Skip to main content

Full text of "Bulletin"

See other formats


ISSN 0038-3872 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


BOLLETIN 


Volume 100 Number 1 


BCAS-A100(1) 1-58 (2001) APRIL 2001 


Southern California Academy of Sciences 
Founded 6 November 1891, incorporated 17 May 1907 


© Southern California Academy of Sciences, 2001 


OFFICERS 


Daniel Pondella, President 
Ralph Appy, Vice-President 
Susan E. Yoder, Secretary 
Daniel A. Guthrie, Treasurer 
Daniel A. Guthrie, Editor 
David Huckaby, Past President 
Hans Bozler, Past President 


BOARD OF DIRECTORS 


1998-2001 1999-2002 2000—2003 
Kathryn A. Dickson Ralph G. Appy James Allen 
Donn Gorsline Jonathan N. Baskin John Dorsey 
David G. Huckaby John W. Roberts Judith Lemus 
Robert F. Phalen Tetsuo Otsuki Martha and Richard 
Daniel Pondella Gloria J. Takahashi Schwartz 


Susan E. Yoder 


Membership is open to scholars in the fields of natural and social sciences, and to any person interested 
in the advancement of science. Dues for membership, changes of address, and requests for missing 
numbers lost in shipment should be addressed to: Southern California Academy of Sciences, the Natural 
History Museum of Los Angeles County, Exposition Park, Los Angeles, California 90007-4000. 


Protesaoriel Membera oO Se oS a alma ie yey ae a ee 
imaort WMieminbrs bea a a ee Ee a ee 
Memberships tn other categories are available on request. 


Fellows: Elected by the Board of Directors for meritorious services. 


The Bulletin is published three times each year by the Academy. Manuscripts for publication should 
be sent to the appropriate editor as explained in “Instructions for Authors” on the inside back cover 
of each number. All other communications should be addressed to the Southern California Academy 
of Sciences in care of the Natural History Museum of Los Angeles County, Exposition Park, Los 
Angeles, California 90007-4000. 


Date of this issue 12 April 2001 


© This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). 


SOUTHERN CALIFORNIA ACADEMY 
OF SCIENCES 


2001 ANNUAL MEETING 
May 4-5, 2001 
CALIFORNIA STATE UNIVERSITY 
AT LOS ANGELES 


1 


WA cORpoRATED 1% 


Symposia: 
Nutrient Dynamics in Marine and Estuarine Environments; Dr. Krista Kamer, (SCCWRP), kristak @ 
sccwrp.org—Friday Morning 


Dealing with Contaminated Runoff; Dr. John Dorsey, (City of Los Angeles), (213) 847-6347, jdorsey @ 
san.lacity.org—Friday Morning and Afternoon 


Spatially Explicit Ecology; Dr. Carlos Robles, CEA-CREST Director (CSULA), (323) 343-2067, 
crobles @calstatela.edu—Friday Morning and Afternoon 


Neuronal Degeneration, Growth and Repair Throughout the Lifespan; Dr. Amelia Russo-Neustadt 
(CSULA), (323) 343-2074, arusson @calstatela.edu—Friday Afternoon 


Virtual Ocean; Dr. Judith Doino Lemus, (University of Southern California), (213) 740-1965; 
jdlemus @usc.edu—Friday Afternoon 


Environmental Chemistry; Dr. Carlos Robles, CEA-CREST Director (CSULA), (323) 343-2067, 
crobles @calstatela.edu—-Saturday Morning and Afternoon 


Marine Ecology of Rocky Reefs and Areas of Special Biological Significance; Robert Grove, (Southern 
California Edison), (626) 302-9735, grovers@sce.com or, Dan Pondella, (Occidental College), (323) 
259-2955—Saturday Morning and Afternoon 


The Puente-Chino Hills Wildlife Corridor and Wildlife Corridors in the Los Angeles Basin; Dr. Daniel 
Guthrie, (Claremont Colleges), (909) 607-2836, dguthrie @jsd.claremont.edu—Saturday Morning 
and Afternoon 


CALIFORNIA 
ACADEMY OF SCIENCES 


MAY 1 4 2008 


LIBRARY 


CALL FOR MENTORS 


The Research Training Program of the Southern California Academy of Sciences is receiving a 
large number of applications from students for the 2001—2002 academic year. This is in large part due 
to an excellent article in the Los Angeles Times about the program and success of students enrolled 
in it. The program involves the placement of high school students with excellent scientific backgrounds 
from throughout southern California in scientific laboratories to conduct research under research men- 
tors. The projects are usually designed by the mentor. Students spend about 8 hours a week on their 
projects, commencing in September and concluding in May with the presentation of their results at 
the Annual Meeting of the Academy. 


We are seeking scientists who might like to become mentors for these outstanding students in the 
coming year. If you or your graduate students have room in your lab for a student, please let us know. 
We need your name, address, contact numbers (include e-mail) and an indication of research area. 
Forward the above information to: 


Dan Guthrie 
dguthrie @ jsd.claremont.edu 
909 607 2836 


Bull. Southern California Acad. Sci. 
100(1), 2001, pp. 1-11 
© Southern California Academy of Sciences, 2001 


Pliocene Amphibians and Reptiles from 
Clark County, Nevada 


JIM I. MEAD! and CHRISTOPHER J. BELL? 


'Department of Geology and Quaternary Sciences Program, 
Northern Arizona University, Flagstaff, Arizona 86011 
?Department of Geological Sciences, University of Texas at Austin, Austin, 
Texas 78712 


Abstract.—Pliocene herpetofaunas are uncommon in the published literature. Here 
we report on a small Pliocene (Blancan Land Mammal Age) herpetofauna from 
the White Narrows local fauna (Clark Co., Nevada) dating approximately 4.9 to 
4.3 Ma. At least two species of Bufo, a phrynosomatid lizard, Xantusia, and a 
colubrine snake were recovered from sediments deposited in a basin that held a 
small lake. Climate was probably subhumid, but a cooling and aridification trend 
was occurring. The vegetation may have been a mosaic of oak-juniper (?) wood- 
land and a riparian community. The White Narrows herpetofauna is depauperate 
in comparison to the present community which is probably due to sampling bias 
and not a climatic factor. 


In contrast with the mammalian faunas, there are relatively few described am- 
phibian and reptile faunas from the late Tertiary of what is now the Intermountain 
Region of western North America. This paucity of localities, and the consequent 
gaps in our understanding of herpetofaunal biogeography and biodiversity in this 
region renders any new information noteworthy. In this paper we describe the 
amphibian and reptile components of a small, relatively diverse vertebrate assem- 
blage (White Narrows local fauna) recovered from a locality in Clark County, 
Nevada, and discuss their biogeographic significance in relation to the changing 
physiographic setting. 

The fossils reported here were recovered from San Bernardino County Museum 
locality 2.12.16, which was discovered and collected as a result of paleontological 
mitigation efforts conducted in the late 1980s by the museum along the right-of- 
way for the Kern River Gas Transmission Line. The locality is situated at 520 m 
elevation, approximately 2 km south of the Muddy River in Moapa Valley, about 
8 km upstream from the confluence with Meadow Valley Wash at Glendale, Clark 
County, Nevada. The San Bernardino County Museum Regional Paleontologic 
Locality Inventory places the locality (referred to as Moapa Bluffs) at the SW %4 
of the NE % of the SW % of the SW % of Section 7, T15S, R66E (Mount Diablo 
Base and Meridian), Moapa West quadrangle, on US Bureau of Land Management 
holdings. Abbreviations for museums include: MCZ, Museum of Comparative 
Zoology, Harvard University; SBCM, San Bernardino County Museum; UCMP, 
University of California Museum of Paleontology. 


Overview, Stratigraphic Setting, and Chronology 


The establishment of ancient drainage systems in the region of the Muddy River 
in Moapa Valley in southeastern Nevada were governed by major structural fea- 


l 


Z SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


tures that developed during the Miocene. These events and their consequences 
were discussed by Longwell (1936), Lucchitta (1972, 1979, 1990), Dicke (1985), 
Duebendorfer and Wallin (1991), Schmidt et al. (1996), and Williams (1996). 
During the Miocene, extensional stress, subsidence, and normal faulting set up 
the development of the basins and ranges of Nevada and relative uplift of the 
western margins of the Colorado Plateau. Slow subsidence and basin filling oc- 
curred from approximately 24 to 13 Ma. From about 13 to 10 Ma, normal faulting 
became prevalent, resulting in the rise of mountain ranges and subsidence of 
basins. In some of these basins, including the one in which the fossils discussed 
herein were deposited, large lakes and lake systems formed. The ancestral Col- 
orado River began flowing into and through the Muddy Creek basin at approxi- 
mately 5.5 Ma and ultimately breached the lake basin, establishing external drain- 
age. 

Late Tertiary alluvial deposits in the vicinity of Moapa Valley and nearby 
Meadow Valley received the attention of geologists and paleontologists for many 
decades. Early studies placed all the sediments into a single unit, the Muddy Creek 
Formation. Although published reports of fossils from the Muddy Creek Forma- 
tion exist (Lucchitta 1979; Taylor and Smith 1981; Taylor 1983; Reynolds and 
Lindsay 1999), remains of fossil vertebrates are relatively uncommon. Vertebrate 
fossils from the Muddy Creek Formation were first studied by Stock (1921) who 
assigned the sediments a Mio-Pliocene age based on vertebrate taxa present within 
the unit. 

Recent evaluation of a discrete sedimentary package in the upper portion of 
the Muddy Creek Formation resulted in a proposal for the recognition of a new 
formation, tentatively named the White Narrows (Schmidt et al. 1996). This cur- 
rently informal formation (no description outside of the 1996 Open-File report 
has yet appeared; see Salvador 1994:23) was described as a white calcic claystone 
and clayey limestone, with two distinct subfacies: 1) green claystone, and 2) 
channel fill deposition in degradational channels. A fossiliferous marl bed, 20 cm 
thick and about 2 m above the base of the formation, produced the mammals 
described by Reynolds and Lindsay (1999) and the amphibian and reptilian re- 
mains presented here (SBCM 2.12.16; see Schmidt et al. 1996). It is this package 
of vertebrate remains that compose the White Narrows local fauna. 

No radiometric dates are available for the White Narrows formation, and age 
estimates provided by Schmidt et al. (1996) were based on preliminary identifi- 
cations of the rodents SBCM 2.12.16. Unfortunately, the mammalian biochron- 
ology does not provide unambiguous evidence upon which an age can be based. 
A recent review of the mammalian fauna recovered from the White Narrows local 
fauna was provided by Reynolds and Lindsay (1999) who suggested that this 
depositional unit represents a transition from the late Miocene/earliest Pliocene 
Hemphillian Land Mammal Age to the Pliocene Blancan Land Mammal Age. The 
small mammals they reported include the murid rodents Paronychomys cf. P. 
lemredfieldi., Copemys cf. C. vasquezi, Peromyscus valensis, Repomys cf. R. gus- 
tleyi, Calomys (Bensonomys) cf. C. coffeyi, Calomys (Bensonomys) cf. C. arizo- 
nae, Neotoma (Paraneotoma) cf. N. vaughani, and several heteromyid taxa, in- 
cluding Dipodomys gidleyi, Oregonomys cf. O. sargenti, and undetermined spe- 
cies of Perognathus and Prodipodomys (Reynolds and Lindsay 1999). 

The lack of confident species identifications for most of the rodent taxa in the 


PLIOCENE HERPETOFAUNA FROM NEVADA 3 


fauna renders biochronological age estimates difficult. Most of the genera can be 
found in Hemphillian and Blancan deposits and definitive species identifications 
are required for refined biochronological age estimates. Of the nine taxa listed by 
Reynolds and Lindsay (1999) as being “‘restricted temporally”’ to either the Hem- 
phillian or Blancan land mammal ages, only two (Peromyscus valensis and Di- 
podomys gidleyi) are definitively identified to species. Peromyscus valensis is 
currently known only from the Hemphillian and D. gidleyi only from the Blancan. 
In addition, the shrew genus Sorex is represented in the White Narrows local 
fauna (possibly by two species; see table 3, p. 473, in Reynolds and Lindsay 
1999), and is elsewhere known only from Blancan and younger faunas (Repenning 
1967; McKenna and Bell 1997). The locality is either of latest Hemphillian age, 
dating between approximately 6.5 and 4.9 Ma, or is earliest Blancan, dating be- 
tween approximately 4.9 and 4.3 Ma. The overriding compliment of taxa seems 
to imply a Blancan age for the fauna, and is therefore the assumed age for this 
report (this is in agreement with the conclusions of Reynolds and Lindsay 1999). 


Systematic Paleontology 


All specimens are housed in the Section of Geological Sciences at the San 
Bernardino County Museum and are catalogued under collection number SBCM 
L-2515. Each specimen has a separate catalog number. Terminology for anurans 
follows Tihen (1962) and Sanchiz (1998). Iguanian familial designation follows 
Frost and Etheridge (1989). 


Class AMPHIBIA Linnaeus, 1758 
Subclass Lissamphibia Haeckel, 1866 
Order Anura Rafinesque, 1815 
Family Bufonidae Gray, 1825 
Genus Bufo Laurenti, 1768 
Bufo boreas/canorus/exsul group 


Material.—Left ilia 570-571, 2720-2729; right ilia 572, 2730-2734. 

Identification.—The dorsal protuberance is relatively high (varies from high to 
medium-low on the fossils), but the anterior and posterior edges of the protuber- 
ance are even with the top of the dorsal prominence (the protuberance does not 
stand out from the prominence). A distinct, projecting protuberance occurs on the 
living B. cognatus, B. microscaphus, B. retiformis, and B. woodhousei and on the 
extinct B. hibbardi and B. pliocompactilis (Wilson 1968; Taylor 1941A) implying 
that our specimens do not belong to any of these species. The extinct B. suspectus 
has a prominence with the posterior slope steeper than the anterior slope; it was 
assumed by Tihen (1962) to belong to the B. valliceps species group and by Estes 
and Tihen (1964) to belong to the B. americanus species group. The specimens 
listed above have a dorsal prominence similar in size to that described for B. 
suspectus, but do not exhibit the steeper posterior slope. The range of individual 
variation in this character needs to be thoroughly examined for all North American 
representatives of Bufo. 

The ventral acetabulur expansion is not flared out and flattened as on B. punc- 
tatus, or anteriorly rounded as on B. debilis (young and adult specimens). Spec- 
imen 571 is not similar in size or in robustness to B. holmani (Parmley 1992), 
nor does it have the medially-directed crest on the dorsal surface near the middle 


4 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Figure 1. Herpetofaunal specimens from the Blancan White Narrows local fauna, Clark County, 
Nevada. A, left ilium of Bufo boreas/canorus/exsul group, SBCM L2515-571; B, right ilium of Bufo 
suspectus, SBCM L2515-2718; C, right maxilla fragment of Phrynosomatidae indet., SBCM L2515- 
602; D, right dentary fragment of Phrynosomatidae indet., SBCM L2515-603; and E, right spleniod- 
entary fragment, SBCM L2515-595. Scale bars = 1 mm. 


of the shaft as is characteristic of B. hibbardi (Taylor 1941A). The prominence 
and morphology of the protuberance on 571 is identical to living B. boreas spec- 
imens with an svl of approximately 30 mm. Because the ilia listed above exhibit 
characters most similar to those found in the Bufo boreas species group, we refer 
our specimens to the B. boreas/canorus/exsul group. As indicated above, the 
White Narrows adult specimens are always small, svl approximately 26 to 40 
mm, and in this character resemble more the living toads B. exsul and B. canorus 
and not the larger B. boreas. Today Bufo exsul and B. canorus do not live near 


PLIOCENE HERPETOFAUNA FROM NEVADA 5 


the Moapa Valley region; B. boreas is known from the Muddy River drainage 
(Stebbins 1985; Hovingh 1997). 

Remarks.—Specimen 571 (Figure 1A) is the most complete of the ilia from 
White Narrows local fauna and is used here as representative of all the specimens 
referred to this group. The ilium is complete except for the extreme anterior end 
of the shaft. The overall size of most specimens is that of a toad with a svl (snout- 
vent length) from 26 to 30 mm (2720 is equal in size to modern toads of svl 
approximately 40 mm). 


Bufo suspectus Tihen, 1962 


Material.—Left ilia 2716—2717; right ilia 2718-2719. 

Identification.—The low dorsal prominence of the ilium, with the posterior 
slope steeper than the anterior, and the position of the dorsal protuberance some- 
what posterior to the midpoint of the base of the prominence are characteristic 
for the species. The four ilia listed above all show these features (Figure 1B). 

Remarks.—Bufo suspectus is a small species of toad originally described from 
the Blancan Fox Canyon Locality in Kansas (Tihen 1962). Additional material 
(consisting of a frontoparietal and two ilia) was subsequently recovered from the 
Miocene Valentine Formation of Nebraska, but was named a distinct species (B. 
valentinensis) on the basis of the supposed geographic and temporal improbability 
that a species from the Pliocene of Kansas could be the same as a Miocene species 
of Nebraska (Estes and Tihen 1964). Subsequent reports of “B. valentinensis”’ 
(e.g., Holman 1970, 1973; Chantell 1971; Parmley 1992) continued this practice, 
but Sanchiz (1998) recently synonymized the two species under B. suspectus, 
which we endorse. 


Bufo sp. 


Material.—Angulosplenial 563, 2735-2737; right ilium 573; humerus 564— 
565, 2738-2743. 

Identification.—These specimens were not preserved well enough to permit a 
more refined identification. 

Remarks.—All specimens are from adults of small species of Bufo that appear 
similar in size to living species with svl of approximately 25 to 45 mm. 


Class REPTILIA Laurenti, 1768 
Order Squamata Oppel, 1811 
Family Phrynosomatidae Fitzinger, 1843 


Material.—Right maxilla fragment 602; right dentary fragment 603. 

Identification.—The fragmentary nature of this material prevents identification 
beyond the family level. We compared the specimens with modern skeletal ma- 
terial of Callisaurus, Cophosaurus, Holbrookia, Petrosaurus, Phrynosoma, Sce- 
loporus, Uma, Urosaurus, and Uta. We were unable to detect any derived char- 
acters that would permit definitive allocation to any of these taxa, but in their 
overall size and morphology, the specimens most closely resemble modern spec- 
imens of various species in the genus Sceloporus. 

The difficulties in identifying isolated skeletal elements of Sceloporus species 
were discussed by Etheridge (1964) and Larsen and Tanner (1974). The fossils 
were compared with modern skeletal material from S. clarkii, S. graciosus, S. 


6 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Jarrovii, S. magister, S. occidentalis, S. olivaceous, S. orcutti, S. poinsettii, S. 
scalaris, S. undulatus, and S. virgatus. Our comparisons failed to reveal any di- 
agnostic features of anterior maxillae or dentaries in extant species, but the fossils 
are different in some respects from certain species. The teeth are not the relatively 
heavy, transversely compressed trilobate teeth typical of the extinct S. robustus 
(Twente 1952). The fossils are larger and more robust than modern specimens of 
S. graciosus, S. scalaris, and most S. virgatus, S. undulatus, and S. occidentalis. 
The fossil specimens differ from the living S. clarkii and S. orcutti in that they 
lack the more pointed, slightly recurved anterior teeth often seen in these two 
living species. The fossil teeth do not show any trend toward being trilobate and 
wide, as in modern S. magister, however, the robust nature of the anterior portion 
of the fossil dentary, and the appearance of the dental shelf and meckel’s groove 
are most similar to that species. 

Remarks.—The maxilla is a fragmented (3.4 mm long) anterior portion with 
two blunt conical teeth (Figure 1C). The anterior dentary fragment (3.5 mm long) 
contains four blunt, conical teeth (Figure 1D). 


Family Xantusiidae Baird, 1858 
Xantusia Baird, 1858 


Material.—L maxilla 591; R spleniodentary 595; R spleniodentary fragment 
592, 594, 2744; L spleniodentaries 599-600; L spleniodentary fragments 598, 601. 

Identification.—Specimen 595 (Figure 1E) is described here and is represen- 
tative of the Xantusia material from the White Narrows. Specimen 595 is a right 
spleniodentary with three complete teeth preserved at mid-dentary. The teeth are 
unicuspate, are of a uniform width at the base and gently taper at the crown. The 
anterior 10% of the spleniodentary is missing. The dental gutter is well developed. 

These fossil specimens are readily identifiable as xantusiids. The White Nar- 
rows focal fauna specimens are small, of relatively slight build, and have closely 
spaced, simple teeth that lack lateral cusps. The splenial appears to be fused with 
the dentary in all specimens, and does not extend posteriorly beyond the apex of 
the coronoid in specimens where this character can be evaluated. A pronounced 
dental gutter is present in all of the spleniodentaries, but there is a varying degree 
of development in this feature. In all specimens, however, the dental gutter is 
markedly more developed than in any modern specimens of Xantusia examined 
(Figure 1E). 

The small size, slight build, and simple, conical, unstriated teeth of the fossils 
distinguish them from Klauberina riversiana and from the Paleogene genus Pa- 
laeoxantusia. The dentary teeth of Lepidophyma have lingually-directed cusps 
that superficially resemble, in dorsal view, a mammalian tribosphenic tooth, a 
feature distinctly lacking in the White Narrows specimens. The limited availability 
of skeletal material of Cricosaura typica makes adequate comparisons impossible 
at this time, but MCZ 10454 has much more delicately constructed jaw elements 
than any of the specimens from the White Narrows local fauna. The splenio- 
dentary of X. henshawi is longer, more gracile, and has more teeth on average 
than do the fossil specimens. The fossil specimens are most similar to Xantusia 
vigilis, but are more robust and are slightly longer than the corresponding bones 
of that species. 

A detailed description of an extinct form of Xantusia from the Anza-Borrego 


PLIOCENE HERPETOFAUNA FROM NEVADA 7 


Desert in California was provided by Norell (1989). The preserved material shows 
characteristic plesiomorphic features for the genus, but lacks apomorphies. The 
plesiomorphic nature of the fossils recovered from Anza-Borrego led Norell to 
describe Xantusia downsi* as a new metaspecies (see Gauthier et al. 1988 for 
explanation of the use of ‘**’’ for metaspecies). The White Narrows Xantusia 
specimens are similar to those described by Norell in that they are all character- 
ized by small size, the plesiomorphic presence of a dental gutter, and the syna- 
pomorphic reduction of tricuspid teeth. Morphologically, the specimens cannot be 
distinguished from X. downsi*, or from numerous other (unpublished) plesiom- 
orphic xantusiids ranging in age from Barstovian (middle Miocene) to early Ir- 
vingtonian (early Pleistocene; CJB, pers. obs.). Given the uncertain relationships 
among plesiomorphic xantusiids, we choose not to identify our material as X. 
downsi* and simply refer the specimens to Xantusia. 


Family Colubridae Oppel 1811 
Subfamily Colubrinae Oppel 1811 


Material.—Trunk vertebra 618. 

Identification.—The specimen conforms to the diagnosis provided by Holman 
(1979) for colubrine trunk vertebrae. It lacks the hypapophyses characteristic of 
anterior trunk vertebrae (and those of natricines) and the subcentral paramedian 
lymphatic fossae characteristic of posterior trunk vertebrae (LaDuke 1991). In 
overall morphology and proportions, it most closely resembles trunk vertebrae of 
the ‘racers’ Coluber and Masticophis. Auffenberg (1963) provided measurements 
to distinguish mid-trunk vertebrae of Coluber and Masticophis in the eastern U.S., 
but LaDuke (1991) noted geographical variation in Auffenberg’s characters. Due 
to the somewhat poor preservation of this specimen, generic determination is not 
attempted. Numerous highly fragmented specimens of snake vertebrae were also 
recovered but are not identifiable. 


Discussion and Conclusions 


As demonstrated above, the overriding compliment of mammalian taxa seems 
to imply a Blancan age for the fauna. It appears that the White Narrows local 
fauna is early Blancan in age (~4.9-4.3 Ma), but probably post-dates the early 
Blancan Panaca Formation from the nearby Meadow Valley (which dates to about 
4.95 Ma; Lindsay et al. 1999; Mou 1999; Reynolds and Lindsay 1999) and pre- 
dates the well-known Blancan faunas (e.g., Hagerman) of the Glenns Ferry For- 
mation, southern Idaho (see review in Mead et al. 1998). 


Vertebrate Faunas 


The termination of the Hemphilliian Land Mammal Age in the earliest Pliocene 
is marked by the extinction of most of the typical mammalian species of the late 
Hemphillian, including taxa with long Miocene histories. The late Hemphillian 
mammalian faunas suggest that the process of change was taking place at different 
rates in different geographic regions of North America (Tedford et al. 1987). The 
accelerating pace of mammalian immigration from Hemphillian into Pleistocene 
time reflects the availability of dispersal routes into North America and, possibly 
most importantly, an increase in environmental instability. 

The herpetofauna of North America became essentially modern at the familial 


8 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


level during the Miocene (Holman 1995). Many modern families and genera of 
anurans make their first appearance in North America during the Miocene, in- 
cluding Bufo, Rana, Pelobatidae, and Hylidae. Many families of lizards occur, 
including Iguanidae (sensu lato), Scincidae, Teiidae, Anguidae, Helodermatidae, 
Xantusiidae, and Rhineuridae. Snakes are represented by five families, including 
Aniliidae, Boidae, Colubridae, Elapidae, and Viperidae (Holman 1995). These 
families (except Aniliidae) persist in North America into the Pliocene and through 
to the Recent. Although Pliocene herpetofaunal records are rare in North America, 
those available indicate a basically modern fauna (Estes and Baez 1985; Parmley 
and Holman 1995; Holman 1995). 

The majority of the published herpetofaunas of Neogene age from Nevada are 
late Pleistocene (Rancholabrean) or Holocene in age (Banta 1966; Mead and Bell 
1994). At present, our knowledge of late Tertiary herpetofaunas from Nevada is 
extremely limited. The White Narrows local fauna and deposits located farther 
north at Panaca, Nevada (Lindsay et al. 1999; Mou 1996, 1997, 1999) appear to 
be the only sites of this age being studied in the region today. Scaphiopus alex- 
anderi was reported from sediments in the Esmeralda Formation of Miocene age 
(Zweifel 1956) and an undescribed turtle from the same formation was listed by 
MacDonald and Pelletier (1958). Miopelodytes gilmorei, a pelodytid anuran, was 
described from the middle Miocene of Elko County, Nevada (Taylor 1941B). 
From localities farther north and west of the White Narrows local fauna, Rana 
Johnsoni and R. plax were described from sediments that appear to be of Clar- 
endonian to Hemphillian age (upper Miocene; La Rivers 1953, 1966), and an 
undescribed Clarendonian turtle is included in the Chalk Spring Locality fauna 
of Elko County (MacDonald and Pelletier 1958). An unidentified snake was re- 
corded from the late Miocene Thousand Creek fauna by MacDonald and Pelletier 
(1958). A single specimen of snake previously identified as Coluber/Masticophis 
was recovered from Hemphillian sediments in the Truckee Formation of west- 
central Nevada (Ruben 1971). 

The herpetofauna from the White Narrows is not taxonomically diverse. An- 
urans and a xantusid lizard dominate the fauna. The anurans are expected given 
the reconstruction of lake, riparian, and oak-juniper (?) open woodland commu- 
nities nearby (Axelrod 1991; Thompson 1991). The anuran taxa recovered are 
expected in the region, although species identifications are not precise for most 
specimens. The recovery of bufonid anurans in the Bufo borea/canorus/exsul 
group might be predicted based on the Recent forms found in the region today 
(Hovingh 1997), however, this record represents a temporal range extension back 
to the early Pliocene. 

The presence of plesiomorphic Xantusia in the White Narrows local fauna is 
significant for a number of reasons. These specimens represent the northernmost 
fossil record of the genus reported to date. Norell (1989) reported similar ple- 
siomorphic xantusiids from late Pliocene and early Pleistocene sediments in Anza- 
Borrego Desert, San Diego County, California. Norell also mentioned that poten- 
tially similar forms were present in the Barstow Formation and in Clarendonian 
age sediments of the Dove Springs Formation of California. Whistler and Burbank 
(1992) list the Dove Springs Formation material as Xantusia sp., and this material 
resembles (in its plesiomorphy) X. downsi*. We confirm the presence of plesiom- 
orphic Xantusia specimens in at least seven Barstovian deposits in California 


PLIOCENE HERPETOFAUNA FROM NEVADA e 


(UCMP localities V5501, V6447, V6449, V6463, V65145, V65147, V6604; also 
SBCM locality 1.130.37, possibly equivalent to UCMP V65147). Fossil material 
identified as “‘Iguanidae or Xantusiidae”’ from the early Miocene Boron Local 
Fauna in San Bernardino County, California (Whistler 1984) cannot be defini- 
tively referred to either taxon at this time; we examined the material and it is too 
fragmentary to be informative. The geographic and temporal distribution of these 
fossils raises interesting questions regarding the propriety of allocating geograph- 
ically and temporally distinct fossils to the same metaspecies. Resolution of this 
taxonimic problem, and of the systematic position of the fossils in question is 
beyond the scope of this paper, but will be addressed at a later date. 

It would appear from the related data presented above that the basin holding 
White Narrows sediments contained a lake, with a chemistry permitting the de- 
position of marl (Schmidt et al. 1996). Climate was probably still subhumid, but 
a cooling and aridification trend was occurring. Based on assumed reconstructions 
from the paleobotanical records, this lake might have been surrounded by a mosaic 
of oak-juniper woodland, possibly other deciduous trees and shrubs, and a riparian 
community along the lake margins in stream courses. A subhumid climate around 
a lake with surrounding riparian and open woodland communities would seem 
ideal for a much more diverse local herpetofauna than was actually recovered. 
Certainly the lake environment supported a diverse fauna; according to Reynolds 
and Lindsay (1999) the sediments contained (in addition to the mammals dis- 
cussed above) remains of perch and sucker fish, gastropods, and ostracods. The 
low taxonomic diversity is probably due to sampling bias. Additional stratigraph- 
ic, paleomagnetic, and paleontologic work is required to better understand the 
herpetofaunal changes that took place during the Pliocene and immediately prior 
to the glacial/interglacial phases of the Quaternary. 


Acknowledgements 


Sue Beard, George Billingsley, Ernie Duebendorfer, Joel Pederson, Dwight 
Schmidt, and Van S. Williams provided helpful information about the Muddy 
Creek and White Narrows formations. Eric Scott and Scott Springer helped with 
locality information for the SBCM material. We thank Jacques Gauthier for in- 
sightful discussions about xantusiid lizard evolution. G.E. Swartz provided helpful 
comments on an earlier version of this report. Figures were prepared by Leigh 
Anne McConnaughey, for whose patience we are most grateful. We thank Kathy 
Springer and Betsy Slemmer (SBCM) for assistance with the loan of herpetolog- 
ical remains from the White Narrows local fauna. 


Literature Cited 


Auffenberg, W. 1963. The fossil snakes of Florida. Tulane Stud. Zool., 10:131—216. 

Axelrod, D. I. 1991. The early Miocene Buffalo Canyon flora of western Nevada. Univ. California 
Publ. Geol. Sci., 135:1—76. 

Banta, B. H. 1966. A check list of fossil amphibians and reptiles reported from the State of Nevada. 
Biol. Soc. Nevada Occas. Pap., 13:1-—6. 

Chantell, C. J. 1971. Fossil amphibians from the Egelhoff local fauna in north-central Nebraska. 
Contrib. Mus. Paleontol. Univ. Michigan, 23:239-—246. 

Dicke, S. M. 1985. Stratigraphy and sedimentology of the Muddy Creek Formation, southeastern 
Nevada. Unpublished Master of Science thesis, Univ Kansas, 36 pp. 

Duebendorfer, E. M., and E. T. Wallin. 1991. Basin development and syntectonic sedimentation as- 


10 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


sociated with kinematically coupled strike-slip and detachment faulting, southern Nevada. Ge- 
ology, 19:87—90. 

Estes, R., and J. A. Tihen. 1964. Lower vertebrates from the Valentine Formation of Nebraska. Am. 
Midl. Nat., 72:453—472. 

Estes, R., and A. Baez. 1985. Herpetofaunas of North and South America during the late Cretaceous 
and Cenozoic: evidence for interchange? Pp. 139-197 in The Great American Biotic Inter- 
change. (E G. Stehli and S. D. Webb, eds.), Plenum Press, 532 pp. 

Etheridge, R. 1964. The skeletal morphology and systematic relationships of sceloporine lizards. Cop- 
eia, 1964:610—631. 

Frost, D. R., and R. Etheridge. 1989. A phylogenetic analysis and taxonomy of iguanian lizards 
(Reptilia: Squamata). Univ. Kansas Mus. Nat. Hist. Misc. Pub., 81:1—65. 

Gauthier, J. A., R. Estes, and K. de Queiroz. 1988. A phylogenetic analysis of Lepidosauromorpha. 
Pp. 15—98 in Phylogenetic Relationships of the Lizard Families: Essays Commemorating 
Charles L. Camp. (R. Estes and G. Pregill, eds.), Stanford Univ. Press, 631 pp. 

Holman, J. A. 1970. Herpetofauna of the Wood Mountain Formation (Upper Miocene) of Saskatch- 
ewan. Can. J. Earth Sci., 7:1317—1325. 

. 1973. New amphibians and reptiles from the Norden Bridge fauna (Upper Miocene) of Ne- 

braska. Michigan Acad., 6:149—163. 

. 1979. A review of North American Tertiary snakes. Publ. Mus. Michigan State Univ. Pa- 

leontol. Ser., 1:200—260. 

. 1995. Pleistocene Amphibians and Reptiles in North America. Oxford Univ. Press, 243 pp. 

Hovingh, P. 1997. Amphibians in the eastern Great Basin (Nevada and Utah, USA): a geographical 
study with paleozoological models and conservation implications. Herpetol. Nat. Hist., 5:97— 
134. 

LaDuke, T:. C. 1991. The fossil snakes of Pit 91, Rancho La Brea, California. Los Angeles County 
Mus. Contrib. Sci., 424:1—28. 

La Rivers, I. 1953. A lower Pliocene frog from western Nevada. J. Paleontol., 27:77-81. 

. 1966. A new frog from the Nevada Pliocene. Biol. Soc. Nevada Occas. Pap., 11:6—8. 

Larsen, K. R., and W. W. Tanner. 1974. Numeric analysis of the lizard genus Sceloporus with special 
reference to cranial osteology. Gt. Basin Nat., 34:1—41. 

Lindsay, E. H., Y. Mou, W. Downs, J. Pederson, T. Kelly, C. Henry, and J. Trexler. 1999. Resolution 
of the Hemphillian/Blancan boundary in Nevada. J. Vertebr. Paleontol., 19:59A. 

Longwell, C. R. 1936. Geology of the Boulder Reservoir, Arizona-Nevada. Geol. Soc. Am. Bull., 47: 
1393-1476. 

Lucchitta, I. 1972. Early history of the Colorado River in the Basin and Range Province. Geol. Soc. 
Am. Bull., 83:1933—1947. 

. 1979. Late Cenozoic uplift of the southwestern Colorado Plateau and adjacent lower Colorado 

River region. Tectonophysics, 61:63—95. 

. 1990. History of the Grand Canyon and of the Colorado River in Arizona. Pp. 311—332 in 
Grand Canyon Geology. (S. S. Beus and M. Morales, eds.), Oxford Univ. Press, 518 pp. 
MacDonald, J. R., and W. J. Pelletier. 1958. The Pliocene mammalian faunas of Nevada, U. S. A. Pp. 
365-388 in Congreso Geologico International, 20th Sesi6n, Seccion 7 Paleontologia, Taxonomia 

y Evolucion. 

McKenna, M. C., and S. K. Bell. 1997. Classification of Mammals Above the Species Level. Columbia 
Univ. Press, 631 pp. 

Mead, J. I., and C. J. Bell. 1994. Late Pleistocene and Holocene herpetofaunas of the Great Basin and 
Colorado Plateau. Pp. 255-275 in Natural History of the Colorado Plateau and Great Basin. 
(K. T. Harper, L. L. St. Clair., K. H. Thorne, and W. M. Hess, eds), Niwot, Univ. Press Colorado, 
294 pp. 

, J. T. Sankey, and H. G. McDonald. 1998. Pliocene (Blancan) herpetofaunas form the Glenns 
Ferry Formation, southern Idaho. Pp. 94—109 in And Whereas. . .Papers on the Vertebrate Pa- 
leontology of Idaho Honoring John A. White. Volume 1. (W. A. Akersten, H. G. McDonald, 
D. J. Meldrum, and M. E. T. Flint, eds.), Idaho Mus. Nat. Hist. Occ. Pap., 36, 216 pp. 

Mou, Y. 1996. Mimomys and Repomys (Rodentia: Cricetidae) from the Pliocene Panaca Formation, 
southeast Nevada. J. Vertebr. Paleontol., 16:55A. 

. 1997. A new arvicoline species (Rodentia: Cricetidae) from the Pliocene Panaca Formation, 

southeast Nevada. J. Vertebr. Paleontol., 17:376—383. 


PLIOCENE HERPETOFAUNA FROM NEVADA ¥1 


. 1999. Biochronology and magnetostratigraphy of the Pliocene Panaca formation, southeast 
Nevada. J. Vertebr. Paleontol., 19:65A. 

Norell, M. A. 1989. Late Cenozoic lizards of the Anza Borrego Desert, California. Los Angeles County 
Mus. Contr. Sci., 414:1-31. 

Parmley, D. 1992. Frogs in Hemphillian deposits of Nebraska, with the description of a new species 
of Bufo. J. Herpetol., 26:274—281. 

, J. A. Holman. 1995. Hemphillian (Late Miocene) snakes from Nebraska, with comments on 

Arikareean through Blancan snakes of midcontinental North America. J. Vertebr. Paleontol., 15: 


79-95. 
Repenning, C. A. 1967. Subfamilies and genera of the Soricidae. US Geol. Surv. Prof. Pap., 565:1— 
74. 


Reynolds, R. E., and E. H. Lindsay. 1999. Late Tertiary basins and vertebrate faunas along the Nevada- 
Utah border. Pp. 469—478 in Vertebrate Paleontology in Utah. (D. D. Gillette, ed.), Utah Geol. 
Surv. Misc. Publ. 99-1, 553 pp. 

Ruben, J. 1971. A Pliocene colubrid snake (Reptilia: Colubridae) from west-central Nevada. PaleoBios, 
13:1-19. 

Ruddiman, W. F, and J. E. Kutzbach. 1989. Forcing of late Cenozoic northern hemispheric climate 
by plateau uplift in southern Asia and the American west. J Geophys. Res., 94:18409—-18427. 

Salvador, A. (ed.). 1994. International Stratigraphic Guide: A Guide to Stratigraphic Classification, 
Terminology, and Procedure, second edition. International Union of Geological Sciences and 
The Geological Society of America, Inc., 214 pp. 

Sanchiz, B. 1998. Encyclopedia of Paleoherpetology, Part 4. Salientia. Verlag Dr. Friedrich Pfeil, 275 
PP. 

Schmidt, D. L., W. R. Page, and J. B. Workman. 1996. Geologic map of the Moapa West quadrangle, 
Clark County, Nevada. US Geol. Surv. Open-File Rep. 96-521. 

Stebbins, R. C. 1985. Western Reptiles and Amphibians. Houghton Mifflin Company, 336 pp. 

Stock, C. 1921. Later Cenozoic mammalian remains from the Meadow Valley region, southeastern 
Nevada. Am. J. Sci., 202:250—264. 

Taylor, D. W. 1983. Late Tertiary mollusks from the Lower Colorado River valley. Contrib. Mus. 
Paleontol. Univ. Michigan, 26:289—298. 

, and G. R. Smith. 1981. Pliocene molluscs and fishes from northeastern California and nor- 
western Nevada. Contrib. Mus. Paleontol. Univ. Michigan, 25:339—413. 

Taylor, E. H. 1941A. Extinct toads and salamanders from Middle Pliocene beds of Wallace and 
Sherman Counties, Kansas. State Geol. Surv. Kansas Bull., 38:177—196. 

. 1941B. A new anuran from the middle Miocene of Nevada. Univ. Kansas Sci. Bull., 27:61— 
69. 

Tedford, R. H., M. E Skinner, R. W. Fields, J. M. Rensberger, D. P. Whistler, T. Galusha, B. E. Taylor, 
J. R. Macdonald, and S. D. Webb. 1987. Faunal succession and biochronology of the Arikareean 
through Hemphillian interval (Late Oligocene through earliest Pliocene epochs) in North Amer- 
ica. Pp. 153-210 in Cenozoic mammals of North America. (M. O. Woodburne, ed.), Univ. 
California Press, 336 pp. 

Thompson, R. S. 1991. Pliocene environments and climates in the western United States. Quat. Sci. 
Rev., 10:115—132. 

Tihen, J. A. 1962. Osteological observations on New World Bufo. Am. Midl. Nat., 67:157—183. 

Twente, J. W., Jr. 1952. Pliocene lizards from Kansas. Copeia, 1952:70—73. 

Whistler, D. P. 1984. An Early Hemingfordian (Early Miocene) fossil vertebrate fauna from Boron, 
western Mojave Desert, California. Los Angeles County Mus. Contrib. Sci., 355:1—36. 

, and D. W. Burbank. 1992. Miocene biostratigraphy and biochronology of the Dove Spring 
Formation, Mojave Desert, California, and characterization of the Clarendonian mammal age 
(late Miocene) in California. Geol. Soc. Am. Bull. 104:644—658. 

Williams, V. S. 1996. Preliminary geologic map of the Mesquite quadrangle, Clark and Lincoln coun- 
ties, Nevada, and Mohave County, Arizona. US Geol. Surv. Open-File Rep. 96-676. 

Wilson, R. L. 1968. Systematics and faunal analysis of the lower Pliocene vertebrate assemblage from 
Trego County, Kansas. Contrib. Mus. Paleontol. Univ. Michigan, 22:75—126. 

Zweifel, R. G. 1956. Two pelobatid frogs from the Tertiary of North America and their relationships 
to fossil and recent forms. Am. Mus. Novitates, 1762:1—45. 


Accepted for publication 24 May 2000. 


Bull. Southern California Acad. Sci. 
100(1), 2001, pp. 12—23 
© Southern California Academy of Sciences, 2001 


An Evolutionary Classification and Checklist of Amphibians and 
Reptiles on the Pacific Islands of Baja California, México 


L. Lee Grismer 


Department of Biology, La Sierra University, Riverside, California 92515-8247 


Abstract.—The herpetofauna of the Pacific islands of Baja California is evaluated 
in light of an evolutionary species concept. Ten subspecies were relegated to 
synonyms of their peninsular counterparts and three subspecies were elevated to 
species status. 


Resumen.—tLa herpetofauna de las islas del Pacifico de Baja California esta re- 
visada basada en el concepto evolutivo. Este resulté en la relegacion de 10 su- 
bespecies al sin6dnimo a sus contrapartes peninsulares y la elevaci6n de tres su- 
bespecies al nivel de especie. 


The Pacific coast of Baja California is fringed with a number of islands and 
small archipelagos. Most are young, relatively small, landbridge islands but others 
are older and continental or oceanic in origin (Grismer 1993). The herpetofauna 
of these islands as a whole has received little attention except for the publication 
of a number of checklists (Bostic 1975; Grismer 1993; Savage 1967; Van Den- 
burgh 1905; Van Denburgh and Slevin 1914; Wilcox 1980; Zweifel 1958) and a 
biogeographical study of the northern islands (Wilcox 1980). This herpetofauna 
has never been evaluated taxonomically as a faunal unit. 

Subsequent to the latest checklist of this herpetofauna (Grismer 1993), a num- 
ber of additions (Wong 1997), deletions (Grismer and Hollingsworth 1996; Wong 
1997), errors (Aguirre et al. 1999) and/or taxonomic changes (Grismer 1994a, 
1999b; Grismer and McGuire 1996; Grismer and Hollingsworth in press; McGuire 
1996; Smith et al. 1998; Wong and Grismer in prep.) have been published (Table 
1). Additionally, this fauna has never been analyzed in the context of an evolu- 
tionary species concept (ESC) as has recently been done for the herpetofauna of 
the islands in the Gulf of California (Grismer 1999a,b). Grismer (1999b) noted 
that in the Gulf of California, classifications based on a biological species concept 
(Mayr 1969) had remained unstable for a number of years. This was because the 
recognition of insular populations as species or subspecies was largely founded 
on subjective interpretations of degrees of differentiation even though the data 
sets being interpreted had remained unchanged. Grismer (1999b) proposed to 
reduce this subjectivity by employing an ESC (Simpson 1961; Wiley 1978; Frost 
and Hillis 1990), in which only discretely diagnosable (1.e., no overlap in character 
state variation) lineages were recognized as species and the subspecies category 
was abandoned (see Grismer, 1999b for discussion). The subspecies category was 
not used because its operational duality (i.e., usage for both diagnosable insular 
populations and portions of continuous continental populations) often misrepre- 
sents history. The ESC proved most useful when evaluating insular populations 
because it divorced decisions of taxonomic rank from subjective interpretations 


12 


HERPETOFAUNA FROM PACIFIC ISLANDS OF BAJA CALIFORNIA 13 


Table 1. Summary of proposed taxonomic changes used herein. Referenced changes are those that 
occurred subsequent to Grismer (1993). 


Taxonomy of Grismer (1993) Newly proposed taxonomy 

Caudata 

Plethodontidae 
Batrachoseps pacificus major B. major (Wake and Jockusch 2000) 
Squamata (Lizards) 

Crotaphytidae 
Gambelia wislizenii copei G. copei (McGuire 1996) 

Phrynosomatidae 
Sceloporus magister monserratensis S. zosteromus (Grismer and McGuire 1996) 
Uta stellata U. stansburiana (Grismer 1999a; Upton and Murphy 

1997) 

Gekkonidae 
Phyllodactylus xanti zweifeli P. xanti 

Teiidae 
Cnemidophorus tigris multiscutatus C. tigris 
Cnemidophorus tigris vividus C. tigris 

Anguidae 
Elgaria paucicarinata cedrosensis E. cedrosensis (Grismer and Hollingsworth in prep.) 
Elgaria multicarinata ignava E. multicarinata 
Elgaria multicarinata nana E. nana 
Squamata (Snakes) 

Colubridae 
Chilomeniscus cinctus C. stramineus (Wong and Grismer in prep.) 
Diadophis punctatus anthonyi D. punctatus 
Hypsiglena torquata baueri H. torquata 
Hypsiglena torquata martinensis H. torquata 
Lampropeltis zonata herrerae L. herrerae 
Masticophis flagellum fuliginosus M. fuliginosus (Grismer 1994a) 
Pituophis melanoleucus coronalis P. catenifer 
Pituophis melanoleucus fuliginatus P. catenifer 
Pituophis vertebralis insulanus P. insulanus (Grismer 1994a) 
Crotalus viridis caliginis C. caliginis 
Crotalus exsul exsul C. ruber (Smith et al. 1998) 


of reproductive compatibility based on degree of differentiation. In instances 
where subspecies merely delimit the geographic distribution of selected character 
states within a continuous continental population, there is no evidence that the 
subspecies represent independent lineages and thus, should not be recognized in 
a formal taxonomy. This is because the organisms manifesting these character 
states merely form a co-extensive integrating section of a continuously distributed 
species. Therefore, it is philosophically illogical and operationally counterproduc- 
tive to consider arbitrarily defined sections of continuous populations and allo- 
patric diagnosable entities as equivalent phenomenological systems even though 
both have been traditionally given the rank of subspecies. 

It is proposed here that a classification based on the application of the ESC 
rather than the biological species concept will be more consistent with historical 
processes because it discourages the recognition of taxa that are not demonstrable 
evolutionary lineages. Thus, an evolutionary classification is less likely to be 
misleading to evolutionary biologists working to discover patterns, processes, and/ 


14 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


or adaptations (Brooks and McLennan 1991). Such an interpretation of the Pacific 
island herpetofauna is warranted. 


Species Accounts 


The following are discussions of those taxa whose reevaluation under the ESC 
resulted in changes in their taxonomy. Also treated are published distributional 
errors not corrected elsewhere in the literature. A summary of the proposed tax- 
onomic changes presented herein and taxonomic changes published subsequent 
to Grismer (1993) are listed in Table 1. Table 2 lists the species and the islands 
on which they occur and Appendix I lists the islands and the species that inhabit 
them. The location of the islands is illustrated in Figure 1. 


Caudata 
Plethodontidae 
Batrachoseps major 


Bostic (1975) reported Batrachoseps major from Isla San Martin. The specimen 
was purported to be collected in the late 1970s by Tom Cozens, then a student 
at San Diego State University (Cozens, pers. comm., 1980). The disposition of 
the specimen remains unknown. 


Anura 
Ranidae 
Rana pipiens complex 


A single specimen of the Rana pipiens complex (Los Angeles County Museum 
[LACM] 91380) was collected from Isla Sur of Islas de Los Coronados on 20 
June 1959. No other individuals have been reported. Because there is no per- 
manent water on this island, this specimen is considered a single introduction. 
Interestingly, three tadpoles (LACM 91381) of the same complex were collected 
from Punta Banda south of Ensenada opposite Islas Todos Santos on 29 March 
1952. No additional specimens from this locality have been reported. Perhaps, 
during the early fifties, an attempt was made to establish these frogs for com- 
mercial purposes. 


Squamata (Lizards) 
Phrynosomatidae 
Urosaurus nigricaudus 


In a genetic study of Urosaurus nigricaudus from Baja California, Aguirre et 
al. (1999) included what they believed to be a specimen U. nigricaudus from Isla 
de Cedros (voucher number 1861 of R. W. Murphy). This species, however, has 
never been reported from Isla de Cedros nor are there any museum records listing 
its presence despite the numerous collections made from this island in the last 45 
years. It is also absent from the adjacent Vizcaino Peninsula of Baja California 
(Grismer et al. 1994) to which Isla de Cedros was most recently connected. This 
record is therefore considered erroneous. The specimen in question, if indeed from 
Isla de Cedros, is most likely Uta stansburiana. This may account for the some 
of the problems it posed within their data set (Aguirre et al. 1999). 


HERPETOFAUNA FROM PACIFIC ISLANDS OF BAJA CALIFORNIA 15 


Gekkonidae 
Phyllodactylus xanti zweifeli 


Dixon (1964) described Phyllodactylus xanti zweifeli from islas Magdalena and 
Santa Margarita on the basis of having a higher number of scales across the snout 
between the third supralabials (19-22, n = 18) as compared to peninsular P. xanti 
(14-21, n = 105) as well as having a lower number of scales across the venter 
(26-33, n = 18 vs. 31-41, n = 105). However, because the ranges of variation 
in these counts overlaps with those of peninsular populations, P. x. zweifeli is not 
discretely diagnosable and is recognized here as P. xanti. 


Teiidae 
Cnemidophorus tigris 


Cnemidophorus tigris occurs on six islands along the Pacific coast of Baja 
California (Grismer 1993; Grismer and Hollingsworth 1996). Cope (1892) pro- 
posed the name C. multiscutatus for the whiptail lizards of Isla de Cedros. Van 
Denburgh (1894) proposed the name C. stejnegeri for populations ranging from 
Los Angeles, California, southward to near Laguna San Ignacio (see Smith 1946). 
Subsequent to their descriptions, these two species went through a multitude of 
taxonomic rearrangements, terminating with Burger (1950) who, without com- 
ment, placed both populations under the name C. t. multiscutatus. Zweifel (1958) 
noted that lizards from coastal southern California were very different in striping 
pattern and coloration from lizards of Isla de Cedros. He stated that it probably 
was not “‘proper to refer the two populations to the same subspecies.’’ I have 
observed living individuals from islas de Cedros and Natividad and found them 
to be less distinctly striped than lizards from southern California populations but 
they do form a cline with populations from the adjacent Vizcaino Peninsula. This 
is most notable in the dark blotching of the gular and temporal regions where it 
is prominent in the Vizcaino Peninsula whiptails, less so in lizards from Isla 
Natividad, and even less so in lizards from Isla de Cedros. Clinal patterns have 
been observed in other reptiles through these regions as well (Grismer et al. 1994). 
Therefore, C. t. multiscutatus is not discretely diagnosable and is recognized here 
as C. tigris. 

Walker (1981) proposed the name Cnemidophorus tigris vividus for the whiptail 
lizards of islas Norte and Sur of Islas de Los Coronados. He compared a series 
of lizards from Isla Sur to C. tigris of Isla de Cedros, a population from over 500 
km to the south, rather than the presumable source population of C. tigris from 
the adjacent peninsula less than 10 km away. Grismer (1994b) noted that the Islas 
de Los Coronados populations and those from the adjacent mainland overlap in 
the number of granules around the body (80-100, n = 11 vs. 92-116, n = 15, 
respectively), granules between the occiput and rump (167—204, n = 11 vs. 192— 
231, nm = 15), number of femoral pores (32—40, n = 11 vs. 36—43, n = 15), and 
the number of subdigital lamellae on the fourth toe (27-32, n = 11 vs. 29-32, n 
= 15). The striping pattern in lizards of the Islas de Los Coronados populations 
tends to be more vivid but it is not distinct from some individuals of adjacent 
peninsular populations. Therefore, the Islas de Los Coronados populations are 
considered here as C. tigris. 


16 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 2. Checklist of the herpetofauna of the Pacific islands of Baja California, México. Asterisks 
following taxa indicate insular endemics. 


Taxon 


CAUDATA 

Plethodontidae 
Aneides lugubris 
Batrachoseps major 


ANURA 
Bufonidae 
Bufo punctatus 
Hylidae 
Hyla regilla 
SQUAMATA (Lizards) 
Crotaphytidae 
Gambelia copeii 
Iguanidae 
Dipsosaurus dorsalis 
Phrynosomatidae 
Callisaurus draconoides 
Phrynosoma coronatum 
Sceloporus occidentalis 
Sceloporus zosteromus 
Urosaurus nigricaudus 
Uta stansburiana 


Eublepharidae 

Coleonyx variegatus 
Gekkonidae 

Phyllodactylus xanti 
Teiidae 

Cnemidophorus hyperythrus 

Cnemidophorus tigris 


Scincidae 
Eumeces skiltonianus 


Anguidae 
Anniella geronimensis 
Anniella pulchra 
Elgaria cedrosensis 
Elgaria multicarinata 
Elgaria nana* 
SQUAMATA (Snakes) 
Leptotyphlopidae 
Leptotyphlops humilis 
Pythonidae 
Lichanura trivirgata 
Colubridae 
Chilomeniscus stramineus 
Diadophis punctatus 


Insular locale 


Los Coronados (Isla Norte) 
Los Coronados (all islands), Isla San Martin, Todos Santos (Isla 
Sur) 


Santa Margarita 


Cedros 


Cedros, Magdalena, Santa Margarita 
Magdalena, Santa Margarita 


Santa Margarita 

Cedros 

Cedros, Todos Santos (Isla Sur) 

Cedros, Magdalena, Santa Margarita 

Magdalena, Santa Margarita 

Asuncion, Cedros, Las Brozas, Las Piedras, Los Coronados (all 
islands), Magdalena, Natividad, Pata, San Benito, San Geroni- 
mo, San Martin, San Roque, Santa Margarita, Todos Santos 
(Isla Sur) 


Cedros, Santa Margarita 

Magdalena, Santa Margarita 

Magdalena, Santa Margarita 

Cedros, Los Coronados (islas Norte and Sur), Magdalena, Nativi- 


dad, Santa Margarita 


Los Coronados (islas Norte and Sur), Todos Santos (islas Norte 
and Sur) 


San Gerénimo 

Los Coronados (islas Norte and Sur), Todos Santos (Isla Sur) 
Cedros 

San Martin 

Los Coronados (islas Norte and Sur) 


Cedros 
Cedros, Natividad 


Cedros, Magdalena 
Todos Santos (Isla Sur), San Martin 


HERPETOFAUNA FROM PACIFIC ISLANDS OF BAJA CALIFORNIA 


Table 2. Continued. 


Taxon Insular locale 

Eridiphas slevini Santa Margarita 

Hypsiglena torquata Cedros, Los Coronados (all islands), San Martin 

Lampropeltis herrerae* Todos Santos (Isla Sur) 

Masticophis fuliginosus Magdalena, Santa Margarita 

Pituophis catenifer Los Coronados (Isla Sur), San Martin 

Pituophis insulanus* Cedros 

Pituophis vertebralis Magdalena, Santa Margarita 

Salvadora hexalepis San Ger6énimo, Todos Santos (islas Norte and Sur) 
Viperidae 

Crotalus caliginis* Los Coronados (Isla Sur) 

Crotalus enyo Magdalena, Santa Margarita 

Crotalus mitchellii Santa Margarita 

Crotalus ruber Cedros, Santa Margarita 


Islas de Los 


iy we , 


Islas Todos Santos 


eo 


Isla San Martin 


Isla San Gerénimo 


Islas San Benito ——__y ,, 


Isla de Cedros uit 


Laguna Ojo de 
Isla Natividad Liebre & 


te 


Isla Asuncién 


Isla San Roque 


Isla Santa Margarita 


Fig. 1. Location of islands along the Pacific coast of Baja California, México. 


18 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Anguidae 
Elgaria multicarinata 


Fitch (1934) separated Elgaria multicarinata nana of islas Norte and Sur of 
Islas de Los Coronados from E. m. webbi of San Diego County, California by its 
smaller size, weak keeling, having fewer transverse ventral scale rows, and subtle 
differences in the head and body color pattern. However, only adult body size 
discretely differentiates these two populations, and according to Fitch (1934), “‘no 
overlapping size could be shown among the 49 adult specimens from Los Co- 
ronados Islands and 35 from San Diego County.’’ Average SVL for E. m. nana 
was 93.3 mm with a maximum SVL of 114 mm and for E. m. webbi from San 
Diego County, average SVL was 135 mm with a maximum of 166 mm (Fitch 
1938). Fitch (1938) was aware that body size differences could be the result of 
an ecological effect imposed by an insular environment rather than a genetically 
based difference as has been proposed by more recent authors (e.g. Petron and 
Case 1997 and citations therein). However, Fitch (1938) concluded that the body 
size differences have a genetic basis, noting ontogenetic changes and sexual di- 
morphism in E. m. webbi-specifically, that the largest individuals have relatively 
thicker, more heavily keeled scales, and in males, much wider temporal regions. 
Fitch (1938) pointed out that the largest individuals of E. m. nana showed these 
characters which were indicative of their advanced age even though they were 
smaller than the small adults of E. m. webbi. Additionally, Zweifel (1952) ob- 
served a 79 mm SVL female E. m. nana copulating, and Burrage (1965) indicated 
that the hatchling size range of the Islas de Los Coronados population is 32-35 
mm SVL, essentially the same as that of hatchling E. m. webbi (30-36 mm) from 
San Diego County, California. This strongly suggests that adulthood, and its ac- 
companied morphological changes, is reached at a much smaller SVL in E. m. 
nana than in E. m. webbi. Based on this, E. m. nana is recognized here as a 
distinct species, E. nana. 

Van Denburgh (1898) described Elgaria multicarinata ignava from Isla San 
Martin as an endemic subspecies characterized by its heavy keeling and darkened 
dorsal pattern. Fitch (1938), however, noted that an increase in the degree of 
keeling was a trend that developed in all of the southernmost populations of E. 
m. webbi and did not accord it taxonomic status. Its overall dark color pattern is 
likely a result of substrate matching, being that it inhabits dark, rocky volcanic 
habitats. A similar color pattern is found in populations from the volcanic areas 
of the adjacent peninsular coastline west of San Quintin. Therefore, there are no 
discretely diagnostic characteristics unique to this population and thus, it is rec- 
ognized here as E. multicarinata. 


Squamata (Snakes) 
Colubridae 
Diadophis punctatus 


Van Denburgh and Slevin (1923) proposed the name Diadophis punctatus an- 
thonyi for the population on Isla Sur of Islas Todos Santos. This population was 
diagnosed as having a more robust body (Blanchard 1942) and an obscure neck 
ring with poorly defined edges (Van Denburgh and Slevin 1923). It is difficult to 
interpret from Blanchard (1942) how he determined that D. p. anthonyi was “‘larg- 


HERPETOFAUNA FROM PACIFIC ISLANDS OF BAJA CALIFORNIA 19 


er and stouter-bodied”’ than adjacent populations of D. punctatus because all mea- 
surements he gave fall within the range of D. punctatus from the adjacent pen- 
insula. Additionally, many specimens from northern Baja California and southern 
California have a poorly defined neck ring as well. Therefore, this population 
lacks discretely diagnostic characters and is considered as D. punctatus. 


Hypsiglena torquata 


Zweifel (1958) described Hypsiglena torquata baueri from Isla de Cedros on 
the basis of a number of subtle character state trends of dorsal blotching, nuchal 
blotching, and the lateral striping on the head. In a review of these snakes, Tanner 
(1966), noting that these character states overlapped with those occurring in ad- 
jacent peninsular populations of H. torquata, could not differentiate this subspe- 
cies. Based on this, H. t. baueri is recognized here as H. torquata. 

Tanner and Banta (1962) described Hypsiglena torquata martinensis on the 
basis of a single female differentiated from all other Baja California populations 
in having 54 subcaudals, two loreal scales, and a dorsal scale row formula of 23- 
21-19-17. Moquard (1899) demonstrated that central peninsular populations of H. 
torquata had 47-58 subcaudal scales and I have observed specimens from the 
vicinity of Bahia de Los Angeles with two loreal scales. The diagnostic value of 
the scale row formula is uninterpretable. Tanner and Banta (1962:24) state that 
“In martinensis, ...the first fourth of the body has the increase to 23 rows and 
nearly half have 22 rows. This formula is more nearly the standard pattern for 
Hypsiglena, that is, the greatest number of rows from the nape to near mid-body 
and then one or more reductions before the vent.’’ Therefore, these characters do 
not discretely diagnose H. t. martinensis and it is considered here a synonym of 
H. torquata. . 


Lampropeltis zonata 


Van Denburgh and Slevin (1923) described Lampropeltis zonata herrerae from 
Isla Sur of Islas Todos Santos. In a revision of L. zonata, Zweifel (1952) diag- 
nosed L. z. herrerae from all other L. zonata by having a combination of no red 
in the color pattern and the posterior margin of the first white band being anterior 
to the angle of jaw. This population is often considered as lacking red bands (e.g., 
Rodriguez-Robles et al. 1999: Fig. 4). However, homologous bands do occur in 
the anterior portion of the body but are unique in that they have become white 
or sometimes brownish. Hayes (1975) demonstrated that L. z. herrerae had a 
significantly higher mean number of ventral scales (218.3, 216—220, n = 10) 
compared to L. zonata from the adjacent peninsula (210.4, 207-216, n = 6) and 
that their ranges only slightly overlapped. Additionally, he showed that the SVL 
of L. z. herrerae averaged over 50 mm larger than the SVLs of southern L. zonata. 
This character state is considered here to be unique because it is the result of an 
increase in the number and the overall size of the body vertebrae (Hayes 1975). 
Based on these characteristics, Hayes (1975) recommended that L. z. herrerae be 
elevated to species status. Using mtDNA, Rodriguez-Robles et al. (1999) dem- 
onstrated that L. z. herrerae is an exclusive population most closely related to 
individuals of L. zonata from the Sierra San Pedro Martir. Based on the above 
(excluding ventral scale counts), I elect to follow Hayes (1975) and recognize L. 
z. herrerae as a full species L. herrerae. 


20 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Pituophis catenifer 


Klauber (1946) described Pituophis catenifer coronalis from Isla Sur of Isla de 
Los Coronados on the basis of four specimens. He diagnosed this population as 
usually having suboculars, frequent abnormalities in the head plates, and fewer 
number of dorsal blotches. Additionally, he detailed subtle differences from ad- 
jacent continental populations of P. catenifer in the color pattern of the head. 
Klauber (1946) also noted, however, that none of these characters discretely sep- 
arated P. c. coronalis from many other subspecies of P. catenifer and therefore, 
this population is recognized here as P. catenifer. 

Klauber (1946) described and differentiated Pituophis catenifer fuliginatus from 
Isla San Martin from peninsular P. catenifer on the basis of having a darker color 
pattern, large amounts of black spotting on the head, a lower average number of 
body blotches (62.6, 55-70, n = 15 vs. 75.5, 57-90, n = 52), usually a single 
instead of two preoculars, a high frequency of aberrant prefrontals, and paired 
dark subcaudal streaks. Klauber (1946) noted that the overall darkness of the 
population was probably related to substrate matching and I have observed sim- 
ilarly colored individuals from the volcanic regions west of San Quintin in coastal 
areas adjacent to Isla San Martin. None of the scale characters discretely separates 
P. c. fuliginatus from adjacent peninsular populations and subcaudal streaking 
also appears in other P. catenifer from Baja California (Klauber 1946). Therefore, 
this population is recognized here as P. catenifer. 


Crotalus viridis 


Klauber (1949) described Crotalus viridis caliginis from Isla Sur of Islas de 
Los Coronados. Although he could find no differences in color pattern or squa- 
mation between it and the adjacent peninsular populations of C. viridis, he did 
note significant differences in body proportions and SVL. Klauber (1949) noted 
that C. v. caliginis would not grow to the size of an average adult C. v. helleri 
of the adjacent peninsula. The largest specimen he measured was 674 mm total 
length and he notes that C. v. helleri regularly reach 1100 mm in length. Also, 
the rattles of C. v. caliginis reach parallelism at a width of 10—11 mm whereas 
in C. v. helleri, parallelism is reached at 15-17 mm (parallelism happens when 
adulthood is reached). Finally, specimens of C. v. caliginis of the same size as 
C. v. helleri have disproportionally smaller heads (Klauber, 1938). Klauber (1949) 
noted that a 1100 mm C. v. helleri ‘““would have 5 times the bulk” of a 650 mm 
C. v. caliginis. Based on these data, C. v. caliginis is considered here to be a 
distinct species, C. caliginis. 


Acknowledgments 


For comments on the manuscript and/or discussions of species concepts I thank 
B. Hollingsworth, H. Wong, and E. Mellink. I wish to thank K. Beaman for 
assistance with Rana records of the Los Angeles County Museum. 


Literature Cited 


Aguirre L., G. D. J. Morafka, and R. W. Murphy. 1999. The peninsular archipelago of Baja California: 
a thousand kilometers of tree lizard genetics. Herpetologica 55:369—381. 
Blanchard, EF N. 1942. The ring-neck snakes, genus Diadophis. Bull. Chicago Acad. Sci. 7:1—144. 


HERPETOFAUNA FROM PACIFIC ISLANDS OF BAJA CALIFORNIA 21 


Bostic, D. L. 1975. A Natural History guide to the Pacific Coast and North Central Baja California 
and Adjacent Islands. Biological Educational Expeditions, San Diego, California. 

Brooks, D. R., and D. A. McLennan. 1991. Phylogeny, Ecology, and Behavior. A Research Program 
in Comparative Biology. University of Chicago Press, Chicago, Illinois, U.S.A. 

Burger, W. L. 1950. New, revived, and reallocated names for North American whiptailed lizards, genus 
Cnemidophorus. Natur. Hist. Misc. 65:19. 

Burrage, B. R. 1965. Notes on the eggs and young of the lizards Gerrhonotus multicarinatus webbi 
and G. m. nanus. Copeia 1965:512. 

Cope, E. D. 1892. A synposis of the species of the teiid genus Cnemidophorus. Trans. Amer. Phil. 
Soc. 17:27—52. 

Dixon, J. R. 1964. The systematics and distributions of the lizards of the genus Phyllodactylus in 
North and Central America. New Mexico State University Res. Center Sci. Bull. 64—1:1—139. 

Fitch, H. S. 1934. New alligator lizards from the Pacific coast. Copeia 1934:6—7. 

. 1938. Systematic account of the alligator lizards (Gerrhonotus) in the western United States 
and Lower California. Amer. Midl. Natur. 20:381—424. 

Frost, D. R., and D. M. Hillis. 1990. Species in concept and practice: herpetological applications. 
Herpetologica 46:87—104. 

Grismer, L. L. 1993. The insular herpetofauna of the Pacific Coast of Baja California, México. Her- 
petol. Natur. Hist. 1:1—10. 

. 1994a. The origin and evolution of the peninsular herpetofauna of Baja California, México. 

Herpetol Natur. Hist. 2:51—106. 

. 1994b. The evolutionary and ecological biogeography of the herpetofauna of Baja California 

and the Sea of Cortés, México. Ph.D. Diss., Loma Linda University, Loma Linda, California. 

. 1999a. Checklist of amphibians and reptiles on islands in the Gulf of California, México. 

Bull. Southern California Acad. Sci. 98:45—56. 

. 1999b. An evolutionary classification of reptiles on islands in the Gulf of California, México. 

Herpetologica 55:446—469. 

and B. D. Hollingsworth. 1996. Cnemidophorus tigris does not occur on Islas San Benito, 

Baja California, México. Herpetol. Rev. 27:69—70. 

and B. D. Hollingsworth. In press. A taxonomic review of the endemic alligator lizard Elgaria 

paucicarinata (Squamata: Anguidae) of Baja California, México with a description of a new 

species. Herpetologica. 

and J. A. McGuire. 1996. Taxonomy and biogeography of the Sceloporus magister complex 

(Squamata: Phrynosomatidae) in Baja California, México. Herpetologica 52:416—427. 

, J. A. McGuire, and B. D. Hollingsworth. 1994. A report on the herpetofauna of the Vizcaino 
Peninsula, Baja California, México with a discussion of its biogeographic and taxonomic im- 
plications. Bull. So. California Acad. Sci. 93:45—80. 

Hayes, M. P. 1975. The taxonomy and evolution of Lampropeltis zonata. Master’s Thesis. California 
State University, Chico. 

Klauber, L. M. 1938. A statistical study of the rattlesnakes. Occ. Pap. San Diego Soc. Natur. Hist. 4: 
1-53. 

. 1946. The gopher snakes of Baja California, with descriptions of new subspecies of Pituophis 

catenifer. Trans. San Diego Soc. Natur. Hist. 11:1—40. 

. 1949. Some new and revived subspecies of rattlesnakes. Trans. San Diego Soc. Nat. Hist. 
11:61-116. 

Mayr, E. 1969. Principles of Systematic Zoology. McGraw Hill, New York, New York. 

McGuire, J. A. 1996. Phylogenetic systematics of crotaphytid lizards (Reptilia: Iguania: Crotaphyti- 
dae). Bull. Carnegie Mus. Nat. Hist. 32:1—143. 

Mocquard, F 1899. Contribution a la faune herpétologique de la Basse Californie. Nouv. Arch. Mus. 
Nat. Hist. 4:297—-344. 

Petron, K., and T. J. Case. 1997. A phylogenetic analysis of body size evolution and biogeography in 
chuckwallas (Sauromalus) and other iguanines. Evolution 51:206—219. 

Rodriguez-Robles, J. A., D. FE DeNardo, and R. E. Staub. 1999. Phylogeography of the California 
mountain kingsnake, Lampropeltis zonata (Colubridae). Mol. Ecol. 8:1923—1934. 

Savage, J. M. 1967. Evolution of the insular herpetofauna. In: Proceedings of the Symposium on the 
Bology of the California Islands, pp. 219-227. Santa Barbara Botanic Garden, Inc. 


22 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Simpson, G. G. 1961. Principles of Animal Taxonomy. Columbia University Press, New York, New 
York. 

Smith, H. M. 1946. Handbook of Lizards of the United States and Canada. Comstock Publishing 
Associates, Ithaca, New York. 

., L. E. Brown, D. Chizar, L. L. Grismer, G. S. Allen, A. Fishbein, B. D. Hollingsworth, J. A. 
McGuire, V. Wallach, P. Strimple and E. A. Liner. 1998. Crotalus ruber Cope, 1892 (Reptilia, 
Serpentes): Proposed precedence of the specific name over that of Crotalus exsul Garmen, 
1884. Bull. Zool. Nomen. 55:1—4. 

Tanner, W. W. 1966. The night snakes of Baja California. Trans. San Diego Soc. Nat. Hist. 14:189-— 
196. 

. and B. H. Banta. 1962. Description of a new Hypsiglena from San Martin Island, México, 
with a resumé of the reptile fauna of the island. Herpetologica 18:21—25. 

Upton, D. E., and R. W. Murphy. 1997. Phylogeny of the side-blotched lizards (Phrynosomatidae: 
Uta) based on mtDNA sequences: support for a midpeninsular seaway in Baja California. 
Molecular Phyllogenetics and Evolution 8:104—113. 

Van Denburgh, J. 1894. Description of three new lizards from California and Lower California with 
a note on Phrynosoma blainvillii. Proc. Calif. Acad. Sci. 2:296—301. 

. 1898. The Gerrhonotus of the San Lucan Fauna, Lower California, with diagnosis of other 

west American species. Proc. Acad. Nat. Sci. Philadelphia 1898:63—66. 

. 1905. The reptiles and amphibians of the islands of the Pacific coast of North America from 

the Farallons to Cape San Lucas and the Revilla Gigedos. Proc. Calif. Acad. Sci. 4:1—41. 

and J. R. Slevin. 1914. Reptiles and amphibians of islands of the west coast of North America. 

Proc. Calif. Acad. Sci. 4:129-152. 

and J. R. Slevin. 1923. Preliminary diagnoses of four new snakes from Lower California, 
Mexico. Proc. Calif. Acad. Sci. 13:1-2. 

Wake, D. B. and E. L. Jockusch. 2000. Detecting species borders using diverse data sets: examples 
from plethodontid salamanders in California. In: The Biology of Plethodontid Salamanders 
(Eds. R. C. Bruce, R. G. Jaeger, and L. D. Houck), pp. 95-119. Kluwer Academic/Plenum 
Publishers, New York. 

Walker, J. M. 1981. A new subspecies of Cnemidophorus tigris from south Coronado Island, Mexico. 
J. Herpetol. 15:193—197. 

Wilcox, B. A. 1980. Species number, stability, and equilibrium status of reptile faunas on the California 
islands. In: The California Islands: Proceedings of a Multidisciplinary Symposium (Ed. by D. 
M. Power), pp. 551-564. Santa Barbara Museum of Natural History, Santa Barbara. 

Wiley, E. O. 1978. The evolutionary species concept reconsidered. Syst. Zool. 29:76—80. 

Wong, H. 1997. Comments on snake records of Chilomeniscus cinctus, Crotalus exsul and C. mitchellii 
from Islas Magdalena and Santa Margarita, Baja California Sur, México. Herpetol. Rev. 28: 
188. 

Wong, H and L. L. Grismer in prep. .. Geographic variation and taxonomy in the sand snakes, Chi- 
lomeniscus (Squamata: Colobridae) 

Zweifel, R. G. 1952. Notes on the lizards of the Coronados Islands, Baja California, Mexico. Her- 
petologica 8:9—11. 

. 1958. Results of the Puritan-American Museum of Natural History expedition to western 

Mexico. 2. Notes on the reptiles and amphibians from the Pacific coastal islands of Baja Cal- 

ifornia. Amer. Mus. Nat. Hist. 1895:1—17. 


Accepted for publication 1 March 2000 


Appendix I 


Checklists of the herpetofauna of the islands along the Pacific coast of Baja California, México. 
Asterisked taxa are insular endemics. 

Isla Asuncion. Uta stansburiana. 

Isla de Cedros. Hyla regilla, Gambelia copei, Phrynosoma coronatum, Sceloporus zosteromus, Sce- 
loporus occidentalis, Uta stansburiana, Coleonyx variegatus, Cnemidophorus tigris, Elgaria cedro- 
sensis*, Leptotyphlops humilis, Lichanura trivirgata, Chilomeniscus stramenius, Hypsiglena torquata, 
Pituophis insulanus*, Crotalus ruber. 

Isla Las Brozas. (Within Laguna Ojo de Liebre). Uta stansburiana. 

Isla Las Piedras. (Within Laguna Ojo de Liebre). Uta stansburiana. 


HERPETOFAUNA FROM PACIFIC ISLANDS OF BAJA CALIFORNIA 23 


Isla Magdalena. Dipsosaurus dorsalis, Gambelia copei, Sceloporus zosteromus, Urosaurus nigri- 
caudus, Uta stansburiana, Phyllodactylus xanti, Cnemidophorus hyperythrus, Cnemidophorus tigris, 
Chilominescus stramenius, Masticophis fuliginosus, Pituophis vertebralis, Crotalus enyo. 

Isla Natividad. Uta stansburiana, Cnemidophorus tigris, Lichanura trivirgata. 

Isla Pata. (Within Laguna Ojo de Liebre). Uta stansburiana. 

Isla San Geronimo. Uta stansburiana, Anniella geronimensis, Salvadora hexalepis. 

Isla San Martin. Batrachoseps major, Uta stansburiana, Elgaria multicarinata, Diadophis punctatus, 
Hypsiglena torquata, Pituophis catenifer. 

Isla San Roque. Uta stansburiana. 

Isla Santa Margarita. Bufo punctatus, Callisaurus draconoides, Dipsosaurus dorsalis, Gambelia 
copei, Sceloporus zosteromus, Urosaurus nigricaudus, Uta stansburiana, Coleonyx variegatus, Phyl- 
lodactylus xanti, Cnemidophorus hyperythrus, Cnemidophorus tigris, Eridiphas slevini, Masticophis 
fuliginosus, Pituophis vertebralis. Crotalus enyo, Crotalus mitchellii, Crotalus ruber. 

Islas de Los Coronados. (Three major islands). Aneides lugubris (Isla Norte), Batrachoseps major, 
Uta stansburiana, Eumeces skiltonianus (islas Norte and Sur), Cnemidophorus tigris (islas Norte and 
Sur), Elgaria nana* (islas Norte and Sur), Anniella pulchra (islas Norte and Sur), Hypsiglena torquata, 
Pituophis catenifer (Isla Sur), Crotalus caliginis* (Isla Sur). 

Islas San Benito. (Three islands). Uta stansburiana. 

3Islas Todos Santos. (Two islands). Batrachoseps major, Sceloporus occidentalis, Uta stansburiana 
(islas Norte and Sur), Eumeces skiltonianus (islas Norte and Sur), Anniella pulchra, Diadophis punc- 
tatus, Lampropeltis herrerae*, Salvadora hexalepis. 


! Includes all three major islands (islas Sur, Norte, Medio) unless noted otherwise. Isla Medio 
consists of two small islets: a larger southern islet and a smaller northern islet. No records are known 
from the latter. 

2 Includes all three islands. 

3 Presence on Isla Sur only unless indicated 


Bull. Southern California Acad. Sci. 
100(1), 2001, pp. 24—35 
© Southern California Academy of Sciences, 2001 


Spot Pattern of Girella nigricans, the California Opaleye: Variation 
among Cohorts and Climate Periods 


Jana L. D. Davis 


Scripps Institution of Oceanography, University of California at San Diego, 
9500 Gilman Drive 0208, San Diego, California, 92093-0208 


Abstract.—Girella nigricans (California opaleye) exhibits variability in dorso- 
lateral spot pattern. Southern California opaleye usually have one pair of white 
spots; however, fish with additional spots are frequently observed. Additional 
spots are thought to result from gene flow with the six-spotted Gulf of California 
Girella simplicidens. In the present study, the proportion of fish with extra spots 
was compared among and within nine G. nigricans cohorts settling from 1997 to 
1999. This proportion was variable among the nine cohorts. When analyzed by 
climate regime, cohorts settling during the 1997—98 El Nino event had signifi- 
cantly higher proportions of multi-spotted fish than “‘normal’’ and La Nifia co- 
horts. Within five of nine cohorts, the proportion of fish with additional spots 
significantly increased through time during the study, suggesting that survivorship 
of multi-spotted fish was greater than that of two-spotted fish during the juvenile 
stage. The easily identifiable spot polymorphism of Girella nigricans provides a 
useful tool by which to study hybridization between two marine fishes and track 
changes in gene flow and gene expression over time. 


The distribution of nearshore marine populations is often partly determined by 
abiotic factors. Gradients in temperature, for example, are important on several 
spatial scales, from meter-scale intertidal zonation (Nakamura 1976) to latitudinal 
distribution on the kilometer-scale (Morris 1960). Changes in temperature on dif- 
ferent temporal scales can affect species’ distributions as well. The daily temper- 
ature cycle plays a role in meter-scale cross-shore movements of fish (Gibson et 
al. 1998), seasonal temperature changes force vertical habitat shifts in motile 
intertidal species (Zander et al. 1999), and temperature variation on scales longer 
than a year shapes alongshore distribution of nearshore populations (Barry et al. 
1995). Over a 60-year period during which water temperature increased by 
0.75°C, Barry et al. (1995) found increases in abundance of southern species and 
decreases in northern species at a California rocky intertidal site, suggestive of 
range shifts to the north. 

Interannual temperature cycles on scales shorter than 60 years, such as that 
driven by the El Nifio Southern Oscillation (ENSO), may also influence species 
ranges. During warm El Nifio events, a rise in water temperature results in shifts 
of many species to higher latitudes (Arntz and Tarazona 1990). A similar range 
shift might be expected for hybrid zones where reproductive isolation of species 
is incomplete. One such zone occurs in Baja California in the region of overlap 
between Girella nigricans (California opaleye) and Girella simplicidens (Gulf 
opaleye). Girella nigricans occurs mainly from Cabo San Lucas, Baja California 
to San Francisco and has one pair of lateral white spots flanking its dorsal fin 


24 


SPOT PATTERN VARIATION IN CALIFORNIA OPALEYE 2D 


(Thomson et al. 1979). Girella simplicidens occurs in the Gulf of California to 
Cabo San Lucas and has three or four pairs of white spots (Thomson et al. 1979; 
Robins et al. 1991). Although listed as separate species based on dentition, body 
shape, and spot number, this status may not be warranted morphologically or 
genetically (Orton and Buth 1984), and genetic exchange between the two groups 
produces individuals with three, four, and five spots in various lateral arrange- 
ments (see Orton et al. 1987). 

The forces driving hybridization between marine fish species are poorly un- 
derstood (Rao and Lakshmi 1999). Reports of marine fish hybrids are much rarer 
than those of freshwater fish hybrids, due to both a lower tendency of marine fish 
to hybridize as well as mistaken classification of hybrids as distinct species (Hubbs 
1955; Rao and Lakshmi 1999). Possible conditions favorable to marine hybrid- 
ization include outnumbering of one closely related species by another, intergra- 
dation in the parental species’ habitats, and environmental disturbances (Rao and 
Lakshmi 1999). The relative contribution of these conditions to specific hybrid- 
ization cases, like that of G. nigricans and G. simplicidens, have not been ade- 
quately addressed (Rao and Lakshmi 1999). Questions pertaining to the location 
of the G. nigricans-G. simplicidens hybrid zone, the validity of species-level dis- 
tinction, the frequency of interbreeding, the fertility of the hybrid offspring, and 
hybrid variability among others, remain and warrant further study. 

One Girella hybrid study has addressed the relationship between latitude and 
the number of three-, four-, five-, and six-spotted fish (referred to hereafter as 
“‘multi-spotted”’’) within the G. nigricans range (Orton et al. 1987). Lower pro- 
portions of multi-spotted fish were found at three southern California sites than 
at Miller’s Landing, Baja California. The presence of such a gradient was attri- 
buted to a higher level of genetic exchange between G. nigricans and G. simpli- 
cidens at southern latitudes closer to G. simplicidens’ range (Orton et al. 1987). 
If El Nino and other warm water events cause species’ ranges to shift to higher 
latitudes, this gradient of multi-spotted opaleye abundance might also be expected 
to shift to higher latitudes. At fixed points in California, which are north of the 
peak region of genetic exchange between the two Girella groups, such a range 
shift might be observed as local increases in the proportion of multi-spotted in- 
dividuals. 

The purpose of the present study was to address the temporal variability in 
opaleye spot pattern in San Diego, California. Specific goals were to (1) test 
whether the frequency of spot patterns varied among cohorts recruiting at different 
times, (2) determine whether spot pattern differed among climate regimes in 
which the cohorts settled (El Nifio, “‘normal,’’ or La Nifia), and (3) determine 
whether the proportion of multi-spotted individuals within a cohort changed over 
time, indicating differential survivorship. 


Methods 


Opaleye and their spot patterns were sampled at two sites in San Diego, Cal- 
ifornia, USA: False Point, in La Jolla (117.3°W, 32.8°N), and Dike Rock, 500 m 
north of the SIO Pier in the Scripps Coastal Reserve (117.3°W, 32.9°N). After a 
two- to three-month planktonic larval stage, opaleye generally occupy tidepools 
for one or two years or until they reach 75 mm total length (Norris 1963; Stevens 
et al. 1989). Juvenile opaleye are most frequently found in middle to high inter- 


26 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


tidal pools from 30—90 cm above mean lower low water (MLLW) in San Diego 
(Davis 2000b). After their intertidal stage, they abandon the intertidal zone in 
favor of subtidal areas. 

Opaleye at False Point were collected from a set of 55 tidepools ranging from 
6 cm below MLLW to 107 cm above MLLW. Each tidepool was bailed or si- 
phoned to permit collection of all fish present. Rocks were removed, and each 
pool was thoroughly searched. Opaleye were collected, their total lengths (TL) 
and standard lengths (SL) were measured in mm, and the number of spots on 
each side was recorded. The pool was then refilled, and the fishes were returned. 
About 4 to 8 days were needed to sample all 55 tidepools. Data were collected 
during 12 sampling periods: May 1997, August 1997, November 1997, February 
1998, May 1998, June 1998, August 1998, October 1998, November 1998, Feb- 
ruary 1999, March 1999, and August 1999. In August 1999, spot patterns were 
measured only for opaleye collected from the largest False Point tidepool. 

At Dike Rock, opaleye spot pattern was scored in one large tidepool (52 cm 
above MLLW) from May through October of three years: 1997, 1998, and 1999. 
This study pool, used by Norris (1963) for behavioral observations of opaleye, is 
the largest permanent tidepool in the reserve, measuring 4.5 m long, 1.5 m wide, 
and about 40 cm maximum depth. Opaleye in the pool were collected with min- 
now traps one to three times per week on average during each May-to-October 
period, a period that included most opaleye recruitment and therefore highest 
abundances. From May 25—August 4, 1997, one 40 cm minnow trap with 2 mm 
mesh and openings of 2.8 cm was deployed for 60 min on each sampling day. 
On all dates after August 4, 1997, a second trap, with 6 mm mesh and 4 cm 
Openings, was added. The traps were baited with canned cat food and placed in 
fixed locations in the tidepool. All opaleye collected were measured (TL and SL), 
their spot pattern was identified, and they were released back into the pool. 

Minnow traps were used only at Dike Rock because its pool, much larger than 
the False Point pools, harbored more opaleye than the False Point pools. At False 
Point, traps did not capture enough individuals for analysis. In addition, traps 
were easier to use than the method of draining pools, permitting more frequent 
sampling at Dike Rock. 

Opaleye cohorts were identified from size-frequency histograms and from the 
arrival of prejuveniles to the study areas. Prejuveniles, characterized by silvery 
sides, green dorsal surfaces, and the absence of spots, transform into juveniles 
within a few days of settlement (Stevens et al. 1989). During this transformation 
period, they turn an olive color and attain their characteristic spots, which are 
fixed in number during an individual’s lifetime (Orton et al. 1987). In general, 
prejuveniles supplying each cohort identified in the study arrived over an ap- 
proximately two-week period, followed by a period of absence of prejuveniles. 
Each cohort was identified at or within a month of setthement, with the exception 
of one cohort that settled during winter 1998 at Dike Rock, a period when fish 
were not sampled at this site. Settlement period for this winter cohort was esti- 
mated based on the mean size of its fish (64 mm TL) when sampling began in 
May 1998. For all summer cohorts at Dike Rock, setthement period was deter- 
mined by the arrival of prejuveniles. Settlement period for each False Point cohort 
was estimated from periodic (approximately every 2—3 months) size-frequency 
histograms and when possible, the presence of prejuveniles. Cohorts were fol- 


SPOT PATTERN VARIATION IN CALIFORNIA OPALEYE pe | 


lowed through time at False Point until they left the intertidal zone and followed 
at Dike Rock either until they left the intertidal zone or until the end of October 
of their settlement year. 

The proportion of multi-spotted opaleye (Py) per weekly period was calculated 
as: 


Py = Ny/CNz — Np;) 


where Ny is the number of fish with more than two spots collected during a 7- 
day period, N; is the number of total fish collected, and N,, is the number of 
prejuveniles (fish with undeveloped spots). Py was calculated over a weekly pe- 
riod instead of daily because the percentage of multi-spotted fish was generally 
on the order of 5—10%, and on some occasions fewer than 10 fish were caught 
per day. Therefore, daily data were combined on weekly intervals to avoid zero 
values and artificially high values driven by low sample size. At False Point, spot 
proportions were calculated for each cohort using N,,, N;, and Np, summed across 
all 55 study pools. No pool was sampled more than once, but because from three 
to six days were needed to sample all 55 pools, it is possible that fish moved 
between pools from day to day resulting in some fish being resampled. At Dike 
Rock, Py was calculated for all fish within a cohort caught within a 7-day period. 
Because data were always collected from the same pool, it is likely that many of 
the same fish were caught day after day. However, the frequency of recaptures 
was not expected to be different for two-spotted and multi-spotted fish at either 
site. Therefore, although the data are not independent, they are not expected to 
be biased with regard to the hypotheses. For statistical analyses, these values were 
subjected to arcsin square root transformation. 

To determine whether cohorts settling during different climate periods (‘“‘nor- 
mal,’’ El Nino, or La Nifia) had different P,, values, each cohort was assigned to 
a climate period based on temperature and sea level data measured at Scripps 
Pier. According to temperature and sea level anomalies, the El Nifio period began 
in late summer 1997 and continued through about May of 1998. The La Nifia 
period was in its early stages in August 1998 and continued through the end of 
the study (Lynn et al. 1998). 

To address the question of whether the cohorts had significantly different values 
of Py, a one-way analysis of variance (ANOVA) was used to test the difference 
in average weekly spot proportions among all nine cohorts. Normality of the data 
was examined using Lilliefors test of residuals (p > 0.05). ANOVAs were also 
used to test whether P,, was different among cohorts within each of the three 
climate periods. To determine whether spot proportion was different among cli- 
mate periods, an ANOVA was used with average weekly spot proportion for each 
cohort within a climate period as replicates. A nested ANOVA with cohort nested 
within climate period would have provided the most appropriate test to address 
these questions. However, because different numbers of cohorts were measured 
during the three climate periods, a nested design was not possible. 

To address the question of whether spot proportion changed within cohorts over 
time, regression analysis was used. In these models, weekly P,, was the dependent 
variable and time served as the independent variable. To determine whether the 
proportion of three-spotted fish (P;) was greater than the proportion of four-spotted 
fish (P,) within cohorts, a paired t-test was used. 


28 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 1. Settlement and size of the nine study cohorts: Cohorts are identified by site (DR = Dike 
Rock and FP = False Point) and are named by season of settlement (sum = summer, win = winter), 
the last two digits of the year in which they settled, and their order if more than one cohort settled 
during a season (1 = first to settle, 2 = second to settle). Dates of settlement and climate type at time 
of settlement (NORM = normal, EN = El Nino, and LN = La Nina) are listed. The time period over 
which each cohort was followed and average total length (mm) of fishes at the start and end of that 
time period are presented. 


Glimnaes Sampling dates Avg. fish size 


Site Cohort Settlement type Start End Start End 


DR sum 97 1~— mid-Jun—end-Jun 1997 NORM _ Jun 8 97 Oct 14 97 28.0) 81a 
DR sum 97 2- mid-Jul—end-Jul 1997 NORM _ Jul 9 97 Oct 13.97 30.0 48.4 


FP. ssuim-97 Jun—Jul 1997 NORM _— Jun 20 97 May 15 98 . 23.5... 730 
DR win 98 Jan or Feb 1998 EN May 25 98 Nov 6 98 64.4 94.0 
FP win 98 Feb 1998 EN Feb 15°98 © May 299 33.7" SO.0 
DR = sum 98 1~— mid-Jun—end-Jun 1998 NORM _ Jun 8 98 Nov 6 98 29°35 ~ COS 
DR sum 98 2 mid-Aug—end-Aug 1998 LN Aug 1998 Nov 6 98 24.8 46.2 
FP sum 98 Aug 1998 LN Aug 1 98 Aug 20 99 32.0 74.6 
DR , . sum,99 mid-Jul—end-Aug 1999 LN Jul 11 99 Oct 26 99 30.6 49.8 
Results 


During the study, 4012 spot number and configuration scores were taken on 
post-prejuvenile Girella: 1569 at Dike Rock in 1997, 1335 at Dike Rock in 1998, 
493 at Dike Rock in 1999, and 615 at False Point from May 1997 to August 
1999. As in Orton et al. (1987), most individuals were two-spotted. Of the multi- 
spotted fish captures, there were 203 scores of three-spotted fish, 118 scores of 
four-spotted fish, 7 scores of five-spotted fish, and 2 scores of six-spotted fish 

From opaleye size frequencies at the two sites, nine cohorts were identified 
throughout the study period: three at False Point and six at Dike Rock (Table 1). 
At False Point, cohorts settled in summer 1997, winter 1998, and summer 1998. 
The summer 1997 cohort was actually produced by two recruitment events, one 
occurring in late June 1997 and one in late July. However, although they were 
distinct during August 1997, they were not identifiable in subsequent sampling 
months and therefore were combined into one cohort for analysis. 

At Dike Rock, two cohorts settled in summer 1997 (Figure 1), three were 
identified from summer 1998, and one cohort settled in summer 1999. One 1998 
cohort was greater than 60 mm TL in May of that year, and therefore it likely 
settled at about the same time as the winter 1998 False Point cohort. The other 
two 1998 cohorts settled during the summer. Although cohorts that appeared at 
the same time at the two sites were possibly part of a large scale “‘meta-cohort,”’ 
they were considered separate cohorts in the present study. Because some cohorts 
settled at different times than others, and because cohorts probably abandon their 
tidepool nursery areas at different times, not all cohorts were followed over the 
same size ranges (Table 1). 

The proportion of multi-spotted fish (P,,) varied among the nine cohorts (AN- 
OVA: F,7, = 5.12, p< 0.001) (Figure 2). However, within the El Nifio and La 
Nifia climate periods, P,, was not significantly variable among cohorts (ANOVA: 
El Nifio, F,,, = 2.18, p = 0.168; La Nifia, F,,, = 0.50, p = 0.612). Py of the 
four normal cohorts was variable (F;3, = 6.42, p = 0.001); however, for the 


SPOT PATTERN VARIATION IN CALIFORNIA OPALEYE 29 


Table 2. Regression analyses of the number of multi-spotted fish within a cohort versus time. 
Cohorts are identified and named as in Table 1. The number of total spot measurements of fish within 
each cohort, as well as the number of weeks for which spot data were taken, are listed. 


