LIBRARY OF THE
UNIVERSITY OF ILLINOIS
AT URBANACHAMPAIGN
5\0.8<1
I£63c
™>. 1 1 2.0
EN&NUEBlMfr
MJG '^
The person charging this material is re
sponsible for its return to the library from
which it was withdrawn on or before the
Latest Date stamped below.
Theft, mutilation, and underlining of books
are reasons for disciplinary action and may
result in dismissal from the University.
UNIVERSITY OF ILLINOIS LIBRARY AJ URBA*JM£HAMPAIGN
S ?yj* :, tS>'. \'.ii< '.■: ) .\y:{?A~
CPt
1 6 \W
< ■■■•'
.. ■•; r.i '• t. ;■? t
L161 — O1096
Center for Advanced Computation
UNIVERSITY OF ILLINOIS AT URBANACHAMPAIGN
URBANA. ILLINOIS 61801
CAC Document No. 15
ECONOMIC RESEARCH GROUP WORKING
PAPER NO. 5
The CAC Economic and Manpower
Forecasting Model:
Documentation and User's Guide
R. H. Bezdek, R. M. Lefler,
A. L. Meyers, J. H. Spoonamore
Digitized by the Internet Archive
in 2012 with funding from
University of Illinois UrbanaChampaign
http://archive.org/details/caceconomicmanpoOObezd
ClnLIOGRAPHIC DATA
SHEET
!. i ( .ori No.
U WCCACDN7115
3. Recipient s Accession
A. i ulc ana >u:>t k li
CAC ECONOMIC AND MANPOWER FORECASTING MODEL:
D0CUM1 ITATION AND ' : 'i GUIDE
5. Kcpori Date
October 15, 1971
6.
7. Author(s)
R.H. Bezdek, R.M. Lefler, A.L. Meyers, J.H. Spoonamore
8' Performing Organization Kept. I
No  CAC 15
9. Performing Organization Name and Address
Center for Advanced Computation
University of Illinois at Urb ana Champaign
Urbana, Illinois 61801
10. Project, Taskwork Unit No.
11. Contract /Grant No.
DAHC014 72COOOl
12. Sponsoring Organization Name and Address
U.S. Army Research Of.fieeDurl
Duke Station ' ■"'•'
Durham, North Carolina
13. Type ot Report & Period
Covered
Research
14.
15. Supplementary Notes
16. Abstracts Thi s paper presents the preliminary documentation and user's guide for
the Center for Advanced Computation economic and manpower forecasting model.
Section I gives introductory and background information on the development
of the model and presents a brief but rigorous theoretical basis for the
online system. Section II gives a description of the basic MANPOWER/ DEMAND
program indicating the function of the program, the detailed workings of the
system options, and the language in which it is written. Appendices contain
specifications of the data tapes and disc files involved, flow charts of the
computer processes, ana sample a ate input and output.

17. Key Uords and Document Analysis. 17a. Descriptors
Applications
Social and Behavioral Sciences
Economics
Forecasting (Manpower) . •
17b. Ide ntif iets /OpcnFndcd Terms
•
17c. COSAT1 Field/Group
1*. Availability Statement No restriction on distribution.
Available from National Technical Information
Service, Springfield, Virginia 22151
19. Set urity Class (1 liis
Report )
iNci.AssiFirn
2 1. No. i>t Pages
63
20. Se< ui ity ( las., (This.
Page
I \'( 1 ^SSII'l! D
22. Price i
1
koiim ntisj: ihl*. j h>
THIS FORM MAY RE KlM'KODlt I D
USCOMMLjC I4WS2P72
CAC Document No. 15
ECONOMIC RESEARCH GROUP WORKING PAPER NO.
THE CAC ECONOMIC AND MANPOWER FORECASTING MODEL
DOCUMENTATION AND USER'S GUIDE
By
Roger H. Bezdek
R. Michael Lefler
Albert L. Meyers
Janet H. Spoonamore
Center for Advanced Computation
University of Illinois at UrbanaChampaign
Urbana, Illinois 6l801
October 15, 1971
This work was supported in part by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the U.S.
Army Research OfficeDurham under Contract No. DAHCOU 72C0001.
Approved for public release; distribution unlimited.
THE CAC ECONOMIC AND MANPOWER FORECASTING
MODEL : DOCUMENTATION AND USER ' S GUIDE
by
Roger H. Bezdek
R. Michael Lefler
Albert L. Meyers
Janet H. Spoonamore
ABSTRACT
This paper presents the preliminary documentation and. user's
guide for the Center for Advanced Computation economic and manpower fore
casting model. Section I gives introductory and background information on
the development of the model and presents a brief but rigorous theoretical
basis for the online system. Section II gives a description of the basic
MANPOWER/ DEMAND program indicating the function of the program, the de
tailed workings of the system options, and the language in which it is
written. Appendices contain specifications of the data tapes and disc
files involved, flow charts of the computer processes, and sample data input and
output.
TABLE OF CONTENTS
I. DESCRIPTION OF THE CAC ECONOMIC AND
MANPOWER FORECASTING MODEL 1
A. The Development of the Model 1
B. Theoretical Basis for the Program 3
II. DESCRIPTION OF THE MANPOWER/ DEMAND PROGRAM 11
A. Function of the Program 11
B. Description of EDITFILE 12
C MANPOWER/ DEMAND Processing 13
D. The Data 17
E Use of MANPOWER/DEMAND 18
III . APPENDICES
Appendix A: Tape Specifications 2k
Appendix B: Flow Charts 25
Appendix C: Source List of MANPOWER/ DEMAND 36
Appendix D: Sample Input and Output 52
I. DESCRIPTION OF THE CAC ECONOMIC AND
MANPOWER FORECASTING MODEL
A The Development of the Model
The Center for Advanced Computation (CAC) economic and manpower
forecasting model was initially conceived in the summer of 1969 "by Roger
Bezdek and Hugh Folk. At that time it was clear that there was, and
would continue to be, a pressing need for a general, consistent economic
model capable of analyzing both direct and indirect effects of specified
changes in the economic environment on the economy and labor market. No
model available was capable of simulating in detail the overall effects
of changes in expenditures on different types of economic programs and
activities which corresponded to alternate national priorities. The
development of such a model was undertaken by Roger Bezdek for his Ph.D.
thesis in Economics at the University of Illinois at UrbanaChampaign.
The Manpower Administration of the U. S. Department of Labor sup
ported the major portion of Bezdek' s dissertation research through a
Doctoral Dissertation Grant. Although Bezdek originally planned to develop
both historical and projected versions of this model, the latter development
was prevented by severe methodological and statistical difficulties. Bezdek' s
original model pertained to the year i960. Its development and the results
of simulations conducted with it are described in detail in Manpower Implica 
tions of Alternate Patterns of Demand for Goods and Services.
Bezdek [2]
 2 
In the spring of 1971 > Bezdek and James Scoville developed for
the National Urban Coalition a projected version of the basic model which
pertained to the mid1970' s. It was used to simulate the effects on the
U. S. labor market which would likely be generated by the Urban Coalition's
proposed reorderings of national goals and priorities contained in Counter
budget. The model is discussed in detail in Bezdek and Scoville' s Manpower
2
Implications of Reordering National Priorities .
Early in 1971 > personnel from the newly established Center for
Advanced Computation of the University of Illinois became interested in
continuing work on this model at the Center. The Center for Advanced
Computation is an outgrowth of the ILLIAC IV project. It is an independent
unit of the Graduate College which provides an interdisciplinary environment
for research projects requiring specialized and sophisticated computer
facilities. The development of this type of economic model required
sophisticated and efficient computer software and, from the Center's point
of view, this model offered a feasible and potentially significant appli
cation for ILLIAC IV.
Agreement was reached and an Economic Research Group (ERG) was
established at the Center. Bezdek spent the summer of 1971 transferring
the basic model onto the Center's computer facilities and improving and
expanding it. Work continues in this direction, with Bezdek supervising
development of the demand side of the model and Hugh Folk directing develop
ment of the supply side. This booklet is written as a user's guide to the
demandgenerating portion of the CAC model.
Input components of the model include data tapes, disc files, and
computer card decks which can be integrated into a number of consistent
Bezdek and Scoville [6] .
 3 
systems via a program which will be explained in Sections II and III of
this paper. While a brief theoretical outline of the basic model is
included here, no attempt is made to explain the detailed workings of the
CAC model. For this information the interested reader is referred to the
references at the end of this report.
B. Theoretical Basis for the Program
Adhering to the traditional assumptions of inputoutput analysis,
the economy may be disaggregated into a specified number of sectors, each
composed of firms producing a similar product or group of products. Each
industry combines a set of inputs in fixed proportions to produce its output
which it sells to other industries to meet their input requirements. Letting
x. . denote the quantity of the output of industry i required by industry j
J O
as an input, letting y. denote the quantity of the output of industry i
destined for use by the autonomous sectors, and letting X. denote the gross
output of industry i, a static open inputoutput model may be represented by
the following set of relationships:
X n + x i2 + + x m + y i = x i
X 21 + X 22 + + X 2n + y 2 = X 2
x,+x+ +x +y =X n
nl n2 nn n n
3
A more complete development of the theoretical model involved
here along with a discussion of the problems involved in its empirical
implementation is contained in Bezdek [5]*
 h 
Since it has been assumed that each industry possesses a linear
production function with fixed coefficients, the technical structure of an
industry may be described by as many homogeneous linear equations as there
are separate cost elements involved:
x . . = a . .X . , x_ . = a_ .X . , , x . = a . X .
The a. .'s are referred to as coefficients of production and, writing these
relationships in the form of equation set (l), we have:
a ll X l + a i2 X 2 + + a m X n + y i = X l
a 21 X l + a 22. X 2 + + a 2n X n + y 2 = X 2
(2)
a ,X + a _X_ + +a X +Y = X
nl 1 n2 2 nn n n n
The elements a. . form an nbyn technical coefficient matrix A and,
letting x denote an norder gross output vector and y denote an norder
final demand vector, equation set (2) may be written as:
(3) x = Ax + y
The final demand vector y is the vector of outputs available for
disposal outside the processing sector and, letting I denote an identity
matrix of order n,from (3)> we have:
(k) x  Ax = (IA)x = y
Assuming that the elements of A are nonnegative and that at least
some of the a. .'s are positive insures that (IA) is nonsingular.
Equation (h) may thus be solved for x:
(5) x = (IA) _1 y
(IA) is the Leontief inverse matrix and its elements a. .
indicate the output requirements generated directly and indirectly from
industry i by industry j per delivery of a dollar's worth of output to
final demand.
The final demand vector itself may be viewed as the sum of a
number of vectors each of which represents the industrial requirements of a
distinct component of final demand. Letting u denote the number of final
demand activities, g. denote an nby1 vector specifying the direct output
J
requirements of exogenous activity j, and e. denote a vector indicating the
J
portion of final demand consumed by exogenous activity j , we have:
n u n u
(6) y = g + g + + g Z y = Z e (L y ); Z e = 1
u i j J i j J
Writing out the first part of (6) specifically yields linear
equations of the following form:
< 7 > y i = g il + S i2 + ' +g ij > + g iu ; 1 = X ' 2 > •'• n
Consider an arbitrary element g. . defined above. As indicated, g. .
shows the direct requirements for input i generated by exogenous activity j
and the magnitude of this demand will generally be determined by two factors:
the total amount of final demand absorbed by activity j, and the portion of
this amount devoted to the purchase of input i. The first factor may be
n
expressed as: e  ^ y. , while the second factor is written as:
3 i 1
n n n
g. ./Zg. . Letting q. = e.Zy., and p. . = g. ./Zg. ., equation (7) can be
ij' i ij J J i i iJ 1J ± lj
rewritten as :
( 8a) y . = p . , q n + p . „q„ + . •  + p . .q . + • • • + p . Q ; i = 1, 2 . ..., n
or, letting P denote an nbyu activityindustry matrix of activity input
coefficients, and letting q denote a uby1 activityexpenditure vector:
(8b) y = Pq
p. . indicates the direct requirements generated for the output of
industry i per dollar of expenditure in final demand sector ,i , and q shows
the amount of expenditures allocated to activity j.
Within this framework it is possible to determine the direct output
requirements generated by alternate distributions of national expenditures
among economic activities. Here it is assumed that the elements of the
P matrix are fixed over a limited range of expenditure redistribution; the
activityindustry matrix thus represents a transformation of expenditures
on economic activities into direct output requirements from every industry
in the economy. Using equation (5)> these direct output requirements can
be translated into total output requirements from every industry.
Next, output requirements must be related to employment demands.
