# Full text of "The CAC economic and manpower forecasting model : documentation and user's guide"

## See other formats

LIBRARY OF THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 5\0.8<1- I£63c ™>. 1 1 -2.0 EN&NUEBlMfr MJG -'^ The person charging this material is re- sponsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University. UNIVERSITY OF ILLINOIS LIBRARY AJ UR-BA*JM£HAMPAIGN S- ?yj* :, tS>'. \'.ii-< '.■: ) .\y:{?-A~ CPt 1 6 \W < ■■■•' .. ■•; r.i '• t. ;■? t L161 — O-1096 Center for Advanced Computation UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA. ILLINOIS 61801 CAC Document No. 15 ECONOMIC RESEARCH GROUP WORKING PAPER NO. 5 The CAC Economic and Manpower Forecasting Model: Documentation and User's Guide R. H. Bezdek, R. M. Lefler, A. L. Meyers, J. H. Spoonamore Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/caceconomicmanpoOObezd ClnLIOGRAPHIC DATA SHEET !. i ( .ori No. U WC-CAC-DN-71-15 3. Recipient s Accession A. i ulc ana >u:>t k li CAC ECONOMIC AND MANPOWER FORECASTING MODEL: D0CUM1 ITATION AND ' : 'i GUIDE 5. Kcpori Date- October 15, 1971 6. 7. Author(s) R.H. Bezdek, R.M. Lefler, A.L. Meyers, J.H. Spoonamore 8' Performing Organization Kept. I No - CAC -15 9. Performing Organization Name and Address Center for Advanced Computation University of Illinois at Urb ana- Champaign Urbana, Illinois 61801 10. Project, Taskwork Unit No. 11. Contract /Grant No. DAHC014 72-C-OOOl 12. Sponsoring Organization Name and Address U.S. Army Research Of.fiee-Durl Duke Station ' ■"'•' Durham, North Carolina 13. Type ot Report & Period Covered Research 14. 15. Supplementary Notes 16. Abstracts Thi s paper presents the preliminary documentation and user's guide for the Center for Advanced Computation economic and manpower forecasting model. Section I gives introductory and background information on the development of the model and presents a brief but rigorous theoretical basis for the on-line system. Section II gives a description of the basic MANPOWER/ DEMAND program indicating the function of the program, the detailed workings of the system options, and the language in which it is written. Appendices contain specifications of the data tapes and disc files involved, flow charts of the computer processes, ana sample a ate input and output. - 17. Key Uords and Document Analysis. 17a. Descriptors Applications Social and Behavioral Sciences Economics Forecasting (Manpower) . • 17b. Ide ntif iets /Opcn-Fndcd Terms • 17c. COSAT1 Field/Group 1*. Availability Statement No restriction on distribution. Available from National Technical Information Service, Springfield, Virginia 22151 19. Set urity Class (1 liis Report ) iNci.AssiFirn 2 1. No. i>t Pages 63 20. Se< ui ity ( las.-, (This. Page I \'( 1 ^SSII'l! D 22. Price i 1 koiim ntis-j: ihl*. j- h> THIS FORM MAY RE KlM'KODlt I D USCOMM-LjC I4WS2-P72 CAC Document No. 15 ECONOMIC RESEARCH GROUP WORKING PAPER NO. THE CAC ECONOMIC AND MANPOWER FORECASTING MODEL DOCUMENTATION AND USER'S GUIDE By Roger H. Bezdek R. Michael Lefler Albert L. Meyers Janet H. Spoonamore Center for Advanced Computation University of Illinois at Urbana-Champaign Urbana, Illinois 6l801 October 15, 1971 This work was supported in part by the Advanced Research Projects Agency of the Department of Defense and was monitored by the U.S. Army Research Office-Durham under Contract No. DAHCOU 72-C-0001. Approved for public release; distribution unlimited. THE CAC ECONOMIC AND MANPOWER FORECASTING MODEL : DOCUMENTATION AND USER ' S GUIDE by Roger H. Bezdek R. Michael Lefler Albert L. Meyers Janet H. Spoonamore ABSTRACT This paper presents the preliminary documentation and. user's guide for the Center for Advanced Computation economic and manpower fore- casting model. Section I gives introductory and background information on the development of the model and presents a brief but rigorous theoretical basis for the on-line system. Section II gives a description of the basic MANPOWER/ DEMAND program indicating the function of the program, the de- tailed workings of the system options, and the language in which it is written. Appendices contain specifications of the data tapes and disc files involved, flow charts of the computer processes, and sample data input and output. TABLE OF CONTENTS I. DESCRIPTION OF THE CAC ECONOMIC AND MANPOWER FORECASTING MODEL 1 A. The Development of the Model 1 B. Theoretical Basis for the Program 3 II. DESCRIPTION OF THE MANPOWER/ DEMAND PROGRAM 11 A. Function of the Program 11 B. Description of EDITFILE 12 C MANPOWER/ DEMAND Processing 13 D. The Data 17 E- Use of MANPOWER/DEMAND 18 III . APPENDICES Appendix A: Tape Specifications 2k Appendix B: Flow Charts 25 Appendix C: Source List of MANPOWER/ DEMAND 36 Appendix D: Sample Input and Output 52 I. DESCRIPTION OF THE CAC ECONOMIC AND MANPOWER FORECASTING MODEL A- The Development of the Model The Center for Advanced Computation (CAC) economic and manpower forecasting model was initially conceived in the summer of 1969 "by Roger Bezdek and Hugh Folk. At that time it was clear that there was, and would continue to be, a pressing need for a general, consistent economic model capable of analyzing both direct and indirect effects of specified changes in the economic environment on the economy and labor market. No model available was capable of simulating in detail the overall effects of changes in expenditures on different types of economic programs and activities which corresponded to alternate national priorities. The development of such a model was undertaken by Roger Bezdek for his Ph.D. thesis in Economics at the University of Illinois at Urbana-Champaign. The Manpower Administration of the U. S. Department of Labor sup- ported the major portion of Bezdek' s dissertation research through a Doctoral Dissertation Grant. Although Bezdek originally planned to develop both historical and projected versions of this model, the latter development was prevented by severe methodological and statistical difficulties. Bezdek' s original model pertained to the year i960. Its development and the results of simulations conducted with it are described in detail in Manpower Implica - tions of Alternate Patterns of Demand for Goods and Services. Bezdek [2] - 2 - In the spring of 1971 > Bezdek and James Scoville developed for the National Urban Coalition a projected version of the basic model which pertained to the mid-1970' s. It was used to simulate the effects on the U. S. labor market which would likely be generated by the Urban Coalition's proposed reorderings of national goals and priorities contained in Counter- budget. The model is discussed in detail in Bezdek and Scoville' s Manpower 2 Implications of Reordering National Priorities . Early in 1971 > personnel from the newly established Center for Advanced Computation of the University of Illinois became interested in continuing work on this model at the Center. The Center for Advanced Computation is an outgrowth of the ILLIAC IV project. It is an independent unit of the Graduate College which provides an interdisciplinary environment for research projects requiring specialized and sophisticated computer facilities. The development of this type of economic model required sophisticated and efficient computer software and, from the Center's point of view, this model offered a feasible and potentially significant appli- cation for ILLIAC IV. Agreement was reached and an Economic Research Group (ERG) was established at the Center. Bezdek spent the summer of 1971 transferring the basic model onto the Center's computer facilities and improving and expanding it. Work continues in this direction, with Bezdek supervising development of the demand side of the model and Hugh Folk directing develop- ment of the supply side. This booklet is written as a user's guide to the demand-generating portion of the CAC model. Input components of the model include data tapes, disc files, and computer card decks which can be integrated into a number of consistent Bezdek and Scoville [6] . - 3 - systems via a program which will be explained in Sections II and III of this paper. While a brief theoretical outline of the basic model is included here, no attempt is made to explain the detailed workings of the CAC model. For this information the interested reader is referred to the references at the end of this report. B. Theoretical Basis for the Program Adhering to the traditional assumptions of input-output analysis, the economy may be disaggregated into a specified number of sectors, each composed of firms producing a similar product or group of products. Each industry combines a set of inputs in fixed proportions to produce its output which it sells to other industries to meet their input requirements. Letting x. . denote the quantity of the output of industry i required by industry j J- O as an input, letting y. denote the quantity of the output of industry i destined for use by the autonomous sectors, and