No. No. 
Site Cohort measurements weeks Slope i p-value 
DR sum 97 1 841 11 #S0cX 10% 0.43 0.028 
DR sum 97 2 728 12 tae Xx 1052 G32 0.055 
EP sum 97 196 =) =03°x 10° 0.04 0.749 
DR win 98 176 8 +2iA x 10 0.70 0.010 
FP win 98 179 > +4.4 x 10° 0.26 0.380 
DR sum 98 1 938 14 OT xX. 10 0.64 <0.001 
DR sum 98 2 221 9 +8.8 X 10°? 0.27 0.156 
FP sum 98 240 6 ee Ors 0.80 0.016 
DR sum 99 493 11 +59" 103 0.26 0.111 


‘“‘normal’’ cohort that settled during the period between El Nifo and La Nifia 
(June 1998), El Nino conditions prevailed during most of its larval stage. Without 
this cohort, which had a relatively high average weekly P,, (11.8%), the pre-E] 
Nino cohorts did not exhibit variation in weekly Py (F..5 = 1.34, p = 0.281). 

Mean weekly proportion of multi-spotted fish in a cohort was significantly 
different among climate periods (normal, El Nino, and La Nina) (ANOVA: F,., 
= 6.47, p = 0.032; Figure 2). Cohorts recruiting during the El Nifio period had 
higher mean values of P,, (mean of mean P,, = 20.4%) than those recruiting 
during the normal periods (6.7%) (a posteriori Fisher’s LSD; p = 0.009) and the 
La Nifia period (7.8%) (a posteriori Fisher’s LSD; p = 0.013). Spot proportions 
of the normal and La Nifia cohorts were not significantly different from each 
other (p = 0.886). 

P,, tended to increase over time within cohorts (Figure 3). This increase was 
significant in 5 cohorts: 1997 summer 1, 1997 summer 2, 1998 winter, and 1998 
summer 1 cohorts at Dike Rock, and the summer 1998 cohort at False Point 
(Table 2). Within cohorts, the proportion of three-spotted fish was greater than 
the proportion of four-spotted fish (Table 3). Two-spotted fish were most abundant, 
followed by three-spotted fish, then by four-spotted fish. 


Discussion 


Hundreds of three- and four-spotted and several five-spotted Girella individuals 
were observed in San Diego from 1997 to 1999. However, only two Girella 
individuals with six spots, individuals that may have been genetically “‘pure”’ G. 
simplicidens, were observed. The rarity of juvenile G. simplicidens suggests that 
adult G. simplicidens were not common in the San Diego area. Therefore, multi- 
spotted fish in the present study were probably not the result of G. nigricans-G. 
simplicidens hybridization occurring within the San Diego region. Instead, high 
numbers of fish with three and four spots suggests either that 1) hybrid larvae 
were transported north, or 2) alleles or series of alleles coding for extra spots 
were present in San Diego populations. The present study does not permit rejec- 
tion of either hypothesis; however, results of the present study do indicate that 
processes controlling presence of multiple-spotted fish are variable over time. The 
frequency of multi-spotted fish varied temporally, both among cohorts and within 


30 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


A. Jul 26-29 1997 prejuvenile 
[_] transformed 


$22 = (26,28) (32,34] (38,40] (44,46] (50,52] (56,58] (62,64] (68,70] >74 


Number of individuals 


$22 = (26,28] (32,34] (38,40] (44,46] (50,52] (56,58] (62,64] (68,70] >74 


Size categories (mm TL) 


Figure 1. An example of opaleye cohorts distinguishable by size-frequency histograms. Two co- 
horts settled at Dike Rock during the summer of 1997. The two cohorts A) from July 26 to July 29, 
1997, at the end of the settlement period for the smallest cohort, and B) from August 18 to August 
21, after three weeks of growth. A few prejuveniles were still contributing to the younger cohort, but 
most juveniles had already settled. 


cohorts. Cohorts recruiting during the E] Nifio period had higher spot-proportions 
than those recruiting during non-El Nifio periods. Within cohorts, regardless of 
climate period, the proportion of multi-spotted fish increased over time. 
Among-cohort variability.—Increases in the proportion of multi-spotted Girella 
(P,,) among cohorts recruiting during the El] Nifio period could have resulted from 
several processes. Environmental disturbance tends to promote marine fish hy- 
bridization (Rao and Lakshmi 1999), and the 1997—98 El Nino event may have 
served as a natural disturbance inducing more interbreeding of G. nigricans and 
G. simplicidens in the southern hybrid zone. Northward transport of hybrid larvae 
to San Diego might have increased during El Nino due to changes in currents. 
Opaleye larvae are neustonic, usually found up to 110 km from shore (Stevens 
et al. 1989), and are subjected to surface transport by the southward offshore 
California Current and the northward inshore California Countercurrent. During 
the 1997—98 El Nifio event, the California Current moved offshore and the Cal- 
ifornia Countercurrent increased in velocity (Norton et al. 1985; Lynn et al. 1998). 
As a result, the inshore band of northward transport widened, encompassing a 
greater width of the cross-shore opaleye larval distribution, and the northward 
transport of anomalously warm water increased (Lynn et al. 1998), presumably 
along with associated larvae. Hybrid larvae transported north may also have ex- 
perienced increased survivorship. If hybrids are intermediate between G. nigricans 


SPOT PATTERN VARIATION IN CALIFORNIA OPALEYE aa 


Table 3. Comparison of the proportion of opaleye with three spots (P;) and four spots (P,) in each 
cohort. Cohorts are identified as in Table 1. A paired f-test indicates that P, is greater than P, within 
cohort (n = 9, t = 2.40, p = 0.034). 


Site Cohort Ps P, 

DR sum 97 1 0.045 0.024 
DR sum 97 2 0.044 0.031 
FP sum 97 0.038 0.006 
DR win 98 0.060 0.089 
FP win 98 0.165 0.096 
DR sum 98 1 0.065 0.053 
DR sum 98 2 0.057 0.021 
FP sum 98 0.035 0.029 
DR sum 99 0.061 0.030 


and G. simplicidens in temperature-related characters, as they are in spot number, 
then opaleye with a southern, warm-water G. simplicidens ancestor might survive 
better in warmer El] Nino years than colder years. 

The multi-spotted fish collected in San Diego may not be hybrid offspring, but 
instead may reflect a polymorphism for spot number within the San Diego pop- 
ulation. In this case, the variable Py among cohorts may have resulted from 
temperature-sensitive expression of genes controlling spot number. Although spot 
number is not a plastic trait after post-settlement development (Orton et al. 1987), 
conditions during the larval stage may dictate the number of spots that are to 
develop. Alternatively, larvae with additional-spot alleles may experience differ- 
ent survivorship during different environmental conditions, leading to recruiting 
cohorts with different spot proportions. If fish with additional spots are charac- 
terized by other southern traits, such as higher warm-water affinity, then anom- 
alously warm E] Nifio events might lead to cohorts with higher Py. However, in 
the present study, the response of spot proportion to temperature was not consis- 
tent in two ways. First, the two El Nifio cohorts recruited during the winter of 
1998, which although anomalously warm, was still cooler than the usual summer 
season of recruitment. The fact that these El Nino cohorts were in addition the 
only two winter cohorts also complicates the comparison among these and the 
summer-recruiting normal and La Nino cohorts. Second, La Nifia temperature was 
about 1—2°C cooler than long-term (1966-1994) average temperatures (Davis 
2000a), but spot proportions of fish recruiting during early (summer 1998) and 
late (Summer 1999) La Nifia conditions were not lower than “‘normal’’ period 
spot proportions (Figure 2). 

Within-cohort variability.—The within-cohort variability of Py observed in the 
present study is opposite to that expected based on Orton et al. (1987)’s exami- 
nation of fish size and spot proportion. In the present study, the proportion of 
multi-spotted fish within most cohorts increased over time as fish grew larger 
(Figure 3). At one of Orton et al. (1987)’s sites, the proportion of multi-spotted 
fish was lower in 1-3 year-old fish (>60 mm SL or > about 75 mm TL) than in 
young-of-the-year fish (30—60 mm SL or about 37-75 mm TL), suggesting that 
survivorship of fish with extra spots was lower than that of two-spotted fish. 

Results of the present study were not consistent with this suggestion. Two 
explanations may account for the discrepancy. First, Orton et al. (1987) studied 


oz SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


0.35 
a Normal 
O25 
0.2 
a> 0.15 


0.054 
= eee Fy 

YG 

IABY 
PP Oy WR Se ck AC aa ke 
BG nik Ge Ber Oy oe camel 
ho ean capi eee. (Ze niesten 60 bee 
Rue! alitehicdettial™ iy caidas Le 
Sateen ee (Fd cna oN «ae adie 
= ee 
of S| wa ree) FW 

cohort 


Figure 2. Average weekly proportion of multi spotted opaleye (P,,) + 1 SE (back-transformed) 
among nine opaleye cohorts sampled at Dike Rock (DR) and False Point (FP) during normal, El Nino, 
and La Nifia climate periods. Cohorts are named by season, year, order of settlement, and site as in 
Table 1. 


fish from 30—120+ mm SL (about 37—150+ mm TL), and grouped 30—60 mm 
SL (about 37—75 mm TL) fish for size comparisons. In the present study, most 
cohorts were not followed beyond 75 mm TL, so the two studies examined slight- 
ly different ranges of G. nigricans’ life history. The proportion of multi-spotted 
fish may increase during opaleye’s intertidal phase (<75 mm TL, Stevens et al. 
1989), as indicated by the present study, then decrease after the intertidal phase, 
as suggested by Orton et al. (1987). Second, in Orton et al. (1987), large and 
small fish were collected at the same time, so comparisons were made across 
cohorts. The present study shows that different cohorts can have significantly 
different proportions of multi-spotted fish. As a result, across-cohort comparisons 
may not adequately address survivorship or selection issues. Therefore, variability 
in spot proportion among size classes at a particular time in Orton et al. (1987) 
might not have been the result of differences in survivorship of multi-spotted fish 
as a cohort aged, but may reflect variability among cohorts. 

The increased frequency of multi-spotted fish over time in most of the cohorts 
in the present study indicates that within the size range of 30 to 75 mm TL, over 
the course of several months, the survivorship of multi-spotted fish is higher than 
that of two-spotted fish. Intertidal opaleye generally occupy middle and upper 
tidepool habitats (Davis 2000b), which can reach temperatures during spring and 
summer daytime low tides that are above their preferred temperature of 27—28°C 


SPOT PATTERN VARIATION IN CALIFORNIA OPALEYE 33 


A. m@ DR97suml1 0 DR97sum2 @ FP97sum 
*K 


SS Set Pa him dient Nee Faas Namah cee aR tas VEE. 


Jun 20 1997 Nov 7 1997 Mar 27 1998 


B. e@ DR98win o FP98win 


Feb 20 1998 Jul 10 1998 Nov 28 1998 


Weekly proportion of multi-spotted opaleye (P,,) 


C. a DR98suml A DR98sum2 YW FP98sum Yy DR9IIsum 


Jul 10 1998 Nov 28 1998 Apr 161999 Sep 3 1999 


Date 


Figure 3. Weekly proportions of multi-spotted opaleye (P,,) over time of each of the nine False 
Point (FP) and Dike Rock (DR) cohorts. Cohorts are named as in Table 1. A) Cohorts that recruited 
in the summer of 1997; B) cohorts that recruited in the winter of 1998; C) cohorts that recruited in 
summer 1998 and summer 1999. Dotted lines and solid lines indicate regression lines for cohorts from 
FP and DR, respectively. Asterisks indicate regression lines with slopes significantly different from 
zero. See Table 2 for r? and p-values. 


34 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


(Norris 1963) and close to their lethal maximum temperature (Douderoff 1942). 
If the presence of additional spots is associated with warm-water adaptations, 
multi-spotted fish might cope with high temperatures better than two-spotted fish 
during the intertidal life-history phase. Survivorship of multi-spotted fish in size 
classes larger than 75 mm TL might then decrease after this intertidal phase during 
the colder subtidal phase, perhaps explaining why Orton et al. (1987) observed 
lower proportions of multi-spotted fish in larger size classes. 

Conclusion.—The presence of a visible, easily measured hybrid intermediate trait 
potentially associated with temperature affinity, like dorsal spot pattern in G. 
nigricans, provides an ideal tool with which to measure effects of climate change 
on gene flow and genetic expression within populations. Further studies are need- 
ed to explicitly address selection and survivorship questions. Genetic analysis 
could establish whether G. nigricans and G. simplicidens are distinct species and 
also whether spot number is associated with other warm-water southern or cold- 
water northern traits. If these are two species, collections over a latitudinal range 
in southern Baja and the Gulf of California could establish whether stabile hybrid 
Girella populations exist, where the boundaries of the Girella hybrid zone are, 
and the extent to which the two species share genetic information. Tagging studies 
in which individuals are followed through time would address survivorship ques- 
tions based on fewer assumptions than cohort analysis. Such information would 
contribute both to the understanding of influences on hybridization in marine 
fishes and the sensitivity of hybridization to climate change. Management plans 
of Girella recreational and commercial fisheries would also benefit from infor- 
mation about species identities and hybridization. 


Acknowledgments 


The field assistance of Doug MacIntyre, Edward Vowles, Andrew Juhl, Erin 
Hubbard, Nicole Dederick, and Julie Frost is greatly appreciated. Thanks to Lisa 
Levin, Trevor Price, Dave Checkley, Phil Hastings, Paul Dayton, Paul Smith, and 
Clint Winant for offering comments on the manuscript. Support was provided by 
the Department of Defense National Science and Engineering Graduate Fellow- 
ship, the J. M. Hepps Graduate Fellowship, Sigma Delta Epsilon Graduate Women 
in Science, and the Mildred Mathias, Sigma Xi, and PADI Foundations. 


Literature Cited 


Arntz, W. E. and J. Tarazona. 1990. Effects of El Nifio 1982—83 on benthos, fish and fisheries off the 
South American Pacific coast. Pp. 323-360 in Global Ecological Consequences of the 1982-— 
83 El Nifio-Southern Oscillation. (P. W. Glynn, ed.), Elsevier Press, xx + 563 pp. 

Barry, J. P, C. H. Baxter, R. D. Sagarin, and S. E. Gilman. 1995. Climate-related, long-term faunal 
changes in a California rocky intertidal community. Science 267: 672—675. 

Davis, J. L. D. 2000a. Changes in a tidepool fish assemblage on two scales of environmental variation: 
season and ENSO. Limnol. Oceanogr. 45: 1368-1379. 

Davis, J. L. D. 2000b. Spatial and seasonal patterns of habitat partitioning in a guild of southern 
California tidepools fishes. Mar. Ecol. Progr. Ser. 196: 253-268. 

Douderoff, P. 1942. The resistance and acclimatization of marine fishes to temperature changes I: 
Experiments with Girella nigricans (Ayres). Biol. Bull. 83: 219-244. 

Gibson, R. N., L. Pihl, M. T. Burrows, J. Modin, H. Wennhage, and L. A. Nickell. 1998. Diel move- 
ments of juvenile plaice Pleuronectes platessa in relation to predators, competitors, food avail- 
ability and abiotic factors on a microtidal nursery ground. Mar. Ecol. Progr. Ser. 165: 145-159. 

Hubbs, K. 1955. Hybridization between fish species in nature. System. Zool. 4: 1—20. 


SPOT PATTERN VARIATION IN CALIFORNIA OPALEYE 35 


Lynn, R. J., T. Baumgartner, J. Barcia, C. A. Collins, T. L. Hayward, and others. 1998. The state of 
the California current, 1997—1998: transition to El Nifio conditions. CalCOFI 39: 25—49. 
Morris, R. W. 1960. Temperature, salinity, and southern limits of three species of Pacific cottid fishes. 

Limnol. Oceanogr. 5: 175-179. 

Nakamura, R. 1976. Temperature and the vertical distribution of two tidepool fishes. Copeia 1976: 
143-152. 

Norris, K. S. 1963. The functions of temperature in the ecology of the percoid fish Girella nigricans 
(Ayres). Ecol. Monogr. 33: 23-61. 

Norton, J. D., R. McLain, R. Brainard, and D. Husby. 1985. The 1982-83 El Nifio event off Baja and 
Alta California and its ocean climate context. Pp. 44—72 in El Nifio North: Nifio effects in the 
Eastern Subarctic Pacific Ocean. (W. S. Wooster and D. L. Fluharty, eds.), Washington Sea 
Grant Program, v + 312 pp. 

Orton, R. D., and Buth. 1984. Minimal genetic difference between Girella nigricans and Girella 
simplicidens. Isozyme Bull. 17: 66. 

Orton, R. D., L. S. Wright, and H. Hess. 1987. Spot polymorphism in Girella nigricans (Perciformes: 
Kyphosidae): geographic and inter-size class variation. Copeia 1987: 198-204. 

Rao, K. S. and K. Lakshmi. 1999. Cryptic hybridization in marine fishes: significance of narrow 
hybrid zones in identifying stable hybrid populations. J. Nat. Hist. 33: 1237-1259. 

Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea, and W. B. Scott. 
1991. World fishes important to North Americans, exclusive of species from the continental 
waters of the United States and Canada. Amer. Fish. Soc. Spec. Publ. 21. 

Stevens, E. G., W. Watson, and H. G. Moser. 1989. Development and distribution of larvae and pelagic 
juveniles of three kyphosid fishes (Girella nigricans, Medialuna californiensis, and Hermosilla 
azurea) off California and Baja California. Fish. Bull. 87: 745-768. 

Thomson, D. A., L. T. Findley, and A. N. Kerstitch. 1979. Reef Fishes of the Sea of Cortez: the 
Rocky-shore Fishes of the Gulf of California. Wiley, xvii + 302 pp. 

Zander, C. D., J. Nieder, and K. Martin. 1999. Vertical distribution patterns. Pp. 26—53 in Intertidal 
Fishes. (M. H. Horn, K. L. M. Martin, and M. A. Chotkowski, eds.), Academic Press, xiv + 
399 pp. 


Accepted for publication 19 June 2000. 


Bull. Southern California Acad. Sci. 
100(1), 2001, pp. 36—43 
© Southern California Academy of Sciences, 2001 


Diversity of Parasitic Cuscuta and their Host Plant Species in a 
Larrea-Atriplex Ecotone 


Simon A. Lei 


Department of Biology, Community College of Southern Nevada, 
6375 West Charleston Boulevard, WDB, Las Vegas, NV 89146-1139 


Abstract.—The distribution of four species of parasitic dodder (Cuscuta spp.) on 
a variety of host plant species was quantitatively investigated in a creosote bush- 
saltbush (Larrea tridentata-Atriplex spp.) ecotone in the Amargosa Valley of 
southern Nevada. Species of Cuscuta did not parasitize all of their potential host 
plants equally. Although white bursage (Ambrosia dumosa) was the most abun- 
dant species in the community, Cuscuta showed the highest frequency of infes- 
tation on Larrea. Cuscuta biomass was greatest in Larrea, possibly because of 
Larrea’s large above-ground canopy. Among the host species, Larrea plants ex- 
hibited the highest mortality from parasitism. Annuals, biennials, and herbaceous 
perennials exhibited little or no infestation by Cuscuta species. Host plants with 
heavy infestation showed a significant reduction in survival and flowering success 
compared to host plants with light or no infestation. Although a generalist in their 
parasitic nature on a variety of host plant species, different Cuscuta species dem- 
onstrate specialized opportunistic behavior in their degree of selection and pref- 
erence for specific individual host species irrespective to host abundance. Two of 
the primary factors for which different Cuscuta species selected their respective 
hosts were host morphology (lifeform) and phenology (developmental stage). 


Parasitism occurs when an association exists between two species that benefits 
the parasitic organism at the expense of its host organism. The host constitutes a 
living microhabitat for the parasite. The monotypic family Cuscutaceae has a 
cosmopolitan occurrence, represented solely by one genus Cuscuta (dodder), with 
many species native to North America (Kuijt 1969). This family is often included 
as a subfamily of Convolvulaceae, but differs in its parasitic life-form (Kuyt 
1969). Species of Cuscuta are among the best known of the higher vascular plant 
parasites because of their extraordinary appearance and behavior (Kuijt 1969). 

Multiple species of Cuscuta are known to occur in southern Nevada (Cronquist 
1984), with different Cuscuta species parasitizing different xerophytic and halo- 
phytic hosts. Cuscuta salina is known to primarily parasitize halophytes, such as 
four-winged saltbush (Atriplex canescens), shadscale (A. confertifolia), and iodine 
bush (Allenrolfea occidentalis) (Kearney and Peebles 1951). Cuscuta californica 
occurs frequently on white bursage (Ambrosia dumosa) (Beauchamp 1986). Two 
common host plant species of Cuscuta denticulata are creosote bush (Larrea 
tridentata) and cheesebush (Hymenoclea salsola) (Beauchamp 1986). Hosts of 
Cuscuta campestris are mostly herbaceous, including composites and grasses 
(Munz 1974). In an area with multiple species of Cuscuta, identifications of these 
parasites are distinguished primarily by their geographical location, floral mor- 


36 


PARASITISM OF CUSCUTA ON LARREA-ATRIPLEX COMMUNITY 37 


phological characteristics, and by their host plant species (Wesley Niles, personal 
communication). 

Seeds of Cuscuta spp. germinate near the soil surface, and may develop a small 
root system which sustains the plant until the stem reaches a suitable host plant. 
Many species of Cuscuta lack chlorophyll and do not photosynthesize (Belzer 
1984). Cuscuta spp. have only scale-like vestigial leaves, depending solely on 
exploitation of resources from their hosts for growth, survival, and regulation of 
their environment (Whitson 1987). The orange-colored, spaghetti-like parasitic 
threads function as runners, allowing an individual to move from host to host, as 
well as to densely infest a single host (Kelly et al. 1988). Upon attachment to a 
host, a Cuscuta plant becomes entirely parasitic, with subsequent degeneration of 
its terrestrial root system (Kelly 1992), and the resource acquisition is entirely 
above-ground. A stem of Cuscuta spp. infests its host by coiling around the host 
stem or leaf and sending haustoria into the host’s vascular system (Kelly 1992). 
Soon after the first haustorial contacts have been made, the radicle dies and all 
contact with the soil is irrevocably lost (Kuit 1969). 

The objective of this study was to examine the distribution of four Cuscuta 
species on 11 host plant species in the Amargosa Valley of southern Nevada. 
Specifically, woody and subwoody plant species were identified and assessed for 
1) Cuscuta biomass and relative percent cover of host covered by Cuscuta as a 
measure of the degree of infestation; 2) flowering success between the infested 
and uninfested host plants; and 3) condition (living or dead) of each infested host 
individual. 


Materials and Methods 
Study Site 


Field studies were conducted during Spring 1998 in the Amargosa Valley 
(roughly 36°50’ N, 116°05’ W) of southern Nevada where multiple species of 
Cuscuta were present. The woody vegetation zone (elevation 760 m) was domi- 
nated by Larrea-Atriplex spp., with numerous individuals of Ambrosia and a few 
individuals of Hymenoclea, seepweed (Suaeda torreyana), and Allenrolfea. A low 
abundance of annual and perennial herbaceous species was also present, including 
milkvetch (Astragalus spp.), desert marigold (Baileya pleniradiata), bugseed (Di- 
coria canescens), desert globemallow (Sphaeralcea ambigua), and fluff grass (Er- 
ioneuron pluchellum). 

The Amargosa Valley was selected on the basis of an abundant infestation of 
Cuscuta species in a relatively homogeneous habitat with a variety of host plant 
species. This area thus provides an assessment of host specialization in four Cus- 
cuta species (C. california, C. campestris, C. denticulata, and C. salina) without 
having the effects of significantly different environmental variables inherent with 
the selection of separate geographic study sites. 


Field Surveys 


Two hectares northeast of U.S. Highway 95 were selected in the Amargosa 
Valley. Within these two hectares, all plant species were identified, but only 
woody species abundance (number of individuals) were determined. The amount 
of host canopies covered with green leaves and covered with their respective 
Cuscuta species, along with the flowering success of host plants were visually 


38 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 1. Four species of Cuscuta parasitizing 11 host species in a Larrea-Atriplex ecotone in the 
Amargosa Valley of southern Nevada. Lifeforms (S = Shrub, Ss = subshrub, A = Annual, B = 
Biennial, and HP = Herbaceous Perennial) of host plants are shown. Names of host and parasitic 
species are arranged alphabetically. 


Parastic species Host species Lifeform 
Cuscuta californica Ambrosia dumosa S 
C. campestris Baileya pleniradiata iP 

Chaenactis fremontii A 
Oryzopsis hymenoides HP 
C. denticulata Hymenoclea salsola S 
Larrea tridentata S 
Sphaeralcea ambigua HP 
C. salina Allenrolfea occidentalis S 
Atriplex canescens S 
Atriplex confertifolia S 
Suaeda torreyana Ss 


estimated in 10-% point increments (Lei 1999a, b, and c). Host plants that lacked 
flower or fruit production and without green leaves on branches were assumed 
dead. The condition of seven woody and subwoody (suffrutescent) species cov- 
ered with parasites was recorded as either live (1) or dead (QO). All parasitic stems 
were collected from all woody and suffrutescent host plants with infestations, and 
were oven-dried at 45°C for 72 hours in a biology laboratory at the Community 
College of Southern Nevada (CCSN) to determine biomass accumulation of Cus- 
cuta. 


Statistical Analyses 


One-way Analysis of Variance (ANOVA), followed by Tukey’s multiple com- 
parison test were used to detect differences in Cuscuta biomass among host spe- 
cies, and to compare means of Cuscuta biomass when a significant infestation 
effect was detected, respectively (Analytical Software 1994). The ANOVA was 
also employed to detect survival and flowering success between infested and 
uninfested host individuals. Mean values were presented with standard errors, and 
statistical significance was determined at p = 0.05. 


Results 


Four species of Cuscuta were found to primarily parasitize seven woody and 
subwoody species, as well as two annual and two herbaceous perennial species 
within the study area (Table 1). Hosts of C. campestris were herbaceous plants, 
including Baileya and Indian ricegrass (Oryziopsis hymenoides), while hosts of 
C. denticulata were woody plants, such as Hymenoclea and Larrea (Table 1). 
Herbaceous plants that were rarely infested with parasites included the annuals 
Baileya and Chaenactis fremontii, as well as the perennials Oryzopsis and Sphaer- 
alcea (Table 2). Conversely, fiddleneck (Amsinckia tessellata), Astragalus spp., 
grama grass (Bouteloua barbata), Dicoria, and Erioneuron revealed no infestation 
at all (Table 2). 

The percentage of host canopies covered by multiple species of Cuscuta varied 
significantly among the host types (Table 1; Fig. 1). Although Ambrosia was the 


PARASITISM OF CUSCUTA ON LARREA-ATRIPLEX COMMUNITY 39 


Table 2. Percentage of host canopies (mean + S.E.) (annuals, biennials, and herbaceous perennials) 
covered by multiple species of Cuscuta in a Larrea-Atriplex ecotone in the Amargosa Valley of 
southern Nevada. Species of Cuscuta generally exhibited little or no infestation on herbaceous host 
plants. Host species names are arranged alphabetically and their lifeforms are shown below. Symbols 
of host plant lifeforms are explained in Table 1. 


Host species Lifeform % cover of Cuscuta spp. 


Amsinckia tessellata A Not infested 
Aristida glauca HP Not infested 
Astragalus spp. HP Not infested 
Baileya pleniradiata A OF 54.3 

Bouteloua barbata A Not infested 
Bromus rubens A Not infested 
Chaenactis fremontii A 10.2 + 2.4 

Cirsium neomexicanum B Not infested 
Cryptantha spp. A Not infested 
Dicoria canescens A Not infested 
Erioneuron pluchellum HP Not infested 
Malacothrix glabrata A Not infested 
Muhlenbergia porteri HP Not infested 
Oryzopsis hymenoides HP eo ea ies 

Sphaeralcea ambigua HP C.$-= ot 

Sporobolus cryptandrus HP Not infested 


most abundant host species, it had a low frequency of C. california infestation. 
Larrea plants were less abundant than Ambrosia, yet had the highest frequency 
of C. denticulata infestation (Fig. 1). A significant difference was detected be- 
tween Larrea and Hymenoclea in percentage of host canopy cover infested by C. 
denticulata (P < 0.05; Fig. 1). 

Biomass accumulation of Cuscuta species also varied significantly (P = 0.001) 
among the infested host plant species (Fig. 2). Larrea plants had the greatest 
mean percentage covered by C. denticulata, and had the greatest mean C. denti- 
culata biomass because of the large above-ground canopy (Fig. 2). Atriplex spp. 
also exhibited abundant C. salina biomass on their canopies, whereas other woody 
taxa contained a relatively low parasitic biomass (Fig. 2). From casual observa- 
tions, more parasitic biomass was found in the center than around the periphery 
of shrub canopies. Within the same perennial shrub species, Cuscuta revealed the 
greatest biomass on individual plants that were more vigorous with a rapid growth 
rate. Host plants not infested with parasites showed a significantly (P = 0.01; 
data not shown) greater percentage of green leaves and active flowering than host 
plants infested with parasites. Hosts with heavy infestation exhibited a significant 
(P <= 0.01; data not shown) reduction in green leaves and flowering success com- 
pared to hosts with light or no infestation. 

Condition (survival) of woody and subwoody hosts infested with Cuscuta spe- 
cies was observed. Larrea and Atriplex spp. displayed a greater degree of infes- 
tation by C. denticulata and C. salina, respectively, based on percent cover and 
biomass than the more abundant Ambrosia (Figs. 1-2). Among the woody and 
subwoody plants, Larrea had the highest, while Allenrolfea had the lowest number 
of dead hosts (Fig. 3). Although most host plants were alive, several dead hosts 
including Atriplex spp., Larrea, Ambrosia, and Hymenoclea with live parasites 


40 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


90 Ti r Seat oa 


a a 


40 


30 ab e 
b be b 
20 
‘s 
Lo 
O at 


AMDU ALOC ATCA ATCO HYSA LATR SUTO 


ithe 


mas ik 


MEAN HOST CANOPY COVERED. BY: CUSCUTA (%) 


AOSTISPECIES 


Fig. 1. Percentage of host canopies (mean + S.E.) covered by multiple species of Cuscuta on the 
seven woody and subwoody host species in a Larrea-Atriplex ecotone in the Amargosa Valley of 
southern Nevada. Only host species infested with Cuscuta were computed. Narrow vertical bars denote 
standard errors of the means. Different letters at the top of columns indicate significant differences at 
p = 0.05 using Tukey’s Multiple Comparison Test. Host species abbreviations: Allenrolfea occidentalis 
(ALOC), Ambrosia dumosa (AMDU), Atriplex canescens (ATCA), Atriplex confertifolia (ATCO), 
Hymenoclea salsola (HYSA), Larrea tridentata (LATR), and Suaeda torreyana (SUTO). 


were found (Fig. 3). Despite being considered alive, some nearly dead hosts were 
also found in all seven woody and subwoody species. Within the same host spe- 
cies, significantly greater (P = 0.05; data not shown) infestation by parasites were 
observed on individual hosts with greater height and canopy size. 


Discussion 


In general, Larrea plants were the most preferred host, followed by Atriplex 
spp. for the growth of parasites. This study supports the theory that Cuscuta spp. 
are not a strict generalist in the sense that they do not equally infest all available 
host types in proportion to host abundance. My data reinforces Kelly et al. (1988) 
study, suggesting that Cuscuta species are selective consumers with multiple spe- 
cies of Cuscuta parasitizing different species of host plants. Although Ambrosia 
was the most abundant species, Larrea exhibited the highest mortality from par- 
asitism in this study. 

Kelly (1992) found that Cuscuta species made morphological changes gauged 
towards expected resource (water and nutrient) gain from the host. Species of 
Cuscuta exhibit behavior in which they grow away from host plants with low 
nutrient availability and rapidly coiled around host plants with high nutritional 
value (Kelly 1992). Rejection of a potential host indicates that a parasitic plant 


PARASITISM OF CUSCUTA ON LARREA-ATRIPLEX COMMUNITY 4] 


a = 
aa a 
Oo 
Oo 2 
<l 
= 
O 
(@ a) 
6 
— 
=) 
C) 
Y) 
3) 
a vei 
Pa 
=i 
LJ 
= 
0 


AMDU ALOC ATCA ATCO HYSA LATR SUTO 


DOSE ele S 


Fig. 2. Biomass of Cuscuta species (mean + S.E.) on the seven woody and subwoody host species 
in a Larrea-Atriplex ecotone in the Amargosa Valley of southern Nevada. Only host species infested 
with Cuscuta were computed. Narrow vertical bars denote standard errors of the means. Different 
letters at the top of columns indicate significant differences at p = 0.05 using Tukey’s Multiple 
Comparison Test. Host species abbreviations are explained in Figure 1. 


may strategically take the risk of forfeiting the initial host for the chance of 
acquiring better resources from another host later (Kelly 1992). 

There are several potential explanations for the dispersal of Cuscuta seeds. 
First, the seeds of Cuscuta species appear to be dispersed haphazardly; animals 
as dispersal agents are probably rare and unimportant (Kuit 1969). Second, some 
Cuscuta seeds may fall to the ground and germinate there. Third, seeds of Cuscuta 
may be transported by wind or water to new hosts (Kuijt 1969). Fourth, the reason 
why some Cuscuta species infested more than others is not completely known. It 
may be a maternal influence when C. denticulata seedlings from plants grown on 
Larrea select Larrea more often than Cuscuta spp. seedlings from other host 
species. Consequently, the emerging C. denticulata seedlings would grow directly 
and lead to a more vigorous growth on the Larrea plants. Although a number of 
annual and perennial herbaceous species were not infested by parasites, these 
species were potential hosts because they were present in the community. 

Biomass accumulation of Cuscuta species differed significantly among host 
species. Woody perennials showed the greatest Cuscuta biomass, whereas annuals, 
biennials, and herbaceous perennials exhibited minimal or no infestations in this 
study. A limited Cuscuta infection success on biennials and herbaceous perennial 
hosts is related to host morphology (lifeform) since the presence of scattered 
vascular bundles in grasses may not be amenable to resource exploitation by 
Cuscuta species (Kelly and others 1988). Additionally, host phenology (devel- 


42 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


100 aaah. oats keene r me 
GM Live 
Y/] Dead 
80 + 4 
| 
Y) | 
e | 
a 
80+ 
Y) 
ee 
O 
na 
a 0 a 
= 
= 
Za 
20 + e 
0 iy LZ) 


AMDU ALCO ATCA ATCO HYSA LATR SUTO 
MOS? SPECIES 


Fig. 3. Condition (live or dead) of the seven woody and subwoody host species infested with 
Cuscuta species in a Larrea-Atriplex ecotone in the Amargosa Valley of southern Nevada. Host species 
abbreviations are explained in Figure 1. 


opmental stage) is also likely to determine the biomass and abundance of Cuscuta 
species. Mature or long-lived plants generally have a greater canopy size com- 
pared with juvenile or short-lived plants. Within the same host species, a relatively 
large host canopy size would indicate a greater surface area available on second- 
ary branches for successful colonization and establishment of Cuscuta species. In 
this study, Cuscuta accumulated more tissue or biomass on those hosts that grew 
better and faster, presumably due to higher moisture content and nutritional value. 
Not all xerophytic plants functioned equally as hosts for multiple species of Cus- 
cuta in this study. Although water and nutrient availability were not quantitatively 
examined, infection of parasite on the host, as demonstrated by the higher prob- 
ability of infestation on Larrea and Atriplex spp. in comparison to Ambrosia, may 
be attributed to proportionally different water and nutrient uptake by these host 
plant species, or to different characteristics of the hosts and/or parasitic species. 

Host morphology and phenology were two main factors that partially deter- 
mined which species of Cuscuta parasitizing which species of host plants. Within 
the same host species in this study, species of Cuscuta tended to select individual 
hosts with greater height and canopy size. Seedlings appear to grow toward a 
source of high nutrient and, to a lesser extent, moisture (Kuijt 1969). Host mor- 
phology and phenology may be strongly associated with the availability of water 
and nutrients. Host preference in multiple species of Cuscuta are still not fully 
understood. Further research, including water and nutrient status of existing and 


PARASITISM OF CUSCUTA ON LARREA-ATRIPLEX COMMUNITY 43 


potential host plants, at various geographical locations, are required to improve 
our understanding regarding the host preference in parasitic Cuscuta plants. 


Acknowledgments 


Valuable field assistance provided by Steven Lei, David Valenzuela, and She- 
vaun Valenzuela was gratefully acknowledged. Helpful comments by David Char- 
let greatly improved the manuscript. The Department of Biology at the Com- 
munity College of Southern Nevada (CCSN) provided logistical support. 


Literature Cited 


Analytical Software. 1994. Statistix 4.1, an interactive statistical analysis program for microcomputers. 
Analytical Software, St. Paul, Minnesota. 329 pp. 

Beauchamp, R. M. 1986. A Flora of San Diego County, California. Sweetwater River Press, National 
City, California. 241 pp. 

Belzer, T. J. 1984. Road side plants of southern California. Mountain Press Publishing Company, 
Missoula, Montana. 158 pp. 

Cronquist, A. 1984. Intermountain Flora: Vascular Plants of the Intermountain West, The New York 
Botanical Garden, New York. 

Kearney, T. H. and R. H. Peebles. 1951. The Flora of Arizona. University of California Press, Berkeley, 
California. 

Kelly, C. K., D. L. Venable, and K. Zimmer. 1988. Host specialization in Cuscuta costariensis: an 
assessment of host use relative to host availability. Oikos 53:315-320. 

Kelly, C. K. 1992. Resource choice in Cuscuta europaea. Proc. Nat. Acad. Sci. 89:12194—-12197. 

Kuit, J. 1969. The Biology of Parasitic Flowering Plants. University of California Press, Berkeley, 
California. 246 pp. 

Lei, S. A. 1999a. Host-parasite relationship between Utah juniper and juniper mistletoe in the Spring 
Mountains of southern Nevada. Pages 99-104 in Proceedings: Ecology and management of 
pinyon-juniper communities within the interior west. USDA Forest Service, Rocky Mountain 
Research Station, Ogden, Utah. 

. 1999b. Phenological events and litterfall dynamics of blackbrush in southern Nevada. Pages 

113—118 in Proceedings: Shrubland ecotones. USDA Forest Service, Rocky Mountain Research 

Station, Ogden, Utah. 

. 1999c. Effects of severe drought on biodiversity and productivity in a creosote bush-black- 
brush ecotone of southern Nevada. Pages 217—221 in Proceedings: Shrubland ecotones. USDA 
Forest Service, Rocky Mountain Research Station, Ogden, Utah. 

Munz, P. A. 1974. A Flora of Southern California. University of California Press, Berkeley, California. 
1086 pp. 

Whitson, T. D. 1987. The Weeds and Poisonous Plants of Wyoming and Utah. Cooperative Extension 
Service, Laramie, Wyoming. 


Accepted For Publication 19 June 2000 


Bull. Southern California Acad. Sci. 
100(1), 2001, pp. 44-50 
© Southern California Academy of Sciences, 2001 


Persistence of the Nematode, Oswaldocruzia pifiens (Molineidae), 


in the Pacific Treefrog, Hyla regilla (Hylidae), from California 


Stephen R. Goldberg! and Charles R. Bursey? 


'Department of Biology, Whittier College, Whittier, California 90608 
?Department of Biology, Pennsylvania State University, Shenango Campus, 
147 Shenango Avenue, Sharon, Pennsylvania 16146 


Abstract.—Miulti-year samples of Hyla regilla from three California counties (Los 
Angeles, Orange, Riverside) as well as single-year samples from three additional 
California counties (Humboldt, Imperial, Santa Clara) were examined for hel- 
minths. Gravid individuals of one species of cestode, Distoichometra bufonis and 
two species of nematodes, Oswaldocruzia pipiens and Rhabdias ranae were 
found. Metacercariae of two species of trematodes, Alaria sp. and Clinostomum 
sp. and larvae of one nematode species, Physaloptera sp. were also found. Of the 
helminths found in the multi-year samples, only O. pipiens was persistent; how- 
ever, it was not stable. 


Although many amphibians species have been recorded as hosts for helminth 
parasites (Prudhoe and Bray 1982; Baker 1987), the majority of this work has 
concentrated on faunistic surveys typically based upon collections taken during a 
single season. A general conclusion drawn from these studies is that helminth 
communities of anurans are depauperate and isolationist in character (Barton 
1997). However, two measures of helminth communities developed by Meffe and 
Minckley (1987) are not addressed in these single season collections: persistence, 
a measure of presence or absence of a species over time, and stability, a qualitative 
measure based upon the relative constancy of species abundances over time. These 
measures can only be addressed with long-term studies; unfortunately, there are 
few published accounts of long-term variation (biennial or greater) in helminth 
infracommunities of anurans. In Poland, Grossman and Sandner (1953), in Russia, 
Markov and Rogoza (1949, 1953), and in England, Lees (1962) published data 
on seasonal variation in the prevalence of helminths of Rana temporaria. Also 
from Poland, Kuc and Sulgostowska (1988) published data collected from Rana 
ridibunda over a period of four years. 

The Pacific treefrog, Hyla regilla (Baird and Girard 1852), is a small anuran 
that occurs from British Columbia to the tip of Baja California Sur, México and 
east to western Montana and eastern Nevada (Stebbins 1985). Pacific treefrogs 
prefer low plant growth near water and frequent a variety of habitats from sea 
level to elevations of 3540 m including grassland, chaparral, woodland, forest, 
desert oasis and farmland (Stebbins 1985). There are seven reports of helminths 
from northern populations of this frog (Millzner 1924; Douglas 1958; Lehmann 
1965; Macy 1960; Efford and Tsumura 1969; Brooks 1976, Johnson et al. 1999) 
and one report from southern California (Koller and Gaudin 1977). 

Multi-year collections of H. regilla from three California counties (Los An- 
geles, Orange, Riverside) as well as single season collections from three California 


4 


HELMINTHS OF THE PACIFIC TREEFROG 45 


Table 1. Number (N), SVL, and collection dates of Hyla regilla from California counties with 
number infected by and prevalence (%) of anuran parasites. 


Distoicho- Oswaldo- Rhab- 


SVL HISD metra cruzia dias 

County N range (mm) Collection dates bufonis pipiens ranae 
Humboldt 3 39 + 1.5, 38-41 1997, Aug —- — — 
Santa Clara 18 34 + 4.1, 21-40 1998, Jan—May DAL) 54h) oo 
Imperial 2 31 + 1.4, 30-32 1959, Mar — 2 (100) -— 
Los Angeles 14 30 + 4.3, 19-35 1943, Mar — F271) a 
2 30133 00,130 1944, Mar — — —— 
1 25 1963, Mar — — —= 
17 30 + 3.7, 25-36 1971, Jan—Apr — 7 (41) — 
2 34 + 5.0, 30-37 1972, Apr — 2 (100) a 
Orange 12 35 + 5.0, 30-48 1957, Feb—Mar — — — 
10 33 + 4.8, 27-43 1958, Feb —- - 
5 33 + 7.2, 24-41 1961, Feb — 1 (20) — 
4 37 + 5.0, 30-41 1962, Mar — — — 
8 33 + 4.4,29-40 1963, Feb — — as 
pd 32 + 1.4, 31-33 1964, Feb — — as 
2 34 + 5.7, 30-38 1965, May—Jun — — —~ 
8 36 + 2.6, 32-39 1966, Mar — ras — 

2 34 + 5.0, 31-38 1967, Mar—May — 1 (50) 1 (50) 
8 29 & 3.3-. 24-35, 11972, Feb — i ¢is) — 
Riverside ] 35 1965, June --- 1 (100) — 
1 24 1967, May — — == 

S 2 3.0, 121—St 1969, July — 2 (67) f G3) 
1 18 1972, Aug —- A — 


counties (Humboldt, Imperial, Santa Clara) were examined for helminths. The 
purpose of this paper is to evaluate persistence and stability of helminths harbored 
by H. regilla from California. 


Materials and Methods 


One hundred twenty-eight H. regilla (mean + 1 SD snout-vent length [SVL] 
= 32 mm + 5 SD, range 18—48 mm) from 6 counties in California were examined 
(collection data by year is given in Table 1). There were 47 female (SVL = 33 
mm + 6 SD, range = 18—43 mm) and 81 male (SVL = 32 mm + 4 SD, range 
= 19-48 mm) frogs in the total sample. All frogs had been fixed in 10% formalin 
and preserved in 50% ethanol. The body cavity of each frog was opened by a 
longitudinal incision and the gastrointestinal tract was removed and slit longitu- 
dinally. The esophagus, stomach, small intestine, large intestine, lung, urinary 
bladder, coelom and liver were searched with a dissecting microscope for hel- 
minths. Helminths were placed in a drop of undiluted glycerol on a glass slide 
and allowed to clear for study with a compound microscope. Nematodes were 
identified from these slides. Cestodes and trematodes were stained in hematoxylin 
and mounted in balsam for identification. Where applicable, difference in preva- 
lence between male and female frogs was examined by the chi-square test (x7), 
numbers of helminths per male and female hosts were evaluated by the Kruskal 
Wallis test, and correlation analysis (7) was used to relate intensity of infection 
to age (as estimated by SVL). 


46 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Results 


Gravid individuals of one species of cestode, Distoichometra bufonis Dickey 
1921; and two species of nematodes, Oswaldocruzia pipiens Walton 1929, and 
Rhabdias ranae Walton 1929 were found. Metacercariae of two species of trem- 
atodes, Alaria sp. and Clinostomum sp., and larvae of one species of nematode, 
Physaloptera sp., were also found. Only Oswaldocruzia pipiens was found to be 
persistent (Table 1). Number, prevalence (number of infected hosts divided by 
number of hosts examined), and abundance (number of individuals of a parasite 
species divided by the number of hosts examined) for each helminth species by 
locality are given in Table 2. Voucher specimens were placed in vials of 70% 
ethanol and deposited in the U.S. National Parasite Collection (USNPC): Alaria 
sp. (mesocercaria), 88611; Clinostomum sp. (metacercaria), 88612; Distoichom- 
etra bufonis, 88614; Oswaldocruzia pipiens, 88615; Rhabdias ranae, 88609; Phy- 
saloptera sp. (larvae), 88610. 

Thirty four frogs (27%) were found to harbor 157 helminths (x = 5 + 5 SD 
per infected frog). Of these, 29 were larvae of helminth species not capable of 
completing their life cycles in anurans. Mean helminth species richness for in- 
fected frogs was 1.0 + 0.2 SD, range = 1-2 species. Eighteen of 81 male frogs 
(22%) harbored 59 helminths; 16 of 47 female frogs (34%) harbored 98 helminths. 
Prevalence of helminth infection (x? = 2.13, 1 df, P > 0.05) as well as number 
of helminths harbored per host (Kruskal Wallis test = 2.6, 1 df, P > 0.05) was 
not significantly different between male and female frogs. Thirty three frogs 
(26%) harbored a single species of helminth; 1 frog (1%) harbored 2 species. The 
smallest infected frog was 26 mm SVL. There was no correlation between number 
of helminths and SVL (r = 0.002, p > 0.05). Inspection of Table 2 will show 
that in no two localities did H. regilla harbor the same combination of helminth 
species and that the helminths preferred specific host locations. This is the first 
report of metacercariae of Clinostomum sp. and larvae of Physaloptera sp. in 
Ayla regilla. 


Discussion 


Barton (1997) described anuran helminth communities as depauperate and iso- 
lationist. Depauperate is used in the sense that few helminth species are found in 
a host species from a particular locality. Table 2 supports the use of depauperate 
to describe helminth communities harbored by H. regilla. Isolationist is used in 
the sense that helminth density is low, helminth species are unaffected by one 
another and some niches are absent. Table 2 also supports the use of isolationist 
to describe helminth communities of H. regilla. In addition, none of the helminth 
species found in this study was unique to H. regilla. Of the six helminth species 
present, Alaria sp., Clinostomum sp., and Physaloptera sp. are incapable of com- 
pleting their life cycles in anurans. Species of Alaria utilize mammals as final 
hosts and species of Clinostomum utilize birds as final hosts; metacercariae of 
both are commonly found in frogs (Smyth and Smyth 1980). Larvae, but no 
adults, of Physaloptera sp. have been reported from anurans (Anderson 1992). 
Distoichometra bufonis and Rhabdias ranae are common parasites of anurans 
(Brooks 1976; Baker 1987). Oswaldocruzia pipiens has been reported from frogs, 
toads, salamanders, lizards and turtles (Baker 1987). The term generalist should 


47 


HELMINTHS OF THE PACIFIC TREEFROG 


fc OT S SC 


jetoduy 


Gl 


OS 


OPISIOATY 


SI 


C0 ¢ Ol a — 

10 € € = “= 

£0 9 oT OC Ee 

V d N Vv d 
eysit in (@) 


CL 


sojasuy soy 


cO 


90, 


(Ay 


1g 


eie[D vues 


LO 


Eb 


Ipjoquinyy 


ssun]| 
ADUDA SDIPQDYY 
YORulo}s 
(avail) ‘ds paajdojpskygd 
UT}SOJUT [[PUIS 
suaidid viznsJOp]VDMSE 
BpO]eUION 
OUT]SOJUT [TPIS 
siuofng vAéjawmoyr1ojsiq 
eBpojso_d 
A1QUISIUI UT S}SAO 
(eLieois9RJow) ‘ds wnwojsoulD 
Q[OSNUL [eJaTays ul s}sAo 
(elreor1s9R}oW) ‘ds piuD]y 
BpO UII], 


oHIS SOW 
qyuTwyoH 


‘(YINOS 0} YOU) AyUNOD eIUIOJITeD Aq YjJISA4 DIA] WOIy SYUTWUTAY JO ds JsOY pue (VW) VoURpUNGe ‘(q) % se soUaTRADId “(N) JOqUINN' “7 FqQeRL 


48 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 3. Reports of Distoichometra bufonis, Oswaldocruzia pipiens and Rhabdias ranae from 
California by County. 


Helminth 

Host County Prevalence (%) Reference 
Distoichometra bufonis 

Bufo boreas Los Angeles 19/255 (7) Koller and Gaudin 1977 


Rhabdias ranae 


Hyla regilla 


Los Angeles 


28/232 (12) 


Los Angeles 4/69 (6) Goldberg et al. 1999 
Hyla regilla Los Angeles 2IZAZ (1) Koller and Gaudin 1977 
Santa Clara 2/18 (11) this study 
Oswaldocruzia pipiens 
Bufo boreas Butte not stated Ingles 1936 
Kern not stated Ingles 1936 
Los Angeles 119/255 (47) Koller and Gaudin 1977 
Los Angeles 10/30 (33) Goldberg et al. 1999 
Riverside 1/11 (9) Goldberg et al. 1999 
San Diego not stated Ingles 1936 
Ayla regilla Imperial 2/2 (100) this study 
Los Angeles 161/232 (69) Koller and Gaudin 1977 
Los Angeles 12/36 (33) this study 
Orange 4/61 (7) this study 
Riverside 3/6 (50) this study 
Santa Clara 3/18 (17) this study 
Rana aurora Butte not stated Ingles 1936 
Kern not stated Ingles 1936 
San Diego not stated Ingles 1936 
Aneides lugubris not stated 21/31 (68) Goldberg et al. 1998 
Elgaria multicarinata Los Angeles 2/96 (2) Goldberg and Bursey 1990 


Koller and Gaudin 1977 


Orange 1/61 (2) this study 

Riverside 1/6 (17) this study 
Rana boylii not stated not stated Ingles 1936 

Marin/Sonoma ZY (TS) Lehmann 1965 


also be used as a descriptor of the helminth communities of H. regilla (Table 2). 
Thus, in each county studied, H. regilla harbors a depauperate, isolationist com- 
munity composed of generalist helminths. 

More importantly, data from Los Angeles and Orange Counties (Table 1) sug- 
gest that none of these species of helminths maintains a stable population in H. 
regilla and that only O. pipiens is persistent, present some years with widely 
differing prevalences and absent other years. Several questions arise, namely, is 
absence of a helminth species an artifact of sample size, is H. regilla an atypical 
host, and do stable populations of these helminths exist in these localities? The 
first question cannot be answered by the data examined; it could only be deter- 
mined by a long-term study utilizing a large number of hosts. Others have reported 
these helminths from H. regilla (Table 3), thus H. regilla is a suitable host. The 
life cycle of D. bufonis is unknown but Joyeux (1927) regards the life history of 
nematotaeniid cestodes to be direct, that is, without an intermediate host; infection 
of a new host occurs through ingestion of cestode eggs. Both O. pipiens and R. 
ranae have direct life cycles and infection occurs by integumental penetration 
(Anderson 1992). These three helminths are generalists in that they are capable 


HELMINTHS OF THE PACIFIC TREEFROG 49 


of infecting a number of hosts (Brooks 1976; Baker 1987). Table 3 lists California 
records of these three species; however, long-term studies are not available to test 
stability in these hosts. The advantage to generalist helminths is that a particular 
host is unimportant; infection in a particular host may fluctuate (Table 3), but the 
helminth population maintains an overall density. 

The conclusion that we draw is that a generalist helminth population may vary 
drastically within a particular host over time, but within its population of hosts, 
the helminth species is persistent and most likely stable. 


Acknowledgments 


We thank R. L. Bezy for the opportunity to examine H. regilla from the Natural 
History Museum of Los Angeles County (Imperial, Los Angeles, Orange, Riv- 
erside Counties) and P. T. J. Johnson for treefrogs from Humboldt and Santa Clara 
Counties. 


Literature Cited 


Anderson, R. C. 1992. Nematode Parasites of Vertebrates: Their Development and Transmission. CAB 
International, Wallingford, Oxon, U.K. xii + 578 pp. 

Baker, M. R. 1987. Synopsis of the Nematoda parasitic in amphibians and reptiles. Occas. Pap. Biol., 
Mem. Univ. Newfoundland, 11:1—325. 

Barton, D. P. 1997. Why are amphibian helminth communities depauperate? Mem. Mus. Vict., 56: 
581-586. 

Brooks, D. R. 1976. Parasites of amphibians of the Great Plains. Part 2. Platyhelminths of amphibians 
in Nebraska. Bull. Univ. Nebraska St. Mus., 10:65—92. 

Douglas, L. T. 1958. The taxonomy of nematotaeniid cestodes. J. Parasitol., 44:261—273. 

Efford, I. E., and K. Tsumura. 1969. Observations on the biology of the trematode Megalodiscus 
microphagus in amphibians from Marion Lake, British Columbia. Amer. Midl. Nat. 82:197— 
203. 

Goldberg, S. R., and C. R. Bursey. 1990. Helminths of the San Diego alligator lizard, (Gerrhonotus 
multicarinatus webbi) (Anguidae). J. Wild. Dis., 26:297—298. 

: , and H. Cheam. 1998. Composition and structure of helminth communities of the 

salamanders, Aneides lugubris, Batrachoseps nigriventris, Ensatina eschscholtzii (Plethodonti- 

dae), and Taricha torosa (Salamandridae) from California. J. Parasitol., 84:248—251. 

, ——., and S. Hernandez. 1999. Helminths of the western toad, Bufo boreas (Bufonidae) 
from southern California. Bull. S. Cal. Acad. Sci., 98: 39-44. 

Grossman, T., and H. Sandner. 1953. Helmintofauna plaz6w Bialowieskiego Parku Narodowego. Acta 
Parasitol. Polonica, 1:345—352. 

Ingles, L. G. 1936. Worm parasites of California amphibia. Trans. Amer. Microsc. Soc., 55:73—92. 

Johnson, P. T. J., K. B. Lunde, E. G. Ritchie, and A. E. Launer. 1999. The effect of trematode infection 
on amphibian limb development and survivorship. Science 284:802—804. 

Joyeux, C. 1927. Recherches sur la faune helminthologique Algérienne (cestodes et trématodes). 
Archs. Inst. Pasteur Alger., 5:509-528. 

Koller, R. L., and A. J. Gaudin. 1977. An analysis of helminth infections in Bufo boreas (Amphibia: 
Bufonidae) and Hyla regilla (Amphibia: Hylidae) in southern California. Southwest. Nat., 21: 
503-509. 

Kuc, I., and T. Sulgostowska. 1988. Helminth fauna of Rana ridibunda Pallas, 1771 from Goclawski 
Canal in Warszawa (Poland). Acta Parasitol. Polonica, 33:101—105. 

Lees, E. 1962. The incidence of helminth parasites in a particular frog population. Parasitology, 52: 
95-102. 

Lehmann, D. L. 1965. Intestinal parasites of northwestern amphibians. Yearbook Amer. Philosoph. 
Soc. pp 284-285. 

Macy, R. W. 1960. On the life cycle of Megalodiscus microphagus Ingles (Trematoda: Paramphisto- 
matidae). J. Parasitol., 46:662. 


50 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Markov, G. S., and M. L. Rogoza. 1949. Parasitic fauna of male and female grass frogs. C. R. Acad. 
Sci. U.R.S.S. 65:417—420. [in Russian]. 

, and . 1953. Seasonal and microzonal differences in the parasitic fauna of grass frogs. 
C.R. Academy of Sciences U.R.S.S. 91:169-—172. [in Russian]. 

Meffe, G. K., and W. L. Minckley. 1987. Persistence and stability of fish and invertebrate assemblages 
in a repeatedly disturbed Sonoran Desert stream. Am. Midl. Nat., 117:177-191. 

Millzner, R. 1924. A larval acanthocephalid, Centrorhynchus californicus sp. nov., from the mesentery 
of Hyla regilla. Univ. Calif. Publ. Zool., 26:225—227. 

Prudhoe, S., and R. A. Bray. 1982. Platyhelminth parasites of the Amphibia. British Museum (Natural 
History) and Oxford University Press, Oxford, 217 pp. + 4 microfiche. 

Smyth, J. D., and M. M. Smyth. 1980. Frogs as host-parasite systems I. The Macmillan Press Ltd., 
London, ix + 112 pp. 

Stebbins, R. C. 1985. A field guide to western reptiles and amphibians. Houghton Mifflin Company, 
Boston, xiv + 336 pp. 


Accepted for publication 13 January 2000. 


Bull. Southern California Acad. Sci. 
100(1), 2001, pp. 51-58 
© Southern California Academy of Sciences, 2001 


Cercarial Emergence from Rediae in California Snail Tissues 


Mark Armitage, M.S. 


Azusa Pacific University, P.O. Box 7000/Mary Hill 101, Azusa, 
California 91702-7000, 626-815-6000, X5519, marmitage @ apunet.apu.edu 


Abstract.—Rediae from Cerithidea californica snails collected at Point Mugu, 
CA, yield pleurolophocercous, furcocercous, and xiphidio cercariae. Pleuroloph- 
ocercous and xiphidio cercariae emerge one at a time from rediae and never tail 
first. Furcocercous cercariae, on the other hand emerge in multiple numbers and 
either tail or head first. The pleurolophocercous cercariae collected in this study 
probably represent either Ascocotyle sexidigita, or A. (Phagicola) diminuta, both 
of which have been excysted from metacercarial cysts in Fundulus parvipinnis 
collected at the same site. 


Previous authors have described California cercariae which differ from those 
found at the Point Mugu site. Maxon and Pequegnat (1949) reported that C. 
californica collected from mud flats at upper Newport Bay (CA) yielded 7 dif- 
ferent types of cercariae when isolated in incubated finger bowls, including pleu- 
rolophocercous (single tail with fin folds), furcocercous (forked tail), and xiphidio 
(single tail, no fin folds) cercariae which were also found in this study. These 
authors described one furcocercous, two pleurolophocercous, and three echinos- 
tome cercariae, all of which had oral spines or other characteristics unlike those 
encountered in this study at Point Mugu. Martin (1950a), described the cercariae 
of Euhaplorchis californiensis shed by C. californica at Playa del Rey, CA as a 
parapleurolophocercous type with an oral sucker surrounded by a crown “‘having 
four or five short spines in its dorsal part.’ Martin (1950b) reported cercariae of 
Parastictodora hancocki, also shed by Cerithidea, as having three rows of 5—6 
spines. Additionally, Martin (1951) described Pygidiopsoides spindalis adults ex- 
perimentally derived from the feeding of infected F. parvipinnis specimens to cats 
and newly hatched chicks, but did not describe the cercariae from this trematode 
until later (Martin 1964), when he reported that the cercariae, also shed from 
Cerithidea had ‘‘oral suckers[s]. . . surrounded by a ring of fourteen large spines.”’ 
Martin made no descriptions of cercariae in a study of seasonal infections of 
Cerithidea over a one-year period (1955), but Martin (1972) did provide an an- 
notated key to the cercariae that develop in Cerithidea from Southern California. 
Finally, Font, et al. (1984) described the cercaria of a sibling species of A. sexi- 
digita, named A. gemina from Louisiana and Mississippi, (although A. gemina 
cercariae do not infect F. parvipinnis). There were also morphological differences 
between cercariae of A. gemina which had spines and bristles and those cercariae 
studied here which did not have any of the spines and bristles described by these 
other authors. 


Materials and Methods 


Fifty Cerithidea californica were hand-collected from the exposed mud flats at 
low tide at the Laguna Road bridge over the western Mugu lagoon area of the 


St 


52, SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Point Mugu Naval Air Weapons Station, CA, in May 1999. Algae were also taken 
from the site. Snails were isolated in 4” fingerbowls in 12% saline under bright 
fiber optic illuminators for a period of 36 hours with small quantities of algae. 
Light cycle illumination was on ten hours per day, followed by a fourteen-hour 
period of darkness. Snails that yielded cercariae after 36 hours were placed in 
fresh saline and free swimming cercariae were removed by pipette into fixative. 
Those snails which did not produce cercariae were placed into fingerbowls for 
further observation, and were reisolated if cercariae began to emerge. After a 
week, snails known to yield cercariae were sacrificed by crushing and the tissues, 
as well as individual cercariae and rediae, were fixed in 2% glutaraldehyde, buff- 
ered in .2M sodium cacodylate, postfixed in 2% osmium, and rinsed in water. 
These were then dehydrated through a graded series of acetone. Cercariae and 
snail tissue for SEM were air dried, affixed to stubs, coated in gold for 90 seconds, 
and imaged and photographed on a Jeol SEM at 15 Kv. 


Results 


Both large and small rediae were observed at times infecting the same Cerith- 
idea digestive gland tissues. Most often, however, snails contained only large or 
only small rediae (FIG 2, 7). Thirty one percent of the collected snails when 
crushed, yielded rediae in large numbers, infecting only the digestive organs. 
Four distinct cercariae were shed. 

1) One very small xiphidio cercaria, which came out in small numbers, did not 
dehydrate well and was unsuitable for processing in electron microscopy. 

2) The pleurolophocercous cercariae were birthed singly, always head first from 
rediae which were 275ym thick, 700.m long, and which had unusually large, 
thickly collared birth pores (FIG 2,3,4). The cercariae have a well-developed oral 
sucker and a massive ventral sucker ringed by a muscular annulus. Additionally, 
paired sets of papillae appear on the surface of the cercarial tegument, distal to 
the oral sucker (FIG 9). A large range in shape and length variability exists in 
live cercariae (FIG 10), therefore, anatomical features in fixed worms must be 
considered in light of possible fixation artifacts, including the possible loss of 
bristles and spines. Although they do have eyespots, no spines were observed on 
any of the pleurolophocercous cercariae, therefore it is possible that these may 
represent the larval stage of either Ascocotyle sexidigita or of A. (Phagicola) 
diminuta, both of which have been excysted previously from naturally occurring 
infections in F. parvipinnis at the same site (Armitage 1997, 1999). 

3) The furcocercous cercariae were birthed from rediae that were 804m by 
450m and had a single smaller pore (FIG 7), and either came out head or tail 
first, but were mostly birthed in multiples (FIG 5,6,7). The cercariae came out in 
such large numbers that the water in the 4” bowls became a milky white after 10 
hours in light. These cercariae do not correspond to any of the descriptions in the 
literature, as they have an almost cylindrical body shape, no eyespots, and no 
collar spines. 

4) A few furcocercous types resembling those described by Maxon and Pe- 
quegnat (1949) were observed (FIG 11), but there were not enough specimens 
for electron microscopy. 

That only 4 types of cercariae were isolated from the site fits well with data 
previously reported showing the presence of Pygidiopsoides spindalis, Ascocotyle 


CERCARIAL EMERGENCE IN CERITHIDEA 53 


Fig. 1. Thin section, pleurolophocercous rediae from Cerithidea. Note two mature cercariae (ar- 
rows). Scale bar = 100um. Fig. 2. SEM micrograph, pleurolophocercous rediae from Cerithidea. 
Note closed birthpore. Scale bar = 125ym. A = acetabulum, B = birthpore, C = cercariae, O = oral 
sucker, P = papillae, R = rediae, T = tail 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


54 


SEM micrograph, pleurolophocercous rediae from Cerithidea. Only one cercaria is birthed 


Fig..9, 
at a time. Scale bar 


80m. Fig. 4. SEM Micrograph, pleurolophocercous rediae from Cerithidea. 


30m. 


Note annular ring around birthpore (arrows). Scale bar 


CERCARIAL EMERGENCE IN CERITHIDEA aD 


Fig. 5. SEM Micrograph, furcocercous rediae from Cerithidea. Multiple cercariae emerge simul- 
taneously. Scale bar = 65ym. Fig. 6. SEM Micrograph, furcocercous rediae from Cerithidea. Note 
thick, muscular tail. Scale bar = 45ym. 


56 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


fo ee = Na et 


ened: 
‘ [a 


8 


Fig. 7. SEM Micrograph, furcocercous rediae from Cerithidea. Often, these cercariae are birthed 
tail first. Note tail fins (arrows). Scale bar = 50yum. Fig. 8. Light Micrograph, furcocercous cercariae. 
Note length of tail relative to body. Scale bar = 80pm. 


4 


CERCARIAL EMERGENCE IN CERITHIDEA 


57 


Fig. 9. SEM Micrograph, pleurolophocercous cercaria. Note massive acetabulum and papillae. 
Scale bar = 20um. Fig. 10. Light Micrograph, pleurolophocercous cercariae, whole mount. Active 


worms stretch and compress in to a variety of shapes. Scale bar = 5Ou.m. Fig. 11. 
furcocercous cercariae. Scale bar = 35yum. 


Light Micrograph, 


58 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


(Phagicola) diminuta, and Ascocotyle sexidigita encysted in fish which also in- 
habit the same site (Armitage 1997, 1999). It cannot be discounted, however, that 
spines and bristles may have been lost in these specimens due to fixation artifact. 


Literature Cited 


Armitage, M. 1997 The euryhaline cottid fish, Leptocottus armatus (Girard), second intermediate host 
of the trematode Ascocotyle (P.) diminuta. Bull. So. Calif. Acad. Sci. 96(3):112—-116. 

1999. The euryhaline gobiid fish, Gillichthys mirabilis Cooper 1864, second intermediate host 
of the trematode, Pygidiopsoides spindalis Martin 1951. Bull. So. Calif. Acad. Sci. 98(2):75-— 
79. 

Font, W. F, R. Heard and R. Overstreet. 1984. Life cycle of Ascocotyle gemina, n.sp., a sibling species 
of A. sexidigita (Digenea: Heterophyidae). Trans. Am. Micro. Soc. 103(4):392—407. 

Martin, W. E. 1950a. Euhaplorchis californiensis N.G., N.Sp., Heterophyidae, Trematoda, with notes 
on its life-cycle. Trans. Am. Micro. Soc. 59(2):194—209. 

1950b. Parastictodora hancocki, N.G., N.Sp., (Trematoda: Heterophyidae), with observations 

on its life-cycle. J. Parasit. 36(4):360—370. 

1951. Pygidiopsoides spindalis, N.G., N.Sp., (Trematoda: Heterophyidae), and its second in- 

termediate host. J. Parasit. 37(3):297—300. 

1955. Seasonal infections of the snail, Cerithidea californica Haldeman, with larval trema- 

todes. Essays Nat. Sci. Honor of Capt. A. Hancock, 203—210. USC Press. 

1964. Life cycle of Pygidiopsoides spindalis Martin, 1951 (Heterophyidae: Trematoda). Trans. 

Am. Micro. Soc. 83:270—272. 

1972. An annotated key to the cercariae that develop in the snail Cerithidea californica. Bull. 
So. Calif. Acad. Sci. 71(1):39—43. 

Maxon, M. G., and W. Pequegnat. 1949. Cercariae from upper Newport bay. J. Ent. Zool. 41:30—56. 


Accepted for publication 19 June 2000. 


INSTRUCTIONS FOR AUTHORS 


The BULLETIN is published three times each year (April, August, and December) and includes articles in English 
in any field of science with an emphasis on the southern California area. Manuscripts submitted for publication 
should contain results of original research, embrace sound principles of scientific investigation, and present data in 
a clear and concise manner. The current AIBS Style Manual for Biological Journals is recommended as a guide 
for contributors. Consult also recent issues of the BULLETIN. 


MANUSCRIPT PREPARATION 


The author should submit at least two additional copies with the original, on 8% X 11 opaque, nonerasable paper, 
double spacing the entire manuscript. Do not break words at right-hand margin anywhere in the manuscript. 
Footnotes should be avoided. Manuscripts which do not conform to the style of the BULLETIN will be returned 
to the author. 

An abstract summarizing in concise terms the methods, findings, and implications discussed in the paper must 
accompany a feature article. Abstract should not exceed 100 words. 

A feature article comprises approximately five to thirty typewritten pages. Papers should usually be divided into 
the following sections: abstract, introduction, methods, results, discussion and conclusions, acknowledgments, lit- 
erature cited, tables, figure legend page, and figures. Avoid using more than two levels of subheadings. 

A research note is usually one to six typewritten pages and rarely utilizes subheadings. Consult a recent issue 
of the BULLETIN for the format of notes. Abstracts are not used for notes. 

Abbreviations: Use of abbreviations and symbols can be determined by inspection of a recent issue of the 
BULLETIN. Omit periods after standard abbreviations: 1.2 mm, 2 km, 30 cm, but Figs. 1-2. Use numerals 
before units of measurements: 5 ml, but nine spines (10 or numbers above, such as 13 spines). The metric system 
of weights and measurements should be used wherever possible. 

Taxonomic procedures: Authors are advised to adhere to the taxonomic procedures as outlined in the Interna- 
tional Code of Botanical Nomenclature (Lawjouw et al. 1956), the International Code of Nomenclature of Bacteria 
and Viruses (Buchanan et al. 1958), and the International Code of Zoological Nomenclature (Ride et al. 1985). 
Special attention should be given to the description of new taxa, designation of holotype, etc. Reference to new 
taxa in titles and abstracts should be avoided. 

The literature cited: Entries for books and articles should take these forms. 

McWilliams, K. L. 1970. Insect mimicry. Academic Press, vii + 326 pp. 

Holmes, T. Jr., and S. Speak. 1971. Reproductive biology of Myotis lucifugus. J. Mamm., 54:452-458. 

Brattstrom, B. H. 1969. The Condor in California. Pp. 369-382 in Vertebrates of California. (S. E. Payne, ed.), 

Univ. California Press, xii + 635 pp. 


Tables should not repeat data in figures (/ine drawings, graphs, or black and white photographs) or contained 
in the text. The author must provide numbers and short legends for tables and figures and place reference to each 
of them in the text. Each table with legend must be on a separate sheet of paper. All figure legends should be 
placed together on a separate sheet. Illustrations and lettering thereon should be of sufficient size and clarity 
to permit reduction to standard page size; ordinarily they should not exceed 8% by 11 inches in size and after 
final reduction lettering must equal or exceed the size of the typeset. All half-tone illustrations will have light screen 
(grey) backgrounds. Special handling such as dropout half-tones, special screens, etc., must be requested by and 
will be charged to authors. As changes may be required after review, the authors should retain the original 
figures in their files until acceptance of the manuscript for publication. 


Assemble the manuscript as follows: cover page (with title, authors’ names and addresses), abstract, introduction, 
methods, results, discussion, acknowledgements, literature cited, appendices, tables, figure legends, and figures. 


A cover illustration pertaining to an article in the issue or one of general scientific interest will be printed on the 
cover of each issue. Such illustrations along with a brief caption should be sent to the Editor for review. 


PROCEDURE 


All manuscripts should be submitted to the Editor, Daniel A. Guthrie, W. M. Keck Science Center, 925 North 
Mills Avenue, Claremont, CA 91711. Authors are requested to submit the names, addresses and specialities of 
three persons who are capable of reviewing the manuscript. Evaluation of a paper submitted to the BULLETIN 
begins with a critical reading by the Editor; several referees also check the paper for scientific content, originality, 
and clarity of presentation. Judgments as to the acceptability of the paper and suggestions for enhancing it are sent 
to the author at which time he or she may be requested to rework portions of the paper considering these recom- 
mendations. The paper then is resubmitted and may be re-evaluated before final acceptance. 


Proof: The galley proof and manuscript, as well as reprint order blanks, will be sent to the author. He or she 
should promptly and carefully read the proof sheets for errors and omissions in text, tables, illustrations, legends, 
and bibliographical references. He or she marks corrections on the galley (copy editing and proof procedures in 
Style Manual) and promptly returns both galley and manuscript to the Editor. Manuscripts and original illustra- 
tions will not be returned unless requested at this time. All changes in galley proof attributable to the author 
(misspellings, inconsistent abbreviations, deviations from style, etc.) will be charged to the author. Reprint 
orders are placed with the printer, not the Editor. 


CONTENTS 


Pliocene Amphibians and Reptiles from Clark County, Nevada. Jim I. Mead 
and Christopher J. Bell 


An Evolutionary Classification and Checklist of Amphibians and Reptiles on 
the Pacific Islands of Baja California, México. L. Lee Grismer 


Spot Pattern of Girella nigricans, the California Opaleye: Variation among 
Cohorts and Climate Periods. Jana L. D. Davis 


Diversity of Parasitic Cuscuta and their Host Plant Species in a Larrea-Atriplex 
Ecotone. Simon A. Lei 


Persistence of the Nematode, Oswaldocruzia pipiens (Molineidae), in the 
Pacific Treefrog, Hyla regilla (Hylidae), from California. Stephen R. 
Goldberg and Charles KR. Gursey ee 


Cercarial Emergence from Rediae in California Snail Tissues. Mark Armitage 


COVER: Light Micrograph, furcocercous cercariae from Cerithidea. Mark Armitage. 


12 


24 


36 


44 


51 


ISSN 0038-3872 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


BOLLETIN 


Volume 100 Number 2 


a PR SU Saas a age ron - — —_ 
on 4 g ie iy Ray" iA ieee ey ai 
Lad AP ORAL A ¥ 
2 » 


Vice alae © Lee To ies h 
42 te Dive BAe VR Ce PO hee 5 orm aoe, 
WEY Or SCIENCES } 

~ a 


UCTS F200" =f AUGUST 2001 


BCAS-A100(2) 59-128 (2001) 
SL Le i 


Southern California Academy of Sciences 
Founded 6 November 1891, incorporated 17 May 1907 


© Southern California Academy of Sciences, 2001 


OFFICERS 


Daniel Pondella, President 
Ralph Appy, Vice-President 
Susan E. Yoder, Secretary 
Daniel A. Guthrie, Treasurer 
Daniel A. Guthrie, Editor 
David Huckaby, Past President 
Hans Bozler, Past President 


BOARD OF DIRECTORS 


1999-2002 2000-2003 2001—2004 
Ralph G. Appy James Allen Brad R. Blood 
Jonathan N. Baskin John Dorsey Chuck Kopezak 
John W. Roberts Judith Lemus Daniel Pondella 
Tetsuo Otsuki Martha and Richard Raymond Wells 
Gloria J. Takahashi Schwartz Raymond Wilson 


Susan E. Yoder 


Membership is open to scholars in the fields of natural and social sciences, and to any person interested 
in the advancement of science. Dues for membership, changes of address, and requests for missing 
numbers lost in shipment should be addressed to: Southern California Academy of Sciences, the Natural 
History Museum of Los Angeles County, Exposition Park, Los Angeles, California 90007-4000. 


Protessional Members: 05. eee ee Sa Ses Oe 8 Oe Oe re 
Student Members). 480 we Se ee Be oe ae geste cel, veeeoplls ee eal ase, eae 
Memberships in other categories are available on request. 


Fellows: Elected by the Board of Directors for meritorious services. 


The Bulletin is published three times each year by the Academy. Manuscripts for publication should 
be sent to the appropriate editor as explained in “Instructions for Authors” on the inside back cover 
of each number. All other communications should be addressed to the Southern California Academy 
of Sciences in care of the Natural History Museum of Los Angeles County, Exposition Park, Los 
Angeles, California 90007-4000. 


Date of this issue 11 September 2001 


This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). 


Bull. Southern California Acad. Sci. 
100(2), 2001, pp. 59-73 
© Southern California Academy of Sciences, 2001 


A Fossil Blue Marlin (Makaira nigricans Lacepéde) from the 
Middle Facies of the Trinidad Formation (Upper Miocene to Upper 
Pliocene), San Jose del Cabo Basin, Baja California Sur, México 


Harry L. Fierstine,’ Shelton P. Applegate,* Gerardo Gonzalez-Barba,? 
Tobias Schwennicke’, and Luis Espinosa-Arrubarrena? 


Biological Sciences Department, California Polytechnic State University, 
San Luis Obispo, CA 93407, U.S.A. 
2Instituto de Geologia, Universidad Nacional Aut6noma de México, 
Ciudad Universitaria, México, D.F., 04510, México 
Departamento de Geologia Marina, A.I. de Ciencias del Mar, 
Universidad Aut6noma de Baja California Sur, Apartado Postal #19B, 
La Paz, Baja California Sur, 23080, México 


Abstract.—A large fossil skull and several rostra of Makaira nigricans Lacépéde, 
1802 (Perciformes: Istiophoridae), as well as some less diagnostic istiophorid 
remains, have been recovered from the middle facies of the Trinidad Formation 
near Rancho Algodones, San José del Cabo Basin, Baja California Sur, México. 
These are the only billfish specimens known from fossiliferous deposits located 
between southern California and Panama. Based on published accounts of the 
presence of nannofossils and planktonic foraminifera, and additional field work, 
we conclude that the age of the study area is late Miocene to late Pliocene. Based 
on the habitat preferences of recent M. nigricans and on the type of sediments, 
we conclude that the middle facies of the Trinidad Formation was deposited far 
offshore at a water depth of at least 100 m in a bottom environment that was 
poorly oxygenated and without currents. 


The blue marlin, Makaira nigricans Lacépéde, 1802, is an important commer- 
cial and recreational fish species that inhabits the tropical and temperate Atlantic, 
Indian, and Pacific oceans favoring depths of over 100 m and temperatures of 
approximately 24°C (Nakamura 1983, 1985). Blue marlin are usually distributed 
from about 45°N latitude to 35°S latitude in the Pacific Ocean (Nakamura 1983), 
although in the far Eastern Pacific blue marlin generally range only from 23°N 
to 3°S (Rivas 1975). Makaira nigricans is occasionally observed off southern 
California, but only during periods of anomalously high sea surface temperatures 
(National Marine Fisheries Service [The Southwest Fisheries Science Center’s 
1996 Billfish Newsletter], unpublished). 

Fossil remains of blue marlin or blue marlin-like fish (e.g., Makaira sp., cf. M. 
nigricans) are reported from the middle Miocene of Belgium, from the late Mio- 
cene of Panama, southern California and Virginia, and from the early Pliocene of 
North Carolina (Fierstine 1998, 1999, 2001). Discovery of a large skull and sev- 
eral rostra of M. nigricans, as well as some less diagnostic istiophorid remains, 
in the middle facies of the Trinidad Formation (late Miocene to late Pliocene) in 
the San José del Cabo Basin, Baja California Sur, México, offers the first oppor- 
tunity to examine billfish specimens from fossil deposits located between southern 


59 


60 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


California and Panama and to discuss the paleoecology of the Trinidad Formation 
based on the habitat preference of a still extant bony fish. Interpretations of the 
stratigraphy, ages and depositional environments of the rocks near Rancho Los 
Algodones are equivocal (Espinosa-Arrubarrena 1979; McCloy 1984; Martinez- 
Gutiérrez and Sethi 1997) and we offer our own conclusions based on additional 
field work and information from recent publications. 


Materials and Methods 


The materials and methods used in this study, particularly for the rostrum, have 
been described fully in Fierstine and Voigt (1996) and Fierstine (1998, 1999, 
2001), but some of it is repeated here for convenience. Approximately 160 whole 
and partial skeletons of Recent specimens representing seven species of the family 
Istiophoridae were examined and used for comparisons with the fossil material. 
The museum number, geological age, and locality are given in the text for each 
fossil specimen that was used as comparative material. 

Anatomical abbreviations: A, articular; DE, dentary; LA, lacrimal; LE, lateral 
ethmoid; M, maxillary; NA, nasal; NC, nutrient canal; PD, predentary; PM, pre- 
maxilla; PN, prenasal; S, sclerotic; + denotes extinct taxon. 

Institutional abbreviations: IGM, Instituto de Geologia, Ciudad Universitaria, 
Universidad Nacional Aut6noma de México, D.E, México; LACM, Natural His- 
tory Museum of Los Angeles County, Los Angeles, California, U.S.A. 

Characters and their definitions for each bone or structure are as follows: 

Rostrum.—Fierstine (1998, 1999) and Fierstine and Voigt (1996) emphasized 
two regions of the rostrum in Recent specimens (Fig. 1): 0.5L, or one-half the 
distance between the distal tip and the orbital margin of the lateral ethmoid bone 
(L); and 0.25L, or one-fourth the distance between the distal tip and the orbital 
margin of the lateral ethmoid bone. Six morphometric characters were studied in 
each region (Fig. 1): depth (D) and width (W) of rostrum; height (H) and width 
(N) of the left nutrient canal (as seen in cross-section); distance (IC) between the 
right and left nutrient canals (as seen in cross-section); and distance (DD) of the 
left nutrient canal from the dorsal surface of the rostrum (as seen in cross-section). 
Characters studied without reference to region were: distribution of denticles on 
the dorsal surface of the rostrum measured from the distal tip (DZ); length from 
distal tip where denticles are absent from the ventral mid-line (DVS); length from 
the distal tip to the distal extremity of the prenasal (P); length from tip where 
fused premaxillae divide into separate bones (VSPM); and presence or absence 
of denticles on the prenasal. 

In the fossil specimens from San José del Cabo (Figs. 2—3; Table 1); the exact 
position of 0.5L or 0.25L was unknown and cross-sections were studied at broken 
end(s) or from computer tomography images. No transverse cuts were made of 
the specimens. Using the techniques of Fierstine and Crimmen (1996) and Fier- 
stine (2001), a cross-section was estimated to be at 0.5L if the prenasal bone was 
large, and at 0.25L if the prenasal bone was tiny or absent. Because of the frag- 
mentary nature of the fossil rostra, DZ was the only character available to study 
in each estimated region. 

Predentary.—Fierstine (1998, 2001) studied three morphometric characters in 
Recent and fossil specimens: length along the ventral mid-line (PL), width across 
the widest expanse of the denticulated surface (PW), and depth perpendicular to 


FOSSIL BLUE MARLIN FROM BAJA CALIFORNIA SUR 61 


PM 


Fig. 1. Makaira nigricans Lacépéde. A. Skull, left lateral view. Drawing is a composite of two 
Recent specimens (LACM 25491 and 46023-1). B. Enlarged cross-section of generalized istiophorid 
rostrum at one-half bill length (0.5L). C. Enlarged cross-section of generalized istiophorid rostrum at 
(0.25L). See text for definition of abbreviations (modified from Fierstine, 1999:fig. 3 and Fierstine and 
Voigt, 1996:fig. 2). 


62 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


F 


Fig. 2. Makaira nigricans Lacépéde, upper Miocene-late Pliocene, middle facies of the Trinidad 
Formation, San José del Cabo Basin, Baja California Sur, México. A. Proximal rostrum (IGM 7888), 
left lateral view. B. Partial skull (GM 7889), left lateral view. Dotted lines indicate probable attach- 
ment of A with B. C. Partial rostrum (IGM 7884), posterior view. D. Lateral view of C. E. Partial 
rostrum (IGM 7893), anterior view. E Lateral view of E IGM 7893). Scale bar equals 5 cm (A, B), 
2 cm (D), and 1 cm (C, E, and F). 


FOSSIL BLUE MARLIN FROM BAJA CALIFORNIA SUR 63 


F ane Es 


Fig. 3. Istiophorid billfish fossils, upper Miocene-late Pliocene, middle facies of the Trinidad 
Formation, San José del Cabo Basin, Baja California Sur, México. A. Istiophoridae gen. and sp. indet., 
partial predentary, dorsal view (IGM 7887). B. Istiophoridae gen. and sp. indet., partial predentary, 
dorsal view (IGM 7885). C. Istiophoridae gen. and sp. indet., partial ?dorsal pterygiophore (IGM 
7894), anterior view. E. Makaira sp., cf. M. nigricans Lacépéde, partial rostrum, posterior view (IGM 
7883). E Lateral view of E (IGM 7883). Scale bar equals 1 cm (A—E) or 2 cm (F). 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


64 


bers ice ec. SEO © SLO —— L‘LO S60 c V0 8°8C OLe S09 ISTO 6 DI €68L WOI 
Fa aro <s'0 600 620 ma #8°L1 #8°11 #S°L0 #€°08 #9101 0'0CC IS 0 66 DI 8882 WOI 
ae tau VO o810 6970 = 6°80 Skt €'SO L'8¢ O1TV oat ISTO 66 DI y88L WO! 
epepe coro’ 6s'0' Sho - c3'0 *S 66 0°80 Lol 0°SO 9°EE O'CY Vv 801 ISTO c6 DI €88L WOl 
Seo. 0S'0 “260. 290 Oc! #¢°SO #¢ 60 #7 £O #9°31 #L°6C 0'6SI ISTO c6 DI 788L WOI 


M/za M/OL Gd/dd GH Md Za @) | dd H d NM yWsusy «= uoTsey = Joquunu Jequinu 
[[e1240 Ayyeso'T uoumtseds 
Ee ee) ee eS "eS 


(WIW UT) SJUSWOINSes][ 


soney 


‘(SUONIUYEp JO} 1X9} 99S) TS"O 10 TST'O JO ued se porpnis sem [[Iq 94} JoyJOYM 0} SIOjor UOISOy “(,.) YSHOISe UL YIM PoJeOIpUT oJ soyeUINsSs ONLI pure juoUWoIns 
-eoul pue (#) usIs punod ev YIM poyeorpur ore soseum Aydeisowi0) 1oyndwio0o Woy Uoye} sJUOWSINSeI| ‘OOIXO ‘ING erusoseD eleg ‘(susD0T][q HP] O} dUSDOI/ 
yoddn) uoneuni0,] pepruly, ‘UIseg OqeD [ep esof URg 9} WOT seproydonsy Ayre, oy} Jo suowtoeds aay Jo esol [ensed Jo sones pue sjuSUtoinseoy “7 ORT, 


FOSSIL BLUE MARLIN FROM BAJA CALIFORNIA SUR 65 


the long axis from PW to the ventral surface of the bone (PD). The San José del 
Cabo specimens (Fig. 3) were too fragmentary to obtain any of the three mor- 
phometric characters. 

Skull.—Although there are published descriptions available of a typical or spe- 
cific istiophorid skull (Gregory and Conrad 1937; Schultz 1987; Davie 1990), 
there are no comparative osteological studies that are useful in determining the 
species represented by the partial skull from the San José del Cabo Basin (Fig. 
2B). Nakamura (1983, 1985) compared complete neurocrania of Recent istio- 
phorid species and found generic differences in overall proportions. Fierstine 
(1998, 2001) found specific differences among three isolated skull bones (articular, 
maxilla, and parasphenoid) of Recent and fossil istiophorids, but those features 
are not preserved in the fossils from the San José del Cabo Basin. Identification 
of the skull is based on overall size and its possible attachment to one of the 
rostra (IGM 7888). 

Pterygiophore.—Potthoff et al. (1986:672, fig. 14) described the development 
of pterygiophores in the anal and dorsal fins of istiophorids, but we are not aware 
of any published morphological accounts of individual pterygiophores in the adult 
Istiophoridae. Identification of the partial pterygiophore (IGM 7894) from San 
José del Cabo Basin (Fig. 3) is based on comparison with pterygiophores in the 
dorsal and anal fins of three Recent istiophorids, LACM 46023-1 (M. nigricans), 
LACM 25509 (M. indica), and LACM 25499 (T. angustirostris). 


Regional Geology 


The Buena Vista-San José del Cabo Basin is located near the southern end of 
the Baja California Peninsula between the Sierra La Laguna and Sierra La Trin- 
idad mountain ranges (Fig. 4). Both ranges are composed of crystalline and meta- 
morphic rocks. Based on evidence from fission-track thermochronology, Fletcher 
et al. (2000) suggested that the uplift of the Sierra La Laguna Mountains along 
the San José del Cabo fault started approximately 10—12 Ma. The basin covers 
approximately 2,000 km? and contains both terrestrial and marine strata that range 
in age from early middle Miocene to Recent (McCloy 1984; Martinez-Gutiérrez 
and Sethi 1997). Martinez-Gutiérrez and Sethi (1997) considered the basin to have 
formed in association with the opening of the Gulf of California and formation 
of the Baja California Peninsula, and proposed a general model for its evolution. 
The sedimentary rocks of the basin filling are mainly dipping to the southwest or 
west, and for this reason the oldest sedimentary rocks are exposed along the 
eastern margin of the basin, becoming younger to the southwest and west. The 
presence of faults complicates this general picture. 

The Calera Formation (Fig. 5) is the oldest sedimentary and non-marine unit 
in the basin (Martinez-Gutiérrez and Sethi 1997), and is composed of sandstones 
and conglomerates deposited in an alluvial fan environment. Its age is uncertain 
due to the lack of fossils, but McCloy (1984) assigned an age of no younger than 
middle Miocene, and Martinez-Gutiérrez and Sethi (1997) considered the beds to 
be middle Miocene to late Miocene, an age range that essentially agrees with the 
fission-track data of Fletcher et al. (2000), if the basin began to fill with deposits 
soon after uplift of the Sierra La Laguna Mountains. The superposed Trinidad 
Formation (Fig. 5) was deposited in a nearshore to basinal marine setting during 
the middle Miocene to upper Pliocene (see discussion below). The marine Refugio 


66 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


109°40' 
GULF OF 
CALIFORNIA 


109°30' 


GULF 
OF 
X, CALIFORNIA 


23°40' 


PACIFIC SANTIAGO 


OCEAN 


23°10' 


SAN JOSE 
DEL CABO, 


Fig. 4. Map of southern Baja California Sur, México (B.C.S.), indicating collection localities for 
istiophorid billfish in the middle facies of the Trinidad Formation (upper Miocene-late Pliocene), San 
José del Cabo Basin. (modified from Martinez-Gutiérrez and Sethi, 1997:figs. 1,2). 


Formation (Fig. 5) overlies the Trinidad Formation and the contact between them 
is transitional as well as erosional (Martinez-Gutiérrez and Sethi 1997). The Re- 
fugio Formation is composed of siltstones, sandstones, and limestones. Many 
sandstones are cross-bedded and fossiliferous, indicating nearshore depositional 
settings. McCloy (1984) suggested a late Pliocene age for the Refugio Formation, 
whereas Smith (1991) and Martinez-Gutiérrez and Sethi (1997) considered it to 
be early Pliocene. 


The Trinidad Formation 


The Trinidad Formation is the oldest marine stratigraphic unit in the Buena 
Vista-San José del Cabo basin. McCloy (1984) estimated its thickness to be be- 
tween 700 and 1000 m, whereas Martinez-Gutiérrez and Sethi (1997) estimated 
its thickness at 400 m. McCloy (1984) informally divided the formation into four 
lithologic subunits (A to D). Subunit A is generally a sequence that grades upward 
from course to fine and is composed of cross-bedded or planar-bedded sandstone, 
siltstones, and fissile and laminated shales. These beds may have alternating tan 
to buff siltstones and gray shales with sandstone intercalations. Fossils (mainly 
mollusks) are common and McCloy (1984) interpreted the unit as inner to outer 


FOSSIL BLUE MARLIN FROM BAJA CALIFORNIA SUR 67 


shelf deposits. Subunit A is well-exposed around Rancho Lengua de Buey (N 23° 
20.318’, W 109° 33.910’). Subunit B, a succession of sandstone, siltstone, and 
alternating beds of sandstone and mudstone, is related to an outermost shelf to 
upper shelf depositional environment. Sedimentary structures (graded beds, cross- 
bedding) indicate traction and downslope transport of sandy sediments (McCloy 
1984). We found outcrops of this unit at Rancho El Bosque (N 23° 20.53’, W 
109° 36.378’). Subunit C is a succession of mudstones, diatomaceous shales, and 
diatomite that displays a transitional or marked rhythmic cyclicity often with fine 
laminae. McCloy (1984) and Carrefio (1992) found massive diatomites in the 
central part of the basin, and McCloy (1984) proposed that they were deposited 
in a partially aerated to anoxic environment. We found good outcrops of subunit 
C in Cafiada del Enmedio. Subunit D consists of greenish, laminated, non-bio- 
turbated, clayey siltstones that grade upward into massive to cross-bedded bio- 
turbated, fossiliferous sandstones. McCloy (1984) suggested these sediments were 
deposited in an outer shelf environment. Subunit D is well-exposed near Rancho 
La Calabaza (N 23° 20.71’, W 109° 38.252’). 

Martinez-Gutiérrez and Sethi (1997) subdivided the Trinidad Formation into 
three vertically stacked lithofacies. The basal facies is approximately equivalent 
to McCloy’s (1984) subunit A and was interpreted as representing nearshore to 
lagoonal, brackish-marine deposits. The middle facies is equivalent to McCloy’s 
subunits B and C, and was interpreted as having been deposited in “‘shelf depths 
slightly greater than that of normal wave base”? (Martinez-Gutiérrez and Sethi 
1997). We believe the middle facies was deposited in much deeper water that was 
influenced initially by turbidity currents (subunit B). The presence of non-biotur- 
bated diatomaceous sediments in subunit C indicates a low sedimentation rate in 
a basinal setting. The upper facies corresponds to McCloy’s (1984) subunit D, 
and Martinez-Gutiérrez and Sethi (1997) suggested that it was deposited in a high 
energy, shallow marine depositional environment, an interpretation that is consis- 
tent with our observations. 