To accomplish this it is assumed that the employment requirements of an
industry are proportional to the industry's output and that this relation
ship may be expressed in terms of labor input coefficients. Letting x.
denote the total employment in industry i, the labor input coefficient for
industry i, 9 . , is :
(9) 9 ± = x e /X.; i = 1,2, , n
Labor input coefficients are thus derived by dividing industry
employment by industry output and they show the employment requirements of
an industry per unit of output. Employment in each industry may be related
to the components of final demand by substituting the values given for X.
in (5) into equation (9)* Equations of the following form are derived:
(10a) x* = e ± t il y 1 + 9.a. 2 y 2 + . . . + eX.y. + . . . + S.a.^;
i = 1,2, . . . , n
 7 
e 6 6 e
or, letting x denote an nby1 vector of elements x_ , x^, . . . x , and
> P o 1' 2 n
letting 6 denote a diagonal matrix whose elements are 9 , 9 , . . ., 9 , the
equations in (10a) may be written in matrix notation as:
(10b) x e  8 (IA) _1 y
Consider the matrix M defined as M = e(lA) whose elements m. . are:
(11) m = 0.a\; i,j = 1,2, . . ., n
Any element m. . of M shows the total employment required within
industry i in order for industry j to deliver a dollar's worth of output
to final demand. Each row of M indicates the manner in which employment is
generated within industry i by required activity in industries 1, 2, , n
and each column of M illustrates how the employment generated by industry j
is distributed among all industries. This matrix is referred to as an inter
industryemployment matrix.
The necessary theoretical framework has now been constructed which
permits the transformation of alternate priorityexpenditure distributions
into distinct interindustryemployment demand patterns. Letting Y denote
an nbyn diagonal final demand matrix, the 'total" interindustryemployment
T *
matrix, M , is derived by postmultiplying M by Y:
(13) M T = MY
i
The elements of M show the total employment generated by and within
every industry for a generated distribution of final demand reflecting a
specified priority alternative.
The final step in the construction of the theoretical model involves
the relation of interindustryemployment requirements to demands for occu
pational categories of manpower resources. This transformation is accom
plished by using an industryoccupation matrix showing the occupational
 8 
distribution of industry employment for the time period under consideration.
Denote this matrix by B: the rows of B represent industries, the columns
of B represent occupations, and any element b of B shows the percent of
total employment in industry i composed of persons classified within
occupation k.
Let R denote a diagonal matrix whose elements r are the row sums
ii
of the interindustryemployment matrix and thus show the total employment
generated within industry i. One type of manpower information is
derived by premultiplying the industryoccupation matrix by R:
(lUa)
11
22
nn
Vl2 \h
nl n2 nh
(a) (a) (a)
s s „ s
,11 12 < *]_h
;(a) J°0 '(a)
S nl S n2 . . I . . S nh
or
(lUb)
RB
,(a)
(a)
S is a "type Of" interindustryoccupation matrix and the elements
(a)
S., 'of it show the total demands for occupation k generated within industry
XK
i by a specified distribution of national expenditures.
Letting M denote the transpose of the total interindustry
employment matrix, a second type of manpower impact matrix is derived by
premultiplying the industryoccupation matrix by M ;
 9 
(15a)
m ll m 21
nl
n. ni . .
, ffl
In 2n
nn
b ll b 12
b , b „
nl n2
lh
nh
(3)
3 11 S 12
B (p) fl (3)
"nl n2 .
(3)
3 lh
s (3)
nh
or :
(15b)
o (B
(B )
S is referred to as a "type 3" interindustryoccupation matrix
fa \
and the elements s. ' of it show the demands for occupation k generated by
industry i. So while the type OL manpower matrix indicates the occupational
employment demand generated i_n every industry, the type B manpower matrix
indicates the occupational employment demands generated by every industry.
Finally, a third type of manpower impact matrix can also be
derived. Letting B denote an nbyn diagonal matrix whose elements corres
th
pond to the k column of B, the third type of manpower matrix is derived
by premultiplying B by the transposed total interindustry employment matrix
(16a)
 10 
m il m 21
In 2n
or
(16b)
m
nl
nn
11
,00
22
,00
nn
o (k) ( k )
MB V ; = S ; k = 1, 2,
.00 »
'll "12
00
nl
, h
; ( k )
n2
.00
'in
,00
nn
k =
1,2,. .,h
Since there are h columns in Bone for each occupational classi
k lr
ficationit is possible to derive h of these S matrices. Each S
matrix is essentially an interindustryemployment matrix for the k occu
pation, and an element s.. shows the employment requirements for occupation
k generated within industry i by industry j. These matrices are referred
to as occupational employment profiles, and they contain a highly detailed
description of the structure of demands generated for an individual occu
pation by a specified distribution of national expenditures.
Taken together, these three types of manpower impact matrices provide
a comprehensive and highly detailed picture of the employment impacts likely
to result from the implementation of alternate types of economic and social
programs and priorities.
11
h
II. DESCRIPTION OF THE MANPOWER/ DEMAND PROGRAM
A. Function of the Program
The MANPOWER/ DEMAND program performs two data handling functions.
First, it edits existing data structures, the input matrices to the model.
Secondly, and most importantly, it performs the algebraic computations set
forth by the theoretical model previously described, for generation of
manpower demands based on alternative expenditure patterns and technological
assumptions. In effect, the program permits the researcher to experiment
by varying the data matrices which represent the input to the economic model
and to study the results generated by the MANPOWER/ DEMAND processes. For
example :
The experimenter executes the general model for a given set
of 58 proposed expenditure alternatives, noting the generated
occupational employment. By changing the activityexpenditure
elements to represent a different pattern of resource allocation,
he can analyze the generated effects on the labor market produced
by the program. In this case, he must modify the qvector which
represents the expenditure distribution. After observing these
results, he may then modify the interindustryemployment matrix
or the industryoccupation matrix. Another run on the model
gives different results and insight into more modifications.
The MANPOWER/ DEMAND program is essentially a model of economic
processes represented by several matrix operations but, in addition, its
flexibility permits modification of the input matrices prior to execution
of these operations.
h
The CAC model described in this report is in the process of
being expanded and improved. At periodic intervals additional documentation
and user guide reports shall be published which specify the changes which
have been made.
 12 
B. Description of EDITFILE
Editing is performed on files prior to execution of the MANPOWER
DEMAND routine. The following modifications can be accomplished for each
matrix :
1. Elementbyelement addition, subtraction, multiplication,
or division.
2. Overwriting a column or columns with a new column or columns
3 Deletion of a column or columns, thereby reducing the size
of the matrix.
h. Insertion of a new column or columns between existing ones,
thereby increasing the size of the matrix.
5 Scaling an entire matrix by multiplying each row by a given
constant.
EDITFILE is invoked by the standard ALGOL subroutine call as
follows :
EDITFILE(<File name >,< number of cols>,<number of rows>);
It accepts on card input the following commands in free form:
ADD(<column number>)
SUBTRACT (<column number>)
MULTIPLY (<column number>)
DIVIDE (<column number>)
DELETE (<column number>)
INSERT(<column number>)
SCALE
After each command, data cards are included which contain the operands for
the above commands in freefield format, i.e., integers or decimal numbers
separated by commas. This routine is not invoked if editing of existing
matrices is not desired.
 13 
C. MANPOWER/DEMAND Processing
Program Overview
ERGWORKS is the routine which performs the major operations dictated
by the system. It can accept as input different vectors reflecting various
levels and distributions of expenditures on economic activities and it re
turns generated employment requirements classified by industry or by occu
pation. Alternately, the expenditure vector can be held constant and man
power demands can be generated by changing rows, columns, or individual
coefficients within the various matrices to reflect changes in technology,
labor productivity, or occupational displacement. ERGWORKS presently con
sists of four distinct sections: a core section, which is always executed,
and three branches, only one of which is executed during a run. The choice
of branch is a userinput control option and depends upon what information
the user wants the program to calculate. Branch three, for example, selects
a single occupation and gives detailed information on the structure of de
mand for that occupation.
The Core Section
The first step is to read in and check the list of control options
provided by the user. The first option is the year. If the user asks for
1972, the program calls in the data from the four disk files corresponding
to 1972' s data; if the user asks for 1976, the program calls in the 1976
projected data. If the user asks for a year other than 1972 or 1976, the
program will form the three required matrices and the required qvector by
performing a standard linear interpolation of the data for both years. The
interpolation is performed by a special subroutine which subtracts 1972 from
the input year, then multiplies the difference between the 1976 data and
 Ik
the 1972 data by one fourth of the difference in the years and adds the
result to the 1972 data. It should be noted, however, that linear inter
polation may not necessarily represent economic change within an interin
dustry model.
The next option read in indicates whether the user wants only the
final results and certain selected intermediate results or whether he also
wants all intermediate matrices printed out in full. The third option spe
cifies which branch the program is to take. If this option is three, the
program also reads in a column number corresponding to the column of that
occupational classification in the Bmatrix. The program tests both the
branch option and the column to assure that the former lies within the range
one to three and that the latter lies within the range one to one hundred
eightyfive.
The program then reads in the usergiven title of the run and the q
vector. Both are printed immediately. Next, each of the fiftyeight rows
T
of P is multiplied by the corresponding element of q. This is mathematically
equivalent to converting q into a diagonal matrix and postmultiplying this
T
diagonal matrix by P . If the "fullprint" option has been called by the user,
this new 58 x 89 matrix is printed, first by columns, then by rows.
The same basic code is used to print out each of the matrices re
quired by the fullprint option. The title of the matrix is written, and a
FORloop selects columns in groups of ten until less than ten columns remain.
For each of the rows of the matrix the ten elements corresponding to the ten
columns are printed. When less than ten columns remain to be written, the
routine prints the end of each row of the matrix, the number of elements
printed corresponding to the number of columns left. Once this is done,
the same operation is carried out for the transpose of the matrix, effectively
causing the matrix to be written by rows instead of columns.
 15 
After the new 58 x 89 matrix is printed (if it is to be printed),
a yvector is created which is eightynine elements long. The elements of
the yvector are the column sums of the 58 x 89 matrix.
The yvector is printed and aggregated to eightyfive elements by
deleting four selected elements, and the aggregated vector is printed.
Each of the columns of M is then multiplied by the corresponding
element of the yvector. This corresponds mathematically to post multiplying
the Mmatrix by a diagonal matrix created from the yvector. The row sums
and column sums of this new matrix are computed and printed and, if the
fullprint option is on, the entire matrix is printed.
After the above operation is completed the new Mmatrix is
aggregated to a 66 x 85 matrix. Row sums and column sums of this aggregated
matrix are taken and a sixtysix order vector, designated r, is created
from the sixtysix row sums. To avoid double counting, the column sums are
actually calculated over selected rows of the Mmatrix. The row sums, the
column sums, the sums of selected elements of both, and (if the fullprint
option is on) the matrix itself are printed.
If the program is to branch to the second or third branch, the
last operation completed by this core section consists of multiplying each
row of the aggregated Mmatrix by the corresponding element of the ^vector
and (if the fullprint option is on) printing the resultant matrix.
Branch One
Branch one requires the rvector computed above. But each element
of this vector is first multiplied by the corresponding element of the jLivector,
Each row of the Bmatrix is then multiplied by the corresponding element of
(a)
the modified rvector, forming a matrix called S . If the fullprint option
(a)
is on S is printed. In both cases row sums and column sums are calculated
1. 
(a)
for S over selected columns and rows, respectively, to avoid double
counting. These row sums and column sums are printed and totaled and the
program run then terminates.
Branch Two
Branch two postmultiplies the transpose of the modified aggregated
Mmatrix by the Bmatrix, producing an 85 x 185 matrix called S^ . This
operation is modified, however, by multiplying only selected columns and
rows to avoid double counting. If the fullprint option is on, the S p '
matrix is printed out.
The one hundred eightyfive column sums are computed and totaled
(over selected rows to avoid doublecounting), then printed. Similarly,
the eightyfive row sums are computed and totaled (over selected columns
to avoid doublecounting), then printed. This terminates execution.
Branch Three
Branch three begins by selecting and printing a column from the
Bmatrix. Each of the sixtysix columns of the transpose of the modified
aggregate Mmatrix is then multiplied by the corresponding element of this
column vector to form an 85 x 66 matrix called S . In the S matrix
h represents the column of the Bmatrix selected, where 1 <_ k <_ 185. If the
fullprint option is on, this matrix is printed.
The sixtysix column sums are computed and totaled (over selected
rows to avoid doublecounting), then printed. Similarly, the eightyfive
row sums are computed and totaled (over selected columns to avoid double 
counting), then printed. This terminates execution.