letting X. denote the gross output of industry i, a static open input-output model may be represented by the following set of relationships: X n + x i2 + + x m + y i = x i X 21 + X 22 + + X 2n + y 2 = X 2 x,+x+ +x +y =X n nl n2 nn n n 3 A more complete development of the theoretical model involved here along with a discussion of the problems involved in its empirical implementation is contained in Bezdek [5]* - h - Since it has been assumed that each industry possesses a linear production function with fixed coefficients, the technical structure of an industry may be described by as many homogeneous linear equations as there are separate cost elements involved: x . . = a . .X . , x_ . = a_ .X . , , x . = a . X . The a. .'s are referred to as coefficients of production and, writing these relationships in the form of equation set (l), we have: a ll X l + a i2 X 2 + + a m X n + y i = X l a 21 X l + a 22. X 2 + + a 2n X n + y 2 = X 2 (2) a ,X + a _X_ + +a X +Y = X nl 1 n2 2 nn n n n The elements a. . form an n-by-n technical coefficient matrix A and, letting x denote an n-order gross output vector and y denote an n-order final demand vector, equation set (2) may be written as: (3) x = Ax + y The final demand vector y is the vector of outputs available for disposal outside the processing sector and, letting I denote an identity matrix of order n,from (3)> we have: (k) x - Ax = (I-A)x = y Assuming that the elements of A are nonnegative and that at least some of the a. .'s are positive insures that (I-A) is nonsingular. Equation (h) may thus be solved for x: (5) x = (I-A) _1 y (I-A) is the Leontief inverse matrix and its elements a. . indicate the output requirements generated directly and indirectly from industry i by industry j per delivery of a dollar's worth of output to final demand. The final demand vector itself may be viewed as the sum of a number of vectors each of which represents the industrial requirements of a distinct component of final demand. Letting u denote the number of final demand activities, g. denote an n-by-1 vector specifying the direct output J requirements of exogenous activity j, and e. denote a vector indicating the J portion of final demand consumed by exogenous activity j , we have: n u n u (6) y = g + g + + g -Z y = Z e (L y ); Z e = 1 u i j J i j J Writing out the first part of (6) specifically yields linear equations of the following form: < 7 > y i = g il + S i2 + ' +g ij > + g iu ; 1 = X ' 2 > •'• n Consider an arbitrary element g. . defined above. As indicated, g. . shows the direct requirements for input i generated by exogenous activity j and the magnitude of this demand will generally be determined by two factors: the total amount of final demand absorbed by activity j, and the portion of this amount devoted to the purchase of input i. The first factor may be n expressed as: e - ^ y. , while the second factor is written as: 3 i 1 n n n g. ./Zg. . Letting q. = e.Zy., and p. . = g. ./Zg. ., equation (7) can be ij' i ij- J J i i iJ 1J ± lj rewritten as : ( 8a) y . = p . , q n + p . „q„ + . • - + p . .q . + • • • + p . Q ; i = 1, 2 . ..., n or, letting P denote an n-by-u activity-industry matrix of activity input coefficients, and letting q denote a u-by-1 activity-expenditure vector: (8b) y = Pq p. . indicates the direct requirements generated for the output of industry i per dollar of expenditure in final demand sector ,i , and q shows the amount of expenditures allocated to activity j. Within this framework it is possible to determine the direct output requirements generated by alternate distributions of national expenditures among economic activities. Here it is assumed that the elements of the P matrix are fixed over a limited range of expenditure redistribution; the activity-industry matrix thus represents a transformation of expenditures on economic activities into direct output requirements from every industry in the economy. Using equation (5)> these direct output requirements can be translated into total output requirements from every industry. Next, output requirements must be related to employment demands. To accomplish this it is assumed that the employment requirements of an industry are proportional to the industry's output and that this relation- ship may be expressed in terms of labor input coefficients. Letting x. denote the total employment in industry i, the labor input coefficient for industry i, 9 . , is : (9) 9 ± = x e /X.; i = 1,2, , n Labor input coefficients are thus derived by dividing industry employment by industry output and they show the employment requirements of an industry per unit of output. Employment in each industry may be related to the components of final demand by substituting the values given for X. in (5) into equation (9)* Equations of the following form are derived: (10a) x* = e ± t il y 1 + 9.a. 2 y 2 + . . . + eX.y. + . . . + S.a.^; i = 1,2, . . . , n - 7 - e 6 6 e or, letting x denote an n-by-1 vector of elements x_ , x^, . . . x , and > P o 1' 2 n letting 6 denote a diagonal matrix whose elements are 9 , 9 , . . ., 9 , the equations in (10a) may be written in matrix notation as: (10b) x e - 8 (I-A) _1 y Consider the matrix M defined as M = e(l-A) whose elements m. . are: (11) m = 0.a\; i,j = 1,2, . . ., n Any element m. . of M shows the total employment required within industry i in order for industry j to deliver a dollar's worth of output to final demand. Each row of M indicates the manner in which employment is generated within industry i by required activity in industries 1, 2, , n and each column of M illustrates how the employment generated by industry j is distributed among all industries. This matrix is referred to as an inter- industry-employment matrix. The necessary theoretical framework has now been constructed which permits the transformation of alternate priority-expenditure distributions into distinct interindustry-employment demand patterns. Letting Y denote an n-by-n diagonal final demand matrix, the 'total" interindustry-employment T * matrix, M , is derived by postmultiplying M by Y: (13) M T = MY i The elements of M show the total employment generated by and within every industry for a generated distribution of final demand reflecting a specified priority alternative. The final step in the construction of the theoretical model involves the relation of interindustry-employment requirements to demands for occu- pational categories of manpower resources. This transformation is accom- plished by using an industry-occupation matrix showing the occupational - 8 - distribution of industry employment for the time period under consideration. Denote this matrix by B: the rows of B represent industries, the columns of B represent occupations, and any element b of B shows the percent of total employment in industry i composed of persons classified within occupation k. Let R denote a diagonal matrix whose elements r are the row sums ii of the interindustry-employment matrix and thus show the total employment generated within industry i. One type of manpower information is derived by premultiplying the industry-occupation matrix by R: (lUa) 11 22 nn Vl2 \h nl n2 nh (a) (a) (a) s s „ s ,11 12 < *]_h ;(a) J°0 '(a) S nl S n2 . . I . . S nh or (lUb) RB ,(a) (a) S is a "type Of" interindustry-occupation matrix and the elements (a) S., 'of it show the total demands for occupation k generated within industry XK i by a specified distribution of national expenditures. Letting M denote the transpose of the total interindustry- employment matrix, a second type of manpower impact matrix is derived by premultiplying the industry-occupation matrix by M ; - 9 - (15a) m ll m 21 nl n. ni . . , ffl In 2n nn b ll b 12 b -, b „ nl n2 lh nh (3) 3 11 S 12 B (p) fl (3) "nl n2 . (3) 3 lh s (3) nh or : (15b) o (B (B ) S is referred to as a "type 3" interindustry-occupation matrix fa \ and the elements s. ' of it show the demands for occupation k generated by industry i. So while the type OL manpower matrix indicates the occupational employment demand generated i_n every industry, the type B manpower matrix indicates the occupational employment demands generated by every industry. Finally, a third type of manpower impact matrix can also be derived. Letting B denote an n-by-n diagonal matrix whose elements corres- th pond to the k column of B, the third type of manpower matrix is derived by premultiplying B by the transposed total interindustry employment matrix (16a) - 10 - m il m 21 In 2n or (16b) m nl nn 11 ,00 22 ,00 nn o (k) ( k ) MB V ; = S ; k = 1, 2, .00 » 'll "12 00 nl , h ; ( k ) n2 .00 'in ,00 nn k = 1,2,. .,h Since there are h columns in B--one for each occupational classi- k lr fication--it is possible to derive h of these S matrices. Each S matrix is essentially an interindustry-employment matrix for the k occu- pation, and an element s.. shows the employment requirements for occupation k generated within industry i by industry j. These matrices are referred to as occupational employment profiles, and they contain a highly detailed description of the structure of demands generated for an individual occu- pation by a specified distribution of national expenditures. Taken together, these three types of manpower impact matrices provide a comprehensive and highly detailed picture of the employment impacts likely to result from the implementation of alternate types of economic and social programs and priorities. 