaf as described from Medicine 
Bow, p. 289. 

CARPOLITHES COCCULOIDES, (?) Heer, (FI. Are., I, p. 484, Pl. lii, Fig. 9 
and 9b.) A small obovate fruit, obliquely truncate at its narrowed 
base, about 1 centimeter long, nearly as broad, evidently a thick drupe 
or achenium, as the stone is excavated around it on one side. It re- 
sembles the fruit of an Acer, without the wing, or could be compared to 
the fruit of a Prunus but tor its unequal base, more contracted on one 
side than on the other, much like Heer’s figure, loc. cit. 


13. SAGE CREEK, MONTANA TERRITORY. 


Fine-grained, buff-colored, hard, lamimated shale, split in thin layers, 
with few fragments of vegetable remains and some scales of fishes. 

A FERN, undeterminable fragments, of exactly the size and form as 
the one published by Heer, (Fl. Arc., II, Pl. xlviu, Fig. 3 b,) and merely 
mentioned as Fern from North Greenland. The surface is covered with 
a pulverulent coaly matter, obliterating the nervation. The medial 
nerve only is visible on our specimen, while it iS not seen on the frag- 
ments obtained from Greenland. 

SEQUOIA HEERI, sp.nov. We have numerous and well-preserved 
specimens of this species. It agrees well enough with the small 
forms of Sequoia Langsdorfii, Brgt., figured in FI. Arc., I, Pl. ii, Fig. 15, 
_but differs evidently by shorter and narrower, more distant leaves, all 

narrowed above the decurring base, and, as observed upon the same 
branches, cither pointed or obtuse. Some even are enlarged upward 
and obtuse ; some abruptly pointed. The cone is borne on Tong, naked 
branches, marked with undistinct scars of scales; its form is nearly 
round, slightly flattened, resembling the cone of 8S. Langsdorfii, in 


GEOLOGICAL SURVEY OF THE TERRITORIES. 2oL 


Fi. Arc., I, Pl. ii, Fig.2, but nearly twice as large. To this species is 
referable the form which Heer, in Fl. Alas., p. 23, Pl.i, Fig. 10 and 10 6, 
considered as possibly a variety of S. Langsdorfit, and perhaps also the 
branches figured as S. Langsdorfii, (2) by Newberry, Pl. xi, Fig. 4, ined. 
In this, however, the base of the leaves is decurrent, without being nar- 
rowed. 

‘There is still a great deal of uncertainty about the relation of the. 
fragments of coniferous species, published from our Tertiary strata 
by the authors quoted above. The remarks of Dr. Newberry, con- 
cerning the deciduous appearance of leaves and branchlets of his 
species, are, in part, applicable to our fragments from Sage Creek; 
but in the form which he has observed from Yellowstone, (Notes on 
the Later Extinct Floras, &c., pp. 46 to 48,) the leaves are much longer, 
decurrent, without narrowing at the base, as in the living species of 
Sequoia. If, therefore, this form of decurrent leaves is to be considered 
as a generic character, his species is a true Sequoia. Our leaves, nar- 
rowed at base, though evidently slightly decurrent, have the same 
character, and are besides associated with cones of Sequoia ; but they 
are sometimes abruptly pointed and short, like the leaves of what Heer 
names Tam«ites microphyllus, (Fl. Alas., p. 24, Pl.i, Fig. 9,) or narrower, ~ 
longer, ensiform, distant, nearly as in Taxodium Tinajorum, Heer, Pl.i, 
Fig. t, loc. cit. All the specimens, representing our species, as described 
above, are mere small branchlets of annual growth; but as all are 
bearing leaves, like the branches figured and described from Yellow- 
stone, it is a proof that the leaves were not deciduous, as in Taxodium. 
I think, therefore, that this character of decurrent leaves is rightly con- 
sidered as generic, and distinctly separates the fragments of Sequoia ; 
but that the form, length, &c., of the leaves are, as yet, unreliable for 
specific distinction. 

QUERCUS ILICOIDES, (?) Heer, (FI. Ter. Helv., HU, p. 55, Pl. cli, Fig. 25.) 
The specimens represent three broken leaves of the same species, which 
only differ from each other by their width and the size of the marginal 
divisions. The largest is an exact representative of Heer’s figure, loc. 
cit. The borders are deeply, pinnately lobed, with sharp pointed lobes, 
separated by round sinuses. In the other fragments, which are much 
narrower, the lobes are less marked and the borders become merely 

_ wavy, with sharp but short teeth. The nervation is obsolete, the 
secondary veins being slender and scarcely discernible. They appear 
to pass obliquely to the point of the lobes, sinuous, and connected to 
shorter, intermediate veins. The leaves are bordered by a narrow, flat- 
tened, cartilaginous (?) margin, as the leaves of species of Ilev. By this 
character, as by their form, these fragments might be considered as 
representing a species of this genus, resembling especially Ilex Studeri, 
Heer, (loc. cit., II, p. 72, Pl. 122, Fig. 11;) but their nervation is that of a 
~ Quercus. 
14, EVANSTON, UTAH, (BELOW THE COAL.) 


Reddish, ferruginous, hard shale, breaking in the line of stratification, 
containing abundant remains of plants, generally flattened leaves, with 
surface blackened by a thin coat of coaly matter; details of nervation 
distinct. \_ ie ; 

CYPERUS CHAVANENSIS, (?) Heer, (Fl. Ter. Helv., Pl. xxviii, Fig. 1.) “A 
flattened stem, 1 centimeter broad, without any articulation, smooth 
or obscurely striate, with primary veins thick, varying in distance and 
separated by very thin secondary veins, as in Fig. 1 F, loc. cit., is 
referable to this species. 


Pon, GEOLOGICAL SURVEY OF THE TERRITORIES. 


POPULUS OVALIS, (?) GOpp., (Sohdasniba Fl. i De 23, El. pews, Fig. 1) Ra 

fragment, only the middle part of a leaf, with erenate borders, and ner- 
"vation of ‘this species, or of Populus eximia, of the same author, loc. cit., 
Fig. 2. 

POPULUS MUTABILIS var. REPANDO- CRENATA, Heer. Agrees in every 
point, form of leaf, nervation, &e., with Heer’s Fi. Ter. Helv., Pl. 1xii, 
Figs. 5 and 6. 

PoPULUS ZADDACHI, (?) Heer. Apparently a small form of this species, 
at least referable to it by the nervation; the borders of the leaf being 
destroyed. ‘The nervation is like that of the leaf, Pl. v, Fig. 4, of Heer’s 
Baltic Flora. 

ALNUS KEFERSTEINO, Gopp. There is a large number of speeimens of 
this species, with the leaves of the same characters as those figured by 
Heer in Fl. Alas., Pl. 3, Figs. 7 and 8, and also in FI. Arc., I, Pl. xxv, 
Fig. 9. Some of the specimens have remains of small seeds and of scales - 
resembling those of this species. 

CoRyLus McQuARRyYI, Heer, (FI. Are., I, p. 104.) The author has 
given numerous figures of this variable species. Two forms are especially 
marked, one with “large leaves, having a deeply cordate base, and more 
distant secondary veins; the other with smaller leaves, rounded, slightly 
cordate at base, and more closely approached secondary veins. Both 
these forms, and their intermediate, as figured in Fl. Alas., Tab. iv, are 
represented by our specimens. 

QUERCUS NEGUNDOIDES, sp.nov. Leaf thick, about two inches long, 
cordate at base, enlarged upward to the three-fourths of its length, 
where it is palmately cleft in three lobes, the two lateral shorter and 
obtuse, the medial longer and pointed ; borders undulate crenate ; peti- 
ole half an inch long; medial nerve narrow; secondary veins, about five 
pairs; angle of divergence, 35°; the lowest pair not as thick, and slightly 
more arched than the upper ones; all craspedodrome, and nearly oppo- 
site; a remarkable form. differing from all the species of oak known to 
me, by its palmately cleft leaves. It is distantly related to Quercus tri- 
ang gulari is, Gépp., (Schossnitz, Fl., p. 15, Pl. vi, Figs. 13-17,) and some- 
what resembling a Negundo by the form of the leaves and nervation. 

QUERCUS DRYMEJA, Ung., var.(?) Leaves linear-lanceolate, gradually 
narrowed to the petiole; medial nerve broad and flat; secondary veins 
in an open angle, more open toward the base, curving along the entire 
merely undulate borders. We have two specimens of this form, one 
representing a whole coriaceous leaf, two inches long, half an inch broad, 
tapering upward into a long point, with a petiole half an inch long. 
All the leaves referred to this species by the author in his Chloris, 
and by Heer, also, in Fl. Ter. Helv., have the borders regularly dentate. 
Even this character is considered by Unger as an essential one of his 
species. Our leaves, on the contrary, have entire borders, and secondary 
veins more open, as in Quercus Neriifolia, Heer. I am, therefore, in 
doubt if this form is a mere variety of Unger’s species, though Heer, in 
Fl. Arc., Pl. xi, Fig. 3, has, from Greenland, a leaf with more open veins 
and undulate or scarcely dentate borders, which he considers as a 
variety of Q. Drymeja ; and Gaudin, in 2 Mem., FI. Foss. Ital., describes 
and figures numerous leaves of this Quercus to characterize his multiple 
varieties, one of which, Q. Drymeja var. integra, (loc. cit., Pl. iv, Fig. 22,) 
exactly agrees in form and nervation with our leaves. 

FAaGus DEUCALIONIS, Ung. The same form is figured in Heevr’s FI. 
Are., Pl. x, Fig. 6, and Pl. xlvi, Fig. 4, with this difference only, that 
one of the secondary veins of our leaf bears two small tertiary branches, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 293 


like Fagus Castanecefolia, or Foes Atlantica, Ung. This casual devia- 
tion of simple nervation is often marked in species of this genus, and 
our leaf, having the borders entire except in the upper part, where they 
are merely undulate, or scarcely toothed, is referable to this species. 
The secondary veins are more distant than in any other fossil species 
of this eens: 

BETULA (!) CAUDATA, (? ) Gapp. Two fragments of large leaves of this 
genus, whose upper part only is preserved, Their form is ovate-lance- 
olate, long pointed, of the same size and of the same nervation as the 
leaf represented under this name in Gopp., Schossnitz, Fl., p. 10, Pl. iii, . 
Fig.5. But the exact form of the teeth of the borders is not well 
recognizable, and therefore the identity of our leaves with the European 
species i8 not ascertainable. 

BETULA STEVENSONII, sp. nov. Leaves small, no j~nore than 2 
inches long, ovate or broadly ovate, tapering to a short point, rounded 
cordate at base, with borders abruptly curved downward to the short 
(1 centimeter long) petiole, distantly and simply dentate from near the 
base to the point; medial nerve distinct and narrow; secondary veins 
opposite or alternate, five to seven pairs, (angle of divergence, 40° to 50°,) 
passing like their branches to the point of the teeth; veinlets well 
marked, perpendicular to. the secondary veins. <A true Betula, repre- 
sented by many specimens, and differing from all the known fossil 
species by its abruptly rounded base. The secondary veins are not as 
straight as in our living American species, from which it differs also by 
the simply toothed or serrate borders. Related to Betula primeva, Web., 
(Pal., vol. 4, p. 21, Pl. v, Figs. 4 and 5.) 

ANDROMEDA GRAYANA, Heer. Our specimens represent this species 
with the borders slightly more curved outward in reaching the petiole, 
which is a little shorter. The essential nervation is the same, the areo- 
lation obsolete. One of our specimens bears a branch with buds, just 
like the one figured by Heer in his Foss. Fl. of Vancouver Island, Pl. 1, 
Fig. 9 b. 

DIOSPIROS LANCIFOLIA, Lsqx. Numerous leaves, varying in width 
from 1 to 14 inches, proportionally long, lanceolate-pointed, tapering 
downward to the petiole. The substance of the leaves, transformed in 
a pellicle of coal, is thick or coriaceous, nervation distinct, secondary 
veins running along the borders, as marked in the figure given of this 
species, by Heer, in Fl. Alas., PL iii, Fig. 12. The intermediate veinlets 
are very thin, the areolation still smaller, but of the same type as in the . 
figure loc. cit. The size of the leaves is variable, generally smaller than 
the leaf of: this species from Vancouver, even as small as that of leaves 
of Andromeda Grayana, which these diminutive forms resemble. 

CoRNUS STUDERI, Heer, (Fl. Ter. Helv., IIL., p. 27, Pl. ev, Figs. 18-21.) 
A large leaf, of which the base is destroyed, but whose form and pecu- 
liar nervation are in concordance with the characters of this species. 
Our leaf is similar to figure 18 of Heer’s, loe. cit. 

ACER TRILOBATUM, PAG. Bi As broken leaf, whose outline is mostly 
destroyed. The substance of the leaf is thin; the nervation of the same 
type as in Acer trilobatum var. productum, Heer; the lateral lobes 
appear short and obtuse. 

RavS EVANSIL, sp. nov. Two entire leaves of this species and many 
fragments. They are related to those of Rhus Meriani, Heer, (FI. Ter. 
Helv, III., p. 82, Pl. exxvi, Fig. 5—11,) being, however, shorter and pro- 
portionally broader, more distinetly denticulate and short-petioled. 
The nervation is that of Fig. 7, loc. cit., which represents a leaf with 
more distinctly serrulate borders. AS the leaves of Rhus Meriani are 


294 GEOLOGICAL SURVEY OF THE TERRITORIES. 


very variable in size and form, the difference remarked in the form of our 
leaves could searcely authorize a specific separation but for the short 
petiole which they bear, a character of rare occurrence in species of this 
enus. 

. JUGLANS RHAMNOIDES, sp. nov. Leaves oval, tapering nearly 
equally upward to a point and downward’ to a short petiole, entire, 
varying in size. Two leaves preserved in their whole are 4 inches long 
and 13 inches broad. A fragment, with point and base of the leaf 
broken, is nearly 4 inches broad, with borders apparently rounded 
toward the base. Veins thin but distinctly marked; secondary veins 
equally distant and parallel; 10 pairs, oblique 40°, curving from tlie base 
in going to the borders, and more still near the borders, which they 
closely follow in dividing; nervilles distinct, thick, more or less contin- 
uous and branching. It is difficult to decide if these leaves of ours are 
referable to Juglans or to Rhamnus. Professor Heer, in his Arctic Flora, 
J, p. 128, Pl. xlix, Fig. 10, has a leaf so much like the best preserved 
one of Dr. Hayden’s specimens that it looks like a copy of it; except, 
however, that in Heer’s figure the secondary veins oblique to the me- 
dial nerve, ascend nearly straight to near the borders, where they ab- 
ruptly curve and divide. The author says that but for the more 
straight secondary veins his leaf should be considered aJuglans. There- 
fore these curved secondary veins of our species identify it to this genus. 
But in the leaves which represent it, the secondary veins are closer 
to each other, more exactly parallel, running also nearer to the borders 
than in any species of Juglans ; except, perhaps, Juglans acuminata, Al. 
Br., which, in F1., Alas. ; Pl. ix, Fig. 1, is represented by Heer with leaves 
of a more regular nervation, and secondary veins going nearer to the 
borders than in any other figures of this species. ‘This new species is, 
therefore, closely related to Juglans acuminata, Al. Br. As it bears 
still the same relation to Juglans rugosa, Lsqx., and Cornus acumi- 
nata, Newby, these three species may be mere varieties of that poly- 
morphous Juglans acuminata which has been found over the whole 
extent of the Tertiary formation of both continents as far as they are 
known. 

JUGLANS APPRESSA, Lsqx., (Trans. Am. Phil. Soc., vol. 13, p. 426, 
Pl. xx, Fig. 6. Undoubtedly the same species represented by two speci- 
mens. 

CARYA ANTIQUORUM, Newby. (Extinct Fl. N. A., p. 72, Pl. xxii, 
Figs. 1 to 4, ined.) Two large leaves referable to this species. There 
are still in the collection of Dr. Hayden some specimens of leaves of a 
Carya, 6 inches long, 34 inches broad, broadly ovate-lanceolate, rounded 
and narrowed downward to a thick,long petiole, with serrulate borders, 
&e., which differs from the figures and description of the species by 
a thick medial nerve, by secondary veins much more open near the base, — 
by the borders rounded to the base, and by the broader size of the 
leaves. The ditferences may be merely resulting from the position of 
the leaves, as lateral or terminal leaflets of a compound leaf. 


15. EVANSTON, UTAH, (ABOVE COAL.) 


Shaly, whitish sandstone, with few remains of leaves; outlines and 
primary nervation only distinguishable, details of structure obscured 
by the coarseness of the stone. 

CINNAMOMUM SCHEUZERI, Heer. Same form of leaf as the variety 
figured by the author in Fl. Ter. Helv., Pl. xciii, Fig. 2, with details of 
nervation as marked Fig. 5 of the same plate. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 295 


PLATANUS NOBILIS, Newby. A number of specimens, mere fragments 
of a very large leaf, with nervation of this species. The leaf is still 
larger than the beautiful specimen described by Dr. Newberry, loc. 
‘eit., p. 66, Pl. xvii, ined. 

RHAMNUS RECTINERVIS, Heer, (Fl. Ter. Helv., III, p. 80, Pl. exxv, 
Figs. 2-6.) The leaves representing this species are as large, even 
larger, than the greatest leaf (Fig. 6) figured from European specimens. 
The secondary veins are nearer to each other, or more numerous, at least 
15 pairs in a leaf of the same size as that of Fig. 6. But these differ- 
ences are of no specific value, fragments of other leaves of the same 
showing a variable distance between the veins. The borders of the 
leaves are entire, except near the point, where they are sometimes den- 
ticulate. The secondary veins, deeply marked, slightly curved in going 
out from the medial nerve, ascend straight to the borders in an angle 
diverging 25° to 30°. 

CARPOLITHES LINEATUS, Newby., (Pl. xxv, Fig. 1, ined.) Appa- 
rently the same kind of nut, as yet undescribed. All Dr. Hayden’s 
specimens, found in great numbers scattered in the sandstone, are more 
or less flattened, round-oval in outline, marked with thin série, but 
without the point as in the figure loc. cit., which would indicate them 
as fruits of a Corylus. The name of the fruit is therefore preserved ; 
but its relation to species of our present vegetation is as yet unknown. 
They are apparently referable to palms. 


16. DIVIDE BETWEEN THE SOURCE OF SNAKE RIVER AND THE 
SOUTHERN SHORE OF YELLOWSTONE LAKE. 


A grayish, fine-grained, hard shale, breaking in layers, with few 
remains of plants. © 

GYMNOGRAMM£ HAYDENII, sp. nov. A fine fern, with a frond ap- 
parently tripinnate; pinne, long, linear-lanceolate, gradually decreasing 
- to an obtuse point, pinnately divided toward the lower part in alternate 
linear-lanceolate, obtuse pinnules or lobes, enlarged downward in a 
broad, decurring base, distantly serrulate, and disconnected nearly to 
the main rachis; toward the upper part of the pinne the divisions 
become shorter and broader, about triangular-obtuse in outline, con- 
nected from the middle; near the point they are united nearly in their 
whole length, passing to a terminal, small, obtuse leaflet. The nervation 
is not quite distinct; medial nerve, thin, well marked in the lower divis- 
ions, becoming obsolete in the upper ones; secondary veins very oblique 
to the medial nerve; the lowest ones coming out from the main rachis, 
at least in the largest decurrent divisions ; all dichotomous in ascending. - 
The substance of the leaves is thick, and the veinlets appear to be ren- 
dered obsolete by particles of pulverulent matter hardened into coal. 
By the form of its divisions, this species is related to Sphenopteris Blom- 
strandi, Heer, (Fl. Are., I, p. 155, Tab. xxix, Fig. 1-5, 9a,) from the Miocene 
of Spitzbergen, differing essentially by its nervation, which is more like 
that of Gymnogramma tartarea, Desv. Even in the mode of division and 
_ the form of the lobes, this last species, especially in specimens obtained 
from cultivation, resembles the fossil plant. The small, badly preserved 
fragments obtained from near Gold City, and considered with doubt as 
a Lathrea in Am. Jour. Sci., March, 1868, p. 207, is probably referable 
to this species. 

SABAL MAJOR, (?) Ung. This specimen has only broken parts ol 
lateral rays and the undistinet point of the rachis (2) of a Sabal. It 
represents a large species; may be Sabal Campbellii, (?) Newby. 


296 GEOLOGICAL SURVEY OF THE TERRITORIES. 


DIOSPIROS STENOSEPALA, Heer, (FI. Alas., p. 35, Pl. viii, Fig. 8.) One 
leaf only, with the point destroyed as in the specimen from Alaska, but 
satisfactorily identified by its form and peculiar nervation. The medial 
nerve is broad and grooved, the secondary veins, with angle of diverg- 
ence 50°, curve from the middle upward and along the borders with 
thick tertiary and intermediate fibrille. ‘The leaf is shorter and pro- 
portionally broader than the leaves of D. lancitfolia. 

Besides the named species, the shales have undeterminable fragments 
of Populus, Rhamnus, Juglans, &e. 


17. Mourn or Warm Sprine CANon. 


Fine-grained, gray sandstone, hardened by metamorphism; only two 
specimens, representing one species. 

QuERCUS GAUDINI, Lsqx., (Am. Jour. Sci., May, 1859, p. 360.) 
Described from an imperfect specimen from Bellmgham Bay, and figured 
by Gaudin (FI. Ital., 2d Mem., Pl. vi, Fig. 5) from European specimens. 
Gaudin’s species does not appear to agree exactly with the American form, 
but rather to be a variety of Quercus Scillana, Gaud., as he supposes it. 
The base of our leaf is not rounded, but gradually narrowed ; the point 
is lanceolate or tapering; and the secondary veins, thick at and near the 
base, and curving, enter the upturned point of the distant small teeth. 
The affinity of this species is with Quercus Drymeja, Ung., as figured in 
Heer’s Fl. Ter. Helv., (Pl. xxv, Fig. 18.) 


18. Stx MILES ABOVE SPRING CANON AND ToP oF HILLS BETWEEN 
Fort ELLIS AND BOTTELER’S RANCH. 

Dark-greenish, coarse-grained shale, breaking in every direction, hard- 
ened by metamorphism. 

PHRAGMITES ALASKANA, Heer, (Fl. Alas., p.24, Pl. v, Fig. 12 and 12 0.) 
Two specimens, agreeing in every point with the author’s description 
and figure. The distance between the longitudinal veins is 1 millimeter, 
with intermediate veinlets, extremely thin and somewhat obsolete; the 
size of the leaves is also the same. Professor Heer supposes that this 
form may be a variety of Phragmites Oeningensis. The discovery in our 
American western Tertiary formations of remains of exactly the same 
characters as those which separate this form. is proof of its specific 
value. 

PoPULUS LEUCOPHYLLA, Ung. The specimens represent this spe- 
cies in various of its forms as figured in Gaud., Fl. Ital., Ist Mem., 
p. 29, Pl. 4, Fig. 1-5. It appears of common occurrence in our Tertiary 
strata. Heer has published it from Alaska, and Dr. Newberry’s Populus 
acerifolia (Am. Lye. Nat. Hist. of New York, vol. 18, p. 65, Pl. xiii, Fig. 
5-8, ined.) is referable to it. : 

POPULUS MUTABILIS var. LANCIFOLIA, Heer. Two entire small 
leaves, the largest one 24 inches long, ovate-lanceolate, obtuse, thick, 
coriaceous, with distinct nervation of the species; the other scarcely 
half as long, nearly oval, with undulate borders and undistinct nerva- 
tion. These leaves are more obtuse than any of the numerous forms 
figured by Heer of this polymorphous species; but there is no other 
difference. : 

SaLix GRaNLANDICA, Heer, (Fl. Arce., I, p. 101, Pl. 4, Vig. 10.) 
Two specimens representing only the lower half of a leaf, agreeing with 
the description and figure of this species. The leaf appears of a thick 


GEOLOGICAL SURVEY OF THE TERRITORIES. Zon 


texture, and the nervilles are not distinct as in the specimen from 
Greenland. This is probably the result of the coarseness of the stone. 
One of the specimens bears two fragments of leaves of this species, one 
of which has the secondary veins more, distant, asin S. Grenlandica, 
while the other has them much more approached to each other, just as 
they are in Salix Rheana, Heer, figured on the same plate, Fig. 12, with 
nervilles discernible. I consider both species as identical. 

MYyRICA AMBIGUA, sp. nov. A species represented by three incom- 
plete specimens. Leaf apparently long, (point broken,) linear-lanceolate, 
narrowed to the base, in an outward curved line, about 2 inches broad, 
or less, the other specimens being narrower, with borders distantly and 
obtusely serrulate; medial nerve, broad, narrowly furrowed; secondary 
veins in right angle to the medial one, thick at the base, much thinner 
in the middle, where they branch, anastomosing with divisions of the 
upper and lower veins, and also.with shorter intermediate ones, which 
separate them. Nearer to the borders the nervation becomes indistinct. 
It is distantly related to Myrica Banksiefolia, Ung., as figured Fl. Alas., 
Pl. ii, Fig. 11. 

CORYLUS McQUARRYI, Heer. Mixed with fragments of Populus leuco- 
phylla, Ung. 

QUERCUS ELLISIANA, sp. nov. Leaves ovate-lanceolate, pointed, or 
obtusely pointed; round cuneate at base, with borders marked with short, 
distant angular teeth becoming obtuse toward the point; medial nerve 
deeply marked; secondary veins, eight to ten pairs, emerging at an open 
angle, 55°, curving in ascending to the borders and entering the teeth, 
The lowest pair branch once or twice downward; the second pair has 
sometimes one inferior branch near its point; all the other veins are sim- 
ple; nervilles, undistinct, crossing the veins at right angles. This spe- 
cies is allied to Quercus Pseudo-alnus, Etting., (Bil., Fl.,) which has more 
deeply marked and more acute teeth, with secondary veins at a more 
acute angle of divergence and more distant. 

QUERCUS PEALEI, sp. nov. A small coriaceous, short, petioled leaf, 
14 inches long, ovate in outline, cuneate and entire to the petiole, more 
abruptly narrowed from above the middle into an obtuse point, and 
there obtusely and distantly crenate; medial nerve deeply marked, 
like the secondary veins; four to five pairs in acute angle, (30°,) curving 
in going to the borders, where they enter the teeth, except the lowest 
pair, which curves.upward, follows the borders, and unites by ramifica- 
tion with branches of the second pair. It is a fine species, somewhat 
like Quercus fagifolia, Gdpp., (Schossnitz, FI., p. 14, Pl. vi, especially 
Fig. 9,) from which it differs by the cuneate rounded base of the leaves, 
the more deeply marked teeth, and more curved secondary veins. 

QUERCUS GODETI, Heer. Two specimens of leaves, with all the 
characters of this species, as described by Heer, (Fl. Ter. Helv., L, 
p. 50,) especially resembling Pl. cli, Fig. 11. The borders of the leaves 
appear only irregularly serrulate, and not doubly so, as marked in the 
figure ; but the coarseness of the stone obliterates the details. By the 
borders, unequal at the base, and by the nervation, these leaves, like 
those of Europe, seem referable to Juglans. The areolation is undis- 
tinct. 

QUERCUS LAHARPI, Gaud., (Fl. Ital., 2 Mem., Pl. iii, Fig. 5,10.) The 
leaves referable to this species differ only from it by their smooth 
surface, and the secondary veins, more numerous, sixteen pairs at least, 
nearer to each other, and more curved in passing out to the borders. 
According to the author the surface of the leaves of his species is 


298 GEOLOGICAL SURVEY OF THE TERRITORIES. 


rugose, which is not the case in ours. However, Professor Heer has 
in his Arctic Flora figured this species, (II, p.472, Pl. xlix, Fig. 2-4) 
without mentioning the rugosity of surface, and with form of leaves, 
dentation, and nervation of exactly the same characters as in our speci- 
mens. It is very probably the same. 

FICUS TILLZFOLIA, Al. Br. Obscure fragments. 

SASSAFRAS, species. Represented only by a single specimen of the 
lower part of a leaf. The lateral veins branch at a distance from their ~ 
base, and there is no trace of tertiary nervation or areolation. These 
are mere negative characters, and the only ones agreeing with those 
of Sassafras Ferretianum, Mass., a species which is restored by 
Heer, from fragments of Greenland, in Fl. Arc., II, p. 474, Pl.l, Fig. 2. 
Ours differs by the borders and the lateral veins diverging from the 
petiole and from the medial nerve in an angle of 60°, doubly as broad 
as the angle of divergence in the species from Greenland. I have no 
access to Massalongo’s description and figure of his species, but from 
Gaudin, who has the same species published in FI. Ital., I, p. 50, Pl. 10, 
Fig. 8, ours is far different. especially by the total absence of secondary, 
horizontal veins, lower than the fork of the primary veins, and also of 
the reticulation, generally so well marked in leaves of this genus. 

CINNAMOMUM SCHEUZERI, Heer, (FI. Ter. Helv., p. 85.) This spe- 
cies is represented in its various forms by a number of specimens, even 
in its marked variety figured loc. cit., Pl. xciii, Fig. 2, 3, 4. 

ANDROMEDA GRAYANA, Heer, (Vancouver Fl., p.7, Pl.i, Fig. 7-9.) 
The same can be said of this species as of the former. It is repre- 
sented in the specimens by such a large number of fragments of its 
various parts and of various sizes that it is not possible to doubt iden- 
tity. Some of our fragments are still larger than Fig. 9, loc. cit. 

ANDROMEDA RETICULATA, (?) Etting., (in Heer, Balt. F1., p. 36, Pl. xxvi, 
Fig. 5-9.) Two lanceolate leaves of thick, leathery texture, tapering — 
to the petiole, with a broad, half-round medial nerve, and obsolete, 
secondary veins at an acute angle, like those of A. Grayana, curving 
along the borders. The undistinct reticulation appears to be as figured 
by Heer; but this appearance may be due to the coarseness of the 
stone. By their form and the direction of the secondary veins the 
leaves resemble A. Grayana, differing, however, evidently by the thick- 
ness of the medial nerve. Both these leaves are larger than those fig- 
ured in the Baltic Flora, being about 3 millimeters broader. 

JUGLANS RUGOSA, (?) Lsqx.; CORNUS ACUMINATA, (?) Newby. The 
same remark is applied to this leaf as in p. 294 to Juglan’s Rhamnoides. 

LYRIODENDRON, species. Also represented by one fragment, the 
lower half of a leaf. The base is at first obliquely descending to the 
petiole, and then, curving abruptly downward, becomes decurrent upon 
it in a short border; leaf of thick texture, with broad medial nerve; 
secondary veins and nervilles strongly marked. In his Fl. Arc., Pro- 
fessor Heer has figured, without description and specification, (I, Pl. xxvi, — 
Fig. 7 b,) from Iceland, part of a leaf of Lyriodendron, of same size, 
differing only from ours by the not decurrent base. 

RHAMNUS RECTINERVIS, Heer. A single specimen of a whole leaf. 
No difference. See above (p. 295) remarks on the same species. 

JUGLANS DENTICULATA, Heer. (Fl. Arc., LI, p. 483, Pl. lvi, Figs. 6-9.) 
Leaves lanceolate rounded to the petiole (broken,) with undulate © 
borders, denticulate near the point; secondary veins much curved, espe- 
cially toward the base of the leaf, the end running close to the borders, 
numerous, 12 pairs or more. Except that this leaf is narrower, nearly 
linear, or with borders parallel in the middle, it does not differ from 
the Greenland form. ) 


- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 299 
19. From Hicu RimGe, ABOUT TEN MILES WEST OF HOT SPRINGS. 


Hard, yellow, metamorphic shale, fine-grained, and hard as silex; has 
only fragments of Cinnamomum Scheuzert, Heer; and Ficus tiliafolia, Al. 
Br. : 


20. NEAR YELLOWSTONE LAKE, AMONG BASALTIC Rocks. 


Same kind of stone as the former, and harder, if possible. 

RHAMNUS RECTINERVIS, Heer. Many specimens, some of which, on 
account of their slightly more curved secondary veins and entire borders 
at and near the point, might be referable to Khamnus Hridani, Heer, as 
figured in Fl. Arc., Pl. xix, Fig. 7a. In our specimens, however, the 
veins are more curved along the borders. 

FICUs TILLHFOLIA, Al. Br. The mere skeleton of a leaf, the primary 
nerves only being preserved. _ i 

POPULUS BALSAMOIDES, (?) G6pp. A fragment, the upper part of a 
leaf which appears to complete the figure in Heer’s Fl. Alas., Pl. ii, 
Fig. 3. 

EQUISETUM LimosuM, Lin. Stem narrow, 4 millimeters broad, undu- 
lately 10-ribbed, marked with sheathed articulations 10 millimeters dis- 
tant; sheaths short, brown-colored, fringed with lanceolate acute points. 
The color of the sheaths may depend from the presence of oxide of iron. 
It is, however, remarkable that all the sheaths and these parts of the plant 
only have the same color’as in Z. limosum of our time. The form of 
the divisions of the sheaths and their length are not quite distinct, but 
appear as in the living species, short, rigid, appressed, acute, brown 
teeth. I consider it as identical. 

Fragments of Cyperites, analogous to Cyperus angustior, Heer. 


21. THREE MILES ABOVE SPRING CANON. 


A kind of very hard, metamorphic, shaly limestone, with numerous 
broken and badly preserved fragments of plants, a few of which are 
recognizable. 

SEQUOIA REICHENBACHI, (?) Heer, (Fl. Arc., I, p. 83, Pl. xliii, Figs. 
1d, 2b, 5a.) Branches and branchlets bearing linear-lanceolate, narrow 
long leaves, sharply pointed, decurring upon the branches by an 
enlarged base, marked by a medial nerve, open at first, but turning 
upward near the point, or faleately curved. Upon young branchlets the © 
leaves are merely oblique and straight. Upon larger branches they are 
open and curved, only seen at intervals, the space between them being 
marked by broad, obovate, abruptly pointed, and nerved scars of scales 
or leaves. There is no trace of cone or of any other remains referable 
to conifers. It much resembles S. Reichenbachi, Heer, loc. cit., differing, 
however, by its diminutive size, the leaves, branches, and scales being 
at least twice narrower than in the specimens figured by Heer from the 
Cretaceous formation of Kome, Greenland. It bears to 8. Reichenbachi 
the same relation as Glyptostrobus gracillimus, Lsqx., of the Cretaceous of 
Nebraska, bears to G. Huropeus of the Miocene. 

PHYLLOCLADUS SUBINTEGRIPOLIUS, Lsqx., (Am. Jour. Sci., vol. XLV, 
p. 92, Pl. iv, Fig. 8,ined.) The nervation of this species is so pecu- 
liar that the identification of its different forms iscertain. The leaf has 
the point broken; its form is oval-oblong, with the borders entire from 
the base to above the middle, where they become marked by distant, 
obtuse, short teeth. The medial nerve is only marked at the base by a 


300 — GEOLOGICAL SURVEY JF THE TERRITORIES. 


short swelling. The veins are very close to each other, closer than in 
any species of fern, dichotomous in ascending from the medial nerve in 
a very acute angle, their base being parallel to it before joining it. 

ANDROMEDA PARLATORII, Heer, (Phill. Cret. du Nebraska, p. 18, 
Pl. i, Fig. 5.) Neither in this work nor in my addition to the Fossil 
Plants of the Mississippi, loc. cit., has this species been figured in its 
whole or with the point and the petiole. One specimen has an entire 
leaf. It is narrowly lanceolate, gradually tapering to a long, acute, 
slightly scythe-shaped point, and also gradually tapering downward to 
a short, broad, slightly winged petiole. The nervation is as figured by 
Heer ; the secondary veins emerging in an acute angle, thick, curving 
upward, evanescing near the borders. . 

MAGNOLIA ALTERNANS, Heer. The upper half of a leaf about the 
same part with same nervation as Heer’s Fig. 3, of Pl. iii,in Phyllites 
du Nebraska. Apparently identical; nervation obsolete. 


22, Harp, SHALY, FINE-GRAINED, WHITISH SANDSTONE. 


About of the,same consistence and color as the specimens from Car- 
bon Station. The precise locality is unknown, the labels having been 
lost or forgotten. This is regrettable, on account of the peculiar charac- 
ter of the remains of plants, mostly leaves of Ficus, which are preserved 
in these shales. Shi 

CYPERUS CHAVANESIS, Heer. Many specimens representing leaves 
of various size, as those of Fl. Ter. Helv., I, Pl. xxviii, Fig. la, with 
cross-lines perpendicular to the nervation, as in Fig. 1d, and with astem — 
with broad strie of different color, as in Fig. 1 /, of the same plate. 
Some of the leaves have numerous marks of a small fungus, S. clerotiwm, 
which is like S. pustuliferum, Heer, (Fl. Ter. Helv., I, p. 21, Pl. ii, Fig. 
12 and 12D.) 

POPULUS AROCTICA, Heer. It is the same form as that of Pl. v, Fig. 
3, of Fl. Arc., represented by two specimens. 

FICUS MULTINERVIS, Heer, (Fl. Ter. Helv., II, p. 63.) With the form 
of leaves as in PI. Ixxxi, Fig..9, and secondary veins still more numer- 
ous and also slightly more oblique than in Fig. 6 of the same plate. It 
cannot be separated from this species. . 

_ FIcus LANCEOLATA, Heer, (loc. cit., p. 62.) One large specimen is cov- 
ered with numerous leaves of the same character as those figured in 
Fl. Ter. Helv., Fig. 13, Pl. clii. They much differ in appearance from 
the following form, also represented by numerous leaves. 

_ FICUS ARENACEA, sp. nov. Differs from the former species by broader 
leaves of a thicker texture, not tapering, but somewhat rounded to the 
petiole, by the medial nerve, twice as broad and grooved near the base. 
The secondary veins are strong, but the ultimate reticulation is obsolete. 

Ficus GAUDINI, sp. nov. A fine species, with broadly ovate-lanceolate 

- pointed leaves, (the point is destroyed,) rounded at the base to a short, - 
thick, curved petiole, varying in length from 3 to 7 inches, and propor- 
tionally broad, from 14 to 34 inches; medial nerve thick and broad, 

‘grooved from the middle to the petiole; secondary veins nearly at a right 
angle to the medial nerve, slightly more oblique in ascending to near 
the point where the angle of divergence is still 60°, abruptly curving at 
a distance from the borders. The base of the leaves is about as in the 
living species Ficus Americana, Auct.; but no fossil species of this sec- 
tion is comparable to it. The presence of so many leaves, types of the 
section of a genus, forces the question of possible identity of those difter- 
ent forms, distinct and separable by what appears good specific charac- 


GEOLOGICAL SURVEY OF THE TERRITORIES. . 301 


ters, and the question becomes still more pressing when the examination 
of paleontologists bears upon remains of a genus which indicates for each 
species in the living state the greatest diversity in the forms, even in the 
nervation of its leaves. I will not repeat what I have said tormerly* 
concerning the specification of vegetable fossil remains, but merely 
remark that we have to deal with characters which, though unreliable, 
must be admitted and described according to the eener al rules of scien- 
tifie descriptions, and cannot for each of these “characters take into 
account the possibilities of variations, except when they are in some 
. Way indicated by intermediate forms. In this particular case, it is right 

to say: that the leaves representing the different species above named 
are grouped upon different specimens, each group presenting the same 
characters; and that these characters do not show any transitional form 
from one species to the other. 

PLATANUS, undeterminable species. In er One of the speci- 
mens bears large pieces of bark with exuded matter, like glomerules 
of amber. 

CINNAMOMUM, (!) species. Broken fragments of large leaves, broadly oval 
and rounded at the base, lanceolate to a point, (?) (broken.;) texture of the 
leaves thin or not coriaceous; lateral veins sli ithe curved in ascending 
to three-fourths of the leaves, moderately branching outside; medial 
nerve pinnately branching from the middle upward. This - ‘species 
appears related to Cinnamomum Heeriti, Lsqx., of the Mississippi Ter- 
tiary, and also to the large forms of Cinnamomum polymorphum, Heer. 


23. CRETACEOUS STRATA, KANSAS. 


_ Specimens communicated by Professor B. F. Mudge, on hard, ferru- 
ginous sandstone. 

Remark.—As the following species have been figured for a detailed re- 
port of the fossil plants’ obtained from the explorations of Dr. F. V. Hay- 
den, a short description of them finds its place in this paper, though the 
specimens have been collected by Professor B. F. Mudge, of Manhattan 
College, Kansas, and kindly sent for examination. ‘ These specimens are, 
indeed, beautiful, representing whole leaves, fully preserved in their 
outline and in the details of their nervation. They add to our knowl- 
edge of the extinct floras a number of remarkable forms, interesting to 
paleontologists, not only by their characters, but especially as afford: 
_ ing new data for the study of the species and ‘ot the distribution of the 
Cre etaceous flora on both continents. 

PTEROSPERMITES QUADRATUS, sp. nov. A large leaf, round, quad- 
rate in outline, 5 to 9 inches both ways, with entire, more or less wavy 
borders, round truncate to the base, ‘obtusely short-pointed; medial 
nerve round and thick, overlapped at its base by the borders of the 
leaves, passing it by about half an inch; inferiur secondary veins, nar- 
row, somewhat flabellate around the base of the medial nerve, or diverg- 
ing in right angles from it; first pair of opposite secondary veins, half an 
inch above the base of the medial nerve, strong, diverging at an open 

angle, much branching downward; nerviiles deeply marked, becoming 
thicker in contact to the secondary veins, nearly continuous; substance 
of the leaves, coriaceous. From the first pair of opposite secondary 
veins, the others, in ascending, are nearly parallel, equidistant, passing 
obliquely to the borders, scarcely curved, craspedodrome, as in all the 
species of this genus. By its nervation this species is related to P. wee 
tatus, Heer, (FI. Are., I, p. 138, PJ. 23, Fig. 6.) 


* American ' ournal of Science and Arts, vol. xlv, p. 103, note. 


302 GEOLOGICAL SURVEY OF THE TERRITORIES. 


PTEROSPERMITES MULTINERVIS, sp. nov. The outline of the leaf is 
destroyed. From the direction of the veins, it appears to have about 
the same form as the former species, from which it differs, especially by 
its numerous basilar veins, eight of which are visible, diverging fan-like 
from the base of the medial nerve, and by the much more numerous 
secondary veins, twelve pairs being counted in the leaves of this species, 
while the former has only seven to eight pairs, with larger leaves. In 
this species, also, the nervilles are deeper, less divided, and continuous. 

PTEROSPERMITES HAYDENII, sp. nov. A small leaf, 3 inches long, 2 
inches wide, ovate-lanceolate, obtusely pointed, rounded to the petiole, 
(broken,) with borders, not overlapping at base, deeply undulate or 
irregularly, obtusely short-lobed from below the middle to the point; 
medial nerve deep and narrow; three pairs of thinner, inferior, lateral, 
secondary veins, diverging nearly i in right angles from the medial nerve; 
the fourth pair stronger; more oblique, more or less branching, ascend- 
ing straight to the point of a lobe like the others, five pairs above it; 
nervilles ‘deep, continuous, connected in the middle by cross- branches. 
A fine leaf, allied to P. spectabilis, Heer, of North Greenland, in Fl. Are., 
II, p. 480, Pl. xliii, Fig. 15.) 

MAGNOLIA ENSIFOLIA, sp. nov. Be pucsenicdl by two leaves, one 3 

inches long, 1 inch wide; ‘the other 6 inches lon g, 24 inches broad ; linear, 
abruptly cuneate to the base or petiole, (not seen,) and also abruptly 
round-pointed at the top; borders, entire or slightly wavy; medial 
nerve, broad, flat; secondary veins, oblique, diverging 40° to 500, curv- 
ing from the middle upward, and branching twice or more in anasto- 
mosing with branches of the nearest veins. The leaves are of thick, 
coriaceous texture, having the same nervation and areolation as our 
Magnolia grandiflora, L. It is related to Magnolia crassifolia, Gopp., 
(Beytraege zur Ter. Fl. Schlesiens, Tab. iv, Fig. 1 and 2.) 
- QUERCUS MUDGII, sp. nov. An oval lanceolate leaf, (point broken.) 
either narrowed to the base or somewhat enlarged and abruptly rounded- 
truneate to the petiole; medial nerve twice as broad as the secondary 
veins, 8 to 10 pairs, which are alternate or opposite, oblique, (40°,) 
straight or slightly flexuous in passing to the borders, branching once 
or twice, and entering, with each of their divisions, the point of a short 
tooth; the borders being regularly marked by short, equal teeth separated 
by obtuse sinuses. Closely allied to the leaf, published by Dunker as 
Castanea Hausmanni, in Pflanzenreste aus. dem Quadersandstein von 
Blankenburg, Pal. Vol. IV, p. 179, Pl. xxxiv, Fig. 1, at least for the ner- 
vation and the dentation of the borders. 

ARALIA (?) QUINQUEPARTITA, sp. nov. Under the name of Aralia 
formosa, Professor Heer has published, in Flora Cret. von Moletin, p. 18, 
Pl. viii, Fig. 3, a trilobate leaf, serrulate on the borders, to which ours 
is closely allied. This merely differs by a division of the lateral lobes 
from the middle, thus forming a quinque-partite leaf, and by the borders 
which are entire, at least as far up as they are preserved, the upper part . 
being destroyed. Itis a coriaceous leaf with three broad, flat, secondary 
veins, diverging, a little above the base of the leat, from the enlarged 
medial nerve. The lateral veins divide still from below the middle, | 
forming on both sides two new divisions of the leaf, which, as said 
above, becomes quinque-partite. I do not know any living species of 
Aralia to which this leaf may be compared. 

PLATANUS NEWBERRYANA, Heer, (Phill. Cretac., p. 16, Pl. i, Fig. 4.) 
A fine and more complete specimen of this species is preserved in the 
Museum of Comparative Anatomy of Cambridge, from the collection of 
fossil plants of Professor Marcou. It shows arhomboidal leaf, enlarged 


GEOLOGICAL SURVEY OF THE TERRITORIES. 303 


in the middle into a short lobe, narrowed upward to an obtuse point, 
cuneate to the base, with borders undulately denticulate; secondary 
veins, oblique, straight, the lower pair ascending to the point of the 
lobes, much divided ; nervilles, simple, continuous, deeply marked. 

PLATANUS HEERII, sp. nov. A species represented by many good 
Specimens. Leaves, round in outline, with short, obtuse, lateral lobes, 
and an obtuse, short point; borders entire, wavy, or obtusely, distantly 
dentate, passing in a broad angle, even by a rounded curve toward the 
petiole, on which they descend in decurring to it, forming a short wing. 
Petiole apparently short, one inch long, as seen in one of the specimens. 
The basilar wing is marked with one or two pairs of horizontal, narrow 
veinlets, running along the borders; the first pair of secondary veins 
above them is thick, straight, oblique, much divided in tertiary and 
quaternary veinlets, which, like the febrilles, are deeply marked. Tex- 
ture, thick; surface, smooth; areolation of P. occidentalis. As in this 
Species also, the second pair of lateral veins is at a greater distance 

from the first. . 

SASSAFRAS OBTUSUS, sp.nov. A true sassafras, to which is referable 
the leaf published in Am. Jour. Sci., vol. XLV, p. 94, under the name of 
Populites Salisburicefolia, Lsqx. 

PHYLLOCLADUS SUBINTEGRIFOLIUS, Lsqx., (loc. cit., p. 92.) A larger 
leaf than the former described ones, obovate, undulate on the borders 
from the middle upward, obtusely pointed, with same nervation. > 


II.—REMARKS ON THE CRETACEOUS SPECIES DESCRIBED 
: ABOVE. 


The above enumeration mentions fourteen species of fossil plants 
from our Cretaceous formations. It is a small group, indeed; yet, on 
the whole, an interesting and valuable contribution to our knowledge 
of the Cretaceous flora of our continent. Seven of these species are 
new; three Pterospermites, the first American representatives of this 
group, excepting, perhaps, one species of the genus Credneria, considered 
by some authors as allied to it, though not yet satisfactorily deter-: 
mined.* The Pterospermites re-appear in the Tertiary of our con- 
tinent, with analogous characters, at least. P. quadratus, Lsqx., re- 
sembles, especially by its nervation, P. dentatus, Heer, from Mackenzie, 
while P. Haydeni, Lsqx., is, by its size, the form of its leaves, and their 
nervation, a near relative of P. spectabilis, Heer, from Greenland. ‘The 
affinity of typical forms is remarkable, on account of the difference of 
latitude or of the geographical habitat and the geological station of these 
plants. The fourth new species, Magnolia ensifolia, Lsqx., is allied by 
some characters to Magnolia crassifolia, Gopp., from the Tertiary of Sile- 
sia; while the fifth, the fine Platanus Heerti, Lsqx., has, for represent- 
ative in our Tertiary, Platanus aceroides, G6pp., and Platanus Guillelme, 
Go6pp., two intimately related forms. Therefore, on seven new species 
of the Cretaceous described here, five have a marked Tertiary facies, 
while, at the same time, three of them, at least, have what may be calledan 


- * Our Plerospermites haveanalogy of form and nervation with Pierospermum, Schreb., 
a genus of the Buttneriacew. Heer, in his Fl. Ter. Hely., has published seeds referable 
to the same kindof plants. There is, therefore, scarcely any doubt about the relation 
of these leaves. It is different with Credneria. Its place is, as yet, undefined. Though 
resembling by some of its characters, especially by size and general nervation, the 
leaves of some Pierospermites, their form, their basilar nervation, and the mode of at- 
tachment of the petiole are different. We have from our Cretaceous of Nebraska one 
Credneria, (C. Le conteana, Lsqx.,) apparently identical with C. macrophylla, Heer, of the 
Quadersandstein or Upper Cretaceous of Moletein, Moravia. 


304 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Arctic facies. The two other species have, as yet, relation only with other 
plants from the Quadersandstein of Europe. Aralia quinquepartita, 
Lsqx., is a relative of A. formosa, Heer, from Moletein. The author com- 
pares it to A. primigenia, from Mount Bolea, a locality well known by 
its fossil flora, which, though referred to the Eocene, has some typical 
Cretaceous forms. Quercus Mudgii, Lsqx., as remarked in its deserip- 
tion, is comparable to Castanea Hausmanni, published by Dunker, from 
the same formation (Quadersandstein) of Blankenburg. 

Do the four species which have been described, from the locality 
three miles above Spring Cafion, bear an evident Cretaceous facies ? 
This locality is in the neighborhood of strata bearing remains of Ter- 
tiary plants, and this inquiry is forced by the presence of Cretaceous 
types at a station where they were unlooked for. The first of these 
species, referred to Sequoia RKeichenbacht, Heer, from the Cretaceous of 
Cone, Greenland, is identical in characters, except in the diminutive 
size of the form represented by our specimens. This difference in 
the size of branches and leaves of conifers cannot be considered 
as specific, especially for plants of a same geological formation. 
The second form, referred to Andromeda Parlatori, Heer, from the 
Cretaceous of Nebraska, is represented by an entire leaf, better 
. preserved than any specimen as yet obtained of it, and, therefore, I con- 
sider its identification as certain. The third, Magnolia alternans, Heer, 
also formerly obtained from Nebraska, is a mere fragment, and on that 
account its identity might be disputed. The fourth, Phyllocladus subin- 
tegrifolius, has not yet any relative in the Tertiary formations; and, 
therefore, even omitting the third species as doubtful, we have still 
three distinct Cretaceous forms, affording evidence to the age of the 
strata where they have been found. According to the indications 
kindly furnished by Dr. Hayden, these strata are either in the lowest 
. partof the Tertiary strata of the West or in the upper part of the 
Cretaceous, there being still a great thickness of measures between the 
Kansas or Nebraska leat-bearing Cretaceous strata and those of Spring 
Cation. It seems, therefore, that we may come to the conclusion: first, 
that there is still a succession of vegetable representatives of our 
Cretaceous flora, ascending much higher in these measures than at the 
localities where the first remains of this flora were obtained; secondly, 
that if it is the case, we may expect to find in those intermediate strata 
representatives of transitional forms from our Cretaceous species to 
those which have been found and described from the so-called disputed 
strata, necessarily considered, from the characters of their vegetable re- 
mains, as of Tertiary age. The examination of the intermediate measures 
is, therefore, of great interest, as from the modifications of typical forms in 
these measures, supposed successive in time, we may find facts proving 
a series of changes, or of specific forms, under appreciable influences. 


- 


III.—TERTIARY FLORA OF NORTH AMERICA. 
§1. GENERAL REMARKS. 


In the introduction of a pamphlet recently published by Professor 
Heer, ‘‘ On some Fossil Plants of Vancouver and British Columbia,” the 
author remarks that ‘‘ while we are now acquainted with a large num- 
ber of species of fossil plants from the Miocene of Europe, we know 
scarcely any from the same formation of America. And yet this 
knowledge would be most valuable to science, as it would give us, on 
the history of the vegetable world, on the origin and succession of 
vegetable types, on the relation of the Tertiary flora of America with 


GEOLOGICAL SURVEY OF THE TERRITORIES. 305 


that of Europe, and consequently with the climatic conditions of both 
countries, the most important information.” Trom these considerations 
my celebrated friend infers that his descriptions of seven Tertiary 
species of fossil plants from Vancouver Island and British Colum- 
bia, must be considered a valuable contribution to vegetable paleon- 
tology. If this is right, and no naturalist of conscience will deny 
the truth of the above conelugions, how high shall we estimate the 
result of the researches of Dr. F. V. Hayden, who, in his last tour 
of geological explorations, has obtained from twenty different localities 
of the Western States or Territories many hundred specimens, repre- 
senting more than eighty species of Tertiary fossil plants? The import- 
ance of these researches, to which we are indebted, also, for most of 
what we know of the vegetation of our Cretaceous formations, has been 
already acknowledged by science here, and especially in Hurope, as 
evinced by the notable discussions which they have provoked. As it 
may be seen by the map of the Yellowstone and Missouri Rivers, and 
their tributaries, in Dr. Hayden’s report, (1870,) the area occupied in 
the West by Tertiary formations is of considerable extent. Already 
the fossil plants known from this formation represent localities from 
Nebraska, Dakota, Montana, Utah, Wyoming, &c. We may thus 
already foresee that in a not far distant time the fossil flora of the 
recent formations of our continent will have been studied and be known 
well enough to draw to it a more general interest; for then it will be 
able to answer most of the questions which now occupy the mind of the 
paleontologists, and which, as already remarked, bear upon some of 
the most interesting problems of the history of our earth’s surface. 


§2. TABLE OF DISTRIBUTION OF SPECIES. 


The following comparative table of distribution of our Tertiary fossil 
plants indicates the relation of species to localities and to the different 
stages of the Tertiary formations both in Europe and in America, by 
reference to identical or analogous species. To render the table more 

complete, more interesting for the present, and at the same time more 
useful for the future as a kind of frame where new discoveries may be 
recorded and compared, I have composed it of all the American Ter- 
tiary species until now described and published, excepting, however, 
the 56 species from Alaska in Heer’s Flora Alaskana, which rather per- 
tain to the Arctic flora. The table shows, however, the North Ameri- 
ean Tertiary plants identical with Alaska species. T have also omitted 
the fossil plants from Vancouver, the Orcas Islands, and Nanaimo, not 
only on account of their as yet unascertained geological relation, but 
also of our imperfect acquaintance with their specific characters. Dr. 
Hivans’s specimens are still accessible, and I hope soon to have an oppor- 
tunity of reviewing them, of comparing them with former descriptions, 
and to give for a next report a definitive account of the forms which 
they represent. 

This table is, I think, easily understood. The first three sections, 
marked Jliddle Mi wocene, Lower Miocene, and Hocene, are as yet hypotheti- 
cally limited. The reasons of this limitation, and the characters of the 
sections as resulting from the species admitted into each of them, will 
be examined hereatter. The fourth section, marked Unknown, has the 
species from localities not satisfactorily known, either on account of the 
two small number of specimens representing them, or from want of re- 
liable reference. In the three sections marking stages of the Huropean 
Tertiary, the relation of our Tertiary species with those of Europe is 

i 20 G8 


306 GEOLOGICAL SURVEY OF THE TERRITORIES. 


indicated by A, analogous, and I, identical. The table, therefore, is 
distributed as follows: 


1st column, Middle Miocene, has the species from— 
H. Henry’s Fork. , 
M. Muddy Creek. 
Bb. Barrell’s Springs. 
EK. Elko Station. 


2d column, Lower Miocene, has— 


Y. Yellow Stone, 
U. Fort Union, 
R. Rock Creek. 
W. Washakie group. 
M. Medicine Bow. 
J. Junction Station. 
C. Carbon Station. 


3d column, Eocene, has— 
H. Mississippi flora, from Hilghard’s and Safford’s specimens. 
M. Marshall mine. 
R. Raton Pass, with Purgatory Caton and Gold City. 
W.. Washakie Station. 
E. b. Evanston, below the coal. 
EH. a. Evanston, above the coal. 
S. Snake River. 3 
6 m. Six miles above Spring Cation and ten miles west of Hot Springs. 
Y. Yellowstone Lake. 
4th column, Unknown, has- 
G. Green River. 
P. Point of Rocks. 
S. Sage Creek. 
M. Mouth of Spring Cafion. 
U. Unknown locality. 


In the Arctic series we have for references— 


- G. Greenland. 
M. Mackenzie. 
S. Spitzbergen. 
I. Iceland. 

B. Baltic. 


} Species described by Dr. Newberry. 


! 


' GEOLOGICAL SURVEY OF THE TERRITORIES. 


307 


Table of distribution of the species of fossil plants in the Tertiary formations of North America, 


Name of species. 


Middle Miocene. 
Lower Miocene. 


Selerotium pustuliferum, H .-.-...-..|.------=.|.--.---- 
Onocelea sensibilis, L.-....-.-........)------ Soll Ge 
Pteris pennzformis, H ...--..-...--. A, Mi eo cecks 
Blechnum Gopperti, Htt....-....-.-- Ths) iissat ves: 
Aspidium Fischeri, H.........--..-. DM) aie seek 
Gymnogramma Haydenii, Lx.-......|--------|-------. 
Lygodium compactum, Lx...........].---.---].------- 
neuropteroides, Lx .....-- Beit alsa aed 
aHETMNGISPE CIES eos ee Sets Seer a se ineee et oasee <3 
Equisetum Haydenii, Lx .-.-...--.-- Bass sitraeestees 
Ingen sine ITS Cok weno) ease ele noredoe| | Saeeoe 
Taxodium occidental:, Ny ---.-------|-------- Y. 
Tinajorum, H :.---.-- ie saly SAB VB obs ese 
Glyptostrobus Huropeus, Br......--.]----.--- U. 
Sequoia Heeriis ties)... sees ete ssh. - ole ads bs 
Hhanesdoriil, Br ssssosecece aclet | a255- We 
Mina aerACHISS IN ys = 52s ssh eee sehr nros ss Y. 
Ambietites dubius) ix: 2222222242. jscteeet ee lee cos 2s 
Salisburia binervata, Lx..-..........|--------)--=---- 


Cyperites, species ........-. Bee RASS H. C. 
ANSUSHON) )(8) VBL S2 ase cco c here «clos selese=s=5. 
Deucalionis, H.-.-.....-.- Bite soeves 

Cyperus Braunianus, H..-...-....... B. SEEOnSe 

@havanensis; HH) s22...25- se eheeeeccu|bee de ses 

Carex tertiaria, (?) H-..----.-2-.---- 2% Bh ee ee 

Saball (Gwrayamar dix) os5 senso s| eae te cles teas 2 

Campbellii, Ny. : 
major, (?) Un...-- 

Calamopsis Danai, Lx 

species (2) 

Sparganium, species.....-.---.....-- 

Acorus brachystachys, H.-..-..-..--- 

Psilotum inerme, Ny .--..-.--------- 

Zingiberites, species .-.-.-..-....--- 

Liquidambar gracile, Lx-....--:.---.- 

Populus rotundifolia, Ny. .-..----- 2 

subrotunda, Lx. ..-......- 5 
OMG bICAs JA Leap ace fe seek e 
smilacifolia, Ny....-.------- 
abtenuata, Bre jjss.. 222222 
euneata, Ny Joo. 222 tss2e 
cordata, Ny.---2----222222-. 
acerifolia, Ny ...------:.---. 
Nebrascensis, Ny.---------. 
genetrix, Nyesss--e- sassnee- 
nervosa, Ny.--.2s2525:22.2-- 
monodon, Lx...-.---.--..... 
*), equalis, Lx). te ete: 
mutabilis, var. repando-cre- 
nata, H. 
mutabilis, var. lancifolia, H--. 
balsamoides, (?) Gp .-------- 
ovalis, Gp): ssedesso-e55.-5- 
latior var. transversa, Br ...|.------- 
var. cordifolia, Ll.....).-...--. 
leucophylla, Un..../:.-.----|.28.----. 
ZaAddach i: Els seesea yee Pe 
Salix Groenlandica, Hi ...2---::-:2-2.)..-..--: 
Wrorthenii, dix 2S Sos ae ee a 
densinervis, Lx ....--.......- 
tapellanris, Ibx2 ¢ sss eee alee eee 
Myrica ambigua, Lx_-.........--2.--.|..+---.. 
Allnus Kefersteinit; Hi 22202 32 a32e 253] eee ete lo 
serrata; Niy ss. i yee ete te ce alee oo 
Betula caudata, Gp..--.---.----.----- 
Stevensonii Umar Sasa esc ema 
Planera microphylla, Ny.--..-...--.|-------- 


\ 


Lower Miocene. 


d 

* iS 

| 

3) |S) 
a an U. 
HOR Ra lend: 
ph) Serger eee 
(aRet Sa race 
Goan rca ave fey 
ee PE CEL, 
Sign Ns el uicsdk aa 
SFT waliscite tes 8 
BR ee 
iota 
Piya tee haa 
ER bale cass 


Celtasibrevitoliia, Tix Stops siieee sul cee oes Ss as. 
Quereus Moori, Ix__----------------!.-.----.|.__..-.. 


Q 
is 


Europe. 
s | 3 
a cc) 
5) S) 
=) 5=) 
ae 
S| 8 
SI | 
> eI 
Obey alee, 
Sa ig 
I. If 
J Tage peat 
See None 
ik a iNaky 
A. A. 
TD) ulbnget 
EA nea 
seeioe ale 
Lehi seen 
LE ANE 
A. 
if 
A. 


308 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Table of distribution of the species of fossil plants, §-c.—Continued. 


Europe. 


Name of species. 


o (2) 
3 8 
=) 3) 
ss) iS) 
a 5 
oo H 
co) 

i=} Oo 
= 5 
= = 


Lower Miocene. 


Hocene. 
Unknown. 
Alaska. 

Arctic 

| Upper Miocene. 


Quercus Lyellii, H........-....-.--.- 
metractas WR, .--.<e e eee - 
chlorophylla, Un..--...----- 
semi-elliptica,G .....--.---- 
seman Le PepAseadoeoer 
ne. oides, Lx...-.-.----- 
eee Onn Ce asdascosesse 
ACT OOO GK he lee ee eecreiei 
ise halen, pee ee See eeoeeeaee 
Crynabiiny Jere Sep o spe esas i i 
JONNY Up SARS Se Us eae Sa) Geeseoee 5 ING) SBA SEIS s os = 
Pealer lax yee emcee eiai| easeene : AU ieee | eee 
a G03 (2) ithe S Ce ea eye are eh le ete [Pe Siege al isc) top| ed eae 2 he hs Re 16 
mahanpinGyeeee cere ecscses|ecceee os A Sy SeeeeclbSeesellososcs 
Saftor Gi laxys2 iscie cess caesetend seat bes Ne aot Ca Aero ae ee 
MU GORGES) PELaeye ae eee eye | eee ae Ph (essen es cece se (ree PU I. 
Chi be), ISDY os 4cos bootassoesse s Beas (Oyalsbeesseal|eaeccallsoosacliesessesaleasccc|l-ocscc|loccss5 
myrtifolia, (?) Wil. - SOC RS ees Hi. 

Corylus grandifolia, Ny -.- Uae 
orbiculata, Ny.--.---.----.- 
Americana, Ny; =..-------.--- 
rostrata, INy.-.------.--..4-- 


McQuarryi. H .-.--.---..--. 


Fagus Antipofii, H...........--..-- 
Deucalionis; Um .2.-2--2--.-/.- : 
ferruginea, (?) Mx., (fruit)...-- ONPG Sepa sare) epetat Ne h cata St ee ee | eee 

Bicus Schimperi, Ux....-.-.--.------ 

cinnamomoides, Lx...........- 
tilizefolia, Br-..--- -..--.2---.- 
Janceolata, Jeti sec e hese san, 
MATUGINET VAS welasee eee ane 
BLONAC CA aK wee seeiecsn i eieace 
(Giandainiaox Pe sabes cs moan o 
Platanus Haydenii, Ny.-----.-------|......-.- 
MOUS Ne emeecicmce eeeiie linn Be 
Raynoldsii, Ny.----------- 
heterophylla, Ny -.-- 
Guillelme, H...-.-.- 


aceroides, Gp....---.------ ACs sm SSPE een 


SPECIES ec ies = eisiciesesicine Al essa pamecce nreace esa calloacects 

Taurus pedata, Lx. .-....----..--...- 5 se is ae ee eles 

Persea lancifolia, Tix .-5--.-2.------. Pin San ee ete eee eee Fe Co Sllaosaccllogacet 

Sassafras, species....-.---.------4--- SoM cee ed EA eo alll a eae ee 
Cinnamomum affine, Lx .....-....... aU yee el eter tcl cee acct eee 

Mississippiense, Lx. -- : 3 

Scheuzert Heese. 2 5-2) .2.6 m. ‘ 2 5 I. 

polymorphum, (?) Br.. U. 

Hleagnus inequalis, Lx...........-.- 

Banksia Helvetica, H.......:......- 

Aristolochia cordifolia, Ny-.--.------ 

Andromeda Grayana, H......-..-... 

GuibrassEeee pee seems ee 

reticulata, H ........... 

vaccinifolia, Un 

Diospiros lancifolia, Lx......-. 

stenosepala, H..... 

Sapotacites Americanus, Lx. - 2 

Echitonium Sophie, Web..---..----- 

Viburnum asperum, Ny ...---.----.- 

lanceolatum, Ny.--------- 

Aralia triloba, Ny...---------------- 

Cornus incompleta, Lx .-....--.----- 

acuminata, Ny......----.---. 

Studer eo) ee eee 

Lyriodendron, species..--.-...------- 

Magnolia, species...-..--...-.------- 

Hilgardiana, Lx........--. 

laumifolia Ta. eee let os ae tee 

Tesleyanas, Mase. 2S 08 ele ccc | eps eee eee eee iele ie. 

OLDS) Tine ec re Si oe Se els CN i 


H bo | Middle Miocene. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 309 
/ 


Table of distribution of the species of fossil plants, §e.—Continued. 


Europe. 
o>) o / oO o >) 
a a I a a 
0 (3) Q Oo S c8) 
Name of species. cS) 2 ; 2 8 2 
alagl ea hic ee LE iat. 
a iS) S < 4 
ro a) 8 q ra = © ro ® 
S E ee | ec ie Ei nl iewat rey EL 
a A a p |< 4 bl/ala 
Magnolia, cordifolia, Lx ..-...--...--|.--.----|.------- 2S BU eee ee ses alle SU VRE ee Ne PIRES eH 
ANGBie BCMES tonne rcoscteromeeeeeeees|) 28h | |oocos Socesoceeoa|sccone|ioocecc|loceacncdlcaceos|[oaroosiseecne 
OMe eta els Muss ais wisn a! ha ale aitiee ata al epletale ayes ORR Eee rls seinem loseoenred ques ce aaeetel tues ct 
trilobatum, (?) Stb..---.--|....--..|.--.---- BS oe Ve ea ts aaa aoe a Ie I. Ji 
Negundo triloba, Ny .--.-----.------|-------- LO (PRE aes es Pa eS le a FO eS (eral eas el 
Sapindus affinis, Ny....------.----.-|-------- PENS a Mahala | ik See SEES aif ea Tete SPA ee Bre 
membranaceus, Ny .-----.].--.---. OA Go Anpee a eric Sameer coca Ss mess) Er ea oa Ie eect) 
undulatus, Br-..-. H. I. f 
Ceanothus Meigsii, Lx .-- 4 1 He 
Paliurus Colombi, H .--.-- 
Berehemia parvifolia, Lx. 
Rhamnus elegans, Ny.---.-.---.---.|-------. 
marginatus, Lx 
Dora Boxes BASES eG eeeallbaeace ela lodoopoee 
Salventolin si lixsee a eee cele eos eel eee as : é 
intermedius, ix jostle sel cce Sele sein oe aw 2 stermiafallltslsrate attire re eh NS ofa ets [tc crcse be A. 
TECUMERVAS EL. steciseig ee -laiclcsaishersscice 5 Gane : PRs a eee fe | NU Te el ee if 
CONS) ARATE s IN Aya ene hee eee racers see sane OAR SE Seo ae) eABee eartoalaacerotalice coca seeanellacencd 
RUMTISREN yes ie ers ays saeco feta tna |eieeeis tee asiciece De oe ae Ga eh sea BE A. 
nervosa Nove assist cea sores election eeicijse ae ROBES aceeea ra Secesa cerase lsrceodce |ccospullecose A. 
OMOlANS APPLESSay Wa oa le wine se ame eel TE DE eaeeenleacietse PGES eeteraete A. A. . 
‘Satfordiana, Lx .........--.|-.------|-------- iB a ee tse Ee PAS wevacll|a ia eel a 
AcuMAT Nata (2) ELH sala = 2 celeyeilte ele wc cei(ceeince sei Wiel emer A. |. G. I. i TL 
Two, WO ee eanonecone adecnore lose eoe 5 ae, : SHEA hose G. Jako |[ ho | eke 
INSET OE Ibe Wea okesn ee snceeone Ose aoser ADEN OM eeaeae A. G. A. A. A. 
dentienlatae th 22.5 oecciae|e sins eines ciateisas Oye, easeSolenone. (Orin aosneal Banoaolice bese 
Warsyaeleeriehybh: ses ss selene eke pale a NAS. Senet OES Sn Gio saeee8 B. I. ESET 2 eee 
antiquorum, Ny-.-....--.------].- 08OR8 Y. El loooosel[Cacodaleonscosallacoseelloonesollesosce 
Amelanchier affinis, Ny-.-.--.-..-..--].--.---- SAC Be soe eee eee (ore eo) noo sonia teososisnaece)|esones 
Calycites polysepalus, Ny..---.-.---|-------- Wer | seesoecalltiscobellontoce| be scoccsl|leonedoloosace}jescacs 
Phyllites venosus, Ny.-.--.---..-----|-------- Wh |bSaccecoeketbealesscdellessacecullosocod||socecc|loodesa 
CANNOSUISy IN ye emcees eis aa|(semtleeie = 1G) Nngobeddslisecanayeecoss socemcccllossosollococesiisnstes 
cupanioides, Ny..--.------]-------- Wis) Weseasese|(sscoce|soesce|losubesee ssoson||esenss[eeesos 
TELOUANGEEN DUS hg] Up: eh Ng Peeters) | eae | spe Bs Cai Wes aa (Ah (ys A ese (AN SN ee ey 
ULC AGUS H Muse Meal ie PSS a ARS BIER Bh Eefheryal ie Se pe etc HL PU Se (eee ole aaa 
Carpolithes lineatus, Ny .--..---.--.|-------- We. ekeedond|aeeee se odessaeeectaco|onede|loaocoullecesce 
cocculoides, H .-......-.|.------- CHASM aaceasee Wis esaece a a ei eee ee esis 


§ 3. GHOGRAPHICAL DISTRIBUTION OF AMERICAN TERTIARY FossiL 
PLANTS. 


A few general remarks applicable also to the considerations on the 
stratigraphical distribution of our fossil plants find their place in the 
beginning of this article. 

The species marked in the first column of the table do not give any 
reliable information on geographical or geological distribution. The 
swamps of the Tertiary, at least.those which have preserved remains of 
plants for fossilization, were evidently of the same kind as are now our 
forest swamps and bogs. When the swamps were of small extent, the 
borders being surrounded by trees of course, their interior surface was 
covered with a thick growth of shrubs mostly of the same species. 
Such swamps of ours now are bordered by maple, hickory, oak, &c., 
and their interior surface generally covered by water for a part of the 
year is occupied by thickets of Cephalanthus, Rosa, Azalea, Clethra, &c. 
When of some larger extent, the middle of the swamps was, at the Ter- 


310 GEOLOGICAL SURVEY OF THE TERRITORIES. 


tiary epoch, as it is at our time, merely overgrown by Ferns, Gramens, 
and Cyperacee, while the borders only had shrubs and trees. It is not, 
therefore, uncommon to find atthe same level and in the same strata at _ 
one place remains only of herbaceous species, grasses, rushes, ferns, 
&e., while at a short distance we have at another locality only petrified 
arborescent leaves. Therefore the accumulation of fossil remains of the 
first class at one peculiar place is merely casual, and is of not much 
account in considering the question of distribution. It may be remarked, 
also, that at the Tertiary epoch, as at our time, groups of few species 
grow at the same time over or around the same swamps; and that, 
therefore, we must expect to find the specimens of the same locality 
representing few species, while on the contrary, at distant localities, 
equivalent strata have species far different, and which sometimes do 
not appear to bear relation of age to the others. It is only in the bogs, 
especially in those from the Ohio River southward, where deposits 
of peat are generally formed, that there is a diversity of vegetation 
resembling that which appears in the variety of species found in some 
localities of our Tertiary strata; as at Evanston, for example, at Marshall, 
or at the station marked “Six miles above Spring Cation,” &c. In Ala- 
bama, Virginia, Arkansas, &c., most of these large bogs of our time are 
overspread by a luxuriant vegetation of trees, shrubs, even reeds and 
mosses, in a constant and admirable variety. This vegetation bears, in 
a remarkable manner, the essential characters represented by the speci- 
mens of the Tertiary flora from localities remarked above. For example, 
in the Dismal Swamp, the magnolias are in such abundance that the 
farmers of the country obtain from them a fair income by the produc- 
tion of honey. The trees attain around Drummond Lake more than 
one hundred feet in height. Is not that a remarkable coincidence with 
the Mississippi Tertiary flora, where on less than twenty species, five 
represent magnolias with very large leaves? In crossing, in Arkansas, 
one bog of this kind, no more than one mile in width, I counted thirty- 
six species of trees and shrubs representing Magnolia, Berchemia, 
Rhamnus, Gymnocladus, Liquidambar, Cornus, Viburnum, Ilex, Clethra, 
Azalea, Vaccinium, Sassafras, Benzoin, Juglans, Carya, Myrica, Betula, 
Taxodium, &c., with five species of oak. The remains of all these 
living vegetables if petrified would show a collection of types, if not of 
species, remarkably similar to what is found now in some of the named 
localities of the Tertiary formations. 

A comparison of geographical distribution of Tertiary species, under 
about the same degrees of latitude, is now possible only in a general way, 
and between Europe and North America. The points of difference and 
analogy may be seen at a glance on the table, without a tedious repeti- 
tion of names. I will therefore add only the remarks which may give 
more light to the subject. 

Some families of plants have at our time a wide range of distribution, 
the Graminee, for example, the Cyperaceec, the Amentacec, which, at least 
in England, have one-half of the species identical with ours. We may 
then expect to find, in the distribution of genera and species of these 
orders of plants, a striking analogy between the Tertiary plants of both 
continents. The table indicates about the same proportion of represent- 
atives of these families at the Tertiary epoch as there is at our time. 
Of the poplars, for example, we have twenty fossil species, of which 
eleven are identical with Tertiary species of Europe. ‘This genus indi- 
cates, by its fossil representatives, a great predominance of species for 
our country. Perhaps some forms of ours which have been considered 
as distinct may be reduced by subsequent observations to mere varie- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 311 


ties. But it is remarkable that the same predominance is continued in 
our present flora, as we have, in counting the marked varieties, twice as 
many species of poplars as are found in Europe under the same latitude. 
‘The willows show in their distribution the same analogy, but in a con- 
trary way. As yet we know only four species of Salix from our Tertiary 
measures, while Europe has thirteen. And this difference is the more 
remarkable that we have in our Cretaceous already five species of 
this genus. But, in considering our present flora, we find for Europe 
thirty-four species of willows, while we count only twenty-one for North 
America—six of them at least introduced from Europe. Ofoaks, Europe 
has thirty-five Tertiary species on nine hundred and twenty species of 
plants known from this formation, or about one twenty-fifth, while this 
genus as yet represents one-tenth of our Tertiary species. Therefore, here 
also we see the preponderance of this genus in our actual flora indicated 
already in the Tertiary. The same can be said for Platanus, Magnolia, 
Rhamnus, and Juglans. Most of the genera, about equally represented 
in Hurope and in America, and of which no living species are found now 
in the flora of the old continent, have still representatives with us; as, 
for example, Sequoia, Sabal, Liquidambar, Ficus, Laurus, Sassafras, Lirio- 
dendron, Magnolia, Negundo, Carya, &c. Of genera represented in the 
North American Tertiary and not in the Kuropean Miocene, like Celtis, 
we have still living species also. On the other side, of some genera or 
orders which had a marked number of species in the Tertiary of Europe 
and none in ours, like the Daphnoides, the Proteacew, the Myrsinee, 
none appears in our present flora. 

The same comparison pursued in a contrary direction, or in regard 
to difference in latitude, indicates a relation of our Tertiary flora with 
that of the Arctic regions.* Five of our species marked as of a wide 
distribution—one Fern, three Conifers, one Phragmites, one Acorus—have 
identical representatives in Greenland and Spitzbergen. Of species of a 
lesser range, we have in both Populus arctica, P. Zaddachi, Alnus 
Kefersteinii, Quercus Lyellii, Q. Drymeja, Q. Laharpi, Corylus McQuarryi, 
Fagus Deucalionis, Platanus Guillelme, P. aceroides, one species of 
Liriodendron, one of Magnolia, Paliurus Colombi, five species of Juglans, 
(perhaps reducible to two,) about one-eighth of our whole Tertiary flora, 
or twenty-four species, eleven of which are also in the same formation of 
Europe. With the Alaska Tertiary flora, of which only fifty-six species 
are known, we have eighteen identical species, ten of which are also in 
the Miocene of Europe; and with the Baltic flora, fourteen, two of 
which only, Populus Zaddachi and Andromeda reticulata, are not marked 
in Heer’s Fl. Ter. Helv. These data are scanty, indeed; but they 
indicate already between our North American Tertiary flora and that 
of the arctic regions an intimate relation, considering the ditference of 
latitude, closer, indeed, (one-fifteenth,) than with the European Tertiary, 
(oné twenty-sixth.) At the same time, the evidence is against a more 
marked analogy than could be surmised from the difference of latitude; 
for in comparing the types of both groups of fossil plants of the arctic 
and of the North American Tertiary, the northern and southern facies 
are distinctly recognized. The arctic flora, including Alaska, has no 
Oinnamomum. These so wide-spread representatives of a warmer climate 
in the Tertiary are first seen in Vancouver and in our North American 
Tertiary, as far up as Fort Union, near the 48° of latitude. It has also 
no Sabal, while immense and numerous leaves of this species character- 

* The comparison is made from the species enumerated in the table, including those 


of Mississippi, with the Arctic Tertiary Flora of Heer, which describes the Tertiary 
plants of Greenland, Spitzbergen, Mackenzie, and Iceland. 


312 GEOLOGICAL SURVEY OF THE TERRITORIES. 


ize our Tertiary, even to the same latitude of 48°. South, in the Mis- 
sissippi Tertiary, the palms appear with more tropical forms, or with 
the pinnately divided fronds of Calamopsis. Other genera represented 
in warmer regions—Lygodium, Ficus, Laurus, &c.—have no species in the 
arctic flora, and of our nineteen Tertiary species of oaks three only are 
indicated in the Greenland flora, Quercus Drymeja, Q. Laharpi, Y. Lyellii, 
all common to the whole extent of the Tertiary formations. One species 
of Magnolia, described in the Arctic Flora, appears like an exception to 
the general rule of geographical distribution of plants, according to 
climate, as in the Tertiary strata of Mississippi five well characterized 
species of this genus have been discovered, while there is but one as yet 
from the northwestern Tertiary. This is probably the result of the 
peculiar distribution observed at our time for speciesof magnolias. They 
live generally grouped in small areas, often at great distances from each 
other, and without apparent regard to climatic circumstances. Though 
T have traveled nearly over the whole extent of the coal-basin of Penn- 
sylvania, I never met magnolias but on Silvery Rock Creek, in the 
upper part of Butler County, where there is in the bottom of the creek 
a group of one dozen or more of large trees of this species. The same 
kind of grouping of these fine trees is remarked in Kentucky and Ten- 
nessee. 

The Tertiary species common to the flora of both the arctic and the 
North American Tertiary seem to indicate for the plants of this formation 
a wider range of distribution than ours have now. But it is not neces- 
sary to admit that the whole Tertiary land now known on our continent 
was occupied at the same time by the same class of vegetation. These 
so-called Tertiary formations may have been in progress at different 
places during a long period of time, and the land-surface successively 
invaded by vegetation. Supposing aslow upheaval of the Tertiary land, 
beginning at the north, with there a relative lowering of temperature, 
the plants of that region may have by slow degrees migrated south- 
ward and been introduced upon a more recently emerged land of the 
same epoch. Even without admitting this hypothesis, which cannot be 
here sufficiently developed, and which is not as yet sustained by positive 
evidence, acomparative wide range of distribution isremarked at our time 
for some species related to those of our Tertiary. For example, Mag- 
nolia, Lyriodendron, Liquidambar, seen as high as the 41° and 42° ot 
latitude north, descend to South Florida, a difference of about 15°. 
More common species, especially those which generally inhabit the 
swamps and bogs, like Prunus Americana, Amelanchier Canadensis, Vac- 
cinium corymbosum, range from Middle Florida to the northern shore of 
Lake Superior, on more than 20° of latitude. The same range may be 
assigned to Acer saccharinum, Quercus rubra, Fagus ferruginea, Corylus 
Americana, Juniperus Virginica, all species intimately related to species 
of our Tertiary. The average of latitude of the Tertiary deposits, where 
the Greenland leaves, described by Heer, were obtained, is 70° north. 
We may place the average latitude of the North American Tertiary, at 
least for Dr. Hayden’s plants, at the 45°. This is 25° of latitude for the 
distribution of some species of wide range of the Tertiary, a difference 
of 5° only in comparing this distribution with that of our living plants, 
and which is easily accounted for by the evenness of the land, together 
with the greater atmospheric humidity and more uniform climate of the 
northern hemisphere at tho tertiary epoch. This fact is rendered evident 
by the great deposits of coal of that formation. 

The land connection of Greenland, Spitzbergen, &c., with our continent 
during the Tertiary period seems attested by the distribution of the 


\ 


GEOLOGICAL SURVEY OF THE TERRITORIES. 313 


North American Tertiary flora. The examination of this question would 
demand more details than I can give in this abridged report. 


§4, STRATIGRAPHICAL DISTRIBUTION OF FossIL PLANTS IN THE 
NorTH AMERICAN TERTIARY FORMATIONS. 


Remarks on this subject cannot be definite and conclusive, the mate- 
rials obtained being as yet too scanty to furnish valuable information. 
The table of distribution of the fossil plants of the Miocene of Europe, 
as established by Heer, as a complement of his admirable work, Flora 
Tertiaria Helvetica, enumerates nine hundred and twenty species, mark- 
ing their habitat in three essential divisions, corresponding with Upper 
Miocene, Middle Miocene, and Lower Miocene.* Very few of these species 
are represented in a single stage or on the same division in the differ- 
ent geographical sections of the European Tertiary, and, therefore, few, 
if any, of these species may be considered as leading and characteristic 
of one of these stages. Of course, one hundred and ninety species could 
not but afford less decisive indications. The relation indicated by the 
North American fossil species, now under consideration, with European 
species, is intimate and evident enough to demonstrate that these plants 
of ours are of Tertiary age, as it has been already surmised by the com- 
parisons of the former chapter. Of the one hundred and ninety forms 
of our leaves enumerated, one-fourth (45) are identical with species of 
the Miocene of Europe, and one-fifth (33) closely allied to species of the 
same formation; but nothing more can be ascertained; and a reference 
of these plants, per groups at least, to any stage of the Kuropean Terti- 
ary, would be mere hypothesis. ‘This assertion is proved by the follow- 
ing table, which indicates from each of our divisions the number of 
American species identical with species of the different stages of. the 
Miocene of Europe: 


Ie 
q 
Ee] 
fe 
sot 


S$ Zo 3 aaah |g wc 
BU ea 1 RES Fa aE MOREE lt 
° a2 2 22 i) ® 
3 2.5 AS 3g & aa 
=| Bel | | Ss | ss 
G4 Ureliace) anlMeyeiache See Wee 
pees ee) ele 
eT a=) Wa (lm al a =F ie tie a= 

SU MaddleuMiocene s355:2iee sh bosch dha nelle! 3 Dye sili 2 2 

SM MIL OWED IVT OCC Ol siae tsa clsciseieafe seis cle eiere sieleisiciaiaiotatmiaie SD NE 2 BW Ee see 

FI GEO. hee saa aes Cee ee Stak noite cee 8 1 2 3 4 

<q | Unknown wipes Meneses Ae meyebsiot isis) 2igediaia ahie aoe 1 Dy eee ee 2 1 


This table is explicit. It shows that species of each of our divisions 
are nearly equally scattered in the various stages of the Miocene of 
Europe, and that about one-half of them are identical with species per- 
taining at least to two of these stages. 

On what kind of evidence are then based the divisions of our own 
table? On the succession of strata as established by geological obser- 
vations. The station of some of these strata, especially of those more 
interesting by the large number of fossil plants obtained: Marshall, 
Raton Pass, Evanston, six miles above Spring Cafion, &e., is in such 
close connection to Cretaceous strata that it is as yet not possible to point 
out a line of division, and that they are therefore classed in the category 


* Heer, loc. cit., p. 351-369. The divisions are differently marked for Switzerland, 
France, Germany, and Italy. The essential points only are indicated here. 


314 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of disputed ground. It even appears that, in some case at least, fossil 
animals vouch for their Cretaceous relation. * Tt is the same case with 
the fossil plants described from Mississippi and Tennessee.t They were 
at first considered, from geological evidence, as Cretaceous, and have 
been definitely admitted as of the Eocene age.t The relation of the 
species examined here from specimens of Dr. Hayden, and which are 
placed in the Eocene section of the table, have the same general charac- 
ter as those of the Mississippi, and are evidently of the same age. 
Admitting, therefore, the third section of the table for plants of the 
Bocene, the species of the second section must be referred to the Lower 
Miocene. They differ by their general facies from those of the third 
section, and the strata with which they are connected have been recog- 
nized as of a higher geological horizon. The first division of the table, 
marked Middle Miocene, is by its flora indefinite, its species, as already 
remarked, having relation to all the stages of the Tertiary. 

It will not be possible to know anything of the characters of the flora 
of the different stages of our North American Tertiary except ‘after pro-. 
longed and careful researches; for in trying to ascertain the species of 
plants pertaining to a peculiar division of an epoch, the results appear 
to be the same for the Tertiary as for the Carboniferous formations. 
Local groups are generally well limited; their characters are at first 
considered as resulting from difference of age. But more extended 
researches show identical vegetable forms at other places of evidently 
different horizons, forcing the conclusion that most generally, at least, 
geographical distribution is the essential cause of the diversity of vege- 
table groups in the same formations. 


§ 5. TYPICAL ANALOGY OF THE PRESENT FLORA OF NORTH AMERICA 
WITH TERTIARY AND CRETACEOUS SPECIES. — 


LT have already alluded in a general way§ to this fact: that the essen- 
tial types of our actual flora are marked in the Cretaceous, and have 
come to us after passing, without notable changes, through the Ter- 
tiary formations of our continent. Before any species of our Tertiary 
had been recognized and described, the general facies of the European 
Miocene had been compared to that of the present North American 
flora, and from the remarkable analogy of the vegetation of both epochs, 
the conclusion had been driven, that the present flora of ours had received 
its essential representatives from species migrated from the European 
Tertiary. If the assertion brought forth in the beginning of this chapter 
is right, the contrary conclusion is true; that is, the Tertiary flora of 
' Wurope is essentially a compound of American types, and our Cretaceous 
flora is the ancestor as well of our present flora as of that of the Tertiary 
of Europe. It is worth while, therefore, to briefly consider the essential 
proofs of this assertion, reserving for a future report a detailed exposi- 
tion, which may be rendered more ee by the collecting of new 
materials.|| 


* Dr. F. V. Hayden in letters, 

t Species of Fossil Plants from the Tertiary of Mississippi, in Trans. Am. Phil. Soc., 
vol. XIII, pp. 426 and 427. 

¢ The discussion on the age of these strata is clearly and thoroughly exposed in 
Danas’s Manual of Geology, pp. 509-511. See also F. V. Hayden’s Annual Report for 
1870, p. 383. 

§ American Journal of Science and Arts, vol. XLVJ, Pp: 104, 

|| The word type is here used in its more general sense,’as a figure of senate to come, 
without considering antecedence. In that way it is more acceptable than the word 
race, which rather offers an idea of derivation. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 315 


No species of Glumacew is as yet known from the Cretaceous forma- 
tions of this continent, but from uncertain remains, knots separated 
from the stem, and a piece of a stem referable to the genus Arundo. As 
Glumacece and Cyperacec are largely represented in the Tertiary, we 
may expect to find types of these orders of plants in some strata of the 
Upper Cretaceous, their distribution being local, as remarked formerly. 
Per contra, the Cretaceous has already typical representatives of the 
essential sections of the Gymnosperme, as they are seen later in the Ter- 
tiary and now in our flora. The Cupressinec are represented by Glyptos- 
trobus gracillimus, Lsqx.; the A bietinew, by Araucaria (?) spathulata, Newby, 
Sequoia formosa, Lsqx., a cone of Abietites described as Pterophyllum, (?) 
Lsqx., all these from Nebraska and Sequoia Reichenbachi, Heer, from Mon- 
tana. These are followed in the Tertiary by a number of forms of Taxo- 
dium, Glyptostrobus, Sequoia, &c., all repeated without striking variations 
in our flora. Sequoia is well represented in the Miocene of Europe; but 
this genus has disappeared from its flora, as also from our northeastern 
American flora, being still distributed in California. The type of our 
Abies appears to be Araucaria spathulata, named above, a form referable 
to three species of Abietites, described by Dunker from the Quader- 
sandstein of Blankenburg, and which, altogether, may represent a single 
species. As yet we have no remains of Pinus, neither from the Creta- 
ceous nor from the Tertiary. Heer has, however, described two species 
from the Cretaceous of Greenland, and twenty-four species from the 
arctic Tertiary. That they have not been found yet in the North 
American measures, is merely the result of the geographical distribution 
of the species of this genus. A remarkable group of the Taxinecw, repre- 
sented already in our Cretaceous by one species of Phyllocladus, and in the 
Lower Tertiary by a Salisburia, is out of our present flora. The species 
of the first genus inhabit New Holland and Tasmania; the other has only 
one living representative speciesin Japan. Nothing can be said on the 
causes of migration, and extinction of vegetable types. As Australia has 
now animal species analogous to those of the Cretaceous, it would not be 
peculiar to find there also the same kind of analogy for plants. Species, 
especially of conifers, disappear without appreciable causes, as some 
of them are now dying out at our time; the cedar of Lebanon, the pine 
(Pinus cembra) of the Alps, the giant trees of California, (Sequoia, &c.) 
That our climate is well appropriate to the vegetation of Salisburia 
adiantifolia is proved by the result of its culture. There is in the row 
of trees bordering the Common of Boston, a splendid representative of | 
this species, with a trunk about one foot in diameter. It has never been 
sheltered, and is there mixed with elms and other indigenous species. 

But the conifers do not furnish the essential characters to our present 
arborescent flora. Most of the trees of our forests belong’ to the first 
division of the dicotyledonous plants, that of the apetalous; the sweet- 
gum, the willow, the poplar, the oak, the beach, the elm, &c., are of 
this kind. 

Already one species of Liquidambar is known from its remains in the 
Cretaceous, L. subintegrifolius, intimately related to another species, LZ. 
gracile, of the Lower Tertiary of the West. Both are remarkable for the 
entire borders of the leaves; but for this, the form of the Cretaceous leaf 
is similar to that of L. styraciflua, our sweet-gum. Two species are alse 
represented in the Miocene of Europe. Of the poplars, already seven 
species have been described from the Cretaceous of Nebraska. The 
types of our actual species are marked there already, and more still in 
the species of the Tertiary, (21,) some of them identical with those of 
the same formation of Europe. The willows have five species in the 


316 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Cretaceous, also representing typical forms of our living species. Their 
presence in the Tertiary is attested, as far as we know yet, by four 
species. The oaks of our living flora, ‘with the great diversity of forms of 
their leaves, have, also, their primitive types in species of the Cretaceous. 

One type, that of the leaves with entire borders, like Quercus Phellos, Q. 

Imbricaria, being distinctly marked, especially in Q. salicifolia, Newby. ; : 
Q. anceps, Lsqx.; Q. Ellsworthiana, Lsqx., while the type of the chestnut- 
oaks is essentially represented by Q. primordialis, Lsqx. The same types 
traverse our Tertiary flora, and there multiply in the nineteen species of 
Tertiary forms, analogous, some of them at least, to species distributed 
at our time in Northeastern and in Northwestern America. For the 
beach, the leaves of our Cretaceous species, also diversified in forms, 
while tr aversing the Tertiary, are scarcely distinguishable from those of 
the living species. Even the chestnut appears to be represented in the 
Cretaceous by a species which I refer to Quercus, viz, Q. Mudgii, on 
account of the branching of a few of the secondary veins, but which is 
a true Castanea by the divisions of the leaves. After this we have in 
our Cretaceous, with fewer but well specified representatives, Betula in 
B. Beatriciana, Lsqx., Alnus or Corylus in a large leaf Alnus (2) grandifolia, 
Newby.; 5 Licus in leaves of a type recognizable i in numerous forms of this 
genus in our Tertiary, with species of Laurus, Sassafras, and Oinna- 
momun, all, except the last, types of living species of the North Ameri- 
can flora. One of the three forms of sassafras of our Cretaceous is, by 
its leaves, undistinguishable from our living species. The genus Plata- 
nus also has its Cretaceous type preserved to our time with scarcely any 
variation of form in one species, which I have referred to P. aceroides, 
Gopp., and which is scarcely distinguishable from our P. occidentalis. In 
the Tertiary we know already a number of remarkable species of this 
genus, which now has a single representative on our continent, and is 
apparently disappearing from the present flora. 

The-second section of the dicotyledonous, the monopetalous, is not 
largely represented in North America by arborescent species. We have 
especially shrubs. However, Diospiros and Andromeda have their types 
marked in the Cretaceous. And in the third section, the polypetalous, 
our Liriodendon, Magnolia, Acer, Rhamnus, Aralia, Juglans, even appa- 
rently Prunus, whose species are still predominant, have all typical 
representatives in the Cretaceous of ours. 

It would be interesting to pursue these researches with more details, 
and to follow some specific forms in their development through the Ter- 
tiary ; but mere descriptions are insufficient without figures for such a 
kind of comparison. 

Some of our now living species, of course, have not as yet any recog- 
nized types in the Cretaceous, perhaps, because the researches have not 
been pursued over a wide extent of this formation. Nevertheless, these 
Cretaceous leaves of ours have a facies with which some of the present 
forms do not agree. They are all either entire, or lobed, or with borders 
merely undulate. No serrulate or doubly serrate leaf has been recog- 
nized among them, and, as far as it is known till this time, all the genera — 
whose species have leaves of this kind, like Alnus, Carpinus, Ostrya, Ul- 
nus, (2?) Fraxinus, Vitis, Tilia, are not in the Cretaceous. The large 
leaf referred to Ulmus, (?) by Dr. Newberry, has the borders undulately 
and obtusely lobed; even the Cretaceous species of Acer are merely 
three-lobed, with obtuse lobes and entire borders. It will be interest- 
ing to study the apparent absence of these forms in the Cretaceous, and, 
if real, to observe in the Tertiary the origin of what we may call a new 
type and the transitions to it. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 317 


Some other groups of plants represented in the Tertiary flora of Eu- 
rope, and without representatives in our present flora, are not seen, as 
it has been remarked already, in the North American Cretaceous and, 
Tertiary, the Proteacee, the Myrtacee, for example. The total absence 
' of a group which, like that of the Proteacew, has, in the Miocene flora of 
Europe, thirty-five species, is the best proof we may have of the homo- 
geneity and indigenous origin of our flora. Shall I say of its antiquity 
too? Facts seem to indicate for our flora, as for our race, a northern 
origin. Our types may have risen in Greenland and gradually passed 
southward, some of them branching to Kurope. But as these types of 
old have been preserved to us only, we may at least admit what Agas- 
siz calls ‘‘ the more ancient character of our flora, which bears the mark 
of former ages, a particularity which agrees with the geological struc- 
ture, and indicates that this region was a large continent long before 
extensive tracts of land had been lifted above the level of the sea in any 
other part of the world.” * 


SUMMARY. 


The recapitulation of the essential data pointed out by the examina- 
tion of the Tertiary and Cretaceous specimens of Dr. Hayden’s collec- 
_ tion of fossil plants presents the following conclusions: 

1st. The Tertiary flora of North America is, by its types, intimately 
related to the Cretaceous flora of the same country. 

2d. All the essential types of our present arborescent flora are already 
marked in the Cretaceous of our continent, and become more distinct 
and more numerous in the Tertiary; therefore the origin of our actual 
flora is, like its facies, truly North American. 

3d. Some types of the North American Tertiary and Cretaceous flora 
appear already in the same formations of Greenland, Spitzbergen, and 
Iceland; the derivation of these types is therefore apparently from the 
arctic regions. 

4th. The relation of the North American Tertiary flora with that of — 
the same formation of Europe is marked only for North American 
types, but does not exist at all for those which are not represented in 
the living flora of this continent. Therefore the European Tertiary flora 
partly originates from North American types, either directly from our 
continent or derived from the arctic regions. . 

oth. The relation of the Tertiary flora of Greenland and Spitzbergen 
with ours indicates, at the Tertiary and Cretaceous epochs, land con- 
nection of the northern islands with our continent. 

6th. The species of plants common to the Cretaceous and Tertiary 
formations of the arctic regions and of our continent indicate, in the 
mean temperature influencing geographical distribution of vegetation, a 
difference, in +, equal to about 5° of latitude for the Tertiary and Cre- 
taceous epochs. ; 

7th. The same kind of observations on the geographical distribution 
of vegetable species shows at the Tertiary and Cretaceous times differ- 
ences of temperature according to latitude, analogous to what isremarked 
at our time by the characters of the southern and northern vegetation. 

To these important conclusions, the examination of Dr. Hayden’s 
specimens indicates some of the essential points which should be taken 
into consideration for directing future researches: 

ist. As we have not yet sufticient points of comparison between the 
fossil flora of the eastern and that of the western slopes of our continent, 


* Lake Superior, its physical character, &c., by L. Agassiz, p. 150. 


318 GEOLOGICAL SURVEY OF THE TERRITORIES. 


acquaintance with the Tertiary and Cretaceous species of California is 
most desirable. The marked differences in the present floras of these 
slopes may be explained by the fossil species. Are these differences 
a result of the topography of the country as fixed at or after the Ter- 
tiary, or do they already originate in geographical distribution at the. 
Tertiary and Cretaceous times? 2 

2d. We have no sufficient knowledge as yet with the North American 
Tertiary plants to positively indicate if any stages are marked in this 
formation by difference in the vegetation. 

3d. A close study of the plants from the so-called disputed strata, 
which in superposition to Cretaceous formations appear to have at one 
place Tertiary types, at another Cretaceous ones, is desirable, in order, 
if possible, to discover transitional or intermediate forms indicating 
gradual changes from the Cretaceous to the Tertiary flora. 

4th. In the same way and for the same purpose it is most desirable 
to have a better acquaintance with the fossil plants of the Upper Tertiary , 
formations, considered as of Pliocene age, as those of Mound City, Co- 
lumbus, Kentucky, near the mouth of the Ohio River, and also with the 
still more recent deposits of leaves between the mouth of the Cumber- 
land and of the Tennessee Rivers. In these, also, we may expect to see 
transitional forms of vegetation between the toy flora and ours. 


ON THE GEOLOGY AND PALEONTOLOGY OF THE CRETACEOUS 
STRATA OF KANSAS. 


By Epwarp D. Corr, A. M. 


Part L—A GENERAL SKETCH OF THE ANCIENT LIFE. 


That vast level tract of our territory lying between Missouri and the 
Rocky Mountains represents a condition of the earth’s surface which 
has preceded, in most instances, the mountainous or hilly type so. preva- 
lent elsewhere, and may be called, in so far, incompletely developed. It 
does not present the variety of ‘conditions, either of surface for the 
support of a very varied life, or of opportunities for access to its inte- 
rior treasures, so beneficial to a high civilization. It is, in fact, the old 
bed of seas and lakes, which has been so gradually elevated as to have 
suffered little disturbance. Consistently with its level surface, its 
soils have not been carried away by rain and flood, but rather cover it 
with a.deep and wide-spread mantle. This is the great source of its 
wealth in nature’s creations of vegetable and animal life, and from it 
will be drawn the wealth of its future inhabitants. On this account its 
products have a character of uniformity; but viewed from the stand- 
point of the political philosopher, so long as peace and steam bind the 
natural sections of our country together, so long will the plains be one 
important element in a varied economy of continental extent. But 
they are not entirely uninterrupted. The natural drainage has worn 
channels, and the streams flow below the general level. ‘The ancient, 
sea and lake deposits have neither been pressed into very hard rock 
beneath piles of later sediment, nor have they been roasted and crystal- 
lized by internal heat. Although limestone rock, they easily yield to the 
action of water, and so the side drainage into the creeks and rivers has 
removed their high panies from many rods to many miles from their 


GEOLOGICAL SURVEY OF THE TERRITORIES. 319 


original positions. In many cases these banks or bluffs have retained 
their original steepness, and have increased in elevation as the breaking 
down of the rock encroached on higher land. In other cases the rain- 
channels have cut in without removing the intervening rocks at once, 
and formed deep gorges or canons, which sometimes extend to great 
distances. They frequently communicate in every direction, forming 
curious labyrinths, and when the intervening masses are cut away at 
various levels, or left standing, like monuments, we have the character- 
_ istic peculiarities of “‘ bad lands,” or mauvaises terres. 

In portions of Kan&as tracts of this kind are scattered over the coun- 
try along the margins of the river and creek valleys and ravines. The 
upper stratum of the rock is a yellow chalk, the lower bluish, and the 
brillianey of the color increases the picturesque effect. From elevated 
points the plains appear to be dotted with ruined villages and towns 
whose avenues are lined with painted walls of fortifications, churches, 
and towers, while side-alleys pass beneath natural: bridges or expand 
into small pockets and caverns, smoothed by the action of the wind ear- 
rving hard mineral particles. But this is the least interesting of the 
peculiarities presented by these rocks. On the level surfaces, denuded of 
soil, lie huge oyster-like shells, some opened and others with both valves 
together, like remnants of a half-finished meal of some titanic race, who 
had been frightened from the board never to return. These shells are 
not thickened like most of those of past periods, but contained an 
animal which would have served as a meal for a large party of men. 
One of them measured 26 inches across. 

If the explorer searches the bottoms of the rain-washes and ravines, 
he will doubtless come upon the fragment of a tooth or, jaw, and will 
generally find a line of such pieces leading to an elevated position on 
the bank or bluff where lies the skeleton of : some mouster of the ancient 
sea. He may find the vertebral column running far into the limestone 
that locks him in his last prison; or a paddle extended on the slope, as 
though entreating aid; or a pair of jaws lined with horrid teeth, which 
erin despair on enemies they are helpless to resist; or he may find a 
conic mound on whose apex glisten in the sun the bleached bones of one 
whose last office has been to preserve from destruction the friendly soil 
on which he reposed. Sometimes a pile of huge remains will be discov- 
ered, which the dissolution of the rock has “deposited on the lower 
level, the force of rain and wash having been insufficient to carry them 
away. 

But the reader inquires, What is thenature of these creatures thus left 
stranded a thousand miles from either ocean? How came they in the 
limestones of Kansas, and were they denizens of land or sea? It may 
be replied that our knowledge of this chapter of ancient history is only 
about five years old, and has been brought to light by geological explora- 
tions set on foot by Dr. Turner, Professor Mudge, Professor Marsh, W. 
HE. Webb, and the writer. Careful examinations of the remains discov- 
ered show that they are nearly all to be referred to the reptiles and fishes. 
We find that they lived in the period called Cretaceous, at the time when 
the chalk of England and the green-sand marl of New Jersey were being 
deposited, and when many other huge reptiles and fishes peopled both. 
sea and land i in those quarters of the elobe. The twenty-four species 
of reptiles found in Kansas, up to the present time, varied from ten to 
eighty feet in length, and represented six orders, the same that occur 
in the other regions mentioned. Two only of the number were terres- 
trial in their habits, and two were flyers; the remainder were inhabit- 
ants of the salt ocean, When they swam over what are now the plaius, 


320 GEOLOGICAL SURVEY OF THE TERRITORIES. 


the coast line extended from Arkansas to near Fort Riley, on the Kan- 
sas River, and passing a little eastward traversed Minnesota to the 
British possessions, near the head of Lake Superior. The extent of sea 
to the westward was vast, and geology has not yet laid down its bound- 
ary; it was probably a shore now submerged beneath the waters of the 
North Pacific Ocean. 

Far out on its expanse might have been seen in those ancient days, 
a huge, snake-like form which rose above the surface and stood erect, 
with tapering throat and arrow-shaped head; orswayed about, describ- 
ing a circle of twenty feet radius above the water. Then it would dive 
into the depths, and naught would be visible but the foam caused by 
the disappearing mass of life. Should several have appeared together, 
we can easily imagine tall, twining forms rising to the height of the 
masts of a fishing fleet, or like snakes twisting and knotting themselves 
together. This extraordinary neck—for such it was—rose from a body 
of elephantine proportions; and a tail of the serpent-pattern balanced 
it behind. The limbs were probably two pairs of paddles like those of 
Plesiosaurus, from which this diver chiefly differed in the arrangement 
of the bones of the breast. In the best known species 22 feet repre- 
sent the neck in a total length of 50 feet. 

This is the Hlasmosaurus platyurus, Cope, a carnivorous sea-reptile, 
no doubt adapted for deeper waters than many of the others. Like 
the snake-bird of Florida, it probably often swam many feet below the 
surface, raising the head to the distant air for a breath, then withdraw- 
ing it and exploring the depths 40 feet below, without altering the posi- 
tion of its body. From the localities in which the bones have been 
found in Kansas, it must have wandered far from land, and that many 
kinds of fishes formed its food is shown by the teeth and scales found 
in the position of its stomach. 

A second species of somewhat similar character and habits differed 
very much in some points of structure. The neck was drawn out to a 
wonderful degree of attenuation, while the tail was relatively very 
stout, more so, indeed, than in the Hlasmosaurus, as though to balance 
the anterior regions while occupied in various actions; e. g., while cap- 
turing its food. This was a powerful swimmer, its paddles measuring 
four feet in length, with an expanse therefore of about eleven feet. It 
is known as Polycotylus latipinnis, Cope. £ 

The two species just described formed a small representation in our 
ereat interior sea, of an order which swarmed, at the same time or near 
it, over the gulfs and bays of old Europe. There they abounded twenty 
to one. Perhaps one reason for this was the almost entire absence of 
the real rulers of the waters of ancient America, viz, the Pythonomorphs. 
These sea-serpents—for such they were—embrace more than half the 
species found in the limestone rocks in Kansas, and abound in those of 
New Jersey and Alabama. Only four have been seen as yet in Europe. 

Researches into their structure have shown that they were of wonder- 
ful elongation of form, especially of tail. That their heads were large, 
flat, and conic, with eyes directed partly upward ; that they were fur- 
nished with two pairs of paddles like the flippers of a whale, but with 
short or no portion representing the arm. With these flippers and the 
eel-like strokes of their flattened tail they swam, some with less others 
with greater speed. They were furnished, like snakes, with four rows of 
formidable teeth on the roof of the mouth. Though these were not 
designed for mastication, and, without paws for grasping, could have 
been little used for cutting, as weapons for seizing their prey they were 
very formidable. And here we have to consider a peculiarity of these 


» 


GEOLOGICAL SURVEY OF THE TERRITORIES. . 321 


creatures, in which they are unique among animals. Swallowing their 
prey entire like snakes, they were without that wonderful expansibility 
of throat due in the latter to an arrangement of levers supporting the 
lower jaw. Instead of this each halt of that: jaw was articulated or 
jointed at a point nearly midway between the ear and the chin. This 
was of the ball-and-socket type, and enabled the jaw to make an angle 
outward, and so widen by much the space enclosed between it and its 
fellow. The arrangement may be easily imitated by directing the arms 
forward, with the elbows turned outward and the hands placed near 
together. The ends of these bones were in the Pythonomorpha as inde- 
pendent as in the serpents, being only bound by flexible ligaments. By 
turning the elbows outward and bending them, the space between the 
arms becomes diamond-shaped and represents exactly the expansion 
seen in these reptiles, to permit the passage of a large fish or other body. 
The arms, too, will represent the size of jaws attained by some of the 
smaller species. The outward movement of the basal half of the jaw 
necessarily twists in the same direction the column-like bone to which 
it is suspended. The peculiar shape of the joint by which the last bone 
is attached to the skull depends on the degree of twist to be permitted, 
and therefore to the degree of expansion of which the jaws were capa- 
ble. As this differs much in the different species, they are readily dis- 
tinguished by the column or “ quadrate” bone when found. There are 
some curious consequences of this structure, and they are here explained 
as an instance of the mode of reconstruction of extinct animals from 
slight materials. The habit of swallowing large bodies between the 
branches of the under jaw necessitates the prolongation forward of the 
mouth of the gullet; hence the throat in the Pythonomorpha must have 
been loose and almost as baggy as a pelican’s. Next, the same habit 
must have compelled the forward position of the glottis or opening of ° 
the windpipe, which is always in front of the gullet. Hence these 
creatures must have uttered no other sound than a hiss, as do ani- 
mals of the present day which have a similar structure; as, for instance, 
the snakes. Thirdly, the tongue must have been long and forked, 
and for this reason: its position was still anterior to the glottis, so 
that there was no space for it except it were inclosed in a sheath 
beneath the windpipe when at rest, or thrown out beyond the jaws when 
in motion. Such is the arrangement in the nearest living forms, and it 
is always in these cases cylindric and forked. 

The giants of the Pythonomorpha of Kansas have been called Liodon 
proriger, Cope, and Liodon dyspelor, Cope. The first must have been 
abundant, and its length could not have been far from fifty feet ; certainly 
not less. Its physiognomy was rendered peculiar by a long projecting 
muzzle, reminding one of that of the blunt-nosed sturgeon of our coast; 
but the resemblance was destroyed by the correspondingly massive end 
of the branches of the lower jaw. Though clumsy in appearance, such 
an arrangement must have been effective as a ram, and dangerous to 
his enemies in case of collision. The writer once found the wreck of 
an individual of this species strewn around a sunny knoll beside a bluff, 
and his conic snout pointing to the heavens formed a fitting monument, 
as at once his favorite weapon, and the mark distinguishing all his 
race. 

Very different was the Liodon dyspelor, a still larger animal than the 
last, with a formidable armature. 1t was, indeed, the longest of known 
reptiles, and probably equal to the great finner-whales of modern 
oceans. The circumstances attending the discovery of one of these 
will always be a pleasant recollection to the writer. A part of the face, 

91G 8 


322 GEOLOGICAL SURVEY OF THE TERRITORIES. 


with teeth, was observed projecting from the side of a bluff by a com- 
panion in exploration, Lieutenant James H. Whitten, United States 
Army, and we at once proceeded to follow up the indication with knives 
and picks. Soon the lower jaws were uncovered, with their glistening 
teeth, and then the vertebre and ribs. Our delight was at its height 
when: the bones of the pelvis and part of the hind limb were laid bare, 
for they had never been seen before in the species and scarcely in the 
order. While lying on the bottom of the Cretaceous sea, the carcass 
had been dragged hither and thither by the sharks and other rapacious 
animals, and the parts of the skeleton were displaced and gathered into 
a small area. The massive tail stretched away into the bluff, and after 
much laborious excavation we left a portion of it to more persevering 
explorers. The species of Clidastes did not reach such a size as some 
of the Liodons, and were of elegant and flexible build. To prevent their 
habits of coiling from dislocating the vertebral column, these had an 


additional pair of articulations at each end, while their muscular ~ 


strength is attested by the elegant striz and other sculptures which 
appear on ail their bones. Five species of this genus occur in the 
Kansas strata, the largest (Clidastes cineriarum, Cope) reaching 40 feet 
in length. The discovery of a related species (Holcodus coryphcus, Cope) 
was made by the writer under circumstances of difficulty peculiar to 
the plains. After examining the bluffs for half a day without result, a 
few bone fragments were found in a wash above their base. Others 
led the way to a ledge 40 or 50 feet from both summit and foot, where, 
stretched along in the yellow chalk, lay the projecting portions of the 
whole monster. A considerable number of vertebre were found pre- 
served by the protective embrace of the roots of a small bush, and when 
they were secured, the pick and knife were brought into requisition to 
remove the remainder. About this time one of the gales, so common 
in that region, sprang up, and, striking the bluff fairly, reflected itself 
upward. So soon as the pick pulverized the rock, the limestone dust 
was carried into eyes, nose, and every available opening in the clothing. 
I was speedily blinded, and my aid disappeared in the caiion, and was 
seen no more while the work lasted. Only the enthusiasm of the stu- 
dent could have endured the discomfort, but to him it appeared a most 
unnecessary “conversion of force” that a geologist should be driven 
from the field by his own dust. A handkerchief tied over the face, and 
pierced by minute holes opposite the eyes, kept me from total blindness, 
though dirt in abundance penetrated the mask. But a fine relic of 
créative genius was extricated from its ancient bed, and one that leads 
its genus in size and explains its structure. 

On another oceasion, riding along a spur of a yellow chalk bluff, some 
vertebre lying at its foot met my eye. An examination showed that 
the series entered the rock, and, on passing round to the opposite side, 
the jaws and muzzle were seen projecting from it, as though laid bare 
for the convenience of the geologist. The spur was small and of soft 

material, and we speedily removed it in blocks, to the level of.the rep- 
tile, and took out the remains as they laid across the base from side to 
side. 

A genus related to the last is Hdestosaurus. A species of 30 feet 
in length, and of elegant proportions, has been called H. tortor, Cope. 
Its slenderness of body was remarkable, and the large head was long 
and lanee-shaped. Its flippers tapered elegantly, and the whole ani- 
mai was more of serpent than any other of its tribe. Its lithe move- 
ments brought many a fish to its knife-shaped teeth, which are more 
efficient and humerous than in any of its relatives. It was found coiled 


a 


GEOLOGICAL SURVEY OF THE TERRITORIES. B20 


up beneath a ledge of rock, with its skull lying undisturbed in the cen- 
ter. A species distinguished for its small size and elegance is Olidastes 
pumilus, Marsh. This little fellow was only 12 feet in length, and was 
probably unable to avoid occasionally furnishing a meal for some of the 
rapacious fishes which abounded in the same ocean. 

The flying saurians are pretty well known from the descriptions of 
Europeanauthors. Our Mesozoic periods had been thought tohave lacked 
these singular forms until Professor Marsh and the writer discovered 
remains of species in the Kansas chalk. Though these are not numer- 
ous, their size was formidable. One of them, Ornithochirus harpyia, 
Cope, spread eighteen feet between the tips of its wings, while the 0. 
umbrosus, Cope, covered nearly twenty-five feet with his expanse. These 
strange creatures flapped their leathery wings over the waves, and often 
plunging, s2ized many an unsuspecting fish; or, soaring at a safe distance, 
viewed the sports and combats of the more powerful saurians of the 
sea. At night-fall, we may imagine them trooping to the shore, and 
suspending themselves to the cliffs by the claw-bearing fingers of their 
wing-limbs. 

Tortoises were the boatmen of the Cretaceous waters of the eastern 
coast, but none had been known from the deposits of Kansas until very 
recently. But two species are on record; one large and strange enough 
to excite the attention of naturalists is the Protostega gigas, Cope. 
It is well known that the house or boat of the tortoise or turtle is formed 
by the expansion of the usual bones of the skeleton till they meet and 
unite, and thus become continuous. Thus the lower shell is formed of 
united ribs of the breast and of the breast-bone, with bone deposited in the 
skin. In the same way the roof is formed by the union of the ribs 
with bone deposited in the skin. In the very young tortoise the ribs 
are separate as in other animals; as they grow older they begin to 
expand at the upper side of the upper end, and with increased age the 
expansion extends throughout the length. ‘The ribs first come in con- 
tact, where the process commences, and, in the land-tortoise, they are 
united to the end. In the sea-turtle, the union ceases a little above the 
ends. The fragments of the Protostega were seen by one of my party 
projecting from a ledge of a low bluff. Their thinness and the distance 
to which they were traced excited my curiosity, and I straightway 
attacked the bank with the pick. After several square feet of rock had 
been removed, we cleared up one floor, and found ourselves well repaid. 
Many long slender pieces of two inches in width lay upon the ledge. 
They were evidently ribs, with the usual heads, but behind each head 
was a plate like the flattened bowl of a huge spoon, placed crosswise. 
Beneath these stretched two broad plates, two feet in width, and no 
thicker than binder’s board. 'The edges were fingered, and the surface 
hard and smooth. All this was quite new among full-grown animals, 
and we at once determined that more ground must be explored for 
further light. After picking away the bank, and carving the soft rock, 
‘new masses of strange bones were disclosed. Some bones of a large 
paddle were recognized, and a leg-bone. The shoulder-blade of a huge 
tortoise came next, and further examination showed that we had 
stumbled on the burial-place of the largest species of sea-turtle yet 
known. The single bones of the paddle were eight inches long, giving 
the spread of the expanded flippers as considerably over fifteen feet. 
But the ribs were those of an ordinary turtle just born, and the great 
plates represented the bony deposit in the skin, which, commencing 
independently in modern turtles, united with each ‘other below at an 
early day. But it was incredible that the largest of known turtles 


394 . GEOLOGICAL SURVEY OF THE TERRITORIES. 


should be but just hatched, and for this and other reasons it has been 
concluded that this ‘“ ancient mariner” is one of those forms not uncom- 
mon in oltl days, whese incompleteness in some respects points to the 
truth of the belief that animals have assumed their modern perfections 
by a process of growth from more simple beginnings. 

The Cretaceous ocean of the West was no less remarkable for its fishes 
than for its reptiles. Sharks do not seem to have been so common as 
in the old Atlantic, but it swarmed with large predaceous forms related 
to the salmon and saury. 

