(navigation image)
Home American Libraries | Canadian Libraries | Universal Library | Community Texts | Project Gutenberg | Children's Library | Biodiversity Heritage Library | Additional Collections
Search: Advanced Search
Anonymous User (login or join us)
Upload
See other formats

Full text of "The CAC economic and manpower forecasting model : documentation and user's guide"

LIBRARY OF THE 

UNIVERSITY OF ILLINOIS 

AT URBANA-CHAMPAIGN 

5\0.8<1- 

I£63c 
™>. 1 1 -2.0 




EN&NUEBlMfr 



MJG -'^ 



The person charging this material is re- 
sponsible for its return to the library from 
which it was withdrawn on or before the 
Latest Date stamped below. 

Theft, mutilation, and underlining of books 
are reasons for disciplinary action and may 
result in dismissal from the University. 



UNIVERSITY OF ILLINOIS LIBRARY AJ UR-BA*JM£HAMPAIGN 

S- ?yj* :, tS>'. \'.ii-< '.■: ) .\y:{?-A~ 







CPt 



1 6 \W 



< ■■■•' 



.. ■•; r.i '• t. ;■? t 



L161 — O-1096 




Center for Advanced Computation 



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 

URBANA. ILLINOIS 61801 



CAC Document No. 15 

ECONOMIC RESEARCH GROUP WORKING 
PAPER NO. 5 

The CAC Economic and Manpower 

Forecasting Model: 
Documentation and User's Guide 



R. H. Bezdek, R. M. Lefler, 
A. L. Meyers, J. H. Spoonamore 



Digitized by the Internet Archive 

in 2012 with funding from 

University of Illinois Urbana-Champaign 



http://archive.org/details/caceconomicmanpoOObezd 



ClnLIOGRAPHIC DATA 
SHEET 



!. i ( .ori No. 

U WC-CAC-DN-71-15 



3. Recipient s Accession 



A. i ulc ana >u:>t k li 



CAC ECONOMIC AND MANPOWER FORECASTING MODEL: 
D0CUM1 ITATION AND ' : 'i GUIDE 



5. Kcpori Date- 
October 15, 1971 



6. 



7. Author(s) 

R.H. Bezdek, R.M. Lefler, A.L. Meyers, J.H. Spoonamore 



8' Performing Organization Kept. I 

No - CAC -15 



9. Performing Organization Name and Address 

Center for Advanced Computation 
University of Illinois at Urb ana- Champaign 
Urbana, Illinois 61801 



10. Project, Taskwork Unit No. 



11. Contract /Grant No. 

DAHC014 72-C-OOOl 



12. Sponsoring Organization Name and Address 

U.S. Army Research Of.fiee-Durl 
Duke Station ' ■"'•' 

Durham, North Carolina 



13. Type ot Report & Period 
Covered 

Research 



14. 



15. Supplementary Notes 



16. Abstracts Thi s paper presents the preliminary documentation and user's guide for 
the Center for Advanced Computation economic and manpower forecasting model. 
Section I gives introductory and background information on the development 
of the model and presents a brief but rigorous theoretical basis for the 
on-line system. Section II gives a description of the basic MANPOWER/ DEMAND 
program indicating the function of the program, the detailed workings of the 
system options, and the language in which it is written. Appendices contain 
specifications of the data tapes and disc files involved, flow charts of the 
computer processes, ana sample a ate input and output. 



- 






17. Key Uords and Document Analysis. 17a. Descriptors 

Applications 

Social and Behavioral Sciences 

Economics 

Forecasting (Manpower) . • 

17b. Ide ntif iets /Opcn-Fndcd Terms 

• 
17c. COSAT1 Field/Group 


1*. Availability Statement No restriction on distribution. 

Available from National Technical Information 
Service, Springfield, Virginia 22151 


19. Set urity Class (1 liis 
Report ) 

iNci.AssiFirn 


2 1. No. i>t Pages 

63 


20. Se< ui ity ( las.-, (This. 
Page 

I \'( 1 ^SSII'l! D 


22. Price i 

1 



koiim ntis-j: ihl*. j- h> 



THIS FORM MAY RE KlM'KODlt I D 



USCOMM-LjC I4WS2-P72 



CAC Document No. 15 



ECONOMIC RESEARCH GROUP WORKING PAPER NO. 



THE CAC ECONOMIC AND MANPOWER FORECASTING MODEL 
DOCUMENTATION AND USER'S GUIDE 



By 

Roger H. Bezdek 
R. Michael Lefler 
Albert L. Meyers 
Janet H. Spoonamore 



Center for Advanced Computation 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 6l801 

October 15, 1971 



This work was supported in part by the Advanced Research Projects 
Agency of the Department of Defense and was monitored by the U.S. 
Army Research Office-Durham under Contract No. DAHCOU 72-C-0001. 

Approved for public release; distribution unlimited. 



THE CAC ECONOMIC AND MANPOWER FORECASTING 
MODEL : DOCUMENTATION AND USER ' S GUIDE 



by 
Roger H. Bezdek 
R. Michael Lefler 
Albert L. Meyers 
Janet H. Spoonamore 



ABSTRACT 

This paper presents the preliminary documentation and. user's 
guide for the Center for Advanced Computation economic and manpower fore- 
casting model. Section I gives introductory and background information on 
the development of the model and presents a brief but rigorous theoretical 
basis for the on-line system. Section II gives a description of the basic 
MANPOWER/ DEMAND program indicating the function of the program, the de- 
tailed workings of the system options, and the language in which it is 
written. Appendices contain specifications of the data tapes and disc 
files involved, flow charts of the computer processes, and sample data input and 
output. 



TABLE OF CONTENTS 

I. DESCRIPTION OF THE CAC ECONOMIC AND 

MANPOWER FORECASTING MODEL 1 

A. The Development of the Model 1 

B. Theoretical Basis for the Program 3 

II. DESCRIPTION OF THE MANPOWER/ DEMAND PROGRAM 11 

A. Function of the Program 11 

B. Description of EDITFILE 12 

C MANPOWER/ DEMAND Processing 13 

D. The Data 17 

E- Use of MANPOWER/DEMAND 18 

III . APPENDICES 

Appendix A: Tape Specifications 2k 

Appendix B: Flow Charts 25 

Appendix C: Source List of MANPOWER/ DEMAND 36 

Appendix D: Sample Input and Output 52 



I. DESCRIPTION OF THE CAC ECONOMIC AND 
MANPOWER FORECASTING MODEL 

A- The Development of the Model 

The Center for Advanced Computation (CAC) economic and manpower 
forecasting model was initially conceived in the summer of 1969 "by Roger 
Bezdek and Hugh Folk. At that time it was clear that there was, and 
would continue to be, a pressing need for a general, consistent economic 
model capable of analyzing both direct and indirect effects of specified 
changes in the economic environment on the economy and labor market. No 
model available was capable of simulating in detail the overall effects 
of changes in expenditures on different types of economic programs and 
activities which corresponded to alternate national priorities. The 
development of such a model was undertaken by Roger Bezdek for his Ph.D. 
thesis in Economics at the University of Illinois at Urbana-Champaign. 

The Manpower Administration of the U. S. Department of Labor sup- 
ported the major portion of Bezdek' s dissertation research through a 
Doctoral Dissertation Grant. Although Bezdek originally planned to develop 
both historical and projected versions of this model, the latter development 
was prevented by severe methodological and statistical difficulties. Bezdek' s 
original model pertained to the year i960. Its development and the results 
of simulations conducted with it are described in detail in Manpower Implica - 
tions of Alternate Patterns of Demand for Goods and Services. 



Bezdek [2] 



- 2 - 

In the spring of 1971 > Bezdek and James Scoville developed for 
the National Urban Coalition a projected version of the basic model which 
pertained to the mid-1970' s. It was used to simulate the effects on the 
U. S. labor market which would likely be generated by the Urban Coalition's 
proposed reorderings of national goals and priorities contained in Counter- 
budget. The model is discussed in detail in Bezdek and Scoville' s Manpower 

2 

Implications of Reordering National Priorities . 

Early in 1971 > personnel from the newly established Center for 
Advanced Computation of the University of Illinois became interested in 
continuing work on this model at the Center. The Center for Advanced 
Computation is an outgrowth of the ILLIAC IV project. It is an independent 
unit of the Graduate College which provides an interdisciplinary environment 
for research projects requiring specialized and sophisticated computer 
facilities. The development of this type of economic model required 
sophisticated and efficient computer software and, from the Center's point 
of view, this model offered a feasible and potentially significant appli- 
cation for ILLIAC IV. 

Agreement was reached and an Economic Research Group (ERG) was 
established at the Center. Bezdek spent the summer of 1971 transferring 
the basic model onto the Center's computer facilities and improving and 
expanding it. Work continues in this direction, with Bezdek supervising 
development of the demand side of the model and Hugh Folk directing develop- 
ment of the supply side. This booklet is written as a user's guide to the 
demand-generating portion of the CAC model. 

Input components of the model include data tapes, disc files, and 
computer card decks which can be integrated into a number of consistent 



Bezdek and Scoville [6] . 



- 3 - 

systems via a program which will be explained in Sections II and III of 
this paper. While a brief theoretical outline of the basic model is 
included here, no attempt is made to explain the detailed workings of the 
CAC model. For this information the interested reader is referred to the 
references at the end of this report. 

B. Theoretical Basis for the Program 
Adhering to the traditional assumptions of input-output analysis, 
the economy may be disaggregated into a specified number of sectors, each 
composed of firms producing a similar product or group of products. Each 
industry combines a set of inputs in fixed proportions to produce its output 
which it sells to other industries to meet their input requirements. Letting 
x. . denote the quantity of the output of industry i required by industry j 

J- O 

as an input, letting y. denote the quantity of the output of industry i 
destined for use by the autonomous sectors, and letting X. denote the gross 
output of industry i, a static open input-output model may be represented by 
the following set of relationships: 

X n + x i2 + + x m + y i = x i 

X 21 + X 22 + + X 2n + y 2 = X 2 



x,+x+ +x +y =X n 

nl n2 nn n n 



3 

A more complete development of the theoretical model involved 

here along with a discussion of the problems involved in its empirical 

implementation is contained in Bezdek [5]* 



- h - 

Since it has been assumed that each industry possesses a linear 
production function with fixed coefficients, the technical structure of an 
industry may be described by as many homogeneous linear equations as there 
are separate cost elements involved: 

x . . = a . .X . , x_ . = a_ .X . , , x . = a . X . 

The a. .'s are referred to as coefficients of production and, writing these 
relationships in the form of equation set (l), we have: 

a ll X l + a i2 X 2 + + a m X n + y i = X l 

a 21 X l + a 22. X 2 + + a 2n X n + y 2 = X 2 



(2) 



a ,X + a _X_ + +a X +Y = X 

nl 1 n2 2 nn n n n 

The elements a. . form an n-by-n technical coefficient matrix A and, 
letting x denote an n-order gross output vector and y denote an n-order 
final demand vector, equation set (2) may be written as: 

(3) x = Ax + y 

The final demand vector y is the vector of outputs available for 
disposal outside the processing sector and, letting I denote an identity 
matrix of order n,from (3)> we have: 

(k) x - Ax = (I-A)x = y 

Assuming that the elements of A are nonnegative and that at least 
some of the a. .'s are positive insures that (I-A) is nonsingular. 
Equation (h) may thus be solved for x: 

(5) x = (I-A) _1 y 



(I-A) is the Leontief inverse matrix and its elements a. . 
indicate the output requirements generated directly and indirectly from 
industry i by industry j per delivery of a dollar's worth of output to 
final demand. 

The final demand vector itself may be viewed as the sum of a 
number of vectors each of which represents the industrial requirements of a 
distinct component of final demand. Letting u denote the number of final 
demand activities, g. denote an n-by-1 vector specifying the direct output 

J 

requirements of exogenous activity j, and e. denote a vector indicating the 

J 

portion of final demand consumed by exogenous activity j , we have: 

n u n u 

(6) y = g + g + + g -Z y = Z e (L y ); Z e = 1 

u i j J i j J 

Writing out the first part of (6) specifically yields linear 
equations of the following form: 

< 7 > y i = g il + S i2 + ' +g ij > + g iu ; 1 = X ' 2 > •'• n 

Consider an arbitrary element g. . defined above. As indicated, g. . 

shows the direct requirements for input i generated by exogenous activity j 

and the magnitude of this demand will generally be determined by two factors: 

the total amount of final demand absorbed by activity j, and the portion of 

this amount devoted to the purchase of input i. The first factor may be 
n 

expressed as: e - ^ y. , while the second factor is written as: 

3 i 1 
n n n 

g. ./Zg. . Letting q. = e.Zy., and p. . = g. ./Zg. ., equation (7) can be 
ij' i ij- J J i i iJ 1J ± lj 

rewritten as : 

( 8a) y . = p . , q n + p . „q„ + . • - + p . .q . + • • • + p . Q ; i = 1, 2 . ..., n 

or, letting P denote an n-by-u activity-industry matrix of activity input 

coefficients, and letting q denote a u-by-1 activity-expenditure vector: 



(8b) y = Pq 

p. . indicates the direct requirements generated for the output of 
industry i per dollar of expenditure in final demand sector ,i , and q shows 
the amount of expenditures allocated to activity j. 

Within this framework it is possible to determine the direct output 
requirements generated by alternate distributions of national expenditures 
among economic activities. Here it is assumed that the elements of the 
P matrix are fixed over a limited range of expenditure redistribution; the 
activity-industry matrix thus represents a transformation of expenditures 
on economic activities into direct output requirements from every industry 
in the economy. Using equation (5)> these direct output requirements can 
be translated into total output requirements from every industry. 