11 h II. DESCRIPTION OF THE MANPOWER/ DEMAND PROGRAM A. Function of the Program The MANPOWER/ DEMAND program performs two data handling functions. First, it edits existing data structures, the input matrices to the model. Secondly, and most importantly, it performs the algebraic computations set forth by the theoretical model previously described, for generation of manpower demands based on alternative expenditure patterns and technological assumptions. In effect, the program permits the researcher to experiment by varying the data matrices which represent the input to the economic model and to study the results generated by the MANPOWER/ DEMAND processes. For example : The experimenter executes the general model for a given set of 58 proposed expenditure alternatives, noting the generated occupational employment. By changing the activity-expenditure elements to represent a different pattern of resource allocation, he can analyze the generated effects on the labor market produced by the program. In this case, he must modify the q-vector which represents the expenditure distribution. After observing these results, he may then modify the interindustry-employment matrix or the industry-occupation matrix. Another run on the model gives different results and insight into more modifications. The MANPOWER/ DEMAND program is essentially a model of economic processes represented by several matrix operations but, in addition, its flexibility permits modification of the input matrices prior to execution of these operations. h The CAC model described in this report is in the process of being expanded and improved. At periodic intervals additional documentation and user guide reports shall be published which specify the changes which have been made. - 12 - B. Description of EDITFILE Editing is performed on files prior to execution of the MANPOWER DEMAND routine. The following modifications can be accomplished for each matrix : 1. Element-by-element addition, subtraction, multiplication, or division. 2. Overwriting a column or columns with a new column or columns 3- Deletion of a column or columns, thereby reducing the size of the matrix. h. Insertion of a new column or columns between existing ones, thereby increasing the size of the matrix. 5- Scaling an entire matrix by multiplying each row by a given constant. EDITFILE is invoked by the standard ALGOL subroutine call as follows : EDITFILE(<File name >,< number of cols>,<number of rows>); It accepts on card input the following commands in free form: ADD(<column number>) SUBTRACT (<column number>) MULTIPLY (<column number>) DIVIDE (<column number>) DELETE (<column number>) INSERT(<column number>) SCALE After each command, data cards are included which contain the operands for the above commands in free-field format, i.e., integers or decimal numbers separated by commas. This routine is not invoked if editing of existing matrices is not desired. - 13 - C. MANPOWER/DEMAND Processing Program Overview ERGWORKS is the routine which performs the major operations dictated by the system. It can accept as input different vectors reflecting various levels and distributions of expenditures on economic activities and it re- turns generated employment requirements classified by industry or by occu- pation. Alternately, the expenditure vector can be held constant and man- power demands can be generated by changing rows, columns, or individual coefficients within the various matrices to reflect changes in technology, labor productivity, or occupational displacement. ERGWORKS presently con- sists of four distinct sections: a core section, which is always executed, and three branches, only one of which is executed during a run. The choice of branch is a user-input control option and depends upon what information the user wants the program to calculate. Branch three, for example, selects a single occupation and gives detailed information on the structure of de- mand for that occupation. The Core Section The first step is to read in and check the list of control options provided by the user. The first option is the year. If the user asks for 1972, the program calls in the data from the four disk files corresponding to 1972' s data; if the user asks for 1976, the program calls in the 1976 projected data. If the user asks for a year other than 1972 or 1976, the program will form the three required matrices and the required q-vector by performing a standard linear interpolation of the data for both years. The interpolation is performed by a special subroutine which subtracts 1972 from the input year, then multiplies the difference between the 1976 data and - Ik the 1972 data by one fourth of the difference in the years and adds the result to the 1972 data. It should be noted, however, that linear inter- polation may not necessarily represent economic change within an interin- dustry model. The next option read in indicates whether the user wants only the final results and certain selected intermediate results or whether he also wants all intermediate matrices printed out in full. The third option spe- cifies which branch the program is to take. If this option is three, the program also reads in a column number corresponding to the column of that occupational classification in the B-matrix. The program tests both the branch option and the column to assure that the former lies within the range one to three and that the latter lies within the range one to one hundred eighty-five. The program then reads in the user-given title of the run and the q- vector. Both are printed immediately. Next, each of the fifty-eight rows T of P is multiplied by the corresponding element of q. This is mathematically equivalent to converting q into a diagonal matrix and post-multiplying this T diagonal matrix by P . If the "fullprint" option has been called by the user, this new 58 x 89 matrix is printed, first by columns, then by rows. The same basic code is used to print out each of the matrices re- quired by the fullprint option. The title of the matrix is written, and a FOR-loop selects columns in groups of ten until less than ten columns remain. For each of the rows of the matrix the ten elements corresponding to the ten columns are printed. When less than ten columns remain to be written, the routine prints the end of each row of the matrix, the number of elements printed corresponding to the number of columns left. Once this is done, the same operation is carried out for the transpose of the matrix, effectively causing the matrix to be written by rows instead of columns. - 15 - After the new 58 x 89 matrix is printed (if it is to be printed), a y-vector is created which is eighty-nine elements long. The elements of the y-vector are the column sums of the 58 x 89 matrix. The y-vector is printed and aggregated to eighty-five elements by deleting four selected elements, and the aggregated vector is printed. Each of the columns of M is then multiplied by the corresponding element of the y-vector. This corresponds mathematically to post -multiplying the M-matrix by a diagonal matrix created from the y-vector. The row sums and column sums of this new matrix are computed and printed and, if the fullprint option is on, the entire matrix is printed. After the above operation is completed the new M-matrix is aggregated to a 66 x 85 matrix. Row sums and column sums of this aggregated matrix are taken and a sixty-six order vector, designated r, is created from the sixty-six row sums. To avoid double -counting, the column sums are actually calculated over selected rows of the M-matrix. The row sums, the column sums, the sums of selected elements of both, and (if the fullprint option is on) the matrix itself are printed. If the program is to branch to the second or third branch, the last operation completed by this core section consists of multiplying each row of the aggregated M-matrix by the corresponding element of the ^-vector and (if the fullprint option is on) printing the resultant matrix. Branch One Branch one requires the r-vector computed above. But each element of this vector is first multiplied by the corresponding element of the jLi-vector, Each row of the B-matrix is then multiplied by the corresponding element of (a) the modified r-vector, forming a matrix called S . If the fullprint option (a) is on S is printed. In both cases row sums and column sums are calculated 1. - (a) for S over selected columns and rows, respectively, to avoid double- counting. These row sums