Vertebre and other fragments of these species project from the worn: 
limestone in many places. I will call attention to perhaps the most for- 
midable as well as the most abundant of these. It is the one whose 
bones most frequently crowned knobs of shale, which had been left 
standing amid surrounding destruction. The density and hardness of 
the bones shed the rain off on either side, so that the radiating gutters 
and ravines finally isolated the rock mass from that surrounding. The 
head was as long or longer than that of a fully grown erizzly bear, 
and the jaws were deeper in proportion to their length. -The muzzle 
was shorter and deeper than that of a bull-dog. The teeth were all 
sharp cylindric fangs, smcoth and glistening, and of i irregular size. At 
certain distances in each jaw they projected three inches above tue gum, 
and were sunk one inch into the jaw margin, being thus as long as the 
fangs of a tiger, but more slender. Two such fangs crossed each other 
on each side of the middle of the front. This fish is known as Portheus 
molossus, Cope. Besides the smaller fishes, the reptiles no doubt sup- 
plied the demands of his appetite. 

The ocean in which flourished this abundant and vigorous life, was at 
last completely inclosed on the west by elevations of sea-bottom, so that 
“it only communicated with the Atlantic and Pacific at the Gulf of. 
Mexico and the Arctic Sea. The continued elevation of both eastern 
and western shores contracted its area, and when ridges of the sea-bot- 
tom reached the surface, forming long, low bars, parts of the water-area 
were inclosed and connection with salt-water prevented. Thus were 
the living beings imprisoned and subjected to many new risks to life. 
The stronger could more readily capture the weaker, while the fishes 
would gradually perish through the constant freshening of the water. 
With the death of any considerable class the balance of food-supply 
would be lost, and many larger species would disappear from the scene. 
The most omnivorous and enduring would longest resist the approach 
of starvation, but would finally yield to inexorable fate; the last one 
caught by the shifting bottom among shallow pools, from which his 
exhausted energies could not extricate him. 


Part I1—GEHOLOGY. 


The geology of this region has been very partially explored, but ap- . 
pears to be quite simple. The following description of the section along 
the line of the Kansas Pacific Railroad will probably apply to similar 
sections north and south of it. The formations referable to the Oreta- 
ceous period on this line are those called by Messrs. Meek and Hay 
den the Dakota, Benton, and Niobrara groups, or Nos. 1, 2, and 3. Ac- 
cording to Leconte,* at Salina, one hundred and eighty-five miles west 
of the State line of Missouri, the rocks of the Dakota group constitute 

* Notes on the Geology of the Survey for the Extension of the Union Pacific Road, 


Eastern Division, from the Smoky Hill to the Rio Grande. By John L. Leconte, M. D., 
Philadelphia, 1868. 


GECLOGICAL SURVEY OF THE TERRITORIES. © 325 


the bluffs, and continue to doso as far as Fort Harker, thirty-three miles 
farther west. They are “a coarse, brown sandstone, containing irregular 
concretions of oxide of iron,” and numerous mollusks of marie origin. 
Near Fort Harker certain strata contain large quantities of the remains 
(leaves chiefly) of dicotyledonous and other forms of land vegetation. 
Near this point, according to the same authority, the sandstone beds 
are covered with clay and limestone. These he does not identify, but 
portions of it from Bunker Hill, thirty-four miles west, have been iden- 
tified by Dr. Hayden as belonging to the Benton or second group. The 
specimen consisted of a block of dark bluish-gray clay rock, which bore 
the remains of the fish Apsopelix sauriformis, Cope. That the eastern 
boundary of this bed is very sinuous is rendered probable by its oceur- 
rence at Brookville, eighteen miles to the eastward of Fort Harker, on 
the railroad. In sinking a well at this point, the same soft, bluish clay 
rock was traversed, and ata depth of about 30 feet the skeleton of a 
saurian of the crocodilian order was encountered, the Hyposaurus Vebbia, 
Cope. 

The boundary line or first appearance of the beds of the Niobrara 
division has not been pointed out, but at Fort Hays, seventy miles west 
of Fort Harker, its rocks form the bluffs and outcrops everywhere. 
From Fort Hays to Fort Wallace, near the western boundary of the 
State, one hundred and thirty-four miles beyond, the strata present a 
tolerably uniform appearance. They consist of two portions—a lower 
of dark bluish calcareo-argillaceous character, often thin-bedded ; and a 
superior, of yellow and whitish chalk, much more heavily bedded. Near 
Fort Hays the best section may be seen at a point eighteen miles north, 
on the Saline River. Here the blufis rise to a height of 200 feet, the 
yellow strata constituting the upper half. No fossils were observed in 
- the blue bed; but some moderate-sized Ostrew, frequently broken, were 
not rare in the yellow. Half-way between this point and the fort, my 
friend N. Daniels, of Hays, guided me to a denuded tract covered with 
the remains of huge shells described by Mr. Conrad, at the close of this 
section, under the names of Haploscapha grandis and H. eccentrica. 
They may have affinities to the Rudistes ; some of them are 27 inchesin 
diameter. They exhibited concentric obtuse ridges on the interior side, 
and one species a large crest behind the hinge. Fragments of fish 
vertebree of the Anogmius type were also found here by Dr. Janeway. 
These were exposed in the yellow bed. Several miles east of the post, 
Dr. J. H. Janeway, post-surgeon, pointed out to me an immense accu- 
mulation of Inoceramus problematicus in the blue stratum. This species 
also occurred in abundance in the bluffs west of the fort, which were 
composed of the blue bed, capped by a thinner layer of the yellow. 
Large globular or compound globular argillaceous concretions coated 
with gypsum were abundant at this point. 

Along the Smoky Hill River, thirty miies east of Fort Wallace, the 
south bank descends gradually, while the north bank is bluffy. This, 
with other indications, points to a gentle dip of the strata to the north- 
west. The yellow bed is thin or wanting on the north bank of the 
Smoky, and is not observable on the north fork of that river for twenty 
miles northward or to beyond Sheridan Station on the Kansas Pacific 
Railroad. Two isolated hills, “The Twin Buttes,” at the latter point, 
are composed of the blue beds, here very shaly, to theirsummits. This 
is the general character of the rock along and north of the railroad be- 
tween this point and Fort Wallace. 

South of the river the yellow strata are more distinctly developed. 
Butte Creek Valley, fifteen to eighteen miles to the south, is margined 


326 GEOLOGICAL SURVEY OF THE TERRITORIES. 


: by bluffs of from 20 to 150 feet in height on its southern side, while the 
northern rises gradually into the prairie. These bluffs are of yellow 
chalk, except from ten to forty feet of blue rock at the base, although 

_many of the cafions are excavated in the yellow rock exclusively. The 
bluffs of the upper portion of Butte Creek, Fox and Fossil Spring (five 
miles south) Cafions are of yellow chalk, and the reports of several 
persons stated that those of Beaver Creek, eight miles south of Fossil 
Spring, are exclusively of this material. Those near the mouth of Beaver 
Creek, ‘on the Smoky, are of considerable height, and appear, at a dis- 
tance, to be of the same yellow chalk. 

IT found these two strata to be about equally fossiliferous, and am 
unable to establish any paleontological difference between them. They 
pass into each other by gradations in some places, and occasionally 
present slight laminar alternations at their line of junction. I have 
specimens of Cimolichthys semianceps, Cope, from both the blue and yel- 
low beds, and vertebrae of the Liodon glandiferus, Cope, were found in 
both. The large fossil of Liodon dyspelor, Cope, was found at the junction 
of the beds, and the eaudal portion was excavated from the blue stratum 
exclusively. Portions of it were brought east in blocks of this material, 
and these have become yellow and yellowish on many of the. exposed 
surfaces. The matrix adherent te all the bones has become yellow. A 
second incomplete specimen, undistinguishable from this species, was 
taken from the yellow. bed. 

As to mineral contents, the yellow stratum is remarkably uniform 
in its character. The blue shale, on the contrary, frequently contains 
numerous concretions, and great abundance of thin layers of gypsum 
and erystals of the same. Near Sheridan, concretions and septaria are 
abundant. In some places the latter are of great size, and being im- 
bedded in the stratum have suffered denudation of their contents, and 
the septa standing out form a huge honey-comb. This region, and the 
neighborhood of Eagle Tail, Colorado, are noted for the beauty of their , 
gypsum crystals, the first abundantly found in the Cretaceous formation. 
These are hexagonal-radiate, each division being a pinnate or feather- 
shaped lamina of twin rows of crystals. The clearness of the minerak 
and the regular leaf and feather forms of the crystals give them much 
beauty. The bones of vertebrate fossils preserved in this bed are often 
much injured by the gypsum formation which covers their surface, and 
often penetrates them in every direction. 

The yellow bed of the Niobrara group disappears to the southwest, 
west, and northwest of Fort Wallace beneath a sandy conglomerate of 
uneertain age. In color it is light, sometimes white; and the component 
pebbles are’small and mostly of white quartz. The rock weathers irreg- 
ularly into holes and fissures, and the soil covering it is generally thin and 
poor. It is readily detached in large masses, which roll down the bluffs. 
No traces of life were observed in it, but it is probably the eastern mar- 
gin of the southern extension of the White River Miocene Tertiary 
stratum. This is at least indicated by Dr. Hayden in his geological 
preface to Leidy’s Extinct Mammals of Dakota and Nebraska. 

Economically the beds of the Niobrara formation possess little value 
except when burned as a fertilizer. The yellow chalk is too softin many 
places for buildings of large size, but it will answer well for those of 
moderate size. It is rather harder at Fort Hays, as I had occasion to 
observe at their quarry. That quarried at Fort Wallace does not appear 
to harden by exposure; the walls of the hospital, noted by Leconte on 
his visit, remained in 1871 as soft as they were in 1867. A few worth- 
less beds of bituminous shale were observed in Eastern Colorado. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 324 


The only traces of glacial action in the line explored were seen near 
Topeka. South of the town are several large, erratic masses of pink 
_ and bloody quartz, whose surfaces are so polished as to appear as though 
vitrified. They were transported, PEBTAPE» from the Azoic area near. 
Lake Superior. 


PART III.—SYNOPSIS OF THE FAUNA. 
REPTILIA. 
1. FRoM THE Brenton GROUP. 


The only reptile yet indicated from this stratum in Kansas is che 
erododilian. 

HYPOSAURUS VEBBII, Cope.—A species, of 8 or 10 feet in length, 
found in digging a well at Brookville, and presented to me by my friend 
Dr. Wim. E. Webb, of Topeka. The individual discovered was not fully 
grown, but indicates a smaller and stouter crocodile than the H. rogersti, 
Owen, of the New Jersey green-sand. This genus belongs to the group 
with subbiconcave vertebre, and had a long, subcylindric snout. 


2. - FROM THE NIOBRARA BED. 


Twenty-three species constitute what is known of the Cretaceous 
reptilian fauna of this area. These have been discovered in large part 
by exploring expeditions conducted by Professor Mudge, of the State 
Agricultural College of Kansas; by Professor O. C. Marsh, of Yale Col- 
lege; and by the writer. 

These species-represent four of the orders already known to exist in 
the Cretaceous. beds of other parts of: the United States. The writer 
first pointed-out the existence of Pythonomorpha and Sauropterygia, and 
subsequently discovered Testudinata. Professor Marsh has added to 
these the Ornithosauria. The first named of these orders is by far the 
most abundant, the relative number of species being as follows: Pytho- 
nomorpha, 17; Sauropterygia, 2; Testudinata, 2; Ornithosauria, 2. 

_The first-named order moludes species formerly referred to the Lacer- 
cranium, of the peael arch, aad of the limbs, indicate that they consti- 
tute a well-marked division. The cranium mingles lizard and serpent 
characters; the pelvis is entirely peculiar, while the limbs are somewhat 
like those of Plesiosaurus and turtles. In form they were exceedingly 
elongate and snake-like, with eel-like, flattened tail of great length, two 
pairs of flippers, a short neck, and ver y long, acute, flat head, with the 
eyes opening upwards. 

In the Sauropterygians the proportions were reversed, the neck being, 
in the two known Kansas species, excessively elongate, and the tail 
rather less so. The two pairs of flippers were elongate and powerful, 
and the head was light and rather small, as would. be appropriate to 
its position at the extremity of so long a neck, 

The Testudinata, or turtles, are well known in their general appear- 
ance. Those yet known from Kansas are, however, very peculiar. The 
Cynocercus had a long, slender tail, while the Protostega had no shell, 
properly so called. In other words, the ribs remained distinct, as in 
the young of existing sea-turtles, or ‘as in the adult Sphargis, but large, 
bony shields were developed in the skin. 

The Ornithosauria are the flying reptiles, which share with their rep- 
tilian features some characters of birds. Two species of considerable 


328 GEOLOGICAL SURVEY OF THE TERRITORIES. 


size has left abundant but crushed fragments in the yellow chalk of 
the Niobrara formation. One species must have measured nearly 25 feet 
across the wings. The giants of this sea were the Liodon proriger, Cope; 
L. dyspelor, Cope; Polycotylus latipinnis, Cope; and Elasmosaurus platyu- 
yus, Cope. Of these the first was apparently the most abundant. The 
second was the most elongate, exceeding in length perhaps any other 
known reptile. The last named had the most massive body, and 
exhibited an extraordinary appearance in consequence of the great 
iength of its neck. 


ORDER I.—PYTHONOMORPHA, Cope. 


Trans. Amer. Philos. Soc., 1868; Proc. Am. Phil. Soc., 1871, December. 


The material obtained during the autumn of 1871 by the writer proves 
conclusively that this order of reptiles attained a predominant importance 
during the Niobrara epoch of the Cretaceous period. This is indicated 
by the great profusion of individual remains and specific forms. Al- 
though occurring in America wherever the Cretaceous formation appears, 
they are so far more numerously represented in Kansas than elsewhere. 
Though not rare in New Jersey, crocodiles and tortoises outnumber 
them; but in Kansas all other orders are subordinate to the Pythono- 
morpha. As is now well known since 1868,* the seas of the American 
continent were the home of this order, while they were comparatively 
rare in those of Europe. In the latter country we have four species 
only determined by paleontologists, viz: 


MOS aS AUS |.) biting ssc chiens eG ALL ag ein ie aie mee 2 
HO MOM 22k ev ieicve wiele ieee cee occg REY CL Pha Na A i i ik 
@)Sanwospondylus. fe... 2besihsy Lk. Sem aus a skie eee eee 1 


In North America the species have been exactly determined from 
three regions, as follows: 


Green-sand of New Jersey, 


OSS TIIS RES CR NS yee 2 aaa les aay ee gee eee pe 6 
SA DOSAUMUS el ee AS Col Sa ce. ee 2 
MOVE ShES Ie eich le cule eS a SLE a 2 
Maro mome SU Ge Xe Serene Urbis te ae AO MR | ee ee 4 
()Drplotomodon’) to) Pe ee eee oe 1 

15 


MiGSasmimnRe eee eo ose. (Teg EAN I EN RSS RAR Se aPa Pe IPEE 5 Magee 1 
PRO Odise eee ac 2 ee IE eee tale ale ea tease hee ene aaa eee ig 
TOMO Herre ye Co RE Were Ua Neale balsa cee eee PAL cas 3 
CHESTER ere ee eee eee eee eT) aie tae eee 2 

" 


* See Trans. Amer. Philos. Soc., Vol. XIV. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 329 


Arlt Chalk of Kansas. 
MO eS ES ee ie eet gsc) Sy otal ik IPMN ofan e noe aie ciecd orale oh ofe apeam de a 


Edestosaurus . .---------- +--+ ++ - 2202s creer eee ee eee eee eee 4 
Holcodus..-:-.------ +--+ +2. eee reece eet ene eee eens 4 
TACOIOREY & Soho 2 oS AN eee go 6 

’ . 17 

We have additional species from— 

North Carolina, (Mosasaurus)....--.----+-----e cece ee eee e ee ee eee 1 
ISSCC (GEE e ete We ex0is) eA eo es ee ee er ae ee 1 
WeWrasica, (MOSASAUTUS)) 1.2500 00222 ew ee on ns i 


Making, with the others from— 


NIE?) CIGSPSN EE ER CER ree MLE Me REL ge ee ear nate Pee Ae 15 
AMaiamial 2 -).8 sis 2 a-\see'e 2 - DOO Hci EU on ye ene Mec re cco ee. | Ul 
IEC ATISE IS Pee USS Sarria eyes SE eee Oe Reewe OLE MoD ee ra es ue en ay) 


EN DY UA EN DAT Oe CER RERE ED Le ROLE RC ME MIGL® fo paar ete Lie ates aap OMA eam Ware 42, 


Of these I am not acquainted with any which extends its range into 
any two of the areas above named, while some of these districts 
possess peculiar genera. It is, nevertheless, premature to draw any 
conclusions as to geographical range, as most of the species are 
known from but few specimens as yet. 

The present investigations have added some points of importance to 
the history of the structure of the order. 

First, as to the pterygoid bones. It appears that these elements are 
thin plates, having a free laminar termination, and are entirely tooth- 
less. They articulate with the palatines by a process which fits the pos- 
terior emargination of the latter. In the Hdestosaurus tortor they are 
about half the length of the palatines. They present no indications of 
ectopterygoid. The bones named by authors pterygoids, in imitation 
of Cuvier, are elongate palatines, and the external process extending 
to the maxillary is that seen in Varani, serpents, &c., and is at no time 
distinct from the palatines. 

Secondly, as to the parieto-squamosal arch, which is well developed. 
It is preserved in Holcodus ictericus and Liodon curtirostris inits parietal 
part, and H. corypheus in the squamosal part. It was quite strong in the 
species named. ' 

Thirdly, as tothe pelvis. This part, which has been observed by Marsh 
in Hdestosaurus dispar, is unusually perfect in Liodon dyspelor. The 
pubes are the only elements united below, forming a weak support to 
the abdomen. The ilia are slender, not united with the vertebral pro- 
cesses above, or without indications of such contact. The ischia are 
the most slender and directed backward. The peculiarities of the pelvis 
add to the broad distinction between this order and the Lacertilta. . 

Fourthly, in the hind limb. The femur of ZL. crassartus has been 
described by the writer, and Professor Marsh asserts its existence in 
Liodon, Clidastes,and Edestosawrus. The present collection exhibits both 
femur, tibia and fibula of LZ. dyspelor, and these elements are now first 
described. The first mentioned is not larger, sometimes smaller, than 
the humerus, and has a prominent trochanter, nearly connected with 
the head. The shaft is not curved, and the distal end is expanded. 


330 GEOLOGICAL SURVEY OF THE TERRITORIES. 


The tibia is a narrow bone, expanded at both ends; the fibula is like 
that of Plesiosaurus, but wider, or partly discoid. It has been known 
to naturalists, but not determined. Thus, I figured it for Liodon levis,* 
and Leidy figured it for an Upper Mississippi species.t 

There was for a considerable time doubt as to the structure of the 
anterior limbs in this order, some authors asserting their ambulatory, 
others their natatory character. Dr. Leidy inferred that they were 
flippers, after an examination of a humerus from Mississippi. This 
turns out to belong to a turtle, (Protostega tuberosa, Cope;) hence the 
first real determination of the character of these members was made by 
the writer in his description of the four limbs of Clidastes propython, 
the first species in which they were well represented by specimens. 


CLIDASTES, Cope. 
Proce. Acad. Nat. Sci., Phila., lee, p. 233; Trans. Amer. Philos. Soce., 1870, p. 211. 


Vertebre with the zygosphen articulation. [Palatine bones flat and 
alate ; the teeth not exposed at their bases unequally. This point has 
not been observed in the type species C. iguanavus. | 

CLIDASTES CINERIARUM, Cope, (Proc. Amer. Philos..Soc., 1870, 583.)— 
Two individuals from different points near the North Fork of the Smoky 
Hill River, Kansas. 

The largest species of the genus. 

CLIDASTES VYMANII, Marsh, (Amer. Jour. Sci. and Arts, June, 1871.)— 
From two individuals from the Smoky Hill River and its North Fork. 
A small species. 

CLIDASTES PUMILUS, Marsh, (loc. cit.\—From one individual from the 

Smoky Hill River. The smallest known Mosasauroid, according to Pro- 
fessor Marsh, reaching a length of only 12 feet. 


EDESTOSAURUS, Marsh. 
Amer. Jour. Sci. and Arts, 1871, June. 


Vertebre with the zygosphen articulation; palatine bones narrow, 
partly vertical; the bases of the pterygoid teeth exposed on one side, or 
pleurodont. (It i is uncertain whether the type of Clidastes presents this 
structure or not.) 

EDESTOSAURUS TORTOR, Cope, (Proc. Amer. Philos. Soc., 1871, De- 
cember.)—A slender species of some 30 feet in length, with a narrow, 
pointed head of 24 feet. Its teeth are compressed, and with a cutting 
edge fore and aft, and were 18 in number on the under j jaw; the palate 
was armed with 11 teeth. 

Found near Fossil Spring. 

EDESTOSAURUS STENOPS, Cope, (loc. cit..—A species not unlike the 
last, founded on one individual of rather heavier proportions. Its 
prominent character is the narrowness of the face.in front of the orbits, 
the prefrontal bones being nearly vertical instead of horizontal. 

From Fossil Spring. 

EDESTOSAURUS DISPAR, Marsh, (Amer. Jour. Sci. and Arts, June, 
1871.)—Smoky Hill River. 

EDESTOSAURUS VELOX, Marsh, (loc. cit.)—Near the North Fork of the 
Smoky Hill River. : 


*Trans. Amer. Philos. Soc., 1869, p. 205. 
t Cretaceous Reptiles U. S., Tab. VIII, Fig. 10. 


‘ 


GEOLOGICAL SURVEY OF THE TERRITORIES. adl 


HOLCODUS, Gibbes, (Cope emend.) 


Vertebre without the zygosphen articulation. Palatine bones flat, 
horizontal alate ; its teeth not unequally exposed at the bases, or not 
pleurodont. This genus bears the same relation as regards the palatiue 
bones and teeth to the genus Liodon that Clidastes does to Edestosau- 
TUs. 

HOLCODUS CORYPH ZuUS, Cope, (Proc. Amer. Philos. Soc., 1871, De- 
cember.)—A stouter species than the Hdestosauri above noticed, With 
an elevated occipital crest, rising vertically from the occipital condyle. 
The upper jaw supports thir teen sharp, curved teeth, of which two are 
in the premaxillary bone. Palatine teeth, 12. Length, 30 feet. 

Found on Fossil Spring Cafion. 

HOLCODUS TECTULUS, Cope, (loc. cit.)\—A smaller species than the last, 
with the cervical vertebre flattened, and all the vertebre with a rudi- 
ment of the additional articulation found in Clidastes. Length, about 20 
feet. Quadrate bone as in H. mudgei. 

From Butte Creek. 

HOLCODUS ICTERICUS, Cope, Liodon ictericus, Cope, eye. Amer. 
Philos. Soc., 1870, p. 577;) (Hayden’s Geological Survey of Wyoming 
and Adjoining Territories, 1871.)—In addition to the two individuals of 
tnis species procured by Professor B. F’. Mudge, in one of his geologi- 
cal surveys, the writer obtained a considerable part of a third from a 
low bluff on Fox Caiion, south of Fort Wallace. It is a species of about 
the size of the H. cor ypheeus, and has a rather short head. It lacks the 
rudimental zygosphene so prominent in H. cor ypheeus and H. tectulus. 

HOLCODUS MUDGEI, Cope; Liodon mudgei, Cope, (Proc. Am. 
Philos. Soc., 1870, 581 ; ’ Hayden’ s Survey Wyoming, &c., 1871, p. —.) 
A specimen was obtained by Prof. Mudge, on the Smoky Hill River, 
jaws and with teeth were found on Fox Cafion by the writer. The charac- 
ters distinguishing it are the following: Vertebre without rudimental 
zygosphen; quadrate bones with plane surfaces from the proximal 
articular surface and the external obtuse-angled ridge to the meatal 
pit, the latter therefore not sunk in a depression as the other species. 


LIODON, Owen, (Cope emend.) 
Trans. Amer. Philos. Soc., 1870, p. 200. 


Vertebre without zygosphen andzygantrum. Palatine bones vertical, 
separated from each other, narrowed; the teeth more or less pleur odont. 
Chevron-bones articulated freely with the caudal vertebrae. 

This genus embraces several species from the Kansas chalk, which 
vary in size from that most usual in the last genus to the ‘lar gest 
known in the order. 

LIODON CURTIROSTRIS, Cope, (Proc. Amer. Philos. Soc., 1871, De- . 
cember.)—The specimen above described was found by the writer on the 
denuded foot of a bluff on the lower part of Fossil Spring Cajon. 
The posterior part of the cranium, with several vertebre, were found 
exposed, and many other bones, including the cranium, were found only 
covered by the superficial wasted material. Other portions were ex- 
posed on excavating the blue-gray bed of the side of the spur adjoining. 


- The name bas reference to the abbreviation of the head and jaws. These 


are relatively shorter than in any other species here described where 
these parts are known. The end of the muzzle does not overhang, but 
descends gradually to the tooth-line. There are but 10 maxillary teetb 


Jon GEOLOGICAL SURVEY OF THE TERRITORIES. 


and 2 premaxillaries on each side. Size about that of H. corypheus, 
or near 30 feet in length. 

LIODON GLANDIFERUS, Cope, (loc. cit.)—A larger species than the last, 
with apparently a greater flexibility of body, as indicated by the forms of 
the vertebral centra. It is represented by portions of two individuals 
from localities twenty-five miles apart. There are unfortunately in each 
case only a cervical vertebra, but they agree in possessing such peculiari- 
ties as distinguish them widely from anything yet known to the writer. 

LIODON LATISPINUS, Cope, (Proc. Am. Philos. Soc., 1871, p. 169; 
loc. cit., 1871, December.)—The remains representing this species con- 
sist of seven cervical and dorsal vertebre, five of them being continuous 
and inclosed in a clay concretion. It is a large species, nearly equal- 
ing the L. mitchillit in its dimensions; that is, 40 or 50 feet in length, 
and is intermediate between such gigantic forms as L. dyspelor and the 
lesser L. curtirostris. The type specimens were found by Professor B. 
F. Mudge, one mile southwest of Sheridan, near the “Gypsum Buttes.” 

LIODON CRASSARTUS, Cope, sp. nov.; Liodon, large species near L. 
proriger, Cope, (Proc. Amer. Philos. Soc., 1871, p. 168.)—This saurian, 
which is similar in size to the last, is represented by a series of dorsal, 
lumbar, and caudal vertebrze, with some bones of the limbs. 

The vertebre are as much distinguished for their shortness as those 
of L. latispinus are for their elongation. The articular faces are but 
little broader than deep, and their axes are slightly oblique. This 
species is interesting as having furnished the materials for the first de- 
scription of the posterior extremities in this order of reptiles. The 
humerus is a remarkable bone, having the outline of that of Clidastes 
propython, Cope, but is very much stouter, the antero-posterior dimen- 
sions of the proximal extremity being greatly enlarged. The long diam- 
eters of the two extremities are, in fact, nearly at right angles instead of 
in the same plane, and the outline of the proximal is subtriangular, one 
of the angles being prolonged into a strong deltoid crest on the outer face 
of the bone, which extends half its length. The inner or posterior distal 
angle is much produced, while the distal extremity is a flat, slightly 
eurved, diamond-shaped surface. The fibula is as broad as long and 
three-quarters of a disk. The phalanges are stout, thick, and depressed, 
thus differing much from those of Liodon ictericus. A bone which I can- 
not assign to any other position than that of femur, has a peculiar 
form. It is a stout bone, but more slender than the humerus. The 
shaft is contracted and subtrilateral in section. The extremities are 
flattened, expanded in directions transverse to each other; the proximal 
having, however, a lesser expansion in the plane of the distalend. The 
former has, therefore, the form of an equilateral spherical triangle, the 
apex inclosing a lateral fossa and representing probably the great tro- 
chanter. The distal extremity is a transverse and convex oval. This 
bone is either ulna, femur, or tibia, judging by form alone. Its greater 
length, as compared with the fibula, forbids its reference to the last; the 
trochanter-like process of the head is exceedingly unlike any examples 
of the second bone I have seen. Its reference to femur is confirmed by 
its presence with the caudal vertebree of a similar species from near the ~ 
Missouri River, Nebraska, and its resemblance to the femur of L. dyspelor. 

The remains above described were obtained by Professor B. F. Mudge, 
near Eagle Tail, in Colorado, a few miles west of the line separating 
that Territory from the State of Kansas. 

A series of twenty-nine caudal vertebra, with and without diapophy- 
ses, from a bluff on Butte Creek, belongs perhaps to this species. The 
proximal specimens, at least, cannot be distinguished from those of Pro- 


GEOLOGICAL: SURVEY OF THE TERRITORIES. B00 


fessor Mudge’s collection. The distal ones cannot readily be distin- 
guished from those of L. proriger. 

LIODON “nee ae ee (Proc. Acad. Nat. Sci., 1869, 123, Trans. 
Amer. Philos. Soc., 1870, 202.)—This is the most abundant of the 
large species of the se chalk. The writer found a muzzle con- 
sisting of premaxillary and portions of maxillary and dentary bones 
in a spur of the lower bluffs of Butte Creek, and numerous frag- 
ments of cranium and vertebre on a denuded tract in the same 
neighborhood. Both of these belonged to individuals of smaller size 
than the type, the opportunity of examining which I owe to Profes- 
sor Agassiz. The more complete Butte Creek Specimen belongs to 
a huge animal; the size is grandly displayed by a complete premax- 
illary bone, with its projecting snout, and large fragments of the maxil- 
lary. These furnish characters confirmatory of those already given as 
above. The vertebrz are remarkable examples of flattening under 
pressure, without fracture, some of them having a vertical diameter no 
greater than one’s hand. "The cervicals are less flattened, and give the 
impression that they were not transversely elliptic. This 1S consistent 
with our knowledge of the perfect specimen, where it is, as described, 
furnished with vertically ovate articular surfaces. In this the cup is 
symmetrical and not distorted, but the ball is a little compressed by 
pressure. 

The most important addition to the knowledge of this species, fur- 
nished by the Butte Creek specimen, is the character of the quadrate 
bone. A portion of the palatine bone, supporting these teeth, displays 
the characters of the type, viz, the inner face vertical and deeper than 
the outer, and forming a strong parapet of bone on the superior or 
toothless aspect; the outer face a little expanded laterally; the bases 
of the teeth exposed. It is proper to add that the locality ascribed to 
the type specimen, ‘“‘ near Fort Hays, Kansas,” which was given me, on 
inquiry, is probably erroneous, Fort Wallace being the point intended. 

LIODON DYSPELOR, Cope, (Proc. Amer. Philos. Soe., 1870, 5745 
1871, 168, 172.)—This large reptile was first described from specimens 
sent to the Smithsonian Institution from New Mexico. Professor 
Mudge subsequently obtained it in Kansas, and on my late expedition 
I had the good fortune to procure a large portion of another, on a sloping 
bluff on Butte Creek, fourteen miles south of Fort Wallace. ‘This speci- 
men is one of the most instructive which has yet been discovered, in- 
cluding, as it does, fifty vertebre from all parts of the column, a large 
part of the cranium, with teeth, and both quadrate bones; the scapular 
arch complete, except back of coracoid on one side; both humeri, radius, 
and numerous phalanges of fore limb; the pelvic arch complete, with 
one hind limb complete to tarsus, with phalanges. The premaxilary 
is wanting, but the adjacent suture of the maxillary remains. 

Measurements.—Kstimated length of cranium, 5 feet, 1.570 metres ; 
estimated total length, 75 feet. 

This specimen does not appear to be quite as large as the type, which 
came from Fort McRae, New Mexico. The diameters of the vertebral 
centra appear to be larger, in proportion to the length of the cranium, 
than in the Mosasaurus dekayi; hence, probably, the body had a greater 
diameter. In estimating its length, reference is had to the relations in 
size of the caudal vertebre of the type of Z. proriger, and to the caudal 
series of a small Liodon found on the bluffs ef Butte Creek. The caudal 
vertebree are quite similar to those of the former; in the latter a series 
of thirty centra exhibit very little diminution in size. On such a basis 
the length would be about seventy-five feet. 


334 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Portions of a second individual of this species, or of L. proriger, were 
found on the Fox Cafion. They belonged to a larger animal, one equal 
to the New Mexican first described. Professor Mudge has fragments of 
still larger specimens. ‘ 

The principal specimen above described was excavated from a chalk 
bluff. Fragments of the jaws were seen lying on the slope and other 
portions entered the shale. On being followed, a part of the cranium 
was taken from beneath the roots of a bush, and the vertebre and limb- 
bones were found further in. The vertebral series extended parallel 
with the outerop of the beds, and finally turned into the hill, and was 
followed so far as time would permit. It was abandoned at the anterior 
caudal vertebre for more favorable circumstances or a more persevering 
excavator. 

The outcrop of the stratum was light yellow. The concealed part of 
the bed was bluish. Yellow chalk left on the specimens in thin lay- 
ers became a white or nearly so. The yellow and blue strata are defi- 
nitely related in most localities, the former being the superior, but in 
others they passed into each other on the same horizon. 


TESTUDINATA. 
PROTOSTEGA, Cope. 


Proc. Amer. Phil. Soc., 1871, p. 173; loc. cit., March, 1872. 


This genus is the type of anew family of tortoises of the suborder 
Athece, characterized by the lack of expansion of the ribs into 
a bony roof or carapace, and the development of dermal bones only 
on the upper surfaces. The dermal bones consist of large plates lying 
above the ribs, which have no sutural union with each other; of small 
vertebral shields on the dorsal line, and of thin, marginal bones, which 
have no sutural union with each other or with the other bones. The 
_ vertebree preserved possess ball-and-socket joints, and have flat neural 

arches, with widely spreading articular processes. The humeri are flat, 
‘and furnished with an enormous deltoid crest. The fore limbs were 
very long, and formed flippers like those of the marine turtles of the 
present seas. The bones of the head were very light and thin, and 
mostly united by squamosal or overlapping sutures. The mandible pre- 
sented the elements usual in the marine turtles, and had no angle. It 
exhibits a deep pterygoid fossa, and is very light. The constitution of 
the bones is rather dense, and there are no medullary cavities whatever. 
The superficial layer is very thin and striate. The bones are all very 
fragile. The fore limb discovered several years since in the Cretaceous 
of Mississippi, near to Columbus, with vertebre and teeth, of Platecarpus 
tympaniticus, which was referred by Dr. Leidy to that species, probably 
belongs to Protostega. It represents a species distinct from the P. gigas, 
- which may be called Protostega tuberosa, Cope, and differs from P. gigas 
in the more elongate form of the humerus, with superior position and 
more enlarged form of the bicipital process. The large deltoid crest 
appears to be also much more prolonged. A third species, or allied 
genus, has also been discovered in the green-sand of New Jersey. It is 
represented by a fragment of a gigantic humerus, which was rightly 
regarded as pertaining to a turtle; though he never described it, Dr. 
Leidy figured it,* and referred “to the gigantic Mosasaurus.”+ I refer 
it provisionally to Pyotostega with the name P. neptunia. The humerus 


* Cretaceous Reptiles of North America, Tab. VII, Fig. 4. + Loe. cit., p. 43. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 335 


differs from those of the two preceding species in having a much more 
slender shaft. 'The Pneumatarthrus peloreus, Cope, established on ver- 
tebra, may be au ally. 

PROTOSTEGA GIGAS, Cope.—This fossil includes many parts of the 
endo- and exoskeleton. The bones of the former have a radiating ossifi- 
cation, which terminates in many cases in digitations of their margins. 
These margins, especially of the vertebral and marginal bones, are 
exceedingly attenuated, not being thicker than paper. The vertebral 
has an obtuse median. keel. The marginals have no inferior lamina 
and receive the extremity of the rib. The ribs have a wide, radiate, 
lined expansion, extending from the position of the tubercle round and 
beyond the head. The phalanges are.long and flat, and the extent of 
the fore-limbs could have been little or nothing short of fifteen feet. 
Found near Butte Creek, Southwest Kansas. 


CYNOCERCUS, Cope. 
Proc. Amer. Philos. Soc., 1872, January. 


Established on metatarsal and caudal vertebre of a tortoise of uncer- 
tain, but in any case peculiar affinities. The caudal vertebre are not 
anterior ones, almost lacking diapophyses, but are long and slender, 
and the articular faces singularly incised. The form had a tail more 
elongate than the snapping tortoise, and different from it in details of 
composition. 

CYNOCERCUS INCISUS, Cope, (loc. cit.) —A species about the size of the 
Mississippi snapper, Macrochelys lacertina, from near Butte Creek. 


SAUROPTERYGIA. 


POLYCOTYLUS, Cope. 
Trans. Amer. Philos. Soc., 1869, 34; Hayden’s Rept. Survey, Wyoming, 1871, 386. 


As a detailed account of this genus has been already given in the. 
report on the Geology of Wyoming, loc. cit., I will not repeat it here. 
From this the characters which separate this genus from Plesiosaurus 
may be derived. as follows: 

First.. The deeply biconcave and very stout vertebral centra. 

Secondly. The tibia broader than long, resembling those ot Iethyosau- 
rus. 

Thirdly. The coalescence and depression of the cervicals. 

Fourthly. The continuity of the neural arches. 

Fifthly. The continuity of the diapophyses of the caudals. 

POLYCOTYLUS LATIPINNIS, Cope, (loc. cit., p. 36, Pl. I, Figs. 1-13.)— 
The powerful extremital pieces indicate a body to be propelled of not 
less than usual proportions. If this be the case, the number of dorsal 
vertebre is considerably greater than in the species of this order in 
general, and approaching more the Icthyosauri. I do not intend to 
suggest any affinity between the latter and the present genus, as none 
exists. What the extent of cervical vertebre may have been is uncer- 
tain. The caudals have probably been numerous, though not probably 
so extended as in Hlasmosaurus. The size of the species can be approx- 
imately estimated from the proportions furnished by Owen (Reptiles 
of the Liassic Formations) for Plesiosaurus rostratus. The skeleton of 
this species measures 11 feet 8 inches, and the dorsal vertebra are of 
less vertical and equal transverse diameter compared with those of the 


336 GEOLOGICAL SURVEY OF THE TERRITORIES. 


present saurian. We may therefore suppose that the latter exceeded 
the former in dimensions. Should the humerus have been related to 
the fore limb, as in Plesiosaurus dolichodirus, Conyb., the latter would 
have had a length of 4 feet 3 inches; as the proportions of the radius 
and phalanges are shorter, the limb was probably relatively shorter. 
If related to the total length, as in the same Plesiosaurus, the humerus 
would indicate a length of 174 feet. As the cervical vertebrze become 
attenuated, as compared with the dorsals to a greater degree in Polyco- 
tylus than in Plesiosaurus, I have little doubt that the length of this 
species exceeded that amount. 

William E. Webb, of Topeka, discovered the specimens from which 
this species was first described, and liberally forwarded them to me for 
examination and description. Other specimens have been discovered 
since that time by various other persons. I have received numerous 
fragments of an individual of about the size of the one above described, 
which were found by Professor B. F. Mudge, at a point near the mouth 
of the north branch of the Smoky Hill River. 


ELASMOSAURUS, Cope. 


Leconte’s Notes on Geology of the Route of the Union ‘Pacific Railroad, 1868, p. 68; 
Cope, Proc. Acad. Nat. Sci., 1868, p. 92; Trans. Amer. Philos. Soc., 1869, p. ‘44, 


* This genus has been more completely preserved to us than any other 
American representative of the order, and hence may be accepted as 
most clearly expressive of its characters. In the interpretation of these, 
however, considerable difficulty has been experienced, as the structure 
form appears, at first sight, to reverse to a remarkable degree the usual 
proportions of known reptiles. No portions of limbs were, however, 
found with the vertebrae. The skeleton so nearly complete would: indi- 
cate no violent disturbance of the carcass; but if there were, it would 
be an unusual accident that all of the four limbs should have been re-' 
moved from their sockets without leaving even fragments. 

This genus is well distinguished from Plesiosaurus by the peculiarity | 
of the scapular arch. The mesosternum appears to be co-ossified with 
the claviculi, and the three elements form a broad breast-plate. If the 
elaviculus was ever united with the scapula, as in Plesiosaurus, no evi- 
dence of it can be seen in the specimen. Both the clavicular and meso- 
sternal elements are broader and more extended anteriorly. 

HLASMOSAURUS PLATYURUS, Cope, (Leconte’s Notes, loc. cit. Proe. 
Acad. Nat. Sei., 1868, loc. cit., 92, ) Discosaurus carinatus, Cope, (Le- 
conte’s Notes, loc. cit.) —This, after Mosasaurus, the most elongate of the 
sea-saurians yet discovered, is represented by a more than usually com- 
plete skeleton in the museum of the Academy of Natural Sciences in 
Philadelphia. It was found by Dr. Theophilus H. Turner, the physician of 
the garrison at Fort Wallace, a point situated near the boundary-line 
separating Kansas from Colorado, a few miles north from the Smoky 
Hill Fork of the Kansas River. Portions of two vertebra, presented by 
him to Dr. Leconte when on his geological tour in the interest of the 
United States Pacific Railroad Company, were brought by the latter 
gentleman to the academy, and indicated to the writer the existence of _ 
an unknown plesiosauroid reptile. Subsequent correspondence with. 
Dr. Turner resulted in bis employing a number of men, who engaged in 
excavations, and succeeded in obtaining a large part of the monster. 
kts ver tebrie, one hundred and twelve in number, were found to be 
almost continuous, except a vacancy of some four feet in the anterior 
dorsal region. They formed a curved line, a considerable part of whose 


GEOLOGICAL SURVEY OF THE TERRITORIES. 337 


convexity was visible on the side of a bluff of clay-shale rock, with 
seams and crystals of gypsum. The bones were all coated with a thin 
layer of gypsum, and in some places their dense layer had been de- 
stroyed by conversion into sulphate of lime. 

The habit of this species, like that of its nearest known allies, was 
raptorial, as evinced by its numerous canine-like teeth and the fish-re- 
-Inains taken from beneath its vertebree. 

The general form of this reptile, whether it was furnish®d with large 
posterior limbs or not, was,that of a serpent, with a relatively shorter, 
more robust, and more posteriorly placed body than is characteristic of 
true serpents, and. with two pairs of limbs or paddles. It progressed — 
by the strokes of its paddles, assisted by its powerful tail. The body 
was steadied by the elevated keel of the median dorsal line, formed by 
the broad, high neural spines. The snake-like neck was raised high in 
the air, or depressed, at the will of the animal; now arched swan-like 
preparatory to a plunge after a fish, now stretched in repose on the 
water or deflexed in exploring the depths below. 

Localities. This species has been found in various parts of Kansas, 
besides that whence the specimen above described was procured. Pro- 
fessor B. F. Mudge obtained vertebre from a point thirty miles east of 
Fort Wallace, which probably belong to this animal. 


ORNITHOSAURIA. 
ORNITHOCHIRUS, Seeley. 


This genus.embraces the largest of the pterodactyles or flying saurians. 
Besides a great expanse of wings, they had strong claw-bearing digitis 
in front, and a short tail. Their heads were slender and the teeth indi- 
cate carnivorous habits. Two species were found by the writer in 
Kansas. 

ORNITHOCHIRUS UMBROSUS, Cope, (Proc. Amer. Philos. Soc., March, 
1872.)—One of the largest known species, having an expanse of wing of 
nearly twenty-five feet. 

ORNITHOCHIRUS HARPYIA, Cope, (loc. cit.\—A large species, but 
smaller than the last, with a wing expanse of eighteen feet. This spe- 
cies was abundant, and may be the one originally mentioned by Professor 
Marsh under the preoccupied name of Pterodactylus owenii. 


PISCES. 


Large numbers of remains of fishes are found in the Niobrara chalk. 
They are referable to three families and twenty-three species of physos- 
tomous or soft-rayed fishes, with the addition of a few sharks. The 
former were chiefly related to the salmon and to the pike, but were 
more strongly armed for offense and defense than their recent repre- 
sentatives. 


SAURODONTID&, Cope. 


Proc. Amer. Philos. Soc., 1870, p. 529; Hayden’s Survey Wyoming, &c., 1871, p. 414.; 
Proc. Amer. Philos. Soc., 1872, February. 


A considerable accession of material belonging to several species of 
this family, furnishes important additions to our knowledge of their 
structure, and enables me to determine their affinities with more pre- 
cision than heretofore. The results are of value to the student of com- 

22658 


338 GEOLOGICAL SURVEY OF THE TERRITORIES. 


parative anatomy, and also to the paleontologist,as they appear to 
have been the predominant type of marine fishes during the Cretaceous 
period in the North American seas, and to have been abundant in those. 
of Europe. ; 

The characters already assigned to the family are confirmed by the 
new species discovered, and many additional ones added, as follows: 

The cranial structure cannot be fully made out, but the following 
points may bé regarded as ascertained. The brain-case is not continued 
between the orbits, and.the basis cranit is double and with the muscular 
tube open. A large cavity is inclosed by the prodtic, the pterotic, the 
opisthotic, &c. There are no exoccipital condyles, and that of the basio- 
occipital is a conic cup. The pterotic and post-frontal are well devel- 
oped. The ethmoid is well developed and slightly narrowed at its an- 
terior extremity. The parasphenoid is narrowed and elongate; the 
vomer is continuous with it and is slightly expanded and then con- 
‘tracted at the anterior extremity. Neither it nor the parasphenoid sup- 
port teeth in any of the known genera. 

The premaxillary bones are short, and form but a small portion of the 
upper jaw. The maxillary is elongate and simple. The hyomandibu- 
lar is rather narrow and does not present an elongate support for the 
operculum. ‘The symplectic is well developed, entering far into the 
inferior quadrate. The latter is a broad bone, large, in contact with the 
metapterygoid, which is itself a thin plate, not probably attaining the 
pterotic. The superior branchihyals are short rods. 

The relations of the supraoccipital, parietals, frontals, &c., cannot yet 
be satisfactorily made ont, owing to the obscurity of the sutures. Never- 
theless, the following points may be regarded as probably reliable. The 
frontals have a rather broad union with the ethmoid, and are separated 
by suture throughout their length. They do not extend much posterior 
to the orbits, and are succeeded by a rather narrow pair of bones, which 
extend to above the foramen magnum. These are not united by suture, 
but present thickened, smooth edges to each other, and appear, there- 
fore, to have been separated by a fontanelle. Each is separated from a 
broad, lateral bone by a serrate suture, which is, perhaps, the pterotic, 
and certainly includes that element, as it supports the hyomandibular. 
It is not easy to determine what relation the median bones bear to the 
supraoccipital, but the structure looks a good deal like that character- 
izing the Siluride, or, considering the large pterotics, like the Mormy- 
ride plus the fontanelle. The shorter form of the pterotic in the 
Characinidee ald the Catostomide causes considerable difterence in their 
appearance. There is no indication of fontanelle between the frontals: 
in Portheus. 

Portions of the scapula of Portheus molossus and other species are 
preserved. They have very stout articular surfaces, and, although not 
complete, have enclosed, more or less, a very large fontanelle. The 
superior surface is the larger, and is followed below by two others; the 
upper subvertical and small, the lower larger and transverse. These are 
surfaces supporting two basilar elements of the pectoral fin. There 
were, perhaps, three basilars; but the base of the coracoid displays no 
surface for articulation of a third. 

The suture with the coracoid crosses immediately below the lower 
condyloid surface, and passes just below the scapular fontanelle, leaving 
in the specimens a fractured surface, which probably supported a pre- 
coracoid. There are two fractured bases of the coracoid, which proba- 
bly unite below, enclosing a foramen. On the scapulo-coracoid suture, 
just within the space between the two inferior condyles, is a smooth 


* 


GEOLOGICAL SURVEY OF THE TERRITORIES. i) 


hemispherical pit of considerable size. Just in front of it is another of’ 
crescentic form. 

A partially complete circle of bone, convex on one side, concave on 
the other, was found with the remains of two species of Portheus and 
one of Ichthyodectes. They look like a sclerotic ossification, and as 
though molded on a globe. They are not segmented as in reptilian 
_sclerotic ossifications, nor do they seem to have been completed circles. 

The femoral bones, or those supporting the ventral fins, are preserved 
_ in Ichthyodectes anaides and a Portheus, best in the former. They are 
‘closely united posteriorly, the inner margin gradually approximating to 
the union, which is accomplished by the application of the subcylindric 
posterior part of the bones. In Portheus they are united by a coarse . 
suture. There are no posterior processes, but the anterior are long and 
slender. Hach is divided, the inner portion being rod-like, the exterior 
plate-like. The outer is probably the shorter; exteriorly it rises into an 
obtuse ridge on the lower side, and the plate then expands backward 
as well as outward, nearly inclosing a large sinus with the base of sup- 
port of the fin. The fin-supporting surface is subround, with two exte- 
rior and one interior articular surfaces, and a projection in the middle, 
which has one or two articular faces of smaller size. The base of the 
anterior projections is rather broader in Ichthyodectes than in Portheus. 

Three kinds of spine-like rays or supports of the fins have been found ~ 
in connection with remains of species of this family, and the proper 
reference to their positions and species is as yet in some degree uncer- 
tain. First, the elegantly segmented compound rays originally referred 
to Ptychodus by Agassiz, and described: by me under the species Sawro- 
cephalus thaumas, appear to be referable to the genus Portheus, and to 
be supports of the caudal fin.* 

Secondly, spines composed of unsegmented rays closely united, edge 
to edge, and arranged like the fulcra at the base of the external rays 
of the caudal fin of recent fishes; that is, the first very short, those 
succeeding increasing regularly in length to the last, which forms the 
apex of the spine. The obliquely truncated extremities of these rods 
from a continuous sharp edge, which is coated with enamel, and may 
be straight or interrupted with low knobs. The former kind belongs 
_ probably to Portheus, and the latter to Ichthyodectes. it is nearly 
related in character to the spines of Hdestus, the enamel-coated knobs 
of Ichthyodectes rising into veritable teeth in the Carboniferous genus. 
These spines are unsymmetrical, and belong either to the pectoral or 
ventral fins. To which they: should be ‘referred, it is not now easy to 
decide. The living allies of the Sawrodontide do not possess ventral 
spines, nor do they exist in physostomous fishes. In the Stluroids, the 
pectoral fins are supported by strong spines, which remotely resemble 
the present ones in their compound character. 

Thirdly. There are numerous flat, more or Jess curved, spines or rays 
of small diameter, compared with the length. -One surface is covered 
with a thin, generally striate-grooved layer of enamel, and one edge is 
trenchant. One side of this edge is more or less obtusely rugose or 
thickened. These rays thin out to the extremity, which, in some cases, 
at least, is not contracted. These rays are composed of appressed 
halves, are unsymmetrical, with basal hook, and belong, no doubt, to 
paired fins. If those already described are pectoral, these are ventral, 
’ and vice versa. A series of them found together had much the form of 
either of these fins, while their enlarged number would identify them 


* See Hayden’s Report, loc. cit., p. 423, where this view is held. 


e 


340 GEOLOGICAL SURVEY OF THE TERRITORIES. 


‘with the pectoral. In the rays found together, the first only had a 
trenchant outer margin, while several had a rabbett along one side of 
the posterior margin. I have already described such a spine as per- 
taining to the pectoral fin of Ichthyodectes prognathus. 

The vertebree in all the species certainly assignable to this group are, 
where known, deeply two-grooved on each side, besides the pits for the © 
insertion of neurapophyses and pleurapophyses, except in the cervical 
region, where the lateral grooves are wanting. There are nodiapophyses. 
The caudal vertebrae are rather numerous, but not so much so as in ~ 
Amia, nor are they so much recurved as in that genus. 

Until the structure of the posterior cranial roof and of the scapular 
arch are fully made out, it is premature to state precisely the affinities 
of this family. So far as known, they are [sospondyli, with some char- 
acters of the Salmonide, and some of other significance. The large 
foramen behind the prootic bone is more Clupeotd in character. The 
femoral bones are more like those of the Plectospondyli, dividing, in a 
measure, characters of the Cyprinidw with those of the Mormyrida. 
The vertebre are Clupeoid, while the mode of implantation of teeth is 
peculiar. 

¥ 


Synopsis of genera. 


I. Jaws without foramina on the inner face of the alveolar margin: 
Teeth of unequal lengths in the maxillary and dentary 


OMe a le Le ERE DI Mc ela ete ye et Portheus. 
Teeth of equal lengths, cylindric......-...---..--..- Ichthyodectes. 

II. A series of foramina on inner side of alveolar wall: 
Rect with subcylimdric7crowhs-. s. 5/2) ae ee se Saurodon. 
Teeth with short compressed crowns.......--.-.--. Saurocephalus. 


There are some other forms to be referred to this family whose charae- 
ters are not yet fully determined. Thus, Hypsodon, Agass., from the 
European chalk, is related to the two genera first named above; but as 
left by its author in the “ Poissons fossiles,” includes apparently two 
generic forms. The first figured and described has the mandibular teeth 
of equal length. In the second they are unequal, as in Portheus, to 
which genus this specimen ought, perhaps, to be referred. Both are 
physostomous fishes, and not related to the Sphyrenide, where authors 
have generally placed them. Retaining the name Hypsodon for the 
genus with equal mandibular teeth, its relations to Ichthyodectes remain 
to be determined by further study of the H. levesiensis 

A species of Ichthyodectes from the chalk of Sussex, Engiand, is figured 
but not described by Dixon in the Geology of Sussex. 

A number of forms erroneously referred by Agassiz and Dixon to the 
genus Saurocephalus have been referred by Leidy to a genus he calls 
Protosphyrena,* with two species, P. ferox and P. striata. The latter 
much resembles a Saurocephalus, having equal teeth, while the former 
probably includes several species and possibly genera. The teeth first 
referred to it resemble generically those of P. striata, while others resemble 
those of Portheus. An examination of the figures of the mandibles of the 
last, in Dixon’s work, shows that the large and small teeth occupy differ- 
ent areas, separated by grooves, in a manner quite distinct from any- 
thing seen in Portheus ; but should it prove identical, it can scarcely be 
regarded as typical of Protosphyreena, which name, moreover, has never 
been accompanied by the necessary description. 


* Trans. Amer. Philos. Soc., 1856. 


GEOLOGICAL SURVEY OF THE TERRITORIES. . 341 


Dr. Leidy applied the name of Xiphactinus to a genus indicated by a 
Spine in some degrees like those regarded above as pectorals of Sauro- 
dontide. It is quite distinct from those assigned to Portheus and Ich- 
thyodectes, and may belong to Saurocephalus, as already suggested, or to 
another genus. 


_ PORTHEUS, Cope. 
Proc. Amer. Philos. Soc., 1871, p. 173; loc. cit., 1872, February. 


Teeth subcylindric, without serrate or cutting edges, occupying the pre- 
maxillary, maxillary, and dentary bones. Sizes irregular; the premax- 
illary, medium maxillary, and anterior dentary teeth much enlarged. 
No foramina on inner face of jaws. Teeth on the premaxillary reduced 
in number. Opercular and preopercular bones very thin. Cranial bones 
not sculptured. 

The fishes of this genus were rapacious, and, so far as known, of large 
size. They constitute the most formidable type of physostomous fishes 
known. ‘Three species are known to the writer, one from teeth only, 
from the Miocene of North Carolina, but not certainly known not to be 
an intrusive Cretaceous fossil, and two from Kansas. The latter are 
represented by more or less numerous fragments of eleven individuals, 
three of which possess large portions of the cranium, one almost entirely 
complete. Two of the remainder embrace jaws, and one, a large part 
of the vertebral column, with segmented rays. In one, these rays were 
found with the cutting, compound ray above described, while the simple, 
flat, pectoral rays occur with several specimens. In none have any ~ 
traces of symmetrical spinous rays been found, nor strong interneurals 
capable of supporting such. In none of the more perfect specimens 
with crania have the segmented rays been found, but the fossil of 
P. thaumas, where they occur, is represented by a vertebral column and 
its appendages, which do not differ appreciably from those of P. molossus. 

In the cranium of this genus there is a well-marked supraorbital rim. 
Kach opisthotic forms a prominent angle directed posteriorly on each 
side of the exoccipital. The parasphenoid is a stout and narrow bone, 
deeply emarginate behind for the passage of the muscular canal. It 
has a transverse expansion in front of the base of the prodtic, which 
rests on a backward continuation of the same. This expansion is 
pierced behind by two round foramina. The shaft is abruptly contracted 
in front of theexpansion and is trigonalin section. The prefrontal extends 
downward and forward and carries inferior and anterior articular faces, 
the latter vertically transverse. The postero-inferior portion of the 
ethmoid bears on its posterior extremity a concave articular face, which 
opposes that of the prefrontal. The floor of the brain-case in front is 
supported by a vertical style, which is bifurcate above and rests on the 
parasphenoid. 

Of the teeth in general, it may be added that their pulp cavity is 
rather large at the base but rapidly diminishes in the crown. The 
mode of succession is by direct displacement from below. The young 
crown rose into the pulp cavity and destroyed the vitality of the crown 
while the root was absorbed. Numerous empty alveoli are to be found in 
all the jaws of this genus, in which examination wiil often detect the 
apex of the crown of the young tooth. 

The vertebre in this genus are rather short, but not so much so as in 
sharks. In P. thaumas nearly eighty dorsals and caudals were preserved ; 
those without lateral grooves or cervicals (the name not appropriate) 


S422 GEOLOGICAL SURVEY OF THE TERRITORIES. 


are not numerous. There are, perhaps, not more than four vertebre 
supporting the caudal fin; though this is difficult to determine, owing . 
to the concealment of the terminal centra by bases of radii. There are 
seven hzemapophyses in the support, all flat except the first, which is 
like those anterior to it. The second is articulated freely to its centrum, 
and is wider than the others. Its condyle is characteristic, being double, 
and with a foramen between it and the produced extremity of the pos- 
terior margin of the bone. It is slightly separated distally from the 
third, but the remainder are in close contact. The radii of the superior 
lobe of the caudal fin extend at least as far down as near the end of the 
third hzmal spine from below. The structure of these parts in the P. 
molossus are as in the P. thaumus, so far as preserved. 

As some of the spines are not referable to their precise species in this 
genus, they may be described here. A large compound spine, found in 
the blue limestone shale in Fossil Spring Cation, is composed at the 
base of about twenty-six narrow, double rods. A few appear between 
the others beyond the base, making thirty-one altogether. They are 
very oblique to the general base, but curve so as to become nearly 
straight, and enlarge distally. They terminate in a thickened portion, 
which bears an acute edge, which truncates them obliquely. This por- 
tion is enameled; the edge is slightly convex at the base, and slightly 
concaye at a point probably beyond the middle. 


Measurements. 
Meters. 
“Leneth or trasment, (2 anches)?_. <2 22 ses se eee Sa AR 6 00 - 
Width, atbase: 228 oot cee ee aie ck SS ie CER Sa en Bl e 
RINICIMES Sab ASE, tis. tt 6 Sea dle ek wl Din nie Meh eee ee Ree ee . 012 
Thickness at broken end an inch from 1 edge Lae hte Atbre clade yf airtel Se . 007 


This is a formidable weapon, and could be readily used to split wood 
in its fossilized condition. 

The third species of spine is represented in most of the species, but 
one series of rays with spine may not be referable to any of them. 
The latter is flat and curved, the convex edge trenchant beyond the 
middle. The posterior edge i is obtuse but narrow, and exhibits a slight 
groove on one side medially; proximally there is a shallow rabbett, 
whose floor is transversely rugose. Several layers of the tissue of the 
spine beyond the basal portion are delicately, longitudinally striate. 
The distal half is broken away. Length of fragment, 1 foot; width, 
1.5 inches; thickness at middle, 5 lines. 

The species of this genus may be distinguished as follows: 


a. Teeth without acute edges: 
Larger maxillaries, 5: ; second premaxillary larger 
than first; third mandibular large, behind a cross- 
groove ; last large mandibular followed by 16—8 
STG | A Cae Re 1) eT LACE ed EO P. molossus. 
Larger maxillaries, 3; first premaxillary larger than 
second ; third mandibular small, no cross-groove 
in front of it; 20 small teeth behind last large 
miranda vie spe fo) ese ageter sv coapees eee meee ne P. thaumas. 
aa, Large teeth with cutting angle i in front: 
Teeth lar SE, NOt COMPLESSCO) oe <' o/s rey ater eeee ete P. angulatus. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 343 


ICHTHYODECTES, Cope. 
Proc. Amer. Philos. Soc., 1870, Nov.; Hayden’s Geol. Survey, Wyoming, &c., 1871, p. 424. 


Teeth equal, subcylindric, in a single row, sunk in deep alveoli. Pre- 
maxillaries short. No foramina at the bases of the teeth on the inner 
alveolar walls. Vertebre deeply grooved laterally. 

The species of this genus are, so far as known, smaller than those of 
the last, and, as their remains are more perishable than those, form a 
less striking’ object among the fossils of Kansas. They are, neverthe- 
less, very abundant, especially i in species, five of which are now described. 
In originally describing this genus the vertebre were regarded as not 
grooved, in consequence of such vertebree having been discover ed along 
with the bones and teeth of J. ctenodon. Further examination has satis- 
fied me that this union is erroneous, and that the bones, if found 
together, were accidentally so. 

Spines sunilar to those of the Porthei, but presenting certain differ- 
ences, may be ascribed to this genus. The compound segmented spines 
cannot be ascribed to it, but the compound fulerum-like spines are 
similar, though composed of fewer and stouter reds. Hach of these, as 
it terminates at the cutting edge, gives rise to a projection, giving it an 
obtusely and remotely serrate character. It is rugose with enamel 
deposit, and constitutes as effective a weapon of defense as that of Por- 
theus. One which is nearly perfect contains fifteen pairs of rods, which 
expand at the base as do the rays of a pectoral fin. Total length, .235 
meter; width at base, .04 meter; thickness beyond base, .006 meter. 

The femoral bones have aiready been described. The maxillary -is 
not contracted at the end for a supernumerary bone, as in Portheus. 

The form of the inferior quadrate is like that of Portheus. In JI. 
anaides the groove for the preoperculum extends low down, and the 
symplectic has a wider exposure on the outer face than in Portheus. 

In a series of vertebre similar to those of this genus, those included 
in the basis of the caudal fin are not more than three in number. 

The species are distinguished as follows: 


Premaxillary teeth, 5, second most prominent; maxil- 

lary not concave; dentary with 30 teeth and bi-_ - 

convex, alveolar border, with obtuse extremity.... I. anaides. 
Premaxillaries; maxillary straight, large, with 40 

teeth; dentary straight, not produced at end; 

teeth, TSMC MA CU ato PRN fg I. ctenodon. 
Premaxillaries, dy first most prominent; maxillary | 

concave, narrow; teeth small; dentary with a hook 

ALOR: PUCCUM NAO AU NYE TTI eh Bete ep tai da I. hamatus. 
Premaxillaries, 7, first most prominent, compressed, 

SOTA NCS Cie ehe ere) oe GRMN oC BIE os ee pe A NICE RA Lis I. prognathus. 
Premaxillaries, 12, second most prominent ;. the bone 

much narrowed above, smaller........-.-.--.--.- I. multidentatus. 


The English species of this genus is figured by Dixon in the Geology 
of Sussex, Pl. xxxiil, Figs. 9 and 9*. I can find no letter-press nor 
name relating to it, and cannot determine its specific characters from 
the fragmentar V character of the piece of mandible figured. 


SAUROCEPHALUS, Harlan. 


Leidy has pointed out. the mode of implantation of the teeth in the : 
typical species of this genus. The mode of succession of the teeth has 


344 GEOLOGICAL SURVEY OF THE TERRITORIES. 


not yet been indicated, but is well displayed in a specimen of the jaw of 
S. arapahovius, Cope. It is known from Harlan’s description that a large 
foramen issues on the inner wall of the jaw, opposite each root. The 
fractured ends of the specimen exhibit the course of the canal which is- 
sues at this foramen. It turns abruptly downward between the inner 
wall of the jaw and the fang of the functional tooth, and not far from 
the foramen, its course is interrupted by the crown of the successional 
tooth. This is situated obliquely as regards the long axis of the jaw. 
It is thus plain that the successional appearance of teeth is different 
in this genus from what I have described in the two genera preceding. 
In them the foramen is wanting, and the young crown rises within the 
pulp cavity of the functional teeth, as in the Crocodilia. In this genus, 
on the other hand, it is developed outside of the pulp cavity and fang of 
the old tooth, and takes its place, asin many Lacertilia and in the Pytho- 
nomorpha, by exciting the absorption of the fatter. The conic form of 
these fangs in Saurocephalus is appropriate to such a succession, and 
their great length seems to preclude the nutrition of the young tooth 
from their bases. The use of the foramina on the inner face of the jaw 
is thus made apparent, viz: The nutrition of the successional teeth from 
without. I cannot trace the canal below the crown of the young tooth 
to the base of the pulp cavity of the old tooth, and ‘there are canals in 
the jaw below the latter, one of which probably carried the dental artery. 
Species of this genus are less abundant in the part of Kansas exam- 
ined by me than those of the preceding genera. Two only have been 
observed up to the present time, S. arapahovius and S. phlebotomus, 


Cope. 
PACHYRHIZODONTID &. 


This family of physostomous fishes differs from the last in the nature 
of its dentition. Instead of elongate, conic fangs sunk in deep aiveoli, 
it has shorter and stout fangs occupying alveoli of which the inner side 
and part of the anterior and posterior walls are incomplete. The teeth 
are, in fact, more or less pleurodont, but the extremity of the root is 
received into the conic fundus of the alveolus. 

The premaxillary bones are well developed, but the maxillaries are 
more so, and enter largely into the composition of the border of the 
mouth. There is a well-developed angle of the mandible, but no coro- 
noid bone is preserved in the specimens. The coronoid region is, how- 
ever, broken in all of our specimens. The other characters of the family 
are not determinable from our imperfect materials. 


PACHYRHIZODUS, Agassiz. 
Dixon’s Geology of Sussex, 1850, p. 374. 


This genus was established by Professor Agassiz on a jaw-fragment 
from Sussex, England, with a brief description. The Kansas remains 
resemble this fragment in their corresponding parts, and I refer them 
to the same genus for the present. 

The genus as seen in our fossils is defined as follows: Muzzle flat; 
premaxillary bones rather long, with two larger teeth together near the 
anterior end behind the usual external series; maxillary and mandibles 
with a single series of simply cylindric, curved teeth ; mandibular rami 
closely articulated by a igament. 

The teeth in this genus bear a superficial resemblance to those of a 
mosasauroid genus. Their mode of succession appears to be as follows: 
The crown of the young tooth was developed in a capsule at the base of 


GEOLOGICAL SURVEY OF THE TERRITORIES. 345 


the crown, or on the inner side of the apex of the thick root. The ab- 
sorption which followed excavated both the former and the latter, but 
the crown was evidently first shed. Then the old root disappeared, 
and the new one occupied the alveolus, leaving a free separation all 
round. Finally, on the accomplishment of the full growth of the root, it 
became anchylosed to the alveolus all round. The pleurodont position 
of the tooth facilitated the shedding of the root very materially. 

The genus Conosaurus, Gibbes, from South Carolina, is perhaps allied 
to this one. Its dentition is fully described by Leidy, who changes the 
name to Conosaurops, mainly on account of the inappropriateness of the 
Greek 2avpos to a fish. This word was, however, employed by the an- 
cients to designate a fish, and the only use made of the word, out of 
composition by modern zoologists, is for species of that class, so "that it 
does not seem improper to use it here. 

Three, perhaps four species, left their remains in the strata examined 


by the expedition. 
EMPO, Cope. 


Proceed. Amer. Philos. Soc., 1872, p. 347. 


This genus differs from the last in possessing large canine teeth in the 
front of the maxillary bone, posterior to which are two series of usual 
size. The inner or superior of these takes its rise from the canines and 
has no great extent, while the outer is marginal. Teeth cylindric-conic, 
and in the type species somewhat incurved. Butone species was found, 
the H. nepaholica, Cope, a fish as large as a pike of forty pounds. 


STRATODONTID Ai. 


In this group I have arranged several genera, which resemble Hncho- 
dus, the largest known of its forms. They are physostomous fishes, as in- 
dicated by the relations of bones of the superior arch of the mouth, the 
absence of spinous dorsal radii, the cycloid scales, and the general re- 
lationship to Hsox. Agassiz and others have regarded some of them 
as allied to Sphyreena; this opinion was probably derived from a con- 
sideration of the forms of the teeth, which, to some degree, resemble 
those of Sphyreenide and Trichiuride. This is, however, like many other 
minor characters, one of those which appear in both of the great groups 
of osseous fishes. 

The premaxillary is small, and supports a large tooth i in Hnchodus ; 
in Stratodus it is also short and supports numerous teeth. In Stratodus 
the maxillary supports a few teeth; in Cimolichthys a larger number. 
Relationship to Hsox is displayed by Stratodus, which has broad, flat 
palatine bones, closely studded with teeth in a brush, and where the 
maxillary teeth are reduced in size and number. The teeth are attached 
by the anchylosis of the base to the alveolar face of the jaw, resem- 
bling thus existing fishes, and differing materially from the families of 
Pachyrhizodontide and Saurodontide, already considered. 

The genera known to me are the following: 

Premaxillary with numerous small teeth; maxillary with 

a few of the same; palatines covered with brushes of 

similar teeth, all with DU eAWiNRI. = oS OL Se Stratodus. 
Premaxillary 2; maxillary with a single series of large 

teeth, which have one cutting edge at base and two at 

apex; dentary with inner series of large teeth, which 

do not enlarge distally, and some series of exterior 

Smiatlerbeeul ys esc = sere Lh Bie Aaa ta kd) ie Oimolichthys. 


346 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Premaxillary with a single large tooth; dentary with an 
outer row of small and an inner row of large teeth, 
which are much larger at the distalend............-. Einchodus. 


STRATODUS, Cope. 


This genus is well characterized by its dentition, which is remarkable 
for the small size and large number of the teeth, and their peculiar form. 
I possess one premaxillary, a considerable part of the maxillary, and 
nearly the whole of both palatines, besides other bones, of one species. 
These were found not very far from the remains of the Cimolichthys 
semianceps, M., and it required some investigation to determine the 
relationship between them. I have, however, portions of the maxillary 
and premaxillary of Cimolichthys, and both of these elements are so 
very unlike those in Stratodus that there can be no doubt of its inde- 
pendence. I have unfortunately no dentary bone of Stratodus, and the 
outer row of palatines resembles, in some measure, those figured in 
Cimolichthys levesiensis, Leidy, by Agassiz. 

The premaxillary teeth are in two series. They are stout at the base 
and oval in section, and are contracted and flattened rapidly upward. 
On this basis is set an oval, sharp-edged, flat or spade-shaped crown, 
the long axis of compression being placed at right angles to that of the 
compression of the apex of the base. This gives a barbed appearance. 
The maxillary teeth are similar in form, but are in but few rows. The 
palatine teeth are constructed on the same plan, but they are longer, 
and the bases are subcylindric and slightly curved. All the teeth pos- 
sess a large pulp cavity. 

The premaaxillary bone displays some of the density of composition 
seen in Hnchodus. Its upper anterior surface meets the inferior at an 
acute angle. It is a broad oval, and is slightly concave. The inner 
face forms a truncate rim round the bases of the inner teeth, and ter- 
minates in a vertical crest of dense bone. The external face is, on the 
other hand, perpendicular, and extends obliquely upward and back- 
ward. An acute anterior angle of the maillary underruns it below, so 
far as to exclude all but one or two of the premaxillary teeth from the 
outer row. The external lamina of the premaxillary forms an extensive 
Ssquamosal suture with this part of the maxillary by overlapping it from 
above. This arrangement shows a certain similarity to Hsow, especially 
in the large number of palatine and small number of maxillary teeth. 
It differs materially in the lack of articular surfaces between the maxil- 
lary, palatine, &c., in the upward prolongation of the premaxillary, and 
the peculiar forms of the teeth. 


CIMOLICHTHYS, Leidy. 


Proc. Acad. Nat. Sci., Phila., 1856, 302; Trans. Amer. Philos. Soc., 1856, p. 95; Saurodon, 
Agassiz, pt. Poiss. Foss. 


In this genus the principal teeth are stout, and have a compressed 
apex, with a prominent anterior cutting edge, and a less extended pos- 
terior one. There are several series of smaller teeth, external to the 
large ones in the lower jaw, while in a portion of an upper jaw of one 
of the species these are wanting. Where present, they are more acute 
than the larger ones. The large teeth diminish gradually in length to 
the symphysis, a circumstance which separates these fishes from 
Enchodus, where one or more of the anterior teeth are elongate. In 


GEOLOGICAL SURVEY OF THE TERRITORIES. B47 


the species here described, the bases of the teeth are enlarged and 
- deprived of cementum coat, but there are no true roots. 

The maxillary bone terminates in a narrowed extremity, with obtuse 
termination, as in Stratodus. The vomer in one of the species is acumi- 
nate at one end, and supports a short series of teeth; the middle portion 
in a double row. All the teeth are without pulp cavity. 

The only indication of the mode of succession of the teeth is furnished 
by the specimen of C. anceps. Here a small excavation appears on the 
inner side of the basis of the tooth. The absorption, commencing at this 
point, no doubt removes the basis so that the crown falls away. 

The name used was applied by Dr. Leidy to a fish erroneously referred 
by Agassiz and Dixon to Saurodon, Hays. He did not characterize it; 
and until the barbed palatine teeth, characteristic of it, are discovered 
in our species, their reference to it will not be fully established. In the 
parts preserved they appear to be identical. The general affinities of 
the genus will receive new light from materials now in my possession 
and not yet developed. . 

The Sphyrcena carinata, Cope, (Hayden’s Report, Wyoming, &c., p.424,) 
probably belongs to Cimolichthys. — 


ENCHODUS, Cuvier. 


Remains of species of this genus occur in the Cretaceous strata of 
Kansas. I discovered a tooth belonging to one of them in the matrix 
beneath the vertebre of Hlasmosaurus platyurus. Dr. Leidy described 
a species from the Cretaceous formations of the Upper Missouri region, 
which he called H. shumardii. The premaxillary of a rather large spe- 
cies was obtained by my expedition; but the species is not determinable. 
The diameter of the basis of the tooth is .012 meter. The long tooth of 
a species of medium size was detected, the Hnchodus calliodon, Cope. 
(Spec. nov. Enchodus sp., Cope, Hayden’s Surv. Wyoming, &c., p. 424.) 


SELACHII. 


Remains of sharks and rays are far less abundant in the Cretaceous 
of Western Kansas than in New Jersey, and are much exceeded in 
abundance by the physostomous Actinopteri, as the present account in- 
dicates. In the region near Fort Hays and Salina, sharks’ teeth are 
more frequently found. Those from near Fort Wallace belong to but 
two species of the genus. Galeocerdo Mill. Henl. 


GENERAL OBSERVATIONS. 


The following species have been described from the Cretaceous forma- 
tion of Kansas :* 


SAURODONTID Zi. 


Portheus molossus, Cope. 
thaumas, Cope. 
Ichthyodectes anaides, Cope. 
ctenodon, Cope. 
hamatus, Cope. 
prognathus, Cope. 
multidentatus, Cope. 


* The species here enumerated are all described in the Proceedings of the American 
Philosophical Society for February, 1872. 


348 GEOLOGICAL SURVEY OF THE TERRITORIES. 


2 Xiphactinus audax, Leidy. 
Saurocephalus phlebotomus, Cope. 
arapahovius, Cope. 


PACHYRHIZODONTID.A 


Pachyrhizodus caninus, Cope. 
kingtt, Cope. 
latimentum, Cope. 
shearert, Cope. 

EHmpo nepaholica, Cope. 


STRATODONTID&. 


Stratodus apicalis, Cope. 
Cimolichthys sulcatus, Cope. 
semianceps, Cope. 
anceps, Cope. 
gladiolus, Cope. 
? carinatus, Cope. 
Hnchodus calliodon, Cope. 


Fam. ? 
Apsopelia sauriformis, Cope, Hayden’s Report Wyoming, 1871, p. 423. 


SELACHIIL 


Galeocerdo crassidens, Cope. 
Hartvellti, Cope. 


Of the preceding twenty-four species the greater part are physostomous 
Actinopteri ; and there’is no species of a physoclystous family in the 
list. No trace of spines or seales of fishes of the latter character have 
been yet discovered in strata of this period in the West, though one 
(Beryx inseulptus, Cope) has been discovered by Dr. Lockwood in the 
green-sand marl of New Jersey. 

In the second place, it is of importance to observe that the genera 
have nearly all beea obtained from the chalk of Europe. Portheus is 
represented, perhaps, by some specimens referred to Hypsodon ; one 
Species of Ichthyodectes is figured by Dixon, from Sussex; and one of 
Cimolichthys, and Pachyrhizodus, each. Enchodus haslong been known 
from Holland, etc.; Hmpo Apsopelia and Stratodus being so far the only 
ones not found in Hurope. This is of much interest in every aspect, 
and points to a synchronism, as generally understood, between the 
chalk formations of Kansas and of England. 


MOLLUSCA. 


Species of this division of animals are not numerous in the beds of 
the Niobrara epoch. They consist chiefly of Inocerami of two or more 
species. Through the kind assistance of my friends, N. Daniels, of Hays, 
and Dr. J. H. Janeway, post-surgeon at Fort Hays, I was enabled to 


’ procure a number of very complete specimens of some remarkable shells 


xrom the yellow chalk. They were found on a denuded tract of the yel- 
low chalk, near the Saline River, and were quite exposed. They resem- 
ble generally large oysters, some of them measuring as much as twenty- 
seven inches in diameter. I submitted the specimens to my colleague, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 349 


T. A. Conrad, and add herewith his account of them.. He thinks they 
possess some resemblance to the Rudistes ; but whether truly related to 
or belonging to that division, he is at present in doubt. 

Fragments of these Haploscaphe are common in the formation, and 
have been described by authors as portions of huge Inocerami. 


HAPLOSCAPHA, Conrad. 


Shell subovate or subtriangular; hinge long and straight, edentulous, 
oblique; curved, prominent ridges occupy the upper portion of the in- 
terior, the ridges beginning and ending at a distance from the margins 
of the shell; a singular twisted callus composes the hinge, the back of 
which is transver selvy ribbed. 

H. GRanpis.—Len gth greater than height, hinge-line very long, ridges 
concentric, about twelve in number, extending into the cavity under the 
hinge. 

This shell, Professor Cope informs me, has been found 27 inches in 
diameter. The posterior side of the right valve is elongated and dilated, 
and the form of the shell is not unlike that of Meleagri ina. The sub- 
stance is fibrous or rather columnar, and thuch resembles that of Capri- 
nella as figured by d@’Orbigny, except that the fibres are transverse. 
The exterior is always concealed by a coating of rock and a crowded. ~ 
mass of Ostrea congesta, and in some specimens they line the cavity of 
the shell; the submargin is thick. No muscular impression can be 
traced unless the ridged part indicates its station. 


Subgenus CUCULLIFERA. 


Shell with an upright, hood-shaped process on the Steno end of the 
hinge. 

H. EXCENTRICA.—Ovato- triangular ; hinge-line short, very thick; con- 
centric ridges profound, six in number ; hood strongly and irregularly 
plicated; cavity profound. 

This shell, with the same structure of substance as the preceding, is 
very unlike ‘it in form, and is represented by one valve only, while a 
number of the preceding species were found. In all specimens of the 
two forms the right valve only was obtained. 

Whether it is allied to the family Rudistes of Lamarck is a question I 
leave for others to decide. On the margin of one of the valves are at- 
tached some small shells resembling Hippurites, and the fibres of which 
the shell is composed lie in broken masses on some valves and even 
scattered like piles of pins. 

The hood of H. excentrica is 24 inches in height, and the height of 
the valve 10 inches; length, 9 inches. 

Accompanying these fossils were many specimens of Jnoceramus prob- 
lematicus, and a fragment of an undeter med species of the same 
- genus. 


350 " GEOLOGICAL SURVEY OF THE TERRITORIES. 


ON THE VERTEBRATE FOSSILS OF THE WAHSATCH STRATA, 


By Epwarp D. Corn, A. M. 


Dr. Hayden’s researches in Utah and Wyoming have demonstrated 
the existence of an extensive series of fresh-water deposits, containing 
numerous remains of animals and plants. Those of Western Wyoming, 
or the Bridger series, are regarded as Upper Eocene or Lower Miocene. 
They thin out to the westward, and a new series of strata takes their 
place, dipping to'the eastward. The Bridger beds are not strictly 
conformable to them, while they rest uncomformably on a bottom-rock of 
Cretaceous age. These are the Wahsatch beds of Hayden. He informs 
us that they consist largely of variegated ferruginous rocks, very defi- 
cient in fossils. During his recent exploration, however, he procured a 
number of bones of mammalia from Utah, and placed them in my hands 
for determination. The following description expresses their charac- 
ters, from which it is obvious that the forms they represent were of 
much interest in a systematic point of view. 


Order Perissodactyla. 


BATHMODON, Cope. 
Proc. Amer. Philos. Soc., 1872, February 16. 


The present form embraces some of the largest Perissodactyles, or 
odd-toed Ungulata, of our Tertiary strata. It is represented by remains 
of two species, which include portions of the cranium, with teeth and 
fragments of jaws, vertebree, fragments of scapular and pelvic arches, 
and bones of the limbs. The distal end of the tibia is wanting, but that 
of the fibula indicates an odd-toed animal, and the third trochanter on 
the exterior ridge of the femur confirms the reference. 

There are probably four superior molars, though three only are pre- 
served. Two premolars only remain of the superior series, but the frag- 
ment of ramus mandibuli referred to the same species exhibits four 
premolars; from a consideration of the sizes of the superior premolars 
it is probable that there were four of these also. There are three strong 
incisors in each premaxillary. No canine tooth is preserved, but the 
posterior suture of the premaxillary bone is so wide as to point to an 


equally stout anterior part of the maxillary fitted to support such a. | 


tooth. The dental series increases regularly in size, from before back- 
ward, the last being a little larger than the penultimate. The crowns 
of the molars exhibit on the outer margin a single acutely angled cres- 
cent directed inward, with a conic lobe alongside of and anterior to its 
base, representing a second external crescent. The crescent lobe proper 
is large and very obliquely directed, so that its external face is almost . 
horizontal. The apex of its companion cone is continuous with its pos- 
terior margin, so as to be undistinguishable from it in some cases. The 
inner crescents are represented by a wide angular ridge, which is at a 
lower level than the exterior, and is little or not developed on the pos- 
terior side of the crown. Its inner plane face is horizontal, or even as- 
cending in one species. In the premolar teeth of B. radians the external 
erescent lobe is single and symmetrical. As the crown contracts 
inwardly a second inner crescent lobe has a trihedral form, while in one 
more anterior the inner is much reduced. The inferior premolars are 


GEOLOGICAL SURVEY OF THE TERRITORIES. 351 


all two-rooted, and form an uninterrupted series. The basis of the malar 
part of the zygomatic arch originates opposite the adjacent parts of the 
penultimate and last molars. The premaxillary bone is massive, and 
with but little area for attachment with its fellow in front. The incisor 
teeth are large, with subcylindrice roots, and their alveoli are well sep- 
arated. In one, perhaps superior, the crown is expanded transversely, 
with convex cutting edge. 

In the humerus the deltoid hook is developed, but is not much ele- 
vated above the plane of the head. It originates from an external 
expansion of the head, which bears a shallow cotylus separated from the 
head by alow, curved, subtransverse ridge. The condyles of the humerus 
do not support any trochlear ridges. An almost perfect femur of B. 
radians is preserved. The third trochanter is not very prominent. The 
little trochanter is little developed. The great trochanter is large but 
does not equal the head. The latter is subglobular, and the ligament- 
ous fossa extends to its rim. The distal trochlear surface is prominent, 
the inner edge more so than the outer. Its articular surface is broadly 
continuous with those of the condyles; a slight emargination of the out- 
lines only marking the usual constriction on each side. In this it 
resembles Cervide and some Antilopide. The inner condyloid surface 
is cut off by the emargination in Toxodon and Bos bubalus ; the emargin- 
ations are deep, but do not cut off either in Hquus, Camelopardalis, and 
' three species of Bos; while they are so deep as to cut off both in Rhi- 
noceros, 5 species—Hippopotamus, Bos brachycerus, B. sondaicus, and in 
_Catoblepas. 

A portion of the co-ossified parietals shows that the superior borders 
of the temporal fosse were separated by a flat plane, as in the hog ‘and 
other ungulates. 


BATHMODON RADIANS, Cope. 
Proc. Amer. Philos. Soc., loc. cit. — 


Represented by portions of several individuals, which indicate an 
animal varying from the size of the ox to that of the Javan rhinoceros. 

The transverse diameter of all the molars exceeds their longitudinal. 
In the penultimate, which may serve as a type, the superior or outer 
plane of the inner crescent ridge extends along about .66 of the posterior 
of the outer crescent. In the last molar this surface is very wide on the 
posterior and inner side of the external crescent; it then contracts and 
expands again on the posterior side, its outer bopnding crest reaching 
to the external margin of the crown. 

Besides these points, the molars possess a strong cingulum along the 
anterior base of the crown, which unites with the surface near the inner 
protuberance of the latter in the penultimate; in the last molar it 
reappears, forming a short lobe on the posterior face. The enamel 
where not worn is slightly rugose. 

A posterior premolar has a cingulum on the inner obtuse apex. The 
crest of the inner crescent, descending on each side of the apex of the 
outer, forms a cingulum-like ledge at its base as far as the angle formed 
by the descent of the apex of the outer crescent. The outline of the 
corner of this tooth, viewed from above, is narrow cordate, with obtuse 
apex. The convexity of the outer crescent inward is very strong, and 
the base of the crown is externally two-lobed. Enamel striate rugose. 
In a more anterior premolar (with three roots) there is no internal cin- 
gulum, and the crest of the inner crescent is not carried to the external 
basis of the tooth, and is entirely wanting on the posterior face of the 


352 GEOLOGICAL SURVEY OF THE TERRITORIES. 


tooth. The external crescent is more vertical and Jess concave. Out- 
line of crown subtriangular. 

The premaxillary bone is elongate, flat, and with a sloping superior 
face, which rises gently inward. The bases of the incisors stand 
obliquely outward. The inferior surface is flat, and the basis of the 
broken palatal spine is rather small. An incisor tooth has a trans- 
versely diamond-shaped crown, slightly twice concave on the inner 
faces, strongly convex on the outer, with a faint external ve near 
the external angles. Bnamel obsoletely striate. 


Measurements. 
No.1. 
Meters. 
Longitudinal diameter last superior molar ............-.------ 035 
Transverse diameter last superior molar...........--..---.-.- .0455 
Longitudinal diameter penultimate molar .........--......---- 032 
Transverse diameter penultimate molar.............-.-.-...-- .039 
Longitudinal diameter posterior premolar.............--.---.-- 024 
Transverse diameter posterior premolar ..............-.---.-- 034 
Longitudinal diameter anterior premolar.........-.....--...-. 0215 
Transverse diameter anterior premolar-............-----. Sh .0265 
Kenoth premaxillary Wome heise el6 eae) SAO oe ce eae 082 
Transverse width posterior suture ..-.....-..- Re a EA ea 8 .028 
Wadth premaxillary atmiddle suture: +... ..i. i502. 225... Je .043 
~~-Length basis last two inferior premolars.-......--.-....--.--- 057 
Transverse diameter edge of mandible at first premolar ..-..... 017 
Diametericondyles of femurs s.2f2202 2202 2 Se ee ee we) O# 
Diameter heads sreat trochanter: ....2..-.2. 2.222502 o 25. 2a 130 
Diameter head alone yf Mew Ee a eee ie ey Vee .062 
Diameter shaft. with third trochanter.........-..........--.-- 076 
Supposed length femur (16.75 inches) -.---..-.-..-.--- “1, evel ALS 
Transverse diameter head of tibia... ... 2... 0-2. ..2. 02 eee ets .092 
Antero-posterior diameter head of tibia, internal ............. 2) 2068 
Antero-posterior diameter head of tibia, external.......-...... .045 
Transverse width between temporal fossze .............------- 066 
(?) No. 2. 
Longitudinal diameter head of humerus .......-...... Naa eer 138 
Longitudinal diameter of outer cotylus and tuberosity .....-..- .055 


The other remains of this animal will be more fully described and the 
whole figured iz the final report. They were discovered by Dr. F. V. 
Hayden in Tertiary beds of the Wahsatch group near Evanston, Utah. 


BATHMODON SEMICINCTUS, Cope. 


Loc. cit. 


This species differs from the last in cul particulars of dentition. 
The interior ridge (homologous with the inner crescentic) bounding the 
middle plane of the superior molars, is not continued on the posterior 
face of the tooth, but curving inward joins the outer crest at its apex. 
The outer crest terminates in a conic tubercle anteriorly on the external 
face ; the rudiment of the anterior crescentic ridge appearing as a low 
ridge from the side of the posterior one, and rising to a point on the an- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 353 


terior nargin of the crown. There is no cingulum round the anterior 
base of the crown. The latter is as long as wide. The inner crest is 
reduced to a mere angle, and its posterior face is not basin-shaped, but 
rises to the crest of the inner crescent. The outer face of the latter is 
sub-horizontal with rising apex, and is concave transversely. Its ante- 
rior outer base is narrowed, but is less elevated than the posterior. 


Measurements. 

Meters. 
EME RAMOASIS CLOW! . 22... 00sec se ee salen oe Se oi ae ety cate 0225 
Sho THICTR, UN DISPISIC Gri 191 1 nam aM yA EN MAIC Mh aR .022 
One ehETION: CLESCENLE .. 3 fi Stee tah ete Nets ica Ste lk WS BN lal 012 
Pepe OL CLESCON vik sive eciiy yes ia cc a Sede tL .02 


This animal was not more than half the bulk of the last; its size was 
about that of the Tapirus terrestris. The differences in dentition, which 
it presents in the possession of a rudimental, anterior external crescent 
lobe, are so marked, as compared with the last species, as to induce me 
to believe that it will be found on fuller acquaintance to belong to 
another genus. This may be called Loxolophodon. Other remains be- 
longing to this species, or relating to it in size, are contained in Dr. 
Hayden’s collection, but cannot now be referred to it with certainty. 

From the Wahsatch beds near Evanston, Utah. 

special interest attaches to these fossils from the fact that they be- 
long to the oldest of the Tertiary periods of North America. Their affin- 
ities can only be explained in a general way. They represent a family 
distinguished from the type of Titanotherium and Palwosyops, Leidy, 
in the presence of only one external crescent lobe of the molars, the 
place of the other being taken by a tubercle or ridge. The general char- 
acters are partly perissodactyl and partly ruminant, and not in any 
great degree suilline. 


ON THE FOSSIL VERTEBRATES OF THE EARLY TERTIARY FOR- 
: MATION OF WYOMING. | 


By Pror. JosrErH LEIDY. 


The Tertiary formation of the Green River Basin of Wyoming equals, 
if it does not exceed, in interest that of the Mauvaises terres of White 
River, Dakota, and that of the Niobrara River, Nebraska. It is evdently 
older than these, and indeed belongs to another age in succession with 
them. The Green River Tertiary is probably the equivalent of the Hocene 
Tertiary; that of White River, of the Miocene; and that of the Niobrara, 
of the Pliocene. 

The first fossil obtained from the Wyoming Tertiary formation was 
a small herring, from the Green River shales, described in 1856 by the 
writer, under the name of Clupea humilis. The first crocodile from the 
vicinity of Fort Bridger was brought to the notice of the writer in 1868. 
The ifirst turtle, discovered by Prof. Hayden in the same locality, 
_and the first mammal, discovered by Dr. J. Van A. Carter, the same 
year, were also described by the writer. Since that time to the present, 
no less than seventy-one vertebrated animals have been indicated, mainly 
from collections made during the explorations of Prof. Hayden in 


23GS8 . 


354 GEOLOGICAL SURVEY OF THE TERRITORIES. 


1869 and 1870; from by Dr. collections made Carter from 1868 to 1871 ; 
and from collections made by Dr. Joseph K. Corson, U.S. A., in 1871; 
and Prof. O. C. Marsh, during the preceding year. 

Of the seventy-one vertebrated animals, for the most part clearly 
characterized, thirty-four are mammals; one, a bird; twenty-five, reptiles; 
and eleven, fishes. This assembla ge of vertebrates presents no giants; 
but, on the contrary, they are nearly all comparatively small forms. 
Among the mammals, the order of pachyderms presents species smaller — 
than any now in existence, and as small as any that have been found in 
other formations elsewhere. 

The thirty-four mammals belong to twenty-two genera, all ae which 
are extinct except one, the genus Canis. The imperfect remains referred 
to this may, on the discovery of more complete material, be found to 
belong to another and perhaps an extinct genus. Sixteen of the twenty- 
two genera are peculiar to the Wyoming Tertiary, or have not elsewhere . 
been discovered in other formations. Of the five previously known 
genera, Lophiodon and Lophiotherium belong to the early Tertiary forma- 
tion of Hurope; Hlotheriwn belongs to the middle Tertiary formation of 
Dakota and of Europe ; Titanotheriwm belongs equally to the lowest 
stratum of the Miocene Tertiary of the Mauvaises terres of Dakota; and 
Platygonus belongs to the Post-Pliocene formation of the United States. 

Of the genera of mammals, four belong to the carnivora, three to the 
insectivora, three to the rodents, ten to the odd-toed pachyderms, and 
two to the even-toed pachyderms. Primates, bats, solidungulates, pro- 
boscidians, ruminants, marsupials, and edentates are not represented. 
Seals, zeuglodonts, and cetaceans we do not look for in fresh-water 

‘deposits. 

More than half the species of mammals—nineteen—appear to be peris- 
‘sodactyles or odd-toed pachyderms, animals whose nearest living rela- 
tives are the Tapir, the Hyrax, and the Rhinoceros. 

Strange is it that there is not a single ruminant among all the 
mammals. These animals appear not to have formed members of the 
ancient Tertiary fauna of Wyoming. ‘Tapir-like pachyderms, small 
Hyrax-like animals, rodents, insectivores, and carnivores appear to have 
‘constituted the chief mammalian life. Ruminants, solipeds, and pro- 
boscidians appear to have come at a later period into existence, as 
indicated by the Tertiary deposits of White River, Dakota, and the 
Niobrara River, Nebraska. 

A single owl ‘and a stray feather tell us that ancient Wyoming had 
ats birds, but the paucity of material gives hardly a glimpse of the char- 
vacter of the class. ! 

Crocodiles were numerous in the early Tertiary period of Wyoming, 
-aS indicated by their many remains. Six species have been named. 
No traces of these animals have been discovered in the middle and 
later Tertiary formations of White River, Dakota, and Niobrara River, 
Nebraska. 

The land and waters of ancient Wyoming swarmed with turtles. The 
‘Tertiary deposits of Dakota and Nebraska have yielded each but a sin- 
‘gle species. The Tertiary deposits of Wyoming present us with abun- 
dant evidences of the former existence of nine species. Of these one 
was a Testudo or Land-Tortoise, as big as its modern representative of 
the Gallipagos Islands. Two others belonged to the same genus, which 
includes many of our living terrapenes, and one was a Ssoft-shelled tur- 
‘tle of the still-existing genus Trionyx. The other five turtles belong 
‘to four peculiar genera, not noticed in other formations and times. 
Several of them are related to our snappers, others to the terrapenes. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 355 


‘Lizards, also, like the iguanas and monitors, existed in the old Wyo- 
ming. fauna. Five species of two peculiar genera have been indicated. 
Most of them were inclosed in a bony armor of beautifully ornamented 
scales, reminding one of those of the Armadillo. 

Serpents, too, appear to have been abundant, most of them of the 
constricting kind, like the South American boas ‘of to-day, but compar- 
atively like most of the other animals of the old Wyoming fauna, of 
small size. Prof. Marsh has collected remains of snakes, which he 
refers to no less than five species of three previously undescribed genera. 

Some of the shales of Green River teem with well-preserved fishes, 
sometimes appearing as if whole shoals had been suddenly enshrined 
for the contemplation of futureages. Seven species have been indicated, 
of which two belong to the same genus as our Herring. Another species 
belongs to a genus now existing in South America and Borneo. The 

others belong to two peculiar genera, described by Prof. Cope. Re- 

mains of eanoid fishes are likewise abundant in’ the Green River 
Tertiary basin. Some of these Prof. Marsh has referred to four species 
of the same genera as our Bony Gar and southern Mud-fish. 


MAMMALS. 
CARNIVORA. 


Of carnivorous mammals, a number of remains have been obtained 
from the Tertiary formation of Wyoming, but generally in so imperfect 
a condition that their exact relationship has not been ascertained. 


PATRIOFELIS. 


Patriofelis ulta. 


An animal to which this name has been assigned was inferred from 
portions of a lower jaw, obtained by Prof. Hayden in the vicinity 
of Fort Bridger in 1869. It was larger than our living Panther, and 

was apparently related with this and the canine family. The lower j jaw 
contains five molar teeth, immediately succeeding the large canine 
without a colspicuous interval, as in some of the weasels and civets. 
A large premolar tooth, probably of the same animal, was obtained 
near the same locality as the former specimens. 


SINOPA. 
Sinopa rapax.’ >. . 


This name has been given to a smaller carnivorous animal, indicated 

by a lower jaw fragment-with two teeth, discovered in the vicinity of 
Fort Bridger by Dr. J. Van A. Carter, and obligingly sent to the writer 
the last spring. The animal was about the size of the Gray Fox, and 
appears to have been intermediate in its position to the weasels and 
the canine family. 
- The teeth in the specimen appear to be the last premolar and the 
succeeding sectorial molar. The former is larger than the latter and 
exceeds that of the Gray Fox. The principle cusp exhibits a denticle 
on its back border, but feebly developed in comparison with that in a 
similar position in the animal just named. The heel of the crown has 
an acute edge, from which it slopes to the basal ridge. 

The crown of the sectorial tooth has the same general form as in the 
corresponding tooth of the Fox and Weasel. The fore part is propor- 
tionately less well developed than in the former; and the inner cusp is 


356 GEOLOGICAL SURVEY OF THE TERRITORIES. 


half as large as the outer one. The notch of the sectorial border is 
directed more forward than in the Fox, and does not terminate in a cleft. 
The heel or back portion of the crown occupies nearly half its breadth 
and incloses a cup-like concavity as in the Weasel. The breadth of the 
crown of the two teeth is nearly the same, being 4 lines; the height of 
that of the premolar is 34 lines; of that of the sectorial molar, 23 lines. 


CANIS. 
Canis montanus. 


Some remains from Grizzly Buttes, Wyoming, are described by Prof. 
Marsh, and referred by him to a species of wolf under the above name. 
It was larger than the existing Gray Wolf. 


VULPAVUS, Marsh. 
Vulpavus palustris. 


An extinct carnivore, described by Prof. Marsh, from remains found 
by Dr. Carter near Fort Bridger, Wyoming. The animal was smaller 
than the Fox. 


INSECTIVORA. 


It was through Dr. J. Van A. Carter’s discovery of the remains of a 
small insectivorous animal, in association with an abundance of frag- 
ments of turtle-shells, in 1868, that our attention was first especially 
directed to the Tertiary formation of Wyoming, which has since yielded 
such an abundance of evidences of early mammalian life. 


OmMoMYS. 
Omomys Cartert. 


The remains, consisting of one side of the lower jaw: and portions 
of the cranium, were found by Dr. Carter, imbedded in,a stratum of 
green, friable sandstone, in the vicinity of Fort Bridger. The jaw and 
its contained teeth indicate an animal apparently nearly related, if not 
actually belonging, to the family of the Hedge-Hog. The specimen is 
fully described and figured in “ The Extinct Mammalian Fauna of Da- 
kota and Nebraska,” &c., p. 408, Pl. xxix, Figs. 13 and 14. 


PALAACODON. 
Paleacodon verus. 


Another insectivorous mammal, though probably a marsupial, like 
the Opossum, is indicated by several specimens discovered the last sum- 
mer by Dr. Carter, at Lodge-Pole Trail, Wyoming. One of the speci- 
mens, a fragment of an upper jaw, contains a back-molar tooth, resem- 
bling those of the Opossum, but having the outer lobes of its crown pro- 
portionately better developed, and the intermediate ones reduced to a 
minute condition. The other specimen, an isolated tooth, is a reduced 
example of the former tooth. The larger tooth is 2 lines fore and aft 
and 24 lines transversely. The animal was about half the size of the 
Opossum. 


GEOLOGICAL SURVEY OF THE TERRITORIES. oO 


TRIACODON, Marsh. 
Triacodon fallax 


Is the name given to another insectivorous mammal, by Prof. Marsh, 
from some remains found at Grizzly Buttes, Wyoming. 


RODENTIA. 


Judging from the number of fossils already found, the gnawing 
animals were abundant in the Bridger Tertiary fauna. None of them, 
thus far indicated, were remarkable for size, in comparison with those 
now living. 

: PARAMYS. 

A genus apparently allied with that to which the Maryland Marmot 
belongs, and indicated by three portions of lower jaws belonging to as 
many distinct species. The specimens were discovered the last summer, 
in the vicinity of Fort Bridger, by Dr. Carter, and by him transmitted 
to the writer. The animals were no doubt powerful gnawers, as the 
incisor teeth are observed to extend far back in the jaw, not only be- 
neath but also behind the grinders, as in the Beaver. The jaws are 
comparatively short and deep. The ridge defining the muscular fossa 
- on the outer back part of the jaw is strongly pronounced, indicating 
powerful masticatory muscles. The molar teeth are four in number, 
and have a distinct enameled crown inserted by fangs, as in the squir- 
rels and marmots. The triturating surface of the crowns is bounded 
by prominent angles, inclosing a cup-like hollow. The species are as 
follows : 

Paramys delicatus. 


The largest one, about one-fourth less than the Maryland Marmot. 
Length of the molar series of teeth, ? of an inch. Diameter of the inci- 
sors, 25 lines fore and aft and 14 lines transversely. 


Paramys. delicatior. 


. The second-sized species. The molar series is 74 lines long. The 
incisors are 2 lines fore and aft and 14 in transverse diameter. 


Paramys delicatissimus. 


The smallest species. Length of the molar series, 4 inch. Diameter 
of the incisors, 14 lines fore and aft and 1 line transversely. 


MYSOPS. 
Mysops minimus. 


A smaller rodent than any of the preceding, and not much larger 
than the Domestic Mouse, is indicated by a ramus of the lower law re- 
taining a pair of molar teeth. The construction of the jaw and the 
number of grinders are the same as in Paramys, but the teeth present a 
different arrangement of the sculpturing of the crown. ‘The penultimate 
molar in its worn condition presents a pair of transverse ellipses 
of dentine united by a median isthmus of the same substance and 
bordered with enamel. The crown of the last molar exhibits five 
shallow tubercles, with minute exposed islets of dentine at their summit. 
The length of the entire molar series is 4 inch. . 


358 GEOLOGICAL SURVEY OF THE TERRITORIES. 


ScrurAvus, Marsh. 
Sciuravus nitidus ; Sciuravus undans. 


Two rodents, about the size of the Brown Rat, and probably belonging 
to the squirrel family, named by Prof. Marsh from some remains found 
at Grizzly Buttes, Wyoming. 


ODD-TOED PACHYDERMS. 


PAL AOSYOPS. 


The most abundant of the mammalian remains pertaining to the 
Bridger Tertiary strata, judging from the fossils which have been brought 
to our notice, are those of a tapir-like animal about the size of the living 
Tapir of South America. It was first indicated by a few imperfect but 
characteristic specimens: discovered during Prof. Hayden’s expedi- 
tion of 1870. Since then it has been more fully exemplified by numerous 
specimens, many of them in a fine state of preservation. Most of these 
were collected during the last summer at Grizzly Buttes, Henry’s Fork 
of Green River, Lodge-Pole Trail, and other localities in the vicinity of 
Fort Bridger, Wyoming, by Dr. J. Van A. Carter and Dr. Joseph K. 
Corson, U. 8. A., and by these gentlemen were partly presented 
to the Academy of Natural Sciences of Philadelphia, and in part 
obligingly presented to the writer or submitted to his examination. 
Prof. Marsh has also informed us that his party had collected many 
remains of the same animal in the same locality. 

The specimens clearly establish Palcosyops as an uneven-toed pachy- 
derm, with the skeleton constructed nearly as in the Tapir. 

The thigh-bone possesses a third trochanter, as characteristic of the 
odd-toed pachyderms, including the Tapir, the Rhinoceros, and the Horse. 
The hind feet nearly repeat the construction of those of the Tapir. 

The skull, with its large temporal fossex, high and thick saggital crest, 
concave occiput, broad, convex face, resembled that.of the related 
Palcotherium of the Eocene deposits of Europe. The teeth also agree in 
number and nearly in constitution with those of that animal. The num- 
ber of teeth altogether appear to have been 44, consisting of 3 incisors, . 
1 canine, 4 premolars, and 3 molars to the series on each side, above and 
below. The teeth in each jaw form a nearly unbroken arch, intervals 
existing only sufficient to accommodate the passing of the points of the 
large and bear-like canines. 

The true molars above and below have a resemblance to those of 
Palwotherium. Inthe crowns of the upper true molars the inner constitu- 
ent lobes are more completely isolated from the outer ones than in that 
genus, and the bottoms of the transverse valleys are proportionately of 
less depth. The last upper molar of Palcosyops has but a single lobe 
to the inner part of the crown. ; 

- In Paleotherium the large premolars have the same form as the true 
molars, but are quite different in this respect in Palwosyops. In the 
former the crown of the upper premolars, except the first, is composed 
of four lobes, as in the succeeding molars. In Palw@osyops the first pre- 
molar has a conical crown, the second has a bilobed crown, and the 
third and fourth have trilobed crowns. i 

The canines of Palcwosyops are proportionately as large and of the 
same form as in the Bears. These teeth render it probable that Palw- 
osyops varied its vegetable diet with the flesh of animals. In two speci- 
mens of upper jaws, containing complete series of molar teeth, the sec- 
ond premolar teeth differ so much, that had they been found as isolated 


GEOLOGICAL SURVEY OF THE TERRITORIES. 359 


specimens, I think it probable that most naturalists would have been 
misled, and perhaps referred them to different genera. While Lam not 
prepared to say that they may not indicate different species, all the 
other teeth are so nearly alike, in form and size, that 1 am disposed to 
view them as the same. . 

Different isolated specimens of teeth exhibit some range of variation 
in size of individuals of Palwosyops, a variation which might lead one te 
view the specimens as representing several species. 

Nearly all the remains of Paleosyops submitted to my examination I 
have referred to a single species, with the following name: 


-Palewosyops paludosus. 


The size of the species was about that of the living Tapir of South 
America. The length of the upper series of molar teeth is 52 inches; 
of the three true molars, 34 inches. The length of the lower series of 
molar teeth, in a specimen belonging to a different individual from that 
from which the former measurements were taken, is 64 inches; the true 
molar series is 33 inches. 

Prof. Marsh has described a tooth which he refers to a smaller 
species, with the name of P. minor. I suspect, however, that the Bs 
men really pertained to a smaller individual of the same. 


Palwosyops major. 


A large species of Palewosyops, about the size of the Indian Rhinoceros, 
is inferred to have existed, from a few imperfect fragments obtained, in 
the vicinity of Fort Bridger. They were discovered by Dr. Carter the 
last summer, and were presented by him to the Academy of Natural 
Sciences. In Paleosyops paludosus the lower three back molars occupy 
a space of 34 inches; in the larger species, P. major, the same teeth oc- 
cupy a space of 44 inches. 


TROGOSUS. 


Among the fossils, from the Bridger Tertiary formation, brought to the 
notice of the writer there is the lower jaw of a remarkable animal, which 
would appear to be an odd-toed pachyderm allied with the Tapir, but 
associating characters which approach it to the gnawing animals. The 
specimen was discovered last spring, in association with remains of 
Palewosyops and those of a curious extinct turtle, in the vicinity of Fort 
Bridger, by Dr. J. Van A. Carter, and was obligingly presented to me 
by him. The j jaw belonged to an aged animal, so that the usual distinet- 
ive characters of the molar teeth are for the most part obliterated as 
the result of attrition in mastication. The construction of the jaw, but 
especially the cutting-teeth, are quite sufficient to distinguish the animal 
from all its associates as well as from any other previously described. 
The number of molar teeth to the series is six if not seven, the imper- 
fection at the fore part of the specimen not permitting of a more positive 
determination. The molar series was not widely separated from the 
front teeth asin the Rhinoceros, Mastodon, and the whole order of gnaw- _ 
ers, but closely approached the position of the incisors, apparently so 
as to leave no space to be occupied with a canine tooth, unless it was a 
very small one. The true molars in their worn condition look as if they - 
were nearly identical in form with those of Paleosyops. 

The fore part of the lower jaw of Trogosus, or the Gnawing Hog, as J 
have named the animal, is occupied with a pair of large incisors, Some-. 
what peculiar, but so nearly resembling the incisor teeth of the rodents: 


e 


360 GEOLOGICAL SURVEY OF THE TERRITORIES. 


that had they been found isolated I should have been misled and con- 

_sidered them as such. These teeth curve from the jaw parallel with 
each other as in the gnawers, but they are separated from each other 
‘by an interval sufficiently large to be occupied by a pair of small teeth. 
The large incisors do not extend so far back in their sockets as in the 
rodents, and in this respect present a condition more like that in the 
Hog and Peceary. 

The constitution of the large incisors of Trogosus resembles that in 
the gnawers, and as in these they apparently were provided with per- 
manent dental pulps, so that they continued their growth and protru- 
sion as they were worn away at the gnawing extremity. The fore part 
of these teeth is more convex than in rodents, and the enamel extends 
to a greater depth at the sides. They were also worn away in a some- 
what different manner. In rodents the opposing incisors of the upper 
and lower jaw are worn off in a sloping manner from the enamel cutting- 
edge backward toward the sockets of the teeth. In Yrogosus the worn 
slope of the lower incisors is not only directed backward and downward 
but also outward. This would indicate a divergence of the upper 
incisors, which no doubt hold a position, when the jaws are closed, 
exterior to that of the lower incisors. 

Canine teeth appear not to have existed, at least none of any size or 
of importance as efficient organs in the dental series. In this respect 
Trogosus is like the Mastodon, the Elephant, the Rhinoceros, and the 
Hyrax. 

Trogosus castoridens. 


The species named from its incisors, recalling to mind the pow vial 
cutting teeth of the Beaver, was a much larger and proportionately more 
robust animal than this. It was about the size of the White-lipped 
Peccary of Brazil. Extent of the series of six lower molars nearly 4 
inches. Extent of the series of true molars, 24 inches. Depth of large 
incisors, fore and aft, 10 lines; breadth, half an inch. 


Trogosus vetulus. 


A second and smaller species is indicated by a portion of an incisor 
tooth, likewise discovered by Dr. Carter in the vicinity of Fort Bridger. 
The specimen, though a mere fragment, is quite characteristic, as it 
preserves the peculiar form and also the mode of wearing of the cutting 
extremity. The species was about two-thirds the size of the former one. 
The diameter of the incisor from before backward is 7 lines; transversely, 
4 lines. 

HYRACHYUS. 


Among the most abundant mammalian remains of the Bridger Ter- 
tiary formation are those of a genus of odd-toed pachyderms, allied to 
the living Tapir, to which the above name has been given. The genus 
was first indicated by some imperfect remains obtained on Smith’s Fork 
and Black’s Fork of Green River, Wyoming, during Prof. Hayden’s 
exploration of 1870. The specimens are noticed in Prof. Hayden’s 
Preliminary Report of the United States Geological Survey of Wyoming, 
&c., 1871, p. 359. Since then, during the last summer, Dr. J. Van A. 
Carter discovered a number of more perfect specimens, ‘characteristic of 
the genus, on Henry’s Fork of Green River and at Bridger Butte, in 
the vicinity of Fort Bridger, Wyoming. Dr. Joseph K. Corson, Wise 
has also collected additional material at Grizzly Buttes, Wyoming. 

From the many specimens, consisting of portions of jaws with most 
of the teeth, together with other portions of the,skeleton, which have 


(9) 


GEOLOGICAL SURVEY OF THE TERRITORIES. 361 


been kindly placed at our disposal by the gentlemen just named, we 
have been enabled more clearly to ascertain the relations of the genus. 

Hyrachyus approaches nearly the extinct genus Lophiodon, first de- 
scribed by Cuvier from remains found in the earlier Tertiary formations 
of France and Germany. Lophiodon was closely related with the exist- 
ing Tapir. It possessed six molar teeth, in both the upper and lower 
jaw, on each side. The Tapir has an additional tooth to the upper molar 
series. Hyrachyus has seven teeth to the molar series wot and below, 
or seven above and six below, as in the Tapir. 

In Lophiodon the last lower molar has a trilobed due in Hyra- 
chyus, a8 in the Tapir, it has a bilobed crown. In the upper premolars 
of the Tapir, except the first one, the crown presents a distinct pair of 
inner lobes, connected by transverse ridges with the outer pair, as in 
the succeeding true molars. 

In Lophiodon the upper pr emolars, except the first, have a single lobe 
to the inner part of the crown, associated by a single mde with the 
anterior of the outer pair of lobes. 

In Hyrachyus the two back upper premolars, corresponding with those 
of Lophiodon, have a single lobe to the inner part of the crown, asso- 
ciated by a pair of ridges with both of the outer lobes. 

The canine teeth and the incisors of Hyrachyus hold the same relative 
position as and resemble those of the Tapir. 


Hyrachyus agrarius. 


The species thus named was about two-thirds the size of the 
South Ametican Tapir. The molar series above and below contains - 
seven teeth. A series of upper molars measures 32 inches. A lower 
jaw from another individual, from the back of the. last molar to the 
chin, measures 54 inches. The molar series of the same specimen 
measures 34 inches. Some remains from the same formation and local- 
ity, described by Prof. Marsh and referred by him to Lophiodon Baird- 
zanus, probably belong to the same species. 

A species originally inferred to exist from a jaw specimen of a young 
animal, and indicated in Prof. Hayden’s preliminary report above 
mentioned, under the name of Hyrachyus agrestis, I now suspect to be- 
long to the same species as the foregoing. 


Hyrachyus modestus. 


To a second species I now refer an upper molar tooth, obtained by 
Prof. Hayden near Fort Bridger, and mentioned in his last report under 
the name oe Lophiodon modestus. 


Hyrachyus exinvius. 


A larger species is inferred to have existed, from a smali fragment of 
a lower jaw of a mature animal discovered by Dr. Carter in the vicinity 
of Fort: Bridger. ‘The specimen contains the last premolar and the 
succeeding true molar. The former tooth is 74 lines fore and aft; the 
latter 84 ‘lines. The depth of the jaw fragment is 14 inches. The 
species was intermediate in size to Hyrachyus agrarius “and the South 
American Tapir. 

Hyrachyus nanus. 


A smaller species than any of the preceding is indicated by two 
portions of lower jaws, one of which was obtained by Dr. Carter at 


men |. "GEOLOGICAL SURVEY OF THE TERRITORIES. 


Lodge-Pole Trail, the other by Dr. Corson at Greens Buttes. The 
specimens belonged to mature animals, and both exhibit the molar 
series with six teeth as in Lophiodon and the Tapir. The last lower 
molar has a bilobed crown as in the latter animal. 

The reduction in the number of premolars from four to three is proba- 
bly the least important of the characters ER CHET SUCnia the genera 
Lophiodon, Tapirus, and Hyrachyus. 

Prof. Marsh has described the portion of an upper jaw containing 
seven teeth, which he refers to’a species under the name of Lophiodon 
RaNUs. The specimen was found at Grizzly Buttes, and probably 
belongs to the species of Hyrachyus just described. 


LOPHIODON. 


Lophiodon affinis. Lophiodon pumilus. 


Some remains, from the Tertiary of Wyoming, described by Prof. 
Marsh and attributed by him to two species of Lophiodon under the above 
names, may, in the discovery of more complete material, prove to belong 
to the former genus. 


HYOPSODUS. 


Among the pachyderms of the age of the Bridger Tertiary formation, 
there were several remarkable for their small size, none, now being in 
‘existence so diminutive, nor, indeed, at any age, is there any evidence 
of smaller ones. Most of the fossil remains of these animals which have 
been.submitted to my examination consist of portions of’ lower jaws 
with teeth. Portions of lower jaws in many formations appear to be 
among the most frequent of vertebrate fossils. This is due to the com- 
paratively firm constitution of the lower jaw, and the readiness with 
which it becomes detached in the decomposition of an animal lying on 
a muddy bottom of some body of water. Once detached, it readily 
becomes imbedded in the mud and enshrined in the future rock. The 
more bulky head, remaining still Jonger exposed, is liable to be broken 
up and its fragments scattered. 

Prof. Hayden, Dr. Carter, and Dr. Corson have collected many frag- 
ments of lower jaws with teeth, of a small pachyderm, at Black’s Fork, 
Grizzly Buttes, Lodge-Pole Trail, and other localities in the vicinity of 
Fort Bridger, Wyomin g, which I have referred to a genus with the name 

- at the head of this chapter. 

The lower-jaw specimens exhibit a continuous arch of teeth, composed 
on each side of seven molars, a canine, and, apparently, three incisors. 
None of the latter are retained in any of the specimens; and the same 
may be said of the canine, which is a comparatively small or feebly 
developed tooth. The first premolar is inserted by a single fang, which 
is, however, broad and apparently constituted of a connate pair. The 
_ other pre-molars, and the succeeding molars, have each a pair of fangs. 

As characteristic of the genus, and distinguishing it from other small 
pachyderms with which it was associated, we may describe especially 
the first and second true molars of the lower jaw. These have an ob- 
long crown of nearly uniform width, composed of an outer pair of demi- 
conoidal lobes, of which the posterior is the larger, and an inner pair of 
conical lobes, of which the anterior is the larger. The summits of the 
auter lobes are crescentoid ; those of the inner ones simply pointed. The 
contiguous horns of the inner crescentoid summits join the antero- 
internal lobe. The anterior horn of the anterior crescentoid summit 


GEOLOGICAL SURVEY OF THE TERRITORIES. 363 


curves inwardly to the base of the antero-internal lobe. The posterior 
horn of the posterior crescentoid summit ends in a tuberele at the back 
of the crown, opposite the interval of the hinder pair of lobes. 


Hyopsodus paulus. 


The species was about the size of .a Rabbit. Distance from the back 
of the last lower molar tooth to the chin is about 13 lines. Space occu- 
pied by the molar series, 11 lines; by the true molar series, 53 lines; 
and in another specimen, 6 lines. Depth of the lower jaw, from 32 to 4 
lines. , 

A lower-jaw fragment, containing the last pair of molar teeth unworn, 
which I supposed to belong to another small pachyderm, to which I gave 

the name of Microsus cuspidatus, 1 now suspect to belong to the same 
- animal as the former. The specimen was obtained by Prof. Hayden 
at Black’s Fork, of Green River, Wyoming. The jaw is much more 
slender than in the more characteristic specimens referred to Hyopsodus - 
paulus. Below the second true molar it is only 3 linesin depth, whereas 
in the latter specimens in the same position it is 4 lines. Perhaps the 
fragment may indicate another species. 


MICROSYOPS. 
Microsyops gracilis. 


Another diminutive pachyderm, about the size of that just described, 
is indicated by several lower-jaw fragments, discovered last summer by 
Dr. Carter, at Grizzly Buttes and Lodge-Pole Trail. The specimens were 
accompanied with others, consisting of upper-jaw fragments with teeth, 
probably of the same animal, though it is not improbable they may per- 
tain to Hyopsodus paulus. 