 17 
D. The Data
The input data for both routines reside on the same set of disk and
card files. The eight disk files contain projected data for years 1972 and
1976 derived from data which were obtained from the Office of Business Economics,
the Bureau of Labor Statistics, the Harvard Economic Research Project, the
National Planning Association, and the National Urban Coalition, and which
were, in part, derived independently by Roger Bezdek. These disk files are
matrix representations for the 58 x 89 activityindustry matrix, designated
by "P", the 85 x 85 interindustryemployment matrix, designated by "M" , the
66 x 185 industryoccupation matrix, designated by "B", and a 66order
vector designated by "u"
The P and the M matrices are stored and handled in transposed form
within the program. These files can be inputted directly to the model or
modified first by EDITFILE and then used as direct inputs. The card file
called CARD contains, first of all, the specifications for any editing to
be done on the above disk files. Following these specifications are the
run time options for ERGWORKS. These options include the projected year
to be run, the fullprint option, and the branch of the routine to be in
voked. Following the option, the qvector (the specified expenditure dis
tribution) is read in.
18 
E. Use of MANPOWER DEMAND
Tapes :
MANPOWER /DEMAND is written in Burroughs B65OO ALGOL language. The
source program as well as all data files are stored on ninetrack tapes in
the B65OO room, Room 10, Coordinated Science Laboratory, University of
Illinois, Urbana, Illinois. At present, several versions of the program are
saved at points in time to enable programming changes to be made without
risk to previous progress. In the appendix a list provides tape numbers
and tape contents.
The tape name ERG is used to access any of the tapes. In this
and any discussion of B65OO usage, the reader is referred to the Little
Golden Book of the B6p00 for operating system details.
Control Cards :
In order to run MANPOWER/ DEMAND on the B65OO, a set of control
statements must be entered in card form or from a terminal. Listed below
are the cards which can be used:
The tape must first be loaded onto disk by the following:
?C0PY ERG/= FROM ERG
In order to compile the program:
? COMPILE ERG/MANPOWER/ DEMAND WITH ALGOL LIBRARY
? ALGOL FILE CARD = ERG/OCTI DISK SERIAL
?END
The execution is accomplished by the following:
? EXECUTE ERG/MANPOWER/DEMAND
?DATA CARD
Abel [1]
 19 
2, 1, 1,
TEST DATA
103351 ^8160
and other data cards
?END
(Note: ? is a control character on B65OO and is punched by
mult ipunch 1, 2, 3)
The execution takes about six minutes of processing time on the B65OO which
amounts to about 15 minutes real time in the machine.
Sample Experiments :
Statement of Problem 1 : Replace the first 12 columns of the 1972
P matrix with a given set of data, change column 17 to 17a and 17b
and run the program for branch one.
Method of Solving : Use the EDITFILE procedure to modify the
ERG/MATRIX/PI file. The following code must be inserted into the
program to form executable code.
L: = 57
EDITFILE (EL, L, 89);
REWIND (PI);
ERGWORKS (L, 89, 85, 66, I85);
END
The program is then recompiled, and executed with the following card input:
?DATA CARD
REPLACE (1)
(Data cards to replace second column)
REPLACE (2)
(Data cards to replace second column)
REP7ACE Cl2 > )
 20 
(Data cards to replace 12th column)
REPLACE (17)
(Data cards to replace 17th column)
INSERT (18)
(Data cards to insert between the 17th and 18th columns 
changes old l8th to 19th column)
STOP
72,1, 1
TEST DATA
103351 ^18160 . . .
(Change 57 to 58 long vector here)
1U561 . . .
?END
Statement of Problem 2 : Scale the rows of the 1972 M matrix by a set of
constants. Run the program using the modified P matrix above for branch
one.
Method of Solving : Again use the EDITFILE procedure to modify the ERG/MATRIX/M3
file. If possible, store the modified Pmatrix from the last example; other
wise, include the changes here as in the above program.
The program instructions follow:
L: = 58;
EDITFILE (M3, 85, 85 );
REWIND (M3);
ERGWORKS (L, 89, 85, 66, 185);
END
The above statements are to be inserted in the executable code section of
the program. Recompile and execute with the following:
?DATA CARD
MULTIPLY (1)
 21 
(85 elements to multiply row l)
MULTIPLY (2)
(85 elements to multiply row 2)
MULTIPLY (85)
(85 elements to multiply row 85)
STOP
72, 1, 1,
TEST DATA
103351 ^18160 . . .
1^561
?ENL
 22 
REFERENCES
[1] Abel, Norma. "The Little Golden Book of the B65OO." ILLIAC IV
Project Report, University of Illinois at Urbana
Champaign, Urbana, Illinois, June 1971'
[2] Bezdek, Roger H. Manpower Implications of Alternate Patterns of
Demand for Goods and Services . Ph. D. Thesis and report
prepared for the Manpower Administration of the U. S.
Department of Labor, University of Illinois at Urbana
Champaign, Urbana, Illinois, 1971 •
[3] • "Manpower Implications of Alternate Patterns of Demand
For Goods and Services." 1970 Proceedings of the Business
and Economics Section of the American Statistical Association ,
pp. hl r JK22.
[h] . Progress Report on the Development of a Large Scale
Conditional Consistent Economic and Manpower Forecasting
Model . Economic Research Group Working Paper no. 1, Center
for Advanced Computation Document no. 7 > University of Illinois
at Urb ana Champaign, Urbana, Illinois, July 1971
[5] • Manpower Analysis Within an Interindustry Framework:
Theoretical Potential and Empirical Problems . Economic
Research Group Working Paper no. U, Center for Advanced
Computation Document no. 13, University of Illinois at
Urb ana Champaign, Urbana, Illinois, September 1971
[6] , and Scoville, James G. Manpower Implications of Reordering
National Priorities . Washington, D.C: National Urban
Coalition, 1971.
 23 
[7] Burroughs B65OO Extended Algol Language Information Manual .
Document no. 5000128, Burroughs Corporation, 1971 «
[8] MeCracken, Daniel D. A Guide to Algol Programming . New York:
John Wiley and Sons, 1962.
[9] Meyers, Albert L. An Introduction to the Pointer Mechanism in
Burroughs Corporation Algol . ILLIAC IV Document no. 215,
University of Illinois at UrbanaChampaign, Urbana, Illinois,
May 1970.
2U 
Appendix A: Tape Specifications
B65OO
Tape Number Name
202,204 ERG
F:
Lie Names
(I]
) ERG/MATRIX/PI
(2;
) ERG/MATRIX/ P2
(3:
) ERG/MATRIX/M3
(K
) ERG/MATRIX/M4
(5:
) erg/matrix/bi
(6!
) ERG/MATRIX/B2
(?:
) erg/matrix/mui
(3;
) ERG/MATRIX/MU2
(9:
) erg/manpower/source
10
) erg/manpower/demand
Description of File
1972 PMATRIX
1976 PMATRIX
1972 MMATRIX
1976 MMATRIX
1972 B MATRIX
I976 B MATRIX
1972  Mu vector
1976  Mu vector
Sourcecode for economic model
Compiled version of
ERG/MANPOWER/DEMAND
122
ERG
files 19 same as
202, 204
(10) ERG/0CT1
( 11 ) ERG/MANPOWER/ DEMAND
Source code for economic
model and edit routine.
Compiled version of (10.)
568
ERG
files 2.11 same
as 122
(1) ERG/ MATRIX/ PI
modified in experiment
 25 
Appendix B
Flow Charts
 26 
C
PROCEDURE
EO0.EWOKS
II, JT, <«.,
LL. MM
J
U LENGTH Of
P COL,
TJHN.P fte.'N
K.HL.EN. M »ovm
LLLEM, B COL.
MM » ROVsl
READ IN
YEAR, POLL.
PRINT ANO
BRANCH
REAO TITV.E.
O, VECTOR.
CHECH. <<I.«R
AND REOUCE
TO Tt THRO Tfe
TOTAL, q VECTOR
AND PRINT
QVSCTOR
and Total
READ PILES
PI, «*■», Bl
AMD v,OI
/ READ FlLE?>
pa, M* 1 a^ l Mu^j
INTERPOLATE
FILe«=> FOR
T*, 14, te»
FORM INDUS,T«X
ACTIVITY
MATRIX. P« — Pnq
IF FOLL PRINT,
PRINT P
AND TRAV**Po<bE
FORM PINAL.
DEMAND VECTOR
y(J]« ioM
OF I'lh COL. OF P
ANCH \Y£S
<
ERROR
RETURN
D
PRINT f
A.N.O <^v>WV OF
eue.K\ev»Ts,
<
ERROR.
RETURN
J
A<S<3RE«.ATE.
X To ftfi»
UONfe, ANO PRINT
form inter ind
emp matrix
m« — m*.y
FORM RovM
sums, print
total, print
of NO
 27 
IF FULL PRINT
PRINT INT.
INO. EMP.
MATRIX
AGGREGATE THE
INTER IND. EMR
MATRIX. TO
**> X as
TAVCE ROW
AND COL.
■illM* OF
M. PRINT
IF POLL PRINT
PRINT M, THE
INT. INO. E.MP.
MATRIX
YES
MODIFY M MATRIX
M« MKMU
IF PULL PRINT,
PRINT MODIFIED
M MATRIX
SELECT BRAVJCH
1,2 OR 3
6 © 6
R Rov\l 60M"i °F
M \S MODlFlSO
R« RXMU
PRINT R fcMO
TOTAL. OVER
SPECIAL ROVJS
FORM S C°<1
ON B,
B« & * R.
PR\NT «b C^l
IF FULL
PR\NT
FORM 1UO. EMP.
V ECTOR Rovg
SOMS OVER
SPECIAL COL'S
OF «=,(«< 1
PRINT OUT
XNO. EMP.
VECTOR ANO
TOTAL.
FORM OCC. EMR
VECTORCOLUMN
^>UM4 OVER.
•SELECTED ROWS
print out
occ. emp. vector,
ano Total.
employment
c
RETURN
D
 28 
FORM SC^)
bv vi xe
RfcPLttXWjc B
THIS BRANCH
&IVES OETAVLEP
INFO. ABOUT
&IVEN OCC.
IF FULL PRINT
PRINT
S (.BETA 1 *
MATRIX
PRINT SELECTED
OCCUPATION,
i«., COLUMM
OP B W1ATR\%
compute Total
occvj? EMP.
VECTOR = COL.
SUM* OF S(/S)
STORE COLO MM
IN R VECTOR.
PRINT COL.
•SUMS AND
THfciR Total
FORM S^H}
MATRlK,
REPLACING M
COMPUTE TOTAL
INO. EMP VECTOR
s RoWSUMS
OF S(«)
IF Full print
write out
s(>v> matrix
PRINT ROW
SUMS ANO
THEIR TOTAL.
c
FORM COL.
SUMS OF %CHl
SETTING EMP.
&ENF.RATE.0 IN
RETURN
J
SUM THESE
COL . SUMS FOR
SELECTED COLS
ANO PRINT
FORM RovV
SUMS OF «b(.Hl
FOR SP6.C\Au
Rows, GET
EMP. *EN'D BT
Fo«M TOTAL
OP Row SUMS)
AKlO PR.VKT
c
RETURN
~)
 29 
c
PROCEDURE
interpolate
)
FORM F, «»CAV.E
FACTOR *
REAO CoRKS%
PONOIN& Row«»
OF Pi A.V40
Pfc P\\E^
<bCAX.E PI
ROWS EXADOIV&
F* CPtPl'i
REAO COM.
ROW O* M"* ,
MA AWO
INTERPOLATE
REAO COR*.
Ro\M OF tH.ftfc
AND
INTERPOLATE
REM) MUl
AND MUt
AMD
INTERPOLATE
c
RETO«M
3
 30 
c
PROCEDURE
PRTWlATRlX
A, MROWS,
WEAOVWCr
D
DETC«tW\Nt THE P\R^>T E.L.T IM
L.AAT FOU. ROW OP PRIUT
FOUL. ROW . =. NROWS  NROW<i WOO lO «a
ITERATE < F«OM 1 *TEP lO
OKJTIL. POLLROW
fc.V«S
YE«»
+ •:
V*R\TE OUT
COL«> K. TV^RO V"
No
VMRtTE x, Roys»<i C THRU V_"
WR\TE NCOL«» RQW9 EACH
ROW CONTA\VJ\tOGi lo ROW E.V.EJNAE.MTC,
I.E. K. THRO L., A^I, 33
©
 31 
©
DO l_A<oT COL.VJt>M4 POR NoN Pua R*>VM
CHECK HEADIV4& AfeA.\N To %C£
WM\C>* OWC To P*l*«iT *S» BeFORC.
RoV4«» V. T*«\J *i, COLUMN
1 TO NCOUS, Atl, J3
C
RETORV4
}
32 
8
31
a
I
o
h
/'pHOCEDURe ^\
\PRTTRA>V4«>P J
r A, NROVMS,
NCOL«b,
WEAOtVJG.