and column sums are printed and totaled and the program run then terminates. Branch Two Branch two postmultiplies the transpose of the modified aggregated M-matrix by the B-matrix, producing an 85 x 185 matrix called S^ . This operation is modified, however, by multiplying only selected columns and rows to avoid double -counting. If the fullprint option is on, the S p ' matrix is printed out. The one hundred eighty-five column sums are computed and totaled (over selected rows to avoid double-counting), then printed. Similarly, the eighty-five row sums are computed and totaled (over selected columns to avoid double-counting), then printed. This terminates execution. Branch Three Branch three begins by selecting and printing a column from the B-matrix. Each of the sixty-six columns of the transpose of the modified aggregate M-matrix is then multiplied by the corresponding element of this column vector to form an 85 x 66 matrix called S . In the S matrix h represents the column of the B-matrix selected, where 1 <_ k <_ 185. If the fullprint option is on, this matrix is printed. The sixty-six column sums are computed and totaled (over selected rows to avoid double-counting), then printed. Similarly, the eighty-five row sums are computed and totaled (over selected columns to avoid double - counting), then printed. This terminates execution. - 17 - D. The Data The input data for both routines reside on the same set of disk and card files. The eight disk files contain projected data for years 1972 and 1976 derived from data which were obtained from the Office of Business Economics, the Bureau of Labor Statistics, the Harvard Economic Research Project, the National Planning Association, and the National Urban Coalition, and which were, in part, derived independently by Roger Bezdek. These disk files are matrix representations for the 58 x 89 activity-industry matrix, designated by "P", the 85 x 85 interindustry-employment matrix, designated by "M" , the 66 x 185 industry-occupation matrix, designated by "B", and a 66-order vector designated by "u"- The P and the M matrices are stored and handled in transposed form within the program. These files can be inputted directly to the model or modified first by EDITFILE and then used as direct inputs. The card file called CARD contains, first of all, the specifications for any editing to be done on the above disk files. Following these specifications are the run time options for ERGWORKS. These options include the projected year to be run, the fullprint option, and the branch of the routine to be in- voked. Following the option, the q-vector (the specified expenditure dis- tribution) is read in. 18 - E. Use of MANPOWER DEMAND Tapes : MANPOWER /DEMAND is written in Burroughs B65OO ALGOL language. The source program as well as all data files are stored on nine-track tapes in the B65OO room, Room 10, Coordinated Science Laboratory, University of Illinois, Urbana, Illinois. At present, several versions of the program are saved at points in time to enable programming changes to be made without risk to previous progress. In the appendix a list provides tape numbers and tape contents. The tape name ERG is used to access any of the tapes. In this and any discussion of B65OO usage, the reader is referred to the Little Golden Book of the B6p00 for operating system details. Control Cards : In order to run MANPOWER/ DEMAND on the B65OO, a set of control statements must be entered in card form or from a terminal. Listed below are the cards which can be used: The tape must first be loaded onto disk by the following: ?C0PY ERG/= FROM ERG In order to compile the program: ? COMPILE ERG/MANPOWER/ DEMAND WITH ALGOL LIBRARY ? ALGOL FILE CARD = ERG/OCTI DISK SERIAL ?END The execution is accomplished by the following: ? EXECUTE ERG/MANPOWER/DEMAND ?DATA CARD Abel [1] - 19 - 2, 1, 1, TEST DATA 103351 ^8160 and other data cards ?END (Note: ? is a control character on B65OO and is punched by- mult ipunch 1, 2, 3-) The execution takes about six minutes of processing time on the B65OO which amounts to about 15 minutes real time in the machine. Sample Experiments : Statement of Problem 1 : Replace the first 12 columns of the 1972 P matrix with a given set of data, change column 17 to 17a and 17b and run the program for branch one. Method of Solving : Use the EDITFILE procedure to modify the ERG/MATRIX/PI file. The following code must be inserted into the program to form executable code. L: = 57 EDITFILE (EL, L, 89); REWIND (PI); ERGWORKS (L, 89, 85, 66, I85); END The program is then recompiled, and executed with the following card input: ?DATA CARD REPLACE (1) (Data cards to replace second column) REPLACE (2) (Data cards to replace second column) REP7ACE Cl2 > ) - 20 - (Data cards to replace 12th column) REPLACE (17) (Data cards to replace 17th column) INSERT (18) (Data cards to insert between the 17th and 18th columns -- changes old l8th to 19th column) STOP 72,1, 1 TEST DATA 103351 ^18160 . . . (Change 57 to 58 long vector here) 1U561 . . . ?END Statement of Problem 2 : Scale the rows of the 1972 M matrix by a set of constants. Run the program using the modified P matrix above for branch one. Method of Solving : Again use the EDITFILE procedure to modify the ERG/MATRIX/M3 file. If possible, store the modified P-matrix from the last example; other- wise, include the changes here as in the above program. The program instructions follow: L: = 58; EDITFILE (M3, 85, 85 ); REWIND (M3); ERGWORKS (L, 89, 85, 66, 185); END The above statements are to be inserted in the executable code section of the program. Recompile and execute with the following: ?DATA CARD MULTIPLY (1) - 21 - (85 elements to multiply row l) MULTIPLY (2) (85 elements to multiply row 2) MULTIPLY (85) (85 elements to multiply row 85) STOP 72, 1, 1, TEST DATA 103351 ^18160 . . . 1^561 ?ENL - 22 - REFERENCES [1] Abel, Norma. "The Little Golden Book of the B65OO." ILLIAC IV Project Report, University of Illinois at Urbana- Champaign, Urbana, Illinois, June 1971' [2] Bezdek, Roger H. Manpower Implications of Alternate Patterns of Demand for Goods and Services . Ph. D. Thesis and report prepared for the Manpower Administration of the U. S. Department of Labor, University of Illinois at Urbana- Champaign, Urbana, Illinois, 1971 • [3] • "Manpower Implications of Alternate Patterns of Demand For Goods and Services." 1970 Proceedings of the Business and Economics Section of the American Statistical Association , pp. hl r J-K22. [h] . Progress Report on the Development of a Large -Scale Conditional Consistent Economic and Manpower Forecasting Model . Economic Research Group Working Paper no. 1, Center for Advanced Computation Document no. 7 > University of Illinois at Urb ana -Champaign, Urbana, Illinois, July 1971- [5] • Manpower Analysis Within an Interindustry Framework: Theoretical Potential and Empirical Problems . Economic Research Group Working Paper no. U, Center for Advanced Computation Document no. 13, University of Illinois at Urb ana -Champaign, Urbana, Illinois, September 1971- [6] , and Scoville, James G. Manpower Implications of Reordering National Priorities . Washington, D.C: National Urban Coalition, 1971. - 23 - [7] Burroughs B65OO Extended Algol Language Information Manual . Document no. 5000128, Burroughs Corporation, 1971 « [8] MeCracken, Daniel D. A Guide to Algol Programming . New York: John Wiley and Sons, 1962. [9] Meyers, Albert L. An Introduction to the Pointer Mechanism in Burroughs Corporation Algol . ILLIAC IV Document no. 215, University of Illinois at Urbana-Champaign, Urbana, Illinois, May 1970. 2U - Appendix A: Tape Specifications B65OO Tape Number Name 202,204 ERG F: Lie Names (I] ) ERG/MATRIX/PI (2; ) ERG/MATRIX/ P2 (3: ) ERG/MATRIX/M3 (K ) ERG/MATRIX/M4 (5: ) erg/matrix/bi (6! ) ERG/MATRIX/B2 (?: ) erg/matrix/mui (3; ) ERG/MATRIX/MU2 (9: ) erg/manpower/source 10 ) erg/manpower/demand Description of File 1972 P-MATRIX 1976 P-MATRIX 1972 M-MATRIX 1976 M-MATRIX 1972 B -MATRIX I976 B -MATRIX 1972 - Mu vector 1976 - Mu vector Sourcecode for economic model Compiled version of ERG/MANPOWER/DEMAND 122 ERG files 1--9 same as 202, 204 (10) ERG/0CT1 ( 11 ) ERG/MANPOWER/ DEMAND Source code for economic model and edit routine. Compiled version of (10.) 568 ERG files 2.-11 same as 122 (1) ERG/ MATRIX/ PI modified in experiment - 25 - Appendix B Flow Charts - 26 - C PROCEDURE EO0.EWOKS II, JT, <«., LL. MM J U LENGTH Of P COL, TJ-HN.P fte.'N K.H-L.EN. M »ovm LL-LEM, B COL. MM- » ROVsl READ IN YEAR, POLL. PRINT ANO BRANCH REAO TITV.E. O, -VECTOR. CHECH. <<I.«R AND REOUCE TO Tt THRO Tfe TOTAL, q -VECTOR AND PRINT Q-VSCTOR and Total READ PILES PI, «-*■», Bl AMD v,OI / READ FlLE-?