Microsyops gracilis possessed larger canines, and one molar less to the 

series of the lower jaw than the last-named animal. Of incisor teeth or 
their sockets, no remains are preserved in the specimens. : 
_ The molar series is scarcely 10 lines in length, and the true molars oc- 
cupy a half an inch of the space. The crowns of the latter teeth, except 
the last one, which has an additional lobe, are composed of four lobes, as 
in Hyopsodus gracilis. 

The fore part of the crown of the first and second true molars is de- 
cidedly narrower than the back part. The inner lobes are proportion- 
ately smaller, compared with the outer ones, thanin Hyopsodus. Of the 
diverging arms of the summit of the antero-external lobe, the front one 
terminates in a tubercle in advance of the antero-internal lobe, and the 
back one joins the latter. Of the diverging arms of the postero-external 
lobe, the front one ends at the bottom of the lobe in advance, and the 
back one terminates in a tubercle behind the interval of the posterior 
pair of lobes of the crown. The depth of the jaw at the middle true 
molar is 44 lines. ; 

Prof. Marsh has described some remains from Grizzly Buttes, which 
he refers to a species with the name of Hyopsodus gracilis. These I sus- 
pect belong to the same animal. 

The upper-jaw specimens alluded to at the beginning of this article 
are of a size to accord with those referred to Microsyops gracilis. Six 
upper molars occupy a space of three-fourths of an inch. The true mo- 
- lars occupy a space of 5 lines in one specimen and 54 lines in another. 

The crowns of the upper true molars remind one of those of the ex- 
tinct equine genus Anchithertum. The last premolar resembles that of 
a Deer, having a two-lobed crown. It and the premolar in advance are 
inserted with three fangs. The first premolar of the specimen was in- 
serted by a pair of fangs. 


364 GEOLOGICAL SURVEY OF THE TERRITORIES. 


‘NOTHAROTUS. 
Notharctus tenebrosus. 


This animal was inferred from a specimen consisting of a nearly com- 
plete ramus of a lower jaw with most of the teeth. The fossil was 
found imbedded in a grayish sandstone, at Black’s Fork of Green River, 
during Prof. Hayden’s exploration of 1870. In his ‘ Preliminary Re- 
port” of last year I have placed it with the carnivora, but am now 
inclined to doubt whether this is its true position. Notwithstanding 
the carnivorous aspect of the canine tooth, I suspect the animal to have 
been a pachyderm ; probably one of carnivorous habit. 

The teeth, consisting of incisors, a canine, and seven molars, form 
together a nearly unbroken row. The canine has the ordinary form and 
proportions of that of most carnivorous animals. 

In the original specimen the true molar teeth are much worn, so that 
the characteristic marks are obliterated. In several fragments of jaws, 
apparently of the same animal, obtained by Dr. Carter in the vicinity 
ot Fort Bridger, the molars are less worn, and therefore exhibit 
some, of the anatomical characters. In these specimens the first and 
second true molars have oblong crowns, constructed nearly as in Hyop- 
sodus. As in this, the contiguous horns of the summits of the outer 
lobes of the crown join the antero-internal lobe. In advance of the 
latter are two small tubercles, the outer of which forms the termination 
of the anterior arm of the summit of the antero-external lobe. The 
characters of these teeth appear to agree with those assigned by Pro- 
fessor Marsh to a genus of pachyderms, which he has named Limnothe- 
rium. 

The length of the dental series of the lower jaw of Notharctus tenebrosus 
is 194 lines. The true molars occupy a space of 9 lines. The animal 
was about a third less in size than the Raccoon, with which I at first 

supposed it to be related. 


Notharctus robustior. yy FP 


A small fragment of a lower jaw, containing the perfect second true 
molar, with portions of the others, would appear to indicate a larger 
species of Notharctus. The specimen was obtained by Prof. Hayden’s 
party, on Henry’s Fork of Green River. The entire tooth has the 
same characters as the corresponding one of NV. tenebrosus. It measures 
34 lines fore and aft and 24 lines transversely. In N. tenebrosus the 
corresponding tooth measures in the same directions 24 by 2 lines. 


LIMNOTHERIUM, Marsh. 
LTimnotherium tyrannus. Limnotherium elegans. 


Two pachyderms allied to the preceding, but of smaller species, named 
by Prof. Marsh from remains found in the Tertiary formation of 
Wyoming. 

LOPHIOTHERIUM. 


Lophiotherium sylvaticum. 


Of this animal no additional remains have come under my notice . 
since the description of the jaw fragment, discovered by Prof. Hayden, 
on Henry’s Fork of Green River, in 1869. The animal was about a 
third less in size than the smailer living Peccary. The true molar series 
of the lower jaw occupies a space of 124 lines. 


GEOLOGICAL SURVEY OF THE TERRITORIES. | 365 


Lophiotherium Ballardi. 


A second and smaller species, named by Prof. Marsh, from a jaw 
fragment with teeth, found at Grizzly Buttes, Wyoming. The last 
lower inolar tooth measures scarcely 44 lines fore and aft, whereas in the 


former species it measures 54 lines. 
TITANOTHERIUM. (?) 
Titanotherium (2) anceps. 


Some remains of the largest mammal of the Bridger Tertiary forma- 
tion have been referred with doubt by Prof. Marsh to the genus 
Titanotherium. The animal was about two-thirds the size of the Titano- 
therium Prouti, of the Mauwvaises terres of White River, Dakota. Per- 
haps the remains I have referred to Palwosyops major may belong to the 
same. 


EVEN-TOED PACHYDERMS. 
KLOTHERIUM. 
EHlotheriwmn lentis. 


A species of suilline pachyderms, indicated by Prof. “Marsh and 
founded on a jaw fragment containing a last molar tooth, from Henry’s 
Fork of Green River, Wyoming. The species was about ‘half that of 
Elotherium Mortoni of the Mauvaises terres of White River, Dakota. 


PLATYGONUS. 
Platygonus Ziegler. 


Another suilline pachyderm, indicated by Prof. Marsh, he refers 
to the Peceary-like genus above named. It is founded on specimens 
obtained at Grizzly Buttes, Wyoming. The species was as large as the 
Domestic Hog. 


BIRDS. 


Of remains of birds I have detected no trace of bones, among the col- 
lections of fossils, from the Tertiary formation of Wyoming, which have 
been submitted to my inspection. 

Prof. Hayden exhibited to the writer an interesting specimen, con- 
sisting of the impression of the distal extremity of a feather in a 
fragment of shale, which was discovered among the Green River shales, 
so remarkable for the great number of well-preserved fishes they con- 
tain. “4 


BUEO. 
Bubo leptosteus. 


Prof. Marsh, who has taken especial pains to seek for these rarest 
of fossils, the remains of birds, reports the discovery of some bones in 
the Tertiary beds of the Green River Basin. One of these, from Grizzly 
Buttes, he refers to an owl about two-thirds the size of the Great-Horned 
Owl. The species is named as above. ; 


366 GEOLOGICAL SURVEY OF THE TERRITORIES. 


REPTILES. 
CROCODILIA. 
CROCODILUS. 


When an isolated vertebra of a crocodile, from the Tertiary formation 
of Wyoming, was submitted to my inspection in 1868, it did not lead 
me to anticipate the many crocodilian remains which have since been 
discovered in the same Territory. No trace of crocodiles had previously 
been detected in the extensive Tertiary deposits of Dakota and Ne- 
braska, which have yielded such a multitude of remains of mammals and 
turtles. . 

Crocodilus aptus. 


A species named from a single vertebra, found by Col. John A. 
Knight, U. S. A., near South Bitter Creek, Wyoming. The animal was 
about the size of the Mississippi Alligator. 


‘Orocodilus Elliotti. 


A species assumed to be different from the former, and chiefly indi- 
cated by the greater part of a skull, broken into fragments, found on 
one of the tributaries of Green River, Wyoming, during Prof. Hay- 
den’s explogation of 1870. The skull is about a foot and a half in length, 
and has nearly the shape of that of the existing Crocodile of the Nile. 

Many additional remains of crocodiles obtained by Drs. Carter and 
Corson, in the vicinity of Fort Bridger, Wyoming, have been sent to 
me. Among these there is a nearly complete lower jaw, which was dis- | 
covered by Dr. Corson, imbedded in a green sandstone. I am uncertain 
‘whether it pertained to the species just indicated. 

Prof. Marsh has collected a number of remains at Grizzly Buttes 
and other localities in the neighborhood of Fort Bridger, which he at- 
tributes to four species distinct from those above named. They are 
noticed in the American Journal of Science and Aris for 1871, under 
the names which follow: 


Crocodilus ziphodon. 


A comparatively small animal in its family, and judging from the 
characters of the teeth not a true crocodile. 


Crocodilus liodon. 
Crocodilus affinis. Crocodilus Grinnell. 


CHELONIA. 
TESTUDO. 


Testudo Corsont. 


‘Dr. Joseph K. Corson, U. 8. A., stationed at Fort Bridger, in the 
intervals of his professional duties, directs his attention to the inves- 
tigation of the natural resources of the country. One of the results 
of his explorations is the discovery of many interesting fossils of the 
Bridger Tertiary formation, specimens of which we have had frequent 
occasion to mention. Among the fossils found by him last summer, 
and presented to the Academy of Natural Sciences of Philadelphia, is 
the fore part of a plastron of a huge land-turtle, equal to the largest 


GROLOGICAL SURVEY OF THE TERRITORIES. 367 


now in existence; that is to say, the great land-tortoise ot the Gallipagos 
Islands. The species was named in honor of its discoverer. 


EMYS. 
EHmys wyomingensis. 


The most abundant remains of turtles of the Bridger Tertiary forma- 
tion which have come under the notice of the writer are those of a ~ 
species of Hmys to which the above name was originally given. Many 
specimens of shells, some of them nearly perfect, have been submitted 
to my examination by Dr. Carter, Dr. Corson, and Prof. Hayden 
Fragments of shells of this species, sent to me by Dr. Carter in 1868, 
were among the first fossils I had seen from the Tertiary formation of 
Wyoming. 

The first specimens examined exhibited sufficient variation to lead me 
to refer them to several different species under the additional names of 
Emys Stevensonianus, H. Haydeni, and E. Jeanesi. Additional specimens, | 
of different ages, from a young one about the size of the palm of the 
hand, to those which had reached maturity and are a foot long, and are 
three-fourths of a foot broad, led me to view all as pertaining to a sin- 
gle species. Every specimen exhibits some variation, so that following 
the original plan, they would indicate a dozen species. — 

The form and constitution of the shell of Hmys wyomingensis, as well 
as the impressions of the horny scales, are the same as in living species 
of terrapenes. l 


Emys Carteri. 


Dr. J. Van A. Carter, who has pursued the investigation of the Bridger 
Tertiary formation with untiring industry and zeal, the last summer, 
sent to the Academy of Natural Sciences of Philadelphia the remains 
of. one of the largest known species of terrapenes; the specimen con- 
sisting of the greater portion of the plastron or under shell, and the 
fore part of the carapace or upper shell. Dr. Carter discovered it imbed- 
ded in a green, friable sandstone in the vicinity of Fort Bridger. In its 
complete condition this turtle has measured about two and a half feet 
in length. The plastron is 2 feet long. The first vertebral plate is 
clavate in outline, and 4 inches in length. The first vertebral scute 
is vase-like in its form, and is 54 inches in its fore and aft diameter. 
The species has been named in honor of its discoverer. 


BAPTEMYS. 
Baptemys wyomingensis. 


A peculiar and interesting extinct genus of turtles, pertaining to the 
Bridger Tertiary formation and named as above, appears to be inter- 
mediate in character to the living genera Dermatemys and Staurotypus. 
Tt was one of the earlier described animals from the Tertiary formation 
of Wyoming, and was first indicated by a well-preserved and nearly 
complete shell discovered in the vicinity of Fort Bridger by Mr. O. C. 
Smith.. A second less complete specimen was obtained at Grizzly Buttes 
during Prof. Hayden’s exploration of 1870. 


368 GEOLOGICAL SURVEY OF THE TERRITORIES. 


The carapace, or upper shell, is ovalin outline, and resembles in shape 
and constitution that of Dermatemys, a large, living fresh-water turtle of 
South America. The plastron, or lower shell, partakes more of the char- 
acter of that of Stauwrotypus. 

Compared with ordinary terrapenes, the intervals between the upper 
and lower shells on each side are proportionately very large, more as in 
the condition of the snappers. 

The bridges connecting the plastron and carapace are intermediate in 
their proportions to those in Dermatemys and Staurotypus, and the same 
may be said in relation with the common terrapenes and the snappers. 
They are impressed by a row of three large scales between the position 
of the usual scute impressions of the plastron and those of the border of 
the carapace. 

The fore extremity of the plastron is nearly like that in Dermatemys, 
but is widely emarginate at the end, and is obtusely rounded at the border 
instead of being acute as usual in terrapenes. ‘The hinder extremity of 
the plastron is narrower proportionately than in Dermatemys, but wider 
than in Staurotypus, and it ends in a rounded manner. 

‘The first pair or gular scute impressions of the plastron as existing in 
ordinary terrapenes appear to be absent in Baptemys, or rather they are 
not distinct from the humeral scute impressions. 

The shell of Baptemys wyomingensis is about 13 feet in length and 1 
foot in breadth. The plastron is rather less than 1 foot in length ; its 
breadth to its junction with the carapace 9 inches; and the fore and aft 
extent of its bridges 44 inches. 

Baptemys is nearly related to the extinct genus Plewrosternon of the 
English Tertiary. 

_ BAENA. 
~ Baena arenosa. 


The extinct genus of turtles, Baena, was originally indicated by a 
nearly complete shell, discovered during Prof. Hayden’s expedition 
of 1870, in the vicinity of Fort Bridger, Wyoming. Another shell, dis- 
covered by Dr. Carter in the same locality, and presented to the writer, 
from some variation, was supposed to indicate a second species of the 
same genus. The two were named Baena arenosa and B. affinis. Addi- 
tional. specimens exhibiting some variation of character lead me to 
suspect that these are the same. 

The specimens generally have been so much crushed downward that 
it is difficult to form an estimate of the degree of convexity or promi- 
nence of the shell of Baena arenosa. It would appear to be rather com- 
pressed, or about as prominent asin the ordinary Snapper. It partakes 
of characters of the latter, the terrapenes, and the sea-turtles. 

In all the specimens the bones which compose the shell are completely 
co-ossified, so that the sutural connections cannot be followed. 

The upper shell is broadly oval, and is notched behind as in the Snap- 
per. The under shell is flat and more like that of a terrapene in 
appearance than that of the Snapper. The bridges connecting the two 
shells are relatively as wide asin the former but are longer. The ends of 
the plastron are tongue-like and feebly emarginate. 

The number and arrangement of the horny scales of the carapace 
appear to be the same as “in the terrapenes and snappers. The seales 
of the plastron consist of seven pairs, besides additional ones to the 
bridges, as in the latter and the sea-turtles. 

The shell of Baena arenosa was a little over a foot in length and three- 
fourths of a foot in breadth. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 369 


Baena undata. 


Last summer Dr. Carter sent, as a gift to the Academy of Natural 
Sciences of Philadelphia, the greater part of a shell of a large turtle 
which he discovered in the vicinity of Fort Bridger. Its interior is 
occupied with a greenish-gray sandstone. The specimen I suppose to — 
belong to the same genus as those just indicated. It belonged to a 
much larger species than the former, and in its perfect condition meas- 
ured about a foot and a half in length and is a foot and a quarter in 
breadth. 

The great strength of the. shell has apparently prevented its being 
crushed by the superincumbent strata beneath which it was imbedded. 
The shell consequently appears much more vaulted than in the preced- 
ing species. 

The upper shell or carapace is sustained by strong, vertical plates 
extending from the plastron at the bottom of the notches between the 
two. These plates project so far into the interior of the shell as to. 
appear like partitions, dividing it into three compartments communi- 
cating through the partitions. A similar arrangement exists in the 
Batagur, a curious genus of fresh-water turtles living in India, 

As in the specimens of Baena arenosa, that of B. undata has its con-: 
stituent plates co-ossified, though not to such a degree as to obliterate 
the course of all the sutures. The visible course of these in the plastron 
enables us to detect an unusual arrangement of the plates. Between 
the two middle pairs of osseous plates as existing in most living and 
other known extinct turtles, there is intercalated an additional pair 
of plates. These are triangular with their apices, conjoined at the cen- 
ter of the plastron, and the bases directed outwardly and joining the 
marginal plates of the shell at the intermediate half of the bridge join- 
ing the plastron to the upper shell. 

A similar pair of intercalated plates exists in the genus Plewrosternon,, 
an extinct turtle of the early Tertiary formation of England; but in that 
genus they form parallelograms, and thus accord more with the ordinary 
form of the including plates, as in turtles generally. 

The bridges of the plastron exhibit four large scutal impressions, as 
in one of the most perfect specimens of the shell of Baena arenosa. 

The costal scute areas of the carapace are defined from the marginal 
Seute areas by a remarkable serpentiform groove. The medial groove 
of the plastron likewise presents this serpentiform character. From 
this tortuous course of the grooves just mentioned, the species has 
received its name. 
HYBEMYS. 


‘Hybemys arenarius. 


A small extinct turtle is indicated by some small imperfect frag. 
ments, obtained during Prof. Hayden’s exploration of 1870, in a Tertiary 
deposit on Little Sandy Creek. The most characteristic specimen con- 
sists of an isolated marginal bone, which resembles in form,and the 
impressions produced by the investing horny scales, a corresponding 
lateral plate of the upper shell of an ordinary terrapene. The fore and 
back parts of the plate exhibit a half-circular, convex boss, indicating 
the carapace to have been encircled with a row of hemispherical pro- 
tuberances, unlike anything noticed in previously described turtles. 
The species was about the sizeof our common Speckled Terrapene, Hmys 
picta. 

2468 


370 GEOLOGICAL SURVEY OF THE TERRITORIES. 


ANOSTEIRA. 


Anosteira ornata. 


_ An extinct genus of turtles, different from any of the preceding, is 
indicated by many fragments of shells of a small species, obtained by 
Prof. Hayden and Dr. Carter at Church Buttes, Grizzly Buttes, and 
other localities in the vicinity of Fort Bridger. 

The shell is moderately compressed, broad and ovoid; in outline inter- 
mediate in form with that of the terrapenes and the sea-turtles. The fore 
part of the carapace is deeply and widely notched ; the back part is ex- 
panded and obtuse. The marginal plates are joined by a continuous 
suture with the costal plates, as in the terrapenes. The surface of the 
carapace is conspicuously ornamented with closely crowded tubercles, 
which are round or in the form of short ridges. No impression of horny 
scutes is visible on the bony plates, so that in this respect, and the orna- 
mentation of the surface, the carapace is like that of the soft-shell tur- 
-tles or Trionyces. The plastron is small in its relation with the upper 
shell, as in the Snapper; and it firmly articulates with it by bridges 
which are proportionately much wider than in thelatter. The back end 
is narrow, the fore end of greater width. ‘The nuchal plate of the cara- 
pace is even, but the last vertebral and the pygal plates are sharply 
earinate. The shell of Anosteira ornata was about 5 inches in length. 


TRIONYX. 
Trionyx guttatus. 


An extinct species of soft-shelled turtle belonged to the Bridger Ter- 
‘iary period. It is indicated by many fragments of shells, which have 
ecompanied nearly every collection of fossils from Wyoming, sub- 
mitted to my inspection. The best specimen is the one from which the 
species was originally described, discovered at Church Buttes during 
Prof. Hayden’s exploration of 1868. The osseous carapace, or upper 
shell, has measured about 14 inches in length, and upward .of a foot 
in breadth. 


Fossil turtle-eggs. 


Last summer Dr. Carter sent me numerous elongated, elliptical bodies, 
which he had discovered in various places in the vicinity of Fort Bridger. 
These, he observed, he thought might be the fossil eggs of some animal, 
and, in fact, I suspect them to be fossil turtle-eges. They present two 
sizes, each being quite uniform. They have the same form as the eggs 
of living terrapenes, but are smaller than those of our smallest species. 


LACERTILIA. 
SANIVA. 
Saniva ensidens. 


As members of the Tertiary fauna of Wyoming, there were a number of 
lizards related to the living Monitors and Iguanas. The remains of one 
of these animals, consisting of portions of a skeleton imbedded in an 
ash-colored rock, were discovered near Granger, Wyoming, during Prof. 
Hayden’s exploration of 1870. They indicate an animal as large as 
the common Iguana of South America, or one as large as any now in 


GEOLOGICAL SURVEY OF THE TERRITORIES. oT1 


existence. Imbedded in the same rock, in close proximity to the bones 
of the skeleton, there was detected an isolated tooth, which is supposed 
to belong to the same animal. The tooth is compressed conical, and 
eurved, and has its borders quite sharp. 

Since describin g these remains, and referring them to an extinct genus 
and species under the name of Sanwa ensidens, in breaking open some 
portions of the rock containing the remains of the skeleton, a fragment 
of the upper jaw has been detected, evidently forming part of the latter. 
The fe caitained in the fragment are imperfect, but are sufficiently , 
well preserved to indicate a shape different from the isolated tooth above 
mentioned. Their form is more like those of the living Iguana, dut they 
are not serrated. The isolated tooth is like those of the Monitor. No 
traces of scales were found imbedded in the rock in association with ‘the 
bones. 


GLYPTOSAURUS, Marsh. 


During the last summer Dr. Carter sent to me a number of detached - 
_ vertebree and fragments of other bones, found in the vicinity of Fort 
Bridger, which resemble those of the skeleton of Saniva ensidens. These 
were accompanied with a number of osseous scales, resembling those of 
the living armadillos. Similar scales, from the same locality, have been 
deseribed by Professor Marsh, and referred to a lacertilian with the 
above name. From the difference in ornamentation of the scales and 
other characters, the remains he attributed to four different spats un- 
der the following names: 


Glyptosaurus sylvestris. Glyptosaurus nodosus. Glyptosaurus ocellatus. 
Gly yptos QUrUS ANCEPS. 


OPHIDIA. 


Among other reptilian remains obtained from the Tertiary formation 
in the vicinity of Fort Bridger, Wyoming, are those of a number 
of snakes described by Prof. Marsh: Most of the specimens, he in- 
forms us, ‘belonged to constricting serpents, elosely related to the . 
modern Boas of South America, although considerably smaller, and 
generically distinct. A few of the specimens indicate snakes of moder- 
ate size, with apparently quite different affinities.” Prof. Marsh re- 
fers the remains to no less than five species of there extinct and 
peculiar genera, which he names as follows: 


Boavus, Marsh. : 
Boavus occidentalis. Boavus agilis. Boavus brevis. 


LirHoruis, Marsh. 
LTnthophis Sargenti. 


Limnopuis, Marsh. 
Limnophis crassus. 


FISHES. 


. The Green River shales, in ene locality on the line of the railroad, 
teem with such a profusion of well-preserved fishes that the place has 
been named the Petrified Fish Cut. The formation and fishes are 
probably of cotemporaneous age with the formation and its remains of 
other vertebrates, indicated in the preceding pages. It was one of these 
fossil fishes, obtained in this locality in 1856 by Dr. John H. Evans, and 


372 GEOLOGICAL SURVEY OF THE TERRITORIES. 


) 


submitted to the writer for examination, that has proved to be the 
forerunner of our knowledge of the Tertiary fauna of Wyoming, as 
developed in these pages. 


CLUPEA. | 


Two species of the genus, to which belong our Shad and Herring, 
have been detected in the Green River shales. 


Clupea humilis. 


’ 

A small species, the one above referred to as being the first fossil 
discovered in the Tertiary formation of Wyoming. It is very abundant 
in the Green River shales, and measures 34 inches in length. 


Clupea pusilla. 


A species about half re size of the preceding, described by Feph 
Cope. 


OSTEOGLOSSUM. 
Osteoglossum encaustum. 
Three to four feet in length. Described by Prof. Cope. 
ASINEOPS, Cope. 
Asineops squamifrons. Asineops viridensis. 
Two species of a peculiar genus, described by Prof. Cope. 
ERISMATOPTERUS, Cope. 
Hrismatopterus Rickseckeri. 


A cyprinodont fish, 3 to 4 inches in length, of a peculiar genus, 
described by Prof. Cope. 


LEPIDOSTEUS. 
Henitosrua glaber. Lepidosteus Whitneyt. 
Two species of bony-gars, indicated by Prof. Marsh. 
AMTA. 
Amia Newberrianus. Amia depressus. 


Two species of mud-fish, indicated by Prof. Marsh. 


GEOLOGICAL SURVEY OF THE TERRITORIES. , ate 


PRELIMINARY LIST OF THE FOSSILS COLLECTED BY DR. HAY- 
DEN’S EXPLORING EXPEDITION OF 1871, IN UTAH AND 
WYOMING TERRITORIES, WITH DESCRIPTIONS OF A FEW 
NEW SPECIES. 


CmMNAoPF Wh 


BY F. B, MEEK. 


SILURIAN FOSSILS. 


. Halysites catenularia, Linn., (sp.); Box Elder Cafion. 


CARBONIFEROUS FOSSILS. 


. Zaphrentis ; Bridger’s Butte. 
. Zaphrentis ? Stansburyt, Hall; Red Rock Creek, Twin Springs, 


Dry Creek Valley. 


. Lithostrotion ?; Twin Springs. 

. Syringopora ; head of Alder Gulch, Virginia City. 

. Syringopora ; half-way between Mantua and Cache Valley. 
. Eéhombopora ; Twin Springs. 

. Chetetes ; divide near Junction. 

. Platycrnites (EHucladocrinus) Montanaesis, Meek. 


Body subovoid, a little higher than wide, the widest part 
being above. Base basin-shaped, forming nearly one-third the 
height of the body, rounded to the column below. First radial 
pieces, a little longer than wide, with the widest part above, 
oblong-subquadrangular in general outline, but having the 
superior lateral angles apparently a little truncated, and the 
lower edge convex in outline, while the upper margin has a 
moderately deep sinus, equaling about one-third its breadth, 
for the reception of the next radial. Second radial piece very 
short, almost subtrigonal, with lateral angles a little truncated, 
and bearing on its upper, sloping sides the first and only 
divisions of the rays, which do not properly bifureate again, 
but continue like free, simple arms, composed each of a single 
series of short, more or less wedge-formed pieces, every second 
one of which gives off at its larger end (alternately on oppo- 
site sides) a true arm. Arms very numerous, rounded on the 
dorsal side, and composed each of two ranges of alternating 
and interlocking small pieces that bear the pinnules (tentacula 
of some) on their inner side. Surface smooth. (Vault un- 
known.) 

This species is very peculiar in having the rays, after the 
first division on the second radials, simple, or without further 
division, and continued by a direct succession of a single 
series of pieces. These divisions of the rays, although long, 
free, and arm-like, are not true arms, because they each bear 
on each side a row of arms that are, as usual in the genus, 
composed of double rows of interlocking pieces, and support 
delicate pinnules, or tentacles, on the inner side. It is proba- 
ble that the ambulacral furrows of these divisions of the rays 
are covered above by small pieces all the way out. If so, the 
species would bear exactly the same relations to Platycrinites 
proper, that Steganocrinus bears to Actinocrinites. Consequent- 
ly, I propose to designate it as the type of a section, under the 


374 GEOLOGICAL SURVEY OF THE TERRITORIES. 


name Hucladocrinus, in allusion to its very numerous branches 
or arms, of which there must be not less than 160 to 200 in the 
entire series. 
10. Crinoid fragments ; Twin Springs, Sage Creek, Montana; and 
Bridger Butte, near Fort Ellis. 
These fragments probably belong to several species of dif- 
ferent genera. 
11. Polypora ; Twin Springs and Junction Divide. 
12. Fenestella (allied to F. multiporata, McCoy); Devfi’s Slide and 
head of Black-Tail Deer Creek, Montana. 
13. Fenestella (two or three species); near Junction Divide. 
14, Piylopora; Devil’s Slide, Montana. 
15. Ptylopora; Devil’s Slide, Montana. : 
16. Hemipronites (either H. crassius, or H. crenistria) ; mountain, near 
- Junction Divide, head Medicine Bow Creek, and Bear River 
_ ‘Mountains, opposite Randolph. 
17. Chonetes ; Twin Springs. 
18. Productus punctatus?; head of Alder Gulch, Virginia City, Motana. 
19. Productus ; head of Black-Tail Deer Creek. © 
20. Productus (fragments of a very finely striated species); Dry Creek. 
21. Productus longispinus, Sowerby ?; Junction Divide. 
*29, Productus ; half-way between Mantua and Cache Valley. 
23. Productus semireticulatus, Martin; mountains near Junction Divide, 
head of Medicine Creek. 
24, Rhynchonella ; mountains near Junction Divide, head of Medicine 
Creek. 
25. Athyris subtilila, H.?; mountains near Junction Divide. 
26. Spirifer (a large species like S. Logani, Hall); Medicine Lodge 
Creek, near Divide. 
«27, Spirifer (a smaller species, more extended on hinge-line); half-way 
between Mantua and Cache Valley. ‘ 
28. Spirifer ; Bridger’s Butte, near Fort Ellis. 
*29, Spirifer (Martinia), like M. contracta, M. & W.; half-way between 
Mantua and Cache Creek. | 
30. Spiriferina,? (like 8. octoplicata, Sow.) ; Twin Springs. 
31. Euomphalus ; Twin Springs. 


JURASSIC SPECIES. 


1. Rhynchonella ; shore of lake, twelve miles from Fort Ellis. 

2. Lingula ; Lincoln Valley, near Fort Hall. : 

3. Ostrea (mere fragments); Lincoln Valley, near Fort Hall. 

4~%Gryphea (small, imperfect specimen); Lincoln Valley, near Fort 
Hall. 

5. Camptonectes bellistriata, M. & H.; shore of lake, twelve miles from 

Fort Ellis. - 

6. Entolium cingulatus, Phillips ? (sp.); shore of lake, twelve miles 
from Fort Ellis. 

7. Gervillia (an imperfect valve); shore of lake, twelve miles from 
Fort Ellis. 

8. Aviculopecten (Pseudomonotis ? ) Idahoensis, Meek. 

Shell suborbicular, very slightly oblique; hinge distinctly 
shorter than the valves. Left valve rather compressed; pos- 
terior ear very short or nearly obsolete, and scarcely angular 
at the extremity, the posterior margin below being convex in 


* These may possibly be Devonian. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 375 


outline, instead of sinuous; anterior ear longer and more angu- 
lar, compressed, but more ‘distinct from the slight swell of the 
umbo than the other, and having its margin below broadly and 
rather slightly sinuous; surface: ornamented by compressed, 
generally simple, alternately smaller and larger radiating costz, 
only the latter of which reach the beak, while those of both 
series become nearly or quite obsolete on the ear s, particularly 
on the posterior one; lines of growth small, Papnet regular and 
obscure. (Right valve unknown. ih: 

This is probably neither a true Pseudomonotis, nor an Aviculo- 
pecten ; but as I know nothing of the nature of its hinge, nor 
of its right valve, its true generic characters remain doubtful. 
Many paleontologists refer such forms, to the genus Pecten, but 
they are evidently distinct from that group as typified by the 
existing P. mazimus. Lincoln Valley, near Fort Hall, Idaho: 

9. Pinna (a smooth attenuated species) ; ; shore of lake, twelve miles 
from Fort Ellis. 
10. Modiola ; same as last. 
11. Myacites (Pleuromya) ; same as last. 
12. Pholadomya ; same as last. 


There are in the collection imperfect casts of several other bivalves 
from the Jurassic beds; but they are not in a condition to be referred 
to the proper genera. 


CRETACEOUS SPECIES. 


1. Ostrea glabra, M. & H.2; Point of Rocks, Union Pacific Railroad, 
Wyoming; from above a coal-bed. 

2. Ostrea Idriaensis, Gabb??; Point of Rocks, Union Pacific Railroad, 
Wyoming; from above a coal-bed. 

This ts a rather large compress, moderately thick, subovate, or 
ovate-subtrigonal species, with more or less pointed, undistorted 
beaks, a comparatively small ligament area, a nearly flat upper 
valve, and a shallow lower one. In the latter the ligament area 
has a rather deep, mesial furrow, while the corresponding ridge 
in the area of the other valve is usually quite prominent at its 
inner end. The surface of both valves is only marked by dis- 
tinct, more or less imbricating lamine of growth. 

I have had specimens of this species under consideration, 

among the collections brought in by different exploring parties, 
for some years past, but I have never been able to arrive at a 
satisfactory conclusion in regard to it. It seems to be related 
to O. Idriaensis and O. Breweri of Gabb, but 1 am by no means 
sure that it belongs to either of them. If distinct, it may be 
called O. Wyomingensis. 

3. Osirea (fragments); mouth of Warm Spring Creek. 

4, Anomia ? gryphorhy yuchus, Meek; Point of Rocks, Wyoming. 

Shell small, rather thin, not very distinctly pearleaceous, 
ovate to suborbicular in outline. Upper valve, very convex and 
evenly rounded; beak marginal, prominent (the whole valve 
tapering toward it), and curved upward; surface, smooth, or 
sometimes showing faint traces of radiating strie; muscular 
impression, very obscure ; lower valve unknown. 

This little sheil rarely attains more than three- quarters of an 
inch in length, with a breadth of about 0.69 inch, and a depth 
of 0.33 inch. ‘Some examples are proportionally wider and less 


376 GEOLOGICAL SURVEY OF THE TERRITORIES. 


convex. Iam not sure that itis a true Anomia, as its form is 
rather unusual for a species of that genus, being more like that 
of Ostrea or Gryphwa, to one of which it may possibly belong; 
in which case the valve I have described as the upper would be 
the lower. I should have referred it to one of these genera, but 
for the fact that it seems to be entirely without a cardinal area, 


and the casts of the interior show no traces of the muscular . 


cicatrix, usually so well defined in those genera. It is quite 
common, and all the specimens are convex valves. 

5. Inoceramus (one or two species); Coalville, Utah. 

6. Inoceramus (somewhat like J. problematicus) ; between Evanston and 

Fort Bridger. 

7. Cardium curtum, M. & H.; between Evanston and Fort Bridger. 

8. Cardium pauperculum, Meek ; Medicine Bow, Wyoming Territory. 

9. Corbula?; Coalville, Utah. 

10. Euspira? : Coalville, Utah. 

11. Melanopsis? ; Coalville, Utah. 

12. Potamides?; Coalville, Utah. 

13. Goniobasis Coalville, Utah. 


There are seul other univalves and some bivalves in the collection 
from Coalville that appear to be marine and brackish water types; but 
as they are imperfect specimens, imbedded in a hard, gritty matrix, I 
have not had time to work them out so as to determine their affinities, 
and. consequently have not included them in the list. 


TERTIARY SPECIES. 


pe 


. Corbula pyriformis, Meek; Bear River City, west side of middle fork 
of Warm Spring Creek. 

Corbula Engelmann, Meek; Bear River City. 

Unio priscus, M. & HO. 

Unio Dane, M. & H.2; Fort Steele, Wyoming Territory. 

Corbicula ( Veloretina } Durkeet, Meek. 

. Viviparus (Campeloma) macrospira, Meek. 

. Pyrgulifera humerosa, Meek. 

. Planorbis (Menetus) ; Bear River, 3 miles from Soda Springs. 


The condition of most of the fossils enumerated in the foregoing list 
is such, that from a mere preliminary examination, it is scarcely possible, 
in a majority of cases, to do more than refer them ‘to their proper genera. 
The Carboniferous forms are especially difficult to make out, the speci- 
mens being generally in a fragmentary condition, and imbedded i in a 
very hard matrix that renders it almost impossible to work them out. 
With a few exceptions, however, all of the collections can be referred 
with confidence to their proper geological horizons. 

The occurrence of Halysites catenularia in some of the lower beds at 
Box Elder Caiion, for instance, shows that some of these beds belong to 
the Silurian system ; while those referred to the Carboniferous are such 
types as are alone found i in rocks belonging to that period, with possibly 
the exception of a few from a locality half-way between Mantua and 
Cache Valley, which may prove to be of Devonian age, though I think 
' them more probably Carboniferous. The larger portion of these Car- 
boniferous forms also seem to be most nearly allied .to species found in 
the upper members ,of the Lower Carboniferous of the Mississippi 
- Valley; but some of them, particularly the Polyzoa, are very closely 
allied to forms found in the Goal- Measures in some of the Western States. 

The Jurassic fossils in the collection are not numerous, nor in a very 
good condition, but they can readily be connected by the presence of 


OD 1S Or O9 bo 


GEOLOGICAL SURVEY OF THE TERRITORIES. at 


Camptonectes bellistriata, with beds at the Red Buttes on North Plaite, 
and near the southwest base of the Black Hills, containing well-marked 
Jurassic forms ; while the other forms found associated with this Camp- 
tonectes are quite unlike species found in any other than the Jurassic 
beds of the far West. 

The Cretaceous fossils of the collection are, like the others, generally 
in a bad state of preservation. Those from Coalville, however, are quite 
interesting, because they come from very near the junction of apparently 
the Upper Cretaceous and the Lower Tertiary, and seem to consist of a 
mixture of Cretaceous and Tertiary forms, or at least of species most 
nearly allied to forms belonging to these horizons; while a few of them 
appear to be fresh and brackish water types, directly associated. with 
Inoceramus, Ostrea, Anomia, Huspira, or Natica, and other marine types. 
The univalves are unfortunately too much broken and imbedded in the 
hard, gritty matrix to show clearly the forms of their apertures; but some 
of them seem to resemble very closely species of Goniobasis found in the 
fresh-water Tertiary beds of that region. These, however, may possibly 
prove to belong to some marine genus. There are also among them 
some very imperfect specimens that have much the general appearance 
of Melanopsis, and a bivalve very like Corbicula cytheriformis, M. & H. 
Without a more careful study,.and the devotion of more time to work- 
ing these specimens out of the matrix than circumstances will just now 
permit, it would be unsafe to speak positively in regard to the affinities 
of the species that do not seem to be strictly marine types. If any of 
them are fresh or brackish water forms, of course they must have been 
carried by streams, or other agencies, from their proper stations, and 
deposited in neighboring bodies of salt-water in which the marine forms 
lived and died. It might be urged, however, that the deposit is really 
a brackish-water Tertiary formation, of the earliest Hocene age, and that 
the Cretaceous. marine forms belong properly to accidentally inter- 
mingled fragments of Cretaceous beds. The nature of the matrix and 
the exactly similar state of preservation of all of these fossils, as well as 
the proportionally larger number of the marine species, seem to me to 
show that they really belong to one and the same geological formation 
and lived at the same time. ; 

-I can see no good reason why there might not have been living in the ( 
streams and estuaries of the closing period of the Cretaceous age, and \ 
while Cretaceous types were still existing in the seas, a few fresh and \ 
brackish water species that continued to live and multiply during the 
earlier part of the Tertiary age. It is evident, however, from these and 
other collections brought by Mr. King from these beds, that there is a | 
gradual passage from the Upper Cretaceous into the Lower Tertiary in | 
this region; and that, unless the fossils from each subordinate seam or | 
layer are kept carefully separated, and very minutely detailed local see- 
tions are taken, it will not always be easy to determine, at localities 
where the two groups meet, exactly where the line should be drawn | 
between the Cretaceous and Tertiary; or, in other words, to separate, | 
in all cases, the Cretaceous from the Lower Tertiary forms collected at 
such places. 

All the undoubted Tertiary species in the collection are fresh and 
brackish water types of the oldest Eocene age, being species previously 
known from rocks of that age in this region. 

In addition to the few new species that are here indicated, there are 
some other undescribed species in the collection that I have not yet had 
time to study with sufficient care to determine their affinities; and 
these have been left for future consideration. | 


| 


Nh MOG e be kote 


vith tae 


ie 


ae) 

eg a 
pit UN 
Huauets 
Aes 


eA yt EN 


ZOOLOGY AND BOTANY. 


I.—ZOOLOGY. 


IL.—NOTICE OF SOME WORMS COLLECTED DURING PROFESSOR HAYDEN’S 
EXPEDITION TO THE YELLOWSTONE RIVER IN THE SUMMER OF 
1871.—By Pror. JosEPH LrtIpy. 

IJ.—COLEOPTERA.—By GronrGe H. Horn, M. D. 

Ill.—NOTICES OF THE HEMIPTERA OF THE WESTERN TERRITORIES OF 
THE UNITED STATES, CHIEFLY FROM THE SURVEYS OF DR. F. V. 
HAYDEN.—By P. R. UHLER. 

IV.—NOTES ON THE SALTATORIAL ORTHOPTERA OF THE ROCKY MOUNT-— 
AIN REGIONS.—By Pror. Cyrus THOMAS. 

V.—LIST OF SPECIES OF BUTTERFLIES COLLECTED BY CAMPBELL CAR- 
RINGTON AND WILLIAM B. LOGAN, OF THE EXPEDITION, IN 1871.— - 
By W. H. EpWarpbs. 
VI.—REPORT ON THE RECENT REPTILES AND FISHES OF THE SURVEY, 
_ COLLECTED BY CAMPBELL CARRINGTON AND C. M. DAWES.—By E. 
D. Corr, A. M. . 


Il.—BOTANY. 


VII.—CATALOGUE OF PLANTS.—By Pror. THOMAS C. PORTER. 
VIIL.—MUSCI.—DETERMINED By LEO LESQUEREUX, Esq. 


Bee wearisncars auiard  eyce pari Hay SINGS hatasy 
Mansi e eel Ee AC eP Catal Oe ee A RY cae CVI 
Rag aks Nanette AS SUE Gy take ene, casei ahh es, 

7. ae ee hee ote We Betula vie aan ea eer aaa 

: sg AST ay ee a 
RU ABE { 


TAL ee ea) Fo See Ebel 


CURT PE yt a, £, 


ZOOLOGY AND BOTANY.» 


NOTICE OF SOME WORMS COLLECTED DURING PROFESSOR 
HAYDEN’S EXPEDITION TO THE YELLOWSTONE RIVER IN 
THE SUMMER OF 1871. 


By Pror. JOSEPH LEIDY, OF PHILADELPHIA. 


_ Among other interesting observations and discoveries made incident- 

ally to the chief ones of Prof. Hayden’s recent geological explora- 
tion of the country of the head-waters of the Yellowstone River, he re- 
ports that the Trout, which abounds in Yellowstone Lake, is greatly 
infested with a species of tape-worm. A number of the worms were 
collected by his assistant, C. Carrington, and submitted to my exam- 
ination; but, unfortunately, the abundance of specimens placed in 
alcohol so much diluted it as to cause the decomposition of nearly all. 

In Mr. Carrington’s notes accompanying the specimens, he observes 
. that the smaller worms were contained in cysts adherent to the exterior 
of the intestines, but the larger ones, up to six inches in length, were 
found imbedded in the flesh. From five to fifty of the parasites were 
found in a fish. When numerous they appeared to affect the health of 
their host, and the fishes most infested could generally be told by their 
duller colors, meagerness, and less activity. Mr. Carrington also states 
that the trout is not infested in the same manner in the Yellowstone be- 
low the upper falls. 

Among the specimens submitted to me were several 
of the worms inclosed in oval sacs imbedded in frag- 
ments of flesh. The sacs having remained unopened \N 
preserved the contained parasite from the general de\W=—) 
composition of the others, so as to enable me to ascer- © 
tain its character. It belongs to the genus Bothrio- ' 
cephalus, or rather to that section of it now named 
Dibothriwm. Two species have long been known as 
parasites of the Salmon and other members of the. 
same genus of fishes in Hurope, but the tape-worm of 
the Yellowstone trout appears to be a different one. 

Two of the best preserved specimens of the tape-worm 
measure five inches in length by a line in width at the 
broadest part. The head, almost a fourth of a line in 
diameter, is obcordate, as represented in the magnified 
figures subjoined. The two bothria, or suckers, are thick 
and discoidal, placed back to back, obcordate in outline, 
and directed with their broad and slightly depressed 
surface toward the margin or narrower diameter of the body. The 
body is flat, thick, with rounded margins, and is narrowly annulated. 
The annulations appear due to muscular bands, and number about ten 
to the line. If other segments, exist, independent of these annula- 
tions, as a character of the worm, the condition of the specimens does 


382 GEOLOGICAL SURVEY OF THE TERRITORIES. 


not allow of their distinction from transverse fractures at irregular | 
distances. No genital apertures could be detected at the sides or at 
the margins. Internal organs of any kind could not be seen, but the 
soft interior tissue of the body is filled with round corpuscles re- 
sembling in appearance starch-granules. These proved to be com- 
posed of carbonate of lime, as they were completely dissolved by 
acetic acid, with the evolution of carbonic acid. From the shape of the 
head this tape-worm might appropriately be named Dibothrium cordiceps. 

A multitude of leeches were collected during Prof. Hayden’s ex- 
pedition, by two of his assistants, Messrs. Carrington and Dawes, from 
a lake in Wyoming Territory. These appear to belong to the species 
discovered by the writer several years since in Twin Lake, Minnesota, 
and described under the name of Aulastomum lacustris, in the Proceed- 
ings of the Academy of Natural Sciences of Philadelphia for 1868, p. 
229, The same leech, I think, I also saw in Lake Superior. 

Mr. Carrington informed me that the head of a horse thrown into the 
lake from which he obtained the leeches, in a few hours appeared black 
from the number of them which adhered to it. 

- Thomas Say described two species of leeches obtained during Long’s 
expedition, from small lakes on the high land between Lake Superior 
and Rainy Lake. These leeches, named Hirudo marmorata and H. late- 
ralis, in neither case agree in character with the Aulastomum lacustris. 

Several large hair-worms obtained from Fish Creek, Montana, are of 
the same species as that described from specimens obtained in Kansas 
by Dr. W. A. Hammond, upward of twenty years ago. These pertain 
to the largest known Gordius. The female is pale-brown; the male is 
dark-brown and has a strongly forked tail. The females of the Kansas 
specimens ranged from 10 inches to 24 feet in length ; the males from$ 
inches to upward of 2 feet. The females of the Montana specimens 
measure from 1} to 24 feet in length ; and a male measures 84 inches in 
length. The species, under the name of Gordius robustus, is described in 
the Proceedings of the Academy of Natural Sciences of Philadelphia, 
for 1851, p. 275, and 1857, p. 204; and in the second volume of the 
American Entomologist, p. 194. 


COLEOPTERA. 


By Gxo. H. Horn, M. D., PHILADELPHIA. 


In accordance with the request of the chief of the geological survey, 
Dr. Hayden, the following list of Coleoptera has been prepared. The 
specimens were collected for the most part by Mr. Cyrus Thomas and 
other members of the survey from June 1 to July 6 of the present year, 
over the following route: Starting from Ogden, Utah, through the 
Salt Lake Basin, by way of Brigham City, Box Elder Creek, Copen- 
hagen, and Cache Valley; thence out of the Salt Lake Basin to Port 
Neuf River and Port Hall by way of Oxford and Marsh Valley; thence 
up the Snake River to near Henry’s Fork; thence by Market Lake 
and Kamas Creek to the mountains between Idaho and Montana 
and to Virginia City, in the latter Territory. On reference to the 
map it will be seen that the route thus incloses an oblong space, inter- 
mediate between the faunal regions of Oregon and theplains to the 
eastward of the Rocky Mountains. As might be interred from the 


t 


GEOLOGICAL SURVEY OF THE TERRITORIES. 383 


geographical position of the region, the species were a mixture of 
those from Oregon and those from the plains, the great mass being 
those more common in the latter region. A few years since a collection 
was made by Mr. Gabb, of. the California geological survey, from Fort 
Klamath, Oregon, to Boise City, Idaho, completing with the present 
series a line from the Pacific to the plains. We are thus enabled to 
trace the distribution of various species and their varieties. As is well 
known to all collectors, various species of Hleodes occur in great num- 
bers in all parts of the west of our continent, and the species themselves 
occur over a wide range of territory, and are not limited, as might be 
inferred from their apterous condition, to regions of small extent. As 
we pass from east to west over a given line, we find variations of aver- 
age temperature, and of course great differences in altitude. These two 
causes, combined with, of course, the botanical changes, have tended 
to produce variations from a given type to a greater or less extent. 
Hleodes obscura, Say, affords a beautiful illustration of the extent to 
which this divergence may be carried. As a general rule I find, not 
only in Hleodes, but also in many other genera, that the bigher the ele- 
vation or the colder the climate the rougher and more deeply sculptured 
is the species. The smoother forms of H. obscura may therefore be ex- 
pected in the southern regions in which it occurs; for example, var. 
dispersa is New Mexican, ely tra with scareely any traces of strize; var. 

obscura, elytra: distinctly. suleate, but not deeply, is from Colorado and 
Southern Idaho. As we advance to the west the elytra are more deeply 
sulcate, as in var. arata, while var. sulcipennis, from nearer the Pacific 
coast, has deeply sulcate ‘elytra, with very convex interspaces. The same 
variation of sculpture occurs in Calosoma luxatum, Say, which starts in 
Colorado with comparatively smooth elytra, until in Vancouver we find 
the elytra covered with lines of granular elevations, forming the variety 
known as C. pimelioides, Walker. The two extremes of each series above 
noted appear to differ widely from each other, and to be entitled to 
rank as distinct species. In the foregoing remarks reference only has 
been made to variations within specific limits. The same law appears 
to hold between different species. In the genus Omus the most roughly 
sculptured species occurs in Washington Territery, (O. Dejeanii, Reiche,) 
and the smoothest (0. levis, Horn) from neat Visalia, California. The 
object of the preceding remarks i is to explain what appears to be a law 
of variation for our western slope, and thus cause the unnecessary mul- 

tiplication of species, founded on slight characters, to be avoided. 

Species everywhere in our fauna appear to be distributed on lines of 
country presenting as nearly as possible similar meteorologic conditions. 
Thus many Oregon forms extend southward into California, gradually 
Seeking a higher mountain habitat as the region becomes warmer. Two 
species illustrate this—Trag gosoma Harristi and Phryg yganophilus collaris. 
Both extend their habitat from Maine to California, following the cooler 
regions westward from Maine through the Canadas and “Red River 

region, thence northward nearly to Sitka. From the latter point south- 

ward to Oregon both oceur at ordinary level, and rising as a more 
southern region is reached until at the latitude of Visalia they oceur 
only a short distance below the snow-line, at an altitude of from ten to 
twelve thousand feet. 

From Southern California species have extended along the - desert 
regions bordering the Colorado River to Utah. Two instunces are pre- 
sented i in the collection just examined—Calosoma semileve and Aniso- 
dactylus piceus. Species advancing from the region just cited cannot be 
expected to cross the Rocky Mountains. Our common Harpalus caligi- 


384 GEOLOGICAL SURVEY OF THE TERRITORIES. 


nosus extends westward over all obstacles until the base of the Sierra 
Nevada is reached. It has not yet occurred in California proper. 

Owen’s Valley, California, affords species of an Arizona origin as well 
as several sea-coast species from the San Diego Og, comparatively 
few new or peculiar species occurring. 

As might be expected each new region visited yields new Meloide, of 
the genera Hpicauta and Lytta; in fact, each species of Astragalus has 
its peculiar Lytta ; and wherever any of that genus of plants is found in 
flower, an accompanying vesicant may always be looked for. 

One region of Arizona remains to be carefully explored, and good 
results may be expected in every branch of natural history. This is the 
elevated pine-growing region near Fort Whipple. The insects that 
have been collected indicate a temperate fertile region; and one, too, 
that is almost completely surrounded by desert and very hot valleys. 

One gratifying fact may be noticed in the present collection. The 
progress of Doryphora decemlineata is not westward; and while eastern 
agriculturists view with great apprehension the steady and sure advance 
of that insect toward the Atlantic, none appear to have crossed the 
mountains to the west into the fertile valleys of the Salt Lake Basin. 
This enemy of the potato-plant is now, 1871, in Canada, north of Lake 
Erie, and from its known rate of travel farmers of the Atlantic slope 
may expect this new enemy in two or three years. 

The following list contains the species collected by tlie various expe- 
ditions under Dr. Hayden, and although not very large is as much as 
can be expected when the great labor in other departments is consid- 

ered: 
After the name of each species, at the end of the line a letter is found 
indicating the name of the locality, as follows: K., Kansas and west- 
ward to Rocky Mountains; U., Utah; I., idaho; M., Montana; C., Cali- 
fornia; O., Oregon; I. T. Indian Territor y; N. M., New Mexico ; N,, 
Nevada. Where an asterisk (*) is placed after a name, it shows it to be 
very widely distributed. 


CICINDELIDZ&. 

Amblychila cylindriformis, Say ....--.-K. | Cicindela terricola, Say...-.--..----- K.C. 
Megacephala virginica, Dej .---.--.--- K. Cuprascens, secre a= eee eee K. 
Cicindela formosa, Say..-.------------ IK macta, Wet ae52 sates.) ee K. 
ODSOLetAN Saye see ane ee eee fulsida Saye sect eer see Ke 

PUlChia; Saver see sees. K.: punchulatasHalyysseee see neee i 
MiomtamaWecese sae ne ase ~L cireumpicta, Perté....-..--1. T. 
splendida, Hitz..-........- K.1. celeripes, heey lye paneeeeeee K. 
Repanda, Wels ee aera U. cursitans (Ueci ee ee eee Ke 
12 oubtata. Wel ese ee so sera n decemnotata, Say -...-..--.-M. 
purpuren, OLE se eee meer o Mulearis, Saye. se fee. sees = 
16-punctata, Klug...--.-..-- M. 

CARABIDZ. 

Elaphrus ruscarius, Say...-------------1. ; Omophron americanum, Dej..-.-.....-K. 
californicus, Mann.--..-.-. K. C. mute my alh eG ae eels a eter K. 
Carabus serratus, Say------..--------- K. | Pasimachus validus, Lec .-.-.-...----- K. 
LEO BI IIS JUS) J3 Sosa soSecolsoec If elongatus, Lec .5...-.----. K. 
Calosoma semileve, Metres viet o2)s 26 (Ul obsoletus, Lee -...-..----- K. 
haydenii, Horn.----..----- Col. | Scarites subterraneus, Fab ...--.------ K. 
lagen rum meceeen ees. - 4.) M. | Clivina bipustulata, Dej .....-..------K. 
zimmermanni, Lec.-..---- I. M. POshicat, Dele seer sees K. 
CCnibGloniny Woo cosesasas aade K. ferrugimea, ects. ee see K. 
scrutator, Hab..2---)---£--)-- K. | Aspidoglossa Subangulata, Beckie eee K. 
obsoletum, Say--..----~--~- K. | Dyschirius suleatus, Tech Mites 340s K. 
briste, dee shy tase ese K. spheericollis, Lec-..2-2522e K. 
GQaieranOhen, SAysasoesee ssa ce K. | Brachinus cordicollis, Dej. .-----.-----U. 


Cychrus elevatus, Fab......---.------ K. kansanus, Lec .... - ek aS K. 


2068 


GEOLOGICAL SURVEY OF THE TERRITORIES. 385 
Brachinus cyanipennis, Say-..---...-.K. | Geopinus incrassatus, Dej .-.. -------- K. 
Helluomorpha laticornis, Lap.-....-.-.. K. | Piosoma setosum, Lec -.-. ---.:--.2--- K. 
Galerita atripes, Lec-..-..-.---....--. K. | Cratacanthus dubius, Liee x2). see seyret: K. 
Lachnophorus elegantulus, Mann ....C.K. | Agonoderus lineola, Dej .....-.--. -.-- K. 
Casnonia pensylvanica, Dej ---...----- K, pallapes,; Dey 22 see. aaa K. 
Lebia viridipennis, Dej ..---.....-.-.-- K. | Harpalus caliginosus, Say..........--. ie) 
NATTCIS SAV eaeinie =\,a.5.0 leciomicjetet K. amputatus, Say ..-....--..- K. 
UMMA Mesos ews sca ee cae rotundicollis, Kby .......-.. K. 
bivittata, Hab )s2- 25. j3o 0.2). 256 K. pensylvanicus, Lee 2 ssaeeee 
OUANGIS PENG Zg eer a,c sec eime cee ale K. compar, Lee ..2-.-2---2. 22.5 ‘ 
Blechrus linearis, Schaum.---..-...---. K. stupidus, Lec. .-.--...-....- K. 
Axinopalpus biplagiatus, Lec----...---. K. nitidulus, Chaud..--..-.--.. K, 
Glycia viridicollis, . Wee sees east eer Ns Ven Uralisi Mle Giese eh 32.) oee K. 
PULpUTeAMueC-); 62525. too. eee N. MUM ESUUS, WUC Ate Seve ke K, 
Cymindis laticollis, Say ....-.-.----.- ‘K. fraternus, Lec ---..--.....-- U. 
cribricollis, Dej -..---.----- K. lewisii, Lec--.. - Pee aaa U. 
eribrata, Lec......-..-.---- K. obesulus, WEG s agses Cease se M. 
PUOsa, Cay wees @ tte see eine K. | Selenophorus pedicularius, Lec’-....--. K. 
wetlewa Wee senses veuecene at M. COLCUS MUCC Eee acca ee nee K. 
Calathus gregarius, Dej....--...-----. is ellipticus, Lec. -_.-..-2-. K. 
Platynus extensicollis, Lec............ * | Discoderus parallelus, Lee ......-.-.... K. 
deplanatus, Lee --...---.----I. tenebrosus, Lec..-..-.----- K. 
punctiformis, Lec ----.-.----. K. | Spongopus verticalis, Lec --....----..-K.. 
nutans, Lec.......---.-.----K. | Xestonotus lugubris, Lec. .....--..--.- K. 
chalceus, Lec .----.--/- 2/55% K. | Anisodactylus rusticus, Dej.--.-------- K. 
picipennis, Lec .......---..- K. pinguis, Lec. ._--. -.2-- K. 
Pterostichus caudicalis, Lec...-...-.-- K. agricola, Dej ----.------ K. 
mutus, Say.------.------ K. baltimorensis, Dej .----- K. 
scitulus, Lec.........---- K. Coens, Dei eesaseeos. K. 
cyaneus, Lec .......--.-- K. piceus, Men ...-.--.-2-. U. 
chalcites, Say......---.-. i pitychrous, Lec ---.-----I. 
atratus, Lec........-.-.- U. alternatus, Lec .....-...N. 
adstrictus, Esch ..-......- I. | Eurytrichus terminatus, Lec .......-.. K. 
lucublandus, Kby..-.....K. | Stenolophus ochropezus, Dej ...--.--.- K. 
bicolor Wee soos) oc eee K. dissimilis, Dej .,.--..--.--K. 
Amara laticollis, Lec .......--......---U. | Bradycellus badiipennis, Bidemekias spa) K. 
POTUIVA SAY, ose camieie ecient ae K. rupestris, Lec .:.-.5..--2- K. 
augustata, Say ...-...----.-.-. K. | Bembidium punctatostriatum, Say -...K. 
impuncticollis, Say ..--...--.-. M. levigatum, Say...--.-.--- K. 
ODESA SAY cis sales stowleysewere's <1015)s U. nebraskense, Lec.-.-..-..- N. 
interstitialis, Dej .---..-..-.--- M. coxendix, Say ..---.-----. K. 
terrestris, Mee so. 5- = =. <2 -f ee americanum, Dej..---..-.- K. 
musculus, Say ..-.-.....--.--..K. ' dorsale, Say.----. ---5---- K. 
Chiznius tomentosus, Dej -.-.----.-.--- K. patrucle Dele esa aetosa. K. 
sericeus, 1 oe fee de pictumy hee. 524 552. series K. 
BERRY ALIEDE, BY uieicslcicicws = 4 quadrimaculatum, Gyll..-Is. 
Vater We Chee see eien 2 ola APTI OFS Ue ye ote tet ee K. 
nebraskensis, WE CUR Se + <3 U. nitidum, Lee ---.--..---.- K. 
Qodes amaroides, Dej .-..-.----.---.-.K. | Tachys vivax, Lec ..----.---...-2--.-- K. 
Dicelus levigatus, Lec..-.-..-.-...--K. INCULVUS, ec Bee ue eee K. 
splendidus, Say-.-..-----.---- K. dolosusy Leese ok K. 
sculptilis, Say ---.--..-------K. corruscus, ee 22222522225. 222 K.. 
Diplochila laticollis; Lieve ss 922... -. K. inornatus, Lee ..-_-..-.-2.2-.- K. 
Nothopus zabroides, Theres: CL ie I. flavicauda, Lec 2:2. ..-22222..- K. 
DYTISCIDH. 
Haliplus fasciatus, Aube ....-...-...--. K. {| Agabusclavatus, Lec.---...---..----- K. 
immaculicollis, Harris -..-..- K. obliteratus, Lec -...-.-------. Ee 
Hydroporus punctatus, Aube -......-.- K. teniolatus, Lec ...--.-.-.---- K. 
JaCUStRISSavaseee a eos K. And several undetermined species. . 
semirufus, Lee -.-.--. .--.K. | Colymbetes binotatus, Harris. -........ AE 
catascopium, Say .-.-----: seminiger, Lec......----. Us 
patruelis, Thee iisrgeaiab ese K. sculptilis, Kby-.-..--.--- yl 
pubilis, ee -suzeae-.. -- 5. K. exaratus, Lec..-.-- Cea ine K.. 
discoideus, Lec -..--...-.- K. | Acilius ornaticollis, Aube. .........--.. Kee 
Laccophilus maculosus, Say.----.-.-.. K. | Eunectes sticticus, Hr.....----. 22-2. kK 
americanus, Aube..-.-... K. | Cybistes fimbriolatus, Say---..--- ester 
Coptotomus interrogatus, Say.-....-- K. explanatus, Lec...----..---- U 
longulus, Lec...--.....-. K. | Dytiscus marginicollis, Lec........--.N.- 
Copelatus glyphicus, Sayease Sones K. harrisii, Kby.---.-....+- ee) 


386 GEOLOGICAL SURVEY OF THE TERRITORIES. 


GYRINIDZ. . 

Dineutus discolor, Aube. .....----.--.- K. | Gyrinus consobrinus, Lec ..-.--: - Ve eae: 

Gyrinus picipes, Aube.....-...----.---- I. 

HYDROPHILIDZ. 

Helophorus linearis, Lec....-.....----- K. | Hydrophilus sublevis, Lec-..-.-....----. K. 
lineatus, Say ..-----.---.- K. glaber, Hbst- dhasectaseete * 

Laccobius agilis, Lec....-..----------- K. ‘Philhydrus nebulosus, Lec-.......-.--- K. 

Hydrena pensylvanica, Kies..-...--.-- diffusus, Lec. ..---..------- K. 

Berosus fraternus, Lec..-.....--------- K. perplexus, Lec..-......-----K. 

Hydrophilus triangularis, Say.-...----- ‘ cinctus, Lec ...........---.K. 
lateralis, Fab ..---..----- K. Hydrobius subcupreus, Lec...-.-..---.U. 

SILPHIDZ. 
Necrophorus mediatus, Fab........-.- .K. | Necrophorus velutinus, Fab........--- K. 
marginatus, Fab ......-.- K. | Silpha lapponica, Hbst .-.--..----..--. = 
melsheimeri, Kby .------- K. truncata, Say.-----.-----.----- K. 
pustulatus, Hersch....-..K. peltata, ecy ea -- ees s= meee Z 
orbicollis, Say.--.---.---- K. ramosa, Say---------------0--- K. 
hecate, Bld....:...-...--- K. | Agathidium exiguum, Mels............ K. 
PSELAPHID 2. 

Tyrus humeralis, Aube.........--.--.- * | Bryaxis rubicunda, Aube...-..-.-.----- x 
PHALACRID Zs. 

Phalacrus penicellatus, Say ...-..-.--- K. | Olibrus pallipes, Tet eel vo eee K. 

simplex, Lec .......-.------ K. 

STAPHYLINID A. 

Falagria venustula, Er........-------- K. Peederus compotens, Tee Bre SU N. 

dissecta; Hrs eo oes See: K. | Lithocharis confluens, Er---..---..--- K. 

Xantholinus obscurus, Er -...--..--.-. K. | Euesthetus americanus, a a2 aes K. 

Staphylinus villosus, Grav-..--..----. | OSbONUS CHeNUG, Mirae ee wactem san eee eee K. 
cinnamopterus, Grav..---- . flavicornis, Er..........-....-- K. 

Philonthus hepaticus, Er. : punctatus, Hr.....--....-......K. 

And several undetermined species. Two undetermined species. 
Acylophorus flavicollis, Sachse .....-.. K. | Bledius pallipennis, Say ...--.-..-.-..- K. 
Sunius longiusculus, Er.....----...--.- K. | Osorius latipes, Hr.-.--....--.-.-.---- K. 

binotatus, Say .-.--...---..--- K. | Anthophagus brunneus, Say..---.-...- K. 

_ Pederus littorarius, Grav. ....--..---- K. | Glyptoma costale, Er-.....-...---..--. * 
HISTERIDZ. 

- Hololepta fossularis, Say’..---...-.----- K.) || Buster lecontei, Lect -22 50-3222 eeeeenee N. 

lucida, Lec ..-...----..----- K. parallelus, Say.---------.------ N. 

populnea, Lec .......------- N. | Saprinus, lugens, ire =o-aeeeeee eee a 

» Hister instratus, Lec..--...----.------ K. spurcus, Lee .....---...----- K. 

biplagiatus, Lec. ......-...----.K. pratensis, ec. .--.---.-.---. K. 

gloveri, Horm .--...--:.---.---- K. patruelis, Lec......-....---. K. 

(Uiker, Horns.) sccseteisisin cncisiee K. otiosus, Lec....-.----. RUE Re. 

depurator, Say..---.---.-.----- I. | Plegaderus transversus, Lec....-.-..... K. 

americanus, Payk ......-..----- K. nitidees, Hom ..........-.- N. 

subrotundus, Er-...-- Kecaceiee K. fraternus, Hom ........---. N. 

carolinus, Payk.....-..----.---- me Actitus exiguus, Lec.-....-..---.------ K. 
NITIDULID. 

cae: caudalis, Lec..-...-.---.. K. | Phenolia grossa, Hr....-....---..-.--- K. 

apicalis, Lec ...---..----- K. | Melegethes ruficornis, Lec..--...------ K. 

-  carbonatus, Lec...-...--- K. sevus, Lec..-------..---- .K.- 
pallipennis, Lec.....-.-.- K. | Pocadius helvolus, Er................ -K. 
Epurea rufa, Er..-.-.-..----------+---- K. | Pallodes silaceus, Er..........-..----- K. 
Nitidula ziczac, Say-..-.-.-.----.------ K. | Ips sanguinolentus, Al......-.---..-.-- K. 
uniguttata, Mels -...---.----. K. quadrisignatus, Say .....-.--...--- K. 


‘ Omosita colon, ire sect Heeewsawbes sone “ cylindricus, Tieeseaca mesic cous eed Ne 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


TROGOSITIDA. ; 
Temnochila virescens, Er..--...----. -K. | Trogosita corticalis, Mels..........-.-. K. 
Trogosita castanea, Mels ..-.-...-.....-K. 
CUCUJIDE. 
Lemophleus biguttatus, Mels-...--.-. K. | Pediacus planus, Lec...-....-.....---- N. 
Brontes dubius, Fab.......--.-.-...-. K. | Catogenus rufus, Fab-:......-.......- K. 
Silvanus planatus, Germ.......-.-.-.. K. | Cucujus puniceus, Mann.-............ N. 
dentatus, Say...-.-.--.------ K. clawipes, Fab). 2.{...8225. 228 K. 
‘ COLYDIIDA. 
Bothrideres geminatus, Er.-..-....--.. K. | Cerylon castaneum, Say....-.---.----. K. 
DERMESTIDZ&. 
Dermestes marmoratus, Say.----:------ * | Dermestes mannerheimii, Lec.......... N. 
TOUS, SEAS Soo oe sae ere deos K. | Cryptorhopalum apicale, Munn.........I. 
caninus, Germ..---.-.-.---- Ke) Anthrenuslepidus ects 22222222 N. 
elongatus, Lee........-.--.- K. | Orphilus subnitidus, Lec......-........1. 
vulpinus, Fab...---.---.-.-. 3 
PARNID ZS. 
Helichus striatus, Say. ..---..----.---- Ke. ||) Blmis) elaberdlom pon! 22. Ar. 
GEORYSSIDE. 
Georyssus pusillus, Lec.---.:.----.---- K. | Georyssus, new species...-...-.-.. Cal. N. 
LUCANIDZ. 

Platycerus quercus, Sch-......----.---. K. | Lucanus dama, Humb ...........: SOR 
Dorcus parallelus, Burm-.----.-.-...-- K. lentipWapseca tes jameson K. 
SCARABAID A. 

Geotrupes opacus, Hald-....-... eer eces ier) Atieenins: pracilis. Saye asesemeae ny aaeees ” 
Odontzus filicornis, Say..----..-..---- K. | Hoplia laticollis, Lec ..............-.. K. 
Bolbocerus farctus, Kl...--..-.-------- K. | Macrodactylus augustatus, Lec.......- K. 

WoW ZamUs Ke owen tees ee ee KG) Serica) sericea, umm) ja seein see eee K. 
Canthon levis, Mels...--..----..----- K. vespertina, Dej...---...--...-.- K. 
chalcites, Mels...-....--.---- K. Tobusta, wee Hs ait eie aah. sap ae N. 
vigilans, Lece..--.-...-...-..-. K. curvabawlec Haasan oo) K. 
ebenus, Mels:....:.-.....---- K. | Dichelonycha truncata, Lec.---..-.... K. 
nigricornis, Mels....-:..----- K. | Diazus rudis, Lec..........2--22-222-.. K. 
praticola, Lect. 2.5.22... .2.. K. | Diplotaxis obscura, Lec...........--.. K. 
VARICHISs Mel avon mel sits eer oie eae K. fondicola, ec aese ser ae eee K. 
Onthophagus orpheus, Panz....--.--.- K. truncatula, Lec........--.. K. 
latebrosus, Fab. ..-.---. K. morula, Lee ....--.-.......K. 
Evan eus. Carnitex, Meh iessl0 2... 5-2 i subangulata, Lec. .....---- N. 
triangularis, Lee.....-..:.-- K. THNOXIa, eC Asem ee eae K. 
Copris anaglypticus, Say---.-----.---. K. had enti ec as ene sys eae K. 
; AMATO I yR AD Sy eres ee Se K. One new species. 
Ochodeeus musculus, Lec.---..---.-.-- K. | Listrochelus obtusus, Lec..........-.. K, 
biarmatus, Lec. .---.. Weetb ee K. folsuswiwecweeee Pie. cola K. 
MroxalternmansWWeckee nse enee = ec ae K, fimbripes, Iuee {22222 2.222% K. 
tuberculatus, Olo 22225 .2---. 222 K. And one new species, female. 
SOLdIdUS, WeCn janet eee oe eee. K. | Tostegoptera lanceolata, W..-.-..----. K 
capillaris, Say-------.-......-.--K. | Lacghnosterna frontalis, Lic.-......... K. 
ATOR, eC eeu eee Sota oe K. longitarsis, Lec... ...--. K. 
Scutellariss Sayuasecsese sss wee e= K, AUCMIS EE Sarre ar ries K. 
pustulatus, Lec...--...--....-- node PU CAMMILEG RAS YA aE eae K. 
punctatus, Germ-....--..----....- K. fraterna, Lec -.---..-...- K. 
ermaceus, Tega eee. same oes oe K. rugosa, Lec...---..--.., K 
MOTSUS, We CR wee e eres oi Dene K. affinis, Lec ...---..---..K. 
Aphodius denticulatus, Hald ..---..... K. hirticula, Hope......--- K. 
curtus, Hald.-..-....-..-... K. robusta, Lec..-.--..---.. K. 
PLANATIOS, oy os ee eee K. crenulata, Lec...-...... K. 
Viti atus, Sdysee ose ee nee. K. glabricula, Lee -:-...... K. 
femoralis; Say ee eee K. tristis, Lec. .----....... K. 
CONCAVUS SAY 2. eee K. | Polyphylla 10-lineata, Lec.....-....... K. 
oblongus, Say..--...-.--.---. K. erimitay Wecee ns bse e- oe ae N. 
occidentalis, Horn.......... 1. hammondi, Lee...-........K. 


Atznius stereorator, Fab.............. ts 


Strigoderma arboricola, Burm. 


388 


confluens, Lec ........---..--- K. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


Anomala minuta, Burm ...-.-..--.-.-- K. | Osmoderma eremicola, Gory-.----..... K. 
marginata, Burm ....-...---- K. socialis, Horn ......---. Ariz. 
VATS ME DIRT eyes ela K. | Ligyrus gibbosus, Lec ..---.-.--..---- K. 
Allorhina nitida, Lac ..........--.---. i - relictus, Lec .....-- yo eas K. 
Huryomia inda, Lac...............---. * | Aphonus pyriformis, Lec---.---.-2- 0-2 K. 
melancholica, ae Ba eae K, tridentatus, Lec ....--...---- K. 
sepulchralis, Lac -.----.---. K. | Strategus mormon, Burm ......--....- K. 
ful sidaywlacee ese. cass nee K. | Phileurus valgus, Dej-..---...---.---- K. 
areata, Lac...-.-.---..----- K. | Xyloryctes satyrus, Burm...-......-.. K. 
Kernii,; Wee 2.) 08222322 ee a Cotalpa granicollis, Hald..-...--..---- N. 
Cremastochilus nitens, Lec...-----.---. K. ursina, Horn -:.....---..----- N. 
knochii, Lec ..-.-.. --- oi puncticollis, flee Ns Shas aes N. 
saucius, Lec ....-...-. x. consobrina, Horn..-.---..--- Ariz. 
schaumii, Lec. --.-..-.-.--. x Pelidnota punctata, Burm..-.......---. K. 

angularis, Lec -.-....-. I. 

_ BUPRESTIDZ. 

Ancylochira maculiventris,' Lec. ..--.-- K. ) Chrysobothris sexguttata, Lec......-.- K. 
confluens, Lec...-....---. K. | Dicerca prolongata, Lec...---...-.--.. K. 
subornata, Lec...---.---- K. | Peecilonota cyanipes, Lec. .-----..----- K. 
alternans, Lec .-..-..-----K. | Acmzodera mixta, Lec ..-....---.---- K. 
rusticorum, Kby .....-.---L 4-vittata, Horn.......-.--U. 

Chalcophora angulicollis, Biecessuie ses I. | Ptosima gibbicollis, Lec. .-..--....---- K. 

Melanophila longipes, Lec..---....--.. * | Agrilus bilineatus, Say..---.---.-----. K. 

atropurpurea, Lec ..----- K. latibrus, Lap ...--..--.---.---- K. 

miranda, Lec...--..----- K. polutus; Say sesso s ee eee K. 

fulvoguttata, Lec....-...K. obolinus, Lec. ..---.-22-22-2-- K. 

Anthaxia quercata, Dej.--. .----------- K. lateralis, Saygeasseeeo eee eee K. 

viridicornis, Dej.---.---.-.--. K. | Brachys terminans, Lap ...--.---.-.-- K. 
ELATERIDZ. 

Tharops ruficornis, Lec...-.----------- K. | Monocrepidius suturalis, Lec.-....-.- dee 

Hylocharis nigricornis, Lec..---...-.-.- K. | Limonius auripilis, Lec -..--........-- K. 

Microrhagus triangularis, Lec---..-.--. K. quercinus, Dej .--.-----.---- K. 

Lacon rectangularis, Caud ...-...-.---- K. basillaris, Lec. ....-..-..---- K. 

Adelocera impressicollis, Lec..--...---- K. | Melanotus variolatus, Lec ...--...----- i, 

sparsa, Caud ...---..-.---.-- N. macer, Lee. oe iscscsee scene K. 
marmorata, Germ..---..--.- K. INCexbUs; WueC) seats ee K. 
cavicollis, Lec...---.--------L clandestinus Er ....-...--- ake 

Alaus oculatus, Esch.-...----.---.---- K. Hissilis; eC sas ee eee eee K. 

myops, Esch..-....----.----..-- K. communis, Er.....----..--- 
SOLSOPS CC rane ae nee sas Sala K. cribulosus, Lec ...-....---- K. 

Maja Wee jah etiseeeeess elke e). N. | Corymbites eripennis, Lec-..-. .------I. 
Cardiophorus erythropus, Er..--...-... K. falas MeG | sec) se aes I. 
tumidicollis, Lee -.-...-.-1. glaucus, Hee eines ieee N. 

Cidostethus femoralis, TE a ae K. | Athous cucullutus, Lec.........-.-.-.-K. 

Drasterius marginicollis, Horn ....-.-- N. ferrugineus, Esch ..---.---.---. I, 

Monocrepidius auritus, Germ eases K. | Asaphes hirtus, Cand ...--..-..--.---- K. 

bellus, Germ. ..---.---- K. dilaticollis, Motsch ..-...--.-- K. 

vespertinus, Dej ---.----. K. brevicollis, Cand ......--.---- K. 
TELEPHORIDZ. 

Calopteron typicum, Lec...-.-.--.---- K. | Chauliognathus basalis, Lec ---.-.-..--. K. 

terminale, Lec ..----.- Seok profunda, Lec .-...... K. 

Photinus nigricans, Lec...---.-.------ K. | Telephorus collaris, Lec -.--..-----.--- K. 

corruscus, Lec..-...--..-.--. K. bilineatus, Lec...---..----- K. 

joymMilbich IDB} )aeeos saesseaesooe K. carolinus, Lec....-...------ K. 

Photuris pensylvanica, Lec --.-..--.-.. K. | Podabrus rugulosus, Lee -.-..--..---- 21K 

Civisa wie ware soe coke K. punctulatus, Lec..---...---- Ke 

Chauliognathus marginatus, Htz......K. | Trypherus latipennis, Lec .........-..: K. 
MALACHIID &. 

Collops bipunetatus, Hr. .....--...... ie Collops punctulatus, Lec.-.--...------ i 
iricoloxrs Mrs sf2s. sees ee eee One new species? ...-......-- U. 
punctatus, Lec...-...--..----- i Dasytes senilis, Lec--.....---.-----...K. 
4-maculatus, Hr....--.----.--. K. Several undetermined species. 


389 


GEOLOGICAL SURVEY OF THE TERRITORIES. 
LYCTIDA. 
Polycaon ovicollis, Lee..--...----.---- ee 
CLERIDZ. 
Trichodes ornatus,.Say.-----.----- ...-K. | Enoplium pilosum, Lat .......---.-.-. K.. 
nuttali, Kby-.-.-...2-s5---- K. quadripunctatum, Say..---. K. 
@lerus amalis, Say; 223-6 seel se. le K.. damicorne, Spin.-.... spa K. 
cordifer, Beg sie 2se5- 2. 5-5 K. | Corynetes rufipes, Fab ...........----- ii 
sphegeus, Fab......-.-.---.---- K. violaceus, Fab ...--..--..--- 7 
Hydnocera humeralis, Nm ..-.-.-----. K. ruficollis, Fab-.-....-...---- HY 
subsenea, Lec.......------- K. 
PTINIDZ. 
Bimugetur Linn ol 22 ee tee neces one = * | Niptus ventriculus, Lec....-..-...-.- K. 
Sitodrepa panicea, Thoms..... Nec eee Trypopitys punctatus, Lec -.-.--..--. K. 
Doreatoma simile, Say.----..----.---- 
TENEBRIONIDZ. 
Epitragus canaliculatus, Sense eee K. | Eleodes carbonaria, Lec. ..-- i dieichay iatate K, 
pruinosus, Horn ...-.....--- N. nigrima, Weer ete s see K. 
Edrotes rotundus, Lee ..-...---..----- K. gracilis) Mec boost eesti cele: K. 
ventricosus, Lec ....---------- N. caudifera, Lec ...-..-----..-.- K. 
Trimytis pruinosa, Lec......----.----. K. hispilabris, HOT) 252 ho sees a 
__. abnormis, Horn .. UR fete fei siok glen iat N. armatayWeG reece eee eee W. 
Emmenastus ALCL MLEO™ Soak esis Opacas WeCeee ewan eee eee K. 
obesus, Lec .....--..----- I. pimelioides, Mann -.-.--..----- Ve 
Eurymetopon rufipes, Esch....-------- N. |Embaphion muricatum, Say.-----..-.-. K. 
Asida opaca, Say. j2-- 5-006 wo n-es eons K. contusum, Lec....--.....-. K. 
politia, Says S2eeh ene ese oe ae K. elongatum, Horn-..---..--. N. 
actuosa, Horm ...-...----.------ planum, Brora 053i iia K, 
Convex Wee Shee eet aces K. |Celocnemis dilaticollis, Mann ....-....U, 
semilzvis, Horn ..---...-.---.-- punctata, Lee -.-.--...---. N. 
consobrina, Horn-----.----.---- N. Blapstinus interruptus, Lee .-.......... K. 
Tuetata, Horm 2 S25 soe. cccee N. metallicus, Fab ..-------.-.. K. 
puncticollis, Lec.----..---...--- N. pratensis, Lec......---....- K. 
Sordidus; Lee./- 22. 4.22. Jo 2+ K. vestitus, Lec....-...--.--.- K,. 
elatarmece meee eset a Poe Pc pulverulentus, Mann-.-..... N. 
Zopherus consoles, MU OGHL eae, i N. M. | Centronopus opacus, Lec.---..---..--- K, 
elegans, Horn..---..----- IN. M. | Merinus lesvas,Lee 2-2 2-22-22 /2---2.- 1K. 
Hologlyptus anastomosis, Lac --.-.---- K. | Nyctobates pensylvanicus, Lec--....---. ti 
Eusattus reticulatus, Lec...--.---.---- K. barbatus, Lec ...---..--.-.. % 
Coniontis ovalis, Lec...----------.-+-- N. | Boletotherus cornutus, Fab...-..-...-.. ig 
Eleodes obscura, Lec..-.-..-.--.------ K. | Paratenetus punctatus, Spin. -.....---. i 
acuta, Lec....--- Se ctatter aia © K. | Sitophagus pallidus, Lec....-...-.--.- K. 
suturalis, Lec...-.-...---.---- K. planus, Lec.....-.....---. N. 
tricostata, Lec ...-....---.---- K) |) Diaperisphydui) Mabesss 42.0. Le K. 
fusiformis, Lec......-..------- K. | Platydema excavatum, Lap-.-..--.--.. K. 
OXbTiCabay Mae Cesseasteyee aio alecie = K. ' Helops opacus, Lee.----.-.--...-...--- I. 
CISTELID H. 
Allecula punctulata, Mels..........--. K. | Allecula obscura, Say --2.--.-.....-.-- K 
MELANDRYID&. 
Eustrophus bicolor, Fab .....----.---- Phryganophilus collaris, Lee .----..... I. 
Melandrya labiata, Say -.....--------- 
ANTHICIDZ. 
Corphyra lewisii, Horn..-.-..----.-... K. | Notoxus marginatus, Lee -.--.---.--.- K. 
Collarish| Sanjeeeeeeieseeieeses= K. Sub piliss Wece eects teil K. 
Stereopalpus guttatus, Lec.........--. K: Several undetermined species .K. 
Notoxus anchora, Htz...-../---.-.---.K. |. Anthicus elegans, Ferte.........-..--- K. 
Serra be Cue sea ere sera eraia lt rejectus, Mees. ye ds2k ie tos ae K. 
monodon, Ferte ....-.-...---- K. cervinus, Ferte ......-.-----. K. 


300 GEOLOGICAL 
MORDELLID A. 

Mordella quadripunctata, Lec ..-..-.---- K. | Mordella marginata, Mels...--........ K. 
scutellaris, Fab ....-..------- N. | Mordellistena zmula, Lec..-.---...-.. K. 
insulata, Lec...-.-.-.-..----- K. divisa, Lee ......--.....K. 

MELOID A. 
Henous confertus, Lec.....-,..--------K. | Epicauta maculata, Say..---. --.--.-- K. 
Lytta reticulata, Say-.--------------- Kee corvina, Lec.-.--...----.-- eae 
cooperi, Lec. .----...---.------ N. puncticollis, Mann ......-..N. 
TUG OAM SAV eee eis ee eels ne K. | Apterospasta segmentata, Say ---- .--- K. 
yulnerata, Te pA a Ed eli WP es, N. | Macrobasis luteicornis, Lec..-....-.--- K. 
viridana, Lec ..---. Bee Sint ese U. longicollis, Lec.......----. K. 
cyanipennis, Lec ....-.-....-.- U. fabricu puecwe sess s seeeee K. 
spheericollis, Say --.-----.--.-.K. | Nemognatha lutea, Lee ....-.....--.-- We 

Pyrota engelmanni, Lec ..---..-..-.-- K. bicolor, Lec: ..----2-2---- K. 
discoidea, ec. esac asee a. sees K. Turida, ec eeee sneer neer K. 
WibvISeka, WEG wee ene ajo een K. piezata, Lec ..........-.. K. 

Epicauta pensylvanica, Lec. -.-...-.- --- * | Gnathium minimum, Lec..-.......---. K. 

ferrusines, Sayre osmere Meee K. | Zonitis atripénnis, Lec .............-.. K. 
DEMERIDA. 
Asclera puncticollis, Hald --..-....---- Nacerdes melanura, Fab......--...... K. 
Oxacis sericea, Horn ...--...----..-.-- 
CERAMBYCIDZ. 

Prionus palparis, Say.----.-.----.---- K. | Acmezops subpilosa, Lec....-....---.-- We 
imbricornis, Ol....----- seroiayee K. dorsalis, Lee) 222). S222. eee 
fissicornis, Hald..-......----- K. marginalis, Lec.-...---. -.---. ie 
emarginatus, Say..-...-.----- K. strigilata, Lec.... .- Wee K. 

: californicus, Motsch..---.---- N. | Monohammus ' scutellaris, Lec...------- a 

Acanthoderes decipiens, Lec...--...--. K. | Clytus sentellaris, Dej .-...--.-------- K. 

Liopus cinereus, Lec..--..-..----.---- K. erythrocephalus, Fab......----. * 

Leptostylus aculiferus, Lec ....---.---- K. undulatus, Say ....------------- K. 

Aidilis spectabilis, Lec -.----.-------- a CapLreas Say ees see eee ear K. 

Psenocerus'pini, Ol -2-2-.- 2-22.22 ee K. | Purpuricenus humeralis, Dej --.. ------ K. 

Pogonocherus parvulus, Lec ..-...-..-. K. | Tylosis maculatus, Lec.--...---.------ N. 

TONOXUIS) IDES AseSG5 saocee K. | Rhopalophorus longipes, Lec ..-.-.----- K. 

Saperda calcarata, Say ..---.-----.---. K. | Arhopalus fulminans, Serv......-.-.--. K. 

TOCINCE IS Nia Gateaale UaSbooIeans SLs charus, ec 2is4s-2 Se see eee K. 
discoidea, Fab...--...---.---- K. pictus; ee 22S ees eee eee K. 
puncticollis, Say .---- -.------K. |. eurystethus, Lec ...--..----- N. 
Tetraopes femoratus, Lec .-.--.------- K. | Hriphus ignicollis, Lec...--- besos 6sce K. 
annulatus, Lee -...-.--.---.- K.. discoideus, Say -.-.-.----.---- K. 

. oregonensis, Lec ....-..----- N. | Sphenothecus suturalis, Lee.........-.. U. 

mancus, Lec..-.--.--- japeter N. | Elaphidion villosum, Pail tse Sse Rey K. 

Tetrops canescens, Lec .----.----.----- K. parallelum, Nm..---.-.---- U. 

Amphionycha ardens, Lee .----..------ K. debile Werner seen K. 

Stenostola pergrata, Lec.........-----. K. mucronatum, N .....----.. K. 

saturnina, Lec ....-........ N. | Eburia quadrigeminata, Hald .-......- K, 

Oberea perspicillata, Hald.......-.-..- K. | Heliomanes bimaculatus, Nm ..-.-..-.- K. 

. Monilema annulatum, Lec.-...--.-.--- K..| Dryobius sexfasciatus, Lec -....-..--..K. 
Leptura cribripennis, Lec..-.-..----- -K. | Callidium variabile, Fab .......-.---.-K.. 
TAM) DG, SEMA gage HaGsooesosse K. amcenum, Say -----.-------- K. 
auripilis, Wee 222. 2eshes sees K. brevilineum, Say..---------- K. 

comvexa, ec... .:2.22.-2-balses U. | Asemum meestum, Mann.-.--..-.-.....- I. 
Typocerus sinuatus, Lec -.-...--...-.- K. atrum, Mab o. 5 -cees cepa eee K. 
-Argaleus nitens, Lec-......---..------ I. |.Criocephalus productus, Lec ..-.--.-.--- K. 

Acmezeops bivittata, Lec ---.......--.-. K. asperatus, Lec....-.-..--K. 
lupina, dheceese.s. 5 2). 2 ae agrestis, Hald .-..-.--.-. * 

CHRYSOMELID A. 

Anomoia laticlavis, Forst ...--....----- K. | Cryptocephalus mucoreus, Lec-..--...- K. 

Babia quadriguttata, Lac ..-.---.----- K. notatus, Ol...--.--..-- K. 

Coscinoptera axillaris, Lec ...----.--..K. quadriguttulus, Suff....K. 

franciscana, Lec --...---- K. dispersus, Hald .....-.-K. 

Cryptocephalus lativittis, Germ..--..- K. venustus, Fab ...-..--- K. 

SA DUE K. fasciatus, Say......--.-K. 


euttulatus, Al 


SURVEY OF THE TERRITORIES. 


OF THE TERRITORIES. 


GEOLOGICAL SURVEY ool 
Cryptocephalus amatus, Haldic. 53 jae K. ; Chrysomela dissimilis, Fab.-.--.-.----- K. 
viridis, Hald....-...--. K. formosa, Fab....-..-.---- K. 
vitticollis, Lec.:.-...- K. | adonidis, Linn.....-.-. Mon. 
confluens, Say .----.-- K. | Doryphora 10-lineata, Say -...--- femeeiate K. 
Pachybrachys hepaticus, Hald....--.-- K. rogersii, Lee /.22£4-.:.....-K. 
vtridens, Mels.--.-...22-- K. s trimaculata, Say - Jee Bde K. 
mollis, Hald .....-.---.. K. | Blepharida rhois, Rog..-....-......... K. 
viduatus, Suff .....----. K. | Gidionychis gibbitarsa, Lec ...-....... K. 
And several of both preced- Scripticollis, Lec.......... K. 
ing genera undetermined. Several undetermined... ...K. 
Colaspis favosa, Say . BOERS INSTI SS stone sey K. | Disonycha, several undetermined. 
Several unnamed. Glyptina spuria, Lec...-..--..-..---.. K. 
Metachroma interruptum, Lec. .-.-...-.- K. | Longitarsus nigripalpus, Lee..-...--.. K. 
; pallidum, Lec Saha Mee K. rubidus, Lec, ....-.-...---K. 
Paria sexnotata, Lec--.-.:-.---------- K. Cheetochema subviridis, Lec......-.--. K. 
Hueco, 6G saocoe aacsosoldecces K. denticulata, Lec ..-.--.-. K. 
opacicollis, Lec....-. ..--.--+-=--- K. | Cerotoma caminea, Fab...-..-....... -K. 
Myochrous denticollis, Lec .-.--.------ K. | Diabrotica longicornis, Say Se Gomes a K. 
squamosus, Lec....-.-.----- K. vittata, Fab --.-.--...---+- s 
Chrysomela scalaris, Lec...:---..----- K. tricineta, Lec. 2.02222. 2222 K. 
philadelphica, Linn..---.- K. | Galeruca americana, Fab....--..----.- K. 
multipunctata, Say-.----. K. CXEIN A, Sayiceasne aa e ee K. 
exclamationis, Fab ..---.- K. | Stenispa collaris, Baly ...--..-..---. I. T. 
conjuncta, Rog..........- K. | Anoplitis scapularis, Lec ..---...-.-.-- K. 
disrupta, Rog ..-.---..--. K. Toséa, Wee ewes Oepies bases K. 
lunata, Fab ---.--..-----. K. Microrhopala leetulla, ec) S52e" 2 22a ee K. 
pulchra, Fab...---..---- lke cyanea, Lec.--2----2---- K. 
; UNCISA, WORM ees sense eee K. | Chelymorpha a OURS S See eras K. 
a auripennis, Say---.-.----. K. | Cassida nigripes, Ol.......-..-..--...-K. 
: flavomarginata, Say .----- K. pallida, Hbst-.....--..------- K. 
interrupta, Fab ......---- K. Buttabay Olea. eae see nl as, 
' BRUCHIDA. 
Bruchus discoideus, Say-....-..- Re ae ease K. And several others of the family yet un- 
Spermophacus robinie, Sch..-...-.-.-.K. _ studied. 
COCCINELLID&. 
Anisosticta vittigera, Lec....---.--.--- K. | Brachyacantha athens, MCG ie seas aecee K. 
episcopalis, Lec .....----...K. Gaus Wek see eyo sece ee K. 
Hippodamia glacialis, Mels ....-.-.---- 4 10-pustulata, Lec . “eee K. 
13-punctata, Mels.....---. * | Hyperaspis vittigera, Lec .......:---.- K. 
‘lecontei, Muls.-...-..---- K. quadrivittata, Lec ...-..---. Kk. 
convergens, Guer....-.-.. # Clemans, Miles se eees seclee K. 
“parenthesis, Lec...--..--- a pratensis, Lec ..---.------: K. 
And one new species. ? CEneis pusilla, Lec...--...----.------- K. 
Coccinella transverso—guttata, Fald...KX. | Scymnus collaris, Muls ...-....---.---- K. 
monticola, Muls....---.---- K. Catldalis. Mec sees eee K. 
novemnotata, Hbst.....---. * And several undetermined. 
abdominalis, Say...-------- K. 
RHYNCHOPHORA. 


Under this head are included the several families of snout-bearing beetles, all more or 
less injurious to vegetation and represented in all parts of our country by nuimerous 


species. 


These have been as yet but little studied and very few are named. As a 


systematic list of genera and species is in progress, only those now known will be — 


mentioned. 
ANTHRIBIDZ. 
Cratoparis lunatus, Sch...-...----.---- ke 
ATTELABIDZ. 
Attelabus nigripes, Lec...-....-.-..--- K. | Rhynchites zneus, Boh..-.-.. bees he 
Pterocolus ovatus, Sch .-..-..----.---- e POLALUSh Salyy ec saci cies K. 


Rhynehites bicolor, Hbst.-..--...-.... 


Apion, several species. 


a 


392 - GEOLOGICAL SURVEY OF. THE TERRITORIES. 


CURCULIONIDE. 

Ophryastes latirostris, Lec.. ..---.---- K. | Thecesternus humeralis, Say ......--.. K, 
ligatus, Lee..-.-...--.---- K. rectus, Lec .....-....--.. kK. 
sulcirostris, Sch .-.....---- K. rudis, Lee’ .-0. 3.22205 2222 K, 
vittatus, Sch .......--.---- K. erosus, Lec ..-.-..------- K, 
tuberosus, Lee.----.-------- I. morbillosus, Lec.....-..- K. 

Epicerus imbricatus, Say..----------- K. | Piazorhinus scutellaris, Sch.-..---..--- K. 

Platyomus auriceps, Sch ..---.--.----- K. | Rhysematuslineaticollis, Say.----..-.- K. 

Tanymecus canescens, Sch ....-..----- K. | Conotrachelus posticatus, Sch....--.-- K. 
conferteus, Sch.......----. K. | Sphenophorus pulchellus, Sch -..-.---- K. 

Cleonus pulvereus, Lec ...--.-.---:--- K. cultirostris, Germ..-.-.--. K. 

trivittatus, Say.--.---------.- K. compressirostris, Say.-..K. 
angularis, Lec...--..-....-.--- K. 13-punctatus, Say.----.- U. 
Lepyrus geminatus, Lec....-.-- apatite ate K. | Cossonus subareatus, Sch ......--.--.- K. 
SCOLYTIDA. 
Tomicus pini, Harris...-......---.---- K. | Dendroctonus terebrans, Ol ..-.-....-.K 
caligraphus, Germ ......----- K 


NOTICES OF THE HEMIPTERA OF THE WESTERN TERRITORIES 
OF THE UNITED STATES, CHIEFLY FROM THE SURVEYS 
OF DR. F. VY. HAYDEN. | 


By P. R. UHLER. 


In order to give a more complete representation of the hemipterous 
fauna of the regions explored by Dr. Hayden, certain species have 
been introduced which were collected by other persons at different 
times. 

To do full justice to the vast territory embraced in the surveys would 
demand close attention to collecting during several years. As this has 
not yet been possible, we can only include the scanty materials which 
have been brought together by the industry of a very few individuals. 

A country presenting such diversity of surface, and climate so varied, 
must offer great variations in the species which belong to it; and, in 
fact, such proves to be the case; as, for instance, may be seen in Che- 
linidea, Lygus, and some Cicade. The former genus varies in the color 
of the antenne, and still more in their width; in some specimens the 
joints of these organs are flattened into almost lamellate expansions. 
A Lygus, which, in many respects, resembles the European L. pratensis, 
Fab., varies in form, size, and pattern of marking. Melanism seems to 
prevail in the species belonging to the mountains of Nevada; while in 
Colorado and Idaho they present the richest and brightest colors. 


HEMIPTERA. 
HETEROPTERA. 
Family CoRIMEL ANID. 
Corimelcena, White. 


1. O. nitiduloides, Woltt, (Icones Cim., p. 98, Tab. 10, fig. 92.)—The 
‘western specimens generally differ from the eastern in lacking the depres- 


2 


GEOLOGICAL SURVEY OF THE TERRITORIES. 393 


sion on each side of the pronotum. Occasionally, however, a specimen 
occurs with faint traces of these depressions. Some variation in the 
width and acuteness of the corium oceurs in specimens from both sides’ 
of the. continent. 

2. C. extensa, Uhler, (Proc. Entomol. Soc. Phila., 1863, p. 155.)—This 
species bears sorte resemblance to C. marginipennis, Spinola, of Chili; 
but it may be at once distinguished from it by the narrower, longer, and 
more convex head. Our species is found in Dakota, Arizona, Oregon, 
and California. 


Family PACHYCORIDE. 


Homemus, Dallas. 


1. H. aeneifrons, Say, (Long’s Expedition, vol. Il, Appendix, p. 299;) 
Pachycons exilis, H. Schf., (Wanz. Ins., vol. IV., Tab. 110, Fig. 346.)—It 
was obtained in Colorado, but has been found as far east as Mar yland 
and in New England. 

2. H. bijugis. New species.—Hlongate-oval, pale testaceous. Head 
long, somewhat triangularly narrowing to the tip, the lateral lobes a little 

rounded, the surface black, brassy, rather finely punctured, clothed with 
remote, ‘pale pubescence, ‘the lateral margin and a submarginal line 
yellow; tylus a little longer than the lateral lobes; ochro-testaceous, as 
is also the basal joint of “the antenne; the buceule, adjoining margin, 
and base of the inferior cheeks, yellow; rostrum testaceous, reaching to 
the middle of the second ventral segment, the apex piceous. Pronotum 
regularly convex, the lateral margin straight, oblique, the edge smooth, 
broadly compressed; the middle of the submargin deeply indented ; the 
surtace remotely, finely, obsoletely punctured with pale fuscous; each 
side of middle is a pale ‘fuscous, slightly oblique ray; exterior to ‘this a 
fainter ray, and sometimes another adjoining it, or running from the 
humerus; callosities occupied by a more or less deep black spot; the 
intra-humeral line deeply impressed, forming a sinus on the postero-lat- 
eral margin; the posterior angles moderately rounded; anterior angles 
feebly rounded, covering the whole width of the base of the eyes. Pec- 
tus pale croceous, with uncolored, coarse punctures, witha black spot in 
the antero-exterior corner. Legs testaceous, punctured on the thighs, 
having at most but three or four fuscous dots at tip; spines of tibize 
black; tarsi piceous at tip, the nails tipped with black. Scuteilum 
rather long, ovately narrowing to the tip, punctured with brown, faintly 
clouded at base, and with a darker cloud behind the middle; the mid- 
die line almost white, expanded at tip, and bounded there by a blackish 
line ; each side of base a blackish ray curves obliquely outward to beyond 
the middle. Venter yellowish-white, minutely punctured, with a few 
large fuscous punctures at base and about the disk; connexivum im- 
maculate and narrowly grooved beneath, the edge sharp; the superior 
connexivam black interiorly, exteriorly pale yellowish, faintly punc- 
tured. The male is much smaller, with the scutellum a little more acute 
at tip, more or less reticulated with black over the entire upper surfaee, 
and with at least four longitudinal, faint, fuscous rays on the pronotum, 
and two oblique ones each side of scutellum. The middle line and its 
apical dilation faintly indicated. The yellow line of the head is slender, 
waved, obsolete toward: the base, the tylus marked with yellow before 
the tip. 

Length, 9,8; ¢,6, millimeters. Width at base of pronotum, 9, 43; 
fo 4, millimeters. y 

Si pecimens have been received from Colorado and Nebraska. 


304 ‘GEOLOGICAL SURVEY OF THE TERRITORIES. 


Subfamily HALYDIDZ. 
' Brochymena, Amyot et Serv. 


1. B. serrata, Fab., (Syst. Rhyng., p. 181, No. 2;) Halys pupillata, H. 
Schf., (Wanz. Ins., LV, Pl. 144, Fig. 453. )—Obtained in Colorado; but 
quite common as far east as Pennsylvania. Quite variable in the length 
of the second and third joints of the antennze. Usually these two 
joints are about equal in length, but sometimes the second is very little 
more than one-half the length of the third; specimens have occurred to 
me in which these joints have been equal in the one antenna, and the 
second shortest in the other antenna. 

2. B. arborea, Say, (Proe. Acad. Phila., IV, p. 311;) Halys erosa, H. 
Schf., (Wanz. Ins., V, Pl. 166, Fig. 515.)—Indian Territory, Texas, Mex- 
1¢0, and in all the Atlantic States from Maine to Florida. The south- 
ern Specimens are generally more brightly colored. 


Prionosoma, Uhiler. 


P. podopoides, Uhler, (Proc. Entom. Soc. Phila., 1863, p. 364.)—This 
species varies considerably in depth of color, and somewhat in the dis-’ 
tinctness of the armature of the thorax and abdomen. It is common in 
California and extends into Arizona. 


Subfamily CyDNID&. 
Microporus, Uhler. 


M.obliquus. New species.—Chestnut-brown, polished; the lateral mar- 
gins of thorax and corium densely fringed with coarse, long, yellowish 
hairs. Face almost flat, each side with long, oblique, punctured striz ; 
the tylus transversely, feebly striated; anterior margin bluntly rounded, 
thickly beset with short, erect teeth, "and interspersed with a few long 
hairs; the lateral lobes sparingly punctured, with a round fovea adja- 
cent to each eye, and another near the tip, each side of the tylus. os- 
trum bright testaceous, extending to the intermediate coxze; the’apical 
joint slender, a little shorter than the third. Antenne, first two joints 
slender, the remaining three moniliform, the second shortest; apical joint 
a very little the longest, the third and fourth subequal. Base of the 
head convex, impunctured. Pronotum, lateral margins a little oblique, 
densely ciliate, the anterior angles a little advanced, rounded ; the ante- 
rior half of surface impunctured, excepting only along the anterior 

margin and sides; posterior half remotely, rather coarsely punctured, 
with a few transverse, obsolete wrinkles behind ‘the middle; the posterior 
margin impunctured ; middle transverse line distinct, having several 
coarse punctures each side of its ends; humeral angles prominent, the 
margin inwardly from them sinuated. Anterior tibize armed on the 
front margin with long and, very stout spines; tarsi pale yellow. Scu- 
tellum polished, rather remotely punctured, the base almost destitute 
of punctures; tip a little depressed, bluntly, angularly rounded. Hem- 
elytra remotely punctured, the apical punctures becoming finer and 
almost obsolete, the lateral margin expandedly arcuated, at base ciliated 
with long hairs; membrane and wings milk-white. Venter smooth on 
the middle, the sides minutely scabrous ; anal segment punctured; the 
lateral mar gins ciliated with slender hairs. 

Length, 44 millimeters; width at base of thorax, 24 millimeters. 

A male was brought from Ogden, Utah, by the survey of 1870. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 395 
Subfamily PENTATOMIDZ, 
_ Perillus, Stal. 


1. P. claudus, Say, (Jour. Acad. Phila., vol. IV, p. 312, No. 2.)— 
Inhabits Colorado, California, Kansas, &c. The sued specimen, of the 
pale variety, is from Ross Fork, Idaho. 

2. P. exapta, Say, (Jour. Acad. Phila., vol. IV, p. 313, No. 3. \—Col- 
orado. It varies in the width of the black upon the pronotum, and this 
color is indeed sometimes entirely absent from that part. Specimens 
have passed through my hands which had been collected in British 
America, New England, Illinois, and in several of the regions West of 
the Mississippi River. 

3. P. circumeinctus, Stal., (Entomol. Zeitung, Stettin, val. 23, p. 89, 
note.)—Dakota. Scarcely a species found in our Territory extends over 
so wide a surface as this. It is found on the Isthmus of Panama, in 
the island of Trinidad, and in Canada, New England, and New York. 


Podisus, Stal. 


P. spinosus, Dallas, (British Museum List. Hemipt., p. 98, No. 7.)—A 
common insect in most parts of the Atlantic region, and extending as 
far west as Nebraska and south into Texas. ‘Two specimens from Fort 

Jobb, Indian Territory, seem to offer no seas: from those common 
in Maryland and Pennsylvania. 


Zicrona, Amyot et Serv. 


Z. cuprea, Dallas, (British Museum List, p. 108, No. 2.)—After dili- 
gently comparing specimens from both continents, no sufficient differ- 
ences have prevailed to separate this from the Z. cwrulea, Linn. Small 
variations in the color and in the distinctness of the punctures are 
apparent in specimens from both localities; but ina series of specimens 
these are seen to be gradations between the opposite extremes. The 
present specimens are from Snake River, Idaho, and from Fort Defiance, 
New Mexico. Mr. Dallas’s type came from the vicinity of Hudson’s 
Bay. 

Cosmopepla, Stal. 


C. carnifex, Fab., (Ent. Syst., Suppl., 535, No. 162.)—Inhabits Nebraska, 
Indian Territory, Texas, and the Hastern United States and Canada. 
Tt exhibits much ‘variation in the depth and amount of red on the pro- 
notum and abdomen. — 


Neottiglossa, Kirby. 


N. undata, Say, (Heteropt., New Harmeny, p. 8, No. 17;) WN. triline- 
ata, Kirby, (Fauna Bor. Amer., p. 276.)—This species occurs in Ne- 
braska, Canada, and throughout most of the northern parts of the 

United States. 
Mormidea, Amyot et Serv. 


M. lugens, Fab., (Ent. Syst., IV, p. 125;) Pentatoma punctipes, Say, 
(Jour. Acad. Phila. TVG sp: 313, )—From Cheyenne, and Indian Ter- 
ritory. It extends as far south as Matamoras, Mexico, and inhabits 
almost the whole region east of the Mississippi River. 


396 GEOLOGICAL SURVEY OF THE TERRITORIES. 
Murgantia, Stal. 


M. histrionica, Hahn, (Wanz. Ins., vol. II, pl. 65, Fig. 196.)—Collected 
in Colorado; but injures cabbages and other garden vegetables in the 
Southern States, from Maryland to Texas, and even into Mexico. Sev- 
eral of the links in the chain of varieties between this species and WM. 
munda, Stal., have already been found, and we may expect hereafter to 
see the two species united as mere forms of one. 


Cenus, Dallas. 


1. C. delia, Say, (Heteropt., New Harmony, p. 8, No. 18;) C. tarsalis, 
Dallas, (British Museum, List. Hemipt., p. 230, Pl. 8; Fig. 6.)—From Fort 
Cobb, Indian Territory, also in most of the Eastern States. | 

2. C.cqualis, Say, (Heteropt., New Harmony, p. 7, No. 15.)—Same local- . 
ities as the preceding. 


Huschistus, Dallas. 


1. H. fissilis. New species.—Ditffers from H. serva, Say, its near con- 
gener, in the cleft head and prolonged lateral lobes of the head. It is 
larger than H. punctipes, Say, and the humeral angles are much less 
acute. It is found in Colorado, Nebraska, and Illinois. P 

2. H. punctipes, Say, (Jour. Acad. Phila., IV, p. 314, No. 5.)— 
Colorado, and most parts of the Eastern United States. 

3. H. pyrrhocerus, H. Scht., (Wanz. Ins., vol. VI, Fig. 638,)—From 
Fort Cobb, Indian Territory, but not uncommon in Missouri and in the 
Atlantic region. It varies in the acuteness of the humeral angles. 


Peribalus, Stal. te 


P.modestus. New species.—Grayish-yellow, general form of P. vernalis, 
Wolff; but with the humeral angles less prominent, and the lateral 
margins of the pronotum not sinuated. Upper surface of the head finely 
punctured with black, the punctures more dense and forming a submar- 
ginal spot or short streak before each eye; the intra-orbital surface with 
a smooth, impunctured, short line; the lateral margins a little reflexed, 
slightly sinuated a little in advance of the eyes; the side lobes much 
longer than the tylus, usually meeting before it, but not always quite 
in contact at the tip. Under sideof head pale yellowish, irregularly 
punctured, the angle before the eye more or less black, the lateral edge 
piceous or black. Antenne rufous or testaceous ; the basal joint pale 
yellowish, shorter than the head; the fourth joint, excepting base and 
tip, and the fifth, excepting the base, blackish; the last stout, longest ; 
the former quite stout, not quite so long as the latter, but longer than 
the others; second and third slender, subequal. Rostrum pale testa- 
ceous, the middle line and all but the base of the apical joint blackish- 
piceous, extending to the intermediate cox; the second joint much the 
longest; apical joint much the shortest; the third joint a little longer 
than the fourth. Pronotum rather short and broad, a little more coarsely 

and less densely punctured than the head; the punctures dense, making 
a blackish stripe along the lateral submargin; the lateral margins 
straight, thickened, elevated, yellowish or white, smooth, impunctured ; 
latero-posterior margins feebly sinuated; humeri rounded, very slightly 
prominent. Pectus pale testaceous, unevenly punctured; the areas of 
the pleural pieces with punctures more or less brownish, usually with a 


GEOLOGICAL SURVEY OF THE TERRITORIES. a9T 


black dot near the middle of each of the three principal segments. 
Legs pale testaceous; the femora with numerous black points, a few 
of them at. the tip larger; the tibize with minute brown punctures; tarsi 
pale rufous; the nails black, excepting the base. Scutellum a little 
rugulose, somewhat confluently punctured, more finely so than the pro- 
notum, and near the tip still more finely and densely so; the apex 
smooth, broadly white. Corium finely, less densely, punctured than 
the pronotum ; the exterior suture often with a streak of closer punc- 
tures; the general surface sometimes appearing reticulatedly punctured ; 
the costal margin and embolium whitish, the latter with a few punctures ; 
membrane slightly embrowned, having six or seven dark, longitudinal 
nervures. Tergum black, minutely, densely rugulose and punctured ; 
the apical segment margined with yellow; connexivum black, coarsely 
and partly confluently punctured, the outer margin yellow, with the 
inner edge of that color scalloped. Venter pale testaceous, or in life 
greenish-white, very sparingly punctured on the smooth disk; the sides 
finely rugulose, and thickly punctured; the general puncturing often 
red, the large punctures black, and arranged in a triple series of wavy, 
faint spots each side, and with a geminate group at the outer angles of 
the incisures ; the apical angles of the sixth segment alittle rounded and 
carrying a black dot. _ 

In the males the finer punctures of the venter are usually red and 
more evenly distributed; the coarser ones are black and not arranged 
in spots; the genital segment is deeply emarginated, and each side of it 
sinuated. 

Length of ¢, 54; of 9, 8-95 millimeters. Width across the humeri, 
5-6 millimeters. 

Arizona, Kansas, Colorado, New England, and generally throughout 
the States east of the Mississippi. 


Holcostethus, Fieb. 


H. abbreviatus. New species.—Fusco-cinereous more or less spotted 
with black, rugulose, and finely punctured with black. Head broad and 
long, convex along the base of the tylus, broadly rounded in front, 
closely, confluently punctured, more densely so along the sides and in 
front; the lateral lobes flat, with sharp edges, a little expanded in front 
of the eyes ; the lobes meeting in front of the tylus, but scarcely in con- 
tact on the extreme tip ; under side of the head pale yellowish, coarsely 
_ punctured, with the margin and a few coarse punctures in front of the 
eye deep black. Rostrum extending to the venter, yellow, with the tip 
black. Antenne long and slender, reddish-yellow, or rufous; the basal 
joint pale, very short; second and third subequal, shorter than the fol- 
lowing; fourth and fitth much longer, subequal. ’Prenotum broad and 
short ; the lateral margins smooth, yellow, a little arcuated; the humeri | 
somewhat prominent, rather broadly rounded; the submargins made 
almost black by the dense punctures ; surface somewhat broken, irregu- 
larly spotted with piceous and black, the transverse impressed line dis- 
tinct ; pectoral segments coarsely and irregularly punctured with brown- 
ish, each with from one to three black dots, including one on the osteole. 
Scutellum a little indented before the middle, finely and closely pune- 
tured with black, still more so in spots at base, where are also two or 
three small white spots or streaks; the apex bluntly rounded, white. 
Legs testaceous, minutely and. sparsely punctured with br own; the 
femora a little scabrous; tibiz at tip and tarsi rufescent ; the nails black 
at tip. Tergum black, the connexivum yellow, with double black spots 


ad 


9 


398 GEOLOGICAL SURVEY OF THE TERRITORIES. 


at the ends of the incisures; venter yellowish, the punctures closer on 
the sides, and with about three series of obsolete patches of blackish 
punctures each side; the lateral edge smooth, orange, with a small, 
double black spot at the incisures ; sometimes with the margin of the 
anal segment black. 

Length, 84 to 10 millimeters ; width across the humeri, 5 to 6 milli- 
meters. 

It inhabits Kansas, Colorado, and California. The general appear- 
ance is somewhat that of H. sphacelatus, Fab., of Kurope; but it may be’ 
known from it at a glance by the lateral margins of the pronotum, 
which are not sinuated, but bowed. The lateral lobes fail to meet an- 
teriorly in one specimen, making the front of the head appear cleft. 


Carpocoris, Kolenati. 


C. lynx, Fab., (Syst. Rhyng., p. 168, No. 68.)—From Southern Mon- 
tana, but attains to colossal proportions in California. After close com- 
parison of a series of specimens of very various sizes and colors, with 
. several individuals from Europe, and with the figures and descriptions 
in the several authorities, I fail to find permanent characters to separate 
them. Specimens vary in colors from pale green or yellowish to rosy 
red ; either have or do not have black spots on the connexivum, and the 
size ranges from 8 to 11 millimeters in length, with corresponding 
width. 

Pentatoma, Latr., (Fieber.) 


1. P. granulosa. New species.—General appearance of P. juniperi, Linn. 
Bright grass-green, or pale sap-green, paler beneath, deeply, confluently, 
rather finely punctured, transversely, minutely wrinkled on the head, pro- 
anotum, and scutellum ; the surface of the latter, the hemelytra, and some- 

.times the pronotum, with numerous sphacelated, smooth, whitish points ; 
the lateral margins of pronotum, the costal margin of corium to beyond 
the middle, and the apex of the scutellum white, rarely yellow. Rugule 
of the entire under surface whitish. Head narrowed toward the tip; the 
tip of the lateral lobes almost acute, a little recurved, slightly longer 
than the tylus; the occiput bald, almost impunctured. Antenne black, 
stout; the tooth at base long and slender; basal joint green, very stout, 
hardly more than one-half as long as the second; the second longest; 
third a little more than two-thirds as long as the second; fourth and 
fifth subequal, somewhat longer than the third. Rostrum pale green, 
reaching between the posterior cox; the apical half of the end joint 
black or piceous ; the labrum sometimes blackish. Lateral margin of 
pronotum a little sinuated, the edge distinctly elevated, the sub-margin 
depressed, and the surface broadly impressed at the outer end of the 
callosities. Callosities defined by sinuated, grooved, smooth lines, 
which are bifurcated at the outer extremity. Embolium whitish, hav- 
ing two or three irregular series of obsolete, small punctures ; membrane 
white or only very faintly brownish. Femora obsoletely wrinkled, the 
tips of tarsal joints infuscated, and the tips of nails piceous. Tergum 
black, excepting the penultimate and anal segments ; the connexivum 
green. Base of scutellum sometimes with small, white spots. 

Length, 11-13 millimeters; width across the humeri, 6-8 millimeters. 

The specimens from this survey were found in Montana, and near 
Ogden, Utah. It seems to be widely spread in the Western Territories, 
and extends as far as California. Two specimens exhibit the third and 
fourth joints of the antennz green at base, the former very broadly so. 


» 


GEOLOGICAL SURVEY OF THE TERRITORIES. 399 


In three other specimens the basal and second joints are entirely green. 
The third joint. varies in length, being from one-half to two- thirds the 
length of the second. 

2. P. ligata, Say, (Heteropt., New Harmony, p. 5, No. 6;) Cimex rufo-, 
einctus, H. Schf., (Wanz. Ins. Nig p. 94, Fig. 436. \—This Species inhabits 
Arizona, Missouri, Texas, and California. 

3. P. faceta, Say, (Jour. Acad. Phila., IV, p.315, No. 6. )—Apparently. 
a rare species, of which single specimens have been obtained i in Colorado, 
Bk ee and California. 


Thyanta, Stal. 


_ 1. ZT. perditor, Fab., (Entom. Syst., IV, p. 102, No. 90;) Pentatoma 

fascifera, Beauv., (Ins. Afr. et Amer., p. 150, Pl. X, Fig. 8.)—The most 
typical form of this Species inhabits the West Indies and Mexico; 
those with the humeral angles shortest are found in Nebraska. It 
seems to be a very common species in the regions So ET to the celay 
Mountains. 

2. T. custator, Fab., (Syst. Rhyng., p. 164, No. 43; DuBen arate calceata, 
Say, (Heteropt., New "Harmony, p. 8, No. 19. \—This exceedingly variable 
species inhabits almost the whole of "North America. The most brilhant 
green specimens are usually to be met with in the Southern States. 
The variety calceata is common in Maryland, and specimens without the . 
transverse Stripe are common as far south as Cape Saint Lucas, Califor- 
nia. 

3. T. rugulosa, Say, (Heteropt., New Harmony, p. 7, No. 16.)—This 
seems to be a rare species. A single specimen hae ‘occurred to me, 
found in Colorado, and another, collected in Cuba. This shows a wide 
geographical range, and no doubt the intervening regions will yet 
furnish specimens of it. 


Family CoREIDz. 
Archimerus, Burm. 


A. calearator, Fab., (Syst. Rhyng., p. 192, No. 3;) Coreus alternatus, 
Say, (Jour. Acad. Phila, IV, p. 317, 1 :) Piezogaster albonotatus, 
Amyot, (Hemipteres, p. 197.)\—A species widely distributed. throughout 
the United States. The present representative is from Colorado. 


Metapodius, Westw. 