The Trinidad Formation has been assigned different ages. McCloy (1984) con- 
sidered it to span middle? Miocene to late Pliocene. She gave a late Pliocene age 
for subunit C based on microfossils. Carrefio (1992) demonstrated an uppermost 
?Miocene/early Pliocene to middle Pliocene age for beds exposed near the town 
of Santiago that approximately correspond to McCloy’s subunits B and C. How- 
ever, according to Berggren et al. (1995), the microfossils reported by Carrefio 
extend into the late Pliocene. In contrast, Martinez-Gutiérrez and Sethi (1997) 
suggested an age from late Miocene to early Pliocene, but did not present new 
evidence for their conclusion. In conclusion, the total stratigraphic range for the 
Trinidad Formation probably spans from middle Miocene to upper Pliocene. 

The billfish fossils described herein were recovered from several localities. 
Locality IGM 95 (N 23° 20.400’, W 109° 36.931’): is located in a westward 
dipping sequence, known informally as La Angostura, that is exposed west of 
Rancho El Bosque (Fig. 4). It consists of 40 m of diatomaceous mudstone and 
clayey siltstone that probably correspond to McCloy’s (1984) subunit C. In the 
upper part of the outcrop there are abundant large, yellow-weathering limestone 
concretions that contain the billfish fossils that we report here. 

Locality IGM 240 (N 23° 20.550’, W 109° 39.537’) is located in a westward 
dipping sequence that is exposed in Cafiada del Enmedio (Fig. 4). A 55 m thick 


68 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


stratigraphic section contains diatomaceous mudstone at its base and is transitional 
upward to clayey siltstone and then to siltstone at the top. These beds mark the 
transition between McCloy’s (1984) subunits C and D. The upper part of this 
stratigraphic section has yellow-weathering concretions some of which contain 
remains of fossil billfish similar to those collected at locality IG 95. 

Other fossil localities are located in the area around Rancho Algodones (N 23° 
13.200’, W 109° 38.450’) (Fig. 4). Locality IGM 92 (Los Algodones) includes 
exposures distributed southwest of the ranch. Locality IGM 93 (Los Dientes Gran- 
des) is situated about 1 km southwest of the ranch, and corresponds to locality 
BCS-7 of Espinosa-Arrubarrena (1979). Barnes (1998) reported that locality IGM 
92 has yielded the remains of mysticete and odontocete whales, and locality IGM 
93 has yielded mysticete whales and a possible odobenine walrus. The rocks 
exposed in this region have been reported as Refugio Formation (formerly called 
Salada Formation) by Espinosa-Arrubarrena (1979), Espinosa-Arrubarrena and 
Applegate (1981), and Barnes (1998), but for reasons given below, we now be- 
lieve they are part of the Trinidad Formation. The geologic map of Martinez- 
Gutiérrez and Sethi (1997:figs. 2, 11) only shows the Refugio Formation in this 
region although a stratigraphic section made near the ranch includes the Trinidad 
Formation in its lower part. In our field work we noted that the strata in this area 
generally dip 10—20°W. There are no major faults. The ranch rests on beds of the 
lower or lower middle Trinidad Formation and lithologic features exposed near 
the ranch fit subunit B of McCloy (1984). Topographically higher areas are partly 
covered by Pleistocene terrace deposits that earlier workers might have confused 
with the Refugio Formation. East of the Rancho Algodones the Trinidad For- 
mation disconformably overlies granitic basement rocks. The gradational contact 
with the superposed Refugio Formation is well exposed 2 km to the west and 
southwest of the ranch and, because of the striking lithologic differences between 
the two formations, the Refugio and Trinidad Formations are easily separated in 
the field. The general lithology of the Trinidad Formation, dominated by greenish 
shale and siltstone, agrees with differences noted in the more northerly areas. 
However, we did not observe the diatomites that are typically found in the middle 
part of the formation. 

Espinosa-Arrubarrena (1979) and Espinosa-Arrubarrena and Applegate (1981) 
suggested a late Pliocene age for the selachian fauna of locality IGM 92 (Los 
Algodones) based on the stratigraphic ranges of the shark species, and a similarity 
between the invertebrate fauna that was collected at Espinosa-Arrubarrena’s lo- 
cality BCS-43 and faunas in the Imperial Formation in California and the San 
Marcos Formation near Santa Rosalia, Baja California. However, the Imperial 
Formation is now thought to range from the late Miocene to late Pliocene in age 
(McDougall et al. 1999) and the San Marcos Formation is now known to be late 
Miocene based on radiometric data (Smith, 1991). The selachian fauna by itself 
offers little help in determining the exact age of the Trinidad Formation in the 
Los Algodones area because it includes species that range from the late Miocene 
and Pliocene to Recent (Espinosa-Arrubarrena 1979; Espinosa-Arrubarrena and 
Applegate 1981:table 1). 

In conclusion, the fossils described below came from the middle to upper part 
of the Trinidad Formation, probably corresponding to McCloy’s (1984) subunits 
B and C. We can not give a precise age, but believe the age for these subunits 


FOSSIL BLUE MARLIN FROM BAJA CALIFORNIA SUR 69 


in our study area to be late Miocene to late Pliocene. The specimens probably 
settled to the bottom in a poorly oxygenated environment that lacked bottom 
currents. 


Systematic Paleontology 
Class Actinopterygii (sensu Nelson, 1994) 
Division Teleostei (sensu Nelson, 1994) 

Order Perciformes (sensu Johnson and Patterson, 1993) 
Suborder Scombroidei (sensu Carpenter et al., 1995) 
Family Istiophoridae (sensu Robins and deSylva, 1960) 
Istiophoridae, genus and species indet. 

Figs. 3A—D 

Specimens.—Locality IGM 92: numerous fragments of a large rostrum, unca- 
talogued; partial pterygiophore (?dorsal fin), IGM 7894. Locality IGM 95: three 
predentaries, IGM 7885-7887; two median fin spine fragments, IGM 7890-7891; 
pectoral fin spine fragment, IGM 7892. IGM 240: distal rostral fragments, un- 
catalogued. 

Discussion.—These bones are too fragmentary to be positively identified to 
genus, however, the rostra, pterygiophore, fin spines, and two predentaries are 
from fish of large size, a factor that favors their identification as belonging to the 
genus Makaira or Tetrapturus audax, and not to the genus [stiophorus nor to T. 
albidus, T. angustirostris, T. belone, or T. pfluegeri. The pterygiophore is a distal 
fragment. Its shield-like shape, the stellate pattern on its anterior and posterior 
surfaces for articulation with the pterygiophore anterior and posterior to it, and 
the broad articular surface for the fin spine, are characteristic features of a pter- 
ygiophore from the anterior part of the dorsal or anal fin in the Istiophoridae. It 
is similar in morphology to the pterygiophore that supports the 3rd or 4th dorsal 
spine, but because of a lack of comparative skeletal material, we can not eliminate 
the possibility it supported an anal spine. The uncatalogued specimens from lo- 
calities IGM 92 and IGM 240 were examined by one of us (HLF) in 1984, but 
subsequently were discarded, lost, or misplaced before they could be accessioned 
by IGM. 


Genus Makaira Lacépéde, 1802 
Makaira sp., cf. M. nigricans Lacépéde, 1802 
Figures 3E, F 


Specimens.—Locality IGM 95: distal rostrum, IGM 7883. 

Discussion.—Although two ratios (D/W and DD/D) fall only within the ob- 
served range of values computed for M. nigricans and not within the range of 
any other Recent istiophorid (Table 1), the rostrum was not positively identified 
as belonging to M. nigricans. The dorsal surface of the rostrum was completely 
covered with denticles, yielding a very large DZ/W value, a feature unknown in 
any Recent or fossil M. nigricans (Fierstine 1999: Tables 2, 3). 


Makaira nigricans Lacépéde, 1802 
Figures 2A—F 
Specimens.—Locality IGM 93: distal rostrum, IGM 7893. Locality IG 95: two 
distal rostra, IGM 7882, 7884; proximal rostrum, IGM 7888; partial skull, IGM 
7889. 


70 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Los Barriles 


Formation 
Refugio 
Formation 
Y 
| 
Y 
eo 
— 
yy 
IGM 92, 93 
Trinidad IGM 95 
Formation IGM 240 


3S) 

O| > 
N | & 
ols 
cif bls 
| 
S) 


Miocene 


Calera 
Formation 


Granitic 
basement 


Fig. 5. Stratigraphic column of beds near Rancho Algodones, San José del Cabo Basin, Baja 
California Sur, México. 


Discussion.—All ratios (Table 1) computed for the above rostra are within the 
range of values observed for Recent M. nigricans with one exception, ratio [C/ 
W for IGM 7888. Specimen IGM 7888 was identified as belonging to M. nigri- 
cans for two reasons: 1) ratio IC/W is not within the observed range of values 
of any fossil or Recent istiophorid, but is closest to the value of Recent ™M. 
nigricans (Fierstine 1999: Tables 2, 3), and 2) ratio DD/D is only within the 


FOSSIL BLUE MARLIN FROM BAJA CALIFORNIA SUR #8 


observed range of Recent M. nigricans. The partial skull (IGM 7889) has no 
osteological feature that is diagnostic of M. nigricans, however, its identification 
is based on our belief that both rostrum IGM 7888 and the skull are from the 
same individual. The skull and rostrum belong to a similar-sized fish and both 
were encased in a sandy matrix that contained small veins of calcite. 

The partial skull is a fully articulated unit from mid-orbit to the base of the 
rostrum and it has an overall length of 308 mm and a posterior width of 245 mm. 
The left side is more complete than the right side. The neurocranium contains the 
anterior-most part of the frontals, lateral ethmoids, nasals, and posterior parts of 
the prenasals. The olfactory foramen of the lateral ethmoid is visible in the nasal 
fossa. The thin portion of the frontals that covers the pineal apparatus (Rivas 
1953) on the mid-dorsal surface of the skull is not preserved and the pineal fossa 
is exposed. The left orbit contains the anterior half of the sclerotic. 

The maxillary segment contains its anterior articulation with the prenasal, dor- 
sal articulation with the lacrimal, and ventral articulation with the premaxilla. The 
lower jaw contains the entire articular-dentary suture. Denticles are visible on 
both the dentary and premaxilla. 

Both the dorsal-ventral diameter (115 mm) of the sclerotic (IGM 7889) and the 
width of the skull (IGM 7889) across the lateral ethmoids (248 mm) are approx- 
imately 1.4 times greater than similar measurements of a 181 kg Recent M. ni- 
gricans (LACM 46023-1). Assuming that IGM 7889 came from a specimen with 
a length (tip of bill to fork of caudal fin) that was 1.4 times longer than LACM 
46023-1 (3280 mm), then the skull (GM 7889) and rostrum (IGM 7888) probably 
are remains of a fish larger than 500 kg, based on the length-weight curve pub- 
lished in Strasburg (1969). Individuals of Recent M. nigricans that are larger than 
160 kg are always females (Hopper 1986:60). 


Discussion and Conclusions 


The presence of M. nigricans in a marine upper Miocene or Pliocene deposit 
in Baja California Sur is not surprising because it has been the most common 
billfish identified in Neogene deposits bordering the eastern North Pacific Ocean 
from southern California to Panama (Fierstine and Applegate 1968; Fierstine and 
Welton 1988; Fierstine, 1999), and it is commonly caught off Cabo San Lucas, 
Baja California Sur today. What is surprising is that no species of billfish other 
than M. nigricans has been positively identified in fossil deposits bordering the 
eastern North Pacific even though other Recent istiophorids (especially /. platyp- 
terus and M. indica, and T. audax) now inhabit the same waters at least during 
part of the year [Gottfried (1982) identified /. platypterus in the upper Pliocene 
San Diego Formation based on a fragmentary vertebra, but after examination of 
the specimen we believe it should be identified as Istiophoridae genus and species 
indeterminate]. Perhaps the absence of other istiophorids as fossils in the eastern 
North Pacific realm is due in part to our inability to accurately identify billfish 
from partial remains. Identifications are based primarily on comparing rostral 
fragments with complete rostra from Recent fish where emphasis is placed on 
cross-sectional morphology at 0.25L and 0.5L, two areas that must be estimated 
in fossil fragments. Fierstine and Voigt (1996) noted another limitation in their 
statistical study of rostra of Recent billfish; the lack of large-sized M. nigricans 
and M. indica. Species identifications of Recent billfish from vertebrae and other 


2 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


bones are based on small sample sizes as well (Fierstine 1998, 2001) and in most 
cases have not proven to be diagnostic (except for the predentary). 

As noted above, Martinez-Gutiérrez and Sethi (1997) concluded that the middle 
facies (subunits B and C) of the Trinidad Formation were deposited in “shelf 
depths slightly greater than normal wave base’’, but that we concluded that the 
middle facies was deposited in much deeper water based on type of sediments. 
Because M. nigricans favors depths of over 100 m (Nakamura 1983, 1985), its 
presence in the Trinidad Formation supports a greater water depth and more open- 
sea environment, assuming that fossil and Recent blue marlin have similar eco- 
logical preferences. Two of the specimens, a predentary (IGM 7885) and a rostral 
fragment (IGM 7893), are badly eroded (possibly by stomach acid) and may have 
been transported into the San José del Cabo Basin as stomach contents of a more 
shallow-dwelling animal. 


Acknowledgments 


We thank M. del Carmen Perrilliat (IGM) and R. Feeney (LACM) for loan of 
specimens, ES. Vernacchia (San Luis Diagnostic Center) for computer tomogra- 
phy (CT) images at minimal cost, and L.G. Barnes (LACM) for references and 
sage advice. Figure 3 was modified from an illustration by C. Bloomer. A. Fier- 
stine provided encouragement throughout the study. 


Literature Cited 


Barnes, L.G. 1998. The sequence of fossil marine mammal assemblages in México. Avances en 
investigacion. Paleontologia de vertebrados. Universidad Autonoma del Estado de Hildago. 
Instituto de Investigaciones en Ciencias de la Tierra. Publicacién Especial 1:26—79. 

Berggren, W.A., D.V. Kent, C.C. Swisher, III, and M-P Aubry. 1995. A revised Cenozoic geochro- 
nology and chronostratigraphy. Pp. 129-212 in (W.A. Berggren, D.V. Kent, M-P Aubry, and J. 
Hardenbol eds.), Geochronology, time scales and global stratigraphic correlation. Soc. of Sed- 
imentary Geol., Special publication 54. 

Carpenter, K.E., B.B. Collette, and J.L. Russo. 1995. Unstable and stable classifications of scombroid 
fishes. Bull. Marine Sci., 56:379—405. 

Carrefio, A.L. 1992. Neogene microfossils from the Santiago diatomite, Baja California Sur, Mexico. 
Paleontologia Mexicana, 59:1—37. 

Davie, P. 1990. Pacific marlins: anatomy and physiology. Massey Univ. Press, Palmerston North, New 
Zealand, vii + 88 pp. 

Espinosa-Arrubarrena, L. 1979. Los Tiburones fésiles (Lamniformes) del rancho Los Algodones, Baja 
California Sur, México. 60 pp. Tesis Profesional, Facultad de Ciencias, Universidad Nacional 
Auténoma de México. 

Espinosa-Arrubarrena, L. and S.P. Applegate. 1981. Selacifauna Pliocenica de Baja California Sur, 
México y sus problemas de correlaci6n regional. Pp. 667—681 in (Y.T. Sanguinetti, ed.), Anals 
del II Congreso Latino-Americano de Paleontologia, Porto Alegre, Abril 1981. 

Fierstine, H.L. 1998. Makaira sp., cf. M. nigricans Lacépéde, 1802 (Teleostei: Perciformes: Istio- 
phoridae) from the Eastover Formation, late Miocene, Virginia, and a reexamination of {Jstio- 
Phorus calvertensis Berry, 1917. J. Vert. Paleo., 18:30—42. 

Fierstine, H.L. 1999. Makaira sp., cf. M. nigricans Lacépéde, 1802 (Teleostei: Perciformes: Istio- 
phoridae) from the late Miocene, Panama, and its probable use of the Panama Seaway. J. Vert. 
Paleo., 19(3):430—437. 

Fierstine, H.L. 2001. Analysis and new records of billfish (Teleostei: Perciformes: Istiophoridae) from 
the Yorktown Formation, Early Pliocene of eastern North Carolina at Lee Creek Mine. in (C.E. 
Ray and D.J. Bohaska, eds.), Geology and paleontology of the Lee Creek Mine, North Carolina, 
III. Smithsonian Cont. to Paleobiol. 

Fierstine, H.L. and S.P. Applegate. 1968. Billfish remains from southern California with remarks on 
the importance of the predentary bone. Bull. South. Calif. Acad. Sci., 67(1):29-39. 


FOSSIL BLUE MARLIN FROM BAJA CALIFORNIA SUR 73 


Fierstine, H.L. and O. Crimmen. 1996. Two erroneous, commonly cited examples of “‘swordfish”’ 
piercing wooden ships. Copeia, 1996(2):472—475. 

Fierstine, H.L. and N. Voigt. 1996. Use of rostral characters for identifying adult billfishes (Teleostei: 
Perciformes: Istiophoridae and Xiphiidae). Copeia, 1996(1):148—161. 

Fierstine, H.L. and B.J. Welton. 1988. A late Miocene marlin, Makaira sp. (Perciformes, Osteichthyes) 
from San Diego County, California, U.S.A. Tertiary Research, 10(1):13—19. 

Fletcher, J.M., B.P. Kohn, D.A. Foster, and A.J.W. Gleadow. Heterogenous Neogene cooling and 
exhumation of the Los Cabos block, southern Baja California: Evidence from fission-track 
thermochronology. Geology, 28(2):107—110. 

Gottfried, M.D. 1982. A Pliocene sailfish Jstiophorus platypterus (Shaw and Nodder, 1791) from 
southern California. J. Vert. Paleo., 2(2):151—153. 

Gregory, W.K. and G.M. Conrad. 1937. The comparative osteology of the swordfish (Xiphias) and 
the sailfish U/stiophorus). Amer. Mus. Novitates, 952:1—25. 

Hopper, C.N. 1986. The majestic marlin solves mysteries of the sea. Pp. 58-61, 63, 65-66, 68—70 in 
World Record Game Fishes 1986. International Game Fish Association, Fort Lauderdale, Flor- 
ida. 

Johnson, G.D. and C. Patterson. 1993. Percomorph phylogeny: a survey of acanthomorphs and a new 
proposal. Pp. 554—626 in (G.D. Johnson and W.D. Anderson, Jr., eds.), Proceedings of the 
symposium on phylogeny of Percomorpha, June 15-17, held in Charleston, South Carolina at 
the 70th annual meeting of the American Society of Ichthyologists and Herpetologists, Bull. 
Marine Sci., 52:1—629. 

Lacépéde, B.G.E. 1802. Histoire naturelle des poissons. 4:689—697. 

Martinez-Gutiérrez, G. and P.S. Sethi. 1997. Miocene-Pleistocene sediments within the San José del 
Cabo Basin, Baja California Sur, Mexico. Pp. 141—166 in Pliocene carbonates and related facies 
flanking the Gulf of California, Baja California, Mexico. (M.E. Johnson and J. Ledesma-V4z- 
quez, eds.), Geol. Soc. of Amer. Special Paper 318. 

McCloy, C. 1984. Stratigraphy and Depositional History of the San José del Cabo Trough, Baja 
California Sur, México. Pp. 267—273 in Geology of the Baja California Peninsula: Pacific 
Section SEPM (Frizzell, V.A., Jr., ed.), vol 39. 

McDougall, K., R.Z. Poore, and J. Matti. 1999. Age and paleoenvironment of the Imperial Formation 
near San Gorgonio Pass, Southern California. J. of Foraminiferal Res., 29(1):4—25. 

Nakamura, I. 1983. Systematics of billfishes (Xiphiidae and Istiophoridae). Publ. Seto Marine Biol. 
Lab., 28:255-396. 

Nakamura, I. 1985. An annotated and illustrated catalogue of marlins, sailfishes, spearfishes, and 
swordfishes known to date. Food and Agricultural Organization of the United Nations (FAO) 
Fisheries Synopsis, 125(5):1—65. 

Nelson, J.S. 1994. Fishes of the world, 3rd ed. John Wiley and Sons, Inc., New York, xvii + 600 pp. 

Potthoff, T., S. Kelley, and J.C. Javech. 1986. Cartilage and bone development in scombroid fishes. 
Fishery Bulletin, 84(3):647—678. 

Rivas, L.G. 1953. The pineal apparatus of tunas and related scombrid fishes as a possible light receptor 
controlling phototactic movements. Bull. Marine Sci. of the Gulf and Caribbean, 3(3):168—180. 

Rivas, L.G. 1975. Synopsis of biological data on blue marlin, Makaira nigricans Lacépéde, 1802. Pp. 
1-16 in Proceedings of the International Billfish Symposium Kailua-Kona, Hawaii, 9-12 Au- 
gust 1972 Part 3. Species Synopses. (R.S. Shomura and F Williams, eds.), National Oceanic 
and Atmospheric Administration Technical Report. NMFS SSRF-675. 

Robins, C.R. and D.P. deSylva. 1960. Descriptions and relationships of the longbill spearfish, Tetrap- 
turus pfluegeri, based on western North Atlantic specimens. Bull. Marine Sci. of the Gulf and 
Caribbean, 10:383-—413. 

Schultz, O. 1987. Taxonomische Neugruppieriung der Uberfamilie Xiphioidea (Pisces, Osteichthyes). 
Annalen Naturhistorisches Museum Wien, Serie A, fur Mineralogie und Petrographie, Geologie 
und Paladontologie, Anthropologie, und Prahistories, 89:95—202. 

Smith, J.T. 1991. Cenozoic Marine Mollusks and Paleogeography of the Gulf of California. Pp. 637— 
666 in The Gulf and Peninsular Province of the California. (Dauphin, J.P., and B.R.T. Simoneit, 
eds.). American Association of Petroleum Geologists, Memoir 47. 

Strasburg, D.W. 1969. Billfishes of the Central Pacific Ocean. U.S. Fish and Wildlife Service, Bureau 
of Commercial Fisheries, Biological Laboratory, Honolulu, Hawaii, Circular 311:1—11. 


Accepted for publication 28 January 2001. 


Bull. Southern California Acad. Sci. 
100(2), 2001, pp. 74-85 
© Southern California Academy of Sciences, 2001 


Contributions to the Life History of Adult Pacific Lamprey 
(Lampetra tridentata) in the Santa Clara River Of Southern 
California 


Shawn D. Chase 
Sonoma County Water Agency, P.O. Box 11628, Santa Rosa, CA 9540] 


Abstract.—Data on the relative abundance, seasonal timing, and size at entry into 
freshwater of upstream migrants were collected on a population of Pacific lamprey 
inhabiting the Santa Clara River. In addition, spent lamprey were also collected 
and provided information on the length, decrease in body length between entry 
into freshwater and spawning the following year, and the potential timing of 
spawning. 

The number of Pacific lamprey counted in the fish ladder has ranged from 20 
in 1997 to 908 in 1994 and was at least partially related to the length of time 
that the ladder was open. The upstream migration is regulated by streamflow, and 
has begun as early as mid December, and as late as mid March in the Santa Clara 
River. The entire lamprey migration period was sampled only once during the 
1995 season and the upstream migration spanned an approximately three month 
period (late January through early May). Peak lamprey migration occurred in 
March of most years. Pacific lamprey captured in the upstream ladder averaged 
between 593 and 610 mm in length between 1994 and 1997 (range 485—800 mm). 

Adult Pacific lamprey in the Santa Clara River apparently spend approximately 
one year in freshwater prior to spawning. During this time, lamprey do not feed. 
The average length of spent Pacific lamprey collected in the downstream trap 
ranged from 427 mm in 1995 to 446 mm in 1997 (overall range 355 to 610 mm). 
Based on the capture of spent Pacific lamprey in the downstream trap, spawning 
likely begins by late January in most years, and spawning may continue into 
April. 


Anadromus Pacific lamprey (Lampetra tridentata) inhabit coastal rivers and 
streams from northern Baja California (Rio Santo Domingo) (Ruiz-Campos et al. 
1997) to Alaska (Unalaska) (Moyle 1976). Although this species has received 
some attention from researchers in Canada (e.g., Beamish 1980), very little is 
known about the life history of Pacific lamprey in California rivers. An oppor- 
tunity to collect information on adult life history of Pacific lamprey in southern 
California occurred during a study designed to monitor the performance of fish 
passage facilities at the Vern Freeman Diversion on the Santa Clara River. The 
Vern Freeman Diversion is operated by the United Water Conservation District 
(UWCD), which diverts water at Saticoy, approximately 16.8 kilometers inland 
from the Pacific Ocean. In 1991, the UWCD constructed the Freeman Diversion 
Improvement Project to improve the existing diversion. This action was taken at 
the direction of the State Water Resources Control Board to combat seawater 
intrusion in the Oxnard Coastal Plain aquifers. This intrusion results from over- 
draft of groundwater to supply water for irrigation, industry, and municipal uses. 


74 


PACIFIC LAMPREY IN THE SANTA CLARA RIVER 5 fa 


\ SPECIAL PROJECTS FISHERIES \GENERAL \SANTA_CLARA-RIVER 


VICINITY MAP 
MOT 10 SCALE 


Pyramid Dam 


Bouquet 
Reservoir 


Castaic 
Reservoir 


Santo Paula 
Creek 


FILLMORE 


Piru Creek 
Diversion 


USACE FLOOD 
CONTROL PROJECT 


Freeman 
Diversion 


FIGURE 1: MAP OF SANTA CLARA RIVER BASIN 


The improvements consist primarily of a permanent concrete riverbed stabilization 
structure and diversion. These were necessary for the UWCD to maintain its 
ability to divert water to groundwater recharge basins in the Oxnard Plain Forebay 
Basin. Historical in-river aggregate mining destabilized and degraded the Santa 
Clara River bed, which had lowered approximately 22 feet opposite the diversion 
headworks since 1928, when diversions began. The down cutting of the riverbed 
also contributed to repeated failures of the previous sand dike diversion structure. 
The permanent concrete structure, completed in 1991, has halted headcutting, 
stabilized the riverbed both upstream and downstream of the project, and im- 
proved the ability of UWCD to divert streamflow to groundwater recharge basins. 
The Freeman Diversion includes a two-entrance denil fish ladder, a fish screen, 
and by-pass facilities to provide anadromous fish passage upstream and down- 
stream of the diversion facility. 


Background 


The Santa Clara River drains portions of Los Angeles and Ventura counties in 
southern California (Figure 1). The mainstem Santa Clara River flows through a 
narrow alluvial valley onto a coastal plain and is fed by several tributaries that 
flow out of local mountains. The major tributaries are Santa Paula, Sespe and 
Piru creeks. Streamflow is typical of most southern California rivers—extremely 
low to intermittent flow in its lower reaches during the dry summer and fall 


76 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


months, with high peak flows during winter storms. During the low flow period, 
a sand bar forms at the mouth of the Santa Clara River estuary forming an 
intermittent barrier to fish migration to or from the ocean. Fish also are prevented 
from migrating through the lower Santa Clara River until sufficient rainfall pro- 
vides adequate streamflow to allow for passage. 

The upper mainstem Santa Clara River provides habitat for several native spe- 
cies, including steelhead (Oncorhynchus mykiss), unarmored threespine stickle- 
back (Gasterosteus aculeatus williamsoni), partially armored threespine stickle- 
back (G. a. microcephalus), as well as the introduced Santa Ana sucker (Catos- 
tomus santaanae) and arroyo chub (Gila orcutti) (Bell 1978; Swift et al. 1993). 
The lower Santa Clara River (in the vicinity of the Vern Freeman Diversion 
Facility) serves primarily as a migration corridor for steelhead and lamprey (Puck- 
ett and Villa 1985). Spawning and rearing habitat for steelhead and Pacific lam- 
prey are located primarily in upstream tributaries, such as Sespe Creek (Puckett 
and Villa 1985). 


Methods 


This study was designed to monitor the upstream (adult) and downstream 
(smolt) migrations of steelhead through the fish ladder and fish by-pass facility 
at the Vern Freeman Diversion (ENTRIX 1991). In 1991, a temporary trap and 
fyke net was placed in the ladder during a high flow event to monitor fish move- 
ment upstream through the diversion facility. In 1993, a semi-permanent fish trap 
was installed in the fish ladder. Under agreement with the California Department 
of Fish and Game, U. S. Fish and Wildlife Service and the U. S. Army Corp of 
Engineers (USACE), the fish ladder will be operated throughout the upstream 
migration period in the Santa Clara River at the Vern Freeman Diversion provided 
certain criteria were met (detailed in the USACE Section 404 Permit). The ladder 
may be closed 48 hours after streamflow (above the diversion) has declined below 
415 cfs. The diversion facility is not operated under extremely high streamflow 
conditions and when turbidity levels exceed approximately 2,000 NTU’s. The 
ladder is also closed temporarily when sand is flushed from the mouth of the 
diversion intake. The downstream by-pass facility is operated as long as there is 
continuous flow to the ocean. When flow is discontinuous, smolts are collected 
in a trap and transported to the estuary/ocean for release, depending upon the 
condition (open or closed) of the estuary’s mouth. 


Upstream Trap 


A denil-type fish ladder provides access for upstream migrating fish around the 
diversion structure. During periods of high streamflow, a relatively high velocity 
current is required to attract upstream migrating steelhead into the fish ladder. 
The water surface elevation inside the fish ladder (at the downstream fish en- 
trance) is maintained such that the head created by this elevational difference 
results in a mean water velocity flowing out of the fish ladder at a calculated 
eight feet per second. 

The trap was serviced every morning that the ladder was in operation. During 
servicing, the fish ladder was drained by closing the upstream gates and debris 
and sand that collected around the trap were removed. The fish trap was checked 


PACIFIC LAMPREY IN THE SANTA CLARA RIVER FI 


during this time. In addition, the rest of the fish ladder was surveyed for fish 
stranded between the baffles as a result of the dewatering of the fish ladder. 

Pacific lamprey collected in the ladder were counted and measured to the near- 
est centimeter, total length (TL). Photographs were taken of representative indi- 
viduals. Lamprey were then released upstream of the trap to continue their up- 
stream migration. 

In 1994 and 1995, a marking study was conducted to determine if adult Pacific 
lamprey required more than one 24-hour period to ascend the fish ladder. In each 
year, 100 adult lamprey were marked with a hole-punch in the dorsal fin and 
released back into the ladder where they were originally found. The number of 
lamprey with hole-punched dorsal fins were recorded on the day following the 
marking event. 


Downstream Trap 


Adult lamprey were collected in the downstream trap and in the diversion canal, 
upstream of the fish screens. Lamprey collected in the downstream trap were 
counted, measured, and released into the fish by-pass facility (essentially a pipe 
leading back to the river downstream of the diversion facility). The diversion’s 
intake is located near the outlet of the fish ladder. Therefore, it was possible for 
upstream migrating lamprey to be swept back into the diversion and into the 
downstream trap (however, the occurrence of upstream migrants in the down- 
stream trap was extremely low). Upstream migrants and spent Pacific lamprey 
were distinguished based on the presence or absence of abrasions and lesions. 
Pacific lamprey were classified as spent adults if they were covered with abrasions 
(assumed to be the result of constructing redds). Lamprey lacking abrasions were 
classified as upstream migrants that were swept back into the diversion canal. 


Results 
Timing of Upstream Migration 

Since streamflow in the Santa Clara River is intermittent during the long dry 
summer period, streamflow conditions suitable for upstream migration are solely 
dependent on winter rains. The length of time that anadromous fish have to mi- 
grate through the lower Santa Clara River is controlled by the timing and intensity 
of rainfall, and by the operations rules for the fish ladder and diversion. 

Rainfall varied greatly in the project area during the years sampled. Rainfall 
data have been collected in Santa Paula (located approximately 10 miles east of 
the diversion) since 1890. Since 1890, annual rainfall in the basin has ranged 
from 6.42 to 38.11 inches, averaging 17.28 inches. Between 1994 and 1997, 
annual rainfall totals have ranged from 13.39 to 35.34 inches. The length of time 
that streamflow conditions suitable for upstream migration existed ranged from 
29 days in 1996 to 137 days in 1995. 

In 1994, rainfall totaled 13.39 inches (65 percent exceedance). The sand bar at 
the mouth of the river likely first breached on 7 February, and streamflow con- 
ditions suitable for upstream migration existed in the lower river until 9 April (62 
days) (Table 1, Figure 2). Upstream migrating Pacific lamprey were observed in 
the ladder from 17 February through 9 April, when the ladder was closed ac- 
cording to 404 Permit conditions. The number of lamprey observed in the ladder 
was relatively low during the first four weeks that the ladder was operated (61 


78 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 1. Probable date of breaching of the stream mouth and recording of first lamprey in ladder. 


No. of days 
Probable date Date first lamprey Last day lamprey ladder 
Year sand bar breached in ladder recorded operated 
1994 7 February 17 February 9 April! 50 
1995 2 January 18 January 18 May 137 
1996 20 February 25 February 25 March! 23 
1997 24 December? 16 December 18 February! 45 


' Ladder likely closed prior to the end of the upstream migration period. 
* Sand bar breached briefly in October, November, and early December for a few days at a time 
prior to the 24 December breaching event. 


total by March 15). On March 16, 142 lamprey were counted in the ladder, the 
highest single daily total during the study. During the last two weeks of March, 
676 adult lamprey were counted. A total of 908 adult Pacific lamprey were ob- 
served in the ladder during 1994 (Table 2). 

In 1995, rainfall totaled 35.34 inches (4 percent exceedance). The sand bar at 
the mouth of the river likely first breached on 2 January, and suitable streamflow 
conditions for upstream migration existed in the lower river through 20 May (137 
days). Pacific lamprey were observed in the ladder from 18 January through 18 


eeeemcses 
January 
9 | 10 2] 15 17 205] 2h 22 230 p 24, | eas 
De PD ee 
—|— rrr = = 
eo ee 


ike 
Oe CE YN A CC ME 


December 


February 


RARARAR MES UABDAIE SOOT LTR OL AR ARNEIIR SEED Be PI 
oa 


Fig. 2. Dates that the Upstream fish ladder was in operation, 1994—1997. 


PACIFIC LAMPREY IN THE SANTA CLARA RIVER 72 


Table 2. Weekly counts of adult Pacific lamprey caught in the upstream migrant trap, 1991-1997. 


Week 
Month ending 1991! 199323 19944 1995 1996° 1997’ 

December iW —_— a — — — 2 
24 — — — — — 1 

January 7 — -— — 0 = 0) 
14 — — 6) —- 0 

21 — — 1 — l 

28 — — 2. — 0 

February -: — 88 0) 95 — O 
cr? —— 0) 74 — 1 

18 — 1 35 oa 7 

aS — 19 16 14 8 

March 4 — 318 ml 24 85 — 
Ly “= (ij 2 19 — 

18 — 283 4 36 oe 

Zs -— 240 20 155 oo 

April 1 74 48 201 20 — — 
8 — 133 34 — — 

15 —~ 13 9 — oo 

22 —- — 9 — — 

29 -- —_ § a a 

May 6 — 11 — 13 — — 
13 ao — 8 —_ — 

20 —— — 2. — — 

Za — — — — — 

June 4 — — — a= — 
ti — — — —- — 

Total 74 465 908 368 309 20 


' Ladder operated from 26 March to 2 April, 1991. 

? Ladder operated from 17 February to 17 May, 1993. 

> Daily lamprey counts were visually estimated on some days during 1993 (e.g., “15 to 20 lamprey 
in ladder today’’), on these days the lower value was used to estimate abundance, and the numbers 
were combined into monthly totals only. 

+ Ladder operated from 4 February through 9 April, 1994. 

> Ladder operated from 6 January through 20 May, 1995. 

© Ladder operated on 2—3 February, from 22 February through 5 March, and from 14 through 25 
March, 1996. 

7 Includes leap year day (8 day period). 


May (Table 1). Prior to 31 January, three lamprey were observed in the ladder. 
Approximately 46 percent of the Pacific lamprey run occurred during the first two 
weeks of February. The lamprey migration remained fairly constant through the 
second week in April. In 1995, 368 adult Pacific lamprey were observed in the 
ladder (Table 2). 

In 1996, rainfall totaled 13.90 inches (59 percent exceedance). Significant rain- 
fall during this year did not fall in southern California until February, and the 
sand bar at the mouth of the river likely first breached on 20 February. Adult 
Pacific lamprey were first observed in the ladder on 25 February. Suitable flow 
conditions for upstream migration existed in the lower river from 25 February 
through 5 March, and again from 14 March through 25 March (29 days) (the 
ladder was closed between 6 March and 13 March). Weekly counts of lamprey 


80 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 3. Minimum, maximum and average lengths (mm) of upstream migrating Pacific lamprey, 
1994-1996. 


Year Minimum length Maximum length Average length N 
1994 yao 700 610 71 
1995 485 750 610 254 
1996 490 675 604 pi ys 
1997 She 800 395 19 


peaked during the last week that the ladder was open. A total of 309 adult Pacific 
lamprey were observed in the ladder during 1996. 

In 1997, rainfall totaled 19.64 inches (31 percent exceedance), falling primarily 
during December and January. The sand bar at the mouth of the river likely first 
breached in October for a short time-period, and again in November and early 
December. The sand bar breached again on 24 December with suitable flow con- 
ditions for upstream migration existed in the lower river until 18 February (57 
days). Adults were observed in the fish ladder from 16 December, after one of 
the brief breaching events, and a few lamprey were counted in the ladder through 
18 February, when the ladder was closed. Although suitable streamflow conditions 
were present to allow for upstream migration during December and January, only 
four lamprey were observed in the ladder during this time. A total of 20 adult 
Pacific lamprey were observed in the ladder during 1997 (Table 2). 


Counts 


Counts of Pacific lamprey in the ladder represent a minimum number of mi- 
grating adults since the trap probably does not hinder upstream movement. Mark- 
ing studies conducted in 1994 and 1995 found that the majority (92 and 93 per- 
cent, respectively) of the lamprey were able to negotiate the fish ladder in less 
than 24 hours. The number of adult Pacific lamprey recorded in the ladder an- 
nually has ranged from 20 (1997) to 908 (1994). However, the entire run was 
censused only once, in 1995, when 371 adult lamprey were counted (Table 2). In 
1993, sampling began after lamprey were first observed in the ladder, when 465 
adult lamprey were counted. 


Length of Adults at Time of Entry into the River 


The upstream migrating lamprey ranged in total length (TL) from 485 to 800 
mm (Table 3). The average length of upstream migrating Pacific lamprey has been 
nearly constant. Pacific lamprey averaged 610 mm TL in 1994 and 1995, 604 
mm TL in 1996, and 593 mm TL in 1997. 


Likely Time of Spawning 


Adult lamprey in a variety of conditions ranging from dead to apparently 
healthy and vigorous have been captured in the downstream trap. The majority 
of these lamprey were covered with abrasions, and were assumed to have recently 
spawned. Timing of spent lamprey appearing in the downstream trap is related to 
the onset of spawning and very likely streamflow in spawning tributary(s) and in 
the Santa Clara River. It is not known how long after spawning that lamprey 
weaken to the point where they begin to drift downstream, or how long it takes 


PACIFIC LAMPREY IN THE SANTA CLARA RIVER 81 


Table 4. Weekly summary of adult Pacific lamprey caught in the downstream migrant trap, 1994— 
1996. 


Month Ending 1994! 19952 1996? 19972 


January vi — 0) _ — 


N 
(o.2) 
| 


February 4 


March 4 


N 
N 
oN oo oo © 


— 
OP WNNANOWON ON NK CO 


April 1 13 


— 
CoRR DOOFRFR KY NOK WNT OC OC 


May 6 


N 
\O 
Sy SS 
OW — 
N 


June 3 — 


July 1 as 


—_ 
~ 
| 
OSooCoeooOWONnNWN 
| 
| 


— 
—" 
ie) 
N 
& 
— 
| 


Total 70 


' Downstream trap closed on 25 May, 1994. 
* Downstream trap closed on 27 July, 1995. 
> Downstream trap closed on 3 May, 1996. 

* Downstream trap closed on 29 April, 1997. 


Table 5. Number, seasonal timing, and lengths of Pacific lamprey captured in the downstream trap 
between 1994 and 1996. 


Average 
Year Number First observed Last observed Range length 
1994 25 10 March 21 May 390-479 44] 
1995 103 4 February 11 June 355-510 427 
1996 54 17 February 29 April 355-615 438 


1997 16 10 February 8 April 411-492 446 


82 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Number 
= 
(=) 


250 300 350 400 450 500 550 600 650 700 750 _ 800 
Total Length (mm) 


f= Downstream (j Upstream 


Fig. 3. Length-frequency of Pacific lamprey collected in the upstream and downstream fish by- 
pass facilities, 1994-1997 data combined. 


them to drift from spawning tributaries down to the diversion dam. Spent lamprey 
have been collected from 4 February to 11 June (Tables 4 and 5). Spent lamprey 
occurrence in the downstream trap peaked in late March and early April during 
1994 and 1996 and in May during 1995 (Table 4). Based on the capture of spent 
lamprey in the trap, spawning begins in late January and may continue through 
at least May in some years. Peak spawning probably occurred between February 
and April. 


Length of Pacific Lamprey Collected in the Downstream Trap 


Pacific lamprey collected in the downstream trap ranged in length between 355 
and 615 mm TL between 1994 and 1997 (Table 5). Similar to lamprey collected 
in the upstream trap, the average length of lamprey collected in the downstream 
trap remained relatively constant between years, ranging from 427 to 446 mm TL 
between 1994 and 1997. 


Decrease in Body Length Between Entry into Freshwater and After Spawning 


Pacific lamprey collected in the upstream trap were considerably larger com- 
pared to lamprey collected in the downstream trap within the same year (Figure 
3). I hypothesize that the lamprey collected in the downstream trap are members 
of the previous year’s upstream migration as has been previously described by 
Beamish (1980). If this hypothesis is correct, then Pacific lamprey in the Santa 


Table 6. A comparison of total body lengths of adult Pacific lamprey at the time of upstream 
migration and after spawning the following year. 


Average Difference Percentage 
length (mm) Range (mm) (mm) decrease 
Pre-spawn length in 1994 610 485-750 
Post spawn length in 1995 427 355-508 183 30.0 
Pre-spawn length in 1995 610 485-750 
Post spawn length in 1996 437 355-615 173 28.2 
Pre-spawn length in 1996 604 490-675 


Post spawn length in 1997 446 411-492 158 26.2 


PACIFIC LAMPREY IN THE SANTA CLARA RIVER 83 


Clara River decreased in body length, on average, between 26.2 and 30.0 percent 
of their body length between entry into freshwater and spawning (Table 6). The 
alternative hypothesis that the lamprey captured in the downstream trap are mem- 
bers of that year’s spawning migration would require that the observed decrease 
in body length would have occurred over a relatively short (one to three month) 
period. 


Discussion 
Timing of Upstream Migration 


Migration in the Santa Clara River is regulated by streamflow, and adult lam- 
prey have been observed in the ladder for the first time as early as mid-December 
in 1997 and as a late as the last week in March in 1991, depending on the timing 
of winter rains. Adult lamprey are not thought to range far from their natal streams 
during the marine phase of their life history (Moyle 1976). Lamprey have been 
collected in the fish ladder (approximately 16.8 kilometers inland) as early as six 
days after the probable breaching date of the lagoon mouth, and as late as 16 
days after the lagoon breached. However, the number of adult lamprey captured 
in the ladder have typically remained low during the first two weeks of the run. 

In California, Pacific lamprey have been reported to migrate upstream between 
April and late July (Moyle 1976; Wang 1986), although in the Trinity River in 
northern California, Moffett and Smith (1950, cited by Moyle 1976) reported 
upstream migration by adult lamprey in August and September. In the Santa Clara 
River, upstream migrating Pacific lamprey were observed from mid-December 
through mid-May between 1994 and 1997. However, the peak run generally oc- 
curred between February and the first week of April. The adult Pacific lamprey 
upstream migration period spanned an approximately four-month period (mid- 
January though mid-May) in 1995, the only year to date that the entire lamprey 
spawning migration was sampled. However, 87.3 percent of the run was observed 
in the ladder between February and the first week of April. Very few Pacific 
lamprey were observed in the ladder prior to February in any year. For example, 
in 1997, although suitable streamflows for migration were present from late De- 
cember through January, five lamprey were observed in the ladder during this 
time. The upstream migration period extended into the first week of May in 1993 
and the third week in May in 1995. The apparent earlier timing of upstream 
migration in the Santa Clara River, compared to more northern river systems, is 
likely an adaptation to the rainfall pattern in southern California, where the ma- 
jority of the precipitation, and thus suitable streamflow conditions, occur between 
January and March. 

The number of Pacific lamprey counted in the fish ladder has ranged from a 
low of 20 in 1997 to 908 in 1994. The numbers of lamprey counted at the Vern 
Freeman Diversion represent a minimum number; the true number of lamprey 
returning to the river is undoubtedly higher. Pacific lamprey can pass through the 
ladder unhindered. Thus an unknown number of adult lamprey could migrate 
through the fish ladder without being detected. A test using a mark-recapture 
technique demonstrated that slightly more than 90 percent of the lamprey could 
pass through the ladder in less than 24 hours. 


84 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Size at Time of Upstream Migration 


Upstream migrating lamprey collected in the fish ladder ranged from 485 to 
800 mm TL, averaging approximately 606 mm TL between 1994 and 1997. Pa- 
cific lamprey in the Santa Clara River are comparable in length to those collected 
in Canada. In Canada, upstream migrating lamprey ranged in length between 130 
and 720 mm TL in six populations reported by Beamish (1980). These populations 
could be divided into two size ranges based on length; a “‘small’’ population 
averaging between 260 and 290 mm in length (ranging between 130 and 510 mm 
in length for three populations combined), and a “‘large’”’ group averaging between 
600 and 640 mm TL (ranging between 550 and 720 mm in length for three 
populations combined) (Beamish 1980). 

Pacific lamprey do not feed after reentering freshwater during their spawning 
migration (Hardisty and Potter 1971; Whyte et al. 1993). Energy reserves are 
used for migrating to natal spawning areas and gonadal development. During this 
period of starvation, Pacific lamprey decrease in length and weight (Hardisty and 
Potter 1993). Pacific lamprey have been kept alive under laboratory conditions 
for up to two years without eating (Whyte et al. 1993). A similar decrease in 
body length was observed in lamprey in the Santa Clara River. Between 1994 
and 1997, Pacific lamprey collected in the downstream trap averaged 427 and 
446 mm TL, compared to Pacific lamprey captured in the upstream trap which 
averaged 593 and 610 mm TL. Hardisty and Potter (1993) and Beamish (1980) 
have reported that lamprey may remain in fresh water for approximately one year 
prior to spawning. Based on the differences in the average size of Pacific lamprey 
collected in the upstream and downstream traps, combined with the peak occur- 
rences of lamprey in the two facilities, it appears that Pacific lamprey in the Santa 
Clara River hold over in fresh water for one year prior to spawning. If the smaller 
lamprey captured in the downstream trap are members of the previous years 
spawning migration, then adult lamprey decreased, on average, between 26.2 and 
30.0 percent of their body length between entering freshwater and spawning the 
following year. Since peak abundance of lamprey in the upstream and downstream 
fish passage facilities occurred at approximately the same time (between late Feb- 
ruary and early May), the observed difference in body length would have had to 
occurred over an approximately one to two month period for the lamprey collected 
in the downstream trap to have been part of that years upstream migration. In 
addition, in 1996, the first lamprey was observed in the downstream fish by-pass 
facility on 17 February, although the mouth of the lagoon was first breached on 
or about 19 February. A similar decrease in body length was reported for Pacific 
lamprey inhabiting rivers in British Columbia. Beamish (1980) reported that Pa- 
cific lamprey decreased in length at least 20 percent between the time of entry 
into freshwater and the on-set of spawning. However, the lamprey in Beamish’s 
study had been in freshwater for an unknown period of time, and thus the actual 
length at time of entry was unknown. 

Pacific lamprey have been reported to die after spawning (Hardisty and Potter 
1971), although, Michaels (1980, 1984) reported that some lamprey survived to 
spawn again a second time. Some of the spent lamprey captured in the down- 
stream trap were still alive at the time of capture. It is not known if any were 


PACIFIC LAMPREY IN THE SANTA CLARA RIVER 85 


able to successfully readapt to a saltwater existence and survive to spawn a second 
time. 

Based on the capture of spent lamprey in the downstream trap in 1995 between 
4 February and 11 June, it appears that spawning may begin as early as January 
and may continue into at least May. In 1996, a relatively dry year, spent lamprey 
were captured in the downstream trap between 17 February and 28 April. 

This time period suggests that Pacific lamprey spawn earlier in the Santa Clara 
River compared to more northern rivers, where spawning has been reported to 
occur between April and July (e.g. Moyle 1976, Beemish, 1980, Wang 1986). As 
with the earlier timing of upstream migration, the earlier spawning period for 
Santa Clara River lamprey is likely an adaptation to the timing of precipitation 
in southern California. 


Acknowledgments 


The United Water Conservation District provided the funding for this study. 
John Dickenson, UWCD Project Engineer, allowed and encouraged the collection 
of data outside the scope of the 404 permit requirements. Wayne Lifton contrib- 
uted significantly to the development of the original study plan and in the editing 
of the annual reports that formed the basis of this report. John Southwick collected 
and measured most of the lamprey for this study, and without his dilengent efforts, 
this study would not have been possible. The Author also wishes to thank Drs. 
Richard Beamish, Peter Moyle, and Camm Swift for their thoughtful review of 
this paper. Their comments and insights are greatly appreciated. 


Literature Cited 


Beamish, R. J. 1980. Adult biology of the river lamprey (Lampetra ayresi) and the Pacific lamprey 
(Lampetra tridentata) from the Pacific coast of Canada. Canadian Journal of Fish and Aquatic 
Sciences. 37:1906—1923. 

Bell, M. A. 1978. Fishes of the Santa Clara River System, southern California. Contributions in 
Science. Natural History Museum of Los Angeles. 295:1—20. 

ENTRIX Inc., 1991. Vern Freeman Diversion Project fishery mitigation monitoring study plan to 
address 404 permit special condition B. Prepared for the United Water Conservation District. 
15 pp. 

Hardisty, M. W. and I. C. Potter. 1971. The General Biology of Adult Lampreys. /n Hardisty and 
Potter, eds. The Biology of Lampreys. Volume 1. Academic Press London. 

Michael, J. H., Jr. 1980. Repeat spawning of Pacific lamprey. California Fish and Game. 66(3): 186— 
187. 

Michael, J. H., Jr. 1982. Additional notes on the repeat spawning by Pacific lamprey. California Fish 
and Game. 66(3): 186—187. 

Moffett, J. W. and S. H. Smith. 1950. Biological investigations of fisheries resources of Trinity River, 
California. USFWS Spec. Sci. Rep. Fisheries 12:71 pp. 

Moyle, P. B. 1976. Inland fishes of California. University of California Press, Berkeley. 405 pp. 

Puckett, L. K. and N. A. Villa. 1985. Lower Santa Clara River Steelhead Study: Final Report. De- 
partment of Fish and Game. 31 pp. 

Ruiz-Campos, G., S. Contreras-Balderas, M. L. Lozano-Vilano, S. Gonzales-Guzman, and J Alaniz- 
Garcia. 1997. Distributional status of the continental fishes of the northwester Baja California, 
Mexico. 1996 Desert Fishes Council Proceedings. 

Wang, J. C. S. 1986. Fishes of the Sacramento-San Joaquin Estuary and adjacent waters, California: 
a guide to the early life histories. Prepared for the Interagency Ecology Study Program for the 
Sacramento-San Joaquin Estuary. Technical report 9. 

Whyte, J. N., R. J. Beamish, N. G. Ginther, and C.-E. Neville. 1993. Nutritional condition of the 
Pacific lamprey (Lampetra tridentata) deprived of food for periods of up to two years. 


Accepted for publication 17 September 2000. 


Bull. Southern California Acad. Sci. 
100(2), 2001, pp. 86-95 
© Southern California Academy of Sciences, 2001 


Combined Effects of Drought and Phoradendron juniperinum 
Infestation Severity on Fruit Characteristics of P. juntperinum and 
its Funtperus osteosperma Hosts 


Simon A. Le! 


Department of Biology, WDB, Community College of Southern Nevada, 
6375 West Charleston Boulevard, Las Vegas, Nevada 89146-1139 


Abstract.—The interactive effects of severe drought and severity of Phoradendron 
Juniperinum (juniper mistletoe) infestation on fruit characteristics of parasitic P. 
Juniperinum and its Juniperus osteosperma (Utah juniper) host trees were ex- 
amined in Pine Creek of the Red Rock Canyon National Conservation Area in 
southern Nevada. A severe drought, characterized by extremely low precipitation 
and above average air temperatures, started in January and persisted through mid- 
July 1997. Significant interactions were detected between drought and parasite 
severity for fruit production, fruit water content, diameter, thickness, dry mass as 
well as seed length and seed dry mass of P. juniperinum. Similarly, significant 
ineractions were found between drought and parasite severity for fruit and seed 
characteristics of J. osteosperma hosts. There was also evidence for significant 
correlations between the drought* parasite severity combination and all of the 
fruit traits measured in both hosts and parasites, and evidence for more positive 
correlations with parasites as the severity of drought increased in Pine Creek. 


Phoradendron juniperinum (juniper mistletoe) are autotrophic hemiparasites in- 
habiting branches of higher vascular plants (Kuijt 1969; and Calder and Bernardt 
1983). These parasites are photosynthetic but show some physiological depen- 
dence on a host plant, and use the xylem sap of the host to provide water and 
mineral nutrients (Calder and Bernhardt 1983). Phoradendron juniperinum are 
parasitic on woody plant species that are sparsely distributed in southern Nevada. 
These parasites commonly grow on Juniperus osteosperma (Utah juniper) and 
other gymnosperm hosts (Munz 1974). The final outcome is a net gain in P. 
Juniperinum foliage, which occupies more and more of the host canopy as the 
infection intensifies through time (Calder and Bernhardt 1983). 

Drought refers to a period with low precipitation in which the water content 
of the soil greatly reduces and the plants suffer from lack of water. The warm 
Mojave Desert of southern Nevada is permanently arid, with annual precipitation 
amounts of less than 105 mm (NOAA, Las Vegas and vicinity). Precipitation 
variability is a major factor in the occurrence of drought. Southern Nevada ex- 
perienced an extreme drought during the first six months of 1997, with precipi- 
tation falling well below the monthly averages (NOAA, Las Vegas and vicinity). 
Moreover, the severity of the drought increased with decreasing elevation. Infes- 
tation of P. juniperinum greatly reduces host growth and the ability to survive 
drought and insect outbreak (Calder and Bernhardt 1983), particularly in juvenile 
host trees. Damage to host plants is largely caused by a combination of environ- 
mental and Phoradendron-induced water and nutrient (physiological) stress (Hol- 


86 


DROUGHT EFFECTS ON FRUIT IN JUNIPER AND MISTLETOE 87 


linger 1983; Glatzel 1983; Schulze and Ehleringer 1984; Schulze et al. 1984; 
Ehleringer et al. 1986). From casual observations, the fruit production and other 
fruit traits of P. juniperinum and its J. osteosperma hosts appeared to be greatly 
reduced by drought in southern Nevada. 

The biology of P. juniperinum and its J. osteosperma host trees is well docu- 
mented (Kuijt 1969; Calder and Bernhardt 1983; Schulze and Ehleringer 1984; 
Ehleringer et al. 1986; Dawson et al. 1990). Juniperus osteosperma hosts serve 
as both habitat and resource (water and nutrients) for parasitic P. juniperinum. 
Yet, possible interactions and correlations between drought and severity of P. 
Juniperinum infestation in determining the fruit characteristics of both J. osteos- 
perma hosts and P. juniperinum have not been documented. Two hypotheses were 
made prior to data collection. First, effects of drought or effects of P. juniperinum 
infestation would adversely impact various fruit characteristics of both J. osteos- 
perma hosts and parasitic P. juniperinum plants. Second, there would be inter- 
actions and correlations between the drought* parasite severity combination and 
fruit traits of both hosts and parasites, and more positive correlations with the 
parasites. These two hypotheses were tested by a combination of field and labo- 
ratory measurements of various fruit traits with appropriate statistical analyses. 


Materials and Methods 
Study Site and Field Surveys 


Pine Creek of the Red Rock National Conservation Area (36°05’ N, 115°40’ 
W; elevation 1,400 m) in the Spring Mountains was selected on the basis of P. 
Juniperinum—J. osteosperma interactions during summers of 1997 and 1998. Win- 
ters and springs of 1997 and 1998 represented drought and non-drought periods, 
respectively (Fig. 1). Precipitation was 75.8 % lower during the first six months 
of the 1997 drought compared to 1998. The drought was ended by above average 
monsoonal rainfalls in July and September of 1997. Well above average rainfalls 
associated with an El Nino Southern Oscillation (ENSO) event occurred in Winter 
and early Spring of 1998 (Fig. 1). Mean monthly air temperatures varied consid- 
erably during the first six month of drought (1997) and non-drought (1998) pe- 
riods (Fig. 2). 

A total of 85 J. osteosperma trees was found in Pine Creek, and these trees 
were surveyed for the presence of parasites. Thirty (30) of 85 trees were not 
infested by parasites. All 55 host trees infested with P. juniperinum were similar 
in size. From casual observations, various levels of P. juniperinum infestation 
were evident, and localized influences of P. juniperinum on its J. osteosperma 
hosts were conspicuous. The 55 P. juniperinum-infested trees were categorized 
into three levels (light, moderate, and heavy) of infestation. Light, moderate, and 
heavy infestation implied under 20, between 20 and 40, and over 40 P. juniper- 
inum individuals per J. osteosperma tree, respectively. 

Field and laboratory measurements of fruit characteristics were conducted 
twice: once in the drought and once in the non-drought period. Because some 
fruits of both host and parasitic plants may persist from one year to the next, all 
fruits were collected when counting. Fruits of the same plants were collected in 
early August of 1997 and 1998 to ensure comparability. Brightly colored flagging 
tapes were used to tag canopies of host and parasitic plants for ease of visuali- 


88 


MEAN MONTHLY PRECIPITATION (mm) 


Fig. 1. 


230 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


erm Sy Ts] al i 2) <i 
@® 1997 
O 1998 
v 1936-1998 
150 # | 
100 + 
| : R 
O | \ | 
q On } pak | 
50 lcd v / \\ 
ja ae \ 
Vv OC m 
a ney aa \ an ae 
oe ee Ee Hae 
| fe: 4 a 6 Fe 8 TS oP ee 
MONTH 


Comparison of mean monthly precipitation among the 1997 (drought), 1998 (non-drought), 


and 1936-1998 (average) years (NOAA, Red Rock Canyon, elevation 1,400 m). 


MEAN MONTHLY AIR TEMPERATURE (C) 


40 party 
@ 1997 
Eb. £998 
¥ L9S6— 1996 
SERS 
Ay 
Rohs 
2X) ie ae 
10 + vd vs 
law 
Bee 
0 | | l | l l tat al 
1 a ET ee SAN REA CE, a MS Ip ee CNS GS te 


MONTH 


Fig. 2. Comparison of mean monthly air temperature among the 1997 (drought), 1998 (non- 
drought), and 1936-1998 (average) years (NOAA, Red Rock Canyon, elevation 1,400 m). 


DROUGHT EFFECTS ON FRUIT IN JUNIPER AND MISTLETOE 89 


Table 1. Two-way ANOVA results of the effects of year, severity of infestation, and their inter- 
actions on various fruit characteristics of P. juniperinum. df = 1 for year; df = 2 for parasite severity 
and for year*parasite severity combination. Significance levels: *: P = 0.05; **: P = 0.01; ***: P< 
0.001; ns: non-significant. 


Year Parasite severity Year* severity 

Fruit trait PF P r P F P 
Production 29536 0.0034** 126.88 0.00738" 403.23 O:00027** 
% water content 608.22 0.0016** 543.00 G00Ls** 97.56 0.0019" 
Diameter 144.27 0.0012** 82.45 O0022+* 176.58 0.0000*** 
Thickness 6.00 0.0917ns 10.50 0.0424* 20.00 0.004 1** 
Dry mass 13.36 0.0354* fs 0.0655ns 13.90 COOL + 
Seed length 2.54 0.2152ns 4.80 0.1151ns 7a 0.0338* 
Seed dry mass 75.00 0.0032** 10.00 0.0452* 72.50 O0027* 


zation in the subsequent year. Fruit production was determined by counting the 
number of berries from individual J. osteosperma and P. juniperinum canopies 
during the peak or near peak fruit production. A total of 100 berries was randomly 
selected in each infection level of hosts and parasites to measure fruit dry mass, 
size (diameter and thickness), water content, as well as seed length and dry mass. 
Host trees included individuals with three levels parasitic infections, as well as 
individuals without any visible parasites (control) on trunks and branches. 


Statistical Analyses 


Two-way analysis of variance (ANOVA; Analytical Software 1994) was per- 
formed on fruit characteristics of parasitic P. junierinum, with year (drought and 
non-drought) and parasite severity (light, moderate, and heavy) as main effects. 
Similarly, two-way ANOVA was also performed on fruit characteristics of J. 
osteosperma, with year and parasite severity (control, light, moderate, and heavy) 
as main effects. In order to assess host and parasite plant responses to changes 
in weather condition, linear regression analysis was used to correlate fruit char- 
acteristics with year, parasite severity, and year* severity combination. Fruit water 
content was expressed in percentages. Mean values of fruit production and fruit 
water content were presented with standard errors, and statistical significance was 
determined at P < 0.05. 


Results 


Significant interactions (P <= 0.05; Table 1, Figs. 3 and 4) were detected be- 
tween year and severity of P. juniperinum infestation for all measured fruit char- 
acteristics of P. juniperinum. Between periods of high and low precipitation, sig- 
nificant differences (P = 0.05) were observed in fruit production (Fig. 3), fruit 
water content (Fig. 4), fruit diameter, fruit dry mass, as well as seed dry mass 
(Tables 1 and 3). Fruit production, fruit water content, diameter, thickness, as well 
as seed dry mass were also found to be significantly different (P = 0.05) among 
the three levels of infestation (Tables 1 and 3). 

Significant correlations were also detected between all P. juniperinum fruit 
traits and year* parasite severity combination. Seed length was significantly cor- 
related with year (P <= 0.05; Table 2). Fruit thickness and dry mass were signif- 
icantly correlated with parasite severity (P = 0.05; Table 2). 


90 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


400 
V4/) Light 
MM Moderate 
ec Heavy a b G 
ire ary) te 
i 
= 
a 
Le 
{ete 
S 
ian 
co 
= 
= 
a 
Lu = ms 
=) “Oe 
Cpe 


Drought Non—drought 
WEATHER CONDITION 


Fig. 3. Fruit production (Mean + SE, n = 100 per treatment) of P. juniperinum growing on J. 
osteosperma hosts with three levels of infections in Pine creek of southern Nevada. Narrow vertical 
bars denote standard errors of the means. Within the same weather condition, columns labeled with 
different letters are significantly different at P = 0.05. 


Significant interactions (P = 0.05; Table 4, Figs. 5 and 6) were observed be- 
tween year and severity of infestation for all measured fruit traits of J. osteo- 
sperma hosts. Between the two years, significant differences were detected in fruit 
production (Fig. 5), fruit water content (Fig. 6), along with seed length and dry 
mass (Tables 4 and 6). Fruit production, fruit water content, and seed dry mass 
were found to be significantly different (P = 0.05) among the three levels of 
infestation. 

Significant correlations were also seen between host fruit traits and year* par- 
asite severity combination. Seed dry mass was significantly (P = 0.05; Table 5) 


Table 2. Correlation coefficient (R’) for the relationship between P. juniperinum fruit characteristics 
and year, severity of infestation, as well as year*severity combination. Significance levels: *: P = 
0:05; **; P= 0.01: +** P< 0.001 ns: nonsignmiicant. 


Fruit trait Year Parasite severity Year* severity 
Production 0.54 ns 0.46 ns U.99 Fee 
% water content 0.36 ns 0.63 ns Os = 
Diameter 0.64 ns 0.24 ns 0.88 * 
Thickness O/17-fis 0.71 0.88 * 
Dry mass 0.02 ns 0:86:4* O87 
Seed length Oi 2as 0.21 ns 0:93.55 


Seed dry mass 0.49 ns 0.46 ns O93 + 


DROUGHT EFFECTS ON FRUIT IN JUNIPER AND MISTLETOE 91 


100 | 
V4“ Light | 
MM Moderate 
: Heavy 


80 


60" 


Nes 
eotetetetet 


a 
(@S) 
] 

“2 
SS 
3 


0:0: 
xX 
oS 
<8 

oS 


°, 


0:00; 
S08 
“ates 
ROX 
SRR 


SS 
‘ 

S 

vores 


] 
eee 
Se 
4 

4 
<j 
a4 


XX 


0.0.0.0 .0.0.4 


“ates 
25 
OS 
seca 
$6 
eect 
°, 
este 


00°00: @; 
SONS 
S89 SRK 

?, 

es 

= 


PERCENT WATER IN PRUE 


< 
ve 
508 
ON 
oS 
vet 
“ 
se 


notes 
RRS KN 
<> > 0,0.¢, 
votes 


< 
= 
eter 


> 


races 
eee 
“x 


Mevererereren 
"es 
SRS 
x 
ves 
S 
ox 
RL 


‘S 
OOO <> 
OR 


N 
Ss 
ee 
3050505060 
05 

0 
<3 


SON 
<7 
<2 ves 
5 
a5 
SOS 
Soe 


<9: 
fo 
vet 
Se 
%ee 

sone 


KOOKS <> 
KKK RRR K RS 
5% ae 
vetatetes 
RRQ KS 
ecenerecees 
rataces 


0 
ees 
vee 
ne 
SENS 
rateces 
iesenes 


<> 

Se < 
SRC 
tes 
wes 


<> 
<> 
<> 
<> <> 
eatetets 


net 
eesecenecenestatetstetets 
XXX 
& 
raseceees 
Se 
SOS 
S55 


RS So 


86 
EOcOcOe: 
ISeecenee 
‘S 
‘s 
te 


QO 


Drought Non—drought 
WEATHER CONDITION 


Fig. 4. Fruit water content (Mean + SE, n = 100 per treatment) of P. juniperinum growing on J. 
osteosperma hosts with three levels of infections in Pine creek of southern Nevada. Narrow vertical 
bars denote standard errors of the means. Within the same weather condition, columns labeled with 
different letters are significantly different at P = 0.05. 


correlated with year. However, all fruit traits other than seed dry mass were sig- 
nificantly (P = 0.05; Table 4) correlated with parasite severity. 


Discussion 


Fruit characteristics of P. juniperinum on hosts with three levels of infestation, 
as well as of uninfested J. osteosperma hosts and hosts with three levels of P. 
Juniperinum infestation were compared during drought and non-drought periods. 
The interactive effects of severe drought and heavy parasitism significantly re- 
duced the fruit production and other fruit traits of both hosts and parasites in Pine 
Creek of the Red Rock National Conservation Area in southern Nevada. 


Table 3. Fruit characteristics of P. juniperinum growing on J. osteosperma hosts with three levels 
of P. juniperinum infections in Pine Creek of southern Nevada (n = 100 per fruit or seed character- 
istic). 


Weather Infection Diameter Thickness Dry mass Seed length Seed dry mass 


condition status (mm) (mm) (mg) (mm) (mg) 
Drought Light 4.4 3.6 24.7 3.4 11.4 
Moderate 4.4 Bo 23.4 3.3 10.2 

Heavy 4.2 3.3 22.6 31 10.0 

Non-drought Light 4.6 ao 29 3.6 12.4 
Moderate 4.5 35 23.2 3.6 jG es) 


Heavy 4.5 a) yp a 2 ae) 11.1 


92 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 4. Two-way ANOVA results of the effects of year, severity of infestation, and their inter- 
actions on various fruit characteristics of J. osteosperma. df = 1 for year; df = 3 for parasite severity 
and for year*parasite severity combination. Significance levels: *: P = 0.05; **: P = 0.01; ***: Ps 
0.001; ns: non-significant. 


Year Parasite severity Year*severity 
Fruit trait F P F P F r 
Production 132.54 0.0014** 48.70 0.0048** 235.16 0.0000*** 
% water content 100.72 0.0016** 570.05 0.0081>=* 67.38 0.0002*** 
Diameter 12.00 0.0742ns 2.95 0.300ns 11.42 G.0393* 
Thickness 3.00 0.2254ns 6.33 0.1364ns 10.73 0.0429* 
Dry mass 0.44 0.5743ns 13.25 0.0702ns 10.21 0.0458* 
Seed length 27.00 O203551* 4.33 0.1875ns 19.69 0.0188* 
Seed dry mass 165.14 0.0060** 86.14 0.0HMS* 26.67 0.0123* 


Weather extremes are an important environmental factor that may lower the 
reproductive success, particularly the fruit characteristics of P. juniperium and its 
J. osteosperma host trees. Insufficient precipitation and considerably above av- 
erage air temperatures over a period of six months in 1997 may have been an 
example of such an extreme. The well below average seasonal precipitation and 
above average air temperatures from January to mid-July 1997 period likely re- 
sulted in low soil water content and high soil temperatures. Such severe drought 
conditions would result in substantial host and parasitic plant water stress. This 
severe drought was followed by above average monsoonal rainfalls in July and 
September (NOAA, Red Rock Canyon). 

Parasites that heavily infested their hosts also experienced a significant reduc- 
tion in fruit production and other fruit traits relative to parasites that lightly in- 
fested their hosts. In this study, J. osteosperma trees were susceptible to P. jun- 
iperinum in the sense that establishment occurred over time. Significant relation- 
ships between parasite severity and fruit characteristics are probably the normal 
pattern as a consequence of parasitism, regardless of drought. The reduction in 
fruit production and other fruit characteristics would occur long before the ex- 
treme drought in 1997. In general, these relationships between the severity of 
infestation and fruit characteristics became more prominent under drought stress. 
No comparative fruit characteristic data are available since the responses of P. 


Table 5. Correlation coefficient (R*) for the relationship between J. osteosperma fruit characteristics 
and year, severity of infestation, as well as year*severity combination. Significance levels: *: P = 
0.05; **: P < 0.01; ***: P < 0.001; ns: non-significant. 


Fruit trait Year Parasite severity Year* severity 
Production 0.47 ns O32F% 0:98 45= 
% water content 0.37 ns 0.60 * 0:96 “<4 
Diameter 0.37 ns 0762 > ei 
Thickness 0.15 ns O74 O.89F* 
Dry mass 0.35 ns 0:50 * 0:85 
Seed length 0.12 ns 0.62 * 0.74 * 


Seed dry mass 0.69 * 0.27 ns OT et 


DROUGHT EFFECTS ON FRUIT IN JUNIPER AND MISTLETOE $5 


Table 6. Fruit characteristics of uninfected J. osteosperma hosts (control) and hosts with three 
levels of P. juniperinum infections in Pine Creek of southern Nevada (n = 100 per fruit or seed 
characteristic). 


Weather Infection Diameter Thickness Dry mass Seed length Seed dry mass 
condition status (mm) (mm) (g) (mm) (g) 
Drought Control 92 hs 2.4 ips, i! 
Light 8.8 ike: 2.4 Tet 1.0 
Moderate 8.4 Pe: px) fe 0.9 
Heavy 8.1 (83) ZA 6.0 0.9 
Non-drought Control oN 7.4 2:0 8.3 1 
Light 23 7.4 ZS 8.1 | ee 
Moderate 9.0 Ges PRE 7.6 LZ 
Heavy 8.8 7 ol 2.4 74 Lal 


jJuniperinum and its J. osteosperma hosts to drought were not previously inves- 
tigated. 

Phoradendron juniperinum are autotrophic hemiparasites (Kuijt 1969; Calder 
and Bernhardt 1983; Lei 1999), but must acquire water and mineral nutrients 
from its J. osteosperma host plant through direct xylem connections (Ehleringer 
et al. 1986). In general, Phoradendron species compete aggressively with their 
hosts for water and nutrients (Calder and Bernhardt 1983). A combination of 
severe drought and heavy P. juniperinum infestation would impose a substantial 


700 
5 : 
Light : 
600 
WM Moderate Dt aa 
= VSO y 
= : XO 
) Peseeeoend 
“ane, | 
xx eee 
ple b 4 
4 O/, PEON = 
(2, = bet J BEEF x 1 
b 4 CARRERE \ | 
Or Sees 
LJ bes od 
etetatete’ 
a Soe 
% Sotetetats 
b x 
Size secs Seeee i 
a) eotetenetek jagenececece: 
b , 
KES b , 
Sexetatoces 
Za Bocececonest bs <4 
sectetetete. bes “d 
etonececeee, by 
P5509 Ks a 
Z Petetetate®. jee . 
Satetetete’ Rx re, 
és BS 55505 b> a 
oP? 2G Sere cece 
os k> 
fk tatetstetes eetstatetes ait 
— eetetetee®, PRN 
= secacecenece 
ee seees 
252525 etetacetens 
RX 
p , > OOOT \ 
Saseterete Seeeseses 
| ae ? 
Toc Seeerenee Reecere ~ = 
be lopoceconece, SN. 
% joconocecene, \ 
ee etatecetete. ‘ 
eetateeetet  etetetetete 
PSeeoe5 Reseceteren: Se 
joven q bexexociced \ 
px q ee KxOd 
ROS2 “4 ROT 
bose 4 SRK 
Rocegecece: \ / / Be eee 
J eeeceneeee, oe bees 
O <7 Z 16 Mat ZS RSR 
Drought Non—drought 


WEATHER CONDITION 


Fig. 5. Fruit production (Mean + SE, n = 85) of uninfested J. osteosperma hosts (control) and 
hosts with three levels of P. juniperinum infections in Pine creek of southern Nevada. Narrow vertical 
bars denote standard errors of the means. Within the same weather condition, columns labeled with 
different letters are significantly different at P = 0.05. 


94 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


100 | + 
| Control (NX) Heavy 
| RS Light 
| 
| Moderate 
80 L s 
Ee a a ab. D 
= 
" ‘ | 
Z 604 4 
aa 
Lu 
t— 
ms 
ers 40+ 4 
au 
[eo 
aa 
Lid 
ae 
ZO he 
O 


Non—drought 
WEATHER CONDITION 


Fig. 6. Fruit water content (Mean + SE, n = 85) of uninfested J. osteosperma hosts (control) and 
hosts with three levels of P. juniperinum infections in Pine creek of southern Nevada. Narrow vertical 
bars denote standard errors of the means. Within the same weather condition, columns labeled with 
different letters are significantly different at P = 0.05. 


physiological stress on its J. osteosperma hosts. Within a single, heavily-infested 
host under normal (non-drought) conditions, parasites experience intraspecific in- 
teractions, especially density-dependent exploitation and interference competition 
(Smith 1996). In this study, some P. juniperinum individuals had a significantly 
lower fruit production than others. Occasional severe or prolonged droughts are 
likely to increase the intensity of intraspecific competition. Consequently, the 
overall reproductive success, including fruit characteristics, of P. juniperinum 
would be constrained by resource and space within the host. In this study, drought 
appeared to have a more detrimental effect on P. juniperinum than on its hosts 
because some established P. juniperinum individuals on heavily parasitized trees 
exhibited a substantially lower fruit production. 

Uninfested or lightly infested /. osteosperma trees appeared to be tolerant to 
water and heat (drought) stress, and were capable of abundant fruit production in 
periodically stressful desert environment. Nevertheless, J. osteosperma hosts with 
severe infestation are likely to experience a limited reproductive success during 
periods of drought. Juniperus osteosperma trees are already under considerable 
infestation stress, and the additional stress of drought weakens host trees enough 
to limit their reproductive success. Drought stress accentuates or accelerates the 
detrimental effects of P. juniperinum infestation. Juniperus osteosperma trees with 
severe infestation would gradually decline in fruit characteristics compared to 
similar trees with no infestation. This decline would occur over many years, if 
not several decades. Aridity is a permanent feature in the warm Mojave Desert 


DROUGHT EFFECTS ON FRUIT IN JUNIPER AND MISTLETOE 95 


of southern Nevada. Drought, however, is a temporary feature, occurring when 
precipitation falls below normal. Results of this study suggest that combined ef- 
fects of heavy parasitism and occasional severe droughts can significantly limit 
certain aspects of reproductive success, particularly fruit characteristics, of both 
parasitic P. juniperinum and its J. osteosperma host plants. 


Acknowledgments 


Sincere appreciation is expressed to Steven Lei, David Valenzuela, and Shevaun 
Valenzuela for providing valuable field and laboratory assistance. Appreciation is 
also expressed to the Department of Biology of the Community College of South- 
ern Nevada (CCSN) for providing logistical support. 


Literature Cited 


Analytical Software 1994. Statistix 4.1, an interactive statistical program for microcomputers. Ana- 
lytical Software, Tallahassee, Florida. 

Calder, M. and P. Bernhardt. 1983. The biology of mistletoes. Academic Press, New York. 

Dawson, T. E., J. R. Ehleringer, and J. D. Marshall. 1990. Sex-ratio and reproductive variation in the 
mistletoe Phoradendron juniperinum (Viscaceae). Amer. J. Botany 77:585—589. 

Ehleringer, J. R., C. S. Cook, and L. L. Tieszen. 1986. Comparative water use and nitrogen relation- 
ships in a mistletoe and its host. Oecologia 68:279—284. 

Glatzel, G. 1983. Mineral nutrition and water relations of hemiparasitic mistletoes: a question of 
partitioning experiments with Loranthus europaeus on Quercus petraea and Q. robur. Oecol- 
ogia 56:193-201. 

Hollinger, D. Y. 1983. Photosynthesis and water relations of the mistletoe, Phoradendron villosum, 
and its host, the California valley oak, Quercus lobata. Oecologia 60:396—400. 

Kuijt, J. 1969. The biology of parasitic flowering plants. University of California Press, Berkeley, 
California. 

Lei, S. A. 1999. Host-parasite relationship between Utah juniper and juniper mistletoe in the Spring 
Mountains of southern Nevada. Pages 99-104 in Proceedings: Ecology and management of 
pinyon-juniper communities within the interior west. USDA Forest Service, Rocky Mountain 
Research Station, Ogden, Utah. 

Munz, P. A. 1974. A flora of Southern California. University of California Press, Berkeley, California. 

National Oceanic and Atmospheric Administration (NOAA). 1998. Local climatological data: annual 
summary with comparable data, Las Vegas, Nevada. National Climatic Data Center, Ashville, 
North Carolina. 

Schulze, E. D. and J. R. Ehleringer. 1984. The effect of nitrogen supply and water-use efficiency of 
xylem-tapping mistletoes. Planta 162:268—275. 

Schulze, E. D., N. C. Turner, and G. Glatzel. 1984. Carbon, water and nutrient relations of two 
mistletoes and their hosts: a hypothesis. Plant, Cell and Environment 7:293—299. 

Smith, R. L. 1996. Ecology and Field Biology (Sth ed.). Harper Collins College Publishers, Inc., New 
York. 


Accepted for publication 19 June 2000. 


Bull. Southern California Acad. Sci. 
100(2), 2001, pp. 96-99 
© Southern California Academy of Sciences, 2001 


Spatial Distribution of Blackbrush (Coleogyne ramosissima Torr.) 
Populations in the Mojave Desert 


Simon A. Lei 


Department of Biology, WDB, Community College of Southern Nevada, 
6375 West Charleston Boulevard, Las Vegas, Nevada 89146-1139 


The pattern of spatial distribution of a plant population is a fundamental char- 
acteristic of that population, but it is a feature that is extremely difficult to describe 
in precise and meaningful terms (Clark and Evans 1954). At the local level, even 
in a relatively homogeneous environment, individuals in a single plant population 
can be distributed randomly, clumped together, or in highly regular patterns (Cun- 
ningham and Saigo 1999). 

Blackbrush (Coleogyne ramosissima Torr.) shrubs are established primarily 
along the Colorado River drainage and several adjacent enclosed basins of the 
Great Basin-Mojave Desert transition (Bowns and West 1976). Coleogyne ra- 
mosissima shrubs are a common vegetation type in mid-elevations of the Mojave 
Desert, with creosote bush-white bursage (Larrea tridentata-Ambrosia dumosa) 
shrublands occurring on valley floors and lower desert mountain slopes and with 
pinyon pine-Utah juniper (Pinus monophylla-Juniperus osteosperma) woodlands 
occurring at higher mountain slopes (Lei 1995). 

Some ecological aspects of C. ramosissima and its shrublands have been doc- 
umented (Beatley 1974 and 1976; Bowns 1973; Bowns and West 1976; Bradley 
1964; Brown 1982; Callison and Brotherson 1985; Korthuis 1988; Lei 1995, 
1999a, b; Lei and Walker 1995, 1997a, b; and Pendleton et al. 1995 and 1999). 
However, C. ramosissima was selected as a representative species for such a study 
because the spatial distribution of individuals and populations within the C. ra- 
mosissima shrublands in isolated mountain ranges in the Mojave Desert has not 
been quantatively investigated. From casual observations, the spatial distribution 
of C. ramosissima individuals and populations appears to be clumped throughout 
the Mojave Desert. This hypothesis was tested by field measurements with ap- 
propriate statistical analysis. 

Field studies were conducted at fully developed C. ramosissima shrublands 
throughout the Mojave Desert during July 2000. The five study sites were located 
in the Spring and Newberry Mountains of southern Nevada, the Clark Mountain 
of southeastern California, the Virgin Mountains of northwestern Arizona, and 
the Mormon Range of southwestern Utah (Table 1). Elevation varied considerably, 
ranging from 1,250 m in the Mormon Range to 1,450 m in the Spring Mountains. 
These five sites were fairly representative of C. ramosissima populations, and 
formed nearly monospecific blackbrush vegetation zones in the Mojave Desert. 
Each of the five sites represented an isolated mountain range for C. ramosissima 
population. 

The weather pattern of the Mojave Desert is characterized by wide-ranging 
daily air temperatures, high year-round air temperatures, extremely high potential 
evaporation, little cloud cover, low relatively humidity, low annual precipitation 


96 


BLACKBRUSH SPATIAL DISTRIBUTION pi 


Table 1. Geographical characteristics of the five C. ramosissima study sites. Location, as well as 
approximate latitude (N), longitude (W), and elevation (m) are shown. Mountain ranges are arranged 
alphabetically in the Mojave Desert. 


Location County, State Latitude Longitude Elevation 
Clark Mountain San Bernadinom, CA 35°05! 1 Fs 1300 
Mormon Range Washington, UT 3720" 114°00' 1250 
Newberry Mountains Clark, NV a 20° 114°50' 1300 
Spring Mountains Clark, NV 55 50 LESS5" 1450 
Virgin Mountains Mohave, AZ 36°50’ 114°00' 1300 


(Lei 1999b). The Mojave Desert resembles the Mediterranean-type climate char- 
acterized by hot, dry summers and cool, wet winters. Episodic monsoonal winds 
and thunderstorms occur during summer seasons. Winter rainfalls, although vary- 
ing considerably from year to year, contribute to most of the total annual precip- 
itation (Lei 1999b). The terrain consists of rocky slopes and alluvial fans dissected 
by dry wash channels. Soil profiles are poorly developed, and soils are composed 
primarily of weathered granite and limestone bedrock. Organic decomposition and 
soil formation are slow due to the arid nature of the region (Lei 1999b). 

Within each site, the spatial distribution of C. ramosissima population was ex- 
amined on a 10-ha plot. The nearest neighbor method was used to determine whether 
shrubs of the same species are distributed at random, are clumped, or are regular 
(Barbour et al. 1987). At each site, 100 random points were distributed evenly among 
the four parallel transects located on the 10-ha plot. Intervals between two parallel 
transects are 20 m apart. However, intervals between two points within a transect 
were randomly selected to avoid biased field measurements. The distance measured 
was from the center of individual C. ramosissima located closest to the random point 
to the center of its nearest C. ramosissima neighbor. 

One-way Analysis of Variance (ANOVA), followed by Tukey’s Multiple Com- 
parison Test (Analytical Software 1994) was used to detect differences among dis- 
tances between one C. ramosissima to its nearest C. ramosissima neighbor, and to 
compare site means when a significant distance effect was detected, respectively. 
Mean distance values were presented with standard errors, and statistical significance 
was determined at P <= 0.05. 

The ratio of the observed mean distance to the expected mean distance (R-value) 
served as a measure of departure from randomness (Clark and Evans 1954). The 
nearest neighbor method (Clark and Evans 1954) was used to determine whether the 
C. ramosissima populations were randomly distributed within the C. ramosissima 
shrublands. The significant difference in the value of R for C. ramosissima popula- 
tions was tested with the c value of 1.96, representing the 5 % level of significance 
for a two-tailed test (Clark and Evans 1954; McClave and Dietrich 1991). 

Mean distances between C. ramosissima and its nearest C. ramosissima neighbor 
were significantly different (P = 0.05; Table 2) among the five isolated mountain 
ranges in the Mojave Desert. The mean distances ranged from 210 cm in the Mormon 
Range in southwestern Utah to 275 cm in the Clark Mountains of southeastern 
California. 

Coleogyne ramosissima populations among the five isolated mountains ranges 
were strongly aggregated, ranging from 0.13 in the Mormon Range to 0.17 in the 


98 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 2. Distance (mean + SE) and R-values from one individual C. ramosissima to its nearest C. 
ramosissima neighbor in five isolated mountain ranges of the Mojave Desert (N = 100 per mountain 
range). Mean values followed by different letters indicate significant differences at P = 0.05 using 
Tukey’s Multiple Comparison Test. 


Location Mean distance (cm) R-value 
Clark Mountain 2A 2 BA Ta 0.17 
Mormon Range 210 + 19.4 b 0.13 
Newberry Mountains Zo 2 2255 Oe 0.16 
Spring Mountains 239 + 28.4 ab 0.15 
Virgin Mountains 247 + 11.2 ab 0.16 


Clark Mountains (Table 2). When examining the spatial distribution of C. ramosis- 
sima populations, there was a tightly clustering of mean values of distance from one 
C. ramosissima plant to another and for R-values. For the spatial distribution in this 
study, R < 1.0, indicating a significant departure from random expectation in the 
direction of aggregated spacing by the c test. According to the distance to nearest 
neighbor as a measure of spatial distribution in plant populations, R = 0 in a max- 
imum aggregation, since all of the individuals occupy the same locus and the distance 
to nearest neighbor is therefore 0. In contrast, R = 2.1491 in a maximum uniformity, 
since individuals will be distributed as evenly and widely as possible in a hexagonal 
pattern (Clark and Evans 1954). The ratio of observed to expected mean distance to 
nearest neighbor provides a measure of the degree to which the distributional pattern 
of the observed population deviates from random expectation (Clark and Evans 
1954). 

The distance from one individual plant to another provides a variable for the 
measurement of spacing that obviates the use of quadrats, and, therefore, eliminates 
the effect of quadrat size (Goodall 1953). The measure of spacing in this study is a 
measure of the degree to which the distribution of individuals in C. ramosissima 
populations at given areas departs from that of a random distribution. Thus, random- 
ness is a spatial concept, intimately dependent upon the boundaries of the space 
chosen by the investigator (Clark and Evans 1954). In this study, all five C. ramo- 
sissima populations on isolated mountains ranges clearly departed from random ex- 
pectation with a high degree of significance as the distance to nearest neighbor is 
concerned. Although significant differences in mean distances were detected, only a 
slight difference in the degree of aggregation was found among the five C. ramosis- 
sima populations in the Mojave Desert. 


Acknowledgments 


I gratefully acknowledge Steven Lei, David Valenzuela, and Shevaun Valen- 
zuela for valuable field assistance. Steven Lei assisted with statistical analysis and 
provided helpful comments on earlier versions of this manuscript. 


Literature Cited 


Analytical Software. 1994. Statistix 4.1, an interactive statistical program for microcomputers. Ana- 
lytical Software, St Paul, Minnesota. 

Barbour, M. G., J. H. Burk, and W. D. Pitts. 1987. Terrestrial plant ecology, Second Edition. The 
Benjamin/Cummings Publishing Company, Inc., Menlo Park, California. 


BLACKBRUSH SPATIAL DISTRIBUTION wer 


Beatley, J. 1974. Effects of rainfall and temperature on the distribution and behavior of Larrea di- 
varicata (creosote-bush) in the Mojave Desert of Nevada. Ecology 55:245-—261. 

Beatley, J. 1976. Vascular plants of the Nevada Test Site and Central-southern Nevada: ecologcial and 
geographical distributions. National Technical Information Service, United States Department 
of Commerce, Springfield, Virginia. 

Bowns, J. 1973. An autecological study of blackbrush (Coleogyne ramosissima Torr.) in southern 
Utah. Unpublished dissertation, Utah State University, Logan, Utah. 

Bowns, J. and N. West. 1976. Blackbrush (Coleogyne ramosissima Torr.) on southern Utah rangelands. 
Department of Range Science, Utah State University. Utah Agricultural Experiment Station, 
Research Report 27. 

Bradley, W. G. 1964. The Vegetation of the Desert Game Range with special reference to the desert 
bighorn. Trans. Desert Bighorn Council 8:43—67. 

Brown, D. 1982. Biotic communities of the American Southwest: United States and Mexico. The 
University of Arizona for the Boyce Thompson Southwestern Arboretum, Tucson, Arizona. 

Callison, J. and J. Brotherson. 1985. Habitat relationship of the blackbrush community (Coleogyne 
ramosissima) of southern Utah. The Great Basin Naturalist 45:321—326. 

Clark, P. J. and EK C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationships 
in populations. Ecology 35:155—162. 

Cunningham, W. P. and B. W. Saigo. 1999. Environmental Science, Fifth edition. WCB McGraw-Hill, 
Boston, Massachusettes. 

Goodall, D. W. 1953. Objective methods for the classification of vegetation. I. The use of positive 
interspecific correlation. Australian Journal of Botany 1:39—63. 

Korthuis, S. 1988. Coleogyne ramosissima. In: Fischer, William C., Compiler. The Fire Effects Infor- 
mation System (Data base). Missoula, Montana: U.S. Department of Agriculture, Forest Service, 
Intermountain Research Station, Intermountain Fire Sciences Laboratory. Magnetic tape reels; 
9 track; 1600 bpi, ASCII with common LISP present. 

Lei, S. A. 1995. A gradient analysis of blackbrush (Coleogyne ramosissima Torr.) communities in 
southern Nevada. Unpublished thesis. University of Nevada, Las Vegas, Nevada. 

Lei, S. A. and L. R. Walker 1995. Composition and distribution of blackbrush (Coleogyne ramosis- 
sima) Torr. communities in southern Nevada. p. 191—195, in E. D. McArthur, J. S. Haley, and 
D. K. Mann, compilers. Proceedings: wildland shrub and arid land restoration symposium, 
General Technical Report INT-GTR-315, Ogden, UT: U.S. Department of Agriculture, Forest 
Service, Intermountain Research Station. 

Lei, S. A. and L. R. Walker 1997a. Classification and ordination of Coleogyne communities in southern 
Nevada. The Great Basin Naturalist 57:155—162. 

Lei, S. A. and L. R. Walker 1997b. Biotic and abiotic factors influence the distribution of Coleogyne 
communities in southern Nevada. The Great Basin Naturalist 57:163-—171. 

Lei, S. A. 1999a. Phenological events and litterfall dynamics of blackbrush in southern Nevada. p. 
113-118 in E. D. McArthur, W. K. Ostler, and C. L. Wambolt, compilers. Proceedings: Shrub- 
land Ecotones, Proceedings RMRS-P-11. Ogden, UT: U.S. Department of Agriculture, Forest 
Service, Rocky Mountain Research Station. 

Lei, S. A. 1999b. Ecological anatomy of seven xerophytic shrub species in southern Nevada. p. 206— 
211 in E. D. McArthur, W. K. Ostler, and C. L. Wambolt, compilers. Proceedings: Shrubland 
Ecotones, Proceedings RMRS-P-11. Ogden, UT: U.S. Department of Agriculture, Forest Ser- 
vice, Rocky Mountain Research Station. 

McClave, J. T. and FE H. Dietrich. 1991. Statistics, Fifth Edition. Dellen Publishing company, San 
Francisco, California. 

Pendleton, B. K., S. E. Meyer, and R. L. Pendleton. 1995. Blackbrush biology: insights after three 
years of a long-term study. p. 223-227, in E. D. McArthur, J. S. Haley, and D. K. Mann, 
compilers. Proceedings: wildland shrub and arid land restoration symposium, General Technical 
Report INT-GTR-315, Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermoun- 
tain Research Station. 

Pendleton, R. L., B. K. Pendlton, and S. D. Warren. 1999. Response of blackbrush seedlings to 
inoculation with arbuscular mycorrhizal fungi. p. 245-251 in E. D. McArthur, W. K. Ostler, 
and C. L. Wambolt, compilers. Proceedings: Shrubland Ecotones, Proceedings RMRS-P-11. 
Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 


Accepted for publication 28 January 2001. 


Bull. Southern California Acad. Sci. 
100(2), 2001, pp. 100-108 
© Southern California Academy of Sciences, 2001 


Postfire Seed Bank and Soil Conditions in a Blackbrush 
(Coleogyne ramosissima Torr.) Shrubland 


Simon A. Lei 


Department of Biology, Community College of Southern Nevada, 
6375 West Charleston Boulevard, WDB, Las Vegas, NV 89146-1139 


Abstract.—Ten-year postfire seed bank and soil conditions were quantitatively 
investigated in a blackbrush (Coleogyne ramosissima) shrubland in Sandy Valley 
of southern Nevada. A severe, lightning-induced fire occurred in June 1987, cre- 
ating a nearly barren landscape. Seed density of woody species at the soil surface 
and in the top 3 cm of soil was significantly lower in burned areas compared to 
adjacent unburned areas. However, within the burned areas, no significant differ- 
ences were detected in seed density of woody species. Although seed transport 
from adjacent unburned areas out onto the burns was minimal, evidence of limited 
long-distance dispersal of C. ramosissima seeds was found. Soil moisture and 
organic matter decreased significantly, whereas soil pH, soil temperature, bulk 
density, and compaction increased significantly in burned areas compared to un- 
burned areas. Nevertheless, soil salinity did not differ significantly after burning. 
Limited long-distance dispersal, extremely low soil seed densities, as well as 
adverse weather and impoverished edaphic conditions were some of the primary 
obstacles to reestablishment of C. ramosissima plants and their shrublands. 