Next, output requirements must be related to employment demands. 
To accomplish this it is assumed that the employment requirements of an 
industry are proportional to the industry's output and that this relation- 
ship may be expressed in terms of labor input coefficients. Letting x. 
denote the total employment in industry i, the labor input coefficient for 
industry i, 9 . , is : 

(9) 9 ± = x e /X.; i = 1,2, , n 

Labor input coefficients are thus derived by dividing industry 
employment by industry output and they show the employment requirements of 
an industry per unit of output. Employment in each industry may be related 
to the components of final demand by substituting the values given for X. 
in (5) into equation (9)* Equations of the following form are derived: 
(10a) x* = e ± t il y 1 + 9.a. 2 y 2 + . . . + eX.y. + . . . + S.a.^; 

i = 1,2, . . . , n 



- 7 - 

e 6 6 e 

or, letting x denote an n-by-1 vector of elements x_ , x^, . . . x , and 
> P o 1' 2 n 

letting 6 denote a diagonal matrix whose elements are 9 , 9 , . . ., 9 , the 
equations in (10a) may be written in matrix notation as: 

(10b) x e - 8 (I-A) _1 y 

Consider the matrix M defined as M = e(l-A) whose elements m. . are: 

(11) m = 0.a\; i,j = 1,2, . . ., n 

Any element m. . of M shows the total employment required within 
industry i in order for industry j to deliver a dollar's worth of output 
to final demand. Each row of M indicates the manner in which employment is 

generated within industry i by required activity in industries 1, 2, , n 

and each column of M illustrates how the employment generated by industry j 
is distributed among all industries. This matrix is referred to as an inter- 
industry-employment matrix. 

The necessary theoretical framework has now been constructed which 
permits the transformation of alternate priority-expenditure distributions 
into distinct interindustry-employment demand patterns. Letting Y denote 
an n-by-n diagonal final demand matrix, the 'total" interindustry-employment 

T * 

matrix, M , is derived by postmultiplying M by Y: 

(13) M T = MY 

i 
The elements of M show the total employment generated by and within 

every industry for a generated distribution of final demand reflecting a 
specified priority alternative. 

The final step in the construction of the theoretical model involves 
the relation of interindustry-employment requirements to demands for occu- 
pational categories of manpower resources. This transformation is accom- 
plished by using an industry-occupation matrix showing the occupational 



- 8 - 



distribution of industry employment for the time period under consideration. 

Denote this matrix by B: the rows of B represent industries, the columns 

of B represent occupations, and any element b of B shows the percent of 

total employment in industry i composed of persons classified within 

occupation k. 

Let R denote a diagonal matrix whose elements r are the row sums 

ii 

of the interindustry-employment matrix and thus show the total employment 
generated within industry i. One type of manpower information is 
derived by premultiplying the industry-occupation matrix by R: 



(lUa) 



11 



22 





nn 



Vl2 \h 

nl n2 nh 



(a) (a) (a) 

s s „ s 

,11 12 < *]_h 

;(a) J°0 '(a) 

S nl S n2 . . I . . S nh 



or 



(lUb) 



RB 



,(a) 



(a) 
S is a "type Of" interindustry-occupation matrix and the elements 



(a) 
S., 'of it show the total demands for occupation k generated within industry 

XK 

i by a specified distribution of national expenditures. 

Letting M denote the transpose of the total interindustry- 
employment matrix, a second type of manpower impact matrix is derived by 



premultiplying the industry-occupation matrix by M ; 



- 9 - 



(15a) 



m ll m 21 



nl 







n. ni . . 


, ffl 


In 2n 





nn 



b ll b 12 



b -, b „ 
nl n2 



lh 



nh 



(3) 



3 11 S 12 



B (p) fl (3) 

"nl n2 . 



(3) 
3 lh 



s (3) 

nh 



or : 



(15b) 



o (B 



(B ) 
S is referred to as a "type 3" interindustry-occupation matrix 

fa \ 

and the elements s. ' of it show the demands for occupation k generated by 
industry i. So while the type OL manpower matrix indicates the occupational 
employment demand generated i_n every industry, the type B manpower matrix 
indicates the occupational employment demands generated by every industry. 
Finally, a third type of manpower impact matrix can also be 

derived. Letting B denote an n-by-n diagonal matrix whose elements corres- 

th 
pond to the k column of B, the third type of manpower matrix is derived 

by premultiplying B by the transposed total interindustry employment matrix 



(16a) 



- 10 - 



m il m 21 



In 2n 



or 



(16b) 



m 



nl 



nn 



11 



,00 

22 





,00 

nn 



o (k) ( k ) 

MB V ; = S ; k = 1, 2, 



.00 » 

'll "12 



00 



nl 



, h 



; ( k ) 
n2 



.00 
'in 



,00 

nn 



k = 
1,2,. .,h 



Since there are h columns in B--one for each occupational classi- 

k lr 

fication--it is possible to derive h of these S matrices. Each S 

matrix is essentially an interindustry-employment matrix for the k occu- 
pation, and an element s.. shows the employment requirements for occupation 
k generated within industry i by industry j. These matrices are referred 
to as occupational employment profiles, and they contain a highly detailed 
description of the structure of demands generated for an individual occu- 
pation by a specified distribution of national expenditures. 

Taken together, these three types of manpower impact matrices provide 
a comprehensive and highly detailed picture of the employment impacts likely 
to result from the implementation of alternate types of economic and social 
programs and priorities. 



11 



h 
II. DESCRIPTION OF THE MANPOWER/ DEMAND PROGRAM 



A. Function of the Program 

The MANPOWER/ DEMAND program performs two data handling functions. 

First, it edits existing data structures, the input matrices to the model. 

Secondly, and most importantly, it performs the algebraic computations set 

forth by the theoretical model previously described, for generation of 

manpower demands based on alternative expenditure patterns and technological 

assumptions. In effect, the program permits the researcher to experiment 

by varying the data matrices which represent the input to the economic model 

and to study the results generated by the MANPOWER/ DEMAND processes. For 

example : 

The experimenter executes the general model for a given set 
of 58 proposed expenditure alternatives, noting the generated 
occupational employment. By changing the activity-expenditure 
elements to represent a different pattern of resource allocation, 
he can analyze the generated effects on the labor market produced 
by the program. In this case, he must modify the q-vector which 
represents the expenditure distribution. After observing these 
results, he may then modify the interindustry-employment matrix 
or the industry-occupation matrix. Another run on the model 
gives different results and insight into more modifications. 

The MANPOWER/ DEMAND program is essentially a model of economic 

processes represented by several matrix operations but, in addition, its 

flexibility permits modification of the input matrices prior to execution 

of these operations. 



h 

The CAC model described in this report is in the process of 

being expanded and improved. At periodic intervals additional documentation 

and user guide reports shall be published which specify the changes which 

have been made. 



- 12 - 



B. Description of EDITFILE 

Editing is performed on files prior to execution of the MANPOWER 
DEMAND routine. The following modifications can be accomplished for each 
matrix : 

1. Element-by-element addition, subtraction, multiplication, 
or division. 

2. Overwriting a column or columns with a new column or columns 

3- Deletion of a column or columns, thereby reducing the size 
of the matrix. 

h. Insertion of a new column or columns between existing ones, 
thereby increasing the size of the matrix. 

5- Scaling an entire matrix by multiplying each row by a given 
constant. 

EDITFILE is invoked by the standard ALGOL subroutine call as 

follows : 

EDITFILE(<File name >,< number of cols>,<number of rows>); 

It accepts on card input the following commands in free form: 

ADD(<column number>) 
SUBTRACT (<column number>) 
MULTIPLY (<column number>) 
DIVIDE (<column number>) 
DELETE (<column number>) 
INSERT(<column number>) 
SCALE 

After each command, data cards are included which contain the operands for 

the above commands in free-field format, i.e., integers or decimal numbers 

separated by commas. This routine is not invoked if editing of existing 

matrices is not desired. 



- 13 - 



C. MANPOWER/DEMAND Processing 

Program Overview 

ERGWORKS is the routine which performs the major operations dictated 
by the system. It can accept as input different vectors reflecting various 
levels and distributions of expenditures on economic activities and it re- 
turns generated employment requirements classified by industry or by occu- 
pation. Alternately, the expenditure vector can be held constant and man- 
power demands can be generated by changing rows, columns, or individual 
coefficients within the various matrices to reflect changes in technology, 
labor productivity, or occupational displacement. ERGWORKS presently con- 
sists of four distinct sections: a core section, which is always executed, 
and three branches, only one of which is executed during a run. The choice 
of branch is a user-input control option and depends upon what information 
the user wants the program to calculate. Branch three, for example, selects 
a single occupation and gives detailed information on the structure of de- 
mand for that occupation. 
The Core Section 

The first step is to read in and check the list of control options 
provided by the user. The first option is the year. If the user asks for 
1972, the program calls in the data from the four disk files corresponding 
to 1972' s data; if the user asks for 1976, the program calls in the 1976 
projected data. If the user asks for a year other than 1972 or 1976, the 
program will form the three required matrices and the required q-vector by 
performing a standard linear interpolation of the data for both years. The 
interpolation is performed by a special subroutine which subtracts 1972 from 
the input year, then multiplies the difference between the 1976 data and 



- Ik 



the 1972 data by one fourth of the difference in the years and adds the 
result to the 1972 data. It should be noted, however, that linear inter- 
polation may not necessarily represent economic change within an interin- 
dustry model. 

The next option read in indicates whether the user wants only the 
final results and certain selected intermediate results or whether he also 
wants all intermediate matrices printed out in full. The third option spe- 
cifies which branch the program is to take. If this option is three, the 
program also reads in a column number corresponding to the column of that 
occupational classification in the B-matrix. The program tests both the 
branch option and the column to assure that the former lies within the range 
one to three and that the latter lies within the range one to one hundred 
eighty-five. 

The program then reads in the user-given title of the run and the q- 

vector. Both are printed immediately. Next, each of the fifty-eight rows 

T 
of P is multiplied by the corresponding element of q. This is mathematically 

equivalent to converting q into a diagonal matrix and post-multiplying this 

T 
diagonal matrix by P . If the "fullprint" option has been called by the user, 

this new 58 x 89 matrix is printed, first by columns, then by rows. 

The same basic code is used to print out each of the matrices re- 
quired by the fullprint option. The title of the matrix is written, and a 
FOR-loop selects columns in groups of ten until less than ten columns remain. 
For each of the rows of the matrix the ten elements corresponding to the ten 
columns are printed. When less than ten columns remain to be written, the 
routine prints the end of each row of the matrix, the number of elements 
printed corresponding to the number of columns left. Once this is done, 
the same operation is carried out for the transpose of the matrix, effectively 
causing the matrix to be written by rows instead of columns. 



- 15 - 



After the new 58 x 89 matrix is printed (if it is to be printed), 
a y-vector is created which is eighty-nine elements long. The elements of 
the y-vector are the column sums of the 58 x 89 matrix. 

The y-vector is printed and aggregated to eighty-five elements by 
deleting four selected elements, and the aggregated vector is printed. 

Each of the columns of M is then multiplied by the corresponding 
element of the y-vector. This corresponds mathematically to post -multiplying 
the M-matrix by a diagonal matrix created from the y-vector. The row sums 
and column sums of this new matrix are computed and printed and, if the 
fullprint option is on, the entire matrix is printed. 

After the above operation is completed the new M-matrix is 
aggregated to a 66 x 85 matrix. Row sums and column sums of this aggregated 
matrix are taken and a sixty-six order vector, designated r, is created 
from the sixty-six row sums. To avoid double -counting, the column sums are 
actually calculated over selected rows of the M-matrix. The row sums, the 
column sums, the sums of selected elements of both, and (if the fullprint 
option is on) the matrix itself are printed. 

If the program is to branch to the second or third branch, the 
last operation completed by this core section consists of multiplying each 
row of the aggregated M-matrix by the corresponding element of the ^-vector 
and (if the fullprint option is on) printing the resultant matrix. 
Branch One 

Branch one requires the r-vector computed above. But each element 
of this vector is first multiplied by the corresponding element of the jLi-vector, 

Each row of the B-matrix is then multiplied by the corresponding element of 

(a) 
the modified r-vector, forming a matrix called S . If the fullprint option 

(a) 
is on S is printed. In both cases row sums and column sums are calculated 



1. - 



(a) 
for S over selected columns and rows, respectively, to avoid double- 
counting. These row sums and column sums are printed and totaled and the 
program run then terminates. 
Branch Two 

Branch two postmultiplies the transpose of the modified aggregated 
M-matrix by the B-matrix, producing an 85 x 185 matrix called S^ . This 
operation is modified, however, by multiplying only selected columns and 
rows to avoid double -counting. If the fullprint option is on, the S p ' 
matrix is printed out. 

The one hundred eighty-five column sums are computed and totaled 
(over selected rows to avoid double-counting), then printed. Similarly, 
the eighty-five row sums are computed and totaled (over selected columns 
to avoid double-counting), then printed. This terminates execution. 
Branch Three 

Branch three begins by selecting and printing a column from the 
B-matrix. Each of the sixty-six columns of the transpose of the modified 
aggregate M-matrix is then multiplied by the corresponding element of this 
column vector to form an 85 x 66 matrix called S . In the S matrix 
h represents the column of the B-matrix selected, where 1 <_ k <_ 185. If the 
fullprint option is on, this matrix is printed. 

The sixty-six column sums are computed and totaled (over selected 
rows to avoid double-counting), then printed. Similarly, the eighty-five 
row sums are computed and totaled (over selected columns to avoid double - 
counting), then printed. This terminates execution. 