1. M. Thomasit. New species.—Reddish or cinnamon-brown, minutely 
shagreened. General form of M. terminalis, Dallas. Head black, pol- 
ished, remotely pubescent, with a narrow fulvous line on the middle 
and another each side, adjacent to the eye; cranium transversely 
impressed behind the ocelli; the tylus more or less rufous above. 
Rostrum blackish, extending to the intermediate coxe. Antenne 
fuscous or black, minutely granulated, closely, minutely setose; the — 
apical joint orange; the basal a little shorter than the apical one; the 
second much shorter than the basal, but a little longer than the thir d. 
Pronotum sparsely clothed with minute, pale pubescence, minutely, 
roughly punctured, beset with granular minute protuberances, which 
are very remote on the middle, but thickly crowded near. the sides; 
lateral margins with a few short teeth, which are erect anteriorly and 
oblique posteriorly ; the humeral angles moderately prominent, angu- 


400 GEOLOGICAL SURVEY OF THE TERRITORIES. 


lar; the latero-posterior margins abruptly sinuated. Propleura roughly 
punctured, having only a very few tubercles; meso- and metapleura 
mere or less obsoletely, and postero-interiorly, coarsely punctured. 

Legs black; anterior and intermediate tibie and all the tarsi reddish- 
orange or fulvous, the nails piceous; posterior femora stout, in the 
male much stouter, compressed, shagreened, the outer margin forming 
a broad ridge, which bears a series of tubercles, and parallel to this, 
inwardly, runs a broad groove; the middle surface closely beset with. 
large tubercles. On the middle below is a large spur, at the tip two 
stout teeth, and along the margin five or six smalier ones. The under 
surface is likewise grooved, and somewhat tuberculated; posterior 
tibie foliated exteriorly throughout the whole length, densely scabrous ; 
the outer margin gradually arcuated at base, abruptly rounded at tip, 
with two teeth near the tip and one at its inner corner; the inner 
margin not expanded, granulated, armed with several teeth near the 
tip; the tip ferruginous ¢. Posterior femora of female more arcuated, 

fusiform, feebly grooved both above and below, scabrous, pubescent, 

eranulated, with small teeth on the upper outer margin, ‘and four or 
more large “oblique spurs on the inner margin, from beyond the middle 
to the tip; tibiz broadly foliated, roughened, and minutely granulated; 
the outer division sinuated behind the middle and carried back con- 
siderably beyond the tip of the shank; the inner division much nar- 
rower, very much narrowed from behind the posterior two-thirds to the 
tip; the margin ridged and coarsely granulated. Odoriferous glands, 
orange. Scutellum and hemelytra minutely shagreened, the membrane 
black, or bronzed black-brown. Tergum fuscous, with a yellow stripe 
from behind the middle to near the tip. Venter paler fuscous, 
minutely roughened, and coated with fine pubescence; the hemelytra 
a little longer than the abdomen. 

Length, to tip of venter, 28-29 millimeters; width across the humeri, 
93-10 tmillimeters. 

A male and female from Arizona were the only specimens obtained. 
The species is named in recognition of the services of Professor Cyrus 
Thomas, who has labored so successfully in bringing together the 
species of western Hemiptera. 

2. M. terminalis, Dallas, (British Museum List, II, p. 431, No. 10.)— 
Brought from near Fort Cobb by Dr. E. Palmer. Iti is a very variable 
species in size, in the amount of tuberculation of the pronotum, and in 
the width of the foliaceous processes of the posterior tibie. It inhabits 
most of the Southern States, and seems to be quite common in Texas. 


Merocoris, Perty. 


M. distinctus, Dallas, (British Museum List, II, p. 419, No. 2.)—This 
is also a common species in many parts of the Union, from Northern 
New York to Florida. One specimen of the usual form was collected 
in Colorado. 


Leptoglossus, Guer. 


LL. phyllopus, Linn., (Syst. Nat., a ae p- re ;) Anisoscelis albicinctus, 
Say, (Heteropt., New Harmony, p.1 2, No. 2 2.)—Several specimens weré 
collected near Fort Cobb, Indian Territory, by Dr. E. Palmer. The 
Species is common in the States south of the Ohio River, and it extends 
into Central Texas. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 401 
Chelinidea, Uhler. 


C. vittigera, Ubler, (Proc. Entom. Soc. Phila., II, p. 366.)—Brought 
by the survey from Koss Fork, Idaho; Ogden, Utah; and by Dr. H. 
Palmer from New Mexico. In Texas it infests a species of Opuntia, 
sometimes in considerable numbers. A few specimens have been taken 
near the Kanawha River, in Virginia. It varies in the color of the 
antenne, from red to black, and in the width of the joints, which are 
sqmetimes very broadly compressed. 


Margus, Dallas. 


M. inconspicuus, H. Schf., (Wanz. Ins., VJ, Fig. 570.)—Collected in Col- 
orado. It has been also found in Texas, Mexico, and California. 


Catorhintha, Stal. 


C. mendica, Stal., (Kongl. Svenska Akad., CX, p. 187, No. 2.)\—Brought 
from Colorado, and by Dr. E. Palmer from Fort Cobb, Indian Territory. 
It is much larger than C. guttula, Fab., to which it is very closely allied. 


Ficana, Stal. 
F. apicalis, Dallas, (British Museum List, I, p. 499,)—Specimens from 
Arizona and California have been examined by me; but no specimens 
happened to be brought home by the survey. 


Anasa, Amyot et Serv 


A. tristis, De Geer, (Mémoires, IIT, p. 340, Pl. 34, Fig. 20;) Coreus 
ordinatus, Say, (Jour. Acad. Phila., 1V, 318, No. 2.\—This is the com- 
mon squash-bug, so destructive of pumpkins and melons in various parts 
of the United States. It inhabits, also, Mexico, the West Indies, Cen- 
tral America, and Brazil. The present specimens were obtained by Dr. 
Hi. Palmer, at Fort Cobb, Indian Territory. The southern and western. 
‘individuals occasionally exhibit a wonderful degree of variability in the 
shape of the pronotum. Specimens occur which have the lateral mar- 
gins of that part either distinctly sinuated, with the humeri quite prom- 
inent, or the reverse, with the sides bowed and the humeri broadly. 


rounded. 
Alydus, Fab. 


1. A. ewrinus, Say, (Jour. Acad. Phila., IV, p. 324, No. 5;) A. ater; 


Dallas, (British Museum List, II, p. 478, 30.)—A common species in ~ 


the eastern regions of the United States, as also in Nebraska and in 
Canada. It bears a very close relationship to A. calcaratus, Fab., of 
Europe; but in all the specimens of the European insect which I have 
yet seen the collum of the prothorax is very short, and the disk of the 
pronotum more robust and flattened than in our species. A careful . 
comparison with the description of Mr. Dallas proves his A. ater to be 
only the female of our A. eurinus i 

2. A. Piuto. New species.—Intensely black, much more robust than Ax. 
eurinus, Say. Head more robust, minutely scabrous, pubescent; the 
constricted portion of the collum shorter; eyes and ocelli prominent; the 
intraorbital surface longitudinally impressed, almost to the line of the an- 
_ tenne. Sides and under side of the head minutely granulated, pune- 


26GS8 


402 GEOLOGICAL SURVEY OF THE TERRITORIES. 


tured, and wrinkled. Antenne either piceous black, or black, with the 
bases of the first, second, and third joints pale piceous; the under side of 
base of the first joint whitish. Rostrum black, reaching to the interme- 
diate coxe. Pronotum very moderately convex, a little pubescent, 
coarsely, deeply punctured; the lateral margins slenderly carinated; the 
carina obsolete at the anterior angles, but considerably elevated on the 
moderately prominent posterior angles, and forming a sharp edge behind 
the humeri. Callosities, broad, large, bald, minutely granulated each 
side, with two impressed points behind their middle. Propleure 
coarsely, confluently, deeply punctured, except anteriorly, where the 
punctures are fine; meso- and metapleurze rather coarsely, irregularly 
granulated, coarsely punctured behind and below. Legs deep black, 
pubescent, or with the anterior and intermediate tibie pale piceous on 
the middle; posterior femora with five curved spurs, from behind the 
middle to near the tip; at tip, with two or three close set, very small 
teeth; tarsi pale piceous on the base of the first joint. Scutellum 
coarsely, remotely punctured. Corium less coarsely, rather remotely 
punctured; embolium smooth, minutely, sparsely, obsoletely punctured, 
minutely pubescent; membrane brownish-black, with long, close, very 
numerous nervures. Tergum red as far as the base of the antepenul- 
timate segment, or only a little red on two or three of the basal seg- 
ments; venter deep black, shining, immaculate, very minutely shag- 
‘reened, pubescent at tip. 

Len oth to tip of venter, 12-13 millimeters; width across the humeri, 
3 millimeters. 

Inhabits Colorado; Ross Fork, Idaho; Louisiana; and Kansas. The 
spines of the posterior femora vary in number from three to six; this 
variation occasionally occurs on the opposite sides of the same specimen. 
There seem to be about twenty nervures to the membrane, of which two 
or three are usually forked. 


Stachyocnemus, Stal. 


8. apicalis, Dallas, (British Museum List, II, p. 479, No. 31.)—It inhab- 
iits Dakota, Texas, Mexico, and Florida. 


Protenor, Stal. 


P. Belfragei, Haglund, (Ent. Zeit., Stettin, 1868, p. 162.)—Brought 
‘from Colorado by the survey. It is found as far east as Maryland, and 
extends north into Michigan. 


Neides, Latr. 


1. N. spinosus, Say, (Amer. Ent., vol. I, Pl. 14;) Meides trispinosus, 
‘Hope, (Catal., p. 24.)—Brought from Ogden, Utah. It is common in 
ithe Atlantic region, and extends west into Arizona. 

2. N. decurvatus, ‘new species.—Form and general. appearance of N. 
-spinosus, Say. Luteous, or pale cinnamon-yellow. Head, with a slender 
‘decurved tooth projecting forward from the vertex. Pronotum propor- 
tionally more elongated, less coarsely punctured, the callosities at the 
anterior end of the median carina small and indistinct; the sternum dull 
‘black, no spines against the posterior coxe; tip of the corium of heme- 
dytra destitute of the dusky spot. Venter densely punctured. — 

Length, 7-9 millimeters; width across the humeri, #-1 millimeter. 

Inhabits Colorado, Washington Territory, and New Hampshire. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 403 
Dasycoris, Dallas. 


D. humilis. New species.—Closely resembling D. pilicornis, Burm., of 
Europe; but rather more slender; the head longer and the antenn 
more slender. Fusco-cinereous, or pale fulvo-griseous, hispid; the 
head pale beneath; on the sides is a dark-brown stripe running from the 
antenne to the base, tylus carinately elevated. Antenne having the 
second joint distinctly shorter than the third; the fourth pale fuscous, 
conical, acuminate, not coarsely granulated and setose as the other joints, 
about equal to the third joint in length; antenniferous spines very short, 
small. Rostrum reaching to the intermediate coxee; the tip piceous. 
Pronotum remotely punctured, beset with numerous granular processes, 
densely clothed with gray pubescence; the lateral margins, with their 
close-set, short, teeth-like processes, whitish; humeral angles with an 
acute, fuscous tooth, stouter and not so long as that in D. pilicornis. 
Pectus pale clay-yellow, or even whitish, closely, coarsely punctured, 
_ granulated, and with whitish, somewhat matted pubescence. Legs 
- pale clay-yellow; the femora granulated, pubescent, mottled with brown; 
tibiz darker at tip; the tarsi somewhat embrowned, and the nails piceous. 
Mesosternum blackish. Seutellum coarsely punctured, covered with 
dense, whitish pubescence; the tip white. Hemelytra beset with coarse, 
brown granules and short, whitish pubescence ; the embolium grooved, 
flecked with brown ; membrane pale, the nervures interruptedly brown. 
Connexivum with pale, transverse lines, between which are fuscous 
clouds. Venter minutely wrinkled, closely punctured ; the pubescence 
minute, whitish ; the basal segments having several brown points each 
side, and usually with a series on each side of all the segments; the 
lateral margins interruptedly infuscated. 

The posterior femora usually have two spurs beneath, near the tip, and 
two or three small teeth close to the tip. Sometimes the two longitu- 
dinal nervures of the corium are interruptedly fuscous. ; 

Length to tip of venter, 83-9 millimeters. Width across the humeri, 
2-24 millimeters. 

Specimens have been collected in Colorado, Kansas, and California. 


Harmostes, Burm. 


H, refleculus, Say, (Heteropt., New Harmony, p. 10, No. 1;) H. costa- 
‘lis, H. Schf., (Wanz. Ins., 1X, p. 270, Fig. 992;) H. virescens, Dallas, 
(British Museum List, Il, p. 520, No. 1.)—Brought by the survey 
from Colorado. The dark and also the red varieties seem to find their 
fullest coloring in the region adjacent to Maryland. The western speci- 
mens which I have hitherto examined have been chiefly of the pale- 
green type. ; 

Aufeius, Stal. 


A. impressicollis, Stal., (Kongl. Svenska Akad., vol. IX, p. 222.)—It 
inhabits Dakota, Arizona, California, and Texas. 


Corizus, Fallen. 


1. C. borealis, Ubler, (Proc. Acad., Phila., 1861, p. 284.).—This spe- 
cies is very van in form and marking, and it may yet prove to 
be indentical with C. punetiventris, Dallas. It closely resembles C. 
crassicornis, Linn., CoB anane Thus far it has occurred in Colorado, Ne- 
braska, Canada, and Massachusetts. 


404 GEOLOGICAL SURVEY OF THE TERRITORIES. 


2. C. lateralis, Say, (Jour. Acad. Phila., IV, p. 320, 4.)—Obtained in 
Colorado; but quite common in the States east of the Mississippi River, 
and extending from British America to Florida, and west to Texas.” In 
common with some other species, it has a race of individuals which are 
deeply suffused with red when alive. 

3. C. viridicatus. New species.—Slender, form of C. truncatus, Ramb. 
Pale green; front of the face rather blunt, the end of the tylus decurved ; 
upper surface of the head with whitish, sericeous pubescence, scabrous, 
uneven, minutely punctured; the under side obsoletely wrinkled, finely 
pubescent. Antenne slender, clothed with remote long hairs; the basal 
joint extending beyond the tylus, freckled with dark brown, and usually 
with a short stripe on the under side; the apical joint rather slender, 
hardly longer than the preceding, more or less orange, at base paler ; 
the second and third joints subequal, faintly streaked with brown both 
above and below. Rostrum reaching not quite to the posterior coxe; 
the middle line and the apical joint, excepting at its base, dark piceous. 
Face and cranium sometimes with a few small spots and streaks of 
brown or black on the middle and near the eyes. - Pronotum with long 
pubescence, coarsely punctured in irregular transverse rows, the cal- 
losities forming a prominent ridge nearly across the entire width; ante- 
pectus and pleura uneven, a little less coarsely punctured; the meso- 
and metapleurz uneven, a little more coarsely punctured; the posterior 
flap of the metapleura oblique truncated, with the upper angle rounded 
at tip, and, together with the acetabular caps, minutely puncturea. 
Legs greenish yellow, the femora rather robust, dotted with brown in 
rows, those of the upper, inward side sometimes confluent in a large 
patch ; tibise freckled with brown; at tip and the tips of each of the tar- 
sal joints brownish, the nails pisceous. Scutellum uneven, irregularly, 
somewhat coarsely punctured, the lateral edge recurved, the tip sunken, 
and its apex almost acute. Corium hyaline, rather finely punctured, 
‘the clavus sometimes blackish, or streaked with black; costal margin 
and base broadly coriaceous; the nervures usually with a few blackish 
points and streaks; membrane hyaline. Tergum black on the two or 
three basal segments, very coarsely punctured at base, and a little less 
coarsely on thé disk; the apex with a black streak running from the 
penultimate segment to the tip, narrowing posteriorly ; the antepenulti- 
mate segment often with two or three black dots on the disk; connexi- 
vum immaculate, minutely punctured. Venter immaculate, minutely 
wrinkled and shagreened, finely pubescent. The punctuation of the 
surface is sometimes brownish, either above, or both above and below. 

Length, 5-6 millimeters ; width across the humeri, 13-2 millimeters. — 

This species is quite unlike any of the others thus “far discovered in 
the United States, in slenderness and neatness of proportions, as well 
as in the bright freshness of its colors whe recent. It inhabits Colo- 
ais Nebraska, and Dakota. 


Ps Hahn. 


L. trwitattus, Say, (Jour. Acad. Phila., IV, p. 332.)—A common spe- 
cies in Colorado, Arizona, and California. 


Jadera, Stal. 
J. hematoloma, H. Sehf. , (Wanz. Ins., VIII, Fig. 873.)—No specimens 


were collected by the survey, but it has been found in Arizona, Texas, 
Kansas, and California. — 


GEOLOGICAL SURVEY OF THE TERRITORIES. 405 


Family LyG a1. 


Lygeus, Fab. 


1. ZL. turcicus, Fab., (Syst. Rhyng., p. 218, No. 61;) L. reclivatus, Say, 
(Jour. Acad. Phila., IV, p. 321.)—The form described as L. reclivatus, 
Say, differs from the Fabrician only in having the two white dots on 
the membrane. As specimens with this peculiarity occasionally hatch 
out of a cluster of eggs of the L. turcicus, laid on the pink Asclepias 
in Maryland, I do not hesitate to place it as a synonym of that species. 
Inhabits the United States generally. 

2. L. fasciatus, Dallas, (British Museum List, II, p. 538, No. 17;) 
DL. aulicus, H. Schf., (Wanz. Ins., VI, Fig. 646. )—Collectea in Ari 
zona, but common over the greater part of the United States east of 
the Sierra Nevadas, and extending from Canada to Central America 
and Brazil. 

3. L. bistriangularis, Say, (Heteropt., New Harmony, p. 14, No. 33) LL. 
marginellus, Dallas, (British Museum List, IT, p. 548, No. 51; ) L. vicinus, 
Dallas, (ib., p. 549, 52.)—Inhabits Arizona, California, Texas, Mexico, - 
Central America, and even V enezuela. The L.mar ginellus corresponds 
with the type. described by Mr. Say; while the Z. vicinus, Dallas, is the 
more common variety, which lacks the red lateral margins to the prono- 
tum. Other varieties occur which have only a spot of red on the 
humeral angles; still others with’ simply a vestige of red on the pos- 
terior edge of the pronotum. 

4, D. facetus, Say, (Heteropt., New Harmony, p. 13, No. 2;) Z. circwm- 
litus, Stal, (Entom. ‘Zeit., Stettin, XXIII, p. 309. \—This pretty species 
was obtained by the survey in Colorado. It inhabits, also, Texas, Oali- 
fornia, Mexico, New Jersey, and Florida. Specimens from Cape Saint 
Lucas, Lower California, lack the red costal margin of the corium, aud 
usually the red median stripe of the pronotum. The individuals ‘from 
New Jersey exhibit among themselves a very perceptible variation im 
the proportionate obliquity of the sides of the pronotum. 

5. L. admirabilis. New species.—Somewhat resembling the preceding, 

but with the pronotum more nearly quadrate, the sides ‘not SO obliqne, 
and the antenne proportionally more robust. Black, beneath grayish 
sericeous pubescent; the anterior margin of the pronotum, a short 
stripe on the base of the lateral margins, a short wedge- shaped streak 
on the base of the median line, inner margin of the clavus slenderly, 
and costal and posterior margins of the corium very broadly, red. 
Head a little longer than broad, much contracted before the eyes, 
minutely sericeous, grayish pubescent; antennee very stout, almost as 
thick as the tylus, the basal joint extending a very little beyond the 
apex of the tylus; the second joint about the same length as the fourth; 
_ the third scarcely more than two-thirds of that length. Rostrum reach. 
ing behind the posterior coxe. Pronotum remotely, minutely grayish 
pubescent, having a few shallow punctures behind the transverse ridge; 
the median ridge quite distinct; the humeral! portion of the lateral mar- 
gin thickened and elevated ; sides of the antepectus with a few coarse, 
shallow punctures; the punctures of the mediopectus finer, almost obso- 
lete; the upper posterior angle of the metapleura a little rounded. 
Hemelytra minutely sericeous pubescent; the posterior margin of the 
corium arecuated, sinuated on the middle ; the membrane black, nar- 
rowly margined at base and all around with white, having four longi. 
tudinal nervures. Tergum red, the apical segments black ; venver 
minutely sericeous pubescent; the pubescence on the posterior margin 
of the two apical segments longer. 


AOG GEOLOGICAL SURVEY OF THE TERRITORIES. 


Length to tip of venter, 44-5 millimeters. Width across the humeri, 
- 13 millimeters. vith 
mate ed in Colorado. 

. L. bierueis, Say, (Jour. Acad. Phila., IV, p. 322, No. 3. )—No speci- 
a of this species were captured hy ‘the survey ; but it inhabits a 
part of the territory passed over in Western Kansas, and is found also 
in New Mexico, Nevada, California, Texas, Florida, Maryland, and 
extends south into Mexico. | } 


Nysius, Dallas. 


1. N. Californicus, Stal., (Eugenies Resa omkring jorden, p. 242.)\— 
Obtained in Colorado; it inhabits also Dakota, Arizona, and Texas, 
and one specimen has been collected by myself in Maryland, a few miles 
southwest of Baltimore. 

2. N. angustatus. New species.—Dark gray, moreslender than J. thymi, 
Wolff. Head moderately long, very minutely sericeous pubescent; the 
superior orbit of the eyes smooth, pale testaceous ; the surface with 
coarse, partly confluent, brassy-black punctures; the median line of the 
tylus pale testaceous, its side brassy black; under side of head pale testa- 
eeous, blackish near the bucculz, with remote coarse black punctures on 
the middle, and some finer ones around the base of the antenne, and with 
a patch of fine black punctures posteriorly beneath the eye. Bucculz 
smooth, pale testaceous; the rostrum piceous, reaching to the posterior 
Coxe. ’ Antenne moderately slender, the torulus testaceous, excepting 
only its base; basal joimt testaceous, paler beneath; the tip and several 
dots on the upper side fuscous, the inner line dark piceous; remaining 
joints piceous, paler, and more rufescent beneath; the apical joint 
darker, not quite as long as the second; the second joint about one- 
fourth longer than the third. Pr onotum narrowing anteriorly; the 
sides sinuated ; surface pale testaceous, sericeous pubescent, coarsely 
punctured with brassy black in irregular, transverse rows; the callosi- 
ties and surface before them blackish, more closely punctured, the ante- 
rior and posterior margins slenderly ; the median line at base and the 
outside of the elevated humeri smooth, pale testaceous; pectoral surface - 
sericeous pubescent, irregularly punctured with brassy black; the 
acetabular caps, gular collum, a broad stripe on the metapleura between 
two blackish ones, and the surface adjacent to the posterior coxe pale 
testaceous, Legs testaceous; the femora with large brown dots; the 
tibiz striped with brown, and somewhat brown at base and tip; tarsi 
brown on the apices of all the joints; the nails piceous. Scutellum pale 
testaceous, sericeous pubescent, having a few coarse black punctures ; 
the median carina dark piceous, and the surface next to the tip blackish. 
Hemelytra very pale testaceous, very minutely punctured, sericeous 
pubescent; the posterior margin of the clayus and the nervures marked 
with interrupted brown streaks ; costal margin slenderly ; the outer end — 
of the posterior margin of the corium and a “streak on its middle, which 
bends abruptly inward and runs longitudinally about one-third way 
forward, brown; membrane very faintly brownish, marked with a few 
brown clouds. Tergum piceous-black; the incisures of the segments, the 
sides of the fourth, fifth, and sixth segments, and a spot each side of the | 
terminal segment ’rufo- festaceous ; connexivum margined with, and at 
the incisures spotted with, testaceous. Venter griseous, minutely, uni- 
formly sericeous pubescent; the second and third segments with a trans- 
verse series of a few very black points; the disk of the fifth and base of 
disk of the sixth segment yellow, with an interrupted black stripe on 


GEOLOGICAL SURVEY OF THE TERRITORIES: A007 


\ 
the middle; the sides of these segments and of the one next in front 
have ‘a very black line, which is interrupted at the incisures, (sometimes 
this line runs along the whole length of the venter, continuous with that 
on the metapleura;) the apical segment more or less yellow each side; 
the lateral margins yellowish, and the submargin with short, black, re- 
mote lines, and with similar oblique ones, lower down, on the sides of 
three or four basal segments; male. The female is paler, with the mid- 
die joints of the antennz pale rufous, excepting at base and tip, with 
the venter pale testaceous, and the base and a lateral, broad, and an- 
other narrower vitta, blackish. 

Length to tip of venter, 4-5 millimeters. Width across the humeti, 
re millimeters. Brought from Colorado; it inhabits also Dakota and 

anada. 

The pronotum is about one-fifth wider than long, and the metapleura 
is very remoteiy, shallowly punctured, and often rufo-flavous, particu- 
larly in the females. 


Ophthalmicus, Schill. 


O. piceus, Say, (Heteropt., New Harmony, p. 18, No. 1.)—Obtained in 
Colorado ; but is quite a common insect in the Atlantic region. 


Limblethis, Fieb. . 
#. arenarius, Linn., (Fauna Suecica, p. 955.)—Obtained at Cheyenne, 
in August. The specimens from our Western Territories seem to cor- 
respond very closely with those of Europe. 


Rhyparochromus, Curtis. 


hk. fallax, Say, (Heteropt., New Harmony, p. 17, No. 6.)—Brought 
from Colorado and Montana; but quite common in Illinois, New Eng- 
land, Canada, British Columbia, and even‘in California. 


Plociomerus, Amyot et Serv. 


P. diffusus, Uhler, (Proc. Boston Soc.\ Nat. Hist., 1871, p. 9.)—Cel- 
lected in Colorado. lt is widely diffused in the Western United States, 
and extends as far east as Maryland. 


° 


Hereus, Stal. 


H. insignis. New species.—Similar in form to Araphe Carolina, H. 
Schf. Shining black, or with the head, thorax, and legs pale rufo-piceous. 
Anterior lobe of the pronotum very high and convex. Head longer 
than wide, subconical, very convex above, minutely granulated, pubes- 
cent, and with a few erect, long hairs. Rostrum extending upon the 
intermediate cox, piceo-rufous, with the third and fourth joints 
blackish piceous. Antenne fulvous, or rufo-flavous; the fourth joint 
and apex of the third blackish, these two subequal in length; the 
second joint much the longest; the basal one extending a little beyond. 
the tip of the tylus, armed beneath with a few long bristly hairs. Pro- 
notum polished, the anterior lobe almost spheero-convex, very minutely 
scabrous, and with a few erect long hairs; against the collum is a trans-. 
verse, impressed, punctured line; the posterior lobe abruptly slanting 
anteriorly, remotely, coarsely punctured with black on a pale piceous. 


- 


408 GEOLOGICAL SURVEY OF THE TERRITORIES. 


ground ; the incisure | dike the lobes very deep ; humeri tumidly pro- 
Ininent ; under side of the collum coarsely punctured ; the pleura min- 
utely roughened ; the acetabular caps, anterior margin of collum, and 
posterior margin of the metapleura white. Legs piceous ; the tibia — 
usually paler, with the anterior femora stout, and armed beneath with 
about four short spines, and along the whole length with remote, long 
hairs. Seutellum piceous or rufo-piceous, long and very acute, remotely 
punctured. Hemelytra pale testaceous, punctured with blackish, in 
longitudinal series; a large black spot occupies from the middle to the 
tip, with a subtriangular, testaceous spot thereon near the tip; the 
costal and posterior margins of the corium pale testaceous; disk of the 
clavus more or less black; the membrane dusky; wings white. ‘Ter- 
gum black, or with piceous at base; venter black, finely sericeous 
pubescent ; ‘the second segment has a minute, geminate tubercle each 
side of the middle, in both sexes. 

Length to tip of venter, 5-6 millimeters. Width across the humeri, 
1-14 millimeters. 

Inhabits Ogden, Utah; Colorado; Canada; and Minnesota. It varies 
greatly in the length of the hemely tra, which are either much shorter 
or somewhat longer than the abdomen. The head is not wider than 
long, as Dr. Herrich-Schaffer describes his Araphe to be; but in most 
other respects our insect seems to be near that genus. 


Plociomerus, Amyot et Serv. 


P. diffusus, Uhler, (Proceed. Boston Soc. Nat. Hist., 1871, p. 9, No. 

2.)—Collected in Colorado by the survey ; but it is quite common in the 
astern United States and Canada. In Maryland and Massachusetts, 
I have found it on low spots in grassy meadows. 


Family LARGIDA. 
. Largus, Hahn. 


J. succinctus, Linn., (Cent. Insect. Rariorum, p. 17, No. 44.)—Brought 
from Colorado by the survey. It inhabits all the Atlantic region, from 
New Jersey to Florida, and extends westwardly through Texas and 


‘Indian Territory, as far as into Arizona. 


‘ Family Puyrocorip. 
Megalocerca, Fieb. 


1. M. debilis. New species.—Yellowish or greenish-white, polished. 
Head impunctured, the middle line incised, each side with a black line 
running from before the torulus to the base, and continued on the prono- 
tum to its base; eyes brown, tylus sometimes black anteriorly; antennze 
long, the basal joint blackish, bald, sometimes paler inwardly, a little 
stouter than the second, about as long as the pronotum; the second 
piceous, about as long as the head, pronotum and scutellum united; 
the third a little paler, abruptly more slender, about two-thirds as long 
as the second; fourth hardly as long as the. basal joint. Sometimes the 
antenne are orange-yellow, excepting the first joint and base of the sec- 
ond. ostrum reaching to the venter, the tip piceous. Pronotum 
irregularly, remotely, somewhat coarsely punctured, the lateral carinate 
edge smooth, as is also the median line; propleura ‘roughly punctured, 
usually having ¢ a broad, black stripe which runs back, more slenderly, 
‘to the end of the yenter. _Mesosternum and coxe more or less orange. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 409 


Legs pale areenietn more or less embrowned on the tarsal joints and tip 
of the tibize; the femora with impressed, sometimes brownish, points in 
series. Scutellum yellow, margined at base with black, minutely trans- 
versely wrinkled, having a few obsolete punctures. Hemelytra longer 
than the abdomen ; the corium pale yellowish, or with the disk. dusky 
and the margins yellowish ; membrane whitish, with the nervule brown- 
ish. Abdomen pale yellowish, the disk of the tergum more or less 
brownish, or sometimes with black bands on the segments ; venter usu- 
aliy having the lateral black lines very distinct. 

Length to tip of venter, 5-6 millimeters. Width across the humeri, 
13 millimeters. 
.  Inhabits Berthoud Pass and other et of Colorado; also Montana, 

Cheyenne, &e. | 
2. M. rubicunda. New species.—Form similar to WM. debilis; rosy or 
crimson-red. Head bald, pale, rosy, or yellowish, with a black dot 
each side of the middle, between the eyes, and a broad, black stripe 
each side, invaded by the eyes, which, running forward, ‘curves down- 
ward at the antenne and covers the tylus; throat blackish. ‘Antennee 
black, slender; the second joint a little lon ger than the head pronotum 
and scutellum ‘united, basal and apical joints subequal; the third joint a 
little longer than the fourth. Rostrum pale yellow, reaching to the 
third ventral segment; the apical joint piceous, excepting at the base. 
Pronotum testaeeous, tinged with rosy, irregularly punctured with 
black; the middle line and sides pale; each side, near the anterior an- 
gles, with a subquadrate black spot; the lateral margins feebly sinuated, 
and the posterior angles broadly rounded. Pectus yellow, with rosy 
nebule; the propleura remotely punctured and with a black spot ante- 
riorly; ’meso- and metapleurze each with a large, long, black spot; 
sternum, and sometimes a spot near the base of the coxee, black. Legs 
pale yellow, the femora dotted with dark brown, and with the spines 
and tip of tibiz piceous; tarsi dark piceous. Scutellum rosy, yellow at 
tip, black at base, and with a red stripe along the middle. Hemelytra 
rosy, obsoletely scabrous, remotely punctured, and with a few lines of 
punctures near the sutures; the margins of corium and clavus and the 
jlongitudidal nervures yellowish; membrane pale brown; the nervule 
yellow, or sometimes reddish at base; wings faintly brown. Tergum 
more or less blackish, at base reddish, and with the apical segment 
' yellow, except at the base; the connexivum yellow, defined inwardly by 
a dark line; venter yellow, rosy on the sides, and with a red line along 
the middle; the inferior connexivum yellow, bounded on the inner side 
by a line ‘of interrupted, impressed, slightly oblique, black streaks. 
Bases of venter and anal segment sometimes blackish. 

Length to tip of venter, 43-5 millimeters; width across the ‘humeri, 
13-13 millimeters. 

Brought from Colorado. The amount of black on the head, &c., varies 
_ very considerably. 
Trigonoty ylus, Fieber. 


aq. ruficornis, waned! Herrich-Sehf., (Wanz. Ins., IT, p. 119, Fig. 200.)— 
Obtained at Snake River, Idaho, and Colorado. It extends east as far 
as Maryland and Massachusetts. In the latter State it abounds upon 
the salt-marshes near the coast. 4 


Leptopterna, Fieber. » 


I. amena. New species.—Robust, pale yellowish; head and antennee 
once than in LD. ae Linn. y with the pr onotum long, and narrower 


410 GEOLOGICAL SURVEY OF THE TERRITORIES. 


behind than in that species. Head yellowish, pubescent, indented 
posteriorly, having a A-shaped black mark between the eyes, the tip of 
tylus, a spot behind the eyes, a partial circle around the eyes, and a 
few dots on the gene, black. Antenne fulvous,.densely beset with 
blackish, erect, stiff pile; the basal joint very thick, a little longer than 
the pronotum; second joint a little more slender, tapering toward the 
tip, as long as the distance from the tip of head to the second ventral 
segment; third joint slender, a little longer than the basal one; apical 
joint still more slender, less than one-half the length of the third. 
- Rostrum reaching to the posterior cox, pale yellow; the apical joint 
piceous, excepting only at base. Pronotum not much widened pos- 
teriorly; yellowish, with a dark line each side, and black spot; the 
lateral margins narrowly reflexed, faintly sinuated; the surface having ~ 
three or four transverse, impressed lines, and behind the collum with 
an obsolete, collar-like ridge. Pectus yellow, a pale-brown stripe on 
the propleura, and a few brown marks on the middle and posterior areas 
and cox. Legs lost from the specimens. Scutellum yellow, with a 
triangular black mark each side near the base. Hemelytra shorter 
than the abdomen, yellow, with a long, large, dusky cloud on the disk; 
membrane whitish, with the nervule dusky. Tergum more or less 
saturated with reddish or brown on the sides of the segments; venter 
yellow, pubescent, with pale-brown spots each side, which include an 
impressed, short, black line on each of the segments, excepting the anal 
one. @ 

Length to tip of venter, 8 millimeters; width across the humeri, 14-13 
millimeters, | 

Inhabits the vicinity of Snake River, Idaho. A poor specimen from 
Dakota, in my own collection, has much shorter hemelytra than that 
brought home by the survey. Me 


Calocoris, Fieber. 


1. C. rapidus, Say, (Heteropt., New Harmony, p. 20, No. 4;) Capsus 
multicolor, H. Schf., (Wanz. Ins. VIIT, p. 19, Fig. 795.)—Brought from 
Colorado. The reddish variety extends as far west as San Francisco, 
Western specimens exhibit much difference in colors and pattern of 
marking; while in several parts of the Atlantic region a singularly 
exact uniformity of color prevails. . 

2. O. Palmeri. New species.—Form similar to OC. bipwnctatus, Fab. 
Bright, deep yellow, polished. Head smooth, impunctured, clothed 
with long, remote hairs, the vertex having a broad, rounded indenta- 
tion, and the cranium exhibiting traces of oblique striz each side, run- 
ning from a central line; eyes brown, with the orbits more or less yel- 
low; the occiput, throat, tylus, antennz and rostrum black; or with 
the cranium and face black, excepting only the cheeks and a spot on 
the middle. Antenne as long as from the tylus to the tip of cuneus; 
the second joint as long as the pronotum and scutellum united, cylin- 
drical, a very little more slender at base than tip; the third and fourth 
joints together about two-thirds the length of the second; the third a 
little longer than the fourth, both slenderly tapering to the tip; ros- 
trum reaching to behind the posterior cox; the second and fourth 
joints longer than the basal one, subequal in length; the third very 
much shorter than the basal one. Pronotum moderately convex, 
coarsely, obsoletely punctured, with remote, erect hairs; sides oblique, 
straight; the disk with two round black dots, or with an irregularly 
subquadrate spot on the middle, or with a transverse spot in front 


GEOLOGICAL SURVEY OF THE TERRITORIES. Al1 


and behind, connected by longitudinal stripes. Propleura coarsely 
punctured, yellow, with a long black spot; the posterior pieces and 
cox more or less black. Legs yellow; the knees, base and tip of 
tibee and tarsi all over black. Scutellum yellow or black, transversely 
wrinkled. Hemelytra yellow, rather coarsely, closely punctured, and 
transversely wrinkled; the inner margin of the cuneus, and a more or 
less large spot near the end of the corium, black; membrane almost 
black ; the nervule deep black. Venter black, or pale yellow, with the 
margins of the segments white, pubescent; ovipositor black. 

Length to tip of venter, 5-6 millimeters ; width across the humeri, 
23-3 millimeters. 

“It inhabits Arizona, and was obtained by Dr. H. Palmer, to whom the 
species is respectfully dedicated. 


Resthenia, Amyot et Serv. 


1. R. insignis, Say, (Heteropt., New Harmony, p. 22, No. 12. \—Collected 
in Colorado; but it occurs also: ‘in New England, Illinois, and in the 
Middle States. The species is very unstable in colors and pattern of 
marking, varying from red with black spots to almost uniform black. 

2. R. confraterna. New species.—Form similar to KR. insitiva, Say, but 
with the pronotum a little narrower and longer; prevailing color black, 
opaque. Head convex, blood-red, with a large, more or less rounded, 
spot on the disk; a small spot at tip of the inferior gena, and the sur- 
face of the tylus black; rostrum reaching to the venter, piceous or 
blackish. Antenne black, pubescent, about as long as the hemelytra, 
slenderly tapering to the tip; the apical joint longer than the basal one, 
but much shorter than the third; second as long as the pronotum and 
scutellum united. Pronotum crimson-red, one-third wider than long, 
having a blackish, broad stripe along the disk, widened posteriorly, or | 
with a large rounded spot from the base to before the middle. Pectus 
red; the sternum and trochanters dusky; legs blackish; the coxe yel- 
lowish. Scutellum black, or reddish only at base. Hemelytra entirely 
black, longer than the abdomen. Venter red, pubescent ; usually more 
or less dusky on the disk. 

Length to tip of venter, 6-64 millimeters ; width across the humeri, 
23 millimeters. 

“Inhabits Colorado, Wisconsin, Illinois, Pennsylvania, and Maryland. 
The collum of the pronotum is broad; as in A. insitiva, Say. 


Lopidea, Uhler. 

Hlongate-oval, the sides of hemelytra parallel. Head vertical, from 
the front to the occiput short; face transverse, fully twice as broad as 
long, the front raised on the middle, the sides near the eyes correspond- 
ingly depressed; eyes subhemispherical, prominent; occiput transversely 
impressed, the carina higher in the middle; antennz placed just below 
the line of the eyes, in length almost equal to the pronotum and hem- 
elytra united ; the basal joint about equal to the breadth between the eyes; 
‘second joint three times as long as the first; third about two-thirds the 
Jength of the second; tylus vertical above, then cur ving inward below ;. 
the superior cheeks ‘small, elongate-quadrate; rostrum reaching to the 
intermediate cox, basal and second joints about equal in length, third 
shorter than the second, the apical one subequal to the preceding. 
Pronotum trapezoidal, about one-half wider than long; the lateral edges | 
carinately elevated; the middle of posterior margin sinuated, deflexed ; 


412 GEOLOGICAL SURVEY OF THE TERRITORIES. 


callosities oval, placed obliquely. Suture between corium and cuneus 
externally deeply notched; areole of the membrane obliquely narrowed 
toward the outer end. 

L. media, Say, (Heteropt., New Harmony, p. 22, No. 11;) Capsus Robi- 
nie, Uhler, (Proc. Ent. Soe., vol. I, p. 24.)—This species seems to inhabit 
almost the whole territory of the United States. The present specimens 
came from Cheyenne, and were collected in August, 1870. The yellow 
variety, named C. Kobinic, dwells upon Robinia ; ‘pseudacacia. 


Hadronema, hier. 


Aspect of Lopus: cranium somewhat convex, face almost vertical ; 
eyes prominent, oval, almost vertical ; occiput with a high, transverse 
carina between the eyes; tylus a little prominent, narrowing toward 
the tip; cheeks short and blunt; buccule narrow, shorter than the 
basal joint of the rostrum; that ‘joint subcylindrical, robust, a little 
longer than the head. Antenne short, about as long as the corium 
and cuneus united, stout; the third and fourth joints of nearly equal 
thickness, not tapering to a setaceous termination; the latter less than 
one-half the length of the preceding. Pronotum trapezoidal; the angles 
rounded; the collum forming an obtuse, narrow collar, and behind 
it is an ‘arcuated carina abbreviated a little way from the lateral mar- 
gins; the lateral edges prominently carinated. Costal mar gins of the 
hemelytra almost straight, parallel. 

H. militaris. New species.—Black, dull, more or less tinged with cine- 
reous.. Head broad, dull black, having a few stiff hairs on the vertex, and 
with yellowish pubescence about the tip of the tylus; bucculz yellow; 
rostrum and antenne black, the former reaching to the intermediate 
cox; antenne sparingly setutose; the joints closely united; the basal 

_ joint short, reaching a little way beyond the head; second longest, not 
quite as stout as the basal, and more than twice as long; third joint a 
very little more slender than the second and about one-fourth shorter; 

* the apical one a little more slender, but not setaceous, a little longer than 

- the basal; these two last densely cover ed with golden-yellow pubescence. 
Pronotum rather flat, yellowish-red, the anterior lobe black, and some- 
times that color extends backward on the middle, invested with black, 

remote, bristly hairs; the posterior lobe coarsely, transversely rugose, 
the carinated lateral edge a little sinuated; the anterior angles rounded 
and posterior ones more broadly so, and having the edge a little Taised ; 
propleura red posteriorly, smooth; the remainder of the pectus, and 
the legs, bluish-black, the latter with yellowish pubescence; posterior 
®femora with a row of obsolete blacker points. Scutellum a little scooped 
out upon the middle. Corium black, the costal margin broadly yellowish- 
white, invested with remote erect ‘sete ; the cuneus yellow, except on 
the inner part of base; membrane pale fuscous, with the nervule black. 
Abdomen dull bluish- black, invested with yellowish, minute pubescence; 
the upper margins broadly red on the middle, more narrowly so at tip. 

Length to tip of venter, ite millimeters. Width across the humeri, 
13-13 millimeters. 

. Inhabits Colorado; Ogden, Utah; California; also found at ony oats 
in J une, 1869. 

The specimens vary in the width of the pale margin of the hemelytra 
and in the extent of black on the PEONOUEIAT The ate of the corium is 
sometimes entirely whitish. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 413 
Lygus, Hahn. 


1. ZL. lineolaris, Palisot de Beauv., (Ins. Afr. et Amer. >D- Loe “t xi, 
Fig.7.) Capsus oblineatus, Say, ( (Heteropt., ‘New Harmony, p. 21, No. 7. — 
Obtained in Colorado. It inhabits almost the whole territory of the 
United States, and is common in Canada and British America. The speci- 
mens from the western sections exhibit a number of dark varieties thus 
far not met with on the Atlantic slope of the continent. This species 
includes the two extreme races to which I had provisionally given the 
names L. redimitus and L. diffusus; but these names must be dropped, 
as thus they do not belong to true species. A specimen was collected 
at Cheyenne in August, 1870. . 

2. L. annenus. Ne ew species. —Closely allied to the preceding species, 
but having the pronotum longer and narrower and the punctures closer 
and finer.. I'usco-griseous, or grayish-testaceous, sericeous pubescent. 
Head ‘minutely, sparingly punctured, indented on the middle of the 
vertex; testaceous, with the tylus and each side of face piceous, or 
piceous with a median yellow stripe and with marks of yellow each side of 
the tylus; occiput with a transverse carina: Antenne slender, piceous, 
or black, or even pale rufo-piceous, with the ends of the joints darker, 
the apical joint much shorter than the preceding one. Rostrum reach- 
ing tothe posterior coxe, testaceous, with a black apex. Pronotum 
blackish- -piceous, or grayish-testaceous, coarsely rugose, closely and 
somewhat finely punctured between the ru ge; the lateral margins feebly 
sinuated; the posterior margin arcuated, testaceous; callosities smooth, 
pr ominent; the collum distinetly defined, "testaceous. Propleura piceous, 
rugose, and closely punctured; the inferior margin pale yellow; pectus, 
coxe, and base of femora pale yellow; the upper part of pleure having 
a broad black stripe, which is continued along the venter to the tip. 
Femora dusky or piceous at tip; the tibie more or less suffused with 
pale piceous; the tarsi ‘and nails dark piceous. Seutellum rufo-piceous, 
piceous, or orayish, densely yellowish pubescent, transversely wrinkled, 
and having only a very few obsolete punctures; the tip smooth, pale 
yellow. Hemely tra very minutely scabrous, obsoletely punctured, 
closely yellowish pubescent; the costal mar gin straight, color brownish, 
piceous, or testaceous, clouded with brown on the disk and clavus ; the 
inner apex of the corium having a thickened, short, linear, whitish mar- 
gin; cuneus long, testaceous, with a dusky tip, § sometimes suffused with 
rufous ; membrane very long ; smoke- brown, with the nervule pale testa- 
ceous. Venter testaceous, “smooth, shining, closely pubescent, the last 
segment more or less piceous. Sometimes all beneath, except the prop- 
leura, is pale testaceous. ¢ 9. 

Length to tipof venter, 44-5 millimeters. . Width across the humeri, 
13-2 millimeters. 

Collected in Colorado. 


Dacota, Ubler. 


Allied to Polymerus, Fieber. Form long-ovate; head eth ante- 
riorly, longer than wide, and together with the ey es only a little wider 
than the {rout of the pronotum ; the tylus narrowing almost to an acute 
tip; eyes lar ge, oval, almost ver tical; the superior cheeks with a recurved 
lower margin; buccule forming a narrow strip along the anterior half 
ot the oula. “Apical joint of. rostrum long and very ” slender; antennz 
as long as the thorax and abdomen united; the first joint longer than 
the head, constricted at base; the second about three times the length 


AiA4 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of the first, obfusiform; the apical joints abruptly more slender. Pro- 
notum trapezoidal, fully twice as wide as long; the osteolar orifice large; 
the scale in which it is inserted is subpyriform in outline. Hemelytra 
wider posteriorly ; the costal margins arcuated and the edge elevated. 

D. hesperia. New species.—Long-ovate, dull black, invested all over 
with gray, prostrate pubescence. Head long, without the eyes very 
much narrower than the front of pronotum, obsoletely, minutely 
wrinkled; the face slanting downward, moderately convex; the occiput 
having a feeble and very slender carina across its width; eyes brown; 
antenne black; the basal joint about one-third the length of the second; 
the second a little longer than the head and. pronotum united, gradually 
thickened from the middle to the tip; the third and fourth much more 
slender; the third about one-half the length of the second; the fourth 
haidly more than one-half that of the third. Rostrum yellowish-piceous, 
reaching behind the posterior coxze; the apical joint very slender and 
much longer than the third joint; buccule yellowish. Pronotum a little 
transverse, moderately convex; the sides oblique, not carinated, a little 
arcuated; the surface minutely wrinkled, densely coated with grayish 
pubescence; the callosities a little convex, defined posteriorly by an 
impressed line; anterior margin almost straight, fitting very closely 
against the head, with a feebly defined collum; posterior angles 
rounded; the posterior margin a little sinuated. Propleura wrinkled, 
and, together with the rest of the pectus, densely grayish pubescent. 
Legs lurid rufous, minutely pubescent; the coxe, tarsi, and tip of tibe 
blackish. Scutellum transversely wrinkled, very slightly convex. 
Hemelytra almost flat, densely scabrous, closely grayish pubescent; the . 
costal margin much elevated, arcuated; the clavus large and wide; mem- 
brane blackish. Venter black, polished, minutely sericeous pubescent. 

Length to tip of venter, 44 millimeters. Width across the humeri, 24 
millimeters. 

Inhabits Colorado and Dakota. 


Peciloscytus, Fieber. 


1. P. venaticus. New species.—Rather less robust than Charagochilus 
Gyllenhali, Fieber. Dull black, closely, minutely, yellowish pubescent. 
Head black, densely. pubescent, face moderately convex; the cranium 
with a yellow spot against each eye; occipital carina slender, sharp. 
Antenne black, stout, the basal joint extending a little beyond the tip 
of tylus; second joint a little stouter at tip, about as long as the prono- 
tum and scutellum united; the third joint abruptly more slender, about 
the same length as the basal one; the apical joint subequal to the pre- 
ceding, and a very little more slender. Pronotum moderately convex, 
black, minutely, closely punctured, and obsoletely wrinkled, coated with 
sparse, yellowish pubescence, a little depressed between the callosities; 
the posterior margin arcuated; the edge yellow; lateral margin oblique, 
straight. Pectus black, pubescent, with the posterior and inferior 
margins slenderly yellow. Legs black, minutely pubescent; the coxe, 
base of femora, and basal and middle joint of tarsi yellow. Scutellum 
a little convex, minutely, transversely wrinkled, coated with yellowish 
pubescence. Hemelytra longest in the male, black, yellowish pubescent, 
minutely scabrous, closely punctured; the cuneus, and sometimes the 
costal margin, red or yellow; the membrane blackish, with the nervule 
more or less yellow. Abdomen black, sericeous pubescent; the posterior 
edges of the segments sometimes whitish. 


GEOLOGICAL SURVEY OF THE TERRITORIES. AI5 


Length to tip of venter, 34-5 millimeters; width across the humeri, 
2-24 millimeters. ; , 

Brought from Colorado by the survey; but specimens have been col- 
lected also in California, Illinois, and Massachusetts. 

2. P. diffusus. New species.—More slender than P. venaticus. Black, 
densely coated all over with prostrate, whitish pubescence. Cranium 
very convex, with a spot against each eye; the upper cheek and buc- 
cule yellow; antenne black, slender, reaching a little behind the mid- 
dle of the corium; second joint cylindrical, longer than the third and 
fourth united; the third and fourth more slender, subequal. Rostrum 
reaching to behind the intermediate coxze, piceous, with the basal joint 
yellow. Pronotum minutely rugulose, convex, margined on the sides 
and behind with yellow; the posterior angles widely rounded. Pectus 
yellow, sericeous pubescent, black on the upper part of the disk of the 
pleural segments; cox yellow. (Legs lost from the specimens.) Scu- 
tellum with a yellow tip; hemelytra broadly margiued with pale yel- 
low; the cuneus either yellow, or with a dusky disk; the thickened, 
line-like, inner margin of the apex of corium yellow; membrane dusky; 
the nervule yellowish. Abdomen all over black, or with the venter 
yellow, and having the disk and broad lateral stripe black. 

Length to tip of venter, 3-4 millimeters; width across the humeri, 
13-2 millimeters. iE 

Brought from Ogden, Utah, by the survey. The male is much longer 
and more slender than the female, and has the hemelytra very much 
longer than the abdomen. 


Khopalotomus, Fieber. 


1. Rk. Pacificus. New species.—Elongated, black, shining, grayish seri- 
ceous pubescent. Face very convex, densely pubescent; the sides with 
a small foveain front of the eyes; the occiput tranversely tumid, scabrous; 
eyes brown, very prominent, their posterior orbits encircled with yel- 
low; margin and tip of the tylus, lower end of the upper cheeks, upper 
margin and tip of the lower cheeks, torulus and base of the second joint 
of the antenne, and inner portion of the basal joint of rostrum orange. 
Antenne black, bald, long, reaching beyond the tip of the corium, slen- 
‘derly tapering to the tip; the basal joint a little curved, longer than 
the head; second joint longest, longer than the head and pronotum 
united ; third a little less than one-half as long as the second; the fourth 
considerably shorter than the third. Rostrum more or less yellow, 
reaching beyond the intermediate coxze; the labrum and outer surface 
piceous, and the apex blackish-piceous. Pronotum long and narrow, 
transversely wrinkled, scabrous; the sides sinuated; the collum slen- 
derly carinated, and the humeral angles a little arcuated. Pectus dull 
black ; the propleura scabrous ; all the pieces, except the posterior one, 
margined below and behind with yellow; coxal ends and the osteolar 
segment also pale yellow. Scutellum scabrous, transversely wrinkled, 
sparsely pubescent. Hemelytra roughly shagreened, sparingly pubes. 
cent; the thick nervure brown at the extreme base; membrane pale 
brown; the nervule sometimes fulvous. Venter dull black, tinged with 
cinereous; the superior connexivum shagreened, margined with dull 
yellow. ¢ 9. 

Length to tip of venter, 5-6 millimeters; width across the humeri, 2 
millimeters. 

The legs are usually yellowish, the femora striped and sparingly 
spotted with black, the knees and tip of tibiz and the tarsi blackish. 


416 GEOLOGICAL SURVEY OF THE TERRITORIES. 


It inhabits Montana,’ and near Snake River, in Idaho. Several speci- 
mens have also been collected in California. 

2. R. brachycerus. New species.—Shortter and more robust than‘ BR. 
Pacificus. Shining black, clothed with longer pubescence, which is 
dense and erect on the head. Head not so long as in .R. Pacificus; the 
surface scabrous; the cranium a little depressed, and with a shallow, 
longitudinal groove on the middle; the anterior margin of the lower 
cheeks yellowish; eyes brown; the posterior lobe of the eyes black, 
encircled with yellow; antenne black, not reaching quite as far as to 
the base of cuneus; the torulus yellow at base; second joint but little 
more slender than the basal one, about as long as the pronotum; third 
and fourth joints subequal; rostrum reaching upon the posterior cox, 
yellowish; the fourth joint and base of the third piceous; third joint 
‘very short, but little more than one-half the length of the fourth. 
Pronotum short and wide, coarsely scabrous. densely punctured and 
wrinkled, having close, long pubescence; the lateral margins broadly 
sinuated; callosities distinctly elevated, excavated anteriorly ; humeri 
a little prominent; the margin exterior to them rather broadly rounded. 
Scutellum coarsely wrinkled, very sparingly punctured ; apical half of 
coxe and lower margins of the pleural segments yellowish white; pro- 
pleura very coarsely, roughly punctured. (Legs lost from the speci- 
mens.) Hemelytra longer than the abdomen, scabrous, closely pune- 
tured; the pubescence moderately dense, long, prostrate; cuneus much 
shorter than in R&. Pacificus ; membrane brown, or blackish fuliginous ; 
the nervule black. Venter highly polished, very minutely, obsoletely 
wrinkled, sparingly pubescent. 

Length to tip of venter, 44-5 millimeters. Width across the humeri, 
2-24 millimeters. 

Inhabits Weld County, Colorado. <A closely related, if not identical, 
species is found on the island of Santa Cruz, California, 


Labops, Burm. 


LI. hesperius. New species.—Black, opaque. Head bluntly triangular, 
much stouter than in L. Sahlbergi, Fallen; the face yellow, shining, hav- 
inga large, irregular, black circle on the middle, which throws off a branch 
posteriorly and another toward each eye; the throat, tylus, and ends of 
cheeks also black. Eyes stouter and, together with the peduncle, shorter 
and less prominent than in LZ. Sahlbergi. Antenne black, slender, almost 
setaceous at tip; the second joint a little longer than the third and 
fourth united; third and fourth subequal in length, the former tapering 
toward the tip; rostrum reaching to the posterior coxe, blackish-piceous, 
the basal joint more or less yellow. Pronotum transversely wrinkled, 
invested with grayish, prostrate pubescence, and laterally with erect 
hairs; the anterior side a little narrower than the space between the 
eyes; lateral margins slightly sinuated ; the callosities elevated, smooth; 
behind them is a transverse, impressed line. Pectus with grayish 
pubescence; the inferior margins of the pleural pieces yellowish. Legs 
black; the. apex of the femora and base and apex of the coxe orange- 
yellow. Scutellum and hemelytra with grayish, prostrate pubescence ; 
the corium arecuated and gradually widened posteriorly; the exterior 
margin of corlum and cuneus pale yellow ; membrane smoke-brown, with 
the nervule black. Abdomen densely sericeous pubescent, with the 
surface next the ovipositor more or less yellowish; the posterior seg- 
ments more or less hairy. 


GEOLOGICAL SURVEY OF THE TERRITORIES. AL? 


Length to tip of venter, 34-5 millimeters. Width across the humeri, 
13-12 millimeters. 

Brought from Colorado and Montana. Specimens were collected by 
Robert Kennicott in: the vicinity of Lake Winnepeg and near Great 
Bear Lake, in British America. 


Camptobrochis, Fieber. 


C. nebulosus. New species.—Form and general appearance of C. pune- 
tulatus, Fallen. Pale olivaceo- -testaceous, ovate, robust, polished, coarsely 
punctured. Head black, polished, impunctured; the ‘transver se groove 
in front of the basal carina deep; the carina, a ’streak adjoining each 
eye, 2 short one on the middle of the face, another on the tylus, and one 
each side of it pale yellow; antennz with short, hoary pubescence; the 
basal joint black, polished; the second piceous yellow, obscured at base 
and tip; third and fourth obscurely piceous yellow; buccule and sete 
yellow ; the rostral sheath more or less piceous, paler ‘on the basal joint. 
Pronotum grayish-testaceous, regularly convex, with deep, remote, 
black punctures, which are confluent near the sides; a large black cloud 
on the disk, and several vestiges about the sides and near the posterior 
margin; callosities black, smooth, very slightly elevated ; collum, lateral 

-earine, and posterior edge yellow; the lateral margins sinuated, de- 
flexed, carinate on the edge; posterior margin broadly rounded; feebly 
sinuated on the middle and also adjoining the humeri; the humeral 

angles a little raised, broadly rounded; anterior angles almost rectan- 
cular; ; pleure black margined, with yellowish, and together with the . 
anterior xyphus deeply, confluently punctured. Sternum dull black, 
posteriorly margined with yellow; the odoriferous glands pale yellow. 
Femora black, remotely whitish pubescent, obsoletely punctured, at tip 
pale yellow; the knees with a black spot, tibize pale yellow, with two 
piceous-black rings a short distance below the knees and another at 
tip; tarsi pale yellow, more or less piceous at base and tip; the 
nails blackish. Scutellum blackish-piceous, confluently punctured, 
except at tip; each side of the base and on the apex is an ivory-yellowish 
spot. Hemelytra olive-testaceous, remotely punctured with brown; the 
costal edge, base, tip exteriorly, several large and occasionally coalescing 
spots beyond the middle and base, interior edge and apex of the clavusand 
interior corner and apex of the cuneus dark brown; cuneus broad, short, 
acute, sharply incised at base; membrane transparent ; the nervures of 
the areole, the middle of their margin, a small spot beyond, and a vestige 
at base brown. Venter black, polished, remotely, minutely yellowish 
pubescent, finely, remotely, obsoletely punctured ; genital pieces of the 
female piceous. 

Length, 3$-4 millimeters. Width across the humeri, 14 millimeters. 


- Tinicephatlus, Fieber. 


T. simplex, new species.—Pale green, opaque, rather robust, minutely, 
densely pubescent. Head broad and short; cranium convex; the base 
of tylus and each side of middle dusky ; antenns piceous ; the basal 
joint blackish ; second ‘joint slender, of uniform thickness throughout, 
length equal to that of the pronotum and scutellum united; third joint . 
about two-thirds the length of the second, and about twice the length of 
the apical joint; the two last gradually tapering to the tips, rostrum 
reaching to the intermediate cox, the tip piceous. Pronotum trape- 
zoidal, transverse, impunctured ; the callosities covered by a blackish, 


27G8 


418 GEOLOGICAL SURVEY OF THE TERRITORIES. 


. transverse stripe ; lateral margins regularly curving toward the head. 
Legs pale greenish, or with dark tips to the tibia and tarsal joints. 
Scutellum yellow in some specimens. Hemelytra with longer, erect 
hairs about the base and costal margin; the membrane brown, with the 
costal nervule black. Tergum black, with the connexivum and apex of 
the anal segment green; venter yellowish, densely whitish sericeous ; 
pubescent. 

Length to tip of venter, 3 eS width across ets humeri, 1$ 
millimeters. 

Collected in Colorado. 


Plagiognathus, Fieber. 


P. obscurus, new species.—Elongate aval, dull black or fuscous, clothed 
with yellowish pubescence. Head black, or blackish piceous, the occi- 
pital ridge pale; face moderately convex, obliquely inclining, smooth, 
sparingly pubescent; tylus abruptly prominent, black; cheeks black; 
the gula black; bucculz margined with yellow ; labrum and sete yellow; 
the rostrum yellow or pale piceous, shining, reaching a little beyond the 
posterior cox ; the basal joint black, a little longer than the head; an- 
tennee black, or blackish fuscous, minutely hairy ; basal joint yellow at 
tip; the thir d and fourth joints paler than the others. Pronotum - 
broader than long, polished, obsoletely wrinkled, slightly more closely 
pubescent in the males than in the females ; humeral angles a little 
prominent, subacute; posterior margin reg ularly ‘bowed, the edge de. 
flexed ; lateral mar gins oblique, hardly sinuated : the sides steeply de- 
clining, with the carinate edge blunt; anterior ‘submargin collar-like, 
sinuated in the middle; the callosities very slightly elevated, broad and 
long, coalescing inwardly. Pectus piceous or black, bald, shining; 
edges of the anterior acetabule and xyphus, meso-pleural piece, tegula, ~ 
and surface adjacent to the posterior acetabulz more or less yellow: 
legs, including the coxe, bright yellow, sometimes tinged with piceous; 
the anterior and intermediate femora slightly sprinkled with brown near 
the tip, and on the inner and outer surfaces with a few brown dots; 
knees with a black dot; tarsi more or less piceous at base and tip; nails 
black. Seutellum minutely obsoletely rugulose, black, shining, having 
a yellow V, formed by the tip of the lateral margins. Hemelytra black 
or piceous, closely coated with yellowish pubescence; corium at base, 
with a pale yellowish, elongated spot, which runs along the suture and 
extends upon the clavus to behind the middle; there is also a vestige 
beyond the clavus, a small spot at the exterior tip and a large spot on 
the cuneus touching its base; membrane smoke-brown ; the basal edge, 

hervures of the areole, and a paler spot on the middle also yellowish. 
Venter piceous, minutely pubescent; the superior genital appendages 
of the male yellowish, and the lateral appendage blackish. The deeply 
colored females usually have the venter black, more or less invaded by 
yellow or whitish spots on the middle and sides. 

Length, 4 millimeters; width across the humeri, 14 millimeters. 

This is a very common species in many parts of the United States. 
Specimens have passed through my hands which had been collected in 
Maine, Massachusetts, New York, New Jersey, Pennsylvania, Illinois, 
Michigan, &c. The present specimens were brought from Colorado. 
In Maryland the individuals are frequently to be seen upon ‘the flowers 
of the ox-eye daisy. Upon being approached they suddenly run down 
beneath the calyx of the flower. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 419 


Agalliastes, Fieber. 


A. assotviatus. New species.—General form of A. pulicarius, Fallen. 
Shining black. Head black, polished, impunctured; cranium indented on 
the middle; eyes brown, the orbits posteriorly yellow; antenne stout, dull 
black; the second joint eylindrical, as thick as the basal one, about two- 
thirds as long as the third and fourth united ; third and fourth almost 
equal in thickness, the latter shorter, tapering slenderly toward the tip. 
Rostrum yellow, reaching to the posterior coxe. Pronotum transverse, 
moderately flat, polished, , obsoletely rugulose, minutely punctured, trans- 
versely impressed near the front ; the sides oblique, straight. Seutellum 
obsoletely, minutely scabrous, pubescent. ‘Legs bright yellow. Hem- 
elytra brownish black, with minute, yellowish, pubescence, obsoletely, 
coarsely punctured, and minutely scabrous; membrane smoke-brown, 
the nervule blackish ; wings white. Abdomen black, with minute yel- 
lowish pele secur 

_ Length, 2 millimeters ; width across the humeri, scarcely 1 millimeter. 

Brou abt from Ogden, Utah, by the survey. 


Family ARADIDZ. 
Aradus, Fab. 


A. rectus, Say, (Heteropt., New Harmony, p. 29, No. 4.)—Obtained in 
Colorado. It inhabits also Missouri, Florida, New Mexico, British | 
America, New England, &e. ; 


Family PHYMATIDZ. 
Phymata, Latr. 


P. erosa, Linn., (Systema Naturee ed. xii, vol. Il, p. 718, No. 195) Ct- 
mex scorpio, De Geer, (Mémoires, IL, p. 350, Pl. 35, Fig. 13.)—Brought 
from Colorado ; but it is a common inhabitant of a oreat part of North- 
America, extending south into Mexico and California. 


Family REDUVID 2. 
Nabis, Latr. 


1. WN. inscriptus, Kirby, (Fauna Boreali Amer., p. 280, No. 391.) —In- 
habits Colorado, Indian Territory, &e., and is quite common. in the At- 
lantic region. 

Zuni subcoleoptratus, Kirby, (#., p. 282, No. 393. )—This i is 2a common 
inhabitant of Colorado, Dakota, Canada, and the Northern States gen- 
erally. emeetmens occur fully winged. 

{ 


Sinea, Amyot et Serv. 


S. multispinosa, De Geer , (Mémoires, Ill, p. 348, Pl. 35, Fig. 11;). Re- 
duvius raptatorius, Say, (Amer. Entom., Pl. 31. \—-Brought from Colo- 
rado; but is an inhabitant of the oreater part of North America, from 
Quebee i in Canada to Southern Mexico. 


Fitchia, Stal. 


TF. nigro- vittata, Stal. , (Ofversigt af Kone. Vetens. Akad. Forhandl.,, 
1866, p. 296. )—Collected in Cache Valley, Utah, and at Fort Cobb, In. 


420 GEOLOGICAL SURVEY OF THE TERRITORIES. 


dian Territory. The apterous form has a conspicuous black vitta on 
the dorsal middle of the abdomen. 


Diplodus, Amyot et Serv. 


‘D. luridus, Stal., (Stettiner Entom. Zeitung, vol. 23, p. 452.)—Ob- 
tained in Colorado. It is a common species in the Atlantic region. 


Pindus, Stal. 


P. socius. New species.—Pale fusco- fulvous, or fulvo-testaceous, 
sparsely and slenderly pubescent. Form and aspect of Diplodus luridus, 
Stal. Upper side of head black; the upper cheeks, a slender line along 
the middle, a shorter one on the impressed line extending from the anten- 
ne to the ocelli, a third broader line running from the middle of the eye 
posteriorly, and the under side of the head pale fulvous or testaceous; 
the tylus and a streak on the upper line of the lower cheeks blackish ; 
the surface both above and below and the rostrum with minute, orayish 
pubescence; eyes brown; antennz dull fulvous, fuscous on the upper © 
side and at ‘base and tip of the first two joints; the second joint about 


one-third the length of the basal one; third much stouter than the 


second, fully twice as long as it, tapering toward the tip. Rostrum 
reaching to the anterior coxe, testaceous at base, becoming darker 
until finally piceous at tip. Pronotum clothed with dense, minute, hoary 
pubescence; the anterior lobe blackish, with its lateral carina pale 
fulvous; posterior and lateral margins of the posterior lobe yellowish- 
white; posterior angles each with a moderately short, smooth subconi- 
cal, piceous tooth, and the carinz each side terminated behind with a 
similar tooth ; pectus and coxe shining black; the sides usually with a 
broad, irregular, fulvous stripe along the middie and posterior pleuree. 
Legs ‘vyellow, very hairy; all the femora a little tumid near the tip, 
sprinkled with fuscous; tip of tibie and whole of tarsi, including the 
nails, blackish piceous. Scutellum piceous, having a V-shaped eleva- 
tion, which is rufous or yellow; the submargin broadly grooved; the 
margins and tip yellow. Hemelytra smoke- brown ; the principal ele- 
vated nervures, costal margin, and cuneus pale testaceous; membrane 
pale brown, paler at tip; the nervules very dark brown. Tergum rufous, 
or rufo- flavous ; the connexivum yellow, having blackish, subquadrate 
interruptions ; the posterior segment margined behind with blackish ; 
venter minutely scabrous, black, the middle line and sides broadly ful. 
vous; its connexivum yellow, with a black, large soo. at the apex of 
each segment. 

Length to tip of abdomen, 10-12 millimeters; width across the humeri, 
2-24 millimeters. 

Brought from the region of Snake River, Idaho. It inhabits also 
Kansas, Dakota, and Arizona. 


Milyas, Stal. 


M. cinctus, Fab., (Ent. Syst., IV, p. 199, No. 20.)—Collected at Chey- 
enne, June, 1869. Tt i 18 tolerably common throughout the Atlantic and 
extends southwest into Texas. 


Herega, Amyot et Serv. 


H. spissipes, Say, (Jour. Acad. Phila., IV, p. 328; Amer. Entom., vol. 
II, Pl. 31, Fig. 3.)—Obtained in Colorado. "This speceis seems to be 


\ 


GEOLOGICAL SURVEY OF THE TERRITORIES. A?1 


confined to western North America, no specimens having been discov- 
ered east of the Mississippi River. 


Melanolestes, Stal. 


1. M. picipes, H. Schf., (Wanz. Ins., vol. VII, p. 62, Pl. 269, Fig. 831.)— 
Collected by Dr. EH. Palmer, near Fort Cobb, Indian Territory; it has 
been found as far west as San Francisco, and is common in many parts 
of the Atlantic and Gulf States. 

2. M. abdominalis, H. Schf., (Wanz. Ins., vol. VIII, p. 63, Pl. 269, Fig. 
$32.)—Found with the preceding. A specimen of this species has been 
sent to me from Southwestern Mexico. 


Stenopoda, Lap. 


S. cinerea, Laporte, (Essai sur les Hemipteres, p. 26, Pl. 52, Fig. 2.)— 
A pupa of this species was obtained by Dr. EH. Palmer, near Fort Cobb. 
It is a species well known from Cuba, Texas, and Florida. 


Family SALDZ. 


Salda, Fab. 


- 1. S. interstitialis, Say, (Jour. Acad. Phila., IV, p. 324.)—Colleeted 
at Snake River, Idaho, and by Dr. Palmer at- Fort Defiance, New 
Mexico. It extends east into New England, and along the Atlantic 
region into Maryland. : 

2. 8S. coriacea. New species.—General form of 8S. littoralis, Linn., of 
Kurope. Black, polished; face densely, minutely shagreened, hairy; 
cranium minutely pubescent, faintly grooved on the middle; before the 
ocelli are two raised tubercles, placed remotely from each other; tylus 
and labrum yellowish; the rostrum piceous, reaching to the posterior 
cox. Hyes large, prominent, brown, placed very obliquely. Antenne 
black, slender; the second joint sometimes pale piceous, more than twice 
as long as the basal one; the third and fourth subequal in length. Pro- 
notum trapezoidal, the anterior side very much shorter than the basal; 
the lateral margins very oblique, hardly arcuated, the edge recurved ; 
surface minutely shagreened, sparsely pubescent; .the callosities obso- 
lete, their locality faintly convex, with an indented, punctured, trans- 
verse line posteriorly; the posterior angles acute, with the margin 
behind the humeri very acutely oblique. Legs honey-yellow, or smoke- © 
brown, usually darkened at the tip of tibe and on the ends of the tarsal 
joints. Pectus highly polished, remotely, minutely pubescent, minutely 
wrinkled. Scutellum densely, minutely granulated. Hemelytra very 
convex, widest at some distance behind the middle, very considerably 
polished, remotely, coarsely, obsoletely punctured; the clavus bounded 
on the inner submargin and outer suture by an indented line of punc- 
tures ; membrane coalescing with the corium, indistinctly piceous, some- 
times with about three faintly yellowish spots between the long nervures. 
Venter brilliant black, closely, minutely punctured, coated with fine. 
sparse pubescence. 

Length, 6-7 millimeters. Width across the humeri, 2 millimeters. 
Greatest width across the corium, 34 millimeters. 

Brought from Ogden, Utah. It is also found in New England, Brit- 
ish America, and Illinois. 


422 GEOLOGICAL SURVEY OF THE TERRITORIES. 
Family VELIUDA. 
Macrovelia, Uhler. 


General form of Microvelia, Westwood, but much more elongated. © 
Head. long and narrow, subconically narrowing toward the tip; the 
_ division before the eyes several times longer than that behind them; | 
cranium arched, curving downward; the tylus short, forming a narrow, 
blunt carina at the anterior extremity. Antenne slender, reaching 
beyond the tip of the scutellum; the basal joint stoutest, narrowed at 
base, a little curved ; second a little shorter, stout, enlarged toward the 
tip; third and fourth very slender, subequal in length to the basal one. 
Eyes round, placed on the sides a little below the upper line of vertex 
and near the occiput. Ocelli in contact with the inner margin of the . 
eyes. Rostrum very slender, reaching beyond the interior cox; the 
basal joint very short, ring-like; the second joint very long, about three 
times as long as the apicalone. Thorax subcylindrical, widened behind, 
bilobate by reason of a transverse constriction before the middle; the 
anterior lobe with a tumid callosity each side; collum distinctly defined; 
humeral angles knob-like, posterior margin of pronotum scutellum-like, 
the tip bluntly rounded. Hemelytra narrower than the abdomen; the 
corium narrow, and with the membrane occupying also its inner margin. 
Legs long and slender. 

M. Hornti. Newspecies.—Fulvous, orreddish-brown, finely pubescent; 
the cranium bounded each side against the eyes by an impressed, oblique 
line, on the inner margin of which. is a blunt, faintly elevated, oblique 
carina; the middle line slender, fuscous; cheeks and gular surface black- _ 
ish; the space behind the eyes transversely tumid, the ridge joining 
inward to the slender carina, which runs along the whole length and 
forms a substitute for the buccule. -Eyes dark brown. Antenne yel- 
lowish-testaceous; the ends of the joints darker, and the two apical 
joints a little infuscated. Pronotum bright fulvous, coarsely, remotely 
punctured with fuscous, each side of the middle of the anterior lobe 
and disk, with a feebly elevated, longitudinal line; just behind the col- 
lum are two very slightly elevated, approximate tubercles; sides before 
the posterior lobe emarginated, the latero-posterior margins sinuated 
and the edge recurved.  Pectus. black, with the margins of the pleural 
segments fulvous. Legs pale yellow; the knees, tips, and a cloud upon 
the femora and the tarsi, dusky. Hemelytra in the fully winged, fus- 
cous, silvery pubescent, with a large white spot at base, the costal mar- 
gin and sometimes the inner margin of corium blackish; membrane 
paler near the tip. Connexivum pale, with a dark spot at the tip of - 
each segment; venter pale fulvous, densely golden pubescent, the sides, 
superiorly, with a broad, blackish stripe not quite reaching to the tip. 
The short-winged form has the hemelytra dark brown, with a streak of 
white at base. F Agt 

Length, 4-5 millimeters; width across the humeri, 1-14 millimeters. 

Obtained at Fort Defiance, New Mexico. The species is named after 
Dr. George H. Horn, to whom I am indebted for specimens from Cali- 
fornia and Arizona. 


Family HYDROMETRIDZ. 
Hygrotrechus, Stal. 


_ H. remigis, Say, (Hemipt., New Harmony, p. 35, No. 2.)—Brought from 
Colorado, and Ross Fork, Idaho. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 423 


Limnotrechus, Stal. 


D. marginatus, Say, (Hemipt., New Harmony, p.36, No. 2.)—From Snake 
River, Idaho. 
Family NAUCORIDZ. 


Ambrysus, Stal. 


A. Signoreti, Stal., (Stettiner Entom. Zeitung, 1862, vol. XXIH, p. 
460.)— From Red Butte and near Fort Fetterman. The specimens origi- 
nally described were from Mexico. It is the most beautiful species 
thus far discovered in North America. 


NOTES ON THE SALTATORIAL ORTHOPTERA OF THE ROCKY 
MOUNTAIN REGIONS. 


By PROFESSOR Cyrus THOMAS. 


I.—SOURCES OF INFORMATION. 


Having had the opportunity during the last three summers of travel- 
ing over much of the Rocky Mountain region, in connection with the 
United States Geological Survey of the Territories, conducted by Pro- 
fessor F. V. Hayden, I have been enabled to make large collections of 
Orthoptera. It is true that the opportunity for studying the habits of 
the various species has been limited, as we are constantly moving from 
point to point while in the field. Yet I have collected considerable in- 
formation in regard to the distribution and the comparative numbers of 
the different species, especially of the two families of the saltatorial 
Orthoptera, to which my attention has been more particularly directed, 
Locustide and Acridide. During these three seasons I have visited 
the following Territories, to wit: New Mexico, Colorado, Wyoming, 
Utah, Idaho, and Montana, making collections in each. 

In addition to my own collections I have had access to and free use 
of the collection made by Dr. Palmer in Northern Arizona, and to some 
collections in the Agricultural Department made by various persons in 
different parts of the West. I am also indebted to Mr. Taylor, of San 
Francisco, for some valuable California specimens, among which {found 
four new species. Mr. Charles R. Dodge, Assistant Entomologist of the 
Agricultural Department, who visited Nebraska, Colorado, ‘and Kan- 
sas during the past summer, very kindly submitted his entire collection 
of Or thoptera to my use. From this I obtained several species which 
have not hitherto been described. — 

Several of my new species have been figured by Professor T. Glover, 
~ and will be found among the numerous plates of insects placed on exhi- . 
bition in the museum of the Agricultural Department, where, also, the 
type specimens are deposited. I am indebted to Mr. S. I. Smith, of 
Connecticut, for a suit of New England Acridide for comparison ; to 
Theophilus Rogan, esq., of Russelville, Hast Tennessee, for specimens 
*of Orthoptera from that section, enabling me to verify some of De . 
Haan’s names; and also to Mr. J. Middleton, of Northwest ‘Pennsy lvania, 
for specimens from that mountain section. 


424 GEOLOGICAL SURVEY OF THE TERRITORIES. 


IT take great pleasure in acknowledging the many favors received from 
the Smithsonian Institution, and return thanks therefor, and also to 
Professor Baird and Dr. Gill for the valuable suggestions made in regard 
to my work. 


II.—INTRODUCTORY REMARKS. 


My study of the Orthoptera has not been sufficiently extended and 
thorough to enable me to form an arrangement of the various divisions 
and subdivisions that is wholly satisfactory to myself. Yet it is proper 
that I should at least indicate that system which I prefer, as it must to 
a greater or less degree determine the characters selected to distinguish 
the different groups, and the comparative value I attach to them. 

Therefore, without attempting at this time to discuss fully the reasons 
therefor, I will state the order in which I believe the larger divisions 
should be arranged, and the leading principles upon which it is based. 

Holding, as I do, the Cuvierian idea of four distinct types in the animal 
kingdom, as explained and unfolded by Agassiz, it is unnecessary for 
me to look further than the Articulata for the primary basis of an 
arrangement of a single order of insects. Within the limits of this 
group or “branch” are to be found all grades of development of the 
type, from its lowest and most obscure to its highest form, from the 
germ to the perfect animal. But the relations of the divisions of this 
group—that is, of the Annelides, Crustaceans, and Insects—to each other, 
must, to a certain extent, determine the arrangement of the divisions 
of these classes. The principlés and. reasons. that cause us to place the 
Insects above the Crustaceans in the scale of being must, so far as they 
can be followed out, determine the position of the various divisions and 
subdivisions of the Insects in regard to each other. 

While I cannot wholly agree with Dr. Packard as to the value he » 
attaches to the different divisions of the Articulata, yet 1 prefer his — 
arrangement of the orders* of the Hexapod Insects to any I have seen. 
This system, starting with Neuroptera as the lowest iu the scale. ascends 
in two branches, one through the Diptera and Lepidoptera to the Hyme- 
noptera as the highest in the class; the other through the Orthoptera 
and Hemiptera to the Coleoptera, but this last branch does not reach 
as high a point as that attained by the other. He places the Orthoptera 
not directly above the Newroptera but sub-parallel to it. I believe that 
this airangement gives the true position to the Orthoptera, tor while this 
order, as a whole, stands higher than the other yet it is not absolutely 
above it. In other words, if I were an advocate of the Darwinian 
theory of the development of genera and species from lower forms, I 
would certainly hold that the Orthoptera were not developed from the 
Neuroptera, but that both orders arose from the Myriapoda, Crustacea, or 
some form of being lower than that found in the Hexapod Insects. 

Although I am not a disciple of this great naturalist, yet I believe we 
may make use of the idea of development, which was advanced as early 
as the time of Lamark, to assist us in fixing the position of the various 
groups in the seale of being. As the highest form of a given type, (one 
of the tour grand divisions of the animal kingdom,) in its passage from 
the germ to the adult state, assumes for a time the lower leading forms 
of that type, it follows that the various groups within that type stand 
exactly in the same relation to each other that they would if the higher 


*] follow most entomologists, applying the name Order to the group he calls Sub- 
oe and Sub-class to the division he calls Order. See his Guide to the Study of 
nsecis. 


GEOLOGICAL SURVEY OF THE TERRITORIES. - 425 


were absolutely developed from the lower. Therefore, while we should 
not rely upon this as our only guide in arranging the groups, yet it may 
be used to assist us.. , 

While no system will fully accord with all the tests which can be 
applied to it, I think that of Dr. Packard comes nearer to it than any I 
have seen. But when we turn to his arrangement of the various fami- 
lies in Orthoptera, it appears sto me he has somewhat abandoned the . 
principles that guided him in fixing the position of the orders. Iam ~ 
aware that he has followed the system proposed by Mr. Scudder, which 
is founded on that of Burmeister, but it is evident that Mr. Scudder 
Selected a somewhat different basis for his system from that adopted by 
Dr. Packard. Judging from the arrangement adopted by the latter in 
regard to the larger groups, I suppose he was guided more by the 
external form and mode of life than the former—not that he neglected 
the internal anatomy, embryology, &c.—but that the external anatomy, 
homologies and modes of life had more influence upon his arrangement 
than upon that of Mr. Scudder or Burmeister, whom the latter follows. 

Although I have not studied all the families with that care and 
thoroughness that will enable me to speak with confidence, yet I am 
inclined to the opinion that the same principles and process of reasoning 
that led Dr. Packard to arrange the orders in the relative position in 
which he has placed them will reverse his arrangement of the families 
of the Orthoptera. 

Fieber’s arrangement,* if considered as descending, comes nearer to 
what I conceive to be the true plan than any other I have seen. It is 
as follows— 


Tribe 1, Orthoptera genuina: 


pec. J Cursoria. ..-: SnOsMest seeebua se ... Ham. 1, Blattina. 

eCmiE Gressoliae weteae soee. classes vette cee Fam. 2, Mantodea. 
Fam. 3, Phasmodea. 

ec MUN SoNbAUOLIA ee nels ce se gnc cen oe Fam. 4, Acridiodea. 


Fam. 5, Locustina. _ 
Fam. 6, Gryllodea. 


See BV Fossora 00. eT A om: 7) Gryllovalpinear 
- Fam. 8, Xyodea. 
Tribe I1, Harmoptera...-.. Mvegwe cise. telaus a)arurs se Fam. 9, Forficulina. 


I think the division of the Crickets into three families can scarcely be | 
maintained ; I also think the Locustina and Gryllodea should be com- 
bined in a group as distinct from the Acridiodea. The proper position 
of the Forficulide is somewhat puzzling, for if we look at the external’ 
form and habits they would undoubtedly approach nearer to the Blattiide 
than any other family; but if we take the internal anatomy as our guide, 
they descend to the foot of the order. 

I would therefore arrange the various divisions in the following 
descending order, the position of the Forficulide being given with much 
doubt— 


I. Sub-order Pseudo-orthoptera ...............Fam. 1, Forficulide. 
II. Sub-order Orthoptera genuina: 

a AM Dri Oy eM ORE Nigst Ov Ts Py ane a Fam. 2, Blattidee. 

Aa EID CAG TESSOT A) yelise cal As aa Peneie aye ae da Fam. 3, Mantide. 


Fam. 4, Phasmidee. 


Sec. 1) Sus es ee esnes etl... ).. 2. Ramo, Aeridida: 
DCC. 2 ie tema n pe mmree re 221 Se ee Fam. 6, Locustide. 
Fam. 7, Gryllide. ; 


* Kelch, Kennt. Orthop., Obers, 1852, 


A26  .° GEOLOGICAL SURVEY OF THE TERRITORIES. | 


Mr. Scudder’s anbaieerient appears to depend upon the position of the 
wines during the different stages of growth. As these organs in the 
Saltatoria change position during the different stages of growth, he con- 
siders this group as ranking higher than the others, in which they retain 
their primitive position. But does this correspond with the other im- 
portant characters? With some it undoubtedly does, but with others 
it does not. Lacaze-Duthiers, who has studied with much care the 
genital organs of the various orders, states,* that if we take the devel- 
opment of the ovipositor as a guide, the divisions of this order will 
arrange themselves as follows: Locustide, Gryllide, Mantide, Phasmide, 
Blattide, Acridide, Forficulide ; thus placing all the families of the 
non-saltatorial, genuine Orthoptera between the two sections of the Sal- 
tatoria. 

Gerstaecker + brings the families of the saltatorial group together, but 

in a different order from that of Mr. Scudder, placing Gryllodea as the 
highest of this group, and next to Phasmidea. 
Tf we examine carefully the elaborate researches of Léon Dufour, upon 
the Anatomy and Physiology of the Orthoptera, published in the Me- 
motres de VInstitut of France, vol. vii, 1841, we will see the difficulty of 
attempting to form an arrangement of the families based wholly on 
internal anatomy. ‘The nervous system, digestive apparatus, genital 
organs, &c., will lead to different results. For example, if we take the 
nervous system as our guide, the result will be to place the Acrididw at 
the head of the column, and, according to L. Dufour, the Orthoptera at 
the head of the class.;_ On the other hand, if we examine the digestive 
apparatus, we find the salivary glands of the same family the least de- 
veloped of any in the order. And these contradictions are so well 
balanced that the preponderance is not sufficiently marked to form the 
basis of a system. There is perhaps one exception to this statement, to 
wit: if guided by internal anatomy alone we wiil, perhaps, be compelled 
to place the Forficulide as the lowest in the order ; ; and it is quite pos- 
sible that such is its proper position. 

-If we take the external form as our guide we cannot but be struck by 
the strong resemblance of the Ceuthophili and Udeopsylleto the crustacean 
form. And when we learn the habits of the former this resembleuce 
assumes still more importance, as we find them along the margins of 
water-courses, and in the vicinity of damp places, hiding under ‘stones 
in caves, and away from the rays of the sun. 

I bave often had my attention called to the general resemblance of the 
Tridactyli to the Tettigi, and the anatomical researches of Léon Dufour 
show this external similarity to be more than fancied, for he remarks: § 
“That the genus Tetrix, (Tettix,) founded by Latreille, appears to have 
been created by nature to serve as the connecting-link between the 
Tridactyli aud Acridi.” If we trace the habits of these two groups, the 
suggestion of this author seems to be borne out by the result. The Tri- 
dactylt are found along the banks of streams and ponds; in fact, I have 
noticed myriads of them leaping on and off the surface of the water 
when the soft sand into which they had burrowed was disturbed. 

At the next step from the moisture toward the dry localities we find 
the Yettigi. Kind a spot where the summer sun has dried up a small 
pond of water and there you are apt to notice an abundance of speci- 
mens of both these groups; at least, this has been the case in that part 


* Annales des Sci. Nat. Zool., tom. xvii, (1852,) p. 237. 
+ Carus, Handbuch der Zoolosie, II. 

t Mem. de l’Inst., vii, 282. 

§ Op. cit., 315. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 427 


' of the country where most of my examinations have been made. In the 
Rocky Mountain region, where there is but little moisture, and the land 
‘is elevated and dry, individuals of these genera are seldom to be met 
with. But I will not attempt to develop fully this thought at this time, 
as I have alluded to it more incidentally than otherwise. 

The attempt to raise the smaller divisions to families, and to give 
them names with a termination indicating that they are family groups, 

- has been carried to an extent that I think is wholly unwarranted by the 
distinctions. Family characters, until these groups were broken up of 
late years by the unnecessary inroads made upon them, were the best 
marked and most natural of any in the entire class. But how are they 
now? I cannot answer in regard to other orders, as my entomological 

_ studies have been confined almost exclusively to the saltatorial Orthop- 
tera ; but in this division of this order they are almost wholly worthless. 
For example, this group, which was formerly generally divided into but 
three, and never, I believe, into more than five families, is now separated 
by Walker* into twenty-one; and Gryllide, although as comprehensive 
as formerly, holds no higher position’as a group than Stenopelmatide, 
Ocedipodide, or even the. single genus Trigonopteryx. By such an ar- 
rangement we are told, in effect, that there is less difference between - 
Gryllotalpa and Ocecanthus, or Tridactylus and Phalangapsis, than there is 
between Thamnotrizon and Anabrus, or Opomola and Xiphocera. Such 
a system is but adding confusion where there should be order, and 
renders that more difficult and complex which the increase in scientific 
knowledge ought to simplify and make plainer and more easily under- 
stood. i» 

The family, as has been remarked by Burmeister,} ‘is peculiar to the 
natural system, and by this only is it called forth; Linnzus and Fabri- 
cius, who formed artificial classifications, had no families. The charac- 
ters which distinguish the families are derived not only from their 
resemblances in structure in general, but also frequently from their 
economy.” Agassizt says, ‘‘ Families, as they exist in nature, are based 
upon.peculiarities of form as dependent upon structure.” And he adds 
that they are determined by external outline, which renders the recog- 
nition of them easy, and in many instances almost instinctive. 

If the rules laid down by these eminent naturalists are to be followed, 
where are we to find that striking difference in form between Acridium 
alutaceum and Gdipoda Carolina that will place them in different fami- 
lies, or even between Acridium and Oedipoda, that should cause them 
to be taken as the types of two different familes? What striking differ- 
ence in external form is there between Phylloptera and Platyphyilum, 
as to separate them so widely that an entire family can be interposed 
between the groups to which they belong? 

When the discovery of new species renders the family unwieldy, it 
can be divided or subdivided without destroying it, where it is well 
marked by true family characters. Therefore, while I shall to a greater 
or less extent retain the subdivisions that have been made, I shall assign 
to them such value as I think they really have, and shall not attempt 
to cut down or lessen the families. On the contrary, if I were to make 
any change, I would rather be disposed to unite the Gryllidw and Locus- 
tide into one family. 

I find there is considerable difference in regard to the use of the ap- 
pellation ‘‘ Tribe,” sometimes being applied to groups superior to the 

* Catalogue of the Dermaptera Saltatoria, Pt. V. 


t Manual of Entomology, translated by Shuckard, p. 595. 
¢ Methods of Study in Natural History, p. 111. ; 


428 GEOLOGICAL SURVEY OF THE TERRITORIES. 
family, at others to those inferior to the family. I have followed the 
former method in the present report, but do this provisionally. a 
In regard to the terminology, I have only to remark that for families: 
I adopt 1p; for sub-families, iva; and for the inferjor groups, INT, 
thereby conforming to what appears to be the prevailing usage in other 
- departments of zoology. I mention this, as by the termination I indi- 
cate the comparative value.I attach to the group. In the Locustide I 
have adopted, for the present, the divisions of Walker, although I think 
his system defective; but I use them only as groups subordinate to 
sub-families and not as equivalents. The Acridide of the United States 
I am disposed to divide into but two sub-families, as follows: 


I. Sub-fam. Acridine: 
First group, Truxalini. 
Second group, Conophorini.* 
Third group, Acridini. 
Fourth group, Gidipodini. . 
IL. Sub-fam. Tettigine. 


The number of species of saltatorial Orthoptera found in that part of 
the United States west of Iowa, Missouri, and Arkansas, which have 
been described, including the new species described for the first time in 
this report, is 101. These are distributed among the different families 
as follows: Gryllide, 7; Locustide, 33; Acridide, 61. 


é 


- GRYLLIDZ. 
Grylls eU ec. Potengi oh © SOIR ONE Cain ata rae ie LE 5 species. 
MeMODINS sis tide Cals k ase dieiaswhar shins & falsresk genbecW LE Shenae ea 1 species. 
MOP C AINE hee oie cis fenestrae Blades Cla ar Eg ee Lee aetes 1 species. 
Locustip &. 


First group, Stenopelmatini. 


PSOE OPO MM ALS), ah pppoe nat 2 ann lovap alot mest = ines eiiey sed oleymyer arate Bye 3 species, 


Cemphoplihser jae caa ys eek 15 oe lea neree Veen ee ere ee ele 7 species. 
Widea psy. fo yer chs SE och Ee a eh MN a es ae 1 species. 
ID Vetion ee GO arc Rese oUt ee Ee nee ha esd Oca 1 species. 
MRGWIMSelnah ys 4 aic' a sels a ean ao ety Sede re eee Uae agen ee _ 1 species. 


Ae RUSE ai ee a OLS OR ae Ee Us Pee eee 4 species. 


Fourth group, Locustint. 


PUerolepist (eee nitcc alc le soak mitalata Sleityelcue ce keene nie arenes 3 species. 
Cy HOME ERIS Mee Res 8G) oi Sora) cigs ala ied 6,2 Gis cane eliotn 1 species. 
SE eimaTN@ DRIZOMs eecram acre ve 2S SME Eke lea ie ei tia Dee 1 species. 
IDC GICIISK() ier he nee So ane tele an onlays eee eae ieee 2 species. 
Oreche lima cna sg alas = al eet ee ene 1 species. 
Drago WUT Pia Oe ae eat eee nie) occ a fae Se Ae ate a 1 species. 
EGCUSEDs oe ee at aes elas eee eat oI ees nee a ... 2 species. 


*This name is used temporarily to embrace Mr. Scudder’s sub-families, Xiphocereaw 
and Peciloceride. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 429 


Fifth group, Conocephalini. 
Conocephalus ........-. EE Se an aan R RGB (0 2 species. 


TELMueWOVELRO)D 002) | A a enone a ee eh ate patie annem 2 species. 
ER POOP Ulatp Me e856) wed PS I Ga SU eo) base ae lichens 1 species. 


ACRIDID A. 


I. Sub-family ACRIDIN A. 


First group, Tru«alini. 


ONC CORED CUED MARA AS SURV SE ee MO NI NISHA aR 4 species. 
Third group, Acridini. 
BAomrelren Tin) Sie ees as Pst Siebel eka =) ts cl ola aiarer oye Nae avenge arene 3 species. 
(CBM OFO ENTE Ric Cries Sve eine NN nO eer ns IRE oEn ee aera es oi 10 species. 
TE XEVAONIGI UES pst eh eae SI I UE AEE a SOU SL A SA 5 species. 
jae Fourth group, Oedipodini. 
EBatea eliny VC VOMUS I «evel = Siecle aint Sie spe eye Ac dee i leh a yas ena ;--- 1 species. 
| ROOD TION eA ie ENE pane tail ole EE CS ip al RA ae fi a 2 species. 
SHEREOCOVONCTG DEST es Baa ULI SEE ANTE ees hi ea Re ae alsa mee es 1 species. 
BCE OOM A 5 ie te SiMe et lis NIM RE ste eRe TR IG) UNE 26 species. 
(Guyillits formosus));..-/..- <:</)s.-)--,-/4- BOER E Bee ue Wana nae Wo 1 species. 
LE ARTO DUTTA UES ar ERICA It es mae ame ne aT Sia A ee 1 species. 
Stenobothrus..... Cer eve hey lee chee en any A os IAN TIT NL a 6 species. 
CORSO IEAM 0 OUD atinas TED 9 es ney On eM nO Wen OH, an 1 species. 


If we divide that part of the United States west of Missouri into 
three districts, as follows: the eastern, that portion east of the dividing 
range of the Rocky Mountains; the middle, that between the Rocky 
Mountain and Sierra Nevada Ranges; and the western, that west of 
Sierra Nevada, the following tables will show the distribution of the 
species described between these three districts: 


EASTERN DISTRICT. 


Gryllus personatus, Scudd. 
abbreviatus, Serv. 
Oecanthus niveus. 
Nemobius vittatus. 
Stenopelmatus fasciatus, Thos. 
Ceuthophilus divergens, Scudd. 
pallidus, Thos. 
gracilipes, Scudd. 
Udeopsylla robusta, Hald. 
Daihinia brevipes, Hald. 
Anabrus similis, Scudd. 
purpurascens, Uhl. 
Coloradus, Thos. 


Pterolepis (?) Haldemannii, Gir. 
Stevensonii, Thos. . 


minutus, Thos. 


Thamnotrizon scabricollis, Thos. 


-Orechelimum 


Decticus (?) trilineatus, Thos. 
Q 


Xiphidium saltans, Seudd. 
Conocephalus attenuatus, Scudd. 
crepitans, Scudd. - 
Phaneroptera curvicadua. 
Ephippitytha gracilipes, Thos. 
Opomola brachyptera, Scudd. 
bivittata, Serv. 
Neo-mexicana, Thos. 
Wyomingensis, Thos. 


Acridinm emarginatum, Uhl. 


- frontalis, Thos. 
ambiguum, Thos. 


- Caloptenus viridis, Thos. 


bivittatus, Uhl. 
Dodgei, Thos. 


430 


Calopetenus spretus, Uhl. 
femur-rubrum, Burm. 
occidentalis, Thos. 
Turnbullu, Thos. 

Pezotettix picta, Thos. 

- Nebrascensis, Thos. 
speciosa, Seudd. 
obesa, Thos. 

Brachypeplus magnus, Gir. 

Boopedon nubilum, Thos. 
flavo- fasciatum, Thos. 

Stauronotus Elliott, Thos. 

Cidipoda undulata, Thos. 
collaris, Scudd. 
cincta, Thos. 

‘sordida, Burm. 
longipennis, iho 

Montana, Thos. 
Wyomingiana, Thos. 
gracilis, Thos. 
Kiowa, Thos. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


Cidipoda Haydenii, Thos. 

. _ tenebrosa, Seudd. 
carlingiana, Thos. 
Haldemannii, Scudd. 
corallipes, Hald. 
trifasciata, Say. 
Carolina, Linn. 
pheenicoptera, (?) Burm. 
sulphurea, Burm. 

neglecta, Thos. 


Acrolophitus hirtipes, Thos. 


(Gryllus) formosus, Say. 

Stenobothrus curtipennis, Harr. 
obionus, Thos. 
maculipennis,Scudd. . 
brunneus, Thos. 
quadrimaculatus, 

Thos. 

bicolor, Thos. 
evacilis, Seudd. 

Oxycoryphus obscurus, Thos. 


MIDDLE DISTRICT. 


Gryllus abbreviatus, Serv. 
luctuosus, Serv. 
Oecanthus niveus, Serv. 
Stenopelmatus fuscus, Hald. 
fasciatus, Thos. 
Udeopsylla robusta, Hald. 
Anabrus simplex, Hald. 
Decticus pallidipalpus, Thos. 
Orchelimum (? 
Kphippitytha evacilipes, Thos. 
Locusta fuliginosa, Thos. 
Phaneroptera (?) 
Opomola 2\ 
Caloptenus hs Uhl. 


CO ELE spretus, Uhl. 
occidentalis, Thos. 
Penorettix obesa, Thos. 
Stauronotus Hlliotti, (?) Thos. 
Cidipoda corallipes, Thos. 
Haldemannii, Scudd. 
paradoxa, Thos. 
trifasciata, Walk. 
Carolina, Linn. 
Montana, Thos. 
cincta, Thos. 
Stenobothrus maculipennis, Seudd. 
brunneus, Thos. 


WESTERN DISTRICT. 


Gryllus Pennsylvanicus, Burm. 
 lineaticeps, Stal. 
Stenopelmatus talpa, Burm. 
Conubopiiis castaneus, Thos. 
pacificus, Thos. 
bilobatus, Thos. 


Californians, Scudd. 


zonarius, Walk. 
Tropidiscia xanthostoma, Scudd. 
Anabrus purpurascens, Uhl. 
Cyphoderris monstrosa, Uhl. 
Locusta occidentalis, Thos. 


_ Caloptenus repletus, Walk. 


bilituratus, Walk. 
scriptus, Walk. 
femur-rubrum, Burm. 
Pezotettix Borekil, Stal. 
Cidepoda atrox, Scudd. 
venusta, Stal. 
Carolina, Linn. 

. sulphurea, Burm. 
phenicoptera, Germ. 
rugosa, (7) Scudd. 
parviceps, Walk. 


From these tables it will be seen that the following species are found 
in both the eastern and middle districts: Gryllus abbreviatus, Oecanthus 


GEOLOGICAL SURVEY OF: THE TERRITORIES. | 431 


NIVEUS, Gienoniclinans Fasciatus, Udeopsylla robusta _ Ephinoin ytha Geicittien 

Caloptenus bivittatus, C. spretus, C. occidentalis, Pezotettia gbesa, Gidipoda 

corallipes, GH. Haldemannii, i. cincta, Gi. Montana, Gi. Car olina, Stauro- 

notus Elliotti, Stenobothrus maculipennis, and St. brunneus. 

_ Those found in both the middle and western districts are few, but it 
must be borne in mind that the collections in these two districts have 

been small, hence the means of comparison are very limited. I have 

given Caloplenus femur-rubrum and Gidipoda rugosa to the western dis- 

_ trict on the authority of Walker, but I have strong doubts as to the 

correctness of this. 

The very great preponderance of the numbers in the eastern district is 
owing chiefly to the fact that the collections have been much larger 
and over a much greater area in this district than in either of the 
others. Another reason is, that I have limited to the eastern district 
those concerning which I have any doubt. My collections, and those 
to which I have had access, were not separated as accurately in regard 
to these districts as they should have been, hence I have-placed them 
only in the districts to which I know they belong. ; 

But notwithstanding this uncertainty as to the comparative numbers 
of species in the eastern and middle districts, yet it is evident the pre- 
ponderance is strongly in favor of the former. 

I think we may conclude with safety that the eastern limit of the 
arid plains which lie west of Iowa, Missouri, and Arkansas is a more 
rigid boundary to the orthopterous fauna than the dividing range of the 
Rocky Mountains; while on the western side the Sierra Nevada Range 
forms an equally rigid boundary. This corresponds with the distribu- 
tion of the coleopterous fauna of the United States as shown by Dr. 
LeConte, (Smithsonian Contributions to Knowledge.) 

I add the following notes in regard to the range of some of the more 
important species, which may be: useful in future investigations: 

Gryltlus abbreviatus is found scattered over the plains at the base of 
the mountains from Southern Colorado to Central Wyoming. I also 
found specimens in Northern Utah, but when I reached the rim of the 
_ basin and passed into Southeast Idaho, entering the Snake River Basin, 
most of the specimens of Gryllus taken proved ‘to belong to G. luctuosus. 

Anabrus purpurascens is found, not abundantly, but at certain elevated 
points from Northern New Mexico to Montana, along the east base of 
the mountains, but I have met with no specimen west of the range in 
the middle district, though Mr. Uhler gives Washington Territory as a 
locality, on the authority of Dr. Suckley. It is also found as far south 
as Texas, and as far north as Red River, in Northern Minnesota. A. 
simplex appears to be confined to the middle district, as I have not met 
with it east of the range, and have seen no notice of it being found 
either in the eastern or western districts. Dr. Scudder, who examined 
the Orthoptera collected by Professor Hayden, in Nebraska, does not 
mention it in his list; nor did Mr. C. R. Dodge have it among his col- 
- lections made in Nebraska, Colorado, Kansas, and Indian Territory ; 
nor is it among the collections in the Agricultural Department made 
east of the Rocky Mountains. Hence I think we may safely conclude 
that it is confined to the west side of the range. But what it lacks in 
range is made up in numbers, for in the northern part of Salt Lake 
Basin and southern part of Idaho, the only points where I have met 
with it, itis to be seen in armies of myriads. But a fuller account of 
it will be found in the list. 

Stenopelmatus fasciatus is found scattered sparsely over Wyoming, 
Northern Utah, and Southern Idaho, but does not appear to occur in 


A32 GEOLOGICAL SURVEY OF THE TERRITORIES. 


great Penta at any point. I have met with no specimens of Ceutho- 
philus in the middle district; yet I see no reason why they should not be 
found there; and Dr. Haldeman speaks (Stansbury’s Report) of the 
larva of a Phalangopsis among the collections made in Salt Lake Valley. 

Udeopsylla robusta is rarely met with, though it has a wide range. I 
do not think I have seen more than fifteen or twenty in the three sum- 
mers I have traveled over the Western Territories. It is found from 
Western Kansas to Idaho, on each side of the dividing range. 

Ephippitytha gracilipes appears to be a southern insect, as it has not 
been found farther north than Southern Colorado and Northern Arizona. 

Opomola brachyptera has been observed in the adult state at only one 

point in the West, on the North Platte, east of the Black Hills; but I 
have some specimens in the larva state taken in Cache Valley, Utah, 
which, I think, belong to this species. 0. bivittata does not appear to 
extend farther west than the broad plains of Kansas and Nebraska. 
When we approach the mountains in New Mexico and Colorado it is 
replaced by O. neo-Mexicana, a very closely allied species. 
So far as I am aware, no species of Acridiwm has yet been traced to 
the immediate base of the mountains, the western range of the few 
species that extend upon the plains being confined to the extreme east- 
ern part of Colorado and western part of’: Nebraska. 

Caloptenus is represented in all parts of the West, as well as through- 
out the United States. (I cannot speak positively in regard to Cali- 
fornia.) C. bivittatus is found east of the range from New Mexico to 
Montana, and west of it from Salt Lake north to the head-waters of 
Snake River; and although it is not mentioned among the collections 
made in Washington Ter ritory, yet I am of the opinion it will be found 
there. . spretus is generally distributed from the Mississippi River to 
the Sierra Nevada Range, and north and south from Texas to British 
possessions. I have traced it west of. the range in the middle district 
from Northern Arizona (I find it among Dr. Palmer’s collections made 
there) to Helena and Deer Lodge, in Montana; but I have no satisfac- 
tory evidence of its being found in the western district. C, Dodget, which 
is closely related to the Pezotettigi, has been collected only at a great 
elevation on Pike’s Peak. 

‘ I have not met with C. femur-rubrum west of the mountains, and have 
some doubt in regard to most of the specimens found in Colorado and 
Wyoming which are referred to this species, for nearly all I have seen 
appear to have unspotted elytra, and to be uniformly more slender than 
the specimens found in the States. At one point in Wyoming I found 
these and C. bivittatus with the posterior tibia invariably of a bluish- 
purple color, yet when immersed in strong alcohol they became of a 
bright purplish-red before the color entirely faded. 

Pezotettix picta, which is a very pretty insect when living, looking 
very much like the larva of Romalea centurio, appears to be confined to 
Hastern Colorado. P. obesa has been found only on the mountains, be- 
tween Southern Montana and Idaho, at an elevation of more than six 
thousand feet. 

The range of the species of Gidipodini will be given in my synopsis, 
as I have not yet completed the examination of all my specimens of this 
. group. 

The relative numbers of species in the various groups correspond with 
what might be anticipated from the character of the country. Where 
broad and comparatively barren plains occupy a large portion of the 
area of the country, it is natural that the Caloptent and Cidipodini 
should predominate, and that the Locustide should be less numerous 


GEOLOGICAL SURVEY OF THE TERRITORIES. A433 


than the Acridide. Not only does Acrididew contain nearly twice as 
many species as Locustide, but the number of individuals of the former 
is, if we omit the single species Anabrus simplex, infinitely greater than 
the latter. 

In Mr. Scudder’s Materials for a Monograph, he mentions 41 species 
of Locustide, and but 38 of Acridide, exclusive of Tettigine ; Serville, 
in his Hist. Nat. Orthopteres, describes 142 species of the former, and 
172 of the latter; and Walker, (Cat. Dermap. Salt. Orthop.,) exclusive 
of the Yettigine and additions in Part V, enumerates 910 species of the 
former and 921 of the latter. These show that, as a rule, the two fam- 
ilies contain nearly the same number of species. But, while this appears 
to be the general rule, in the West there are 60 species of Acridide to 34 
of Locustide. 

Although the number of individuals of one of the species of Acridini 
is far in excess of the number of individuals of any species of Gdipodini, 
yet a glance at the tables will show that the number of species belong- 
ing to the latter group is much larger than that of the former, Wdipoda 
alone containing 24 species. And while in the eastern and middle dis- 
tricts Caloptenus spretus only is migratory, when we cross into the west- 
ern district Gdipoda atrox is the destructive migratory species, indicat- 
ing an approach to the oriental orthopteral characteristic. 

An examination into the different species of the Locustide brings out 
another important fact corresponding with the nature of the regions 
under consideration. Out of 34 species 23 are either wingless or have 
these organs so aborted that they are unfit for flight, indicating most 
clearly the absence of arborescent vegetation, and the prevalence of ex- 
tensive treeless plains. The number of Ceuthophili is larger than I had 
expected to find it, as, upon the theory I have adopted, these affect 
damp places, and are confined more to the margins of water-courses, 
lakes, &c.; but the fact that the species are confined to the eastern and 
western districts somewhat conforms to this idea. 


Ill.—A LIST WITH DESCRIPTIONS OF NEW SPECIES. 
 Fammiy L—GRYLLIDA. 


- 


Gryllus abbreviatus, Serv. 

Found throughout Colorado, in Wyoming, and occasionally in North- 
ern Utah and Southern Idaho. Specimens generally large, the length 
of the ovipositor exceeding the measurements given by Mr. Scudder. 


G. luctuosus, Serv. 

I met with this species in the extreme northern part of Utah, and in 
Southern Idaho, where it appears to replace the former species. Size 
larger than the usual measurements, and ovipositor longer, yet I feel no 
doubt that the specimens referred to this species belong to it. Plate 
I, Figures 10 and 11. 


Occanthus niveus, Serv. : 

I amnot positively certain that my specimens belong to this species, 
as most of them are more or less injured. It occurs in considerable © 
numbers along the banks of streams lined with bushes. 


Tridactylus, ——.(?) ; 
I saw what I am quite confident was a specimen of this genus on the 
bank of Bear River in Cache Valley, Utah, but was unable to capture 


28658 


A34 GEOLOGICAL SURVEY OF THE TERRITORIES. 


it. This is the only instance I recollect to have met with an individual 
of this genus in any of the Territories, and possibly I may have been 
mistaken here, but I think I was not. 


LOCUSTID A. 
STENOPELMATINI. 


Stencpelnatus fasciatus, Nov. Sp. 

Pale testaceous. Head tawny; feet pale; abdomen marked with 
alternate rings of black and white. 

Head slichtly broader than the thorax; occiput evenly rounded and 
smooth. Pronotum transverse, slightly excavated in front; sides nearly 
Be ras posterior lateral angles obtusely rounded; posterior margin 

early straight; a transverse ‘furrow near the anterior margin, and an 
ppligue indentation each side of the faint median line near the middle. 
Meso- and meta-thorax constricted. Abdomen inflated, as broad or 
broader than the head, about twice the length of the thorax. Cerci of 
‘the male short _ slender, « and hairy; superanal plate triangular, tumid, 
emarginate. Ovipositor very short, not ee than the cerci of the 
maie, “conical and turned up at the apex. Anterior tibiz two-spined 
beneath, with a third small spine imu: Hse above the cirelet on the 
inner margin; middle tibie with two spines on the outer margin, one on 
the inner, “and a small one in the middle near the base; posterior tibize 
in the female have five inner and three outer spines, in the male five 
_inner and four outer. Both sexes apterous. 

Color, {after immersion in alcohol, but varying very slightly from the 
living specimens :) 

Female.—Mandibles black; face yellow; head brownish or tawny ; 
pronotum tawny, fading to light yellow; legs, venter, and sternum pale 
yellow ; spines tipped with piccous. Each abdominal segment has a 
broad ring or band of black on the anterior or middle portion, and a 
narrow band of pale yellow on the posterior margin; sometimes the lat- 
ter extends across the suture upon the margin of the next segment. 

Male.—Mandibles tipped wit black ; labrum fuscous; head and thorax 

paler than in the female; apex of the ‘tibize dusky. Dark bands of the 
abdomen grow narrower on the apical segments. 

Dimensions.— Q g, length, 1.25 inches; posterior femora, .38 inch ; 
posterior tibie, .37 inch. I have a specimen from Texas, a female, 
which measures 1.65 inches in length, but the above measurements 
give the average of the western specimens. 

Habitat— Wyoming, Utah, Southern Idaho, and Texas. Rare, never 
being found in great numbers at any point. 

This species, though not exactly agreeing with Group Il of Walker, 
(Cat. Dermap. Salt., Supp. to pt. I, p. 197,) is closely allied to his 8. 
Zonatus. 

RAPHIDOPHORINI. 


Ceuthophilus pallidus, nov. sp. 

Pale testaceous; with four strong spines on each superior margin, of 
the posterior tibiee. 

Female.—Second joint of the antennze enlarged at the apex ; anterior 
femora with two (sometimes three) spines beneath, near the apex, the 
one next the apex being much the largest; middle femora with one or 
two spines beneath, and one on the inside of the apex; posterior fe- 
mora unarmed ; the four anterior tibiz generally have two spines in 


GEOLOGICAL SURVEY OF THE TERRITORIES. 435 


each row; the posterior tibiz with each superior n margin minutely ser- 
rated and furnished with four strong spines in each. row, somewhat 
divergent and alternate, (though in many specimens they appear to be 
sub-opposite,) the inner row extending farthest upward toward the base ; 
ovipositor nearly straight, about as long as the abdomen; cerci slender, 
hairy, one-third the length of the ovipositor; posterior femora extend 
neariy one-half their length 1 beyond the abdomen. 

Male.-—The posterior ‘femora armed beneath with a row of strong 
spines on the exterior carina, the inner carina being finely serrated ; 
cerei similar to those of the female but rather longer ; ultimate ven- 
tral segment taumid and bilobed. 

Color, (alcoholic specimens, scarcely differing in color from the liv- 
ing).—Pale testaceous; face and labrum pale, lightest in the male; 
vertex and occiput, in the female, minutely dotted with brown, in the 
male, with narrow, branching, dusky veins; tubercle fuscous ; eyes 
black, acuminate below; each thoracic and abdominal segment has ou 
it four somewhat irregular brown spots, those on the thorax running 
together on the disk, and those on the abdomen growing smaller toward 
the apex; the position of these spots leaves a pale line along the dor- 
sum and on each side; posterior femora marked with slender, brown 
lines diagonally across the disk, and two longitudinal dashes of the © 
same near the lower margin; spines of the tibize white with piceous 
points; serrature of the posterior tibiz piceous; venter and pectus 
white, or pale testaceous. 

Dimensions.— 9 , length, .54 inch; posterior femora, .47 inch ; posterior 
tibise, 51 inch; ¢, length .d5 inch. 

Habitat.—Southeast “Colorado ; and east side of Black Hills, near 
Red Buttes, Wyoming. 

I at first referred these specimens to C. divergens, Scudd., and it is pos- 
sible they form but a variety of that species, with which they agree in 
several particulars. While some of my female specimens have diver- 
gent spines, this character is by no means permanent, especially in the 
males. The C. divergens has five spines in each row on the posterior 
tibie, but my specimens, males and females, have but four, (1 take for 
granted that none of the circlet at the apex are counted.) This species 
approaches very nearly to C. zonarius, Walk., but may be distinguished 
by the difference in the number of spines on the middle femora and mid- 
dle tibiae. 


C. castaneus, Dov. sp. 

Maie.—Dorsum, castaneus; middle tibie with two spines in front; 
posterior tibize with four spines in each row, opposite. Maxillary palpi- 
jong; third joint about twice the length of the two preceding taken 
together, slightly bent, obliquely truncate; fourth three-fourths the 
leneth of the third ; fifth a little longer than the third, curved and chan- 
neled as usual. Frontal tubercle nearly obliterated. Eyes sub-pyri- 
form, not prominent. Antenne apparently of moderate length, (those 
of my unique specimen have the apical portion broken off ;) they have a 
broad, dish-like fold around the base; first joint flattened, very broad, 
length slightly exceeding the width ; ‘second, length equal ‘its diameter ; 
third, twice the length of the second; from the middle to the end every 
tenth or twelfth joint is constricted, ” forming a pale-yellow annulation. 
Thoracic segments slightly mar eined. Cerei rather long and slender, 
about one-third the length of the abdomen, covered with minute hairs. 
Subanal plate abnormal, extending back more than half the length of 
the Caress triangular and bilobed, the lobes blunt at the apes, haying 


A36 GEOLOGICAL SURVEY OF THE TERRITORIES. 


much the appearance of a short, blunt ovipositor. Legs more than me- 
dium length; anterior and middle pair slender. Anterior femora ser- 
rated, inner carina one-spined, outer carina unarmed; middle femora 
with each carina minutely serrated and three-spined, and a spine on the 
inside at the apex; posterior femora deeply channeled beneath, each 


- carina minutely serrated but not spined, passing the abdomen about one- 


half their length. Anterior tibis have the posterior margins minutely 
serrated, three spines on each, opposite; middle tibie with two spines 
above, lower margins serrated, three spines on each, opposite ; posterior 
tibize have the posterior margins serrated, four spines on each, opposite ; 
four teeth of the serrature between the spines. Anterior coxz mucro- 
nate on the exterior angle. 

Color, (dry, not alcoholic.)—Face pale yellow; upper portions of the 
head tawny. The entire dorsum pale castaneous, with somewhat darker 
bands on the posterior margin of each segment, scarcely distinguishable. 
A slight median yellow line on the thorax. Legs dull yellow, the pos- 
terior pair darkest; spines yellow, not tipped with black; eyes black; 
antenne fulvous. : 

Dimensions.—Uength, .70 inch; posterior femora, .5 inch;:posterior 
tibie, .5 inch. California. Presented by Mr. Taylor. 

This may possibly be the male of Dr. Scudder’s C. Californianus, but 
the great difference in the length of the posterior femora would seem to 
forbid this conclusion, although the color and absence of spines on the 
posterior femora indicate a similarity. My specimen is evidently much 
larger than the one he describes. This species appears to form a con- 
necting link between Ceuthophilus and Udeopsylla, the head and thorax 
haying a strong resemblance to the latter genus. 


C. pacificus, nov. sp. 

Male.—Golden yellow, dotted and minutely mottled with fuscous; pos- 
terior femora with one large serrated spine on each carina; middle tibiz 
spined above. ‘ 

Tubercle of the vertex prominent, pointed. Ultimate joint of the 
maxiilary paipi unusually long, bent, and somewhat angled behind near 
the base. Circi rather large, acuminate. Tip of the last ventral seg- 
ment notched, and furnished on the outside of each lobe with a short 
fusiform appendage. Anterior femora one-spined, not serrated; middle 
femora one or two spined, not serrated. Posterior femora much enlarged 
for the basal three-fourths, suddenly contracted beneath near the apex; 
a broad and tolerably deep sulcus beneath; each margin minutely 
serrated part of its length and furnished with one strong and very 
broad spine. Each of these spines is serrated on the anterior margin; 
the one on the interior margin is the largest and stands farthest from 
the apex; between these spines and the apex the margins curve 
upward, forming a kind of cireular notch, and corresponding to this is 
an enlargement or swelling of the front of the posterior tibie near the 
base. The posterior femora are scabrous on the disk and upper edge. 
The middle tibiz, in addition to the usual spines below, are furnished 
on the upper face with four spines, two in a row; posterior tibic ser- 
rated, four spines on each posterior margin, opposite. 