Fire and its impact on soil seed bank and soil conditions have been of interest 
to many ecologists, especially in major shrublands of the desert Southwest. Fires 
occur frequently at elevations above 1,650 m in the Mojave Desert woodlands 
because the cool, semiarid climate results in a substantial accumulation of fuel 
(Humphrey 1974). However, fires are less frequent at mid- and lower elevations 
(below 1,650 m) of the Mojave Desert shrublands primarily due to limited bio- 
mass and vegetation cover, wide spacing between shrubs, and insufficient accu- 
mulation of flammable material (Brown and Minnich 1986). Blackbrush (Coleo- 
gyne ramosissima) shrublands are located at mid-elevations. Shrub species in C. 
ramosissima communities have a low recovery rate years after fire, and are subject 
to long-standing changes in the structure and species composition in southeastern 
California (Minnich 1995) and southern Nevada (Lei 2000). Fire greatly reduces 
woody vegetation over an extensive area, thus exacerbating re-establishment by 
requiring long-range seed dispersal from widely scattered unburned individuals 
that provide local seed sources (Minnich 1995). 

Coleogyne ramosissima produce seeds that usually fall near the parent plants 
(Lei, personal observations). Coleogyne ramosissima plants are capable of long- 
range seed dispersal by wind, water (downslope movement), or fauna (Brown and 
Minnich 1986; Minnich 1995). Evidence of long-range wind, water, or fauna 
dispersal from adjacent unburned areas to burned areas was found since a few 
seeds were observed on the surface near the center of large burned areas in 
southern Nevada (Lei, personal observations). 


100 


POSTFIRE SOIL SEED DENSITIES AND SOIL CONDITIONS 101 


A seed bank is an aggregation of ungerminated seeds potentially capable of 
replacing adult plants through time (Leck et al. 1989). The potential for replacing 
adult plants is essential. If seeds get permanently buried too deeply, they can be 
considered lost from the desert seed bank, as they would not be involved in 
germination, granivory, redistribution or other processes that directly relate to seed 
bank dynamics (Leck et al. 1989). Seeds of desert shrubs generally cannot emerge 
from below 4 cm (Leck et al. 1989). However, seeds in desert soils are distributed 
mostly near the surface; approximately 80 to 90 % of seeds are found in the upper 
2 cm of soil (Reichman 1975). Coleogyne ramosissima vegetation zones do not 
form long-term or permanent desert seed banks, and reestablishment of C. ra- 
mosissima may also depend on rodents transporting seed from the adjacent un- 
burned areas out onto the burns, a small possibility for large disturbances (Pen- 
dleton et al. 1995). Coleogyne ramosissima seeds are buried by rodents to a few 
centimeters in depth; these seeds may germinate from rodent caches after aban- 
donment (Bowns 1973; Bowns and West 1976). 

Following a severe fire, soil organic matter and percent pore space decrease 
significantly. On the contrary, fire significantly increases soil pH, temperature, 
compaction, and bulk density in C. ramosissima shrublands of southern Nevada 
(Lei 2000). 

Fire has been responsible for altering and severely damaging C. ramosissima 
vegetation zones in southern Nevada (Lei 2000). Coleogyne ramosissima stands 
do not recover from fire disturbance, and much acreage of this vegetation type is 
being lost due to an increase in fire frequency (Lei 2000). The time required for 
a complete postfire recovery of vegetation is still unknown in C. ramosissima 
shrublands in southern Nevada and throughout its range. Postfire woody vegeta- 
tion recovery in the C. ramosissima shrublands has been documented (Beatley 
1974, 1975 and 1980; Callison et al. 1985; Korthuis 1988; Lei 2000; and Minnich 
1995). However, the possible effects of fire on seed density of woody plants 
remain poorly understood. The objectives of this article were to quantitatively 
evaluate soil parameters, along with the presence and seed density of woody 
species ten years after burning in Sandy Valley of southern Nevada. 


Materials and Methods 
Study Site 


The study was conducted during summer 1998 in Sandy Valley, along State 
Highway 160, located on the lower west-facing slopes of the Spring Mountains 
(approximately 36°00'N, 115°40’W; 1,350 to 1,400 m in elevation) in southern 
Nevada. Coleogyne ramosissima forms a nearly monospecific vegetation zone at 
mid-elevations, with only a scattered distribution of other shrub species (Lei and 
Walker 1997; Lei 2000). 

Burned and unburned areas were once similar in species composition, vegeta- 
tion cover, community structure, soil, geology, and geomorphic surfaces (Tim 
Rash, Personal Communication). Burned and unburned areas were separated by 
a two-lane highway, forming two distinct landscapes. The fire was started in June 
1987 by lightning from a summer monsoonal thunderstorm, and burned approx- 
imately 4,000 ha from the upper C. ramosissima elevational boundary through 
the upper portions of the creosote bush-white bursage (Larrea tridentata-Ambro- 


102 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


sia dumosa) zone. This extensive fire provided an opportunity to examine postfire 
seed density of woody species, as well as edaphic characteristics of a C. ramo- 
sissima shrubland. 


Fire History 


Sandy Valley is under the jurisdiction of the Las Vegas District of the Bureau 
of Land Management (BLM). Fire data were obtained from fire reports and atlases 
of the BLM, which provided the most reliable source of C. ramosissima fire 
history available in Sandy Valley. Topographic maps and aerial photographs were 
used to determine fire boundaries and to map the extent of burns. The burn 
margins and scars in the C. ramosissima vegetation zone were often visible and 
identifiable based on the presence or absence of the dominant plant species. 


Seed and Soil Collections 


Seeds of woody species and their corresponding soil samples were collected 
from five, | m? plots randomly situated along each of 20, 150 m transects situated 
in both burned and unburned areas. Transects were oriented parallel to, and at 
least 50 m from, the edge of the road. In burned areas, 75 plots were located at 
the burn-edge (8 m from the edge of the burn scar), one-quarter of the distance 
to the burn-center (300 m from the burn-edge), and in the center of the burn (600 
m from the burn-edge). In unburned areas, five transects were located 100 m from 
the burn-edge. 

Soils were sampled from the entire | m? plots to a depth of 3 cm. After removal 
of surface rocks and litter, soils were collected from both inter-plant gaps and 
directly under existing plant canopies in order to measure the full range of the 
seed bank and heterogeneity of soil characteristics. Soils collected from open 
spaces and under plant canopies were then pooled per plot after thorough mixing. 
Seeds on ground surface were observed using a magnifying glass. Each soil sam- 
ple was sifted through a l-mm sieve to search for seeds. Numbers of seeds of 
woody species were individually counted in the field. Density was expressed as 
number of seeds per 1 m*. Sieved and oven-dried soils were retained for labo- 
ratory analyses at the Community College of Southern Nevada (CCSN). 


Soil Analyses and Measurements 


In the field, soil temperatures at the surface and at a depth of 3-cm were 
recorded with a soil thermometer located at the central point within each of the 
100 plots. Soil temperatures were recorded from mid-morning hours to minimize 
diurnal soil temperature variation due to sun angle. Soil temperatures were re- 
corded simultaneously with soil moisture and sample collection to ensure com- 
parability. Soil compaction was estimated using a penetrometer that was inserted 
into the soil after removing stony surface pavements. Percent pore space was 
determined using the following equation: Pore space = 100 — (D,/D, - 100), 
where D, is the bulk density of the soil and D, is the average particle density, 
usually about 2.65 g/cc (Hausenbuiller 1972; Davidson and Fox 1974). 

In the laboratory, the fresh soil samples were weighed, dried in a 65°C oven 
until they reached a constant mass, and reweighed to determine gravimetric water 
content. Soil bulk density was assessed by dividing dry mass by volume. Soil pH 
was determined on a saturation paste acquired by mixing equal volumes of dry 


POSTFIRE SOIL SEED DENSITIES AND SOIL CONDITIONS 103 


Table 1. Mean seed density of wood plants (no./m’*; N = 100 plots) at the ground surface in burned 
and adjacent unburned areas of the C. ramosissima vegetation zone in Sandy Valley. Within burned 
areas, seed density is shown at three distances from the fire-edge. Mean values in rows followed by 
different letters are significantly different at P = 0.05. 


Burned area 


Plant species Unburned area 8 m 300 m 600 m 
Coleogyne ramosissima 0.14 a 0.07 b 0.06 b 0.04 b 
Encelia virginensis 0.17 a 0.09 b 0.07 b 0.07 b 
Gutierrezia sarothrae 0.24 a OTS’ b O12 0.11 b 
Lycium andersonii 0.04 a Ob Ob Ob 
Menodora spinescens 0.05 a Ob Ob Ob 
Thamnosma montana 0.07 a Ob Ob Ob 
Yucca brevifolia 0.04 a Ob Ob Ob 


soil saturated with deionized water (McLean 1982). Total organic matter was 
obtained for samples that were pre-dried at 65°C for 72 h, followed by mass loss 
on ignition at 550°C for 4 h (Black 1965). Soil salinity (total soluble salts) was 
acquired by an electrical conductivity bridge, using a slurry consisting of equal 
parts of soil to distilled water paste (Rhoades 1982). 


Statistical Analyses 


One-way analysis of variance (ANOVA; Analytical Software 1994) was used 
to compare means of seed densities, as well as to compare corresponding soil 
attributes between burned and unburned areas in the C. ramosissima vegetation 
zone. ANOVA was also used to detect differences among burned areas only. 
Burned areas were subdivided into three distances from the fire edge. Tukey’s 
multiple comparison test (Analytical Software 1994) was then performed to com- 
pare means when a significant fire effect was detected between burned and un- 
burned areas, as well as among burned areas only. Student t-tests (Analytical 
Software 1994) were conducted to compare soil temperatures between the soil 
surface and at 3-cm depth in burned and unburned areas. Mean values are pre- 
sented with standard errors, and P-values less than or equal to (S) 0.05 are re- 
ported as statistically significant. 


Results and Discussion 
Seed Densities 


For all woody species evaluated, soil seed density was significantly lower (p 
= 0.05; Tables 1 and 2) in burned compared to unburned areas in Sandy Valley 
of southern Nevada. Specifically, Gutierrezia sarothrae density was highest in 
both treatments at both soil surface and 3 cm depths (0.14 and 0.10 seeds/m/, 
respectively), followed by Encelia virginensis density at the surface (0.17 seeds/ 
m? in unburned and 0.08/m? in burned areas) and Coleogyne ramosissima at 3 
cm depths (0.10/m? in unburned and 0.02/m? burned areas). 

Within burned or unburned areas, seed density of C. ramosissima, E. virginen- 
sis, G. sarothrae, Lycium andersonii, and Menodora spinescens was significantly 
higher (P = 0.01) on the surface of soil (Table 1) than under 3 cm of soil (Table 
2). A number of seeds were found deeper than 3 cm below the soil surface in 


104 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 2. Mean seed density of woody plants (no./m?; N = 100 plots) at the top 3 cm of soil in 
burned and adjacent unburned areas of the C. ramosissima vegetation zone in Sandy Valley. Within 
burned areas, seed density is shown at three distances from the fire-edge. Mean values in rows followed 
by different letters are significantly different at P = 0.05. 


Burned area 


Plant species Unburned area 8 m 300 m 600 m 
Coleogyne ramosissima 0.10 a 0.03 b 0.02 b 0.02 b 
Encelia virginensis 0.09 a 0.04 b 0.04 b 0.03 b 
Gutierrezia sarothrae 0.17 a 0.07 b 0.05 b 0.05 b 
Lycium andersonii 0) 0 0 0 
Menodora spinescens 0) 0) 0) 0 
Thamnosma montana 0.05 a Ob Ob Ob 
Yucca brevifolia 0) 0 0 0 


unburned areas (Lei, personal observation), presumably due to animals (rodents) 
placing them in caches and, to a lesser extent, wind-blown sand burying seeds 
several centimers beneath the soil under shrub canopies through time. 

No significant differences were found at various distances within burned areas 
in this study. In addition to long-distance seed dispersal, scattered surviving in- 
dividuals of woody plants on unburned “‘fire islands’’ throughout the burns would 
provide local seed source through time (Minnich 1995). Nevertheless, no such 
‘‘fire islands’’ existed in this study because all woody plants were eradicated by 
fire, and therefore, woody seeds found on the surface in burned areas depended 
on long-distance dispersal. 

Seed banks of the warm deserts are composed primarily of annual species; 
perennial species do not form persistent seed banks (Leck et al. 1989). Shrubs in 
warm deserts have a minimal dependence on seed banks for regeneration and 
protection against climatic uncertainty or other environmental stochascity (Leck 
et al. 1989). Their strategy is to produce a few seeds almost every year, most of 
which do not persist in the seed bank (Boyd and Brum 1983). Examination of 
habitat differences within the C. ramosissima shrubland in Sandy Valley indicates 
that seed bank dynamics are governed by local plant distributions and local flow- 
ering and fruiting events. Soil seed densities do not correlate well with plant 
densities in time or space (Leck et al. 1989). In this study, the significantly fewer 
number of seeds in burned areas suggests that C. ramosissima shrubland will 
require a long period of time to return to pre-burn conditions following fire dis- 
turbance. 


Soil Properties 


Edaphic factors appeared to be critical for seed germination of C. ramosissima 
and associated woody taxa in Sandy Valley. Soil physical and chemical charac- 
teristics were significantly altered ten years after burning. However, no significant 
differences were detected at various distances within extensive burned areas. With 
the exception of soil salinity (0.3 in unburned and 0.4 in burned areas; Table 4), 
all soil parameters measured differed significantly between burned and unburned 
areas ten years after burning. 

Burned areas had significantly higher (p = 0.05; Table 4) soil temperatures 


POSTFIRE SOIL SEED DENSITIES AND SOIL CONDITIONS 105 


(39.7 to 40.7°C) at or near the surface than unburned areas (37.5°C). Soil tem- 
peratures at the surface and at 3-cm depth were significantly higher in burned 
than unburned areas in southern Nevada (Lei 2000). Conversely, soil moisture 
was significantly higher in unburned (1.1 %) than in burned (0.6 to 0.8 %; Table 
4) areas. Depending on fuel accumulation rates, burning should be expected to 
have a long-term effect on soil moisture and soil temperature, at least in the 
mineral horizon. Surface litter allows for both water retention (reduced evapo- 
transpiration) and cooling (shades the mineral soil also affecting evaporation). 
Surface litter affects soil moisture and soil temperature long after burning only 
further emphasizes the long-term effect of fire on C. ramosissima vegetation 
zones. 

Soil pH was higher (P <= 0.05; Table 4) in burned than in unburned areas of 
the C. ramosissima vegetation zone. Soil pH increased significantly from 7.7 in 
unburned to 8.1 in burned areas at the C. ramosissima zone (Table 4). Fire tends 
to increase pH, making soils more basic. The hydrogen ion concentration decreas- 
es after incineration, and raising the soil pH is usually significant in the upper 10 
cm (Scotter, 1963; Raison 1979; Wright and Bailey 1982). 

Percent pore space was significantly lower (P <= 0.05; Table 4) in burned 
(45.7 to 47.1 %) compared to unburned (50.2 %) areas. Desert soils of southern 
Nevada are relatively high in sand and gravel. Sandy soils typically have a pore 
space of 35 to 50 % (Davidson and Fox 1974), which is in agreement with this 
study. The decrease in percent pore space may also reflect the reduction in soil 
organic matter (4.1 % without burn; 1.9 to 2.0 % with burn). Organic matter is 
generally clay-sized, which has a substantially smaller pore space than sand and 
silt. Organic matter also decreases bulk density of the soil because it is less dense 
(lighter) than a corresponding volume of mineral soil (Barbour et al. 1987), which 
is consistent with this study, indicating that soil bulk density increased signifi- 
cantly (Table 4) in burned areas. The carbon content is inversely correlated with 
the bulk density of the soil (Barbour et al. 1987). In this study, the increase in 
soil bulk density of burned areas, along with the decrease in pore space, would 
most likely increase water-holding capacity, particularly at depth. On the soil 
surface, however, this water may fall within the evaporation zone and, thus, be 
subject to evaporative losses. 

The increase in soil compaction with burning (+0.8 to +1.2 kg/cm’; Table 4) 
is also consistent with the increase in bulk density and decrease in pore space. 
The more compact the soil, the less likely that evaporation will occur. Gravimetric 
water in small pore spaces is very tightly held against evaporative and plant- 
uptake losses. Yet, the increase in soil compaction in burned areas may inhibit 
root growth of woody taxa that are adapted to a looser soil condition (Davidson 
and Fox, 1974). 


Weather Conditions 


Southern Nevada experienced several episodes of drought in recent years (Table 
3), resulting in widespread plant water stress. Droughts in southern Nevada are 
unpredictable in terms of their duration and timing. Rainfall variability is a major 
factor in the occurrence of drought. Most recently, a major drought began in 
summer 1995, and reached its greatest intensity during the first six months of 
1997. According to weather records between 1987 and 1997, only three consec- 


106 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 3. Mean annual precipitation (mm) and air temperature (C°) from 1988 through 1997. Official 
postfire weather data (NOAA, Las Vegas) were obtained from the McCarran Airport in Las Vegas, 
near Sandy Valley. Individual annual precipitation and air temperature values (1988-1997) are com- 
pared with the overall mean annual precipitation and air temperature values (1936—1997), respectively. 
The overall mean annual precipitation is approximately 100 mm, and mean air temperature is 19.2°C. 


Year Precip. (mm) % diff. from mean Air temp. (°C) % diff. from mean 
1988 SS 26 19.9 3.6 
1989 33:6 — 60.4 20.4 +6.1 
1990 95,3 —4.8 19.7 Me 
199] 103.1 + a1 19.5 aa oP 
1992 250.9 +86.0 20.1 +4.6 
1993 128.3 +24.8 19.7 +2.6 
1994 65.0 —42.4 20.6 +7.0 
1995 93.7 =6.5 20.6 +70 
1996 AO, 1 == 2 20.7 +s 
1997 92.2 =e Fe 20.3 +3.6 


utive years, from 1991 through 1993, revealed above average rainfall in Sandy 
Valley. Mean annual air temperatures, on the contrary, did not vary considerably, 
ranging from 0.3 to 1.5 °C only (Table 3). Mean annual precipitation revealed a 
considerably greater fluctuation than mean annual air temperatures from 1988 
through 1997. Although 1991—1993 had above average rainfall, mean annual air 
temperatures from the 1988—1997 period were consistently higher than mean an- 
nual air temperatures from the 1936—1997 period (Table 3). 

Rainfall must be adequate during the winter and early spring to trigger seed 
germination, and during the spring and early summer to support seedling estab- 
lishment in shrublands of the Mojave Desert (Beatley 1974). Coleogyne ramosis- 
sima plants do not produce large fruit crops and abundant seeds in successive 
years even if rainfall is adequate (Pendleton et al. 1995). Similarly, low seed 
production may also apply to the associated woody taxa in the C. ramosissima 
shrubland despite favorable weather conditions occurring in some years. In this 


Table 4. Soil physical and chemical characteristics (mean + SE; n = 100 plots) at adjacent un- 
burned areas and at various distances within burned areas in the C. ramosissima vegetation zone of 
Sandy Valley in July 1998. Within burned areas, seed density is shown at three distances from the 
fire edge. Soil samples were collected from the top 3 cm. Pore space and soil organic matter were 
expressed in percentages. Mean values in rows followed by different letters are significantly different 
ate, = 0:05. 


Burned area 


Factor Unburned area 8 m 300 m 600 m 


Temperature (0 cm) 37.5.2 Odie a 39] 30.22. 40.7 + 0.25.b 40.2 + 0.28 b 

(3 cm) 36.4 + 0.15 a 39.1 = O15 39.4 + 0.18 b 38.8 + 0.17 b 
Moisture (%) Li Gals 0.7 + 0.04 b 0:6.=-0:05°5 0.8 + 0.07 b 
pH T.F + O04 a 8:0" O02"D S105 8.0 20S 6 
Bulk density (g/cm+*) 1.3° +0108 ‘a 1.4 + 0.05 b 1.4 + 0.07 b 1.4 + 0.06 b 
Compaction (kg/cm?) 4.2)%,0,25 a 5:0) O.27ib 5.3 = 0.29'b 5.4 = 0:32 b 
Pore space (%) 20.2. 2% 3eRSng 46.0 + 3.24 b 47.1 + 4.34 b 45.7 + 4.22.b 
Organic matter (%) 4.1 + 0.35.a 2.0 + 0.20 b 2.33%. 0.24-b LO = 021 5 
Salinity (mmho/cm) 0.3 + 0.04 a 0.4 + 0.05 a 0.4 + 0.03 a 0.4 + 0.04 a 


POSTFIRE SOIL SEED DENSITIES AND SOIL CONDITIONS 107 


study, a combination of sharply contrasting mean annual precipitation and above 
average air temperatures following fire disturbance may partially explain the low 
soil seed densities and delayed seed germination of C. ramosissima and associated 
woody taxa. 


Ecological Implications 


The severe, lightning-induced fire in June 1987 created a unique set of postfire 
seed bank and edaphic conditions in Sandy Valley of southern Nevada. Fire 
caused a long-term removal of C. ramosissima and associated woody taxa. In 
addition to limited active dispersal mechanisms, extremely low soil seed densities, 
and adverse weather conditions, significant alterations in soil attributes following 
fire disturbance no longer favor the development of a seed bank for enhancing 
seed germination and seedling establishment of woody taxa. The lack of signifi- 
cant differences in seed density of woody species at various distances within the 
burned area seems to indicate an extremely slow recovery. Desert perennials are 
generally protected against environmental stochascity by a long life rather than 
by a persistent seed bank. However, the greater seed bank of G. sarothrae and 
E. virginensis may be a factor in their more successful response after fire distur- 
bance. Coleogyne ramosissima plants may have an unusual method of seed bank 
development such as rodent caches. Ecological succession is stalled in the C. 
ramosissima vegetation zone. Whether a long recovery time reflects historic con- 
ditions of a dynamic ecosystem consisting of a diversity of different seral com- 
munities or whether it is simply an artifact of human intervention, a complete 
recovery time is yet to be determined. This study, however, provides one more 
part of the ultimate determination. 


Acknowledgments 


The valuable field assistance of Steven Lei, David Valenzuela, and Shevaun 
Valenzuela was gratefully acknowledged. Tim Rash of the Bureau of Land Man- 
agement (BLM) provided valuable fire records and provided stimulating discus- 
sions. Critical review by David Charlet and an anonymous reviewer greatly im- 
proved the manuscript. The Department of Biology at the Community College of 
Southern Nevada (CCSN) provided logistical support. 


Literature Cited 


Analytical Software. 1994. Statistix 4.1, an interactive statistical program for microcomputers. St. Paul, 
Minnesota. 

Barbour, M.G., J.H. Burk, and W.D. Pitts. 1987. Terrestrial plant Ecology. The Benjamin/Cumming 
Publishing Co., Inc., Menlo Park, California. 

Beatley, J.C. 1974. Effects of rainfall and temperature on the distribution and behavior of Larrea 
tridentata (creosote-bush) in the Mojave Desert of Nevada. Ecology 55:245-—261. 

Beatley, J.C. 1975. Climates and vegetation pattern across the Mojave/Great Basin Desert transition 
of southern Nevada. Amer. Midland Nat. 93:53-—70. 
Beatley, J.C. 1980. Fluctuations and stability in climax shrub and woodland vegetation of the Mojave, 
Great Basin, and Transition Deserts of southern Nevada. Israel J. of Botany 28:149—168. 
Bowns, J.E. 1973. An autecological study of blackbrush (Colegyne ramosissima Torr.) in southwestern 
Utah. Unpublished dissertation, Utah State University, Logan, Utah. 

Bowns, J.E. and N.E. West. 1976. Blackbrush (Coleogyne ramosissima Torr.) on southern Utah range- 
lands. Department of Range Science, Utah State University. Utah Agricultural Experiment Sta- 
tion, Research Report 27. 


108 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Boyd, R.S. and G.D. Brum. 1983. Postdispersal reproductive biology of a Mojave desert population 
of Larrea tridentata (Zygophyllaceae). Amer. Midland Nat. 110:25—36. 

Brown, D.E., and R.A. Minnich. 1986. Fire and changes in creosote bush scrub of the western Sonoran 
Desert, California. Amer. Midland Nat. 116:411—422. 

Black, C.A., editor. 1965. Methods of soil analysis. Part I. Physical and minerological properties. 
Amer. Soc. of Agronomy, Madison, Wisconsin. 

Callison, J., J.D. Brotherson, and J.E. Bowns. 1985. The effects of fire on the blackbrush (Coleogyne 
ramosissima) community of southwestern Utah. J. of Range Management 38:535—538. 
Davidson, E. and M. Fox. 1974. Effects of off-road motorcycle activity on Mojave Desert vegetation 

and soil. Madrono 22:381-—390. 

Hausenbuiller, R.L. 1972. Soil Science. William C. Brown Company Publishers, Dubuque, Iowa. 
Humphrey, R. R. 1974. Fire in the deserts and desert grassland of North America. Jn: T.T. Kozlowski 
and C.E. Ahlgren (eds.). Fire and Ecosystems. Academic Press, San Diego, California. 
Korthuis, S.L. 1988. Coleogyne ramosissima. In W.C. Fisher (Comp.). The Fire Effects Information 
System (Data Base). U.S. Department of Agriculture, Forest Service, Intermountain Research 
Station, Intermountain Fire Sciences Laboratory, Missoula, Montana. Magnetic tape reels; 9 

track; 1600 bpi, ASCII with common LISP present. 

Leck, M.A., V.T. Parker, and R.L. Simpson. 1989. Ecology of soil seed banks. Academic Press, Inc., 
San Diego, California. 

Lei, S.A. and L.R. Walker. 1997. Classification and ordination of Coleogyne communities in southern 
Nevada. Great Basin Nat. 57:155—-162. 

Lei, S.A. 2000. Postfire vegetation recovery and soil properties in blackbrush (Coleogyne ramosissima 
Torr.) shrubland ecotones. Arizona-Nevada Acad. Sci. 32(2):105—115. 

McLean, E.O. 1982. Soil pH and lime requirement. /n C.A. Black, editor. Methods of soil analysis. 
American Society of Agronomy, Madison, Wisconsin, pp 199-209. 

Minnich, R.A. 1995. Wildland fire and early postfire succession in joshua tree woodland and black- 
brush scrub of the Mojave Desert of California, p. 99-106. Jn R.E. Reynolds and J. Reynolds 
(eds.) Ancient Surface of the east Mojave Desert, San Bernardino County Museum Association, 
San Bernardino, California. 

Pendleton, B.K., S.E. Myer, and R.L. Pendleton. 1995. Blackbrush biology: insights after three years 
of long-term study. p. 223-227, in E.D. McArthur, J.S. Haley, and D.K. Mann, compilers. 
Proceedings: wildland shrub and arid land restoration symposium, General Technical Report 
INT-GTR-315, Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain 
Research Station. 

Raison, R.J. 1979. Modification of the soil environment by vegetation fires, with particular reference 
to nitrogen transformation: A review. Plant and Soil 51:73—108. 

Reichman, O.J. 1975. Relation of desert rodent diets to available resources. J. of Mamm. 56:731-—749. 

Rhoades, J.D. 1982. Soluble salts. In: C.A. Black, editor. Methods of soil analysis. Amer. Soc. of 
Agronomy, Madison, Wisconsin. p. 176-173. 

Scotter, G.W. 1963. Effects of forest fires on soil properties in northern Saskatchewan. Forestry Chro- 
nology 39:412—421. 

Wright, H.A., and A.W. Bailey. 1982. Fire Ecology. United States and Southern Canada. John Wiley 
and Sons, New York. 


Accepted for publication 28 January 2001. 


Bull. Southern California Acad. Sci. 
100(2), 2001, pp. 109-116 
© Southern California Academy of Sciences, 2001 


Helminths of Six Species of Colubrid Snakes from 
Southern California 


Stephen R. Goldberg! and Charles R. Bursey? 


‘Department of Biology, Whittier College, Whittier, California 90608 
*Department of Biology, Pennsylvania State University, Shenango Campus, 
Sharon, Pennsylvania 16146 


Abstract.—Six species of colubrid snakes from California were examined for 
helminths: Arizona elegans, Chionactis occipitalis, Masticophis flagellum, Mas- 
ticophis lateralis, Phyllorhynchus decurtatus and Rhinocheilus lecontei. One spe- 
cies of Trematoda, Paralechriorchis syntomentera, two species of Cestoda, Ooch- 
oristica osheroffi and Mesocestoides sp. (tetrathyridia), four species of Nematoda, 
Physaloptera abjecta, Spauligodon goldbergi, Thubunaea iguanae, and Physa- 
loptera sp. (larvae) and one species of Acanthocephala represented by cystacanths 
(Oligacanthorhynchidae), were found. Nine new host records are reported. 


Although 38 species of snakes are recorded for California (Brown 1997), few 
have been examined for helminths. There are reports of helminths for Crotalus 
cerastes, C. ruber, C. viridis, Rhinocheilus lecontei, and Thamnophis elegans 
collected in California (Voge 1953; Alexander and Alexander 1957; Mankau and 
Widmer 1977; Widmer and Specht 1992; Bursey et al. 1995; Goldberg et al. 
1998). The purpose of this study was to examine 6 species of colubrid snakes 
from California for helminths: the glossy snake, Arizona elegans; western shoy- 
elnose snake, Chionactis occipitalis; coachwhip, Masticophis flagellum; striped 
racer, Masticophis lateralis; spotted leafnose snake, Phyllorhynchus decurtatus; 
and longnose snake, Rhinocheilus lecontei. Geographic ranges for these snakes 
are in Stebbins (1985). Of these 6 species, only Masticophis flagellum (from 
Georgia, Texas) has been examined for helminths (Harwood 1932; Reiber et al. 
1940; Schad 1962; Conn and McAllister 1990). 


Materials and Methods 


One hundred fifty-nine individuals of six colubrid snake species: Arizona ele- 
gans (n = 43, mean snout-vent length [SVL] = 589 mm + 205 SD, range = 
238-930 mm), Chionactis occipitalis (n = 31, SVL = 258 mm + 20 SD, range 
= 222-300 mm), Masticophis flagellum (n = 12, SVL = 861 mm + 118 SD, 
range = 697-1104 mm), Masticophis lateralis (n = 14, SVL = 765 mm + 136 
SD, range = 520—963 mm), Phyllorhynchus decurtatus (n = 26, SVL = 357 mm 
+ 47 SD, range = 242—469 mm), and Rhinocheilus lecontei (n = 33, SVL = 
590 mm + 93 SD, range = 362—743 mm) were borrowed from the herpetology 
collection of the Natural History Museum of Los Angeles County (LACM), Los 
Angeles, California (accession numbers, Appendix 1). Eleven of 14 Masticophis 
lateralis (79%) were from the San Gabriel Mountains (34°18'N, 117°50’W) Los 
Angeles County, 3 (21%) were from the Puente Hills (34°01'N, 117°57’W) Los 
Angeles County, California. All individuals of the other five species were from 


109 


110 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


desert areas in the Coachella Valley (33°50'N, 116°20’'W) of Riverside County, 
California. Snakes were collected from 1951 to 1975. 

The body cavity was opened by a longitudinal incision from vent to throat and 
the gastrointestinal tract was excised by cutting across the esophagus and rectum. 
The esophagus, stomach, and small and large intestines were slit longitudinally 
and examined under a dissecting microscope. Nematodes were examined and 
identified after clearing in a drop of concentrated glycerol. Trematodes, cestodes 
and acanthocephalans were regressively stained in hematoxylin and studied as 
whole-mounts in Canada balsam. Voucher helminths were deposited in the United 
States National Parasite Collection, (USNPC) Beltsville, Maryland (Appendix 2). 


Results 


One species of Trematoda, Paralechriorchis syntomentera (Sumwalt 1926) 
Bryd and Denton 1938; two species of Cestoda, Oochoristica osheroffi Meggitt 
1934 and Mesocestoides sp. (as tetrathyridia); four species of Nematoda, Physa- 
loptera abjecta Leidy 1856, Spauligodon goldbergi Bursey and McAllister 1996, 
Thubunea iguanae Telford 1965, Physaloptera sp. (third stage larvae); and one 
species of Acanthocephala represented by oligacanthorhynchid (proboscis short, 
globular; hooks in six spiral rows) cystacanths were found. Number of helminths, 
prevalence (infected snakes of a species divided by snake sample size expressed 
as a percentage), mean intensity (mean number of helminths per infected snake) 
and infection sites within the host are given in Table 1. Nine new host records 
are reported. Arizona elegans and Masticophis lateralis harbored five helminth 
species each; Chionactis occipitalis and Rhinocheilus lecontei harbored three; 
Masticophis flagellum harbored two and Phyllorhynchus decurtatus harbored one 
helminth species. Helminth community characteristics are given in Table 2. 


Discussion 


Arizona elegans, Chionactis occipitalis, Masticophis flagellum, Phyllorhynchus 
decurtatus and Rhinocheilus lecontei are sympatric in southern California and are 
found in dry, relatively open areas supporting chaparral, creosote bush, mesquite 
and sagebrush (Behler and King 1979). Masticophis lateralis prefers chaparral, 
open hardwood-pine forest in the mountains and is especially common around 
water (Behler and King 1979). 

All helminths found in this study have been previously reported from snakes. 
Paralechriorchis syntomentera was originally described as Zeugorchis syntomen- 
tera by Sumwalt (1926) from the mouth cavity of Thamnophis sirtalis collected 
on San Juan Island, San Juan County, Washington. Byrd and Denton (1938) erect- 
ed the genus Paralechriorchis for it and two closely related species. The life 
history of P. syntomentera was described by Ingles (1933) who experimentally 
infected young Thamnophis ordinoides collected at Berkeley, Alameda County, 
California through the ingestion of infected amphibians. Fantham and Porter 
(1954) have also reported Thamnophis ordinoides of Quebec, Canada to harbor 
P. syntomentera. Masticophis lateralis is a new host record. 

Oochoristica osheroffi was originally described from Pituophis melanoleucus 
collected in Nebraska by Meggitt (1934). Alexander and Alexander (1957) de- 
scribed Oochoristica crotalicola from Crotalus cerastes and C. viridis of Cali- 
fornia; however, this cestode was synonymised with O. osheroffi by Widmer 


111 


HELMINTHS OF CALIFORNIA SNAKES 


Ppl0da1 JSOY MOC]. 


ba oe, rz. ‘9 a as a i= Ay 
-Aeo Apog syyueoeysAo 
prysuAysoyjueoesijo 


ejeydoosoyjuroy 
Gl L0+S'1-9 er A Liste9 VaeC. 7 6Y eat ie: OT-1 09 + G6 “Ec CI-I 09 + vr TI SUT}SOJUL (OBA 
-Ie[) ‘ds puajdojpskyg 
LI-I ‘09 + 8S “€Tx Sas +2 =" Bx €I-l “Ev + OE “ET vI-T ‘19 = S'S ‘6x our 
-SO}JUI [[ePUIS ‘YORUO}s 
apuvns1 papungny J 


a oak o = 8S-I “EOL + OCI “Sr a” SUNSOUT OSIE] 
1s84aqgpjos uoposynvds 
ss = a = — —‘T ‘TT yorulo}s 
vizalqv vsajdojvskyg 
Bpo}JeUION] 
Etec 6 lger ot “9 —- LOI-C “CVE = SVS PI % £ A yei 66C—-Ol “OSE + O'8ZI “TI Attavo Apog (epuiAyy 
-e)9}) ‘ds sapiojsaz0sap 
ny es Cal Gilet °C “Ere i m1 = ec. SuNsoyUr [BUS 
YfOAIYSO DI1JSIAOYIOQ 
eBpojsaD 
— — — IT ‘Lx — a — snseydoss puajuau 
-OJUKS SIYIAOIMYIIIVAV 
epoyewoly, 
udqsF7wWd a u‘aqs+wWd a u‘qds+wWd u‘qds+Wd sys UONOSsuUy 
(€€ = N) ‘ds +Wd (pl = N) ‘ds + Wd (l€ = N) (€v = N) sotoads yuTU[aH 
12JUOIa] (97 = N) S1]DA9IV] (ZT1 = N) $1701d19 90 supsaja 
snplayoou1lyy snypjanzap s1ydoosvp wnj]jasvyt syopuo1y) DUOZUYW 
SNYIUKYA s1ydoo 
ONY “SDV 


See NN 
“BIULOJYED Woy Sotsads oyvUs Pliqn[oo xIs Jo syJUTWTSY JOJ UOTIaZUT JO oYIS pue ‘(y) osuRI “(Gg F PW) Atsuayur uroUT ‘(q) soUaTeAaId ‘(N) JOQqUINN “T oTqQRL 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


112 


i —————————eEeE—E—EE——E—EEEE—— SS 


00°0 00°0 LO'0 00°0 00°0 00°0 soroeds yjurmyey ¢ YIM uoNIodolg 
€0°0 00°0 6c 0 00°0 tc 0 LO'0 soroeds yjurumyjey 7 ym uoNodolg 
L70 v0'0 s¢e0 L10 Sv'0 €c0 soroeds yurujey [| YIM uoTIodo1g 
OL0 960 6c 0 €8°0 ce0 OL'0 soroeds yjurujay Q YIM uonIodoIg 
apuvns! “Jf — ‘ds saplojsaz0sapw —_— 184aqgp]O8 “Ss ‘ds saplojsaz0sapy yVuIWyoy yueUTWIOG 
cO+IT I LO+ 91 I cO+ eT vo+cl ayeus poyoosur/sotoeds YyUTTSY “OU UII 
TOI + v8 c Tee + sl I Cel + OT! €cOl + O'S OYeus pooojul/syjurfoy “OU UBS|A| 
v8 (4 Psi C OLT 069 syjuruyoy “ON 
€ I ¢ Z € ¢ soroads yjuruyey “ON 
(O€) OI (py) I (IL) OI CLLe (89) IZ (O€) €1 (poJseJUT %) SoyeUS Po}eFUL “ON 
ce 9¢ vl cl It tv poururexs SoyvUus “ON 
12JUO0I2] sn] S1]DA9ID] wnjjasvyt $110]1d1990 supsaja 
snpiayooulyy = - Dl Andap s1ydooyusvpy siydoo syopuo1y) DUOZIUY 
snyoucya -11SDW 
“ONY 


eee ™>OD?~——w—@rwm""'-- 


“BIUIOJI]ED WoO soyeus Jo sorseds xIs JO soTUNUIUOD YJUTWTSY JO SONSHoJoRIVYD “7 PBL 


HELMINTHS OF CALIFORNIA SNAKES Ld i 


(1966). Oochoristica osheroffi has been reported in Crotalus viridis from Colo- 
rado and New Mexico (Widmer and Olsen 1967; Pfaffenberger et al. 1989). Ar- 
izona elegans and Masticophis lateralis represent new host records. 

Tetrathyridia of Mesocestoides sp. are frequently found in snakes; McAllister 
et al. (1991) have summarized world occurrences. Tetrathyridia have been pre- 
viously found in Masticophis flagellum from Texas by Conn and McAllister 
(1990) and from Crotalus atrox, C. lepidus, C. molossus, C. pricei, C. ruber, C. 
scutulatus, C. tigris, C. viridis and Thamnophis elegans from California (Voge 
1953; Mankau and Widmer 1977; Widmer and Specht 1992; Bolette 1997a, 
1997b; Goldberg and Bursey 1999). This is the first report of tetrathyridia in 
Arizona elegans, Masticophis lateralis and Rhinocheilus lecontei. Bolette (1997a) 
believed rattlesnakes serve as paratenic hosts. 

Physaloptera abjecta was originally described from Masticophis flagellum (= 
Psammophis flagelliformis) from Pennsylvania by Leidy (1856). The identity of 
this snake is uncertain as M. flagellum does not occur in Pennsylvania (Conant 
and Collins 1998). Physaloptera variegata Reiber, Byrd and Parker 1940, de- 
scribed from a Coluber constrictor collected in Florida, was synonymized with 
P. abjecta by Morgan (1941). It has been reported from Masticophis flagellum of 
Georgia (Reiber et al. 1940) as well as the colubrids Coluber constrictor, Het- 
erodon platirhinos, Lampropeltis getula, Opheodrys (= Liopeltis) vernalis and 
Thamnophis sirtalis from Georgia, Florida or Wisconsin and the anguid lizard, 
Ophisaurus ventralis from Georgia (Reiber et al. 1940; Morgan 1941; Mawson 
1956). Arizona elegans is a new host record; California is a new locality record. 

Spauligodon goldbergi was described from the ground snake, Sonora semian- 
nulata, from Texas by Bursey and McAllister (1996). This is the second report 
of Spauligodon goldbergi. Chionactis occipitalis represents a new host record; 
California is a new locality record. 

Thubunaea iguanae was originally described from the phrynosomatid lizard, 
Sceloporus magister, from Riverside County, California and was present in a 
variety of lizards collected by Telford (1965). Arizona elegans, Chionactis occip- 
italis, Masticophis flagellum and Rhinocheilus lecontei represent new host records. 
A related species, Thubunaea cnemidophorus, has been reported from Crotalus 
cerastes, C. mitchellii and C. scutulatus of southern Nevada (Babero and Em- 
merson 1974). 

Third stage larvae of Physaloptera sp. were present in each of the species 
examined in this study and have also been reported in M. flagellum from Texas 
by Conn and McAllister (1990). The majority of the 16 species of Physaloptera 
from North America listed by Morgan (1941) have mammalian hosts. All species 
of Physaloptera require an insect intermediate host (Anderson 2000) and could 
be expected in any insectivore. Amphibians and reptiles harboring larvae of Phy- 
saloptera sp. but no adults are summarized in Goldberg et al. (1993). Because 
these larvae were found mainly in the intestine of the snakes examined, we believe 
they are a by-product of diet and will be passed in feces without further devel- 
opment. This is the first report of physalopteran larvae in A. elegans, C. occipi- 
talis, M. lateralis, P. decurtatus and R. lecontei. 

Oligacanthorhynchid cystacanths of acanthocephalans have previously been re- 
ported in Rhinocheilus lecontei from Riverside County, California as well as Ar- 
izona, Texas and Mexico (Goldberg et al. 1998). In addition, Bolette (1997b) 


114 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


reported oligacanthorhynchid cystacanths in Rhinocheilus lecontei collected in 
Arizona and provided a list of cystacanths from nine additional snake species. 
This is the first report of cystacanths in Masticophis lateralis. 

The helminths found in this study fall into two categories: those requiring 
intermediate hosts, namely Paralechriorchis syntomentera, Oochoristica osheroffi, 
Physaloptera abjecta, Thubunaea iguanae, and the acanthocephalans; and those 
infecting directly by egg ingestion, namely Mesocestoides sp. and Spauligodon 
goldbergi. In all cases, it is an oral route of infection. 

There is some dietary overlap in these snakes: Arizona elegans feeds mainly 
on lizards and rodents with a few birds and snakes; Chionactis occipitalis eats 
insects, spiders, scorpions and centipedes; Masticophis flagellum feeds on small 
mammals, birds, lizards, snakes, insects and carrion; Masticophis lateralis eats 
frogs, lizards, snakes, small mammals, birds and insects; Phyllorhynchus decur- 
tatus feeds on small lizards and their eggs; Rhinocheilus lecontei feeds almost 
exclusively on lizards (Stebbins 1985; Rodriguez-Robles et al. 1999). Widmer 
and Olsen (1967) suggested that helminth infections can be transmitted to snakes 
when snakes eat infected arthropods or when they eat prey which has recently 
fed on infected arthropods. Likewise, ingestion of prey infected by a species of 
Mesocestoides or by Spauligodon goldbergi could introduce feces containing eggs 
of these species into a snake host with subsequent development of an infection. 

Examination of other California snakes will be needed before helminth com- 
munities can be described and assigned. However, it is of interest to note that 
only Masticophis lateralis which is especially common in areas with water (Behler 
and King 1979) harbored Paralechriorchis syntomentera, a helminth requiring 
amphibians as intermediate hosts. All sympatric desert snakes eating lizards har- 
bored Thubunaea iguanae. All six species contained third-stage larvae of Phy- 
saloptera sp., more likely a by-product of diet than potential infection. One desert 
snake species, Arizona elegans, and the non-desert species, Masticophis lateralis, 
harbored Oochoristica osheroffi, typically a parasite of rattlesnakes. 


Acknowledgments 


We thank David A. Kizirian (Natural History Museum of Los Angeles County) 
for permission to examine snakes and Cheryl Wong and Megan E. Lahti for 
assistance with dissections. 


Literature Cited 


Alexander, C. G., and E. P. Alexander. 19°57. Oochoristica crotalicola, a new anoplocephalid cestode 
from California rattlesnakes. J. Parasitol. 43:365—366. 

Anderson, R. C. 2000. Nematode parasites of vertebrates: Their development and transmission., 2nd 
edition, CABI Publishing, CAB International, Wallingford, Oxon, United Kingdom, xx + 650 
Pp. 

Babero, B. B., and E H. Emmerson. 1974. Thubunaea cnemidophorus in Nevada rattlesnakes. J. 
Parasitol. 60:595. 

Behler, J. L., and EF W. King. 1979. The Audubon Society field guide to North American reptiles and 
amphibians. Alfred A. Knopf, New York, 743 pp. 

Bolette, D. P. 1997a. First record of Pachysentis canicola (Acanthocephala: Oligacanthorhynchida) 
and the occurrence of Mesocestoides sp. tetrathyridia (Cestoidea: Cyclophyllidea) in the western 
diamondback rattlesnake, Crotalus atrox (Serpentes: Viperidae). J. Parasitol. 83:751—752. 

. 1997b. Oligacanthorhynchid cystacanths (Acanthocephala) in a long-nosed snake, Rhinoch- 


HELMINTHS OF CALIFORNIA SNAKES 115 


eilus lecontei lecontei (Colubridae) and a Mojave rattlesnake, Crotalus scutulatus scutulatus 
(Viperidae) from Maricopa County, Arizona. Southwest. Nat. 42:232—236. 

Brown, P. R. 1997. A field guide to snakes of California. Gulf Publishing Company, Houston, Texas, 
Vint, + 215 pp. 

Bursey, C. R., S. R. Goldberg, and S. M. Secor. 1995. Hexametra boddaertii (Nematoda: Ascaridae) 
in the sidewinder, Crotalus cerastes (Crotalidae), from California. J. Helm. Soc. Wash. 62:78— 
80. 

Bursey, C. R., and C. T. McAllister. 1996. Spauligodon goldbergi sp. n. (Nematoda: Pharyngodonidae) 
and other parasites of Sonora semiannulata (Serpentes: Colubridae) from New Mexico and 
Texas. J. Helm. Soc. Wash. 63:62—65. 

Byrd, E. E., and J. EK Denton. 1938. New trematodes of the subfamily Reniferinae, with a discussion 
of the systematics of the genera and species assigned to the subfamily group. J. Parasitol. 24: 
379-401. 

Conant, R., and J. T. Collins. 1998. A field guide to reptiles and amphibians: Eastern and central 
North America, third edition, Houghton Mifflin Company, Boston, xviii + 616 pp. 

Conn, D. B., and C. T. McAllister. 1990. An aberrant acephalic metacestode and other parasites of 
Masticophis flagellum (Reptilia: Serpentes) from Texas. J. Helminthol. Soc. Wash. 57:140—145. 

Fantham, H. B., and A. Porter. 1954. The endoparasites of some North American snakes and their 
effects on the Ophidia. Proc. Zool. Soc. London 123:867—898. 

Goldberg, S. R., and C. R. Bursey. 1999. Crotalus lepidus (Rock Rattlesnake), Crotalus molossus 
(Blacktail rattlesnake), Crotalus pricei (Twin-spotted rattlesnake), Crotalus tigris (Tiger rattle- 
snake). Endoparasites. Herpetol. Rev. 30:44—45. 

Goldberg, S. R., C. R. Bursey, and H. J. Holshuh. 1998. Prevalence and distribution of cystacanths 
of an oligacanthorhynchid acanthocephalan from the longnose snake, Rhinocheilus lecontei 
(Colubridae), in southwestern North America. J. Helminthol. Soc. Wash. 65:262—265. 

Goldberg, S. R., C. R. Bursey, and R. Tawil. 1993. Gastrointestinal helminths of the western brush 
lizard, Urosaurus graciosus graciosus (Phrynosomatidae). Bull. Southern Calif. Acad. Sci. 92: 
43-51. 

Harwood, P. D. 1932. The helminths parasitic in the amphibia and reptilia of Houston, Texas, and 
vicinity. Proc. U.S. Natl. Mus. 81:1—76. 

Ingles, L. G. 1933. Studies on the structure and life-history of Zeugorchis syntomentera Sumwalt, a 
trematode from the snake Thamnophis ordinoides from California. Univ. Calif. Publ. Zool. 39: 
163-178. 

Leidy, J. 1856. A synopsis of entozoa and some of their ecto-congeners observed by the author. Proc. 
Acad. Nat. Sci. Philadelphia 42—58. 

Mankau, S. K., and E. A. Widmer. 1977. Prevalence of Mesocestoides (Eucestoda: Mesocestoididea) 
tetrathyridia in southern California reptiles with notes on the pathology in the Crotalidae. Jap. 
J. Parasitol. 26:256—259. 

Mawson, P. M. 1956. Physaloptera variegata Reiber, Byrd and Parker, 1940 from three species of 
reptiles. Can. J. Zool. 34:75—76. 

McAllister, C. T., D. B. Conn, P. S. Freed, and D. A. Burdick. 1991. A new host and locality record 
for Mesocestoides sp. tetrathyridia (Cestoidea: Cyclophyllidea), with a summary of the genus 
from snakes of the world. J. Parasitol. 77:329-—331. 

Meggitt, E J. 1934. On some tapeworms from the bullsnake (Pityopis sayi), with remarks on the 
species of the genus Oochoristica (Cestoda). J. Parasitol. 20:181-189. 

Morgan, B. B. 1941. A summary of the Physalopterinae (Nematoda) of North America. Proc. Helm. 
Soc. Wash. 8:28-—30. 

Pfaffenberger, G. S., N. M. Jorgensen, and D. D. Woody. 1989. Parasites of prairie rattlesnakes (Cro- 
talus viridis viridis) and gopher snakes (Pituophis melanoleucus sayi) from the eastern high 
plains of New Mexico. J. Wild. Dis. 25:305—306. 

Reiber, R. J., E. E. Byrd, and M. V. Parker. 1940. Certain new and already known nematodes from 
Amphibia and Reptilia. Lloydia 3:125—144. 

Rodriguez-Robles, J. A., C. J. Bell, and H. W. Greene. 1999. Food habits of the glossy snake, Arizona 
elegans, with comparisons to the diet of sympatric long-nosed snakes, Rhinocheilus lecontei. 
J. Herp. 33:87—92. 

Schad, G. A. 1962. Studies on the genus Kalicephalus (Nematoda: Diaphanocephalidae) II. a taxo- 
nomic revision of the genus Kalicephalus Molin, 1861. Can. J. Zool. 40:1035—1165. 


116 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Stebbins, R. C. 1985. A field guide to western reptiles and amphibians. Houghton Mifflin Co., Boston, 
xiv + 336 pp. 

Sumwalt, M. 1926. Trematode infestation of the snakes of San Juan Island, Puget Sound. Washington 
University Studies 13:73-101. 

Telford, S. R., Jr. 1965. A new species of Thubunaea (Nematoda: Spiruroidea) from California lizards. 
Jap. J. Exp. Med. 35:111-114. 

Voge, M. 1953. New host records for Mesocestoides (Cestoda: Cyclophyllidea) in California. Am. 
Midl. Nat. 49:249—251. 

Widmer, E. A. 1966. Synonymy of Oochoristica crotalicola Alexander and Alexander, 1957. Bull. 
Wild. Dis. Assoc. 2:82—84. 

Widmer, E. A., and O. W. Olsen. 1967. The life history of Oochoristica osheroffi Meggitt, 1934 
(Cyclophyllidea: Anoplocephalidae). J. Parasitol. 53:343—-349. 

Widmer, E. A., and H. D. Specht. 1992. Isolation of asexually proliferative tetrathyridia (MVesocestoides 
sp.) from the southern Pacific rattlesnake (Crotalus viridis helleri) with additional data from 
two previous isolates from the Great Basin fence lizard (Sceloporus occidentalis longipes). J. 
Parasitol. 78:921—923. 


Accepted for publication 19 September 2000. 


Appendix 1 


Museum numbers (LACM) from the Natural History Museum of Los Angeles County for six species 
of colubrid snakes from California. 

Arizona elegans (n = 43) 102030—102035, 102037—102063, 102101—102107, 102109-102111. 
Chionactis occipitalis (n = 31) 42410, 52292, 52300, 52301, 52306, 52311, 52325, 52327, 52344, 
52354, 52361, 52369, 52373, 52378, 52379, 52387-52389, 52401, 52405, 52425, 52430, 63625, 
102757—102760, 102762, 102768, 122099, 122100. 

Masticophis flagellum (n = 12) 103136, 103138, 103149, 103150, 103153, 103164, 103165, 
103172, 103174, 103176, 103178, 103182. 

Masticophis lateralis (n = 14) 027794, 027795, 027797, 052540, 052542, 075211, 111203, 111204, 
111207, 111210, 111213, 111215, 111216, 111218. 

Phyllorhynchus decurtatus (n = 26) 102868, 102874, 102904, 102910, 102913, 102921—102923, 
102925-—102930, 102934, 102935, 102937, 102939, 102943, 102949-102951, 115876, 115877, 
133896,. 133897. 

Rhinocheilus lecontei (n = 33) 102622, 102624, 102627, 102630—102632, 102634, 102636, 102638, 
102639, 102641—102643, 102645—-102647, 102655, 102656, 102660—102667, 102669, 102672- 
102677. 


Appendix 2 


Helminths deposited in the United States National Parasite Collection (USNPC) for six species of 
colubrid snakes from California. 

Arizona elegans: Oochoristica osheroffi (90583); Mesocestoides sp. (90425); Physaloptera abjecta 
(90426); Thubunaea iguanae (90427); Physaloptera sp. (90428). Chionactis occipitalis: Spauligodon 
goldbergi (90429); Thubunaea iguanae (90430); Physaloptera sp. (90431). Masticophis flagellum: 
Thubunaea iguanae (90432); Physaloptera sp. (90433). 

Masticophis lateralis: Paralechriorchis syntomentera (90434); Oochoristica osheroffi (90435); Me- 
socestoides sp. (90436); Physaloptera sp. (90437); oligacanthorhynchid cystacanths (90438). 

Phyllorhynchus decurtatus: Physaloptera sp. (90439). Rhinocheilus lecontei: Mesocestoides sp. 
(90441); Thubunaea iguanae (90440); Physaloptera sp. (90442). 


Bull. Southern California Acad. Sci. 
100(2), 2001, pp. 117-122 
© Southern California Academy of Sciences, 2001 


Helminths of the California Treefrog, Hyla cadaverina (Hylidae), 


from Southern California 


Stephen R. Goldberg’ and Charles R. Bursey? 


‘Department of Biology, Whittier College, Whittier, California 90608 
*Department of Biology, Pennsylvania State University, Shenango Campus, 
Sharon, Pennsylvania 16146 


Abstract.—Ninety-one California treefrogs, Hyla cadaverina, from three counties 
in southern California (Los Angeles, Orange, Riverside) were examined for hel- 
minths. The trematode, Langeronia burseyi, and metacercariae of Alaria sp., Fi- 
bricola sp., and Gorgoderina sp.; the cestode, Distoichometra bufonis, and two 
species of nematodes, Rhabdias ranae and larvae of Physaloptera sp., were found. 
Helminth distribution patterns were found to be patchy; no two counties exhibited 
the same combination of helminth species. 


The California treefrog, Hyla cadaverina Cope 1866, is known from the moun- 
tains of southern California to northern Baja California from elevations near sea 
level to around 2290 m (Stebbins 1985). To our knowledge, there is one report 
(Dailey and Goldberg 2000) of helminths from this species. The purpose of this 
paper is to analyze helminth infracommunities of H. cadaverina from the northern 
portion of its range: Los Angeles County, Orange County and Riverside County, 
California. 


Materials and Methods 


Ninety-one H. cadaverina (Los Angeles County: N = 34, snout-vent length 
[SVL] = 32 mm + 4 SD, range = 25—41 mm, collected 1963-1965; Orange 
County: N = 39, SVL = 37 mm + 5 SD, range = 17—45 mm, collected 1960— 
1972; Riverside County: N = 18, SVL = 28 mm + 6 SD, range = 21—42 mm, 
collected 1964-1971) were borrowed from the Natural History Museum of Los 
Angeles County (LACM) and examined for helminths (accession numbers in ap- 
pendix). The body cavity of each treefrog was opened by a longitudinal incision 
and the gastrointestinal tract was removed and slit longitudinally. The esophagus, 
stomach, small intestine, large intestine as well as lungs, urinary bladder, coelom 
and liver were searched for helminths with a dissecting microscope. Nematodes 
were placed in a drop of undiluted glycerol on a glass slide and allowed to clear 
for study with a compound microscope. Nematodes were identified from these 
slides. Trematodes and cestodes were stained in hematoxylin and mounted in 
balsam for identification. Numbers of individuals for each species of helminth 
were recorded for each host. Prevalence (the percentage of infected frogs), mean 
intensity (the mean number of helminths per infected frog), abundance (the num- 
ber of individuals of a helminth species divided by the number of hosts examined) 
and species richness (the number of helminth species per infected frog) were 
determined. Prevalences of infection for male and female frogs were compared 
by the chi-square test (x7), numbers of helminths per male and female hosts were 


| Be 


118 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


evaluated by the Kruskal-Wallis test and correlation analysis (7) was used to relate 
intensity of infection to age of host (as estimated by SVL). A discussion of 
measures of analyses for community structure can be found in Brower et al. 
(1998). Of these, measures selected for evaluation of the component helminth 
community structure were species richness, Simpson dominance, and Simpson 
diversity. For evaluation of helminth infracommunity structure, mean number of 
helminth individuals per host, mean number of helminth species per host and 
Brillouin’s index were used. For community similarity, the Jaccard coefficient, 
percentage of similarity, and Morisita’s index were used. 


Results and Discussion 


Gravid individuals of one species of trematode, (Langeronia burseyi Dailey 
and Goldberg 2000); one species of cestode, (Distoichometra bufonis Dickey 
1921); and one species of nematode, (Rhabdias ranae Walton 1929), were found. 
Metacercariae of three species of trematodes, (Alaria sp., Fibricola sp. and Gor- 
goderina sp.), and larvae of one species of nematode, (Physaloptera sp.), were 
found. Voucher specimens were placed in vials of 70% ethanol and deposited in 
the United States National Parasite Collection (Appendix). 

Twenty-eight treefrogs (31%) were found to harbor 590 helminths (X = 21 + 
42 SD per infected treefrog), of which 469 (79%) were larvae of species not 
capable of completing their life cycles in anurans. These include Alaria sp., Fi- 
bricola sp. and Physaloptera sp., (see Smyth and Smyth 1980; Goldberg et al. 
1993). Mean helminth species richness for infected treefrogs was 1.2 + 0.5 SD 
(range = 1-3 species). Seventeen of 53 male treefrogs (32%) harbored 354 hel- 
minths; 11 of 38 female treefrogs (29%) harbored 236 helminths. Neither prev- 
alence of helminth infection nor number of helminths per host was significantly 
different between male and female treefrogs (x? = 0.10, 1 df, P > 0.05; Kruskal 
Wallis test = 0.43, P > 0.05, respectively). Twenty-four treefrogs (26%) harbored 
a single species of helminth; 3 (3%) harbored 2 species; and 1 individual (1%) 
harbored three species. The smallest infected frog measured 22 mm SVL; there 
was a positive correlation between number of helminths (all species combined) 
and SVL (r = 0.34, P = 0.080). Number, prevalence and mean intensity of 
helminths by county are given in Table 1. 

Similarity characteristics of the helminth component communities are summa- 
rized in Table 2. The Jaccard coefficient is based upon species presence in a 
community and ranges from O (no species found in both communities) to 1.0 (all 
species found in both communities). Morisita’s index considers the number of 
species, the number of individuals, as well as the proportion of the total repre- 
sented by each species and ranges from 0% (no similarity) to 1.0 (identical). 
Percentage of similarity is based upon species abundance and ranges from 0% 
(no species found in both communities) to 100% (same species found in both 
communities at similar abundances). No two counties exhibited the same com- 
binations of helminth species. In this study (Table 1), the helminth communities 
from Los Angeles County and Orange County are shown to have two species in 
common, the helminth communities from Los Angeles County and Riverside 
County have one species in common; however, helminth communities from 
Orange County and Riverside County have no species in common. 

Infracommunity structure is presented in Table 3. Brillouin’s index is used in 


iwi 


HELMINTHS OF CALIFORNIA TREEFROG 


ei = 8c + 0S g Ol t € Is Yoeulojs (avAre[) ‘ds piajdojpskyg 

CC + LT OS VC eg i st I 9 C sun] avUuDd svIpqovyy 
eBpo}yeUIONy 

9F+0P Ly cl — 77 sam = ina = SUTSO}UT [[BUS squofng pajawmoyn101siq 
epolsa_g 

= = a Eco = OP ¢ 98 DE CCE IZ 877 urys ‘AyAevo Apog (eLIBoroRJou) “ds vulsaposs10H 

= —= — = . = S 6G 40 CC cal IvI soposnul ‘AytAeo Apog (eLeoIs0RJOW) “ds Yj0911gG14 

I ¢ I — ae = —— a = Aytavo Apog (eLIeoIa90soWl) “ds vuDjIy 

at ee a €8 € €8 = == ase OUTSO}UT OSIe'T 1KASANG DIUOAISUDT 
epo]eUldly, 
a ee ee OS 

das 1+ IN d N ds I + IN d N ds I + IN d N oS UONSoJU] WyurwyoH 
AyUNOD SPISIOATY Ayunod asurig Ayunog sajosuy soy] 74 
a SS eescca=_=_— 0:05 — 
“BrUsIOFTe) 


uoyINos WoIJ AyUNOD Kq YULAaAvpDI IAF] WoIF syUTUUTAY JO (GS [| F JW) Aysuoqur ueow pur ‘(g) sougeaoid ‘(N)) SYUTWUTSY JO JoquINU ‘sa}yIs UONOAJUT *[ IqQRI. 


120 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 2. Jaccard coefficient, Morisita’s index and percentage of similarity for helminth communities 
of Hyla cadaverina by county from southern California. 


Orange County Riverside County 

Jaccard coefficient 

Los Angeles County 0.40 0.17 

Orange County 0) 
Morisita’s index 

Los Angeles County 0.61 0.01 

Orange County 0 
Percentage of similarity 

Los Angeles County 48.8 0.50 

Orange County 0) 


a relative fashion to determine which species assemblages are more or less diverse 
than others and is based upon relative abundance with larger values indicating 
evenness of distribution across species. Simpson diversity is based upon abun- 
dance with larger values indicating evenness of distribution of individuals across 
species. Simpson dominance is also based upon abundance with larger values 
indicating aggregation of most individuals into one or a few species. Based upon 
Brillouin’s index, the helminth infrapopulation collected in Orange County has 
the most even distribution. Simpson diversity index indicates that Los Angeles 
County and Riverside County have similar diversities and are less diverse than 
the infracommunity in Orange County. Likewise, most helminths in the infracom- 
munities of Los Angeles County and Riverside County belong to one species 
(Simpson dominance index). 

Except for Langeronia burseyi which is presently known only from H. cadav- 


Table 3. Diversity characteristics of the helminth infracommunities for Hyla cadaverina by county 
from southern California. 


Los Angeles Orange Riverside 

Characteristics County County County 
No. treefrogs examined 34 39 18 
Mean SVL + SD, range (mm) 32 +4 a7 = 5 28 = 6 
No. treefrogs infected 11 4 12 
Prevalence (as %) 32 10 67 
No. helminths 374 179 37 
Mean intensity + SD 33.9 + 45:6 44.7 + 78.8 3.1 BRA 
Mean abundance + SD 11.0. 29.8 4.6 + 26.1 2h 
Mean species richness + SD | Ree | Ff 13.205 it = ee 
No. helminth species 4 3 3 
Proportion with O helminth species 0.67 0.89 0:33 
Proportion with 1 helminth species 0.24 0.08 0.61 
Proportion with 2 helminth species 0.06 0.03 0.06 
Proportion with 3 helminth species 0.03 0.00 0.00 
Proportion with 4 helminth species 0.00 — == 
No. helminths species maturing in anurans Z 1 1 
Brillouin’s index 0.31 0.37 0.12 
Simpson diversity (D,) 0.49 0:55 0.49 


Simpson dominance (d,) 0.51 0.45 0.51 


HELMINTHS OF CALIFORNIA TREEFROG 121 


erina collected in Orange County (Dailey and Goldberg 2000), none of the hel- 
minth species found in this study was unique to H. cadaverina. However, this is 
the first record of H. cadaverina as a host for D. bufonis and R. ranae as well as 
the first report of Alaria sp., Fibricola sp., Gorgoderina sp., and Physaloptera 
sp. in H. cadaverina. Species of Alaria and Fibricola utilize mammals as final 
hosts, species of Gorgoderina utilize anurans as final hosts; metacercariae of all 
3 species are commonly found in frogs (Smyth and Smyth 1980). Distoichometra 
bufonis is a common parasite of anurans (Brooks 1976) as is R. ranae (see Baker 
1987). Larvae of Physaloptera spp., usually parasites of lizards and mammals, 
have been reported from anurans (Anderson 2000). 

Of the 7 helminth species found in this study, 4 species are capable of com- 
pleting their life cycles in anurans. Individuals of Gorgoderina require bivalve 
intermediate hosts and aquatic insects or tadpoles serve as second intermediate 
hosts (Smyth and Smyth 1980). When infected tadpoles or insect larvae are eaten 
by frogs, excystment takes place in the stomach and migration to the kidneys and 
bladder occurs (Smyth and Smyth 1980). We cannot speculate whether the Gor- 
goderina metacercariae found in the present study would have migrated to the 
kidneys or bladder to complete development or if H. cadaverina was acting as a 
paratenic (transport) host. The life cycle of L. burseyi is unknown but other le- 
cithodendriid trematodes have been shown to utilize snails as intermediate hosts 
(Schell 1970). Likewise, the life cycle of D. bufonis is unknown, but Joyeux 
(1927) regards the life cycle of nematotaeniid cestodes to be direct, i.e., without 
an intermediate host and infection of a new host occurs through ingestion of 
cestode eggs. Rhabdias ranae has a direct life cycle and infection occurs by 
integumental penetration (Anderson 2000). Of the non-anuran parasites, species 
of Physaloptera utilize insect intermediate hosts and adults occur mainly in stom- 
achs of reptiles, birds and mammals (Anderson 2000); larvae might be expected 
in any insectivorous host. Miracidia of Alaria sp. (definitive host = carnivore) 
and Fibricola sp. (definitive host = mouse, raccoon) utilize snails as intermediate 
hosts (Smyth and Smyth 1980). Cercariae of both Alaria sp. and Fibricola sp. 
may penetrate the skin of either tadpoles or frogs (Hayden 1969; Pearson 1961). 

It would be of interest to know which helminth species infect sympatric anurans 
and whether there is recruitment of helminths from one locality to another. Pe- 
riodic visits to water are the most likely time for infection by L. burseyi, Alaria 
sp., Fibricola sp., Gorgoderina sp. and R. ranae. Distribution patterns of definitive 
hosts, as well as intermediate hosts, may help explain the presence or absence of 
these helminths in the localities examined. Feeding behavior would be a more 
important consideration for infection by D. bufonis and Physaloptera sp. Presence 
of these helminths in H. cadaverina is, no doubt, the result of patchy distribution 
of the particular helminth species. 


Acknowledgment 


We thank David A. Kizirian (Natural History Museum of Los Angeles County) 
for permission to examine H. cadaverina. 


Literature Cited 


Anderson, R. C. 2000. Nematode parasites of vertebrates: Their development and transmission. 2nd 
edition. CABI Publishing, CAB International, Wallingford, Oxon, U.K. 650 pp. 


122 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Baker, M. R. 1987. Synopsis of the Nematoda parasitic in amphibians and reptiles. Mem. Univ. 
Newfoundland, Occas. Pap. Biol., 11:1—325. 

Brooks, D. R. 1976. Parasites of amphibians of the Great Plains. Part 2. Platyhelminths of amphibians 
in Nebraska. Bull. Univ. Nebraska St. Mus., 10:65—92. 

Brower, J. E., J. H. Zar, and C. N. von Ende. 1998. Field and laboratory methods for general ecology, 
4th edition. McGraw-Hill, Boston, Massachusetts. xi + 273 pp. 

Dailey, M. D., and S. R. Goldberg. 2000. Langeronia burseyi sp. n. (Trematoda: Lecithodendriidae) 
from the California treefrog, Hyla cadaverina (Anura: Hylidae), with revision of the genus 
Langeronia Caballero and Bravo-Hollis, 1949. Comp. Parasitol., 67:165—168. 

Goldberg, S. R., C. R. Bursey and R. Tawil. 1993. Gastrointestinal helminths of the western brush 
lizard, Urosaurus graciosus graciosus (Phrynosomatidae). Bull. So. Calif. Acad. Sci., 92: 
43-51. 

Hayden, D. W. 1969. Alariasis in a dog. J. Amer. Vet. Med. Assoc., 155:889-891. 

Joyeux, C. 1927. Recherches sur la faune helminthologique Algérienne (cestodes et trématodes). Arch. 
de I’Institut Pasteur d’ Algérie, 5:509—528. 

Pearson, J. C. 1961. Observations on the morphology and life cycle of Neodiplostomum intermedium 
(Trematoda: Diplostomatidae). Parasitology, 51:133—172. 

Schell, S. C. 1970. How to know the trematodes. W. C. Brown Co., Dubuque, Iowa, vii + 355 pp. 

Smyth, J. D., and M. M. Smyth. 1980. Frogs as host-parasite systems I. The MacMillan Press, Ltd., 
London, ix + 112 pp. 

Stebbins, R. C. 1985. A field guide to western reptiles and amphibians. Houghton Mifflin Company, 
Boston, xiv + 336 pp. 


Accepted for publication 21 December 2000. 


Appendix 


Hyla cadaverina borrowed from the Natural History Museum of Los Angeles County (LACM) by 
California County. Los Angeles County: 12263, 12265-12273, 12275-12280, 12283-12285, 12287— 
12294, 114170—-114176; Orange County: 88837, 88854, 88881, 88882, 88894, 88895, 88905, 88907, 
88918, 88921, 88923, 88927, 88930-88933, 88935, 88937, 88941, 88942, 88946, 88953-88956, 
88958-88960, 88962-88969, 114182—114184; Riverside County: 114185, 114187—114198, 114200— 
114204. Helminths from Hyla cadaverina deposited in the United States Parasite Collection, USNPC, 
Beltsville, Maryland: Langeronia burseyi 90644; Alaria sp. 90645; Fibricola sp. 90646; Gorgoderina 
sp. 90647; Distoichometra bufonis 90648; Rhabdias ranae 90649; Physaloptera sp. 90650. 


Bull. Southern California Acad. Sci. 
100(2), 2001, pp. 123—127 
© Southern California Academy of Sciences, 2001 


A New North Pacific Heterochone Transferred from Aphrocallistes 
(Porifera: Hexactinellida) 


Henry M. Reiswig 


Redpath Museum and Department of Biology, McGill University, 
859 Sherbrooke St. W., Montreal, Quebec, Canada H3A 2K6 
email: cxhr@musica.mcgill.ca 


Abstract.—A hexactinellid sponge specimen from southern California, determined 
as a member of the genus Heterochone, was found to be conspecific with Aphro- 
callistes beatrix incognitus, a form previously described from the Okhotsk Sea 
by Koltun (1967). The taxon is redescribed and reassigned as a new combination, 
Heterochone incognitus (Koltun). It represents an addition to the North American 
Pacific fauna. The simple zoological diagnosis of Heterochone is: Aphrocallistidae 
with atrialia as pinular hexactins. 


The deep-water marine fauna of the Pacific Coast of North America is poorly 
known primarily owing to avoidance of the region by the major oceanographic 
expeditions of the late 1900’s. During an ongoing survey of California collections 
by myself and coworkers, with the aim of producing an updated guide to the 
Porifera of California, we encountered a hexactinellid sponge from southern Cal- 
ifornia unknown to the region (last summarized by de Laubenfels 1932). The 
specimen is the third and, although imperfect, the best preserved specimen of a 
species known to date as Aphrocallistes beatrix incognitus; it has been recorded 
only from the Okhotsk Sea, eastern Russia (Koltun 1967). The severely damaged 
condition of the earlier specimens is likely cause for the original incorrect generic 
assignment, which is here resolved and corrected. 


Materials and Methods 


The specimen was obtained on loan from the Benthic Invertebrate Collection 
of Scripps Institute of Oceanography, La Jolla, California (SIO). After photo- 
graphing the specimen, small pieces of dermal and atrial surfaces were whole- 
mounted in Canada balsam for light microscopy and digested in hot nitric acid 
for spicule cleaning. Cleaned spicules were either mounted directly in balsam on 
slides or retained on nitrocellulose filters which were cleared and mounted on 
slides. Spicules and body apertures were measured by microscope-coupled digi- 
tizer. Spicule drawings were made directly from video-captured images. Data in 
text are given as: minimum-mean-maximum of 25 measurements. 


Systematics 
Class Hexactinellida Schmidt, 1870 
Subclass Hexasterophora Schulze, 1886 
Order Hexactinosa Schrammen, 1903 
Family Aphrocallistidae Gray, 1867 
Genus Heterochone lima, 1927 


Diagnosis.—Aphrocallistidae with atrialia as pinular hexactins. 
Type species.—Chonelasma calyx Schulze, 1886 


123 


124 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Fig. 1. Heterochone incognitus specimen SIO P 592. A, presumed lower (right) and upper (left) 
surfaces of the lobate fragment, with bases of two funnels indicated by asterisks and intact portion of 
funnel wall indicated by arrowheads. B, dermal surface with intact pinule lattice covering entire 
surface, including entrances to diarhysial channels. C, atrial surface with open, uncovered apertures 
of diarhysial channels. 


Remarks.—Upon his erection of Heterochone, jima (1927) provided an exten- 
sive comparison of the new genus with its only sister genus, Aphrocallistes, but 
did not provide a diagnosis. Reid (1963), aware of Ijima’s action, characterized 
the genus by body form, a strategy perhaps necessary for paleontological use but 
insufficient for zoological application. Koltun (1967) was apparently unaware of 
ljima’s formation of Heterochone, perhaps because it was mistakenly omitted 
from the final list of Ijima’s (1927) publication (Reiswig 1990). The short, new 
diagnosis provided here differentiates Heterochone (with hexactine atrialia) from 
Aphrocallistes (with diactine atrialia). 


A HEXACTINELLID SPONGE NEW TO CALIFORNIA 25 


50um 


= 
& 


100um 


= 

= 
o) 
= 

Le 


100um 


50um 
50um 


Fig. 2. Spicules of Heterochone incognitus specimen SIO P 592. A, dermal pinular hexactin. B, 
atrial pinular hexactin. C, small moderately-spined hexactin. D, larger coarsely-spined hexactin. E, 
uncinate, entire and magnified segment. E narrow scopule with 4 tines. G, divergent scopule with 6 
tines. H, oxyhexactine microsclere. I, two hemioxyhexasters with branching restricted to rays of the 


major axis. J, discohexaster. 


Heterochone incognitus (Koltun, 1967) 
Figs. 1-2, Table 1. 


Synonymy.—Aphrocallistes beatrix incognitus Kotun, 1967: 60, Fig. 39. 

Holotype.—Zoological Institute, Russian Academy of Science (Leningrad) N 
16362 (2 fragments), 148°57’E, 44°41’N, 780m, RV ‘Vitiaz’ stn. 5640 (not ex- 
amined). 

Material examined.—SIO P 592, in alcohol, 118°53.6'’W, 33°20.4'N. 1165—958 
m depth, 11 Dec. 1971, RV “Thomas Washington’, col. Mathews. 

Body and framework.—Specimen a massive irregular fragment, 13.4 cm X 6.9 
cm X 4.0 cm, as part of basal region without attachment site; dead skeletal frame- 


126 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 1. Spicule measurements of Heterochone incognitus, SIO P 592 with comparison data from 
Okhotsk Sea specimens of Koltun, 1967. 


Item measured Mean + s.d. Range N Koltun, 1967 


Dermal pinule A 


pinulus length (wm) 1S" 25 24 88-222 100 120-165 

tangential ray length (wm) 1SGy= 22 104—227 100 99-154 

proximal ray length (wm) 304 + 155 68-728 100 159-264 
Gastral pinule B 

pinulus length (wm) 198 + 47 85-280 25 nr. 

tangential ray length (jm) LTOLE 37 104—247 2s Ie 

proximal ray length (wm) PS. 133 65—193 pls n.r. 
Scopule F length (wm) 606 + 84 420-756 25 412—660* 
Scopule G length (jm) 257-2 103 369-751 25 412—660* 
Hexactin D ray length (wm) 216 + 47 146-341 25 nt. 
Hexactin C ray length (wm) L72 = Al 100-278 25 i 
Uncinate length (mm) 5.4 + 0.9 3.6—7.1 pits 1.0—4.0 

width (jm) 24 5 12-35 50 13-32 

Oxyhexactin diameter (zm) O2°>. 16 64-126 25 66-121 
Hemioxyhexaster diameter (jm) 100) = 19 65-129 a n.m. 
Discohexaster diameter (jm) 28.002, S16 21.2—44.3 25 38 


* Scouple types not measrued separately; n.r. = not reported; n.m. = not measured. 


work on presumed lower side; 2 major depressions interpreted as bases of mostly 
missing funnel-form body extensions on opposite presumed upper side (Fig. 1A); 
surface even and compacted but edge of upper funnel with small region of intact 
body wall (Fig. 1A, arrows); wall 1 cm thick penetrated by radial diarhyses (skel- 
etal channels of dictyonal framework) passing from dermal to atrial surface; der- 
mal surface entirely covered by rectangular lattice of loose pinular hexactins of 
149-783-235 jm mesh (Fig. 1B); dermal openings of diarhyses 0.44-/.07-1.88 
mm diameter and irregulary distributed; atrial surface lined by compact felt of 
pinular hexactins not forming a rectangular lattice; atrial apertures of diarhyses 
0.27-0.94-1.74 mm diameter, irregularly distributed, uncovered and open (Fig. 
1C); dictyonal framework typically aphrocallistid (with diarhyses) with beams 
partly smooth and partly sparsly spined, 49-S8-188 «1m in thickness; meshes 3- 
and 4-sided, very irregular with sides 183-483-1059 wm. 

Spicules.—Spicule form and dimensions are summarized in Fig. 2 and Table 
1. Megascleres: Dermal and atrial pinular hexactins (Fig. 2A—B) are similar but 
proximal rays of dermal forms have greater length range; parenchymal hexactins 
occur in larger coarsly spined form (Fig. 2D) and smaller moderately spined form 
(Fig. 2C); scopules with micro-thorned tines occur in 2 forms in both surfaces: 
form with 4 tines and small (10°) angular spread (Fig. 2F), and form with 6—8 
tines more widely (30°) divergent (Fig. 2G); large uncinates (Fig. 2E) are of form 
typical of the family. 

Microscleres: Oxyhexactins (Fig. 2H) to hemioxyhexasters (Fig. 21) with 
smooth primary rays and micro-rough secondary rays numbering 1-4, often with 
branching retricted to one axis; discohexaster (or tylohexasters) with short smooth 
primary rays, each bearing 5 rough secondary rays terminating in a small cap 
with 4-6 marginal spines (Fig. 2J). 


A HEXACTINELLID SPONGE NEW TO CALIFORNIA iA 


Remarks.—The specimen, SIO P 592, agrees in spiculation with that described 
by Koltun (1967) as Aphrocallistes beatrix incognitus (Table 1; Koltun 1967, Fig. 
39). Koltun’s material consisted of 2 small, damaged pieces of sponge, ca. 2.5 X 
1.5 cm, plus numerous fragments of washed-out skeletal framework collected 
from the Okhotsk Sea. He was able to describe and measure dermal and paren- 
chymal spicules but atrial surfaces were too damaged to enable determination of 
associated spicules critical to generic placement. Surprisingly he made no state- 
ments on framework structure or channelization, features which were available 
for assessment and critical for family assignment. His placement of the Okhotsk 
material was presumably influenced by the distinctive “‘roller-form’”’ of the he- 
mihexasters, a well known feature of Aphrocallistes beatrix, and compromised 
by the unavailability of atrial spicules and his lack of awareness of Ijima’s Het- 
erochone. With availability of the atrial surface in the southern California speci- 
men, and conclusion that the specimen is conspecific with the Okhotsk material, 
Kotun’s specimens can now be correctly reassigned as the new combination, Het- 
erochone incognitus Koltun. The new form is easily differentiated from other 
Heterochone species: H. calyx Schulze has shorter inflated pinulus and spheric 
oxyhexasters; H. hamata Schulze has no oxyhexasters; H. tenera Schulze has 
microsclere populations that are mainly discohexactins. 


Acknowledgments 


I thank Spencer Luke and Larry Lovell for making loan material available for 
this study, and Prof. V.M. Kotun for providing holotype collection data. Financial 
support was provided by the Natural Sciences and Engineering Research Council 
of Canada. 


Literature Cited 


Ijima, I. 1927. The Hexactinellida of the Siboga Expedition. Siboga Exped. Rept. 6:1—383. 

Koltun, V.M. 1967. Vitreous sponges of the Northern and Far-Eastern Seas of the USSR. [in Russian] 
Opred. Faune S.S.S.R. 94:1-124. 

Laubenfels, M.W. de 1932. Marine and fresh water sponges of California. Proc. U.S. Nat. Mus. 81: 
1-140. 

Reid, R.E.H. 1963. Notes on a classification of the Hexactinosa. J. Paleont. 37:218—231. 

Reiswig, H.M. 1990. Correction of Ijima’s (1927) list of recent hexactinellid sponges (Porifera). Proc. 
Biol. Soc. Wash. 103:731-—745. 

Schulze, EE. 1886. Uber den Bau und das System der Hexactinelliden. Abh. K6nigl. Akad. Wiss. 
Berlin (Physik.-Math.) 1886:1—97. 


Accepted for publication 22 December 2000. 


sca pembing hegatred P Guise a ay Pore os pei, Yatkrarit wat, ian TS ets: = 


bee poasly Spiers 
a) | cncitastisiqen 0 rursow iy 
yg att Jaomeagiznge vlimal 19) traners Date : 
te sriiniveth, Amt DOM iM “sidtnen awe 
| ex iingonig. ty to ary taial pond (towe a J bi 
to £90! ag bre essing. letiy Yo vaitigal invag 
a st -speteds fattis lite qilidetiavg miw 
. Side AA ana at ape ant ons ono 
Wo) re boop ins Moanios S-wee oss Amie 
LareRit Yliers aprwt wan of Ti guthviod RO 


oftseiqga ftv Seistins woradetaiastuive Aes golege sae 
ete ie aA senotencs2AO 7 Ky aati oxlsftae Tilaansnet Bul 
STL POS 5M Pa 


ai 


as 


-_ 


tigi 


rae ae ih Ot ape teeeorely (wiley - al <9 et 


“A Ricca Type Bhat dieratvses ro whfahingt baled Pepe (8S SO a ie 


a siestions tatters aes) gctions wl lisvol ynet baa shu1 wang 
“ Pekxicn pemdmaaadies es ie ea ab arab eter, ~ Moar; Medel aie ot 
inna csccmceany sna breve: her aR Rags eens Debts ak dgilrady, iat 5 
wiglige 2Ve0 wih Cneaiges cs re" y= 47! ate turfiel Yuliy. sree Toe M 
bony wall (Fig a” oh’ ide froim. ayy corte) eee Meet 
tal Oannch of viatve dy § Aceria!-to aia 
mal Sew fey sale QI =. cy stot oon Ty boot pleat De 

(hitb S9 tole serra ) aa ha TET vot. 4a ; 
‘igpare dracinrer bon! aie’ shel «ieee pA He SOR - oe Deh 
Raph Hi amit. we , mba. ie aa" ites ily, 4%; tig =i} jean =i ald aS hies : a Re 


W), ryt? ge } pi ft ve. ie at eee caghentyes arta mat Pry te Aide chsh by val AA SRA wa ' 
Bort icine Pia tees. aed pret hee belt eOCwS pi aif eo Bat Eh ee TT Mma 
OAriy sooth vad paris iar fats ein, Hot he 


Be - Lae lott cx in gable rabid peetaesy ge) Ay abe. 4 ny anf ORL. Sy yh rae 
ih Be | shan eee) a a ae od 
sy 4 te 


“pai e oe 


é ah si Aw Loe Porn pas re Tate re 


l Méeascleres: Deri’ aad Sty ort hed aie espa SS POS re 


ee: cee york eee 


S 


proxi er “shore (ike. | 


7 
i. 
a 


ara ty lorgter ca sora! fry >) and. ernulicr rouge: gee 
1) ages wah We | iuies wer. io’? Peep ie toh aie 
few 7 id: ertilh 2 a road OF ite 2P yy aed tores Se 
( ‘ L pd : ¥ 
‘ : ) ¥ a ' * ol o 
Tae yee | [o i Wy . _ 4 NG : ric: Heiss f ip. ad ee | lene 
ie ie fA ih y . I x xn 
c = ‘ . | 
vit >>. n : ‘ ‘te a4 5 whit 4145 1 £5 | > ee, 
, v . 4 - < 
: ; “~, 
a -~ i ' ; <i} FE 
» : it? x ¢ 1 7s ¢> : LA is ays tiinks 1. “= aL ete 
- * Li 
nicl : iricctest 1 sy “OL ee oF eries (elon len eo Sort ae 
) i¥S rl) hedone J ln a) s?C0R Fy ays Te ee 
ta : 
i eh tT: ee | ee 
i ' 
- ii Pr — ’ i 
f ots A > 
aft =X 
— % f 
= ~ 


om Lo hed @ ee é ‘ os na 
a = 7 em al ae a 
Tie € < Pat <9 see 
a : ial 1 = 
ae" ~,* Z 
“ype 
was fia 
oy) roe < 
wre ice ty Keats of, 
—_ a ae Se 
5) es a ie - 
SASAIRS 
oe hoa) aptrrnl al nad pod och here nee ply’ ie 
pithy Be 4nénr. ican pectne = Ferre — “its = ip 
i SiayUld beh tevin Abanaqecstot: 4 bie® & ts (ae od peer 
ar. a 
#1; rieaeaa’ ie we A 4 a y% , ; P : 
Sanit ardrlc. At ” a ‘ 
erticte commrisce apres tee im ; 7) (catae 
b gectpeane ayo ita faketivy “s apa arp? on. 
labien! figure aoe eG pige, an lg 
Bele is wsueily ec 7 ae Re io 
he 7 Mie | S The ~~ os 
gas Use of sttreviatic: he : ! Steen A 
. rat Oeste iffer stones —_ 4 < 1) Ve eee Ss yo 
OF Wigueneo 2: i, Ded Aa : % Cg aape 
Seed IRA SeNee! > alae!) tor _ 
\ of Boofers! ?. siales ae WS ne 
(cage Ba! TV5RA, 2 ee " — a am f ; ); 
iotrelneiid “be preven. tr ¢ ) Ss a ee : 
en abirsdis should Pw ks . : 
vited: tacre 
i al rie ; 
Tw, S Soak. wee ae Sar. 7 
| on | i “ yee oh 
Caliixnig Pree, | | 
: 
should Get fi pws: ce! cog a Bs him ng Ras | 
a” Tit athe sme : 4. eee Pa 
et ihe ten: ta ; ' . * ae ro a A -~ 
a On 4 eT poo Pp. 4 dd th a 1 es 
reletiien 1. ee" > , oe Sr Ua PL 
| pthc eiterieg ©. ‘ y “ey 
a merase Jaa ae ~ i ee 
reed ty ie. 3s ee | | ya Sara: 
rawr Wes Gath & sagen“ rey’ 
the manuse> A 
bésyits. din | 
tee ; - 
; MMustr at kon " 
OF soli inn, az a \ 
j 
) " 
Mancusi at “: 
Peenie. a7 * : 
PSions who «re ~~ ; p | ' 
atit 2 i: ~ b nbdn, 
CAM; ot presen = —- gl 
Ate S 7a Ty , Sab bs & 
otrs te ws ’ 
Peet: The gwisy _ : - —— 
M prampt; arctast <p Segre. 
y SO soe a 5 i aa ‘ , a, tLtce 
0 Ee ee ee ras ene! ; rs ate ys teeceen fiwailla 
PO te wie aire OG ee - eit 66 Re satin 
, smcwrrelyleot antters <yetiots in See te es - we oti, Vepript 
ort places wise Reel gor De6esS = ‘P< 
7, 
os 


Se 
ee er 
v - 4 La 


» aa} 7 7 » 
) ' : an Le 
an (eh at 


INSTRUCTIONS FOR AUTHORS 


The BULLETIN is published three times each year (April, August, and December) and includes articles in English 
in any field of science with an emphasis on the southern California area. Manuscripts submitted for publication 
should contain results of original research, embrace sound principles of scientific investigation, and present data in 
a clear and concise manner. The current AIBS Style Manual for Biological Journals is recommended as a guide 
for contributors. Consult also recent issues of the BULLETIN. 


MANUSCRIPT PREPARATION 


The author should submit at least two additional copies with the original, on 8% X 11 opaque, nonerasable paper, 
double spacing the entire manuscript. Do not break words at right-hand margin anywhere in the manuscript. 
Footnotes should be avoided. Manuscripts which do not conform to the style of the BULLETIN will be returned 
to the author. 

An abstract summarizing in concise terms the methods, findings, and implications discussed in the paper must 
accompany a feature article. Abstract should not exceed 100 words. 

A feature article comprises approximately five to thirty typewritten pages. Papers should usually be divided into 
the following sections: abstract, introduction, methods, results, discussion and conclusions, acknowledgments, lit- 
erature cited, tables, figure legend page, and figures. Avoid using more than two levels of subheadings. 

A research note is usually one to six typewritten pages and rarely utilizes subheadings. Consult a recent issue 
of the BULLETIN for the format of notes. Abstracts are not used for notes. 

Abbreviations: Use of abbreviations and symbols can be determined by inspection of a recent issue of the 
BULLETIN. Omit periods after standard abbreviations: 1.2 mm, 2 km, 30 cm, but Figs. 1-2. Use numerals 
before units of measurements: 5 ml, but nine spines (10 or numbers above, such as 13 spines). The metric system 
of weights and measurements should be used wherever possible. 

Taxonomic procedures: Authors are advised to adhere to the taxonomic procedures as outlined in the Interna- 
tional Code of Botanical Nomenclature (Lawjouw et al. 1956), the International Code of Nomenclature of Bacteria 
and Viruses (Buchanan et al. 1958), and the International Code of Zoological Nomenclature (Ride et al. 1985). 
Special attention should be given to the description of new taxa, designation of holotype, etc. Reference to new 
taxa in titles and abstracts should be avoided. 

The literature cited: Entries for books and articles should take these forms. 

McWilliams, K. L. 1970. Insect mimicry. Academic Press, vii + 326 pp. 

Holmes, T. Jr., and S. Speak. 1971. Reproductive biology of Myotis lucifugus. J. Mamm., 54:452—-458. 

Brattstrom, B. H. 1969. The Condor in California. Pp. 369-382 in Vertebrates of California. (S. E. Payne, ed.), 

Univ. California Press, xii + 635 pp. 


Tables should not repeat data in figures (line drawings, graphs, or black and white photographs) or contained 
in the text. The author must provide numbers and short legends for tables and figures and place reference to each 
of them in the text. Each table with legend must be on a separate sheet of paper. All figure legends should be 
placed together on a separate sheet. Illustrations and lettering thereon should be of sufficient size and clarity 
to permit reduction to standard page size; ordinarily they should not exceed 8% by 11 inches in size and after 
final reduction lettering must equal or exceed the size of the typeset. All half-tone illustrations will have light screen 
(grey) backgrounds. Special handling such as dropout half-tones, special screens, etc., must be requested by and 
will be charged to authors. As changes may be required after review, the authors should retain the original 
figures in their files until acceptance of the manuscript for publication. 


Assemble the manuscript as follows: cover page (with title, authors’ names and addresses), abstract, introduction, 
methods, results, discussion, acknowledgements, literature cited, appendices, tables, figure legends, and figures. 


A cover illustration pertaining to an article in the issue or one of general scientific interest will be printed on the 
cover of each issue. Such illustrations along with a brief caption should be sent to the Editor for review. 


PROCEDURE 


All manuscripts should be submitted to the Editor, Daniel A. Guthrie, W. M. Keck Science Center, 925 North 
Mills Avenue, Claremont, CA 91711. Authors are requested to submit the names, addresses and specialities of 
three persons who are capable of reviewing the manuscript. Evaluation of a paper submitted to the BULLETIN 
begins with a critical reading by the Editor; several referees also check the paper for scientific content, originality, 
and clarity of presentation. Judgments as to the acceptability of the paper and suggestions for enhancing it are sent 
to the author at which time he or she may be requested to rework portions of the paper considering these recom- 
mendations. The paper then is resubmitted and may be re-evaluated before final acceptance. 


Proof: The galley proof and manuscript, as well as reprint order blanks, will be sent to the author. He or she 
should promptly and carefully read the proof sheets for errors and omissions in text, tables, illustrations, legends, 
and bibliographical references. He or she marks corrections on the galley (copy editing and proof procedures in 
Style Manual) and promptly returns both galley and manuscript to the Editor. Manuscripts and original illustra- 
tions will not be returned unless requested at this time. All changes in galley proof attributable to the author 
(misspellings, inconsistent abbreviations, deviations from style, etc.) will be charged to the author. Reprint 
orders are placed with the printer, not the Editor. 


CONTENTS 


A Fossil Blue Marlin (Makaira nigricans Lacépéde) from the Middle Facies 
of the Trinidad Formation (Upper Miocene to Upper Pliocene), San José 
del Cabo Basin, Baja California Sur, México. Harry L. Fierstine, 
Shelton P. Applegate, Gerardo Gonzalez-Barba, Tobias Schwennicke, 
and Luis Espinosa-Arrubarrena 


Contributions to the Life History of Adult Pacific Lamprey (Lampetra tri- 
dentata) in the Santa Clara River of Southern California. Shawn D. 