> pa, M* 1 a^ l Mu^j INTERPOLATE FILe«=> FOR T*, 14, te» FORM INDUS,T«X ACTIVITY MATRIX. P« — Pnq IF FOLL PRINT, PRINT P AND TRAV**Po<bE FORM PINAL. DEMAND VECTOR y(J]« ioM OF I'lh COL. OF P ANCH \Y£S < ERROR RETURN D PRINT f A.N.O <^v>WV OF eue.K\ev»Ts, < ERROR. RETURN J A<S<3RE«.ATE. X To ftfi» UONfe, ANO PRINT form inter ind emp matrix m« — m*.y FORM RovM sums, print total, print of NO - 27 - IF FULL PRINT PRINT INT. INO. EMP. MATRIX AGGREGATE THE INTER IND. EMR MATRIX. TO **> X as TAVCE ROW AND COL. ■illM* OF M. PRINT IF POLL PRINT PRINT M, THE INT. INO. E.MP. MATRIX YES MODIFY M- MATRIX M« MKMU IF PULL PRINT, PRINT MODIFIED M MATRIX SELECT BRAVJCH 1,2 OR 3 6 © 6 R- Rov\l 60M"i °F M \S MODlFlSO R« RXMU PRINT R fcMO TOTAL. OVER SPECIAL ROVJS FORM S C°<1 ON B, B« & * R. PR\NT «b C^l IF FULL PR\NT FORM 1UO. EMP. V ECTOR -Rovg- SOMS OVER SPECIAL COL'S OF «=,(«< 1 PRINT OUT XNO. EMP. VECTOR ANO TOTAL. FORM OCC. EMR VECTOR-COLUMN ^>UM4 OVER. •SELECTED ROWS print out occ. emp. vector, ano Total. employment c RETURN D - 28 - FORM SC^) bv vi xe RfcPLttXWjc B THIS BRANCH &IVES OETAVLEP INFO. ABOUT &IVEN OCC. IF FULL PRINT PRINT S (.BETA 1 * MATRIX PRINT SELECTED OCCUPATION, i«., COLUMM OP B W1ATR\% compute Total occvj? EMP. VECTOR = COL. SUM* OF S(/S) STORE COLO MM IN R -VECTOR. PRINT COL. •SUMS AND THfciR Total FORM S^H} MATRlK, REPLACING M COMPUTE TOTAL INO. EMP VECTOR s RoWSUMS OF S(«) IF Full print write out s(>v> matrix PRINT ROW SUMS ANO THEIR TOTAL. c FORM COL. SUMS OF %CHl SETTING EMP. &ENF.RATE.0 IN RETURN J SUM THESE COL . SUMS FOR SELECTED COLS ANO PRINT FORM RovV SUMS OF «b(.Hl FOR SP6.C\Au Rows, GET EMP. *EN'D BT Fo«M TOTAL OP Row SUMS) AKlO PR.VKT c RETURN ~) - 29 - c PROCEDURE interpolate ) FORM F, «»CAV.E FACTOR * REAO CoRKS%- PONOIN& Row«» OF Pi A.V40 Pfc P\\-E^ <bCAX.E PI ROWS EXADOIV& F* CPt-Pl'i REAO COM. ROW O* M"* , MA AWO INTERPOLATE REAO COR*. Ro\M OF tH.ftfc AND INTERPOLATE REM) MUl AND MUt AMD INTERPOLATE c RETO«M 3 - 30 - c PROCEDURE PRTWlATRlX A, MROWS, WEAOVWCr D DETC«tW\Nt THE P\R^>T E.L.T IM L.AAT FOU. ROW OP PRIUT FOUL. ROW . =. NROWS - NROW<i WOO lO -«a ITERATE < F«OM 1 *TEP lO OKJTIL. POLLROW fc.-V-«S YE«» + •: V*R\TE OUT COL«> K. TV^RO V-" No VMRtTE x, Roys»<i |C THRU V_" WR\TE NCOL«» RQW9 EACH ROW CONTA\VJ\tOGi lo ROW E.V.EJNAE.MTC, I.E. K. THRO L., A^I, 33 © - 31 - © DO l_A<oT COL.VJt>M4 POR NoN Pua R*>VM CHECK HEADIV4& AfeA.\N To %C£ WM\C>* OWC To P*l*«iT *S» BeFORC. RoV4«» V. T*«\J *i, COLUMN 1 TO NCOUS, Atl, J3 C RETORV4 } 32 - 8 31 a I o h /'pHOCEDURe ^\ \PRTTRA>V4«>P J r A, NROVMS, NCOL«b, WEAOtVJG. DETERNMME PlR*ST ELT Of LA»«=»T FULL. ROW OF PRINT COWTA\*»\N(b TEN &LEMCNTS, FUU-R£>VM:=NCOV_t.HC©U.% MoOlO-^ ITERATE VC PROM 1 *,TEP lO UNTIL FULL.ROW WRITE WRITE N ' Co L. Vt.T\ARO L." WRITE NKO^S BoyJS EACH COMT/MKJWiGr lO COLUMN E.l_«hAENT%, X. C , KTMRU L., At J, 1\ © - 33 - © DO l_A*T RoVMS FOR NON POLL C©l/S> CHECK. UEADlNCs AC/MM TO *6E WHVCU OV1E To PRiWT NOW PRINT REMAINS N& COLUMH«, V. THRU W, ROW 1 To N ROWS C RETURN ") - 3h - APP, 6URTEACT MULTIPLY, PlVIPE iCvEKWeire PELETE INSERT FlL- FlLt NAME M - NO. ROW* H - He CA-* reap F"-e INT<? A[ 9: Z*I*,<?M] INITIALISE H il «- 1 , I" I.....M (SET 6>reBAe«>4 ANP CALL PCTTE" 2 CARP IHf* 7 WV op A. MOVE »IZ] PPWN I ELT STARTING AT IMPEX M M- I • [inpex] i- M «-M + l CLEAR SpACE IH E> AT INPEX REAP NEW eew INT? A[M, *] PEAP IN S£ALE FACTPB6 IKT» El*] J Muq-iptr E T xA ANP ZEpLACt A - 35 (PROCEDURE "\ SCANNER J WRITE OUT C l« , » ) ONTO FIL /BEAD CONTROL) STATEMENT [FOR VERB AMD INDEX ( RETURN J C PROCEDURE "\ OOTTCR ) PtRFORM INOICATEO OPERATION +,-,*, \ <=>N A AND B PUT RESULT IN VECTOR A ( RETURN J (PROCEDURE \ NUMB ) NUMB « StOW NUMBER TO £0\TfcD ( RETURN J I A- ROW OF A /B- OPERANOS | fl- O,! ,2.,^ f I- UEN OF A SCANNER ■ %MUM » SCftNNW • SCANNER « SNUM « "1 •SCANNER • ■iNUM • 1 SCANNER" "iHOM» 4 SCANNER « 4NUM « % SCANNER * 1NUM « 6 SCANNER 4 %NUM INDEX NOMB f RETURN V - 36- Appendix C Source List of MANPOWER 'DEMAND KriN HIE FILE KI.E file El' E FILE FILE FILE FT IE eue FORMA rn°Ma - 37 - L sEf, = LAKEL NFwSEuMtNT*> LlNL(KT K| n = 135.RUFFFRS * 2,lAxRFCSIZE CARO(K|MD - 9»RijfFERS s 2»MAXREC$IZE = r 22. INTRUDE = 'i# MYUSF = ? ) : 1 4 » I \! T M 1 1 n C s a ) J PI (KIND s l.ACCFSS = 0. TITLE s MAXRECSI7E = 1^ , iLUCKSIZr = p2(*TNn s 1»ACCFSS = O.TITLF = M A X r I C S I L E = l^rtLUC^SUF = Mj(K T Nn = 1 . a C C f S S = # T I T L E - MAXrFCSIZF = 1 <* » rt L fl C k S W F - Ma( K iNo = i.accfss = u> title = Ha*rFCsI*F = l^friLOCKSUF s tt 1 ( K I N n = l.ACCFSS = » T I r L E * M A X R F C S I Z F = l^.riLUCKSIZF = rt^(KlNn s ltACfrsS = 0»TITLF - MaXrFCsUE = 1«»HlOCksUf = mukkIwo = I.accfSS = d,U!i.l * "ERG/MATPTX/PI .".HijFrERs = 2. 420) ; "ERG/MATRT X/P2. ". BUFFERS = 2, a ? o ) : " F R G / m A T R T * / M 3 • " • '- U f r F R 5 = 2 • 420); "ERG/mA TP I x/M'*. M , RUFFFRS = ?, 'i 2 ) : "FRG/MAT^TX/.U . H .HUFrF KS = 2, ft 20) : "ERG/MATRT A/H2.",Ht.)FrERs = 2, ft 2 ) 5 m ERG/\/ECTUR/mu1 , ". RUrFERS = ?,MAXRECSUE = U.HL0CKST7F = 420); rtU2(KlM0 = 1»ACCFSS = 0,TIT|t = "ERG/ VEc THR/ Mil? . H » RUrFERS = 2,'mAXRECSUE r 1 a . BLOC kS I /F = a20)S T Jn F* f ft I 1 ). FO ( XS.9FH. a. XI) J T [)UT hFADK /"El FME viT VALUE"). H FAl)2</" RLH M #Xf ,"RO*SUM") . M E A D 3 ( / ♦» r. n |, U M .< C OL II M N S ' I H " ) . HFAD4(/"C0LS W »I4»" THRU", T4/ ) . rtFAD5(/"RnwS w il4»" THRU"* 14/) . pRRMESSir"***lNCORRECT UPtiOm K[AL ARRAY P [ n J "bft » () J 69 j . M f t AS • HS 1 { iNlTE&F I » J» K. | ; LAatL FOFU, LINE PRINT ROUTINES FHT4,r20,S)» F?(«T0TAL H »F19,b). FMlJt9CXi t RU,A>>, FlO(I3»lO(Xl»Pll.4)), I R M RANCH")? PROCEDURES PRTMATRIX AND PRTTf?ANSP ARF USFD FIR FMLLPPINT Tl) PpINT MATRIX OH MS TRA:MSPi1SE PRilCEnURE PRTTRANSP{A.^Rl) w S»Nri1LS»HEAnl^r, )', VALUE NROWS.NcnLS#HLA')INvi; HEAL AWRAY A t . 3 I InTEGFR NROWSiNICULS* HEADING? "EG IN INTEGER FULLPn*»I»J»K»Lt FULLROml t= NcnLS "NCOLS -iuu 10 - ); FnR KS= 1 STFP 10 UMTIL FULL^nrf [)U ; ^FGIN L : = k + 1 ; IE HEAOTMGsO THFN w R I 1 F f L I NF . HF A Db . K » L ) EL^F ■i R I T F ( L I r J E » h F A () a . k » L > J EQR J*.= 1 STFP 1 UNTIL NROWS 1)0 WRI fF( LTNE.Fl 0,.j. FOP Il= K STEP 1 UNTIL L DO aU.iJ); F N r i J Ir NCTLS > L THEN REGIm IF mFADING so THEN ^RT TE(LlNF . HFAnS.l. f 1 .NCHLS ) EiSE ^RlTFCLlNE.HFAOa.L+l .NCUI.S) J FOR J * s l STFR 1 UNTIL NROWS DO WRITE(LINE,F7»J.F0R l:= L+l STEP 1 iinTTL NCOLS nO AfJ.Il); ENnj wRlTFCLlNETSxTP 11)J - 38 - end prttranspj PROCEDURE PRTMATKlX(AiMRO*S»NCnLS»HEA[)lNli); VALUE NROWS»NCnLS»HEAOING» INTFGFR NRnwS#NCULS»HEAOliMf,{ REAL ARRAY AC 0,0]; BEGIN Integer fullr,~i w »i» j»l»k; FuLL^nwia nrhws - nrhws mud 10 • 91 FOR Kl= 1 STFP 10 UNTIL FULLRU* On BEGIN L » » K ♦ tl IF HEADING »o THEN WR 1 TE f L I NF , HE AOa . K »L ) ^RITE(LIMF»HEAD5,K»L) J FOR J|« 1 STEP 1 UNTIL NrOLS WRITF(LINE»F 10» J, Fur pa ELSE DO K STFP ENni 1 UNTIL L Dfl At I. Jl )l IF NROvJS> L THEN hEGIn IF HFADING =0 THFN WR I TE ( L I NF * HE AD** • L+ 1 » NROrtS ) FLSE WRl TF( L I NE » HF A 05 »L + 1»NR0WS> I FOR Jl» 1 STFP 1 UNTIL NCULS DO WRITE(LINF»E7» J»FDR h» L+l STEP 1 UNTIL NROws DO A [ I # J ] ) I ENn» WRItECLInECSki^ M>» END PRTMATRIYJ END OF LINE PRINT ROUTINES PROCEDURE VALUE INTEGER FILE aEGlN larll out j t ARRAY EnITFlLE(FTL»M.N) j N J m»n ; FTL ; .EOFA A[0,2*M.0»Nl »dC0t2*M] .C[ Ot Ml # DC | 1 3 ] »FC0J2*H] I PQINTE R p »Q ; INTEGER I .J • Index . Snih • T?M i t DEFINE G ( T * J ) »gEtc • DOTS A[R[I ]» J]# read<card»/»for BEGIN Il«l STEP 1 UNTIL N DO Ct II )# - 39 - r,|r rCl r>OTT£K((i(INDFX»*)»C.SNUM.N)l EN >* q Lb I N SCAN SCAN SCArj nUMr J rNO NtJM X . • • • • PRTCLnU VALUE TNTL^K 4RRAY PUJJN I N T E ft CASE «F»j FO« for FnH fok Lno rNO On! ' • • • • TNTt-bfK * I ft I hi LABEL RLAfH EUFF* SCAN SCAnn PPnCE^H^E MilMB: P ip UNT P jp+ 1 U Olp WHl slNTEftE r ; IL = "("J NTIL IN ALPHA; LE tm alpha; R(P.nrLTA(P».n ) l pE oiitter( a, u» I • j) ; I * j ; it. j ; a . r[o 1 ; E« K) I nr IN K|sl S K|»l S K t = 1 S K|=l S case s TEpJ TEP 1 UNTIL J Of) Al K 1 \ r* + HtKl TEP 1 UNT IL J |)U AlK 1 1 = *-r[K] TEP 1 UNTIL J DU ttlK1l=**R[K1 TEP 1 UNTIL J U ALK1J=*/HtK] TATE -FNTJ prhCeuupf scannf r s Eoff j cApn. 14 SrANNE PJPOINT E«: aSNU . (J t + 1 ) I E F F ; ; 1 ; p : = s n u -1 1 s r i FP(O) wHjLF = " h : = Ir ir Ir Ir IF Ir Ir Ir Tr "Anr> M w SijB" "MULT" "DT V" "(JyER" *DFL" "IMS'* " S C A L " M Ai)JU" THEN then THEN THEN THEN THEN THEN THEN THEN FI.SF FLSE ELSE ELSE ELSE FLSE ELSE FLSF FLSE IF SN||M NEQ f AND SNUM NE^ 8 AN|) SNUM NEQ 9 ThEN INUEX I8MUMBI FND S C A N N r R j I . » •. t .•...*.... t .•••.*•...*... t . ..••••••■•• ■i BEGIN FXECUTARLF EDITFILE rUUE % * t •♦.•.•...•.......••»•••.