Skip to main content

Full text of "Vector analysis and the theory of relativity"

See other formats





BOUGHT WITH THE INCOME OF THE 

SAGE ENDOWMENT FUND 

THE GIFT OF 

HENRY W. SAGE 

1891 



Cornell University Library 
QC 6.M97 

Vector analysis and the theory of relati 




3 1924 001 076 268 




Cornell University 
Library 



The original of tiiis book is in 
tine Cornell University Library. 

There are no known copyright restrictions in 
the United States on the use of the text. 



http://www.archive.org/details/cu31924001076268 



VECTOR ANALYSIS 

AND THE 

THEORY OF RELATIVITY 



BY 

FRANCIS D. MURNAGHAN, M.A. (N.U.I.), PH.D. 
Associate Professor of Applied Mathematics, Johns Hopl^ins University. 



BALTIMORE 

THE JOHNS HOPKINS PRESS 

1922 

H 



U lil V I- !^J: I -t Y 



P\b7-O^^^G 



PRESS OP 

THE NEW EFIA PRINTINS COMPANY 

LANCASTER. FA. 



One of the most striking effects of the publication of Ein- 
stein's papers on generalized relativity and of the discussions 
which arose in connection with the subsequent astronomical 
observations was to make students of physics renew their study 
of mathematics. At first they attempted to learn simply the 
technique, but soon there was a demand to understand more; 
real mathematical insight was sought. Unfortunately there 
were no books available, not even papers. 

Dr. Murnaghan's little book is a most successful attempt to 
supply what is a definite need. Every physicist can read it with 
profit. He will learn the meaning of a vector for the first time. 
He will learn methods which are available for every field of 
mathematical physics. He will see which of the processes used 
by Einstein and others are strictly mathematical and which are 
physical. Every chapter is illuminating, and the treatment of 
the subject is that of a student of mathematics and is not de- 
veloped ad hoc. The extension of siu-face and line integrals is 
most interesting for physicists and the discussion of the space 
relations in a four-dimensional geometry is one most needed. 
This is specially true concerning the case of point-symmetry 
which forms the basis of Einstein's formulae for gravitation as 
applied to the solar system. 

I feel personally that I owe to this book a great debt. I have 

read it with care and shall read it again. It has given me a 

definiteness of understanding which I never had before, and a 

vision of a field of knowledge which before was remote. 

Joseph S. Ames. 
Johns Hopkins Univbrsitt, 
June 1, 1921. 



CONTENTS 



PAGE 



Introduction 1 

CHAPTER ONE 
The Tensor Concept 

Spreads in Space of n Dimensions 4 

Integral over a Spread of One Dimension 6 

Integral over a Spread of Two or More Dimensions 7 

Transformation of Coordinates 11 

Covariant Tensors of Arbitrary Rank 15 

Contravariant Tensors 16 

Mixed Tensors 17 

Invariants ' 18 

CHAPTER TWO 
The Algebra of Tensors 

The Rule of Linear Combination 21 

The Rule of Interchange of Order of Components 22 

The Simple Tensor Product 24 

The Outer Product of Two Tensors of Rank One 25 

The Rule of Composition or Inner Multiplication 25 

Converse of the Rule of Composition 27 

Applications of the Four Rules 29 

Stokes' Generalised Lemma 33 

Examples 34 

The Curl of a Covariant Tensor of Rank One 34 

Integral of an "Exact Differential" 35 

Maxwell's Electromagnetic Potential 37 

Lorentz's Retarded Potential 38 

V 



VI CONTENTS 

PAGE 

CHAPTER THREE 

The MetIrical Concept 

The Metrical Idea in Geometry 40 

The Reciprocal Quadratic Differential Form 41 

The Transformation of the Determinant of the Form 43 

The Invariant of Space-Content 46 

The Divergence of a Contravariant Tensor of Rank One. . . 47 

The Magnitude of a Covariant Tensor of Rank One 48 

The First and Second Differential Parameters 48 

General Orthogonal Coordinates 49 

The Special or Restricted Vector Analysis 50 

Four-Vectors and Six- Vectors 51 

Reciprocal Relationship between Alternating Tensors 52 

Reciprocal Six- Vectors 53 

CHAPTER FOUR 
The Resolution op Tensors 

The Unit Direction Tensor 54 

Angle between Two Curves 55 

Coordinate Lines 56 

Orthogonal Coordinates 57 

Resolution of a Covariant Tensor of Rank One 57 

Coordinate Spreads oin—1 Dimensions 58 

The Normal Direction-Tensor to a Spread F„_i 59 

The Resolution of a Contravariant Tensor of Rank One ... 63 

Apphcation to General Orthogonal Coordinates 64 

Oblique Cartesian Coordinates 65 

Genesis of the Term "Tensor" 66 

General Statement of Green's Fundamental Lemma 67 

Normal and Directional Derivatives 68 

The Direction of a Covariant Tensor of Rank One 68 

The Invariant Element of Content of a Spread V^-i 70 

The Mixed Differential Parameter 70 



CONTENTS vii 



PAGE 



Uniqueness Theorems in Mathematical Physics 71 

Application to Maxwell's Equations 72 

The Electromagnetic Covariant Tensor-Potential 73 

The Current Contra variant Tensor 74 

Maxwell's Equation in General Curvilinear Coordinates. ... 76 

The Constitutive Relation B = /j-H 77 

CHAPTER FIVE 
Integral Invariants and Moving Circuits 

Definition of an Integral Invariant 79 

Relative Integral Invariants 80 

General Criterion of Invariance 81 

Faraday's Law for a Moving Circuit 82 

The Mechanical-Force Covariant Tensor 85 

CHAPTER SIX 
The Absolute Differential Calculus 

The Calculus of Variations 86 

Geodesies of a Metrical Space 88 

The Christoffel Three-Index Symbols 89 

Covariant Differentiation 90 

Applications 94 

The Riemann Four-Index Symbols 95 

Einstein's Covariant Gravitational Tensor 95 

Gaussian Curvature 95 

Definition of Euclidean Space 99 

Riemann's Definition of Curvature 100 

The Differential Character of the Definitions 101 

CHAPTER SEVEN 
Problems in Relativity 

The Einstein Concept of a Physical Space 102 

The Single Gravitating Center (Statical) 103 



Vlll 



CONTENTS 



Hypotheses of Symmetry 

The Einstein-Schwarzschild Metrical Form. . 

Einstein's Law of Inertia 

Modification of the Newtonian Law of Gravitation 

The Motion of Mercury's Perihelion 

The Law of Light-Propagation 

Minimal Geodesies 

The Fermat-Huyghen's Principle of Least Time. . . 
Deviation of a Ray of Light which Grazes the Sun 



PAGE 

105 
109 
110 
113 
118 
118 
119 
121 
125 



PREFACE. 

This monograph is the outcome of a short course of lectures 
delivered, during the summer of 1920, to members of the graduate 
department of mathematics of The Johns Hopkins University. 
Considerations of space have made it somewhat condensed in 
form, but it is hoped that the mode of presentation is suflBciently 
novel to avoid some of the difficulties of the subject. It is our 
opinion that it is to the physicist, rather than to the mathe- 
matician, that we must look for the conquest of the secrets of 
nature and so it is to the physicist that this little book is 
addressed. The progress in both subjects during the last half 
century has been so remarkable that we cannot hope for investi- 
gators like Kelvin and Helmholtz who are equally masters of 
either. But this makes it, all the more, the pleasure and duty 
of the mathematician to adapt his powerful methods to the 
needs of the physicist and especially to explain these methods 
in a manner intelligible to any one well grounded in Algebra 
and Calculus. 

The rapid increase in the number of text books in mathematics 
has created a problem of selection. We have tried to confine 
our references to a few good treatises which should be accessible 
to every student of mathematics. 

Ch. V should be omitted on a first reading. In fact it is 
quite independent of the rest of the book and will be of interest 
mainly to students of Hydrodynamics and Theoretical Elec- 
tricity. There are several paragraphs in Ch. IV which may be 
passed over by those interested mainly in the application of the 
theory to the problems of relativity. For these we may be 
permitted to suggest, before taking up the subject matter of 
Chap. VII, a reference to an essay "The Quest of the Absolute" 



X PREFACE 

which appeared in the Scientific American Monthly, March 
(1921), and was reprinted in the book "Relativity and Gravita- 
tion," * Munn & Co. (1921). It may be useful to add the well- 
known advice of the French physicist, Arago — "When in 
difficulty, read on." 

The manuscript of the book was sent to the printer in June, 
1921, and its delay in publication has been due to difficulties in 
the printing business. In the meantime several important papers 
bearing on the Theory of Relativity have appeared; it will be 
sufficient to refer the reader to some significant notes by Painlev6 
in the Comptes Rendus of this year (1922). We are under a 
debt of gratitude to Dr. J. S. Ames for valuable advice and en- 
livening interest. And, in conclusion, we must thank the officials 
of The Johns Hopkins Press for their painstaking care in this 

rather difficult piece of printing. 

F. D. M. 

June, 1922. 
* Edited by J. Malcolm Bird. 



VECTOR ANALYSIS AND THE THEORY OF 
RELATIVITY 



INTRODUCTION 

Vector Analysis owes its origin to the German mathematicians 
Mobius* and Grassmannf and their contemporary Sir William 
Hamilton. J Since its introduction it has had a rather checkered 
career and it is only within comparatively recent times that it 
has become an integral part of any com-se in Theoretical Physics. 
It is well known that the subject was regarded with disfavor 
by many able physicists, among whom Sir William Thomson, 
afterwards Lord Kelvin, was probably the most prominent. 
The reason for this is, in our opinion, not hard to seek. Grass- 
mann, who undoubtedly had a much clearer conception of the 
generality and power of his methods than most of his followers, 
expounded the subject in a very abstract manner in order not 
to lose this generality. Naturally enough his writings attracted 
little attention and when, some forty years later, Heaviside§ and 
others were earnestly trying to popularize the method they 
swung to the other extreme and, in attempting to give an 
intuitive definition of what a vector is, failed to convey a clear 
and comprehensive idea. Roughly speaking their definition was 

* Mobius, A. F., Der barycentrische Calcul (1827). Werke, Bd. 1, Leipzig 
(1885). 

t Grassmann, H., Ausdehnungslehre (1844). Werke, Bd. 1, Leipzig (1894). 
Grassmann was particularly interested in the operations he could perform 
upon his " vectors " and not in the transformations of the components of 
these which occur when a change of "basis" or coordinate system is made. 
In this respect the point of view of his work will be found very different from 
that adopted here. 

% Hamilton, W., Elements of Quaternions. Dublin Univ. Press (1899). 

§ Heaviside, O., Ekctronmgnetic Theory, Vol. 1, Ch. 3. London (1893). 

1 



2 VECTOR ANALYSIS AND RELATIVITY 

that " a vector is a quantity which, in addition to the quality 
of having, magnitude, has that of direction." The fault with 
this definition is, of course, that it fails to explain just what is 
meant by " having direction." That this idea requires ex- 
planation is clear when we realize that the simple operation of 
rotating a body around a definite line through a definite angle — • 
which, a priori, " has direction " in the same sense that an 
angular velocity has — is not a vector whilst an angular velocity 
is. Then, again, endless trouble arises when vectors are intro- 
duced in a manner making it diflicult to see their " direction " 
and even today some of the better text-books on the subject 
speak of " symbolic vectors " such as gradient, curl, etc., as 
if they are in any way different from other vectors. In 1901 
Ricci and Levi-Civita* published an account of their investiga- 
tions of " The Absolute Differential Calculus " — a kind of dif- 
ferentiation of vectors. This paper was written in a very con- 
densed form and did not at once attract the notice of students 
of Theoretical Physics. It was only in 1916 when Einstein f 
called attention to the usefulness of the results in that paper 
that it received adequate recognition. However it seems to be 
the common opinion that the methods there dealt with (and 
often referred to as the " mathematics of relativity ") are 
extremely difficult. It is the purpose of this account to lessen 
this difficulty by treating several points in a more elementary 
and natural manner. For example, in an interesting introduc- 
tion to their paper, Ricci and Levi-Civita point out, as an instance 
of the power of their methods, that they can obtain easily, 
by means of their absolute differentiation, the transformation 
of Laplace's differential operator A2 — which in Cartesian co- 
ordinates takes the form 

d^ 3^ d^ 

A2 = — + — -I- — 

5x^ dy^ dz^ 

* Ricci, G., and Lem-Civita, T. Methodes de Cakul diffirentiel absolu. 
Math. Annalen, Bd. 54, p. 125 (1901). 

^Einstein, A., Die Grundlage der allgemeinen Relativitdtstheorie. Annalen 
der Physik, Bd. 49, p. 169 (1916). 



VECTOR ANALYSIS AND RELATIVITY 3 

— into any curvilinear coordinates whatsoever. This trans- 
formation was first obtained by Jacobi,* and, while expressing 
admiration for the ingenuity of his method, they justly remark 
that it is not perfectly satisfactory for the reason that it brings 
in ideas — those of the Calculus of Variations — foreign to the 
nature of the problem. Now by a method due to Beltramif it 
happens that' this very transformation can be obtained by 
Vector Analysis without any knowledge of absolute difPerentia- 
tion; the apparently fortuitous and happy disappearance from 
the final result of the troublesome three index symbols of that 
part of the subject is thus explained. In addition we hope to 
make it clear that the methods of the " Mathematics of Rela- 
tivity " are applicable to, and necessary for, Theoretical Physics 
in general and will abide even if the Theory of Relativity has to 
take its place with the rejected physical theories of the past. 

* JacoU, C. G., Werke, Bd. 2, p. 191. Berlin (1882). 
t Beltrami, Ricerche di analisi applicata alia geometria. Giornale di mate- 
matiche (1864), p. 365. 



CHAPTER I 

1. Every student of physics knows the important role played 
by line, surface and volume integrals in that subject. For 
example, the scalar magnitude work is the line integral of the 
mdor magnitude force and this will suggest a simple mode of 
defining a vector. As, however, we shall wish to apply our 
results in part to gravitational spaces it is desirable at the 
outset to state as clearly as possible what we mean by the various 
terms employed. 

Space. — By this term is meant a continuous* arrangement or 
set of points; a point being merely a group of n ordered real 
numbers. In oiu- applications n is either 1, 2, 3, or 4 and the 
space is said to be of one, two, three, or foiu* dimensions respec- 
tively. The ordered group of numbers we denote by a;^^^ a:'^^ 
• • ., x^"\ and call the coordinates of the point they define. 
Nothing need be said for the present as to what the coordinates 
actually signify. A space defined in this way is a very abstract 
mathematical idea and to distinguish it from a more concrete 
idea of space in which, in addition to the above, we have a funda- 
mental concept called length, we may, where necessary, call the 
latter a metrical space and the former a non-metrical space. 
We use the symbol Sn to indicate our space, metrical or not, 
of n dimensions. 

Spreads in S„ 

It is possible to choose from the points of S„ an arrangement 
or set of points such that any one point is determined by the 
value of a single variable. Thus if, instead of being perfectly 
independent, the n coordinates x^^\ ■ • • , a;^"' are all functions 

•Continuity is assumed as an aid to mathematical treatment. In certain 
modem theories preference is given to a discontinuous or discrete set of points. 

4 



THE TENSOR CONCEPT 



of a single independent variable, or parameter, Mi 



a;(«) = a;<»)(Mi) 



(s= 1,2, ••-,«) 

the point x is said to trace a curve or spread of one dimension 
as Ui varies continuously from the value «i' to mi<'\ The points 
corresponding to the values mi = Mi" and Mi = Mi'^^ are called 
the end points of the curve and if they coincide, i.e., if all cor- 
responding coordinates are equal the curve is said to be closed. 
A spread of two dimensions in Sn is similarly defined by 



X^'^ = X^'^iUi, U2) 



(s = 1, ••-,«) 



where Ui and 112 are independent parameters. Here we have 
two degrees of freedom because we can vary the point x by 
varying either Ui or M2. It is necessary, however, that the func- 
tions x'{ui, Zi2) should be distinct functions of the parameters 
Ml, v^; the criterion for this being that not all the Jacobian 
determinants 



3 (Ml, Ui) 



dx'^'^ 



dui 



dUi- 

Qx^'i) 



dui dUi 



/5i= 1, -^wN 
\«2 = 1, ■•■,n) 



should vanish identically. If this were to happen, we would not 
have two degrees of freedom but only one and the points would 
lie on a curve and not on a proper spread of two dimensions. 

Similarly by a spread of p dimensions in S„ • • • (p ^ n) we 
mean the locus of points x with p degrees of freedom; 

a;W = a;^"^(Mi, ti^, • •■, Up) (« = 1, ■ • •, n) 

where not all the Jacobian determinants 



d(x<-''-\ x<-''\ 



■, x'-'p')) 



d{Ui,U2, ••■,Up) 



Si = 1, • 

52 = 1, • 


■•,n 
■■,n 


Sp = 1, • 


■■,n 



6 VECTOR ANALYSIS AND RELATIVITY 

vanish identically. This we denote by Vp (the corresponding 
French term being variete) and we shall suppose all our Vp 
to be " smooth "; by this we mean that all the partial deriva- 
tives 

3xW /s =1, ■■■,n\ 

dUm \m = I, ■■•,v) 

are continuous. This restriction is not really necessary but is 
made to avoid accessory difficulties. 

Integral over a spread of one dimension Fi* 

Consider an ordered set of n arbitrary continuous functions 
Xi, • ■ ■, Xn oi the coordinates x^^\ • • -, x^"K (For brevity sake 
we shall hereafter use the phrase " functions of position. ") 
The numerical value assigned to the label r in the symbol Xr 
tells which one of the components Xi, • ■ • , X„, which are ordered 
or arranged in this sequence, we are discussing. Now for any 
curve Vi given by 

xM = x'-'^ui) {s= 1, ■•■,n) 

form the differentials 

dx^'^ = - — dui {s = 1, ••■,«) 

and then form the sum Xidx'-^'' + Xidx'-^'' ■■■ + X„dx^"^ which 
is, by definition, identically the same as 



t(x.^-^] 

•=i \ ' dui J 



dui 

If in each of the functions X« of position we replace the co- 
ordinates a;^'^ ■ • • , x^"^ by their values on the curve Vi 

a;(») = a;(»>(Mi) (5 = 1, •••, n) 

" dx^'^ 
y Xa -1: — becomes a function of Ui, F{ui) let us say, and we may 

* Reference should be made to the classical paper by H. PoincarS, " Sur 
les rfeidus des int^grales doubles," Acta Math. (9), p. 321 (1887). 



THE TENSOR CONCEPT 7 

evaluate the definite integral J'^'''\F{ui)dui. This is called the 
integral of the ordered set of n functions of position {Xi, ■■■, X„) 
over the curve. If, now, we change the parameter mi to some 
other parameter vi by means of the equation ui = wi(»i) the 
points on the curve are given by x'-'^ = x'''^{ui) = x^'\vi) say 
(5 = 1, • • • , ?i) and it is conceivable that the value of the integral 
might depend not only on the curve but on the parameter used 
in specifying the curve. However this is not the case since 



and 



F(ui)dui= I Z^-^a-^— dui 

uiO JujO [ '=1 OUi 



JviO JviO l'=l OVi] J,jo l"=l OUi jdvi 






dui 



This independence, on the part of the integral, of the accidental 
parameter used in describing the curve allows us to speak of the 
integral as attached to the curve and the symbol y*5!^«=iXsrfa;^'^ 
is used since it contains no reference to the parameter u. 

In what follows we shall adopt the convention that when a 
literal label occurs twice in a term summation with respect to 
that label over the values 1, ■ ■ -, n is implied. Thus our line 
integral may be conveniently written 

Such a label has been called by Eddington a dummy label (or 
symbol) of summation. We prefer to adopt the term " umbral " 
used by Sylvester in a similar connection; the word signifying 
that the symbol has merely a shadow-like significance disappear- 
ing, as it does, when the implied summation is performed. 

2. Integral I2 over a spread V2 of two dimensions 

Consider a set of n^ ordered functions of position (to indicate 
which we use two labels si, S2) 

X^, sj (si, 52 = 1, •••,n) 



y(x 



8 VECTOR ANALYSIS AND RELATIVITY 

The numerical values assigned to Si and 52 tell which one of the 
set of 71* functions we wish to discuss. It is convenient to think 
of the functions as arranged in a square or " checkerboard " 
with n rows and n columns; then Si may indicate the row and 
»2 the column. Vi is specified by means of two parameters 
Ml, Ui through the equations x'-'^ = x'-'^ui, v^). Substitute these 
expressions for the coordinates in the functions Xg^g^ and con- 
sider the definite double integral 

.,»• 1 duidu2 {si and 52 umbral labels) 

dui aUi ) 

extended over the values of u\, ih which specify the points of F2. 
This integral will depend for its value not only on the spread Vi 
but on the parameters u\, ih used to specify it unless the set 
X,^, ,j is alternating, i.e., X,„ .2 = — X^^, ,j which implies the 
identical vanishing of the n functions Xi, 1; • • • Xn, » and the 
arithmetical equality in pairs of the remaining n* — re so that 
there are but w(n — I)/2 distinct functions in the set. Grouping 
together the functions of each pair we have 

h = y X,„ sj -^ 7-' duidv^ (»i < Si) 

a (Ml, M2) 

where now the umbral symbols do not take independently all 
values from 1 to n but only those for which the numerical value 
of «i is less than that of S2. K a change of parameters is made by 
means of the equations 

Ml = Ui{Vi, V2) 
Ui = Ui{Vu Vi) 

where mi and M2 are distinct functions of vi and »2 the coordinates 
are given by equations 

a.(.) = a;(»)(Mi, M2) = x'-'\vu Vi) (» = 1, • • •, n) 

and the value of li when the vi, Vi are used as parameters is 

•^r"" divuVi) r"^^^' ^''^''^ 



THE TENSOR CONCEPT 9 

which, by the rule for multiplying Jacobians, 

and this by the formula for the change of variables in a double 
integral 



= yu- 



'■'IH 



a (Ml, Ui) 



duidu2 (»i < Si) 



Starting, then, with an alternating set of functions of position 
Xs^st we can form an integral, (over any V2), which depends in no 
way on the parameters chosen to specify it. To avoid all refer- 
ence to the accidental parameters we write I2 in the abbreviated 
form fiXs,, B^d{x''''\ x'^'^'')] («i < S2). We adopt this in pref- 
erence to the customary notation J'lXsisjdx^'^^dx'-'^^} (si< s?) 
since no product of differentials, such as will occur later when 
we use quadratic differential forms, is implied. 

In an exactly similar way an integral Ip over a spread Vp of 
p dimensions (p ^ n) is defined.* By an alternating set of 
functions Xs^^ si, •••, s, of position we mean that a single inter- 
change of two of the labels merely changes the sign of the func- 
tion. If, then, two of these labels are the same the function 
must be identically zero. Then 

dx^"^ dx'''''> 
dui dup 



h^f 



^'1. S2, — , «, "ETT ■ ■ ■ 17. — ( duvdii2 • • • dUp 



is a definite multiple integral of order p extended over the values 
of Ml, • • • , Mp which specify the points of Vp. We write 

Ip = f\ X,,, .... (f '> •••> ^ ') [ ^„j. . .dup {si < S2- • -Sp) 
[ '■ ■ ' diui, •••,Up) J 

where, in the summation with respect to the umbral symbols, 

Si, S2, • • • , Sp, si < S2 < ■ ■ • < Sp. To emphasize the fact that 

* When p = 71 it is customary to use the phrase region of Su in preference 
to spread of n dimensions in Sn. 