DETERNMME PlR*ST ELT Of LA»«=»T
FULL. ROW OF PRINT COWTA\*»\N(b TEN
&LEMCNTS, FUUR£>VM:=NCOV_t.HC©U.% MoOlO^
ITERATE VC PROM 1 *,TEP lO UNTIL FULL.ROW
WRITE
WRITE N ' Co L. Vt.T\ARO L."
WRITE NKO^S BoyJS EACH COMT/MKJWiGr
lO COLUMN E.l_«hAENT%, X. C ,
KTMRU L., At J, 1\
©
 33 
©
DO l_A*T RoVMS FOR NON POLL C©l/S>
CHECK. UEADlNCs AC/MM
TO *6E WHVCU OV1E To PRiWT
NOW PRINT REMAINS N& COLUMH«,
V. THRU W, ROW 1 To N ROWS
C
RETURN
")
 3h 
APP, 6URTEACT
MULTIPLY, PlVIPE
iCvEKWeire
PELETE
INSERT
FlL FlLt NAME
M  NO. ROW*
H  He CA*
reap F"e
INT<?
A[ 9: Z*I*,<?M]
INITIALISE
H il « 1 ,
I" I.....M
(SET 6>reBAe«>4
ANP CALL
PCTTE" 2
CARP IHf* 7 WV
op A.
MOVE »IZ]
PPWN I ELT
STARTING AT IMPEX
M
M I
• [inpex]
i M «M + l
CLEAR SpACE
IH E> AT INPEX
REAP NEW eew
INT? A[M, *]
PEAP IN S£ALE
FACTPB6 IKT» El*] J
Muqiptr E T xA
ANP ZEpLACt A
 35
(PROCEDURE "\
SCANNER J
WRITE OUT
C l« , » )
ONTO FIL
/BEAD CONTROL)
STATEMENT
[FOR VERB
AMD INDEX
( RETURN J
C PROCEDURE "\
OOTTCR )
PtRFORM
INOICATEO
OPERATION
+,,*, \ <=>N
A AND B
PUT RESULT
IN VECTOR
A
( RETURN J
(PROCEDURE \
NUMB )
NUMB « StOW
NUMBER TO
£0\TfcD
( RETURN J
I A ROW OF A
/B OPERANOS 
fl O,! ,2.,^
f I UEN OF A
SCANNER ■
%MUM »
SCftNNW •
SCANNER «
SNUM « "1
•SCANNER
• ■iNUM
• 1
SCANNER"
"iHOM» 4
SCANNER
« 4NUM
« %
SCANNER
* 1NUM
« 6
SCANNER
4 %NUM
INDEX
NOMB
f RETURN V
 36
Appendix C
Source List of MANPOWER 'DEMAND
KriN
HIE
FILE
KI.E
file
El' E
FILE
FILE
FILE
FT IE
eue
FORMA
rn°Ma
 37 
L sEf, = LAKEL NFwSEuMtNT*>
LlNL(KT K n = 135.RUFFFRS * 2,lAxRFCSIZE
CARO(KMD  9»RijfFERS s 2»MAXREC$IZE =
r 22. INTRUDE = 'i# MYUSF = ? ) :
1 4 » I \! T M 1 1 n C s a ) J
PI (KIND s l.ACCFSS = 0. TITLE s
MAXRECSI7E = 1^ , iLUCKSIZr =
p2(*TNn s 1»ACCFSS = O.TITLF =
M A X r I C S I L E = l^rtLUC^SUF =
Mj(K T Nn = 1 . a C C f S S = # T I T L E 
MAXrFCSIZF = 1 <* » rt L fl C k S W F 
Ma( K iNo = i.accfss = u> title =
Ha*rFCsI*F = l^friLOCKSUF s
tt 1 ( K I N n = l.ACCFSS = » T I r L E *
M A X R F C S I Z F = l^.riLUCKSIZF =
rt^(KlNn s ltACfrsS = 0»TITLF 
MaXrFCsUE = 1«»HlOCksUf =
mukkIwo = I.accfSS = d,U!i.l *
"ERG/MATPTX/PI .".HijFrERs = 2.
420) ;
"ERG/MATRT X/P2. ". BUFFERS = 2,
a ? o ) :
" F R G / m A T R T * / M 3 • " • ' U f r F R 5 = 2 •
420);
"ERG/mA TP I x/M'*. M , RUFFFRS = ?,
'i 2 ) :
"FRG/MAT^TX/.U . H .HUFrF KS = 2,
ft 20) :
"ERG/MATRT A/H2.",Ht.)FrERs = 2,
ft 2 ) 5
m ERG/\/ECTUR/mu1 , ".
RUrFERS = ?,MAXRECSUE = U.HL0CKST7F = 420);
rtU2(KlM0 = 1»ACCFSS = 0,TITt = "ERG/ VEc THR/ Mil? . H »
RUrFERS = 2,'mAXRECSUE r 1 a . BLOC kS I /F = a20)S
T Jn F* f ft I 1 ). FO ( XS.9FH. a. XI) J
T [)UT hFADK /"El FME viT VALUE").
H FAl)2</" RLH M #Xf ,"RO*SUM") .
M E A D 3 ( / ♦» r. n , U M .< C OL II M N S ' I H " ) .
HFAD4(/"C0LS W »I4»" THRU", T4/ ) .
rtFAD5(/"RnwS w il4»" THRU"* 14/) .
pRRMESSir"***lNCORRECT UPtiOm
K[AL ARRAY P [ n J "bft » () J 69 j . M f t AS • HS 1 {
iNlTE&F I » J» K.  ;
LAatL FOFU,
LINE PRINT ROUTINES
FHT4,r20,S)»
F?(«T0TAL H »F19,b).
FMlJt9CXi t RU,A>>,
FlO(I3»lO(Xl»Pll.4)),
I R M RANCH")?
PROCEDURES PRTMATRIX AND PRTTf?ANSP ARF USFD FIR FMLLPPINT
Tl) PpINT MATRIX OH MS TRA:MSPi1SE
PRilCEnURE PRTTRANSP{A.^Rl) w S»Nri1LS»HEAnl^r, )',
VALUE NROWS.NcnLS#HLA')INvi;
HEAL AWRAY A t . 3 I
InTEGFR NROWSiNICULS* HEADING?
"EG IN
INTEGER FULLPn*»I»J»K»Lt
FULLROml t= NcnLS "NCOLS iuu 10  );
FnR KS= 1 STFP 10 UMTIL FULL^nrf [)U ; ^FGIN
L : = k + 1 ;
IE HEAOTMGsO THFN w R I 1 F f L I NF . HF A Db . K » L ) EL^F
■i R I T F ( L I r J E » h F A () a . k » L > J
EQR J*.= 1 STFP 1 UNTIL NROWS 1)0
WRI fF( LTNE.Fl 0,.j. FOP Il= K STEP 1 UNTIL L
DO aU.iJ);
F N r i J
Ir NCTLS > L THEN REGIm
IF mFADING so THEN ^RT TE(LlNF . HFAnS.l. f 1 .NCHLS ) EiSE
^RlTFCLlNE.HFAOa.L+l .NCUI.S) J
FOR J * s l STFR 1 UNTIL NROWS DO
WRITE(LINE,F7»J.F0R l:= L+l STEP 1 iinTTL NCOLS nO AfJ.Il);
ENnj
wRlTFCLlNETSxTP 11)J
 38 
end prttranspj
PROCEDURE PRTMATKlX(AiMRO*S»NCnLS»HEA[)lNli);
VALUE NROWS»NCnLS»HEAOING»
INTFGFR NRnwS#NCULS»HEAOliMf,{
REAL ARRAY AC 0,0];
BEGIN
Integer fullr,~i w »i» j»l»k;
FuLL^nwia nrhws  nrhws mud 10 • 91
FOR Kl= 1 STFP 10 UNTIL FULLRU* On BEGIN
L » » K ♦ tl
IF HEADING »o THEN WR 1 TE f L I NF , HE AOa . K »L )
^RITE(LIMF»HEAD5,K»L) J
FOR J« 1 STEP 1 UNTIL NrOLS
WRITF(LINE»F 10» J, Fur pa
ELSE
DO
K STFP
ENni
1 UNTIL L Dfl At I. Jl )l
IF NROvJS> L THEN hEGIn
IF HFADING =0 THFN WR I TE ( L I NF * HE AD** • L+ 1 » NROrtS ) FLSE
WRl TF( L I NE » HF A 05 »L + 1»NR0WS> I
FOR Jl» 1 STFP 1 UNTIL NCULS DO
WRITE(LINF»E7» J»FDR h» L+l STEP 1 UNTIL NROws DO A [ I # J ] ) I
ENn»
WRItECLInECSki^ M>»
END PRTMATRIYJ
END OF LINE PRINT ROUTINES
PROCEDURE
VALUE
INTEGER
FILE
aEGlN
larll out
j
t
ARRAY
EnITFlLE(FTL»M.N) j
N J
m»n ;
FTL ;
.EOFA
A[0,2*M.0»Nl
»dC0t2*M]
.C[ Ot Ml
# DC  1 3 ]
»FC0J2*H]
I
PQINTE R p
»Q
;
INTEGER I
.J
• Index
. Snih
• T?M
i
t
DEFINE
G ( T * J )
»gEtc
• DOTS
A[R[I ]» J]#
read<card»/»for
BEGIN
Il«l STEP 1 UNTIL N DO Ct II )#
 39 
r,r rCl
r>OTT£K((i(INDFX»*)»C.SNUM.N)l
EN >*
q Lb I N
SCAN
SCAN
SCArj
nUMr J
rNO NtJM
X . • • • •
PRTCLnU
VALUE
TNTL^K
4RRAY
PUJJN
I N T E ft
CASE
«F»j
FO«
for
FnH
fok
Lno
rNO On!
' • • • •
TNTtbfK
* I ft I hi
LABEL
RLAfH
EUFF*
SCAN
SCAnn
PPnCE^H^E MilMB:
P ip UNT
P jp+ 1 U
Olp WHl
slNTEftE
r ;
IL = "("J
NTIL IN ALPHA;
LE tm alpha;
R(P.nrLTA(P».n ) l
pE oiitter( a, u» I • j) ;
I * j ;
it. j ;
a . r[o 1 ;
E« K)
I nr
IN
Ksl S
K»l S
K t = 1 S
K=l S
case s
TEpJ
TEP 1 UNTIL J Of) Al K 1 \ r* + HtKl
TEP 1 UNT IL J )U AlK 1 1 = *r[K]
TEP 1 UNTIL J DU ttlK1l=**R[K1
TEP 1 UNTIL J U ALK1J=*/HtK]
TATE FNTJ
prhCeuupf scannf r s
Eoff j
cApn. 14
SrANNE
PJPOINT
E«: aSNU
. (J t + 1 ) I E F F ; ; 1 ;
p : = s n u 1 1 s r i
FP(O) wHjLF = "
h : =
Ir
ir
Ir
Ir
IF
Ir
Ir
Ir
Tr
"Anr> M
w SijB"
"MULT"
"DT V"
"(JyER"
*DFL"
"IMS'*
" S C A L "
M Ai)JU"
THEN
then
THEN
THEN
THEN
THEN
THEN
THEN
THEN
FI.SF
FLSE
ELSE
ELSE
ELSE
FLSE
ELSE
FLSF
FLSE
IF SNM NEQ f AND SNUM NE^ 8 AN) SNUM NEQ 9 ThEN
INUEX I8MUMBI
FND S C A N N r R j
I . » •. t .•...*.... t .•••.*•...*... t . ..••••••■••
■i BEGIN FXECUTARLF EDITFILE rUUE
%
* t •♦.•.•...•.......••»•••.•••. # • .
*
% initialise
t
T ? M I ■ M ♦ M 
F(]H I := 1 STEP 1 UNTIL M f)0
 ko 
RFArKFli./.rnp J * s l STEP l until n nu At I . j] ) Cfofa 1 1 ] J
fofa:
FpH I t s 1 STEP 1 UNTIL M DO «[I]i»I>
* main program
%
WHILE TRUE DO CASE SCANNER UF
BEGJN
DoTSJ * OADD
DOTS1 % 1SUB
DfiTSI x 2HULT
OnTS J x 3DIV
RFAD(CARD»F9»F0R Ij=1 STEP 1 UNTIL N DO G(INDEv»I)) * 4OVER
HrfilN % 5DEL
REPLACE POINIERChC iNnExl )BY POlNTEK< BUNDE X*l 1 > FOR
T2MiNnEX"l WORDS?