•••. # • . * % initialise t T ? M I ■ M ♦ M | F(]H I := 1 STEP 1 UNTIL M f)0 - ko - RFArKFli./.rnp J * s l STEP l until n nu At I . j] ) Cfofa 1 1 ] J fofa: FpH I t s 1 STEP 1 UNTIL M DO «[I]i»I> * main program % WHILE TRUE DO CASE SCANNER UF BEGJN DoTSJ * O-ADD DOTS1 % 1-SUB DfiTSI x 2-HULT OnTS J x 3-DIV RFAD(CARD»F9»F0R Ij=1 STEP 1 UNTIL N DO G(INDEv»I))| * 4-OVER HrfilN % 5-DEL REPLACE POINIERChC iNnExl )BY POlNTEK< BUNDE X*l 1 > FOR T2M-iNnEX"l WORDS? MlaM-l ; End i BFGIN x 6-INS BC INDEX! |=M| = M+1 J FOR Ila m STEP "1 UNTIL TNDEX DO RClH'BU-ll* READ(CARn f F9,F0R J t »1 STEP 1 UNTIL N 00 A[M,.j))| FNni BEGIN READ(CARD./»FnR Ii= 1 STEP 1 UNTIL M 00 EtlDj FOR n= 1 STEP 1 UNTIL N nu FOR j:s 1 STEP 1 UNTIL M DU A[I»Jll» **E[JJJ ENDJ BEGIN REaD(CARD./.fUR Il« 1 STEP \ UNTIL M 00 ECU); FOR It= \ s Tf rP 1 UNTIL N DO for jj= 1 stfp 1 until m 00 a [ i , j ] i «**e [ i ] i end; go out j % 8-00NE eno case; % OUTj * % WRAP-UP % REwlNO(FlL) I FOR I:=l STEP 1 UNTIL M DO WRlTE(FlL»/»FnR J* = l STEP 1 UNTIL N DO r,CI»J))J End editfilej PROCEDURE ErgwORKS(It»JJ»KK»LL»MM)I V A LUE n.JJ#KK#LL»MM ; INTEGER II» JJ.KK»LL»MM I BEGIN REAL AHRAy ACO|133» MUtOjLLl. OtOiHIi Yt | Jjl » RCO t LL]» SHtOjMMl. pfO* I I # I JJJ» MtOJKKiOlKKl » Bt » LL • t MM] » SRC I K« , n I MM] « integer i. j, k, l» branch, year, columni boolean fullprinti REAL SUm» TdTALI LABEL F'INIShi % INTERPOLATION PROCEDURE FOR YEARS OTHER THAN '72 OR '76 1+1 - procedure. Interpolate t RFAL f- i F := I fFup - 7?)/4; FOP I J = 1 STFP 1 UNTIL II 0) *Er,IN PEAU(Pit/.Fti R J : = 1 s te p l Until jj On P[t.JI>* PEAU(p2, /.FOR J := 1 STFP 1 UNTIL .J.J OH Y[ll)> FOR J ;s 1 STEP 1 UNTIL JJ !)f) Pll»,|] := P f T . J 1 + F * (yCjl - P r T • J ] ) ; end; F n p I l - I STEP 1 U„ TT L KK D, HE:, [ >M «EAU(M3t/,FnR J :s 1 STEP 1 UNTIL HK f)H M[J.Il)J PEAlH M4,/,F0R J ;= 1 STEP 1 UNTIL KK UN Y C J 1 ) ; tor J := 1 STEP 1 mmTIl kk no m[J,t] * " M£ Ml ♦ F * (yCJI - MrJ»T]); E n i ; FOP I J = 1 STEP 1 UNTIL LI. Oil rttr,IN PEAUCRl ,/, FOR J {= 1 STFP 1 UNTIL hm on BfT»Jl)J pEAUCP2»/,FUR J S= 1 STFP 1 UNTIL MM 00 SuMl)l FOR J 5s 1 STEP 1 UNTIL MM DO Mil,. J J := BfT.J] + F * ( 5 M C J 1 - Brl.Jl)? ENn 5 READf 1U1 • /» FOR I 5 s 1 STEP 1 UNTIL LL 00 Mtjtll); REfiO( MU?» /»FUR I J = 1 STEP 1 UNTIL LI. 00 BlIUJ FOP I *= 1 STFP 1 UNTIL LL Oil HJtIJ. := Mii[I] + f * ( P t I 3 - ultllW EN >J % t DFFINE SPECIAL LISTS F'RLiJUENTLY USFO FOR OUTPUT % DEFINE SPECTALROWS - I := 2» 3. 5» b» 7. 4> P» \\, \i, u» iq, 2o. 21» ?4» ?5» ?8» ?q* 30» 3l» Hx* 37» 38. U?» 43» 47. 4h. S n » bi» 5a. 5 5 » 5 6 » SB» 5 a » 6 o » 6 i • 6 ? » 6 3* 6 5 • L I * » DEflNL SPECt ALCOLUMN^ = J := 2» 12» ?0» ?*• 3fi» ft3» ft7» M» 69. 7n» 71. 8i» aii 94. PS. 1 >6» 11?. 116. 1?}. 136. 139. l a 3 • 153. 15M. 167. l6fl» \72» 177, 184, 4MA| * BEGIN PROCFSSlNfi H/ REAUlNr, IN HPT TON CARU AN,» DATA f?EAD(CARD./,YEAR»I»BRANCH)J IF I = T M EN EullPRINT I- FALSF ELSE FuLLPRTNT : = TRilF: IF YEAR dTR 1 900 THEN YEAR != YEAH - I 900 j IF YEAR = {7 THEN BFr,TN SEGJ rOR I := 1 STEP 1 unTIl II r )0 RLA D (Pl ./.FUR J := 1 STEP 1 UNTIL JJ nO Pfl.J])) FUR I J= 1 STEP 1 UNTIL KK 00 REAn(M3,/.F0R J s = 1 STEP 1 until KK no MrJ.in; rOR 1 := 1 STEP 1 UNTIL LL 00 REAOCRl./.FrjR J := 1 STEP 1 UNTIL MM Oil R T 1 . J I ) * pEAU(MU1 » /.FOR I := 1 STEP 1 UNTIL LL 00 MUrl])J ENn ELSE IF YEAH = 76 MEN 4LGIN SET,: FOR 1 != 1 STEP l UNTIL II 00 REAo(p2,/,FOR J :s 1 STEP 1 UNTIL JJ 1)0 Pd, JJ); rOR I != 1 STEP 1 UNTIL KK 00 RLA|)(M4,/.F0R J t = 1 STEP 1 UNTIL KK 0(1 MTJ.lJu TOP i := 1 STEP 1 UNTIL LL 00 REAn(R2./.F0R J l= 1 STEP 1 UNTIL MM Oil « T I . J J ) »* PEAU(mU2»/.F0R I ir 1 STEP 1 UNTIL LL on Milfl])? - U2 - END ELSE INTERPOLATE! IF BRANCH GTR 3 OR BRANCH LSS 1 THEN BEGIN WRITECLINE.ERRMFSSl ) I Gfl TO FINlSHI ENOJ IF BRANCH * 3 THEN RF AD ( CARD. /» COLUMN ) J IF BRAN C H * 3 ANn (COLUMN LSS 1 OR COLUMN GTR m H) ThEN BFqIN WRlTE(LlNE»ERRHESSl ) I GO TO FINISH; END! READ AND rtRlTE TITLE AND Q-VECTUR * % % READ(CARD»l3.A[*] ) i WrITE^LINEM3.A[*] ) J I I* 01 thru ( ( n oiv an DU RFAD(CARD»FB»FUR J | = 1 STFP 1 UNTIL 8 DO Ot I I = 1*1 ] ) j READUARO. E«, THRU II MUD « DO Q [ T * » I* 1 1 > I WRITE(LINF.</ W ALTERNATIVE EXPENDITURE VEcTOR">)J WRITECLINE»HEAD1 )l TOTAL *» 0; FOP I »■ 1 STEP 1 UNTIL II DO BEr,IN TOTAL is TOTAL + Q[IIJ WRITE(LINF»F1» I»Q[T1 )l End; WRTTE<LINEts*<IP ll»F?»TOTAL)l * % F n RM jnjDUStRY ACTIVITY M A TRI* (OVERLAYING P) FOR I I* 1 STEP 1 UNTIL II DO FOR J »= t STEP 1 UNTIL JJ DO pCI.J] l« PtT.J] * Q t 1 3 * * * ROUTINE TO PRINT INDUSTRY ACTIVITY MATRIX AND ITS TRANSPOSE ? IF FULLPRINT THEN BEGIN WRTTE(LINF»<«INDUSTRy ACTIVITY MATRIX">)j FOP X : = 1 STEP 10 UNTIL 41 DO BEGIN L » c K + 91 WRI rE(LINF»HEAD4»K,L) I FOR J l« J STEP 1 UNTIL JJ 00 WKITE(LINE»E10» J, FOR I »■ K S TEp 1 UNTIL L DO PC I . J 3 > J END! WRITE(LINE»HEAD4,51, \\)t FOP J »« 1 STEP 1 UNTIL JJ DO WRITE(LINF»F7»J.F0R I »« 51 STEP 1 UNTIL II DO PtI»J])| WRITECLINECSKIP 1 1)1 WRITE(LINE»<"TRANSP0SE PRINT OF INDUSTRY ACTIVITY MATRlX«>)| FOR K «« 1 STEP 10 UNTIL 71 DO BEGIN L I" K ♦ 91 wRITL(LINf,HEAD5.K.L)J FOR J la 1 STEP 1 UNTIL II DO WHITE(LINE»F10. J.FOR I t. K STEP 1 UNTIL L 00 PCj»IJM END! WRtTE(LinE»HEAD5»81» JJ) J FOR J *■ 1 STEP 1 UNTIL II DO WRlTL ( LlNF»FlOt J.FOR I la 81 STEP 1 UNTIL JJ DO P C J . 1 1 > I - U3 - WRITECLINFCSKIP 1 1 ) J EMHt 3! * GENERATE FINAL DtMANQ ,/ECTOR AMU PRINT WRITE (LINF»<* GENERATED FINAL. DEMAND VECTnR">W W R I TF ( L I ME * >>V A D 1 ^ ; TOTAL l = Of F n p I : - l step 1 until jj On begin Y[ T J I' 0; for J := 1 step 1 unIIL II on yII] : s nil 4- prj.ii; •)RI TEC LINF.Fl • I» YT T 1 ) * TOTAL :s TOTAL + YfTJS EN) J WRITEILI^F.ISKIP 1 ]»F9, TOTAL); I I AGGREGATE FlNAl DEMAND VECTOR A N f) PRINT WRTTE(LINF»<" AGGREGATE FINAL DEmANO VECTOR"^; WR T TF ( L 1 nF_ * HF A 1 > ! Y t A o 1 J = Y t 8 1 1 ? y [ oi n : = y I r 7 J i Y[R2 ] is Y LR7 i ; Y [ A 3 1 '= V C R 4 ] J Y[ A4 1 != YlRM J Y [ KK 1 »= Y C J.I ] J TOTAL, 5= OJ Fn« I : s 1 $TEP 1 UNTTL *X 00 BEGIN TOTAL :- TOTAL + Y r T J J <"HI I L( LINF.Fl » I » YT T 1 > » F. i^J n J WRITEILINFISKIP i 1 .Fp, H1TAL) 5 * * GENERATE TmF I NTER I NOUS 1 H Y FMPLOYMFNT MATKM < WRTTE(LINE»<" ROw ANn COLUMN SIMS Uf INTERINDUSTRY EMPLOYMENT MAtRIX">); WRITER LINE* MEADi) J total *= o; FOP I ?s 1 STEP 1 UNTTL *K On BtGlN SUM J s > FOR J »* 1 STEP 1 UNTIL KK DO BEGIN ML" I » JT := M[ I . U * Y[ T 1 J SUM j s SUM + 'U I . Jl J FND: WRHE(LINF»E1 * I . S U M W TOTAL is TOTAL + StlMI End; ^RTTECLjNEtSPACE 2 ] # r2» TO T At ) I ^RITECLlNE»uiEA02) J total *s o; FOP I » = 1 STEP 1 UNTIL KK 00 BEGIN sum := n; FOR J 1= 1 STEP 1 i |N I I L. «K fjO SUM »= SUM ♦ MtJ»Hl ♦JRI Tt( LTNr .F 1 » I . SUM ) ; TOTAL Is TOTAL ♦ S 1 1 M J EN 01 writeilinfCskIp ij»f?»total)j % «n u TlN|E TO p RlNT INTERINDUSTRY EMPL ( )YMFnT MATRIX AmO TRAN Sp oSE % IF FULLpRINt THEN «Fr,lN WRITE UINE»<" INTERINDUSTRY EMPLOYMENT MATRIX">)} Fpp K »» 1 STEP 10 UNTIL 71 00 BFblN - kk - L IM + 91 WRI TL(LlNr,HEAD4»K,L) I FOR J la 1 STEP 1 UNTIL KK 00 WK1TI(LTNE»F10» J.FOR I j= K STEP 1 UNTIL L 00 MCt»J3)1 END* WRtTE^ l INE»HFAD4.81.KK)I FOP J >i 1 STEP 1 UNTIL KK DO WHITE(LINE»F7. J. FOR I l« 81 STLP 1 UNTIL KK 00 MU»J1)J WRTTEUlNEtsKIP 11)1 % WRTTE(LINE»<" TRANSPOSE PRINT OF INTERINDUSTRY EMPLOYMENT MATRIX«>)| FOR K I* 1 STEP 10 UNTIL 71 DO BFGlN | i» K ♦ 91 WRITL(LINF,HEAD«>»K,L>I FOR J t* 1 STEP 1 UNTIL KK DO WKITE ( LINE»F10» J.FOR I 1= K STLp 1 UNTIL L 00 MCj»l3,j END« w Rite il ine»heaD5#8i.kk); FOR J la 1 STEP 1 UNTIL KK DO WK1TE(LINE»F7. J»FOR I 1= Hi sTLp 1 UNTIL KK 00 MtJ»I])J wrtte<linfCskip 11)1 END} AGGREGATE THE INTERINDUSTRY EMPLOYMENT MATRIX TO LL X KK (OVERLAYING ITSELF) ANn TAKE THE ROW AND COLUMN SlJMS 1! % % % FOR Mt MC M[ MC Mt MC Mt Mt Mt Mt FO Mt Mt Mt Mt MC MC Mt Mt MC Mt Mt Mt Mt MC Mt Mt Mt Mt Mt is 1 STEP 1 UNTIL KK 00 BEGIN SEG| 2] 1= MC Iill + MC I # 2 3 I J] I s MC I»33 + MC I » a 3 I 1] 1= MCI. 23 •► MCI, 3]? 5] is MCI»53 + MCI.63I 6] |» MC 1.73 J 7] i« MC I » 8 3 1 8] I* MCI .93 + MCI. 10] i 4] |» MCI. 53 ♦ Mt I»63 ♦ 9] l» MC I»UJ ♦ MCl.123 10] Is SUM li M[ I»133* J i. 14 STEP 1 UNTIL 6a il3 Is MC 1*14 3 ; 1?] is MC 1.1531 133 Is MC 1*16 3 ♦ M[ j.1731 143 Is MCI. 163i 153 Is MC I. 1731 163 Is MCI. 183 ♦ MCI. 193; 173 I, MCI. 183 i 183 is mC 1.193) 193 Is MC 1.203 ♦ MC I » 2 1 3 * 203 is Mtl.223 ♦ MCI. 2331 2 1 3 i B MC 1.243 ♦ MC 1.253 I 223 is MCI. 2531 233 is MC 1.243; 243 1= H t I .263 t 263 I- MCI. 273 ♦ MC I • 283 ♦ MC 1 . 29 3 | 273 is MC I. 3031 253 Is MCI. 263 ♦ MC I » 27 ] I 283 is MCI. 313 I 293 i. MC 1.3231 MC 1.73 + MC 1.83 t + MC I. 8531 DU M[I, 10] is MCl.10] + MCI* Jl{ - k5 - 1 t r»3oi >* [ fJi) "t ['321 M[ ' .J3J M[ 1 r.34l Mf ] :»35l m( r»36l Mf 1 .3 7 ] M t f »i8] r-0£ ? J J K» [ [»39J m [ ; '.«01 ■<t 1 '•MJ Ml '.4 2 1 M [ [•43] * t ' .44] M [ -,45J u[ '.46] III [ r.47J M[ ! .4 8 1 • [ [»5 ] M [ r»MJ M [ t'5?] (-1 [ [.t>^j ■t [ [»ba] m[ [•49] "1 t [•55] ►4 [ [.5 6 ] •1 C .57] it [•58] •I [ [»59] ' ' t .601 Mt [•Ml 'i r [»6?j Ml r»*3J " [ f»b5] Mt ' [.661 •;t r»64J • 5 : s is 1 _ t- is • 5 t - is • £ i s t • • t • S « — : s i = M[ mi M[ M[ Mt M[ s M[ s SUM s *[ 4 4 s M[ M[ mC Mt mt Mt Mt M[ M[ Mt Mt Mt Mt Mt Mt Mt M[ Mt Mt Mt Mt Mt Mt M[ Mt Mt Mt i s i 3 t 5 1.331 1.35] T. 351 1.361 1.371 1 . 3 n I. 381 M + M 1.43] TE p 1 1.44 1 I ,51 1 1.381 1.531 1.591 1.591 I .601 1.61 1 1.621 1.641 I .651 I .66] 1.671 I .661 I .681 1.50] 1.691 I .701 1.721 I. 721 1.731 1.751 1.761 1.771 1.841 1.781 1.79] 1.651 + m r. 1 . 3 4 1 ; + M t I » 3 6 .1 J + M t 1 . 3 8 1 J i r 1 . 3 9 1 + m r 1 , 4 ] + m r 1 , 4 u + m 1 1 , 4 2 1 ; i UNTIL 5? OU d J.38 1 i = <ri.3«] ♦ mTt.JIJ - Mf I » 39 1 - Ml I .40] j + Mtl»54) + MII.S51 + MTT»56] + vitl.5^1 + MT I *5B ] I + ML i,6nl + Ml 1 ,61 1 i + M[ 1 .63] J ♦ M t T » 6 n I + M [ [ » 5 1 ] + nil. 54]J ♦ M t I . 