- 17 - 

D. The Data 

The input data for both routines reside on the same set of disk and 
card files. The eight disk files contain projected data for years 1972 and 
1976 derived from data which were obtained from the Office of Business Economics, 
the Bureau of Labor Statistics, the Harvard Economic Research Project, the 
National Planning Association, and the National Urban Coalition, and which 
were, in part, derived independently by Roger Bezdek. These disk files are 
matrix representations for the 58 x 89 activity-industry matrix, designated 
by "P", the 85 x 85 interindustry-employment matrix, designated by "M" , the 
66 x 185 industry-occupation matrix, designated by "B", and a 66-order 
vector designated by "u"- 

The P and the M matrices are stored and handled in transposed form 
within the program. These files can be inputted directly to the model or 
modified first by EDITFILE and then used as direct inputs. The card file 
called CARD contains, first of all, the specifications for any editing to 
be done on the above disk files. Following these specifications are the 
run time options for ERGWORKS. These options include the projected year 
to be run, the fullprint option, and the branch of the routine to be in- 
voked. Following the option, the q-vector (the specified expenditure dis- 
tribution) is read in. 



18 - 



E. Use of MANPOWER DEMAND 

Tapes : 

MANPOWER /DEMAND is written in Burroughs B65OO ALGOL language. The 
source program as well as all data files are stored on nine-track tapes in 
the B65OO room, Room 10, Coordinated Science Laboratory, University of 
Illinois, Urbana, Illinois. At present, several versions of the program are 
saved at points in time to enable programming changes to be made without 
risk to previous progress. In the appendix a list provides tape numbers 
and tape contents. 

The tape name ERG is used to access any of the tapes. In this 
and any discussion of B65OO usage, the reader is referred to the Little 
Golden Book of the B6p00 for operating system details. 
Control Cards : 

In order to run MANPOWER/ DEMAND on the B65OO, a set of control 
statements must be entered in card form or from a terminal. Listed below 
are the cards which can be used: 

The tape must first be loaded onto disk by the following: 

?C0PY ERG/= FROM ERG 
In order to compile the program: 

? COMPILE ERG/MANPOWER/ DEMAND WITH ALGOL LIBRARY 
? ALGOL FILE CARD = ERG/OCTI DISK SERIAL 
?END 
The execution is accomplished by the following: 
? EXECUTE ERG/MANPOWER/DEMAND 
?DATA CARD 



Abel [1] 



- 19 - 

2, 1, 1, 

TEST DATA 

103351 ^8160 

and other data cards 
?END 
(Note: ? is a control character on B65OO and is punched by- 
mult ipunch 1, 2, 3-) 
The execution takes about six minutes of processing time on the B65OO which 
amounts to about 15 minutes real time in the machine. 
Sample Experiments : 

Statement of Problem 1 : Replace the first 12 columns of the 1972 
P matrix with a given set of data, change column 17 to 17a and 17b 
and run the program for branch one. 

Method of Solving : Use the EDITFILE procedure to modify the 
ERG/MATRIX/PI file. The following code must be inserted into the 
program to form executable code. 

L: = 57 

EDITFILE (EL, L, 89); 
REWIND (PI); 

ERGWORKS (L, 89, 85, 66, I85); 
END 
The program is then recompiled, and executed with the following card input: 
?DATA CARD 
REPLACE (1) 

(Data cards to replace second column) 
REPLACE (2) 
(Data cards to replace second column) 



REP7ACE Cl2 > ) 



- 20 - 

(Data cards to replace 12th column) 

REPLACE (17) 

(Data cards to replace 17th column) 

INSERT (18) 

(Data cards to insert between the 17th and 18th columns -- 

changes old l8th to 19th column) 

STOP 

72,1, 1 

TEST DATA 

103351 ^18160 . . . 

(Change 57 to 58 long vector here) 

1U561 . . . 

?END 
Statement of Problem 2 : Scale the rows of the 1972 M matrix by a set of 
constants. Run the program using the modified P matrix above for branch 
one. 

Method of Solving : Again use the EDITFILE procedure to modify the ERG/MATRIX/M3 
file. If possible, store the modified P-matrix from the last example; other- 
wise, include the changes here as in the above program. 
The program instructions follow: 

L: = 58; 

EDITFILE (M3, 85, 85 ); 

REWIND (M3); 

ERGWORKS (L, 89, 85, 66, 185); 

END 
The above statements are to be inserted in the executable code section of 
the program. Recompile and execute with the following: 

?DATA CARD 

MULTIPLY (1) 



- 21 - 

(85 elements to multiply row l) 

MULTIPLY (2) 

(85 elements to multiply row 2) 



MULTIPLY (85) 

(85 elements to multiply row 85) 

STOP 

72, 1, 1, 

TEST DATA 

103351 ^18160 . . . 



1^561 

?ENL 



- 22 - 



REFERENCES 



[1] Abel, Norma. "The Little Golden Book of the B65OO." ILLIAC IV 
Project Report, University of Illinois at Urbana- 
Champaign, Urbana, Illinois, June 1971' 

[2] Bezdek, Roger H. Manpower Implications of Alternate Patterns of 

Demand for Goods and Services . Ph. D. Thesis and report 
prepared for the Manpower Administration of the U. S. 
Department of Labor, University of Illinois at Urbana- 
Champaign, Urbana, Illinois, 1971 • 

[3] • "Manpower Implications of Alternate Patterns of Demand 

For Goods and Services." 1970 Proceedings of the Business 
and Economics Section of the American Statistical Association , 
pp. hl r J-K22. 

[h] . Progress Report on the Development of a Large -Scale 

Conditional Consistent Economic and Manpower Forecasting 
Model . Economic Research Group Working Paper no. 1, Center 
for Advanced Computation Document no. 7 > University of Illinois 
at Urb ana -Champaign, Urbana, Illinois, July 1971- 

[5] • Manpower Analysis Within an Interindustry Framework: 

Theoretical Potential and Empirical Problems . Economic 
Research Group Working Paper no. U, Center for Advanced 
Computation Document no. 13, University of Illinois at 
Urb ana -Champaign, Urbana, Illinois, September 1971- 

[6] , and Scoville, James G. Manpower Implications of Reordering 

National Priorities . Washington, D.C: National Urban 
Coalition, 1971. 



- 23 - 

[7] Burroughs B65OO Extended Algol Language Information Manual . 

Document no. 5000128, Burroughs Corporation, 1971 « 
[8] MeCracken, Daniel D. A Guide to Algol Programming . New York: 

John Wiley and Sons, 1962. 
[9] Meyers, Albert L. An Introduction to the Pointer Mechanism in 

Burroughs Corporation Algol . ILLIAC IV Document no. 215, 

University of Illinois at Urbana-Champaign, Urbana, Illinois, 

May 1970. 



2U - 



Appendix A: Tape Specifications 



B65OO 

Tape Number Name 

202,204 ERG 



F: 


Lie Names 


(I] 


) ERG/MATRIX/PI 


(2; 


) ERG/MATRIX/ P2 


(3: 


) ERG/MATRIX/M3 


(K 


) ERG/MATRIX/M4 


(5: 


) erg/matrix/bi 


(6! 


) ERG/MATRIX/B2 


(?: 


) erg/matrix/mui 


(3; 


) ERG/MATRIX/MU2 


(9: 


) erg/manpower/source 


10 


) erg/manpower/demand 



Description of File 

1972 P-MATRIX 

1976 P-MATRIX 

1972 M-MATRIX 

1976 M-MATRIX 

1972 B -MATRIX 

I976 B -MATRIX 

1972 - Mu vector 

1976 - Mu vector 

Sourcecode for economic model 

Compiled version of 
ERG/MANPOWER/DEMAND 



122 



ERG 



files 1--9 same as 
202, 204 

(10) ERG/0CT1 

( 11 ) ERG/MANPOWER/ DEMAND 



Source code for economic 
model and edit routine. 

Compiled version of (10.) 



568 



ERG 



files 2.-11 same 
as 122 



(1) ERG/ MATRIX/ PI 



modified in experiment 



- 25 - 



Appendix B 



Flow Charts 



- 26 - 



C 



PROCEDURE 
EO0.EWOKS 



II, JT, <«., 
LL. MM 



J 



U LENGTH Of 

P COL, 
TJ-HN.P fte.'N 
K.H-L.EN. M »ovm 
LL-LEM, B COL. 
MM- » ROVsl 



READ IN 
YEAR, POLL. 
PRINT ANO 
BRANCH 







REAO TITV.E. 
O, -VECTOR. 



CHECH. <<I.«R 
AND REOUCE 
TO Tt THRO Tfe 



TOTAL, q -VECTOR 
AND PRINT 

Q-VSCTOR 

and Total 




READ PILES 
PI, «-*■», Bl 

AMD v,OI 




/ READ FlLE-?> 

pa, M* 1 a^ l Mu^j 



INTERPOLATE 
FILe«=> FOR 
T*, 14, te» 



FORM INDUS,T«X 

ACTIVITY 
MATRIX. P« — Pnq 



IF FOLL PRINT, 

PRINT P 
AND TRAV**Po<bE 



FORM PINAL. 
DEMAND VECTOR 

y(J]« ioM 

OF I'lh COL. OF P 




ANCH \Y£S 



< 



ERROR 
RETURN 



D 



PRINT f 
A.N.O <^v>WV OF 

eue.K\ev»Ts, 




< 



ERROR. 

RETURN 



J 



A<S<3RE«.ATE. 
X To ftfi» 

UONfe, ANO PRINT 







form inter ind 
emp matrix 
m« — m*.y 



FORM RovM 

sums, print 
total, print 
of NO 



- 27 - 







IF FULL PRINT 
PRINT INT. 
INO. EMP. 
MATRIX 



AGGREGATE THE 

INTER IND. EMR 

MATRIX. TO 

**> X as 



TAVCE ROW 
AND COL. 
■illM* OF 

M. PRINT 



IF POLL PRINT 
PRINT M, THE 
INT. INO. E.MP. 
MATRIX 




YES 



MODIFY M- MATRIX 
M« MKMU 



IF PULL PRINT, 

PRINT MODIFIED 

M MATRIX 



SELECT BRAVJCH 
1,2 OR 3 



6 © 6 



R- Rov\l 60M"i °F 

M \S MODlFlSO 

R« RXMU 



PRINT R fcMO 
TOTAL. OVER 
SPECIAL ROVJS 



FORM S C°<1 

ON B, 
B« & * R. 



PR\NT «b C^l 
IF FULL 
PR\NT 



FORM 1UO. EMP. 
V ECTOR -Rovg- 

SOMS OVER 

SPECIAL COL'S 

OF «=,(«< 1 



PRINT OUT 

XNO. EMP. 

VECTOR ANO 

TOTAL. 



FORM OCC. EMR 
VECTOR-COLUMN 

^>UM4 OVER. 
•SELECTED ROWS 



print out 
occ. emp. vector, 
ano Total. 
employment 



c 



RETURN 



D 



- 28 - 











FORM SC^) 

bv vi xe 

RfcPLttXWjc B 



THIS BRANCH 
&IVES OETAVLEP 
INFO. ABOUT 
&IVEN OCC. 



IF FULL PRINT 

PRINT 

S (.BETA 1 * 

MATRIX 



PRINT SELECTED 
OCCUPATION, 
i«., COLUMM 
OP B W1ATR\% 



compute Total 
occvj? EMP. 
VECTOR = COL. 

SUM* OF S(/S) 



STORE COLO MM 
IN R -VECTOR. 



PRINT COL. 
•SUMS AND 

THfciR Total 



FORM S^H} 
MATRlK, 

REPLACING M 



COMPUTE TOTAL 

INO. EMP VECTOR 

s RoWSUMS 

OF S(«) 



IF Full print 
write out 
s(>v> matrix 



PRINT ROW 
SUMS ANO 
THEIR TOTAL. 



c 



FORM COL. 

SUMS OF %CHl 

SETTING EMP. 

&ENF.RATE.0 IN 



RETURN 



J 



SUM THESE 

COL . SUMS FOR 

SELECTED COLS 

ANO PRINT 



FORM RovV 
SUMS OF «b(.Hl 
FOR SP6.C\Au 
Rows, GET 
EMP. *EN'D BT 



Fo«M TOTAL 

OP Row SUMS) 

AKlO PR.VKT 



c 



RETURN 



~) 



- 29 - 



c 



PROCEDURE 

interpolate 



) 



FORM F, «»CAV.E 
FACTOR * 



REAO CoRKS%- 

PONOIN& Row«» 

OF Pi A.V40 

Pfc P\\-E^ 



<bCAX.E PI 
ROWS EXADOIV& 
F* CPt-Pl'i 



REAO COM. 
ROW O* M"* , 

MA AWO 
INTERPOLATE 



REAO COR*. 
Ro\M OF tH.ftfc 

AND 
INTERPOLATE 



REM) MUl 

AND MUt 

AMD 

INTERPOLATE 



c 



RETO«M 



3 



- 30 - 



c 



PROCEDURE 
PRTWlATRlX 



A, MROWS, 
WEAOVWCr 



D 



DETC«tW\Nt THE P\R^>T E.L.T IM 
L.AAT FOU. ROW OP PRIUT 



FOUL. ROW . =. NROWS - NROW<i WOO lO -«a 



ITERATE < F«OM 1 *TEP lO 
OKJTIL. POLLROW 



fc.-V-«S 




YE«» 



+ •: 



V*R\TE OUT 



COL«> K. TV^RO V-" 



No 



VMRtTE x, Roys»<i |C THRU V_" 



WR\TE NCOL«» RQW9 EACH 
ROW CONTA\VJ\tOGi lo ROW E.V.EJNAE.MTC, 
I.E. K. THRO L., A^I, 33 



© 



- 31 - 



© 



DO l_A<oT COL.VJt>M4 POR NoN Pua R*>VM 



CHECK HEADIV4& AfeA.\N To %C£ 
WM\C>* OWC To P*l*«iT *S» BeFORC. 



RoV4«» V. T*«\J *i, COLUMN 
1 TO NCOUS, Atl, J3 



C 



RETORV4 



} 



32 - 



8 

31 

a 

I 

o 
h 



/'pHOCEDURe ^\ 
\PRTTRA>V4«>P J 



r A, NROVMS, 

NCOL«b, 

WEAOtVJG. 