Color, (dry, but not alcoholic.)—Ground color of the dorsal portions 
golden yellow; of ventral surface and legs, a honey yellow; the face 
mottled with fuscous, forming three irregular spots, one beneath each 
eye and one in front; vertex and tubercle’ black; cranium with a few 
slender black lines, mostly longitudinal. The entire dorsum sprinkled 
over with small irregular fuscous dots, giving it a mossy appearance. 


—- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 437 


Segments 2-8 have on each, near the posterior margin, a single row of 
white dots. Posterior femora marked on the upper part of the disk with 
oblique, brown, scabrous lines; along the middle of the disk runs a 
slight sulcus, which is bordered by a stripe of brownish scabrous points; 
there is also another short stripe of the same, each side of the sulcus, 
near the apex. Posterior tibiz striped with brown in front. 

Dimensions —Length, .5 inch; posterior femora, .43 inch; posterior 
tibiz, .43 inch., From California. Presented by Mr. Taylor. 


C. bilobatus, nov. sp. 

Male—Femora unarmed. Posterior tibiz multispined; spines alter- 
nately long and short. Frontal tubercle bilobed. Venter bright yellow; 
ultimate segment with a black fascia. 

Frontal tubercle deeply bilobed; a transverse impression immediately 
below it; eyes round, not docked on the inside; third joint of the antenne 
not longer than the second. Abdomen faintly keeled on the posterior 
segments; superanal plate (or last abdominal segment) deeply biiobed; 
the short cerci protruding from beneath it by the lateral margins of 
the lobes at a circular notch; ultimate ventral segment notched at the 
tip, and longitudinally suleate beneath. Femora neither spined nor 
serrated. Anterior and middle tibie, although quite hairy, do not 
appear to be spined or serrated; posterior tibiz not serrated but spined 
on the posterior margins nearly their entire length, spines nearly op- 
posite, alternately long and short in each row; first joint of the posterior 
tarsi with a strong curved spine above at the apex. All the tibize 
appear to be square, having four nearly equal flat faces. 

Color, (dry, but not alcoholic.)—General and nearly uniform color an 
ash-brown, with numerous orange-yellow dots. Tips of the mandibles 
piceous black; a narrow, black, transverse line immediately below the 
frontal tubercle; eyes brown. Two oblique, short, black stripes on 
the meso- and meta-notum, diverging posteriorly, one each side reaching | 
across the two segments, bordered above, especially on the metanotum, 
with an orange-yellow stripe. Venter a bright yellow, the ultimate 
segment, with a black band across the middle, expanding at the lateral 
margins. P 

Dimensions.—Length, .45 inch; posterior femora, .28 inch; posterior 
tibie, .26 inch. California. Presented by Mr. Taylor. 

I had a specimen of what Iam satisfied was the female of this spe- 
cies, but, unfortunately, it. was destroyed before a description of it was 
taken. All I can state positiveiy in regard to it is, that the ovipositor 
was very short, strongly curved upward, falcate. Color more of an 
ash-gray than themale; the stripes on the thorax very distinct. About 
the same size as the male. 

The characters of this species will probably require the formation of - 
a new genus for its reception, but the general appearance is sufficiently 
near the typical Ceuthophili to place it at once in that group; therefore, 
rather than multipiy generic names, I place it here for the present, but 
have given a full description, that the generic characters may be known. 


Udeopsylla robusta, Seudd. 
Syn., Phalangopsis (Daihinia) robusta, Hald. 

I have found this species at a few points in Wyoming, Colorado, 
Utah, and Southern Idaho.. It appears to be generally distributed on 
the plains and open sections of the Rocky-Mountain regicns, but not 
abundantly. I have seen very few females. Although the “upper 


438 GEOLOGICAL SURVEY OF THE TERRITORIES. 


surface of the femora is sparsely scabrous,” I have not noticed this to 
be the case with the “dorsum,” as stated by Haldeman. 


BRADYPORINI. 


Anabrus simplex, Hald. 
Found in great abundance between Brigham City, Utah, and Fort Hall, 
Idaho. Also oceasionally met with farther south in Utah and north of 
Fort Hall to the boundary line of Montana, which is here along the 
range separating the waters of the Atlantic from the Pacific. At some 
points we found them so abundant as literally to cover the ground. In 
two or three instances they all appeared to be moving in one direction, 
as if impelled by some common motive. I recollect one instance on 
Port Neuf River, where an army was crossing the road; it was probably ~ 
as much as two bundred yards in width; I could form no idea as to its 
length; I only know that as far as I could distinguish objects of this 
size, (being horseback,) I could see them marching on. I think that in 
all the cases where I saw them thus moving, it was toward a stream of 
water. They appear to be very fond of gathering along the banks and 
in the vicinity of streams. In the north part of Cache Vailey I fre- 
quently noticed the ditches and little streams covered with these 
_insects, which, having fallen in, were floating down on the surface of 
the water, and, though watching them for hours, they would flow on in 
av undiminished stream. 

While encamped on a little creek near Franklin, in this valley, it was 
with difficulty we could keep them out of our bedding; and when we 
went to breakfast we found the under side and legs of the table and 
stools covered with them, all the vigilance of the cook being required 
to keep them out of the victuals. 

But the strangest part of its history is that it will go in pursuit ef and 
eatch and eat the Cicada. This latter insect also made its appearance 
in this valley the past season in immense numbers, covering the grass 
and sage and other bushes, especially those which formed a fringe along 
the little streams. Up these the Anabrus would cautiously climb, 
reach out with its fore leg and plant its claw in its victim’s wing; 
once the fatal claw secured a hold, the Cicada was doomed, for without 
ceremony it was at once sacrificed to the voracious appetite of its cap- 
tor. No uniformity appeared to be preserved in this process; sometimes 
they would commence with the thorax, at others with the head, not even 
taking the trouble to remove the legs or wings. 

I noticed in the road, where one of the armies was crossing, a num- 
ber of large hawks feasting themselves upon the helpless victims. As 
I returned through Malade Valley, (August 20, 1871,) the females were 
depositing their eggs. They press the ovipositor perpendicularly into 
the ground almost its entire length. PI. I, fig. 1. 


A. purpurascens, Ubler. 
Syzn., Thamnotrizon pupurascens, Thos. 


I have found no specimens of this species west of the Rocky Mount- 
ain; yet it may possibly be found on the higher plateaus. 

In my paper (Proc. Acad. Nat. Sci. Phila., 1870, p. 76, and Rep. U.S. 
Geol. Surv. Wyom. Ter., 1870, p. 268) I removed this species from Ana- 
brus to Thamnotrizon, because the prosternum is unarmed. I did this 
because A. Haldemannii, Girard, of which I had several specimens, has 
the prosternum distinctly spined, and in other respects differs from the 


GEOLOGICAL SURVEY OF THE TERRITORIES. AZ 


purpurascens. I had not then seen a specimen of A. simplex, Hald.; nor 
had I seen the excellent synopsis of the European species ot Thamno- 
trizon by Brunner de Wattenwyl, (in Verhandl. Zool.-Bot. Vereins in 
Wien, XI, 1861,) the articles by Yersin, (Ann. Soc. Ent. Franc., 3d ser., 
Tom. VI and VII,) or Fieber’s Synopsis, (Lotos, 1853.) Now, having 
specimens of all the species (simplex, Haldemannti, purpurascens) before 
me, and access to the works named and those of Serville, Fischer, &c., I 
find that while I was correct in separating the species, [I was mistaken 
in the disposition made of them, and, as a matter of course, in my 
emendation of the generic characters. 

The genus Anabrus was formed by Haldeman for the reception of his 
A. simplex, hence in emending the original description its characters 
should be such as to embrace the species on which it was founded. A 
more thorough examination of the generic characters of Thamnotrizon 
as given by the various authors; a comparison of the figures by Brun- 
ner de Wattenwyl, Von Frauenfeld, Fischer, &c., and personal inspection 
of some specimens which I am satisfied belong to this genus, discovered 
the past season, lead me to the conclusion that the arrangement and 
number of spines on the front of the anterior tibize is a true normal 
character, although having some slight exceptions, (for 7. fallax appears 
from the figure in Verhandl. Zool.-Bot., XI, 1861, Pl. 10, to vary from 
this type.) As A. simplex and purpurascens have two rows of spines on 
the front of the anterior tibize, (one 4-5, the other 2-3, making in all 6-8,) 
they cannot belong to this genus, but should remain where originally 
placed. A. Haldemannit, having the prosternum very distinctly bispinose, 
must be placed in some other genus, and even without this distinction 
there are other differences which will remove it from generic association 
with these species. Iam not well satisfied where it should go, but place 
it provisionally in Péterolepis, Fisch., (not Serville,) with which it appears 
to be most nearly. allied. 

There is much confusion in regard to this group of genera. Fischer 
(Orthop. Europ.) separates Thamnotrizon from Péerolepis of Rambur, 
placing the species without prosternal spines in the former, leaving 
those with spines in the latter; while Serville places the species without 
prosternal spines in Pierolepis. Fieber, following Serville, places the 
unarmed species in Pierolepis and forms a new genus—fhacocleis—-for 
those which are spined. Yersin (Ann. Soc. Ent. Frane., 3d ser., V1) 
describing Pterolepis alpina gives the spines asa character. Orchesticus 
of Saussure (Rev. Mag. Zool., 2d ser., XI., 1859, p. 201) comes very close 
to this, the chief difference being in the mesosternum. Brunner de 
Wattenwyl appears to follow Fischer in regard to Thamnotrizon, but 
on the other hand adopts the Khacocleis of Fieber for his spined species, 
omitting Pterolepis altogether. He forms a sub-genus in Decticus, 
which he names Psorodonotus, to which he removes Pterolepis alpina, 
Yersin. 

In the midst of such confusion, which Walker has increased by the 
formation of several too closely-allied genera, it is ‘difficult to place a 
somewhat abnormal species. It is probable Dr. Scudder will clear up 
this difficulty in his anxiously looked-for work on the Orthoptera ; there- 
fore for the present I have adopted the following arrangement as the 
best I can do with the materials I have at hand. I would not venture 
to take this step if it were not necessary to adopt some consistent ar- 
rangement of the new species I cbtained during my recent visits to the 
Rocky Mountains. 

Discarding Khacocleis, Fieb.; retaining Pterolepis, Fisch., (Not. Serv. ;) 
and restricting the other genera to their true limits, the genus Anabrus 


AAO GEOLOGICAL SURVEY OF THE TERRITORIES. 


will stand as distinct, and its relation to the others may be represented 
as follows: 


A. Anterior tibiz spined in front: 
a. Prosternum spined. (Thyreonotus, Pterolepis = Khacocleis, Orches- 
ticus. ) 
ad. Prosternum not spined: 
b. Pronotum distinctly carined; anterior tibicee with three or 
four spines in front .--..<:- Sete esha Decticus, (prop.) 
bb. Pronotum with sub-distinct lateral carinee; anterior tibiz 
with three spines in front; elytra not squameform. 


SUD GeOMUSe ae oA Shoes se cae emer Baye Platacleis. 

bbd. Pronotum without distinct lateral carine ; elytra squame- 
form : 

ce. Anterior tibiz with but three or four spines in front; 

ONE TOW. ac. - = B Ligpanecs ep oatin Se yee oe Thamnotrizon. 

cc. Anterior tibixe with six or eight spines in front; two 

TOWS, Oe Geatieejove wisps Gaon 3 Sete tie aaa ane Anabrus. 


This is rather artificial, depending tco much upon a minor character, 
but will perhaps accord with a more thorough and natural arrangement 
when made. I have slightly expanded Fischer’s spine character of 
Decticus. Lam awarethat Thamnotrizon and Anabrus have been placed 
in different groups, and although I follew the arrangement in this 
article, I confess I think the differences scarcely warrant the separation. 


A. coloradus, nov. sp. 

Rather smaller than A. simplex or A. purpurascens ; ovipositor shorter 
and more curved upward. Abdomen with brown bands. 

Hyes small, round, the most angular portion being below. Pronotum 
rrather short; posterior part sub-tricarinate, somewhat flattened ; apex- 
truncate. Abdomen decticoid. Superanal plate of the female round; 
subanal plate sub-quadrate, tumid, with a short spine at each apical angle, 
and a short, broad spine each side of the base. Prosternum not spined ; 
meso- and metasternum, with the lateral angles elevated, acute. Super- 
anal plate of the male somewhat acute-angled; cerci with the two 
prongs, mucronate, the lower ones strongly curved inward; subanal 
plate deeply notched; cylindrical appendages short. Legs slender, 
Short ; posterior femora with three or four minute abortive spines on 
the lower exterior carina. * ; 

Color, (dried after immersion in aleohol.)—Dull yellow, varied with 
brown. Face yellow; occiput of the female brown; male pale. Disk of 
the pronotum brownish, posterior portion dark; lower margins of the 
sides yellow. Each abdominal segment with a brown band on the base. 
Venter and pectus dull yellow. Elytra and wings as usual, abortive. 

Dimensions.— 9, length, 1.28 inches; pronotum, .38 inch; posterior 
femora,.68 inch; posterior tibie, .70 inch; ovipositor,.73inch. ¢, length, 
1.12 inches. Eastern Coiorado. 


LOCGUSTINI.* 


*T follow Walker in giving this division, but I reduce it to a group, yet it does not 
accord with my opinion as to the boundary-lines, for I really believe Thamnotrizon 
should be placed in the same group as Lradyporus. But as I have not studied the 
species of this family with sufficient care to give a satisfactory outline of the divisions, 
I follow those of other authors. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 441 


Thamnotrizon scabricellis, nov. sp. 

Pronotum roughly punctured, dark purplish. Femora striped with 
yellow. 

Female-—Head smooth; first joint of the antenne broad, flattened; 
frontal tubercle broad, flat, and truneated below by the transver nse sulcus 
between the antenne. Pronotum of moderate length, sub-tricarinate, 
expanding posteriorly; deeply and coarsely punctured, so as to render 
it somewhat scabrous; a distinct, oblique impression each side of the 
median Carina; a smooth space on each side near the middle; lateral 
_ caring obtuse, truncate in front, obtusely rounded behind; sides extend 

lowest at the anterior coxe, angles rounded, posterior oblique; margin 
slightly curved inward. Abdomen large, nearly twice as long as the 
thorax, carinated; apex of the last segment suddenly narrowed, forming 
a slight entering angle each side; terminal, triangular portion somewhat 
tumid and excavated at the middie of the upper surface. Cerci very 
small, pointed. Subanal plate very large and broad, with a square 
notch at the middle of the apex; ovipesitor slightly curved, acuminate. 
Hilytra extend the width of one segment beyond the pronotum. Femora 
all unarmed. Anterior tibiz, with one Tow, 3-4 spines above, situate 
somewhat on the external face; middle tibie with two rows above, 
inner row 5-6 spines, outer 4; posterior tibize with two rows beneath. 
Posterior femora slightly arcuate near the base, about as long as the 
abdomen ; appendages to the first dorsal joint about as long as the 
apical spines, sub-reniform. 

Color, (after immersion in alcohol, but very near as when living.)— 
Face yellow below the eyes; two brown dots on the clypeus; buccal 
suture fuscous ; base of the antenne yellowish, a purple dot on the front 
of the first joint; occiput purple. Pronotum brownish-purple, palest 
near the apex; broadly margined on the sides with yellow. Abdomen 
dark-purple, with paler points and spots; ovipositor testaceous, fuscous 

at the apex and along the upper edge. Posterior and middle femora 
light-purple, with rows of black dots along the disk. Tibia purplish, 
spines piceous at the tips. Hlytra, which are very smail, have a purple 
disk and yellow margin. 

Male-—Cerci short, very robust, with an obtuse inner tooth at the 
apex; subanal plate large, elongate, deeply notched at the apex, the 
notch forming an acute angle; the cylindrical appendage at the tip of 
each lobe, short. Hlytra, extending across two segments, colored, as in 
the female. 

Dimensions.— Q 8, length, 1.25 inches; posterior femora, .75 inch; pos- 
terior tibie, .74 inh; ovipositor, .77 inch. 

Found in Southern Montana on the dividing range of the Rocky 
Mountains at an elevation of 6,000 to 8,000 feet above the level of the sea. 


Pterolepis (2?) Haldemannit, Thos. 


Syn., drabrus Haldemannii, Girard. - 
I have met with this species only in Colorado and Eastern Wyoming. 
i am rather inclined to think it does not belong to the Pacific slope. 


P. (7) Stevensonit, Thos. . ; 
Syn., dnabrus Stevensonti, Thos. 
P. (2) minutus, Thos. 
Syn., Anabrus minutus, Thos. (Pl. Ii, Fig. 17.) 
For the reasons heretofore given, these species will also have to be 


442. GEOLOGICAL SURVEY OF THE TERRITORIES. 


removed from Anabrus, and I place them in this genus with some hesi- 
tancy. Nor can I decide the point satisfactorily without a better knowl- 
edge of these genera. I have not met with either of these species on 
the western slope. 


Decticus pallidipalpus, nov. sp. 

Femaie.—Face round, smooth; occiput convex, smooth, terminating 
at the vertex in an oblique cone, separated from the face by a cross 
impression between the antenne. Antenne longer than the body; first 
joint broad and flat, not reaching the top of the vertex; third joint 
cylindrical, about twice as long as the second; rest of the joints have 
on them a few scattering hairs. Maxillary palpi less than twice as long 
as the labial; fifth joint longest, sub-clavate, with rounded apex, straight: 
third joint a little longer than the fourth, which is slightly curved. 
Labrum obovate, wide as the clypeus; the latter subtriangular, not 
separated from the face. Pronotum short, but not transverse, having 
three distinct and equal caring, the lateral slightly converging a little 
in front cf the middle; front margin truncate, slightly waving; poste- 
rior margin obtusely rounded; lateral margin extends below the lower 
border cf the eyes, the lowest part a little behind the anterior angle, 
the angles rounded; the posterior, oblique lateral margin slightly curved 
inwa dds no cross incisions, the carinz being continuous. Hlytra and 
wings hid by the pronotum. Abdomen convex above, about twice the 
length of the thorax; ovipositor about as long as the abdomen, straight, 
pointed at the apex ; ’ the last ventral segment triangular, deeply notched 
at the apex, notch’ square ; superanal plate triangular, entire; cerci 
minute. Prosternum not spined or tuberculate, “transverse ; ; ” meso- 
and meta-sternal angles elevated into triangular plates, but not spined. 
Posterior femora very slightly spined beneath ; other femora unarmed. 
Anterior tibiz with one row of three spines in front, on the external 
margin; middle tibize with two rows above, four on the outer and two 
on the inner margin; posterior tibice with two rows of fine spines below; 

_the appendages to the base of the first joint of the tarsi oblong. 

Color, (after immersion in alcohol.)—Pale, dull yellow, somewhat 
uniform, the dorsal portions generally a little the darkest and some- 
times with a reddish-brown tinge. Legs tinged with dull purple, or 
testaceous. Antenne pale at base, rest fuscous ; eyes brown, with san- 
guinous spots on the inner side, one or two of a similar char acter at the 
front of the base of the antenne. 

Male—Hlytra project from beneath the pronotum in the form of 
scales, crossing one or two segments; disk brown, margins yellow. 
Apex of the Jast abdominal segment notched; cerci robust, curved | 
inward, a strong bent tooth on the inside about the middle ; . tip of the 
last ventral segment notched, appendages blunt. Dorsal portions and 
legs pale purplish. 

“Dimensions. —@, length, 1 inch; 3 ovipositor, .74 inch; posterior 
femora, .81 inch; posterior tibie, .73 inch. @, length, 87 inch ; pos- 
terior femora, 13. inch; posterior tibic, .69 inch. 

Found at Copenhagen, Utah; mouth of Port Neuf ee and on 
Snake River, Southern Idaho. June 15-25. 

I think that when living the general color is a pale pea- green. 

This species is closely ‘allied to the section established by Walker, 
(Cat. Dermap. Salt., pt. Il, 259,) the following slight variations being 
noticed: the differ ence in the number of tibial spines; no longitudinal 
furrow between the eyes, except in dried specimens; the two oblique 


GEOLOGICAL SURVEY OF THE TERRITORIES. 443 


furrows of the face seen only in dried specimens, the face being regu- 
larly convex. 


D. trilineatus, Thos. 
Syn., Thamnotrizon trillineatus, Thos. 


This species probably belongs here, as it is closely allied to the pre-- 
' ceeding. Ihave not met with it west of the dividing range, but have 
traced it up the eastern slope nearly to the summit at South Pass, 
Wyoming. 


Locusta fuliginosa, DOV. sp. 

Male—HWlytra and wings very long, nearly twice the length of the 
body. Wings dark fuscous, with short pellucid bands between the 
nerves. 

Occiput is divided into three obtusely rounded, longitudinal ridges, 
the middle the broadest; the tubercle between the eyes compressed 
laterally, and suleate. Pronotum short, lateral carine distinet on 
the posterior lobe; the second transverse impression bends backward 
on the dorsum, so as to form an acute angle; front sub-truncate; 
posterior extremety obtusely rounded ; the entering angle of the pos- 
terior margin situated a little below the humerus, and is simply a 
rounded notch; the lower margin of the sides rounded, in a somewhat 
semi-circular form, from the anterior angle to the notch before men- 
tioned. Hlytra very long, nearly equal to twice the length of the body, 
of moderate width, margins parallel, apex round. Wings nearly as 
long as the elytra; the nervules very minute, almost imperceptible, ex- 
cept near the inner margin, where they are a little more prominent. 
The superanal plate is divided nearly to its base, the two lobes pro- 
longed into pointed processes reaching the tips of the cerci; the cerci 
very stout, rounded exteriorly, somewhat carinated internally, apex 
rounded externally, internally there is a notch with a spine each side of 
it; subanal plate triangular at the apex, with two converging carinz 
beneath, which terminate in the cylindrical appendages. All the 
femora furnished with two rows of spines, irregular, and but few on 
some of the carine. Anterior tibize with a single row of two or three 
Spines in front; the middle tibiz with two rows above, five in each, 
opposite ; posterior tibize with two rows beneath. The prosternal spines 
sharp; the lateral angles of the meso and meta-sternum are also pro- 
duced into dull spines, the latter the most obtuse. Spine of the anterior 
coxa broad at base, pointed at the apex. 

Color, (dried.)—Fuliginous. Labrum pale yellow; a bright-yellow 
spot between the eyes, at the base of the tubercle; face dull yellow, 
variegated with dark brown; joints of the maxillary palpi fuscous at 
the base and pale at the tip; antenne pale testaceous, the first and sec- 
ond joints fuscous. Pronotum palest on the dorsum; the upper poster- 
ior parts of the sides darkest. Elytra semi-pellucid, with a fuliginous 
shade, varied with darker spots, those along the middle field largest; 
stridulating organ scarcely differing in color from the other parts. 
Wings fuliginous throughout, varied only by short semi-pellucid bands 
reaching from one nerve to another, always situated between the nerv- 
ules. Legs fuscous, the tibie palest. Female, unknown. 

Dimensions.—Length of the body to tip of the cerci, 1.26 inches; 
cerci, .19 inch; elytra, 2.28 inches; posterior femora, 1.26 inches; pos- 
terior tibis, 1.33 inches. 


444 GEOLOGICAL SURVEY OF THE TERRITORIES. 


From Northern Arizona. Obtained from the collection of Dr. Palmer, 
in the Agricultural Department, at Washington. 

This is a very interesting species, as it is the first of this genus, as at 
present restricted, which has been found in the United States. I have 
therefore made my description very full, including some generic char- 
acters. It is remarkable for the length of its wings and its dark, som- 
ber color. : 

Figured by Professor Glover. Pi. 1, Fig. 9. 


L. occidentalis, nov. sp. 

Female.—Testaceous, with a row of black spots along the middle of 
the elytra. Closely allied to L. fuliginosa, but smaller, and rather more 
slender in its proportions. 

Occiput not ascending, convex, transverse; tubercle compressed on the 
sides, slightly suleate. First joint of the antenne convex in front, with 
a slight tubercle at the base. Pronotum longerthan broad,’ somewhat 
carinated; lateral carine rounded on the anterior lobes, angled on the 
posterior, slightly converging near the middle; a faint medium line visi- 
ble; margins as in fuliginosa. Elytra about twice the length of the 
body; narrow, equal width throughout; round atthe apex. ‘Thesternal 
spines and lobes asin fuliginosa. Middle femora longer than the ante- 
rior, slender sub-cylindrical; the anterior femora have from three to five 
small spines on the inner carina; middle and posterior femora have a 
few minute distant spines on each carina. Anterior tibiz with one row 
of three spines in front; middle with two rows above, four or five in 
the internal, and two in the external. 

Color, (dried, but does not appear to have been immersed in aleohol.)— 
Testaceous. Face pale browuish-yellow; an irregular black stripe 
reaches from the eyes to the posterior margin of the pronotum, rupning 
along the side of the latter, immediately below the lateral carina. The 
pronotum brownish above, paler below tke stripe on the side. HElytra 
testaceous, the middle field marked with a row of black spots, which 
form a kind of serrature along the externo-median nerve, the inter- 
spaces whitish; the upper field somewhat regularly variegated with 
pale, brownish, rhomboid spots ; lower field pale, with clusters of dark 
points.. The wings fawn-colored; nerves and nervules of the front mar- 
gin black, prominent; rest mostly the color of the wigs, and less prom- 
inent. Spines tipped with piceous; soles of the tarsi fuseous. Anten- 
ne wanting in my specimen. 

Dimensions.—Length of body, .95 inch; elytra, .1.80 inches; poste- 
rior femora, 1.14 inches; posterior tibiz, 1.13 inches; ovipositor, .57 
inch. 

California. Received from Mr. Taylor, of San Francisco, as a Califor- 
nia species. Pi. II, Fig. 16. 


CONOCEPHALINI. 


Oopiophora mucronata, Thos., (Canadian Ent., 1872, p-.) 

Cone of the vertex smooth on the margins, mucronate. Mesosternu 
bidentate. Green; labrum, clypeus, and under side of the cone yellow. 

Male and female—Cone of the vertex standing obliquely forward, apex 
mucronate; the minute spine slightly deflexed, especialiy in the female; 
sides parallel from the base a little above the first joint of the antenne, 
where they are slightly angulate; not serrated or granulate; front side 
has, near the base, a prominent tubercle; there is also a tubercle below 
this between the antenne. Face oblique, smooth; occiput smooth ; 


GEOLOGICAL SURVEY OF THE TERRITORIES. A45 


pronotum rounded, not carined, densely punctured; on the dorsum 
there is generally a glabrous, semicircular spot; there are also some 
irregular glabrous impressions on the sides; front rounded; posterior 
margin nearly straight, slightly rounded at the humerus, where there is 
an entering angle. Elytra passing the abdomen about one-third their 
length; upper margin straight from the dorsal angle; lower margin 
- rounded from the base to the apex; apex angled. Wings about as 
long asthe elytra. Ovipositor about as long as the body, nearly straight, 
lanceolate at the apex; cerci of moderate length, swollen, slightly curved, 
with a slender, pointed apex. Posterior lateral angles of the mesoster- 
num furnished with a strong spine. External carine of the femora fur- 
nished with strong spines; also a sharp spine each side of the apex 
of each, projecting forward. Anterior tibiz without spines in front; 
middle with two rows above, two in each row; posterior with two rows 
beneath. Anterior coxe furnished externally with a strong-curved spine, 
The abdomen of the male has, at the apex of the last ventral segment, 
the usual cylindrical appendages; superanal plate bilobed; no cerci ap- 
parent in the only male I have seen. Legs of the male quite hairy. 

Color.—Body and elytra uniform bright pea-green; under side and 
edges of the frontal cone bright-yellow; labrum and clypeus yellow; 
mandibles deep piceous black, except the upper external angles, which 
are green; ovipositor dull yellow, slightly striped with fuscous near 
the apex; tarsi pale fuscous; eyes brown. 

Dimensions.— 2, length (exclusive of cone) to tip of abdomen, 1.5 
inches; cone, .3 inch; elytra, 1.28 inches; posterior femora, .87 inch; 
posterior tibiz, .83 inch; ovipostor, 1.5 inches. @, length, 1.25 inches ; 
elytra, 1.05 inches. 

9, fig. 14, Pl. viii; ¢, Fig. 8, Pl. vii, of Professor Glover’s plates of 
Orthoptera. 

This species was obtained by Professor Glover in the greenhouse of 
the Agricultural Department at Washington. It has evidently been 
introduced with the plants brought from some tropical section. The 
only plants received last fall or winter from the tropics were from 
Central America and Cayenne. 

lf the mesosternal spines, which are very prominent, do not dis- 
tineuish it from other species, the very interesting inquiry arises, Has 
it been produced from the eggs of some known species, the variations 
between the perfect insects having been produced by the different cir- 
cumstances under which they have grown to maturity? So faras I 
am aware, the following list embraces all the species hitherto de- 
scribed : 


C. cornuta, Serv.—Para. C. megacephala, Burm.—Isle St. 
C. Mexicana, Sauss.—Mexico. Johanna. 

C. lucitera, Burm.—Bahia. . C. gracilis, Seudd.—Napo, or Mar-~ 
C. flavo-seripta, Walk.—Venezuela. anon. 
C. longicauda, Serv.—Cayenne. C. cuspidata, Haan.—Brazil. 


Although not from the West, I have given a description of it here 
on account of the interest which attaches to it. 


Hphippitytha gracilipes, Thos. 

I did not meet with this species west of the mountains, but find it 
among Dr. Palmer’s collections, marked Northern Arizona. Plate I, 
BEE sated Us 


AAG GEOLOGICAL SURVEY OF THE TERRITORIBS. 


Fawy IL—ACRIDIDZ. 
Sub-family ACRIDINIA. 
First group.—Truxalint. 

OpomMOLA, Hrichs. 


O. brachyptera,* Scudd., (Bost. Jour. Nat. Hist., VII, 454.) 
Thos., (Proc. Phil. Acad. Nat. Sci., 1871.) 
As Mr. Seudder at the time he described this species had but a 
single male specimen, I have concluded to give a full description of 
the unique female specimen I obtained in Wyoming Territory. 
Female.—Vertex carinated; elytra narrow, reaching the tip of the 
second abdominal segment. Antenne broad, ensiform. Pale orange- 
brown, with dusky points. 
Occiput convex, straight, not ascending, with a slight, shallow, longi- 
tudinal depression each side, leaving a low, rounded, median ridge. Ver- 
tex triangular, margins turned up, witha strong median carina, the three 
n,eeting in front in a blunt point; length, in advance of the eyes, equal 
to about one-third of the entire length ofthe head. The face tricarinate, 
or rather quadricarinate, as the frontal ridge is so deeply sulcate that it 
forms two distinct carine, which meet at the vertex; all somewhat 
divergent, and reaching the clypeus. Hyes oblong-ovate. Antenne 
seareely as long as the head and thorax, ensiform, flattened, and slightly 
triquetrous. Pronotum about as long as the head, tricarinate; sides 
parallel; only the posterior transverse impression distinet on the disk, 
situate a little behind the middle. Elytra lanceolate, narrow, reaching 
the tip of the second abdominal segment. Wings narrow, minute, about 
half as long as the elytra. Abdomen long, slender, and somewhat cylin- 
drical, slightly carinated. The four anterior legs slender; posterior 
femora, slender, straight, not as long as the abdomen; posterior tibice 
siender, nearly cylindrical, somewhat hairy at the apex. Prosternal 
point is only a blunt tubercle. 
— Color, (dried, after long immersion in alcohol.)—Pale orange-brown, 

yithout distinct spots or markings, but with numerots minute dusky 
points. The antenne are purplish brown; the vertex, legs, and abdo- 
men tinged with the same color. Spines of the posterior tibize, abdom- 
inal appendages, and tarsal claws tipped with black. When living, 
the only specimen I have seen in the perfect state, was of a uniform 
grayish-brown; length, 1.5 inches. 

My specimen was obtained near the ruins of old Fort Casper, on the 
North Platte River, Wyoming Territory, August 22. I have some 
larvee and pupe obtained in Cache Valley, Utah, which possibly belong 
to this species. 


0. Wyomingensis, Thos. 
Syn., Mesops Wyomingensis, (Proc. Phil. Acad. Nat. Sci., 1871.) 


Small, slender, and cylindrical; elytra reaching the fifth abdominal 
segment; abdomen of the male terminating in an acute prolongation. 
Pale green, sometimes varied with reddish, immaculate. 


* This specific name is twice used; the <Acridium (Pyrgomorpha) brachyptera, 
Haan, (Verz. Nat. Gesch. Ned. Ind. Bez. Ins., 150,) having been referred by Walker to 
Opomola, becomes O. brackyptera, but Mr. Scuddez’s species received the name first, 
ay must stand, and that of Walker changed. (See Walk. Cat. Dermop. Salt., II, 


GECLOGICAL SURVEY OF THE TERRITORIES. aa 


Female.—Frontal cone elongate, flat above, scarcely margined, a shal- 
low foveola each side under the lateral margin. Face very oblique, 
quadricarinate; carine sharp, divergent, reaching the clypeus. Eyes 
oblong-ovate, situated near the antenne. Antenne ensiform, trique- 
trous. Pronotum about as long as the head; anterior and posterior 
margins truncate; cylindrical. HElytra narrow, lanceolate, reaching the 
fifth abdominal segment; wings small. Abdomen elongate, cy lindrical, 
slightly enlarged “toward the apex; upper valves of the ovipositor 
scarcely exser ted. Prosternal spine quite short and blunt. Mesosternum 
slightiy furrowed longitudinally on each side. - 

Color.— Bright pea-green, immaculate; wings pellucid. After immer- 
sion in alcohol it becomes a pale greenish-yeilow. 

- Male.—Ditfers from the female, as follows: Much smaller and slen- 
derer; vertex more pointed, slightly margined; abdomen turned up at 
the apex, terminating with a sharp lanceolate extension of the last 
ventral segment; antenne, face, vertex, occiput, pronotum, femora, and 

abdominal appendages more or less varied with pale carneous; a whitish 
stripe extends from the lower border of each eye to the base of the 
middie leg. 

Dimensions.— @ , length, 1.05 inches; elytra, .52inch; posterior femora, 
wuneh.) a; length, .78 inch. 

Found on the east side of the Black Hills, Wyoming, in the vicinity 
of Cottonwood Creek. August. 

I formerly placed this in Mesops, with which it agrees in all respects, 
except the position of the eyes, which appears to be the distinguishing 
character of that genus. I have, therefore, concluded to place it in 
Opomola, in Walker’s second group, of which 0. cylindrodes, Stal., is the 
type; yet I believe it would be better to slightly modify the generic 
description of Mesops and place it there, for it appears to be very closely 
allied to MW. pedestris, Hrichs. Certainly it agrees more closely with the 
characters of this genus (except as to the position of the eyes) than J/. 
gladiator, Westw. Pl. II, Fig. 8. 


Second group.—Acridini. 
ACRIDIUM, Geof. 


A. ambiguum, nov. sp. 

Male and female.—Very similar in size, markings, and carvings to 
A. Americanum, Dru., with which it has been long confounded, and 
from which it differs chiefly, and almost exclusively, in the general 
-eolor. The A. Americanum is more deeply and closely punctured about. 
the head than the latter. In the former the frontal costa, besides the 
smaller punctures, has along each margin a row of regularly spaced 
large black punctures, which are less distinct, or wanting, in the latter, 
(ambiguum.) ‘The spots on the elytra of the latter are scarcely as large 
and paler than in the former. 

Color.—Yellow or brownish-yellow. Face yellow; occiput pate brown. 
Dorsum of the prenotum light brown; the dorsal stripe dim, and some- 
times, especially in the male, absent. Sides of the pronotum yellow; a 
dusky spot in the middle with a yellow stripe through it. Wings trans-- 
parent, with a pale-yellowish tinge at the base; veins of the apex and of 
the anterior portion black. Brownish spots on the elytra, much hke 
and arranged as in A. Americanum; general color of the rest yellowish, 
or brownish- yellow. Abdomen greenish-yellow. Legs bright yellow; 
femora reddish above. ; 


448 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Dimensions.— Q , length, 2 inches; elytra, 1. 95 inches. @, length, 1.6 
inches; elytra, 1. TA inches ; ; ce femora, 1 inch; posterior tibiz, 9 
inch. 

Southern Illinois; Kansas, (Thomas ; ) Tennessee, (T. Rogan, esq.) 

There has been much confusion in regard to theA. Americanum, (with 
which the present species has, doubtiess, been confounded,) notwith-. 
standing its large size, distinct markings, and the very full description 
given by Drury as early as 1770, with an accompanying colored figure. 
The markings and carvings of the two species are nearly exactly alike; 
but the general or ground colors are very different, the one being a deep 
vermilion or purplish-red, and the other a dull yellow, or light brownish- 
yellow. But, in addition to this difference, I am satisfied, after a close 
observation of the two in Illinois for several years, that they are differ- 
ent species from another fact: the A. ambiguum always appears in the 
spring, in April or May, while the other never appears earlier than the 
middle of July; and from quite a number of specimens of each sent me 
the past season from Hast Tennessee, by Theophilus Rogan, esq., of Rus- 
sellville, 1 am satisfied the same thing occurs there. The A. Americanum 
made its appearance in Washington City this season in the latter part 
of August and first of September; but not a specimen of the other species 
was to be seen among them. The two species differ considerably when 
on the wing, the wings of the A. Americanum having a peculiar silvery ~ 
appearance not observable in the other. The larve also are different, 
those of the former being reddish-brown, while the latter is greenish. 

De Geer (Mem. Ins., TLL, Pl. 40, Fig. 8) figures probably a specimen 
of my ambiguum, which he names A. jflavo-fasciatum; but Serville’s 
description under this name applies to an entirely different species. 
Olivier’s A. vittatum, (Encyc. Method Ins., VI, 221,) which he gives as 
synonymous with De Geer’s species, is also a different insect. De Haan, 
who received specimens from Tennessee, through Dr. Troost, undoubt- 
edly of my ambiguum, says (Bijdr. Kenn. Orthop., 143) that A. carneipes, 
Serv., is but a variety of A. flavo-fasciatum, to which he refers his speci- 
mens, thus evidently making two mistakes. - Westwood, in his edition 
of Drury, gives the name Locusta tartarica to his figure of this species, 
thus identifying it with Gryllus tartaricus, Linn., one of the destructive 
oriental species. 

_ Professor T. Glover figures A. Americanum under the name of A. rus- 
ticum, probably after Burmeister, whose description evidently applies to 
A. alutaceum, Harr. Walker (Cat. Dermap. Salt., III, 550) transfers A. 
Americanum to his new genus, Cyrtacanthacris, to which, if correct, we 
should also transfer the other species. But his only generic descrip- 
tion is, that the posternal spine is bent-or curved obliquely backward 
upon the mesosternum, adding that it corresponds with Serville’s Diy. 1 
and Burmeister’s Div. 2A of “Acridium. Now Serville states as one of 
the chief characters of his Div. 1 that “the subanal plate of the male 
is long, triangular, entire, and pointed,” while both these species have 
the subanal plate very distinctly and strongly notched, which places it 
in his second division, subdivision qq. 

In this state of confusion I have concluded to give a new name to 
the yellow species, as it does not appear to have been distinguished 
from A. Americanum, although it has doubtless been referred to by some 
of the authors mentioned. 


A. frontalis, nov. sp. Pl. I, fig 1. 
Vertex sub-conical, small size; elytra and wings not passing the 
abdomen. General color green. Closely allied to A. wnilineatum, Walk. ; 


GEOLOGICAL SURVEY OF THE TERRITORIES. 449 


caloptenoid in general appearance. Vertex regularly hexagonal, stand- 
ing out in the form of a short truncated cone, the tip depressed in the 
center; face slightly oblique, straight, quadricarinate; carinz nearly 
parallel, middle pair approach each other immediately below the ocellus. 
Eyes elongate, oblique, straight in front. Pronotum scarcely enlarged 
behind; anterior lobes reticulately, and posterior lobe longitudinally, 
rugulose; median carina very distinct, but not elevated. Hlytra and 
wings narrow, rather shorter than the abdomen. Valves of the ovipos 
itor prominent, the lower pair much slenderer than the upper and much 
exserted. Male cerci slender, tapering and curved upward; subanal 
plate narrow, tapering, subtruncate at the apex, entire. Prosternal spine 
subquadrate, pointed, and straight. Antenne passing the pronotum 
slightly. Posterior femora passing the abdomen. 

Color, (dried after immersion in alcohol).—Nearly uniform greenish- 
yellow. Face and pronotum sprinkled with dusky dots. The elevated 
lines of the pronotum pale yellow; depressed portions in the alcoholic 
specimens testaceous-green, but in the living insect may be and proba- 
bly are colored quite differently ; some specimens have the middle carina 
and other portions of the pronotum tinged with red. Posterior femora 
pale reddish along the upper edge. LElytra a transparent green; wings 
pellucid. 

Dimensions.— ¢ , length, 1.06 inch.; elytra, .63 inch.; posterior femora, 
.72 inch.; posterior tibie, .66 inch. length, .82 inch.; elytra, .5 inch. 

Kansas, (from C. R. Dodge’s collection.) 

__ There is a possibility that this is synonymous with Pezotettiv speciosa, 
‘Scudd., (Hayden’s U. S. Geol. Surv. Neb., 250,) with which it agrees 
tolerably well except in the length of the elytra and wings; but Mr. 
Seudder may have had the pupe, and he places it in Pezotettia provis- 
ionally, “‘asit does not strictly appertain” to that genus. It is a some- 
what anomalous species, but I think my specimens belong to Acridium. 


A. emarginatum, Uhl., (Scudd., Notes on Orthop., Geol. Surv. Neb.) 


This species is closely allied to and much like A. alutacewm, Harr. It 
is the same one which I, in my former report, referred to A. fiavo-facia- 
tum, DeG. It has been found in Southeastern Colorado and in Nebraska, 
but appears to be rarely met with. 


CALOPTENUS, Burm. 


The following table of the species belonging to the United States will 
give the distinguishing characters of the new species herein described : 


A. Elytra without spots: 


a. A broad yellow stripe along each lateral angle..-.... bivittatus. 
aa. With but one or no dorsal stripe: 
b. General color green, a yellow dorsal stripe .....--- * viridis. 


bb. Dorsum not striped: 
c. Elytra a little longer than the abdomen; size, 


TRO SL ROI TRIS Ig Oe differentialis. 
ce. Elytra much shorter than the abdomen; size, 
Sigel MA a stoner Che, APP E ANS LOS. ee a * Dodget. 


AA. Elytra with spots: 
a. Hlytra longer than the abdomen. 
b. Elytra much longer than the abdomen ; last ventral segment 
of the male notched at the tip ...... schwag spretus. 


2968 


450 GEOLOGICAL SURVEY OF THE TERRITORIES. 


bb. Elytra slightly longer than the abdomen; last ventral seg- 
ment of the male entire at the tip: 
c. Spots small, and confined to a median line along the 


(CUS as PO Oe oc i ie dense femur-rubrum. 
cc. Spots larger, and equally distributed me the 
Uy UT al 2! cS NA I DTS Se * YiSeus. 


aa. Elytra about as long as the abdomen. 
b. General color pale yellow: 
ce. Hind femora with two oblique black streaks out- 
Breese) rs Lak fa Eh SST a ae bilituratus. 
ec. Hind femora with three black patches outside. . scriptus. 
bb. General color not pale yellow: 
¢. Hind femora with three straight black bands; lower 
valves of the ovipositor neary straight at the 


2) Oo) at ee ERE SCE E NC aE sues ee Se) aS Fh punctulatus. 
cee. Hind femora with oblique brown bands; lower valves 
of the ovipositor bent at the apex...... * occidentalis. 


aaa. Elytra shorter than the abodmen: 
b.. Color, pale olive-green; a pale stripe each side the prono- 


ALTE FE RAE Ee OP Se one * Turnbullii. 
bb. Color tawny; head and thorax with two broad black 
SHIPS tse ELS Leelee Aa aie es repletus. 


C. viridis, nov. sp. Pl. II, fig. 3. 

Lateral carinz of the pronotum obsolete. Green, with a white dorsal 
stripe; femora banded with red. 

Vertex slightly expanding in front of the eyes, channeled; lateral 
earine of the face moderately divergent; frontal costa sulcate and 
narrowed below the ocellus. Eyes elongate, large, acuminate above, 
and approaching unusually near to each other. Pronotum sub-cylin- 
drical; lateral carinz obliterated; median carina scarcely perceptible ; 
the posterior lateral margins nearly straight from the lateral angle 
to the apex, there being no entering angle at the humerus, this 
point of the margin being marked only by. a Slight inward flexure ; 
the posterior transverse incision only cuts the median carina. Cerci 
of the male regularly acuminate; subanal plate entire, sub-truncate 
at the apex; superanal plate triangular with two sub- medial con- 
vergent ribs or carine. The elytra and wings about as long as the ab- 
domen. The posterior femora reach the tip of the abdomen. 

Color, (dried after immersion in alcohol.) Entirely of a pale greenish- 
yellow, except as follows: antenn rufous; tip of the vertex, and a spot 
beneath the eye, (in most spccimens,) fuscous ; transverse incisions of 
the pronotum, and two short lines on the sides, dark. A slightly paler 
median stripe is visible on the oceiput and pronotum, bordered by pale 
brown; posterior lobe of the pronotum tinged with roseate. Tips of 
the spines and claws black. Hlytra and wings pellucid, immaculate. 

The living insect is colored as follows: A bright pea-green, with a 
white stripe along the middle of the occiput and pronotum; and one 
along the angle of each elytron, and one along the edge of the hind 
femora. A bright red ring around each femur just above the knee; 
hind tibiz blue. Male and female the same except in size. 

Dimensions.— ¢ , length, .85 inch; elytra, .62 inch; posterior femora, 
2 imeh. 9d, length, 62 inch. 

Colorado, Wyoming, and Kansas. 


* New species. 


GEOLOGICAL SURVEY OF THE TERRITORIES. ADI 


It is probable that this species should be placed in Ommatolampis, but 
I am not sufficiently acquainted with that genus to determine this point. 


C. Dodge?, Thos., Pl. II, figs. 4, 5, 9., (Canadian Ent., 1871, p. 168.) 

Posterior femora with three ‘white bands. EHlytra not more than half 
the length of the abdomen, unspotted. 

Male.—Small size. Vertex elongate, distinctly channeled; frontal 
costa broad, flat, and squarely margined above the ocellus; margins 
punctured ; "antenne thick, passing the thorax; joints distinct and 
Somewhat obconic. The transverse incisions of the pronotum distinct; 
posterior lateral margins very slightly incurved at the humerus; median 
carina distinct only on the anterior and posterior lobes. Elytra about 
half the length of the abdomen, oblong-ovate. Posterior femora about 
as long as the abdomen. Prosternal. point thick, obtuse, transverse. 
Cerci slender ; ; Subanal plate somewhat pointed, the margin on the upper 
surface entire. 

Color.—Brown, varied with white. Face cinereous. Occiput and 
disk of the pronotum dark brown, mottled with lighter and darker 
shades, except the posterior lobe, which is brown. Elytra brown, lower 
half very dark; on each side of the head and pronotum behind the eye 
there is a dark glabrous spot, which does not extend back beyond the 
third transverse incision. Abdomen pale, mottled with reddish-brown. 
Four anterior tibiz pale reddish-brown. A white oblique spot above 
the posterior cox. Posterior femora crossed externally by three white 
bands, the one nearest the apex much the smallest; the middle interme- 
diate dark band is abruptly bent forward in the middle of the disk, 
Antenne pale at base; rest rufous. 

Female.—Pronotum uniformly dark brown, except the dark spots on 
the sides, and the posterior lobe of the pronotum, which is a bright 
reddish-brown. The elytra extend over but two segments. Abdomen 
brown. This may not be the female of this species, as it varies con- 
siderably, and was not captured where the males were. 

Dimensions.— 9, length, .85 inch; elytra, .2 inch; posterior femora, .4 
inch; posterior tibia, . "32, inch. 3, length, .56 inch; elytra, .18 inch; 
posterior femora, .37 inch; ; posterior tibive, 26 inch. 

Collected on Pike’s Peak, Colorado, by Mr. C. BR. Dodge, of the 
Agricultural Department, in ‘honor of whom it has been named. The 
female was captured in the neighborhood of the peak, but not on it; at 
least Mr. Dodge thinks it was not. I have been considerably puzzled 
in regard to the genus in which this falls; the short wings would place 
it in Pezotettix, but the form of the pronotum and cerci would appear 
to place it among the Caloptent, and therefore I have allowed its general 
appearance to prevail over the single character, short wings and elytra. 


C. femur-rubrum, Burm. 

Although Walker mentions this species as occurring at Vancouver's 
Island, yet I have found no specimen west of the dividing range of the 
Rocky Mountains that I can refer to this species. 


C. spretus, Uhler, (MSS.) 

Found the past season in great abundance in the north part of Salt 
Lake Basin. When we reached Ogden, June 1, I saw but very few speci- 
mens; but when we reached Box Elder ’Caiion, two weeks later, the larvae 
were ’seen spreading out from points where they had evidently been 
hatched. When we passed through the hills to Cache Valley, a few 
miles farther, and but a few days later, I found them just entering their 


452 GEOLOGICAL SURVEY OF THE TERRITORIES. 


perfect state. By the time we reached the north end of this valley, 
about the 20th of June, they were taking wing and proceeding south- 
ward. Here, the farmers, who have observed them closely fer a number 
of years, say that they never lay their eggs in the lower level of the 
valley, but universally on the gravelly, elevated terraces. So positive 
are they cn this point that one farmer, to test the matter, last year 
ofiered five dollars for every bunch of eggs that could be found on the 
lower valley-level which had been deposited there by the insect itself, 
but none were brought to him. I think, therefore, we may conclude 
that it is pretty well settled that the usual hatching-grounds of the 
destructive swarms are on the gravelly terraces or uplands. Yet that 
considerable numbers are hatched in the narrow cations of the moder- 
ately elevated mountains I think is also certain, as I observed this year 
a large number of Jarve in Box Elder Cation, but the elevation of this 
cafion is little, if any, more than that of Cache Valley. When I re- 
turned to Salt Lake Basin, early in August, I found the country swarm- 
ing with myriads of these grasshoppers. And even after we had passed 
eastward on the railroad, to the heights near Aspen Station, I noticed 
the air filled with their snowy wings, but could not tell exactly the 
course they were taking, but thought they were moving southwest. 

As this species has never been described in its preparatory state, I 
give here a short description of the pupa, written in the field with 
inyriads of living specimens around me: 

General color yellow, (sometimes varied to light brown, and at others 
a pale pea-green,) with a large proportion of black spots and stripes, 
also a few white dots and lines; labrum and lower part of the face 
mostly black; upper part of the face, the vertex, and cheeks yellow, 
(or the prevailing color;) arow of black dots on each margin of the broad, 
suleate, frontal costa; occiput with two lateral and one median dotted 
lines of black; a broad line of deep black starts behind each eye, and 
crosses over the entire length of the pronotum, widening and bowing 
upward near the middle of the pronotum; the immature, somewhat 
fan-shaped elytra are black, with a white dot on the disk near the base, 
from which proceed about ten or twelve white rays; the dorsal or upper 
margin yellow; dorsal and lateral portions of the abdomen varied with 
white and black; a triangular black dot on each side of each segment; 
tip and venter yellowish. 


C. Turnbullii, nov. sp. Pl. II, fig. 10. 

Pale olive-green, with a white stripe along each side of the dorsum; 
elytra and wings shorter than the abdomen. Closely allied to C. viridis, 
Thos. 

Vertex with a broad, shallow sulcus, into which a minute raised 
line or carina (not always apparent) enters from the rear; frontal costa 
flat, slightly divergent on the posterior iobe; lateral obtuse carinee some- 
what more distinct * than in C. viridis. Elytra and wings alittle shorter 
than the abdomen; cerci of the male flat, narrow, and tapering; last 
ventral segment with a blunt tubercle below the margin; posterior 
femora rather more than usually enlarged near the base, about as long 
as the abdomen; prosternal spine somewhat quadrate, but tapering 
rapidly. The females are thick and fleshy. 

Color, (dried after immersion in alcohol.)—Dull yellow, or testaceous ; 


*Yet these are really not true carinze, but only the obtusely rounded shoulders 
or lateral margins of the pronotum. And I doubt very much the propriety of calling 
these rounded angles carine in any of the Calopteni, as this use of the term leads to 
confusion, as, in fact, no species of Caloptenus have true lateral carine to the pronotum. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 453 


a broad, yellowish stripe on each side, from the upper angle of the eye to 
the tip of the pronotum; the inclosed middle space pale brown ; median 
carina yellowish. Below the yellow stripes, on each side, is a broad, ir- 
regular brownish stripe, reaching from the eye to the tip of the pronotum. 
A bright yellow stripe runs from the base of the elytra to the posterior 
cox. Elytra pale ash-brown, with an irregular row of rather small, 
dim brown spots along the disk, one or two sometimes distinguishable 
above and below; nervules mostly yellow; wings pellucid, with some 
dark nerves near the apex; posterior femora crossed by three oblique, 
dim brown bands; tibiz bluish. When living, it is of a pate pea-green, 
the dorsal stripes whitish ; hind tibize blue. 

Dimensions.— Q , length, .76 inch; elytra, .43 inch; posterior femora, 
43 inch. , length, .56 to .60 inch. 

There is a strongly marked variety, which I have included in this 
species, but which may be distinct. 

Var. a.—Paler throughout; space between the stripes almost uniform 
in color with the stripes; lateral brown stripes often narrower or obliter- 
ated; elytra, narrower and longer, reaching nearly or quite to the ex- 
tremity of the abdomen. The male appears to be uniformly longer and 
larger. : 

Named in honor of Dr. Charles 8. Turnbull, of Philadelphia, who first 
discovered it. 

Found only between Red Buttes and Independence Rock, Wyoming. 


C. occidentalis, nov.. sp. Pl. II, fig. 2. 

Much like C. femur-rubrum, Burm. Male cerci very broad and flat ; 
hind femora banded; tibiz blue. 

Frontal costa generally flat above the ccellus and suleate below it, 
but sometimes sulcate above; lateral carinz sharp and divergent; 
median carina distinct on the posterior lobe of the pronotum, barely 
visible in front; the transverse impressions very distinct; elytra and 
wings as long as the abdomen; anterior and middle femora rather 
small and slender; posterior femora, in the female, a little shorter than 
the abdomen; valves of the ovipositor, especially the upper ones, long 
and deeply excavated. The cerci of the male are unusually broad and 
flat, enlarged at the base and suddenly decreasing in breadth near the 
middle; the last ventral segment apparently terminates at the tip with 
a broad, blunt tooth; prosternal spine broad at base, blunt and trans- 
verse. 

Color, (dried after immersion in alcohol.)—Much like C. femur-rubrum, 
but more of a pale, ashen hue; face dull brownish-yellow; a triangu- 
lar dusky spot on the occiput, with the apex toward the front; a cres- 
cent of minute black dots around the back part of the eyes; the dark 
band behind each eye as usual; pronotum pale reddish-brown above. 
Elytra ash-brown, with a row of small brown spots along the middle of 
the disk, reaching from near the base two-thirds the distance to the tip, 
ceasing, or growing dim, at the point where the nervules become sud- 
denly less distinct; a few dots are found above and below this middle 
row in some specimens. Wings transparent; nerves yellowish, except 
at the apex, where they are dusky. The posterior femora are crossed 
by three oblique brownish bands—inside, yellowish; apex, dusky: 
tibiee, bluish-yellow; blue, when living. 

Dimensions.— Q , length, .88 inch; elytra, .60 inch; posterior femora, 
AT inch. @, length, .69 inch. 

Found in Eastern Wyoming, from the mouth of Laramie River to Red 
Buttes. 


ADA GEOLOGICAL SURVEY OF THE TERRITORIES. 


C. griseus, NOV. Sp. 

Head quite large; occiput elevated. Dark gray, with fuscous and 
yellowish spots. 

Female—Occiput unusually convex and prominent; seen from the 
side, the top of the head rises considerably above the disk of the pro- 
notum; lateral carinz of the face but slightly divergent. Posterior 
lobe of the pronotum densely punctured. LElytra passing the abdomen 
one-fourth their length. Upper and lower valves of the ovipositor 
slender, without any lateral angulations, not much excavated. LVos- 
terior femora passing the abdomen. Prosternal spine short, obtuse, 
and slightly transverse. 

Color.—Face Jurid, with numerous small, black spots. Occiput and 
pronotum gray, with a slight brassy tinge, irregularly spotted with 
black ; behind each eye, reaching to the last cross-incision of the prono- 
tum, is an interrupted, broad, piceous stripe; the sides of the prono- 
tum below this are somewhat lurid. Elytra dark gray; nervules whit- 
ish, marked somewhat regularly with subquadrate black or fuscous 
spots, not confined to the middle field, but extending equally above and 
below, becoming dimmer toward the extremity, but distinct. Wings 
(not spread in the only specimen seen) appear to be dusky toward the 
apex. Posterior femera with three yellowish bands; rest of the disk 
black, sulcus beneath, and interior carina bright red; tibiee purplish- 
red beneath. with a pale ring near the base; spines black; legs hairy. 
Venter yellowish. 

Dimensions.—Length to tip of the elytra, 1.08 inches; elytra, .76 
inch; posterior femora, .52 inch ; posterior tibiz, .45 inch. 

Ohio, (from Mr. Dodge’s collection.) 


PEZOTETTIX,* Burm 


Ineluding the new species herein described, there are eleven species 
belonging to this genus found in the United States that have been deter- 
mined and named, four of which are found west of Missouri, to wit: 
P. Borckii, Stal., P. pieta, Thos., P. obesa, Thos., and P. Nebrascencis, 
Thos. 


DP. obesa, nov. sp. Pi. EI, fig 13 and 14. 

Prosternal spine very short and obtuse; body of the femalerobust, fleshy; 
elytra and wings wanting. 

Vertex broadly sulcate, the raised margins slightly angulate in 
front of the eyes, and continuous with the margins of the frontal 
costa; frontal costa broad, flat, and slightly suleate at the ocellus, 
not reaching the clypeus; lateral carine distinct but not prominent. 
Prenotum short, expanding slightly posteriorly, truncate; the median 
carina distinct, continuous; lateral carinz scarcely distinct on the 
posterior lobes, more distinct on the front lobes; transverse impressed 
lines indistinct ; truncate in front and behind; the posterior mar- 
gin straight like the posterior margin of an abdominal segment, (in 
tact, the parts of the thorax look almost exactly like the abdominal seg- 
ments,) not covering the meso-notum, but extending only to the middle 


*Walker (Cat. Dermap. Salt.) has restored Podisma, Latr., which probably has priori- 
ty, but I retain Burmeister’s name, as we thus do away with a number of synonyms. 
This genus does not appear to be well defined, and it is extremely difficult to deter- 
mine the line of demarkation between it and Caloptenus. Iam of the opinion that the 
posterior lateral margins of the pronotum will afford a good character, as the true 
Pezotettigi which I have seen appear to have these straight without an entering angle 
as the humerus. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A455 


of it; the transverse, impressed lines indistinct, the third only crossing 
the median carina. The meso-thorax and meta-thorax appear on the 
dorsum as abdominal segments. Genital organs not prominent; in the 
female the upper valves of the ovipositor protrude but slightly beyond 
the last segment, the lower valves somewhat elongate; cerci broad at 
base and short, the tip of the last ventral segment (or subanal plate) 
somewhat three-pointed. The male abdominal appendages of the usual 
form. Posterior femora in the female considerably shorter than the 
abdomen—about equal to it in the male. Prosternal spine almost oblit- 
erated, being shortened to a simple tubercle. Antennz short, sub-mo- 
niliform ; joints very short. It is entirely apterous, without sign of 
elytra or wings. 

Color, (of the living insect.)—General color duil olive-brown; disk 

and sides of the pronotum and abdomen olive. There is a black line on 
the occiput; lateral carine of the face and margins of the frontal costa 
black. Female appendages tipped with red. Posterior legs are colored 
as follows: femora dark olive-green or black; a pale yellowish stripe 
along the lower exterior margin, the lower outer carina olive-red, chan- 
nel black, inner portion yellow with two oblique, black bands; tibiz 
black at the base; patella red, upper part of the exterior dark blue, 
changing downward to purplish, vermilion at the apex, inside yellow ; 
spines yellowish at base, tipped with black; tarsi red above, whitish 
beneath. The other tibize are colored as the posterior. Dried speci- 
mens, after immersion in alcohol, are colored as follows: dorsum dark 
reddish-brown; head and face paler, the black markings of the carinze 
remaining. Lower portions of the sides of the pronotum a shining yel- 
low color. A pale tine along the median carina of the abdomen. Disk 
of the posterior femora dark brown; upper and lower exterior margins 
yellow; channel beneath black; upper carina black; two bands and a 
spot at the base, and another at the apex, black. Patella (or tubercle 
at the base of the tibiae) yellow; and a narrow black band just below 
this; remainder of the tibize brownish-purple. Venter and peetus dull 
yellow. 

Dimensions.— 9, length, 1.05 to 1.12 inches; posterior femora, .5 
inch; posterior tibie, 43 inch. ¢, length, .76 inch. 

Found on the dividing range of the Rocky Mountains between Idaho 
and Southern Montana; and on a ridge about 8,000 feet above the level 
of the sea, some forty miles southwest of Virginia City, Montana. 

This species will probably have to be piaced in some other genus. It 
appears to be closely allied to Dactylotum, Charp.; but that author has 
not given the generic characters with sufficient accuracy for me to decide 
the point. I have given the characters somewhat particularly to enable 
those who may not have specimens to judge as to its generic position. 


P. Nebrascencis, nov. sp. 

Female.—Occiput and head behind the eyes unsualiy long; upper 
convex portion of the frontal costa very prominent, extending in tront 
of the eyes equal to their width; the frontal costa suddenly expands. in 
width immediately above the ocellus, and is slightly sulcate from this 
point to the lower extremity near the clypeus; face somewhat oblique 
or curved inward toward the breast; eyes slightly elongate, oblique, 
nearly straight in front. Pronotum sub-tricarinate; median carina dis- 
tinct ; lateral carina obtusely rounded and nearly obliterated; sides par- 
allel, narrower than the head, rounded at the apex; posterior lateral 
margin without any notch or inward curve at the humerus. Hlytra 


456 GEOLOGICAL SURVEY OF THE TERRITORIES. 


ovate-lanceolate nearly half the length of the abdomen. Abdomen dis- 
tinectly carined. Posterior femora not passing the abdomen. 

Color, (dried after immersion in aleohol.)—Reddish-brown. Face testa- 
ceous-brown; occiput brown, with a yellowish stripe each side; a glab- 
rous black spot behind each eye, extending along each side of the pro- 
rnotum to the posterior incision. Disk of the pronotum brown; a pale, 
testaceous spot on the sides below the black stripe. Elytra brown and 
unspotted, though in a few specimens very indistinct, dusty dots can 
sometimes be observed. Posterior tibise reddish ; brown exteriorly, yel- 
lowish beneath, (when living probably are like C. femur-rubrum.) 

Dimensions. —Len gth, .94 inch; elytra, .25 inch; posterior femora, .50 
inch; posterior tibie, 45 inch. 

Nebraska, (from the collection of Mr. C. R. Dodge.) 


GDIPODINI. 
GiprIPoDA, Latr. 


— 

There are now, including the new species herein described, thirty-six 
species of this genus known in the United States. I have been unusually 
favored in my investigations of this genus, as I have had before me 
specimens of thirty-one out of this number. Twenty-four species of this 
genus are found west of Missouri, twenty of them being peculiar to that 
region, so far as known. As will be seen, I have added eight new 
species to this already extensive group. 


GH. trifasciata, Walk., (Cat. Dermap. Salt., IV, p. 729.) 
Syn., Gryllus trifasciatus, Say, (Amer. Ent., III, Pl. 34.) 
Pi, Laie G. 


While at Cheyenne, during the last days of May, I noticed a number 
of individuals belonging to this species in the pupa state, but saw none 
that had yet acquired their full growth. I met with occasional speci- 
mens in Utah, around Ogden, but many of these vary considerably 
from the type, the black band acr oss the wing being much broader, and 
the dark bands across the elytra less distinct. In fact, some of these 
vary to such an extent that I have strong doubts in regard to their 
specific identity, yet, as the variations are not regular, I have Toe 
from deseribing them as new. 


CH. Haldemannit, Scudd., (Hayden’s Geol. Rep. Neb., 253.) 


@. coraltipes, Hald. ayStameb: Rep., 371, Pl. 10, Fig. 2.) 

These two species are very closely allied to each other, and I Hae 
much doubt in regard to their being distinct. The former is described 
by Mr. Scudder in his report on the Orthoptera collected by Professor 
Hayden in his geological survey of Nebraska, who claims that it is dis- 
tinct from the latter. He says that it differs from the latter in the 
greater rugosity of the pronotum, and in the greater separation and 
distinctness of the markings of tie elytra; but an examination of the 
numerous specimens I have from Colorado, Wyoming, Utah, and 
Nebraska shows every grade of difference, in these respects, from one 
extreme to the other. It is true the specimens from Nebraska 
correspond with Mr. Scudder’s short description, but when we approach 
the mountains these differences somewhat decrease, and when we pass 

into Utah we find the other extreme, as given by Haldeman. I will 


GEOLOGICAL. SURVEY OF THE TERRITORIES. 457 


give here, from my field-notes, a description of a living specimen of 
what I supposed was @. corallipes. 

Female.—Occiput mottled with dark-brown; a whitish spot behind 
the upper canthus of each eye; the vertex and the broad frontal ridge 
light ashy-blue, the margins of the ridge light-yellow; parts of the mouth 
pale carneous, the clypeus having the deepest tinge. That part of the 
neck which is mostly hid by the pronotum bright blue. The lateral 
earine of the pronotum have a tolerably broad pale stripe along the 
upper side of each. The whitish parts of the pronotum and elytra have 
a bluish tinge, except the stripes along the dorsal margin of the latter, 
which are pale yellow. The wings are a clear lemon-yellow at the base; 
the black band sends a broad ray up the front submargin nearly to the 
base; the marginal vein being yellow, the apex transparent, with dark 
nerves. The base of the abdomen dark bluish. The under side of the 
body light brownish-yellow; the pits or depressions in the sternum red. 
The four anterior legs a pale ashy-blue. Inside of tie posterior femora 
and posterior tibiz a bright coral-red. Spots of the elytra as described 
by Haldeman. Sometimes the whitish and ash colors of the head, 
pronotum, elytra, and legs are replaced by bright orange- yellow, but 
the dark brown spots and patches appear to be per manent. 

At Ogden, in Utah, I met with a grasshopper, which in size, shape, 
markings of the elytra, carvings of the head, mode of flight, and some 
other respects, corresponds exactly with @. corrallipes, but the wings 
are red at base, and the interior of the posterior femora and posterior 
tibize are yellow. I supposed, after examining it, that it was a distinct 
species, yet after my return from the West, Iam unable to distinguish 
the alcoholic specimens from the @. corrallipes. 

The following field-note may be of some value to other collectors: 
As a provisional name I will call it Gi. paradoxa. 

Vertex rather prominent; a reddish tinge prevails on the lighter 
parts of the whole insect; the lateral carine of the pronotum are bor- 
dered internally with a broad, whitish stripe; the stripes along the dor- 
sal angles of the elytra are quite distinct, and the dorsal margin with- 
out spots ; the wings are of an orange- red (sometimes cinnabar-red) at 
the base; the dark band crosses about two-thirds the distance from the 
base to the extremity; a dark stripe runs up the anterior border; apex 
transparent with dark nerves ; the posterior femora inside, and the pos- 
terior tibiz, bright yellow; the exterior face of the femora crossed by 
three irregular, oblique, dark bands; antenne slightly enlarged, and 
apparently flattened near the apex. Found from Ogden to Smithfield, 
in Cache Valley. 

The dark bands across the femora, and the slightly flattened antenne ~ 
are not unusual in the other species. I met with a single specimen of 
this red-winged kind in 1870, in Sweet Water Valley, Wyoming. 

Notwithstanding these wide variations I would not be surprised if 
future investigations would show that not only these, but also Gy. rugosa, 
Scudder, (if I know that species,*) are but varieties of the same species. 
I see that Walker (Cat. Dermop. Salt.) gives Vancouver’s Island as one 
of the localities where C/. rugosa is found, and Indiana and Massachu- 
setts as localities where i. corrallipes is found, thus, as I suppose, 
confounding the two. 

The G. neglecta, Thos., which has a strong resemblance to the male 


*I have received but one specimen from New England, marked @. rugosa, but 
this specimen was certainly marked erroneously, being a variety of G&. verruculata. 
I have taken, at Washington, D. C., and in Hlinois, specimens which correspond ex- 
actly with Mr. Scudder’s description of Cf. rugosa. 


458 GEOLOGICAL SURVEY OF THE TERRITORIES. 


of i. covednape I am satisfied, after a thorough examination the pres- 
ent year of a number of specimens, is quite distinct, the head alone 
being sufficient to distinguish the one from the other. 


@. Carolina, Serv. 
Syn., Gryllus (Locusta) Carolinus, Linn.; Gryllus Carolinus, Fabr.; Acrydium Caro- 
linum, Deg. ; Acrydium Carolinianum, Pal. de Beauy.; Locusta Carolina, Harr. ; 
Locusta Caroliniana, Catesby. 

I have found this species in all parts of the West that I have visited, 
but never in great abundance. The specimens from the plains are gen- 
erally a paler ash-color than those found east of the Mississippi. Walker 
(Cat. Dermap. Salt.) gives Vancouver's Island asa locality where it is to 
be found. If he is correct in this, then we need evidence only in regard 
to Southern Arizona and California to show that it is found throughout 
the United States. 


4. Sulphurea, Burm. 


Syn., Gi ryllus sulphureus, Fabr.; Acridium sulphureum, Cliv.; Locusta sulphurea, 
Harr. ; Zomonotus sulphureus, Sauss. ; 3 Grytlus (Locusta) sulphureus, Gmel. 

I did not meet with this species either in the Salt Lake Basin or 
Snake River Valley, but I have specimens from California which appear 
to belong to it, but they are rather too much damaged for me to decide 
positively. Walker (loc. cit.) gives Vancouver’s Island and the west coast 
of North America as places where it is to be found. ‘The specimens I 
have from California appear to be somewhat intermediate between Sul- 
phurea and Xanthoptera, except that the size is rather small. 


CH. sordida, Burm. (Handb. Ent., I, 643.) 


Syn., Locusta periscelidis, Say, (in Harr. Cat. Ins. Mass., 565) Locusta nebulosa 
(Harr. Rep., 181;) Acridium sordidum, De Haan, (Kenn. Orthop., £43;) Gidipoda 
nebulosa, UAL, Harr. Rep., 181;) Cidipoda sordide, Walk., (Cat. Dermap. Salt., 
IV, 732.) 

I did not meet with this species west of or even at the east base of 
the mountains, but find it among the collections made by Mr. C. RB. 
Dodge, in Nebraska. 


i. atrox, Scudd., (Hayden’s Geol. Surv. Neb., 253.) 

This is the destructive species of California, and notwithstanding the 
fact that its wings are scarcely longer than its abdomen, yet it is able 
to sustain itself in the air for a considerable flight. Ido not think it can 
fiy any great distance, except with the wind, which bears it along. 
But it seems surprising that it should even be able to do this. Those 
who live in the east and have not seen a specimen of this species, can 
see it almost, if not exactly, represented in GZ. pellucida of Scudder; in 
fact, Mr. Scudder’s description of this species agrees more exactly, if possi- 
bie, with specimens from California submitted to me this season than ~ 
his description of atrox. The only difference I can find between the 
two is that the median carina of the pronotum in atrox is severed by a 
transverse incision, while that of pellucida is entire. The examination 
of more specimens cf the two species than 1 had before me may show 
that even this difference is not permanent. Had Mr. Scudder found in- 
dividuals of the two species in the same locality, I do not think he 
would ever have thought of describing two species therefrom, yet that 
does not prove that he is in error, for the widely different habits and 
the widely separated localities at which they are found are sufficient to- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 459 


indicate different species. May not two insects be exactly alike so far. 
as external anatomy and coloration is concerned, and yet be specifically 
different? Certainly, there is nothing to forbid this conclusion. Al- 
though the perfect insects may be alike, yet the larve or pupze may be 
different ; the eggs, time of hatching, habits, sounds produced, &c., may 
indicate a difference which does not appear in the imagos. Specimens 
of this species were received at the Agricultural Department during the 
autumn of 1871, with an accompanying letter in regard to the injuries 
inflicted by it. The specimens I examined were communicated to me 
by Professor Glover. 


Gi. collaris, Scudd., (Hayden’s Geol. Surv. Neb., 250.) 

I did not observe this species west of the mountains, but find it among 
my collection made in Colorado in 1869, also in the collection made by 
Mr. Dodge in Nebraska. 


4. tenebrosn, Scudd., (Hayden’s Geol. Surv. Neb., 251.) 
Syn., Tomonotus Mexicanus, Thos., (Proc. Acad. Nat. Sci., Phila., 1870, 82.) 
Pl. I, fig. 2. 


Although I did not observe this species in the Salt Lake Basin, yet I 
traced it beyond the mountains in Wyoming to the Green River Valley. 
- Lalso find it in the collection made by Mr. Dodge in Nebraska. After 

a thorough examination of a number of specimens, I think it is quite 
possible that the specimens I heretofore marked 7. nietanus and T. 
pseudo-nietanus are but varieties of this species. The variations are 
considerable in the coloration, yet I find every intermediate shading. 
The dark border to the wings appears to be uniform and permanent, 
being the same in all the varieties; the flight and the shrill notes of the 
males appear to be the same; therefore, notwithstanding the variations 
in color and size, Iam inclined to think they are all varieties of the 
same species. 

Some of the specimens are pale ash-brown, uniformly dotted over with 
fuscous ; others, especially the males, are nearly black ; others have the 
entire disk of the pronotum a pale ash-yellow; while others have only 
the borders of the pronotum of this color. As the descriptions hereto- 
fore given are from alcoholic specimens, I give the following netes from 
ny field-book in regard to the living insect: Face pale ash, dotted over 
very thickly with black points ; mouth whitish ; outer joints of the palpi 
white. Wings with the broad basal portion a clear orange-red ; apex 
transparent, marginal band of black or dark fuscous. Posterior femora 
crossed on the outside with three pale bands, the one near the apex 
white and straight. Upper end of the posterior tibise black, then a nar- 
row white band, the middie portion bluish-green; tarsi pale yellow. 
Central portion of the sternum greenish-yellow. 

Iam now inclined to think none of these varieties correspond with 
Saussure’s T. Meaxicanus or T. nietanus, but cannot say positively they 
do not. 


i. carlingiana, Thos., (Proc. Acad. Nat. Sci. Phila., 1870, 81; Hayden’s 
Geol. Surv. Terr., 1870, 275.) 
I saw no specimens of this species west of the mountains, but when 
we crossed the range to the Atlantic side in Montana they again ap- 
peared. 


460 GEOLOGICAL SURVEY OF THE TERRITORIES. 


i. undulata, nov. sp. 

Middle foveola of the vertex somewhat elongate, elliptical, with a 
median carina through it, and generally a depression at the front at the 
top of the frontal costa; lateral foveole very shallow, small, triangu- 
lar; the frontal costa expanding just above the ocellus and at the base, 
suleate in the middle portion. Pronotum contracted ou the anterior 
lobes, posterior lobe flat on the disk, rapidly expanding and punctured ; 
median carina a dim line, slightly raised on the front lobe; apex right- 
angled. Hlytra and wings passing the abdomen about one- third their 
length. Wings papilioform,* very broad, the exterior margin regularly 
and beautifully undulated or waved ; anterior submarginal space ‘almost 
as broad as the elytra; nervules prominent, regularly and remarkably 
parallel. 

Color, (dried after a short immersion in aleohol.)—Ash-brown. Head 
and thorax sometimes mottled with darker brown or fuscous. Elytra 
marked with dusky spots presenting a basal group, an irregular middle 
band, those on the apical portion sporadic. Wings transparent, tinged 
with yellow at the base, the outer half transparent or slightly fuligi- 
nous; the inner margin of this portion generally forms an irreg ular 
somewhat dusky stripe, parallel with the body when the wing is ‘fully 
expanded, not bending inward at the hind margin; sometimes the dusky 
portion is indicated only by dark nervules ‘and nerves, those of the 
inner half always being yellowish-white. Posterior femora have two 
black spots inside; the inferior channel black, or chiefly occupied by 
two black spots; posterior tibize are probably bluish when the insect is 
living. 

Dimensions. — @, length, 1.05 inches; elytra, 1.12 inches; posterior 
femora, .54 inch ; ’ posterior tibia, .47 inch. 6 nearly as large, with 
similar proportions. 

I found this species in Colorado and Wyoming east of the mountains. 
I also find it among the collection made by Mr. Dodge in Colorado; 
but as it is not among his collections made in Nebraska or Kansas, and 
does not appear to have been in the collection made by Professor Hay- 
den in Nebraska, it probably belongs nearer the mountains. 


GH. Haydenii, nov. sp. 

Head and thorax somewhat wrinkled. Vertex rather narrow; cen- 
tral foveola somewhat elongate; margins prominent and sharp ; ’ open 
in front and continuous with the sulcus of the frontal costa ; median 
carina distinct; frontal costa sulcate throughout its length, very nar- 
row above the ‘ocellus ; eyes prominent, sub-globose. Antenne rather 
longer than usual. Pronotum tricarinate; median carina distinct but 
not prominent; lateral carine distinct only on the posterior lobe; third 
transverse incision very distinct, nearly straight, cuts the median carina 
about the middle; the anterior lobes are covered with irregular raised 
lines, the posterior lobe with elongate tubercles; apex blunt, terminat- 
ing in aright angle. Elytra and wings passing the abdomen, narrow. 
Posterior femora slender. 

Color, (dried after immersion in alcohol.) —Dull clay-color, dotted with 
brown or fuscous. A transverse fuscous stripe in front between the 
eyes. A small fuscous spot about the middle of each side of the pro- 
notum. Upper and lower margins of the elytra marked with small fus- 


*This term is used to distinguish the butterfly form of the wing from those 
with regularly convex margins; in this form there is a slight re-entering of the mar- 
gin a little behind the front; this applies to the general contour and not fo the smaller 
scallops. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A61 


cous spots; the middle field nearly clear, a few minute pale dots only 
being visible. Wings, of the alcoholic specimens, a dull yellow at base, 
bat when living this portion is red; beyond which a tolerably bread 
fuscous band crosses, narrowed in front and behind, curving round the 
posterior margin but not reaching the anal angle, a submarginal ray 
extends up the front nearly to the base; apex pellucid, with the nerves 
partly ocherous and partly dusky. Anterior and middle tarsi with two 
black annulations. Antenne with alternate rings of yellow and fus- 
cous. 

Color of the living insect, as appears from the short field-note made 
in regard to it, isas follows: Wings red at the base; antenne with alter- 
nate rings of brown and red; general color ash-gray, marked with fus- 
cous dots and spots. 

Dimensions.— @, length, 1 inch; elytra, .87 inch; posterior femora, 
.04 inch; posterial tibie, 45inch. ¢, length, .62 to .7 inch; elytra, .7 
inch. 

Found in Colorado and Wyoming. My attention was first called to 
this species a short distance above Fort Fetterman, on the North Platte, 
but I afterward found it among my collections made in Colorado. 


GQ. Kiowa, nov. sp. 

Of small size ; head as Gi. longipes, Charp., of Europe; occiput as- 
cending, the front part standing above the disk of the pronotum ; ver- 
tex broad, transverse; central foveola very distinct, quadrilateral, 
opening in front by a short channel, which connects it with the sulcus 
of the frontal costa; lateral foveole distinct; frontal costa rather nar- 
row, distinctly sulcate throughout its length; eyes very prominent, 
slightly oblong. Pronotum more than usually contracted, a little in 
advance of the middle, tricarinate; median carina distinct, but not very 
prominent, twice notched, posterior notch about the middle, the middle 
portion shortest; lateral carinz distinct on the posterior lobe, indistinct 
en the others; apical angie slightly obtuse, but not blunt; disk some- 
what rugose. Elytra and wings rather narrow, passing the abdomen. 

Color, (dried after long immersion in alcohol.)—Dull clay-yellow, with 
fuscous dots and spots; occiput with two indistinct fuscous stripes; disk 
of the posterior lobe of the pronotum dusky brown in the center, mar- 
gins yellow ; there are, also, generally two dusky spots on each side of 
the pronctum, near the front margin. The elytra have three fuscous 
bands across them, the one nearest the apex generally more or less 
obliterated by the transparency of this part; the apex pellucid; wings 
pellucid; nerves of the anterior portion dusky, the rest ocherous. Pos- 
terior femora, with three indistinct brownish bands exteriorly, the inside 
black next the base, and a smaller spot of the same color near the apex, - 
rest yellow; tibiz dull yellow, (probably blue when living,) slightly 
dusky at the base and apex. 

Dimensions.— 2 , length, .87 inch; elytra equal the body; posterior 
femora, .53 inch; posterior tibiz, .47 inch. 

I have found this species only in Colorado, east of the mountains. 


GH. gracilis, nov. sp. ; 

Male—Small size; slender; vertex narrow; central foveola elon- 
gate, open in front, the sharp margins continuous with the likewise 
sharp margins of the narrow and deeply sulecate frontal costa. Prono-. 
tum tricarinate; the median carina slightly prominent, twice notched, 
the front portion the most elevated, the middle portion very short, tuber- 
culiform ; the posterior incision a little in advance of the middle ; lateral 


462 GEOLOGICAL SURVEY OF THE TERRITORIES. 


carine distinct; apex right-angled; antenne slender, passing the pro- 
notum ; eye, sub- globose, prominent. ; 

Color, (dried after immersion in alcohol.) Ash-gray, mottled with fus- 
cous, which pervades nearly uniformly the head, thorax, and elytra; 
sometimes two yellowish stripes are more or less distinct on the disk of 
the pronotum, one along the inner side of each lateral carina. Wings 
pale transpar ent yellow next the base, (possibly pale red when living’: 7) 
apical half dusky, the inner margin of this pa wt darkest, forming a rather 
narrow, irregular band, which curves but sightly on the posterior mar- 
gin, not reaching the anal angle ; the apex clouded. The lower channel 
and inside of the posterior femora black, with a pale ring near the apex; 
antenne fuscous, with yellow annulations. 

Dimensions.—Length, .85 inch ; elytra, .9 to .95 inch ; posterior femora, 
.46 inch; posterior tibiae, .4 inch. 

Found in Colorado and Wyoming. 

I have specimens which are probably females of this species, but as I 
am in doubt in regard to them I have not attempted to describe them 
as such. 


GH. Wyomingiana, nov. sp. 

Very similar to @. collaris, Seudd., but differs in size, in the carvings 
of the vertex and in the distribution of the spots on the elytra. 

Central foveola of the vertex slightly elongate; the sharp margins 
not quite meeting in front, but continuous with the sides of the frontal 
costa; frontal costa narrow, 1 rather deeply sulcate, expanding below, 

eaching to the clypeus. Median carine of the pronotum prominent, 
sub- -eristate, with a very narrow but deep notch or incision a little in 
advance of the middle, the notch directed obliquely upward and back- 
ward ; the top of the median carine is slightly arcuate ; anterior margin 
slightly angled, the posterior extremity terminating in an acute angle; 
lateral carine distinct. Antenne reach a little beyond the thorax. 

Color, (dried after immersion in alcohol.)—Dull clay-yellow, mottled 
and spotted with brown and fuscous. Face and sides of the head and 
pronotum minutely dotted with brown; two short brown stripes on each 
side of the pronotum reaching from the front to the third transverse 
incision. Elytra pale ashen-yellow, semi-transparent at the apex, with 
a broad stripe of fuscous dots and small spots along the middle field 
from the base to the apex; an indistinct pale line along the dorsal 

angle; the dorsal margin near the base is usually dotted with brown ; 
the lower margin has some faint dots along it. Wings transparent yel- 
low at the base ; apical third transparent with dusky nerves; a mod- 
erately black band crosses between these two parts, its width about 
equal to one-fourth the length of the wing, curving round the hind mar- 
gin to the anal angle; ashort, blunt, fuscous ray extends along the front" 
margin about one- third the distance toward the base. Hind femora 
clay- yellow, with two bands and the apex fuscous externally; internally 
it is black; hind tibie reddish. 

Diinensions.— 9 , length, 1 to 1.05 inches; elytra, 1 to 1.05 inches; 
posterior femora, 62 inch; posterior tibie, .54inch. 2, length, .8inch; 
elytra, .85 inch. 

Found only in Eastern Wyoming. 

This may be but a variety of @. collaris, Scudd., and I have described 
it as new with some hesitancy on this account. 


(7. Montana, nov. sp. 
Femate.—In form and size much like G. corallipes, but a very distinct 


GEOLOGICAL SURVEY OF THE TERRITORIES. A63 


species. Vertex broad; central foveola sub-quadrilateral, transverse, 
its interior surface more or less interrupted by small tubercles ; the two 
lateral foveole distinct; tip depressed, sometimes forming two small 
foveolx, but these are irregular, sometimes running into one and some- 
times wanting. Frontal costa vertical, broad, expanding at the ocellus 
and at the base, more or Jess sulcate. Pronotum rugose, tuberculate, 
but not so rough as @. Haldemannit. Posterior femora rather short, 
and not so broad as in either of the two species just named. 

Color, (dried after immersion in alcohol.)—Reddish-brown. Elytra 
brownish at the base, paler and semi-pellucid toward the apex, with 
dim, brown, cellular spots scattered somewhat equally over it, growing 
paler and dimmer toward the apex ; in some specimens these spots are 
almost, and in others quite, obsolete; in some cases they are quite dis- 
tinct, somewhat fuscous and partially run together. The wings are 
pale red at base, (but when living they are of a bright red;) a narrow, 
somewhat broken, cellular, dark band crosses beyond the middle, curving 
round the posterior margin, decreasing rapidly ; it does not quite reach 
the anal angle; a broad ray of the same color runs up the front margin 
to the base. Posterior femora dull yellow, with no distinct bands. 

Dimensions.—Length, 1.4 to 1.6 inches; elytra, 1.25 to 1.3 inches; pos- 
terior femora, .7 to .75 inch; posterior tibia, .62 inch. 

Found in the upper part of Snake River Plain, near the mountain, and 
in Southern Montana. J do not know where I first met with this spe- 
cies as we moved northward, because for some time I supposed it was 
the same as that before noticed under the name of Gf. paradoxa, Thos., 
and therefore did not examine it closely; so it is possible that I did 
not obtain any specimens until [reached the mountains ; but I am quite 
confident I did not meet with it south of Market Lake, and that I did 
meet with it on the north (Atlantic) slope of the range, and from there 
to Virginia City in Montana. 


i. longipennis, nov. sp. 

Elytra and wings longer than the body; the elytra spotted ; the wings 
black or dark fuliginous at the base. 

Male.—The vertex not very broad; central foveola elongate elliptical, 
with a slight median raised line, and open in front; frontal costa rather 
narrow, slightly expanded at the ocellus, sulcate, not expanding below. 
Median carina of the pronotum prominent, sub-cristate, as in Gi. Caro- 
lina, cut near the middle by the posterior transverse incision, each part 
arcuate; anterior margin somewhat angled, and extending slightly on 
the occiput; the posterior extremity acutely and rather sharply angled; 
- the disk of the posterior lobe smooth and apparently without punctures. 
The elytra narrow, remarkably straight, the margins parallel; longer 
than the entire body. Wings about the same length, and broad. The 
posterior femora not channeled beneath. The cerci rather long, sub- 
cylindrical, and terrete. Antenne passing the thorax. 

Color, (dried after long immersion in alcohol.)—Reddish yellow. The 
head and pronotum, especially the dorsal portions, pale reddish, dot- 
ted with pale brown. The basal portion of the elytra reddish-yel- 
low, the apical portion pellucid ;, marked throughout with dark brown 
spots somewhat in the form of bands. The wings for a very small space 
around the immediate base are transparent yellow; a triangular space 
at the apex extending inward about one-third of the way to the base 
pellucid, sprinkled at the immediate apex with fuscous dots; the poste- 
rior margin has a narrow pellucid rim; the rest is of a dark fuliginous 
color, which, when the wing is fully spread, appears like a very broad 


464 GEOLOGICAL SURVEY OF THE TERRITORIES. 


band across the basal two-thirds, with its outer border parallel to the 
body. The posterior femora have two oblique brownish bands on the 
external face; within are two black bands; apex black internally. Ven- 
ter and pectus dull yellowish-white. Antenne pale at base; apical por- 
tion dusky. 

Dimensions.—Length, 1.14 inches; elytra, 1.25 inches; posterior fem- 
ora, .64 inch; posterior tibia, .55 inch. 

Found among the collections submitted to me from the Agricultural 
Department, marked Kansas, which, from the other specimens, I sup- 
pose to be correct. The species is somewhat remarkabie, and quite dif- 
ferent from any other one belonging to the United States which I have 
seen. The dark wing would appear to bring it near Carolina and Car- 
lingiana, but while it approaches the former in its slender form, it is 
nevertheless very distinct. I have never met with it at any point in 
the West, nor have I seen it in any other western collection. On this 
account, added to that of its semi-tropical look, (this word conveys my 
idea better than a long sentence,) I am inclined to believe it is a south- 
ern species, and may be found in the Indian Territory or Texas. 


Gi. cincta, Thos. 
(Proc. Acad. Nat. Sci. Phil., 1870, 70; Hayden’s Geol. Surv. Terr., 1870, 275.) 


As the description I gave of this species appears to have been from a 
variety not common, I give again a description in full from a number of 
specimens. : 

Somewhat like Gi. eucerata, Harr., but invariably larger. Head large, 
front of the occiput elevated; vertex broad, much deflexed; central 
fovecla sub-quadrilateral, transverse in the female, but narrower in the 
male, opening in front into the sulcus of the frontal costa; the frontal 
costa of moderate width, suleate throughout, expanding slightly at the 
ocelius. Eyes slightly oblong, sub-globose, prominent. Antenne slen- 
der, passing the thorax. The pronotum has the median carina distinct, 
not prominent on the posterior lobe, slightly prominent on the anterior 
lobes, notched twice, middle part very short, the posterior transverse 
incision about the middle, front margin slightly angled, apical angle 
a little more than a right angle. Elytra and wings about as long as 
the body. 

Color, (dried after immersion in alcohol.)—Clay-yellow, varied with 
brown and fuscous. Lower portion of the face, the cheeks, and lower 
margins of the sides of the provotum pale yellow; two or three rows of 
brown dots on the occiput; a broad stripe along the middle of the pro- 
notum, brown. The maie generally has two oblique brownish stripes on 
the sides of the head and pronotum, the upper one embracing the lower 
portion of the eye. The elytra have the upper half and apical third 
sprinkled with small fuscous spots; on the lower half there are two 
broad fuscous bands, behind each of which there is a pale yellow immac- 
ulate space. Wings pale transparent yellow at the base, (color when 
living, unknown, but presume it is yellow;) a moderately broad fuscous 
band crosses just beyond the middle, curving abruptly upon the poste- 
rior margin to the anal angle; tip more or Jess clouded, rest of the apical 
portion peilucid, nervules pale yellow, (tip of the male, fuscous.) Pos- 
terior femora, with two or three dim oblique bands exteriorly, inside 
blackish next the base, a pale ring near the apex. 

Dimensions.— 9 , length, 1 inch; elytra, 1 inch; posterior femora, .5d 
inch; posterior tibiw, .5 inch. , length, .75 inch. 

Found near the Platte Rivers, in Colorado and Wyoming. 


GEOLOGICAL SURVEY OF. THE TERRITORIES. 465 
STENOBOTHRUS, Fisch. 


I have as yet observed but one new species of this genus among my 
collections, yet there may be more, as I have not yet examined them 
fully 


S. bicolor, nov. sp. 
_ Lateral foveole wanting. Face oblique. Three yellow and two 
brown stripes, reaching from the vertex to the apex of the elytra. 

Vertex scarcely expanding in front of the eyes; margins elevated, ob- 
tuse; median line or carina distinct; the tip obtusely rounded. Frontal 
costa broad, expanding below, not sulcate, but slightly depressed at the 
ocellus. Lateral carine prominent and diverging rapidly. Each side 
of the face, between the middle and lateral carine, has an irregular 
curved impression. yes ovate, placed well forward. The head seen 
from above is slightly broader than the thorax, and tapers to the vertex. 
The pronotum is the same length as the head; truncate in front, obtusely 
rounded behind; sub-cylindrical, faintly tricarinate, the three carine 
being close together, parallel (though in some specimens the lateral 
carine are slightly bent inward near the middle;) the posterior trans- 
verse incision only cuts the carine, and is situated behind the middle. 
The antennz somewhat flattened, not longer than the head and thorax, 
about twenty joints. Elytra narrow, as long as the abdomen; wings 
nearly same length. Abdominal appendages very short, the upper 
valves of the ovipositor not passing beyond the last segment. The pos- 
terior femora reach the tip of the abdomen. " 

Color, (dried after long immersion in alcohol.)—Parts of the mouth, 
venter, and sternum pale yellow. Face dull yellow. Eyes ash-brown. 
Two very regular brown stripes starting from the vertex, (one from each 
side near the upper angle of the eye,) gradually enlarging, run along 
the sides of the head and pronotuin, continuing along the angle of 
the elytra their entire length; between them extending along the 
middle of the head, pronotum, and suture of the elytra is a yellow 
stripe about the same width as the brown ones are; below each brown 
stripe, on the side, is another broad yellow stripe, which is narrowed 
near the extremity of the abdomen. In other words, the color is 
yellow, with two broad brown stripes extending along the upper part of 
the sides. An obscure brownish band extends obliquely back behind 
each eye to the pronotum; and a more distinct stripe of the same color 
marks the lower part of the sides of the pronotum, generally bordered by 
narrow but distinct yellow lines. Wings pellueid, the nervules near the 
apex dusky, the rest ocherous. Posterior femora crossed inside by three 
dark brown or black bands; externally, there are three brown spots on 
the upper part of the disk. When living the posterior tibiz are blue, 
but after long immersion in alcohol they are dull yellow; spines black 
at the tip. Anterior legs pale brown. The brown markings of this 
species are often tinged with a lilac shade. 

Dimensions.— @ , length, .81 inch.; elytra, .64 inch.; posterior femora, 
Ol inch. 

Found in Colorado and Wyoming, east of the mountains, where it is 
quite common. ‘The colors after immersion in alcohol differ very little 
trom what they are when living, except the blue of the tibiz. This 
species approaches very near to Hpacromia, and is closely allied to 8. 
epacromoides, Walk. 

Var. a.—The median or dorsal stripe brownish, which, uniting with 
the lateral stripes, gives the entire back a brownish color; the posterior 


o0GS 


A466 GEOLOGICAL SURVEY OF THE TERRITORIES. 


femora striped with brown. This variety was found near Fort Fetter- 
man, on Platte River. 


OXYCORYPHUS, Fisch. \ 
Division I. 

Tip of the vertex sub-acute. Pronotum not constricted; posterior 
extremity obtuse-angled; the transverse sulcus situated behind the 
middle; lateral carinz acute, equal throughout. (Sauss., Rey. et Mag. 
Zool., XIII, 1861, 314.) , 


Ox. obscurus, NOV. Sp. 

Female-—Head conical; occiput ascending, the vertex ascending in 
the same line with it, convex with a slight median carina, most distinct 
in front; the margins of the vertex slightly elevated, obtuse, and ter- 
minating behind at the upper canthus of the eyes ; the vertex sub-coni- 
cal, tip “glabrous. Face quite oblique, nearly straight; frontal costa 
suleate, parallel to ocellus, below which it gradually and regularly ex- 
pands; lateral carinsz distinct, sharp, curving slightly forward at the 
top.in front of the eyes, nearly straight, and rapidly diverging below. 
Antenne ensiform, flattened, a little longer than the head ; joints short. 
Kyes elongate pyriform, acuminate above, oblique. Pronotum a little 
longer than the head; tricarinate, the carinz equal, distinct, and par- 
allel; sides compressed, perpendicular; sub-truncate in front; posterior 
margin obtuse-angled ; transverse incision behind the middle; posterior 
lobe thickly covered with shallow punctures; the posterior lateral 
angle is aright angle. The elytra narrow, about three-fourths as long 
as the abdomen. Wings nearly as long as the elytra. The abdomen 
carined; valves of the ovipositor obtuse, hairy on the margins, the 
upper ones strongly curved. The legs slender; the femora compressed ; 
posterior femora nearly as long as the abdomen. 

Color, (dried after long immersion in alcohol.)—Pale rufous. Elytra 
semi-transparent toward the apex. Wings pellucid, with pale rufous 
nerves. 

Dimensions. —Length, .93 inch; elytra, .5 inch; posterior femora, .5 
inch; posterior tibiz, .42 inch. 

Wy oming Territory. I am uncertain as to the exact point where the 
two specimens collected were found. 


LIST OF SPECIES OF BUTTERFLIES COLLECTED BY CAMPBELL 
CARRINGTON AND WILLIAM B. LOGAN, OF THE 
EXPEDITION, IN 1871. 


By W. H. EDWARDS. 


Papilio rutulus, Boisduval.—Junction. 
turnus, Linn.—Montana. 
Parnassius smintheus, Doubleday.—Junction ; Yellowstone. 
clodius, Menetus.—Montana. 
Pinis protodin, Bois—Several localities. 
Anthocaris ansonoides, Bois.—Hot Springs. 
Colias enegthenu, Bois.—Virginia City and several localities. 
philodin, Godart.—Hot Springs. 
alecandra, Edwards.— Yellowstone. 


ss 


GEOLOGICAL SURVEY OF THE TERRITORIES. A67 


Colias astrea, Hdwards.—Colorado. 
Argynnis edwardsii, Reakirt.—Junction and several localities. 
montivaga, Behr.—Y ellowstone. 
meadti, Edwards.—Colorado. 
myrina, Cramer.—Colorado. 
Meletea hoffman, Behr.—Junction. 
Phyciodes tharos, Bois. 
Grapta satyrus, Edw.—Hot Springs. 
Pyraneis huntera, Drury.— Montana. 
Vanessa antiopa, Linn.—Montana. 
melbertti, Godart.—Bozeman City. — 
Canonympha ochracea, Edw.— Virginia City. 
Hrebia rhodia, Edw.—Yellowstone. 
haydenit, Edw., new species.— Yellowstone. 
Satyrus nephele, Kirby.—Yellowstone. 
silvestris, Edw.—Virginia City. 
sthenele, Bois.—Virginia City. 
Chrysophanus rubidus, Edw.—Stinking Creek. 
Lycena anna, Edw.—Pleasant Valley. 
acmon, Bois.—Meadow River. 
Pyrgus syrichtus, Fab.—Montana. 
Herpena comma, Linn.—Virginia City. 
In addition to the above were several specimens, especially of Lycee 
mide, that were too much injured for recognition. 
W. H. EDWARDS, 
‘ Coalburgh, West Virginia. 
JANUARY, 1872. 


EREBIA HAYDENL, Edwards, new species. 

Male: expanse, 1.6 inches. 

Upper side fuscous, immaculate; under side a shade paler, much irro- 
rated with gray scales; primaries immaculate; secondaries have a com- 
plete series of black ocelli along the edge of hind margin, one in each 
interspace; each ocellus narrowly ringed with ochraceous, and having 
minute white pupil. 


REPORT ON THE RECENT REPTILES AND FISHES OF THE SUR- 
VEY, COLLECTED i mene CARRINGTON AND 
. M. DAWES. 


By Epwarp D. Cops, A.M. 
REPTILIA. 
OPHIDIA. 


CAUDISONA CONFLUENTA, Say; var. with transverse spots narrowed. 
_ Ogden, Utah. 

HUTANIA VAGRANS, B. and G.; (Catalogue, p. 35.) 

Fish Creek, Montana; Yellowstone Basin; between Copenhagen, 
ne and Fort Hall, Idaho; Fort Hall, Idaho; Salt Lake City; Ogden, 

tah. 

Var. a. With colors like H. sirtalis ; the sides olive, with about fifty 
pairs of black spots, the vertebral band yellow, black-bordered. From 
Camp Carling. ma, 


| 
at 


468 GEOLOGICAL SURVEY OF THE TERRITORIES. 


EUTZNIA PARIETALIS, Say. 


Salt Lake City; lake ten miles east of Inet Utah, (salt;) Fish 
Creek, Montana. 


PITYOPHIS BELLONA, B. and G. 


One specimen ae the anterior frontal (vertical) shield ; from Og: 
den, Utah. 


BASCANIUM FLAVIVENTRIS, Say, (B. and G., Catalogue, p. 96.) — 


Ogden, Utah. 
LACERTILIA. 


PHRYNOSOMA DOUGLASSH, Bell. 


Var. a.—The usual form; Salt Lake City. 

Var. B, exilis.—A small form not more than one- half or two-thirds the 
usual size, but nearly identical in details of structure and coloration. 

The differences observable are: the rather shorter muzzle, which is 
entirely vertical in profile; the smaller scale above the canthus of the 
mouth, and the temporal hor ns; the less prominence of the posterior 
super ciliary angie, and the much reduced size. A geographical variety. 
Carrington’s Lake, Montana; Fort Hall, Idaho. 


SCELOPORUS CONSOBRINUS, B. and G. 


This species is very abundant and vanaile Its varieties are four, 
as follows: 

Var. 1.—Typical; scales large, especially on the sides; crural cross- 
series, 10-11; rows between interscapular and crural points, 33; 2 pre- 
frontals on each side; lateral and dorsal spots distinct. Localities, Yel- 
lowstone Basin; Blackfoot Fork. 

Var. 2. —Like the last, but the scales smaller on sides and back; 13 
rows on rump. Salt Lake City, Utah; south of Fort Hall, Idaho. 

Var. 3.—Seales still smaller ; 16-17 interscapular, 14 crural cross: 
rows; 3 prefrontal plates on each side. Dorsal spots large, their bor- 
ders ‘touching the lateral spots; both pale-edged behind, forming an 
angular border i in 9. This form grades into the last. A male has the 
border color of variety 2. South of Fort Hall, Idaho. 

Var. 4.—Like variety 2, but only half the size. South of Fort Hall, 
Idaho, and Salt Lake City. 


SCELOPORUS GRACIOSUS, B. and G.; S. gracilis, B. and G. 


This species is very near the last, but the scales are still smaller. 
There are 38 transverse dorsal rows and 20 interscapular. The lateral 
scales are twice emarginate. From Salt Lake, Utah, to Oregon. 


CNEMIDOPHORUS TESSELLATUS, Baird; Amiva tessellata, Say, (vide 
Pac. R. R. Surv., vol. X, Beckwith’s Report.) 
Salt Lake, Utah. 
TESTUDINATA. 
CHRYSEMYS ORHGONENSIS, Harlan; Agass. 
The Yellowstone Lake. 


BATRACHIA. 
ANURA. 


BUFO COLUMBIENSIS, B. and G., (United States Exploring Eee 
Herpetology, by Girard, p. 77.) 


Pleasant Valley and ewe atane Basin. Specimen from latter local- 


GEOLOGIGAL SURVEY OF THE TERRITORIES. . 469 


ity like types; that from Montana different in coloration. It is a bright 
green, with numerous blackish speckles on upper surfaces, and brown 
interscapular spots; below uniform. 


CHOROPHILUS TRISERIATUS, Wied; Helecetes, Baird. 
Carrington’s Lake, Yellowstone Basin. 


SPEA BOMBIFRONS, Cope. 
Blackfoot Fork. 


RANA HALECINA, Bose. 
Fort Hall, Idaho. 


RANA PRETIOSA, B. and G., (United States Exploring Expedition; 

Herpetology, p. 20.) 

Pleasant Valley, Montana. 

This frog is a near ally of the European R. temporaria, and is, as 
Girard remarks, distinguished from the other west-coast species (Rh. 
aurora, B. and G.) by its much shorter limbs. The present species was 
originally found at Puget’s Sound, Washington Territory. 


RANA SEPTENTRIONALIS, Baird, (Proc. Acad. Nat. Sci., Phila., 1854, 61.) 


Abundant; Carrington’s Lake, Yellowstone Basin, and Fish Creek, 
Montana. 


PISCES. 
ISOSPONDYLI. 


COREGONUS VILLIAMSONH, Girard; the Rocky Mountain white fish. 


THYMALLUS TRICOLOR, Cope, (Proc. Acad. Nat. Sci., Phila., 1865, p. 
80; Gunther, Catalogue Brit. Mus., VI, 201.) 


Specimens from Yellow Creek and the Gallatin Fork of the Missouri in 
Montana. This species was originally discovered in the Grand River, 
Michigan. It seems to be a rare fish east of the Mississippi; but my 
friend, J. Dickinson Sergeant, informs me that it has been found abund- 
antly in a stream in the northern part of the peninsula of Michigan. 
The number of specimens brought by Dr. Hayden from the head-waters 
of the Yellowstone indicates that this region is its home. They main- 
tain well the characters by which it was originally distinguished from 
the 7. vulgaris and T. signifer. The muzzle is shorter and the gape of 
the mouth larger than in the former; the maxillary bone is narrower 
and longer, reaching to below the middle of the pupil instead of to near - 
the front of the orbit. The length of the head equals the depth of the 
body and enters the length without caudal fin, 4.5 times. There is some 
variation in the radial formula as follows: D. 20-22; A. 13-14. Scales, 
8-9—86-90—10-12. In the younger specimens the small blue spots 
tend to form short longitudinal bars. 


SALMO, Linn. 


The species of this genus, found in the streams rising in the Rocky 
Mountains, are numerous, and, as elsewhere, nearly allied. Those I 
have observed in Dr. Hayden’s collections number three, while a fourth 
is described by Dr. C. Girard, which I-have not met with. The allied 
species differ as follows. They all belong to the group Salar: 


Depth, 5.75 in length; eye, 4.5 times in head; snout obtuse; 
caudal fin scarcely emarginate; Br. TX..........-..-. S. virginalis. 


470 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Depth, 4.75 in total, (to point caudal;) eye, 5 times in head; 

muzzle acute ; scales larger, 26 below dorsal fin; cranium 

not keeled above; head one- fourth length ; dorsal fin 

nearer muzzle than end caudal scales ; caudal fin searce- 

ly ‘emarcinate Suibr, Oee fT 2 Ay ce eee aes S. spilurus. 
Head large, broad, flat, not keeled, 4.25 in total, equal depth » 

of body; muzzle obtuse; eye nearly 5 times in head; 

scales, 42 below dorsal first ray; dorsal fin equidistant ; 

caudal fin mormotehed)is 2 2e 2s ease ey ea S. stomias. 
Head smaller, 4 times in length to notch of caudal, (which 

is well emarginate;) upper surface keeled ; muzzle ob- 

tuse; eye 4 tim es in length; depth, 4.5 in length, to end 

caudal scales; dorsal midway between latter and end 

of muzzle; scales small, 40-43 below dorsal first ray; 

Bee ees Pa ae AN ries rine ot S. pleuriticus. 
Head acuminate, keeled above, 4.66 times in length to notch 

of caudal fin, which is well marked; eye, one-fifth head ; 

depth, 5.25 to caudal notch ; dorsal nearer muzzle than 

end of caudal scales ; scales large, 33 below dorsal first 

ray; Br. XII; spots ‘large, distant: 2. S220. eae eee S. carinatus. 
Head ‘one-fourth total length; eye, 5 times in head; dorsal 

fin equidistant between insertion of caudal and end of 

muzzle; muzzle rather pointed; Br. X, XI............ S. irideus. 


Of the above species Salmo spilurus and S. carinatus are distinguish- 
able by their large scales and smaller orbits; while in S. stomias and 
S. pleuwriticus the scales are very small. On the other hand, 8. carinatus 
and S. plewriticus agree in the strong median carina on the superior 
aspect of the cranium. S. stomias is readily separated by the large 
head and mouth. Its habitat, so far as known, is the Kansas River, 
far to the eastward of the Rocky Mountains.* 


. SALMO SPILURUS, Cope, sp. nov. 


This species is represented by six specimens from the Sangre de 
Christo Pass, in Colorado, from one of the sources of the Rio Grande. 

It is rather a fusiform fish, with small head and acuminate muzzle, 
which is very little decurved at the end to the lip margin. The eye 
enters the muzzle 1.33 times, the inner border of the adipose eyelid 
being regarded as the’ dividing line. The top of the head is slightly 
convex, ‘but entirely without keel. The maxillary bone extends to a 
hittle beyond the posterior margin of the orbit, and is flat and consider- 
ably wider distally than it is ‘proximally. In this it differs from the 
S. stomias, Cope, where that bone maintains an almost equal width 
throughout. All the teeth are well developed, including both rows cf 
vomerines. Scales in about 33 rows between the base of the first dor- 
sal ray and the lateral line, or 26 rows between the middle of the dorsal 
fin and the same. 

Radii, Br. X; D. 11. 11, (10 in one;) A. IL. 10, (in two, 11.) 

Ground color, pale in spirits ; the caudal peduncle from the middle 
of the anal fin, with the caudal. and dorsal fins, thickly spotted with 
large, irregularly disposed black spots. Those on the caudal peduncle 
are darkest between the scales; each one having, therefore, a reticulated 
appearance. Above the lateral line they extend to the dorsal fin, con- 
tinually contracting their distribution from the lateral line upward. 


-* In Hayden's Report, Geology of Wyoming, 1871, p. 433, this is erroneously stated 
to be the Platte, a very different river. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A771 


A few scattered spots are found all the way to the head, and four or 
five mark the side of the latter. Adipose fin spotted; others unicolor. 

The largest specimen obtained measures 13 inches in length. 

The affinities of this species to the S. virginalis appeared to be close, 
and Girard cites specimens from the locality from which it was procured 
as belonging to the latter. Its description cannot, however, be recon- 
ciled with the S. spilurus, especially in the relations of the depth to the 
length, by which it would appear that S. virginalis is a much more 
slender fish. The figure also agrees with the description. 


SALMO PLEURITICUS, Cope, sp. nov. ; Salmo (Salar) virginalis, Cope, not 

Girard, (Hayden’s Survey Wyoming, 187Y, 433.) Oy 

This is the abundant mountain trout of the head-waters of the Green 
and Platte Rivers, and even of the Yellowstone. It is rather a stout 
species, with obtusely descending muzzle, and large eye entering the 
head only four times. The cranial keel is a marked character; its ele- 
vation is greater between the orbits than on the posterior part of the 
frontal bones. The interorbital width is 1.33 times the long diameter | - 
of the interpalpebral opening of the eye. The dorsal fin is nearer the 
origin of the marginal rays of the caudal fin than to the end of the 
muzzle, but is midway between the latter and the termination of the 
scales on the sides of the fin. Radii, D. Il. 11-12 and 13; A. II. 11. 
Br. XI. The scales range from 40 to 45 below the first dor sal ray to the 
lateral line. The maxillary bone extends to a little beyond the orbit, 
and is not expanded. 

This is a spotted species, and the spots are chiefly found above the 


- lateral line and on the whole caudal peduncle, and on the dorsal and 


caudal fins. They are usually rather scattered, less numerous on the 
peduncle than in S. spilwrus, and more so anteriorly; those on the fins 
are smasler and less numerous. ‘There is, however, variation in the size 
and number of the spots. The sides are ornamented with short, broad 
longitudinal bars of crimson; a band of the same color. occupies the 
fissure within each ramus of the mandible and skin on the median side 
of it. The fins are all more or less crimson; but none of these are black- 
bordered. The largest specimens are 10-12 inches long. 

Seven specimens of this species are in the collections from the heads 
of Green River; from Medicine Lodge Creek, Idaho, (two specimens ;) 
four from the J unction, Montana. ‘A specimen each from Yellow Creek 
and the Gallatin Fork of the Missouri, Montana, represent at least a 
color variety of this fish. The spots are mucb smaller and much more 
numerous, though distributed over the same regions; they are less 
numerous on the caudal fin. In the Gallatin specimen there are 51 
scales above the lateral line; in the other 44. Another variety from 
the Yellowstone Basin is only represented by young specimens. They 
have no spots on the caudal fin. 

A number of dried specimens from the Yellowstone Lake, of lar ger 
size than the specimens above described, probably belong to this species. 
They are rather more closely spotted on the caudal peduncle and fin, but 
are similar in all important respects. The only discrepancy which I find 
is the relatively smaller eye, (not orbit,) which enters the head five times, 
and the greater prolongation of the maxillary bone. These characters 
are, perhaps, due to the larger size attained by the individuals. They 
are from a foot to eighteen inches in length. 


SALMO CARINATUS, Cope, sp. nov. 
The characters of this species, pointed out in the table, show its marked 


A472 GEOLOGICAL SURVEY OF THE TERRITORIES. 


distinction. It is a more slender fish than any here described, approach- 
ing more nearly the proportions assigned by Girard to the S. virginalis. 
From this species the numerous branchiostegals, more distinctly forked 
tail, &c., distinguish it. 

The head is elongate, but not wide, and the muzzle descends regu- 
larly, but not abruptly, to the lip margin. The eye is contained in it 
1.5 times and enters the head five times in a specimen of the size of those 
of 8. pleuriticus, where it enters four times, as well as in larger animals. 
The interorbital region contracts at the front part of the orbits so 
as to be little wider than the long diameter of the latter. The frontal 
keel extends the whole length of the vertex, and is very conspicuous ; 
it is most elevated posteriorly. The maxillary extends to beyond the 
orbit. The dorsal fin is equidistant between the end of the muzzle and 
the base of the marginal radii of the caudal fin, therefore nearer the 
former than to the termination of the lateral caudal scales. 

Radii, Br. XII, X1; D. I-11; A. I-11. | 

The ground is light, perhaps rosy in life, and is marked with round, 
black spots, sparsely but equidistantly distributed over the whole body. 
The dorsal and caudal fins are spotted, but rather sparsely ; those of the 
former being arranged in two or more longitudinal series. There are 
indications that the fins and sides of the head were crimson, and that 
there were large spots of the same color on the middle of the sides. 

Two specimens of uncertain locality ; fragments of, perhaps, a third 
from the Yellowstone Geyser Basin. . 

Another species of trout was obtained from Carrington’s Lake, Mon- 
tana, but the specimens are in too bad a state for determination. , 


PLECTOSPONDYLI. 


SEMOTILUS CORPORALIS, Mitch. * 
Crow Creek, at Camp Carling. 


CERATICHTHYS NUBILUS, G.; Argyreus nubilus, G., (U. S. Pac. BR. RB. 
Surv., X, p. 244.) 


This species has the physiognomy of the genus to which Girard re- 
ferred it, but the premaxillary is projectile and the upper lip separated 
from the muzzle by a fold. This is the only point of distinction yet 
stated by which the two genera may be separated. Teeth, 4.2-2.4; 
barbels inconspicuous. Axils of the fins crimson. 

Grass Creek, Idaho. Collection No. 4. 


APOCOPE, Cope, gen. nov. 


Teeth of the raptorial type, 4.1-1.4, without erinding surface. Bar- 
bels present; upper lip separated from muzzle by a fold. Anterior 
part of the lateral] line only present. 


APOCOPE CARRINGTONII, Cope, sp. nov. 


This is a small species allied to the last, but the muzzle is broader 
and less prominent, and the mouth larger. The muzzle is quite obtuse 
in profile and overhangs the mouth very little, and the end of the max- 
illary bone does not quite reach the line of the margin of the orbit. 
Barbels minute; teeth, 4.1-1.4; isthmus wide; eye a little smaller than 
one-fourth the length of the head, and 1.5 times in interorbital width. 
Scales, 10-60-11. Dorsal fin originating behind the point above the ven- 
trals, and markedly nearer the basis of the caudal than the end of the 


GEOLOGICAL SURVEY OF THE TERRITORIES. 473 


muzzle. Caudal well forked. Radii, D. 8; A. 7; length of head a little 
more than four times in length to basis of caudal; depth five times in 
the same; length, 20 lines. 

Color olivaceous, with a dark lateral band from end of muzzle, and 
dark shades on. the back. 

Four specimens from the Warm Springs, Utah. The species is named 
in honor of Campbell Carrington, zoologist of Dr. Hayden’s expedition, 
to whose zeal in the cause of science, we are indebted for the materials 
analyzed in this report, and that on the same subject in the Survey of 
Wyoming, 1871. Collection No. 9. 


APOCOPE VULNERATA, Cope, sp. nov. 


The head is broad and the muzzle wide and obtuse, not projecting 
over the mouth. Barbels minute. The end of the maxillary bene does 
not quite reach the marginal line of the orbit; orbit five times in head, 
one and a half times in the interorbital space. Length of head one- 
fourth, depth of body one-fifth length without caudal fin. Dorsal a 
little behind line of origin of ventrals, nearer caudal fin than muzzle. 
Radii, D.8; A. 7. Length, 24 lines. Scales small, 15-72-10. 

Color olive, with a broad dark band from end of muzzle to candal 
fin, paler above and below it; belly yellow; a crimson spot on the chin. 

This species differs from A. carringtonii in the wider muzzle, smaller 
scales, and greater development of the lateral line. In this species it is 
continued to the end of the anal fin ; in the type of the genus it scarcely 
extends to the dorsal. Collection No. 1. 

From Logan, Utah; discovered by Cam. Carrington. ; 
eee MAXILLOSUS, Cope, (Proc. Acad. Nat. Sci., Phila., 1864, 

78.) 

Crow Creek ; Grass Creek, Idaho. 

TIGOMA RHINICHTHYOIDES, Cope, sp. nov. 


Size small; form elongate. Head 4.3 times in length without caudal 
fin; depth, 5.2 times in same. Muzzle obtuse, not projecting; mouth 
. inferior horizontal, maxillary not reaching line of orbit. Head nearly 
four times longer than diameter of orbit, which equals length of muzzle, 
and is 1.5 times interorbital space. Teeth, 4.2-2.4. Scales, 12-67-12, 
lateral line with occasional interruptions at the posterior part. Dorsal 
fin behind line of ventrals, nearer basis of caudal fin than end of muzzle. 
Length, 24 lines. 

‘Olive-brown above, yellow below; a broad brown lateral band and 
longitudinal blackish line on the thoracic region on each side. The me- 
dian band is darker spotted, and there are blackish spots on the dorsal 
region. Head black above; chin red. 

The upper lip of this species is separated by a fold, but the species 
has a general resemblance to those of Rhinichthys. 

From Logan, Utah. Collection No. 2. 


PROTOPORUS, Cope, gen. nov. 


Teeth raptorial; outer row, 4-4; no grinding surface; no barbels; 
upper lip separated by a fold. Lateral line represented only by a short 
anterior series of pores. 