7 1 ] i + M C I # 7" ^ ] + 1 1 I . f 4 1 + M t T » 7 5 J ♦ M t I , 7 6 1 + M T T • 7 7 1 j + H[rJ4lJ WRTTF(L writer l WRITE(L total j for i J PC I J r R J •4 R I T E FOR SPE WRlTEtL WRTTECL TOTAL » FOR I i YtU ROUTIN Employ INF»<» AG INF»<" ( INE.HEAD2 = OJ = 1 STEP » = Oj is 1 STE (LINf.F1. C I A L R H S ineCspace INE.MFAD3 3 o; * 1 STEP t= 0; + M[ 1.821 I * M t I » 8 3 1 J + M t I » 6 6 1 J ErU F TO PRINT QljT AGGREGATED I MTE R I NOUSTR Y ME NT MATRIX A NO RUW A NO COLUMN SUMS GREGATEO INTFRINOUSTRY FMPLUYMLNT MATRIXh>); row anl) column su |V, s ov/Er sELFr T Eo rows) m >)? )i 1 UNTIL L L U R E G I N P 1 U njT IL KK Do Rtl] J- Rfll + MfJ.iU I .Rt T i ) * End; OU TnTAL : = TOTAL + Rt Jl ; 2]»F2»T0TAL)J ) J 1 UNTIL KK Ol) BEGIN - 1*6 - FOR SPECULROWS Dfl Y C I 3 «= Y[I] ♦ M C I • J 1 I wRlTE(LlNfFl» I • YC H>l TOTAL '« TOTAL ♦ Ytil; ENO* WRTTECLlNEtSKlP 1 I • F? » TOT AL ) I routine to prim aggregate interindustry employment matrix X % % if fullprint then begin WRTTEUINE'<"AGGREGATE interindustry employment matrix">>; FOR K »■ 1 STEP 10 UNTIL 71 DO BEGIN L I" K ♦ Ql wRlTt(LINF»HEAD4,K.L)f FOR J I* 1 STEP 1 UNTIL LL DO WHlTE(LTNE»F"10» J. FUR I 1 = K sTEp 1 UNTIL L DO MCl»J])J END! WRTTE(LINE»hEAD4»81, K k>; FOR J l« 1 STEP 1 UNTIL LL 00 WRlTE(LlNE«F7»J.FnR I »■ 81 STEP 1 UNTIL KK 00 mU.J])J WRITECLINECSKIP 1]>J % WRITE(LINE»<»»AGGREGATE INTERINDUSTRY EMPLOYMENT TRANSPOSF "> ) J FOR K »« 1 STEP 10 UNTIL 51 DO BEGIN L I" K ♦ 9> wRlTE(LlNE»HEAD5»K.Ln FOR J l« 1 STEP 1 UNTIL KK DO WKITE(LINE»F10» J. FOR I Is K sTEp 1 UNTIL L 00 MU»I3)J emu i write(line»head5»61»ll)» fop j l« 1 step 1 until kk do WKlTE(LTNE#F7.J.FflR I »= 61 sTEp 1 UNTIL LL DO mCJ»I1)» WRITE(LINE[SKIP 11)1 ENnj % % For branchfs 2 AND 3 modify THE M-MATRIX with mu % if branch gtr i then hEgin */RI rE(LlNF»HEAD2)I TOTAL l» 01 FOR 1 »* 1 STEP 1 UNTIL LL DO BEGIN SUM |. o» FUK J t* 1 STEP 1 UNTIL KK On BEGIN M[ J. 1] 1* Mt Jt I] * MUC I] I SUM ** SUM ♦ M[J»I3J ENn* WRlTE(L|NE»Fl. I»SUM)I TUlAL Is TOTAL ♦ SUM* END? wR!TE(LINFtSKlP 1 1 . F2» TOTAL ) I * % ROUTINE TO PRINT MODIFIED M-MAT^I* IF FULLPRINT THEN rEGIN WRITE ( LINE»<«M0DIFTE0 INTERINDUSTRY EMPLOYMENT MATRlX">)J FOR K «■ 1 STEP 10 UNTIL M 00 BEGIN L »■ K ♦ 91 rtHiTE(LiNE»HEADA.K»L)l FUR J I. 1 STEP 1 UNTIL LL DO W RITE(LINE.F10.J»F0R I »» K STEP 1 UNTIL L DO mC I » J 3 ) I ENDl - hi - ■*RI IE(LlNp.HFA04.rtl »KK) ! FOR J *= 1 STEP 1 UNTIL LL HO «H1TE(LT W E»F7. J»FOR I := *1 STEP 1 UNTIL KK DO M T T » J 1 ) ; wRI rt(LINFtSKlP 11)J ./RI 1E(LINf ,<"TRANSPnSE PRI\|T Of HimiFlFO m-mATRIX m >) J rO» * 1= 1 STEP 10 UNTIL 51 0(J hEGIN I »* K + 9; WHlTEC LTME» HEAPS. K»L) I FUK J I- i STEP \ UNTIL KK On ARlTErLlNE.FlO, J'FOR I :* K STEP 1 UNTIL L DO m f J» T 1)1 ENI)} RI rt(LTN F , HEADS, M ,LL)j rOR J {= 1 STEP I UNTIL KK 00 WrtlTE(LpiE»F7, J,FOR I *= 61 STEp 1 UNTIL LL DO MtJ»I1>J • RI 1 1 (L iNrrSKlP in; FND J FNO 5 % % CA^E ti K A N C H (IF BEGIN, % % % .-------- % % rtLclN ry USING TmE Mi) SECTOR TO MODIFY R SELECT HRANCm FOR RFMAlNTNG PROCFSSlNG BRANCH UnE PEf, IN SFGj wRlTElLlNEt SPACE 21»<****NEW R*\/FCTOR (MODIFIED RY Mli)«>)j ^RTTECLlNE»nFADl ) * FOR I S= i STEP 1 UNTIL LL Do BEGIN R [ I J i = R r I 1 * M IT] J -RI I t- ( L I N r • F 1 » I # r r n ) J END I TOTAL J = 01 FpR SRECULrd^S Du TnTAL ;= TOTAL + R C J J J WRITF(LINF[SKIP ll,F?tTOTAL)J % % FURM S(ALPHA)# OVERLAYING THE B-MATRIX F0° I := 1 STEP 1 UNTTL LL 00 FOR J := J STEP 1 UNTIL MM DO R t I • J ] « = Rtll + BCI.J3J % RUuTlNF TO PRINT S(ALPHA) AND ITS TRANSPOSE % IF FULLPRINt THEN HFGJN wRTTE(LlNF»< w ***SfALPMA) MATRl X">) ; For K »s 1 STEP 10 UNTIL 171 DO AEGIN L » s K + Q J *RITE(LINF»HEADU,k,l)! TOR J 1= 1 STEP 1 UNTIL LL 00 WKITE(LINE»F10» J.FUR I Is K sTEp 1 UNTIL L DO B[J,I])J End; WRjTElLlNE»HFADa,181.MM); FOR J » = 1 STEP 1 UNTIL LL 00 WRlTE(LTNE»F7. J.rqR I « s 181 STEP 1 UNTIL MM DO w[J,j]); WRTTECLINECSKIP 11)J % - U8 - WRTTE(LINE»<"TRANSP0SE PRINT OF S ( ALPHA )">) J FOR K '■ 1 STEP 10 UNTIL 51 HO HEGlW L I" K ♦ 91 WRlTECLlNf.HEADS.K.LJ* FOR J »■ i STEP l UNTIL MM 00 WHITE(LTNE»F10. J.FOR I la K STEP I UNTIL L DO B[I»J])J EfMDJ WRITEUINE»hEAD5»61.lL)J FOP J » = 1 STEP 1 UNTIL MM 00 WHITE(LTNE»F7. J#FO« I » a ^ 1 STLp 1 UNTIL LL DO BU»Jl)l WRITECLINECSKIP 11)1 ENm X X calculate rowsums Over special columns, overlaying r WRITE(LINE»<«GENERATE0 INOUSTRY EMPLOYMENT VEcTOR">)j WRITE«LINF»hEAD1)I FOR I »» 1 STEP l UNTIL LL DO BEGIN RCI J I" Oj FOR SpEclALCOLUMNS 00 Rill l> R[I] + BtI#J]j WRITE(LINE»F1»I»RCI])» END* TOTAL »■ O; FOR SPE.CIALROWS oo TOTAL I* TOTAL ♦ R[J]I WRTTElLINEtSPACE 2 1 # </" TOTAL EMPLOYMENT ■ " , rl T , 5> # TOTAL ) 1 write(l IN e.<"GeneRatfd occupational employment veCtoR">>» write(Line»hEadi )i X 35 1 A K E COLUMNSUMS OVER SELECTED ROWS AND PRINT FOR I la 1 STEP 1 UNTIL MM DO BEGIN SHE U 1= OJ TOR SpEclALROWs DO SHCI1 »» SHt U ♦ BU.Ill WRITL(LINE»F1»I.SHCI] ); ENOJ TOTAL «» 01 FOR SPLCIALCOLUMNS 00 TOTAL !■ TOTAL ♦ SHtJlj WRITElLINE'</ n TOTAL FMPLOYMENT « " ' Fl 7 . 5> » TOT AL) I END Of BRANCH ONEl I X X X X X X X X BEGIN SEGI FOR I l» 1 STEP 1 UNTIL KK DO FOR K |« 1 STEP 1 UNTIL MM DO s8[ 1»K] «» 01 FOR SpEclALROWS DO SB[I,K] i> SBCI.K] ♦ Mf I . Jl * BtJ»K]l X KUuTlNE TO PRINT S(rETA) ANO TRANSPOSE X Ip FULLPRINJ THEN BEGIN WR!TECLINE»<"***S(BETA) MATRIX">) J FOR K »■ 1 «;TEP 10 UNTIL l^l DO BEGIN L t ■ K ♦ 91 RRANCH TvO MULTIPLY M * B TO GET S(BETA)' OVERLAYING B. hit on l y special Rn*s to avoid double-counting. BEGIN ENDi - 1*9 - wRlTE(LlNE>HEArH.K.L>* rQR J » = 1 STEP 1 uNUL KK 00 ^KiTL(LTNF»F10» J. FOR I la K STEP 1 UNTIL L 00 SBT J* 1 1 ) ; F: '>* P * ^RTTEi L I^E»MEADa, 181, MM); •MR J lr 1 STEP 1 UNTIL KK 00 rtKiTt(LlNE»F7. jt rOH I 1= 181 STEP 1 UNTIL MM DO SBtj.U), *RTTEtLlNEC<;KlP 11)1 r «RTTE tL INF » < M TRANSP0SE PRINT OF S(BETA)">)J :qp < ts 1 STEP 10 UNTIL 71 DO BEGIN I : s K ♦ g i hHI rL(LINf. HEA05.K.L) J FOR J Js t STEP 1 UNTIL MM 00 WR1TL(LTNE.F10. J, FOR I {a K STEP 1 UNTIL L 00 SB[I»J1); End J nRtTE^-inF»HEAD5.81,KK)» 'OP J »* 1 .STEP 1 UNTIL MM DO wKITE(LtnE»F7. J. FOR I «= HI sTLp 1 UNTIL KK DO SRtI»|3)j HRlTEtLlNElsKlP H ){ ENn$ i I CALCULATE VECTOP UF COLUMNSUMS AND PRINT % rfRTTE(LINF»<"TOTAL OCCUPATIONAL EMPLOYMENT GFNERATEO BYi«/>w FOP I Is 1 STEP 1 UNTIL MM DO BEGIN SHtiJ * = SRC1 .11 J FOR J : s ? STEP 1 UNTIL KK DO SH£ I l t= $H[Ii ♦ SB[J»I]| wRITL(LINf.F1» I.SHT I] )l END* TOTAL «s 0'' rOR SPLclALcHLUMNS 00 TOTAL »» Tf)TAL + SW[Jl> WRITECLINFCSPACE 4 ] . f2 • TUT AL ) t i * calculate and print vectoR of r^sums mver special c oLum^s > wrttecline»<»total industrial employment generated by»"/>)i t n t A I. » a o i for i ' = l step l until kk on beg in sum tx oj rOw SpEclALCOLUMNS OU SUM »■ SUM «■ SBtT.JIl WRI TL(LTNf»F1 » I. SUM)' TOTAL Is TOTAL ♦ SUM 1 ENO» WRITE(LINE»F?»T0TAL) I ENin 0^ RRAN^H TWO| % t branch three x ----------- % % PULL OuT A COLUMN VECTOR FROM r. OVERWRITING R» ANO PRINT IT I REr,lN SEGi WRTTE(LlNE»<«SELECTEn COLUMN VECTUK FROM R-MATR I X"> ) j WRTTElLINF'HFAOl )* FOR I »s 1 STEP 1 UNTIL LL DO BEGIN RC I J la B[I»COLUMN]J WRITE(LINE»F1»I»RC ID) ENHI - 50 - I % form S(H) matrix, overwriting m X FOP I !» 1 STEP 1 UNTTL KK DO FUR J ,« 1 STEP 1 UNTIL Ll 00 MU.J] !* Mt I.J1 * Rt J]; % % RnUTINE TO PRIMT S(H) % Ip FULLPRINt THEN BEGIN WRTTEUlNElSKlP 11)| WRITEUINE»< H ***SCH) MATRIX">)| FOR K »« 1 STEP 10 UNTIL 51 00 rfFGlN L !■ K ♦ 91 WRlTt(LlNF.HEA04.K.L)» FqR J Is i STEP 1 UNTIL KK Dfl WR1TE(LTNE»F10. J, FOR I Is K STEP 1 UNTIL L DO M[j»l])| Enoj WR!TE(LlNE»HEA0a»61tLL)l FOR J !■ 1 STEP 1 UNTIL KK DO WKITECLINE.F7. J.FOR I * 3 61 STEP 1 UNTIL LL DO MtJ»Il>J WRITECLINECSKIP ll)J % WR!TE(LINE><"TRANSP0$E PRINT OF S(H)«>); FOR K l» 1 STEP 10 UNTIL 71 nO BEGIN L t" K ♦ 91 wRITE(LINf»HEAD5.K.L)I FOR J l» 1 STEP 1 UNTIL LL DO WRITE(LTNE»F10»J,F0R I !■ K sTEp 1 UNTIL L DO MC T • Jl ) > ENDI WRITE(LINE»HEAD5,81»KK)I FOR J la I STEP 1 UNTIL LL DO WKITE(LINE#F7.J»F0R I «■ «1 STEp 1 UNTIL KK Q0 mCI»J]>I WRITECLINECSKIP l])l ENni % % CUMPUTF COLUMNSllMS OF S(H)» OVERWRITING R» AND PRINT X WRITE(LINE»<«EMPL0YMFNT GENERATEO INi»>)| FOR I »■ 1 STEP 1 UNTIL LL DO 8Er,IN RtI3 l« H[1,I]| FOR J 1= 2 STEP 1 IJNTIL KK DO R[I] la R[Ij + M[J»Iil MRITE(LINF»F1»I»RCI])I ENOl % t SUM tHf columnsiims foR special columns % total »■ 01 for sp^cIalrows d0 total i« tota, ♦ rcjh WRlTECLlNEtSPACE 4 ] .r2 .TOTAL ) I % % % COMPUTE ROWSUMS OVER SPECIAL COLUMNS* PRINT. AND TOTAL WRITE(LINE»<"EMPL0YMFNT GENERATED BYi">>| TOTAL *a 0> foR I *» i step i until kk o n begin SUM la 01 FOR SpEclALROWS DO SUM j« SUM ♦ MtI»Jl| WRITE(LINf.F1» If SUM)I TOTAL 1= THTAl ♦ SUM* IRlTEtLl^E'F?* TOTAL) J [NH nK ^KANcH THREEt ENn; I i\l I S H i END ERGdDRKSj L J=b7; FUH Ii= 1 STEP REAQ(Pl - 51 - ENr>; isHt end ergwdrksj l : = b7 ; FUR Il= 1 STEP 1 UNTIL L 1)0 REAfXPl ./.FOR Jla 1 STEP 1 UNTIL «9 On PCT»JDJ R L rt J N D ( P 1 ) J -/RlTE(LlNE»<«lNniiSTRY' ACTIVITY MATRlX«>)j PRTmATRI^( P»L»89,n) J wHl T E (LINF.