DETERNMME PlR*ST ELT Of LA»«=»T 
FULL. ROW OF PRINT COWTA\*»\N(b TEN 
&LEMCNTS, FUU-R£>VM:=NCOV_t.HC©U.% MoOlO-^ 



ITERATE VC PROM 1 *,TEP lO UNTIL FULL.ROW 




WRITE 



WRITE N ' Co L. Vt.T\ARO L." 



WRITE NKO^S BoyJS EACH COMT/MKJWiGr 
lO COLUMN E.l_«hAENT%, X. C , 
KTMRU L., At J, 1\ 



© 



- 33 - 



© 



DO l_A*T RoVMS FOR NON POLL C©l/S> 



CHECK. UEADlNCs AC/MM 
TO *6E WHVCU OV1E To PRiWT 



NOW PRINT REMAINS N& COLUMH«, 
V. THRU W, ROW 1 To N ROWS 



C 



RETURN 



") 



- 3h - 




APP, 6URTEACT 
MULTIPLY, PlVIPE 



iCvEKWeire 



PELETE 



INSERT 



FlL- FlLt NAME 
M - NO. ROW* 
H - He CA-* 



reap F"-e 

INT<? 
A[ 9: Z*I*,<?M] 



INITIALISE 

H il «- 1 , 

I" I.....M 





(SET 6>reBAe«>4 
ANP CALL 

PCTTE" 2 




CARP IHf* 7 WV 

op A. 




MOVE »IZ] 
PPWN I ELT 
STARTING AT IMPEX 



M 



M- I 




• [inpex] 
i- M «-M + l 



CLEAR SpACE 
IH E> AT INPEX 



REAP NEW eew 
INT? A[M, *] 




PEAP IN S£ALE 
FACTPB6 IKT» El*] J 



Muq-iptr E T xA 

ANP ZEpLACt A 



- 35 







(PROCEDURE "\ 
SCANNER J 



WRITE OUT 

C l« , » ) 
ONTO FIL 



/BEAD CONTROL) 

STATEMENT 
[FOR VERB 
AMD INDEX 



( RETURN J 



C PROCEDURE "\ 
OOTTCR ) 



PtRFORM 
INOICATEO 
OPERATION 
+,-,*, \ <=>N 
A AND B 



PUT RESULT 
IN VECTOR 
A 



( RETURN J 



(PROCEDURE \ 
NUMB ) 



NUMB « StOW 

NUMBER TO 
£0\TfcD 



( RETURN J 



I A- ROW OF A 
/B- OPERANOS | 
fl- O,! ,2.,^ 
f I- UEN OF A 






SCANNER ■ 

%MUM » 



SCftNNW • 



SCANNER « 

SNUM « "1 



•SCANNER 

• ■iNUM 

• 1 



SCANNER" 

"iHOM» 4 



SCANNER 

« 4NUM 

« % 



SCANNER 

* 1NUM 

« 6 



SCANNER 
4 %NUM 



INDEX 
NOMB 



f RETURN V 



- 36- 

Appendix C 

Source List of MANPOWER 'DEMAND 



KriN 
HIE 
FILE 
KI.E 

file 

El' E 
FILE 
FILE 
FILE 
FT IE 

eue 

FORMA 

rn°Ma 



- 37 - 

L sEf, = LAKEL NFwSEuMtNT*> 

LlNL(KT K| n = 135.RUFFFRS * 2,lAxRFCSIZE 

CARO(K|MD - 9»RijfFERS s 2»MAXREC$IZE = 



r 22. INTRUDE = 'i# MYUSF = ? ) : 

1 4 » I \! T M 1 1 n C s a ) J 



PI (KIND s l.ACCFSS = 0. TITLE s 

MAXRECSI7E = 1^ , iLUCKSIZr = 

p2(*TNn s 1»ACCFSS = O.TITLF = 

M A X r I C S I L E = l^rtLUC^SUF = 

Mj(K T Nn = 1 . a C C f S S = # T I T L E - 

MAXrFCSIZF = 1 <* » rt L fl C k S W F - 

Ma( K iNo = i.accfss = u> title = 

Ha*rFCsI*F = l^friLOCKSUF s 

tt 1 ( K I N n = l.ACCFSS = » T I r L E * 

M A X R F C S I Z F = l^.riLUCKSIZF = 

rt^(KlNn s ltACfrsS = 0»TITLF - 

MaXrFCsUE = 1«»HlOCksUf = 

mukkIwo = I.accfSS = d,U!i.l * 



"ERG/MATPTX/PI .".HijFrERs = 2. 
420) ; 

"ERG/MATRT X/P2. ". BUFFERS = 2, 
a ? o ) : 

" F R G / m A T R T * / M 3 • " • '- U f r F R 5 = 2 • 

420); 

"ERG/mA TP I x/M'*. M , RUFFFRS = ?, 

'i 2 ) : 

"FRG/MAT^TX/.U . H .HUFrF KS = 2, 

ft 20) : 

"ERG/MATRT A/H2.",Ht.)FrERs = 2, 
ft 2 ) 5 
m ERG/\/ECTUR/mu1 , ". 



RUrFERS = ?,MAXRECSUE = U.HL0CKST7F = 420); 
rtU2(KlM0 = 1»ACCFSS = 0,TIT|t = "ERG/ VEc THR/ Mil? . H » 

RUrFERS = 2,'mAXRECSUE r 1 a . BLOC kS I /F = a20)S 
T Jn F* f ft I 1 ). FO ( XS.9FH. a. XI) J 
T [)UT hFADK /"El FME viT VALUE"). 

H FAl)2</" RLH M #Xf ,"RO*SUM") . 
M E A D 3 ( / ♦» r. n |, U M .< C OL II M N S ' I H " ) . 

HFAD4(/"C0LS W »I4»" THRU", T4/ ) . 
rtFAD5(/"RnwS w il4»" THRU"* 14/) . 
pRRMESSir"***lNCORRECT UPtiOm 
K[AL ARRAY P [ n J "bft » () J 69 j . M f t AS • HS 1 { 
iNlTE&F I » J» K. | ; 
LAatL FOFU, 

LINE PRINT ROUTINES 



FHT4,r20,S)» 
F?(«T0TAL H »F19,b). 

FMlJt9CXi t RU,A>>, 

FlO(I3»lO(Xl»Pll.4)), 

I R M RANCH")? 



PROCEDURES PRTMATRIX AND PRTTf?ANSP ARF USFD FIR FMLLPPINT 
Tl) PpINT MATRIX OH MS TRA:MSPi1SE 
PRilCEnURE PRTTRANSP{A.^Rl) w S»Nri1LS»HEAnl^r, )', 
VALUE NROWS.NcnLS#HLA')INvi; 
HEAL AWRAY A t . 3 I 
InTEGFR NROWSiNICULS* HEADING? 
"EG IN 

INTEGER FULLPn*»I»J»K»Lt 
FULLROml t= NcnLS "NCOLS -iuu 10 - ); 
FnR KS= 1 STFP 10 UMTIL FULL^nrf [)U ; ^FGIN 
L : = k + 1 ; 

IE HEAOTMGsO THFN w R I 1 F f L I NF . HF A Db . K » L ) EL^F 

■i R I T F ( L I r J E » h F A () a . k » L > J 

EQR J*.= 1 STFP 1 UNTIL NROWS 1)0 

WRI fF( LTNE.Fl 0,.j. FOP Il= K STEP 1 UNTIL L 

DO aU.iJ); 

F N r i J 
Ir NCTLS > L THEN REGIm 
IF mFADING so THEN ^RT TE(LlNF . HFAnS.l. f 1 .NCHLS ) EiSE 
^RlTFCLlNE.HFAOa.L+l .NCUI.S) J 
FOR J * s l STFR 1 UNTIL NROWS DO 
WRITE(LINE,F7»J.F0R l:= L+l STEP 1 iinTTL NCOLS nO AfJ.Il); 
ENnj 
wRlTFCLlNETSxTP 11)J 



- 38 - 
end prttranspj 

PROCEDURE PRTMATKlX(AiMRO*S»NCnLS»HEA[)lNli); 
VALUE NROWS»NCnLS»HEAOING» 
INTFGFR NRnwS#NCULS»HEAOliMf,{ 
REAL ARRAY AC 0,0]; 
BEGIN 

Integer fullr,~i w »i» j»l»k; 

FuLL^nwia nrhws - nrhws mud 10 • 91 

FOR Kl= 1 STFP 10 UNTIL FULLRU* On BEGIN 
L » » K ♦ tl 

IF HEADING »o THEN WR 1 TE f L I NF , HE AOa . K »L ) 
^RITE(LIMF»HEAD5,K»L) J 
FOR J|« 1 STEP 1 UNTIL NrOLS 
WRITF(LINE»F 10» J, Fur pa 



ELSE 



DO 

K STFP 
ENni 



1 UNTIL L Dfl At I. Jl )l 



IF NROvJS> L THEN hEGIn 
IF HFADING =0 THFN WR I TE ( L I NF * HE AD** • L+ 1 » NROrtS ) FLSE 
WRl TF( L I NE » HF A 05 »L + 1»NR0WS> I 
FOR Jl» 1 STFP 1 UNTIL NCULS DO 

WRITE(LINF»E7» J»FDR h» L+l STEP 1 UNTIL NROws DO A [ I # J ] ) I 
ENn» 
WRItECLInECSki^ M>» 
END PRTMATRIYJ 



END OF LINE PRINT ROUTINES 



PROCEDURE 
VALUE 
INTEGER 
FILE 
aEGlN 

larll out 

j 

t 

ARRAY 



EnITFlLE(FTL»M.N) j 

N J 

m»n ; 

FTL ; 



.EOFA 



A[0,2*M.0»Nl 
»dC0t2*M] 
.C[ Ot Ml 
# DC | 1 3 ] 

»FC0J2*H] 
I 



PQINTE R p 
»Q 

; 

INTEGER I 
.J 



• Index 
. Snih 

• T?M 

i 



t 

DEFINE 



G ( T * J ) 

»gEtc 

• DOTS 



A[R[I ]» J]# 

read<card»/»for 

BEGIN 



Il«l STEP 1 UNTIL N DO Ct II )# 



- 39 - 
r,|r rCl 
r>OTT£K((i(INDFX»*)»C.SNUM.N)l 

EN >* 



q Lb I N 
SCAN 
SCAN 
SCArj 
nUMr J 
rNO NtJM 
X . • • • • 
PRTCLnU 
VALUE 
TNTL^K 
4RRAY 
PUJJN 
I N T E ft 
CASE 
«F»j 

FO« 

for 
FnH 
fok 
Lno 

rNO On! 
' • • • • 

TNTt-bfK 
* I ft I hi 
LABEL 
RLAfH 
EUFF* 
SCAN 

SCAnn 



PPnCE^H^E MilMB: 



P ip UNT 
P jp+ 1 U 
Olp WHl 
slNTEftE 

r ; 



IL = "("J 

NTIL IN ALPHA; 

LE tm alpha; 
R(P.nrLTA(P».n ) l 



pE oiitter( a, u» I • j) ; 

I * j ; 

it. j ; 

a . r[o 1 ; 



E« K) 

I nr 

IN 
K|sl S 
K|»l S 

K t = 1 S 
K|=l S 

case s 

TEpJ 



TEP 1 UNTIL J Of) Al K 1 \ r* + HtKl 

TEP 1 UNT IL J |)U AlK 1 1 = *-r[K] 

TEP 1 UNTIL J DU ttlK1l=**R[K1 

TEP 1 UNTIL J U ALK1J=*/HtK] 
TATE -FNTJ 



prhCeuupf scannf r s 



Eoff j 
cApn. 14 

SrANNE 
PJPOINT 
E«: aSNU 



. (J t + 1 ) I E F F ; ; 1 ; 
p : = s n u -1 1 s r i 

FP(O) wHjLF = " 



h : = 



Ir 
ir 
Ir 
Ir 
IF 
Ir 
Ir 
Ir 
Tr 



"Anr> M 

w SijB" 

"MULT" 

"DT V" 

"(JyER" 

*DFL" 

"IMS'* 

" S C A L " 

M Ai)JU" 



THEN 

then 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 



FI.SF 
FLSE 
ELSE 
ELSE 
ELSE 
FLSE 
ELSE 
FLSF 
FLSE 



IF SN||M NEQ f AND SNUM NE^ 8 AN|) SNUM NEQ 9 ThEN 
INUEX I8MUMBI 
FND S C A N N r R j 
I . » •. t .•...*.... t .•••.*•...*... t . ..••••••■•• 



■i BEGIN FXECUTARLF EDITFILE rUUE 

% 

* t •♦.•.•...•.......••»•••.•••. # • . 