MlaMl ;
End i
BFGIN x 6INS
BC INDEX! =M = M+1 J
FOR Ila m STEP "1 UNTIL TNDEX DO RClH'BUll*
READ(CARn f F9,F0R J t »1 STEP 1 UNTIL N 00 A[M,.j))
FNni
BEGIN
READ(CARD./»FnR Ii= 1 STEP 1 UNTIL M 00 EtlDj
FOR n= 1 STEP 1 UNTIL N nu
FOR j:s 1 STEP 1 UNTIL M DU A[I»Jll» **E[JJJ
ENDJ
BEGIN
REaD(CARD./.fUR Il« 1 STEP \ UNTIL M 00 ECU);
FOR It= \ s Tf rP 1 UNTIL N DO
for jj= 1 stfp 1 until m 00 a [ i , j ] i «**e [ i ] i
end;
go out j % 800NE
eno case;
%
OUTj
*
% WRAPUP
%
REwlNO(FlL) I
FOR I:=l STEP 1 UNTIL M DO
WRlTE(FlL»/»FnR J* = l STEP 1 UNTIL N DO r,CI»J))J
End editfilej
PROCEDURE ErgwORKS(It»JJ»KK»LL»MM)I
V A LUE n.JJ#KK#LL»MM ;
INTEGER II» JJ.KK»LL»MM I
BEGIN
REAL AHRAy ACO133» MUtOjLLl. OtOiHIi Yt  Jjl » RCO t LL]» SHtOjMMl.
pfO* I I # I JJJ» MtOJKKiOlKKl » Bt » LL • t MM] » SRC I K« , n I MM] «
integer i. j, k, l» branch, year, columni
boolean fullprinti
REAL SUm» TdTALI
LABEL F'INIShi
% INTERPOLATION PROCEDURE FOR YEARS OTHER THAN '72 OR '76
1+1 
procedure. Interpolate t
RFAL f i
F := I fFup  7?)/4;
FOP I J = 1 STFP 1 UNTIL II 0) *Er,IN
PEAU(Pit/.Fti R J : = 1 s te p l Until jj On P[t.JI>*
PEAU(p2, /.FOR J := 1 STFP 1 UNTIL .J.J OH Y[ll)>
FOR J ;s 1 STEP 1 UNTIL JJ !)f) Pll»,] := P f T . J 1 + F * (yCjl  P r T • J ] ) ;
end;
F n p I l  I STEP 1 U„ TT L KK D, HE:, [ >M
«EAU(M3t/,FnR J :s 1 STEP 1 UNTIL HK f)H M[J.Il)J
PEAlH M4,/,F0R J ;= 1 STEP 1 UNTIL KK UN Y C J 1 ) ;
tor J := 1 STEP 1 mmTIl kk no m[J,t] * " M£ Ml ♦ F * (yCJI  MrJ»T]);
E n i ;
FOP I J = 1 STEP 1 UNTIL LI. Oil rttr,IN
PEAUCRl ,/, FOR J {= 1 STFP 1 UNTIL hm on BfT»Jl)J
pEAUCP2»/,FUR J S= 1 STFP 1 UNTIL MM 00 SuMl)l
FOR J 5s 1 STEP 1 UNTIL MM DO Mil,. J J := BfT.J] + F * ( 5 M C J 1  Brl.Jl)?
ENn 5
READf 1U1 • /» FOR I 5 s 1 STEP 1 UNTIL LL 00 Mtjtll);
REfiO( MU?» /»FUR I J = 1 STEP 1 UNTIL LI. 00 BlIUJ
FOP I *= 1 STFP 1 UNTIL LL Oil HJtIJ. := Mii[I] + f * ( P t I 3  ultllW
EN >J
%
t DFFINE SPECIAL LISTS F'RLiJUENTLY USFO FOR OUTPUT
%
DEFINE SPECTALROWS  I := 2» 3. 5» b» 7. 4> P» \\, \i, u» iq, 2o. 21»
?4» ?5» ?8» ?q* 30» 3l» Hx* 37» 38. U?» 43» 47. 4h. S n » bi» 5a.
5 5 » 5 6 » SB» 5 a » 6 o » 6 i • 6 ? » 6 3* 6 5 • L I * »
DEflNL SPECt ALCOLUMN^ = J := 2» 12» ?0» ?*• 3fi» ft3» ft7» M» 69. 7n» 71.
8i» aii 94. PS. 1 >6» 11?. 116. 1?}. 136. 139. l a 3 • 153. 15M. 167.
l6fl» \72» 177, 184, 4MA
* BEGIN PROCFSSlNfi H/ REAUlNr, IN HPT TON CARU AN,» DATA
f?EAD(CARD./,YEAR»I»BRANCH)J
IF I = T M EN EullPRINT I FALSF ELSE FuLLPRTNT : = TRilF:
IF YEAR dTR 1 900 THEN YEAR != YEAH  I 900 j
IF YEAR = {7 THEN BFr,TN SEGJ
rOR I := 1 STEP 1 unTIl II r )0
RLA D (Pl ./.FUR J := 1 STEP 1 UNTIL JJ nO Pfl.J]))
FUR I J= 1 STEP 1 UNTIL KK 00
REAn(M3,/.F0R J s = 1 STEP 1 until KK no MrJ.in;
rOR 1 := 1 STEP 1 UNTIL LL 00
REAOCRl./.FrjR J := 1 STEP 1 UNTIL MM Oil R T 1 . J I ) *
pEAU(MU1 » /.FOR I := 1 STEP 1 UNTIL LL 00 MUrl])J
ENn
ELSE IF YEAH = 76 MEN 4LGIN SET,:
FOR 1 != 1 STEP l UNTIL II 00
REAo(p2,/,FOR J :s 1 STEP 1 UNTIL JJ 1)0 Pd, JJ);
rOR I != 1 STEP 1 UNTIL KK 00
RLA)(M4,/.F0R J t = 1 STEP 1 UNTIL KK 0(1 MTJ.lJu
TOP i := 1 STEP 1 UNTIL LL 00
REAn(R2./.F0R J l= 1 STEP 1 UNTIL MM Oil « T I . J J ) »*
PEAU(mU2»/.F0R I ir 1 STEP 1 UNTIL LL on Milfl])?
 U2 
END
ELSE INTERPOLATE!
IF BRANCH GTR 3 OR BRANCH LSS 1 THEN BEGIN
WRITECLINE.ERRMFSSl ) I
Gfl TO FINlSHI
ENOJ
IF BRANCH * 3 THEN RF AD ( CARD. /» COLUMN ) J
IF BRAN C H * 3 ANn (COLUMN LSS 1 OR COLUMN GTR m H) ThEN BFqIN
WRlTE(LlNE»ERRHESSl ) I
GO TO FINISH;
END!
READ AND rtRlTE TITLE AND QVECTUR
*
%
%
READ(CARD»l3.A[*] ) i
WrITE^LINEM3.A[*] ) J
I I* 01
thru ( ( n oiv an
DU RFAD(CARD»FB»FUR J  = 1 STFP 1 UNTIL 8 DO Ot I I = 1*1 ] ) j
READUARO. E«, THRU II MUD « DO Q [ T * » I* 1 1 > I
WRITE(LINF.</ W ALTERNATIVE EXPENDITURE VEcTOR">)J
WRITECLINE»HEAD1 )l
TOTAL *» 0;
FOP I »■ 1 STEP 1 UNTIL II DO BEr,IN
TOTAL is TOTAL + Q[IIJ
WRITE(LINF»F1» I»Q[T1 )l End;
WRTTE<LINEts*<IP ll»F?»TOTAL)l
*
% F n RM jnjDUStRY ACTIVITY M A TRI* (OVERLAYING P)
FOR I I* 1 STEP 1 UNTIL II DO
FOR J »= t STEP 1 UNTIL JJ DO pCI.J] l« PtT.J] * Q t 1 3 *
*
* ROUTINE TO PRINT INDUSTRY ACTIVITY MATRIX AND ITS TRANSPOSE
?
IF FULLPRINT THEN BEGIN
WRTTE(LINF»<«INDUSTRy ACTIVITY MATRIX">)j
FOP X : = 1 STEP 10 UNTIL 41 DO BEGIN
L » c K + 91
WRI rE(LINF»HEAD4»K,L) I
FOR J l« J STEP 1 UNTIL JJ 00
WKITE(LINE»E10» J, FOR I »■ K S TEp 1 UNTIL L DO PC I . J 3 > J
END!
WRITE(LINE»HEAD4,51, \\)t
FOP J »« 1 STEP 1 UNTIL JJ DO
WRITE(LINF»F7»J.F0R I »« 51 STEP 1 UNTIL II DO PtI»J])
WRITECLINECSKIP 1 1)1
WRITE(LINE»<"TRANSP0SE PRINT OF INDUSTRY ACTIVITY MATRlX«>)
FOR K «« 1 STEP 10 UNTIL 71 DO BEGIN
L I" K ♦ 91
wRITL(LINf,HEAD5.K.L)J
FOR J la 1 STEP 1 UNTIL II DO
WHITE(LINE»F10. J.FOR I t. K STEP 1 UNTIL L 00 PCj»IJM
END!
WRtTE(LinE»HEAD5»81» JJ) J
FOR J *■ 1 STEP 1 UNTIL II DO
WRlTL ( LlNF»FlOt J.FOR I la 81 STEP 1 UNTIL JJ DO P C J . 1 1 > I
 U3 
WRITECLINFCSKIP 1 1 ) J
EMHt
3!
* GENERATE FINAL DtMANQ ,/ECTOR AMU PRINT
WRITE (LINF»<* GENERATED FINAL. DEMAND VECTnR">W W R I TF ( L I ME * >>V A D 1 ^ ;
TOTAL l = Of
F n p I :  l step 1 until jj On begin
Y[ T J I' 0;
for J := 1 step 1 unIIL II on yII] : s nil 4 prj.ii;
•)RI TEC LINF.Fl • I» YT T 1 ) *
TOTAL :s TOTAL + YfTJS EN) J
WRITEILI^F.ISKIP 1 ]»F9, TOTAL);
I
I AGGREGATE FlNAl DEMAND VECTOR A N f) PRINT
WRTTE(LINF»<" AGGREGATE FINAL DEmANO VECTOR"^; WR T TF ( L 1 nF_ * HF A 1 > !
Y t A o 1 J = Y t 8 1 1 ?
y [ oi n : = y I r 7 J i
Y[R2 ] is Y LR7 i ;
Y [ A 3 1 '= V C R 4 ] J
Y[ A4 1 != YlRM J
Y [ KK 1 »= Y C J.I ] J
TOTAL, 5= OJ
Fn« I : s 1 $TEP 1 UNTTL *X 00 BEGIN
TOTAL : TOTAL + Y r T J J
<"HI I L( LINF.Fl » I » YT T 1 > » F. i^J n J
WRITEILINFISKIP i 1 .Fp, H1TAL) 5
*
* GENERATE TmF I NTER I NOUS 1 H Y FMPLOYMFNT MATKM
<
WRTTE(LINE»<" ROw ANn COLUMN SIMS Uf INTERINDUSTRY EMPLOYMENT MAtRIX">);
WRITER LINE* MEADi) J
total *= o;
FOP I ?s 1 STEP 1 UNTTL *K On BtGlN
SUM J s >
FOR J »* 1 STEP 1 UNTIL KK DO BEGIN
ML" I » JT := M[ I . U * Y[ T 1 J
SUM j s SUM + 'U I . Jl J
FND:
WRHE(LINF»E1 * I . S U M W
TOTAL is TOTAL + StlMI End;
^RTTECLjNEtSPACE 2 ] # r2» TO T At ) I
^RITECLlNE»uiEA02) J
total *s o;
FOP I » = 1 STEP 1 UNTIL KK 00 BEGIN
sum := n;
FOR J 1= 1 STEP 1 i N I I L. «K fjO SUM »= SUM ♦ MtJ»Hl
♦JRI Tt( LTNr .F 1 » I . SUM ) ;
TOTAL Is TOTAL ♦ S 1 1 M J EN 01
writeilinfCskIp ij»f?»total)j
%
«n u TlNE TO p RlNT INTERINDUSTRY EMPL ( )YMFnT MATRIX AmO TRAN Sp oSE
%
IF FULLpRINt THEN «Fr,lN
WRITE UINE»<" INTERINDUSTRY EMPLOYMENT MATRIX">)}
Fpp K »» 1 STEP 10 UNTIL 71 00 BFblN
 kk 
L IM + 91
WRI TL(LlNr,HEAD4»K,L) I
FOR J la 1 STEP 1 UNTIL KK 00
WK1TI(LTNE»F10» J.FOR I j= K STEP 1 UNTIL L 00 MCt»J3)1
END*
WRtTE^ l INE»HFAD4.81.KK)I
FOP J >i 1 STEP 1 UNTIL KK DO
WHITE(LINE»F7. J. FOR I l« 81 STLP 1 UNTIL KK 00 MU»J1)J
WRTTEUlNEtsKIP 11)1
%
WRTTE(LINE»<" TRANSPOSE PRINT OF INTERINDUSTRY EMPLOYMENT MATRIX«>)
FOR K I* 1 STEP 10 UNTIL 71 DO BFGlN
 i» K ♦ 91
WRITL(LINF,HEAD«>»K,L>I
FOR J t* 1 STEP 1 UNTIL KK DO
WKITE ( LINE»F10» J.FOR I 1= K STLp 1 UNTIL L 00 MCj»l3,j
END«
w Rite il ine»heaD5#8i.kk);
FOR J la 1 STEP 1 UNTIL KK DO
WK1TE(LINE»F7. J»FOR I 1= Hi sTLp 1 UNTIL KK 00 MtJ»I])J
wrtte<linfCskip 11)1
END}
AGGREGATE THE INTERINDUSTRY EMPLOYMENT MATRIX TO LL X KK
(OVERLAYING ITSELF) ANn TAKE THE ROW AND COLUMN SlJMS
1!