Combined Effects of Drought and Phoradendrom juniperinum Infestation 
Severity on Fruit Characteristics of P juniperinum and its Juniperus 
osteosperma Hosts. Simon A. Lei 


Spatial Distribution of Blackbrush (Coleogyne ramosissima Torr.) 
Populations in the Mojave Desert. Simon A. Lei 


Postfire Seed Bank and Soil Conditions in a Blackbrush (Coleogyne ramo- 
sissima Torr.) Shrubland. Simon A. Lei 


Helminths of Six Species of Colubrid Snakes from Southern California. 
Stephen R. Goldberg and Charles R. Bursey 


Helminths of the California Treefrog, Hyla cadaverina (Hylidae), from 
Southern California. Stephen R. Goldberg and Charles R. Bursey 


A New North Pacific Heterochone Transferred from Aphrocallistes (Porifera: 
Hexactinellida). Henry M. Reiswig 


COVER: Makaira nigricans Lacépéde. Skull Lateral view (see Figure | in Fierstine, et al). 


ISSN 0038-3872 


fern eRN CALIFORNIA ACADEMY OF - SCIENCES 


BULLETIN 


Volume 100 Number 3 


EL NINO SYMPOSIUM 


BCAS-A100(3) 129-252 (2001) DECEMBER 2001 


Southern California Academy of Sciences 
Founded 6 November 1891, incorporated 17 May 1907 


© Southern California Academy of Sciences, 2001 


OFFICERS 


Daniel Pondella, President 
Ralph Appy, Vice-President 
Susan E. Yoder, Secretary 
Daniel A. Guthrie, Treasurer 
Daniel A. Guthrie, Editor 
David Huckaby, Past President 
Hans Bozler, Past President 


BOARD OF DIRECTORS 


1999-2002 2000-2003 2001—2004 
Ralph G. Appy James Allen Brad R. Blood 
Jonathan N. Baskin John Dorsey Chuck Kopezak 
John W. Roberts Judith Lemus Daniel Pondella 
Tetsuo Otsuki Martha and Richard Raymond Wells 
Gloria J. Takahashi Schwartz Raymond Wilson 


Susan E. Yoder 


Membership is open to scholars in the fields of natural and social sciences, and to any person interested 
in the advancement of science. Dues for membership, changes of address, and requests for missing 
numbers lost in shipment should be addressed to: Southern California Academy of Sciences, the Natural 
History Museum of Los Angeles County, Exposition Park, Los Angeles, California 90007-4000. 


Professional Members 2°... 2 Sie ce a Se 2B Ug Se Be ee 
Siidcat Wember: 2° SS. Oe eI eee ee i eS ke eS ae OS 
Memberships in other categories are available on request. 


Fellows: Elected by the Board of Directors for meritorious services. 


The Bulletin is published three times each year by the Academy. Manuscripts for publication should 
be sent to the appropriate editor as explained in “Instructions for Authors” on the inside back cover 
of each number. All other communications should be addressed to the Southern California Academy — 
of Sciences in care of the Natural History Museum of Los Angeles County, Exposition Park, Los 
Angeles, California 90007-4000. 


Date of this issue 10 December 2001 


This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). 


SOUTHERN CALIFORNIA ACADEMY 
OF SCIENCES 


CALL FOR PAPERS 
2002 ANNUAL MEETING 
June 7-8, 2002 
CLAREMONT MCKENNA COLLEGE 
CLAREMONT 


Contributed Papers & Posters: Both professionals and students are welcome to submit abstracts for 
a paper or poster in any area of science. Abstracts are required for all papers, as well as posters, and 
must be submitted in the format described below. Maximum poster size is 32 by 40 inches. 


Symposia: The following symposia are planned at the present time. If you wish to participate or to 
organize any additional symposia, please contact the organizer or the Academy Vice President, Ralph 
Appy (310 732 3497) rappy @portla.org. Organizers should have a list of participants and a plan for 
reaching the targeted audience. 


Virtual Oceans 
Organizers: Judy Doino Lemus jdlemus @usc.edu 213-740-1965 


Rocky Reef Monitoring 
Organizers: Dan Pondella pondella@ oxy.edu (323) 259-2955 and Bob Grove grovers@sce.com 
626-302-9735 


Conservation Management F 
Organizer: Brad Blood BBlood@ sapphosenvironmental.com 626-683-3547 | 


CALIFORNIA 


ACADEMY OF SCIENCES 
High School Science Education 


Organizers: Martha and Richard Schwartz SCI/RS@aol.com DEC 2 6 2001 


SCCWRP Bight 98 Regional Monitoring 


Organizer: Stephen Wiesberg 714 372 9203 stevew@sccwrp.org LIBRARY 


Effects of exotic species on Southern California wildlife 
Organizers: Dan Guthrie dguthrie @jsd.claremont.edu 909 607 2836 and Andrew Jirik 
ajirik@ portla.org 


Aerial Particulate Contaminants 
Ralph Appy rappy@portla.org 310-732-3497 


There will be additional sessions of Invited Papers and Posters and of papers by Junior Academy 
members. 


Student Awards: Students who elect to participate are eligible for best paper or poster awards in the 
following categories. Biology: ecology and evolution, biology: genetics and physiology, physical sci- 
ence. A paper by any combination of student and professional co-authors will be considered eligible 
provided that it represents work done principally by student(s). In the case of an award to a co-authored 
paper, the monetary award and a one year student membership to the Academy will be made to the 
first author only. 


For further information on posters, abstracts, registration and deadlines, see the Southern California 
Academy of Science web page at: www.lam.mus.ca.us/~scas/ 


ia | ’ limeh Agey. Vice-President 


hing 2tereog ep ilow as .ceogeg, 


ee 


ON ic cipen fo wcholaes i ‘tw aches Meat De harecwnt oe truth ade 
« s : 


se tae ste m other Culegories are avaljame on roquem . Mancino & 


TMOMEAA. Ho Poaihetla, Preident 


Syctn tb. Yoder, Seeretury 
gael A. fyuthric, TT YEN? 


aetind Db ed ae a 

<2 Hares Bozter, Pasi President 

oi 10. otegisineq of fiw voy YW oni oe iw bennslq’ sus ninccyarys ete 
fiqinA jnsbieayl sof¥ yorshasA oct 19 19% fears are bhanqenrys Ismoitibbie yf 
1a nielq # bie. ameqioinay Io.xei PAB Paice AA Rip.ntndg @ yqaet (TORE & 


1990-2002 "3060-2003 parang ee 
- 


Ralph GApey. tl James Allon Bead 
Jonatha: N: Baskin 2201 -OR ED ieecee Daun lb), corde emu wen 
John W, Roberts iba Letivas Danie ra waar ee 
mors ONY GHD dod bos CAaCuNeDRDEY Ghd ko ul rondaanit | 
Gloria |, Takats Sohwarw Raymoud V 


Soman 6. Sader — inatisaensill 
Cnr FADIA + BID Aeomnentrnoteqyys ®Dwool8A bools "i 


soitesuba ’ . 9 he 


oment of acience: Duce he olvaberbin, changes of opeis | and © 


eieae 


Fost it Sar abee it shauhd. be addrostedl tar Sather Alay -, 

inet f mite y. aparing Sve otays ? Loge x Pat wut.) 
slilbliw simeolileD opeline? be asmeges 

Profenutorel Gab sreiats. bre ‘DERE. Td PO¢ whe Trapreyaks beh srutyrys oii auth 


Srevdent Members 


TOM - gerort no alo ieeagart 


eliowe: Blext od ty fhe }inard ¢ if Derector: - meritchousx sof 


yerabasA solnal ud 8 lo beta risteot tans sge't hatival le Abe ‘non a 


Puc + PRIN sie yea! ty tie, Ac wer 9 arborIpeS for ‘gta 

oe sth ingen sion: 12: PAA: i eh * siieais ene TAG: (A host hn ehaee 
» lwakadacergolointig bit, nokree aya OfRaat ociaulesre drag. igo Haat abig en 
Sisilm byrebiaaes od (hoy romxvyp ie lsnotyeiong bas ae 
abue-np eel Bageeri do sen oct) ni (a cabite yd Uleqranrse snob show siiseonperg iy 
hon ad ier ymebeoA od of qitemdmsem Nebaje 129) SHO & boa biews cette 


ovlato weiner 
au ie Cent “7 an) \ ay 


tris. enotiumeé Off ‘pow hails wah tink no isaruehyin Sosweds yers40q ted 5 nomen iain Ae 
) _\anor\eu.e9-aur mel www Seeger dow sonsing Feu 
poe ther rect wernants oe MAING 129 4 1992 Dornanence. of PRIS 


Ags 
woes 
é: 


Anais» 
ae 
7 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 129-130 
© Southern California Academy of Sciences, 2001 


Proceedings of Special Symposium: 


New and Rare Fish and Invertebrate Species to California during 
the 1997-1998 El Nino 
Sponsored by 
The Southern California Academy of Sciences 
May 20, 2000 


Daniel J. Pondella, II' and M. James Allen? Editors 


'Vantuna Research Group, Department of Biology, Moore Laboratory of 
Zoology, Occidental College, Los Angeles, California 90041 
?Southern California Coastal Water Research Project, 
Westminster, California 92683 


Introduction 


By some measures 1997-1998 El Nifio southern oscillation (ENSO) was the 
strongest such event of the 20 century and perhaps the strongest of all recorded 
history. For most of us, an El Nifo means increased rains in the Southern Cali- 
fornia area, due to a disruption of the normal path of the jet stream. In the study 
of marine ecology and fisheries biology, El Nifio’s have much more dire conse- 
quences. These winter storms can devastate our coastline and are accompanied 
by unusually warm and unproductive water. El Nifio’s have been cited as the 
cause of the collapse of fishery stocks as well as the demise of our world re- 
nowned kelp beds. ENSO events have increased in both frequency and magnitude 
for the past two decades, which has intensified our awareness of this global phe- 
nomenon. These changes, which we have seen in our coastal ecosystems, have 
implications of macroscale changes in oceanography extending far beyond the 
Southern California arena. As we sit on the precipice of the 21‘ century, the 
staggering ramifications of these new oceanographic conditions trigger questions 
of global climate change and we are challenged with the prospects of global 
warming. 

The Southern California Bight, as a transitional zone between the cold tem- 
perate Oregonian fauna to the north and the warm subtropical San Diegan fauna 
to the south, is a critical oceanographic realm for studying the effects of such 
oceanographic disturbances. As our climate changes, our marine fauna responds 
rapidly within this region. It has been noted that organisms distributed to the 
south have the ability to migrate or colonize more northern locales during these 
anomalously warm periods. But, what is less well known is the long-term fate of 
these organisms. When our coastal waters cool, expatriated individuals may not 
survive. On the other hand, colonization during these warming events may result 
in permanent additions to our fauna, and a shift in the marine ecology of our 
region. The strength of the 1997-1998 ENSO was mirrored by an unusually high 
occurrence of subtropical organisms along the California coast. Considering that 
range extensions during ENSO events have reported for decades, it was our opin- 


129 


130 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


ion that the whole new suite of organisms appearing during this period was of 
critical importance in aiding our understanding of the macroscale changes that 
may be occurring. 

Part of the Southern California Academy of Science’s mission is to disseminate 
information concerning scientific research in Southern California. We accomplish 
this primarily through two venues, our Annual Meeting and the Bulletin. On May 
20, 2000 during our Annual Meeting at the University of Southern California we 
held a symposium entitled “‘New and Rare Fish and Invertebrate Species to Cal- 
ifornia during the 1997-1998 El Nino.’’ We drew on all aspects of our scientific 
community to compile the most complete synopsis of the effects of this event on 
the biology of macroinvertebrates and fishes. We are pleased that the participants 
of this symposium took the time out of their hectic schedules to compose the 
following papers and we hope that the following publication will heighten our 
awareness of the changes we are observing in our environment. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 131-136 
© Southern California Academy of Sciences, 2001 


First Occurrence of Blackspot Wrasse, Decodon melasma Gomon 
1974 (Pisces: Labridae) in California 


M. James Allen! and Ami K. Groce? 


‘Southern California Coastal Water Research Project, 
Westminster, California, 92683 
2City of San Diego, Metropolitan Wastewater Department, Environmental 
Monitoring and Technical Services Division, San Diego, California 92106 


Wrasses (family Labridae) are epibenthic, demersal, and water-column fishes 
found in coastal warm-temperate and tropical waters, usually near rocky and coral 
reefs of the Atlantic, Indian, and Pacific Oceans. Although this is the second 
largest family of marine fishes (Nelson 1994), only three species have been re- 
ported from California: rock wrasse, Halichoeres semicinctus; sefiorita, Oxyjulis 
californica; and California sheephead, Semicossyphus pulcher (Hubbs et al. 1979; 
Eschmeyer et al. 1983). This paper reports the first occurrences of a fourth species 
of wrasse in California. 

Following the 1997-1998 El Nifo, three specimens of a small labrid were 
collected in the Southern California Bight (SCB) by 7.6-m wide (headrope) sem- 
iballoon otter trawls with 1.2-cm cod-end mesh. The first specimen, 51 mm stan- 
dard length (SL), was collected on 2 June 1998 off Dana Point, California (latitude 
33°27.80’ N and longitude 117°44.85’ W) at a depth of 60 m. The second spec- 
imen (also 51 mm SL) was collected on 25 June, 1998 at a depth of 60 m off 
Laguna Beach, California (latitude 33°30.07' N and longitude 117°49.40’ W),. 
These fish were collected during a cooperative trawl survey between the Ocean 
Institute (Orange County Marine Institute at that time) and the Southern California 
Coastal Water Research Project (SCCWRP). Both specimens were identified at 
that time by M. J. Allen as the blackspot wrasse, Decodon melasma Gomon 1974. 
A third specimen (57 mm SL) was collected on 26 April, 1999 off San Diego, 
California (latitude 32°37.54' N and longitude 117°19.37’' W) at a depth of 100 
m. It was captured at one of the City of San Diego, Metropolitan Wastewater 
Department, Environmental Monitoring and Technical Services’ long-term, fixed- 
location trawl monitoring stations. City of San Diego marine biologists brought 
this specimen to the attention of R. H. Rosenblatt (Scripps Institution of Ocean- 
ography; SIO), who identified it as Decodon melasma. All three specimens have 
been catalogued in the SIO Marine Vertebrates Collection: SIO 99-100 (San Di- 
ego); SIO 00-77 (Dana Point); and SIO 00-78 (Laguna Beach). 

The capture of blackspot wrasse at Laguna Beach, CA represents a range ex- 
tension of more than 1,500 km north of its northernmost record (Gomon 1974). 
The three specimens are the first records of the species outside of the Gulf of 
California north of Cabo San Lucas (latitude 22°45’ N). Based on the new spec- 
imens, the current geographic range of black spot wrasse is now from Laguna 
Beach, California and the northern Gulf of California to Peru, including Cocos 
Islands (Gomon 1974; Allen and Robertson 1994). Its range extends along the 
warm-temperate San Diego and Cortez Provinces and the tropical Mexican and 


131 


132 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 1. Location and meristic data for blackspot wrasse, Decodon melasma specimens collected 
in southern California in 1998 and 1999. 


Specimens 
Category SIO 00-77 SIO 00-78 SIO 99-100 

Collection information 

Date 2 Jun 98 25 Jun 98 26 Apr 99 

Location Dana Point, CA Laguna Beach, CA San Diego, CA 

Latitude N 33°27.80' 33°30.07' 32°37.54' 

Longitude W 117°44.85’ 117°49.40' 117°19.37' 

Depth (m) 60 60 100 
Standard Length (mm) 51 51 ae 
Meristic Counts 

Dorsal Fin Elements Oe XII, 9 XI, 10 

Anal Fin Elements Il, 10 Ill, 10 Ill, 10 

Pectoral Fin Rays 17 17 16 

Pelvic Fin Elements 5 Ls hes 

Lateral line pores 29 29 Scales missing 

Gill Rakers 5+9= 14 5+9=14 5+9=14 


Panamic Provinces of Briggs (1974). Blackspot wrasse occurs on flat sandy to 
soft bottoms, often with some rocky rubble or patch reefs at depths of 40 to 160 
m (Gomon 1974), and as such, is characteristic of the middle and outer shelf 
zones of Allen and Smith (1988). It occurs in deeper water and on a different 
habitat (soft-bottom) than the other California species, which are inner shelf (<30 
m) rocky bottom and kelp bed species (Feder et al. 1974). 

The three California specimens had similar meristics (Table 1) and color pat- 
terns. They had five dusky bars on the back (about two to three scales in width), 
extending ventrally from the dorsal fin, across the lateral line, and to the midlateral 
body, fading ventrally, with a dark spot on each side of the dorsal caudal peduncle 
(Fig. 1). The color of the body was similar to that shown in Allen and Robertson 
(1994). The body was pink, fading to white on the abdomen, on the pectoral fin 
base, and under the pelvic fins. The nape, top of head, and snout were dusky, 
with white on the head below the eye, and on the lower jaw. The head posterior 
to the eye was pink extending from there to the dorsal base of the pectoral fin. 
The upper lip was yellow posteriorly, around the anterior and ventral rim of the 


A.Wubo 


Fig. 1. Juvenile (51 mm standard length) blackspot wrasse, Decodon melasma, collected off La- 
guna Beach, California, at depth of 60 m on June 25, 1998; SIO 00-78 (drawing by Atsuhiro Kubo). 


BLACKSPOT WRASSE IN CALIFORNIA $33 


Fig. 2. Adult (140 mm standard length) blackspot wrasse, Decodon melasma (drawing by Atsuhiro 
Kubo, based on photograph in Gomon 1974). 


eye was yellow, and a yellow line extended posteroventrally from the eye onto 
the operculum. There was a yellow spot on the posterior operculum dorsal to this 
line, and the preopercular area was yellow. The spinous dorsal fin was dusky on 
the dorsal edge, with a black spot on dorsal spines 11 to 13. The anal fin was 
yellowish with a white edge, the caudal fin and pelvic fins white, and the pectoral 
fin pink. The eyes had black edges dorsally, fading to yellow, then red around 
most of the pupil. 

The blackspot wrasse has a relatively elongate compressed body (depth 20-32% 
of standard length, increasing with size) (Figs. 1 and 2) (Gomon 1974, 1995). 
Adults (not yet observed in California) have relatively blunt heads, slightly sub- 
terminal mouths (Fig. 2). The body is red dorsally and white below, with head red 
dorsally, white ventrally, and with three yellow stripes below the eye. Merisitic 
elements have the following ranges (from Gomon 1974, Watson 1996, and new 
California specimens): dorsal fin (X-XII,9—10); anal fin (III,9—10); pectoral fin (14— 
18); pelvic fins (1,5); branchiostegal rays (6); lateral line scales and pores (28-29); 
and gill rakers (S—7+9—12=14-—19). It has caniniform teeth, with two pairs at the 
anterior of each jaw enlarged (Gomon 1974, Allen and Robertson 1994). 

Characters that distinguish blackspot wrasse from other California labrids are 
the following: 1) scaly head with lower limb of preopercle scaly; 2) large scales 
(28-29 in lateral line); 3) 10—12 dorsal spines; 4) adult coloration—red with a 
black spot dorsolateral on body and yellow eye stripes; and 5) juvenile colora- 
tion—pinkish red with up to 6 dusky bars above the lateral line, yellow eye 
stripes, and a dark spot on the spinous dorsal fin (Table 2). Blackspot wrasse is 
more similar in characteristics to California sheephead than to rock wrasse or 
sefiorita. Maximum size of adult blackspot wrasse is 23 cm in length (Gomon 
1995). 

Blackspot wrasse first occurred in California during the 1997-1998 El Nino 
period, as did several other species (Lea and Rosenblatt 2000). It is likely that its 
larvae came into the Southern California Bight with the warm water mass from 
the south. It is not known if these individuals are the result of long-distance 
dispersal from a distant population (1,500 km away) or whether they dispersed 
from populations along the outer coast of Baja California, which is less well 
sampled. Many shallow-living wrasses transform at a small size (Watson 1996) 


134 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 2. A key to species and life stages of wrasses, family Labridae, of California. Based on 
information in Jordan and Evermann (1898), Miller and Lea (1972), Gomon (1974), Eschmeyer et al. 
(1983), Allen and Robertson (1994), Nelson (1994), Gomon (1995), Humann (1996), and Watson 
(1996). 


Characteristics of California Labridae: Mouth protractile; jaw teeth separate, projecting outward; dorsal 
fin with 8—14 spines and 9-13 soft rays; anal fin with 3 spines and 9-13 soft rays; caudal fin with 
7+7 principal caudal rays; pectoral rays 12—19 soft rays; pelvic fins, 1 spine and 5 soft rays; 6 
branchiostegal rays; gill rakers, 5—8 (upper limb) + 9—16 (lower limb) (note, gill raker counts for 
Semicossyphus pulcher are 6—7 + 10-11 = 17-19; R. N. Lea, Calif. Dep. Fish Game, pers. comm.); 
lateral line scales, 26 to 60; lateral line continuous. 


la. Dorsal spines 10—12; sides of head more or less scaly; pink or red coloration on body ..... z 

1b. Dorsal spines 8 to 10; head mostly naked; body color yellow to brown (sometimes 
BRCCIU) ee fas oe on STE ag eile eS tes Males a ago. mPa Ac ah be al acoom aocale 3 

2a. Scales large (28 to 29 in lateral line); lower limb of preopercle scaly; one or more dark 
blotches dorsolaterally on sides; yellow eye stripes....... blackspot wrasse, Decodon melasma 

a. Single dark spot dorsolaterally on side (Fig. 2); body depth 25-30%; color red; >13 cm 
Sat Pra a Ee oo 3 ye aby oe Sots eee Pe Ew SE a adult 

b. Five to six dark bars on back (one on dorsal caudal peduncle) (Fig. 1); body depth 
about 20—25% of standard length; color pink; <13 cm SL .................. juvenile 


2b. Scales small (about 60 in lateral line); lower limb of preopercle naked............ 
SE ee ee ere ee eae eet ee California sheephead, Semicossphus pulcher 


a. Head and tail black, midbody red, chin white; body deep, compressed; >30 cm SL .. 
RE Pet yn aT NY NRE an, > See ieat earns reenter is Pie: BOR I 2. terminal phase (male) 


b. Fins without spots; body deep, compressed, pinkish with white chin; length 15 to 30 
CMY Ee eres es SS ee Ee ies be ee ee ea ee ea aoe 2 eee initial phase (female) 


c. Single white stripe on side; black spots on anterior and posterior dorsal fin, dorsolateral 
caudal base, anal fin, and pelvic fins; body deep, reddish; <15 cm SL......... juvenile. 


3a. Posterior canines well developed on both sides; dorsal spines pungent............ 
Ee tet ee raee Wy ee nie, aN aE eer) Se Eee rock wrasse, Halichoeres semicinctus 


a. Body with black bar behind pectoral fin, back unmarked or with multiple bars; >30 cm 
IG te ge ee ON eee RE See ee a ee terminal phase (male) 


b. Black flecks generally present on body; length 12 to 30cm SL...... initial phase (female) 


c. Body with two white stripes on side of body, and two black spots on dorsal fin; body 
elongate conipressed;, yellow, orange, om stecn;,<12 cm SL. 4. Jor Pele eee juvenile 


3b. Posterior canines rudimentary; dorsal spines slender, very flexible sefiorita, Oxyjulis californica 


a. Body with broad black spot on the caudal fin at base of fin; >2.5 cm SL.......... 
ee ey pre end, a cro Se er SRO A ng Re ne juvenile and adult 
b. Body with a black spot on posterior dorsal and anal fins; length less 2.5 cm........ 


and may be planktonic as eggs and larvae for about a month. Blackspot wrasse 
(a deeper-living species) may transform at a larger size (as do many deeper living 
species of other families; Moser 1996). If so, they may spend more time in the 
plankton (perhaps to 3 mo), and travel further in the current before settling. As- 
suming current velocities of 2 to 10 cm/sec without eddies (based on extreme 
values for the California Current; Hickey 1993), eggs and larvae could travel 
about 50—250 km in one month or 150—800 km in three months in a north flowing 
current. Given that both of these distances fall short of the 1,500 km distance 
from Cabo San Lucas, it is likely that the individuals captured in June 1998 in 
California came from spawning populations off the coast of northern Baja Cali- 
fornia. However, the individual caught in January 1999 (after the El Nifio had 


BLACKSPOT WRASSE IN CALIFORNIA 135 


subsided) may have been spawned off either southern California or northern Baja 
California. The generally tropical distribution of the species and the warm-tem- 
perate or cooler environment of the outer coast of Baja California suggests that 
the species may have expanded northward along the Baja California coast during 
the ocean warming of the past two decades (Smith 1995). 

Thus it is likely that the blackspot wrasse had spawning individuals in or near 
southern California and was spawning during this period. The two fish captured 
in June 1998 (both 51 mm) were probably spawned in spring of 1998 while the 
one captured in January 1999 (57 mm) was probably spawned in fall or early 
winter of 1998. Blackspot wrasse may spawn from spring through fall as do the 
other California labrids (Watson 1996). Adults of the blackspot wrasse appear to 
be synchronous hermaphrodites in all but very large individuals (Gomon 1974). 
Individuals with two well-developed ovaries and a small testis on the left side 
occur at least to 150 mm SL; individuals with just testicular tissue occur from 
138 to 200 mm SL (Gomon 1974). 

Little is known about the ecology or behavior of this species. However, its 
general body morphology as an adult (i.e., elongate compressed, slightly inferior 
mouth, caniniform teeth) and behavior of morphologically similar labrids (Hobson 
1968) suggests that it may be a solitary species that cruises over the bottom while 
foraging on small benthic crustaceans. Blackspot wrasse is a geminate species of 
the red hogfish, Decodon puellaris, of the Atlantic, which occupies similar depths 
(6—275 m) and habitat on the Atlantic and Caribbean between South Carolina and 
northeastern Brazil, and which grows to a similar size (15 cm) (Gomon 1974; 
Robins et al. 1986). 

The common name ‘blackspot wrasse’ was suggested by its scientific name 
melasma (black spot) in reference to the black dorsolateral spot on each side of 
the body (Gomon 1974). This name has been used in Allen and Robertson (1994), 
Gomon (1995), and Escobar-Fernandez and Siri (1997). Bussing and Lopez 
(1994) used ‘blotched hogfish.’ As this species has not yet been included in the 
American Fisheries Society Checklist of Common and Scientific Names of Fishes 
of the United States and Canada (see Robins et al. 1991), we recommend the 
common name “‘blackspot wrasse’”’ as the English common name for this species. 
In Spanish, this species has been called “‘lorito marcado”’ (Bussing and Lopez 
1994) and “‘sefiorita de mancha negra’? (Gomon 1995, Escobar-Fernandez and 
Siri 1997). 


Acknowledgments 


The authors thank the crew members of the Orange County Marine Institute 
(now Ocean Institute), particularly Julie Goodson (now at Channel Islands Na- 
tional Marine Sanctuary) and Shelly Moore (Southern California Coastal Water 
Research Project) for recognizing the first two specimens as different and sub- 
mitting them for identification. We also thank the crew of the City of San Diego 
Ocean Monitoring Program (especially Steven Lagos) for recognizing the third 
specimen as different. We thank Atsuhiro Kubo for providing the drawings of the 
Laguna Beach specimen and of an adult. We also thank Phillip Hastings and H. 
J. Walker of Scripps Institution of Oceanography, University of California, San 
Diego and Richard Feeney and Jeffrey Siegel of the Natural History Museum of 
Los Angeles for collection information on blackspot wrasse. 


136 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Literature Cited 


Allen, G. R., and D. R. Robertson. 1994. Fishes of the tropical eastern Pacific. University of Hawaii 
Press; xik 332 pp. 

Allen, M. J., and G. B. Smith. 1988. Atlas and zoogeography of common fishes in the Bering Sea 
and northeastern Pacific. NOAA Tech. Rep. NMFS 66. iii + 151 pp. 

Briggs, J. C. 1974. Marine zoogeography. McGraw-Hill Book Co., 457 pp. 

Bussing, W. A., and M. I. Lopez. 1994 (1993 on back cover but printed in Feb 1994). Demersal and 
pelagic inshore fishes of the Pacific coast of lower central America. Rev. Biol. Trop., Spec. 
Publ., 164 pp. 

Eschmeyer, W. N., E. S. Herald, and H. Hammann. 1983. A field guide to Pacific Coast fishes of 
North America. Houghton Mifflin Company, xii + 336 pp. 

Escobar-Fernandez, R., and M. Siri. 1997. Nombres vernaculos y cientificos de los peces del Pacifico 
mexicano. [Vernacular and scientific names of fishes of the Mexican Pacific]. Universidad 
Aut6noma de Baja California, Sociedad Ictiol6gica Mexicana, A. C., MX, 102 pp. 

Feder, H. M., C. H. Turner, and C. Limbaugh. 1974. Observations on fishes associated with kelp beds 
in southern California. Calif. Dep. Fish Game, Fish Bull. 160. 138 pp. 

Gomon, M. E 1974. A new Eastern Pacific labrid (Pisces), Decodon melasma, a geminate species of 
the western Atlantic D. puellaris. Proc. Biol. Soc. Wash. 87(54):621—629. 

Gomon, M. EF 1995. Labridae. Pp. 1201-1225 in Guia FAO para la identificacion de especies para los 
fines de la pesca. Pacifico centro-oriental. Vol. III. Vertebrados—Parte 2. (W. Fischer, W. Schnei- 
der, C. Sommer, K. E. Carpenter, and V. H. Niem, eds.), United Nations, Food and Agriculture 
Administration, xiii + 1,813 pp. 

Hickey, B. M. 1993. Physical oceanography. Pp. 19-70 in Ecology of the Southern California Bight. 
(M. D. Dailey, D. J. Reish, and J. W. Anderson, eds.), Univ. Calif. Press, xvi + 926 pp. 
Hobson, E. S. 1968. Predator behavior of some shore fishes in the Gulf of California. U. S. Dep. 

Interior, Fish Wildl. Serv., Bur. Sport Fish. Wildl., Washington, DC. Res. Rep. 73, vi + 92 pp. 

Hubbs, C. L., W. I. Follett, and L. J. Dempster. 1979. List of fishes of California. Occas. Pap. Calif. 
Acad. Sci. 133. 51 pp. 

Humann, P. 1996. Coastal fish identification: California to Alaska. New World Publications, Inc.., 
210 pp. 

Jordan, D. S., and B. W. Evermann. 1898. The fishes of North and Middle America: a descriptive 
catalogue of the species of fish-like vertebrates found in the waters of North America, north of 
the isthmus of Panama. Part II. Bull. U. S. Natl. Mus. No. 47: 1241-2183. 

Lea, R. N., and R. H. Rosenblatt. 2000. Observations on fishes associated with the 1997-1998 El Nino 
of California. Calif. Coop. Oceanic Fish. Inves. Rep. 41: 117-129. 

Miller, D. J., and R. N. Lea. 1972 (addendum added 1976). Guide to coastal marine fishes of California. 
Calif. Dep. Fish Game, Fish Bull. 157. 249 pp. 

Moser, H. G. (ed.), The early stages of fishes in the California Current Region. Coop. Fish. Invest. 
Atlas No. 33. Allen Press Inc., Lawrence, KS. xii + 1505 pp. 

Nelson, J. S. 1994. Fishes of the world. Third edition. John Wiley & Sons, Inc., xvii + 600 pp. 

Robins, C.R., R.M. Bailey, C.E. Bond, J.R. Brooker, E.A. Lachner, R.N. Lea, and W.B. Scott. 1991. 
Common and scientific names of fishes from the United States and Canada. 5th edition. Amer- 
ican Fisheries Society Special Publications 20. 183 pp. 

Robins, C. R., G. C. Ray, J. Douglass, and R. Freund. 1986. A field guide to Atlantic Coast fishes of 
North America. Houghton Mifflin Company, xi + 354 pp. 

Smith, PE. 1995. A warm decade in the Southern California Bight. California Cooperative Oceanic 
Fisheries Investigations Reports 36: 120—126. 

Watson, W. 1996. Labridae: Wrasses. Pp. 1088-1103 in The early stages of fishes in the California 
Current Region. (H. G. Moser, ed.), Coop. Fish. Invest. Atlas No. 33. Allen Press Inc., xii + 
1505 pp. 


Accepted for publication 21 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 137-143 
© Southern California Academy of Sciences, 2001 


First Occurrence of Speckletail Flounder, Engyophrys sanctilaurentii 
Jordan & Bollman 1890 (Pisces: Bothidae), in California 


M. James Allen! and Ami K. Groce? 


‘Southern California Coastal Water Research Project, 
Westminster, California, 92683 
2City of San Diego, Metropolitan Wastewater Department, Environmental 
Monitoring and Technical Services Division, San Diego, California 92106 


Currently there are 29 species of flatfishes representing three families (Parali- 
chthyidae, Pleuronectidae, and Cynoglossidae) in California, with an additional 
species and family (Pacific lined sole, Achirus mazatlanus; family Achiridae) 
reported just below the United States-Mexico International Border (Hubbs et al. 
1979; Lea et al. 1989; Lea, in prep.). This paper reports the first occurrence of 
the 30th species of flatfish in California and the first occurrence of the family 
Bothidae in the state. Seven California species (gulf sanddab, Citharichthys fra- 
gilis; Pacific sanddab, Citharichthys sordidus; speckled sanddab, Citharichthys 
stigmaeus; longfin sanddab, Citharichthys xanthostigma; bigmouth sole, Hippog- 
lossina stomata; California halibut, Paralichthys californicus; and fantail sole, 
Xystreurys liolepis) placed in Bothidae in Robins et al. (1991) and earlier refer- 
ences have been placed in Paralichthyidae by most recent authoritative references 
(Nelson 1994, Hensley 1995b, Moser and Sumida 1996, Eschmeyer 1998). 

On August 6, 1998, an unusual flatfish, 80 mm standard length (SL), was 
collected north of La Jolla Submarine Canyon, California (latitude 32°53.32’ N 
and longitude 117°16.66’ W) at a depth of 63 m in a 7.6-m wide (headrope) 
semiballoon otter trawl with 1.2-cm cod-end mesh. It was collected during the 
Southern California Bight 1998 Regional Survey (Bight’98), a bight-wide survey 
of the mainland and island shelves of southern California coordinated by the 
Southern California Coastal Water Research Project. Scientists working for the 
City of San Diego, Metropolitan Wastewater Department, Environmental Moni- 
toring and Technical Services brought the specimen to the attention of M. J. Allen, 
who identified it as a speckletail flounder, Engyophrys sanctilaurentii Jordan & 
Bollman 1890. This specimen has been catalogued in the Scripps Institution of 
Oceanography (SIO) Marine Vertebrates Collection (SIO 00-81). 

Although the speckletail flounder occurs commonly along the southern coast 
of Mexico, Central America, and northwestern South America, it had not previ- 
ously been caught north of Sebastian Vizcaino Bay, Baja California, Mexico 
(Moser and Charter 1996). The capture of the speckletail flounder off La Jolla, 
California represents a range extension of 600 km north of its northernmost record 
(published and unpublished) and the first record of this species in California. 
Based on this specimen, the current geographic range of speckletail flounder is 
now from La Jolla, California and the northern Gulf of California (SIO 60-120: 
latitude 30°22.3’N, longitude 113°08.0’'W) to Peru (Hensley 1995a). Its range 
extends along the warm-temperate San Diego and Cortez Provinces and the trop- 
ical Mexican and Panamic Provinces of Briggs (1974). Speckletail flounder occurs 


137 


138 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


on mud, sand, gravel, or shell bottoms at depths of 10 m (LACM 32559.004) to 
232 m (Hensley 1995a), with most specimens deeper than 40 m, and is thus 
characteristic of the middle and outer shelf zones of Allen and Smith (1988). 

The specimen has the following characteristics (Fig. 1): left-eyed; small mouth 
reaching to the anterior part of the eye; teeth only on the blind side; narrow 
interorbital ridge between eyes with a small sharp spine facing posteriorly; dorsal 
fin beginning slightly on blind side of head behind posterior nostril; pectoral fins 
relatively short; pelvic fins short, asymmetrical with the left having longer base 
and on ventral midline about two rays anterior to the right fin on blind side; 
rounded caudal fin; high arch in lateral line over the pectoral fin and a short 
anterior bifurcating branch; no lateral line on the blind side. The specimen has 
the following meristic characteristics: dorsal fin rays—81; anal fin rays—67; pec- 
toral rays—11; pelvic fin rays—6; lateral line pores, eyed side—65; and lateral 
line pores, blind side—0O. Body scales ctenoid and imbricating. Gill membranes 
entirely separate. The coloration olive tan on the eyed side with dark spots on the 
body and medial fins: five along each margin of body near dorsal and anal fins; 
three along lateral line posterior to arch; six each on dorsal and anal fins; and 
posterior edge of caudal fin with four dark blotches (Fig. 1). The blind side dusky 
posteriorly and white anteriorly with five curved, dusky bands on anterior body 
and head. The anteriormost extends upward and backward from the cheek to 
dorsal margin of body, the next arches upward and backward from preopercle, 
the third arches backward from the opercle, the fourth (broken) arches upward 
and backward from the ventral body margin below the pectoral fin; and the fifth 
almost defines a circle behind the gut cavity. 

Combining this information with that in the literature (Jordan and Evermann 
1898; Norman 1934; Hensley 1995a; Moser and Charter 1996), speckletail floun- 
der has the following ranges of meristics: dorsal fin (78-89); anal fin (66—72); 
pectoral fins (10—13); pelvic fins (6); caudal fin (17 total); gill rakers (3—4 upper, 
6 lower); lateral line pores (64—68 eyed side, no lateral line on blind side); lateral 
line scales (59-68). Its maximum reported size is 200 mm total length (Hensley 
1995a). 

Speckletail flounder is the only California flatfish with the following characters 
in combination: left-eyed; small mouth (reaching anterior part of eye); jaw teeth 
only on the blind side; a narrow interorbital crest between the eye with a backward 
facing spine; dorsal and anal fins separate from caudal fin; rounded caudal fin 
with four to five dark blotches; five to six curved dusky bands on blind side of 
body; lateral line of eyed side with high arch over the pectoral fin and a short 
bifurcating branch anteriorly, and no lateral line on blind side; and asymmetrical 
pelvic fins with that of eyed side on ventral midline, having longer base, and 
beginning two rays more anteriorly than that of blind side. The curved dusky 


—= 


Fig. 1. Speckletail flounder, Engyophrys sanctilaurentii, (80 mm SL) collected near La Jolla Can- 
yon, California at a depth of 63 m on August 6, 1998 (SIO 00-81): a) Eyed side (scale patches indicate 
size of scales on body); and b) blind side (details of medial fin rays are not shown). Drawings by 
Atsuhiro Kubo. 


139 


SPECKLETAIL FLOUNDER IN CALIFORNIA 


140 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


bands on the blind side are faint or obsolete in small individuals (Jordan and 
Evermann 1898) and sometimes fade in larger individuals with preservation. 

This species was one of a number of species collected for the first time in 
California or the Southern California Bight during the 1997-1998 El Nifio (Lea 
and Rosenblatt 2000). Speckletail flounder transforms at a length of 27—37 mm, 
a size typical of flatfish species spending a longer time in the plankton and settling 
on the middle or outer shelf habitats (Richardson and Pearcy 1977; Allen 1982; 
Kramer 1991; Charter and Moser 1996; Moser and Charter 1996; Moser and 
Sumida 1996). For comparison, eggs and larvae of California halibut are in the 
plankton for about one month before settling to the bottom in shallow water at 
10 mm SL (Allen 1988). As speckletail flounder transforms at a larger size, it 
may be in the plankton for a longer period (perhaps to about three months). If 
so, the species could reach southern California from Sebastian Vizcaino Bay 
(about 600 km distance) during this period if water currents were about 7.5 cm/ 
sec, without eddies. Extreme values for the California Current range from 2 to 
10 cm/sec (Hickey 1993). Thus it is possible that speckletail flounder spawned 
near its reported northern limit could reach southern California during this period. 
It is probably more likely the specimen collected was transported north from 
spawning in unreported populations further north along the Baja California coast 
than its reported range. The generally tropical distribution of the species and the 
warm-temperate or cooler environment of the outer coast of Baja California sug- 
gests that the species may have expanded northward along the Baja California 
coast during the ocean warming of the past two decades (Smith 1995). 

Speckletail flounder larvae can be taken year-round (Moser and Charter 1996). 
The age of the specimen collected is not known. If the 80 mm SL specimen 
collected in southern California represents young of the year, it may have been 
spawned in fall of 1998, settling in southern California between fall and early 
spring during the middle of the El Nino. If it is older, then its occurrence in 
southern California cannot be attributed to the 1997-1998 El Nifo. 

Little is known about the ecology or behavior of this species. However, the 
general body morphology as an adult (i.e., small mouth with teeth only on blind 
side, sharp ridge between the eyes) is quite similar to that of pleuronectid flatfishes 
of the genus Pleuronichthys, (Allen 1982). Given its depth range, this species 
may be an ecological counterpart of the hornyhead turbot, Pleuronichthys verti- 
calis, which occurs off California and the outer coast of Baja California and of 
the ocellated turbot, Pleuronichthys ocellatus, which occurs in the northern Gulf 
of California (Fitch 1963, Allen 1982). At least among southern California flat- 
fishes, the absence of teeth on the eyed-side of the jaws is characteristic of flat- 
fishes that extract polychaetes from tubes and clip off clam siphons (Allen 1982). 
Other species of small-mouthed flatfishes with jaw teeth only on blind side ap- 
parently do not occur along the coast of Mexico south of Baja California nor off 
Central America (Norman 1934; Hensley 1995a,b; Sommer 1995). There are, 
however, several species of paralichthyids which have reduced tooth development 
on jaws on the eyed side (Norman 1934; Hensley 1995b), a morphology that is 
somewhat less appropriate for this type of foraging behavior (Allen 1982). 

There are a number of nomenclatural problems associated with the names (both 
scientific and common) of this species. The genus and species was first described 
by Jordan and Bollman (1890). The date of 1889 originally given for this citation 


SPECKLETAIL FLOUNDER IN CALIFORNIA 141 


(Jordan and Evermann 1898) is incorrect as the signature date of this document 
was February 5, 1890 (Hays 1952). The original species name was sancti-lau- 
rentii, named for Saint Lawrence, and referring to the gridiron-like markings on 
the blind side. Since that time, the name has been variously given in the literature 
as sancti-laurentii (Jordan and Bollman 1890; Jordan and Evermann 1898; Nor- 
man 1934), sanctilaurentii (Bussing and Lopez 1994; Eschmeyer 1998), or sanc- 
tilaurentia (Hensley 1995a; Moser and Charter 1996; Escobar-Fernandez and Siri 
1997). The International Code of Zoological Nomenclature (ICZN 1999) indicates 
that hyphens should be removed from compound species-group names originally 
published with a hyphen (unless the first element is a Latin letter) and both words 
should be united. Thus the hyphenated version is not appropriate. Regarding the 
correct ending, ‘ii’ is used if the name refers to a male person and ‘ia’ if it refers 
to a quality, state of being, or disease (Jaeger 1966). The species was named after 
Saint Lawrence, a 3rd century AD deacon of the early Catholic church who was 
tortured to death by a Roman prefect on a hot grill, which branded him with 
gridiron marks (Kirsch 1910). Thus, ‘ia’ would refer to the condition of having 
the gridiron marks similar to those of Saint Lawrence whereas ‘ii’ would refer to 
Saint Lawrence, the person who had the gridiron marks. Although Jordan and 
Bollman (1890) refer to the gridiron pattern on the fish for justifying the name, 
the name they gave was of the person rather than the Latinized version of the 
grid-iron condition. Hence, it appears appropriate to maintain the original ending 
of the name, with the correct species name (without a hyphen) for this species 
being sanctilaurentii. 

Published English common names for this species include ‘speckletail flounder’ 
(Bussing and Lopez 1994); “speckled-tail flounder’ (Hensley 1995a), and “speck- 
ledtail flounder’ (Escobar-Martinez and Siri 1997). The American Fisheries So- 
ciety Committee on Names of Fishes (Robins et al. 1991) recommends that com- 
mon names be simple and with no hyphens, unless it is necessary to avoid mis- 
understanding. Although there is precedent for combining plural modifiers with 
nouns to form compound modifying words (e.g., ‘spottedtail goosefish’, ‘spotted- 
fin tonguefish’, and ‘stripedfin ronquil’) in Robins et al. (1991), there is no pre- 
cedent for ‘speckledtail.” ‘Speckle’ when combined with a noun is always treated 
as singular (e.g., ‘specklefin midshipman’, ‘specklemouth eelpout’), presumably 
due to the generally plural nature of ‘speckle.’ Thus we recommend ‘speckletail 
flounder’ as the common name for this species. 


Acknowledgments 


The authors thank Steven Lagos of the City of San Diego Ocean Monitoring 
Program for retaining the specimen for further identification. We thank Atsuhiro 
Kubo for providing drawings of the La Jolla specimen. We also thank Phillip 
Hastings and H. J. Walker of Scripps Institution of Oceanography, University of 
California, San Diego and Richard Feeney and Jeffrey Siegel of the Natural His- 
tory Museum of Los Angeles for collection information on speckletail flounder. 


Literature Cited 


Allen, L. G. 1988. Recruitment, distribution, and feeding habits of young-of-the-year California halibut 
(Paralichthys californicus) in the vicinity of Alamitos Bay-Long Beach Harbor, California, 
1983-1985. Bull. So. Calif. Acad. Sci. 87(1):19-—30. 


142 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Allen, M. J. 1982. Functional structure of soft-bottom fish communities of the southern California 
shelf. Ph.D. dissertation. University of California, San Diego, xxvi + 577 pp. 

Allen, M. J., and G. B. Smith. 1988. Atlas and zoogeography of common fishes in the Bering Sea 
and northeastern Pacific. NOAA Tech. Rep. NMFS 66. 151 pp. 

Briggs, J. C. 1974. Marine zoogeography. McGraw-Hill Book Co., 457 pp. 

Bussing, W. A., and M. I. Lopez. 1994 (1993 on back cover but printed in Feb 1994). Demersal and 
pelagic inshore fishes of the Pacific coast of lower central America. Rev. Biol. Trop., Spec. 
Publ., 164 pp. 

Charter, S. R., and H. G. Moser. 1996. Pleuronectidae: righteye flounders. Pp. 1369-1403 in The early 
stages of fishes in the California Current Region. (H. G. Moser, ed.), Coop. Fish. Invest. Atlas 
No. 33. Allen Press Inc., xii + 1505 pp. 

Eschmeyer, W. N. (ed.) 1998. Catalog of fishes. Calif. Acad. Sci, San Francisco, CA. 2905 pp. 

Escobar-Fernandez, R., and M. Siri. 1997. Nombres vernaculos y cientificos de los peces del Pacifico 
mexicano. [Vernacular and scientific names of fishes of the Mexican Pacific]. Universidad 
Autonoma de Baja California, Sociedad Ictiol6gica Mexicana, A. C., MX. 102 pp. 

Fitch, J. E. 1963. A review of the genus Pleuronichthys. Los Angeles County Museum, Los Angeles, 
California. Contrib. in Sci. 76. 33 pp. 

Hays, A. N. 1952. David Starr Jordan: a bibliography of his writings, 1871-1931. Stanford Univ. 
Press, Stanford, CA. 195 pp. 

Hensley, D. A. 1995a. Bothidae. Pp. 931—936 in Guia FAO para la identificacion de especies para los 
fines de la pesca. Pacifico centro-oriental. Vol. II. Vertebrados—Parte 1, (W. Fischer, W. Schnei- 
der, C. Sommer, K. E. Carpenter, and V. H. Niem, eds.), United Nations, Food and Agriculture 
Administration, xiii + 1,813. 

Hensley, D. A. 1995b. Paralichthyidae. Pp. 1349-1380 in Guia FAO para la identificacion de especies 
para los fines de la pesca. Pacifico centro-oriental. Vol. III. Vertebrados—Parte 2, (W. Fischer, 
W. Schneider, C. Sommer, K. E. Carpenter, and V. H. Niem, eds.), United Nations, Food and 
Agriculture Administration, xiii + 1,813. 

Hickey, B. M. 1993. Physical oceanography. Pp. 19—70 in Ecology of the Southern California Bight. 
(M. D. Dailey, D. J. Reish, and J. W. Anderson, eds.), Univ. Calif. Press, xvi + 926 pp. 
Hubbs, C. L., W. I. Follett, and L. J. Dempster. 1979. List of fishes of California. Occas. Pap. Calif. 

Acad. Sci. 133. 51 pp. 

ICZN (International Commission on Zoological Nomenclature). 1999. International code of zoological 
nomenclature. Fourth edition. International Trust for Zoological Nomenclature, xxix + 306 pp. 

Jaeger, E. C. 1966. A source-book of biological names and terms. Third edition. Charles C. Thomas, 
Publisher, xxxv + 323 pp. 

Jordan, D. S., and C. H. Bollman. 1890. Descriptions of new species of fishes collected at the Gala- 
pagos Islands and along the coast of the United States of Colombia, 1887—88. Proc. U. S. Natl. 
Mus. 12(770):149-183. 

Jordan, D. S., and B. W. Evermann. 1898. The fishes of North and Middle America: a descriptive 
catalogue of the species of fish-like vertebrates found in the waters of North America north of 
the Isthmus of Panama. Part III. Bull. U. S. Natl. Mus. No. 47:2183-—3136. 

Kirsch, J. P. 1910. St. Lawrence. In The Catholic Encyclopedia, Vol. IX. Robert Appleton Company. 

Kramer, S. H. 1991. Growth, mortality, and movements of juvenile California halibut Paralichthys 
californicus in shallow coastal and bay habitats of San Diego, California. Fish. Bull. (U.S.) 89: 
195-207. 

Lea, R. N., K. A. Karpov, and L. E Quirillo. 1989. Record of the roughscale sole, Clidoderma 
asperrimum, from northern California, with a note on the Pacific lined sole, Achirus mazatlanus. 
Calif. Fish Game 75(4):239-241. 

Lea, R. N., and R. H. Rosenblatt. 2000. Observations on fishes associated with the 1997-1998 El 
Nifio of California. Calif. Coop. Oceanic Fish. Inves. Rep. 41: 117-129. 

Moser, H. G., and S. R. Charter. 1996. Bothidae: Lefteye flounders. Pp. 1357—1367 in The early stages 
of fishes in the California Current Region. (H. G. Moser, ed.), Coop. Fish. Invest. Atlas No. 
33. Allen Press Inc., xii + 1505 pp. 

Moser, H. G., and S. R. Sumida. 1996. Paralichthyidae: Lefteye flounders and sanddabs. Pp. 1325— 
1355 in The early stages of fishes in the California Current Region. (H. G. Moser, ed.), Coop. 
Fish. Invest. Atlas No. 33. Allen Press Inc., xii + 1505 pp. 

Nelson, J. S. 1994. Fishes of the world. Third edition. John Wiley & Sons, Inc., xvii + 600 pp. 


SPECKLETAIL FLOUNDER IN CALIFORNIA 143 


Norman, J. R. 1934. A systematic monograph of the flatfishes (Heterostomata), Vol. I. Psettodidae, 
Bothidae, Pleuronectidae. Brit. Museum (Natural History), 459 pp. 

Richardson, S. L., and W. G. Pearcy. 1977. Coastal and oceanic fish larvae in an area of upwelling 
off Yaquina Bay, Oregon. Fishery Bull. (U.S.) 75:125-145. 

Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea, and W. B. Scott. 
1991. Common and scientific names of fishes from the United States and Canada. Sth edition. 
American Fisheries Society Spec. Publ. 20. 183 pp. 

Smith, P. E. 1995. A warm decade in the Southern California Bight. California Cooperative Oceanic 
Fisheries Investigations Reports 36:120-—126. 

Sommer, C. 1995. Pleuronectidae. Pp. 1381—1385 in Guia FAO para la identificacion de especies para 
los fines de la pesca. Pacifico centro-oriental. Vol. III. Vertebrados — Parte 2, (W. Fischer, W. 
Schneider, C. Sommer, K. E. Carpenter, and V. H. Niem, eds.), United Nations, Food and 
Agriculture Administration, xiii + 1,813. 


Accepted for publication 21 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 144-148 
© Southern California Academy of Sciences, 2001 


First record of the sabertooth blenny, Plagiotremus azaleus, in 
California with notes on its distribution along the Pacific coast of 
Baja California 


Daniel J. Pondella, I! and Matthew T. Craig 


Vantuna Research Group, Department of Biology, 
Occidental College Los Angeles, California 90041 


On 8 January 1998, while performing monthly ichthyological transects in King 
Harbor, Redondo Beach, California (latitude 33°50.5’ N, Longitude 118°24.0’ W), 
the senior author observed two individual sabertooth blennies, Plagiotremus aza- 
leus, along the inside of the outer breakwater and along the Portofino reef at a 
depth of 1.5 m (Pondella and Stephens 1994). The water temperatures were 19.8° 
and 18.8° C, respectively. Since the initial sighting, sabertooth blennies were not 
observed again for another eight months in spite of continual monitoring. After 
17 August 1998 they were observed while performing routine transects until 3 
February 1999 along the Portofino reef in variable numbers ranging from one to 
six (Table 1). These fishes were observed in a temperature range from 13° to 24.5° 
C (Table 1). On 18 August 1998, we observed three sabertooth blennies along 
the Portofino reef and one was captured using a hand net and deposited at the 
Scripps Institute of Oceanography fish collection (SIO98-263) (Fig. 1). The spec- 
imen measured 59.8 mm SL and 68.3 mm TL (Table 2). 

The previously reported range of the sabertooth blenny was the lower Gulf of 
California to Peru and did not include the Pacific coast of Baja California (Thom- 
son, et al. 1979; Allen and Robertson 1994; Grove and Lavenberg 1997). The 
occurrence of the sabertooth blenny in Santa Monica Bay, represents a substantial 
range extension of approximately 1450 km. It is not, however, the only siting of 
this blenny outside of its historic range. It was also reported in a serpulid tube at 
the center island of Islas Benitos, Baja California, Sur on 5 August 1998 (R. N. 
Lea pers. comm.). On 4 November 1998 while diving on a cooperative (between 
CICESE, University of Baja California and University of California, Santa Bar- 
bara) research trip, Jennifer Casselle observed and subsequently captured a sa- 
bertooth blenny at Chester Rock, Punta Eugenia, Baja California, Sur, (Latitude: 
27° 52.19” N, Longitude: 115° 2.72” W). On the same expedition another was 
observed at Point Augustine, Cedros Island (latitude 28° 4.46” N, longitude 115° 
20.50 W) (D. Schroeder pers. comm.). The specimen at Punta Eugenia measured 
59.3 mm SL and 70.6 mm TL (SIOO0-4) (Table 2). All characters, counts and 
measures for these two fishes are consistent with those values reported for the 
sabertooth blenny, considering that this is the only eastern Pacific representative 
of this group (Smith-Vaniz 1976), identification was straightforward. 

The sabertooth blennies of the tribe Nemophini (Perciformes: Blenniidae) rep- 
resent the most specialized group of the combtooth blennies. The tribe is an 
intriguing group of marine reef fishes found almost exclusively at tropical and 
subtropical latitudes to a depth of 25 m. Unlike most blenniids, the sabertooth 
blennies devote much time to hovering above the substrate or actively swimming 


144 


SABERTOOTH BLENNY IN CALIFORNIA 


145 


Table 1. Characters, counts and measurements for two specimens of sabertooth blenny, Plagiotre- 
mus azaleus, from southern and Baja California. Lengths are given in millimeters. 


Characters, counts and measurements SIO98-263 SIOO0-4 
Dorsal Fin VHT, 32 VIII, 33 
Anal fin i. 27 TE. 26 
Pectoral fin 1s 12 
Procurrent caudal fin rays 6-8 + 6-8 5-6 + 5-7 
Pelvic fins present present 
Incisors on upper jaw 30 52 
Incisors on lower jaw 54 55 
Incisor ratio 1.8 1.7 
Shape of dentary incisors blunt blunt 
Shape of snout conical conical 
Snout pigmentation uniform uniform 
Interorbital pores 2 2 
Supraorbital pores 2 2 
Mandibular pores 2 2 

Bony spur on innermost anal fin rays absent absent 
Length of outer lobes of caudal fin elongate elongate 
Dorsal fin stripe present present 
Standard length 59.8 60.6 
Total length 68.3 71.6 
Preanal length 25.0 aaa 
Caudal fin length IA 1s3 


in the water column, they have a well-developed swim bladder, which aids in 
their semipelagic behavior (Smith-Vaniz 1976). Uncommonly large dentary ca- 
nines used primarily in defense and intraspecific competition characterize Plagi- 
otremus, one of five Nemophini genera. These thin and wedge shaped canines are 
capable of some movement and are apomorphic along with the lack of both 
premaxillary canine teeth and a lateral line. With the exception of a single eastern 
Pacific species, the sabertooth blenny, the tribe is restricted to the Indo-Pacific 
region. 

Originally placed in the genus Runula by Jordan and Bollman (1889), the 


Table 2. Date, number of individuals, temperature, and location of observation for the sabertooth 
blenny, Plagiotremus azaleus, outside of the Gulf of California. OB = outer breakwater, PR = Por- 
tofino reefs in King Harbor, Redondo Beach, CA, as described by Pondella and Stephens (1994). 


Date No. individuals Location Temperature (°C) 
January 8, 1998 Vs (1) OB, (1) PR 19.8, 18.8 
August 5, 1998 1 Islas Benitos, Baja Cal. 20.9 
August 17, 1998 2 PR 24.5 
October 29, 1998 ) PR 16.8 
November 4, 1998 3 Punta Eugenia, Baja Cal. 20.0 
November, 1998 1 Cedros Island, Baja Cal. 19.0 
November 19, 1998 3 PR 1622 
December 15, 1998 3 PR 13:8 
January 7, 1999 6 PR 14.0 
February 3, 1999 3 PR 13.0 


146 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


~ me 006.666 “es "3 Ae, ? 


~~, 
eeematmnmeinnah tir Fos ret Fe ggg Pe Ae A GA Pe NOE at gh OE 


Fig. 1. Left lateral view of the sabertooth blenny, Plagiotremus azaleus, (59.8 mm SL, SIO98- 
263) captured in King Harbor, Redondo Beach, California on 18 August 1998. Photograph by Daniel 
J. Pondella, II. 


holotype (USNM 44299) was collected at Indefatigable Island, Galapagos. Much 
confusion has been noted in the nomenclature of this species, primarily due to 
the conspicuous color phase shift from a banded juvenile phase to a striped adult 
phase. Runula azaleus was placed in Plagiotremus by Smith-Vaniz (1976) based 
upon a single apomorphic character described as “‘snout of adults fleshy, conical.” 
Smith-Vaniz (1976) included a key to the genera and species of Nemophini and 
he did recognize Runula as a subgenus of Plagiotremus as five of the 11 species 
of Plagiotremus, including the sabertooth blenny, share the derived snout shape 
described above. 

SCUBA divers can easily identify the sabertooth blenny and it is especially 
striking within the temperate reef community. Distinguished by its elongate body, 
cone-shaped snout, and bright yellow and blue stripes, the sabertooth blenny is 
easily differentiated from other members of eastern Pacific reef fish communities 
with the exception of the initial phase of the Cortez rainbow wrasse, Thallasoma 
lucasanum (Perciformes: Labridae). The sabertooth blenny only superficially re- 
sembles the Cortez rainbow wrasse, but differs in lacking the characteristic red 
underside of the wrasse, being clearly less deep bodied, and having an inferior 
mouth (rather than terminal). 

While sabertooth blennies are known to aggregate with adult Cortez rainbow 
wrasses, they are not an aggressive mimic of the parasite-cleaning behavior of 
the juveniles (Hobson 1969). The three types of classical mimicry (Batesian, 
Miillerian and aggressive), may be found in Plagiotremus as well as in the allied 
blenniid genera Aspidontus, Ecsenius, and Petroscirtes. The classical example of 
aggressive mimicry comes from Aspidontus taeniatus, which has both juvenile 
and adult color phases similar to the labrid Labroides dimidiatus that establishes 
parasite cleaning stations for larger fishes. This allows A. taeniatus protection so 
it can approach larger fishes and bite the fins (Randall and Randall 1960). Pla- 
giotremus rhynorhynchos also aggressively mimics this symbiotic cleaner wrasse 
and will ambush larger fishes on its own biting off pieces of fins, scales and 
mucous while they are feeding (Randall et al. 1996). This aggressive behavior is 
what has been observed for P. azaleus which is known to strike larger fishes from 
below and behind removing dermal material from the startled animal (Hobson 
1969). Batesian mimicry may be due to a noxious taste, which has partially been 
demonstrated for P. townsendi, making them unpalatable to predators (Springer 
and Smith-Vaniz 1972). There is strong resemblance between the P. laudandus 
species group and the sympatric species of Meiacanthus, the fangblennies, and 
this may be an example of Miillerian mimicry (Smith-Vaniz 1976). Thus, this 


SABERTOOTH BLENNY IN CALIFORNIA 147 


genus is of considerable intrigue in the study of the behavioral evolution of mim- 
icry. 

These fishes are diurnal reef species, which shelter within burrows of worm or 
mollusk tubes on the reef (Hobson 1965). The individuals captured and observed 
at all locations were adults, as the maximum reported length is 102 mm TL 
(Hobson 1969; Thomson et al. 1979). Similar to most blennies, the sabertooth 
blenny is oviparous and deposits its eggs in a parental guarded nest followed by 
a pelagic larval stage (Watson 1996). There is limited larval data available from 
the CalCOFI ichthyoplankton surveys, which describe sabertooth blenny larvae 
only from the Gulf of California and to the south (Watson 1996; H. Geoffrey 
Moser, pers. comm.). The larvae do have similar preflexion (2.1—5.6 mm), post- 
flexion (7.2—13.6 mm) and juvenile (26.8—33.0 mm) lengths with respect to the 
other California blennies and may have a fairly extended larval period. For the 
southern California blennies the larval period for the mussel blenny, Hypsoblen- 
nius jenkinsi, was 34—56 days (mean = 44) and 46—79 days (mean = 66) for the 
rockpool blenny, H. gilberti (Stephens et al. 1970; Ninos 1984). The mussel blen- 
ny matures in the laboratory in 141 days after hatching (Stevens and Moser 1982). 
Considering the life history characters of this and confamilial species (an extended 
larval period, small size, habitat specificity and early maturity), the northern 
movement of this species was undoubtedly facilitated by larval drift during the 
very large 1997—98 El Nino Southern Oscillation event (Chavez et al. 1999). The 
observance of these fishes over such a wide geographic area and relatively long 
temporal period suggests that their presence in the warm temperate fauna of the 
San Diegan Province is not anomalous. However the continued success of the 
sabertooth blenny in Southern California is unknown. 


Acknowledgements 


The following research would not have been possible without the assistance of 
the following persons: John S. Stephens, Jr. of the Vantuna Research Group; 
Robert N. Lea of the Department of Fish and Game; Donna Schroeder, Jennifer 
Casselle and Milton Love of the Marine Science Institute, University of Califor- 
nia, Santa Barbara; Jorge A. Rosales Casian and Oscar Sosa Nishizaki of CICESE; 
H. Geoffrey Moser of the National Marine Fisheries Service; the support of 
Wayne Ishimoto and Chevron Products Company; and the curatorial assistance 
of Richard H. Rosenblatt, H. J. Walker, and Cindy Klepadlo at the Scripps Institute 
of Oceanography. 


Literature Cited 


Allen, G. R. and D. R. Robertson. 1994. Fishes of the tropical eastern Pacific. University of Hawaii 
Press, Honolulu. xix + 332 p. 

Chavez, E P, P. G. Strutton, G. E. Friederich, R. A. Feely, G. C. Feldman, D. G. Foley, and M. J. 
McPhaden. 1999. Biological and chemical response of the equatiorial Pacific ocean to the 1997— 
98 El Nifio. Science. 286:2126—2131. 

Grove, J. S. and R. J. Lavenberg. 1997. The fishes of the Galapagos Islands. Stanford University 
Press, Stanford, California. xliv + 863 p. 

Hobson, E. S. 1965. Diurnal-nocturnal activity of some inshore fishes in the Gulf of California. Copeia 
1965(3):291-—302. 

. 1969. Possible advantages to the blenny Runula azalea aggregating with the wrasse Thalas- 

soma lucasanum in the tropical eastern Pacific. Copeia 1969(1):191-—93. 


148 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Jordan, D. S. and C. H. Bollman. 1890. Scientific results of explorations by the U. S. Fish Commission 
steamer Albatross. No. IV. Descriptions of new species of fishes collected at the Galapagos 
Islands and along the coast of the United States of Colombia, 1887-88. Proc. U. S. Natl. Mus. 
12(770):149-83. 

Ninos, M. 1984. Setthement and metamorphosis in Hypsoblennius (Pisces, Blenniidae). Ph.D. disser- 
tation, University of Southern California, Los Angeles, 181 p. 

Pondella, D. J., II, and J. S. Stephens, Jr. 1994. Factors affecting the abundance of juvenile fish species 
on a temperate artificial reef. Bull. Mar. Sci. 55(2—3):1216—1223. 

Randall, J. E., G. R. Allen, and R. C. Steene. 1996. Fishes of the Great Barrier Reef and Coral Sea. 
University of Hawaii Press, Honolulu, HI. xx + 557 p. 

Randall, J. D. and H. A. Randall. 1960. Examples of mimicry and protective resemblance in tropical 
marine fishes. Bull. Mar. Sci. Gulf and Carib. 10(4):444—480. 

Smith-Vaniz, W. E 1976. The saber-toothed blennies, tribe Nemophini (Pisces: Blenniidae). Acad. Nat. 
Sci. Phila. Monog. 19. 196 p. 

Springer, V. G. and W. E Smith-Vaniz. 1972. Mimetic relationships involving fishes of the family 
Blenniidae. Smithsonian Contributions to Zoology 112. 36 p., 4 figs., 7 pls. 

Stephens, Jr, J. S., R. K. Johnson, G. S. Key, and J. E. McCosker. 1970. The comparative ecology 
of three sympatric species of California blennies of the genus Hypsoblennius Gill (Teleostomi, 
Blenniidae). Ecological Monographs 40(2):213-—233. 

Stevens, E. G. and H. G. Moser. 1982. Observations on the early life history of the mussel blenny, 
Hypsoblennius jenkensi, and the bay blenny, Hypsoblennius gentilis, from specimens reared in 
the laboratory. Calif. Coop. Ocean. Fish. Inv. Rep. 23:269-—275. 

Thomson, D. A., L. T. Findley, and A. N. Kerstitch. 1979. Reef fishes of the Sea of Cortez. John 
Wiley and Sons, New York, New York. xvii + 302 p. + 32 pls. 

Watson, W. 1996. Blenniidae: combtooth blennies. Pp. 1182-1199 in H. Geoffrey Moser ed., The 
Early Stages of Fishes in the California Current Region. California Cooperative Oceanic Fish- 
eries Investigations Atlas No. 33., Allen Press, Inc., Lawrence, Kansas. xii + 1505 p. 


Accepted for publication 19 June 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 149-152 
© Southern California Academy of Sciences, 2001 


Addition of Blacklip Dragonet, Synchiropus atrilabiatus 
(Garman, 1899) (Pisces: Callionymidae) to the 
California Ichthyofauna 


Ami K. Groce,! Richard H. Rosenblatt, and M. James Allen? 


‘City of San Diego, Metropolitan Wastewater Department, Environmental 
Monitoring and Technical Services Division, San Diego, California 92106 
*Scripps Institution of Oceanography, University of California, San Diego, 
La Jolla, California, 92093-0208 
3Southern California Coastal Water Research Project, 
Westminster, California, 92683 


Dragonets (family Callionymidae) are small, often colorful, benthic fishes 
found in coastal tropical waters of the Atlantic, Indian, and Pacific Oceans, but 
primarily in the Indo-West Pacific (Nelson 1994). The systematics of this family 
are not well known, with numbers of taxa ranging from 8 genera and 40 species 
to 19 genera and 139 species (Grove and Lavenberg 1997). The only dragonet 
known from the Eastern Pacific is Synchiropus atrilabiatus (Garman 1899), which 
is found primarily off Mexico and Central America (Grove and Lavenberg 1997). 

Following the 1997—1998 El Nifio, two specimens of the blacklip dragonet were 
collected in the Southern California Bight (SCB) by semiballoon (7.6-m wide 
headrope) otter trawls with 1.2-cm cod-end mesh. The first specimen (56 mm SL) 
was collected on 23 July 1998 off Santa Catalina Island (latitude 33°17.68'N, 
longitude 118°17.00'W) at a depth of 97 m, during the Southern California Bight 
1998 Regional Survey (Bight’98), a bight-wide survey of the mainland and island 
shelves of southern California. The second specimen (90 mm SL) was collected 
on January 19, 1999 off Point Loma, California (latitude 32°37.54'N, longitude 
117°19.37'W) at a depth of 100 m. It was captured at one of the City of San 
Diego, Metropolitan Wastewater Department, Environmental Monitoring and 
Technical Services’ long-term, fixed-location trawl monitoring stations, which has 
been sampled quarterly since July 1991. City of San Diego marine biologists 
brought this specimen to the attention of the second author (RHR), who identified 
it as Synchiropus atrilabiatus. This was the first specimen identified from Cali- 
fornia waters although it was the second specimen collected. The third author 
(MJA) identified the first-caught specimen later when voucher specimens collected 
during the Bight’98 survey were sent to SCCWRP for taxonomic confirmation. 
Both specimens had similar meristics (Table 1) and have been catalogued in the 
SIO Marine Vertebrates Collection: SIO 99-1 (Point Loma) and SIO 00-79 (Santa 
Catalina Island). 

The previous published geographic range of this species was from Bahia Mag- 
dalena, Baja California Sur, Mexico and the Gulf of California to Talara, Peru, 
including Gorda Banks (off Cabo San Lucas, Baja California Sur, Mexico), Cocos 
Island, and the Galapagos Islands (Fricke 1981; Cruz-Aguero et al. 1994). The 
capture of Synchiropus atrilabiatus at Santa Catalina Island represents a range 
extension of 1,250 km north of its northernmost published record at Bahia Mag- 


149 


150 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 1. Location and meristic data for Synchiropus atrilabiatus specimens collected in southern 
California in 1998 and 1999. 


Specimens 
Category SIO 00-79 SIO 99-1 

Collection Information 

Date 23 July 98 19 January 99 

Location Santa Catalina Island, CA off Point Loma, CA 

Latitude, Longitude 33°17.68' N, 118°17.00’ W 32°37.54' N, 117°19.37' W 

Depth (m) 97 100 

Standard Length (mm) 56 90 
Merisitic Counts 

Dorsal Fin Elements IV, 9 IV, 9 

Anal Fin Rays 8 8 

Pectoral Fin Rays 20 22 

Pelvic Fin Elements yd | Hie 

Principal Caudal Fin Rays 10 10 


dalena, Mexico (latitude 24°35.0’N) (Cruz-Aguero et al. 1994; Love et al. 1996!) 
and about 650 km from its previous northernmost unpublished occurrence (i.e., 
Bahia Playa Maria, Baja California, Mex.; latitude 28°52.0'’N, longitude 
114°30.0’W; 1 September 1952; SIO 52-60). 

Synchiropus atrilabiatus occurs on soft bottoms on the mainland and island 
shelf. Benthic individuals range in depth from 12 to 150 m in sand and mud 
habitats, and to a lesser degree in coral rubble (Grove and Lavenberg 1997). 
Maximum known size of adults is 121 mm (SIO 84-80). This species is oviparous 
with planktonic eggs and larvae (Watson 1996). Larvae are taken throughout the 
year, with young larvae collected primarily during summer (Watson 1996). Al- 
though the species transforms from larva to juvenile at 8.3—12.5 mm (Watson 
1996), pelagic juveniles up to 39 mm SL have been taken in midwater (SIO 72- 
342), and both larvae and pelagic juveniles have been taken near the surface 
offshore to 300 km over water depths of 4,000 m or more (Grove and Lavenberg 
1997). 

Synchiropus atrilabiatus has a cottiform body with a small mouth (Figure 1) 
and superficially resembles a sculpin (family Cottidae). It differs from all sculpins 
in having the gill opening reduced to a pore on the dorsal surface behind the head 
(Figure 1); sculpins have relatively large lateral gill openings. It is scaleless with 
a pointed snout and highly protrusible upper jaws. Characteristics of S. atrilabia- 
tus that distinguish it from other callionymids include numerous small dark 
blotches on body, a dorsal fin with dark oval blotches between the third and forth 
spines, black coloration on the lower half of the anal fin, and a black margin on 
the upper jaw (Fricke 1981). Fin element ranges are the following: dorsal fin 
(IV,8—9), anal fin (7—8), pectoral fins (18-23), pelvic fins (1,5), principal caudal 
rays (5+5), and procurrent caudal rays (2—3 upper, 2 lower). There are 6 bran- 
chiostegal rays. 


' Love, M. S., L. Thorsteinson, C. W. Mecklenburg, and T. A. Mecklenburg. 1996. A checklist of 
marine and estuarine fishes of the North East Pacific, from Alaska to Baja California. National Bio- 
logical Service. Located at website http://id-www.ucsd.edu/ lovelab/home.html 


BLACKLIP DRAGONET IN CALIFORNIA Lt 


Fig. laandb. Blacklip dragonet (Synchiropus atrilabiatus). Top (a) and side view (b) of specimen 
from Santa Catalina Island, 56 mm SL; SIO 00-79 (drawing by Atsuhiro Kubo). Arrows indicate 
diagnostic gill pore on dorsal surface behind the head. 


The appearance of Synchiropus atrilabiatus in the waters of the Southern Cal- 
ifornia Bight at the time of collection may be related to the physical oceanographic 
conditions associated with the 1997-1998 El Nino. This was just one of many 
tropical species collected for the first time in California after the warm water 
intrusion that was first detected in Southern California during July and August 
1997 (Lea and Rosenblatt 2000). These fishes may have come into the area as 
larvae or juveniles with the warm water mass that moved up from the south. 
While no ages were determined for the two specimens discussed here, they were 
collected at relatively small sizes (56 mm in July 1998 and 90 mm in January 
1999) compared to the maximum size of the largest known S. atrilabiatus (121 
mm; SIO), as well as the maximum family size (25 to 30 cm; Bussing and Lopez 
1994; Grove and Lavenberg 1997). If juveniles are pelagic to about 39 mm (as 
indicated by SIO collection data), the first specimen may have settled to the 
bottom in spring of 1998. The second specimen may have settled at this time also 
and grown to its length at capture in nearly a year’s time; however, the growth 
rate of this species is not known. 

The common name ‘blacklip dragonet’ was suggested by the second author 
(RHR) in reference to its black upper lip and its scientific name atrilabiatus (black 
lip). Other English common names for this species include ‘sleepy dragonet’ 
(Bussing and Lopez 1994) and ‘antler dragonet’ (Grove and Lavenberg 1997); in 
Spanish, it is known as ‘gobio vistoso’ (Bussing and Lopez 1994) and ‘dragonito 
de asta’ (Grove and Lavenberg 1997). We recommend ‘blacklip dragonet’ as an 
English common name for this species as this name has more diagnostic value 
than the other common names. 


LS2 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Acknowledgments 


The authors thank Dr. Michael Franklin (Southern California Marine Institute) 
and Steven Lagos and Eric Nestler (both of the City of San Diego, Metropolitan 
Wastewater Department, Ocean Monitoring Program) for recognizing the first and 
second specimens, respectively, as unusual. We thank Atsuhiro Kubo for contrib- 
uting the drawings of the Santa Catalina Island specimen. We also thank Richard 
Feeney and Jeffery Siegel of the Natural History Museum of Los Angeles for 
collection information on Synchiropus atrilabiatus. 


Literature Cited 


Cruz-Aguero, J. del la, E Galvan-Magana, L. A. Abitia-Cardenas, J. Rodriquez-Romero, and F J. 
Gutiemez-Sanchez. 1994. Systematic list of marine fishes from Bahia Magdalena, Baja Cali- 
fornia Sur (Mexico). Cienc. Mar. 20:17—31. 

Bussing, W. A., and M. I. Lopez S. 1994. Demersal and pelagic inshore fishes of the Pacific Coast of 
lower Central America. Special Publication of the Revista de Biologia Tropical, San Jose, Costa 
Rica. 164 pp. 

Fricke, R. 1981. Revision of the genus Synchiropus: Theses Zoologicae Vol. I. J. Cramer, Braun- 
schweig. 194 pp. 

Garman, S. 1899. The fishes in Reports on an exploration off the west coasts of Mexico, Central and 
South America, and off the Galapagos Islands by the U. S. Fish Commission steamer “‘Alba- 
tross” during 1891. No. XXVI. Mem. Mus. Comp. Zool. v. 24. 431 pp. + 85 pl. 

Grove, J. S. and R. J. Lavenberg. 1997. The Fishes of the Galapagos Islands. Stanford University 
Press. 936 pp. 

Lea, R. N. and R. H. Rosenblatt. 2000. Observations on fishes associated with the 1997—1998 El Nifio 
off California. CalCOFI Reports Vol 41:117—129. 

Nelson, J. S. 1984. Fishes of the World, Third Edition. John Wiley and Sons, Inc. xvii + 600 pp. 

Watson, W. 1996. Callionymidae: Dragonets. Pages 1205-1207 in The Early Stages of Fishes in the 
California Current Region. Coop. Fish. Invest. Atlas. No. 33 (H. G. Moser, ed.), Allen Press 
Inc. 1,505 pp. 


Accepted for publication 21 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 153-155 
© Southern California Academy of Sciences, 2001 


Addition of the Calico Lizardfish, Synodus lacertinus Gilbert, 1890 
(Pisces: Synodontidae) to the Ichthyofauna of the Southern 
California Bight 


Ami K. Groce, Steven L. Lagos, and Eric C. Nestler 


City of San Diego, Metropolitan Wastewater Department, Environmental 
Monitoring and Technical Services Division, Point Loma, California 92106 


Lizardfishes (Synodontidae) are small to moderate-sized fishes with elongate, 
cylindrical bodies and large, spiny toothed, lizard-like mouths. They are common 
benthic fishes found in the Atlantic, Indian and Pacific Oceans (Nelson 1994). 
Synodus is the only genus known from the Eastern Pacific, and is represented by 
five species (S. evermanni, S. lacertinus, S. lucioceps, S. sechurae, and S. scitu- 
liceps; Allen and Robertson 1994; Grove and Lavenberg 1997). Only one of the 
five species, the California lizardfish, S. lucioceps, has previously been reported 
from the Southern California Bight (SCB). 

On October 9, 1998, a single specimen of the calico lizardfish, Synodus lac- 
ertinus, was collected by small (7.6 m wide headrope) semiballoon otter trawl 
during a routine survey performed by the City of San Diego’s Marine Biology 
Laboratory (Metropolitan Wastewater Department, Environmental Monitoring and 
Technical Services Division). The specimen was captured off Playas de Tijuana 
(approx. 6 km south of the United States-Mexico boundary) (latitude 32°28.35’ 
N and longitude 117°10.50’ W) at a depth of 27 m over sandy substrate. The fish 
was measured and photographed, then deposited in the Marine Vertebrates Col- 
lection, Scripps Institution of Oceanography (SIO 99-28). It measured 129 mm 
standard length (SL) and 145 mm total length (TL) and had the following counts: 
dorsal fin elements (11), anal fin rays (8), pectoral fin rays (11), pelvic fin elements 
(8) and lateral line scales (61). The specimen was identified by R. H. Rosenblatt 
as Synodus lacertinus Gilbert, 1890 (Figure 1). The calico lizardfish has also been 
referred to as the sauro lizardfish (Cruz-Aguero et al. 1994, Bussing and Laven- 
berg 1995), the banded lizardfish (Grove and Lavenberg 1997), and the reef li- 
zardfish (Allen and Robertson 1994). 

The previous published geographic range of this species was from Bahia Mag- 
dalena, Baja California Sur, Mexico (Cruz-Aguero et al. 1994; Love et al. 1996!) 
and the Gulf of California to Peru, including the Cocos and the Galapagos Islands 
(Bussing and Lavenberg 1995; Grove and Lavenberg 1997). Unpublished occur- 
rences of this species farther north than Bahia Magdalena include a specimen 
collected in February 1964 at San Pablo Point (latitude 27°13.0’ N; SIO 64-68) 
and a photo of S. lacertinus from Islas San Benito (approx latitude 28° N; R. N. 
Lea, pers comm.). The capture of S. lacertinus near the United States-Mexico 


' Love, M. S., L. Thorsteinson, C. W. Mecklenburg, and T. A. Mecklenburg. 1996. A checklist of 
marine and estuarine fishes of the North East Pacific, from Alaska to Baja California. National Bio- 
logical Service. Located at website http://Aid-www.ucsd.edu/lovelab/home.html 


153 


154 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Fig. 1. Calico lizardfish (Synodus lacertinus), dorsal aspect. Specimen from off Playas de Tijuana, 
129 mm SL; SIO 99-28. Photo taken by Ron Velarde. 


boundary represents a range extension of greater than 500 km from these locations 
off central Baja California, Mexico. 

Characteristics of Synodus lacertinus that distinguish it from other eastern Pa- 
cific synodontids include most notably five broad dark bars across the dorsum 
(Grove and Lavenberg 1997). These dark bars make S. lacertinus quite distinct 
from S. luciosceps, which is the only lizardfish commonly found in the SCB. 
Other diagnostic characters include an upper jaw larger than lower jaw, short 
snout (especially compared to S. lucioceps), dorsal and caudal fins with a series 
of oblique stripes, and a wide head (as broad as long) (Allen and Robertson 1994; 
Bussing and Lavenberg 1995; Grove and Lavenberg 1997). Synodus lucioceps is 
also quite distinct from S. lacertinus in that it has a diagnostic yellow coloration 
on its gill membranes and pelvic fins. The other Eastern Pacific Synodus, S. ev- 
ermanni, S. scituliceps, and S. sechurae (as well as S. lucioceps) all have fairly 
dull coloration in comparison to S. lacertinus. In addition to differences in col- 
oration, these species have different meristics (see Allen and Robertson 1994, 
Bussing and Lavenberg 1995, Grove and Lavenberg 1997). 

The appearance of Synodus lacertinus in the Southern California Bight may be 
related to the physical oceanographic conditions associated with the 1997—1998 
El Nifo. This was just one of many tropical species collected for the first time 
in the Bight after the warm water intrusion that was first detected in July and 
August 1997 (Lea and Rosenblatt 2000). Our fish may have come into the area 
with the warm water mass that moved up from the south. Although the size of 
this specimen, at 145 mm TL, was very close to its known maximum length of 
160 mm TL (Allen and Robertson 1994), it is possible that the fish either moved 
into the area with this El Nifio event as an adult, or with a previous event as a 
larvae or juvenile. 


Acknowledgments 


The authors are indebted to R.H. Rosenblatt for identifying this specimen, and 
to the curatorial assistance of H.J. Walker, C. Klepadio and P. Hastings at the 
Scripps Institution of Oceanography. We would also like to thank R. Feeney and 


ee 


CALICO LIZARDFISH IN CALIFORNIA 155 


J. Siegel of the Natural History Museum of Los Angeles for collection information 
on Synodus lacertinus. We would like to acknowledge the critical review and 
assistance of M.J. Allen (Southern California Coastal Water Research Project), 
and information provided by R.N. Lea (California Department of Fish and Game). 


Literature Cited 


Allen, G. R. and D. R. Robertson. 1994. Fishes of the Tropical Eastern Pacific. University of Hawaii 
Press. 332 pp. 

Bussing, W.A., and R.L. Lavenberg. 1995. Synodontidae. Pages 1625-1628 in Guia FAO para la 
identificacion de especies para los fines de la pesca Pacifico Centro-Oriental: Volume III, Ver- 
tebrados Parte 2. W. Fisher, W., E Krupp, W. Schneider, C. Sommer, K. E. Carpenter, and V. 
H. Niem (eds), United Nations Food and Agriculture Organization, Roma, It. 

Cruz-Aguero, J. del la, EK Galvan-Magana, L. A. Abitia-Cardenas, J. Rodriquez-Romero, and F J. 
Gutiemez-Sanchez. 1994. Systematic list of marine fishes from Bahia Magdalena, Baja Cali- 
fornia Sur (Mexico). Cienc. Mar. 20:17-—31. 

Gilbert, C. H. 1890. A preliminary report on the fishes collected by the steamer Albatross on the 
Pacific Coast of North America during the year 1889, with descriptions of twelve new genera 
and ninety-two new species. Proc. U.S. Natl. Mus. V.13 (797):49—126. 

Grove, J. S. and R. J. Lavenberg. 1997. The Fishes of the Galapagos Islands. Stanford University 
Press, 936 pp. 

Lea, R. N. and R. H. Rosenblatt. 2000. Observations on fishes associated with the 1997-1998 El Nino 
off California. CalCOFI Reports Vol 41:117-129. 

Nelson, J. S. 1994. Fishes of the World, Third Edition. John Wiley and Sons, Inc. xvii + 600 pp. 


Accepted for publication 25 January 2001. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 156-159 
© Southern California Academy of Sciences, 2001 


First Record of the Pacific Cornetfish, Fistularia corneta Gilbert 
and Starks 1904, a New Species to the Southern California Fauna 
During the 1997-1998 El Nino 


Michael D. Curtis! and Kevin T. Herbinson?2 


'MBC Applied Environmental Sciences, Costa Mesa, California 92626 
2Southern California Edison Company, Rosemead, California 91770 


On 7 May 1998, two small cornetfish (319 and 345 mm total length) were 
taken from the cooling water screenwell in front of the circulating water gates at 
the former Southern California Edison’s Huntington Beach Generating Station 
(now AES Huntington Beach) during a routine fouling control operation. They 
were initially thought to be the reef cornetfish, Fistularia commersonii; however, 
critical examination indicated that these two specimens are the Pacific cornetfish, 
Fistularia corneta Gilbert and Starks 1904, a new addition to the California fauna. 

The occurrence of F. corneta at the Huntington Beach Generating Station intake 
in Huntington Beach, Orange County, California (33°38.37' N and 117°58.98' W) 
represents a range extension of approximately 836 km from its previously listed 
northern most record at San Hipolito, Baja California, Mexico (26°58.0' N and 
113°58.2' W). On 27 August 1956, 11 specimens of F. corneta, ranging from 
111 to 190 mm, were collected from Bahia San Hipolito (from SIO Collection 
No. 64—750'). The Huntington Beach specimens, therefore, represent an extension 
of approximately 836 km from that location. 

The sea floor directly offshore of the Huntington Beach Generating Station is 
relatively smooth and sediments are composed of mostly fine-to-medium grained 
sand, with isobaths parallel to the coastline. The intake is located about 500 m 
offshore on a smooth sandy bottom at a depth of approximately 8 m. Pacific 
cornetfish typically are taken over smooth bottoms (Fritzche 1976) and are re- 
ferred to as the deepwater cornetfish in the Gulf of California, as they typically 
occur in water depths greater than 30 m (Thomson ef al. 1979). Its previous 
published range is from the outer coast of Baja California near Bahia San Hipolito 
to Peru and the offshore islands (Hildebrand 1946, Thomson et al. 1979). They 
are frequently collected in otter trawls. 

Cornetfishes (Fistulariidae) have an elongate, depressed body with long tubular 
snout, short oblique mouth, minute teeth, single dorsal fin located posterior on 
body above anal fin and a forked caudal fin with a long medial filament (Allen 
and Robertson 1994) (Figure 1). There are four species in the tropical and sub- 
tropical genus of Fistularia. Two of these, the reef cornetfish and the Pacific 
cornetfish, are found in the eastern Pacific (Fritzche 1976, Allen and Robertson 
1994, Fritzche and Schneider 1995). The Pacific cornetfish differs from the reef 
cornetfish by having more dorsal, anal, and pectoral rays, usually 18 to 20, 17 to 
18, and 16 to 18, respectively; reef cornetfish have dorsal rays of 15 to 17, anal 


'Scripps Institution of Oceanography Marine Invertebrates Fish Collection. 2000. Website: 
www-sioadm.ucsd.edu/FM (Fistularia corneta) SIO number 64—750. 


156 


FIRST RECORD OF PACIFIC CORNETFISH IN SOUTHERN CALIFORNIA 157 


interorbital 


Fistularia cometa 


Fistularia commersonii 


Fig. 1. Dorsal views of head and body of Pacific cornetfish (Fistularia corneta) and reef cornetfish 
(Fistularia commersoni) (Fig. from Bussing and Lopez 1994). 


rays of 14 to 16, and pectoral rays of 13 to 15 (Thomson et al. 1979, Allen and 
Robertson 1994). Pacific cornetfish are reported to attain lengths of at least 700 
mm, whereas reef cornetfish can grow to be at least 1500 mm in length (Allen 
and Robertson 1994, Fritzche and Schneider 1995). Specimens collected at 
Huntington Beach had meristics within the range of Pacific cornetfish (Table 1). 

A definitive identification was made by looking at the interorbital area of the 
head. In Pacific cornetfish there is a wide smooth interorbital space, whereas 
longitudinal ridges are found in this same area in reef cornetfish. This is aptly 
illustrated in Bussing and Lopez (1994). 

As has been documented with past El Nifios, the advent of the El Nifio of 
1997-1998 brought new species of fish and invertebrates to the southern Cali- 
fornia waters (Wooster and Fluharty 1985, Lea and Rosenblatt 2000). Although 
it appears this cornetfish species may have a preference for slightly cooler waters 


Table 1. Meristics of the two Huntington Beach specimens of Pacific cornetfish, Fistularia corneta, 
LACM 54542-1. 


Specimen 
1 2 
Total Length (mm) End of Filament 345 319 
Biomass (g) 20 14 
Dorsal, Fin Rays 18 18 
Anal, Fin Rays by 17 


Pectoral, Fin Rays Wy 18 


158 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


found at depth, it is not unusual to find expatriate fishes from Baja California 
attracted to the vicinity of southern California power plant discharges. Ocean 
temperatures in the vicinity of the intake were 16.1° C on the day of capture, 
several degrees warmer than seasonally normal due to the effects of the El Nifio. 
Typically, temperatures are also 4 to 5° C higher within 10 m of the power plant 
discharge plume, decreasing rapidly with distance (MBC1975). It is possible that 
the two specimens of F. corneta were attracted to the area due to the presence 
of warm water at the outfall. Alternatively, because it is known that the intake 
and discharge structures act as de facto artificial reefs attracting a variety of 
species of fish, the predatory cornetfish may have been present in the immediate 
area to forage on fishes associated with the high relief intake and discharge struc- 
tures (Helvey and Dom 1981, Helvey and Smith 1985). Whatever their reason 
for being in the vicinity, they were inadvertently entrained by the strong inward 
flow of water at the intake tunnel and transported through the tunnel to the forebay 
of the power plant where they were subsequently impinged and collected. 

The two specimens are deposited at the Natural History Museum of Los An- 
geles County, (LACM 54542-1). 


Acknowledgments 


We wish to thank M. J. Allen for his constant enthusiasm, identification of the 
two specimens, suggestions of literature, and critical review of the manuscript. 
We would also like to thank R.N. Lea and J. Siegel for their support and en- 
couragement and critical reviews of the manuscript which have resulted in an 
improved paper. In addition, we would like to thank Southern California Edison, 
MBC Applied Environmental Sciences, and AES Huntington Beach Generating 
Station for supporting these studies. 


Literature Cited 


Allen, G.R., and D.R. Robertson. 1994. Fishes of the tropical eastern Pacific. University of Hawaii 
Pressxix(-: (332ipp: 

Bussing, W.A., and M. I. Lopez S. 1994. Demersal and pelagic Inshore fishes of the Pacific coast of 
lower Central America: An illustrated guide. Rev. Biol. Trop; Spec. Publ., 164 pp. 

Fritzsche, R. A. 1976. A review of the cornetfishes, genus Fistularia (Fistulariidae), with a discussion 
of intrageneric relationships and zoogeography. Bull. Mar. Sci., 26(2):196—204. 

Fritzsche, R. A., and M. Schneider. 1995. Fistulariidae. Pp. 1104-1105 in Guia FAO para la identi- 
ficacion de especies para los fines de la pesca. Pacifico centro-oriental. Vol. Il. Vertebrados— 
Parte 1, (W. Fischer, W. Schneider, C. Sommer, K. E. Carpenter, and V. H. Niem, eds.), United 
Nations, Food and Agriculture Administration, xiii + 1,813 pp. 

Gilbert, C.H., and E.C. Starks. 1904. The fishes of Panama Bay. Mem. Calif. Acad. Sci. v.4. 304 pp. 

Helvey, M., and P. Dom. 1981. The fish population associated with an offshore water intake structure. 
Bull. So. Calif. Acad. Sci., 80(1):23-31. 

Helvey, M., and R.W. Smith. 1985. Influence of habitat structure on the fish assemblage associated 
with two cooling-water intake structures in southern California. Bull. Mar. Sci., 37(1):189-199. 

Hildebrand, S. FE 1946. A descriptive catalog of the shore fishes of Peru. Smithsonian Institution, U.S. 
Nat. Mus., Bulletin 189:150—152. 

Lea, R. N., and R. H. Rosenblatt. 2000. Observation on fishes associated with the 1997-1998 El Nino 
off California. Calif. Coop. Ocean. Fish. Inves. Rep. 41:1178—129. 

Marine Biological Consultants. 1975. The Marine Environment Offshore Huntington Beach Generating 
Station Orange County, California. First Quarterly Report, August 1975 Survey. Prepared for 
Southern California Edison Company. Mar. Bio. Consul., Costa Mesa, CA. 40 pp. + appendices. 


FIRST RECORD OF PACIFIC CORNETFISH IN SOUTHERN CALIFORNIA 159 


Thomson, D. A., L.T. Findley, and A.N. Kerstitch. 1979. Reef fishes of the Sea of Cortez. John Whiley 
& Sons, Inc., NY., 302 pp. 

Wooster, W.S., and D.L. Fluharty 1985. El Nifio North: Nino Effects in the Eastern Subartic Pacific 
Ocean. Washington Sea Grant Prog., University of Washington, 312 pp. 