* 

% initialise 
t 

T ? M I ■ M ♦ M | 

F(]H I := 1 STEP 1 UNTIL M f)0 



- ko - 

RFArKFli./.rnp J * s l STEP l until n nu At I . j] ) Cfofa 1 1 ] J 

fofa: 

FpH I t s 1 STEP 1 UNTIL M DO «[I]i»I> 

* main program 

% 

WHILE TRUE DO CASE SCANNER UF 
BEGJN 

DoTSJ * O-ADD 

DOTS1 % 1-SUB 

DfiTSI x 2-HULT 

OnTS J x 3-DIV 

RFAD(CARD»F9»F0R Ij=1 STEP 1 UNTIL N DO G(INDEv»I))| * 4-OVER 
HrfilN % 5-DEL 

REPLACE POINIERChC iNnExl )BY POlNTEK< BUNDE X*l 1 > FOR 

T2M-iNnEX"l WORDS? 
MlaM-l ; 

End i 

BFGIN x 6-INS 

BC INDEX! |=M| = M+1 J 

FOR Ila m STEP "1 UNTIL TNDEX DO RClH'BU-ll* 
READ(CARn f F9,F0R J t »1 STEP 1 UNTIL N 00 A[M,.j))| 
FNni 
BEGIN 

READ(CARD./»FnR Ii= 1 STEP 1 UNTIL M 00 EtlDj 
FOR n= 1 STEP 1 UNTIL N nu 

FOR j:s 1 STEP 1 UNTIL M DU A[I»Jll» **E[JJJ 
ENDJ 
BEGIN 
REaD(CARD./.fUR Il« 1 STEP \ UNTIL M 00 ECU); 
FOR It= \ s Tf rP 1 UNTIL N DO 

for jj= 1 stfp 1 until m 00 a [ i , j ] i «**e [ i ] i 

end; 



go out j % 8-00NE 

eno case; 
% 

OUTj 

* 

% WRAP-UP 

% 

REwlNO(FlL) I 
FOR I:=l STEP 1 UNTIL M DO 

WRlTE(FlL»/»FnR J* = l STEP 1 UNTIL N DO r,CI»J))J 

End editfilej 

PROCEDURE ErgwORKS(It»JJ»KK»LL»MM)I 
V A LUE n.JJ#KK#LL»MM ; 

INTEGER II» JJ.KK»LL»MM I 

BEGIN 

REAL AHRAy ACO|133» MUtOjLLl. OtOiHIi Yt | Jjl » RCO t LL]» SHtOjMMl. 
pfO* I I # I JJJ» MtOJKKiOlKKl » Bt » LL • t MM] » SRC I K« , n I MM] « 

integer i. j, k, l» branch, year, columni 
boolean fullprinti 

REAL SUm» TdTALI 

LABEL F'INIShi 

% INTERPOLATION PROCEDURE FOR YEARS OTHER THAN '72 OR '76 



1+1 - 



procedure. Interpolate t 

RFAL f- i 

F := I fFup - 7?)/4; 

FOP I J = 1 STFP 1 UNTIL II 0) *Er,IN 

PEAU(Pit/.Fti R J : = 1 s te p l Until jj On P[t.JI>* 

PEAU(p2, /.FOR J := 1 STFP 1 UNTIL .J.J OH Y[ll)> 

FOR J ;s 1 STEP 1 UNTIL JJ !)f) Pll»,|] := P f T . J 1 + F * (yCjl - P r T • J ] ) ; 

end; 

F n p I l - I STEP 1 U„ TT L KK D, HE:, [ >M 

«EAU(M3t/,FnR J :s 1 STEP 1 UNTIL HK f)H M[J.Il)J 
PEAlH M4,/,F0R J ;= 1 STEP 1 UNTIL KK UN Y C J 1 ) ; 

tor J := 1 STEP 1 mmTIl kk no m[J,t] * " M£ Ml ♦ F * (yCJI - MrJ»T]); 

E n i ; 

FOP I J = 1 STEP 1 UNTIL LI. Oil rttr,IN 

PEAUCRl ,/, FOR J {= 1 STFP 1 UNTIL hm on BfT»Jl)J 

pEAUCP2»/,FUR J S= 1 STFP 1 UNTIL MM 00 SuMl)l 

FOR J 5s 1 STEP 1 UNTIL MM DO Mil,. J J := BfT.J] + F * ( 5 M C J 1 - Brl.Jl)? 

ENn 5 
READf 1U1 • /» FOR I 5 s 1 STEP 1 UNTIL LL 00 Mtjtll); 
REfiO( MU?» /»FUR I J = 1 STEP 1 UNTIL LI. 00 BlIUJ 

FOP I *= 1 STFP 1 UNTIL LL Oil HJtIJ. := Mii[I] + f * ( P t I 3 - ultllW 
EN >J 
% 

t DFFINE SPECIAL LISTS F'RLiJUENTLY USFO FOR OUTPUT 

% 

DEFINE SPECTALROWS - I := 2» 3. 5» b» 7. 4> P» \\, \i, u» iq, 2o. 21» 
?4» ?5» ?8» ?q* 30» 3l» Hx* 37» 38. U?» 43» 47. 4h. S n » bi» 5a. 
5 5 » 5 6 » SB» 5 a » 6 o » 6 i • 6 ? » 6 3* 6 5 • L I * » 

DEflNL SPECt ALCOLUMN^ = J := 2» 12» ?0» ?*• 3fi» ft3» ft7» M» 69. 7n» 71. 
8i» aii 94. PS. 1 >6» 11?. 116. 1?}. 136. 139. l a 3 • 153. 15M. 167. 
l6fl» \72» 177, 184, 4MA| 

* BEGIN PROCFSSlNfi H/ REAUlNr, IN HPT TON CARU AN,» DATA 

f?EAD(CARD./,YEAR»I»BRANCH)J 

IF I = T M EN EullPRINT I- FALSF ELSE FuLLPRTNT : = TRilF: 
IF YEAR dTR 1 900 THEN YEAR != YEAH - I 900 j 
IF YEAR = {7 THEN BFr,TN SEGJ 
rOR I := 1 STEP 1 unTIl II r )0 

RLA D (Pl ./.FUR J := 1 STEP 1 UNTIL JJ nO Pfl.J])) 
FUR I J= 1 STEP 1 UNTIL KK 00 

REAn(M3,/.F0R J s = 1 STEP 1 until KK no MrJ.in; 
rOR 1 := 1 STEP 1 UNTIL LL 00 

REAOCRl./.FrjR J := 1 STEP 1 UNTIL MM Oil R T 1 . J I ) * 
pEAU(MU1 » /.FOR I := 1 STEP 1 UNTIL LL 00 MUrl])J 

ENn 
ELSE IF YEAH = 76 MEN 4LGIN SET,: 
FOR 1 != 1 STEP l UNTIL II 00 

REAo(p2,/,FOR J :s 1 STEP 1 UNTIL JJ 1)0 Pd, JJ); 
rOR I != 1 STEP 1 UNTIL KK 00 

RLA|)(M4,/.F0R J t = 1 STEP 1 UNTIL KK 0(1 MTJ.lJu 
TOP i := 1 STEP 1 UNTIL LL 00 

REAn(R2./.F0R J l= 1 STEP 1 UNTIL MM Oil « T I . J J ) »* 
PEAU(mU2»/.F0R I ir 1 STEP 1 UNTIL LL on Milfl])? 



- U2 - 

END 
ELSE INTERPOLATE! 
IF BRANCH GTR 3 OR BRANCH LSS 1 THEN BEGIN 

WRITECLINE.ERRMFSSl ) I 
Gfl TO FINlSHI 
ENOJ 
IF BRANCH * 3 THEN RF AD ( CARD. /» COLUMN ) J 

IF BRAN C H * 3 ANn (COLUMN LSS 1 OR COLUMN GTR m H) ThEN BFqIN 

WRlTE(LlNE»ERRHESSl ) I 
GO TO FINISH; 
END! 



READ AND rtRlTE TITLE AND Q-VECTUR 



* 
% 

% 

READ(CARD»l3.A[*] ) i 
WrITE^LINEM3.A[*] ) J 
I I* 01 

thru ( ( n oiv an 

DU RFAD(CARD»FB»FUR J | = 1 STFP 1 UNTIL 8 DO Ot I I = 1*1 ] ) j 
READUARO. E«, THRU II MUD « DO Q [ T * » I* 1 1 > I 
WRITE(LINF.</ W ALTERNATIVE EXPENDITURE VEcTOR">)J 
WRITECLINE»HEAD1 )l 

TOTAL *» 0; 

FOP I »■ 1 STEP 1 UNTIL II DO BEr,IN 

TOTAL is TOTAL + Q[IIJ 

WRITE(LINF»F1» I»Q[T1 )l End; 
WRTTE<LINEts*<IP ll»F?»TOTAL)l 
* 
% F n RM jnjDUStRY ACTIVITY M A TRI* (OVERLAYING P) 



FOR I I* 1 STEP 1 UNTIL II DO 

FOR J »= t STEP 1 UNTIL JJ DO pCI.J] l« PtT.J] * Q t 1 3 * 
* 

* ROUTINE TO PRINT INDUSTRY ACTIVITY MATRIX AND ITS TRANSPOSE 

? 

IF FULLPRINT THEN BEGIN 

WRTTE(LINF»<«INDUSTRy ACTIVITY MATRIX">)j 
FOP X : = 1 STEP 10 UNTIL 41 DO BEGIN 

L » c K + 91 

WRI rE(LINF»HEAD4»K,L) I 

FOR J l« J STEP 1 UNTIL JJ 00 

WKITE(LINE»E10» J, FOR I »■ K S TEp 1 UNTIL L DO PC I . J 3 > J 

END! 
WRITE(LINE»HEAD4,51, \\)t 
FOP J »« 1 STEP 1 UNTIL JJ DO 

WRITE(LINF»F7»J.F0R I »« 51 STEP 1 UNTIL II DO PtI»J])| 
WRITECLINECSKIP 1 1)1 

WRITE(LINE»<"TRANSP0SE PRINT OF INDUSTRY ACTIVITY MATRlX«>)| 
FOR K «« 1 STEP 10 UNTIL 71 DO BEGIN 

L I" K ♦ 91 

wRITL(LINf,HEAD5.K.L)J 

FOR J la 1 STEP 1 UNTIL II DO 

WHITE(LINE»F10. J.FOR I t. K STEP 1 UNTIL L 00 PCj»IJM 

END! 
WRtTE(LinE»HEAD5»81» JJ) J 
FOR J *■ 1 STEP 1 UNTIL II DO 

WRlTL ( LlNF»FlOt J.FOR I la 81 STEP 1 UNTIL JJ DO P C J . 1 1 > I 



- U3 - 

WRITECLINFCSKIP 1 1 ) J 

EMHt 

3! 

* GENERATE FINAL DtMANQ ,/ECTOR AMU PRINT 

WRITE (LINF»<* GENERATED FINAL. DEMAND VECTnR">W W R I TF ( L I ME * >>V A D 1 ^ ; 
TOTAL l = Of 

F n p I : - l step 1 until jj On begin 

Y[ T J I' 0; 

for J := 1 step 1 unIIL II on yII] : s nil 4- prj.ii; 

•)RI TEC LINF.Fl • I» YT T 1 ) * 

TOTAL :s TOTAL + YfTJS EN) J 
WRITEILI^F.ISKIP 1 ]»F9, TOTAL); 
I 
I AGGREGATE FlNAl DEMAND VECTOR A N f) PRINT 

WRTTE(LINF»<" AGGREGATE FINAL DEmANO VECTOR"^; WR T TF ( L 1 nF_ * HF A 1 > ! 

Y t A o 1 J = Y t 8 1 1 ? 
y [ oi n : = y I r 7 J i 

Y[R2 ] is Y LR7 i ; 

Y [ A 3 1 '= V C R 4 ] J 
Y[ A4 1 != YlRM J 

Y [ KK 1 »= Y C J.I ] J 

TOTAL, 5= OJ 

Fn« I : s 1 $TEP 1 UNTTL *X 00 BEGIN 

TOTAL :- TOTAL + Y r T J J 

<"HI I L( LINF.Fl » I » YT T 1 > » F. i^J n J 

WRITEILINFISKIP i 1 .Fp, H1TAL) 5 
* 

* GENERATE TmF I NTER I NOUS 1 H Y FMPLOYMFNT MATKM 
< 

WRTTE(LINE»<" ROw ANn COLUMN SIMS Uf INTERINDUSTRY EMPLOYMENT MAtRIX">); 
WRITER LINE* MEADi) J 

total *= o; 

FOP I ?s 1 STEP 1 UNTTL *K On BtGlN 
SUM J s > 
FOR J »* 1 STEP 1 UNTIL KK DO BEGIN 

ML" I » JT := M[ I . U * Y[ T 1 J 
SUM j s SUM + 'U I . Jl J 
FND: 
WRHE(LINF»E1 * I . S U M W 
TOTAL is TOTAL + StlMI End; 
^RTTECLjNEtSPACE 2 ] # r2» TO T At ) I 
^RITECLlNE»uiEA02) J 

total *s o; 

FOP I » = 1 STEP 1 UNTIL KK 00 BEGIN 

sum := n; 

FOR J 1= 1 STEP 1 i |N I I L. «K fjO SUM »= SUM ♦ MtJ»Hl 
♦JRI Tt( LTNr .F 1 » I . SUM ) ; 

TOTAL Is TOTAL ♦ S 1 1 M J EN 01 

writeilinfCskIp ij»f?»total)j 
% 

«n u TlN|E TO p RlNT INTERINDUSTRY EMPL ( )YMFnT MATRIX AmO TRAN Sp oSE 
% 

IF FULLpRINt THEN «Fr,lN 

WRITE UINE»<" INTERINDUSTRY EMPLOYMENT MATRIX">)} 
Fpp K »» 1 STEP 10 UNTIL 71 00 BFblN 



- kk - 



L IM + 91 

WRI TL(LlNr,HEAD4»K,L) I 

FOR J la 1 STEP 1 UNTIL KK 00 

WK1TI(LTNE»F10» J.FOR I j= K STEP 1 UNTIL L 00 MCt»J3)1 

END* 
WRtTE^ l INE»HFAD4.81.KK)I 
FOP J >i 1 STEP 1 UNTIL KK DO 

WHITE(LINE»F7. J. FOR I l« 81 STLP 1 UNTIL KK 00 MU»J1)J 
WRTTEUlNEtsKIP 11)1 
% 

WRTTE(LINE»<" TRANSPOSE PRINT OF INTERINDUSTRY EMPLOYMENT MATRIX«>)| 
FOR K I* 1 STEP 10 UNTIL 71 DO BFGlN 
| i» K ♦ 91 

WRITL(LINF,HEAD«>»K,L>I 
FOR J t* 1 STEP 1 UNTIL KK DO 

WKITE ( LINE»F10» J.FOR I 1= K STLp 1 UNTIL L 00 MCj»l3,j 

END« 

w Rite il ine»heaD5#8i.kk); 

FOR J la 1 STEP 1 UNTIL KK DO 

WK1TE(LINE»F7. J»FOR I 1= Hi sTLp 1 UNTIL KK 00 MtJ»I])J 

wrtte<linfCskip 11)1 

END} 

AGGREGATE THE INTERINDUSTRY EMPLOYMENT MATRIX TO LL X KK 
(OVERLAYING ITSELF) ANn TAKE THE ROW AND COLUMN SlJMS 



1! 
% 

% 
% 

FOR 
Mt 
MC 
M[ 
MC 
Mt 
MC 
Mt 
Mt 
Mt 
Mt 
FO 
Mt 
Mt 
Mt 
Mt 
MC 
MC 
Mt 
Mt 
MC 

Mt 
Mt 
Mt 
Mt 
MC 
Mt 
Mt 
Mt 
Mt 
Mt 



is 1 STEP 1 UNTIL KK 00 BEGIN SEG| 

2] 1= MC Iill + MC I # 2 3 I 

J] I s MC I»33 + MC I » a 3 I 

1] 1= MCI. 23 •► MCI, 3]? 