%
%
%
FOR
Mt
MC
M[
MC
Mt
MC
Mt
Mt
Mt
Mt
FO
Mt
Mt
Mt
Mt
MC
MC
Mt
Mt
MC
Mt
Mt
Mt
Mt
MC
Mt
Mt
Mt
Mt
Mt
is 1 STEP 1 UNTIL KK 00 BEGIN SEG
2] 1= MC Iill + MC I # 2 3 I
J] I s MC I»33 + MC I » a 3 I
1] 1= MCI. 23 •► MCI, 3]?
5] is MCI»53 + MCI.63I
6] » MC 1.73 J
7] i« MC I » 8 3 1
8] I* MCI .93 + MCI. 10] i
4] » MCI. 53 ♦ Mt I»63 ♦
9] l» MC I»UJ ♦ MCl.123
10] Is SUM li M[ I»133*
J i. 14 STEP 1 UNTIL 6a
il3 Is MC 1*14 3 ;
1?] is MC 1.1531
133 Is MC 1*16 3 ♦ M[ j.1731
143 Is MCI. 163i
153 Is MC I. 1731
163 Is MCI. 183 ♦ MCI. 193;
173 I, MCI. 183 i
183 is mC 1.193)
193 Is MC 1.203 ♦ MC I » 2 1 3 *
203 is Mtl.223 ♦ MCI. 2331
2 1 3 i B MC 1.243 ♦ MC 1.253 I
223 is MCI. 2531
233 is MC 1.243;
243 1= H t I .263 t
263 I MCI. 273 ♦ MC I • 283 ♦ MC 1 . 29 3 
273 is MC I. 3031
253 Is MCI. 263 ♦ MC I » 27 ] I
283 is MCI. 313 I
293 i. MC 1.3231
MC 1.73 + MC 1.83 t
+ MC I. 8531
DU M[I, 10] is MCl.10] + MCI* Jl{
 k5 
1 t
r»3oi
>* [
fJi)
"t
['321
M[ '
.J3J
M[ 1
r.34l
Mf ]
:»35l
m(
r»36l
Mf 1
.3 7 ]
M t
f »i8]
r0£
? J J
K» [
[»39J
m [ ;
'.«01
■<t 1
'•MJ
Ml
'.4 2 1
M [
[•43]
* t '
.44]
M [
,45J
u[
'.46]
III [
r.47J
M[ !
.4 8 1
• [
[»5 ]
M [
r»MJ
M [
t'5?]
(1 [
[.t>^j
■t [
[»ba]
m[
[•49]
"1 t
[•55]
►4 [
[.5 6 ]
•1 C
.57]
it
[•58]
•I [
[»59]
' ' t
.601
Mt
[•Ml
'i r
[»6?j
Ml
r»*3J
" [
f»b5]
Mt '
[.661
•;t
r»64J
• 5
: s
is
1 _
t
is
• 5
t 
is
• £
i s
t
• •
t
• S
« —
: s
i =
M[
mi
M[
M[
Mt
M[
s M[
s SUM
s *[
4 4 s
M[
M[
mC
Mt
mt
Mt
Mt
M[
M[
Mt
Mt
Mt
Mt
Mt
Mt
Mt
M[
Mt
Mt
Mt
Mt
Mt
Mt
M[
Mt
Mt
Mt
i s
i 3
t 5
1.331
1.35]
T. 351
1.361
1.371
1 . 3 n
I. 381
M + M
1.43]
TE p 1
1.44 1
I ,51 1
1.381
1.531
1.591
1.591
I .601
1.61 1
1.621
1.641
I .651
I .66]
1.671
I .661
I .681
1.50]
1.691
I .701
1.721
I. 721
1.731
1.751
1.761
1.771
1.841
1.781
1.79]
1.651
+ m r. 1 . 3 4 1 ;
+ M t I » 3 6 .1 J
+ M t 1 . 3 8 1 J
i
r 1 . 3 9 1 + m r 1 , 4 ] + m r 1 , 4 u + m 1 1 , 4 2 1 ;
i
UNTIL 5? OU d J.38 1 i = <ri.3«] ♦ mTt.JIJ
 Mf I » 39 1  Ml I .40] j
+ Mtl»54) + MII.S51 + MTT»56] + vitl.5^1 + MT I *5B ] I
+ ML i,6nl + Ml 1 ,61 1 i
+ M[ 1 .63] J
♦ M t T » 6 n I
+ M [ [ » 5 1 ] + nil. 54]J
♦ M t I . 7 1 ] i
+ M C I # 7" ^ ] + 1 1 I . f 4 1 + M t T » 7 5 J ♦ M t I , 7 6 1 + M T T • 7 7 1 j
+ H[rJ4lJ
WRTTF(L
writer l
WRITE(L
total j
for i J
PC I J
r R J
•4 R I T E
FOR SPE
WRlTEtL
WRTTECL
TOTAL »
FOR I i
YtU
ROUTIN
Employ
INF»<» AG
INF»<" (
INE.HEAD2
= OJ
= 1 STEP
» = Oj
is 1 STE
(LINf.F1.
C I A L R H S
ineCspace
INE.MFAD3
3 o;
* 1 STEP
t= 0;
+ M[ 1.821 I
* M t I » 8 3 1 J
+ M t I » 6 6 1 J
ErU
F TO PRINT QljT AGGREGATED I MTE R I NOUSTR Y
ME NT MATRIX A NO RUW A NO COLUMN SUMS
GREGATEO INTFRINOUSTRY FMPLUYMLNT MATRIXh>);
row anl) column su V, s ov/Er sELFr T Eo rows) m >)?
)i
1 UNTIL L L U R E G I N
P 1 U njT IL KK Do Rtl] J Rfll + MfJ.iU
I .Rt T i ) * End;
OU TnTAL : = TOTAL + Rt Jl ;
2]»F2»T0TAL)J
) J
1 UNTIL KK Ol) BEGIN
 1*6 
FOR SPECULROWS Dfl Y C I 3 «= Y[I] ♦ M C I • J 1 I
wRlTE(LlNfFl» I • YC H>l
TOTAL '« TOTAL ♦ Ytil; ENO*
WRTTECLlNEtSKlP 1 I • F? » TOT AL ) I
routine to prim aggregate interindustry employment matrix
X
%
%
if fullprint then begin
WRTTEUINE'<"AGGREGATE interindustry employment matrix">>;
FOR K »■ 1 STEP 10 UNTIL 71 DO BEGIN
L I" K ♦ Ql
wRlTt(LINF»HEAD4,K.L)f
FOR J I* 1 STEP 1 UNTIL LL DO
WHlTE(LTNE»F"10» J. FUR I 1 = K sTEp 1 UNTIL L DO MCl»J])J
END!
WRTTE(LINE»hEAD4»81, K k>;
FOR J l« 1 STEP 1 UNTIL LL 00
WRlTE(LlNE«F7»J.FnR I »■ 81 STEP 1 UNTIL KK 00 mU.J])J
WRITECLINECSKIP 1]>J
%
WRITE(LINE»<»»AGGREGATE INTERINDUSTRY EMPLOYMENT TRANSPOSF "> ) J
FOR K »« 1 STEP 10 UNTIL 51 DO BEGIN
L I" K ♦ 9>
wRlTE(LlNE»HEAD5»K.Ln
FOR J l« 1 STEP 1 UNTIL KK DO
WKITE(LINE»F10» J. FOR I Is K sTEp 1 UNTIL L 00 MU»I3)J
emu i
write(line»head5»61»ll)»
fop j l« 1 step 1 until kk do
WKlTE(LTNE#F7.J.FflR I »= 61 sTEp 1 UNTIL LL DO mCJ»I1)»
WRITE(LINE[SKIP 11)1
ENnj
%
% For branchfs 2 AND 3 modify THE MMATRIX with mu
%
if branch gtr i then hEgin
*/RI rE(LlNF»HEAD2)I
TOTAL l» 01
FOR 1 »* 1 STEP 1 UNTIL LL DO BEGIN
SUM . o»
FUK J t* 1 STEP 1 UNTIL KK On BEGIN
M[ J. 1] 1* Mt Jt I] * MUC I] I
SUM ** SUM ♦ M[J»I3J ENn*
WRlTE(LNE»Fl. I»SUM)I
TUlAL Is TOTAL ♦ SUM* END?
wR!TE(LINFtSKlP 1 1 . F2» TOTAL ) I
*
%
ROUTINE TO PRINT MODIFIED MMAT^I*
IF FULLPRINT THEN rEGIN
WRITE ( LINE»<«M0DIFTE0 INTERINDUSTRY EMPLOYMENT MATRlX">)J
FOR K «■ 1 STEP 10 UNTIL M 00 BEGIN
L »■ K ♦ 91
rtHiTE(LiNE»HEADA.K»L)l
FUR J I. 1 STEP 1 UNTIL LL DO
W RITE(LINE.F10.J»F0R I »» K STEP 1 UNTIL L DO mC I » J 3 ) I
ENDl
 hi 
■*RI IE(LlNp.HFA04.rtl »KK) !
FOR J *= 1 STEP 1 UNTIL LL HO
«H1TE(LT W E»F7. J»FOR I := *1 STEP 1 UNTIL KK DO M T T » J 1 ) ;
wRI rt(LINFtSKlP 11)J
./RI 1E(LINf ,<"TRANSPnSE PRI\T Of HimiFlFO mmATRIX m >) J
rO» * 1= 1 STEP 10 UNTIL 51 0(J hEGIN
I »* K + 9;
WHlTEC LTME» HEAPS. K»L) I
FUK J I i STEP \ UNTIL KK On
ARlTErLlNE.FlO, J'FOR I :* K STEP 1 UNTIL L DO m f J» T 1)1
ENI)}
RI rt(LTN F , HEADS, M ,LL)j
rOR J {= 1 STEP I UNTIL KK 00
WrtlTE(LpiE»F7, J,FOR I *= 61 STEp 1 UNTIL LL DO MtJ»I1>J
• RI 1 1 (L iNrrSKlP in;
FND J
FNO 5
%
%
CA^E ti K A N C H (IF BEGIN,
%
%
% .
%
% rtLclN ry USING TmE Mi) SECTOR TO MODIFY R
SELECT HRANCm FOR RFMAlNTNG PROCFSSlNG
BRANCH UnE
PEf, IN SFGj
wRlTElLlNEt SPACE 21»<****NEW R*\/FCTOR (MODIFIED RY Mli)«>)j
^RTTECLlNE»nFADl ) *
FOR I S= i STEP 1 UNTIL LL Do BEGIN
R [ I J i = R r I 1 * M IT] J
RI I t ( L I N r • F 1 » I # r r n ) J END I
TOTAL J = 01
FpR SRECULrd^S Du TnTAL ;= TOTAL + R C J J J
WRITF(LINF[SKIP ll,F?tTOTAL)J
%
% FURM S(ALPHA)# OVERLAYING THE BMATRIX
F0° I := 1 STEP 1 UNTTL LL 00
FOR J := J STEP 1 UNTIL MM DO R t I • J ] « = Rtll + BCI.J3J
% RUuTlNF TO PRINT S(ALPHA) AND ITS TRANSPOSE
%
IF FULLPRINt THEN HFGJN
wRTTE(LlNF»< w ***SfALPMA) MATRl X">) ;
For K »s 1 STEP 10 UNTIL 171 DO AEGIN
L » s K + Q J
*RITE(LINF»HEADU,k,l)!