10 VECTOR ANALYSIS AND RELATIVITY 

/p does not depend in any way on the parameters Ui, • • •, Up 
it will be written 

h ^ fXs„ .... s,d{x^'^, •■■, X^"'>) (51 < 52 • • • < Sp) 

Examples, w = 4 x^ = x, a;® = y, x^^'> = z, x'-*^ = t 

Xi = X,X2= Y, etc. 

7i = fiXdx + Ydy + Zdz + Tdt) 

h = fXiidiy, z) + Xi, idiz, x) + Xiidix, y) + Xud{x, t) 

+ X^diy, t) + Xzd{z, t) 
h = fXmd{x, y, z) + Xudix, y, t) + Xind{x, z, t) 

+ X23id(.y, z, t) 

h = fXx, 2, 3, dix, y, z, t) 

Here in I2 we may write Xud{z, x) instead of Zi, 3d{x, 2) since 

X31 = — Xi3 and d{z, x) = — d{x, z) 

As a concrete example of I2 we may take the case of a moving 
cm-ve in ordinary Euclidean space of three dimensions, the curve 
being allowed to change in a continuous manner as it moves. 
Here x, y, z may be rectangular Cartesian coordinates and t 
may denote the Newtonian time. Wi is any parameter which 
serves to locate the points of the curve at any definite time 
t = to and z<2 may well be taken = t. Then the equations of 
our V2 are 

x=xiui,t); y=y{ui,t); z = z{ui,t); t^v^ 

and the parameter curves 112 = constant are the various positions 
of the moving ciurve, whilst the curves Mi = constant are the 
paths of definite points on the initial position of the moving curve. 
Denote dxjdt by x and we have 

d{x, t) = .; ' , duidt = - — -duidt 
d{ui, t) dui 



THE TENSOR CONCEPT 11 

(It may not be superfluous to point out that it is essential to the 
argument that ui and 1*2 should be independent variables. Thus 
in the present example Ui could not stand for the arc distance 
from an end point of the moving curve if the curve deforms as it 
moves although it could conveniently stand for the initial arc 
distance.) Our I^ may here be written 

f I (Zi4 + Xi2^ - Xzxz) p- + (Z24 + X232 - Xi,x) p- 
{ aui dui 

+ (Z34 +Z3i:c — Xisy) — - I duidt 
OUi J 

showing it in the form of a time integral of a certain line integral 
taken over the moving curve. Before proceeding to define the 
idea of vector quantities it is necessary to make one remark of a 
physical nature. We have written esqpressions of the type 

Xsdx^'^ (s an umbral symbol) 

and regarded the separate terms of these expressions Xidx'^'^, ■ • -, 
etc., as mere numbers. To actually perform the indicated sum- 
mations it is necessary, when we apply our methods to physics, 
that the separate terms in a summation should be of the same 
kind, i.e., have the same dimensions. Thus if the coordinates 
a;a) . . . a-W are all of the same kind the coefficients 



X,. 



= 1, 



occurring in the various integrals must all have the same di- 
mensions. 

3. Teansfoemation of Coordinates 

It has already been seen that if the various line integrals 
under discussion are to have values independent of the choice of 
parameters (ui, ■ • • , Up) care must be taken that the n^ functions 
of position Xsj, ..., « which form the coefficients of the Ip should 



12 VECTOR ANALYSIS AND RELATIVITY 

be alternating. Let us now see what happens to these coefficients 
when we change, for some reason, the coordinates x^'^, • • • , a;^"> 
used to specify the points of the Vp. The formulae of transforma- 
tion are given by n equations 

a;(.) = a;(«)(y(i), . . ., 2/W) (s = 1, • • •, n) 

the functions x^'^ being supposed distinct so that the Jacobian of 
the transformation 

J _ a(xW, •••,a;W) 
~d(y<-», •••,2/«) 

does not vanish identically. These equations may be regarded 
in two ways. First the y'-'^ may each denote the same idea as 
the corresponding a;'*' and then we have a correspondence set up 
between a point y and some, in general different, point x. 
Secondly the symbols y'-'^ may have a meaning quite distinct 
from the symbols x'-'^ and then we have a correspondence 
between one set of coordinates y^*' of a point and another set 
of coordinates x'-'^ of the same point. It is the second way of 
looking at the matter that interests us and we speak then of a 
transformation of coordinates. (From the first point of view we 
would have a point correspondence.) Since the functions x'-'^ are 
distinct we can, in general, solve the equations* and obtain 

yM = 2/(»)(a;(i)^ ...^ a;(n)) (5 = 1^ ' " " , n) 

As an example take n = 3 and let x^^'', a;®, a;^'' be rectangular 
Cartesian coordinates and (z/^^^, y^^\ y^^^) space polar coordinates 
in ordinary Euclidean space of three dimensions. 

2/(1) = + Va;("2 + a;®2 + a;^^^ 



3.(1) = y<X) gJu y(») j,Qg y{Z) 
3.(2) = y(X> gJu y{2) gJu y(.Z) 



3.(3) = ^(1) pQg y{.2) 



3.(2) 
,,(3) = foTi-lf_ 
y - ^^^ ~(1) 



* Cf. GouTsat-Hedrick, Mathematical Analysis, Vol. 1, Ch. 2, or Wihon, 
E. B., Advanced Calculus. 



THE TENSOR CONCEPT 13 

In order to have a uniform transformation of coordinates — so 
that to a given set of numbers y'^^^, y^^\ y^^^ there may correspond 
but one set a;^^\ a;^^^ a;^'^ and conversely — ^it is frequently neces- 
sary to restrict the range of values of one or the other set. Thus in 
the example chosen we puty^^^ > 0; < 2/® ^ ir; < 2/^*^<27r. 
If now in 

7i = J'Xadx'-'^ (5 an umbral symbol) 
we substitute 

a.(») = a;(»)(yW, ■ . ., 2/W) (» = 1, • ■ •, w) 

X, becomes Xa^y'-, • ■ •, w") say, and dx'-'^ = — — dui becomes 

(-—r^ -^— ) dui (r an umbral symbol) 
oy^'^' aui / 

and so 7i becomes 

■^s TT-n -T— I dui (r, s both umbral symbols) 
dy^''' autj 

where Y is defined by the equation 

— dx'-'^ 
-^'" - ^' d~W (r = U •••,n; s umbral) 

We shall from this on drop the bar notation above the X, which 
indicates that the substitution a;^'^ = x'-'^y^^^, •••, 3/^"^) has been 
carried out. It will always be clear when this is supposed done. 
For an I2 we have 

72 = fX,,,,d{x''"-\ x^'''>) (5i < Si) (si, 52 umbral) 

{d(x''- x'") ] 
Xsisj -jT-^ — Y \du1du2 {si < Si) by definition 



-A 



„ dx'-'^'> dx<-"''> 



duidui 



dui dUi 
since the functions Xs^Si form an alternating set. 



14 VECTOR ANALYSIS AND RELATIVITY 

Now 

dx<-'^ ^ dx^dy^ , umbral) 

dui dy^''^^ dui 
so that 

dx'-"^ ax('2> ^ dx'-"^ 3a;^»2) dyM Qy(.ri) 

dui ' du2 ~ dy^ dy^^ dui duz 

(fi and Ti both umbral symbols) 

Hence if we define 

dx^'"^ dx'-'''> 

dy^ a^ 
^2 takes the form 



Yr,r, = Xs,., ^::^, ^^:^^ (si and sa umbral) 



f \Yrr ^^ ^-^ 



duid/Ui 



Now 

^'- '^ = ^'- '» 5^ a^ ^^y definition) 

= Xej, si (by a mere interchange of the letters 

02/''' a?/''! standing for the umbral symbols 
si and 52) 

= — Y ^^^'^ 3a;^'2) (since Xs^, sj is alternating by defi- 
~ '"' a^) a^> nition) 

= — Yrj, rj (by definition) 

Accordingly the set of functions Y^, n of position, defined as 
above, is also alternating and we may write 

h^fYr,rAy^^^y''^'>) {n<H) 

Generalizing we may write 7p in the form 

fYr, rd{y^^^,---,y'^^'>) 

(j*!, • ■ -iTp umbral) and ri < r2 < • • • < r^ 

where the coefficients Y^ r^ form an alternating set of n'" 

functions of position defined by the equations 



dx'-'^'' dx'-'p'> 
dy^ " ' d^' 



Yrt r,= X. ,^ — ^ ••• --^j (5., ...,5p umbral symbols) 



THE TENSOR CONCEPT 15 

Accordingly, then, if an integral over a curve, or more generally 
a spread of dimensions p, is to have a value independent of the 
coordinates the coefficients are completely determined in every 
system of coordinates once they are known in any particular 
system of coordinates. The coefficients in a line integral form 
as we shall see later a set of functions which " have direction " 
in Heaviside's sense and so might be called a vector. As, how- 
ever, the term vector is derived from a geometrical interpretation 
of the idea which loses to a great extent its significance when we 
apply our ideas to spaces of arbitrary metrical character the 
name has been changed and the coefficients of a line integral are 
said to form, taken as a group, a Tensor of the first rank of which 
the coefficients are the ordered components* To distinguish 
between this definition and another of similar character this 
Tensor is said to be covariant. More generally the coefficients 
of an Ip, n^ in number, are said to form a covariant tensor of 
rank p of which the separate coefficients Xjj, ..., s^ are the ordered 

components. Knowing the values of the components Xs, s^ 

of a covariant tensor in any suitable system of coordinates x'-'^ 
the components in any other set y^'^ are furnished by the equa- 
tions 

^n r, ^ X^ ., ^ • • • ^^ (si, •■■,sp umbral labels) 

Although not of such physical importance it is convenient to 
extend the idea of Tensor to an arbitrary set of functions of 

position Xsi s^, which follow the same law of correspondence, 

when a transformation of coordinates is made, as the alternating 
set above. If we do this it is merely the alternating covariant 
Tensors which arise as coefficients in integrals over geometric 
figures. The reason for the correspondence between the com- 

* The term Tensor was used by Gibbs in another sense in his lectures (see 
his Vector Analysis, Chap. V, edited by Wilson, E. B.) and also with the same 
meaning as that given here by Voigt, W., " Die fundamentalen Eigen- 
schaften der Krystalle," Leipzig (1898). Cf. Ch. IV, § 4, infra. 



16 VECTOK ANALYSIS AND RELATIVITY 

ponents in different systems of a Tensor in the general non- 
alternating case would remain to be explained. 

4. Introduction of contra variant tensors 
In the expression 

h = fXM''^ s f YJy^'^ is umbral) 

the quantities by which the components Xs of the covariant 
tensor of rank one are multiplied have a law of correspondence 
defined by the equations 

Similarly in the integral 

^^1 = f \ ^r. ^ ^— ) iuxiAH s y y„ -^ ^ ) duidui 

\ oui dui ) \ aui 01*2 / 

the factors X", Y" which multiply the components Xrs, Yre 
respectively of the alternating covariant tensor of rank two 
have a law of correspondence given by the equations 

y.1.2 = "ill K — duidiUi (by definition) 

oui du2 

— 3(v7i '3 — ■ ^177^ -Z duidu2 (ri, ra umbral symbols) 

= &)-ifc5-^- (by definition) 

and so in general for an integral over a spread of p dimensions 
(p < n). These factors, regarded as a whole, are said to form 
a cordravariant Tensor of the first, second, • • • , pth rank as the 
case may be. The sets introduced in this way are not, as in the 
case of the covariant tensors, alternating. Even though the 
correspondence between the two sets of functions of position 



THE TENSOR CONCEPT 17 

X'l'i ••' 'p and 7" ■" '" may not arise in the above manner the 
set is said to form a contravariant tensor of rank p if the corre- 
spondence between the ordered components is defined by the 
equations 

rn. .... .. ^ z- -. r.^^^ . . . g;^; (ru ■ • •, r, umbral) 

The labels which serve to order the components are written 
above in the case of contravariant and below in the case of co- 
variant Tensors. The following remark may be useful in aiding 
the beginner to remember easily the important equations defining 
the correspondence. The umbral symbols are always attached 

to the X coordinates on the right. When the labels are , > 

on the left the y coordinates are , > on the right. 
Thus 

whilst 

571(a) a7i(r2) 

^'^'^-^'^'^Ifeic^) (^1, ^2 umbral) 

By an obvious and useful extension we can now introduce mixed 
Tensors partly covariant and partly contravariant in nature. 
Thus the set of n? functions of position Xrl^ form a mixed 
tensor of rank three, covariant of rank two and contravariant of 
rank one, if the correspondence between the two sets of ordered 
components is defined by the equations 

dx''''-^ dx'-'^^ dv^'''^ 
Yllr, = XU\ 3^)3^)^) (*i, «2, «3 umbral symbols) 

Now when we recall that the x coordinates are perfectly 
arbitrary as also are the y's it becomes apparent that it must be 
possible to interchange the x and y coordinates in the equations 



Fnrj = Z«,88 ^77;^^ 577^:7, («i, Si umbral). 



18 VECTOR ANALYSIS AND RELATIVITY 

defining the correspondence. Thus, to give a concrete example, 
it must be possible to derive from the n^ equations 

which serve to define a covariant tensor of rank 2, the equations 

In fact 

y 5^('>) a2/<'2> ^ „ dx'-''-'> dx'-''^ dy'^"^ dy^'^'^ 

(«i, *2, <i, ^2 all umbral) 
— •^'■I'-i 
fo^^aJw(^^^'"« *i is "°ibral) iss^-^jby the rule for 

composite differentiation and this, on account of the mutual 
independence of the x coordinates, is = unless ^i = n in which 

case it = 1 • 

To conclude these definitions it will be sufficient to state that 
a single function of position may be regarded as a tensor of rank 
zero if its value (not its formal expression) is the same in all sets 
of coordinates. No labels are here required to order the com- 
ponents and the equation defining the correspondence is simply 

Y= X 

Such a function of position is also called an invariant or absolute 
(or in the text-books on vector analysis a scalar) quantity^ The 
reason for regarding this as a tensor (of either kind) of rank zero 
will become apparent from a study of the rules of operation with 
tensors. 

Example. — Consider the formulae of transformation from rec- 
tangular Cartesian to space polar coordinates (§ 3). 



THE TENSOR CONCEPT 19 



Here 



— -(jj = sin ^® cos y'-^^; — -^ = + y^^^ cos j/® cos ?/<'>; 



dy'-^^ 
etc., and we obtain 



'■^^ sin 2/® sin y^'^ 



= (Zi sin y(2) cos z/(^' + Z2 sin j/® gin j/«) + Xj cos 2/®) 
= y^^'[Xi COS 2/^^^ cos y^^^ + X2 cos y^^^ sin z/^^^ — Zs sin y^^^ 

= 2/^^'[— Xi sin t/® sin y® + Z2 sin i/^^^ cos y^^^ 

the Z's on the right hand side being supposed expressed in terms 
of the y's. If then we denote by R, Q, $ the resolved parts of 
the vector Xi, X2, X3 (the theory of the resolution of tensors 
will be dealt with later but we may anticipate here) along the 
three polar coordinate directions at any point 

Yi ^ R; ¥2 = 2/«0 = rG; Y3 = y^^^ sin 2/®$ = r sin 0$ 

For a contravariant tensor of rank one we have 

yci) = x« ^ + X® ^ 4- Z(') ^ 

= (Z«« sin 2/® cos 2/^'^ + Z® sin y^^) gin 2/® + Z® cos 2/®) 
yc.Za^g+Z-g+Z-i;:; 

= 1 (Z'" cos 2/® cos ^(3) _|_ x® cos 2/® siny») - Z^^) sin?/®) 

v(3) = xa) ^ + Z® ^ + Z® ^ 
3 



20 VECTOR ANALYSIS AND RELATIVITY 

1 



2/^'' sin y^^^ 



(-Z^sinj/WJ + Z^cosy®)) 



where the X's on the right are supposed expressed in terms of the 
y's. Call the resolved parts of (Z(«, X<-^\ Z«>) along the polar 
coordinate directions R, 0, $ as before and we have 

y(i> s R; yw = " ; y(3) = * 



r r sin 5 

* A general result of which this is a special case is given in Chapter IV. 



CHAPTER II 

THE ALGEBRA OF TENSORS 

1. Elementary bules for deriving and operating with 

TENSORS 

(a) The Rule of Linear Combination 
If Xsl'.'.'/,^ is a tensor of rank ?+?(_«'.,' ) and 

-^«i""5 is another tensor of the same kind then the set of 
fiP+Q functions of position found by adding components of like 
order (that is with all corresponding labels, both upper and 
lower, having the same numerical values each to each) forms a 
tensor of the same kind as X and X which is called the sum of 
X and X. By the phrase " of the same kind " we imply 
not only that X and X must have the same rank both as to 
covariant and contravariant character, but that corresponding 
components have the same dimensions. The proof of the state- 
ment is immediate for from the equations 






dyW dy W dx^'^ dx'-'v' 



G:;:5 all umbral) 

and a similar one obtained by writing a bar over Y and X we 
obtain by addition 

Cypi-P, 4- ypi-P,-) = fyn •■■»•, i y»-i-M oy_^ _ _ dx'^ 
V-t ffi-o-p ^ -f o^i-V ~ ^-"-'i -'p ~ -^ii-V ^jjCn) Qyi''p) 

which is the mathematical formulation of the statement that 
X + X is a tensor of the same kind as both X and X. 

If we multiply the equations written above, which express the 
tensor character of Z^' .■.".■ «» by an invariant function of position 

21 



22 VECTOR ANALYSIS AND RELATIVITY 

(possibly a constant) m we have that mX is a tensor of the same 
character as X. Combining this with the previous definition 
of a sum, repeatedly appHed if necessary, we have what is known 
as a linear combination of Tensors 

hX +hX^+ ■■■ 

where the h, h, • • ■ are either mere numbers or scalar (invariant) 
functions. The separate members of this linear combination must 
be of the same kind. If, as a special case, 4 is a negative number 
^2 = — 1 say and h = -{- 1 then X -\- (— X^) is written X — X^ 
and in this way subtraction is defined. A tensor all of whose 
components are zero is said to be the zero tensor. (It is im- 
portant to notice that the property of having all the components 
zero is an absolute one; i.e., it is independent of the particular 
choice of coordinates in terms of which the components are 
expressed. This follows at once from the equations defining 
the correspondence between the ordered components in different 
systems of coordinates. The General Principle of Relativity 
merely says that all physical laws may be expressed each by the 
vanishing of a certain tensor. This satisfies the necessary de- 
mand that the content of a physical law must be independent of 
the coordinates used to express it mathematically. The fixing 
of the number of dimensions ?i as 4 rather than 3 and the inter- 
pretation of the physical significance of the coordinates are the 
difficult parts of the theory of relativity; the demand that all 
physical laws express the equality of tensors has nothing to do 
with these and must be granted by everyone. Here we regard 
an invariant as a tensor of zero rank.) Since the idea of a linear 
combination of tensors is reducible to a linear combination of 
the corresponding components it follows that the order of the 
separate members in a Unear combination is unimportant. 

2. (b) The Rule of Interchange of Order of Components. 

A specific example will show most briefly and clearly what is 
meant by this rule. Consider the covariant tensor Z^r, of the 



THE ALGEBRA OF TENSORS 



23 



second rank. The components have a definite order which may 
be conveniently specified by a square arrangement. 



Xll 


Xl2 • • • 


-X^in 


Xn 






X„i 




Ann 



If now we rearrange the n' functions amongst the n' small squares 
in such a way that the rows and columns are interchanged, 
then this same interchange of rows and columns will take place 
in the square for any other coordinate system y. We denote 
the new ordered set by a bar thus — 

Xr, s= Xs,T (r, s = 1, 2, ■■■,n) 

From Xr, s we obtain Yra by means of the equations of corre- 
spondence and we wish to show that Yrs = Ysr where the Yra are 
obtained from the Xrs by the same equations of correspondence. 
All we have done is to rearrange the order of summation on 
the right hand side of the equations of correspondence and the 
formal proof is very easy. 



y == r ^'^^ 



^Z„ 






by definition (p and c umbral) 



from definition of X 



(from equations of correspondence). 



Combining this rule with rule (o) we derive some important 
results. Thus starting with X whose components are Xrs we 
derive X whose components are Xrs = X^r and then the differ- 
ence X — X whose components are Xrs ~ Xrs = Xrs ~ Xsr- 
This new tensor is alternating and an important example of this 
type will be given to exemplify the next rule. 



24 VECTOR ANALYSIS AND RELATIVITY 

3. (c) The Rule of the Simple Product. 

Consider any two tensors not necessarily of the same kind or 
rank. Let us form the product of each component of the first 
into each component of the second and arrange the products in a 
definite order. The set of products will form a tensor whose 
rank is the sum of the ranks of the original tensors. Again it 
will suffice to show how the proof runs in a special example. 
Let the two tensors be X„ and X" and denote by the symbol 
X'l'l the product X^rt-X"-". (Here ri, r-i, S\, Si have definite 
numerical values so that X*'', defined in this way, is a single 
function out of a group of n* obtained by giving r\, r^, S\, s^ 
each all values from 1 to n in tiu-n.) We have to show that the 
group of n* functions X^'r^ really form, as the notation implies, 
a tensor of rank four covariant of rank two and contravariant 
of rank two. To do this we have 

^'1'? = I'r.r, ■ y*''» by definition of Y'r\^r\ 

(pi, p2, <Ti, (Ti umbral) 

= ( X T""^ ^^ ^^ ^-t!l ^y^ 

^ '"^ ' dy^^^ dy^'^'> dx^'^^ dx^'^'^ 

= rX""^ ^^ ^^ ^y^"^ ay<"' 
^ """ ' dy^'^'> dy<"^ dx'-''^ dx'^"'> 

by definition of X;,^^' 
which proves the statement. 

It is quite apparent that X'rp^ is not the same as ZI^Jj" so that 
the order of the factors in this kind of a product is important. 
Multiplication of tensors is not in general commutative. This 
remains true even when both the factors are of the same kind and 
rank. Consider the simplest case where we have two tensors 
X and X both covariant of rank one. Then the product X-X 
is^a tensor Z„ = Xr-X,^ovariant of rank two whilst the product 
X-X is a tensor X„ = Xr-X,. 



THE ALGEBRA OP TENSORS 25 

The difference X,s — Xra is agam a covariant tensor of rank 
two which is alternating since Xr, = Xsr- Since alternating 
tensors have a more immediate physical significance than non- 
alternating tensors it is natural to expect that this difference 
should be more important than either of the direct products 
Xra or Xra- It is what Grassmann called the outer product of 
the two tensors X, X in contrast to another kind of product which 
he calls " inner " and which we now proceed to discuss. 

4. (d) The Rule of Composition or Inner Multiplication. 

Let us first consider a simple mixed tensor of rank two XrJ' 
for which the equations of correspondence are 

Yr/ii = -^si^g-fri)^^ («i aiid S2 umbral symbols) 

If now we make r2 = ri = r (say) and use r as an umbral symbol 
we get 

^^"^^-"^S'lfS)-^-'' (.1 umbral) 

The remarkable simplification on the right hand side is due to 
the results from composite differentiation 

dx'-'^ 32/W ^ dx^"'> 
'dy^dx^^~d^^ 

= if 52 4= »i and = 1 if S2 = si 
In this way we can form from a given tensor a tensor of lower 
rank (in this case an invariant). 

The proof in the general case is of the same character. 
Consider the mixed tensor X?^:':/,i',ii::.X which is, as the 
labels indicate, covariant of rank p + I and contravariant of 
rank p + g so that the equations of correspondence are 

^ n-rfH-i- u-i — ■^H-h'^i-'^iQyJi.T) Qy.W Qy(r) Qyi.^ 

where r^ stands for -^ • • • ^^-7^ and so for the others. 