Accepted for publication 21 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 160—166 
© Southern California Academy of Sciences, 2001 


Records of Mexican Barracuda, Sphyraena ensis, and Scalloped 
Hammerhead, Sphyrna lewini, from Southern California 
Associated with Elevated Water ‘Temperatures 


Michael A. Shane 


Hubbs-SeaWorld Research Institute, 2595 Ingraham Street, San Diego, 
California 92109 


During the 1997—98 El Nifo Southern Oscillation (ENSO), abnormally warm 
coastal waters occurred off southern California. Based on satellite imagery, the 
highest sea surface temperature anomalies recorded in southern California during 
this event were between 3 and 4°C. Monthly mean sea surface temperatures, 
recorded at the Scripps Institute of Oceanography (SIO) pier between 1916 and 
1994, ranged from 14 to 21°C. Monthly mean sea bottom temperatures, also 
recorded at the SIO pier at a depth of 5 m between 1926 and 1994, ranged from 
14 to 19°C. During previous warm water years, investigators documented changes 
in the ichthyofauna along the Pacific Coast (e.g., Hubbs and Schultz 1929; Wal- 
ford 1931; Brooks 1987; Lea and Rosenblatt 1992; Lea and Walker 1995). I report 
here on two species of fish that were present off southern California correlated 
with elevated water temperatures generated by the 1997-1998 ENSO and by an 
anthropogenic source. 


Sphyraena ensis 


On 20 October 1997, multiple mesh gillnets were deployed on the bottom in 
a kelp forest north of Oceanside, California (latitude 33°17.65'N, longitude 117° 
29.57'W), in an attempt to catch hatchery-reared white seabass, Atractoscion no- 
bilis, released by the Ocean Resources Enhancement and Hatchery Program (OR- 
EHP). The following morning, an unfamiliar barracuda was retrieved from a net 
set at a depth of 14 m. Also on this morning, water samples were collected at 
depth at three sites in this area. The average bottom temperature of the water 
samples was 19.7°C. Furthermore, there were no other barracudas caught in this 
net or in two others set nearby. This fish was later identified by the author as a 
Mexican barracuda, Sphyraena ensis (Jordan and Gilbert 1882), and represents 
the first record from southern California. On 11 January 1998 another Mexican 
barracuda was taken by hook-and-line aboard the sportfishing vessel MV Dolphin 
II off La Jolla, California (latitude 32°51.0'N, longitude 117°16.0’W) in a water 
depth of 9 m. The sport fisherman also noted that the Mexican barracuda was 
schooling with the more common Pacific barracuda, S. argentea. This fish was 
turned over to the Marine Vertebrates Collection, Scripps Institution of Ocean- 
ography, and identified by R. H. Rosenblatt; it is catalogued as SIO 98-35. Sub- 
sequently, the identification of the specimen collected north of Oceanside was 
also verified by R. H. Rosenblatt and deposited in the Scripps collection as SIO 
98-36. On 22 September 1998, three more Mexican barracuda were caught by 
the OREHP assessment program in a gillnet set on the bottom at a water depth 
of 4.5 m near La Jolla (latitude 32°48.28'N, longitude 117°16.08'W). These three 


160 


SPHYRAENA ENSIS AND SPHYRNA LEWINI IN CALIFORNIA 161 


Table 1. Morphometric and meristic data for Sphyraena ensis* 


Specimen 
SIO SIO HSWRI HSWRI HSWRI 
98-35 98-36 SE-1 SE-2 SE-3 
Standard length (mm) 425.0 470.0 475.0 433.0 426.0 
Head from tip of snout 329 50:2 292 30.0 30.0 
Depth 14.3 14.8 15:2 Par 32 
Orbit Jul 4.7 5.8 5.8 63 
Insertion ventral spine from 
tip of snout 44.7 a) i 392 BF 39.4 
Spinous dorsal from snout 45.6 43.0 42.3 42.0 42.7 
Soft dorsal from snout 416.5 w2e1 71.4 FAS IZ 
Length of pectoral fin 13.0 10.6° bt 12.4 1S By 
Longest dorsal ray 10.6 6.8° Saal 1S 10.5 
Longest anal ray 10.0 TP 8.6 10.0 9.3 
Number of dorsal rays and 
spines 3 Mle e™ LS RN sis es VS OA a ee ee 
Number of anal rays and spines ty 1.7 II, 8 II, 8 II, 8 
Number of scales 108 110 108 110 108 


“Measurements follow those of Gilbert and Starks (1904). Morphometric characters, with the ex- 
clusion of standard length, are given in hundreds of standard length. 
® Length of fin or ray on the left side of the body is incomplete. 


specimens are presently being held at Hubbs-SeaWorld Research Institute. In ad- 
dition, there were also several Pacific barracuda caught in the same net. The 
bottom water temperature, recorded from a water sample collected at depth on 
this morning, was 19.9°C. Counts and measurements for the five Mexican bar- 
racuda described above, following Gilbert and Starks (1904), are provided in 
Table 1. 

During March or April 1998, Scott Aalbers photographed a school of seven 
barracuda in the shallow waters off La Jolla. These barracuda looked similar to 
the ones he had observed previously in Mexico. Due to the quality of the pho- 
tograph, only two of the barracuda can be positively identified as Mexican bar- 
racuda. This identification is based on the observation that the pelvic fin, which 
is extended downward and away from the body in these two individuals, is at- 
tached directly below the posterior tip of the pectoral fin. Additionally, these two 
fish, as well as several others in the photograph, also have dark bars on their 
sides. Positive identification of the remaining fish in the photograph as Mexican 
barracuda could not be made due to the quality of the photograph and because 
this species has been previously observed schooling with the Pacific barracuda. 

Four species of barracuda (family Sphyraenidae) occur in the eastern Pacific. 
Until now, only the Pacific barracuda had been reported to occur in the marine 
waters off California (Miller and Lea 1972; Robins et al. 1991la). The Mexican 
barracuda, normally found in the Panamic Zoogeographic Province, had a reported 
range extending from Baja California, Mexico, including the Gulf of California, 
to Chile (Chirichigno 1974; Robins et al. 1991b). This range consists of tropical 
and subtropical ocean waters. The recent collection of this species from the warm- 
temperate waters of southern California represents a latitudinal range extension 
of over 1000 km. 


162 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Fig. 1. The upper specimen is a Pacific barracuda, Sphyraena argentea, and the lower specimen 
is the Mexican barracuda, Sphyraena ensis, caught off Oceanside (SIO 98-36). 


Walford (1937) and Sommer (1995) describe several characteristics that can be 
used to distinguish the Mexican barracuda from the more common Pacific bar- 
racuda (Fig. 1). One of the most distinctive characteristics is the attachment of 
the pelvic fin, which in the Mexican barracuda is underneath or slightly forward 
of the posterior tip of the pectoral fin. In the Pacific barracuda the pelvic fin is 
attached posterior of the pectoral fin. The Mexican barracuda also has numerous 
dark bars or chevrons on its side and the maxillary extends to the fore margin of 
the eye. The Pacific barracuda lacks dark bars on its side and has a shorter max- 
illary. Furthermore, the Mexican barracuda has between 105 and 120 lateral line 
scales, while the Pacific barracuda has from 160 to 170 (Jordan and Evermann 
1896; Gilbert and Starks 1904; Meek and Hildebrand 1923). 


Sphyrna lewini 


Three species of hammerhead sharks (family Sphyrnidae) have been recorded 
in California waters (Robins et al. 1991la); however, their occurrence is uncom- 
mon. In the eastern Pacific, the distribution of hammerhead sharks is generally 
restricted to tropical latitudes. The scalloped hammerhead, Sphyrna lewini (Grif- 
fith and Smith 1834), can be distinguished from S. tiburo and S. zygaena, the 
other two species that have been reported in California, by the presence of four 
lobes on the anterior margin of its head (Miller and Lea 1972). The first reported 
California records of scalloped hammerhead were caught off Santa Barbara on 
28 August 1977 (Fusaro and Anderson 1980). However, Hubbs (1948) mentioned 
that in 1926, an unusually warm water year, many hammerheads (Sphyrna sp.) 
were caught in southern California. Unfortunately there are no records or mention 
of the species of hammerhead shark caught. Seigel (1985) reported three addi- 
tional records from California; one of which was a juvenile. The following in- 


SPHYRAENA ENSIS AND SPHYRNA LEWINI IN CALIFORNIA 163 


formation provided is for 20 additional records from southern California that were 
caught before, during, and after the 1997-1998 ENSO event. 

In 1996 and 1997 ten scalloped hammerheads were caught in south San Diego 
Bay by Mike Irey, a commercial mullet fishermen. These specimens were depos- 
ited in the SIO collection and were identified and measured (range 63 to 99 cm 
TL; x=73) by R. N. Lea. Nine additional specimens, which were caught in gillnets 
set by the OREHP assessment program, were also collected from south San Diego 
Bay (latitude 32°37.10’N, longitude 117°06.63'W) between October 1997 and 
June 1999. These specimens were identified and measured (range 57 to 164 cm 
TL, x=93) by the author. Of these nine specimens, two were deposited in the 
SIO collection (SIO 98-39) and two in the fish collection at San Diego State 
University (SDSU 98-101). 

On all 19 of these specimens, the lower lobe of the caudal fin and the ventral 
surface of the pectoral fins had black tips. The female:male sex ratio was roughly 
equal (9:10). In North American waters, male scalloped hammerheads are reported 
to become sexually mature at about 180 cm TL and females at around 250 cm 
TL (Castro 1983; Branstetter 1987). Although none of the specimens reported 
here were examined for sexual maturity, it is presumed that they were all im- 
mature since the largest individual, a female, was only 164 cm TL. 

Seigel (1985) reported the first California record of a juvenile scalloped ham- 
merhead, caught on 4 October 1984. This specimen, which was 54.5 cm in total 
length and possessed a mid-ventral umbilical scar, was probably less than one 
month old. However, the Marine Vertebrates Collection at SIO includes a scal- 
loped hammerhead specimen (SIO 81-152) that is 47.3 cm in total length that 
was caught by hook and line just north of the SIO pier (latitude 32°52.0'N lon- 
gitude 117°15.0’W) on 6 November 1981. This specimen also has an umbilical 
scar and is probably less than one month old. In addition to these two pups, five 
of the nine specimens caught by the OREHP assessment program had mid-ventral 
umbilical scars. They were taken on 6 October 1997 and ranged from 56.5 to 
63.1 cm TL (x=61.3 cm) (Fig. 2). The size of scalloped hammerhead pups at 
parturition is between 38 and 60 cm TL (x<50 cm) (Clarke 1971; Branstetter 
1987; Chen et al. 1988). Clarke (1971) reported growth rates between 0.03 and 
0.25 cm day! for scalloped hammerhead pups tagged in the wild or retained in 
laboratory ponds. Based on the presence of their umbilical scars and values re- 
ported in the literature, the ages of the 5 pups caught in San Diego Bay were 
probably between 45 and 94 days old. 

The thermal effluent discharged from an electrical generating station at the 
southern end of San Diego Bay creates a thermal plume that has been reported 
to elevate water temperatures in this area (Chambers and Chambers 1973; Ford 
and Chambers 1974). The extent of this thermal plume changes markedly on a 
seasonal and tidal basis. This area of the bay is also more estuarine than the 
central and outer portions of San Diego Bay. The area is characterized by higher 
salinities and elevated water temperatures caused by shallow water depths (<3 
m), bottom sediments that are either black or dark gray silty mud which enhance 
solar absorption, and poor tidal flushing. Seasonal water temperatures in south 
San Diego Bay range from 14 to 24°C outside the thermal effluent plume, while 
those influenced by the plume range from 16 to 31°C (Ford and Chambers 1974). 
Water temperatures in the location where the five pups were collected were around 


164 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Fig. 2. The three female and two male scalloped hammerhead, Sphyrna lewini, pups caught in 
south San Diego Bay on 6 October 1997. 


SPHYRAENA ENSIS AND SPHYRNA LEWINI IN CALIFORNIA 165 


24°C during Fall 1997. Furthermore, this area of the bay is also very turbid, with 
average transparencies of <2.0 m (Chambers and Chambers 1973; M. Shane 
unpub. data). 

The physical environmental conditions that exist in south San Diego Bay are 
similar to those in Kanahoe Bay, Oahu, Hawaii, which is a known pupping ground 
for scalloped hammerheads (Clarke 1971; Holland et al. 1993). Because of the 
number of juvenile specimens captured in the southern end of San Diego Bay, 
before, during, and after the 1997-98 ENSO, this area may function as both a 
pupping ground and warm water refugium for scalloped hammerheads that travel 
north during warm water years. 


Acknowledgments 


The collection of these valuable specimens was made possible through funding 
by the California Department of Fish and Game’s Ocean Resources Enhancement 
and Hatchery Program administered by S. Crooke. I am especially thankful to G. 
Stutzer for assisting with the OREHP assessment efforts and for first observing 
the unfamiliar barracuda caught off Oceanside; S. Aalbers for bringing to my 
attention his underwater photograph of the school of barracuda; H. J. Walker for 
providing access to the specimens in the fish collection at SIO; R. N. Lea for 
providing his data on S. /ewini and his review of the manuscript; and for the 
critical reviews of R. FE Ford, C. G. Lowe and R. H. Rosenblatt. 


Literature Cited 


Branstetter, S. 1987. Age, growth and reproductive biology of the silky shark, Carcharhinus falcifor- 
mis, and the scalloped hammerhead, Sphyrna lewini, from the northwestern Gulf of Mexico. 
Environ. Biol. Fish., 19(3):161—173. 

Brooks, A. J. 1987. Two species of Kyphosidae seen in King Harbor, Redondo Beach, California. 
Calif. Fish and Game, 17(1):49—50. 

Castro, J. I. 1983. The sharks of North American waters. Texas A&M University Press, 180 pp. 

Chambers, R. W. and R. L. Chambers. 1973. Thermal distribution and biological studies for the south 
bay power plant. Final report. Volume 4A-B thermal measurements May 1973. Environmental 
Engineering Laboratory Tech. Report on purchase order #P-25072 for San Diego Gas and 
Electric Company, iii + 177 pp. 

Chen, C. T., T. C. Leu and S. J. Joung. 1988. Notes on reproduction in the scalloped hammerhead, 
Sphyrna lewini, in northeastern Taiwan waters. Fish. Bull., 86(2):389-393. 

Chirichigno, N. E 1974. Clave para identificar los peces marinos del Peru. Inf. Inst. Mar Peru, 44: 
387 pp. 

Clarke, T. A. 1971. The ecology of scalloped hammerhead shark, Sphyrna lewini, in Hawaii. Pac. Sci., 
25:133-144. 

Ford, R. E and R. L. Chambers. 1974. Thermal distribution and biological studies for the south bay 
power plant. Final report. Volume 5C biological studies September 1972-August 1973. Envi- 
ronmental Engineering Laboratory Tech. Report on purchase order #P-25072 for San Diego 
Gas and Electric Company, vii + 189 pp. 

Fusaro, C. and S. Anderson. 1980. First California record: The scalloped hammerhead shark, Sphyrna 
lewini, in coastal Santa Barbara waters. Calif. Fish and Game, 66(2):121—123. 

Gilbert, C. H. and E. C. Starks. 1904. The fishes of Panama Bay. California Academy of Sciences, 
Memoirs vol. 4; reprinted in Hopkins Seaside Laboratory of Leland Stanford, Jr., Contributions 
to Biology, 32:62—63. 

Griffith, E. and C. H. Smith. 1834. The class Pisces, arranged by the Baron Cuvier, with supplementary 
additions, by Edward Griffith, ER.S., &c. and Lieut.-Col Charles Hamilton Smith, ER., L.S.S., 
&c. &c. London. Class Pisces, Cuvier 1—680. 


166 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Holland, K. N., B. M. Wetherbee, J. D. Peterson and C. G. Lowe. 1993. Movements and distribution 
of hammerhead shark pups on their natal grounds. Copeia, 1993(2):495-—S02. 

Hubbs, C. L. 1948. Changes in the fish fauna of western North America correlated with changes in 
ocean temperature. J. Mar. Res., 7(3):459—482. 

Hubbs, C. L. and L. P. Schultz. 1929. The northward occurrence of southern forms of marine life 
along the Pacific coast in 1926. Calif. Fish and Game, 15(3):234-241. 

Jordan, D. S. and B. W. Evermann. 1896. The fishes of North and Middle America. Bull. U.S. Nat. 
Mus., 47(1):822-826. 

Jordan, D. S. and C. H. Gilbert. 1882. List of fishes collected at Mazatlan, Mexico, by Charles H. 
Gilbert. Bull. U. S. Fish Comm., v. 2 [1882]:105—108. 

Lea, R. N. and R. H. Rosenblatt. 1992. The Cortez grunt (Haemulon flaviguttatum) recorded from 
two embayments in southern California. Calif. Fish and Game, 78(4):163—165. 

Lea, R. N. and H. J. Walker, Jr. 1995. Record of the bigeye trevally, Caranx sexfasciatus, and Mexican 
lookdown, Selene brevoorti, with notes on other carangids from California. Calif. Fish and 
Game, 81(3):89-95. 

Meek, S. E. and S. E Hildebrand. 1923. The marine fishes of Panama. Field Museum of Natural 
History, Publ. 215, 15(1):282—288. 

Miller, D. J. and R. N. Lea. 1972. Guide to the coastal marine fishes of California. California De- 
partment of Fish and Game, Fish Bulletin 157, 235 pp. 

Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea and W. B. Scott. 
1991a. Common and scientific names of fishes from the United States and Canada, fifth edition. 
American Fisheries Society Special Publication 20, 183 pp. 

. 1991b. World fishes important to North Americans exclusive of species from the continental 
waters of the United States and Canada. American Fisheries Special Publication 21, 243 pp. 

Seigel, J. A. 1985. The scalloped hammerhead, Sphyrna lewini, in coastal southern California waters: 
Three records including the first reported juvenile. Calif. Fish and Game, 71(3):189-—190. 

Sommer, C. 1995. Sphyraenidae. in Guia FAO para identification de especies para los fines de la 
pesca. Pacifico Centro-Oriental. (W. Fischer, EF Krupp, W. Schneider, C. Sommer, K. E. Car- 
penter, and V. Niem, eds.), Vol. I[I:1618—1621. 

Walford, L. A. 1931. Northward occurrence of southern fish off San Pedro in 1931. Calif. Fish and 
Game, 17(4):401—405. 

. 1937. Marine game fishes of the Pacific coast from Alaska to the equator. University of 

California Press, 205 pp. + 69 plates. 


Accepted for publication 22 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 167-169 
© Southern California Academy of Sciences, 2001 


Occurrence of the Loosetooth Parrotfish, Wicholsina denticulata 
(Scaridae), from Santa Catalina Island, California 


Robert N. Lea,' Erik D. Erikson,” Kelly Boyle,* and Robert Given‘ 


‘California Department of Fish and Game, Marine Region, 20 Lower Ragsdale 
Drive, Monterey, CA 93940 
*MetaVisual, Inc., PO Box 592, Carmel, CA 93921 
3Department of Biological Science, California State University at Fullerton, 
Fullerton, CA 92834 
4Marymount College, Rancho Palos Verdes, CA 90275 


The parrotfishes, family Scaridae, are characterized as specialized perciform 
fishes that closely associate with reefs and are primarily tropical in distribution 
(Schultz 1958, 1969 and Nelson 1994). Rosenblatt and Hobson (1969) revised 
the systematics of eastern Pacific parrotfishes, recognizing three genera compris- 
ing six species. Scarus is considered the typical parrotfish genus, with four species 
in the eastern Pacific. Nicholsina, the more primitive (or plesiomorphic) genus, 
is monotypic in the eastern Pacific. Calotomus, the third genus, is Indo-Pacific in 
origin and rare in the eastern Pacific. Nicholsina denticulata (Evermann & Rad- 
cliffe, 1917), the loosetooth parrotfish, is a smaller, less colorful species compared 
to the members of the genus Scarus occupying the Panamic Region. 

The distribution of Nicholsina denticulata is listed by Thomson et al. (2000) 
as, “... throughout the Gulf [of California] and from Bahia Magdalena south 
to Peru and the Islas Galapagos.’’ We are aware of two collections, representing 
19 specimens, from Bahia Santa Maria (Scripps Institution of Oceanography, Ma- 
rine Vertebrates Collection, SIO 64-42 and 64-43). Bahia Santa Maria is approx- 
imately 20 kilometers north of the entrance to Magdalena Bay, on the outer coast 
of Baja California Sur. While surveying fishes of the Islas San Benito, Baja Cal- 
ifornia, Mexico (ca. lat 28°18'N), located 110 km off the coast of central Baja 
California and 25 km west of the seaward side of Isla Cedros, divers (R. N. Lea, 
R. E. Snodgrass, and D. V. Richards) observed Nicholsina denticulata during 
several scuba dives in August 1996 and again on four dives in August 1998. 
Nicholsina had not been noted at Islas San Benito on six previous trips by RNL 
(since 1984), and there are no known collections of the species from the outer 
coast of Baja California north of Bahia Santa Maria. During the Islas San Benito 
expedition of 2—6 August 1998, we observed loosetooth parrotfish in relatively 
shallow water (8 to 12 m) and often in association with the alga Eisenia; sea 
surface temperatures at the islands ranged from 19.1° to 20.9° C. In the Sea of 
Cortez, Nicholsina ‘‘is often observed among Sargassum, Padina, and other algae 
... (Thomson et al. 2000). 

On 22 May 1999, E. Erikson while diving at 6 m at Lovers Cove Reserve, 
Santa Catalina Island (lat 33°20.6’N, long 118°19.1'W), noticed a fish swimming 
in Eisenia with which he was not familiar. One month later on 20 June Erikson 
was able to photograph this unidentified species. The photograph was sent to R. 
Given and then to R. N. Lea for identification. The fish was recognized as the 


167 


168 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Fig. 1. _Loosetooth parrotfish from Casino Point Underwater Park, Santa Catalina Island, 12 Sep- 
tember 1999. Photograph by E. Erikson. 


loosetooth parrotfish based on its general body morphology, large scalation, and 
rather drab brownish-green coloration (Fig. 1). The coloration of Nicholsina is 
characterized by Thomson et al. (2000) as “ .. . variable, usually reddish to drab 
brown or greenish with diffuse dark mottling matching its surroundings.’’ Char- 
acteristics separating the various parrotfish genera are primarily based on structure 
of the teeth and patterns of scalation (requiring close or in-hand examination). 
The photograph is typical of the species. 

These observations and photographic documentation represent the first record 
of the species, as well as the family, from Californian waters. Following the 22 
May sighting, loosetooth parrotfish were observed at Santa Catalina Island, at 
Lovers Cove Reserve and Casino Point Underwater Park, by EE on four other 
occasions in 1999: 27 May at 6 m, 16.1°C (temperature is at depth of sighting); 
20 June at 6 m, 16.7°C; 12 September at 7.5 to 9 m, 17.2°C; and 23 September 
at 4.5 m, 16.7°C. On the 12 September dive two parrotfish, which appeared to be 
a male and female pair, were observed and photographed over a 45-minute period. 
The estimated size for these fish was between 20 to 24 cm total length. Kelly 
Boyle also observed loosetooth parrotfish in September 1999 at Santa Catalina 
Island, Casino Point Underwater Park. On 11 September, a single loosetooth par- 
rotfish was noted swimming at 10 m depth. On 17 September, KB with three 
other divers observed a single parrotfish on three separate dives that they assumed 
to be the same individual. The sightings were between 4.5 and 10.5 m depth and 
the fish was estimated as 25 cm total length; it was grazing on the alga Sargassum 
palmeri. 

The 1996 and 1998 observations at Islas San Benito are, to our knowledge, 
the first records of the species north of Bahia Santa Maria. Magdalena Bay is 
considered the northern boundary of the Panamic Biogeographic Province; Bahia 
Santa Maria is essentially a northern extension of Magdalena Bay. Oceanograph- 
ically, 1992 through 1996 was a period of exceptionally warm water in the eastern 


LOOSETOOTH PARROTFISH FROM SANTA CATALINA ISLAND 169 


North Pacific Ocean. Commencing in mid-1997, ocean temperatures for this re- 
gion became more extreme and were manifested as the 1997—98 El Nifio event, 
with the highest recorded sea-surface temperatures for outer Baja California and 
southern California during the 20" century (Lea and Rosenblatt 2000). The ob- 
servations of loosetooth parrotfish during the colder La Nifia period of 1999 are, 
in our opinion, the result of fish that most likely arrived during the 1997-98 El 
Nifio and remained unnoticed until the observations discussed in this paper were 
made. 


Acknowledgments 


We would like to thank William Mercadante who aided E. Erikson in his ob- 
servations at Santa Catalina Island. We also acknowledge Michael Horn, Camm 
Swift, and two anonymous reviewers for their constructive comments regarding 
this paper. 


Literature Cited 


Evermann, B. W. and L. Radcliffe. 1917. The fishes of the west coast of Peru and the Titicaca Basin. 
Bull. U. S. Nat. Mus., 95:1—166. 

Lea, R. N. and R. H. Rosenblatt. 2000. Observations on fishes associated with the 1997—98 El Nifio 
off California. CalCOFI Reports, 41:117—129. 

Nelson, J. S. 1994. Fishes of the world. 3" edition. John Wiley & Sons, Inc. New York. 600 pp. 

Rosenblatt, R. H. and E. S. Hobson. 1969. Parrotfishes (Scaridae) of the eastern Pacific, with a generic 
rearrangement of the Scarinae. Copeia 1969(3):434—453. 

Schultz, L. P. 1958. Review of the parrotfishes Family Scaridae. Bull. U. S. Nat. Mus., 214:1-143. 

Schultz, L. P. 1969. Taxonomic status of the controversial genera and species of parrotfishes, with 
descriptive list (family Scaridae). Smithsonian Contrib. Zool. No. 17. 49 pp. 

Thomson, D. A., L. T. Findley, and A. N. Kerstitch. 2000. Reef fishes of the Sea of Cortez: the rocky- 
shore fishes of the Gulf of California, revised edition. The Univ. of Texas Press, Austin. 353 pp. 


Accepted for publication 21 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 170-174 
© Southern California Academy of Sciences, 2001 


Increase in Occurrence and Abundance of Zebraperch 
(Hermosilla azurea) in the Southern California Bight in 
Recent Decades 


Erick A. Sturm! and Michael H. Horn 


Department of Biological Science, California State University, Fullerton 
Fullerton, California 92834-6850 


The zebraperch, Hermosilla azurea Jenkins and Evermann 1889, a warm-tem- 
perate member of the widespread but mainly tropical perciform family Kyphos- 
idae, occurs in coastal waters of southern California and Baja California and in 
the Gulf of California (Jenkins and Evermann 1889; Miller and Lea 1972; Es- 
chmeyer et al. 1983; de la Cruz-Aguero et al. 1994; Rodriguez-Romero et al. 
1994; Thomson et al. 2000). The northerly range limit of this species was given 
as Monterey Bay (36° 36’ N) by Miller and Lea (1972) and Eschmeyer et al. 
(1983), but the species has been regarded as uncommon in California (Miller and 
Lea 1972) and rare north of southern California (Eschmeyer et al. 1983). In the 
mid-1980s, zebraperch were captured in the Klamath River estuary in northern 
California (41° 31’ N) to establish the northernmost range limit for the species 
(Fritzsche et al. 1991). In this note, we provide evidence that the northerly range 
extensions recorded for the zebraperch in recent decades correspond to short-term 
periods of ocean warming associated with El Nifio conditions. We also offer 
support for the hypothesis that this fish has increased in abundance and established 
breeding populations in the Southern California Bight over the past 15—20 years 
coincident with a sustained warming trend in the region over the same time period. 

The zebraperch apparently was noted as a member of the California ichthyo- 
fauna during the middle years of the last century, at least according to published 
records. The fish was first reported in the Southern California Bight in waters off 
San Diego County by Hubbs (1948) who noted that the fish began occurring in 
this area during a warm-water event. Lockley (1952) captured juveniles in tide- 
pools at La Jolla, California, in the mid 1940s and, since that time, the species 
has been recorded as present in the San Diego area (Limbaugh 1955; Quast 1968; 
Barry and Ehret 1993). 

The occurrence of the zebraperch in more northerly areas of the Southern Cal- 
ifornia Bight and north of Point Conception (34° 30’ N) appears to be linked to 
short-term periods of ocean warming associated with El Nifio conditions and to 
the sustained period of warming that occurred over the last two decades up to 
1998 (Table 1). Northerly range extensions of the species to Monterey Bay in 
1964 (Phillips 1965) and to the Klamath River estuary in 1985 and 1987-1988 
(Fritzsche et al. 1991) followed the respective El Nifio events of 1963 and 1982— 
1983. Records of zebraperch at King Harbor in Redondo Beach (Pondella 1997) 
and at Santa Cruz Island (Feder et al. 1974) in the early 1970s followed the 1972— 


' Current address: National Marine Fisheries Service, Hatfield Marine Science Center, Newport, 
Oregon 97365. 


170 


ZEBRAPERCH INCREASE IN SOUTHERN CALIFORNIA 171 


Table 1. Year and location where zebraperch, Hermosilla azurea, were sighted or captured in 
California waters north of La Jolla* and the year of the El Nifio event preceding the sighting or 
capture. 


Sighted 
(S) or 
Year of sighting Captured Year of 
or capture (C) Location El Nino event Reference 
1964 & Carlsbad 1963 Marine Vertebrates Col- 
33-05 N, IL Pls" W lection, Scripps Insti- 
tution of Oceanogra- 
phy (SIO 64-92) 
1964 C Monterey Bay 1963 Phillips (1965) 
36°36’ N, 121°53’ W 
1965 Cc Oxnard 1963 Fitch (1966) 
34°09’ N, 119°12' W 
early 1970s S Santa Cruz Island 1972-1973 Feder et al. (1974)** 
34°01’ N, 119°41' W 
1974-2001 s King Harbor, Redon- 1972-1973, Pondella (1997) D. Pon- 
do Beach 1982-1983, della, pers. comm. 
33°50’ N, 118°23"W 1991-1992 & 
1997-1998 
avo, 1978 & 1979 S Santa Catalina Island 1972-1973 DeMartini and Coyer 
33°26’ N, 118°30' W (1981) 
1985, 1987 & 1988 C Klamath River Estu- 1982—1983 Fritzsche et al. (1991) 
ary 
41°3 1A.N;. 124°05-5 W. 
1990 & 1996 S Santa Barbara Island 1991—1992 D. Richards, pers. 
33°29' N, 119°02’ W comm. 
1996 S Santa Barbara 1991-1992 S. Anderson, pers. 
34°25' N, 119°41’ W comm. 
1996 CG San Clemente Island 1991-1992 Sturm and Horn, current 
33, O04 N, 115°337 W. paper 
1997-1998 S&C Gaviota Pier, Santa 1997-1998 D. Kushner, pers. 
Barbara comm. 
34°28’ N, 120°13’ W 
1998-1999 S Coal Oil Point, Santa 1997-1998 D. Kushner, pers. 
Barbara comm. 


34°25’ N, 119°41' W 


* The Marine Vertebrates Collection at Scripps Institution of Oceanography also has 18 records 
containing H. azurea captured or observed in the La Jolla area with dates ranging from 1939 to 1969. 
** This paper did not list the year when zebraperch were sighted at Santa Cruz Island. 


1973 El Nifio warming interval. Sightings or captures of zebraperch in the Santa 
Barbara area and in the Channel Islands in the 1990s also seem to correspond to 
El Nifio events (Table 1) that were closely spaced in time and part of a sustained 
ocean warming trend during most of this decade (Smith 1995; Bograd et al. 2000). 
The aggregations of zebraperch, estimated in some cases at >100 individuals (D. 
Kushner, pers. comm.), seen in the Santa Barbara area in 1997, 1998 and 1999 
are indications of an abundant and established population. 

Further documentation of the responsiveness of the zebraperch to warmer tem- 
peratures and of its expanded distribution in southern California comes from ob- 
servations spanning key time intervals at specific locations. Zebraperch were com- 
monly observed in the warm-water effluent of the Pacific Gas and Electric 


172 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


(PG&E) steam-generating plant at Morro Bay north of Point Conception (Feder 
et al. 1974), apparently in the 1950s and 1960s. By the 1980s, however, the fish 
had disappeared from this otherwise cool-temperature locality based on interviews 
conducted by one of us (MHH in the late 1980s) with PG&E personnel and 
biologists at the California Department of Fish and Game office in Morro Bay. 
In contrast, the species has inhabited King Harbor in southern California consis- 
tently since 1974 (Pondella 1997; D. Pondella, pers. comm.). King Harbor has 
become a haven for warm-water fishes because of the elevated temperatures of 
the water discharged into the harbor by the Southern California Edison Redondo 
Beach Generating Station and because of its protective breakwaters (Stephens and 
Zerba 1981; Brooks 1987; Pondella 1997; Pondella et al. 1998). At San Clemente 
Island, Santa Catalina Island and upper Newport Bay, zebraperch were captured 
in recent years but not in earlier years even though in some cases similar collecting 
methods were used. In a gill net survey of the near-shore fish community at 
Wilson Cove, San Clemente Island, Horn (1977) collected no zebraperch in 1975 
or 1976, whereas we captured nine zebraperch (mean length 184.8 mm SL; range 
170—195 mm) at this location in October 1996 using the same gear in a one-hour 
set (unpublished data). Hobson et al. (1981) did not list zebraperch as one of the 
major near-shore fishes at Santa Catalina Island; however, beginning in the mid- 
1980s, zebraperch have been seen repeatedly at several shallow-water localities 
around the island (J. Cvitanovich, pers. comm.). Moreover, on numerous occa- 
sions from 1993 through 1998, we observed young-of-the-year fish (<75 mm SL) 
and collected large juvenile and adult fish (>200 mm SL) with spear gun and 
gill net at various inshore (<5 m) sites at the island (Sturm and Horn 1998; 
unpublished data). In an extensive multiple-gear sampling program conducted in 
upper Newport Bay in the late 1970s, Horn and Allen (1985) collected no zebra- 
perch. However, in the mid-1980s (Allen 1988) and throughout most of the 1990s 
(California Department of Fish and Game Bay-Estuary Near-Shore Ecosystem 
Survey [BENES], unpublished data; L. Allen, pers. comm.), zebraperch were 
captured routinely at gill net stations in the upper and lower bay. Finally, studies 
involving the distribution of zebraperch larvae reveal little about the response of 
the fish to temperature change except that the larvae occur in shallow, near-shore 
waters and have been identified only from samples taken south of Point Concep- 
tion—at the San Onofre Nuclear Generation Station (33°22'’ N) by Walker et al. 
(1987) from 1978-1980 surveys and in Santa Monica Bay (34°00’ N) by Stevens 
et al. (1989) from 1978 and 1981 CalCOFI surveys. 

Taken together, the available literature and unpublished observations, including 
our Own, indicate that the zebraperch responded differently to the short-term El 
Nino conditions of recent decades than to the sustained warming trend in the 
Southern California Bight that began in 1977 and extended through to 1994 
(Smith 1995) and beyond, culminating in a strong El Nifio event in 1997—1998 
(Lea and Rosenblatt 2000) and ending with a La Nifia condition in 1998—1999 
(Bograd et al. 2000). The zebraperch appeared to extend its range northward 
following an El Nifio event and then fail to establish a resident population in the 
new northern locality, in particular, Morro Bay, Monterey Bay or the Klamath 
River estuary. This record of extension and retreat is a common pattern that has 
been documented for other coastal fishes with warm-water affinities (e.g. Hubbs 
1948; Radovich 1961; Norris 1963; Fitch 1966; Bond 1985). On the other hand, 


ZEBRAPERCH INCREASE IN SOUTHERN CALIFORNIA 173 


under the persistent warming regime of the last two decades, the zebraperch ap- 
pears to have established itself widely as a resident, breeding species in the South- 
ern California Bight. The records and observations of recent years cited above 
provide support for this contention. Whether the zebraperch will persist as an 
established population in the Southern California Bight remains to be seen, but 
sightings of the species in 1999 at Santa Barbara (Table 1), in May 2000 at Santa 
Catalina Island (J. Cvitanovich, pers. comm.) and in September 2000 at Laguna 
Beach (K. Boyle, pers. comm.), all following a cool La Nifia period, suggest that 
it will continue to be a part of the ichthyofauna of the region. 


Acknowledgments 


We thank L. Allen, S. Anderson, D. Kushner, D. Pondella, D. Richards and C. 
Valle for supplying specimens or unpublished records of zebraperch captures and 
sightings. The gill net study we conducted at San Clemente Island in October 
1996 would not have been possible without the help of T. Gibson, S. Heid, A. 
Lowe, E. Lowe, S. Murray and O. Rivas. We are grateful to R. Lea for his 
valuable comments on an earlier version of the manuscript. 


Literature Cited 


Allen, L.G. 1988. Results of a two-year monitoring study on the fish populations in the restored, 
uppermost portion of Newport Bay, California, with emphasis on the impact of additional 
estuarine habitat on fisheries-related species. Final Rep., Contract, Nat. Mar. Fish. Serv., NOAA, 
La Jolla. 87 pp. 

Barry, J.P. and M.J. Ehret. 1993. Diet, food preference, and algal availability for fishes and crabs on 
intertidal reef communities in southern California. Environ. Biol. Fishes, 37:75—95. 

Bograd, S.J., RM. DiGiacomo, R. Durazo, T.L. Hayward, K.D. Hyrenbach, R.J. Lynn, A.W. Mantyla, 
FB. Schwing, W.J. Sydeman, T. Baumgartner, B. Lavaniegos, and C.S. Moore. 2000. The state 
of the California Current: 1999-2000: forward to a new regime? CalCOFI Rep., 41:26—52. 

Bond, C.E. 1985. Northward occurrence of the opaleye Girella nigricans, and the sharpnose seaperch, 
Phanerodon atripes. Calif. Fish & Game, 71:56-57. 

Brooks, A.J. 1987. Two species of Kyphosidae seen in King Harbor, Redondo Beach, California. Calif. 
Fish & Game, 73:49-50. 

De la Cruz-Aguero, J., E Galvan-Magania, L.A. Abitia-Cardenas, J. Rodriguez-Romero, and FJ. Gu- 
tiérrez-Sanchez. 1994. Systematic list of marine fishes from Bahia Magdalena, Baja California 
Sur (Mexico). Ciencas Marinas, 20:17-31. 

DeMartini, E.E. and Coyer, J.A. 1981. Cleaning and scale eating in juveniles of the kyphosid fishes, 
Hermosilla azurea and Girella nigricans. Copeia, 1981:785-789. 

Eschmeyer, W.N., E.S. Herald, and H. Hammann. 1983. A field guide to Pacific Coast fishes of North 
America. Peterson Field Guide Series. Houghton Mifflin Company, xiv + 336 pp. 

Feder, H.M., C.H. Turner, and C. Limbaugh. 1974. Observations on fishes associated with kelp beds 
in southern California. Calif. Dept. Fish & Game, Fish Bull. 160. 144 pp. 

Fitch, J.E. 1966. A marine catfish, Bagre panamensis (Gill), added to the fauna of California, and 
other anomalous fish occurrences off southern California in 1965. Calif. Fish & Game, 52:214- 
2h. 

Fritzsche, R., G. Aasen, L. Everest, P. Petros, and S. Shimek. 1991. Northern range extension for the 
zebraperch (Hermosilla azurea, Jenkins and Evermann). Calif. Fish & Game, 77:106—107. 

Hobson, E.S., W.N. McFarland and J.R. Chess. 1981. Crepuscular and nocturnal activities of Califor- 
nian nearshore fishes, with consideration of their scotopic visual pigments and the photic en- 
vironment. Fish. Bull., 79: 1-30. 

Horn, M.H. 1977. Abundance and species composition of fishes. Pp. 41-46 in Influence of domestic 
wastes on the structure and energetics of intertidal communities near Wilson Cove, San Cle- 
mente Island (M. M. Littler and S. N. Murray, eds.), Calif. Water Resources Ctr., Contract No. 
164. 


174 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Horn, M.H. and L.G. Allen. 1985. Fish community ecology in southern California bays and estuaries. 
Pp. 169—170 in Fish community ecology in estuaries and coastal lagoons, towards an ecosystem 
integration (A. Yafez-Arancibia, ed.). UNAM Press, Mexico. 

Hubbs, C.L. 1948. Changes in the fish fauna of western North America correlated with changes in 
ocean temperature. J. Mar. Res., 7:459-482. 

Jenkins, O.P. and B.W. Evermann. 1889. Description of eighteen new species of fishes from the Gulf 
of California. Proc. U. S. Nat. Mus., pp. 137-158. 

Lea, R.N. and R.H. Rosenblatt. 2000. Observations on fishes associated with the 1997—98 El Nifio 
off California. CalCOFI Rep., 41:117-129. 

Limbaugh, C. 1955. Fish life in the kelp beds and the effects of kelp harvesting. Univ. Calif. Inst. 
Mar. Res., IMR Ref. No. 55-9. 158 pp. 

Lockley, A.S. 1952. Description of the young of the kyphosid fish, Hermosilla azurea, from California. 
Copeia, 1952:42. 

Miller, D.J. and R.N. Lea. 1972. Guide to the coastal marine fishes of California. Calif. Dept. Fish & 
Game, Fish Bull. 157. 249 pp. 

Norris, K.S. 1963. The functions of temperature in the ecology of the percoid fish Girella nigricans 
(Ayres). Ecol. Monogr., 33:23-62. 

Phillips, J.B. 1965. Northern range extension for the zebraperch, Hermosilla azurea Jenkins and Ev- 
ermann. Calif. Fish & Game, 51:55-56. 

Pondella, D.J. 1997. The first occurrence of the Panamic sergeant major, Abudefduf troschelii (Po- 
macentridae), in California. Calif. Fish & Game, 83:84-86. 

Pondella, D.J. R. Snodgrass, M.T. Craig, and H. Khim. 1998. Re-occurrence of the threebanded but- 
terflyfish, Chaetodon humeralis (Chaetodontidae), with notes on its distribution in Southern 
California. Bull. So. Calif. Acad. Sci., 97:121-124. 

Quast, J.C. 1968. Observations on the food of the kelp-bed fishes. Pp. 109—142 in Utilization of kelp- 
bed resources in southern California (W.J. North and C.L. Hubbs, eds.). Calif. Dept. Fish & 
Game, Fish. Bull. 139. 

Radovich, J. 1961. Relationships of some marine organisms of the Northeast Pacific to water temper- 
atures. Calif. Dept. Fish & Game, Fish Bull. 112. 62 pp. 

Rodriguez-Romero, J., L.A. Abitia-Cardenas, EK Galvan-Maganfa, and H. Chavez-Ramos. 1994. Com- 
position, abundance and specific richness of fishes from Concepcion Bay, Baja California Sur, 
Mexico. Ciencias Marinas, 20:321-350. 

Smith, PE. 1995. A warm decade in the Southern California Bight. CalCOFI Rep., 36:120-126. 

Stephens, J.S., Jr. and K. Zerba. 1981. Factors affecting fish diversity on a temperate reef. Environ. 
Biol. Fishes, 6:111-121. 

Stevens, E.G., W. Watson, and H.G. Moser. 1989. Development and distribution of larvae and pelagic 
juveniles of three kyphosid fishes (Girella nigricans, Medialuna californiensis, and Hermosilla 
azurea) off California and Baja California. Fish. Bull., 87:745-768. 

Sturm, E.A. and M.H. Horn. 1998. Food habits, gut morphology and pH, and assimilation efficiency 
of the zebraperch Hermosilla azurea, an herbivorous kyphosid fish of temperate marine waters. 
Mar. Biol., 132:515-522. 

Thomson, D.A., L.T. Findley, and A. N. Kerstitch. 2000. Reef fishes of the Sea of Cortez: the rocky- 
shore fishes of the Gulf of California. Rev. edition. Univ. Texas Press, xx + 353 pp. 

Walker, H.J., W. Watson, and A.M. Barnett. 1987. Seasonal occurrence of larval fishes in the nearshore 
Southern California Bight off San Onofre, California. Estuar. Coast. Shelf Sci., 25:91-109. 


Accepted for publication 29 January Z001. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 175-185 
© Southern California Academy of Sciences, 2001 


New and Unusual Reef Fish Discovered at the California Channel 
Islands During the 1997-1998 El Nifio 


Daniel V. Richards! and John M. Engle? 


‘Channel Islands National Park, 1901 Spinnaker Drive, Ventura, California, 
93001, Phone: 805-658-5760 Fax: 805-658-5798 Email: dan_richards @nps.gov 
?Tatman Foundation and Marine Science Institute, University of California, 
Santa Barbara, California 93106 


Abstract.—Observations of warm-water species rarely seen in California are often 
associated with El Nifo Southern Oscillations (ENSO). Here we document new 
occurrences of tropical reef fish at the California Channel Islands. In 1998, three 
species, new to California were recorded at San Clemente or Santa Catalina is- 
lands (Apogon pacificus, Nicholsina denticulata, and Chromis alta). New island 
records of six tropical species (Azurina hirundo, Apogon guadalupensis, Scor- 
paenodes xyris, Chaenopsis alepidota, Chaetodon falcifer, and Chilomycterus re- 
ticulatus) from the northern Channel Islands extend the northern range of these 
species. Several of these species seem well established and appeared to be repro- 
ductive. Others diminished during the cold water period in 1999. 


The California Channel Islands are bathed in the mix of currents of the southern 
California Bight, creating a transition zone with cold temperate waters around 
San Miguel and Santa Rosa islands in the northwest to warm temperate water 
around Santa Catalina and San Clemente islands in the southeast (Fig. 1). The 
location of the islands within this transition zone creates a shift from a northern 
species assemblage to a southern species assemblage over a relatively short dis- 
tance (Cross and Allen 1993; Engle 1993). 

The 1997-1998 El Nifio was one of the strongest on record with some of the 
highest temperature anomalies ever recorded (McPhaden 1999). Above normal 
sea temperatures defined the El Nino from May 1997 to August 1998 (NOAA 
CoastWatch Bulletins). The peak sea-surface temperatures of 1998 capped almost 
a decade of above average temperatures in Southern California and the Eastern 
Pacific. Late 1998 and 1999 saw a reverse of the warm conditions as La Nifia 
conditions prevailed. 

With the warm waters of E] Nino we saw a number of tropical and subtropical 
species at the islands. Engle and Richards (2001) report new and unusual inver- 
tebrate sightings in a companion paper. The fish sightings we report here include 
tropical species seen for the first time at the islands and southern species that 
appear to be establishing themselves farther north at the colder islands. Large El 
Nino events can almost be tracked by following new records of tropical fishes 
and invertebrates reported in the literature. Increased sightings followed El Nino 
events around 1959 (Radovich 1961; Strachen et al. 1968), 1983 (Lea and Vojk- 
ovich 1985; Lea and Rosenblatt 1992), 1992, (Lea and McAlary 1994) and now 
1998 (this volume; Lea and Rosenblatt 2000). 


175 


176 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


121° “Js aag® EP ear sian 118° 5 117° 


nd pais Bia Nag eee et wnt ey see Kee Aes f ss & i ae 
anta Barbara | se) ots ot ei asa) Cen rg Pe 


Point \ 


Conception f BRP a LP te Beata ae eR Geet opp 
(WVentural iisfih ee ois SES Ts 

Miguel Santa Cruz 

34° er cn hag 


Santa Rosa 


Santa Barbara 


ra 


San & Santa Catalina 
Nicolas 


San Clemente 


121° 120° 119° 118° 


Fig. 1. The California Channel Islands. 


Methods 


The eight Channel Islands off the southern California coast have been surveyed 
annually since 1980 in cooperative studies by the Channel Islands National Park 
(CINP) kelp forest monitoring program or the Channel Islands Research Program 
(CIRP) through support from the Tatman Foundation. CINP divers regularly mon- 
itor 16 fixed sites as part of the kelp forest monitoring program and population 
dynamics of invertebrate, algal, and fish species are measured. Fishes are quan- 
tified in visual transects and Roving Diver Fish Counts twice each year on dif- 
ferent dates (Davis et al. 1999). CIRP divers use Roving Dive Fish Counts, gen- 
eral surveys and species lists at a broader spectrum of sites to provide an overview 
of the island ecosystems. Both programs use a general search method to note 
species in the field, often with several divers contributing. Unusual fishes were 
observed by multiple divers and photographed whenever possible. Collections 
were not made. Roving diver fish counts were developed as a standard means of 
quantifying relative abundance of fish species. 


New Species Records for the California Channel Islands 


Family Apogonidae 
Apogon pacificus (Herre 1935), pink cardinalfish 


Previous reported range.—Islas San Benito to Peru (Thomson et al. 1987). La 
Jolla Canyon, California (Lea and Rosenblatt 2000). 

Remarks.—A single pink cardinalfish, Apogon pacificus, was observed and pho- 
tographed (R. Herrmann, D. Richards) (Fig. 2) on 13 September 1998 in Bat Ray 
Cove on the southeast tip of San Clemente Island (32°49.27' N, 118° 21.03’ W). 


NEW AND UNUSUAL REEF FISH AT CHANNEL ISLANDS 177 


> 


. 
é 


: i 
vo 
a , 


at 


Fig. 2. Pink cardinalfish, Apogon pacificus at Bat Ray Cove San Clemente Island, 13 September 
1998. Photo by Richard Herrmann. 


The pink cardinalfish was accompanied by at least 15 Guadalupe cardinalfish, A. 
guadalupensis, in a small crevice at a depth of about 10 m. The smaller size and 
vertical bar set this fish off from the Guadalupe cardinalfish. The larger Guadalupe 
cardinalfish seemed to dominate the pink cardinalfish forcing it to the outer open- 
ing of the crevice. An individual pink cardinalfish was observed at North Coro- 
nado Island, Baja California, Mexico, 11 November 1998 (E. Hessel, pers. 
comm.). On 25 May 1998, Robert Snodgrass and Hugh Khim observed several 
pink cardinalfish in La Jolla Canyon, and in May 1998, several were collected 


by McConnaughey and Zerokski from the same location (Lea and Rosenblatt 
2000). 


Family Scaridae 
Nicholsina denticulata (Evermann and Radcliffe 1917), loosetooth parrotfish 


Previous reported range: Bahia Magdalena to Peru including the Gulf of Cal- 
ifornia and the Galapagos Islands (Thomson et al. 1987). 

Remarks.—Erik Erickson photographed both male and female loosetooth par- 
rotfish, Nicholsina denticulata, off Pebbly Beach and Casino Point, Santa Catalina 
Island in May 1999 (Lea et al. 2001). This species was observed at the San Benito 
Islands, Baja California, Mexico in August 1998 (R. N. Lea and D. Richards, 
pers obs.) and photographed at Guadalupe Island, Baja California, Mexico in July 
2000. Loosetooth parrotfish are well adapted to kelp beds. The coloration and 
shape allow it to be very cryptic, especially among Eisenia arborea blades. 


178 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


s 
o 


>. ’ at _.. 
rt 4 ye. . 
a Ye ise ; 
5 a a" > yy - 
aid i, y "Se oe of 
wt 2 4 «A 
? ‘ , 


4 andi 
ware > Nik 
oe ~ ~—  - 
q b-W 7 
= . « * 


wis 


Fig. 3. Silverstripe chromis, Chromis alta at Casino Point, Santa Catalina Island, November 1998. 
Photo by Lorraine Sadler. 


Family Pomacentridae 
Chromis alta Greenfield and Woods 1980, silverstripe chromis 


Previous reported range.—Thetis Bank, Mexico to Gulf of California and the 
Galapagos Islands (Greenfield and Woods 1980). 

Remarks.—In November 1998, Erik Erickson and Lorraine Sadler observed 
and photographed an immature damselfish, around Casino Point Dive Park, Santa 
Catalina Island at a depth of 12-14 m. An additional sighting was made at a 
depth of 22 m at the SUEJAC in the northeast corner of the underwater park of 
possibly a second individual. Both fish were approximately 8—10 cm long. The 
sightings were originally reported as Cortez damselfish, Stegastes rectifraenum, 
however subsequent analysis of photos (Fig. 3) show the fish possessing blue 
striping consistent with juveniles of Chromis alta and lacking the dorsal spot 
generally observed on S. rectifraenum. Silverstripe chromis are also known from 
Islas San Benito, (R. N. Lea, collections made 1985—1990) and Isla Guadalupe 
(D. Richards, photos August 2000). 


Range Expansions-New Island Records 


Family Scorpaenidae 
Scorpaenodes xyris (Jordan and Gilbert 1882), rainbow scorpionfish 


Previous reported range.—Southern California to Peru including the Gulf of 
California and the Galapagos Islands. (Strachen et al. 1968). 

Remarks.—Rainbow scorpionfish, Scorpaenodes xyris, like Guadalupe cardi- 
nalfish, is a shy crevice-dwelling species not commonly found at the islands. New 


NEW AND UNUSUAL REEF FISH AT CHANNEL ISLANDS 179 


island records for rainbow scorpionfish were noted with one individual found at 
Landing Cove, Anacapa Island (34°00.70 N, 119°21.71 W) on 25 September 1998 
and one individual found in the vicinity of Cave Canyon, Santa Barbara Island, 
(33°28.68 N, 119° 01.56 W) 9 August 2000. Both juvenile and adult rainbow 
scorpionfish were commonly found at various sites around San Clemente Island 
and at several locations on Santa Catalina Island in both 1997 and 1998. Rainbow 
scorpionfish were very common at San Clemente Island in August 2000 with well 
over 100 found on a single dive at Bat Ray Cove. Smaller numbers were seen in 
Northwest Harbor. First collected in California in 1966 from San Clemente Island 
and 1967 from Santa Catalina Island (Strachan et al. 1968), this species now 
seems to be well established and spreading farther north. 


Family Apogonidae 
Apogon guadalupensis (Osburn and Nichols 1916), Guadalupe cardinalfish 


Previous reported range.—Guadalupe Island to San Clemente Island (Hobson 
1972) Islas San Benito (R. N. Lea and D. Richards pers. obs., August 1995) 

Remarks.—Guadalupe cardinalfish, Apogon guadalupensis, was first recorded 
in California in 1967 (Hobson 1969) from the southern end of San Clemente 
Island. Most of these cardinalfish were small individuals approximately 50 mm 
in length. In 1971, an individual Guadalupe cardinalfish, about 100 mm long, was 
found during a night dive (Hobson 1972). Until 1997, sightings were remarkable. 
Throughout 1997 and especially 1998; A. guadalupensis were commonly found 
at various sites around San Clemente Island. We recorded Guadalupe cardinalfish 
as rare when we first found them at Seal Cove on the northwest side of San 
Clemente Island in June 1997. A year later we found 30 to 40 Guadalupe car- 
dinalfish in Seal Cove. In 1998, we were finding more than 100 individuals on 
dives in Pyramid Cove, Smugglers Cove, and Bat Ray Cove where the small 
groups were spilling out of the rock cracks into open but protected spaces usually 
under an overhang. These fish were approximately 100—120 mm long. Hundreds 
were observed at Bat Ray Cove, down to a depth of at least 16 m. Male cardi- 
nalfish brood the eggs in their mouths during incubation and many brooding 
individuals were observed. Divers considered Guadalupe cardinalfish common 
and brooding males were observed at Bat Ray Cove in August 2000. 

At least 20 Guadalupe cardinalfish were found in crevices along the eastern 
coast of Santa Barbara Island near Cave Canyon on 16 October 1997. Individuals 
were approximately 60—80 mm. This was the first record for Guadalupe cardi- 
nalfish at Santa Barbara Island. In 1998, Guadalupe cardinalfish were again found 
near Cave Canyon, Santa Barbara Island. Individuals were noticeably larger than 
in 1997, approximately 100 mm, and were apparently brooding eggs. No cardi- 
nalfish were found during a brief survey in 1999. Juvenile rockfish were often 
occupying the crevices where cardinalfish had been seen the year before. One 
individual, approximately 100 mm long, was found in the same vicinity during a 
dive on 9 August 2000. Another new island record occurred when two Guadalupe 
cardinalfish were found in Anacapa Landing Cove in July and again in August 
and September 1998 (D. Kushner et al. 1999). 


180 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Family Chaetodontidae 
Chaetodon falcifer Hubbs and Rechnitzer 1958, scythe butterflyfish 


Previous reported range.—Southern California (Santa Catalina Island) to Cabo 
San Lucus and the Galapagos Islands (Thomson et al. 1987). 

Remarks.—Scythe butterflyfish, Chaetodon falcifer, have been known from 
Santa Catalina Island since 1965 (Freihofer 1966) and from La Jolla since 1970 
(Kiwala and McConnaughey 1971). One individual was observed and photo- 
graphed at San Pedro Point, on the east end of Santa Cruz Island on 13 August 
1997 during a CIRP cruise. This fish was occupying a small cave at a depth of 
7.5 m. A scythe butterflyfish, possibly the same individual, had been seen nearby 
several months earlier in deeper water (G. Gross, California Dept. of Fish and 
Game, pers. comm.). We have been unable to relocate the fish on repeated visits 
to the area. 


Family Pomacentridae 
Azurina hirundo Jordan and McGregor [in Jordan and Evermann 1898], 
swallow damselfish 


Previous reported range.—Islas Revillagigedo to Santa Catalina Island (Lea 
and McAlary 1994). 

Remarks.—Swallow damselfish, Azurina hirundo, sightings, while previously 
reported from the southern Channel Islands (Lea and McAlary 1994), are very 
rare. Two to four individual swallow damselfish were observed and photographed 
by Kathy deWet-Oleson in the summer of 1998 at Landing Cove, Anacapa Island. 
This is the first record of the species at Anacapa Island. A number of sightings 
were made in 1998 at the West End and Casino Point (E. Erickson, L. Sadler 
pers. comm.) on Santa Catalina Island. We observed a single swallow damselfish 
off Dune Point and 10—20 individuals at a depth of 10-13 m in Bat Ray Cove, 
San Clemente Island in September 1998. Two swallow damselfish were present 
at Bat Ray Cove on 13 August 2000. This species was also present at North 
Coronado Island on 5 June 1998 (R. Herrmann pers. comm.) and 11 November 
1998. Typically these swallow damselfish were observed swimming with schools 
of blacksmith, Chromis punctipinnis. 


Family Chaenopsidae 
Chaenopsis alepidota (Gilbert 1890), orangethroat pikeblenny 


Previous reported range.—Gulf of California (Thomson et al. 1987), Anacapa 
Island to Banderas Bay, Mexico (Stephans et al 1989). 

Remarks.—Orangethroat pikeblenny, Chaenopsis alepidota, is well known 
from San Clemente and Santa Catalina Islands with a single population at King 
Harbor, Redondo Beach (Stephans et al. 1989). Orangethroat pikeblennies have 
been observed at Anacapa Island in low numbers since the 1983 El Nino (J. 
Engle, pers. obs.). In 1997, we observed them for the first time at Scorpion 
Anchorage, Santa Cruz Island (34°02.77 N, 119°32.81 W). Orangethroat pike- 
blennies were observed at Pelican Bay, Santa Cruz Island (34° 01.67 N, 119°42.24 
W) on 12 May 1999 (D. Kushner, pers. comm.) and a juvenile was observed at 
Willow Cove, Santa Cruz Island in 1998 (J. Engle, pers. obs.) Courting males 
were common at Anacapa Island in August 1998, displaying above the Chaetop- 
terous variopedatus worm tubes that they inhabited. 


NEW AND UNUSUAL REEF FISH AT CHANNEL ISLANDS 18] 


Family Diodontidae 
Chilomycterus reticulatus Linnaeus 1758, spotfin burrfish 


Previous reported range.—Southern California to the Galapagos Islands, Ha- 
waii and Japan (Lea 1998). 

Remarks.—Spotfin burrfish, Chilomycterus reticulatus, is another visitor re- 
corded during previous El Nino events. First recorded in California in 1891 near 
San Pedro, specimens were collected in 1959 and 1982 (Lea and Vojkovich 1985), 
and observed in 1997 (SCMI 2000) off the southern California Mainland. One 
specimen of spotfin burrfish was found 3 September 1992, by CINP divers during 
a previous El Nino. The fish was captured by hand over a sand bottom in a depth 
of approximately 12 m off Arch Point, Santa Barbara Island (33°28.65 N, 
119°01.73 W). This fish was photographed and measured (230 mm total length) 
before being released at the same location. 


Other Observations—Increased Sightings 


A number of southern fish species have been occasionally recorded at the Chan- 
nel Islands or along the southern California mainland. The frequency of occur- 
rence for several fish increased following the 1997-1998 El Nino. 

Two juvenile California morays, Gymnothorax mordax (Ayres 1859), approx- 
imately 30—45 cm, were observed at Santa Catalina Island near Pumpernickel 
Cove during a CIRP cruise on 9 October 1999. California morays are rare to 
locally common in the Channel Islands and range from Magdalena Bay, Baja 
Calif. Mexico, to Pt. Conception (Miller and Lea 1972). Juveniles are rarely seen, 
however. 

Juvenile California lizardfish, Synodus lucioceps, (Ayres 1855), were observed 
as abundant at sites along northeast Santa Cruz Island in August 1998. Ranging 
as far north as Puget Sound (Gonyea 1985), these fish are generally uncommon 
at the Channel Islands. We rarely see these fish except at deeper depths on silty 
bottoms and have never seen juveniles before. In 1998, we observed hundreds of 
juveniles (100-150 mm) over shallow (5-15 m) soft bottoms, some apparently 
feeding on mysids. 

Purple brotula, Oligopus diagrammus (Heller and Snodgrass 1903), was first 
recorded in California, at San Clemente Island in 1966 (Strachan et al. 1968). 
During June 1997, and June and September 1998 cruises to San Clemente Island, 
purple brotula were found on several dives, mostly around Pyramid Head. Cabrillo 
Marine Aquarium divers (SCMI 2000) also reported it from Santa Catalina Island. 

Mexican scad, Decapterus scombrinus (Valenciennes 1846), were observed at 
Bat Ray Cove, San Clemente Island (13 August 2000), Ship Rock, Santa Catalina 
Island (8 October and 18 November 1999), and Prince Island, San Miguel Island 
(15 November 1998) Islands. While ranging to at least central California occa- 
sionally (Miller and Lea 1972), these fish are uncommon in California. A yellow- 
ish belly, a finlet, and less pronounced lateral line arch distinguish Mexican scad 
from jack mackerel, Trachurus symmetricus. 

Young-of-the-year garibaldi, Hypsypops rubicundus (Girard 1854), were ob- 
served at Santa Rosa Island in 1998 during a CINP cruise. Adult garibaldi are 
uncommon around Santa Rosa and this is our first record of a juvenile there. 
Occurrences of juvenile California sheephead, Semiscossyphus pulcher (Ayres 


182 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 1. Previous and new (1997-1998) records of tropical fishes at the California Channel Islands. 
P = previous and N = new. (1997-1998 El Nino). 


San Santa Santa 
Cle- Cata- Bar- Anaca- Santa 


mente lina bara pa Cruz 
Apogon pacificus pink cardinalfish N 
Chromis alta silverstreak chromis N 
Nicholsina denticulata loosetooth parrotfish N 
Apogon guadalupensis Guadalupe cardinalfish Pp Pp N N 
Scorpaenodes xyris rainbow scorpionfish P P N N 
Azurina hirundo swallow damselfish P Pr N 
Chaetodon falcifer scythe butterflyfish P F N 
Chaenopsis alepidota orangethroated pikeblenny P P P N 


1854), and rock wrasse, Halichoeres semicinctus (Ayres, 1859) were common at 
all islands. Juveniles of both species are rare to uncommon most years. California 
sheephead are known to recruit during El Ninos (Cowan 1985). 

Finescale triggerfish, Balistes polylepis Steindachner 1876, range from Chile to 
Pt. St. George, Del Norte Co. (Miller and Lea 1972), though are generally un- 
common in southern California. Finescale triggerfish are reported from time to 
time at the islands and adults were observed on numerous occasions at Anacapa 
Island (Kathy deWet-Oleson, pers. comm.) during 1997-1998, mostly along the 
north side of West Anacapa Island. Finescale triggerfish were observed at North 
Coronado Island on 11 November 1998. 


Discussion 


During El Nino events, there is a lessening of the equatorward-flowing Cali- 
fornia Current and thus an increase in the northward transport (Hickey 1993). 
This change in current pattern of the Southern California Bight and the warm 
waters of El Nifio provide the means for southern species to find their way to the 
Channel Islands. Some species may find refugia at the islands where they are able 
to persist. 

Three tropical reef fishes (Apogon pacificus, Nicholsina denticulata, and 
Chromis alta), new to California in 1998, were observed at the Channel Islands. 
Five species previously recorded at one or more of the southern Channel Islands 
were documented at more northerly islands since 1997 (Table 1). An additional 
species, Chilomycterus reticulatus, was documented for the first time at the Chan- 
nel Islands in 1992. 

Santa Catalina Island typically has the warmest temperature regime for the 
Channel Islands (Engle and Richards 2001). As such we might expect the most 
tropical species records to occur there and indeed they do. The popularity of Santa 
Catalina Island dive sites and the fact that they are readily accessible by the 
resident divers on the island also lend the island to a greater number of sightings 
compared to other islands. 

The south end of San Clemente Island consistently has been a good area for 
tropical fish. Large numbers of Guadalupe cardinalfish and rainbow scorpionfish 
along with the only sighting of pink cardinalfish and a moderate number of swal- 
low damselfish were found in Bat Ray Cove just north of Pyramid Head. A 


NEW AND UNUSUAL REEF FISH AT CHANNEL ISLANDS 183 


number of tropical invertebrate species were observed in this same cove (Engle 
and Richards 2001) as were a number of warm-water algae including Sporochnus 
pedunculatus, Spyridia filamentosa, Cutlaria cylindrica, Chondria californica, 
and Liagora californica. 

The numbers of juvenile rainbow scorpionfish and the brooding males of Gua- 
dalupe cardinalfish seem to indicate that some of these species have become well 
established. La Nifia conditions may set back populations temporarily, as we saw 
with the decline of Guadalupe cardinalfish at Santa Barbara Island in 1999, but 
individuals can survive. Individuals of both Guadalupe cardinalfish and rainbow 
scorpionfish were observed in August 2000 at Santa Barbara Island. The first 
California records of Guadalupe cardinalfish were observed in the late 1960s at 
San Clemente Island and there was a subsequent decline by the early 1970s. In 
1998, we were noting Guadalupe cardinalfish at San Clemente Island as common 
(10-100 individuals per dive) on fish counts, and though slightly less numerous, 
were still common during August 2000. 

Recruitment for some species appears to be limited at the northern islands. The 
numbers of young-of-the-year sheephead, rock wrasse, and garibaldi observed in 
1998 would seem to indicate increased recruitment during El Nifio events. The 
increased recruitment may affect a species’ ability to sustain itself on the margins 
of its range. 

Shifts in the ichthyofauna associated with El Nifio and La Nifia have been 
documented before (see Cross and Allen 1993). The number of new species doc- 
umented in southern California in this decade seems somewhat unprecedented 
however (various authors, this volume). The abnormally warm water throughout 
the period from 1992 through 1998 may have established conditions for more 
than just the occasional individual to expand its range and perhaps allowed the 
establishment of new colony populations. 


Acknowledgments 


Many individuals participated in the surveys that provided new records for 
subtropical fishes at the Channel Islands We thank the Channel Islands Research 
Program and the Channel Islands National Park research vessel crews and divers 
for their assistance, especially David Kushner for directing the CINP Kelp Forest 
Monitoring Program surveys. We thank Erik Erickson, Lorraine Sadler, Eric Hes- 
sell, George Gross and Kathy deWet-Oleson, Ventura, CA for providing additional 
records. Robert Lea, provided valuable taxonomic and biogeographic information. 
The Tatman Foundation (CIRP) and the National Park Service (CINP) sponsored 
the surveys. Additional observations were made during a research cruise spon- 
sored by the U. S. Geological Survey, Biological Resources Division and the 
Love Lab (UCSB). 


Literature Cited 


Ayres, W. O. 1854. [Description of new fishes from California.] (Minutes of Academy meetings were 
printed in ‘‘The Pacific’? (a newspaper) shortly after each meeting. New species accounts date 
to publication in The Pacific. Dates of publication are given in each species account). The 
Pacific (PACIFIC), v. 3 and 4 (thru no. 6). 

Ayres, W. O. 1855. [Description of new species of California fishes.] A number of short notices read 
before the Society at several meetings in 1855. Proc. Calif. Acad. Sci. (Ser.1), v. 1 (pt 1): 23- 
Pie 


184 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Ayres, W. O. 1859. [On new fishes of the Californian coast]. Proc. Calif. Acad. Sci. (Ser.1) v. 2 (1858-— 
1862): 25-32. 

Cowan, R. J. 1985. Large Scale patterns of recruitment by the labrid Semicossyphus pulcher, causes 
and implications. J. Mar. res. 43(3):719-742. 

Cross, J.N. and L.G. Allen. 1993. Fishes. Pp. 459-540 in Ecology of the Southern California Bight 
(M.D. Dailey, D.J. Reish, and J.W. Anderson, eds.) University of California Press, xvi + 926 
PP. 

Davis, G.E., D.J. Kushner, J.M. Mondragon, J.E. Morgan, D. Lerma, and D. Richards. 1999. Kelp 
Forest Monitoring Handbook, Volume 1: Sampling Protocol. Channel Islands National Park. 
Ventura, California. 55 pp. 

Engle, J. M. 1993. Distributional patterns of rocky subtidal fishes around the California Islands. Pp. 
475—484 in Third California Islands Symposium: recent advances in research on the California 
Islands (EK G. Hochberg, ed.), Santa Barbara Museum of Natural History, xiii + 661 pp. 

Engle, J. M. and D. V. Richards. 2001. New and unusual marine invertebrates discovered at the 
California Channel Islands during the 1997-1998 El Nino. Bull. So. Cal. Acad. Sci. 100: 186— 
198. 

Evermann, B. W. and L. Radcliffe. 1917. The fishes of the west coast of Peru and the Titicaca Basin. 
Bull. U. S. Nat. Mus., 95:1—166. 

Freihofer, W. C. 1966. New distributional records of the butterflyfish Chaetodon falcifer. Stanford Ich. 
Bull. 8(3): 207. 

Gilbert, C. H. 1890. A preliminary report on the fishes collected by the steamer Albatross on the 
Pacific coast of North America during the year 1889, with descriptions of twelve new genera 
and ninety-two new species. Proc. U. S. Natl. Mus., | July, v. 13 (no.797):49-126. 

Girard, C. EK 1854. Observations upon a collection of fishes made on the Pacific coast of the United 
States, by Lieut. W. P. Trowbridge, U. S. A., for the museum of the Smithsonian Institution. 
Proc. Acad. Nat. Sci. Phila. 7(no 4): 142-156. 

Greenfield, David W. and Loren P. Woods. 1980. Review of the deep-bodied species of Chromis 
(Pisces: Pomacentridae) from the Eastern Pacific, with descriptions of three new species. Copeia 
(4): 626-641. 

Gonyea, G. P. 1985. Occurrence of a juvenile California lizardfish, Synodus lucioceps, in Washington 
waters. Calif. Fish and Game 71(3):188. 

Heller, E. and R. E. Snodgrass. 1903. Papers from the Hopkins Stanford Galapagos expedition, 1898— 
1899. XV. New Fishes. Proc. Washington Acad. Sci., 5:189—229. 

Herre, A. W. C. T. 1935. New fishes obtained by the Crane Pacific expedition. Field Mus. Nat. Hist. 
Publ. Zool. Ser., 15 Feb., v. 18(no. 12):383—438. 

Hickey, B. M., 1993. Physical oceanography. Pp. 19-70 in Ecology of the Southern California Bight 
(M.D. Dailey, D.J. Reish, and J.W. Anderson, eds.) University of California Press, xvi + 926 
PP- 

Hobson, E.S. 1969. First California record of the Guadalupe cardinalfish, Apogon guadalupensis (Os- 
burn and Nichols), Calif. Fish and Game, 55(2):149—-151. 

Hobson, E.S. 1972. The survival of Guadalupe cardinalfish Apogon guadalupensis at San Clemente 
Island. Calif. Fish and Game 58(1): 68—69. 

Hubbs, C. L. and A. B. Rechnitzer. 1958. A new fish, Chaetodon falcifer from Guadalupe Island, Baja 
California, with notes on related species. Proc. California Acad. Sci., Ser. 4 29(8): 272-313. 

Jordan, D. S. and B. W. Evermann. 1898. The fishes of North and middle America. U. S. Natl. Mus. 
Bull. (47): 1241-2183. 

Jordan, D. S. and C. H. Gilbert. 1882. Catalogue of the fishes collected by Mr. John Xantus at Cape 
San Lucas, which now are in the United States National Museum, with descriptions of eight 
new species. Proc. U. S. Natl. Mus., 16 Sept., v. 5(no. 290): 353-371. 

Kiwala, R. S. and R. R. McConnaughey. 1971. A second record of the scythe butterflyfish, Chetodon 
falcifer, from California. California Fish and Game, 57(3): 217-218. 

Kushner, D. J., D. Lerma, S. Alesandrini, and J. Shaffer. 1999. Kelp Forest Monitoring 1998 Annual 
Report. Channel Islands National Park, Ventura California. 68 pp. 

Lea, R. N. 1998. The spotfin burrfish—an infrequent visitor. Tidelines 18(1):8. 

Lea, R. N., E. D. Erikson, K. Boyle and R. Given. 2001. Occurrence of the loosetooth parrotfish, 
Nicholsina denticulata (Scaridae), from Santa Catalina Island, California. Bull. So. Cal. Acad. 
Sci. 100: 167-169. 


NEW AND UNUSUAL REEF FISH AT CHANNEL ISLANDS 185 


Lea, R. N. and EK McAlary. 1994. Occurrence of the swallow damselfish, Azurina hirundo, from islands 
off southern California. Bull. So. Cal. Acad. Sci., 93(1):42—44. 

Lea, R. N. and R. H. Rosenblatt. 1992. The Cortez grunt (Haemulon flaviguttatum) recorded from 
two embayments in southern California. Calif. Fish and Game. 78(4):163—165. 

Lea, R. N. and R. H. Rosenblatt. 2000. Observations on fishes associated with the 1997—98 El Nifio 
off California. CalCOFI Reports, Vol. 41:117—129. 

Lea, R. N. and M. Vojkovich. 1985. Record of the Pacific Burrfish from Southern California. Bull. 
Southern California Acad. Sci. 84(1): 46—47. 

Linnaeus, C. 1758. Systema Naturae, Ed. X. (Systema naturae per regna tria naturae, secundum classes, 
ordines, genera, species, cum characteribus, differentiis, synonymis, Locis. Tomusl. Editio de- 
cima, reformata.) Holmaiae. Systema Nat. ed. 10, 1 Jan., v.1: i-ii+ 1-824. 

McPhaden, M. J. 1999. Genesis and Evolution of the 1997-98 El Nifio. Science: 283:950—954. 

Miller, D. J. and R. N. Lea. 1972. Guide to the Coastal Marine Fishes of California. Department of 
Fish and Game, Fish Bulletin, No. 157, 235 pp. 

Osburn, R. C. and J. T. Nichols. 1916. Shore fishes collected by the ‘‘Albatross’’ expeditions in Lower 
California with descriptions of new species. Bull. Amer. Mus. Nat. Hist., 35(16):139-181. 

Radovitch, J. 1961. Relationships of some marine organisms of the northeast Pacific to water tem- 
peratures. Calif. Dept. Fish and Game, Fish Bull. No. 112, 62 pp. 

SCMI. 2000. Southern California Marine Institute, Unusual Fish Sightings internet web site. http:// 
www-bcf.usc.edu/~scmi/xfishpg. html. 

Steindachner, F 1876. Ichthyologische Beitrige (V)[Subtitles 1-v.]. Sitzungsber. Akad. Wiss. Wien, v. 
74(1.Abth.): 49-240. 

Stephans, J. S. Jr., M. Singer, and L. Targgart. 1989. Notes on the first record of orangethroat pick- 
blenny, Chaenopsis alepidota (Gilbert), in mainland California. California Fish and Game 75: 
180-183. 

Strachan, Alec R., Charles H. Turner, and Charles T. Mitchell. 1968. Two fishes and a mollusk, new 
to California’s marine fauna, with recent comments regarding other recent anomalous occur- 
rences. California Fish and Game, 54(1): 49-57. 

Thomson, D. A., L. T. Findley, A. N. Kerstitch. 1987. Reef Fishes of the Sea of Cortez. University 
of Arizona Press, xviii + 302 pp. 

Valenciennes, A. 1846. Table + Ichthyology Pls. 1-10. In: A. du Petit-Thouars. Atlas de Zoologie. 
Voyage autour du monde sur la frégate ‘““Vénus”’, pendant les années 1836-1839. Voyage Venus. 


Accepted for publication 22 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 186-198 
© Southern California Academy of Sciences, 2001 


New and Unusual Marine Invertebrates Discovered at the 
California Channel Islands during the 1997-1998 El Nino 


John M. Engle!’ and Daniel V. Richards? 


'Tatman Foundation and Marine Science Institute, University of California, 
Santa Barbara, California 93106 Phone: 805-893-8547 Fax: 805-893-8062 
Email: j_engle @lifesci.ucsb.edu 
Channel Islands National Park, 1901 Spinnaker Drive, Ventura, 
California 93001 


Abstract.—The occurrence of new and unusual subtropical invertebrates at the 
Channel Islands was documented for the exceptional 1997-1998 El Nino and 
subsequent 1998—2000 La Nina during periodic shallow subtidal surveys. Six 
species (Chloeia viridis, Stenorhynchus debilis, Pleurobranchus areolatus, Chro- 
modoris galexorum, Polycera alabe, and Holothuria impatiens) were new to Cal- 
ifornia. Six others (Bunodeopsis sp., Hemisquilla ensigera californiensis, Drom- 
idia larraburei, Pteria sterna, Arbacia incisa, and Centrostephanus coronatus) 
represented new records at one or more islands. Most new records occurred at 
the southernmost and easternmost islands (Santa Catalina, San Clemente, and 
Anacapa). Repeated sightings of progressively larger size classes provided re- 
cruitment, growth, and survivorship information for five species. Increased sight- 
ings of subtropical species in California likely are due to northward shifts of 
biogeographic provinces that occurred during more than two decades of above 
average seawater temperatures. 


The California Channel Islands support a great diversity of nearshore marine 
life, due primarily to their location within the Southern California Bight, astride 
the transition between warm subtropical waters of the Californian Province to the 
south and cold temperate waters of the Oregonian Province to the north. The 
complex mixing of warm and cold water masses results in unique oceanographic 
conditions influencing each of the eight islands (Fig. 1), which in turn affect the 
distribution of plant, invertebrate, fish, bird, and mammal species. Overall, there 
is an obvious southeast (i.e., Santa Catalina Island) to northwest (i.e., San Miguel 
Island) trend of decreasing sea surface temperatures among the islands that cor- 
relates well with differences in the composition of species assemblages (Engle 
1993, 1994). Individual species distributions may shift northwesterly or south- 
easterly over time at the islands, depending on the magnitude and duration of 
warm-water (e.g., El Nifio) or cold-water (e.g., La Nina) regimes. New sightings 
of subtropical species typically are associated with major El Nifo events (e.g., 
Radovich 1961; Strachan et al. 1968). 

Southern California waters have experienced a long-term warming trend that 
began in 1976, including major El Nino events in 1983-1984, 1986—1987, 1992— 
1993, and 1997—1998. Of these, the 1983—1984 and 1997—1998 EI] Ninos were two 
of the strongest on record with some of the highest temperature anomalies ever 
recorded (McPhaden 1999). During the recent El Nifio, the Southern California 


186 


NEW MARINE INVERTEBRATES AT THE CHANNEL ISLANDS 187 


21 


Sea Surface Temperatures (°C) 


JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 


—e— Los Coronados —o— Santa Catalina —y— San Clemente — y— Santa Barbara —m— San Nicolas 


—o- Anacapa —e@— Santa Cruz —>— SantaRosa —«a— San Miguel —a— Pt Conception 


Fig. 1. Mean monthly sea surface temperatures at the eight Channel Islands for the period 1982— 
1999. Data were taken from National Weather Service (Monterey) oceanographic analyses. 


Bight experienced above normal sea temperatures for 1.5 yr, from May 1997 to 
August 1998 (CoastWatch Bulletins 1997-2000). By September 1998, the El Nino 
abruptly switched to La Nifia, which caused cooler temperatures also for ~1.5 yr, 
from September 1998 to March 2000 (CoastWatch Bulletins 1997—2000). 

This paper presents new distributional records for shallow-water subtropical in- 
vertebrates at the California Channel Islands during and after the 1997-1998 El 
Nifio. New and unusual fish records at the Channel Islands are reported in a com- 
panion paper by Richards and Engle (this volume). Post-El Nino records are im- 
portant because some species that recruit during the warm-water period are slow- 
growing and only become evident after attaining larger sizes. Periodic surveys allow 
determination of growth and survivorship of these exotic species. The invertebrate 
observations we report here include six subtropical species seen for the first time 
in California waters as well as six other species that have newly appeared (or have 
notably increased abundances) at one or more of the eight Channel Islands (Table 
1). We have noted some southern California mainland sightings, but have not at- 
tempted to include all new mainland records for these species. 


Methods 


The eight Channel Islands off the southern California coast have been surveyed 
periodically since 1980 in cooperative studies by the Tatman Foundation’s Chan- 
nel Islands Research Program (CIRP) and Channel Islands National Park (CINP) 
Kelp Forest Monitoring Program. CINP divers regularly survey 16 fixed sites at 
five islands to monitor population dynamics of key algal, invertebrate, and fish 


188 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Table 1. Previous and new (1997-1998 El Nino) records for 12 species of subtropical marine inver- 
tebrates at the eight California Channel Islands. Abbreviations: Islands: SCL = San Clemente, SCA = 
Santa Catalina, SBA = Santa Barbara, SNI = San Nicolas, ANA = Anacapa, SCR = Santa Cruz, SRO 
= Santa Rosa, and SMI = San Miguel; Records: P = previous and N = new (1997-1998 El Nifio). 


California Channel Island 


Phylum Species SCA SCL SBA SNI ANA SCR SRO SMI 

Cnidaria Bunodeopsis sp. N N 

Annelida Chloeia viridis N 

Arthropoda Dromidia larraburei N 
Hemisqulla ensigera 's P P Fr 
Stenorhynchus debilis N N N 

Mollusca Chromodoris galexorum N 
Pleurobranchus areolatus N N N 
Polycera alabe N N N 
Pteria sterna P P P N N N 

Echinodermata Arbacia incisa N N N N N 
Centrostephanus coronatus FP P r P P Pr N 
Holothuria impatiens N 


species. Invertebrates are quantified using random point contact, quadrat, and 
transect techniques (Davis et al. 1999). CIRP divers conduct qualitative recon- 
naissance surveys at a broader spectrum of locations at all eight islands to provide 
an overview of island marine assemblages. Both programs include general search 
methods to note unusual species at each survey site. Voucher collections and 
photographs or videographs maintained at CIRP and California museums (pri- 
marily the Natural History Museum of Los Angeles County (NHMLAC)) are 
utilized to additionally document new sightings whenever possible. Latitude/lon- 
gitude coordinates are provided for island sites not named on National Oceanic 
and Atmospheric Administration nautical charts. 


First Occurrences in California 


Phylum Annelida Class Polychaeta Order Amphinomida Family Amphinomidae 
Chloeia viridis Schmarda 1861 Ornate fireworm (Fig. 2A) 


Previous reported range.—Throughout the Gulf of California to Panama, and 
the entire Caribbean; intertidal and subtidal to at least 91 m (Hartman 1940; 
Brusca 1980; Kerstich 1989). 

First Channel Islands records.—Over 70 fireworms observed on stable sand 
habitats at Santa Catalina Island during October 1998 to May 2000. Sites: Willow 
Cove (>60 specimens) at 9-21 m depths (10/98, 5/99, 6/99, 10/99); Empire 
Landing (>10 specimens) at 12—20 m depths (5/00). Vouchers: photographs (E. 
Erikson) and specimens (NHMLAC). 

Remarks.—Chloeia viridis is a distinctive polychaete with long venomous se- 
tae. Though common throughout the Gulf of California (Brusca 1980), there are 
no records from the Pacific Coast of Baja California (L. Harris, pers. comm.). 
One of us (Engle) has surveyed mantis shrimp (Hemisquilla ensigera califor- 
niensis) at least annually since 1984 at Willow Cove, yet Chloeia was not found 


NEW MARINE INVERTEBRATES AT THE CHANNEL ISLANDS 189 


Fig. 2. Warm-water invertebrates representing first occurrences in California. A. Chloeia viridis. 
B. Stenorhynchus debilis. C. Pleurobranchus areolatus. D. Chromodoris galexorum. E. Polycera al- 
abe. F. Holothuria impatiens. Photos A, C-F by E. Erikson. Photo B by R. Herrmann. 


prior to 10/98. No specimens have been reported elsewhere in California. C. 
viridis was observed crawling on the surface of sheltered-shore, silty-sand sub- 
strates and entering tubes of the parchment worm Chaetopterus variopedatus. On 
several occasions, fireworms appeared to be feeding on bat ray (Myliobatis cali- 
fornica) feces, and in two instances, an individual was seen consuming the sea 
slug Navanax inermis. 


Phylum Arthropoda Class Malacostraca Order Decapoda Family Majidae 
Stenorhynchus debilis (Smith 1871) Panamic arrow crab (Fig. 2B) 


Previous reported range.—Guadalupe Island (Baja California) (M. Wicksten 
pers. comm.) and Gulf of California to Chile and the Galapagos Islands; intertidal 
and subtidal to 61 m (Brusca 1980; Kerstich 1989; Gotshall 1998). 


190 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


First Channel Islands records.—Several hundred arrow crabs observed at 3— 
23 m depths on rocky substrata at three islands during March to October 1998. 
Santa Catalina Island: Pebbly Beach, Casino Point, and Ripper’s Cove (>100 
specimens, E. Erikson, 3/98); Bird Rock, Lion’s Head, and Blue Cavern Point (L. 
Roberson, 3-7/98); and West End (9 specimens, 10/98). San Clemente Island: 
Mosquito Cove (1 specimen, 5/98); E. Pyramid Cove (2 specimens, 5/98); Pyr- 
amid Head (>100 specimens, 5/98, 9/98); Purse Seine Rock (1 specimen, 5/98); 
and Seal Cove (1 specimen, 9/98). Anacapa Island: Frenchy’s Cove (1 specimen, 
8/98). Vouchers: photographs (E. Erikson, R. Herrmann) and specimens 
(NHMLAC). 

Remarks.—Stenorhynchus debilis was observed by various scuba divers at San- 
ta Catalina and San Clemente Islands and along the southern California mainland 
from Mission Bay to Redondo Beach in spring/summer 1998 (C. Gramlich & D. 
Cadien pers. comm.). Also, it was collected in trawling surveys around Santa 
Catalina Island (7/98) and off Huntington Beach (8/99) (see Montagne & Cadien 
this volume). This short-lived crab is seasonal in the Gulf of California, attaining 
maximum sizes in May to July (Kerstich 1989). We observed peak abundances 
in spring (few small crabs; most moderated-sized) and summer 1998 (most large), 
with only a few heavily-fouled individuals seen in fall 1998 (all large), and none 
thereafter. Two spring-collected specimens survived in aquaria until fall 1998. S. 
debilis mostly occurred in small crevices or under the spine canopy of the coron- 
ado sea urchin Centrostephanus coronatus (29 of 667 C. coronatus surveyed had 
a sheltering arrow crab at Pyramid Head on 5/18/98). Some crabs were found 
under rocks or mooring blocks in sheltered silty coves (E. Erikson pers. comm.). 


Phylum Mollusca Class Gastropoda Order Notaspidea Family Pleurobranchidae 
Pleurobranchus areolatus Moérch 1863 Warty sea slug (Fig. 2C) 


Previous reported range.—San Benitos and Cedros Islands (Baja California) 
(D. Behrens pers. comm.), Gulf of California to Ecuador, throughout the Carib- 
bean and tropical west Africa; intertidal and subtidal to 31 m (Keen 1971; Kerstich 
1989). 

First Channel Islands records.—Seven individuals found at 5—22 m depths on 
rocky reefs at three islands during June 1998 to June 1999. Santa Catalina Island: 
Casino Point (1 specimen, E. Erikson, 6/98) and West End (1 specimen, 10/98). 
San Clemente Island: Pyramid Head (2 specimens, 9/98) and Purse Seine Rock 
(32° 52.48’ N, 118° 24.94' W) (2 specimens, 6/99). Anacapa Island: Frenchy’s 
Cove (1 specimen, 8/98). Vouchers: photographs (E. Erikson, R. Herrmann, D. 
Richards) and specimens (D. Behrens). Also, P. Haaker and M. Tegner (pers. 
comm.) collected two specimens at San Clemente Island in August 1998. 

Remarks.—Pleurobranchus areolatus is a large (~10-15 cm) distinctive opis- 
thobranch, whose dorsal surface is covered with warty orange and reddish-brown 
tubercles. Variations in color patterns and tubercle morphology among the spec- 
imens raise suspicions that some individuals represent an undescribed Pleuro- 
branchus (D. Behrens, pers. comm.); however, these variations may be within the 
range of characters exhibited by P. areolatus. Several specimens were collected 
during the same period on the mainland at La Jolla (D. Behrens, pers. comm.). 


NEW MARINE INVERTEBRATES AT THE CHANNEL ISLANDS 191 


Phylum Mollusca Class Gastropoda Order Nudibranchia Family 
Chromodorididae 
Chromodoris galexorum (Bertsch 1978) Galactic sea slug (Fig. 2D) 


Previous reported range.—Guadalupe and Cedros Islands (Baja California) to 
the Gulf of California; subtidal 3—45 m (Bertsch 1978; Bertsch and Kerstich 1984; 
Kerstich 1989). 

First Channel Islands records.—Five galactic nudibranchs found on rocky reefs 
along north side of Santa Catalina Island at 10-18 m depths during October 1998 
to May 2000. Sites: Ship Rock (1 specimen, 10/98); Blue Cavern Point (1 spec- 
imen, 5/00); and Long Point (3 specimens, E. Erikson, 5/00). Vouchers: photo- 
graphs (E. Erikson, D. Richards) and specimens (D. Behrens). 

Remarks.—Chromodoris galexorum is a colorful nudibranch, with red rhin- 
ophores and gills and yellow-ringed reddish spots on a creamy white background. 
The previous northern limit at Guadalupe Island was considered an anomaly due 
to El Nifio conditions (Kerstich 1989). The live specimen from Big Fisherman 
Cove was 83 mm long, more than double the reported size range of 19-38 mm 
(Kerstich 1989). 


Phylum Mollusca Class Gastropoda Order Nudibranchia Family Polyceratidae 
Polycera alabe Collier & Farmer 1964 Inkstain nudibranch (Fig. 2E) 


Previous reported range.—Cedros Island (Baja California) to the Gulf of Cal- 
ifornia; intertidal and subtidal (Keen 1971; Behrens 1991; Kerstich 1989). 

First Channel Islands records.—Three inkstain nudibranchs observed at 8—15 
m depths on rocky reefs at three islands from June to September 1998. Santa 
Catalina Island: Italian Gardens (33° 24.64’ N, 118° 22.75’ W) (1 specimen, E. 
Erikson, 6/98). Santa Barbara Island: Arch Point (1 specimen; 9/98). Anacapa 
Island: Cathedral Cove (34° 00.71’ N, 119° 22.29’ W) (1 specimen; 8/98). Vouch- 
ers include photographs (E. Erikson) and video (D. Kushner). 

Remarks.—Polycera alabe is a small, blue-black, orange-spotted nudibranch 
that feeds on bryozoans (Kerstich 1989). 


Phylum Echinodermata Class Holothuroidea Order Aspidochirotida Family 
Holothuriidae 
Holothuria impatiens (Forskal 1775) Brown spotted sea cucumber (Fig. 2F) 


Previous reported range.—Rosario Bay (Baja California) and throughout the 
Gulf of California to Ecuador and the Galapagos Islands, circumtropical; intertidal 
and subtidal to 46 m. (Brusca 1980; Kerstich 1989; Hendler et al. 1995; Gotshall 
1998). 

First Channel Islands records.—Three individuals were found at 5—8 m depths 
under rocks at Pebbly Beach, Santa Catalina Island during November 1998 (E. 
Erikson, 1 juvenile and 1 adult 25 cm long) and May 2000 (1 adult ~21 cm 
long). Vouchers: photographs (E. Erikson) and specimens (NHMLAC). 

Remarks.—Holothuria impatiens adults were golden-brown with numerous pa- 
pillae. The juvenile was a lighter cream color. All individuals eviscerated when 
handled out of water. 


2 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


New Records at One or More Channel Islands 


Phylum Cnidaria Class Anthozoa Order Actiniaria Family Boloceroididae 
Bunodeopsis sp. Stinging sea anemone 


Previous reported range.—Mission Bay (San Diego) and Puerto Escondido 
(Baja California); shallow subtidal (J. Lyjubenkov 1995). 

New Channel Islands records.—Bunodeopsis were found as locally abundant 
epibionts on eelgrass (Zostera marina), surfgrass (Phyllospadix spp.), and various 
brown algae at 3-15 m depths on sheltered sand and rock habitats at two islands 
from May 1996 to August 2000. Santa Catalina Island: Big Fisherman Cove 
(hundreds on Zostera, 9/97); Catalina Harbor (few on Zostera, 4/98); and Isthmus 
Cove (L. Roberson, locally common on Macrocystis pyrifera, Eisenia arborea, 
Cystoseira neglecta and other brown algae, 9/98). San Clemente Island: Purse 
Seine Rock (hundreds on Zostera, 5/96, 9/98, 8/00) and Pyramid Head (abundant 
on Phyllospadix, Sargassum palmeri, Zonaria farlowii, and miscellaneous brown 
algae, 9/98). Vouchers: photographs (R. Herrmann, L. Roberson). 

Remarks.—Bunodeopsis is a tiny translucent white sea anemone that was dis- 
covered on eelgrass in Mission Bay (San Diego) in 1995, where its extensive 
cover contributed to a decline in Zostera populations (Sewell & Williams 1995). 
This little-known representative of a subtropical/tropical genus is thought to be 
an undescribed species (Ljubenkov 1995). The anemone is capable of autotomiz- 
ing tentacles, drifting with currents, and stinging exposed skin of divers (Ljuben- 
kov 1995). 


Phylum Arthropoda Class Malacostraca Order Stomatopoda Family 
Hemisquillidae 
Hemisquilla ensigera californiensis (Stephenson 1967) Mantis shrimp 


Previous reported range.—Point Conception (Santa Barbara County) to the 
Gulf of California and Panama; subtidal to 91m (Brusca 1980; Morris et al. 1980; 
Kerstich 1989; Gotshall 1994; Jensen 1995). 