< M TRA^PUSE nF INDUSTRY ACTIVITY MArRl*"*)* PKrTRANs p CP»L.89,0)* EUlTFlLFf P1»L»89) j RLWINOCPI ) '» FUR I := 1 STEP 1 UNTIL L UU RLADCPl./.FOR Jisl STEP 1 UNTIL 89 UU PfTfJ))* Rt*INr)(Pl ) i WRlTE(LiNE»<"Mnn T FIE n p matRi xm >^ PHTMATRT^(P'L» a 9.0) ; WRITE(LINE.<"TRANSP0SE OF P MAT»IX">); PRTTRANsPCP. L# H9.0) J EUlTFlLFf PI »L.89H RtW!ND(pt ) ; i-iiu t . - < cTm 1 iiixjtti i r»n - 52 - Appendix D Sample Input and Output - 53 - ljUT -ATA Ai K^Al I VF F x P FI ? J i » T T i J K K 7 t C F n h? | f H E >• 1 "ALUF 1 10 3 3 5 1. ooo > ) 2 4 H 1 6 , MO 3 13 9';. noo !, o a 754 6. )00 00 5 7209 4. 0') 6 212 9 3. 000 7 p a ool . ooyoo a 67069, (V ) 9 ;oi^4, 000') 1 6402. 00 1 1 7 063. 0000 J *<> 3 u >ft7. 00 0^0 1 3 6 2 8 <» , ooooo ^ a 2579a, 00 00 15 2 7 4 4 rt . ooooo i 6 59 6. 00 I/O 1 7 -6500. OOOO'j 1 6 4 6 0, ooooo |9 3 906. ooouo 3 797, ooooo ?1 3 « 3 4 , 00"0 52 14176. oonO't ?3 19 3 9 1, ly >4 3/47, 1 o o o ?5 9299, ooooo ?6 313, >oo Q0 r>7 28 2, o oooo ?d i , ooo >0 ?9 ( i ( ooooo 10 137ft, 1000 11 i7r, , 000 WO ^2 29 0, , ooooo 13 4 19 3 7, , i M) 14 7 06, ,000 o }5 907 , o o o ' > o ^6 <\S.n\ , OOO'n) 17 173 , ooooo 18 3 4 ,000.10 19 66 7 . )oooo '4 154ft ,00 00 al «79 ,0001-0 a 2 1 2 ,00000 ft 3 22 00 , OOOOO a a 3 4 OH ,00000 a 5 2250 ,00000 /i 6 439 ,000 a 7 , ooooo -i 8 1 47a i ooooo /.i 9 50M ,00 00 ^0 3 24 8 .Oooo 51 9112 .ooooo 52 5 09? . ooooo S3 S4 S5 S6 57 S8 TOTAL 6rt?4 « OOOOO 5ft 7 . OOOOO 7 70. OOOOO 1 3 5 , . i • ' • 4 6ft 1 . OooOu 1 24 1 5.00000 77450V, oooo.j - 5h - Row A No cUl.UMN SUMS OF HTERlNUiliiTRY EMPLOY '4F NT i-IAft-lX COt U^N CilLOMNSH'-i 1 789749. /757? 2 537353.973 08 3 35981.5^709 4 1 0166. ^1 91 2 5 -1)64.87117 6 1 V l ? . a^S^'i 7 30 317.41706 6 -5686.17800 9 85048,71956 10 12 6 9,47*14 11 i965798. 7770 8 i2 3743l3.86?~43 13 5 6285. 9958 1 4 5320377.8847 i5 325388,38505 16 105752.50661 \7 I3l263.56-ib8 18 ?564094,45?76 i9 777 69 7.53723 ?0 570368.05696 71 1091.87742 ?2 595306. 9767t> 7 3 77540 3. 17 '4 27 ?4 202781. H6626 75 16043.36638 ?6 4940 47.14617 7 7 161160,03176 78 1 1468. 3 ^753 79 6314 3.3 7544 3 3010 3.06482 71 651283. Hi303 32 286463. 75600 33 ?65.9q*43 34 475570.09705 35 50268. i«86a 76 534094. 5347 3 37 172235. 51539 38 108967. 1H843 39 7751.4^735 40 852897. 7io98 41 78696.0407ft 42 737967.4 7212 43 118575.01038 44 1 75247, 3 0404 45 279396.6n373 46 168259.047b? t\7 287759,33740 48 306600.47697 49 252713.35514 50 21790.75311 51 527287,lo543 52 789403,61609 53 419723.14 705 54 477628.05^99 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 TOTAL ROW 1 2 3 4 5 6 7 8 9 10 11 12 13 1* 15 16 \1 18 <9 20 21 72 2 1 1 1 9 9 , 4 Q 9 1 2 921026.77039 104564.96 3 73 90010,40701 757376 3. 8^5 3 3 1 045679.179 >5 5279?2.6?51 ) 299466.7770) 73677?. 8 8 6 2 2 55770O.8 7J46 ,6 4 4774.58670 630635. 89«V0 2731. 7644 1 2 1 1 6 . 4 7 1 3 1*?44997. 38804 7495356.68854 2445661 ,58?03 3192606,44809 1112776.6 4 438 95040.5?720 828031.42501 7 4 8191.33627 7640221 .48395 742704. 6 « 1 5 96315,54364 35030. 16712 34286.15^20 2023994. 3o7^0 l o96654,975i? 7547412.4^765 7078297.53629 84032529.14160 ROWSUM 1 689254,97547- 1 839631 ,487/1 1 19899. l 7653 7 3556?. 099 4 27595.21607 58178,5780b 123171,3782 ) 786566.31612 1 15260.33*29 13001,0990 7 1050342.33751 1489505. 79- , 29 736054.50-^93 1082099,26771 76622. 19307 564217.45394 1 17455. 35?75 1586577. « 109 1 78935.59661 642782.66110 33679.64879 370987.58707 - 55 - ?3 1610 / . »S991 ?ft 487571 . 3?-)9 3 ?b ?25252. *1 •- ft « 1 ?6 n 6 ft 9 3 1 . MMH 77 ftf ftopo. hK/l 7 •>« ?26722. ft 9 7 i ft ■>9 ~>7b?7 ?. ^V^ 2 80 6 9 7 ft 8 . 1 1 789 11 1 ft7b75. 6 3 2 2 <2 5 9 n 9 ft H . find 73 ? 9 ft a b . 7a ao ) 1ft 31b7b6. A T 7ft 7 15 1 9}b31 . 8 M In 16 5??069 . ^ 1 7 3 b \7 8 9 5 5 ? ft . 87708 ?8 ft 1 9 ' i 9 6 , I 1 3 « 1 ^9 781 b1 . "1*76 9 ao 5280 35. ft * 3 f 1 • 1 3561 18. 8 ,1-3? ft 2 ft 7 1 9?8, >? '32 ft3 11 1551 , 4M.U ft ft 15320), naft 8 9 ft 5 i QbftSw , 59 3 5 7 •j b 9 8 ? ft 8 , 7 7 Q ft ft 1:7 15977^, 8 -» 8 b * &8 21 7228, ^ U •■( d 7 4 9 ? 9 7 2 ft 1 3„-,ft7 SO 2515*1 , 27 9 9 1 51 26 70 2. ft -M'l 7 "52 1 ft 3 3 6 , , ft ^ /1 7 8 r ?3 ft20252. , hS 1 7 7 *ft 1 ft3bft?< . 1 5 1 5 2 55 ? 1 9 ft 8 7 , , ft ? \ ft -b fihbft9n , ft 7 'v j 9 ^7 3 8 ft ft 8 , , 9 <^ ? ft } 58 11887 1 , ft 9 *. i ft S9 8 7 61 3 , S 7 7 9 3 AO 693153 , 3 7 9 3 3 M J 1 2 8 8 2 .ft 1 3' 1 ft 2 31 ft ft 3 3 , ft ft '1 ^3 1610 3 8 , ft M ft 3 1 ft ft a 7 1 5 5 9 , 5^768 ft5 ? ft ft 1 5 b *> .23308 *6 9 ii ft 8 6 6 , 58 ft ( 6 ft7 128 loft . 7 1 ft 7 3 >, a 6 72 7 00 , 8 6 9 ft 9 49 1 7 n 9 8 2 S 8 . 375. '0 ^0 1 o ft 5 8 o 7 , b r , 5?) 9 71 871 3bb , ftf, 3 i 72 1 1 1 7ft 11 . 5 7 1 9 2 73 .V '"> ft 4 2 1 • 97 7ft5 ra 1 01 7 , ft ft 1 5 !) 7b Sft 7ftV^ . ?3fl-->l 7ft H239:!^ . ftQS 7 3 77 ft 2 5 6 8 8 3 . <m .'2 2 76 7 4 ft 2 8 8 . 5 /1 ft 6 3 79 5 30 9 9 1 . 7 7 ft 3 9 «0 81 82 83 8ft 85 TOTAL . 6. 000 00 ?02399ft . 3^7bft 1009665ft ,9?S3? ?5ft7ftl2.ft^76b ?078297, 5^629 8ft03252^.1ftOft7 - 56 - (»E*'L'*AT Ei; INDUSTRY E '' >P U) t ii-L H r Vfc.ri.JK FL^MT N 1 VAI.UF 1 t\ 7 ft 3 4 H 2 . 0?'| ; ).'i 2 « 0*308 iH, 7A«i79 3 ?i2^ ; i. 'j'l'i' a ASh77 ■:, amis ■) s 9 ft 7 (S 8 , 7? M 1 ?51 79, 1? iftft r ? 9 9 b 'i 7 . 7 7 /a H mS^'i, ss vm q S1V1?7h, ■ i ' ! -, '4 «-> 1 o 1 q -> a S a i 3 , b h ft » 1 l 1 i j 9 a ft a . S s ft b *^ i 2 ft 3 ft 7 v , 19 7 7 1 < 3 ftbO&bft , At) ^9rt 1 a S a 6 2 1 9 , 9 j 7 1 ft 15 1 4 '4 ,') A ,0ft -T "i i 6 1 7 7 9 5 S «v , ft >?M 1 7 y =j 6 9 6 i\ S , 7?i 3 3 ,8 1 7o9 if • 1 7 r ", '1'4 1 9 t- 3 04 ft? , ft 7 ? ft 1 9() Sr,69-*1 f ft ^ ft 2 i ?1 7 4 9 9 1 w , ft o g 9 ft 7? ? a 7 2 9 2 . b 1 i 3 1 ?3 S ! 2 b 3 9 ,7m , 4 o 3<J 131 }9?f , 3 f > V> ' ?b 1 }ftl 73? , 9 A ft 1 4 7 6 9 9 1 9 9 9 I "•* ! i II (' ■>7 7 9 f i S , ) o 3 9 a 38 l 6 9 b ft 9 , 9/| -TV -9 S 4 ft 9 ? > , 9 T y -V v 70 ISA 1 * i, .07 -if 3 M ft ft 3 b 7 T , S m 9 ' . i *2 1 7 b «♦ 9 1 , a 7 >-. u 7 ^3 <4ftft M? , Si j 29 74 1 3 i9ft<>b ,471M ?b 7 3 a b ft v . 7 ft i 7 3 76 3 7 b ! J 9 1 , . ? | ft ft \7 1 7 a 7 3 7 3 , r-; - -i a -y xn I'JwH^m . ^ 7 07 79 1 b 1 1 9 3 . 1 -5 '1 3 ! a o ?49 ; W. . a 7 *..;■:! 'H 1 s ^ ft a 7 'i . ' o >• > b •12 1 1 9 3 S h , 1 ,7 ft '4 I 'i 3 1 h '911? , S 'i ft ft ft /<4 7 9 9 1 i ft , a > / ? ft i ab ft :>51 22 . 3 ) a . b ift a 1 4 1 b 1 . i S 7 4 S. a 7 '4 u Ml h S . i 1 .' ) h '■ j ) ,18 a H 1 b S ft . 1 M 7 ( , .'.i9 S ? 1 3 3 m ^ . '■ 3 o-> SO 1 !-i 7 a ^ * •( . ^-a«ftb si q 7 n J h ft , '•. .'i ■', / -i S2 11 i ft 3 1 .--MSI * * ^S^TJi , 7 i f> «v su 1 1 a 9 b 1 1 . 2'ift |V bb S6 S7 s« S9 ftO ftl ^2 ft3 ft 4 ftb ft6 17ft2ft L 5V/^.ss-.a 77bft9Sa,90H \ > 10712^95. 1 5 ft ft n I^Hlbftl ,?<v) 3 2 ?7h i a i a', i vi'i v S44 7 00 • ftM*»9/4 7 6 ft 9 4 * , ■» « S V j 1 9 S » ft 7 a i . a s ', 7 a 1789177. 91711 4 90 1 )ft : ^ . in h ha p ft a b 3 2 7 . a s si a ?b>9in7.37. b TOTAL tMPLUvMPMT = ft 1 «ft 9 i 1 7 . a > UNCLASSIFIED Security Classification DOCUMENT CONTROL DATA R&D (Security claeelllcatlon ol title, body of abatrmet and indaarng annotation mum I he anta re d erhen th» overall report la elaaalUad) t. ORIGINATING ACTIVITY (Corpora to author) Center for Advanced Computation University of Illinois at Urbana-Champaign Urbana, Illinois 6l801 ie. REPORT SECURITY CLASSIFICATION UNCLASSIFIED 2b. CROUP 3. REPORT TITLE ECONOMIC RESEARCH GROUP WORKING PAPER NO. 5 The CAC Economic and Manpower Forecasting Model: Documentation and User's Guide 4. descriptive Norma (Type ol raport and rnelualra dataa) Research Report 5 author(S) (Flrat nmare. middle initial, laat name) Roger H. Bezdek, R. Michael Lefler, Albert L. Meyers, Janet H. Spoonamore 8 REPORT DATE October 15, 1971 74). TOTAL NO. OF PACES J&3. 76. NO. OF REFS ma. CONTRACT OR CRANT NO. DAHC01+ 72-C-OOOl b. PROJEC T NO. ARPA Order 1899 M. ORIGINATOR'S REPORT NUMSER(3» CAC Document No. 15 •b. OTHER REPORT NOISi (Any other number* that may bo aaalgnad thla report) 10. DISTRIBUTION STATEMENT Copies may be obtained from the address given in (l) above, Approved for public release; distribution unlimited. II. SUPPLEMENTARY NOTES None 12. SPONSORING MILITARY ACTIVITY U.S. Army Research Office-Durham Duke Station Durham, North Carolina 13. ABSTRACT This paper presents the preliminary documentation and user's guide for the Center for Advanced Computation economic and manpower forecasting model. Section I gives introductory and background information on the development of the model and presents a brief but rigorous theoretical basis for the on-line system. Section II gives a description of the basic MANPOWER /DEMAND program indicating the function of the program, the detailed workings of the system option! and the language in which it is written. Appendices contain specifications of the data tapes and disc files involved, flow charts of the computer processes, and sample data input and output . DD ,?.?..! 4 73 UNCLASSIFIED Security Classification UNCLASSIFIED Security Classification KEY WO KOI KOLE WT Applications Social and Behavioral Sciences Economics UNCLASSIFIED Security Classification