26 VECTOR ANALYSIS AND RELATIVITY 

If now we make pi = ri, P2 = T2 • • • pp = Tp and use n • • • Tp 

as umbral symbols of summation, -^ • —-r-. on the right hand 

dx^^' ay'- > 

side becomes 

and successive applications of the results 

— -p-T ZTT^ = unless h = ri 
dy'-^'^ dx^^'^ 

= 1 if <i = ri 

gives us that 

d^ 



ay" 





unless h = 


= J-i; <2 = 


Ti 


= 


1 


if ii 


= ri, 


■ ■ ■ ) tp.^ 


Tp 


= (x:'" 


•"■r' 


1 •■■»,-) 


52/(') 


dx^'"^ 





so that 

yn — ■Tp 'i — ", = c yi ••• '■j, •! •■■ «e 1 



(r, m, s all umbral) 



giving the result that (XrJii.'rJmV-.'m^ is a tensor, covariant of 
rank I and contravariant of rank q. If g = 0, Z = we have the 
result that 

Xl^Zli is an invariant (ri • • • rp umbral) 

explaining why we regard an invariant as a tensor of zero rank. 
If now we have two tensors not both entirely covariant or 
contravariant and take their simple product we have a mixed 
tensor to which we may apply the method here described and 
obtain a tensor of lower rank. This is called composition or 
inner multiplication of the two tensors. Thus starting with 
Xt and X' we obtain X/ = Xr-X' and then making r = s (i.e., 
picking the n diagonal elements or components of the tensor X^ 
of rank two) and smnming with respect to s we derive an in- 
variant X,-X' which is the invariant inner product of the two 



THE ALGEBRA OF TENSORS 27 

tensors. (To obtain an inner product the tensors must be 
of different character — one covariant, the other contravariant.) 
Similarly from the two tensors of rank two X""!*"' and Xj,,, we 
first obtain the mixed tensor of rank 4 

and from this the scalar or invariant function of position 

X^ = Z'"i''« • ZriTi (ri, rs umbral sjTnbols) 

Notice that in these cases the order of the factors is not im- 
portant — ^the same invariant results if we change the order. 

5. (c) Converse of Ride of Composition. 

Again, for the sake of simplicity, let us explain this for a 
special case. We consider a set of n fimctions of position Xr 
which has such a law of correspondence between components 
in different coordinate sj-stems that for any contravariant tensor 
X' of rank one whatsoever the summation X^X' is invariant 
(r umbral). Then we shall prove that the set Xr actually form, 
as the notation implies, a covariant tensor of rank one. 

We have 



= Xj • }' — -T-t (since X' is contravariant of rank one) 



Yr - Y- = X, • X('> (by hj-pothesis) 

We now take as a special illustration of the tensor X' that one, 
which, in the y system of coordinates, has aU its components = 
save one which is = 1, e.g., J' = if s H= r whilst Y^ = 1. 
This choice of X is permissible since we make the hypothesis 
that X is any tensor we wish to choose. And we have 

'dy<-' 

proving on assigning, in turn, to the label r the nimierical values 
1, •••,», the statement made. (It is apparent that instead of 



■^^ = ^* 5~(o (^ umbral) 



28 VECTOR ANALYSIS AND RELATIVITY 

taking X' as perfectly arbitrary it is the same thing to say that 
Z^''' shall be any one of the n tensors which in some particular 
system of coordinates have each all but one of their coordinates 
= 0, the remaining one being =1.) As another example of 
this converse let us suppose that the n^ functions Xr' have such 
a law of transformation that the summation Xr' ■ Zjt is a co variant 
tensor of rank two (5 umbral) where Xat is an arbitrary covariant 
tensor of rank two; we have to prove that the r^ functions of 
position Xt' actually form, as the notation implies, a mixed tensor 
contra variant of rank 1 and covariant of rank 1. 
We have 

Yr'Y,, = (Z/Z„) g^g^ by hypothesis 

~ ' ""SajW" aa;« a^/W a2/(') 

(since X is covariant of rank 2) 

Now as our arbitrary tensor X let us choose that one for which 

Yim = unless both I — s and m = t 

Y,t = 1 and using ^^ . _ = 1 (r umbral) 

^''^^^'^SW' («r,p umbral) 

proving the statement. The essence of the proof is that the 
multiplying tensor must be an arbitrary one. In concluding 
these remarks on the elementary rules of tensor algebra it may 
not be superfluous to remark that although, for example, the 
product Xra — X/-Xat IS & definite tensor we do not introduce 
the idea of quotient Xrs -i- X,'. The reason for this is, of course, 
that there is no unique quotient; there are many tensors X^i 
which when multiplied by a given tensor Xr* in this way will 
yield a given tensor Xr». In the algebra of tensors it is possible 
to have a product (inner) of two non-zero tensors equal to zero. 



we obtain 



THE ALGEBRA OF TENSORS 29 

6. Applications of the Four Rides of Tensor Algebra. 

The most useful applications of these rules will be found by 
returning to a consideration of the integrals which served to 
introduce us to the tensor idea. It will be remembered that a 
curve Vi is either open and has two end points as boundary or 
else is closed and has no boundaries; a spread Fa of two dimen- 
sions is either open and bounded by one or more closed curves or 
closed and without boundaries. In general a spread Fp+i of 
p + 1 dimensions (p < n — 1) is either open and bounded by 
one or more closed spreads Vp of p dimensions or else closed and 
without boundaries. When the spread Vp+i is open there is an 
important theorem giving the value of an arbitrary integral Ip 
extended over the closed boundaries Vp in terms of a certain 
connected integral extended over the open Fj,+i bounded by Vp. 
The simplest case is when p = 1 in which case an integral over 
a closed curve is shown to be equivalent to a certain integral 
extended over any surface or spread of two dimensions V^ 
bounded by the curve Vi. This case was discussed by Stokes 
for ordinary space of 3 dimensions and the general theorem is 
known as " Stokes' generalized Lemma."* It will be noticed 
that the theorem is a non-metrical one as we have not yet had 
occasion to say anything about the metrical character of the 
space Sn containing the spreads Vp. We shall prove the theorem 
when p = 2 as this will suffice to show the details in the general 
case. 

Here the equations of the open V3 are 

x^'^ = x^'^ (ui, Ui, M3) (s = 1, • • •, n) 

and the boundaries will be specified by one or more relations on 
the parameters Mi, v^, U3. If there are several distinct boundaries 
V2 we may connect them by auxiliary surfaces V2 so as to form 
one complete boundary. The parts of the h over this complete 
boundary coming from the auxiliary siu-faces will cancel (each 
* H. Poincari, loc. cit. 



30 VECTOR ANALYSIS AND RELATIVITY 

auxiliary connecting surface may be replaced by two, infinites- 
imally close, surfaces and it is the integrals over these pairs of 
surfaces that cancel each other in the limit as the surfaces are 
made to approach each other indefinitely). The relation between 
the parameters on the boundary may be 

and we introduce two other functions V\ and «2 of U\, v^, Us 
such that vi, v^, Vz are distinct functions, and change over to 
»i, »2, vs as parameters. We shall suppose the parameters such 
that the equations giving the coordinates x are uniform both 
ways. Not only does an assigned set of parameters give a 
unique point x but to a point x there corresponds but one set of 
parameters v. 

Accordingly the sm-faces V3 = const, cannot intersect each other 
and they form a set of closed level surfaces filling up the initial 
open V3. On each of these closed level siu-faces we shall have 
the level curves vi = const., V2 = const., and we suppose the 
functions Vi, V2 of Mi, 1x2, ug so chosen that these level curves 
are closed. 

Now consider the integral 

I2 = yZsi8jcZ(a;^'i', a;^'^)) (5,,^ g^ umbral and si < S2) 

extended over the boundary vz = 0. If, instead of integrating 
over Vg = 0, we take it over any of the level surfaces V3 = constant 
it will take on different values depending on this constant and 
to indicate this we write 

h{v,) = rZ,,,,d(a;<")a;(»^)) (51 < S2) 

^ / „ dx^"^ dx^'''> \ , , 

/ d^x<^dx<-'^'> dx'-''^dV^\ 

\3«i5j)3 dv2 dvi dv2dvz) 

.dXs.s.dx'-'^^dx'-'^^ 1 , , 

+ -5-^ -5 5 — \ dvidv2 

ovs avi dV2 



dh _ p 
dv. •' ^ 



■^8182 



THE ALGEBRA OP TENSORS 31 

(It is only necessary to differentiate the integrand since the 
limits of the integral are independent of V3). Now if F is any 
function of position (not merely of the parameters)* on a closed 

curve with parameter v the integral S -r- dv taken round the 

dv 

closed curve is necessarily zero. For it is the difference of the 

values of F at the coincident end points of the ciu-ve. If, in 

particular, we take as F the function 

F = Z,,,,— — (si, Si umbral) 

and integrate round the closed curve v^ = constant we get 

dvi 3»3 dv2 J 

and integrating this with respect to V2 over the surface V3 = con- 
stant we have 

rlx ( ^^^'^''^ ^^^"^ + ^^'^"^ ^'^^"^ ^ 

+'4^'4^'P-\d..d.2^o 

dvi dvz dv2 
Similarly on taking 

()F 
and integrating r -— dvidv2 over the closed surface V3 = const. 

* The distinction implied here should be clearly grasped. If the equations 
of the curve are 

11=0 cos V 
xi = a sin v 

F must be periodic in v with period 2n-. 



32 VECTOR ANALYSIS AND RELATIVITY 

we get 
fix ( ^'^^^"^ ^^^"^ dx^'^'>d^x^'^^ \ 

dVi ovs avi J 
Now add these two equations together and note that 

Z,.„ ( — — T-^- + -^ — 7—5- = (si, S2 umbral) 

because the terms in the summation cancel out in pairs owing to 
the alternating character of Xa^,^ — the factor multiplying X,,,, 
in the summation being obviously unaltered by an interchange 
of the symbols «i and s^. We find that 



f 



'^'^ \ dvidvs dv2 dv^dva dvi J 

. aZ.,,, aa;("> dx^'^'> , dXs,s, dx^'''> 3a;("> 1 



dvi dv3 dVi dvi dva dvi 

so that 

dh^ ^ [ 3Z..., dx^"-'> dx^'^'> _ dX,,,, dx^'^ aa;<"> 
dvi \ dv3 dvi dvi 5»i dvz dVi 



dvidv2 — 



dX„e,dx^'^'> dx^'^'> ] 



L«l»j 



dv2 dvz dvi 



dvidv2 



Now the Z,,8j are functions of position, i.e., of the coordinates x 
so that 



dX^^dXs^^dx^ 
dvz dx'-''^ dv3 



(53 umbral) 



The second term in dli/dvs we shall slightly modify by a change 
in the umbral symbols. Thus 

8X^d^3x^^d^6x^d^dx^ (.„,„ .3 all umbral) 
dvi dvs 5»2 dx'-'" dvi dv3 dv2 
^ dXs,„dx^'"^dx^"''>dx<-'o^ 
3x^'i^ dvi dv2 dv3 





TTTR 


ALGEBRA OF 


TENSORS 




so that we can write 










dh_ f. 
dH~ 


1 5a;('») 


3Z„8, 


dXs,s, 


dx'-"^ dx'-'^^ 
dvi dVi 




On writing 


■S^eisjs, 


_ dXs,s2 


dx''"^ dx'-''> 





33 



dvidvi 



and integrating the expression for dhjdva with respect to 83 
we find 

i9rr^'i' flrr^'"' fir'-'>> 

= J Jls„j„ — — dvidvidva («i, 52, S3 umbral) 

ovi avi dva 

= fX,,,^d{x<^'^\ x'~'^\ a;(«»>) (si < »2 < S3) 

since the set of functions X,^sts, defined as above is obviously 
alternating (on account of the fact that X^ is an alternating set). 
The limits for »3 are »3 = and Vz = some constant for which 
h = — since the corresponding V2 is either a point or a spread 
traced twice on opposite sides. Let the integration be such 
that »3 = is the upper limit and we have 

h = yXajsjd(a;^">'a;^*2)) («i<«2) over boundary 

= fX,,^,,d{x^"^x'-'^^x<-"'>) (si <Si< S3) over theF3.* 
In general from 

Zp = fXs,...,^dixM . . . a;('i.)) («i < 52 ■ • • < 5p) 

over a closed boundary we derive as equivalent to Ip an 

7p+i = fXs, ... .^,d(a;<"> • • • aj^'^+i)) (si < S2 ■ ■ • < Sp+i) 
where 

dx^'p'> 
* It will be observed that placing the + sign before Ii on the left makes 

»B = the upper bound of the integral J" -j-^ dvz. Thus Os is increasing away 

from the open spread Fa. 



34 VECTOR ANALYSIS AND RELATIVITY 

It is usual to preserve a cyclic arrangement of suflBxes for the 
X's and then, on account of the alternating character of the X's, 
we have 

the upper signs being used when p is even and the lower when p 

is odd. Since Ip is by hypothesis invariant so is Ip+i because 

Ip+i — Ip and accordingly the coefficients Xs^ — s^^i form an 

alternating covariant tensor of rank p -\- 1 [seen either directly 

as when tensors were introduced or as a case of the converse of 

dx^'^^ dx^'"'*''^ 

rule (d), the set of functions •— — • • • — dvi • • • dvp+i form- 

dvi avp+i 

ing an arbitrary contravariant tensor of rank p + 1]. In this 

way we can derive from any alternating covariant tensor, by a 

species of differentiation, a covariant tensor of higher rank. 

Examples. 

p = 1. From any covariant tensor Xr of rank one we derive 
an alternating covariant tensor of rank two 

Y __ dXr dXg 

It is the negative of this tensor that is called the curl of the 
vector X in the earlier vector analysis. It is rather important 
to notice that this, and the other tensors of this paragraph, have 
no reference to the metrical character of the fundamental space 
S„. The derivation of them by the methods of the Absolute 
Differential Calculus introduces, therefore, extraneous and un- 
necessary ideas. 

p = 2. From an alternating covariant tensor of rank two 
Xra we derive the alternating covariant tensor of rank three 



THE ALGEBRA OF TENSORS 35 

If ?x = 3 there is only one such function and in the usual analysis 
it is called the divergence of Xra- We shall have to modify this 
slightly for the general tensor analysis. It is interesting to 
notice that if we take as Xre the tensor of the previous example 

dXr dXa 

n = ■ 



we find Xrat = 0. It is easily seen that this happens in general. 
If we derive X^ ... e^ from Z,, ... s^ in this way then the 
Xsi ... sp+, derived from Zg, ... ,j, is = 0. When the Z,, ... s^, 
derived from Zs, ... «j, is = we have that Ip+i = and so Ip 
(extended, of course, over any closed spread of p dimensions) 
is = 0. In this case Ip is said to be the integral of an exact 
differential. It can then be proved that the value of Ip over 
any open Vp is equal to the value of a certain integral Ip-i over 
the closed boundary of this Vp.* 

*If 

Ip s yx.j,j ... ,^d(a;(i' ■ • • a;<V) (si < sz • ■ • < %) 

is the integral of an exact differential we have ( , , ) = :h r-n 

■^ \p + l/» — p — l!p + l! 

partial differential equations 

The theorem stated is that these are the necessary and sufficient conditions 
that there exist ( _ i ) functions of position X,i ... ,j,_i satisfying the ( ) 
partial differential equations 

aa;(V dx<-'i> d^^ to(viJ ■ ~ '''' '" '' 

That the conditions are necessary is an immediate result of a direct substitution 
of the left hand side of the equation just written for X,^ ... , in the equation 
of definition 

^ dXai ... ,^ dX,^^^,j, ... ,^ 3a,j,2 ... «p_i»y^i 

''■■■'*+' aa;<«,+i) dx^'O '" dx^':^ 

To prove the sufficiency an appeal is made to the principle of mathematical 
induction. Let us, for deflniteness, take p = 2. Then we shall prove the 
statement that if the theorem is true for a particular value of n it is true 
for the next greater integer value n + 1. Granting this, for the moment, we 
4 



36 VECTOR ANALYSIS AND RELATIVITY 

p = ra — 1. This is the next and last case if n = 4. For 
an arbitrary value of n it is second in importance only to the 
first case p = 1. In order to avoid having to write out separately 

observe that the theorem is true for n = 2. (In this case there are no in- 
tegrabUity conditions necessary; on account of the alternating character of 
the Tensor X^^,^ whose vanishing expresses these conditions, it is neces- 
sarily = 0.) We have two unknowns Xi and X2 satisfying the single differen- 
tial equation 

dXi 6X2 _ Y 

axw ax") ~ " 

and a particular solution is found by assuming that neither Xi nor Xi involves 
i<«. Then Xi may be any function of x'-» and Xs = - y^^'Xiada;'", the 
lower limit being any constant Xo"'. In the integration x'^> is regarded as a 
constant. Hence by the induction lemma the theorem is true for n = 3 
and then for n = 4 and so for every integer n. 

To prove the induction lemma let us seek for a solution of the equations 

„ dXr SX, , . 

^""to(^)-toW (.r<s,=l,--;n) 

where the unknown X„ = 0. We have then 



dXr 

.Am = T 

whence 



■^"-+3^ (r = 1, •■•,n-l) 



Xr^+ f^Jl^ X™a!x(«) +Xr (r = 1, • • •, rt - 1) 

where a;o<"' is a constant; Xr is any function of x'^'>, ■ ■ •, x<"~w and in the 
integration x"', • • •, x<"~'> are constants. The remaining equations 

^"=to(^)-toW (r<s = l, •••,n-l) 



give on substituting these values 

'HnidxC") - r'" 

(n) ax<«) I (n) ax'*-' "* ' aa;<"> ax*") 



= , C^^'^Xr. ,^, ax^_dX^ 
~ Ac.) ax<») ^ asc ax(') 



from O^Xrn.=^,+^,+~ 

dxw '^ ax'') ax<"> 



s X,, — X,, + -g~ — r-(^ where X,, is the function X,, when x'") is 



put = aso'"'. 



THE ALGEBRA OF TENSORS 37 

the cases corresponding to n even and n odd we shall adopt the 
first form for X,, ... s^j. 



X 



'' ■■* '^' 3a;^»i'+i^ dx^"^ dx^''^ 



Hence we have the ( 9 ) equations 



_ " ~ dxM asw 

with 71 — 1 unknowns Xr and involving n — 1 independent variables 
a;<w, ■•■, a;'""'). Also we have ( „ j integrability equations X„t =0 

found by putting a;<"' = Xo'"' in 

X,„ = (r < s < « = 1, • • •, n - 1) 

Hence if we can solve these equations, i.e., if our hypothesis is true for w — 1, 
we can solve the original equations which are identical in form but involve 
one more independent variable x<"'. The particular case of this theorem 
corresponding to n = 4, p = 2, tells us that Maxwell's equations 

curl E +-— = div B = (in the usual notation) 

imply the existence of the electromagnetic potential (Ai, Ay, At, — c<t>) — 
which is as in the general case when p = 2 a covariant tensor of rank one — 
such that 

B = curl A; E = — grad ^ — 

c dt 

For further details cf. Physical Review, N. S., Vol. 17, p. 83 (1921). 

It is apparent that there is a great degree of arbitrariness allowed in the 
determination of the functions X,j ... , ; in fact we may add to any solution 
any alternating covariant tensor of rank p — 1 whose integral over any closed 
spread Yp-i of p — 1 dimensions is zero. For example we may add to the 
electromagnetic potential any gradient of a function of position; that is 
if {Ax, Ay, A,, — c4)) is any determination of the electromagnetic potential, 
so is 



where F is an arbitrary function of x, y, s, t. 



Ax 


^Ax 


^ ax 


Ay 

A, 


= Ay 

^A. 


BF 

^9y 

aj 

^ az 


<p 


= <p 


IdF 

c at 



38 VECTOR ANALYSIS AND RELATIVITY 

Here p-j- 1 = n and there is only one distinct function X,, ... ,, 
on account of the alternating character of this set. Let us choose 
this one as Xi ... „ and our formula is 

dXi ... „_i 5X„2 ... n— 1 dXl, 2 ••• n— 2 n 

1 ... n ^ ■ ' " 



Now there are only n distinct functions X,, ... s^ and it will be 
possible, and convenient, to indicate these by means of a single 
label. Thus we write 

(X„) = Xi ... „_i 

(Xn— l) ^ Xi2 ... 71—2, n 

(Xn— 2) ^ "T -<il2 ... n— 3, n— 1, n ^ X12 ... n— 3, n, 71^1 

(Xi) = (— 1)"~ X23 ... B = — Xn23 ••• n-1 

where we are careful to put parentheses round the symbols (Xr) 
to indicate that they are not the components of a covariant 
tensor of rank one. 

Maxwell availed himself of this arbitrariness and chose F so that div A = 
whence 

a^F , a'F , av ,. . 
to^ + a^ + ap-"-*^^^ 

yielding, from the theory of the Newtonian Potential, 

^^ 1 divA 
4ir r 

The usual procedure with modem writers is to choose F so that 

div A + 1 30^ _ 
c at~ 
The equation determining F is now 

a^F 
whence 



, a'F , d'F X a^F / J. X 1 3<^ \ 
I '—dr 



4ir 
from the theory of the retarded potential. 



THE ALGEBRA OF TENSORS 39 

Then we have 

Xi...n— (,' (s an umbral label) 

Although the (Xs) do not form a covariant tensor of rank one 
they are very closely related to a contravariant tensor of rank one. 
In fact there is a reciprocal relationship between an alternating 
covariant tensor of any rank r and an allied contravariant alter- 
nating tensor of rank n — r. It is a special case of this reciprocity 
stressed so much by Grassmann in his Ausdehnungslehre that 
gives the dual relationship of point and plane, line and line in 
analytic projective geometry and it is from the terminology of 
that subject that the terms " covariant " and " contravariant " 
are taken. In order to bring out this reciprocal relationship in 
the clearest manner we must make a digression and discuss what 
are meant by " metrical properties " of space. 



CHAPTER III 

1. Introduction of the metrical idea into our geometry* 
Let us consider a curve Vi specified by the equations 

a-U) = x<-'\u) (s= 1, ■■■,n) 

The quadratic differential form 

grsdx^''Hx^'^ (r, s umbral) 

where the ^r» are functions of position, will be invariant provided 

that these functions form a covariant tensor of rank 2. (This 

is a consequence of our rule (d), Ch. 2, § 4, and its converse since 

the set of n^ functions 

dx^'^ dx^'^ 
dx^-dx' = — =— • — r — (du)^ 
du du 

form a contravariant tensor of rank two.) Accordingly the jr„ 
being of this kind the integral 






du du 



has a value independent of the choice of coordinates x; it is called 
the length of the curve V\ from the point specified by Mq to that 
specified by u'. If the upper limit u' is regarded as variable 
and written, therefore, without the prime S is a function of this 
upper hmit u and its differential is given by 

{day = Qradx^'^dx'-'^ {r, s umbral) 

where the positive radical is taken on extracting the square root. 
It will be convenient to agree that, in some particxilar set of co- 
ordinates X, we arrange matters so that gra = gar', this can always 

* The most satisfactory presentation of the general idea of a metrical space 
is that given in Bianchi, L., Lezioni di Geometria Differenziale, Vol. 1, § 152. 