TOR J 1= 1 STEP 1 UNTIL LL 00
WKITE(LINE»F10» J.FUR I Is K sTEp 1 UNTIL L DO B[J,I])J
End;
WRjTElLlNE»HFADa,181.MM);
FOR J » = 1 STEP 1 UNTIL LL 00
WRlTE(LTNE»F7. J.rqR I « s 181 STEP 1 UNTIL MM DO w[J,j]);
WRTTECLINECSKIP 11)J
%
 U8 
WRTTE(LINE»<"TRANSP0SE PRINT OF S ( ALPHA )">) J
FOR K '■ 1 STEP 10 UNTIL 51 HO HEGlW
L I" K ♦ 91
WRlTECLlNf.HEADS.K.LJ*
FOR J »■ i STEP l UNTIL MM 00
WHITE(LTNE»F10. J.FOR I la K STEP I UNTIL L DO B[I»J])J
EfMDJ
WRITEUINE»hEAD5»61.lL)J
FOP J » = 1 STEP 1 UNTIL MM 00
WHITE(LTNE»F7. J#FO« I » a ^ 1 STLp 1 UNTIL LL DO BU»Jl)l
WRITECLINECSKIP 11)1
ENm
X
X
calculate rowsums Over special columns, overlaying r
WRITE(LINE»<«GENERATE0 INOUSTRY EMPLOYMENT VEcTOR">)j
WRITE«LINF»hEAD1)I
FOR I »» 1 STEP l UNTIL LL DO BEGIN
RCI J I" Oj
FOR SpEclALCOLUMNS 00 Rill l> R[I] + BtI#J]j
WRITE(LINE»F1»I»RCI])» END*
TOTAL »■ O;
FOR SPE.CIALROWS oo TOTAL I* TOTAL ♦ R[J]I
WRTTElLINEtSPACE 2 1 # </" TOTAL EMPLOYMENT ■ " , rl T , 5> # TOTAL ) 1
write(l IN e.<"GeneRatfd occupational employment veCtoR">>»
write(Line»hEadi )i
X
35 1 A K E COLUMNSUMS OVER SELECTED ROWS AND PRINT
FOR I la 1 STEP 1 UNTIL MM DO BEGIN
SHE U 1= OJ
TOR SpEclALROWs DO SHCI1 »» SHt U ♦ BU.Ill
WRITL(LINE»F1»I.SHCI] ); ENOJ
TOTAL «» 01
FOR SPLCIALCOLUMNS 00 TOTAL !■ TOTAL ♦ SHtJlj
WRITElLINE'</ n TOTAL FMPLOYMENT « " ' Fl 7 . 5> » TOT AL) I
END Of BRANCH ONEl
I
X
X
X
X
X
X
X
X
BEGIN SEGI
FOR I l» 1 STEP 1 UNTIL KK DO FOR K « 1 STEP 1 UNTIL MM DO
s8[ 1»K] «» 01
FOR SpEclALROWS DO SB[I,K] i> SBCI.K] ♦ Mf I . Jl * BtJ»K]l
X KUuTlNE TO PRINT S(rETA) ANO TRANSPOSE
X
Ip FULLPRINJ THEN BEGIN
WR!TECLINE»<"***S(BETA) MATRIX">) J
FOR K »■ 1 «;TEP 10 UNTIL l^l DO BEGIN
L t ■ K ♦ 91
RRANCH TvO
MULTIPLY M * B TO GET S(BETA)' OVERLAYING B.
hit on l y special Rn*s to avoid doublecounting.
BEGIN
ENDi
 1*9 
wRlTE(LlNE>HEArH.K.L>*
rQR J » = 1 STEP 1 uNUL KK 00
^KiTL(LTNF»F10» J. FOR I la K STEP 1 UNTIL L 00 SBT J* 1 1 ) ;
F: '>* P *
^RTTEi L I^E»MEADa, 181, MM);
•MR J lr 1 STEP 1 UNTIL KK 00
rtKiTt(LlNE»F7. jt rOH I 1= 181 STEP 1 UNTIL MM DO SBtj.U),
*RTTEtLlNEC<;KlP 11)1
r
«RTTE tL INF » < M TRANSP0SE PRINT OF S(BETA)">)J
:qp < ts 1 STEP 10 UNTIL 71 DO BEGIN
I : s K ♦ g i
hHI rL(LINf. HEA05.K.L) J
FOR J Js t STEP 1 UNTIL MM 00
WR1TL(LTNE.F10. J, FOR I {a K STEP 1 UNTIL L 00 SB[I»J1);
End J
nRtTE^inF»HEAD5.81,KK)»
'OP J »* 1 .STEP 1 UNTIL MM DO
wKITE(LtnE»F7. J. FOR I «= HI sTLp 1 UNTIL KK DO SRtI»3)j
HRlTEtLlNElsKlP H ){
ENn$
i
I CALCULATE VECTOP UF COLUMNSUMS AND PRINT
%
rfRTTE(LINF»<"TOTAL OCCUPATIONAL EMPLOYMENT GFNERATEO BYi«/>w
FOP I Is 1 STEP 1 UNTIL MM DO BEGIN
SHtiJ * = SRC1 .11 J
FOR J : s ? STEP 1 UNTIL KK DO SH£ I l t= $H[Ii ♦ SB[J»I]
wRITL(LINf.F1» I.SHT I] )l END*
TOTAL «s 0''
rOR SPLclALcHLUMNS 00 TOTAL »» Tf)TAL + SW[Jl>
WRITECLINFCSPACE 4 ] . f2 • TUT AL ) t
i
* calculate and print vectoR of r^sums mver special c oLum^s >
wrttecline»<»total industrial employment generated by»"/>)i
t n t A I. » a o i
for i ' = l step l until kk on beg in
sum tx oj
rOw SpEclALCOLUMNS OU SUM »■ SUM «■ SBtT.JIl
WRI TL(LTNf»F1 » I. SUM)'
TOTAL Is TOTAL ♦ SUM 1 ENO»
WRITE(LINE»F?»T0TAL) I
ENin 0^ RRAN^H TWO
%
t branch three
x 
%
% PULL OuT A COLUMN VECTOR FROM r. OVERWRITING R» ANO PRINT IT
I
REr,lN SEGi
WRTTE(LlNE»<«SELECTEn COLUMN VECTUK FROM RMATR I X"> ) j
WRTTElLINF'HFAOl )*
FOR I »s 1 STEP 1 UNTIL LL DO BEGIN
RC I J la B[I»COLUMN]J
WRITE(LINE»F1»I»RC ID)
ENHI
 50 
I
% form S(H) matrix, overwriting m
X
FOP I !» 1 STEP 1 UNTTL KK DO FUR J ,« 1 STEP 1 UNTIL Ll 00
MU.J] !* Mt I.J1 * Rt J];
%
% RnUTINE TO PRIMT S(H)
%
Ip FULLPRINt THEN BEGIN
WRTTEUlNElSKlP 11)
WRITEUINE»< H ***SCH) MATRIX">)
FOR K »« 1 STEP 10 UNTIL 51 00 rfFGlN
L !■ K ♦ 91
WRlTt(LlNF.HEA04.K.L)»
FqR J Is i STEP 1 UNTIL KK Dfl
WR1TE(LTNE»F10. J, FOR I Is K STEP 1 UNTIL L DO M[j»l])
Enoj
WR!TE(LlNE»HEA0a»61tLL)l
FOR J !■ 1 STEP 1 UNTIL KK DO
WKITECLINE.F7. J.FOR I * 3 61 STEP 1 UNTIL LL DO MtJ»Il>J
WRITECLINECSKIP ll)J
%
WR!TE(LINE><"TRANSP0$E PRINT OF S(H)«>);
FOR K l» 1 STEP 10 UNTIL 71 nO BEGIN
L t" K ♦ 91
wRITE(LINf»HEAD5.K.L)I
FOR J l» 1 STEP 1 UNTIL LL DO
WRITE(LTNE»F10»J,F0R I !■ K sTEp 1 UNTIL L DO MC T • Jl ) >
ENDI
WRITE(LINE»HEAD5,81»KK)I
FOR J la I STEP 1 UNTIL LL DO
WKITE(LINE#F7.J»F0R I «■ «1 STEp 1 UNTIL KK Q0 mCI»J]>I
WRITECLINECSKIP l])l
ENni
%
% CUMPUTF COLUMNSllMS OF S(H)» OVERWRITING R» AND PRINT
X
WRITE(LINE»<«EMPL0YMFNT GENERATEO INi»>)
FOR I »■ 1 STEP 1 UNTIL LL DO 8Er,IN
RtI3 l« H[1,I]
FOR J 1= 2 STEP 1 IJNTIL KK DO R[I] la R[Ij + M[J»Iil
MRITE(LINF»F1»I»RCI])I ENOl
%
t SUM tHf columnsiims foR special columns
%
total »■ 01
for sp^cIalrows d0 total i« tota, ♦ rcjh
WRlTECLlNEtSPACE 4 ] .r2 .TOTAL ) I
%
%
%
COMPUTE ROWSUMS OVER SPECIAL COLUMNS* PRINT. AND TOTAL
WRITE(LINE»<"EMPL0YMFNT GENERATED BYi">>
TOTAL *a 0>
foR I *» i step i until kk o n begin
SUM la 01
FOR SpEclALROWS DO SUM j« SUM ♦ MtI»Jl
WRITE(LINf.F1» If SUM)I
TOTAL 1= THTAl ♦ SUM*
IRlTEtLl^E'F?* TOTAL) J
[NH nK ^KANcH THREEt
ENn;
I i\l I S H i END ERGdDRKSj
L J=b7;
FUH Ii= 1 STEP
REAQ(Pl
 51 
ENr>;
isHt end ergwdrksj
l : = b7 ;
FUR Il= 1 STEP 1 UNTIL L 1)0
REAfXPl ./.FOR Jla 1 STEP 1 UNTIL «9 On PCT»JDJ
R L rt J N D ( P 1 ) J
/RlTE(LlNE»<«lNniiSTRY' ACTIVITY MATRlX«>)j
PRTmATRI^( P»L»89,n) J
wHl T E (LINF.< M TRA^PUSE nF INDUSTRY ACTIVITY MArRl*"*)*
PKrTRANs p CP»L.89,0)*
EUlTFlLFf P1»L»89) j
RLWINOCPI ) '»
FUR I := 1 STEP 1 UNTIL L UU
RLADCPl./.FOR Jisl STEP 1 UNTIL 89 UU PfTfJ))*
Rt*INr)(Pl ) i
WRlTE(LiNE»<"Mnn T FIE n p matRi xm >^
PHTMATRT^(P'L» a 9.0) ;
WRITE(LINE.<"TRANSP0SE OF P MAT»IX">);
PRTTRANsPCP. L# H9.0) J
EUlTFlLFf PI »L.89H
RtW!ND(pt ) ;
iiiu t .  < cTm 1 iiixjtti i r»n
 52 
Appendix D
Sample Input and Output
 53 
ljUT ATA
Ai K^Al I VF F x P FI ? J i » T T i J K K 7 t C F n h?
 f H E >• 1
"ALUF
1
10 3 3 5 1.
ooo > )
2
4 H 1 6 ,
MO
3
13 9';.
noo !, o
a
754 6.
)00 00
5
7209 4.
0')
6
212 9 3.
000
7
p a ool .
ooyoo
a
67069,
(V )
9
;oi^4,
000')
1
6402.
00
1 1
7 063.
0000 J
*<>
3 u >ft7.
00 0^0
1 3
6 2 8 <» ,
ooooo
^ a
2579a,
00 00
15
2 7 4 4 rt .
ooooo
i 6
59 6.
00 I/O
1 7
6500.
OOOO'j
1 6
4 6 0,
ooooo
9
3 906.
ooouo
3
797,
ooooo
?1
3 « 3 4 ,
00"0
52
14176.
oonO't
?3
19 3 9 1,
ly
>4
3/47,
1 o o o
?5
9299,
ooooo
?6
313,
>oo Q0
r>7
28 2,
o oooo
?d
i ,
ooo >0
?9
( i (
ooooo
10
137ft,
1000
11
i7r,
, 000 WO
^2
29 0,
, ooooo
13
4 19 3 7,
, i M)
14
7 06,
,000 o
}5
907
, o o o ' > o
^6
<\S.n\
, OOO'n)
17
173
, ooooo
18
3 4
,000.10
19
66 7
. )oooo
'4
154ft
,00 00
al
«79
,00010
a 2
1 2
,00000
ft 3
22 00
, OOOOO
a a
3 4 OH
,00000
a 5
2250
,00000
/i 6
439
,000
a 7
, ooooo
i 8
1 47a
i ooooo
/.i 9
50M
,00 00
^0
3 24 8
.Oooo
51
9112
.ooooo
52
5 09?