New Channel Islands records.—Hemisquilla have been present or common at 
8—21 m depths in stable sand habitats at Santa Catalina and San Clemente Islands, 
but rare at Anacapa and Santa Cruz Islands (Basch and Engle 1993; J. Engle 
unpub. data.). During the 1997-1998 El Nifio, recruitment was evident and abun- 
dances increased at surveyed island sites. Santa Catalina Island: Cherry Cove 
(common: 9/97, 4/98); Big Fisherman Cove (common: 9/97, 4/98); Willow Cove 
(adults common, juveniles abundant: 9/97, 10/98) (adults present, juveniles rare: 
5/99, 6/99, 10/99); Big Geiger Cove (33° 27.58’ N, 118° 31.04’ W) (common: 4/ 
98, 4/99); Catalina Harbor (common: 4/98); Parson’s Landing (present: 4/98); East 
End (common: 9/98), Arrow Point (present: 4/99); and Empire Landing (present: 
5/00). San Clemente Island: Purse Seine Rock (common: 5/98, 9/98, 8/00). An- 
acapa Island: Frenchy’s Cove (present: 6/98, 8/98, 7/99, 6/00) and Cathedral Cove 
(present: 6/98). Santa Cruz Island: Scorpion Cove (present: 8/98, 8/99); Prisoner’s 
Cove (present: 8/98); Potato Harbor (present: 8/99); Twin Harbor (present: 8/99); 
Smuggler’s Cove (present: 6/00); and Hazard’s Anchorage (present: 8/99). The 
sightings at Prisoner’s Harbor, Twin Harbor, and Hazards Anchorage represent 
new northwestern island records. 


NEW MARINE INVERTEBRATES AT THE CHANNEL ISLANDS 193 


Remarks.—Hemisquilla ensigera californiensis is a large but cryptic mantis 
shrimp that inhabits burrows in sheltered sand habitats. This species typically 
closes its burrow entrance with a plug of sand during bright midday hours (Basch 
and Engle 1989); therefore, abundances likely were underestimated except at Wil- 
low Cove where population dynamics have been monitored since 1984 (Engle 
unpub. data). Also Hemisquilla can occur at depths to 70 m (Basch and Engle 
1993), but our surveys were limited to 21 m depths. Stomatopod burrow densities 
increased nearly ten-fold at Willow Cove during 1996-1998 (0.01/m? (1995), 0.1/ 
m? (1996), 0.06/m? (1997), 0.1/m? (1998), 0.01/m? (1999)), with 80% of the in- 
crease due to additional small (<20 mm diameter) burrows. 


Order Decapoda Family Dromiidae 
Dromidia larraburei Rathbun 1910 Sponge crab 


Previous reported range.—Monterey Bay and Long Beach to Magdalena Bay 
(Baja California), the Gulf of California, Peru and the Galapagos Islands; intertidal 
and subtidal to at least 18 m (Schmitt 1921; Brusca 1980; Kerstich 1989). 

New Channel Islands records.—Three individuals were found on a stable sand 
slope at Frenchy’s Cove, Anacapa Island in June 1998 (paired male and female) 
and July 1999 (1 female) in 6—7 m depths. Vouchers: photographs (J. Carroll, E. 
Erikson) and specimens (NHMLAC). 

Remarks.—Dromidia larraburei is a small, cryptic anomuran crab known for 
using its modified fifth leg to hold a sponge on its back (Kerstich 1989); however, 
the 6/98 male and 7/99 female at Anacapa Island were holding brown bubble 
kelp (Colpomenia sinuosa) over their bodies. The freshly-molted 6/98 female held 
by the male was soft and pink. Dromidia settled in large numbers on Mission 
Bay Reef (San Diego) in spring 1998, were still abundant in early 1999, then 
disappeared by August 1999 (C. Gramlich pers. comm.). 


Phylum Mollusca Class Bivalvia Order Pterioida Family Pteriidae 
Pteria sterna (Gould 1851) Pacific wing-oyster 


Previous reported range.—Venice (Los Angeles County) and Santa Barbara 
Island to Morro Santo Domingo (Baja California), throughout the Gulf of Cali- 
fornia to Peru and the Galapagos Islands; subtidal 1-25 m (Keen 1971; Brusca 
1980; Coan et al. 2000). 

New Channel Islands records.—Pteria commonly observed attached to gor- 
gonians at 6—23 m depths at numerous sites around all Channel Islands except 
San Nicolas and San Miguel during the period September 1998 to August 2000. 
Santa Catalina Island: Church Rock (9/98); Salta Verde Point (9/98); Ship Rock 
(10/98, 4/99, 10/99, 5/00); West End (10/98); Willow Cove (on buoy lines: 10/ 
98, 5/99, 10/99); Blue Cavern Point (4/99); Bird Rock (8/98 (L. Roberson), 4/99, 
5/00); Arrow Point (4/99); Long Point (10/99, 5/00); Eagle Reef (5/00); and Hen 
Rock (5/00). San Clemente Island: Dune Point (33° 01.58’ N, 118° 33.80’ W) (9/ 
98); Northwest Harbor (9/98); Pyramid Head (9/98, 8/00); and W Pyramid Cove 
(9/99, 8/00). Santa Barbara Island: Southeast Sea Lion (33° 27.45’ N, 119° 01.52’ 
W) (10/98, 7/99, 6/00); South End (9/99); Arch Point (9/99); Sutil Island (8/00); 
and Landing Cove (8/00). Anacapa Island: Landing Cove (34° 00.70’ N, 119° 
21.71’ W) (10/98); Admiral’s Reef (34° 00.33’ N, 119° 25.86’ W) (7/99); Cathe- 
dral Cove (7/99); Cat Rock (8/99); Survey Rock (34° 00.66’ N, 119° 22.28’ W) 


194 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


(6/00); and West End (6/00). Santa Cruz Island: Potato Rock (8/99); Cavern Point 
(8/99); Twin Harbor (8/99); Hazards Anchorage (34° 03.61’ N, 119° 49.73’ W) 
(8/99); Forney Cove (8/99); Gull Island (8/99); Blue Banks Anchorage (8/99); 
and San Pedro Point (8/99). Santa Rosa Island: Johnson’s Lee (7/99). Vouchers: 
photographs (E. Erikson, R. Herrmann, D. Richards) and specimens (J. Engle). 

Remarks.—Pteria sterna have appeared in southern California during previous 
warm-water periods, but have not established permanent populations (Coan et al. 
2000, Engle unpub. data). Prior distributional records for these “‘pearl’’ oysters 
at the Channel Islands have been sparse, and their association with sea fans (Order 
Gorgonacea) not well documented (Keen 1971, Brusca 1980, Coan et al. 2000). 
Except for several wing-oysters found attached to subsurface float lines at Willow 
Cove, all Pteria encountered were attached to shallow-water gorgonians, including 
Muricea californica, M. fruticosa, Lophogorgia chilensis, and Eugorgia rubens. 
Smaller individuals (S—9 cm) predominated in 1998 (shell length variability main- 
ly was due to size differences in the anterior spike-like wing). Most Pteria were 
large in 1999 and 2000 (10—15 cm). Largest individuals exceeded the published 
size limits of 10 cm (Keen 1971, Brusca 1980, Coan et al. 2000). At Willow 
Cove, three Pteria on float lines grew on average from 6.5 to 12 cm in one year 
(10/98 to 10/99). Increased numbers of empty shells were observed at many sites 
in 2000. 


Phylum Echinodermata Class Echinoidea Order Arbacioida Family Arbaciidae 
Arbacia incisa (Agassiz 1863) Arbacia sea urchin 


Previous reported range.—Newport Bay (Orange County) and Gulf of Cali- 
fornia to Peru, and the Galapagos Islands; intertidal and subtidal to 90m (H. L. 
Clark 1948; Brusca 1980; Morris et al. 1980; Gotshall 1998). 

New Channel Islands records.—Several dozen Arbacia found in rocky crevices 
and artificial recruitment modules (ARM’s) (Kushner et al. 1999) at 5-18 m 
depths at five islands during May 1998 to September 2000. Santa Catalina Island: 
Pebbly Beach (1 juvenile, E. Erikson, 10/98). San Clemente Island: Purse Seine 
Rock (1 juvenile, 5/98). Santa Barbara Island: Southeast Sea Lion (2 found in 
twenty-four 0.25 m? quadrats in 9/98; 6 in 6/99, 3 in 6/00). Anacapa Island: 
Admiral’s Reef (ARM: 1 each in 8/98 (10 mm), 8/99, and 8/00 (35 mm)); Landing 
Cove (ARM: 1 juvenile in 8/98); and Cathedral Cove (ARM: 1 each in 7/98 (12 
mm), 7/99, and 9/00 (32 mm)). Santa Cruz Island: Gull Island (ARM: 1 each in 
7/98 (7 mm) and 9/99). Vouchers: photographs (E. Erikson) and specimens 
(NHMLAC). 

Remarks.—Arbacia incisa was not previously known from the Channel Islands. 
Most individuals (8-10 mm diameter recruits in 1998 and larger individuals in 
1999 and 2000) were found in concrete recruitment modules surveyed by Channel 
Islands National Park. Three juveniles raised in aquaria grew from 8-10 mm in 
spring 1998 to 27—33 mm in spring 2000 to 29—36 mm in fall 2000. Arbacia also 
were found in San Diego (C. Gramlich, Mission Bay in 4/97 and 1/99). 


Order Diadematoida Family Diadematidae 
Centrostephanus coronatus (Verrill 1867) Coronado sea urchin 
Previous reported range.—California Channel Islands to the Gulf of California 
to Peru, and the Galapagos Islands; intertidal to 125m (Brusca 1980; Morris et 
al. 1980; Gotshall 1994; Kerstich 1989). 


NEW MARINE INVERTEBRATES AT THE CHANNEL ISLANDS 195 


New Channel Islands records.—In prior years, Centrostephanus coronatus has 
been common/abundant at San Clemente and Santa Catalina Islands, uncommon/ 
rare at Santa Barbara, San Nicolas, Anacapa, and Santa Cruz Islands, and absent 
at Santa Rosa and San Miguel Islands (J. Engle, unpub. data). Large-scale re- 
cruitment of 5—25 mm (test diameter) Centrostephanus was documented during 
surveys and in ARM’s (Kushner et al. 1999) at numerous island sites during spring 
to fall 1998 (and in some ARM’s in summer 1999). Santa Catalina Island: Indian 
Rock (4/98); Blue Cavern Point (4/98); Bird Rock (4/98); Church Rock (9/98); 
Ship Rock (10/98); West End (10/98); and Torqua Springs (10/98). San Clemente 
Island: Northwest Harbor (5/98); Dune Point (5/98, 9/98); Pyramid Cove (5/98, 
9/98); Pyramid Head (5/98, 9/98); and Seal Cove (9/98). Santa Barbara Island: 
Southeast Sea Lion (9/98: most recruits ever); Arch Point (9/98: most recruits 
ever); and Cat Canyon (33° 27.24’ N, 119° 02.47’ W) (9/98). Anacapa Island: 
Survey Rock (6/98); Frenchy’s Cove (6/98); Landing Cove (8/98: most recruits 
ever (4.1/ARM)), 8/99 (2.3/ARM); Cathedral Cove (7/98: most recruits ever (1.8/ 
ARM)), 7/99 (0.5/ARM); and Admiral’s Reef (8/98: most recruits ever (4.4/ 
ARM)), 8/99 (2.5/ARM). Santa Cruz Island: Gull Island (8/98: first recruits ever 
(0.7/ARM), 9/99 (1.0/ARM); Fry’s Harbor (7/98: most recruits ever (0.6/ARM), 
8/99 (0.4/ARM); Pelican Bay (8/98: most recruits ever (2.7/ARM), 8/99 (0.2/ 
ARM); Scorpion Cove (8/98 (0.17/ARM); Yellowbanks (9/98: first recruits ever 
(0.9/ARM), 7/99 (1.9/ARM); and Potato Rock (8/98). No Centrostephanus <20 
mm were found in ARMs in 2000. Two coronado urchins (7/99 (25 mm), 8/00) 
found on a transect at Rodes Reef became the first record of this species at Santa 
Rosa Island. 

Remarks.—The huge settlement of Centrostephanus in late 1997/early 1998 
also was observed in San Diego (Mission Bay Reef); numbers of tiny urchins 
dropped substantially by late 1998 (C. Gramlich pers. comm.). 


Discussion 


Six species of subtropical nearshore invertebrates were documented for the first 
time in California. New northern geographic range limits based on records at the 
Channel Islands include the following: 1) Chloeia viridis: extended from Gulf of 
California to Santa Catalina Island; 2) Stenorhynchus debilis: extended from Gua- 
dalupe Island to Anacapa Island; 3) Pleurobranchus areolatus: extended from 
San Benitos Islands to Anacapa Island; 4) Chromodoris galexorum: extended from 
Guadalupe Island to Santa Catalina Island; 5) Polycera alabe: extended from 
Cedros Island to Anacapa Island; and 6) Holothuria impatiens: extended from 
Rosario Bay to Santa Catalina Island. 

Six additional species of subtropical invertebrates, though occurring within or 
near their known geographic range limits, were documented for the first time at 
one or more of the Channel Islands during or after the 1997—1998 El Nifio period. 
New island records include: 1) Bunodactis sp.: previously reported at Mission 
Bay, now known at San Clemente and Santa Catalina Islands; 2) Hemisquilla 
ensigera californiensis: increased abundances at four islands and newly appeared 
near the west end of Santa Cruz Island; 3) Dromidia larraburei: first island record 
at Anacapa Island; 4) Pteria sterna: newly found at three northern islands; 5) 
Arbacia incisa: previously reported from Newport Bay, now known at five is- 


196 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


lands; and 6) Centrostephanus coronatus: increased recruitment at six islands and 
newly appeared at Santa Rosa Island. 

The conspicuousness of most of the above invertebrates coupled with extensive 
CIRP and CINP surveys dating back to 1980 make it unlikely that these warm- 
water species would have occurred at the newly-recorded island locations prior 
to the 1997-1998 El Nino without being noticed. The observed temporal pattern 
of predominantly smaller individuals during El Nino followed by larger sizes 
during La Nifia for Stenorhynchus, Hemisquilla, Pteria, Arbacia, and Centroste- 
phanus is consistent with the hypothesis that their larvae settled out from El Nifio- 
associated currents flowing north from Baja California (see Hickey 1993). Pre- 
vious northern limits for some of these species (e.g., Stenorhynchus, Pleurobran- 
chus, Chromodoris, and Polycera) were established after El Nifio events of the 
1980’s. Such progressive extensions of northern range limits are likely a result of 
the extended warm-water regime in place since 1976 (Engle 1994). 

Long-term sea surface temperature patterns show consistent differences among 
the eight Channel Islands (Fig. 1). Santa Catalina, the warmest island, had the 
most records of subtropical invertebrates (Table 1), as well as subtropical fishes 
(see Richards and Engle this volume). Another warm-water island, San Clemente, 
and a transitional island, Anacapa, also had many southern species records. 
Though more northern, Anacapa Island is close to the mainland where it is influ- 
enced by northerly-flowing warm-water currents. The few subtropical species re- 
cords at Santa Barbara Island may be due to its paucity of sheltered habitats 
(where at least 5 of the species were found) and because this island was surveyed 
less often than Santa Catalina, San Clemente, and Anacapa. Remote, military- 
controlled San Nicolas Island was only surveyed at two locations in September 
1999. The northern islands within Channel Islands National Park were visited 
regularly. Only two minor occurrences of subtropical species were noted at Santa 
Rosa Island and none at San Miguel, the coldest-water island. 

Repeated sightings provided growth and survivorship information for five spe- 
cies. Short-lived Stenorhynchus was found only during an eight-month period in 
1998. Aquarium-held individuals also died by fall 1998. In contrast, Arbacia, 
found as 8-10 mm juveniles in spring 1998, continued to be found as adults in 
1999 and 2000. All three aquarium-held Arbacia survived for over two years (as 
of 9/2000), having grown from an average of 9 mm to 32 mm test diameter. 
Pteria was found in progressively larger sizes at many sites over the two-year 
period from fall 1998 to fall 2000, with many empty shells evident in 2000. The 
lack of small Stenorhynchus, Arbacia, or Pteria in the two years following the 
1997/1998 settlement indicates that these populations are not likely self-sustain- 
ing. As has often been observed in populations at their northern limits (e.g., Reaka 
1986), these species (as well as Chloeia, Pleurobranchus, and Chromodoris) at- 
tained or exceeded maximum recorded sizes. Hemisquilla and Centrostephanus 
also experienced El Nifio recruitment peaks. Their established populations on 
southern islands may make it easier for further recruitment to northern islands. 

The 1997-1998 El Nifio influenced the composition of Channel Islands shal- 
low-water species assemblages in many other ways besides the enhancement of 
subtropical species (see Tegner and Dayton 1987 for 1983-1984 El Nifo effects). 
For example, certain herbivores, planktivores, and seastars, incurred high mortal- 
ity apparently due to thermal stress, reduced food availability, and disease (J. 


NEW MARINE INVERTEBRATES AT THE CHANNEL ISLANDS 197 


Engle and D. Richards, unpub. data). Deterioration of kelp forests reduced habitat, 
shelter, and food for many species. Low oceanographic productivity resulted in 
less food for suspension-feeders. Seastars and other echinoderms experienced ex- 
tensive mortality from a warm-water wasting disease (Eckert et al. 2000). The 
rapid switch from El Nifio to La Nifia conditions in fall 1998 reversed thermal 
stress, low productivity, and echinoderm disease influences. Also, La Nifia ap- 
parently halted further recruitment of subtropical forms, but did not appear to 
affect the survival of the subtropical species we monitored. It remains to be seen 
whether this La Nifa signals the start of an oceanographic regime shift toward 
cooler conditions or is a temporary deviation in the long-term warming trend. If 
warm-water conditions resume, we can expect further appearances of subtropical 
species at the Channel Islands as biogeographic provinces shift northward. 


Acknowledgments 


Many individuals participated in the surveys that provided new records for 
subtropical invertebrates at the Channel Islands. We thank the Channel Islands 
Research Program and Channel Islands National Park research vessel crews and 
divers for their assistance, especially David Kushner for directing the CINP Kelp 
Forest Monitoring Program surveys. We thank Erik Erikson, Constance Gramlich, 
Pete Haaker, and Loretta Roberson for providing additional records of unusual 
invertebrates. We greatly appreciate the underwater photographic talents of Jay 
Carroll, Erik Erikson, Richard Herrmann, and Loretta Roberson. Valuable taxo- 
nomic and biogeographic expertise were provided by Dave Behrens, Don Cadien, 
Henry Chaney, Dan Gotshall, Leslie Harris, Gordon Hendler, John Ljubenkov, 
Paul Valentich Scott, and Mary Wicksten. The surveys were sponsored by the 
Tatman Foundation (CIRP) and National Park Service (CINP). 


Literature Cited 


Basch, L. V. and J. M. Engle. 1989. Aspects of the ecology and behavior of the stomatopod Hemis- 
quilla ensigera californiensis (Gonodactyloidea: Hemisquillidae). Pp. 199-212 in Biology of 
stomatopods (E. A. Ferrero, ed.), Sel. Symp. Monogr. U.Z.I., 3, Mucchi, Modena. 

Basch, L. V. and J. M. Engle. 1993. Biogeography of Hemisquilla ensigera californiensis (Crustacea: 
Stomatopoda) with emphasis on Southern California Bight populations. Pp. 211-220 in Third 
California Islands symposium: recent advances in research on the California Islands (EG. Hoch- 
berg, ed.), Santa Barbara Museum of Natural History, xiii + 661 pp. 

Behrens, D. W. 1991. Pacific Coast nudibranchs. Sea Challengers, vi + 107 pp. 

Bertsch, H. 1978. The Chromodoridinae nudibranchs from the Pacific Coast of America. Pt. II. The 
genus Chromodoris. Veliger 20(4):307—327. 

Bertsch, H. and A. N. Kerstich. 1984. Distribution and radular morphology of various nudibranchs 
(Gastropoda: Opisthobranchia) from the Gulf of California. Veliger 26(4):264—273. 

Brusca, R. C. 1980. Common intertidal invertebrates of the Gulf of California. University of Arizona 
Press, &x “F513 pp. 

Clark, H. L. 1948. A report on the echini of the warmer eastern Pacific based on the collections of 
the Velero III. Allan Hancock Pacific Exped. 8:225—352. 

Coan, E. V., P. V. Scott, and E R. Bernard. 2000. Bivalve seashells of western North America. Santa 
Barbara Museum of Natural History Monographs No. 2, vii + 764 pp. 

CoastWatch Bulletins. 1997-2000. West Coast Regional Node, National Oceanic and Atmospheric 
Administration, Southwest Fisheries Science Center. La Jolla, California. 

Collier, C. L., and W. M. Farmer. 1964. Additions to the nudibranch fauna of the east Pacific and the 
Gulf of California. Trans. San Diego Soc. Nat. Hist. 13(19):377—396. 


198 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Davis, G. E., D. J. Kushner, J. M. Mondragon, J. E. Morgan, D. Lerma, and D. Richards. 1999. Kelp 
forest monitoring handbook, Vol. 1: Sampling Protocol. Channel Islands National Park. 55 pp. 

Eckert, G. L., J. M. Engle, and D. J. Kushner. 2000. Sea star disease and population declines at the 
Channel Islands. Pp. 390—393 in Proceedings of the fifth California Islands symposium (D. R. 
Browne, K. L. Mitchell, and H. W. Chaney, eds.), U. S. Minerals Management Service. 

Engle, J. M. 1993. Distributional patterns of rocky subtidal fishes around the California Islands. Pp. 
475—484 in Third California Islands symposium: recent advances in research on the California 
Islands (EK G. Hochberg, ed.), Santa Barbara Museum of Natural History, xiii + 661 pp. 

Engle, J. M. 1994. Structure and dynamics of nearshore marine assemblages of the California Channel 
Islands. Pp. 13—26 in Fourth California Islands symposium: update on the status of resources 
(W. L. Halvorson and G. J. Maender, eds), Santa Barbara Museum of Natural History, 530 pp. 

Gotshall, D. W. 1994. Guide to marine invertebrates: Alaska to Baja California. Sea Challengers, vi 
+e 05. pp: 

Gotshall, D. W. 1998. Sea of Cortez marine animals. Sea Challengers, v + 110 pp. 

Hartman, O. 1940. Polychaetous annelids. Pt. 2. Chrysopetalidae to Goniadidae. Allan Hancock Pac. 
Exped. 7(3):173-—287. 

Hendler, G., J. E. Miller, D. L. Pawson, and P. M. Kier. 1995. Sea stars, sea urchins, and allies: 
echinoderms of Florida and the Caribbean. Smithsonian Institution Press, xi + 390 pp. 
Hickey, B. M., 1993. Physical oceanography. Pp. 19—70 in Ecology of the Southern California Bight 

(M.D. Dailey, D.J. Reish, and J.W. Anderson, eds.), University of California Press, xvi + 926 pp. 

Jensen, G. C. 1995. Pacific Coast crabs and shrimps. Sea Challengers, viii + 87 pp. 

Keen, A. M. 1971. Sea shells of Tropical West America. Stanford University Press, xiv + 1064 pp. 

Kerstitch, A. N. 1989. Sea of Cortez marine invertebrates. Sea Challengers, v + 114 pp. 

Kushner, D. J., D. Lerma, S. Alesandrini, and J. Shaffer. 1999. Kelp forest monitoring annual report 
1998. Channel Islands National Park, 68 pp. + appendices. 

Ljubenkov, J. 1995. A new species of stinging anemone from southern California and the Gulf of 
California. Western Society of Naturalists 76" Annual Meeting Abstract. 

McPhaden, Michael J. 1999. Genesis and evolution of the 1997—98 El Nifio. Science 283:950—954. 

Montagne, D. E. and D. B. Cadien. 2001. Northern range extensions into the Southern California 
Bight of ten decapod crustacea related to the 1991/92 and 1997/98 El Nifio events. Bull So. 
Cal. Acad. Sci., 100: 199-211. 

Morris, R. H., D. PB. Abbott, and E. C. Haderlie, eds. 1980. Intertidal invertebrates of California. 
Stanford Univ. Press, ix + 690 pp. 

Radovitch, J. 1961. Relationships of some marine organisms of the northeast Pacific to water tem- 
peratures. Calif. Dept. Fish and Game Fish Bull. No. 112, 62 pp. 

Reaka, M. L. 1986. Biogeographic patterns of body size in stomatopod Crustacea: Ecological and 
evolutionary consequences. Pp. 209-235 in Crustacean Issues, Vol. 4 (R. Gore and K. Heck, 
eds.), Balkema Press, Rotterdam. 

Richards, D. V., and J. M. Engle. 2001. New and unusual reef fish discovered at the California Channel 
Islands during the 1997-1998 El Nino. Bull. So. Cal. Acad. Sci., 100: 175-185. 

Schmitt, W. L. 1921. The marine decapod crustacea of California. Univ. Calif. Publ. Zool. 23:1—470. 

Sewell, A. T., and S. L. Williams. 1995. The negative effects of anemone epiphytes on eelgrass in an 
urban estuary. Western Society of Naturalists 76" Annual Meeting Abstract. 

Strachan, A. R., C. H. Turner, and C. T. Mitchell. 1968. Two fishes and a mollusk, new to California’s 
marine fauna, with recent comments regarding other recent anomalous occurrences. Calif. Dept. 
of Fish and Game Fish Bull. 54(1): 49-57. 

Tegner, M. J., and P. K. Dayton. 1987. El Nifio effects on Southern California kelp forest communities. 
Adv. Ecol. Res. 17:243-—279. 


Accepted for publication 22 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 199-211 
© Southern California Academy of Sciences, 2001 


Northern Range Extensions into the Southern California Bight of 
Ten Decapod Crustacea Related to the 1991/92 and 1997/98 
El] Nino Events 


David E. Montagne! and Donald B. Cadien? 


‘Ocean Monitoring & Research, County Sanitation Districts of Los Angeles 
County, 1955 Workman Mill Road, Whittier, California 90601 
*Marine Biology Laboratory, County Sanitation Districts of Los Angeles 
County, 24501 S. Figueroa Street, Carson, California 90745 


Abstract.—The first recorded appearance in the Southern California Bight (SCB) 
of ten decapod crustaceans, all of which have distributions that are primarily 
tropical or sub-tropical, is documented. Northern range extensions are provided 
for the penaeidean shrimp Metapenaeopsis mineri (Penaeidae) and Sicyonia pen- 
icillata (Sicyoniidae), the caridean shrimp Processa peruviana (Processidae), Pan- 
tomus affinis, Plesionika beebei, P. trispinus, and P. carinirostris (Pandalidae) 
and the brachyuran crabs Stenorhynchus debilis (Majidae), Palicus cortezi, and 
P. lucasii (Palicidae). These animals were collected during or in the aftermath of 
the 1991/92 and 1997/98 El Nifio events. The specimens were collected in trawl 
monitoring programs of shelf and upper slope depths that have been in place for 
up to three decades. These long term data sets provide evidence of previous 
absence from the SCB, accentuating the novelty of these records. 


The warm temperate waters of the Southern California Bight (SCB) are known 
as a transitional area between the cool temperate fauna to the north and the tropical 
faunas to the south (e.g., the Oregonian vs. Mexican and Panamanian regions of 
Briggs 1974). They have been treated as a semi-discrete zoogeographic entity, the 
Californian Transition Zone (Newman 1979). The northern limit of many species 
with primarily tropical or subtropical distributions often falls within the SCB. The 
dominance of the northerly flowing California Countercurrent and California Un- 
dercurrent within the Bight (Hickey 1993) and the barrier presented to southern 
species by the California Current north of Pt. Conception are the primary physical 
determinants of this pattern. In addition, large-scale and interdecadal cycles of 
warming seawater temperatures (McGowan et al. 1998) are accompanied by shifts 
in the Bight fauna as cool temperate species decline and warm temperate species 
are favored (Stephens et al. 1988; Love et al. 1998). Superimposed on these cycles 
is the El Nifio/Southern Oscillation (ENSO), warm water (El Nino) and cold water 
(La Nifia) events that occur on a cycle of four to ten years with varying intensity. 
When intense, an El Nifo may be accompanied by striking incursions into the 
SCB of species whose center of distribution lies well to the south (Radovich 1961; 
Mearns 1988; Lea & McAlary 1994; Martin & Velarde 1997). These factors 
contribute to the distinctive and variable nature of the SCB fauna. This paper 
documents the first recorded appearance in the SCB of ten decapod crustaceans, 
all of which have distributions that are primarily tropical, subtropical, or Corte- 
zian. All but two of these animals were collected during the 1997/98 El Nifio 


199 


200 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


period and its immediate aftermath. The remaining two species were taken during 
or immediately after the 1991/92 El Nino. 

All specimens reported here were collected during shelf and upper slope depth 
otter trawl surveys of demersal fish and epibenthic invertebrates. The surveys 
include those conducted as part of wastewater impact monitoring programs per- 
formed by the County Sanitation Districts of Los Angeles County (CSDLAC), 
the Orange County Sanitation District (OCSD) and the City of San Diego Met- 
ropolitan Wastewater Department (CSDMWWD). Other material was collected 
during powerplant monitoring in Long Beach Harbor by MBC Applied Environ- 
mental Sciences or during the Southern California Bight 1998 Regional Moni- 
toring Program (Bight’98), a large scale, multi-agency regional survey of the SCB 
carried out during July and August of 1998. Most of these specimens are retained 
as vouchers or reference specimens by the capture agencies. In some cases spec- 
imens have been deposited in the Crustacea collection of the Natural History 
Museum of Los Angeles County. All are available for inspection, regardless of 
their repository. 


Order Decapoda 
Suborder Dendrobranchiata 
Infraorder Penaeidea 
Superfamily Penaeoidea 
Family Penaeidae 


Metapenaeopsis mineri Burkenroad, 1934 


Metapenaeopsis mineri Burkenroad, 1934:25, Figs. 9, 10 [in part] 
Metapenaeopsis mineri: Hendrickx, 1996:23—26, Figs. 11 a, b, c, & 12 


Type locality.—Bahia Concepcion, Baja California Sur, Mexico. 

Material examined.—Off the mouth of the Tijuana River, California: 1 speci- 
men, CSDMWWD Station SD-18 (32°32.52'N, 118°11.357'W), 32 m depth, 26 
January 1998. 

Remarks.—This is a range extension along the Pacific Coast of approximately 
8° of latitude. Species of Metapenaeopsis are generally similar in body form to, 
but much smaller than, species of Farfantepenaeus with which they co-occur. It 
is possible that, if not closely examined, they are sometimes mistaken in the field 
for juveniles of the larger species. The genera are distinguished by the presence 
of ventral rostral teeth in Farfantepenaeus. 

Distribution.—Off the mouth of the Tijuana River, California, USA (this pa- 
per); Bahia Magdalena, Baja California Sur, Mexico and throughout the Gulf of 
California (Hendrickx 1996) at depths of 13 to 115 m. 


Family Sicyoniidae 


Sicyonia penicillata Lockington, 1879 
Figure 1 


Sicyonia penicillata Lockington, 1879: 164 

Eusicyonia penicillata: Burkenroad, 1934: 88, Figs. 30, 31, 33 
Sicyonia penicillata: Hendrickx, 1984: 285, Figs. 6, 20, 26 
Sicyonia penicillata: Pérez Farfante, 1985: 38—43, Figs. 31—34 
Sicyonia penicillata: Hendrickx, 1996:109—113, Figs. 56 a, b, c, 57 


NORTHERN RANGE EXTENSIONS OF DECAPOD CRUSTACEA 201 


Fig. 1. Sicyonia penicillata. Specimen photographed at the head of Redondo Submarine Canyon, 
approx. 20 m depth, 6 June 1999. Photo by Mr. Ken Kurtis. 


Type locality.—Bolinas Bay [suspected to be Bahia de Ballenas by Hendrickx 
1996], Baja California Sur, Mexico, 26 m depth. 

Material examined.—Off the Palos Verdes Peninsula, California: 2 specimens, 
CSDLAC Station T0-61 (33°48.57'N, 118°25.84'W), 61 m depth, 18 February 
1998. 1 specimen, CSDLAC Station T0-23 (33°48.19’N, 118°25.04’W), 23 m 
depth, 20 May 1998. Back Channel, Long Beach Harbor, California: | specimen, 
Long Beach Generating Station Monitoring Program Station T10 (33°45.30'N, 
118°13.00’W), 18 m depth, 12 August 1988. Off Huntington Beach, California: 
1 specimen, OCSD Station T11 (33°36.06'N, 118°05.20'W), 56 m depth, 10 Jan- 
uary 2000. | specimen, OCSD Station T13 (33°35.54’N, 118°03.64'W), 56 m 
depth, 10 January 2000. Off Torrey Pines State Beach, California: 1 specimen, 
Bight’98 Station 2349 (32°53.604’N, 117°16.118’W), 32 m depth, 6 August 1998. 

Remarks.—This is a range extension along the Pacific coast of approximately 
4° of latitude. The well-developed carapace marking readily distinguishes this 
species from Sicyonia ingentis, the common species in the SCB. Even so, the 
collection of the species in Long Beach Harbor in the aftermath of the 1986/87 
El Nifio went undocumented in the literature until now. A photograph of Sicyonia 
penicillata was taken by Mr. Ken Kurtis while diving at the head of the Redondo 
Submarine Canyon and is included with his permission (Fig. 1). The photograph 
was taken at night on 6 June 1999 in approximately 20 m depth. It illustrates the 
distinctive carapace spot of this species, although in most specimens examined 
by the authors the central field of the spot is lighter in color, contrasting with its 
margins. The latitude at the head of the canyon is approximately 33°50’N. Mr. 
Kurtis also reports seeing other S. penicillata in the area of the canyon around 
this time as shallow as 5 m. Word and Charwat (1976) treat this species, but do 
not provide records from Southern California Bight waters. 

Distribution.—Off Palos Verdes, California, USA (this paper); southeast of 
Punta Canoas, Baja California Norte to Bahia San Lucas, Baja California Sur, 


202 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Mexico and throughout the Gulf of California (Hendrickx 1996); off Puntarenas, 
Costa Rica (Pérez Farafante 1985) at depths of 1 to 180 m. 


Suborder Pleocyemata 
Infraorder Caridea 
Superfamily Processoidea 
Family Processidae 


Processa peruviana Wicksten, 1983 


Processa peruviana Wicksten, 1983: 29-30, Figs. 4—6 
Processa sp.: Méndez, 1981: 98, Fig. 294 


Type locality.—Isla Manuelita, Costa Rica: 1 specimen, Velero IV Station 
19044 (5°36'09"N, 87°01'14"W), 146 m depth, 3 June 1973. 

Material examined.—Off the Palos Verdes Peninsula, California: 1 specimen, 
near CSDLAC Station T0-61 (33°48.57'N, 118°25.84'W), 50 m depth, 8 Novem- 
ber 1995. Off Point Loma, California: 1 specimen, CSDMWwWD ‘Station B11 
(33°46.57'N, 117°21.35'W), 89 m depth, 13 July 1999. 

Remarks.—Wicksten (1983) indicates this species frequents sandy bottoms. Lo- 
cally collected individuals have also come from sites where the sea-floor was 
sandy rather than rocky or muddy. Both specimens taken in the Southern Cali- 
fornia Bight were gravid females, and it is likely that the species is reproductive 
at the northern limit of its range. No juveniles have yet been taken in the area, 
however, suggesting that recruitments are unsuccessful. 

Distribution.—Off Palos Verdes, California, USA (this paper); Isla San Benito, 
outer coast of Baja California to Mancora, Peri (Wicksten 1983), throughout the 
Gulf of California and the Galapagos (Wicksten & Hendrickx 1992) at depths of 
11 to 180 m. 


Superfamily Pandaloidea 
Family Pandalidae 


Pantomus affinis Chace, 1937 


Pantomus affinis Chace, 1937:116—118, Fig. 3 
Pantomus affinis: Hendrickx & Wicksten, 1989: 73-75, Fig. 1 


Type locality.—Santa Inez Bay, Baja California, Mexico: 65 specimens, Station 
147 D-2 (26°56'30’N, 111°48’30”"W), 110 m depth, 17 April 1936. 

Material examined.—Off Point Dume, California: 1 specimen, Bight’98 Station 
2116 (33°58.878'N, 118°42.530'W), 191 m depth, 19 August 1998. Off the Palos 
Verdes Peninsula, California: 12 specimens, CSDLAC Station TO-137 
(33°48.83'N, 118°26.36'W), 140 m depth, 5 November 1997. 1 specimen, 
CSDLAC Station T4-137 (33°42.06’N, 118°21.05'W), 140 m depth, 19 May 1998. 
4 specimens, CSDLAC Station T5-137 (33°41.11'N, 118°19.61'W), 140 m depth, 
19 May 1998. 1,132 specimens, CSDLAC Station TO-137 (33°48.83'N, 
118°26.36'W), 140 m depth, 5 August 1998. 2 specimens, CSDLAC Station TO- 
305 (33°49.23'N, 118°27.09’W), 305 m depth, 5 August 1998. 331 specimens, 
CSDLAC Station TO-137 (33°48.83'N, 118°26.36’W), 140 m depth, 6 November 
1998. 280 specimens, CSDLAC Station TO-137 (33°48.83’'N, 118°26.36’W), 140 
m depth, 12 February 1999. 150 specimens, CSDLAC Station TO-137 


NORTHERN RANGE EXTENSIONS OF DECAPOD CRUSTACEA 203 


(33°48.83'N, 118°26.36’W), 140 m depth, 13 May 1999. Off Newport Beach, 
California: 3 specimens, Bight’98 Station 2119 (33°34.736'N, 117°55.184’W), 
117 m depth, 7 August 1998. Santa Catalina Island, California, off West End: 2 
specimens, Bight’98 Station 2065 (33°29.494’'N, 118°34.708'W), 199 m depth, 
21 July 1998. Off Imperial Beach, California: 1 specimen, CSDMWWD Station 
SD-7 (32°35.06’N, 117°18.39'W) 98 m depth, 25 January 1993. 6 specimens, 
CSDMWWD Station SD-7 (32°35.06'N, 117°18.39'W) 98 m depth, 23 January 
1998. 

Remarks.—Gravid females were common in the catches. The large collection 
on 5 August 1998 (1,132 specimens) included many gravid females with eggs in 
varying stages of development up to the eyed stage. Approximately 17% of the 
shrimp in this collection were gravid females. This is a range extension of Pan- 
tomus affinis along the Pacific Coast of approximately 8° of latitude. The popu- 
lation established around the Redondo and Santa Monica Submarine Canyons has 
not been seen since May of 1999 and may no longer exist; the last collection of 
P. affinis in the San Diego region was in April 1999 (R. Velarde, pers. com.). 

A number of specimens of Pantomus affinis bore parasitic isopods of the genus 
Zonophryxus (Family Dajidae) on their carapaces. The species appears to be un- 
described, but original descriptions in this group are lacking in detail, and type 
material must be reexamined to determine the status of several described species. 
Larger Zonophryxus specimens were also seen on Plesionika trispinus collected 
in the same locale (qg.v.). They seem to belong to the same species as the smaller 
individuals found on Pantomus. The range of the parasite is not known; no de- 
scribed members of the genus have been reported from within 20° of latitude 
either north or south of the present captures. They have not been observed on 
southern populations of Pantomus or Plesionika trispinus (M. E. Hendrickx, pers. 
com.). 

Distribution.—Point Dume, California, USA (this paper); Bahia Santa Inés, 
Gulf of California, Baja California Sur, and Bahia de Santa Maria, Sinaloa, Mex- 
ico to Isla Lobos de Tierra, Peri (Hendrickx & Wicksten 1989) at depths of 35 
to 744 m. 


Plesionika beebei Chace, 1937 


Plesionika beebei Chace, 1937:114, Fig. 2 
Plesionika beebei: Hendrickx & Wicksten, 1989:76—77, Figs. 4, 5 
Plesionika beebei: Hendrickx & Estrada Navarrete, 1996:131—132, Figs. 80, 81 


Type locality—Gulf of California, Baja California Sur, Mexico (26°48'N, 
111°20’W). 

Material examined.—Off the Palos Verdes Peninsula, California: 1 specimen, 
CSDLAC Station T5-305 (33°40.85'N, 118°19.85'W), 305 m depth, 6 November 
1997. 

Remarks.—This is a range extension along the Pacific Coast of approximately 
8° of latitude. 

Distribution.—Palos Verdes Peninsula, California, USA (this paper); off Punta 
Tosca, Baja California Sur, and off Guaymas, Sonora, Gulf of California, Mexico 
to Mancora Bank, Peri (Hendrickx & Wicksten 1989) at depths of 73 to 738 m. 


204 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


. 


Fig. 2. Plesionika carinirostris, scale bars = 5 mm. a, Lateral perspective, the rostrum, lost sub- 
sequent to collection, is illustrated with dashed lines. All but lst pereopod detached from specimen 
and not figured. b, 2nd pereopod, illustrating the subdivision of the carpus into 26 articles. c, Dorsal, 
movable carapace spines. 


Plesionika carinirostris Hendrickx, 1990 
Figure 2 a, b, c 


Plesionika carinirostris Hendrickx, 1990:38—39, Figs. 2, 3 
Plesionika carinirostris: Hendrickx, 1995:481 


Type locality.—Off Isla San Lorenzo, Gulf of California, Mexico. 

Material examined.—Off the Palos Verdes Peninsula, California, in the north 
arm of the San Pedro Sea Valley: 1 specimen, CSDLAC Station V150 
(33°39.429’N, 118°17.325'’W), 145 m depth, 29 June 1999. 

Remarks.—Plesionika carinirostris was previously known only from the type 
material, a single male collected in the central Gulf of California. While Hen- 
drickx (1995) lists the holotype as a female (hembra), the type description clearly 
indicates it as male. The new record off Palos Verdes suggests a range through 
the southern Gulf of California and along the Pacific Coast of Baja California. 
Hendrickx (1990, 1995) remarks on the large size of the type specimen (110 mm 
total length, 21 mm carapace length). The Palos Verdes specimen is a gravid 
female and also of large size. Since the rostrum was broken before measurement, 
the total length is estimated at 122 mm (25 mm carapace length). The color in 
life, previously undescribed, is dull scarlet blotches on a translucent white ground. 
The antennae are solid scarlet, while the remaining appendages are nearly all 
white, without contrasting color on the legs. The entire oral field of the animal is 
bright scarlet, the remainder of the ventrum unpigmented. The egg mass is lav- 
ender. 


NORTHERN RANGE EXTENSIONS OF DECAPOD CRUSTACEA 205 


Distribution.—Palos Verdes Peninsula, California, USA, at a depth of 150 m 
(this paper); Central Gulf of California (near Isla San Lorenzo), Mexico at be- 
tween 360—380 m depth (Hendrickx 1990). 


Plesionika trispinus Squires & Barragan, 1976 


Plesionika trispinus Squires & Barragan, 1976:113—117, Figs. 1, 2 
Plesionika trispinus: Hendrickx & Wicksten, 1989:80—81, Figs. 4, 5 
Plesionika trispinus: Hendrickx & Estrada Navarette, 1996:134—136, Figs. 83, 84 


Type locality.—Off Pizarro, Columbia. 

Material examined.—Off the Palos Verdes Peninsula, California: 6 specimens, 
CSDLAC Station T4-137 (33°42.06'N, 118°21.05’'W), 140 m depth, 17 February 
1998. 4 specimens, CSDLAC Station T5-137 (33°41.11'N, 118°19.61’W), 140 m 
depth, 17 February 1998. 2 specimens, CSDLAC Station T4-137 (33°42.06'N, 
118°21.05'W), 140 m depth, 19 May 1998. 2 specimens, CSDLAC Station T1- 
137 (33°43.84'N, 118°25.34'W), 140 m depth, 4 August 1998. 1 specimen, 
CSDLAC Station T0-305 (33°9.23’N, 118°27.09’W), 305 m depth, 5 August 
1998. 1 specimen, CSDLAC Station T1-305 (33°43.55'N, 118°25.64’W), 305 m 
depth, 6 August 1998. 2 specimens, CSDLAC Station T5-305 (33°40.85'N, 
118°19.85'W), 305 m depth, 6 August 1998. 1 specimen, CSDLAC Station TO- 
305 (33°49.23'N, 118°27.09'W), 305 m depth, 11 August 1999. Off Newport 
Beach, California: 3 specimens, Bight’98 trawl Station 2119 (33°34.74'N, 
117°55.18'’W), 194 m depth, 7 August 1998. 

Remarks.—A parasitic dajid isopod of the genus Zonophryxus was taken on 
several Plesionika trispinus. They seem to be larger individuals of the same spe- 
cies found on Pantomus affinis in the area (q.v.). As the host is larger, the parasite 
can attain larger sizes, although reproductively mature even on the smaller host. 
Use of multiple hosts is unusual, but not unprecedented in the Dajidae (Koehler 
1911; Brandt 1993). This is a range extension along the Pacific Coast of approx- 
imately 9° latitude for this shrimp. The range of the parasite is unknown. 

Distribution.—Palos Verdes Peninsula, California, USA (this paper); Bahia de 
Santa Maria, Sinaloa, Mexico to off Salaverry, Peru (Hendrickx & Wicksten 1989) 
at depths of 96 to 500 m. 


Suborder Reptantia 
Infraorder Brachyura 
Superfamily Oxyrhyncha 
Family Majidae 


Stenorhynchus debilis (Smith, 1871) 


Leptopodia debilis Smith, 1871: 87 
Stenorhynchus debilis: Rathbun, 1898: 568 


Type locality.—Povlon, Bay of Realejo (Corinto), Nicaragua: | specimen, male, 
No. 3948, Museum of Comparative Zoology, Harvard. 

Material examined.—Off Huntington Beach: 1 specimen, OCSD Station T11 
(33°36.06'N, 118°05.20'W), 60 m depth, 11 August 1999. Santa Catalina Island, 
California, White Cove: 1 specimen, Bight’?98 Station 2077 (33°23.75’N, 
118°21.84’W), 50 m depth, 22 July 1998. West of Salta Verde Point: 1 specimen, 


206 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


BEADS Aah Sige og 
Lhe? 7 a: «* a 
PS) fiat 


Fig. 3. Palicus cortezi, dorsal view, scale bar = 10 mm. 


Bight’98 Station 2087 (33°18.57'N, 118°26.76'W), 69 m depth, 24 July 1998. Off 
the Palisades: 1 specimen, Bight’98 Station 2116 (33°18.34'N, 118°21.91’W), 39 
m depth, 24 July 1998. 

Remarks.—In addition to the trawl-caught material examined by the authors, 
reports of Stenorhynchus debilis were common and widespread at diving depths 
in the central SCB during 1998 (e.g. Engle & Richards, this volume). 

Distribution.—Huntington Beach, California, USA (this paper); Bahia Mag- 
dalena, Baja California Sur, Mexico, throughout the Gulf of California to Val- 
pariso, Chile; Guadalupe Island, Rocas Alijos, Revillagigedo, Cocos, and Gala- 
pagos islands (Hendrickx 1999) at depths of 3 to 156 m. 


Superfamily Ocypodoidea 
Family Palicidae 


Palicus cortezi (Crane, 1937) 
Figure 3 


Cymopolia cortezi Crane, 1937: 75—76; Plate VIII, Fig. 25 
Cymopolia cortezi: Garth, 1946: 499-500; Plate 85, Fig. 2 


Type locality.—Santa Inez Bay, Gulf of California: 1 specimen, Department of 
Tropical Research of the New York Zoological Society Station 147, Dredge 2, 
(26°57.5'N, 111°48.5’W), 120 m depth, 17 April 1936. 


NORTHERN RANGE EXTENSIONS OF DECAPOD CRUSTACEA 207 


Material examined.—Off the Palos Verdes Peninsula, California: 1 specimen, 
CSDLAC Station TO-61 (33°48.57'N, 118°25.84'W), 61 m depth, 23 February 
1994. 

Remarks.—This is a range extension of approximately 7° of latitude, although 
the shoreline distance between the two sites is much greater than 420 miles. This 
specimen, like the holotype a male, was initially identified as P. lucasii. Exami- 
nation by Mr. Todd Zimmerman (NHMLAC) corrected this based on the form of 
the pleopod. Aside from the formation of the anterior carapace and the male 
pleopods, the two species are quite similar. While several palicids are known from 
the Panamic region, this and the following species are the first members of the 
family reported from the Pacific Coast of the United States. 

Distribution.—Palos Verdes, California, USA (this paper); Santa Inez Bay, Gulf 
of California, Mexico; Wenman Island, Galapagos at depths of 61—300 m (Garth, 
1946). 


Palicus lucasii Rathbun, 1898 


Palicus lucasii Rathbun, 1898: 600, Pl. 43, Fig. 2 

Cymopolia lucasii: Rathbun, 1918: 193-194, Pl. 44, Fig. 1, 2 
Cymopolia lucasii: Crane, 1937: 76 

Cymopolia lucasii: Garth, 1946: 500-501, Plate 87, Fig. 1 


Type locality.—Off Cabo San Lucas, Baja California Sur, Mexico; 7 specimens, 
Albatross Station 2829, (22°52'00'N, 109°55'00”W), 57 m depth, 1 May 1888. 

Material examined.—Off Imperial Beach, California: 1 specimen, CSDMWWD 
Regional Station 2101 (33°48.57'N, 118°25.84’W), 38 m depth, 30 July 1996. 

Remarks.—This is a range extension of approximately 10° of latitude. This 
specimen, a male, was examined by Mr. Todd Zimmerman (NHMLAC) along 
with the specimen of P. cortezi mentioned above. The form of the male pleopod 
in this specimen was essentially the same as that seen in specimens in Zimmer- 
man’s collection from several other sites. 

Distribution.—Imperial Beach, California, USA (this paper); Cabo San Miguel, 
Baja California (Hendrickx & Salgado Barragan 1997); mid to lower Gulf of 
California (Hendrickx 1994), Clarion Island (Hendrickx 1992), and Albemarle, 
Hood, and James Islands, Galapagos (Garth 1946) at depths of 20-120 m. 


Discussion 


The use of otter trawls as a means surveying shelf and slope depth communities 
has been a common element of marine monitoring programs in the SCB since 
the 1970s. Most of this effort has been directed at monitoring the effects of treated 
wastewater discharged from large sanitary outfalls located along the metropolitan 
coastline between Los Angeles and San Diego. While these programs are local, 
being focused on the receiving water area within the effect of a discharge, they 
are of long duration and regular frequency. For example, CSDLAC has been 
conducting semiannual or quarterly trawls at 16 to 22 sites on the Palos Verdes 
shelf and upper slope in depths of 25 to 300 m since 1972. Over 1500 trawls 
have been conducted as part of that ongoing effort. The City of Los Angeles, the 
OCSD, and the City of San Diego have been conducting similar long term surveys 
as well. In addition, the Southern California Coastal Water Research Project 


208 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


(SCCWRP) conducted several hundred trawls within the SCB in the 1970’s to 
80’s. Notable within this effort was the SCCWRP control survey of 1977 that 
sampled the 60 m isobath from Pt. Conception to the US/Mexico border. More 
recently, there have been two very large-scale otter trawl surveys conducted as 
steps towards the development of regional monitoring within the SCB. The first 
of these was the 1994 Southern California Bight Pilot Project (SCBPP), during 
which 114 mainland shelf sites were sampled (Allen et al. 1998). The sites were 
randomly allocated across a depth range of 10 to 200 m from Pont Conception 
to the US/Mexico border. The second regional survey, Bight’98, was conducted 
July and August of 1998, during the 97/98 El Nifio period. Trawls were conducted 
at 311 sites in depths of 5 to 100 m along the mainland shelf from Pt. Conception 
to the border, the channel islands and within bays and harbors. A cumulative 
result of all these surveys is a fairly complete record of the composition of the 
epibenthic megainvertebrate fauna living on soft bottoms in shelf and upper slope 
depths within the SCB over the last 30 years. During this period there have been 
five warm water events classified as El Ninos (72/73, 82/83, 86/87, 91/92, 97/98) 
(Wolter & Timlin 1998). Wicksten (1984) provides a picture of the decapod fauna 
in the SCB from an earlier period (1900—1930) based upon the collections of the 
Anton Dohrn and other surveys. As in the past 30 years, this was also a period 
of frequent warm water events (Kiladas and Dias 1989). 

The novelty of several heretofore unrecorded decapods in trawl catches in this 
region during the recent El Nifio is accentuated when viewed in the light of the 
intensity of sampling over the past 3 decades and several El Nios. The possibility 
that they previously occurred but were not recognized or were merely noted as 
unidentified shrimp or crabs must be considered. However, this possibility is less- 
ened by the active effort to assure complete and standardized identifications of 
invertebrate taken in monitoring programs that began in the Bight in the early 
1970’s. The biologists conducting regular trawl monitoring in the SCB have been 
active participants in the SCCWRP Taxonomic Standardization Program (1970's) 
and, since 1982, its successor the Southern California Association of Marine In- 
vertebrate Taxonomists (SCAMIT). The appearance in trawls of unusual or odd 
organisms is quickly communicated throughout this community and is unlikely 
to go unnoticed or unrecorded. 

The species reported on here have dispersing larval stages: none release larvae 
brooded to benthic competence. It is possible, therefore, that at least the shrimp 
species either entered the SCB as larvae, or emigrated as young or adult individ- 
uals along with a northward flowing water mass. With the three crab species 
emigration is not an option, and they arrived either as pelagic larvae, or possibly 
as passive rafters on debris or other organisms (Martin and Kuck 1991). 

Even long term warming trends eventually end in Southern California waters. 
While local adults may be able to survive in the cooler waters that follow, suc- 
cessful local reproduction probably ceases. Despite the presence of gravid indi- 
viduals among some of the caridean shrimp (i.e., Processa peruviana, Pantomus 
affinis, Plesionika carinirostris), it is unlikely that any of these populations are 
able to replace themselves. With the breakdown of El Nifio, these isolated pockets 
are cut off from their source population and disappear with time (as the locally 
dense population of Pantomus affinis in southern Santa Monica Bay apparently 
has). However, the high frequency of warm water years since 1980 may have 


NORTHERN RANGE EXTENSIONS OF DECAPOD CRUSTACEA 209 


allowed these species to gradually extend their range along the Mexican coast 
northward of their previous known northern limits, placing them within reach of 
the SCB. If so, we may find these species re-appearing in our catches when 
oceanographic conditions favor incursion to the north. 


Acknowledgments 


The authors thank Dr. Michel Hendrickx (Estacién Mazatlan, ICML) who ex- 
amined and confirmed the identity of the pandalid specimens reported upon here, 
Dr. Mary Wicksten (TAMU) for identifying the processid, Mr. Todd Zimmerman 
(NHMLAC) for identifications of the palicids, and Mr. Ken Kurtis for permission 
to use his photograph of Sicyonia penicillata. The authors also thank Mr. Atsuhiro 
Kubo, who produced the drawings of Plesionika carinirostris and Palicus cortezi. 
Ronald Velarde, Dean Pasko (CSDMWWD) and Christina Thomas (OCSD) gen- 
erously provided material and collection information for the records attributed to 
their agencies. The manuscript benefited from comments received from two anon- 
ymous reviewers. This is contribution 14 of SCAMIT. 


Literature Cited 


Allen, M. J., S. I. Moore, K. C. Schiff, A. B. Weisberg, D. Diener, J. K. Stull, A. Groce, J. Mubarak, 
C. L. Tang, and R. Gartman. 1998. Southern California Bight Pilot Project: V. Demersal fishes 
and megabenthic invertebrates. Southern California Coastal Water Research Project. Westmin- 
ster, California. 324 pp. 

Brandt, A. 1993. Redescription of Notophryxus clypeatus Sars, 1885, a parasitic isopod of mysidaceans 
from the Kolbeinsey Ridge, North of Iceland. Sarsia, 78:123—127. 

Briggs, J. C. 1974. Marine Zoogeography. McGraw-Hill Book Co. New York, New York. 475 pp. 

Burkenroad, M. D. 1934. Littoral Penaeidea chiefly from the Bingham Oceanographic Collection with 
a revision of Penaeopsis and descriptions of two new genera and eleven new American species. 
Bull. Bingham Oceanographic Collection, 4:1—109. 

Burkenroad, M. D. 1938. The Templeton Crocker Expedition. XIII. Penaeidae from the region 
of Lower California and Clarion Island, with descriptions of four new species. Zoologica, 
23:55-91. 

Chace, FE A. Jr. 1937. The Templeton Crocker Expedition. VII. Caridean decapod Crustacea from the 
Gulf of California and the West Coast of Lower California. Zoologica, 22:109-—138. 

Crane, J. 1937. The Templeton Crocker Expedition. IJ. Brachygnathous Crabs from the Gulf of 
California and the West Coast of Lower California. Zoologica, 22:47-—78. 

Engle, J. and D. Richards. 2001. New and unusual invertebrates discovered at the California Channel 
Islands during the 1997-1998 El Nifio. Bull. So. Cal. Acad. Sci., 100:186—198. 

Garth, J. S. 1946. Littoral Brachyuran Fauna of the Galapagos Archipelago. Allan Hancock Pac. 
Exped., 5:341—600. 

Hendrickx, M. E. 1984. The species of Sicyonia H. Milne Edwards (Crustacea: Penaeoidea) of the 
Gulf of California, Mexico, with a key for their identification and a note on their zoogeography. 
Rev. Biol. Trop., 32:279-—298. 

Hendrickx, M. E. 1990. The stomatopod and decapod crustaceans collected during the GUAYTEC II 
Cruise in the Central Gulf of California, Mexico, with the description of a new species of 
Plesionika Bate (Caridea: Pandalidae). Rev. Biol. Trop., 38:35-—53. 

Hendrickx, M. E. 1992. Distribution and Zoogeographic Affinities of Decapod Crustaceans of the Gulf 
of California, Mexico. Proc. San Diego Soc. Nat Hist., 20:1—12. 

Hendrickx, M. E. 1994. Catalogo de Crustaceos Decapodos y Estomatopodos, Colecci6n de Referencia 
Estaci6n Mazatlan, Comisién Nacional para el Conocimiento y Uso de la Biodiversidad y 
Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Aut6noma de México. 
134 pp. 

Hendrickx, M. E. 1995. Camarones. Pp. 417-537 in Guia FAO para la identificaci6n de especies para 
los fines de la pesca. Pacifico centro-Oriental. Vol. 1. Plantas e Invertebrados. (W. Fischer, FE 


210 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Krupp, W. Schneider, C. Sommer, K. E. Carpenter y V. H. Niem, eds.) EA.O. Roma, Italia. 
646 pp. 

Hendrickx, M. E. 1996. Los Camerones Penaeoidea Bentonicos (Crustacea: Decapoda: Dendrobran- 
chiata) del Pacifico Mexicano. Comisi6n Nacional para el Conocimiento y Uso de la Biodiv- 
ersidad y Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Aut6énoma de 
México. 147 pp. 

Hendrickx, M. E. 1999. Los Cangrejos Braquiuros (Crustacea: Brachyura: Majoidea y Parthenopoidea) 
del Pacifico Mexicano. Comision Nacional para el Conocimiento y Uso de la Biodiversidad y 
Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Aut6énoma de México. 
274 pp. 

Hendrickx, M. E., and E D. Estrada Navarrete. 1996. Los Camerones Pelagicos (Crustacea: Decapoda: 
Dendrobranchiata y Caridea) del Pacifico Mexicano. Comisié6n Nacional para el Conocimiento 
y Uso de la Biodiversidad y Instituto de Ciencias del Mar y Limnologia, Universidad Nacional 
Autonoma de México. 157 pp. 

Hendrickx, M. E., and J. Salgado Barragan. 1997. Capitulo 3. Crustaceos Estomatopodos (Crustacea: 
Hoplocarida: Stomatopoda) y Decapodos (Crustacea: Decapoda). Pp. 51—90 in Tercer Catalog 
de la Coleccién de Referencia de Invertebrados. (Hendrickx, M. E., M. C. Espinoza Pérez, J. 
Salgado Barragan y M. N. Méndez Ubach, eds.) Estaci6dn Mazatlan, Comisi6n Nacional para 
el Conocimiento y Uso de la Biodiversidad Instituto de Ciencias del Mar y Limnologia, Univ- 
ersidad Nacional Aut6noma de México. 90 pp. 

Hendrickx, M. E., and M. K. Wicksten. 1989. Los Pandalidae (Crustacea: Caridea) del Pacifico Mex- 
icano, con clave para su identificaci6n. Caldasia, 16:71—86. 

Hickey, B. M. 1993. Physical Oceanography. Chapter 2. Pp. 9-70 in Ecology of the Southern Cali- 
fornia Bight, a Synthesis and Interpretation. (M. D. Dailey., D. J. Reish, J. W. Anderson, eds.). 
Univ. California Press, Berkeley, California. 926 pp. 

Kiladis, G. N., and H. E Diaz. 1989. Global climatic anomalies associated with extremes in the 
Southern Oscillation. J. Climate, 2:1069—1090. 

Koehler, R. 1911. Isopodes nouveaux de la famille des Dajidés provenant des campagnes de la ‘‘Prin- 
cesse-Alice’’. Bull. Inst. Oceanogr., Monaco, 196:17—34. 

Lea, R. N., and EK McAlary. 1994. Occurrence of the Swallow Damselfish, Azurina hirundo, from 
Islands off Southern California. Bull. So. Cal. Acad. Sci., 93:42—44. 

Lockington, W. N. 1879. Notes on Pacific coast Crustacea. Bull. Essex Inst., 10:159-165. 

Love, M. S., J. E. Cassele, and K. Herbinson. 1998. Declines in nearshore rockfish recruitment and 
populations in the southern California Bight as measured by impingement rates in coastal 
electrical power generating stations. Fishery Bulletin, 96:492—501. 

Martin, J. W., and H. G. Kuck. 1991. Faunal Associates of an Undescribed Species of Chrysaora 
(Cnidaria, Scyphozoa) in the Southern California Bight, with Notes on Unusual Occurences of 
Other warm Water Species in the Area. Bull. So. Cal. Acad. Sci., 90:89—101. 

Martin, J. W., and R. G. Velarde. 1997. First record of the crab Pilumnoides rotundus Garth (Crustacea, 
Decapoda, Brachyura, Xanthidae sensu lato) from off southern California. Bull. So. Cal. Acad. 
Sci., 96:105—111. 

McGowan, J. A., D. R. Cayan, L. M. Dorman. 1998. Climate-Ocean Variability and Ecosystem Re- 
sponse in the Northeast Pacific. Science, 281:210—217. 

Mearns, A. J. 1988. The ‘‘odd fish’’: Unusual occurrences of marine life as indicators of changing 
ocean conditions. Pp. 137-176 in Marine Organisms as Indicators. (D. EK Soule and G. S. 
Kleppel, eds.) Springer-Verlag. New York, New York. 342 pp. 

Méndez, M. 1981. Claves de identification y distribucion de los langostinos y camarones (Crustacea: 
Decapoda) del mar y rios de la costa del Pert. Boletin del Instituto de Mar Pert-Callao, 5:1— 
170. 

Newman, W. A. 1979. California Transition Zone: significance of short-range endemics. Pp. 399—416 
in Historical Biogeography, Plate Tectonics, and the changing environment. (Gray, J. & A. J. 
Boncot, eds.). Oregon State University Press, Portland, Oregon. 500 pp. 

Pérez Farfante, I. 1985. The rock shrimp genus Sicyonia (Crustacea: Decapoda: Penaeoidea) in the 
Eastern Pacific. Fishery Bulletin, 83:1—79. 

Radovich, J. 1961. Relationship of some marine organisms of the northeast Pacific to water temper- 
ature, particularly during 1957 through 1959. Cal. Dep. Fish and Game Bull., 112:1—62. 

Rathbun, M. J. 1898. The Brachyura coliected by the U.S. Fish Commission Steamer “‘Albatross”’ on 


NORTHERN RANGE EXTENSIONS OF DECAPOD CRUSTACEA 211 


the Voyage from Norfolk, Virginia, to San Francisco, California, 1887-1888. Proc. U. S. Nat. 
Mus., 21:567—616. 

Rathbun, M. J. 1918. The Grapsoid Crabs of America. Bull U. S. Nat. Mus., 97:1—461. 

Smith, S. I. 1871. List of the Crustacea collected by J. A. McNeil in Central America. Report of the 
Peabody Acad. Sci. for 1869 and 1870:87-98. 

Squires, H. J., and J. H. Barragan. 1976. A new species of Plesionika (Crustacea, Decapoda, Pandal- 
idae) from the Pacific coast of Colombia. Pac. Sci., 30:113—117. 

Stephens, J. S., J. E. Hose and M. S. Love. 1988. Fish assemblages as indicators of environmental 
change in nearshore environments. Pp. 91—105 in Marine Organisms as Indicators. (D. EK Soule 
and G. S. Kleppel, eds.). Springer-Verlag, New York, New York. 342 pp. 

Wicksten, M. K. 1983. A monograph on the shallow water caridean shrimps of the Gulf of California, 
Mexico. Allan Hancock Monogr. Mar. Bio., 13:1—59. 

Wicksten, M. K. 1984. Early Twentieth Century records of marine decapod crustaceans from Los 
Angeles and Orange Counties, California. Bull. So. Calif. Acad. Sci., 83:12—42. 

Wicksten, M. K., and M. E. Hendrickx. 1992. Checklist of penaeoid and caridean shrimps (Decapoda: 
Penaeoidea, Caridaea) from the Eastern Tropical Pacific. Proc. San Diego Soc. of Nat. Hist., 9: 
1-11. 

Wolter, K., and M. S. Timlin. 1998. Measuring the strength of ENSO—how does 1997/98 rank? 
Weather 53:315-324. 

Word, J. Q., and D. K. Charwat. 1976. Invertebrates of Southern California Coastal Waters. II. Na- 
tantia. Southern California Coastal Water Research Project, El Segundo, California. 238 pp. 


Accepted for publication 21 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 212-237 
© Southern California Academy of Sciences, 2001 


Shifts in Fish and Invertebrate Assemblages of Two Southern 
California Estuaries during the 1997-98 El Nino 


Gregory D. Williams,' Janelle M. West, and Joy B. Zedler? 


Pacific Estuarine Research Laboratory, 
San Diego State University, San Diego, CA 92182-1870 


Abstract.—Estuarine fish and invertebrate assemblages at Tijuana Estuary and Los 
Pefiasquitos Lagoon exhibited changes coincident with the 1997-1998 El Nifio 
event. Three fishes [A/bula sp. (bonefish), Ctenogobius sagittula (longtail goby) 
and Acanthogobius flavimanus (yellowfin goby)] and three invertebrate species 
[Callinectes arcuatus (arched swimming crab), Penaeus californiensis (Mexican 
brown shrimp), and Petricola hertzana (bivalve)] were new to estuary monitoring 
records. In addition, three historically common species exhibited substantial 
changes in abundance and/or size frequency: Mugil spp. (mullet spp.), Grandi- 
dierella japonica (amphipod), and Tagelus californiensis jackknife clam). Likely 
mechanisms for the observed patterns include modified ocean currents, altered 
larval supplies, increased rainfall, and flooding disturbance. Long-term biological 
monitoring programs (12-yr) provided valuable baseline data for quantifying these 
changes and recording faunal patterns over interannual-decadal time scales. 


Introduction 


El] Nino events are short-term cycles in the ocean-atmosphere system with a 
mean recurrence interval of 3—8 years (Haston and Michaelsen 1994). In the 
coastal waters of the Californias, El Nifio is characterized by increases in sea- 
surface temperature and sea level. Most El Nifio events also produce abnormally 
high rainfall and streamflows in southern California (Schonher and Nicholson 
1989; Kahya and Dracup 1994). Particularly strong historical El Nino events have 
occurred in 1926—27; 1957-58, 1982-83, 1991-92, and 1997-98 (Hubbs and 
Shultz 1929; Simpson 1984; Squire 1987; Lynn et al. 1998). The 1997-1998 El 
Nino was one of the strongest of this century (Hayward et al. 1999). 

In California, the biological effects of El Nifio conditions have been docu- 
mented in many marine habitats. Offshore, these effects include the migration of 
subtropical or tropical fishes into more northern latitudes (Hubbs and Schultz 
1929; Walford 1931; Hubbs 1948; Ketchen 1956; Radovich 1961; Cowen 1985; 
Squire 1987; Karpov et al. 1995). Enhanced development of a northerly coastal 
countercurrent (the Davidson current) during El Nifio years also results in the 
northward movement of more southerly pelagic invertebrates (e.g., Pleuroncodes 
planipes; Squire 1987) and fish larvae (e.g., Semicossyphus pulcher; Cowen 
1985). In nearshore waters, growth and canopy cover of giant kelp (Macrocystis 
pyrifera) declines, with cascading effects on the associated kelp forest community 
(Dean and Jacobsen 1986; Tegner and Dayton 1987; Dayton et al. 1998). Abun- 


' Current address: Battelle Marine Sciences Lab, 1529 W. Seqium Bay Road, Sequim, WA 98382. 
* Current address: University of Wisconsin, Botany Dept., 430 Lincoln Drive, Madison, WI 53706. 


ZZ 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 213 


dance and nesting success of some seabirds also plummets in El Nifio years, 
presumably due to modification of the nearshore food web (Massey et al. 1992; 
Veit et al. 1996). 

Few long-term studies have documented El Nifio-related effects on estuarine 
biota in southern California. Estuarine ecosystems are characterized by substantial 
variability due to their landscape position at the land-ocean interface, where they 
are influenced both by their terrestrial watersheds and the tidal marine environ- 
ment. During El Nifio years, high rainfall and streamflows in coastal watersheds 
can result in rapid flooding, strong freshwater pulses, and substantial sediment 
deposition in southern California’s estuaries and lagoons (Onuf and Quammen 
1983). El Nifio-related sea level increases and sea storms can lead to dune ov- 
erwash (Nordby and Zedler 1991) and enhanced inundation of the tidal marsh 
surface. Together with ocean temperature anomalies and altered current patterns, 
El Nifio-induced natural disturbances may result in a cascade of changes to shal- 
low water estuarine systems. Biotic effects may include a reduction in the diver- 
sity and abundance of benthic invertebrate and fish communities (Onuf and Quam- 
men 1983; Nordby and Zedler 1991), invasion by exotic and disturbance-colo- 
nizing species, and altered patterns of larval recruitment (e.g., Cowen 1985). 

The objectives of our study were to identify trends and anomalies in fish and 
invertebrate populations from two estuaries in San Diego County during the 1997— 
98 El Nifio. Specifically, we used a 12-year monitoring database to identify the 
appearance and persistence of new species in these systems coincident with the 
1997-98 El Nifio, while documenting shifts in historical assemblage composition 
and size frequency. 


Materials and Methods 
Study Sites 


The Pacific Estuarine Research Laboratory (PERL) at San Diego State Uni- 
versity has maintained biological monitoring programs at both Tijuana Estuary 
(TE) and Los Pefiasquitos Lagoon (LPL) since the mid-1980’s, enabling compar- 
ative ecological research on these unique ecosystems (Nordby and Zedler 1991; 
Desmond et al. in review). Tijuana Estuary (32°34’N, 117°07'W) is located on 
the U.S.-Mexico border, at the terminus of the Tijuana River’s 4403 km? watershed 
(Fig. 1). At approximately 1024 ha, it comprises one of the largest remaining, 
intact estuarine habitats of its kind in southern California. It is one of 22 NOAA- 
designated National Estuarine Research Reserves (NERRs) in the nation (Zedler 
et al. 1992). TE is strongly influenced by marine conditions and has historically 
remained open to tidal flushing, with a few exceptions (Zedler et al. 1992). Rapid 
development of the watershed and floodplain has contributed to the severity of 
episodic flooding and sedimentation events, often accompanied by chronic sewage 
flows (Marcus 1989). The sampling program for the NERR was initiated in 1986 
to monitor TE’s water parameters, soil conditions, and plant, invertebrate, and 
fish assemblages (Desmond et al. 1999). 

Los Pefiasquitos Lagoon (32° 56’ N, 117° 15’ W) is a relatively small coastal 
estuary (252 ha) in northern San Diego County, situated at the outlet of the 420 
km? Pefiasquitos watershed (Fig. 1). The lagoon-marsh complex is protected under 
its designation as a Natural Preserve, and constitutes the northern portion of Tor- 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


214 


ee ee eS ei Sr_— i _ ie EE _ — —S —- 


SS 
SSS 


SAS 


SS SVS 
SS SS 


SRE 


SSS 
AS 


BT 
SN SS Ss 
Raw 

ss 


& 


pe 


ARS 
«\ 


ah 


ss 


is: 
Seiperres 
LE 


ARES 


e 


SWS 


3 
SERS 


SSS 


SS 


sete 


oO ‘ oi pannnnonnnnnnceconnnecnnnnononNnnennne — 
SaoNAAeRANN AHN : x : ae SE SSeaee Ree 
: SS Ss Rte 


SA Sa 
: SEAN 
SE 


Soe 


33: 


S : 
SSE SSS 
SRS SES 
RASS 
SN 

: 
SSNS 


SN 


fe 
ee 


ie ee, 
Zs 


Zs 


5 


California USA 


Se 


or 


10 km 


S27 
ing 


I 


. 
3 


arine samp 


W). Estu 


Uy 


Tijuana Estuary (TE 


ites 


N,“1E7°4S 


tudy s 


arine s 
32°56" 


. 
? 


ts of estu 


nse 


with 
tos Lagoon (LPL 


t maps. 


> 
. 


ion 
flasqui 


tal reg 


W) and Los Pe 


1e¢g0 COas 


Uy 


San D 
07 


ter: 
a Ue i 
ions are num 


F 
34’ N 


nse 


bered on 


locat 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 215 


rey Pines State Reserve under the jurisdiction of California State Parks. Drainages 
flowing into LPL include Carroll, Los Pefiasquitos, and Carmel Valley Creeks, 
which were historically perennial streams. LPL closes to tidal flushing on an 
annual basis, a process more recently augmented by hydrologic modifications 
(including a major reduction in the tidal prism) associated with construction of a 
railroad through the lagoon (in 1925), a highway across its mouth (in 1933), and 
sedimentation from human impacts in the watershed. During closed-mouth con- 
ditions, waters become vertically stratified, leading to anoxic conditions and fish 
kills; since 1986 the management approach to these problems has been to reopen 
the mouth manually, which enhances tidal mixing and flushing (LPL Foundation 
and State Coastal Conservancy 1985, Zedler 1996; Williams et al. 1999b). Sam- 
pling in Los Pefiasquitos Lagoon began in 1986 to monitor water parameters, soil 
conditions, and plant, invertebrate, and fish assemblages (Williams et al. 1999a). 


Physicochemical Conditions 


Monthly summaries of rainfall data were obtained from the National Weather 
Service at Lindbergh Field, San Diego (http://nimbo.wrh.noaa.gov/sandiego-/ 
nws.html). Total monthly streamflows of the Tijuana River at the Nestor gauge 
were obtained from the International Boundary and Water Commission (IBWC) 
(http://www.ibwc.state.gov/). Intensive water monitoring was conducted at One- 
onta Slough, near Seacoast Drive in the north arm of TE, using an automated 
YSI 6000 upg datalogger which has been operated and maintained continuously 
since 1996. This unit samples 6 parameters, including salinity and temperature 
(°C), at 30-minute intervals, 24 hours a day, with sensors located 10 cm off the 
bottom of the channel. 


Biotic Responses 


Identical methods were used to sample invertebrate and fish assemblages at TE 
and LPL (see below), although sample number and frequency differed. The da- 
tabase at TE includes quantitative estimates (species composition, density, and 
size-frequency) of fishes and invertebrates collected from three stations (TE#1— 
3) in the north arm of the estuary (Fig. 1) on a quarterly basis (spring = March, 
summer = June/July, fall = September, and winter = December/January) from 
1986-1999. An additional station in a restoration site (TE#4) was added during 
1997-99. At LPL, fishes and invertebrates were initially collected from three 
stations (LP#1—3; Fig. 1) on a quarterly basis. Sampling frequency at LPL de- 
creased to summer and winter for fishes in 1990, and for invertebrates in 1995, 
while two additional sampling stations (LP#4 and #5) were added in the upper 
lagoon in 1995. 

Two sets of benthic invertebrate samples were collected at low tide from each 
station. A first set of nine shallow cores was collected by removing the top 5 cm 
of sediment with a cylindrical “clam gun” (45 cm length; 15 cm diameter; 176 
cm? area). The nine cores were combined in groups of three, yielding three rep- 
licate samples (0.053 m? ea.) from each station. Samples were seived through a 
l-mm screen in the field. Easily identifiable animals were counted and released, 
while all others were preserved in 95% EtOH for later identification; samples 
were soaked in a rose bengal solution prior to sorting. A second set of “‘deep” 
cores was collected by pushing the same “‘clam gun”’ 20 cm into the sediment to 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


216 


I € joqI1n} poyods 14a]j1d SKYIYIUOANA] 
SY cl a4 L9 LZ4 ts 4 ¢ C ve £ 9¢ te tl joqin} PuoweVid pypnyins pyasdosd&H AVCILOANOANA Td 
oan eat COSE: KEI 6 v v7 67 Z € OTN ‘dds pisnyp aVaITonw 
96 is Aqos mopeys ppnv9-« pjnjain©@ 
$9 rs Aqos Keg snpida] snigosopidaT 
LE a ee 1 Sg Ae Z 4 oo x6ie. Sc c cr Aqo8 jodsyseyD usage snuds]y 
i €cIl 82 Ee 688 € ce II 9 8 v 5 A 6¢ Jayonspnur MelsuoT SIIqvana SKyIYyoupIH 
I $9 yAqos [1e3u0'7] DINIISVS snigosoual) 
9SS S6€ SLit .ceST- p9s 9Ssc I9I chp =SISS C8P8 PCILI S6LE CCC? LIOL Aqo3 Moy SO] DIpUuvjaAaty) 
I 67I I 4AQOS UYMOT[OA snupuavyf snigosoyjUvoVy AVdIdOD 
9 I I ¢ I I 8 ahoyedO SUDIIABIU DIJAAIN AVAITTSAIO 
I? Pao esse Stell ars EeGr SISE- c£S- £98" Ptc SOL [v9 Lt6. 62 YsyyPy erusrojiye) stuuldiadpd snjnpuny AVCITNGNNA 
AAoyoue UIOyION XDPAOUL SIJNDASUT 
6 Aaoyoue ysno[s DUISSIDINap DOYIUY 
¢ al I 2 86 C 9 C Kaoyoue Apoqdseq pssaidwod poyquy AVACTTINVADONA 
GEL val IcPr PEL “IS Lt 14 8 € Tit IL9 ISI 86¢ urdjnos uroyseig snipuiin snyoooldaT 
ep Fe urdynos ‘pruy ‘dds smpaiuy AVAGLLLOO 
I c punoyyjoows Avi SNIULO SIDI snjaisnpy AVCINIHYAVHOYVO 
el cl € 99 v8 E 3 8 C £6 v9 66 c9 vil nqiyey erusosTe) SNIUAO {IOI SKYIYIIDADT AVCIHLOd 
I I Auusy]q jassnyy isu1yual sniuualgosday 
I Auustq joodyo0y yAaqgis sniuuajgosd«y 
Zz z I I I v Auusyq Avg syjuas sniuuajqosday AVCINNA 1d 
L96I1 6v6C SbHHT B8E8~T LSB FIS EICiT. <S2t che 68p cose I119¢ L IS9I yoursdoy, stuffy sdoulayly AV CISdONISXHLV 
6 «YSyouog ‘dds vjnqiy aVvaIind tv 
6661 8661 L66I 9661 S66I P66I C66I TH6I 1661 O66I 6861 8861 L86I Y86I oureu UOUWUIO,) sorseds Ajrure.{ 


‘roded sty} url passnosip soroeds ayeoIpUr y. “666 1—-OQ6I ‘(SUONLDOT JOJ [ ‘S14 90S) suones Suljdwes Arenjsq euenliy, sory) Ie poyoaTJoo ysy Jo JoquINN' “] 2qQeL 


21 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 


O22). Se 2 eee 2 ee ee ee eS >. SS oe 


POLEL ELIF E99DI BIIL O90E SZHIT PEOEI ET6h 8S79 H9S6 OLLIT YOI8 CEVE 8886 


v € I I I ¢ I 9 ysyodid Avg 
sseq pues poleg 
I sseq pues ponods 

sseq djoy 
if ysyusond 
d ysyiejins ssoujsAoys 
Vd ysyornbsoyy 


: 14 I yoqin} O-D 


GHLOATIOO HSA TWLOL 


ee ee = De 2 ee NS SS a ee ES ESE ee 


6661 8661 L661 9661 S66I P66I C661 T66I T661 O66T 6861 8861 L861 9861 


oureu UOWIUIOD 


snyoukysojday snyypusuks AVGIHLVNONAS 
dafynqau xDAqv]vADg 
SNIDIISD{OJDINIDUL XDAQVDIVAV_ 

SNIDAYIVII XDAQVIDADT AVCINVAAS 

snyyod snydisag AVCINAVIOS 

snjonpoid soyoqou1yy AVCILV AONIHY 

siuyff[p visnquovy AV dITOdOd 
snsouaod Skyjyouosna]d 

soroeds Ayruey 


SSE —————————————————_ 


‘ponunuod “| e198 


218 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


estimate the abundance of large, deep-dwelling invertebrates (e.g., bivalves, bur- 
rowing shrimp). Nine cores, pooled using the same methods as in the shallow 
series, were taken at each station. Samples were seived through a 3-mm screen 
in the field. Easily identifiable animals were counted and released, others were 
preserved as above for later identification. Field observations, including those 
made of specimens captured during fish seining (see below), provided additional 
data on large and/or mobile taxa not usually sampled with the cores. Because 
invertebrate monitoring focused on benthic invertebrates, our protocol for surface 
macroinvertebrates was to note the presence of the more mobile taxa (e.g. Pach- 
ygrapsus crassipes on banks of channels). When unusual species appeared, their 
presence was noted and, time permitting, density and/or size data were gathered. 

Fishes and mobile surface macroinvertebrates (e.g., decapod crustaceans) were 
sampled from each station during the slack period of a low neap tide using two 
blocking nets and one 15-m bag seine with 3-mm square delta mesh. At each 
study site a linear distance (~9 to 12 m) was measured parallel to the channel 
and two blocking nets were deployed to confine all fishes within this area. The 
bag seine was then swept between the two blocking nets and across the channel 
to the opposite bank (defining 1 pass). Passes were repeated until the number of 
fish captured per pass was less than 5% of the total catch. The species composition 
and number of fishes collected was recorded separately for each pass. Subsamples 
of at least 25 individuals per fish species were measured and then released outside 
the blocking nets. Individuals that were unique or difficult to identify were pre- 
served as voucher specimens. 

Historical data (i.e., Tables 1—3) was used to identify groups of fish and inver- 
tebrate species that exhibited atypical abundance trends coinciding with the strong 
1997-98 El Nino event. Although another fairly strong El Nino event (1991-92) 
has occurred during our long-term monitoring program, our data indicated mini- 
mal responses to this event among the biotic communities of TE and LPL (Tables 
1—3). However, because the 1997—98 event had a striking effect on these two 
systems, we focused on 1997—98 data from both LPL and TE, identifying species 
new to the sampling record and reporting long-term trends in abundance (density) 
and size-structure. 


Results and Discussion 
Physicochemical Conditions 


Monthly multivariate El Nino indices indicate that strong El Nifio conditions 
extended from April 1997 through July 1998 along the southern California coast 
(Hayward et al. 1999). During this time, sea-surface temperatures were anoma- 
lously warm, averaging from 2—4 °C above long-term means (Lynn et al. 1998). 
El Nifio conditions also produced a substantial increase in mean water levels 
during this time, with a maximum anomaly of +0.2 m at the Scripps Pier (La 
Jolla, CA) in November 1997 (Lynn et al. 1998). 

Precipitation during the 1997—98 water year (7/1/97—6/30/98) was over 45 cm, 
which exceeded the long-term average of 25.4 cm yr™! recorded at Lindbergh 
Field, San Diego (Fig. 2). An exceptional peak in February 1998 rainfall (19.4 
cm) was almost equal to the long-term annual mean. Rain events were accom- 
panied by elevated river flows. At the U.S.-Mexico border in April 1998, Tijuana 


219 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 


DS ee eee TTT ES a 


dea LOIATIOD HSId TVLOL 


9C9T 


9T 


Ic 


I 
3 
£96 


ILOL sil 
9 I 
4 
€ Iv 
4 SI 
EOL, << 
occ sC«TLOT 
c9 c 
ce 8 
v 
oo Lé 
ce 
I 
ol (44 
SI 6el 
ol 
I 
if c 
LSC SLTS: 


6781 


x4 


8c8 


vv 


99 


A! 


al 
v8L 


6c0I 


Et 


L9 


I 
(443) 


1687 


91 


Lol 


¢ 
LEET 


[scl 


es 


el 


SI 


(4 
181 


687 


81 


LEL 


vi 


CCC 


clvl 


66 


81 


I 
c9TI 


Oc O6ZLLOI 


€~ 


6S9t OS6 


c a 


v6e sco. L 2! 


S6C 9cS 86c =«C*T'TT 


EC LS cS EL 


Lez L9 POL OE 


1X6 9S t 9ET 


OLE 1a): £7 v6 


I L v 9 
6Lv9 9SPIl OIb 899T 


6LIT 


ysyodid Avg 

sseq pues poeg 
sseq pues ponods 
sseq djoy 

JOyYeOIN UYMOT[OA 
eUuIgIos WO 
ysyornbsopy 
Joqin) poyods 
Joqin} puowriq 

x 91D 

Aqos Mopeys 
Aqos Keg 

Aqos jodsysoyD 
Jayonspnur mef[suo'T 
,Aqos [Iesu0T 
Aqos Moly 
yAQo3s UYMOTIOA 
akatedO 

YSONIPy erusrojiye) 
AAoyoue UIOUVION 
Kaoyoue Apoqdssq 
youodjins 10urys 
uldjnos ur10yseisg 
sseq “pruf) 
ysyuns usa1H 
jnqiyey erusoje) 
yoursdoy, 


snyoucysojday snyjnusuKg 
Aafi]ngau XDAGDIDIDY 


SNIDIISD{OJD]NIDUL XDAQDIDAD 


SNIDAYIVII XDAGDIDAD 
AOPDIUOL DULAQU) 
SNIDINPUN SNYAMINUAW 
siuyuffp visnquvy 

14ayf1d SKYJYIIUOANA] J 
pIvjnyns vyjasdosdAy 
‘dds jisnp 

ppnv9I-« DjNJaInoO 
snpida] snigosopida] 
yaaqgis snuda]] 

syiqoama SKYIYINPID 
DINIJISVS Snigosouaj) 
S01 DIpuvDjaaalyD 
snupuavy, snigosoyjuvoy 
SUDI1S1U D]JAALH 
stuuidiaipd snjnpun] 
DUISSIDINAap DOYIUY 
pssaiduo? voyouy 
DIIDEIABSD AAISDSOIDUA) 
SnJvUAD Ssnjjor0jdaT 

‘ds snuajdoso1py 
snp]jauvad siuodaT 
SNIIUAO[IDI SKYIYINDAV 
siuyfo sdou1sayly 


AVAUIHLVNONAS 


AVCINVAAHS 


AVAINHVIOS 
AaVdITWOdOd 


AV CILOANOdNA Id 
AaVarTonNWw 


AVdaldoo 
AVdIT Heo 
AVCTINGNNA 


AVATINVAONA 
AVCIDOLOIAGINA 
AVAILLOO 


AVCIHOYVALNAOD 
AVCIHLOd 
AV CISdONISHHLV 


i 


6661 8661 L661 9661 S66I V66I C66I CO6I 1661 O66I 686T 


8861 L86I 986I 


ouieu UOWWIOD 


soroeds 


Ayrure{ 


Par a Oe a eee eee ee —— 
SS,  UnIIIEIEEIEIEE SESE 


‘roded 


SIy} UI passnosip so1deds aPOIpUT x *6661-986I ‘(SUONRIO] JO} | “314 99S) suONEIs SuTfdures UOOse'T soynbseusd SOT 9AY Ie psyoaT][Oo YsY JO JoquINN' “7% PIGBL 


SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


220 


x KK 


xx XK 


xe K KM 


x x 


xx KKK 
xx K KK 


x xX XxX 


uoose’T] soynbseuddg so] 


xX 
x x xX 
xX 


».4 


xx x 


x Kx 


».4 


x x 


x x 


Xx 
XxX 


x 


x 


x 


6661 8661 L661 9661 S66I P66I C661 C66I 1661 6661 8661 L66I 9661 S66I V66I C66I C66I 1661 


Aremsq vuentty 


sypjuosf snadouvdoydoT 
snjjaq snadouvdoydoT 
stuayasnd pvigasodn 
1Snjuvx SNUNJAOd 
ySNIJDNIAD SAJIAUTIDI 
ySISUAIULOJIIDI snavuagd 
‘ds snun3spq 
SN]AJIDPOAIDUL UOWAYID 
DID]NUALI DIN 
sisualusofyvs ajkjoddiyy 
sadissvso snsdvisKyovd 
sisuauosai0 snsdpvssmMay 
‘ds uosupsgD 

‘ds uaouvy 

sisualusofyjva vavdksjoany 


HV dCIHINVX 
HV dild#dDO0dNn 


AV dINONLaYOd 

HV dIAV Nod 
HVdIdNoOvVd 

HV dINOWOd TVd 
HV dIdOdAN0O 
AV AILA TOddIH 


AVdISdVaD 
AVACINOONVaDO 
HVATaAONVO 
HVAISSVNVITIVO 


‘roded sty} ut passnosip sor1oeds aeorpul » 6661-166] ‘UCOSe’] soynbseusg soy pue Arenjsq euenliy ye poasasqo spodeseq ‘¢ sIqQRL, 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 224 


20 


Rainfall (cm) 
S 


Streamflow (m3/sec) 


Ff 
é 
é 
# 
é 
/ 
4 
/ 
ad 
é 
é 
F) 
F 
Ag 


Temperature 


Salinity (ppt) and Temperature (°C) 


Worse OO Owe rhe > ee he Coe Oo CO 
Btu See, Soa o8e Ty To aay) Tokh Ahm oop ri ae 
§SESEBSS6 & esSeo5 a aRES a8 5 3 6 


Fig. 2. Total monthly rainfall (cm; top) and mean monthly streamflow (m? sec~!; middle) in the 
Tijuana River. Mean monthly salinity and temperature (ppt, °C; bottom) within Tijuana Estuary, as 
measured by YSI datalogger at station TE#2. El Nifio conditions persisted from approximately April 


1997-July 1998. 


River flows exceeded 40 m3 sec~!; mean daily flow rates at this site (since 1962) 
were 2.31 m? sec-!. No river gauges are maintained in the lower watershed of 
Los Pefiasquitos Lagoon. 

Exceptional precipitation and river flow-rates also impacted estuarine habitats, 
where flooding deposited up to 12 cm of sediment over Tijuana Estuary mudflats 
(Ward 2000). Dramatic declines in mean monthly water salinities at TE#2 during 
February and April 1998 corresponded with periods of high rainfall and water 


flows (Fig. 2). 


Biotic Responses 


Based on differences before and during the 1997-1998 El Nifo event, we 
observed six fish and invertebrate species that were either historically uncommon 


222 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


1997 1997 1997 97/98 1998 1998 1998 98/99 1999 1999 
Spr Sum Fall Win Spr Sum Fall Win Spr Sum 


Albula spp. TE 
Acanthogobius flavimanus TE 
LPL 
Ctenogobius sagittula TE 
LPL 
Mugil spp. TE 
LPL 


Callinectes arcuatus 


Penaeus californiensis 


Fig. 3. Mean density (per m*) of species collected with the seine (spring 1997 through summer 
1999) that exhibited atypical abundance trends during the 1997—98 El Nino event. “‘X”’ indicates that 
individuals were observed in low numbers, but densities were not quantified. 


or completely new to the monitoring record. During 1997—98 we also documented 
shifts in abundance (increase or decrease) and/or size structure of three species 
that were common in the historical monitoring record. Descriptive analysis of 
these species trends includes the date of first collection, density and relative abun- 
dance, persistence in the estuary, size frequency, and discussion of life history. 

New/uncommon species.—Most of the fish and invertebrate species new to the 
12-year monitoring record at TE and LPL in 1997—98 were collected as juveniles. 
Their appearance altered the relative abundance of common species and increased 
species richness in lagoon assemblages. New invertebrates were first collected in 
winter 1997—98, while fishes were collected later in the summer or fall of 1998, 
either due to differential catchability or real differences in larval arrival/avail- 
ability (Fig. 3). Each species exhibited variable periods of persistence in these 
estuaries. Although it appears that the abundance of several other species (Por- 
tunus xantusii—Xantus’ swimming crab, Paralabrax nebulifer—barred sand bass, 
Menticirrhus undulatas—California corbina, and Pleuronichthys coenosus—C-O 
turbot) may also be correlated with the 1997—98 El Nifio event (Tables 1 and 2), 
we are not considering these as “‘new/uncommon species”’ because they are all 
regularly found in the local sandy nearshore environment. 

Albula sp. (bonefish): A total of 11 Albula spp. \eptocephalus larvae were 
collected at TE in spring 1998 (Table 1; Fig. 3). While not abundant (mean density 
< 0.03 m~?; < 4% relative abundance), Albula spp. leptocephali were collected 
at 3 of 4 sampling stations, indicating wide distribution throughout the estuary. 
Albula leptocephali in the Gulf of California grow to lengths of up to 70 mm 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 223 


standard length (SL) prior to settlement (Pfeiler 1984). Individuals in our collec- 
tions ranged in size from 38—68 mm total length (TL). 

This is the first time this tropical species has been collected at TE since mon- 
itoring was initiated in 1986 (Table 1); none have been collected at LPL. No 
additional Albula spp. (larvae, juveniles, or adults) were collected in 1999 or 
2000, suggesting that this species did not persist in the estuary either due to 
outmigration, mortality, or our inability to capture juvenile stages or adults. Un- 
usual recruitment of Albula spp. was also observed in 1998 at nearby Mission 
Bay (Talley 2000) and San Diego Bay (Allen 1998). 