40 



THE METRICAL CONCEPT Al 

be done by rewriting any two terms, g^dx^-^'^dx'^'^ + g^idx^^'^dx^^^ 
for example, of the summation which do not satisfy this require- 
ment in the form Kgrja + gii)dx^^Hx'-^'> + ^{g^ + ff32)(ia;®&®. 
The equations defining the covariant correspondence 



where 




(I, m umbral) 


then show that 


. aa;W3a;« 






3a;®5a;W 


since gra = g,r 




^u 





We may express this result by saying that the property of any 
special tensor of being symmetric is an absolute one just as is 
the property of being alternating. 

2. Recipeocal foem fob (dsy 
Consider the n linear differential forms 

f, = grsdx^'^ {s umbral; r = 1, ■ ■ •, n) 

We can solve these for the differentials dx^'^ in terms of the n 
quantities ^t as follows. (Note that the ^r form, as the notation 
indicates, a covariant tensor of rank 1 from our rule (d) of com- 
position or inner multiplication.) Let us denote the cofactor of 
any element gr> in the expansion of the determinant 

gn gi2 ••• gin 

g= . 

gnl ' ' ' gnn 

by (Ots), observing in passing that (Grs) = (Gar)- The parenthe- 
ses indicate that the (Gn) do not form a tensor. From the 



42 VECTOR ANALYSIS AND RELATIVITY 

definition of a cofactor the summation 

grtiGrm) = 9 when m = s (r umbral) 

= when m 4= s 

We shall now introduce the hypothesis that our metrical space 
is such that g does not vanish identically (it will be presently seen 
that this is an absolute property) and for all points where g is 
not zero we have 

ffrs^^-^ = 1 when m = s , , ,. 

g {r umbral) 

= when m ^ s 

Write jr'"* = (Gim)/g and let us justify the notation by showing 
that the ^'™ form a contravariant tensor of rank two. From our 
definition it is symmetrical and so we have in addition to 

Sfrs/" =1 if m = 5 

= if m 4= * 
the equivalent equations 

gtrg""' =1 if m = s 
= if m 4= 5 

These relations suggest that we multiply the equations of defini- 
tion 

by /" and use r as an umbral symbol. We obtain then 

g™^r = gr>g™dx'^'''> (r, s umbral) 

= dx'-"^^ from our relations just written 
Accordingly 

{dsf = gi,ndx^''Hx^"''> = gimg^'^ir-g'^'ko {I, m, r, s umbral) 
= g^'^r^B (r, a umbral) 

since gimg'^ = unless m = r when it = 1. 

The Jr?. form, by rule (c), Ch. 2, § 3, an arbitrary contravariant 

tensor of rank 2 and (dsY being, by hypothesis, invariant, the 



THE METRICAL CONCEPT 43 

converse of rule (d), Ch. 2, § 5, gives us the result that the g" 
form a contravariant (symmetrical) tensor of rank 2. When we 
write 

(day = g"^r^s {r, s umbral) 

it is said to be written in the reciprocal form. We could start with 
this form and write 

V 

and solving these obtain 

and then find 

{day = gradx^'Hx^'^ 

3. If now we have two determinants a = \are\, b = |6„1 
each of order n (the notation implying that ar« is the element in 
the rth row and sth column of the determinant o) it is well 
known that the product of the determinants a and b may be 
written as a determinant c* of which the elements Crs are defined 

by 

Cri = airbis (l an umbral symbol) 

This kind of a product is said to be taken by multiplying columns 
of a into columns of b. 

We can, with the aid of this rule, easily see how the determinant 
g behaves when we change our coordinates x to some other 
suitable coordinates y. We get a determinant / of which the 
r, sth element is 



Jts — 



' dy^'^ dy'-'^ 



Here —-7-: may be conveniently denoted by (jir) since it is the 

I, rth element of the Jacobian determinant J of the transformation 
from xtoy coordinates 

* Cf. Bdcher, M., Introduction to Higher Algebra, Chap. 2, Macmillan (1915). 



44 



VECTOR ANALYSIS AND RELATIVITY 



J = 



and then 









dy 



(n) 



dy' 



(») 



ffjm^-^ = gim(Jlr) 



^'""Fl^ ) ;i (,) 

is the r«th element of the product of the determinants gJ by J. 
Hence / = gJ^. 

This important formula shows us that if jf ^ neither will 
/ = unless J = in which case the y's would not be suitable 
coordinates. / can be zero at points where gf #= if J = at 
those points; such points would be singular points of the system 
of coordinates and the quantities /" would not be defined for 
them. 

Example 

In EucUdean space of 3 dimensions with rectangular Cartesian 
coordinates a;^^^ a;^^' a;^'^ we write 

so that g-i-i = ^22 = gz% = 1, ffi2 = gn = ga = 0. In space polar 
coordinates we find 



/s; 



/i2 = /i3 = fa = 0. 
Here g = 1 

so that 



^ y^^^ sin^ 2/® 



gll = ^22 = ^3 = 1 



g^ = ^13 = ^23 = 



/"= — =1- f22__Ji__ ^ . p3 — J_ — 



/ll 



/22 y'''" ' fz: 



y'-^^ sin^ ^'^' 



THE METRICAL CONCEPT 45 

and 



In fact ?i = dx^^\ etc. There are no singular points in the x 
coordinates but there are in the y system; those for which J = 0, 
i.e., 

2/«' sin 2/® = 

These are the points on the polar axis 

yd) = r = 0; y^'^^ = e = ovir 

4. If now Ui • ■ • Un are any independent parameters in terms 
of which it is convenient to specify both the x and y coordinates 
we have, by definition of the symbol, 

d(y^» . . . 2,W) = ^^^^" • • • y''^l^ du^--- dUn 

d(Ui ■■■ Un) 

and a similar equation for d(a;d> • • • a;'"^) so that 

£^(2^(1) . . . yW) _ d(ym . . . yW) _ a(a;a) . . . a;W) 



d(a;(i) . . . a;W) 3(mi 


••■ Un) 


3(mi • • 


■Un) 




If we multiply the determinants 


3(a;« • • ■ 
diui ■ • ■ 


^ and 

• Un) 


3 (til 
3(a;(« 


••• Un) 

■ ■ ■ a;W) 


together and note that 










dx'-'^ dUe 
dus 3a;' « 


1 if i 


= r 


(s 


nmbral) 


= 


if < H= r 







we find that their product is unity and so we can write the 
quotient 

d(ya) . . . yM) ^ 3(yt» • • • y'")) 3(mi ••■•»„) 
d(a;<i) . . . a;'"') diui ■ ■ ■ Un) ' 3(a;(« • ■ • a;W) 

_ 3(yW . . ■ yM) . dy^ du^ _ djW 

~ 3(a:(« • ■ ■ a;W) ^^"^'^ dum dx^'^ ~ dx^'^ 

(m umbral) 



46 VECTOR ANALYSIS AND RELATIVITY 

/a(a;W •••a;W)\-i , 
= I ^) ,1^ TTv I as above 

= ^[gjf since / = gJ^. 
Accordingly 

^ d(ym . . . yW) = V^ cZ(a;« • • • «(")) 

so that this expression is an invariant. In view of the fact that 
it depends on the fundamental quadratic differential form {dsy 
it is called a metrical invariant. 

Let us consider an integral over a region of the fundamental 
space S„, J'Xi...nd{x'-^^ •••a;^"^). Here Xi ... „ is the single 
distinct function of an arbitrary alternating covariant tensor of 
rank n. Since the integrand is invariant and since yg di^xP-'^ • • • 
a;^"') is invariant it follows by division that Jfi ... „ -i- V^ is an 
invariant. As an application of Stokes' Lemma we have already 
seen that if 

(Xi) = (— 1)"X2 ... n — X„2 •■■ ri-i; ' ' * (Xn) = Xi ... n-1 

(where X, ... a^, is any alternating covariant tensor of rank 
n — 1) then 

Xi ... n = 7-(7) (Xs) (s umbral) 

is the coefficient of an integral over a region of S«. We see 

therefore that — = -r-7-, (X«) is an invariant. 
\gdx^'' 

We shall now investigate the nature of the n functions (Xs). 
Under a transformation of coordinates from a; to y we find, for 
example, 

V /„; - 2 1 ... „_i — Ji-s, ... B^ -^ ■ • ■ 5^(„-i) 

(si • • • Sri^i umbral) 
^ ^ y a(a:<'i> • • • a:(''--')) 

(owing to alternating character of Xj^ ... 8„.,) 



THE METRICAL CONCEPT 



47 



And, accordingly, if we denote the cofactor of t-t-t in the expan- 

sion of J by (Jrs) we have 

(F„) = (J™)(X.) 

{Yr) ^ (J„)(X,) 

If we solve the n equations 



In general 



(s umbral) 






1 if 5 = r 
if 5 + r 



(p umbral) 
r = 1 • ■ • n 



for --—-, we find 






so that we may write 



or 






(s umbral) 



ex ) 

showing that ^^—^ is a contravariant tensor of rank one. We 
may then put {Xg) = yg X' and our previous result takes the 

1 r) 

form that -= — — ( V^ X') is an invariant; X' being any contra- 
■sgdx'^'' 

variant tensor of rank one. This metrical invariant is known 

as the divergence of the contravariant tensor. 

5. Special results 
If u{x^^'^ • ■ ■ a;^"') is any invariant function of position the rule 
of differentiation 



du dx'-'^ 



du 



a^W aa-W QyM 



(s umbral) 



48 VECTOR ANALYSIS AND RELATIVITY 

Stir 

tells us that the n functions Xe = —-r-. form a covariant tensor 

of rank one; this is known as the tensor gradient. If Xr is any 
covariant tensor of rank one its simple product by itself or 
" square " is a covariant tensor of rank two, X^ = XrX„ 
Hence by rule {d), Ch. 2, § 4, 

g'^'XrX, is an invariant (r, s umbral) 

This is called the square of the magnitude of the tensor. In 
particular the square of the tensor gradient is the invariant 

This is known as the " first differential 'parameter of u." Similarly 
the magnitude of the square of a contravariant tensor of rank 1 
is the invariant grsX^^^X^'^. 
Again 

r. ^ = x» (r umbral) 

ax'' 

is contravariant of rank one (rule {d)). Hence 

^ 3^) ( ^^ ^" ^ ) '' ^"^ invariant (r, s umbral) 

by the result of the preceding paragraph. It is written AaM 
and is known as the " second differential parameter."* In 
ordinary space of three dimensions in which the a;'s are rec- 
tangular Cartesian coordinates 

g'r. = if r =1= 5 
= 1 if r = » 

and gr, = g"; Vg' = 1 so that AiU takes the form 

0^2 + 33.(2)2 "t" 0^2 

* Larmcyr, J., Transactions Cambridge Phil. Soc, Vol. 14, p. 121 (1885), 
obtains this transformation in the case « = 3 by the application of the Calculus 
of Variations. 



THE METRICAL CONCEPT 49 

When we change over to any " ciirvilinear " coordinates y 
we have under the form 

the expression of this magnitude in a form suited to the new 
coordinates. 

6. General orthogonal coordinates 

Whenever we have, in any space, coordinates x such that the 
expression {dsf involves only square terms, i.e., gr„ = if s 4= r, 
the coordinates are said to be orthogonal (for a reason to be 
explained later). It is usual to write, in this case. 



{dsf = ij {dxrf + j-, idx^'^y + • • • + ^2 (dx^^'^y 


accordingly 




^11 = ^,; ••• 


1 


so that 




1 1 1 


Vj- ^ 


^ h^'h'"'hn^' 


hxlh ••• hn 


j,ll =h-?... gn- = A„2 . 


g"=0 r + 5 


The square of the gradient is 





whilst the quantity 



dx^' 



^^\hi---hr^ldx^-^)\ 



The reader should write out the explicit formulae for space polar 
and cylindrical coordinates in ordinary space of three dimensions. 



50 VECTOR ANALYSIS AND RELATIVITY 

7. The special or restricted vector analysis 

In the form given to the theory by Heaviside and others only 
those coordinates xovy were considered in which the fundamental 
metrical form is 

These coordinates we call rectangular or orthogonal Cartesian 
coordinates and the space we call Euclidean. It is true that 
use was made of Stokes' Lemma to find expressions for important 
invariants as A2M in other than orthogonal Cartesian coordinates 
but no attempt was made to define the components of a vector 
in these coordinates. Now when we restrict ourselves to that 
subgroup (of all the continuous transformations) which carries us 
from one set of orthogonal Cartesian coordinates to another 
the distinction between covariant and contravariant tensors com- 
pletely disappears. The transformations are necessarily of the 
linear type 

a;W = (ars)y'-'^ (« umbral, r = 1 ■ • • n) 

where the a's are constants. Since here f = g = 1, J^ = 1* 
and so the equations just written have a unique solution for the 
y's. To get this most conveniently note that dx^^^ = {a„)dy'-'^ 
and squaring and adding we have 

(ttrs) {art) = t ^ s (r umbral) 

= 1 i = 5 

Hence multiplying the equations for x by a^ and using t 
as an umbral symbol we find 

(arOa;^""^ = (art)iars)y^'^ (r, s umbral) 

. dy'-'^ - f \ - ^^^'^ 

Accordingly the equations of correspondence defining covariant 
* We shall consider only Airecl transformations; those for which J = + 1. 



THE METRICAL CONCEPT 51 

and contravariant tensors are, for this restricted set of trans- 
formations, identical. Again denoting by (Ars) the cofactor 
of (ttrs) in the expansion of the determinant J we have by the 
usual method that 

and since the solution is unique we must have {urt) = {Ah)* 
Hence since ^ = 1 we have that the n distinct components of an 
alternating tensor of rank n — 1 form a tensor of rank one. It 
is for this reason that when w = 3 it was found necessary to 
discuss but one kind of tensor — that of the first rank which was 
called a vector.\ Still some writers felt a distinction between the 
two kinds; that of the first rank they called polar and the 
alternating tensor of the second kind, whose three distinct com- 
ponents form a tensor of the first kind, they called axial. Thus 
a velocity or gradient are polar vectors (the first being properly 
contravariant, the latter covariant) whilst a curl or a vector 
product are axial vectors. 

When, in the mathematical discussion of the Special Rela- 
tivity Theory, it was found convenient to make n = 4 [the trans- 
formations (Lorentz) being still those of the linear orthogonal 
type], a new kind of tensor or vector is introduced. Here it is 
the alternating tensor of the third rank which, when we consider 
merely its four distinct components, is equivalent, from its 
definition and the properties of the transformation, to a tensor 
of the first rank or " four-vector." There remains the alter- 
nating tensor of the second rank and the six distinct components 
of this were known, for want of a better name, as a six-vector. 
As an example of the general theory we have that 

(a) the divergence of a four-vector . , is an mvariant. 

(s umbral) 

* This is merely a special case of the previous result that J t^, = (/.r). 
t Until a consideration of non-alternating tensors became desirable. 
S 



52 



VECTOR ANALYSIS AND RELATIVITY 



(6) From any six-vector Xn we may derive a four-vector 
(really an alternating tensor of the third rank) 



Xrst = 



dXra I dXat , dXti 



5a;(') ' aa;W ' dx'-'^ 



It is this four-vector that was written lor Xr. 
Lorentz. 



in honor of 



8. Generalization of the eeciprocal relationship be- 
tween an alternating tensor of rank r and one of opposite kind 
of rank n — r from the case r = 1 already treated to a general 
value of r. 

We have abeady seen that 



where J is the determinant 









d(y 



(1) 



2/(n)) 



of the transformation 



and (Jap) is the cofactor, in the expansion of J, of the element 

dx^'^ 
(J^p) = — -p of this determinant. 

Hence 



dyf-rO 



"eiTi "ajr^ 



dx^ dx^^ 



Now the determinant of the minors of J is well known to be 
equivalent to the product of J by the determinant of order n — 2 
obtained by erasing the sith and Sath rows and the rith and rath 
columns of J affected with its proper sign (the determinant of 

dx'-'^'> 3a;<'2) 

dx^'''> 



order n. — 2 is the cofactor of 



dyiri) 

dx'-"^ 

dyM Qy(Ti> 



in the Laplacian ex- 



THE METRICAL CONCEPT 53 

pansion of J in terms of two row determinants from the Sith 
and 52th rows and the rith and rjth rows). Hence we have the 
result that the n{n— l)/2 distinct components of an alternating 
covariant tensor of rank n — 2 when divided by Vy form the 
distinct components of an alternating contravariant tensor of 

rank two. And so in general. Similarly the f j distinct com- 
ponents of an alternating contravariant tensor of rank n — r 
when multiplied by ylg form an alternating covariant tensor of 
rank r. 

Example. Take n = 4, r = 2 and consider the linear orthog- 
onal transformations of the Special Relativity Theory. Here 

Zx2 = Z«*; Zi3 = X^; X^, = X^ 
Z23 = Z"; Z24 = Z'l; Z34 = X^ 

The two tensors or six vectors Xrs and X" were said to be 
reciprocal.* 

* Cf. Cunningham, E., The Principle of Relatimiy, Ch. 8, Camb. Univ. 
Press (1914). 



CHAPTER IV 
1. Geometrical interpretation of the components of a 

TENSOR 

Definitions 

(a) Direction of a curve at any point on it. 
At any point u on the curve Vi specified by the equations 

a-C) = x'-'\u) (s = 1, ■■■,n) 

whose length s from a fixed point Uo is defined by the integral 



J<v \ "' du du 



/uo » du du 
we may form the n quantities 

i''> = -r- = -^ -^ T- (r=l, ••■.?i) 

as du du 

We exclude from consideration here the " minimal " curves 
along which ds = 0. Since X" = dx'-"^ is a contravariant tensor 
of rank one and ds is an invariant we have that the n quantities 
Z^'' form a contravariant tensor of rank one which we call the 
" direction " tensor of the curve at the point in question. The 
n components we call direction coefficients. The equation of 
definition 

(dsy = grsdx^''^dx'-'^ (r, s umbral) 

shows us that grsl^^W-'^ = 1 so that a knowledge of the mutual 
ratios of the direction coefficients suffices to determine their 
magnitudes (save for an indefiniteness as to sign). Otherwise 
expressed the magnitude of the direction tensor is unity. Fixing 
the indefiniteness as to sign by a particular choice is said to fix 

54 



THE RESOLUTION OF TENSORS 55 

a sense of direction on the curve and the curve may be then said 
to be directed. 

2. (6) Metrical D^inition of Angle 

Consider two curves with a common point and let their direc- 
tion tensors at this point be ^""^ and m^'^ The simple product 
X^' = f''^m'-'^ is contravariant of rank two (Rule (c), Ch. 2) and 
so the expression gnV-^^m'-'^ is invariant (r, s umbral; Rule 
(d), Ch. 2). This we call the cosine of the angle B between the 
two curves (directed) at the point. If the quadratic differential 
form defining {dsY is supposed to be definite, i.e., if it is supposed 
that {ds) cannot be zero, for real values of the variables a;^""^ 
and dx^'''> save in the trivial case when all the dx^'^^ = 0, it can 
easily be shown that the angle defined in this way is always real 
for real curves. Let us write instead of dx^''^ the expression 
W-^^ + /im^''' and thus form the quadratic expression in X and n 

fl'r.(XZ« + fim^'-^)(Kl^'^ + nm<-'>) 

This is not to vanish for real values of X, n save when X = 0, ju = 
(we suppose the quantities l^'^^ and m^''^ all real and the two direc- 
tions as distinct). Using 



we have that 



Sr„ZWZ(») = 1 = g„'mM^mS''^ 



X^ + 2Xm cos + m' = 



must have complex roots when regarded as an equation in 
X : fi. Hence 1 — cos^ > so that the angle as defined above 
is always real for real directions under the assumption that {ds) 
cannot vanish on a real curve. It must be remembered however 
that this assumption is not always made, e.g., in Relativity 
Theory. 

When cos 6 = the curves are said to be orthogonal or at 
right angles at the point in question. 



56 VECTOR ANALYSIS AND RELATIVITY 

Examples 
In ordinary space with the a;'s as rectangular Cartesian co- 
ordinates we have the usual expression 

cos e = U'W» + PW^ + i<«m® 

where (f^\ Z®, Z®)j (m^", m®, m®) are the direction cosines of 
the two curves. If now we use any " curvilinear " coordinates 
{y^^\ 2/®) 2'^") the angle between two curves is 

cose = frJ^)(^ ) {r, s umbral) 

In particular if we use orthogonal coordinates 

»-=^"(¥).(^).+*- 

Thus for a curve in polar coordinates r, 6, ^ 



cos 6 



\dsj i\ds/2 \ds/i\ds/2 \ds ) i \as ) 2 



It will now be clear why those coordinates in terms of which 
{dsf has no product terms are said to be orthogonal. 
For 

/rs = gim r— TT „ , . (f rom its covariant character) 
ay^''' ay^'' 

If now all the coordinates y but one, y^'^'> say, are kept constant 
we have a curve whose equations, in the x coordinates, may be 
conveniently specified by means of the parameter y^^^ 

a-c.) = a;(«)(yW) (5 = 1^ ■••,n) 

Through each point y there pass n curves of this kind which we 
shall call the n coordinate lines y through that point. On the 
rth of these coordinate lines the direction tensor is 

X' = — = — -- — 
ds dy^"^ ' dy^''^ 



and 
so that 



THE RESOLUTION OF TENSORS 57 

and so the vanishing of the component /« states that the co- 
ordinate lines 7/^''' and y^'^ are orthogonal. Hence if (dsY does 
not contain any product terms the coordinate lines are everywhere, 
all mutually orthogonal and so the coordinates are said to be 
orthogonal. In ordinary space, i.e., where the a;'s are rectangular 
Cartesian coordinates and where the y's are orthogonal co- 
ordinates, 

/ii = in-' 

a result which is sometimes useful in the calculation of the 
coefficients /n, /22, /as • • • of the form (ds)^ in the curvilinear 
coordinates y. 

3. Resolution of tensors 

If we consider any comriant tensor Xr of rank one and take the 
inner product of this into a direction tensor Z^""^ we derive the 
invariant Xrl^^^ (r umbral; Rule (d)). This we call the 
resolved part of the co variant tensor along the direction l^''\ 
Let us now make a transformation of coordinates from x to y 
and consider the .coordinate line y^'\ The n components of the 
direction tensor for this curve are proportional to 

a^) ir=h--:n) 

To determine the actual values of these components we must 
divide through by the positive square root of 

^""a^aT^ am umbral) 

and this is equivalent to A^. 



58 VECTOR ANALYSIS AND RELATIVITY 

The equations defining the covariant correspondence for a 
tensor of the first rank are 

Yi = -X'r^ (l = I, ■ ■ ■ , n; r umbral) 

= A^ times the resolved part of the tensor Xr along the co- 
ordinate direction y^^^ 

Example 

Space polar coordinates y in ordinary space of three dimensions. 
The X are rectangular Cartesian coordinates. Denoting the 
resolved parts of the covariant tensor X in the directions 
yW^ y(2)^ yis) {jy ji^ Q^ ^ respectively we have since /n = 1 ; /22 = r^; 
/as = 1^ sin^ 6 

Yi = R; Y2 = re-, Ys = r sin 0$. 

The three distinct components of the alternating covariant tensor 
of rank two, curl X, in polar coordinates are 

^ (r sin e^) - ^ (rG) 

dR d , . „;,> 
— - - — (r sm 0$) 
d<l> or 

5 , „, dR 

dr^'^^-m 

Similarly for cylindrical coordinates p, 0, z where /u = 1; 
/22 = P^; /33 = 1 if we denote the resolved parts of X along the 
three coordinate directions by R, $, Z we have Fi = it; 
Yj = p$; Yi^ Z and the components of the curl are at once 
written down. 

Resolution of Contravariant Tensors. 