. ooooo
S3
S4
S5
S6
57
S8
TOTAL
6rt?4 « OOOOO
5ft 7 . OOOOO
7 70. OOOOO
1 3 5 , . i • ' •
4 6ft 1 . OooOu
1 24 1 5.00000
77450V, oooo.j
 5h 
Row A No cUl.UMN SUMS OF HTERlNUiliiTRY EMPLOY '4F NT iIAftlX
COt U^N CilLOMNSH'i
1 789749. /757?
2 537353.973 08
3 35981.5^709
4 1 0166. ^1 91 2
5 1)64.87117
6 1 V l ? . a^S^'i
7 30 317.41706
6 5686.17800
9 85048,71956
10 12 6 9,47*14
11 i965798. 7770 8
i2 3743l3.86?~43
13 5 6285. 9958
1 4 5320377.8847
i5 325388,38505
16 105752.50661
\7 I3l263.56ib8
18 ?564094,45?76
i9 777 69 7.53723
?0 570368.05696
71 1091.87742
?2 595306. 9767t>
7 3 77540 3. 17 '4 27
?4 202781. H6626
75 16043.36638
?6 4940 47.14617
7 7 161160,03176
78 1 1468. 3 ^753
79 6314 3.3 7544
3 3010 3.06482
71 651283. Hi303
32 286463. 75600
33 ?65.9q*43
34 475570.09705
35 50268. i«86a
76 534094. 5347 3
37 172235. 51539
38 108967. 1H843
39 7751.4^735
40 852897. 7io98
41 78696.0407ft
42 737967.4 7212
43 118575.01038
44 1 75247, 3 0404
45 279396.6n373
46 168259.047b?
t\7 287759,33740
48 306600.47697
49 252713.35514
50 21790.75311
51 527287,lo543
52 789403,61609
53 419723.14 705
54 477628.05^99
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
TOTAL
ROW
1
2
3
4
5
6
7
8
9
10
11
12
13
1*
15
16
\1
18
<9
20
21
72
2 1 1 1 9 9 , 4 Q 9 1 2
921026.77039
104564.96 3 73
90010,40701
757376 3. 8^5 3 3
1 045679.179 >5
5279?2.6?51 )
299466.7770)
73677?. 8 8 6 2 2
55770O.8 7J46
,6 4 4774.58670
630635. 89«V0
2731. 7644
1 2 1 1 6 . 4 7 1 3
1*?44997. 38804
7495356.68854
2445661 ,58?03
3192606,44809
1112776.6 4 438
95040.5?720
828031.42501
7 4 8191.33627
7640221 .48395
742704. 6 « 1 5
96315,54364
35030. 16712
34286.15^20
2023994. 3o7^0
l o96654,975i?
7547412.4^765
7078297.53629
84032529.14160
ROWSUM
1 689254,97547
1 839631 ,487/1
1 19899. l 7653
7 3556?. 099 4
27595.21607
58178,5780b
123171,3782 )
786566.31612
1 15260.33*29
13001,0990 7
1050342.33751
1489505. 79 , 29
736054.50^93
1082099,26771
76622. 19307
564217.45394
1 17455. 35?75
1586577. « 109
1 78935.59661
642782.66110
33679.64879
370987.58707
 55 
?3
1610 / .
»S991
?ft
487571 .
3?)9 3
?b
?25252.
*1 • ft « 1
?6
n 6 ft 9 3 1 .
MMH
77
ftf ftopo.
hK/l 7
•>«
?26722.
ft 9 7 i ft
■>9
~>7b?7 ?.
^V^ 2
80
6 9 7 ft 8 .
1 1 789
11
1 ft7b75.
6 3 2 2
<2
5 9 n 9 ft H .
find
73
? 9 ft a b .
7a ao )
1ft
31b7b6.
A T 7ft 7
15
1 9}b31 .
8 M In
16
5??069 .
^ 1 7 3 b
\7
8 9 5 5 ? ft .
87708
?8
ft 1 9 ' i 9 6 ,
I 1 3 « 1
^9
781 b1 .
"1*76 9
ao
5280 35.
ft * 3 f 1
• 1
3561 18.
8 ,13?
ft 2
ft 7 1 9?8,
>? '32
ft3
11 1551 ,
4M.U
ft ft
15320),
naft 8 9
ft 5
i QbftSw ,
59 3 5 7
•j b
9 8 ? ft 8 ,
7 7 Q ft ft
1:7
15977^,
8 » 8 b *
&8
21 7228,
^ U •■( d 7
4 9
? 9 7 2 ft 1
3„,ft7
SO
2515*1 ,
27 9 9 1
51
26 70 2.
ft M'l 7
"52
1 ft 3 3 6 ,
, ft ^ /1 7 8
r ?3
ft20252.
, hS 1 7 7
*ft
1 ft3bft?<
. 1 5 1 5 2
55
? 1 9 ft 8 7 ,
, ft ? \ ft
b
fihbft9n
, ft 7 'v j 9
^7
3 8 ft ft 8 ,
, 9 <^ ? ft }
58
11887 1
, ft 9 *. i ft
S9
8 7 61 3
, S 7 7 9 3
AO
693153
, 3 7 9 3 3
M
J 1 2 8 8 2
.ft 1 3' 1
ft 2
31 ft ft 3 3
, ft ft '1
^3
1610 3 8
, ft M ft 3 1
ft ft
a 7 1 5 5 9
, 5^768
ft5
? ft ft 1 5 b *>
.23308
*6
9 ii ft 8 6 6
, 58 ft ( 6
ft7
128 loft
. 7 1 ft 7 3
>, a
6 72 7 00
, 8 6 9 ft 9
49
1 7 n 9 8 2 S 8
. 375. '0
^0
1 o ft 5 8 o 7
, b r , 5?) 9
71
871 3bb
, ftf, 3 i
72
1 1 1 7ft 11
. 5 7 1 9 2
73
.V '"> ft 4 2 1
• 97 7ft5
ra
1 01 7
, ft ft 1 5 !)
7b
Sft 7ftV^
. ?3fl>l
7ft
H239:!^
. ftQS 7 3
77
ft 2 5 6 8 8 3
. <m .'2 2
76
7 4 ft 2 8 8
. 5 /1 ft 6 3
79
5 30 9 9 1
. 7 7 ft 3 9
«0
81
82
83
8ft
85
TOTAL
.
6. 000 00
?02399ft . 3^7bft
1009665ft ,9?S3?
?5ft7ftl2.ft^76b
?078297, 5^629
8ft03252^.1ftOft7
 56 
(»E*'L'*AT Ei; INDUSTRY E '' >P U) t iiL H r Vfc.ri.JK
FL^MT N 1
VAI.UF
1
t\ 7 ft 3 4 H 2 .
0?' ; ).'i
2
« 0*308 iH,
7A«i79
3
?i2^ ; i.
'j'l'i'
a
ASh77 ■:,
amis ■)
s
9 ft 7 (S 8 ,
7? M
1 ?51 79,
1? iftft
r
? 9 9 b 'i 7 .
7 7 /a
H
mS^'i,
ss vm
q
S1V1?7h,
■ i ' ! , '4 «>
1 o
1 q > a S a i 3 ,
b h ft »
1 l
1 i j 9 a ft a .
S s ft b *^
i 2
ft 3 ft 7 v ,
19 7 7 1
< 3
ftbO&bft
, At) ^9rt
1 a
S a 6 2 1 9
, 9 j 7 1 ft
15
1 4 '4 ,') A
,0ft T "i
i 6
1 7 7 9 5 S «v ,
ft >?M
1 7
y =j 6 9 6 i\ S ,
7?i 3 3
,8
1 7o9 if
• 1 7 r ", '1'4
1 9
t 3 04 ft?
, ft 7 ? ft 1
9()
Sr,69*1
f ft ^ ft 2 i
?1
7 4 9 9 1 w
, ft o g 9 ft
7?
? a 7 2 9 2
. b 1 i 3 1
?3
S ! 2 b 3 9
,7m , 4 o
3<J
131 }9?f
, 3 f > V> '
?b
1 }ftl 73?
, 9 A ft 1 4
7 6
9 9 1 9 9 9
I "•* ! i II ('
■>7
7 9 f i S
, ) o 3 9 a
38
l 6 9 b ft 9
, 9/ TV
9
S 4 ft 9 ? >
, 9 T y V v
70
ISA 1 * i,
.07 if 3
M
ft ft 3 b 7 T
, S m 9 ' . i
*2
1 7 b «♦ 9 1
, a 7 >. u 7
^3
<4ftft M?
, Si j 29
74
1 3 i9ft<>b
,471M
?b
7 3 a b ft v
. 7 ft i 7 3
76
3 7 b ! J 9 1
, . ?  ft ft
\7
1 7 a 7 3 7 3
, r;  i a y
xn
I'JwH^m
. ^ 7 07
79
1 b 1 1 9 3
. 1 5 '1 3 !
a o
?49 ; W.
. a 7 *..;■:!
'H
1 s ^ ft a 7 'i
. ' o >• > b
•12
1 1 9 3 S h
, 1 ,7 ft '4 I
'i 3
1 h '911?
, S 'i ft ft ft
/<4
7 9 9 1 i ft
, a > / ? ft i
ab
ft :>51 22
. 3 ) a . b
ift
a 1 4 1 b 1
. i S 7 4 S.
a 7
'4 u Ml h S
. i 1 .' ) h '■ j )
,18
a H 1 b S ft
. 1 M 7 ( ,
.'.i9
S ? 1 3 3 m ^
. '■ 3 o>
SO
1 !i 7 a ^ * •(
. ^a«ftb
si
q 7 n J h ft
, '•. .'i ■', / i
S2
11 i ft 3 1
.MSI
* *
^S^TJi
, 7 i f> «v
su
1 1 a 9 b 1 1
. 2'ift V
bb
S6
S7
s«
S9
ftO
ftl
^2
ft3
ft 4
ftb
ft6
17ft2ft L 5V/^.ss.a
77bft9Sa,90H \ >
10712^95. 1 5 ft ft n
I^Hlbftl ,?<v) 3 2
?7h i a i a', i vi'i v
S44 7 00 • ftM*»9/4
7 6 ft 9 4 * , ■» « S V j
1 9 S » ft 7 a i . a s ', 7 a
1789177. 91711
4 90 1 )ft : ^ . in h ha
p ft a b 3 2 7 . a s si a
?b>9in7.37. b
TOTAL tMPLUvMPMT =
ft 1 «ft 9 i 1 7 . a >
UNCLASSIFIED
Security Classification
DOCUMENT CONTROL DATA R&D
(Security claeelllcatlon ol title, body of abatrmet and indaarng annotation mum I he anta re d erhen th» overall report la elaaalUad)
t. ORIGINATING ACTIVITY (Corpora to author)
Center for Advanced Computation
University of Illinois at UrbanaChampaign
Urbana, Illinois 6l801
ie. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED
2b. CROUP
3. REPORT TITLE
ECONOMIC RESEARCH GROUP WORKING PAPER NO. 5 The CAC Economic and Manpower
Forecasting Model: Documentation and User's Guide
4. descriptive Norma (Type ol raport and rnelualra dataa)
Research Report
5 author(S) (Flrat nmare. middle initial, laat name)
Roger H. Bezdek, R. Michael Lefler, Albert L. Meyers, Janet H. Spoonamore
8 REPORT DATE
October 15, 1971
74). TOTAL NO. OF PACES
J&3.
76. NO. OF REFS
ma. CONTRACT OR CRANT NO.
DAHC01+ 72COOOl
b. PROJEC T NO.
ARPA Order 1899
M. ORIGINATOR'S REPORT NUMSER(3»
CAC Document No. 15
•b. OTHER REPORT NOISi (Any other number* that may bo aaalgnad
thla report)
10. DISTRIBUTION STATEMENT
Copies may be obtained from the address given in (l) above,
Approved for public release; distribution unlimited.
II. SUPPLEMENTARY NOTES
None
12. SPONSORING MILITARY ACTIVITY
U.S. Army Research OfficeDurham
Duke Station
Durham, North Carolina
13. ABSTRACT
This paper presents the preliminary documentation and user's guide for
the Center for Advanced Computation economic and manpower forecasting model.
Section I gives introductory and background information on the development of
the model and presents a brief but rigorous theoretical basis for the online
system. Section II gives a description of the basic MANPOWER /DEMAND program
indicating the function of the program, the detailed workings of the system option!
and the language in which it is written. Appendices contain specifications of
the data tapes and disc files involved, flow charts of the computer processes,
and sample data input and output .
DD ,?.?..! 4 73
UNCLASSIFIED
Security Classification
UNCLASSIFIED
Security Classification
KEY WO KOI
KOLE WT
Applications
Social and Behavioral Sciences
Economics
UNCLASSIFIED
Security Classification