This genus is related to Tigoma, as Apocope is to Ceratichthys. 


PROTOPORUS DOMNINUS, Cope, sp. nov. 


Form rather stout, front convex, muzzte obtuse, mouth horizontal, end 
of maxillary not quite attaining orbit. Scales, 9-56-6. Lateral line not 


ATA GEOLOGICAL SURVEY OF THE TERRITORIES. 


attaining the point opposite to the origin of the ventral fins. Length 
of head, 4.33; depth of body five times into length without caudal fin ; 
diameter of eye four times in head; once in muzzle, 1.3 times in 
interorbital width. Fin radii, D. 1.8; A. 1.7. Rays of pectoral 
thickened, not reaching ventral; ventral reaching anal. Length, 24 
lines ; teeth, 4.2-1.4, somewhat hooked. 

Color silver-gray, with a broad dark lateral band, which is darker 
spotted; back and sides of thorax dark shaded ; top of head dark. 

Numerous specimens from Fort Hall, Idaho, collection No. 3. 


HYBOPSIS BIVITTATUS, Cope, sp. nov. 


Muzzle narrow, very obtusely descending, not projecting; mouth 
horizontal, end of maxilla reaching the line of the orbit. Orbit 
four times in length of head, 1.5 times in the rather flat inter- 
orbital width. Length of head, 4.66 times; depth of body four 
times in length minus caudal’ fin. Dorsal region arched; basis 
of dorsal fin descending posteriorly, and originating very little 
behind origin of ventrals. ” Pectorals only reaching half-way to ventrals; 
latter about half-way to anal. Radi, D.I. 8; A. 1.7. Teeth, 4.2-2.4, 
with grinding surface. Scales, 12-53-11. Lateral line complete. Dor- 
sal fin nearer muzzle than origin; caudal fin midway between former 
and notch of latter. Length, 3 inches. 

Color silvery; the scales blackish punctulate; dorsal region blackish ; 
a dark band from epiclavicular region to basis of caudal fin; another 
from end muzzle, across operculum, to basis of anal. . 

From Warm Springs, Utah ; Campbell Carrington, collector. Collec- 
tion No. 10. 

It is interesting to note that in the distribution of color, especially in 
the two lateral bands, this species is identical with Protoporus domninus, 
Tigoma rhinichthyoides, and Apocope carringtonii, a well-marked case of 
mimetic analogy. Another case of this kind is exhibited by two species 
of eels of different genera from Costa Rica. The species are undescribed. 


MURZNA AQUAZDULCIS, Cope, sp. nov. 


Branchial fissure small; posterior nostril not tubular, situated half 
way between eye and anterior nostril. Eye contained nearly twice in 
the muzzle. Maxillary teeth in two rows, ethmoids in a single one. 
Former, 4 long in the inner, 17 in the outer row, counting from the front 
margin of the orbit. Vomerine teeth well developed ; dentaries in two 
rows. 

Form stout; dorsal fin extending two-thirds the total length, the anal 
2.33 times in "the length. Color “prownish- black, with rather distant 
yellow spots, which are e accompanied by a darker shade on same side, and 
which become confluent into yellow marblings on the gular and pectoral 

regions. 

From the Rio Grande, near the city of San J: ane Costa Rica, Central 
America. 


PQCILOPHIS NOCTURNUS, Cope, sp. nov. 


Branchial fissure small; posterior nostril: just above the orbit at the 
anterior margin. Muzzle rather obtuse, twice as long as the small eye. 
Maxillary teeth in a single row; the vomerines obtuse, continued in line 
to the ethmoids. Latter i in three rows, with interspaces. Dentaries one- 
rowed. Form moderately stout; dorsal fin extending nearly to nape. 
Anal fin a little over one-third total length. 


GEOLOGICAL SURVEY OF THE TERRITORIES. AQ5 


Color deep purplish-brown, with rather scattered, irregular, yellow 
spots with black margins; rather paler below. 

From the Rio Grande, at San José, Costa Rica. Dr. Van Patten. 

This species, in general proportions, is a little more slender than the 
last, but in general appearance, as size and coloration, can scarcely be 
distinguished from it. It is a curious case of mimetic analogy. 


SIBOMA ATRARIA, G., (U.S. Pac. BR. R., Rep. X, 297.) 


‘ Abundant in Gunes Creek, Idaho. Siboma differs from Clinostomus in 
the anterior position of the dorsal fin. Collection No. 7. 


MYLOLEUCUS, Cope, gen. nov. 


Teeth raptorial, but with well-developed masticatory surface, 5-4 in 
outer row. No barbels; lateral line well developed. Dorsal fin above 
or in front of line of ventrals. 

This genus is Siboma, with developed grinding surfaces of the teeth. 


MyLoLuucus PULVERULENTUS, Cope, sp. nov. 


Form stout; head short, muzzle not decurved; mouth terminal, 
slightly descending, the maxillary bone nearly attaining the anterior 
line of the orbit. Head 3.(5 times in length, exclusive of caudal; depth 
three and a half times. Eye 4.2 times in head, once in muzzle. Pre- 
orbital bone deeper than long. Scales, 13-58-9. Radii, D. 1.9; A. IL.7. 
Caudal well forked. Length, 34 inches. 

A dark plumbeous band extends from the origin of the lateral line 
above to the caudal peduncle, and on it to the caudal fin. Below this 
the color is silvery, thickly dusted with black dots; above it is an olive- 
yellow band; then a dark dorsal region, all dusted. Sides of head sil- 
very, dusted. Fins unspotted. 

Numerous specimens from the Warm Springs, Utah; type No. 6. 


CLINOSTOMUS PANDORA Cope, sp. nov. 


This species is nearly a Siboma, in consequence of the position of the 
dorsal fin being so little removed from the vertical above the ventrals. 
Dentition refers it to Clinostomus, while its appearance is that of a 
Ceratichthys or Semotilus. I adhere to the technical characters until 
others are found which will give us the clew to the truer affinities. 

Shape fusiform, head small, one-fifth of total length, (or fourth with- 
out caudal fin,) broad, and rather flat at the muzzle. The latter does 
not project, and the lips are equal. Maxilla not attaining the line of 
the orbit by some distance. Eye small, 6.25 times in length of head, 
twice interorbital width. Scales, 17-61-9, small in front of dorsal fin. 
Radi, D. I. 8; A. II. 8. Isthmus moderately wide; depth of body 4.2 
times i in length without caudal. Dorsal fin nearer basis caudal than end 
of muzzle. 

General color silvery, above (in spirits) brownish. <A broad, ill-defined, 
lateral band, from epiclavicular region to basis of caudal fin, ‘above the 
lateral line. Length of type specimen, 8 inches. Collection No. 11. 

From Sangre de Christo Pass, from a tributary of the Rio Grande. 


CLINOSTOMUS HYDROPHLOX, Cope, sp. nov. 


This species and the followvins are typical forms of the genus, and in- 
teresting as the first that have been detected west of the Missis- 
sippi River. Length of head 4.75 times in total, exclusive of caudal 
fin; depth of body 4.5 times in same. Hye 5 times in head, one and a 
half times in interorbital width. Front straight; lower jaw projechns 


A476 GEOLOGICAL SURVEY OF THE TERRITORIES. 


beyond upper; mouth descending; end of maxillary just reaching line 
of orbit. Isthmus narrow. Teeth, 5.2-2.4. Scales, 15-58-7. Radii, D. 
J.8; A. I. 11. Ventrals not reaching anal. Length, 6 inches. 

Color above olive, with a blackish inferior border, extending from the 
superior margin of the orbit. Below this. a crimson band, and still 
lower, a blackish band, passing from the epiclavicular region above the 
lateral line to the basis of the caudal fin. Below this, crimson in front, 
silvery behind. Fins unspotted. Suborbital bones crimson ; cheek 
golden. 

Blackfoot Creek, Idaho. Collection No. 13. 


CLINOSTOMUS MONTANUS, Cope, sp. nov. 


Muzzle decurved, obtuse; jaws equal; end of maxillary extending be- 
vond margin of orbit. Orbit large, entering the head 3.5 times and the 
interorbital region once. Length of head, one-fourth length to caudal 
fin; depth nearly equal. Scales, 11-12—d6—6. Radii, D. I. 9; A. Il- 
12. Length, 3.5 inches. 

Olive above, a dark band extending from epiclavicular region above 
caudal line to caudal fin. Sides crimson as high as the lateral line. 

Numerous specimens (No. 8) from Grass Creek, Idaho. This brightly 
colored species differs from the last in the obtuse muzzle, large eye, and 
smaller scales above the lateral line. 


CATOSTOMUS GENEROSUS, G., (Proc. Acad. Nat. Sci. Phila., 1856, 174;) 
Acomus generosus, G., (U. S. Pae. R. R. Surv., X, p. 221.) 
This species is closely allied to the eastern CO. teres, Mitch.: from Utah 
Lake. 


PERCOMORPHI. 


URANIDEA PUNCTULATA, Gill, (Proc. Boston Soc. N. H., 1862, p. 41.) 
Gallatin Fork of the Missouri and Warm Springs, Utah. 


COTTOPSIS SEMISCABER, Cope, sp. nov. 


Radii, D. VII-18; A. 13; V. 1-4; first ray of anal below third of 
second dorsal. Skin prickly above the lateral line, smooth below it 
posteriorly. Body compressed, profile rising rather steeply to the basis 
of first dorsal fin. Eye 4.5 times in head, .75 time in interorbital space. 
Muzzle contracted, maxillary bone reaching to below middle of pupil. 
Two spines on preoperculum. On an inferior anterior angle of opereu- 
lum. Lateral line discontinued on last fourth of caudal peduncle. Head 
one-third length without caudal fin. 

Below yellow; dorsal line with a series of dark spots; sides with 
large, dark clouds. 

Three specimens from Fort Hall, Idaho. 


GEOLOGICAL SURVEY OF THE TERRITORIES. ATT 


CATALOGUE OF PLANTS, 


By Pror. THomas C. PorRTER. 


All the plants comprised in this catalogue were collected during the 
expedition of Dr. F. V. Hayden to the head-waters of the Yellowstone 
River in the summer of 1871, with the exception of a small number 
gathered by Dr. George Smith, in the month of August, on Gray’s Peak 
and near Georgetown, Colorado Territory. 

Prof. G. N. Allen acted as botanist, and Robert Adams, jr., as assist- 
ant, as far as Fort Ellis. After that time Mr. Adams took charge of the 
collections until his departure, about September 1. 

Thanks are due to Doctors Torrey and Gray for valuable aid in diffi- 
cult cases, and to Messrs. Engelmann, Olney, Thurber, Lesquereux, and 
Tuckerman for the determination of species in those orders to which 
they have devoted special attention. 


RANUNCULACE AL. 


Clematis Douglasii, Hook.—Stinking Water Creek; Fort Ellis to the 
Yellowstone; Hot Sulphur Springs. 

Clematis alpina, Mill., var. Ochotensis, Gray.—Gray’s Peak, Colorado 
Territory, Dr. Smith. 

Clematis ligusticifolia, Nutt.—Madison Valley; Fort Ellis to the Yel- 
lowstone. 

Clematis verticillaris, D. C., (C. Columbiana, T. and G.)—Fort Hillis to 
the Yellowstone. 

Anemone multifida, D. C.—Mountains south of Virginia City. 

Thalictrum Fendlerit, Kngelm.—Mountains south of Virginia City; 
Fort Ellis to the Yellowstone. 

Ranunculus aquatilis, L., var. trichophyllus, Chaix.—Salt Lake City, 
June 1. 

Ranunculus aquatilis, L., var. stagnalis, D.C.—Stinking Water Creek ; 
between Madison and Jefferson Rivers. 

Ranunculus Flammula, L., var. reptans, Gray.—Mud Springs. . 

Ranunculus Cymbalaria, Pursh.—Weber River Valley and Salt Lake, 
Utah Territory, June; Stinking Water Creek, July 3. 

Ranunculus multifidus, Pursh, var. repens, Hook.—Mediecine Lodge. 

Ranunculus nivalis, R. Br., var. Hschscholizii, 8S. Watson.—Upper Fails 
of the Yellowstone. 

Ranunculus repens, L.—Pleasant Valley ; Upper Falls of the Yellow- 
stone. 

Caltha leptosepala, D. C.—Great Falls and Upper Falls of the Yellow- 
stone. 

Trollius lawus, Salisb.—Great Falls of the Yellowstone. 

Aquilegia coerulea, Torr—Mountains south of Virginia City; Yellow- 
stone Lake. 

Aquilegia flavescens,.S. Watson, (Clarence King’s Rep., vol. V, p. 10.)— 
Fort Ellis to the Yellowstone; Hot Sulphur Springs; Lower Falls of the 
Yellowstone. 

Delphinium elatum, L., var. (?) occidentale, 8. Watson, (loc. cit.) —Stink- 
ing Water Creek; Madison Valley; Fort Ellis to the Yellowstone. 

Delphinium Menziesi, D. C.—Mountains south of Virginia . City; 
Stinking Water Creek. } 

Aconitum nasutum, Fisch.—Yellowstone Lake. 

Acta spicata, L., var. arguta, Torr.—Yellowstone Lake. 


Ni 


A7%8 GEOLOGICAL SURVEY OF THE TERRITORIES. 


BERBERIDACEA. 
Berberis Aquifolium, Pursh.—Salt Lake, June; Pleasant Valley. 
NYMPH HACE As. 
Nuphar advena, Ait.—Madison Valley. 
FUMARIACE &. ' 


Corydalis aurea, Willd., var. occidentalis, Engelm.—Stinking Water 
Creek; Yellowstone Lake. 


CRUCIFER A. 


Nasturtium obtusum, Nutt.—Madison Valley. 
Nasturtium palustre, D. C., var. hispidum, Gray.—Pleasant Valley. 
Cardamine rhomboidea, D. C.—Gray’s Peak, Colorado Territory, Dr. 
Smith. 
Oardamine paucisecta, Benth.—Lower Falls of the Yellowstone. 
Arabis hirsuta, Scop.—Stinking Water Creek. : 
Arabis perfoliata, Gray.— Weber River Valley, Utah Territory; mount- 
ains south of Virginia City. 
Arabis Drummondii, Gray.—Yellowstone Lake; Upper Falls of the 
Yellowstone. ° . 
Arabis Drummondii, Gray, var. alpina, S.. Watson.—Doane’s Peak, 
near Yellowstone Lake, 10,000 feet altitude. 
Arabis retrofracta, Graham.—Near Ogden, Utah Territory. 
Erysimum cheiranthoides, L.—Stinking Water Creek. 
Erysimum asperum, D. C.—Pleasant Valley ; Stinking Water Creek ; 
Fort Ellis to the Yellowstone. 
Sisymbrium juncewm, Bieb.—Mountains south of Virginia City. 
Sisymbrium canescens, Nutt.—Pleasant Valley; Stinking Water Creek ; 
Yellowstone Lake. ' 
Smelowskia calycina, E. Meyer.—Mountains south of Virginia City. 
Thelypodium integrifolium, Endl.—Stinking Water Creek; Fort Ellis 
to the Yellowstone; Hot Sulphur Springs. cuit 
Stanleya viridiflora, Nutt.—Stinking Water Creek. 
Physaria didymocarpa, Gray.—Stinking Water Creek; Fort Ellis to 
the Yellowstone. 
Vesicaria montana, Gray.—Near Cheyenne, Wyoming Territory, 
May 25, 
Vesicaria Ludoviciana, D. C.—Near Cheyenne, Wyoming Territory, 
May 25. 
- Vesicaria alpina, Nutt.—Stinking Water Creek, July 3. 
Draba aurea, Vabl.—Gray’s Peak, Colorado Territory, Dr. Smith, 
August 10. 
Draba alpina, L.—Mountains south of Virginia City. 
Draba glacialis, Adams.—Doane’s Peak, near Yellowstone Lake, 
10,000 feet altitude. 
Draba nemorosa, L.—Crow Agency. 
Draba nemorosa, L., var. lutea, Gray.—Pleasant Valley; Yellowstone 
Lake; Upper Falls of the Yellowstone. 
Lepidium intermedium, Gray.—Fish Creek, Jefferson Valley. 


- VIOLACEZ:. 


Viola cucullata, Ait.—Pleasant Valley. 
Viola canina, L.—Near Ogden, Utah Territory. 
Viola Nuttallii, Pursh._Cheyenne, Wyoming Territory, May 25. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A7T9 
CAPPARIDACE.A. 


Cleome integrifolia, T. and G.—Fort Ellis to the Yellowstone; Botel- 
er’s Ranch; Fish Creek, Jefferson Valley. 
Cleome aured, Nutt.—Near Ogden, Utah Territory, June 5. 


CARYOPHYLLACEZ. 


Saponaria Vaccaria, Host.—Madison Valley. Most likely introduced. 
Silene acaulis, L.—Mountains south of Virginia City; Yellowstone 

Lake. : . 

Silene antirrhina, L.—Near Ogden, Utah Territory ; Madison Valley. 

Silene Menziesti, Hook.—Weber River Valley, Utah Territory ; moun- 
tains south of Virginia City; Fort Ellis to the Yellowstone. 

Lychnis Drummondii, S. Watson, (Silene Drummondit, Hook.)—Fort 
Ellis to the Yellowstone; Upper Falls of the Yellowstone. 

Arenaria congesta, Nutt.—Pleasant Valley; Hot Sulphur Springs; 
Yellowstone Lake. 

Arenaria Fendlert, Gray.—Stinking Water Creek. 

Arenaria arctica, Stev.—Fort Ellis to the Yellowstone; high peaks 
near Yellowstone Lake. 

Arenaria lateriflora, L.—Pleasant Valley. 

Stellaria longipes, Goldie.—Pleasant Valley; Hot Sulphur Springs. 

Stellaria crassifolia, Ehrh.—Mountains south of Virginia City. 

Stellaria borealis, Bigelow.—Lower Falls of the Yellowstone. 

Cerastium arvense, L.—Yellowstone Lake; Upper and Lower Falls of 
the Yellowstone. 

Sagina Linnaei, Presl|.—Fort Ellis to the Yellowstone; Mud Springs. 

Paronychia sessiliflora, Nutt.—Fish Creek; Crow Agency. 


PORTULACACEA. 


Claytonia Caroliniana, Mx., Var. lanceolata, S. Watson, (C. lanceolata, 
Ph.)—Yellowstone Lake. 

Claytonia perfoliata, Don.—Mountains near Ogden, Utah Territory. 

Claytonia Chamissonis, Esch. and Ledeb. — Yellowstone Lake ; Lower 
Falls of the Yellowstone. 

Spraguea umbellata, Torr.—Mud Springs; Yellowstone Lake ; pe 
Falls of the Yellowstone. 

Lewisia rediviva, Ph.—Yellowstone Lake. 


MALVACEA. 


Malvastrum coccineum, Gray.—Stinking Water Creek; Madison Val- 
ley; Fort Ellis to the Yellowstone; Fish Creek. 
Malvastrum Munroanum, Gray.—Crow Agency ; Madison Valley. 
Spheralcea acerifolia, Nutt.—Madison Valley; Fort Ellis to the Yel- 
lowstone. 
LINACE A. 


Linum perenne, L.—Pleasant Valley; Madison Valley; Hot Sulphur 
Springs; Upper Falls of the Yellowstone. 


GERANIACEZ. 


Geranium Richardsonii, F. and M.—Fort Ellis to the Yellowstone; Yel- 
lowstone Lake. 


A80 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Geranium Carolinianum, L.—Hot Sulphur Springs. 

Geranium Fremontii, Torr., var. Parryi, Gray.—Gray’s Peak, Colorado 
Territory, Dr. George Smith. 

Geranium Fremontii, Torr., var. (?)—Madison Valley; Fort Ellis to 
' the Yellowstone.—Differs from the variety Parryi in being far larger 
and more robust in every way. It is densely pilose throughout, with a 
portion of the hairs glandular. — 

Hrodium cicutarium, L’Her.—Salt Lake, Utah Territory. 


ANACARDIACE &. 


Rhus Toxicodendron, l.—Near Ogden, Utah Territory. 

Ehus glabra, L.—Near Ogden, Utah Territory. 

Rhus aromatica, Ait., var. trilobata, Gray.— Weber River Valley, Utah 
Territory ; Crow Agency. : 


RHAMNACE A. 


Ceanothus velutinus, Dougl., var. levigatus, T. and G.—Near Ogden, 
Utah Territory. 
ACERACEZ. 


Acer glabrwm, Torr.Weber River Valley, Utah Territory; Crow 
Agency. 
Acer grandidentatum, Nutt.—Weber River Valley, Utah Territory. 


LEGUMINOS 4. 


Lupinus pusillus, Pursh.—Near Ogden, Utah Territory. 

Lupinus sericeus, Pursh.—Near Ogden, Utah Territory. 

Lupinus cespitosus, Nutt.—Mud Springs; Yellowstone Lake. 

Lupinus ornatus, Doug].— Stinking Water Creek; Fort Ellis to the 
Yellowstone; Crow Agency. 

Lupinus polyphyllus, Lind|!.—Great Falls of the Yellowstone. 

Lupinus leucophyllus, Lindl.—Madison Valley. 

Iupinus laxijflorus, Dougl., var tenellus, T. and G.—Mud Springs; 
Yellowstone Lake. 

Trifolium longipes, Nutt.—Mountains south of Virginia City; Stink- 
ing Water Creek. 

Trifolium Haydeni, sp. nov.—Glabrous throughout, low, (2 to 3 inches,) 
czespitose with a branching caudex, leafy at base; leaflets obovate, obtuse 
or tipped with a short, abrupt acumination, sharply denticulate, strongly 
veined; peduncles twice longer than the leaves; lower stipules scarious, 
obtuse, entire; upper ones lance-ovate and acute; heads few to many 
flowered ; flowers purple, 6 to 8 lines long, in 2 to 3 verticils, persistent, 
reflexed in fruit; teeth of the calyx setaceous-subulate, about as long 
as the tube, and reaching half the length of the corclla; vexillum 
rounded at the apex, obtuse or emarginate.—It seems to approach 7. 
longipes, Nutt., var. pygmeum, Gray, but is distinguished by its 
smoothness and broader obtuse vexillum.—Mountains south of Virginia 
City. 

Psoralea lanceolata, Pursh.—Near Ogden, Utah Territory. 

Glycyrrhiza lepidota, Nutt.—Fort Ellis to the Yellowstone. 

Hedysarum Mackenati, Rich.—Near Ogden, Utah Territory ; Pleasant 
Valley. 

Astragalus caryocarpus, Ker., in ft.—Fort Ellis to the Yellowstone. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A81 


Astragalus diphysus, Gray, in ft.—Stinking Water Creek. 
Astragalus Canadensis, L., var. Mortoni, S. Watson.—Mountains south 
of Virginia City. ; 
Astragalus hypoglottis, L.—Pleasant Valley ; Stinking Water Creek. 
Astragalus oroboides, Hornem., var. Americanus, Gray.—Mountains 
south of Virginia City. . 
Astragalus alpinus, L.—Mountains south of Virginia City; Yellow- 
stone River. : 
Astragalus Missowriensis, Nutt.—Near Ogden, Utah Territory. 
Astragalus Shortianus, Nutt.—Near Ogden, Utah Territory. 
Astragalus Utahensis, T. and G., in fl. and ft.—Great Salt Lake. 
Astragalus frigidus, Gray.—Fort Ellis to the Yellowstone. 
Astragalus bisulcatus, Gray, in fl. and ft.—Madison Valley; Fort Ellis 
to the Yellowstone. 
Astragalus pauciflorus, Hook.—Fort Ellis to the Yellowstone. 
Astragalus campestris, Gray.—Fort Ellis to the Yellowstone. 
Astragalus junceus, Gray.— Weber River Valley, Utah Territory. . 
Astragalus cespitosus, Gray.—Near Cheyenne, Wyoming Territory, 
May 25. 
PG rijains Kentrophyta, Gray.—Hot Sulphur Springs. 
Oxytropis muiticeps, Nutt.—Mountains south of Virginia City. 
Oxytropis Lamberti, Pursh.—Cheyenne, Wyoming Territory; Salt 
Lake, Utah Territory. 
Vicia Americana, Muhl.—Weber River Valley, Utah Territory. 
Lathyrus polyphyllus, Nutt.—Near Ogden, Utah Territory. 
Lathyrus ornatus, Nutt.—Cheyenne, Wyoming Territory, May 25. 
Lathyrus palustris, L.—Stinking Water Creek; Madison Vailey. 
Lathyrus palustris, L., var. myrtifolius, Gray.—Utah Territory. 
Thermopsis fabacea, D. C., var. montana, Gray.—Cheyenne, Wyoming 
Territory; Great Salt Lake; Pleasant Valley ; Stinking Water Creek. 


ROSACEA. 


Prunus demissa, Walp—Near Great Salt Lake, Utah, Territory... 
Spirea opulifolia, L.—Weber River Valley, Utah Territory. 
Spirea betulefolia, Pallas.—Fort Ellis to the Yellowstone; Hot Sul- 
phur Springs; Lower Falls of the Yellowstone. 
Spirea ceespitosa, Nutt.—Between Madison and Jefferson Rivers. 
Cercocarpus parvifolius, Nutt.—Mountains near Denver, Colorado Ter- 
ritory, Dr. George Smith. 
Cercocarpus ledifolius, Nutt.—Near Ogden, Utah Territory ; Stinking 
Water Creek. 
Geum strictum, Ait.—Pleasant Valley ;. Gallatin River:. 
Geum triflorum, Pursh.—Pleasant. Valley ;, Stinking Water Creek ;- 
Hot Sulphur Springs. : 
‘ Geum Rossii, Seringe.—Gray’s Peak, Colorado: Territory, Dr. George 
mith. 
Sibbaldia procumbens, L.—Upper Falls of the Yellowstone. 
Chamerhodos erecta, Bunge.—Madison Valley. 
Ivesia Gordon, T. and G.—Stinking Water Creek. 
Potentilla Norvegica, L._Weber River Valley, Utah Territory; Mud 
Springs; Upper Falls of the Yellowstone. 
Potentilla millegrana, Engelm.—Mountains south of Virginia City. 
Potentilla Pennsylvanica, L., var. strigosa, Pursh.—Stinking Water 
_ Creek. 
s1G@s 


482 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Potentilla diversifolia, Lehm.—Pleasant Valley; Hot Sulphur Springs; 
Yellowstone Lake. 
Potentilla pulcherrima, Lehm.—Fort Ellis to the Yellowstone; Hot 
Sulphur Springs. 
Potentilla gracilis, Dougl., var. flabelliformis, Nutt.—Madison Valley ; 
Fort Ellis to the Yellowstone. 
Potentilla Nuttallii, Lehm.—Fort Ellis to the Yellowstone; Hot Sul- 
phur Springs. 
Potentilla Anserina, L.—Ogden, Utah Territory; Madison ee 
Yellowstone Lake; Crow agency. 
Potentilla fruticosa, L.—Pleasant Valley; Hot Sulphur Sprirgs. 
Potentilla fissa, Nutt.—Gray’s Peak, Colorado Territory, Dr. George 
Smith; Upper Falls of the Yellowstone. 
Potentilla glandulosa, Lind!.—Mountains south of Virginia City; Lower 
Falls of the Yellowstone. 
i Rubus Nutkanus, Moc.—Fort Ellis to the Yollowavottes Hot Sulphur 
prings. 
Rubus strigosus, Michx.—Hot Sulphur Springs; Yellowstone Lake. 
Crategus rivularis, Nutt. (?)—Near Ogden, Utah Territory. 
Orategus tomentosa, L., var. punctata, Gray—Weber River Valley, 
_ Utah Territory. 
Amelanchier Canadensis, T. and G., var. alnifolia, T. and G.—Fort 
Ellis to the Yellowstone; Yellowstone Lake. 


SAXIFRAGACE Zl. 


Ribes hirtellum, Michx.—Yellowstone Lake. 

ibes onycanthoides, L.—Stinking Water Creek. 

Ribes prostratum, L’Her.—Yellowstone Lake. 

Ribes lacustre, Poir—Mountains south of Virginia City ; Yellowstone 
Lake. 

Ribes cereum, Doug]. —Yellowstone Lake; Crow Agency. 

Ribes viscosissimum, Pursh.—Mountains south of Virginia City; Stink- 
ing Water Creek. 

‘Ribes bracteosum, Doug|.—Falls of the Yellowstone. 

Ribes aureum, Pursh. — Weber River Valley, Utah Territory. 

Savifraga oppositifolia, L.—Yellowstone Lake. 

Saxifraga cespitosa, L.—Mountains south of Virginia City. 

Saxifraga serpyllifolia, Pursh.—Gray’s Peak, Colorado Territory, Dr. 
Smith. 

Saxifraga bronchialis, L.—Yellowstone Lake; Pleasant Valley. 

Saxifraga punctata, L.—Hot Sulphur Springs; Yellowstone Lake; 
Falls of the Yellowstone. 

Saxifraga nivalis, L.—Mountains south of Virginia City; Stinking 
Water Creek. 

Saxifraga hieracifolia, Walds. and Kit. —Stinking Water Creek; Falls 
of the Yellowstone. 

Saxifraga Jamesit, Dougl.—Hot Sulphur Springs. 

Tellima parviflora, Hook.—Stinking Water Creek. 

Mitella pentandra, Hook.—Yellowstone Lake. 

Heuchera rubescens, Torr.—Near Great Salt Lake, June. 

Heuchera cylindrica, Dougi.—Mountains south of Virginia City; Stink- 
ing Water. Creek. 

‘Heuchera parvifolia, Nutt.—Stinking Water Creek; Yellowstone Lake. 

Parnassia palustris, L.—Upper Falls of the Yellowstone. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 483 


~ Parnassia parviflora, D. C.—Madison Valley. 
Parnassia fimbriata, Banks.—Hot Sulphur Springs. 


CRASSULACE A. 


Sedum Rhodiola, D. C.—Gray’s Peak, Colorado Territory, Dr. Smith. 

Sedum rhodanthum, Gray.—Mud Springs; Yellowstone Lake; Upper 
Falls of the Yellowstone. 

Sedum stenopetalum, Pursh.—Stinking Water Creek ; Madison Valley ; 
Hot Sulphur Springs. 

Sedum debile, 8S. Watson,( Clarence King’s Rep., v. V, p. 102.) —Mount- 
alns near Ogden, Utah Territory, June 5. : 
— Sedum Douglasii, Hook.—Divide between the Snake River and Yel- 
lowstone Lake, 8,800 feet altitude. 


ONAGRACEZ. 


Epilobiums angustifolium, L.—Fort Ellis to the Yellowstone; Mud 
Springs; Yellowstone Lake. 

Epilobium suffruticosum, Nutt.—Yellowstone Lake; Upper Falls of 
the Yellowstone. 

Epilobium alpinwn, L.—Lower Falls of the Yellowstone. 

Epilobium tetragonum, L.—Fort Ellis to the Yellowstone; Mud 
Springs ; Stinking Water Creek; Crow agency.—Variable, and in some 
of its forms closely approaching LH. coloratum, Muhl. | 

Epilobium paniculatum, Nutt.—Fort Ellis to the Yellowstone. 

Gayophytum diffusum, T. and G.—Yellowstone Lake. 

Gayophytum ramosissimum, T. and G.—Great Salt Lake, June. 

Gayophytum racemosum, T. and G.—Pleasant Valley; Mud Springs. 

Gndthera biennis, L.—Fort Ellis to the Yellowstone; Hot Sulphur 
Springs; Madison Valley ; Yellowstone Lake. 

Ginothera coronopifolia, T. and G.—Near Ogden, Utah Territory. 

Ginothera albicaulis, Nutt.—Fort Ellis to the Yellowstone; Mud 

‘Springs; Madison Valley. SURE. } 

Gnothera marginata, Nutt.—Cheyenne, Wyoming Territory, May 25. 

Cinothera marginata, Nutt., var. purpurec, S. Watson.—Stinking 
Water Creek ; Hot Sulphur Springs. 

CGinothera heterantha, Nutt.—Yellowstone Lake. 

Gaura coccinea, Nutt.—Stinking Water Creek ; Madison Valley ; Jef- 
terson Valley. 

Gaura parviflora, Dougl.—Pleasant Valley. 


LOASACEZ.. 


Menitzelia albicaulis, Dougl.—Stinking Water Creek. 

Mentzelia ornatus, T. and G.—Fort. Ellis to the Yellowstone; Hot Sul- 
phur Springs; Mud Springs. 

Menitzehra levicaulis, T. and G.— Hot Sulphur Springs. 


CACTACEA. 
Determined by Dr. George Engelmann. 
Opuntia Missouriensis, Engelm.—Coalville, Utah Territory. 


Opuntia spherocarpa, Engelm. and Big., var (?) Utahensis, Engelm.— 
40 miles east of Fort Hall, Idaho Territory. 


A84 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Mamillaria vivipara, Nutt.—40 miles east of Fort Hall, Idaho Terri- 
tory ; Yellowstone River. 
Hehinocactus Simpsoni, Engelm.—Great Salt Lake, Utah Territory. 


UMBELLIFERZ. 


Bupleurum ranunculoides, L., var. (B. angustum, Hook. and Arn. Bot. 
Beechy.)—Mountains south of Virginia City.—Dr. Gray remarks, ‘ It 
is the same as the plant from Kotzebue’s Sound, and found in America 
only in that region before.” : 

Carum Gairdnert, Benth. and Hook.—Hot Sulphur Springs; Yellow- 
stone Lake ; Lower Falls of the Yellowstone. 

Sium angustifolium, L.—Yort Ellis to the Yellowstone. 

Osmorrhiza nuda, Torr.—Y eilowstone Lake. 

Myrrahis occidentalis, Benth. and Hook.—Fort Ellis to the Yellowstone. 

Cymopterus alpinus, Gray, var.—Stinking Water Creek; Upper Falls 
of the Yellowstone. , 

Cymopterus feniculaceus, Nutt.—Mountains south of Virginia City. 

Thaspium trifoliatum, Gray.— Mountains south of Virginia City. 

Archangelica Gmelini, D. C.(?)—Gray’s Peak, Colorado Territory. 
Dr. Smith. 

Ferula multifida, Gray.—Utah Territory. 

Heracleum lanatum, Michx.—Stinking Water Creek; Hot Sulphur 
Springs. 
CORNACEZ. 


Cornus pubescens, Nutt.—Medicine Lodge, September 15. 
CAPRIFOLIACE.. 


_ Linnea borealis, Gronov.—Hot Sulphur Springs; Upper and ‘Lower 
Falls of the Yellowstone. . 
Symphoricarpus montanus, H. B. K.—Stinking Water Creek. 
Symphoricarpus occidentalis, R. Br.—Yellowstone Lake; Madison Val- 
ley ; Crow Agency. 
Lonicera involucrata, Banks.—Pleasant Valley ; Lower Falls of the 
Yellowstone. 
Sambucus racemosa, L., var, pubens, S. Watson.—Lower Falls of the 
Yellowstone. 
RUBIACE. 


Galium Aparine, L.—Madison Valley. 

Galium multifiorum, Kellog.—Great Salt Lake, Utah Territory. 

Galium trifidum, L.—-Fort Ellis to the Yellowstone; Upper Falls of 
the Yellowstone ; Pleasant Valley. 

Galium triflorum, Michx.—Fort Ellis to the Yellowstone. 

Galium boreale, L.—Madison Valley ; Fort Ellis to the Yellowstone ; 
Hot Sulphur Springs; Yellowstone Lake. 


V ALERIANACE 2. 


Valeriana edulis, Nutt.—Pleasant Valley ; Stinking Water Creek. 
Valeriana dioica, L., var sylvatica, S. Watson.—Pleasant Valley. 


COMPOSIT AL. 


Liatris punctata, Hook.—Fish Creek; Jefferson Valley; Boteler’s 
Ranch. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 485 


Brickellia grandiflora, Nutt., var. minor, Gray.—Gray’s Peak, Colo- 
rado Territory, Dr. George Smith. 

Hacheeranthera canescens, Nutt.—Between Madison and Jefferson 
Rivers. 

Aster integrifolius, Nutt.-Mud Springs; Yellowstone Lake; Falls of 
the Yellowstone. 

Aster adscendens, Lindl., var.—Yellowstone Lake. 

Aster faleatus, Lind].—Hot Sulphur Springs. 

Aster multiflorus, Ait.—Fish Creek, Jefferson Valley ; Boteler’s Ranch. 

Aster glacialis, Nutt—Lower Falls of the Yellowstone. 

Aster salsuginosus, Rich.—Lower Falls of the Yellowstone. 

Aster Haydeni, sp. nov.—Stems (1-3) from an erect transversely fur- 
rowed caudex, lanulose above, 3 to 5 inches high, each bearing a single 
head of medium size; radical leaves linear, grass-like, 3 to 4 inches 
long, 1 to 2 lines wide, rather acute, 3-nerved; cauline leaves few, 
smaller; scales of the involucre in about 3 series, lance-linear, often 
purplish, acute, with scarious lacerately fringed margins, shorter than 
the disk; rays apparently purplish; style of the disk-florets with subu- 
- late branches, of which the hispid portion is 3 times as long as the 
stigmatic; achenia linear-oblong, nearly 3 lines in length, 6 to 8 costate, 
slightly villous at the summit; sete of the pappus minutely barbellate.— 
This plant belongs to the section Xylorhiza and is allied to A. Ander- 
soni, Gray, from which it is chiefly distinguished by its almost glabrous 
achenium and narrower involucral scales.—Upper Falls of the Yellow- 
stone. 

Aster elegans, T. and G.—Hot Sulphur Springs. 

Aster Engelmanni, Gray.—Yellowstone Lake. 

Aster glaucus, T. and G.—Boteler’s Ranch. 

Hrigeron Canadense, L.—Ogden, Utah Territory. 

Hrigeron compositum, Pursh.—Upper Falls of the Yellowstone. 

Hrigeron compositum, Pursh, var. discoideum, Gray.—Y ellowstone Lake. 

Erigeron grandiflorum, Hook., var. elatius, Gray.—Gray’s Peak, Col- 
orado Territory, Dr. George Smith. 

Hrigeron acre, L.—Madison Valley. 

Hrigeron Bellidiastrum, Nutt.—Near Ogden, Utah Territory. 

Brigeron macranthum, Nutt.—Yellowstone Lake. 

Brigeron glabellum, Nutt.—Pleasant Valley; Madison Valley. © 

Hrigeron corymbosum, Nutt.—Pleasant Valley; Mud Springs. 

Erigeron cespitosum, Nutt.—Stinking Water Creek; Mud Springs. 

Hrigeron canescens, 'T. and G.—Stinking Water Creek. 

Diplopappus alpinus, Nutt.—Stinking Water Creek. 

Diplopappus alpinus, Nutt., var—Mountains south of Virginia City. 

Tounsendia spathulata, Nutt.—Mountains south of Virginia City. 

Townsendia grandiflora, Nutt.—Mountains south of Virginia City. 

Townsendia scapigera, D. C. Eaton, (C. King’s Rep., vol. V., p. 145,) 
var. elatiov.—Scapes 3 to 9 inches high; leaves more or less acute. 

Solidago Virga-aurea, L.—Mud Springs; Yellowstone Lake; Upper 
Falls of the Yellowstone. 

Solidago Virga-aurea, L., var. alpina, T. and G.—Hot Sulphur Springs. 

Solidago gigantea, Ait.—Boteler’s Ranch; Yellowstone Lake. 

Linosyris viscidiflora, T. and G.—Yellowstone River. 

LTinosyris Howardii, Parry.—Crow Agency. 

Aplopappus acaulis, Gray —Mountains south of Virginia City. 

é Tr aed pygmeus, Gray.—Gray’s Peak, Colorado Territory, Dr. 
ymith. . 
Aplopappus cespitosus, Gray.—Stinking Water Creek. 


486 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Aplopappus Parryi, Gray.—Gray’s Peak, Colorado Territory, Dr. 
Smith. 

Aplopappus inuloides, T. and G.—Hot Sulphur Springs; Yellowstone 
Lake; Boteler’s Ranch. 

Chrysopsis villosa, Nutt.—Stinking Water Creek; Fort Ellis to the 
Yellowstone; Hot Sprin gs; Madison Valley. —Several forms. 

Grindelia squarrosa, Don.—Madison Valley; Fish Creek. 

Wyethia amplexicaulis, Nutt.—Near Ogden, Utah Territory. 

Balsamorrhiza Hookeri, Nutt. —Pleasant Valley. 

Balamorrhiza macrophytla, Nutt.—Near Ogden, Utah Territory. 

Rudbeckia laciniata, L.—Madison Valley. 

Helianthus lenticularis, Doug].—Madison Valley. 

Helianthus petiolaris, Nutt.— Madison Valley. 

Heliomeris multiflora, Nutt.—Yellowstone Lake. 

Helianthella uniflora, T. and G.—Fort Ellis to the Yellowstone; Yellow- 
stone Lake. 

Gaillardia aristata, Pursh.—Stinking Water Creek; Fort Ellis to the 
Yellowstone; Madison Valley. 

Cheenactis ’ Douglasii, Hook. and Arn.—Stinking Water Creek; Hot 
Sulphur Springs; Madison Valley. 

Hymenopappus ‘tenuifolius, Pursh.—Stinking Water Creek. 

Bahia oppositifolia, Nutt.—Golden City, Colorado Territory, Dr. 
Smith. 

Bahia leucophylla, D. C.—Hot Sulphur Springs; Mud Springs ; Yel- . 
lowstone Lake; Falls of the Yellowstone. 

Actinella acaulis, Nutt.—Cheyenne, Wyoming Territor y, May 25. 

Actinella grandiflora, T. and G.—Stinking Water Creek ; Pleasant Val- 
ley. 

Helenium autumnale, L.—Fish Creek, Jefferson Valley. 

Layia heterotricha, Hook. and Arn —Great Salt Lake, June 1-5. 

Amida hirsuta, Nutt.—Fort Ellis to the Yellowstone ; ; Great Falls of | 
the Yellowstone. 

‘Achillea Millefolium, L.—Stinking Water Creek; Fort Ellis to the 
Yellowstone; Mud Springs. 

Matricaria discoidea, D. C.—Great Salt Lake, June 1-5. 

Artemisia dracunculoides, Pursh.—Fish Creek; Crow Agency; Fort 
Ellis to the Yellowstone; Yellowstone Lake. 

Artemisia trifida, Nutt. ‘Spring Creek, September 20. » ; 

Artemisia tridentata, Nutt.—Yellow stone River; Mud Springs. 

Artemisia Ludoviciana, Nutt., var. latifolia, T. ‘and G.— Yellowstone 
Lake; Crow Agency. , 

Artemisia vulgaris, L.—Madison Valley ; Mud Springs. 

Artemisia biennis, Willd.—Fish Creek; Medicine Lodge. 

Artemisia frigida, Willd._Fort Ellis to the Yellowstone; Crow 
Agency; Fish Creek. 

Artemisia Richardsoniana, Bess.—Lower Falls of the Yellowstone. 

Gnaphaliwm luteo-album, L., var. Sprengeliit, D. C. Eaton. — Mud 
Springs. | 

Antennaria margaritacea, R. Br.—Fort Ellis to the Yellowstone; Yel- 
lowstone Lake. 

Antennaria Carpathica, R. Br., var. pulcherrima, Hook.—Mountains | 
south of Virginia City. 

Antennaria alpina, Geertn.—Mud Springs; Falls of the Yellowstone. 

Antennaria dioica, Geertn.—Fort Ellis to the Yellowstone; Yellow- 
_ stone Lake. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A487 


Antennaria racemosa, Hook.—Fort Ellis to the Yellowstone; Madison 
Valley. 

Senecio lugens, Rich., var. Hookeri, D. C. Eaton, (Clarence Kin o's 
Rep., vol. V, p. 188.)—Near Great Salt Lake ; Upper Falls of the Yel- 
lowstone. 

Senecio lugens, Rich., var. exaltatus, D.C. Eaton, (loc. cit.)—Gray’s 
Peak, Colorado Territory, Dr, George Smith; mountains south of Vir- 
ginia ‘City. 

Senecio hydrophilus, Nutt.—Mud Springs; Stevenson’s Island, Yellow- 
stone Lake, July 28. 

Senecio triangularis, Hook.—Madison Valley; Yellowstone Lake; Up 
per Falls of the Yellowstone. 

Senecio Andinus, Nutt.—Madison Valley; Crow Agency. 

_ Senicio aureus, L., var. obovatus, T. and G.—Weber River Valley, Utah 
Territory ; Pleasant Valley. 

Senecio aureus, L., var. borealis, T. and i nererne: Wyoming Ter- 
ritory ; Gray’s Peak, Colorado Territory, Dr. George Smith. 

Senecio aureus, L., var. croceus, Gray.— Near Ogden, Utah Territory. 

Senecio canus, Hook.—Hot Sula Springs. 

Senecio cernuus, Gray.—Gray’s Peak, Colorado Meanie Dr. George 
Smith. 

Senecio eremophilus, Rich.—Gray’s Peak, Colorado Territory, Dr. 
George Smith. 

Senecio Fremontii, T. and G.—Boteler’s Ranch. 

Senecio amplectens, Gray.—Gray’s Peak, Colorado Territory, Dr. 
George Smith. 

Arnica angustifolia, Vahl.—Mountains south of Virginia City; Yel- 
lowstone Lake. 

Arnica Chamissonis, Less.—Hot Sulphur Spring gs; Yellowstone Lake ; 
Falls of the Yellowstone. 

Arnica mollis, Hook.—Gray’s Peak, Colorado Territory, Dr. George 
Smith. 

Arnica cordifolia, Hook.—Yellowstone Lake. 

Tetradymia canescens, D. C., var. imermis, Gray.—Stinking Water 
Creek; Fort Ellis to the Yellowstone, 

Cirsium discolor, Spreng.—Madison Valley. 

Cirsium undulatum, Gray.—Fort Ellis to the Yellowstone. 

Cirsium foliosum, D. C.—Hot Sulphur Springs. 

Cirsium Drummondii, T. and G.—Pleasant Valley ; Yellowstone Lake. 

Hehinais carlinoides, Cass., var. nutans, D. C.—Madison Valley. 

Calais nutans, Gray.—Mountains south of Virginia City. 

Stephanomeria exigua, Nutt.—Mud Springs. 

Hieracium Scoulert, Hook.—Yellowstone Lake. 

Hieracium albiflorum, Hook.—Yellowstone Lake. 

Crepis runcinata, 'T. and G.—Yellowstone Lake. 

Crepis occidentalis, Nutt.—Lower Falls of the Yellowstone. 

Crepis acuminata, Nutt.—Mountains south of Virginia City. - 

Lygodesmia juncea, Don.—Fort Ellis to Yellowstone; Mud Springs; 
Madison Valley. 

Lygodesmia spinosa, Nutt.—Mountains south of Virginia City. 

Macrorhynchus glaucus, D. C. Katon, (Troximon glaucus, Nutt,) var. 
‘dasycephalus, 'T. and G.—Stinking Water Creek; Fort Ellis to the Yel- 
lowstone. 

Macrorhynchus troximoides, T. and G.—Fort Ellis to the Yellowstone; 
Yellowstone Lake; Upper Falls of the Yellowstone. 

Taraxacum Dens: leonis, Desf.—Fort Ellis to the Yellowstone. 


A488 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Mulgedium pulchellum, Nutt.—Fort Ellis to the Yellowstone; Fish | 
Creek ; Madison Valley. 


LOBELIACE 4. 
PORTERELLA, gen. nov., (by Dr. John Torrey.) 


Calyx 5-cleft; the tube obconical and adherent. Tube of the corolla 
entire, cylindrical, straight; limb bi-labiate; the upper lip erect, 2- 
parted ; lower lip ‘of 3 nearly obovate-cuneate, erect lobes. Filaments 
united their whole length; anthers included, smooth, the two lower ones 
with a minute bristle at the tip. Capsule oval- obconical, 2-celled; pla- 
centae many-seeded. Seeds elongated, tapering at each end. —A small 
branching annual, with entire linear-lanceolate leaves, and blue, axillary, 
pedicellate flowers. 

Porterella carnulosa, (Lobelia carnulosa, Hook. and Arn.)—Plant gla- 
brous, 2-3 inches high, branching from the base; leaves 4 an inch long, 
sessile, acute; pedicels ‘shorter than the leaves ; ‘tube of the calyx acute 
at the base, lobes linear-lanceolate, erect; corolla nearly twice as long 
as the lobes of the calyx.—Muddy shores of Yellowstone Lake, along 
with Limosella aquatica, L.; Madison Valley. It has also been found in 
the Snake country of Oregon. ‘The genus is dedicated to Professor 
Thomas C. Porter, and the diminutive form used because suited to the 
plant, and also because Porteria is already preoccupied by a South 
American genus. 

CAMPANULACE Zi. 


Campanula rotundifolia, L.—Stinking Water Creek; Fort Ellis to the 
Yellowstone; Hot Sulphur Springs. 

Campanula rotundifolia, L., var. linifolia, Gray.—Mud Springs. — 

Specularia perfoliata, A. D.. —Ogden, Utah Territory. 


ERICACE Ai. 


Vaccinium Myrtillus, L.—Fort Ellis to the Yellowstone; Upper Falls 
of the Yellowstone. 

Arctostaphylos Uva-ursi, Spreng.—Fort Ellis to the Yellowstone. 

Bryanthus empetriformis, Gray, (Proc. Am. Acad., vol. vee p. 367.)— 
Upper Falls of the Yeliowstone. 

Ledum glandulosum, Nutt.—Madison Valley. 

Pyrola rotundifolia, L., var. incarnata, Hook.—Upper Falls of the 
Yellowstone. 

Pyrola, chlorantha, Swtz.—Yellowstone Lake; Hot Sulphur Spring os, 

Pyrola secunda, L.—Pleasant Valley ; Yellowstone Lake. 

Moneses uniflora, Gray.—Yellowstone Lake; Falis of the Yellowstone. 

Chimaphila umbellata, Nutt.—Yeliowstone Lake. 

Pterospora Andr omedea, Nutt.—Madison Valley; Upper Falls of the 
Yellowstone. 

PLANTAGINACE A. 


Plantago eriopoda, Torr.—Mountains south of Virginia City. 
PRIMULACE As. 


Primula farinosa, L.—Mountains south of Virginia City; Stinking 
Water Creek. 


GEOLOGICAL SURVEY OF THE TERRITORIES. . 489 


Primula Parryi, Gray.—Gray’s Peak, Colorado Territory, Dr. George 
— Smith. 

. Dodecatheon Meadia, L.—Pleasant Valley ; Stinking Water Creek. 

Androsace septentrionalis, L.—Yellowstone Lake; Upper Falls of the 
Yellowstone. 

Androsace filiformis, Retz—Fort Hilis to the Yellowstone; Mud 
Springs. 

Lysimachia ciliata, L.—Fort Ellis to the Yellowstone. 


OROBANCHACEA. 


Aphyllon fasciculatum, T. and G.—Madison Valley; Yellowstone Lake. 
Phelipea Ludoviciana, Don.—Yellowstone Lake.—The anthers are 
wholly glabrous. 
SCROPHULARIACE A. 


Scrophularia nodosa, L.i—Ogden, Utah Territory. 

Collinsia parvifiora, Dougl.—Stinking Water Creek; Fort Ellis to the 
Yellowstone. 

Pentstemon Menziesii, Hook., var. Scoulert, Gray, (Proc. Am. Acad., 
vol. VI, p. 59.) —Divide between Yellowstone Lake and Snake River. 

Pentstemon Menziesii, Hook., var. Lewisii, Gray, (loc. cit.)\—Yellow- 
stone Lake. 

Penistemon glaber, Pursh.—Utah Territory. 

Pentstemon cyananthus, Hook.—Pleasant Valley. 

Pentstemon cristatus, Nutt.—Stinking Water Creek. 

Penitstemon acuminatus, Dougl—Georgetown, Colorado Territory, Dr. 
George Smith. 

Pentstemon ceruleus, Nutt. —Cheyenne, Wyoming Territory, May. 

Pentstemon confertus, Dougl., var. ceruleo-purpureus, Gray. —Pleasant 
Valley ; Stinking Water Creek ; Yellowstone Lake. 

Pentstemon attenuatus, Lindl. ” Stinking Water Creek. 

Pentstemon deustus, Dougl. —Madison Valley. 

Mimulus luteus, L. — Great Salt Lake ; Pleasant Valley ; Mud Springs; 
Yellowstone Lake; Lower Falls of the Yellowstone. 

i fimulus Lewisii, Pursh.—Lower Falls of the Yellowstone. 

Limosella aquatica, L.—Muddy shores of Yellowstone Lake. 

Veronica Americana, Schwein.—Stinking Water Creek ; Crow agency. 

Veronica alpina, L. — Yellowstone Lake; Falls of the Yellowstone. 

Veronica serpyllifolia, L.—Mud Spring . Falls of the Yellowstone. 

Veronica scutellata, L. ee Falls of the Yellowstone. 

Veronica peregrina, L., var. (?)—Pleasant Valley.—Probably a dwarf 
form ; two inches in height, 

Sy ynth yris alpina, Gray, (Enum. Pl. Parry, p. 25.)—Gray’s Peak, Col- 
orado Territory, Dr. George Smith. 

Synthyris pinnatifida, S. Watson, (Clarence King’s Rep., v. V, p. 227, 
pl. 22,) var. (?)—Mountains south of Virginia City.—The radical leaves 
of our plant are much more dissected than is represented in Watson’s 
figure, the cauline leaves or bracts more numerous, and the racemes , 
longer and more densely flowered. 

Castilleia afinis, Hook. and Arn., var. minor, Gray, (Am. Jour. Sci., 
n. 8., vol. 34, p. 336.)—Mud Springs. 

Custilleia ‘pallida, Kunth.—Stinking Water Creek; Fort Ellis to the 
Yellowstone ; Madison Valley; Hot Springs; Yellowstone Lake. 

Castilleia par viflora, Bong.—Utah Territory ; ; Pleasant Valley. 


490 GEOLOGICAL SURVEY OF THE TERRITORIES, 


Pedicularis Grego Retz.—Madison Valley ; Yellowstone Lake ; 5 
Great Falls of the Yellowstone. 

Pedicularis bracteosa, Benth.—Yellowstone Lake ; Fort Bllis to the 
Yellowstone. 

Pedicularis contorta, Benth. , (fide Gray.)—Mountains south of Vir- 
ginia City.—Reported before by Hooker only, from Mount. Rainier, 
north of the Columbia. 

Orthocarpus luteus, Nutt.—Utah Territory ; Yellowstone Lake. 


VERBENACE Al. 


Verbena hastata, L._—Fish Creek, Jefferson Valley. 
Verbena Braeweena, Michx. _—Betw een Madison and Jefferson Rivers.. 


LABIAT A. 


Mentha Canadensis, L.—Madison Valley; Crow Agency. 

Mentha Canadensis, L., var. glabrata, Benth.—Madison Valley. 
Monarda fistulosa, L. — Fort Ellis to the Yellowstone; Madison Valley. 
_Lophanthus urticcefolius, Benth.—Fort Ellis to the Yellowstone. 
Dracocephalum parviflorum, D. C.—Hot Sulphur Springs. 

Brunella vulgaris, L. —Mud Springs. 

Scutellaria resinosa, Torr.—Near Ogden, Utah Territory. 

Scutellaria galericulata, L.—Utah Territory. . 

Stachys palustris, L.—Stinking Water Creek ; Madison Valley. 


BoRRAGINACEA. 


Mertensia Sibirica, Don.—Yellowstone Lake; Lower Falls of the Yel- 
lowstone. 

Mertensia alpina, Don.—Utah Territory ; Pleasant Valley ; ; Yellow- 
stone Lake. 

Lithospermum longiflorum, Spreng.—Utah Territory. 

Britrichium villosum, D.C., var. aretioides, Hook.—Mountains south 
of Virginia City; high peaks around Yellowstone Lake. 

Eritrichium Californicum, D. C.—Utah Territory ; Pleasant Valley. - 

Hritrichium glomeratum, D.C.—Upper Falls of the Yellowstone ; Chey- 
enne, Wyoming Territory. 

Eritrichium angustifolium, Torr.—Ogden, Utah Territory. 

Hritrichium crassisepalum, T. and G.—Pleasant Valley, Northern 
Idaho. . 

Eritrichium leiocarpum, 8. Watson, (Krynitekia, F. and M.)—Stinking 
Water Creek; Mud Springs. 

Echinospermum deflecum, Lehm., var. floribundum, S. Watson (EL. flori- 
bundum, Lehm.)—P leasant Valley ; ; Stinking Water Creek ; Madison 
Valley. 

Echinospermum , Redowski, Lehm..var. occidentale, 8. Watson.—Chey- 
enne, Wyoming Territory; Great Salt Lake; Stinking Water Creek; 
Yellowstone Lake. 

Myosotis sylvatica, Hoftm., var. alpestris, Koch.—Mountains south of 
Virginia City; Yellowstone Lake. 


HYDROPHYLLACEZ. 
Hydrophyllum capitatum, Doug].—F ort Ellis to the Yellowstone. 


Phacelia cireinata, Jacq.—Stinking Water Creek; Hot Sulphur Springs; 
Madison Valley; Yellowstone Lake. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A491 


Phacelia Menziesii, Torr.—Stinking Water Creek; Fort Ellis to the 
Yellowstone; Mud Springs. 

Phacelia sericea, Gray.—Movntains south of Virginia City. 

Phacelia Franklinii, Gray.—Yellowstone Lake. 


POLEMONIACEZ. 


Phlox ceespitosa, Nutt., var. condensata, Gray, (Proc. Am. Acad., vol. 
VIII, p. 254.)—Near Cheyenne, Wyoming Territory, May. 

Phlox Douglasti, Hook., var. longifolia, Gray, (loc. cit.) —Utah Territory. | 

Phlox Douglasit, Hook., var? diffusa, Gray, (loc. cit.)—Lower Falls of the 
Yellowstone. ° 

Phlox longifolia, Nutt.—Pleasant Valley ; Stinking Water Creek. 

Phlox longifolia, Nutt., var. brevifolia, Gray, (loc. “Cit., p. 255.)—High 
rocks on Yellowstone Lake. 

Collomia grandiflora, Doug].—Weber River Valley, Utah Territory. 

Collomia linearis, Nutt. —Fort Ellis to the Yellowstone; Mud Springs; 
Yellowstone Lake; Lower Falls of the Yellowstone. 

Collomia gracilis, Doug].—Vicinity of Ogden, Utah Territory. 

Gilia liniflora, Benth. ,var. pharnaceoides, Gray, (Proc. Am. Acad., vol. 
VIII, p. 263.)—Fort Ellis to the Yellowstone; Mud. Springs. : 

Gilia pungens, Benth., var. Hooker, Gray, (loc. cit., p. 268. )—Stinking 
Water Creek. 

Gilia spicata, Nutt.—Cheyenne, Wyoming Territory. 

Gilia congesta, Hook.—Pleasant Valley. 

Gilia congesta, Hook, var. crebrifolia, Gray, (loc. cit., p. 274.)—Stink- 
ing Water Creek. 

Gilia aggregata, Spreng.—Utah Territory. The variety with white 
flowers from Georgetown, Colorado Territory, Dr. George Smith. 

Gilia inconspicua, Doug).—Weber River Valley, Utah Territory. 

Polemonium confertum, Gray.—Yellowstone Lake; Upper Falls of the 
Yellowstone. 

Polemonium ceruleum, L.—Yellowstone Lake. ‘ 

Polemonium ceruleum, L., var. foliosissimum, Gray, (loc. cit., p. 281.)— 
Stevenson’s Island, Yellowstone Lake. 


SoLANACEZA. 


Solanum triflorum, Nutt.—Fort Ellis to the Yellowstone ; between 
Madison and Jefferson Rivers. 

Nicotiana attenuata, Torr., (Watson in Clarence King’s Rep. vol. Vi, 
p. 276, pl. 27. Te ae Peak, Colorado Territory, Dr. George Smith. 


GENTIANACEA. 


stone Lake. 

Halenia deflera, Griseb.—Madison River. 

Gentiana detonsa, Fries—Mud Springs; Yellowstone Lake; Fails of 
the Yellowstone River. 

Gentiana Amarella, L., var. stricta, S. Watson, (Clarence King’s Rep., 
vol. V, p. 277.)—Yellowstone Lake; Upper Falls of the Yellowstone. 

Gentiana Srigida, Haenke, var. algida, Griseb.—Gray’s Peak, Colorado 
Territory, Dr. George Smith. 

Gentiana affims, Smith.—Mud. Springs ; Yellowstone Lake; Upper 

Falls of the Yellowstone. 


Frasera speciosa, Dougl.—Mountains south of Virginia City ; Yellow- 


492 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Gentiana Parryt, Engelm. —Gray’s Peak, Colorado Territory, Dr. 
Smith. 


APOCYNACE. 


Apocynum cannabinum, L.—Mud Springs. 
Apocynum androsemifolium, L.—Fort Ellis to the Yellowstone. 
Acerates decumbens, Decaisne.—Madison Valley. 


NYCTAGINACEAs. 


Oxybaphus angustifolius, Sweet.—Madis8n Valley ; Crow Agency. 

Abronia fragrans, Nutt.—Great Salt Lake. 

Abronia fragrans, Nutt., var.—Yellowstone Lake.—Varies from the 
type in its smaller involucral bracts, which do not exceed three lines in 
length, and its more delicate and branching habit. 


CHENOPODIACE A. 


Chenopodium album, L.—Mud Springs; Yellowstone Lake. 

Chenopodium hybridum, L.— Fort Ellis to the Yellowstone; Mud 
Springs. 

Blitum capitatum, L.—Pleasant Valley ; Yellowstone Lake. 

Blitum polymorphum, E. Meyer.—Fish Creek, Jefferson Valley. 

Monolepis chenopodioides, Mog.—Pleasant Valley ; ; Crow Agency. 

Obione canescens, Moq.—Madison. Valley, Medicine Lodge. 

Suceda depressa, Ledeb.—Crow Agency. 


AMARANTACEAs, 
Amarantus albus, L.—Fish Creek ; Jefferson Valley. 
POLYGONACEA. 


Hriogonum cespitosum, Nutt.—Pleasant Valley; Northern Idaho. . 

Hriogonum heracleoides, Nutt.—Utah Territory; Fort Ellis to the Yel- 
lowstone. 

Eriogonum umbellatum, Torr.—Utah Territory; Pleasant Valley; 
Stinking Water Creek; Yellowstone Lake. , 

EHriogonum ovalifolium, J Nutt.—Stinking Water Creek; Yellowstone 
Lake. 


Hriogonum microthecum, Nutt. —Between Madison and Jefferson Riv- 
er; Gallatin River. 


Oxy yria digyna, Campd.—Pleasant Valley; Yellowstone Lake; Upper 
Falls of the Yellowstone. 

Rumex salicifolius, Weinm.—Stinking Water Creek; Yellowstone 
Lake. 

Rumex paucifolius, Nutt.—Pleasant Valley; Northern Idaho. 

Polygonum viviparum, L.—Falls of the Yellowstone. 

Polygonum Bistorta, L., var. oblongifolium, Meisn.—Pleasant Valley ; 
Hot Sulphur Springs; Falls of the Yellowstone. 

Polygonum amphibium, L.—Yellowstone Lake; Medicine Lodge. 

‘Polygonum lapathifolium, Ait., var. incanum, Koch.—Madison River. 

Polygonum tenue, Michx. Fort Ellis to the Yellowstone; Mud Sprin gS; 
Yellowstone Lake. 


Polygonum tenue, Michx., var. latifolium, Engelm.—Mud Springs. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A493 


Polygonum coarctatum, Dougl., var. minus, Meisn.—Yellowstone Lake. 
Polygonum Convolwulus, L.—F ort Ellis to the Yellowstone. 


ELAAGNACE Zs. 


Shepherdia Canadensis, Nutt.—Fort Ellis to the Yellowstone ; Yellow- 
stone Lake. 
SANTALACE 2s. 


Comandra pallida, D. C.—Utah Territory; Pleasant Valley. 


LORANTHACE Al. 


Arceuthobium Americanum, Nutt., in Herb. Durand.—Yellowstone 
‘Lake.—A specimen wassentto Dr. Engelmann, whokindly furnished the 
name and the following note: ‘You follow Hooker in naming it A. Oxy- 
cedri, which, however, has never been found in America. Your plant 
is the same as the male figured by Hooker (FI. Bor. Am., 2, t. 99) and 
no doubt from the same tree, Pinus contorta, and is afemale. Hooker’s 
female is a distinct species. Mr. Meehan obtained the same plant in 
Colorado from the same tree last summer. Nuttall also found only the 
male, as well as Drummond and several other collectors.” 


CALLITRICHACE A. 
Callitriche Verna, L.—Lower Falls of the Yellowstone. 
HUPHORBIACE. 


Euphorbia glyptosperma, Engelm.—Stinking Water Creek; Yellow- 
stone Lake. 

Euphorbia dictyosperma, ¥. and M.—Madison Valley. 

Huphorbia montana, Engelm.—Crow agency. 


URTICACE. 
Urtica gracilis, Ait.—Stinking Water Creek; Medicine Lodge. 
CUPULIFER Z. 


Quercus alba, L., var. Gunnisoni, Torr.—Mountains near Ogden, Utah 
Territory. : 
BETULACE As. 


Betula occidentalis, Hook.—Yellowstone River; Spring Creek, Northern 
Idaho. 

Betula glandulosa, Michx.—Pleasant Valley; Yellowstone Lake. 
Alnus viridis, D. C.—Yellowstone Lake. — . 

Alnus incana, Willd.—Madison Valley. 


SALICACE A. 


Salia longifolia, Muhl.—Utah Territory; Crow agency.—In some speci- 
mens, the serratures of the leaves are very sparse or almost obsolete. 
Salix longifolia, Muhl., var. argyrophylla, Nutt.—Utah Territory. 
Salix mgra, Marsh., var. amygdaloides, Anders.—Utah Territory. 
Salix cordata, Muhl., var—Weber River Valley, Utah Territory. 


494 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Salix cordata, Muhl., var.—Stinking Water Creek. 

Salix arctica, Pallas, var.—Upper Falls of the Tellowetotie: 

Populus balsamifera, L., var. angustifolia, 8S. Watson, (P. angustifolia, 
James.)—Stinking Water Creek; Medicine Lodge. 

Populus tremuloides, Michx. —Yellowstone Lake. 


CONIFER 5. 


Pinus monophylla, Torr. (?)—Near the summit of Emigrant Peak, Yel- 
lowstone River. 

Pinus contorta, Dougl.—Yellowstone Lake ; Yellowstone River. 

Pinus flexilis, James.—Doane’s Peak, near Yellowstone Lake; divide 
between Yellowstone Lake and Snake River. 

Abies Engelmanni, Parry.—Yellowstone Lake. 

Abies Menziesti, Lindl.—Yellowstone Lake. 

Abies Donglasti, Lindl.—Yellowstone Lake ; Yellowstone River. 

Juniperus communis, L. Yellowstone Lake. 

Juniperus occidentalis, Hook.—Mud Springs. 


LEMNACE A. 


Lemna minor, L.—Between Madison and Jefferson Rivers. 
Lemna trisulca, L.—Yellowstone Lake. 


TyYPHACE Al. 


Sparganium simplex, Huds., var. androcladum, Gray.—Medicine Lodge. 
Sparganium simplex, Huds., var. angustifolium, Gray.—Yellowstone 
Lake. 


NAIADACE As. 


Potamogeton rufescens, Schrad.—Hot Sulphur Springs. 
Potamogeton perfoliatus, L., var. lanceolatus, Robbins.—Madison River. 
Potamogeton pectinatus, L., "Worm.—Gallatin River. 


ALISMACE As. 
Triglochin maritimum, L.—Stinking Water Creek. 
ORCHIDACE. 


Hibenaita hyperborea, R. Br.—Mountains south of Virginia City. 
Habenaria dilatata, Gray.—Fort Ellis to the Yellowstone; Yellowstone 
Lake. 
Spiranthes Romanzofiana, Cham.—Mud Springs; Upper Falls of the 
Yellowstone. — 
IRIDACE 25. 


Tris tenax, Dougl.—Cheyenne, Wyoming Territory; Stinking Water 
Creek ; Fort Ellis to the Yellowstone. 
Sis yrinchium Bermudiana, L.—Stinking Water Creek; Upper Falls of 
the Yellowstone. 
LILIACEA, 


Zygadenus glaucus, Nutt.—Stinking Water Creek; Hot Sulphur 
Springs; Madison Valley. 

Zyg gadenus Nuttallii, Gray.—Mountains south of Virginia City; Stink- 
ing Water Creek. 


GEOLOGICAL SURVEY OF THE TERRITORIES. A495 


Xerophyllum tenax, Pursh.—Fort Ellis to the Yellowstone. 

. Veratrum album, L.—Utah Territory. 

Prosartes trachycarpa, S. Watson, (Clarence King’s Rep., vol. V, p. 
344,)—Mountains near Ogden, Utah Territory. 

Streptopus ampleaxifolius, D. C.—Upper Falls of the Yellowstone. 

Smilacina racemosa, Desf., var. amplexicaulis, 8S. Watson, (S. amplexi- 
caulis, Nutt.)—Pleasant Valley ; Stinking Water Creek. 

Smilacina stellata, Desf.—Pleasant Valley; Yellowstone Lake. 

Fritillaria atropurpurea, Nutt., in ft_—Yellowstone Lake. 

Calochortus Nuttallii, T. and G.—Yellowstone Lake. 

Calochortus eurycarpus, S. Watson, (Clarence King’s Rep., vol. V, p. 
348.)— Yellowstone Lake. 

Lloydia serotina, Reich.—Pleasant Valley. 

Brythronium grandifiorum, Pursh.—Madison Valley. 

Leucocrinum montanim, Nutt.—Cheyenne, Wyoming Territory. 
_ Camassia esculenta, Lindl.—Utah, Territory ; Pleasant Valley. 

Milla grandiflora, Baker, (Triteleia grandiflora, Lindl.)—Utah Ter- 
ritory; Fort Ellis to the Yellowstone. 

Allium brevistylum, S. Watson, (Clarence King’s Rep., vol. V, p. 
350.)— Yellowstone Lake. 

Allium bisceptrum, S. Watson, (loc. cit., p. 351, pl. xxxvii.)—Fort Ellis 
to the Yellowstone. 

Allium cernuum, Roth.—Pleasant Valley, Northern Idaho. 

Allium stellatwm, Fraser.—Mud Springs. 

Allium acuminatum, Hook.—Ogden, Utah Territory. 

Allium Schenoprasum, L.—Mountains south of Virginia City. 


JUNCACE. ZS. 


Inugula spadicea, D. C., var. parvifiora, Ledeb.—Yellowstone Lake; 
Falls of the Yellowstone. 

Luzula campestris, D. C., var. nivalis, Wahl.—Gray’s Peak, Colorado 
Territory, Dr. George Smith. 

Luzula spicata, Desv.—Upper Falls of the Yellowstone. 

Juncus Balticus, Deth., var. montanus, Engelm.~-Mountains south of 
Virginia City. 

Juncus Drummondii, E. Meyer.—Yellowstone Lake; Lower Falls of 
the Yellowstone. 

Juncus Parryt, Engelm. —Upper Falls of the Yellowstone. 

Juncus tenuis, Willd., var. congestus, Engelm.—Mud Springs. 

Juncus bufonius, L. "Fish Creek, J efferson Valley; Crow Agency. 

Juncus longistylis, Torr. —Pleasant Valley ; Madison Valley. 

Juncus nodosus, L., var. megacephalus, Torr.—F ish Creek; Crow Agency. 

Juncus Canadensis, J. Gay, var. coarctatus, Engelm. Mud Springs. 

Juncus Mertensianus, Bong.—Yellowstone Lake; Great Falls of the 
Yellowstone ; Madison Valley. 

Juntus Mertensianus, Bong,, var. paniculatus, Engelm.—Pleasant 
Valley. 
_ Juncus xiphioides, KE. Meyer, var. montanus, Kngelm.—Mud Springs; 
Yellowstone Lake. 

CYPERACEZ. 


Determined by 8S. T: Olney, esq. 


Eleocharis olivacea, Torr.—Mud Springs. 
Hleocharis palustris, Rk. B.—Lower Falls of the Yellowstone. 
Hleocharis acicularis, R. Br.—Crow Agency. 


A96 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Scirpus validus, Vahi.—Crow Agency. 

Scirpus atrovirens, Muh].—Fort Ellis to the Yellowstone. 

Carex Halli, Olney, ined.— It is the same as Hall and Harbour’s 
617, named by Booth 0. Parryana, but quite unlike all the arctic speci- 
mens I have seen of that species. To the eye it resembles C. scirpoidea, 
when the latter has a second small spike, but differs in having a shorter, 
more obovate, smooth, many-nerved perigynium, and more entire seales, 
not ciliated. I propose that it should bear the name of Mr. Elihu Hall, 
of Athens, Illinois, its first collector.” —Pleasant Valley. 

Carex vallicola, Dew.—Pleasant Valley.—‘ All I have seen of this has 
been of Hayden's collection.”—Olney. 

Carex siccata, Dew.—Pleasant Valley ; Mud Springs. 

Carex Douglassii, Boott.—Mountains south of Virginia City. 
«Carex Bonplundit, Kunth, (?) var. minor, Boott. —Falls of the Yellow- 

stone. 

Carex festiva, Dew.—Fort Ellis to the Yellowstone; Mud Springs; 
Yellowstone Lake. 
Carex aquatilis, Wahl.—Pleasant Valley; Upper Falls of the Yellow- 

stone. 

Carex aquatilis, Wahl., var. minor, Boott.—Yellowstone Lake; Upper 
Falls of the Yellowstone.—The perigynia have denticulated margins, a 
character which may carry this plant elsewhere. 

Carex rigida, Good.—Hot Sulphur Springs; Falls of the Yellowstone. 

Carex aurea, Nutt.—Fort Ellis to the Yellowstone. 

Carex Raynoldsii, Dew.—Yellowstone Lake ; Great Falls of the Yel- 
lowstone. 

Carex lanuginosa, Michx.—Stinking Water Creek. 

Carex emathorhyncha, Desv.—Pleasant Valley, Northern Idaho. 

Carex utriculata, Boott., var. minor, Boott.—Yellowstone Lake ; Madi- 
son Valley. 

Carex ampullacea, Good.—Yellowstone River. 


GRAMINACE A, 


Alopecurus alpinus, Smith.—Stinking Water Creek.—It has most of 
the florets awnless, and the remainder with a very short awn. 

Phleum alpinum, L.—Fort Ellis to the Yellowstone; Yellowstone 
Lake; Falls of the Yellowstone. 

Vilfa asperifolia, Nees and Meyen.—Hot Sulphur Springs. 

Vilfa asperifolia, Nees and Meyen., var. jfiliformis, Thurber.—Upper 
Falls of the Yellowstone. 

Agrostis perennans, Tuckerm.—Upper Falls of the Yellowstone. 

Agrostis scabra, Willd.—Mud Springs; Yellowstone Lake; Yellow- 
stone River. 

Muhlenbergia Mexicana, Trin.—Fort Ellis to the Yellowstone. 

Vaseya comata, Thurber.—Gray’s Peak, Colorado Territory, Dr. George 
Smith. : 

Calamagrostis Canadensis, Beauv.—Yellowstone Lake. 

Calamagrostis Langsdorffii, Trin —Upper Falls of the Yellowstone. 

Calamagrostis stricta, Trin.—Yellowstone Lake; Yellowstone River. 

Calamagrotis sylvatica, D. C_—Lower Falls of the Yellowstone. 

Eriocoma cuspidata, Nutt.—Mud Springs; Hot Sulphur Springs. 

Stipa viridula, Trin.—Fort Ellis to the Yellowstone. 

Aristida purpurea, Nutt.—Hot Sulphur Springs; Yellowstone Lake. 

Bouteloua oligostachya, Torr.—Madison Valley ; Fish Creek. 


GEOLOGICAL SURVEY OF THE TERRITORIES. AQT 


Keleria cristata, Pers.—Pleasant Valley ; Stinking Water Creek. 
Graphephorum melicoides, Beaunv.—Mountains south of Virginia City. 
Melica poceoides, Nutt.—Hot Sulphur Springs ; Yellowstone Lake. 
Melica stricta, Boland.—Pleasant Valley. 
Glyceria nervata, Trin.—Pleasant Valley. 
Glyceria aquatica, Smith.—Upper Falls of the Yellowstone. 
Catabrosa aquatica, Beauv.—Pleasant Valley. 
Pea Andina, Nutt.—Stinking Water Creek; Upper Falls of the Yel- 
lowstone. 

Poa arctica, R. Br.—Falls of the Yellowstone. 

Poa Serotina, Hhrh.—Lower Falls of the Yellowstone. 

Poa nemor alis, L. Form. (?)—Pleasant Valley; Fort Ellis to the Yel- 
lowstone. 

Poa alsodes, Gray.— Yellowstone Lake. 

Poa tenuifolia, Nutt.—Fort Hilis to the Yellowstone; Yellowstone Lake. 

Festuca tenella, Willd.—Utah Territory. 

Festuca ovina, .—Pleasant Nellie Stinking Water Creek; Fort 
Killis to the Yellowstone. 

Bromus breviaristatus, Thurb., (Ceratochloa, Hook.)—Pleasant Valley ; 
Mud Springs ; ieee Lake ; Yellowstone River. 

Phragmites communis, L.—Crow Agency ; Spring Creek. 

Triticum repens, L.—Pleasant Valley ; Yellowstone Lake; Fish Creek. 

Triticum caninum, L.—Pleasant Valley ; Yellowstone Lake. 

Triticum strigosum, Steud.—Salt Lake, Utah Territory. 

Hordeum pratense, Huds.—Pleasant Valley; Yellowstone Lake. 

Hlymus condensatus, Presl— Pleasant Valley ; Stinking Water Creek. 

Trisetum subspicatum, Beauv.—Yellowstone Lake; Falls of the Yel- 
lowstene.  - i 

Aira flecuosa, L.—Mud Springs; Yellowstone Lake; Upper Falls of 
the Yellowstone. - 

Aira cespitosa, L.—Pleasant Valley; Mud Springs; Upper Falls of 
the Yellowstone. 

Aira danthonioides, Trin.—Gray’s Peak, Colorado Territory, Dr. George 
Smith. 

Hierochloa borealis, R. and S.—Yellowstone Lake. 

Phalaris arundinacea, L.—Stinking Water Creek. 

Beckmannia eruceformis, Host.—Madison Valley; Fish Creek. 

Panicum dichotomum, .—Mud Springs; Yellowstone Lake. 


EQUISETACE A. 


Hquisetum levigatwn, A. Br.—Pleasant Valley ; Madison Valley. 
Hquisetum robustun, A. Br.—Hot Sulphur Springs. 
Hquisetum arvense, L.—Fort Ellis to the Yellowstone; Yellowstone 
Lake. 
FILICES. 


Pieris aquilina, L.—Yellowstone Lake. 

Cryptogramme acrostichoides, KR. Br.—Yellowstone Lake. 

Cystopteris fragilis, Bernh.—Mud Springs. 

Woedsia scopulina, D. C. Eaton.—Stinking Water Creek ; Madison 
Valley. 

Woodsia Oregana, D. C. Eaton.—Madison Valley. 


LYCOPODIACE @. 


Lycopodium annotinum, L. —Upper Falls of the Yellowstone. 
Selaginella rupestris, Spring.—Mountains south of Virginia City. 
3248 


498 GEOLOGICAL SURVEY OF THE TERRITORIES. 


MUSCI. 
Determined by Leo Lesquereux, esq. 


Sphagnum acutifoliwm, Ehrh.—Madison Valley. 

Didymodon vubellus, W. and M.—Doane’s Peak, Yellowstone Lake. 

Barbula ruralis, Hedw.—Yellowstone River. 

Grimmia conferta, Funk.—Yellowstone River. 

Grimmia ovata, W. and M.—Yellowstone Lake. 

Grimmia Scouleri, Mull—Upper Falls of the Yellowstone. 

Grimmia calyptrata, Hook.—Upper Falls of the Yellowstone. 

Racomitrium heterostichum, Brid.—Madison Valiey. 

Racomitrium canescens, Brid., var. ericoides, Lesy.—Doane’s Peak. 

Polytrichum juniperinum, L.—Yellowstone Lake. 

Aulacomnion palustre, L.—Foot of Doane’s Peak. 

Brywn pyriforme, L.—foot of Doane’s Peak. 

Bryum iniermedium, W. and M.—Yellowstone River. 

Dinvwm punctatum, L.—Snake River. 

Mnium cuspidatum, Hedw.—No locality given. 

Bartramia fontana, Brid.—Foot of Doane’s Peak. 

Dichelyma faleatum, Myrin.—sSnake River. 

Climacium dendroides, W. and M.—Madison Valley. 

Hypnum salebrosum, Brid., (2?) sterile-——Madison Valley. 

Hypnum Nevadense, Lesg.—Utah Territory. 

Hypnum serpens, L., (?) sterile-—Yellowstone Lake. 

Hypnum irriguum, Wils., var. fallax, Brid.—Soda Springs, Utah Ter- 
ritory. : 

Hypnum giganteum, Schimp.—Soda Springs, Utah Territory; between 
Crow Agency and Gallatin River. 

flypnum aduncum, Hedw., (?) sterile-—It may be a new species.—Tur- 
bid Lake, August 17. 

Hypnum jilicinum, L.—Falls of the Yellowstone. 

Hypnum triquetrum, L.—Madison Valley. 

Hypum , (2)—‘ It has the aspect of . graminifolium, Hook., but 
cannot be determined for lack of fruit. Itis probably a new species.” 


HEPATICA. 


Marchaniia polymorpha, L.—Yellowstone Lake. 


LICHENES! 
Determined by Prof. Edward Tuckerman. 


Hvernia vulpina, Ach.—Yellowstone Lake. 

Usnea barbata, Fries.—Yellowstone Lake. 

Alectoria Fremontii, Tuckerm.—Yellowstone Lake; Falls of the 
Yellowstone. 

Parmelia ambigua, Ach.—Yellowstone Lake. 

Umbilicaria vellea, Fries, (2?) sterile-—Yellowstone Lake. 

Peltigeria rufescens, Hoffm.—Hot Sulphur Springs. 

Lecanora subfusca, Ach.—¥ellowstone Lake. 

Cladonia rangiferina, Hofim.—Madison Valley. 


eA Pu Ne. 


METEOROLOGY, 


BY 


J. W. BEAMAN, 


METUOROLOGY, ETC. 
By J. W. Beaman, 


WASHINGTON, D. C. 

DEAR Sir: I take pleasure in presenting for your consideration the 
report of my meteorological labors, feeling that, although itis deficient 
in many respects, it cannot but be of some interest in answering many 
questions as to the climate and elevation of the interesting region 
which furnished the data. As you are well aware, our irregular move- 
ments in the field have their effect in overturning anything which looks 
toward a perfect system of observations, such as it would be gratifying 
to present for your approval. Nevertheless, the record has been kept 
with comparatively few omissions. It has been my aim to be as accu- 
rate as the character of the work would admit. To this end observa- 
tions have been made at each camp with the mercurial barometer and 
attached thermometer; detached open-air thermometer; dry and wet 
bulb thermometers. The direction and force of the wind; kind and 
movement of cloud; the proportional amount of clear sky; special phe- 
nomena, and other data worthy of record, have been noted. 

Here I desire to mention, with gratitude, the assistance afforded me, 
in the way of valuable advice,’ by Mr. Charles A. Schott, of the United 
States Coast Survey; also, valuable aid rendered by Mr. Fred. J. Huse, 
and Mr. A. Smith, of the expedition. Let me thank you, sir, for your 
ever generous and gentlemanly bearing toward myself. 

Trusting that the accompanying report will meet your approbation, 
I have the honor to be, very respectfully, yours, 


Dr. F. V. HAYDEN. 


J. W. BHAMAN. 


INTRODUCTION TO THE TABLES. 
INSTRUMENTS USED IN THE METEOROLOGICAL WORK. 


‘The barometers used were Mr. James Green’s siphon-barometers, 
No. 1283 and No. 1363. No. 1363 had an index error of —.0i”; No. 
1283, +.01”. No. 1283 proved to be worthless, on account of an imper- 
fection in the glass tube, which allowed the mercury to escape. It was 
refilled at Ogden, Utah Territory, but after a few days’ use broke at 
the point of imperfection, and was set aside until we reached Fort Hilis. 
Here, through the kindness of Colonel J. W. Barlow, United States 
Hugineers, we obtained a new tube, which was filled with mereury by 
Mr. A. Schénborn, topographer of the expedition. It did good service 
at Boteler’s Ranch, Yellowstone Valley, during the latter part of July 
and nearly the whole of August. Its index error was +.015”. Soon 
after starting homeward it proved unreliable, from loss cf mercury and 
admission of air. No. 13863 worked admirably, passing through the whole 
- journey from Ogden to Fort Ellis; from Fort Ellis to Yellowstone Lake, 
and back; and from Fort Ellis to Fort Bridger. On comparison at the 
Medical Museum, Washington, D. C., with a standard barometer, its 


502 GEOLOGICAL SURVEY OF THE TERRITORIES. 


index error was found to be — .013”, having changed in its journey of 
seven thousand miles only .003 of an inch, which represents about 3 
feet in elevation. Wemade use of small aneroid barometers for taking 
elevations on the road, and also those of mountains. The results ob- 
tained were quite satisfactory. But without a mercurial barometer as a 
check they are almost worthless. Their structure is so delicate as to 
render them liable to permanent injury by a sudden fall, or by the con- 
stant jolting to which they are subjected when carried upon horseback. 
It was only with the utmost care that the one which was my constant 
companion was kept in good condition. Another fact noted was the 
sluggish return of the index to the correct reading, after having been 
taken to an elevation of several thousand feet. The thermometers used 
were those manufactured by James Green, and were small-sized Fahren- 
heits. Two of these were fitted to be used as wet and dry bulb ther- 
mometers, and furnished much interesting material for the record. 

The distances given in the table were estimated from odometer read- 
ings, taken by Mr. A. Schénborn, of the expedition. 

To the officers in charge of the U.S. Medical Museum, Washington, D.C., 
we are indebted for much valuable assistance in the comparison of the 
instruments with standards. We have made the suitable corrections in 
accordance with their advice. 

The abbreviations used in the tables are those customary for the time 
of day, for the points of the compass, and for the clouds. 

In the column for the force of the wind, 0 indicates a perfect calm ; 
1 indicates a light air; 2 indicates a pleasant breeze; 3 indicates a fresh 
breeze; 4 indicates a stiff breeze; 5 indicates a moderate blow; 6 in- 
dicates a light gale; 7 indicates a hard gale; 8 indicates a very heavy 
gale; 9 indicates a very great storm; 10 indicates a hurricane or tor- 
nado. 

In the column for the amount of clear sky, 0 indicates a sky totally 
obscured by clouds; 10 indicates a sky perfectly free from clouds. The 
intermediate numbers indicate the relative amount of clouds and clear 
sky. 

The barometric readings have been corrected for index error, and 
reduced to 32° Fahrenheit. 

In the caiculations for elevation, Loomis’s tables, as given in his ‘ In- 
troduction to Practical Astronomy,” have been employed. The morn- 
ing observations at 6 o’clock, or reduced to that hour, and the evening 
observations at 9 o’clock, or reduced to that hour, have been preferred. 


503 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


‘OTUVOSULTD PUT AA 
“AYOULG 


‘T}M08 
pue 490M Suri; no 
“Ayours 0710) 


‘og 
AZUL 


"LOZ 
“TOT, OT TO 9SoM SpNOTO 
"‘qSoM4L10U APQSOUr Spno[y 


"MOS Spnoj[p 


‘Tj10u Sspuo[9 
"MOZT.LOT 


TI9}SoM TO MOT spnorg 


Ch bh 


SP LT 


LAURCCH! ei 


*SyIVULOL [vote 


‘So[ TUL Ul Tap 
-5Q WOLF 00ULISIp 12707, 


| 


“Joo UL 
WONvAep) o}vurxoiddy 


“so[ita ur dares 
0}, dumvd wor ooaLysIq, 


‘AYS .UepD FO JUNO | Se 


‘Spnhoypd JO UoTPOOIIG 


cooereesyesss -198-"ITO “NY | T 1 “MS | 9% 1¥99 4e6 1%cG | TLa "4s 
ee a 1) | 0 |"""""""| 6 |¥8h HELG | Lg | B6E "Gs 
Epos: TS"IEY | 0 |°-"-" "> "| op |f9S he | SL | 988 "Gs 
Se tes NO~dtO “NY | G | “MN [#83 | 9 [466 |fP6 | LEE “Gs 
(Na a oie 9 |€9P |E6G [FES | Lopes 
G | “ANS |§es |_TS /Fee HEL | OTP cs 
b LS | FE |¥SS |€68 |06 | LIP “Ss 
T ‘ «\tp |fcr | OS | 0S | £06 FG 
1 ‘ML 'S | TL | 2S | 89 |_89 | S69 Fe 
i LS | LT |F09 BL [$82 | LPB “Fs 
g “AL | 9% [#%9 $88 | 28 | £68 Fs 
OM ees 6 | 2S | 99 | 29 | Gen "ss 
6 | “HN | Gs |79S OL |f9L | Cruse 
& | “ACN /¥ee |¥0L | $6 |_F6 | GIL Se 
T ‘N | 2 /#LL [£68 |¥06 | 918 ce 
I ‘S  |fGr [09 | GL |RGL | TER "cs 
T "Nl | 8b JES Een [EGA | GGL “Ss 
B ‘N | 0% |£29 |€48 |#28 | 062 “G6 
G 9 PL |4SS |469 |€69 | GIS cs 
j ‘A'S |For [€e¢ | P9 | $9 | Scr ‘se 
I ‘LS | 96 |¥S¢ |¥e8 |%68 | Ter ‘se 
OL Fae eee '86 | 09 |¥68 |#8 | TSP cs 
T | N Nifst | Gg |#z9 [829 | ThP “Gs 
T | “AL'S | 26 [£65 |¥98 |f98 | PS ‘se 
T “M | 06 [169 |#48 [#28 | 9GP ‘es 
OES £16 | 19 |te8 | G8 | GaP ce 
i! ‘S| pL l€6S |¥89 |£89 | eer cs 
T ‘HS | or £97 |€29 #89 | TIP Ss 
T “M | 1G [#09 |fe8 |€e8 | 89g Ss 
I ‘N /€1e |#09 | @8 |€08 | 229 ‘ce 
T ‘N | 2 /#8¢ |¥08 |#08 | cog ‘sz 
(o) (o} fo) (0) 
>| i 8 Bl sa| oi td 
as Ee pe a a] oO i) 
E ge] € [ESSE 8] og 
* S| & |e8le/B/8| 2s 
° ct B eyo] o fol} OH 
S| is ° Zo. (5 tou oa aS 
q e Fh raieg|| le ep len ct 
ct @}| o ic) OW 
a a) oe jee Ss) as | oe 
y 5 © Ba/8/E6)] 8 wh 
Blog jes sieiat oe 
. 0 =) ee leshed 
5 oO e) as oo) Cia ic} 
ps oa a io) oS H 
4 iy a 8 i) oO 


"SUIT 1407 02 UaphO wolf Uay07 su01YyMA.LASqQ 
‘SATAV.L TVOINOTOMORLAN 


‘ep oy} JO ino 


owns e001901909 
ons ooorntr 


IG AAS OS 


4 


~- rPrernonnn Anoaq 


~--==-KeTIBVA eyoLy ‘yoorD ssvry 


“AOL 
TCA SyOVO “Foorp preyuqimg 
QAO OSPlIq oY IveU ‘preyqyTUAG 
‘OTTTA 
“STIOAA JO qQnos ‘AoyVA oyeyD 


‘OOH 1opla xog ‘mA07 
9q} JO y8v0 ‘oovI10} uoesvyuodoD 


‘SSUTIdG oUlTeg Thar AA von ‘prox 
“THER OM TOUT [RIF WH “YUL4-197'e AK 


‘qodop on} 48 Yor, pvorier 
oY} OAOGe Joey cgT puv ‘AITO 
OT} JO4SBO OOVIIOY OF} TO ‘UOpPsO 


‘ 


‘MOTVAIOsSgo Jo duvD 


SURVEY OF THE TERRITORIES. 


GEOLOGICAL 


5O4 - 


eee Ser ars 30 Sy aN val INE ie oe ety “ags"n)) 0 [-7> “7 "/¥6 | BS EPS JERS | 9G "Se [7" OEE STD | FG : 
es (STEEN fea esta acs YS ATO “AIS | OQ | L |fs lero | co | 97S'es | MEA 008 | &@ ~* “OS PhIq oT} 9° ‘SLLONF JOOP POVTA 
*“Aqeno : 
‘PUTA ‘ULIOYS-AOpUMT, [777 oeL $19 | “mS | 77 MIE Says"nD | T | “AL'S [f1s | 09 |f18 [868 | OPT "ss | UW 00 ‘BT | &3% 
“qynos APsour sper GOP Ce eter Sep sites ai ea orga ie ol aaa: = IIVOEETIWG@) | (0) eee @L | G&G | 29 | 29 | PRLS | TL" 006 | & ' 
‘Ul “¢ 
(NSIS Fagdehe Ty eee ea = Weta secre > tar “198-1 | € “E'S | 1 \f9g |f0 [ex9 | GLE es | EA GTB | Ge 
qs0M g : 
-Gynos §« WoyS-copuNtT, | CB eee 777 agS-"MO “TINT | § ‘LS |f90 | xg [Ess |_F8 | estes | td 00% | GS 
SRABOULOIIMOMMG) Src ee alee we |eaeuae Nea | pen ee ee DAS MOR Maye) |e oe {98 |Fe9 |(06 |*16 | S60"cs | EE 00 OT | @ 
SARIN TAG slate she here | aoe tine a esc aaal eine: no-ato I | ET | “ANS: | GE 8S |fLk |_2L | SBG"Gs | UL" 00 | GG 
ons: SBIR PP ae See eS (aoe 9 | “HN | -a}s-Nd “Mo-"arH | G MN ltt | 9¢ Mon \fon | 216eo | wm acts | Te 
: 00 0BY 
“SIP B Ye WI0}s-TopuNIT, | OO'OLT | 89FT| =| E | AN | qs-19 “ny | € S Qe eo eBeItGe | Topecenle sue CnOe eG = sie WH 3210, 
ge seers POE 7] 6 "NE [5777770 “9-17 | T "NM 4G [feo |¥09 | 09 | TSG ce | Le 006 | Te 
“QOULISTP B 4B IOpUNTT, | ~~" CBee sala See T | ag [eetetaqs-no “ng | ¢ | “A'S [fea [a9 | 88 | 88 | 098 ‘Ge | etd OOF | 06 eo 
2 GE TOL | PE ET] € “me (7-7 no aqs-aT | T | “ANS | 86 JEF9 |[tG6 | 16 | PLP SG | 1606 (OTHE || We OSplaq OY} TvoU “YG T SsOyy 
“QToll oF 
Sulimp  wildoxs-topunyy, || Thr P| “| | a4s-mo “no-a10 | T "Sor | eg [¥¢9 |éco | O6F Gs | EZ 00°9 | 0G 
ee oe eens pao T “g [- ays-no “ays-atg | £ | “ANS [ELE |_eG [f0n [FTL | Lth'Go | Ast 8 | OL 
“qyiou Apysour Spno[D | 86 LPL | PE OT! =| & GG Fo ope MONDO UG) Ohno og |fe9 eG | 86 | cprics | md ape | GT “IOATY JNON Jaog wo durvo puooeg 
Maen cea coc ‘F| € 1 fom (acco snp | T | “A'S | 2 |éo¢ 1869 |FT9 | Specs | eB OED | GT 
‘TQ10u : 
04 possed WILOIS-IOPUBUY, esse series ele es ERS SS S| SS OBESE JIS-11) | T WSs 9 COS “GG | ut ‘d Loy ae} QL 
2 AEN a Spleen seen Foe 10 “ITD | T | “ANN | 8% gog se | ad ose | BT ““TOATY JNON Flog wo duo ysany 
“Fqort : S 
4sey si[eotoqd vaoumy |--77-7 77) OCOMPInS leer eee --ags-mo ‘no-aTQ | Q |7 77 "|G lop lich |iGh | 683°os |" ULB OG 9 | ST ; 
SIA ee “no “ato “Aqsa | T | “ANN [SET [ETS | $9 | #9 | cece | wr“ 00'S: | LE 
& | ‘M‘N | 60 [fo [$98 f98 | Ieese | Ed Ope AE Sees" yoory ysivypL 
(Nee eee G |ftr |EOr | OF | POG SS | AB OOD | AT 
UR ORES 3 aes ays-ato “rg | 0 [777777 7| eT [fr |£09 [f19 | erase |-7 ta-d 00'8 | OF 
nog | T | “AL'S [fT |t09 | 8 | 8 | LAE es [77 MA -d Ogg | OF See tee yoorp roddoyssvry 
Sipe nes 0 |'-"-"-"78 | ee |f09 |Fzc | Tepes | Ute 009 | OF 3 
senecre-[eeso-- => -rgseaTg | T. | “OLN | 6E feG TL | G4 | L08°SS | Md gts | ST ous MOD—Ad]IVA OIVH 3oerTD SSVr) 
- lo) (0) (o} {o) 
8 i) | & o eal ips] ) is) ish} ts) el jae] is) 
She SE AS teh a Sst 5 g| & |ek 4 Beeb e] Ea 
Bolcae ee |e l8 5 | € lagiele|& | ae E ° 
ye 8 | 5 ° 5 ae Neel ee &| ge ° 
Or is} iS 1. et is} lear) FR ° mei = oO 5 ice Fe 
Ba =a] a =] ° E eqolo|o|=& OF a 
58 Ke) ler} 5 =) Pe ° = = fo) ON Es fa ct ae S 
‘SyIVULOL Te1OWI4) fs 3 Be Be | o Fb eB ® Foo [Bt ot) eps ae = "MOVATesqo Jo duivp 
fo} D ° st eyclitess tel 
Be lee |e | 8 | 8 e| & |BS/E/E\E| $2 g 
eo |e] Slal & e| 4 |g8/8)/818| ae 
B ans ) ze ta = 5B B iS (} oO =-0a 
Sy ky Se +4 a ot 4 ae ot cH 
+ i) 7 © a | (i) & 4 
oR 3 5 eae el ec |e o 


‘ponutyw0g—sypy7 jog 07 uapho wosf udyy? suoynalasgg 


505 


LITORIES. 


BS 


> 


SURVEY OF THE TER 


GEOLOGICAL 


“qSOA4 
MO[S UWOplos [upLNvag 


“SUISTI ING ‘AOL SPNOTO 


“od 


“‘OTQVOSURTD PULA, 
*DUL 
-IG9TD Sphopo ‘AIsns purr 


T,ZLLOT ISVO AO]. TOSTATID, 
‘o[qvenueyO PULA 


“Aysnd Pur AA 


‘IOMOTS SULIVOTO 

‘SUIUQYoT] pus Iopunyy, 
“OUT 

“SII pula ‘urIvr jo sdoiqg 


“SUTIVOTO SPLOTO 

“yueqstp 
iopuny} ‘urvrz jo sdorq 
‘TWgaou “no Aavoyy 


"qSoAN 
“YJMo0s wII0jS - Iepunty, 


‘SUIVITNOL, 
TANT Tompeg ao Ayoug 


“4Sv9 
“TJIOU SUMO; spnolp 
“OUISTL “QSvd SpRO[O 
*‘qSOMT]]N0S 

WOlf PUA pu uray 


“qyNos SUTLJTNOU DO UIE 


9 Ol Seal) eee 
pec Esl] Pees ee 
eee SSUES Se iar 
Toles oes 
sebeen 130713 | “a ‘N 

Raa | eed |e § “NL 
Rees Sects ic 
Tees ely ‘Nl 
ashen ap el ik eee eo eo 
“Lr $647 Hl Rie 
4000) | 8 | “AN 
seas woo $19 | “aN 
pia e se Bolhete 
sonsdel[seciag: B NI 

co 0¢ | 8 eLl>--7- t | ‘aN 


Bees Tys-"ug 
Sisto 9-19 


Ts-19 
BSE ING) 


SIRES. Ralseonacg) 


pipes N0-"1to * ND 
Da Sasi aes manta) 
> WS “asp 
Ree earn 198-11) 
eet nd") “RO 


REICH ES Bice N9-"ITQ) 
EM eS SIEIRLITG td-"IL9 


Pe Se tS REPS ID 
THE “198-119 
52> A98="10) “UL NT 


Soiree Nara Oucct@) 
Aeron qs-n0 “ITO 
See E NS I}S-119 


=== T98-"10) “ULE AT 
198-170 ‘NO “UITN 

> n0-"I10 “198-119 
~ I}S-"l0 “14S-"atO, 


“=== 10-110 “TUT NT 


See eS =a TON cL) 


Bees I9s-"a10 “nO 
Wen gS 38-09, 


-ays-n0 ‘no “arg 
"199-0 ““aqS-"I1g 


7 =< TOT ““aaS="19 
757 198-0: UE NT 
“=-* 198-0 ‘TENE 


0 
iG 
c 
I 
il 
€ 
fe 
1 
I 
g 
i! 
T 
Vv 
-F 
ii 
jz 
€ 
0 
I 
L 
I 
ig 
qT 
il 
I 
g 
T 1S 
§ | “aN 
€ | HN 
| Nes 
€ | “dN 
TL | GN 
alee 
I 
I 
i) ge INC 
T LS 
is ‘Ss 
TE | AAS 
I S 
I S 
@ioo-s 


ee) 


1D SHLD 1 1 uD 


tac 


ret Oe 


aa 
lorie=) 
ao wD uD 


Soy 
GoD 


“scar OF“ 
---mr dd 00 F 
---m "60 '% 
SSS a (OTE: 
---mr 1 098 
“rr utd 66 °€ 
---te 08 ‘SE 
52 WUEELOG eS: 
“ta 1199 °8 


---ta ‘d og ‘e 
UB’ OE ‘TL 
“= 8) GT °9 
--- utd OF‘), 
---ut'd 09 “F 
urd og 'T 
“7 ULB CT °¢ 
---un'd Op *y, 
---m'd Cf "pF 
---ur-d 9g °% 


“Ul "B00 °L 
---urd oe "2, 
---ur'd 60 ‘7 
---ar'd go 
S500 1 (I}S 
---uE'd cP 
---cr'd 00 


---tr'd 00 
“"UL'B OE 
~--ua'd 00 


---urt "dL 00 * 
---ur'd 90 
~""Ur'B 00 
---tr'd gg 


ro Qt rons O1gr Sig Qa 


GU OD OD OD CO SH SH SH XH 


----> KaTO VIUISITA vou ‘ssutidg 


77st s-""* JOATY JVM BALUNS 


“--*"7"- YoorO Leo popivy-ypovr_. 


“reos*2" "310020 JUODTEAL 


‘mOT} 


-OUN OF} Ivo ‘OUR, §,MOSTL AA 


roseresssssecso=-KOTIVA JUSUOTT 


SS SRS cies eee eter] CLOUIAG) sig. 


Brncecc sos ns T= = oom SUMED 


rosctecoonssseccso* OMB IONIC 


--* JOANT oyeug ‘osprig s,10]Aey, 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


506 


“TIeL OT49T[ AIO A. 
Boadene Bt) sdoip Moy VW |--- 
“q89 MAT} IOU WH10}G |--- ~~~ 


‘uIer Josdorip Moy W 
*purA 07 oovpASUTATS ULI 
‘BOYNULOL OZ SUSY] ‘Urey 


od 


"78, MYJ1,0 SULUIOZ SpnoTO 


“qooMTT} 100 Aavoy, Spno[p, 
‘80 SUIMIOF SpuOTO 
‘DULIVOTO SPLO[O 


‘SyIVUIOT [VIOME-4) 


‘SOT UI Wap 
OQ WoIF 99UB}SIp [L}0T, 


a 
"O 


“sorter ur dims 
oj} durvo WoOIf souVysIC 


airxo1ddy 


"QOOF UF 


WOT}EASTI 9}v 


“AYS IvVI[D Jo JUNOULYy 


"A [77 Uae “148-1 
“AA 0077 We “ays-"np 
OF las He peace 18-0 “19 
Be SED | SERN ele 198-119 
Sh PEPEDEREES nd-"119 
“AA [agS-n0' 0-110" 
Sree no “199 
SSeS 1}8-"n0 “NO 
Reais cai 148-10 
BEDE ACe AS WIN 
--aqs-"no ‘nd-"a119 
Pieroni 148-119, 
-"ags-"nd ‘nd-"atO 
ORTON A BEG ice ng 
Sine oe s-"Nd “no 
BRIE TO ‘198-I19/ 
ps ecerorere (sie. 8-19 
PS weacieT ne ce ea Img 
SiNNeasel| a eae ree 1it@) 
“AN Pia cre at a ae eg np 
Cy est | SRE Lehr ng 
"N [> aqs-"n0 ‘no-"119 
io) A 
q S 
sd a 
er 8, 
8 e, 
g, 2 
e a 
So 
a 
fos 
en 


ponuipwog—si) 7 7407 7 UsphH woul uoyn, SwOYALO8QO 


T | NNIZ9 [Ee jis |¥ec | 00s"se |--- wads, | SL 
& | “AN [#66 #09 188 [Esa | OO es | doo | et 
T | W'S aH] GE |¥29 |f98 |tp8 | FOS "Gs | 7 UL 00 BE | ST 
(ee Becca ETL |_09 [ETA [ETL | O16 G3 | WV 006 | et 
T |"a'S a l#8 [fos | 6s |i19 | 290°¢e | ad con | OF 
6 |"L'S | SL | 9¢ | 69 | Go | 810 es | udogy | at 
@ | AUNN IPG |f29 ¥68 [Fes | €86 7S) UE doo Ln | OL 
T ‘S /f8T | pO [FLL |ELL | 9S0'GG | -m-B00G | ar 
i! “AA EPL | PS [#89 |¥29 | SLL Ss | -Me00'8 | IT 
(a a 8 |€0r [fPe |fsc | Talc | Mm -doe, | OL 
j "A | BE | S| GL | GL | 98G"GS | Ud cp er | OT 
T |TANUN! OF | 09 | OL | GL | L0G 'GG | B00 | OL 
Ons eras 9 | tr | OS jtGr | serce | we dog, | 6 
& | “AACN |fPL 1S | 99 | 19 | OBnss | wm -doe >, | 6G 
Oe ees fp \tbP |Sar \tes | corse | av 009 | 6 
S 1 |8 [tor |f09 | so | 9986s | mu dogy, |8 
g “aE «FOL ¥9r [$9S | 8G | LkS "GG | -wa-dcpe | 8B 
IT |@'N NI] 9 | 19] 29] 89 | Ogee | me-dog rt | 8 
I "N | 9 | 86 | bP | Sh | 280 G6 | BOOY | 8 
I | 'N ‘NI OF [fOr |f0s its | cco be | dog, | 2b 
G | 'N NI To |€0e [fen | FA | CLL PG | Me dog'e |Z 
G |"AV'S'S| ST [FPS [FOL [ETL | THA 7S |" POOL | Lb 
& | “A'S {EBL [FGF |£89 [£69 | PoB Po | ue -dog', | 9 
© | “A'S [fe [ers | 28] 28] OS8 ba] -medoo, | 9 
@ |AANUAAIEBT [FES | Ge ELL | GLO FS | Ute 00 OT | 9 
T | “ACN [iS |for | 29 | 19 | Gh Fe | me 008 | 9 
& | “MS | FT for |f09 |f19 | 080 PG | ue dor, | ¢ 
T |ASAAIS08 | 7S EPL | GL | GEOFG | me does's |G 
& | AS*AN| 8s [Foo [fez | 92 | 980 46 | Ud og er | G 
© |ACNUAMIEPE [Ezb | 9 |f09 | 800" | mtv 00G |G 
fe "N |f9L | GP 8S | 6S | 890% | Mm Vet, |G 
fo) fo} fo) (o) 

| le) SiraeS ins ts 
g| 2 |BBs/G|s] 8 2 
2 Bb Bogle | ee =o 
Bee ele |e alae cs 
: so) 3 =| 4 wo 
Pie ese ee) eee 8 
= a j2@ 8 | 8 |e ee 

ee Se ae 

F \Psls |e |e] 8 


IOAN UTABTIVH eA wo 
‘STIM 9107 Iveu duo puoseg 


STM OW TOALT Ue yseg 
WO ‘][Iu1-Aes pjo wou duro peut 


“->-SpVOI JO Y10J Ava ‘yoorg ALT 


pera *-7-*-="-"H90I9 SuTIdg oR, 


1 *IOATIT 
WOSIpey, BAOGV oovIIO, 4sITT 


T0D—AqID VIULsIt A Teou ‘ssutidg 


“MOTyeAIEsgo Fo dmg 


507 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


‘qSOMTINOS 


mor opyuds yySTS 


“450M 
pure ‘q9nos ‘Yj10u ureyy 
‘qSvO YOVlq Spnolo 


‘survjunour wo Asyoug 


"Tj10u Ap4g0uL Spno[O 


“‘OUTT[VP UIvA yo Sdorq. 
QYSIm SUTAMp S1OMOTS 


~ 4soM ASsvIq Sprolo 


*KAV OTL 
Apnops ‘ul10}s-1opunty, 
“qy Stl SULINP S1O.MO0TS 
“APIS Surarey 


4SOMTINOS Spnoto 


‘SIVMLOI [VIOMO) 


Sinan erat a (ieee Neat mC. = DLO mncICLO) 5 LLG) 
CDCR IS it Rol AGES 0 NE [07 tr “9 8-aT, 
Ce LoS cs (SEL Cy Z “WT *NE [77> 7>-mo-7ar0 “1D 
COREE a Pte Oso e "MQ |7 77777 m0-"aT0 “nD 
PEEP ES So | beak te “NI - I4S-"ND ‘.149-"IlO 
ago: Goal heaactesoose T | AA ‘9 |° ays-aro “no-219 
Pie Sea Ss | aege iets | mC Amaee g “MG [7-77 0-29 “nO 
TOSI GO Cay Sees a "A'S [777° Tato “n0-"I1D 
Bo Ob Seige [ee RIS Saco 0 |*AA ‘S'9]'Ma-a10 “no “UIENT 
OST TT | leswicge i eres 0 "M. [7 ays-"m90 “a98-"ITD 
ets gaa tebe ole heros “7-1 9 UVa | efor ins aa) 
BiSxe rise eal hers SHE T Chie Ss) PBERR Ge 25 Gish 4X0) 
Se Aish ie iste isto Soak "Molt tags “nD, 
PeR.CoOo qfocecmalsemogel yay Peis Soe epehen Soy gee RigNG) 
Liane et ating Soren ae Bide) 
(See eee ee A | ee eee ane uit@) 
g [roccttetfecc eee nO 
(ie OO iS ee delat u9 
g fcc: Weencemeacee nO 
co eE | €0 OT) v "MA [077077 > Wat ny) 
Peciee feiipser as ep ‘c| 9 GR PBS OMIS LS ala)-Ci) 
FERRO IG OE OCR ROOURE tt) GIN a|Poe Reese ais Eaiya) 
Go6GT | 90°01) 0 mala tc aaa Se eae TOL 
RRS err eee GLE G| 6 ‘MONE [725557777 00 “at 
SI eta retool | OSI (Neal Se OSD RERgerioamsoraaddsn 
ie eS ORGa sees [PCat Me Ss Ngee eit) 
SHOGROrE (ae Cone 68h ‘Fl L "MA {7 TO-"aTO “a48-"aTD 
Oe caters ais rel Se ciChas T "g “ays-no ‘1S-"ITO 
EME | eal aaa | Sette QB Vee =i 9g-nNd “MO-"1TO), 
Si pee aga Resto | See Te cle sisner a eek IN= TO) sO- tre) 
SO Os | ae | Gita 1 "MM [77 ags-m9 ‘nd0-"119 
4 is) >| > io} A 
St ee Ke =} EP 5B 
(ie) co fo} (ar) Ga 
eo of S ist 
Qa op q g = o} 
=o Eas oe es i) za 
as | BB io B Ci 
2 enisp B i) Fh ° Oo 
BiB S2| ats Sloe a a 
5 = eel | & © & a 
Sa Bo | &)| & g 
Be) 99 @ 2 5 
CB Bes | Bole te 
les] Ss st 5 r € 
Se es | 


“YOUDIT 819)9}0F 0} SUIT IOT WOLf Way, SUOyvA.LOSGO 


QNQeAnAOonnAHn VMNQdANANAnRONMWVOSN SON NQQeI AAG se) 


“PULA OT} JO 9010.7 | 


“MS | OT 
“A'S |EST 
ES VG 
‘S| 06 
MS’ M! 8 
“MS | 6 
“AL'S |_08 
"M. |¥01 
“Ni 4 
Reem SG 48 
“MN | 16 
Boer eee 8 
‘(£28 
“"M ‘S [tle 
geepa ae 401 
"MNT /ESG 
“MN [$8 
‘Hh “N | 81 
“MON | GT 
a tee 81 
(C) 
HN OS 
“MEP 
“MS | f% 
“A'S [iP 
Be ueiee TL 
a F 
Ke - 
A: ; 
MS AA} LT 
fo} 
S is) 
Be IB Ee 
8 AG 
<s ag 
So ly 8 
o lee 
tar) Ooo 
les 
eo ice 
Bo 
E ae 
e 24 


*TOYOULOMIIIY GTNG-99 AA | co) 


*IojoMMOUIIEy} qyaq-AIq | ° 


“TOJOULONIIOY? peporyed, | ° 


“SS 


9L0 “SG 


990 SG 
980 SG 
OTT SG 
160 ‘SG 
980 ‘SG 
960 SG 
OTT SG 


LIL “SG 
180 ‘SG 
686 "PG 
G86 VG 
610 ‘SG 
¥60 “SG 
LOT SG 
661 “G6 
LOT ‘SG 
LOT “SG 
LVL SG 
PEL SG 
168 PG 
988 FG 


Go8 PG 
£79 FG 
PLG "SG 
68S FG 
90€ “SG 
GGL “SG 
LLO “SG 
GPL SG 
L8T SG 


“WL ot 0} poonp 
-Q1 SUIPVeL Ol OMOIVT 


“urd 0% °9 


77 wd 00 '¢ 
“ov ur'd ¢B oT 
777 WB 006 
77" ULB GP '9 
“curd 00 "4 
---ua'd CT 


| 
(=) 
(=) 
re 


=| 


A 


iddd 
Ad aa 


MYT rONGrSNHKEK A aH 


é 


; 
Aas A 
ecooonocoonoes IMIMAocimnsooaoocooooecoer 


F 


z 
ae 


ONMOROSH MmTOMOOANNQTOSONNMSO 


EE 
=) 


| 


ASAVeote we 


oo 


‘ep oy} JO oye 


*IOATYT OU0ISMOTIO A, 
eAoqe goofy 08 ‘Toury s,10[090g, 


*‘IojeM OY} JO ooVjAINS 
ey} OAoge yoos 08 ‘MoorD [req 
"[IUd} ULIPUT Wo ‘TOATY UTFeTTED 
qsem Jo youesq ‘xoem) ouradg 


‘po 
UNMON—OANy Uy sever 
HO ‘SIT $10,q 1eeu dureo puooeg 


“TOT}BAIOSGO Jo dure 


S. 


e 
cy 


SURVEY OF THE TERRITORII 


GEOLOGICAL 


508 


‘yy sta 
qe UIeI pus ‘purA. AAvOT, 


‘qos 
pur 4svoe url10}8-TopunTy, 
“T.1OW WOT ULEIT 
‘SvoOyAZUOS WOI, ULI, 


“T[LO1 
puv TyNos Aavoy s1omoyg 
‘qsve SuIssUd 4SoAL WIV 


QUGIa Of} 
SuLIuNp 


Mh =-=-"-10-"IT0 ‘ng 
HANSON ene No-"a19 “19 
AAS So >> wart Sags-"n 
SAN SO Sh eee Be eee ng 
USA eee BO, 

SS SRS = I10 “ng 

nese) 

=. nue) 

Saas no-"1td “ug 

ete ISG To-"110 “NO 

Barat cell ee eas eT 1) 
Sete no “14s-nD 

rs no-"110 “nD 
pisiewleieespa iret up 

poem aN eae Ieee Id “nd-"ILQ 
Sigil siete [Sistas 19-119 
Speake Sali@) 

Soe eater qs-a10 “ny 


TOT “198-19, 
== "UO 138-10, 
== “198-9 
etary q8-"no “no 


=== Wm “19S 
“=> " TOE ‘nd-"aO 
--ags-"no ‘nd-"2I9 


GpEjhvadlsy, oqmainfay eee ea oR oa Ieee 0) FIBA SNCIGsS aes Ijs-"lo “nD 
i} is) >| & ie) A 
1 m | |B o 5B 
S rao Les} oS o is 
slay S58 S| ¢ & ° 
eo 206 I 5B Ee = 
rhe) =e) Eee | et ‘S 
at |i = 5 ‘> 
8 a. =) 30 © g 
‘syIvuled [Bowes BIS Boles] © a es 
Bo | 5B | o 8 2 a 
i Ep =e Suc) = iS) o 
DO =e) bs vax 
ae ey Se 2. Su 
Oe PB o | & fen) 
ea i) ee oe 
'5) 
& 3 5 


Qatar OARMMCYHARQNANAHHAR Attys 


OCR 


‘PULA O19 JO 90107 | 


= 
areal == 
eae 
Aish 


a) 


ARE 
Firs 


as 
wits 


lentes) 


BE 
apie) 


whe 
no Fe 
ws 


TUG 


mM 


“AA 


LN “OL 
“ct 


S 
“A S'S 


‘PULA. O42 JO WOTOIICy 


o> 
ror | 


‘Lojowuloutiey} Arp puv 


JOM WaoAJaq VOI 


#82 ‘PS | UL “8 OT’ 
888 FS | UL 'w Og" 
$89 PS | wed cy: 
TOL FS | tad 00° 
918 Fe |7--ua'd OF * 
TLL “FG [7 ULB 00" 


PLL PG |" Ure CT" 
G08 FG | wad cg 
LIPS |-~ ard OT: 


686 PS | Tv ON" 
EL6 PS | -- ULB OG" 
Tro 66 | wad gp: 
800 Gs | urd oc: 
670 63 | 7 tw GG 


LSL “6S | UB CO" 
700 G3 | wad og * 
Te0 GG | 7 wee CT" 
G00 GS | - wd og: 
GIO GS | We Gp 
COUT AES) || > = WELSH) = 
080 es | utd cp: 
OLT "GS | wad 08° 


OPT 'G@ |" ad CT: 
GEL GB | UE" 00" 


T&T GG |= 


AMrond 


T 


fot 


1 
I 


DPS BS CENOY GE SSESD GHC) (S232) for) 


6L 
6 


ULB 0 “9 


060 GG |-- urd open 


970 ee | - mid 00's 


£60 CR [7 U1 00° 


GL 


PSO “SG | ULB 00 6 


E10 GG | > ULE GT | 


G 


Ap |---* ponaymop—poury §,10je}0g, 


‘LOJOMOULAS TT} QTNG-30 AA 


“ToJsuLOUTTOyY qynq-L1qy 


IO} SULCULLON} payov}0C 


8 ey 
SI So 
S 
eye 5 
lS 5 
ao Fh 
Om st 
ea. eh 
SS @ 
D4 ms 
oo @ & 
roms] S| 
Om 4 
Be 
FAs 
4 
fas) 


PONUUOH—poupy s,.l0jajog IY U9yD] suoynAsasgO 


*OYUqG 


‘MOTJEATESO Fo dup 


509 


TERRITORIES. 