To define what is meant by this we require, not as before the 
coordinate lines y^^^ along each of which all the coordinates y but 
one, y^^\ are constant, but the coordinate spreads F„_i along each 



THE RESOLUTION OF TENSORS 59 

of which all the variables but one, y^^'> say, vary. The parameters 
Ml • • • M,j_i may here be very conveniently chosen to be the 
coordinates y\ • • • yn themselves omitting 2/^'', and then y^'^^ is a 
constant (a particular function of mi • • • m«_i). Now, in general, 
when we have a F„_i specified by equations 

a-w = a;('Hwi, ■ • •, '"■n-i) (s = 1, • • •, n) 

we obtain on the spread, through each point, n — 1 parameter 
lines by letting in turn each parameter vary, keeping all the rest 
fixed. Any one of these, Ur varying, say, has at the point in 
question a direction tensor whose components are proportional to 



dUr 



(s = 1, •••, n) 



Let us look for a direction orthogonal at once to the n — 1 
directions of these parameter curves. Such a direction tensor 
has components n^^^ • ■ • w^"^ say and is said to be normal to the 
spread V,^i at the point in question. To express the required 
orthogonality we have n — 1 equations 

gimii^^^ — — = (I, m umbral; r = 1 • • • n) 

dUr 

homogeneous in the n^^^ • • • n^"' and thus serving to determine 
their mutual ratios. To actually solve divide across by one of 
the unknowns n^"^ say and we have n — 1 linear, non-homogene- 
ous equations for the {n — 1) unknowns 



«l = -7v;. ■■■> «n-l 



^(«-l) * 



,w 



* The algebra following here is somewhat complicated and so it may be 
desirable to derive the expressions for the components of the normal direction 
tensor to the spread 2/'"' as follows. Working viith the coordinates y the n — \ 
parameter curves j/*'' varying (s = 1, • • •, n — 1) have their direction coef- 
ficients proportional to 

(1, 0)> 

(0, 1, 0)f 

(0, 1, 0) 



60 VECTOR ANALYSIS AND RELATIVITY 

The determinant of the coefficients has as the element in the 
rth row and 5th column 

9«n^ — (m umbral; r, s = 1, ■ ■ ■ , n — 1) 

dUr 

This determinant is therefore the product of the two matrices 



gn gi2 • • • gin 



gn-l, 1 • • • ffn-l, 



dui dui dui 



3a;(" aa;W 



each of ?i — 1 rows and n columns. It is well known that this 
product can also be written as the sum of products of all corre- 

respectively. The n — 1 equations expressing that n*'' is orthogonal to these 
n — 1 directions are 

/(rJiW =0 (i = 1, • • •, n — 1; r umbral) 
Hence the ratios 

^0) : „(2) : . . . : „(») = y»i ; y»2 ; ... ; y»» 

the actual values being these divided by 

[one must be warned against thinking that "7^ (s = 1, • • •, n) are contra- 
variant. When a change of coordinates from y to a; is made the spread 
j/(») = const, does not become a;*"' = const.] If now we wish to use x co- 
ordinates, the normal direction tensor, being contravariant of rank one, has 
components proportional to 

aa;W 
«<"■' = /"' ^, (r = 1, • • •, 7i; s umbral) 

= ^^i^6^' y,»»,s umbral) 

= ff"^ (J umbral) 

If ^<») = F(a;<", • • •, s'"') we have that the normal direction tensor to the spread 

dV 
has its components proportional to g'' r-^ the result required. 



THE RESOLUTION OF TENSORS 61 

spending determinants of order n — 1 that can be formed from 
each matrix. Let us write for brevity 

3 fa;® • • • a;'"'") 

(JO = (- i)«-i|5? — ^ 

d{Ui ■ • ■ Mn-i) 



(^2) = (- 1) 



a(a;(" a;® • • • a;(»-») 



diUi • • • lin-i) 

and the determinant of the coefficients becomes 

{GnB)(Ja) (sumbral) 

which may be written g g^'{J,). The numerators of the fractions 
furnishing vi • • • »n-i are dealt with in the same way and we have 

n(" : vP : ■ • • : 7i<"> = g"{Js) : 9^'{J,) : • • • : <?"'(J,) 

(Since the (/,) are really the n distinct components of an alter- 
nating contravariant tensor of rank n — 1 we know that 
Xs = (Js) V^ is a covariant tensor of rank one verifying the 
contravariant character of the n^'^ (Rule (d))). If all the (Js) 
vanish the point is said to be a singular point of the spread and 
the determination of n,^""' becomes impossible. 

Let us now apply these generalities to the spread F„_i given 

by a single equation 

7(a;(i) . . . a;W) = 

connecting the coordinates x. We may solve for one of the 
coordinates, a;^"' say, in terms of the others a;^^^ • ■ • x^"~^^ and 
these others we use as the n — 1 independent parameters of the 
spread: 

a;(« = ui ■■■ a;^"~^^ = m^i a;^"^ = x^^^Ui ■ ■ ■ u^{) 

are then the equations, in parametric form, of the spread F»_i. 
Oiu- matrix 

-^ (r = 1, • • •, n; 5 = 1, • • •, w - 1) 
au. 



62 



VECTOR ANALYSIS AND RELATIVITY 



IS now 



10 
1 





and so 



(JO = (- D-i^ 



... ^^ 

aa;W 
aa;("-" 

a;<"^) _ a(a;W a;<2) 



a;("-«) 



a(wi, 



dx^» 



1 





t<n-l) 

• 

• 



d{x' 

dx^ 
5a;« 



(1) 



a.(n-l)) 



But, on differentiating the equation Vix^^^ 
spread F»_i we obtain 

dV , dV aa;(") „ 



so that 



a;W) = of our 



whence 



(^l) •• iJ2) 



Q^o.) ' ax<">ax« 




aa;W_ 37 . dV 
ax(» aa;(« ■ aa;("> 




' ^ ' aa;»> 'ax® • 


dV 

■5a;W 



In particular, if the spread F,!_i has, in the y coordinates, the 
equation y^^^ = const., we have for its normal direction tensor 



The actual magnitudes of these components are found by dividing 



THE RESOLUTION OF TENSORS 63 

through by the positive square root of 

^""^''afc^^'afo) (r noi umbral) 

which expression is = ^""^^) ^^ (f not umbral) 

If now we have a contravariant tensor X'''^ of rank one it is 
meaningless to call X^'H^'^'' the resolved part of the tensor in the 
direction I for the simple reason that this expression is not 
invariant but takes on different values in different systems of 
coordinates. However, we may first form the co variant tensor 

Xs = s^srZ« (r umbral. Rule {d)) 

This tensor is said to be reciprocal to the contravariant tensor 
X^''^ with respect to the fundamental metrical quadratic differ- 
ential form and its resolved part in any direction we call the 
resolved part of the contravariant tensor in that direction. Thus, 
for example, the resolved part of the contravariant tensor X'' 
in the direction normal to the coordinate spread y^''^ = constant is 

gspX^-n^'^ = g.pXPg"'^^ -^ V/^ {s, p, t umbral) 
^Ip^'^'i^'' (*™bral) 



Hence any component 7^''^ of a contravariant tensor of rank 
one is the product by V/" of the resolved part of the contravariant 
tensor normal to the coordinate spread y^''^ = constant. It is 
now apparent that to deal with covariant and contravariant 
tensors of the first rank we require the coordinate lines through 
each point and the normals to the coordinate spreads through 
that point. When the coordinates are orthogonal, and only then, 



64 VECTOR ANALYSIS AND RELATIVITY 

these lines and normals coincide and a great simplification is due 
to this fact. This explains why orthogonal coordinates have 
been used, almost to the point of excluding all others, in the 
investigations of Theoretical Physics. 

4. Example (a) 

Space polar coordinates. These being orthogonal the normals 
to the spreads r = const., B = const., <j> = constant are the 
coordinate lines r, 6, 4> respectively and, if we denote the resolved 
parts of the contravariant tensor X'-'^ in these directions by 
R, 6, $ the three components are 

yd) = R; 7(2) = ? ; y(3) = ^ 



r r sin 5 

In general for orthogonal coordinates y with 

{dsy = Mdy^'^)' + ■■■+ fnnidy^^^y 

we havef" = l/frr and if, as usual, we write /rr = 1/hr^ we have 

/ = (hi^ hi •■■ hj)-^ and f = hj" 

Here y»> = h(Ri) ■ • ■ yw = h„{R„) where we denote by 
(Ri) • • • (Rn) the resolved parts of the contravariant tensor along 
the coordinate directions 1,2, • • • , n. respectively. The divergence 
of the contravariant tensor 

takes the form 

h,...h l-^(-^^iL-\+...+ ^ ( (-^) W 
' " W'^ U • • • J + +a^> \h---Kj: 

Thus, for space polar coordinates, the divergence is 

^ [I ir^ sin OR) + ^i (. sin .0) + A (^)| 



THE RESOLUTION OF TENSORS 65 

and for cylindrical 



-I- 
P [dp 



(^^)+l| + |(^^) 



Example (b) 

In order to illustrate the distinction between covariant and 
contravariant tensors we now consider oblique Cartesian coordi- 
nates y so that 

+ 2tidy^^Uy^^^ + 2vdy<'^Hy'-^'> 

where the constants \, ju, v are the cosines of the angles between 
the oblique directed axes. Here 



1 »» jU 

V 1 X 
M X 1 



= square of volume of unit parallelopiped with 
its edges along the three axes. 



i.e., V/ = sin X cos Oi = sin \x cos 9% = sin v cos %% where 5i is the 
angle between the coordinate line y\ and the normal n\ to the 
coordinate plane y\ = const, with similar definitions for Bi and 03. 
Hence 



V/" = J^~^^ = sec 0i; ^ = sec B-,; Vf ^ = sec ^s 

If we have any vector whose components in rectangular Cartesian 
coordinates (a;^^^ a;^^^ x'-^^) are Xi, X2, X3 this vector may be 
regarded as either a covariant or contravariant tensor, i.e., 
Xi = Z»>; X2 = Z®; X3 = X(') and if we denote the resolved 
parts of this vector along the coordinate lines y by (Zj„ Xi^, Xi^ 
and along the normals of the coordinate planes y by (X„„ X„j, 
jf„s) we have 

Fi = V/ii Xi^ = Xi^; Yi = Xi^; Y3 = Xi^ 
ym = -v^ x„. = Z„. sec &i; , F® = x„, sec 62; Y'= Z„, sec 63 



66 VECTOR ANALYSIS AND RELATIVITY 

Hence ( Yi, Y2, Y3) are the resolved parts of the vector along the 
three coordinate lines whilst iY^^\ Y^^\ Y^'^) are the components 
of the vector along these same directions. The tensors Y, and 
y*" are reciprocal with respect to the differential form {ds)^, i.e., 

Yi = yci) + ^y® + ^Y^^), etc. 

Let us now consider the contravariant tensor whose components 
are _ _ _ 

yd) = p,Y^^); y(2) = p^Y'-'-); y(3) = p^Y^^) 

where pi, pn, ps are scalar or invariant numbers; we find for the 

components in the rectangular coordinate system x 

_ _ a~(i) _ a-d) _ fl™(i) 
v(i) = yci) z± L y(2) £f l. y{3) "-^ 

= p, f za) ^ + Z(« ^^ + Z(3) ^-^"j ^ + etc 
"'^'V aa;«^ aa;(^)^ 3a:®^2/« ^ 



or 

where 



Z' = pa'Z' (5 umbral) 

,_ 5^5jr« ax«a^, dx^dy^ 

dx^''^ . . dv^^^ ■ 

Now — -TTT IS a contravariant tensor and -^, is a covariant tensor 
32/(1' dx^'^ 

if we regard the y's as fixed and consider merely transformations 

on the x's so that p/, being the sum of three mixed tensors, is 

actually, as the notation implies, a mixed tensor of rank two. 

It was in this geometrical way that Voigt introduced the idea 

which he called a tensor. The mixed tensor p/ is completely 

specified by the three directions y and the scalar numbers pi, pz, 

P3. If the mixed tensor is to be symmetric for every choice of 

Pi) Pi, P3 we must have 

These equations lead to the conclusion that the " axes " y of 



THE RESOLUTION OF TENSORS 67 

the tensor are mutually at right angles and so such a tensor was 
called symmetric. 

In order to study the behavior of the vector X as Z changes 
direction, keeping its magnitude unaltered, we may solve the 
equations for X and obtain 

Z"- = 7r/Z» (s umbral) 

where from the geometrical construction ir/ is a mixed tensor 
with the same axes as pa' but 

1 
TTi = — , etc.. 

Pi 
so that 

'^' ~ Pi ai/<» dx'-'^ P2 dy'-^^ dx^'^ Pi dy'-'^ dz^'^ ' 

Then squaring and adding the equations for X"" we find that X 
traces an ellipsoid, called the first tensor ellipsoid. 

For a symmetric tensor the directions y are orthogonal so 
that Fi = Y^, etc. A simple example of a symmetric tensor is 
furnished by the uniform stretching of a medium along three 
mutually perpendicular directions successively. It was from 
this example that Voigt originally took the name " Tensor." 
Reference may be made to any treatise on the Theory of Elas- 
ticity for an amplification of the remarks of this paragraph. 

5. General Form of Green's Fundamental Lemma 

Starting with any invariant function of position V{x^^^ • • • cc^"') 
we have seen how to form its covariant tensor gradient 

V ^V / 1 ^ 

^'"a^ (r=l---r^) 

the square of whose magnitude is the first differential parameter 
of F 

dV dV 



AiV ^ r 



accW aa;(»> 



68 VECTOR ANALYSIS AND RELATIVITY 

Now the normal direction tensor to V(x^^^ • • • a;'"^) = const, has 
components whose ratios are 

n(« : 7i<2) : • • . : n^ = g^'^^-. . . . -. g-'^^ (5 umbral) 

the actual magnitudes of these being found on division through 
by the positive square root of AiV. Hence the resolved part of 
the covariant tensor gradient along the normal is 

^ ff " ^ -^ ^"^ ('' i umbral) 



and this is = VAiF.* This we shall call the normal derivative 
of V and denote by the symbol: 
gradient along any direction I is 



dV 
of V and denote by the symbol— • The resolved part of the 

0lb 



I'-'i^y (rnmhral) 

dV 
This we denote by -—r and call the directional derivative of V 
al 

along the direction I. The angle 6 between n and I is given by 

1 dV 

cos e = gj^'^^n^'^ = -^= gJ^'^g'^^-us (r, s, t umbral) 

-VAiF "^ 

1 j,,,dV 1 dV 



Va^F 5a;« VaJ^ dl 
Hence 

dV^dV g 
dl dn 

showing that the maximum directional derivative is that along 
the normal. (In general, if we say that any covariant tensor Xr 
has a direction specified by the reciprocal contravariant tensor 

X' = g"Xr (r umbral) 

* If we define the " direction " of any covariant tensor of rank one as 
that of its reciprocal contravariant tensor we may say that the gradient of 
any invariant function of position has a direction normal to it. 



THE RESOLUTION OF TENSORS 69 

the resolved part of Xr along any direction I is the product of the 
magnitude of the tensor into the cosine of the angle between I 
and the direction of the tensor.) 
The contravariant tensor reciprocal to the gradient of V is 

Accordingly, on multiplying each of these expressions by V^, 
we derive the n distinct components of an alternating covariant 
tensor of rank re — 1 (cf. Ch. 3, § 4) and so we can form the 
integral 7n-i 

over any spread of re — 1 dimensions given by 

a;(.) = x^'\ui, '-, M^i) (5 = 1, • • • , re) 

the symbol (J,) denoting as before 

,3(a;»> • • • aj^*-" x^'+'^'> - • ■ a:(">) 



(- 1)"- 



a(Mi • • • M^_i) 



The normal contravariant tensor to the spread of n — 1 dimen- 
sions has, as has been shown, components proportional to 

9"(.J») (»■ = Ij • • •> n; s umbral) 

the actual magnitudes being found by dividing through by the 
positive square root of 

gimg^'iJs)g'^KJt) {I, m, s, t umbral) 

= 9"(.J^)(Jt) (s, t umbral) 

,^, dV , dV , ,. 

Hence g"(Js)^^= product of Vff"(J,)(J,)by q^ ^^ d^ec- 

tional derivative V normal to the spread F„_i over which 7„_i 
is being extended. Hence we may write 

on 



70 VECTOR ANALYSIS AND RELATIVITY 



where by dVn-i we mean the invariant '^gg"^'{Jm)(Jt) dui • • • 
dun-i. (That this is invariant follows from rule {d) since V^ (.Jr) 
is a covariant tensor of rank one (cf. Ch. 3, § 7).) 
Applying Stokes' Lemma to I,^i we have 

f^J-dVn-l^fA2V-dV„ 

dn 

where the integral /„_i is extended over any F„_i which is closed 
and the integral 7„ on the right is extended over any region of 
space Vn bounded by F„_i. Here 

and dVn is the invariant V^ d{x'-^^ ■ • • x'-"^). 

If, instead of the contra variant tensor X'^ = g^' —r^ , we start 

out with 

dV 

where U is an invariant function of position we find 

On interchanging the functions U, V and subtracting we have 

which is the usual form of Green's Lemma. The previous 
equation may be written 

fU^J^dVr^l = fiUAiV - A{U, V))-dVn 

on 
where A(J7, V) is the invariant mixed differential parameter 

^^U''^^S"~I~ (r,.umbral) 



THE RESOLUTION OF TENSORS 71 

In particular, if the invariant functions U, V are identical we 
have 

fU^JL . dVr^i ^ fiUA2V - AilD-dV,. 
an 

The last identity is the basis of various uniqueness theorems of 

fiTT 
Theoretical Physics. If we know the values of ?7 or -— over a 

dn 

closed Vn-i as well as the values of A^U throughout the region 

bounded by Fn_i the function U is unique, save possibly to an 

unimportant additive constant. For, applying the last identity 

to the function W = Ui— Ui where Ui and U2 satisfy the above 

conditions, we have 

fAlW-dVn = 

Now under the hypothesis that 

is a definite form we see that AiW is one signed and vanishes only 

dW 
when all— -T-rare zero. Hence since J'AiW-dVn = we must 

dW 
have — pr = throughout the region of integration (r = 1 • • • n). 
ox^''' 

Therefore, Wis & constant and if the values of U are assigned 

W= Ui-U2 = 

on the boundary and so TF = or Ui^ U2. 

The whole argument depends on the definiteness of {dsy. 
Suppose we wish to apply the theorem to solutions of the wave 
equation 

dx" dy^ bz^ & df 

Here we have 

(dsy = {dxY + {dyY + {dzf - (?{dtf 



72 VECTOR ANALYSIS AND RELATIVITY 

and so 

and the theorem cannot be applied since AiF can vanish without 
implying the vanishing of all the derivatives. 

6. Application to Maxwell's Equations 
One of the most interesting applications of the algebra of 
tensors is the discussion of Maxwell's Electromagnetic Equations. 
These consist of two sets, which in the symbols of restricted 
vector analysis and the units employed by Heaviside are 

(a) — - + curl H = j; div D = p 

c at 

(b) i^ +cmlE= 0; div 5 = 
c at 

D is the electric displacement, H the magnetic force, and j the 
current vector; B is the magnetic induction, E the electric force 
and p is the volume density of electrification. We take Ji = 4 
and as coordinates, in the above form, 

t 



a;(i) = x; x^'^ 


= y; x<-'-> 


= z; a;W) 


If we assume that 






X23 — Bx; Xai = By; 


X12 — B^; 


Xu = cEx; 



Xii = cEy; 
X34 = cE, 

are the six distinct components of an alternating covariant tensor 
of rank two, the four equations (6) express that 

y _ 5-3^12 1 dXn , dXzi _ dB^ . dBx . dBy ^^ t, n 
az dx ay dz dx dy 

y _dXn dX^^ dXii_dB,, (dEy dEx\ 
ot dx dy dt \ dx dy J 

Y -dXiz dX3i,dX,i_ dBy, (dE, dEx\ 

Y _ 3Z23 , 3X34 , 3X42 dBx. (dE, dEy\ 



THE EESOLUTION OF TENSORS 73 

In other words the integral 

= fBJ{y, z) + Bydiz, X) + B4{x, y) + cEd{x, t) 

+ cEyd{y, t) + cEd{z, t) 

is the integral of an exact differential — its value when extended 
over any closed spread V2 is identically zero. Hence its value 
when extended over any open spread V2 can be expressed as a 
line integral J'Xrdx^^^ round its boundary. On writing 

Xi = — Ax', X2 = — Ay) X3 = — Az; Xi = c(j) 

we have 

l2 = Ii = J'{c4>dt — Axdy — A^y — Aidz) 

and an application of Stokes' Lemma tells us that 

dXr dXs 



or 



^" dx^'^ aa;W 



0X2 dXi _ dA, dAy 



5a;''' dx''^^ dy dz 



^ dAx _ dAj „ ^ dAy _ dAx . 

dz dx ■' " dx dy ' 

y dXi dXi dAx d<j> 

^ ^^^ d^^~ d^^^ ~ ~dt ~ "di' 

^ _ dAy _ d^, F = — — ^ — ^ 

dt dy' ' dt dz 



The covariant tensor of the first rank (Ax, Ay, Az, — cej>) is the 
" electromagnetic covariant tensor potential " of which the 
first three components form Maxwell's vector potential, 4> being 
his scalar potential. 

Similarly, if we assume that (— Dx, — Dy, — Dz, cHx, cHy, cHz) 
are the six distinct functions of an alternating covariant tensor 
Xra of rank two the equations (a) say that 

^234 — CJx; XiU = CJyl Z124 = cjz] Z123 = — P 



74 VECTOR ANALYSIS AND RELATIVITY 

and we have li = Is where 

U = fcHJix, t) + cHyd{y, t) + cE4{z, t) - DJ(y, z) 

— Dydiz, x) — Did{x, y), 
h = fcjxdiy, z, t) + cjydiz, x, f) + cj^d{x, y, t) — pd{x, y, z) 

I2 being taken over any closed spread V2 of two dimensions and 
Iz being taken over the open Vz bounded by V^. Accordingly 
{jx, jy, jz, — pjc) are the four distinct functions of an alternating 

tensor of rank three and so, on writing c(Xi) = X 234, etc., — ^ 

■sg 

form a contra variant tensor of rank one (Ch. 3, § 7). From its 
definition we know that its divergence is zero. This tensor we 
may call the current contravariant tensor and write 

(71 = -^ • ... C*— ~ P 
V^ ' c-ylg 

Let us now apply these methods to the problem of writing 
Maxwell's equations in a form suitable for work with curvilinear 
coordinates y^^\ y^^\ y^^^ in space of three dimensions — the time t 
not entering into the transformation. The equations connecting 
the x and y coordinates are of the type 

a.(3) = a;(3)(2^(i)^ 2/®, 2/^'^); a;W> = 2/'*) = t 

and denoting tensor components in the new coordinate system 
by primes we have 

/T\ \i — 71 / — 7-) "V*'' ) •'- I \_ n ^"^ ' ^ > 

3(2/®, 2/(3)) 3(2/(2)^ y(3)) 

the terms in Hi, Hi, H3 vanishing since 



^2/(2) Qy. 