5] is MCI»53 + MCI.63I 

6] |» MC 1.73 J 

7] i« MC I » 8 3 1 

8] I* MCI .93 + MCI. 10] i 

4] |» MCI. 53 ♦ Mt I»63 ♦ 

9] l» MC I»UJ ♦ MCl.123 

10] Is SUM li M[ I»133* 

J i. 14 STEP 1 UNTIL 6a 

il3 Is MC 1*14 3 ; 

1?] is MC 1.1531 

133 Is MC 1*16 3 ♦ M[ j.1731 

143 Is MCI. 163i 

153 Is MC I. 1731 

163 Is MCI. 183 ♦ MCI. 193; 

173 I, MCI. 183 i 

183 is mC 1.193) 

193 Is MC 1.203 ♦ MC I » 2 1 3 * 

203 is Mtl.223 ♦ MCI. 2331 

2 1 3 i B MC 1.243 ♦ MC 1.253 I 

223 is MCI. 2531 

233 is MC 1.243; 

243 1= H t I .263 t 

263 I- MCI. 273 ♦ MC I • 283 ♦ MC 1 . 29 3 | 

273 is MC I. 3031 

253 Is MCI. 263 ♦ MC I » 27 ] I 

283 is MCI. 313 I 

293 i. MC 1.3231 



MC 1.73 + MC 1.83 t 
+ MC I. 8531 

DU M[I, 10] is MCl.10] + MCI* Jl{ 



- k5 - 



1 t 


r»3oi 


>* [ 


fJi) 


"t 


['321 


M[ ' 


.J3J 


M[ 1 


r.34l 


Mf ] 


:»35l 


m( 


r»36l 


Mf 1 


.3 7 ] 


M t 


f »i8] 


r-0£ 


? J J 


K» [ 


[»39J 


m [ ; 


'.«01 


■<t 1 


'•MJ 


Ml 


'.4 2 1 


M [ 


[•43] 


* t ' 


.44] 


M [ 


-,45J 


u[ 


'.46] 


III [ 


r.47J 


M[ ! 


.4 8 1 


• [ 


[»5 ] 


M [ 


r»MJ 


M [ 


t'5?] 


(-1 [ 


[.t>^j 


■t [ 


[»ba] 


m[ 


[•49] 


"1 t 


[•55] 


►4 [ 


[.5 6 ] 


•1 C 


.57] 


it 


[•58] 


•I [ 


[»59] 


' ' t 


.601 


Mt 


[•Ml 


'i r 


[»6?j 


Ml 


r»*3J 


" [ 


f»b5] 


Mt ' 


[.661 


•;t 


r»64J 



• 5 

: s 
is 

1 _ 
t- 

is 



• 5 

t - 
is 

• £ 

i s 

t 

• • 

t 

• S 

« — 



: s 
i = 



M[ 

mi 

M[ 
M[ 
Mt 

M[ 
s M[ 
s SUM 
s *[ 

4 4 s 

M[ 
M[ 

mC 

Mt 

mt 

Mt 
Mt 
M[ 
M[ 
Mt 
Mt 
Mt 
Mt 
Mt 
Mt 
Mt 
M[ 
Mt 
Mt 
Mt 
Mt 
Mt 
Mt 
M[ 
Mt 
Mt 
Mt 



i s 

i 3 

t 5 



1.331 


1.35] 


T. 351 


1.361 


1.371 


1 . 3 n 


I. 381 


M + M 


1.43] 


TE p 1 


1.44 1 


I ,51 1 


1.381 


1.531 


1.591 


1.591 


I .601 


1.61 1 


1.621 


1.641 


I .651 


I .66] 


1.671 


I .661 


I .681 


1.50] 


1.691 


I .701 


1.721 


I. 721 


1.731 


1.751 


1.761 


1.771 


1.841 


1.781 


1.79] 


1.651 



+ m r. 1 . 3 4 1 ; 

+ M t I » 3 6 .1 J 



+ M t 1 . 3 8 1 J 
i 

r 1 . 3 9 1 + m r 1 , 4 ] + m r 1 , 4 u + m 1 1 , 4 2 1 ; 
i 

UNTIL 5? OU d J.38 1 i = <ri.3«] ♦ mTt.JIJ 



- Mf I » 39 1 - Ml I .40] j 

+ Mtl»54) + MII.S51 + MTT»56] + vitl.5^1 + MT I *5B ] I 

+ ML i,6nl + Ml 1 ,61 1 i 



+ M[ 1 .63] J 

♦ M t T » 6 n I 

+ M [ [ » 5 1 ] + nil. 54]J 

♦ M t I . 7 1 ] i 

+ M C I # 7" ^ ] + 1 1 I . f 4 1 + M t T » 7 5 J ♦ M t I , 7 6 1 + M T T • 7 7 1 j 

+ H[rJ4lJ 



WRTTF(L 

writer l 

WRITE(L 

total j 

for i J 

PC I J 

r R J 

•4 R I T E 

FOR SPE 

WRlTEtL 

WRTTECL 

TOTAL » 

FOR I i 

YtU 



ROUTIN 

Employ 

INF»<» AG 

INF»<" ( 

INE.HEAD2 

= OJ 

= 1 STEP 

» = Oj 

is 1 STE 
(LINf.F1. 
C I A L R H S 

ineCspace 

INE.MFAD3 

3 o; 

* 1 STEP 
t= 0; 



+ M[ 1.821 I 
* M t I » 8 3 1 J 

+ M t I » 6 6 1 J 

ErU 

F TO PRINT QljT AGGREGATED I MTE R I NOUSTR Y 
ME NT MATRIX A NO RUW A NO COLUMN SUMS 

GREGATEO INTFRINOUSTRY FMPLUYMLNT MATRIXh>); 

row anl) column su |V, s ov/Er sELFr T Eo rows) m >)? 
)i 

1 UNTIL L L U R E G I N 

P 1 U njT IL KK Do Rtl] J- Rfll + MfJ.iU 

I .Rt T i ) * End; 

OU TnTAL : = TOTAL + Rt Jl ; 

2]»F2»T0TAL)J 
) J 

1 UNTIL KK Ol) BEGIN 



- 1*6 - 



FOR SPECULROWS Dfl Y C I 3 «= Y[I] ♦ M C I • J 1 I 
wRlTE(LlNfFl» I • YC H>l 
TOTAL '« TOTAL ♦ Ytil; ENO* 

WRTTECLlNEtSKlP 1 I • F? » TOT AL ) I 



routine to prim aggregate interindustry employment matrix 



X 

% 
% 

if fullprint then begin 

WRTTEUINE'<"AGGREGATE interindustry employment matrix">>; 

FOR K »■ 1 STEP 10 UNTIL 71 DO BEGIN 

L I" K ♦ Ql 

wRlTt(LINF»HEAD4,K.L)f 

FOR J I* 1 STEP 1 UNTIL LL DO 

WHlTE(LTNE»F"10» J. FUR I 1 = K sTEp 1 UNTIL L DO MCl»J])J 

END! 
WRTTE(LINE»hEAD4»81, K k>; 
FOR J l« 1 STEP 1 UNTIL LL 00 

WRlTE(LlNE«F7»J.FnR I »■ 81 STEP 1 UNTIL KK 00 mU.J])J 
WRITECLINECSKIP 1]>J 
% 

WRITE(LINE»<»»AGGREGATE INTERINDUSTRY EMPLOYMENT TRANSPOSF "> ) J 
FOR K »« 1 STEP 10 UNTIL 51 DO BEGIN 

L I" K ♦ 9> 

wRlTE(LlNE»HEAD5»K.Ln 

FOR J l« 1 STEP 1 UNTIL KK DO 

WKITE(LINE»F10» J. FOR I Is K sTEp 1 UNTIL L 00 MU»I3)J 

emu i 
write(line»head5»61»ll)» 
fop j l« 1 step 1 until kk do 

WKlTE(LTNE#F7.J.FflR I »= 61 sTEp 1 UNTIL LL DO mCJ»I1)» 
WRITE(LINE[SKIP 11)1 

ENnj 
% 

% For branchfs 2 AND 3 modify THE M-MATRIX with mu 

% 
if branch gtr i then hEgin 

*/RI rE(LlNF»HEAD2)I 

TOTAL l» 01 

FOR 1 »* 1 STEP 1 UNTIL LL DO BEGIN 

SUM |. o» 

FUK J t* 1 STEP 1 UNTIL KK On BEGIN 
M[ J. 1] 1* Mt Jt I] * MUC I] I 
SUM ** SUM ♦ M[J»I3J ENn* 

WRlTE(L|NE»Fl. I»SUM)I 

TUlAL Is TOTAL ♦ SUM* END? 
wR!TE(LINFtSKlP 1 1 . F2» TOTAL ) I 



* 
% 



ROUTINE TO PRINT MODIFIED M-MAT^I* 



IF FULLPRINT THEN rEGIN 

WRITE ( LINE»<«M0DIFTE0 INTERINDUSTRY EMPLOYMENT MATRlX">)J 

FOR K «■ 1 STEP 10 UNTIL M 00 BEGIN 
L »■ K ♦ 91 

rtHiTE(LiNE»HEADA.K»L)l 
FUR J I. 1 STEP 1 UNTIL LL DO 

W RITE(LINE.F10.J»F0R I »» K STEP 1 UNTIL L DO mC I » J 3 ) I 

ENDl 



- hi - 

■*RI IE(LlNp.HFA04.rtl »KK) ! 

FOR J *= 1 STEP 1 UNTIL LL HO 

«H1TE(LT W E»F7. J»FOR I := *1 STEP 1 UNTIL KK DO M T T » J 1 ) ; 
wRI rt(LINFtSKlP 11)J 

./RI 1E(LINf ,<"TRANSPnSE PRI\|T Of HimiFlFO m-mATRIX m >) J 
rO» * 1= 1 STEP 10 UNTIL 51 0(J hEGIN 
I »* K + 9; 

WHlTEC LTME» HEAPS. K»L) I 
FUK J I- i STEP \ UNTIL KK On 

ARlTErLlNE.FlO, J'FOR I :* K STEP 1 UNTIL L DO m f J» T 1)1 

ENI)} 
RI rt(LTN F , HEADS, M ,LL)j 
rOR J {= 1 STEP I UNTIL KK 00 

WrtlTE(LpiE»F7, J,FOR I *= 61 STEp 1 UNTIL LL DO MtJ»I1>J 

• RI 1 1 (L iNrrSKlP in; 

FND J 

FNO 5 



% 

% 

CA^E ti K A N C H (IF BEGIN, 

% 

% 

% .-------- 

% 

% rtLclN ry USING TmE Mi) SECTOR TO MODIFY R 



SELECT HRANCm FOR RFMAlNTNG PROCFSSlNG 



BRANCH UnE 



PEf, IN SFGj 

wRlTElLlNEt SPACE 21»<****NEW R*\/FCTOR (MODIFIED RY Mli)«>)j 

^RTTECLlNE»nFADl ) * 

FOR I S= i STEP 1 UNTIL LL Do BEGIN 

R [ I J i = R r I 1 * M IT] J 

-RI I t- ( L I N r • F 1 » I # r r n ) J END I 
TOTAL J = 01 

FpR SRECULrd^S Du TnTAL ;= TOTAL + R C J J J 
WRITF(LINF[SKIP ll,F?tTOTAL)J 
% 

% FURM S(ALPHA)# OVERLAYING THE B-MATRIX 

F0° I := 1 STEP 1 UNTTL LL 00 

FOR J := J STEP 1 UNTIL MM DO R t I • J ] « = Rtll + BCI.J3J 

% RUuTlNF TO PRINT S(ALPHA) AND ITS TRANSPOSE 

% 

IF FULLPRINt THEN HFGJN 

wRTTE(LlNF»< w ***SfALPMA) MATRl X">) ; 

For K »s 1 STEP 10 UNTIL 171 DO AEGIN 

L » s K + Q J 

*RITE(LINF»HEADU,k,l)! 