THE 


GEOLOGICAL SURVEY OF 


eal eee ee eee SNS Spe aee no-a19 “ND | € | “ANS “SlEET |_LG Ego |€29 | LeLes | -wevon 6G | 8 
Soe | ce MSS} T4S-"aTO | T | “MS [#8 [feo | 19 #09 | scose | - m-e009 | 8 
eae eke US'S) > > aD | Tt | EN [ESE lcs | 69 [869 | roe | udog, | 2 
JAUNN| "77777" =" DO | & | ANS “S/F | 29 [706 | 06 | 980'se | mm -do0's | Lb 
MS | 577 Mo “N0-"AID | @ | “ANE | GG FCO [428 |¥98 | 210 eG |--- wad OTST | L 
PANGS alee ee Gene nD |S | “@'N | OF |k8S [ape |fen | SGT ss |--- ute 006 | LZ 
SRA ge ae TES TNO) Ih "NM | G JFLS /€99 |fP9 | FOT GS |- TH :vOOL | LZ 
Be ea pee “No | T ‘N | & «TS [#PS |¥So | Teo cs,|--mdog', | 9 
‘Tey, pue ure HG el Gps ecm Sd ee DEEN 2 oes Hee N || Uaioe eal ee a TON GUGaroalsmsunO@Terc=s (09 
“AS [7777 a4s-n0 “nD | € [ANS “S|F8E FeO | 18 fees | Sc6%G | - m-doo'e | 9 
“MSS |" UTE “ays | € | AA 'S “S| GS | 99 | 88 }406 | PS6 FS |" - Ud ce et | 9 
“MSS | 7980 “no-IT | € | AA S'S ier |f9S | OL | OL | 980s |--- Mm -V OSG | 9 
‘SuTppuradg “MS [77 Wm ays" | € | “AAS | TE [fac |$69 | $9 | Geos | -- mE -e Oe ZL | 9 
Se eles “No-d19 *nO | T "A §6| 8 |S [fc9 | €9 | GhOGs |---m-d 00's | ¢ 
alee ecto no-at9 “DO |G | “AS | CG |f09 |#e8 | €6 | 90L Ss | -mdoo'e | ¢ 
peeeee “AACN |7 RO-dTo “ays |G | “AA 'S [1S | PL SG [EPG | OTL Gs | me-dooT | ¢ 
SiS gta ese ete NO | @ | “ALN | SF /£99 [#78 | 68 | TLE “Go |" - ure cs6 | G 
Pa lieseer ae “Mo-"It0 “NY | 7 "N |€8 [8h |_Lg |f9¢ | ech es | ma d0s'8 | F 
Saee HO |& | “HN /fle | 8S jin [t6L | 99T‘ce | mt dooF |b 
See “MS [777770 “mo-"1T | G@ | “AN | GG /E6S [PS | S8 | LELSG |--"-- WOO ST | 
; TAN IRE Pee "00 |6 | “A'S |_ST [reo |f92 | 92 | Beo'se | mr BOs 6 | + 
Sa 4 “ALN [707770 “no-"a1 | T “H  |f0OE JET9 | Gt | OL | SGa'Gs |-- We BOT’s | F 
urd ¢ urex AAwopy |--------|---->- PTE ESS SE EI ESTE HIM) ING) |b ta “7 NE I€9 I€Sp | Gc \cg | EIT es |--- me dos. |e 
‘ud d 0§ *f opyuradg |--------|-- Se TN N| °° tata aqs-n9 | T | “aN [Ser [Zee | Th | FL | FBT eg |---medooe | ¢ 
pure iau eset “HN |7 "49s: “no-Ir) | € | “HN |f9T [fPS | TL [Po | PSL “GS |" Md oT Ur | € 
cepeeaal eres “MN [7 ags-0 “WINN | © | “ANN | 0G [£9 [#68 | 8 | SSL'Gs |" mV 0e'6 | gE 
Soe oe eee TAS | as DO | TE | MN | | OS | Lc | ng | O6E se | -m™ BOO |e 
ees "MS [7777 ays-ato "1D | ¢ “N /€6T |_TS [fou |¥0n | Teco | me-dog, | z% 
Gris ae ae nae eee 13 “M |f8 |#¢S | 19 | 9S | SIL cs | Me cPD |Z 
NES Nees ge (BO |S | “AA'S | ST /f0S |#S9 | 89 | F66 FS | AT, | T 
AAS “AA| >>>" “To-"m10 “0 | § | “A'S |#08 |£8S | GL |f08 | G6 ‘Fe | -mdooF | T 
P "S| _¥G |¥09 |#P8 |€98 | 900 GS | -- W 00 Gr | T 
¢ "S  (¥86 |_L¢ |f08 | 08 | 866FG | MV CT 6 | T 
i 'S -|f06 [¥S | PL | SL | 96676 | - TAB OSL | T sony 
TL | “AAS | ST IETS [#99 |fe9 | P96 Fe | w'dep, | Te 
eee pes bP |M"S'S|_GE |¥09 fe6 |¢e6 | 796 Fe | m-doos | TE 
FP (A'S 'S|f08 [£69 | £6 |€16 | G86 Fe | Wd cL er | Te 
see ; €& |AA'S'S| 6G 29 [E16 | 16 | £00 ca | wv es6 | TE 
alee soar or eresreross 1S AN SS] 20 SS #22 | 29 | 1106s |-> weve Os | 1¢ 
BeOS arte Leas ee ee T “MA [EST |S | OL |€02 | 08646 |-- me dog. | 0g 
Sarees “Mf | F | AAS £96 | 9S. #28 |€18 | S86 FZ | -m-dcps | og 
Sete et ree “MS [7-777 Mo-ato “ND | # | “AL'S | Ge |$h9 |£86 | €6 | S00 Gs |°--"- UL ON ZT | OS 
pele ee ces a A cee all Oe (ae ““-dys-m0 “NO | € |A\ ‘S'S |#hso | 8S |€68 | 18) LFO“Gs |--- ULV 006 | OS 
eee “AACN |" 777 a9s-n0 “ND | T | “A'S [#9 [Foc | 6S | rg | 6FO'Ge | me 009 | Os 
Piers | Seren eae [esha eg cries ee ON ONG ‘N | 8 |€89 |#19 [$69 | c90's¢ |-- urdog'3 | 6% 
rate ‘HN [7-7-7 mo “no-a19 | G | “MN |E6T [FPO | #8 | 98 | T80°Gs | --w-deT Ss | 63 
BEC EE ES CMOS S752 Ss 00) |S | smh | fe So |f98) 908 | LOL Ge |7--- 7 UL.O0 Ter | 66 
erred aeons topo er eee ee epee nO-"ITQ | “© {#80 [¢19 | 08 FEL | S9L'SG |" TV OIG | 63 
fist egal ie ‘So [oc ato ND | L | CN [EBT |£09 | GL [Fre | OOT "GG | "Te GE, | 6 
Se soa ieee “no “as-NO | & | AMS 'S| SE |FSS |FL9 | 89 | L687 | ~~ uE-dcc'9 | BB 
Bee alesis no “1s-NO |p | A ‘S'Sl#8t | 9S |#hh | OL | S8BPe | --m'det‘e | 8 
“A | agssno “no-aI |b |AA'S “S| €3 | €9 | 98 128 | 468° | -- md O8 ‘SE | 8 Be 


SURVEY OF THE TERRITORIES. 


GEOLOGICAL 


510 


*YO0T1OOUL 
TeJoMOIvg JO soulpvoyy 


"qSVO “UAE 
qs0M ‘SToBtq AI9A Spno[O 


‘qs0a ATISOUL Spno[oO, 


‘ond 
Of'9 0F OFS WoIy UleY 


‘SIVOLOL [VIEWAx) 


istic 


TUL ULS 


‘SOT 
JIOG WOIf OOWeISIp [e}OT, 


7 


. 


EEE 


SS ERceRS== 119-11 
s7 77-10 “N0-"21Q 
no-"119 


BEBE 


mietores “119-410 “IO 
--aqgs-"nd “n0-*atO, 
~-a4s-"no “nd-"119 
> Wgs-"at0 “9-119 


iealfeaisa]ica| 
Awaz 


A 


Firs Ee 


S Be 
A enw 


lage 


BEBE 


SH OOD SH OOO HS SH OOD G2 C3 CR GW OD OF OD GW SH SH CD rj G2 GR OD G2 
WNW 


MRR 


Ort ri WON eX oD 
SEPP 


FS 


‘sofa ur duo 
0} dcavo wo souesiql 


ur 
ddy 


"3095 
TONVASTS 9}CUTXOI 


‘AYs Ivepo Jo yanouMy 


“A. “75 TO-"IL0 “CENT 
SAN eralit eee 0 “T0-"IL9) 
“A - aq8-no ‘198-"119 
“A ~ A¥S-"N0 “198-119 
"M. > T9S-"110 “198-19 
"AA “-T0-"d10 “19 S-"11O, 
SAN eras SSeS no-"110 “NO 
pUSear Ss aiS aI48-"no “nd-"110, 
“MS Syo set no-"at0 “ng 
ON 3 ceeee 48-19 ‘no 
OG pa (Boar 98-19 
SANG sles oe a4s-"no “nO 
"MS [> -ays-"0 “0-119, 
"AN [7777 ags-no ‘UL AT 
SRM = SSRs case ise ng 
SANG SH icra ers no ‘n9d-"a19 
FAN is cine oe Bese ng 
ae: 
Ler} 
S a 
5 5 
B & 
e a 
° a 
S. Da 
(S| 
a 
2 


‘PUTA oN} JO 9010.7 


‘puUTAA 04} Fo TOTOSII 


‘ro}ouOMLEyy ATp puv 
JOM ToIMJod ooTALOAIT 


“1079 WLOULIOT]}, QTNG-39. AN | ° 


Qh |---- 
pa Pel aes 
£09 |-->" 
pay |pece 
FOU eo 
gg |7-7- 
9) 2229 
$39 777" 
Tenleeea 
2a Pees 
Pgyyeses 
#Ip |o-7- 
let) Jooor 
$49 |o--° 
Ole 
FOL |FOL 
$8L |¥62 
463 |¢h8 
¥OS |€LL 
439 |#89 
$91 |f8L 
EPL |FeL 
iG | Sg 
49 | SF 
£09 | 09 
$18 | €8 
789 |#89 
$89 | 19 
§GL | OL 
$98 |¥98 
88 | 28 


IoVOWMIOMIINYZ qynq-s1q ° 


| doyoumout19 4} poyoryoc | ° 


GIG "SG 


SCL “Se 
698 “PG 
€FB FG 
1&6 FG 
L16 FG 
0€6 “FG 
100 “Sa 
6&0 “SG 


VW oGé 0F poonp 
SUIpvel I1jeuLOIeEg 


-oL 


‘ponulyuog—youny s,.ajojog 1 Uayn;, swoyDAtasqo 


~s curd 00 2 
“curd ct 'b 
“urd GT SE 
77 "UL 'B 006 
“7 van 'd 00 "2 
“urd 0g '€ 
aes UH 00 “GT 
“7 "UL "8 00 6 
“7 urd 00 "2 
“curd cpg 
“7 vurd GT Or 
"7 7UL "GT 6 
“urd 08 "2 
-- 71a 'd OS ‘fF 
“wd Cr Br 
"7 ULB Gh 6 
---ul‘d 08 2 
“rr urd cpg 
“7 urd CT BT 
77 UE "BCT 6 
~ urd OL 'L 
“urd ST's 
ee UL 00 BL 
"77 UL "8 08 8 
"svt 00 ‘2 
"ard 08 € 
“crud CBT 
"7 7UL 8 O16 
777" 06 "2 
"svar 'd 00 "L 
77 ta'd 00 '¢ 
tS UW 00 GT 

ss 

=) 

S 

Lr} 

° 

bar) 

ae 

ime 

} 

oy 

a 


“oly 


“HET 


“""" penulpuop—youvy s§,1epoyog 


*WOI}JEAIOSGO Jo dug 


Bil 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


"199 MT9.10U AT}SOU Spno[O 


“UL "8 OT 0} G Wor AMOS 
‘AYSIU Ol} SULIMp ULE 
“ya 
-0Z OY} WO YOvl[q spnol9g 
‘{SOMYJIOU YOVvlq Spnolo 
2 ‘od 
“Aypous Ara A 
“oT 
4asve Ayous Ato A 
og 
‘qsvo Ayows 


“od 
og 
‘o@ 

“Ayomg 

‘OTQVOcULTp pur ‘Ayours 


‘qsvo0 Ayoug 
*8111094.0C, UL P9T}708 Ox, OWS 


‘ygnos yorrq A18A SpnoytO 


‘qsvo Axotg 

OT 
*AYOUILS 

oO 

“od 
“Ayours Aro A 

‘SUIR 

-junom uo Ayous A110 A 


“Axous Are A. 


*SUIVJUNOM oT} wo Asoug 


“Ayomg 


"NE [7 cno-a1o “ays-19 
"N [77 ags-turo “n0-"119, 
‘N | 7a}s-"uto “n0-"119 
SANEN Alas tone 1S-"n9 'AL9 
SESS ES HOS ISS Halse pay Go) 
eS ae Slee a pea a@) 


498-0 “ard 
Ts-19 “A19 


-"10-"d10 “.198-"1T—) 
** > I8-"a19 
Gar AGRE SIT) 
18nd “IID 


NNER ose tiers “7 NO-a0) 
Pets ae --{"-n0-"110 “198-29 


I}S-"I19 “TQ 


=o Sams ats) RKO) 

(eh Nees Sees ee ie iia 49) 

“MA SS) [>> n0-"a10 “.98-"aTS 
- aqs-"m0 ‘*19S-"a1 

Ses 1JS8-"110 ‘ALO 

Deg eal | chseeeege oi I4S“"I1) 

sie Bic sie Aloo ata) halseaqya) 

aise ali al encarta I}S-"dl9 

"M. |> 198-410 ‘'n0-aTO 

StS Ric Fr SiR Stee encisi cert I9s-"19 

no ‘nd-Itg 

EEE 19S“"IE0) 


“77a 


MRQNQANNRAoOD PH RQ BOHM AQAA NQA AAA rir QIAN HH 9 OD OI HOMO 


AA 
AAA 


gE 
met 


ANS AA] 08 
‘LN | 8T 
‘  |¥8% 
T  |-86 
‘a (fot 


ei 
mom 
pope pte) 


TLL “SG 
OLE Sc 
ASSES) 
961 “SG 
100 “€e 
€00 “G6 


970 “G6 
C80 “GG 
60 “SG 
Sil S6 
CIT SG 
OGL “CG 
PEL “GG 
CTG “GG 
OPL “SG 
T&T “SG 
GGT “SG 
TFL GG 
616 “SG 
606 SG 
0SG ‘SG 
G6G GG 
GET “SG 
FIL Se 
CIT GG 
CTE CG 
966 Fo 
6 FG 
1L6 FG 
980 “SG 


“77 5} $L0Se 
~~ "| GET “Sa 
“-* "| 690 SG 
=| 92096 
~—" "| 270 SG 
“77 5] GLO SG 
yo SHO 
77) )| S20°Se 
"7 "| 8ST Ge 
“77 7] G&G "Se 
“77 "| 096 ‘SG 
+754) Ske ‘SG 
“7771 SLE “GG 


0Z0 GS 


---uL'd Ch Pp 
~~ wd 08 GT 
"ult 00 °6 
“urd 00 *L 

G 


eS UL 00 OT 


Atratitcakte 


2 sqant (el Gir 
---ur-d CT 

“> 1 00 
-- ur’? 00 
--- mm dl GT 
-- urd oe 
--- urd 00° 
--- TL "B 00 * 
---ur'd 00° 


— 


BS 
oo 
on 
= 


“77 ULE 08 °6 


---ur'd Gf ‘p 
“7 ued CT BT 
"UL e 006 
~-- utd og 9 
---uur-d og ‘¢ 
“77> UL 00 SI 
"1G 006 
---urd egy 
“urd cpg 


"7 Ut “8 00 6 
---un'd OP ty 
“urd cL *f 
“std 08 ‘OT 


"7 TL" 00 6 
“7 ct'd 002 
“ard CT's 
ae UH 00 GE 
“77 UL "@ 00 °6 
7 urd 08% 
“77d 00'6 
“7777 UL 00 GE 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


512 


“qT S1U OY} SULINP SIOMOYS 


“VUSIw ye 4SOI 


‘HS OU} UL W109 

UL" OT 0} 0878 WLOIT TINT 
ae qe STOMOTS 

W'S wor S1oMoTS 

eae re) “Ot possvd 13oM0yS 
SULUIOD U110}S-1opunyy, 
‘TOL YB sTOMOTS 


‘Sy IVULeT [VIeTEy) 


myeno'ng | @ | W'S 'S'{'--7[°7 7 7[77 7 89 | e89"es | -- urd 08 ‘e 
mo-"1to “ng | ¢ Rawr sls eer ee ears OL | 969 2% |°" >> BL OO BT 
eee aes no-atD | T | MS fof 77] TS | 6SL es | > Ue" 00°8 
STIS) aise) cay) TE | ANN IRE 9G | eb9 os | wad cr DL 
CA Het fees no ‘no-ar9g | € Ta Se eeien er £o9 | 9F9 ee | et dos's 
PANES a eae no-a19 “nN | § Se see sie alee GS | G8G"%s | aud Gp VT 
OAK SeaS MoO su) alee) = |e “Nee anal meallnane for | S6G "GS | - - ULE 009 
SAT rpan | per eaes nee 6 | HN [-o77[-- 7] 09 | Gores | edo L 
rat Sl nes no 'no-1t9 | € SINT API ee TCE Ole “urd cl '¢ 
GANS) 2 | PEEOSOS ERS no-"aty | T ‘me  |occ[ oo o|-o- 7] Ge | She ee | re 009 
Ta = n0-"a10 “148-119 T “MN ra] ai aatocerrc| ae 09 COP CB ---ar-d CL‘) 
Pas i cle no ‘nai |p | “MS [7777] "77] <7 /Fou | SER "es |) md og 
pANSe pee ee Morar) | TANS a Gr | ehOvee 5 Br Ode 
BANE Seer ae ee MOAN) WoO eee 2 “77['--7] To | SP9"€s | wea cry 
STAKE ol Pasecia MO=A0D “<MG)=| 0, |eesmemeslees: ---l-==-! gy | 199 es | und 08s 
“gguo ASOUIG [7-7 2775" |-- ==>") [LOO] OF [ee Sats Aaa aeseass I “N77 7/747 / oc }E10 | 666"e0 |7* UE"t 008 
By ANe sana no “ajs-"nD | T “MA Ione o*| To | BIG “es | utd 06 
Ce eee T4810 “dT | ET | CANS |) | 2 | €96ee | Ot e009 
AA See| | Pomeas tee MO a | | ANS! ve ae --7-H¥6g | 20686 |7~ we'd 04 "2 
DAN AS pala cane) aa agy || Qe || Se Peels $99 | h6'go | wd 00> 
VANS | ea SO UREN | SL |e | asl tL | 816 °ES |-- - UE -d O¢ “GT 
“M77 a9s-0 “no-aTD | T TANG S S| oil 5 [eli {9 | 86S |" “ULB CT's 
ARN Pia) “POSECNG) ei ONSEN 21 PS 5 ales 09 | 868 "ee | tad OGL 
"AAS foo 7 UAT ags-nD | Fp See gee aera diosa 409 | 298 ee | wed 00% 
"AA [>> mo-ato age, | # |LANS*AN| oy] 92 | Leg ee | aed ep Tt 
“AAS! [-oags-mo “no-atg | S| AS £99 | G06 Es |7-- TM 'v 006 
DNs teres MO “ISAO | Sl aeel SSS eee 6S | 6e6 ee | wed ng, 
SANE cine are MIN | Z SPs fae | alle $09 | 6c6'se | mad ott 
Sore eels segs me snp | € Se se eraser | G0) | SMONSo | 5 UE eon 'c 
pANeos ected a TAISEN) PG PEE STS Pe EL | 966 FS [7 wd Cp, 
TAN |7*mo-ato “aqe-arg |p | “ANS! | *|Peooi-== 18 | 18673 | wd 00's 
“AA | aysmo “ags-aT | 0 | $8 | 89 \f99 | 249 | LOT “Gs | Ue CTL 
fo) fo) [o) fo) 
in| i) by o Blais) 8 ee) is 
Bes teed: is 8) 8 jeg e| 2/8) 88 3 
Ee |es|i6).a| ac RA et Wer en ee fata ae Fo 
ee & os @ 5 cy x 5 ey S o in fv) oe et 
Be |ee| 38) %| ¢ 2 e| 8 (eel e |e] | ge e 
=i B6 | eS] o FS = ° Fe lerrer| ler |) | ie ea 
Ho |5B|S°|o| & a 4 ee (eG e sl ame tae = 
Bee | © |e | Bi eo |B4/8/8 1/8] me si 
ee (=) oD oO n a fy 4 fo) 2 8 I 5 . =p 
Beeb ter i a = [ES a | 6 a 
ty bo) SA || ot Sal a)o]e 
° ct i) ia e2a| 2 8 g Ww 
fel ° 5 el ote ips : ? 
Mita OYDT IUOPSMONA 9Yy7Z UO WAI) 8WOLMALASGO 


*IOYeM 
OT} FO DOVFINS OY} OAOGVISOT FT 
‘oxU'T OMOFSMOTIO X WO durvo ysatiy 


“IOATY OMOISMOTIO A 
OAOGB JOdF OG “SOOUBTOA PUI 
*1OATIT 
OMOISMOTAOA ‘S[T]VF TOMOT FO 
YjJ10U seplut $[ ‘yoo0rQ opvoseg 


“TLVI} OX[V'T 

OMOISAMOTOR WoO ‘ooty TOMOT, 
“‘OOpPIId LOAN OM0ZSMOT 

OX Wot Yoorp [emg uo dup 


-STIDIUNOTPL OVI AA ‘Souradg yoy 
“‘TouRry §,10010q 

jo YANos Mouvo ys ur dmg 
*LOATYT OMOJSMOTIO A 

OAOGV FOOT OQ ‘Youryz s,ojoyog 


“MOTYVATOS(O FO Curvy 


513 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


Swat ee eal eee cac'h 
EROUUUIERSD PPS eRSe cob SoeS- 
eee ee 
eo eS 
‘oPL 
OSLIUNS 9 JOJOULOWLIEyY, |°-----~-|------|>7 >= => 
Me ee 
“uIva JO SdoIg, |--------}------|------ 
“Aqsnd purM |------ Sellers 5 ones 
‘qsvotgnos 
Pus YIOW Youd SpnopO |----*---|----+7]-- 77° 
‘u's ¢ ‘sdoap ut ‘areyy |--- => 7c ]-o eon] - eee 
‘und 9 9@ OMOTS UNG |----+---]-- SF EiR| priateise 
‘qsoMT10u pue 
gsvoyynos AAvey SpnorO |----- Speliemesss|cectias 
‘yynos AAvay SpNO[D |------7-|22-27 722-7 >- 
*48v0 
-Y}10U O1]} UI YORI SpnoypD |--------}--- Sib AGES 
*O[QvesuvyO PULM |-~- 77" 7}-77 77" gestae 
‘q8oMTINOS WoIT 

Ulel put ‘pur JO TI104G |--------|------ saris 

‘OxU] OY} LoAO AYOUIG ]--------}e- moor |e en 
‘qq51m OTT} 

Supp Jopunyy guvysyey j---77-7|-7 7-7 Ghe'h 
‘UIVI Jo sdorp Moz VW |*---- Sing) Sasol | Oe er 
*SOINULUL 19} TOF Urey |--------|--- Fad psec 

eee Peers [ 

eed oe 

Ee) (atime | ie rasa aca fat Ps 

-aducvyo puw Aysns pura, |------- 7277-7" | 77-7 
AUK ABOUTS) PISS 2221 SSeS oar 

*qSLI}.ALOU OY} UT UETOIG |--------]----- a Renrecs 


“HNN ] 0000 ENT 


pe Beene ce NS 
iG Fe EN eae en ce no 
Siete tele eee oa ---ngO 
iG Cee | ee eres — eae TINT 
METSANG ol eerie Tam “19 
ce vee el setae eons ng 
ALES ORG ea ee eee on 
PIN IGE [PRE See no-"1t “ng 
so NAVs NToes | Goce no-1t0 “no 
SAN NS a “n0-"110 “nd 


“My 07> Ud “nd-"1t9 
"Ae es sno “no 


AA [7777 7c ags-n0 “ng 
‘9 | --ags-no “10-119, 
"== "n0-"10. “UE AT 


HS 
“mS |--a4s-n0 “no-"11—, 
"M.S |-- 198-10 ‘'Nd-"1tp 


SSeteESelsieilisialse' I4s-"dt0 “no 
“HN [> -a98-"m0 “n0-"119 
+ o\wlaa) s)e)e'|/e)a/alale “110-110 uate) 
"M's PESOSO OY pa DE ‘ng 
“M. g accor no ‘no-"dI9, 
CANS S| eae 777 Wm “np 
“AA 'g we eer eee evgaeg "ng 


“AL'S 2777 UT Sn0-s19 
"M'S |° 7498-00 *N0-"I1 


TARIQ ciciccier T10-"110 “ng 
ON "9 |o-oo--no “198-19 
MNS [00> 7 0-"aD) 


pecieseiemenis lire No-110 “148-"nD 
"MS [7°77 7 7nd “ay8-"19 


bene hon he SPI) 


At Ae NAN BHR MNMNNQNAHANOMMA*A 


Fe 


AB 


E 


. 


PESee 


e 


E 


Ae. 
aes) 


MN 


a 


a 


Re 


~WM 
top) 


ONMAMNMORNMNAMNRNAAAMdd 
R 


C6S "GG 
L6G G 

09F Go 
OSS GG 
86L GG 
F8L GG 


919 "GG 
69S Go 
996 “GG 
&P9 “GG 
VIL GG 
EEL CG 
691 "GG 
BSL GG 
POL “G6 
G8L GG 
ES9 “Go 
G8 GG 


919 Go 
999 “GG 
PIL GG 


GEL "GG 
T8L GG 
€6L GG 


GLL GG 
082 GG 


£08 G6 
£08 "G6 


CLL “GG 
£08 Go 
CEL GG 
PPL CG 
LPL CG 
8hL GG 
679 GG 


QS9 "GG 
£79 GG 
189 Go 
G89 GG 


GGL GG] ULB 


00L “GG 


Gar aorad 


mn ban) 


Or acter Octit act 


rad 
rei 


ri 
IIMA. NOOO OSOPrrrARMDaagH 


ar aaa 


=! 


Atirr aa 
a 


4 RAs 
momo oo Selise) one oon AMOmmaonmnonooeeooeo oOnoooo 


Sac Aa 


TASrSANHDSASr OEE 


MoIwmisoqoceoocooocoeoooooo oo oo ooo woo oaooooecececos ooooce 


re 


MBMAMANQMMMOOM SS SSH 


VFONOOoooOMmons 


baal 


noe 


/ 
“-os=s"°J9ATY Josplg uo durey 


“--JOATY oNVUG JO pvoy ye duo 


SSS UIvJUNOTL poy e1oyoq durvp 


‘ONC 
OT[} FO OOVF.NS OF} OAOE 4995 OT 
‘SOTILAG JOH ol}. FO [NOs ‘eyvT 
OMOJSAOTIOA UO durvo QIN, 


"I1OYVAL OYJ JO oOVy 

-IMS OY} GAOGEe 499F OT ‘oyvT 
OUOIsSMOTIOA Uo duvo pany 

*19}VAL OF FO 

eovJINg OT} OAOKV JooT g ‘ONLVT 
eUOIsMOTIOA wo duvo puoseg 


33 GS 


TERRITORIES. 


SURVEY OF THE 


GEOLOGICAL 


wee erenefaee BOSSES Fy) SIM ce) [SSS aOR Oo iio IN GELS |" vB O0'9 | GZ “OAT 
soosses tate eter tet ype tea a Ie Senor ee ee eeiat ey “M L99 'S% |---ur‘d OF 9 -| FB OUOJBAOTIOA JO YIoOT ysviq 
SSeS EOeeoo oeeen g SM [ete eng dl 8 “M G99 '€6 | wa'doge | + oy} FO Youvasq zo] on} wo dup 
eeeeeee Sener OPE a OTs eee oe eee recmeetae rr ay, Nr €P8 1G | - Me 00'9 | “AOATY OMOISMOTIAA JO 
poe oes ies a aE eee 0 Fo) Nea pe aaa BA 949) T } (AACN Pe8 1S | -uEd OZ | EZ WLOT SV pur oyvyT ou0psAroy 
ADMIT Pr er calios so |Pang os t TAL ays "no nO | TAA NUN GEG | udog'e | €% OA 1994149q Oprarp ony Uo oxBT 
Bs tea nie Sea HOS 28. ess [Po eee eaLO a TE | SEIN 918 GS | UB OS'S | 
fe leas ealces Og ese = Sian Se SP ee ea Oral eet | coaita ai aas L8L "6G | -w-dcp9 | a 
Ree ie coe alee Ts hea Seales a ee ee Ale at oe 18h "06 | "md pe | 8 
Pc see aS ape see aos SSS See eee eae Mai mena lear ea esis 169% |" -UL°e 002 | 0 
PeOSIaG GREE PCa Ga 8 qo‘no-1I9 | ¢ | “I'S 1998 |" m'doe'9 | GL “OUT O10}SMOT 
is re s| prec eee! U0 lie ager ae ata ae ar) LS di Mal a'S TUL "@ | °-uar'd 00‘ 61 PA SAO’ Joos cy, ‘Quiog qeot 
pte a ee ois tsieis Siow ie sistas (DG oar ae va Pe ee ee € ‘a's 189 GG |" -” Ul 00 SE | 6 -Wite}g mou ‘dave oxenbyyaed 
peace nes | are FS) ef SCO NS ee ae ae ccc SI ee Ned Ra COL ‘GS | ULV CLS | OT 
pe eee alo OTE Sag ee eres oT ‘S 691° | --A'd OG'9 | BT 
AGE. ei ag Soest iit: P “AA |" ° 498-0 “nd-"IID | T “MS T8L GG Ul "6 00 “2 8ST 
ee orl imagers Oa aes | See ies Sere alo ‘Ss 6182 | m-dog'9 | LT 
id ‘S 88" |---wAd 00'e | LT 
I ‘Ss P18 GG [7° Wed CT ST | LT 
I ‘Ss 166 GS |" WL'B 006 | AT 
T “A 696 CB | MLB eh 9 | LT 
ASI ORO Wey No CRYST GROOT Se Hae a NE Na aca ae ea 4 Rei a aM a aN aca ne | le MN COE Fe FEI ICE RO a OL 
N 098° |---ut-decg'9 | ST 
N O18 86 |" "Tad 00's | ST 
CAAT O (| PEIRORO IBOOCSO| rr cei “MSM 8&8 '°%6 | We 00'8 | ST 
“M LS9 Gs | --U'dcg'9 | FT "Oy BT 
“M. 0293s | -m'doo' | $T euosAOTTOX uo ‘Aosoy durep 
"Ss E8G "Be 00°8 | I 
“ME 609 6 00° | &t 
“A GLE “BS 00S | &— 
“AA 66S ‘@ | ---- 00 BI | &T 
‘qysTm Se] sory AAvOT, “MS 649 00°8 | &I “TOYA OY} JO 
“M £9S GG 00°2 | OL OOVIJINS OF} ANGE Joo 08 ‘OHvT 
"s]Tenbs-Moug “MS FES ‘2 Gh's | SE ‘Sny | ouojsaioyjayA ‘oovr103 uo dmvp 
4 8 >) > is) iy iS i) BS) os ce ic) 
HS | Se) Es] B Zs B 5 zh ph a 4/3} es 5 = 
Fe |Be|mais| 8 a 8] € jasle/e|é| es A 2 
/ 2 e, 3 B is) i=] pte “ ° ci ae] s g, i= Lo =} 
pe jee |ebl|s| 8 2 P) B BS e| S| 2] oe * 
HB [eh] 81/7] ¢ 5 Fl eo lata l ele] oS ey 
‘SYIeMler [e1emes Ee Es Fe, Phe & ® ae aa-4 ae ® B 8. Ss “MOT}VAIOSqo Jo durvp 
ge jee! ole| & & a] & |gg)e/2/8] 8 = 
Eb] Slal E Pl 4 slejsie| #] | 
G 4. =) 
= Bese B jet aiai a) & 
cs & | Bp jos) 2 | gio i=l 
zt S| 8 Se | oe ? 


514 


a a UE a a a a a Uae ea a NS Aree (te ge my | re en Ree etre ROW IED 
*ponuty 10 —dntg aoT 9U0}8N0)19 au} UO UAH} SUOYDULIEQO 


SURVEY OF THE TERRITORIES. 515 


GEOLOGICAL 


“Ayourg |" - ilies “"*| SoG 'p 
‘und cy ‘9 UIer Jo sdorq |----*---}---77-|-- => 
“Ayouis 
‘gs0a. spnojo AavoH | O19 | 9F '@s\""-"-" 
Res 968 ‘F 
ore 'F 
6B'TG | 66'TO|"- ~*~" 
Oy 3) ee 8s "| 68h 'F 
og. [teens seetvaiglseseee 
oq. [terre tees dl waeees 
od Sage c| ae Beales See 
OE [teeeecec|eeeeeefeesee 
od 
od 
Ys ee Pee Pee oe vive 
SANOURQ So 29a] i sin sininie 


‘urd GTI} 08 ‘g Worzy Urery |------ 
o[qvosueyo PUTAL‘Suroresy a einieisie 
“Avex 


‘UL ‘ep 
‘Kae |- 


oyyurids 491718 


"M ‘S | -448-"no ‘N0-"II9) 


MS [eo 


'N 


Nd-'IIO 
--10 “198-"11—) 
no-"119) 


EEN Co) 
“M0-"110 “ATO 


soso es! ONT 
sro" ° TO-1TE) 
110 “198-11 
“10 “148-"d19, 
>7a98-"nd “ITO 


nNO-"11 
se 2* 10-"aTQ, 
* I9s-"110 “at— 
NO-"110 ‘*198-"119 
7198-210 ‘nd-"aTO, 


SHUM YRMOSOCNANSOHOSOOSCHAMORNRNNAARINRNS CONNBAR 


TTS “So 
€96 “GG 


€6T “SG 
GCS "SG 
065 "Se 
65 "SG 
G89 "GG 
GED "GS 
PIG Se 
980 "SG 
910 "Se 
L80°S6 
OPT SG 
PLT SG 
OLT “SG 
V0G “SG 
TEL SG 
LLO "GS 
GLE Sa 
£60°Se 
OGT “Se 
090 "Se 
8F0 "Ss 
860 SG 
THI Se 
960 “SG 
LLG FG 
£90 “Se 
8IT co 
TES ‘FG 
869 FG 
GEE “GG 
LIT Se 
690 Se 
LOL “GG 


Gh | OLT “2¢ 
#69 |¥9 | GLI ‘Ss 


| 


A 

a 

so 

Sm 

sis @iidcs: pas 


r=¥ 
eonssooow 


| 
S 


A 
a 
> 


NIoankssowmmomed 


a 


. . 

' . 

a = 

i=) So 
MWTOOMMMOMM WOOO Co 


SaGoE ww 0 


ous 
mom 


MAM SO 


---ur 'd Q 
---tr'd 9 


ban! 


. 

. 

. 

. 

i=) 
omoouoeoo 


| 
S 
i=) 
mi 


| 
Gs 
= 
=) 


3 

19 

Ge 
CAONASErODARNSNKS ais 


mr 


“tr "G 0) 


= 
S 
ar) 


"MOBPILT 4LOT 07 YOUDIT 8,.10)9}0T Wolf uayD}, 8U01NMI.128q0 


a er a ea ol 2 le Sly Oe ent Pip SY a a ee he ne we 


~"o-"ato ‘np 


"198-0 “nO 


aOR ve 


se ee area 1) 


188 FG 
GE6 FG 


F68 “€@ 
999 "EG 


£69 "&6 


"77UL 'B 63's 
“urd OF 9 


“Ture 00°9 


“"* UL 00 ‘@T 


“""UL "@ CP 6 


MAMAN ARANMMMMOAMAMMIIOOOOMmrm ro 


‘UIvAI4s OT} CARY 
qooy G “Hoot doppAog yog 


“ACTIVA Wosieypor ‘qouery s,uolpy 
“HOFTE 
-DIvy] vou Yoel [jeus uo dup 


“-"- SITE WOW Ive duro puoseg 
“OPIAIp TOATY OOS MOTO A 
pue ulneyey ieou ‘yoor/) [Iva], 


*IOATY OU0JSMOTIO A 
eAoqe 4ooF 0g ‘qouvy #8,1ejo}0q 


“IOATY 01048 
-MOTIOA SAOG" 4o0F OG ‘IOATYy 
§,OUIpAVYy) JO WOU yoor0 yeaTy 


--98pliq euoysMoTIeA Iveeu durepD 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


516 


oD ees aaa eesti pate tem ee IRIS SR OS She SS nO 10 1°7777777/£9S |B9G | &8 Fes | Toe ’ss ~~ wad cp’ 
Paci “un he veeorno i aol kenge 2 Teh ee |e ee Aiaik= fee 196 lef t ‘G6 | crs | 6L 
"05 "TE La gmaeOHON, | G8°TTE | be a2) 6 | was |) 77coo SmOTHO | E | TON, LG (68 8 | 8 | Oe ee oc wey | oF “oun uy se gods onus ‘TUE 90M 
61 FOE | 18 Ee)" (is ee -no-apoays-atg | 6 | “o" Rontlee ORE oc emeanaee ‘TOATY OYCUG JO FIO 
ge ere gon] foe eo ee eee aan eee 
SSG pe sce | sis i fe rebinses| peste misc sh arte). | | "M'S [ELT Exp IF 29L cg |-- uid 0G" 
Ae pe eeeaen é Sle i as en 25 : A tP9 | SD | COT SG ma0G'9 | LT OYeT JoyIVyy Woy soptor 
eh i See eee ee ee ee ee a ol eae ee gine coat oxfoug jo nosey tuo dutty 
ed eee . rey Vl iis a . ry C oy Soe . 4 TOM 
ee ie ee nova | & | at's lot Hoe [ou fas | boos [mds 9 | or | ony go uanows om, oso, on 
roy [een | ne rragiltal tye Pere E ti| Reehnone fae Sc oeeelege (ney ue ee 8 ae Borge eas Of hb | OT 9 ‘HOIYTIs 0Fvjs STOMA J1eseq 
a | a ee | ars eee, 4 eae eee (09 | T | OLN [for itr oF | @ | serve [--m-doe9 | er “319019 
Sa Sera eee roars tu eee eee neem cote RST ee Pam a oS port ouforpeyy uo dunes puooeg: 
“qSvoUMOS SPNOTD | =~ == "|" eed tees 6 | ACN [°7a98-ato“no-atQ | T | “AN EOL | LP Lie te ae na “urd op _ a 
‘Ayoms A10A | $8808 | S0°9T|"-"- Ga esses sisson aysearo “aig |e |-a's arlere [gee [ten | pe | T69-e0 | mE“ OF ot *yoorg 
aes I T OFS | PL espoyT ourlorpoyy wo durvo ysaniy 
me: gzoqouroutzeuy, |°- 77-77 G Ss eee iid re id ie ens : 
ee en OS ce meee See eebiich ce RE ee ae eee | ee 
sqjzou | 6n-26T | c6-Te\-77777 eee aeons sane nea Be | ee area ok LEO) 
puv ysoa ApSour ‘spno[g |" 779777777 y 6S6 ‘9 SERN 2SoREAE) nae : cee ie He te pe ae gs oan 5 te af at POM POU Fo youEIG B TO mE, 
tu (8 [ARS Gaeta /t [a e/a [ej | aee Sears at son nig 
x act i : ; ; -70n0 eq repum ‘xe0I0 23 
T | “A'S |b | 86 | GE [RAG | 8687S | ULB Sh'O | GT Se eae yn a a 
a | TN Uli |e [ee [aucsefocmea nie | 
aN 5 & 5 Hes hake es eng ee “--="390IQ TIC 
5 AS FO a | BE [mas | eet 
ae ‘7G | ura Og 9 =| OL ‘HOWD OY} 9B OSpriq IOAT 
B AA NUN] G6 |f9F [£89 | OL | P46 FS |” “mds > | OF psoy-qoAveg Tome Sn Do 
romp £ lay Kewl i fee fs [terse [rears | spo ogsash 
SAAS BOUT EE ROU S ieee ae te eerie ie ee wee eel a E a 9 Ivo 00 BOT 
OULS OQ |-~""-""lEb |#ea |F86 [#86 | Ses "ce |""-OL"B00'9 | 6 a ge Seige 
TL |-ANUNITST [FS [ELF | GP | 619 so “mm 'dog'9 | 8 
& |ACN'NI Te [€or [feo |fe9 | 609°¢s |" - ur doe'e | 8 ydeg |----"--- mores o8uys YoorD GST 
fo) fe) (o} (o} 
i is} eS ee ate en ete | alee | ell ese| eg eee ese 
Be) lhe Bee Blea) | eee mee? |: g 
BE les| B/8e g ey 3 Bes | 2) 8 ¢ 3 
Ha | 85 ei S ° 2 g eeio |g] se ey = - 
Be |S /eele| & she |e Gee] eal marie e 
ee = 
‘gyIBUIOL [BOE y) BB |B - mea) & g S es <a gio ale] & ae e 
BS EB ao le| © a 4 a |e! 3 B12 | co = MOU ED IBA. Fo. C78 
Be ime ole | 2 B| & jesie|2|e| Se) 3 
ee | ea] Sie] F P| 4 /8sie|8| 8] Se 
Be Sel aera B lgaleiel|e| 3 
pian se | wisi 8 S lSsiB/ ea] ¢ 


F “ponulyzwop—wabpug 7uOT 07 Youny 8.12920 Wolf uay7 sw0nMA.1989O 


517. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


60 ‘TF|9S9 9} 


og 
0 -- 

‘MILI pUB PUTAL JO UII0}S | SL ‘9BP 

96 ELP 

96 ‘OPP 


91 GT] 989 ‘9 


00 ‘gg} 282 ‘9 
66 '€G| TI6 ‘S 


“AOAING JSvOQ So}eqg peyU ‘yqoyOS “vy sepIvyD Aq poystaimy Byep wioTT + 


s==* -a99-N90 “IID 
“==> -q9s-n9 SATO 
-o5 = -Tag-n9d ‘AIO 
h s-> -ag9s-'n9 “ATO 
@ S'S |'->* -ays-no “aTO 
‘HSS [777 -ags~no PII 
@ ‘S'S |" >>> “ays-"m9 “arp 
“>> “UOENT 


aicecacls Se No-"II9, 
-=--n0-"I19 
--n9d-"dIQ 
=== 110-119 
Von EE Soon See “148119 


Fete tees -aggeatg 
10) 
Be ere I48-"110 “219 


oe ee aan ee CG) 
Sage eGo ae “N0-"110 “ITO 


Se ieee) rad er es “no-"1lp 
PAKS) |e seers 2 NO-"a1) 
“ARNE 07727 NO-"T0 “ATO 


oes 00) 


SARQMMAARAMHRNOOCNMAMHRONSOSCSONMHANANO WRN WAH are Oo 


IPIEEE EE 


“S's 

“S'S 

aS 's 
s 


*AQAIUG pLodVy onloeg WOM ~ 


L (|€6e \f9r | Lb | 488 "es |" ULB OF 
@ |tos lfes | rE | €e2"Ss | UE "B OF 
G | 1¢ | @ | Sr | 089 "se |--- md 00 
L \tLe |Epp Ebr | 829 "es |-- wed CT 
L (tz trp | Sp | 809 "S@ | urd cp 
p | 28 | Ib | Th | S8h "es | Wee GT 
¢ lése ieee | 68 | 61g “es |-- md CT 
Zo |Scp \EIG |t1¢ | sogss |-- - md 00 
se lttp | Sb | Sp | BIg ‘se | md 00 
Ser | Sp |¥09 | 19 | er'es |-- mad 00 
Bes ES | - wad ct 
G90 FG | Ud “BO 
TEL $3 | wad 06 
OST FZ |" md Og 
LOBPG |" UL SOF 
OST Fo | wad cp 
E81 7% | urd og 
C6Pr FS | UAB OF 
00F Fe | tad 0% 
€68 76 | ~ wad 06 
Sth 7S | uw 
PLY PS |" UA “2 00 
PEP FS | wd Og 
£06 |_TS JEL |fU2 | Lop pe | wad og 
ELT |f0¢ |f0L |¥69 | Goh Fo | Ut"? 00 
%G | 9G |€1S | GE | 66S ‘Fo | ULE cP 
SE |_68 | LG |f9¢ | cag 7s | - - wad 0% 
2G |E8r |f0L | TL | G29 7% | wd 00 
9 \€6% \€Se |¥Se | 199 FS | WEB OS 
BL [f9P |fP9 |tP9 | Ses Fs |--- UE “dog 
#16 | LG |¥8n |kLL | eo Bo | ~ urd og 
$0% | 9F {£99 |£S9 | GTS ‘Gs |" UL“ GP 
ees | Sh |#GL [ESL | ES-se |-- md OF 
Te |_2¢ | 88 | 88 | sage | md cr 
Te |£9¢ |F48 | 28 | oTe "Gs | -7 7 
#6 | ¥S | BL | GL | TSE ‘cs |-~ "Ue 00 
ter | Lp [$99 | L9 | TTS ‘se |--- md 00 


SASS GSS A 


02 O19 0 COIN OOOO 


tl 


ba 


Rm oig wow Om 


mi 


oo 


a 


soneeeeeaeeeeeeeeee-JoSpur QO 


“‘peorrey 
oped WOlny oO} uo ‘uo}suEAT 
sini nieeelsietehs IAL Iwog mo dura 
‘IOATY Ivo” WLoIy 
SeTIU 9 ‘yoorg osvg uo dup 


“m10}}0g OYv'T v8 
To ‘MOAVTT Ysty JO WJsou duep 


----=- oaenbs oyqnd ‘no}Zurmu0g 


"IOAINT 
iveg oAoqv yeoy 9% ‘orenbs 
oljqnd of} wo ‘ssuridg epog 


soccoscesccescrssssomtidg UTA, 


“LOUULIGO of} 9B ‘IOATYE JNON 
910g JO S194VA\-pvoy oy} wo dup 


518 ’ GEOLOGICAL SURVEY OF THE TERRITORIES. 


RESULTS COMPILED FROM THE FOREGOING TABLES. 


TEMPERATURE.—Temperature has been regarded in the work of ob- 
servation, anda daily record kept. The greatest heat indicated was 
97° Fah., August 17, 3.15 p.m., at Boteler’s Ranch, Yellowstone Valley. 
The greatest cold, 14° Fah., August 10, sunrise, at Yellowstone Lake. 

MOISTURE IN THE ATMOSPHERE.—The record of the wet and dry 
bulb thermometers furnishes many examples of large differences, indi- 
cating an extreme dryness of the air. The greatest difference was 
3749, (dry-bulb. 97°, wet-bulb 594$9°,) August 17, 3.15 p. m., at Boteler’s 
Ranch, Yellowstone Valley; elevation, 4,925 feet. 

Ratn.—The number of days during which rain fell was 30: in June, 
7; in July, 11; in August, 9; in September, 2. Observations commen- 
cing June 10. 

In the foregoing aggregate are included the thunder-storms accompa- 
nied by rain. The amount of rain which fell was slight in nearly every 
case. At Evanston we experienced a severe storm of wind and rain, 
which was attended by a curious rising of the barometer. In fact, so 
much was it affected as to be totally unreliable in its readings for eleva- 
tion; consequently, it was set aside entirely, and the elevation deter- 
mined by the Union Pacific Railroad Survey was adopted. 

THUNDER-STORMS.—Five thunder-storms were experienced as fol- 
lows: three in June; twoin July. We recorded distant thunder, indi- 
cating a storm, upon seven other days; in June, 6; in August, 1. 

Snow.—Snow fell in small amount at Yellowstone Lake, August 12. 

HaAiL.—Hail was noted at Boteler’s Ranch, August 6. 

Frost.—A very heavy frost at Yellowstone Lake, August 13, was 
recorded. 

AURORA BOREALIS.— Only one display of aurora borealis was noted, 
June 17 and 18, and this was not remarkable in its character. 


Direction of wind for the month of June. 


Direction whence...--....-.--- Bie Dict ereeaneaca N. |N.E.| E. |S8.E.} S. | S.W.| W. | N.W.|Dotal. 
Relative number of winds..-..........------- 7 6 1 8 8 10 5 q 52 
Number of observations when there was no 

WANG e Sceisiccn coe ne Case te neds cate dei alee cece As Se cileeeeercilaiemce a eee self seorertrel| ete reel eee 16 


Direction whence...-...--.----.------------- N. |N.E.| E. | S.E.| S.. |S.W.| W. | N.W./Total. 
Relative number of winds...--....--.--..---- 8 8 11 2 10 18 13 10 80 
Nember of observations when there was no 

SUVANN GL a cpa Ses eer RS Bs Sa es Se amt I edt [Pas ccc sta Nepal | Aeon q 


Direction whence.......--.---------------«-- N. |N.E.| EB. |S.E.] S. |S.W.| W. | N.W./Total. 


Relative number of winds.......-/.-----..-- 9} 12 8 3 8] 19] 10 5 74 
Numbee of observations when there was no : 
B05 Caan ya epee ny ayy ALARM UO Rh OE Se eee fee ei Rl oa Irs SaleGacse 


GEOLOGICAL SURVEY OF THE TERRITORIES. 519 


Direction of wind for the month of September. 


DIMNECHON WHENCOs. Se see gas siniss see eis cae eee N. |N.E.| E. |S.E.] S. |S.W.] W. NW. Total. 


Relative number of winds.....-.-..-------.- 4 5 9 6 6 11 q 4 52 
Number of observations when there was no 
SSVI E ne eee stem eric estate mers ce Semtayey ts ee Be el] bias Seals BIE ele share eiaoerciliee ahaa: SIRE 2c. Dae Eee 18 


Direction of wind during the Yellowstone Lake trip, from July 20 to August 27, inclusive. 


ITECHOM WHENCO: Ss. -\.< 2. 5c o seite eis cose ec ee N. |N.E.| E. |S.E.} S. |S.W.| W. | N.W./Dotal. 

Relative number of winds.................-- 10 7 3 5 14 18 13 8 78 

Aap bee of observations when there was no 
SRPUDIEL GSS SRS i eae MEMES ato pe ett LTS eek | eal [tee oreo apace tea em Ey 


Notz.—In the tables for the direction of the wind, the numbers repre- 
sent the changes in direction. They are not the sums of the observations 
of each wind; as, where the same wind is noted several times in succes- 
sion, it is regarded as one wind, and 1 represents it in the tables. 


Relative force of wind for the month of June. 


Direction whence.........--------..----+ waeeeatass N. |N.E.| E. |S.E.| S. |S.w.] W. | NvW. 
Relative number of observations ........--.-.-.--- 9 8 1 11 10 11 7 11 
Relative force of each wind ...........-...-....-.- 1.11 | 2.38) 1. 1.91/19 |}1.3 |] 1.9 2.5 


Relative force of wind for the month of July. 


MINECTIONUWNCNCE ac became cence esa cenaceaaeoeeee N. |N.E.| E. |S. NS) S.W.| W. | N.W. 
Relative number of observations --..-.....--.----- 11 9 17 2 25 26 17 11 
Relative force of each wind ........-.. .......-.-..- 1.82 | 1.44 | 2.06 | 1. 3. 2.42)1.76 | 1.45 


Relative force of wind for the month of August. 


DITFEC HOM WWENCOs-acscceseceeeace ee ea ese cee eee N. |N.E.| E. |S.E.] S.. |S.W.| W. | N.W. 
Relative number of observations .........-..--.--- 11 Q9 12 4 15 30 20 8 
Relative force of each wind ................-...--- 1.36 | 2.14 | 1.92 | 1.50 | 2.53 | 2.93 | 2.50 | 1.75 


Mirection! WhenCe ice ss sos sms coco cesccs coceeocees N. | N.E. | E. | S.E.| S. 
Relative number of observations ........---------- 6 14 10 6 9 
Relative force of each wind ...... .....--.....----. 1.83 | 1.55 | 1.90 | 1.83 | 2.55 


/Relative foree of wind during the Yellowstone Lake trip, July 20 to August 27, inclusive. 


@Pirection whence: ..2.--.--2--c-ss-2-eseseeesse2 ...| N. |N.E.] BE. |S.E.) S. |S.W.] W. | N.W. 
Relative number of observations ....-....... -.---- 11 11 3 8 Q4 23 19 9 


Relative force of each wind ................- .----- 1.36 | 2.09 | 2.33 | 2.12 | 2.41 | 1.83 | 2.16] 17% 


520 


Movement of clouds during the month of June. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


Direction whence ..-...----- ----.---------- N. |N.E.| E. |S.H.] 8S. |S. W.] W. [N. W.| Total. 
Relative number of observations of direc- 

THC See See eC SGn En Scr u ae ison samen ee: 7 7 2 0 1 1 1 25 
Clouds going in the dire¢tion of surface-cur- 

Ge PEE ae Nese ny Sane eae aera, 1 2 0 0 Q 1 0 0 4 
Clouds going in direction opposite to surface- 

GULTODU heen e nie bine ettec ne ne emacs 1 1 2 0 0 0 0 6 

Movement of clouds during the month of July. 
| 
Direction whence ...-.--..----.------------- N. |N.E.| E. |S.E.) S. |S. W.) W. IN. W./Total. 
Ae Nac la | NE | aaa 

Relative number of observations of direc- | 

LOM eo cients ee a cseaisictetcaciste we ccieee clots are 5 2 0 18 23 27 2 81 
Clouds going in the direction of surface-cur- 

TOMS Samet set bia oleh sialic cin detalars sina le ered se 1 0 0 6 vi 8 0 23 
Clouds going in direction opposite to surface- 

(QUIRON, 5 S50 sHokiboot eho aboooneaoSocconssscne 2 0 0 0 1 0 5 0 8 

Movement of clouds during the month of August. 

Direction whence ....--.----..-------.------ N. |N.E.| E. |S.E.] S. |S. W.| W. iN. W./Total. 
Relative number of observations of direc- 

LOM ee eis ete emia elelalale ie yateleiateicrs ried acta eels 3 2 0 6 19 Q27 3 69 
Clouds going in the direction of surface-cur- 

TSG ae alee eta cia aurea chapeia ears ct Mia ciciats/pretelS ete 2 1 0 4 5 %\ 0 19 
Clouds going in direction opposite to surface- 

CUEEGM GY eee SA semiate euler iene seeeias ec 0 0 0 0 4 0 0 6 

Movement of clouds during the month of September. 

Direction whence .....--..----.-.----------- N. |N.E.| E. |S.E.] S. |S. W.] W. [N. W./Total. 
Relative number of observations of direc- 

VOM ties leretete ie Seta Navsleecciuie wa cie ne tre sips seis 0 0 0 6 13 4 3 26 
Clouds going in the direction of surface-cur- 

TOMO ee ee meinen ae ciajcin Coen eteearsye eaten alate 0 0 0 0 4 7 1 2 14 
Clouds going in direction opposite to surface- 

CUTTONLYE See seen oan es os BAe 0 0 0 0 1 0 1 0 2 


Relative number of observations of direc- 

ELON Ge ee, PA he AN Ns SL eae allie ls Q 3 
‘Clouds going in the direction of surface-cur- 

rent 
Clouds going in direction opposite to surface- 

current 


‘ 
' 
1 
1 
. 
' 
' 
‘ 
' 
. 
’ 
' 
. 
' 
. 
. 
' 
' 
« 
n 
. 
‘ 
' 
' 
' 
' 
1 
1 
. 
1 
' 
' 
. 
’ 
‘ 
' 
. 
. 
i=) 

_ So C= 


In the column headed “Amount of clear sky,’’ 0 indicates a sky entirely obscured by clouds; 10 indi- 
‘cates a sky entirely free from clouds, and intermediate numbers the relative proportion of clouds and 


Clear sky. 


We have the following averages: June, commencing on the 10th, 6.5; July, 5.7; August, 6.1; Sep- 


‘tember, 7.1. 
Days free from cloud: July 10, August 15 and 22, 
tember 30. 


" * 
September 4, 5, 9, 10; day of total cloud, Sep- 


GEOLOGICAL SURVEY OF THE TERRITORIES. 521 


Elevations of principal points. 


Feet. 
Mt. Garfield, Idaho Territory, on the Atlantic and Pacific Divide......------ 9,704 
Bridger Mountain, Montana Territory, near Fort Ellis ..-......-----...----- 8, 355 
Bmierants-eak,, Montana Territory ----2. 2-2-2 -s--c--+<~--- 25 0cee oo een cans = 10, 629 
Mount Washburn, NV (OMIM OM ELM GOR Yess ee anae eer sleci ao = =o eee 10, 575 
Mount Doane, east of Yellowstone Lake, Wyoming Territory sae See eae 10, 118 
Yellowstone Lake, Wayomine) Territory c2tiss. seen eee oct. Voc scos come 7, 427 

Important divides on the line of travel, and their elevation. 
Feet 

Divide between Box Elder Creek and Bear River.---.- Biappa rire mestages  gie Ge ee 5, 615 
Divide between Bear and Port Neuf Rivers ......-----.--------------------- 5, 042 
Divide between Ross Fork of Snake River and Fort Hall.-..---...--...----- 5, 072 
Divide between the Atlantic and Pacific Oceans, near Junction Station ...... 6, 430 
Divide between Big Sage and Black-tailed Deer Creeks .-......-...---------- 7, 044 
Divide between Black-tailed Deer Creek and Stinking Water River.-...----- 6, 657 
Divide between Stinking Water River and Alder Creek............--.------ 6, 492 
Divide between Alder Creek anc iMadisomiRivien/ sass aaseen Sees eee Sceel ee 6, 857 
Divide between Madison River and Hot Spring Creek.........---..--------- 5, 836 
Divide between Hot Spring Creek and Mailison River..2)0. oc 5) cia 5, 079 
Divide between Elk Creek and Gallatin River ..-.......-.----..------------- 4, 641 
Divide between Gallatin and Yellowstone Rivers.......-----.-----------+--- 5, 681 
Divide between Sage and Red Rock Creeks..-.....-...---» ----------+------ 7, 405 
Divide between the Atlantic and Pacific Oceans, above Medicine Lodge Creek. 7,255 
Divide between Fort Hall and Port Neuf River ....-.----..----- .----.------- 5, 964 
Divide between Bear Lake and Bear River .........--..-------------------- 7,159 


Divide between Yellowstone Lake and Madison River..--..-.---..-.---.----- 7,911 


The following list of points, with distances and elevations attached, 
has been made out from notes taken in the field by Mr. A. Schénborn 
and myself. 

Here it may be well to state in brief a few of the main distances, as 
follows : 


Miles 
Ogden, Utah Territory, to Fort Hall, Idaho Territory ..-...---.---.--+------- 176. 00 
Fort Hall to Fort Ellis, Montana Territory..---...---...---------. ------ nat eOonOe 
Fort Ellis to Yellowstone Lake, Wyoming Territory....-...---.-.----------- 118. 80 
Total distance from Ogden to Yellowstone Lake........---.-..--------- 548. 7 
Miles 
Fort Ellis to Fort Hall, by way of Medicine Lodge Creek........----.----- ae) oho? 
JNO e VU! Woy d Dhyne OL es omar ir Sea sees yi arrearage ane aR A ee Bas Sts eG ci 174. 80 
Evanston to Fort Bridger, Wyoming Territory.......-...----..-----+------- 41.09 
Total distance from Fort Ellis to Fort Bridger .......--..-..---------- 527. 81 
Table of distances and elevations. 
ca SUE Ro EME ea In RN IED ne AR eed eee aCe Ss SS 
eps ape ae 
Bait) 3 ‘ 
oo 3 | 
Points. 22 cS 2 
ae 3 5 
Qo — 2 
Az | «a es 
8 ne = 
From OGDEN TO ForT ELLs. Miles. | Miles. | Feet. 
WMadenWeamypiy. cues oes Se = = oie cies aie oe eee Be oe abracc tials old aula Setemeuier se ON00 | aeees 5 
Ogden tril gers Dinise ates See oye bik SEE as omnia GRE INE era SybiSah arte brett e 1.71 1.71 | “4, 332 
Water-tan ie Near Saline Sprin Seats eect oe sees eemepmeciemrc micas arte)-eeeert 10. 33 12.04) 4,191 
Willard City RR ies 2) Fa he epee GLEN Le eR yey a Ree eee Dee 4, 07 16.11 | 4,350 
Bottom of v. Pate south of BrighamiC@ityassss--2 sesso eeceecie se eceeeeeea ances 5. 31 21.42 | 4,345 
Honor roadie shoes athe ee cese eens Ry Rte 28 te Brea Se ee a ae . 98 22740) eee 
Second bridge over Box Elder River........------------+---2--c0cee eee eeeee 2.52 | 24.921 4,762 


* Union Pacific Railroad Survey. 


522 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Table of distances and elevations—Continued. 


Points. 


Distance from 
point to point. 


From OGDEN TO Fort Evtis—Continued. 


Miles 
Copenhagen, Camp. -- eee oa eo a enn cee = = ae ele wlnlnlein el plaininn 1. 85 
Divide between Box Elder River and Bear River ........--.-.-..------------- 4 49 
ILPY RG, SOME INV KER COMUNE. Ss oan oe o so soreceons scoongase sede beaSsaoaoosocecones 1.99 
Hill, top OL, WOM OF IGIRG) Shee asnoSsegnescbosadoosssosecosoecodonsscsessrosee 70 
Wellsville (CMa) -- 25252 22con 225 s25essc5 5955859 89 pce 23 sSsco0 sores sangsessc: 5. 71 
Muddy Creek bridge, cast of Wellsville 1.90 
Biackamitys Creek bridge 5. 94 
Logan River bridge...-.-.-.----- 1. 
Logan, pADES S (MAT Op a tate oc iech eam pane Selcotel= pee eileak aaa eae anes eae teeieters . 83 
Hyd BIPM $62 556s shdgeasnesnosboueas Shoo ga tee So soscsseesecoosss Geant atone: 5.17 
Smithfield Creek, camp fs eee as ial catia ole mieinieie Gini BE iSw Es SaUA eRe inte ie eee 2,79 
Hill, point north oh Siibhteld, 2 ck ef atARC Om tine gem ad Teese Se ee eee 1.50 
PRiehmmo nd ee Oe aati py ace ena COP MO ay cena a aa 4.91 
Greek mortbrof Richmond) 224632222 3 oe 7 fe gael Se eee ls ae ee SES 2.08 
Siramielis ce tcl he a oe eee ae Aas ane cere 4,39 
CubiRiver bridge essed eel Jee oe aia Re Wisk ra\seicralcinles aeyeinin Sean area 15 
POM bE se LEA OMMILL eee se aia stoma Siete erat cte mteieleie oc eialalewinicie Seine lsiaine sitio tees mice 1.21 
GrassiOreclsicamip) jy. c ec eee ee es ee owlatstela eters aeeatic Ane eins 3. 19 
Edge of first terrace, Cashion Bear River soo. senses se aesioe ere ae en a eiieero eels 4, 22 
Bear River brid Bes sor dine Baca ea cise ey art cele cals ga eee tae ates eines prea 1. 66 
(CUO) TE ARR aN er Be ANP be a ee AG an Ren ete har une ED i EO ten Sar amar Hay aaary sy 6. 45 
ORBON De oe PAS Seay a Shes LENS RI LE ee ed cls cle eee Saiase aneiee eee eee 5. 82 
Divide between Bear River and Port Neuf River..-...-.....--.----.---.----- 1. 42 
Gmasshopper' Creek; camp: Ssh S202 52 See Oa a Ss esas CS EEE see es 1.73 
Ped sROCK NAN CH mae elas.<\acjeis swiss einen see Sess -| 4.93 
Station on edge of terrace, cast of Marsh Creek -| 9.79 
MpamewNinlepRamch Vee. . sone cc cesece-ceuuscactes 2.89 
MarshiOnreek. CAMP ppasaciicnce ce sicine cece se oe css aaticceetam = ase cssmmaaeeesice 7. 80 
Njateonisibbichier male Shan ce BOR ATES e Tha k (yo tabee kent Stace 1, 81 
orb Mewh ever PLIGG teas aoe hee WG Ne eee seep ee taeiem a beeen nea e eer 6.53 
Pertinent aniveri€am pi. -\.. ss-cccceceseccnceeee scence DHsbeoeetA MSE aabenooses 5. 82 
Large fork of MoreiNeut River coscav peck ase au ane Sea ane 4.14 
Port Neuf River, SCCOnG Camps. sis ees ee ema ae seid es eee eee eee 12. 20 
Ross Fork bridge ee petal aaa! o aenaiere se cee ate als dese euiae ala incinciaeiin cin sareatseiestoers 12. 62 
ROSS MH OLM ECA Pee stnc ccm asi stels ies ee adie eine elaine acne dalee Mebsisia delete meee TaS one 
Hie hypLaITIOWerrvace horse soe seis so Mae Setels nelle cic Se seem encase eases eee 1.05 
Hornksoreroad, Leave Toss Work .<\ 2s. 2 sn ole Se aac ate Paes Seen bean eee ne weeen et 2.17 
Divide between Ross Fork and Blackfoot Fork .-...-.-.-.-------------------- 6. 93° 
J Utoy ety] 5 Fei) UE Cor aah Oe oe ae anne ey ee eS Se ery RN ER OO Ne WetAt OG hate nets Haein 4.53 
Blackfoot Fork Drndge Yeap. cece seme ects cee ween aetna tae Spee teers 7. 20 
Point opposite high plateau Ree oe ee ee ne ee ene e erelor erties Aas oats aineiaoe 6.15 
Snake River, Taylor’ SIDR GO pease eee aoa soenin ines aeioewne secon eee 13.25 
Snake River, CAMPeo- csste See ANS Sere eepisaw seeloeh Se beeoe ee Bea es ‘ 
HAGLEPROC OSES a eeetana- cele on/ Seem ec ewe es 
Bayou from Snake River 
Market Lake, camp...--..--.-- 
SDE RETERVITOIIGre Serena eeu bigs a Rata, coe Nei tae Secu 
Camasi@recks Camp: o.soc2 2 ls pince ace oeicie ds SARE ORO Cee eee eee es eamsete 
Gamas\Gneeletram Chi 42s jacis aie vis cis sais ome wis See Se neo s oib eee mee emer Hee oe 
DryCreck.tcamip ese ect ee eee uct seek Seem eee ea ee ocean c PEE eee cee 13. 09 
Tree iGelednc cs ag scams aac s akan ee men Uinta eon, Merge labs Gene ee 4.15 
DrysCreek; stage Station 2.2. acces sce c ke teeewees Sect ease sence eppese eet tet 4.19 
Hill, top of, south of Pleasant Walleyact op apesece eben scoot eeanaceo- ssctee 7.12 
Pleasant Valley, CAM Pe 5 Stes eae Ses SE Se See ee ee tee Bane Eee ee ee ae .59 
Hill} top crmorth of Pleasant Valley. .222222-cc-asqeracerese lee renee seeee oe: sith 
Hi gh TI CCM EE Ac ke al eR Ds De PA ce agar mee a nga cee 3. 31 
Divide between the Atlantic and Pacific Oceans. sean ce eee aan Rade ors ect 5. 89 
JUNELION, Shree Station. Camp. ees 0822s sae sone sesh ee ae eeu ese e cee ence omc eee 77 
Divide between Willow Creek and Red Rock Creek ......-.----+--++0.s2s22- 2. 47 
AREMRGCM Ores esp Oude eo es se ce se Pecos melee ce CGE e eisce Gear petee eines 2, 25 
medshockiOreek. second Cord ee eee eee ae a eee . 83 
Divide between Red Rock Creck and Big Sage Creele:y.2--< - secon oceans 3. 79 
Mernaceisouth of Biowwace Oreck cos s2625 es ese abe ee bee ene ec eieeen ee aeeeceneene 2.19 
Little Sage Creek, TEGAN) a ARIE 5 REAR US OMOEA 4,74 
; Divide between Big Sage Creek and Black-tailed Deer Creek AG sell 
‘UWace Ceres canip ye ocean see sei. 2 Neneh wep eeeaeeeli 55 .58 
-Black-tailed Deer Creekveamp 2255260 s0.6 60/2 = SAE: Bee ee 6. 82 
Divide between Black-tailed ees Greek and Stinkingwater River.....--..---. 6. 40 
Mouythiof Sweetwater Canon 2: sacc- oe ese ciwmade mucus brooke wclsonncen aoe 4.53 
Pmthot Swjeetwater/ Canon? s524 aun. eee ose hehe oases Se mee eee eee eee Roe ee 1.35 
Htinkelm Swaher River pCaAmMpP..ovaccecc se ae how vein nian ecieaniseeeniouse soe aoe eee 6. 16 
Point opposite hich EETEACO SE: Sse umes ER aaa aie Na ow aoe Pap an esac at: 3. 26 
Terrace above and north of crcek........----s:0sceeeceeeeeee. eas toes cases Rene 21 
Stinkingwater Valley, point of departure ..........-..-------...-----e--0---- 7.19 


ADOLLRCO Meer oe ea aren eee aoe ee Ss a sa haem Sear ep yes SEB ee asi 2.21 


| 


Total distance. 


Miles. 
26. 77 
31. 26 
33. 20 
33. 95 
39. 66 
41. 56 
47. 50 
48. 50 
49, 33 
54, 50 
57. 29 
58. 79 
63. 70 
65. 78 
70.17 
70. 32 
71. 53 
74,72 


‘78. 94 | 


80. 60 
87. 05 
92. 87 
94, 29 
96. 07 
101. 00 
106. 79 
109. 68 
117. 48 
119. 29 
125. 82 
131. 64 
135, 78 
147.98 
160. 60 
161.32 
162. 37 
164, 54 
171. 47 
176. 00 
183. 20 


189. 36 | 


202. 61 
203. 05 
211.23 
219. 65 
223. 09 
230. 98 
240. 80 
246. 12 
259. 21 
263. 96 
468. 15 
275. 27 
275. 86 
276. 64 
279. 95 
285. 84 
293. 61 
296. 08 
298. 33 
299. 16 
302. 95 
305.14 
309. 88 
315. 99 
316. 57 
323. 39 
329. 79 
334, 32 
335. 67 
341. 83 
344, 09 
345. 30 
302. 49 
354, 70 


Elevation. 


Feet. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 520 


Table of distances and elevations—Continued. 


Distance from 
point to point 
Total distance. 


Hlevation. 


From OGDEN TO Fort Exvxis—Continued. 
Divide between Stinkingwater River and Alder Creek 


Miles. | Miles. | Feet. 
1.31 | 356.01] 6,492 


INGVAda Olby iW jc oss. bees cee -| 2.54] 358.55 | 5,548 
Virginia City -| 1.44] 359.99 | 5,713 
Springs northeast of Virginia City, camp....-.--..-----------..---+----------- 1.19] 361.18 | 5,961 
Divide between Madison River and Jefferson River...-..----..----.-.-------- 2.97 | 364.15 | 6, 857 
MMe RON REED CAMP. jane Ie eS Ae LL ea rine nyc ee een trae WOOT Vm er al laa al 07 G 
MMCAgOWwseO Leek: fords. .c28 2 Sete os cece eke Check ee ee ah ee 8.99 | 380.71 | 5, 086 
Divide between Meadow Creek and Hot Spring Creek..-.........------..---- 3.73 | 384.44] 5, 836 
Hotspring Creeks Camp. --2os ten ccseaee eee haceees ace esso sees eine msee cee: 2.98 | 387.42] 4,804 
Divide between Hot Spring Creek and Madison River.-.........-..---.--.---- 6.10 | 393.52 | 5,079 
MERI SOT Tuy er DLC GO sce. seeks SUR Rese come MeReEee et UREA Ree eee 3.67 | 397.19 | 4,342 
PERV OTEGK fOLGs Aut ee ek chscemcls ace eee cee wake che SERRE CaS Leh RRR MOREE omen 1.68 | 398.87 |.------ 
ESTE Gm Mere eR ee ae el CN ki ae Sea ae 4.27 | 403.14] 4, 606 
il CreekNcampicechacaesciacwieee --aseoe ee Be Oe e ee ene oe ars ere 3.03 | 406.17] 4, 438 
Divide between Madison River and Gallatin River ..........--.---..---.----- 5.24 | 411.41 | 4,834 
viesh Gallatin Rimeribridgon. ce .cn-cee cscs eo ne shee eee eeecis ese eee secinee ee. 6.20 | 417.61 | 4,618 
rele kG mlatinthunver noo <<a cak cicctis ctacecae vee ob eis un tebe umekeee ones oe 1.85 }° 419.46 | 4,587 
TOR GENT A se Se GUE A eas Sie a AE I Pe TC ie LS aera aay seer AVES 2h 6.39 | 425.85 | 4, 655 
BT ee tS CAMP see seis emisiesys oles ciel ie oie wis oleic mets totem ee ta Ui 4.07 | 429.92 | 4,789 
FORT ELLIS TO FORT BRIDGER. 

Fort Ellis, camp.....-.------ Se ete cis a Ryan net sein emcee een eee cee martes 0:00) jose sect: 4, 789 
PSO IN BE ee eee Ae See econ ce sac ie meine ate nya diese mlaleine dete e o/s ae tome ie CS emer ee 4, 655 
DRCOG aN GRICE MOT sae cee Ny scene cto sieiaiee ean eie wc Baie oii cio a aleis come le panes lee 9. 85. 14.08 |....--- 
VCS h Grallanmmen nner stord soso) se cn Ue ec hemigc mee accra nee came cinciseuic sos aeime 4.76 18,84.) soci 3 
Spring, Creek: near Hamilton; Camp ss... <2. <2. 6-cececes + nernsececacasensccsce= 2. 45 21.29 | 4,342 
TECHIMO IR SE BN Sa Ss ere ay wa na el are rn Sree PaaS Bee oee 92 22,21 | 4,357 
29.46 | 4,210 

30; 0Gs | Seen 

33.33 | 4,210 

34,950 eee: 

41.64 | 4,396 

43.55 | 4,401 

45.17 | 4,534 

49.66 | 95,337 

53. 08 |------- 

Dore oie 

: 60.75 | 4,948 

CUES 3 nga ed Sees SOUS SIE SEER eae eee EH Vana RR ern na ANY é 62)69i/p sens. 
NOGUMBUMIGer Hiv OLedORd bane oo cwmcucne kemcmeremen ensewiewere meniecneme sacle aia * 63. 40 |..----- 
POMBO rider River GAM Paes ke eeece weccre aon scceee beck acceaes see vecensaeee A 64.10 | 4,565 
ECU Po ce Glee ees oe eee ea ARP toe: Ye Ua gh eR RUIDS eitce re cnc ey meee ee . 90 65.00 | 4,565 
sie hersOnvleiver Castors 1OPdec. oo caccescacncs seu cwsacuwiooruecse couse qswiese i GTR23uiseeeeee 
Jefferson River, west fork, ford 3 W2ROS Na ae 
iubitetanl ede cem(@ reel ee ee Soe ene. sis oe ae 3 14, 3h les see 
BEDE LOMO MO ROS Kee ete as tele aerate ia eee ep. so epee ey 4 een cae 3 OVS se | eaesee 
OREM oe ee ae Bae soe ae acs eames ; 18) 30) lea-eere 
Fish Creek, stage station, camp --- 5 83.20} 4,134 
Jefferson River, Parson’s bridge --... F : 84.45 | 4,083 
DICMOTROMPRIEVOL DOM s sinc) ee ene as arate ace eiea S ea oe 25 SiO yeteee 
BeaverheadwRiverstirsth PLATO. Gok soe cece seem weh le ee eee eeemerinwceoasiinae 20 | 160.90 | 4,228 
Beaverhead Rock, second bridge over Beaverhead River. -.......-.-.:--------- 12583) edt SSeS cooee. 
Beaverhead Rock, stage station, camp.-...-.----------- --------+-2seeee eee: 3 114.09 | 4,464 
CTI Gre ts CRA G1) Fee SARE Pisa Nine 10 Siig ey aR Ba eer ets SEER RON gE meta 8.76 | 122.85 |. <-2.2. 
Sass SUT ENGI T SRR ee Us ERI g EAR aN 65S he eG CT NOs esa A oan e oe Se gel ee ee 1.94} 124.79). \o coe 
CK canes Me em Ore ks. siete a2 oe eee eek eee ein ae ee ie creme he Oe cea a 5.45 | 130.24| 4,879 
Beaverhead River, one milo from cafion, camp...----.----------------+--------- 5.25 | 135.49 | 4,988 
BETES GOTO Ree Sos oom Oe ne ee me one one ale Viele mi ets Cee fs ey yaoi pc aiayasale a 4.87} 140.36] 5,147 
Top of terrace at the junction of Beaverhead River and Horse Plain Creek --| 8.14} 148.50] 5,206 
Beaverhead River ford, point of departure......-..---..---------------------- 90 | 149.40 | 5,130 
BETTS GO JON Se reac 3 so ae la ao cee ye are yaa NO Ey a eae 53 | 149.93 | 5,251 
Horse Plain Creek.............2..--- RS ee lh ee rat te aia caren Sine eae wa Sistene 1.17} 151.10 | 5,251 
SH: Cracelles Gakaaho Mens age yn ee reaemen lL Lh Se Oe ene meee ae Pee 19.74 | 170.84] 6,252 
SEGre) (CHRIS. aay 0 Deane ea aT et el RAR oc Shs aI eae ga 2.92 | 173.76 | 6,640 
peered (Okaays He at 2 a aie aM Re I a oo trae ae been eS bo RI I ta le 2 3500 | eknG: SSn eee ees 
SETUP LOPORe ere ce a ts Oe Meee etre Cee -65 | 177.48 | 6, 785 
Wreokswat UNCON! 2.52050 u ole teem lee tee ewes cece ne ADE ao 90M eeoeme 
CURSISLEC TARTAN TeV ST ee epee ee ean el seisinic 1.738 | 179.68 | 6,980 
Divide between Horse Plain Creek and Red Rock Creek....-.-.-.------------ 2.77 | 182.45] 7, 405 
‘rancor wed Rock Creeks. einen eee ae eee uence ba weme ona Seen hs 1.36 | 183.81) 6,976 
Branch of Red Rock Creek, point of departure ...-......--------------------- 3.17 | 186.98] 6,799 
SEEN, THOYB) Oui cee ETRE ie i oak Re an gre OR Ae CAE Se SD 4.71 | 191.69 | 6,799 
Second branch of Red Rock Croek.....-. 2-222-002-2220 c2-eeeeeeececeeecneeeees -99 | 192.63 | 6,598 
Small branch of Red Reck Creek, camp. .-.-- CR AE Fie BP aire oe nts eects Er .11] 192.79 | 6,609 


Smallpranch of Red Rock Creek ote cis osc onc ck coc cco benecccececceeconces 2.87 | 195.66 | 6,632 


524 GEOLOGICAL SURVEY OF THE TERRITORIES. 


Table of distances and elevations—Continued. 


ge | 8 
AS EI : 
4 o & a EI 
Points. SES eS = 
er = 3 
ee ey iB 
“4 O (>) = 
AS sal | 
Fort ELLis TO Fort BRIDGER—Continued. We ren baci. || vaoe 
Divide between the Atlantic and Pacific Oceans..........-..--.--.----------- 2.58 | 198.24] 7, 255 
Medicine tndseCreelente ei oe crise ee eee atin ce “lemme tier eaiaeeieciecmaiee = 2.20 | 200.44) 6, 420 
Junction of two branches of Medicine Lodge Creek..-..-.--.-.-.-.---------- 4.98 | 205.42 |.....-- 
Medicine Modee Creeks (camp) 82 ocelete ciel aime = = eee lelelaicle al = leysyaieie nieeie aa oalete 3.42 | 208.84] 6,110 
High basalt piatean, point of departure, Medicine Lodge Creek ...-.......--. 10.99 | 219.83 | 6, 505 
Medicine Lo ge Creek, second Camp..------...------------------------------- 8.96 | 228.79 | 5,105 
Medicine Lodge Creek ford, point of departure..............-.-.-------.----- OS 280 rita eee 
Dry (Oreelo st Gis Seen Se oh hoes Be aie caisicjo ge eaisien eelstels sie Secie eee awn lee eases B24) 2390 01 seer 
Wamas Creel oa cep soa da nismicietocisiecici's omisine sissies eaciclan Bee elaiee eee sleet sae 712] 246.13 | 4,687 
Wesertawiellcicamp see see eer ee tlee ace iae el ne oe tee aoe Bee eee a ete eee ier 5.31 | 251.44] 4, 816 
Bayou of Snake River, camp...--..---.-.----+--.------- fasndeedaosaesounAesace 18.94 | 270.28] 4,780 
Snake shiver Muy LOT SyPTG SOs... oc Hoenn iene wlsinin ctolals eis icteie(ieinielel a min cin /siaiste)s ares) earl Me ee Se ea 4, 627 
Blackfoot Fork, near the bridge, CAMP han cmecnemer net cree meh ere eee 33.81 | 304.19 | 4, 456 
HorbbHally camp se sess ese woo aces eeicine week Seles) ncaa nre cee os cineeine cnet 7.73 | 311.92) 4,720 
Divide peteen Blackfoot Fork and Port Neuf River.......-----.------------ 8.60 | 320.52] 5,964 
‘Branch of Port NeutwRiver, ford 252-22 hoo ese ses cose neue Hose nieeeiseoieee seaer 9.62 | 330.14 }]......- : 
Branch of Port Neuf River, CAND. 22 ene eee ee eee one ne enn -48 | 330.62 | 5,361 
Branch of Port Neuf River, point of departure..-.-.....--..------.---------- 7.03 | 337.65 | 5,217 
arse branch of-Port iNeut River) o-cco-see-cecccccmeccnec soee cece cece ese 5.47 | 343.12] 5,286 
Twin SPLIN PS MCAT eee ere cs tele areal a iarelelelel aioe elersiaw =| sieaiaieoe cic eee eee eee ae 5 | 353.27] 5, 357 
Crossroads wear River, Walley. 2.5 once~, qeen's asec seme ete ceeeeeccice : 308.92 | 5,315 
Hill west of Soda Spine: asp ccs saeicine asec beisiceeen eee aaeeieeeeeE seecee : 362.42 | 5,482 
Soda Spring Creek....--.....---.------ 5 308. 450 sae 
Soda Springs, west village, camp - 4 363.61 | 5,529 
Pyramid Spring feoeAs 5 6 364. 5 5, 614 
Saint George ...-..-.- ; 382.62 | 5, 771 
Bennington, camp : 390.06 | 5,798 
Montpelier Be etal sic laie)nee de telat SIS Re iia eae ratete aia ike ine la a Bree Ciwre ee Se RSIS : 394.08 | 5,793 
BearthiversiMd sess... vcctcc eae eee eb tea dee ace ee eeu balm ee mmctacieeton ; 396.65 | 5, 744 
TECK eee wae CRE a RAMA eG eee eee women kl eiemloe aint mice Soames 397.84 | 5,744 
Oreck seas eee cod ehiee cuca ante Seek Seabee eR ee ee SMELL eee GEeee eRe Cee eee One 399. 94 he ues 
Oya e ee se cee eae cake Sead meeE ak od bat cee com RroeUMenes cRee 3 400.01 | 5,760 
WP aviS | 2 Se ote ao Mae bee EES ULL eRe ee See E Seat end edeme edeubemcueememce meee : 404.40 | 5, 836 
Paris\@reek ford sso4: 0 Pee cee cet eke woke de wacet ea dcne sbi maysiseue cores wecee ne 404.72 |...--.- 
BlOOMIN ETON eae ae Lee eee Le Soe uel ae ee eS yale eva eare mee 407.12 | 5,985 
Saint Charles yee we ee ee pas Sid Se cece rae rctanerats ate Wine eI eI “tas 412.21 | 5,932 
Wish Haven, camp, Bear Lake .........02 02. nec cen ec ne we nce c ee ence ee ec ee ce eens i 417.04) 5,911 
RCRREII TOTO) Ue AIer eMC NCI SEC en dk oe 2) c's Soften In 2 ile ae : 417.39 | 5,932 
Idaho, south boundary line stone ; k 49027 eee 
Swamy reer! Aiea ee ee a 2 eS ee ra ee Sue ey ste tae : 421.79 | 5,922 
Bearsuake spointor departures oa.s+> --octeecweece- ese ce ecard setemeeeeeaee .15 | 431.94] 5, 931 
IBaT RNa Ua sinks 02 oo Ai es ARG AUG ARR REE AEE RAN HALO RRR I ea i 433.04 | 6,001 
Divide between Bear Lake and Bear River - i 437.43 | 7, 159 
Sage Creek, camp...----.-.------------.- 2.53 | 440.96 | 6,782 
Bear River Valley, point of entrance - : 5.31 | 446.27 | 6,361 
RATE OR Uae Sc Re eal ate rash Stile onl e wictebicw ceed wincimme mmm Cmeebe meee 7.83 | 454.10 | 6, 442 
ANOOUE MAE, DOU HVS 9-23 5c oa050 sac cso leg ss ee eses soo aesasendscscsassca2 9.82 | 463.92 |....... 
HAM atom ONG OF MCAT Mv ere eee eee med cece gat Late eee amen 8.97 | 472.89 | 6,832 
BearvRLVer! CAMP ssi ceme nema t Mee prestobieratsiceidae eines cereme nie mae aie Rie 1.07 | 473.96 | 6, 686 
BG ar PLY. CT COL Me mete eae se ie eee ie Heeaate Macca Setar ei ake ial Ree 8.65 | 482,61 |......- 
Bear River ridg@evees tease tea a tee etal wan Necidmes cle camer eneeineete 3.08 | 485.69 |......- 
Vans lon Camp ica seat eekeree tiene hee pede ube Ae etic ema etemmere te cee 1.03 | 486.72] 6, 835 
Bear River, POLO DS laste vores Se eee o Krom cik aie TR tC SI Sn eared oe 9.06 | 495.78 | 7,078 
Sulphur CASS hi mmo y Kuan hnd. AUTEN tl. 96 | 496.74 |....-.. 
Gnigha Creek ford MBadiDowali dices heise nee cee oem ermE ee ase sen eee 84] 497.58 | 7,151 
Quaking Asp, Elid Oo Sore ean UREN LORE Racer ted ne eel 5.79 | 503.37] 7,689 
ENTIAL AVAORECKBE Ss Rie ore Shari othe meri epiniaye cee ere amine ieee Dae U RoI ote 11.94 | 515.31] 6,948 
SHOR LMS TIC D OLR 55ers ea ik feniereie slate la Bere ereterelbie ere eictererereis eye oe BIN oe ase OO eee 12.50 | 527.81 | 6,656 


Fig. 


OOo & & DO eR 


Oomrnrt anh wow 


. Gdipoda tenebrosa, Scudd. 4 
. Brachypeplus virescens, Charp. 
. Caloptenus differentialis, Thos. 
. Gryllus formosus, Say. 

. Adipoda trifasciata, Say. 


. Acridium frontalis, Thos. 
. Caloptenus occidentalis, Thos. 


EXPLANATION OF THE PLATES OF ORTHOPTERA.* 


PLATE I. 


Anabrus simplex, Hald. 


PLATE II. 


. Caloptenus Dodgei, (male,) Thos. 


. Caloptenus viridis, Thos. | 


. Caloptenus Dodgei, (male.) 

. Caloptenus differentialis, var. a, Thos. 
. Opomola bivittata, Serv. 

. Opomola Wyomingensis, Thos. 

. Caloptenus Dodgei, (female,) Thos. 


Fig. 


10. 
iil 
12. 


. Acrolophitus hirtipes, Thos. 

. Decticus pallidipalpus, Thos. 
. Locusta fuliginesa, Thos. 

. Gryllus luctuosus, Serv. 

. Gryllus luctuosus, Serv. 


Caloptenus Turnbullii,. Thos. 

Ephippitytha gracilipes, Thos. 

Phaneroptera Coloradensis, Thos., 
(MS.) 


. Pezotettia obesa, Thos.- 

. Pezotettia obesa. 

. Ephippigera tschivavensis, Hald. 
. Locusta occidentalis, Thos. 

. Pterolepis minutus, Thos. 


* These two plates of Orthoptera, are copied by permission of Professor I’. Glover, from IX and XI 


of his admirable plates of American Orthoptera, and although containing none but western species, 


have two or three species to which I do not refer. 


SANE NCe 
14 ty % xe 
Haken .f 

en Mik: 


PLATE I. 


GEOLOGICAL SURVEY OF THE TERRITORIE S. 


SefPovrer 


PLATE IT. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 


ee, 
SHlove Oo 


y 


oS 


Sek: 


ia 

ni 
.; 
q 


INDEX 


Part 1—REPORTS OF PROF. F. V. HAYDEN, UNITED STATES GEOLOGIST, 
AND A. C. PEALE, M. D. 


Page 

Act of Congress in regard to the Yellowstone Park...... ..-... -...--.-.----- 164 

POTS GULCH eaten 2 ato iaintaele eM eteie miata bee cate els See ee ele ce ee ute a spe 39, 41 

POMPEO RODION PEL Laake sine Nowe eie S ob ons behets eter comet we co uaa rn cones un 87 

PEPPER CLUN CULE EES FSR ek RA ET SNe EC ee nate cei ene tae 30 

EMF BUSES OL POV SCLILO MER ects teehee ee ctala ne ele ene oa eee oe sean 187 

HOtHS PMNs sets s Jscce saya e a eee 167, 176, 179, 180, 181, 187, 188, 189 

HOLespLrinsmMepOsita.sae saan. 5 waseee sees eee ce aes ser eee eran 130, 179 

SOG OPLIDAS  COLOTANO cee seen cce) psec ee snes © ce cemeeen cee 159 

Phonolytessaseso cL Set eee we eee See eRe EES ge eee oe eleey 170 

Sal (anonmldanas secu ute a ce Senet Sete 2 ee Gee Satna Fee 161 

Wailer fronnuney COVSeLS <2. 5 {Tere ee ee UE ee eee 187 

euTIMOC an I yMan wactasee cals ceise cael sae cau acme kc, Scie eae al aA 143 

Bast verosiOmOr, Dy jeRake RIVET o.oo) osc oe tee en eo occ ce teee sec cae esa cels 28 

GEOLUINGHE Valleys cee ao ooo cee aw avo seme eeraeph se aecels apni ais ate 6 23 

ESTED OR roped rei s= Siete cri Sine apa reia eye layatalaloya (eter cisicisioeiital ora Ryeash Moe tara ienaeieg 28, 53 

DNDN i NS SE AS I Se I a ee ee i ee Yc 29 
BaSalbienuOWAGeL + ss0scs-0¢cc see seence sero s poavaod poses. bacadng scone ceke 57 

[PAU MUISIUG 23 oot S deleeeiganodu ddseeeeeeee Beaded se bedaasudd BESeks Hoods: 114 

PINE Rete erate eels ctela ate bicia siciea ciaieie Preise) is/are aie Gia ater aeiay wale laine ticisers a Selomys 119 

J Eb: SHOT CD), tee AR Dg PS Sy A a a Rol a ee yt Sikie a wimsitiontoeniae 63 

i aicOne eee ae cams shemale oe Soars Mee mC eos antic Naat aL, ee 156 

MAIKO RNAS nee ace aisete oo cens stale cmelcc we Sele ence ene eave ae ee eee ea 157 

UNO Tgateteste ate aalein = attelatne ne, = sree ale cian | ois een Sela ool) ei ra gt Re a ce 21 

IUIVIGE QRS c eye Ne, aa ctree clay n Se alae Ra pulate maj eiats ates of ema ain ey eor ge rae 19 

PUI VCT Vea We yer tiered Wee ae sou Sphere aan Mtage iene aye pS ey eet 22, 150 

RESOMECES Ohm eet sa nae Whe 2 aay cist oe orca ae ees aan mneed 22 

Beaver readkOneclcna ss matin soe a tee as ieee stacine sans ts see eee aE ee 36 

IO CIMMIME SHE SSE eS 2 Ss sole ee tae ho cke cee cee Cee ee ates ae 143 

AEGIS Ee nae a nei aah Ua hes ari ne nerve Stara ay seat ae a Sete eee nate eee 143 

AV Gad ey sicsl sreserenes crstene olatsiorratonstetcie fare atean arate erasures eee pees nee eter 145 

Beery; (SCySEL-CONE) 2-222 2 os incieem ve teen thee Bae ae 2 eee eee 110 

EMMIS TOMse sa mae sees eset ae cane sees eae e on eeioennr- © cae Sent ore erent 155 

ios OlOAiViereatatiee Sanat tee Coser elma Male Dereon ac say Ute ct ocean 143 

Er SR ELOnUM kame he mee sce st ne) Smelsel oem ane eet et cele care aia ey acre 54 

TBS US CCl Woxch a Eye Fe ct eRe ph a Na NC late i adele ea ntay sla ay ce Mle 27, 30, 151 

Black-tanleD eer Creek: 22 saat eae wy ee See ke eS ee Sia i aide ee 33, 35 

HANGS S c7h ks ace oe Nhs Ske SR ras nck Yaa Me Se 145 

Valley cect oscccct eit eet ae cece utes Secs eete te eee oe 30 

BIGEGMUN SON. ic cee s asa sease toes hs, ee sae SSF ee ee oe 157 

BO LLLSMSMRAMCH Scion cise occas eee siete eMac aaa serrate cana See 54, 57 

Bowlder Creeks; Big 5262s) v3Saanse tose scetca une cee eee tas teeeett cee noms seen 51, 54 

NOP] 2-2/5 Fare ara arama Sater tater cater Deter a hat ha ee 141 

BORON, CAM OM ao ce nw/asioare erarereharele arate pl siiomi a tarctatntciattoltsiowtetstatat ate ate tela a 17 

PANG Hida scoos tdacccaeaease Sac oaa te aa sess cet eset oe jl eee ie 18 

BOZEMAN CHOY as 2c herra sw oie otal asian Hota torsos eo CONE LRP Mar Ee 44 

BIS oonuipo door ocecas Coenbd cobnod Bdsbue BedagHnpoD-oeeeus ecenon Sco! 46 

JE EIA) OC eal yar el ame ne eA ash em gS a I En NUNES 21 

Bmiiser mass) 2 Loud se etaamea a case saan ae atte pes Beene Sous massse 45 

POTS Sire als ata) ht i Ne ee a anise se ee Ree ose cne deeeeieee 46 

PPRNOMATAI OUD 21-582 )s AS eas NS Pe NR aig Ie is a ae Seip ie gets patente in 17 

IRTIS POINENS AST te sors) ee eee ee eee wares meus Se eucic een CER 135, 189 

TROT ESSBUR Dota 2 Sato er ant nt Ee ee oes gamcnetsan asec Tee ee 28, 53 

IRGIIIGIO DBBcetoron moe see ice eo Set SIEM eames E cena er mer, £157,8 Jil 29 


AES SC VOLT 2h oe eat hp Wik eee ee ke SATAN 2 8 oY Deas sie Mee Dated eels ie Aes 112 


526 INDEX. 
. Page 
Cache Valley... --- o.2200 secnne con nee eocene cecces te cens vscces see wen wane cone 19, 22 
(Cannas ORE. oo sb hopcad pe Scoebooass ddoeed saodoe Sasso usc oou oda deoedee sane 29 
Cafion, Box Elder............-......... BR eT UN I a) A a 17 
Gardiner’s ..--.. BU Soesonemsea sei soe “anges obs Sask ooseeed bo sae Saad 5 74 
Grand..... 6.085650 0500600 BOS 30O 26 Bb56 So00b7 o6 35 ecm beachs a sloesitre sien 79, 82 
Madison i sceiss ce cinii= oslo oeictarciara state oom iomeynaie eine etememetemne eigcternee 39 
Mill Creekeice Serie tics sia cin dccin wnto sinister as adoro etrepanian sale miaeeyen eeiae nisin 46 
Ogden... .-- 22+ 22-222 22 een ee cen eee ne nn eee eee eee ene - 15,166 
SVEN eo A ee eee eSB Sa sob se odie Sedbdoeadsossaes 46 
SWeebWabel aes sacs seine smc opcain es ccceeiaee seis aleiaeseiteie ee ieee rere 37 
Waldi@ate ea jo. tee l sce. cect t SS ook a cele cokiet sniscieise hesiee 23, 35 
Yellowstone, First.- 223 42. Soe See os REG cclecel selenite coe mieten 51, 53, 59 
Second.....--.-.-- Baie wie wie a miS pal os iy ere cerae en Sy ot ieeg reo 59 
{Mth 0 pe eS Gaodue sacl Bode aca co cnro ease seaasdee ea do ose 63 
Carboniferous conglomerates....--.. .--. 222. ---- -- 0 = wee e cee nnn eons ones 33 
Carpenters Stations 232 eS ee oes ee cane cm nieincminies eoleeee ane eee 93 
Carrington, C., report on flows of geysers....-..--.- seic'sic's Soc mine Swiew are see 95 
@Wascadesers casas cae ee Mees Coe ca ccc, ce einalelsioiaicislseicine avait a eae see 74 
Cascade Oree ee ep ere a nice oie nism eiele ein eleia a wc ew iet oan pateiennge eres 82 
Chstle thes fo 20 neha secicamee sem scen scien: ecemceie seman nee ieee Sie Maret 122 
Catalogue of minerals .o ii ooo 2 ose sree cn oe cin = ctmmmnite scmeiene ps (hes eitenatho eis 199 
5 ROXG] (S| er oe a OE A UES Seance a aes 201 
ODEN JOOS SSA Soo 550s boobo bSbone oooSes sto sett nesses 197 
Cave on Dry Creek..--..-.---.---- ScaGiee ccome yee a eae een ae ters een eeieee tee 99,169 
CimnabarMountain: 222es coccsc ence cise iciocie oe cine cmmis oyatciaie's o' nictstneuiaeerersios 60 
Glark’s: Creeks... 2-cb essences ecische,eccetaeeciocemaceeclsemmee ase eerie ome eeee 145 
C@lark’s Fork of the Yellowstone....-...--..---2-- 22 --c.nce eee aseee neces eens 51 
Goa eR aie aie ceca a We She Bae eae oe Sek Ne ees 46, 52, 144, 159, 173, 194, 196 
Coal-beds at Evanston, Utah Territory...-..-.--.----.------.-------- +--+ - 194 
Committee on Public Lands, the report of the, in regard to Yellowstone Park. 163 
(Comelh Syamiiars | Soa gn otso nosso occu nenSobn boa boa edbons sous USudoONeasodos 113 
@onesioni Gardiner sunRiverscie a2 226 se mee es cece ccm ancl estiscielonis ss elerece) easier 67 
(CODEMIMEGI soo scp aco s soooSo consad sosoch cobecoosoend sesece hones SooneoE Sans 18 
(OGD Vesa ests Tad CN SEP eB ECO COUE NOBUO HOU DIRS aL OO ape SSO EsSScuesdD sane o 172 
(Coreen Ton BBUKO UTES Ce o6 pee bo5 poche Soo couoorbo codon SHbAgoodonononch S06 64 
Gormmne has) tas ei eee eee eee ne See cee Sees MRAP 20 
Craters: volcaniGsaca sees oo as ocies foie ciscitine toe scat slelnina siscisicemmeinss ee ees 154 
Crazy Woman, Mountainssanccs sstecimiejsicie se wciceoe aes leeie sels siete) oisieimieiyeoine 51, 53 
Delano, Hon. Secretary, letter of..--. ...... 2.022. 0022. - cece eee n ee nee eee 164 
iver, Ci sbas seGokeaedc 6468 ca done ca ncoo Hbeoon Hoobs Oo dacodebeskor cosas mrss 119 
De wvilsiC alaicom eter <eheree aisle oe sraieta oars mie lovelacicleiaiicic ls wisiensiateleiate) sickle eevee ale 86 
WMO see is os vets ers © mics siwin emere misuse ele eieneic nis kcemiauainte leita reioisiae aa eae ees -78 
SING Sete e os cies cies cismicieinke cin plein eaten atemaieae siesta em eeu eae 61,174 
Dibothrium cordiceps..-.. .--- .-.--- o-0- ---2-- oe enn eee eee NS cles Angee eee 97 
Divide of the Rocky Mountains..-....... 222-2. 2-20 ee 220 eee ene ween ne oon ne 31 
ioenrie. NEO MIN eis tp ace eee a wala cteaeet elie oieteelel= aie epee ai tata ee 135 
Drown) Wr Thomas lester, Ole \cice -t- nc eee ces one aia ale ole lala ee inlet 159 
Dray Ore ele eas Sora see ee oat ioe ce sin lalo) olor oie eyaiais alelpeeia a asl closie a atta oe eee 29 
Bast Pork of Gardiner’s (River. +. 6 ¢6c..<caessss4 ssiscosee seu cee eee 7 
Madison TRiVeDe. ccs cecccic csecsissie sense ene sipisicie seein malseers 102 
Yellowstone, valley of..---. ..- 2.6 12-000 cc cece woe eae 20s ees ann 137 
idllepploenny kos Se ABS eSS coe Soos ode coscoe asaboanasoon sebgsonsSo Sbes oat sae 43 
Bile neil eral MINI GE a Son GasenG ober Gedeod SSucco caga de sooorechen Askso5=5 43 
mores EMG 35 obs ooms6g 5b0086 GHd55G 5000 ToS S05 OF abOs CaGSd eT O54 soda oges 55, 191 
Peakenresig conte ces tee eseeosces Ge eee eee enenee nee eoeeaeeeee 54,191 
Pvansbons Witalt eos oe oes sectcieis, cams: ose ciee eia eis nioie sola, nies iain alet aie a mumialar Cate ator 158 
Coal!Minessaee sc ececicinc eee eee cins cee iie aetna siemeemniM ste teeter 194 
Mary Pall ooo Secor he clay no eakeiescroy srciays! Storcralahan out nal etatawros atateene ddeod someda seen 112 
Ballsiof the Yellowstone, Lowers i <5. 5 jose ta coe socal adalat ele we el elena oat 83, 84 
PDs a Soc So ocd Onddas daedag Soces0 oso0ouEe 83 
TRG WOT oor cayorcinwia cic ec aic we tia due SER Ree cise ellmeea Seems aise Same erence reine eeeterte 78 
Bie MEO Ley asic 6 ciara tie seicrars wrctarc tere tatorere (crore setarete veteromvaia terererarereecde paterctede le eNom eine 103, 182 
DRIER a cinaicrnerataa ornare aicimed mciete ance arcisiem | Se ele eare ems emiscareetrone 113, 122, 185 
Viale yi co Ga etecarercrnrotene ciarsicron Seyetor rap aiaialesyotetete rela rairereetaretelaaiee tele eae muterete tater 


INDEX. Lapay 


Page 

Jing OMmeglien eee eens codes mopeee soemor dase se seas oS ease esas ssee cS ane 143 
Tele MUG AID 63555 3555 555555555555 555555 55 os 5355 eee asa 131 
Blathead Pass.-......2--- .-- <<. 0-20. anne oe tial vic ttarmreiel oslo SMe erate 45, 140 
Fort His... ..---. Bias etcs Sew een ete Et ates ee wimeciscebcioesatise: MeCkEoeeS 44 
edith (SGM a8 Se oe oceepanpeecoesoas Ses seo S one redeeocee GcoosEr ooesoo sons 25, 169 
LUG StL SLND PONS ne Bae oe coor epoees cemeer ae ence cane Fe OS BA Sse one 43 
Foot-hills of Yellowstone Valley...-...--...-. ea Riko oe ick UR Cacia ae 58 
[Ph SGM cosos55 oo cecg ce cece bees opesece coe eoe soca dap shire nates ia SiMe ste 182 
(GHIIGTE kaos oe soo Sag SoaneS soo655 soa ses paseo oS seasons “eno esse Sens 172 
eee aio anmAING ee So an oa os waren onpe weeeeelee ecres eine a 47 
AVG ee arene ice iecistorcl cal o(elers acasinione abies aac eee int eemeey (etal te yestetatey = 44 
Walleye aa es chet cet nwcktncbaw embeds eee UN een ree 44, 45,139 
Gardiner’s Canon. Sait io mca wideh tind oaraiek MES puts eee rm Stale talae ro 74 
RVers eee Mee leeches Cage icec eve emeceemnbecee meee omen sees. 63, 73, i 

Viale Wrist tbieee Ae Soe a yee eins yacremisisios See cecibetwe were MR N Oe ee estate 
Geological fepoeh Of Dr vhS) ViHay dela Gecicnwwec cern oe oes meee 3 
Geyserite, analysesiotec ses. sae cescciciias cle Soce ss eawecsicelsese we sacs code seine ey 
descriptionioty oases oe bole mls eisisidia| clnimieyialsiarslole! ciate wie cients 187 
Geyser tenet HOW OTE: See RL eet ak ole se etcetera cous searars oul Sean Rioayet oe 104, 112, 182 
Oy He erent teens Sas Peal ahs claret seeemimia ara emitere tanec cman ate ...-116, 125 
Neenice bial Mountains 225c2 4s, sok scowls wena Sasa sues 109 
Dee vELivenme Veneer ae ece rs sacs oese ine Sac enw seems eee ce scan marmite 124 
Castlene ee isurease hela Seon sc ess cls crete Walco ee uses cee poe Sam 122 
Caifishiyaes seo soph Soh So) bi ka oes ell as le Gh ae be aie a ee ea 112 
COME, OAHU GS as ose sausauss sudede GaccOUbDeoDEbebsub, casccossecee 190 
Fan ....-. Po RRL MENS Silke Satna secon ses cea Saceme ls cence, macmremmetag a5 124 
Giants eee se sete e Ses eA es EE PBN TENE ea a CO a 122 
Giamitessese eee ee ooze ttre oko ee Se Uae kaa 123 
Granda week dicee ch cin mke eeeieec ee eee ee cree ees edb se Cres ao8 116 
EIGN Ss odes teetoo GoUdos soaadd soo hooeGbods Hb oono Sade Sos seae moon Sancec 113 
ANA ae 2 oes i ole ctapiny Sicate nin nines ee toteimelage nis elo yaicisinien tana Geun caceen sues 93 
Olde Banthifmlscer ase ioe Sway ei es Sa ee ee ea 125 
MRUIVOTSUOG) 2 Are te A ere heise acre gee ete ba iclo waco miata eich nil cis eawea a esjave fares 113 
WRT ee Sos) chee doe ce cbewees wate a amen Uaeken thas ea de eee Sak cease 106 
Wii epWOmMerasanaecmaghe ants as > satel nccecisane mia aa mint onemcae eee 112 
ONS GUSE ee te oslo he eh ei cnt ne ciniaein ee eisninninane tele cemieys yo aisle a Ruoe ee 185 
_* Bunsen’s theory of flowings of the..........-----.----------+ -+---- 186 
Or NeweZealam dios Messen eee ee eee ee 127,176 
@MUING Os Beno nse eeeien eee nie mee eine yeCecaeic ea eimiscisee nines cae 68 
of Mower basin, Hire vole, River apiece csiatencimimor ic ana aicrinerjel hee eet 182 
Upper Basin, Fire Hole River...-......-. +... .---- Oe ens ees sie 185 
TODS Tn a oe se Bae Ee net emer eens rae eye nein fee 8 69 
Giant) Caldron). 7.5. ..4 2. dudeeeel adh 2 Cow SER eRe acti Hee CMe Beek 93 
Gian Gey SCT wh WO) pa ins tenciajaisia aio ciciaialeiclaisinicleisieinie sisi simmeccisie sein see ote siete 122 
(SSRIS) NG AE ARS eee ey ree ees Bee ee eS 123 
ER ea ae ate ie oe crea ata tlal oa crepes apeneeantal apes Va ae eats Se ee 41, 55, 148, 191 
Grand Cafion..-.-...--.-. Meiners Ua iaisray Hoe ecraaendleeoe Bese eee etme ee eee erS 79, 82 
GERD Spring se ciee cae Gmaien liseisisieejetins wh ewamisigan seis Soar aesteicclelsteeweteete 114 
Green! River! Valleys series serie oiciiencincie tats ereinis Wtkslorersheialole ees eee oes 155 
CGretto; Gardiner’ Ss) Fulvielys ej on .s<)-iiaeicierarclaciass: oateperomiacicionicfaccnierck ben esas 71 
Wellowstonesbivereyecnoc + toca cnemeiars va oao once qolenae~ apie ince 92 
Gaich Aldersn- -eheeseee meas sees eat eae eee 39, 41 
1 PRES SE Oc BRED EDO COCR C EE Same yor mtn MernMnar meee eungiye 17a). ye 63 
MIAN G Le Soe abe epee eeecemE ce heielecs serine kwicbine Been Same mee eer 55, 191 
Men bast Chance 22 ss snsecee cscs so wemeitio sacl aces etree udwahtcoeeeciciec. dulaicials 43 
Gmiysites CavenUlarian sc cca ees vag ee es sean Se Neale 15 
Hayden, Dr. F. Y., letter of, to the Secretary of the Interior.............--.-. 3 
geological TEPOLUI OLS eile cee tic wtescg iors gcmisiny ain aro Sia ojneei SOON 11 
BAT G WAKO ee css caclc wnnaicic wii cee eeelee oie se eerie Seb mine ens esen os puneeimnIne = 133 
ell-rearine: Mountain <)-(-(5) scejessernscis, icitaiais asiekomiestninn ossiclo) ieleialuimias cepa ae V7 
: HAWOWEB Ob co Oboe. cote bob soo de Bonn oo OREO CSOesmnG EE eae cess 5.4 77 
ERSMVSMMOL Kir 2 «5 «) clo a5)5,c nel sa sie spt aiseisisialoisieici saa aialciorer noe oxcipeaneetoice ieee 28 
Hiram, town of... . --.- .--- ---0.-22- 2--- one nee enen cee e ne erence eee 20 
JE PCM Sy TERUG rCKEYMM ROTC) LNRM SESE REN See he Im aA Nona al ane Pea Nyasa ay Ee) NES co ie e e 29, 169 
Wall (rock esc scotia. co esa giine pice ecusie mimi ye aetna Sr 29 
EGE COV SOR ih cic aot ck alee eee ea balae oo USe a Sea CKaa eae eee metas ene home 113 


PAorsetelains Cree kage eh lied ai era ee OM ores lim ol Dea seicie eects de 144 


528 _ AINDEX: 


Page 
Js ory isobar OFhom Ves oa ee fe aoe SoS Sees eee eee eee Soe Cee ee ee eee 130 
Creekuns soasu tetera se cvnse ean hes aici SNS ee Ae ees eae ey - 
Motintaim s ocicnceceredcuwewbcuewedivns teats ta ee ee eee 
Iiob SPRUNG S2e 2 oon eeaeeneeaeer 17, 65, 86, 87, 103, 167, 172, 174, 178, 179, 180, 188, 190, 17 
CALALOR US) Ola soe vecreia cet a aetal eS eee ee aia eee ere eee eee ae 

Crater, Eg ais siscicinie siepeibied daibisicien SE Sve ye ae cence oe 8 87, 180 

East Fork of Madison. River......-. 02.2 2220 e220 eee enn eee eee 103 

Gardineris River soso scucalcinerns seers cis sleet sess aS ee OMe REe ee 65, 174 

GrandsC anon. sos seen sakes Soe sea ee eee eee ance eee 86 

LOD S PEIN S WCIStTICh ajn4. sara aism sacle -ateininjnial=t amine aie att eR 172 

Mount Washburnianssncuscke se yee taciseke anaes ne eee Nee 179 

iNew, Zealand soap cwee acai i desi Go aang Seed 55 gee 127, 176 

Ogden, Utah Territory, (near) ..--).---.)-- 225. Jace -- 2552 eee an 17 

TBO WOT OC ss weal we ey Sich i le il A NaS eta oR 178 

BU PTET STIR OLS Ss hos elas ah Silom a Ae Ll eae rca lap 190 

Yellowstone Lake.............-.. woreins ener oven serie nose tannin 188 

Tdaho} Territorysec. s4esss fess l se see oss wet eee sse Pesce ee ee eet 27 

BULTLACOOL Here 4s Leo RAS oe a eee 147 

Indian: Oreekeosiw srecds sooeaage Foes SLSR eS eee ee Lees Sak Ce See ees cote 156 

Prom Ores vse lselsoo ls HASH o SSS BASSES SRRSN ESE ee a ee 196 

BUDO AGO pon ono ano oGobuE bob Cb DOob Sob apadua mado, cnbode boomboab caed 103 

J efferson Fork SG Sd RESIS i Sods Solel es Sertales caw niodss eine cane sic as See eee 33, 141 

MOC NGA Pieeeee Sees 2ace cade wainace ioc sstoeiee = eeaisete eae berets oem ancien ero aera 155 

Junction P siation PEAR e crce cal ease seas Sees cael eats Sree ee eh elas Satta ee eee ete 32 

Kettle-topeButte 2 e8 sa. 5 ack oo se etie odes coe Sse ss ieons psoeeeleg eesee eee 29 

TMke Seat asic mies ascine arederew Suse Shieh Mikes wR eee SEs Cee Cee ete RCE Sencar 133 

IIE NGDISY0) apse et eeu ener Ray ealen hoy avert es WR Re mr MOMS gms SEK a) 127 

Hel Eee a epee eg ER Oo a er Se ED rk, RF aye 28 

IMI SUG erties cists cern eee sreramt inn anas Rois cibos cece cee se he ee eames 47 

A LABEL OK Giepaten a nye Sete ae en AoE GRE ACM POE MME RU my sene eS oT ila o 190 

Vellowstone siiscscsae oe ot Seca ete meee Se Reet ame CE eee eemeeeenee 96, 99, 130, 182 

period nthe; Westscsccececekclccce/ tothe ese ace eee ees 20 

ADR oar eee ey Ee Ee Sao eect aise cas ee ie I ANS eS I 157 

MastiChanceyGulehys.c scmwccciosccmcwcte ie aces eeORE ok Cote US tEREEe mee eee 43 

MumMesior Uceland csc esos che eet eek wes moee eee eee SiS Hee ek Oe Re 186 
Letter OL MD) ay VOW VAN 2yspsicis accor ec uSis tare more mci wieien NPN RAN aM BER 9 FOR eee Ae 159 - 

Hon Secretary eDelano coc coejcmce cansinclsoriaeercerctemeyeee rere cio ee Ieee 164 

Dr. I’. V. Hayden to the Secretary of the Tnbebion joacnice joo eee 3 

1 Be VAN age efoto oye Sen nieealae al eT Ae Cee NL Oa ate meal UNM Y Ce 165 

Laherty«Cap <Gandimer’s, DRIED <.- -.cmcucmrowalerounie tis nsemen thee URE ERE eee 67 

Tamestone (Carboniferous 4232 Sac, cacemmsels Se mevecieaisiorseeieerelec ee eae reEE Eee 24 

MM COln Valleys sec 2 = bam a Siac sn dis nie hewsporomicisouslajerisioncialerseinres piniatek shor varatah ata eRe 25 

Mode, IC Iippery eee ee ee re a are Lesa ls rete re omic ee Ce Rye ene nC 191 

Green Cann elles sere ss ae eee eee ee ie Ae ovlonis wraid cite ee 143 

Po HIAMG ASE 2 cdi cisiewscis me bwacinamcieseeeiceriacitewiamae lie coe ee eee 191 

TONE O Gas see a beet eis, 6 eel IA Sa Mira 2 gE als Le 143 

RACE Ke Golf Wo A ets eee ae eT nee Doo GT Ue AEN A DUPE rea aia ee te 172 

SidiveriS tae eso hare pave tavera Seeger ste rer rc reye mE eens Spe eek er 143 

TOS an COW MOL (oo oioorencitiony Gromen miierreicinok mre: ctae io OEE eee ECE ee 19 

Canons eee oS oc 5S es ele eB ek AOS Re Se A ee hea 19 

Madison {GENIN 6) es eer Taare ER ONSEN Sore ENeT Nn CAL IVA Sts DNR ROL 39 

DAKO sa veecictonseciercn tg eee ae SRS AS NOPE ONDE: OR SES IR co ee 127 

TRAV 0 Tratioterac eytncnerrreth hag © ess Sina aS ROS © CRI EEO ee ree 43 

Malley ace teu sasa cd os ceaewe nae eee hie casscebestese snes oe serecuee A3 

MMe. 'Vinilbesyen 2 oe Grae creek earretoren eran sone eae Stachel ol tena ene te ret SS 20 

Mantua, (village)..-...---...--.. fa ib did atCtaher rar atanatt ater atertas archatat ciel ierctean Aen oem ia 19 

SU Ge el Eecey rl Diez et eh Mee ea el ai PaO ROR UR nA ROU AIS AES Roe TAN 28 

PSAP T iG) PO Supe ESR ER i oN Re IDIOT A HME VRU A MARTON EDEN MTOR BS CoN 29 

Marsh Valley.....--....--- se Se Coa RCs UAL SD eh Wee tL a eR ee 21, 23, 168 

Medicine hates Creeles oes sos i stds imses ae dsansaee ee Wacpar ec eUN eee eee eee 148 
Miremidoins itoiwvaniyre teases in ees ie eI A I er a ceca eo 19. 