(3) 



THE EESOLUTION OF TENSORS 75 

_ 9a;^^' 3a;® dx'-^'' 

" (^^) a^ + (^^) a^ + (^') 3^ 

the terms in (Di) (Pa) (Ds) vanishing since 

5^= 3^ = 3^ _ 
32/W ~ 32/(^> "" a2/(« " 

Hence in the three-dimensional space with coordinate systems 
(a:'^^ x'^\ x^^^) and (y^^\ y^^\ y^^^) the variable t being regarded 
merely as a parameter which does not enter into 

(dsy = grsdx^'^dx^'^ = frsdy^'W^ ix, s=l,2, 3) 

the three quantities (Di) (D2) {T)^} are the three distinct members 

of an alternating covariant tensor of rank two. Hence — —- = X^ 

is a contra variant tensor of rank one; similarly ^^-r:^ = X' is a 

V^ _ 

contravariant tensor of rank one whilst Er = Xr and Hr = Xr 
are covariant tensors of rank one. We derive by our rule {d) 
of composition the invariants 

{ED) . (£5) . {HID) . {HB) 
^l~g ' ^Jg ' ylg ' V^ 

where as in the usual vector notation 

{ED) = EiDi + E2D2 + E3D3 

and similarly for the others. 

Dividing Maxwell's equations, as usually written, across by 
V^ we obtain 

- -I-Z' + 4=curl. {H) = C- (r = 1, 2, 3) 
cat ylg 

(where C" = -4^is the contravariant current vector). 



76 VECTOR ANALYSIS AND RELATIVITY 

div Z« = p 

where p is the invariant charge density and similarly from the 
second set 

+ -|z^ + 4=curl.(£) = 
cot \g _ 

div Z-- = 

Denoting, then, as usual resolved parts along the coordinate lines 
by subscripts (h, k, h) and along the normals to the coordinate 
surfaces by the subscripts {rii, n2, n^) we have the three equations 

The equation div X' = p becomes 

(by Z)„i is meant the resolved part of the contravariant tensor 
Z)/V? along the direction rii). 

The equations (6) are similar and are simplified by the fact 
that there C„i, C„2, Cn„ p are all zero.* 

* When the coordinates y are orthogonal 

(day = ^, (dymy + 1 {dyV^-^y + 1 (dj/(3)j2 

i ~ h'h ^h^ ' ^^ ~ ^^' ^^'' ^^^ Maxwell's equations become since Jii = li, etc. 
and two similar equations together with 

^'^'^> { a^ {}£) + a^ ij£) + a^ {}£) [ ="• 

Cf. Riemann-Weher, Die Partiellen Differentialgleichungen der Mathemat- 
ischen Physik, Bd. 2, p. 312 (Vieweg & Sohn) (1919). 



THE RESOLUTION OF TENSORS 



77 



Example 
In space polar coordinates Maxwell's equations are 
1 



cdt j^ sin 5 



^^{r sin eH^)-^{rHe) 



cdt * 



= Cr 



= C, 



r sm [50 dr 

'^:frir.)-i(H,)}-c. 



->• + - 

cdt r 



dr 



1^ sin 6 dr 



^ {r sin BDr) + ^ (r sin QD,) + A (rB,) j = 



It is particularly to be noticed that Maxwell's Equations are 
essentially of a non-metrical character. No real simplification 
is introduced by the hypothesis that the fundamental space is 
of the ordinary Euclidean character. Another point to which 
attention should be directed is the difference in character of the 
tensors B and H or oi D and E. A relation of the familiar type 

B = ^H 

H, the coefficient of permeability, being supposed invariant is 
not the proper mode of statement of a physical law if we under- 
stand by Bi, Bi, Bz the three components of the tensor B. The 
true statement of the law is 

where by {B)i we mean the resolved part of the contravariant 
tensor (5)/V^ along the direction I and by {H)i we mean the 
resolved part of the covariant tensor H along the same direction. 
Thus any constitutive equation of this type is an allowable state- 
ment of a physical law not because it is a tensor equation (since 
it is not such), but because it is an equality between invariant 
magnitudes or a scalar equation. The true tensor equation is 
found by equating the covariant tensor fiH to the covariant 
tensor reciprocal to the contravariant tensor {B)/-^jg. 



CHAPTER V 

1. Connection of Tensor Algebra with Integral Inva- 
riants AND Application to the Statement of 
Faraday's Law of Moving Circuits* 

Suppose for example we have a curve Vi whose equations 

a;(») = x<-''>{u, t) (s = 1, •••, w) 

involve a parameter r. This curve may be said, adopting the 
language of dynamics, to move and trace out a Fa whose equa- 
tions are those given above, the parameters being u and r. 
Any one of the curves t = constant will then be a position of the 
moving curve. We shall suppose that the values of u serve to 
identify the various points on the moving curve; thus if u 
denotes the distance along the initial position of the moving 
curve from a certain fixed point, or origin, the curves Vi obtained 
by taking u = constant (mq) in the equations 

a:^') = x'-'\u,r) (» = 1, ■ ■ ■ , n) 

are the path curves of the definite point on the curve Vi which 
initially was at the distance Mq from the origin on Vi. It will 
fix our ideas to^onsider Vi as made up of particles of a fluid; 
then the curves Vi are the paths of the various material particles 
of Vi. It is well to insist, at the outset, on the point that the 
parameters u and t are independent. Thus if the moving curve 
Vi were rigid, u could be taken as the arc distance along Vi at 

* An elementary presentation of the theory of Integral Invariants is given 
by Goursat, E., in two papers: 

(a) Sur les invariants int^graux. Journal de Mathlmatiques, 6» s6rie, 
t. IV (1908), p. 331. 

(b) Sur quelques points de la th^orie des invariants int^graux. Journal de 
math^matiques, 7° s6rie, t. 1 (1915), p. 241. 

78 



INTEGRAL INVARIANTS AND MOVING CIRCUITS 79 

any time r; if, however, as in the case of the curve made up of 
material fluid particles, Fi is not rigid, u may only be taken as 
the initial identifying arc distance; otherwise u would vary with 
T. Let us now consider an integral Ii = J'Xrdx^^^ extended 
over Vi and ask the conditions that Ij should be the same for 
all the curves Vi, i.e., that 7i should not vary with r. If this is 
so, Ii is said to be an integral invariant. 
Now /i is in general a function of t defined by 

X"' / dx^''^\ 
I Xt -t — I du (r umbral) 

the limits mq and u' being, however, since u and r are independent, 
quite independent of t. Hence 

dl 



dr J„„ drX du J 



The coefficients Xr are functions of position and therefore involve 
T indirectly; it is somewhat more general to contemplate the 
possibility that they may involve t, not only in this indirect 
manner but also directly. Then for any one of the coefficients 
Xr we have 



Ar - fd^r dXr dx^'^\ 
dr ''~\dr '^dx^'^ dr ) 



It is now convenient to denote the contravariant tensor of rank 

one by the symbol Jf and to use the result 

or 

ddx^"^ a 3a;W 3Z« dX<-'^ dx'-''' , , ,, 
^ " (s umbral) 



dr du du dr du Sa;'"^ du 
and we have 



1 ^ /dXrdx^'-') , ^ d 3a;«\ , / u n 

-= f[^^—+ ^r-i--T—)du (r umbral) 

\ dr du dr du ) 

_ r\(^^r.Y<.»^Xr\dx''^'^, yaZW6 

~ -^ 1^17 "^ 5a;(»V du ^ ^'dx^'^ " 



du 
(r, s umbral) 



80 VECTOR ANALYSIS AND RELATIVITY 






— -rfM 

au 



(on modifying suitably the umbral symbols) 

Hence if dh/dr is to vanish identically for all curves Vi we must 
have 

^'+^i-^,+ xgJ-0 (,.I,....„,,UMbraI). 

Sometimes it is only necessary that 7i should be unchanged for 
all closed curves Vi; in this case 7i is said to be a relative integral 
invariant. To find the conditions for this we use Stokes' Lemma 
to replace the Ii over a closed curve by an h over an open V2 
and then find the conditions that I2 should be an (absolute) 
integral invariant. 
The analysis necessary to find the conditions that an 

Ip = yX,.....,(i(a;(">---a;(V) 
esrtended over a Vp (moving) whose equations are 

jjW = a;(»)(yj^ • ■■ Up, t) {s = 1 ••• n) 

should be an absolute invariant is identical with that given for 
the simplest case p = 1. Let us write as before 

dr 
and denote by the symbol F the derivative 

dF dF , dF „,., , , „ 

where F is any function of position which may also involve t 
explicitly. Then 

^^f£ {X,^...^/ix^'i) . . . ^(.p)) } (51 < S2 < . . . umbral) 



INTEGRAL INVARIANTS AND MOVING CIRCUITS 81 

since the limits of integration with respect to the variables u are 
independent of t. This we write 



riU 



dx'-'^ dx'-'v'> 



dr [ ' " dui dup 

and availing ourselves of the relation 



dui • • • du. 



p 



d dx<-''^ ^ Ax(0 = 3Z(»'^aa;« 



dr dur dUf 3a;'™' dur 

we arrive at the conditions expressed in the form that 



+ ^'i-'^ir-Q^^ = (m umbral) 

An especially simple case is that in which p = n. Here there is 
a single condition 

— ^j (r umbral) 

Since Xi...„ is the single distinct member of an alternating co- 
variant tensor of rank n 

Zi...„ =^|gU 

where U is an invariant function of position and writing out 

our condition that J^U-dV„ should be an integral invariant may 
be written in the form 

or on dividing out by V^j which does not involve t explicitly, 

h div (Z/Z^'O where as usual the divergence of the contra- 

dr 



82 VECTOR ANALYSIS AND RELATIVITY 

1 a 

variant tensor of rank one UX'^ is the invariant -i=-r-r; (V? UX''). 

■ylgdx^''' 

In this form the invariance of the condition for an integral 

invariant is apparent. If we are considering a moving charged 

material body where p is the density of charge, the total charge 

J'pdVn remaining constant gives us that 

^4-div(pZ«) = 
at 

where X^'^ is the contravariant velocity tensor of rank one. 

Faraday's Law for a Moving Circuit. 
We have seen that 



^fXM'-> ^ f 
dT 






<ia;W 



the integral in each case being taken over the position of the 
moving curve at time t. The expressions 

^ + ^a^+^'a^ (r=l,...,r.;.umbral) 

must accordingly form a covariant tensor of rank one. In fact 

we may write this as 



^-^+X'\ 



dXr_ _ dX^ I , _d_ , „ „(,) . 
5a;W aa;WJ^aa;W^ ' ' 



when the covariant character is apparent by rule (d), Ch. 2, § 4, 
since 



dXr _ dX(s) 



= Xn 



is covariant of rank two and XsX^'^ is invariant. 

Let us now write down the expression for dh/dr where I2 is 
any siu-face integral and transform the coefficients as above so 
as to make evident their tensor character. 



INTEGRAL INVARIANTS AND MOVING CIRCUITS 83 
Writing 
we get 



where 



^^ -^ /Z„d(a:W, a;(')) 






the integrals being in each case extended over the position of the 
moving spread or surface V2 at time t. We may write 



+ {,-|r)(^^™^'")-,-^(^^™^'")l 



where we have availed ourselves of the alternating character of 
Xts- The covariant character of Xrs then follows from rule (d). 
We shall apply this result to the surface integral 

/2 = f{(D{)dix<-^\ a;<'0 + iDi)d(sc^^\ a;«) + {Ds)dix^», a;®)} 

n= 3 

so that (Pi), (D2), {D3) are the three distinct members of an 
alternating covariant tensor of rank two. Hence D^''^ = (■Or)/V^ 
is a contravariant tensor of rank one. The covariant tensor of 
rank one whose curl appears in the expression for Xra is 

XrmX'^ (m umbral) 

so that its first component is 

Z12Z® + Zi3Z») = Z»>(03) - Z«)(i>2) 

= {Z®i)(s)-Z(8>Z)®}V^ 

It accordingly appears as that derived from the outer product 
of the velocity contravariant tensor and the displacement contra- 
variant tensor. 

7 



84 VECTOR ANALYSIS AND RELATIVITY 

The expression 

If now we assume as Maxwell's equations for the moving material 
medium 

^ fD) = c curl fT - (i); div D' = p 

where (j) is the alternating co variant current tensor of rank two, 
so that (j)Hg is the contravariant current tensor of rank one C, 
we have for Xrs the equations 

^3 = rg^-^ + Z« Vff P + { ^ Vff(X«)Z)i - XW') 

etc. 

Using Stokes' Lemma to transform the surface integral of the 
part in face brackets into a line integral as well as that involving 
curl H in aZ)«/3« we find 

+ {cH2 - VK^'-O' - XZ)')}&2 
+ {cFa - M^D' - X'D^)]dx, 
+ f[MpX' - C^)d{x\ x')] 

The integrand in the surface integral on the right is found by 
writing r, s, t in cyclic order and summing the terms corresponding 
to r = 1, 2, 3 respectively. (The line integral is to be taken over 
the boundary of the moving surface.) The contravariant tensor 
pX^''^ is called the convection current. In exactly the same way 
we obtain, on making a similar assumption as to what Maxwell's 
equations should be for moving media, 

- j^fBndS = f{cE,+ ^g{XW - X'B')\dxi 

+ lcE2+ MXW - X^B')}dx2 
+ {cE, + ^-giX'B' - XW)}dx, 



INTEGRAL INVARIANTS AND MOVING CIRCUITS 85 

there being now, however, no surface integral on the right-hand 
side. Accordingly the covariant tensor 

Er + ^ V^(XWB(« - Z(«B('>) (r = 1, 2, 3; r, s, t cyclic) 

is taken as the effective electric intensity along the moving curve; 
its line integral being called the effective electromotive force 
round the curve. (Z^''^ is the contravariant velocity tensor.) 
On multiplication by charge this tensor gives the mechanical force 
tensor. 

Example. In space polar coordinates the mechanical force 
tensor per element of length on a moving curve with linear density 
a is 

j ^r + - r^ sin 0{veB^ - v^Be) ^-4-^ ) ads 
[ c rsiadj 

rEe + - r" sin Oiv^Br - VrB^) -^— \ ads 
c rsmd] 



r sin OE^ + - r^ sin BivrBe - VgBr) - 
c r 



ads 



where Er, Br, «r are the resolved parts of E, B, X along the direc- 
tion r and so on. To get the resolved parts of the mechanical 
force along the three coordinate directions multiply these by 1, 

-, — ; — - respectively and we obtain the well-known formula 
r r sm 

F = E+^[vB] 
c 

In the general case when the coordinates yi, y^, y^ are not orthog- 
onal the three resolved parts of the mechanical intensity (covar- 
iant) tensor along the coordinate lines yi, y^, yz respectively are 

Fi, = El, + -•V V- [^"2^"3 - »n,BnJ, etc., 

^ Jll 

where v„, Vn^ »„, denote the resolved parts of the velocity along 
the normals to the coordinate surfaces 2/1 = const., y^ = const., 
2/3 = const., respectively. 



CHAPTER VI 

1. The Tensor or Absolute Differential Calculus 

Since the Calculus of Variations deals with properties of curves 
and surfaces without making any particular reference to the 
special coordinates used in describing the curves there must be 
a close relationship between that subject and that which we 
are discussing. It is this absolute or tensor character of the 
calculus of variations that has urged writers on Theoretical 
Physics to express the laws of physics, as far as possible, in the 
language of the Calculus of Variations. However, this subject 
has been placed on a clear and firm basis only within the past few 
decades and so it may be well to discuss one of its simpler prob- 
lems — the more so as the solution of this problem is involved in 
the statement of Einstein's fundamental law of Inertia in the 
Theory of Relativity. 

Let us consider a curve Vi, in space S„ of n dimensions, given 
by the equations 

-rU) = x'-'^u) (s = 1 ■■■ n) 

and in connection with this curve a function, not merely of 
position, but of the coordinates x and their derivatives 



X 



(»)' = 



dx^'^ 



du 

The integral 7i over the curve Vi where 

7i = X">(a;(» • • • a;(")a;«' • • • x<-'^^')du 

has a value depending on the curve Vi as well as on the particular 
function. The problem we wish to discuss is: What, if any, are 
the cm-ves Vi making, for a given function F, 7i a minimum, all 
the curves Vi being supposed to have the same end points. 

86 



THE ABSOLUTE DIFFERENTIAL CALCULUS 87 

To answer this question we consider a new curve Fi(a) given by 

the equations 

a;(«) = x'-'^u, a) {s = 1 ••■ n) 

where a is quite independent of u. We suppose this parameter 
a to be such that when a = 0, Fi(a) makes h a minimum. 
Viia) is now completely determined by the equations just written 
when a is given and so h is a function of (a) which may, we sup- 
pose, be expanded by Taylor's Theorem in the form 

This is written 

7(a) = 7(0) + dI+SU+ ■■■ 

and 57 is called the first variation of the integral. If 7(0) is to be 
a minimum it is necessary (although not always sufficient) that 
57 = for otherwise A7 = 7(a) — 7(0) would change sign with 
a when a is sufficiently small. Now the limits of the integral 
for 7i are fixed and so to find dl/da we have merely to differen- 
tiate the integrand F with respect to a. F involves a, not 
directly, but indirectly through the coordinates x and their 
derivatives x'. 



Thus 



dF _ dF dx^'^ dF dx^'^' 
da dx^''> da dx<''^' da 



{s umbral) 



and therefore 

da X, \dx^'^ da dx'-''>' Sa / ^ 



Now 



3^' _ 3V^ _ d 9a:<'> 
5a dadu du da 



so that, on integration by parts, 

r' jdF_dx^, ^ _dF_d^^ I"' _ r' d^ _ _a_ ^F_ 
J»o dx'''^' da dx'-'^' da |„, X, da duSx<-'^' 



88 VECTOR ANALYSIS AND RELATIVITY 

Since the end points of the curve are fixed, dx'-'^jda = at the 
limits of integration and so the integrated part vanishes and, 
collecting terms, we have 

da X Ux'-'^ dudx^'^'l du " C« urn ra ) 

If { — - I is to be zero for all vossible varied curves V{a) it is 
\da/a=o 

evidently suflBcient and can be shown to be necessary that all the 

/dF d dF\ . , . . , , , , 

coefficients I ^-77^ — r -— , j m this integral should vanish 

(« = 1, ■••, n). 

These n expressions are the components of a covariant tensor 
of rank one where now, however, the term is used in a wider 
sense than hitherto. F is now not merely a function of the 
coordinates x but of their derivatives x'. From 



we have 



so that 



xM'^^y^ty (iumbral) 

ay'- ' 

dx^^^^dx^ 
Qy(t)' a2/(« 

dF dF aa;W' 



dy'-''>' dx''"^' dy'-'^' 
__dF_dx^ 



(r umbral) 



dF 
showing that ;= Xr is a covariant tensor of rank one. 

Suppose we wish to find the geodesies of our metrical space Sn- 
These are the curves for which the first variation of the length 
integral is zero. 

F^ V^,,^(«'x(""' 
the gim being functions of position. We shall find it convenient 



G 



THE ABSOLUTE DIFFERENTIAL CALCULUS 89 

to take as parameter u the arc distance s along the sought-for 
geodesic* Then when we put a = after the differentiations 
F = 1, from the definition of arc distance s, and we have 

—r— ] so that X^^^ = (x'-''^) is the 
as /a=o 

unit contravariant direction tensor along the sought-for geodesic. 

Also 

and our equations are 

- ^«ma; -t X ^^(^j a; 

(r, m umbral; f = 1 • • • n) 

Multiply through by g^* and use t as an umbral symbol so as to 
obtain the n components of a contravariant tensor of rank one 

^v + ^P^^M^m ^|g^ _ 1 ^^ = (r, m, t umbral) 

It is now convenient to introduce the Christoffel three-index 
symbols of the first and second kinds defined as follows: 

(6) {rs, t] = {sT, t] = g'^rs, v\ 

* However, this rules out those minimal geodesies along which s is constant. 



or 



90 VECTOR ANALYSIS AND RELATIVITY 

which equations imply 

gtg{rs,t} ^ gtag*P[rs, p] {t, p umbral) 

= [rs, q] 
Equations (a) give 

[rs, t] + [rt, .] = ^ 

Then we may write 

= x^'H^'^^llri, m] + [rm, t] - ^[rt, m] - l[tm, r]] 
= a;«x('"MlK ™] + [rm, t] - ^[mt, r]] 

since an interchange of the umbral symbols r, m in the last 
three-index symbol leaves the summation unaltered. 

Accordingly, on using the definition (6), the differential equa- 
tions of the geodesies are 

x'-P^ + {rm, p}x''x" = (p = 1 ■ ■ • n) 

From their derivation we know that these equations are contra- 
variant of rank one. We proceed now to obtain a general rule 
which makes the tensor character of equations of this type 
apparent on inspection. 

2. The Formula for Covaeiant Differentiation 

From the covariant character of the Qra we have 
ga.(Oga.(m) 
dy^'^ dy 



fr^^ giir^^^p^^-^T) (I' "^ umbral) 






where in the differentiation we have remembered that gim is a 



THE ABSOLUTE DIFFERENTIAL CALCULUS 91 

function of the y's only indirectly through the a;'s. We easily 
obtain two other similar equations by merely interchanging 
(r, t) and (?, t) in turn. We are careful to so distribute the 
umbral symbols I, m, n as to facilitate combination of the three 
equations obtained in this way. Thus 

dfu _ dgnm aa;»> 5a;(™' aa;<"> , /_3V" dx^"''> 



+ gi, 



G 



Now adding the first two of the equations and subtracting the 
third we have, on writing 

\rt sV = -\^ + ^--■^^> etc 

Lrt, sj - im, mj^^^(^) df^)^^'"'dy^^W^dy^'^ 

[I, m, n umbral] 
Now 



9lm - Jp9- (J) . („j 



from its covariant character (p, q umbral) 

dx^'"'> _ , dy^ 

323.(0 5 3.0-) 

To remove the coefficient of ^^^ ^^^ multiply across by/'* ^-^j^j 

and make 5 and k umbral when we get 

(... 7,/5a;«> „,r, ,5a;«aa;W , aV^> 

<'^' ^^ 6^^ = ^^^'^' ^^ 3^ aF^) + aF^%U) 

from the relation (contravariant) 

^ =^ d^d^ (^'^'^i^bral) 



92 VECTOR ANALYSIS AND RELATIVITY 

Finally 



from which on interchanging the role of the x and 2/ coordinates 
we have 



Suppose now we have a covariant tensor of rank one Xr so that 
Then 



Ya = Xr 7^^ (r umbral) 



^Xr 



^= X ^'^^'^ 4- ^ ^ ^ 
dy'-'^ ~ '' dy^'^dy<-'> dx^^^ dy'-'^ dy'-''> 

■ ,,a^_,, ,dx^dx^\ dX^dx^d^ 
\st, fc) ^^^ \lm, r] ^^^,, ^^(^) j+ ^_^(^, ^^(„ ^^(., 

on altering suitably the umbral symbols Im to rp. These 
equations state that 

dXr 

dx'-^^ 



^, - Xj^irv, k} ^ Xr^ 



is a covariant tensor of rank two. Consider now a contravariant 
tensor of rank one so that 

Y' = X'"^, (r umbral) 

Then 

d y<') _ 9XW 3a;<^) 3y<') - g^'') dx^^^ , ,. 

dx^p^ a^o aa;W a2/(') l^^P''^! aa;(*> 



THE ABSOLUTE DIFFERENTIAL CALCULUS 93 

• ^ ^^'^ J- Vint x>-\ ^^^'^ A.Truii. ^^ ^^^'^ ^V^''^ 
These equations state that 

is a mixed tensor of rank two. 