TOR J 1= 1 STEP 1 UNTIL LL 00 

WKITE(LINE»F10» J.FUR I Is K sTEp 1 UNTIL L DO B[J,I])J 

End; 

WRjTElLlNE»HFADa,181.MM); 

FOR J » = 1 STEP 1 UNTIL LL 00 

WRlTE(LTNE»F7. J.rqR I « s 181 STEP 1 UNTIL MM DO w[J,j]); 
WRTTECLINECSKIP 11)J 
% 



- U8 - 

WRTTE(LINE»<"TRANSP0SE PRINT OF S ( ALPHA )">) J 
FOR K '■ 1 STEP 10 UNTIL 51 HO HEGlW 

L I" K ♦ 91 

WRlTECLlNf.HEADS.K.LJ* 

FOR J »■ i STEP l UNTIL MM 00 

WHITE(LTNE»F10. J.FOR I la K STEP I UNTIL L DO B[I»J])J 

EfMDJ 
WRITEUINE»hEAD5»61.lL)J 
FOP J » = 1 STEP 1 UNTIL MM 00 

WHITE(LTNE»F7. J#FO« I » a ^ 1 STLp 1 UNTIL LL DO BU»Jl)l 
WRITECLINECSKIP 11)1 

ENm 
X 
X 



calculate rowsums Over special columns, overlaying r 



WRITE(LINE»<«GENERATE0 INOUSTRY EMPLOYMENT VEcTOR">)j 

WRITE«LINF»hEAD1)I 

FOR I »» 1 STEP l UNTIL LL DO BEGIN 

RCI J I" Oj 

FOR SpEclALCOLUMNS 00 Rill l> R[I] + BtI#J]j 

WRITE(LINE»F1»I»RCI])» END* 
TOTAL »■ O; 

FOR SPE.CIALROWS oo TOTAL I* TOTAL ♦ R[J]I 
WRTTElLINEtSPACE 2 1 # </" TOTAL EMPLOYMENT ■ " , rl T , 5> # TOTAL ) 1 

write(l IN e.<"GeneRatfd occupational employment veCtoR">>» 
write(Line»hEadi )i 

X 

35 1 A K E COLUMNSUMS OVER SELECTED ROWS AND PRINT 



FOR I la 1 STEP 1 UNTIL MM DO BEGIN 

SHE U 1= OJ 

TOR SpEclALROWs DO SHCI1 »» SHt U ♦ BU.Ill 

WRITL(LINE»F1»I.SHCI] ); ENOJ 
TOTAL «» 01 

FOR SPLCIALCOLUMNS 00 TOTAL !■ TOTAL ♦ SHtJlj 
WRITElLINE'</ n TOTAL FMPLOYMENT « " ' Fl 7 . 5> » TOT AL) I 
END Of BRANCH ONEl 
I 
X 
X 
X 
X 
X 

X 
X 

X 

BEGIN SEGI 

FOR I l» 1 STEP 1 UNTIL KK DO FOR K |« 1 STEP 1 UNTIL MM DO 

s8[ 1»K] «» 01 

FOR SpEclALROWS DO SB[I,K] i> SBCI.K] ♦ Mf I . Jl * BtJ»K]l 

X KUuTlNE TO PRINT S(rETA) ANO TRANSPOSE 
X 

Ip FULLPRINJ THEN BEGIN 
WR!TECLINE»<"***S(BETA) MATRIX">) J 
FOR K »■ 1 «;TEP 10 UNTIL l^l DO BEGIN 
L t ■ K ♦ 91 



RRANCH TvO 



MULTIPLY M * B TO GET S(BETA)' OVERLAYING B. 

hit on l y special Rn*s to avoid double-counting. 



BEGIN 
ENDi 



- 1*9 - 



wRlTE(LlNE>HEArH.K.L>* 

rQR J » = 1 STEP 1 uNUL KK 00 

^KiTL(LTNF»F10» J. FOR I la K STEP 1 UNTIL L 00 SBT J* 1 1 ) ; 

F: '>* P * 
^RTTEi L I^E»MEADa, 181, MM); 

•MR J lr 1 STEP 1 UNTIL KK 00 

rtKiTt(LlNE»F7. jt rOH I 1= 181 STEP 1 UNTIL MM DO SBtj.U), 
*RTTEtLlNEC<;KlP 11)1 
r 

«RTTE tL INF » < M TRANSP0SE PRINT OF S(BETA)">)J 
:qp < ts 1 STEP 10 UNTIL 71 DO BEGIN 

I : s K ♦ g i 

hHI rL(LINf. HEA05.K.L) J 

FOR J Js t STEP 1 UNTIL MM 00 

WR1TL(LTNE.F10. J, FOR I {a K STEP 1 UNTIL L 00 SB[I»J1); 

End J 

nRtTE^-inF»HEAD5.81,KK)» 

'OP J »* 1 .STEP 1 UNTIL MM DO 

wKITE(LtnE»F7. J. FOR I «= HI sTLp 1 UNTIL KK DO SRtI»|3)j 

HRlTEtLlNElsKlP H ){ 

ENn$ 
i 

I CALCULATE VECTOP UF COLUMNSUMS AND PRINT 

% 

rfRTTE(LINF»<"TOTAL OCCUPATIONAL EMPLOYMENT GFNERATEO BYi«/>w 
FOP I Is 1 STEP 1 UNTIL MM DO BEGIN 

SHtiJ * = SRC1 .11 J 

FOR J : s ? STEP 1 UNTIL KK DO SH£ I l t= $H[Ii ♦ SB[J»I]| 

wRITL(LINf.F1» I.SHT I] )l END* 

TOTAL «s 0'' 

rOR SPLclALcHLUMNS 00 TOTAL »» Tf)TAL + SW[Jl> 
WRITECLINFCSPACE 4 ] . f2 • TUT AL ) t 
i 

* calculate and print vectoR of r^sums mver special c oLum^s > 

wrttecline»<»total industrial employment generated by»"/>)i 
t n t A I. » a o i 

for i ' = l step l until kk on beg in 
sum tx oj 

rOw SpEclALCOLUMNS OU SUM »■ SUM «■ SBtT.JIl 

WRI TL(LTNf»F1 » I. SUM)' 

TOTAL Is TOTAL ♦ SUM 1 ENO» 
WRITE(LINE»F?»T0TAL) I 
ENin 0^ RRAN^H TWO| 
% 

t branch three 

x ----------- 

% 

% PULL OuT A COLUMN VECTOR FROM r. OVERWRITING R» ANO PRINT IT 

I 

REr,lN SEGi 

WRTTE(LlNE»<«SELECTEn COLUMN VECTUK FROM R-MATR I X"> ) j 

WRTTElLINF'HFAOl )* 

FOR I »s 1 STEP 1 UNTIL LL DO BEGIN 

RC I J la B[I»COLUMN]J 

WRITE(LINE»F1»I»RC ID) 
ENHI 



- 50 - 

I 

% form S(H) matrix, overwriting m 

X 

FOP I !» 1 STEP 1 UNTTL KK DO FUR J ,« 1 STEP 1 UNTIL Ll 00 

MU.J] !* Mt I.J1 * Rt J]; 
% 
% RnUTINE TO PRIMT S(H) 

% 

Ip FULLPRINt THEN BEGIN 
WRTTEUlNElSKlP 11)| 
WRITEUINE»< H ***SCH) MATRIX">)| 
FOR K »« 1 STEP 10 UNTIL 51 00 rfFGlN 
L !■ K ♦ 91 

WRlTt(LlNF.HEA04.K.L)» 

FqR J Is i STEP 1 UNTIL KK Dfl 

WR1TE(LTNE»F10. J, FOR I Is K STEP 1 UNTIL L DO M[j»l])| 

Enoj 

WR!TE(LlNE»HEA0a»61tLL)l 

FOR J !■ 1 STEP 1 UNTIL KK DO 

WKITECLINE.F7. J.FOR I * 3 61 STEP 1 UNTIL LL DO MtJ»Il>J 
WRITECLINECSKIP ll)J 
% 

WR!TE(LINE><"TRANSP0$E PRINT OF S(H)«>); 
FOR K l» 1 STEP 10 UNTIL 71 nO BEGIN 

L t" K ♦ 91 

wRITE(LINf»HEAD5.K.L)I 

FOR J l» 1 STEP 1 UNTIL LL DO 

WRITE(LTNE»F10»J,F0R I !■ K sTEp 1 UNTIL L DO MC T • Jl ) > 

ENDI 
WRITE(LINE»HEAD5,81»KK)I 
FOR J la I STEP 1 UNTIL LL DO 

WKITE(LINE#F7.J»F0R I «■ «1 STEp 1 UNTIL KK Q0 mCI»J]>I 
WRITECLINECSKIP l])l 

ENni 
% 

% CUMPUTF COLUMNSllMS OF S(H)» OVERWRITING R» AND PRINT 

X 

WRITE(LINE»<«EMPL0YMFNT GENERATEO INi»>)| 
FOR I »■ 1 STEP 1 UNTIL LL DO 8Er,IN 
RtI3 l« H[1,I]| 

FOR J 1= 2 STEP 1 IJNTIL KK DO R[I] la R[Ij + M[J»Iil 
MRITE(LINF»F1»I»RCI])I ENOl 
% 

t SUM tHf columnsiims foR special columns 

% 

total »■ 01 

for sp^cIalrows d0 total i« tota, ♦ rcjh 

WRlTECLlNEtSPACE 4 ] .r2 .TOTAL ) I 

% 

% 

% 



COMPUTE ROWSUMS OVER SPECIAL COLUMNS* PRINT. AND TOTAL 



WRITE(LINE»<"EMPL0YMFNT GENERATED BYi">>| 
TOTAL *a 0> 

foR I *» i step i until kk o n begin 

SUM la 01 

FOR SpEclALROWS DO SUM j« SUM ♦ MtI»Jl| 

WRITE(LINf.F1» If SUM)I 



TOTAL 1= THTAl ♦ SUM* 
IRlTEtLl^E'F?* TOTAL) J 
[NH nK ^KANcH THREEt 
ENn; 
I i\l I S H i END ERGdDRKSj 
L J=b7; 
FUH Ii= 1 STEP 
REAQ(Pl 



- 51 - 



ENr>; 



isHt end ergwdrksj 
l : = b7 ; 

FUR Il= 1 STEP 1 UNTIL L 1)0 

REAfXPl ./.FOR Jla 1 STEP 1 UNTIL «9 On PCT»JDJ 

R L rt J N D ( P 1 ) J 

-/RlTE(LlNE»<«lNniiSTRY' ACTIVITY MATRlX«>)j 

PRTmATRI^( P»L»89,n) J 

wHl T E (LINF.< M TRA^PUSE nF INDUSTRY ACTIVITY MArRl*"*)* 

PKrTRANs p CP»L.89,0)* 

EUlTFlLFf P1»L»89) j 

RLWINOCPI ) '» 

FUR I := 1 STEP 1 UNTIL L UU 

RLADCPl./.FOR Jisl STEP 1 UNTIL 89 UU PfTfJ))* 

Rt*INr)(Pl ) i 

WRlTE(LiNE»<"Mnn T FIE n p matRi xm >^ 

PHTMATRT^(P'L» a 9.0) ; 

WRITE(LINE.<"TRANSP0SE OF P MAT»IX">); 

PRTTRANsPCP. L# H9.0) J 

EUlTFlLFf PI »L.89H 

RtW!ND(pt ) ; 

i-iiu t . - < cTm 1 iiixjtti i r»n 




- 52 - 



Appendix D 



Sample Input and Output 



- 53 - 



ljUT -ATA 
Ai K^Al I VF F x P FI ? J i » T T i J K K 7 t C F n h? 



| f H E >• 1 


"ALUF 




1 


10 3 3 5 1. 


ooo > ) 


2 


4 H 1 6 , 


MO 


3 


13 9';. 


noo !, o 


a 


754 6. 


)00 00 


5 


7209 4. 


0') 


6 


212 9 3. 


000 


7 


p a ool . 


ooyoo 


a 


67069, 


(V ) 


9 


;oi^4, 


000') 


1 


6402. 


00 


1 1 


7 063. 


0000 J 


*<> 


3 u >ft7. 


00 0^0 


1 3 


6 2 8 <» , 


ooooo 


^ a 


2579a, 


00 00 


15 


2 7 4 4 rt . 


ooooo 


i 6 


59 6. 


00 I/O 


1 7 


-6500. 


OOOO'j 


1 6 


4 6 0, 


ooooo 


|9 


3 906. 


ooouo 


3 


797, 


ooooo 


?1 


3 « 3 4 , 


00"0 


52 


14176. 


oonO't 


?3 


19 3 9 1, 


ly 


>4 


3/47, 


1 o o o 


?5 


9299, 


ooooo 


?6 


313, 


>oo Q0 


r>7 


28 2, 


o oooo 


?d 


i , 


ooo >0 


?9 


( i ( 


ooooo 


10 


137ft, 


1000 


11 


i7r, 


, 000 WO 


^2 


29 0, 


, ooooo 


13 


4 19 3 7, 


, i M) 


14 


7 06, 


,000 o 


}5 


907 


, o o o ' > o 


^6 


<\S.n\ 


, OOO'n) 


17 


173 


, ooooo 


18 


3 4 


,000.10 


19 


66 7 


. )oooo 


'4 


154ft 


,00 00 


al 


«79 


,0001-0 


a 2 


1 2 


,00000 


ft 3 


22 00 


, OOOOO 


a a 


3 4 OH 


,00000 


a 5 


2250 


,00000 


/i 6 


439 


,000 


a 7 





, ooooo 


-i 8 


1 47a 


i ooooo 


/.i 9 


50M 


,00 00 


^0 


3 24 8 


.Oooo 


51 


9112 


.ooooo 


52 


5 09? 


. ooooo 



S3 

S4 

S5 
S6 

57 
S8 
TOTAL 



6rt?4 « OOOOO 
5ft 7 . OOOOO 
7 70. OOOOO 

1 3 5 , . i • ' • 

4 6ft 1 . OooOu 

1 24 1 5.00000 

77450V, oooo.j 



- 5h - 
Row A No cUl.UMN SUMS OF HTERlNUiliiTRY EMPLOY '4F NT i-IAft-lX 



COt U^N CilLOMNSH'-i 

1 789749. /757? 