Because of current uncertainties regarding the taxonomic identity of bonefish 
in our region (Pfeiler et al. 1988), we refer to specimens in our collections as 
Albula spp. Bonefish are oviparous and presumably have planktonic eggs; larvae 
are rare in collections from the California Current region, although they are com- 
mon and widespread in the Gulf of California (Moser et al. 1993, Charter and 
Moser 1996). Pfeiler et al. (1988) postulated that Albula leptocephali from the 
Gulf of California have a larval duration of 6—7 months; during winter and spring 
months the larvae actively move into shallow, lagoon nurseries in the first hours 
of a nocturnal flood tide, where they metamorphose into juveniles (Pfeiler 1984). 
Albula leptocephali are euryhaline, with a salinity tolerance of 4—52 ppt; they 
have been reported in both hyper- and hypo-saline lagoon habitats (Pfeiler 1981). 
Adult bonefish constitute an important recreational fishery in many areas and 
typically inhabit shallow (<0.5 m) sand and seagrass flats, where they feed on a 
variety of benthic prey (Mojica et al. 1994, Charter and Moser 1996). 

Ctenogobius sagittula (longtail goby): The tropical goby, Ctenogobius sagit- 
tula, was first sampled at TE and LPL during summer 1998 (Tables 1 and 2). At 
TE, 65 C. sagittula were collected from stations TE#2 and TE#3 in channels of 
moderate depth (0.25—0.6 m on a low, neap tide), with strong tidal flows and 
bottoms composed of muddy sand or shell hash. Mean density across all stations 
was <0.09 m~ (Fig. 3), with C. sagittula averaging over 20% of the catch. 
Ctenogobius sagittula persisted in TE for approximately six months, becoming 
less common in quarterly samples subsequent to summer 1998. Mean densities 
decreased to 0.035 fish m~ by fall 1998 and <0.01 m~? by winter 1998—99. Mean 
C. sagittula sizes rapidly increased from 55.6 mm during summer 1998 (range: 
33-78 mm TL), to 123.6 mm by fall 1998 (range: 98-200 mm TL). 

Ctenogobius sagittula was less abundant at LPL. During the June 1998 sam- 
pling period, a total of four C. sagittula measuring 88—93 mm TL were collected 
from one station (LP#2), which is located in a warm, shallow side-channel near 
the lagoon interior (Fig. 1). Ctenogobius sagittula made up <2% of the mean 
catch across all stations, with mean densities of 0.03 fish m~? (Fig. 3). This is the 
only LPL record of C. sagittula; no individuals were collected in subsequent 
samples. Specimens from both locations have been archived in the Scripps Insti- 
tution of Oceanography vertebrate collections (TE—SIO 98-124; LPL—SIO 98- 
b23). 

Ctenogobius sagittula is currently considered rare (Miller and Lea 1972) or 
extirpated (Swift et al. 1993) in southern California. However, the species is com- 
mon in the Gulf of California and adjacent waters to Panama (Ruiz-Campos and 
Castro-Aguirre 1999), with disjunctive records in warmer Pacific coastal lagoons 
of Baja California, Mexico (e.g., San Ignacio lagoon by De La Cruz-Aguero and 


224 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Cota-Gomez 1998, San Quintin Bay by Rosales-Casian 1996). Ctenogobius sag- 
ittula was also observed during spring and summer of 1998 in Mission Bay 
marshes (Talley 2000). 

Acanthogobius flavimanus (yellowfin goby): Another historically rare goby, the 
nonindigenous Acanthogobius flavimanus also appeared during summer 1998 
sampling at both TE and LPL (Fig. 3). At TE, A. flavimanus was collected at 
densities of 0.49 m~? at one station (TE#2) in the main channel of the north arm. 
Averaged across all 3 stations, A. flavimanus densities were 0.16 m~? (4.9% of 
the total catch). All A. flavimanus collected at this time were juveniles (<100 mm 
TL; Baker 1979) with a size range of 28-88 mm TL. This recruitment pulse 
appeared to be a one-time event at TE; the only A. flavimanus specimen observed 
since then has been a single 38 mm TL individual collected in June 1999. The 
absence of adults in subsequent TE collections suggests that A. flavimanus pop- 
ulations do not persist for long in TE, with recruitment events likely dependent 
on an influx of larvae supplied from other locations (perhaps San Diego Bay; 
Williams et al. 1998a). 

A recruitment pulse of Acanthogobius flavimanus was also observed in summer 
1998 at LPL, where their mean density was 0.02 m~? and they averaged 6.4% of 
the catch across all stations (Fig. 3). Most of these specimens were collected in 
the mid-lagoon channels of station LP#1 and LP#2, and ranged in size from 58— 
128 mm TL, considerably larger than those collected at TE two weeks later. 
However, A. flavimanus were prevalent throughout the lagoon, including upper 
lagoon stations LP#4 and LP#5 where surface salinities were low (3—5 ppt) and 
generally reflected heavy freshwater inputs (Fig. 1). The summer 1998 cohort of 
A. flavimanus presumably persisted in LPL through the next year, growing into 
mature individuals (150—220 mm TL) that were later collected both in winter 
1998-99 and summer 1999. A new recruitment pulse of juveniles (47-133 mm 
TL) also came into the lagoon in summer 1999 at densities averaging 0.02 m~? 
(3.4% of the total catch). 

Acanthogobius flavimanus is becoming increasingly common in San Diego 
County estuaries. Previous studies documented the southern expansion of A. flav- 
imanus to San Diego Bay (32°34'N, 117°5’W) in 1989 (Williams et al. 1998a). 
However, unpublished records show that a single 96-mm individual was previ- 
ously collected at TE in 1990 under the NERR fish monitoring program (Table 
1). Acanthogobius flavimanus individuals have been collected episodically at LPL 
during summer sampling periods in 1989, 1993, and 1994 (Table 2) and during 
fish kills coinciding with extended mouth closure events (G. Williams, pers. obs.). 
Tolerant to a wide range of salinities and temperatures, this large (to 290 mm 
TL), opportunistic carnivore may negatively impact native fish assemblages, es- 
pecially in disturbed habitats (Baker 1979, Usui 1981). While the extending range 
and increasing abundance of A. flavimanus is apparent, the long-term ramifications 
of these changes are unclear. However, resource managers should be aware of this 
species’ presence and potential impacts to the ecology of native aquatic com- 
munities (Williams et al. 1998a). 

Callinectes arcuatus (arched swimming crab): This crab species is typically 
found in estuarine mud or sand substrates (Garth and Stephenson 1966, Paul 
1982a). It was initially collected with the seine at TE in winter 1997—98 (0.041 
individuals m~?) and at LPL in summer 1998 (0.036 individuals m~?) (Fig. 3). 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 2D 


Additional specimens were observed at this time in several nearby estuaries, in- 
cluding the San Diego River channel and Sweetwater Marsh on San Diego Bay 
(G. Williams and J. West, pers. obs.), as well as Mission Bay (Talley 2000). 
Southern California represents the northern extension of C. arcuatus’ known geo- 
graphic range, which continues south to Peru (Williams 1974). 

At TE, C. arcuatus was most abundant during the main pulse of the El Nifio 
event (winter 1997—98 through summer 1998; Fig. 3). Callinectes arcuatus had 
peak densities of 0.101 individuals m~’ during spring 1998, with a mean carapace 
width (CW) of 61.1 mm (range: 40-119 mm). As C. arcuatus densities declined 
throughout the following year, the population structure shifted to predominantly 
larger adults. Callinectes arcuatus is known to exhibit rapid growth rates of about 
8 mm/month, reaching maturity at 80 mm carapace width (CW) (Paul 1982b). 
By spring 1999, C. arcuatus densities had declined substantially (0.014 individ- 
uals m~’), while the mean size of collected individuals increased to 123.7 mm 
CW (range: 105-145 mm). None were collected after summer 1999 (Desmond et 
al. 2000). At LPL, C. arcuatus was most abundant in summer 1998 (0.036 in- 
dividuals m~’); densities dropped dramatically by winter 1998—99 (0.001 individ- 
uals m~?; Fig. 3). 

Callinectes arcuatus is considered a euryhaline species tolerant of a wide range 
of temperatures. In the Gulf of California it occurs in areas with salinities ranging 
from 1—65 ppt and temperatures from 17.5—34°C (Paul 1982a). In a western Mex- 
ico lagoon system, C. arcuatus fed primarily on bivalves (particularly Tagelus 
affinis), crabs, and fish, while shrimp and gastropods were consumed in lesser 
amounts (Paul 1981). : 

Penaeus californiensis (Mexican brown shrimp): Juvenile Peneaus californien- 
sis were collected with the seine at TE and LPL in winter 1997—98 and summer 
1998 (Fig. 3). Seine samples were generally made in shallow water ~1 m depth, 
and all individuals collected were juveniles between 14—37 mm carapace length 
(CL). There is no previous collecting record of this species at either LPL or TE, 
although their native range spans the coast from San Francisco Bay to Peru (Dore 
and Frimodt 1987). 

The mean density of P. californiensis at TE during winter 1997—98 was 0.614 
individuals m~’, yet none were collected the following spring (Fig. 3). LPL den- 
sities during winter 1997—98 were lower than at TE (0.131 individuals m~’); LPL 
was not sampled in spring 1998. By summer 1998, P. californiensis densities had 
declined to < 0.005 individuals m~’ at both LPL and TE. 

Penaeus californiensis is an important commercial species in Mexico, where it 
constitutes up to 75% of the Mexican Pacific shrimp catch (Dore and Frimodt 
1987; Magallon-Barajas 1987). Newly hatched larvae travel up coastal estuaries 
into lagoons, where they spend several months growing to a “‘subadult’’ stage 
before returning to sea to mature and spawn (Snyder-Conn and Brusca 1975; 
McGoodwin 1979). Mature adults, which can reach a maximum size of 210 mm 
CL, generally occur on muddy bottoms or sandy mud at depths of 25—50 m (Dore 
and Frimodt 1987). In the Gulf of California, P. californiensis abundance naturally 
peaks during the winter season, and most individuals live only one year (Snyder- 
Conn and Brusca 1975). The P. californiensis fishery in the Gulf of California 
experiences substantial interannual variation in catch per unit effort, likely due to 
strong recruitment events, which have been positively correlated with elevated 


226 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


200 


a. Petricola hertzana 


150 


100 


50 


15000 


Mean density per m2 


b. Grandidierella japonica 


10000 


5000 


a 
ON 
ON 
jon 
NY 


| 

ON oO 

ON oO 
— 

aM 

a L, 


Fall 97 ¥ 


Win 97/98 
Win 98/99 


Fig. 4. Petricola hertzana (a) and Grandidierella japonica (b) densities (+ SE) at three Tijuana 
Estuary sampling stations from spring 97 through fall 1999. 


sea temperature anomalies characteristic of El Nino events (Morales-Bojorquez 
and Lopez-Martinez 1999). 

Petricola hertzana: The bivalve Petricola hertzana (Petricolidae) was first en- 
countered during summer 1998 in benthic core samples collected at station TE#3, 
where mean densities reached 145 individuals m~? (Fig. 4a). Since this initial 
collection date, P. hertzana abundance has generally decreased, although the spe- 
cies continues to persist at low densities (~35 individuals m~’) at this site. During 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES ps | 


fall 1998 P. hertzana was also observed at a nearby station, TE#2. The population 
at this site gradually increased, reaching a peak in winter 1998—99 (45 individuals 
m-*). No P. hertzana individuals have been collected at TE#2 since spring 1999 
(Fig. 4a). 

Petricola hertzana is known to nestle among algae (Coan 1997), and adults 
range in size from 6—11 mm shell length (SL; McLean 1969). Individuals col- 
lected in our samples ranged from 1-11 mm, indicating the presence of both 
juveniles and adults. The distribution of P. hertzana ranges from Santa Monica 
Bay to Magdalena Bay, Baja California Sur (Coan 1997). Another Petricola spe- 
cies (identified as P. pholadiformis, which may in fact be P. hertzana) was doc- 
umented in samples conducted at TE from September 1986 to June 1987 (Duggan 
1989). 

Historically common species.—Several historically common fish and inverte- 
brate species at TE and LPL exhibited a substantial change (increase or decrease) 
in abundance during 1997—98, often accompanied by shifts in size-frequencies. 

Mugil spp. (mullet): Mullet (Mugil spp.) are large, schooling fish with a cos- 
mopolitan distribution that reach maturity at approximately 300 mm TL (2-3 
years) (Anderson 1958). Adult Mugil cephalus are common and conspicuous in 
southern California estuaries and they likely dominate fish biomass in these sys- 
tems; however, they are generally not sampled effectively due to their size and 
mobility (Allen 1982, Horn and Allen 1985, Williams et al. 1999a, Desmond et 
al. 1999). Smaller juveniles, which can be more effectively sampled with most 
gear (e.g., seines), have historically been rare in these collections (Desmond et 
al. 1999). Low numbers of Mugil curema (white mullet) have also been collected 
in southern California waters, and may easily be confused with M. cephalus, 
especially as juveniles (Lea et al. 1988). We therefore treat mullets as Mugil spp. 
throughout the remainder of the paper, although M. cephalus is likely the domi- 
nant species. In both winter 1997—98 and spring 1998, Mugil spp. juveniles were 
a major component of catches at TE (22—23% total catch). 

Young-of-the-year (YOY) Mugil spp. (41-50 mm TL) were first collected in 
September 1997 throughout TE (3 of 4 stations) at average densities of 0.09 m~ 
(Fig. 3). Small juveniles 18—43 mm TL continued recruitment through December 
1997, when they were collected at all four sampling stations at average densities 
of 0.63 m~? (17.7% of catch) (Fig. 5). Thereafter, TE mean densities fluctuated 
considerably but exhibited a general decline, while mean individual size increased. 
By September 1998 (one year post-recruitment), average Mugil spp. size was 165 
mm TL; by June 1999, the average size had increased to 265 mm TL (Fig. 5), 
indicating a growth rate of between 75 and 125 mm per year at TE. 

Under the semiannual sampling schedule at LPL, juvenile Mugil spp. were first 
collected in winter 1997/98 at mean densities of 0.035 m~? (Fig. 3; 11.7% of the 
total catch). Abundance of juvenile Mugil spp. peaked the following summer 
(1998) at 0.32 m~’, when they were collected at all 5 stations and composed 
40.9% of the total catch. Mean size at this time was 76 mm TL (Fig. 5). Mugil 
spp. were still abundant at LPL one year later (summer 1999), but by this time 
average size had increased to 175 mm TL. A comparison of Mugil spp. cohort 
growth rates from LPL and TE suggests that individuals from LPL may grow at 
a slower pace. 

During the spring of 1998, Talley (2000) and Allen (1998) also noted increases 


Pa2.: SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


500 
400 
300 
200 
100 


0.6 


Mean density per m2 
Mean total length (mm) 


0.4 


0.2 


SV 


Z 


D 
oN 
= 
= 
n 


Spr 97 
Sum 97 
Fall 97 
Spr 98 
Sum 98 
Fall 98 
Spr 99 


Fig. 5. Columns represent mean density (per m?) of Mugil spp. collected seasonally (spring 1997 
to summer 1999) at Tijuana Estuary (TE; top) and Los Pefiasquitos Lagoon (LPL; bottom). Black 
dots indicate the mean total length (mm) of individuals collected. 


in the abundance of juvenile Mugil spp. from surveys made in Mission Bay and 
San Diego Bay, respectively. Mugil spp. are found in most warm seas, including 
the Eastern Pacific from the Galapagos Islands to San Francisco Bay. They are 
Oviparous, with planktonic eggs and larvae (Sandknop and Watson 1996). Adult 
Mugil spp. spawn in surface waters offshore and enter bays and estuaries as 
juveniles or larvae (Anderson 1958), often moving upstream into freshwater rivers 
where they develop as yearlings (Follett 1960). Small numbers of mugilid larvae 
have been collected during annual ichthyoplankton surveys (1951—1984) con- 
ducted in the California Current region; the highest larval concentrations occur 
in nearshore stations off central and southern Baja California during the summer 
and fall (Moser et al. 1993, Sandknop and Watson 1996). 

Grandidierella japonica: This exotic corophiid amphipod exhibited a popula- 
tion explosion throughout TE during summer/fall 1998. The highest mean G. 
Japonica densities at TE#3 (15,119 individuals m~?) and TE#2 (3904 m~’) were 
observed in summer 1998, while TE#1 (1113 m7’) peaked in fall 1998 (Fig. 4b). 
By winter 1998-99, mean G. japonica density across all sites (96.4 m~’) had 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 229 


declined substantially, approaching long-term historical densities (mean for 1994— 
97 = 93.5 m~’). LPL populations of G. japonica also experienced an abundance 
peak during the 1997-98 El Nifio event. The mean density across all sites in 
winter 1997—98 was 643 individuals m~’, three times greater than the long-term 
average of 203 individuals m~* (Williams et al. 1998b). After this substantial peak 
in abundance, G. japonica densities dropped to levels near the long-term average 
during the following seasons. 

The introduction of G. japonica into the United States was first reported in San 
Francisco Bay, California in 1966 (Chapman and Dorman 1975). It was identified 
in TE samples in 1994, but may have been present and unidentified in TE prior 
to this. Grandidierella japonica is native to Japan and is typically associated with 
brackish water and soft sediments, where it inhabits U-shaped tubes. In laboratory 
studies, G. japonica is capable of producing 10—12 generations per year (Green- 
stein and Tiefenthaler 1997), which could explain the dramatic increase in den- 
sities that occurred within a relatively short time period. 

Rapidly reproducing, opportunistic species increase in abundance following a 
disturbance if they can take advantage of expanded resources (McCall 1977; 
Rhoads et al. 1978; Zajac and Whitlatch 1982). El Nifio-related winter storms in 
1997-1998 caused heavy sedimentation in Tijuana Estuary (Ward 2000), which 
may have smothered other invertebrates and decreased competition for resources. 
G. japonica densities in Yaquina Bay, Oregon also increased dramatically follow- 
ing a flood event (B. Boese, pers. comm.). 

Tagelus californiensis (jacknife clam): This long-time dominant of the inver- 
tebrate community at both TE and LPL (Emmett et al. 1991; Desmond et al. 
1999; Williams et al. 1999a), exhibited substantial declines at TE during the 1997— 
98 El Nifio event. In spring 1997, the T. californiensis population at TE#2 was 
composed of individuals ranging in size from 28—70 mm shell length (SL) at a 
mean density of 145 individuals m~? (Fig. 6). Densities gradually declined during 
summer and fall 1997 (57 and 13 m~’, respectively). No live T. californianus 
individuals were collected (although many empty shells were found) during winter 
1997-98 or spring 1998, which coincided with rain and flooding in the estuary. 
Summer 1998 collections were marked by an influx of new recruits ranging in 
size from 7-15 mm SL at densities of 138 m~ (Fig. 6). Although 7. californianus 
densities decreased in the following months (94 m~ in fall 1998, 57 m~? in winter 
1998-99), summer 1999 collections had high densities (270 m~’). However, even 
by the summer of 1999, the population at TE#2 was still composed entirely of 
juveniles (10-56 mm SL). 

Tagelus californiensis has a wide geographic distribution, ranging from Cape 
San Lucas, Baja California, Mexico to Cape Blanco, Oregon, but it is most abun- 
dant from TE to Morro Bay, California (Emmett et al. 1991). Tagelus califor- 
niensis occupies a permanent burrow where it feeds on phytoplankton and other 
suspended particles (Morris et al. 1980). Sexual maturity is reached between 60— 
120 mm shell length (Merino 1981). Peak spawning of T. californianus occurs 
in spring, with some limited spawning continuing year-round (Emmett et al. 
199T). 


Summary and Conclusions 


Observed changes in the fish and invertebrate assemblages at TE and LPL 
during 1997-98 were likely related to El Nifo-driven ocean anomalies (altered 


230 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


500 
‘ 400 | 
Samy 
vo 
=F 
ae 10,0) | 
= 
omm 
DN 
=| 
vo \ 
= 200 
i | 
oo} 
= T 
100 Ff 
‘ , , 
sip" iY 
0 eT | uae MO rt. Stes Ty aes et eee ee | ie Se ee liv ie. 
RPRRALKRRRARAFFRFRRERFERAFGRARARARS 
SREZSESEBZEZSMEA SEATS EFLABASCAEBEARCRBERMPEER 
ase Zu ZEMEEMZee Are Awe Are GAHEr AE 
= S S = = = = 
FPP LLL a 


1997-98 El Nino 


Fig. 6. Mean density of Tagelus californianus (jacknife clam) collected seasonally (winter 1990— 


fall 1999) in 20-cm-deep cores at Tijuana Estuary sampling station TE#2. Error bars represent + one 
standard error. 


current patterns, water levels, and increased temperatures) and watershed distur- 
bances (flooding and sedimentation). Altered larval supply, habitat disturbance, 
and species interactions (e.g., predation and competition) offer several likely 
mechanisms for the patterns observed. Our analysis of long-term monitoring re- 
cords is the first documentation of unique changes in estuarine species assemblage 
composition during El Nino conditions. Continuous monitoring and baseline data 
are essential to understand the ecology of these estuarine systems and their in- 
herent variability over interannual-decadal time scales. This study also provides 
the groundwork for future empirical studies to clarify the relationship between El 
Nino events and species abundance patterns in estuarine habitats, and for devel- 
oping predictive models to understand change and appropriately manage estuarine 
resources. 

Episodic, El Nifo-associated events may affect the composition of fish and 
invertebrate assemblages in southern California estuaries by modifying larval sup- 
ply. Of the six new fish and invertebrate taxa appearing in our 1997-1998 col- 
lections, most were species with warm-water affinities commonly associated with 
coastal embayments in southern Baja California and the Gulf of California. Al- 
most all specimens were first collected as juveniles that likely arrived at local 
estuarine habitats as planktonic larvae, riding northward with warm surface cur- 
rents. During “‘typical’’ years, the southward flowing California current (O—200 
m deep) carries most nearshore surface waters equator-ward, while coastal up- 
welling contributes to offshore transport (Parrish et al. 1981; Simpson 1984). 
However during “‘anomalous” El Nino years, upwelling is reduced and a pole- 
ward-flowing countercurrent dominates coastal flows, transporting warm, high 
salinity waters northward and displacing the California current offshore (Simpson 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 231 


1984; Hayward et al. 1999). Long-duration, anomalous flow conditions can result 
in episodic pulses of planktonic eggs and/or larvae from southern sources, which 
are located “‘downstream”’ of southern California. 

Flow anomalies account for the variable recruitment success of some coastal 
fisheries stocks (Parrish et al. 1981) and may be important in structuring nearshore 
benthic communities (Tegner and Dayton 1987). Because long-lived species nat- 
urally form age-structured populations and are persistent members of the com- 
munity, size-frequency analysis provides one of the best indicators of recruitment 
events. Paralabrax maculatofasciatus (spotted sand bass), a long-lived (=14 yrs) 
subtropical species that persists in warm-water bay refugia in southern California, 
displayed episodic recruitment pulses that matched peaks in summer sea-surface 
temperatures during 1984-85 and 1989-90 (Allen et al. 1995). High recruitment 
of Semicossyphus pulcher (sheephead) to temperate reefs at its northern distri- 
butional limit (Point Conception, CA) coincided with years of El Nifio-associated 
variation in the coastal current regime (Cowen 1985). From our data we suggest 
that estuarine populations of Mugil spp., another long-lived species (=15 yrs; 
Hendricks 1961), also appear to be positively influenced by episodic larval re- 
cruitment events (Fig. 5). Furthermore, some portion of the Mugil spp. complex 
collected during our monitoring efforts may have been Mugil curema, a species 
also documented in California waters during the 1982-83 El Nifio (Lea et al. 
1988). 

As ocean conditions transitioned to a cool-water, La Nifia state in 1998 (Hay- 
ward et al. 1999), few warm-water species recruited to TE and LPL. Most of 
these species have ocean-going larvae which were likely exported offshore and 
carried southward by the California current, which was then in place. Recruitment 
did not occur despite reproductive output by some individuals that survived to 
maturity in local systems. For example, ovigerous female Callinectes arcuatus 
were observed on several dates (G. Williams, pers. obs.), but no juveniles were 
observed in local lagoons thereafter. However, reproducing individuals from these 
populations may have contributed larvae to other populations “‘downstream’’. 

In the absence of additional recruitment events, persistence of many warmwater 
species appeared to be influenced by the longevity of individuals that recruited 
during the 1997—98 El Nino. Short-lived species (e.g., Ctenogobius sagittula and 
Penaeus californiensis) generally persisted for <6 months in estuaries, while lon- 
ger-lived species (e.g., Callinectes arcuatus and Petricola hertzana) persisted and 
grew for more extended periods (up to 2 years). Persistence patterns suggest that 
these populations are ephemeral and depend on larval replenishment from else- 
where. Short persistence times for some of these tropical species may also be a 
result of rapid mortality due to low thermal tolerance. However, in our region 
hydrographic constraints on dispersal likely play a more important role than ther- 
mal tolerance in determining faunal distribution and persistence (Cowen 1985). 

Changes in the abundance of two historically common benthic invertebrate 
species may be a response to El Nino-related flooding disturbance and sedimen- 
tation events rather than larval availability. Grandidierella japonica, an exotic 
disturbance-opportunist, exhibited extraordinary peaks in abundance following the 
winter floods, while populations of Tagelus californiensis, a native bivalve, plum- 
meted in many areas. Similar impacts were observed at Mugu Lagoon in 1978, 
when flooding and sedimentation from winter storms resulted in long-term im- 


232 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


pacts to the distribution and composition of fish and invertebrate assemblages 
(Onuf and Quammen 1983, Onuf 1985). Sedimentation is an important factor that 
can lead to both gradual and abrupt changes in community dynamics in coastal 
estuaries (Onuf and Quammen 1983, Zedler et al. 1992, Desmond et al. in review). 
Immobile invertebrates in permanent burrows may be buried by catastrophic sed- 
imentation events, leading to suffocation and mortality (Peterson 1985). In con- 
trast, many epibenthic organisms (e.g., capitellid and spionid polychaetes, coro- 
phiid amphipods) opportunistically colonize newly deposited sediments, rapidly 
taking advantage of space and food resources (McCall 1977, Zajac and Whitlatch 
1982, Levin et al. 1996). 

Sedimentation rates appear to be considerably greater at TE than LPL (G. 
Williams, pers. obs.), perhaps due to differential levels of watershed disturbance 
and area (4403 km? and 420 km/’, respectively), and differences in impacts were 
reflected by benthic community responses. Mean sediment accretion on TE tidal 
mudflats during the winter of 1997—98 was over 8 cm, but reached levels of 12 
cm in some areas (Ward 2000). This is higher than long-term TE marsh sedi- 
mentation rates of 1 cm yr~! (Weis 1999), and dramatically more variable than 
East and Gulf coast sedimentation ranges of 0.1—1 cm yr~! (Stevenson et al. 1986). 
Episodic sedimentation events illustrate the extreme influence which storms may 
have on Tijuana Estuary and point to a need to plan for long-term sediment 
management solutions (Zedler et al. 1992; Desmond et al. 1999). Furthermore, 
these impacts indicate the necessity of evaluating the possibilty of habitat shifts 
related to sedimentation events in future restoration efforts (Zedler 1996). 

While the individual impacts of sedimentation and larval recruitment likely 
exerted major effects on estuarine assemblage composition, their combined, syn- 
ergistic effects should not be ignored. Interspecific interactions with novel pred- 
ators or competitors in disturbed habitats can substantially modify feeding patterns 
and abundance (Moyle et al. 1986, Moyle 1997). While storm-induced sedimen- 
tation events may have led to the rapid decline of Tagelus californiensis popu- 
lations, predation by Callinectes arcuatus may have also played a role. Callinectes 
arcuatus are active, voracious predators of bivalves (Paul 1981), and the peak in 
crab abundance coincided with declines of 7. californiensis. Similar declines in 
Penaeus californiensis numbers may be due to increased competition from C. 
arcuatus juveniles, which utilize similar resources and indirectly compete for food 
and space (Paul 1981). Related studies show that feeding patterns of some juvenile 
fish species (e.g., Paralichthys californicus and Clevelandia ios) shifted during 
El] Nino years due to accompanying changes in prey abundance patterns at TE 
(G. Williams et al. in prep.). 

This study provides an important record of faunal patterns and variability over 
interannual-decadal time scales. Furthermore, it suggests that some of southern 
California’s coastal lagoon’s may act as a north-south metapopulation for a num- 
ber of fish and invertebrate taxa. Long-term datasets provided by biological mon- 
itoring programs are an irreplaceable resource that allows evaluation of subtle 
ecosystem responses to climatic cycles (e.g., El Nifio events), anthropogenic im- 
pacts, exotic species invasions, and other events. Because southern California has 
an inherently variable environment, complete characterization of a ‘normal’ year 
is doubtful (Allen 1982, Desmond et al. in review). Thus, knowledge of temporal 
variability is needed to understand ecological patterns. Those who wish to test 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 733 


hypotheses about community membership, population structure, and species per- 
sistence in regions influenced by El Nifio or other ‘‘events”’ will benefit from the 
continuation of long-term monitoring programs. In fact, researchers and resource 
managers cannot expect to understand today’s assemblages or conserve their hab- 
itats without referring to records of historical composition and change. 


Acknowledgments 


This work was accomplished in cooperation with a large number of individuals 
over many years. We wish to thank the LPL Foundation and NOAA Sanctuaries 
and Programs division for funding ongoing monitoring efforts at LPL and TE, 
respectively, and the staff at Torrey Pines State Reserve and the Tijuana Estuary 
Visitor Center for their continued support. Julie Desmond, Sharook Madon, John 
Callaway, Robert Lea, Drew Talley, Camm Swift, and others encouraged this 
work, and their suggestions, ideas, and comments improved the manuscript. 


Literature Cited 


Allen, L. G. 1982. Seasonal abundance, composition, and productivity of the littoral fish assemblage 
in upper Newport Bay, California. U.S. Fish. Bull. 80:769-789. 

Allen, L. G., T. E. Hovey, M. S. Love, and J. T. W. Smith. 1995. The life history of the spotted sand 
bass (Paralabrax maculatofasciatus) within the southern California bight. Calif. Coop. Oceanic 
Fish. Invest. Rep. 36:193-—203. 

Allen, L. G. 1998. Fisheries inventory and utilization of San Diego Bay, San Diego, California: 4th 
Annual Report, FY 1997-98. Prepared for U.S. Navy, Naval Facilities Engineering Command 
under Contract No. N68711-94-LT-4033, 25 pp. 

Anderson, W. W. 1958. Larval development, growth, and spawning of the striped mullet (Mugil 
cephalus) along the south Atlantic coast of the U.S. U.S. Fish. Bull. 58:501—525. 

Baker, J. C. 1979. A contribution to the life history of the yellowfin goby (Acanthogobius flavimanus) 
in the San Francisco Bay-Delta area. M.S. Thesis, California State University Sacramento, 
Sacramento, California, 36 pp. 

Chapman, J. W., and J. A. Dorman. 1975. Diagnosis, systematics, and notes on Grandidierella japonica 
(Amphipoda: Gammaridea) and its introduction to the Pacific Coast of the United States. Bull. 
So. Calif. Acad. Sci. 74:104—108. 

Charter, S. R. and H. G. Moser. 1996. Albulidae: Bonefishes. Pages 79-81 in H. G. Moser, editor. 
The early stages of fishes in the California Current region. California Cooperative Oceanic 
Fisheries Investigations Atlas no. 33., Marine Life Research Program, Scripps Institution of 
Oceanography, La Jolla, California, xii + 1505 pp. 

Coan, E. V. 1997. Recent species of the genus Petricola in the Eastern Pacific (Bivalvia: Veneroidea). 
Veliger 40:298—340. 

Cowen, R. K. 1985. Large scale pattern of recruitment by the labrid, Semicossyphus pulcher: Causes 
and implications. J. Mar. Res. 43:719-—742. 

Dayton, P. K., M. J. Tegner, P. B. Edwards, and K. L. Riser. 1998. Sliding baselines, ghosts, and 
reduced expectations in kelp forest communities. Ecol. Applic. 8:309—322. 

Dean, T. A., and EF R. Jacobsen. 1986. Nutrient-limited growth of juvenile kelp, Macrocystis pyrifera, 
during the 1982-1984 ‘El Nifio’ in southern California. Mar. Biol. 90:597—601. 

De La Cruz-Aguero, J., and V. M. Cota-Gomez. 1998. Ictiofauna de la laguna de San Ignacio, Baja 
California Sur, Mexico: nuevos registros y ampliaciones de ambit. Ciencias Marinas 24:353-— 
358. 

Desmond, J. S., D. H. Deutschman, and J. B. Zedler. In review. Fish and invertebrate community 
structure in three southern California estuaries: An 11-year study. Submitted to Estuaries. 

Desmond, J., M. Cordrey, J. Johnson, K. Ward, and J. Zedler. 2000. Tijuana River National Estuarine 
Research Reserve: Annual report on ecosystem monitoring. NOAA Technical Memorandum on 
the Tijuana River National Estuarine Research Reserve. NOAA National Ocean Service, Sanc- 
tuaries and Programs Division. Washington D.C., 60 pp. 

Desmond, J., G. Williams, M. James, J. Johnson, J. Callaway, and J. Zedler. 1999. Tijuana River 


234 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


National Estuarine Research Reserve: Annual report on ecosystem monitoring. NOAA Tech- 
nical Memorandum on the Tijuana River National Estuarine Research Reserve. NOAA National 
Ocean Service, Sanctuaries and Programs Division, Washington D.C., 67 pp. 

Dore, I., and C. Frimodt. 1987. An illustrated guide to shrimp of the world. Van Nostrand Reinhold. 
New York, New York, 229 pp. 

Duggan, R. M. 1989. The bivalve community and role of Laevicardium substriatum in the Tijuana 
Estuary. M. S. Thesis, San Diego State University, San Diego, California, 131 pp. 

Emmett, R. L., S. L. Stone, S. A. Hinton, and M. E. Monaco. 1991. Distribution and abundance of 
fishes and invertebrates in west coast estuaries. Volume II: Species life history summaries. 
ELMR Rep. No. 8. NOAA/NOS Strategic Environmental Assessments Division, Rockville, 
Maryland, 329 pp. 

Follett, W. I. 1960. The fresh-water fishes—their origin and affinities. Symposium on the biogeography 
of Baja California and adjacent seas. Syst. Zool. 9(3—4):212—232. 

Garth, J. S., and W. Stephenson. 1966. Brachyura of the Pacific coast of America, Brachyrhyncha: 
Portunidae. Allan Hancock Monographs in Mar. Biol. 1:1—154. 

Greenstein, D. J., and L. L. Tiefenthaler. 1997. Reproduction and population dynamics of a population 
of Grandidierella japonica (Stephensen) (Crustacea: Amphipoda) in Upper Newport Bay, Cal- 
ifornia. Bull. So. Calif. Acad. Sci. 96:34—42. 

Haston, L., and J. Michaelsen. 1994. Long-term central coastal California precipitation variability and 
relationships to El Nifo-Southern oscillation. J. Climate 7:1373—1387. 

Hayward, T. L., T. R. Baumgartner, D. M. Checkley, R. Durazo, G. Gaxiola-Castro, K. D. Hyrenbach, 
A. W. Mantyla, M. M. Mullin, T. Murphree, F B. Schwing, P. E. Smith, and M. J. Tegner. 1999. 
The state of the California current in 1998-1999: Transition to cool-water conditions. Calif. 
Coop. Oceanic Fish. Invest. Rep. 40:29-62. 

Hendricks, L. J. 1961. The striped mullet, Mugil cephalus Linnaeus. Pp. 95-103 in The ecology of 
the Salton Sea, California, in relation to the sportfishery (B. W. Walker, ed.), California Dept. 
Fish and Game, Fish Bulletin 113, 204 pp. 

Horn, M. and L. Allen. 1985. Fish community ecology in southern California bays and estuaries. 
Pages 169-190 in Fish community ecology in estuaries and coastal lagoons: Toward an eco- 
system integration (A. Yafiez Arancibia, ed.), UNAM Press, México. 

Hubbs, C. L. 1948. Changes in the fish fauna of western North America correlated with changes in 
ocean temperature. J. Mar. Res. 7:459—482. 

Hubbs, C. L., and L. P. Schulz. 1929. The northward occurrence of southern forms of marine life 
along the Pacific Coast in 1926. Calif. Fish Game 15:234-241. 

Kahya, E., and J. A. Dracup. 1994. The influences of Type 1 El Nifio and La Nina events on stream- 
flows in the Pacific southwest of the United States. J. Climate 7:965—976. 

Karpov, K. A., D. P. Albin, and W. H. Van Buskirk. 1995. The marine recreational fishery in northern 
and central California: A historical comparison (1958-86), status of stocks (1980-86), and 
effects of changes in the California Current. California Dept. Fish and Game, Fish Bulletin 176, 
192. pp, 

Ketchen, K. S. 1956. Climatic trends and fluctuations in yield of marine fisheries of the Northeast 
Pacific. Fish. Res. Board Canada 13:357—374. 

Lea, R. N., C. C. Swift, and R. J. Lavenberg. 1988. Records of Mugil curema Valenciennes, the white 
mullet, from southern California. Bulletin of the Southern California Academy of Sciences. 
87(1):31—34. 

Levin, L. A., D. Talley, and G. Thayer. 1996. Succession of macrobenthos in a created salt marsh. 
Marine Ecology Progress Series 141:67—82. 

Los Pefiasquitos Lagoon Foundation and State Coastal Conservancy. 1985. Los Penasquitos Lagoon 
enhancement plan and program. A California State Coastal Conservancy publication, 119 pp. 

Lynn, R. J., T. Baumgartner, J. Garcia, C. A. Collins, T. L. Hayward, K. D. Hyrenbach, A. W. Mantyla, 
T. Murphree, A. Shankle, E B. Schwing, K. M. Sakuma, and M. J. Tegner. 1999. The state of 
the California current, 1997-1998: Transition to El Nifio Conditions. Calif. Coop. Oceanic Fish. 
Invest. Rep. 39:25—49. 

Magallon-Barajas, FE J. 1987. The Pacific shrimp fishery of Mexico. Calif. Coop. Oceanic Fish. Invest. 
Rep. 28:43-—52. 

Marcus, L. 1989. The coastal wetlands of San Diego County. California State Coastal Conservancy 
publication, 64 pp. 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 235 


Massey, B. W., D. W. Bradley, J. L. Atwood. 1992. Demography of a California least tern colony 
including effects of the 1982-1983 El Nifio. Condor 94(4):976—983. 

McCall, P. L. 1977. Community patterns and adaptive strategies of the infaunal benthos of Long Island 
Sound. J. Mar. Res. 35:221-261. 

McGoodwin, J. R. 1979. The decline of Mexico’s Pacific inshore fisheries. Oceanus 22(2):51—59. 

McLean, J. H. 1969. Marine shells of southern California. Los Angeles County Museum of Natural 
History Science Series 24, Zoology No. 11, 104 pp. 

Merino, J. 1981. A study of the temperature tolerances of adult Solen rosaceus and Tagelus califor- 
nianus in south San Diego Bay: the effects of power plant cooling water discharge. Ph.D. 
Dissertation, San Diego State University, San Diego, California, 140 pp. 

Miller, D. J., and R. N. Lea. 1972. Guide to the coastal marine fishes of California. Fish Bulletin 157, 
249 pp. 

Mojica, R., J. M. Shenker, C. W. Harnden, and D. E. Wagner. 1994. Recruitment of bonefish Albula 
vulpes, around Lee Stocking Island, Bahamas. Fish. Bull. 93:666—674. 

Morales-Bojorquez, E., and J. Lopez-Martinez. 1999. Brown shrimp fishery in the Gulf of California. 
Calif. Coop. Oceanic Fish. Invest. Rep. 40:28. 

Morris, R. H., D. P. Abbott, and E. C. Haderlie. 1980. Intertidal invertebrates of California. Stanford 
University Press, Stanford, California, 690 pp. 

Moser, H. G., R. L. Charter, P. E. Smith, D. A. Ambrose, S. R. Charter, C. A. Meyer, E. M. Sandknop, 
and W. Watson. 1993. Distributional atlas of fish larvae in the California Current region: taxa 
with less than 1000 total larvae, 1951 through 1984. CalCOFI Atlas No. 31-32. Marine Life 
Research Program, Scripps Institution of Oceanography, La Jolla, California, xxix + 223 pp. 

Moyle, P. B. 1997. Fish invasions in California: Do abiotic factors determine success? Ecology 77: 
1666—1670. 

Moyle, P. B., R. A. Daniels, B. Herbold and D. Baltz. 1986. Patterns in distribution and abundance 
of a noncoevolved assemblage of estuarine fishes in California. U.S. Fish. Bull. 84:105—117. 

Nordby C. S. and J. B. Zedler. 1991. Responses of fish and macrobenthic assemblages to hydrologic 
disturbances in Tijuana Estuary and Los Penasquitos Lagoon, CA. Estuaries 14:80—93. 

Onuf, C. P. 1985. The ecology of Mugu Lagoon, California: An estuarine profile. U.S. Fish and 
Wildlife Service Biological Report 85. 122 pp. 

Onuf, C. P. and M. L. Quammen. 1983. Fishes in a California coastal lagoon: effects of major storms 
on distribution and abundance. Mar. Ecol. Prog. Ser. 12:1—14. 

Parrish, R. H., C. S. Nelson, and A. Bakun. 1981. Transport mechanisms and reproductive success of 
fishes in the California current. Biol. Ocean. 1(2):175—203. 

Paul, R. K. G. 1981. Natural diet, feeding, and predatory activity of the crabs Callinectes arcuatus 
and C. toxotes (Decapoda, Brachyura, Portunidae). Mar. Ecol. Prog. Ser. 6:91—99. 

Paul, R. K. G. 1982a. Observations on the ecology and distribution of swimming crabs of the genus 
Callinectes (Decapoda, Brachyura, Portunidae) in the Gulf of California, Mexico. Crustaceana 
42:96—100. 

Paul, R. K. G. 1982b. Abundance, breeding, and growth of Callinectes arcuatus Ordway and Calli- 
nectes toxotes Ordway (Decapoda, Brachyura, Portunidae) in a lagoon system on the Mexican 
Pacific coast. Estuar. Coast. Shelf Sci. 14:13-—26. 

Peterson, C. H. 1985. Patterns of lagoonal bivalve mortality after heavy sedimentation and their 
paleoecological significance. Paleobiology 11:139-—153. 

Pfeiler, E. 1981. Salinity tolerance of leptocephalous larvae and juveniles of the bonefish (Albulidae: 
Albula) from the Gulf of California. J. Exp. Mar. Biol. Ecol. 52:37—45. 

Pfeiler, E. 1984. Inshore migration, seasonal distribution and sizes of larval bonefish, A/bula, in the 
Gulf of California. Environ. Biol. Fishes 10:117—122. 

Pfeiler, E., M. A. Mendoza, and FE A. Manrique. 1988. Premetamorphic bonefish (Albula sp.) lepto- 
cephali from the Gulf of California with comments on life history. Environ. Biol. Fishes 21: 
241-249. 

Radovich, J. 1961. Relationships of some marine organisms of the Northeast Pacific to water temper- 
atures, particularly during 1957 through 1959. Calif. Dept. Fish and Game, Fish Bull. No. 112, 
62 pp. 

Rhoads, D. C., P L. McCall, and J. Y. Yingst. 1978. Disturbance and production on the estuarine 
seafloor. Am. Scientist 578:577—586. 


236 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Rosales-Casian, J. A. 1996. Ictiofauna de la Bahia San Quintin, Baja California, Mexico, y su costa 
adjacente. Ciencias Marinas 22:443—458. 

Ruiz-Campos, G., and J. L. Castro-Aguirre. 1999. First records of two tropical gobies, Awaous tajasica 
and Ctenogobius sagittula (Pisces: Gobiidae), in the continental waters of Baja California, 
Mexico. Bull. So. Calif. Acad. Sci. 98:131—136. 

Sandknop, E. M., and W. Watson. 1996. Mugilidae: Mullets. Pp. 1078-1081 in H. G. Moser, editor. 
The early stages of fishes in the California Current region. California Cooperative Oceanic 
Fisheries Investigations Atlas no. 33., Marine Life Research Program, Scripps Institution of 
Oceanography, La Jolla, California, xii + 1505 pp. 

Schonher, T: and S. E. Nicholson. 1989. The relationship between California rainfall and ENSO events. 
J. Climate. 2:1258—1269. 

Simpson, J. J. 1984. El Nino-induced onshore transport in the California current during 1982-83. 
Geophys. Res. Let. 11(3):233-—236. 

Snyder-Conn, E., and R. C. Brusca. 1975. Shrimp population dynamics and fishery impact in the 
northern Gulf of California. Ciencas Marinas 2(2):54—67. 

Squire, J. L. 1987. Relation of sea surface temperature changes during the 1983 El Nifo to the 
geographical distribution of some important recreational pelagic species and their catch tem- 
perature parameters. Mar. Fish. Rev. 49(2):44—57. 

Stevenson, J. C., L. G. Ward, and M. S. Kearney. 1986. Vertical accretion in marshes with varying 
rates of sea level rise. Pp. 241—259 in Estuarine Variability (D. A. Wolfe, ed.), Academic Press, 
Inc., Orlando, Florida, 509 pp. 

Swift, C. C., T. R. Haglund, M. Ruiz, and R. N. Fisher. 1993. The status and distribution of the 
freshwater fishes of Southern California. Bull. So. Calif. Acad. Sci. 92:101—167. 

Talley, D. M. 2000. Ichthyofaunal utilization of newly-created versus natural salt-marsh creeks in 
Mission Bay, CA. Wetlands Ecol. Mgmt. 8:117—132. 

Tegner, M. J., and P. K. Dayton. 1987. El Nino effects on southern California kelp forest communities. 
Adv. Ecol. Res. 17:243-279. 

Usui, C. A. 1981. Behavioral, metabolic, and seasonal size comparisons of an introduced gobiid fish, 
Acanthogobius flavimanus, and a native cottid, Leptocottus armatus, from upper Newport Bay, 
California. M.S. Thesis, California State University Fullerton, California, ix + 52 pp. 

Veit, R. R., P. Pyle, and J. A. McGowan. 1996. Ocean warming and long-term change in the pelagic 
bird abundance within the California Current system. Mar. Ecol. Prog. Ser. 139:11-18. 
Walford, L. A. 1931. Northward occurrence of southern fish off San Pedro in 1931. Calif. Fish Game 

17(4):401—405. 

Ward, K. M. 2000. Episodic colonization of an intertidal mudflat by cordgrass (Spartina foliosa) at 
Tijuana Estuary. M. S. Thesis, San Diego State University, San Diego, California, viii + 
103 pp. 

Weis, D. A. 1999. Vertical accretion rates and heavy metal chronologies in wetland sediments of 
Tijuana Estuary. M. S. Thesis, San Diego State University, xi + 106 pp. 

Williams, A. B. 1974. The swimming crabs of the genus Callinectes. Fish. Bull. 72:685—798. 

Williams, G. D., J. Desmond, and J. Zedler. 1998a. Extension of two nonindigenous fishes, Acantho- 
gobius flavimanus and Poecilia latipinna, in San Diego Bay marsh habitats. Calif. Fish Game 
84:1-17. 

Williams, G. D., G. Noe, and J. Desmond. 1998b. The physical, chemical, and biological monitoring 
of Los Pefiasquitos Lagoon. Annual report submitted to the Los Pefiasquitos Lagoon Founda- 
tion. Pacific Estuarine Research Lab, San Diego State University, San Diego, California, 47 pp. 

Williams, G. D., J. West, M. Cordrey, and K. Ward. 1999a. The physical, chemical, and biological 
monitoring of Los Penasquitos Lagoon. Annual report submitted to the Los Pefiasquitos Lagoon 
Foundation. Pacific Estuarine Research Lab, San Diego State University, San Diego, California, 
47 pp. 

Williams, G. D., J. Callaway, M. Wells, J. Jackson. 1999b. Monitoring and managing Los Pefiasquitos 
Lagoon’s biological resources: Effects of a rapidly changing watershed. in Coastal Zone 99: 
Abstracts of Presentations. July 27—29, 1999, San Diego, California, USA. 

Zajac, R. N., and R. B. Whitlatch. 1982. Responses of estuarine infauna to disturbance II. Spatial and 
temporal variation of succession. Marine Ecology Progress Series 10:15—27. 

Zedler, J. B., C. S. Nordby, and B. E. Kus. 1992. The ecology of Tijuana Estuary, California: A 


SHIFTS IN FISH AND INVERTEBRATES IN CALIFORNIA ESTUARIES 250 


National Estuarine Research Reserve. NOAA Office of Coastal Resource Management, Sanc- 
tuaries and Reserves Division, Washington, D. C. ii + 151 pp. 

Zedler, J. B. Principal author. 1996. Tidal wetland restoration: A scientific perspective and southern 
California focus. California Sea Grant College System, University of California, La Jolla, Cal- 
ifornia. Report No. T-038. vi + 129 pp. 


Accepted for publication 21 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 238-248 
© Southern California Academy of Sciences, 2001 


New Range Records of 12 Marine Invertebrates: The Role of El 
Nino and Other Mechanisms in Southern and Central California 


Steve I. Lonhart'” and Jeff W. Tupen? 


'Department of Ecology and Evolutionary Biology, University of California, 
Santa Cruz, CA 95064, USA 
?Morro Group, Inc., 1422 Monterey St., Suite C200, 
San Luis Obispo, CA 93401 


Abstract.—The occurrence of marine organisms northward of their known range 
limit along the eastern Pacific during El Nino Southern Oscillation (ENSO) events 
is an increasingly well-studied phenomenon. However, in addition to ENSO re- 
lated range extensions, there are several mechanisms potentially contributing to 
the occurrence and persistence of extralimital populations. We report 12 new 
records of intertidal or shallow subtidal marine invertebrates (11 mollusks and 1 
brittle star) along the southern and central coast of California. The 1997-98 ENSO 
event accounted for only one of these records, although previous ENSO events 
presumably contributed to the nine remaining northward records. Other mecha- 
nisms, such as thermal refugia and sampling artifacts, provide more likely expla- 
nations for nine of the northern and both of the southern new records. 


The ephemeral occurrence of marine organisms extending beyond their typical 
geographic range is a well-documented effect of El Nino Southern Oscillation 
(ENSO) conditions along the eastern Pacific coast of North America (e.g., Wooster 
and Fluharty 1985; Glynn 1990). During 1982—83 and 1997-98, the two strongest 
ENSO events of the 20" century (McPhaden 1999) caused large scale northward 
shifts of tropical and warm-temperate marine species along the eastern Pacific 
(Pearcy and Schoener 1987; McGowan et al. 1998). Among the various ocean- 
ographic effects of an ENSO event along the coast of California, the strengthening 
of the poleward flowing Davidson Current (Glynn 1961; Thurman 1985) is ar- 
guably the greatest contributor to changes in distribution of coastal marine or- 
ganisms. As this countercurrent builds, fishes actively track the warm water (Ra- 
dovich 1960), and plankton, including the larvae of benthic organisms, passively 
drift northward along the coast (Pearcy and Schoener 1987). 

For most marine organisms these northward excursions are ephemeral, with 
southern species disappearing soon after oceanic conditions return to normal 
(Pearcy and Schoener 1987; Dayton and Tegner 1990; Richmond 1990). In ad- 
dition to these ephemeral occurrences, ENSO events also may either establish 
relict populations or sustain marginal populations. Relict populations, as used 
here, are disjunct from southern source populations and persist for one generation 
in areas influenced by the ENSO event. Marginal populations are also disjunct 
from southern populations but persist as long as ENSO events or other mecha- 
nisms allow recruitment (i.e., they act as “‘sinks’’). However, besides these ENSO- 


* Corresponding author. 


238 


EL NINO AND NEW RANGE RECORDS OF MARINE INVERTEBRATES 239 


mediated changes in geographic range, there are several other mechanisms poten- 
tially contributing to the detection, occurrence, and persistence of extralimital 
populations. 

We discuss 12 new range records of marine invertebrates along the southern 
and central coast of California. For each species, we present evidence to address 
whether or not these new records are the result of ENSO events, and discuss other 
mechanisms such as localized thermal anomalies associated with the thermal 
plumes of coastal power plants and sampling artifacts. 


Methods 


Specimens were collected by the authors from Monterey Bay (SIL), Morro Bay 
(JWT), Diablo Canyon (JWT), and Santa Catalina Island (SIL), California (Fig. 
1), spanning a latitudinal distance of 550 km. We collected specimens from eight 
sites characterized as either intertidal rocky benches or subtidal (=20 m) kelp 
forests on rocky reefs. Many of the specimens from Diablo Canyon were collected 
at permanent intertidal and subtidal stations during a 24 yr study on the effects 
of the Diablo Canyon Nuclear Power Plant (DCPP) on the marine environment. 
Details of the spatial and temporal sampling design are provided elsewhere (Te- 
nera 1997). Collections in Monterey Bay and at Santa Catalina Island were made 
at study sites selected for other projects. Species were identified initially by the 
authors, verified by taxonomic specialists at natural history museums, and voucher 
specimens were deposited at one of the following California museums: Natural 
History Museum of Los Angeles County (LACM), Santa Barbara Museum 
of Natural History (SBMNH), and California Academy of Sciences (CAS) 
(Table 1). 

The known geographic range for each species was compiled from commonly 
used field guides (Abbott 1974; McLean 1978; Morris et al. 1980; Behrens 1991; 
Coan et al. 2000), by personal inspection of museum collections at SBMNH and 
CAS, and from searches of museum collections by curators at the LACM, San 
Diego Natural History Museum (SDNHM), Academy of Natural Sciences, Phil- 
adelphia (ANSP), and the Delaware Museum of Natural History (DMNH). Un- 
published range records discovered during inspection of museum collections that 
exceeded our field data are also included. 

Nomenclature follows McLean (1978) and Morris et al. (1980). Intertidal ele- 
vations in meters (m) are relative to mean lower low water (MLLW). 


Results 


We collected 12 species of eastern Pacific coastal marine invertebrates (11 
mollusks and 1 brittle star) at sites beyond their published geographic ranges 
(Table 1), with ten records northward and two southward. At our study sites, 
extralimital populations of four species (Ophiactis simplex, Musculus pygmaeus, 
Norrisia norrisi, and Nucella canaliculata) were well established, with evidence 
of multiple size-classes or local reproduction. For the remaining eight species, 
relatively few specimens were observed and there was no evidence of local re- 
production, which suggests these represent either ephemeral occurrences or relict 
populations. We present results separately for each species. Table 1 summarizes 
the broadest extent of occurrence for each species based on either our collections 
or unpublished museum material, whichever was more extensive. 


240 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


“- 


Moss Beach 
Otter Point y, 
N 
Marine ' »} 
Station McAbée & Monterey 
Carmel 
Field's 
Cove 
: Morro Bay 
a mene © Diablo Canyon 
Diablo 
Seo Shell Beach 


Seal h 


Haul Out N 


A Bird Rock S 
N 


Intake 
pipes = 


Wrigley 


= Institute for 
Environmental 
Studies 


Santa Catalina 
|| : 
Two Harbors Island 


Fig. 1. Location of study sites and new range records along the coast of California, USA. 


\ 241 


EL NINO AND NEW RANGE RECORDS OF MARINE INVERTEBRATES 


‘ApMs Sty} SULINP po}Oo][OO suswIdads oy) UO paseq SI (QOOZ) [ek 19 ULOD UT snapUsdd snjnosnp Jo WATT UJOYINOS oJ, 4 
(OOOZ) ‘Te 19 ULOD *9 (OSGI) ‘TE 19 SLOW! *¢ “(1L61) WeYysuLEIO, “p (E661) BurUTUIND ‘¢ *(Z661) OSIAA PUR UTT[OD ‘Z (1661) SUIyog ‘| :seoucsyoy + 
‘MON IUIOFTeD vleg st NO@ pure ing vriusojyeD eleg st Sog x. 


VO ‘pues, znig eyues 


(Ob) 100'770-66 WOVT ¢ d/d Orz N Avg O10] 0} vuvUued xajduais syov1ydoC 
voproin1ydg 
Vo— ‘iLsoonkeay 
(07%) 106rrI “(OZ) 006th HNINAS 9 d (a3 S 2AOD O[GRIG 01 VO ‘yorog uojllId snapuskd snjnosnpy 
BIA[RAIG 
NOd ‘purys] soipaD 
SVD 38 SOPs } d COE N puvys] edeoeuy 0} BrurosTeED JO JINH AqVvID DsIIKJOd 
eryourigouisidg 
VO ‘eieqieg ejurS 
S~rCcSI-—CrrcSI WOV'T ie d/d cll N uokueD oqeiq 0} eruJoseD eleg 1KaS]aY DIPJUOGANT 
VO ‘SoplsA, soled 
Lv-18 WOV'] C d OVv9 N Journey) 0} BrUIOsTTeD eleg DIUSOINA DIUOISOPO 
elyouriqo19j0H 
VO ‘uondssuo,g jwul10g 
88STSI ‘L8S7TSIT WOVT v d Ord N Avg O10 O} BIUIOFTTRD eleg paysaf pindindosaid 
[969TT SVO ¢ dq 8V S yoevod T19uS BYSETY 0} W— ‘soonked OS 1 Ba Oe aN. 
VO ‘Aeg oulojpy 
(Z) P6PTIT SVO “(Z) ISp7Sl WOVT S 6d Oc’ N yowsd 99qVIWN 0} PIUIO;TTeD eleg DUDSOLDIUDS WV 
VO ‘eieqieg ejues 
cSvcSI WOV'T ¢ 6d CoV N yowod 99qVIWN O} BIUIO;TTRD eleg puUas D1IL]aMxXD 
P9I69II SVO OZL N yorog sso. YO ‘eoluoyy BjueS 0} eUTeUed pyojnoiun{ v1yjpd¢E 
OS’ cI-6$ WOV'I g d Ov9 N sAOID oybed VO ‘SeplsA soped 0} eulvuRd MpUuvjos DIAIA 
Vo ‘uondssuo0_g jwul10g 
Ipcs88e dSNV ¢ d CoV N Kata Uop| 01 SOd ‘uotounsy PIS] ISIAAOU DISIAAON 
eIyouRiqosold 
[elioyeu IsyONOA, tyoy 2 OBAIe'T uy 11d OL ,osuel poysi[qnd sarseds 
UOXPL 
uononpoidoy P1091 MON 


‘COU) ISIMJBYIO PI}JOU SsofUN USUTTIDSds BUO JO S}SISUOD [BLID}VUI JOYONOA ‘suUONeIADIQge WiNndsnuUl IOJ SpOyJSP 9G ‘satoads poyear ATASO[D UO paseq adA} [RAR] 
peuinseaid *{ Syj0q ‘g/q SeAse] S1tuo;yURId Y feAre] OTUOyyURTdUOU ‘g ‘pIOdaI UJAYINOS ‘g {pI09e1 UJOYVIOU ‘NY :Aoy ‘OYLOR UO}svaYLIOU dy} SUOTe Pa}oa][OO sojeAQoVWOAUI 
SULIBUL [EISVOD Z| JOJ [BLIQJVUI JOYONOA pur ‘sadUdJOJOI puke dpoU dATONpOIdol ‘aouR}sIP PUR UONSAIIP ‘9dUdLINDDO JO plOII MoU ‘asuUBI poysI{qnd ‘saisadg *{ sqey 


242 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Norrisia norrisi.—Norris’ topsnail is relatively common in Diablo Cove 
(35°12'40"N, 120°51'25”W; Tenera 1997). Juveniles were collected within the in- 
tertidal red alga Gastroclonium subarticulatum in summer/fall 1993 and summer 
1994. Large snails (to 45 mm) were first observed subtidally in Diablo Cove in 
1991 (Tenera 1997). By 1998, Norrisia was commonly observed (>20 snails per 
dive) on the subtidal stipitate kelps Pterygophora californica and Macrocystis 
pyrifera in Diablo Cove. Despite this local abundance, Norrisia has not been 
observed subtidally or intertidally at adjacent locations outside of Diablo Cove 
(Tenera 1997). Four lots (LACM 152433 through 152436, all 1993 except 
152434, 1991) of one juvenile each from the intertidal zone (+0.3 m) of Diablo 
Cove were deposited as voucher material. Museum specimens establish that N. 
norrisi has occurred, at least sporadically, north of Point Conception since the 
late 1800’s (ANSP 319023, likely pre-1900, Monterey, California; ANSP 388241, 
undated, Monterey, California; LACM 46-35.8, 1946, north of Cayucos, Califor- 
nia). Data and a discussion of conflicting published range limits for Norrisia are 
presented elsewhere (Lonhart and Tupen in prep.). 

Trivia solandri.—Five live and several freshly dead shells of Solander’s trivia 
have been collected since 1986 at Diablo Canyon. In April 1999, a single 18 mm 
specimen (LACM 152582, 1999) was collected by J. Carroll at a depth of 3 m 
in Diablo Cove. Between 1959-1964, J. McLean collected a single shell (LACM 
59-12.50) intertidally at Pacific Grove, Monterey County, California, which rep- 
resents the northern-most record of occurrence. 

Opalia funiculata.—The scalloped wentletrap is a gastropod that parasitizes 
large anthozoans (Morris et al. 1980). In July 1993, a single intertidal specimen 
(12.8 mm) associated with the tubiculous polychaete Pista elongata was collected 
in Diablo Cove. In July 1999, two additional individuals (19.7 and 15.5 mm) 
were collected in Diablo Cove on an intertidal (0 m) Anthopleura elegantissima. 
All three were deposited as voucher specimens (LACM 152437, 1993; LACM 
152583, 1999). Unpublished museum material was collected at Cayucos, San Luis 
Obispo County, California (LACM 128091, undated; SBMNH 145295, 1966) and 
at Moss Beach, San Mateo County, California (CAS 116964, 1947). The single 
specimen from Moss Beach is the northern-most record of occurrence. 

Maxwellia gemma.—In 1998, a single specimen (33.2 mm) of the gem murex 
was collected subtidally (17 m depth) at McAbee Beach (Fig. 1; 36°37'00"N, 
121°53'45”W) and deposited as voucher material (LACM 152452, 1998). In May 
2000, a second snail (33 mm) at this site was observed but not collected. 

Maxwellia santarosana.—Since 1996, the Santa Rosa murex has been observed 
or collected nine times in Monterey Bay at depths from 10 to 17 m. In 1996, a 
large (>30 mm) snail was observed in a kelp forest at Otter Point (36°37'45’N, 
121°55'15”"W). Five months later, a single adult was observed in the Hopkins 
Marine Life Refuge (HMLR; 36°37'18"N, 121°54’10"W), 2 km southeast of Otter 
Point. In 1997, a third snail was observed on an offshore pinnacle within 1 km 
of Otter Point. In 1998 at McAbee Beach, one specimen (32.1 mm) was collected 
amidst filamentous red algae covering a patch of rocky reef and a second specimen 
(32.4 mm) was collected on a large boulder; two additional snails were observed 
at McAbee Beach later that year. In 1999, a 32.5 mm snail was observed at HMLR 
on a rocky reef and a second snail (31.6 mm) collected at McAbee Beach was 
eating the vermetid snail Petaloconchus montereyensis. Four snails from McAbee 


EL NINO AND NEW RANGE RECORDS OF MARINE INVERTEBRATES 243 


Beach were deposited as voucher material (2 in CAS 112494, 1998; 2 in LACM 
152451, 1998). 

Nucella canaliculata.—The channeled dogwhelk is fairly abundant but patchy 
(about 1—3/m7?) at Seal Haul Out, a rocky intertidal bench (+0.9 m) near the DCPP 
intake facility characterized by cooler than normal surface temperatures due to a 
steep slope (Tenera 1997). Snails at this site are commonly nestled among Cali- 
fornia mussels (Mytilus californianus), a common prey item. The presence of egg 
capsules, from which crawl-away juveniles emerge, and the persistence of mul- 
tiple size-classes suggest this population is self-sustaining. Twenty snails were 
deposited as voucher material (LACM 152447, 1998). Unpublished museum ma- 
terial (a single, live-collected specimen CAS 116961, 1969) collected from Shell 
Beach, San Luis Obispo County, California represents the southern-most record 
of occurrence. 

Pteropurpura festiva.—In May 1998, the first observation of the festive murex 
in Diablo Cove was a large, subtidal (3 m depth) individual next to vase-shaped 
egg capsules. This species was absent from samples taken between 1976—95 (Te- 
nera 1997). Since 1998, eight large specimens (=30 mm) have been observed in 
Diablo Cove, with a single 43.3 mm specimen deposited as voucher material 
(LACM 152446, 1998). Subtidal searches in the Morro Bay Power Plant discharge 
canal (12 km northward of Diablo Cove; 35°22’16”N, 120°51'57”W) from 1991 
to 1998 produced no specimens. However, in November 1999, a single 45.5 mm 
P. festiva was collected from the discharge canal by M. Behrens and deposited 
as voucher material (LACM 152588). Several museum specimens were collected 
from Morro Bay (DMNH 18216.3, undated; SBMNH 110345, 1939; CAS 116957 
through 116959, unrelated lots, all undated). Data and a discussion of conflicting 
published range limits for Pteropurpura are presented elsewhere (Lonhart and 
Tupen in prep.). 

Odostomia eucosmia.—During 1980-1995, 19 specimens of this small (to 3 
mm) shelled heterobranch were collected within the intertidal (+0.3 m) red alga 
Gastroclonium subarticulatum at Diablo Canyon: 11 of these were from Diablo 
Cove and 8 were from Field’s Cove (35°12’56"N, 120°51'30”W), which is ap- 
proximately 1 km upcoast of Diablo Cove. Four specimens, ranging in shell height 
from 1.7 to 2.4 mm, were deposited as vouchers (LACM 152438 through 152441, 
all 1993 except 152439, 1987). In 1981, J. McLean collected a single specimen 
(LACM 81-47) of O. eucosmia at Carmel, Monterey County, California, which 
represents the northern-most record of occurrence. 

Turbonilla kelseyi.m—During 1980-1995, only two specimens were collected 
from Field’s Cove, but 82 were found in Diablo Cove. Most of the specimens 
(n=57) from both intertidal sites (+0.3 m) were associated with the intertidal red 
alga Gastroclonium subarticulatum, and the rest with either the fleshy red alga 
Chondracanthus canaliculatus or the coralline alga Corallina vancouveriensis. 
Four voucher specimens (LACM 152442 through 152445, all 1981 except 
152445, 1993) ranged in size from 2.6 to 3.6 mm. 

Polycera alabe.—In May 1998, two specimens of P. alabe were collected in 
kelp forest habitat (33°26'53"N, 118°28'45”W) near the Wrigley Institute for En- 
vironmental Studies on Santa Catalina Island (Fig. 1). These strikingly colored 
nudibranchs—readily distinguished from congeners by their elongate papillae and 
dark pigmentation—were collected off the bryozoan Bugula neretina at 6 m depth 


244 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


near the intake pipes (Fig. 1). Species verifications were made by Gary McDonald 
(UCSC Long Marine Laboratory) viewing live specimens and by Terry Gosliner 
(CAS) viewing slide material. None of the specimens were preserved as voucher 
material but slides were deposited at CAS. Specimens observed at Anacapa Island 
in 1998 (D. Richards personal communication) represent the northern-most record 
of occurrence. 

Musculus pygmaeus.—The Monterey dwarf-mussel is a very small (to 4.5 mm) 
bivalve, almost exclusively found attached to the red alga Endocladia muricata 
within the mid- to high-intertidal zone (+0.9 m). During 1980—95, measured 
densities of this brooding mussel reached 86600/m? within E. muricata in Diablo 
Cove and consisted of many sizes (range 0.5—4 mm). Two lots of 20 individuals 
from Field’s Cove and Diablo Cove were deposited as voucher specimens 
(SBMNH 144900 and 144901, respectively, 1993). 

Ophiactis simplex.—In 1991 in Diablo Cove (Fig. 1), several specimens of this 
small (2—6 mm disk diameter), six-armed brittle star were collected from the 
rhizomatous holdfasts of the intertidal (+0.3 m) red alga Gastroclonium subar- 
ticulatum. Fewer specimens were also collected within vacant sand tubes of the 
polychaete Phragmatopoma californica and vacant micromollusk shells (typically 
Alia spp. and Lacuna spp.). By 1993, O. simplex density in Diablo Cove increased 
to 7200/m? (Tenera 1997). Subtidal specimens were also abundant and generally 
larger than intertidal specimens, and typically occupied rock fissures or holdfasts 
of foliose red algae such as Gymnogongrus linearis. Subtidal brittle stars were 
restricted to areas and depths of the cove with elevated temperatures (generally 
<3 m depth). In August 1999, O. simplex was found 12 km northward of Diablo 
Cove within the thermal discharge canal of the Morro Bay Power Plant at Estero 
Bay, where abundance estimates reached 5000/m?’. Seven intertidal (+0.3 m) and 
nine subtidal (3 m depth) specimens from Diablo Cove were deposited as voucher 
material (LACM 93-174.1, 1993 and 98-37.1, 1998, respectively), as were 40 
specimens from Estero Bay (LACM 99-024.001, 1999). 


Discussion 


Four of the 12 species presented in this study have established marginal pop- 
ulations beyond their known geographic range, while the remaining eight species 
may represent either relict populations or ephemeral occurrences. Four species 
(Norrisia norrisi, Nucella canaliculata, Musculus pygmaeus, and Ophiactis sim- 
plex) have established marginal populations that are consistently abundant at our 
study sites, and the density and size structure of these four species are similar to 
those found within their known geographic range. Further study is needed to 
determine if N. norrisi and O. simplex populations in Diablo Cove are sustained 
by local reproduction or by larvae from southern California. Of the eight remain- 
ing species, four (Maxwellia gemma, M. santarosana, Odostomia eucosmia, and 
Turbonilla kelseyi) were uncommon at their new range limits but consistently 
found over multiple years. Since only large adults were observed and there was 
no evidence of recruitment, these four species may represent ENSO-related relict 
populations. The remaining four species (Opalia funiculata, Polycera alabe, Pter- 
opurpura festiva, and Trivia solandri) were rarely found, with only two to several 
individuals observed over multiple years. 

Environmental conditions and ecological processes constantly modify the tem- 


EL NINO AND NEW RANGE RECORDS OF MARINE INVERTEBRATES 245 


poral and spatial extent of a species (Brown et al. 1996). In marine ecosystems, 
the rate of geographic expansion has accelerated (Elton 1958; Vermeij 1991; Co- 
hen and Carlton 1998) due primarily to anthropogenic introductions via ship bal- 
last water (Carlton and Geller 1993). Natural transport mechanisms, such as larval 
dispersal by oceanic currents, are unlikely contributors to range expansions during 
normal oceanic conditions. However, anomalous currents generated during an 
ENSO event have the potential to transport pulses of recruits to areas beyond a 
species’ known geographic range. In addition to anthropogenic introductions and 
recent ENSO events as dispersal mechanisms, other factors, such as habitat mod- 
ification due to climate change or thermal effluent, and search artifacts, may also 
explain these new range records. 


ENSO Events 


During an ENSO event, countercurrents (e.g., Davidson Current) strengthen 
along the northeastern Pacific (Norton et al. 1985), moving warm, nutrient-poor 
water poleward. In general, there are three range-related consequences of this 
anomalous circulation pattern along coastal California. First, ephemeral occur- 
rences of sub-tropical and warm-temperate species are noted as organisms move 
well beyond their typical northern range limits. This is the most well known 
consequence and there are numerous published reports of organisms, such as 
fishes, that track the warm water as it flows northward (e.g., Hubbs and Schultz 
1929; Hubbs 1948; Radovich 1960; Pearcy and Schoener 1987). Passive transport 
has been documented for holoplanktonic organisms and species with dispersive 
larval stages (e.g., Glynn 1961; Pearcy and Schoener 1987; Bertsch et al. 2000), 
and it is possible for some brooding invertebrates to raft on algal mats (Highsmith 
1985). These species are rarely observed and only during the ENSO event. In 
this study, four species were rarely found, but only the range record of Polycera 
alabe is concordant with a particular ENSO event. This nudibranch was not seen 
at Santa Catalina Island until the 1997—98 ENSO event, when two adults were 
collected in summer 1998 near the intake pipes at the Wrigley Institute for En- 
vironmental Studies (Fig. 1). In fall 1998, the observation of a single P. alabe at 
Santa Barbara Island and Anacapa Island, both north of Santa Catalina Island, 
and its absence at those sites from 1982 to 1997 and after 1998 (D. Richards 
personal communication) further support this as an ephemeral occurrence due to 
the 1997-98 ENSO event. In addition, three new northern records of other opis- 
thobranchs were reported along the coast of Baja California during the 1997—98 
ENSO event (Bertsch et al. 2000), suggesting P. alabe was one of several opis- 
thobranch species responding to the ENSO event. 

Second, southern larval recruits may establish northern relict populations 
(Hutchins 1947) that persist after the ENSO event but slowly decline in abundance 
and eventually disappear. These small, isolated populations should consist pri- 
marily of species capable of long-ranging dispersal and should have only one or 
a few size classes indicative of infrequent recruitment. At our study sites Max- 
wellia gemma, M. santarosana, Odostomia eucosmia, and Turbonilla kelseyi were 
uncommon and consisted almost exclusively of adults, which suggests these spe- 
cies represent ENSO-related relict populations. Because we know of no size-age 
relationships for these species, we cannot estimate time of settlement to determine 
if it corresponds to a previous ENSO event. 


246 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Third, the recruitment of larvae produced by southern “‘source’’ populations 
may sustain persistent extralimital “‘sink’’ populations that have little or no local 
reproductive success during normal oceanic conditions (Mileikovsky 1971; Lewis 
et al. 1982). For example, recruitment of barnacle larvae to the intertidal within 
their geographic range was higher than normal during the onset of the 1997-98 
ENSO event along central California (Connolly and Roughgarden 1999). As a 
corollary of their study, recruitment was also higher beyond the northern range 
limit of these barnacles. Marginal populations are expected to have more age- and 
size-classes than relict populations, some missing cohorts, and a bias towards 
larger and older individuals (Lewis et al. 1982). For example, Kelletia kelletii 
(Kellet’s whelk) in Monterey Bay generally fits this pattern, with no recruits (<15 
mm), few juveniles (20—40 mm), and many large (70—100 mm.) adults (Lonhart 
unpublished data). The lack of local reproductive success in Monterey Bay sug- 
gests this whelk population is dependent upon recruits from southern California 
during years of anomalous oceanic conditions. In the present study, populations 
of both Norrisia norrisi and Ophiactis simplex were almost certainly transported 
northward to Diablo Cove during past ENSO events. However, the establishment 
and maintenance of populations in Diablo Cove has been facilitated by thermal 
effluent from DCPP (see below). It remains unclear whether the thermal discharge 
allows larvae from southern California to recruit and settle, or supports local 
reproduction, or does both. 


Alternative Mechanisms 


Despite the strong impact of ENSO events on species distribution, additional 
factors that impact the known distribution of organisms must be considered. The 
significance and effects of these additional factors, which include anthropogenic 
introductions and climatic warming, are discussed in detail elsewhere (Lonhart 
and Tupen in prep.). Here we present a summary of the effects of thermal refugia 
and sampling artifacts. Thermal refugia are localized areas of consistently anom- 
alous sea surface temperature that allow populations to survive in relatively small, 
isolated areas separated from their native range by stretches of thermally unac- 
ceptable waters (Dawson 1945; Hubbs 1948; Lindberg 1991). The Diablo Canyon 
Power Plant began full operation in 1986, creating a year-round thermal plume 
in Diablo Cove (4—5°C above ambient) that closely resembles the warm-temperate 
waters of southern California. We propose that of the 12 species presented here, 
only Norrisia norrisi and Ophiactis simplex are truly responding to the thermal 
plume: both are found only in the thermally elevated parts of Diablo Cove and 
invaded (O. simplex) or increased in abundance (both species) after DCPP oper- 
ation began (Lonhart and Tupen in prep.). 

Existing range data are likely incomplete for all but a few well-studied species 
because of sampling artifacts. There are three general explanations: (1) the spatial 
and temporal scale of most studies is extremely limited; (2) the taxonomy and 
ecology of most species is poorly known; and (3) new range records deposited 
in museum collections are infrequently published. Not surprisingly, collection 
trips to poorly studied or remote areas often discover new range records (e.g., 
Vermeij et al. 1990; Bertsch et al. 2000). In this study, eight new range records 
were from Diablo Cove, which has limited public access. Although pre- and post- 
operational studies at Diablo Cove cover a limited spatial scale, they have been 


EL NINO AND NEW RANGE RECORDS OF MARINE INVERTEBRATES 247 


ongoing since 1976 (Tenera 1997). Unpublished museum records for four species 
(Trivia solandri, Opalia funiculata, Nucella canaliculata, and Odostomia eucos- 
mia) were beyond those reported in the literature and our study sites. 

We have shown that only one of 12 new range records is the result of the 
1997-98 ENSO event, and that other mechanisms, such as thermal refugia and 
sampling artifacts, have contributed to the presence of the remaining 11 species 
beyond their known geographic range. Understanding how various factors alter 
our knowledge of the spatial and temporal extent of a species’ geographic range 
is an important first step towards designing research programs that accurately 
monitor the effects of habitat loss and species invasions, assess native biodiversity, 
and study biological responses to climate change. 


Acknowledgements 


We thank Jim McLean, Lindsey and Cathy Groves, Gordon Hendler, Don Ca- 
dien, and George Davis (LACM); Henry Chaney, Paul Scott, and Patricia Sad- 
eghian (SBMNH); Eugene Coan, Liz Kools, Chris Mah, and Bob Van Syoc 
(CAS); Carole Hertz and Tom Demere (SDNHM); Al Chadwick and Tim Pearce 
(DMNH); and Gary Rosenberg (ANSP) for taxonomic and range verifications and 
voucher material deposition. We acknowledge the assistance of Mike Behrens and 
Jay Carroll (TENERA) in the field, and Dan Richards (Channel Islands National 
Park Service) for unpublished data. We also thank Jim McLean, Alan Miller, John 
Pearse, Don Potts, Pete Raimondi, Kerstin Wasson, and an anonymous reviewer 
for constructive comments on earlier versions of the manuscript. 


Literature Cited 


Abbott, R. T. 1974. American seashells, 2"! edition. Van Nostrand Reinhold, 663 pp. 

Behrens, D. W. 1991. Pacific Coast nudibranchs: a guide to the opisthobranchs, Alaska to Baja Cal- 
ifornia. Sea Challengers, vi + 107 pp. 

Bertsch, H., O. A. Campillo and J. L. Arreola. 2000. New distributional records of opisthobranchs 
from the Punta Eugenia region of the Baja California peninsula: a report based on 1997—1998 
CONABIO-sponsored expeditions. Festivus, 32: 99-104. 

Brown, J. H., G. C. Stevens and D. M. Kaufman. 1996. The geographic range: size, shape, boundaries, 
and internal structure. Ann. Rev. Ecol. Syst., 27: 597-623. 

Carlton, J. T. and J. B. Geller. 1993. Ecological roulette: the global transport of nonindigenous marine 
organisms. Science, 261: 78-82. 

Coan, E. V., P H. Scott and FE R. Bernard. 2000. Bivalve seashells of western North America: marine 
bivalve mollusks from Arctic Alaska to Baja California. Santa Barbara Mus. Nat. Hist., viii + 
764 pp. 

Cohen, A. N. and J. T. Carlton. 1998. Accelerating invasion rate in a highly invaded estuary. Science, 
279: 555-558. 

Collin, R. and J. B. Wise. 1997. Morphology and development of Odostomia columbiana Dall and 
Bartsch (Pyramidellidae): implications for the evolution of gastropod development. Biol. Bull., 
192: 243-252. 

Connolly, S. R. and J. Roughgarden. 1999. Increased recruitment of northeast Pacific barnacles during 
the 1997 El Nifio. Limnol. Oceanog., 44: 466—469. 

Cumming, R. L. 1993. Reproduction and variable larval development of an ectoparasitic snail, Tur- 
bonilla sp. (Pyramidellidae, Opisthobranchia), on cultured giant clams. Bull. Mar. Sci., 52: 760— 
771. 

Dawson, E. Y. 1945. Marine algae associated with upwelling along the northwestern coast of Baja 
California, Mexico. Bull. So. Cal. Acad. Sci., 44: 57-71. 

Dayton, P. K. and M. J. Tegner. 1990. Bottoms beneath troubled waters: benthic impacts of the 1982— 


248 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


84 El Nifio in the temperate zone. Pp. 433—472 in Global ecological consequences of the 1982— 
83 El Nino-Southern Oscillation. (P. W. Glynn, ed.), Elsevier, xx + 563 pp. 

Elton, C. S. 1958. The ecology of invasions by animals and plants. Methuen, 181 pp. 

Fotheringham, N. 1971. Life history patterns of the littoral gastropods Shaskyus festivus (Hinds) and 
Ocenebra poulsoni Carpenter (Prosobranchia: Muricidae). Ecology, 52: 742-757. 

Glynn, P. W. 1961. The first recorded mass stranding of pelagic red crabs, Pleuroncodes planipes, at 
Monterey Bay, California, since 1859, with notes on their biology. Cal. Fish and Game, 47: 
97-101. 

Glynn, P. W. 1990. Global ecological consequences of the 1982-83 El Nino-Southern Oscillation. 
Elsevier, xx + 563 pp. 

Highsmith, R. C. 1985. Floating and algal rafting as potential dispersal mechanisms in brooding 
invertebrates. Mar. Ecol. Prog. Ser., 25: 169-179. 

Hubbs, C. L. 1948. Changes in the fish fauna of western North America correlated with changes in 
ocean temperature. J. Mar. Res., 7: 459-482. 

Hubbs, C. L. and L. P. Schultz. 1929. The northward occurrence of southern forms of marine life 
along the Pacific coast in 1926. Cal. Fish and Game, 15: 234-241. 

Hutchins, L. W. 1947. The bases for temperature zonation in geographical distribution. Ecol. Mono., 
17: 325-335. 

Lewis, J. R., R. S. Bowman, M. A. Kendall and P. Williamson. 1982. Some geographical components 
in population-dynamics: possibilities and realities in some littoral species. Neth. J. Sea Res., 
16: 18-28. 

Lindberg, D. R. 1991. Marine biotic interchange between the northern and southern hemispheres. 
Paleobiol., 17: 308-324. 

McGowan, J. A., D. R. Cayan and L. M. Dorman. 1998. Climate-ocean variability and ecosystem 
response in the Northeast Pacific. Science, 281: 210-217. 

McLean, J. H. 1978. Marine shells of southern California. Nat. Hist. Mus. Los Angeles Co., 104 pp. 

McPhaden, M. J. 1999. El Nifio—The child prodigy of 1997-98. Nature, 398: 559, 561-562. 

Mileikovsky, S. A. 1971. Types of larval development in marine bottom invertebrates, their distribution 
and ecological significance: a re-evaluation. Mar. Biol., 10: 193-213. 

Morris, R. H., D. P. Abbott and E. C. Haderlie. 1980. Intertidal invertebrates of California. Stanford 
Univ. Press, ix + 690 pp. 

Norton, J., D. McLain, R. Brainard and D. Husby. 1985. The 1982-83 El Nifo event off Baja and 
Alta California and its ocean climate context. Pp. 44—72 in El Nifio north: Nino effects in the 
eastern subarctic Pacific Ocean. (W. S. Wooster and D. L. Fluharty, eds.), Wash. Sea Grant 
Prog. Univ. Wash., v + 312 pp. 

Pearcy, W. G. and A. Schoener. 1987. Changes in the marine biota coincident with the 1982—1983 El 
Nifio in the northeastern subarctic Pacific Ocean. J. Geophys. Res.-Oceans, 92: 14417-14428. 

Radovich, J. 1960. Redistribution of fishes in the eastern north Pacific Ocean in 1957 and 1958. Cal. 
Coop. Oceanic Fish. Invest., 7: 163-171. 

Richmond, R. H. 1990. The effects of the El Nino/Southern Oscillation on the dispersal of corals and 
other marine organisms. Pp. 127—140 in Global ecological consequences of the 1982-83 El 
Nino-Southern Oscillation. (P. W. Glynn, ed.), Elsevier, xx + 563 pp. 

Tenera. 1997. Changes in the marine environment resulting from the Diablo Canyon Power Plant 
discharge. Diablo Canyon Power Plant: Thermal effects monitoring program analysis report, 
Chapter 1, Technical Report E7-204.7. Tenera Environmental Services. 

Thurman, H. V. 1985. Introductory oceanography. Merrill Pub. Co., vii + 503 pp. 

Vermeij, G. J. 1991. When biotas meet: understanding biotic interchange. Science, 253: 1099-1104. 

Vermeij, G. J., A. R. Palmer and D. R. Lindberg. 1990. Range limits and dispersal of mollusks in the 
Aleutian Islands, Alaska. Veliger, 33: 346—354. 

Wooster, W. S. and D. L. Fluharty. 1985. El Nifo north: Nifio effects in the eastern subarctic Pacific 
Ocean. Wash. Sea Grant Prog. Univ. Wash., v + 312 pp. 


Accepted for publication 21 December 2000. 


Bull. Southern California Acad. Sci. 
100(3), 2001, pp. 249-251 
© Southern California Academy of Sciences, 2001 


INDEX TO VOLUME 100 


Allen, M. James. First Occurrence of Blackspot Wrasse, Decodon melasma Go- 
mon 1974 (Pisces: Labridae) in California. 131 

Allen, M. James. First Occurrence of Speckletail Founder, Engyophrys sanctilau- 
rentii Jordan & Bollman 1890 (Pisces: Bothidae), in California. 137 

Allen, M. James, see Ami K. Groce 

Allen, M. James, see Daniel J. Pondella II 

Applegate, Shelton P., see Harry L. Fierstine 

Armitage, Mark, Cercarial Emergence from Rediae in California Snail Tissues. 51 

Arrubarrena, Luis Espinosa, see Harry L. Fierstine 


Bell, Christopher J., see Jim I. Mead 
Boyle, Kelly, see Robert N. Lea 
Bursey, Charles R., see Stephen R. Goldberg 


Cadien, Donald B., see David E. Montagne 

Chase, Shawn D., Contributions to the Life History of Adult Pacific Lamrey 
(Lampetra tridentata) in the Santa Clara River of Southern California. 74 

Craig, Matthew T., see Daniel J. Pondella II. 

Curtis, Michael D., First Record of the Pacific Cornetfish, Fistularia corneta Gil- 
bert and Starks 1904, a New Species to the Southern California Fauna During 
the 1997-1998 El Nino. 156 


Davis, Jana L. D., Spot Pattern of Girella nigricans, the California Opaleye: 
Variation among Cohorts and Climate Periods. 24 


Engle, John M., New and Unusual Marine Invertebrates Discovered at the Cali- 
fornia Channel Islands during the 1997—1998 El Nino. 186 

Engle, John M., see Daniel V. Richards 

Erikson, Erik D., see Robert N. Lea 


Fierstine, Harry L., A Fossil Blue Marlin (Makaira nigricans Lacépéde) from the 
Middle Facies of the Trinidad Formation (Upper Miocene to Upper Pliocene), 
San José del Cabo Basin, Baja California Sur, México. 59 


Given, Robert, see Robert N. Lea 

Goldberg, Stephen R., Persistence of the Nematode, Oswaldocruzia pipiens (Mol- 
ineidae), in the Pacific Treefrog, Hyla regilla (Hylidae), from California. 44 

Goldberg, Stephen R., Helminths of Six Species of Colubrid Snakes from South- 
ern California. 109 

Goldberg, Stephen R., Helminths of the California Treefrog, Hyla cadaverina 
(Hylidae), from Southern California. 117 

Gonzdlez-Barba, Gerardo, see Harry L. Fierstine 

Grismer, L. Lee, An Evolutionary Classification and Checklist of Amphibians and 
Reptiles on the Pacific Islands of Baja California, México. 12 


249 


250 SOUTHERN CALIFORNIA ACADEMY OF SCIENCES 


Groce, Ami K. Addition of Blacklip Dragonet, Synchiropus atrilabiatus (Garman, 
1899) (Pisces: Callionymidae) to the California Ichthyofauna. 149 

Groce, Ami K. Addition of the Calico Lizardfish, Synodus lacertinus Gilbert, 1890 
(Pisces: Synodontidae) to the Ichthyofauna of the Southern California Bight. 
133 

Groce, Ami K., see M. James Allen 


Herbinson, Kevin T., see Michael D. Curtis 
Horn, Michael H., see Erick A. Sturm 


Lagos, Steven L., see Ami K. Groce 

Lea, Robert N., Occurrence of the Loosetooth Parrotfish, Nicholsina denticulata 
(Scaridae), from Santa Catalina Island, California. 167 

Lei, Simon A., Diversity of Parasitic Cuscuta and their Host Plant Species in a 
Larrea-Atriplex Ecotone. 36 

Lei, Simon A., Combined Effects of Drought and Phoradendrom juniperinum 
Infestation Severity on Fruit Characteristics of P. juniperinum and its Juni- 
perus osteosperma Hosts. 86 

Lei, Simon A., Spatial Distribution of Blackbrush (Coleogyne ramosissima Tort.) 
Populations in the Mojave Desert. 96 

Lei, Simon A., Postfire Seed Bank and Soil Conditions in a Blackbrush (Coleo- 
gyne ramosissima Torr.) Shrubland. 100 

Lonhart, Steve I., New Range Records of 12 Marine Invertebrates: The Role of 
El Nino and Other Mechanisms in Southern and Central California. 238 


Mead, Jim I., Pliocene Amphibians and Reptiles from Clark County, Neveda. 1 

Montagne, David E., Northern Range Extensions into the Southern California 
Bight of Ten Decapod Crustacea Related to the 1991/92 and 1997/98 El 
Nino Events. 199 


Nestler, Eric C., see Ami K. Groce 


Pondella, Daniel J. Il. Proceedings of Special Symposium: New and Rare Fish 
and Invertebrate Species to California during the 1997—1998 El Nifio. 129 

Pondella, Daniel J. II. First record of the sabertooth blenny, Plagiotremus azaleus, 
in California, with notes on its distribution along the Pacific coast of Baja 
California. 144 


Reiswig, Henry M., A New North Pacific Heterochone Transferred from Aphro- 
callistes (Porifera: Hexactinellida). 123 

Richards, Daniel V., New and Unusual Reef Fish Discovered at the California 
Channel Islands During the 1997—1998 El Nino. 175 

Richards, Daniel V., see John M. Engle 

Rosenblatt, Richard H., see Ami K. Groce 


Schwennicke, Tobias, see Shelton P. Applegate 
Shane, Michael A., Records of Mexican Barracuda, Sphyraena ensis, and Scal- 


INDEX TO VOLUME 100 251 


loped Hammerhead, Sphyrna lewini, from Southern California Associated 
with Elevated Water Temperatures. 160 

Sturm, Erick A. Increase in Occurrence and Abundance of Zebraperch (Hermo- 
silla azurea) in the Southern California Bight in Recent Decades. 170 


Tupen, Jeff W., see Steve I. Lonhart 
West, Janelle M., see Gregory D. Williams 
Williams, Gregory D., Shifts in Fish and Invertebrate Assemblages of Two South- 


ern California Estuaries during the 1997—98 El Nino. 212 


Zedler, Joy B., see Gregory D. Williams 


New and Unusual Reef Fish Discovered at the California Channel Islands 
During the 1997-1998 El Nino. Daniel V. Richards and John M. 
Engle 


New and Unusual Marine Invertebrates Discovered at the California Channel 
Islands during the 1997-1998 El Nifo. John M. Engle and Daniel V. 
Richards 


Northern Range Extensions into the Southern California Bight of Ten 
Decapod Crustacea Related to the 1991/92 and 1997/98 El Nino Events. 
David E. Montagne and Donald B. Cadien 


Shifts in Fish and Invertebrate Assemblages of Two Southern California 
Estuaries during the 1997-98 El Nifo. Gregory D. Williams, Janelle 
M. West, and Joy B. Zedler 


New Range Records of 12 Marine Invertebrates: The Role of El Nifio and 
Other Mechanisms in Southern and Central California. Steve I. 
Lonhart and Jeff W. Tupen 


Index to Volume 100 


£75 


186 


199 


ZZ 


CONTENTS 


Proceedings of Special Symposium: New and Rare Fish and Invertebrate 
Species to California during the 1997-1998 El Nifio. Daniel Jo 
Pondella, Il and M. James Allen, Editors __________-___ iia 


First Occurrence of Blackspot Wrasse, Decodon melasma Gomon 1974, Be ie’ 
(Pisces: Labridae) in California. M. James Allen and Ami K. | 
Cree ie iy NORE eT CSN oe ae AR ie 


First Occurrence of Speckletail Flounder, Engyophrys sanctilaurentii J ordan | % nN 
& Bollman 1890 (Pisces: Bothidae), in California. M. James Allen 
anduAmi K: Groce ee SE ee : ; 


First record of the sabertooth blenny, Plagiotremus azaleus, in California 
with notes on its distribution along the Pacific coast of Baja California. 
Daniel J, Pondella, 11 and Matthew T. Craig: 2 ee 


Addition of Blacklip Dragonet, Synchiropus atrilabiatus (Garman, 1899) 
(Pisces: Callionymidae) to the California Ichthyofauna. Ami K. Groce, 
Richard H. Rosenblatt, and M. James Allen’ 2... Sa ee 


Addition of the Calico Lizardfish, Synodus lacertinus Gilbert, 1890 (Pisces: 
Synodontidae) to the Ichthyofauna of the Southern California Bight. 
Ami K.. Groce, Steven L. Lagos, and.Ernie’C. Nestler i.) 2 ae 


First Record of the Pacific Cornetfish, Fistularia corneta Gilbert and Starks © 
1904, a New Species to the Southern California Fauna During the | 
1997-1998 El Nino. Michael D. Curtis and Kevin T. Herbinson __._ | 156 


Records of Mexican Barracuda, Sphyraena ensis, and Scalloped 
Hammerhead, Sphyrna lewini, from Southern California Associated 
with Elevated Water Temperatures: Michael A. Shane 20 


Occurrence of the Loosetooth Parrotfish, Nicholsina denticulata (Scaridae), 
from Santa Catalina Island, California. Robert N. Lea, Erik D. 
Erikson, Kelly Boyle, and Robert Given... ee 


Increase in Occurrence and Abundance of Zebraperch (Hermosilla azurea) in 
the Southern California Bight in Recent Decades. Erick A. Sturm and — 
Michael Fi: Fiorano ses a | 


COVER: Loosetooth parrotfish from Santa Catalina Island. Photo by E. Erikson