These tensors of rank two are called the covariant derivatives 
of the covariant and contravariant tensors Xr and X'' respectively. 
Similar analysis can be carried out to obtain the covariant 
derivative of a tensor of any rank and character. To make this 
perfectly clear let us take the case of a mixed tensor Xs^ of rank 
two: 



d y, W ^ dX^^d a;<» dx<- «> 3yfr> 
52/(«> "" 3a;"> dy<-^'> dy'-'> dx^^^ 

^dX^dx^dx^dy^ 
~ dx^^ dy^'^ dy'''^ dx^p'> 

d^dx^ 
dy'-'^ a?/(" 
whence 






^^''"- F/KA;}'+ F,*{A;«,)-}' 



32/ 



(«) 



dXa^ 



Q 






- X,^{ql, k} + X^{M, v) 



a2/W3a;<9>aa;«) 



dx'-^'^ dy'-"^ dy^'^ 
expressing that -^-^ — Xk^{ql, k} + Xq''{kl, p} is a mixed 

tensor of rank three being covariant of rank two and contra- 



94 VECTOR ANALYSIS AND RELATIVITY 

variant of rank one. In general, the covariant derivative of 

x?:;.;- is 

It will be noticed that + signs go with the contravariant symbols 
and negative with the covariant. Also the new label s is always 
second in the three-index symbols; the umbral label is first if 
taken from the contravariant and third if taken from the co- 
variant indices. 

3. Applications of the Rule of Covariant Differentiation 

(o) Riemann's four-index symbols and Einstein's Gravitational 

Tensor 

From any covariant tensor Xr we obtain as its covariant 
derivative 

dX 

Xri = r-j7) — Xk{rs,k} {k umbral) 

and as its second covariant derivative 

XrH = ^^ I ^) - Xj,[rs, h]\- Zp,{rf, Tp] - XrAst, p} 

-~!,lrt,p} + X,{ps,k}{rt,p} 

-^{at,p] + X,{rp,k]lst,p] 

From this by the elementary rule (6), Ch. 2, § 2, of tensor 
algebra we derive a new covariant tensor XrH = Xrta and the 
difference of these is a covariant tensor of rank 3 by rule (a), 
Ch. 2, § 1; i.e., 

Xrat ^ Xret — Xrta 



THE ABSOLUTE DIFFERENTIAL CALCULUS 95 

whence 
XrH = Xk I ^-^ {rt, k\ - ^-^j {rs, h] + {ps, h] {H, p\ 

- {ft.kWrs.Tp] 

the terms involving the derivatives of the Xr cancelling com- 
pletely out. Now Xh is an arbitrary covariant tensor of rank 
one and so by the rule (e), Ch. 2, § 5 — the converse of the rule 
{d) of composition — 

= Y k 

— Arsf 

is a mixed tensor of rank fom* of the type indicated by the 
positions of the labels. 

If we write k = t and use t as an umbral symbol we derive by 
rule (d) Einstein's gravitational covariant tensor of rank two 

^" " 3xW ^^*' *^ ~ 5^ ^^^' *^ "^ ^^*' *^ ^^^' ^' ~ ^^^' *^ ^^^' ^^ 

The mixed tensor Xret' is usually denoted by the symbol {rk,ts} 
and is known as the Riemann four-index symbol of the second 
kind. From it we obtain by the rule of composition the co- 
variant tensor of rank four 

[rj, ts] = gjkXrst'' = gjk{rk, ts] {k umbral) 

which is known as the Riemann four-index symbol of the first 
kind. From Einstein's tensor of rank two we obtain the in- 
variant 

6? = /«(?„ (r, s umbral) 

which has been called the Gaussian or total curvature of the space. 
This name is given since G is regarded as a generalization of the 
expression given by Gauss for the curvature of a surface (i.e.. 



96 VECTOR ANALYSIS AND RELATIVITY 

71 = 2). The term curvature is widely used in the Hterature of 
Relativity and so it may be well, in order to avoid a possible 
confusion of ideas on the subject, to discuss briefly what is 
meant by the curvature of a metrical space. To do this it is 
necessary to say a few words about the four-index symbols. 
We have, by definition, 

[pq, rs] = g,klvk, rs} = g,k l^^ {pr, ^ - ^^ [ps, h] 

{Vr,t\{ts,k\ - \ps,t\{tr,k]\ 

[pr, q] = gqi^ivr, ^ 



+ 

Recalling that 
we have 



= Q^) [pr, q]- {vr,k} {[qs, k] + [ks, q]) 
from definition of [qs, k] so that on operating similarly with 
9qh-^-(y^ {V«> ^! and writing gqh{ts, k] = [ts, q] we find 
{pq, rs] = ^^^ [pr, q\ - ^^ [ps, q\ - [pr, k][qs, k] 

+ [ps, ^[qi; k] 

(the terms [pr, t}[ts, q\ and — [pr, k][ks, q\ cancel since t and k 
are merely umbral symbols) . Finally, in terms of the three-index 
symbols of the first kind, 

+ g^Klps, 3\[qr, k] - [pr, j\[qs, k\) {k, j umbral) 
Writing out, in the first two terms of this expression, the values 
of the symbols, e.g.. 



THE ABSOLUTE DIFFERENTIAL CALCULUS 97 

we find 

r 1 = 1 r ^^ _ g' , a^ 

- g^(p)g^(,) 9tA + 9'"([ps, j][qr, k] - [pr, j]lqs, k]) 

From this formula it is apparent that 

(a) An interchange of the indices or labels p, q merely changes 
the sign of the symbol. 

Ipq, rs] + [qp, rs] = 
(6) Similarly 

[pq, rs] + [pq, sr] = 

(c) A complete reversal of the order of the labels does not 
alter the symbol [pq, rs] = [sr, pq]. This depends on the sym- 
metry relations g'" = g'''. 

(d) If we keep the first label fixed and permute the other three 
cyclically we get 3 symbols whose sum is identically zero, i. e., 

[pq, rs] + [pr, sq] + [ps, qr] = 

The number of non-vanishing symbols which are linearly distinct 
now follows. li p = q or r = s the symbol vanishes on account 
of (a) and (b). The number of choices for the first pair {p, q) is 

?Z2 = and similarly for the second pair (r, s). However 

relation (c) shows us that we do not get wz^ symbols by combining 
the two choices but 

^2^ — ^"2(^2 — 1) = iw2(W2 + 1) 

The relation (d) will still further reduce the number of linearly 
distinct symbols. When the indices or labels p, q, r, s have 
numerical values which are not all distinct the relation (d) merely 
reduces to a combination of the relations (a), (b), (c). There are 
therefore n{n — l){n — 2){n — 3) new relations in (d). How- 
ever since there are three letters q, r, s permuted cyclically, each 



98 VECTOR ANALYSIS AND RELATIVITY 

relation will occur three times. Each of the relations (a), {b), (c) 

J ^1, u n(n - l)in - 2)in - S) , . , . . 

reduces the number -^^ -^^-— — — which remams m 

o 

half and so there are 

Tii = n(n — l){n — 2){n — 3) -j- 24 distinct relations (d). 
There are accordingly but 

nn2){n2 + 1) - 7i4 = ^^ 

distinct Riemann four-index symbols. For n = 2 there is but 
one which we may write [12, 12]. When we change the coordi- 
nates from a; to 2/ we have 

„„ ,„, , ,aa;(p>ax(9>aa;«da;W 

[I2,12],^\pq,rs]^^^^^^ 

(from covariant character) 
Since there is but one distinct symbol [pq, rs] it will factor out 
on the right and we get (since there are but four of the symbols 
which do not vanish) 

[12, 12]„= [12, 12]-J2 

5(3.(1)3.(2)) 
where J is the Jacobian ^) ,,. ,„._ • We have already seen that 

[12 12] 
/ = gJ^ and on division we obtain the invariant K = - — ■ 

It is this invariant which Gauss called the total curvature of the 
space of two dimensions under discussion. 
In order to compare this with the invariant 

g^Grs {t, s umbral; n = 2) 

we have 

Gra = {rt, ts} (t umbral) 

= g'^rpts] 
.-. Gn = g-'WnW 

{since if p = 1 or < = 1, \\.pt\\ = by relations (a) and (6),} 

= - ffu[12, 12] ^ g 



THE ABSOLUTE DIFFERENTIAL CALCULUS 99 

from definition of ^, 

= - gn-K 
Similarly 

Gn = </^[12, 12]= -g2i-K= - g^-K 

G21 = ff^[21, 21]= -gi2-K=- g^i-K 

from relation (c), 

G22 = !7"[21, 12] = -g22-K 
so that 

since 



<?"(?« = - Kg"gr, = -2K 
g"Gr, = - Xf/Vn + g'%2] = -2K {r umbral) 



For a space in which, in some particular coordinate system x, 
the coefficients grs are constants all the three-index symbols 
[pr, s] and in consequence all the symbols {pr, s] and also the 
four-index symbols [pq, rs] and {pq, rs} = 0. On account of the 
tensor character of these latter symbols we know that the Rie- 
mann tensors [pq, rs] {pq, rs] will be zero no matter what the 
coordinates are. Conversely the vanishing of the tensor [pq, rs] 
expresses the fact that it is possible to find coordinates y such 
that the fra defined by the equations 

f^' = ^'-d^)d^ am umbral) 

shall be constants. We may now apply the weU-known method 
of reduction of a quadratic expression to a sum of squares (as in 
the determination of normal vibrations in dynamics where the 
expression for the kinetic energy is reduced to a sum of square 
terms) ; the transformations on the y's are linear in this operation 
and we finally get 

(dsy = ±id/r)y 

r=l 

(If we restrict ourselves to real transformations there may be some 
negative squares; thus in the relativity theory there are three — 
and one -|- term.) A space of this character is said to be Euclidean 
8 



is the same for 



100 VECTOR ANALYSIS AND RELATIVITY 

and the y's are called orthogonal Cartesian coordinates. Rie- 
mann defines curvature by means of his tensor [pq, rs]. When 
this tensor vanishes the curvatiu-e of the space is said to be zero 
so that Euclidean space is one of Zero Riemann Curvature and 
conversely. If the ratio of the component [pq, rs] of the curvature 

tensor to the two-rowed determinant 

9Qr Qgs 

all values of p, q, r, s, Riemann says the space is of constant 
curvature; otherwise the curvature will be different for different 
orientations at a point:* Gauss' total curvature, on the other 
hand, has a numerical value at each point in space and has 
nothing to do with the different orientations at that point. We 
may sum up by saying that a gravitational space is, at points 
free from matter, non-Euclidean, i.e., it has a Riemann curvature 
but its Gaussian curvature is zero. 

It may be well to call attention to the fact that the definition 
* The differential equations of the non-minimal geodesies of any space are 

d^xfr) , (Im'X dx«) di(») „ , , , u n 

l^ + ir Td^^T = ° (»• = 1. ••■> »'■ l,mnmhT^\) 

8 being the arc length along the geodesic. It is known that the solutions a;W 

of these equations are completely determined by the values of a;^ and —j— 

for a particular value of s, s = let us say. This is stated geometrically by 
saying that through any point in space there passes a unique geodesic with a 
given direction. If, now, through a definite point we construct the geodesies 
with the distinct directions jw and ■n'-'') respectively (r = 1, • • ■, n) and con- 
sider the family of geodesies through the point in question obtained by assign- 
ing to each a direction tensor whose rth component is proportional to 
X|W -f- jKjjM and then letting the ratio X : ft vary, we obtain a geodesic spread 
Vj of two dimensions which at the point in question has the orientation deter- 
mined by the two directions J and ri through the point. It is the curvature of 
this geodesic Vi that Riemann calls the curvature of the space relative to the 
orientation determined by J and 17. There is a remarkable theorem due to 
Schur (Math. Annalen, Bd. 27, p. 563, 1886) which says that if at any single 
point the Riemann curvature of space is independent of the orientation 
this property is possessed by every point of the space and the (unique) curva- 
ture at all points is the same. Such a space is, then, properly called a space of 
constant curvature. 



THE ABSOLUTE DIFFERENTIAL CALCULUS 101 

of Euclidean space given above is a " differential " definition; 
spaces which are Euclidean according to this definition do not 
necessarily satisfy the postulate that one can proceed indefinitely 
in a given direction without coming back to the starting point. 
The simplest example is the well-known one of a cylinder of unit 
radius. In this case n = 2, y^^^ = (j), the longitudinal angle 
measured in radians, and 2/® = z, the distance measured parallel 
to the axes of the cylinder: 

idsy ^ {dct>r + {dzf ^ {dy^'^y + idy^'^r 

If the cylinder is cut along a generator and developed on a plane 
it will cover a strip of breadth 2ir on the plane. If we take 
rectangular Cartesian axes in the plane, with the a:^^' axis parallel 
to the strip, points whose a;® = ct> differ by 27r correspond to a 
unique point in the strip (that one with the same a;'^') and to a 
unique point on the cylinder. Hence there are an infinity of 
straight lines (i.e., geodesies) joining any two points (with 
different z's) on the cylinder. They develop into the 00 1 straight 
lines joining the points 

(a;(«, a;®) and ix^'\ x^'^ + 2mr) (n = ± 1,2, ■ ■ ■) 

on the plane. It is evident that speculations as to the " finite- 
ness " or " infiniteness " of a space based on its differential 
characteristics must be regarded with distrust. 



CHAPTER VII 

1. In this final chapter we shall treat in a brief way, as an 
application of the preceding analysis, the classical problems of 
Relativity. As in other applications of the methods of mathe- 
matical analysis to problems in physics the first, and here the 
most serious, diflBculty is that of giving a physical significance 
to the coordinates. All systems of coordinates are, without 
doubt, equally valid for the statement of the laws of physics 
but not all are equally convenient. It is reasonable to suppose 
that for a given observer of phenomena a certain coordinate 
system may have a direct and simple relationship to the measure- 
ments he makes; such a coordinate system is called a natural 
system for that observer. It is necessary to define this natural 
system and to find by experience, or otherwise,* how the natural 
systems of different observers are related. This has been well 
done in the special or " Restricted Relativity Theory " but in 
the more general theory, which we propose to discuss here, 
much remains to be done in this part of the subject. In what 
follows we shall consider (a) the problem of determining the 
metrical character of the space-time continuum round a single 
gravitating center and (b) in consequence of the results of (o) 
the nature of the paths of a material particle and of a light ray 
in a gravitational field. We shall, following Einstein, make the 
fundamental assumption that the space which has a physical 
meaning or reality, i.e., with reference to which the laws of 
physics must have the tensor form (cf. Ch. 2, § 1), is one of four 
dimensions (commonly referred to as the Space-Time continuum) . 

*The relationship between the different systems may be arrived at by 
making various hypotheses whose truth or falsity must then be tested in the 
light of experience. 

102 



PROBLEMS IN RELATIYITY 103 

2. The Metrical Space Attached to a Single Gravitating 

Center 

We assume that for an observer attached to the gravitating 
center one of the four coordinates, x^^^ say, of his natural system 
is such that the coefficients gn, gm, gu of the quadratic differential 
form for (dsY vanish identically whilst those remaining are 
independent of x^*^ ; x^^^ is said to be a time coordinate and the 
field is said to be statical. Accordingly 

(dsf = gii{dx<-*'>)^ + gir,,dx<-^dx^^'> {I, m= 1,2,2, umbral) 

Now in any space of three dimensions we can always find orthog- 
onal coordinate systems; for, writing the metrical {dsY in its 
reciprocal form {dsY = f"rirris, we have merely three equations 
/" = (r 4= s) — or explicitly 

— to determine the three unknown functions y of a; so that the 
coordinate curves y may be orthogonal. There is no lack of 
generality, then, in writing {dsy for the statical field in the 
orthogonal form 

(dsy s gi{dx^»)' + g^idx^'^r + gz{dx^''>? + g,{dx^'>f 

where we have dropped the double labeling as unnecessary. (In 
general it is impossible to find orthogonal coordinates in space of 
four dimensions since there are now six differential equations 
/"■' = (r 4= *) for the four unknown functions y and these 
equations are not always consistent.) We must now go through 
the details of evaluating Einstein's gravitational tensor (cf. Ch. 
6, § 3) for an orthogonal space. 

The relations ^rs = 0; gr'"' = if r #= « make matters com- 
paratively simple. We shall use r, s, t to denote distinct numer- 
ical values of the labels. Then 



104 VECTOR ANALYSIS AND RELATIVITY 

{rs, t} = g'''[rs, k] = g"[rs, i\ = (k umbral) 
{rs, r} = {sr, r] = /*[5r, k] = g'"-[sr, r] = g" J^T) 

(k being the only umbral label here) 



similarly and 






2g,dx'-'^ 



The Riemann four-index symbol of the second kind (cf. Ch. 6, 
§ 3) is defined by 

— [fSflWlr, q} (I umbral) 

and those components vanish identically, for an orthogonal 
coordinate system, where the pq, rs are distinct; [{pr,l} vanishes 
unless i = p or r in which case {Is, q} vanishes]. To evaluate 
the remaining symbols write r = q without, for the present, 
using q as an umbral symbol 






dg, dgg 
1 dgp dg, 1 dg, dg. 



4^p^s dx'-'^ dx'-P^ 4g,gg dx'-"^ dx'-'^ 

The formulae from this on take a simpler form if we use the 
symbols H defined by ^r = Hr'^; thus 

{pq,qs]= ^- 



H^ dx'-^^dx'-'^ Hj,H^ dx<-'> dx'-"^ 

HsHadx^p^ dx^'> 



PROBLEMS IN RELATIVITY 105 

Similarly we find 

{ .^ 1 dm, H, dm, H, dH.dH, 

1 oHr) dH a , H„ I 1 dliT, dH a 



q , ±.ip I X yji.i.p 



HpHadx^p^dx^p^ ' HclHr'dx'-'^dx'-''^ 






1 dHp dH q 



H,''dx<-'^dx^'^ 

where r and 5 are the two labels different from p and q. The 
components of the Einstein tensor are now found by summing 
with respect to q. It will be recalled that [pp, rs] = {p, r, s 
any values distinct or not, cf. Ch. 6, § 3). Hence 

{pp, rs] = g^''[pk, rs] = g'^^lpp, rs] = Qc umbral) 

Similarly {pq, ss] =0, so that in forming Gu, for example, 
we need merely write 

Gi2= {13,32}+ {14, 42} 
whilst 

Gii= {12,21} + {13,31} + {14,41} 

It will be observed that differentiation with respect to x^^^ and 
a;^'^ occurs in every term of {pq, qs] and so the absence of the time 
coordinate x^^'^ from the coeflBcients makes Gu, Ga, G34 all iden- 
tically zero. 

We shall now make the following hypotheses of symmetry — (a) 
we shall suppose that the coordinate lines x^^^ are geodesies of the 
space (all passing through the gravitating center). The equa- 
tions of the non-singular geodesies have been found to be (Ch. 6, 
§1) 

a;^'') + {Im, r}a;"^a;^'"' = (r = 1, • • •, 4; Z, m umbral) 

where dots denote differentiations with respect to the arc distance 
which we take as our coordinate x^^^. Writing 

Xi= 1 



106 VECTOR ANALYSIS AND RELATIVITY 

(since a;^^\ a;**, x^*^ are constant along the coordinate lines x^^^) 
we find {11, r} = which — ^from the values given for this symbol 
— yields ^i = constant. The constant is in fact unity since, 
by hypothesis, ds = dx'-^^ along the curves x'-^^ = const., 
a;(3) = const., a;^^ = const. It is apparent that it is sufficient 
that ^1 be a function of a;'^' alone for we may make a change of 
variable a;^^' = x'-^^{y^^^) leaving the other coordinates unaltered; 
the argument shows convers-sly that if gi is a function of a;^^^ 
alone the coordinate lines a;*'' are geodesies, the arc length along 
them being given by « = S-^gl dx'-^K 

(b) a;^^^ and x'^' are directional coordinates serving to locate a 
point on the geodesic surface a;^^' = const., x^*> = constant. We 
shall suppose that the arc differential on this surface (which 
may conveniently be called a geodesic sphere) cannot involve the 
" longitude " coordinate a;^'' nor can the arc differential along a 
given " meridian " a;^'' = constant depend on the " latitude " 
coordinate a;®. Hence ,92 is a function of a;'^^ alone whilst gs is 
a function of xi and X2 alone. 

(c) Qi does not involve the directional coordinates a;® and a;® 
and so ls a fimction of a;^^' alone. 

Accordingly, then, a;^'^ does not appear in the expression for 
{dsy and so, in addition to Gu = 0, G24 = 0, G34 = we have 
G13 = 0, G23 = 0. We must wiite down the five equations 
G12 = 0, Gil = 0, G22 = 0, G33 = 0, C?44 = 0. The fact that H^ 
is a function of a;^^^ alone and Hi = 1 (a;'^' being the arc distance 
along the geodesic curves a;^^') gives {14, 42} = and from 
G12 = {13,32} = Owe get 

d'Hs _ 1 dHi dHi ^ Q 



ax<»aa:® Hidx^'^ dx'-^') 
which gives, on integration with respect to a;^^', 

= a function independent of a;i (A) 



1 dHi 



Hidx^'^ 



PROBLEMS IN RELATIVITY 107 

G'li = yields 



Ga = gives 

5a;«' dx^»\H2dx^» Hzdx^''> ] 

which on integration with respect to a;^^' gives 

HiHs 1^ independent of a;« (Q 

Eliminating —^ between (C) and (A) we get Hi^ —^ independ- 
ent of x^^K Since it cannot involve any variable but a;^^' we 
have 

Hi Hi = a constant a, let us say; (C) 

primes denoting differentiations with respect to a;^^'. 

Again from {A) —^ = If 2 X a function of a;^^^ = H^ —^ say 
where (^ is a function of a;^^^ alone. Then Hz = H2<t> + / where 

1 ^217 

/ is a function of a;'^^ alone. Now {B) shows that % is a 

Hzdx^'^^ 

function of a;^^^ alone so that its derivative with respect to a;® 

vanishes. Evaluating this derivative we find 

^•^ {fH,"-f"H,]=0 



5a;«> 



We can now proceed in various ways; either make ^ a constant 
or fHi' — f'Hi (of which the second factor is the derivative) a 

constant giving / = const. X H^S TFm • ^^ choose the latter 

alternative and make the constant zero so that / = giving 
Hz = Hi(j> where </> is a function of a;^^' alone. 



108 VECTOR ANALYSIS AND RELATIVITY 

<p is determined by means of the equation Gvi = 0. This gives 

E^E^' + i- ^ + ^2 ^ ff,' + ^ E^Ei = (J9) 

On substituting Ez = H2(t> in (D) we find that ^ is equal 

da;® 

to a function of a;''' alone; but from its form and the definition 

of (f> it cannot involve x'-^^ and so must be a constant. This 

constant may, by a proper choice of unit for a;®, be put either 

1 or zero. We choose the first alternative and find, by suitably 

choosing the origin of measurement for x^^\ = sin a;®. 

Gs3 = gives 

dx^»' Hi'dx^'^^ dx^'^\H2dx^» Hidx^^^l 

and on substituting <t> = sin a;®, H3 = H2<i>, both (D) and {E) 
yield the same equation 



H2H2" H~ H2H2' 
(B) gives 



H2' I Hi 
H2 Hi 



1 (!>') 



2^+^ = (BO 

On differentiating (C) and eliminating H2Hi" we find 

H2 Hi = H2 Hi 
which gives on integration 

H2' = m^ 

where /3 is an arbitrary constant. 

a8 
EUminating Hi between (C) and (C") we have Hi" = 7^-5 

XI 2 

which on integration gives 

W)'-2(,-|) 
where y is an arbitrary constant. 