2 537353.973 08 

3 35981.5^709 

4 1 0166. ^1 91 2 

5 -1)64.87117 

6 1 V l ? . a^S^'i 

7 30 317.41706 
6 -5686.17800 
9 85048,71956 

10 12 6 9,47*14 

11 i965798. 7770 8 
i2 3743l3.86?~43 

13 5 6285. 9958 

1 4 5320377.8847 
i5 325388,38505 
16 105752.50661 
\7 I3l263.56-ib8 
18 ?564094,45?76 
i9 777 69 7.53723 
?0 570368.05696 
71 1091.87742 
?2 595306. 9767t> 
7 3 77540 3. 17 '4 27 
?4 202781. H6626 

75 16043.36638 
?6 4940 47.14617 
7 7 161160,03176 

78 1 1468. 3 ^753 

79 6314 3.3 7544 
3 3010 3.06482 
71 651283. Hi303 

32 286463. 75600 

33 ?65.9q*43 

34 475570.09705 

35 50268. i«86a 

76 534094. 5347 3 

37 172235. 51539 

38 108967. 1H843 

39 7751.4^735 

40 852897. 7io98 

41 78696.0407ft 

42 737967.4 7212 

43 118575.01038 

44 1 75247, 3 0404 

45 279396.6n373 

46 168259.047b? 
t\7 287759,33740 

48 306600.47697 

49 252713.35514 

50 21790.75311 

51 527287,lo543 

52 789403,61609 

53 419723.14 705 

54 477628.05^99 



55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 
TOTAL 



ROW 

1 

2 

3 

4 

5 

6 

7 

8 

9 
10 
11 
12 
13 

1* 
15 
16 
\1 

18 
<9 

20 
21 
72 



2 1 1 1 9 9 , 4 Q 9 1 2 

921026.77039 

104564.96 3 73 

90010,40701 

757376 3. 8^5 3 3 

1 045679.179 >5 
5279?2.6?51 ) 
299466.7770) 
73677?. 8 8 6 2 2 
55770O.8 7J46 
,6 4 4774.58670 
630635. 89«V0 
2731. 7644 
1 2 1 1 6 . 4 7 1 3 
1*?44997. 38804 
7495356.68854 
2445661 ,58?03 
3192606,44809 
1112776.6 4 438 
95040.5?720 
828031.42501 
7 4 8191.33627 
7640221 .48395 
742704. 6 « 1 5 
96315,54364 
35030. 16712 
34286.15^20 
2023994. 3o7^0 
l o96654,975i? 
7547412.4^765 
7078297.53629 
84032529.14160 



ROWSUM 

1 689254,97547- 

1 839631 ,487/1 

1 19899. l 7653 

7 3556?. 099 4 

27595.21607 

58178,5780b 

123171,3782 ) 

786566.31612 

1 15260.33*29 

13001,0990 7 

1050342.33751 

1489505. 79- , 29 

736054.50-^93 

1082099,26771 

76622. 19307 

564217.45394 

1 17455. 35?75 

1586577. « 109 

1 78935.59661 

642782.66110 

33679.64879 

370987.58707 



- 55 - 



?3 


1610 / . 


»S991 


?ft 


487571 . 


3?-)9 3 


?b 


?25252. 


*1 •- ft « 1 


?6 


n 6 ft 9 3 1 . 


MMH 


77 


ftf ftopo. 


hK/l 7 


•>« 


?26722. 


ft 9 7 i ft 


■>9 


~>7b?7 ?. 


^V^ 2 


80 


6 9 7 ft 8 . 


1 1 789 


11 


1 ft7b75. 


6 3 2 2 


<2 


5 9 n 9 ft H . 


find 


73 


? 9 ft a b . 


7a ao ) 


1ft 


31b7b6. 


A T 7ft 7 


15 


1 9}b31 . 


8 M In 


16 


5??069 . 


^ 1 7 3 b 


\7 


8 9 5 5 ? ft . 


87708 


?8 


ft 1 9 ' i 9 6 , 


I 1 3 « 1 


^9 


781 b1 . 


"1*76 9 


ao 


5280 35. 


ft * 3 f 1 


• 1 


3561 18. 


8 ,1-3? 


ft 2 


ft 7 1 9?8, 


>? '32 


ft3 


11 1551 , 


4M.U 


ft ft 


15320), 


naft 8 9 


ft 5 


i QbftSw , 


59 3 5 7 


•j b 


9 8 ? ft 8 , 


7 7 Q ft ft 


1:7 


15977^, 


8 -» 8 b * 


&8 


21 7228, 


^ U •■( d 7 


4 9 


? 9 7 2 ft 1 


3„-,ft7 


SO 


2515*1 , 


27 9 9 1 


51 


26 70 2. 


ft -M'l 7 


"52 


1 ft 3 3 6 , 


, ft ^ /1 7 8 


r ?3 


ft20252. 


, hS 1 7 7 


*ft 


1 ft3bft?< 


. 1 5 1 5 2 


55 


? 1 9 ft 8 7 , 


, ft ? \ ft 


-b 


fihbft9n 


, ft 7 'v j 9 


^7 


3 8 ft ft 8 , 


, 9 <^ ? ft } 


58 


11887 1 


, ft 9 *. i ft 


S9 


8 7 61 3 


, S 7 7 9 3 


AO 


693153 


, 3 7 9 3 3 


M 


J 1 2 8 8 2 


.ft 1 3' 1 


ft 2 


31 ft ft 3 3 


, ft ft '1 


^3 


1610 3 8 


, ft M ft 3 1 


ft ft 


a 7 1 5 5 9 


, 5^768 


ft5 


? ft ft 1 5 b *> 


.23308 


*6 


9 ii ft 8 6 6 


, 58 ft ( 6 


ft7 


128 loft 


. 7 1 ft 7 3 


>, a 


6 72 7 00 


, 8 6 9 ft 9 


49 


1 7 n 9 8 2 S 8 


. 375. '0 


^0 


1 o ft 5 8 o 7 


, b r , 5?) 9 


71 


871 3bb 


, ftf, 3 i 


72 


1 1 1 7ft 11 


. 5 7 1 9 2 


73 


.V '"> ft 4 2 1 


• 97 7ft5 


ra 


1 01 7 


, ft ft 1 5 !) 


7b 


Sft 7ftV^ 


. ?3fl-->l 


7ft 


H239:!^ 


. ftQS 7 3 


77 


ft 2 5 6 8 8 3 


. <m .'2 2 


76 


7 4 ft 2 8 8 


. 5 /1 ft 6 3 


79 


5 30 9 9 1 


. 7 7 ft 3 9 



«0 
81 
82 
83 
8ft 
85 
TOTAL 



. 

6. 000 00 

?02399ft . 3^7bft 

1009665ft ,9?S3? 

?5ft7ftl2.ft^76b 

?078297, 5^629 

8ft03252^.1ftOft7 



- 56 - 



(»E*'L'*AT Ei; INDUSTRY E '' >P U) t ii-L H r Vfc.ri.JK 



FL^MT N 1 


VAI.UF 




1 


t\ 7 ft 3 4 H 2 . 


0?'| ; ).'i 


2 


« 0*308 iH, 


7A«i79 


3 


?i2^ ; i. 


'j'l'i' 


a 


ASh77 ■:, 


amis ■) 


s 


9 ft 7 (S 8 , 


7? M 





1 ?51 79, 


1? iftft 


r 


? 9 9 b 'i 7 . 


7 7 /a 


H 


mS^'i, 


ss vm 


q 


S1V1?7h, 


■ i ' ! -, '4 «-> 


1 o 


1 q -> a S a i 3 , 


b h ft » 


1 l 


1 i j 9 a ft a . 


S s ft b *^ 


i 2 


ft 3 ft 7 v , 


19 7 7 1 


< 3 


ftbO&bft 


, At) ^9rt 


1 a 


S a 6 2 1 9 


, 9 j 7 1 ft 


15 


1 4 '4 ,') A 


,0ft -T "i 


i 6 


1 7 7 9 5 S «v , 


ft >?M 


1 7 


y =j 6 9 6 i\ S , 


7?i 3 3 


,8 


1 7o9 if 


• 1 7 r ", '1'4 


1 9 


t- 3 04 ft? 


, ft 7 ? ft 1 


9() 


Sr,69-*1 


f ft ^ ft 2 i 


?1 


7 4 9 9 1 w 


, ft o g 9 ft 


7? 


? a 7 2 9 2 


. b 1 i 3 1 


?3 


S ! 2 b 3 9 


,7m , 4 o 


3<J 


131 }9?f 


, 3 f > V> ' 


?b 


1 }ftl 73? 


, 9 A ft 1 4 


7 6 


9 9 1 9 9 9 


I "•* ! i II (' 


■>7 


7 9 f i S 


, ) o 3 9 a 


38 


l 6 9 b ft 9 


, 9/| -TV 


-9 


S 4 ft 9 ? > 


, 9 T y -V v 


70 


ISA 1 * i, 


.07 -if 3 


M 


ft ft 3 b 7 T 


, S m 9 ' . i 


*2 


1 7 b «♦ 9 1 


, a 7 >-. u 7 


^3 


<4ftft M? 


, Si j 29 


74 


1 3 i9ft<>b 


,471M 


?b 


7 3 a b ft v 


. 7 ft i 7 3 


76 


3 7 b ! J 9 1 


, . ? | ft ft 


\7 


1 7 a 7 3 7 3 


, r-; - -i a -y 


xn 


I'JwH^m 


. ^ 7 07 


79 


1 b 1 1 9 3 


. 1 -5 '1 3 ! 


a o 


?49 ; W. 


. a 7 *..;■:! 


'H 


1 s ^ ft a 7 'i 


. ' o >• > b 


•12 


1 1 9 3 S h 


, 1 ,7 ft '4 I 


'i 3 


1 h '911? 


, S 'i ft ft ft 


/<4 


7 9 9 1 i ft 


, a > / ? ft i 


ab 


ft :>51 22 


. 3 ) a . b 


ift 


a 1 4 1 b 1 


. i S 7 4 S. 


a 7 


'4 u Ml h S 


. i 1 .' ) h '■ j ) 


,18 


a H 1 b S ft 


. 1 M 7 ( , 


.'.i9 


S ? 1 3 3 m ^ 


. '■ 3 o-> 


SO 


1 !-i 7 a ^ * •( 


. ^-a«ftb 


si 


q 7 n J h ft 


, '•. .'i ■', / -i 


S2 


11 i ft 3 1 


.--MSI 


* * 


^S^TJi 


, 7 i f> «v 


su 


1 1 a 9 b 1 1 


. 2'ift |V 



bb 
S6 
S7 
s« 
S9 
ftO 
ftl 
^2 
ft3 
ft 4 
ftb 
ft6 



17ft2ft L 5V/^.ss-.a 
77bft9Sa,90H \ > 

10712^95. 1 5 ft ft n 
I^Hlbftl ,?<v) 3 2 

?7h i a i a', i vi'i v 

S44 7 00 • ftM*»9/4 

7 6 ft 9 4 * , ■» « S V j 

1 9 S » ft 7 a i . a s ', 7 a 

1789177. 91711 

4 90 1 )ft : ^ . in h ha 

p ft a b 3 2 7 . a s si a 

?b>9in7.37. b 



TOTAL tMPLUvMPMT = 



ft 1 «ft 9 i 1 7 . a > 



UNCLASSIFIED 



Security Classification 



DOCUMENT CONTROL DATA R&D 

(Security claeelllcatlon ol title, body of abatrmet and indaarng annotation mum I he anta re d erhen th» overall report la elaaalUad) 



t. ORIGINATING ACTIVITY (Corpora to author) 



Center for Advanced Computation 
University of Illinois at Urbana-Champaign 
Urbana, Illinois 6l801 



ie. REPORT SECURITY CLASSIFICATION 

UNCLASSIFIED 



2b. CROUP 



3. REPORT TITLE 

ECONOMIC RESEARCH GROUP WORKING PAPER NO. 5 The CAC Economic and Manpower 
Forecasting Model: Documentation and User's Guide 



4. descriptive Norma (Type ol raport and rnelualra dataa) 

Research Report 



5 author(S) (Flrat nmare. middle initial, laat name) 



Roger H. Bezdek, R. Michael Lefler, Albert L. Meyers, Janet H. Spoonamore 



8 REPORT DATE 



October 15, 1971 



74). TOTAL NO. OF PACES 



J&3. 



76. NO. OF REFS 



ma. CONTRACT OR CRANT NO. 

DAHC01+ 72-C-OOOl 
b. PROJEC T NO. 

ARPA Order 1899 



M. ORIGINATOR'S REPORT NUMSER(3» 



CAC Document No. 15 



•b. OTHER REPORT NOISi (Any other number* that may bo aaalgnad 
thla report) 



10. DISTRIBUTION STATEMENT 



Copies may be obtained from the address given in (l) above, 
Approved for public release; distribution unlimited. 



II. SUPPLEMENTARY NOTES 



None 



12. SPONSORING MILITARY ACTIVITY 



U.S. Army Research Office-Durham 

Duke Station 

Durham, North Carolina 



13. ABSTRACT 



This paper presents the preliminary documentation and user's guide for 
the Center for Advanced Computation economic and manpower forecasting model. 
Section I gives introductory and background information on the development of 
the model and presents a brief but rigorous theoretical basis for the on-line 
system. Section II gives a description of the basic MANPOWER /DEMAND program 
indicating the function of the program, the detailed workings of the system option! 
and the language in which it is written. Appendices contain specifications of 
the data tapes and disc files involved, flow charts of the computer processes, 
and sample data input and output . 



DD ,?.?..! 4 73 



UNCLASSIFIED 

Security Classification 



UNCLASSIFIED 



Security Classification 



KEY WO KOI 



KOLE WT 



Applications 

Social and Behavioral Sciences 

Economics 



UNCLASSIFIED 



Security Classification