1) CLARE Csrizey2] ae AMINE AOC eM en Canine Rec Ne Cisiop eel enn MNRAS Meg I 08 44 

TOT ee SIS NA ean Sean ane ieee) oan Au UE et EE 46 


fs 


INDEX. 529 


Page 
Mie le, Gale) Olas s oee enero pace Ba oGos nono noe one SGmeDHoboreroe Soacelr 199 
AVES See AU (Le Ty Cy Ul @ Lise tpstre teat ate a tatat raat or nayeat ate at ate patel ats Seiate cin (eraltotalel a tareteyeh ata arate 41,171 
AAVALTAS b OMps apt sestats ale ate ele Sr AE SR Ss ee lean roe mala nears 194 
(sxe CLA eae rr ea tea A rar tah SI aS ea MN or 28 hs SG See Ste a 168 
Mining districts around: Virginia City... 2.22. soot seen esos eee eee . 39, 42 
Nomina yee OO ONE A SULNCLUTE Of n patois oe Pa Sol sfarala lac cictale ale /erubete mie nloe ola 40 
BUBLACOM OF Sato bheces eon saet ar necad BUSS ORS Seas SNe Noe 147 
Momupelien stow O82 22254524 F252cocs sess c2b ese Ss shes soos Sse Sse Pe 156 
Mount Doane-..------- SONA E ries a SN ra yaad Maes Ae ys ene Se AB hanes coe he pa rcigereeat 135 
DLOVENBOMN SUS eos gs ise J es RSS) SASS GIGS Be RS Ee ae 135 
Wiashiburm scene yooa ke eeessedy nc ee heey geo e ee eee ee ese 79 
MeommiaiavCinnabarssii as so22 f52 4.585 ehbsseaaee sts ok sae ees kos oS 4 Lee 60, 174 
Whats ssee cance teas heb neosasere Shes ale dare Sea ee ce eo ae 131 
CMSROANING ssocce slinctascwse sec eb hac ct ieseneeeeh stindecees aoc. 77 

OMS PIMs oso o ee ees she thscsd sa fdessgag dees eae aes o acie 17 

PROMON LORY es bso) sin eby see aed sessed della oS aE ee 20 

HR CL eine a ere a ike sce ta ai al ke SP SH Ee 131 

ables se ssse keine loo. saos a soos ade ase ae WSSe scl oe whee OES 143 

AWW Ce ee Le DS os a ecg as ad a la aL St naa 68 
Mountains, BiotHoms 5.22225. Jsaseacs Hans es neene lyase eee ae ce esa ee eee 54 
Black=banlmD eer ys. 2 Aes. a olens sh 25 4 <Siiass cae nee Shee en oe eae ee 145 

Crazy Woman les Vawega dase poe os eu SSW coe a ee) Se 51,53 
Gallatimyaset aac Se ake ee ig a 2 ig Se a ee a a AT 

Northern Utah: : 222s seceded seeceees sees eens secs en soeeees 18 

Roclupi gees 02s wae eee oma Gene a be aU eee eee ee any Ieee 31,33 
SalmoneRivier oe. tac 2e6 ses euse dees oe eas ee a eh 28, 31 

SHOWN MAbs aeeceace ects Seek eee ee oo ea aa 54 

SOM Ae estas Meee SERRE Omura cin in Soa ais Secs meee ee miemels 2 13: 
Wahsateh i 5222s .2e2ecvekeacceecws decade censee 2 Sametiee Cee ‘ 13 

ae eastol Yellowstone Wakesses foals Nee a Poe esas 134 
MiicdeGaldront 222 eee totes ca sck ach ee cee pase mee Cue WR ae MUI Hea Ny oT 
Dlatsee sce sse sees Ce OeRM ee uece Solos ee Meee cee See Gn ee ire ei uenam Ltd ears 15 
Geyserse cent eale Heiman ee eee Aen ke a I eI In ee ON a 93 

IOS ee re eke Re ae ES RR ae Mee Uk ch SR = RAINS 100, 107 
Sprnes, Mis Washburita = \..cccedak co eecls sek aera Le ae Oe RS fe 179 
MMC VOlCAMOES= cease eke wee Meee meee dice eee cee ee eee le eee 180 

dh rob of bps id tei Eclay aan me ates 8 Me MeN er DES ME a eee 190 

west shore of Yellowstone Lake ..-...-...-.-----.------.----- 183 

PAVOLCAN OCB pe tops sorte pote OE Ree cata cl aes tet oer see ree oem ees 180 

Ju [ADAH Hil DEE Ee gs ech ea a me eee ed ge NN Oe ee ee Ae 7 
New, Zealand, hot'springs and geysers Of... 52-525. -'- 222. nce sete e eee ee 127, 176 
Northern Pacific Railroad....._-...- TR Nc RNR t tana farsa RTA 2 2 ean NaN Reet AG 
Nore SsitonOmapuerm Velie: sete ee Ate Re ne Ape See ret a ies Seen ewe 127 
Coden Wirah Tereibony, so20 aes ace ame ee mera seh a eects = Sem ee cleeeae aaa eee 13,17 
(CTL aaa i Oh Ri ete SL Se ee EEE ee eee emi amy Ce 15 
POCKSNOL Me sclc crest stele Bee) es wis Sa SCRE 5 sn einwoe eee eRe eee 166 

@reckam es ACER By AR Wee. a An Pape ate Bape RR TM aL 16, 17 

Tole (ori Valley jccios lcs cae aie nee be oaks see Sa Sass selecaee Se eg see 16 
PAACISC SLOW MOT. Sele secs aos ue Lk be ca Skt Sec ee In ees I iar 20 
aii sta hO Nyt Ole Seer sora ee Uae eis elie Pet Ee See Nt aN it eS Meroe 156 
Pee orggbes Oso ial Cl OWS Sie crate tere repay et cet as iret ce ad se vere Na EE NA a Oia a RN 18 
Zul eNE OWS UOMO. aid, sores aero arte at are! revere a a delet otis Sica a ear tnered eratere tk ah a eames 162 
VEEN Sie VES CG eT ES RRA a ga a pe RP PCE TS ERP PLS nD eM a 45 
Bozemamys. Soc olen eae SU Sava at Soa 87 aU URN AA ORs 2 ey 46 

PEGS ELSA acters crore mercies eee Ve ie eile cares GCE CaN ae axel, anager 45, 140 

EWOL@ Cea Tee es Sioa ace SOMMae cis eile ree oa eae ek oar ores a ee re oto ape 182 

LRREXEUST RYO) Ee ies os eR ne seh a a LA RES ee oe SERS CTS 22 
CAMO GCRE ase de oa eee eae sa ee eee STU oo ek see eee ee 46 
ASTM STG cies oe ear eee Meenas to Meet LL Bet RUN eee veal ees 54 
UNMIS OFM See, otal Sse Scots Ses Sari aie coe th tS ARO AL oi yD os pat es 75 
IOs VOC AIIG eset ae Sa Gee mast ed nem city eh OL Uy SRL A acai ah ahs el eree ta ee mage 73) 
Reale npr Ar. Cole tberior. sos ma ne ccs eer. ae © eens ae ial cheers a eee pene 165 
TEPORb Oboes ete sek eee ee aS 2 Se eee Ge eae cee 165 

TERIOR UN Ch gaye) Lemme ei) SOC 5 eh ETE aa AO aR ery A ht BE MN at ees hea a 135 
PrIMERstome: Cree lesa ccyrs isle sete ee 1st wis shee oe eee ice eee ey op eS pcrete eh era 142 


3468 


530 INDEX. 
Pago 
Plengemm Walleye ooscsqcss5s0 soos s585b4 o555 790009 bess ose 505 sees eo oooeNecoS 30 
TENG ERG) CMOS cobs cose coed sebe 255e0 9555 Sdne o550 S59969 soso SsesSSe5os5e506 56 
TEtovollsy @n Gamo hineIe Ss INES soc 55595555 S098 3350 sob sandes Goes Gone see aae esos 66, 70 
Port Newiy Canomeeeeseree eee eleces cement memsien en seas eects seer een 24 
ISIWG@IP ss n40 eho socoos sage Good Sebo beds SaeR Seas Saas sede sessed sence 22, 24 
WRG Sacmaoes coco COnb 960d ones Coun Goon sdsoad Go50 dadsdo anon aca S5 23 
eromommony INOUNND. oo wdsoo0 6564 soos cse2 aso sc ac04 coe509GR00 Sone bbe sooe 20 
TRAVOPS INDE. 64 cons cess Sdee boos cogs Hees Sead odes Dod bso5 Cog SeosEs Dome S4 54 
IRENE LINTON VANE OLE S ORM OSE O mS OOUEG cHebus sooo SeSuao tose aecsn na sooo Gos 158 
INGE Siig WO oaoee ob Omoo SSen cS OEer Sead Dane DOME CO SSO FON DonboS GbbosE does 172 
Ped! MOMENI. 6 ooabo cece cet ago opp ood coo S60 nSDb OneaS5 Sob SEU CODD IeAao ooo nSocS ¥31 
Jeol oelte Creelicn sssotme ses Sose Se peocoR iC odas GeSo DOOA bamo dbus bombo Hosoda sc 32 
PASSlacosdéed ena ckeg coos nope Coosce sone o6eccu Bho oeD Sssacd cecootad 22 
CNIS ee OE Oe a eS eer Tee MS OCN Bae rem ec seca aciHok 32 
IMeOu Oe IDR IBN WV sehen Os Coeoae cooeoo o55e Dooce code soda Socos aseca7 66 13 
DrvAVC WPeale se os pak cs oes atlas gree ate sic 'sinala) saints noe Beate enare 165 
IPyr pele Giapesninlee ha LOPS Seo oboosoS coos tessos bodeoSs soodc eset eseors see 63, 73, 174 
Bear st 5 Seen Ae eG ia LS ee ee os ad ree ete ee ee Q1 
Beaver (Head ate ace sale nel sescaie gets, miaibiaraeie Sine aio eee emer ae 143 
(Mire gk Ol Oye eye Men ere See Jeera calc ore oe ied Si alate ae ee | Mei a ane 113, 122, 185 
Gallatin o255 282 (ee ee eee ane sae ee te ae een eeiey 44 
Jalelll IORI Ss oon Se Foonos noe Sce Suse nSoreS cooosn sond8s coco bons base 77 
eter IN GWU e ns Soop ea OO nahe OBO OOT CHE CeO more> esonIooDo coceqece Doan cosaoE 22,24 
SUG SONOS AB Ac aa COCOA Ie CBOE EE ESO CORE ORE SmnHSrGoSosenog osSassae A9, 51, 53 
Wi Oe oe seaods pocuseeddsds Keebos dass bd S4baddosoucsotoeooge oso saneen 132 
URES ENTE oo SODA OOS Mase Sricee DROS MOnSee sb Fo DUOOOSSSbo osSE5s cose GoaC 113 
IRODINSES? IN OOS Flaca s ou, cob N ON OOS DOSE pe SErbiennObU GooDoE GoSton Saab o4onG4 Risse 24 
TRON, COTANIOEING Osos .56 6565 csocea nponon sosoesobas doceon sd05co Gasbodsagese 201 
Geological character of, in Southern Montana.........--..----..----- 49 
of Cache Walle Ase Betta AooOe samc cSBees soe eo oocoro.cuanburmooSSoosa 167 
Oaxilein, (CHOW. Hoo Sooo S505 45sS50 655005 sooend coeaSs eso ceosceor 166 
Pleasant Wialley soo. cateesicee ces cieew sa maiis seiner eee tame eee ake 170 
) piWaldeatiCanon segue: 25) take ce Neccteaecdee sine bee eeicsee See emacs 170 
rocky Mountain Coal and Iron Company...-.-..-------.. 22-0 wwa0---------- 194 
(INITIO SES coe oes cle ac ere e te ewe ive a ctisters pa ieoleeeise sees 31, 33 
SCOLORY Oho ae eee ese scr cama elnme aise re etee 146 
Mosebud Greek iss See es 2k ie obs eet ew ee sey a moreieeg eet aeraecnietes 51, 54 
EVOSSIS NOL Cree sce eras olotnied a a ic Seeds Se ee aS ioiee yc teeeciee ee Seen 25 
Vo TT ds Viailll Oye eso are als eyes ee errieieeai- eee piceeisein= arise eee see arene 21 
ISAS SUBUIOM oo Gaga Sooaco Gans guns Soe boo san DoGesCOseU Boda nceooe SuodsEee 144 
SEs Creel Bee See SSE ee i Soe Som Se anoe eos oR ce Sala ejejstep eae eialetele tora 145, 158 
SEU bsnorny Rin yee mene eon BAe SRE BEES ORES OBESE Gaoooo bobo cadoce poss oNtosc 28, 31 
Sall SOG oe chase Sars crcie ects ooaie Sie lerels cin) Sein slele [ciate im ole ta ainda epeNolnlataleyaieiere elec ioese omens 181 
Saliginona dao fanaly ses Ofee ost l-t eens erkee ie = eiekateaisteiele (eerie el ieenere ener 161 
Saul) JDP ese ea SMe Ban Mle scene soeeas snocau cass oopauomcecoUEsedcoudtasose c 18 
Valley scescscase ELLE tad tuse ase haces aa aa eee teens 19 
NMOS So 5k A S64 Gaaoeeaduoades Gascho sobs bobo vonwon sade oaeobe Sos 190 
WOLKS i GahvowMernittony =e see ale seis eae ae eee see sree ete erate 161 
Shield siRiverosse ce bs Re eek eh erie Reh ee tee eee a Uae aren See ae S 
SUicaWaALIOUS FOLENS s Ole cass e cease lata eeoeta steele le ele oat eee 121 
SHES SUC S oS Bee ete S54 SSO Sea COS SEBAGO SOI HOO Gueods CEsd Oso SUS IA0I00 143 
Silumanvcoralliic.s see eet: Sheet ee tte Re ranean ene 15 
Seoanieumalel WOM Ot Ree B eee eae LS Soe aos Koso bdoaco ccoedd Seas ocdess sasccd = 20 
Snake PRiVeW ee Onan s Lee CIRC a te RCE Be Cee eee te te pe 25, 28 
PasiMeriwenes eeswete tes ekee eee tie setae canoe eee 23, 25, 30, 150, 169 
SOULCES TOP VELL ee eek eee ee Cee eee cock see Senin Cee eee meee 132 
SOA, JNOTIN EN oooh A Uae ooo oseeoo saccds seeson caso Seas Sbee9 SoomanoseNeS 54 
SRI e See esce cise chiar e sists sire eam (ene hole te noe ee erent ee 53 
Soda Creelessecee tees ee ee tae re re le Rong Nore age 153 
Soda springs, analysesof..-..... Be ae Ae ea eI Se RG Spe Se 2cac 159 
Bar IVIOr eee aise aire ole eee lore ee terete os Porat erro tee erate ee tee 161 
description of... joo etki ete ere cee eee 193 
Golotadom:c reenter th: see eke pee eee eee ee eee eee eee 159 
sipebiee CEO NEES Sake See e See ee PES Remora om oar so oe se so6 lon FSS ado So 46 
Creek... -- eet ees Fo Se Sime Soe ah Shah tS tence ne tad te cient aie Ee tea 157 
Sprinos Bear divercs. sacs ssc sere dipaladdu navisememmbeneemunte eee mee 152 


hot, (see Hot Springs.) 


' INDEX. 531 
: Page 
SS TCLS, RCM SAG ey Sache See AA Ea ell eM eye erp ea Peo 103 
ECan Gh ra V call Leng ae oss er tran trace I AS FR 0 Pe ee 168 
UAL lps a Charis tre earls Notte re tare eee Ne AO a ote Ba Sd ae 88, GO 
Sulphurs: fehl PAN I eta eae 2 a Uae aes See eee 88, 90, 103 
co) DETTE TTS eee ooh oe RA a rela Utara 135 
USAIN MOAUMPOMten Chieti Re ee Wee dem ETE ln alled 82, 135, 189 
Saint Charles, town of..........--- Pistole Saat ate wate yal aia neat hs Sere eae 157 
PSASCRIBSTA LOU Bes Ge ede eal oO nN IG 189 
pe SLIDUSINE ere GW Ce) GES pa ee eas aI Ne ea SP AR eg JN 35,3 
SY \ RS Ae ARI Rep A eaten a ene es San gn A Senn SNA 37 
SUCUPDANAISE 1B SUD ce ie RS CA ct age A UB UC pO aN 136 
SURGUM Coe p rere iraad Sy cia wicca inks SOC eo advan, ee oe 88, 90 
re SSD, SASL pee BAY A iN ee atom AL Me ee De ESO 
PML BICC ANOMecsteerty ices coe ete Pehle Lies oak. Tienes BUSA 37 
PIpler Memmi ane: once ce eee oe as case com sos fe are ates J aaieuka eee eee 143 
PROS Spe AN DED nce nest ne Mester NRE Sate 2 eS eee ee 29 
es Ts BN A gh rd BG ea AeA en (SOc Gre! i Ha) 28 
Temperature of hot springs, Gardimer’s River ..---..-.... 0-2-2. ---2e0 weeeee 175 
ower Geyser basiteree = seer ene seer eee eee 183 
Mattison, EIVeL * 22 let sscces soemenee ees ae 182 
SUCENTANIT I AONH oso magocsdesous Bosoed bobo bead 189 
UppemGeyser Basitie.so- ose nen seen eee 185 
west shore, Yellowstone Lake -..............-- 188 
FRERRACES eRe sae ten eee teak eek tt RAN RR ae CC eres We Lime aan 17, 56 
WETOD IERIE Sed bo od Abd ape aCe cea AP aes ii Byatee Sst ih Seite ale lethal 133 
SV INSUOE 5S EE Grr ee aah eg aac eat a NN dal DR lk gs Sopra er 28, 32 
Sercemvlesprinas. catalomne: on 24. eee ee ak ee es eee 187 
Piece Uc ye kere St bakin hice Le oe NN Loe en a bee 140 
ELSES) (Gh SS Sy eee seth ego MN SH se acini Plaats te tease nied re peepee pn re) A aU ERIC 106 
pie ey CER Reto Phi ohare ors MERI oh crak at al) Scetaus | Ceram jam magn id 
JE DULSE SEES Ee Spa ey aa ae a aa pate he See eyed aie sige bes ia phan 78 
TER: CONGI ce  e a tiet e e eaepeyt oah Eka Reape, arte KK sey: SME y | 50, 53 
Walley eno hare sted sees ee Ree sSise ers eee eens Snares ie 33 
“LODE ES = SP an a ee rE Mice AP ERI, at eer shut aN kek SO Coe pM 7 
GE Os i aa Sets ela haneA tan oe petonere are nanan ech tenes ey nee ASL 190 
PRMBPOW ISIE DES As nn sis lara epic oel samme eee Lek Ne Sees ean well Ai DUNE EN Nate 1i2 
iver Ocean Pass 2's.) oii. sao omnyro sola pater Sales) Mawes as ord oe ee oe is 
Winperbve low stonevse: ater eet, oe eerie Sen aoe Sen eee ena ohare tere 132 
(ite N ONG UCM yee eer, sere Mae aio alleis\ oun Woecie a aeoee at sonicae seeee eee = 18 
fea lenyep Cellule emetic Sees Se clelpie cle cage ie sein siete, sist So cin = Soe See nels LENS 45, 139 
pipe @ ROKR Stal. wre scsi I ee aie eyes <4 cocoa eee eo ae 53 
Mellowstonerseen ss a-ee ces peso saeue ome eticene socks S$ soSstcedjele kee 45, 182 
VLE Ci Or alo Ctl Bae Sears Sale Be eoee DBe ee ooo epeea se Emme Semin meets C8 39, 171 
BTrcameC Caper: Se Stet.) S Race tes Ae tat tae se a Se act ae 154 
MEAKB is \ Sa aee weer eae anata te Ae Sea ee aca bccn ree ree 75 
Ryahsatchshange, character Of > 62. see saci ae ees ON. wee aa ele oe 13 
Myarm Spring Creelkwe eerste ae ot ea rmeinaes sect ete see A NS Gee ae 72 
IVR ye Se acta i ccna pore MR cee pee ein Cp ama Cl crn 20 
Marmisprmeas mean Korb Males. y28l sk sees see lod oes aula eee Batciers 27 
Wielevilte; Cowlohe tt. Jos nee ei oce lok saemiehle ofameieing tee cnal Ne eae aay Tg 
openbee io mmibain eas 2 ON Re a ake bee al ener e el a ei ee 68 
Ribrcestane Deer Creels- 2. st cse eee ces 2k hehe eel Sos ke ee se 142 
Waldeat Canon? cess soles nome shee cesses a jatatalals auslats op laReise a ohare care ere 33, 35 
OU e ceo mw ee plee mie wake ey Sela REI celal ein ang Sea eRr ae el Ne See 17 
Riplowa Creeks ota ilec SPS o Sameemeeieeite sao ancis ee ae ere SS! eee ed SA 141 
Waomime Coal and: Mining Company... 2 .--asee 0c ss esa 5 sae a seas wae 194 
Pano Stiaimo: DARI) Ufa) were mene ccc) 8S cg mcs aioe eta eon Meee SE 81, 132 
(CA OM ac Aa ree age meee  che Se aos it pc Ley ira Nae 51, 53, 59, 63, 79, 82 
CIty fas see eee et Oe hae Dd tone gages bi eM asin 55 
Wake (2°25 cetacean ie SOR ERO? DEE Meer eee ay aaeets 96, 99, 130, 182 
Ns as bag ae ee mercer Eee (01 Set aap. Commend ce a 2 


act of Congress with regard t6 .2.---  scc0 cece eswess asl -oe 164 


532 “INDEX. 


Page 
VWGUIOT HEROS. TIVE oo sce5 shas sa50b50555 so Gaasod Seago HobSoO coun seo SosE Seas 49, 51, 53 
WO DRESS Soca naSRas BaS8Ss Boda bse55dc6 BSS G8de See 6oc0 wont 1 
MWenilen Se oe Shoe RO eR E IN Be ua USO ecb Shapmnigouu cdo cod 45, 132 
TOOb- HIN S08) o Sa. isin winls Se cle eine siete pecenee eee eee eee 
from Bottlers ao Second ‘Cations: - cisco ce coca Sacre 04, 56 
resources of,.... cer tiees SRS eHcarsado asad aaaa cans 58 
Parrs II, If, IV, V—ACCOMPANYING REPORTS, PAPERS, &c. Is 
age. 
Agricultural resources of the Territories . ...--..-.--...-----..--.--- ASE 205 
Alien, ProtessoriGe Ne letter Of cee a=) sseae Sosa ee Ine ene eee ee 269 
AAD TUNISISIMples SEO e ool ensisineteiee aces cise Sele ceis a= Ree Oe ese eae eee : 243 
BATTEL SO PLING qOssil. Ol AMbS Olvaja.s12-1= si5s mo elateee ce Seine separ ele nse eee eee 284 
Basin, the Great Salt Lake. ....-........--..--- Bo Sho caocea dabces desden0500 227 
Beaman +. sWi Meteorology, Wyse.) om enicn eee esione a aaa ee eee eee 501 
Bear REVEL V alle yon ven ca nctosniss oclneweeehisecces os caew Samet eaapecmeceioe eae 240 
iBeaveruveac@oumbye Mw cama emiciosers eee esol: aise ele ele eater eter 258 
Benton Group, fossil reptiles Of 222,25 22 seine am eeissiiepee nes see seicioee Se belelse ee 327 
BiCVEIACLOOTAVIAIIEY, wai cevete ta eee pene ge ees oe ee ee een os ee ljane neete aston 257 
PBI S APOSSILE ee he wieven ce cealere Sine pavae cleanse sie me eem bis eerie oe eeelet «letereeie teenie nee 365 
Bulbo Wepbosbeus sees ee < Saaenge<cise sae eae ees sects teens 365 
Bioberivoob Valley: 2.56 othe LiGreime sein etcieclnw wieceree aid enels weicie meas cele oe eee 204 
Plalcelsuborki 022% elt ese ee enews weet steers. aoe ease te wnce eeenvet semen 284 
WSO LANG a Mae esemiccie erties Sime Sais Rvs mate ib icine mais: Sess) SiS ole ae ete eee AT7 
Boulder Valley morth 2 oi50 2. dagen Saas - cers ta cencleces se Se eee eee case eran 263 
box lder Canon. .2e2 228 hi eee See otto cies ccs bees cases see onmeselenee eer einers 241 
Butterflies, catalogue of, by W. Hl. Edwards. .....-.22- 2-22-05 o-o5 wore eee 466 
new species: 
HErepia Hay denil: 2 ascnncesecs ceeses ose ce ee eee Peer 467 
Cache Valley 202s cose eto ee cues cee seemeaee dee saee couse cate eecemee eee 242 
Cactacere, by Dr. G. ugleman -iees hs eke eee ne oeeiine cee es aaeeere 483 
California, quotations from agricultural report of .....-..----.-----.-------- 218 
Caloptenusispretus <-. se 28s. eee is cse, tec sem ene eee Sed aee cemetee eee 243 
CanbomiStabiome sess asthe eis Ss Set al eee ete aeeeinne eee Sere mele ee ere weep 290 
Carboniferous’ fossils: “catia nosh stece 2e eke ee ce ete ae Reece eee 373 
CHtaloguevot oubterties es. 5. .c cece. ake ec ieeee eee Cee ere A466 
Coleopberan asco eles eh o5 scape tcinsecclcci seu sacisieeseeeenieeee 384 
fossil ShellSy ass sis see ise Se eee ea ere Ge nee ae see eee aa aes 373 
MOSSES! 225.522 Se5. 2550 See Soe Stee sn Aeeee oe Peet eee eeeee 498 
plants <u. ten = Se eee ee. See oe Oe eee ne 477 
Climate: of Salttbake: Basing ee: 24h Ue eels 2 eee, See mee Semen eee ere 239 
effectionsby: settlements'= 2-282 )05252 hee hace Sf oat cm scene eee 279 
Coalvallle WWitaihtee teense tear ee eeenee ear enee eee oier Se E REE Eee eor is oes 290 
ColeopterasMstiofe cute use se. Bees chee CER AS SE OS CR Cael Dee hoe ae senses 382 
Cope, Professor E. D. , on the geology and paleontology of the Greta strata 
of Wansasi 2 tess i lesb soe ots eee eee wee eat enements 318 
on the vertebrate fossils of the Wahsatch strata. ...--. 350 
reptiles andiiishes “byancae: se eceeee ee eeee eee ee ee 4G7 
Cretaceous fossils; x. 2552 Ges Sees eee s bee Soe eee See eee nee eee 375 
Cretaceous strata of Kansas, ancient life of -......--2-..----.----- -----.---- 318 
fossulplantsiof essa. te Nee sae ee eee eee 303 
geology-of ia. seuss cL oeeeee essen see ecco eceers 324 
Cyiperacee, iby Sl 1Olmey ase -n eee ans cee ease See tee eee tee ot sees 495 
new species: 
Caréx Mallii. 2.222 fone Sec eeeeees eek eee eee oe sees 496 
Meer Lodge Valle ces ose 22 feds sete a cis= nein oomcuiels maeieeciekise sient eu 253 
Dibothrium cordiceps. -.-.------.------------: naSS BE Soe ae Eee sce eee 382 
Distancesstable Of. 2 s52c.52 Saas woh eras ciess aan ce neers Ss ere eee ee See 621 
Divide between Snake River and Yellowstone Lake, fossil plants of...--..--- 295 


Edwards Wik slistot buttertlies by osssa5s54 ses6 ee alco eee nee eee 466 
Blevations's: aainrete anes ose Teele Se eae poe e aac easier seen 249, 250, 521 


INDEX. 533 


Page 
Aikopsuaton, fossil plamGs Ole 2s 5/0 se ke a acs oe esac San soe bie wine aie eyalejate ola 286 
Elhott, R. S., cultivation of the plains, by.-----. --22-- -:222- esses ecseuescce 274 
Evanston, Utah, fossil plants of coal strata at...-....-.-..----.-.----------- 291 
Experiments in cultivation on the plains .........--.-----.------+---------- _ 274 
BUT OSSINe) SWNOPSIS/ OL sa 6 2 ia nisieinin oe scie vies caiiels cms a ceee et oneca cheat eee 327 
NSIT CS FLOSS aera iia. rays, laa asd Sve 2 Bho ot ae Ma cnalew eee visedigiein wia/ale sicbestemieiseioete 337, 371 
new species of : 
PApOCONe: CAEHIMOTOMU, 3.5 oo siac o's aa = 2c Schaal ania vo anlsiceeemee er 472 
AAAS UUDXS) 31 2 es a eae SP tr pe a eet UL 473 
Clinostomus hy drophiox  --. 23.25 sence eeeeeeeecen = Soiieteeniee 475 
TOMAS) server sash es a eye aco eoy eeseda erate Si aes Sous 476 
PAN CORA ye occ 8 iss), aes meer gost nee ROSE Steen oe eR oS A75 
Cotbopsis Semiscaber asset anos sions tees oegeeans eres ce fetetsare A476 
ERY DOPSISMVALVaUbATUS Ee wees sec le So ieyoay s ecayavalin oo) mina h Cpeve creel nt tates ate re 474 
Miureeiiay ome QULGl S427. bre rato es, Sas eet eres ote clte ee eee oe 474 
Myloleucusspulwernlentusis2 te. een aa an oes ae olaee memset 475 
Pecilophis*noeturnus@e <2. 52252525. 3 422 toe seen aot ete eee 474 
WrOLOPORUSKG OMAMIMUS) .a- occas ee one Se eres sees ie sass one cease: 473 
Sal MmoeawMabush se cee cece sees tas See tee Rae eoe ae eee eee 471. 
PlSUMIGLC USE ws hee ey ers ce nese ete icin miei Sia ore isle er eee OSI eer ete A471 
FS) ot AMP SFE eS aa EN ea a rota Nt pantie tL mene 470 
icomarhimichthyoidest==s4see-. 52 5-4sece seen Sadateec ee ae eee 473 
TRikora Sosy eae Goer ray eee rie ee ee ee ee Ieee. PERE ER Cee ta an ae 283 
MertianyoteNortheAmeri Cay Goby wee te ao sate aa ee et eere haart feces 304 
typical analogy of, between present and fossil ---...-.---.------------ 314 
ORESUSS CIM OL CEC N rere a eee ae wien okie coe lacie nae a ee Oe 218, 237 
HGS SMe OT heresy eis oe Stale crtcreisl we oe epee Saiee wine es elsia ate ster ciae enero eer eniee sinners See 283 
plants, enumeration and description of --...----..------- Sie Win ease 283 
georraphicall distributionvor sso s-. see eaas seals ae eee ees 309 
stratisraphical distribution of........-.-..---.------.--------- 313 
RAUICCORR ee ae ce nee ene NR Ea ae ese degre Ales ee A 
EMULE CODE eS eee Sue ol TLS We De eae Set let ie NS ee al Pati ne 370 
OSs s Carb Oniterousy sso us. oot 6 canis loet ne ya) S aaa as able do eseew es seek sueslees 373 
LETC EONS ee Sets ses ee oe a late eee he farce Peal Ve co ary ate are pia 375 
OMULASS OPAC ee eee sure PJ es eile gars fs Be tab Sere eis oe 374 
prelmminary list/ot, by 1.7 bs Meeks 2: ote. oan as ane meee sere 373 
Salta any ee ae ys a ee eerste ewer RS ae ey 373 
MING Tab Teme yi sere ac patsy cists es octave Sela ete aes sree erarare. 3h Sr SeaT RSS eee 376 
Callan Valley ea oe seas eke aie ye ecto cute em eee creel 0S SLE 261 
General review of agricultural resources.-.....----.--------------------+--- 210 
CGeooraphicaliteaburés: san ocas eueetas canes shies ce! sacineysibce teeter el=. seein 210 
Geology of Cretaceous strata of Kansas..-...-.-------+------.--62--25 02 - eo 324 
Great Salt Lake....---..- SORA Ee Sees Ste Se ree een Nera he Sosa. temmtig oe 233 
Green River eroup, fossil plants fee hes Rees Cae SS Tee Scie eset 289 
Maskell, Mr-on valleysiof Nevada: :<... 224 024. Jas. c5eo be So ote Ss Soee eens 271 
HewsGate (Valley o 1a< cu esete eee wees Woe bes eee eer waters dey Scere ote ears 257 
Hemuptera,) bye bs ts. Where sac 4222) 2) c yin sols se picis eaten seca ssc oe eee 392 
new species of : 
Acalliiastes ASSOCIabUS 1.)- a+). os 22115 - iste aes decisce ae emn aeees 419 
AlydusePltOstes.2 so2s sei cags val se oe nem eines ae ecee messes 401 
CalocorissPallmeris 2.5 oe Sec ars cae geome ake aean see cease 410 
Camptobrochismebulosiss <2 3c ec eeu: es csersseia lie aicin eres meres 4i7 
Coxrigughvinidigatus, 32 sos Seb 2 see sence = eceiss cesses eases 404 
Dacotaimespenaee. 2-2 oh oes ae tee ces ore ee aa ate seen 414 
Dasy Goris: Humilligys js Ve weet cout eu Salne ocalsieem ance ae 403 
Hadronema militaris ........-...----.-- A aes ey eae 412 
InferccUS! NSTOMIR Ces. oe eta nees. oe bo cltie oe eclee ce iemetias 407 
VOM 02 TIUSRVAIU ISS: 64 20 eee ee ee ce eich Li Stebel sae 393 
Holcostethus)abbreviatus:......<sesss-.2ss --22 2-4 oes e ss woe ces 397 
Labops hesperiusess +. arenes wccsesne senescence ceree soe 416 
heptoptermapamenaic.. so. e se ooise es sos ean e< oeeer one saeeeeses 409 
Lygeustidmirabilisy f.. 22 2c --nenene ces secs poe Saas 405 
VOUS ANNE MISES oe, sis sais s/o seat oe ereeiercnmiegse Soe ecco 413 
MacCrovieliaphio mnie 2 4502 22 ooo a areca heron ete tear een 422 
Megalocerzea debilis..---. Fay Sehr Se Enc Ne Secs ETE ee 408 


TSU TG ULEN LGA: Soest re cy erect ey ate ae cs eee 409 


534 3 INDEX, 


Page. 

Hemiptera, new species of: 
Metapodius Thomasii- 3 2c\.\2n.ccse cask sseeeece seecsee: seme 399 
Mieroporus obhqutse cee 5. -e ees cece ee eee ees eee 394 
Neidesidecurwatus: 2222225225 ea eee ares cicmea eee cee 402 
NY SINS PAN SUS bOUS <n setae mie miner See eee aise ere are 406 
Pentatoma granulosa. ..22.2-222 cbs steeotiecce cose ehaschesenle 398 
Peribalus modestus. <2 och s. 0 e te ele kee che OS es 396 
PAMGUSISOCINS <0) foc ae ELSA ay i 2 nea av a eae 420 
Plagiognabhus ObSCUEUS 27. Aen soen ie ben ece ee en oe ee 418 
Pecwosey bus GuUnists 20 Calon 5 ee Nici ee 415 
VENAtICUG eee UN then aak be Bs eat eae 414 
Resthenia confraterna s+... ..ss.sctcee te All 
Rhopalotomus brachycerus +. --/cee ete See eee cane iene 416 
PACHICUS sc i Se ee ee Uae 415 
Salda: coriaceas.c2 7-528 eben ce Soh ee eee bene Seem e eee ‘AQ1 
Pinicephalus simplex... Lckie. 2\2t acento cee ees eee 417 
Henry’s‘Forls, fossil plants-of .- 2.2.2.5 2.si.ces wet a tse. Phos vom ene eee 283 
Horne Dr, (Gis Coleoptera, by. .ice5. 2 «2/46 eels See eee eee 382 
Trrigation...--.. Mirra eis nie ciamiw eter ae neta Renee Sis sini dalam Seceuew aes rome emcees 269, 278 
Jetrerson, Valleys ct esissctiie we deceernc sy oho cectbeds cece he eee eee eee 260 
Joeko-Rivernd Walley, 22 sds oseie cel Gea a Sia aay ee sent nae 252 
Suen blgV alley. ect eis avert rast cy Aeyet Sah yt a ees ek a at 207 
ARENA ESIC FOSS. LS MAGS Nees we, Ska ohs aks Ae ce kre S/S Se Nae Mee cele ae Re 374 
JUMC MOBS bavion, ¢Ossil plants Obs. ele cet eo ela ees - Coe cle eee eee 289 
Kansas, Cretaceous strata of, fossil plants of -... 22. 2-22 20. Soe enone cence 301 
’ geolog ry, &C., we by Cope: tes asses hee ae 318 
WRG OGEM AY AECIV ER sarnatee piel Said jasmin tiernieeiiaitec amy debe he Meare etn Gehan La aN aN ee 251 
ihdlkes, Rivers and, ofthe Greatsbasina+ ii) de ee es eee 231 
Leidy, Professor J oseph, fossil vertebrates of Tertiary formation of Wyoming... 300 
MObIGE: O£SOME WOLMS 0. ss eeee ces oeee eerie eee 381 
besquerewxsdu., letter ofa.c<cc+ssnct 22. ae eee eee oe Nee oe ee epee 283 
” enumeration and description of fossil ae by eco eee 283 
Weer Ol ProtiG. ws AT em ss eno US es Le Ree eee 269 
HAW is BOAMIAM GANS Sot rues re Salat le Ne a erate eee 501 
HO MIMESQMEROTING: Hy 28 he SU Sas ee Lee ocitke es Seeacce Beate eee ae eee eee 283 
1270) A Oy NIc\ Oct Aes ee ee ca aa el oe ee a ek 207 
liychens, by brotessor lH. Puckerman.--22=c-en cesses cece feeb screen et aces 498 
Tast of fossils, prelinvinary, by PoB. Meeks $22. .seees eo tes eee Sook sees cede 373 
Madison, Valléy ioc. 2 atte ote teen et haem ie i foaelsiehcleietelteicie isis oierere 260 
Mialade Valley \2. thy some ee ee: Coe eaten Cee eae ae ee CR ae se a ea 240 
amas: ;(fossil,)) {oy /PrOle d meeiCly ese. oe a2 a2 cose ee Rote ee ee emer cee 39D 
by Profs ts Di Cope sro-e san DN eee eee eee 300 

species— 

Babhmodon radians .o sos soa eee oe cane oeeeeee sol 
BEMTCIMCLIS 251-2 = tees cesses seo e aera 302 
Canis mon tants sees ct be Ae Ss BS eee 396 
Hlotherium lentis s2s325 3 4-\3.0 2 cssse oe See eee ae eee 365 
Hyopsodus paulus jsensecoaced sate Pee a. ence 363 
Hyrachyus agrariuss) 6 22 Er Oe oes 361 
EXMMINS 2 227 Geass dat SEO AN ALE Tee eee 361 
MOCESHUS Ao ierer saci Se) US eae 361 
WAM USS ee kre Ceca ears wee ee ee 361 
Limnotherium elesans.s225 2-22 fasten seen eens eee eens 364 
tyFannus.jcccc. ek ohh ee Ea Ie coceine 364 
Lophiodonatiiniss Wy saya sasaasc cents ee ae eee acer 362 
ous nl ee Pe Re ee ee 362 
Lophiothermm, Ballard: 22 sco 22 seeueeae se ee aero. ae 365 
Syl vabicum.... 222 seus eee eee 364 
Microsyops eracilisie: 1.25525. S5e Slee e eer ee eee 363 
Miysops MIMS 2 2222 25 Kol ote Se ee ee ee ie ee 307 
Notharectus robustior -.5-2222.2 2252 --2 221222 doeeen wee 364 
TENEDLOSUS so. wreiuien ete SEE BINS Set 364 
Omomys Carteri 2 sss s2es00 08 eee es Seon eeeeeeeces 306 


Paleacodon verus ...... 1 aise ate Steen Sarees Mees aces aoe 306 


INDEX. 535 


Page 
- Mammals, (fossil,) species: 

22 BURY IOUS WAP OT sca, a sacs ees I eer ie ere 359 
DalWUdoOsuBwess Sees See otek mei pecs sebrera Siete 359 
Benne AOTICHELOE toe ical perue poner es. ee ae 357 
delicatissimus 2 qaqa ste cP Aba emcee aeeeee 307 
Cel Cabus: 52s 54a SNe Bees Ve ee epee mee 357 
Ratniotelismluaisgs 02 ices tre Gere eee pepe ee Se mene 355 
Pistyronus) Aleoleri..- a2). 5252 wee aS- So ae be eee ee 365 
SCUUPA VIS mG CUTS eh as ye er es Zia ae 308 
ULI LAIN issn faaich ai tiste ee eR She oh Dae Se 358 
SIMO PA) TAP A325 okie se haem eat Se eee Yee 350 
Priacodonbmadllamriis st sties soe see aes Soe ee eee oF 
Trogosus castoridens: - 4.272. 5 22544 ak en ae geen 300 
WEDS A Sis 5 Aes Sie ec c a Fees aCe Paani SANGO 360. 
IPUTDS AV NY 0 gest a oe ae A ee ue Fe mr ray fem A areca ital eee aw 244 
Medicine Bow coal-beds, fossil plants-of 2... 2.2. ....25 5 ses cece cece eee wees 289 
Meeks B., prebmiary. list of fossils, by ..<s22. s2s2=2 J... dyondemseeeeees 373 
Meteorology, DEI VO CAMAM =e sent co cchs doe sete aS ae ci nee epee een 501 
PecteoOrolorical CeaUe OHS so... 2): -2'- sone one bon ne Se oes ae eee ee 518 
tablesyesene so Saeco oe woctne ete se SS eames eee 503 
Missoula YTV es ea Sa a a A Ne re Ce ee heer eee neey Tes AP fy 257 
Missouri Vallleyy OBsGie: 69 = smyeieeoe Scie Sols) sa Se See oe ters is Se eee 262, 266 
MoMinAnA, NOLUNETOISC LOM OL 12. e vc c.wicaparnersleinciasg ae Ao eiael ace eae ee 264 
MOnuMwesheEny SCC HOM Olas ao ee selec aioe ere eels oe ee ue ane Be 250 
SOutMeASteRMISeCHTOM Of sere) anise oles erates ap al = eI 267 
SouthermesechiomOtes jose He meta e hee ee aes eet a ee eee 258 

SURESH SET RONEN exes RS PE ea aA NO aE SN le LR 4 
Mountains -.---...- syeberhUeatta ae te io octane antares ee eects palais ahh RRO 210 
Oieibe CicattEMcint tener eee tt ete OPER Ulin ge oo aes 228 
WALRUCGUGLSN? CSA RCSY EN LSS EN es TE gpl cdg Nae eg ee ean RL he eee PO 284 
IV YEEDNSIChIE S18 Dial DSC BYES ney hs ciae on em ee sn see RP NaS ON ENC Cg DE tees 498 
UEDA AV TMONS, OF Feo aca eens 02 hie and cial clita ers eerie a Ae SEINE oe We ee 271 
Mo braced tossilmepiilesiotanausawwe! San seek eee se ee ee OR, 327 
IN@IBUIA TEoall ia ere i sapere ee eee SN ee A ee Ace a ce ee CN 263 
Northern part of Salt Lake Basin and Snake River plains...............-.-- 237 
Orthopitera, Saltatorial, notes on, by C. Thomas.......--...---0---00---c ea ee 423 

new gpecies: 
Acridiim, aml biomumy a. Sic se em cress cee es oe ee ac see se ee ere 447 
A OMIUD TSR eke uei eta ee eS ars a ray eet eet ee NL 4438 
q fs TV) OY DESEO CG 0 0 (Hipp eH ee an = MOR SURES ART TR UI 440 
Crloptenrs. Dodmeri. een iy sah oe aa Se aur | ee eee Np. eae 451 
OMISCUSK eke crc ae eee aor Uae 2 4 pointe 454 
GecidenPallisee es sees ye aoe eee Sec hoes eee Avaya ye ae 453 
oD wir eg 0 aU ruse ee Nae EN A Es hee eye eee APOE Aili 452 
AGU UGLIVS SRR AM YONI RS Sonar 2 Cee eee RWB PR gNe NS ae 450 
Cenuthophalirss bilo las eae pay yee eee eck Pe seed 437 
CASUAME US ive t/ha ae state aie La CINE ge ie i aoe 435 
DACULCU SS er oe ioe oe cue Sein Sa pe ahs Rs 436 
eee UUL TC i Fea ere Rie SERINE ees Sra le am Oe My a LSAT 8 434 
f- Coplophoramacrona taistis.. s/c laegeaste AA Te teeoe oa cvs 444 
Decicus pallidipalipuses sen Ma nee we ae ee cea ena ee ee ake 442 
FOCUS hash GIn OSAig- See y=eeehee oa SEs ones ice hoe Spee eee 445 
OCCIGEM DAIS ss oe elena eS ae a one. ei caps ee pe ets 444 | 

Gidipodaseracilis kt 4 aed see ae Cate ty We ein ee ees 461 
TELE G OTD ree eese sie ers ares re one aca io aia See ee 460 
TRIO Wala. Saeco eae, eee eae en BA RL Scie s cet cere ke on de a 461 
longipennis..-..--.-.---- BaP Shaps Seta aa: a aie, Secieie See 463 
Monitam aires caer abe aio Carian code’ hid cK Beale 462 
Parad oxaehen eaten ee ance 2 a enlace aaa eee 457 
UT) CLL a aaa eee a a OE Ne SW a alc eat ar 460 
NW VOM eran ate voor eet tere eee rete sc ee ean A462 
Opomala Wyoming BOTS IS araieew A aN a Fa See ayo ey cx pers Ne Ne 446 
Oxycoryphus GheeHENS es Cockatoo CRnee rs 466 
Pezobettine NebrasceMBis: soc0. 40.52 pie Wee ee seek sae 455 
Ca OX SI Hy Se Ran ca ee pe Ee A A Seed ee Mc A54 
Steno bothers: ICO] OR Sy ecg aie eel ee ML ee) eae: a 465 
Stenopelmatus fasciatus........---...-------- Papel RR Net, 0 434 


Thamnotrizonm scapricolilis) 12. sce snc ee - co necececeeecee eeosee 441 


536 INDEX. 


TPauleorantelloyeny? coo pogo poneHn soOno0 DO4oN0 DSbS cabo Becoec eas Ua etel salen a erey erae 

Pend’ d’ Oreille mission yey eeetaete ee eee ois tate 2 Ss 3 Nerarata feta eteterey state clerare oe ee eee 

Plains, culiivationonebhecnespa = chee soe eee cea caine emisetie helo seem eee 

Settlementof these cece See ee ei See ec aes eeeeisinelenicer ene ese 

Plants, catalocueok iby gle MPorber BZ es secnelsciee ase clalese = cistee ince iesiee 

new species: 

Aster }Maydenti-22so5< 2 fein Seeses cele Sore alge bh See en eerie cis 

Garo Thalys 25). 2 eee as ae eee Oe Oe Sees ue ey teenie ee eames 

Porterella(mewvoenus) 22222 bs2e22 Seca saunas ce eee eine ale 

Prifolinm wHaydemiacee Ses CLs S hoe ee ee ete a are rarer as e veeesats 

Plants, (fossil,) enumeration and description of, by L. Lesquereux ...---..... 
new species : 

APTANA Quinquepartitas coi e22 22 ee Loccne ai) eee ee iss aes teotere 

Betula Stevensonii ........---- (eced nh Sls tongs seco sich coemie mem een 

Ceanothus cinnamomoides .--.....---..----0-----+ .-- 00 aitsinmte nwa cvars 

LE Guisetnmeblaydenits= 22 oot ans olsiee ese eel seis saeloeeeee eee eit elatet= 

Ficus arenacea...--..----- ti i eidlat mints ey elereitia, eee tea pats ae ara noma 

SANGNIN I oc bono paticaS Hp booneoUb Hoebon ceee dead Sadao sone cote 

Gymnogramma Haydenii ...-...---- PEEL So Ses es SA ee arate eres 

Inclansschannm O1d esis 22s ae tea sels se sale Aeros cies etoe ne Sere eee 

Liquidamber (a PY oe ree Ae Ser ecu aetna Uqdo SHOU GHGS Sake osbS 

Mapnolia ensitoliag re: 52 2c2scccstiniesaecemmacecalsemeies aleinercertae eesti 

My ricaambiouay nics ssiclsscocce fees ae acidcse bee ciesiccine aeiseyeecerscie 

Platanus*aeerik 2) seu eie 2 ewes eee ee eee eine oe ereaee 

IPFELOSPerMUIbes ay Genidee cise eilols)yaleemisactelceeimieisie s © atlereeeisterter= 

MULGIMEnVIS 22 2 eeeseteeinne eee selee se cece eee 

quadratusiacd-ssce aso eoeeecce aan seee A abs one motets 

Quercus eommlans) asec sees sean) snes eens eee eae SSSCOS DS aEee uae 

IBINGISHRINEY Sooo cesses scobod so de coobousdstsy Sano oeso UhbousesS 

Miudioiils2 2 saae-ceceesesesccce NodEeH Gobson boou pooocnassease 

NIETO OCIS earn Goo renidesaou sapeocceou UsaduaKds: Sseseebec 

ERAION S558 s5cn Sha6 apa dood oeboone sou nebo cong quad SYno uaoe ae 

Rhamnwspmpermie dish. Pee eecl ae et ae eee eae eaten rts 

Rhus vans sos snsse Ghclnt ce dde sans Hs cnioee sielea sta see eeeie eee 

DANS ATLASLOMbUSUS: 28o ses ee kee ee Se eS 2 coe etes eel aia eseyere 

Porter, Prof. T. C., catalogue of plants by ......---.--..----.-----.--- eee 

IBiuvelidhy ieee \Wenllena Sener shee weece La Sele oimlcinicels tates oasis Atala a ar eee oe dee eau 


hepore, asccolbural, woh serot, ©. Thomas. soe) eo - aleeee ae aiak einer nee aes 
on butterflies collected by C. Carrington and W. B. Logan, by W. H. 
IOC hen ane cie oee SeecInerC Seno a neicad 465 debdceueud uboG5 Gos 
Coleoptera. shy, DriG eat. Flor ses seee ete ele ete eater ae eis cee 
fossilutlora loyal WuesoUeLeUie eae ae oes ele ee cine eee iseeiniae 
fossil shells of Utah and Wyoming Territories, by F. B. Meek -... 
fossil vertebrates of the early Tertiary formations of Wyoming, 
ibyeerof Joseph eidiy. sss ceo assess eee oe ee eR eee eee 
fossil vertebrates of the Wahsatch group, by Prof. E. D. Cope-..--. 
ee and Paleontology of Cretaceous strata of Kansas, by Prof. 

IDE OO) BeGbae sae sol oneneOSSEeyarcGsccuddcs65 sapeoDHccs goo0ed 
Elewip korn of the Western Territories, by P. R. Uhler ..--.--.---. 
meterolooy, by J. W. Beaman (2.50 5.5525 6. -0 22s ec aiseeleeee 
Plants; Wbyerot, LC we Oren secs sa see. eee a ele eleee ae eee 
recent reptiles and fishes, by Prof. E. D. Cope......---...-------. 
saltatorial Orthoptera of the Rocky Mountain regions, by Prof. C. 
TOMAS Secs seh eras ORAS Set ee ate en el arse i easy aint 
wens collected during Prof. Hayden’s expedition, by Prof. J oseph 
GIGI Gaonanoneoede caTe bob sos doocEeouccooeSoSD oosccE.Gals cols 
Reptiles and Fishes, by Prof. E. D. Cope-...-.-..-...----.---------.--------- 
LOSS eee sete tatate eve stayate Mines ade 5oHS SouuU coon Qoaoud capo oeceos 


Baptemys Wyomingensis...----- .----- 00-26 oe 220s ee nnee n-ne 
Chidastes:cimeriarum sj. 2212S Soe ere ee eee reer 


Crocodilusjaptiswesssosces ae oaee eo oe eee RURAL he EFT rie 
Elliottii..--- Giaiae eb Pes SUNS TEE a Rene Reames fe eve 
PADNO OI, S86 Sha Ghnso6 boGoho pODoeD KbnO ooscn gaaso one : 


INDEX. 


Reptiles and Fishes, (fossil :) 
Cynocercus incisus..-. 2... ..---- eo ee ee eee eee cee eee ce eene 
LBGCsrAO EM OURS) GNIS ETA aeno5 Rae hone Heoree notbod daScerGeoeEaoseS= 
MIBK OR Scacees Bead Geas Cabo dhscaaddouadsorses 65606 
(OIG Sesnes ihooMbaaaSmoass eee com bora cncoos seacaC 


DMO MUNA) DEWAMENS eae cond bob ooe cae one edobs5 sdoeSo asad 
Emys Carteri-.---. 22.2 1.225. eacess ences ss-n- -<soecice== ane == 
Wyomingensis .....-...----- .----- 2-2 o- 3 2 ne ee oe = 
Holcodus corypheus ...--.---..----.----------------«--------- 
ICUMBOUS ssosee ace cocuee cuSnes sessed odaD Good popaidesseH 
IONS (eer ene Ae eS eS ARE eee te Samo Se ome bccn: 
WECWUNTS) saoA boo bos Hoek onSeRU eae Edbocon odbosoeoDo.coUeEer 
Hybemys arenarius. ......--...----- -- 220+ een 2 enn eens oes 
JSG AICERIONAbS ENON aee Sse ene eose neeero Coser cose etceas Heed osam 
Liodon crassartus...--..- BRAC eoUIMOReRIn@ Baste neGeoo Godopecos 
GUTUHUROSNTARSY Senoaseoeaces codecs sesso ebds Boeone okbobo Sands 
OMG 08 OU SRS he MUSE ne Camere Uae ice pm eneced mesmos ceeco5 
@lamdiferus) -2- 22-2. soe. conc oon ene e en onimnn news w= sl= 
TAVARES Soba eaaaanes Kadedsedon GuSSeo ebbe Hobe escncaeedn 
PLOLIGCY Soa) sae cen eae one alee 9) een = nmin onl aile 
Ornithochirus harpyia-- .2..------ --26 2256 se-6 emcene wee eee === 
UM DROSUS ese <iarelereters wisi ene ia nie ola on oievaralaiaroiols 
Polycotylus latipinnis -. 22. ...5 22.22 2222 fee ne 3 cer ene ee ene cena 
Protosheea, GISAas - 6 =~. ak ccc s se sews ea ne wee ami 
Spina) Gigi loa cesen cans Gods caaoer cacuse ceaeconHoueS cele Sace 
Testudo Corsoni ..---. RATES, Ee OI Sterras Oe nteata erate oie enatee/ttereiate 
Taig ye2 BPRQIRRATS Sapa eco oe codiess coeosoceceSr Secsdmeeee seep cacao 
new species: 
Liodon crassartus ...-...-----.----- ----00--s--- Gs See beetalemblere 
Reptilia fossil from Benton group, Kansas -.-.---.---. ---------+ -----+++----- 
INO ECs oes sed seo Sogbobdocose cco e Nrcjallemscreniines 
River systems. .----- ---- .o0 ee ee eee cnn nnn nn nee ween ene teen ene e en eee 
Rivers and Lakes of the Great Basin....-. .----- ---. ---- se-- eee eee ee ee = 


Spy IDRIKG) TBR RTiS eee O a eeceC Se eeeiee Send BOnOES Obec See ese een eed enc ach obe, 
WOLU MEV PALb Oley see ee eke esas) see ee a cite ete ey a errr 
from, to southern Montana .... ..:-.--------- ---- 2--- -0---- = -+--= 
(GneeN pote esos solsad nau e aRIDeo od Gobe aT AE eEo po bUMEeorD roceen aacioae 
Santa Clara Valley of California, irrigation in ...-...--.--..-------- -------- 
Settlements on the plains....-...-.-..----.-----------.------ ----++---- pone 
Shells, fossil, new species: 
Anomia gryphorhynchus ....-. .----. 20-22 ----- enent wee ee weee o nee 
AciculopectenyldahoOcnsis: ee ete n) ..-e sae nem <oleis eelel altel == leila 
Platyerinites Montanesis......--..------ -----. 2e00 +--+ oe wee oe == 
Spilmapeyal WOU} S65 coco mad coco Hane cone Shee Seino mne seas nob dodge eons bees nese 
Srapilies 1Bihware Welln coscs6 sacene cadeno odecce cote cose goss pobdos Guan Boe ccd s 
Spring Cafion, fossil plants from near ..---. -----.---+-- -----+ e+ 2-22 eee eee 
Stinking Water Valley ..---...---------- ------ een ce eens cee ene eens 
SOCK PAISIIG fae ean on Se ae realm alele Sele mn mim we = alma mi mim lee atmo aic aimless 
Simm Jena Walley sdeeoadedcoe succes coena5 adones Sndacasuocaoonoecs danaeo aise 
Synopsis of Cretaceous fauna Kamsas. .....----. -. +--+ -- 2-22 een ee eee e ne eee 


Table of distribution of species of fossil plants-..----. pools westerners eee 
of distances and elevations ..---...---. --- 2-6 seen ne pee n ne pee n ee 5 ---- 
TGS Gre NG ehmMOusso Secon cases FHeseo paoHos cobbce Bebeenesooen snebcs csecer 
mepeorolopical . 222.) 21-26 22-20 ease ce comes ceeds orice saean onsen 


(MERTEN Ay SORRWIE S555 Geeade chenao pobSesouecoss Hoesen oeede lS siayhte era ler sioie eaten rates : 


Metonphymyeme Valleys oes e ini ae rine = el mcielenie slale sts isininine'sye)=iwme aici alee hes 
Thomas, Prof. C., agricultural report of ...--..------ ---------2+ +----+--+---- 

NSWiGE @? acc Seah near coeemcod cdcumoosee conce ouacoEice eres 

saltatorial Orthoptera, by ..---.-------------------------- 
UMurnlayerd 1OIESUIS, Medes 6 cae She Sag bee eee EEE coc oce codace saneconeeee St rel eisetoe oy 
Torrey, Wrad., Mew Semlisy Wy -----'---- 0 - oem n-ne w een eee es oe maine 
Einee- plat op eee ei sais oo comer wenc wininin sale ween orientate ela inate 


Win tiah Wallleyarrns sate te ee ni oo boc bn n'a wocisae be clea e wane sicide) ae aeemin sie 
Milter xt Diyeul eye Sees ete elie rns cece oe) WE Le SSS a clara) mavalare oi sicjalninis\ wiwlnitmteriate 


538 7 | INDEX. 


Valleys of Navada, short descriptions of, by Mr. Haskell..... oe al eee 
Vertebrate fossils of Wahsatch strata.........--..------ 222. nec eneeee pe 


Wahsatch ‘strata, vertebrate fossils of: 25.25. 22500 cee cede cece cece ee wee eee 
Warm Sprins-Canon; fossil plants fromts oii. coos wee eee cokes lc wesc cuss 
Washakieronoup, fossil plants-of 22-514 ot ete Jae EU eee ee ene 

Station; tess! plants Mem sere oe ees eee eee ieee Suen eee 
Weber Walley: 2s 2855 see fost hag aon jeter ye ae facets 


Via Cy ote coin sin Se ote toa tenet Tete ne mm eaten 


Aeolosy and Bovany acs ceeciene see ee cien eee Jomomossee “45 4eSneses Sony aeoo 


: SUPPLEMENT TO THE FIFTH ANNUAL REPORT | 


OF THE hs 
; Pe 
/ 


UNITED STATES GEOLOGICAL SURVEY 


THE TERRITORIES FOR 1871. 


iN OE Aa EIN); 


UNITED STATES GEOLOGIST IN CHARGE. 


REPORT ON FOSSIL FLORA.—By LEO LESQUEREUX. 3 
CONDUCTED UNDER AUTHORITY OF THE SECRETARY OF THE INTERIOR, 


WASHINGTON: 
GOVERNMENT PRINTING OFFICE. 
1872. 


bot Yo.) 


a 


ft eee 


om 


PREFATORY NOTE. 


‘he materials composing the following report were not accessi- 
at the time my annual report was printed, and are now issued in 
form of a supplement. Full descriptions and illustrations of the 
v and little known species will appear in the final reports, now in an 
‘anced state of preparation. 
F. V. HAYDEN, 

United States Geologist in charge. 
}‘FFICE U. 8. GEOLOGICAL SURVEY OF THE TERRITORIES, 
| Washington, May 13, 1872. 


AN ENUMERATION WITH DESCRIPTIONS OF SOME TERTIARY 
FOSSIL PLANTS, FROM SPECIMENS PROCURED IN THE EX- 
PLORATIONS OF DR. F. V. HAYDEN, IN 1870. 


By LEo LESQUBREUX. 


This enumeration may be considered as an appendix to the paper on 

she same subject; in the last report of Dr. F. V. Hayden. This report 
was just delivered and already in the hands of the printer when the 
naterials on which the present notes are written were received. The 
specimens would have been reserved for a later examination, with that 
»f others which may be procured this year. But as some of them give 
svidence of the age of formations at some localities which in the report 
we marked as unknown; as others represent new and remarkable forms; 
vd others still have better preserved remains of. species indifferently 
<nown as yet, it was advisable to examine them at once and to prepare 
and publish a short account ot them. 
- In this paper the same plan is followed as in Dr. Hayden's report: 
[st, description of species, grouped according to the localities where they 
aave been found ; 2d, some remarks on the analogy of these species, in 
‘elation to their geographical and stratigraphical distribution and to 
sheir typical characters, &e. 


1. GREEN RIVER, ABOVE FISH-BEDS. 


Fine-grained, buff-colored, hard shale, breaking more or less irregu- 
larly in horizontal layers. 

HEMITELITES TORELLI, Heer(?). Represented by a very small frag- 
ment, only a single oblong leaflet, entire or slightly undulate on the 
oorders, with nervation of this species as figured in Fl. Arc., 2, Pl. x1, 
Fic. 1-5. Identity cannot be positively ascertained from such a speci- 
men. 

ARUNDO GOPPERTI, Munst. To this species I refer an irregularly, nar- 
rowly, striate stem with round knots, asin Fl. Ter. Helv., Pl. xxiii, Fig. 11. - 
The same specimen bears a crushed fascicle of seeds of an Arundo(?). 
Other specimens still doubtfully referred to this species represent roots or 
root-stocks, varying from 4 of an inch to 14 inches in diameter, irregularly, 
more or less striate-wrinkled in the length, marked also, as in the first 
specimens, by round knots, placed at a distance from each other and 
without trace of articulations. These remains may belong as well to a 
Phragmites as to an Arundo. The comparison of the seeds may indicate 
their true relation. 

PHRAGMITES OENINGENSIS, Al. Br. Fragments of doubly striated 
stems, marked by articulations as in Report, p. 284.* 

JUNCUS, species. Fragments of stems of various size, like Juncus 
retractus, Heer, or Juncus Scheuzeri, Heer, in FI. Ter. Helv., Pl. xxx, 
Figs. 2 e and 3 ¢. 


* Quotations marked Report refer to my former paper in Dr. F. V. Hayden’s last 
report, 1872. - 


6 GEOLOGICAL SURVEY OF THE TERRITORIES. 


SALIX ANGUSTA, Al. Br., in. Heer’s Fl. Ter. Helv., 2, p. 30, Pl. Ixix, 
Fig. 3. One of the specimens represents a whole leaf 6 inches long 13 
to 14 millimeters broad, in its widest part entire, linear, gradually taper- 
ing toa long point, and tapering also by a slightly curved line to the 
petiole. This leaf shows apparently its upper surface. The medial nerve 
is broadly marked, but the secondary veins are obsolete like their divi- 


sions. Another specimen of the same species has only one-half of a leaf © 


of about the same width as the former, the under part, with secondary 
velns, very distinct, like their divisions, and surface evidently villose, it 


being marked by the impression of a thick coat of hairs. Heer, in his _ | 


description of this species, rightlye ompares it to S. viminalis, is 


remarking, however, that his specimens do not indicate if the leaves a 


were villose as in the living species. 


SALIx MEDIA, Al. Br. For the form of the linear lanceolate leaves with | ‘ 
entire borders, tapering upward toa point, obtuse at base, our speci- | 


mens represent exactly this species as fioured i in F]. Ter. Helv., Pl. lxviii, 
Figs. 14, 17, 19. But they do not show any trace of nervation, and iden- 


tity is, therefore, uncertain. It is, however, generally the case in speci- 


mens of this species whose upper surface is ‘smooth and do not bear any 


trace of secondary veins. 

SALIX, species. Merely the base of two leaves still attached to a 
branchlet, alternate, with unequal base, just as in S. inequilatera, 
Goépp., Schossnitz FI., Pl. xxi, Fig. 6; very short-petioled, nearly sessile, 
with entire or undulately crenulate borders ; apparently narrowly lanceo- 
late-pointed; secondary, veins open, thick like the intermediate shorter 
tertiary veins and nervilles; areolation distinct, of the same type as that 


of 8. Lavatert, Heer. As much as can be seen, these leaves do not re- — 


semble any fossil species as yet published; but as the form of the leaves 
is not known, and as it is not seen if the borders are entire or dentica- 
late, it is useless to attempt specification. 

MYRICA NIGRICANS, sp. nov. Fragments of leaves, apparently nar- 
rowly lanceolate or linear-lanceolate, halt an inch wide or less, passing 
down in an outward curve and cuneate to the petiole, distantly serrate, 
with short obtuse teeth ; medial nerve thick, secondary veins open, (angle 
of divergence at least Go ,) distinct, branching downward two or three 
times in anastomosing with intermediate short tertiary veinlets. The 
nervation is analogous ¢ to that of the living M. gale, L., while by the form 
of the leaves it resembles M. Vindobonensis, Ung., as ‘figured by Heer in 
Alaska FL, Pl. ii, Fig. 5, differing, however, by the distant obtuse 


teeth of the borders. All the specimens of these leaves are blackened | 


upon the yellow shale of this locality, and the surface appears dotted, 


as in our common J. cerifera, L., indicating a resinous compound in. 
their texture. Some of the specimens bear small round seeds, which may ~ 


be referred to this species. 


MYRICA SALICINA, Ung. As far as identity can be ascertained from | 


the outline of the leaves and with undistinct nérvation, the leaf or part 


of leaf of the specimen (the point and base being destroyed) is the same | 
as the one figured in Fl. Ter. Helv., Pl. 1xxi, Fig. 2. The thin secondary | 


veins, a few of which are discernible, have the same direction as in the 
European form and branch near the point as in species of this genus. 


QUERCUS LONCHITIS, Ung. A small specimen, a narrow, lanecolate — 


leaf, with serrate borders and secondary veins numerous, parallel, sim- 
ple, craspedodrome, is referable to this species as figured in’ Fl, Ter} 
Hely., Pl. cli, Figs. 22 and 28. 

FICUs POPULINA, Heer, A number of specimens agree with the forms | 
of this species as deseribed and figured in Heer, FJ. Ter. Helv., from 


i 


| 


GEOLOGICAL SURVEY OF THE TERRITORIES. 7 


European specimens, presenting, however, some marked differences. The 
leaves are not long-acutely pointed, but obtusely so; though the primary 
and secondary nervation are alike, the ultimate divisions of the veins 
approach nearer to the borders, and sometimes the teeth of the borders 
appear rather pointed than round. As this species isvery variable, these 
differences are not marked enough to authorize a separation. The gen- 
eral form of these leaves of ours rather resembles the variety in Heer’s 
' Fl. Ter. Helv., Pl. Ixxxv, Figs. 1 and 2. 

Ficus UNGERI, sp.nov. A splendid leaf, of which unluckily the point 
and lower part are destroyed. It is broadly lanceolate in outline, the 
borders nearly parallel in the middle of the leaf, apparently rounded to 
the petiole and also curving upward somewhat abruptly to a point. The 
part of the leaf as it is preserved is 8 inches. long, 4 inches wide, with 
entire, slightly undulate borders, not coriaceous; medial nerve rather 
thick; secondary veins at a broad angle of divergence, (70° to 80°,) and 
tertiary nervation distinct, of the same type as that of F. Americana. 
The surface of the leaf is runcinate, as in F. populina and FP. tihefolia ; 
but the form of the leaf and the open, nearly horizontal secondary veins 
separate this species from any other known as yet in a fossil state. The 
leaf is larger than that of F. Hercules, Ett., or that of #. Ruminiana, 
Heer; comparable only, for the form and size, to the living PF. ferruginea, 
which has also the secondary veins in an open angle. In the fossil 
species, these veins curve less abruptly and approach nearer to the bor- 
ders in their ultimate curve. 

CINNAMOMUM SCHEUZERI, Heer. I refer to this species two leaves 
of Cinnamomum, one of which is contracted above the base, as in some 
forms of C. Buchi, Heer; the other narrower, like a variety of C. lanceo- 
latum, Heer. Both specimens are incomplete and have the nervation of ° 
U. Scheuzeri, as represented in many specimens from other localities of 
our Tertiary. 

HUCALYPTUS AMERICANUS, sp. nov. Represented by good speci- 
mens. Leaves narrowly lateeolate, 5 to 6 inches long, $ to ? of an inch 
wide, entire, gradually tapering upward to a long point, tapering also, 
but less gradually, to the base of the flat, broad, medial nerve, which is 
merely enlarged at the point of attachment; secondary veins oblique, 
(divergence about 30°,) numerous, ascending nearly straight to near the 
borders, where they join a marginal vein, which follow the borders from 
the base to the point of the leaves, being scarcely bent to the point of 
union of the secondary veins, and thus forming a narrow, equal margin, 
marked by horizontal, thin, simple, parallel, and close veinlets., This 
fine species is distantly related to H. Oceanica, Heer, Fl. Ter. Helv., and 
may be still more so to H. rhedodendrifolia, of Massalonga, which has, 
like ours, the true nervation of Hucalyptus, but is differing at least by 
its leathery texture, which is no coriaceous in ours. I know this Italian 
species merely from description, and cannot, therefore, indicate points 
of analogy. . 

AMPELOPSIS TERTIARIA, sp. nov. <A digitate leaf, with five nar- 
rowly ovate, lanceolate-pointed leaflets, tapering downward to a short, 
slightly winged petiole, sharply serrate on the borders; medial nerve 
flat and broad; secondary veins in acute angle, curving along the bor- 
ders, branching upward and anastomosing downward with branches 
of the upper veinlets. The nervation is similar to that of our living A. 
quinquefolia, Michx., the branches of the secondary veins entering the 
teeth, while the primary divisions follow the borders. It differs from it, 
however, by smaller and narrower leaves, short, winged petiole, &c. - 


8 GEOLOGICAL SURVEY OF THE THRRILOSIRE: 


The upper part of the leaflets is narrowed into a point, and the borders 
are serrate to the point. 

ILEX AFFINIS, sp.nov. Leaf coriaceous, broadly ovate, round cuneate — 
to the base, (point destroyed,) with borders narrowly margined, dis- 
tantly dentate. Secondary veins open, nearly perpendicular to the 
medial nerve, curving near the borders, thin though distinct. <Areola- 
tion and tertiary nervation like that of I. coriacea, Chap., of Florida. 
The fossil leaf differs from the living species by thinner, more open sec- 
ondary veins, curving more oradually toward the borders, and by the 
teeth, rather turned upward, and not spiny. The spines, however, 
may have been destroyed by maceration. These differences are of not 
much account, and both species are closely related, if not identical. 

ILEX STENOPHYLLA, Ung. The specimens represent the form figured 
by Heer, Fl. Ter. Helv., Pi. exxil, Fig. 7. Leaf coriaceous, narrowly 
ovate, lanceolate, obtusely pointed, with entire borders ; medial nerve 
strong ; secondary veins thin, the inferior ones more oblique; areolation 
same as in Heer’s Fig. 7. All the specimens of this species represent 
large leaves, none of them as small as those figured by Unger in the 
Ohlori S, and by Heer, loc. cit., Figs. 8 and 8b. ‘Except this, no point of 
difference is remarked. 

CEANOTHUS CINNAMOMOIDES, Lsqx. Same form as described in Re- 
port, p. 289. The teeth are more sharply marked than in the first speci- 
mens examined. 

RHUS ACUMINATA, sp. nov. A single leaf, ovate in outline, narrowed 
_by an inward curve "to a short, flat ‘petiole, abruptly acuminate, with 
borders irregularly , crenulate- lobed. Secondary veins open, strong, 
branching near the point, mostly craspedodrome in the lower part of the 
leaf, while i in the upper part some abruptly curve near the borders and 
run ‘along them. By its nervation, the species is like &. P4 yrrhe, Ung. 
except that the secondary veins are more numerous, in our specimen 
nearly as close to each other asin R. Meriani, Heer. It is distantly 
related to our living R. aromatica, Ait. 

JUGLANS . SCHIMPERI, sp.nov. A very fine species, represented by a 
number of specimens, all ‘with the same characters. Leaves of a somewhat 
thick, but not coriaceous texture, lancealate in outline, entire, largest 
near the base, about 14 inches broad, hence gradually tapering upward 
into along acute point, “abruptly rounded downw ard to the petiole; whole 
length of “the leaves about 6 inches; from the broadest part to the point 
4t inches. It is comparable to some forms of J. rugosa, Lsqx., but the 
form of the leaves, gradually decreasing to a point, is different, as also 
the nervation, which, like the areolation, is more distinct. The medial 
nerve is flat or orooved ; the secondary veins more oblique, (angle of 
divergence, 42° to 45°,) more numerous and close to each other, 16 to 18 
pairs in each leaf, curving slightly in ascending, and still more in com- 
ing to the borders, which | they closely follow in their ultimate divisions. 

JUGLANS ACUMINATA, Heer (?). The same leaf, in all its characters, 
as the one figured in Fl. Ter. Hely., Pl. exxix, Fig. 6, and which is 
apparently far different from any other form of this species. Professor 
Heer, in his description, has no remarks about this peculiar form: 
rather comparable to J. costata, Ung., as figured by Ludwig in Pal., 
Vol. VIII, Pl. lvii, Fig. 7, and Pl. lvi, Fig. 7. In all the specimens of 
this locality, there is no leaf referable to J. acuminata, Heer, or to its 
relative, J. rugosa, Lsqx. 

JUGLANS DENTICULATA, Heer, (2) Fl. Are., 2, p. 483, PI. lvi, Figs. 
6-9. In describing this species, the ae remarks that it islike J. Bali- 
nica, Ung., with more delicate teeth and secondary veins curving nearer 


GEOLOGICAL SURVEY OF THE TERRITORIES. sy) 


to the borders. The leaves, which 1 think referable to this species, are 
like Fig. 9, loc. cit., obovate, gradually narrowed downward to the peti- 
ole and more abruptly pointed. Near the base, the borders are nearly 
entire or slightly serrulate, as in the leaves figured by Heer, loe. cit.; but 
from below the middle upward, they are coarsely and sharply serrate. 
The secondary veins are equidistant, parallel, gradually curving from 
the medial nerve to near the borders, where the curve becomes more 
marked, following the borders and sending strong branches to the point 
of the teeth. The nervation of this species is well marked and similar 
to that of some of our living species of Juglans: J. rupestris, Engl., for 
example, from California. One of the specimens bears three leaflets still 
apparently attached to a common petiole, and all have the same form, 
same size and nervation. In all our specimens the secondary veins are 
more curved than in any of the figures given by Heer. It is with this 
species as with J. rugosa compared to J. acuminata; identity is not more 
recognizable than characters to point out specific differences. 


2. Point oF Rocks Sravrion, UNION PACIFIC RAILROAD. 


Fine-grained, brown, ferruginous, very hard shale, with generally 
broken remains of leaves flattened in the plane of stratification. 

ONOCLEA SENSIBILIS, L., as described by Dr. Newberry in Notes on 
The Later Extinct Floras, &c., p. 39, and figured, Pl. viii, ined. The 
specimen is upon a piece of white, hard limestone from near the mouth 
of the Yellowstone River. 

Populus arctica, Heer. Same form as that of Fl. Are., Pl. v, Fie. 9. 
The leaf is broken and its outline obsolete. 

QUERCUS OLAFSENI, Heer(?). The specimen only shows the middle 
part of a leaf oval in outline, at least six inches long, four inches wide, 
with secondary veius oblique, parallel, straight, as represented for this 
species and for Q. Grenlandica, Heer, in Fl. Arc., Pl. x, Figs. 3 and 9d. 

CorYLUS MoQuarRRil, Forb. In many specimens, representing it in 
various forms of its leaves. 

CORYLUS GRANDIFOLIA, Newy. It may be a variety of the former spe- 
cies, of which so many are described and figured by Heer in the Arctic 
Flora. The essential difference is not in the size of the leaves, but in 
the greater distance between the secondary veins, especially the two 
lower pairs. The nearest form to this one is that in Heer’s Fl. Arc., 
Piix, Fig: 3. 

PLATANUS GUILLELM&, Heer,(?) apparently. The characters of the 
leaf are scarcely distinguishable. 

ANDROMEDA, species. Two specimens representing the same part of 
a leat: its lower part with the petiole. Its form is intermediate be- 
tween that of A. Grayana, Heer, and Diospiros lancifolia, Lx.; ovate- 
lanceolate, one inch wide in the middle, where it is broken, gradually 
tapering to the petiole by an inward curved line; petiole one-half inch 
long, narrow, like the medial nerve; one pair only of secondary veins 
are discernible, ascending from the base of the leaves and following the 
borders. . The other veins above are undistinctly seen, emerging in a 
more open angle, and curving to the borders. z 

CORNUS RHAMNIFOLIA, Heer, FI. Ter. Helv.,-p. 28, Pl. ev, Figs. 22-25. 
It resembles somewhat Juglans rugosa, Lx., in-some of its varieties, dif- 
fering by shorter and broader leaves, two inches wide, scarcely two 
and a half inches long; secondary veins all simple, nearly straight, 
slightly diverging from each other in passing from the medial nerve to 
quite near the borders, where they curve abruptly; nervilles distinct, 


10 GEOLOGICAL SURVEY OF THE TERRITORIES. 


perpendicular to the veins, which preserve the same thickness in their 
whole length. Identical in characters with the Huropean species. 

Vitis Islandica,(?) Heer, Fl. Arc., Pl. xxvi, Figs. 1 and 7a. Three 
broken undistinct specimens of lobate leaves, whose nervation is like 
that of Fig. 7e, loc. cit., are doubtfully referred to this species, most of. 
the outlines of the leaves being destroyed. They might be referable to 
VY. Olviki, Heer, which has been obtained in better specimens at Evans- 
ton. : 

DOMBEYOPSIS ZQUIFOLIA, Gopp., Fl. Ter. Schles., p. 22, Pl. iv, Fig. 4, 
and Pl. v, Fig. 2a. The leaf representing this species is only smaller 
than those figured by Goéppert, loc. cit. The form, however, and the 
nervation are alike. It is broadly cordate, equal, entire on the borders, 
with 5 to.7 primary veins from the base; medial vein branching at a dis- 
tance above the base; upper basilar veins much divided outside; fibrilles 
thick, parallel. The specimen shows only the lower half of one leaf. 

JUGLANS RUGOSA, Lsqx. My remarks on J. rhamnoides, in Report, p. 
294, apply to some forms of this species as represented by the numerous 
specimens of this locality. The discussion on the value of our Ameri- 
ean species is fallible as long as the descriptions are not elucidated by 
figures. I preserve this specieS on account of the small size and the 
form of the lateral leaflets, which are much shorter and broader toward 
the base, sometimes cordate, and also for the more deeply marked 
nervation. The surface of the leaves is generally runcinate by the de- 
pression of the veins and veinlets. 


3. EVANSTON, ABOVE THE COAL. 


Specimens on a hard, ferruginous shale of the same nature as that of 
Point of Rocks.* 

PHRAGMITES OENENGENSIS, Al. Br. I refer to this species part of a 
stem about half an inch broad, with primary veins deep, strong, sepa- 
rated by intermediate very thin ones, articulated, marked at the artic- 
ulation by the round scar of a branch. It is more deeply striated 
than in most of the specimens figured of this species. Sismonda in 
Pal. du Piémont, Pl. vi, Figs. 3-5, has a branch of the same kind. 

PoPUuLUS RICHARDSONI, Heer, FI. Arc., p. 98. The specimen is of the 
same form as the one in PI. lv, Fig. 3°, and still better preserved. It is 
a large ovate-cordate, pointed leaf with borders undulately, obtusely cre- 
nate; five primary basilar nerves, the exterior ones much braneh- 
ing outside, the two lowest curving in a very open angle toward the 
borders; the intermediate ascending more obliquely to near the point ; 
tertiary nervation very distinct. 

SALIX HVANSTONIANA, sp. nov. Leaf ovate-lanceolate, (?) (upper part 
broken,) rounded to the base, with apparently entire borders; lower 
pairs of veins (two pairs) shorter, nearly horizontal ; superior ones 
longer, on a more acute angle of divergence, at various distances from 
each other, irregular in directions, curving near and along the borders, 
separated by shorter tertiary veins. This species has the nervation of 
S. macrophylla, Heer, especially as figured in F]. Ter. Helv., Pl. Ixvii, Fig. 
4, and our specimen could be referred to it but for the form of the leaf 
appearing entire, merely ovate-pointed, much shorter, and by the me- 
dial nerve, which is narrow proportionally to the thick secondary veins 
and nervilles. These are distinct, perpendicular to the veins. 

CoryLus McQuarRii, Heer, Report, p. 292. One specimen bears 


* Report, p. 291. 


GEOLOGICAL SURVEY OF THE TERRITORIES. dah 


a leaf of this species; another specimen, with leaves of Juglans rugosa, 
has a small nut which seems referable to the same, Hazel. Itis slightly 
shorter and broader than the one figured as C. McQuarrii, in Heer’s 
MreAre.; Pl. ix, Fig. 5. 

MORUS AFFINIS, sp. nov. Leaf broadly ovate, truncate-cordate at 
base, abruptly pointed, with borders irregularly serrate,(?) (the stone is 
coarse-grained aud the borders undistinct.) Secondary veins oblique, 
(angle of divergence, 30° to 35°,) nearly parallel, the basilar pair only 
approaching nearer to the superior one in ascending to the borders ; all 
nearly straight, deeply marked, abruptly curving and anastomosing at 
a short distance trom the borders; nervilles distinct, numerous, parallel, 
branching. The lowest pair, only of secondary veins, is much divided 
outside in oblique branches, parallel and curving near the borders, like 
the secondary ones; texture of the leaves apparently thin. Except that 
the nervilles are more numerous, the nervation and areolation of this 
Species is in every point similar to that of our living M. rubra, L., as 
is also the form of the leaves which in one of the specimens, at least, 
appears to have one side slightly cut in one lobe. It is regretable that 
the borders are not distinctly seen. The four specimens of this 
species have the same characters. 

Ficus GAuDINI, Lsqx., Report, p. 300. The specimen is a piece of 
fine-grained sandstone of the same kind and appearance as that from: 
the unknown locality remarked upon in Report, p. 300, and which there- 
fore should be referred to Evanston. The leaf is identical in characters 
with those formerly described. 

PLATANUS ACEROIDES, GOpp. The leaf preserved nearly entire has 
the broad nearly truncate base of this species, with secondary basilar 
veins at an angle of 40°; the lateral lobes are long and pointed toe, and 
therefore the identification is certain. The same specimen, however, 
bears two leaves of P. Guillelmaw, Gépp., whose characters are 
equally well marked by more oblique basilar veins, borders descending 
in an acute angle toward the petiole, along which they abruptly pass in 
a short wing. Heer, at first, united both species for the European spe- 
cimens, and only admitted them as distinet in examining leaves from 
the North Greenland Tertiary, (Fl. Are., H, p. 473.) Iam as yet uncer- 
tain if this separation is sufficiently authorized. Some specimens of 
ours are referable to both forms, and, indeed, leaves of our living P. 
occidentalis show in their outlines, and even their nervation, differ- 
ences which in a fossil state would authorize a separation of species, if 
seen from separate specimens, more legitimately than from the various 
forms referable to both the fossil ones. The presence, however, of leaves 
of a same type upon a same piece of shale, has no weight to decide the 
- question of identity. The trees of the Tertiary, like those of our time, 
are generally grouped at the same place by a kind of family intimacy: 
Juglans nigra with Carya alba ; Acer saccharinum and A. rubrum species 
of Quercus, &e., and of course their leaves are found side by side upon 
the ground, though coming from different trees. 

CINNAMOMUM SCHEUZERI, Heer. Represented by a poor specimen. 
The lower part of the leaf is erased and no part of the nervation is dis- 
tinguishable but the medial nerve and the two lateral veins, ascending 
to three-fourths of the leaf and curving inward along the borders. It 
might be referable to C. polymorphum, Heer, the leaf being larger than 
in the common forms of OC. Scheuzeri; a true Cinnamomum, however. 

CINNAMOMUM MISSISSIPPIENSE, Lsqx. Two leaves upon the same 
specimen. They are similar in their characters, even in size, to those 


12 GEOLOGICAL SURVEY OF THE TERRITORIES. 


figured from the Mississippi Tertiary in Trans. Am. Phil. Soc., vol. XIII, 
BL six, ies 2. . 

MAGNOLIA HILGARDIANA, Lsqx.(?) Specimen showing the middle 
part only of a large leaf with undulate, entire borders and the nervation 
of this species. On one side of the leaf the secondary veins are slightly 
nearer to each other and also more oblique than on the other. It is ap- 
parently identical. 

VITIS OLRIKI, Heer. One of the two leaves referable to this species is 
weli preserved enough to show the nervation and the large entire obtuse 
teeth of the borders, which mark the specific characters. These leaves, 
however, are smaller than the fine one figured by the author in Fl. Are., 
1, Pl. xlviii, Fig. 1; broadly cordate, enlarged in a short obtuse lobe 
above the middle, then more abruptly pointed. Itis palmately 5-nerved 
from the base, the lower pair of veins nearly horizontal; the lateral ones 
of the same angle as the divisions of the medial nerve, much branching 
outside; nervilles obsolete; leaf of a thin texture. 

FICUS TILI@FOLIA, (?) Al. Br. <A large leaf whose mere outline and 
skeleton of veins are obscurely marked upon the stone. It is referable 
as well to Dombeyopsis wquifolia, G6pp. The lower part of the leaf is 
totaly erased. 

ACER SECRETA, sp. nov. The leaf is seen only in its upper part; 
showing three deeply cut, lanceolate, long-pointed lobes with undulate 
borders marked by a few large teeth. The lobes are contiguous, nearly 
parallel and equal, separated by narrow but obtuse sinuses. The sec- 
ondary veius are thin, very oblique, (angle of divergence, 25°;) Tertiary 
nervation obsolete. By its nervation and the mode of division of the 
borders, this leaf is comparable to A. pseudoplatanus var. paucidentata, as 
figured in Gaud., 3d Mem., Pl. iii, Fig. 2, differing, however, much 
by the deeply cut, lanceolate-pointed, nearly equal and parallel lobes. 

RHAMNUS RECTINERVIS, Heer, Report, p. 295. 

RHUS DELETA, Heer, FI. Ter. Helv., LI, p. 83, Pl. exxvii, Fig. 8. 
Leaves membranaceous, ovate-lanceolate, obtusely pointed, entire; sec- 
ondary- veins open, camptodrome, thick near the base; tertiary nerva- 
tion obsolete. The specimens agree with the description of the author, 
showing leaves of the same size more or less enlarged above the rounded 
base and of the same kind of nervation. : 

JUGLANS RUGOSA, Lsqx. Many leaves exactly similar in form and 
nervation to those of Point of Rocks Station. There is a large number 
of specimens of this species from both localities. 

JUGLANS OBTUSIFOLIA, Heer. Leaves broader, enlarged in the mid- 
die, apparently obtusely pointed, rounded to the petiole, entire; surface 
of the leaves deeply runcinate by depression of the secondary veins, 
which curve near the borders and are equidistant; nervilles and ter- 
tiary nervation distinct; appear identical with Heer species, Fl. Ter. 
Helv., III, p. 89, Pl. exxix, Fig. 9. . 


4, WISCHER’S PEAK, RATON MOUNTAINS. 


A hard, greenish-yellow, metamorphic sandy shale, with distinct re- 
mains of plants, mostly flattened in the plane of stratification. 

PTERIS EROSA, sp. nov. Leaflets apparently broadly lanceolate or 
ovate-lanceolate, (?) (the upper and lower part of the leaflet being 
destroyed,) with irregularly crenulate or lacerate borders; medial nerve 
thick; veinlets oblique, (angle of divergence, 60°,) straight, mostly 
simple, some forking, near or at the base, rarely above the middle, dis- 
tant and parallel. By its nervation and the form of the leaflets, this 


\ 


GEOLOGICAL SURVEY OF THE TERRITORIES. 13 


species is a true Péeris, related by its characters to some varieties of 
P. longifolia, L., with serrate borders. The irregular laceration of 
the borders may be the result of maceration. The leaflet is not half 
preserved, the part seen being a little more than 2 inches long and half 
as broad. This species differs from P. LO I, Heer, by less 
oblique, less divided, and more distant veintets. 

PHRAGMITES OENINGENSIS, Al. Br. Stems 1 inch broad or less ; 
coarsely striated with the same characters as those described above 
from Evanston. 

SABAL CAMPBELII, Newy., Notes on Extinct Floras, p. 41, (Pl. x, 
ined.) There is a large number of specimens all with the same ’ charac. 
ters. They are referable to this species on account of the very thin. 
obscure strive of the rays, whose surface in all the specimens, without 
exception, appears covered by a smooth, thick epidermis which oblit- 
erates the lines. The number of the rays, which are sharply folded, is 
proportionally very large, a character which, like the first, separates 
this species from S. Grayana, Lsqx., of the Mississippi Tertiary. The 
author describes the petiole as flat. The upper face is concave, nearly 
half-ceylindrical, and striate like the leaves, except the middle, which is 
rugose and spongy-like; the lower is convex in the same degree; near 
its base the petiole flattens and enlarges. The specimens represent dif- 
ferent parts of the plant—leaves, petioles, and their sheaths, trunks, 
fruits, &e. 

CARPOLITHES PALMARUM, sp.nov. These fruits, described in Report, 
p. 295, from Evanston, (above the coal,) as Carpolithes lineatus, (?) Newby, 
are found agglomerated in large number npon the same specimens, and 
mixed with irregular striate woody filaments, thus apearing as derived 
from decayed bunches, the filaments representing pedicels. These fruits 
are round oval, varying in length from 14 to 24 centimeters, and in 
width from 1 to 12 centimeters. Most of them are more or less com- 
pressed; some nearly flat, some but little devious from the oval-cylin- 
drical primitive form, which is slightly truncate on one side and conical 
_ obtuse on the other, narrowly striate, the lines converging to the trun- 
cate part, and there often becoming more inflated and ‘distinet. These 
fruits are referable to species of Palins, not only on account of their con- 
nection with Palm leaves, on the same specimens, but especially in con- 
sideration of their form, their apparent texture, and their agglomeration 
in bunches. Their form is like that of the nuts of some species of Iriar- 
tea—I. setigera, Mart., for example; or of Leopoldinia—L. pulchra, M. 
and C. They appear to have been surrounded by a thin pulpous coat- 
ing, under which there was a shelly envelope, still distinguishable on 
some of the specimens, with a compressible and therefore somewhat 
soft kernel. The best preserved specimens show differences in forms 
from conical obtuse to exactly oval except the small truncate point of 
attachment. These differences may indicate two species. Perhaps 
C. lineatus, Newy., is referable to the same kind of fruits; but none of 
these specimens are marked by a small point, as in Dr. Newberry’s 
figure, loc. cit. 

POPULUS MUTABILIS var. repando-crenata, Heer, Fl. Ter. Helv., p.. 
22, Pl. Ixii, Fig. 2. A large leaf, the lower part of which is destroyed. 
It is broadly elliptical- lanceolate, obtusely pointed, w ith borders undu- 
late-crenate and distant; alternate secondary veins very oblique and 
curved in ascending to and along the borders. ‘The specimen is obscure, 
but the essential characters of this ‘Species are well preserved enough 
for identification. 

POPULUS MONODON, Lsqx., Trans. Am. Phil. Soc., Vol. XI, p. 413, 


14 GEOLOGICAL SURVEY OF THE TERRITORIES. 

Pl. xv, Figs.1 and 2. A large leaf, 4 inches broad in its widest part, at 
least 6 inches long _ broadly ovate, lanceolate-pointed, rounded to the 
petiole; borders entire, undulate; medial nerve thick, secondary veins 
about 12 pairs, nearly equidistant and parallel, diverging from the 
medial nerve under an angle of 60°, slightly curved or nearly straight 
to the borders, where they become obsolete; lower secondary veins 
branching outside. ‘This species is like the former by the general form 
of the still larger, longer leaves, from which it differs, however, by its 
secondary veins, more numerous, less distant, parallel, and by the 
borders entire. Its nervation is similar to that of Populus balsamoides, 
as figured by Gaudin, FL Ital., lst Mem., Pl. iii, Fig. 1, for the branch- 
ing and anastomosing of the secondary veins, and “Fig. 4, for parallel, 
less distant veins ; the leaf is of a thick texture. 

QUERCUS CHLOROPHYLLA, Heer. A specimen, representing a coria- 
ceous smooth leaf, runcinate horizontally, without trace of secondary 
veins or of tertiary nervation; apparently ovate and entire, the borders 
being imbedded in the stone. A small leaf upon the same specimen in- 
dicates more clearly its ovate form, marking identity with Heer’s FI. 
Ter. Helv. Il, Pl. lxxv, Fig. 8. The medial nerve is proportionally 
broad. 

FICUS ULMIFOLIA, sp. nov. Leaves round-oval, 3 inches wide, some- 
what longer, with entire undulate borders, at least near the base, where 
only they are observable; medial nerve thick and grooved; petiole 
short and hooked; secondary veins more or less distant, parallel, open, 
(angle of divergence, 60°,) joining the medial nerve in a short, down- 
ward curve, or slightly decurrent, straight, or flexuous to near the bor- 
ders, where they curve upward, with sometimes one outside branch; 
nervilles oblique to the veins, flexuous, undistinct. The borders of the 
leaves rounded downward, abruptly curve in descending to the petiole, 
the lower pair of veins following the same curve. The species is repre- 
sented by a number of specimens, all more or less incomplete, with the 
upper part of the leaves mostly destroyed. Their general outline 
resembles that of some leaves of Alnus Kefersteinii, Gopp., differing, 
however, by entire borders and more open secondary veins. Its nearest 
relative is F. bor ealis, Heer, Fl. Balt., p. 74, Pl. xxi, Fig. 11, differing 
equally from this species by. more open veins. 

PLATANUS GUILLELM&, Gépp. The same form as the leaf figured 
in Heer’s Fl. Are., II, Pl. xlvii, Fig. 1. 

LAURUS PADATA , (2) Lsqx., Trans. Am. Phil. Soe., vol. XII, p. 418, 
Pitxix, Migs 1: All the specimens which I refer to this species have 
only the lower half of the leaves with obsolete nervation. They are 
most alike, 12 in number, indicating an obovate or oblanceolate cori- 
aceous leat, gradually tapering downward toa thick medial nerve. The 
few distinguishable secondary veins are thin, and have the same direc- 
tion as in the species quoted above. This is not sufficient to warrant 
identity. These remains might be referrable to Persea lancifolia, Lsqx., 
loc. cit., Figs. 3 and 4. 

CINNAMOMUM MIUISSISSIPPIENSE, Lsqx., loc. cit., p. 418, Pl. xix, Fig. 
-2. A good specimen, though merely a little more than the lower half 
of the leaf is preserved. The leaf is still larger than the one from Mis- 
SISSIppi. : 
ANDROMEDA GRAYANA, Heer. Two specimens, one of which repre- 
sents a whole leaf, with distinct nervation. The identity with Heer’s 

species, Report, p. 298, is ascertained. 

MAGNOLIA LESLEYANA, Lsqx., loc. cit., p. 421, Pl. xxi, Figs. 1 and 2. 


7. 


GEOLOGICAL SURVEY OF THE TERRITORIES. 15 


Two nearly entire leaves of this species, of exactly the same form and 
characters as those described from specimens of the Mississippi Tertiary. 

MAGNOLIA HiILGARDIANA, Lsqx., loc. cit., p. 421, Pl. xx, Fig. 1. The 
borders of the leaves which I refer to this species are mostly erased. 
These leaves are oblong, not enlarged upward, as in the former species, 
abruptly rounded downward to the “petiole ; secondary veins numerous, 
parallel, open, curving at a short distance from the borders and along 
them. The general outline of these leaves and their nervation agree in 
in every point with description and figure, loc. cit. 

Among the undeterminable fragments from this locality, there are 
still some referable to another species of Magnolia, especially resembling, 
“by obtuse point and nervation, Magnolia ovalis, Lsqx., also of the Mis- 
sissippi Tertiary. 

TERMINALIA RADOBOJENSIS, Heer, not Ung. The same leaf, in all 
its characters, as the one figured in Fl. Ter. Helv., Pl. cvili, Fig. 12. 
Ti is entire, obovate, gradually tapering downward to the base of the 
medial nerve; secondary veins distant, opposite or alternate, irregular 
in distance and direction, at first curving outside from the medial nerve, 
and then ascending nearly straight to the borders, camptodrome. ‘Traces 
of strong nervilles perpendicular to the secondary veins, and also of a 
- few intermediate tertiary shorter veins, are obscurely seen on the speci- 
men, the substance of the leaf appearing oe thick. Ungevr’s 
figure of this species in Chloris, Pl. xlviii, Fig. 2, represents a much 
larger leaf, with secondary veins more numerous, equally distant, par- 
allel, and an ultimate nervation finely marked, as in a leaf of a thin 
texture. These differences may be considered as specific. 

RHAMNUS OBOVATUS, Lsqx. The leaf is smaller than those described 
from Marshall coal in Am. Jour. Sci. and Arts, vol. 45, p. 207. The 
peculiar form of the obovate or oblanceolate leaves with closely ap- 
proached, parallel, thick secondary veins identify them easily. 

RHAMNUS DELBTUS, (?) Heer, Fl. Ter. Helv., p.79, Pl. exxiil., Figs. 19- 
25. Two broken specimens are referable to this species. They rep- 
resent ovate, slightly cordate leaves, with 8 to 10 pairs of deeply marked 
secondary veins, slightly curving in passing to the borders, campto- 
drome with distinct fibrilles. The point. of the leaf is destroyed and 
thus the essential character of this species—borders serrulate near the 
point—is not ascertainable. 

‘ BERCHEMIA PARVIFOLIA, Lsqx., Am. Jour. Sci. and Arts, vol. 45, p. 
207. The name given to the species is not appropriate, as a new speci- 
men from this locality has a leaf as large as in B. volubilis, D.C. From 
this it differs by broader leaves and secondary nervation more open, 
the veins slightly arched in ascending and bending upward before 
reaching as near the borders. This species is still more closely allied 
to B. multinervis, Heer, Fl. Ter. Helv., p. 77, Pl. exxiti, Figs. 9-18, dif- 
ering merely by ‘the secondar vy veins, which, in the American species, 
are open from the medial ner rve, while j in Heer’s species they join the 
nerve by a downward curve. 

RHAMNUS FISCHERI, sp. nov. Leaves thickish, large, 4 inches long, 
3 inches broad, rhomboidal, obtuse and entire; medial nerve, thick, 
grooved, secondary veins open, (angle of divergence, 60°,) equidistant, 
10 to 12 pairs, parallel, straight to the borders, where they abruptly 
curve, camptodrome. By the form of ‘the leaves and the straight sec- 
ondary veins this species is related to Rhamnus aizoon, Heer. The nerv- 
illes are not distinguishable. 

XANTHOXYLUM DUBIUM, sp. nov. A small oblong leaf 3 centimeters 
long, 13 centimeters brvad, with borders entire or wavy crenulate, nearly 


16 GEOEOCICAL SURVEY OF pee TERRITORIES. 


earls in ihe middle, rounded downward, with an abrupt short de- 
scending curve to the base of the medial nerve. Secondary veins par- 
_ allel, 8 “pairs, open, (angle of divergence, 60°,) abruptly curving near 
the borders, camptodrome. The point of the leaf is destroyed. Re- 
lated to X. dentatum, Heer, Fl. Ter. Helv., Pl. exxvii, Fig. 21. 

JUGLANS SMITHSONIANA, sp. nov.. Leaves smooth, lanceolate, taper- 
ing into a long point, deeply undulate, abruptly curving downward, to 
the petiole, medial nerve flat and broad; lowest pair of secondary veins 
very oblique, running to and curving along the borders opposite; the 
other pairs alternate, distant, irregular in direction, curving also in 
ascending to and along the borders; tertiary nervation obsolete. A 
fine species represented by only one specimen, resembling by its nerva-~ 
tion J. Baltica, Heer, Fl. Balt., Pl. xxix, Fig. 10, and byits general form 
J. Schimperi, Lsqx., described above, a true Juglans, though the leaf 
appears somewhat thick or coriaceous. 


5. PLACER Mountain, New Mexico. 


A coarse, blackish, hard, metamorphic sandstone, with obscure re- 
mains of leaves; few of the specimens of this locality are distinct 
enough to allow positive identification of the leaves. 

PoPuLUs BALSAMOIDES, G6pp. One leaf only, broadly ovate- cordate, 
abruptly narrowed to a point; medial nerve narrow; secondary veins 
numerous, 11 to 12 pairs, open, parallel, curving to and along the bor- 
ders, (camptodrome.) The borders are apparently entire; but the 
coarseness of the stone prevents ascertaining it positively. It may rep- 
resent a new species, differing from P. balsamoides by more numerous 
and parallel secondary veins. These veins appear to curve’ upward 
quite near the borders, and to join the superior divisions asin our P. bal- 
samifera, L., var. candicans. 

QUERCUS PLATANIA, (?) Heer. A mere fragment which agrees only — 
by its nervation. Another broken specimen of the same character has 
the veins less distant, and agrees by its general outline and nervation 
with Q. Olafseni, Heer. Both appear to represent the same species of 
a Quercus as yet undeterminable. 

FICUS TILILZFOLIA, Heer. Only part of a leat whose nervation is 
distinctly preserved and undoubtedly referable to this species. Another 
leaf of Ficus has the lateral basilar veius alternate as in fF. Morloti, Heer, 
ie Meryrlely cP Lalx xxi Rae, Gis) 

PLATANUS ’GUILLELM As, ‘Heer. Represented by a number of speci- 
mens, all fragments, scarcely recognizable. 

CINNAMOMUM MISSISSIPPIENSE, Ysqx. It differs by the secondary 
veins, not quite as thick, ascending, in the upper part of the leaves 
along the borders, as in some leaves of C. Buchi, Heer, Fl. Ter. Helv., Pl. 
XCY., “Big. 3. This difference is not characteristic. AS remarked in my 
description of this species, loc. cit., p. 418, the reversed figure of C. Bu- 
chi, represents exactly by its form that of C. Mississippiense. 

MAGNOLIA! Species undeterminable, mere fragments. 

CARPOLITHES SPIRALIS, sp. nov. A hard fruit of a remarkable form. 
It is oval-cylindrical, obtuse at one end, truncate at the other, 2 inches 
long, half as broad, obtusely narrowly ribbed, the ribs ascending in spi- 
ral “around it from its truncate base, above which it is slightly con- 
tracted by two deep parallel lines, cutting the ribs ata right angle 
without changing their direction. Ido not know any fruit. to which 
this might be ‘compared. 

CARPOLITHES COMPOSITUS, sp. nov. It looks like a compound of | 


GEOLOGICAL SURVEY OF THE TERRITORIES. 17 


flattened almonds, attached at their point and pressed together. It is 
divided upward in four unequal lobes, the two of the middle being 
longer and more flattened or narrower ; the other shorter, more inflated, 
divided to half their length, which varies from 4 to 4 of an inch, and 
truncate at the lower end. The relation of this species is, like that of 
the former, unknown to me. 

CARPOLITHES MEXICANUS, sp. nov. Much like some of the nuts 
described above as C. palmarum, differing, however, by its exactly ovate- 
cylindrical, pointed form. 


6. HoT SPRINGS, MIDDLE PARK. 


A piece of hard siliceous tufa or grit. 

JUGLANS THERMALIS, sp.nov. Leaf ovate, lanceolate, DSBS IE 
rounded in narrowing to the petiole, (broken,) 5 inches long, about 2 
inches broad ; medial. nerve sharp and narrow; secondary veins irregu- 
lar in distance and direction; the lowest pair more oblique, separated 
by horizontal tertiary veins anastomosing with branches of the second- 
ary. Nervation analogous to that of J. obtusifolia, Heer, Fl. Ter, Helv., 
Pl. exxix, Fig. 9; form of leaf like J. longifolia, Heer, loc. cit., Fig. 10. It 
might be identical with this last species, of which the only Teaf figured 

does not represent the tertiary nervation. 


GENERAL REMARKS. 


GREEN RIVER, ABOVE FISH BEDS. 


The geological station of this place, from indication of the fossil plants 
described, appears to be of a different stage from that of any of the 
other localities which have furnished materials for the present examina- 
tion. In the former report, p. 289, the station of Green River is left 
indeterminate, one species only, Ceanothus cinnamomoides, being recog- 
nizable from the few specimens then on hand. Now we have besides 
this one, still found in the newly received lot of specimens, twenty-one 
species affording data for comparison. Except the omnipresent forms 
of the Tertiary, Arundo, Phragmites, and Juncus, all these plants bear 
a more recent facies than the species of Evanston, Point of Rocks, and 
Fischer’s Peak, especially by their relation to living species—Ceanothus 
cinnamomoides, comparable to some of the numerous species of Califor- 
nia; Myrica nigricans, allied to our Myrica Gale, L.; Ficus Ungeri, to 
Ficus Ameri icana ; Ampelopsis tertiaria, to the well- known Ampelopsis 
quinquefolia, Michx.; Tlex affinis, scarcely distinguishable from Ilex cori- 
acea, Chap., of Florida; Rhus acuminata, related to our common Rhus 
aromatica, ie ; and Eucalyptus Americanus, to some species of this genus, 
inhabiting Australia. From these new species Juglans Schimperi is the 
only one which does not appear related to any of the present flora. Of 
the species of Green River described already from the Miocene of 
Europe, Salix augusta, apparently identical with the living Salix vimi- 
nalis, L., and Salix media, are both from Oeningen, or from the upper 
stage of ‘the Miocene; Myrica salicina, Quercus lonchitidis, and Ilex steno- 
phylla, have representatives in both the Upper and the Middle Miocene; 
Ficus populina, only, belongs to the Lower Miocene; but as seen from 
the description, our American form differs in some points from the 
Huropean, and may prove to be a different species. As related to Arctic 
types, we have only from Green River Juglans denticulata, (?) which, if 
not identical with the Greenland species, is at least closely allied to ‘it. 


2868 


18 GEOLOGICAL SURVEY OF THE TERRITORIES. 


‘The relation of ali these species, therefore, except the Cyperacew, &c., 
found everywhere, is evidently with younger types, and indicates a 
higher station in the Tertiary measures. From the absence of the 
species which characterize the American formation considered as 
Eocene, and also from the absence of the Arctic types, which become 
less predominent in advancing toward our present epoch, the fossil plants 
of Green River apparently represent the Upper Miocene. 


POINT OF ROCK STATION. 


The horizon of this station, like that of the former, was left undeter- 
mined in the Report, p. 308, the few specimens received from it indicat- ” 
ing only one Cyperites, Fagus Antipofi, and indistinct leaves referable 
to Juglans and Platanus. Nine species have been added to this short 
list, from a new contribution of specimens; but as none of them is char- 
acteristic of a peculiar horizon, the geological station of this place is 
not positively ascertainable. Of these species, Corylus McQuarrii, 
Populus arctica, and Platanus Guillelme are represented in the forma-— 
tion considered as Eocene, the first at 6 miles above Spring Canon, the 
two last at Evanston; but they have been found also in connection with 
strata referred to the lower Miocene—Medicine Bow, Washakie, and 
Junction Station. Juglans rugosa is distributed through the whole 
thickness of the American Tertiary, apparently at least; the other spe- 
cies, Cornus rhamnifolia, is found in all the stages of the Huropean 
Miocene. From the presence of a number of Arctic types, Populus 
arctica, Platanus Guillelme, Vitis Islandica, Fagus Antipofi, which are 
absent from the Green River formation; I believe, however, that Point 
of Rocks occupies a lower stage in the Tertiary, though higher than 
Evanston, and that therefore its place is in the Lower Miocene. This 
supposition is essentially indicated by the absence of any of the species 
marked as characteristic of the American Kocene. 


EVANSTON. 


A lot of specimens representing especially species of Ficus is marked 
in the former report, page 300, as of unknown origin. The lithological 
characters of these specimens and the analogy of the species which they 
bear, refer them to the same strata as those marked ‘“ Hvanston, below 
the coal.” At the same place, the upper strata show evidently by their 
remains of plants, representatives of a flora of the same age as the lower 
ones; for two of the four species recognized above the coal are found also 
below it. Adding to this number the species described in these notes, we 
have alist of 42 species of fossil plants for Evanston; a larger number 
than from any other locality of the American Tertiary. This place may 
therefore be considered as a point of mark, used for future references 
and comparisons. 

Considered in its whole or in its details, the large list of the species of 
Evanston do not indicate any character which might modify the opin- 
ion formerly advanced on the age of the formation. Except Morus affi- 
nis, closely allied to our living Morus rubra, all the other fossil plants 
represent older Tertiary types. It is undeniable that without any ex- 
ception most of these types of ours compared with European fossil spe- 
cies should be referable to the Miocene. But as said in Report, pp. 315 
and 314, either these species belong to the American Eocene or as yet 
this formation is unknown in our geology. 

The relation of Evanston with the Mississippi Tertiary flora is 


» 


GEOLOGICAL SURVEY OF THE TERRITORIES. 19 


now marked by three distinct species which they have in common—Jug- 
lans appressa, Cinnamomum Mississippiense, and Magnolia Hilgardiana. 
But it is evidently a geological and not an isothermal relation ; for all the 
Arctic types described from Evanston— Populus arctica, Populus Richard-: 
soni, Corylus MacQuarrti, Vitis Olriki, &e.—are absent from the Tertiary 
of the Mississippi. 


FISCHER PHAK, RATON MOUNTAINS. 


By far the most interesting locality, on account of the data derived 
from it, for comparison of geological station as also of geographical dis- 
tribution, is that of Fischer’s Peak, in the Raton Mountains, north of the 
New Mexico Territory. On one side, the fossil flora of this locality 
affords evidence of the same age as that.of Evanston and of the Missis- 
sippi, referable to both by the more remarkable species recognized from 
its specimens. With Evanston, it has in common, Populus mutabilis, 
Platanas Guillelme, Cinnamomum Mississippiense, Andromeda Grayana, 
Magnolia Hilgardiana, Carpolithes palmarum, or six species in the twenty- 
two determined from its remains. With the Mississippi Tertiary flora 
it has as identical species, Populus mutabilus, Populus monodon, Quercus 
chlorophylla, Laurus pedata, Cinnamomum Mississippiense, Magnolia 
Lesleyana, Magnolia Hilgardiana, Juglans appressa, or eight species. If 
we consider that this identity is forrepresentatives of genera of distant 
affinity, which at the same time are all, except Cinnamomum, character- 
istic of our present flora—Populus, Quercus, Magnolia, Juglans, even 
Palms ; if we consider still that this identity is rendered positive by the 
peculiar and easily ascertained characters of the species, we can but see 
here and acknowledge an evident proof of the homogeneity of the North 
American Tertiary flora in comparing it even at great distances under 
the same latitude. The difference between the two points of comparison 
is about 15° of longitude. On another side, this identity of species with 
Evanston by a few Arctic types—Populus mutabilis, Platanus Guillelme, 
Andromeda Grayana, and by southern types like Quercus chlorophylla, 
Laurus pedata,two Magnolias, fruitsof the Palms—positively confirm the 
assertion of the former report, p. 311, that though the Tertiary flora of 
the Northwest is connected by identical forms with the Arctic flora 
of the same epoch, it already indicates, by a number of its species, cli- 
matic differences, according to latitude, as distinct as we see them in the 
arborescent vegetation of our time. Palm-trees at the EHocenic times 
were mixed to the flora, not only at Evanston but farther North at Fort 
Union. But at Fischer’s Peak remains of Palms are more numerous 
nearly one-half of the specimens of this locality representing fragments 
of leaves, fruits, stems, &c., of a Sabal. in the Mississippi specimens, 
the remains of two species of Palm are equally abundant. 


REMARKS ON TYPICAL ANALOGY OF OUR PRESENT FLORA WITH THAT 
OF THE TERTIARY. 


Little can be said on this question in addition to the remarks in Re- 
port, p. 314. The analogy of types of our present flora with those of the 
Pertiary becomes more evident in proportion to the progress of the re- 
searches. Two more of the North American genera of the present time 
are now recognized in the Northwest Tertiary—Morus and Ampelopsis. 
The discovery of a fossil species of Mulberry does not indicate for this 
country the origin of the numerous species of the same genus which 
have now representatives in the tropical regions of the whole world, but 


20 GEOLOGICAL SURVEY OF THE TERRITORIES. 


it proves at least that ours is truly indigenous. The similarity of the 
fossil leaves with those of the living species confirms the assertion. And 
the antiquity of race, too, may be indicated by the wide range of distri- 
‘bution and general prevalence of Morus rubra, from Florida to Lake Erie. 
No species of Jiorus has been as yet recognized in a fossil state. It is 
the same with Ampelopsis, a genus still more evidently North American 
than Morus; tor no species of true Ampelopsis is known from another 
country.* The relation of form between the fossil species Ampelopsis 
tertiaria and the living A. quinquefolia is as distinctly marked as for the 
two species of Morus, and also its geographical distribution and its pre- 
dominance in our flora. Both species are in intimate affinity to our 
North American vegetation. They are seen everywhere and known 
and liked by everybody. The one is the friend of the farmers by its 
shade, of his children delighted by the pleasantness of its fruits; the 
other adorns our dwellings “when allowed to grow in our gardens. And 
when left to its own work, it covers with green foliage the dead trees 
and the barren rocks, tempering desolation and ruin by hiding them 
under elegant fringes and garlands painted of the richest colors. It is 
worth something to know that the origin of the Virginian Creeper and of 
the Red Mulberry is traceable to the Tertiary formations of North 
America. 

There is still a number of genera from our arborescent flora which 
have not, as yet, any representatives recognized in the Tertiary—Asi- 
mina, for example, Aesculus, Hamamelis, some Rosacew, Hricacee, &e. 
The preservation and fossilization of leaves is more or less dependent 
upon the consistence of their texture, thin leaves being mostly destroyed 
by maceration too scon to leave distinct traces of their forms when im- 
bedded in clay or sand deposits. In examining, upon the ground, the 
dead leaves of our forests in spring, the difference in the degree of pre- 
servation resulting of texture is easily remarked. For example, upon a 
lot occupied by Oak, Beach, Elm, and Maple trees, in nearly equal pro- 
portion, the leaves of the three first kinds will be found heaped every- 
where and entire, while scarcely a few skeletons of decaying leaves of 
Maple are distinguishable. This probably explains the absence of some 
Species, and also the disproportion of representatives of others in the 
Tertiary; as, for example, of the species of Acer, which, already predom- 
inant at the Cretaceous epoch, and having a large number of species in 
the present flora of our North American continent, have been as yet 
rarely found in our Tertiary formations. It must be said, too, that we 
know as yet but a very small part of the vegetation of the Tertiary, and 
that every new lot of specimens affords materials to modify suppositions 
which might be offered on the causes of the distribution of species. In 
the former report I alluded to the scarcity of the remains of Willows in 
our Tertiary, in comparison with their great number in the Cretaceous. 
In the present notes, four species of Salix, as yet unknown in our fossil 
‘flora, have been described, and probably a number of others will be 
found still. 

However, it is true that some of our ahead types have disappeared, 

-or show a tendency to disappear. from our present*flora, the types 
related to the present vegetation of Australia, for example, Hucalyptus 
of the Tertiary, which will be probably found in the Cretaceous with 
Phillocladus and Proteoides; some others also, now marked in the flora 
of Japan and China, which appear to have traveled westward, as Cin- 


* Ampelopsis botria, D. C., is described from Zanzibar, Africa. As it has simple leaves 
and fruit eatable, it is probably referable to Vitis. 


GHOLOGICAL SURVEY OF THE TERRITORIES. Bale 


namomum and Ficus of the Tertiary, and the Credneria, with analogous 
types, of the Cretaceous. Cinnamomum and Ficus, however, have not 
left altogether our North American continent, but they have lost their 
importance in the vegetation of ours, at least compared with the place 
which they occupied in the Tertiary times. 

Hach formation, of course, has lost some of its vegetable types in 
acquiring new ones. The march of the increase and decrease of the 
typical representatives, the search for appreciable causes which may 
have fostered modifications of forms, is one of the most interesting parts 
- of the study of vegetable paleontology. 

On this subject, it is already evident, to my mind at least, that the 
data presented in these notes, and in the former report of Dr. Hayden, 
indicate a remarkable analogy of our present flora with that of the Ter- 
tiary, and of this, too, with the flora, considered as of the North Ameri- 
can Cretaceous, pointing out its ancient origin. But the indications are 
not yet conclusive. The chain in the modifications of types from the 
oldest formations (Upper Cretaceous) to the newer ones, (Upper Terti- 
ary,) and from these to our flora, appears especially defective in its last 
link, our knowledge with the Pliocene flora being as yet too limited. 
The ‘only locality, known to me, where strata of this age, with remains 
of fossil plants, are xposed, is, as remarked in Report, p. 318, at Colum- 
bus, Kentucky, on what is called the chalk-banks of the Mississippi. 
The plants which I obtained there, in a too short tour of exploration, 
are, to my opinion, scarcely, if at all, distinguishable from species now 

living j in the Southern States. I then identified, as far as identity can 
be ascertained from fossil leaves, Quercus virens, Michx. ; Castanea nana, 
Muhl.; Ulmus alata, Michx.; Planera Gmelini, Michx.; ; Prinos integri- 
Jolia, EIL; Ceanothus Americanus, L.; Carya oliveformis, Nutt; Gleditchia 
triacanthos, L.; and Acorus calamus, L. Professor Heer, to whom I sent 
sketches of the leaves representing these species, objected to my deter- 
minations, at least for some of them, and I have no doubt but that he is 
right in some points. However, the identity of a number, at least, of 
the species, is undeniable, indicating, therefore, an intimate relation of 
our arborescent flora with that of the Pliocene. It would be important 
‘to.obtain a series of specimens numerous enough to give positive evi- 
dence of the degree of that relation. The deposits of leaves above 
Paducah belong to a more recent epoch, the Terrace epoch, apparently. 
All the specimens of leaves obtained from this formation represent, with- 
out doubt, even in the opinion of Heer, species of our time. In follow- 
ing, then, "the researches for the purpose of studying the march in the 
flora from the Cretaceous times till ours, the strata of the West and 
those of the Mississippi could furnish documents for such a clear record 
as none other could be got elsewhere on the same subject. 

For conclusion it is right to recall in a few words the essential points 
marked in this examination : 

ist. It adds to our list of fossil species of the Tertiary 20 new forms, 
and describes 21 others, known already from the Miocene of Europe, 
but not as yet observed in our Tertiary flora. The number of its spe- 
cies is thus increased to 231. 

2d. It fixes the geological horizon of three localities in different 
stages of the Tertiar y, and marks the location of a group of specimens 
of as yet unknown origin. 

3d. It more distinctly points out the relation of some important strata 
for ascertaining contemporaneity or difference of age. 

4th. It indicates more positively modifications in the characters of 
the Tertiary flora of the North American continent according to climatic 


22, GEOLOGICAL SURVEY OF THE TERRITORIES, 


differences at different degrees of latitude, and at the same time recog- 
nizes identity of the characters of this vegetation at wide distances 
under the same latitude. 

5th.. It shows a more intimate relation between the present flora and 
that of the Tertiary by the discovery of new types identical in both. 

The outlines of our Tertiary formations are, from former researches, 
recognized by their flora in Vancouver, Oregon, Alaska, Greenland, 
Connecticut, Kentucky, and Mississippi. Under the systematic and 
judicious directions of Dr. Hayden, its central area is diligently studied 
in the Northwestern Territories, and every year adds to the value and 
the importance of the materials furnished for the study of its fossil 
vegetation. And now Professor J. D. Whitney sends from California 
a large number of specimens obtained there from the Cretaceous and 
from different stages of the Tertiary formation. We may thus foresee 
that in a short time North America will contribute for the acquaintance 
of the flora of these formations documents reliable enough to afford a 
secure basis for its detailed and comparative history. 


‘COLUMBUS, OHIO, May 4, 1872. 


mney 
eect 


a k