PROBLEMS IN RELATIVITY 109 

Putting Hi = (F2')//3 in (D') we have 

2HiH2" + {Hi'f = 1 

so that 1 = 27 giving 7 = 5 and hence finally H2 is determined 
by the differential equation 

(H,'y = 1 - ^ 

jn2 
and then 

(dsy = (da;(«)2 + Himdz^^'iy + sin^ a;®((ia;«))2} 

It is usual to change the coordinate a;^^^ leaving the others 
unaltered. We write a;^^^ = x'-^^y^^^) where y^^^ = H^. 

and we have 

(dsy =(l-^^y^ (d2/(i))2 + yW^{ {dx^^^y + sin^ a;® (da;«>)2} 

This is the form chosen by Einstein (that it is only one of many 
is evident from its derivation). If a/S = it reduces to the 
well-known Euclidean form where y^^^ = r, x^^^ = 6, x^^^ = cl> are 
space polar coordinates. It remains to attach some physical 
significance to the constant a/S and to take up the problem (b) 
stated at the beginning of this chapter. In order to conform 
to the usual notation we write henceforth y'-^^ = ir; x'-^^ = 6; 
a;(3) = 0j x^^^ = t where i^ = — 1. 

Choosing the unit of x^*^ or t so that /3^ = + 1 and writing ia 
= — a we have 

{dsf = -l{l--Y^ {drf + r'idey + r^ sin^ e{d(pY 1 

+ (i-7)w 



110 VECTOR ANALYSIS AND RELATIVITY 

3. Determination of the Path of a Freely Moving 
Particle 

A physical law of inertia is postulated to the effect that a 
freely moving material particle in a gravitational field ivill follow 
the non-minimal geodesic lines of the four-dimensional space time 
continuum which, for the single gravitating center, has the 
metrical geometry characterized by the form given above by 

[dsy. 

A second postulate is that rays of light follow the minimal 
geodesies — those for which ds = 0. In the ordinary Euclidean 
space these lines are imaginary, i.e., have points with imaginary 
coordinates but the occurrence of the negative signs in the ex- 
pression for (dsY gives real minimal lines in our problem. For 
example, the light rays directed towards or away from the cen- 
ter, those for which 6 and are constant, are characterized by 
the equation 

(,_^)-.,.,.-(,-^)«..o » %-4^-f) 

In order, then, to solve the problem of the free motion of a 
material particle we have merely to determine the non-minimal 
geodesies whose equations are 

x'-P^ + {Im, p}iWi('"> = (cf. Ch. 6, § 1) 

the dots denoting differentiations with respect to the arc length 
along the geodesic. For an orthogonal space of four dimensions 
these simplify to four equations of the type 

*« + {11, l}i»>'+ {22, l}(x®)2+ {33, l}(i(3))2 

+ {44, l}(x(^))2+ 2{12, l}i«i(2) + 2{13, l}i«*(8^ 

+ 2{14, l}x«*(^> = 

However we need use only three of these equations, replacing the 
fourth by graX^'^i'-'^ = 1 which is easily seen to be a consequence 
of the differential equations 

x^''> + {Im, rli'^i;^'"^ = 



PROBLEMS IN RELATIVITY 111 

(if we multiply these by gn and use r as an umbral symbol to 
obtain 

^mX^') + [Im, s]*")*^'") = 

and then avail ourselves of the definition of the symbols 
[Im, s]. (Ch. 6, § 1.) J- (grtXrXs) is found to be zero). In our 

problem it is convenient to omit the first of the four equations, 
the other three simplifying, on using the values for the three- 
index symbols given (Ch. 7, § 2), to 

t + -^ri = (O 

To these we have to add the first integral 

gii^ + 920' + gzv' + gJ' = 1 (D) 

Equations (B) and ((7) are immediately integrable giving 

93^ = constant = — h say {B') 

and 

gj = constant = + C say (C) 

or on substituting the values of g^ and gt 

r^ sin? ei>=h; {l-^i= C 
Equation {A) may be written 

_ (^2^) _ ^2 sin e cos e{4>f = 

We now proceed to eliminate the parameter s and find a relation 
connecting 6 and <f>. Assuming that <> ^ (^ = constant is a 
special case which is susceptible to the analysis given below on a 



where gi= -y-—\ ; 

92= - 1^; 

93 = — r^ sin^ 6; 

. = + (!-¥)• 



112 VECTOR ANALYSIS AND RELATIVITY 

mere interchange of B and <p) we have 

. de 

so that 

ds ^'^ "'' r'^ c^0d0 ^ rf02|^«; -t- r ^^ 
On substituting the value of <J) from (5) we have 



(7^^) = {2rr'e' + r^0"}<^2 - r^d' T r',^^ _|_ 2 cot 66' A 



where we denote differentiations with respect to the new inde- 
pendent variable by primes. Equating this to r^ sin 6 cos 6{^Y 
and dividing out by r^4? we obtain 

6" - 2 cot B{6'f = sin 6 cos 6 
If now we choose our directional coordinate 6 so that initially 

We see that 6" = and then on differentiating the above equa- 
tion with respect to (p, 6'" = and so for all the other derivatives, 
i.e., is a constant as <p varies. Otherwise expressed the general 
integral of the equation for as a function of (p is found by 
writing z = cot 6 yielding z" + z = to be cot 6 = L cos {<j) + M) 
where L and M are arbitrary constants. We choose our initial 

conditions as above so that L = giving 6 = -z- Putting in this 

value for 6 we find 



('-?)'= 



C iC") 

and from (D) 

(x_L»)-.^ + ,V'-(i-^)i'=-i 



(C) 



PROBLEMS IN RELATIVITY 113 

Just as in the usual Newtonian treatment of planetary motion, 
it is convenient to write r = 1/u and to again use <p as the 
independent variable. We have 

r = — iijv? = — u'^/u^ = — hu' (from B') 

and then (Z)') yields, on making use of (C"), 

W + u'= 2av? + ^^ + ^ (£) 

Now, in the Newtonian treatment, the equation giving the path 
of a particle under a central force is 

u" -\-u = FlhV 

where F is the acceleration towards the center and h = r'^^ 

at 

is the constant of areas. Instead of this we have on differen- 
tiating the equation (E) just obtained 

u" + u = 3au^ + ^ 
hr 

so that we may, in a general manner, express Einstein's modifica- 
tion of the Newtonian law of gravitation by saying that there is 
superimposed to the inverse square law attraction an inverse 
fourth power attraction, the relative strength of the attracting 
masses being as 1 : 3h^. It remains to determine, at any rate 
approximately, the nature and magnitude of the constants a, h 
and C which arose in the integration of our differential equations. 
For large values of r, and therefore small values of u, the New- 
tonian law is a first approximation and so neglecting the term in 
u^ in the equation for u", a = F/u^ = jum; ju being the gravita- 
tional constant and m the mass of the sun. Hence if we choose 
oiu" unit of mass so that jj.=l,a = m, where now m is what is known 
as the gravitational mass of the attracting center (notice that we 
have identified, for small values of u, our r and with the usual 
polar coordinates of Euclidean geometry). The velocity of light 

2a 

directly towards the attracting center is 1 and accordingly 

r 



114 VECTOR ANALYSIS AND RELATIVITY 

our unit of time is such that for small values of u the velocity of 
light is unity; i.e., if the unit of length be 1 cm., the unit of 
time employed is 1/c seconds where c = 3.10^". In the theory 
of relativity there is no absolute distinction between space and 
time and so we refer to our time unit as one centimeter (1 cm. 
being the distance traversed by light in one time unit). It is 
to be observed that in Newtonian mechanics gravitational mass 
m has dimensions UT~'^ so that if L and T have the same dimen- 
sions a = m has the dimensions of a length. The equation 

„ , m 

u"+u = -^ 

of the Newtonian theory yields 

M — Tj = -P cos (0 — 0o) 

where P and <i>o are arbitrary constants of integration. 
Comparing this with the polar equation of a conic 
lu = 1 + e cos (t> (I = semi-latus rectum, e = eccentricity) 

we have— = I = A(l — e^) where A is the semi-major axis, 
m 

If T is the period of revolution 

h = 2 X Area of ellipse ^ ^^^,^^ _ ^,^,,,^j, 

whence 

m = FM(1 - e") = 411^^7 P = „2^3 

where w is the angular velocity of the planet. This gives for the 
sun m = 1.47 kilometers or 1.47.10^ cms. For the planets then 
m/r is a small quantity of the order 10""*. In order to determine 
the constant C we differentiate 

M = p (1 -h e cos <^) 



(uy+u' = ^'(1 + 2e cos<t> + e') = ^u- ^'(1 - e') 



PROBLEMS IN RELATIVITY 115 

and comparing this with the equation (E) we have 

l-C' = '!^il-e'') = m/A 

It is to be observed that the values of m, C and h obtained in 
this way are found from the Newtonian theory and so are to be 
regarded as first approximations. In particular we have iden- 
tified the h of {B') with r^ ^ so that we have written ^ = ^ 

at as at 

Accurately 

^=^4*=^.a.fl-2^r (fromC") 
as at as at \ r ) 

But 



-(-r 



so that neglecting quantities of the order 10~* 

dip _ dip 
ds dt 

Substituting the expressions just obtained in (E) we have to 
integrate the first order differential equation 

/'^y = 2mM» -u^-\- 2mul¥ - m\l - e^)/¥ 

This equation defines u as an elliptic function of ^; or inversely 
<p as an elliptic integral. It simplifies the algebra somewhat to 
write mu = v and to put m^/K' = a. We have already seen 

that m^/h^ = -— ^ so that if e is not very nearly equal to 

A{1 — e ) 

unity a is a small quantity of the same order of magnitude as m/A 

or 10~*. Our equation is now 

(j-Y = 2t)' - »2 + 2av - a\l - e") 

Now the discriminant of the literal cubic 

i Oo«' + aiv' + aac + 03 = 



116 VECTOR ANALYSIS AND RELATIVITY 

is 

a^a^ + 1800010203 — 40002' — 4ai'o3 — 2'7a^a^ 

For the cubic on the right-hand side of the equation giving {dvjd<pY 
this is 

4a;V + 8a8(l - Oe^) - lOSa^l - e^f- 

On account of the small magnitude of a this is positive, the first 
term being the dominant one. Hence the cubic has three real 
roots which we denote, in descending order of magnitude, by 
»i, 1)2, i>3- When a = the roots are \, 0, 0, and so we try first 
« = fca and find fc = (1 — e) or (1 + e) and then secondly 
D = I + A;a and find k = — 2. Hence, to a first approximation, 
the three roots of the cubic giving {dv/d(p)^ are V3 = a(l — e); 
V2 = a{l + e); »i = | — 2a. Further since {dvjdipY cannot be 
negative in the problem v must lie between »3 and v^ or between 
1)1 and + =0 . As r does not tend to zero v does not tend to 00 
and hence v lies between V3 and v^. We have 






dv 



V2(?) — vi){v — V2){V — 



The variable v oscillates between the values V3 and v^; at these 
values dvld(p = 0, so that v has an extreme value; as v passes 
through the value V2 retracing its values both dv and the radical 
change signs so that <p steadily increases. The change in <p 
between two successive extreme values of v, i.e., between peri- 
helion and aphelion of the planet, is 

A<p = I , = 

Jr3 '\l2{v — vi){v — Vi) {v — Va) 

It is convenient to make a simple linear transformation of the 
variable of integration. Write v = a -{- bz and determine the 
coefficients o and b of the transformation so that to the roots «3 
and Vi of the cubic will correspond values and 1 of z respectively. 
The values are a = vz; b = V2 — V3 and then the third root vi 



PROBLEMS IN RELATIVITY 117 

goes over into z = 7;; where ¥■ = — ^ • The cubic 2{v — v{) 

KT «i — ■Ss 

(v — ■B2)(» — Vz) transforms into 2bh(l ~ 2) I — — 2 j 

so that 

dz 



Aip 



V26J0 ^ 



Vz(l - z)(l - Fz) 
This simplifies considerably on writing z = sin^ when in fact 

"-/a dd 



Acp 



2k p 

V2&J0 



Vl - P sin^ ^ 
Now 

, 2 _ «2 — ■»3 _ 2ae 

»i — Ba I — 3a + ea 

(to a first approximation) is a small quantity of the same order 
of magnitude as a; hence we can expand (1 — P sin^ 6)~^/^ in a 
rapidly convergent series and a mere integration of the initial 
terms will give a very good approximation to Aip. The multiplier 
of the integral is 

2 -^^ = \l2/vi - Vz = 2[1 -'2a(3 - e)]-^'' = 2[1 + a(3 - e)] 

and using f" sin^ d dd — 7r/4 we find 

A^=2{l + «(3-e)}-||+^,r 

but F = Aoi£ to a first approximation so 

A^ = ir{l + «(3 - e)}{\-\- ae] = 7r{l + 3a} 

Hence in a complete revolution the perihelion advances by an 

amount equal to 

^m^ 3m 127rM2 

6a = 6-TT = 



V ^(1 - e") T\l - e") 
of a complete revolution, T being the period in our units. If we 



118 VECTOR ANALYSIS AND RELATIVITY 

wish to use the period in seconds and measure A in kilometers 

then the unit of time in the formula given is the time it takes 

light to travel 1 kilometer = 1/3.10^ seconds; hence if T is the 

period in seconds the fractional advance of the perihelion per 

12Tr^A^ 

revolution is „ ..^.n^,,, 57 • On substituting the values of 

9.10^"i''(l — e') 

A, T, and e for Mercury's path this works out to be an advance 

of 43" per century. For the other planets e is much smaller than 

for Mercury and the amount of advance of perihelion is much 

smaller; save in the case of Mars the predicted advance is too 

small to be detected by observation. 

4. The Path of a Light Rat in the Gravitational Field 
OF A Single Attracting Center 

These paths satisfy the equation (ds)^ = or ds = 0; they 
are geodesies since, ds being the non-negative root of the expres- 
sion for {dsY, no curve can have a negative length. The method 
of the preceding paragraph does not, however, immediately 
apply since the arc length s along a light ray, being a constant, 
cannot be used as an independent variable or parameter in terms 
of which the coordinates x may be expressed. Further in the 
discussion of Ch. 6, § 1, it was assumed that the integral 

could be expanded in a Taylor series in powers of a so that the 
existence of the derivative {dI/da)a=o was presupposed. It is 
apparent, however, on differentiation of 

ds = '^gimdx'-^'>dx^'"^ {I, m umbral) 

that a ds = when a = 0, — - (ds) becomes meaningless when 

da 

a = on account of the zero factor ids)^a which occurs in the 

denominator. These difficulties are overcome in the following 

manner. If we investigate those curves (non-minimal) for which 



PROBELMS IN RELATIVITY 119 

the first variation of the integral I = S{dsY* is zero we are led 
to exactly the same differential equations as those of Ch. 6, § 1, 
which express the fact that the first variation of 7 = S^ is zero. 
Accordingly we now derive the equations of the minimal geodesies 
from the fact that the first variation of / = SidsY is zero, ds 
being zero along the curves. The coordinates x are supposed 
expressed in terms of any convenient parameter v and differentia- 
tions with respect to this parameter are denoted by primes. 
The Euler-Lagrangian equations are (cf. Ch. 6, § 1) 



dx'-'-^ dv \aa;«7 



{r=l, •••,4) 



where 



F s (cfo)2 = gi^x^'^x^^'^' {I, m umbral) 



Hence 



^9l^ ^U)'^(m)' = 2 - 

= 2 



xW'x^-^y = 2 1- (grix<'>') (l, m umbral) 



„ ,3.(0" -I- ^g''' 3.(0 Vm)'] 



or 



gnx^^" + [Im, r]a;"^'a;^'">' = {I, m umbral) 

Multiplying by g^ and using r as an umbral symbol we obtain 

a;(P>" + {Im, p}a:(»'a;W = (p = 1, 2, 3, 4) 

which are exactly the equations of Ch. 6, § 1. The first integral 
of these equations which has already been mentioned may be 
very briefly obtained as follows. Since F = gimX^'^ x'-'"^ is 

* Attention should; however, be called to the fact that this integral is not, 
properly speaking, a Une integral at aU; its value depends not only on the 
curve over which it is extended but on the particular parametric mode of 
representation chosen for this curve. In order that the value of the integral 
should not be dependent on the parametric representation the integrand should 
be positively homogeneous of degree unity in the derivatives x'. 



120 VECTOR ANALYSIS AND RELATIVITY 

homogeneous of degree 2 in the x' we have, by Euler's theorem 
on homogeneous functions, 



5a;W' 



= 2F 



a result immediately verifiable directly (r umbral). On multiply- 
ing the equations 

by a;^'^ and using r as an umbral symbol we obtain 



,,si dF d I ,-,t dF \ I or /„■,// _ 
5a; W dv\ 3a;W / " " 



dF ,,^// 

aa;W'' 



or 



^-2— = 
dv dv 

showing that F is constant along the geodesies. The constant 
is now zero instead of unity as it was in the case of the non- 
minimal geodesies. 

Before proceeding to calculate the deflection of the light rays 
it will be well to prove an often quoted property of them. In a 
statical gravitational field the time coordinate x^*^ does not enter 
into F = {dsy. Hence 



d / dF \ ^ 

— I ; 1 = or ; = const. 



dF 

aa;«>' 



If, now, in the discussion of Ch. 6, § 1, instead of keeping both 
ends of the " varied curve " C{a) fixed, we had allowed the ends 
to vary also, the part of dl which came outside the sign of integra- 
tion when we integrated by parts would not vanish automatically. 
Since the first variation is to vanish when the end points are 
fixed as well as when they vary the part under the sign of integra- 
tion vanishes as before yielding the Eulerian equations but in 



PROBLEMS IN EJEIATIVITY 121 

addition we have the end condition 

( -^ 8a;W r ^ = (r umbral) 

VSCCW |l/a = 

If now all the coordinates but x^*^ are kept fixed 
5a;« = = 6a;® = 6a;(« 

and we find since : is constant over the extremal curve 

aa;«)' 

^^ Sx<''>\l = or ll-^sfiHx^'^ = 



and as 

we have 

Syi^dcc^^ = 

which is known as the Fermat or Huyghen's Principle of Least 
Time. It is an immediate consequence of the absence of x^^^ 
from (day-, there is a similar theorem for the symmetrical 
attracting center: 

Sfi^dx<'^ = 

but this has no special utility. The Fermat Principle states that, 
given two fixed points in space (by fixed is meant that the three 
space coordinates for an observer attached to the gravitating 
center are constant), a light signal passes from one to the other 
in such a way that the first variation of the time interval is a 
minimum. 
With the same notation as that employed in § 3 we find 

ga^' = — h; g4' = C 

where h and C are constants and ■<re find exactly as before that a 
proper choice of om* initial conditions for 6 enables us to 



122 VECTOR ANALYSIS AND RELATIVITY 

write 9 = ir/2. The only diflFerence is that (Z)') is replaced by 

(1 - 2mlr)-\r'f + r\ip'f - (1 - 2mlr){t'f = 
whence on writing r = l/u and using r'(p' = hwe find 

In order to get an idea of the order of magnitude of the constants 

C, h of integration we make a first trial-approximation. The 

largest value that u can have is 1/R where R, the radius of the 

sun, = 697,000, the units being kilometers. Hence we neglect, 

for the moment, the u^ term in comparison with the others and 

find at once 

C 
M = — sin (^ — ^o) 
h 

where <po is a constant of integration. Hence C/h is the largest 
value of u and is therefore a small quantity of the order 1/10^. 
Denoting this small quantity by a (a is the positive square root 
of C^/hJ') we have 



\d<p) 



2mv? — u^ -{- a^. 



The discriminant (cf. Ch. 7, § 3) of the cubic on the right is 
4a^(l — 27m^a^), a positive quantity, so that the three roots are 
real. When a = they reduce to l/2m, 0, 0, so that trying in 
turn ka and (l/2m) + ka we find the first approximation to the 
three roots Us = — a, U2 = a, ui = l/2m where we have ar- 
ranged the roots so that Us < u^ < ui. For a second approxi- 
mation, we try in turn — a + ka^, a + ka^, (l/2m) + ko? for 
Ui, U2, Ml respectively and find 

Uz= — a-\- ma'; U2= a+ ma^; Ui = (l/2m) — 2ma^. 

We now, as before, determine a linear transformation which 
sends u = u^ into 2 = 0; u = 112 into z = 1. It is m = a + 62 



PROBLEMS IN RELATIVITY 123 

where a — ug, h = Ui — uz and then the third root u = Ui 
goes into z = 1/P where 

,2 _ ^2 — M3 
Wl — Uz 

Now the cubic 2mw^ — v? -\- 0? cannot be negative in our problem 
nor can u itself. At remote distances from the sun u — ► so 
that initially m = and it increases to u = Ui at which point u 

has a maximum value, since ( ^— ) = there. Then M2 begins to 

\ny/ 

decrease and the radical y2mu^ — u^ -\- a^ in the expression for 
d<p 

du 



dtp = 



'^2mv? — ij? -\- o? 



also changes sign so that d^ keeps its sign. The angle between 
a point at a remote distance and the perihelion of the light ray 

-—===== • The excess of 
■\2mv? — V? -\- a^ 

twice this over x is the deflection D experienced by the ray. 

Hence 

du 







la ■^2mv? — -v? -\- (^ 

which on writing m = a-\-hz becomes 

dz 



2 r^ 

A/2m6.'-(a/5) -v/z(l — z)[ — — z\ 



On making the final substitution z = sin^ B this becomes 

4A; r'"" de 



Z) + 7r = 






^2mh Jain-i -\/^«- Vl — ¥■ sin^ 9 
Now 

P = = 4mQ: + higher powers in a 

- — \- a — Zmo? 
2m 



124 VECTOR ANALYSIS AND RELATIVITY 

SO that, m being 1.47, h"^ is a small quantity of the same order 
as a. Hence (1 — F sin^ d)~^i^ can be expanded in a rapidly 
convergent series and an integration of the initial terms of this 
series gives a high approximation to D + tt. On substituting 
the values of h and h the multiplier of the integral becomes 



4 



i2m{u3 — Ml) 
whilst the lower limit of the integral is 



= 4(1 + 2ma)-i/2 = 4(1 - ma) 



• _i /l — ma . _, 1 /I 1 N 
sm 1 -yl — = sm 1 ^ (1 - ima) 

Here it is necessary to use the second approximation since Ug is 
to be divided by us — M2 itself a small quantity of the first order. 
On expanding 

by Taylor's theorem we have for the lower limit (7r/4) — ^ma 
so that 



D + IT -= A{1 - ma)\ e + ^{6 - sine COS d) + ■■• L _ 



"2~ 



In the term multiplied by 

F , 

— = ma + • • • 

4 

it is sufficient to take the rough approximation 7r/4 to the lower 
limit and we have 

D + . = m-ma)[l+'f+ma(^l + l)'\ 

= (1 — ma)[T + ma(4 + tt)] 
giving 

D = 4ma 

a, in this expression, is the maximum value U2 oi u (to a first 



PROBLEMS IN RELATIVITY 125 

approximation), i.e., is the reciprocal of the radius of the sun. 
An idea as to the closeness of this approximation is obtained 
by using the second approximation 

— = U2 = <x+ mor 
K 

The positive root a of this quadratic is 

so that writing a = 1/R is equivalent to neglecting m/R in 
comparison with unity or to a neglect of 1 part in 5.10'. On 
substituting m = 1.47, R = 697,000 in the expression D = im/R 
and converting this radian measure into seconds of arc we find 
the value 1.73" predicted by Einstein for a light ray which just 
grazes the sun.* 

*For a fuller discussion of the problems dealt with in this chapter reference 
is made to two papers by the author in the Phil. Mag. of dates Jan. (1922) 
and March (1922) respectively. For an alternative treatment of the subject 
matter of §2 the reader should consult the paper Concomitants of Quadratic 
Differential Forms by A. R. Forsyth in the Proc. Roy. Soc. Edin. May (1922) .